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Introduction générale

Dans cette thèse, nous étudions différentes questions appartenant à la large classe des problèmes de cristallisation, c'est-à-dire à la minimisation d'énergies discrètes parmi un ensemble de configurations, comme expliqué dans [START_REF] Blanc | The Crystallization Conjecture : A Review[END_REF]. Plus précisément, nous cherchons à comprendre pourquoi une structure périodique peut être le minimiseur, local ou global, de certaines énergies d'interactions, afin de tenter d'expliquer l'émergence de structures ordonnées, que ce soit dans la nature (cristaux, ADN,...) ou lors d'expériences (supraconductivité, conception de nouveaux matériaux,...). Evidemment, il s'agit d'un problème extrêmement complexe à résoudre, tant théorique qu'expérimental, le nombre de minima locaux pouvant être très grand, ce qui rend le minimum global difficile à atteindre.

Ainsi, nous nous sommes penchés sur trois types de problèmes propices à l'analyse :

-Dans le Chapitre 1, renvoyant à [START_REF] Bétermin | Sufficient Condition for a Compact Local Minimality of a Lattice[END_REF], nous discutons le fait qu'un réseau de Bravais puisse être un minimum local compact pour une énergie d'interaction créée par un potentiel radial, en nous inspirant du travail de Theil sur la cristallisation bidimensionnelle [START_REF] Theil | A Proof of Crystallization in Two Dimensions[END_REF] ; -Dans les Chapitres 2 et 3, renvoyant respectivement à [START_REF] Bétermin | 2D Theta Functions and Crystallization among Bravais Lattices[END_REF] et [10], nous étudions la minimisation d'énergies par point, créées par un potentiel radial, parmi les réseaux de Bravais du plan, à partir d'un résultat de Montgomery sur l'optimalité du réseau triangulaire pour des fonctions thêta [START_REF] Montgomery | Minimal Theta Functions[END_REF], dont nous redonnons une preuve détaillée en Annexe ; -Dans le Chapitre 4, renvoyant à [9], nous nous intéressons au développement asymptotique, quand le nombre de points tend vers l'infini, de l'énergie logarithmique sur la sphère en lien avec le 7ème Problème de Smale, à partir des travaux de Sandier et Serfaty sur les gaz de Coulomb [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF][START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF] et d'avancées récentes en Théorie Logarithmique du Potentiel [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF][START_REF] Hardy | Weakly Admissible Vector Equilibrium Problems[END_REF][START_REF] Bloom | Logarithmic Potential Theory and Large Deviation[END_REF].

L'objectif de cette introduction en trois parties est d'exposer les différents résultats que nous avons obtenus dans chacun de ces contextes tout en rappelant les travaux antérieurs indispensables à la compréhension globale du sujet.

Réseau comme minimum local compact

Dans son travail sur la cristallisation dans R 2 [START_REF] Theil | A Proof of Crystallization in Two Dimensions[END_REF], Theil propose une famille de potentiels radials paramétrés V α : R + → R tels qu'il existe α 0 ∈ 0, 1 3 tel que pour 

tout α ∈]0, α 0 [, V α ∈ C 2 (]1 -α, +∞[) et 1. lim r→∞ V α (r) = 0 ; 2. min r≥0 p∈A * 2 V α (r p ) = p∈A * 2 V α ( p ), où A 2 := Z(1, 0) ⊕ Z(1/2, √ 3 
(x i ) i ∈R 2N i =j V α ( x i -x j ) = 1 2 p∈A * 2 V α ( p ),
c'est-à-dire que le réseau triangulaire A 2 est un minimum global de l'énergie totale d'interaction, au sens de la limite thermodynamique, quand le nombre de points qui interagissent entre eux tend vers l'infini. Ce résultat fait naturellement suite à ceux de Radin [START_REF] Gardner | The Infinite-Volume Ground State of the Lennard-Jones Potential[END_REF][START_REF] Heitmann | The Ground State for Sticky Disks[END_REF][START_REF] Radin | The Ground State for Soft Disks[END_REF] portant sur le même type de problème, mais avec des potentiels tronqués à courte portée. Le fait que le paramètre α régisse à la fois la divergence en 0, la largeur du puits autour de la valeur 1 et la décroissance à l'infini du potentiel donne une forme d'interaction qui semble plus stéréotypée que générique quand α est petit. Malgré tout, il s'agit du premier résultat de cristallisation dans R 2 , parmi toutes les configurations, pour des interactions à longues portées. On retrouve le même type de potentiels dont le paramètre permet d'ajuster leurs formes à la structure visée dans [START_REF] Li | On the Crystallization of 2D Hexagonal Lattices[END_REF][START_REF] Flatley | Face-Centred Cubic Crystallization of Atomistic Configurations[END_REF].

Nous nous sommes donc demandé dans [START_REF] Bétermin | Sufficient Condition for a Compact Local Minimality of a Lattice[END_REF], et c'est l'objet de notre Chapitre 1, si de telles hypothèses sur une famille de potentiels paramétrés pouvaient favoriser la "cristallisation locale" sur un réseau de Bravais 1 donné de R d . Ainsi, nous avons débarrassé la famille (V α ) α de toutes ses hypothèses favorisant plutôt la minimalité globale (c'est-à-dire les hypothèses 3. et 5.) et nous avons remplacé les autres par des versions plus générales et/ou locales afin d'obtenir une construction générique de potentiels permettant la minimalité locale compacte suivante.

Soit L ⊂ R d un réseau de Bravais de première distance λ 1 , c'est-à-dire 

y =b α V ( b α -y ) - b∈B x∈L x =b V ( b -x ) ≥ 0,
c'est-à-dire que l'énergie du réseau perturbé L α (B) a une énergie totale plus grande que celle de L, dès lors que la perturbation maximale α 0 , qui dépend de N, est assez petite.

Ainsi on démontre le Théorème 1.3.1 du Chapitre 1 : Soit L ⊂ R d un réseau de Bravais de première distance λ 1 et de deuxième distance λ 2 := min{ p ; p ∈ L, p > λ 1 }. Soit V θ : R * + → R un potentiel d-admissible, défini, pour chaque θ ∈ [0, λ 1 /2), par : 1.

p∈L * p V ′ θ ( p ) = 0 ;
2. ∃r 0 ∈ [λ 1 , λ 2 ), ∃ε > 0, ∃p > d + 1 tel que pour tout r > r 0 , |V ′′′ θ (r)| ≤ θ 1+ε r -p-2 ; 3. V ′′ θ (λ 1 ) > 0 est indépendant de θ ; 4. il existe M > 0, indépendant de θ, tel que, pour tout λ 1 /2 < r < λ 2 , |V ′′′ θ (r)| ≤ M. Alors pour tout N ∈ N * , il existe θ 0 > 0 tel que pour tout θ ∈ [0, θ 0 ] et tout V θ , L est un minimum local N-compact pour l'énergie totale créée par V θ . De plus, dans ce cas, la perturbation maximale α 0 peut être choisie égale à θ. Ainsi, dans le cas où θ < 1, on a θ 1+ε < θ, c'est-à-dire que la perturbation maximale est plus grande que le coefficient de décroissance de V θ après la première distance λ 1 . On remarque que l'hypothèse 1. est équivalente au fait que r = 1 soit un point critique de f : r → p∈L * V θ (r p ) et que, juxtaposée aux autres hypothèses, r = 1 est un minimum local de f , ou, de manière équivalente, L est un minimum local de l'énergie par point créée par V θ parmi ses dilatés. Ce type d'hypothèse semble nécessaire à la minimalité locale N-compacte quelque soit N, sous forme de condition de pression nulle 2 . De plus, la méthode utilisée permet de donner une borne inférieure à la perturbation maximale des N points que l'on déplace. En effet, on prouve que, pour tout 0 < θ < λ 1 /2 et tout 0 ≤ α ≤ θ, ∆ α L (V θ ; B) ≥ f (θ) := 2V ′′ θ (λ 1 )θ 2 -N Aθ 2+ε + Cθ 3 + Dθ 3+ε + Eθ 4+ε , où les constantes A, C, D, E dépendent uniquement des paramètres et pas de θ. Ainsi, il est assez facile de déterminer, au moins numériquement, la première racine positive de f en fonction de N. On voit aussi clairement que plus V ′′ θ (λ 1 ) est grand, plus cette racine sera grande et plus on pourra déplacer les N points loin de leurs positions d'origine.

De plus, ce résultat peut être interprété en terme de règle de type "Cauchy-Born" [START_REF] Ortner | Justification of the Cauchy-Born Approximation of Elastodynamics[END_REF][START_REF] Ming | Cauchy-Born Rule and the Stability of Crystalline Solids : Static Problems[END_REF]. En effet, si on considère un solide comme étant un réseau L -son intérieur étant un ensemble de N points et le reste étant son bord -, la perturbation linéaire, suffisamment petite, des N points de son intérieur augmente l'énergie d'interaction totale. Ainsi, l'intérieur du solide doit "suivre" son bord pour être dans un état d'énergie minimale, comme illustré dans la Figure 4. 

Minimisation d'énergie parmi les réseaux de Bravais

Si le fait de démontrer la minimalité d'une structure discrète parmi toutes les configurations du plan semble de prime abord difficile, tout autant que de montrer qu'une énergie discrète possède bien un minimiseur global périodique 3 , la minimisation d'énergies par point parmi les réseaux de Bravais a connu bon nombre de succès depuis les années 50, et c'est ce type de problème que l'on étudiera au Chapitre 2. En effet, Rankin [START_REF] Rankin | A Minimum Problem for the Epstein Zeta-Function[END_REF], Ennola [START_REF] Ennola | A Lemma about the Epstein Zeta-Function[END_REF], Cassels [START_REF] Cassels | On a Problem of Rankin about the Epstein Zeta-Function[END_REF] et Diananda [START_REF] Diananda | Notes on Two Lemmas concerning the Epstein Zeta-Function[END_REF] ont étudié le problème de minimisation, parmi les réseaux de Bravais du plan, de la fonction zêta d'Epstein définie 4 

Λ A := 2A √ 3 Z(1, 0) ⊕ Z(1/2, √ 3/2)
est l'unique minimiseur de L → ζ L (s) parmi les réseaux d'aire 5 A.

Il a fallu attendre Montgomery [START_REF] Montgomery | Minimal Theta Functions[END_REF] pour qu'un autre pas significatif soit fait dans ce domaine. Il montra que, pour tout A > 0, le réseau triangulaire Λ A est l'unique minimiseur, à rotation près, parmi les réseaux de Bravais d'aire A, des fonctions thêta définies, pour α > 0, par θ L (α) := Θ L (iα) = p∈L e -2πα p 2 , où Θ L est la fonction thêta de Jacobi du réseau L. Ce résultat, dont nous redonnons la preuve détaillée dans notre Annexe, est extrêmement important car il permet de montrer l'optimalité du réseau triangulaire Λ A parmi les réseaux de Bravais d'aire A fixée pour une classe plus large de potentiels d'interactions. Ainsi, comme expliqué par Cohn et Kumar [START_REF] Cohn | Universally Optimal Distribution of Points on Spheres[END_REF], on montre dans la Proposition 2.3.1 du Chapitre 2, en utilisant 3. Mis à part dans certains cas simples d'interactions entre premiers voisins ou dans le cas d'interactions oscillantes comme dans l'article de Süto [START_REF] Süto | Crystalline Ground States for Classical Particles[END_REF].

4. Cette série converge pour s > 2 et on peut définir son prolongement analytique si s > 0. Dans la suite, quand d = 2, seul le cas s > 2 nous intéressera.

5. On dira qu'un réseau de Bravais L = Zu ⊕ Zv a pour aire A si l'aire de sa cellule fondamentale est |L| = u ∧ v = A. il existe A 1 , A 2 tels que Λ A ne soit pas un minimiseur de E V parmi les réseaux de Bravais d'aire fixée A ∈ (A 1 , A 2 ). Ainsi on peut imaginer 6 que l'optimalité de Λ A pour tout A est équivalente avec le fait que f soit totalement monotone et obtenir des minimiseurs "exotiques" pour certaines interactions décroissantes, positives et convexes, comme on 6. Ceci est une intuition raisonnable, mais nous n'en donnons pas la preuve.

peut le voir, numériquement, dans les travaux de Marcotte, Stillinger et Torquato [START_REF] Marcotte | Unusual Ground States via Monotonic Convex Pair Potentials[END_REF] portant sur des potentiels tronqués.

Figure 6 -Courbe de V Dès lors, on peut se demander quels types de résultats on obtient si f n'est pas totalement monotone, et c'est l'objet de notre Théorème 2.1.2 du Chapitre 2. On démontre ainsi deux sortes de résultats :

-La minimalité de Λ A , à haute densité fixée (c'est-à-dire A > 0 suffisamment petit), pour certains potentiels, quand ceux-ci sont équivalents en 0 à une fonction totalement monotone. Nous donnons des bornes non-optimales 7 pour l'aire en dessous de laquelle ces résultats sont vrais en fonction de leurs paramètres ;

-La minimalité globale, parmi tous les réseaux de Bravais du plan, sans restriction de densité, d'un réseau triangulaire pour des énergies par point engendrées par des potentiels du type Attractif-Répulsif et Lennard-Jones, définis respectivement par

ϕ AR a,x (r) = a 2 e -x 2 r r -a 1 e -x 1 r r et V LJ a,x (r) = a 2 r x 2 - a 1 r x 1 ,
pour une infinité de valeurs 8 des paramètres (a 1 , a 2 , x 1 , x 2 ) ∈ (0, +∞) 4 dans le 7. Nous reparlerons de cette non-optimalité plus bas. 8. On donne des exemples explicites de telles valeurs dans l'énoncé du théorème.

premier cas et (a 1 , a 2 , x 1 , x 2 ) ∈ (0, +∞) 2 × (1, +∞) 2 dans le deuxième cas, et plus particulièrement quand ces potentiels possèdent un puits. De plus, dans le cas des potentiels de type Lennard-Jones, l'aire du minimiseur global L a,x est donnée par

|L a,x | = a 2 x 2 ζ Λ 1 (2x 2 ) a 1 x 1 ζ Λ 1 (2x 1 ) 1 x 2 -x 1 . Figure 7 -Courbes de ϕ AR a,x (r) = 2 e -6r r - e -3r r et V LJ a,x (r) = 1 r 6 - 2 r 4
Ces résultats découlent en fait d'une représentation intégrale de l'énergie d'un réseau L d'aire A soumis à un potentiel admissible 9 f , que nous prouvons dans notre Théorème 2.1.1 :

E f [L] = π A +∞ 1 θ L y 2A -1 y -1 µ f π yA + µ f πy A dy + C A ,
où µ f est la transformée de Laplace inverse de f et C A est une constante indépendante de L. Ainsi, le fait que

g A (y) := y -1 µ f π yA + µ f πy A 9.
Ce type de potentiel est choisi tel que E f soit toujours finie et que f possède une transformée de Laplace inverse.

soit positif pour presque tout y ≥ 1 assure, par le résultat de Montgomery, que, pour tout réseau de Bravais L d'aire A,

E f [L] -E f [Λ A ] = π A +∞ 1 θ L y 2A -θ Λ A y 2A g A (y)dy ≥ 0,
c'est-à-dire la minimalité de Λ A . La méthode est donc de trouver la relation la plus optimale possible entre A et les paramètres de f afin que g A (y) soit positif pour presque tout y ≥ 1. De plus, dans le cas de potentiels avec un puits, un argument de dilatation10 permet de donner une borne supérieure pour l'aire d'un réseau qui est un minimum global pour l'énergie. Ainsi, le fait que cette borne supérieure soit plus petite que celle des aires A telles que Λ A soit l'unique minimiseur à aire fixée nous assure que le minimum global est unique, à rotation près, et triangulaire.

Ces résultats confirment les simulations numériques faites par Torquato et ses coauteurs, par exemple dans [START_REF] Rechtsman | Designed Interaction Potentials via Inverse Methods for Self-Assembly[END_REF][START_REF] Torquato | Inverse Optimization Techniques for Targeted Self-Assembly[END_REF] ainsi que celui de Theil [START_REF] Theil | A Proof of Crystallization in Two Dimensions[END_REF], c'est-à-dire que le minimum global avec un potentiel possédant un puits semble être un réseau triangulaire. Malheureusement, ils ne permettent pas de montrer la minimalité globale, parmi les réseaux de Bravais, d'un réseau triangulaire pour le potentiel classique de Lennard-Jones 11 Dans [10], avec Peng Zhang, nous nous sommes intéressés plus particulièrement à ce potentiel de Lennard-Jones V LJ et son énergie par point, et ce fut d'ailleurs notre première incursion dans ce domaine d'étude 12 . Après avoir montré dans le Théorème 3.3.1 du Chapitre 4 la minimalité du réseau triangulaire pour E V LJ parmi les réseaux de Bravais d'aire fixée 0 < A ≤ π(120) -1/3 ≈ 0.63693, en utilisant la positivité de g A pour des A assez petits, et, dans la Proposition 3.3.5, la non-minimalité du réseau triangulaire pour des A suffisamment grands, résultat qui est en fait plus général comme on le verra dans la Proposition 2.6.6 du Chapitre 2, nous avons tenté de caractériser le minimum global de E V LJ parmi tous les réseaux de Bravais du plan. Nous montrons, dans la Proposition 3.4.1 et dans la Proposition 3.4.5 du Chapitre 3 que, si L 0 = Zu ⊕ Zv est un minimum global de E V LJ , paramétré de telle sorte que u ≤ v soient ses deux premières distances, alors on a :

-l'énergie minimale vaut

E V LJ (L 0 ) = -ζ L 0 (6) = -ζ L 0 (12) < 0 ; -la première distance est bornée : 0.74035 < u < 1 ; -la deuxième distance est bornée : v ≤ 1 ; -L 0 est caractérisé par ζ L 0 (6) = max{ζ L (6); L tel que ζ L (12) ≤ ζ L (6)}.
De plus, des vérifications numériques, confirmant celles faites par Blanc, Le Bris et Yedder [START_REF] Blanc | A Numerical Investigation of the 2-Dimensional Crystal Problem[END_REF] dans le cas du problème à N points, nous incitent fortement à penser que pour tout A ∈ (0, 1), Λ A est l'unique minimiseur, à rotation près, de E V LJ parmi les réseaux de Bravais d'aire fixée A, et qu'ainsi son minimum global doit être triangulaire d'aire

|L 0 | = ζ Λ 1 (12) ζ Λ 1 (6) 1/3 ≈ 0.84912.
Enfin, toujours dans [10], c'est-à-dire notre Chapitre 3, Section 3.5, nous avons étudié le modèle bidimensionnel de Thomas-Fermi [START_REF] Lieb | The Thomas-Fermi Theory of Atoms, Molecules and Solids[END_REF] pour les solides. En effet, ce modèle, issu de la Chimie Quantique, présenté dans [13, Section 2] et [START_REF] Blanc | From Molecular Models to Continuum Mechanics[END_REF]Section 4], est le suivant : considérons N noyaux représentés par le N-uplet X n = (x 1 , ..., x N ) ∈ R 2N associés à N électrons de densité totale ρ ≥ 0. Alors l'énergie de Thomas-Fermi du système est donnée par

E T F (ρ, X N ) = R 2 ρ 2 (x)dx - 1 2 R 2 ×R 2 log x -y ρ(x)ρ(y)dxdy + N j=1 R 2 log x -x j ρ(x)dx - 1 2 j =k log x j -x k .
On cherche alors à déterminer

I T F N = inf X N E T F (X N ) où E T F (X N ) := inf ρ E T F (ρ, X N ), ρ ≥ 0, ρ ∈ L 1 (R 2 ) ∩ L 2 (R 2 ), R 2 ρ = N .
Blanc et ses coauteurs [START_REF] Blanc | From Molecular Models to Continuum Mechanics[END_REF][START_REF] Blanc | A Numerical Investigation of the 2-Dimensional Crystal Problem[END_REF] ont montré que 

E T F (X N ) = i =j W T F ( x i -x j ) + NC, 20 où W T F (r) =
N →+∞ E T F (X N ) N ,
c'est-à-dire la minimisation parmi les réseaux de Bravais de l'énergie par point

E T F (L) = p∈L * W T F ( p ).
Blanc, Le Bris et Yedder [START_REF] Blanc | A Numerical Investigation of the 2-Dimensional Crystal Problem[END_REF] avaient conjecturé que cette énergie était minimale à toute densité pour le réseau triangulaire, ce que nous avons montré, dans notre Théorème 3.5.1 du Chapitre 3, en écrivant l'énergie en terme de fonction thêta et en utilisant le résultat de Montgomery, remontrant finalement au passage que la fonction r → K 0 ( √ r) est complètement monotone. Ces interactions de type Bessel se retrouvent aussi dans des modèles de mécanique des fluides et de supraconductivité [START_REF] Abrikosov | The Magnetic Properties of Superconducting Alloys[END_REF][START_REF] Sow | Measurement of the Vortex Pair Interaction Potential in a Type-II Superconductor[END_REF].

L'étape suivante, qui est discutée par Cohn et Kumar [30, Section 9], serait de montrer l'optimalité de Λ A pour E f , quand f est totalement monotone, parmi tous les réseaux périodiques d'aire A de R 2 , et pas uniquement les réseaux de Bravais. Ce type de problème fait l'objet de recherches actives en lien avec le design sphérique, comme par exemple les travaux de Coulangeon et Schürmann [START_REF] Coulangeon | Spherical Designs and Zeta Functions of Lattices[END_REF][START_REF] Schürmann | Perfect, Strongly Eutactic Lattices are Periodic Extreme[END_REF][START_REF] Coulangeon | Energy Minimization, Periodic Sets and Spherical Designs[END_REF]. 

θ L (α) = α -d/2 θ L * 1 α ,
pour tout réseau L de volume 1 et tout α > 0, où L ⋆ est le réseau dual de L, c'est-à-dire

L ⋆ := x ∈ R d ; ∀y ∈ L, x • y ∈ Z .
En dimension d = 3, Ennola [START_REF] Ennola | On a Problem about the Epstein Zeta-Function[END_REF] a prouvé que le réseau cubique à faces centrées 13 est un minimum local pour L → ζ L (s), pour tout s > 0. Malheureusement, on ne peut avoir l'optimalité de ce réseau pour toutes les valeurs de s > 0 fixées 14 , comme expliqué dans [START_REF] Sarnak | Minima of Epstein's Zeta Function and Heights of Flat Tori[END_REF]. En effet, notons, pour s > d, qu'un résultat classique permettant le prolongement analytique de ζ L nous donne,,

F (L, s) := π -s/2 Γ(s/2)ζ L (s) = F (L ⋆ , d/2 -s/2).
Ainsi, on a, pour L 3 le réseau cubique à faces centrées et L ⋆ 3 son réseau dual, c'est-à-dire le réseau cubique centré :

G(s) := F (L 3 , s) -F (L ⋆ 3 , s) = -G(d/2 -s/2),
et il y a seulement deux possibilités : G ≡ 0 ou G change de signe. Comme les distances du réseau L 3 sont différentes des distances du réseau L ⋆ 3 , G ne peut pas être identiquement nulle et change donc de signe. Ainsi, il existe s 0 > 0 tel que

ζ L 3 (s 0 ) > ζ L ⋆ 3 (s 0 ),
c'est-à-dire que L 3 ne peut être le minimum global de L → ζ L (s) pour chaque s > 0, contrairement à ce qu'avait conjecturé Ennola [START_REF] Ennola | On a Problem about the Epstein Zeta-Function[END_REF]. Ainsi, il n'est pas non plus possible que ce réseau soit un minimum de L → θ L (α) pour tout α > 0 pour la même raison 15 , car pour tout L de volume 1 et tout s > d,

ζ L (s) = π s/2 Γ(s/2) +∞ 0 (θ L (α) -1) α s/2-1 dy.
De plus, un autre problème, pour la minimisation parmi les réseaux périodiques, vient du fait que l'empilement le plus compact de sphères de même rayon 16 n'est pas unique pour d = 3. En effet, le réseau hexagonal compact, qui n'est pas un réseau de Bravais de R 3 , vérifie aussi cette propriété. 

Asymptotique de l'énergie logarithmique sur la sphère

Alors que le problème de réseau minimisant dans R 3 reste largement ouvert malgré quelques tentatives [START_REF] Flatley | Face-Centred Cubic Crystallization of Atomistic Configurations[END_REF][START_REF] Süto | Crystalline Ground States for Classical Particles[END_REF][START_REF] Süto | Ground State at High Density[END_REF], celui de la minimisation de l'énergie logarithmique sur la sphère S 2 fait l'objet d'une attention toute particulière. Notons • la norme euclidienne dans R 3 et définissons, pour (y 1 , ..., y n ) ∈ (S 2 ) n , l'énergie logarithmique de cette configuration par

E log (y 1 , ..., y n ) := - n i =j log y i -y j .
et notons E log (n) le minimum de cette énergie parmi les configurations de n points sur S 2 .

Cette énergie apparaît naturellement, comme expliqué par Saff et Kuijlaars [START_REF] Kuijlaars | Distributing Many Points on a Sphere[END_REF] ou par Brauchart et Grabner [START_REF] Brauchart | Distributing Many Points on Spheres : Minimal Energy and Designs[END_REF], dans beaucoup de situations physiques. De plus, la recherche de minimiseurs pour E log appartient à une classe plus large de problèmes sur la sphère dont fait par exemple partie celui de Thomson, où le logarithme est remplacé par r → r -1 , qui est lié à la construction de grandes molécules stables de carbone utiles dans les nanotechnologies (on pense par exemple au buckminsterfullerene C 60 , voir Figure 9). Grâce aux travaux de Wagner [START_REF] Wagner | On Means of Distances on the Surface of a Sphere. II. Upper Bounds[END_REF] et de Saff et Kuijlaars [START_REF] Kuijlaars | Asymptotics For Minimal Discrete Energy on the Sphere[END_REF], nous savions que, quand n → +∞, 

E log (n) = 1 2 -log 2 n 2 - n 2 log n + O(n).
E log (n) = 1 2 -log 2 n 2 - n 2 log n + Cn + o(n),
constante qui est conjecturée être égale à

C BHS := 2 log 2 + 1 2 log 2 3 + 3 log √ π Γ(1/3)
par Brauchart, Hardin et Saff [START_REF] Brauchart | The Next-Order Term for Optimal Riesz and Logarithmic Energy Asymptotics on the Sphere[END_REF], via une autre conjecture sur l'énergie de Riesz sur la sphère.

Ainsi, dans [9], en collaboration avec Etienne Sandier, et c'est l'objet du Théorème 4.7.5 du Chapitre 4, nous avons démontré la conjecture de Rakhmanov, Saff et Zhou, c'est-à-dire l'existence de la constante C, à partir des travaux de Sandier et Serfaty [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF][START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF] portant sur les gaz de Coulomb bidimensionnels où ils étudient le développement asymptotique, quand le nombre de points n tend vers l'infini, du minimum du Hamiltonien d'un système de n points (x 1 , ..., x n ) de R 2 défini par

w n (x 1 , ..., x n ) := - n i =j log x i -x j + n n i=1 V (x i ), où • désigne la norme euclidienne sur R 2 et V : R 2 → R est un potentiel confinant suffisamment régulier. Comme on a, pour µ n = 1 n n i=1 δ x i et ∆ = {(x, x); x ∈ R 2 }, w n (x 1 , ..., x n ) = n 2 R 4 \∆ V (x) 2 + V (y) 2 -log x -y dµ n (x)dµ n (y) ,
il est indispensable de connaître la distribution limite minimisant l'énergie suivante, définie sur l'ensemble M 1 (R 2 ) des mesures de probabilités sur R 2 :

I V (µ) := R 4 V (x) 2 + V (y) 2 -log x -y dµ(x)dµ(y).
Dans [START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF], le potentiel V est supposé fortement confinant, c'est-à-dire que

lim x →+∞ {V (x) -2 log x } = +∞,
et cela implique, par des arguments classiques de Théorie Logarithmique du Potentiel [START_REF] Frostman | Potentiel d'équilibre et capacité des ensembles[END_REF][START_REF] Saff | of Grundlehren der Mathematischen Wissenschaften[END_REF] qu'il existe une unique mesure d'équilibre µ V minimisant I V et dont le support Σ V est compact. De plus, si V est assez régulier, alors µ V est absolument continue par rapport à la mesure de Lebesgue, i.e.

dµ V (x) = m V (x)dx.
Ainsi, en écrivant µ n = (µ nµ V ) + µ V et en utilisant les équations d'Euler-Lagrange 18 associées au problème de minimisation min une énergie d'interaction de type "coulombienne" entre les points de Λ qui apparaît naturellement dans l'étude des interactions entre vortex dans les supraconducteurs de type II dans la théorie de Ginzburg-Landau, comme expliqué dans [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF][START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF][START_REF] Serfaty | Ginzburg-Landau Vortices, Coulomb Gases, and Renormalized Energies[END_REF][START_REF] Serfaty | Coulomb Gases and Ginzburg-Landau Vortices[END_REF]. C'est d'ailleurs l'analogue de l'énergie de Dirichlet pour un champ de vecteurs dans L p loc (R 2 , R 2 ), 1 < p < 2, ayant des singularités.

