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Diagonalisation conjointe non-
négative par congruence pour

l’analyse en composantes
indépendantes semi-nonnégative

La Diagonalisation Conjointe par Congruence (DCC) d’un ensemble de matrices apparaît
dans nombres de problèmes de Séparation Aveugle de Source (SAS), tels qu’en Analyse en
Composantes Indépendantes (ACI). Les développements récents en ACI sous contrainte
de nonnégativité de la matrice de mélange, nommée ACI semi-nonnégative, permettent de
tirer profit d’une modélisation physique réaliste des phénomènes observés tels qu’en audio,
en traitement d’image ou en ingénierie biomédicale. Par conséquent, durant cette thèse,
l’objectif principal était non seulement de concevoir et de développer des algorithmes
d’ACI semi-nonnégative basés sur de nouvelles méthodes de DCC nonnégative où la
matrice de passage recherchée est nonnégative, mais également d’illustrer leur intérêt
dans le cadre d’applications pratiques de séparation de sources.

Chapitre 1: Introduction

La SAS consiste à estimer P sources inconnues à partir de N observations. Ces obser-
vations sont des mélanges linéaires instantanés bruités des dites sources satisfaisant le
modèle suivant [Comon and Jutten, 2010]:

x = As+ ε (1)

où x = [x1, x2, . . . , xN ]T ∈ RN est le vecteur d’observations, où s = [s1, s2, . . . , sP ]T ∈
R
P est le vecteur de sources, où A ∈ R

N×P est la matrice de mélange et où ε =

[ε1, ε2, . . . , εN ]T ∈ R
N est un vecteur de bruit additif. Le terme "aveuglement" fait

référence au fait que les sources et la matrice de mélange sont inconnus. La SAS mon-
tre son intérêt dans un grand nombre d’applications, incluant les télécommunications,
l’imagerie biomédicale et l’acoustique. Le problème de SAS est mal posé sans hypothèses
supplémentaires. Afin d’obtenir des résultats pertinents dans une application réelle, il est
nécessaire d’utiliser certains a priori sur les sources ou le modèle de mélange. Exploiter
l’indépendance statistique des sources à parti d’un nombre fini de réalisations du vecteur
aléatoire x (1) caractérise l’ACI [Jutten and Hérault, 1991,Comon, 1994]. L’hypothèse de
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nonnégativité des sources ou de la matrice de mélange, voire les deux, a donné naissance à
un large éventail d’approches de SAS, telles que la Factorisation Matricielle Nonnégative
(FMN) [Lee and Seung, 1999] et l’ACI nonnégative [Plumbley, 2003]. Dans ce chapitre,
nous avons effectué un bref survol bibliographique des méthodes de SAS les plus con-
nues, à savoir l’ACI, l’ACI nonnégative et la FMN. En outre, la méthode de DCC et son
lien avec l’ACI sont été décrits. Ensuite, nous avons introduit le modèle proposé d’ACI
semi-nonnégative [Wang et al., 2013,Coloigner et al., 2014a,Coloigner et al., 2014b]. Plus
précisément, dans le modèle d’ACI semi-nonnégative, la matrice de mélange (contraire-
ment aux sources) est supposée avoir des composantes nonnégatives. En fait, selon ce
modèle, les tranches matricielles des tableaux cumulant suivent le modèle de DCC:

C(k) = AD(k)AT, k ∈ {1, . . . ,K} (2)

où A ∈ RN×P+ est la matrice de passage nonnégative et égale à la matrice de mélange, où
D(k) ∈ RP×P sont des matrices diagonales, et où K est le nombre total de tranches ma-
tricielles du tableau cumulant. Par conséquent, on peut estimer la matrice A à l’aide de
méthode de DCC sous contrainte de nonnégativité sur la matrice de passage, conduisant
à la notion de DCC nonnégative. Durant cette thèse, nous avons proposé de nouveaux
algorithmes de DCC nonnégative pour résoudre le problème d’ACI semi-nonnégative.

Chapitre 2: Algorithmes de diagonalisation conjointe non-
négative par congruence

Nous avons développé six nouvelles méthodes de DCC nonnégative, qui ont été soigneuse-
ment présentées dans ce chapitre. Les six algorithmes proposés peuvent être répartis dans
deux groupes selon la stratégie d’optimisation. Le premier groupe d’algorithmes com-
prend cinq méthodes semi-algébriques, reposant sur une méthode de type Jacobi. Dans
ce groupe, la contrainte de nonnégativité a été assurée par un changement de variable
carré, permettant ainsi de nous ramener à un problème d’optimisation sans contrainte.
L’idée générale de notre approche de type Jacobi est i) de factoriser la racine carrée de la
matrice de passage recherchée sous forme d’un produit de matrices élémentaires, chacun
n’étant défini que par un seul paramètre, puis ii) d’estimer ces matrices élémentaires l’une
après l’autre dans un ordre spécifique. La première méthode utilise la factorisation LU
afin de minimiser un critère des moindres carrés directs. Cependant, elle présente une
grande complexité numérique. Afin de réduire la complexité numérique, nous avons refor-
mulé le critère des moindres carrés indirects et nous avons considéré les factorisations LU
et QR. Une telle reformulation a nécessitée l’utilisation d’une étape de prétraitement sur
les matrices à diagonaliser, conduisant à deux algorithmes de calcul efficace. Néanmoins,
la validité de ces deux algorithmes est fondée sur certaines hypothèses d’inverisibilité.
Par conséquent, les quatrième et cinquième algorithmes proposés ont permis de relâcher
ces hypothèses. Ces deux méthodes reposent sur une optimisation des deux critères
des moindres carrés indirects basée sur la factorisation LU, sans aucune étape de pré-
taitement. Le deuxième groupe compte un seul algorithme, qui utilise la méthode des
directions alternées. Cet algorithme exploite le fait que le problème de DCC nonnéga-
tive peut être reformulé comme un problème des moindres carrés directs sous contraintes
de symétrie et de nonnégativité. Un tel algorithme a été dérivé en minimisant séquen-
tiellement le Lagrangien augmenté par rapport aux variables et aux multiplicateurs. En
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outre, la complexité numérique pour chaque algorithme a été analysée, ce qui permet
une comparaison équitable de leurs performances.

Chapitre 3: Simulations numériques

Les performances des algorithmes proposés de DCC nonnégative ont été évaluées sur des
jeux de matrices synthétiques, conjointement diagonalisables. Cinq méthodes de DCC
non-orthogonale classiques sans contrainte de nonnégativité, incluant ACDC [Yeredor,
2002], CLU [Maurandi et al., 2013], FFDIAG [Ziehe et al., 2004], LUJ1D [Afsari, 2006],
LUJ2D [Afsari, 2006] et une méthode de DCC nonnégative nommée LM+

sym [Coloigner
et al., 2014c], ont été testées comme méthodes de référence. Les performances ont été
évaluées en termes de précision de la matrice estimée et de complexité numérique. Tout
au long du chapitre, i) les propriétés de convergence, ii) l’influence des erreurs de mod-
èle, iii) l’incidence du nombre de matrices à diagonaliser, iv) l’effet de la cohérence des
vecteurs colonnes de la matrice de passage, et v) l’influence du module d’unicité, ont été
largement étudiés au moyen de réalisations de Monte Carlo. Les résultats ont montré
qu’une meilleure précision d’estimation pouvait être obtenue en particulier dans des con-
texte difficiles, en exploitant l’information préalable de nonnégativité. Généralement nos
algorithmes de type Jacobi fournissent de meilleurs résultats, pour un problème difficile
de DCC nonnégative, par exemple pour de faibles valeurs de rapport signal-sur-bruit,
pour un petit nombre de matrices à diagonaliser, pour des niveaux élevés de cohérence
de la matrice de passage, et pour une grande valeur du module d’unicité. Parmi eux,
l’algorithme basé sur le critère des moindres carrés indirects sans étape de prétraite-
ment offre le meilleur compromis entre précision d’estimation et complexité numérique.
Lorsque le problème de DCC nonnégative considéré est bien conditionné, c’est-à-dire
lorsqu’une valeur élevée du rapport signal-sur-bruit est considérée ou un grand nombre
de matrices à diagonaliser est disponible, l’algorithme basé sur l’optimisation des di-
rections alternées est le plus efficace sur le plan de la précision d’estimation pour une
complexité numérique équivalente. En la comparant à une méthode existante de DCC
nonnégative basée sur l’optimisation de Levenberg Marquardt [Coloigner et al., 2014c],
dont la performance est tout aussi compétitive pour certaines expériences, les méth-
odes proposées requièrent moins de temps de calcul (environ 3 fois moins). De manière
générale, les algorithmes proposés offrent le meilleur compromis entre la performance et
la complexité.

Chapitre 4: Applications de séparation aveugle de source

Dans ce chapitre, nous avons appliqué nos algorithmes de DCC nonnégative à un en-
semble de tranches matricielles d’un tableau cumulant d’ordre quatre, donnant naissance
à une nouvelle classe de méthodes d’ACI semi-nonnégative. L’ACI semi-nonnégative se
retrouve dans un certain nombre de problèmes de SAS impliquant une matrice de mélange
nonnégative, par exemple dans i) l’analyse de composés chimiques en spectroscopie par
résonance magnétique, ii) l’identification des profils spectraux d’harmoniques (par ex-
emple, de notes de piano) d’un morceau de musique mono-canal par décomposition du
spectrogramme, iii) l’élimination partielle du texte se trouvant au verso d’une feuille de
papier fin. Les méthodes proposées ont été appliquées pour résoudre ces problèmes afin
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de vérifier leur capacité de séparation de sources. Nos méthodes ont été comparées à cinq
algorithmes de référence en SAS, à savoir deux méthodes d’ACI: CoM2 [Comon, 1994] et
SOBI [Belouchrani et al., 1997], trois méthodes exploitant la contrainte de nonnégativité:
ACI nonnégative [Plumbley, 2003], FMN [Kim and Park, 2008] et semi-FMN [Ding et al.,
2010]. Au vu des résultats obtenus, les méthodes classiques, surtout l’ACI nonnégative,
SOBI et semi-FMN, n’étaient parfois pas capables de séparer les sources latentes. CoM2
et FMN ont pour leur part donné de bons résultats d’estimation, malgré quelques imper-
fections. Les méthodes proposées se sont comportées de la même manière et ont été plus
aptes à fournir de meilleurs résultats que les méthodes classiques, en ce qui concerne la
précision d’estimation des sources. Nos méthodes ont une complexité numérique modérée
lorsque le nombre d’observations n’est pas trop grand. Cependant, leur complexité croît
très vite lorsque le nombre d’observations augmente. Heureusement, en incorporant une
étape de prétraitement de compression nonnégative, la complexité globale des méthodes
proposées d’ACI semi-nonnégative reste acceptable. Ces applications de SAS ont dé-
montré la validité et l’intérêt des algorithmes proposés. Les résultats expérimentaux ont
aussi montré qu’en exploitant pleinement l’information préalable des données, telles que
la nonnégativité de la matrice de mélange et l’indépendance statistique des sources, les
méthodes proposées fournissent de meilleurs résultats d’estimation.

Chapitre 5: Conclusion et perspectives

Ce dernier chapitre conclu le rapport de thèse offrant une discussion sur les différentes
contributions de la thèse, mais aussi sur les possibles extensions à venir.
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Abstract

The Joint Diagonalization of a set of matrices by Congruence (JDC) appears in a number
of signal processing problems, such as in Independent Component Analysis (ICA). Recent
developments in ICA under the nonnegativity constraint of the mixing matrix, known as
semi-nonnegative ICA, allow us to obtain a more realistic representation of some real-
world phenomena, such as audios, images and biomedical signals. Consequently, during
this thesis, the main objective was not only to design and develop semi-nonnegative ICA
methods based on novel nonnegative JDC algorithms, but also to illustrate their inter-
est in applications involving Blind Source Separation (BSS). The proposed nonnegative
JDC algorithms belong to two fundamental strategies of optimization. The first family
containing five algorithms is based on the Jacobi-like optimization. The nonnegativity
constraint is imposed by means of a square change of variable, leading to an uncon-
strained problem. The general idea of the Jacobi-like optimization is to factorize the
matrix variable as a product of a sequence of elementary matrices which is defined by
only one parameter, then to estimate these elementary matrices one by one in a specific
order. The second family containing one algorithm is based on the alternating direction
method of multipliers. Such an algorithm is derived by successively minimizing the aug-
mented Lagrangian function of the cost function with respect to the variables and the
multipliers. Experimental results on simulated matrices show a better performance of the
proposed algorithms in comparison with several classical JDC methods, which do not use
the nonnegativity as constraint prior. It appears that our methods can achieve a better
estimating accuracy particularly in difficult contexts, for example, for a low signal-to-
noise ratio, a small number of input matrices and a high coherence level of matrix. Then
we show the interest of our approaches in solving real-life problems. To name a few, we
are interested in i) the analysis of the chemical compounds in the magnetic resonance
spectroscopy, ii) the identification of the harmonically fixed spectral profiles (such as pi-
ano notes) of a piece of signal-channel music record by decomposing its spectrogram, iii)
the partial removal of the show-through effect of digital images, where the show-through
effect were caused by scanning a semi-transparent paper. These applications demonstrate
the validity and improvement of our algorithms, comparing with several state-of-the-art
BSS methods.
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Rèsumé

La Diagonalisation Conjointe par Congruence (DCC) d’un ensemble de matrices apparaît
dans nombres de problèmes de traitement du signal, tels qu’en Analyse en Composantes
Indépendantes (ACI). Les développements récents en ACI sous contrainte de nonnéga-
tivité de la matrice de mélange, nommée ACI semi-nonnégative, permettent de tirer
profit d’une modélisation physique réaliste des phénomènes observés tels qu’en audio,
en traitement d’image ou en ingénierie biomédicale. Par conséquent, durant cette thèse,
l’objectif principal était non seulement de concevoir et développer des algorithmes d’ACI
semi-nonnégative basés sur de nouvelles méthodes de DCC nonnégative où la matrice de
passage recherchée est nonnégative, mais également d’illustrer leur intérêt dans le cadre
d’applications pratiques de séparation de sources. Les algorithmes de DCC nonnégative
proposés exploitent respectivement deux stratégies fondamentales d’optimisation. La
première famille d’algorithmes comprend cinq méthodes semi-algébriques, reposant sur
la méthode de Jacobi. Cette famille prend en compte la nonnégativité par un change-
ment de variable carré, permettant ainsi de se ramener à un problème d’optimisation
sans contrainte. L’idée générale de la méthode de Jacobi est de i) factoriser la ma-
trice recherchée comme un produit de matrices élémentaires, chacune n’étant définie que
par un seul paramètre, puis ii) d’estimer ces matrices élémentaires l’une après l’autre
dans un ordre spécifique. La deuxième famille compte un seul algorithme, qui utilise la
méthode des directions alternées. Un tel algorithme est obtenu en minimisant succes-
sivement le Lagrangien augmenté par rapport aux variables et aux multiplicateurs. Les
résultats expérimentaux sur les matrices simulées montrent un gain en performance des
algorithmes proposés par comparaison aux méthodes DCC classiques, qui n’exploitent
pas la contrainte de nonnégativité. Il semble que nos méthodes peuvent fournir une
meilleure précision d’estimation en particulier dans des contextes difficiles, par exemple,
pour de faibles valeurs de rapport signal sur bruit, pour un petit nombre de matrices
à diagonaliser et pour des niveaux élevés de cohérence de la matrice de passage. Nous
avons ensuite montré l’intérêt de nos approches pour la résolution de problèmes pra-
tiques de séparation aveugle de sources. Pour n’en citer que quelques-uns, nous sommes
intéressés à i) l’analyse de composés chimiques en spectroscopie par résonance magné-
tique, ii) l’identification des profils spectraux des harmoniques (par exemple, de notes
de piano) d’un morceau de musique mono-canal par décomposition du spectrogramme,
iii) l’élimination partielle du texte se trouvant au verso d’une feuille de papier fin. Ces
applications démontrent la validité et l’intérêt de nos algorithmes en comparaison des
méthodes classique de séparation aveugle de source.
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Chapter 1
Introduction

1.1 Blind source separation problem

The Blind Source Separation (BSS) problem consists of retrieving unobserved sources
from the observations. In this thesis report we focus on the following linear instantaneous
mixture model in the field R of real numbers:

x = As+ ε (1.1)

where x = [x1, x2, . . . , xN ]T ∈ RN is the observation vector, where s = [s1, s2, . . . , sP ]T ∈
R
P is the source vector, where A ∈ RN×P is a mixing matrix, and where ε = [ε1, ε2, . . .,

εN ]T ∈ RN is an additive noise vector. The blindness refers to the fact that neither the
sources nor the mixing matrix is known.

The BSS problem appears in a wide range of application areas, where in general
a multi-sensor system is involved, including remote sensing [Ma et al., 2014], telecom-
munication [Chevalier and Chevreuil, 2010], multiple-input multiple-output radar sys-
tems [Li and Liu, 1998], medical imaging [Wang et al., 2010], brain-computer inter-
face [Kachenoura et al., 2008, Albera et al., 2008], image analysis [Be’ery and Yere-
dor, 2008], and audio separation [Fuentes et al., 2013]. For example, in the context of
biomedical signal processing, the cutaneous ElectroCardioGraphy (ECG) measured on
the mother’s skin is a non-invasive technique that enables possibility of visualizing the
electrical activity of a fetal heart, namely the fetal ECG. These cutaneous ECG recordings
can be considered as an approximate noisy instantaneous linear mixture of potential sig-
nals generated by underlying bioelectric phenomena, such as the maternal and fetal heart
activity, potential distributions generated by respiration and stomach activity [Zarzoso
et al., 2000]. Therefore, in order to evaluate the health condition of the fetus and to
reveal information for early diagnosis, BSS methods were proposed to estimate the fetal
ECG from the recordings on the mother’s skin [Zarzoso et al., 2000,De Lathauwer et al.,
2000,Niknazar, 2013].

In the BSS model (1.1), it is easy to see that the scale and permutation indetermi-
nacies will necessarily hold. More precisely, a scaling factor can always be exchanged
between one source si and the corresponding column vector of the mixing matrix A,
namely ai, without changing the product. Similarly, permuting the order of the sources
and the corresponding column vectors of the mixing matrix will not change the observa-
tions. Hence the amplitude, the sign and the order of the sources are not uniquely defined.
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Therefore, BSS methods estimate the source vector up to a permutation and a scale di-
agonal matrix. Besides the scale and permutation indeterminacies, the BSS problem
(1.1) is still ill-posed without additional assumptions on the model. In order to achieve
relevant separating results with an actual application, it is necessary to utilize prior
knowledge about the sources’ characteristics or about the mixing model. For example,
the sources could satisfy some basic assumptions, such as statistical independence, non-
negativity or sparsity. Similarly, the mixing matrix could also preserve some properties,
such as nonnegativity or sparsity. The fundamental statistical independence assumption
of the sources leads to the well-established theory of Independent Component Analysis
(ICA) [Jutten and Hérault, 1991,Comon, 1994]. The nonnegativity assumption on the
sources or on the mixing matrix or on both, gives birth to a wide range of successful BSS
approaches, such as Nonnegative Matrix Factorization (NMF) [Lee and Seung, 1999] and
Nonnegative ICA (NICA) [Plumbley, 2003]. During this thesis, the main objective was
to develop BSS methods that retrieve statistical independence sources assuming a non-
negative mixing matrix. That is to say the mixing matrix in model (1.1) is constrained to
have nonnegative components, while the values of the sources are unconstrained, giving
rise to the concept of Semi-Nonnegative ICA (SeNICA). By now only a few methods have
been proposed to address this problem [Coloigner et al., 2010,Coloigner, 2012,Coloigner
et al., 2014a, Coloigner et al., 2014b]. In this report, we propose to solve the SeNICA
problem by means of a class of new Nonnegative Joint Diagonalization by Congruence
(NJDC) methods.

The rest of this section is organized into two parts. In the first part we provide a
brief overview of some well-known BSS methods. Section 1.2 summarizes the existing
results of ICA. Section 1.3 is devoted to get a closer look on Joint Diagonalization by
Congruence (JDC) and its connection to ICA. Afterwards we introduce some nonnega-
tivity constrained BSS approaches, including NMF in section 1.4 and NICA in section
1.5. In the second part the main principle of the proposed methods is presented. We
address the proposed SeNICA model as well as the problem of NJDC in section 1.6.
Furthermore, a list of my publications is given in section 1.7.

1.2 Independent component analysis

Generally, the methods based on the assumption that the sources are non-Gaussian (or at
most one Gaussian source), and statistically independent, belong to the category of ICA
approaches. ICA has emerged into a rapidly growing field due to the pioneering work of
Jutten and Hérault [Hérault and Jutten, 1986, Jutten, 1987, Jutten and Hérault, 1991]
and later to the work of Comon [Comon, 1994] who gave a mathematical framework of
ICA. The ICA problem is defined as follows:

Problem 1.1. Given M realizations of an observation random vector x ∈ RN , find
a mixing matrix A ∈ RN×P and the M corresponding realizations of a source random
vector s ∈ RP , such that:

x = As+ ε (1.2)

where s has statistically independent components and ε ∈ RN is an additive noise random
vector independent of s.

2
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Statistical independence is a reasonable assumption in many realistic problems, and ICA
finds its applications in various areas including, but not limited to, radiocommunications
[Chevalier and Chevreuil, 2010], biomedical engineering [Kachenoura et al., 2008,Albera
et al., 2010,Albera et al., 2012,Hajipour Sardouie et al., 2014], remote sensing [Moussaoui
et al., 2008], and face recognition [Bartlett et al., 2002,Kim et al., 2005]. Furthermore,
many convenient measures of independence were proposed, such as kurtosis, negentropy,
mutual information and cumulants, leading to different ICA algorithms.

In the rest of the section, after a brief discussion about the identifiability and prepro-
cessing step of ICA, we review the following four popular ICA methodologies: ICA by
maximization of non-Gaussianity, ICA by maximum likelihood estimation, ICA by min-
imization of mutual information, and ICA by tensor decomposition of cumulant arrays.
For a broader survey we refer to [Comon and Jutten, 2010]. Overviews of some recent
advances of ICA can be found in [Hyvärinen, 2013,Adalı et al., 2014].

1.2.1 Identifiability and preprocessing

In fact, if the ICA model (1.2) is noiseless, it is essentially identifiable under the following
three conditions [Comon, 1994,Eriksson and Koivunen, 2004]:

1. The joint probability density function (pdf) of s factorizes as a product of the
marginal pdfs of the sources si.

2. The pdf’s of the source components si are non-Gaussian.

3. The mixing matrix A must be of full column rank.

The identifiability signifies that the estimated mixing matrix and sources are equal to the
original mixing matrix and sources, respectively, up to the permutation and scale inde-
terminacies. The second assumption could be possibly relaxed for at most one Gaussian
component. The identifiability issues of noisy ICA were addressed in [Davies, 2004].

Generally it is assumed that the observation vector has zero mean, which can be done
by centering it. Moreover, optionally the use of Principal Component Analysis (PCA) as
a spatial whitening has been adopted as a mean to reduce the search space of the mixing
matrix to the group of unitary matrices, and also to reduce the effect of additive noise.
PCA transforms the observation vector x ∈ RN into a vector z ∈ RP by multiplying
it on the left a whitening matrix W ∈ RP×N , such that W (x − ε) has an identity
covariance matrix. The resulting mixing matrix WA ∈ RP×P is an orthogonal matrix.
The row vectors of W are the P eigenvectors of the covariance matrix of x associated
with the P largest magnitude eigenvalues, scaled by the inverse of the square root of the
corresponding eigenvalues. It is noteworthy that the whitening step introduces additional
errors that cannot be fully compensated for in the following ICA step.

1.2.2 Non-Gaussianity, maximum likelihood and mutual information

In this section, we review three fundamental ICA ideologies, including the ICA algorithms
based on non-Gaussianity maximization, the ICA methods based on maximum likelihood
estimation, and the ICA approaches based on mutual information minimization.
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1.2.2.1 ICA by maximization of non-Gaussianity

The central limit theorem says that the distribution of a sum of statistically independent
independent and identically distributed (iid) random variables tends toward a Gaussian
distribution. The fundamental idea is that, if none of the sources has a Gaussian pdf,
the estimated source ŝj = Vj,:x usually has a distribution that is closer to Gaussian
than any of the original sources si and that becomes the least Gaussian when ŝj is equal
to one of the original source si, i.e. when Vj,: is the j-th row vector of the demixing
matrix V . Therefore maximizing the non-Gaussianity of ŝj = Vj,:x with respect to Vj,:
results in finding one of the sources. In practice, the kurtosis and the negentropy are two
commonly used measures of non-Gaussianity.

• Kurtosis. The kurtosis of a random variable s, denoted by kurt(s), is defined as
follows:

kurt(s) = E{s4} − 3(E{s2})2 (1.3)

assuming s having zero mean, where E{·} denotes the mathematical expectation.
The absolute value of kurtosis is zero for a Gaussian variable, and greater than
zero for most non-Gaussian random variables [Hyvärinen and Oja, 2000]. Many
ICA algorithms were proposed by maximizing the kurtosis. Delfosse and Loubaton
proposed a deflation approach [Delfosse and Loubaton, 1995]. Hyvärinen and Oja
gave a fast fixed-point algorithm in [Hyvärinen and Oja, 1997]. Papadias proposed
a stochastic gradient method based on a multiuser kurtosis criterion [Papadias,
2000]. Zarzoso and Comon introduced a line search optimization for the kurtosis
contrast function [Zarzoso and Comon, 2010].

• Negentropy. The differential entropy function H(·) of a random vector s with a
joint pdf denoted by ps is defined as follows [Cover and Thomas, 1991]:

H(s) = −
∫
ps(η) log(ps(η))dη (1.4)

Based on equation (1.4), the negentropy function J(·) is defined as follows:

J(s) = H(sGaussian)−H(s) (1.5)

where sGaussian is a Gaussian random vector of the same covariance matrix as s.
Negentropy is always nonnegative and it is zero if and only if s has a Gaussian dis-
tribution. The computation of negentropy is difficult since it needs to estimate the
pdf. Therefore, approximations of negentropy were proposed in order to simplify
the computation, for example [Hyvärinen, 1997]:

J(s) ∝ (E{G(s)} − E{G(ν)})2 (1.6)

where G(·) is a non-quadratic functions, and where ν is a vector of zero-mean
unit-variance Gaussian variables. Based on the above approximation, Hyvärinen
proposed a fast fixed-point ICA algorithm, known as FastICA [Hyvärinen, 1999].
Koldovský et al. provided an improved version of FastICA whose accuracy attained
the Cramár-Rao lower bound [Koldovský et al., 2006].
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1.2.2.2 ICA by maximum likelihood estimation

For the noiseless mixture x = As, if the pdf is specified for each source, the distribution
for the whole data set x is determined for any value of A. It is denoted by px|A and
the Maximum Likelihood (ML) estimate of A is ÂML = argmaxA px|A [Cardoso, 2010].
The ML is computationally complicated, since it requires to estimate the pdf’s of the
sources. There are two ways of avoiding the estimation of pdf’s. The first way is to use
the prior densities in the likelihood. The second way to is to approximate the densities
of the variables using a family of simple densities that are specified by a limited number
of parameters as described in [Girolami, 1998, Lee et al., 1999,Hyvärinen et al., 2001].
The ICA approach by ML estimation was originated by Pham et al. [Pham et al., 1992],
and gained popularity after the introduction of the Information Maximization (InfoMax)
principle by Bell and Sejnowski [Bell and Sejnowski, 1995]. The equivalence between the
InfoMax principle and ML was proven in [Cardoso, 1997, Obradovic and Deco, 1998].
Many algorithms were proposed thereafter. Pham and Garat provided two methods by
using prior distributions of the sources [Pham and Garat, 1997]. Boscolo et al. proposed
an ICA method based on a nonparametric kernel density estimation technique [Boscolo
et al., 2004]. Dégerine and Zaïdi derived an ML approach for Gaussian autoregressive
sources [Dégerine and Zaïdi, 2004]. Kokkinakis and Nandi proposed to use generalized
gamma densities in the ML estimation for ICA [Kokkinakis and Nandi, 2007]. Xue et
al. solved the ML-based ICA by means of gradient equation [Xue et al., 2009]. Ge and
Ma studied the spurious solutions of the ML approach [Ge and Ma, 2010]. Vía et al.
provided an ICA method for quaternion signals [Vía et al., 2011].

1.2.2.3 ICA by minimization of mutual information

Mutual Information (MI) is a well-established information-theoretic measure of statistical
dependence, based on which ICA approaches can be developed. MI between P random
variables, si, i ∈ {1, . . . , P}, is defined as follows:

I(s1, s2, . . . , sP ) =
P∑
i=1

H(si)−H(s) (1.7)

where the negentropy function H(·) is defined in equation (1.4). MI is nonnegative and
equal to zero if and only if the random variables are statistically independent. MI-based
ICA methods intend to minimize the MI of the separated sources ŝ = V x with respect
to the demixing matrix V , yielding the maximum independence.

MI can serve as a unifying framework for maximization of non-Gaussianity and ML
estimation [Yang, 1997, Obradovic and Deco, 1998]. A large number of ICA methods
are based on the minimization of MI. He et al. proposed a nonparametric algorithm by
means of clustering-based multivariate density estimation [He et al., 2000]. Pham pro-
posed a method based on higher order statistics [Pham, 2000], and a method for colored
sources via the Gaussian MI criterion [Pham, 2001a]. Babaie-Zadeh et al. designed an
algorithm based on differential MI [Babaie-Zadeh et al., 2004]. Kraskov et al. gave sev-
eral MI estimators for ICA [Kraskov et al., 2004]. Babaie-Zadeh and Jutten introduced a
nonparametric gradient method [Babaie-Zadeh and Jutten, 2005]. A fast fixed-point algo-
rithm was provided by Hulle [Hulle, 2008]. Other methods include [Almeida, 2003,Pham,
2004,Li and Adalı, 2010,Rashid and Yu, 2012], to cite a few.
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1.2.3 ICA by tensor decomposition of cumulant arrays

Higher-Order (HO) tensors are essentially HO arrays whose components have more than
two indices, and they can be seen as HO extensions of vectors (first order arrays) and
matrices (second order arrays). HO cumulant arrays can be considered as HO general-
izations of the covariance matrix, and they are the measure of statistical dependence at
higher order. An important class of ICA approaches, as well as the proposed methods in
this thesis report, consists of using HO cumulant arrays.

1.2.3.1 Preliminaries

Now we introduce some basic definitions in multilinear algebra which are necessary for
the cumulant-based ICA methods.

Definition 1.1. The outer product T = u(1) ◦u(2) ◦ · · · ◦u(q) of q vectors u(i) ∈ RNi, i ∈
{1, . . . , q}, is a q-th order array in RN1×N2×···×Nq whose entries are defined by Ti1,i2,...,iq =

u
(1)
i1
u

(2)
i2
· · ·u(q)

iq
.

Definition 1.2. Each q-th order array T expressed as the outer product of q vectors is
a rank-1 q-th order array.

More generally, the rank of a q-th order array is defined as follows:

Definition 1.3. The rank of an array T ∈ RN1×N2×···×Nq , denoted by rank(T ), is the
minimal number of rank-1 arrays belonging to RN1×N2×···×Nq that yield T in a linear
combination.

Despite the similarity between the definition of the tensor rank and its matrix coun-
terpart, the rank of a HO array may exceed its dimensions [Comon et al., 2009]. An
important concept of matrix rank named Kruskal rank is defined as follows [Harshman
and Lundy, 1984]:

Definition 1.4. The Kruskal rank of a matrix U , denoted by rankK(U), is defined as
the largest number ` such that every subset of ` columns of U is linearly independent.

We can extract a matrix slice from a HO array by means of the following definition:

Definition 1.5. A q-th order array matrix slice is a 2-dimensional section (fragment) of
a q-th order array, obtained by fixing q − 2 of the q indices [Cichocki et al., 2009].

Now we define the multiplication of a HO array with a matrix:

Definition 1.6. The mode-i product of an array T ∈ RN1×N2×···×Nq by a matrix U ∈
R
Ji×Ni, denoted by T ×i U is an array in RN1×N2×···×Ni−1×Ji×Ni+1×···×Nq defined by:

(T ×i U)n1,n2,...,ji,...,nq =

Ni∑
ni=1

Tn1,n2,...,ni,...,nqUji,ni (1.8)

for all index values of ji.

According to definitions 1.1, 1.2 and 1.3, the low-rank Canonical Polyadic Decompo-
sition (CPD) model of a given HO array is defined by:
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Definition 1.7. Given an integer number P of components, the CPD model of a q-th
order array T ∈ RN1×N2×···×Nq can be expressed as follows:

T =
P∑
p=1

u(1)
p ◦ u(2)

p ◦ · · · ◦ u(q)
p + R (1.9)

where the q-th order array R represents the model residual.

The notation T = [[U (1),U (2), . . . ,U (q)]] + R refers to the CPD of T by equation (1.9)
with the associated loading matrices U (i) = [u

(i)
1 , · · · ,u(i)

P ] ∈ RNi×P . When R is a null
array, we have an exact CPD. An exact CPD is considered to be essentially unique when
it is only subject to scale and permutation indeterminacies. A sufficient condition of
uniqueness was defined by means of Kruskal rank as presented in the following theorem
[Sidiropoulos and Bro, 2000]:

Theorem 1.1. The CPD of a rank-P q-th order array T = [[U (1), U (2), . . ., U (q)]] is
considered to be essentially unique when the following inequality holds:

q∑
i=1

rankK(U (i)) ≥ 2P + (q − 1) (1.10)

More refined uniqueness conditions specifically for third-order arrays were addressed in
[Kruskal, 1977,Ten Berge and Sidiropoulos, 2002,Jiang and Sidiropoulos, 2004,De Lath-
auwer, 2006].

The CPD problem and its algorithms have been studied extensively for the past four
decades, see [Harshman, 1970,Harshman and Lundy, 1994,Comon, 2002,De Lathauwer
et al., 2004,De Lathauwer, 2006,Rajih et al., 2008,Comon et al., 2009,Kolda and Bader,
2009, Karfoul et al., 2011, Röemer and Haardt, 2013, Hajipour Sardouie et al., 2013,
Luciani and Albera, 2014,Comon, 2014] and references therein.

As a special form of the CPD of a third-order array where two loading matrices are
equal, the low-rank INdividuals Differences in SCALing (INDSCAL) analysis [Carroll
and Chang, 1970] is defined as follows:

Definition 1.8. For a given P , corresponding to the number of rank-1 terms, the IND-
SCAL decomposition of a third-order array T ∈ RN1×N1×N3 can be expressed as:

T =
P∑
p=1

u(1)
p ◦ u(1)

p ◦ u(3)
p + R (1.11)

with the loading matrices U (1) = [u
(1)
1 , · · · ,u(1)

P ] ∈ RN1×P and U (3) = [u
(3)
1 , · · · ,u(3)

P ] ∈
R
N3×P , and R being the residual term.

The INDSCAL decomposition can also be described by using the frontal slices of T :

∀ k ∈ {1, 2, · · · , N3}, T (k) = T :,:,k = U (1)D
(k)
U3(U (1))T +R(k) (1.12)

where T (k) = T :,:,k is the k-th frontal slice of T , where D(k)
U3 ∈ RP×P is a diagonal

matrix whose diagonal contains the elements of the k-th row vector of U (3), and where
R(k) = R:,:,k is the k-th frontal slice of R. In fact, equation (1.12) shows that the
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INDSCAL decomposition problem is essentially a joint diagonalization by congruence
problem which we will address in the next section. The uniqueness condition for the
INDSCAL decomposition was established by Afsari [Afsari, 2008].

The q-th order cumulant array of a real random vector is essentially a q-th order
array, and it can be related to moments of order lower than and equal to q using Leonov-
Shiryaev formula [McCullagh, 1987]:

Property 1.1. The q-th order cumulant array C(q)
x ∈ RN×N×···×N of a real random

vector x ∈ RN satisfies the following element-wise equation:

C(q)
x,n1,n2,...,nq = cum{xn1 , xn1 , . . . , xnq}

=
∑
`

(−1)`−1(`− 1)! E{
∏
n∈I1

xn}E{
∏
n∈I2

xn} · · ·E{
∏
n∈I`

xn} (1.13)

where the summation includes all possible partitions {I1, I2, . . . , I`} (1 ≤ ` ≤ q) of the
integers {n1, n2, . . . , nq} (see [Karfoul et al., 2010] for more details).

