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Introduction

Since its detection in the sixties, the cosmic microwave background (CMB) has offered a privileged
window into the evolution of the universe; it has helped in establishing the standard cosmological model
and it is still a vivid source of information that pushes the limits of our knowledge beyond what we could
ever test in laboratories. Indeed, this bath of photons, relic of the hot Big-Bang, carries the traces of both
the rich structure formation of the late time epochs and the energetic early phases of the universe.

The CMB accommodates precise theoretical predictions and confirms that there is, to date, a lot of
unknown to be unveiled. One of the interesting open question is the absolute scale of neutrino masses.
Neutrinos, known to be massive from oscillation experiments, leave, indeed, a distinct signature in the
photon anisotropies, making the CMB an extremely useful tool for testing neutrino physics.

This thesis is focused on the determination of the parameters of the standard cosmological model and
on the well motivated extension concerning the neutrino sector, using the Planck precise measurements
of CMB anisotropies.

The ΛCDM paradigm is described in chapter 1, from the basic principles, to the inflationary theory,
focusing on the cosmic microwave background physics and on the mechanism that creates its temperature
and polarisation anisotropies. The present status of the CMB observations is also briefly reviewed.

Chapter 2 is a quick panoramic view on the neutrinos, their role in cosmology, and their effect on the
CMB spectra.

In chapter 3, the ESA satellite Planck is described, along with its analysis pipeline that leads to the
production of the CMB all-sky maps, both in temperature and in polarization, that have been used in this
thesis.

Chapter 4, is dedicated to the description of the statistical methods needed to extract the cosmological
parameters in the comparison between models and data. I present the Bayesian MCMC methods, their
qualities and limitations, and I describe the construction of an adaptive algorithm that speeds up conver-
gence. I also describe the frequentist profile likelihood analysis, particularly suited for the estimation of
the neutrinos masses.

Chapter 5 details the way the information from the actual signal of the CMB is obtained. This
involves a masking strategy for the thermal emission of the Galaxy and for some of the extragalactic
contaminations. The residual foregrounds are treated directly at the power spectrum level relying on
physically motivated models estimated by the Planck collaboration. The construction of the likelihood
of the data for the intermediate and high scales is detailed and the robustness tests performed are pre-
sented. The characterisation of the likelihood is completed in chapter 6 with the description of the Planck
large scale data and the external datasets that are used in the estimation of the cosmological parameters:
the small scale data from the CMB ground based experiment ACT and SPT, the Planck CMB lensing
information recontructed from the 4-point correlation function, the Baryon Acoustic Oscillation and the
Supernovae.

In chapter 7, are presented the results obtained fitting the parameters of the “vanilla” ΛCDM model,
showing the precision reached by the Planck satellite data especially in combination with the other
datasets. Various robustness test are performed.

1



Introduction

This naturally leads to open up the parameter space, pushing the data to a high degree of precision in
order to test the neutrino sector, which is performed in chapter 8.

This thesis presents a work done for the Planck collaboration and it is the result of a common effort
with the members of the Planck team at the Laboratoire de l’Accelerateur Lineaire (LAL) in Orsay: F.
Couchot, S. Henrot-Versillé, O. Perdereau, S. Plaszczynski, B. Rouillé d’Orfeuil and M. Tristram.
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Chapter 1

The Cosmic Microwave Background

Less than 25 years ago, all that had been detected from the microwave universe was a uniform black
body signal at temperature T∼2.7 K. Since then, the COBE discovery of the temperature anisotropies of
the Cosmic Microwave Background (CMB) down to the 10−5 level (Smoot et al. 1992), opened the way
for the modern cosmology. The ESA Planck satellite (chapter 3) has now reached the ultimate precision.

In this thesis, the Planck CMB measurements are compared to the accurate theory predictions devel-
oped up to now. This chapter recalls some of the basic concepts of modern cosmology (sec. 1.1) and the
still open question of inflation (sec 1.2). It is then dedicated to the description of the CMB anisotropies
both in temperature (sec. 1.3) and polarisation (sec. 1.4). This panoramic view will allow, in sec. 1.5, to
define the ΛCDM model and its cosmological parameters, extensively tested in the rest of this thesis.

1.1 The CMB and the Hot Big Bang model

Discovered in 1965 (Penzias & Wilson 1965), the CMB constitutes a striking evidence that our universe
was once dense and hot. The standard cosmological model interprets this thermal radiation as the relic
signal from a recombination phase, namely when the temperature was weak enough for the electrons
and protons to bind forming the first atoms (sec.1.1.7). Since the universe had become transparent for
photons, they decoupled from the other constituents.

In this explanation we have assumed two important facts which are pillars of the Hot Big Bang theory:
the universe is expanding (as first discovered by Hubble in 1929 (Hubble 1929)) and we associate at each
epoch a temperature that decreases with the expansion rate. The fact that the energy of a massless particle
scales as T ∝ a−1 (in other words its wavelength is stretched by expansion), naturally arises in the context
of general relativity (GR).

Clearly, the dilution changes reactions between the different constituents of the universe, creating a
complex evolution. In this section we briefly reconstruct the principles upon which the Hot Big Bang
model is built, using GR in an expanding universe, and summarise the main phases of the evolution.

1.1.1 The Black Body signal

Before recombination, the interaction between photons and electrons allowed the thermalisation of the
photon distribution. At decoupling, the CMB radiation is emitted according to Planck’s law, meaning it
has a spectrum that is determined by the temperature alone

I(ν) =
4π~ν3/c2

e2π~ν/kBT − 1
. (1.1)

3



1. THE COSMIC MICROWAVE BACKGROUND

Figure 1.1: FIRAS data fitted by a Planck blackbody spectrum (Fixsen et al. 1996). Uncertainties are a
small fraction of the line thickness.