M 1 (R 2 ) I V (µ), de la forme ζ(x) = 0 quasi- partout 19 sur Σ V et ζ(x) ≥ 0 quasi-partout sur R 2 , on obtient w n (x 1 , ..., x n ) = n 2 I V (µ V ) - n 2 log n + 1 π W (∇H ′ n , 1 R 2 ) + 2n n i=1 ζ(x i ), où H ′ n := -2π∆ -1 (ν ′ n -µ ′ V ) avec x ′ := √ nx les coordonnées blow-up, m ′ V (x) := m V (x/ √ n), dµ ′ V (x ′ ) := m ′ V (x ′ )dx ′ la mesure dans les coordonnées blow-up et W une énergie dite "renormalisée" définie par W (E, χ) = lim η→0 1 2 R 2 \∪ p∈Λ B(p,η) χ(x) E(x) 2 dx + π log η p∈Λ χ(p) , pour toute fonction continue χ et tout champ de vecteurs E vérifiant div E = 2π(ν -m) et curl E = 0 où ν = p∈Λ δ p avec Λ ⊂ R
Ainsi, par une méthode de Γ-convergence, Sandier et Serfaty [START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF] ont montré que, si (x 1 , ..., x n ) minimise w n pour chaque n, alors 

lim n→+∞ 1 n 1 π W (∇H ′ n , 1 R 2 ) + 2n n i=1 ζ(x i ) = α V := 1 π min A 1 W - 1 2 R 2 m V (x) log m V (x)
W (E) = lim sup R→+∞ W (E, χ B R ) |B R | ,
avec χ B R des fonctions cutoff ayant pour support la boule centrée en 0 et de rayon R.

Dès lors, quand n → +∞, on a l'asymptotique du minimum de w n donnée par

min {x i }∈R 2n w n (x 1 , ..., x n ) = n 2 I V (µ V ) - n 2 log n + α V n + o(n).
Dans [9], notre travail a été de redémontrer cette formule, en utilisant les mêmes techniques que dans [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF][START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF] -et c'est l'objet du Théorème 4.6.1 de notre Chapitre 4 -mais pour un potentiel V faiblement confinant, c'est-à-dire vérifiant lim inf

x →+∞ V (x) -log(1 + x 2 ) > -∞.
Dans ce cas-là, des travaux récents de Hardy et Kuijlaars [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF][START_REF] Hardy | Weakly Admissible Vector Equilibrium Problems[END_REF] d'un côté et Bloom, Levenberg et Wielonsky [START_REF] Bloom | Logarithmic Potential Theory and Large Deviation[END_REF] de l'autre ont permis de montrer à la fois l'existence d'une mesure d'équilibre µ V dont le support peut être R 2 tout entier, mais aussi les équations d'Euler-Lagrange associées 21 . Nous avons donc pu généraliser, dans notre Théorème 4.6.1, l'asymptotique démontrée dans [START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF] à une classe de potentiels plus généraux 22 dont fait partie 

V (x) = log(1 + x 2 ),
V = R 2 , est dµ V (x) = dx π(1 + x 2 ) 2 .
Dès lors, en remarquant, par projection stéréographique, que l'étude de E log sur la sphère revient à étudier w n avec ce potentiel V particulier, on obtient notre Théorème 4.7.5, c'est-à-dire l'asymptotique, quand n → +∞ :

E log (n) = 1 2 -log 2 n 2 - n 2 log n + 1 π min A 1 W + log π 2 + log 2 n + o(n),
ce qui permet de démontrer la conjecture de Rakhmanov, Saff et Zhou, c'est-à-dire l'existence de

C = 1 π min A 1 W + log π 2 + log 2,
qui est effectivement une constante car min

A 1 W est atteint.
Enfin, Sandier et Serfaty [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF] ont conjecturé que le minimum de W parmi les configurations de A 1 , c'est-à-dire les configurations de densité moyenne 1, est atteint pour le réseau triangulaire -aussi appelé dans ce contexte réseau d'Abrikosov 23 -Λ 1 de densité 1. En effet, le fait de soumettre un matériau supraconducteur de type II à un champ magnétique le traversant fait apparaître des vortex, quand l'intensité de ce champ est suffisamment fort, qui se placent sur un réseau triangulaire parfait (voir Figure 11). 

Introduction

As explained by Blanc and Lewin [START_REF] Blanc | The Crystallization Conjecture : A Review[END_REF], the crystallization problem, that is to say to understand why the particles structures are periodic at low temperature, is difficult and still open in the main cases. Theil [START_REF] Theil | A Proof of Crystallization in Two Dimensions[END_REF] exhibited a radial parametrized long-range potential with the same form as the Lennard-Jones potential such that the triangular lattice is the ground state of the total energy in the sense of thermodynamic limit. This kind of potential, parametrized by a real α > 0, is larger than α -1 close to the origin, corresponding to exclusion Pauli's principle, it has a well centred in 1 and a 2α width, its second derivative at 1 is strictly positive and its decay at infinity is r → αr -7 . Thus, as small is α, as close to 1 is the mutual distance between nearest neighbours of the ground state configuration and the interactions between distant points are negligible.

In this chapter, our idea is to present a parametrized potential very close to this one, with the most natural possible assumptions, such that a given Bravais lattice L of R d is a "N-compact" local minimum for the total energy of interaction. This kind of local minimality is called "N-compact" because, given a maximal number N of points that we want to move a little bit, there exists a maximal perturbation of the points which gives a larger total energy of interaction, in the sense of the difference of energies is positive. Moreover, as small is the parameter, as large the number N can be taken. We strongly inspire Theil's potential, keeping only local assumptions and strong parametrized decay. Furthermore, our work can be related to that of Torquato et al. about targeted selfassembly [START_REF] Rechtsman | Designed Interaction Potentials via Inverse Methods for Self-Assembly[END_REF][START_REF] Torquato | Inverse Optimization Techniques for Targeted Self-Assembly[END_REF] where they search radial potentials such that a given configuration -more precisely a part of a lattice -is a ground state for the total energy of interaction.

After defining the concepts and our parametrized potentials, we give the theorem, its proof and some important remarks and applications. • denote the Euclidean norm and ♯A is the cardinal of set A. Moreover, we call λ 1 := min{ x ; x ∈ L * }, where L * = L\{0}, and λ 2 := min{ x ; x > λ 1 , x ∈ L}. Furthermore, for a Bravais lattice L ⊂ R d , we define the following both lattice sums, for n > d,

ζ * L (n) := x∈L x >λ 1 x -n , ζL (n) := x∈L x >λ 1 ( x -λ 1 ) -n .
Definition 1.2.2. Let L ⊂ R d be a Bravais lattice, B ⊂ L be a finite subset and α be a real such that 0 < α < λ 1 /2. We say that B α , with

♯B α = ♯B, is an α-compact perturbation of B if ∀b ∈ B, ∃!b α ∈ B α such that b -b α ≤ α.
Moreover, if B α is an α-compact perturbation of B ⊂ L, we write L α (B) := (L\B)∪B α the perturbed lattice.

Definition 1.2.3. Let d ∈ N * . We say that V : R * + → R is a d-admissible potential if V is a C 3 function and, for any Bravais lattice L ⊂ R d , x∈L * |V ( x )| + x∈L * x |V ′ ( x )| + x∈L * x 2 |V ′′ ( x )| + x∈L * x 3 |V ′′′ ( x )| < +∞. Remark 1.2.1. If, for any k ∈ {0, 1, 2, 3}, |V (k) (r)| = O(r -p k ), p k > d + k, then V is d-admissible.
Definition 1.2.4. Let L be a Bravais lattice of R d , V be a d-admissible potential and N ∈ N * . We say that L is a N-compact local minimum for the total V -energy if for any subset B ⊂ L such that ♯B ≤ N, there exists α 0 > 0 such that for any α ∈ [0, α 0 ) and any α-compact perturbation B α of B, 

∆ α L (V ; B) := b α ∈B α y∈L α (B) y =b α V ( b α -y ) - b∈B x∈L x =b V ( b -x ) ≥ 0.
∃r 0 ∈ [λ 1 , λ 2 ), ∃ε > 0, ∃p > d + 1 such that for any r > r 0 , |V ′′′ θ (r)| ≤ θ 1+ε r -p-2 ; 3.
Local convexity around first neighbours : V ′′ θ (λ 1 ) > 0 is independent of θ ; 4. Bounded third derivative : there exists M > 0, independent of θ, such that, for any

λ 1 /2 < r < λ 2 , |V ′′′ θ (r)| ≤ M.
Theorem 1.3.1. Let L ⊂ R d be a Bravais lattice, then for any N ∈ N * , there exists θ 0 > 0 such that for every θ ∈ [0, θ 0 ] and every parametrized L-potential V θ , L is a Ncompact local minimum for the total V θ -energy. Furthermore, in this case, the maximal perturbation α 0 can be chosen equal to θ. i , and x ∈ L such that xy ≤ α 0 , we define α i,x := b α 0 iyb ix . We assume, without loss of generality, that max i,x |α i,x | = 2α 0 , left to decrease α 0 . We set θ ∈ [0, λ 1 /2) and V θ a L-parametrized potential. We have

∆ α 0 L (V θ ; B) = α i,x V ′ θ ( b i -x ) ≥ V ′ θ (λ 1 )   N i=1 x∈S i L α i,x   -2α 0 θ 1+ε N i=1 x∈L i L 1 b i -x p , 1 2 N i=1 x∈L x =b i α 2 i,x V ′′ θ ( b i -x ) ≥ V ′′ θ (λ 1 ) 2   N i=1 x∈S i L α 2 i,x   -2α 2 0 θ 1+ε N i=1 x∈L i L 1 b i -x p+1 . As x∈L * x V ′ θ ( x ) = 0, we have V ′ θ (λ 1 ) = - 1 m(λ 1 )λ 1 x∈L |x|>λ 1 x V ′ θ ( x ). As L is a
Bravais lattice, for any 1 ≤ i ≤ N, ♯S i L = m(λ 1 ) and we obtain

V ′ θ (λ 1 )   N i=1 x∈S i L α i,x   ≤ 1 m(λ 1 )λ 1   x∈L 0 L x |V ′ θ ( x )|     N i=1 x∈S i L |α i,x |   ≤ 2α 0 θ 1+ε N λ 1 ζ * L (p -1).
As L is a Bravais lattice, we have, for any b i ∈ B ⊂ L and any p > d,

x∈L i L 1 b i -x p = ζ * L (p),
and it follows that

N i=1 x∈L x =b i α i,x V ′ θ ( b i -x ) ≥ -2α 0 θ 1+ε N λ -1 1 ζ * L (p -1) + ζ * L (p) . Since max i,x |α i,x | = 2α 0 , it is clear that N i=1 x∈S i L α 2 i,x ≥ 4α 2 0
, and we obtain

1 2 N i=1 x∈L x =b i α 2 i,x V ′′ θ ( b i -x ) ≥ 2V ′′ θ (λ 1 )α 2 0 -2Nα 2 0 θ 1+ε ζ * L (p + 1). Now we remark that - 1 6 N i=1 x∈L x =b i |α i,x | 3 V ′′′ θ i,x ≥ - 4 3 α 3 0 N i=1 x∈L x =b i V ′′′ θ i,x . Moreover, N i=1 x∈L x =b i V ′′′ θ i,x = N i=1 x∈S i L V ′′′ θ i,x + N i=1 x∈L i L V ′′′ θ i,x ≤ MNm(λ 1 ) + θ 1+ε N i=1 x∈L i L 1 ( b i -x -|α i,x |) p+2 ≤ MNm(λ 1 ) + θ 1+ε N ζL (p + 2), because |α i,x | < λ 1 .
Finally we get, for any 0 ≤ α 0 < λ 1 /2 and every 0

≤ α ≤ α 0 , ∆ α L (V θ ; B) ≥2V ′′ θ (λ 1 )α 2 0 -2N α 2 0 θ 1+ε ζ * L (p + 1) + 2 3 Mα 3 0 m(λ 1 ) + 2 3 α 3 0 θ 1+ε ζL (p + 2) +α 0 θ 1+ε λ -1 1 ζ * L (p -1) + ζ * L (p) .
Given θ ∈ [0, λ 1 /2), if we choose α 0 = θ, then there exist positive real A, C, D, E, independent of θ, such that

∆ θ L (V θ ; B) ≥ 2V ′′ θ (λ 1 )θ 2 -N Aθ 2+ε + Cθ 3 + Dθ 3+ε + Eθ 4+ε . (1.3.1)
As V ′′ θ (λ 1 ) > 0 is also independent of θ, there exists θ 0 ∈ [0, λ 1 /2), depending on N, sufficiently small such that for any θ ∈ [0, θ 0 ] and for any α ∈ [0, θ], ∆ α L (V θ ; B) ≥ 0 and then L is a N-compact local minimum for the total V θ -energy, for any parametrized L-potential V θ .

Remarks

1. Zero pressure condition and local minimality among dilated of L. As explained for instance in [4], if

E V θ [L] := x∈L * V θ ( x )
is the energy per particle of L, i.e. the free energy at zero temperature, then, by usual thermodynamics formula, we define pressure P and isothermal compressibility κ T by

P := - dE V θ [L] dA = - 1 2A x∈L * x V ′ θ ( x ), 1 κ T := -A dP dA = A d 2 E V θ [L] dA 2 = 1 4A x∈L * x 2 V ′′ θ ( x ) -x V ′ θ ( x ) .
where A is the area of L (i.e. the inverse of the density of points of L). As we want to have L as a N-compact local minimum for arbitrary large N in an infinite volume, it is thermodynamically natural -for instance if L is the cooling of an ideal gas -to suppose P = 0 at zero temperature, which gives a kind of justification of the necessity of the zero pressure condition 1. in Definition 1.3.1.

Moreover, we know that κ T > 0 (see [START_REF] Stølen | Chemical Thermodynamics of Materials[END_REF]Section 5.1]), therefore

x∈L * x 2 V ′′ θ ( x ) > 0.
Actually, that follows here from assumptions on V θ , if L is a N-compact local minimum for the total V θ -energy with N sufficiently large. Indeed, by assumption, we have, for θ sufficiently small,

x∈L * x 2 V ′′ θ ( x ) ≥ m(λ 1 )λ 1 V ′′ θ (λ 1 ) -θ 1+ε ζ * L (p + 1) > 0. Now if we consider f : r → E V θ [rL],
we get, by P = 0 and κ T ≥ 0, f ′ (1) = 0 and f ′′ (1) > 0 and L is a local minimum of L → E per [V θ ; L] among its dilated, which seems natural if L is a N-compact local minimum for the total V θ -energy for N sufficiently large. We remark that this hypothesis is assumed in Theil's paper [START_REF] Theil | A Proof of Crystallization in Two Dimensions[END_REF].

However, the reverse is false. A Bravais lattice can be a local minimum among its dilated for the energy per point but not a N-compact local minimum for the total energy. For instance, if d = 1, L = Z, N = 1 and V defined by

V (r) = 0 for r ≥ 5/2, V ′ (1) = V ′ (2) = 0, V ′′ (1) = -1 and V ′′ (2) = 1/3. We have x∈Z * |x|V ′ (|x|) = 0 and x∈Z * |x| 2 V ′′ (|x|) = 2/3 ≥ 0 hence Z is a local minimum, among its dilated, of the
V -energy per point. For α ≥ 0, we estimate, by Taylor expansion,

∆ α (V ; L) = x∈Z * [V (|x -α|) -V (|x|)] = V (1 -α) + V (1 + α) -2V (1) + V (2 -α) + V (2 + α) -2V (2) = α 2 V ′′ (1) + α 2 V ′′ (2) + α 2 φ(α) = α 2 (-2/3 + φ(α))
where φ(α) goes to 0 as α → 0. Hence for α < α 0 sufficiently small, -2/3 + φ(α) < 0 and Z is not a 1-compact local minimum of the total V -energy.

2. Effects of parameters ε, p and V ′′ θ (λ 1 ). By (1.3.1), our assumptions on V θ give indications about the stability of lattice L :

-Range : a larger p or a larger ε allows to take a larger perturbation α 0 for fixed N, i.e. a better "collapse" at infinity implies a stronger stability of the lattice ; -Second derivative around nearest-neighbours distance : a larger V ′′ θ (λ 1 ) also allows a larger perturbation α 0 for fixed N. Typically, a narrow well around λ 1 "catches" the first neighbours of the minimizing configuration at distance λ 1 .

3. Difference between the collapse after the first distance and the perturbation. We can see, for θ < 1, that θ 1+ε << θ, i.e. the collapse is really smaller than the perturbation and this allows to do not assume a local behaviour of V θ around λ 1 with respect to θ, as in Theil's work. Obviously, if θ = 0 then V 0 (r) = 0 for any r > r 0 and V ′ 0 (λ 1 ) = 0, therefore λ 1 is a local minimum of V 0 and the potential is short-range : only the first neighbours interact and the N-compact local minimality is clear for any N with a perturbation α 0 as small as N is large.

4.

A kind of Cauchy-Born rule. Our result can be viewed like a justification of a kind of Cauchy-Born rule (see [START_REF] Ortner | Justification of the Cauchy-Born Approximation of Elastodynamics[END_REF][START_REF] Ming | Cauchy-Born Rule and the Stability of Crystalline Solids : Static Problems[END_REF]). Indeed, if we consider a solid as a Bravais lattice L where the inside is a finite part of L with cardinal N and the rest is its boundary, a small linear perturbation of the inside, depending on N, increases the total energy of interaction in the solid. That is to say that the inside of the solid follows its boundary to a stable configuration. 

= 2, V ′′ θ (1) = 1, M = 1, p = 4 ; ε = 1 and L is the triangular lattice of length 1, i.e. L = A 2 = Z(1, 0) ⊕ Z(1/2, √ 3/2), then we get ζ * L (p -1) ≈ 4.9616984, ζ * L (p) ≈ 1.710774, ζ * L (p + 1) ≈ 0.761895, ζL (p + 2) ≈ 15.50957. Hence, by (1.3.1), we have ∆ θ A 2 (V θ ; B) ≥ 2θ 2 1 -N(10.3397θ 3 + 0.761895θ 2 + 10.67247θ 3 ) .
For any k ∈ N, if N = 10 k , then the maximal perturbation is a least θ 0 ≈ 10 -k-1 and the collapse is at least

θ 1+ε 0 ≈ 10 -2k-2 . Actually, (1.3.1) is true for any θ ∈ [0, θ 0 ] if θ 0 ≤ V ′′ θ (λ 1 ) Φ 1/ε × N -1/ε where Φ = ζ * L (p + 1) + 2 3 m(λ 1 )M + 2 3 ζL (p + 2) + λ -1 1 ζ * L (p -1) + ζ * L (p)
, which gives a computable lower bound of a maximal perturbation of a finite set with cardinal N.

Introduction and statement of the main results

The two-dimensional crystallization phenomenon -that is to say the formation of periodic structures in matter, most of the time at very low temperatures, -is well known and observed. For instance, similarly to [START_REF] Nosenko | Nonlinear Interaction of Compressional Waves in a 2D Dusty Plasma Crystal[END_REF], the following may be mentioned : Langmuir monolayers, Wigner crystal1 , rare gas atoms adsorbed on graphite, colloidal suspensions, dusty plasma and, from another point of view, vortices in superconductors. In all these cases, particle interactions are complex (quantum effects, kinetic energy, forces related to the environment) and this implies that the physical and mathematical understanding of this kind of problem is highly complicated. However, we would like to know the precise mechanisms that favour the emergence of these periodic structures in order to predict crystal shapes or to build new materials.

Semiempirical model potential with experimentally determined parameters are widely used in various physical and chemical problems, and for instance in Monte Carlo simulation studies of clusters and condensed matter. A widespread model is the radial potential, also called "two-body potential", which corresponds to interaction only depending on distances between particles. This kind of potential, based on approximations, seems to be effective to show the behaviour of matter at very low temperature, when potential energy dominates the others. There are many examples, that can be found in [START_REF] Kaplan | Intermolecular Interactions : Physical Picture, Computational Methods, Model Potentials[END_REF], but they are usually constructed, except for very simple models such as Hard-sphere, with inverse power laws and exponential functions, which are easily calculated with a computer if we consider a very large number of particles. For instance we can cite :

-the Lennard-Jones potential r → a 2 r x 2 -

a 1 r x 1
, where the attractive term corresponds to the dispersion dipole-dipole (van der Waals : ∼ r -6 ) interaction, initially proposed by Lennard-Jones [START_REF] Lennard-Jones | The Determination of Molecular Fields II. From the Equation of State of a Gas[END_REF] to study the thermodynamic properties of rare gases and now widely used to study various systems, the best know being for (x 1 , x 2 ) = (6, 12) ; -the Buckingham potential r → a 1 e -αra 2 r 6 -a 3 r 8 proposed by Buckingham [START_REF] Buckingham | The Classical Equation of State of Gaseous Helium, Neon and Argon[END_REF] and including attractive terms due to the dispersion dipole-dipole (∼ r -6 ) and dipole-quadrupole (∼ r -8 ) interactions, and repulsive terms approximated by an exponential function ;

-the purely repulsive screened Coulomb potential r → a e -br r , also called "Yukawa potential", proposed by Bohr [START_REF] Bohr | The Penetration of Atomic Particles Through Matter[END_REF] for short atom-atom distances and used for describing interactions in colloidal suspensions, dusty plasmas and Thomas-Fermi model for solids [START_REF] Blanc | A Numerical Investigation of the 2-Dimensional Crystal Problem[END_REF]10] ; -the Born-Mayer potential r → ae -br used by Born and Mayer [START_REF] Born | Zur Gittertheorie der Ionenkristalle[END_REF] in their study of the properties of ionic crystals in order to describe the repulsion of closed shells of ions. Many mathematical works2 were conducted with various assumptions on particles interaction : hard sphere potentials [START_REF] Heitmann | The Ground State for Sticky Disks[END_REF][START_REF] Radin | The Ground State for Soft Disks[END_REF] ; oscillating potentials [START_REF] Süto | Crystalline Ground States for Classical Particles[END_REF] ; radial (parametrized or not) potentials [START_REF] Ventevogel | On the Configuration of Systems of Interacting Particle with Minimum Potential Energy per Particle[END_REF][START_REF] Theil | A Proof of Crystallization in Two Dimensions[END_REF][START_REF] Li | On the Crystallization of 2D Hexagonal Lattices[END_REF][START_REF] Yeung | Minimizing Atomic Configurations of Short Range Pair Potentials in Two Dimensions : Crystallization in the Wulff Shape[END_REF] ; molecular simulations with radial potentials [START_REF] Marcotte | Unusual Ground States via Monotonic Convex Pair Potentials[END_REF][START_REF] Rechtsman | Optimized Interactions for Targeted Self-Assembly : Application to a Honeycomb Lattice[END_REF][START_REF] Blanc | A Numerical Investigation of the 2-Dimensional Crystal Problem[END_REF] ; three-body (radial and angle parts) potentials [START_REF] Mainini | Finite Crystallization in the Square Lattice[END_REF][START_REF] Mainini | Crystallization in Carbon Nanostructures[END_REF][START_REF] Mainini | Crystalline and Isoperimetric Square Configurations[END_REF] ; radial potentials and crystallization among Bravais lattices (Number Theory results and applications) [START_REF] Ennola | A Lemma about the Epstein Zeta-Function[END_REF][START_REF] Rankin | A Minimum Problem for the Epstein Zeta-Function[END_REF][START_REF] Cassels | On a Problem of Rankin about the Epstein Zeta-Function[END_REF][START_REF] Osgood | Extremals of Determinants of Laplacians[END_REF][START_REF] Gruber | Application of an Idea of Voronoi to Lattice Zeta Functions[END_REF][START_REF] Coulangeon | Energy Minimization, Periodic Sets and Spherical Designs[END_REF][START_REF] Coulangeon | Spherical Designs and Zeta Functions of Lattices[END_REF]32,[START_REF] Sarnak | Minima of Epstein's Zeta Function and Heights of Flat Tori[END_REF][START_REF] Montgomery | Minimal Theta Functions[END_REF]10] ; vortices, in superconductors, among Bravais lattice configurations [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF][START_REF] Zhang | On the Minimizer of Renormalized Energy related to Ginzburg-Landau Model[END_REF]9]. Writing these problems in terms of energy minimization is common to all these studies. Furthermore, in many cases, triangular lattices (also called "Abrikosov lattices" in Ginzburg-Landau theory [START_REF] Abrikosov | The Magnetic Properties of Superconducting Alloys[END_REF], or sometimes "hexagonal lattices"), which achieves the best-packing configuration in two dimensions, is a minimizer for the corresponding energy.

A clue to understanding this optimality, which is claimed by Cohn and Kumar [30, p. 139]3 , is the fact that triangular lattice minimizes, among Bravais lattices, at fixed density, energies

L → E f [L] := p∈L\{0} f ( p 2 )
where • denotes Euclidean norm in R 2 and f : R * + → R is a completely monotonic function, i.e. ∀k ∈ N, ∀r ∈ R * + , (-1) k f (k) (r) ≥ 0. Moreover, Cohn and Kumar conjectured, in [START_REF] Cohn | Universally Optimal Distribution of Points on Spheres[END_REF]Conjecture 9.4], that the triangular lattice seems to minimize energies E f among complex lattices, i.e. union of Bravais lattices, with a fixed density. Hence, it is not surprising, as for the Lennard-Jones potential we studied in [10], that some non-convex sums of completely monotonic functions give triangular minimizer for their energies at high fixed density. We observed this behaviour in works of Torquato et al. [START_REF] Marcotte | Unusual Ground States via Monotonic Convex Pair Potentials[END_REF][START_REF] Rechtsman | Optimized Interactions for Targeted Self-Assembly : Application to a Honeycomb Lattice[END_REF]. However, it is important to distinguish mathematical results and physical consistency. Indeed, at very high density i.e. when particles are sufficiently close, kinetic and quantum effects cannot be ignored and our model fails. For instance, Wigner crystal appears if the density is sufficiently low and matter obviously cannot be too condensed. Nevertheless, this kind of result is interesting, whether in Number Theory or in Mathematical Physics and this study of energy among Bravais lattices is the first important step in the search for global ground state, i.e. minimizer among all configurations. For instance, we have recently found in [9] a deep connexion between the behaviour of vortices in the Ginzburg-Landau theory, which is studied by Sandier and Serfaty [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF][START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF][START_REF] Serfaty | Ginzburg-Landau Vortices, Coulomb Gases, and Renormalized Energies[END_REF], and optimal logarithmic energy on the unit sphere related to Smale 7th Problem. Thus the optimality of triangular lattice, among Bravais lattices, for a renormalized energy W , which is a kind of Coulomb energy between points in the whole plane, gives important information about optimal asymptotic expansion of spherical logarithmic energy thanks to works by Saff et al. [START_REF] Rakhmanov | Minimal Discrete Energy on the Sphere[END_REF][START_REF] Brauchart | The Next-Order Term for Optimal Riesz and Logarithmic Energy Asymptotics on the Sphere[END_REF].

The aim of this chapter is to prove this minimality of triangular lattice at high density, with the same strategy as in our previous work [10], that is to say the use of Montgomery result [START_REF] Montgomery | Minimal Theta Functions[END_REF] about optimality of triangular lattice at a fixed density for theta functions

L → θ L (α) := p∈L\{0} e -2πα p 2 ,
for some general admissible 4 potentials f , summable on lattices and such that their inverse Laplace transforms µ f exist on [0, +∞). Hence, as in the classical "Riemann's trick" that we used in [10], we can write an integral representation of energy E f which we deduce a sufficient condition for minimality of triangular lattice among Bravais lattices of fixed density 5 . This is precisely the aim of our first main theorem, which we now state.

Theorem 2.1.1. For any admissible potential f , for any A > 0 and any Bravais lattice L of area A, there exists a constant C A , which not depends on L, such that

E f [L] = π A +∞ 1 θ L y 2A -1 y -1 µ f π yA + µ f πy A dy + C A (2.1.1)
where µ f is the inverse Laplace transform of f . Moreover, if

y -1 µ f π yA + µ f πy A ≥ 0 a.e. on [1, +∞) (2.1.2)
then the triangular lattice of area A, i.e.

Λ A = 2A √ 3 Z(1, 0) ⊕ Z(1/2, √ 3/2) , is the unique minimizer of L → E f [L],
up to rotation, among Bravais lattices of fixed area A.

Sufficient condition (2.1.2) can be applied for some general functions f . More precisely, we will consider the following potentials 6 , defined for r > 0, which we will explain the interest throughout the chapter : -Sums of screened coulombian potentials :

ϕ a,x (r) = n i=1 a i e -x i r r , 4.
A rigorous definition will be given in preliminaries. 5. Actually, as in [10], we will write all our results in terms of area, that is to say the inverse of the density.

6. It is important to distinguish potential f and the function r → f (r 2 ) that we sum on lattices to compute E f . with 0 < x 1 < x 2 ... < x n , a i ∈ R * for all 1 ≤ i ≤ n and n i=1 a i ≥ 0 ; -Sums of inverse power laws :

V a,x (r) = n i=1 a i r x i , with 1 < x 1 < x 2 < ... < x n , a i ∈ R * for all 1 ≤ i ≤ n and a n > 0 ;
-Potentials with exponential decay :

f a,x,b,t (r) = V a,x (r) + m j=1 b j e -t j √ r , with 3/2 < x 1 < x 2 < ... < x n , a i ∈ R * + for all 1 ≤ i ≤ n, a n > 0, b j ∈ R * and t j ∈ R *
+ for all 1 ≤ j ≤ m. Thus, even though our method is not optimal (see Section 2.4.3), we will give explicit area bounds in Propositions 2.5.1, 2.6.3, 2.6.10 and 2.7.2, with respect to potential parameters, below which minimizer is triangular. Furthermore, we give conditions on parameters, for potentials ϕ AR a,x and V LJ a,x in order to get a triangular global minimizer, i.e. without area constraint, in particular when the potential has a well. This is the aim of our second theorem.