For a real zero-mean random vector x, the cumulants up to order four are expressed in
details as follows:

C(1)
x,n1 = E{xn1} (1.14)

C(2)
x,n1,n2 = E{xn1xn2} (1.15)

C(3)
x,n1,n2,n3 = E{xn1xn2xn3} (1.16)

C(4)
x,n1,n2,n3,n4 = E{xn1xn2xn3xn4} − E{xn1xn2}E{xn3xn4}

− E{xn1xn3}E{xn2xn4} − E{xn1xn4}E{xn2xn3} (1.17)

HO cumulant arrays enjoy a number of important properties, which are listed as
follows [Nikias and Mendel, 1993,De Lathauwer, 2010]:

1. Symmetry : real cumulant arrays are fully symmetric under an arbitrary permuta-
tion of the indices.

2. Multi-linearity : if a real random vector x admits the linear transformation x = As,
then the following equality holds:

C(q)
x = C(q)

s ×1 A×2 A · · · ×q A (1.18)

3. Partitioning of independent variables: if a subset of p random variables xn1 , xn2 ,
. . ., xnp is statistically independent of the other variables, then their HO cumulants
are equal to zero. Therefore, a HO cumulant array of a random vector that has
mutually independent components is a diagonal array. In this case only the entries
of which all the indices are equal can be different from zero.

4. Sum of independent variables: the cumulant array of a sum of independent random
vectors is the sum of the individual cumulant arrays.

5. Non-Gaussianity : HO cumulant arrays of a Gaussian variable are zero arrays. In
combination with the fourth property, for a random vector x corrupted by an
additive Gaussian noise vector ε, we have, for q > 2:

C(q)
x+ε = C(q)

x + C(q)
ε = C(q)

x (1.19)
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Consequently, we can state that HO cumulants of a set of random variables give an
indication of their mutual statistical dependence, and that the HO cumulant of a single
random variable is some measure of its non-Gaussianity [Pesquet and Moreau, 2001,
De Lathauwer, 2010]. Moreover, the above properties of a HO cumulant array determine
the algebraic structure of that array, which establishes the algorithmic foundation of a
family of well-known ICA methods and also of the proposed algorithms in this thesis
report.

1.2.3.2 Cumulant-based ICA algorithms

Considering the ICA model (1.2) and using the properties of cumulants discussed in
the previous section, the q-th order cumulant array of the observation vector x can be
expressed as follows:

C(q)
x = C(q)

s ×1 A×2 A · · · ×q A+ C(q)
ε =

P∑
p=1

C(q)
s,p,...,p ap ◦ ap ◦ · · · ◦ ap + C(q)

ε (1.20)

where ap is the p-th column vector of the mixing matrix A, where C(q)
ε is the q-th

order cumulant array of the noise vector, and where C(q)
s,p,...,p denotes the q-th order

cumulant of the p-th source. The second equality holds when the sources are statistically
independent, in which case the cumulant array C(q)

s of the source vector is diagonal.
Moreover, C(q)

ε (q > 2) vanishes if the noise has a Gaussian distribution. Equation
(1.20) is essentially the CPD of a cumulant array. Under the uniqueness condition of
the CPD on the matrix A, and assuming that all the sources have non-zero q-th order
cumulants C(q)

s,p,...,p and ε is a Gaussian noise vector, the mixing matrixA can be estimated
uniquely by CPD of C(q)

x (q > 2) up to scale and permutation indeterminacies. Cardoso
proposed a super-symmetric decomposition method for the Fourth-Order (FO) cumulant
array [Cardoso, 1991]. Comon provided a CPD method for cumulant arrays but restricted
the mixing matrix A to be of size (2 × 3) [Comon, 2004]. Albera et al. proposed an
algorithm to compute the CPD of a Hermitian FO array and applied it the FO cumulant
array of the observation array in order to identify A [Albera et al., 2005]. The method
was extended to 2q-th order Hermitian arrays by the same authors in [Albera et al.,
2004], allowing for the identification of underdetermined mixing matrices (i.e. with more
columns than rows). Ferréol et al. showed how to combine several time-delayed FO
cumulant arrays for the identification of underdetermined mixing matrices, provided
that one of the FO cumulant arrays was positive (or negative) semi-definite [Ferréol
et al., 2005]. De Lathauwer and Castaing proposed to decompose jointly several Second-
Order (SO) time-delayed cumulant arrays [De Lathauwer and Castaing, 2008]. Karfoul
et al. provided a joint CPD method of several HO cumulant arrays relaxing the positive
(or negative) semi-definite assumption [Karfoul et al., 2010]. A generalization of the
Enhanced Line Search Alternating Least Squares (ELS-ALS) method [Rajih et al., 2008]
to the case of complex-valued arrays of order strictly greater than 3 and a new algorithm
for the CPD of Hermitian HO arrays were proposed in [Karfoul et al., 2011].

On the other side, considering the cumulant array of the estimated source vector
ŝ = V x:

C(q)
ŝ = C(q)

x ×1 V ×2 V · · · ×q V (1.21)

9
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the demixing matrix V can be estimated by transforming C(q)
ŝ into a diagonal array,

yielding ŝ having statistically independent components. Suppose that the cumulant
array is computed on the whitened observation vector. The search space of V is then
reduced to the group of (P × P ) unitary matrices. A (P × P ) unitary matrix can be
parameterized as a product of P (P −1)/2 Givens rotation matrices. Comon proposed to
use the FO cumulant array and to estimate these Givens rotation matrices sequentially
with Jacobi iterations. In each Jacobi iteration, the parameter of one rotation matrix can
be estimated either by maximizing the total sum of squares of the diagonal components
of the cumulant array C(q)

ŝ [Comon, 1994], or by maximizing the trace of that cumulant
array if all the source cumulants are known to be positive [Comon and Moreau, 1997]. The
former algorithm is known as CoM2, and the latter is called CoM1, where the numbers
"2" and "1" indicate that the algorithms maximize the 2-norm and 1-norm of the diagonal
components, respectively. Cardoso and Souloumiac proposed to maximize another cost
function (called contrast [Comon, 1994,Moreau, 2001]) based on FO cumulants. This
maximization problem was reformulated as the Joint Approximate Diagonalization of
Eigen-matrices, leading to the JADE algorithm [Cardoso and Souloumiac, 1993]. On
the other hand, De Lathauwer et al. considered the FO cumulant array as a stack of N
Third Order (TO) arrays of dimension (N × N × N), and proposed an ICA algorithm
based on Simultaneous Third-Order Tensor Diagonalization (STOTD) [De Lathauwer
et al., 2001]. Moreau extended the JADE and STOTD methods to any HO cumulant
by providing a new family of contrast functions that served as a unifying framework
for JADE and STOTD [Moreau, 2001]. Moreover, he revealed a link between these
new contrast functions and a joint diagonalization criterion, yielding a novel method
called eJADE. Tobias and Wiskott extended the CoM2 algorithm by incorporating both
the TO and FO cumulant arrays [Blaschke and Wiskott, 2004]. However, it was shown
in [Moreau, 2006] that the contrast function used by Tobias and Wiskott was a particular
case of the general contrast introduced by Moreau in [Moreau, 2001]. Another ICA
method called Second Order Blind Identification (SOBI) for separating stationary sources
with different spectral contents was proposed by Belouchrani et al., which aimed at
jointly diagonalizing a set of whitened SO time-delayed cumulant arrays [Belouchrani
et al., 1997].

As informed in the previous paragraphs, Joint Diagonalization by Congruence (JDC)
is the core step in quite a number of cumulant-based ICA methods, such as JADE
[Cardoso and Souloumiac, 1993], eJADE [Moreau, 2001] and SOBI [Belouchrani et al.,
1997]. The connection between ICA and JDC, as well as the JDC algorithms, will be
addressed in the next section.

1.3 From ICA to joint diagonalization by congruence

Joint diagonalization of cumulant matrix slices by congruence is a principal procedure
for many ICA algorithms [Moreau and Adalı, 2013]. In this section, firstly we study the
matrix-wise structure of cumulant arrays and show that the matrix slices of cumulant
arrays preserve a joint congruence transformation structure. The mixing matrix of ICA
can be estimated by means of a JDC technique. Secondly, the uniqueness and identi-
fiability issues are briefly addressed. Thirdly, we provide an overview of existing JDC
algorithms.
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1.3.1 JDC problem

A matrix slice of a q-th order cumulant array C(q)
x (q > 2) can be obtained by varying

its first two indices and picking one particular value for the other indices. If x obeys
the ICA model (1.2) and is contaminated by a Gaussian noise, from equation (1.20), the
matrix slices have the following structure:

C
(q)
x,:,:,n3,...,nq =

P∑
n1=1

(C(q)
s,n1,...,n1An3,n1 · · ·Anq ,n1)an1 ◦ an1 = AD(n3,...,nq)AT (1.22)

where Ani,nj is the (ni, nj)-th component of A, where an1 denotes the n1-th column
vector of A, where D(n3,...,nq) ∈ RP×P are diagonal matrices, and where the equality
an1 ◦ an1 = an1a

T
n1

is used implicitly. Equation (1.22) shows that the matrix slices of
cumulant arrays share the following joint congruence transformation:

C(k) = AD(k)AT, k ∈ {1, . . . ,K} (1.23)

where D(k) ∈ RP×P are diagonal matrices, and where K = N q−2 is the total number of
matrix slices from a q-th order cumulant array. In this case, K matrices C(k) ∈ RN×N
are jointly diagonalizable and A ∈ RN×P is called the joint transformation matrix. It is
noteworthy that in order to use HO cumulant arrays and their matrix slices in ICA, the
sources are assumed to be mutually independent and non-Gaussian.

Consequently, in order to identify the mixing matrix A from the cumulant matrix
slices, we aim at solving the following JDC problem:

Problem 1.2. Given K symmetric matrices C(k) ∈ RN×N and an integer P , find a
joint transformation matrix A ∈ RN×P and K diagonal matrices D(k) ∈ RP×P such
that these matrices satisfy equation (1.23).

In most papers, the terms "joint diagonalization" and "simultaneous diagonalization"
were utilized to state the JDC problem, such as in [Yeredor, 2002]. We propose to
emphasis the "Congruence" transformation in the Joint Diagonalization problem, leading
to the acronym "JDC", in oder to avoid confusion with the joint diagonalization by
equivalence problem C(k) = AD(k)A−1, which is an essentially different problem when
A is not unitary [Luciani and Albera, 2010,Luciani and Albera, 2011,Luciani and Albera,
2014].

1.3.2 Uniqueness and identifiability

If the ICA model (1.2) is noiseless and the mixing matrixA ∈ RN×P is of full column rank
with N > P , one can always find P of the N observations which are linearly independent
and discard the other observed mixtures without loss of information, leading to a square
mixing matrix. More generally, an appropriate (P × N) matrix transformation can be
applied to the N observations in order to merge them and to reduce the dimension of
the observation vector. Therefore, without loss of generality, we can assume that for a
noiseless JDC problem the joint transformation matrix A is a nonsingular square matrix
of dimension (N ×N).

Afsari proposed a uniqueness condition for the noiseless JDC problem by measuring
the coherence of the K diagonal matricesD(k) [Afsari, 2008]. LetD be a (K×N) matrix
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whose (k, n)-th component is defined as follows:

Dk,n = D(k)
n,n, k ∈ {1, . . . ,K}, n ∈ {1, . . . , N} (1.24)

where D(k)
n,n is the (n, n)-th component of the k-th diagonal matrix D(k). Let dn1 and

dn2 denote the n1-th and n2-th column vectors of D, respectively. The cosine of angle
ψn1,n2 between two vectors dn1 and dn2 can be derived by using the following Euclidean
dot product formula:

dTn1
dn2 = ‖dn1‖‖dn2‖ cos(ψn1,n2) (1.25)

Definition 1.9. The coherence ρ of K diagonal matricesD(k) is defined as the maximum
absolute cosine of angle ψn1,n2 between the column vectors of D as follows:

ρ = max
n1,n2
n1 6=n2

| cos(ψn1,n2)| with cos(ψn1,n2) =
dTn1

dn2

‖dn1‖‖dn2‖
(1.26)

If one of the two vectors is zero, ρ is defined to be one by convention.

The coherence ρ, also known as the modulus of uniqueness, captures the uniqueness
property of the JDC problem as described in the following theorem [Afsari, 2008].

Theorem 1.2. Let each C(k) satisfy equation (1.23). The necessary and sufficient con-
dition to identify a unique nonorthogonal joint transformation matrix A up to scale and
permutation indeterminacies is ρ < 1.

The uniqueness issue of the complex-valued JDC problem was addressed in [Kleinsteuber
and Shen, 2013]. Based on theorem 1.2 and the properties of cumulants, Afsari provided
an identifiability condition for the JDC-based ICA method [Afsari, 2008].

Theorem 1.3. (Identifiability of ICA - JDC formulation) Regarding the noiseless ICA
model, let us assume that i) the covariance matrix Rs of the source vector s is nonsingu-
lar, ii) the q-th order marginal cumulants (for some q > 2) of all the source components
exist and iii) at most one of them is zero. Then an exact JDC of the N q−2 cumulant
matrix slices C(q)

x,:,:,n3,...,nq as well as the covariance matrix Rx, results in finding A up to
column scaling and permutation. For a source vector with finite cumulants of all orders,
this process fails to identify A if and only if the source vector has more than one Gaussian
component.

Note that the use of the covariance matrix is optional when all the source components
have non-zero q-th order cumulants.

1.3.3 JDC algorithms

The JDC problem has been widely studied during the past two decades and has been
mostly handled as an optimization problem. The algorithms mainly depend on the crite-
rion chosen to perform the optimization. These criteria include the indirect-fit criterion,
the direct-fit criterion, the combination of the direct and indirect-fit criteria and the ap-
proximate log-likelihood criterion. Following the recent survey of Chabriel et al. [Chabriel
et al., 2014], we provide a comprehensive overview of these four groups of criteria and the
associated JDC algorithms. In the rest of this section, when a JDC problem is mentioned
without further specification, it refers to a "square" problem, in which the matrices A,
D(k) and C(k) are of size (N ×N).
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Chapter 1 1.3. From ICA to joint diagonalization by congruence

1.3.3.1 Minimizing the indirect-fit criterion

Based on the JDC model (1.23), the matrices D(k) can be expressed as a function of
A by D(k) = A−1C(k)(A−1)T and should be diagonal by definition. A natural way
to compute A is to minimize the squares of the off-diagonal components of D(k) with
respect to A, leading to the following indirect-fit criterion:

Ψ1(A) =
K∑
k=1

∣∣∣∣∣∣ off(A−1C(k)A−T)
∣∣∣∣∣∣2
F

(1.27)

where off(·) sets the diagonal entries of the matrix argument to zero, and where A−T

denotes (A−1)T. Frequently the minimization of criterion (1.27) is performed with re-
spect to a matrix V such that V = A−1, instead of A for simplicity, and V is called
the joint diagonalizer. In the context of ICA, V can be regarded as a demixing matrix.
To use this criterion the matrix V (or A−1) should be properly constrained in order to
avoid the trivial zero solution and/or degenerate solutions. In the following, we present
the options of constraints and penalty terms appeared in literature:

1. V is unitary. Cardoso and Souloumiac proposed an efficient algorithm, namely
Joint Approximate Diagonalization (JAD), which estimated V by successive Jacobi
iterations [Cardoso and Souloumiac, 1996]. Moreau extended this algorithm by
introducing a generalized JDC criterion [Moreau, 2001]. Zhang et al. estimated V
by sequential Householder transforms [Zhang et al., 2009].

2. Each column vector of V has unit norm. This constraint is less restrictive than the
former one and was adopted in [Wang et al., 2006,Dégerine and Kane, 2007,Fadaili
et al., 2007].

3. The diagonal elements of the matrix V C(k0)V T must be equal to one, where C(k0)

with k0 ∈ {1, . . . ,K} is a positive definite matrix in {C(k)}. In ICA, C(k0) could
be the zero-delayed covariance matrix of the observations, and this constraint turns
out to force the separated sources having unit variance. Vollgraf and Obermayer
proposed a Quadratic DIAGonalization algorithm (QDIAG), which estimated each
row vector of V alternately by matrix eigenvector computation [Vollgraf and Ober-
mayer, 2006].

4. V has a unit determinant. This constraint can be guaranteed by expressing V as
a product of a sequence of elementary unit-determinant matrices, such as Givens
rotation matrices, hyperbolic rotation matrices and elementary triangular matri-
ces. A merit of using these elementary matrices is that each matrix is deter-
mined by only one parameter, which generally can be estimated algebraically by
means of a Jacobi-like optimization procedure. These methods include the LUJ1D
and QRJ1D algorithms proposed by Afsari [Afsari, 2006], the J-DI algorithm pro-
posed by Souloumiac [Souloumiac, 2009], the SL algorithm proposed by Sørensen
et al. [Sørensen et al., 2009], and the coupled LU and QR factorizations based
algorithms proposed by Maurandi et al. [Maurandi et al., 2013] and by Maurandi
and Moreau [Maurandi and Moreau, 2014b], respectively. Several methods ex-
tended the ideas for complex-valued JDC problems [Guo et al., 2010,Gong et al.,
2012,Mesloub et al., 2014,Maurandi and Moreau, 2014a,Maurandi et al., 2014], to
cite a few.
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5. V is constrained to be invertible. Ziehe et al. proposed an iterative method,
namely Fast Frobenius DIAGonalization (FFDIAG) [Ziehe et al., 2004]. Given
a nonsingular initialization V (0), in the it-th iteration, V (it−1) is updated by a
strictly diagonally dominant matrix U (i.e. for every row of U , the magnitude of
the diagonal entry in a row is larger than the sum of the magnitudes of all the
other non-diagonal entries in that row), therefore the product V (it) = UV (it−1) is
guaranteed to be invertible. A complex-valued extension of FFDIAG was presented
in [Xu et al., 2011]. Yeredor et al. derived a relative gradient approach and pointed
out that for small enough step-sizes the invertibility of V was ensured [Yeredor
et al., 2004]. Thereafter, Ghennioui et al. improved the former algorithm based on
computing an optimal step-size [Ghennioui et al., 2009]. Trainini et al. extended
the relative gradient algorithm for complex-valued matrices [Trainini et al., 2010].
Several variations of gradient-like methods were provided by Trainini and Moreau
[Trainini and Moreau, 2012].

6. Several methods resorted to add penalty terms to criterion (1.27). In [Wang et al.,
2005], Wang et al. introduced two penalty terms, namely ‖V V T − IN‖2F and
‖ diag(V − IN )‖2F , and proposed a gradient descent method, where diag(.) returns
a matrix comprising only the diagonal elements of the input matrix. Li and Zhang
utilized log |det(V )| and performed the minimization with respect to each column
vector of V alternately [Li and Zhang, 2007]. For a non-square matrix V , Li et al.
turned to use log | det(V V T)| and proposed a gradient decent algorithm [Li et al.,
2007]. This penalty term was also adopted by Zhou et al. in [Zhou et al., 2009].
Pham and Congedo proposed a new intrinsic constraint

∑
k(Vn,:C

(k)V T
n,:)

2 = 1, and
derived a pseudo Newton algorithm, where Vn,: is the n-th row vector of V [Pham
and Congedo, 2009].

Besides the criterion Ψ1(A) in (1.27), Afsari proposed another indirect-fit criterion
suitable for JDC, which was scale-invariant in A (and V ) [Afsari, 2006,Afsari, 2008]:

Ψ2(A) =

K∑
k=1

∣∣∣∣∣∣C(k) −A diag(A−1C(k)A−T)AT
∣∣∣∣∣∣2
F

(1.28)

The scale invariance means that the change of the scale of any columns of A does not
affect the value of this criterion. Based on criterion (1.28), Afsari proposed two algo-
rithms, namely LUJ2D and QRJ2D, by means of LU and QR matrix factorizations of
V , respectively [Afsari, 2006]. Recently, Yeredor et al. modified this criterion and used
it in a different JDC problem, named sequentially drilled JDC [Yeredor et al., 2012].

1.3.3.2 Minimizing the direct-fit criterion

The direct-fit criterion is a measure of the squared difference between the given matrices
C(k) and their assumed model parameters in terms of estimating the joint transformation
matrix A and K diagonal matrices D(k) (k ∈ {1, . . . ,K}),

Ψ3(A, {D(k)}) =

K∑
k=1

∣∣∣∣∣∣C(k) −AD(k)AT
∣∣∣∣∣∣2
F

(1.29)
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This criterion was originally introduced by Wax and Sheinvald [Wax and Sheinvald,
1997]. They revealed that criterion (1.29) coincided with criterion (1.27) when A was
constrained to be unitary. For a non-unitary matrix A, Van der Veen proposed to mini-
mize (1.29) via subspace fitting technique [Van der Veen, 2001]. An effective optimization
scheme was proposed by Yeredor [Yeredor, 2002]. The minimization of (1.29) was per-
formed alternately between each column vector of A and the diagonal matrices D(k),
giving birth to the well-known Alternating Columns and Diagonal Center (ACDC) al-
gorithm. Recently, Zhang and Lou developed a recursive algorithm, which provided a
compromise between performance and numerical complexity [Zhang and Lou, 2013]. Zeng
and Feng proposed a novel algorithm based on the hybrid trust region method [Zeng and
Feng, 2014]. In addition, criterion (1.29) does not require A to be square, and it can even
handle the underdetermined case where A has more columns than rows [De Lathauwer
and Castaing, 2008].

On the other hand, in the absence of noise, A can be extracted from the Generalized
EigenValue Decomposition (GEVD) of two matrices C(1) and C(2) as follows:

C(1)(C(2))−1 = A(D(1)(D(2))−1)A−1 (1.30)

where we assume that D(2) (and hence C(2)) is nonsingular. When a noisy JDC prob-
lem involving more than two matrices is considered, Yeredor provided a suboptimal
but closed-form (non-iterative) solution by deriving two "representative" matrices from
{C(k)} and computing the GEVD [Yeredor, 2005]. The algorithm is called Exact Joint
Diagonalization (EJD). Based on EJD, Chabriel and Barrère proposed a more robust
method, namely DIagonalization using Equivalent Matrices (DIEM) [Chabriel and Bar-
rère, 2012]. DIEM requires that at least K = N matrices C(k) are available.

Additionally, each matrix C(k) ∈ RN×N can be regarded as a fontal matrix slice
of a TO array C ∈ RN×N×K . The minimization of criterion (1.29) is directly linked
to the CPD of C, such that C = [[A,A,D]], where D is defined in equation (1.24).
As previously reviewed in section 1.2.3.1, this special case of CPD when two loading
matrices coincide is called INDSCAL decomposition [Carroll and Chang, 1970]. Comon
and Rajih proposed a method for INDSCAL decomposition in [Comon and Rajih, 2006,
Appendix 7.2]. Albera and Karfoul derived a different Alternating Least Squares (ALS)
algorithm (ALS) incorporating an Enhanced Line Search (ELS) procedure [Albera and
Karfoul, 2009]. Trainini and Moreau proposed another ELS-ALS method for complex-
valued matrices [Trainini and Moreau, 2011]. A damped Gaussian-Newton algorithm
was provided by Koldovský et al. [Koldovský et al., 2011]. Moreover, since INDSCAL
model is a special case of the CPD, one can attempt to decompose C by general CPD
C = [[A(1),A(2),D]], and suppose that eventually the two loading matrices A(1) and A(2)

will converge to an estimate of A. But in practice, some differences will remain between
A(1) andA(2). Then the n-th column vector ofA, denoted by an, can be estimated as the
dominant left singular vector of the matrix [a

(1)
n a

(2)
n ] ∈ RN×2, where a(1)

n and a(2)
n are the

n-th column vectors of A(1) and A(2), respectively, and n ∈ {1, . . . , N} [De Lathauwer
and Castaing, 2008]. An explicit link between the CP and JDC decompositions was
established by De Lathauwer in [De Lathauwer, 2006].
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1.3.3.3 Combination of the direct and indirect-fit criteria

In criterion (1.29), instead of fitting the set of matrices C(k) by A and D(k) directly,
we can consider fitting a set of partially diagonalized matrices V (it)C(k)(V (it))T at the
it-th iteration by means of a residual joint transformation Ā(it) and K diagonal matrices
D

(k)
v , using the following criterion:

Ψ4(Ā(it)) =

K∑
k=1

∣∣∣∣∣∣V (it)C(k)(V (it))T − Ā(it)D(k)
v (Ā(it))T

∣∣∣∣∣∣2
F

(1.31)

where it denotes the iteration index, where V (it) is the obtained joint diagonalizer at
the it-th iteration, and where D(k)

v = diag{V (it)C(k)(V (it))T}. Criterion (1.31) can be
regarded as the combination of the direct criterion (1.27) and the indirect-fit criterion
(1.29). Each minimization step consists in one iteration of a direct-fit procedure with
respect to Ā(it). In the direct-fit procedure, a Gaussian-Newton method is adopted for
the purpose of fast convergence in a neighborhood of the true local minimum which
is close to Ā(it) = IN . By setting IN as the initial point, only one iteration of the
Gaussian-Newton optimization is applied for each step, because at such an initial point,
the inverse of the Hessian matrix can be computed by solving distinct sets of (2 × 2)

linear equations [Chabriel et al., 2014]. Once the residual joint transformation matrix
Ā(it) is found, the joint diagonalizer V (it+1) is computed by V (it+1) = (Ā(it))−1V (it).
This method was proposed by Tichavský and Yeredor, and called Uniformly Weighted
Exhaustive Diagonalization with Gauss itErations (UWEDGE) [Tichavský and Yeredor,
2009].

1.3.3.4 Minimizing the approximate log-likelihood criterion

As already discussed in section 1.3.1, when the ICA model assumes statistically inde-
pendent sources with variances that are constant within each block but varying between
blocks, the jointly diagonalizable matrices C(k) can be sample covariance matrices taken
from distinct blocks of the observations [Pham and Cardoso, 2001]. Consequently, each
C(k) is a positive definite matrix. Pham utilized the following criterion, which measured
the diagonality of positive definite matrices [Pham, 2001b]:

Ψ5(A) =
K∑
k=1

log
det {diag(A−1C(k)A−T)}

det {A−1C(k)A−T}
(1.32)

Minimizing (1.32) is approximately equivalent to maximizing a log-likelihood objective
function for JDC. Historically, this criterion was first studied by Flury and Gautsch for
seeking a unitary joint transformation matrix A [Flury and Gautsch, 1986]. In this case,
the denominators in (1.32) are constant. Flury and Gautsch estimated A by succes-
sive Jacobi iterations. Pham considered the more general case that A was non-unitary.
He proposed to maximize a lower bound of the decrease of (1.32) by means of sequen-
tial (2 × 2) transformations, and derived algebraic solutions for those transformation
matrices [Pham, 2001b]. Thereafter, Joho provided a Newton algorithm [Joho, 2008].
Todros and Tabrikian proposed a computationally efficient algorithm by minimizing an
approximation of criterion (1.32) [Todros and Tabrikian, 2010].
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In many applications, the performance of the JDC algorithms can be substantially im-
proved by introducing appropriate weighting in the optimization criterion. For example,
the indirect-fit criterion (1.27) can be rewritten equivalently as follows:

Ψ1(A) = [f(A)]Tf(A) (1.33)

where the function f(A) returns a KN(N − 1)/2-dimensional column vector composed
of all off-diagonal components below the main diagonal of the K matrices A−1C(k)A−T.
The weighted indirect-fit criterion can be derived by inserting a positive definite weight
matrix Υ in (1.33) as follows [Tichavský and Yeredor, 2009]:

Ψw1(A) = [f(A)]TΥ f(A) (1.34)

A weighed direct-fit criterion can be found in [Yeredor, 2000]. In practice, it could be
difficult to obtain an optimal weight matrix Υ since the statistical characterization of
the source components is not fully available. Comprehensive discussion on choosing the
best weighting matrix for each criterion according to different statistical models of the
sources is out of the scope of this thesis report. For more details, one may refer to the
following references [Yeredor, 2000, Tichavský and Yeredor, 2009, Slapak and Yeredor,
2011,Yeredor, 2012].

1.4 Nonnegative matrix factorization

In the previous section we have addressed the ICA problem. The effectiveness of ICA
relies on the statistical independence constraint of the source components. However, in
ICA no constraint is made on the sign of the components either of the mixing matrix or
of the sources. In other words, the negative values are allowed in the data representation
model. Nevertheless, the negative values of both observations and source components
are physically meaningless in a wide variety of real-world data. For example, the color
and intensity of a pixel in an image is given by a nonnegative number; the frequency of
a word that appears in a document is assigned by a nonnegative value; and a music note
in a piece of music contributes a nonnegative amount to the signal power spectrum. In
addition, some observed signal is most naturally characterized by the exclusively additive
combination of the source components, for instance, the eye, nose and mouth of a face
image, leading to a nonnegative mixing matrix as well. Imposing the nonnegativity
constraint in some BSS problems allows us to obtain results in agreement with physical
reality and to facilitate easier interpretation. However, we often lose the nonnegativity
constraint during the ICA procedure, for example, when we perform whitening by means
of PCA [Plumbley et al., 2010].

In this section, we discuss a specific method for the use of nonnegativity constraints
in BSS problems, namely Nonnegative Matrix Factorization (NMF). Let us rewrite the
linear BSS model (1.1) in the following matrix form:

X = AS +E (1.35)

whereX ∈ RN×M is an observation matrix whose (n,m)-th component denotes them-th
realization of the n-th component of the observation vector x (1.1), where A ∈ RN×P
continues to express the mixing matrix, where S ∈ RP×M is a source matrix whose
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(p,m)-th component gives the value for the corresponding realization of the p-th source,
and where the noise matrix E ∈ RN×M can be similarly defined. We are interested in the
conditions where both the mixing matrix A and the source matrix S have nonnegative
components. Therefore, we can define the following NMF problem:

Problem 1.3. Given a nonnegative observation matrixX ∈ RN×M+ , find a mixing matrix
A ∈ RN×P and a source matrix S ∈ RP×M , such that:

X = AS +E (1.36)

by minimizing the residual term E, subject to A and S having nonnegative components.

NMF was initially investigated by Paatero and Tapper as the concept of positive matrix
factorization [Paatero and Tapper, 1994,Paatero, 1997], and gained popularity through
the well-known works of Lee and Seung [Lee and Seung, 1999]. Various methodologies
and extensions of NMF have been constantly emerging during the last few years. The
existing NMF algorithms can be divided into the following four categories, including the
basic NMF, the constrained NMF, the structured NMF and the generalized NMF [Wang
and Zhang, 2013]. NMF and its various extensions have become prominent tools in
a wide range of areas, such as image classification [Das Gupta and Xiao, 2011], face
recognition [Zafeiriou et al., 2006], music transcription [Févotte et al., 2009], spectroscopy
separation [Van Benthem and Keenan, 2004], and pattern recognition [Cichocki et al.,
2009]. Many systematic surveys of NMF have been addressed in literature, such as the
review papers [Tropp, 2003, Chu et al., 2004, Berry et al., 2007, Buciu, 2008, Plumbley
et al., 2010,Wang and Zhang, 2013, Zhou et al., 2014, Smaragdis et al., 2014], and an
in-depth book [Cichocki et al., 2009].

In this section, we provide a concise overview of limited areas of NMF which are
more relevant to the work described in this thesis, including basic NMF and one gen-
eralized NMF, namely semi-NMF. For a more broad discussion one may refer to the
aforementioned literature.

1.4.1 Existence and uniqueness

Given a nonnegative matrix X, its trivial NMF solution of form X = AS always exists,
for instance A = X and S = I. Vasiloglou et al. proved that every nonnegative
matrix has a non-trivial NMF solution by relating NMF to the Completely Positive
Matrix (CPM) factorization [Vasiloglou et al., 2009]. It shows that the set of CPMs
forms a convex cone and the solution of NMF belongs to the CPM cone, leading to
the conclusion that solving NMF is a convex optimization problem. However, finding a
practical description of the CPM cone is still an open question. So although the problem
could be reformulated as a convex problem, there is no algorithm known for solving
it [Vasiloglou et al., 2009].

NMF is considered to be essentially unique when its solution is only subject to scale
and permutation indeterminacies. Unfortunately, NMF solutions often suffer from ad-
ditional rotation indeterminacy. For example, there are many ways to select a ratation
matrix R which is not necessarily nonnegative or not necessarily equal to a product of a
diagonal matrix and a permutation matrix, so that

X = AS = ARR−1S = A1S1 (1.37)
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and the rotated matrices A1 = AR 6= A and S1 = R−1S 6= S are still nonnegative
[Cichocki et al., 2009]. That is to say, only the nonnegativity constraint is not sufficient
to guarantee the uniqueness. Nevertheless, incorporating some extra constraints, such as
separability, sparsity or symmetry, is sufficient to solve the NMF problem uniquely. The
first sufficient condition of uniqueness for separable NMF was provided by Donoho and
Stodden [Donoho and Stodden, 2003]. Laurberg et al. presented a stronger necessary
and sufficient condition for the uniqueness based on the boundary closeness assumption
of factors [Laurberg et al., 2008]. Gillis analyzed the uniqueness of sparse NMF from a
geometric point of view [Gillis, 2012]. More recently Huang et al. derived new uniqueness
results for symmetric and asymmetric NMF, which stated that a sufficient condition for
uniqueness was that the conic hull of the latent factors was a superset of a particular
second-order cone [Huang et al., 2014]. In addition checking this condition was shown
to be Non-deterministic Polynomial time (NP)-complete. We omit these mathematical
details in this report.

1.4.2 Basic NMF algorithms

The idea of basic NMF is to find efficient solutions to the NMF problem under the
sole nonnegativity constraint. Due to the NP-hardness and lack of appropriate convex
formulation of the NMF problem, the non-convex formulations are adopted in practice.
Generally the non-convex formulations are relatively easy to solve but usually only local
minima are achievable. Practical NMF algorithms perform the optimization by minimiz-
ing proper cost functions that measure the distance or discrepancy between the given
matrix X and the factorization AS. The optimization schemes differ from each other in
the cost functions and the optimization procedures.

1.4.2.1 Cost functions

The Square of Euclidean Distance (SED) in equation (1.38) and the Generalized Kullback-
Leibler Divergence (GKLD) in equation (1.39) are the most commonly used cost func-
tions [Lee and Seung, 2000]:

ΨF(A,S) = ||X −AS ||2F =

N∑
n=1

M∑
m=1

(Xn,m − [AS]n,m )2 (1.38)

ΨKL(A,S) =

N∑
n=1

M∑
m=1

(Xn,m log
Xn,m

[AS]n,m
−Xn,m + [AS]n,m ) (1.39)

where Xn,m is the (n,m)-th component of X, and where [AS]n,m denotes the (n,m)-th
component of the matrix product AS. Other cost functions include Itakura-Saito Diver-
gence (ISD) [Févotte et al., 2009], α-divergence [Cichocki et al., 2008], β-divergence [Kom-
pass, 2007], γ-divergence [Cichocki and Amari, 2010], Earth mover’s distance [Sandler
and Lindenbaum, 2011] and many others. Different cost functions can be chosen accord-
ing to the prior information of the probability distribution of the noises. For example,
the minimizations of the SED, GKLD and ISD are equivalent to the maximum likelihood
estimators under Gaussian additive, Poisson and multiplicative Gamma noises, respec-
tively [Févotte and Idier, 2011]. Although generally these cost functions are not jointly
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convex in both A and S, they are separately convex in either A or S, giving birth to a
wide range of NMF algorithms based on an alternating minimization scheme.

1.4.2.2 Algorithms

Lee and Seung introduced the SED and GKLD cost functions, and applied Multiplicative
Updates (MU) iteratively between A and S [Lee and Seung, 1999]. For example, the
MU rule for SED is shown as follows:

A(it+1) = A(it) � [X(S(it))T]� [A(it)S(it)(S(it))T] (1.40)

S(it+1) = S(it) � [(A(it+1))TX]� [(A(it+1))TA(it+1)S(it)] (1.41)

where it is the iteration index, where � denotes Hadamard product, and where � means
matrix element-wise division. The MU rules can be seen as adaptive rescaled gradient
descent algorithms and they have been widely used as a baseline due to their simplicity.
Their multiplicative natures guarantee that the resulting matrix components cannot be-
come negative. Berry et al. analyzed the convergence of the MU algorithms of Lee and
Seung [Berry et al., 2007].

Considering the separate convexity of the SED cost function (1.38), the joint opti-
mization can be converted into an alternate minimization of (1.38) with respect to A or
B while fixing the other one in the least-square sense under the nonnegativity constraint.
Such an alternate optimization scheme is referred to as Alternating Nonnegative Least
Squares (ANLS) [Kim et al., 2014]. The following two-step algorithm is the simplest way
to achieve ANLS [Berry et al., 2007]:

A(it+1) = P+{X(S(it))T[S(it)(S(it))T]−1 } (1.42)

S(it+1) = P+{ [(A(it+1))TA(it+1)]−1(A(it+1))TX } (1.43)

where P+{·} sets all negative values of the input matrix to zero. Kim et al. claimed that
the projection of negative values onto the positive orthant can not guarantee the decrease
of the cost function [Kim et al., 2007]. In practice, this procedure was reported to have
good performance [Berry et al., 2007]. Rather than using the projection operation, the
Nonnegativity constrained Least-Square (NLS) problem can be solved by means of the
active set algorithm proposed by Lawson and Hanson [Lawson and Hanson, 1974]. Fast
NLS algorithms were derived by Bro and De Jong [Bro and De Jong, 1997] and by Van
Benthem and Keenan [Van Benthem and Keenan, 2004], respectively. By adopting the
active set based NLS algorithm, Kim and Park proposed a framework of ANLS methods
for NMF [Kim and Park, 2008].

