
HAL Id: tel-01226540
https://theses.hal.science/tel-01226540

Submitted on 9 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mathematical models and methods based on
metaheuristic approach for timetabling problem

Maqsood Ahmad

To cite this version:
Maqsood Ahmad. Mathematical models and methods based on metaheuristic approach for timetabling
problem. Other [cs.OH]. Université Blaise Pascal - Clermont-Ferrand II, 2013. English. �NNT :
2013CLF22393�. �tel-01226540�

https://theses.hal.science/tel-01226540
https://hal.archives-ouvertes.fr

N° d’ordre : 2393

EDSPIC : 622

UNIVERSITE BLAISE PASCAL – CLERMONT-FERRAND II

ECOLE DOCTORALE DES SCIENCES POUR L’INGENIEUR DE CLERMONT-FERRAND

THESE
présentée par

Maqsood AHMAD

en vue d’obtenir le grade de

DOCTEUR D’UNIVERSITÉ
Spécialité : INFORMATIQUE

Mathematical Models and Methods Based

on Metaheuristic Approach for Timetabling Problem

Soutenue publiquement le 15 novembre 2013 devant le jury :

 ALPAN Gulgun, rapporteur

 ARTIBA Hakim, examinateur

 CAUX Christophe, co-directeur de thèse

 GOURGAND Michel, directeur de thèse

 QUILLIOT Alain, examinateur

 SOUKHAL Ameur, rapporteur

i

I dedicate this thesis to my beloved daughter Suha Ahmad.

ii

iii

 AKNOWLEDGEMENT

I would like to express my gratitude to my supervisors Michel Gourgand and Christophe

Cuax without their help it was impossible to complete this work. I am really thankful to them

for their precious time, guidance, patience, motivation and enthusiasm. They were always

available for my help whenever I found any difficulty. They were really helpful to solve my

administration related problems as well.

Besides my supervisors, I would like to thank Michel Chabrolle for her care and interest in

my work. Her comments and guidance played a vital role in the completion of this work.

I would also pay my gratitude to my jury members Gulgun Alpan and Ameur Soukhal for

their comments and corrections which made this thesis more accurate and give us more ideas

for our future work. I am grateful to my examiners for their comments and suggestions.

I would like to extend my gratitude to our Montlucon team for their support. I would never

forget their cooperation. I am also thankful to my colleagues of LIMOS with whom I passed a

very good time.

My profound gratitude is also for my friends, who were always with me in any time of

difficulty. Their company was a source of inspiration and pleasure for me. I would always

miss their company and talks.

I would like to extend my gratitude to my parents, brothers, sisters and all relatives whose

prayers and good wishes were really important for me while staying abroad.

Last but not least, my profound gratitude is for my wife and daughter who helped me a lot to

do this work and facilitated (especially in form of time) me during this work.

iv

v

Table of Contents

SUMMARY OF THESIS..1

AKNOWLEDGEMENT .. III

1 INTRODUCTION ... 7

1.1 Brief introduction of timetabling problems 7

1.2 Main categories of educational timetabling problems 9

1.2.1 High school timetabling .. 9

1.2.2 University timetabling .. 9

1.2.2.1 Characteristics of university timetabling .. 10

1.2.2.2 Structure of university courses ... 10

1.2.2.3 Types of university courses .. 10

1.2.2.4 Availability of resources .. 11

1.2.2.5 Rules for timetabling in the university ... 11

1.2.3 Examination timetabling ... 12

1.3 Different types of constraints .. 12

1.3.1 Hard constraints .. 13

1.3.2 Soft constraints ... 13

1.4 Categorization of constraints into five main classes 13

1.4.1 Unary constraints .. 13

1.4.2 Binary constraints ... 13

1.4.3 Capacity constraints .. 14

1.4.4 Event spread constraints ... 14

1.4.5 Agent constraints .. 14

1.5 Objective Functions .. 15

1.6 Neighbourhood Structures .. 16

1.6.1 Simple swap .. 16

1.6.2 Room swap neighborhood .. 17

vi

1.6.3 Time swap neighborhood ... 17

1.6.4 Kempswap neighborhood ... 18

1.7 Graph colouring and timetabling problem 20

1.8 Resolution techniques ... 24

1.8.1 Exact methods ... 24

1.8.1.1 Integer programming techniques .. 25

1.8.2 Metaheuristic methods .. 27

1.8.2.1 Local search based algorithms ... 28

1.8.2.1.1 Tabu search algorithms ... 28

1.8.2.1.2 Local search algorithms .. 29

1.8.2.1.3 Simulated annealing algorithms ... 31

1.8.2.1.4 Great deluge algorithms .. 32

1.8.2.2 Population based algorithms .. 33

1.8.2.2.1 Ant colony algorithms .. 33

1.8.2.2.2 Partical swarm optimization algorithm ... 34

1.8.2.2.3 Genetic algorithms .. 35

1.8.2.2.3.1 Initialization .. 35

1.8.2.2.3.2 Selection ... 38

1.8.2.2.3.3 Cross over ... 39

1.8.2.2.3.4 Reproduction... 41

1.8.2.2.3.5 Genetic algorithms in educational timetabling ... 42

1.8.2.2.3.6 A simple example of genetic algorithm .. 45

1.8.2.2.4 Memetic algorithms .. 48

1.8.2.2.5 Honey bee algorithms ... 49

1.8.2.2.5.1 Review of Honey bee algorithms.. 51

1.8.3 Brief review of RCPSP ... 55

1.9 Conclusion ... 56

2 TRANSFORMATION OF COURSE TIMETABLING

PROBLEM TO RCPSP .. 58

2.1 The resource constrained project scheduling problem

(RCPSP) .. 58

vii

2.2 Basic single-mode RCPSP and course timetabling 59

2.3 Transformation of timetabling problem to RCPSP 60

2.3.1 General features of the models ... 60

2.3.2 Proposed mathematical model 1 ... 62

2.3.3 Proposed mathematical model 2 ... 63

2.4 Conclusion ... 64

3 A GENERIC MODEL OF UNIVERSITY COURSE

TIMETABLING PROBLEM ... 66

3.1 General features of the proposed model 66

3.1.1 Used entities of the model .. 66

3.1.2 Notations, sets, sub sets and parameters ... 67

3.1.3 Decision variables ... 70

3.1.4 Objective function .. 70

3.2 Integer programming formulation for generalized problem

 70

3.2.1 Hard constraints .. 70

3.2.2 Period related constraints .. 71

3.2.3 Room related constraints .. 72

3.2.4 Class related constraints ... 72

3.2.5 Course related constraints ... 75

3.2.6 Teacher related constraints ... 77

3.3 Discussion on Objective functions... 78

3.4 An example of timetabling problem 80

3.5 Conclusion ... 82

4 GENERIC MODEL FOR EXAMINATION TIMETABLING

PROBLEM ... 84

viii

4.1 Most frequently used constraints for examination

timetabling .. 85

4.2 Features of the generic model .. 85

4.2.1 Entities for the model.. 86

4.2.2 Notations, sets, sub sets and parameters ... 86

4.2.3 Decision variables ... 88

4.2.4 Objective function .. 88

4.3 Integer programming model for generalized examination

timetabling problem .. 89

4.4 Conclusion ... 93

5 DIFFERENT INSTANCES OF GENERIC MODELS FOR

UNIVERSITY COURSE AND EXAMINATION TIMETABLING

PROBLEMS ... 95

5.1 Instances of our generalized course timetabling problem 95

5.1.1 Pasquale Avella and Andigor Vasil’ev model 96

5.1.2 International timetabling competition 2007 (ITC 2007) 98

5.1.2.1 Post enrollment based course timetabling .. 98

5.1.2.1.1 Used constraints and difference with ITC 2002 99

5.1.2.1.2 Difference of our model with Post enrolment based course timetabling

 100

5.1.2.2 Curriculum based course timetabling problem .. 102

5.1.2.2.1 Evaluation procedure for solutions ... 103

5.1.2.2.2 Used sets for the problem ... 105

5.1.2.2.3 Purpose of the competition ... 106

5.1.3 Original timetabling problem of Udine University 106

5.1.4 Constraints different from previous scenarios 109

5.1.5 Constraints not found in the literature .. 109

5.1.6 Contradictory constraints for course timetabling problem 110

ix

5.2 Examination Timetabling Instances 112

5.2.1 University of Toronto Benchmark instances 112

5.2.2 University of Melbourne Benchmark instances 113

5.2.3 ITC- 2007 Benchmark instance (Examination Timetabling Track)

 113

5.2.4 Constraints different from previous benchmark instances 114

5.2.5 Constraints not found in the literature .. 115

5.3 Conclusion and Discussion... 115

6 PROPOSITION OF RESOLUTION METHODS 117

6.1 Solution representation of Algorithms 117

6.1.1 Reduction of search space .. 119

6.1.2 Benefits of using this representation .. 120

6.2 Initial solution ... 122

6.2.1 Pre-processing or division of search space 122

6.2.2 Random initialization.. 124

6.2.3 Repair strategies .. 124

6.2.4 Set forming heuristics ... 126

6.3 Memetic Algorithm ... 126

6.3.1 Classic genetic algorithm .. 127

6.3.2 Genetic operators .. 127

6.3.2.1 Selection ... 127

6.3.2.2 Cross over ... 128

6.3.2.3 Mutation ... 128

6.3.3 Infection .. 130

6.3.4 Replacement ... 131

6.3.5 Proposed Local search .. 132

6.3.6 Pseudo code of memetic algorithm .. 133

6.4 Honey bee algorithm .. 135

x

6.4.1 Honey bee colony Algorithm ... 135

6.4.2 Honey bee mating algorithm .. 135

6.4.3 Proposed honey bee mating algorithm ... 136

6.5 Termination criteria ... 144

6.6 Conclusion ... 144

7 EXPIREMENTS AND RESULTS ... 147

7.1 Course timetabling problem .. 147

7.1.1 Benchmark solved by proposed memetic algorithm 148

7.1.2 Description of the generalized course timetabling problem 153

7.1.3 Data generation for course timetabling problem 155

7.1.4 Results of course timetabling Problem.1 datasets 158

7.1.4.1 Memetic algorithm ... 159

7.1.4.2 Honey bee mating algorithm .. 161

7.1.4.3 Genetic algorithm .. 162

7.1.4.4 Tabu search algorithm .. 164

7.1.4.5 Minimum cost Comparison of all algorithms .. 166

7.1.4.6 Maximum cost Comparison of all algorithms .. 168

7.1.4.7 Average cost Comparison of all algorithms ... 169

7.1.5 Results of course timetabling Problem.2 datasets 170

7.1.5.1 Memetic algorithm ... 171

7.1.5.2 Honey bee mating algorithm .. 171

7.2 Examination timetabling problem .. 172

7.2.1 Data generation for Examination timetabling problem 172

7.2.2 Results of examination timetabling problem datasets 176

7.2.2.1 Minimum cost comparison of all algorithms ... 176

7.2.2.2 Maximum cost comparison of all algorithms ... 177

7.2.2.3 Average cost comparison of all algorithms .. 178

7.2.2.4 Standard deviation comparison of all algorithms 179

7.3 Discussion on Results and conclusion 179

xi

REFERENCES .. 189

List of Figures

Figure 1.1: a and b: Illustration of simple swap ... 16

Figure 1.2: Illustration of room swap neighborhood ... 17

Figure 1.3: Illustration of time swap neighborhood ... 18

Figure 1.4: Kemp chain illustration .. 19

Figure 1.5: Describing the relationship between the graph colouring problem and a simple

timetabling problem (only considering lesson conflict constraint). ... 22

Figure 1.6: Associated conflict graph of lessons .. 24

Figure 1.7: Repair procedure for Course’s conflict .. 36

Figure 1.8: Repair procedure for teacher’s conflict ... 37

Figure 1.9: Build procedure Lewis thesis [102] ... 38

Figure 1.10: Picture expressing roulette wheel selection ... 39

Figure 1.11: Picture expressing one point crossover .. 40

Figure 1.12: Picture expressing two point crossover ... 40

Figure 1.13: Picture expressing uniform crossover .. 41

Figure 1.14: Original HBMO for SAT [68] ... 50

Figure 6.1: Example of a single room timetable .. 118

Figure 6.2: An entire university timetable ... 119

Figure 6.3: Population of timetables .. 123

Figure 6.4: Procedure for room repair strategy .. 125

Figure 6.5: Two step verification strategy (Repair procedure for violation of two hard

constraints) ... 125

Figure 6.6: Procedure for crossover .. 128

Figure 6.7: Procedure for random mutation ... 129

Figure 6.8: Procedure for mutation by neighbourhood .. 130

Figure 6.9: Infection ... 131

Figure 6.10: The pseudo code for Local Search ... 132

Figure 6.11: The pseudo code for memetic algorithm ... 134

Figure 6.12: Pseudo Code for Honey Bee Mating Algorithm .. 139

Figure 6.13: The block diagram for the proposed algorithm ... 143

xii

Figure 7.1: is showing the behaviour of the algorithms for medium sized dataset. These

algorithms are run for 5000 iterations. X-axis represents number of iterations and Y-axis

represents the cost at each iteration. The mutation rate is set to 7, kill colony 20 percent and

population size 100. .. 181

Figure 7.2: Showing the comparison of different selection operators for memetic algorithm

 .. 182

Figure 7.3: Time and cost comparison of all algorithms .. 183

xiii

List of Tables

Table 1.1: Lists papers related to course and examination timetabling problem 54

Table 3.1: Solution of timetabling example by CPLEX .. 81

Table 5.1 : Score matrix ... 104

Table 5.2: Rank matrix and mean ranks ... 104

Table 6.1: Differences and similarities between our HBM algorithm and previous population

based algorithms. ‘‘–’’ means the method did not use the corresponding operator. 137

Table 6.2: Differences and similarities between our HBM algorithm, HBMO [68] and

HBMO-ETP [48] .. 140

Table 6.3: Parameter settings for our HBM algorithm’s computational experiments 142

Table 7.1: Showing dataset number, dataset name, total number of rooms, total number of

periods, total number of courses, the sum of their events in a week and the number of

curricula. ... 149

Table 7.2: Frequency or the portion of period-room slots in use, utilisation in terms of used

seats in percentage, numbers of edges in conflict graphs (CG), density in conflict graphs (CG)

with vertices representing courses rather than events and total unavailability constraints. ... 150

Table 7.3: Aaverage number of conflicts (Co), average teacher availability (TA), average

number of lessons per curriculum per day (CL) and average room occupation (RO) 150

Table 7.4: Our memetic algorithm’s (Our MA) results (minimize objective function value) in

comparison with some other used techniques for International timetabling competition

datasets (ITC-2007). ... 152

Table 7.5: Showing constraints for Problem.1 and provides details about every constraint

whether it is used as hard or soft. If it is used as a soft constraint then it also tells about the

amount of penalty used in case of violation. .. 154

Table 7.6: Showing additional constraints used for Problem.2 .. 155

Table 7.7: Numerical results for small datasets obtained by memetic algorithm 159

Table 7.8: Numerical results for medium datasets obtained by memetic algorithm 160

Table 7.9: Numerical results for large datasets obtained by memetic algorithm 160

Table 7.10: Numerical results for small datasets obtained by honey bee mating algorithm .. 161

xiv

Table 7.11: Numerical results for medium datasets obtained by honey bee mating algorithm

 .. 162

Table 7.12: Numerical results for large datasets obtained by honey bee mating algorithm .. 162

Table 7.13: Numerical results for small datasets obtained by genetic algorithm................... 163

Table 7.14: Numerical results for medium datasets obtained by genetic algorithm 163

Table 7.15: Numerical results for large datasets obtained by genetic algorithm 164

Table 7.16: Numerical results for small datasets obtained by tabu search algorithm 165

Table 7.17: Numerical results for medium datasets obtained by tabu search algorithm........ 165

Table 7.18: Numerical results for large datasets obtained by tabu search algorithm 166

Table 7.19: Minimum cost comparison of honey bee mating, memetic, genetic and tabu

search algorithms for small datasets. .. 167

Table 7.20: Minimum cost comparison of honey bee mating, memetic, genetic and tabu

search algorithms for medium datasets. ... 167

Table 7.21: Minimum cost comparison of honey bee mating, memetic, genetic and tabu

search algorithms for large datasets. .. 167

Table 7.22: Maximum cost comparison of honey bee mating, memetic, genetic and tabu

search algorithms for small datasets. .. 168

Table 7.23: Maximum cost comparison of honey bee mating, memetic, genetic and tabu

search algorithms for medium datasets. ... 168

Table 7.24: Maximum cost comparison of honey bee mating, memetic, genetic and tabu

search algorithms for large datasets. .. 169

Table 7.25: Average cost comparison results of honey bee mating, memetic, genetic and tabu

search algorithms for small datasets. .. 169

Table 7.26: Average cost comparison results of honey bee mating, memetic, genetic and tabu

search algorithms for medium datasets. ... 170

Table 7.27: Average cost comparison results of honey bee mating, memetic, genetic and tabu

search algorithms for large datasets. .. 170

Table 7.28: Numerical results for large datasets obtained by memetic algorithm 171

Table 7.29: Numerical results for large datasets obtained by honey bee mating algorithm .. 172

Table 7.30: Constraints for examination timetabling problem... 175

Table 7.31: Minimum cost comparison of all algorithms for small datasets 176

Table 7.32: Minimum cost comparison of all algorithms for medium datasets 176

Table 7.33: Minimum cost comparison of all algorithms for large datasets 177

xv

Table 7.34: Maximum cost comparison of all algorithms for small datasets 177

Table 7.35: Maximum cost comparison of all algorithms for medium datasets 177

Table 7.36: Maximum cost comparison of all algorithms for large datasets 178

Table 7.37: Average cost comparison of all algorithms for small datasets 178

Table 7.38: Average cost comparison of all algorithms for medium datasets 178

Table 7.39: Average cost comparison of all algorithms for large datasets 178

Table 7.40: Standard deviation comparison of all algorithms for small datasets................... 179

Table 7.41: Standard deviation comparison of all algorithms for medium datasets 179

Table 7.42: Standard deviation comparison of all algorithms for large datasets 179

xvi

1

SUMMARY OF THE THESIS

In this thesis we have concerned ourselves with university timetabling problems both course

timetabling and examination timetabling problems. Most of the timetabling problems are

computationally NP-complete problems [159, 161], which means that the amount of

computation required to find solutions increases exponentially with problem size. These are

idiosyncratic nature problems, for example different universities have their own set of

constraints, their own definition of good timetable, feasible timetable and their own choice

about the use of constraint type (as a soft or hard constraint).

Unfortunately, it is often the case that a problem solving approach which is successfully

applied for one specific problem may not become suitable for others. This is a motivation, we

propose a generalized problem which covers many constraints used in different universities or

never used in literature. Many university timetabling problems are sub problems of this

generalized problem. Our proposed algorithms can solve these sub problems easily, moreover

constraints can be used according to the desire of user easily because these constraints can be

used as reference to penalty attached with them as well. It means that give more penalty value

to hard constraints than soft constraint. Thus more penalty value constraints are dealt as a hard

constraint by algorithm. Our algorithms can also solve a problem in two phases with little

modification, where in first phase hard constraints are solved. In this work we have preferred

and used two phase technique to solve timetabling problems because by using this approach

algorithms have broader search space in first phase to satisfy hard constraints while not

considering soft constraints at all.

Two types of algorithms are used in literature to solve university timetabling problem, exact

algorithms and approximation algorithms. Exact algorithms are able to find optimal solution,

however in university timetabling problems exact algorithms constitute brute-force style

procedures. And because these problems have the exponential growth rates of the search

spaces, thus these kinds of algorithms can be applied for small size problems. On the other

side, approximation algorithms may construct optimal solution or not but they can produce

good practically useable solutions. Thus due to these factors we have proposed approximation

algorithms to solve university timetabling problem.

2

We have proposed metaheuristic based techniques to solve timetabling problem, thus we have

mostly discussed metaheuristic based algorithms such as evolutionary algorithms, simulated

annealing, tabu search, ant colony optimization and honey bee algorithms. These algorithms

have been used to solve many other combinatorial optimization problems other than

timetabling problem by modifying a general purpose algorithmic framework. We also have

presented a bibliography of linear integer programming techniques used to solve timetabling

problem because we have formulated linear integer programming formulations for our course

and examination timetabling problems.

We have proposed two stage algorithms where hard constraints are satisfied in first phase and

soft constraints in second phase. The main purpose to use this two stage technique is that in

first phase hard constraints satisfaction can use more relax search space because in first phase

it does not consider soft constraints. In second phase it tries to satisfy soft constraints when

maintaining hard constraints satisfaction which are already done in first phase.

As mentioned above, our scientific investigations are related to linear integer programming

formulations for generalized university course and examination timetabling problems,

transformation of course timetabling problem models to resource constrained project

scheduling problem (RCPSP) and metaheuristics to solve timetabling problem. A major part

of thesis consists of examining proposed algorithms. From our studies of these mathematical

models and algorithms, the following scientific work is made.

• We have proposed two mathematical formulations of course timetabling problem which are

the prototype of single-mode RCPSP. The main benefit of these formulations is that these

give us the idea of using different durations for lessons in course timetabling and the

implementation of precedence constraints through RCPSP to timetabling problem. This work

equates the two different problems through mathematical formulation.

• We have proposed a new 0-1 linear integer programming formulation for university course

timetabling problem. The mathematical model for the problem provides many operational

rules and requirements which are needed in many universities. We have discussed how

different objective functions can be deduced from this formulation by using these

mathematical relations as a soft constraint.

3

• Different university environments have been shown as a sub problem of our generalized

model. Sub problem mathematical formulations have been deduced from generic model. We

have written mathematical equations of objective functions of these problems.

• A new 0-1 linear integer programming formulation for examination timetabling problem is

proposed. This generic model is made by gathering many constraints from different university

environments in a single problem and by adding some extra constraints which were never

used in literature according to our knowledge.

•We have proposed two algorithms to solve course and examination timetabling problem. Our

first algorithm is memetic algorithm. Memetic algorithm is a genetic algorithm with local

search; we also have proposed a local search for our memetic algorithm. Our second

algorithm is honey bee mating algorithm, use of this algorithm in educational timetabling

problems is not common. We have discussed in detail differences and similarities between our

algorithms and previously used algorithms.

Our thesis is structured as follows.

In Chapter 1 we have given an introduction to the university timetabling problem. We have

explained what is timetabling problem and what kind of constraints are used in university

timetabling problem. We have discussed similarities of graph coloring problems with

educational timetabling problems. We also have given a review of different solution

techniques used to solve this kind of problems, concentrating mainly on metaheuristics.

In Chapter 2, we have given a connection of single mode RCPSP with course timetabling

problem. This chapter transforms course timetabling problem to RCPSP through two

equivalent mathematical formulations proposed by us.

In Chapter 3, we have proposed a generic model for university course timetabling problem.

We have defined different sets, sub sets and parameters to formulate a generalized

mathematical model.

In Chapter 4, we have proposed a generic model for examination timetabling problem, this

model resembles to the generic model for course timetabling but its structure is different from

course timetabling problem.

4

In Chapter 5, we have discussed about different instances from literature. The formulations of

these instances can be made by our generic model for university course timetabling problem.

We have also discussed instances used in literature for examination timetabling problem. We

have shown in detail how these instances can be obtained from our model.

In Chapter 6, we have explained in detail our proposed memetic algorithm and honey bee

mating algorithm. We have explained how these algorithms work. We have explained in

detail our chromosome representation, different operators used and different repair functions.

In Chapter 7, we have solved dataset instances of ITC-2007 with our proposed memetic

algorithm and compared our results with the results of techniques used in literature. We have

generated data for our generalized problem for both course and examination timetabling. We

solve these datasets with our proposed algorithms. After getting results we have discussed

about the performance of these algorithms. We have also tested the effect of different

parameters and operators on the performance of algorithm.

At the end, we have given summary of the main conclusions which can be drawn from this

thesis. Moreover, future research perspectives have been discussed which can give the good

ideas for further possible research directions.

We want to keep this thesis at a reasonable length and we write this thesis considering that the

reader has some basic knowledge of university timetabling problem and used solution

techniques especially metaheuristics. Readers who do not have prerequisite knowledge are

invited to study some good texts about these topics. We refer these works for basic

understanding of the domain.

• One can find good articles on various different timetabling problems from the website of

ASAP group (http://www.asap.cs.nott.ac.uk/?q=bibliography). This website also contains

many good publications of the PATAT series (The Practice and Theory of Automated

Timetabling).

• One can also find good overviews on the basic principles of metaheuristics on website

http://en.wikipedia.org/wiki/Metaheuristic.

http://www.asap.cs.nott.ac.uk/?q=bibliography
http://en.wikipedia.org/wiki/Metaheuristic

5

• We have given reference of some good surveys on educational timetabling problems, which

can be found in the bibliography at the end of this thesis.

6

7

Chapter 1

1 INTRODUCTION

This chapter presents the general overview of timetabling problems, what actually these

problems are, how much trouble they can create for scheduler and how many different ways

can be used to solve them. In the next Section 1.1, we have discussed different timetabling

problems used by research community and expressed how these problems have a significant

effect on user’s life. In Section 1.2, we have presented different types of educational

timetabling problems. In Section 1.3, we have spoken about major types of constraints used in

educational timetabling problems. In Section 1.4, we have a categorization of these

constraints. In Section 1.5, we have brief detail of different objective functions used in

literature. In Section 1.6, we have talked about different neighbourhood structures used for

educational timetabling as a part of different metaheuristics. In Section 1.7, we have shown a

comparison between simple timetabling problem and another combinatorial optimization

problem: graph colouring. In Section 1.8, we have included a detailed review of different

methods used to solve various university timetabling problems proposed by researchers in the

literature. This chapter’s conclusion is given in Section 1.9.

1.1 Brief introduction of timetabling problems

Wren [117] defines timetabling as follows: ‘‘Timetabling is the allocation, subject to

constraints, of given resources to objects being placed in space time, in such a way as to

satisfy as nearly as possible a set of desirable objectives’’.

Timetables have become very important part of our daily life such as transport, work, sports

and education. It is very hard to imagine and organize life in modern society without them.

The construction of workable and attractive timetables is not an easy task in real world cases

where one has limited resources like people, space and time. Using limited resources it

becomes a challenging problem even for the experienced designers. These timetables have a

significant effect on the people who use them. These timetables construction should be as best

as one can. Often such type of timetables will be updated or completely rescheduled. School

8

or university timetables will be rescheduled at the beginning of the new academic year,

similarly bus or train timetable will be modified to cope with new road layouts and stops. So

this is a problem which people and institution will face on regular basis.

Train or railway timetabling is the planning of arrivals and departures of trains at stations and

from stations. The objective is to minimize travel times, satisfy user requirements and solve

conflicts between different trains. This is the simple theoretical view but in real situation there

are many more problems to solve. There could be many additional constraints like when some

trains are standing on tracks, some platforms are not available etc. Bus or train timetables

show that when a journey will be conducted on any particular routes or paths. It does not tell

about which driver or which vehicle will be used. The allocation of derivers and vehicles is

the part of scheduling process. So railway scheduling means design of pattern journeys [5, 6].

Employee timetabling is very important when one wants to produce goods to meet some

demand in any production system. This type of schedule will take into account the availability

of the human resources. So with production schedule an employee schedule should be made

simultaneously [7]. Employee timetabling will minimize labor costs while production

scheduling should insure that production can be done on time.

Nurse rostering problems will arise in hospital practice. This is about personal scheduling and

this generates daily schedules for nurses by assigning shifts according to their skills and

predefined hard and soft constraints. It can be defined this way “ Given a set of shifts and set

of nurses over a certain period, assign each shift of nurse subject to a set of constraints” [8].

The main purpose of this scheduling is to make a plan for nurses who can satisfy nurses and

patients. Due to many constraints of conflicting nature and requirements (like coverage

demand, consecutive demands of shifts, day off requirements, work load of nurses, weekend

related requirements) this is a very difficult problem to solve for hospital’s personal managers

and for researchers as well.

Sports have great attraction all over the world. Professional sport leagues invest a lot of

money in players. Now these games have become multimillion dollar industries. Big events

like the Football world cup, Olympic Games and major golf tournaments generate huge

television audiences worldwide. Thus the key aspect of this type of scheduling is the

assignment of venues and times to different competitions over multiple venues that can satisfy

9

to all those who have interest in these competitions. So constraints of the problem can vary

from competition to competition. These requirements could be of different type, each team

should play at each station, each team will counter against each other team at least once in

tournament etc. [14].

1.2 Main categories of educational timetabling problems

Educational timetabling problems could be divided in main three categories, High school

timetabling, University timetabling and Examination timetabling problems. There are some

good reviews on the topic in the literature [97,118,119, 73].

1.2.1 High school timetabling

In high school timetabling each class has a particular lessons and this timetabling is majorly

driven by curriculum. Number of hours of each subject per week set nationally. Each class

normally has a set of students which will attend same courses all day and a specific teacher

will be allocated for each course. Teachers are normally allocated before scheduling so the

main purpose is to assign courses of teachers to classes in particular periods.

1.2.2 University timetabling

University timetabling can be formally defined in this way, task of assigning a number of

events such as lessons, examinations, meetings and so on, to a limited set of periods (perhaps

rooms) in accordance with a set of constraints.

The university course timetabling problem is an assignment of courses to periods and rooms

like high school timetabling but major difference between university course timetabling and

high school timetabling is that university classes can have common students while school

classes have disjoint sets of students. So if two classes have common students these can not be

scheduled together in the same period. School teachers most of the time teach more than one

class while university professor may teach only one course. In high school timetabling rooms

are not a big issue because each class has its own room but in university course timetabling

problem rooms have a lot of importance. In university environment some classes need some

specific rooms with specific equipment. Room size plays a vital role, one big room can be

partitioned into many small rooms and some rooms are not available all times.

10

1.2.2.1 Characteristics of university timetabling

The university timetabling problem has special features that highly depend upon the resource

arrangement, their availability and other characteristics that the courses taught in a university

carry along. A course can have particular requirements, which can be related to periods,

teachers, rooms, sessions, arrangement of lessons of the course etc. [12].

1.2.2.2 Structure of university courses

A course offered by any institution may consist of just lessons, or lessons and recitations, or

lessons, recitations, and/or work in a laboratory. The lessons are delivered by professors,

teachers or other teaching staff and it is their choice, how they will carry out them in single or

multi period session. Recitations are considered as lessons delivered by the same teacher,

while in other cases they may be considered time for exercises to enhance the understanding

of the material covered during lessons. In this last case the class is split into many parts and

one or more persons are assigned to attend them. Lab work is usually part of a given course or

sometimes a course by itself and the group of students is split into several sub-groups for

training. Lab work is performed in special type of rooms (special type rooms may be

laboratory, computer room etc.) which may need special equipment and professors and

assistants are assigned to pursue these lessons. If number of students attending a course is

more than a certain limit, course can be divided into sessions, these sessions can be taught by

the same teacher and by different teachers depending upon the situation, resources and

requirement of the university.

1.2.2.3 Types of university courses

In many universities courses are categorized in two categories mandatory and electives [12].

Mandatory courses are compulsory courses which each student should take for his basic

training. These courses are more in lower grade years, so these are designed for all students of

the same year. Elective courses are less in numbers in lower grade years. So these elective and

mandatory courses have common students thus they should be scheduled on different periods.

In higher grade years case is opposite where mandatory courses are less in numbers but

elective course are more in numbers. It is common in higher grade years to divide their

students in different divisions according to student choices and each division has their own

mandatory and elective courses. Then to make schedule for them is hard because some

divisions have no common interests and some divisions are sharing courses. Different

11

students may belong to different lab groups or recitation and this will enhance more difficulty

in scheduling.

1.2.2.4 Availability of resources

For the university timetabling problem resources refer to human resources, available periods

and classrooms. Availability of human resources is restricted because due to administrative

duties and some other projects teachers may not be available all the time. Some faculty

members may like some free days or periods during the week. Similarly periods are also not

available all the day, scheduler has to spare periods for lunch time or for tutorials etc., some

periods are scheduled already due to the choices of faculty members to teach course in a

specific period and some periods are forbidden for some courses due to non availability of

teachers. Rooms may be of many types and which course uses which type of room depends on

course and room type. All rooms will not be vacant all the time because some other

departments of the university may be using them for their courses and these are available on

specific periods for scheduling.

1.2.2.5 Rules for timetabling in the university

These basic rules in university timetabling regarded as hard constraints.

1. There is a conflict in a timetable when two or more courses are scheduled at the same

period for the same teacher or for the same classroom for the same group of students. Also,

when two or more teaching persons are assigned to the same group of students to teach two

different courses at the same period; and lastly when two or more classrooms are assigned to

the same course and to the same group of students at the same period.

2. A timetable is complete when total number of hours of the course should be scheduled, also

teaching load of the teacher should not be more than a certain predefined limit. Similarly,

there are rules which are regarded as soft constraints; some of them are given as follows:

1. Preferences for teachers in specific time intervals are satisfied if possible. Each faculty

member can express his/her preference for his/her course. For example one does not want to

teach course on Friday and other prefer to teach his/her courses in morning session.

2. Students’ schedule should be as compact as possible; however there should be empty

periods for lunch. So called difficult courses should be scheduled earlier in the day then others

should be scheduled. If one lesson of a course is scheduled in a day then if any other lesson of

the same course is assigned to the same day, it should be compact with previous one.

12

3. If one course is scheduled in any room first time, it should be scheduled in the same room

next time.

1.2.3 Examination timetabling

The examination timetabling is an assignment of events where now events are examination. It

is same as course timetabling but has few differences with course timetabling problem.

Normally each course has one examination. Major difference of this timetabling with course

timetabling is that if a lesson is scheduled in a room then this room will not host any other

lesson in that period. But in examination timetabling a room can host more than one

examination depending upon the capacity of the room and the availability of invigilator. In

course timetabling one teacher can teach only one lesson per period but in examination

timetabling one examination can be supervised by more than one invigilator. Restrictions are

strict in examination timetabling like we can think that a student is enforced to skip his course

due to overlapping in schedule but it is not possible to skip examination. In course

timetabling, scheduler makes a timetable for a week and repeats it for other weeks, means that

course timetabling has fixed set of periods but in examination timetabling problem number of

used periods can be relaxed.

The timetabling problem, like many others in the area of combinatorial optimization, has been

approached by several well-known techniques of the operational research and the computer

science fields. Several surveys on course timetabling [130, 10], which focus other aspects of

the problem also have managed to record this work in a systematic way by categorizing the

different variations of the problem and solution approaches.

1.3 Different types of constraints

In university timetabling, a set of lessons would be scheduled into rooms and periods subject

to constraints that are usually divided in two categories, which are hard and soft constraints.

Constraints and their importance however differ significantly among countries and

institutions. A timetable is considered to be effective when it is useable and may be

considered satisfactory by the institution when it carries certain quality characteristics that

keep its users satisfied at least to a certain degree.

13

1.3.1 Hard constraints

Hard constraints must be strictly satisfied and have higher priority than soft constraints. A

time table will be called feasible if it satisfies all hard constraints. Event clash constraints

perhaps are considered common hard constraints in educational timetabling problems. These

constraints normally occur when there is a resource which is only one and is required by two

events at the same period which is impossible. This constraint exists in almost every

educational institution, for example courses taken by some common students could not be

scheduled in the same period.

1.3.2 Soft constraints

Soft constraints fulfillment is not obligatory like hard constraints but these are the constraints

which scheduler wants to obey if possible, but these will decide the quality of the timetable

according to the timetabling policies of university concerned and by the users who will use

these timetables (like students, teachers etc.).

1.4 Categorization of constraints into five main classes

Despite the wide range of these different constraints, these constraints can be categorized into

five main classes. This classification was suggested by Corne et al. [11].

1.4.1 Unary constraints

These are the constraints which involve only one event. For example event c should be

scheduled on Monday or event c should be scheduled on any last period of the day. This type

of constraints can occur both in course and examination timetabling. It can be both hard and

soft.

1.4.2 Binary constraints

These are the constraints which involve pairs of events. For example event c should be

scheduled before event d or two events c and d can be scheduled in same period. This type of

constraints can occur both in course and examination timetabling. It can be both hard and soft.

14

1.4.3 Capacity constraints

These constraints are about capacity of rooms. If a course c is scheduled in a room then the

number of students taking course c should be less than or equal to the capacity of the room.

This type of constraints can occur both in course and examination timetabling. It can be both

hard and soft.

1.4.4 Event spread constraints

This is a constraint which talks about spreading out or clumping together events. There are

some time requirements that lessons of a class should be scheduled together or examination of

a class should be scheduled after a gap of g periods. So these constraints can be in both course

and examination timetabling and these are normally soft constraints.

1.4.5 Agent constraints

These constraints are about the preference of the people who will use this timetable, for

example teacher a wants two free mornings, some classes want their language courses should

be scheduled in evening session, these constraints are used normally as soft constraints.

From this whole analysis it is clear that each institution has a wide range of their own

preference and requirements which can entirely be different from other institutions. It is

entirely understandable that each institution has their own needs and timetabling policies, for

example one institution wants that course should be clump together because institution have

some more courses to schedule for part time students and other institution wants that events of

a student should be spread out within the week as much as possible, so these two scenarios are

entirely different than each other.

If we look timetable from an optimization perspective, it tells us that if one wants to get a

workable timetable in a limited time, this will depend upon the problem instance. There are

some universities which have fairly loose requirements, have a lot of resources (like many

rooms, less classes, less courses, etc.) and fewer events to schedule. In this scenario it is easy

to find many workable solutions from the search space. On the other hand, some universities

may have more demanding requirements, a huge work load and fewer resources in

comparison with requirements, so in this scenario there will be very less workable solutions in

the search space of the problem instance. In practice, sometimes constraints of the problem

15

are so complex and are making problem impossible to solve that scheduler has to relax some

of them. So to solve harder problems we need some robust and powerful methods for tackling

these sorts of problems.

1.5 Objective Functions

Different types of objective functions had been used in literature. In this section we shall write

some of them which were used commonly by different authors. These objective functions

were used for course timetabling problem.

 Maximise cost which is the measure of desirability of teachers or maximize the

satisfaction degree of teachers

 Maximize total sum of rooms and time slots preference values

 Minimize the total number of non-assigned subjects

 Minimize the weighted sum of penalties of soft constraints or minimize the violation

of soft constraints

 Minimize the assignment cost, the maximum total assignment at undesired time slots

simultaneously

 Timetable of each class should be compact

These kinds of objective functions had been repeated in many articles. Most of the time

composite objective function with the minimization of weighted sum of penalties of soft

constraints had been used, so objective function would mainly depend upon these soft

constraints.

Some mostly used objective functions for examination timetabling problems are described as

follows.

 To spread out examinations over the exam period for each student

 Minimize the distance between rooms of an exam that is being held in multiple rooms

and to minimize splitting an exam over several rooms

 Minimize the assignment cost and penalty for exceeding the maximum work load of

invigilators

 Minimize the cost function

16

Similar to course timetabling problems, exam timetabling problems had also been used

objective functions with weighted sum of penalties of soft constraints.

Next section talks about neighbourhood structures in detail because we have used

neighbourhood based algorithms for our experiments.

1.6 Neighbourhood Structures

One of the most important features of a local search algorithm is the definition of its

neighbourhood. In local search procedure new solution Xmv is obtained by using a move

mv to a candidate solution X. Thus a neighborhood N of X can be defined by, N(X) = {X

mv / mv M(X)}, where M(X) is the set of all possible moves which can be applied to X.

We can find many type of neighbourhood used for timetabling problem [1].

1.6.1 Simple swap

Some authors have used simple swap, which have further two types. First one swaps any

lesson from to any null slot (Figure 1.1b) and the second one swaps course
1c to the place of

2c and
2c to the place of

1c (Figure 1.1 a). In Figures 1.1 to 1.3, P represents period and R

represents room.

 (a) (b)

Figure 1.1: a and b: Illustration of simple swap

 P1 P2 P3 P4 P5

R1

R2

R3

R4

R5

R6

 P1 P2 P3 P4 P5

R1

R2

R3

R4

R5

R6

17

1.6.2 Room swap neighborhood

This is neighborhood where the move would take place in a same period, means that lessons

of one period will swap with each other. If presentation is a matrix of rooms (R) and periods

(P), periods are the columns of matrix and rooms are the rows of the matrix (Figure 1.2). Then

the lessons will swap in the same column. Benefit of this type of move is that after getting

feasible solution, it will not become infeasible.