Theorem 2.1.2. Let functions ϕ a,x , ϕ AR a,x , V a,x , V LJ a,x and f a,x,b,t be defined as before.

A. Minimality at high density. If f ∈ {ϕ a,x , V a,x , f a,x,b,t } then there exists A 0 > 0 such that for any 0 < A ≤ A 0 , Λ A is the unique minimizer, up to rotation, of

L → E f [L]
among Bravais lattices of fixed area A.

B. Global optimality without an area constraint. We have the following two cases 1. Let ϕ AR a,x be the attractive-repulsive potential defined by

ϕ AR a,x (r) = a 2 e -x 2 r r -a 1 e -x 1 r r , where 0 < a 1 < a 2 and 0 < x 1 < x 2 . If a 1 , a 2 , x 1 , x 2 satisfy a 1 1 + x 1 x 2 π a 2 (1 + π) e 1- x 1 x 2 π ≥ 1 and a 1 (a 1 x 2 + x 1 (a 2 -a 1 )π) a 2 x 2 (a 1 + (a 2 -a 1 )π) e 1- x 1 x 2 a 2 a 1 -1 π ≥ 1, (2.1.3)
then the minimizer of L → E ϕ AR a,x [L] among all Bravais lattices is unique, up to rotation, and triangular. In particular it is true if a 2 = 2a 1 and x 1 ≤ 0.695x 2 .

2. Let V LJ a,x be the Lennard-Jones type potential defined by

V LJ a,x (r) = a 2 r x 2 - a 1 r x 1 , with 1 < x 1 < x 2 and (a 1 , a 2 ) ∈ (0, +∞) 2 . We set h(t) = π -t Γ(t)t. If we have h(x 2 ) ≤ h(x 1 ) then the minimizer L a,x of L → E V LJ a,x [L]
among all Bravais lattices is unique, up to rotation, and triangular. Moreover its area is

|L a,x | = a 2 x 2 ζ Λ 1 (2x 2 ) a 1 x 1 ζ Λ 1 (2x 1 ) 1 x 2 -x 1 . In particular, it is true if (x 1 , x 2 ) ∈ {(1.5, 2); (1.5, 2.5); (1.5, 3); (2, 2.5); (2, 3)} 7 .
We proceed as follows, we start below with some preliminaries where we recall Montgomery result about optimality of Λ A for theta functions θ L and we give the definition of an admissible potential. Then we prove in Section 2.3 the optimality of Λ A for every A when f is completely monotonic and we give an example of strictly convex, decreasing and positive potential V such that Λ A is not a minimizer of E f for some A. Theorem 2.1.1 is proved in Section 2.4, with some general applications. Furthermore we discuss optimality and improvement of this method. Finally we prove our Theorem 2.1.2 in next sections where we present the interest, in molecular simulation, of studied potentials and we prove some additional results. Throughout the chapter, we give numerical values and examples.

7. See Section 2.6 for numerical values.

Preliminaries

Bravais lattices, zeta functions and theta functions

We briefly recall our notations [10]. Throughout this chapter, • will denote the Euclidean norm in R 2 . Let L = Zu ⊕ Zv be a Bravais lattice of R 2 , then by Engel's theorem (see [START_REF] Engel | Geometric Crystallography. An Axiomatic Introduction to Crystallography[END_REF]), we can choose u and v such that u ≤ v and ( u, v) ∈ π 3 , π 2 in order to obtain the uniqueness of the lattice, up to rotations and translations and the fact that the lattice is parametrized by its both first lengths u and v . Furthermore, if the positive definite quadratic form Q associated to lattice L is given by 

Q(m, n) := mu + nv 2 = am 2 + bmn + cn 2 , we call D = b 2 -4ac < 0 its discriminant. We note |L| = u ∧ v = u v |sin( u, v)| the area 8 of L which is in fact the area of its primitive cell. Let Λ A = 2A √ 3 Z(1, 0) ⊕ Z(1/2, √ 3 
ζ Z 2 (2s) = 4L -4 (s)ζ(s) = 4 -s+1 ζ(s) [ζ(s, 1/4) -ζ(s, 3/4)] , (2.2.1) 
ζ Λ 1 (2s) = 6 √ 3 2 s ζ(s)L -3 (s) = 6 √ 3 2 s 3 -s ζ(s) [ζ(s, 1/3) -ζ(s, 2/3)] , (2.
L, let θ L (α) := Θ L (iα) = p∈L e -2πα p 2 , (2.2.3)
where Θ L is the Jacobi theta function of the lattice L defined for Im(z) > 0. Then, for any α > 0, Λ A is the unique minimizer of L → θ L (α), up to rotation, among Bravais lattices of area A.

Remark 2.2.2. This result implies that the triangular lattice is the unique minimizer, up to rotation, of L → ζ L (s) among Bravais lattices with density fixed for any s > 2 which is also proved by Rankin [START_REF] Rankin | A Minimum Problem for the Epstein Zeta-Function[END_REF], Cassels [START_REF] Cassels | On a Problem of Rankin about the Epstein Zeta-Function[END_REF], Ennola [START_REF] Ennola | On a Problem about the Epstein Zeta-Function[END_REF] and Diananda [START_REF] Diananda | Notes on Two Lemmas concerning the Epstein Zeta-Function[END_REF].

Montgomery deduced this fact by the famous "Riemann's trick" (see [START_REF] Terras | Harmonic Analysis on Symmetric Spaces and Applications[END_REF] or [10] for a proof) : for any L such that D = 1 and any s > 1, 

ζ L (2s)Γ(s)(2π) -s = 1 s -1 - 1 s + ∞ 1 (θ L (α) -1)(α s + α 1-s ) dα α . ( 2 
(z) > 0} → R is admissible if : 1. there exists η > 1 such that |f (z)| = O(|z| -η ) as |z| → +∞ ;
2. f is analytic on {z ∈ C; Re(z) > 0} ;

3. we have µ f ≡ 0, where µ f is the inverse Laplace transform of f defined on (0, +∞).

If f is admissible, we define, for any Bravais lattice

L of R 2 , E f [L] := p∈L * f ( p 2 )
which is the quadratic energy per point of lattice L created by potential f . Remark 2.2.4. As a consequence of [79, Theorem 5.17, Theorem 5.18], we get, by direct application of inversion integral formula : -There exists an unique inverse Laplace transform µ f 9 , which is continuous on (0, +∞) ; -We have µ f (0) = 0.

Remark 2.2.5. This definition excludes two-dimensional Coulomb potential, defined by r →log r, because all its quadratic energies are infinite. However we can define a renormalized energy as in [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF] or in [START_REF] Hardin | Periodic Discrete Energy for Long-Range Potentials[END_REF].

Completely monotonic functions

The class of completely monotonic functions is central in our work. Indeed, as we will see in Section 2.3, these functions have good properties for our problem of minimization among lattices with fixed area thanks to the Montgomery Theorem 2.2.1. Definition 2.2.2. A function f : (0, +∞) → R + of type C ∞ is said to be completely monotonic if, for any k ∈ N and any r > 0, (-1) k f (k) (r) ≥ 0. 9. We will sometimes write L and L -1 for Laplace and inverse Laplace operators.

Examples 2.2.6. We can find a lot of examples of completely monotonic functions in [START_REF] Miller | Completely Monotonic Functions[END_REF]. Here we give only some interesting classical admissible potentials f :

-

V x (r) = r -x , x > 1 ; -V a,x (r) = n i=1 a i r -x i
where a i > 0 and x i > 1 for all i ;

-f α (r) = e -ar α , a > 0, α ∈ (0, 1], see [69, Corollary 1] ; -The modified Bessel functions of the second kind, i.e. one of the two solutions of

r 2 y ′′ + ry ′ -(r 2 + ν 2 )y = 0 which goes to 0 at infinity, is K ν (r) = +∞ 0 e -r cosh t cosh(νt)dt, ν ∈ R. Moreover, r → K ν ( √ r) is also completely monotonic. -V SC (r) = e -a √ r √ r , a > 0 ; -ϕ a (r) = e -ar r , a > 0.
Remark 2.2.7. We remark that if r → f (r) is completely monotonic, it is not generally the case for r → f (r 2 ). For instance r → e -r is completely monotonic, but r → e -r 2 does not check this property. Now we give the famous connection between completely monotonic function and Laplace transform due to Bernstein [START_REF] Bernstein | Sur les Fonctions Absolument Monotones[END_REF].

Theorem 2.2.8. (Hausdorff-Bernstein-Widder Theorem) A function f : R * + → R is completely monotonic if and only if it is the Laplace transform of a finite non-negative Borel measure µ on R + , i.e.

f (r) = L[µ](r) := +∞ 0 e -rt dµ(t).
Remark 2.2.9. If f is admissible and completely monotonic, then dµ(t) = µ f (t)dt and µ f (t) ≥ 0, a.e. on (0, +∞). Remark 2.2.10. We know that the positivity of the Fourier transform of a radial potential is a key point in crystallization problems. Indeed Nijboer and Ventevogel [START_REF] Ventevogel | On the Configuration of Systems of Interacting Particle with Minimum Potential Energy per Particle[END_REF] proved that it is a necessary condition for a periodic ground state and Süto [START_REF] Süto | Crystalline Ground States for Classical Particles[END_REF] studied potentials f such that f (k) ≥ 0 and f (k) = 0 for any k > R 0 and proved some interesting crystallization results at high densities. Unfortunately, as Likos [START_REF] Likos | Going to Ground[END_REF] explained, this kind of potential, oscillating and with inverse power law decay, seems to be difficult to achieve physically.

Actually it is more common to use Fourier transform in problems of minimization of lattice energy because we have the Poisson summation formula and the natural periodicity of sinus and cosinus. Furthermore, applications of classical formula allows to obtain some interesting results, as in [START_REF] Cohn | Universally Optimal Distribution of Points on Spheres[END_REF]Proposition 9.3]. However we will show in Section 2.4 that inverse Laplace transform also seems well adapted to our problem and gives simple calculations. Indeed, Fourier methods as in [START_REF] Cohn | Universally Optimal Distribution of Points on Spheres[END_REF][START_REF] Süto | Crystalline Ground States for Classical Particles[END_REF][START_REF] Süto | Ground State at High Density[END_REF] are good for more general minimization problems and our method seems to be a better choice for minimization among Bravais lattices because of the integral representation (2.1.1).

Cauchy's bound for positive root of a polynomial

In this part, we recall Cauchy's rule explained in [26, Note III, Scolie 3, page 388] for upper bound of polynomial's positive roots (see also [START_REF] Vigklas | Upper Bound on the Values of the Positive Roots of Polynomials[END_REF] for simple proof).

Theorem 2.2.11. (Cauchy's rule) Let P a polynomial of degree n > 0 defined by

P (X) = n i=0 α i X i , α n > 0,
where α i < 0 for at least one i, 0 ≤ i ≤ n-1. If λ is the number of negative coefficients, then an upper bound on the values of the positive roots of P is given by

M P := max i;α i <0 -λα i α n 1 n-i
Remark 2.2.12. This Theorem stays true for upper bound on the values of the positive zero of any function p defined by

p(y) = n i=1 α i y ν i , α n > 0
where 0 < ν 1 < ... < ν n are real numbers and we obtain

M p := max i;α i <0 -λα i α n 1 νn-ν i .
(2.2.5) This result will be useful for technical reasons in the following sections, because we will want positive zeros less than 1 to apply our sufficient condition in Theorem 2.1.1 and to prove Theorem 2.1.2.A.

Completely monotonic functions and optimality of Λ A

In this part we begin to state a simple fact connecting the positivity of inverse Laplace transform and minimality among lattices at fixed area. Furthermore we will give an example of strictly convex, decreasing, positive potential for which there exists areas so that the triangular lattice is not a minimizer among Bravais lattices with fixed area.

Optimality at any density

The following proposition, claimed by Cohn and Kumar in [30, page 139], is a natural consequence of Montgomery and Hausdorff-Bernstein-Widder Theorems.

Proposition 2.3.1. Let f be an admissible potential. If f is completely monotonic then, for any A > 0, Λ A is the unique minimizer, up to rotation, of

L → E f [L] = p∈L * f ( p 2 )
among lattices of fixed area A.

Proof. As f is admissible, we can write

f (r) = +∞ 0 e -rt µ f (t)dt,
and it follows that

E f [L] = p∈L * f ( p 2 ) = p∈L * +∞ 0 e -t p 2 µ f (t)dt = +∞ 0 p∈L * e -t p 2 µ f (t)dt = +∞ 0 θ L t 2π -1 µ f (t)dt.
Thus, we get 

E f [L] -E f [Λ A ] = +∞ 0 θ L t 2π -θ Λ A t 2π µ f (t)
-E Vx [L] = ζ L (2x),
x > 1 is the first natural example given by Montgomery in [START_REF] Montgomery | Minimal Theta Functions[END_REF],

-E Va,x [L] = n i=1 a i ζ L (2x i ) where a i > 0 and x i > 1 for all i, -E fα [L] = p∈L * e -a p 2α , α ∈ (0, 1], in particular E f 1/2 [L] = p∈L * e -a p , -E Kν ( √ .) [L] = p∈L * K ν ( p ) , ν ∈ R
which generalizes our study [10] of lattice energy with potential K 0 in Thomas-Fermi model case ;

-E V SC [L] =
p∈L * e -a p p , a > 0, which corresponds to lattice energy for screened

Coulomb potential interaction and it can explain the formation of triangular Wigner crystal at low density [START_REF] Grimes | Evidence for a Liquid-to-Crystal Phase Transition in a Classical, Two-Dimensional Sheet of Electrons[END_REF] ;

-E ϕa [L] = p∈L * e -a p 2 p 2 , a > 0.

Repulsive potential and triangular lattice

In this section we give an example of stricly convex decreasing positive radial potential V so that, for some areas, a minimizer of E V among Bravais lattices of fixed area cannot be triangular. As Ventevogel and Nijboer [START_REF] Ventevogel | On the Configuration of Systems of Interacting Particle with Minimum Potential Energy per Particle[END_REF] proved, a convex decreasing positive potential allows to obtain, in one dimension and for any fixed density, a dilated of lattice Z as unique minimizer among all configurations. Thus the two-dimensional case is deeply different.

Let

V (r) = 14 r 2 - 40 r 3 + 35 r 4 (2.3.1)
be the potential and

E V [L] = 14ζ L (4) -40ζ L (6) + 35ζ L (8)
be the quadratic energy per point of a Bravais lattice L.

Figure 2.2 -Graph of r → V (r 2 )
Proposition 2.3.4. (Strictly convex potential and non optimality of triangular lattice) Let V be given by (2.3.1), then -V is strictly positive, strictly decreasing and strictly convex on (0, +∞) ; -There exist

A 1 , A 2 such that Λ A is not a minimizer of E V among all Bravais lattices of area A ∈ (A 1 , A 2 ).
Proof. We have

V (r) = 14r 2 -40r + 35 r 4 and the discriminant of polynomial 14X 2 -40X + 35 is ∆ 1 = -360 < 0, hence V (r) > 0 on (0, +∞). We compute V ′ (r) = -4(7r 2 -30r + 35) r 5
and the discriminant of 7X 2 -30X + 35 is ∆ 2 = -80 < 0, therefore V ′ (r) < 0, i.e. V is strictly decreasing on (0, +∞). Moreover, we have V ′′ (r) = 4(21r 2 -120r + 175) r 6 and the discriminant of 21X 2 -120X + 175 is ∆ 3 = -300 < 0, then V ′′ (r) > 0 on (0, +∞), i.e. V is strictly convex on (0, +∞). For the second point, we have the following equivalences :

E V [L] ≥ E V [Λ A ] for any |L| = A ⇐⇒ 14ζ L (4) -40ζ L (6) + 35ζ L (8) ≥ 14ζ Λ A (4) -40ζ Λ A (6) + 35ζ Λ A (8) ≥ 0 for any |L| = A ⇐⇒ 14 A 2 (ζ L (4) -ζ Λ 1 (4)) + 40 A 3 (ζ L (6) -ζ Λ 1 (6)) + 35 A 4 (ζ L (8) -ζ Λ 1 (8)) ≥ 0 for any |L| = 1 ⇐⇒ 14 (ζ L (4) -ζ Λ 1 (4)) A 2 -40 (ζ L (6) -ζ Λ 1 (6)) A + 35 (ζ L (8) -ζ Λ 1 (8)) ≥ 0 for any |L| = 1 ⇐⇒ P L (A) ≥ 0 for any |L| = 1
where the discriminant of

P L (A) = 14 (ζ L (4) -ζ Λ 1 (4)) A 2 -40 (ζ L (6) -ζ Λ 1 (6)) A + 35 (ζ L (8) -ζ Λ 1 (8)) is ∆(L) = 1600 (ζ L (6) -ζ Λ 1 (6)) 2 -1960 (ζ L (4) -ζ Λ 1 (4)) (ζ L (8) -ζ Λ 1 (8)) .
For L = Z 2 the square lattice of area 1, we obtain ∆(Z 2 ) ≈ 24.231435 > 0 then there exist two positive numbers A 1 and A 2 such that P Z 2 (A) < 0 for any

A 1 < A < A 2 .
Hence, Λ A is not a minimizer of E V among Bravais lattices with any fixed area A such that A 1 < A < A 2 . More precisely we get A 1 ≈ 2.3152307 and A 2 ≈ 3.759353.

Remark 2.3.5. It follows, from the first part of the previous proof, that function r → V (r 2 ) is also strictly positive, strictly decreasing and strictly convex on (0, +∞).

Remark 2.3.6. Actually, the previous proof implies that, for any

A ∈ (A 1 , A 2 ), E V [ √ AZ 2 ] < E V [Λ A ].
Moreover, this interval seems numerically to be optimal, i.e. for any A ∈ [A 1 , A 2 ], Λ A seems to be the unique minimizer, up to rotation, of L → E f [L] among Bravais lattices of fixed area A.

Sufficient condition and first applications

Now we study the case of non completely monotonic potential f , i.e. µ f is negative on a subset of (0, +∞) of positive Lebesgue measure. Proof. Let L be a Bravais lattice of area A and f be an admissible potential. Firstly we prove the integral representation (2.1.1) of energy E f [L] :

E f [L] := p∈L * f ( p 2 ) = π A +∞ 1 θ L y 2A -1 y -1 µ f π yA + µ f πy A dy + π A +∞ 1 µ f π yA (y -1 -y -2 )dy.
Indeed, for a Bravais lattice L of R 2 with |L| = 1/2, we have, as in [10], by t = 2πu, u = y -1 and Montgomery's identity θ L (y -1 ) = yθ L (y) (proved in our annex) :

E f [L] := p∈L * f ( p 2 ) = p∈L * +∞ 0 e -t p 2 µ f (t)dt = 2π p∈L * +∞ 0 e -2πu p 2 µ f (2πu)dt = 2π +∞ 0 [θ L (u) -1] µ f (2πu)du = 2π 1 0 [θ L (u) -1] µ f (2πu)du + 2π +∞ 1 [θ L (u) -1] µ f (2πu)du = 2π +∞ 1 θ L (y -1 ) -1 µ f 2π y dy y 2 + 2π +∞ 1 [θ L (u) -1] µ f (2πu)du = 2π +∞ 1 [yθ L (y) -1] µ f 2π y dy y 2 + 2π +∞ 1 [θ L (u) -1] µ f (2πu)du = 2π +∞ 1 θ L (y)µ f 2π y dy y + 2π +∞ 1 [θ L (u) -1] µ f (2πu)du -2π +∞ 1 µ f 2π y dy y 2 = 2π +∞ 1 [θ L (y) -1] y -1 µ f 2π y + µ f (2πy) dy + 2π +∞ 1 µ f 2π y (y -1 -y -2 )dy.

Now we have, by change of variable

t = y -1 , +∞ 1 µ f 2π y (y -1 -y -2 )dy ≤ 1 0 |µ f (2πt)| (t -1 -1)dt < +∞,
because µ f is continuous on R * + , µ f (0) = 0 and t → t -1 is integrable in a neighbourhood of 0. Hence, for L such that |L| = A, we have

E f [L] = p∈L * f ( p 2 ) = p∈ L * f (2A p 2 ) where L = √ 2A L, | L| = 1/2. By identities µ f (k.) = 1 k µ f . k and θ L(s) = θ L s 2A , we get E f [L] = π A +∞ 1 θ L y 2A -1 y -1 µ f π yA + µ f πy A dy + π A +∞ 1 µ f π yA (y -1 -y -2 )dy
and

C A := π A +∞ 1 µ f π yA (y -1 -y -2
)dy is a finite constant which not depends on L. Now our sufficient condition is clear because, for any Bravais lattice L of area A, we have

E f [L] -E f [Λ A ] = π A +∞ 1 θ L y 2A -θ Λ A y 2A g A (y)dy.
By Montgomery theorem, θ L (u)θ Λ A (u) ≥ 0 for any u > 0 and any L. Thus, if

y -1 µ f π yA + µ f πy A ≥ 1 for a.e. y ≥ 1, then it follows that E f [L] -E f [Λ A ] ≥ 0,
and Λ A is the unique minimizer of E f , up to rotation, among lattices of fixed area A.

Minimization at high density for differentiable inverse

Laplace transform

In this part we give two results, in the case of differentiable inverse Laplace transform, which are based on our Theorem 2.1.1.

Proposition 2.4.1. Let f be an admissible potential such that µ f is of type

C 1 with derivative µ ′ f . If 1. µ f (y) ≥ 0 on π A , +∞ , 2. µ ′ f π A y ≥ 1 y 3 µ ′ f π Ay for any y ≥ 1,
then Λ A is the unique minimizer of E f , up to rotation, among Bravais lattices of fixed area A.

Proof. We write, for any y ≥ 1,

g A (y) := y -1 µ f π yA + µ f πy A = u A (y) y with u A (y) := µ f π yA + yµ f πy A .
Therefore, we get

u ′ A (y) = µ f πy A + πy A µ ′ f π A y -y -3 µ ′ f π Ay . Assumption 1. implies that µ f πy A ≥ 0 for any y ≥ 1. Moreover, it is clear that point 2. means that µ ′ f π A y -y -3 µ ′ f π Ay ≥ 0 for any y ≥ 1, hence u ′ A (y) ≥ 0 for any y ≥ 1. As u A (1) = 2µ f π A ≥ 0,
we have u A (y) ≥ 0 for any y ≥ 1 and it follows that

g A (y) ≥ 0, ∀y ≥ 1,
and by Theorem 2.1.1, Λ A is the unique minimizer, up to rotation, of E f among Bravais lattices of fixed area A.

Corollary 2.4.2. If f is an admissible potential such that its inverse Laplace transform µ f is convex on (0, +∞), then there exists A 0 > 0 such that for any A ∈ (0, A 0 ), Λ A is the unique minimizer of E f , up to rotation, among Bravais lattices of fixed area A.

Proof. As µ f is convex, there exists r 0 > 0 such that, for any r ≥ r 0 , µ f (r) ≥ 0. Moreover, for any y ≥ 1,

µ ′ f π A y ≥ µ ′ f π Ay because π Ay ≤ πy A
and µ f is convex. Hence, as y -3 ≤ 1 for any y ≥ 1, we get both points 1. and 2. of Proposition 2.4.1 for any A such that 0 < A ≤ A 0 := π r 0 .

Remarks about our method

As we saw in [10], in Lennard-Jones case, our method is not optimal to finding all areas such that Λ A is the unique minimizer, up to rotation, of E f among Bravais lattices of fixed area A. The general and difficult main problem is to find all A such that, for any Bravais lattice L of area A,

E f [L] -E f [Λ A ] = π A +∞ 1 θ L y 2A -θ Λ A y 2A g A (y)dy ≥ 0, where g A (y) := y -1 µ f π yA + µ f πy A
. We can imagine that even if g A is not positive almost everywhere on [1, +∞), the positive part of this integral can compensate the negative one. For instance, if we consider, as in [10], f (r) = r -6 -2r -3 , then

g A (y) = π 2 A 2 π 3 A 3 5! (y 6 + y -5 ) -y 3 -y -2 ,
and we plot graphs of y → π 3 A 3 5! (y 6 + y -5 )y 3y -2 for A = 0.8 (on the left) and A = 1 (on the right).

Thus a fine study, with respect to lattices L and real y, of the behaviour of positive function ∆ L (y which would be not possible, because r → re -π A yr is never completely monotonic for y ≥ 1. Hence comparing y A 1 ∆ L (y)g A (y)dy and +∞ y A ∆ L (y)g A (y)dy, where y A is the second zero of g A , seems difficult, even improving our method is possible (see [10] for numerical values).

) := θ L y 2A -θ Λ A y 2A

Sums of screened Coulomb potentials

In this part, we give the first simple example of application of Theorem 2.1.1. We consider non convex sums of screened Coulomb potentials and we prove minimality of Λ A at high density and global minimality of a triangular lattice among all Bravais lattices for some potentials ϕ AR a,x . As a proof of Theorem 2.1.2.A for this potential, we purpose to give an explicit bound for the minimality at high density as follows.

Proposition 2.5.1. Assume 0 < x 1 < ... < x n and let A > 0 be such that

A ≤ min min k∈Ka π x k+1 - n i=1 a i k i=1 a i , π x n ,
then Λ A is the unique minimizer of E ϕa,x , up to rotation, among Bravais lattices of fixed area A.

Proof. We compute easily the inverse Laplace transform of ϕ a,x , because

L -1 [r -1 e -x i r ](y) = 1 [x i ,+∞) (y)
for any x i > 0 and any y ≥ 0 :

µ ϕa,x (y) = n i=1 a i 1 [x i ,+∞) (y).
It follows that, for any y ≥ 1,

g A (y) := 1 y n i=1 1 [x i ,+∞) π yA + n i=1 a i 1 [x i ,+∞) πy A = 1 y n i=1 a i 1 1, π Ax i (y) + n i=1 a i 1 [ Ax i π ,+∞) (y).
As, by assumption, A ≤ π x n , we have, for any 1

≤ i ≤ n -1, π Ax i ≥ π Ax i+1 ≥ 1.
Hence we get

g A (y) =                      (1 + y -1 ) n i=1 a i if 1 ≤ y ≤ π Axn , k i=1 a i y + n i=1 a i if π Ax k+1 < y ≤ π Ax k , for any 1 ≤ k ≤ n -1, n i=1 a i if y > π Ax 1 .
As n i=1 a i ≥ 0 and, for any k ∈ K a , k i=1 a i ≥ 0, we obtain

∀y ∈ 1, π Ax n k ∈Ka π Ax k+1 , π Ax k ∪ π Ax 1 , +∞ , g A (y) ≥ 0. Now if k ∈ K a , as A ≤ min k∈Ka π x k+1 - n i=1 a i k i=1 a i , we get, for any y ∈ π Ax k+1 , π Ax k , k i=1 a i y + n i=1 a i ≥ Ax k+1 π k i=1 a i + n i=1 a i ≥ 0,
and it follows that g A (y) ≥ 0 for any y ≥ 1. By Theorem 2.1.1, Λ A is the unique minimizer of E ϕa,x , up to rotation, among Bravais lattices of fixed area A.

Global minimality : Proof of Theorem 2.1.2.B.1

Now we focus on particular "attractive-repulsive" case -a = (-a 1 , a 2 ) where 0 < a 1 < a 2 ; -x = (x 1 , x 2 ) with 0 < x 1 < x 2 . Therefore we define, for any y > 0, We have, for any r > 0,

ϕ AR a,x (r) := a 2 e -x 2 r r -a 1 e -x
ϕ ′ a,x (r) = 1 r 2 a 1 (1 + x 1 r)e -x 1 r -a 2 (1 + x 2 r)e -x 2 r ,
and it follows that

ϕ ′ a,x (r) ≥ 0 ⇐⇒ g a,x (r) := (x 2 -x 1 )r + ln(1 + x 1 r) -ln(1 + x 2 r) + ln a 1 a 2 ≥ 0.
As, for any r > 0,

g ′ a,x (r) = (x 2 -x 1 ) (x 1 x 2 r 2 + (x 1 + x 2 )r) (1 + x 1 r)(1 + x 2 r) > 0,
g a,x is an increasing function on (0, +∞). We have a 2 > a 1 , therefore ln a 1 a 2 < 0 and there exists α a,x such that ∀r ∈ (0, α a,x ], g a,x (r) ≤ 0, and ∀r > α a,x , g a,x (r) > 0.

Thus we get ϕ a,x is a decreasing function on (0, α a,x ] and an increasing function on (α a,x , +∞). ) is an increasing function on ( √ α a,x , +∞). Moreover, if v a,x > √ α a,x , then a contraction of Rv a,x also gives a lattice with less energy. Thus, we have u a,x ≤ v a,x ≤ √ α a,x . Now, because

|L a,x | ≤ u a,x v a,x , we get 10 |L a,x | ≤ α a,x . Now it is not difficult to check that ϕ ′ a,x π x 2 ≥ 0 ⇐⇒ a 1 1 + x 1 x 2 π a 2 (1 + π) e 1- x 1 x 2 π ≥ 1,
and

ϕ ′ a,x π x 2 a 2 a 1 -1 ≥ 0 ⇐⇒ a 1 (a 1 x 2 + x 1 (a 2 -a 1 )π) a 2 x 2 (a 1 + (a 2 -a 1 )π) e 1- x 1 x 2 a 2 a 1 -1 π ≥ 1,
hence (2.5.1) holds and L a,x is unique and triangular by Theorem 2.5.1 as explained at the beginning of the proof.