In order to improve the performance, as well as to accelerate the convergence rate,
many NMFmethods were proposed based on sophisticated optimization schemes. Merritt
and Zhang proposed an interior-point gradient method for solving the NLS problem
[Merritt and Zhang, 2005]. Gonzalez and Zhang introduced a multiplicative regulatory
factor leading to an accelerated MU algorithm [Gonzalez and Zhang, 2005]. Chu et al.
derived a family of Newton-type approaches for NMF, based on a projected Newton
method, the use of an alternating direction iterative Newton method and sequential
quadratic programming, respectively [Chu et al., 2004]. Moreover, they introduced a way
to parameterize a nonnegative matrix A ∈ RN×P+ over the open set RN×P by means of a
square change of variable: A = B�B, whereB ∈ RN×P has unconstrained components.
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This differentiable parametrization effectively transforms the nonnegativity constrained
optimization problem into a problem with no constraint at all, leading to an alternating
gradient descent method [Chu et al., 2004]. Lin proposed an ANLS algorithm by means of
projected gradient methods with an adaptive gradient decent step-size, which achieved a
fast convergence rate [Lin, 2007]. In order to obtain a more accurate solution, Zdunek and
Cichocki proposed to use the second-order approximations in the Taylor expansion of the
cost function, and proposed a family of projected quasi-Newton optimization approaches
[Zdunek and Cichocki, 2007]. Li and Zhang developed a fixed-point NMF approach
based on an exact block coordinate descent method, namely FastNMF [Li and Zhang,
2009]. Cichocki and Phan proposed a class of Hierarchical Alternating Least Squares
(HALS) algorithms, giving birth to FastHALS NMF approaches [Cichocki and Phan,
2009]. It is known that a best rank-one approximation can be achieved in polynomial
time. Gillis and Glineur proposed to identify an optimal rank-one NMF solution and
subtract it from the input matrix. Then the similar procedure was repeated on the
residual matrix under an upper bound constraint [Gillis and Glineur, 2010]. Guan et al.
provided a Nesterov’s optimal gradient method, in which the step-size was determined by
the Lipschitz constant hence avoiding the classical time consuming line search procedure
[Guan et al., 2012]. Moreover in order to corp with large-scale problems, many specific
optimization approaches were developed, such as an interior-point method [Merritt and
Zhang, 2005], local optimization [Cichocki and Phan, 2009], parallel computing [Liu
et al., 2010], low-rank approximation [Zhou et al., 2012], Alternating Direction Method
of Multipliers (ADMM) [Xu et al., 2012,Sun and Févotte, 2014], to cite only a few.

1.4.3 Semi-NMF algorithms

Basic NMF restricts every component in the observation matrix X to be nonnegative.
When the matrix X is unconstrained, which means it may have mixed signs, Ding et al.
suggested to restrict A to be nonnegative while placing no restriction on the signs of S,
leading to the following semi-NMF problem [Ding et al., 2010]:

Problem 1.4. Given an observation matrix X ∈ RN×M , find two matrices A ∈ RN×P
and S ∈ RP×M , such that

X = AS +E (1.44)

by minimizing the residual term E, subject to A having nonnegative components.

The motivation of semi-NMF was originated from the perspective of clustering with
A denoting the cluster indicators and S representing the cluster centers [Li and Ding,
2006]. In this case, the SED cost function (1.38) can be viewed as an objective function
of K-means clustering. On the other side, semi-NMF is also physically interpretable
in some practical applications where the observation data is not always nonnegative,
so the source components might also have some negative elements reflecting the phase
information [Wang and Zhang, 2013].

By using the SED cost function (1.38), the semi-NMF algorithm of Ding et al. [Ding
et al., 2010] iterates between finding the optimum S for a given A, which is given by the
classic least-square solution:

S(it+1) = [(A(it))TA(it)]−1(A(it))TX (1.45)
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and updating the estimate of A for a given S by the MU rule:

A(it+1) = A(it) �
√

[X(S(it+1))T]+ +A(it)[S(it+1))(S(it+1))T]−

�
√

[X(S(it+1))T]− +A(it)[S(it+1))(S(it+1))T]+
(1.46)

where U+ and U− correspond to the positive and negative parts of the input matrix U ,
respectively, given by:

U+
m,n = (|Um,n|+ Um,n)/2, U−m,n = (|Um,n| − Um,n)/2 (1.47)

The convergence of this alternating minimization procedure was also proved. Park
and Kim treated semi-NMF as a one-sided NMF problem and solved it with the NLS
method [Park and Kim, 2006]. Wang and Li introduced a random projection technique
to accelerate the semi-NMF [Wang and Li, 2010]. Kumar et al. proposed a semi-NMF
algorithm based on a max-margin classification criterion [Kumar et al., 2011].

Additionally, semi-NMF finds its applications in template matching [Le Roux et al.,
2008], image resolution enhancement [Bevilacqua et al., 2012], motion segmentation [Mo
and Draper, 2012], graph theory [Mankad and Michailidis, 2013], and hyperspectral image
unmixing [Yokoya et al., 2014].

1.5 Nonnegative independent component analysis

In order to achieve uniqueness of the semi-NMF solution, some additional constraints are
necessary, such as mutual independence, sparsity or semi-orthogonality [Plumbley et al.,
2010,Cichocki, 2013]. The mutual statistical independence, as well as the nonnegativity
assumption of the source components leads to the following Nonnegative ICA (NICA)
problem:

Problem 1.5. Given M realizations of an observation vector x ∈ RN , find a mixing
matrix A ∈ RN×P and the M corresponding realizations of a source vector s ∈ RP , such
that:

x = As+ ε (1.48)

where s has statistically independent and also nonnegative components, and where ε ∈ RN
is an additive noise vector independent of s.

1.5.1 Preprocessing and identifiablity

A source component si is called nonnegative if p(si < 0) = 0 and will be called well-
grounded, if it has a non-vanishing pdf in any positive neighborhood of zero, such that
for any δ > 0 we have p(si < δ) > 0 [Plumbley, 2002]. We assume that we have a
noiseless observation vector x and the source components si have unit variance. Plumbley
proposed to perform a whitening step on x, yielding z = Wx, where W ∈ RP×N is the
classical whitening matrix. Then the whitened observation vector z can be written as
z = Us, where U ∈ RP×P is an orthonormal matrix. Therefore, the NICA problem is
reduced to finding an orthonormal matrix V ∈ RP×P , for which ŝ = V z is equal to s
up to scale and permutation indeterminacies.
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Plumbley analyzed the identifiability condition for an NICA problem in [Plumbley,
2002]. Firstly, the nonnegativity of an orthonormal matrix is stated in the following
lemma:

Lemma 1.1. Let U (0) ∈ R
P×P be an orthonormal matrix such that U (0)(U (0))T =

(U (0))TU (0) = IP . Then all the elements of U (0) are nonnegative if and only if U (0) is
a permutation matrix.

Then based on lemma 1.1, we can obtain the following NICA identifiability condition:

Theorem 1.4. Let s ∈ RP be a random vector of nonnegative and well-grounded inde-
pendent source components, each with unit variance, and let

ŝ = V z = (V U)s = U (0)s

be an orthonormal rotation of s, where U (0)(U (0))T = (U (0))TU (0) = IP . Then U (0) is
a permutation matrix if and only if ŝ is nonnegative with probability 1.

Many practical algorithms perform optimizations by minimizing a cost function. The
following corollary follows:

Corollary 1.1. For the same conditions as theorem 1.4, suppose that Ψ(V ) is a cost
function such that Ψ(V ) = 0 if and only if ŝ = V z is nonnegative with probability 1.
Then Ψ(V ) = 0 if and only if U (0) = V U is a permutation matrix, such that ŝ is a
permutation of the source vector s.

1.5.2 NICA algorithms

In order to derive a suitable cost function, Plumbley suggested to project ŝ onto the pos-
itive orthant by ŝ+ = [ŝ+

1 , . . . , ŝ
+
P ] with ŝ+

i = max(0, ŝi), and to construct a reestimate
of z = V Tŝ by ẑ = V Tŝ+ [Plumbley, 2002]. Then the cost function is given as follows:

ΨNICA(V ) = || z − ẑ ||2F =
∣∣∣∣∣∣ z − V Tŝ+

∣∣∣∣∣∣2
F

(1.49)

The value of (1.49) will be zero if V is obtained such that all the ŝi are nonnegative
or ŝ = ŝ+. Plumbley proposed to minimize criterion (1.49) by means of axis rotations
and geodesic search over the Stiefel manifold of orthogonal matrices [Plumbley, 2003].
The convergence of the geodesic NICA algorithm was later proved in [Ye et al., 2006].
Yuan and Oja extended the FastICA algorithm for solving NICA problem [Yuan and Oja,
2004]. In [Plumbley and Oja, 2004], Plumbley and Oja pointed out that the stochastic
gradient algorithm for minimizing (1.49) was actually a special case of the nonlinear PCA
algorithm which was earlier investigated by Oja [Oja, 1997]. The same authors further
showed that in the Stiefel manifold of orthogonal matrices, the cost function had no local
minimum and it was a Lyapunov function for the matrix gradien flow. Consequently,
they proposed a gradient descent algorithm which monotonically converged to the global
minimum [Oja and Plumbley, 2004]. The global convergence of such an algorithm was
proved by Ye [Ye, 2006]. In [Plumbley, 2005], Plumbley explored the geometrical methods
to tackle the NICA problem, such as the manifold and Lie group of special orthogonal
matrices. Winther and Petersen presented an empirical Bayesian framework for NICA
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[Winther and Petersen, 2007]. Ouedraogo et al. developed an axis pair rotation method
for NICA by means of Newton optimization [Ouedraogo et al., 2010]. A regularized
gradient descend algorithm for NICA was presented in [Ouedraogo et al., 2011]. In many
practical applications, the nonnegative source components are not well-grounded, Zheng
et al. then derived an NICA algorithm minimizing the mutual information [Zheng et al.,
2006]. Yu et al. formulated the NICA problem as a maximization problem of kurtosis
under the nonnegativity constraint of the estimated sources, and solved it by means of a
Lagrange multiplier method [Yu et al., 2013].

Furthermore, NICA plays important roles in image separation [Plumbley, 2003], mu-
sic transcription [Plumbley, 2003,Dittmar and Uhle, 2004], hyperspectral image demix-
ing [Bakir et al., 2006], gene module identification [Gong et al., 2007], ElectroEncephalog-
raphy (EEG) / MagnetoEncephaloGraphy (MEG) source imaging [Valdés-Sosa et al.,
2009], chemical spectra analysis [Shao et al., 2009], and remote sensing [Yu et al., 2012].

1.6 Semi-nonnegative ICA and nonnegative JDC

1.6.1 The semi-nonnegative ICA problem

In this thesis report, we tackle another important nonnegativity constrained ICA prob-
lem. Rather than imposing both nonnegativity and statistical independence on the
source vector s as NICA, we propose to exploit the statistical independence of s and
the nonnegativity of the mixing matrix A, leading to what we call Semi-Nonnegative
ICA (SeNICA) [Coloigner, 2012, Coloigner et al., 2014a]. Similarly to semi-NMF, the
term semi refers to that only the mixing matrix A is constrained to have nonnegative
components in the model. More precisely, the SeNICA problem is defined as follows:

Problem 1.6. Given M realizations of an observation vector x ∈ RN , find a mixing
matrix A ∈ RN×P and the M corresponding realizations of a source vector s ∈ RP , such
that:

x = As+ ε (1.50)

where A is constrained to have nonnegative components, where s has statistically inde-
pendent components, and where ε ∈ RN is an additive noise vector independent of the
source vector s.

The differences between SeNICA and ICA, NICA, NMF, semi-NMF mainly consist in
the assumptions chosen to solve the BSS problem x = As + ε, which are summarized
in table 1.1. The SeNICA problem is often encountered in BSS applications where only
the mixing matrix is considered to be nonnegative. For instance, in Magnetic Resonance
Spectroscopy (MRS), the column vectors of A represent the positive concentrations of
the spectra of the source chemical components, while the source spectra s may have
negative amplitudes, for example in the case of J-modulation [Sajda et al., 2004,Horská
and Tkác̈, 2012].

Of course, if the SeNICA problem 1.6 is noiseless, and if A and s fully satisfy the
conditions listed in section 1.2.1, the identifiability of ICA under these conditions will
imply that the explicit nonnegativity constraint on A would be unnecessary. However,
in practice, these theoretical conditions can not be completely met due to the model
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NMF Semi-NMF ICA NICA SeNICA
Nonnegativity of A

√ √ √

Nonnegativity of s
√ √

Statistical independence of s
√ √ √

Well-groundedness of s
√

Table 1.1: Some different assumptions of NMF, semi-NMF, ICA, NICA and SeNICA for
solving the BSS problem x = As+ ε.

error, the additional noise and the finite number of available samples. Hence, the com-
plementary nonnegativity information should be explicitly considered in order to obtain
results consistent with physical reality [Coloigner, 2012]. Furthermore, SeNICA has al-
ready shown its good ability in separating MRS signals [Wang et al., 2013a, Coloigner
et al., 2014a] and in classification of 3D dose distribution for prediction of rectal bleeding
in prostate cancer radiotherapy [Coloigner et al., 2014b].

We proposed to solve the SeNICA problem by imposing the nonnegativity constraint
through cumulant-based ICA algorithms. As discussed in section 1.2, compared with
negentropy, likelihood estimation and mutual information, the cumulants avoid the com-
plicated procedure of estimating the pdf and the time consuming integral computation,
thus they are easier to compute. Following the study in section 1.3, the properties of
cumulants allow us to solve the SeNICA problem by means of nonnegative JDC methods,
which will be addressed in the next section.

1.6.2 Nonnegative JDC algorithms

The Nonnegative JDC (NJDC) problem is defined by imposing the nonnegativity con-
straint on the joint transformation matrix, as follows:

Problem 1.7. Given K symmetric matrices C(k) ∈ RN×N and an integer P , find a joint
transformation matrix A ∈ RN×P and K diagonal matrices D(k) ∈ RP×P such that for
each index k ∈ {1, 2, · · · ,K}, we have:

C(k) = AD(k)AT (1.51)

subject to A having nonnegative components.

The NJDC problem can be solved by minimizing the criterion functions presented in
section 1.3 with additional nonnegativity constraint. The existing NJDC algorithms are
mainly contributed by the french research team of Laboratoire Traitement du Signal et
de l’Image (LTSI) in Rennes. Coloigner et al. resorted to use the following two schemes
in order to impose nonnegativity on A in the direct-fit JDC criterion (1.29) [Coloigner,
2012,Coloigner et al., 2014a,Coloigner et al., 2014c]:

A = B �B = B�2, A = exp(B) (1.52)

namely a square change of variable and an exponential change of variable, respectively,
where B ∈ RN×P and where exp(·) denotes the element-wise exponential operator of the
matrix argument. Then the nonnegativity constrained problem was transformed into a
unconstrained problem. As previously reviewed in section 1.4.2, the square change of
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variable has been originally adopted by Chu et al. for solving NMF problem [Chu et al.,
2004]. In addition, its effectiveness in the context of nonnegative CPD (without symme-
try constraints) was shown by Royer et al. [Royer et al., 2011,Royer, 2013]. Coloigner
et al. proposed to minimize the direct-fit criterion (1.29) with square and exponential
changes of variable, respectively, by applying two fundamental optimization strategies:
line search and trust region procedures. Regarding the linear search method, they devel-
oped gradient descent, conjugate gradient and Newton-like algorithms combined with a
search for optimal step-sizes [Coloigner et al., 2014c]. Moreover, two Alternating Least
Squares (ALS) procedures also accelerated with an Enhanced Line Search (ELS) were
derived [Coloigner et al., 2010,Coloigner et al., 2011b,Coloigner et al., 2011a,Coloigner
et al., 2014a]. Regarding the trust region approach, Coloigner et al. proposed a Leven-
berg Marquardt (LM) method based on an approximation of the Hessian inside a trust
region [Coloigner et al., 2011b,Coloigner et al., 2014c]. Nevertheless, like all the methods
based on line search and trust region strategies, those methods appear to be dependent
on initialization, and they therefore require a multi-initialization procedure in practice,
leading to an increase of numerical complexity [Coloigner, 2012].

1.6.3 Contribution and outline of thesis

In this thesis report, we also adopt the square change of variable A = B�2 due to its sim-
plicity. Then the NJDC problem 1.7 can be transformed into the following unconstrained
one:

Problem 1.8. Given K symmetric matrices C(k) ∈ RN×N and an integer P , find a
matrix B ∈ RN×P and K diagonal matrices D(k) ∈ RP×P such that for each index
k ∈ {1, 2, · · · ,K}, we have:

C(k) = B�2D(k)(B�2)T (1.53)

Then the joint transformation matrix A = B�2 is nonnegative for sure.

In order to overcome the drawback of existing NJDC methods, we resort to use Jacobi-
like optimization procedures, which are known to be less sensitive to initialization. More
precisely, the matrix B is decomposed as a product of elementary matrices:

B =
∏
i,j

Θ(i,j)(ξi,j) (1.54)

where Θ(i,j)(ξi,j) is a unit-determinant elementary matrix determined by only one param-
eter ξi,j , and where (i, j) is the pivot index. The decomposition (1.54) can be achieved
by polar, LU or QR matrix factorizations. In a Jacobi-like optimization procedure, each
elementary matrix Θ(i,j)(ξi,j) is estimated sequentially by minimizing a proper criterion
function. In fact, in our case, the parameter of one elementary matrix can be simply
estimated by searching the roots of a polynomial function. We proposed five Jacobi-like
methods based on different factorizations of B incorporating different cost functions de-
fined in section 1.3, namely JDC+

LU-3 [Wang et al., 2013a], iJDC+
LU-1 [Wang et al., 2014a],

iJDC+
QR-1 [Wang et al., 2014b,Wang et al., 2014a], JDC+

LU-1 [Wang et al., 2012,Wang
et al., 2014c], and JDC+

LU-2 [Wang et al., 2014c]. Besides those five Jacobi-like methods
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based on a square change of variable, we developed a sixth algorithm, based on the Al-
ternating Direction Method of Multipliers (ADMM) [Boyd et al., 2010], that tackles the
NJDC problem 1.7 by minimizing the direct-fit JDC criterion (1.29). Such a method,
namely JDC+

ADMM-3, estimates A directly, and is well suited for large-scale problems.
The differences between these six algorithms are summarized in table 1.2. The names
of the algorithms are straightforwardly determined by the cost functions, optimization
schemes and preprocessing step that they used. Taking the algorithm <iJDC+

LU-1> for
example, i) the prefix "i" means that it requires to inverse each input matrix C(k) as a
preprocessing step; ii) the superscript "+" represents the nonnegativity constraint; iii)
the subscript "LU" denotes that the square change of variable A = B�2 is used and B
is decomposed using the LU matrix factorization; iv) the ensuing subscript "1" indicates
the first indirect-fit criterion (1.27), while "2" and "3" signify the second indirect-fit crite-
rion (1.28) and the direct-fit criterion (1.29), respectively. Furthermore, in some practical
SeNICA problems, the dimension of the observation space must be reduced. However,
the classical dimension compression procedure, such as whitening by PCA, breaks the
nonnegativity property of the compressed mixing matrix. We proposed a new nonnega-
tive compression method in [Wang et al., 2014d], which guarantees the nonnegativity of
the compressed mixing matrix.

This thesis report is organized as follows:

• Chapter 2: This chapter is devoted to the detailed description of the proposed
NJDC methods. First of all, we introduce some necessary preliminaries for our
methods, including LU and QR matrix factorizations, the Jacobi-like optimization
principle and the concept of ADMM. Next, the proposed algorithms are presented.
We separate the six algorithms into four groups for the purpose of convenience.
For each group, we provide the reformulated cost functions and the comprehensive
derivation of the algorithms. The assumptions on each group of algorithms as well
as the practical issues are also addressed. A numerical complexity study of the
methods proposed in this thesis is given at the end of this chapter.

• Chapter 3: Our algorithms are evaluated on random synthetic matrices. Several
classical nonorthogonal JDC methods without nonnegativity constraint, and one
NJDC method proposed by Coloigner et al. [Coloigner et al., 2014c], are tested as
baseline algorithms. The performance is assessed in terms of the matrix estimation
accuracy and the numerical complexity. The convergence property, the influence of
Signal to Noise Ratio (SNR), the impact of dimensions, the effect of coherence, and
the influence of the modulus of uniqueness, are extensively studied through Monte
Carlo experiments. The obtained results show that the proposed algorithms offer
better estimation accuracy by exploiting the nonnegativity a priori, especially in
difficult contexts.

• Chapter 4: The efficiency of SeNICA methods is illustrated by solving three BSS
problems from very different application domains. The first one which is rooted
in the biomedical diagnostics, consists of separating synthetic MRS spectra. The
second one is an automatic music transcription problem. It aims at estimating
the musical notes and their attributes from a single-channel music record by de-
composing its magnitude spectrogram. The third one is devoted to separating
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digital images which are degraded by the so-called show-through effect. Such a
problem is usually caused by the seeping of ink from the reverse side or scanning a
semi-transparent paper. The behavior of the proposed methods are compared with
classical ICA, NICA, NMF and semi-NMF methods. The experimental results show
that by fully exploiting the prior information of data, such as the nonnegativity
of the mixing matrix and the statistical independence of the sources, the proposed
methods achieve better estimation results.

• Chapter 5: This final section concludes the thesis report by providing a closing
discussion on the contributions presented in the chapters as well as possible future
extensions.
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Chapter 2
Nonnegative joint diagonalization
by congruence

This chapter is devoted to provide an in-depth scrutiny of the proposed six novel NJDC
algorithms. The first five algorithms impose the nonnegativity constraint of the joint
transformation matrix A by means of a square change of variable A = B�2 and estimate
B using a Jacobi-like optimization procedure. They differ in the cost functions, matrix
factorization schemes and preprocessing steps. The sixth algorithm estimates A directly
through ADMM, which is an improved variant of the classical augmented Lagrangian
method.

The remainder of this chapter is organized as follows. In section 2.1, we introduce
some necessary preliminaries for the proposed methods, including LU and QR matrix
factorizations, the Jacobi-like optimization principle and the concept of ADMM. Then
the six algorithms are presented in the following order, JDC+

LU-3 in section 2.2, iJDC+
LU-1

and iJDC+
QR-1 in section 2.3, JDC+

LU-1 and JDC+
LU-2 in section 2.4, and JDC+

ADMM-3
in section 2.5. In each section, firstly we present the comprehensive derivation of the
algorithms for estimating a square joint transformation matrix A ∈ RN×N+ . Secondly we
discuss the possible generalization of the algorithms to the non-square case A ∈ RN×P+

with N > P , as well as some practical issues. In addition, we provide a numerical
complexity analysis of the methods proposed in this thesis in section 2.6.

2.1 Preliminaries

2.1.1 LU and QR matrix factorizations

Let us recall the following elementary unit-determinant matrices:

Definition 2.1. A unit upper (or lower) triangular matrix is a upper (or lower, respec-
tively) triangular matrix whose main diagonal elements are equal to 1.

Definition 2.2. An elementary upper triangular matrix with parameters {i, j, ui,j} and
i < j is a unit upper triangular matrix whose non-diagonal elements are zeros except the
(i, j)-th entry, which is equal to ui,j.
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U (i,j)(ui,j) with i < j and i, j ∈ {1, 2, . . . , N} denotes an elementary upper triangular
matrix:

U (i,j)(ui,j) =



Ii−1
... 0

... 0

. . . 1 . . . ui,j . . .

0
... Ij−i−1

... 0

. . . 0 . . . 1 . . .

0
... 0

... IN−j


(2.1)

Definition 2.3. An elementary lower triangular matrix with parameters {i, j, `i,j} and
i > j is a unit lower triangular matrix whose non-diagonal elements are zeros except the
(i, j)-th entry, which is equal to `i,j.

L(i,j)(`i,j) with j < i and i, j ∈ {1, 2, . . . , N} corresponds to an elementary lower trian-
gular matrix:

L(i,j)(`i,j) =



Ii−1
... 0

... 0

. . . 1 . . . 0 . . .

0
... Ij−i−1

... 0

. . . `i,j . . . 1 . . .

0
... 0

... IN−j


(2.2)

Definition 2.4. A Givens rotation matrix with parameters {i, j, θi,j} and i < j is equal
to an identity matrix except for the (i, i)-th, (j, j)-th, (i, j)-th and (j, i)-th entries, which
are equal to cos(θi,j), cos(θi,j), − sin(θi,j) and sin(θi,j), respectively.

Q(i,j)(θi,j) with i < j and i, j ∈ {1, 2, . . . , N} indicates the corresponding Givens rotation
matrix:

Q(i,j)(θi,j) =



Ii−1
... 0

... 0

. . . cos(θi,j) . . . − sin(θi,j) . . .

0
... Ij−i−1

... 0

. . . sin(θi,j) . . . cos(θi,j) . . .

0
... 0

... IN−j


(2.3)

Now, let us consider the following lemmas:

Lemma 2.1. Any (N ×N) unit upper (or lower) triangular matrix can be factorized as
a product of N(N − 1)/2 elementary upper (or lower, respectively) triangular matrices.

The proof of lemma 2.1 is straightforward by reducing the unit upper (or lower) triangular
matrix into an identity matrix by means of Gaussian elimination [Golub and Van Loan,
1996, Chapter 3].

Lemma 2.2. Any (N × N) orthonormal matrix can be factorized as a product of, at
most, N(N − 1)/2 Givens rotation matrices.

The proof of lemma 2.2 can be found in [Vaidyanathan, 1993, Chapter 14]. Furthermore,
the above two decompositions are not unique.
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Then we review the following two classical matrix factorization methods for a non-
singular matrix B ∈ RN×N [Golub and Van Loan, 1996],

LU matrix factorization:
B = LUΛ1Π1 (2.4)

where L ∈ RN×N is a unit lower triangular matrix, where U ∈ RN×N is a unit upper
triangular matrix, where Λ1 ∈ RN×N is a diagonal matrix, and where Π1 ∈ RN×N is a
permutation matrix.

QR matrix factorization:
B = QRΛ2Π2 (2.5)

where Q ∈ RN×N is an orthonormal matrix, where R ∈ RN×N is a unit upper triangular
matrix, where Λ2 ∈ RN×N is a diagonal matrix, and where Π2 ∈ RN×N is a permutation
matrix.

The LU and QR matrix decompositions are important linear algebra tools that are widely
used in both scientific and engineering applications.

Now, let us return to the NJDC problem 1.8, where the nonnegativity constraint of
the joint transformation matrix A ∈ RN×N+ is imposed through a square change variable
A = B�2. By means of the LU and QR matrix factorizations of B ∈ R

N×N , the
jointly diagonalizable matrices C(k) = AD(k)AT can be rewritten in the following two
equivalent forms, respectively:

C(k) = (LU)�2(Λ�2
1 Π1D

(k)ΠT
1 Λ�2

1 )[(LU)�2]T = (LU)�2D
(k)
1 [(LU)�2]T (2.6)

C(k) = (QR)�2(Λ�2
2 Π2D

(k)ΠT
2 Λ�2

2 )[(QR)�2]T = (QR)�2D
(k)
2 [(QR)�2]T (2.7)

where:
D

(k)
1 = Λ�2

1 Π1D
(k)ΠT

1 Λ�2
1 , D

(k)
2 = Λ�2

2 Π2D
(k)ΠT

2 Λ�2
2 (2.8)

It is straightforward to verify that D(k)
1 and D(k)

2 are also diagonal matrices. Therefore,
due to the scale and permutation indeterminacies of the JDC problem, the Hadamard
square root of the joint transformation matrix, say B, can be expressed as B = LU and
B = QR without loss of generality. Moreover, by incorporating lemma 2.1 and lemma
2.2, we obtain the following two elementary factorizations of B:

B =
N∏
j=1

N∏
i=j+1

L(i,j)(`i,j)
N∏
i=1

N∏
j=i+1

U (i,j)(ui,j) (2.9)

B =
N∏
i=1

N∏
j=i+1

Q(i,j)(θi,j)
N∏
i=1

N∏
j=i+1

U (i,j)(u′i,j) (2.10)

where L(i,j)(`i,j) ∈ RN×N , U (i,j)(ui,j) ∈ RN×N andQ(i,j)(θi,j) ∈ RN×N are an elementary
lower triangular matrix, an elementary upper triangular matrix and a Givens rotation
matrix, respectively. As a consequence, estimating B for the NJDC problem 1.8 is
converted to the estimate of N(N−1) parameters: `i,j and ui,j for the LU decomposition
(2.9), or θi,j and u′i,j for the QR decomposition (2.10). It is noteworthy that by using
such elementary decompositions, the trivial zero solution of the NJDC problem is avoided,
since B is implicitly constrained to have a unit determinant. Instead of simultaneously
computing these N(N − 1) parameters, we propose to adopt a Jacobi-like procedure
which performs N(N − 1) sequential optimizations.
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2.1.2 A Jacobi-like optimization procedure

Most NJDC algorithms presented in this chapter are Jacobi-like. Therefore we highlight
in this section the principle of a Jacobi-like optimization procedure.

The purpose of the NJDC problem 1.8 is to find the Hadamard square root B of the
nonnegative joint transformation matrix A. We aim at estimating the optimal matrix
B by minimizing a proper criterion function Ψ with respect to B. Ψ(B) could be
reformulated from the JDC criteria presented in section 1.3.3 incorporating the square
change of variable A = B�2. According to the discussion in section 2.1.1, B can be
decomposed as a product of elementary matrices:

B =
∏
i,j

Θ(i,j)(ξi,j) (2.11)

where Θ(i,j)(ξi,j) can be elementary triangular matrices or Given rotation matrices. In-
stead of computing these elementary matrices simultaneously, a Jacobi-like optimization
procedure consists of estimating these elementary matrices successively and building up
B gradually as the product of all the estimated elementary matrices [De Lathauwer,
2010]. More precisely, we can start by an initialization of B, namely B(0), where the su-
perscript (0) denotes the iteration number. At the it-th Jacobi-like iteration, we estimate
one of the elementary matrices, namely Θ(i,j)(ξi,j), with a specific (i, j) index couple. The
optimal parameter ξi,j is chosen as the global minimum of a local cost function as follows:

ξopti,j = argmin
ξi,j

Ψ(B(it−1)Θ(i,j)(ξi,j)) (2.12)

where B(it−1) is the estimate of B at the previous iteration thus it is a constant term.
Compared to the minimization of the global criterion Ψ(B) with respect to B directly,
generally the local optimization (2.12) is much easier to solve. Once ξopti,j is obtained,
B(it−1) is updated as follows:

B(it) = B(it−1)Θ(i,j)(ξopti,j ) (2.13)

Then the (it+ 1)-th Jacobi-like iteration continues to compute Θ(i,j)(ξi,j) with the next
(i, j) index. Such a procedure is repeated until the global criterion Ψ(B) is minimized.
In the classical Jacobi-like iteration, the choice of the order of the index (i, j) is cru-
cial. From the standpoint that the decrease of the cost function shall be as large as
possible in each Jacobi-like iteration, it makes sense to choose the pair (i′, j′) for which
Ψ(B(it−1)Θ(i′,j′)(ξi′,j′)) is minimal among all potential (i, j) indices. However, finding
the optimal (i, j) index in each iteration is computationally expensive. Therefore, in
practice, when going through the different subproblems (2.12), one rather follows a fixed
(i, j) sequence, for example:

(1, 2), (1, 3), . . . , (1, N), (2, 1), (2, 3), . . . , (2, N), . . . , (N − 1, N) (2.14)

This technique is called the cyclic Jacobi-like algorithm [De Lathauwer, 2010]. The
pseudo-code of the cyclic Jacobi-like optimization procedure for a NJDC problem is
outlined in the appendix C.1.
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2.1.3 The alternating direction method of multipliers

In a finite-dimensional setting, ADMM [Glowinski and Marroco, 1975,Gabay and Mercier,
1976,Boyd et al., 2010] is a method that proposes to combine the decomposability of the
dual ascent method [Shor, 1985,Bertsekas, 1999,Nedić and Ozdaglar, 2010] with the su-
perior convergence properties of the method of multipliers [Hestenes, 1969,Miele et al.,
1972,Bertsekas, 1996]. The algorithm solves structured convex problems of the following
form:

minimize
x,y

f(x) + g(y)

subject to Px+Qy = c
(2.15)

where f(·) and g(·) are two convex functions defined on closed convex subsets of real
numbers of dimensions N1 and N2, respectively, with x ∈ RN1 , y ∈ RN2 , P ∈ RN3×N1 ,
Q ∈ RN3×N2 and c ∈ RN3 . The optimal value of the problem (2.15) will be denoted as
follows:

p∗ = inf{f(x) + g(y)|Px+Qy = c} (2.16)

where inf{·} denotes infimum. The augmented Lagrangian function of (2.15) is formed
as follows:

Lρ(x,y,λ) = f(x) + g(y) + λT(Px+Qy − c) +
ρ

2
||Px+Qy − c||2F (2.17)

where λ is a Lagrangian multiplier vector and ρ > 0 is a penalty parameter. ADMM
consists of the iterations:

x(it) = argmin
x

Lρ(x,y
(it−1),λ(it−1) ) (2.18)

y(it) = argmin
y

Lρ(x
(it),y,λ(it−1) ) (2.19)

λ(it) = λ(it−1) + ρ(Px(it) +Qy(it) − c ) (2.20)

The ADMM algorithm resembles the dual ascent method and the method of multipli-
ers [Boyd et al., 2010]. It includes an x-minimization step (2.18), a y-minimization step
(2.19), and a dual variable update step (2.20). It is noteworthy that the classical Aug-
mented Lagrangian Multiplier (ALM) method [Hestenes, 1969,Rockafellar, 1973,Fortin
and Glowinski, 1983] minimizes (2.17) jointly with respect to both x and y. For example,
ALM replaces the steps (2.18) and (2.19) by

[x(it),y(it)] = argmin
x,y

Lρ(x,y,λ
(it−1) ) (2.21)

which could be more difficult to solve since it involves both f(x) and g(y). On the other
side, in ADMM, x and y are updated in an alternating manner, which specifies the term
"alternating direction". ADMM can be regarded as a special version of the method of
multipliers where a single Gauss-Seidel pass over x and y is used instead of the usual joint
minimization [Boyd et al., 2010]. The convergence analysis for ADMM was addressed
in [Boyd et al., 2010] and references therein.
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In the following three sections, we present five NJDC algorithms for solving problem
1.8 by means of a square change of variable and a Jacobi-like optimization procedure. For
the sake of convenience, firstly we assume that the joint transformation matrixA ∈ RN×P+

in problem 1.8 is a square matrix such that N = P . Given K symmetric matrices
C(k) ∈ R

N×N , each algorithm is derived for the purpose of estimating A ∈ R
N×N
+ .

Secondly, we discuss the possible extensions of these algorithms in order to seek a non-
square matrix A ∈ RN×P+ where N > P .

2.2 The JDC+
LU-3 algorithm

2.2.1 Algorithm derivation

Let us impose the nonnegativity constraint in the JDC criteria presented in section
1.3.3. The indirect-fit criteria (1.27) and (1.28) seem difficult to handle since it is quite
complicated to impose the nonnegativity constraint on A, meanwhile to perform the
optimization on its inverse A−1. In other words, it is difficult to parameterize the set of
matrices which are the inverse of nonnegative matrices. On the other side, the direct-fit
JDC criterion (1.29) carries out the optimization on A directly. Therein the nonnega-
tivity of A can be enforced straightforwardly. Therefore, the first and natural idea is to
incorporate the square change of variable in the direct-fit JDC criterion (1.29), leading
to the following nonnegativity constrained direct-ft JDC criterion:

Ψ+

3 (B, {D(k)}) =

K∑
k=1

∣∣∣∣∣∣C(k) − (B�2)D(k)(B�2)T
∣∣∣∣∣∣2
F

(2.22)

Minimizing (2.22) with respect to both B and the set {D(k)} is difficult. Consequently,
as Yeredor’s ACDC algorithm [Yeredor, 2002], the proposed JDC+

LU-3 algorithm per-
forms the minimization of (2.22) alternately with respect to B and {D(k)}. In order
to estimate B, by means of the LU matrix factorization (2.9) and the Jacobi-like opti-
mization procedure, the high dimensional optimization is reduced to search a sequence of
sparse triangular matrices. Therefore, JDC+

LU-3 consists of the following two minimiza-
tion schemes:

1. The AC (Alternating Columns) phase minimizes (2.22) with respect to B via
Jacobi-like iterations. In each iteration, one elementary triangular matrix factor
L(i,j)(`i,j) or U (i,j)(ui,j) of B is identified, while keeping its other factors as well as
the diagonal matrices {D(k)} fixed. For example,

`
(it)
i,j = argmin

`i,j

Ψ+

3 (B(it−1)L(i,j)(`i,j), {D(k,it−1)} ) (2.23)

The sequential updates ofB by right multiplying it by L(i,j)(`i,j) or U (i,j)(ui,j) with
a different index couple (i, j) affects the j-th column vector of B sequentially. Thus
we retain the terminology "Alternating Columns phase" from the ACDC algorithm.