This radiation is (almost) isotropic, i.e. independent of the direction.
The FIRAS instrument of the COBE satellite measured with a great precision the black body spec-

trum (Fig.1.1), finding TCMB = 2.725 ± 0.002K (Mather et al. 1999).
A blackbody of the measured temperature corresponds to nγ = (2ζ(3)/π2)T 3

γ ' 411cm−3 and ργ =

(π2/15)T 4
γ ' 4.64 × 10−34gcm−3 ' 0.260eVcm−3.

1.1.2 Cosmological principles and General Relativity

The afore mentioned CMB radiation isotropy (the universe looks statistically the same in all directions)
had been assumed as a more profound characteristic of the model, namely a cosmological principle. It
is important to underline that it has to be understood in a statistical sense. The model is also built on
the Copernican Principle: as observers, we are not in a privileged place. This principle, together with
isotropy, implies the homogeneity of the universe, namely the fact that it has the same properties at every
point (e.g. Lyth & Liddle (2000)). If to assume isotropy we had forgotten the existence of anisotropies
at the 10−5 level, the assumption of homogeneity requires an even deeper approximation since around
us the universe is highly inhomogeneous. This approximation can be anyway considered valid at large
scale (more that few Gpc).

The isotropy and homogeneity principles, even before the discovery of the CMB signal, were needed
in order to define the metric describing our universe and are essential to solve GR equations.

In GR, the gravitation interaction has to be considered a property of the space time, that is curved in
the presence of mass. The space time geometry is then related to the energy content of the universe by
the legendary Einstein formula

Rµν −
1
2

Rgµν + Λgµν =
8πG
c4 Tµν, (1.2)

where gµν is the metric tensor, Rµν is the Riemann tensor, and R = gµνRµν is the Ricci scalar (the
local curvature of the space). We have also added the Λ term, known as the cosmological constant. In
the left-hand side of the equation, it can be interpreted as a modification of the geometry of space time.
It can also be moved to the right-hand side and interpreted as the intrinsic energy density of the vacuum.
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1.1 The CMB and the Hot Big Bang model

A positive vacuum energy density resulting from a cosmological constant implies a negative pressure
(sec. 1.1.3). This negative pressure can drive an accelerated expansion of the universe, as is observed in
Supernovae (sec. 1.1.5).

Tµν is the energy–momentum tensor. For a perfect fluid, i.e. with no heat conduction nor viscosity,
of pressure p and density ρ, assuming homogeneity, it reads in comoving coordinates

T µ
ν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (1.3)

Friedmann-Lemaitre-Robertson-Walker metric

The significance of the metric tensor can be glimpsed in the following:

ds2 = gµνdxµdxν. (1.4)

ds2 represents the space-time interval between two point labelled by xµ and xµ + dxµ. The metric tensor
determines all the geometrical properties of the space time described by the system of coordinates xµ

(e.g. Coles & Lucchin (2002)). The hypothesis of homogeneity of the universe has as a consequence the
existence of a synchronous coordinate system, where a proper time can be defined (e.g. Durrer (2008)).
Every observer, at the time t, measures the same properties (density, temperature, ..).

The metric thus take the form
ds2 = −c2dt2 + γi jdxidx j. (1.5)

Imposing isotropy and homogeneity on the spatial metric tensor γi j one finds the Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric (Friedman 1922; Lemaitre 1931; Robertson 1936; Walker 1937)

ds2 = −c2dt2 + a(t)2
[

dr2

1 − kr2 + r2dθ2 + r2sin2θdφ2
]
. (1.6)

where a(t) is a scale factor that has the dimension of a length (normalised such as a(t0) = 1) and r, θ, φ
are the spherical comoving coordinates, i.e. r is the proper radial coordinate rescaled by a.

The parameter k can take three values: k = 1, 0,−1, corresponding, respectively, to the hyper-
spherical (positive curvature), Euclidean and hyperbolic (negative curvature) cases.

Observational evidences point to the classical, flat, Euclidean space as we will see in chapter 7.

An essential quantity characterizing the FLRW spacetime is the expansion rate

H ≡
ȧ(t)
a(t)

(1.7)

The Hubble parameter H has units of inverse time and is positive for an expanding universe.
It takes typically of the order of one Hubble time H−1 for the universe to expand appreciably, and

while this is happening lights travels of the order of one Hubble length cH−1 (e.g. Lyth & Liddle (2000)).
The Hubble constant H0 is the value of H today (H(t0)) and is conventionally written as

H0 = 100hkms−1Mpc−1 (1.8)
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1. THE COSMIC MICROWAVE BACKGROUND

1.1.3 Friedmann equations

From the Einstein equation 1.2, making explicit the metric to be the FLRW one we end up with the
Friedmann equations (e.g. Coles & Lucchin (2002) or Dodelson (2003))( ȧ

a

)2
=

8πG
3
ρ +

Λ

3
−

k
a2 , (1.9)

ä
a

= −
4πG

3
(ρ + 3p) +

Λ

3
. (1.10)

Combining Eq.1.9 and 1.10 we find the continuity equation

ρ̇ + 3
ȧ
a

(ρ + p) = 0. (1.11)

This latter can also be derived by the conservation of the energy-momentum tensor (DµTµν = 0).
Rewritten as d(ρa3) = −pd(a3), it can be interpreted as the first law of thermodynamic (dU = −pdV).
From Eq.1.11 , assuming a relation between the density and the pressure of the type p = ωρ, one obtains

ρ ∝ a−3(1+ω). (1.12)

Different cases can be distinguished:

• ω = 0 describes non relativistic matter (pressureless fluid, pnr = 0)

ρnr ∝ a−3 (1.13)

• ω = 1
3 describes radiation (pr = 1

3ρr)
ρr ∝ a−4 (1.14)

accounting for the decrease of energy per particle as the universe expands.