STEP 4 : Example If we take a 2 = 2a 1 then a 1 (a 1 x 2 + x 1 (a 2 -a 1 )π) a 2 x 2 (a 1 + (a 2 -a 1 )π) e 1- x 1 x 2 a 2 a 1 -1 π = a 1 1 + x 1 x 2 π a 2 (1 + π) e 1- x 1 x 2 π = 1 2(1 + π) (1 + x 1 x 2 π)e 1- x 1 x 2 π .
Now we set X = x 1 x 2 π and our condition becomes

(1 + X) 2(1 + π) e -X+π ≥ 1, which is equiva- lent with g(X) := -X + log(1 + X) -log(2 + 2π) + π ≥ 0.
As g ′ (X) = -X 1+X ≤ 0 on R + , then g decreases and there exists X > 0 such that g( X) = 0. Numerically, we found X > 2.186, hence if X ≤ 2.186, which corresponds to x 1 x 2 π ≤ 2.186, i.e. x 1 ≤ 2.186 π x 2 ≈ 0.695825x 2 , then g(X) ≥ 0. In particular, it is true if

x 1 ≤ 0.695x 2 .
Example 2.5.2. For instance, we can choose (x 1 , x 2 ) = (1, 2). Thus, global minimizer of

L → E ϕa,x [L] = p∈L * ϕ a,x ( p 2 ) = 2a 1 p∈L * e -2 p 2 p 2 -a 1 p∈L * e -p 2 p 2
is unique, up to rotation, and triangular. Hence we can construct potential with arbitrary deep well (using parameter a 1 ) and with triangular global minimizer.

Figure 2.4 -Graphs of r → ϕ a,x (r 2 ) = 2a 1 e -2r 2 r 2 -a 1 e -r 2 r 2 for a 1 ∈ {1, 6, 25}
Remark 2.5.3. This kind of potential seems not to be used in molecular simulation but this prediction of triangular ground state could be observed in the future. Furthermore our Theorem 2.1.2.B.1 allows to better understand ground state for parametrized potential with repulsion at short distance and quick decay at large distance, as in [START_REF] Theil | A Proof of Crystallization in Two Dimensions[END_REF] where Theil proved global minimality of a triangular lattice among all configurations if the potential's well is sufficiently narrow, i.e. with repulsion and decay sufficiently strong.

Nonconvex sums of inverse power laws

In this part, we generalize our results [10], which tackled only the classical Lennard-Jones case, for any nonconvex sums of inverse power potentials, that is to say optimality of triangular lattice Λ A at for high densities and non-optimality of this one for low densities. Furthermore we show that our method allows to obtain global minimizer, i.e. minimizer among all Bravais lattices without constraint of area, of Lennard-Jones type energies with small parameters.

2.6.1 Definition and proof of Theorem 2.1.2.A for V a,x Definition 2.6.1. Let n ≥ 1 be an integer and, for a = (a 1 , ..., a n ) ∈ (R * ) n such that a n > 0, and

x = (x 1 , ..., x n ) ∈ (R + ) n such that 1 < x 1 < ... < x n , let V a,x (r) = n i=1 a i r x i .
We set I -:= {i; a i < 0}, I + := {i; a i > 0} and α i :=

a i π x i -1 Γ(x i )
. Moreover we assume that I -= ∅ (otherwise V a,x is completely monotonic).

Remark 2.6.1. In order to minimize E Va,x among lattices, we should assume a n > 0 because we have V a,x (r) ∼ a n r -xn as r → 0. Indeed, V a,x (r) → +∞ as r → 0 and V a,x (r) → 0 as r → +∞. Therefore there exists minimizer of E Va,x among Bravais lattices with fixed area. If a n < 0, it is sufficient to do u → 0 to get E Va,x [L] → -∞ and it follows that a minimizer does not exist.

Example 2.6.2. This kind of potential is widely used in molecular simulation. Indeed, besides Lennard-Jones potentials that we will study in the next subsection, it is sometimes necessary to consider some modifications of it. For instance, the (12 -6 -4) potential proposed by Mason and Schamp [START_REF] Mason | Mobility of Gaseous lons in Weak Electric Fields 1[END_REF], defined by

V (r) = a 3 r 12 - a 2 r 6 - a 1 r 4 ,
describes the interaction of ions with neutral systems. For instance, in fullerene C 60 , this potential describes interaction between a carbon atom in the polyatomic ion and a buffer gas helium atom.

An other example, proposed by Klein and Hanley [START_REF] Klein | m-6-8 Potential Function[END_REF][START_REF] Hanley | Application of the m-6-8 Potential to Simple Gases[END_REF] for description of rare gases, more precise than Lennard-Jones, is the potential defined, for m > 8, by

V (r) = a 3 r m - a 2 r 6 - a 1 r 8 .
As in the previous section, we give an explicit bounds for the minimality of Λ A at high density in the following proposition.

Proposition 2.6.3. If it holds

A ≤ π min i∈I - a n Γ(x i ) 2♯{I -}|a i |Γ(x n ) 1 xn-x i , (2.6.1)
then Λ A is the unique minimizer of E Va,x , up to rotation, among Bravais lattices of fixed area A.

Proof. By usual formula, we have

µ Va,x (y) = n i=1 a i Γ(x i ) y x i -1 ,
and it follows that

g A (y) := y -1 µ Va,x π yA + µ Va,x πy A = n i=1 α i A x i -1 (y -x i + y x i -1 ) = y -xn n i=1 α i A x i -1 (y xn-x i + y xn+x i -1 ).
We set

p a,x (y) := n i=1 α i A x i -1 (y xn-x i + y xn+x i -1 ).
We notice that the term of high order is αn A xn-1 y 2xn-1 with α n > 0 and the number of negative coefficients is 2♯{I -}. Thus, by Cauchy's rule 2.2.11 and more precisely its generalization (2.2.5), an upper bound on the values of the positive zero of p a,x is

M pa,x := max i∈I - 2♯{I -}|α i |A xn-x i α n 1 xn-x i , 2♯{I -}|α i |A xn-x i α n 1 xn+x i -1 , because 2x n -1 -(x n -x i ) = x n + x i -1 and 2x n -1 -(x n + x i -1) = x n -x i . We notice that A ≤ π min i∈I - a n Γ(x i ) 2♯{I -}|a i |Γ(x n ) 1 xn-x i = min i∈I - α n 2♯{I -}|α i | 1 xn-x i 68 ⇐⇒ A ≤ α n 2♯{I -}|α i | 1 xn-x i , ∀i ∈ I - ⇐⇒ 2A xn-x i ♯{I -}|α i | α n ≤ 1, ∀i ∈ I - ⇐⇒ M pa,x ≤ 1,
therefore the assumption implies that the largest zero of p a,x is less than 1. As α n > 0, it follows that p a,x (y) ≥ 0 for any y ≥ M pa,x and then g A (y) ≥ 0 for any y ≥ 1. By Theorem 2.1.1, if (2.6.1) holds, then Λ A is the unique minimizer of E Va,x among Bravais lattices of fixed area A.

Remark 2.6.4. This result seems to be natural because for r close to 0, we have V a,x (r) ∼ a n r -xn , and for any A, Λ A is the unique minimizer of L → ζ L (2x n ) among Bravais lattices of fixed area A. However, if we fix A, u and v can be as larger as we want and the behavior of V a,x can be unusual. Furthermore, in the case

V a,x (r) = a 1 r x 1 + a 2 r x 2 + a 3 r x 3
where a 1 , a 3 are positive and a 2 negative, our bound (2.6.1) does not depend on a 1 . For instance, if a = (p, -3, 1) and x = (2, 4, 6), then, for any p, π min 

i∈I - a n Γ(x i ) ♯{I -}|a i |Γ(x n ) 1 xn-x i = π Γ(4) 6Γ (6 
π min i∈I - a n Γ(x i ) ♯{I -}|a i |Γ(x n ) 1 xn-x i = π 35Γ(3) 80Γ(4) 1 = 7π 48 ≈ 0.4581488,
which corresponds to triangular lattice of length ≈ 0.7273408. Thus, for A ≤ 7π 48 , Λ A is the unique minimizer of E V , up to rotation, among Bravais lattices of fixed area A. 

A ≥ inf L =Λ 1 |L|=1 max i∈I + ♯{I + }a i (ζ L (2x i ) -ζ Λ 1 (2x i )) |a 1 |(ζ L (2x 1 ) -ζ Λ 1 (2x 1 )) 1 xn-x i , (2.6.2) 
that is to say if A is sufficiently large, then Λ A is not a minimizer of E Va,x among Bravais lattices of fixed area A.

Proof. Let L A = √ AL 1 be a Bravais lattice of area A, with |L 1 | = 1, then E Va,x [Λ A ] -E Va,x [L A ] = n i=1 a i (ζ Λ A (2x i ) -ζ L A (2x i )) = n i=1 a i A x i (ζ Λ 1 (2x i ) -ζ L 1 (2x i )) = A -xn n i=1 a i (ζ Λ 1 (2x i ) -ζ L 1 (2x i ))A xn-x i .
We set

p a,x,L 1 (A) := n i=1 a i (ζ Λ 1 (2x i ) -ζ L 1 (2x i ))A xn-x i .
As a 1 < 0 and, for any s > 1, 

ζ Λ 1 (2s) -ζ L 1 (2s) ≤ 0,
M pa,x (L 1 ) := max i∈I + ♯{I + }a i (ζ L 1 (2x i ) -ζ Λ 1 (2x i )) |a 1 |(ζ L 1 (2x 1 ) -ζ Λ 1 (2x 1 )) 1 xn-x i .
Hence, for any L such that |L| = 1, if A ≥ M pa,x (L), then p a,x,L (A) ≥ 0. We conclude that if (2.6.2) holds, then E Va,x [Λ A ] -E Va,x [L A ] ≥ 0 and Λ A cannot be a minimizer of E Va,x among Bravais lattices of fixed area A.

Remark 2.6.7. To compute explicitly a lower bound for A such that Λ A is not a minimizer of energy E Va,x , we can take L = Z 2 in (2.6.2) and use equalities (2.2.1) and (2.2.2) (see next subsection for computations in Lennard-Jones case).

Lennard-Jones type potentials : proofs of Theorems 2.1.2.A and 2.1.2.B.2 and numerical results

Now we want to study more precisely the class of Lennard-Jones type potential. In [10] we studied classical (12 -6) Lennard-Jones potential V LJ (r) = r -12 -2r -6 , such that its minimizer is 1, and we proved that the minimizer of its energy among lattices with fixed area A is triangular for small A and it cannot be triangular for large A. Here we prove that our method gives interesting results for this kind of potential.

Let 1 < x 1 < x 2 and a 1 , a 2 ∈ (0, +∞), we define Lennard-Jones type potentials by

V LJ a,x (r) := a 2 r x 2 - a 1 r x 1
, ∀r > 0. Example 2.6.8. We can cite various Lennard-Jones type potentials used in molecular simulation or in the study of social aggregation (see [START_REF] Mogilner | Mutual Interactions, Potentials, and Individual Distance in a Social Aggregation[END_REF]), besides the classical V LJ . For instance the (12 -10) potential

V (r) = a 2 r 12 -
a 1 r 10 describes hydrogen bonds (see [START_REF] Gelin | Side-Chain Torsional Potentials : Effect of Dipeptide, Protein, and Solvent Environment[END_REF]). A (6 -4) potential V (r) = a 2 r 6 -a 1 r 4 is also used for finding energetically favourable regions in protein binding sites (see [START_REF] Goodford | A Computational Procedure for Determining Energetically Favorable Binding Sites on Biologically Important Macromolecules[END_REF] for details). Lemma 2.6.9.

Let 1 < x 1 < x 2 , then function r → V LJ a,x (r 2 ) is decreasing on the interval 0, a 2 x 2 a 1 x 1 1 2(x 2 -x 1 )
and increasing on a 2 x 2 a 1 x 1

1 2(x 2 -x 1 )
, +∞ .

Proof. The first derivative of this function is r → -2a 2 x 2 r -2x 2 -1 + 2a 1 x 1 r -2x 1 -1 and

(V LJ a,x ) ′ (r) ≥ 0 ⇐⇒ r ≥ a 2 x 2 a 1 x 1 1 2(x 2 -x 1 ) . Figure 2.6 -Graph of r → V LJ a,x (r 2 )
Obviously, the form of potential V LJ a,x implies that minimizer among lattices exists. Indeed, if we fix the area, one of the distance in the lattice cannot be too small otherwise lattice energy goes to infinity (see [

10, Proposition 2.3] for details).

As in our previous work [10], the following upper bound for area, such that triangular lattice is the unique minimizer for our energy, is not optimal but the best for our method. Moreover, this upper bound is better than we apply Cauchy's rule (Proposition 2.6.3) but the method is specific for this kind of potential. Proposition 2.6.10. (Lennard-Jones at high density)

If A ≤ π a 2 Γ(x 1 ) a 1 Γ(x 2 ) 1 x 2 -x 1
, then Λ A is the unique minimizer of E V LJ a,x , up to rotation, among lattices of area A fixed.

Proof. We have, by the proof of Theorem 2.6.3, for any y ≥ 1,

g A (y) = α 2 A x 2 -1 y -x 2 + y x 2 -1 - α 1 A x 1 -1 y -x 1 + y x 1 -1 = y -x 2 A x 1 -1 gA (y),
where gA (y) =

α 2 A x 2 -x 1 y 2x 2 -1 -α 1 y x 2 +x 1 -1 -α 1 y x 2 -x 1 + α 2 A x 2 -x 1 . We compute g′ A (y) = (2x 2 -1)α 2 A x 2 -x 1 y 2x 2 -2 -α 1 (x 2 + x 1 -1)y x 2 +x 1 -2 -α 1 (x 2 -x 1 )y x 2 -x 1 -1 = y x 2 -x 1 -1 u A (y), where u A (y) = (2x 2 -1)α 2 A x 2 -x 1 y x 2 +x 1 -1 -α 1 (x 2 + x 1 -1)y 2x 1 -1 -α 1 (x 2 -x 1 ). Moreover u ′ A (r) = (x 2 + x 1 -1)y 2x 1 -2 (2x 2 -1)α 2 A x 2 -x 1 y x 2 -x 1 -α 1 (2x 1 -1) .
We remark that we have

u ′ A (ȳ) = 0 ⇐⇒ ȳ = α 1 (2x 1 -1)A x 2 -x 1 α 2 (2x 2 -1) 1 x 2 -x 1 = A π a 1 Γ(x 2 ) a 2 Γ(x 1 ) 1 x 2 -x 1 2x 1 -1 2x 2 -1 1 x 2 -x 1 . If A ≤ π a 2 Γ(x 1 ) a 1 Γ(x 2 ) 1 x 2 -x 1 then ȳ < 1 and u ′ A (y) > 0 on [1; +∞), i.e. u
A is an increasing function on [1; +∞). Furthermore we have

u A (1) = (2x 2 -1) α 2 A x 2 -x 1 -α 1 = (2x 2 -1)
a 2 π x 2 -1 A x 2 -x 1 Γ(x 2 ) - a 1 π x 2 -1 Γ(x 1 ) ≥ 0
and g′ A is positive on [1, +∞). Thus gA is increasing on [1, +∞) and, always by assumption,

g A (1) = 2 α 2 A x 2 -x 1 -α 1 ≥ 0.
Hence g A (y) ≥ 0 on [1, +∞) and by Theorem 2.1.1, Λ A is the unique minimizer of E V LJ a,x , up to rotation, among Bravais lattices of fixed area A. Remark 2.6.11. This bound is optimal for our method because we have g A (1) = 0 for

A = π a 2 Γ(x 1 ) a 1 Γ(x 2 ) 1 x 2 -x 1
and A → g A (1) is a decreasing function.

Example 2.6.12. For V (r) = 1 r 6 -2 r 3 , which corresponds to Lennard-Jones energy in our case in [10], we find

π a 2 Γ(x 1 ) a 1 Γ(x 2 ) 1 x 2 -x 1 = π Γ(3) 2Γ (6) 1/3 
= π 120 1/3 . Now we prove that for small parameters, the global minimizer among all Bravais lattices -without area constraint -of the energy is unique and triangular. We follow some ideas from our previous paper [10] which cannot be apply for classical Lennard-Jones potential V LJ (r) = r -12 -2r -6 . Lemma 2.6.13. (Upper bound for global minimizer's area) Let L a,x be a global minimizer of E V LJ a,x among all Bravais lattices, then

|L a,x | ≤ a 2 x 2 a 1 x 1 1 x 2 -x 1 .
Proof. Same argument of STEP 3 in the proof of Theorem 2.1.2.B.1.

Thus we can prove Theorem 2.1.2.B.2. We recall that function h is defined by

h(t) = π -t Γ(t)t.
Proof. Let L a,x be a global minimizer of E V LJ a,x . We have

h(x 2 ) ≤ h(x 1 ) ⇐⇒ π a 2 Γ(x 1 ) a 1 Γ(x 2 ) 1 x 2 -x 1 ≥ a 2 x 2 a 1 x 1 1 x 2 -x 1
, then by Lemma 2.6.13 we get

|L a,x | ≤ π a 2 Γ(x 1 ) a 1 Γ(x 2 ) 1 x 2 -x 1
and by Proposition 2.6.10, the minimizer among lattices of fixed area |L a,x | is unique and triangular. Hence the global minimizer of the energy is unique and triangular. Furthermore, let

f (r) := E V LJ a,x [rΛ 1 ] = a 2 ζ Λ 1 (2x 2 )r -2x 2 -a 1 ζ Λ 1 (2x 1 )r -2x 1 , then we have f ′ (r) = -2a 2 x 2 ζ Λ 1 (2x 2 )r -2x 2 -1 + 2a 1 x 1 ζ Λ 1 (2x 1 )r -2x 1 -1 and f ′ (r) ≥ 0 ⇐⇒ r ≥ a 2 x 2 ζ Λ 1 (2x 2 ) a 1 x 1 ζ Λ 1 (2x 1 ) 1 2(x 2 -x 1 )
.

Hence the minimizer of E V LJ a,x among triangular lattices is Λ |La,x| with

|L a,x | = a 2 x 2 ζ Λ 1 (2x 2 ) a 1 x 1 ζ Λ 1 (2x 1 ) 1 x 2 -x 1 .
Remark 2.6.14. For an easy numerical computation of global minimizer's area, we can use formula (2.2.2) to obtain

|L a,x | = 1 2 √ 3 a 2 x 2 ζ(x 2 )(ζ(x 2 , 1/3) -ζ(x 2 , 2/3)) a 1 x 1 ζ(x 1 )(ζ(x 1 , 1/3) -ζ(x 1 , 2/3)) 1 x 2 -x 1 .
Remark 2.6.15. We can apply the previous Theorem to x = (2, 3), and r → V LJ a,x (r 2 ) is a (6 -4) potential. Moreover we can choose a 1 and a 2 such that the well is as deep as we want (see Figure 2.7).

Figure 2.7 -Graphs of r → 1 r 6 - a 1 r 4 for a 1 ∈ {1, 2, 3}
Now we explain a method to choose x 1 , x 2 in order to have a triangular global minimizer and we give several numerical values.

Lemma 2.6.16.

(Variations of h) Function h is decreasing on [1, ψ -1 (log π) -1)
and increasing on [ψ -1 (log π) -1, +∞) where ψ(x)

:= Γ ′ (x) Γ(x)
is the digamma function defined on (0, +∞).

Proof. We have h ′ (t) = π -t [Γ(t) + tΓ ′ (t)t log πΓ(t)] and

h ′ (t) ≥ 0 ⇐⇒ ψ(t) + 1 t ≥ log π.
We use the famous identity ψ(t) + 1 t = ψ(1 + t) for any t > 0 and we obtain, because ψ is increasing on (0, +∞),

h ′ (t) ≥ 0 ⇐⇒ t ≥ ψ -1 (log π) -1.
Remark 2.6.17. We compute ψ -1 (log π) -1 ≈ 2.6284732 and we define M 1 such that h(M) = h(1). We have M ≈ 4.6022909. Thus, if we want apply the previous theorem, it is clear that x 1 < ψ -1 (log π) -1 and x 2 < M. Moreover, if we choose

x 1 ∈ (1, ψ -1 (log π) -1), we can choose x 2 ∈ (x 1 , M x 1 ) where M x 1 = x 1 is such that h(M x 1 ) = h(x 1 ). Figure 2.

-Graph of h

Unfortunately we can only choose x 2 and x 1 such that 1 < x 1 < x 2 < 4.6022909 and Lennard Jones case (x 2 = 6 and x 1 = 3) is not covered by our Theorem 2.1.2.B.2.

We compute in Table 2.1, for different values of (x 1 , x 2 ) satisfying h(x 2 ) < h(x 1 ) and for a = (1, 1), the following numbers :

-the value of the minimizer of y → V LJ a,x (y 2 ), i.e.

y min a,x := 

x 2 x 1 1 2(x 2 -x 1 ) , x 2 x 1 1.1 1.
A ≤ inf |L|=1,L =Λ 1 a 2 (ζ L (2x 2 ) -ζ Λ 1 (2x 2 )) a 1 (ζ L (2x 1 ) -ζ Λ 1 (2x 1 )) 1 x 2 -x 1 , i.e. if A is sufficiently large, Λ A is not a minimizer of E V LJ a,
x among lattices of fixed area A.

Proof. We apply directly Proposition 2.6.6 with ♯{I + } = 1 and we remark that inf 

L =Λ 1 |L|=1 max i∈I + ♯{I + }a i (ζ L (2x i ) -ζ Λ 1 (2x i )) |a 1 |(ζ L (2x 1 ) -ζ Λ 1 (2x 1 )) 1 xn-x i = inf |L|=1,L =Λ 1 a 2 (ζ L (2x 2 ) -ζ Λ 1 (2x 2 )) a 1 (ζ L (2x 1 ) -ζ Λ 1 (2x 1 )) 1 x 2 -x 1 . x 2 x 1 1.
< d < d 0 , E V LJ a,x [d -1/2 Z 2 ] ≤ E V LJ a,x [d -1/2 Λ 1 ],
i.e. square lattice have less energy than triangular lattice, with a 1 = a 2 = 1. 

Potentials with exponential decay

., a n ) ∈ (R * ) n with a n > 0, x = (x 1 , ..., x n ) be such that 3/2 < x 1 < x 2 < ... < x n , b = (b 1 , ..., b m ) ∈ (R * ) m and t = (t 1 , ..., t m ) ∈ (R * + ) m , we define f a,x,b,t (r) := n i=1 a i r -x i + m j=1 b j e -t j √ r .
We set I -:= {i; a i < 0} and B := m j=1 |b j |t j .

Remark 2.7.1. As explained in [START_REF] Koishi | Large-scale Molecular-dynamics Simulation of Nanoscale Hydrophobic Interaction and Nanobubble Formation[END_REF], Fumi and Tosi [START_REF] Fumi | Ionic Sizes and Born Repulsive Parameters in the NaCl-type Alkali Halides I. The Huggins-Mayer and Pauling Forms[END_REF] proposed a potential for interaction between ions Na + and Cl -defined by

V (r) = a 1 r + b 1 e -t 1 r - a 2 r 6 - a 3 r 8 .
Obviously, potential r → a 1 r is not admissible but the form of V is close to f a,x,b,t .

Let us prove Theorem 2.1.2.A for this potential.

Proposition 2.7.2. If it holds

A ≤ min π min i∈I - a n Γ(x i ) (2♯{I -} + 2)|a i |Γ(x n ) 1 xn-x i , a n π xn+1 (♯{I -} + 1)BΓ(x n ) 1 xn+1/2
(2.7.1) then Λ A is the unique minimizer of E f a,x,b,t , up to rotation, among Bravais lattices of fixed area A.

Proof. As we have, by classical formula, for a > 0,

L -1 [e -√ a. ](y) = √ a 2 √ π y -3/2 e - a 4y 
, taking a = t 2 j for any 1 ≤ j ≤ m and setting α i =

a i π x i -1 Γ(x i )
, we obtain, for any y > 0,

µ f a,x,b,t (y) = n i=1 α i y x i -1 + m j=1 b j t j 2 √ π y -3/2 e - t 2 j 4y ≥ n i=1 α i y x i -1 - B 2 √ π y -3/2 .
It follows that

g A (y) := y -1 µ f a,x,b,t π yA + µ f a,x,b,t πy A ≥ n i=1 α i A x i -1 (y -x i + y x i -1 ) - BA 3/2 2π 2 √ y - BA 3/2 2π 2 y 3/2 = y -xn n i=1 α i A x i -1 (y xn-x i + y xn+x i -1 ) - BA 3/2 2π 2 y xn+1/2 - BA 3/2 2π 2 y xn-3/2 .
We set

p a,x,b,t (y) := n i=1 α i A x i -1 (y xn-x i + y xn+x i -1 ) - BA 3/2 2π 2 y xn+1/2 - BA 3/2 2π 2 y xn-3/2 ,
and we notice that, for any 1 ≤ i ≤ n,

x n -

x i = x n + 1/2, x n -x i = x n -3/2, x n + x i -1 = x n + 1/2, x n + x i -1 = x n -3/2,
because x i > 3/2. Hence the higher order term is αn A xn-1 y 2xn-1 with α n > 0, and the number of negative terms is 2♯{I -} + 2. Thus, by Cauchy's rule (2.2.5), an upper bound on the values of the positive zero of p a,x,b,t is

M p a,x,b,t := max max i∈I - (2♯{I -} + 2)|α i |A xn-x i α n 1 xn+x i -1 , max i∈I - (2♯{I -} + 2)|α i |A xn-x i α n 1 xn-x i , B(2♯{I -} + 2)A xn+1/2 2π 2 α n 1 xn-3/2 , B(2♯{I -} + 2)A xn+1/2 2π 2 α n 1 xn+1/2 .

Now we have

A ≤ min π min i∈I - a n Γ(x i ) (2♯{I -} + 2)|a i |Γ(x n ) 1 xn-x i , 2a n π xn+1 (2♯{I -} + 2)BΓ(x n ) 1 xn+1/2 ⇐⇒ ∀i ∈ I -, A ≤ π a n Γ(x i ) (2♯{I -} + 2)|a i |Γ(x n ) 1 xn-x i and A ≤ 2a n π xn+1 (2♯{I -} + 2)BΓ(x n ) 1 xn+1/2 ⇐⇒ ∀i ∈ I -, (2♯{I -} + 2)|α i |A xn-x i α n ≤ 1 and B(2♯{I -} + 2)A xn+1/2 2π 2 α n ≤ 1 ⇐⇒ M p a,x,b,t ≤ 1.
Therefore, if y ≥ 1 ≥ M p a,x,b,t , then p a,x,b,t (y) ≥ 0 and it follows that g A (y) ≥ 0. By Theorem 2.1.1, Λ A is the unique minimizer of E f a,x,b,t among Bravais lattices of fixed area A.

Corollary 2.7.3.

If I -= ∅ and A ≤ a n π xn+1 BΓ(x n ) 1 xn+1/2
then Λ A is the unique minimizer of E f a,x,b,t among Bravais lattices of fixed area A.

Remark 2.7.4. Obviously, for any A 0 , there exists B sufficiently small such that for any A ∈ (0, A 0 ], Λ A 0 is the unique minimizer of the energy among Bravais lattices of fixed area A. We will study a simple particular case in next subsection in order to illustrate this fact. Furthermore we skipped the completely monotonic case but in the next following part we will give explicit condition for complete monotonicity in a simple case (see Proposition 2.7.6).

Example : opposite of Buckingham type potential

In this part we study the opposite of Buckingham type potential. Indeed, we cannot study Buckingham potential

V B (r) = a 1 e -αr - a 2 r 6 - a 3 r 8
because lim r→0 V B (r) = -∞ and lim r→+∞ V B (r) = 0 and it is sufficient to do u → 0 in order to have

E V B [L] → -∞.
Hence we choose to treat simple general approximation of its opposite, well-adapted to our problem of minimization among Bravais lattices. Moreover we simplify notations in order to have only two parameters :

Definition 2.7.2. For a = (a 1 , a 2 ) ∈ (0, +∞) 2 and for x = (x 1 , x 2 ) ∈ (0, +∞) × (3/2, +∞), we define, for r > 0,

f a,x (r) = a 2 r -x 2 -a 1 e -x 1 √ r .
Lemma 2.7.5. (Variations of potential r → f a,x (r 2 )) We have the following two cases :

1. if (2x 2 + 1) ln 2x 2 + 1 x 1 -1 ≤ ln 2a 2 x 2 a 1 x 1 , then r → f a,x (r 2 ) is decreasing on (0, +∞) ; 2. if (2x 2 + 1) ln 2x 2 + 1 x 1 -1 > ln 2a 2 x 2 a 1 x 1 then there exist r m , r M ∈ (0, +∞) such that r m < 2x 2 +1
x 1

< r M and r → f a,x (r 2 ) is decreasing on intervals (0, r m ) and (r M , +∞) and increasing on (r m , r M ).