Figure 1.2: Illustration of room swap neighborhood

1.6.3 Time swap neighborhood

This explores the moves that select a lesson and swap it horizontally (Figure 1.3), this means

that chosen lesson will use same room but in any other period. By using this one is becoming

much more specific and it will put a restriction on search space. It can be used partially as

neighborhood but overall it is not advisable. The simple swap move is the generalization of

time and room move where we can swap a lesson from any slot to any other slot without

focusing on any room or period.

 P1 P2 P3 P4 P5

R1

R2

R3

R4

R5

R6

18

Figure 1.3: Illustration of time swap neighborhood

1.6.4 Kempswap neighborhood

This move was defined by Zhipeng Lü and Jin-Kao Hao [1] and is called kempswap. A kemp

swap is the interchange of two kemp chains. Course can be seen as lessons and conflicts and

we can write them in form of a graph. Nodes are courses and edge between two courses is the

conflict between these courses. This means that these courses could not be scheduled in a

same period. A kemp swap produces a feasible assignment by swapping periods assigned to

courses belonging to one or two specified kemp chains.

Let
1K and

2K be two kemp chains in the subgraph of two periods
ip and

jp . A kempswap

produces an assignment by replacing
ip with))(())_((2121 KKpKKp ji   and

jp with

))(())_((2121 KKpKKp ij   . According to definition at least three courses should be

involved.

We can illustrate the procedure by Figure 1.4 which is showing that this sub graph is obtained

by two different periods and five kemp chains, 1K {
561112 ,,, cccc }, 2K {

4710 ,, ccc }, 3K

{
129 ,, ccc }, 4K {

8c }, 5K {
3c }. A kemp swap 2K and 3K produces a new assignment by

moving { 1079 ,, ccc } to jp and { 124 ,, ccc } to ip as shown in (Figure 1.4b).

 P1 P2 P3 P4 P5

R1

R2

R3

R4

R5

R6

19

In this kemp swap one of the chains can be empty. Let us suppose that this empty kempchain

is 6K {}. In this case kemp swap move generates into a single kemp chain interchange. It

means that we have to move ip with)(()_(KpKp ji  and
jp with)(()_(KpKp jj 

where K is a non empty kemp chain. For example in Figure 1.4a, if we take the non empty

chain 1K then it produces an assignment by moving { 1112,cc } to jp and { 56 ,cc } to ip . One

can notice that this double kemp chain is the generalization of single kemp chain interchange.

C12

C1

C8 C2

C3

C4

C5

C6

C9

C10

C11

C12

C7 C9

C7

C3

C10

C5

C6

C1

C8

C2

C4

C11

K2 K3

ip jp
ipjp

 (a) (b)

 1K {
561112 ,,, cccc }, 2K {

4710 ,, ccc }, 3K {
129 ,, ccc }, 4K {

8c }, 5K {
3c }

Figure 1.4: Kemp chain illustration

This list of neighborhoods was used by many authors [114, 24] in literature, which are used to

define genetic operators for genetic algorithm and also for constructing local searches for the

sake of quality improvement of the solution. We have also used some of them for our local

search method.

20

 N1: Select two lessons at random and swap periods.

 N2: The neighbourhood defined by an operator that moves one lesson from a period to

a different one.

 N3: the neighbourhood defined by an operator, a lesson can be moved only if the

corresponding period is empty.

 N4: Select two periods at random and simply swap all the lessons in one period with

all the lessons in the other period.

 N5: Move the highest penalty lesson from a random 10% selection of the lessons to a

random feasible period.

 N6: Carry out the same process as in N5 but with 20% of the lessons.

 N7: Move the highest penalty lesson from a random 10% selection of the lessons to a

new feasible period that can generate the lowest penalty cost.

 N8: Carry out the same process as in N7 but with 20% of the lessons.

 N9: Select two periods based on the maximum enrolled lessons, say
it and

jt . Select

the most conflicted lesson in
it and

jt and then swap them.

 N10: the neighbourhood defined by an operator that swaps the periods of two lessons

 N11: the neighbourhood defined by an operator that permutes three lessons in three

distinct periods in one of the two possible ways other than the existing permutation of

the three lessons.

One can also define particular swap moves as time swap, room swap depending on the

representation of the solution.

1.7 Graph colouring and timetabling problem

Timetabling problem has a resemblance with graph colouring problem. This was the basic

reason that many early techniques used in timetabling algorithms were derived directly from

graph colouring-based heuristics. One can see some of these from the review of Carter [129].

Now we explain how a timetabling problem can be solved with graph colouring. Given a

simple and undirected graph G having n set of vertices, where V= {
nvvv ,....,, 21
} is a set of n

vertices and E is the set of edges which joins different pairs of vertices of set V. This is a NP

hard problem [159] which finds an assignment of colours for every vertex in V such that (i)

vertices with common edge can not be assigned same color (ii) target is to find a solution

21

which uses the minimum number of colours. It is easy to convert the simplest timetabling

problems to graph colouring problems (and vice-versa) by considering vertices as events and

edge between any pair of vertices shows that there is a conflict between these lessons. So edge

between any pair of vertices cannot have same colour. Then each colour in Graph colouring

represents a period available for timetabling problem. Now task with respect to graph

colouring problem is to use maximum colours which should be less or equal to the available

periods for timetabling problem [20, 21]. Construction of timetable by graph colouring is

shown in Figure 1.5.

The term “chromatic number” number (commonly denoted χ) is used in graph colouring

problems to refer the minimum number of colours which are required to colour a particular

problem feasibly. Obviously for simple timetabling problem this means that the minimum

number of required periods to schedule a clash free timetable for a particular problem.

The Clique is the second parallel that can be drawn between these two problems, which

involves the identification of the features. A clique is a collection of vertices which are

mutually adjacent, for example vertices 1, 3, 4, 6, and 7 in Figure 1.5 (b); this is a clique of

size 5. It is worth noting that real world problems which uses graph colouring often have

fairly large cliques. In many real world problems there are many events which are required

not to be scheduled in the same period. In graph coulouring the vertices representing these

events make a clique and it is trivial that no two vertices in this graph colorling could be

assigned the same colour (or equivalently all events of a clique should be assigned different

periods). So it can be deduced easily that for any graph colouring or timetabling problem if

the maximum size of a clique is C then to make a feasible (that is χ ≥C) timetable minimum C

colours are required [159].

As mentioned earlier, graph coluring problem only exists when one is considering hard

conflicting constraints. When other type of constraints such as room type constraints, ordering

constraints etc. are added in the problem then it will add extra complications. However,

regardless of this nearly all timetabling problems are featuring this graph colouring problem

in some form or another form in their work. Many timetabling problem algorithms are still

using various bits of heuristic information extracted from this graph colouring problems as a

driving force to achieve their solutions [102].

22

4 5

6

7 8

9 10

1

3

2

4 5

6 7 8

9 10

1

3

2

(a) Given a simple timetabling problem having 10 lessons to schedule by using minimum

number of periods, first problem is converted into its graph colouring equivalent.

(b) A solution is then found, which uses five colours (optimal number of colours) for

this problem.

1 2 3 4 5

Event

1

Event

9

Event

6

Event

3

Event

2

Event

5

Event

4

Event

10

Event

8

Event

7

(c) The graph colouring solution is converted back into a valid timetable, where each colour

represents a period.

Figure 1.5: Describing the relationship between the graph colouring problem and a simple

timetabling problem (only considering lesson conflict constraint).

23

However graph couloring provides us more clues of many other lower bounds. One can notice

that, feasible solution could not be found by using less than colours  mn , where n is total

number of events and m is the total number of rooms. If number of colours is less than this

number then room double booked constraint will be violated or some lessons will not be

scheduled. One can also easily deduce that if pmn  (where p is the total number of

periods allowed for problem) then problem can not be solved feasibly because this means that

number of events are more than the total number of places to schedule them. There are some

other information about educational timetabling like if some lessons required a room of type b

which is only one and the number of lessons which are requiring this room are Q then this

timetabling problem could not be solved feasibly (if room type is used as a hard constraint) if

pQ  .

The component of trivial course timetabling is given in [2]. Three courses are given Juggling,

Math 101 and Algo 101. Juggling has one lesson; Math101 has four (Math101_1, Math101_2,

Math101_3 and Math101_4) lessons and Algo101has three lessons (Algo101_1, Algo101_2,

Algo101_3) to schedule. Math 101, Algo 101 have some common students and Jugling 101,

Algo 101 also have some common students, means that they are making two classes. Now in

associated conflict graph edge between two lessons showing that these two lessons can not

take place concurrently. The dashed edge represents that requirement is coming from the

enrollment of students in both courses (Figure 1.6). Presence of conflict constraint (lesson

clash constraint) makes this timetabling problem similar to the graph coloring problem.

However other issues like each course should be assigned in required type room, room

capacity and many other ordering constraints can cause problem. Now many feasible

colorings of a timetable might still not corresponds to a feasible timetables due to the addition

of these extra constraints.

24

Algo101_1

Math101_2

Math101_4
Math101_3

Math101_1

Juggling

Algo101_3

Algo101_2

 Figure 1.6: Associated conflict graph of lessons

1.8 Resolution techniques

Two techniques had been used in the literature to solve timetabling problems, namely exact

methods and heuristic methods. In this section we shall present literature review on these two

methods.

1.8.1 Exact methods

Exact methods consist of formulating and finding solution with integer programming models.

Exact methods may not work to find optimal solution especially in short computing times for

large size problem. This makes the reason to develop heuristics to get good solutions in

moderate limit of time. We have presented generalized formulations for exam and course

timetabling problems so we shall discuss integer programming techniques used in literature.

25

1.8.1.1 Integer programming techniques

Linear integer programming techniques have also been used to solve educational timetabling

problems such as the algorithm of Carter [135], Tripathy [134] in the 1980s and Breslaw

[120] provided a solution for the faculty assignment problem, a problem closely related to the

timetabling problem, using linear programming models in the 1970s. The same problem was

studied by McClure and Wells [139] and a solution was attempted again with the help of

mathematical programming. Hultberg and Cardoso [155] formulated teacher assignment

problem as a mixed integer programming problem and solved as a special case of the fixed

charge transportation problem.

Among the first approaches in mathematical programming, in [156] the teacher assignment

problem is combined with a form of the timetabling problem and solved through commercial

software for goal programming. In a similar manner, Gosselin and Truchon [157] provided a

linear programming formulation for the classroom allocation problem, a sub-problem of the

university timetabling. Integer programming formulations for the school and the university

timetabling problems as optimization problems are also discussed by Werra in [118], where

the NP-completeness of both problems is shown even for simple versions. The author,

however, chooses graph theory approaches for the solution of the problems under

consideration. Extensions to this work, especially with regards to the so-called conflict matrix

are presented by Tripathy in [158]. Given the difficulties of those days to solve large integer

programming problems, the Lagrangean relaxation was proposed as a possible solution

approach for the resulting model.

 Many other articles have also used these techniques. Schimmelpfeng and Helber [121]

described an integer programming approach which has been implemented at the School of

Economics and Management at Hannover University, Germany, to create the complete

timetable of all courses for a term and formulation was solved with CPLEX solver. Broek et

al. [136] have divided the timetabling problem into four sub problems which are formulated

as an integer linear programming problem. The goals of the four divided sub problems are

specific as: maximize the number of assigned courses with urgency, maximize the total

assigned workload, minimize the shortage of students to reach the minimum number of

students of a section, optimize the timetable. The models introduced were solved by IP solver

CPLEX.10.0. Boland et al. [27] applied blocking strategy, in which the classes can be

26

partitioned into sets of classes (or blocks) that will be timetabled in parallel. The problem of

constituting the blocks and populating the classes is known as the course blocking and

population problem. This formulation was made for high school timetabling and model was

implemented in the modeling language AMPL, and solved using the ILOG package CPLEX

8.0.

Birbas et al. [122] presented a 0–1 integer programming model for the timetabling problem of

Greek high schools. In their model, a binary variable indicates whether or not a specific lesson

to be taught by a given teacher is to be held at a specific time of the week. The model

generates timetables that satisfy all the hard and soft constraining. Werra [118] presented

some basic models for course timetabling problem and these were described with an emphasis

on graph theoretical models. Mingozzi et al. [123] presented a 0-1 linear programming

formulation that requires an exponential number of variables corresponding to all feasible

subsets of activities that can be simultaneously executed. Hassani [72] has developed an

integer programming approach and solved the timetabling problem for Shahrood University

of Technology, Iran. This approach was implemented on the problem of scheduling of 8 terms

of graduation students. Two terms mean that the course which every student would take in

one year. In order to solve the above problem, he formulated it with AIMMS using some

identifiers.

Daskalaki et al. [12] presented integer programming formulation for university timetabling

problem. The timetable for the Electrical and Computer Engineering Department in the

University of Patras was used as a case study. Yakoob and Sherali [137,138] addressed a

faculty-class assignment problem, periods for classes are initially assumed to be given and

then integer programming model is constructed to minimize the individual and collective

dissatisfaction of faculty members. Their second article’s main focus is to design efficient

class offering patterns while taking into consideration newly imposed gender policies. The

both models were solved with CPLEX. Daskalaki and Birbas [24] considered the institutions

which provide three to five year study program and provide a quite well structured curricula

for their students. In this article author presents a two stage algorithm to solve this kind of

problems. In the first stage they relax some constraints and solve them in second stage. They

are relaxing courses compactness (if lessons of same course are scheduled on the same day

they should be adjacent to each other) constraint at the first stage because in their opinion

27

these constraints are computationally heavier than the others. These constraints are recorded

in the second stage and sub problems, one for each day of the week are solved for local

optima.

Daskalaki et al. presented [28] an integer programming where problem was solved with

modeling process result to solvable and flexible models. The flexibility was obtained by the

multi-dimensional variables which allow details of the educational system to be modeled as

constraints of the integer programming model. A variety of constraints could be represented

by using this model. In order to check the capabilities of the proposed model for solving

timetabling problem, the department of Electrical and Computer Engineering at the University

of Patras was chosen. This is one of the largest departments in the Engineering School and

has a five year program for students. During the first three years the students follow a general

education program in Electrical and Computer Engineering and in the last two years each

student join one of the four divisions of the department for specialization.

Natashia Boland et al. [27] discussed the solution which uses the procedure of blocking.

Blocking is a set of classes which can be partitioned into subsets in such a way that all classes

of a block can be scheduled in parallel. Each such type of subset is called block. Their method

will induce a partition of the sessions available for the timetable in such a way that none of

these sessions can be used for classes in other blocks. This means that each session will use

only their block classes. This avoids the clashes to occur within blocks, and in this way it

removes the clash conflict constraints. This further divide problem into two sub problems: the

class blocking and population problem (CBPP) and the block timetabling problem (BTP).

Class blocking and population problem means to make block of the given problem and block

timetabling problem schedule the all blocks.

1.8.2 Metaheuristic methods

In this section we shall discuss about different metaheuristic techniques to solve educational

timetabling problems. As we are going to propose two population based algorithms so we

shall talk in detail about these algorithms. We have given a detailed review of evolutionary

algorithms and Honey bee algorithms. We shall give a brief review of other techniques, which

we found in literature like ant colony optimization, tabu search, simulated annealing and local

search.

28

 We shall also discuss some other techniques such as neural networks, hyper heuristics, these

techniques can be considered as metaheuristic techniques. There are many good surveys on

educational timetabling problems in the literature in the past including survey conducted by

Carter and Laporte [129, 130] and Burke et al. [131, 73,132]. Other timetabling surveys can

be found at [133, 34, 10], by Lewis and by Qu et al. [97,128].

1.8.2.1 Local search based algorithms

Metaheuristic methods are often classified as Local search based techniques and Population

based techniques. Local search methods solve problems by searching from an incumbent

solution to its neighbourhood. Different local search techniques can be distinguished by

neighbourhood structures and moving operators within the search space. The search is guided

by defined cost function, which is used to measure the quality of the generated solutions. The

performance and efficiency depend a lot upon the parameters and search space properties. In

this section, we shall talk about different local search based techniques and their variants used

in literature to solve educational timetabling problem. We first start from tabu search

algorithm.

1.8.2.1.1 Tabu search algorithms

Abdullah et al. [38] combined their genetic algorithm with sequential combined local search.

In first step they find initial solutions for population pool by using these three heuristics: large

degree heuristic, local search and tabu search. In this way they constructed feasible timetables

for their population. Then results were improved by using genetic algorithm, in this algorithm

single point crossover was used. After cross over and mutation they used local search

heuristic to improve offspring.

Zhipeng Lu and Jin Kao Hao [1] present a tabu search algorithm about curriculum based

course timetabling problem which was the part of International timetabling completion 2007.

Their algorithm has three stages namely initialization, intensification and diversification. In

first phase they generate feasible initial solution and to achieve this task they use greedy

heuristic starting from an empty timetable. During this process at each time one adequate

lesson is inserted into the timetable. At each step two distinct operations were done, first is to

choose an unassigned lesson and second is to find appropriate place (room, period) for this

29

lesson. For lesson selection they use greedy colouring heuristics and when lesson has been

chosen they select period for this lesson by using this heuristic.

They select period which is least likely to be used by other unassigned lessons on the next

steps. They have used two neighborhood namely simple swap and kamp swap. They start tabu

search algorithm by simple swap and when they get solution best local optima, they again

start tabu search algorithm with other neighbourhood when using local optimum solution as

an initial solution. Their intensification phase minimizes the soft constraints without breaking

hard constraints any more. Their diversification criteria based on local search provide such

mechanism which guides the search to escape from the current local optimum and move the

solution towards new promising solutions.

In this article [87], a Tabu-based memetic algorithm is proposed by Salwani Abdullahand and

Hamza Turabieh which hybridises a genetic algorithm with a Tabu Search algorithm as an

improved algorithm for university timetabling problems. This algorithm uses a set of

neighbourhood structures during the search process to obtain improvements in solution

quality. They propose a sequence of neighbourhood structures to understand its effect on the

search space. They evaluate random, best and general sequences of neighbourhood structures

in this work. Those neighbourhood structures are penalized which do not generate better

solutions. In this article Batenburg and Palenstijn [30] used evolutionary and tabu search

algorithm in parallel. They show that for large problems using a parallel variant of tabu search

with genetic algorithm shows significant improvements in the obtained timetable

comparatively to the memetic algorithm. But this procedure will enhance the run times.

1.8.2.1.2 Local search algorithms

Duong Tuan Anh et al. [4] proposed a two stage algorithm, in which first stage will get

feasible solution not having any hard constraint and in second stage they try to minimize soft

constraints. In first they use backtracking free constructive method with local search and look

ahead. The local search used in first stage is Minimum Conflict Hill Climbing with dynamic

constraint weighing mechanism. For improving the initial feasible solution produced at first

stage was improved in second stage by using two candidate local search methods. Hill

climbing algorithm is a first candidate method where local minima was escaped by using

stochastic strategy. Hill climbing algorithm also is a second candidate method where local

minima was escaped by using short term memory strategy.

30

Edmund Burke [2] wrote this article about partial solutions achievements when trying to get a

good time table where task is to minimize soft constraints. This article covers an approach of

such problems which could be a multiphase exploitation of multi objective sub models. In this

problem at first step only one difficult component of problem and related objective function is

taken. This would find a partial solution which would further define interesting

neighbourhood in the search space of the entire problem. Variable aggregation can be

performed by picking the initial component at the first stage and by exploring neighbourhoods

at next stage to ensure feasible solutions. Then it is easy to use integer programming to

implement heuristics to produce solutions with bounds on their quality. This study was

performed on International timetabling competition track whose datasets comes from Udine

university (Italy).They use objective restricted neighbourhood generator in their heuristic for

the assignments of periods to lessons, with minimizing the violations of two period related

soft constraints.

Patrick De Causmaecker [3] represents a decomposed heuristic for solving a university course

timetabling problem. The datasets were taken from KaHo Saint-Lieven School of

Engineering. They use the technique to make pillars of similar lessons to make problem less

complex. In this way no doubt search space will become smaller than original search space.

Then this problem was solved by sequentially evaluating the constraints one by one by using

the procedure that solution obtain in one stage will be used in the next stage as an initial

solution. In fact soft constraints were minimized one by one and by using this procedure they

get good results for their problem compared to solve all constraints at once. Ersoy [56]

proposed a combination of hill-climbing and memetic algorithms as a hyper-heuristic

framework. They tested its performance on the Carter benchmark datasets. The results

showed that a memetic algorithm based hyper-heuristic using a single hill climber at a time

gave the best results among other variants of hill climbing hyper-heuristics proposed by the

same authors.

Qu and Burke [90] constructed a unified graph-based meta-heuristic (GHH) framework, upon

which a number of local search-based algorithms as the high level heuristics are studied to

search upon sequences of low-level graph coloring heuristics. To gain an in-depth

understanding on their framework, they addressed some fundamental issues concerning

31

neighborhood structures and characteristics of the two search spaces, the search spaces of the

heuristics and the actual solutions. Furthermore, they investigated efficient hybridizations in

GHH with local search methods and mentioned issues concerning the exploration of the high-

level search and the exploitation ability of the local search.

Jacques A. Ferland and Alain Lavoie [26] also used a heuristic iterative procedure where

assignment of one event can be modified at each iteration. This is an exchange procedure,

which applies first to find a feasible solution (satisfying hard constraints) and then it improves

the objective function value. A geometrical interpretation of the exchange is given to

understand the theoretical framework of the procedure. Two more procedures are introduced

to avoid jumping outside the feasible domain or at local optimum. The first procedure relies

on Lagrangean relaxation and second one uses inductively more than one exchange per

iteration.

1.8.2.1.3 Simulated annealing algorithms

Simulated Annealing algorithm was initially proposed by Kirkpatrick et al. [140] for solving

combinatorial optimization problems. Simulated annealing procedure is prevented by

accepting deteriorating moves that worsen the objective function value. In this way search

procedure can be protected by getting trapped with a local optimum. This algorithm

application in timetabling problem can be found in works by Abramson [143] and

Bullnheimer [142]. A review of Simulated Annealing algorithms for solving the University

Course Timetabling Problem can be found in Kostuch [18]. Abramson [143], Melicio and

Caldeira [144] and Elmohamed et al. [145] proposed simulated annealing algorithms.

Elmohamed et al. [145] considered the timetabling problem of Syracuse University in the

USA and used a weighted-sum scoring function which penalized violations of the hard

constraints. They also used general simulated annealing practices to enhance the algorithm

performance.

Merlot et al. [154] proposed a three stage approach for solving examination timetabling which

consisted of constraint programming, simulated annealing and then hill climbing.

Constraint programming was used to construct a feasible timetable. The other two stages were

used to minimize the soft constraints through the use of simulate annealing and a hillclimber

using Kempe chain interchanges. The algorithm was tested by using real-world problem

datasets from the University of Melbourne and also for various benchmark problem datasets

32

such as the Carter datasets. Defu Zhang et al. [146] presented a simulated annealing based

approach which used new extended neighborhood structure obtained by performing a series of

swaps of pairs of assignments during two periods. This algorithm was tested on high school

timetabling problems.

 Sara Ceschia et al. [147] also presented a simulated annealing approach for a post enrolment

course timetabling problem. Their solution was based on a relatively simple single-step

algorithm. They used preprocessing, constraint reformulation for the improvement of the local

search and room assignment procedure based on attractiveness which allowed them to refrain

from using the matching algorithm. Their single-step procedure considers the soft constraints

from the very beginning and it can save computational time.

Aldy Gunawan [148] proposed which used Lagrangian relaxation and a simulated annealing

algorithm. They used Lagrangian relaxation approach to generate initial feasible solutions in

the construction phase. Simulated annealing algorithm was used for the improvement of initial

feasible solutions. Thompson and Dowsland [31] proposed a two phase simulated annealing

algorithm. The first phase finds a feasible solution and second phase satisfies the secondary

objectives and soft constraints. They discuss in detail about the parameter used to control the

algorithm and how to model a simulated annealing framework for successful implantations by

using judicious choices in both areas. They tested different neighborhoods and cooling

schedules over a data from various institutions. They concluded that neighborhoods based on

the graph-theoretic concept of Kempe chains are the most efficient regardless of the

objectives or size of the problem.

1.8.2.1.4 Great deluge algorithms

Turabieh et al. [60] proposed a great deluge algorithm for university course timetabling. This

depends upon attraction–repulsion movement for solutions in the search space. Algorithm

starts with a population of randomly generated feasible initial solutions and an attraction–

repulsion mechanism is used to check the quality of the great deluge algorithm. Then a great

deluge algorithm is applied to increase the solution quality. This algorithm’s performance was

also tested on Socha datasets. Fukushima Makoto [91] proposed a hybrid algorithm which

includes Simulated Annealing, Local Search and Great Deluge to perform for solving the

university course timetabling problem. The Great Deluge algorithm (GD) is a generic

algorithm applied to optimization problems. It is similar in many ways to the hill-climbing

and simulated annealing algorithms. The name comes from the analogy that in a great deluge

33

a person climbing a hill will try to move in any direction that does not get his/her feet wet in

the hope of finding a way up as the water level rises.

In a typical implementation of the GD, the algorithm starts with a poor approximation, S, of

the optimum solution. A numerical value called the badness is computed based on S and

measures how undesirable the initial approximation is. The higher the value of badness the

more undesirable the approximate solution is. Another numerical value called the tolerance is

calculated based on a number of factors, often including the initial badness.

A new approximate solution S’, called a neighbour of S, is calculated based on S. The badness

of S', b', is computed and compared with the tolerance. If b' is better than tolerance, then the

algorithm is recursively restarted with S: = S', and tolerance: = decay (tolerance) where decay

is a function that lowers the tolerance (representing a rise in water levels). If b' is worse than

tolerance, a different neighbour S* of S is chosen and the process repeated. If all the

neighbours of S produce approximate solutions beyond tolerance, then the algorithm is

terminated and S is put forward as the best approximate solution obtained [92]. In [91] they

proposed two enhancements in their algorithm, where one of three soft constraints is satisfied

when obtaining a feasible timetabling solution and a few parameters for escaping local

minima are introduced in the Great Deluge algorithm which is used for reducing the

violations of the soft constraints.

Shaker and Abdullah [39] presented curriculum based course timetabling (CB-CTT) problem

and they solved it by a hybridization of great deluge algorithm with kempe chain

neighbourhood structure. The problem was solved in two steps, in first step they used a graph-

based heuristic to construct a feasible timetable and in second step they improve their feasible

solution by employing a hybrid approach. The algorithm was tested on the curriculum-based

course timetabling problems as described in the 2
nd

 International Timetabling Competition

(ITC2007).

1.8.2.2 Population based algorithms

Many population based algorithms have given good performance in educational timetabling

problems. In this section, we discuss different population based techniques and their variants.

1.8.2.2.1 Ant colony algorithms

34

Socha et al. [149, 51] used the ant colony optimisation metaheuristic to university course

timetabling problem. They proposed two ant-based algorithms, an Ant Colony System and a

MAX-MIN system. They gave a qualitative comparison between them. Every ant first

constructs a complete assignment of events to periods using heuristics and pheromone

information, at each step in both of the algorithms. Then local search procedure was used for

further improvements of timetables. The major differences between the two approaches are

the way that heuristic and pheromone information is interpreted, and the approaches used for

updating the pheromone matrix. However MAX-MIN system generally gave better results

when experiments were conducted on a range of problem instances.

Clemens Nothegger et al. [151] proposed a new approach to solve the problem of Post

Enrolment Course Timetabling by using Ant Colony Optimization. In this algorithm ants

successively construct solutions based on pheromones (stig- mergy) and local information.

The main feature of this algorithm was the use of two distinct but simplified pheromone

matrices for improving performance but still provide enough edibility for effectively guiding

the solution construction process. Furthermore a local improvement method was embedded

and algorithm was applied to datasets used for the First and Second International Timetabling

Competition (ITC 2002 and ITC2007). Michael Eley Max-Min [152] presented ant colony

algorithm and used ANTCOL approach. They compared the performance of this algorithm

with other approaches presented in the literature and with modified graph coloring algorithms.

He tested his algorithm on examination timetabling problem.

Michael Eley [54] proposed two more ant colony algorithms which were applied

simultaneously to construct and improve examination timetables. The first algorithm was

(MMASET) based on the MAX–MIN Ant System. This algorithm was used by [51] for

course timetabling problems. The second algorithm was (ANTCOL-ET) a modified version of

ANTCOL. This was originally used by [55] to solve graph coloring problems. Dowsland and

Thompson [150] proposed Ant colony optimization algorithm for the examination scheduling

problem. It built on an existing implementation for the graph colouring problem to make non

conflicting timetables and went on to consider the introduction of a number of additional

practical constraints and objectives. They modified and improved the original algorithm. They

tested the performance of proposed algorithm on carter bench mark datasets.

1.8.2.2.2 Partical swarm optimization algorithm

http://rd.springer.com/search?facet-author=%22Clemens+Nothegger%22

35

Der-Fang Shiau [93] proposed a new meta-heuristic algorithm that is based on the principles

of particle swarm optimization for course scheduling problem by designing an 'absolute

position value representation for the particle, allowing instructors that they are willing to

lesson based on flexible preferences, the maximum number of teaching-free periods and the

lecturing format and employing a repair process for all infeasible timetables. Furthermore, a

local search mechanism is incorporated into the proposed PSO in order to explore a better

solution improvement.

Ioannis and Beligiannis [65] have proposed hybrid particle swarm optimization (PSO) based

algorithm for high school timetabling problems. This algorithm has produced feasible and

efficient high school timetables. They have used real world data coming from many different

Greek high schools for their experimental work. The performance of this algorithm is better

than existing approaches applied to the same school timetabling input data while using the

same evaluation criteria.

Qarouni-Fard et al. [113] have proposed the particle swarm optimization algorithm to the

classic timetabling problem. Their algorithm is inspired by approaches belonging to the

evolutionary paradigm where involved metaheuristic is tweaked to suit for the problems such

as timetabling, graph coloring or bin packing. For evolutionary algorithms, it means to

substitute the "traditional operators" with newly defined operators that evolve fit groups rather

than fit items. Authors have applied a similar idea for their PSO algorithm and performance of

proposed algorithm is better in comparison with previously used approaches.

1.8.2.2.3 Genetic algorithms

Evolutionary algorithms have been extensively and successfully used to solve timetabling

problems since their first applications to timetabling problems at the beginning of the 1990s.

Now we explain some main stages of evolutionary algorithms which are performed during the

execution of these algorithms.

1.8.2.2.3.1 Initialization

Evolutionary algorithms have been extensively and successfully used to solve timetabling

problems since their first applications to timetabling problems at the beginning of the 1990s.

http://www.sciencedirect.com/science/article/pii/S1568494612002876

36

Genetic algorithms are used generally with an initial population. This initial population

sometimes is generated randomly and sometimes by using special techniques to make a higher

quality initial solutions for population [129, 59, 115, 53]. After getting the initial solution

repairing can be mainly done on violation of hard constraints. We have shown in Figure. 1.7,

1.8 that how these repair functions work in evolutionary algorithms.

Figure 1.7: Repair procedure for Course’s conflict

Different heuristics were also used in literature to make initial solutions for population.

Normally these were graph colouring heuristics [100, 102, 116, 83], again their use depends

on the nature of the problem and solution representation used by the solver. Now we shall

give a glimpse of these heuristics as follows.

/*A course comes more than once in a day*/

Repeat

Find the course S1 occurring more than once in a day D1;

Case 1: Try o replace to free timeslot in a day where S1 not occurs;

If Teacher (S1) not free in the free timeslot

Repair Teacher’s conflict and replace;

Case 2: Find a day where S1 not occurs;

Swap with any timeslot of S2, provided S2 not in D1;

Until (Repairing all courses’s conflict)

/* Case.1. Swapping Free timeslot with Theory Timeslot of

same day*/

Repeat

Find timeslots TS1<- free; TS2 <- Theory; TS3<- Theory in a day Di of Class Ci

To swap (TS1, TS2);

If Teacher (TS2) not free in TS1

{

Swap (TS1,TS3);

Swap (TS2,TS1);

}

Else if

Swap (TS1,TS2);

End if;

Until (Repairing all Teachers’ Conflict);

37

Figure 1.8: Repair procedure for teacher’s conflict

(1) Courses are first sorted in descending order of their complexities, and then periods and

rooms are allotted to them, now it depends on the solver how he defines the complexity.

/*Case.2. Swapping free timeslot with Theory Timeslot of same day with intern

adjustment*/

Repeat

Find TS1<-free; TS2<- Theory in a day Di of Class Ci

To swap (TS1, TS2);

If Teacher (TS2) not free in TS1

{

Make free Teacher (TS2) in TS1 by adjusting in the class

Ci+1/ Ci+2;

Swap (TS1, TS2);

}

Until (Repairing all Teachers’ Conflict);

/*Case. 3 . Swapping free timeslot with Theory Time slot of some other day*/

Repeat

Find TS1<-free; TS2<- Theory in a day Di of Class Ci

To swap (TS1, TS2);

If Teacher (TS2) free in TS1

{

If (! subject’s conflict)

Swap (TS1, TS2);

Else

{

Normalize Course’s conflict;

Swap (TS1, TS2);

}

}

Until(Repairing all Teacher’s Conflict);

38

(2) Choose the unscheduled course with the smallest number of possible room-period pairs to

which it can be feasibly assigned in the current timetable.

(3) Choose an unscheduled course randomly.

(4) Choose the period that the least number of other unscheduled courses could be feasibly

assigned to this period in the current timetable.

(5) Choose the place that defines the period with the fewest events in.

(6) Choose a room period pair randomly.

(7)Those courses have priority which has small number of available periods and a large

number of unassigned lessons. This heuristic is akin to the greedy colouring heuristic [116].

Once a lesson of a course is chosen then for period selection this criterion is used, select a

period among all available ones that is least likely to be used by other unfinished courses at

later steps [1, 83]. We have given a procedure of such type heuristic to form initial solutions

for population Figure 1.9.

Figure 1.9: Build procedure Lewis thesis [102]

1.8.2.2.3.2 Selection

Build (tt, U).

1. If (len (tt) < t)

2. Open (t – len (tt)) new timeslots;

3. Insert-Events (tt, U, 1, len (tt));

Insert-Events (tt, U, l, r).

1. While (there are events in U with feasible places in tt between timeslots l and r)

2. Choose an event e from U that has feasible places in tt;

3. Pick a feasible place p for e;

4. Move e to p;

5. if (U = ) end;

6. else

7. Open  mU new timeslots;

8. Insert-Events (tt, U, r, len (tt));

39

The most used selection operators are described as follows.

(1) Elitism

This method is used to select the best chromosome or a few best chromosomes for the next

population. This procedure can increase algorithm performance very quickly because it

preserves the best found solutions [112].

(2) Roulette Wheel Selection

This procedure is a probability based method where better chromosomes have the more

chances of selection. It could be understood by a simple example, consider a roulette wheel

where all chromosomes are placed in the population. Every chromosome has its place as big

as fitness function value is good, it is shown in the following picture [110] Figure 1.10.

Figure 1.10: Picture expressing roulette wheel selection

Then to select a chromosome a dice is thrown. The chromosome with best fitness function

value has more chance of selection than not good enough value chromosome.

(3) Tournament Selection

A specific number of chromosomes are selected from the population, and the one having the

best fitness value will go for the next generation [111, 52].

1.8.2.2.3.3 Cross over

In the following we will now describe the different crossover operators used in our

experiments.

40

(1) One-point crossover

First of all a single crossover point on both parents organism strings is selected. Then all data

beyond that point is swapped in either organism string between the two parent organisms. The

obtained organisms are the new children (as shown in Figure.1.11).

Figure 1.11: Picture expressing one point crossover

 (2) Two-point crossover

This is the same as one point crossover, here one selects two points on the parent organism

strings and everything between the two points is swapped between the parent organisms and it

makes two children (as shown in Figure.1.12). Similarly one can define N-point crossover.

Figure 1.12: Picture expressing two point crossover

(3)Uniform Crossover

This Crossover uses a fixed mixing ratio between two parents. This operator enables the

parent chromosomes to contribute on gene level instead of segment level.

If one considers the fixed mixing ratio is 0.5 then offspring gets approximately half of the

genes from first parent and the other half from second parent. Cross over points can be

randomly chosen as shown below Figure. 1.13.

http://en.wikipedia.org/wiki/File:SinglePointCrossover.png
http://en.wikipedia.org/wiki/File:TwoPointCrossover.png

41

Figure 1.13: Picture expressing uniform crossover

The Uniform Crossover checks each gene in the parent strings for exchange with a probability

of 0.5. So each gene of both parents has equal chance of selection. The evidence suggests that

it is a more exploratory approach to crossover than the traditional approaches that maintains

longer schemata [108,111, 103].

N-point crossover is quite different from the Uniform crossover. N-point crossover exchanges

material between points of parents chromosome strings but in uniform crossover each parents

gene has a probability of changing, for example if probability is 0.5 it means that both parents

have equal chance of giving gene to child chromosome. After cross over, mutation is

normally performed.

1.8.2.2.3.4 Reproduction

Reproduction is the procedure of making new children to bring new population. There are

generally two types of reproduction: generational reproduction and steady-state reproduction.

(1) Generational reproduction

The whole of a population is replaced at each generation in generational reproduction. The

procedure which is often used is N/2 times. This means, produce two offspring from selected

two parents (according to the selection procedure) and finally produce N new chromosomes

where N is the population size [75, 76, 77].

http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)#cite_note-1
http://en.wikipedia.org/wiki/File:UniformCrossover.png

42

(2) Steady-state reproduction

This method selects two parents according to the selection procedure, generates one or two

children and installs the result back into that population; the least fit of the population is

destroyed. These off springs are the only generated solution for this generation [70, 24, 83].

1.8.2.2.3.5 Genetic algorithms in educational timetabling

Sadaf Naseem Jat and Shengxiang Yang [70] proposed a guided search genetic algorithm, i.e.,

GSGA for solving the university course timetabling problem. This is a steady state genetic

algorithm where a guided search strategy and a local search technique are integrated;

Chiarandini et al. [71] used local search method for their algorithm as well. Steady state

genetic algorithm means that only one child solution is generated per iteration/generation.

Useful information are stored in guided search strategy. These information contained room,

period pairs of those lessons for which there is no hard or soft constraints violation. These

information are used to guide the generation of child into the next population. Local search is

used to improve the quality of individuals by using three neighborhood structures.

Bratkovic [75] used a genetic algorithm to solve laboratory exercises timetabling problem.

This algorithm used especially crafted crossover and mutation operators that are closed over

the space of feasible solutions and these genetic operators are designed to satisfy only hard

constraints. A local search was used to reduce the soft constraints and it improves the solution

quality.

Olivia Rossi-Doria and Ben Paechter [83] described a steady state evolutionary algorithm

with binary tournament selection and random mutation. One point crossover is used to make

offspring. This algorithm evolves the choice of the heuristics to be used at each step of the

building process of a timetable. This idea was originally published in Blum et al. [84].

This genetic algorithm proposed by Hitoshi Kanoh and Yuusuke Sakamoto [86] uses installed

knowledge base and an infection operation. The knowledge base means set of candidate

partial solutions of the final solution which are built from past years timetables and about

request of teachers related to their work choices. So in this way current timetable can preserve

the advantages of past timetables. This algorithm performance is tested on the timetables of

University of Tsukuba.

43

Amin Jula and Narjes Khatoon Naseri [89] presented a new hybridized genetic algorithm by

adding local search algorithm. They applied Cerebellar model of Articulation Controller

(CMAC) as a trainable machine to calculate and update mutation rate related to different

possible states in the process of algorithm execution. CMAC is a neural network that

simulates the structure and functions of a part of the brain called Cerebellum. CMAC model is

based on associative memory cells and searching table. Their experimental results obtained

showed that heuristics applied in this approach lead to better solutions with CMAC.

Dilip Datta et al. [94] presented the problem of preparation of class timetable in IIT Kanpur,

India. The entire timetable is composed of two phases. The first phase contains all the

common compulsory classes of the institute, which are scheduled by a central team. The

second phase contains the individual departmental classes. The evolutionary algorithms have

been exploited in this article to schedule the classes. They showed that using NSGA-II-

UCTO, a multi-objective EA-based university class timetable optimizer, a number of trade-off

solutions, in terms of multiple objectives of the problem, could be obtained.

The significance of crossover while finding global optimal in maintaining diversity has been

identified in M.Nandhini [95] and found that combination of grade selection with

combinatorial Partially Matched Cross over of better performance. Sadaf Naseem Jat and

Shengxiang Yang [70] state a guided search algorithm for the university course timetabling

problem, where guided search strategy and local search is integrated to solve the datasets. The

guided search strategy uses a data structure to store full information about events. This data

structure (memory) does not store whole timetables but it stores some best scheduled events

from the timetable. Data structure is regularly maintained after few generations. This data

structure can be formed by selecting N set of best individuals from the whole population.