• ω = −1 describes the energy density of the vacuum, i.e the case with

ρv = const. (1.15)

In this case ρ̇ = 0 and hence ρv = −pv.

• ω = − 1
3 describes the curvature energy density, the term − k2

a2 in Eq.1.9. We have

ρk ∝ a−2. (1.16)

One can defines Ωm =
ρnr
ρcrit

and Ωr =
ρr
ρcrit

, where ρcrit = 3H2

8πG , ΩΛ = Λ
3H2 and Ωk = − k

H2a2 , to rewrite
Eq.1.9 as

Ωr + Ωm + ΩΛ + Ωk = 1, (1.17)

hence, the sum Ωr + Ωm + ΩΛ determines the geometry of the universe.

Data show a preference for a flat universe where the total energy density is very close to the critical
value defined above. In fact, from Eq.1.9, one can see that Ωk = 0 implies, if the cosmological constant
term is neglected, ρ = ρcrit.
This solution requires an unnatural fine tuning of the value of the curvature in the early time (unless the
metric is Euclidean). This flatness problem of the universe is solved by inflation (sec.1.2).
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1.1 The CMB and the Hot Big Bang model

Constraining these parameters using Planck data is the main goal of this thesis. In a few words, this
is done comparing the CMB temperature power spectrum obtained from Planck data (chapter 5), with its
theoretical shape that is a function of these parameters (sec.1.3.1 and 1.5.1).
Additional constraints can be obtained using late time distance measurements (chapter 6) since they are
also function of these parameters, hence, in sec.1.1.4 we briefly revise some definitions of distance. In
sec. 1.1.5 we anticipate the status of present understanding of the composition of the universe (see also
Fig.1.13(b)). We will present in more details the measurements in chapter 7.

1.1.4 The distance in an expanding universe

The notion of distance in an expanding universe is not uniquely determined. For example, comoving
distances remains fixed as universe expands while physical distances grows simply because of expansion.

Among comoving distances, the most important one is the distance the light could have travelled (in
absence of interaction) since t = 0. With the convention c = 1 we have

η ≡

∫ t

0

dt′

a(t′)
(1.18)

Actually, since it is monotonically growing, η can be read as a time variable, the conformal time.

We can also define the comoving distance between a distant emitter and us

χ(a) =

∫ t0

t(a)

dt′

a(t′)
=

∫ 1

a

da′

a′2H(a′)
. (1.19)

If we consider a flat, matter dominated (MD) universe (which for low red-shift is a fair assumption as
discussed in sec.1.1.7), the integral has an analytical solution and one obtains (e.g. Dodelson (2003))

χFlat,MD =
2

H0

[
1 − a1/2

]
=

2
H0

[
1 −

1
√

1 + z

]
, (1.20)

where we have used (1 + z) = a−1.
The comoving distance goes as z/H0 for small z and then asymptotes to 2/H0 for large z (Fig.1.2(a)).

From the metric of Eq.1.6, the proper distance can be defined,

Dproper(t) =
√
|ds2| (1.21)

namely the distance between two object that would be measured by a series of observers, located along
the line relying two.
This can be rewritten in term of the comoving distance as

Dproper(t) = a(t)χ. (1.22)

Deriving with respect to time t and using Eq.1.7, one finds

Ḋproper(t) = ȧ(t)χ = HDproper(t), (1.23)

that is the Hubble law, i.e. the universe is expanding.

In practice the proper distance cannot be measured and other definitions of distance are needed.
The angular diameter distance is the ratio between the physical size of an object l and the angular

size θ of the object as viewed from earth, i.e.

DA =
l
θ
. (1.24)
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1. THE COSMIC MICROWAVE BACKGROUND

It depends on the assumed cosmology of the universe as

DA =


a

H0
√
|Ωk |

sinh(
√

ΩkH0χ) if Ωk > 0

aχ if Ωk = 0
a

H0
√
|Ωk |

sin(
√
−ΩkH0χ) if Ωk < 0.

(1.25)

Note that, if the universe is flat, DA is a good approximation to the proper distance. For this flat case, in
Fig.1.2(a), is shown the behaviour of DA with and without a cosmological constant contribution.

Distances can also be inferred measuring the flux of an object of known luminosity L. From the
definition of flux in an expanding universe one can define the luminosity distance as

DL ≡
χ

a
. (1.26)

The distance DL is larger in an universe with a cosmological constant than in one without, as it was for
the other distances (Fig.1.2(a)).

(a) (b)

Figure 1.2: (a) The comoving distance χ, the angual diameter distance dA and the luminosity distance
dL in a universe with matter only (light curves) or with ΩΛ = 0.7 contribution. In the three
cases these distances are larger in a Λ-dominated universe. The figure is take from Dodelson
(2003). (b) Hubble diagram for 42 high-redshift type Ia supernovae from the Supernova
Cosmology Project and 18 low-redshift type Ia supernovae from the Calan/Tololo Supernova
Survey. The solid curves are the theoretical apparent magnitudes m (Eq. 1.30) for a range of
cosmological models (Perlmutter et al. 1999).