2. The DC (Diagonal Centers) phase minimizes (2.22) with respect to the diagonal
matrix set {D(k)} while keeping B fixed:

{D(k,it)} = argmin
{D(k)}

Ψ+

3 (B(it−1), {D(k)}) (2.24)
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Hence, JDC+
LU-3 is an alternating optimization approach including a Jacobi-like opti-

mization phase.

2.2.1.1 AC phase

In this phase, we minimize (2.22) with respect to L(i,j)(`i,j) and U (i,j)(ui,j). In order to
simplify the notations, we define an elementary triangular matrix T (i,j)(ti,j) such that:

T (i,j)(ti,j) =

{
L(i,j)(`i,j), if i > j

U (i,j)(ui,j), if i < j
(2.25)

Consequently, the LU decomposition (2.9) of B can be simply denoted as follows:

B =

N(N−1)∏
i6=j

T (i,j)(ti,j) (2.26)

Instead of simultaneously computing theseN(N−1) matrices, each elementary triangular
matrix with a selected (i, j) index is identified sequentially. For the sake of convenience,
we use Â, B̂ and D̂(k) to denote the estimate of A, B and D(k) at (it− 1)-th iteration
instead of A(it−1), B(it−1) and D(k,it−1), respectively. At the current iteration, in other
words, at the it-th iteration, the update of B̂ by one T (i,j)(ti,j), denoted by B̂(new), is
defined as follows:

B̂(new) = B̂T (i,j)(ti,j) (2.27)

Inserting (2.27) into the optimization (2.23), the estimation of ti,j only consists of mini-
mizing the following local cost function:

Ψ+

3,AC(ti,j) =

K∑
k=1

∣∣∣∣∣∣C(k) − [(B̂(new))�2] D̂(k)[(B̂(new))�2]T
∣∣∣∣∣∣2
F

(2.28)

The expression of the Hadamard square of the matrix B̂(new) is shown in the following
proposition.

Proposition 2.1. Â(new) = (B̂(new))�2 = (B̂T (i,j)(ti,j))
�2 can be expressed as a function

of ti,j as follows:

Â(new) = (B̂(new))�2 = B̂�2T (i,j)(t2i,j) + 2 ti,j(b̂i � b̂j)e
T
j (2.29)

where b̂i and b̂j denote the i-th and j-th column vectors of B̂, respectively, and where ej
is the j-th column vector of the identity matrix IN .

The proof of proposition 2.1 is provided in appendix A.1. Therefore, the cost function
(2.28) can be rewritten as an explicit function of ti,j as follows:

Ψ+

3,AC(ti,j) =
K∑
k=1

∣∣∣∣∣∣F (k,4)t4i,j + F (k,3)t3i,j + F (k,2)t2i,j + F (k,1)ti,j + F (k,0)
∣∣∣∣∣∣2
F

(2.30)
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where:

F (k,4) = −d̂ (k)
j

[
(b̂ �2
i )(b̂ �2

i )T
]

(2.31)

F (k,3) = −2d̂
(k)
j

[
(b̂ �2
i )(b̂i � b̂j)

T + (b̂i � b̂j)(b̂
�2
i )T

]
(2.32)

F (k,2) = −d̂( k)
j

[
(b̂ �2
i )(b̂ �2

j )T + (b̂ �2
j )(b̂ �2

i )T + 4(b̂i � b̂j)(b̂i � b̂j)
T
]

(2.33)

F (k,1) = −2d̂
(k)
j

[
(b̂ �2
j )(b̂i � b̂j)

T + (b̂i � b̂j)(b̂
�2
j )T

]
(2.34)

F (k,0) = C(k) − (B̂ �2)D(k)(B̂ �2)T (2.35)

and where d̂ (k)
j denotes the (j, j)-th entry of D̂(k). (2.30) can be expressed in the following

compact matrix form:

Ψ+

3,AC(ti,j) =
K∑
k=1

∣∣∣∣∣∣F (k)τi,j

∣∣∣∣∣∣2
F

= τT
i,jGτi,j (2.36)

where:

G =
K∑
k=1

(F (k))TF (k) (2.37)

is a (5× 5) symmetric coefficient matrix, and where F (k) is a (N2× 5) matrix defined as
follows:

F (k) =
[
vec(F (k,4)), vec(F (k,3)), vec(F (k,2)), vec(F (k,1)), vec(F (k,0))

]
(2.38)

in which vec(.) reshapes a matrix into a column vector by stacking its columns vertically.
τi,j is a 5-dimensional parameter vector defined as follows:

τi,j =
[
t4i,j , t

3
i,j , t

2
i,j , ti,j , 1

]T (2.39)

Cost function (2.36) shows that Ψ+

3,AC(ti,j) is a 8-th degree polynomial in ti,j . The
global minimum ti,j can be obtained by computing the roots of its derivative and se-
lecting the root yielding the smallest value of (2.36). Once the optimal ti,j is com-
puted, the matrix B̂(new) is computed using equation (2.27), and Â(new) is given by
Â(new) = (B̂(new))�2. Then the AC phase is repeated to estimate T (i,j)(ti,j) with the
next (i, j) index.

2.2.1.2 DC phase

In this phase, the minimization of (2.24) with respect to the diagonal matrices {D(k)}
can be separated into K distinct linear least square subproblems:

Ψ
(k)
3,DC(D(k)) =

∣∣∣∣∣∣C(k) − ÂD(k)ÂT
∣∣∣∣∣∣2
F
, k ∈ {1, 2, . . . ,K} (2.40)

The optimal solution of D̂(k,new) given by Yeredor in [Yeredor, 2002] is:

D̂(k,new) = Diag
(

(Â� Â)]c(k)
)

(2.41)
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where Diag(·) returns a diagonal matrix whose diagonal elements are given by the in-
put vector, where c(k) = vec(C(k)), and where Â is the current estimate of the joint
transformation matrix A.

In this context, one full iteration is referred to the combination of one full AC phase
and one DC phase. In practice, several iterations are necessary to ensure convergence.
One can stop the algorithm when the value of the global cost function (2.22), or the
decrease of (2.22) between two successive iterations falls below a fixed positive threshold.
Such a stopping criterion is guaranteed to be met since (2.22) is non-increasing in each
sweep. We observed empirically that the proposed algorithm converges linearly.

2.2.2 Generalization to the non-square case

In a JDC problem, a non-square joint transformation matrix A ∈ RN×P+ and K diagonal
matrices D(k) ∈ R

P×P with N > P are frequently encountered. Let us recall that
A = B�2. Based on the LU decomposition of B ∈ RN×P , which yields B = LU ,
where L ∈ RN×P is a unit lower triangular matrix, and where U ∈ RP×P is a unit
upper triangular matrix, the JDC+

LU-3 algorithm can handle non-square matrices directly.
Theoretically, L and U can be decomposed as follows:

L =

P∏
j=1

N∏
i=j+1

L(i,j)(`i,j), U =

P∏
i=1

P∏
j=i+1

U (i,j)(ui,j) (2.42)

where the sizes of all the L(i,j)(`i,j) and U (i,j)(ui,j) matrices are (N ×N) and (P × P ),
respectively, except that of L(N,P )(`N,P ) which is (N × P ). Below we give an example:1.0000 0.1176

0.3750 1.0441

0.5000 1.8966

=

 1 0 0

0.3750 1 0

0 0 1

 1 0 0

0 1 0

0.5 0 1

1 0

0 1

0 1.8378

(1 0.1176

0 1

)

Indeed, we can treat all the L(i,j)(`i,j) and U (i,j)(ui,j) matrices as (N × N) matrices,
and choose the first P column vectors of their product as the final result. In the above
example, we actually estimate four (3×3) elementary triangular matrices and choose the
first two column vectors of the product as the result:1.0000 0.1176 0

0.3750 1.0441 0

0.5000 1.8966 1

=

 1 0 0

0.3750 1 0

0 0 1

 1 0 0

0 1 0

0.5 0 1

1 0 0

0 1 0

0 1.8378 1

1 0.1176 0

0 1 0

0 0 1


2.2.3 Practical issues

In practice, we observe that if each input matrix C(k) is almost exactly jointly diago-
nalizable due to a high SNR, the classical non-constrained JDC methods can also give a
nonnegative A with high probability. In this situation, imposing the nonnegativity con-
straint explicitly is unnecessary and increases the computational burden. Therefore, we
propose to relax the nonnegativity constraint by directly decomposing A into elementary
LU form instead of using the decompositions of B as follows:

A =
N∏
j=1

N∏
i=j+1

L(i,j)(`i,j)

N∏
i=1

N∏
j=i+1

U (i,j)(ui,j)
def
=

N(N−1)∏
i6=j

T (i,j)(ti,j) (2.43)
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By inserting (2.43) into the original direct-fit JDC criterion (1.29), each parameter ti,j
can be found by minimizing the following 4-th degree polynomial:

Ψ3,AC(ti,j) =

K∑
k=1

∣∣∣∣∣∣F (k,4)t2i,j + (F (k,2) + 4d̂
(k)
j (b̂i � b̂j)(b̂i � b̂j)

T)ti,j + F (k,0)
∣∣∣∣∣∣2
F

(2.44)

The derivation of the compact matrix form of (2.44) is omitted in this report. In practice,
it is suggested to compute ti,j by minimizing (2.44) first. If all the elements in the j-th
column vector of ÂT (i,j)(ti,j) have the same sign ς, the j-th column vector of Â(new) is
replaced by ς(âj+ti,jâi), while the other column vectors remain unchanged, where âi and
âj are the i-th and j-th column vectors of Â, respectively. Otherwise, ti,j is computed
by minimizing (2.36). Â is then updated using proposition 2.1. The pseudo-code of
JDC+

LU-3 is given in the appendix C.2 .

2.3 The iJDC+
LU-1 and iJDC+

QR-1 algorithms

2.3.1 Algorithm derivation

The JDC+
LU-3 algorithm is conceptually simple. However, the alternating nature of such

a method leads to some drawbacks. For example, its performance appears to depend
on initialization, therefore in practice it requires a multi-initialization procedure, lead-
ing to an increase of numerical complexity. Moreover, similar to the ACDC algorithm,
JDC+

LU-3 converges linearly, and occasionally its convergence can be slow. In fact, in many
practical ICA problems, the estimate of these diagonal matrices D(k) is not necessary.
Therefore, without estimating D(k), we propose to use the indirect-fit criterion (1.27)
in order to derive a pure Jacobi-like NJDC algorithm, inspired by the fast convergence
property of this kind of procedure. Furthermore, we would like to use both LU and QR
matrix factorizations for the Jacobi-like procedure in order to study the influence of the
used matrix factorization. We also would like to avoid the inverse operator in criterion
(1.27). Now let us consider the structure of C(k) = AD(k)AT with the following two
assumptions:

1. A ∈ RN×N+ is nonsingular;

2. Each D(k) ∈ RN×N is nonsingular which means that its main diagonal does not
contain any zero entry.

Then each matrix C(k) is nonsingular and its inverse can be expressed as follows:(
C(k)

)−1
= A−T

(
D(k)

)−1
A−1 (2.45)

We use C(k,−1) to denote (C(k))−1 for simplicity. Equation (2.45) shows that C(k,−1) also
preserves the jointly diagonalizable structure. Furthermore, instead of A−1, A serves as
the joint diagonalizer. As a consequence, by means of a preprocessing step that inverses
each input matrices C(k), A can be estimated by minimizing the following criterion which
is modified from (1.27):

Ψ1′(A) =

K∑
k=1

∣∣∣∣∣∣ off(ATC(k,−1)A)
∣∣∣∣∣∣2
F

(2.46)
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By such a manipulation, most JDC algorithms based on criterion (1.27) can now estimate
A directly. However, none of them can guarantee the nonnegativity of A. In order to
impose the nonnegativity constraint on A, we resort to use a square change of variable
A = B�2. Then cost function (2.46) can be reformulated including the nonnegativity
constraint as follows:

Ψ+

1′(B) =

K∑
k=1

∣∣∣∣∣∣ off
(

(B�2)TC(k,−1)B�2
) ∣∣∣∣∣∣2

F
(2.47)

By means of the LU and QR matrix factorizations of B, the minimization of (2.47)
with respect to B is converted to the estimate of the following two sets of N(N − 1)

parameters, respectively,

1. `i,j and ui,j for the LU decomposition (2.9);

2. θi,j and u′i,j for the QR decomposition (2.10).

Instead of simultaneously computing these parameters, we propose two Jacobi-like pro-
cedures which perform a series of N(N − 1) sequential optimizations. This yields two
new algorithms: i) the first algorithm, named iJDC+

LU-1, estimates each `i,j and ui,j
successively, and ii) the second one, called iJDC+

QR-1, estimates each θi,j and u′i,j sequen-
tially. Now, the difficulty is how to estimate these of parameters, namely L(i,j)(`i,j) and
U (i,j)(ui,j) for iJDC+

LU-1, and Q
(i,j)(θi,j) and U (i,j)(u′i,j) for iJDC+

QR-1. Two points should
be noted here:

1. For the iJDC+
LU-1 algorithm, L(i,j)(`i,j) and U (i,j)(ui,j) belong to the same category

of matrices, therefore they can be estimated by the same algorithmic procedure just
with an emphasis on the relation between the i and j indices (j < i for L(i,j)(`i,j)

and i < j for U (i,j)(ui,j)). Hence, we adopt the notation T (i,j)(ti,j) to denote both
L(i,j)(`i,j) and U (i,j)(ui,j), as we defined it earlier in equation (2.26).

2. Both iJDC+
LU-1 and iJDC+

QR-1 algorithms consist of estimating the elementary tri-
angular matrices U (i,j)(ui,j). But the resulting parameters could be different. Ad-
ditionally the procedures of estimating these matrices for both algorithms are iden-
tical.

Consequently, the principal problem is reduced to the estimation of two kinds of pa-
rameters, namely the elementary triangular matrices T (i,j)(ti,j) and the Givens rotation
matrices Q(i,j)(θi,j), by means of Jacobi-like optimization procedures.

2.3.1.1 Minimization with respect to T (i,j)(ti,j)

In this section, we estimate T (i,j)(ti,j) for i 6= j by solving the following optimization
problem:

ti,j = argmin
ti,j

Ψ+

1′(B̂T
(i,j)(ti,j)) (2.48)

The update of B̂ is defined in equation (2.27) by B̂(new) = B̂T (i,j)(ti,j). Inserting B̂(new)

into the optimization (2.48), the optimal ti,j is the global minimum of the following local
cost function:

Ψ+

1′(ti,j) =
K∑
k=1

∣∣∣∣∣∣ off
{

[(B̂(new))�2]TC(k,−1)[(B̂(new))�2]
} ∣∣∣∣∣∣2

F
(2.49)
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We define the K matrices Ĉ(k,new) ∈ RN×N as follows:

Ĉ(k,new) =
[
(B̂(new))�2

]T
C(k,−1)

[
(B̂(new))�2

]
k ∈ {1, 2, . . . ,K} (2.50)

The cost function (2.49) actually minimizes the total sum of squares of the off-diagonal
components of Ĉ(k,new). The explicit expression of (B̂(new))�2 as a function of ti,j is
provided in (2.29) in proposition 2.1. Inserting equation (2.29) into (2.50), we have:

Ĉ(k,new) =T (i,j)(t2i,j)
TĈ(k) T (i,j)(t2i,j)︸ ︷︷ ︸

1○

+ ti,j T
(i,j)(t2i,j)

Tĉ (k,1)eTj︸ ︷︷ ︸
2○

+ ti,j ej ĉ
(k,2)T (i,j)(t2i,j)︸ ︷︷ ︸

3○

+ t2i,j ĉ
(k,3)eje

T
j︸ ︷︷ ︸

4○

(2.51)

where Ĉ(k) = Â TC(k,−1)Â is a (N×N) constant matrix, where ĉ (k,1) = 2 Â TC(k,−1)(b̂i�
b̂j) is a (N ×1) constant column vector, where ĉ (k,2) = 2 (b̂i� b̂j)TC(k,−1)Â is a (1×N)

constant row vector, and where ĉ (k,3) = 4 (b̂i � b̂j)TC(k,−1)(b̂i � b̂j) is a constant scalar.
The term 1○ in (2.51) transforms the j-th column vector and the j-th row vector of Ĉ(k).
The term 2○ in (2.51) is a zero matrix except its j-th column vector containing non-zero
elements, while the term 3○ in (2.51) contains non-zero entries only on its j-th row vector.
Eventually the term 4○ in (2.51) is a zero matrix except its (j, j)-th component being
non-zero. In addition, Ĉ(k,new) = 1○+ 2○+ 3○+ 4○ is a (N×N) symmetric matrix. Hence
(2.51) shows that only the j-th column vector and the j-th row vector of Ĉ(k,new) involve
the parameter ti,j , while the other components remain constant. Therefore, considering
the symmetry of Ĉ(k,new), the minimization of the cost function (2.49) is equivalent to
minimizing the total sum of the squares of the elements of the j-th column vectors of
Ĉ(k,new) except their (j, j)-th elements with k ∈ {1, · · · ,K}. The required components
of Ĉ(k,new) can be expressed by the following proposition.

Proposition 2.2. The elements of the j-th column vector except the (j, j)-th entry of
Ĉ(k,new) is a second degree polynomial function in ti,j as follows, for every n value dif-
ferent of j:

Ĉ
(k,new)
n,j = Ĉ

(k)
n,i t

2
i,j + ĉ (k,1)

n ti,j + Ĉ
(k)
n,j (2.52)

where Ĉ(k)
n,i and Ĉ

(k)
n,j are the (n, i)-th and (n, j)-th components of matrix Ĉ(k), respectively,

and ĉ (k,1)
n is the n-th element of vector ĉ (k,1).

The proof of this proposition is addressed in appendix A.2. Proposition 2.2 shows that
the minimization of the cost function (2.49) can be expressed in the following compact
matrix form:

Ψ+

1′(ti,j) =
K∑
k=1

∣∣∣∣∣∣E(k)τi,j

∣∣∣∣∣∣2
F

= τT
i,jQE τi,j (2.53)

where QE is defined as a (3× 3) symmetric coefficient matrix:

QE =

K∑
k=1

(E(k))TE(k) (2.54)
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with E(k) a ((N − 1) × 3) matrix defined as follows: its first column contains the i-
th column of Ĉ(k) without the j-th element, the second column contains vector ĉ(k,1)

without the j-th entry and the third column contains the j-th column of Ĉ(k) without
the j-th component. τi,j is a 3-dimensional parameter vector defined as follows:

τi,j =
[
t2i,j , ti,j , 1

]T (2.55)

Equation (2.53) shows that Ψ+

1′(ti,j) is a fourth degree polynomial function. The
global minimum ti,j can be obtained by computing the roots of its derivative and selecting
the one yielding the smallest value of (2.53). Once the optimal ti,j is computed, B̂(new)

is updated by means of equation (2.27) and the joint diagonalizer Â is updated by
computing (B̂(new))�2. The K matrices Ĉ(k,new) are computed by means of equation
(2.51) and are used as the input matrices for the next Jacobi-like iteration. Then the
same procedure is repeated to compute the next ti,j with another index couple (i, j). The
processing of all the N(N −1) parameters ti,j with different (i, j) couples, more precisely
`i,j with i > j and ui,j with i < j, is called a LU sweep. The proposed iJDC+

LU-1
algorithm requires several LU sweeps in practice.

2.3.1.2 Minimization with respect to Q(i,j)(θi,j)

Now we identify Q(i,j)(θi,j) with i < j and i, j ∈ {1, . . . , N} by solving the following
optimization problem:

θi,j = argmin
θi,j

Ψ+

1′(B̂Q
(i,j)(θi,j)) (2.56)

The update of B̂ is now defined as follows:

B̂(new) = B̂Q(i,j)(θi,j) (2.57)

Similarly, putting (2.57) into the optimization (2.56), the optimal θi,j is the global min-
imum of the following local cost function:

Ψ+

1′(θi,j) =

K∑
k=1

∣∣∣∣∣∣ off
{

[(B̂(new))�2]TC(k,−1)[(B̂(new))�2]
} ∣∣∣∣∣∣2

F
(2.58)

We define the K matrices Ĉ(k,new) ∈ RN×N as follows:

Ĉ(k,new) =
[
(B̂(new))�2

]T
C(k,−1)

[
(B̂(new))�2

]
, k ∈ {1, 2, . . . ,K} (2.59)

The cost function (2.58) minimizes the total sum of squares of the off-diagonal compo-
nents of Ĉ(k,new). The explicit expression of (B̂(new))�2 as a function of θi,j now can be
rewritten as shown in the following proposition.

Proposition 2.3. Â(new) = (B̂(new))�2 = (B̂Q(i,j)(θi,j))
�2 can be written as a function

of θi,j as follows:

Â(new) = (B̂(new))�2 = B̂�2 (Q(i,j)(θi,j))
�2 + sin(2θi,j)(b̂i � b̂j)(e

T
i − eTj ) (2.60)

where b̂i and b̂j denote the i-th and j-th column vectors of B̂, respectively, and where ei
and ej are the i-th and j-th column vectors of the identity matrix IN , respectively.
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The proof of proposition 2.3 is provided in appendix A.3. Inserting (2.60) into (2.59),
we obtain:
Ĉ(k,new) =[(Q(i,j)(θi,j))

�2]TĈ(k)(Q(i,j)(θi,j))
�2︸ ︷︷ ︸

1○

+ sin(2θi,j)[(Q
(i,j)(θi,j))

�2]Tĉ (k,1)(eTi −eTj )︸ ︷︷ ︸
2○

+ sin(2θi,j)(ei − ej)ĉ (k,2)(Q(i,j)(θi,j))
�2︸ ︷︷ ︸

3○

+ sin2(2θi,j)ĉ
(k,3)(ei − ej)(eTi − eTj )︸ ︷︷ ︸

4○
(2.61)

where Ĉ(k) = Â TC(k,−1)Â is a (N×N) constant matrix, where ĉ(k,1) = Â TC(k,−1)(b̂i�
b̂j) is a (N × 1) constant column vector, where ĉ (k,2) = (b̂i � b̂j)TC(k,−1)Â is a (1×N)

constant row vector, and where ĉ (k,3) = (b̂i�b̂j)TC(k,−1)(b̂i�b̂j) is a constant scalar. The
term 1○ in (2.61) transforms the i-th and j-th column vectors and the i-th and j-th row
vectors of Ĉ(k). The term 2○ in (2.61) is a zero matrix except its i-th and j-th column
vectors containing non-zero elements, while the term 3○ in (2.61) contains non-zero
entries only on its i-th and j-th row vectors. And the term 4○ in (2.61) is a zero matrix
except its (i, i)-th, (j, j)-th, (i, j)-th and (j, i)-th components being non-zero. Ĉ(k,new) =

1○+ 2○+ 3○+ 4○ is a (N×N) symmetric matrix. Hence (2.61) shows that only the i-th and
j-th column vectors and the i-th and j-th row vectors of Ĉ(k,new) involve the parameter
θi,j , while the other components remain constant. It is noteworthy that the (i, j)-th and
(j, i)-th components are twice affected by the transformation. Considering the symmetry
of Ĉ(k,new), we propose to minimize the sum of the squares of the (i, j)-th entries of
the K matrices Ĉ(k,new), instead of minimizing all the off-diagonal entries. Although
minimizing this quantity is not equivalent to minimizing the original cost function (2.58),
such a simplified minimization scheme is commonly adopted by many algorithms, such
as in [Wang et al., 2007, Souloumiac, 2009,Guo et al., 2010, Luciani and Albera, 2014].
Therefore, ui,j is estimated by minimizing an approximate of cost function (2.58), denoted
by Ψ̂+

1′(θi,j). The (i, j)-th component of Ĉ(k,new) is expressed in the following proposition.

Proposition 2.4. The (i, j)-th entry of Ĉ(k,new) can be expressed as a function of θi,j
as follows:

Ĉ
(k,new)
i,j =− sin2(2θi,j)ĉ

(k,3)

+ sin2(θi,j)(Ĉ
(k)
i,i cos2(θi,j) + Ĉ

(k)
j,i sin2(θi,j))

+ cos2(θi,j)(Ĉ
(k)
i,j cos2(θi,j) + Ĉ

(k)
j,j sin2(θi,j))

+ sin(2θi,j)(ĉ
(k,1)
i cos2(θi,j) + ĉ

(k,1)
j sin2(θi,j))

− sin(2θi,j)(ĉ
(k,2)
j cos2(θi,j) + ĉ

(k,2)
i sin2(θi,j))

(2.62)

where Ĉ(k)
i,i , Ĉ

(k)
j,j , Ĉ

(k)
i,j and Ĉ(k)

j,i are the (i, i)-th, (j, j)-th, (i, j)-th and (j, i)-th components

of matrix Ĉ(k), respectively, and where ĉ (k,q)
i and ĉ (k,q)

j are the i-th and j-th elements of
vector ĉ (k,q) with q ∈ {1, 2}, respectively.
The proof of proposition 2.4 is given in appendix A.4. In order to simplify the notation of
(2.62), we resort to the Weierstrass change of variable: ϑi,j = tan(θi,j). Then we obtain:

sin(2θi,j) =
2ϑi,j

1 + ϑ2
i,j

, cos(2θi,j) =
1− ϑ2

i,j

1 + ϑ2
i,j

, sin2(θi,j) =
ϑ2
i,j

1 + ϑ2
i,j

, cos2(θi,j) =
1

1 + ϑ2
i,j

(2.63)
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By substituting (2.63) into (2.62), we obtain an alternative expression of the (i, j)-th
entry of Ĉ(k,new) which is described in the following proposition.

Proposition 2.5. The (i, j)-th entry of Ĉ(k,new) can be expressed by a rational function
of ϑi,j as follows:

Ĉ
(k,new)
i,j =

f
(k)
4 ϑ4

i,j + f
(k)
3 ϑ3

i,j + f
(k)
2 ϑ2

i,j + f
(k)
1 ϑi,j + f

(k)
0

(1 + ϑ2
i,j)

2
(2.64)

where f (k)
4 = Ĉ

(k)
j,i , f

(k)
3 = −2ĉ

(k,1)
i , f (k)

2 = Ĉ
(k)
i,i + Ĉ

(k)
j,j + 2ĉ

(k,2)
j − 4ĉ (k,3), f (k)

1 = 2ĉ
(k,2)
i −

ĉ
(k,1)
j and f (k)

0 = Ĉ
(k)
j,j .

The proof of proposition 2.5 is quite easy and therefore omitted. By means of proposition
2.5, the approximate cost function Ψ̂+

1′(θi,j) is then transformed into Ψ̂+

1′(ϑi,j). Recall
that Ψ̂+

1′(ϑi,j) is the total sum of the squares of the (i, j)-th entries of the K matrices
Ĉ(k,new). Moreover equation (2.64) easily shows that Ψ̂+

1′(ϑi,j) is a rational function in
ϑi,j , where the degrees of the numerator and the denominator are 8 and 8, respectively.
Ψ̂+

1′(ϑi,j) can be expressed in the following compact matrix form:

Ψ̂+

1′(ϑi,j) =

K∑
k=1

∣∣∣∣∣∣ (f (k))Tϑi,j

∣∣∣∣∣∣2
F

= ϑT
i,jQF ϑi,j (2.65)

where QF is a (5× 5) symmetric coefficient matrix defined as follows:

QF =
K∑
k=1

f (k)(f (k))T (2.66)

where f (k) is a 5-dimensional vector:

f (k) =
[
f

(k)
4 , f

(k)
3 , f

(k)
2 , f

(k)
1 , f

(k)
0

]T
(2.67)

and where ϑi,j is a 5-dimensional parameter vector defined as follows:

ϑi,j =
1

(1 + ϑ2
i,j)

2

[
ϑ4
i,j , ϑ

3
i,j , ϑ

2
i,j , ϑi,j , 1

]T (2.68)

The global minimum ϑi,j can be obtained by computing the roots of the derivative of
the cost function(2.65) and selecting the one yielding the smallest value of (2.65). Once
ϑi,j is obtained, θi,j can be computed from the inverse tangent function θi,j = arctan(ϑi,j).
It is noteworthy that the found θi,j cannot guarantee to decrease the original cost function
(2.58). If θi,j leads to an increase of (2.58), we reset θi,j = 0, thus the value of the original
cost function remains unchanged. Otherwise, B̂ is updated as described in (2.57) and the
joint diagonalizer Â is updated by computing (B̂(new))�2. The same procedure will be
repeated to compute θi,j with the next (i, j) couple. The processing of all the N(N−1)/2

parameters θi,j and also the other N(N −1)/2 parameters ui,j is called a QR sweep.
Several QR sweeps yield the proposed iJDC+

QR-1 algorithm.

Both the iJDC+
LU-1 and iJDC+

QR-1 algorithms can be stopped when the value of the
global cost function (2.47) or its relative change between two successive sweeps fall below
a fixed small positive threshold. Such a stopping criterion is guaranteed to be met since
the cost function is non-increasing in each Jacobi-like sweep.
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2.3.2 Practical issues

2.3.2.1 Nonnegativity relaxation

As we discussed in section 2.2.3, if each input matrix C(k) is almost exactly jointly di-
agonalizable due to a high SNR value, the explicit nonnegativity constraint by means of
a square change of variable could be unnecessary. Consequently, the nonnegativity con-
straint can be relaxed by directly decomposing A using the LU factorization in equation
(2.43) or the QR factorization as follows:

A =

N∏
i=1

N∏
j=i+1

Q(i,j)(θi,j)

N∏
i=1

N∏
j=i+1

U (i,j)(u′i,j)
def
=
∏
i<j

Q(i,j)(θi,j)
∏
i<j

T (i,j)(ti,j) (2.69)

respectively. By means of the JDC criterion Ψ1′(A) in (2.46), each T (i,j)(ti,j) and
Q(i,j)(θi,j) can be estimated by solving the two following Jacobi-like optimization prob-
lems, respectively:

ti,j = argmin
ti,j

Ψ1′(ÂT
(i,j)(ti,j)) (2.70)

θi,j = argmin
θi,j

Ψ1′(ÂQ
(i,j)(θi,j)) (2.71)

where Â is the estimate of A at the (it − 1)-th iteration. It is easy to show that the
right hand side of (2.70) is a second degree polynomial function in ti,j . Then the global
optimal ti,j can be directly expressed as follows:

ti,j = −
∑

k

∑
n6=j Ĉ

(k)
i,n Ĉ

(k)
j,n∑

k

∑
n6=j Ĉ

(k)
i,n Ĉ

(k)
i,n

(2.72)

where Ĉ(k) = Â TC(k,−1)Â is a (N ×N) constant matrix, and where Ĉ(k)
i,n and Ĉ(k)

j,n are
the (i, n)-th and (j, n)-th components of Ĉ(k), respectively. In addition, the right hand
side of (2.71) can be written as the following quadratic form:

Ψ1′(θi,j) = θTi,j(G
TG)θi,j (2.73)

where θi,j is a 2-dimensional parameter vector defined by θi,j = [cos (2θi,j), sin (2θi,j)]
T,

and where G ∈ RK×2 is a coefficient matrix, whose (k, 1)-th and (k, 2)-th components
are equal to Ĉ(k)

j,j − Ĉ
(k)
i,i and Ĉ(k)

i,j + Ĉ
(k)
j,i , respectively. The vector θi,j can be chosen as

the unit-norm eigenvector corresponding to the smaller eigenvalue of the matrix GTG.
Then θi,j can be computed from θi,j accordingly. The derivations of equations (2.72) and
(2.73) are straightforward and therefore omitted.

In fact, the ways of estimating the two sets of parameters {`i,j , ui,j} in equation (2.43),
and {θi,j , u′i,j} in equation (2.69) are identical to those of Afsari’s LUJ1D and QRJ1D
methods [Afsari, 2006] performing on the inverted input matrices C(k,−1), respectively.
In practice, for iJDC+

LU-1 and iJDC+
QR-1, in each Jacobi-like iteration for computing an

elementary triangular matrix, we suggest to compute ti,j by equation (2.72) first. If all the
elements in the j-th column vector of ÂT (i,j)(ti,j) have the same sign ς, the j-th column
vector of Â(new) is replaced by ς(âj + ti,jâi), while the other column vectors remain
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unchanged, where âi and âj are the i-th and j-th column vectors of Â, respectively.
Otherwise, ti,j is computed by minimizing (2.53). Then Â is updated by means of
equation (2.29). Regarding the Givens rotation matrices Q(i,j)(θi,j) in the iJDC+

QR-1
algorithm, θi,j is computed in the same manner by minimizing either (2.73) or (2.65).
Then Â(new) is computed accordingly.

2.3.2.2 Row balancing

Afsari reported in [Afsari, 2006] that if the row vectors of matrices Ĉ(k) (k ∈ {1, · · · ,K})
are not balanced in their norms, the computation of the parameters could be inaccurate.
In order to cope with this effect, we apply Afsari’s row balancing scheme every few
sweeps. Such a scheme updates each Ĉ(k) by Ĉ(k,new) =ΛĈ(k)Λ and Â by Â(new) =ÂΛ

using a diagonal matrix Λ ∈ RN×N+ , whose diagonal elements are defined as follows:

Λn,n =
1√∑K

k=1 ‖Ĉ
(k)
n,: ‖2

, n ∈ {1, 2, · · · , N} (2.74)

where Ĉ(k)
n,: denotes the n-th row vector of matrix Ĉ(k).

2.3.3 Discussions

The effectiveness of the iJDC+
LU-1 and iJDC+

QR-1 algorithms relies on the two assumptions
that A is a nonsingular square matrix and that the main diagonals of {D(k)} do not
contain any zero entry. In ICA, the first nonsingularity assumption of the mixing matrix
A is mostly satisfied. In the following we verify the validity of the second assumption.

Provided that all the sources are non-Gaussian, which is often the case in practice
[Comon and Jutten, 2010], we can resort to use the FO cumulant array of the observation
data. As we mentioned in section 1.3.1, the jointly diagonalizable matrices {C(k)} can
be built by stacking the matrix slices of the cumulant array. Then the (N2 ×N) matrix
D whose k-th row vector contains the diagonal components of D(k), can be expressed
by D = (A�A)C

(4)
s , where C(4)

s = diag [C1,1,1,1,s, . . . , CN,N,N,N,s] is a (N ×N) diagonal
matrix with Cn,n,n,n,s being the FO cumulant of the n-th source, n ∈ {1, . . . , N}, and
where � denotes the Khatri-Rao product. Suppose that A is a nonsingular dense mixing
matrix, then D is also nonsingular and contains non-zeros components. A dense mixing
matrix means that the sources are highly mixed, therefore the components of A have
relative large values. A dense mixing matrix is often encountered in BSS problems, such
as in hyperspectral unmixing [Miao and Qi, 2007,Chan et al., 2009] and in separating
MRS signals [Moussaoui, 2005]. Consequently, the nonzero assumption is reasonable for
some BSS applications.

One drawback brought by these assumptions is that the mixing matrix (and the
joint transformation matrix) A is constrained to be square, since a non-square matrix
A ∈ RN×P+ with N > P will lead to the jointly diagonalizable matrices C(k) = AD(k)AT

being rank deficient and non-invertible. In ICA, when such a non-square matrix A is
encountered, we can compress A by means of a nonnegative matrixW ∈ RP×N+ such that
the resulting matrix A+ = WA is a nonnegative square matrix. W can be computed
by means of the nonnegative compression algorithm that we proposed in [Wang et al.,
2014d], which transforms the classical prewhitening matrix [Belouchrani et al., 1997]
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into a nonnegative one by linear mappings. Such a method is described in appendix B.
Then the iJDC+

LU-1 and iJDC+
QR-1 algorithms are used to compute the compressed mixing

matrixA+.
Finally, the pseudo-codes for the iJDC+

LU-1 and iJDC+
QR-1 algorithms are given in the

appendix C.3 and C.4, respectively.

2.4 The JDC+
LU-1 and JDC+

LU-2 algorithms

2.4.1 Algorithm derivation

In some practical JDC problems, the main diagonals of matrices D(k) could contain zero
entries, which breaks the second assumption of the iJDC+

LU-1 and iJDC+
QR-1 algorithms.