Then take one individual solution to check its all events that whether its penalty is zero or not,

if its penalty is zero then all information about this event like room and period will be added

in the data structure. Then next individual solution will be picked and all information about

each zero penalty event will be added in the data structure. Then these data structure

information are used to guide the generation of children for the next population. Then author

uses a local search technique to improve the individual solutions searching through their

neighborhood structures in the solution space.

44

Adaptive genetic algorithms are GAs in which the parameters like population size, crossover

probability or mutation probability can be varied while the GA is in progress. A simple

example can be the following, the mutation rate is not fixed in the population but it changes

according to the performance of the algorithm. If the fitness of the population does not

improve for long time, the mutation rate increases. A lower mutation rate is chosen again if

the population shows an improvement as described in Zafer Bingul [107].

It is important to use appropriate values for parameters such as mutation rate, crossover rate

and population size to get good performance of genetic algorithms [103]. So selection of

these parameters has a wide range to get best solutions [104]. So some authors used the

technique of varied based parameters (these parameters were adjusted during the run) for

genetic algorithms which varied according to the performance of the genetic algorithm

[105,106]. It is observed that solver takes low mutation rate, high crossover rate at the

beginning of the algorithm and high mutation rate and low crossover rate towards the end of

the run. The reason behind is that at the beginning they want to go towards good solutions and

take mutation rate less. But when research goes towards end, solution gets stuck and they

increase mutation rate for getting diversity. The relationship between population features and

GA parameters are very complex and non-linear [107].

Burke, E.K [57] proposed a variant of variable neighbourhood search for solving examination

timetabling problems. Genetic algorithm was used to select a subset of neighborhoods. They

tested the performance of algorithm on the Carter benchmark problem datasets. Pillay and

Banzhaf [52] presented a two-stage informed genetic algorithm for examination timetabling

problems. First phase got feasible solutions and second stage was used to eliminate soft

constraint violations. In both phases genetic algorithm was used to construct solution and then

to improve it.

Landa-Silva and Obit [58] proposed an evolutionary non-linear great deluge algorithm for

course timetabling problem. Tournament selection was used as a selection operator. Better

improved individual was replaced with worst individual in population. Algorithm

performance was tested on the Socha datasets and results showed that the hybridization

between the non-linear great deluge and evolutionary operators produced good quality results.

This algorithm is similar to the one given by Abdullah [59].

45

1.8.2.2.3.6 A simple example of genetic algorithm

We take a simple example to show how basic components of genetic algorithm work through

optimization of a function. The function is defined as f (x) = x sin (1/x). The objective is to

find a minimum for this function on the interval [0, 0.5], i.e. to find a value
0x such that f (

0x)

≤ f (x) ∀x∈ [0,0.5]. The first derivative of this function is as follows.

 0
)/1cos(

)/1sin()(
x

x
xxf

We can find the maximum or the minimum values of a function by equating its first derivative

to zero.

We can write its first derivative in the following form as well.

 1)/1tan()( xxxf And it shows that there are infinite many solutions. However we want

to solve it with genetic algorithm.

Representation

A chromosome is a binary vector and represents a real number. This binary vector has 32-bits

since the processor allows this number. This means that the length of the domain of variable

x, which is 0.5 in this example, is divided 1232  equal size ranges. So a binary string can be

converted to a real number as follows:

First we convert binary string of length 32 from base 2 to base 10.

x* = ((b31 b30....b0))2 =
10

31

0

2 










i

i

ib

This gives the corresponding real number.

5.0
12

1
32

*


 xx

where 0.5 is the length of the domain.

For example, a chromosome (11110011110010101001011110100111) is representing the

number 0.476155032 in [0, 0.5]

since *x = (11110011110010101001011110100111)2 = (4090140583)10

and the real number is x = (4090140583) 5.0
12

1
32 

=0.476155032.

46

It can be easily noticed that (0000000000000000000000000000000) and

(11111111111111111111111111111111) represent the boundaries of the domain, 0 and

0.5 respectively.

Initial population

The initial population consists of 10 random chromosomes in form of binary vectors each of

32 bits. Following are the 10 chromosomes
ic where 1 ≤ i ≤ 10 and their corresponding real

value
ix on the interval [0, 0.5].

c1 = (01101110010010110001111111101001) x1 = 0.21541691

c2 = (11000000001100100111010011011111) x2 = 0.37538495

c3 = (11110011110010101001011110100111) x3 = 0.47615503

c4 = (10001100010110101011110101110100) x4 = 0.27412979

c5 = (10010100101100110001000010100000) x5 = 0.29042866

c6 = (10000110110110000100100000000000) x6 = 0.26336884

c7 = (01100101000110110101101011110000) x7 = 0.19747433

c8 = (11010110010111110111001010110111) x8 = 0.41869696

c9 = (01011001000010001110001110010111) x9 = 0.17389594

c10 = (11001010100101001111100010101010) x10 = 0.39566781

Objective function

Here objective function obj for chromosomes is equal to the original function f,

obj(c) = f(x) where x represents the corresponding real value and c represents the

chromosomes.

Objective function has an important role as it gives information about good solutions in terms

of fitness. These are fitness values of the chromosomes in our population:

obj (c1) = f(x1) = -0.214885912

obj (c2) = f(x2) = 0.172565550

obj (c3) = f(x3) = 0.410983902

obj (c4) = f(x4) = -0.132941257

obj (c5) = f(x5) = -0.086269622

obj (c6) = f(x6) = -0.160509512

obj (c7) = f(x7) = -0.185396112

obj (c8) = f(x8) = 0.286388252

obj (c9) = f(x9) = -0.088302975

obj (c10) = f(x10) = 0.228031778

47

We can see that the fittest chromosome in the population is chromosome c1 because it gives

the smallest value and c3 is the worst chromosome with the highest fitness value.

Genetic operators

There are two classical operators in genetic algorithm namely crossover and mutation. One

point crossover is applied on two fittest chromosomes c1 and c7. We choose a random number,

say 21 for crossover point. This means that we split the chromosomes at the 21st gene and

then we exchange the parts of the chromosomes as given below:

c1 = (011011100100101100011 | 11111101001)

c7 = (011001010001101101011 | 01011110000)

We get these two children from parents:

o1 = (01101110010010110001101011110000)

o2 = (01100101000110110101111111101001)

Now the fitness of these new chromosomes and their corresponding real values can be

calculated as following.

f(o1) = f(0.21541676) = -0.214885813

f(o2) = f(0.19747604) = -0.185400708

The first child o1 has a better fitness value than its parents however this improvement can be

seen till ninth decimal point.

The next step is to mutate the children to get better chromosomes. For this purpose, we select

6 random genes and change their values. The bit value ‘1’ is changed to ‘0’ or vice

versa.

An example of this type of mutations is given below:

o1 = (01101110010010110001101011110000)

o1m = (01110010110010110001101011110110)

o2 = (01100101000110110101111111101001)

o2m = (01111001100110110101111111101111)

After applying mutation, we re-calculate the fitness of these new chromosomes and the

corresponding real values below:

f(o1m) = f(0.22420582) = -0.217113164

f(o2m) = f(0.23751354) = -0.208197846

It is easy to notice that objective function value of mutated children is better than their parents

also from children which are not mutated. These mutated children act as parents for the next

generation, this means that each iteration starts with a better population. Thus genetic

48

algorithm finds optimal or near optimal solutions gradually by this way. In this example, we

have explained only one iteration.

1.8.2.2.4 Memetic algorithms

Population based algorithms have been used to solve educational timetabling problems in the

literature. Cote et al. [53] proposed an evolutionary algorithm to minimize the timetable

length and the conflicting examinations as much as possible. They used two local searches

(tabu search and variable neighbourhood descent) instead of recombination operators to deal

with hard and soft constraints violations. However replacement of recombination operators

with two local searches increased number of parameters that should be tuned.

Ersoy et al. [56] proposed a combination of hill-climbing and memetic algorithms as a hyper-

heuristic framework. They tested its performance on the Carter benchmark datasets. The

results showed that a memetic algorithm based hyper-heuristic using a single hill climber at a

time gave the best results among other variants of hill climbing hyper-heuristics proposed by

the same authors.

Salwani Abdullah et al. [59] employed evolutionary algorithm together with local search. The

main technique used in this evolutionary algorithm is a light mutation operator followed by a

randomised iterative improvement algorithm. The crossover operator is not used in this

approach. The local search approach discussed in Abdullah et al. [15] is used as the operator

and is applied after the mutation takes place; similar work was also done by Soolmaz

Massoodian and Afsaneh Esteki [74].

Ender Özcan and Alpay Alkan [76] solved a University Exam Preparation School

Timetabling Problem (PSTP), this is a course timetabling problem. A memetic algorithm is

used as an incremental multistage approach. At each stage a new subset of unscheduled events

is selected using some criteria. Within a population of candidate solutions unscheduled events

for the selected subset of events are randomly generated. This population is exposed to the

memetic operators and whenever some termination criteria are satisfied, then another new

subset of events is chosen. This procedure is repeated until all unscheduled events are

scheduled and some additional termination criteria are satisfied. The size of individuals

incrementally increased as the new subsets of events is added for optimization at each stage.

In this way, no portion of the search landscape is ignored.

49

Olivia Rossi-Doria and Ben Paechter [77] proposed a memetic algorithm to solve university

course timetabling problem, which uses the representation and local search, due to Socha and

Chiarandini [78, 79].This algorithm is a Steady-State evolution algorithm, proposed by

Withley [81], where only one offspring solution is produced from two parents at each

generation. Local search is used in two phases, where first phase makes an infeasible

timetable feasible by reducing the number of periods used and second phase is used to

improve the quality of a feasible timetable by minimizing the number of soft constraint

violations. This algorithm uses constructive heuristics as used in [82, 80] to make initial

solutions for initial population.

Ender Ozcan et al. [85] proposed a hybrid method, ‘‘Interleaved Constructive Memetic

Algorithm’’ (ICMA) that interleaves memetic algorithms with constructive methods. This

algorithm starts working by using an active subset of all the lessons. In multiple construction

stages ICMA increases the active sub sets one by one and eventually include all of them

starting with single set. At each stage a memetic algorithm is used to improve the quality of

current partial solution before the next construction stage. This algorithm is used to solve

Preparation School Timetabling Problem (PSTP).

Ricardo Santiago-Mozos et al. [88] proposed a two-phase heuristic evolutionary algorithm to

construct personalizing timetables. They tackle the problem of assigning a feasible and

personalized timetable for every student. Students are allowed to choose a set of priority

courses and non-priority courses. Priority courses will always be assigned. This algorithm

uses two-phase heuristic with evolutionary algorithm to solve course timetabling problem.

First phase of heuristic is used for the assignment of priority courses and when this task is

done then the second heuristic manages the non-priority course’s assignment. This algorithm

is used to make personalized timetables of the School of Telecommunications Engineers,

Universidade de Vigo (Galicia, Spain).

1.8.2.2.5 Honey bee algorithms

We have proposed a honey bee algorithm for educational timetabling problem. In this section

we present some details about the algorithm. There are two major types of Honey bee

50

algorithms. First type is a honey bee colony algorithm which was mostly used to solve

educational timetabling problems [45, 46, 47]. The honey bees colony Algorithm was

introduced in 2005 by Pham et al. [66,67]. Honey bee colony algorithm is about the food

collection of the bees. It is a nature inspired algorithm [61, 62, 63, 64, 67].

Figure 1.14: Original HBMO for SAT [68]

The second type is honey bee mating optimization (HBMO) algorithm [48]. This was

proposed by Abbass in 2001 [68, 69]. This naturally inspired algorithm simulates the process

of real honeybees mating. It was successfully used for solving job shop scheduling, data

Define M, E(t), and S(t) to be the spermatheca size and the queen’s energy and speed at time t

respectively

Initialize the queen’s genotype at random

select a worker at random, apply it to improve the queen’s genotype, and update its fitness

while the stopping criteria are not satisfied

t = 0, generate a drone at random

initialize E(t) and S(t) randomly and the energy reduction step ° to 0:5£E(t)

M

while E(t) > 0

evaluate the drone’s genotype

if the drone passes the probabilistic condition, and the queen’s spermatheca is not full, then

add the drone’s sperm to the queen’s spermatheca

t = t + 1; E(t) = E(t - 1) - ; S(t) = 0:9* S(t - 1)

with a probability of S(t) flip each bit in the drone’s genotype

end while

for brood = 1 to total number of broods

select a queen in proportion to her fitness and a sperm from that queen at random

generate a brood by crossovering the queen’s genome with the selected sperm

mutate the generated brood’s genotype

use a worker selected in proportion to its fitness to improve the drone’s genotype

update the worker’s fitness based on the amount of drone’s improvement

end for

if the best brood is better than the queen then replace the queen with the best brood

kill all broods

end while

51

mining, 3-sat, integrated partitioning/scheduling, stochastic dynamic programming and

continuous optimization, nonlinear constrained and unconstrained optimization problems

[49]. We have given pseudo code of original honey bee mating algorithm in Figure.1.14.

The strength of this algorithm is to explore simultaneously and exploit problem search space.

This is achieved by the queen’s transition in the search space and employing a local search at

each iteration. These features of honey bee algorithms make it different from other population

based algorithms that had been used on educational timetabling problems [50, 51, 52]. Honey

bees are selected to create the population of the initial hive. Previous work [96, 97, 98, 99,

100] showed that in many cases, random generation methods may not necessarily guarantee a

good quality in some cases. Therefore, in this work, we employ heuristics which are described

in later chapter (Chapter 7) to generate an initial population of drones.

1.8.2.2.5.1 Review of Honey bee algorithms

Alzaqebah and Abdullah’s [45] article speaks about how to use artificial bee colony for

solving the examination timetabling problems. This algorithm works with three categories of

bees namely employed, onlooker and scout bees. Employed bees fly around the search space

to find food source and come back in hive to share collected information with onlooker bees.

Onlooker bees relay on these information and they choose their food source according to

these information. While scout bees are those employed bees whose food source has been

abandoned. Now these scout bees start to search a new food source randomly without any

information. If they find new source of food where amount is more than the previous one in

their memory they memorize the new source and forget the previous one. This algorithm

employed local and global search methods simultaneously where local search method are

used through employed bees and onlooker bees. While global search methods are carried out

by onlooker bees and scout bees. The purpose of this combination is to have a balance

between exploration and exploitation process.

Nguyen et al. [46] presented a hybrid algorithm which combines honey bees algorithm and

harmony search algorithm. The part of harmony search algorithm handles intensification and

diversification. Diversification is handled by pitch adjustment and random selection which

helps to retain good local search solutions. Random selection explores the search space more

widely while pitch adjustment makes the new solution good enough to the existing good

solutions. The intensification in Harmony search algorithm is controlled by memory

52

consideration; this leads the search process toward the searching space of good solutions. This

algorithm has two phases of optimization. First phase use honey bees algorithm using

neighborhood search and random search while second phase uses harmony search using

memory consideration, random selection and pitch adjustment.

Alzaqebah and Abdullah’s algorithm [47] starts with initial solution obtained from graph

coloring heuristics and size of population is equal to the number of scout bees. Each scout bee

evaluates the solution according to objective function. Highly ranked solutions are selected

for local exploration by other bees (foragers) that are directed to the neighbourhood of the

selected solutions by the scout bees. Then for each selected solution the number of foragers is

allocated by this rule. If scout bee returns from one of the best solutions, performs the

“waggle dance” this means that it recruits some specific amount of mates for local

exploration. The scout bees that visit the elite solutions among the best sites recruit specific

foragers for a neighbourhood search. The scout bees that visit the remaining solutions recruit

a group of foragers for a neighbourhood search. Algorithm gives more tries for the elite

solutions because elite solutions are the most promising solutions in the search space.

53

Reference Problem description Classes, Courses, Teachers,

Rooms, Periods

Algorithm Results

[44]

ITC-2007 (Examination

timetabling problem)

Benchmark datasets No Problem mathematical

formulation is proposed

[45]

ITC-2007 (Examination

timetabling problem)

Benchmark datasets Bee colony algorithm Tested on real world datasets

[48]

Carter et al. bench mark instances

[82] and Socha et al. bench mark

instances [51]

Benchmark datasets Honey bee mating algorithm Tested on real world datasets

[57]

Carter et al. bench mark instances Benchmark datasets Variable neighbourhood search Tested on real world datasets

[164]

Universiti Kebangsaan Malaysia Datasets are not given Timetabling Software Results are not given

[161]

University in Thailand 758, 128, 111, no, 60 Stochastic optimisation Tested on real world datasets

[167]

University of Valencia, Spain 93, 84, 200, 24, 65 Tabu search Tested on real world datasets

[13]

Universit´a del Sannio,

Benevento, Italy

14, 64, 48, 12,50 Cutting plane algorithm Tested on real world datasets

[72]

Shahrood University of

Technology, Iran

8,75, 25, 3, 38 Integer programming Tested on real world dataset

[27]

Xavier College, Melbourne 90,32, 68, blocks 6, no Integer linear programming Real data modified

54

Reference Problem description Classes, Courses, Teachers,

Rooms, Periods

Algorithm Results

[1]

ITC-2007 (Curriculum based

course timetabling problem)

Benchmark datasets Tabu search Tested on modified real world

datasets

[2]

ITC-2007 (Curriculum based

course timetabling problem)

Benchmark datasets Hybrid metaheuristic Tested on modified real world

datasets

[3]

KaHo Sint-Lieven

School of Engineering

212, 1215 lessons, 133, 67, 95 Local search based metaheuristic Tested on real world datasets

[65]

Greece high school datasets 11, 385 lessons, 35, no, 35 (11

datasets of approximately this

size)

Particle swarm optimization Tested on real world datasets

[87]

ITC-2007 (Curriculum based

course timetabling problem)

Benchmark datasets Tabu based memetic algorithm Tested on modified real world

datasets

[93]

Kun-Shan University Taiwan 8,6 course for each class ,17, 10

,40 (small size data)

[147]

ITC-2007 (Post enrolment course

timetabling problem)

Benchmark datasets Simulated annealing Generated datasets

[148]

University in Indonesia Datasets are not given Simulated annealing Generated datasets+ Real datasets

[151]

ITC-2007 (Post enrolment course

timetabling problem)

Benchmark datasets Ant colony optimization Generated datasets

[160, 168]

Statistics department of Hacettepe

University

4, 36, 27, 6, 40

Tabu search Tested on real world datasets

Table 1.1: Lists papers related to course and examination timetabling problem

55

1.8.3 Brief review of RCPSP

Francisco Ballestin et al. [124] study the case when pre-emption is allowed for processing

jobs. The generalized case of this problem is m_PRCPSP, which means that one job can be

pre-empted at most m times but case studied in this paper is 1_PRCPSP, for reason, it is easy

and also if one pre-empted in more time, objective function normally does not improve.

 Sonke Hartmann and Dirk Briskorn [125] give an overview over extensions of the RCPSP

such as multiple modes, minimal and maximal time lags. The extensions are classified

according to the structure of the RCPSP. They summarize generalizations of the activity

concept, of the precedence relations, of the resource constraints and discuss the notations,

models and classification schemes. Sonke Hartmann and Rainer Kolisch [126] first present a

literature survey. They discuss about X-pass method, in which they use SGS (Serial schedule

generation scheme). Here they present the results and find out the performance of many state

of the heuristics on some benchmark datasets. They compare the results and point out the

most performing procedure.

Ana Viana and Jorge Pinho [9] used multiobjective metaheuristics to solve the resource

constrained project scheduling problem (RCPSP). They applied multiobjective versions of

simulated annealing and tabu search inorder to minimise the makespan, lateness of activities

and the violation of resource constraints. They checked the performance of these

metaheuristics on randomly generated instances. The benefit of this multiobjective version is

that it is near to real world problems where many objectives are required to achieve.

Job shop scheduling problem is a special case of resource-constrained project scheduling

problem. Peter Brucker et al. [22] presented a classification scheme compatible with machine

scheduling. Project scheduling researchers used a variety of symbols to denote one and the

same subject. So there is a gap of notations and classification scheme between machine

scheduling and project scheduling and also a lot of articles are publishing which makes this

problem more worst. Authors tried to minimize this gap and presented a classification scheme

(description of the resource environment, the activity characteristics, the objective function

etc.), compatible with machine scheduling. They also reviewed some recent developments in

exact and heuristic algorithms for the single-mode and the multi-mode RCPSP.

56

Krzysztof Fleszar and Khalil Hindi [23] proposed a solution method based on variable

neighbourhood search. They coded solution by using activity sequences which are available in

form of precedence constraints. These sequences became valid active schedules through a

serial scheduler. The solution is coded by using activity sequences that are valid in terms of

precedence constraints. The sequences are turned into valid active schedules through a serial

scheduler. Two types of move strategies were used to explore solution space by generating

valid sequences, effective lower bounding and precedence augmentation were employed to

reduce the solution space. Rainer Kolisch and Sonke Hartmann [29] discussed heuristics for

solving resource-constrained project scheduling problem (RCPSP). This was an update of

previous review. They summarized and categorized a large number of heuristics recently

proposed in literature. They evaluated these heuristics in a computational study and compared

them on the basis of their standardized experimental design and on the basis of these results

they discussed features of good heuristics.

1.9 Conclusion

This chapter basically consists of introduction of educational timetabling problems and the

approaches used to solve these problems. We have discussed different types of timetabling

problems and especially our main concerned is educational timetabling problems. Timetabling

problems related to educational institutions have discussed in detail with different types of

constraints which make this type of problem really difficult. A lot of solution approaches used

graph colouring heuristics to solve these problems, so we have discussed graph colouring

problems in comparison with educational timetabling problems. Many metaheuristics have

been used in literature to solve timetabling problems like local search based and population

based metaheuristics. Our major focus is also metaheuristics because we have proposed

metaheuristics to solve timetabling problems. Local search based metaheuristics need

neighbourhood structures for its functioning so we have discussed these neighbourhood

structures used in literature in detail.

A major part of this chapter covers different solution techniques used in literature. It is also

worth mentioning that each technique has its own advantages and disadvantages, we can not

decide that one technique is universally superior to any other one. Instead we can say that

certain techniques are more appropriate to certain kind of problem-situations and certain types

of user requirements. Thus it looks reasonable, when selecting a specific approach for one’s

57

own timetabling problem to keep in mind that produced solution will be used ultimately by

real people. So it is required by algorithm to be fast, reliable and can produce good solution

according to the desires of the users.

We have noticed that there are mainly two types of solution techniques. First type of

technique is the one which solves problem directly without giving any focus on hard or soft

constraints but this procedure tries only to minimize objective value of the function where

hard constraints have more penalty value than soft constraints. Second type of technique is the

one which solves the problem in two steps. In the first step the algorithm solves hard

constraints of the problem and in the second step the algorithm tries to solve soft constraints

while maintaining the solution feasible (means no violation of hard constraints). We shall say

that this is not a concrete classification.

We have noticed that many algorithms have been used to solve a particular problem or the

author’s own institution problem. So this is quite understandable that obviously they will be

motivated to solve that specific problem. But according to research point of view it is difficult

to judge how their algorithms performance is good with respect to others’s algorithms. As

university timetabling problems often do not have any standardized problem definitions and

do not have many different problem instance libraries available for benchmarking algorithms.

Thus there is a need of more and generalized problem instance libraries to analyze and

compare different algorithms performance.

We have tried to present details of the domain in our Chapter 1. But if someone does not have

prerequisite knowledge of these problems, we feel that this chapter is not sufficient for his

foundation in this domain, one can study referred literature given in our general introduction.

58

Chapter 2

2 TRANSFORMATION OF COURSE TIMETABLING

PROBLEM TO RCPSP

In this chapter, we have proposed two equivalent mathematical formulations which transform

course timetabling problem to RCPSP (resource constrained project-scheduling problem). In

Section 2.1, we have given a brief introduction to RCPSP. In Section 2.2, we have discussed

why we choose single mode RCPSP for transformation and benefits of this transformation. In

Section 2.3, we have presented our mathematical models and chapter is concluded in Section

2.4.

2.1 The resource constrained project scheduling problem

(RCPSP)

The classical resource constrained project-scheduling problem (RCPSP) may be stated as

follows. A project consists of a set of n activities numbered 1 to
_

j , where each activity has to

be processed without interruption to complete the project. We consider additional activities j

= 1 and j =
_

j representing the single source and single sink activity of the network

respectively. The duration of an activity j is denoted by
jd , where

1d =0 and 

j

d = 0. There are

R renewable resource types. The availability of each resource type r in each time period t is

rta units, r = 1,…,R. Each activity j requires
jru units of resource r during each period of its

duration where
ru1
 = 0, 

jr

u =0, r = 1,…, R. All parameters are assumed to be non-negative

integer valued. There are precedence relations of the finish-start type with a zero parameter

value (i.e., FS = 0) defined between the activities. In other words, activity i precedes activity j

if j cannot start until i has been completed. The structure of a project can be represented by an

activity-on-node network G = (V,A), where V is the set of activities and A is the set of

precedence relationships.
jF (

jP) is the set of successors (predecessors) of activity j. It is

59

assumed that 1
jP , j = 2,…,

_

j and
_

j 
jF j = 1,…,

_

j -1. The objective of the RCPSP is to

find a schedule S of the activities, i.e., a set of starting times (

j

ss ,...,1), where 01 s and the

precedence and resource constraints are satisfied, such that the schedule duration T(S) = 

j

s is

minimized.

Our problem is based on non preemptive activities but in RCPSP activities could be

preempted during processing at integer points in time, i.e., the fixed integer processing time

jd of activity j may be split into j = 1, 2 , …,
jd process units. Time windows can be specified

for every activity, [EFj, LFj], which denote the earliest and latest finishing time for activity j,

and [ESj, LSj] which denote the earliest and latest starting time for activity j. This problem

specifies a minimal and maximal time lag between tasks. A minimal time lag specifies

that an activity can only start or finish when the predecessor activity has already started

(finished) for a certain time period. A schedule S is called feasible if in each time period t the

total resource demand is less than or equal to the availability
rta of each resource type r, and

the given precedence constraints are fulfilled. We call a problem of finding a feasible

schedule with completion times Cj such that Cj ≤ T for j = 2,…,
_

j -1 a search problem or

feasibility problem. A search problem with threshold value T has a solution if and only if a

schedule S exists such that the makespan)(max)(maxmax
1

2

1

2
jj

j

j
j

j

j
dsCC 










 is not greater than

T. The RCPSP is usually formulated as the problem of finding a feasible schedule which

minimizes the makespan. Other important objective functions besides are based on cost

functions)(tf j
 for the activities. One has to find a feasible schedule which minimizes the

total costs)(
1

2

j

j

j

j Cf







[141].

2.2 Basic single-mode RCPSP and course timetabling

Our purpose is to transform educational timetabling problem (course timetabling) to resource

constrained project scheduling problem. There are six major classes of RCPSP: 1. Basic

Single-Mode RCPSP 2. Basic Multi-Mode RCPSP 3. RCPSP problems with non regular

objective functions 4. Stochastic RCPSP 5. Bin-packing-related RCPSP problems 6. Multi-

resource-constrained project scheduling problems.

60

If a resource constrained project scheduling problem (RCPSP) uses a single execution mode

for every activity, with specific time and resource requirements is called single mode resource

constrained project scheduling problem. Here we shall only discuss and use single mode

RCPSP because in timetabling problem, courses are assigned to teachers in first stage and

total duration for each course is also predefined. So by using single mode RCPSP, scheduling

of these courses could be done. In our formulations we use set of lessons instead of set of

courses to transform problem in RCPSP for that purpose we decompose firstly the courses

durations into set of lessons.

One benefit to transform timetabling problem in RCPSP is that durations of lessons can be set

according to choice but normally solvers take lesson length uniform for the easiness and the

other thing is that if there are precedence constraints (i.e lesson i of duration
id must be

taught before lesson j of duration
jd) between lessons then this kind of formulations will be

more beneficial to use than others timetabling formulations. The other aspect of attention is a

new dimension of thought and beauty of mathematical work which can open new rooms for

researchers. We are thinking on the idea that how many other features of RCPSP and its

generalizations can be attached to timetabling problems that these problems could be solved

by using RCPSP solvers or techniques.

2.3 Transformation of timetabling problem to RCPSP

This section defines many sets and sub sets, which are used to formulate mathematical

models. Our two proposed formulations are the part of this section as well.

2.3.1 General features of the models

In this section we shall define our sets and sub sets, which will be used in our formulations.

- A set of lessons J ={1,…,
_

j }.

- A set of types of rooms R= {1,…, r }.

- A set of rooms Y= {1,…,


y }.

- A set of periods T = {1,…, t }. T is a set of periods, which all have same length.

- A set of classes C= {1,…, c }. Class is a set of lessons which have common students.

61

- A set of teachers P = {1,…,
_

p }. Each lesson will have a teacher previously assigned to it.

Some additional parameters and sets are defined on the basis of previous sets to make easy the

presentation of model.

ra = Constant room availability of room type r

rta = Availability of rooms of type r in period t

jru = Use of room type r per period by job j, which is always one

pJ =Set of lessons taught by teacher p

rJ = Set of lessons requiring rooms of type r

rY = Set of rooms of type r

jES = Earliest starting time of lesson j

jLF = Latest finishing time of lesson j

jP = Set of lessons which precede lesson j

jF = Set of lessons which follow lesson j

jd = Duration of an activity j

Lesson 1 and lesson
_

j are dummy lessons, which are called generally source and sink. To

ease presentation, durations and resource usages for these lessons is considered zero. Earliest

starting and latest finishing times can be obtained by a forward and backward pass

respectively. Starting with 1ES 1EF 0, the forward pass calculates earliest starting and

finishing times as follows.

jES = max{
iEF / i

jP } ; jEF jES jd for j = 2,…,

_

j .

The backward pass is performed beginning with 

j

LF 

j

LS t . This gives latest finishing

and starting times jLF and jLS as follows.

jLF = min{
hLS / h

jF } ;
jLS = jLF jd for j = 1,...,1

_

j

E(t) = {j /J and  tES j 1 jLF }. This is a set of lessons which are eligible to schedule for a

period t.

The latest finishing and earliest starting times correspond to time points delimiting periods. So

it is important to clear difference of time period and time point for better understanding of the

formulation. Two time points t and t+1 define the start and the end of period t+1

62

respectively. If earliest starting time of any lesson is
jES then the earliest time period for its

execution could be 1jES .

We have formulated timetabling problem in two different ways on the prototype of Resource

constrained project scheduling problem. We have formulated high school timetabling problem

in a two different ways.

2.3.2 Proposed mathematical model 1

With these variables, the first formulation can be defined as follows.

{ 1jtx if lesson j is scheduled in period t, jtx = 0 otherwise ;} for Jj and Tt

Max jt

Tt Jj

jtdx
 


Tt

jtx =
jd Jj (1)

The constraint (1) ensures that each lesson is scheduled for
jd periods.

0).(
1

1,  




t

ESq

jttjjtj

j

xxxd Jj , t [1jES ,…,
 1jLF] (2)

The constraint (2) is a non preemption constraint which ensures that processing of each lesson

is not interrupted.

0.
1

1

 




t

ESq

itjti

i

xxd Jj , i
jP , t [1jES ,…,

 iLF] (3)

The constraint (3) shows that a lesson j must not be started before all its predecessors have

been processed completely.

rtjt

tEj

jr axu 


.
)(

 Rr , Tt (4)

The constraint (4) guarantees that the number of lessons scheduled in period t requiring rooms

of type r will be less than or equal to the number of rooms of type r available at period t.

1
 pJj

jtx Tt , Pp (5)

The constraint (5) ensures that teacher p cannot teach more than one lesson at period t.

1
cj

jtx Tt , Cc (6)

 The constraint (6) ensures that class c cannot attend more than one lesson at period t.

63

jtx {0,1} Jj , Tt

Where
jtd is the desirability to schedule lesson j in period t, basically this is preference to

teach lesson for teachers in periods because sometimes they are performing some other

administration duties and some teaching periods are more suitable for them than others.

Objective function can be used according to demand, if one wants to schedule these lessons as

early as possible, one can use Min 






j

n

LF

ESt
jt

xt
1

. , which is same as one uses in RCPSP (minimize

the project completion time).

2.3.3 Proposed mathematical model 2

The second formulation is proposed using these variables. This is equivalent to the first

formulation.

{ jytx = 1 if lesson j is scheduled in period t at room y, jytx = 0 otherwise ;} for Jj , Yy

and Tt

Max jt

Tt Jj

jyt

Yy

dx
 


 Tt

jyt

Yy

x =
jd Jj (7)

0).(
1

1,  






t

ESq

jyt

Yy

tjjytj

Yy j

xxxd Jj , t [1jES ,…,
 1jLF] (8)

0.
1

1

 




t

ESq

iyt

Yy

jyti

Yy i

xxd Jj , i
jP , t [1jES ,…,

 iLF] (9)

rt

Jj Yy

jyt ax
r r

 
 

 Rr , Tt (10)

1
 pJj

jyt

Yy

x Tt , Pp (11)

1
 cj

jyt

Yy

x Tt , Cc (12)

jytx {0, 1} Yy , Jj , Tt

64

The constraints 1 and 7, 2 and 8, 3 and 9, 4 and 10, 5 and11, 6 and12 are representing the

same constraints.

2.4 Conclusion

The Resource-constrained project scheduling problem (RCPSP) is concerned with single-item

or small batch production where limited resources have to be allocated to dependent activities

over time. Over the past few decades, a lot of work has been done with the use of optimal

solution procedures for this basic problem type and its extensions. Brucker and Knust [166]

had discussed how timetabling problems can be modelled as a RCPSP. Authors discuss high

school timetabling and university course timetabling problem as an example. We have

formulated two mathematical formulations of course timetabling problem which are the

prototype of single-mode RCPSP [127].

These formulations are basically linear integer programming and could be solved by using

linear programming solvers like CPLEX, LINGO etc. It would be interesting to correlate

more features of timetabling problem to RCPSP. We expect, this effort would be thought

provoking and would be a new addition in this domain. The purpose of the work is to show

how course timetabling problem can be transformed into RCPSP.

65

66

Chapter 3

3 A GENERIC MODEL OF UNIVERSITY COURSE

TIMETABLING PROBLEM

In this chapter, we have presented a new 0-1 linear integer programming formulation for

university course timetabling problem. The mathematical model for the problem provides

many operational rules and requirements which are needed in many institutions. We have

formulated a generic model by gathering many constraints from different university

environments in a single formulation. Remaining of the chapter is organized as follows.

In Section 3.1, we have explained the terms, sets, sub sets and parameters required to

formulate the mathematical model. In Section 3.2, we have proposed the mathematical

formulation of our generalized university course timetabling problem. In Section 3.3, we have

demonstrated how the constraints of this model can be used as hard and soft and how one can

make objective function using these soft constraints. In Section 3.4, we have explained the

procedure of the construction of a timetable by using a small problem instance. Finally, the

chapter is concluded in last Section 3.5.

3.1 General features of the proposed model

In this section, we are going to propose a generic mathematical formulation for university

course timetabling problem which covers many constraints of different university

environments.

3.1.1 Used entities of the model

Our generalized problem consists of the following entities.

Courses and Teachers

Each course has fixed number of lessons to be assigned in distinct periods. It is attended by

given number of students and is taught by a teacher.

67

Days, Periods per day and Total Periods

We have a number of teaching days in a week. Each day has a fixed number of periods. Total

periods are the product of number of periods per day and number of days.

Slots

A triplet of room-period-day is called one slot. Total number of slots can be found by

multiplying total number of days, total number of rooms and total number of periods per day.

Rooms

Each room has a given capacity (number of available seats). Each room also has a type called

room type. Two rooms of same capacity can have different types.

Class

A class is a group of courses which have common students. Thus the courses of one class

must not be scheduled at the same period.

3.1.2 Notations, sets, sub sets and parameters

Now we shall define our sets and present in detail the problem requirements.

- A set of course C= {1,…, c }. Each course has a fixed number of hours per week, which

can be taught during the week.

- A set of rooms R= {1,…, r }. Rooms can be of different types, including computer rooms

and laboratories for specific subjects. Each room has a fixed capacity.

- A set of total periods P = {1,…, p }. P is a set of periods (all of the same length, 1 hour).

Total number of periods P can be found by multiplying number of periods per day with

total number of days.

- A set of days D = {1,…, d }. D is the teaching days of the week.

- A set of classes K = {1,…, k }. K is a set of classes (classes are groups of students attending

exactly the same courses).

68

- A set of teachers T = {1,…, t }.

Each course will have a teacher previously assigned to it.

- A set of types of rooms X= {1,…, x }.

cn = Number of teaching hours to be scheduled per week for every course c  C

mincn = Minimum daily number of teaching hours (no less than
mincn teaching hours have to

be assigned to day d, if the course c is scheduled in day d)

maxcn = Maximum daily number of teaching hours (no less than
maxcn teaching hours have to

be assigned to the day d, if the course c is scheduled in day d)

dt = First period of the morning session in day d

dl = First period of the afternoon session in day d

kC C = Set of the courses that class k should attend, for every class k. Unlike the School

timetabling problem, some classes can be joined to attend the same courses, i.e.,
1kC ∩

2kC 

 .

tC C = Subset of courses taught by teacher t for every teacher t

te = Maximum weekly number of teaching days allowed for the teacher t

lg = Maximum gap between two teaching hours (lessons) of any teacher t

maxl = Maximum daily number of teaching hours allowed for any class

maxkl = Maximum daily number of teaching hours allowed for every class Kk 

minkl = Minimum daily number of teaching hours limit for every class Kk 

cdlmax = Maximum daily number of teaching hours allowed for every course Cc

cdlmin = Minimum daily number of teaching hours allowed for every course Cc

ltmax = Maximum load per day for every teacher t

ltmin = Minimum load per day for every teacher t

lpmax = Maximum lessons scheduled per period p

cpd = Desirability of scheduling the course c at period p, usually
cpd measures the desirability

of the period p for the teacher t (c
tC)

rP P = Set of periods for which room r is available, for every Rr

tP P = Set of periods for which teacher t is available, for every Tt

69

xC C = Set of courses requiring rooms of type x, for every Xx

xR R = Set of rooms of type x, for every Xx

xpm = Number of rooms of type x available at period p, for every Pp and Xx

cP P = Set of pre assigned periods for course c, for every Cc

dP P = Set of periods for day d, for every Dd 

'dP 
P = Set of last periods of days

AC = Set of pre assigned courses

c
p
_

P = Set of forbidden periods for course c, for every Cc

kP P = set of periods for which class k is unavailable, for every Kk 

 FC = set of courses for which periods are forbidden (all periods are not available)

fR R = set of rooms which should be free in timetable, it means that no course Cc should

be scheduled in any period p P, in these rooms.

tR R = set of rooms, which are in the preference list of teacher t, for every Tt

fP P = set of periods which should be free in timetable, it means that no course Cc

should be scheduled in any room r R, in these periods.

wcmin = Minimum working days for course c

wcmax = Maximum working days for course c

cs = Number of students in course c

ra = capacity of room r

We have defined
kC , group of students attending exactly the same courses but it can also be

defined another way, group courses in such a way that any pair of courses in the group have

one or more common students. The other way is more general than the first way.

A timetable is an assignment of courses C to rooms R and to periods P. A timetable fulfills

some basic requirements, which are normally called hard constraints, mostly common for

every institution. It also satisfies some other constraints whose satisfaction is not mandatory

but their fulfillment shows that how good timetable is.

70

3.1.3 Decision variables

We have defined these decision variables to formulate our mathematical model. We have

defined four binary variables.

- crpx = 1 if course c C is scheduled in room r  R at period pP, crpx = 0 otherwise;

- cdu = 1 if course cC is assigned to day d D, 0 otherwise;

- td = 1 if d  D is a teaching day for teacher t  T, 0 otherwise;

-
rcz = 1 if room r R is used by course cC, 0 otherwise;

3.1.4 Objective function

We have proposed a generalized model for course timetabling. This generalized model

consists of many constraints. For this generic model the objective function is also generic and

can be adopted for specific problems. These constraints of the generic model can be used as

hard or soft constraints in a specific problem. One can write the objective function when he

knows exactly which constraint is soft and which constraint is required as hard. We have

shown in Section 3.3, how one can write objective function from a specific problem by taking

an example.