Proof. We have f (r) := f a,x (r 2 ) = a 2 r -2x 2 -a 1 e -x 1 r and f ′ (r) = - 2a 2 x 2 r 2x 2 +1 + a 1 x 1 e -x 1 r .
Thus, we get

f ′ (r) ≥ 0 ⇐⇒ e -x 1 r r 2x 2 +1 ≥ 2a 2 x 2 a 1 x 1 ⇐⇒ g(r) ≥ 0,
where

g(r) = -x 1 r + (2x 2 + 1) ln r -ln 2a 2 x 2 a 1 x 1 . As g ′ (r) = -x 1 r + 2x 2 + 1 r , g is increasing on 0, 2x 2 +1
x 1

and decreasing on 2x 2 +1

x 1 , +∞ . Moreover g(r) goes to -∞ as r → 0 or r → +∞. Hence if g 2x 2 +1

x 1 ≤ 0, i.e.

(2x 2 + 1) ln 2x 2 + 1 x 1 -1 ≤ ln 2a 2 x 2 a 1 x 1 ,
then g(r) ≤ 0 and f ′ (r) ≤ 0 on (0, +∞), i.e. f is decreasing on (0, +∞). Furthermore, if g 2x 2 +1

x 1 > 0, then there exist r m , r M such that r m < 2x 2 +1

x 1

< r M and f is decreasing on intervals (0, r m ) and (r M , +∞) and increasing on (r m , r M ). Proposition 2.7.6. We have the following two cases :

-If it holds

(x 2 + 1/2) 1 + ln x 2 1 4x 2 + 2 ≥ ln a 1 x 1 Γ(x 2 ) 2 √ πa 2 ,
then for any A > 0, Λ A is the unique minimizer of E fa,x , up to rotation, among Bravais lattices of fixed area A.

-If it holds

A ≤ a 2 π x 2 +1 a 1 x 1 Γ(x 2 ) 1 x 2 +1/2 and (x 2 +1/2) 1 + ln x 2 1 4x 2 + 2 < ln a 1 x 1 Γ(x 2 ) 2 √ πa 2 ,
then Λ A is the unique minimizer of E fa,x , up to rotation, among Bravais lattices with fixed area A. Moreover, for any a ∈ (0, +∞) 2 , x 2 > 3/2, A 0 > 0 and any x 1 such that

0 < x 1 ≤ C A 0 := a 2 π x 2 +1 a 1 A x 2 +1/2 0 Γ(x 2 ) ,
Λ A is the unique minimizer of E fa,x , up to rotation, among Bravais lattices of fixed area A ∈ (0, A 0 ].

Proof. By classical formula, we get

µ fa,x (y) = a 2 Γ(x 2 ) y x 2 -1 - a 1 x 1 2 √ π y -3/2 e - x 2 1 4y .
Our theorem is a consequence of Proposition 2.3.1 because

∀y > 0, µ fa,x (y) ≥ 0 ⇐⇒ (x 2 + 1/2) 1 + ln x 2 1 4x 2 + 2 ≥ ln a 1 x 1 Γ(x 2 ) 2 √ πa 2 .
Indeed, we have

∀y > 0, µ fa,x (y) ≥ 0 ⇐⇒ ∀y > 0, e x 2 1 /4y y x 2 +1/2 ≥ a 1 x 1 Γ(x 2 ) 2 √ πa 2 ⇐⇒ ∀y > 0, x 2 1 4y + (x 2 + 1/2) ln y -ln a 1 x 1 Γ(x 2 ) 2 √ πa 2 ≥ 0.
We set

g(y) = x 2 1 4y + (x 2 + 1/2) ln y -ln a 1 x 1 Γ(x 2 ) 2 √ πa 2 ,
and we have g ′ (y) = -

x 2 1 4y 2 + x 2 +1/2 y .
It follows that g is decreasing on 0,

x 2 1 4x 2 +2
and increasing on

x 2 1 4x 2 +2
, +∞ . As g goes to +∞ as y goes to 0 or +∞, it is clear that

∀y > 0, g(y) ≥ 0 ⇐⇒ g x 2 1 4x 2 + 2 ≥ 0 ⇐⇒ (x 2 + 1/2) 1 + ln x 2 1 4x 2 + 2 ≥ ln a 1 x 1 Γ(x 2 ) 2 √ πa 2 .
Now, if f a,x is not completely monotonic, we apply directly Proposition 2.7.2 to obtain second point. Third point is clear because for any (a 1 , a 2 ) ∈ (0, +∞) 2 and any x 2 > 3/2,

x 1 → a 2 π x 2 +1 a 1 x 1 Γ(x 2 ) 1 x 2 +1/2
is an increasing function which goes to infinity as x 1 → 0.

Example 2.7.7. For instance, we can choose a = (1, 1), x 2 = 6 and A 0 = 1. Thus we get

C 1 =
π 13 11! ≈ 0.0727432 and for any x 1 ≤ C 1 , Λ 1 is the unique minimizer of E fa,x among Bravais lattices of unit fixed area.

Moreover the form of the potential y → f a,x (y 2 ) is such that the decay to 0 at infinity is slow as x 1 goes to 0. Understanding the structure of matter at low temperature has been a challenge for many years. In this case, one of the simplest models is to consider identical points as particles interacting in a Lennard-Jones potential. This model is deterministic, therefore we do not consider either entropy nor other quantum effects. The problem is to find the configuration of the points which minimize the total interaction energy, called the Lennard-Jones energy. Radin, in [START_REF] Gardner | The Infinite-Volume Ground State of the Lennard-Jones Potential[END_REF], studied this problem in one dimension and showed that, in the case of infinite points, the minimizer is periodic. His method is not adaptable in higher dimensions and he studied, in [START_REF] Heitmann | The Ground State for Sticky Disks[END_REF][START_REF] Radin | The Ground State for Soft Disks[END_REF] the case of short range interactions and proved the first result of crystallization in two dimensions for a hard-sphere model. In the meantime, Ventevogel and Nijboer gave in [START_REF] Ventevogel | On the Configuration of Systems of Interacting Particle with Minimum Potential Energy per Particle[END_REF][START_REF] Ventevogel | On the Configuration of Systems of Interacting Particle with Minimum Potential Energy per Particle[END_REF][START_REF] Ventevogel | On the Configuration of Systems of Interacting Particle with Minimum Potential Energy per Particle[END_REF] more general results in one dimension for Lennard-Jones energy per particle. Indeed, they showed that a unique lattice of the form a 0 N minimizes the Lennard-Jones energy and that all lattices aN with a ≤ a 0 minimize this energy when the density of points ρ = a -1 is fixed. Our paper gives some results in the spirit of the latter paper.

After a numerical investigation of Yedder, Blanc, Le Bris, in [START_REF] Blanc | A Numerical Investigation of the 2-Dimensional Crystal Problem[END_REF], about the minimization of the Lennard-Jones and the Thomas-Fermi energy in R 2 , it seemed that the triangular lattice, also called "hexagonal lattice" -which is composed of equilateral triangles -is the minimum configuration for Lennard-Jones energy among any lattices and for Thomas-Fermi energy with nuclei density fixed. Some time after, Theil, in [START_REF] Theil | A Proof of Crystallization in Two Dimensions[END_REF], gave the first proof of crystallization in two dimensions for a "Lennard-Jones like" potential, with a minimum less than one but very close to one and long range interaction. He showed that the global minimizer of the total energy is triangular. His method was adapted by E and Li, in [START_REF] Li | On the Crystallization of 2D Hexagonal Lattices[END_REF], for a three-body potential with long range interactions in order to obtain a honeycomb lattice as global minimizer -see also the works of Mainini, Piovano and Stefanelli in [START_REF] Mainini | Finite Crystallization in the Square Lattice[END_REF][START_REF] Mainini | Crystallization in Carbon Nanostructures[END_REF] about the crystallization in square and honeycomb lattices for three-body potentials with short range interactions -and by Theil and Flatley in three dimensions in [START_REF] Flatley | Face-Centred Cubic Crystallization of Atomistic Configurations[END_REF]. Furthermore Montgomery, in [START_REF] Montgomery | Minimal Theta Functions[END_REF], proved that the triangular lattice is the unique minimizer of theta functions among Bravais lattices with fixed density and hence the unique minimizer of the Epstein zeta function, thanks to the link between these two functions. As the Lennard-Jones potential is a linear sum of Epstein zeta functions, it is natural to study the problem of minimization of the Lennard-Jones energy among Bravais lattices with and without fixed density. However, there are few results about minimization in the general case of periodic systems. For example, Cohn and Kumar described in [START_REF] Cohn | Universally Optimal Distribution of Points on Spheres[END_REF] a method and a conjecture for completely monotonic functions. It is interesting to observe that this kind of problem is connected with the theory of spherical design due to Delsarte, Goethals and Seidel in [START_REF] Delsarte | Spherical codes and designs[END_REF] and linked to the layers of a lattice, among others, by Venkov and Bachoc in [START_REF] Venkov | Réseaux et Designs Sphériques. Réseaux euclidiens, designs sphériques et formes modulaires[END_REF]3] and by Coulangeon et al. in [31,[START_REF] Coulangeon | Energy Minimization, Periodic Sets and Spherical Designs[END_REF]32].

In this paper, our main results are :

THEOREM :

-Let V LJ (r) = r -12 -2r -6 be the Lennard-Jones potential, then the minimizer of the energy E LJ (L) = p∈L\{0} V LJ ( p ) among all Bravais lattices of R 2 with fixed density sufficiently large is triangular and unique, up to rotation.

-A minimizer of E LJ among all Bravais lattices with fixed density sufficiently small cannot be triangular.

-Let L 0 = Zu ⊕ Zv be a global minimizer of E LJ among all Bravais lattices with u ≤ v , then 0.74035 < u ≤ v ≤ 1.

-Moreover, we have

ζ L 0 (6) = max{ζ L (6); L such that ζ L (12) ≤ ζ L (6)}.
-Let W T F : R * + → R be the solution of -∆h + πh = δ 0 which goes to 0 at infinity, then the minimizer of the Thomas-Fermi energy

E T F (L) = p∈L\{0} W T F ( p )
among all Bravais lattices of R 2 with density fixed is triangular and unique, up to rotation. This chapter is structured as follows : in Section 3.2, we introduce the notations ; in Section 3.3, we show that the minimizer of the Lennard-Jones energy per particle among Bravais lattices with fixed density, if the density is sufficiently large, it is triangular and unique. Moreover we give numerical results and a conjecture for the minimization with density fixed and we have arguments in order to explain why the global minimizer, among Bravais lattices without fixed density, is triangular ; in Section 3.4, we use proof of Blanc in [START_REF] Blanc | Lower Bound for the Interatomic Distance in Lennard-Jones Clusters[END_REF] to find a lower bound for the interparticle distance of the global minimizer, and finally in Section 3.5 we study the same kind of problem for the Thomas-Fermi model only when the density is fixed and we prove that the triangular lattice is the unique minimizer of the Thomas-Fermi energy per particle in R 2 .

Preliminaries

A Bravais lattice (also called a "simple lattice") of R 2 is given by L = Zu ⊕ Zv where (u, v) is a basis of R 2 . By Engel's theorem (see [START_REF] Engel | Geometric Crystallography. An Axiomatic Introduction to Crystallography[END_REF]), we can choose u and v so that u ≤ v and ( u, v) ∈ π 3 , π 2 in order to obtain the unicity of the lattice, up to a rotation. We note 

|L| = u ∧ v = u v |sin( u, v)| the
m, n) ∈ Z 2 , Q L (m, n) = mu + nv 2 = u 2 m 2 + v 2 n 2 + 2 u v cos( u, v)mn.
For a positive definite quadratic form q(m, n) = am 2 + bmn + cn 2 , we define its discriminant D = b 2 -4ac < 0. Hence for Q L , we obtain :

-D = 4 u 2 v 2 -4 u 2 v 2 cos 2 ( u, v) = 4 u 2 v 2 sin 2 ( u, v) = 4|L| 2 .
In this chapter, the term "lattice" will mean a "Bravais lattice", and we define, for s > 2, the Epstein zeta function of the lattice L by

ζ L (s) := p∈L * 1 p s = (m,n) =(0,0) 1 Q L (m, n) s/2 . Let Λ A = 2A √ 3 Z(1, 0) ⊕ Z(1/2, √ 3 
/2) be the triangular lattice of area A, also called the hexagonal lattice. Its length is the norm of its vector u, i.e. the minimum distance strictly positive of Λ A , u = 2A/ √ 3. We notice, for any s > 2, that

ζ Λ A (s) = ζ Λ 1 (s) A s/2 (3.2.1)
and this relation of scaling is true for any lattice L of area A.

We recall the result of Montgomery, proved in our annex, about theta functions :

Theorem 3.2.1. (Montgomery, [START_REF] Montgomery | Minimal Theta Functions[END_REF]) For any real number α > 0 and a Bravais lattice

L, let θ L (α) := Θ L (iα) = m,n∈Z e -2παQ L (m,n) ,
where Θ L is the Jacobi theta function of the lattice L defined for Im(z) > 0.

Then, for any α > 0, Λ A is the unique minimizer of L → θ L (α) among lattices of area A, up to rotation.

Remark 3.2.2. The same kind of results were obtained by Nonnenmacher and Voros in [START_REF] Nonnenmacher | Chaotic Eigenfunctions in Phase Space[END_REF]. The previous theorem implies that the triangular lattice is the unique minimizer, up to rotation, of L → ζ L (s) among lattices with density fixed for any s > 2 which is also proved by Rankin (in [START_REF] Rankin | A Minimum Problem for the Epstein Zeta-Function[END_REF]).

We consider the classical Lennard-Jones potential

V LJ (r) = 1 r 12 - 2 r 6
whose minimum is obtained at r = 1, and for L = Zu ⊕ Zv a Bravais lattice of R 2 , we let

E LJ (L) := p∈L * V LJ ( p ) = ζ L (12) -2ζ L (6)
be the Lennard-Jones energy of lattice L. By (3.2.1) this energy among lattices of area A can be viewed as energy L → E LJ ( √ AL) over lattices of area 1 and we parametrize L with its length u and v by

Q L (m, n) = u 2 m 2 + v 2 n 2 + 2mn u 2 v 2 -1.
It follows that we can write Lennard-Jones energy among lattices of area A as Proof. We parametrize a lattice L by x = u , y = v and θ = ( u, v), therefore

( u , v ) → (m,n) =(0,0) V LJ √ A u 2 m 2 + v 2 n 2 + 2mn u 2 v 2 -1 . (3.2.2)
f (x, y, θ) := E LJ (L) = (m,n) =(0,0) 1 (x 2 m 2 + y 2 n 2 + 2xymn cos θ) 6 - 2 (x 2 m 2 + y 2 n 2 + 2xymn cos θ) 3 .
First case : minimization without fixed area. If L is the solution of (P ) then x and y cannot be too small, otherwise the energy is too large and a proof of a lower bound for x is given in Section 3.4. Moreover y ≤ 1 because if y > 1 then a contraction of the line Rv gives smaller energy. Therefore we have

x, y ∈ [m, M] and θ ∈ [π/3, π/2]. The function (x, y, θ) → f (x, y, θ) is continuous on [m, M] × [m, M] × [π/3, π/2]
hence its minimum is achieved. Second case : minimization with fixed area. We can parametrize L with only two variables x and y -as in (3.2.2) -such that when x → 0 then y → +∞. As L should be a Bravais lattice, it is clear that the minimum of f is achieved.

Minimization among lattices with fixed area 3.3.1 A sufficient condition for the minimality of E LJ : Montgomery's method

Our idea is to write E LJ in terms of θ L and to use Theorem 3.2.1 in order to find a sufficient condition for the minimality of the triangular lattice among Bravais lattices with a fixed area.

Theorem 3.3.1. If A 3 ≤ π 3 120
, then Λ A is the unique solution of (P A ).

Proof. As it is explained in [START_REF] Montgomery | Minimal Theta Functions[END_REF] or [START_REF] Terras | Harmonic Analysis on Symmetric Spaces and Applications[END_REF], we can write the Epstein zeta function in terms of a theta function. Indeed, we have the following identity, where the discriminant of

Q L is D = 1 : for Re(s) > 1, ζ L (2s)Γ(s)(2π) -s = 1 s -1 - 1 s + ∞ 1 (θ L (α) -1)(α s + α 1-s ) dα α . (3.3.1) 
Thus, for |L| = A, we write

E LJ (L) = ζ L (12) -2ζ L (6) as an integral +∞ 1 g A (α) θ L α 2A -1 dα α ,
up to a constant independent of L and we find A so that g A (α) ≥ 0 for any α ≥ 1.

As Λ A is the unique minimizer of θ L (α) for any α > 0, we have for any L such that |L| = A :

E LJ (L) -E LJ (Λ A ) = +∞ 1 θ L α 2A -θ Λ A α 2A g A (α) dα α ≥ 0
and Λ A is the unique solution of (P A ).

In fact (3.3.1) it is the classic "Riemann's trick" and here we will briefly recall its proof : as

Γ(s)(2π) -s Q L (m, n) -s = ∞ 0 t s-1 e -t (2π) -s Q L (m, n) -s dt
for Re(s) > 1, and by putting t = 2πQ L (m, n)y, we obtain

Γ(s)(2π) -s Q L (m, n) -s = ∞ 0 e -2πyQ L (m,n) y s-1 dy.
Summing over (m, n) = (0, 0) and using the identity θ L (1/α) = αθ L (α) for any α > 0, proved by Montgomery in [START_REF] Montgomery | Minimal Theta Functions[END_REF], we obtain

Γ(s)(2π) -s ζ L (2s) = ∞ 0 (θ L (y) -1)y s-1 dy = 1 0 (θ L (y) -1)y s-1 dy + ∞ 1 (θ L (y) -1)y s-1 dy = ∞ 1 (θ L (1/α) -1)α -1-s dα + ∞ 1 (θ L (α) -1)α s-1 dα = ∞ 1 (αθ L (α) -1)α -1-s dα + ∞ 1 (θ L (α) -1)α s-1 dα = ∞ 1 θ L (α)α -s dα - ∞ 1 α -1-s dα + ∞ 1 (θ L (α) -1)α s-1 dα = ∞ 1 (θ L (α) -1)α -s dα + ∞ 1 (θ L (α) -1)α s-1 dα + ∞ 1 α -s dα - ∞ 1 α -1-s dα = ∞ 1 (θ L (α) -1)α -s dα + ∞ 1 (θ L (α) -1)α s-1 dα + 1 s -1 - 1 s = ∞ 1 (θ L (α) -1)(α s + α 1-s ) dα α + 1 s -1 - 1 s .
Now if |L| = A, by the equality D = (2A) 2 there are two identities :

(2π) -6 (2A) 6 Γ(6)ζ L (12) = 1 5 - 1 6 + +∞ 1 θ L α 2A -1 (α 6 + α 1-6 ) dα α (2π) -3 (2A) 3 Γ(3)ζ L (6) = 1 2 - 1 3 + +∞ 1 θ L α 2A -1 (α 3 + α 1-3 ) dα α
and we find

ζ L (12) = (2π) 6 30(2A) 6 5! + +∞ 1 θ L α 2A -1 (2π) 6 (2A) 6 5! (α 6 + α -5 ) dα α ζ L (6) = (2π) 3 6(2A) 3 2! + +∞ 1 θ L α 2A -1 (2π) 3 (2A) 3 2! (α 3 + α -2 ) dα α .
Therefore, for any L of area A, andC A is a constant depending on A but independent of L. Now we want to prove that if π 3 ≥ 120A 3 then g A (α) ≥ 0 for any α ≥ 1. First, we remark that

E LJ (L) = C A + π 3 A 3 +∞ 1 θ L α 2A -1 g A (α) dα α where g A (α) := π 3 A 3 5! (α 6 + α -5 ) -(α 3 + α -2 ),
g A (1) ≥ 0 ⇐⇒ π 3 A 3 5! -1 ≥ 0 ⇐⇒ π 3 ≥ 120A 3 .
Secondly, we compute g ′ A (α) =

π 3 A 3 5! (6α 5 -5α -6 ) -(3α 2 -2α -3 ), and if π 3 ≥ 120A 3 then g ′ A (1) = π 3 A 3 5! -1 ≥ 0.
Finally, we compute g ′′ A (α) =

π 3 A 3 5! (30α 4 + 30α -7 ) -(6α + 6α -4 ). As π 3 A 3 5! ≥ 1 and α ≥ 1, π 3 A 3 5! (30α 4 +30α -7 )-(6α+6α -4 ) ≥ 30α 4 +30α -7 -6α-6α -4 ≥ 24α+30α -7 -6α -4 ≥ 0.
Thus, we have shown that, for any A so that

π 3 ≥ 120A 3 , g ′′ A (α) ≥ 0 for any α ≥ 1, g ′ A (1) ≥ 0 and g A (1) ≥ 0. Hence g A (α) ≥ 0 for any α ≥ 1 if π 3 ≥ 120A 3 . Remark 3.3.2. We have π 3 120 1/3
≈ 0.63693, hence for A ≤ 0.63692, Λ A is the unique solution of (P A ).

Remark 3.3.3. We prove below (see Proposition 3.3.5) that when A is sufficiently large then Λ A is no longer a solution of (P A ). However, our bound π 3 ≥ 120A 3 is likely not to be optimal. If it were, by the Proposition 3.4.3 and its remark, then the triangular lattice is not the solution to (P ).

This result explains that the behaviour of the potential is important for the interaction between the first neighbours because in this case the reverse power part r -12 is the strongest interaction.

Remark 3.3.4. The three-dimensional case is an open problem. Indeed, there is no result related to the minimization of theta and Epstein functions among Bravais lattices of R 3 with fixed volume. Sarnak and Strömbergsson recalled in [START_REF] Sarnak | Minima of Epstein's Zeta Function and Heights of Flat Tori[END_REF] that Ennola had shown in [START_REF] Ennola | On a Problem about the Epstein Zeta-Function[END_REF] the local minimality of the face centred cubic lattice for ζ L (s) and for any s > 0. They also prove that the face centred cubic lattice cannot be the minimizer of ζ L (s) for all s > 0. Hence the problem of minimization of Lennard-Jones energy among lattices of R 3 , and of course in higher dimensions, seems to be very difficult.

A necessary condition for the minimality of the triangu-

lar lattice for E LJ Proposition 3.3.5. Λ A is a solution of (P A ) if and only if A ≤ inf |L|=1 L =Λ 1 ζ L (12) -ζ Λ 1 (12) 2(ζ L (6) -ζ Λ 1 (6)) 1/3
. Hence if A is sufficiently large, Λ A is not a solution of (P A ).

Proof. We have the following equivalences

E LJ (Λ A ) ≤ E LJ (L) for any L such that |L| = A ⇐⇒ ζ Λ A (12) -2ζ Λ A (6) ≤ ζ L (12) -2ζ L (6) for any L such that |L| = A ⇐⇒ 2(ζ L (6) -ζ Λ A (6)) ≤ ζ L (12) -ζ Λ A (12) for any L such that |L| = A ⇐⇒ 2(ζ L (6) -ζ Λ 1 (6)) A 3 ≤ ζ L (12) -ζ Λ 1 (12) A 6
for any L such that |L| = 1 by the scaling property (3.2.1). We recall that ζ L (6) > ζ Λ 1 (6) for any L of area A so that L = Λ 1 , as a consequence of Theorem 3.2.1 and the Riemann's trick (3.3.1). Then we obtain

E LJ (Λ A ) ≤ E LJ (L) for any L such that |L| = A ⇐⇒ A ≤ inf |L|=1 L =Λ 1 ζ L (12) -ζ Λ 1 (12) 2(ζ L (6) -ζ Λ 1 (6)) 1/3 . It is difficult to study the minimum of function L → ζ L (12) -ζ Λ 1 (12) 2(ζ L (6) -ζ Λ 1 (6)) 1/3 
among lattices L = Λ 1 such that |L| = 1. However, we can numerically look for a lower bound. This function can be parametrized with two variables -here the lengths u and v of the lattice L as in (3.2.2) -and we can plot the level sets of it. We notice that the large differences between the values of the function only give a domain where the function is minimum. Indeed, its minimum seems to be around lattice L of area 1 such that u = v = 1.014 and for this one, we have

ζ L (12) -ζ Λ 1 (12) 2(ζ L (6) -ζ Λ 1 (6)) 1/3 
≈ 1.1378475, hence numerically the minimum of this function is between 1.13 and 1.14.

Actually Figure 3.3 gives the Lennard-Jones energy -viewed as a function of two variables u and v over the lattices of area one (see

(3.2.2)) -for ( u , v ) ∈ [1, 1.08] 2 .
The triangular lattice Λ 1 corresponds to the point

2/ √ 3, 2/ √ 3 ≈ (1.075, 1.075)
and the square lattice Z 2 corresponds to the point (1, 1). In fact it is clear that the point associated with the triangular lattice is a critical point of this energy, because the triangular lattice is the unique minimizer of Epstein zeta function among lattices of area A. Moreover we can prove that the square lattice is also a critical point, by using an other parametrization as ( u , θ). We numerically obtain :

Figure 3.2 -Level sets of ( u , v ) → ζ L (12) -ζ Λ 1 (12) 2(ζ L (6) -ζ Λ 1 (6)) 1/3
(black = minimum, white = maximum)

-For A = 1, Λ 1 seems to be its minimizer and Z 2 is a local maximizer.

-For A = 1.13, Λ 1 seems to be its minimizer but Z 2 seems to be not a local maximizer.

-For A = 1.14, Z 2 seems to be its minimizer because we estimate

E LJ ( √ 1.14Λ 1 ) ≈ -4.435 is larger than E LJ ( √ 1.14Z 2 ) ≈ -4.437.
-For A = 1.16, Z 2 seems to be its minimizer.

-For A = 1.2, Z 2 seems to be its minimizer and Λ 1 is a local maximizer.

-For A = 2 (and more), Z 2 seems to be its minimizer and Λ 1 is a local maximizer.

Hence, we can write the following conjecture based on our numerical study of L → E LJ ( √ AL) among all lattices with area 1 : Conjecture : If A is sufficiently large, the square lattice is the unique solution of (P A ). 

Global minimization of E LJ among lattices

Now we study the problem (P ). We give high properties for the global minimizer among lattices and some indications of its shape.

Characterization of the global minimizer

Proposition 3.4.1. If L 0 = Zu ⊕ Zv is a solution of (P ) then i) E LJ (L 0 ) = -ζ L 0 (6) = -ζ L 0 (12) < 0, ii) u < 1 and v ≤ 1, iii) ζ L 0 (6) = max{ζ L (6); L such that ζ L (12) ≤ ζ L (6)}. Proof. i) We consider the function f (r) = E LJ (rL 0 ) = r -12 ζ L 0 (12) -2r -6 ζ L 0 (6). As L 0 is a global minimizer of E LJ , r = 1 is the critical point of f and f ′ (r) = -12r -13 ζ L 0 (12) + 12r -7 ζ L 0 (6), hence f ′ (1) = 0 ⇐⇒ ζ L 0 (12) = ζ L 0 (6) and E LJ (L 0 ) = ζ L 0 (12) -2ζ L 0 (6) = -ζ L 0 (6) = -ζ L 0 (12). ii) As ζ L 0 (12) = ζ L 0 (6), it is clear that u < 1 because if r > 1 then r -12 < r -6 . If v > 1, a little contraction of Rv yields a new lattice L 1 such that E LJ (L 1 ) < E LJ (L 0
) because some of the distances of the lattice decrease while u is constant, therefore the energy decreases.

iii) -ζ L 0 (6) = E LJ (L 0 ) ≤ E LJ (L) ⇐⇒ ζ L (6) -ζ L 0 (6) ≤ ζ L (12) -ζ L (6) and if L is a lattice such that ζ L (12) ≤ ζ L (6), we get ζ L (6) ≤ ζ L 0 (6).
Corollary 3.4.2. The triangular lattice of length 1 cannot be the solution of (P ) though the minimum of the potential V LJ is achieved for r = 1. Proposition 3.4.3. The minimizer of E LJ among triangular lattices is Λ A 0 such that

A 0 = ζ Λ 1 (12) ζ Λ 1 (6) 1/3 
.

Proof. As in the above proof, we define the function f (r) = E LJ (rΛ 1 ) and we compute its first derivative f ′ (r) = -12r -13 ζ Λ 1 (12) + 12r -7 ζ Λ 1 [START_REF] Bernstein | Sur les Fonctions Absolument Monotones[END_REF]. It follows that :

f ′ (r) ≥ 0 ⇐⇒ r ≥ ζ Λ 1 (12) ζ Λ 1 (6) 1/6 =: r 0 hence Λ A 0 = r 0 Λ 1 , with A 0 = r 2 0 = ζ Λ 1 (12) ζ Λ 1 (6) 1/3
, is the minimizer of E LJ among all triangular lattices. Remark 3.4.4. We compute A 0 ≈ 0.84912, therefore the length of this lattice is u ≈ 0.99019. Moreover we notice that E LJ (Λ A 0 ) = -ζ Λ A 0 (6) ≈ -6.76425 (it will be useful for the next part). Because A 0 > 0.63692, Theorem 3.3.1 is not sufficient to prove that Λ A 0 is the solution of (P ) but a numerical investigation of L → E LJ ( √ A 0 L) among all lattices of area 1 seems to indicate that the solution of (P A 0 ) is triangular and unique. Moreover it is not Conjecture : The triangular lattice Λ A 0 is the unique solution of (P ).