Therefore such an assumption could limit the applicability of iJDC+
LU-1 and iJDC+

QR-1.
Moreover, even though this assumption is satisfied, in some cases, some jointly diagonal-
izable matrices C(k) may be ill-conditioned. The inverse preprocessing of these matrices
could generate bias in the following JDC procedure. Consequently, the purpose of this
section is to develop Jacobi-like algorithms that require less assumptions. More precisely,
we allow the diagonal matrices D(k) contain zero components on their main diagonals
and discard the preprocessing step of inverting each C(k). We still assume that the non-
negative joint transformation matrix A is nonsingular. In addition, we would like to
study the performance of the Jacobi-like procedure on difference cost functions. Hence,
by considering both the indirect-fit JDC criteria (1.27) and (1.28) and the LU matrix
factorization, we derive two algorithms, namely JDC+

LU-1 and JDC+
LU-2.

By inserting the square change of variable A = B�2 into the indirect-fit JDC criteria
(1.27) and (1.28), we obtain the following two nonnegativity constrained JDC criteria,
respectively:

Ψ+

1 (B) =
K∑
k=1

∣∣∣∣∣∣ off{(B�2)−1C(k)(B�2)−T}
∣∣∣∣∣∣2
F

(2.75)

Ψ+

2 (B) =

K∑
k=1

∣∣∣∣∣∣C(k) −B�2 diag{(B�2)−1C(k)(B�2)−T}(B�2)T
∣∣∣∣∣∣2
F

(2.76)

By means of the LU matrix factorization of B and the notation B =
∏
i6=j T

(i,j)(ti,j)

defined in equation (2.26), the minimization of (2.75) and (2.76) with respect to B is
converted to the estimation of the set of N(N − 1) parameters ti,j . Therefore, each
parameter ti,j can be estimated sequentially using one of the two following Jacobi-like
optimization procedures:

ti,j = argmin
ti,j

Ψ+

1 (B(it−1)T (i,j)(ti,j)) (2.77)

ti,j = argmin
ti,j

Ψ+

2 (B(it−1)T (i,j)(ti,j)) (2.78)

As in the previous sections, let Â and B̂ denote A(it−1) and B(it−1), respectively, before
estimating the parameter ti,j . Let Â(new) and B̂(new) stand for Â and B̂ updated by
T (i,j)(ti,j), respectively. The update of B̂ is defined by B̂(new) = B̂T (i,j)(ti,j). Inserting
B̂(new) into the Jacobi-like optimizations (2.77) and (2.78), the optimal ti,j can be chosen
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as the global minimum of the following two local cost functions, respectively:

Ψ+

1 (ti,j) =
K∑
k=1

∣∣∣∣∣∣∣∣ off

{[
(B̂(new))�2

]−1
C(k)

[
(B̂(new))�2

]−T} ∣∣∣∣∣∣∣∣2
F

(2.79)

Ψ+

2 (ti,j) =

K∑
k=1

∣∣∣∣∣∣C(k)−(B̂(new))�2×

diag

{[
(B̂(new))�2

]−1
C(k)

[
(B̂(new))�2

]−T}[
(B̂(new))�2

]T∣∣∣∣∣∣∣∣2
F

(2.80)

We define the K matrices Ĉ(k,new) ∈ RN×N as follows:

Ĉ(k,new) =
[
(B̂(new))�2

]−1
C(k)

[
(B̂(new))�2

]−T
, k ∈ {1, 2, . . . ,K} (2.81)

According to equations (2.79), (2.80) and (2.81), the computation of the cost functions
Ψ+

1 (ti,j) and Ψ+

2 (ti,j) requires to express the components of the K matrices Ĉ(k,new) as
an explicit function of ti,j . Therefore, it is necessary to write [(B̂(new))�2]−1 as a function
of ti,j . The explicit expression of (B̂(new))�2 as a function of ti,j is provided in equation
(2.29) in proposition 2.1. In the right hand side of (2.29), the first term of the sum is
a nonsingular matrix and the second term is a rank-1 matrix. The inverse of the sum
of such two matrices can be computed by the Sherman-Morrison formula [Sherman and
Morrison, 1950,Bartlett, 1951]:

Theorem 2.1. Suppose that R ∈ RN×N is a nonsingular square matrix and u, v ∈ RN
are two column vectors satisfying 1 + vTR−1u 6= 0, then:

(R+ uvT)−1 = R−1 − R
−1 uvTR−1

1 + vTR−1 u
(2.82)

Suppose that matrix B̂, the two vectors 2 ti,j(b̂i � b̂j) and ej satisfy the conditions
of the Sherman-Morrison formula, the expression of [(B̂(new))�2]−1 as a function of the
parameter ti,j has the following form:[

(B̂(new))�2
]−1

= T (i,j)(−t2i,j)Q(B̂�2)−1 (2.83)

where Q ∈ RN×N is defined as follows:

Q = IN −
2 ti,j

1 + 2βjti,j
βeTj (2.84)

where IN ∈ RN×N is the identity matrix, where β ∈ RN is a column vector defined as
follows:

β = (B̂�2)−1(b̂i � b̂j) (2.85)

and where βj is the j-th element of vector β. Inserting equation (2.83) into (2.81),
Ĉ(k,new) can be rewritten as follows:

Ĉ(k,new) = T (i,j)(−t2i,j)QĈ(k)QT T (i,j)(−t2i,j)T (2.86)

where Ĉ(k) = Â−1C(k)Â−T is a (N ×N) constant matrix. Then through a straightfor-
ward computation of (2.86), each component of Ĉ(k,new) can be expressed as a function
of the parameter ti,j as described in the following two propositions.
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Proposition 2.6. Each non-diagonal component of Ĉ(k,new) is a rational function in
ti,j:

Ĉ
(k,new)
m,n
m6=n

=
E(k,3)
m,n t

3
i,j + E(k,2)

m,n t
2
i,j + E(k,1)

m,n ti,j + E(k,0)
m,n

(1 + 2βjti,j)
2 (2.87)

where E
(k,3)
m,n , E(k,2)

m,n , E(k,1)
m,n and E

(k,0)
m,n are the (m,n)-th components of the (N × N)

symmetric coefficient matrices E(k,3), E(k,2), E(k,1) and E(k,0), respectively. These coef-
ficients are defined as follows:

E(k,3)
m,n =


2(Ĉ

(k)
j,j βm − Ĉ

(k)
m,jβj) if n = i, 1 ≤ m 6= i ≤ N

E(k,3)
n,m if m = i, 1 ≤ n 6= i ≤ N

0 otherwise

(2.88)

E(k,2)
m,n =



4(Ĉ
(k)
j,j βmβn + Ĉ(k)

m,nβ
2
j − (Ĉ

(k)
m,jβn + Ĉ

(k)
j,nβm)βj)

if 1 ≤ m < n ≤ N,m 6= i, n 6= i

4(Ĉ
(k)
j,j βmβn + Ĉ(k)

m,nβ
2
j − (Ĉ

(k)
m,jβn + Ĉ

(k)
j,nβm)βj)− Ĉ(k)

m,j

if n = i, 1 ≤ m < i

E(k,2)
n,m if 1 ≤ n < m ≤ N

0 otherwise

(2.89)

E(k,1)
m,n =


4Ĉ(k)

m,nβj − 2(Ĉ
(k)
m,jβn + Ĉ

(k)
j,nβm) if 1 ≤ m < n ≤ N

E(k,1)
n,m if 1 ≤ n < m ≤ N

0 otherwise

(2.90)

E(k,0)
m,n =

{
Ĉ(k)
m,n if 1 ≤ m 6= n ≤ N

0 otherwise
(2.91)

where Ĉ(k)
m,n is the (m,n)-th component of the matrix Ĉ(k), and where βm is the m-th

element of the vector β which is defined in equation (2.85).

Proposition 2.7. Let us define K column vectors d̂ (k) ∈ RN with k ∈ {1, . . . ,K}, each
containing the diagonal elements of Ĉ(k,new), then the n-th element of d̂ (k), denoted by
d̂

(k)
n , can be expressed as a rational function in ti,j as follows:

d̂ (k)
n =

f (k,4)
n t4i,j + f (k,3)

n t3i,j + f (k,2)
n t2i,j + f (k,1)

n ti,j + f (k,0)
n

(1 + 2βjti,j)
2 (2.92)

where f (k,4)
n , f (k,3)

n , f (k,2)
n , f (k,1)

n and f
(k,0)
n are the n-th elements of the N -dimensional

coefficient vectors f (k,4), f (k,3), f (k,2), f (k,1) and f (k,0), respectively, with n ∈ {1, . . . , N}.
These coefficients are defined as follows:

f (k,4)
n =

{
Ĉ

(k)
j,j if n = i

0 otherwise
(2.93)

f (k,3)
n =

{
4Ĉ

(k)
j,j βi − 2(Ĉ

(k)
i,j + Ĉ

(k)
j,i )βj if n = i

0 otherwise
(2.94)
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f (k,2)
n =



4(Ĉ(k)
n,nβ

2
j − (Ĉ

(k)
n,j + Ĉ

(k)
j,n )βnβj + Ĉ

(k)
j,j β

2
n)

if n 6= i, n 6= j

4Ĉ
(k)
i,i β

2
j − (Ĉ

(k)
i,j + Ĉ

(k)
j,i )(1 + 4βiβj) + 4Ĉ

(k)
j,j β

2
i

if n = i

0 otherwise

(2.95)

f (k,1)
n =

{
4Ĉ(k)

n,nβj − 2(Ĉ
(k)
n,j + Ĉ

(k)
j,n )βn if n 6= j

0 otherwise
(2.96)

f (k,0)
n = Ĉ(k)

n,n (2.97)

where Ĉ(k)
i,j is the (i, j)-th component of the matrix Ĉ(k), and where βi is the i-th element

of the vector β which is defined in equation (2.85).

The proofs of propositions 2.6 and 2.7 are provided in the appendix A.5. Then we can
derive the proposed JDC+

LU-1 and JDC+
LU-2 algorithms.

2.4.1.1 The JDC+
LU-1 algorithm

The cost function Ψ+

1 (ti,j) defined in (2.79) is equal to the total sum of the squares of
the non-diagonal components of Ĉ(k,new) defined in proposition 2.6, therefore it can be
expressed in the following compact matrix form:

Ψ+

1 (ti,j) =
K∑
k=1

∣∣∣∣∣∣E(k)τi,j

∣∣∣∣∣∣2
F

= τT
i,jQE τi,j (2.98)

where QE ∈ R4×4 is a symmetric coefficient matrix defined by:

QE =

K∑
k=1

(E(k))TE(k) (2.99)

where E(k) is a (N2 × 4) matrix defined as follows:

E(k) =
[
vec (E(k,3)), vec (E(k,2)), vec (E(k,1)), vec (E(k,0))

]
(2.100)

and where τi,j is defined as the following 4-dimensional parameter vector :

τi,j =
1

(1 + 2βjti,j)
2 [t3i,j , t

2
i,j , ti,j , 1]T (2.101)

Equation (2.98) shows that Ψ+

1 (ti,j) is a rational function, where the degrees of the
numerator and the denominator are 6 and 4, respectively. The global minimum ti,j can be
obtained by computing the roots of the numerator of its derivative,which is a polynomial
of degree 9, and selecting the one yielding the smallest value of (2.98). In practice, the
roots of a polynomial of degree 9 can be obtained by computing the eigenvalues of the
corresponding companion matrix of dimension (9× 9) [Golub and Van Loan, 1996].
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2.4.1.2 The JDC+
LU-2 algorithm

According to proposition 2.7, d̂ (k) can be expressed in the following compact matrix
form:

d̂ (k) = F (k)ζi,j (2.102)

where F (k) ∈ RN×5 is a coefficient matrix:

F (k) =
[
f (k,4), f (k,3), f (k,2), f (k,1), f (k,0)

]
(2.103)

and where ζi,j ∈ R5 is a parameter vector defined as follows:

ζi,j =
1

(1 + 2βjti,j)
2 [t4i,j , t

3
i,j , t

2
i,j , ti,j , 1]T (2.104)

The use of vec (.) operator in criterion (2.80) leads to the following equivalent form
of Ψ+

2 (ti,j):

Ψ+

2 (ti,j) =

K∑
k=1

∣∣∣∣∣∣ c(k) −
[
(B̂(new))�2 � (B̂(new))�2

]
d̂ (k)

∣∣∣∣∣∣2
F

(2.105)

where c(k) = vec (C(k)), and where � denotes the Khatri-Rao product. Let us consider
the following proposition:

Proposition 2.8. According to equation (2.29) and the definition of Khatri-Rao product,
the following equality holds:

(B̂(new))�2 � (B̂(new))�2 = (Â� Â) +Gζi,j e
T
j (2.106)

where G is a (N2×5) matrix, whose column vectors are defined as follows:

g1 = vec (âiâ
T
i ) (2.107)

g2 = vec (2 âi(b̂i � b̂j)
T + 2 (b̂i � b̂j)â

T
i ) (2.108)

g3 = vec (âiâ
T
j + âjâ

T
i + 4 (b̂i � b̂j)(b̂i � b̂j)

T) (2.109)

g4 = vec (2 âj(b̂i � b̂j)
T + 2 (b̂i � b̂j)â

T
j ) (2.110)

g5 = 0 (2.111)

and where âi and âj are the i-th and j-th column vectors of Â, respectively.

The proof of proposition 2.8 is given in appendix A.6. By inserting equations (2.102)
and (2.106) into (2.105), the cost function Ψ+

2 (ti,j) can be rewritten as follows:

Ψ+

2 (ti,j) =

K∑
k=1

∣∣∣∣∣∣ c(k) −G(k)
A ζi,j

∣∣∣∣∣∣2
F

(2.112)

where G(k)
A is a (N2 × 5) matrix defined as follows:

G
(k)
A = (Â� Â)F (k)+ f

(k,0)
j G (2.113)

Now, let us define a (N2 × 5) matrix H(k) as follows:

H(k) = c(k)(4β2
j e

T
3 + 4βj e

T
4 + eT5 )−G(k)

A (2.114)
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where en, n ∈ {3, 4, 5} is the n-th column vector of the (5 × 5) identity matrix. Then
the criterion Ψ+

2 (ti,j) can be expressed in a compact matrix form as follows:

Ψ+

2 (ti,j) =
K∑
k=1

∣∣∣∣∣∣H(k)ζi,j

∣∣∣∣∣∣2
F

= ζTi,jQH ζi,j (2.115)

where:

QH =

K∑
k=1

(H(k))TH(k) (2.116)

is a (5× 5) symmetric coefficient matrix.
Equation (2.115) shows that the cost function Ψ+

2 (ti,j) is a rational function, where
the degrees of the numerator and the denominator are 8 and 4, respectively. The global
minimum ti,j can be obtained by computing the roots of its derivative and selecting the
one yielding the smallest value of (2.115).

Once the optimal ti,j is computed by either JDC+
LU-1 or JDC+

LU-2, B̂
(new) and Â(new)

are computed as described in proposition 2.1. Then the Jacobi-like procedure continues
to compute ti,j with the next (i, j) index couple. The processing of all the N(N−1)

parameters is called a sweep. In practice, it is necessary to perform several sweeps in order
to ensure the convergence of this sequential optimization procedure. Such procedures can
be terminated when the values of (2.98) and (2.115), or their relative decreases between
two successive sweeps fall below a specified small positive threshold. Such a stopping
criterion is guaranteed to be met since the criterions (2.98) and (2.115) are guaranteed
to decrease (or at least to not increase) after each Jacobi-like sweep.

2.4.2 Generalization to the non-square case

In practice a JDC problem often involves a non-square joint transformation matrix A ∈
R
N×P
+ and K diagonal matrices D(k) ∈ RP×P with N > P . In order to compute a non-

square full column rank matrix A by minimizing the cost functions (1.27) and (1.28), the
inverse operator in (1.27) and (1.28) should be replaced by the pseudo-inverse operator.
However, the pseudo-inverse is more difficult to handle than the inverse operation. In
order to avoid computing the pseudo-inverse, let us firstly define the following two (N×N)

matrices:

Å = [A, eP+1, . . . , eN ] = [a1,a2, . . . ,aP , eP+1, . . . , eN ] (2.117)

D̊(k) =

[
D(k) 0P,(N−P )

0(N−P ),P 0(N−P ),(N−P )

]
(2.118)

where ap is the p-th column vector of A, where ep is the p-th column vector of the
identity matrix IN , and where 0Y,Z denotes a (Y ×Z) zero matrix. Then we obtain the
following equality:

C(k) = AD(k)AT = Å D̊(k)ÅT (2.119)

Equation (2.119) suggests that we can transform the non-square matrix A into a square
matrix Å by combining A with additional columns {ep} p ∈ {P + 1, P + 2, . . . , N},
without changing the structure of C(k). In general, each column vector ap is linearly
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independent of the N−P vectors ep, therefore Å is nonsingular. Similarly, we can define
the following three (N ×N) matrices:

B̊ = [B, eP+1, . . . , eN ] (2.120)

L̊ = [L, eP+1, . . . , eN ] (2.121)

Ů =

[
U 0P×(N−P )

0(N−P )×P IN−P

]
(2.122)

where B ∈ RN×P , where L ∈ RN×P is a unit lower triangular matrix, where U ∈ RP×P
is a unit upper triangular matrix, and where IN−P ∈ R

(N−P )×(N−P ) is an identity
matrix. In addition B, L and U satisfy B = LU . If A = B�2, it is easy to prove that
Å = B̊�2 = (L̊Ů)�2. Furthermore, L̊ and Ů admit the following elementary triangular
factorization, respectively:

L̊ =
P∏
j=1

N∏
i=j+1

L̊(i,j)(`i,j), Ů =
P∏
i=1

P∏
j=i+1

Ů (i,j)(ui,j) (2.123)

where L̊(i,j)(`i,j) ∈ R
N×N and Ů (i,j)(ui,j) ∈ R

N×N are elementary lower and upper
triangular matrices, respectively. Therefore B̊ can be directly estimated by the proposed
JDC+

LU-1 and JDC+
LU-2methods. The total number of free parameters of B̊ is equal to

P (N − 1). Then the final output matrix B ∈ RN×P can be obtained be choosing the
first P column vectors of B̊ ∈ RN×N .

2.4.3 Practical issues

As we mentioned in the previous sections, when the model error of each jointly diag-
onalizable matrix C(k) is small, the explicit nonnegativity constraint on the matrix A
could be needless. We can directly decompose A using the LU factorization as pre-
sented in equation (2.43). By means of the JDC criteria Ψ1(A) (1.27) and Ψ2(A) (1.28),
each T (i,j)(ti,j) in decomposition (2.43) can now be estimated by solving one of the two
following Jacobi-like optimization problems, respectively:

ti,j = argmin
ti,j

Ψ1(ÂT (i,j)(ti,j)) (2.124)

ti,j = argmin
ti,j

Ψ2(ÂT (i,j)(ti,j)) (2.125)

where Â is the estimate ofA at the (it−1)-th iteration. By a straightforward computation
of (2.124), its global optimal ti,j is the minimum of a second degree polynomial, and can
be expressed as follows:

ti,j =

∑
k

∑
n6=i Ĉ

(k)
i,n Ĉ

(k)
j,n∑

k

∑
n6=i Ĉ

(k)
j,n Ĉ

(k)
j,n

(2.126)

where Ĉ(k) = Â−1C(k)Â−T is a (N × N) constant matrix, and where Ĉ(k)
i,n and Ĉ

(k)
j,n

are the (i, n)-th and (j, n)-th components of Ĉ(k), respectively. Regarding (2.125), the
function to be minimized can be approximated by a fourth degree polynomial function
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[Afsari, 2006]:

Ψ2(ÂT (i,j)(ti,j)) ≈ 4

K∑
k=1

(Ĉ
(k)
j,j )2 t4i,j − 8

K∑
k=1

Ĉ
(k)
j,j Ĉ

(k)
i,j t

3
i,j

+
K∑
k=1

[4(Ĉ
(k)
i,j )2 + 2(Ĉ

(k)
j,j )2] t2i,j − 4

K∑
k=1

Ĉ
(k)
j,j Ĉ

(k)
i,j ti,j +

K∑
k=1

(Ĉ
(k)
i,j )2

(2.127)

where Ĉ(k)
i,j and Ĉ

(k)
j,j are the (i, j)-th and (j, j)-th components of the constant matrix

Ĉ(k) = Â−1C(k)Â−T, respectively. The global minimum ti,j of equation (2.127) can be
obtained by computing the roots of its derivative. The derivations of equations (2.126)
and (2.127) are straightforward therefore omitted. As a matter of fact, the estimations
of ti,j by using equations (2.126) and (2.127) are identical to the Afsari’s LUJ1D and
LUJ2D algorithms [Afsari, 2006], respectively, with a change of sign in ti,j . Practically,
in each Jacobi-like iteration of JDC+

LU-1, we suggest to compute ti,j by equation (2.126)
first. If all the elements in the j-th column vector of ÂT (i,j)(ti,j) have the same sign ς,
the j-th column vector of Â(new) is replaced by ς(âj + ti,jâi), while the other column
vectors remain unchanged, where âi and âj are the i-th and j-th column vectors of Â,
respectively. Otherwise, ti,j is computed by minimizing (2.98). Then Â is updated by
means of equation (2.29). Regarding the JDC+

LU-2 algorithm, ti,j is computed in the same
manner by minimizing either (2.127) or (2.115). Then Â is computed correspondingly.

We also utilize the row balancing scheme for the proposed JDC+
LU-1 and JDC+

LU-2
algorithms, as described in equation (2.74), where the matrix Ĉ(k) is replaced by Ĉ(k) =

Â−1C(k)Â−T. For conclusion, the pseudo-codes for the JDC+
LU-1 and JDC+

LU-2 algorithms
are presented in the appendix C.5 and C.6, respectively.

2.5 The JDC+
ADMM-3 algorithm

The previous three sections presented five Jacobi-like NJDC algorithms. The purpose of
this section is to introduce another algorithm based on the Alternating Direction Method
of Multipliers (ADMM) approach for solving the NJDC model.

2.5.1 Algorithm derivation

We propose to impose the nonnegativity constraint in the direct-fit JDC criterion (1.29)
as follows:

Ψ+

3 (A, {D(k)}) =
1

2

K∑
k=1

∣∣∣∣∣∣C(k) −AD(k)AT
∣∣∣∣∣∣2
F

(2.128)

subject to A ≥ 0

In order to facilitate an efficient use of alternating minimization, we introduce three
auxiliary variable A1 ∈ RN×P , A2 ∈ RN×P and U ∈ RN×P . Then the NJDC problem
can be solved by minimizing the following cost function:

Ψ+

3 (A1,A2, {D(k)}) =
1

2

K∑
k=1

∣∣∣∣∣∣C(k) −A1D
(k)AT

2

∣∣∣∣∣∣2
F

(2.129)

subject to A1 −U = 0, A2 −U = 0, U ≥ 0
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where {D(k)} ⊂ R
P×P are a set of K diagonal matrices. The augmented Lagrangian

function of (2.129) is expressed as follows:

LA(A1,A2,U , {D(k)},Π1,Π2) = Ψ+

3 (A1,A2, {D(k)}) + f(U)

+ Π1 • (A1 −U) + Π2 • (A2 −U) +
α

2
||A1 −U ||2F +

β

2
||A2 −U ||2F

(2.130)

where f(·) is the indicator function on the set of (N × P ) nonnegative matrices, where
Π1 ∈ RN×P and Π2 ∈ RN×P are the Lagrangian multipliers, and where α > 0 and β > 0

are penalty parameters for the constraints A1 − U = 0 and A2 − U = 0, respectively.
For the matrices Y and Z of the same dimension, the scalar product • is defined as the
sum of all the element-wise products:

Y •Z =
∑
i

∑
j

yi,jzi,j (2.131)

where yi,j and zi,j are the (i, j)-th components of Y and Z, respectively.
The ADMM for (2.129) is derived by successively minimizing the augmented La-

grangian function (2.130) with respect to A1, A2, U and {D(k,it)}, one at a time while
fixing others at their most recent values, for example:

A
(it+1)
1 = argmin

A1

LA(A1,A
(it)
2 ,U (it), {D(k,it)},Π(it)

1 ,Π
(it)
2 ) (2.132)

A
(it+1)
2 = argmin

A2

LA(A
(it+1)
1 ,A2,U

(it), {D(k,it)},Π(it)
1 ,Π

(it)
2 ) (2.133)

U (it+1) = argmin
U

LA(A
(it+1)
1 ,A

(it+1)
2 ,U , {D(k,it)},Π(it)

1 ,Π
(it)
2 ) (2.134)

{D(k,it+1)} = argmin
D(k)

LA(A
(it+1)
1 ,A

(it+1)
2 ,U (it+1), {D(k)},Π(it)

1 ,Π
(it)
2 ) (2.135)

and then updating the multipliers Π1 and Π2, where it denotes the iteration number.
Specifically, these steps can be written in closed form as follows:

A
(it+1)
1 =

(
K∑
k=1

C(k)A
(it)
2 D(k,it) + αU (it) −Π

(it)
1

)
×

(
K∑
k=1

D(k,it)(A
(it)
2 )TA

(it)
2 D(k,it) + αIP

)−1 (2.136)

A
(it+1)
2 =

(
K∑
k=1

C(k)A
(it+1)
1 D(k,it) + βU (it) −Π

(it)
2

)
×

(
K∑
k=1

D(k,it)(A
(it+1)
1 )TA

(it+1)
1 D(k,it) + βIP

)−1 (2.137)

U (it+1) = P+

{(
αA

(it+1)
1 + βA

(it+1)
2 + Π

(it)
1 + Π

(it)
2

)
/(α+ β)

}
(2.138)

D(k,it+1) = Diag

{(
A

(it+1)
1 �A(it+1)

2

)]
vec (C(k))

}
(2.139)

Π
(it+1)
1 = Π

(it)
1 + γα(A

(it+1)
1 −U (it+1)) (2.140)
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Π
(it+1)
2 = Π

(it)
2 + γβ(A

(it+1)
2 −U (it+1)) (2.141)

where IP is a (P × P ) identity matrix, where P+{·} sets all negative values of the
input matrix to zero, where Diag(·) returns a diagonal matrix whose diagonal elements
are given by the input vector, where ] denotes the pseudo-inverse operator, where �
denotes the Hadamard product and � denotes the Khatri-Rao product, where vec(·)
reshapes a matrix into a column vector by stacking its columns vertically, and where γ ∈
[0, 1.618] [Xu et al., 2012]. The pseudo-code of the JDC+

ADMM-3 algorithm is summarized
in appendix C.7.

2.5.2 Convergence to KKT Points

In this section, following the analysis of the convergence of the ADMM based NMF
algorithm [Xu et al., 2012], we provide a preliminary study on the convergence of the
proposed ADMM algorithm by studying the Karush–Kuhn–Tucker (KKT) conditions of
problem (2.129). The KKT conditions of a nonlinear problem are first order necessary
conditions for a solution to be optimal, provided that some regularity conditions are
satisfied. Consider the following nonlinear optimization problem:

minimizex f(x) (2.142)

subject to hi(x) ≤ 0, i = 1, 2, . . . ,m

gj(x) = 0, j = 1, 2, . . . , r

where x is the optimization variable, where f is the objective function, where hi (i =

1, . . . ,m) are the inequality constraint functions, and where gj (j = 1, . . . , r) are the
equality constraint functions. Suppose that the objective function f and the constraint
functions hi and gj are continuously differentiable at a point x∗. We say x∗ is a KKT point
of problem (2.142) if it satisfies the following KKT conditions [Boyd and Vandenberghe,
2004]:

∂f(x∗)

∂x∗
+

m∑
i=1

ui
∂hi(x

∗)

∂x∗
+

r∑
j=1

vj
∂gj(x

∗)

∂x∗
= 0 (2.143)

hi(x
∗) ≤ 0, ∀ i ∈ {1, . . . ,m} (2.144)

gj(x
∗) = 0, ∀ j ∈ {1, . . . , r} (2.145)

ui ≥ 0, ∀ i ∈ {1, . . . ,m} (2.146)

uihi(x
∗) = 0, ∀ i ∈ {1, . . . ,m} (2.147)

where ui (i = 1, . . . ,m) and vj (j = 1, . . . , r) are constants. Then the KKT point x∗ is
a stationary point with respect to x of the Lagrangian function of problem (2.142).

Regarding the proposed problem (2.129), let us define the following sextuple point:

Z
def
= (A1,A2,U , {D(k)},Π1,Π2) (2.148)

A point Z is a KKT point of problem (2.129) if it satisfies the KKT conditions for
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problem (2.129) as follows:

K∑
k=1

(C(k) −A1D
(k)AT

2 )(A2D
(k))−Π1 = 0 (2.149)

K∑
k=1

(C(k) −A2D
(k)AT

1 )(A1D
(k))−Π2 = 0 (2.150)

(A2 �A1)T
(
c(k)− (A2 �A1)d(k)

)
= 0 (2.151)

A1 −U = 0 (2.152)

A2 −U = 0 (2.153)

(Π1 + Π2) ≤ 0 ≤ U (2.154)

(Π1 + Π2)�U = 0 (2.155)

where � denotes the Hadamard product and � denotes the Khatri-Rao product, where
c(k) = vec(C(k)), and where d(k) ∈ R

P is a column vector containing the diagonal
elements of the diagonal matrix D(k). Then we obtain the following proposition:

Proposition 2.9. Let {Z(it)}∞it=1 be a sequence generated by the proposed ADMM algo-
rithm (2.136) - (2.141) that satisfies the following condition:

lim
it→∞

(Z(it+1) −Z(it)) = 0 (2.156)

Then any accumulation point of {Z(it)}∞it=1 is a KKT point of problem (2.129).

The proof of proposition 2.9 is provided in appendix A.7. The following corollary can be
derived immediately.

Corollary 2.1. Whenever {Z(it)}∞it=1 converges, it converges to a KKT point.

The above preliminary result provides some assurance on the convergence behavior of
the ADMM algorithm applied to the non-convex NJDC problem. Further theoretical
studies will be considered in future work.

2.6 Numerical complexity analysis

This section is devoted to compute the numerical complexities of the proposed methods.
The numerical complexity is analyzed in terms of the number of floating point operations
(flops). A flop is defined as a multiplication followed by an addition. In practice, only
the number of multiplications, required to identify the joint transformation matrix A ∈
R
N×P
+ from K symmetric matrices C(k) ∈ RN×N , k ∈ {1, . . . ,K}, is considered; which

does not affect the order of magnitude of the numerical complexity [Kachenoura et al.,
2008, Albera et al., 2010, Albera et al., 2012]. The computational complexities of the
proposed methods are given in table 2.1 and explained with more details afterwards.

In the section of numerical simulations, the proposed methods are compared with
five classical JDC methods: the Alternating Columns and Diagonal Center (ACDC)
algorithm [Yeredor, 2002], the Fast Frobenius DIAGonalization (FFDIAG) algorithm
[Ziehe et al., 2004], the Coupled LU factorization based algorithm (CLU) [Maurandi et al.,
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2013], and two algorithms based on the general LU factorization and the minimization
of two indirect criteria, namely LUJ1D and LUJ2D [Afsari, 2006]. Regarding the CLU
method [Maurandi et al., 2013], the JDC criterion (1.27) is approximated by a sequence
of (2 × 2) sub-criteria. Therefore, in each Jacobi-like iteration, one elementary lower
triangular matrix and one elementary upper triangular matrix can be computed together
by EVD, leading to a lower numerical complexity. Furthermore, a NJDC method based
on a square change of variable and Levenberg Marquardt optimization [Coloigner et al.,
2014c], namely LM+

sym, is also included in the comparison. Their complexities are also
given in table 2.1.

2.6.1 The JDC+
LU-3 algorithm

The computation of the coefficient matrix G in the cost function (2.36) requires (33N2 +

7N)K flops. Computing the parameter ti,j by calculating the roots of the 8-th degree
polynomial function (2.36) needs 83 = 512 flops. Nevertheless, if ti,j is obtained by
minimizing the unconstrained cost function (2.44), which is a 4-th degree polynomial
function, it costs (15N2+4N)K+64 flops. Hence, the complexity of the AC phase, which
includes P (N − 1) parameters, is between ((15N2 + 4N)K + 64)P (N − 1) and ((33N2 +

7N)K + 512)P (N − 1) flops, depending on the number of unconstrained optimizations
is performed. The DC phase consists of estimating K diagonal matrices by means of
equation (2.41), and it involves N2PK +N2P 2 +N2P +NP 2 + P 3 + P 2 flops. Hence,
the magnitude of the total numerical complexities of one AC phase and one DC phase is
O(N3PK). The full expression of the complexity of the JDC+

LU-3 algorithm is given in
table 2.1.

2.6.2 The iJDC+
LU-1 and iJDC+

QR-1 algorithms

The iJDC+
LU-1 and iJDC+

QR-1 algorithms only work on a square matrix A. Therefore,
here we assume that N = P . For both algorithms, the inverses of the K matrices C(k)

cost N3K flops, the initialization of Ĉ(k) in equations (2.51) and (2.61) requires 2N3K

flops. Regarding the estimation of the elementary triangular matrices, in each Jacobi-
like iteration, the calculation of the parameter ti,j by minimizing the cost function (2.53)
needs (5N2 + 12N −8)K+ 64 flops. The calculation cost of Â(new), B̂(new) and Ĉ(k,new),
with k ∈ {1, · · · ,K}, is 4N+(4N+1)K flops. Otherwise, if the parameter ti,j is computed
without the nonnegativity constraint by means of equation (2.72), it requires 2(N − 1)K

flops. In this situation, the computation load of Â(new) and Ĉ(k,new) is 2NK +N flops.
Regarding the estimation of the Given rotation matrices, in each Jacobi-like iteration,
the complexity of calculating the parameters θi,j by minimizing the cost function (2.65) is
equal to (5N2+3N+29)K+3375 flops, and the estimation of Â(new), B̂(new) and Ĉ(k,new),
with k ∈ {1, · · · ,K}, costs 10N + (12N + 20)K flops. Otherwise, if the parameter θi,j
is obtained by minimizing the unconstrained cost function (2.73), it costs 2K + 8 flops.
Then the update of Â(new) and Ĉ(k,new) needs 4NK + 2N flops. In addition, the row
balancing scheme defined in equation (2.74) requires 3N2K + N2 flops. Therefore, the
magnitude of global numerical complexities of iJDC+

LU-1 and iJDC+
QR-1 for estimating all

the N(N − 1) parameters is between O(N3K) and O(N4K). Their detailed expressions
are given in table 2.1.
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2.6.3 The JDC+
LU-1 and JDC+

LU-2 algorithms

For both algorithms, the initialization of Ĉ(k) in equations (2.86) requires 2N3K flops.
Regarding the JDC+

LU-1 algorithm, in order to compute one parameter ti,j in one Jacobi-
like iteration, computing the coefficient matrix QE in the cost function (2.98) involves
(23N2 − 4N − 3)K +N3 +N2 +N flops. Calculating the roots of the rational function
(2.98) costs 729 flops. The computation load of Â(new), B̂(new) and Ĉ(k,new), with k ∈
{1, · · · ,K}, is 4N +(2N2 +5N +2)K flops. Otherwise, if the parameter ti,j is computed
without the nonnegativity constraint by means of equation (2.126), its calculation load
is 2(N − 1)K flops. Accordingly, the computation cost of Â(new) and Ĉ(k,new) is 2NK +

N flops. The row balancing scheme needs 3N2K + NP flops. Thus, the magnitude
of global numerical complexity of JDC+

LU-1 consisting of estimating all the P (N − 1)

parameters is between O(N2PK) and O(N4P + N3PK), depending on the number
of unconstrained optimizations is performed. Regarding the JDC+

LU-2 algorithm, in each
Jacobi-like iteration, the estimation of ti,j by minimizing the cost function (2.115) requires
(5N3 + 32N2 + 11N − 5)K + 2N3 + 5N2 + 4N + 1331 flops. Computing Â(new), B̂(new)

and Ĉ(k,new) involves 4N + (2N2 + 5N + 2)K flops. Nevertheless, if ti,j is estimated
by minimizing the unconstrained cost function (2.127), it costs 8K + 64 flops. In this
case, updating Â(new) and Ĉ(k,new) costs 2NK +N flops. Consequently, considering all
the P (N − 1) parameters, the magnitude of the total numerical complexities of JDC+

LU-2
is between O(N2PK) and O(N4PK). The full expressions of the complexities of the
JDC+

LU-1 and JDC+
LU-2 algorithms are given in table 2.1.

2.6.4 The JDC+
ADMM-3 algorithm

Computing A(it+1)
1 according to equation (2.136) requires (N2P +NP +2P 2)K+NP 2 +

P 3 +NP + P flops. The complexity of A(it+1)
2 is the same as that of A(it+1)

1 . Updating
U (it+1) by means of equation (2.138) involves 3NP flops. According to equation (2.139),
the calculation of K diagonal matrices D(k,it+1) needs N2PK +N2P 2 +N2P +NP 2 +

P 3+P 2 flops. Finally, the computation of the multipliers Π
(it+1)
1 and Π

(it+1)
2 both require

NP flops, following equations (2.140) and (2.141), respectively. Therefore the magnitude
of the total numerical complexities of one iteration of JDC+

ADMM-3 is O(N2PK), while
its full expression is given in table 2.1.