3.2 Integer programming formulation for generalized problem

In this section, we have presented our mathematical formulation. This formulation has many

different types of constraints and we have divided them in six main categories, which are

described in the following.

3.2.1 Hard constraints

In this section, we have written four constraints which are normally used as hard constraints

in different university environments.

For every course Cc ,
 cn hours a week must be scheduled.

c

Rr Pp

crp nx 
 

Cc (1)

71

For every class Kk  , class k cannot attend more than one course at period Pp .


 kCc Rr

crpx 1 Kk  , Pp (2)

For every teacher tT, teacher t cannot teach more than one course at time Pp .


 tCc Rr

crpx 1 Pp , Tt (3)

For every room rR, room r cannot host more than one course at time Pp .


Cc

crpx 1 Pp , Rr (4)

3.2.2 Period related constraints

For every pP, the number of courses scheduled in period p requiring room type x will be less

than or equal to the number of rooms of type x available at period p.

xp

Rr Cc

crp mx
x x


 

 XxPp  , (5)

For every pP, if course is not adequate to room type, it could not be assigned to that room.

0 
 

x xRr CCc

crpx XxPp  , (6)

For every period p
'dP 
, course c will not be scheduled in the last period of the day.

0
 Cc Rr

crpx p
'dP 
 (7)

Let us suppose, period
1p and

2p of day d are fixed for lunch break, then each class will be free

at least one period (
1p or

2p will be free).


 


Rr Cc

crpcrp

k

xx 1)(
21

 Kk , Dd  , dpp 21, (8)

For every Pp , maximum number of scheduled lessons should be less than or equal to

positive integer lpmax .

lp

Rr Cc

crpx max
 

 Pp (9)

There are some periods in which no lesson should be scheduled. So these free periods should

remain spare.

0
 Rr Cc

crpx
fPp (10)

72

3.2.3 Room related constraints

This inequality shows relationship between decision variable z and x.

rccrp zx  Cc , Rr , Pp (11)

If room r is used for course c, it may be used for more than one period.

rc

Pp

crp zx 


 Cc , Rr (12)

For each room r  R and each day dD , the timetable should be compact, if room r is used in

period
ip and in period

jp then it should be used for every period between
ip and

jp .

1)(
Cc

crpcrpcrp jki
xxx Rr , Dd  , djki Pppp  (13)

There are some rooms which administration wants to spare. So these free rooms should not be

scheduled.

0
 Pp Cc

crpx fRr (14)

Number of students taking course c in a room r at period p should be less than or equal to the

capacity of room r.

rcrp

Cc

c axs 


 Pp , Rr (15)

3.2.4 Class related constraints

For every Kk , class should not have more than two consecutive courses on each day, it

means that maximum two lessons can be scheduled in a row.

2)(
21





iii

k

crpcrp

Rr

crp

Cc

xxx Kk , Dd  ,
diii Pppp   21

(16)

In class timetables, any class should not have a day with a single course (means that only one

lesson is scheduled on whole day), in equation (17),
kdw is number of courses of class k in

day d and
kdl counts class as having single course violations.

kd

Rr

crp

CcPp

wx
kd




 Kk , Dd 

1kdl if 1kdw and 0kdl if 1kdw

(17)

73


 Dd

kd

Kk

l Kk , Dd 

Now by summing up all classes on all days total violations can be found.

For every Kk , two courses of a class must be scheduled in different periods. This is same

constraint like (2) but written in a different way.

1)(
1





ii

k

crp

Rr

crp

Cc

xx Kk , Dd  ,
dii Ppp  1

 (18)

No class can attend more than
maxl teaching hours a day.


  k dCc Rr

crp

Pp

x
maxl

 Kk , Dd  (19)

Here
maxl is fixed for every class but we can use it as that each class has its own fix teaching

hours and it can be written in such a way.


  k dCc Rr

crp

Pp

x
maxkl

Kk , Dd  (20)

No class can attend less than
minkl teaching hours a day.


  k dCc Rr

crp

Pp

x
minkl

 Kk , Dd  (21)

All the courses of a class k in the day d must be scheduled either in the morning or in the

afternoon session. For example, if class k attends course
ic in the morning session of day d

1rpci
x for some p such that

did lpt  class k cannot attend other courses in the afternoon

session 0rpc j
x for all

kj Cc  and
1 dd tpl of day d.

1
 Rr

rpc

Rr

rpc jjii
xx Kk ,

ic , jc 
kC ,

ic  jc , Dd  (22)

1 djdid tplpt

For each class k  K, the timetable should be compact, empty periods between any two

courses are not allowed.

1)(


kji

k

crpcrp

Rr

crp

Cc

xxx Kk , Dd  , dkji Pppp  (23)

For each class k  K, class must not be scheduled on periods where it is unavailable.

0
  k kCc Rr

crp

Pp

x

Kk (24)

For each class k  K, any two of its lessons should be scheduled after a gap of g periods.

1
...1

  
  kCc Rr gqqqp

crpx (25)

74

It occurs most of the time that some courses are taking place in one department and some

others are taking place in any other department and distance between the buildings is long, so

students or teachers could not reach on time after attending a course in one building to other

building. So such type of courses should not be scheduled in consecutive periods. Let us

suppose, ic and jc are two courses of the same class which take place in different long

distance buildings, so these could not be scheduled on consecutive periods.

1
1
   

  


di

ij

di

ii

Pp Rr

rpc

Pp Rr

rpc xx

Dd  (26)

We can handle this issue by defining room types in such a way that all rooms of one building

have different types from the room of other building, so these courses would be scheduled

according to their types. In this way every course would be scheduled in its required building.

But if the courses of different buildings occur on consecutive periods, long distance between

these buildings would create a problem for students to reach on time to attend the lesson.

There are courses in which, many students have enrolled. It is very difficult to handle such a

big lesson so we would prefer to divide this course in sub courses and consider each sub

course as a complete course. One could also divide these big courses in many sections. Then

he can accordingly write mathematical formulation. We would like to explain, how one would

define sets and subsets to write such type of formulation. This division would be more

beneficial if one want to put some conditions on the sections of a course particularly. The

same would be the case for big classes and these big classes could also be divided in sections.

Similarly one can divide big courses in sections and can accordingly write new sets to

formulate problem.

A set of classes K ={1,…, k }

kS = {1,…,
_

ks } Kk

kSC = {Set of courses in sections of class k}

One can write mathematical model after defining these subsets. For example, sections of same

class could not be scheduled at the same period (same teacher teaches).

1 
 

kSCc Rr

crpx Pp (27)

75

3.2.5 Course related constraints

For every course c C, if course c is scheduled in day d, i.e.,
cdu = 1 the number

of daily hours of course c should be between
mincn and

maxcn .

 
 dPp Rr

crpx
mincn cdu Cc , Dd  (28)

 
 dPp Rr

crpx maxcn cdu Cc , Dd  (29)

For every course c C, the timetable should be compact. If more than one hours of the same

course c are scheduled in day d, they have to be assigned to adjacent periods.

1)(


kji crpcrp

Rr

crp xxx Cc , Dd  , dkji Pppp  (30)

All the hours of a course c  C scheduled in a day d  D should be located in the same room r

 R.


jjii pcrpcr xx 1 Cc , rrr ji 1 , Dd  , dji Ppp  (31)

All the hours of a course c  C should be scheduled in the same room r  R for whole

timetable.


jjii pcrpcr xx 1 Cc , rrr ji 1 , Ppp ji  (32)

For every course cC, course will not be scheduled in period p at room r, if room r will not

be available at period p.

0crpx Cc , Rr , Pp \
rP (33)

For every course
tCc (taught by teacher t), course will not be scheduled in period p, if

teacher t will not be available at period p.

0crpx Tt , c
tC , Rr , Pp \

tP (34)

For every course cA, courses c will be scheduled in its pre assigned periods.

c

Rr

crp

Pp

Px
c




 Ac (35)

For every course cF, that course c will not be scheduled on its forbidden period.

0
 cPp Rr

crpx Fc (36)

For every course cC, Constraints (37), (38) and (39) guarantee minimum and maximum

working days for course c constraints are satisfied.

76

cd

Rr

crp ux 


 Cc , Dd  ,
dPp (37)


Dd

cdu 
wcmin

 Cc (38)


Dd

cdu 
wcmax Cc (39)

Inequality (40) shows the relationship between decision variables u and x.

dc

Rr tpt

crp ux
dd

 
  1

 Cc , Dd  (40)

Some courses should be scheduled on the same day. Let
jccc ,...,, 21
 are courses which should

be assigned on the same day.

dcdcdc j
uuu  ...

21
 Dd  (41)

Some courses should be scheduled on different days. Let
jccc ,...,, 21
 are courses which should

be assigned on different days.

1...
21

 dcdcdc j
uuu Dd  (42)

We can define precedence constraints among courses as in relation (43). Let ic < jc be two

courses and ic should be scheduled before jc for every day.





Rr

rpc

Rr

rpc ij
xx 1

21
 Dd  , dPpp  21 (43)

Sometimes, there is requirement that some courses should not be scheduled on the same

period. This constraint is like class clash constraint where lessons of same class can not be

scheduled in same period. Let us suppose
jccc ..., 21
are courses which should be scheduled on

different periods.

1)...(
21


Rr

rpcrpcrpc j
xxx Pp (44)

There are courses which should be scheduled on the same period. Let us suppose
jccc ..., 21

are courses which should be scheduled on the same periods.

 
 


Rr Rr

rpcrpc

Rr

rpc j
xxx ...

21
 Pp (45)

No course Cc can exceed more than
cdlmax teaching hours a day.

cd

Rr Pp

crp lx
d

max
 

 Cc , Dd

(46)

No course Cc can have less than
cdlmin teaching hours a day.

77

cd

Rr Pp

crp lx
d

min
 

 Cc , Dd (47)

3.2.6 Teacher related constraints

For every ,Tt constraint (48) and (49) limit the number of working days for each teacher t.

Constraint (48) speaks about role of
td in this relation and (49) ensures the maximum

working days limit for every teacher t. Because some teachers are involved in administrative

or non academic activities, they need some free days to do this work. Similarly one can write

relation for minimum working days.


Rr

crpx 
td c

tC , Tt , Dd  ,
1 dd tpt (48)

t

Dd

td e


 Tt (49)

The constraint (49) could be written in this way as well. Teachers should have q days free

when total days in timetable are d .

qdtd

Dd






 Tt (50)

We can define minimum and maximum load per day for every teacher t. Let us suppose ltmin

and ltmax are non negative integers defining minimum and maximum load.

lt

Pp Rr Cc

crp

d t

x max 
  

 Tt , Dd  (51)

lt

Pp Rr Cc

crp

d t

x min 
  

 Tt , Dd  (52)

For each teacher t  T, any two of its courses should be scheduled after a gap of g periods for

every day Dd .

1
...1

 
  tCc Rr gqqqp

crpx DdPgqqq d  ,...1
 (53)

Every teacher has a preference to teach in some specific rooms.

0  
  t tCc RRr Pp

crpx

Tt

 (54)

crpx {0,1} Pp , Rr , Cc ,

cdu {0,1} Cc , Dd 

td {0, 1} Tt , Dd 

78

3.3 Discussion on Objective functions

In timetabling problem we have two types of constraints, which are called hard constraints

and soft constraints. Hard constraints have a higher priority than soft, and their satisfaction is

usually mandatory. Solution should satisfy maximum number of soft constraints too. The

usage of constraints as hard or soft depends on the demands and requirements of the

institution. In one problem, a constraint used as a hard constraint it can be used as a soft

constraint in other problem. Normally soft constraints are written in the objective function and

penalty or desirability of any event is set by giving value to the weights.

Many objective functions can be written according to the institution requirements by using

soft constraints. Here we have taken some constraints as soft constraints and have shown how

objective function from these constraints can be written. We use minimum working days for

course c, room capacity, each course should use minimum rooms i.e. if it is scheduled in

some room next time it should be scheduled again in the same room, compactness for course c

i.e., it is required that the periods assigned to day d for course c should be adjacent, the

timetable should be compact for every class i.e. empty periods between any two courses of

same class are not allowed, classes should not have a course in the last period of the day, any

class should not have more than two consecutive courses on each day and any class should

not have single course on any day. Now multi objective function for these soft constraints can

be written in this manner.

Min z = f  F(c) + h  F(r,p,c) + i  G(c) + w  F(c,d) + l  F(k,d) + j  F(p) + k 

G(k,d) + m  S(k,d)

F(c) =
Cc

cq = Total violations for minimum working days constraint for all courses

F(r,p,c) =)(
,

rccrp

Rr Pp asCc

asx
rc

 
  

= Total sum of scheduled students above than room

capacity

G(c) =
Cc

cg = Total sum of minimum rooms usage violations for all courses

F(c,d) =
 Cc Dd

cdm = Total course compactness violations done by all courses over all days

F(k,d) = 



Kk

kd

Dd

y = Total class compactness violations done by all classes over all days

79

F(p) = 
 'dPp

po = Total violations of occurance of classes in the last period of the day

G(k,d) =
 Kk

kd

Dd

b = Total violations by all classes over all days for more than two

consecutive courses constraint

S(k,d) = 
 Dd

kd

Kk

l = Total violations of scheduling single course of any class on any day

Where 



Dd

cdwcc uq min Cc

cg = (

Rr

rcz) – 1 Cc

cdm = 1)(

321




crpcrp

Rr

crp xxx Cc , Dd  ,
1321  dd tpppt

kdy = 1)(

321




crpcrp

Rr

crp

Cc

xxx
k

 Kk , Dd  ,
 1321  dd tpppt

po =

 Cc Rr

crpx

p
'dP 

 2)(
321
 



crpcrp

Rr

crp

Cc

kd xxxb
k

 Kk  , Dd  ,
1321  dd tpppt

kd

Rr

crp

CcPp

wx
kd




 Kk  , Dd 

kdl =1, if kdw =1 and 0 otherwise

cq 0 ,
cg 0 ,

cdm 0 ,
kdy 0 , po 0 , 0kdb Cc , Dd  , Kk , Kk , p

'dP 

and

f >0 , h >0 , i>0 , w>0, l>0, j>0, k>0, m>0

The failure to satisfy constraint type is measured by the non-negative variable
cq 0 ,

cg

0 ,
cdm 0 ,

kdy 0 , po 0 , 0kdb and is penalized via fixed parameters f, i, w, l, j, k

each respectively and h is penalized fixed parameter for capacity constraint. Which constraint

is more agreeable than other, these penalty parameters decide. The objective function sets to

minimize the infeasibility of the soft constraints required by the scheduler.

80

3.4 An example of timetabling problem

Now we present an example which considers some constraints of university course

timetabling problem namely all lessons of a course should be scheduled, courses of a

curriculum must not be scheduled in a same period, teacher should not be double booked and

room should not be double booked. With these constraints, we have two more hard

constraints, course should be scheduled in the required room type and a course cannot occur

in a forbidden period.

The objective function is maximizing the desirability cpd of scheduling all courses. Each

course has a desirability index for each period. This desirability index ranges from 0 to 4,

where 4 represents most desirable period and 0 represents the least desirable period for that

course. The purpose of solving this simple example is to show that how sets and subsets can

be used for the timetabling problem. We think that the solution of this simple example can

help to understand the procedure of the solution. The data of the example is given as follows:

Data:

cpd c=1 c=2 c=3 c=4
xp

m x=1 x=2

p=1 0 2 0 4 p=1 1 2

p=2 0 1 3 2 p=2 2 1

p=3 1 0 2 2 p=3 1 2

p=4 1 0 0 3 p=4 2 1

p=5 2 1 1 2 p=5 1 2

p=6 2 0 4 3 p=6 2 1

p=7 0 1 3 4 p=7 1 2

Table for
cpd C=1, 2, 3, 4 P= 1,…, 7 Table for

xp
m x=1, 2 P= 1,…,7

Set of course C= {1,…, c } , c =4,

Set of rooms R= {1,…, r } , r =4

81

Set of periods P = {1,…, p } , p =7

Set of classes K = {1,…, k } , 2k

Set of teachers T = {1,…, t } , 3t

Set of types of rooms X= {1,…, x } , 2x

cn =Number of teaching hours to be scheduled for every course c,

4,3,4,3 4321  nnnn

kC Set of the courses that the class k should attend,
1C = {1, 2},

2C = {3, 4}

tC Set of courses taught by teacher t,
1C = {1},

2C = {2},
3C = {3, 4}

xR = Set of rooms of type x, 1R {1, 2},
2R = {3, 4}

xC = Set of courses requiring rooms of type x,
1C = {1, 3},

2C = {2, 4}

cP = Set of forbidden periods for course c,
1P = {1,2,7},

2P ={3,4,6},
3P ={1,4}

F= set of courses for which there exists forbidden periods, F = {1, 2, 3}

xpm = Number of rooms of type x available at period p, for every p P

cpd = Desirability of scheduling the course c at period p, usually
cpd measures the desirability

of the period p for the teacher t (c
tC).

Rooms4

 3

 2

 1

Periods

 2

 ×

 4

 ×

 ×

 2

 4

 2

 4

 2

 4

 ×

 ×

 3

 1

 ×

 3

 1

 1

 3

 ×

 1 2 3 4 5 6 7

Table 3.1: Solution of timetabling example by CPLEX

Mathematical model of the problem can be written in this way.

82

crpx = 1 if course Cc is scheduled in room Rr at period Pp , crpx = 0 otherwise;

max 
  Rr

crp

Cc Pp

cp xd


 Rr Pp

crpx =
cn

 Cc (a)


 kCc Rr

crpx 1 Kk , Pp (b)


 tCc Rr

crpx 1 Pp , Tt (c)


Cc

crpx 1 Pp , Rr (d)

xp

Rr Cc

crp mx
x x


 

 XxPp  , (e)

0 
 

x xRr CCc

crpx XxPp  , (f)

0
 cPp Rr

crpx Fc (g)

We have solved this example by CPLEX. The result is shown in Table 3.1 where green block

represents that the room is available but red block represents non availability of the room.

3.5 Conclusion

The university course timetabling problem is a hard problem which must be solved by

departments in the beginning of the semester. It is a difficult task for which universities

devote a large amount of human and material resources every year. These problems involve

lot of constraints, which should be satisfied. A huge search space has to be explored, even if

the size of the problem is not large enough. There is not a specific definition of this problem

because each institution has its own priorities and choices. In this chapter we have given a

generalized mathematical formulation for university course timetabling problem. Many

constraints from different university environments have been discussed and have been written

in their mathematical relations. We have given details in Chapter 5 of those different

problems which have been become sub problem of our generalized model.

83

In the beginning of the chapter we have defined sets, subsets, different parameters and

decision variables needed for formulating this generalized problem. We have classified these

constraints in six sets namely, hard constraints, period related constraints, room related

constraints, class related constraints, course related constraints and teacher related constraints.

Hard constraints means here is that these constraints normally have been used as hard in

university course timetabling problem. We have explained how the problem of big courses

(means many students have enrolled) can be tackled. Similarly we have demonstrated big

classes can cause problem for administration and how these can be divided in sections.

In university timetabling problem cost function has many objectives to achieve and normally

all these objectives are expressed in form of unique objective function. In this chapter, we

have discussed different objective functions when treating university course timetabling

problem as an optimization problem and have explained how soft constraints can be used as a

part of objective function. At the end, chapter is finished with an example of university

timetabling problem solved by CPLEX.

84

Chapter 4

4 GENERIC MODEL FOR EXAMINATION

TIMETABLING PROBLEM

The primary purpose of examination timetabling problems is to assign a session to a room for

every examination which satisfies a given set of constraints. Each institution has its own set of

constraints according to its policies and it varies from institution to institution like course

timetabling problem. Each institution wants to have a good quality of examination timetable

and quality of timetable would also differ from institution to institution. For some institution,

a feasible timetable may be acceptable timetable but for others it does not satisfy the

university required criteria.

Usually the quality of a timetable is measured by the satisfaction of soft constraints. For

example a student cannot have more than one examination per day. So how many students

would have examinations more than one on any day is counted as a violation and it decreases

the quality of the timetable. So for an acceptable timetable there would be several different

quality measures simultaneously. And the objective function is the combination of these

measures with relative weights that shows their importance in the timetable. For example in

some institutions, there is sufficient number of available rooms or these rooms have large

capacities. So these institutions give less importance to room related constraints while

scheduling.

A common constraint for educational institutions is an event clash constraint. It also occurs in

examination timetabling. But due to difficult nature of examination timetabling problems,

even some institutions relax this constraint. So these institutions allow a student to take two

examinations at the same time and they try to resolve this conflict by quarantining. But

normally it would not happen and it is very rare.

Our remaining chapter is arranged in this way. In Section 4.1, we have presented few mostly

used constraints for examination timetabling problems. In Section 4.2 we have defined sets,

85

sub sets, parameters and decision variables for model. Section 4.3 covers linear integer

programming model of the generic model. Chapter is concluded in Section 4.4.

4.1 Most frequently used constraints for examination timetabling

These constraints have been used many times by different authors.

(1) Clashing: Any student cannot have two examinations in the same periods.

(2) Total capacity: The total number of students taking exams in the same period should be

less than the total number of students allowed for that period.

(3) Room capacity: Total number of students taking examinations in the same room in the

same period should be less than the capacity of the room.

(4) Examination capacity: The total number of examinations scheduled in a period should be

less than a defined specific number.

(5) Room availability: All rooms are not available all the time. They can be only available in

some specific periods.

(6) Exam availability: Some examinations are already assigned to specific periods or can

only be held in a limited set of periods.

(7) Room-Exam compatibility: Some examinations are required to be held in some specified

type of rooms.

(8) Exam precedence constraints: There could be precedence constraints between

examinations i.e. that some examinations should be held before others.

(9) Examination compactness: There should not be compactness in some examinations. This

means that some examinations should not be scheduled in adjacent periods.

(10) Large exams: Large examinations should be scheduled earlier in the timetable (e.g.

examinations with more than 500 students must be held in the first 10 sessions).

We have written some mostly used constraints as an example but in real world problems

institutions use many more constraints. Some institutions use them as soft constraints and

some others consider them as hard constraints [154].

4.2 Features of the generic model

In this section, we shall propose a generic mathematical formulation for examination

timetabling problem.

86

4.2.1 Entities for the model

We have used the following entities for our generalized examination timetabling problem.

Examinations and Invigilators

 Each examination has a fixed number of hours to be scheduled and invigilators have been

assigned previously to each examination.

Days, Periods per day and Total Periods

We have fixed number of examination days. Each day has a specified number of periods.

Total number of periods is the sum of all days periods.

 Slots

A triplet of room-period-day is called one slot. Total number of slots can be found by adding

all days slots.

 Rooms

Each room has its own capacity (number of available seats). Each room also has a type called

room type. Two rooms of same capacity can have different types.

 Class

Class is a group of students attending exactly the same examinations.

4.2.2 Notations, sets, sub sets and parameters

This section is devoted for notations, sets, sub sets and parameters required to formulate

mathematical model.

- A set of examination E= {1,…, e }. Each examination has a fixed number of hours,

which can be scheduled during the timetable.

87

- A set of rooms R= {1,…, r }. Rooms can be of different types, including computer rooms

and laboratories for specific examination. Each room has a fixed capacity.

- A set of periods P = {1,…, p }. P is a set of periods, which have different durations.

- A set of days D = {1,…, d }. D is the examination day of the timetable.

- A set of classes K = {1,…, k }. K is a set of classes (classes are groups of students attending

exactly the same examinations).

- A set of invigilators I = {1,…, i }. Invigilators have been assigned previously to each

examination.

 - A set of types of rooms X= {1,…, x }.

- A set of duration types of examinations
eedU , D= {1,…, d  }.

ed = Duration of examination Ee

pd = Duration of period Pp

dt = First period of the morning session in day d

dl = First period of the afternoon session in day d

kE E = set of the examinations that the class k should take

soE E = set of the examinations which are the sole occupier (means that these examinations

will not share room and period with any other examination).



eP P = set of forbidden periods for examination e, for every Ee

FE = set of examinations for which some periods are forbidden

fR R = set of rooms which should be free in timetable, it means that any examination Ee

should not be scheduled in any period Pp , in these rooms.

fP P = set of periods which should be free in timetable, it means that any examination

Ee should not be scheduled in any room r R, in these periods.

xE E =set of examinations requiring rooms of type x, for every Xx

xR R = set of rooms of type x, for every Xx

xpC = capacity of rooms of type x available in period p

maxkl = Maximum daily number of examinations allowed for every class Kk

dP P = set of periods for day d, for every Dd 

iE E = subset of examinations supervised by invigilator i for every invigilator i

88

ie = Maximum number of working days allowed for the invigilator i

jiiiE = Set of examinations supervised by invigilator ii and ji together, for every invigilator ii

and Ii j 

limax = Maximum load per day for every invigilator i

limin = Minimum load per day for every invigilator i

rP P = set of periods for which room r is available, for every Rr

iP P = set of periods for which invigilator i is available, for every Ii

AE = set of pre assigned examinations (pre assigned period)

BE = set of pre assigned examinations (pre assigned room)

ep = Pre assigned period for examination e, for every Ae

er = Pre assigned room for examination e, for every Be

'dP 
P = set of last periods of days

epmax = Maximum examinations scheduled per period p

es = Number of students in examination e

ra = capacity of room r

pa = capacity of period p

4.2.3 Decision variables

We have defined four binary variables to formulate our mathematical model.

- erpx = 1 if examination Ee is scheduled in room Rr at period Pp , erpx = 0 otherwise;

- rpdy  = 1 if duration type d  is used in room Rr at period Pp , rpdy  = 0 otherwise;

- id = 1 if d  D is a surveillance day for invigilator Ii , 0 otherwise;

- edu = 1 if examination Ee is assigned to the day Dd  , 0 otherwise;

4.2.4 Objective function

We have presented a generalized model for examination timetabling which consists of many

constraints. Many examination timetabling problems are sub problem of this generic model

89

(Chapter 5, Section 5.2). So we have not written any specific objective function here for this

model. We have formulated mathematical relations for different constraints of timetabling

problem. One can write mathematical objective function equation using this model after

choosing constraints as hard and soft. We have explained the procedure of writing any

objective function from these constraints in (Chapter 3, Section3.3).

4.3 Integer programming model for generalized examination

timetabling problem

In this section, we present our linear integer programming model for examination timetabling

problem.

For every examination Ee , it should be scheduled exactly once, in unique room and in

unique period.

1
 Rr Pp

erpx Ee (1)

Sum of number of students taking examinations in a room r at period p should be less than or

equal to the capacity of room r.

rerp

Ee

e axs 


 Pp , Rr (2)

Duration of examination e scheduled in period p should be less than or equal to the duration

of period p.

perp

Rr

e dxd 


 Pp , Ee (3)

 For every class k K, class k cannot take more than one examination at period p P.


 kEe Rr

erpx 1 Kk , Pp (4)

We can define precedence constraint among examinations in this way. Let ie < je are two

examinations and ie should be scheduled before je .





Rr

rpe

Rr

rpe ij
xx 1

21
 Ppp  21 (5)

Let us suppose
jeee ..., 21
are examinations which should be scheduled on different periods.

1)...(
21


Rr

rperperpe j
xxx Pp (6)

There are examinations which should be scheduled on the same period. Let us suppose

jeee ..., 21
 are examinations which should be scheduled on same periods.

90

 
 


Rr Rr

rperpe

Rr

rpe j
xxx ...

21
 Pp (7)

For every soEe 1 , if examination 1e is scheduled in period p at room r then 1e would be the

sole occupier.

1
21
 rperpe xx RrPpeeEeEe so  ,,,, 2121 (8)

For every Kk two examinations of a class k should not be scheduled in a row on each day

1)(
21




erp

Rr

erp

Ee

xx
k

 Kk , Dd  ,
dPpp  21

 (9)

For each class k  K, we put penalty for every two examinations, which are scheduled on

same day but on non consecutive periods. One should not be confused with the notation

dPppp  321
 this does not mean that these

321 ppp  are consecutive integers. This

means that first integer is less than second one and second one is less (not necessarily

immediate less) than third one.

1)(
321




erperp

Rr

erp

Ee

xxx
k

 Kk , Dd  ,
dPppp  321

 (10)

Front load penalty constraint, which explains big examinations with respect to number of

students should be scheduled earlier in the timetable because they require much time for their

marking.

For every examination eF, examination e will not be scheduled on its forbidden period.

0 
 

e
Pp Rr

erpx Fe (11)

There are some rooms which administration wants to be spare. So these free rooms should not

be scheduled.

0
 Pp Ee

erpx fRr (12)

There are some periods which should not be scheduled. So these free periods should remain

spare.

0
 Rr Ee

erpx
fPp (13)

For each class k  K, any two of its examinations should be scheduled after a gap of g periods

for every day d.

1
...1

  
  kEe Rr gqqqp

erpx DdPgqqq d  ,...1
 (14)

91

Examinations of equal length should be scheduled together.




 
Ee

erp

Dd

rpd xy PpRr  , (15)

1




Dd

rpdy PpRr  ,

All the examinations of a class k  K scheduled in a day d  D should be located in the same

room r  R.


222111 prepre xx 1

kEee 21, ,
1r Rr  2

, Dd  ,
dPpp  21

 (16)

No class can attend more than
maxkl examinations a day.


  k dEe Rr

erp

Pp

x maxkl
Kk , Dd  (17)

All the examinations of a class k in the day d must be scheduled either in the morning or in

the afternoon session. For example, if class k takes examination
1e in the morning session of

day d 1
1
rpex for some p such that

dd lpt  class k cannot take other examinations in the

afternoon session 02 rpex for all
kEe 2
 and

1 dd tpl of day d.

1
2211


 Rr

rpe

Rr

rpe xx Kk ,
1e ,

2e 
kE , ,

121  ddd tplpt (18)

Some examinations are supervised by more than one invigilator, let ie and je are any two

examinations which are supervised by same two invigilator ii and ji , if these examinations

are scheduled in period p, then these will be scheduled in a same room.

1 prepre jjii
xx

IiiEeeRrrPp jiiijiji ji

 ,,,,,,
 (19)

For every ,Ii constraints (20) and (21) limit the number of working days for each

invigilator i. Constraint (20) speaks about role of
id in this relation and (21) ensures the

maximum working days limit for every invigilator i.


Rr

erpx 
id e

iE , Ii , Dd ,
dPp (20)

i

Dd

id e


 Ii (21)

 Invigilators should have q days free when total days in timetable are



d , some invigilators are

involved in administrative or non academic activities so they need some free days to do this

work.

qdid

Dd






 Ii (22)

Dd 

92

We can define minimum and maximum load per day for every invigilator i. Let us suppose

limin and limax are non negative integers defining minimum and maximum load.

li

Pp Rr Ee

erp

d i

x max 
  

 Ii , Dd  (23)

li

Pp Rr Ee

erp

d i

x min 
  

 Ii , Dd  (24)

For every exam eE, examination will not be scheduled in period p at room r, if room r will

not be available at period p.

0erpx Ee , Rr , Pp \
rP (25)

For every examination eE, examination will not be scheduled in period p, if invigilator i

will not be available at period p.

0erpx Ii , e
iE , Rr , Pp \

iP (26)

For every pP, the capacity of examinations (number of students) scheduled in period p

requiring room type x will be less than or equal to the capacity of rooms of type x available at

period p.

xp

Rr Ee

erpe cxs
x x


 

 XxPp  , (27)

For every pP, if examination is not adequate to room type, it could not be assigned to that

room.

0 
 

x xRr EEe

erpx XxPp  , (28)

For every examination eA, examination e will be scheduled in its pre assigned period.

1
Rr

erpe
x Ae (29)

For every period p
'dP 
, examination e will not be scheduled in the last period of the day.

0
 Ee Rr

erpx p
'dP 
 (30)

Some examinations should be scheduled on the same day. Let
jeee ,...,, 21
 are examinations

which should be assigned on the same day.

ed

Rr

erp

Pp

ux
d




 Ee , Dd  dedede j
uuu  ...

21
 (31)

Some examinations should be scheduled on different days. Let
jeee ,...,, 21
 are examinations

which should be assigned on different days.

93

1...
21

 dedede j
uuu Dd  (32)

For every Pp , maximum number of scheduled examinations should be less than or equal

to positive integer epmax .

ep

Rr Ee

erpx max
 

 Pp (33)

Sum of number of students taking examinations at period p should be less than or equal to the

capacity allowed for that period p.

perp

Ee

e

Rr

axs 
 

 Pp (34)

For every examination Be , examination e will be scheduled in its pre assigned room
er .

1
Pp

pere
x Be (35)

4.4 Conclusion

Examination timetabling is a well known combinatorial optimization problem. It is becoming

hard to develop adequate examination timetables for educational institutions. Institutions are

now introducing a wide range of courses including a number of combined degree courses.

Also they are enrolling more students in many courses. Thus the institutes have to schedule

the examinations which are in thousands each year. Consequently it makes examination

timetabling a difficult combinatorial optimization problem and it is very complex to solve this

problem by manual means. Many appropriate algorithms have been suggested in literature to

solve this kind of problem. We have proposed memetic and honey bee mating algorithms to

solve examination timetabling problems (Chapter 6, Sections 6.3 and 6.4).

 It is difficult to give a universal definition of examination timetabling problem because the

exact nature of the constraints and quality measures are unique for individual institutions.

This is the motivation to discuss different examination timetabling instances used in literature

(Chapter 5, Section 5.2). Thus we have proposed a generic examination timetabling model,

which could be applicable across a wide range of scenarios. We have presented here a

generalized model of examination timetabling problem which covers the previously described

instances and many other real world constraints.

94

95

Chapter 5

5 DIFFERENT INSTANCES OF GENERIC MODELS

FOR UNIVERSITY COURSE AND EXAMINATION

TIMETABLING PROBLEMS

In this chapter, we have discussed about different instances from literature. The formulations

of these instances can be made by our generic model for university course and examination

timetabling problems. We have discussed in detail how these instances can be obtained using

our model. We have also written the objective functions for these instances by using our

generic model. If any instance has used different features than us then we have explained how

this is different from us and how our formulation can be used to formulate it.

Before going to instances, we would discuss about mostly used hard constraints for course

timetabling. We also present here some features of examination timetabling problem which

makes them different from course timetabling problem.

These are the constraints ((1), (2), (3), (4): Chapter 3) which are used generally as hard

constraint in course timetabling problem everywhere. Examination timetabling problems are

different from course timetabling problems because each examination has a unique entity but

in course timetabling each course has many lessons to schedule. In examination timetabling a

teacher can supervise more than one examination at the same period and one room can host

more than one examination at the same period, which is different from course timetabling

problem.

5.1 Instances of our generalized course timetabling problem

These instances are the part of our generalized university course timetabling problem and

their details could be found in Sections 5.1.1, 5.1.2, and 5.1.3.

1. Pasquale Avella and Andigor Vasil’ev model

2. Post enrollment based course timetabling

96

3. Curriculum based course timetabling problem

4. Original timetabling problem of Udine University

There are some constraints in our generalized model which are the part of any other university

problem different from previous scenarios. Their details could be found in Section 5.1.4.

Some constraints which are the new addition in literature could be found in Section 5.1.5.

Different instances which are the part of our generalized examination timetabling problem

could be found in Section 5.2.1, 5.2.2, 5.2.3. Details of the used constraints different from

previous instances and the list of newly added constraints in generalized model could be

searched in Section 5.2.4, 5.2.5. The chapter is concluded in Section 5.3.

5.1.1 Pasquale Avella and Andigor Vasil’ev model

Pasquale Avella and Andigor Vasil’ev [13] article on cutting plane algorithm for course

timetabling problem had used many constraints first time. They described a case study where

branch and cut algorithm was used. They transformed course timetabling as a set packing

problem with side constraints. They showed a relation between course timetabling problem

and the set packing problem. This relation was used to get timetabling problem inequalities

from the polyhedral description of the set packing polytope, whose structure was widely

studied.

In fact this was an attempt to transform course timetabling problem to set packing problem. A

set packing problem could be transformed to stable set problem by making intersection graph.

Let A be a matrix of size mn, whose entries are 0 or 1. Let y be a set of n variables and c be

a cost vector. Then set packing problem can be defined as max 1, Ayyc t , where value of y

can be 0 or 1. Intersection graph G (V, E) can be made by associating a node ie V with each

column of A. The edge
jiee belongs to E iff columns

ie and
je of A are not orthogonal. They

also studied the polyhedral structures of the problem in according with set packing polytope,

in this way two families of cutting planes clique and lifted odd hole inequalities were derived.

Now we describe the constraints they used. They used the four hard constraints, these are the

hard constraints which are used as hard almost in every institution. Numbering in bracket of

the forth coming paragraph is representing the constraint number of our generalized

97

formulation (Chapter 3) which shows that how the problem of Pasquale becomes sub problem

of our generalized course timetabling problem of Chapter 3.

All hours of a course per week must be scheduled (1).

Any class cannot attend more than one course at any period (2).

Teacher t cannot teach more than one course at any period (3).

Any room cannot host more than one course at anyperiod (4).

These constraints were used as soft constraints by them.

Daily hours of course c in a day d should be between
mincn and

maxcn (28) and (29).

For every course the timetable should be compact. If more than one hours of the same course

c are scheduled in day d, they have to be assigned to adjacent periods (30).

No class can attend more than
maxl teaching hours a day (19).

All the courses of a class in a day d must be scheduled either in the morning or in the

afternoon session (22).

For each class the timetable should be compact, empty periods between any two courses are

not allowed (23).

Teacher can not work more than maximum number of working days allowed for him (49)

Course should be scheduled in a room which is adequate for it (5) and (6).

A course will not be scheduled in a period at room, if room is not available at that period (33).

A course will not be scheduled in a period, if teacher is not available at period (34).

98

5.1.2 International timetabling competition 2007 (ITC 2007)

Timetabling competition was sponsored by PATAT and WATT. This timetabling competition

contained three tracks for competition. One track was about examination timetabling problem

and other two were about course timetabling. From these two course timetabling, first was

post enrolment based course timetabling and second was curriculum based course timetabling

problem. Post enrolment based course timetabling means that firstly students are enrolled in

courses and then all these courses are scheduled in such a way that all students can attend all

their enrollments. But in curriculum based course timetabling scheduling is done on the basis

of curricula published by university and not on the basis of enrolments of students. The third

track was about examination timetabling. This Competition was organised and run by the

Event Management and Planning Research Group (eventMAP) at Queen’s University with

partners from Cardiff University, Napier University, University of Nottingham and the

University of Udine.

Educational timetabling has become a part of competition and first timetabling competition

(ITC-2002) was organized by International Metaheuristic Network, where 24 participants

presented feasible solutions for presented datasets from all over the world. Information about

definition, rules, datasets and solution evaluation are available on website:

http://www.idsia.ch/Files/ttcomp2002/. A specific problem model was proposed for the

competition and formulation of this model contained many characteristics found in certain

Universities. Datasets to use for competition was generated artificially and now these datasets

have become standard within the research area. Many researchers had used them in their

scientific works [15, 16, 17, 18]. There is a positive effect of ITC-2002 for creating a ground

for cross fertilization of ideas within researchers in the timetabling community.

The Second International Timetabling Competition (ITC-2007) was started on 1st August

2007 and it was on the pattern of the first edition ITC-2002. It also added some more aspects

and feature in it [42].

5.1.2.1 Post enrollment based course timetabling

This was a track in timetabling competition 2007 and this was the extension of international

timetabling competition 2002. This model was about the real situation where students are

given choices to attend lessons according to their wish and time table was scheduled after

99

students had given their choices. This model was based on the model of 2002 competition

which was held in conjunction of PATAT and Metaheuristic Network.

In original model, the number of events must be scheduled in limited number of rooms when

satisfying two types of constraints. These were hard and soft constraints, hard constraints are

those for which the fulfillment is obligatory and soft constraints are those for which the

fulfillment is optional. The solution quality depends mainly on the satisfaction of soft

constraints.

5.1.2.1.1 Used constraints and difference with ITC 2002

Formally this competition problem was defined in this way. These were the constraints which

were used as hard constraint in the problem model.

1. No student can attend more than one event at the same time.

2. Every event must be scheduled in a room whose capacity is less than or equivalent to

the capacity of room and should be of required type.

3. Only one event should be scheduled in a room at the same period.

4. Events should be scheduled on available periods because all the periods are not

available all the time.

5. Precedence constraints amongst events should be satisfied.

The last two hard constraints were added additionally in International timetabling competition

2007 (ITC 2007) and all other hard constraints were same. With these five constraints, three

soft constraints were added in this problem;

1. Students should not attend events in the last period of the days.

2. Students should not attend three successive events in the same day.

3. Students should not attend only single event on any day.

These three soft constraints were same, as these are used in 2002 competition.