1.1.5 The components of the universe

In sec.1.1.3 it has been shown how the different constituents of the universe evolves with the expansion.
Their present value are inferred via different direct and indirect measurements. We summarise here,
before entering in the detail of the CMB constraints, the present general understanding of the composition
of the universe.
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1.1 The CMB and the Hot Big Bang model

Radiation

The standard radiation component includes photons, neutrinos (with the approximation mν = 0). It
constitutes today only the ∼0.008% of the total energy content of the universe. The physical energy
density of photons is well measured. From the value of ργ of sec.1.1.1, one can compute

ωγ ≡ Ωγh2 = 2.47 × 10−5. (1.27)

In the massless limit, from entropy conservation one can compute the neutrino temperature and hence
their energy density to be

ων ≡ Ωνh2 = 1.68 × 10−5. (1.28)

Only recently, since the universe is cooling down they became non relativistic and hence their physical
energy density can be rewritten in terms of their absolute mass scale

Ωνh2 =

∑
mν

93.14 eV
. (1.29)

Cosmological neutrinos are discussed in more details in chapter 2.

Baryons

In the literature, the nuclei and electrons in the universe are usually referred to as baryons. They can
not be described as a gas with a certain temperature as is done for photons and massless neutrinos, so
their energy density needs to be measured. As baryons are considered within the non relativistic matter,
the parameter Ωb scales as a−3. There are several, different techniques to infer Ωb. In chapter 2 we will
briefly mention some direct measurements. The CMB anisotropies measure the physical energy density
Ωbh2. Roughly, all measurements agree that baryons constitutes only the 2-5% of the total energy budget,
even if most of this standard matter remains entirely invisible within large atomic or molecular hydrogen
clouds. This value implies however that all the rest of the energy density is of “dark” nature.

Dark matter

The ∼23% of the energy density is believed to be dark matter (DM): something subject to gravity but
weakly interacting with the other constituents of the universe. Considered as non relativistic, it scales, as
baryons, with a−3 as the universe expands.

DM is still an open paradigm still to be included in what we know about the physical laws of the
universe and is a vivid sector of research. The simplest paradigm describes DM as a “dust” component
(its particles have a negligible velocity as far as structure formation is concerned), i.e. a cold component.
The parameter Ωc ∼ 0.23 can be measured with several techniques, including galaxy distributions (chap-
ter 6). CMB anisotropies measure the physical density ωc ≡ Ωch2 as described is chapter 7.

More complex scenario with dark matter made up with a cold and a hot component are more likely to
be the right modelling. In this context also massive neutrinos can have a non-negligible effect (Dodelson
2003).

Dark energy

From Fig.1.13(b) is clear that the the majority (the ∼73%) of the total energy density is something of
unknown nature. Supporting evidences for the existence of the Dark energy (DE) came from the super-
novae observations in 1998 that lead the groups of Riess and Perlmutter (Riess et al. 1998; Perlmutter
et al. 1999) to the Nobel prize.

9



1. THE COSMIC MICROWAVE BACKGROUND

The luminosity distance of Eq.1.26 can be used to rely the apparent magnitude m and the absolute
magnitude M of a source (e.g. Dodelson (2003))

m − M = 5log
(

DL

10pc

)
+ K, (1.30)

where K is a correction factor. The SNIa are considered standard candles, so they have nearly identical
absolute magnitude after correcting the light-curve width-luminosity relation (chapter 6). In Fig.1.2(b)
is shown the Hubble diagram reported in Perlmutter et al. (1999), pointing to (Ωm, ΩΛ)=(0.28, 0.72).

DE started to be important at late times. This means that the CMB is only slightly sensitive to it. It is
anyway possible to put constraints, especially combining CMB with large scale structure measurements
(Planck Collaboration. XIII. 2015).

1.1.6 The age of the universe

Roughly speaking, the various measurements up to now point towards a universe with {Ωm ' 0.3, h ' 0.7
and ΩΛ ' 0.7}. This concordance model (sec.1.5) allows to accommodate different direct and indirect
measurements. One can trace the evolution of the Hubble “constant” using the measured present value
of these parameters

H2 = H2
0

[
Ωm(1 + z)3 + Ωr(1 + z)4 + Ωk(1 + z)2 + ΩΛ

]
, (1.31)

and hence estimate the age of the universe at a certain redshift z

t(z) =

∫ ∞

z

dz′

(1 + z′)H(z′)
. (1.32)

The age of the universe today (at z = 0), using these value of the concordance model, gives roughly 14
Gyr, in agreement with the Planck results of 13.8 Gyr (Planck Collaboration. XIII. 2015).

1.1.7 Thermal history of the expansion

If one forgets the very first instants of the universe and the investigation of what is really behind the
initial singularity of the Big Bang model, then it is quite fair to say that the evolution of the universe is
well know. Constituents were in thermal equilibrium in the early phases, then, as a consequence of the
expansion, different species lost thermal contact with the rest and left traces in their history.

A particle is in thermal equilibrium if its interaction rate Γ is greater than the expansion of the
universe, namely

Γ � H. (1.33)

Here Γ ∼ nσ, with n the particle density and σ the relevant cross section. Rewriting Eq.1.9 and consid-
ering that ρ ∝ T 4 at sufficient early times, one also has H ∼ T 2/Mpl.