From table 2.1, we can observe that in order to estimate a square joint transfor-
mation matrix A ∈ RN×N+ , the classical JDC methods ACDC, CLU, FFDIAG, LUJ1D
and LUJ2D achieve lower numerical complexities per sweep/iteration than most of the
nonnegativity constrained methods. The magnitude of the complexities of these classical
JDC methods is O(N3K). Among the proposed methods, the JDC+

ADMM-3 algorithm
gives the lowest complexity, which is also of magnitude O(N3K). The complexities of
the JDC+

LU-3, iJDC+
LU-1 and iJDC+

QR-1 algorithms are at most one magnitude higher than
that of JDC+

ADMM-3, which are of magnitude O(N4K) in the worst case when all the
parameters are computed by the nonnegativity constrained optimizations. The JDC+

LU-1
and JDC+

LU-2 algorithms require a large amount of computation, whose magnitudes of
complexities are O(N5 +N4K) and O(N5K) in the worst case, respectively. Neverthe-
less, their complexities are still much lower that of the Levenberg Marquardt method,
namely LM+

sym, when K is much larger than N . The complexity of LM+
sym is of magni-
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tude O(N3K3 +N6) due to the heavy computation of the modification of the Hessian. A
similar observation can be made from table 2.1 when a non-square joint transformation
matrix A ∈ RN×P+ with N > P is encountered in a JDC problem.
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Chapter 3
Numerical simulations

In this chapter, the performance of the proposed algorithms is evaluated through sim-
ulated data fitting the NJDC model. Several experiments are designed to study the
convergence property, the influence of SNR, the impact of the number K of the input
symmetric matrices C(k), the effect of the coherence of the column vectors of the joint
mixing matrix A and the influence of the modulus of uniqueness of JDC. In each ex-
periment, the performance is analyzed for both estimating a square joint transformation
matrix A and a non-square matrix A. The proposed algorithms are compared with five
classical nonorthogonal JDC methods, which do not exploit the nonnegativity property
of A, namely the Alternating Columns and Diagonal Center (ACDC) algorithm [Yere-
dor, 2002], the Fast Frobenius DIAGonalization (FFDIAG) algorithm [Ziehe et al., 2004],
the Coupled LU factorization based algorithm (CLU) [Maurandi et al., 2013], and two
algorithms based on the general LU factorization and the minimization of two indirect
criteria, namely LUJ1D and LUJ2D [Afsari, 2006]. In addition, a NJDC method based
on a square change of variable and Levenberg Marquardt optimization [Coloigner et al.,
2014c], namely LM+

sym, is also included in the comparison.

3.1 Experimental setup

K synthetic symmetric matrices C(k) ∈ RN×N with k ∈ {1, . . . ,K} are generated ran-
domly according to the NJDC model (1.51). When used without further specification,
all the algorithms are manipulated under the following conditions:

1. Model generation: the joint transformation matrix A ∈ RN×P+ is randomly drawn
from a uniform distribution on the interval [0, 1]. The diagonal elements of the K
diagonal matrices D(k) with k ∈ {1, . . . ,K} are drawn from the zero-mean unit-
variance Gaussian distribution. Each pure matrix C(k) is perturbed by a random
symmetric noise matrix as follows:

C
(k)
N =

C(k)

‖C(k)‖F
+ σ(k) R(k)(R(k))T

‖R(k)(R(k))T‖F
(3.1)

where σ(k) is a scalar controlling the noise level, and where the components of the
noise matrix R(k) ∈ RN×N are drawn from the zero-mean unit-variance Gaussian
distribution. Then the SNR is defined by SNR = −20 log10(σ(k)).
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3.2. Convergence property Chapter 3

2. Initialization: in each Monte Carlo trial, all the algorithms are initialized by the
absolute value of the inverse of the output of the Uniformly Weighted Exhaus-
tive Diagonalization with Gauss itErations (UWEDGE) algorithm [Tichavský and
Yeredor, 2009] due to its fast speed.

3. Afsari’s row balancing scheme: the LUJ1D, LUJ2D, iJDC+
LU-1, iJDC+

QR-1, JDC+
LU-1

and JDC+
LU-2 algorithms perform the row balancing scheme once per each run of

five sweeps.

4. Stopping criterion: all the algorithms stop either when the relative error of the
corresponding criterion between two successive sweeps of a Jacobi-like method (or
iterations of an alternating minimization method) is less than 10−4 or when the
number of sweeps (iterations) exceeds 500.

5. Performance measurement: the performance is measured by means of the error be-
tween the true joint transformation matrix A and the estimate Â, and the numeri-
cal complexity. Note that the numerical complexity can be approximately measured
by computing the CPU time. However, the CPU time is computer-dependent and
also varies according to the operating system. In this report, the simulations are
carried out in Matlab v7.14 on Mac OS X and run on Intel Quad-Core CPU 2.8

GHz with 32 GigaByte (GB) memory.

In order to assess the estimation accuracy of A, we use the following scale-invariant
and permutation-invariant distance [Coloigner et al., 2014a,Coloigner et al., 2014c]:

α(A, Â) =
1

N

N∑
n=1

min
(n,n′)∈I2n

d(an, ân′) (3.2)

where an and ân′ are the n-th column vector of A and the n′-th column vector
of Â, respectively. I2

n is a set of indices defined recursively by I2
1 = {1, · · · , N} ×

{1, · · · , N}, and I2
n+1 = I2

n−J2
n where J2

n = argmin(n,n′)∈I2n d(an, ân′). In addition,
d(an, ân′) is the pseudo-distance between two column vectors defined by [Albera
et al., 2004]:

d(an, ân′) = 1− ‖aTn ân′‖2

‖an‖2‖ân′‖2
(3.3)

The criterion (3.2) is an upper bound of the optimal permutation-invariant crite-
rion. It avoids the burdensome computation of all the permutations. A small value
of (3.2) means a good performance in the sense that Â is close to A. Moreover,
we repeat all the experiments with 500 Monte Carlo trials.

3.2 Convergence property

In this section, we aim at studying the convergences of the proposed algorithms, as well
as those of the ACDC, CLU, FFDIAG, LUJ1D, LUJ2D and LM+

sym algorithms.

3.2.1 Test on square matrices

In this experiment, the dimensions of the square joint transformation matrix A ∈ RN×P+

are set to N = 3 and P = 3. The number of the input matrices C(k) is fixed to K = 5.
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The convergence is assessed under three SNR conditions: SNR = 30 dB, 10 dB and 0 dB,
respectively. Figure 3.1 shows the average convergence curves measured in terms of the
cost functions as a function of sweeps/iterations. The twelve algorithms are separated
into four groups according to their cost functions. In general, each algorithm exhibits
a relative stable convergence pattern under different SNR levels. Among the classical
approaches, CLU shows the fastest convergence property. Generally, it converges in less
than 10 sweeps. FFDIAG also converges fast when SNR is equal to 10 dB and 0 dB.
LUJ1D and LUJ2D require less than 20 sweeps to converge. The alternating optimiza-
tion based method ACDC, as well as LM+

sym, converge slower than those Jacobi-like
algorithms. Generally ACDC converges after 200 iterations, while LM+

sym requires more
than 500 iterations to converge. Regarding the proposed methods, JDC+

LU-1 converges
in 30 sweeps. JDC+

LU-2 converges in 20 sweeps. iJDC+
LU-1 and iJDC+

QR-1 converge in less
than 40 sweeps and 100 sweeps, respectively. Generally, JDC+

ADMM-3 converges in 50 it-
erations. JDC+

LU-3 converges the slowest among the proposed methods and requires more
than 500 iterations to converge. In addition, it can be seen that there exist some fluctua-
tions in the convergence curves of CLU, FFDIAG, JDC+

LU-2 and JDC+
ADMM-3, which are

caused by the increase of the cost functions in a few Mont Carlo realizations. For CLU
and FFDIAG, they minimize the approximations of the cost function (1.27). Therefore,
in a few cases, the inaccurate estimation of the parameters leads to an increase of the
original cost function. Similarly, the fluctuation of the convergence curve of JDC+

LU-2 is
caused by the step of unconstrained minimization (2.127), which is also an approximation
of the original JDC criterion. Regarding JDC+

ADMM-3, the limited fluctuation is due to
the projection of U into the nonnegative space by equation (2.138), which can lead to an
increase of the cost function in rare cases [Kim et al., 2007]. In most cases, these algo-
rithms show good convergence properties. The numerical complexities of all the methods
in this experiment are listed in table 3.1. It shows that the classical Jacobi-like methods,
CLU, FFDIAG, LUJ1D and LUJ2D achieve the lowest numerical complexities. The pro-
posed methods require more flops to converge, but they are still much less costly than
LM+

sym. Among the proposed methods, JDC+
ADMM-3 is the cheapest method in terms of

complexity, and it needs just a bit more flops than ACDC.

3.2.2 Test on non-square matrices

In this experiment, we compare four of the proposed algorithms, namely JDC+
LU-1,

JDC+
LU-2, JDC+

LU-3 and JDC+
ADMM-3, with ACDC and LM+

sym for estimating a non-square
matrix A. These methods can be directly applied to solve a non-square JDC problem.
The dimensions of the joint transformation matrix A ∈ RN×P+ are set to N = 5 and
P = 3, and the number of the input matrices C(k) is fixed to K = 5. The convergence is
also assessed under three SNR conditions: SNR = 30 dB, 10 dB and 0 dB, respectively.
The convergence curves of those six algorithms measured in terms of the cost functions
as a function of sweeps/iterations are shown in figure 3.2. It shows that JDC+

LU-1 and
JDC+

LU-2 converge in less than 50 sweeps and 10 sweeps, respectively, whatever the SNR
is. ACDC and JDC+

ADMM-3 show similar convergence behaviors, and they require 50 iter-
ations to converge. LM+

sym and JDC+
ADMM-3 converge in 200 iterations when SNR is equal

to 0 dB, and in 500 iterations when SNR is equal to 10 dB. Nevertheless, it seems that
they do not converge in 500 iterations when SNR = 30 dB. The numerical complexities
of those six methods are listed in table 3.2. We can observe that ACDC and JDC+

ADMM-3
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Figure 3.1: The convergence in terms of minimizing the cost functions for estimating
a (3 × 3) square nonnegative joint transformation matrix A from 5 input symmetric
matrices C(k) of size (3× 3) with three different SNR values.
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Computational complexity (flops)
SNR = 30 dB SNR = 10 dB SNR = 0 dB

ACDC 1.0237× 105 5.3056× 104 5.0350× 104

CLU 7.7080× 103 1.5691× 104 7.4604× 103

FFDIAG 8.9549× 103 1.2108× 104 5.9718× 103

LUJ1D 3.2279× 103 9.1461× 103 2.2162× 104

LUJ2D 7.8555× 103 1.9839× 104 4.5952× 104

LM+
sym 2.1544× 106 5.4142× 106 3.7247× 106

iJDC+
LU-1 1.8195× 105 5.7355× 104 1.2168× 104

iJDC+
QR-1 1.7893× 106 1.1665× 106 1.2487× 105

JDC+
LU-1 4.5719× 105 1.2280× 106 7.6316× 105

JDC+
LU-2 1.9668× 105 1.3533× 105 6.8720× 104

JDC+
LU-3 1.6055× 106 1.1272× 106 7.9567× 105

JDC+
ADMM-3 1.0582× 105 6.1208× 104 6.9601× 104

Table 3.1: Average numerical complexities of twelve methods in the convergence test
for estimating a (3× 3) square nonnegative joint transformation matrix A from 5 input
symmetric matrices C(k) of size (3× 3) with various SNR values.

Computational complexity (flops)
SNR = 30 dB SNR = 10 dB SNR = 0 dB

ACDC 1.2473× 105 9.2324× 104 5.5712× 104

LM+
sym 2.0315× 106 9.2810× 106 6.6496× 106

JDC+
LU-1 1.0388× 106 4.0737× 106 4.3547× 106

JDC+
LU-2 4.8495× 105 6.8402× 105 5.1805× 105

JDC+
LU-3 3.2191× 106 4.1906× 106 3.7078× 106

JDC+
ADMM-3 8.2344× 104 7.8530× 104 9.1460× 104

Table 3.2: Average numerical complexities of six methods in the convergence test for
estimating a (5× 3) non-square nonnegative joint transformation matrix A from 5 input
symmetric matrices C(k) of size (5× 5) with various SNR values.

maintain the lowest numerical complexities. LM+
sym requires the heaviest computational

load when SNR is equal to 10 dB and 0 dB. When SNR = 30 dB, JDC+
LU-3 is the most

computationally expensive method. The two Jacobi-like methods, JDC+
LU-1 and JDC+

LU-2
need relatively moderate complexities, while the latter is more efficient than the former
for estimating a non-square matrix.

3.3 Influence of SNR

In this section, we study the behaviors of the considered algorithms as a function of SNR.
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Figure 3.2: The convergence in terms of minimizing the cost functions for estimating a
(5 × 3) non-square nonnegative joint transformation matrix A from 5 input symmetric
matrices C(k) of size (5× 5) with three different SNR values.
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3.3.1 Test on square matrices

In this experiment, the dimensions of the square joint transformation matrix A ∈ RN×P+

are fixed to N = 3 and P = 3. The number of the input matrices C(k) is set to K = 5.
We repeat the experiment with SNR ranging from −20 dB to 40 dB with a step of
2 dB. Figure 3.3(a) depicts the average curves of the estimation error α(A, Â) of the
twelve algorithms as a function of SNR. The obtained results show that the performance
of all the methods increases quasi-quadratically as SNR grows. For the classical un-
constrained methods, ACDC performs better than CLU, FFDIAG, LUJ1D and LUJ2D,
while the latter four Jacobi-like methods show almost the same performance. The non-
negativity constraint obviously helps LM+

sym and the proposed six methods to improve
the estimation accuracy especially for lower SNR values. When SNR is less than 20 dB,
the proposed four Jacobi-like algorithms, iJDC+

LU-1, iJDC+
QR-1, JDC+

LU-1 and JDC+
LU-2

outperform the others, while the two alternating minimization based NJDC methods
JDC+

LU-3 and JDC+
ADMM-3, as well as LM+

sym, also product better results than the clas-
sical unconstrained algorithms. Figure 3.3(b) displays the detail information for some
selected methods with SNR ranging from 20 dB to 40 dB. We can seen that JDC+

ADMM-3
maintains a competitive advantage over the other methods under those higher SNR con-
ditions. JDC+

LU-3 also achieves good results, and it outperforms ACDC when SNR ≤ 28

dB. LM+
sym, JDC+

LU-1 and JDC+
LU-2 give similar performance, and they produce more

accurate estimation results than iJDC+
LU-1 and iJDC+

QR-1. The average numerical com-
plexities at each SNR level of all the methods in this experiment are shown in figure
3.3(c). It shows that the classical Jacobi-like methods CLU, FFDIAG and LUJ1D ob-
tain the lowest numerical complexities. Generally, LM+

sym is the most computationally
expensive algorithm. Among the proposed methods, the complexity of iJDC+

LU-1 is the
lowest, and increase as SNR grows. The complexity of JDC+

ADMM-3 is almost identical
to that of ACDC. iJDC+

QR-1, JDC+
LU-1, JDC+

LU-2 and JDC+
LU-3 cost more flops to achieve

better estimations of A, but they are still much more efficient than LM+
sym. Therefore,

the JDC+
LU-2 and JDC+

ADMM-3 give the best performance/complexity trade-off for all the
considered SNR values.

3.3.2 Test on non-square matrices

In this experiment, a non-square joint transformation matrix A ∈ RN×P+ is considered,
where the dimensions are set to N = 5 and P = 3, and where the number of the input
matrices C(k) is fixed to K = 5. We repeat the experiment with SNR ranging from −20

dB to 40 dB with a step of 2 dB. Figure 3.4(a) shows the average curves of the estimation
error α(A, Â) as a function of SNR for ACDC, LM+

sym, JDC+
LU-1, JDC+

LU-2, JDC+
LU-3 and

JDC+
ADMM-3. As illustrated in the picture, the performance of all these methods increases

as SNR grows. The nonnegativity constrained algorithms, LM+
sym, JDC+

LU-1, JDC+
LU-2,

JDC+
LU-3 and JDC+

ADMM-3, outperform ACDC when SNR is less than 14 dB, and perform
similarly to ACDC when SNR exceeds 20 dB. The proposed JDC+

LU-2 algorithm is more
superior than the other methods when SNR is less than 12 dB. More detailed information
of all the methods with SNR ranging from 12 dB to 40 dB is displayed in figure 3.4(b).
Under these higher SNR levels, JDC+

ADMM-3 gives the most accurate estimation results.
JDC+

LU-3 outperforms ACDC when SNR < 26 dB. JDC+
LU-1 and JDC+

LU-2 also achieve
comparable results. The average numerical complexity over all the SNR values for each
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Figure 3.3: Influence of SNR for estimating a (3× 3) square nonnegative joint transfor-
mation matrix A from 5 input symmetric matrices C(k) of size (3× 3).
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algorithm is illustrated in figure 3.4(c). One can see that generally LM+
sym has the

heaviest computation load. JDC+
LU-1 and JDC+

LU-3 are more efficient than LM+
sym under

most SNR levels. ACDC requires the lowest complexity when SNR is less than 8 dB,
while JDC+

ADMM-3 remains the most computationally efficient when SNR exceeds 8 dB.
The numerical complexity of JDC+

LU-2 is between those of ACDC and JDC+
LU-1. Thus,

JDC+
LU-2 and JDC+

ADMM-3 provide the best accuracy/speed compromise.

3.4 Influence of number of input matrices

In this section, we study the influence of the number K of the input matrices C(k) on
the performance of the considered algorithms. In ICA, the value of K corresponds for
instance to the number of matrix slices derived from a FO cumulant array.

3.4.1 Test on square matrices

In this experiment, the dimensions of the square joint transformation matrix A ∈ RN×P+

are set to N = 3 and P = 3. The SNR value is fixed to 10 dB. We repeat the experiment
with K ranging from 3 to 63 with a step of 2. Figure 3.5(a) shows the average curves of
the estimation error α(A, Â) of all the algorithms as a function of K. We can observe
that the performance of all the methods progresses as K increases, and then practically
stabilizes for high values of K. It indicates that after some point (e.g. K ≥ 30), the
additional information brought by an increase of K does not further improve the results.
Regarding the four classical Jacobi-like methods, CLU, FFDIAG, LUJ1D and LUJ2D,
their performance is quite similar. ACDC outperforms the aforementioned four algo-
rithms. All the nonnegativity constrained methods give better results than the five clas-
sical unconstrained algorithms. The proposed JDC+

LU-1 and JDC+
LU-2 algorithms maintain

competitive advantages over the other methods through all the K values. iJDC+
QR-1 and

JDC+
ADMM-3 are also among the most competitive methods, and they achieve better re-

sults than LM+
sym under most K values. iJDC+

LU-1 shows similar performance to LM+
sym.

The performance of JDC+
LU-3 is between that of ACDC and LM+

sym, and it is also com-
parable. The average numerical complexities of all the algorithms in this experiment are
presented in figure 3.5(b). It shows that the numerical complexities of all the methods
progress quasi-linearly as K increases except that of LM+

sym, which grows quadratically
in K. Now let’s give a detailed description. The complexities of the classical Jacobi-like
methods, CLU, FFDIAG, LUJ1D and LUJ2D, remain the lowest, especially FFDIAG.
The proposed iJDC+

LU-1, JDC+
LU-2 and JDC+

ADMM-3 algorithms cost a bit more flops than
ACDC. The complexities of iJDC+

QR-1, JDC+
LU-1 and JDC+

LU-3 are almost one order of
magnitude higher than that of ACDC. Nevertheless, they are still much more efficient
than LM+

sym, especially for a large K value. Therefore, the JDC+
LU-2 and JDC+

ADMM-3
methods seem to be the most effective algorithms compared to the other methods in
terms of both estimation accuracy and numerical complexity.

3.4.2 Test on non-square matrices

In this experiment, the dimensions of the non-square joint transformation matrix A ∈
R
N×P
+ are set to N = 5 and P = 3, and the SNR value is fixed to 10 dB. Again, we

repeat the experiment with K ranging from 3 to 63 with a step of 2. The average curves
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Figure 3.4: Influence of SNR for estimating a (5×3) non-square nonnegative joint trans-
formation matrix A from 5 input symmetric matrices C(k) of size (5× 5).
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Figure 3.5: Influence of number K of the input symmetric matrices C(k) of size (3×3) for
estimating a (3 × 3) square nonnegative joint transformation matrix A with SNR = 10

dB.

of the estimation error α(A, Â) of the ACDC, LM+
sym, JDC+

LU-1, JDC+
LU-2, JDC+

LU-3 and
JDC+

ADMM-3 algorithms as a function of K are displayed in figure 3.6(a). The result
shows that the increase of K benefits most JDC algorithms. JDC+

LU-2 gives the most
accurate estimation results when only a small number of input matrices is available (e.g.
K ≤ 7). When we have a large number of input matrices, that is to say K is larger
than 11, JDC+

ADMM-3 maintains competitive advantages over the other methods with
large performance gains. LM+

sym, JDC+
LU-2 and JDC+

LU-3 outperform ACDC when K

is less than 15, and show similar performance to ACDC when K > 15. The result of
JDC+

LU-1 is less desirable for estimating a non-square matrix A when K is large. Figure
3.5(b) depicts the average numerical complexities of all the algorithms in this experiment.
The complexities of all the methods in terms of flops grows as K increases. Obviously,
LM+

sym requires the highest numerical complexity, while ACDC and JDC+
ADMM-3 are the

most computationally efficient methods. The complexity of JDC+
LU-2 is nearly one order
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Figure 3.6: Influence of number K of the input symmetric matrices C(k) of size (5×5) for
estimating a (5 × 3) square nonnegative joint transformation matrix A with SNR = 10

dB.

of magnitude higher than that of ACDC. The complexities of JDC+
LU-1 and JDC+

LU-3
are between those of JDC+

LU-2 and LM+
sym. Consequently, the JDC+

ADMM-3 algorithm
provides the best performance/complexity compromise, while the JDC+

LU-2 and JDC+
LU-3

algorithms are also competitive with regard to LM+
sym.

3.5 Influence of coherence of matrix A

In this section, the impact of the coherence between two column vectors of the joint
transformation matrix A on the performance of the considered algorithms is evaluated.
A nonnegative matrix A of dimension (N ×P ) is generated with a coherence parameter
β as follows:

A = [a1, (1− β)a1 + βa2,a3, . . . ,aP ] (3.4)
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where each column vector ap ∈ RN+ is randomly drawn from a uniform distribution over
[0, 1], and where β is in the range of [0, 1]. A small value of β indicates that the matrix
A is close to be singular.

3.5.1 Test on square matrices

In this simulation, the dimensions of the square joint transformation matrix A ∈ RN×P+

are set to N = 3 and P = 3, the number of the input matrices C(k) is fixed to K = 5,
and the SNR value is set to 10 dB. We repeat the experiment with β ranging from 0 to
1 with a step of 0.025. The average curves of the estimation error α(A, Â) of the twelve
algorithms are depicted in figure 3.7(a). One can notice that in general all the JDC algo-
rithms are less effective in terms of the estimation accuracy when two column vectors ofA
are close to collinear. The performance of most JDC methods increases quasi-linearly as
β increases. The four classical Jacobi-like methods CLU, FFDIAG, LUJ1D and LUJ2D
yield less accurate estimation results. ACDC exhibits an improved performance over the
aforementioned methods. The nonnegativity constrained algorithms give much better
results than the classical unconstrained methods. Three methods based on the direct-fit
JDC criterion (1.29), namely LM+

sym, JDC+
LU-3 and JDC+

ADMM-3, show similar perfor-
mance. The three proposed Jacobi-like NJDC algorithms, namely iJDC+

LU-1, iJDC+
QR-1

and JDC+
LU-2, outperform the previous three methods. The performance of JDC+

LU-1 is
quite stable and remains the best through all the considered β values. Figure 3.7(b) de-
picts the average numerical complexities of all the algorithms in this experiment. We can
observe that the complexity evolution is quite stable as β changes. LM+

sym is the most
computationally expensive, followed by JDC+

LU-3, JDC+
LU-1 and iJDC+

QR-1, consecutively.
iJDC+

LU-1 and JDC+
ADMM-3 cost a bit more or less flops than ACDC, while JDC+

LU-2
is somewhat more expensive than ACDC. The classical Jacobi-like methods maintain
the lowest numerical complexities. Hence, JDC+

LU-2 gives the best accuracy/complexity
compromise in this experiment, and JDC+

LU-1 is also more efficient than LM+
sym.

3.5.2 Test on non-square matrices

In this experiment, the dimensions of the non-square joint transformation matrix A ∈
R
N×P
+ are set to N = 5 and P = 3, and the number of the input matrices C(k) is fixed

to K = 5. The SNR value is set to 10 dB. We repeat the experiment with β ranging
from 0 to 1 with a step of 0.025. The average curves of the estimation error α(A, Â)

of the six considered algorithms as a function of SNR are presented in figure 3.8(a).
The obtained results show that the nonnegativity constrained methods outperform the
classical ACDC algorithm. The direct-fit JDC criterion (1.29) based methods, LM+

sym,
JDC+

LU-3 and JDC+
ADMM-3 give similar results, where the proposed JDC+

ADMM-3 algorithm
is slightly better than the other two algorithms. JDC+

LU-1 gives quite stable performance
as β increase, and remains advantage when β is less than 0.4. JDC+

LU-2 generates the
most accurate results when β exceeds 0.5. The average numerical complexities evolutions
of all the six methods as a function of β are illustrated in figure 3.8(b). We can see that
ACDC and JDC+

ADMM-3 are the most computationally efficient, followed by JDC+
LU-2,

JDC+
LU-1 and JDC+

LU-3, consecutively. LM
+
sym requires the heaviest workload. Therefore,

the proposed JDC+
LU-2 and JDC+

ADMM-3 algorithms offer the best performance/complexity
compromise in this experiment.
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Figure 3.7: Influence of coherence of the column vectors of A for estimating a (3 × 3)

square nonnegative joint transformation matrix A from 5 input symmetric matrices C(k)

of size (3× 3) with SNR = 10 dB.

3.6 Influence of modulus of uniqueness

In this section, the effect of the modulus of uniqueness ρ of a JDC problem is evaluated.
The modulus of uniqueness ρ is defined in equation (1.26) in section 1.3.2. By its defini-
tion, ρ falls in the range of [0, 1]. The JDC problem is considered to be ill-conditioned
when ρ is close to 1. In order to control ρ, firstly we randomly generate an orthogonal
matrix D ∈ RK×P so that ρ = 0 by orthogonalizing a (K × P ) random matrix whose
components are drawn from the zero-mean unit-variance Gaussian distribution. Secondly
we rotate the P column vectors ofD such that all the internal angles between any column
vectors are equal to a predefined value ψ. Therefore ρ is only controlled by the angle ψ
and is equal to | cos(ψ)|. Finally we can obtain K diagonal matrix D(k) ∈ RP×P , where
the diagonal elements of each D(k) are equal to the elements of the k-th row vector of
the predefined matrix D.
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Figure 3.8: Influence of coherence of the column vectors of A for estimating a (5 × 3)

non-square nonnegative joint transformation matrix A from 5 input symmetric matrices
C(k) of size (5× 5) with SNR = 10 dB.

3.6.1 Test on square matrices

In this simulation, the dimensions of the square joint transformation matrix A ∈ RN×P+

are set to N = 3 and P = 3, the number of the input matrices C(k) is fixed to K = 5, and
the SNR value is set to 10 dB. We repeat the experiment with the angle ψ ranging from
0 to π/2 with a step of π/60. A small ψ value means a large ρ value. Figure 3.9(a) shows
the average curves of the estimation error α(A, Â) of the twelve algorithms as a function
of ψ. As we can see, in general cases, the performance of all the algorithms increases
as the value of ψ grows. Four classical Jacobi-like methods CLU, FFDIAG, LUJ1D and
LUJ2D give moderate results, while ACDC offers an improvement in terms of estima-
tion accuracy. The nonnegativity constraint obviously benefits LM+

sym and the proposed
six methods to further enhance the results. Generally speaking, the performance of
the proposed four Jacobi-like NJDC methods, namely JDC+

LU-1, JDC+
LU-2, iJDC+

LU-1 and
iJDC+

QR-1, surpasses that of LM+
sym, JDC+

LU-3 and JDC+
ADMM-3, where the latter three
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Figure 3.9: Influence of modulus of uniqueness for estimating a (3×3) square nonnegative
joint transformation matrix A from 5 input symmetric matrices C(k) of size (3× 3) with
SNR = 10 dB.

methods are based on the same direct-fit cost function (1.29). The JDC+
LU-1 algorithm

maintains competitive advantage through all the considered ψ values. The average nu-
merical complexities of all the algorithms as a function of ψ in this experiment is shown
in figure 3.9(b). As illustrated in the figure, generally the classical Jacobi-like methods
CLU and FFDIAG preserve the lowest numerical complexities. LUJ1D and LUJ2D are
still efficient. The complexity of iJDC+

LU-1 is the lowest among those of the proposed six
methods, and it is also lower than or equal to that of ACDC. JDC+

ADMM-3 costs a bit more
computation load than ACDC, followed by JDC+

LU-2 and iJDC+
QR-1, consecutively. The

complexities of JDC+
LU-1 and JDC+

LU-3 are almost one order of magnitude higher than
that of JDC+

ADMM-3. The LM
+
sym algorithm requires the heaviest workload. Consequently,

the proposed iJDC+
LU-1 and JDC+

LU-2 algorithms offer the best performance/complexity
trade-off for all the considered ψ values.
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3.6.2 Test on non-square matrices

In this experiment, the dimensions of the non-square joint transformation matrix A ∈
R
N×P
+ are set to N = 5 and P = 3, and the number of the input matrices C(k) is

fixed to K = 5. The SNR value is fixed to 10 dB. We repeat the experiment with the
angle ψ ranging from 0 to π/2 with a step of π/60. Figure 3.10(a) displays the average
curves of the estimation error α(A, Â) of the six selected algorithms as a function of
ψ. One can observe that the nonnegativity constrained algorithms surpass the classical
ACDC algorithm, except JDC+

LU-1 when ψ > 5π/12. Three methods based on the
direct-fit JDC criterion (1.29), called LM+

sym, JDC+
LU-3 and JDC+

ADMM-3 behave similarly,
where the proposed JDC+

ADMM-3 algorithm offers better performance and gives the best
estimation result when ψ > 2π/5. The proposed two Jacobi-like algorithms JDC+

LU-1
and JDC+

LU-2, particularly JDC+
LU-1, achieve large performance gains when ψ is less than

3π/10. The evolutions of the average numerical complexities of the six methods as a
function of ψ are depicted in figure 3.10(b). It shows that ACDC and JDC+

ADMM-3
keep the lowest computational complexities, while ACDC is the most efficient when
ψ < 2π/10. The complexity of JDC+

LU-2 is almost one order of magnitude higher than that
of JDC+

ADMM-3. JDC+
LU-1 and JDC+

LU-3 need the heaviest workload among the proposed
methods. Nevertheless, they are still more efficient than LM+

sym, since the complexities
of the former are half of the latter. Therefore, the proposed JDC+

LU-2 algorithm gives the
best performance/complexity compromise in this experiment.

3.7 Concluding remark

In this chapter, the performance of the proposed six NJDC algorithms was evaluated
with simulated set of jointly diagonalizable matrices. Five classical nonorthogonal JDC
methods without using the nonnegativity constraint, including ACDC [Yeredor, 2002],
CLU [Maurandi et al., 2013], FFDIAG [Ziehe et al., 2004], LUJ1D [Afsari, 2006], LUJ2D
[Afsari, 2006], and one NJDC method LM+

sym [Coloigner et al., 2014c], were tested as
reference methods. The performance was assessed in terms of the matrix estimation ac-
curacy and the numerical complexity. Then, various scenarios were considered, aiming
at testing: i) the convergence property, ii) the influence of additive noise, which can
stand for model errors, iii) the impact of the number of input matrices, iv) the effect of
coherence of the column vectors of the joint transformation matrix, and v) the influence
of the modulus of uniqueness. In each scenario, the performance was extensively stud-
ied through Monte Carlo experiments for both estimating a square joint transformation
matrix and a non-square one. The obtained results showed that the proposed algorithms
offer better estimation accuracy in difficult contexts by means of exploiting the nonneg-
ativity a priori. Comparing to an existing nonnegative method based on the Levenberg
Marquardt optimization [Coloigner et al., 2014c], the proposed methods reduce the total
numerical complexity by up to three orders of magnitude. For a difficult problem with
either a lower value of SNR, a small number of available input matrices, a high level of
coherence presented in the joint transformation matrix or a large value of modulus of
uniqueness, generally the proposed JDC+

LU-2 algorithm provides the best performance/-
complexity compromise. JDC+

LU-1 also gives the best estimation results in many difficult
contexts, where a highly coherent joint transformation matrix is encountered or a large
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Figure 3.10: Influence of modulus of uniqueness for estimating a (5 × 3) non-square
nonnegative joint transformation matrix A from 5 input symmetric matrices C(k) of size
(5× 5) with SNR = 10 dB.

value of modulus of uniqueness is involved, however, at the cost of a higher computational
complexity. When a well-conditioned NJDC problem is considered, that is to say, when
a high value of SNR can be expected or a large number of input matrices is available,
the JDC+

ADMM-3 algorithm is the most effective in terms of estimation accuracy and also
has a low numerical complexity.
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Chapter 4
Blind source separation applications

We have shown the good performance of the proposed algorithms for solving simulated
NJDC model in the last chapter. The purpose of this chapter is to illustrate the practical
usefulness of our methods by solving three BSS problems from very different application
domains. The first one which is rooted in the biomedical diagnostics, consists of separat-
ing synthetic realistic Magnetic Resonance Spectroscopy (MRS) signal. The second one
is an automatic music transcription problem. It aims at estimating the musical notes and
their attributes from a single-channel music record by decomposing its magnitude spec-
trogram. The third one is devoted to separating digital images which are degraded by
the so-called show-through effect. Such a problem is usually caused by the seeping of ink
from the reverse side or scanning a semi-transparent paper. In the following paragraphs,
the SeNICA methods based on the proposed NJDC algorithms, namely, for example,
JDC+

ADMM-3-ICA, consist of the following four steps:

1. Compressing the M realizations of the observation vector x ∈ RN by means of a
nonnegative matrixW ∈ RP×N+ computed using the NonNegative COMPression
(NN-COMP) method, which is addressed in appendix B, leading to a compressed
observation vectorx∈ RP , where N , P andM are the numbers of the observations,
of the sources and of the samples points, respectively. The numerical complexity
of NN-COMP is analyzed in equation (B.20) of appendix B.

2. Estimating the FO cumulant array C(4)
x ∈ RN×N×N×N from the original observa-

tion x, or estimating the FO cumulant array C(4)
x̄ ∈ RP×P×P×P from the com-

pressed observation x; then extracting all the cumulant matrix slices to form a
matrices set. The complexity of computing C(4)

x is given as follows [Albera et al.,
2010]:

f (4)
cum(N,M) =

3

8
N(N + 1)(N2 +N + 2)M (4.1)

while the complexity of calculating C(4)
x̄ is f (4)

cum(P,M).

3. Estimating the mixing matrix A ∈ RN×P+ or the compressed mixing matrixA+ =

WA ∈ RP×P+ by applying the proposed NJDC methods on the FO cumulant matrix
slices of C(4)

x or C(4)
x̄ , respectively. The numerical complexities of the proposed

NJDC methods are listed in table 2.1.
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4. Reconstructing the M realizations of the source vector by means of s = A]x or
s = A

−1
+ x, where ] denotes the pseudo-inverse operator. The complexity of this

step is 2NP 2 + NPM + P 3 or P 2M + P 3 by using the above two equations,
respectively.

The first step is indispensable for the iJDC+
LU-1-ICA and iJDC+

QR-1-ICA algorithms when
a non-square mixing matrix is encountered, since they only work on a square matrix.
Such a compression step is optional for the JDC+

LU-1-ICA, JDC+
LU-2-ICA, JDC+

LU-3-ICA
and JDC+

ADMM-3-ICA methods. The numerical complexities of the proposed six SeNICA
methods include the complexities of the four steps. Their full expressions are straightfor-
ward, thus omitted here for brevity. The behaviors of the proposed SeNICA methods are
compared with five state-of-the-art BSS algorithms, namely two efficient ICA methods
CoM2 [Comon, 1994] and SOBI [Belouchrani et al., 1997], the NICA method with a
line search along the geodesic [Plumbley, 2003], the NMF method based on alternating
nonnegativity least squares [Kim and Park, 2008], and the semi-NMF method based on
one-sided multiplicative update [Ding et al., 2010]. A comprehensive analysis of the nu-
merical complexities of the classical BSS algorithms is provided in [Kachenoura et al.,
2008,Albera et al., 2010,Albera et al., 2012]. Their results are not repeated here for the
sake of conciseness.