Minimum length of the global minimizer

Because our method does not show that the triangular lattice of area A 0 is the global minimizer of the Lennard-Jones energy among lattices, we use Blanc's proof, from [START_REF] Blanc | Lower Bound for the Interatomic Distance in Lennard-Jones Clusters[END_REF], in order to find a lower bound for the minimal distance in the globally minimizing lattice. His result was for the Lennard-Jones interaction of N points in R 2 and R 3 . Xue in [START_REF] Xue | Minimum Inter-Particle Distance at Global Minimizers of Lennard-Jones Clusters[END_REF] and Schachinger, Addis, Bomze and Schoen in [2] improved this. We use Blanc's method because it is well suited to our problem. Proposition 3.4.5. If L 0 = Zu ⊕ Zv is a solution of (P ), then the minimal distance is greater than an explicit constant c. Furthermore, we have c > 0.74035.

Proof. In [START_REF] Blanc | Lower Bound for the Interatomic Distance in Lennard-Jones Clusters[END_REF], Blanc proved that

E LJ (L 0 ) ≥ V LJ ( u ) -23 + 1 u 12 k≥2 16k + 8 k 12 - 1 u 6 k≥2 32k + 16 k 6 .
As we have

E LJ (L 0 ) ≤ E LJ (Λ A 0 ) = -ζ Λ A 0 (6) we obtain 23 -ζ Λ A 0 (6) ≥ P + 1 u 12 - Q + 2 u 6 .
with P := k≥2 16k + 8 k 12 and Q := k≥2 32k + 16 k 6 . Now, setting t = u -6 , we have (P + 1)

t 2 -(Q + 2)t -23 + ζ Λ A 0 (6) ≤ 0 which implies t ≤ Q + 2 + (Q + 2) 2 + 4(23 -ζ Λ A 0 (6))(P + 1) 2(P + 1)
and we obtain

u ≥   2(P + 1) Q + 2 + (Q + 2) 2 + 4 23 -ζ Λ A 0 (6) (P + 1)   1/6 =: c.
Since P ≈ 0.00988, Q ≈ 1.45918 and ζ Λ A 0 (6) ≈ 6.76425 we get c > 0.74035.

Remark 3.4.6. As we think that Λ A 0 is the unique solution of (P ), this lower bound is the best that we can find with this method. Moreover, this bound and the second point of Proposition 3.4.1 imply that 0.47468 < |L 0 | < 1.

The Thomas-Fermi model in R 2

In Thomas-Fermi's model for interactions in a solid, we consider N nuclei at positions X N = (x 1 , ..., x N ), with for any 1 ≤ i ≤ N, x i ∈ R 2 , associated with N electrons with total density ρ ≥ 0. Then the Thomas-Fermi energy is given by

E T F (ρ, X N ) = R 2 ρ 2 (x)dx - 1 2 R 2 ×R 2 log x -y ρ(x)ρ(y)dxdy + N j=1 R 2 log x -x j ρ(x)dx - 1 2 j =k log x j -x k .
To introduce this kind of model property in quantum chemistry, refer to [START_REF] Cances | Méthodes Mathématiques en Chimie Quantique. Une Introduction[END_REF]. Because the system is neutral, the number of electrons is exactly N and we study the minimization problem

I T F N = inf X N {E T F (X N )} where E T F (X N ) := inf ρ E T F (ρ, X N ), ρ ≥ 0, ρ ∈ L 1 (R 2 ) ∩ L 2 (R 2 ), R 2 ρ = N .
By the Euler-Lagrange equations for this minimization problem, we find -as it is explained in Section 2 of [START_REF] Blanc | A Numerical Investigation of the 2-Dimensional Crystal Problem[END_REF] and Section 4 of [START_REF] Blanc | From Molecular Models to Continuum Mechanics[END_REF] -that the minimizer ρ is the solution of

-∆ρ + π ρ = π N j=1 δ x j .
It is known that the fundamental solution of the modified Helmholtz equation -∆h + h = δ 0 -also called "screened Poisson equation" -which goes to 0 at infinity, is the radial modified Bessel function of the second kind, also called the Yukawa potential, defined in [START_REF] Gradshteyn | Table of Integrals, Series and Products[END_REF] and [START_REF] Watson | A Treatise on the Theory of Bessel Functions[END_REF], by

K 0 ( x ) = +∞ 0 e -x cosh t dt.
Therefore we obtain ρ

(x) = π N j=1 W T F ( x -x j ) where W T F ( x ) = 1 2 K 0 ( √ π x ) and finally E T F (X N ) = i =j W T F ( x i -x j ) + NC
where C is a constant independent of N and X N . Now, if we consider that the nuclei are in lattice L, we can study, by taking the mean value of the total energy, the following energy per point

E T F (L) = p∈L * W T F ( p ).
Theorem 3.5.1. Λ A is the unique minimizer of E T F among all lattices of fixed area A.

Proof. This problem is equivalent to finding the minimizer of p∈L * K 0 ( p ) among lattices with a fixed area. We put y = 1 2 p e t for p = 0 in the integral formula for K 0 ( p ) :

K 0 ( p ) = 1 2 +∞ -∞
e -p cosh t dt = 1 2

+∞ 0 e -p cosh(ln(2y/ p )) dy y Hence, for any L of a fixed area A, we get

E T F (Λ A ) = p∈Λ * A W T F ( p ) ≤ p∈L * W T F ( p ) = E T F (L).
Remark 3.5.2. The Yukawa potential appears in many vortex interaction models, as the α-model in fluid mechanics and in superconductivity (see for example [START_REF] Abrikosov | The Magnetic Properties of Superconducting Alloys[END_REF] and [START_REF] Sow | Measurement of the Vortex Pair Interaction Potential in a Type-II Superconductor[END_REF]). Indeed, the second author recently studied, in [START_REF] Zhang | On the Minimizer of Renormalized Energy related to Ginzburg-Landau Model[END_REF], Ginzburg-Landau's model for the interactions between vortices in superconductors. He proved, by using a more general method -that it can certainly be used for other potentials -the same result was obtained for minimality of the triangular lattice among all lattices with fixed density. The use of results from Number Theory in Ginzburg-Landau's models for vortices can also be seen in [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF].

Introduction

Let (x 1 , ..., x n ) ∈ (R 2 ) n be a configuration of n points interacting through a logarithmic potential and confined by an external field V . The Hamiltonian of this system, also known as a Coulomb gas, is defined as

w n (x 1 , ..., x n ) := - n i =j log |x i -x j | + n n i=1 V (x i )
where | • | is the Euclidean norm in R 2 . The minimization of w n is linked to the following classical problem of logarithmic potential theory : find a probability measure µ V on R 2 which minimizes

I V (µ) := R 2 ×R 2 V (x) 2 + V (y) 2 -log |x -y| dµ(x)dµ(y) (4.1.1)
amongst all probability measures µ on R 2 . This type of problem dates back to Gauss. More recent references are the thesis of Frostman [START_REF] Frostman | Potentiel d'équilibre et capacité des ensembles[END_REF] and the monography of E.Saff and V.Totik [START_REF] Saff | of Grundlehren der Mathematischen Wissenschaften[END_REF]. The usual assumptions on V : R 2 → R ∪ {+∞} are that it is lower semicontinuous, that it is finite on a set of nonzero capacity, and that it satisfies the growth assumption lim These assumptions ensure that a unique minimizer µ V of I V exists and that it has compact support. Recently, Hardy and Kuijlaars [START_REF] Hardy | Weakly Admissible Vector Equilibrium Problems[END_REF] (see also [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF]) proved that if one replaces (4.1.2) by the so-called weak growth assumption

lim inf |x|→+∞ V (x) -log(1 + |x| 2 ) > -∞, (4.1.3) 
then I V still admits a unique minimizer, which may no longer have compact support. Moreover Bloom, Levenberg and Wielonsky [START_REF] Bloom | Logarithmic Potential Theory and Large Deviation[END_REF] proved that the classical Frostman type inequalities still hold in this case.

Coming back to the minimum of the discrete energy w n , its relation to the minimum of I V is that as n → +∞, the minimum of w n is equivalent to n 2 min I V . The next term in the asymptotic expansion of w n was derived by Sandier and Serfaty [START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF] in the classical case (4.1.2), it reads

min w n = n 2 min I V - n 2 log n + α V n + o(n),
where α V is related to the minimum of a Coulombian renormalized energy studied in [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF] which quantifies the discrete energy of infinitely many positive charges in the plane screened by a uniform negative background. Note that rather strict assumptions in addition to (4.1.2) need to be made on V for this expansion to hold, but they are satisfied in particular if V is smooth and strictly convex.

Here, we show that such an asymptotic formula still holds when the classical growth assumption (4.1.2) is replaced with the weak growth assumption (4.1.3). However it is no longer obvious that the minimum of w n is achieved in this case, as the weak growth assumption could allows one point to go to infinity. THEOREM 4.1.1. Let V be an admissible potential 1 . Then the following asymptotic expansion holds. This result is proved using the methods in [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF][START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF] suitably adapted to equilibrium measures with possibly non-compact support together with the compactification approach in [START_REF] Hardy | Weakly Admissible Vector Equilibrium Problems[END_REF][START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF][START_REF] Bloom | Logarithmic Potential Theory and Large Deviation[END_REF]. This compactification allows also to connect the discrete energy problem for log gases in the plane with the discrete logarithmic energy problem for finitely many points on the unit sphere S 2 in the Euclidean space R 3 .

inf (R 2 ) n w n = I V (µ V )n 2 - n 2 log n + 1 π min A 1 W - 1 2 R 2 m V (x) log m V (x)dx n + o(n),
The logarithmic energy of a configuration (y 1 , ..., y n ) ∈ (S 2 ) n is given by

E log (y 1 , ..., y n ) := - n i =j log y i -y j ,
where • is the Euclidean norm in R 3 . Finding a minimizer of such an energy functional is a problem with many links and ramifications as discussed in the fundamental paper of Saff and Kuijlaars [START_REF] Kuijlaars | Distributing Many Points on a Sphere[END_REF] (see also [START_REF] Brauchart | Distributing Many Points on Spheres : Minimal Energy and Designs[END_REF]). For instance Smale's 7 th problem [START_REF] Smale | Mathematical Problems for the Next Century[END_REF] is to find, for any n ≥ 2, a universal constant c ∈ R and a nearly optimal configuration (y 1 , ..., y n ) ∈ (S 2 ) n such that, letting E log (n) denote the minimum of E log on (S 2 ) n , E log (y 1 , ..., y n ) -E log (n) ≤ c log n.

See Section 4.3.1 for the precise definition

Identifying the term of order n in the expansion of E log (n) can be seen as a modest step towards a better understanding of this problem.

It was known (lower bound by Wagner [START_REF] Wagner | On Means of Distances on the Surface of a Sphere. II. Upper Bounds[END_REF] and upper bound by Kuijlaars and Saff [START_REF] Kuijlaars | Asymptotics For Minimal Discrete Energy on the Sphere[END_REF]), that

1 2 -log 2 n 2 - 1 2 n log n + c 1 n ≤ E log (n) ≤ 1 2 -log 2 n 2 - 1 2 n log n + c 2 n
for some fixed constant c 1 and c 2 . Thus one can naturally ask for the existence of the limit

lim n→+∞ 1 n E log (n) - 1 2 -log 2 n 2 + n 2 log n .
CONJECTURE 1 (Rakhmanov, Saff and Zhou, [START_REF] Rakhmanov | Minimal Discrete Energy on the Sphere[END_REF]) : There exists a constant C not depending on n such that As we will see, our results imply that the last conjecture is equivalent to one concerning the global optimizer of the renormalized energy W . CONJECTURE 3 (Sandier and Serfaty, [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF], or see the review by Serfaty [START_REF] Serfaty | Ginzburg-Landau Vortices, Coulomb Gases, and Renormalized Energies[END_REF]) : The triangular lattice is a global minimizer of W among discrete subsets of R 2 with asymptotic density one.

E log (n) = 1 2 -log 2 n 2 - n 2 log n + Cn + o(n) as n → +∞.
The expansion (4.1.4) in the particular case V (x) = log(1 + |x| 2 ) transported to S 2 using an inverse stereographic projection and appropriate rescaling gives an expansion for E log (n) and thus proves Conjecture 1. The constant C in Conjecture 1 can moreover be expressed in terms of the minimum of the renormalized energy W . The value of W for the triangular lattice obviously provides an upper bound for this minimum, and by using the Chowla-Selberg formula to compute the expression given in [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF] for this quantity, we show that this upper bound is precisely C BHS . This bound is of course sharp if and only if Conjecture 3 is true. Thus we deduce from (4.1.4) the following. THEOREM 4.1.2. There exists C = 0 independent of n such that, as n → +∞,

E log (n) = 1 2 -log 2 n 2 - n 2 log n + Cn + o(n), C = 1 π min A 1 W + log π 2 + log 2.
Moreover C ≤ C BHS where C BHS is given in (4.1.5), and equality holds iff min

A 1
W is achieved for the triangular lattice of density one.

The plan of the paper is as follows. In Section 4.2 we recall the definition of W and some of its properties from [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF]. In Section 4.3 we recall results about existence, uniqueness and variational Frostman inequalities for µ V . Moreover, we give the precise definition of an admissible potential V . In Sections 4.4 and 4.5 we adapt the method of [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF] to the case of equilibrium measures with noncompact support. The expansion (4.1.4) is proved in Section 4.6. Finally in Section 4.7 we prove Conjecture 1 about the existence of C, the upper bound C ≤ C BHS and the equivalence between Conjectures 2 and 3.

Renormalized Energy

Here we recall the definition of the renormalized energy W (see [START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF] for more details). For any R > 0, B R denotes the ball centered at the origin with radius R. We use the notation χ B R for positive cutoff functions satisfying, for some constant C independent of R 

|∇χ B R | ≤ C, Supp(χ B R ) ⊂ B R , χ B R (x) = 1 if d(x, B c R ) ≥ 1. ( 4 
E ′ = 1 √ m E(./ √ m) ∈ A 1 and W (E) = m W (E ′ ) - π 2 log m .
In particular

min Am W = m min A 1 W - π 2 log m , (4.2.5) 
and E is a minimizer of W over A m if and only if E ′ minimizes W over A 1 .

In the periodic case, we have the following result [86, Theorem 2], which supports Conjecture 3 above : Theorem 4.2.3. The unique minimizer, up to rotation, of W over Bravais lattices2 of fixed density m is the triangular lattice

Λ m = 2 m √ 3 Z(1, 0) ⊕ Z 1 2 , √ 3 2 . 
This is proved in [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF] using the result of Montgomery on minimal theta function [START_REF] Montgomery | Minimal Theta Functions[END_REF], we provide below an alternative proof.

Proof. For any Bravais lattice Λ W (Λ) = ah(Λ) + b, (4.1.2), and by Hardy and Kuijlaars [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF][START_REF] Hardy | Weakly Admissible Vector Equilibrium Problems[END_REF] (for existence and uniqueness) and Bloom, Levenberg and Wielonsky [START_REF] Bloom | Logarithmic Potential Theory and Large Deviation[END_REF] (for Frostman type variational inequalities) for weak growth assumption (4.1.3). Theorem 4.3.2. ( [START_REF] Frostman | Potentiel d'équilibre et capacité des ensembles[END_REF][START_REF] Saff | of Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF][START_REF] Hardy | Weakly Admissible Vector Equilibrium Problems[END_REF][START_REF] Bloom | Logarithmic Potential Theory and Large Deviation[END_REF]) Let V be a lower semicontinuous function on R 2 such that {x ∈ R 2 ; V (x) < +∞} is a non log-polar subset of R 2 satisfying

lim inf |x|→+∞ {V (x) -log(1 + |x| 2 )} > -∞.
Then we have :

1. inf µ∈M 1 (R 2 )
I V (µ) is finite, where I V is given by (4.1.1).

2. There exists a unique equilibrium measure µ V ∈ M 1 (R 2 ) with

I V (µ V ) = inf µ∈M 1 (R 2 ) I V (µ)
and the logarithmic energy

I 0 (µ V ) is finite. 3. The support Σ V of µ V is contained in {x ∈ R 2 ; V (x) < +∞} and Σ V is not log-polar. 4. Let c V := I V (µ V ) - R 2 V (x) 2 dµ V (x) (4.3.1)
denote the Robin constant. Then we have the following Frostman variational inequalities :

U µ V (x) + V (x) 2 ≥ c V q.e. on R 2 , (4.3.2) 
U µ V (x) + V (x) 2 ≤ c V for all x ∈ Σ V . (4.3.3) Remark 4.3.3. In particular we have U µ V (x) + V (x) 2 = c V q.e. on Σ V .
As explained in [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF], the hypothesis of Theorem 4.3.2 can be usefully transported to the sphere S in R 3 centred at (0, 0, 1/2) with radius 1/2, by the inverse stereographic projection T : R 2 → S defined by

T (x 1 , x 2 ) = x 1 1 + |x| 2 , x 2 1 + |x| 2 , |x| 2 1 + |x| 2 , for any x = (x 1 , x 2 ) ∈ R 2 .
We know that T is a conformal homeomorphism from R 2 to S\{N} where N := (0, 0, 1) is the North pole of S.

The procedure is as follows : Given V : R 2 → R, we may define (see [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF]) V : S → R by letting

V(T (x)) = V (x) -log(1 + |x| 2 ), V(N) = lim inf |x|→+∞ {V (x) -log(1 + |x| 2 )}. (4.3.4)
Then (see [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF]), V satisfies the hypothesis of Theorem 4.3.2 if and only if V is a lowersemicontinuous function on S which is finite on a nonpolar set. Therefore, in this case, the minimum of

I V (µ) := S×S -log x -y + V(x) 2 + V(y) 2 dµ(x) dµ(y)
among probability measures on S is achieved. Here xy denotes the euclidean norm in R 3 . Moreover, still from [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF], the minimizer µ V is related to µ V by the following relation

µ V = T ♯µ V , (4.3.5) 
where T ♯µ denotes the push-forward of the measure µ by the map T .

Definition 4.3.2. We say that V : R 2 → R is admissible if it is of class C 3 and if, defining V as above, 1. (H1) : The set {x ∈ R 2 ; V (x) < +∞} is not log-polar and lim inf

|x|→+∞ {V (x) -log(1 + |x| 2 )} > -∞.

(H2) :

The equilibrium measure µ V is of the form m V (x)1 Σ V (x) dx, where m V is a C 1 function on S and dx denotes the surface element on S, where the function m V is bounded above and below by positive constants m and m, and where Σ V is a compact subset of S with C 1 boundary.

Remark 4.3.4. Using (H2) and (4.3.5), we find that

dµ V (x) = m V (x)1 Σ V dx, where Σ V = T -1 (Σ V ) and m V (x) = m V (T (x)) (1 + |x| 2 ) 2 . (4.3.6)
Note that (1 + |x| 2 ) -2 is the jacobian of the transformation T .

Splitting Formula

Assume V is admissible. We define as in [START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF] the blown-up quantities :

x ′ = √ nx, m ′ V (x ′ ) = m V (x), dµ ′ V (x ′ ) = m ′ V (x ′ )dx ′ and we define ζ(x) := U µ V (x) + V (x) 2 -c V , (4.4.1) 
where c V is the Robin constant given in (4.3.1). Then by (4.3.2) and (4.3.3), ζ(x) = 0 q.e. in Σ V and ζ(x) ≥ 0 q.e. in R 2 \Σ V .

For (x 1 , ..., x n ) ∈ (R 2 ) n , we define ν n = n i=1 δ x i and

H n := -2π∆ -1 (ν n -nµ V ) = - R 2 log |. -y|d(ν n -nµ V )(y) = - n i=1 log |. -x i | -nU µ V
where ∆ -1 is the convolution operator with 1 2π log | • |, hence such that ∆ • ∆ -1 = I 2 where ∆ denotes the usual laplacian. Moreover we set

H ′ n := -2π∆ -1 (ν ′ n -µ ′ V ) (4.4.2) 
where

ν ′ n = n i=1 δ x ′ i .
Lemma 4.4.1. Let V be an admissible potential. Then we have Therefore by the dominated convergence argument given in [71, Theorem 9.1, Chapter 5] (used for the continuity of U µ V ), we have 

lim R→+∞ B R H n (x)dµ V (x) = R 2 H n (x)dµ V (x) and lim R→+∞ W (∇H n , 1 B R ) = W (∇H n , 1 R 2 ).
H n (x) = n i=1 R 2 log |x -y| |x -x i | dµ V (y). ( 4 
.x n ) ∈ (R 2 ) n , n ≥ 2, we have w n (x 1 , ..., x n ) = n 2 I V (µ V ) - n 2 log n + 1 π W (∇H ′ n , 1 R 2 ) + 2n n i=1 ζ(x i ). ( 4 
R→+∞ ∂B R H n (x)∇H n (x). ν(x)dx = 0
where ν(x) is the outer unit normal vector at x ∈ ∂B R .

Lower bound

Here we follow the strategy of [START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF], pointing out the required modifications in the noncompact case.

Mass spreading result and modified density g

We have the following result from [87, Proposition 3.4] : Lemma 4.5.1. Let V be admissible and assume (ν, E) are such that ν = p∈Λ δ p for some finite subset Λ ⊂ R 2 and div E = 2π(νm V ), curl E = 0 in R 2 . Then, given any ρ > 0 there exists a signed measure g supported on R 2 and such that :

-there exists a family B ρ of disjoint closed balls covering Supp(ν), with the sum of the radii of the balls in B ρ intersecting with any ball of radius 1 bounded by ρ, and such that

g(A) ≥ -C( m V ∞ + 1) + 1 4 A |E(x)| 2 1 Ω\Bρ (x)dx, for any A ⊂ R 2 ,
We also define T ε λ and T λ acting on R 2 × X, by T ε λ (x, u) := (x + ελ, θ λ u) and T λ (x, u) := (x, θ λ u).

For a probability measure P on R 2 × X we say that P is T λ(x) -invariant if for every function λ of class C 1 , it is invariant under the mapping (x, u) → (x, θ λ(x) u).

We let {f ε } ε , and f be measurable functions defined on R 2 × X which satisfy the following properties. For any sequence {x ε , u ε } ε such that x ε → x as ε → 0 and such that for any R > 0, lim sup

ε→0 B R f ε (x ε + ελ, θ λ u ε )dλ < +∞, we have 1. (Coercivity) {u ε } ε has a convergent subsequence ; 2. (Γ-liminf) If {u ε } ε converge to u, then lim inf ε→0 f ε (x ε , u ε ) ≥ f (x, u).
Remark 4.5.3. In contrast with the compact case we do not have the convergence of {x ε }. Now let V be an admissible potential on R 2 and µ V its associated equilibrium measure. We have Theorem 4.5.4. Let V , X, (f ε ) ε and f be as above. We define

F ε (u) := R 2 f ε (x, θ x ε u)dµ V (x)
Assume (u ε ) ε ∈ X is a sequence such that F ε (u ε ) ≤ C for any ε > 0. Let P ε be the image of µ V by x → (x, θ x ε u ε ), then : 1. (P ε ) ε admits a convergent subsequence to a probability measure P ,

the first marginal of

P is µ V , 3. P is T λ(x) -invariant, 4. for P -a.e. (x, u), (x, u) is of the form lim ε→0 (x ε , θ xε ε u ε ), 5. lim inf ε→0 F ε (u ε ) ≥ R 2 ×X f (x, u)dP (x, u).
6. Moreover we have

R 2 ×X f (x, u)dP (x, u) = R 2 ×X lim R→+∞ - B R f (x, θ λ u)dλ dP (x, u). (4.5.4)
where -B R denote the integral average over B R .

Main result

Theorem 4.6.1. Let 1 < p < 2 and X = R 2 × L p loc (R 2 , R 2 ). Let V be an admissible function.

A. Lower bound : Let (ν n ) n such that F n (ν n ) ≤ C, then :

1. P νn is a probability measure on X and admits a subsequence which converges to a probability measure P on X,

the first marginal of

P is µ V , 3. P is T λ(x) -invariant, 4. E ∈ A m V (x) P -a.e., 5 
. we have the lower bound 

lim inf n→+∞ 1 nπ W (∇H ′ n , 1 R 2 ) ≥ 1 π R 2 W (E) m V (x) dP (x, E) ≥ α V . ( 4 
F n (ν n ) ≤ 1 π R 2 W (E) m V (x) dP (x, E). ( 4 
F n (ν n ) = lim n→+∞ 1 nπ W (∇H ′ n , 1 R 2 ) = 1 π R 2 W (E) m V (x) dP (x, E) = α V , (4.6.4)
hence we obtain the following asymptotic expansion, as n → +∞ :

min (R 2 ) n w n = I V (µ V )n 2 - n 2 log n + α V n + o(n). (4.6.5)
then the integrand is bounded for a.e. λ. By assumption on f n , for any n,

θ λ (ν(n), E(n), g(n)) = θ xn √ n+λ (ν ′ n , E n , g n ), hence it follows that (ν(n), E(n), g(n)) = θ xn √ n (ν ′ n , E n , g n ).
For any R > 0, there exists C R > 0 such that for any n > 0, noting B R (x) the closed ball of radius R centred at a point x,

B R f n x n + λ √ n , θ λ (ν n , E n , g n ) dλ = B R 1 π R 2 χ(y) m V x n + λ √ n d(θ λ+xn √ n ♯g n (y))dλ = 1 π B R R 2 χ(y -x n √ n -λ) m V x n + λ √ n dg n (y)dλ = 1 π R 2 χ * 1 B R (xn √ n) 1 m V (./ √ n) (y)dg n (y) < C R .
This, inequalities (4.3.6) and the fact that g n is bounded below imply that g

n (B R (x n √ n))
is bounded independently of n. Hence by the same argument as in [87, Lemma 4.4], we have the convergence of a subsequence of (ν n , E n , g n ).

2) We have the Γ-liminf property : if (x n , ν n , E n , g n ) → (x, ν, E, g) as n → +∞, then, by Fatou's Lemma,

lim inf n→+∞ f n (x n , ν n , E n , g n ) ≥ f (x, ν, E, g) := 1 π χ(y) m V (x) dg(y),
obviously if the left-hand side is finite. Therefore, Theorem 4.5.4 applies and implies that :

1. The measure Q n admits a subsequence which converges to a measure Q which has µ V as first marginal.

It holds that

Q-almost every (x, ν, E, g) is of the form lim n→+∞ (x n , θ xn √ n (ν ′ n , E n , g n )). 3. The measure Q is T λ(x) -invariant. 4. We have lim inf n→+∞ F n (ν ′ n , E n , g n ) ≥ 1 π R 2 R 2 χ(y) m V (x) dg(y) dQ(x, ν, E, g). 5. 1 π χ(y) m V (x) dg(y)dQ(x, ν, E, g) = lim R→+∞ - B R χ(y -λ) m V (x)
dg(y)dλ dQ(x, ν, E, g).

Now we can follow exactly the lines of [87, Section 4.2, Step 3] to deduce from 4), after noticing that P n is the marginal of Q n corresponding to the variables (x, E) which converge to a T λ(x) -invariant probability measure. Moreover

lim inf n→+∞ 1 nπ W (∇H ′ n , 1 R 2 ) ≥ χdg dQ(x, ν, E, g) m V (x) = lim R→+∞ 1 πR 2 χ * 1 B R dg dQ(x, ν, E, g) m V (x) ≥ 1 π W (E) dQ(x, ν, E, g) m V (x) = 1 π W (E) m V (x) dP (x, E).
Thus the lower bound (4.6.2) is proved. The fact that the right-hand side is larger than α V is obvious because the first marginal of dP m V is the Lebesgue measure.

4.6.3 Proof of the upper bound, the case Supp(µ V ) = R 2

The discussion following Theorem 4.3.2 permits to immediately reduce the case of V 's such that Supp(µ V ) = R 2 to the case of a compact support. Indeed in this case there exists y ∈ S which does not belong to the support of µ V . Let R be a rotation such that R(N) = y, then the minimum of 

I V•R is µ V•R = R -1 ♯µ V hence N
µ Vϕ = T -1 ♯µ V•R , where V • R(T (x)) = V ϕ (x) -log(1 + |x| 2 ).
This implies that µ Vϕ has compact support since N does not belong to the support of µ V•R . Moreover, using (4.3.4) again to evaluate V(RT (x)) we find for any x such that

RT (x) = N, i.e. x = -d/c, V ϕ (x) = V (T -1 RT (x)) -log(1 + |T -1 RT (x)| 2 ) + log(1 + |x| 2 ), V ϕ (-d/c) = V(N) + log(1 + |d/c| 2 ) = log(1 + |d/c| 2 ) + lim inf |x|→+∞ {V (x) -log(1 + |x| 2 )}.
Finally we find that

V ϕ (x) = V (ϕ(x)) -log(1 + |ϕ(x)| 2 ) + log(1 + |x| 2 ), V ϕ (-d/c) = lim inf y→-d/c
V ϕ (y). (4.6.7) by change of variable y = ϕ(x) and Ẽ = Dϕ T y E(Dϕ y •). Now we remark that, for λ > 0 and E ∈ A m ,

W (λE(λ.)) = lim R→+∞ 1 πR 2 lim η→0 1 2 R 2 \ i B(y i ,η) χ R (y)λ 2 |E(λy)| 2 dy + π i χ R (y i ) log η = lim R→+∞ 1 πR 2 lim η→0 1 2 R 2 \ i B(x i ,λη) χ R (x/λ)|E(x)| 2 dx + π i χ R (x i /λ) log η
where x = λy. Thus, setting R ′ = Rλ and η ′ = ηλ, we get 

W (λE(λ.)) = lim R ′ →+∞ λ 2 πR ′2 lim η ′ →0 1 2 R 2 \ i B(x i ,η ′ ) χ R ′ (x)|E(x)| 2 dx + π i χ R ′ (x i ) (log η ′ -log η) = λ 2 (W (E) -m log λ) .