Around T ∼ 100 MeV the quark hadronisation takes place and the universe is made of protons,
neutrons, electrons, positrons and neutrinos. The temperature is high enough for thermal equilibrium to
hold, and the non relativistic matter (for which T � m) undergoes Maxwell-Boltzmann suppression, i.e.
the number density reads1

neq = g
(mT

2π

)3/2
e−m/T . (1.34)

1In a general discussion the chemical potential can be neglected (Dodelson 2003).
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1.1 The CMB and the Hot Big Bang model

Neutrinos are also kept in equilibrium by process such as νe→ νe and, as fermions, obey the Fermi-Dirac
distribution

neq = g
∫

d3 p
(2π)3 feq(p) with feq(p) =

1
ep/T + 1

(1.35)

A typical cross section is σ(νe→ νe) ∼ G2
F E2 ∼ G2

FT 2, where GF is the Fermi’s constant.
Since electrons are still relativistic at this epoch, their number density is ne ∼ T 3, hence,

Γ ∼ σ ne ∼ G2
FT 5. (1.36)

One finds that equilibrium is lost when

H ∼ T 2/Mpl > Γ ∼ G2
FT 5, (1.37)

thus the temperature of neutrinos decoupling is

Tdec ∼

 1
MplG2

F

1/3

∼ few MeV (1.38)

This cosmic neutrino background is discussed further in chapter 2. Constraining its properties through
CMB measurements is one of the goals of this thesis.

Shortly after neutrino decoupling, electron and positrons annihilate leaving the universe only with
electrons as a consequence of baryon asymmetry.
At T ∼0.1 MeV, when the universe is only a few minutes old, temperature is low enough for first nu-
cleus to form. The Big Bang Nucleosynthesis (BBN) is sensitive to neutrino physics. A more detailed
discussion is postponed to chapter 2.

Eq.1.13 and 1.14 tell us that, even if at early times the radiation was dominating (RD) (i.e. the
majority of the constituents were relativistic), at a certain moment in the evolution of the universe the
non relativistic matter started to dominate over radiation. Matter domination (MD) is fundamental since
structures can grow only in this case (e.g Dodelson (2003)).

One can compute the redshift of the equality simply stating ρr = ρm, obtaining

aeq =
4.15 × 10−5

Ωmh2 ⇒ zeq ∼ 3100. (1.39)

At this redshift the universe was already 60000 years old.

After nucleosynthesis is complete and well inside the MD era, the temperature drops to ∼1 eV.
Compton scattering has coupled till now photons and electrons and Coulomb scattering has coupled
electrons and protons. The binding energy of hydrogen atoms is BH = mp + me − mH = 13.6 eV so one
would expect them to be already formed. However, since the photon/baryon ratio is high (ηbγ ∼ 10−9),
radiation destroys any new atoms via the reaction

p+ + e− � γH (1.40)

While this reaction is in equilibrium, from the Boltzmann equation (the formalism describing the rate
of change in the abundance of a given particle as the rate of producing and eliminating this species,
e.g.Dodelson (2003)) one can rewrite

nenp

nH
=

χ2
e

1 − χe
=

1
ne + nH

[(meT
2π

)3/2
e−BH/T

]
, (1.41)
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1. THE COSMIC MICROWAVE BACKGROUND

where

χe ≡
ne

ne + nH
=

np

np + nH
. (1.42)

and ne = np is a consequence of the neutrality of the universe.
Eq.1.41 is called the Saha approximation (Fig.1.3) and predicts correctly the redshift of recombination
to be z∗ ∼ 1000 and T∼0.25 eV. Nevertheless, it neglects the (small) number of helium atoms and fails
as the electron fraction diminishes and the system goes out of equilibrium. The correct solution is shown
in Fig.1.3.

The recombination era is directly related to the decoupling of photons. Decoupling occurs roughly
when the interaction rate between electrons and photons becomes smaller than the expansion rate. The
scattering rate is neσT = χenbσT , where σT = 0.665 × 10−24cm2 is the Thompson cross section. When
χe becomes smaller than ∼ 10−2, photons decoupled (e.g. Dodelson (2003)). Given how fast χe drops to
zero, decoupling happens during recombination (Fig.1.3).

These photons, once lost the contact with the thermal bath, redshift as the universe expands and con-
stitute now the Cosmic Microwave Background radiation. The small anisotropies of this signal depends
on the physics at recombination and are the powerful cosmological observable used in this thesis. Their
shape is discussed further in sec.1.3.

The signal is anyhow almost isotropic. This experimental evidence is one of the motivation at the
base of the development of the theory of inflation described in the next section.

A schematic representation of the history of the expansion can be found in Fig.1.4, where the main
phases are highlighted.

Figure 1.3: The ionization fraction χe as a function of the scale factor (and redshift). In blue is shown
th Saha approximation (see text). In Black is shown a more accurate recombination model.
The figure is taken from Hu (2008).
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1. THE COSMIC MICROWAVE BACKGROUND

1.2 The horizon problem and the inflation paradigm

On all observed scales the CMB is very close to isotropic. But if the universe has an age, why is the CMB
temperature so uniform? All objects separated by a comoving distance larger than the conformal time η
(sec.1.1.4) have never been in causal contact, how could some causal physics have washed away strong
deviation from isotropy? The standard solution to this horizon problem is that the universe underwent a
phase of exponential expansion, the inflation (Guth 1981).

Inflation is not only able to increase the causal horizon at the time of decoupling explaining homo-
geneity (sec.1.2.1), but also to dilute curvature justifying why the total density today is so close to the
critical one (sec.1.1.3).

Moreover, inflation is able to give an origin to the fluctuations we observe today (sec.1.2.2). In this
section we summarise some basic concepts about inflation.