4.1 Separation of simulated MRS signal

MRS is a powerful non-invasive analytical technique for analyzing the chemical content of
Magnetic Resonance (MR)-visible nuclei and therefore enjoys particular advantages for
assessing metabolism. The chemical property of each nucleus determines the frequency
at which it appears in the MR spectrum, giving rise to peaks corresponding to specific
metabolites [Befroy and Shulman, 2011]. Therefore, the MRS observation spectra can be
modeled as the mixture of the spectrum of each constitutional source metabolite. More
specifically, it can be written as the noisy linear instantaneous mixing model described
in equation (1.50) as in the SeNICA model 1.6, where x ∈ RN is the MRS observation
vector, s ∈ RP is the source vector representing the statistically quasi-independent source
metabolites, ε ∈ RN is the instrumental noise vector, and A ∈ RN×P+ is the nonnegative
mixing matrix containing the concentrations of the source metabolites. In this context,
SNR is defined as follows:

SNR = 20 log10

‖As‖F
‖ε‖F

(4.2)

Many non-parametric BSS methods were developed in order to solve the MRS separation
problem, such as the ICA approach [Nakai et al., 2004, Szabo de Edelenyi et al., 2005]
and the NMF approach [Sajda et al., 2004,Sun and Xin, 2012].

In this experiment, two simulated MRS source metabolites s1 and s2, namely the
Choline and Myo-inositol (see figure 4.1(b)), are generated by the sum of Lorentzian and
Gaussian functions, where the location and scale parameters are fixed for the purposed
of realistic representation [Moussaoui, 2005]. Each of the sources contains 103 samples.
The observation vector x is generated according to equation (1.50) (see figure 4.1(a) for
illustration of two observations with a SNR of 10 dB). The components of the (N × 2)

mixing matrix A are randomly drawn from a uniform distribution. The additive noise ε
is modeled as a zero-mean unit-variance Gaussian vector. The performance is assessed
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Figure 4.1: An example of the BSS results of 2 simulated MRS metabolites by the
proposed four methods without using the nonnegative compression step. The number of
observations is set to N = 20 and the SNR value is fixed to 10 dB.

by means of the estimation error α(sT, ŝT) between the true source s and its estimate ŝ,
and the numerical complexity, where the distance measure α is defined in equation (3.2).
Furthermore, all the results reported in the section are averaged over 200 independent
Monte Carlo trials.

Figure 4.1 shows an example of the separation results of four of the proposed methods
without using the NN-COMP method, namely JDC+

LU-1-ICA, JDC+
LU-2-ICA, JDC+

LU-3-
ICA and JDC+

ADMM-3-ICA, with N = 20 observations and a SNR of 10 dB. Figure
4.2 is the continuation of figure 4.1. It gives the separation results of all the proposed
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Figure 4.2: Continuation of the first example of the BSS results of 2 simulated MRS
metabolites by the proposed six methods with the nonnegative compression step. The
number of observations is set to N = 20 and the SNR value is fixed to 10 dB.

six SeNICA methods based on the usage of the NN-COMP algorithm. In addition,
the separation results obtained by five classical BSS methods, namely CoM2 [Comon,
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Figure 4.3: Continuation of the first example of the BSS results of 2 simulated MRS
metabolites by five classical BSS methods. The number of observations is set to N = 20

and the SNR value is fixed to 10 dB. The red dot circles indicate the significant estimation
errors in figures (b) to (f).

1994], NICA [Plumbley, 2003], NMF [Kim and Park, 2008], semi-NMF [Ding et al., 2010]
and SOBI [Belouchrani et al., 1997] are shown in figure 4.3. We can observe that the
proposed six SeNICA algorithms, incorporating or not the NN-COMP method, provide
10 solutions to the MRS separation problem. In these 10 solutions, the separated spectra
obtained by the proposed different methods are visually indistinguishable, whatever the
NN-COMP is applied or not. Furthermore, we can say that all the proposed methods
yield quasi-perfect solutions. Regarding the classical BSS methods, CoM2 and NICA
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give good results, but their separated spectra are still disturbed. Regarding NMF and
semi-NMF, the Choline peak still slightly exists in the estimated Myo-inositol spectrum,
and the estimated Choline spectrum is also disturbed. SOBI cannot separate both source
spectra. These experimental results show that by fully exploiting the prior information
of data, such as the nonnegativity of the mixing matrix and the statistical independence
of the sources, the proposed methods achieve visually better estimation results. In the
following sections, the performances of all the considered methods are quantitatively
analyzed by means of two experiments. More precisely, we study the influences of the
number of observations and of the SNR.

4.1.1 Influence of the number of observations

In this experiment, the effect of the number of observations N is evaluated. The SNR
is fixed to 10 dB. The fifteen methods are compared with N ranging from 3 to 41. The
average curves of the estimation error α(sT, ŝT) of all the methods as a function of N
are shown in figure 4.4(a). It can be seen that the estimation errors of all the methods
improves as N increases. It suggests that in noisy BSS contexts, using more sensors often
yields better results [Joho et al., 2000]. Obviously, the proposed ten methods maintain
the competitive advantages when N is greater than 5, where the six methods using the
NN-COMP preprocessing slightly outperform the ones without a compression step. We
can infer that NN-COMP not only compresses the dimension but also reduces the ef-
fect of additive noise to a certain extent. Moreover, in a relatively low SNR context,
the merit of the NN-COMP step overweights its disadvantage, for instance, introducing
additional numerical errors as in the classical prewhitening step. Regarding the classical
BSS methods, CoM2 and NICA behave quite similarly and provide good results when
N is less than 25. However, they restrict the search space to the group of orthogo-
nal matrices, which may limit their BSS performance in this problem. As we can see,
their performance stabilizes when N exceeds 20. NMF outperforms CoM2 and NICA
when N ≥ 30. Semi-NMF gives less accurate estimation results than NMF. It seems
that only the nonnegativity constraint cannot guarantee a good separation result. SOBI
yields the worst results. It may be because the source processes in this experiment do
not fully satisfy the non-iid and stationary assumption of SOBI. The average curves of
the numerical complexities of all the considered methods in this experiment are shown
in figure 4.4(b). We can notice that the numerical complexities of all the methods in-
crease as a function of N . CoM2 is the most computationally efficient method. The
proposed six methods incorporating NN-COMP cost a bit more flops than CoM2, where
NN-COMP + JDC+

LU-3-ICA is somewhat more expensive than the other five algorithms.
NICA and SOBI are still economical in terms of flops. The aforementioned nine methods
keep relatively low numerical complexities since all of them use a dimension reduction
step by means of either classical prewhitening or NN-COMP. The methods without us-
ing a dimension reduction step, namely NMF, semi-NMF, JDC+

LU-1-ICA, JDC+
LU-2-ICA,

JDC+
LU-3-ICA and JDC+

ADMM-3-ICA, are more computationally intensive. NMF requires
the heaviest workload when N is less than 20. The complexity of semi-NMF is al-
most half of that of NMF. The proposed four methods JDC+

LU-i-ICA, i ∈ {1, 2, 3} and
JDC+

ADMM-3-ICA preserve moderate complexities when a small value of N is considered,
say N < 15. However, their complexities show a higher growth rate as N increases, and
surpass that of NMF when N is above 22. The large amount of computation load of these
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Figure 4.4: Influence of the number of observations for estimating 2 MRS source metabo-
lites with SNR = 10 dB.

four methods partially comes from the estimation of the FO cumulant arrays. Among
these four algorithms, JDC+

LU-3-ICA seems the most costly, while JDC+
ADMM-3-ICA is

less computationally expensive. Therefore, the proposed SeNICA methods incorporating
the NN-COMP offer the best performance/complexity compromise in this experimental
context.

4.1.2 Influence of SNR

In this simulation, we study the influence of SNR on the performance of all the considered
fifteen methods. The number of observationsN is set to 20. SNR is varied from 0 dB to 60

dB with a step of 2 dB. The average curves of the estimation error α(sT, ŝT) of all methods
as function of SNR are presented in figure 4.5(a). It show that the performance of all
methods increases as SNR grows, and then practically stabilizes for high values of SNR.
Obviously, the proposed SeNICA algorithms offer the most accurate separation solutions,
especially when SNR is above 5 dB. The performance of the proposed ten methods is
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almost identical when the value of SNR is between 0 dB and 18 dB, where the six methods
using NN-COMP are slightly more preferable when SNR < 12 dB. As far as higher
values of SNR are considered (e.g. SNR > 20 dB), the proposed four methods, namely
JDC+

LU-i-ICA, i ∈ {1, 2, 3} and JDC+
ADMM-3-ICA, perform better than the six methods

incorporating NN-COMP. This phenomenon suggests that in a high SNR context, the
additional numerical errors introduced by NN-COMP may bring some limitations for the
ensuing SeNICA algorithms. Regarding the classical BSS methods, when SNR is lower
than 20 dB, CoM2 and NICA offer good results, followed by NMF, semi-NMF and SOBI,
consecutively. The performance of CoM2, NICA, NMF and semi-NMF is almost the same
when SNR is above 24 dB. SOBI achieves the worst solutions. Figure 4.5(b) illustrates
the average curves of the numerical complexities of all methods in this experiment. We
can observed that the complexity evolution is quite stable with the change in SNR. CoM2
maintains the lowest complexity, followed by the proposed six methods combined with
NN-COMP, where NN-COMP + JDC+

LU-3-ICA is more expensive. NICA and SOBI are
also efficient. NMF is the most computationally intensive. Semi-NMF costs nearly half
workload than NMF. The complexities of the proposed four methods without using NN-
COMP are between those of semi-NMF and NMF. Consequently, the proposed SeNICA
methods incorporating NN-COMP provide the best performance/complexity tradeoff in
this experiment. Without using NN-COMP, the proposed four methods JDC+

LU-i-ICA,
i ∈ {1, 2, 3} and JDC+

ADMM-3-ICA give the most accurate estimation results at a cost of
higher but acceptable numerical complexities, when a high SNR value is provided.

The results of the above two experiments demonstrate the improvement of the pro-
posed methods in terms of the source estimation accuracy, and also show that exploiting
the two a priori of the data, namely the nonnegativity of the mixing matrix and the
statistical independence of the sources, allows us to achieve better estimation results.

4.2 Automatic music transcription

Estimating the musical notes and their attributes (pitch, duration and onset time) from
a music record is an objective of automatic music transcription. To this end, many
unsupervised algorithms propose to decompose the music magnitude spectrogram X as
X = AS. Such a linear decomposition consists in modeling a time-frequency represen-
tation of music signal as a sum of basic atoms S. Each row vector of matrix S rep-
resents a basic atom, which corresponds to the harmonically fixed spectrum of a single
note [Smaragdis and Brown, 2003, Fuentes et al., 2013]. An atom will be active when-
ever the corresponding note is played. Furthermore, each column vector of matrix A is
modeled as the nonnegative temporal weights of a basic note spectrum, that describes
the onset time and duration of an active note. Many algorithms based on ICA [Brown
et al., 2002,Plumbley and Abdallah, 2003,Brown and Smaragdis, 2004], NICA [Plumb-
ley, 2003, Dittmar and Uhle, 2004] and NMF [Smaragdis and Brown, 2003, Holzapfel
and Stylianou, 2008, Févotte et al., 2009,Gao et al., 2011, Smaragdis et al., 2014] were
proposed to solve such a problem. Nevertheless, the temporal weights containing neg-
ative values obtained by classical ICA methods bring some difficulties for the physical
interpretation.

In this experiment, a single-channel polyphonic piano record played from the music

88



Chapter 4 4.2. Automatic music transcription

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

10−3

10−2

10−1

SNR

α
(s

T
,
ŝ
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Figure 4.5: Influence of SNR for estimating 2 MRS source metabolites from 20 observa-
tions.

sheet in figure 4.6(a) is adopted [Févotte et al., 2009]. Such a 15.6 seconds record
sampled at 22.05 kHz is made up from four different notes: C5, Ab4, F4 and Db

4 (from top
to bottom in figure 4.6(a)). Theoretically a note consists of several related sine waves
called the fundamental and the harmonics. The sound of a note has a harmonic frequency
spectrum [Burg, 2008]. The lowest frequency present is the fundamental frequency, and
is the frequency at which the entire wave vibrates. A harmonic is a component frequency
of a signal that is an integer multiple of the fundamental frequency. For example, if the
fundamental frequency is f , the harmonics have frequencies 2f , 3f , 4f , ... , etc. The
theoretical fundamental frequencies of four notes in this experiment are given in table
4.1. The piano record is contaminated by an additive pink noise with a SNR value of 5

dB. A pink noise occurs in many digital recording devices, whose power spectral density
is inversely proportional to the frequency of the signal. The spectrogram of the noisy
record is computed using a hamming window of 125 milliseconds length with 50% overlap
between two frames, leading to 251 frames and 1379 frequency bins. Moreover, the time
domain waveform of the record and its magnitude spectrogram are presented in figures
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(c) Magnitude spectrogram where the values are shown in logarithm scale

Figure 4.6: Three representations of the music data. The music waveform is contaminated
by pink noises with a SNR value of 5 dB.

musical note C5 Ab4 F4 Db
4

fundamental frequency (Hz) 523.251 415.305 349.228 277.183

Table 4.1: The theoretical fundamental frequencies of four musical notes, namely C5, Ab4,
F4 and Db

4, on an ideal piano [Jorgensen, 1991].

4.6(b) and 4.6(c), respectively.
Two of the proposed methods are chosen to solve this problem, namely JDC+

LU-2-ICA
and JDC+

ADMM-3-ICA, since they provide a good compromise between estimation accu-
racy and numerical complexity. It is noteworthy that computing the FO cumulant array
of the magnitude spectrogram X ∈ R251×1379

+ requires at least (2514 × 8)/230 ≈ 29.6

GB memories, which is beyond the capacity of ordinary computers. Therefore, for the
proposed methods, we propose to use NN-COMP as a preprocessing step. The pro-
posed JDC+

LU-2-ICA and JDC+
ADMM-3-ICA incorporating NN-COMP are compared with

CoM2 [Comon, 1994], NICA [Plumbley, 2003], NMF [Kim and Park, 2008] and semi-
NMF [Ding et al., 2010]. Figure 4.7 displays the separated spectra obtained by the
considered six methods. It can be seen that the proposed NN-COMP + JDC+

LU-2-ICA
and NN-COMP + JDC+

ADMM-3-ICA methods, as well as CoM2, result in six components.
The first four components correspond to the note spectra. The fundamental frequencies
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Numerical complexity (flops)
CoM2 6.9336× 107

NICA 2.3312× 108

NMF 5.5786× 109

Semi-NMF 2.1190× 109

NN-COMP + JDC+
LU-2-ICA 2.4355× 109

NN-COMP + JDC+
ADMM-3-ICA 2.4364× 109

Table 4.2: Numerical complexities of six BSS methods in the experiment of automatic
music transcription of a piano record.

(dominant peaks) and several harmonics (small peaks) are almost correctly located in the
right positions, despite some small interferences. As we can see from the first four rows
in figures 4.7(a) to 4.7(c), four dominant peaks appear around 523.251 Hz, 415.305 Hz,
349.228 Hz and 277.183 Hz, respectively, that accurately describe the frequency patterns
of notes C5, Ab4, F4 and Db

4, respectively. The fifth component seems to capture the tran-
sient events corresponding to the attacks and releases of the notes, more precisely, the
sound produced by the hammer hitting the string and by the release of the sustain pedal.
The sixth one appears to consist of the pink noise spectrum. Figures 4.7(d) and 4.7(e)
show that NICA and NMF rather successfully extract notes Ab4 and F4 into separate
components, however, note C5 is buried by the noise spectrum in the first component,
while notes Db

4 and C5 are melted into the fourth component. Regarding semi-NMF, it
also fails to separate notes Db

4 and C5, and note F4 appears twice in the separated spec-
tra. Figure 4.8 illustrates the temporal weight matrix A obtained by the six methods,
where each row in each subfigure represents the amplitude of the corresponding column
vector of A. The locations and widths of the peaks appearing in each column vector of
A characterize the the onset times and durations of one note. Therefore, the correct-
ness of the result can be verified by checking if the temporal weights coincide with the
original music sheet. For the proposed NN-COMP + JDC+

LU-2-ICA and NN-COMP +
JDC+

ADMM-3-ICA methods, as well as CoM2, the locations of the peaks in the first four
rows of figures 4.8(b) to 4.8(d) well match the original music sheet in figure 4.8(a), while
the widths of these peaks seem identical since all the notes have the same duration. It
is worth noting that in figure 4.8(d) the temporal weights of note C5 obtained by CoM2
contain a large amount of negative values, which could bring some difficulties for the
physical interpretation. The nonnegativity constraint of the weight matrix A helps the
results of the proposed methods giving a more realistic physical meaning. Concerning
NICA and NMF, the estimated weights for note C5 are obviously incorrect, as illustrated
in figures 4.8(e) and 4.8(f). Semi-NMF gives the worst result, since all the peaks in
figure 4.8(g) are covered by noises. Additionally, the numerical complexities of all the six
methods are listed in table 4.2. CoM2 has the lowest complexity. The complexities of
the proposed NN-COMP + JDC+

LU-2-ICA and NN-COMP + JDC+
ADMM-3-ICA methods

are moderately higher than that of CoM2, and between those of semi-NMF and NMF.
Therefore, in this experimental context, the proposed SeNICA algorithms considering
both the statistical independence of the source spectra and the nonnegativity of the tem-
poral weights improve the separation result and also provide a good accuracy/complexity
tradeoff.
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(c) Separated spectra obtained by CoM2
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(d) Separated spectra obtained by NICA
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(e) Separated spectra obtained by NMF
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(f) Separated spectra obtained by Semi-NMF

Figure 4.7: Separated spectra obtained from six BSS methods from decomposing the
music magnitude spectrogram. The red dot circles indicate the significant estimation
errors in figures (d) to (f).
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(g) Temporal weights obtained by Semi-NMF

Figure 4.8: Temporal weights obtained by six BSS methods by decomposing the music
magnitude spectrogram. Each row in each subfigure represents the amplitude of the
corresponding column vector of matrix A.
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Numerical complexity (flops)
CoM2 3.3017× 107

NICA 7.7118× 108

NMF 1.0613× 1011

Semi-NMF 1.4150× 108

JDC+
LU-2-ICA 2.1279× 107

JDC+
ADMM-3-ICA 2.1272× 107

Table 4.3: Numerical complexities of six BSS methods in the experiment of document
restoration.

4.3 Document restoration

Some digital images of documents are degraded by the so-called show-through effect,
which is usually caused by the seeping of ink from the reverse side or scanning a semi-
transparent paper [Tonazzini et al., 2010]. In [Tonazzini et al., 2004, Tonazzini et al.,
2007], Tonazzini et al. modeled the show-through effect as a linear instantaneous su-
perimposition of the back and the front sides of the scanned images, and achieved the
separation of two sides of images by using ICA. Thereafter, Merrikh-Bayat et al. pro-
posed a NMF based technique for removing show-through [Merrikh-Bayat et al., 2010].
It suggests that imposing the nonnegativity constraint can improve the result. In addi-
tion, better separation result can be achieved by considering more sophisticated models,
such as the linear convolutive mixing model [Tonazzini et al., 2010], the linear-quadratic
mixing model [Merrikh-Bayat et al., 2011] and the nonlinear mixing model [Almeida and
Almeida, 2012], however, leading to higher numerical complexities.

In this experiment, we apply six BSS methods to a real double-sided grayscale docu-
ment of dimension (1136×1038), which is suffered from strong show-through effect. The
considered methods include CoM2 [Comon, 1994], NICA [Plumbley, 2003], a projected
gradient based NMF [Merrikh-Bayat et al., 2010], semi-NMF [Ding et al., 2010], and two
of the proposed methods, namely JDC+

LU-2-ICA and JDC+
ADMM-3-ICA. The input front

side and back side images displayed in figures 4.9(a) serve as 2 observations. Figures
4.9(b) to 4.9(g) show the restored front side and back side images by the considered
six methods, respectively. It can be seen that for CoM2, NMF and the proposed meth-
ods, the show-through effect is mostly canceled. Their separation results are similar,
although some small discrepancies exist in the detailed structure of the restored images,
such as the straight line in the bottom of the left image. The results of JDC+

LU-2-ICA and
JDC+

ADMM-3-ICA are visually identical. NICA and semi-NMF seem not able to separate
both sides of images. Furthermore, the numerical complexities of all the methods are
listed in table 4.3. It shows that NMF requires the heaviest workload, while the proposed
JDC+

LU-2-ICA and JDC+
ADMM-3-ICA algorithms are the most computationally efficient.

Hence, the proposed methods offer the best performance/complexity compromise in this
experiment.
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(a) Input front and back side images

(b) Restored images by JDC+
LU-2-ICA (c) Restored images by JDC+

ADMM-3-ICA

(d) Restored images by CoM2 (e) Restored images by NICA

(f) Restored images by NMF (g) Restored images by Semi-NMF

Figure 4.9: Restoration of the grayscale front and back sides of a real document by six
BSS methods. The input images are obtained from [Tonazzini et al., 2007].

4.4 Concluding remark

SeNICA turns up in many real-life BSS problems, which involve nonnegative static mix-
tures, such as in the blind separation of MRS signal, automatic music transcription of
single-channel piano record and restoration of documents degraded by the show-through
effect. The proposed SeNICA methods are applied to solve these problems. We com-
pare them to five state-of-the-art BSS algorithms, namely two efficient ICA methods
CoM2 [Comon, 1994] and SOBI [Belouchrani et al., 1997], NICA [Plumbley, 2003],
NMF [Kim and Park, 2008, Merrikh-Bayat et al., 2010] and semi-NMF [Ding et al.,
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2010]. Based on the presented studies, NICA, SOBI and semi-NMF sometimes fail to
separate the sources. CoM2 and NMF offer better results, despite some imperfections.
The proposed methods are most likely to provide better results than the classical meth-
ods, in terms of estimation accuracy of the sources, meanwhile maintaining moderate
numerical complexities. These BSS applications demonstrate the validity and potential
usefulness of the proposed algorithms. The experimental results have also shown that by
fully exploiting the prior information of data, such as the nonnegativity of the mixing
matrix and the statistical independence of the sources, the proposed methods achieve
better estimation results.
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Chapter 5
Conclusion and perspectives

5.1 Conclusion

The purpose of this thesis is motivated by the SeNICA problem, where the mixing matrix
is constrained to have nonnegative components, and where the statistically independent
sources may have mixed signs. Such a problem can be solved by means of JDC algo-
rithms with a nonnegativity constraint on the joint transformation matrix, leading to the
concept of NJDC. Therefore, we develop six novel NJDC algorithms, which are presented
thoroughly in chapter 2. The six proposed methods can be separated into two groups
according to the way of performing the optimization. The first group, containing five
algorithms, is based on the Jacobi-like optimization. In this group, the nonnegativity
constraint is ensured by a square change of variable. The general idea of our Jacobi-like
optimization is to factorize the square root of the nonnegative joint transformation ma-
trix as a product of elementary matrices which is defined by only one parameter, then
to estimate these elementary matrices one by one in a specific order. The first method
adopts the LU matrix factorization and performs the optimization on a simple direct-
fit criterion, however, suffers from a high numerical complexity. In order to reduce the
numerical complexity, we reformulate the indirect-fit criterion and consider both the LU
and QR factorizations. The proposed reformulation simplifies the optimization and leads
to two computationally efficient algorithms. Nevertheless, the validity of these two algo-
rithms relies on some crucial assumptions (A is square and D(k) does not contain zero
diagonal elements). Consequently, the fourth and fifth algorithms that depend on less
assumption are proposed. These two methods are based on a direct optimization of two
indirect-fit criteria incorporating the LU matrix factorization. The second group, con-
taining one algorithm, is based on the ADMM optimization. This algorithm is motivated
by the fact that the NJDC problem can be recast as a direct least-squares fit problem
subject to symmetry and nonnegativity constraints. Then such an algorithm is derived
by successively minimizing the augmented Lagrangian function of the direct-fit criterion
with respect to the variables and the multipliers. In addition, the numerical complexity
of each algorithm has been analyzed, allowing a fair comparison of their performance.

In chapter 3, the performance of the proposed NJDC algorithms is evaluated on
simulated jointly diagonalizable matrices. Five classical nonorthogonal JDC methods
without nonnegativity constraints, including ACDC [Yeredor, 2002], CLU [Maurandi
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et al., 2013], FFDIAG [Ziehe et al., 2004], LUJ1D [Afsari, 2006], LUJ2D [Afsari, 2006]
and one NJDC method LM+

sym [Coloigner et al., 2014c], are tested as baseline methods.
The performance is assessed in terms of the matrix estimation accuracy and the numer-
ical complexity. Throughout the chapter, i) the convergence property, ii) the influence
of model errors, iii) the impact of the number of input matrices, iv) the effect of coher-
ence of the column vectors of the joint transformation matrix, and v) the influence of
the modulus of uniqueness, are extensively studied through Monte Carlo experiments.
Simulation results show that a better estimation accuracy can be achieved particularly
in difficult contexts by means of exploiting the nonnegativity a priori. For a difficult
NJDC problem with either a lower value of SNR, a small number of input matrices, a
high level of coherence presented in the joint transformation matrix or a large value of
modulus of uniqueness, generally the proposed Jacobi-like algorithms provide the most
accurate estimation results. Among them, the JDC+

LU-2 algorithm offers the best com-
promise between estimation accuracy and numerical complexity. When the considered
NJDC problem is well-conditioned, that is to say, when a high value of SNR can be
expected or a large number of input matrices is available, the algorithm based on the
ADMM optimization, namely JDC+

ADMM-3, is the most effective in terms of the estima-
tion accuracy and is also computationally efficient. Compared to an existing nonnegative
method based on the Levenberg Marquardt optimization [Coloigner et al., 2014c] whose
performance is also competitive in some experiments, the proposed methods require less
computation load, and save the total numerical complexity by up to three orders of mag-
nitude. Generally speaking, the proposed JDC+

LU-2 and JDC+
ADMM-3 algorithms offer the

best performance/complexity tradeoff.
In chapter 4, we apply the proposed NJDC algorithms on a set of FO cumulant matrix

slices, giving birth to a class of SeNICA methods. SeNICA turns up in quite a number
of real-life BSS problems, which involve nonnegative static mixtures, such as in the
blind separation of MRS signals, automatic music transcription of single-channel piano
records and restoration of documents degraded by the show-through effect. The proposed
SeNICA methods are applied to solve these problems in order to verify their source
separation ability. Our methods are compared with five state-of-the-art BSS algorithms,
namely two efficient ICA methods CoM2 [Comon, 1994] and SOBI [Belouchrani et al.,
1997], three nonnegativity constrained methods NICA [Plumbley, 2003], NMF [Kim and
Park, 2008,Merrikh-Bayat et al., 2010] and semi-NMF [Ding et al., 2010]. Based on the
obtained results, the classical methods, especially NICA, SOBI and semi-NMF sometimes
fail to separate the latent sources. CoM2 and NMF offer better results, despite some
imperfections. The proposed methods behave similarly and are most likely to provide
better results than the classical methods, in terms of estimation accuracy of the sources.
Our methods maintain moderate numerical complexities if the number of observations is
not too large. However, their complexities grow very fast as the number of observations
increases. Fortunately, by incorporating a nonnegative compression preprocessing step,
the overall complexity of the proposed SeNICA procedure is acceptable. These BSS
applications demonstrate the validity and potential usefulness of the proposed algorithms.
The experimental results have also shown that by fully exploiting the prior information
of data, such as the nonnegativity of the mixing matrix and the statistical independence
of the sources, the proposed methods achieve better estimation results.
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5.2 Forthcoming work

The future work is twofold. The first part consists of improving the NJDC methods
proposed in this PhD dissertation. The second part is to develop novel BSS methods
which are more suitable for separating partially correlated sources.

Throughout the chapter 2, our effort is not only to develop five Jacobi-like NJDC
algorithms but also to reduce their potential numerical complexities by combining them
with classical JDC algorithms. Nevertheless, the proposed Jacobi-like NJDC algorithms
are still more costly than the classical unconstrained JDC algorithms, even though the
numerical complexities of our methods are lower than that of one of the existing NJDC
algorithms, which is based on the LM optimization. The high complexity reported in
chapters 3 and 4 seems the main limitation of our methods, and restricts their usage
especially for high dimensional data with a large number of observations and of sources.
Fortunately, besides these Jacobi-like methods, the proposed NJDC algorithm based
on the ADMM optimization and the direct-fit JDC criterion requires a smaller compu-
tational load which is similar to that of classical algorithms, and maintains competitive
performance in terms of estimation accuracy. It seems that the ADMM optimization pro-
vides a good compromise between performance and complexity especially for large scale
data. Consequently, we would like to continue to derive novel NJDC methods based on
the minimization of the indirect-fit JDC criteria by using the ADMM approach. Since
the indirect-fit JDC criteria involve less variables than the direct-fit criterion, we can
expect that the forthcoming algorithms could be more efficient than the existing one. It
is noteworthy that we will face two difficulties. The first potential difficulty is to im-
pose the nonnegativity on the joint transformation matrix A, meanwhile performing the
ADMM optimization on its inverse A−1. The second one is to avoid the trivial solution
A−1 = 0 in the ADMM procedure. In the proposed Jacobi-like methods based on the
indirect-fit criteria, the nonsingularity of A is guaranteed by the LU and QR decompo-
sitions, since the resulting matrix has a unit-determinant. In the ADMM method with
the indirect-fit criteria, an additional nonsingularity constraint on A seems necessary.
Moreover, further theoretical studies of the convergence of these approaches will be con-
sidered. On the other hand, recent studies on nonorthogonal Jacobi-like JDC algorithms
showed that the convergence rate of the Jacobi-like procedure can be accelerated by con-
sidering the coupled LU and QR matrix factorizations [Maurandi et al., 2013,Maurandi
and Moreau, 2014a,Maurandi and Moreau, 2014b,Maurandi et al., 2014]. We would
like to develop new Jacobi-like NJDC algorithms by using such coupled factorizations in
order to accelerate convergence and then to reduce the numerical complexity.

In chapter 4, we illustrate the usefulness of our SeNICA methods in the BSS frame-
work. The success of SeNICA, as well as ICA and NICA, relies on the statistical in-
dependence, or at least on the quasi-statistical independence of the sources. However,
in many practical problems, this assumption does not always hold. Hence, ICA, NICA
and our SeNICA methods look for latent sources that are as statistically independent as
possible. The degree of independence is measured through the use of mathematical tools
from HOS, information theory and many others. Estimating the sources by minimizing
the statistical dependence may not give satisfactory results, especially when the true
source signals are known to be correlated [Naanaa and Nuzillard, 2005]. This situation
appears in a number of real-world applications, such as hyperspectral unmixing [Chan
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et al., 2009,Ma et al., 2014] and medical imaging [Wang et al., 2010]. Regarding the
MRS data that we treated in this thesis, sometimes the source spectra can be highly
correlated if the molecules share common structural features and therefore are difficult
to separate. Consequently, an accurate separation of correlated or dependent sources still
remains a challenging task. In [Wang et al., 2010], Wang et al. proposed a nonnegative
Least-correlated Component Analysis (nLCA) method to separate nonnegative corre-
lated sources by minimizing a joint correlation objective function among the estimated
sources. Such an objective function assumes that the nonnegative sources are linearly
independent rather than statistically independent, and exploits the convex geometry of
the nonnegative mixtures of nonnegative sources. nLCA was shown to have a superior
performance on real biomedical data over several existing benchmark methods, for in-
stance, ICA and NMF. However, this method is constrained to work on a square mixing
matrix and is sensitive to additional noise. We are working on a novel method which
generalizes the nLCA algorithm to overdetermined mixtures of sources. Preliminary ex-
perimental results show that this novel method is more robust to additional noise and is
also computationally efficient. Further studies on separating correlated MRS signals will
be considered in order to systematically evaluate the performance of the new method.
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Appendix A
Proofs of propositions

A.1 Proof of proposition 2.1

Multiplying B̂ by an elementary triangular matrix T (i,j)(ti,j) on the right side performs
the elementary transformation of the j-th column vector of B̂:

B̂T (i,j)(ti,j) = [b̂1, b̂2, . . . , ti,j b̂i + b̂j︸ ︷︷ ︸
j-th column

, . . . , b̂N ] (A.1)

where b̂i, i ∈ {1, 2, . . . , N} is the i-th column vector of B. By routine computation, the
Hadamard square of equation (A.1) is:

[b̂�2
1 , . . . , t2i,j b̂

�2
i + b̂�2

j + 2ti,j b̂i � b̂j︸ ︷︷ ︸
j-th column

, . . . , b̂�2
N ]

= [b̂�2
1 , . . . , t2i,j b̂

�2
i + b̂�2

j︸ ︷︷ ︸
j-th column

, . . . , b̂�2
N ] + [0, . . . , 2ti,j b̂i � b̂j︸ ︷︷ ︸

j-th column

, . . . ,0]

= B̂�2T (i,j)(t2i,j) + 2 ti,j(b̂i � b̂j)e
T
j

(A.2)

A.2 Proof of proposition 2.2

It is straightforward to show that the elements of the j-th column vector except the
(j, j)-th entry of the term 1○ in equation (2.51) can be expressed by Ĉ(k)

n,i u
2
i,j + Ĉ

(k)
n,j with

n ∈ {1, . . . , N} and n 6= j, and those elements of the term 2○ in (2.51) are equal to
ĉ

(k,1)
n ui,j with n ∈ {1, . . . , N} and n 6= j. The sum of these elements directly leads to
equation (2.52). The terms 3○ and 4○ in equation (2.51) do not need to be considered,
since they do not affect the off-diagonal elements in the j-th column vector.
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A.3 Proof of proposition 2.3

Multiplying B̂ by a Givens rotation matrix Q(i,j)(θi,j) on the right side performs the
elementary transformation of the i-th and j-th column vectors of B̂:

B̂Q(i,j)(θi,j) = [b̂1, . . . , cos (θi,j) b̂i + sin (θi,j) b̂j︸ ︷︷ ︸
i-th column

, . . . ,− sin (θi,j) b̂i + cos (θi,j) b̂j︸ ︷︷ ︸
j-th column

, . . . , b̂N ]

(A.3)
where b̂i, i ∈ {1, 2, . . . , N} is the i-th column vector of B. By routine computation, the
Hadamard square of equation (A.3) is:

[b̂�2
1 , . . . , sin2 (θi,j) b̂

�2
i + cos2 (θi,j) b̂

�2
j + sin (2θi,j) b̂i � b̂j︸ ︷︷ ︸

i-th column

, . . . ,

cos2 (θi,j) b̂
�2
i + sin2 (θi,j) b̂

�2
j − sin (2θi,j) b̂i � b̂j︸ ︷︷ ︸

j-th column

, . . . , b̂�2
N ]

= [b̂�2
1 , . . . , sin2 (θi,j) b̂

�2
i + cos2 (θi,j) b̂

�2
j︸ ︷︷ ︸

i-th column

, . . . , cos2 (θi,j) b̂
�2
i + sin2 (θi,j) b̂

�2
j︸ ︷︷ ︸

j-th column

, . . . , b̂�2
N ]

+ sin (2θi,j)[0, . . . , b̂i � b̂j︸ ︷︷ ︸
i-th column

, . . . , −b̂i � b̂j︸ ︷︷ ︸
j-th column

, . . . ,0]

(A.4)
Clearly, equation (A.4) is equal to B̂�2 (Q(i,j)(θi,j))

�2 + sin(2θi,j)(b̂i � b̂j)(eTi − eTj ).

A.4 Proof of proposition 2.4

It is straightforward to show that the (i, j)-th entry of the term 1○ in (2.61) can be
expressed by sin2(θi,j) cos2(θi,j)(Ĉ

(k)
i,i + Ĉ

(k)
j,j ) + sin4(θi,j)Ĉ

(k)
j,i + cos4(θi,j)Ĉ

(k)
i,j , the (i, j)-

th element of the term 2○ in (2.61) is sin(2θi,j)(cos2(θi,j)ĉ
(k,1)
i + sin2(θi,j)ĉ

(k,1)
j ), the

(i, j)-th component of the term 3○ in (2.61) is equal to − sin(2θi,j)(sin
2(θi,j)ĉ

(k,2)
i +

cos2(θi,j)ĉ
(k,2)
j ), and that of the term 4○ in (2.61) is − sin2(2θi,j)ĉ

(k,3). Then proposition
2.4 can be proved.