Applying this equality with

λ = |ϕ ′ (x)| -1 = |ϕ ′-1 (y)|, we obtain lim sup n→+∞ 1 nπ W (E 2 n , 1 R 2 ) + π n i=1 log |ϕ ′ (x i )| ≤ 1 π 1 |ϕ ′ (x)| 2 W (E) + log |ϕ ′ (x)|m 2 V (x) dP 2 (x, E) m Vϕ (y) , that is to say, because m 2 V is the density of points {x i } as n → +∞, lim sup n→+∞ 1 nπ W (E 2 n , 1 R 2 ) + B c 1 log |ϕ ′ (x)|dµ 2 V (x) ≤ 1 π W (E) dP 2 (x, E) m V (x) + B c 1 log |ϕ ′ (x)|dP 2 (x). As B c 1 log |ϕ ′ (x)|dP 2 (x) = B c 1 log |ϕ ′ (x)|dµ 2 V (x), it follows that lim sup n→+∞ 1 nπ W (E 2 n , 1 R 2 ) ≤ 1 π W (E) dP 2 (x, E) m V (x) . ( 4 
1 nπ W (E n , 1 R 2 ) ≤ 1 π W (E) m V (x) dP 1 (x, E) + 1 π W (E) m V (x) dP 2 (x, E)
As T ♯µ V (N) = 0, by Lemma 4.7.1 we get the result. If (x 1 , ..., x n ) is a minimizer of w n , then (T (x 1 ), ..., T (x n ), N) minimizes E log and we can use our previous argument because

1 n + 1 n i=1 δ T (x i ) + δ N = 1 n n i=1 δ T (x i ) n n + 1 + δ N n + 1 → T ♯µ V ,
in the weak sense of measures, and we have the same conclusion. 

n := n i=1 δ x i then lim n→+∞ 1 n R 2 log(1 + |x| 2 )dν n (x) = R 2 log(1 + |x| 2 )dµ V (x).
There exists minimizers of w n for which the same is true.

Proof. Let (x 1 , ..., x n ) be a minimizer of w n . We define y i := T (x i ) for any 1 ≤ i ≤ n and we notice that

1 n R 2 log(1 + |x| 2 )dν n (x) = - 2 n R 2 log 1 1 + |x| 2 dν n (x) = - 2 n S log y -N dT ♯ν n (y),
and by the previous Lemma, (y 1 , ..., y n ) is a minimizer of E log on S. For any rotation R of S the rotated configuration of points is still a minimizer, and it is clear that the average over rotations R of

- 2 n i log Ry i -N is equal to -2- S log y -N dy.
It follows that there exists a rotated configuration (ȳ 1 , ..., ȳn ) such that

1 n i log ȳi -N = - S log y -N dy.
Transporting this equality back to R 2 with T -1 , we obtain a minimizer (x 1 , ..., xn ) of

w n such that 1 n i log(1 + |x i | 2 ) = R 2 log(1 + |x| 2 )dµ V (x).
If (x 1 , . . . , x n ) is a minimizer of w n we use [START_REF] Brauchart | Riesz External Field Problems on the Hypersphere and Optimal Point Separation[END_REF]Theorem 15] about the optimal point separation which yields the existence of constants C and n 0 such that for any n ≥ n 0 and any minimizer {y 1 , ..., y n } ∈ S n of the logarithmic energy on the sphere, we have

min i =j y i -y j > C √ n -1 .
Letting y i = T (x i ) we have that (N, y 1 , . . . , y n ) is a minimizer of the logarithmic energy, hence for any 1 ≤ i ≤ n,

y i -N > C √ n -1 . (4.7.2)
For n ≥ n 0 and δ > 0 sufficiently small, we define, for any 0 < r ≤ δ, n(r) := # {y i | y i ∈ B(N, r) ∩ S} , and r i = y i -N . From the separation property there exists a constant C such that n(r) ≤ Cr 2 n for any r. Hence we have, using integration by parts, - 

y i ∈B(N,δ) log r i = - δ 1/ √ n-1 log rn ′ (r)dr = -n(δ) log δ + δ 1/ √ n-1 n(r) r dr ≤ -Cnδ 2 log δ + Cn δ 1/ √ n-
1 n R 2 log(1 + |x| 2 )dν n (x) = lim n→+∞ 1 n B R log(1 + |x| 2 )dν n (x) + B c R log(1 + |x| 2 )dν n (x) = B R log(1 + |x| 2 )dµ V (x) + lim n→+∞ 1 n B c R log(1 + |x| 2 )dν n (x).
Therefore it follows from (4.7.3) that lim

n→+∞ 1 n R 2 log(1 + |x| 2 )dν n (x) = lim R→+∞ B R log(1 + |x| 2 )dµ V (x) + lim n→+∞ 1 n B c R log(1 + |x| 2 )dν n (x) = R 2 log(1 + |x| 2 )dµ V (x).
The convergence is proved.

The following result proves the existence of the constant C in the Conjecture 1 of Rakhmanov, Saff and Zhou.

Theorem 4.7.5. We have

E log (n) = 1 2 -log 2 n 2 - n 2 log n+ 1 π min A 1 W + log π 2 + log 2 n+o(n), as n → +∞.
Proof. As E log is invariant by translation of the 2-sphere, we work on the sphere S2 of radius 1 and centred in (0, 0, 1/2). Let (y 1 , ..., y n ) ∈ S2 be a minimizer of E log . Without loss of generality, for any n, we can choose this configuration such that y i = N for any 1 ≤ i ≤ n. Hence there exists (x 1 , ..., x n ) such that y i 2 = T (x i ) for any i and we get 

E log (y 1 , ...., y n ) = - n i =j log y i -y j = - n i =j log T (x i ) -T (x j ) -n(n -1) log 2 = w n (x 1 , ..., x n ) -n(n - 
I V (µ V ) + n 2 log n = lim inf n→+∞ 1 n w n (x 1 , ..., xn ) - n i=1 log(1 + |x i | 2 ) -n 2 I V (µ V ) + n 2 log n ≥ α - R 2 log(1 + |x| 2 )dµ V (x).
The upper bound (4.6.3) and Lemma 4.7.3 yield, (x 1 , ..., x n ) being a minimizer of w n :

lim sup n→+∞ 1 n w n (x 1 , ..., xn ) -n 2 I V (µ V ) + n 2 log n ≤ lim sup n→+∞ 1 n w n (x 1 , ..., x n ) -n 2 I V (µ V ) + n 2 log n = lim sup n→+∞ 1 n w n (x 1 , ..., x n ) - n i=1 log(1 + |x i | 2 ) -n 2 I V (µ V ) + n 2 log n = α V - R 2 log(1 + |x| 2 )dµ V (x).
Thus, we get

lim n→+∞ 1 n w n (x 1 , ..., xn ) -n 2 I V (µ V ) + n 2 log n = α V - R 2 log(1 + |x| 2 )dµ V (x).
Therefore, we have the following asymptotic expansion, as n → +∞, when (x 1 , ..., xn ) is a minimizer of w n :

w n (x 1 , ..., xn ) = n 2 I V (µ V ) - n 2 log n + 1 π min A 1 W - 1 2 R 2 m V (x) log m V (x)dx - R 2 V (x)dµ V (x) n + o(n).
We know that I V (µ V ) = (1q n ).

We recall Chowla-Selberg formula (see [START_REF] Chowla | On Epstein's Zeta-Function[END_REF] or [START_REF] Cohen | Number theory II : Analytic and Modern Methods[END_REF]Proposition 10.5.11] for details) : be a positive definite binary quadratic form with discriminant 1 corresponding to the triangular lattice. Our goal is to prove the following result : for any α > 0 and any positive definite binary quadratic form f with real coefficients,

θ f (α) ≥ θ h (α).
Moreover, if there is an α > 0 for which θ f (α) = θ h (α), then f and h are equivalent forms, i.e. there is a C ∈ SL 2 (Z) such that f (x, y) = h(C(x, y)), and θ f ≡ θ h . k 2 e -π(k 2 -1)t . Now we remark that t → +∞ k=2 k 2 e -π(k 2 -1)t is a decreasing function of t, therefore, for any t ≥ 1, +∞ k=2 k 2 e -π(k 2 -1)t < +∞ k=2 k 2 e -π(k 2 -1) < 0.0003228 < 1 3000 (A.2.12)

and we get Q(t; 1/2) ≥ 4πe -πt 1 -1 3000 = A(t),

i.e. we have (A.2.9) for t ≥ 1. When 0 < t < 1, by differentiating (A. 2π(m -1/2) 2 t -1 e -π(m-1/2) 2 /t + t -3/2 e -π/4t π 2t -1 .

Here all terms are non-negative and the term m = 1 is equal to 2t -3/2 2π(1 -1/2) 2 t -1 e -π/4t = t -3/2 π t -2 e -π/4t > t -3/2 e -π/4t = A(t) because t < 1 < π 3 . Hence we have Q(t; 1/2) > A(t) when 0 < t < 1 and we obtain inequality (A.2.9) for t < 1.

Let us prove inequality (A.2.10). By L'Hôpital's rule, we find that A.3 Proof of Lemma A.1.1

Q(t; 0) = - 1 2π
Let α > 0, x ∈ (0, 1/2) and y ≥ 1/2 be real numbers. We want to prove that ∂ x θ(α; x, y) < 0.

In view of (A.2.5), we may suppose that α ≥ 1. Moreover, by (A. In the first sum, the terms (m, n) = (±1, 0) contribute an amount 2(πα) 2 y -4 e -πα/y = KP 1 with K = 2παe -πα(x 2 +y 2 )/y and P 1 = παy -4 e πα(x 2 +y 2 -1)/y .

Moreover, the terms (m, n) = (0, ±1) contribute an amount 2(πα) n 2 e -πα(n 2 -4/3)y .

Hence we obtain ∂ 2 y θ(α; x, y) + 2 y ∂ y θ(α; x, y) > K(P 1 + P 2 -R).

The sums in R are decreasing functions of α, while P 1 and P 2 are increasing, therefore it is sufficient to prove that R < P 1 + P 2 when α = 1 in order to have P and P 1 is an increasing function of y. Moreover, P 2 is also an increasing function of y, while S is decreasing. Therefore, it is sufficient to consider x and y such that x 2 +y 2 = 1, that is to say y = √ 1x 2 because 0 ≤ x ≤ 1/2. We remark that, for any 0 ≤ x ≤ 1/2,

S(x) := 2 √ 1 -x 2 + 2.27 (1 -x 2 ) 1/4 < π (1 -x 2 ) 2 + π 1 - x 2 1 -x 2 2 =: T (x)
because, in [0, 1/2], S is an increasing function of x and

T (x) = 2π 1 + x 4 (1 -x 2 ) 2
is also increasing such that S(1/2) ≈ 4.75 and T (0) = 2π. Furthermore, we have T (x) ≤ P 1 + P 2 therefore R ≤ S < P 1 + P 2 for α = 1 and the proof is complete. 
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 2 est le réseau triangulaire de côté 1, A * 2 := A 2 \{0} et • désigne la norme euclidienne sur R 2 ; 3. V α (r) ≥ 1 α pour r ∈ [0, 1α] ; 4. V ′′ α (r) ≥ 1 pour r ∈]1α, 1 + α[ ; 5. V α (r) ≥ -α pour r ∈ [1 + α, 4/3] ; 6. |V ′′ α (r)| ≤ αr -7 pour r ∈]4/3, +∞[.

Figure 1 -

 1 Figure 1 -Un exemple de potentiel de Theil V α

λ 1 :

 1 = min{ p ; p ∈ L * }, • la norme euclidienne sur R d , B ⊂ L un sous-ensemble fini et α un réel tel que α ∈]0, λ 1 /2[. On dit que B α , ayant le même cardinal que B, est une perturbation αcompacte de B si ∀b ∈ B, ∃!b α ∈ B α tel que bb α ≤ α, et dans ce cas on note L α (B) := (L\B) ∪ B α le réseau perturbé. Soit d ∈ N * . On dit que V : R * + → R est un potentiel d-admissible si V est une fonction C 3 et, pour tout réseau de Bravais L ⊂ R d , x∈L * |V ( x )| + x∈L * x |V ′ ( x )| + x∈L * x 2 |V ′′ ( x )| + x∈L *x 3 |V ′′′ ( x )| < +∞.
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 2 Figure 2 -Une perturbation α-compacte de B = {b 1 , b 2 , b 3 } avec L = Z 2 . Soit L un réseau de Bravais de R d et V un potentiel d-admissible. Soit N ∈ N * , on dit que L est un minimum local N-compact pour l'énergie totale créée par V si pour tout sous-ensemble B ⊂ L tel que ♯B ≤ N, il existe α 0 > 0 tel que pour tout α ∈ [0, α 0 ) et toute perturbation α-compacte B α de B, ∆ α L (V ; B) :=
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 3 Figure 3 -Un exemple de potentiel V θ
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 4 Figure 4 -Règle de Cauchy-Born
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 5 Figure 5 -Réseau triangulaire

6 - 2 r 3 .

 63 (12 -6) défini par V LJ (r) := 1 r En effet, notre méthode n'est pas optimale, c'est-à-dire qu'elle ne permet pas de déterminer toutes les aires A telles que Λ A soit l'unique minimiseur de L → E f [L] parmi les réseaux de Bravais du plan d'aire fixée A. Des résultats numériques donnés dans la Section 3.3.2 du Chapitre 3 nous donnent un exemple de cette non-optimalité dans le cas de la minimisation de L → E V LJ [L]. De plus, nous expliquons dans la Section 2.4.3 du Chapitre 2 pourquoi notre méthode semble difficile à améliorer.

  Quant au même type de problème en dimensions supérieures, il n'existe pas à ce jour de résultats d'optimalité globale d'un réseau de R d , d > 2, pour la fonction thêta définie classiquement par θ L (α) = p∈L e -πα p 2 , ou pour la fonction zêta d'Epstein d-dimensionnelle (0.0.1), définie pour s > d et prolongeable pour s > 0, parmi les réseaux de Bravais de R d . Cela rend bien évidemment encore plus difficile l'étude d'énergies engendrées par des potentiels plus compliqués, d'autant plus que notre représentation intégrale de E f est basée sur l'équation fonctionnelle de θ L suivante, prouvée en Annexe : pour tout réseau de Bravais L d'aire |L| = 1/2 et tout α > 0, θ L (1/α) = αθ L (α), valable uniquement pour d = 2. En effet, pour d > 2, celle-ci est remplacée par
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 8 Figure 8 -Réseaux Cubique Centré (gauche) et Cubique à Faces Centrées (droite)

Figure 9 -

 9 Figure 9 -Buckminsterfullerene C 60 .

Figure 10 -

 10 Figure 10 -Configuration de 1000 points proche d'un minimiseur de E log Bendito et al. [5].

Figure 11 -

 11 Figure 11 -Observation de vortex dans un supraconducteur -Hess et al. [55] 23. Le physicien Abrikosov (1928-) avait prédit dans [1] l'apparition d'une telle structure périodique pour les vortex, ce qui lui valut le Prix Nobel de Physique en 2003, mais en privilégiant le réseau carré, erreur due à la très faible différence d'énergie entre ces deux structures.
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 11 Figure 1.1 -Example of Theil's potential
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 2 Preliminaries : Bravais lattice and N-compact local minimality Definition 1.2.1. Let d ∈ N * , (u 1 , ..., u d ) be a basis of R d and L = n i=1 Zu i ⊂ R d be a Bravais lattice. For any λ > 0, we define m(λ) := ♯{L ∩ { x = λ}} where

Figure 1 . 2 - 2 .

 122 Figure 1.2 -An α-compact perturbation of B = {b 1 , b 2 , b 3 } with L = Z 2 .

Figure 1 . 3 -

 13 Figure 1.3 -Example of potential V θ

Figure 1 .

 1 Figure 1.4 -A kind of Cauchy-Born rule

Figure 2 . 1 -

 21 Figure 2.1 -Triangular lattice

/ 2 )

 2 be the triangular lattice of area A, then u is called the length of this lattice. For real s > 2, the Epstein zeta function of a Bravais lattice L is defined by ζ L (s) = p∈L * 1 p s , where L * := L\{0}. As proved in [29, Proposition 10.5.5 and Proposition 10.5.7], we can write ζ L (s) in term of L-function or Hurwitz zeta function. More precisely, for L = Z 2 and L = Λ 1 the triangular lattice of area 1, we have, for any s > 1,

2 . 2 )

 22 where ζ is the classical Riemann zeta function ζ(s) := +∞ n=1 n -s . Function L D , defined by L D (s) := +∞ n=1 D n n -s is the Dirichlet L-function associated to quadratic field Q(i √ -D), with D n the Legendre symbol. Furthermore, for x > 0, ζ(s, x) := +∞ n=0 (n + x) -s is the Hurwitz zeta function. Hence both these special values are easily computable. Now we recall fundamental Montgomery's Theorem, proved in our annex, about optimality of Λ A among Bravais lattices for theta functions : Theorem 2.2.1. (Montgomery, [74]) For any real number α > 0 and a Bravais lattice

2. 4 . 1

 41 Integral representation and sufficient condition : Proof of Theorem 2.1.1

2. 5 . 1 Definition 2 . 5 . 1 .

 51251 Definition and proof of Theorem 2.1.2.A for ϕ a,x Let n ∈ N * . For coefficients a = (a 1 , ..., a n ) ∈ (R * ) n such that n i=1 a i ≥ 0 and for x = (x 1 , ..., x n ) ∈ (R * + ) n , we define ϕ a,x (r) := n i=1 a i e -x i r r and we set K a := k; k i=1 a i < 0 .

STEP 2 :

 2 The existence of global minimizer for E ϕa,x Variations of function ϕ a,x and the fact that lim r→0 r>0 ϕ a,x (r) = +∞ and goes to 0 at infinity implies that global minimizer exists. Indeed, this problem can be viewed like a minimization problem of a three variables (two lengths and an angle) function. By previous limits we can restrict this problem with variables in a compact set, and by continuity this problem has a solution L a,x . STEP 3 : Upper bound for |L a,x | and conclusion Let L a,x = Zu a,x ⊕ Zv a,x . If u a,x > √ α a,x , then a contraction of all distances yields a new lattice with smaller energy because, by STEP 1, r → ϕ a,x (r 2

) 1/ 2 ≈Example 2 . 6 . 5 . 2 - 40 r 3 + 35 r 4

 226524 0.2867869 which corresponds to triangular lattices of length ≈ 0.5754589. For our counterexample (2.3.1), i.e. V (r) = 14 r , we have a = (14, -40, 35), x = (2, 3, 4) and ♯{I -} = 1. Hence,

Figure 2 . 5 -

 25 Figure 2.5 -Graphs of V a,x (r 2 ) = p r 4 -3 r 8 + 1 r 12 for p = 1 (on the left) and p = 2.5 (on the right)

2. 7 . 1 Definition 2 . 7 . 1 .

 71271 Definition and proof of Theorem 2.1.1.A for f a,x,b,t Let a = (a 1 , ..

Figure 2 . 9 -

 29 Figure 2.9 -Graph of r → f a,x (r 2 ) for a = (1, 1), x = (5, 6) on the left and a = (1, 2), x = (1, 6) on the right.

Figure 2 . 10 -

 210 Figure 2.10 -Graph of y → f a,x (y 2 ) = 1 y 12e -x 1 y for x 1 ∈ {0.01, 0.1, 1}

  area of L which is in fact the area of the lattice primitive cell and L * := L\{0}. The positive definite quadratic form associated with the Bravais lattice L is, for (

Figure 3 . 1 -

 31 Figure 3.1 -Graph of the Lennard-Jones potential V LJ

Figure 3 . 3 -

 33 Figure 3.3 -Level sets of ( u , v ) → E LJ ( √ AL) for some interesting values of A. (black = min , white = max)

Figure 3 . 4 -

 34 Figure 3.4 -Level sets of ( u , v ) → E( √ A 0 L). (black = min, white = max) difficult to prove numerically that Λ A 0 is a local minimizer among all lattices. Hence we can write the following conjecture for this problem :

e -p 2 4ye -p 2 4y 2 +∞ 0 E≤ 1 2 +∞ 0 E

 222020 any y > 0 and any lattice L of area A, we obtain p∈L * Montgomery's theorem, the triangular lattice Λ A minimizes θ L (α) for any α > 0, and it is the unique minimizer of L → θ L (α) among all Bravais lattices with a fixed area A. Therefore, for any y > 0, Λ A is the unique minimizer of the energy E y (L) := p∈L * among lattices with a fixed area A. Now it is clear, because E y (Λ A ) ≤ E y (L) for any y > 0 and for any lattice L with area A, that 1 y (Λ A )e -y dy y y (L)e -y dy y .

  |x|→+∞ {V (x) -2 log |x|} = +∞. (4.1.2)

( 4 .

 4 1.4) where µ V = m V (x) dx is the unique minimizer of I V (see Section 4.2 for precise definitions of W and A 1 .)

CONJECTURE 2 (

 2 Brauchart, Hardin and Saff,[START_REF] Brauchart | The Next-Order Term for Optimal Riesz and Logarithmic Energy Asymptotics on the Sphere[END_REF]) : The constant C in Conjecture 1 is equal to C BHS , whereC BHS := 2 log 2

( 4 . 4 . 3 ) 4 R 2 log( 1 +

 443421 Proof. From (4.3.6) and the bounds on m V we get |y|)dµ V (y) < +∞.(4.4.4) 

.4. 5 )

 5 It follows that H n (x) = O (|x| -1 ) as |x| → +∞ which implies the first equality using(4.3.6).The second equality follows from the dominated convergence argument of Mizuta in [70, Theorem 1], because from (4.4.5) we have ∇H n (x) = O(|x| -2 ) as |x| → +∞ and thus |∇H n | 2 in in L 1 (R 2 ).

Lemma 4 . 4 . 2 .

 442 Let V be admissible. Then, for every configuration (x 1 , ..

  does not belong to its support. Letting ϕ = T -1 RT , we have that ϕ is of the form z → az + b cz + d with adbc = 1, and applying (4.3.4), (4.3.5) to V • R we have that

Lemma 4 . 7 . 4 .

 474 If (x 1 , ..., x n ) is a minimizer of w n and if ν

A 1 W ≥ - π 2 log 2π 2 ( 1 -

 121 e -a ) b ≈ -4.6842707.4.7.3 Computation of renormalized energy for the triangular lattice and upper bound for the term of order n Sandier and Serfaty proved in [86, Lemma 3.3] thatW (Λ 1/2π ) = -1 2 log √ 2πb|η(τ )| 2 ,where Λ 1/2π is the triangular lattice corresponding to the density m = 1/2π, τ = a+ib = 1/2 + i √ 3 2 and η is the Dedekind eta function defined, with q = e 2iπτ , by η(τ ) = q 1/24 n≥1

4 , 4 . 2 = 2 = π log π - π 2 log 3 -

 44223 for τ a root of the integral quadratic equation αz 2 +βz +γ = 0 where D = β 2 -4αγ < 0, D m is the Kronecker symbol, w the number of roots of unity in Q(i √ -D) and when the class number of Q(i √ -D) is equal to 1. In our case b = √ 3/2, w = 6, α = β = γ = 1 because τ is a root of unity, hence D = -3Now it is possible to find the exact value of the renormalized energy of the triangular lattice Λ 1 of density m = 1 :W (Λ 1 ) = 2πW (Λ 1/2π )π log(2π) -π log √ 2πb|η(τ )| 2π log(2π) 3π log(Γ(1

2 . 1 W

 21 Conjectures 2 and 3 are equivalent, i.e. min A = W (Λ 1 ) ⇐⇒ C = C BHS .

Firstly, if we 2 and 2 , 2 ,(- 1 )(- 1 )(- 1 )

 222111 let b = 2ax and c = a(x 2 + y 2 ), we may factorize f as f (m, n) = a(m + zn)(m + zn) where z = x + iy, and, without loss of generality, y > 0. Moreover, b 2 -4ac = -1, we deduce that 4a 2 x 2 -4a 2 (x 2 + y 2 ) = -1, it follows that we define θ(α; x, y) := θ f (α) = n∈Z e -παyn 2 m∈Z e -πα(m+nx) 2 /y . (A.1.1)Definition A.1.1. A positive definite binary quadratic form f (m, n) = am 2 +bmn+cn 2 is reduced if -a < b ≤ a < c or 0 ≤ b ≤ a = c.Hence f is reduced if and only if-|z| > 1, y > 0 ∪ z; 0 ≤ x ≤ 1 |z| = 1, y > 0is the fundamental domain of the modular group. As we know that each positive definite binary quadratic form is equivalent to a unique reduced form (see for example[73, = 2π k∈Z(-1) k-1 k 2 e -πk 2 t = 4π +∞ k=1 k-1 k 2 e -πk 2 t = 4πe -πt +∞ k=1 k-1 k 2 e -πk 2 t+πt= 4πe -πt e -πt+πt + +∞ k=2 k-1 k 2 e -π(k 2 -1)t ≥ 4πe -πt 1 -+∞ k=2

2 . 2 )

 22 , we obtain∂ β θ(t; β) = 1 t 3/2 m∈Z 2π(mβ)e -π(m-β) 2 /tand it follows that

∂ 2 β

 2 θ(t; β) = 2πt -3/2 m∈Z 2π(mβ) 2 t -1 e -π(m-β) 2 /t .

2 . 6 )n 2 e -παyn 2 .n 2 en 2 en 2 en 2 e 1 3000 1 ) 2 Lemma A. 4 . 1 . 2 en 2 e

 262222221124122 and symmetry of summation, we have ∂ x θ(α; x, y) = 2 y α +∞ n=1 ne -παyn 2 ∂ β θ y y/α) sin(2πx)e -παy + n=2 ne -παyn 2 B(y/α)| sin(2πnx)| , because by (A.2.8), for any n ≥ 1, y > 0, α > 0 and 0 < x < 1/2, -B(y/α) ≤ ∂ β θ(y/α; β) |β=nx sin(2πnx) ≤ -A(y/α).Since sin(2πnx) sin(2πx) ≤ n for any 0 < x < 1/2 and any n ≥ 1, we have-A(y/α) sin(2πx)e -παy + n=2 ne -παyn 2 B(y/α)| sin(2πnx)| ≤ -A(y/α) sin(2πx)e -παy + +∞ n=2 n 2 e -παyn 2 B(y/α) sin(2πx) = sin(2πx) -A(y/α)e -παy + B(y/α) +∞ n=2We remark that, if +∞ n=2 -παy(n 2 -1) < A(y/α) B(y/α) (A.3.1) then sin(2πx) -A(y/α)e -παy + B(y/α) +∞ n=2n 2 e -παyn 2 < 0.i.e. ∂ x θ(α; x, y) < 0. Since y ≥ 1/2, then we have -παy(n 2 -1)≤ +∞ n=2 -π(n 2 -1)α/4y= e -πα/4y+∞ n=2 e -π(n 2 -2)α/4y .Suppose that α > y, then y α < 1 and by definition of A(t) and B(t) with 0 < t < 1, we have A(y/α) B(y/α) = e -πα/4y . -παy(n 2 -1) < e -πα/4yi.e. (A.3.1) holds.If α ≤ y, then Band αy ≥ α 2 ≥ 1, therefore, by (A.2.12), we obtain+∞ n=2 n 2 e -π(n 2 -1)αy ≤ +∞ n=2n 2 e -π(n 2 -1) holds and Lemma A.1.1 is proved.A.4 Proof of LemmaA.1.If α > 0, 0 ≤ x ≤ 1/2 and x 2 + y 2 ≥ 1, then ∂ 2 y θ(α; x, y) + 2 y ∂ y θ(α; x, y) > 0Proof. In view of (A.2.5), we may assume that α ≥ 1. By differentiating (A.1.1), we get∂ y θ(α; x, y) = -πα m,n n 2 e -2παf (m,n) + πα m,n (m + nx) 2 y 2 e -2παf (m,n)and, for the second derivative, ∂ 2 y θ(α; x, y) = -2πα y 3 m,n (m + nx) 2 e -2παf (m,n) + m,n -παn 2 + πα y 2 (m + nx) 2 -2παf (m,n) -2παf (m,n) (A.4.1)

2 1 - x 2 y 2 2 e 2 withP 2 = πα 1 - x 2 y 2 2 . 2 m,n n 2 - (m -nx) 2 y 2 2 en 2 ee≤ 1

 222222221 -πα(x 2 +y 2 )/y = KP Since each term in this first sum is positive, we have (πα) -2παf (m,n) ≥ K(P 1 + P 2 ).On the other hand, the second sum in (A.4.1) is equal, by symmetry and splitting into two parts (n = 1 and n ≥ 2), toK 2 y m∈Z e πα(x 2 -(x-m) 2 )/y + 2 y e πα(x 2 +y 2 )/y +∞ n=2 -παn 2 y m∈Z e -πα(m-nx) 2 /y .By pairing m and -m terms, we see thatm∈Z e πα(x 2 -(x-m) 2 )/y = 1 + +∞ m=1 e πα(x 2 -(x-m) 2 )/y + e πα(x 2 -(x+m) 2 )/y = 1 + +∞ m=1 e -παm2 /y e 2παxm/y + e -2παxm/y = 1 + 2 +∞ m=1 e -παm 2 /y cosh(2παmx/y), which is an increasing function of x. Hence we get, -παm 2 /y cosh(2παmx/y) ≤ 1 + 2 +∞ m=1 e -παm 2 /y cosh(παm/y) = 1 + +∞ m=1 e -παm(m-1)/y + e -παm(m+1)/y m∈Z e -παm 2 /y . Now it is clear by (A.2.1) that max β θ(t; β) = θ(t; 0) and it follows, by (A.2.2), that, for any t > 0 and any β, t -1/2 m∈Z e -π(m-β) 2 /t ≤ t -1/2 m∈Z e -πm 2 /t . Therefore, we have m∈Z e -πα(m-nx) 2 /y ≤ m∈Z e -παm 2 /y . Since 0 ≤ x ≤ y √ 3 in the domain under consideration, we remark that e πα(x 2 +y 2 )/y ≤ e 4παy/3 , and we finally get 2πα y m,n n 2 e -2παf (m,n) ≤ KR where
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  1 2 K 0 ( √ πr) avec K 0 la fonction de Bessel modifiée de seconde espèce et C une constante indépendante de la configuration. Ainsi, le problème limite qui est à résoudre est celui donné par la limite thermodynamique lim

  2 un ensemble discret. On peut voir W comme

	18. Aussi appelées inégalités variationnelles de Frostman.
	19. C'est-à-dire en dehors d'un ensemble de capacité nulle. La définition de ζ est donnée au Chapitre
	4 par (4.4.1).