1.2.1 The cosmological horizon

We want to find the set of point able of sending light signals that could have been received by an observer
in O up to some generic time t. The paricle horizon, namely the proper distance (sec.1.1.4) between the
an observer and the horizon is

dH(t) ≡
∫ xH

0

√
gµνdxµdxν =

∫ xH

0
a(t)cdη = a(t)cη(t) = a(t)

∫ t

0

cdt′

a(t′)
(1.43)

where we have used the metric of Eq.1.6. dH(t) is the product between the scale factor at the time of the
observer and the comoving distance the light has travelled from t = 0 to t. It can be seen as a spherical
surface centred in O and with radius dH(t). The observer cannot possibly have received light signals, at
any time in its history, from sources which are situated at proper distances greater than dH(t) from him
at time t (e.g. Coles & Lucchin (2002)). This definition is valid only if dH(t) converges to a finite value.

In sec.1.1.2 we have described the matter content of the universe as a perfect isotropic fluid parametrised
by the energy momentum tensor T µ

ν (Eq.1.3). From the conservation of T µ
ν one obtains the first law of

thermodynamic d(ρa3) = −pda3, that gives, considering p = ωρ, the energy density as a function of the
scale factor (Eq.1.12). Using the Friedman equations one obtains

a(t) ∝ tn with n = 2/3(1 + ω) (1.44)

If n < 1 (thus ω > − 1
3 ) the integral in Eq.1.43 converges and dH(t) is dominated by the late times. We

have dH(t) = t/(1−n) and so dH(t) > t. This is the case during RD and MD when n is respectively 1/2 and
1/3, giving dRD

H (t) = 2t and dMD
H (t) = 3/2t. dH(t) grows faster than a(t). The expansion is decelerating

and more and more galaxies enter in causal contact with the observer.
Assuming MD we can calculate dH(tCMB), where tCMB is the time when the universe became trans-

parent. From the ratio between dH(tCMB) and dH(t0) we can deduce the angular size of the patches that
have been in causal contact in a Big bang scenario without inflation. It turns out to be θ ∼ few ◦.

This is in contradiction with the isotropy of the CMB that we have discussed in sec.1.1.1, and is
called the horizon problem of the hot Big Bang.

Before entering the subject of inflation we first define the Hubble radius as the distance from the
origin O of an object moving with the cosmological expansion at the velocity of light with respect to O
(e.g. Coles & Lucchin (2002)).

Rc = c
a
ȧ

=
c
H

(1.45)

For ω > − 1
3 the Hubble radius is a multiple of the particle horizon but they are two distinct notions of

distance.
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1.2 The horizon problem and the inflation paradigm

The comoving Hubble radius is obtained just dividing by the scale factor a thus, taking the convention
c = 1,

comoving Hubble radius =
1

aH
=

1
ȧ

(1.46)

In order to solve the horizon problem we can imagine that during an early phase the comoving Hubble
radius decreased. Particle separated by many Hubble radii today, were in causal contact before this
epoch of rapid expansion . The decrease of the comoving Hubble radius implies the acceleration of the
expansion,

d
dt

(
1
ȧ

)
< 0⇒ ä > 0. (1.47)

Clearly inflation has to last enough to explain the isotropy of the CMB. The duration of inflation can be
characterise by the number of e-folds, namely the logarithm of the ratio of the scales factor when CMB
were in causal contact and the end of inflation (e.g. Baumann (2009))

N = ln
(

a(tend)
a(tCMB)

)
≈ 60 (1.48)

From the Friedmann equations 1.9 and 1.10 one also deduces that inflation requires a source of negative
pressure p ≈ −ρ and an energy density ρ which dilutes very slowly (ρ̇ ≈ const). This source of negative
pressure can be found using a scalar field (the inflaton) as is discussed in sec.1.2.3. The quantum fluc-
tuations of this field generates the primordial perturbation that have evolved into the structures we see
today.

1.2.2 The primordial power spectrum

We see structures today on all scales. They are the outcome of the evolution, by gravitational collapse,
of the primordial fluctuations present in the original cosmic fluid. These fluctuations are supposed to be
generated by quantum fluctuation of the scalar field φ during the inflationary period. We are interested in
the amplitude of the fluctuations as a function of scale. In term of Fourier analysis we can thus consider
the comoving wavenumber k, related to the physical wavenumber as kp = ak. The most useful way to
characterise them statistically is via the power spectrum, namely the contribution to the variance of the
fluctuations per unit logarithmic interval in k. Calling δφ(x), the spatial fluctuation of φ one defines

〈δφ(x)δφ∗(x)〉 =

∫ ∞

0
P(k)d(ln k) (1.49)

Using the Fourier transform

δφ(x) ∝
∫

δφkeik·xd3k, (1.50)

and considering d3k = 4πk2dk and d(lnk) = dk/k, one obtains

P(k) ∝ k3|δφk|
2. (1.51)

Roughly we need to solve for an harmonic oscillator-type equation for the scalar field of which we know
the quantised solutions (e.g. Hobson et al. (2006)). Since we are in an expanding universe we have a
solution like

δφk ∝
e−ikt/a

a
√

2k
(1.52)
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1. THE COSMIC MICROWAVE BACKGROUND

The expression for the power spectrum thus reads

P(k) ∝
(

k
a

)2

(1.53)

The idea of inflation is that a fluctuation of fixed comoving scale 1/k could have started within the
horizon. All scales inside the horizon are connected by causal physics. During inflation, the comoving
horizon decreases and when k = aH the mode leaves the horizon and freezes (Fig.1.5). To know the
amplitude of the primordial fluctuation we just have to evaluate Eq.1.53 at horizon crossing since the
mode does not evolve any more after freeze-out.