A.5 Proofs of propositions 2.6 and 2.7

Let’s expand equation (2.86) as follows:

Ĉ(k,new) = T (i,j)(−t2i,j)QĈ(k)QT T (i,j)(−t2i,j)T

= T (i,j)(−t2i,j)(IN −Q1) Ĉ(k)(IN −QT
1 )T (i,j)(−t2i,j)T

= T (i,j)(−t2i,j)Ĉ(k)T (i,j)(−t2i,j)T︸ ︷︷ ︸
1○

+T (i,j)(−t2i,j)Q1Ĉ
(k)T (i,j)(−t2i,j)T︸ ︷︷ ︸
2○

+ T (i,j)(−t2i,j)Ĉ(k)QT
1T

(i,j)(−t2i,j)T︸ ︷︷ ︸
3○

+T (i,j)(−t2i,j)Q1Ĉ
(k)QT

1T
(i,j)(−t2i,j)T︸ ︷︷ ︸

4○

(A.5)
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where Q1 = 2 ti,j/(1+2βjti,j)βe
T
j , where β is defined in equation (2.85), and where βj is

the j-th element of vector β. In the following, we compute the components of the terms
1○, 2○, 3○ and 4○ in equation (A.5).

In 1○, T (i,j)(−t2i,j) and T (i,j)(−t2i,j)T transform the i-th row vector and i-th column
vector of matrix Ĉ(k) as follows:

1○ =



i-th column
|

Ĉ
(k)
1,1 Ĉ

(k)
1,2 . . . −Ĉ(k)

1,j t
2
i,j + Ĉ

(k)
1,i . . . Ĉ

(k)
1,N

Ĉ
(k)
2,1 Ĉ

(k)
2,2 . . . −Ĉ(k)

2,j t
2
i,j + Ĉ

(k)
2,i . . . Ĉ

(k)
2,N

...
...

. . .
...

. . .
...

i-th row –
−Ĉ(k)

j,1 t
2
i,j

+Ĉ
(k)
i,1

−Ĉ(k)
j,2 t

2
i,j

+Ĉ
(k)
i,2

. . .
Ĉ

(k)
j,j t

4
i,j−(Ĉ

(k)
j,i

+Ĉ
(k)
i,j )t2i,j+Ĉ

(k)
i,i

. . .
−Ĉ(k)

j,N t
2
i,j

+Ĉ
(k)
i,N

...
...

. . .
...

. . .
...

Ĉ
(k)
N,1 Ĉ

(k)
N,2 . . . −Ĉ(k)

N,jt
2
i,j + Ĉ

(k)
N,i . . . Ĉ

(k)
N,N


(A.6)

In 2○, matrix Q1Ĉ
(k) can be expressed as follows:

Q1Ĉ
(k) =

2 ti,j
1 + 2βjti,j

βeTj Ĉ
(k) =

2 ti,j
1 + 2βjti,j

[
Ĉ

(k)
j,1 β, Ĉ

(k)
j,2 β, . . . , Ĉ

(k)
j,Nβ

]
(A.7)

T (i,j)(−t2i,j) and T (i,j)(−t2i,j)T transform the i-th row vector and i-th column vector of
matrix Q1Ĉ

(k) as follows:

2○ =
2 ti,j

1 + 2βjti,j
×



i-th column
|

Ĉ
(k)
j,1 β1 Ĉ

(k)
j,2 β1 . . . −Ĉ(k)

j,j β1t
2
i,j + Ĉ

(k)
j,i β1 . . . Ĉ

(k)
j,Nβ1

Ĉ
(k)
j,1 β2 Ĉ

(k)
j,2 β2 . . . −Ĉ(k)

j,j β2t
2
i,j + Ĉ

(k)
j,i β2 . . . Ĉ

(k)
j,Nβ2

...
...

. . .
...

. . .
...

i-th row -
−Ĉ(k)

j,1 βjt
2
i,j

+Ĉ
(k)
j,1 βi

−Ĉ(k)
j,2 βjt

2
i,j

+Ĉ
(k)
j,2 βi

. . .
Ĉ

(k)
j,j βjt

4
i,j−(Ĉ

(k)
j,j βi+Ĉ

(k)
j,i βj)t2i,j

+Ĉ
(k)
j,i βi

. . .
−Ĉ(k)

j,Nβjt
2
i,j

+Ĉ
(k)
j,Nβi

...
...

. . .
...

. . .
...

Ĉ
(k)
j,1 βN Ĉ

(k)
j,2 βN . . . −Ĉ(k)

j,j βN t
2
i,j + Ĉ

(k)
j,i βN . . . Ĉ

(k)
j,NβN


(A.8)

Term 3○ is the transpose of 2○. Its expression is therefore omitted. In 4○, matrix
Q1Ĉ

(k)QT
1 can be expressed as follows:

Q1Ĉ
(k)QT

1 =
2 ti,j

1 + 2βjti,j
βeTj Ĉ

(k)ejβ
T 2 ti,j
1 + 2βjti,j

=
4 Ĉ

(k)
j,j t

2
i,j

(1 + 2βjti,j)2
ββT (A.9)

T (i,j)(−t2i,j) and T (i,j)(−t2i,j)T transform the i-th row vector and i-th column vector of
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matrix Q1Ĉ
(k)QT

1 as follows:

4○ =
4 Ĉ

(k)
j,j t

2
i,j

(1 + 2βjti,j)2
×



i-th column
|

β1β1 β2β1 . . . −βjβ1t
2
i,j + βiβ1 . . . βNβ1

β1β2 β2β2 . . . −βjβ2t
2
i,j + βiβ2 . . . βNβ2

...
...

. . .
...

. . .
...

i-th row – −β1βjt2i,j
+β1βi

−β2βjt2i,j
+β2βi

. . . β2
j t

4
i,j − 2βjβit

2
i,j + β2

i . . .
−βNβjt2i,j

+βNβi

...
...

. . .
...

. . .
...

β1βN β2βN . . . −βjβN t2i,j + βiβN . . . β2
N


(A.10)

The sum of equations (A.6), (A.8), (A.10) and the transpose of (A.8) will directly
lead to propositions 2.6 and 2.7.

A.6 Proof of proposition 2.8

According to proposition 2.1, the differences between Â(new) and Â are their j-th column
vectors. By the definition of Khatri-Rao product [Cichocki et al., 2009, Chapter 1], the
following equality exists:

Â� Â =
[
vec (â1â

T
1 ), · · · , vec (âjâ

T
j ), · · · , vec (âN â

T
N )
]

(A.11)

where âj is the j-th column vector of Â. Hence, the differences between Â(new)� Â(new)

and Â � Â are their j-th column vectors. The j-th column vector of Â(new) � Â(new)

can be expressed as follows:

vec (â
(new)
j (â

(new)
j )T)

= vec
[
(t2i,jâi + âj + 2ti,j b̂i � b̂j)(t

2
i,jâi + âj + 2ti,j b̂i � b̂j)

T
]

= vec (âjâ
T
j ) + g1t

4
i,j + g2t

3
i,j + g3t

2
i,j + g4ti,j

= vec (âjâ
T
j ) +Gζi,j

(A.12)

where {gi}4i=1, G and ζi,j are defined in proposition 2.8. The (N2 × 1) column vector
vec (âjâ

T
j ) is the j-th column vector of Â� Â. Then proposition 2.8 holds.

A.7 Proof of proposition 2.9

We can rearrange the ADMM update formulas in equations (2.136) to (2.141) into the
following form:(

A
(it+1)
1 −A(it)

1

)( K∑
k=1

D(k,it)(A
(it)
2 )TA

(it)
2 D(k,it) + αIP

)

=

K∑
k=1

(
C(k) −A(it)

1 D(k,it)(A
(it)
2 )T

)(
A

(it)
2 D(k,it)

)
−Π

(it)
1 + α(U (it) −A(it)

1 )

(A.13)
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(
A

(it+1)
2 −A(it)

2

)( K∑
k=1

D(k,it)(A
(it+1)
1 )TA

(it+1)
1 D(k,it) + βIP

)

=

K∑
k=1

(
C(k) −A(it)

2 D(k,it)(A
(it+1)
1 )T

)(
A

(it+1)
1 D(k,it)

)
−Π

(it)
2 + β(U (it) −A(it)

2 )

(A.14)
U (it+1) −U (it) = P+

{(
αA

(it+1)
1 + βA

(it+1)
2 + Π

(it)
1 + Π

(it)
2

)
/(α+ β)

}
−U (it) (A.15)[(

A
(it+1)
2 �A(it+1)

1

)T(
A

(it+1)
2 �A(it+1)

1

)](
d(k,it+1) − d(k,it)

)
=
(
A

(it+1)
2 �A(it+1)

1

)T (
c(k)− (A

(it+1)
2 �A(it+1)

1 )d(k,it)
) (A.16)

Π
(it+1)
1 −Π

(it)
1 = γα(A

(it+1)
1 −U (it+1)) (A.17)

Π
(it+1)
2 −Π

(it)
2 = γβ(A

(it+1)
2 −U (it+1)) (A.18)

where c(k) = vec(C(k)), and where d(k,it), d(k,it+1) ∈ RP are column vectors containing
the diagonal elements of the diagonal matrices D(k,it) and D(k,it+1), respectively. The
assumption Z(it+1) − Z(it) → 0 implies that the left and right hand sides of equations
(A.13) to (A.18) go to zero. Let it go to infinity. We have A(it+1)

1 = A
(it)
1 + (A

(it+1)
1 −

A
(it)
1 ), ... , and so on for each variable, where the second terms A(it+1)

1 − A(it)
1 , ... ,

vanishes asymptotically. Consequently, we obtain:

K∑
k=1

(C(k) −A(it+1)
1 D(k,it+1)(A

(it+1)
2 )T)(A

(it+1)
2 D(k,it+1))−Π

(it+1)
1 → 0 (A.19)

K∑
k=1

(C(k) −A(it+1)
2 D(k,it+1)(A

(it+1)
1 )T)(A

(it+1)
1 D(k,it+1))−Π

(it+1)
2 → 0 (A.20)

P+

{(
αA

(it+1)
1 + βA

(it+1)
2 + Π

(it+1)
1 + Π

(it+1)
2

)
/(α+ β)

}
−U (it+1) → 0 (A.21)

(A
(it+1)
2 �A(it+1)

1 )T
(
c(k)− (A

(it+1)
2 �A(it+1)

1 )d(k,it+1)
)
→ 0 (A.22)

A
(it+1)
1 −U (it+1) → 0 (A.23)

A
(it+1)
2 −U (it+1) → 0 (A.24)

where the terms α(U (it+1) − A(it+1)
1 ) and β(U (it+1) − A(it+1)

2 ) have been eliminated
from equations (A.19) and (A.20), respectively, by invoking equation (A.23) and (A.24).
Obviously, the first five equations (2.149) to (2.153) in the KKT conditions of problem
(2.129) are satisfied at any limit point:

Z∗ = (A∗1,A
∗
2,U

∗, {D(k,∗)},Π∗1,Π∗2) (A.25)

Now we verify conditions (2.154) and (2.155). In (2.154) the nonnegativity of U∗ is guar-
anteed by the algorithm construction. Hence, we only need to verify the non-positivity
of Π∗1 + Π∗2 (2.154), and the complementarity between U∗ and Π∗1 + Π∗2 (2.155). From
equation (A.21), we can derive the following equality:

P+ {(αA∗1 + βA∗2 + Π∗1 + Π∗2) /(α+ β)} = U∗ (A.26)
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From equations (A.23) and (A.24), we have A∗1 = A∗2 = U∗. If A∗1 = A∗2 = U∗ = 0,
then equation (A.26) reduces to P+ {(Π∗1 + Π∗2)/(α+ β)} = 0 yielding (Π∗1 + Π∗2) ≤ 0

since α > 0 and β > 0. On the other hand, if A∗1 = A∗2 = U∗ > 0, then equation (A.26)
implies that (Π∗1 + Π∗2) = 0. Therefore, the following condition can be proved:

(Π∗1 + Π∗2) ≤ 0 ≤ U∗, (Π∗1 + Π∗2)�U∗ = 0 (A.27)

Hence, proposition 2.9 holds.
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Appendix B
Nonnegative compression method
for SeNICA

B.1 Problem formulation

In some practical SeNICA problems defined in equation (1.50), the dimension of the
observation space x must be reduced. The classical dimension compression procedure,
such as the spatial prewhitening, compresses the N -dimensional vector x into a vector
x of dimension P � N . The estimate of the rank P is determined by the number of
eigenvalues of the covariance matrix of x not exceedingly close to zero. The compressed
observation vector x is expressed as follows [Comon, 1994,Belouchrani et al., 1997]:

x= Wx = (WA)s =As (B.1)

whereW ∈ RP×N is called a prewhitening matrix. In order to computeW , we obtain the
square root of the covariance matrix, denoted by Γ ∈ RN×P , such that ΓΓT = E{xxT}
assuming x being centered. Then W = Γ] where ] denotes the pseudo-inverse opera-
tor [Belouchrani et al., 1997]. However, the prewhitening matrix W breaks the nonneg-
ativity property of the compressed mixing matrixA= WA. Thus the proposed NJDC
algorithms cannot be applied to estimate A. In this section, we introduce a new Non-
Negative COMPression method, namely NN-COMP, which guarantees the nonnegativity
of the compressed mixing matrixA. The NN-COMP algorithm computes a linear trans-
formation matrix Φ ∈ RP×P such that the resulting compression matrixW = ΦW has
nonnegative components. Consequently, now the compressed observation vector x can
expressed as follows:

x=Wx = (WA)s =A+s (B.2)

where the compressed mixing matrixA+ =WA ∈ RP×P is a nonnegative square matrix.
Then the proposed NJDC algorithms can be used to compute the compressed matrixA+

from the HO cumulant array of x. Once A+ is estimated, the original matrix A is
obtained as follows:

A = W ]Φ−1A+ = ΥΦ−1A+ (B.3)

It should be noted that the source s can be recovered by s =A
−1
+ x. Therefore generally

it is not necessary to compute the original mixing matrix A. Such a novel compres-
sion method can reduce the numerical complexity of the proposed NJDC algorithms.
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Figure B.1: An illustration of the proposed NN-COMP algorithm. (a) the input
prewhitening matrix W ; (b) and (c) the proposed algorithm. (b) V is obtained by
multiplying W by a Givens rotation matrix. (c)W is obtained by multiplying V by an
elementary upper triangular matrix. The blue circles denote the nonnegative values and
the red circles denote the negative values.

It is particularly important for the iJDC+
LU-1 and iJDC+

QR-1 algorithms, since they are
constrained to work on a square matrix A.

Now, let’s define the nonnegative compression problem as follows:

Problem B.1. Given a prewhitening matrix W ∈ R
P×N of an N -dimensional ran-

dom vector process x, find a sequence of Givens rotation matrices and elementary upper
triangular matrices, such that their product:

W =

P∏
i=1

P∏
j=i+1

U (i,j)(ui,j)

P∏
i=1

P∏
j=i+1

R(i,j)(θi,j)W︸ ︷︷ ︸
def
= V

= ΦW (B.4)

have nonnegative components. Then the transformation matrix Φ ∈ RP×P is defined
as the product of all these Givens rotation matrices and elementary upper triangular
matrices in the proper order.

Figure B.1 illustrates, in the case of P = 2, the process of transforming a prewhitening
matrix W into the nonnegative quadrant by equation (B.4). Prewhitening makes the
axes of the matrixW orthogonal to each other (figure B.1(a)). A Givens rotation matrix
searches for a rotation angle that makes the outputs matrix V as nonnegative as possible.
However, sometimes it still remains some negative values near the quadrant boundaries
(figure B.1(b)). That is because the row vectors of W are neither well-grounded nor
statistically independent [Plumbley, 2003]. We propose to use an elementary upper
triangular matrix which projects the remaining negative values of V into the nonnegative
quadrant (figure B.1(c)). We thus obtain a nonnegative compression matrix W and
the (P × P ) compressed mixing matrix A+ =WA, which preserves the nonnegativity
property. Now the challenge is how to compute the Givens rotation and the elementary
upper triangular matrices.
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B.2 Algorithm derivation

A new two-step NN-COMP method (figure B.1) is presented in this section.

B.2.1 Step 1: estimation of the Givens rotation matrices

The Givens rotation matrix R(i,j)(θi,j) transforms each pair of row vectors (i, j) ofW as
follows: [

Vi,:
Vj,:

]
=

[
cos(θi,j) sin(θi,j)

− sin(θi,j) cos(θi,j)

] [
Wi,:

Wj,:

]
(B.5)

where Vi,: (Vj,:) and Wi,: (Wj,:) are the i-th (j-th) row vectors of matrices V and W ,
respectively. Now, let us consider the following negativity measure criterion defined
in [Plumbley, 2003,Ouedraogo et al., 2010]:

Ψ(θi,j) =
1

2

N∑
n=1

(V 2
i,n1Vi,n<0 + V 2

j,n1Vj,n<0 ) (B.6)

where Vi,n and Vj,n are the (i, n)-th and (j, n)-th components of V , respectively, and
where 1α<0 is a Heaviside-step-like function defined as follows:

1α<0 =

{
1, if α < 0

0, otherwise
(B.7)

The purpose is to find an angle, θi,j , which minimizes the total sum of squares of negative
components of V . The global optimum of Ψ(θi,j) is difficult to obtain analytically due
to the existence of the Heaviside-step-like function 1α<0. We propose to compute θi,j
iteratively by a Newton’s method. For a given iteration (it), let us consider the second
order Taylor expansion, ΨT(θi,j), of Ψ(θi,j) around θ(it)

i,j :

ΨT(θ
(it)
i,j + ∆θ) = Ψ(θ

(it)
i,j ) +

∂Ψ(θ
(it)
i,j )

∂θ
(it)
i,j

∆θ +
∂2Ψ(θ

(it)
i,j )

2∂(θ
(it)
i,j )2

(∆θ)2 (B.8)

where θ(it)
i,j is the solution at the it-th iteration, ∆θ = θi,j − θ(it)

i,j , ∂Ψ(θ
(it)
i,j )/∂θ

(it)
i,j and

∂2Ψ(θ
(it)
i,j )/∂(θ

(it)
i,j )2 are the first and second order derivatives of the cost function (B.6)

with respect to θ(it)
i,j , respectively, which are given as follows [Ouedraogo et al., 2010]:

∂Ψ(θ
(it)
i,j )

∂θ
(it)
i,j

=

N∑
n=1

V
(it)
i,n V

(it)
j,n

(
1
V

(it)
i,n <0

1
V

(it)
j,n >0

− 1
V

(it)
i,n >0

1
V

(it)
j,n <0

)
(B.9)

∂2Ψ(θ
(it)
i,j )

∂(θ
(it)
i,j )2

=

N∑
n=1

(
(V

(it)
j,n )2 − (V

(it)
i,n )2

)(
1
V

(it)
i,n <0

1
V

(it)
j,n >0

− 1
V

(it)
i,n >0

1
V

(it)
j,n <0

)
(B.10)

and where [
V

(it)
i,n

V
(it)
j,n

]
=

[
cos(θ

(it)
i,j ) sin(θ

(it)
i,j )

− sin(θ
(it)
i,j ) cos(θ

(it)
i,j )

][
Wi,n

Wj,n

]
(B.11)
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Then the minimum of (B.8) with respect to ∆θ can be reached at:

∆θ = −

(
∂2Ψ(θ

(it)
i,j )

∂(θ
(it)
i,j )2

)−1
∂Ψ(θ

(it)
i,j )

∂θ
(it)
i,j

(B.12)

∂2Ψ(θ
(it)
i,j )/∂(θ

(it)
i,j )2 = 0 means that all the elements of the row vectors V (it)

i,: and V (it)
j,:

have the same sign. In this situation it is not necessary to perform the optimization since
it will not decrease the criterion [Ouedraogo et al., 2010]. The numerical complexity of
estimating one θi,j costs (9N + 1)J

(it)
θi,j

, where J (it)
θi,j

denotes the number of consumed
iterations. The process of all the rotation angles θi,j is called a rotation sweep. The
rotation sweep can be stopped when the relative decrease of the total sum of squares of
negative components of V between two sweeps falls below a fixed small threshold.

B.2.2 Step 2: estimation of the elementary upper triangular matrices

After the rotation step, the elementary upper triangular matrix U (i,j)(ui,j) transforms
each pair of row vectors (i, j) of V as follows:[

Wj,:

Wi,:

]
=

[
1 ui,j
0 1

] [
Vj,:
Vi,:

]
(B.13)

where Wi,: and Wj,: are the i-th and j-th row vectors of matrix W respectively, and
where ui,j is also called a shearing factor. From equation (B.13), the vectorWi,: remains
unchanged. The negativity measure criterion is then defined as follows:

Ψ(ui,j) =
1

2

N∑
n=1

W
2
j,n1Wj,n<0

(B.14)

Similarly, the second order Taylor expansion ΨT(ui,j) of Ψ(ui,j) around u
(it)
i,j can be

expressed as follows:

ΨT(u
(it)
i,j +∆u) = Ψ(u

(it)
i,j ) +

∂Ψ(u
(it)
i,j )

∂u
(it)
i,j

∆u+
∂2Ψ(u

(it)
i,j )

2∂(u
(it)
i,j )2

(∆u)2 (B.15)

where u(it)
i,j is the solution at the it-th iteration, ∆u = ui,j − u(it)

i,j , ∂Ψ(u
(it)
i,j )/∂u

(it)
i,j and

∂2Ψ(u
(it)
i,j )/∂(u

(it)
i,j )2 are the first and second order derivatives of the cost function (B.14)

with respect to u(it)
i,j , respectively, which are given as follows:

∂Ψ(u
(it)
i,j )

∂u
(it)
i,j

=

N∑
n=1

W
(it)
i,n W

(it)
j,n 1W

(it)

j,n <0
(B.16)

∂2Ψ(u
(it)
i,j )

∂(u
(it)
i,j )2

=

N∑
n=1

(W
(it)
i,n )2

1
W

(it)

j,n <0
(B.17)

and where [
W

(it)
j,n

W
(it)
i,n

]
=

[
1 u

(it)
i,j

0 1

] [
Vj,n
Vi,n

]
(B.18)
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Then the minimum of (B.15) with respect to ∆u can be reached at:

∆u = −

(
∂2Ψ(u

(it)
i,j )

∂(u
(it)
i,j )2

)−1
∂Ψ(u

(it)
i,j )

∂u
(it)
i,j

(B.19)

When ∂2Ψ(u
(it)
i,j )/∂(u

(it)
i,j )2 = 0, it means that all the elements of the row vectorW (it)

j,: have
the same sign and that equation (B.19) does not need to be computed. The numerical
complexity of estimating one ui,j costs (4N + 1)J

(it)
ui,j , where J

(it)
ui,j denotes the number of

used iterations. The process of all the shearing factors ui,j is called a shearing sweep. The
shearing sweep can be stopped when the relative decrease of the total sum of squares of
negative components ofW between two sweeps falls below a predefined positive threshold.

In practice, the new NN-COMP algorithm contains some rotation sweeps followed
by several shearing sweeps, in order to ensure the convergence. The overall numerical
complexity of NN-COMP is given as follows:

min(N2M/2 + 4N3/3 +NPM, 4N2M + 8N3)

+

 P∑
i=1

P∑
j=i+1

(9N + 1)J
(it)
θi,j

 J
(sweep)
Givens +

 P∑
i=1

P∑
j=i+1

(4N + 1)J (it)
ui,j

 J
(sweep)
Shearing

(B.20)
where N , P andM are the numbers of the observations, of the sources and of the sample
points, respectively, where J (it)

θi,j
and J (it)

ui,j are the numbers of inner iterations for estimating

one θi,j and one ui,j , respectively, and where J (sweep)
Givens and J (sweep)

Shearing are the numbers of used
sweeps for estimating all the Givens rotation matrices and all the shearing transformation
matrices, respectively. The first term in equation (B.20) corresponds to the complexity
of computing the classical prewhitening matrix. The pseudo-code of the NN-COMP
algorithm is provided in appendix C.8.
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Appendix C
Pseudo-codes of algorithms

C.1 Pseudo-code of the cyclic Jacobi-like iteration

Algorithm 1 Cyclic Jacobi-like iteration for NJDC
1: procedure Bopt = argminB Ψ(B)

2: Initialization: B(0) = I, it = 0

3: while Ψ(B(it)) > ε do
4: for i = 1 to N do
5: for j = 1 to N and j 6= i do
6: it = it+ 1

7: Compute Θ(i,j)(ξi,j)) by equation (2.12)
8: Update B(it−1) by equation (2.13)
9: end for

10: end for
11: end while
12: Return: Bopt = B(it)

13: end procedure
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C.2 Pseudo-code of the JDC+
LU-3 algorithm

Algorithm 2 JDC+
LU-3 algorithm for NJDC

1: procedure [Bopt, {D(k,opt)}] = argminB,{D(k)}Ψ+
3 (B, {D(k)})

2: Initialization: B̂ = B(0), Â = B̂�2, D̂(k) = D̂(k,0) and it = 0

3: while Ψ+
3 (B̂, {D̂(k)}) > ε do

4: it = it+ 1

5: B The AC phase
6: for j = 1 to N do . Estimate L

7: for i = j + 1 to N do
8: Compute `i,j by minimizing (2.44)
9: ς = sign(âj + `i,jâi)

10: if |(âj + `i,jâi)| == ς(âj + `i,jâi) then

11: â
(new)
j = ς(âj + `i,jâi), b̂(new)

j =
√

â
(new)
j

12: else
13: Compute `i,j by minimizing (2.36)
14: Update B̂(new) by (2.27), Â(new) = (B̂(new))�2

15: end if
16: B̂ = B̂(new), Â = Â(new),
17: end for
18: end for
19: for i = 1 to N do . Estimate U

20: for j = i+ 1 to N do
21: Compute ui,j by minimizing (2.44)
22: ς = sign(âj + ui,jâi)

23: if |(âj + ui,jâi)| == ς(âj + ui,jâi) then

24: â
(new)
j = ς(âj + ui,jâi), b̂(new)

j =
√

â
(new)
j

25: else
26: Compute ui,j by minimizing (2.36)
27: Update B̂(new) by (2.27), Â(new) = (B̂(new))�2

28: end if
29: B̂ = B̂(new), Â = Â(new),
30: end for
31: end for
32: B The DC phase
33: for k = 1 to K do . Estimate {D(k)}
34: Compute D̂(k,new) by (2.41)
35: end for
36: {D̂(k)} = {D̂(k,new)}
37: end while
38: Return: Bopt = B̂(new), {D̂(k),opt} = {D̂(k,new)}
39: end procedure
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C.3 Pseudo-code of the iJDC+
LU-1 algorithm

Algorithm 3 iJDC+
LU-1 algorithm for NJDC

1: procedure [Bopt] = argminB Ψ+

1′(B)

2: Initialization: B̂ = B(0), Â = B̂�2, C(k,−1) = (C(k))−1 and it = 0

3: while Ψ+

1′(B̂) > ε do
4: it = it+ 1

5: for j = 1 to N do . Estimate L

6: for i = j + 1 to N do
7: Compute `i,j by (2.72)
8: ς = sign(âj + `i,jâi)

9: if |(âj + `i,jâi)| == ς(âj + `i,jâi) then

10: â
(new)
j = ς(âj + `i,jâi), b̂(new)

j =
√

â
(new)
j

11: else
12: Compute `i,j by minimizing (2.53)
13: Update B̂(new) by (2.27), Â(new) = (B̂(new))�2

14: end if
15: Update Ĉ(k,new) by (2.51)
16: B̂ = B̂(new), Â = Â(new), Ĉ(k) = Ĉ(k,new)

17: end for
18: end for
19: for i = 1 to N do . Estimate U

20: for j = i+ 1 to N do
21: Compute ui,j by (2.72)
22: ς = sign(âj + ui,jâi)

23: if |(âj + ui,jâi)| == ς(âj + ui,jâi) then

24: â
(new)
j = ς(âj + ui,jâi), b̂(new)

j =
√

â
(new)
j

25: else
26: Compute ui,j by minimizing (2.53)
27: Update: B̂(new) by (2.27), Â(new) = (B̂(new))�2

28: end if
29: Update Ĉ(k,new) by (2.51)
30: B̂ = B̂(new), Â = Â(new), Ĉ(k) = Ĉ(k,new)

31: end for
32: end for
33: if (it mod q) == 0 then . Row balancing of Ĉ(k)

34: Perform row balancing scheme
35: end if
36: end while
37: Return: Bopt = B̂(new)

38: end procedure
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C.4 Pseudo-code of the iJDC+
QR-1 algorithm

Algorithm 4 iJDC+
QR-1 algorithm for NJDC

1: procedure [Bopt] = argminB Ψ+

1′(B)

2: Initialization: B̂ = B(0), Â = B̂�2, C(k,−1) = (C(k))−1 and it = 0

3: while Ψ+

1′(B̂) > ε do
4: it = it+ 1

5: for i = 1 to N do . Estimate Q

6: for j = i+ 1 to N do
7: Compute θi,j by minimizing (2.73)
8: ςi = sign(cos (θi,j)âi − sin (θi,j)âj), ςj = sign(sin (θi,j)âi + cos (θi,j)âj)

9: if |(cos (θi,j)âi − sin (θi,j)âj)| == ςi(cos (θi,j)âi − sin (θi,j)âj) and
10: |(sin (θi,j)âi + cos (θi,j)âj)| == ςj(sin (θi,j)âi + cos (θi,j)âj) then

11: â
(new)
i = ςi(cos (θi,j)âi − sin (θi,j)âj), b̂(new)

i =

√
â
(new)
i

12: â
(new)
j = ςj(sin (θi,j)âi + cos (θi,j)âj), b̂(new)

j =
√

â
(new)
j

13: else
14: Compute θi,j by minimizing (2.65)
15: Update: B̂(new) by (2.57), Â(new) = (B̂(new))�2

16: end if
17: Update Ĉ(k,new) by (2.61)
18: B̂ = B̂(new), Â = Â(new), Ĉ(k) = Ĉ(k,new)

19: end for
20: end for
21: for i = 1 to N do . Estimate R

22: for j = i+ 1 to N do
23: Compute ui,j by (2.72)
24: ς = sign(âj + ui,jâi)

25: if |(âj + ui,jâi)| == ς(âj + ui,jâi) then

26: â
(new)
j = ς(âj + ui,jâi), b̂(new)

j =
√

â
(new)
j

27: else
28: Compute ui,j by minimizing (2.53)
29: Update: B̂(new) by (2.27), Â(new) = (B̂(new))�2

30: end if
31: Update Ĉ(k,new) by (2.51)
32: B̂ = B̂(new), Â = Â(new), Ĉ(k) = Ĉ(k,new)

33: end for
34: end for
35: if (it mod q) == 0 then . Row balancing of Ĉ(k)

36: Perform row balancing scheme
37: end if
38: end while
39: Return: Bopt = B̂(new)

40: end procedure
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C.5 Pseudo-code of the JDC+
LU-1 algorithm

Algorithm 5 JDC+
LU-1 algorithm for NJDC

1: procedure [Bopt] = argminB Ψ+
1 (B)

2: Initialization: B̂ = B(0), Â = B̂�2, and it = 0

3: while Ψ+
1 (B̂) > ε do

4: it = it+ 1

5: for j = 1 to N do . Estimate L

6: for i = j + 1 to N do
7: Compute `i,j by (2.126)
8: ς = sign(âj + `i,jâi)

9: if |(âj + `i,jâi)| == ς(âj + `i,jâi) then

10: â
(new)
j = ς(âj + `i,jâi), b̂(new)

j =
√

â
(new)
j

11: else
12: Compute `i,j by minimizing (2.98)
13: Update B̂(new) by (2.27), Â(new) = (B̂(new))�2

14: end if
15: Update Ĉ(k,new) by (2.86)
16: B̂ = B̂(new), Â = Â(new), Ĉ(k) = Ĉ(k,new)

17: end for
18: end for
19: for i = 1 to N do . Estimate U

20: for j = i+ 1 to N do
21: Compute ui,j by (2.126)
22: ς = sign(âj + ui,jâi)

23: if |(âj + ui,jâi)| == ς(âj + ui,jâi) then

24: â
(new)
j = ς(âj + ui,jâi), b̂(new)

j =
√

â
(new)
j

25: else
26: Compute ui,j by minimizing (2.98)
27: Update: B̂(new) by (2.27), Â(new) = (B̂(new))�2

28: end if
29: Update Ĉ(k,new) by (2.86)
30: B̂ = B̂(new), Â = Â(new), Ĉ(k) = Ĉ(k,new)

31: end for
32: end for
33: if (it mod q) == 0 then . Row balancing of Ĉ(k)

34: Perform row balancing scheme
35: end if
36: end while
37: Return: Bopt = B̂(new)

38: end procedure
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C.6 Pseudo-code of the JDC+
LU-2 algorithm

Algorithm 6 JDC+
LU-2 algorithm for NJDC

1: procedure [Bopt] = argminB Ψ+
2 (B)

2: Initialization: B̂ = B(0), Â = B̂�2, and it = 0

3: while Ψ+
2 (B̂) > ε do

4: it = it+ 1

5: for j = 1 to N do . Estimate L

6: for i = j + 1 to N do
7: Compute `i,j by minimizing (2.127)
8: ς = sign(âj + `i,jâi)

9: if |(âj + `i,jâi)| == ς(âj + `i,jâi) then

10: â
(new)
j = ς(âj + `i,jâi), b̂(new)

j =
√

â
(new)
j

11: else
12: Compute `i,j by minimizing (2.115)
13: Update B̂(new) by (2.27), Â(new) = (B̂(new))�2

14: end if
15: Update Ĉ(k,new) by (2.86)
16: B̂ = B̂(new), Â = Â(new), Ĉ(k) = Ĉ(k,new)

17: end for
18: end for
19: for i = 1 to N do . Estimate U

20: for j = i+ 1 to N do
21: Compute ui,j by minimizing (2.127)
22: ς = sign(âj + ui,jâi)

23: if |(âj + ui,jâi)| == ς(âj + ui,jâi) then

24: â
(new)
j = ς(âj + ui,jâi), b̂(new)

j =
√

â
(new)
j

25: else
26: Compute ui,j by minimizing (2.115)
27: Update: B̂(new) by (2.27), Â(new) = (B̂(new))�2

28: end if
29: Update Ĉ(k,new) by (2.86)
30: B̂ = B̂(new), Â = Â(new), Ĉ(k) = Ĉ(k,new)

31: end for
32: end for
33: if (it mod q) == 0 then . Row balancing of Ĉ(k)

34: Perform row balancing scheme
35: end if
36: end while
37: Return: Bopt = B̂(new)

38: end procedure
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C.7 Pseudo-code of the JDC+
ADMM-3 algorithm

Algorithm 7 JDC+
ADMM-3 algorithm for NJDC

1: procedure [Aopt
1 ,Aopt

2 ,Uopt, {D(k,opt)}] = argminA1,A2,U,{D(k)}Ψ+
3 (A1,A2,U , {D(k)})

2: Initialization: A(0)
1 , A(0)

2 , U (0), {D(k,0)}, Π(0)
1 , Π(0)

2 and it = 0

3: while Ψ+
3 (A

(it)
1 ,A

(it)
2 ,U (it), {D(k,it)}) > ε do

4: it = it+ 1

5: Compute A
(it+1)
1 by equation (2.136)

6: Compute A
(it+1)
2 by equation (2.137)

7: Compute U (it+1) by equation (2.138)
8: Compute each D(k,it+1) by equation (2.139)
9: Compute Π

(it+1)
1 by equation (2.140)

10: Compute Π
(it+1)
2 by equation (2.141)

11: end while
12: Return: Aopt

1 = A
(it)
1 , Aopt

2 = A
(it)
2 , Uopt = U (it), {D(k,opt)} = {D(k,it)}

13: end procedure
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C.8 Pseudo-code of the NN-COMP algorithm

Algorithm 8 Nonnegative compression algorithm for SeNICA
1: procedure Compute a nonnegative compression matrix W from a realization of an

observation vector {x}
2: Initialization: compute the prewhitening matrix Γ such that ΓΓT = E{xxT} by EVD;
3: Define a criterion: Ψneg(V ) = 1

2

∑P
p=1

∑N
n=1 V

2
p,n1Vp,n<0

4: Sweep counter: swpr = 0

5: while Ψneg(V ) can still be minimized do
6: swpr = swpr + 1

7: for i = 1 to N do . Estimate the Given rotation matrices
8: for j = i+ 1 to N do it = 0

9: while criterion (B.6) can still be minimized do
10: it = it+ 1

11: Compute θ(it)i,j by equation (B.12)
12: Update V

(it)
i,: and V

(it)
j,: by equation (B.11)

13: end while
14: end for
15: end for
16: end while
17: Sweep counter: swpu = 0

18: while Ψneg(W ) can still be minimized do
19: swpu = swpu + 1

20: for i = 1 to N do . Estimate the elementary upper triangular matrices
21: for j = i+ 1 to N do it = 0

22: while criterion (B.14) can still be minimized do
23: it = it+ 1

24: Compute u(it)
i,j by equation (B.19)

25: UpdateW
(it)
i,: andW

(it)
j,: by equation (B.18)

26: end while
27: end for
28: end for
29: end while
30: Return: W is the obtained nonnegative compression matrix
31: end procedure
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