This mathematical model can be written by using these constraints of our mathematical

formulation of Chapter 3, where constraints (2), (5), (6), (15), (4), (10), (43) are expressing

hard constraints and (16), (17), (7) are expressing soft constraints.

100

We can write objective function for this model by using constraints (16), (17), (7). Objective

function can be written as follows.

For every Kk , class should not have more than two consecutive courses on each day.

2)(
21





iii

k

crpcrp

Rr

crp

Cc

kd xxxu Kk , Dd  , diii Pppp  21,, (16)

where
kdiii uU 2,1, 

 is the sum over all the periods .2,1,  iii

In class timetables, any class should not have a day with a single course (means that only one

lesson is scheduled on whole day).

kd

Rr

crp

CcPp

wx
kd




 Kk , Dd 

 1kdl if 1kdw and 0kdl if 1kdw

(17)

For every period p
'dP 
, course c will not be scheduled in the last period of the day.

p

Cc Rr

crp bx 
 

 p
dP 

 (7)

Min z = a 




DdKk

kdiii uU
,

2,1,
 + b 

 Kk

kd

Dd

l + c 
 dPp

pb

The failure to satisfy constraint type is measured by the non-negative variable
kdiii uU 2,1, 

0 ,
kdl 0 , 0pb and is penalized via fixed parameters a, b, c respectively.

5.1.2.1.2 Difference of our model with Post enrolment based course timetabling

In our model, we are using classes and courses but in competition model, they used events

and students taking these events because this is a post enrollment model and in this model

firstly students enroll in events then there is scheduling. We can consider each event like an

examination and can make a model (examination timetabling model) or simply for

understanding we can say that each course has only one lesson to schedule. Like examination

timetabling each event is a unique entity means that when it is scheduled, it is finished,

opposite to course timetabling where each course has some lessons. We have written all

requirements in our model, we are using classes but in post enrollment problem each event

has specific students, one know specifically which students are attending this event but in our

101

model we have classes (set of courses taken by some common students) but we do not know

who these students are.

We have to modify data to use this model, firstly make curriculum from data and then solve it

according to this way. We can solve all the hard constraints and one soft constraint by

reforming sets.

Let us suppose, we have

S= Set of students= {1, 2, 3, 4, 5, 6, 7, 9, 10}

E = Set of events

E = {
54321 ,,,, eeeee }

Set of students enrolled in each event are as follows.

1e
S ={ 9,5,2,1 },

2eS ={ 10,4,7 },
3eS ={ 6,4,3 },

4eS ={ 7,6 },
5eS ={ 10,7,2 }

Now we can make classes in this way, take event 1 and see all its students as {1,2,5,9} are

taking this event, then all the events which have any student from {1,2,5,9}, is one set of

events including event 1. This set is called one class. Similarly see for events 2, 3, 4 and 5,

then take all these sets and delete the sets which are repeating (just take one set from repeated

sets). These all sets are set of classes for that problem. For our example, classes are as

follows.

1k = {
51,ee },

2k = {
5432 ,,, eeee },

3k = {
432 ,, eee },

4k = {
5421 ,,, eeee }

First soft constraint (students should not have events scheduled in the last period of the day)

can easily be handled. If event of class is scheduled in the last period of the day, any other

event of the class could not be scheduled in this period according to definition. So numbers of

students in that event are the students scheduled in the last period.

If we look at second soft constraint according to our model then the situation is that no class

can attend more than two of its courses consecutively, so common students can not come

more than twice of a class. But when there will be violation of consecutiveness then the

common students of all these classes will be counted and these students will violate soft

102

constraint and soft constraint could not be scheduled directly using sets and subsets of

students. Problem will be solved if to take it as soft constraint.

Students should be scheduled in this way that they should not have single event on any day,

this constraint satisfaction is also difficult. One class is schedule lonely on any specific day,

so according our model this is violation of soft constraint but according to student based

model (Post enrollment based problem), this is not violation. Because for example, if one

class is scheduled lonely on a day and another class has also been scheduled lonely on the

same specific day but these two different classes can have common students, so according to

post enrollment based problem this is not violation.

 It is quite possible in universities that some rooms are very large and they can be partitioned

in to sub rooms (partitioning is possible within them). For example a room r is used as a big

room in period
ip but is partitioned into five small rooms in the next period

1ip . Thus one

can decompose this into two different room types and different room capacities. So it is quite

easy to put this feature in our model because rooms are not uniformly available in our model,

we can say in period p one room of type x is available and in period p+1 room of type x is not

available but five rooms of type y are available.

5.1.2.2 Curriculum based course timetabling problem

Curriculum based course timetabling problem is a track in ITC 2007 and this track is about

weekly scheduling where university publishes curricula first. This model applied to

University of Udine (Italy) and many other Italian universities. Datasets were taken from

these universities and were modified little to make them general to use them as competition

datasets. The problem consists of the following entities, number of days, number of periods

per day, number of courses, number of teachers, number of rooms, capacity of each room,

number of curricula and many other constraints. Now we would like to express thoroughly the

competition problem.

Here we present one of its tracks namely the curriculum-based course timetabling. We shall

talk about the features of the model and the datasets used together with the evaluation

103

procedure. One can see rules to obey for competition on webpage:

http://www.cs.qub.ac.uk/itc2007/.

5.1.2.2.1 Evaluation procedure for solutions

Now we shall describe how the solutions are evaluated. Let m be the total number of early

and late datasets and k be the number of participants who are going to submit their solutions

for all m datasets. Let
ijX be the result of the participant i for dataset j. Each result

ijX is given

in form of pair (d, s) where d is the distance to feasibility and s is the score of the objective

function. Firstly results were compared on the basis of the value of d but when competitors

have same d value then results were compared on the basis of the objective function value.

Each participant results were transformed by using transformation matrix for each value of ijX

. Then for dataset j supplied values will be kjjj XXX ..., 21 . All these values were compared with

each other and rank 1 was given to the smallest observed value, rank 2 was given to second

smallest observed value and so on up to the rank k. They used average ranks in case of ties.

Consider the following example where there are k = 7 participants and m = 6 datasets. Let X

be the matrix of Table 5.1, the computed rank matrix R is reported in Table 5.2. By using

these values, mean values of all participants was calculated and on the basis of mean value 5

finalists were selected with the lowest mean ranks. If there is a tie on last position then all the

last participants of equal mean value were selected. In this case finalists can be more than

five. In this example mean ranks can be seen in last column of the rank Table 5.2. Thus

according to this example, finalists would be solvers 1, 4, 5, 6, and 7.

Dataset 1 2 3 4 5 6

Solver 1 (0,34) (0,35) (1,42) (1,32) (0,10) (0,12)

Solver 2 (3,32) (1,24) (1,44) (1,33) (0,13) (0,15)

Solver 3 (0,33) (0,36) (2,30) (5,12) (1,11) (0,17)

Solver 4 (0,36) (0,32) (1,46) (1,32) (0,12) (0,13)

Solver 5 (0,37) (0,30) (1,43) (1,29) (0,9) (0,4)

Solver 6 (2,68) (0,29) (1,41) (0,55) (0,10) (0,5)

Solver 7 (0,36) (0,30) (2,43) (0,58) (0,10) (0,4)

http://www.cs.qub.ac.uk/itc2007/

104

Table 5.1 : Score matrix

Their runs were checked with the submitted seed to make sure that they can repeat. If these

were not repeatable then other participant next to him was chosen for the top five. Then the

final was conducted between these finalists. Final was conducted in this way.

1. All datasets with hidden ones were used.

2. The solvers were run by organizers.

3. For each dataset, 10 independent trials were conducted by providing solvers with a

sequence of random seeds (the same was done for all solvers).

They proceeded as earlier by calculating ranks and averaging them on all trials on all datasets.

The final winner of the competition was the finalist with the lowest mean rank and in case of

tie more additional trials were added for all datasets until a single winner was found.

Dataset 1 2 3 4 5 6 Mean rank

Solver 1 2 5 2 4.5 3 4 3.42

Solver 2 7 7 4 6 6 6 6.00

Solver 3 1 6 6 7 7 7 5.67

Solver 4 3.5 4 5 4.5 5 5 4.50

Solver 5 5 2.5 3 3 1 1.5 2.67

Solver 6 6 1 1 1 3 3 2.50

Solver 7 3.5 2.5 7 2 3 1.5 3.25

Table 5.2: Rank matrix and mean ranks

Only feasible solutions were accepted in ITC-2002 because there it was purposely easy to

produce feasible solutions for all datasets. In ITC-2007 organizers relaxed the condition for

feasible solution so solvers can submit their solutions with few infeasible solutions as well,

although all the datasets had at least one feasible solution. In case of infeasible solution for

some datasets from different solvers comparison was conducted on an evaluation based

ranking of solutions on each dataset, rather than on the actual scores. An infeasible solution

on one dataset did not necessarily prejudice the overall performance of the participant due to

this scoring based on rankings. Datasets were collected from larger set of interesting case

which was coming from real world problem without the limitation of easy feasibility.

105

 In ITC-2002 ranking was fully based on the solution provided by participants because for

each single trial maximum CPU time was granted to each solver. So solver was able to run as

many trials as he could and report only the best of all of them.In ITC-2007, Finalist solvers

run on organizers machine (with new seeds), hidden datasets were used to stop this approach.

Moreover in the case of stochastic algorithms, this fostered the design of robust solvers. In

ITC-2002, organizers also tested the few best algorithms on unseen datasets and indeed

results were good as were good for known datasets.

Time was fixed to solve datasets for competition because organizers wanted to remove degree

of variability from the scoring system. This was a main question, what is a good feasible fixed

amount of running time for the actual timetabling. Timetabling is done few times in a year in

educational institutions so one can think that more than 10 minutes would be a reasonable

grant of time. In real case timetabling many researchers have pointed out that solution of real

problem is an interactive process during which a lot of datasets should be solved. Constraints

and objectives are manually adjusted between runs of a working session for one single case

due to live situation or last minute changes, etc. Thus a long to solve datasets can be tiresome

for human operator. Although, organizers decided maximum 10 minutes time to solve a

dataset.

5.1.2.2.2 Used sets for the problem

There are following entities for this problem.

Days, Periods per day and Total periods

There are 5 to 6 days per week and equal number of periods for each day. Total number of

periods can be found by multiplying number of days with number of periods per day.

Courses and Teachers

Each course has fixed number of lessons to schedule and it is attended by number of student.

A teacher will teach this course and each course should be scheduled for specified minimum

number of working days. Moreover, there are some forbidden periods for each course.

106

Rooms

Each room has its capacity and each course can be scheduled to each room if it satisfies the

capacity constraint.

Curricula

A curriculum is set of courses which have common students, so these courses can not be

scheduled in a same period. Moreover there are also some soft constraints on curricula.

5.1.2.2.3 Purpose of the competition

There are total 21 datasets, 7 datasets are early datasets, 7 datasets are late datasets and 7

datasets are hidden datasets. All datasets are coming from University of Udine. If all hard

constraints are satisfied in any solution, it is called feasible solution and all these 21 datasets

have at least one feasible solution but optimal values for the soft constraints were not known.

The motivation of this competition track was to make bridge between practice and research,

these datasets have certain degree of complexity in this problem so that new formulations

could be brought near to those of real world problems (where data is coming from real

world)[5].

The second innovation aimed at bridging the gap between research and practice: the

competition introduced a significant degree of complexity in all tracks so that the new

formulations employed are closer (in more aspects, although not all) to those of ‘real world’

problems [5] and data was coming from the real world.

5.1.3 Original timetabling problem of Udine University

Some of the participants criticized on these datasets that these are not properly designed

because these do not use the most important cost component or these do not penalize the right

patterns. To answer these questions organizers added some more features in the formulation

[19] and main purpose was to make a formulation which could be accepted by a larger

community of researchers. So this article [19] was accompanied by a web site (http:

//tabu.diegm.uniud. it/ctt/) from which all information about datasets or problem description

could be found. They added the following new features in the Curriculum based course

timetabling problem model. These constraints can be written from our formulation of Chapter

3 by using these constraints (23), (20), (21), (26), (5), (6), (30).

107

Windows (Curriculum Compactness)

There should not be windows (i.e., periods without teaching) among lessons belonging to a

same curriculum.

Curriculum Min, Max Load

 The number of daily lessons for each curriculum should be within a given range. Each lesson

below the minimum or above the maximum limit counts as one violation.

Travel Distance

 Sometimes students have to move from one building to another and between these two

buildings there is a long distance. So such type of lessons should not be scheduled on

consecutive periods.

Room Suitability

 Each course should be assigned a room which has all necessary equipment (projector,

computer lab, etc.) required by course. Each lesson of a course in an unsuitable room counts

as one violation.

Double Lessons

 Some courses are required that their lessons scheduled in the same day are adjacent to each

other. So for these courses non grouped lessons are not allowed.

Hard constraints

108

1. Each course has a specific number of lessons; all these lessons must be scheduled to

distinct periods.

2. A room can not host more than one lesson in the same period.

3. A teacher can not teach more than one lesson in the same period.

4. Lessons of courses in the same curriculum should be scheduled in the distinct periods.

5. A lesson of a given teacher should not be scheduled in a period if teacher is

unavailable in this period.

Soft constraints used in this model are as follows.

1. Number of students in a course should be less than or equal to the room sitting

capacity which is hosting it. Each student above capacity counts point of penalty.

2. Each course should be spread over minimum number of working days, each day below

the minimum working days counts point of penalty.

3. Lessons of the same curriculum scheduled in the same day should be adjacent to each

other. Each lesson not adjacent to others counts point of penalty.

4. All lessons of a course should be delivered in the same room. If more than one room is

used for a given course, there will be penalty.

Mathematical model of curriculum based course timetabling problem can be written by using

constraints (1),(4),(3),(2),(34),(15),(38),(23),(32) of Chapter 3.

We can write objective function by using constraints (15), (38), (23), (32), which will

minimize the objective function value.

Number of students taking course c in a room r at period p should be less than or equal to the

capacity of room r. Penalty can be counted by using this equation.

0


rccrp

Cc

pr asxu Pp , Rr (15)

For every course cC, this equation will be used in objective function to count minimum

working days penalty.





Dd

cdwcc uq min Cc (38)

For each class k  K, the timetable should be compact, empty periods between any two

courses are not allowed.

kdy = 01)(


kji

k

crpcrp

Rr

crp

Cc

xxx Kk , Dd , dkji Pppp  (23)

Where
kdijk yU  is the sum over all the periods i, j, k.

109

All the hours of a course c  C should be scheduled in the same room r  R, for whole

timetable.


jjii pcrpcr xx 1 c C, rrr ji 1 , Ppp ji  (32)

But to calculate the penalty for single room use, we use this simple relation

cg = (
Rr

rcz) – 1 Cc

Min z = f 
Cc

cq + h
pr

RrPp

u
 ,

 + i 
Cc

cg + l 



Kk

kdijk

Dd

yU

The failure to satisfy constraint type is measured by the non-negative variable
cq 0 ,

cg

0 ,
kdy 0 , 0pru and is penalized via fixed parameters f, h, i, l respectively.

5.1.4 Constraints different from previous scenarios

These constraints are not the part of previously written scenarios. These constraints are the

part of our generalized model and could be found in front mentioned articles.

1. Some courses have been pre assigned [160].

2. Courses will not be scheduled on its forbidden periods [160].

3. No course can attend more than a specific teaching hours a day [13].

4. No course can attend less than specific teaching hours a day, if course is scheduled on

that day [13].

5. Define maximum load per day for every teacher [161].

6. Each class have free period for lunch on a specific time interval [24].

5.1.5 Constraints not found in the literature

These constraints are also part of our mathematical formulation but we could not find them in

literature. We can not surely say that these constraints have been used in the literature or not.

But as far as we know we could not search them in any research work.

1. Room’s timetable should be compact for every day. If any room is used in period
ip

and in period
jp then it should be used for every period between

ip and
jp .

2. In some rooms no course should be scheduled.

3. Timetable should maintain a gap between any two courses of a class on any day.

110

4. Maximum working days allowed for course should be respected.

5. Some course should be scheduled on the same day. For example, set of same day

courses contains two courses; if lesson of first course is scheduled on any day then

lesson of second course should also be scheduled on the same day.

6. Some course should be scheduled on different days.

7. Some courses should not be scheduled on the same period.

8. There are courses which should be scheduled on the same period.

9. Define minimum load per day for every teacher, if teacher is teaching on that day.

10. Timetable should maintain a gap between any two courses of a teacher on any day.

11. Some teachers can have preference to teach in specific rooms.

12. Each period can not host lessons more than maximum number of lesson’s limit.

5.1.6 Contradictory constraints for course timetabling problem

We present here some constraints which contradict each other and can not be used at the same

time. These constraints have been used in different educational environments according to

their requirements. Now we shall discuss them in detail. The numbering in front of each

constraint is same as used in Chapter 3.

The number of courses scheduled in period p requiring room type x will be less than or equal

to the number of rooms of type x available at period p. (5)

If course is not adequate to room type, it could not be assigned to that room. (6)

If one uses (5) constraint as soft constraint then constraint (6) could not be used, constraint (6)

only will be used when room type constraint is used as hard constraint.

Any class should not have more than two consecutive courses on each day. (16)

Two courses of a class could not be scheduled together. (18)

Any two lessons of a class should be scheduled after a gap of g periods. According to this

constraint two courses could not be scheduled together as well. (25)

111

Constraint (16) expresses that class should not have more than two consecutive courses on

each day; it means that two consecutive courses are allowed but constraint (18) explains that

two courses of a class could not be scheduled together. These two constraint contradict each

other so could not be taken in same timetabling problem.

Timetable should be compact for each class; empty periods between any two courses are not

allowed. (23)

If one uses curriculum compactness (23) then the constraints (25), (18), (16) could not be used

simultaneously, as these are against each other.

Some courses are taking place in one department and some others are taking place in any

other department and distance between the buildings is long, so students or teachers could not

reach on time after attending a course in one building to other building. So such type of

courses should not be scheduled in consecutive periods.

Constraint (26) will disturb curriculum compactness so when one is using curriculum

compactness and there are also some long distance buildings, then compactness constraint

could be dealt by any other way.

Course compactness (27) can be used with curriculum compactness because each course is a

part of any curriculum.

In (30), (31) some timetables rooms, periods, teachers are always available and some

environments these are unavailable on some occasions but unavailability on some occasions is

more general case.

Course will not be scheduled in period p at room r, if room r is not available. (33)

Course will not be scheduled in period p, if teacher t is not available. (34)

Course will not be scheduled on its forbidden period. (36)

112

There are some periods which should not be scheduled. So these free periods should remain

spare. (10)

In case of (33), (34), (36) and (10) course would not be scheduled but reason to not schedule

is different. Course (36) would not be scheduled on forbidden periods; this constraint is

different from (10) which expresses some periods are unavailable. Constraint (36) means that

some periods are unavailable for course only but not for all courses.

5.2 Examination Timetabling Instances

Examination timetabling problem is widely studied problem of educational timetabling

problem and a variety of different benchmark instances have been used by researchers for

meaningful scientific comparisons and the exchange of research achievements [128]. Here we

have discussed about the used constraints and their difference from other bench mark

instances. We express that these constraints have been covered in our generalized model and

these formulations are the subset of our generalized mathematical formulation. Most common

and well known instances in literature are as follows.

5.2.1 University of Toronto Benchmark instances

Carter et al. [82] introduced a set of 13 real world examination timetabling problems; three

from Canadian highs schools, five from Canadian universities, one from American

university, one from British university and one from a Saudi Arabian university. These have

been widely used as standard in examination timetabling research. Hard constraints for this

problem were to schedule all examinations without conflict. They defined conflict matrix C,

where each element Cij = 1 if examination i conflicts with examination j (have common

students), or Cij = 0 otherwise. The conflict density was the ratio between the number of

elements of value "1" to the total number of elements in the conflict matrix. A student must

not sit for more than one examination at any period was used as hard constraint. The objective

function was to minimize the number of periods needed and the number of examinations of a

student scheduled in the same day consecutively.

Burke et al. [50] modified the Toronto benchmark instances by considering the maximum

room capacity per period and objective was to minimize the students sitting into two

consecutive examinations on the same day. They introduced new examination timetabling

datasets coming from University of Nottingham. These were used later by a number of

113

researchers to test different approaches and are called University of Nottingham Benchmarks.

Burke et al. [153] further modified the above problems by considering also consecutive

examinations overnight.

5.2.2 University of Melbourne Benchmark instances

Merlot et al [154] introduced examination timetabling datasets at the PATAT conference in

2002 coming from the University of Melbourne. The objective for these datasets was to

minimize the number of occasions of students having two examinations consecutively either

on the same day or overnight. For some of the examinations some periods were unavailable.

5.2.3 ITC- 2007 Benchmark instance (Examination Timetabling Track)

The 2nd International Timetabling Competition (ITC2007) has three tracks; one on

examination timetabling and two on course timetabling. We have discussed tracks on course

timetabling in previous section (Section 5.1.2). Here we have described the examination

timetabling track introduced as part of the competition [40, 42].

These two constraints are used as required constraints in these instances. Required constraints

meant that if solution did not satisfy these constraints, solution was rejected outright.

1. Every examination is assigned to at most one room.

2. Every examination is allocated to at most one period.

These were the hard constraints for the given problem.

3. Every examination is assigned to at least one room and at least one period

4. The capacity of individual rooms is not exceeded at any time throughout the

examination

5. Duration of examination scheduled in period should be less than or equal to the

duration of period.

6. In any period, any student is taking at most one examination.

7. Precedence constraints between examinations should be satisfied.

8. Specified pair of examinations must be scheduled in the different period.

9. Specified pair of examinations must not be scheduled in the same period.

http://www.or.ms.unimelb.edu.au/timetabling

114

10. Some specified examinations must be the sole occupier; it means that if this type of

examination is scheduled in any period, then any other examination can not be

scheduled in this period.

These constraints were used as soft constraints.

11. Two distinct examinations of a same student should not be scheduled in consecutive

periods on same day.

12. Two distinct examinations in non-consecutive periods of a same student should not be

scheduled on same day.

13. For every student any two of its examinations should be scheduled after a gap of g

periods for every day.

14. In any period, all the examinations of same duration should be scheduled.

15. There are some rooms which administration wants to be spare. So these free rooms

should not be scheduled.

16. There are some periods which should not be scheduled. So these free periods should

remain spare.

These used constraints can be mathematically expressed by using these 14 equations

(1),(2),(3),(4),(5),(6),(7),(8),(9),(10),(12),(13),(14),(15) of our generalized examination

timetabling formulation of Chapter 4. Constraints (1), (2) and (3) of this ITC-2007 track can

be written by using equation (1) of our mathematical formulation.

5.2.4 Constraints different from previous benchmark instances

These constraints are different from previously written bench mark instances. We have

written a reference in front of each constraint which shows that this constraint was included in

mentioned article. This does not mean that this constraint was used only in that specific

article, this constraint can be part of many other articles but for convenience we have

mentioned only one reference. Some of these constraints were used exactly as we have used

and some of them were used with little modification according to the scenario. These

constraints are given as follows.

1. All the examinations of a class should be located in the same room on any day [164].

2. No class can attend more than a specific number of examinations in a day [162].

115

3. All the examinations of a class in a day must be scheduled either in the morning or in

the afternoon session [163].

4. Invigilators are not always available [162].

5. Number of students scheduled in a period p requiring room type x will be less than or

equal to the capacity of rooms of type x available at period p [154].

6. Every examination should be assigned required room type [154].

7. Pre assigned examinations should be scheduled in their pre assigned periods [154].

8. Some examinations should be scheduled on different days [163].

9. A period can not host examinations more than maximum number of examination’s

limit for that period [165].

10. Sum of number of students taking examinations at period p should be less than or

equal to the capacity allowed for that period p [165].

5.2.5 Constraints not found in the literature

These constraints may have been used in literature but we could not find them in literature as

a part of any examination timetabling problem.

1. Examinations supervised by more than one invigilator scheduled in a same period

should be assigned same room.

2. Time table should follow minimum and maximum load per day for a invigilator.

3. Invigilators should be given some free days.

4. No examination should be scheduled in the last period of the day.

5. Some examinations should be scheduled on the same day.

5.3 Conclusion and Discussion

In this Chapter, we have discussed different instances of course and examination timetabling

problems which are sub part of our generalized course and examination timetabling problems.

We have written the mathematical models of these instances by using our generalized

examination and course timetabling problem. We have discussed in detail curriculum based

course timetabling problem of (ITC-2007) international timetabling competition held in 2007,

because we use these competition datasets for our experimental work in forth coming

(Chapter 7). We have also demonstrated post enrolment based course timetabling problem of

the same competition. We have shown the main difference of this problem with our

116

generalized problem and how one can modify this problem to use our generalized

mathematical model. We have also discussed different constraints of university timetabling

problems which are contradicting with each other and hence can not be the part of a same

problem instance. During our discussion we have highlighted the real world problem of Udine

University from which curriculum based course timetabling problem was made. We have

written the mathematical model of this problem from our generalized model as well. We have

also discussed many constraints which are added by us in model. It means that we could not

found them in literature.

We have also discussed different examination instances used in literature, which are part of

our generalized examination timetabling problem in detail at the end of this chapter. We have

shown that how mathematical models of these instances can be deduced from our generalized

model. At the end we have presented some constraints which are added by us in this newly

proposed generalized examination timetabling problem.

117

Chapter 6

6 PROPOSITION OF RESOLUTION METHODS

In this chapter we have proposed our algorithms which could produce effective solutions for

generalized timetabling problems. We have proposed two population based alogorithms

named memetic algorithm and honey bee mating algorithm. Memetic algorithm uses a local

search to improve the quality of solutions. Neighbourhoods used by this local search are

proposed in this chapter as well. We have explained the working procedure of these

algorithms in detail and also have discussed the benefits of using different operators in these

algorithms. We have highlighted different search space issues and have talked about the

beneficial aspects of our chromosome representation.

This chapter is arranged as follows. In Section 6.1, we have presented our chromosome

representation used in both of our algorithms. We have spoken about search space issues. We

have also expressed our ideas to arrange data and for the use of adequate chromosome

representation to enhance the search space. In Section 6.2, we have demonstrated the

procedure of making initial solution for algorithms. We have discussed different heuristics

and repair strategies to construct these solutions. In Section 6.3, we have discussed our

memetic algorithm. We have presented different genetic operators, infection and replacement

procedures. In this section, we have also explained procedure of our proposed local search

and memetic algorithm. Section 6.4 is devoted for honey bee mating algorithm. Section 6.5 is

reserved for termination criteria of these algorithms and chapter is concluded in Section 6.6.

6.1 Solution representation of Algorithms

The timetable is a collection of each room timetable, where a room timetable is a two

dimensional array as shown in Figure 6.1. If no lesson is booked in any period, it is called null

booking which has value zero. Maximum one event can be assigned to any place in the

matrix. Every timetable stores information that which lesson is placed in which room at what

time on which day of the week, each booking (each cell in a matrix) is one gene. A time table

has many fields to store information about its genetics, costs, number of violations of

constraints. The timetable for an entire university is therefore a collection of room timetables,

118

one for every room in the university as shown in Figure 6.2. A population is a collection of

timetables, which also have many fields to store information about timetables like less costly

timetable, most costly timetable, average cost, average number of violations of constraints

and the total number of timetables in population. It contains a pointer to the least costly

timetable in the population, (which has, in turn, a pointer to the next least costly). Timetables

are ordered from least costly to most costly. A colony of creatures is therefore a singly-linked

list of structured types (creatures) containing timetable data (genes) in a three dimensional

array. Figure 6.3 shows the way in which a population is comprised of a linked list of

timetables.

 Mon Tues Wed Thu Fri

8:30 322 AQ 422 EN 513 MECH 228 PHY 0

9:30 558 SO 515 HIS 259 FR 0 332 PR

10:30

…

….

….

…..

……..

11:30

12:30

Figure 6.1: Example of a single room timetable

A university timetable stores information about what classes are booked in each room, at any

hour of the day, on any day of the week. Each of these bookings (or NULL bookings) is one

gene. A timetable also has fields which describe (decode) some aspect of this genetic

information. A timetable has a field which stores its cost. It also has fields which store the

number of breaches of each type of hard constraint.

A two stage verification strategy is used which ensures that each lesson of a course is

scheduled exactly once. It is done in two steps, in first step checking each lesson which

appears more than once altered in such a way that it appears exactly once and in second step

any lesson which did not appear is booked to spare spaces randomly. The benefit of this

representation is that room must not be double booked and every lesson must be scheduled at

119

once. In this chapter, we will explain in detail our algorithm for solving educational

timetabling problem.

Figure 6.2: An entire university timetable

6.1.1 Reduction of search space

Now we shall discuss about our chromosome representation, search space issues and benefits

to use this representation. We are using two-dimensional matrix (i.e. grid) representation for

our chromosomes where each cell in this matrix is representing an empty slot or at most one

event .Benefit of using this representation is that it reduced the search space significantly. If

there are m events to schedule in t places then the total number of possible ways to schedule m

events in t places is mt where t places means that total available slots which are total number

of rooms multiplied by total number of periods (if rooms and periods are always available).

Now the claim of reduction of search space by using the method of this encoding can be

proved in this way.

The number of ways to assign m events to t places as we have used in our representation are

)!(

!

mt

t


 .

Now this
)!(

!

mt

t


 relation can further be elaborate in this way,

12......))1(()(

12......))1()())(1((.....)2()1(

)!(

!






 mtmt

mtmtmtttt

mt

t

120

))1()......(2()1( mtttt (A)

Now comparing mt with (A), one can prove the above claim.

ttimemttt m  ..).........(........... which is always greater than (A).

))1(..().........2()1(..).........(...........  mttttttimemtttm .

Where t is greater than m or equal to m always (mt ) .Because this is a necessary condition

to get feasible solution otherwise feasible solution could not be achieved.

One benefit of this presentation is that double room booking clash can be simply finished.

Double room booking means that to schedule more than one lesson in a room in a period. So

by using this method on encoding one can avoid one important hard constraint.

We have tackled many other complication steps by using this representation which are helpful

to speed up each of remaining procedures of algorithm. These steps involved some additional

matrices.

6.1.2 Benefits of using this representation

By making use of a two-dimensional matrix representation in this thesis, now we shall explain

how many matrices can be made by using this representation.

Event-Room Matrix

This matrix is used to indicate which event is suitable for which room. This is a Boolean

matrix and can easily be calculated that which room r satisfies the conditions to host event e.

Thus if room r satisfies the conditions to host event e then the element (e,r) marks as true

otherwise it marks as false.

121

Conflicts Matrix

This matrix is very similar to adjacency matrix used for representing graphs. For our problem

it indicates which pair of events have conflicts (so can not be scheduled in the same period).

For example if any two events
21,ee have any conflict then element (

21,ee) in the matrix

marks as true otherwise marks as false.

By using this encoding counting of violations is easy and inexpensive. To check violations are

easy now, for example if one wants to check that each class should have at most one lesson in

any period, it can be evaluated by checking each column whether this column is true more

than one entry or not (rows of the matrix are classes). If one wants to check that proper room

type r has been assigned to an event e in timetable, simply it can be verified by checking entry

(e,r) is true in event-room matrix.

 We have suggested some more matrices for our problem after following the suggestions of

Carter [129] (Chapter 1, Section 1.7).

Room- Period Matrix

This matrix indicates that room r is available at period p or not. If room r is available at

period p then element (p,r)marks as true otherwise it marks as false because in our problem

rooms are not always available.

Course-Period Matrix

This matrix shows the relationship between period and events because some events can not be

scheduled in some periods. If event e can be scheduled in period p then element (e, p) will be

marked true otherwise it will be marked false.

Class-Period Matrix

122

This matrix indicates class period relationships. One benefit of this matrix is to identify the

position of class with respect to sessions. Because sometimes some classes should be

scheduled in morning sessions and some should be scheduled in evening sessions. If class k

can be assigned in period p then element (k,p) marks as true otherwise it marks as false.

Period-Teacher Matrix

This matrix would relate period and teacher requirement. Because some teachers are not

available on certain periods so this requirement can be indicated by this matrix. If teacher t is

available at period p then element (p,t)marks as true otherwise it marks as false. One can

notice that this matrix is not equivalent to course-period matrix. For example, if a course is

not available on a period then this does not mean that teacher of that course is not available. It

is possible that teacher is available on that specific period to teach any other course.

6.2 Initial solution

Population based algorithms are generally used with an initial population. This initial

population sometimes is generated randomly and sometimes by using special techniques to

make a higher quality initial solutions for population. These techniques are used to give the

algorithm a good start and speed up the process. For memetic algorithm, we have generated

our initial solution randomly and then repaired it by our proposed repair strategies. For honey

bee mating algorithm, we have used heuristics to make initial population of drones and queen.

6.2.1 Pre-processing or division of search space

1. Sets of Lessons

Lessons take place during working days. Every lesson has the following information: course,

class, teacher, size type, where course means the name of course; class means name of the

group of students taking this course; size is the number of students taking this course; teacher

means the person who teaches this course and type indicates the kind of subject, i.e.; lesson,

experiment etc. This type of lesson decides which type of room is required for this event.

We shall divide the lessons into sets on the basis of their common properties to use them for

proposed heuristics.

123

 Next

Figure 6.3: Population of timetables

2. Sets of rooms

All the rooms are divided into sets. Now each set of rooms has some common properties, for

example lecture rooms, laboratories, large capacity rooms, rooms with projectors and rooms

which can be partitioned into more rooms. Now each set of room is allocated a type of room

and each room will be distinguish according to its type. Each type of room has its own

Population

Size

 2

Average

Cost

323

Violation of

hard

constraints

150

Pointer to

best

timetable

Pointer to

worst

timetable

124

comprehensive meanings. Then each set of rooms (according to its type) is ordered by its

capacity. This capacity ordering would be used in a heuristic in later stages. Each room has

the following information: name, capacity and type. Where name indicates the name of room;

capacity means the number of seats in the room and type means the kind of room, i.e.; lecture

room, laboratory etc.

These three types of procedures have been used to construct initial solutions for initial

population of our algorithms.

1. Random initialization

2. Repair strategies

3. Set forming heuristics

We describe these methods one by one in detail.

6.2.2 Random initialization

Individual solutions can be generated randomly to form an initial population. The size of

population depends on the problem. It can contain several hundreds or thousands of possible

solutions depending upon the problem nature. For our problem it varies from 50 to 100

because our preliminary experiments have found this range good results producing. The

benefit of this strategy is that there would be a large diversity in solutions of search space.

6.2.3 Repair strategies

After getting the initial solution repairing is mainly done on violation of hard constraints. First

of all know about the location of the offending slots and replace them iteratively with valid

slots.

In our algorithm we have used room repair strategy and two step verification strategy which

are given in Figure 6.4 and Figure 6.5.

In room repair strategy, we choose an assigned course which causes hard constraint violation

of rooms. We delete this assignment and reassign it to another slot in a way that no violation

of room related constraint occurs. The procedure for this strategy is explained in Fig.6. 4.

125

Figure 6.4: Procedure for room repair strategy

Figure 6.5: Two step verification strategy (Repair procedure for violation of two hard

constraints)

In two step verification strategy, we fulfill two hard constraints.

(1) Every course should be assigned.

(2) The number of assignments of every course should be equal to its number of lessons.

Two step verification strategy

We can call our two step verification strategy as Guided Search strategy or guided two step

verification strategy or heuristic.

Stage1

Repeat for every course Ci

 Check If Num_ assigned > Numlects

 while (course_occurence = Numlects) do

 randomly remove an assignment

 endwhile

Stage2

Repeat for every course Ci

Check If Num_ assigned < Numlects

 while (course_occurence = Numlects) do

 Choose a room-time slot pair randomly

 Assigne this cours

 endwhile

For every lesson assigned

If (there is any room related hard constraint violation)

Remove this assignment

For all rooms

If a room is available at period P

Find a room for which (Size of class<= capacity of room)

Assign the lesson to that room-period pair

Endif

End for

126

In first step we see if a course is assigned more than its number of lessons, we remove the

extra assignments. In second step we see that if any course is missing or it has assigned less

than its number of lessons, we find a new slot randomly and assign it. At the end of this two

step verification strategy every course is assigned and its number of assignments is equal to its

number of lessons. This is explained in Figure 6.5.

6.2.4 Set forming heuristics

We use the set forming heuristics to make initial solutions for population.

(H1) Make a list of courses in descending order with respect to the strength of course.

Strength of course means that how many students take this course.

(H2) Make a list of courses in ascending order according to their room availability. The

course with less available rooms comes first in list.

(H3) Make a list of courses which have more lessons to schedule. This list is also in

descending order.

We use these two heuristics (H4 and H5) for the assignment of slot to selected lesson.

(H4) We shall assign slot to these courses randomly.

(H5) We make a list of rooms in ascending order of their capacity.

Then we assign rooms to courses (already selected by a heuristic). For this assignment, we

first choose the first room of our list. If the capacity of first room is greater or equal to the size

of course, we assign this room to the course. Otherwise we move down in the list until we get

the room of required capacity. By doing so, we can save the big capacity rooms for the larger

classes in the later stage. In this way, the room capacity conflict can be reduced.

A lesson is chosen according to heuristic H2 and ties were broken by H1 and further ties with

H3. Then to find a place for the lesson heuristic H5 was used and ties were broken by H4.

6.3 Memetic Algorithm

In this section, we propose our memetic algorithm. We discuss its different operators, initial

127

solution method and local search which is integrated to improve the performance of the

algorithm.

6.3.1 Classic genetic algorithm

First of all, algorithm initializes a population of individuals and evaluates the fitness of each

member in that population. The procedure for applying these genetic operators is given as:

 Select the best-fit members for reproduction

 Breed new members through crossover and mutation operations to give birth to

children

 Evaluate the individual fitness of children

 Replace least-fit members of population with children

This process repeats until the termination criterion is achieved.

6.3.2 Genetic operators

Evolutionary algorithms are good tools for a big space optimization problems but their

performance depends a lot on the type of genetic operator used and the values of parameters

such as mutation rate, crossover rate and population size. Mutation operators normally do the

random alteration of genes. This is done during the process of copying a chromosome from

one generation to the next. Crossover operator is used for exploration in these algorithms.

We used steady state algorithm and general memetic algorithm discussed in Chapter 1,

Section 1.8 in our preliminary studies and then compared them. We found general memetic

algorithm more efficient as compared to steady state algorithm in our case.

Now we describe the three genetic operators and their types in detail.

1. Selection.

2. Cross over

3. Mutation

6.3.2.1 Selection

We have used these selection operators: elitism, roulette wheel selection and selecting one

parent by elitism and the other parent by roulette wheel selection, after selecting parents, we

apply breeding and mutation.

http://en.wikipedia.org/wiki/Fitness_(biology)
http://en.wikipedia.org/wiki/Reproduce
http://en.wikipedia.org/wiki/Breed
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/Offspring
http://en.wikipedia.org/wiki/Offspring

128

6.3.2.2 Cross over

We have used different types of crossover operators in our preliminary experiments for the

breeding of two parents for proposed memetic algorithm.

1. one-point Crossover

2. two-point Crossover

3. Uniform crossover

4. Apply crossover to some percentage of population and not to all.

5. No crossover at all.

The details of one-point crossover, two-point crossover and uniform crossover are given in

Chapter 1, Section 1.8. We have used these crossover operators for our preliminary

experiments but uniform crossover is performing better for our problem. For this purpose we

generate a crossover mask randomly for each slot. In this way the child contains a mixture of

genes from each parent and the procedure is explained in Figure 6.6.

Figure 6.6: Procedure for crossover

6.3.2.3 Mutation

Mutation is used to avoid from getting trapped on local optima. A mutation operator is used

with a mutation probability Pm. Pm is the probability that a gene will undergo mutation and

its value is 2 * Mutation rate /1000.

Select two parents P1, P2. [Based on the Selection operator chosen];

For every slot X1

Generate random mask bits {0,1} for the selected slot

if (mask bit equals 1)

Find the information for the slot X1 in P1;

else if (mask bit equals 0)

Find the information for the slot X1 in P2;

end if

129

We have used two types of mutation for our algorithms. For memtic algorithm, we have used

random mutation and for honey bee algorithm we have applied mutation by neighbourhood

structures. These are explained in the following:

(i) We have applied random mutation. The procedure for this mutation is explained in

Figure 6.7.