P(k) ∝ H2|horizon crossing (1.54)

H is more or less constant during inflation (sec.1.2.3) but decreases slightly as time progress. This
depends on the details of the inflation and on the choice of the potential for the inflaton. One gets
approximately equal power per unit logarithmic interval in k as a function of k in the power spectrum
coming out from inflation, but with a slightly reduced amplitude for fluctuations at large k (later times
correspond to horizon exit of larger scales). The precision of the data from the Planck satellite allows
to test this slight deviation from scale invariance. Inflation generates both scalar and tensor perturbation
to the metric (sec.1.2.3). Scalar perturbations to the metric couple to the density of matter and radiation
and are responsible for inhomogeneities and anisotropies in the universe. Inflation also generates tensor
perturbations to the metric that are not coupled to density so do not affect the formation of large scale
structures. As is explained in sec.1.4.4, they do contribute to anisotropies in the CMB. For Planck
analysis the following model for the primordial power spectrum of scalar perturbations are used

Ps(k) = As

(
k
k∗

)ns−1

(1.55)

where k∗ = 0.002 Mpc−1 is a reference scale roughly in the middle of the scales probed by Planck.
ns = 1 would correspond to the perfect scale invariance. One of the major results of the 2013 release was
indeed that the data show a significant deviation of ns from scale invariance (Planck Collaboration. XVI.
2014). This is still the case for the data used in this thesis (chapter 7). At the level of the CMB power
spectrum, ns represents the tilt and As is the global amplitude of the CMB power spectrum (sec.1.1.5).
We briefly mention here also the fact that one can test the running of the spectral index adding a term
proportional to dns

dln k in the exponent of Eq.1.55. No convincing evidence for the running has been found
(Planck Collaboration. XVI. 2014; Planck Collaboration. XIII. 2015).

Regarding tensor perturbations we can write

Pt(k) = At

(
k
k∗

)nt

(1.56)

where again k∗ = 0.002 Mpc−1. For the tensor power spectrum, scale invariance is achieved with nt = 0.
Actually, we fit in our analysis for the famous (after the BICEP-Planck case) parameter r defined as

r(k = k∗ = 0.002 Mpc−1) = r0.002 = At/As (1.57)

We discuss in some more details this parameter in sec.1.4.4.
Both ns and nt depend on the details of the inflationary theory considered. In the following section

the simplest case of a single field inflation is considered and the slow roll condition is presented.
To complete the picture we have to add that after the end of inflation the comoving Hubble radius start

to grow again as expected for standard cosmology. As already discussed, the causal contact is possible
only when the mode re-enters the horizon (Fig.1.5). Clearly, the time of re-entering characterise the type
of evolution the perturbation will have.
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1.2 The horizon problem and the inflation paradigm

Figure 1.5: Solution of the horizon problem. All scales that are relevant to cosmological observations
today were larger than the Hubble radius until a ∼ 10−5 . However, at sufficiently early
times, these scales were smaller than the Hubble radius and therefore causally connected.
Similarly, the scales of cosmological interest came back within the Hubble radius at rela-
tively recent times.(Baumann 2009)

1.2.3 Single field slow roll

We have seen that the scales that would otherwise be disconnected, can correlate if inflation took place,
ensuring that the CMB is (almost) isotropic on all scales of interest today. Perturbations were produced
when the scales were causally connected and persisted after inflation, and transformed into the actual
structures.

During inflation the universe consisted primarily of a uniform scalar field φ and a uniform back-
ground metric. Against this background the fields fluctuate quantum mechanically with a zero average
fluctuation but a non null variance (Dodelson 2003). There is in literature a large variety of families of
inflationary models. Here we describe the simplest one, namely the single field inflation. The choice for
the shape of the potential V(φ) depends on the details of the model.

On general ground one needs to have:

• negative pressure (sec.1.2.1)

• an almost constant H

• a duration sufficient to shrink enough the comoving Hubble horizon (aH)−1

• creation of standard model particles (reheating) at the end of the process (sec.1.2.4)

The condition for inflation from relation 1.47 can be rewritten as

−
Ḣ
H2 < 1 (1.58)

meaning that H varies slowly on the Hubble timescale. If |Ḣ| � H2 , then H is almost constant over
many Hubble times and we have almost an exponential expansion, a ∝ eHt.
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1. THE COSMIC MICROWAVE BACKGROUND

We have already seen that to have in order to have an almost exponential expansion we need p ≈ −ρ.
If we assume that the energy density and pressure of the cosmic fluid are dominated by scalar fields, the
necessary negative pressure is achieved if the fields do not vary too rapidly (e.g. Lyth & Liddle (2000)).

The dynamic of the scalar field minimally coupled to gravity can be described by the action (e.g.(Baumann
2009))

S =

∫
d4x
√
−g

 M2
Pl

2
R +

1
2

gµν∂µφ∂νφ − V(φ)

 (1.59)

where M2
Pl = (8πG)−1. From this we can derive the energy momentum tensor

Tµν ≡ −
2
√
−g

δS φ

δgµν
= ∂µφ∂νφ − gµν

(
1
2
∂σφ∂σφ + V(φ)

)
. (1.60)

Assuming the metric of Eq.1.6 and supposing the universe homogeneous (hence φ(t, x) ≡ φ(t)) one can
compare this latter result to Eq.1.3, where the density is ρ = −T 0

0 and the pressure is p = T i
i , obtaining

ρφ =
1
2
φ̇2 + V(φ), (1.61)

pφ =
1
2
φ̇2 − V(φ). (1.62)