  Ils ont d'ailleurs prouvé dans [86, Theorem 2] -et nous redonnons, dans notre Théorème 4.2.3 du Chapitre 4, une preuve de ce résultat utilisant l'optimalité de Λ 1 pour la hauteur du tore plat démontrée par Osgood, Phillips et Sarnak[START_REF] Osgood | Extremals of Determinants of Laplacians[END_REF] -que Λ 1

	est l'unique minimiseur, à rotation près, de W parmi les réseaux de Bravais de densité
	1, c'est-à-dire Chapitre 1 argmin {W (L); L = Zu ⊕ Zv, |L| = 1} = Λ 1 .		
	Enfin, dans notre Théorème 4.7.7 du Chapitre 4, nous montrons que les conjectures
	de Sandier-Serfaty et de Brauchart-Hardin-Saff sont équivalentes, c'est-à-dire que Sufficient Condition for a Compact Local
	min A 1 Minimality of a Lattice W = W (Λ 1 ) ⇐⇒ C = C BHS = 2 log 2 +	1 2	log	2 3	+ 3 log	√ π Γ(1/3)	,
	en utilisant la formule de Chowla-Selberg [28], construisant ainsi un pont entre deux
	thèmes de Recherche actuels en liant la conjecture des vortex avec le septième problème de Smale. Ce chapitre fait référence à la prépublication [8].
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  dt. and only if LA = Λ A , up to rotation. Hence E f [L] ≥ E f [Λ A ]for any L such that |L| = A with equality if and only if L A = Λ A , up to rotation, and Λ A is the unique minimizer, up to rotation, of the energy among Bravais lattices of fixed area A. We can imagine that the reciprocal is true, i.e. if f is not completely monotonic, then there exists A 0 such that Λ A 0 is not a minimizer among Bravais lattices of fixed area A 0 . In next subsection, we will give an explicit example correlated with Marcotte, Stillinger and Torquato results[START_REF] Marcotte | Unusual Ground States via Monotonic Convex Pair Potentials[END_REF] about the existence of unusual ground states with convex decreasing positive potential.

	with equality if Remark 2.3.2.				
	If f is completely monotonic, by Theorem 2.2.8, µ f (t) ≥ 0 for almost every t ∈ (0, +∞). Moreover, by Montgomery Theorem 2.2.1, for any t > 0 and any Bravais lattice L of
	area A,				
	θ L	t 2π	-θ Λ A	t 2π	≥ 0,

Examples 2.3.3. A direct consequence of this theorem is the minimality of triangular lattice among lattices for any fixed area for the following energies :

  is necessary. However we find it difficult at this time. Indeed, -for any Bravais lattice L of area A,

	and ∆ p∈Λ * A	lim y→+∞ p 2 e -π ∆ L (y) = 0 p∈L * A y p 2 ≤	p 2 e -π A y p 2

L exponentially decreases ; -if the complete monotonicity is a necessary condition to optimality of Λ A for any fixed area A, then function y → ∆ L (y) is not decreasing on [1, +∞) for any A Figure 2.3 -Black zone is y A 1 g A (y)dy where y A is the second zero of g A , A ∈ {0.8, 1} and any L with area A. Indeed, ∆ L is decreasing on (1, +∞) if and only if, for any t ≥ 1, ∆ ′ L (y) ≤ 0, i.e. ∀A, ∀L, ∆ L decreases on (1, +∞) ⇐⇒ ∀A, ∀L, ∀y ≥ 1, -π A p∈L * p 2 e -π A y p 2 + π A p∈Λ * A p 2 e -π A y p 2 ≤ 0 ⇐⇒ ∀A, ∀L, ∀y ≥ 1,

  Proof. Firstly we study variations of ϕ x,a to prove the existence of global minimizer L a,x among all Bravais lattices and upper bound α a,x for its area. Afterward we prove that inequalities (2.1.3) are equivalent with A is the unique minimizer among Bravais lattices of fixed area A, therefore L a,x is triangular and unique, up to rotation. STEP 1 : Variations of function ϕ a,x

	α a,x ≤ min	π x 2	,	π x 2	a 2 a 1	-1	.	(2.5.1)
	Thus, by direct application of Theorem 2.5.1, if A ≤ min π x 2 , π x 2	a 2 a 1 -1 , Λ

1 r r . Now, let us prove Theorem 2.1.2.B.1.

  because Λ 1 is the unique minimizer of L → ζ L (2s) among Bravais lattices of area 1, we can apply Cauchy's rule 2.2.11, and more precisely its generalization (2.2.5). The number of negative coefficient of p a,x,L 1 is exactly ♯{I + } and an upper bound on the values of the positive zero of p a,x,L 1 for given L 1 , is

Table 2 .

 2 

		1	1.5	2	3	4	5	6	7	8	9
	1.5	0.05								
	2	0.14 0.31							
	2.5	0.21 0.37 0.43						
	3	0.27 0.41 0.47						
	3.5	0.31 0.45 0.50 0.58					
	4	0.35 0.48 0.53 0.61					
	5	0.42 0.53 0.58 0.65 0.71				
	6	0.47 0.58 0.63 0.69 0.74 0.78			
	7	0.52 0.62 0.66 0.72 0.77 0.80 0.83		
	8	0.56 0.65 0.69 0.75 0.79 0.82 0.84 0.86	
	9	0.60 0.68 0.72 0.77 0.81 0.84 0.86 0.88 0.89
	10	0.62 0.70 0.74 0.79 0.83 0.85 0.87 0.89 0.90 0.91

2 -Non-optimal critical densities for non-optimality of triangular lattice.

Remark 2.6.19. More precisely we can find an explicit computable bound (but not optimal) if we take L = Z 2 and use (2.2.1) and (2.2.2). We give, in Table

2

.2, densities d 0 such that for any 0

  Definition 4.2.1. Let m be a nonnegative number and E be a vector-field in R 2 . We say E belongs to the admissible class A m if The real m is the average density of the points of Λ when E ∈ A m .

		div E = 2π(ν -m) and curl E = 0		(4.2.1)
	where ν has the form					
		ν =	p∈Λ	δ p , for some discrete set Λ ⊂ R 2 ,	(4.2.2)
	and if					
	ν(B R ) |B R | Remark 4.2.1. Definition 4.2.2. Let m be a nonnegative number. For any continuous function χ and is bounded by a constant independent of R > 1.
	any vector-field E in R 2 satisfying (4.2.1) where ν has the form (4.2.2) we let
	W (E, χ) = lim η→0	1 2 R 2 \∪ p∈Λ B(p,η)	χ(x)|E(x)| 2 dx + π log η	p∈Λ	χ(p) .	(4.2.3)

  .2.4) where d(x, A) is the Euclidean distance between x and set A.Definition 4.2.3. The renormalized energy W is defined, for E ∈ A m and {χB R } R It is shown in [86,Theorem 1] that the value of W does not depend on the choice of cutoff functions satisfying (4.2.4), and that W is bounded below and admits a minimizer over A 1 .Moreover (see[START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF] Eq. (1.9),(1.12)]), if E ∈ A m , m > 0, then

	satisfying (4.2.4), by		
	W (E) = lim sup R→+∞	W (E, χ B R ) |B R |	.
	Remark 4.2.2.		

  .4.6) Proof. We may proceed as in the proof of [87, Lemma 3.1] and make use of the Frostman type inequalities (4.3.2) and (4.3.3) and Lemma 4.4.1. The important point is that, as shown in the proof of the previous lemma, we have H n (x) = O(|x| -1 ) and ∇H n (x) = O(|x| -2 ) as |x| → +∞ which implies, exactly like in the compact support case, that lim

  1) log 2. By Lemma 4.7.2, (y 1 , ..., y n ) is a minimizer of E log if and only if (x 1 , ..., x n ) is a minimizer of w n . By the lower bound (4.6.2) and the convergence of Lemma 4.7.4, we have, for some minimizer (x 1 , ..., xn ) of w n :

	lim inf n→+∞	1 n	w n (x 1 , ..., xn ) -n 2

  Remark 4.7.6. It follows from lower bound proved by Rakhmanov, Saff and Zhou[81, 

	1 2 log(1 + |x| 2 )dµ V (x) = (see [19, Eq. (2.26)]) and 1 π R 2 log(1 + |x| 2 ) (1 + |x| 2 ) 2 = 2 +∞ 0 r log(1 + r 2 ) (1 + r 2 ) 2 dr = -log(1 + r 2 ) 1 + r 2 +∞ 0 + = -1 1 + r 2 +∞ 0 = 1. Hence we obtain, as n → +∞, R 2 w n (x 1 , ..., xn ) = n 2 2 -n 2 log n + 1 π min A 1 W + 1 2 log(π(1 + |x| 2 ) 2 )dµ V (x) -1 n + o(n) R 2 2r (1 + r 2 ) 2 dr = n 2 2 -n 2 log n + 1 π min A 1 W + log π 2 n 2 2 -n 2 log n + 1 π min A 1 W + log π 2 n + o(n), and the asymptotic expansion of E log (n) is E log (n) = 1 2 -log 2 n 2 -n 2 log n + 1 π min A 1 W + log π 2 + log 2 n + o(n). Theorem 3.1], that 1 π min A 1 W + log π 2 + log 2 = lim n→+∞ 1 n E log (y 1 , ..., y n ) -1 2 -log 2 n 2 + n 2 log n ≥ -1 2 log π 2 (1 -e -a ) b , where a := 2 √ 2π √ 27 2π + √ 27 + √ 2π and b := 2π + √ 27 -√ 2π 2π + √ 27 + √ 2π , and we get + log(1 + |x| = min

2 )dµ V (x) -1 n + o(n)

  BHS ≈ -0.0556053, and we find exactly the value C BHS conjectured by Brauchart, Hardin and Saff in [22, Conjecture 4]. Therefore Conjecture 2 is true if and only if the triangular lattice Λ 1 is a global minimizer of W among vector-fields in A 1 , i.e.

	Theorem 4.7.7. We have :							
	1. It holds										
	lim n→+∞	1 n	E log (n) -	1 2	-log 2 n 2 +	n 2	log n ≤ 2 log 2 +	1 2	log	2 3	+ 3 log	√ π Γ(1/3)	.
	Thus, we get										
	1 π	W (Λ 1 ) +	log π 2	+ log 2						
	= = 2 log 2 + 1 π π log π -1 2 log π 2 2 log 3 -3π log(Γ(1/3)) + 3 + 3 log √ π Γ(1/3) = C min A 1 W = W (Λ 1 ) = π log √ 3Γ(1/3) 3 3 2 π log 2 + 2 √ 2π .	log π 2	+ log 2
	Thus we obtain the following result						

  -πk 2 t = 4πe -πt 1 +

						∂ 2 β θ(t; β) |β=0 .
	Thus, by (A.2.11), we have					
	Q(t; 0) = 4π	+∞	k 2 e +∞	k 2 e -π(k 2 -1)t .
			k=1				k=2
	By (A.2.12), we obtain, for t ≥ 1,			
		Q(t; 0) < 4πe -πt 1 +	1 3000	= B(t),
	m∈Z	1 -	2πm 2 t	e -πm 2 /t = t -3/2 + 2	+∞ m=1	1 -	2πm 2 t	e -πm 2 /t
						= B(t) + 2	+∞ m=1	1 -	2πm 2 t	e -πm 2 /t

i.e. we have inequality (A.2.10) for t ≥ 1. Now suppose that 0 < t < 1, by (A.2.13) we get

Q(t; 0) = t -3/2 ≤ B(t)

because t < 1 < 2πm 2 for any m ≥ 1. Hence we have (A.2.10) and the proof is complete.

  1 + P 2 -R > 0 for any α ≥ 1.Now we show that S < P 1 + P 2 . Since log P 1 = log π -4 log y +

	Since y ≥	√	3/2 by definition of our domain, we have
				+∞ n=2	n 2 e -πα(n 2 -4/3)y ≤	n=2 +∞	n 2 e -π(n 2 -4/3) √	3/2 < 0.002826
	and by (A.2.2), we have				
			m∈Z	e -παm 2 /y =	√ y	k∈Z	e -πk 2 y ≤	√ y	k∈Z	e -πk 2 √	3/2 < 1.1317	√ y.
	Thus, we get						R ≤	2 y	+ 2.27	√ y =: S.
											πx 2 y	+ πy -	π y
	and x 2 ≤ 1/4, we remark that			
		∂ y log P 1 =	∂ y P 1 P 1	=	-4y -πx 2 + πy 2 + π y 2	≥	πy 2 -4y + 3π/4 y 2	> 0
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Voir Remarque 1.4.1

Voir preuve du Théorème 2.1.2.

Comme on somme sur les carrés des distances du réseau, les exposants sont 6 et 3 afin de sommer effectivement le potentiel de Lennard-Jones (12 -6) sur les réseaux.

Les résultats sont, dans cette thèse, présentés dans l'ordre antichronologique car plus naturel.

In a system of interacting electrons, where the coulomb interaction energy between them sufficiently dominates the kinetic energy or thermal fluctuations

We cite only papers about 2D problems.

A proof of this assertion will be given in Section 2.3

We choose, as in[10], to write results in terms of area and not in terms of density (which is its inverse).

This argument appears in [10, Proposition 4.1, ii)] and in[START_REF] Mogilner | Mutual Interactions, Potentials, and Individual Distance in a Social Aggregation[END_REF] in order to prove that the distance between two animals in a swarm is less than a specific "confort distance" between them, which minimizes a certain function.

Here we exceptionally give values of densities -and not areas -more used in molecular simulations.

A Bravais lattice of R 2 , also called "simple lattice" is L = Z u ⊕ Z v where ( u, v) is a basis of R 2 .

We note that µ V is an equilibrium measure is sufficient to obtain (4.4.4), as explained by Mizuta in [71, Theorem 6.1, Chapter 2] or by Bloom, Levenberg and Wielonsky in[START_REF] Bloom | Logarithmic Potential Theory and Large Deviation[END_REF] Lemma 3.2] 
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where a > 0, b ∈ R and h(Λ) is the height of the flat torus C/Λ (see [START_REF] Osgood | Extremals of Determinants of Laplacians[END_REF][START_REF] Chiu | Height of Flat Tori[END_REF]32] for more details).

Indeed, Osgood, Phillips and Sarnak [78, Section 4, page 205] proved, for Λ = Z⊕τ Z, τ = a + ib, that h(Λ) =log(b|η(τ

where η is the Dedekind eta function 3 . But from [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF] we have

Then from [78, Corollary 1(b)], the triangular lattice minimizes h among Bravais lattices with fixed density, hence the same is true for W .

Equilibrium Problem in the Whole Plane

In this section we recall results on existence, uniqueness and characterization of the equilibrium measure µ V and we give the definition of the admissible potentials. We say that K is log-polar if I 0 (µ) = +∞ for any µ ∈ M 1 (K) and we say that a Borel set E is log-polar if every compact subset of E is log-polar. Moreover, we say that an assertion holds quasi-everywhere (q.e.) on A ⊂ R 2 if it holds on A\P where P is log-polar. Remark 4.3.1. We recall that the Lebesgue measure of a log-polar set is zero. Now we recall results about the existence, the uniqueness and the characterization of the equilibrium measure µ V proved in [START_REF] Frostman | Potentiel d'équilibre et capacité des ensembles[END_REF][START_REF] Saff | of Grundlehren der Mathematischen Wissenschaften[END_REF] for the classical growth assumption where λ depends only on ρ ;

-for any function χ compactly supported in R 2 we have

where N = #{p ∈ Λ; B(p, λ) ∩ Supp(∇χ) = ∅} for some λ and C depending only on ρ ;

-for any

where Û := {x ∈ R 2 ; d(x, U) < 1}. δ x ′ i be the measure in blownup coordinates and E νn = ∇H ′ n , we denote by g νn the result of applying the previous proposition to (ν ′ n , E νn ).

The following result [87, Lemma 3.7] connects g and the renormalized energy. 

Ergodic Theorem

We adapt the abstract setting in [START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF]Section 4.1]. We are given a Polish space X, which is a space of functions, on which R 2 acts continuously. We denote this action (λ, u) → θ λ u := u(. + λ), for any λ ∈ R 2 and u ∈ X. We assume it is continuous with respect to both λ and u.

Proof. The proof follows [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF][START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF] but with µ V replacing the normalized Lebesgue measure on a compact set Σ V . We sketch it and detail the parts where modifications are needed. For any R > 0 we let µ R V denote the restriction of µ V to B R , and P R ε denote the image of µ R V by the map x → (x, θ x ε u ε ). STEP 1 : Convergence of a subsequence of (P ε ) to a probability measure P . It suffices to prove that the sequence {P ε } ε is tight. From [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF][START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF], which deals with the compact case, {P R ε } ε is tight, for any R > 0. Now take any δ > 0, we need to prove that there exists a compact subset

. This implies that P R ε has total measure at least 1δ/2 and then we may use the tightness of {P R ε } ε to find that there exists a compact set

Φ be a bounded continuous function on R 2 × X and P λ be the image of P by (x, u) → (x, θ λ(x) u). By the change of variables y = ελ(x) + x = (ελ + I 2 )(x), we obtain

where Dλ is the differential of λ.

From the boundedness of Φ and the decay properties of m V (see

Then, arguing as in [START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF] using the tightness of (P ε ) ε we obtain

Which concludes the proof that

that P is T λ(x) -invariant.

Items 2 and 4 in the theorem are obvious consequences of the definition of P and items 5 and 6. require no modification from [START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF]. We have proved above items 1 and 3.

Asymptotic Expansion of the Hamiltonian

We define

where the equality is a consequence of (4.2.5). The fact that α V is finite follows from (4.3.6), which ensures that the integral converges.

We also let

, curl E νn = 0 and we set

The following result extends [START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF]Theorem 2] to a class of equilibrium measures with possibly unbounded support, which requires a restatement which makes it slightly different from its counterpart in [START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF]. It is essentially a Gamma-Convergence (see [START_REF] Braides | Gamma-Convergence for Beginners[END_REF]) statement, consisting of a lower bound and an upper bound, the two implying the convergence of 1 n w n (x 1 , ..., x n )n 2 I V (µ V ) + n 2 log n to α V for a minimizer (x 1 , ..., x n ) of w n .

Proof of the lower bound

We follow the same lines as in [START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF]Section 4.2]. Because F n (ν n ) ≤ C and (4.4.6), we have that 1 n 2 w n (x 1 , . . . x n ) → I V (µ V ), therefore ν n converges to µ V (this follows from the results in [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF]).

We let ν ′ n = i δ x ′ i , and E n , H ′ n , g n be as in Definition 4.5.1. Let χ be a C ∞ cutoff function with support the unit ball B 1 and integral equal to 1. We define

As in [87, Section 4.2,

Step 1], if we let

then

and F n (ν, E, g) = +∞ otherwise. Now, as in [START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF], we want to use Theorem 4.5.

. We have :

1) The fact that f n is coercive is proved as in [START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF]Lemma 4.4].

Now we rewrite the discrete energy by changing variables, to find that, writing w n,V instead of w n to clarify the dependence on V ,

where x i = ϕ(y i ). Now we use the identity (see [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF])

applied to ϕ(x), ϕ(y) together with the fact that ϕ = T -1 RT and that R is a rotation to get

The two together imply that

Replacing in (4.6.8) shows that

(4.6.9) It follows from (4.6.9) that an upper bound for min w n,V can be computed by using a minimizer for w n,Vϕ as a test function. But now we recall that µ Vϕ has compact support, hence the results of [START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF] apply and we find, using the fact that for such a minimizer

We remark that

which plugged in the expression for α Vϕ and then in (4.6.10) yields,

which matches the lower-bound we already obtained and thus proves Theorem 4.1.1 in the case where the support of µ V is not the full plane.

Proof of the upper bound by compactification and conclusion

Here we assume that Σ

Then, using the notations of the previous section, we deduce from (4.6.7) that

To simplify exposition and notation, we assume that µ

two parts in order to construct a sequence of 2n points associated to a sequence of vector-fields. We will only construct test configurations with an even number of points, again to simplify exposition and avoid unessential technicalities.

STEP 1 : Reminder of the compact case and notations. We need [87, Corollary 4.6] when K is a compact set of R 2 : Theorem 4.6.2. ( [START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF]) Let P be a T λ(x) -invariant probability measure on

, where K is a compact subset of R 2 with C 1 boundary. We assume that P has first marginal dx |K /|K| and that for P -almost every (x, E) we have E ∈ A m(x) , where m is a smooth function on K bounded above and below by positive constants. Then there exists a sequence {ν n = n i=1 δ x i } n of empirical measures on K and a sequence

We write

V , then we have

x )|. Note that, by assumption (H2) and (4.3.6) we have that there exists positive constants m and m such that, for any

Now let P be a T λ(x) -invariant probability measure on X whose first marginal is µ V and be such that for P -almost very (x, E), we have E ∈ A m V (x) . We can write

where P 1 is the restriction of P to B 1 × L p loc (B 1 , R 2 ) with first marginal µ 1 V , and P 2 is the restriction of

We define P 1 by the relation

. We denote by ϕ♯P 2 the pushforward of P 2 by (x, E) → y, Ẽ , where y := ϕ(x) and Ẽ := (Dϕ y ) T E(Dϕ y •), (4.6.11) where STEP 2 : Application of Theorem 4.6.2. We may now apply Theorem 4.6.2 to P 1 and P 2 . We thus construct a sequence {ν

as n → +∞. Moreover, we have lim sup

(4.6.12)

Applying now the same Theorem to P 2 , we construct a sequence {ν 2

as n → +∞. Moreover, we have lim sup

.6.13) STEP 3 : Construction of sequences and conclusion. It is not difficult to see that we can assume x2 j = 0 for any j and any n ≥ 2 (otherwise we translate a little bit the point). Now we set x 2 j := ϕ(x 2 j ) and in view of (4.6.11), for each n we define

Hence, we have a sequence of vector-fields

where

is the density of µ 2 V . We have, for sufficiently small η such that 0 ∈ B(x 2 i , η) for every i,

where the change of variable is y ′ = n 1/2 ϕ(n -1/2 x ′ ). Furthermore, we have

which proves (4.6.3). Furthermore, by changes of variable,

in the weak sense of measure, and it follows that

Part C follows from A and B as in [START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF].

Consequence : the Logarithmic Energy on the

Sphere

As we have an asymptotic expansion of the minimum of the Hamiltonian w n where minimizers can be in the whole plane -not only in a compact set as in the classical case -we will use the inverse stereographic projection from R 2 to a sphere in order to determine the asymptotic expansion of optimal logarithmic energy on sphere.

Inverse stereographic projection

Here we recall properties of the inverse stereographic projection used by Hardy and Kuijlaars [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF][START_REF] Hardy | Weakly Admissible Vector Equilibrium Problems[END_REF] and by Bloom, Levenberg and Wielonsky [START_REF] Bloom | Logarithmic Potential Theory and Large Deviation[END_REF] in order to prove Theorem 4.3.2. Let S be the sphere of R 3 centred at (0, 0, 1/2) of radius 1/2, Σ be an unbounded closed set of R 2 and T : R 2 → S be the associated inverse stereographic projection defined by

where R 2 := {(x 1 , x 2 , 0); x 1 , x 2 ∈ R}. We know that T is a conformal homeomorphism from C to S\{N} where N := (0, 0, 1) is the North pole of S.

We have the following identity :

Furthermore, if |y| → +∞, we obtain, for any x ∈ R 2 :

We note Σ S = T (Σ)∪{N} the closure of T (Σ) in S. Let M 1 (Σ) be the set of probability measures on Σ. For µ ∈ M 1 (Σ), we denote by T ♯µ its push-forward measure by T characterized by

for every Borel function f : Σ S → R. The following result is proved in [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF] :

Lemma 4.7.1. The correspondance µ → T ♯µ is a homeomorphism from the space M 1 (Σ) to the set of µ ∈ M 1 (Σ S ) such that µ({N}) = 0.

Asymptotic expansion of the optimal logarithmic energy on the unit sphere

An important case is the equilibrium measure associated to the potential

corresponding to the external field V ≡ 0 on S and where T ♯µ V is the uniform probability measure on S (see [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF]). Hence V is an admissible potential and from (4.3.6) we find

We define

and we recall that the logarithmic energy of a configuration (y 1 , ..., y n ) ∈ S n is given by

Furthermore, we recall that E log (n) denotes the minimal logarithmic energy of n points on S 2 . Lemma 4.7.2. For any (x 1 , ..., x n ) ∈ (R 2 ) n , we have the following equalities :

Proof. For any 1 ≤ i ≤ n, we set y i := T (x i ), hence we get, by (4.7.1),

Furthermore, by (4.7.1), we obtain

in the weak sense of measures.

Proof. Let (x 1 , ..., x n ) be a minimizer of wn , then (T (x 1 ), ..., T (x n )) is a minimizer of E log . Brauchart, Dragnev and Saff proved in [START_REF] Brauchart | Riesz External Field Problems on the Hypersphere and Optimal Point Separation[END_REF]Proposition 11] that

Annexe A

Proof of Montgomery Theorem

In this annex, we give the proof of Montgomery theorem from [START_REF] Montgomery | Minimal Theta Functions[END_REF] :

Theorem A.0.8. For any real number α > 0 and a Bravais lattice L, let

where Θ L is the Jacobi theta function of the lattice L defined for Im(z) > 0. Then, for any α > 0, Λ A is the unique minimizer of L → θ L (α), up to rotation, among Bravais lattices of area A.

We reproduce this proof with all details and references.

A.1 Preliminaries

This problem of minimization among lattices can be viewed as a minimization among positive definite binary quadratic forms with real coefficients. For

such that its discriminant is b 2 -4ac = -1, we define the theta function associated to f by

Theorem 3.1] for a proof), we may confine our attention to reduced forms. Furthermore, for any x ∈ R we have θ(α; -x, y) = θ(α; x, y), hence throughout this annex,

The strategy of Montgomery is to prove the following two lemmas which give automatically Theorem A.0.8 : (1q 2r )(1 + q 2r-1 e 2iπz )(1 + q 2r-1 e -2iπz )

where q = e iπz . Therefore we obtain

1e -2πnt 1 + e -(2r-1)πt+2iπβ 1 + e -(2r-1)πt-2iπβ

1e -2πrt 1 + 2e (1-e -2πrt ) 1 + 2e -(2r-1)πt cos(2πβ) + e -2(2r-1)πt .

141 Hence β → Q(t; β) is obviously even and with period 1 because cos(2π(-β)) = cos(2πβ) and cos(2π(β + 1)) = cos(2πβ). Moreover, in this product, each term is positive and the function β → 1 + 2e -(2r-1)πt cos(2πβ) + e -2(2r-1)πt is decreasing in [0, 1/2] for any s ≥ 1 and any r ≥ 1.

Lemma A.2.5. Let

Then, for any β and any t > 0, we have Let us prove inequality (A.2.9). By L'Hôpital's rule, we get

For t ≥ 1, by differentiating (A.2.1), we get

and we obtain for all y ≥ y 0 > 0 and that f (y 0 ) ≥ 0. Then f (y) > 0 for all y > y 0 .

Proof. We remark that, for any y ≥ y 0 > 0, f ′ (y) + 2 y f (y) > 0 ⇐⇒ y 2 f ′ (y) + 2yf (y) > 0 ⇐⇒ (y 2 f (y)) ′ > 0.

Thus y → y 2 f (y) is strictly increasing on [y 0 , +∞), therefore where φ ∈ (0, π) is fixed. We remark that g(1/r) = g(r)

and it follows that g ′ (1) = -g ′ (1) = 0.

Thus, we get g ′ (1) = ∂ x θ(α; cos φ, sin φ) cos φ + ∂ y θ(α; cos φ, sin φ) sin φ = 0, therefore ∂ x θ(α; cos φ, sin φ) cos φ = -∂ y θ(α; cos φ, sin φ) sin φ.

By Lemma A.1.1, we see that ∂ x θ(α; cos φ, sin φ) ≤ 0 when π/3 ≤ φ ≤ π/2 with equality only at endpoints and it follows that ∂ y θ(α; cos φ, sin φ) ≥ 0.
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