(ii) Many neighbourhood structures were tried within the iterative improvement

algorithms; these were tested on post enrolment course timetabling problems (ITC 2007). This

proposed approach found some of the good results. Based on their experiments, we have

applied some neighbourhood structures within our algorithm. The detail of these

neighbourhood structures is given in (Chapter 1, Section 1.6).

A mutation operator is used with a probability Pm. The mutation operator first randomly

selects one from two neighbourhood structures N1 and N2 described in Chapter 1 in Section

1.6 (in Chapter 1, they are named N3, N10), and then makes a move within the selected

neighbourhood structure. The procedure is given in Figure 6.8.

Figure 6.7: Procedure for random mutation

The neighbourhood structures are described as follows:

N1: Neighbourhood defined by an operator that an event can be moved only if the

corresponding slot is empty.

For each chromosome

For every gene of that chromosome

Generate a random number r by U(0,1000).

If (r<Pm)

Swap current gene with a randomly chosen gene from the current timetable

else

keep the gene un-mutated.

endif

Repair the timetable using two step verification

130

N2: Neighbourhood defined by an operator that swaps the slots of two events.

We can apply mutation to some percentage of population and not to all. For this we can do

mutation on 10% or 20 % of the members of the population. And for each member, we can

mutate 1 to 20% of the lessons. Lessons are chosen at random from any slot and are

reallocated to the next earliest possible slot.

Based on our preliminary tests, we observed that these percentage choices did not show any

significant effect on mutation procedure so we did not implement them in our algorithm.

Figure 6.8: Procedure for mutation by neighbourhood

6.3.3 Infection

For memetic algorithm, we have used an infection in population at the chromosomes level

instead of genes. It does not work in a deterministic way but it occurs randomly. For this we

generate a parameter called number of infections by uniform distribution in (0, 10). These

infections will take place after a random number of generations infg . The value of infg can be

between 0 and maximum number of generations. By doing so, we kill a portion of randomly

chosen timetables (m_inf) of the population colony. Here we have taken m_inf equal to 10 %

of the population. And then we restart memetic algorithm by exploiting infection results. The

procedure is given in Figure 6.9.

For each chromosome

For every gene of that chromosome

Generate a random number r by U(0,1000).

If (r<Pm)

Swap current gene with a gene chosen in the neighbourhood N1 or N2 from the

current timetable

else

keep the gene un-mutated.

endif

Repair the timetable using Two step Verification

131

 Figure 6.9: Infection

6.3.4 Replacement

After creating new children by using crossover and mutation operators a successor generation

is made. As parents chromosomes are selected according to their fitness value, so it is hoped

that the children go towards the good fitness value after each generation. This is the

replacement procedure which decides about child survival or extinction.

The following replacement methods have been used in the literature: random replacement,

replacement with elitism, replacement with worse population and steady-state replacement.

In random replacement, some specific percentage of members is randomly chosen in the

population and replaced with new members. This type of replacement provides us with

enough randomness to have diversity in search space but on the other hand we can loose some

good solutions. In steady state replacement, n old members are selected in the population and

replaced with n new members. The choice of the number n and the decision of extinction of

chromosomes from the current population are important aspects of the genetic algorithm. It is

found that steady state enhances the speed of algorithm. The reason is that one changes only

one or two members of population at each generation while the other population remains the

same. In replacement with worse population, one can replace the worse chromosomes of the

population and apply crossover and mutation operators on those worse chromosomes. The

better chromosomes are directly copied to the next generation.

Since the aim of algorithm is to improve the objective function value in each generation, we

have used replacement with elitism. We keep best members of the population and delete all

other ones. By this way, good solutions are preventing from becoming extinct.

Pseudo Code for infection

Find out number of timetables to infect m_inf

Select m_inf timetables randomly

Kill these timetables

Restart MA

132

6.3.5 Proposed Local search

The local search (LS) techniques in genetic algorithms are used for improving the quality of

timetables. In our case, we take one or two courses randomly, and swap them by using our

neighbourhoods defined below. If it improves the objective function, we accept it otherwise

we reject it. If the fitness is adjusted, the chromosome which is the result of local search will

be replaced with the primary chromosome; otherwise that primary chromosome is identified

as the best solution in its neighbourhood and will remain unchanged. We have used these

neighbourhoods for our local search. The pseudo code for the Local Search is described in

Figure 6.10.

Figure 6.10: The pseudo code for Local Search

N1: Neighbourhood defined by an operator that an event can be moved only if the

corresponding slot is empty.

N2: Neighbourhood defined by an operator that swaps the slots of two events.

We can use local search in the following two ways.

The procedure of Local Search (LS)

1: input: Start with a solution
0s selected from the population

2: while Termination condition not reached or minimum cost not achieved do

3: if cost of solution
0s is greater than minimum cost defined then

4: for i = 1 to n do

5: examine the solution s in the neighbourhoods of
0s (first by N1and then N2)

6: if the cost of solution s < the cost of solution
0s then

7: Set
0s =s and register if s is the best solution found so far.

8: end for

9: end if

10: end while

11: output: A possibly improved individual I

133

a) After making an initial solution, we apply LS to every member created and then put it

to population pool.

b) After applying GA, apply LS to child before putting it to population pool.

We applied these two ways but in (a), the effect of LS is smaller as it applies only to initial

solution while in (b), LS improves each generation and improves the quality of solution. So

we have used (b) in our algorithms.

6.3.6 Pseudo code of memetic algorithm

In a conventional memetic algorithm, a hill climbing method is applied after the mutation. We

propose a memetic algorithm that integrates a local search into the genetic algorithm for

solving the university timetabling problem. This local search method uses its exploitive search

ability to improve the explorative search ability of genetic algorithm. The pseudo code for

proposed memetic algorithm is shown in Figure 6.11.

134

Figure 6.11: The pseudo code for memetic algorithm

1. Algorithm 1 Pseudo code for Memetic Algorithm (MA)

2. input : A problem instance I

3. set the generation counter g := 0

4. while (solution_colony population_size < n) do

5. create a timetable
it by random initialization method

6. repair this timetable
it by proposed repair strategies

7. calculate the cost of
it

8. enter
it to the population colony

9. end while

10. while the termination condition is not reached do

11. replace 20 % members of the colony

12. while (solution_colony. population_size < n) do

13. choose two parents via roulete wheel selection

14. is child solution generated by applying the uniform crossover operator with a

probability xp

15. is child solution after mutation with a probability mp

16. Calculate the cost of is

17. is improved child solution after applying proposed local search on is

18. If cost of is is less than cost of is , accept is otherwise choose is

19. enter this timetable to the population colony

20. end while

21. g := g + 1

22. after infg generations, apply infection to the population colony

23. end while

24. output : The best achieved solution bests for the problem instance I

135

6.4 Honey bee algorithm

There are two major types of Honey bee algorithms. First type is a honey bee colony

algorithm which was mostly used to solve educational timetabling problems, second type is

honey bee mating algorithm.

6.4.1 Honey bee colony Algorithm

 Honey bee colony algorithm is about the food collection of the bees. It is a nature inspired

algorithm. A colony of honey bees can extend itself over long distances (more than 10 km)

and in multiple directions simultaneously to exploit a large number of food sources. A colony

will be developed by deploying its foragers to good fields. The patches of flowers with

plentiful amounts of nectar or pollen that can be collected with less effort will receive more

bees and patches of flowers with less nectar or pollen should be visited by fewer bees.

The foraging process starts in a colony by scout bees being sent to search for promising

flower patches. A colony employs a percentage of population as scout bees for exploration of

the fields and these scout bees go randomly from one patch to another, when these scout bees

come back in hive; they share information with other bees. This information helps the colony

to send its bees to flower patches precisely. These information make the relative merit of

different patches according to both the quality of the food they provide and the amount of

energy needed to harvest it. Then these scout bees go back to flower patches with follower

bees that were waiting inside the hive. More follower bees are sent to more promising fields.

This helps the colony to gather food quickly and efficiently. The bees monitor food level of

the flower patch, if patch is not good enough bees go back in hive and if the patch is still good

enough as a food source, then it is advertised and more bees are recruited to that field.

6.4.2 Honey bee mating algorithm

In honey-bee colony, there is a queen(s) (best solution), drones (incumbent solutions),

worker(s) (heuristic) and broods (trial solutions). The algorithm describes the natural mating

behavior of the queen bee when she goes for mating with drones. Queen adds sperms of

drones in her spermatheca during her visit after each successful mating. Queen spermatheca

has a fixed size and when this fills up queen comes back in hive to start mating process. After

mating process broods are produced which are then fed by worker (all new generated broods

136

are grown up by a worker).The number of workers used for algorithm means that the number

of used heuristics. If the fittest brood is better than queen then it replaces her.

The strength of this algorithm is to explore simultaneously and exploit problem search space.

This is achieved by the queen’s transition in the search space and employing a local search at

each iteration. The queen (current fittest solution) is the best individual, so it is hoped that it

will evolve superior solutions. This dominated solution stores different drone’s genotypes in

her mating pool. Some parts of these genotypes are used to make new broods by combining

some parts of the drone’s genotype with parts of the queen genotypes. These features of

honey bee algorithms make it different from other population based algorithms those have

been used for educational timetabling problems.

6.4.3 Proposed honey bee mating algorithm

We have proposed a honey bee mating optimization algorithm for educational timetabling

problem. According to our knowledge, there are few articles on educational timetabling

problems which use honey bee mating algorithm (Chapter 1, Section 1.8).

The honey-bee mating algorithm was used first time to solve educational timetabling problem

by Sabar et al. [48]. They referred it as HBMO-ETP algorithm. In this work, we propose a

variation of HBMO-ETP, which we call as HBM algorithm. The pseudo-code for our

proposed HBM algorithm is shown in Figure 6.12. Now we describe our algorithm in detail.

Firstly, we select a number of honey-bees to create the population of the initial hive. In many

cases, random generation methods may not necessarily guarantee a good quality solution.

Therefore, in this work, we employ heuristics which are described earlier in this chapter to

make an initial population of drones.

At this stage, the solutions generated may or may not be feasible. For the moment we do not

impose the feasibility condition in order to maintain the diversity. We choose the fittest

solution in this population and make it queen. The other solutions of this initialization phase

become the drones.

137

Approa-
ches

Application Solution
represent-

ation

Same
representati-

on as

HBMO -
ETP

Initializati-
on method

Initial
solution

Crosso-
ver

Mutation Probl-
ems

Exploitation
during

search

Our
HBM

algorithm

improvement

direct

no

heuristics

infeasible

uniform

neighbourhood
structures

exam
and

course

yes

HBMO-
ETP [48]

improvement

direct

_

graph
colouring

feasible

haploid

shaking
procedure

exam
and

course

yes

GA [53]

constructive

+

improvement

direct

no

random

infeasible

local

search

local search

exam

no

ACO[54]

constructive

direct

no

graph

colouring

_

_

_

exam

no

GA [56]

improvement

direct

no

graph

coloring

infeasible

_

move operator

exam

no

GA [57]

improvement

indirect

no

graph

colouring

feasible

one

point

_

exam

no

GA [52]

constructive
+

improvement

direct

no

GA

feasible

one
point

move operator

exam

no

ACO[51]

constructive

direct

no

_

feasible

_

_

course

no

GA [59]

improvement

direct

no

random +
graph

colouring

feasible

_

move operator

course

yes

GA [101]

improvement

direct

yes

random

feasible

one

point

move operator

course

yes

GA+ GD
 [58]

improvement

direct

no

graph
colouring

feasible

_

Random swap

course

yes

EM+ GD
 [60]

improvement

direct

yes

graph
colouring

feasible

_

_

course

yes

Table 6.1: Differences and similarities between our HBM algorithm and previous population

based algorithms. ‘‘–’’ means the method did not use the corresponding operator.

The solutions in the population are ranked according to the probability value ip .This can be

calculated using equation (1).

 (1)





NS

i

i

i
i

f

f
p

1

138

Where NS = total number of solutions in population i.e. population size,
if = fitness value of

the ith solution. Next, we divide these drones into two categories: (1) Common drones and (2)

Elite drones, on the basis of their probability values. Here we divide the drones in a way that

the elite drones have more chances to be improved as these solutions are considered the most

promising solutions in the search space. In HBMO-ETP, they consider that all the drones are

of the same type.

1. Set the number of queens=1, iter =0

2. Set total no. of workers W; queen spermatheca is empty sq = 

3. Set no. of workers for common drones
cW

4. Set no. of workers for elite drones
eW

5. Set the maximum size of queen spermatheca=
maxsq

6. Set no. of common drones,
cdn =0; maximum no. of common drones maxcdn

7. Set no. of elite drones,
edn =0; maximum no. of elite drones

maxedn

8. Set no. of broods
brn =0;

9. For i =1 to 1maxmax   edcd nn

10. Use the heuristics to generate the drone solution is

and add it to drone population

11. End For

12. While iter  M

13. iter= iter + 1;

14. Calculate the fitness value of each drone

15. Select the fittest drone and set it to as queen Q

16. Calculate the probability value
ip by using equation (1)

17. Divide all drones in two categories: (1) common drones and (2) elite drones

18. Select maxedn elite drones and maxcdn common drones on the basis of ip

19. While sq < maxsq

20. Select Nc-mat drones from the set of common drones via roulette wheel selection

21. Select Ne-mat drones from the set of elite drones in a deterministic order

22. End while

23. For j= 1 to sq do

24. For i=1 to Nc-mat

25. Create a brood
cB by mating queen Q and common drone sperm via uniform cross

over

26. Apply a worker selected from
cW to grow brood

cB i.e. to improve its fitness value

27. End For

28. For i=1 to Ne-mat

29. Create a brood
eB by mating queen Q and elite drone sperm via uniform cross over

30. Apply a worker selected from
eW to grow brood

eB i.e. to improve its fitness value

31. End For

139

Figure 6.12: Pseudo Code for Honey Bee Mating Algorithm

In lines 19-22 (see Figure. 6.12), we describe the mating flights of the queen. In each mating

flight, queen selects Nc-mat drones from the set of common drones and Ne-mat drones from

the set of elite drones. Here we have eliminated the speed and energy parameters which were

used in the original HBMO algorithm [68]. Instead we have selected drones via Roulette

wheel selection and in a deterministic way. By doing so, we shall exploit the probabilistic

nature of RWS to select more diverse solutions. In HBMO-ETP, they eliminated speed

parameter but maintained energy parameter to initialize queen’s energy for mating flights.

This energy parameter defines the number of drones selected during a mating flight. While we

have eliminated the speed and energy parameters and used the following two parameters Nc-

mat (number of common drones for mating during a flight) and Ne-mat (number of elite

drones for mating during a flight). If the mating is successful (according to the probabilistic

decision rule), the drone’s sperm is added into the queen’s spermatheca. This process

continues until the queen spermatheca is filled.

Next, the queen starts breeding and two types of broods are formed by mating with common

drones and elite drones via uniform cross over. While in HBMO-ETP, they applied haploid

cross over. The reason for using uniform cross over is to explore the whole solution space and

create more diverse broods. After that, the workers already defined for elite broods are

applied (i.e. an improvement) to elite broods and the workers specific for the common broods

are applied to common broods. We utilize different neighbourhood structures as the workers

to grow the broods i.e. to improve the trial solutions. As in the original honey-bee mating

optimization algorithm, the workers improve the brood produced from the breeding queen

32. If the fitness value of any of the brood created is f (
*

jS) better than Queen’s f (Q)

33. Replace the queen with that brood

34. Q=
*

jS and f (Q) = f (
*

jS)

35. Else add
*

jS to population

36. End For

37. Mutate all broods by using random neighbourhood structures (N1 and N2)

38. Kill the old drones and insert the new mutated broods into population

39. End While

40. Return the queen (Fittest solution found)

140

with the possibility of replacing the queen if the improved brood is better than the current

queen.

Table 6.2 shows a summary of differences and similarities between our HBM and that of

original algorithm [68] and its variant HBMO-ETP.

Parameters of algorithm

HBMO by Abbass [68] HBMO-ETP [48] Our proposed HBM

Drones generation

random

LS+LD+LE

heuristics

No. of queens

1

1

1

Drones selection

dependence

energy+speed

energy

RWS + deterministic

(no parameters of energy

and speed)

Local search

greedy SAT

simple descent

hybridized local search

Crossover

haploid

haploid

uniform cross over

Mutation

flip

shaking procedure

Various neighbourhood

structures

Resultant broods

 all broods are killed

all broods are used in

the next mating flight

broods will replace the

drones

Fitness function

fitness function

objective function

(timetable quality or

penalty cost)

objective function

(weighted sum of

penalties for soft

constraints)

Table 6.2: Differences and similarities between our HBM algorithm, HBMO [68] and

HBMO-ETP [48]

In HBM algorithm, we update the population of drones iteratively to avoid undeveloped

convergence. In the original HBMO [68] all broods are killed and the new mating flight

begins using the previous population. But we kill the older drones used in breeding process

and replace them with the new mutated broods. So the next mating flight starts with fresh

drones. This replacement guarantees that each drone’s sperm can be used only one time

which, we hope, helps in maintaining diversity and prevents immature convergence. During

each mating flight, queen selects one elite drone from the set of elite drones in such a way that

141

each elite drone will be selected at the end of mating flights. And queen chooses Nc-mat

common drones via RWS from the set of common drones during each mating flight.

Lines 1–8 show the initialized values for the defined parameters. These are following: (i) the

number of queens (ii) the queen’s spermatheca size, which represents the maximum number

of mating each queen performs in a single mating flight, thus also the number of broods that

will be born after each single mating flight and (iii) the number of workers to improve

common broods and elite broods. We use workers (heuristic Search) for our common broods

and elite broods.

In lines 9 to 11, the drone population is generated by using heuristics described earlier. The

status of queen Q is given to the fittest solution in lines 14 and 15. Lines 16-18 show the

division of drones into two categories on the basis of their probability calculated using

equation (1). In lines 19-22, we describe the mating flights of the queen. In each mating flight,

queen selects Nc-mat drones from the set of common drones and Ne-mat drones from the set

of elite drones. The accepted drones are added to the queen’s spermatheca. Based on Eq. (1),

the fitter drones have more chance of being selected. This procedure is repeated until the

queen’s maximum spermatheca size is reached.

Then, the breeding process starts from line 23. Two types of new broods are created. In lines

24–28 we use Uniform cross over for mating of queen and common drone. Then an already

specified worker (Local search hybridized with heuristic) is recruited to grow this brood. In

lines 29–32 queen mates with an elite drone by uniform cross over to produce another brood.

Then a worker specific for elite broods (Local search hybridized with heuristic) is recruited to

grow this brood. The mating generates a new set of broods.

This hybridized local search starts with an initial solution (brood) and iteratively improves it

by examining its neighbourhood. A neighbourhood of a given solution is obtained by moving

one event from its current slot to another slot, which is selected by a heuristic. The solution is

accepted, if the move does not violate any hard constraints and the quality of the

neighbourhood solution is better than the incumbent solution. Otherwise, the solution is

rejected and a new event is selected to generate a neighbourhood solution.

142

In our HBM algorithm, a chromosome is used to represent a candidate solution is to the

problem. We have used the same representation of chromosomes as we employed for our

memetic algorithm. If the improved brood is better than the queen, the queen is replaced by

the brood. Otherwise we keep the original queen as the best solution. The new broods will be

modified using a mutation operator. In this work, we employed two neighbourhood structures

(N1 and N2) for this purpose. These neighbourhoods are applied to each brood. The modified

broods will replace the older drones for the next mating flight. This process is repeated until

the stopping condition is satisfied. It may be time limit, number of iterations or allowed

minimum value for objective function. In this algorithm, we take the time limit as stopping

condition. As the time limit is reached, the fittest solution found is returned as queen. And

this final queen is the solution of the given problem.

Parameters

Value

Population size

100

Number of queens

1

Number of drones

99

Number of mating flights

4

Size of queen’s spermatheca

5

Number of elite drones

4

Number of common drones

95

Mutation rate

7

Killing ratio

0.2

Ne-mat

1

Nc-mat

4

Table 6.3: Parameter settings for our HBM algorithm’s computational experiments

143

Start

Generate a population of drones via heuristics

Select the fittest as queen

Evaluate the fitness of the drone

Evaluate the probability for all drones and divide

them into elite drones and common drones

 Mating of queen and

common drones

Mating of queen and elite

drones

Growth of elite broods Growth of common broods

Insertion into poppulation pool

Stopping

condition

End

No

Yes

Figure 6.13: The block diagram for the proposed algorithm

144

Figure 6.13 shows the block diagram for the proposed algorithm on university timetabling

problems. It illustrates the process of our proposed algorithm. The algorithm starts by

generating an initial solution via heuristics. Next, the improvement process (honey bee mating

algorithm) is executed (as discussed earlier). Table 6.3 represents the parameter settings for

our HBM algorithm’s computational experiments.

6.5 Termination criteria

This iterative process continues until one of the possible termination criteria is reached.

Different types of termination criteria can be used such as, getting optimal solution (in case of

some easy datasets), obtaining acceptable solution, maximum number of generations, time

limit and no improvement in objective function value during a certain number of generations.

We have used time limit or getting optimal solution as termination criteria for our problem

which achieves first.

6.6 Conclusion

In this chapter we have proposed our algorithms for solving university course and

examination timetabling problems. In any algorithm its solution representation plays a

significant role for making its performance good. We have discussed in detail chromosome

representation of our memetic algorithm. This matrix form representation has many benefits

to evaluate violations of constraints and in reducing the search space. We have defined many

matrices from this matrix representation which helps the algorithm for finding violations of

constraints like room- period matrix, course- period matrix, class- period matrix, period-

teacher matrix, event-room matrix and conflict matrix.

Our algorithms are population based algorithms. We have discussed to make initial solutions

for population of these algorithms. We have explained in detail the procedure of making

initial solutions for algorithms. We have used many ways to make initial solutions in our

prerequisite experiments and have finally explained which procedures are producing good

results for our experimental work. We have demonstrated the procedure of making initial

solution by our proposed heuristics. We have also talked about the procedure of our cross

over and mutation for memetic algorithm. How much different selection ways have been used

145

for parent’s selection for breeding have been presented and which way is producing good

results for our algorithm have been mentioned.

Creation of new children by using crossover and mutation operators succeed towards a new

generation. Thus it is important to select some population members, which will be replaced

with new children. We have mentioned our replacement procedure. We have explained the

procedure of our local search, its neighbourhood structures and the procedure of our proposed

memetic algorithm which uses this local search for the improvement of the solution quality.

We have also proposed honey bee mating algorithm. This describes the natural mating

behavior of the queen bee when she goes for the search of drones with her spermatheca which

has a fixed capacity and when this fills up queen comes back in hive to start mating process.

Mating process produces broods fed by worker and finally if new fittest brood is better than

queen, it replaces her. Initial population of hive is created by our heuristics. We have used

probability function to rank population and to choose queen for hive. We have divided these

drones into two categories common drones and elite drones on the basis of their probability

values. We have described differences and similarities between our HBM algorithm and

previous population based algorithms in detail.

146

147

Chapter 7

7 EXPIREMENTS AND RESULTS

In this chapter we have analysed results obtained by our proposed algorithms. We have

discussed in detail reasons of obtaining good results and also shortcomings of the algorithms.

We have applied our algorithms on one benchmark timetabling problem, generelized

educational timetabling problem and generalized examination timetabling problem. First of all

we have applied our memetic algorithm on benchmark timetabling problem (Curriculum

based course timetabling problem). This problem is a part of international timetabling

competition problem 2007. This problem is discussed in detail in (Chapter 5, Section 5.1.2).

We have compared our results on benchmark instance with other algorithms used in literature.

Then we have generated data for both generalized course and examination timetabling

problems and have solved these datasets with our algorithms. We have also solved these

datasets with genetic and tabu search algorithms and compared results of these four

algorithms while using same termination criteria.

Rest of the chapter is organised in this way. We have presented experimental work on course

timetabling problem in Section 7.1. In this section, first we have compared our memtic

algorithm performance with other timetabling approaches on benchmark problem. In this

section we have generated datasets for our generalized problem and have solved them with

our proposed algorithms. These datasets are also solved with genetic and tabu search

algorithms. We give detail comparison of the performance of these four algorithms. In Section

7.2, we have discussed examination timetabling problem and have compared results obtained

by algorithms. In Section 7.3, we have conducted an analysis of the obtained results.

7.1 Course timetabling problem

In this section, we have talked about course timetabling problem. We have discussed a

benchmark and have compared results of our memetic algorithm with other algorithms on this

particular benchmark.

148

We have also generated datasets for generalized university course timetabling problems. We

have solved these problems with our memetic and honey bee algorithms. We have also solved

the same datasets with genetic and tabu search algorithms and finally have given a

comparison of all these four algorithms with respect to each other.

7.1.1 Benchmark solved by proposed memetic algorithm

Curriculum based course timetabling problem is a track in International timetabling

competition 2007 (ITC 2007) and this track is about weekly scheduling where university will

publish curricula first. This model applies to University of Udine (Italy) and many other

Italian universities. Datasets are taken from these universities and are modified little to make

them general to use them as competition datasets. The problem consists of the following

entities, number of days, number of periods per day, number of courses, number of teachers,

number of rooms, capacity of each room, number of curricula and many other constraints.

The information about Udine course timetabling problem (ITC 2007: curriculum based course

timetabling) [2] are given in Table 7.1. This table presents dataset number, dataset name, total

number of rooms, total number of periods, total number of courses, the sum of their events in

a week, the number of distinct enrolments (curricula).

Dataset

AKA Rooms Periods Courses Events Curricula

comp01

Fis0506-1

6

30

30

160

14

comp02

Ing0203-2

16

25

82

283

70

comp03

Ing0304-1

16

25

72

251

68

comp04

Ing0405-3

18

25

79

286

57

comp05

Let0405-1

9

36

54

152

139

comp06

Ing0506-1

18

25

108

361

70

comp07

Ing0607-2

20

25

131

434

77

comp08

Ing0607-3

18

25

86

324

61

comp09

Ing0304-3

18

25

76

279

75

comp10

Ing0405-2

18

25

115

370

67

149

comp11 Fis0506-2 5 45 30 162 13

comp12

Let0506-2

11

36

88

218

150

comp13

Ing0506-3

19

25

82

308

66

comp14

Ing0708-1

17

25

85

275

60

Table 7.1: Showing dataset number, dataset name, total number of rooms, total number of

periods, total number of courses, the sum of their events in a week and the number of

curricula.

Some more characteristics about datasets are given in Table 7.2. They are as follows:

frequency or the portion of period-room slots in use, utilisation in terms of used seats in

percentage [32], numbers of edges in conflict graphs (CG), density in conflict graphs (CG)

with vertices representing courses rather than events [33] and total unavailability constraints

(sum of all unavailable periods for all courses, for example for 30 courses, if each course is

unavailable for any 2 periods, then total unavailability constraints are 60)

Dataset AKA Frequency

(used slots)

 %

Utilisation

(used seats)

 %

Edges in CG

(course -

based)

Density of

CG (course-

based) %

Un

availability

constraints

comp01

Fis0506-1

88.89

45.98

53

12.18

53

comp02

Ing0203-2

70.75

46.28

401

12.07

513

comp03

Ing0304-1

62.75

38.30

342

13.38

382

comp04

Ing0405-3

63.56

33.22

212

6.88

396

comp05

Let0405-1

46.91

43.50

917

64.08

771

comp06

Ing0506-1

80.22

45.28

437

7.56

632

comp07

Ing0607-2

86.80

41.71

508

5.97

667

comp08

Ing0607-3

72.00

37.39

214

5.85

478

comp09

Ing0304-3

62.00

32.67

251

8.81

405

comp10

Ing0405-2

82.22

36.38

481

7.34

694

comp11

Fis0506-2

72.00

56.23

75

17.24

94

comp12

Let0506-2

55.05

35.06

1181

30.85

1368

comp13

Ing0506-3

64.84

38.14

216

6.50

468

comp14

Ing0708-1

64.71

34.78

368

10.31

486

150

Table 7.2: Frequency or the portion of period-room slots in use, utilisation in terms of used

seats in percentage, numbers of edges in conflict graphs (CG), density in conflict graphs (CG)

with vertices representing courses rather than events and total unavailability constraints.

Some more statistical quantities are presented in Table 7.3, it shows: average number of

conflicts (Co), average teacher availability (TA), average number of lessons per curriculum

per day (CL), average room occupation (RO). The feature Co (conflicts) counts the pairs of

lessons that have clash and cannot be assigned at the same time (like same curriculum, same

course and same teacher) divided by the total number of distinct pairs of lessons [19].

Dataset

AKA CO TA CL RO

comp01

Fis0506-1

13.2

93.1

3.24

88.9

comp02

Ing0203-2

7.97

76.9

2.62

70.8

comp03

Ing0304-1

8.17

78.4

2.36

62.8

comp04

Ing0405-3

5.42

81.9

2.05

63.6

comp05

Let0405-1

21.7

59.6

1.8

46.9

comp06

Ing0506-1

5.24

78.3

2.42

80.2

comp07

Ing0607-2

4.48

80.8

2.51

86.8

comp08

Ing0607-3

4.52

81.7

2

72

comp09

Ing0304-3

6.64

81

2.11

62

comp10

Ing0405-2

5.3

77.4

2.54

82.2

comp11

Fis0506-2

13.8

94.2

3.94

72

comp12

Let0506-2

13.9

57

1.74

55.1

comp13

Ing0506-3

5.16

79.6

2.01

64.8

comp14

Ing0708-1

6.87

75

2.34

64.7

Table 7.3: Aaverage number of conflicts (Co), average teacher availability (TA), average

number of lessons per curriculum per day (CL) and average room occupation (RO)

We have compared the performance our algorithm with respect to other seven reference

algorithms. These seven algorithms include ITC 2007 organizer’s algorithm which is

151

developed by de Cesco et al. [19], the algorithm of the winner of the competition Tomas

Müller [35], the algorithm of Second position holder Zhipeng Lu and Jin-Kao Hao, the

algorithm of third winner Mitsunori Atsuta et al. [41,42], the 4th place algorithm by Martin

Josef Geiger [36], the 5th place algorithm of Michael Clark et al. [37] and the algorithm

proposed by Abdullah and Turabieh[38].

Tomáš Müller used a Local search based algorithm using routines taken from the constraint

solver library. He also used various neighborhood search algorithms to eliminate violations of

hard and soft constraints.

 Zhipeng Lü and Jin-Kao used iterated tabu search algorithm with kempe chains to solve

competition datasets.

Mitsunori Atsuta, Koji Nonobe and Toshihide Ibaraki used constraint satisfaction problem

solver incorporating tabu search and iterated local search.

Martin Josef Geiger used threshold accepting local search. Michael Clark, Martin Henz,

Bruce Love used Repair-based local search.

The important thing to note about Abdullah and Turabieh algorithm is that this is the only

algorithm among many others which used evolutionary algorithm to solve this competition

problem. So this is our motivation to use evolutionary algorithm to solve these datasets. Thus

we have constructed an evolutionary algorithm for our generalized model.

All the algorithms used the same stopping criteria (timeout condition 600 seconds), which

was required by ITC-2007 competition [43,44]. Table 12 shows our Memetic algorithm’s

results in comparison with some other used techniques.

We have solved these competition datasets with memetic algorithm which uses genetic

algorithm with local search. This algorithm is given in detail in the previous chapter. Our

results are good when we compare it with contestant of the competition results. We also

solved these datasets with genetic algorithm but results were not as good as these are with

memetic algorithm. Maximum allowed time to solve these datasets was ten minutes. Some of

the datasets are solved within this time limit but for some datasets it takes more time. We

have fixed number of iterations to solve these datasets which are fifteen thousand for each

dataset. In our proposed algorithm, we have used population size 100, mutation rate 7 while

using 20 % killing with a local search which makes it slow but if we use steady state memetic

algorithm (in which one offspring is generated in each generation), algorithm works quickly

152

but this decrease the performance of the algorithm. This means that in less time more

iterations can be run but net objective function value would not be so good as with memetic

algorithm. Our algorithm solves these datasets and produces good results but it takes more

time to produce these results.

Dataset Our MA Müller

[35]

Lü &Hao

[41]

Atsuta

[42]

Geiger

[36]

Clark

[37]

Cesco et

al. [19]

Abdullah &

Turabieh[38]

comp01

5

5

5

5

5

10

5

5

comp02

200

51

55

50

11

111

75

58

comp03

100

84

71

82

128

119

93

82

comp04

35

37

43

35

72

72

45

39

comp05

319

330

309

312

410

426

326

318

comp06

158

48

53

69

100

130

62

49

comp07

160

20

28

42

57

110

38

11

comp08

163

41

49

40

77

83

50

44

comp09

114

109

105

110

150

139

119

103

comp10

155

16

21

27

71

85

27

15

comp11

22

0

0

0

0

3

0

0

comp12

401

333

343

351

442

408

358

341

comp13

65

66

73

68

622

113

77

69

comp14

75

59

57

59

90

84

59

57

Table 7.4: Our memetic algorithm’s (Our MA) results (minimize objective function value) in

comparison with some other used techniques for International timetabling competition

datasets (ITC-2007).

Our algorithm is originally made for the solution of generalized educational timetabling

problem and is constructed when considering many hard and soft constraints. It is not

constructed to focus on some specific problem. It has many type of parameters and sets in it

which are making its performance bit slow for specific problem. But overall it gives

promising performance and can solve large size datasets efficiently. We have made our

memetic algorithm on the foundation of our genetic algorithm which we used to solve a

153

generic university course timetabling problem [25]. But our new generalized model has more

constraints than our previously used problem for genetic algorithm.

Our algorithm is a two phase algorithm which satisfies the soft constraint in the first phase.

Second phase is used to minimize the soft constraints while maintaining solution feasible. We

hope that if we increase number of iterations of our algorithm, this will minimize the

objective function value more.

Many authors had worked on this timetabling problem and produced very good solutions.

These solutions can be seen from website [http://tabu.diegm.uniud.it/ctt/index.php]. Many

ways were used to solve this curriculum based course timetabling problem including local

search, tabu search, SAT based, Simulated annealing, mathematical programming, hybrid

methods. If we look on the list of submitted results and proposed methods we will find only

one author who used genetic algorithm to solve this problem [38]. Many authors constructed

solutions for these datasets in last five years so some authors had good solutions on some

datasets and others had good solutions on any other datasets but in our point of view overall

good results were produced by Andrea Schaerf [http://tabu.diegm.uniud.it/ctt/index.php,

[19]].

In this section we have generated data for our generalized problem and have solved these

datasets with our proposed algorithms to compare their performance.

7.1.2 Description of the generalized course timetabling problem

In this section we have defined our generalized course timetabling problem having many

constraints. Which constraint is used as hard and which constraint is used as soft is mentioned

in below given tables (Table 7.5 and Table 7.6), if any constraint is used as a soft constraint

then how much is the penalty value for its violation. We have solved this generalized

timetabling problem to check the performance of our algorithms. Our generalized problem

consists of two problems named Problem.1 and Problem.2.

Problem.1 is the generalized problem used in Ahmad et al. [25]. Problem.1 has same

constraints as used in previous mentioned article but has different data. Here we have

generated new data to check the performance of our proposed algorithms which is more

difficult from previous data because of having more constraints and size of the problem

datasets is also larger than previously mentioned data. Table 7.5 is showing constraints for

http://tabu.diegm.uniud.it/ctt/index.php
http://tabu.diegm.uniud.it/ctt/index.php

154

Problem.1.

Constraints

Hard Soft

Every lesson should be scheduled

×

Class must not be double booked

×

Teacher must not be double booked

×

Room must not be double booked

×

Schedule course if room available

×

Teacher unavailability

×

Schedule on pre assigned periods (courses)

×

No scheduling on forbidden periods

×

Maximum working days for course

 1

A class single lesson in a day

 1

 Class compactness

 2

Max. daily lessons of a course

 1

Course compactness

 1

Assign course in adequate room type

 1

Maximum number of lessons per day of a class

 1

Same room used every time for a course

 1

Minimum working days for course

 5

Room capacity Size of class -
capacity of

room 0

Table 7.5: Showing constraints for Problem.1 and provides details about every constraint

whether it is used as hard or soft. If it is used as a soft constraint then it also tells about the

amount of penalty used in case of violation.

We have used Problem.1 datasets to check the performance of our algorithms in detail. We

have also solve Problem. 2 to show that how this problem with large number of constraints

can be solved with these algorithms. But we perform our detailed experimental work to

compare the performance of algorithms on Problem.1.

We have constructed Problem. 2 by adding some more constraints into Problem.1 and

Problem.2 consists of all constraints of Table 7.5 and 7able 7.6. This is a more generalized

155

problem having many constraints.

Table 7.5 is showing constraints for Problem.1 and Table 7.6 is showing some more

constraints. Problem 2 is the sum of Table 7.5 and Table 7.6 constraints; it means that

Problem.2 has all constraints. Each integer under Soft in tables represent penalty for each

violation of soft constraint and the symbol of × under Hard in table represent that constraint is

used as hard constraint in problem.

Constraints

Hard Soft

Free periods

 1

Room compactness

 1

Free rooms

 1

Courses scheduled on
same day

 1

Courses scheduled on the
different days

 1

Precedence constraint

among courses

 1

Courses scheduled on the

same period

 1

Courses scheduled on

different periods

 1

Max. load for teacher per

day

 1

Maximum working days

for teacher

 1

Minimum working days
for teacher

 1

Table 7.6: Showing additional constraints used for Problem.2

7.1.3 Data generation for course timetabling problem

We have modelled a generalized educational timetabling problem. In this section we have

generated data to check the performance of proposed methods for solution. For this purpose

we have generated data where some sets and sub sets have fixed values and others have been

chosen randomly. The purpose of this work is to make some datasets which have all these

constraints and to solve them with proposed methods. Our proposed methods are two phase

methods, so in first phase hard constraints are satisfied and these methods get feasible solution

in first phase.

156

We have tried all constraints in preliminary experiments but excluded few of them in our

experimental work. Because few constraints were contradicting each other so their use at a

same time is not adequate and some constraints were making problem more complex. For

example gap of specific periods in teacher courses, same class two courses should not be

scheduled on consecutive periods and class can have maximum two consecutive courses can

effect compactness constraints like room compactness, class compactness, course

compactness. Some constraints like all the course of a class must be scheduled either in

morning or afternoon session or course should not be scheduled in the last period of day was

excluded to make search space little lenient because problem has already many constraints.

How we have generated our data for these problems, details of data generations are given as

follows.

Total number of courses, classes, teachers, rooms, room types, days and number of periods

per day are fixed. Each teacher has assigned at least one and at most two courses.

1. For each class, number of courses is randomly generated from 1 to 4; a course can be part

of maximum 4 classes.

2. Number of students who attend a certain course is randomly chosen between 20 and 100.

3. For each course, we choose a random number 2 to 5 which shows the number of lessons of

course.

4. For each course, it is required that it should not finish its lessons before a minimum number

of days. We have taken randomly minimum number of day from 1 to 3.

5. Each room capacity is randomly generated from 30 to 120.

6. One lesson of each course is randomly pre assigned a period.

7. For each course, it is required that it should not be scheduled after a fix maximum number

of days. We have taken randomly maximum number of day from 3 to 5.

8. The maximum daily number of teaching hours allowed for any class is 4.

9. For each course, maximum limit on number of teaching hours per day is randomly taken

from 1 to 5.

10. Every course needs a desired type of room to occur. We have specified number of room

types. We have allocated a room type to a course randomly.

157

11. For each room, we generate an availability matrix. In this matrix, we make each room has

5-10% unavailability.

12. For each teacher, we have certain number of unavailabilities. We have generated these

unavailable periods randomly. These periods are 10% of the total number of periods.

 13. Each teacher has maximum working days and minimum working days. We have assigned

these values randomly from 2 to 4 days for maximum working days and from 1 to 2 for

minimum working days.

14. On the day, on which a teacher has a course to teach, there is a maximum load of teacher

for that day. The maximum working load is defined here in terms of working hours. For each

teacher, we take it 5, so this is a trivial condition.

15. Each course has its 12 % randomly chosen unavailable periods, where its scheduling is

forbidden.

16. For each period, we have defined the maximum number of classes occurred is taken equal

to the number of rooms available at this period.

17. We have generated randomly 5, 2, 1 precedence relations (one precedence relation means

that we have chosen two courses and this precedence relation is between every lesson of these

two courses) respectively for large, medium, small data in such a way that the generated data

should not be contradictory. For example if lesson a is preceded by b and b is preceded by a

then these two precedence constraints are contradictory.

We can find similar precedence relationship in real world problems when we have course

consisting of theory and practical work, practical work should occur after the theory lecture

(each theory lesson follows practical work lesson). This relationship should be followed for

every occurrence of theory and practical work.

18. Five percent lessons (from non conflicting courses) are grouped into two or three lessons

subsets randomly which should scheduled together in same period. Each lesson can be part of

at most one sub set.

19. Three percent lessons are selected randomly, grouped into two or three lessons subsets

randomly which should not be scheduled together in same period. Each lesson can be part of

at most one sub set.

20. One period is chosen randomly to be free.

21. One day is randomly chosen free for a teacher.

158

22. Five percent lessons are grouped into two or three lessons subsets randomly which should

be scheduled together in same day. Each lesson can be part of at most one sub set.

23. Three percent lessons are selected randomly, grouped into two or three lessons subsets

randomly which should not be scheduled together in same day. Each lesson can be part of at

most one sub set.

Different constraints used in generalized problems are given in Tables 7.5 and 7.6. These

tables provide details about constraint whether it is used as hard or soft. If it is used as a soft

constrain then they also tell about the amount of penalty used in case of violation.

For these datasets, we have taken mutation rate 7, kill colony 20 percent, population size 100

because our preliminary experiments suggest that good results can be produced with these

parameters. We allow 600 seconds for large problem datasets, 400 seconds for medium

problem datasets and 100 seconds for small problem datasets.

We have generated certain data in terms of percentage. To obtain an integer value from its

percentage, we use least integer function. For example if 5% of total lessons gives 6.4 lessons,

so least integer function value of 6.4 be 7. The reason to do so is that in our problem values

are in integers not in form of any real number. 6.4 lessons are unavailable for a period does

not make any sense or teacher is unavailable for 5.2 periods. According to our data generation

5.2 unavailable periods mean 6 periods unavailability.

To check the performance and efficiency of the algorithms, we have firstly applied the

algorithms on randomly generated datasets of Problem.1. We have generated 10 small, 10

medium and 10 large size problem datasets for this purpose. The program is coded in C and

run on an Intel computer with 2.5 Ghz processor, 4GB RAM under windows operating

system. We have run algorithm 5 times for each problem dataset to see its performance in

detail.

7.1.4 Results of course timetabling Problem.1 datasets

These tables are showing results for small size, medium size and large size problem datasets.

In each table C is number of course, T is number of teachers, K is number of classes, R is

number of rooms, RT is number of room types, P is the total number of periods and D for

159

working days. After running each problem dataset 5 times, we have given minimum cost,

maximum cost, average cost, S.D. (standard deviation), total number of lessons (events) and

percentage of used slots and seats.

Small size datasets have C=20, T=16, K=6, R=4, RT=1, P=5, D=5. Medium size problem

datasets have C=70, T=56, K=40, R=12, RT=3, P=5, D=5 and similarly large size problem

datasets have C=125, T=100, K=70, R=20, RT=3, P=5, D=5.

In this section, we have given results obtained by honey bee mating, memetic, gentic and tabu

search algorithms across 5 runs on each of the 10 datasets of small, medium, large size

problem. We have taken mutation rate 7, kill colony 20 percent, population size 100, time

limit for small datasets 100 seconds, time limit for medium datasets 400 seconds and time

limit for large datasets is fixed 600 seconds.

7.1.4.1 Memetic algorithm

In this section, we have given results (Table 7.7, Table 7.8, Table 7.9) obtained by memetic

algorithm. It is clear from results that small size problem is easy to solve in less amount of

time than large problem. One can find near optimal solution with memetic algorithm in very

short time.

Problem

dataset

Minimum

cost

Maximum

cost

Average

cost

S.D. No. of

events

% of

used

seats

% of

used

slots

1 0 0 0 0 68 66 68

2 5 5 5 0 69 68 69

3 5 7 6 0.81 79 70 79

4 5 5 5 0 71 75 71

5 5 5 5 0 67 74 67

6 10 10 10 0 68 80 68

7 0 0 0 0 65 84 65

8 15 16 15.28 0.48 65 82 65

9 10 10 10 0 63 87 63

10 9 9 9 0 59 76 59

Table 7.7: Numerical results for small datasets obtained by memetic algorithm

160

Problem

dataset

Minimum

cost

Maximum

cost

Average

cost

S.D. No. of

events

% of

used

seats

% of

used

slots

1 46 53 49 3.16 225 83 75

2 26 35 31.75 4.27 254 81 84

3 30 32 31.25 0.95 229 76 76

4 45 53 48.75 3.30 243 83 81

5 38 51 43.25 6.02 248 82 82

6 38 46 41.75 3.30 243 75 81

7 35 49 44.5 6.45 242 77 80

8 47 53 50.25 3.20 231 72 77

9 35 39 36.5 1.73 233 69 77

10 56 62 59.5 2.51 250 81 83

Table 7.8: Numerical results for medium datasets obtained by memetic algorithm

Problem

dataset

Minimum

cost

Maximum

cost

Average

cost

S.D. No. of

events

% of

used

seats

% of

used

slots

1 154 169 158.16 5.49 411 77 82

2 144 162 153 6.85 426 78 85

3 128 135 131.4 2.88 423 73 84

4 121 126 123 2.16 421 78 84

5 133 165 145.5 14.05 433 75 86

6 145 164 154.5 9.39 412 76 82

7 251 264 259.5 6.85 457 82 91

8 169 183 178.25 6.39 463 75 92

9 184 215 200 14.07 467 85 93

10 130 163 144.25 13.72 409 80 81

Table 7.9: Numerical results for large datasets obtained by memetic algorithm

161

7.1.4.2 Honey bee mating algorithm

In this section, we have given results (Table 7.10, Table 7.11, Table 7.12) obtained by honey

bee mating algorithm. We take number of queens 1, number of drones 99, number of mating

flights 4, Size of queen’s spermatheca 5, number of elite drones 4, number of common drones

16, Ne-mat 1, Nc-mat 4. Honey bee mating algorithm is also taking more time to solve large

size problem than small and medium size problems.

Problem

dataset

Minimum

cost

Maximum

cost

Average

cost

S.D. No. of

events

% of

used

seats

% of

used

slots

1 0 0 0 0 68 65 68

2 5 5 5 0 69 67 69

3 5 8 6.67 1.21 79 68 79

4 5 5 5 0 71 76 71

5 5 5 5 0 67 73 67

6 10 10 10 0 68 77 68

7 0 0 0 0 65 84 65

8 15 15 15 0 65 83 65

9 10 10 10 0 63 86 63

10 9 9 9 0 59 77 59

Table 7.10: Numerical results for small datasets obtained by honey bee mating algorithm

Problem

dataset

Minimum

cost

Maximum

cost

Average

cost

S.D. No. of

events

% of

used

seats

% of

used

slots

1 40 51 44.25 4.71 225 83 75

2 29 35 32.25 3.20 254 81 84

3 99 103 100.67 2.08 229 81 76

4 46 49 47 1.73 243 83 81

5 36 44 41 4.35 248 82 82

6 36 40 38 2.0 243 76 81

162

7 40 48 44.33 4.04 242 78 80

8 51 54 51.67 2.08 231 73 77

9 36 40 38.67 2.30 233 69 77

10 55 57 56 1.0 250 81 83

Table 7.11: Numerical results for medium datasets obtained by honey bee mating algorithm

Problem

dataset

Minimum

cost

Maximum

cost

Average

cost

S.D. No. of

events

% of

used

seats

% of

used

slots

1 150 158 153.25 3.94 411 77 82

2 145 153 148.25 3.59 426 79 85

3 123 125 123.75 0.96 423 73 84

4 112 123 117.0 5.56 421 78 84

5 129 142 135.0 6.55 433 74 86

6 134 146 138.67 6.42 412 77 82

7 205 232 216.33 14.01 457 81 91

8 167 188 176.0 10.81 463 74 92

9 174 197 183.0 12.28 467 85 93

10 120 138 127.66 9.29 409 81 81

Table 7.12: Numerical results for large datasets obtained by honey bee mating algorithm

7.1.4.3 Genetic algorithm

In this section, we have given results (Table 7.13, Table 7.14, Table 7.15) obtained by genetic

algorithm. Percentage of used slots is same for all results of any dataset but percentage of

used seats can be different because used seats depend upon assignment of room and it can be

different in different timetable of same dataset.

163

Problem

dataset

Minimum

cost

Maximum

cost

Average

cost

S.D. No. of

events

% of

used

seats

% of

used

slots

1 1 4 1.71 1.25 68 67 68

2 5 7 5.5 1.00 69 69 69

3 11 13 11.8 0.84 79 68 79

4 5 7 6.5 0.84 71 76 71

5 5 8 6 1.09 67 73 67

6 10 13 10.75 1.50 68 77 68

7 1 4 1.5 1.22 65 83 65

8 15 16 15.25 0.50 65 83 65

9 10 10 10 0 63 88 63

10 9 9 9 0 59 78 59

Table 7.13: Numerical results for small datasets obtained by genetic algorithm

Problem

dataset

Minimum

cost

Maximum

cost

Average

cost

S.D. No. of

events

% of

used

seats

% of

used

slots

1 427 460 440.25 14.08 225 70 75

2 195 226 209.25 13.96 254 82 84

3 110 116 113.75 2.63 229 82 76

4 54 69 63.2 7.53 243 84 81

5 43 66 52.4 8.96 248 82 82

6 41 52 46.67 5.50 243 78 81

7 47 50 48.25 1.50 242 80 80

8 49 58 53.50 5.19 231 73 77

9 35 46 39.5 4.79 233 73 77

10 63 77 70.75 6.44 250 81 83

Table 7.14: Numerical results for medium datasets obtained by genetic algorithm

164

Problem

dataset

Minimum

cost

Maximum

cost

Average

cost

S.D. No. of

events

% of

used

seats

% of

used

slots

1 288 322 300.5 15.60 411 78 82

2 235 268 257.5 15.28 426 77 85

3 180 205 193.33 12.58 423 74 84

4 252 274 263.0 8.98 421 79 84

5 185 207 198.0 9.30 433 76 86

6 188 205 196.0 8.54 412 78 82

7 437 461 466.33 12.85 457 81 91

8 317 326 320.67 4.72 463 74 92

9 369 377 372.0 4.35 467 85 93

10 226 242 236.0 8.71 409 79 81

Table 7.15: Numerical results for large datasets obtained by genetic algorithm

7.1.4.4 Tabu search algorithm

In this section, we have given results (Table 7.16, Table 7.17, Table 7.18) obtained by tabu

search algorithm. We take tabu list length 5. Standard deviation for small size problem is less

and as problem size increases it also increases.

165

Problem

dataset

Minimum

cost

Maximum

cost

Average

cost

S.D. No. of

events

% of

used

seats

% of

used

slots

1 1 1 1.0 0 68 67 68

2 5 5 5.0 0 69 67 69

3 11 14 13.0 1.73 79 67 79

4 6 7 6.33 0.58 71 76 71

5 6 6 6.0 0 67 73 67

6 10 10 10.0 0 68 80 68

7 0 0 0 0 65 85 65

8 15 16 15.67 0.58 65 85 65

9 10 10 10 0 63 87 63

10 9 9 9 0 59 77 59

Table 7.16: Numerical results for small datasets obtained by tabu search algorithm

Problem

dataset

Minimum

cost

Maximum

cost

Average

cost

S.D. No. of

events

% of

used

seats

% of

used

slots

1 139 141 139.67 1.15 225 82 75

2 295 355 314.5 27.63 254 79 84

3 209 252 229.33 21.59 229 82 76

4 149 220 181.33 35.92 243 82 81

5 160 215 187.0 22.46 248 83 82

6 119 157 138.25 18.13 243 76 81

7 112 133 121.50 8.66 242 77 80

8 80 83 81.67 1.50 231 73 77

9 79 80 79.66 0.58 233 71 77

10 310 358 335.33 24.11 250 81 83

Table 7.17: Numerical results for medium datasets obtained by tabu search algorithm

166

Problem

dataset

Minimum

cost

Maximum

cost

Average

cost

S.D. No. of

events

% of

used

seats

% of

used

slots

1 437 493 475.50 25.92 411 77 82

2 358 404 379.33 23.18 426 78 85

3 239 266 249.67 14.36 423 73 84

4 377 407 393.0 15.10 421 78 84

5 328 393 364.33 33.17 433 74 86

6 248 282 262.33 17.61 412 76 82

7 946 1092 1002.0 67.97 457 80 91

8 659 724 685.2 29.96 463 74 92

9 957 1143 1036.75 88.92 467 83 93

10 319 329 325.25 5.29 409 81 81

Table 7.18: Numerical results for large datasets obtained by tabu search algorithm

7.1.4.5 Minimum cost Comparison of all algorithms

In this section, we have given comparison of minimum cost results obtained by all algorithms

(Table 7.19, Table 7.20, Table 7.21). Results of Honey bee mating and memetic algorithms

are same for small datasets, while results of genetic algorithms are better than tabu search

algorithm.

 For medium datasets, on some datasets honey bee mating algorithm is giving good results but

for others memetic algorithm’s performance is better. Memtic algorithm has given good

results on 7 datasets while honey bee mating algorithm has given good results on 3 datasets.

Thus for medium datasets, memetic algorithm has performed better than honey bee mating

algorithm. Genetic algorithm performance is better than tabu search algorithm but for one

dataset genetic algorithm is exceptionally performing well.

For large datasets, honey bee mating algorithm’s performance is far better than memtic

algorithm. Honey bee mating algorithm results are better than memetic algorithm for 9

datasets out of total 10.

167

We think honey bee mating algorithm’s performance is better due to its ability to explore and

exploit the search space simultaneously by using probabilistically guided search by the

queen’s transition and by employing local search at each iteration. The queen (current fittest

solution) is the best individual and every new brood is the composition of some parts of the

drone’s genotype with parts of the queen genotypes. So it is hoped that it will evolve superior

solutions. Again genetic algorithm is performing better than tabu search algorithm.

Datasets 1 2 3 4 5 6 7 8 9 10

H.B.M.A 0 5 5 5 5 10 0 15 10 9

M.A 0 5 5 5 5 10 0 15 10 9

G.A 1 5 11 5 5 10 1 15 10 9

T.S.A 1 5 11 6 6 10 0 15 10 9

Table 7.19: Minimum cost comparison of honey bee mating, memetic, genetic and tabu

search algorithms for small datasets.

Datasets 1 2 3 4 5 6 7 8 9 10

H.B.M.A 40 29 99 46 36 36 40 51 36 55

M.A 46 26 30 45 38 38 35 47 35 36

G.A 427 195 110 54 43 41 47 49 35 63

T.S.A 139 295 209 149 160 119 112 80 79 310

Table 7.20: Minimum cost comparison of honey bee mating, memetic, genetic and tabu

search algorithms for medium datasets.

Datasets 1 2 3 4 5 6 7 8 9 10

H.B.M.A 150 145 123 112 129 134 205 167 174 120

M.A 154 144 128 121 133 145 251 169 184 130

G.A 288 235 180 252 185 188 437 317 369 226

T.S.A 437 358 239 377 328 248 946 659 957 319

Table 7.21: Minimum cost comparison of honey bee mating, memetic, genetic and tabu

search algorithms for large datasets.

168

7.1.4.6 Maximum cost Comparison of all algorithms

In this section, we have given comparison of maximum cost results obtained by all algorithms

(Table 7.22, Table 7.23, Table 7.24). For small datasets, results of honey bee mating and

memtic algorithms are same. Genetic algorithm has given more maximum cost values than

tabu search algorithm. For medium datasets, honey bee mating and memtic algorithms results

are almost same. Tabu search algorithm is giving more maximum cost values than genetic

algorithm. This is opposite to small size instances where genetic algorithm costs are more.

In our opinion, for complex, large size problem and over big span of time genetic algorithm’s

operators and its nature inspired behaviour giving it edge on local search based algorithm. For

large datasets honey bee mating algorithm maximum cost is less than memetic algorithm for 9

datasets. Thus honey bee has produced better results than memetic algorithm for large

instances in terms of both maxim and minimum cost comparison.

Datasets 1 2 3 4 5 6 7 8 9 10

H.B.M.A 0 5 8 5 5 10 0 15 10 9

M.A 0 5 7 5 5 10 0 16 10 9

G.A 4 7 13 7 8 13 4 16 10 9

T.S.A 1 5 14 7 6 10 0 16 10 9

Table 7.22: Maximum cost comparison of honey bee mating, memetic, genetic and tabu

search algorithms for small datasets.

Datasets 1 2 3 4 5 6 7 8 9 10

H.B.M.A 51 35 103 49 44 40 48 54 40 57

M.A 53 35 32 53 51 46 49 53 39 62

G.A 460 226 116 69 66 52 50 58 46 77

T.S.A 141 355 252 220 215 157 133 83 80 358

Table 7.23: Maximum cost comparison of honey bee mating, memetic, genetic and tabu

search algorithms for medium datasets.

169

Datasets 1 2 3 4 5 6 7 8 9 10

H.B.M.A 158 153 125 123 142 146 232 188 197 138

M.A 169 162 135 126 165 164 264 183 215 163

G.A 322 268 205 274 207 205 461 326 377 242

T.S.A 493 404 266 407 393 282 1092 724 1143 329

Table 7.24: Maximum cost comparison of honey bee mating, memetic, genetic and tabu

search algorithms for large datasets.

7.1.4.7 Average cost Comparison of all algorithms

In this section, we have given ccomparison of average cost results obtained by all algorithms

(Table 7.25, Table 7.26, Table 7.27). Average cost for honey bee mating and memetic

algorithms are almost same, average cost for tabu search algorithm is better than genetic

algorithm for small dataset. For medium datasets, honey bee mating algorithm average cost is

better than memetic algorithm for 6 datasets.

 Average of genetic algorithm is better than tabu search algorithm. We have seen from our

results that tabu search algorithm perform well for small datasets but its performance

decreases as size of dataset increases comparing with genetic algorithm. For large datasets

average cost of honey bee mating algorithm if far better than memetic algorithm and similarly

genetic algorithm is far better than genetic algorithm for large size datasets.

Datasets 1 2 3 4 5 6 7 8 9 10

H.B.M.A 0 5 6.6 5 5 10 0 15 10 9

M.A 0 5 6 5 5 10 0 15.2 10 9

G.A 1.7 5.5 11.8 6.5 6 10.7 1.5 15.2 10 9

T.S.A 1 5 13 6.3 6 10 0 15.6 10 9

Table 7.25: Average cost comparison results of honey bee mating, memetic, genetic and tabu

search algorithms for small datasets.

170

Datasets 1 2 3 4 5 6 7 8 9 10

H.B.M.A 44. 32.2 100.6 47 41 38 44.3 51.6 38.6 56

M.A 49 31.7 31.2 48.7 43.2 41.7 44.5 50.2 36.5 59.5

G.A 440.2 209.2 113.7 63.2 52.4 46.6 48.2 53.5 39.5 70.7

T.S.A 139.6 314.5 229.3 181.3 187 138.2 121.5 81.6 79.6 335.3

Table 7.26: Average cost comparison results of honey bee mating, memetic, genetic and tabu

search algorithms for medium datasets.

Datasets 1 2 3 4 5 6 7 8 9 10

H.B.M.A 153.2 148.2 123.7 117 137 138.6 216.3 176 183 127

M.A 158.1 153 131.4 123 145.5 154.5 259.5 178.2 200 144.2

G.A 300.5 257.5 193.3 263 198 196 466.3 320.6 372 236

T.S.A 475.5 379.3 249.6 393 364.3 262.3 1002 685.2 1036.7 325.2

Table 7.27: Average cost comparison results of honey bee mating, memetic, genetic and tabu

search algorithms for large datasets.

7.1.5 Results of course timetabling Problem.2 datasets

In this section, we have given results obtained by honey bee mating and memetic algorithms

(Table 7.28, Table 7.29) across 5 runs on each of the 10 large size datasets of Problem.2. We

have taken mutation rate 7, kill colony 20 percent, population size 100 and time limit for large

datasets is fixed 600 seconds.

We have taken number of queens 1, number of drones 99, number of mating flights 4, Size of

queen’s spermatheca 5, number of elite drones 4, number of common drones 16, Ne-mat 1,

Nc-mat 4 for honey bee mating algorithm. These all parameters and their values are same as

are taken in Problem.1 in previous section. Datasets are also same but we have added some

more constraints in these datasets.

We have not generated small and medium size instances for this problem because we want to

see a glimpse of results for only large datasets as all size datasets have been discussed

thoroughly in previous section results. Our purpose for these results is that to see the behavior

of our proposed algorithms for more generalized complex problem that is why, we have

solved Problem.2 only with our memetic algorithm and honey bee algorithms for large

171

datasets only.

7.1.5.1 Memetic algorithm

We were expecting that increase in constraints in problem will increase the value of objective

function. Now values of objective function have been increased than objective function values

of Problem.1 large size datasets. For large size problems, memetic algorithm has produced

better results for five datasets than honey bee mating algorithm, while honey bee has

constructed better results for four datasets than memetic algorithm.

Problem

dataset

Minimum

cost

Maximum

cost

Average

cost

S.D. No. of

events

% of

used

seats

% of

used

slots

1 561 627 599 29.2 463 59 92

2 423 489 445.4 27.1 407 66 81

3 468 587 533.8 45.8 468 64 93

4 559 617 596.2 23.7 452 73 90

5 442 448 446 2.3 419 70 83

6 470 505 487 15.7 441 64 88

7 447 463 457 6.1 420 70 84

8 654 703 680.2 20.9 428 70 85

9 696 791 726.6 38.9 440 66 88

10 683 776 734.4 36.4 447 69 89

Table 7.28: Numerical results for large datasets obtained by memetic algorithm

7.1.5.2 Honey bee mating algorithm

When one increases number of constraints in a dataset its difficulty level increases. These

large size datasets are really good to analyze the performance of algorithms. In Problem.1,

honey bee mating algorithm performance was better for 9 datasets but by adding more

constraints in problem, now honey bee algorithm has produced better results for four datasets.

Similarly, there is a change in results for maximum cost of algorithms. Honey bee mating

algorithm was better for 9 datasets in Problem.1 but now memetic algorithm has constructed

better solutions for 9 datasets. However, performance of both algorithms is good.

172

Problem

dataset

Minimum

cost

Maximum

cost

Average

cost

S.D. No. of

events

% of

used

seats

% of

used

slots

1 539 647 591.4 42 463 60 92

2 423 504 446.4 32.7 407 66 81

3 505 592 545.6 32.5 468 64 93

4 560 660 583.8 38.2 452 72 90

5 446 508 471 23 419 69 83

6 492 516 500.2 9.5 441 64 88

7 462 487 480 11.9 420 69 84

8 646 733 674.8 35.9 428 70 85

9 695 709 700 5.7 440 66 88

10 679 787 714.4 41.9 447 69 89

Table 7.29: Numerical results for large datasets obtained by honey bee mating algorithm

7.2 Examination timetabling problem

We have also solved examination timetabling problem with our proposed algorithms. In this

section, we have discussed our experimental work on this problem.

7.2.1 Data generation for Examination timetabling problem

In this section we have generated data for examination timetabling and have checked

performance of proposed methods. For this purpose we have generated data where some sets

and sub sets have fixed values and others have been chosen randomly. Examination

timetabling problem is different from course timetabling so some sets and data pattern will be

different from course timetabling problem.

In our mathematical model we have added invigilator and have added the constraints related

to invigilator but in our experimental work we do not use them. One can add them to in the

implementation phase on the same lines as we have added them for course timetabling

problem but we have left them at the moment. The other reason is that in literature normally

examination problem was dealt without invigilator inclusion. Similarly in this experimental

173

work we do not take different types of rooms as we take for course timetabling but these can

also be added easily on the same lines like course timetabling problem

Details of data generations are given as follows.

Total number of examinations, classes, rooms, days, number of periods per day is fixed.

1. For each class, number of examinations is randomly generated from 2 to 5; an examination

can be part of maximum 25 different classes.

2. Number of students who take examination is randomly chosen between 5 and 100.

3. Each room capacity is randomly generated from 20 to 100.

4. Duration of each examination is randomly chosen from 1 to 4.

5. Duration of each period is also randomly generated from 1 to 4.

For large data

Here we present some more details about our data which are different for large, medium and

small problems.

1. Number of examinations for large problem are 125.

2. Number of classes for large problem is taken 70, these classes are generated randomly

(each class has 2 to 5 examinations chosen randomly).

3. Total number of rooms is 9.

4. Number of days is 4.

5. Number of periods is also 4.

6. Number of examination which should be the sole occupier of the room is 12 (randomly

chosen).

7. We have selected randomly 70 pairs of examinations which have precedence relation to

satisfy.

8. We have chosen 35 pairs of examinations which have coincidence relation to satisfy.

9. 3 rooms are unavailable (chosen randomly).

10. 2 periods are unavailable (chosen randomly).

11. Maximum examinations of a class per day limit is set 3.

12. Maximum examinations per room limit is set 3.

13. Allowed time for large problem is 400 seconds.

174

For medium data

1. Number of examinations for medium problem are 70.

2. Number of classes for medium problem is taken 40, these classes are generated randomly

(each class has 2 to 5 examinations chosen randomly).

3. Total number of rooms is 5.

4. Number of days is 4.

5. Number of periods is also 4.

6. Number of examination which should be the sole occupier of the room is 7 (randomly

chosen).

7. We have selected randomly 40 pairs of examinations which have precedence relation to

satisfy.

8. We have chosen 20 pairs of examinations which have coincidence relation to satisfy.

9. Two rooms are unavailable (chosen randomly).

10.One period is unavailable (chosen randomly).

11. Maximum examinations of a class per day limit is set 3.

12. Maximum examinations per room limit is set 2.

13. Allowed time for medium problem is 200 seconds.

For small data

1. Number of examinations for small problem are 20.

2. Number of clases for small problem is taken 6, these classes are generated randomly (each

class has 2 to 5 examinations chosen randomly).

3. Total number of rooms is 2.

4. Number of days is 4.

5. Number of periods is also 4.

6. Number of examination which should be the sole occupier of the roon is 2 (randomly

chosen).

7. We have selected randomly 9 pairs of examinations which have precedence relation to

satisfy.

8. We have chosen 4 pairs of examinations which have coincidence relation to satisfy.

9. One room is unavailable (chosen randomly).

10. One periods is unavailable (chosen randomly).

175

11. We do not put limit of maximum examinations of a class per day limit for small problem

datasets because maximum available rooms for these problems are 2.

12. Maximum examinations per room limit is set 2.

13. Allowed time for small problem is 100 seconds.

Constraint

Hard Soft

Every exam schedule once

×

Every exam schedule in a unique room

×

Every exam schedule in a unique period

×

Max. one exam of a class in a period

×

Duration of exam  to the duration of period

×

Precedence constraint

 1

Exams exclusion

 1

Exams coincidence

 1

Exam sole occupier of room

 1

Two Exams in a Row

 1

Two Exams in a day (on non consecutive periods)

 1

Big exams scheduled first

 1

Spare rooms

 1

Spare periods

 1

No mixed duration

 1

Max. exams of a class per day

 1

Max. exams in a period

 1

Room capacity

 Size of
class -

capacity

of room

 0

Table 7.30: Constraints for examination timetabling problem

For examination mutation rate 3, population size 100, 50 percent and time 400, 200, 100

seconds for large, medium and small respectively.

Many other constraints like pre assigned periods to examinations, examination on the same

day, examination on the different days, specify any room for any examination, specified

spread of examination, room types etc. can be added and solved easily in a similar way as

these are dealt in course timetabling problem.

176

7.2.2 Results of examination timetabling problem datasets

In this section we have presented the results obtained from our algorithms by using above

mentioned generated data. For large examination timetabling datasets, number of generated

examinations is 125 and total number of used slots for this data is 86%, for medium date

number of examinations is 70 and 87% slots are used and for small datasets number of

examinations are 20 and percentage of used slots for these problems is 62%. The remaining

parameters are the same as used for course timetabling problem.

7.2.2.1 Minimum cost comparison of all algorithms

Minimum cost results for small datasets have shown almost same performance for all

algorithms. For medium datasets, honey bee mating algorithm has shown good performance

than memetic algorithm for 3 datasets and memetic algorithm’s performance is better for one

dataset than honey bee mating algorithm but on remaining datasets their performance is same.

For large datasets, honey bee algorithm performance is better for 5 datasets than memetic

algorithm while memtic algorithm is showing better performance on 4 datasets than honey

bee mating algorithm. Genetic algorithm performance is lower than honey bee mating and

memetic algorithms.

 1 2 3 4 5 6 7 8 9 10

H.B.M.A 1 5 2 4 1 0 4 4 0 0

M.A 1 5 2 4 1 0 4 4 0 0

G.A 2 5 2 4 1 0 4 4 3 0

Table 7.31: Minimum cost comparison of all algorithms for small datasets

 1 2 3 4 5 6 7 8 9 10

H.B.M.A 48 47 117 47 54 47 66 131 46 74

M.A 48 46 117 47 54 47 68 131 63 75

G.A 61 51 132 49 59 50 79 159 65 79

Table 7.32: Minimum cost comparison of all algorithms for medium datasets

177

 1 2 3 4 5 6 7 8 9 10

H.B.M.A 162 156 37 155 140 236 80 53 152 30

M.A 126 156 33 154 160 255 82 63 146 42

G.A 737 1040 603 719 429 1456 625 358 683 404

Table 7.33: Minimum cost comparison of all algorithms for large datasets

7.2.2.2 Maximum cost comparison of all algorithms

Maximum cost is same for honey bee mating and memetic algorithms for small datasets. For

medium datasets, two datasets solved by honey bee mating algorithm have given more cost

than memetic algorithm while memetic algorithm has shown more cost on one dataset.

Memetic algorithm has produced more cost for 8 datasets for large size datasets. Honey bee

mating algorithm performance is better than memetic algorithm in terms of maximum cost

comparison for large datasets. Genetic algorithm’s overall performance is lower than honey

bee mating and memetic algorithms for all datasets of all sizes.

 1 2 3 4 5 6 7 8 9 10

H.B.M.A 1 5 2 4 1 0 4 4 0 0

M.A 1 5 2 4 1 0 4 4 0 0

G.A 2 5 2 4 1 0 4 4 3 0

Table 7.34: Maximum cost comparison of all algorithms for small datasets

 1 2 3 4 5 6 7 8 9 10

H.B.M.A 49 57 118 48 55 48 69 141 49 75

M.A 49 57 118 48 55 48 68 140 65 75

G.A 93 72 140 54 77 52 99 179 80 90

Table 7.35: Maximum cost comparison of all algorithms for medium datasets

178

 1 2 3 4 5 6 7 8 9 10

H.B.M.A 280 176 48 165 168 264 86 78 157 49

M.A 269 190 69 168 170 291 117 83 176 49

G.A 1125 1328 919 999 534 1595 832 475 916 487

Table 7.36: Maximum cost comparison of all algorithms for large datasets

7.2.2.3 Average cost comparison of all algorithms

Average cost of honey bee mating algorithm and memetic algorithm is same for small datasets

while average cost of genetic algorithm is more than other two algorithms. Honey bee mating

algorithm average cost is better on 6 datasets and memtic algorithm is performed better on 4

datasets for medium datasets. Honey bee mating algorithm has performed better on 8 datasets

than memetic algorithm and memetic algorithm is performed better on 2 datasets.

 1 2 3 4 5 6 7 8 9 10

H.B.M.A 1 5 2 4 1 0 4 4 0 0

M.A 1 5 2 4 1 0 4 4 0 0

G.A 2 5 2 4 1 0 3 4 3 0

Table 7.37: Average cost comparison of all algorithms for small datasets

 1 2 3 4 5 6 7 8 9 10

H.B.M.A 48.6 50 117.2 47.5 54.2 47.4 67 135.8 48 74.7

M.A 48.3 49.6 117.3 47.3 54.6 47.6 68 134.6 64 75

G.A 75.3 58.6 135.3 51 68.6 51.3 86 170 70.2 85.6

Table 7.38: Average cost comparison of all algorithms for medium datasets

 1 2 3 4 5 6 7 8 9 10

H.B.M.A 204.5 164.0 42.7 157 155.6 254.3 82.6 63.6 154.3 40.1

M.A 196.0 169.6 46.6 148 165.3 275.2 101.2 74.7 158.2 44.6

G.A 935 1142 782 850 476.6 1509.3 726.3 426.6 795.6 453.3

Table 7.39: Average cost comparison of all algorithms for large datasets

179

7.2.2.4 Standard deviation comparison of all algorithms

For small datasets, standard deviation is 0 for all algorithms. For medium datasets, honey bee

mating algorithm is showing better results for 7 datasets while memetic algorithm is better on

3 datasets. Honey bee mating standard deviation is less for 5 datasets and on remaining 5

datasets memetic algorithm is showing less deviation value.

 1 2 3 4 5 6 7 8 9 10

H.B.M.A 0 0 0 0 0 0 0 0 0 0

M.A 0 0 0 0 0 0 0 0 0 0

G.A 0 0 0 0 0 0 0 0 0 0

Table 7.40: Standard deviation comparison of all algorithms for small datasets

 1 2 3 4 5 6 7 8 9 10

H.B.M.A 0.52 4.34 0.50 0.55 0.45 0.55 1.22 5.21 1.1 0.5

M.A 0.58 6.35 0.58 0.58 0.58 0.58 0.0 4.73 1 0

G.A 16.26 11.59 4.16 2.64 9.07 1.15 11.27 10.15 5.93 5.8

Table 7.41: Standard deviation comparison of all algorithms for medium datasets

 1 2 3 4 5 6 7 8 9 10

H.B.M.A 49.22 9.09 5.56 5.0 14.2 15.8 3.06 12.8 2.52 8.13

M.A 45.69 13.54 13.79 8.08 5.03 15.19 14.52 9.54 14.84 3.79

G.A 194.1 161.07 162.26 140.87 53.16 74.93 103.56 61.09 116.69 43.69

Table 7.42: Standard deviation comparison of all algorithms for large datasets

7.3 Discussion on Results and conclusion

We have used certain time limits on our algorithms during testing of our datasets and we

consider this is fair for these sizes of problems. These are 100, 400 and 600 seconds of CPU

time for the small, medium and large datasets respectively. We have used hardware Pentium

180

IV 2.5Ghz processor with 4GB RAM under a Windows operating system for these

experiments (and indeed for all experiments described in this thesis).

The behavior of these algorithms with the small, medium and large datasets in our

experiments is actually noticed different in each case. Algorithms performance is well across

the set of small datasets and there is less difference of performance for these datasets. Our

algorithms are two-stage algorithms, which operates by first constructing a population of fully

feasible timetables, and then evolves these whilst always remaining in feasible areas of the

search space.

Our initial motivations for designing an evolutionary algorithm were as follows:

(1) Even though many different types of metaheuristic algorithm were submitted to the

International Timetabling Competition, interestingly none of the entrants chose to make use of

any sort of evolutionary technique.

(2) The other purpose of this algorithm was to get a feasible timetable in relatively small

amounts of time by using two phase procedure.

We therefore consider it interesting to develop an evolutionary algorithm to solve our

generalized timetabling problem that can follow this two phase approach and we can check its

performance.

Our preliminary tests show that existing bench mark datasets (of ITC 2007: curriculum based

course timetabling problem) can be easily solved with this algorithm for obtaining feasible

solutions (solution that satisfies the hard constraints only). We have generated some datasets

for this purpose. We have observed that if we increase the killing rate it would decrease the

speed of algorithm but it will decrease objective function value in less number of iterations.

Our population based algorithms are two phase algorithms. They eliminate hard constraints in

first phase and try to satisfy soft constraints in second phase. The first phases take only 3-5 %

of total time used. While the second phase takes the rest of the time.

181

Cost on y-axis and number of iterations on x-axis

Figure 7.1: is showing the behaviour of the algorithms for medium sized dataset. These

algorithms are run for 5000 iterations. X-axis represents number of iterations and Y-axis

represents the cost at each iteration. The mutation rate is set to 7, kill colony 20 percent and

population size 100.

The local search based algorithm (Tabu search) performs in single phase. It try to satisfy hard

and soft constraints simultaneously. In tabu search, we have taken length of tabu list equal to

5. Figure 7.1 shows that tabu search is performing worst. The possible reason can be that in

this tabu search, we have not used aspiration criteria or any guided search strategy for

neighbourhood moves. By doing so, the search process may loos some good solutions.

In our preliminary experiments, we found that solutions obtained with simple local search in

start are better than genetic algorithm but after certain time local search may trap in local

minima and genetic algorithm continues its improvement as number of iterations increases.

We think it is due to large number of population and the special genetic operators; these

genetic operators provide diversity to genetic algorithm and also help to avoid from local

minima.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
1

2
5

1

5
0

1

7
5

1

1
0

0
1

1
2

5
1

1
5

0
1

1
7

5
1

2
0

0
1

2
2

5
1

2
5

0
1

2
7

5
1

3
0

0
1

3
2

5
1

3
5

0
1

3
7

5
1

4
0

0
1

4
2

5
1

4
5

0
1

4
7

5
1

Tabu search

Genetic Algorithm

Memtic Algorithm

Honey bee mating Algorithm

182

Cost on y-axis and number of iterations on x-axis

Figure 7.2: Showing the comparison of different selection operators for memetic algorithm

The figure (Figure 7.1) shows that memetic algorithm and honey bee mating algorithms are

performing well. But Honey bee mating algorithm performance is better towards the end of

iterations. We think that it is due to fixing one solution as queen for mating in the whole

generation. This can reduce the diversity of solutions as compared to the memetic algorithm

where we choose two different parents for each generation. We have run these algorithms

once on one medium sized dataset. As in literature, normally ten to twenty runs are performed

on one dataset. Then they get results for average cost of all the runs. But we have run these

algorithms in our preliminary experiments during their construction and also for our small,

medium and large datasets. Detail performance of these algorithms can be found from the

results. We have drawn a graph of a medium sized dataset to show the general behaviour of

these algorithms.

0

500

1000

1500

2000

2500

3000

1

1
0

1

2
0

1

3
0

1

4
0

1

5
0

1

6
0

1

7
0

1

8
0

1

9
0

1

1
0

0
1

1

1
0

1

1
2

0
1

1

3
0

1

1
4

0
1

1

5
0

1

1
6

0
1

1

7
0

1

1
8

0
1

1

9
0

1

Roulette Wheel Selection

Random

Elitism

Elitism+ Random

183

In figure 7.2, we have shown the comparison of different selection operators while using

memetic algorithm. From this figure one can notice that roulette wheel selection is performing

best for this algorithm. We think the reason of this best performance is that the roulette wheel

selection provides more chance of survive to fittest individuals than weaker ones. Thus these

fitter individuals have a better probability of survival and go forward for the next generation

through the mating pool. At the same time weaker individuals also have chances of selection

which also may be useful for future generations. Selection operator which uses elitism criteria

does not perform well at start but at end its performance becomes bit acceptable. Similarly

random and elitism plus random operators work well for algorithm but at the end the

performance of elitism plus random selection operator performs well than random operator.

Cost on y-axis and time on x-axis

Figure 7.3: Time and cost comparison of all algorithms

In figure 7.3 cost-time comparison of these algorithms can be seen. Tabu search algorithm

starts with big amount of objective value and in starting few seconds it reduces this cost value

0

5000

10000

15000

20000

25000

30000

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

1
2

7

1
3

6

1
4

5

1
5

4

1
6

3

1
7

2

1
8

1

1
9

0

1
9

9

2
0

8

2
1

7

2
2

6

 MA

 GA

 HBMA

TSA

184

quickly but then it reduces the value slowly. Genetic algorithm starts with relatively small

cost value but after few seconds memetic algorithm and honey bee mating algorithms reach

genetic algorithm and perform better till end.

Our experiments on datasets have shown that tabu search and genetic algorithm performance

is good on small datasets, it constructs good solutions in comparison with memetic and honey

bee algorithms. But large datasets affect their performance and tabu search algorithm could

not produce good results on these problems. Although genetic algorithm performs relatively

well than tabu sarch algorithm. We have found best results with honey bee mating and

memetic algorithms.

185

GENERAL CONCLUSION

In this thesis we have examined various algorithms for university and examination

timetabling problems. We have given a general conclusion of thesis and future perspectives

here.

In Chapter 1, we have given an introduction of educational timetabling problems and the

approaches used to solve these problems. We have discussed different types of educational

timetabling problems with different types of constraints which makes this type of problem

really difficult. We have focused on different metaheuristics used in literature to solve

timetabling problems like local search based and population based metaheuristics because we

have proposed metaheuristics to solve timetabling problems.In Chapter 2, We have

formulated two mathematical formulations of course timetabling problem which are the

prototype of single-mode RCPSP, which are linear integer programming models and could be

solved by using linear programming solvers.

We have given a generalized mathematical formulation for university course timetabling

problem in Chapter 3. We have written many constraints of different university environments

in their mathematical relations. For that purpose, we have defined sets, subsets, different

parameters and decision variables needed for formulating this generic model. These

constraints are classified in six sets namely, hard constraints, period related constraints, room

related constraints, class related constraints, course related constraints and teacher related

constraints. We have also discussed how different objective functions could be written from

soft constraint relations by using this generic model. We have given a generic model for

examination timetabling problem in Chapter 4.

We have discussed different instances of course and examination timetabling problems which

are sub problems of our generalized course and examination timetabling problems in Chapter

5. We have shown that how mathematical models of these instances can be deduced from our

generalized examination and course timetabling problem.

We have proposed our algorithms for solving university course and examination timetabling

problems in Chapter 6. These are population based algorithms, namely, memetic and honey

bee mating algorithm. We have explained their solution representations, their parameters and

operators in detail. We have proposed a local search to use in memetic algorithm. We have

discussed procedures to make initial solutions for these population based algorithms.

186

We have analyzed results obtained by our proposed algorithms in Chapter 7. We have applied

our memetic algorithm on one benchmark timetabling problem and have compared our results

on benchmark instance with other algorithms used in literature. We have also tested our

algorithms on generalized educational and examination timetabling problems. We have

generated data for both generalized course and examination timetabling problems. We have

also solved these datasets with genetic and tabu search algorithms alongside our algorithms

and have compared results of these four algorithms while using same termination criteria.

Perspectives

Now, we round off this thesis with some general comments about this work and also give

some suggestions for further research work.

We have proposed generic models for timetabling problem which contain many problems as

its sub part. These are the problems coming from different departments and we have

accumulated them in a single model. When we apply our proposed algorithms on these big

size problems, scaling up issues give us clue for future research work. In real world

timetabling sometimes, one department courses forms a distinct clump than the courses of

other departments. This department may have only few or no common students, may use

different campus and may have different set of rooms, with other departments. Thus we think

that scheduling of this type of department has little bearing on other departments. So this kind

of departments can be scheduled independently by using any relaxation technique while

objective is to construct a timetable for whole university. In our opinion, by using this strategy

search space can be relaxed and performance of algorithms can be enhanced.

Performance of algorithms may be improved by using any other solution construction

processes. Behavior of the crossover operator may be changed by implying some sort of

condition on it. For example, we may put restriction on our uniform crossover that it would

change a gene only when by changing it timetable remains feasible. Our local search plays a

vital role in algorithm and we may use some more grained neighbourhood structures to

enhance the performance of algorithm. We have solved course and examination timetabling

problems with honey bee mating algorithm. We think, by setting parameters such as

population size, number of drones, number of mating flights, size of queen’s spermatheca etc.

and by using some more sophisticated heuristics to make initial solution can improve

performance of the algorithm.

187

We have also solved our datasets with tabu search algorithm, we may think to incorporate

tabu search algorithm with memtic algorithm. Performance of algorithm may be improved by

using sets of neighbourhood structures in form of a sequence during the searching process.

The tabu list can be used to control the selection of neighbourhood structures, for example if

any neighbourhood structure is not improving the result after some specific attempts then

algorithm would try next neighbourhood structure in sequence list.

A part of our thesis consists of linear integer programming. We may solve these problems by

using lexicographical optimization with sub problems. Preference criterion of cost functions

of these sub problems can give edge to prioritize the constraint satisfaction according to the

requirements while having broader search space for more preferred objectives.

We have given a transformation of course timetabling to resource constrained project

scheduling problem (RCPSP). The use of our memetic and honey bee mating algorithms

could be adopted to solve these problems as well. We hope, solution representation of our

timetabling algorithms can be converted for RCPSP by concentrating on the given

transformation.

188

189

REFERENCES

[1] L. Zhipeng and J. K. Hao. Adaptive tabu search for course timetabling, European

Journal of Operational Research 200, 235-244, 2010.

[2] E. K. Burke, J. Mareceka, A. J. Parkes and H. Rudová. Decomposition, reformulation

and diving in university course timetabling, Computers and Operations Research 37,

582-597, 2010.

[3] P. D. Causmaecker, P. Demeester and G. V. Berghe.

A decomposed metaheuristic

approach for a real-world university timetabling problem, European Journal of

Operational Research 195, 307-318, 2009.

[4] T. A. Duong, V. H. Tam and N. Q. V. Hung. Generating complete university course

timetables by using local search methods, Research, Innovation and Vision for the

Future, 67-74, 2006.

[5] M. Carey. A model and strategy for train pathing with choice of lines, platforms and

routes, Transp. Res. Part B 28(5), 333-353, 1994.

[6] X. Zhou and M. Zhong. Single-track train timetabling with guaranteed optimality:

branch-and-bound algorithms with enhanced lower bounds, Transp. Res. Part B 41(3)

320-341, 2007.

[7] O. Guyon, P. Lemaire, É. Pinson and D. Rivreau. Cut generation for an integrated

employee timetabling and production scheduling problem, European Journal of

Operational Research 201, 557-567, 2010.

[8] L. Zhipeng and J. K. Hao. Adaptive neighborhood search for nurse rostering,

European Journal of Operational Research 218, 865-876, 2012.

[9] A. Viana and J. S. Pinho. Using metaheuristics in multiobjective resource constrained

project scheduling, European Journal of Operational Research 120, 359-374, 2000.

[10] A. Schaerf. A survey of automated timetabling, Artificial Intelligence Review 13(2),

87-127, 1999.

[11] D. Corne, P. Ross, and H. Fang. Evolving timetables in the practical handbook of

genetic algorithms, L. C. Chambers (Ed.), CRC Press, 1, 219-276, 1995.

[12] S. Daskalaki , T. Birbas and E. Housos. An integer programming formulation for a

case study in university timetabling, European Journal of Operational Research 153,

117-135, 2004.

190

[13] A. Pasquale and I. Vasil’ev. A computational study of a cutting plane algorithm for

university course timetabling, Journal of Scheduling 8, 497-514, 2005.

[14] G. Kendall, S. Knust, C. C. Ribeiro and S. Urrutia. Scheduling in sports: An annotated

bibliography, Computers and Operations Research 37, 1-19, 2010.

[15] S. Abdullah, E. K. Burke, and B. McCollum. Using a randomised iterative

improvement algorithm with composite neighbourhood structures for the university

course timetabling problem, Metaheuristics, Operations Research / Computer Science

Interfaces Series 39, 153-169, 2007.

[16] M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-Doria. An effective hybrid

approach for the university course timetabling problem, Journal of Scheduling 9(5),

403-432, 2006.

[17] L. D. Gaspero and A. Schaerf. Neighborhood portfolio approach for local search

applied to timetabling problems, Journal of Mathematical Modeling and Algorithms

5(1), 65-89, 2006.

[18] P. Kostuch. The university course timetabling problem with a three-phase approach,

Practice and Theory of Automated Timetabling (PATAT 2004), 109-125, 2004.

[19] A. Bonutti, F. D. Cesco, L. D. Gaspero and A.Schaerf. Benchmarking curriculum-

based course timetabling: formulations, data formats, instances, validation,

visualization, and results, Annals of operations research, 194(1), 59-70, 2012.

[20] D. Werra. Graphs, hypergraphs and timetabling, Methods of Operations Research 49,

201-213, 1985.

[21] E. K. Burke, J. Kingston and D. Werra. Applications to timetabling. In: J. Gross, J.

Yellen (Eds.), Handbook of Graph Theory, Chapman Hall/CRC Press, 445-474, 2004.

[22] P. Brucker, A. Drexl, R. Mohring, K. Neumannd and E. Pesch. Resource-constrained

project scheduling: Notation, classification, models, and methods, European Journal

of Operational Research 112, 3-41, 1999.

[23] K. Fleszar and K. S. Hindi. Solving the resource-constrained project scheduling

problem by a variable neighbourhood search, European Journal of Operational

Research 155 402-413, 2004.

[24] S. Daskalaki and T. Birbas. Efficient solutions for a university timetabling problem

through integer programming, European Journal of Operational Research 160, 106-

120, 2005.

http://www.springerlink.com/content/?Author=Alex+Bonutti
http://www.springerlink.com/content/?Author=Fabio+De+Cesco
http://www.springerlink.com/content/?Author=Luca+Di+Gaspero
http://www.springerlink.com/content/?Author=Andrea+Schaerf
http://www.springerlink.com/content/932k651m03330t38/
http://www.springerlink.com/content/932k651m03330t38/
http://www.springerlink.com/content/932k651m03330t38/

191

[25] M.Ahmad, C. Caux and M. Gourgand. Generic model for university course

timetabling problem solved by genetic algorithm, Industrial Simulation Conference

(ISC 2012), 4-6 June, Brno, Czech Republic, 209-216, 2012.

[26] A. F. Jacques and A. Lavoie. Exchanges procedures for timetabling problems,

Discrete Applied Mathematics 35, 237-253, 1992.

[27] N. Boland, B. D. Hughes, L. T. G. Merlotb and P. J. Stuckey. New integer linear

programming approaches for course timetabling, Computers and Operations Research

35, 2209-2233, 2008.

[28] S. Daskalaki, T. Birbas and E. Housos. An integer programming formulation for a

case study in university timetabling, European Journal of Operational Research 153,

117-135, 2004.

[29] R. Kolisch and S. Hartmann. Experimental investigation of heuristics for resource-

constrained project scheduling: An update, European Journal of Operational

Research 174, 23-37, 2006.

[30] K.J. Batenburg and W.J. Palenstijn, A new exam timetabling algorithm, Belgian-

Dutch Artificial Intelligence Conference (BNAIC 2003), 19-26, 2003.

[31] J. M. Thompson and K. A. Dowsland. A robust simulated annealing based

examination timetabling system, Computers and Operations Research 25(7-8), 637-

648, 1998.

[32] C. Beyrouthy, E. K. Burke, D. Landa-Silva, M. B. Collum, M. P. Mullan and A. J.

Parkes. Towards improving the utilisation of university teaching space, Journal of the

Operational Research Society 60(1), 130-143, 2009.

[33] E. K. Burke, J. C. Mare, A. J. Parkes and H. Rudová. On a clique-based integer

programming formulation of vertex colouring with applications in course timetabling,

Technical Report NOTTCS-TR-2007-10, The University of Nottingham, Nottingham,

2007.

[34] P. Ross, E. Hart, and D. Corne. In Advances in Evolutionary Computing: Theory and

Applications, topic: Genetic algorithms and timetabling, A. Ghosh and K. Tsutsui,

(Eds.), Springer-Verlag, New York, 755- 771, 2003.

[35] T. Müller. ITC2007 solver description: A hybrid approach, Practice and Theory of

Automated Timetabling (PATAT 2008), 2008.

192

[36] M.J. Geiger. An application of the threshold accepting metaheuristic for curriculum

based course timetabling, Practice and Theory of Automated Timetabling (PATAT

2008), 2008.

[37] M. Clark, M. Henz, B. Love and F. Quik. A repair-based timetable solver, Practice

and Theory of Automated Timetabling (PATAT 2008), 2008.

[38] S. Abdullah, H. Turabieh, B. McCollum and E. K. Burke. An investigation of a

genetic algorithm and sequential local search approach for curriculum-based course

timetabling problems, Multidisciplinary International Conference on Scheduling:

Theory and Applications (MISTA 2009), 10-12 August, Dublin, Ireland, 2009.

[39] K. Shaker and S. Abdullah. Incorporating great deluge approach with kempe chain

neighbourhood structure for curriculum-based course timetabling problems, Data

Mining and Optimization (DMO 2009), 149-153, 2009.

[40] B. McCollum, A. Schaerf, B. Paechter, P.McMullan, R. Lewis, A. J. Parkes, L. D.

Gaspero, Q. Rong and E. K. Burke. Setting the research agenda in automated

timetabling, The Second International Timetabling Competition INFORMS Journal on

Computing 22(1), 120-130, 2010.

[41] L. Zhipeng, J. K. Hao and F. Glover. Neighborhood analysis: A case study on

curriculum based course timetabling, Technical Report, LERIA, University of Angers,

France, 2009.

[42] http://www.cs.qub.ac.uk/itc2007/

[43] L. D. Gaspero, B. McCollum and A. Schaerf. The second international timetabling

competition (ITC-2007): curriculum-based course timetabling (Track 3), in:

International Workshop on Scheduling a Scheduling Competition, International

Conference on Automated Planning and Scheduling (ICAPS 2007), 22–26 September,

Providence, Rhode Island, USA, 2007.

[44] B. McCollum, P. McMullan, A.J. Parkers, E.K. Burke and R. Qu. A new model for

automated examination timetabling, Annals of Operations Research 194(1), 291-315,

2012.

[45] M. Alzaqebah and S. Abdullah. Artificial bee colony search algorithm for examination

timetabling problems, International Journal of the Physical Sciences 6(17), 4264-

4272, 2011.

http://www.cs.qub.ac.uk/itc2007/

193

[46] K. Nguyen, P. Nguyen and N. Tran. A hybrid algorithm of harmony search and bees

algorithm for a university course timetabling problem, IJCSI International Journal of

Computer Science Issues 9(1), 2012.

[47] M. Alzaqebah and S. Abdullah. The bees algorithm for examination timetabling

problems, International Journal of Soft Computing and Engineering (IJSCE) 1(5),

2231-2307, 2011.

[48] N. R. Sabar, M. Ayob, G. Kendall and Q. Rong. A honey-bee mating optimization

algorithm for educational timetabling problems, European Journal of Operational

Research 216, 533-543, 2012.

[49] A. Baykasoulu, L. Ozbakır, P. Tapkan. Artificial bee colony algorithm and its

application to generalized assignment problem, In: T.S.C. Felix and M. K. Tiwari

(Eds.), Swarm Intelligence, Focus on Ant and Particle Swarm Optimization, I-Tech

Education and Publishing, Vienna, Austria, ISBN 978-3-902613-09-7, page 532,

2007.

[50] E. K. Burke, J. P. Newall and R. F. Weare. A memetic algorithm for university exam

timetabling, In: E. K. Burke, P. Ross (Eds.), Practice and Theory of Timetabling

(PATAT 1995), Lecture Notes in Computer Science, Springer, Heidelberg, 1153, 241-

250, 1996.

[51] K. Socha, M. Samples and M. Manfrin. Ant algorithms for the university course

timetabling problem with regard to the state-of-the-art, In: Evolutionary Computation

in Combinatorial Optimization (EvoCOP 2003), Lecture Notes in Computer Science

2611, 334-345, Springer-Verlag, Berlin, 2003.

[52] N. Pillay and W. Banzhaf. An informed genetic algorithm for the examination

timetable problem, Applied Soft Computing 10, 457-467, 2010.

[53] P. Cote, T. Wong, R. Sabourin. A hybrid multi-objective evolutionary algorithm for

the uncapacitated exam proximity problem, In: E. K. Burke, M. Trick (Eds.), Practice

and Theory of Automated Timetabling (PATAT 2004), Lecture Notes in Computer

Science 3616, 294-312, Springer, 2005.

[54] M. Eley. Ant algorithms for the exam timetabling problem, In: E. K. Burke, H.

Rudova (Eds.), Practice and Theory of Timetabling (PATAT 2006), Lecture Notes in

Computer Science, Springer, Heidelberg, 3867, 364-382, 2007.

[55] D. Costa and A. Hertz. Ant can colour graphs, Journal of Operational Research

Society 48, 295-305, 1997.

194

[56] E. Ersoy, E. Ozcan and A. S. Etaner. Memetic algorithms and hyper hill-climbers,

Multidisciplinary International Conference on Scheduling: Theory and Applications

(MISTA 2007), 159-166, 2007.

[57] E. K. Burke, A. J. Eckersley, B. McCollum, S. Petrovic and R. Qu. Hybrid variable

neighbourhood approaches to university exam timetabling, European Journal of

Operational Research 206, 46-53, 2010.

[58] D. Landa-Silva and J. H. Obit. Evolutionary non-linear great deluge for university

course timetabling, Hybrid Artificial Intelligent (HAIS 2009) LNAI, Springer-Verlag,

Berlin, Heidelberg 5572, 269-276, 2009.

[59] S. Abdullah, E. K. Burke, and B. McCollum. A hybrid evolutionary approach to the

university course timetabling problem, IEEE Congress on Evolutionary Computation

(CEC2007), 1764-1768, 2007.

[60] H. Turabieh, S. Abdullah, and B. McCollum. Electromagnetism-like mechanism with

force decay rate great deluge for the course timetabling problem, Rough Set and

Knowledge Technology (RSKT 2009), In: P. Wen et al. (Eds.),Lecture Notes in

Computer Science, Springer-Verlag, Berlin, Heidelberg, 5589, 497-504, 2009.

[61] K. V. Frisch. Bees: Their Vision, Chemical Senses and Language, Cornell University

Press, New York, Ithaca, 1976.

[62] T. D. Seeley. The wisdom of the hive: The social physiology of honey bee colonies,

Massachusetts: Harvard University Press, Cambridge, 1996.

[63] E. Bonabeau, M. Dorigo and G. Theraulaz. Swarm Intelligence: From Natural to

Artificial Systems, Oxford University Press, New York, 1999.

[64] S. Camazine, J. Deneubourg, N. R. Franks, J. Sneyd, G. Theraula and E. Bonabeau.

Self-Organization in Biological Systems, Princeton: Princeton University Press, 2003.

[65] X. T. Ioannis and G. N. Beligiannis. A hybrid particle swarm optimization based

algorithm for high school timetabling problems, Applied Soft Computing 12(11),

3472-3489, 2012.

[66] D.T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim and M. Zaidi. The Bees

Algorithm. Technical Note, Manufacturing Engineering Centre, Cardiff University,

UK, 2005.

[67] D.T. Pham, E. Kog, A. Ghanbarzadeh, S. Otri, S. Rahim, M. Zaidi. The Bees

Algorithm - A novel tool for complex optimisation problems, Intelligent Production

Machines and Systems (IPROMS 2006), Oxford, 2006.

http://www.sciencedirect.com/science/article/pii/S1568494612002876
http://www.sciencedirect.com/science/article/pii/S1568494612002876
http://www.sciencedirect.com/science/journal/15684946
http://www.sciencedirect.com/science/journal/15684946/12/11
http://www.sciencedirect.com/science/journal/15684946/12/11

195

[68] H. A. Abbass. A monogenous MBO approach to satisfiability, Computational

Intelligence for Modeling, Control and Automation (CIMCA 2001), Las Vegas, NV,

USA, 2001.

[69] H. A. Abbass. Marriage in honey-bee optimization (MBO): A haplometrosis

polygynous swarming approach, IEEE Congress on Evolutionary Computation (CEC

2001), Seoul, Korea, 207-214, 2001.

[70] S. J. Naseem and S. Yang. A guided search genetic algorithm for the university course

timetabling problem, Multidisciplinary International Conference on Scheduling:

Theory and Applications (MISTA 2009) 10-12 August, Dublin, Ireland, 2009.

[71] M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-Doria. An effective hybrid

algorithm for university course timetabling, Journal of Scheduling 9(5) 403-432, 2006.

[72] S.A. M. Hassani. A computational approach to enhancing course timetabling with

integer programming, Applied Mathematics and Computation 175, 814-822, 2006.

[73] E. K. Burke and S. Petrovic. Recent research directions in automated timetabling,

European Journal of Operational Research 140, 266-280, 2002.

[74] S. Massoodian and A. Esteki. A Hybrid Genetic Algorithm for Curriculum Based

Course Timetabling, Practice and Theory of Automated Timetabling (PATAT 2008),

18-22 August, Montreal, Canada.

[75] Z. Bratkovic, T. Herman, V. Omrcen, M. Cupic and D. Jakobovic. University course

timetabling with genetic algorithm: a laboratory exercises case study, Evolutionary

Computation in Combinatorial Optimization, Lecture Notes in Computer Science

5482, 240-251, 2009.

[76] E. Özcan and A. Alkan. A memetic algorithm for solving a timetabling problem: An

incremental strategy, In: P. Baptiste, G. Kendall, A.M. Kordon and F. Sourd (Eds.),

Multidisciplinary International Conference on Scheduling: Theory and Applications

(MISTA 2007), 394-401, 2007.

[77] O. Rossi-Doria and B. Paechter. A memetic algorithm for University Course

Timetabling, In Combinatorial optimisation 2004, Book of abstracts page, 56.

[78] M. Chiarandini, M. Birattari, K. Socha and O. Rossi-Doria. An effective hybrid

approach for the University Course Timetabling Problem, Journal of Scheduling 9(5),

403-432, 2006.

196

[79] K. Socha. The influence of run-time limits on choosing ant system parameters,

International Conference on Genetic and evolutionary computation, (GECCO 2003),

49-60, 2003.

[80] H.M. Terashima, P. Ross and M.R. Valenzuela. Evolution of constraint satisfaction

strategies in examination timetabling, genetic and evolutionary computation

conference (GECCO), Morgan Kauffmann, 635-642, 1999.

[81] D. G. Whitley. A Different Genetic Algorithm, Rocky Mountain Conference on

Artificial Intelligence, Denver, USA, 1988.

[82] M. W. Carter, G.Laporte and S. Y. Lee. Examination timetabling: Algorithmic

strategies and applications, Journal of the Operational Research Society 47, 373-383,

1996.

[83] O. Rossi-Doria and Ben Paechter. An hyperheuristic approach to course timetabling

problem using an evolutionary algorithm, Technical Report, Napier University,

Edinburgh, Scotland, 2003.

[84] C. Blum, S. Correia, M. Dorigo, B. Paechter, O. Rossi-Doria and M. Snoek. A GA

evolving instructions for a timetable builder, Practice And Theory of Automated

Timetabling (PATAT 2002), Gent, Belgium, 120-123, 2002.

[85] E. Ozcan, A. J. Parkes and A. Alkan. The interleaved constructive memetic algorithm

and its application to timetabling, Computers and Operations Research 39, 2310-

2322, 2012.

[86] H. Kanoh and Y. Sakamoto. Knowledge-based genetic algorithm for university course

timetabling problems, International Journal of Knowledge-based and Intelligent

Engineering Systems 12(4), 283-294, 2008.

[87] S. Abdullah and H. Turabieh. On the use of multi neighbourhood structures within a

tabu based memetic approach to university timetabling problems, Information

Sciences 191, 146-168, 2012.

[88] R. M. Santiago, S. S. Salcedo, M. D. C. Prado and C. C. Bousono. A two-phase

heuristic evolutionary algorithm for personalizing course timetables: a case study in a

Spanish university, Computers and Operations Research 32, 1761-1776, 2005.

[89] A. Jula and N. N. Khatoon. Using CMAC to obtain dynamic mutation rate in a

metaheuristic memetic algorithm to solve university timetabling problem, European

journal of scientific research 63(2), 172-181, 2011.

197

[90] R. Qu and E. K. Burke. Hybridizations within a graph-based hyper-heuristic

framework for university timetabling problems, Journal of the Operational Research

Society 60, 1273-1285, 2009.

[91] F. Makoto. A hybrid algorithm for the university course timetabling problems, Journal

of Japan Society for Fuzzy Theory and Intelligent Informatics 22(1), 142-147, 2010.

[92] G. Dueck. New optimization heuristics the great deluge algorithm and the record-to-

record travel, Journal of Computational Physics 104(1), 86-92, 1993.

[93] D. F. Shiau. A hybrid particle swarm optimization for a university course scheduling

problem with flexible preferences, Expert Systems with Applications 38, 235-248,

2011.

[94] D. Datta, D. Kalyanmoy and C.M. Fonseca. Solving class timetabling problem of IIT

Kanpur using multi-objective evolutionary algorithm, KanGAL Report Number

2006006.

[95] M.Nandhini, S.Kanmani and S.Anandan. Performance analysis of diversity measure

with crossover operators in genetic algorithm, International Journal of Computer

Applications 19 (2), 19-26, 2011.

[96] R. Qu, E. K. Burke, B. McCollum, L.T.G. Merlot and S. Y. Lee. A survey of search

approaches and automated system development for examination timetabling, Journal

of Scheduling 12(1), 55-89, 2009

[97] R. Lewis. A survey of metaheuristic-based techniques for university timetabling

problems, OR Spectrum 30, 167-190, 2008.

[98] N. R. Sabar, M. Ayob and G. Kendall. Tabu exponential Monte-Carlo with counter

heuristic for examination timetabling, IEEE Symposium on Computational

Intelligence in Scheduling (CISched 2009), Nashville, Tennessee, USA, 90-94, 2009.

[99] N. R. Sabar, M. Ayob, G. Kendall and R. Qu. Roulette wheel graph colouring for

solving examination timetabling problems, Combinatorial Optimization and

Applications, Lecture Notes in Computer Science, Springer, Berlin 5573, 463-470,

2009.

[100] M. Ayob, A. M. A. Malik, S. Abdullah, A.R. Hamdan, G. Kendall and R. Qu.

Solving a practical examination timetabling problem: a case study, In: O. Gervasi, M.

Gavrilova: (Eds.), (ICCSA 2007), Part III, Lecture Notes in Computer Science,

Springer, Heidelberg 4707, 611-624, 2007.

198

[101] S. Abdullah and H. Turabieh. Generating university course timetable using genetic

algorithm and local search, Hybrid Information Technology, 254-260, 2008.

[102] R. Lewis. Metaheuristics For University Course Timetabling, Ph.D Thesis, 2006.

[103] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning,

Addison-Wesley Publishing Company, 1989.

[104] B.J. Reardon. Fuzzy logic versus niched pareto multiobjective genetic algorithm

optimization, Modeling and Simulation in Material Sciences and Engineering 6, 717-

735, 1998.

[105] Z. Bingul, A.S. Sekmen and S. Zein-Sabatto. Evolutionary approach to multiobjective

problems using adaptive genetic algorithms, Systems, Man, and Cybernetics, October

8-11, Nashville, TN, 2000.

[106] Z. Bingul, A.S. Sekmen and S. S. Zein. Genetic algorithms applied to real time

multiobjective optimization problems, Southeast Congress Conference

(SoutheastCON'2000), April, Nashville, TN, USA, 95-103, 2000.

[107] Z. Bingul. Adaptive genetic algorithms applied to dynamic multiobjective problems

efficient combination of genetic operators, Applied Soft Computing 7, 791-799, 2007.

[108] P.K. Chawdhry. Soft computing in engineering design and manufacturing, London:

Springer, ISBN 3-540-76214-0, 1998.

[109] U. Bodenhofer. Genetic Algorithms: Theory and Applications, Lecture Notes Second

Edition, 2000.

[110] M. Mitchell. An Introduction to Genetic Algorithms. A Bradford Book The MIT

Press, 1998.

[111] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs, Second

Edition. Springer, 1994.

[112] B. Chakraborty and P. Chaudhuri. On the use of genetic algorithm with elitism in

robust and nonparametric multivariate analysis, Austrian journal of statistics 32(1-2),

13-27, 2003.

[113] F. D. Qarouni, N. A. Ardabili and M. H. Moeinzadeh. Finding feasible timetables

with particle swarm optimization, Innovations in Information Technology (IIT 2007),

387-391, 2007.

[114] N. J. Sadaf and S. Yang. A Memetic Algorithm for the University Course

Timetabling Problem, International Conference on Tools with Artificial Intelligence,

(ICTAI 2008) 1, 427-433, 2008.

http://books.google.com/books?id=mxcP1mSjOlsC
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/3-540-76214-0
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4669655
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4669655
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4669655

199

[115] R. Tavares, A. Teófilo, P. Silva and A. C. Rosa. Infected genes evolutionary

algorithm, Proceedings of the 1999 ACM symposium on applied computing, 333-338,

1999.

[116] D. Brelaz. New methods to color the vertices of a graph, Communications of the

ACM 22(4), 251-256, 1979.

[117] A.Wren. Scheduling, timetabling and rostering - A special relationship, Practice and

Theory of Automated Timetabling, Lecture Notes in Computer Science 1153, 46-75,

1996.

[118] D.Werra. An introduction to timetabling, European journal of Operational research,

19, 151-162, 1985.

[119] M.Ahmad, C. Caux, M. Chabrol and M. Gourgand. A survey on recent developments

in automated timetabling, 12
e
 congrès annuel de la Société française de Recherche

Opérationnelle et d’Aide à La Décision (ROADEF 2011), 2-4 March, Saint-Etienne,

France 2, 833-834, 2011.

[120] J. A. Breslaw. A linear programming solution to the faculty assignment problem,

Socio-Economic Planning Science 10, 227-230, 1976.

[121] K. Schimmelpfeng and S. Helber. Application of a real world university course

timetabling model solved by integer programming, OR Spectrum 29, 783-803, 2007.

[122] T. Birbas, S. Daskalaki and E. Housos. Timetabling for Greek high schools, Journal

of the Operational Research Society 48, 1191-1200, 1997.

[123] A. Mingozzi, V. Maniezzo, S. Ricciardelli and L. Bianco. An exact algorithm for the

resource-constrained project scheduling problem based on a new mathematical

formulation, Management Science 44, 714-729, 1998.

[124] F. Ballestın,V. Valls and S. Quintanilla. Pre-emption in resource-constrained project

scheduling, European Journal of Operational Research 189, 1136-1152, 2008.

[125] S. Hartmann and D. Briskorn. A survey of variants and extensions of the resource-

constrained project scheduling problem, European Journal of Operational Research

207, 1-14, 2010.

[126] S. Hartmann and R. Kolisch. Experimental evaluation of the state of the art heuristics

for the resource constrained project scheduling problem, European Journal of

Operational Research 127, 394-407, 2000.

http://dl.acm.org/author_page.cfm?id=81100002919&coll=DL&dl=ACM&trk=0&cfid=168095459&cftoken=84582844
http://dl.acm.org/author_page.cfm?id=81407594326&coll=DL&dl=ACM&trk=0&cfid=168095459&cftoken=84582844
http://dl.acm.org/author_page.cfm?id=81409592322&coll=DL&dl=ACM&trk=0&cfid=168095459&cftoken=84582844
http://www.springerlink.com/content/?Author=Katja+Schimmelpfeng
http://www.springerlink.com/content/?Author=Stefan+Helber
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VCT-4P29KBK-1&_user=636532&_coverDate=09%2F16%2F2008&_alid=1696767371&_rdoc=2&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5963&_sort=r&_st=13&_docanchor=&view=c&_ct=4&_acct=C000033958&_version=1&_urlVersion=0&_userid=636532&md5=6c8f390679a3d6eba9af14ee1856d780&searchtype=a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VCT-4P29KBK-1&_user=636532&_coverDate=09%2F16%2F2008&_alid=1696767371&_rdoc=2&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5963&_sort=r&_st=13&_docanchor=&view=c&_ct=4&_acct=C000033958&_version=1&_urlVersion=0&_userid=636532&md5=6c8f390679a3d6eba9af14ee1856d780&searchtype=a

200

[127] M. Ahmad, M. Gourgand and C. Caux. Transformation of course timetabling problem

to RCPSP, World Academy of Science, Engineering and Technology 168, 2192-2197,

2012.

[128] R. Qu, E.K. Burke, B. McCollum and L.T.G. Merlot, A survey of search

methodologies and automated system development for examination timetabling,

Journal of Scheduling 12, 55-89, 2009.

[129] M. Carter. A survey of practical applications of examination timetabling Algorithms,

Operations Research 34, 193-202, 1986.

[130] M. Carter and G. Laporte, Recent developments in practical examination timetabling,

Practice and Theory of Automated Timetabling, Lecture Notes in Computer Science,

E. Burke and P. Ross (Eds.), Springer-Verlag, Berlin 1153, 1-21, 1996.

[131] E. Burke, D. Elliman, and R. Weare. The automation of the timetabling process in

higher education, Journal of Education Technology Systems 23, 257- 266, 1995.

[132] E. K. Burke, D. G. Elliman, P. H. Ford, and R. Weare. Examination timetabling in

british universities: A Survey, Practice and Theory of Automated Timetabling (PATAT

1995), Lecture Notes in Computer Science, E. Burke and P. Ross (Eds.), Springer-

Verlag, 1153, 76-92, 1996.

[133] M. Carter and G. Laporte. Recent developments in practical course timetabling.

Practice and Theory of Automated Timetabling (PATAT 1997), Lecture Notes in

Computer Science, E. Burke and M. Carter (Eds.), Springer-Verlag, Berlin 1408, 3-19,

1998.

[134] A. Tripathy. School timetabling - A case in large binary linear integer programming,

Managment Science 30, 1473-1489, 1984.

[135] M. Carter. A langarian relaxation approach to the classroom assignment problem,

INFOR 27, 230-246, 1986.

[136] J. Broek, C. Hurkens, G. Woeginger. Timetabling problems at the TU Eindhoven,

European Journal of Operational Research 196(3), 877-885, 2009.

[137] S. M. Yakoob and H. D. Sherali. Mathematical programming models and algorithms

for a class-faculty assignment problem, European Journal of Operational Research

173(2), 488-507, 2006.

[138] S. M. Yakoob and H. D. Sherali. A mixed-integer programming approach to a class

timetabling problem: A case study with gender policies and traffic considerations,

European Journal of Operational Research 180(3), 1028-1044, 2007.

201

[139] R.H. McClure and C.E. Wells. A mathematical programming model for faculty

course assignment, Decision Science 15, 409-420, 1984.

[140] S. Kirkpatrick, C. D. Gellatt and M. P. Vecchi. Optimization by simulated annealing,

Science, 220, 671-680, 1983.

[141] R. klein. Scheduling of resource-constrained projects, Kluwer academic publishers,

2000.

[142] B. Bullnheimer. An examination scheduling model to maximize students’ study time,

E. K. Burke, M. W. Carter (Eds.), Practice and Theory of Automated Timetabling

(PATAT 1997), Lecture Notes in Computer Science, Springer, New York, 1408, 78-

91, 1998.

[143] D. Abramson. Constructing school timetables using simulated annealing: sequential

and parallel algorithms, Management Science 37, 98-113, 1991.

[144] F. Melicio and J. Caldeira. Implementation aspects of simulated annealing on

timetabling, IEEE Systems Science and Systems Engineering, Beijing. Aceite, 1998.

[145] S. Elmohamed, G. Fox, and P. Coddington. A comparison of annealing techniques for

academic course scheduling, Practice and Theory of Automated Timetabling (PATAT

1997), Lecture Notes in Computer Science, E. Burke and M. Carter (Eds.) Springer-

Verlag, Berlin 1408, 146-166, 1998.

[146] D. Zhang, Y. Liu, R. M’Hallah and S. C. H. Leung. A simulated annealing with a new

neighborhood structure based algorithm for high school timetabling problems,

European Journal of Operational Research 203(3), 550-558, 2010.

[147] S. Ceschia, L.D. Gaspero and A. Schaerf. Design, engineering, and experimental

analysis of a simulated annealing approach to the post-enrolment course timetabling

problem, Computers and Operations Research 39(7), 1615-1624, 2012.

[148] A. Gunawan, K.N. Ming and K. L. Poh. A hybridized lagrangian relaxation and

simulated annealing method for the course timetabling problem, Computers and

Operations Research 39(12), 3074-3088, 2012.

[149] K. Socha, J. Knowles, and M. Samples. A MAX-MIN Ant system for the university

course timetabling problem, Third International Workshop on Ant Algorithms (Ants

2002), Lecture Notes in Computer Science, M. Dorigo, G. Di Caro, and M. Samples

(Eds.), Springer-Verlag, Berlin 2463, 1-13, 2002.

http://www.sciencedirect.com/science/article/pii/S0305054811002759
http://www.sciencedirect.com/science/article/pii/S0305054811002759
http://www.sciencedirect.com/science/article/pii/S0305054811002759
http://www.sciencedirect.com/science/article/pii/S0305054812000640
http://www.sciencedirect.com/science/article/pii/S0305054812000640

202

[150] K. A. Dowsland and J. Thompson. Ant colony optimization for the examination

scheduling problem, The Journal of the Operational Research Society 56(4), 426-438,

2005.

[151] C. Nothegger, A. Mayer, A. Chwatal, G. R. Raidl. Solving the post enrolment course

timetabling problem by ant colony optimization, Annals of Operations Research

194(1), 325-339, 2012.

[152] M. Eley. Some experiments with ant colony algorithms for the exam timetabling

problem, Ant Colony Optimization and Swarm Intelligence (ANTS 2006), 492-499,

2006.

[153] E.K. Burke, J.P. Newall and R.F. Weare. Initialization strategies and diversity in

evolutionary timetabling, Evolutionary computation 6(1), 81-103, 1998.

[154] L.T.G. Merlot, N. Boland, B.D. Hughes and P.J. Stuckey. A hybrid algorithm for the

examination timetabling problem. In: E.K. Burke and P. D. Causmaecker (Eds.)

Practice and Theory of Automated Timetabling (PATAT 2002), Lecture Notes in

Computer Science 2740, 207-231, 2003.

[155] T.H. Hultberg and D.M. Cardoso. The teacher assignment problem: A special case of

the fixed charge transportation problem, European Journal of Operational Research

101, 463-473, 1997.

[156] M.A. Badri, D.L. Davis, D.F. Davis and J. Hollingsworth. A multi-objective course

scheduling model: Combining faculty preferences for courses and times, Computers

and Operations Research 25(4), 303-316, 1998.

[157] K. Gosselin and M. Truchon. Allocation of classrooms by linear programming,

Journal of Operational Research Society 37(6), 561-569, 1986.

[158] A. Tripathy. School timetabling-A case in large binary integer linear programming,

Management Science 30(12), 1473-1489, 1984.

[159] M. R. Garey and D. S. Johnson, Computers and Intractability: A guide to

NPcompleteness, First Ed. San Francisco: W. H. Freeman and Company, 1979.

[160] C.H.Aladag and G.Hocaoglu. A tabu search algorithm to solve a course timetabling

problem, Hacettepe Journal of Mathematics and Statistics 36(1), 53-64, 2007.

[161] P. Pongcharoen, W. Promtet, P. Yenradee and C. Hicks. Stochastic optimisation

timetabling tool for university course scheduling, International Journal of Production

Economics 112, 903-918, 2008.

http://rd.springer.com/search?facet-author=%22Clemens+Nothegger%22
http://rd.springer.com/search?facet-author=%22Alfred+Mayer%22
http://rd.springer.com/search?facet-author=%22Andreas+Chwatal%22
http://rd.springer.com/search?facet-author=%22G%C3%BCnther+R.+Raidl%22
http://rd.springer.com/journal/10479
http://rd.springer.com/journal/10479/194/1/page/1
http://dl.acm.org/author_page.cfm?id=81461659669&coll=DL&dl=ACM&trk=0&cfid=130784892&cftoken=59947320

203

[162] M. Sagir and Z. K. Ozturk. Exam scheduling: Mathematical modeling and parameter

estimation with the analytic network process approach, Mathematical and Computer

Modelling 52, 930-94, 2010.

[163] P. Boizumault, Y. Delon and L. Peridy. Constraint logic programming for

examination timetabling, The Journal of Logic Programming 26(2), 217-233, 1996.

[164] M. Ayob, A. H. Razak, S. Abdullah et al. Intelligent examination timetabling

software, Procedia Social and Behavioral Sciences 18, 600-608, 2011.

[165] G. M. White, B. S. Xie and S. Zonjic. Using tabu search with longer-term memory

and relaxation to create examination timetables, European Journal of Operational

Research 153, 80-91, 2004.

[166] P. Brucker and S. Knust. Resource-constrained project scheduling and timetabling. E.

Burke and W. Erben (Eds.) Practice and Theory of Automated Timetabling (PATAT

2000), Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg 2079,

277-293, 2001.

[167] R. V. Alvarez, E. Crespo and J. M. Tamarit. Design and implementation of a course

scheduling system using tabu search, European Journal of Operational Research 137,

512-523, 2002.

[168] C. H. Aladag, G. Hocaoglu and M. A. Basaran. The effect of neighbourhood

structures on tabu search algorithm in solving course timetabling problem, Expert

systems with applications 36, 12349-12356, 2009.

http://www.sciencedirect.com/science/article/pii/074310669500100X
http://www.sciencedirect.com/science/article/pii/074310669500100X
http://www.sciencedirect.com/science/article/pii/074310669500100X
http://www.sciencedirect.com/science/journal/07431066
http://www.sciencedirect.com/science/journal/07431066