Also, using these into the Friedman equation (Eq.1.9) considering a flat universe and a Klein-Gordon
equation for the scalar field, one obtains

3M2
PlH

2 =
1
2
φ̇2 + V(φ) and φ̈ + 3Hφ̇ + V ′ = 0 (1.63)

where V ′ ≡ ∂V/∂φ.
From Eq.1.62 is clear that to have a negative pressure we need the potential energy term V(φ) to be

more important than the kinetic term (Fig.1.6). We can rewrite 1.58 as

ε ≡ −
Ḣ
H2 =

1
2 φ̇

2

M2
PlH

2
(1.64)

The condition for inflation is thus ε < 1. Note that, in term of the scalar field components, it contains the
same condition discussed before: we need slow roll condition, 1

2 φ̇
2 � V(φ) Actually the kinetic energy

stays small and slow roll persists also if the acceleration of the field is small, φ̈ � 3Hφ̇ ∼ V ′. The
condition for prolonged slow-roll inflation can be expressed as conditions on the shape of the potential,
using Eq. 1.63 (Steinhardt & Turner 1984)

ε ≡
M2

Pl

2
(
V ′

V
)2 � 1 and |η| ≡ M2

Pl
|V ′′|
V
� 1 (1.65)

A proper calculation of the primordial power spectra for scalar and tensor modes leads to (e.g. Do-
delson (2003))

Ps(k) =
1

8π2ε

H2

M2
Pl

∣∣∣∣∣∣∣
k=aH

(1.66)

Pt(k) =
2
π2

H2

M2
Pl

∣∣∣∣∣∣∣
k=aH

(1.67)
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1.2 The horizon problem and the inflation paradigm

From Eq.1.57 we obtain r = 16ε. Interestingly, both ns and nt can be written in terms of the slow roll
parameters

ns = 1 − 4ε − 2η (1.68)

nt = −2ε (1.69)

The fact that nt is proportional to ε and thus proportional to the tensor-to-scalar ratio r is one of the
important prediction of inflation. This consistency relation

r = −8nt (1.70)

constitutes an important test of inflationary theories. In Planck analysis however, we assume the
single field slow roll inflation and, as a consequence, the consistency relation to hold. Allowing r free to
vary we can indeed set an upper limit on r (chapter 6.1). As a last remark we can write (e.g. Baumann
et al. (2009))

V1/4 = 1.06 × 1016GeV
( r
0.01

)1/4
(1.71)

that allows to relate r directly to the energy scale of inflation V . A detectable tensor amplitude would
confirm that inflation occurred at energy comparable to the Grand Unification Theory scale.

Figure 1.6: An example for the potential of the inflaton. Acceleration occurs when V is more important
than the kinetic term. Inflation ends at φend when the slow roll conditions are violated.
CMB fluctuations are created by quantum fluctuation δφ about 60 e-folds before the end
of inflation. At reheating, the energy density of the inflaton is converted into radiation
(Baumann 2009).

1.2.4 Reheating

In the original version of the reheating, at the end of inflation the field φ oscillates around the minimum
of the potential. Its coupling to other particles leads to the decay of the inflaton energy (e.g. Lyth &
Liddle (2000))

1
a3

d
dt

(a3|φ|2) = −Γ|φ|2 (1.72)
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1. THE COSMIC MICROWAVE BACKGROUND

The coupling Γ represents the complex physics that describes the decay ratio of the inflaton into generic
scalars χ or spinors ψ, Γ = Γ(φ → χχ) + Γ(φ → ψψ). Using the expression for the energy density of the
field φ, ρφ = 1

2 m2|φ|2. One can rewrite Eq.1.72 as (e.g. Bassett et al. (2006))

ρ̇φ + 3Hρφ + Γρφ = 0 (1.73)

Eventually, the inflationary energy density is converted into standard model degrees of freedom and the
hot Big Bang starts. Roughly speaking, one can imagine that the decay products are ultra-relativistic,
namely m � mψ,mχ and behave as radiation while the inflaton behaves as matter. Since they are coupled,
densities do not evolve completely as the free ones (the ρR ∝ a−4 and ρM ∝ a−3 of sec.1.1.3). Moreover,
matter is a source for radiation, so the densities satisfy

ρ̇M + 3HρM + ΓρM = 0 (1.74)

ρ̇R + 4HρR + ΓρR = 0 (1.75)

While Γ < H, ρM ∝ a−3 is indeed a good approximation for the matter term but ρR ∝ a−3/2.
When Γ ∼ H, radiation is the dominant component of the total energy density and reheating ends.

This reheating mechanism, however, does not describe accurately the quantum dynamics of the fields
and more complicated mechanisms are required, especially for the first stages of the reheating, the pre-
heating (Traschen & Brandenberger 1990; Kofman et al. 1994; Yoshimura 1995) . In its simplest form,
preheating assumes that the inflaton φ has a quadratic potential at the end of inflation and it is coupled to a
scalar field χ with negligible mass, through a term − 1

2 g2φ2χ2. The equation for the quantum fluctuations
of χ can be written as (Kofman et al. 1994)

χ̈k + 3Hχ̇k +

(
k2

a2(t)
+ g2Φ2 sin2(mφt)

)
χk = 0, (1.76)

where k/a(t) is the physical momentum, k =
√

k2, and Φ the amplitude of the oscillations of the field φ.
As preheating takes place in a time ∆t � H−1, in first approximation one can neglet the expantion of the
universe and consider a(t) as a constant. Eq. 1.76 then reduces to Mathieu equation

d2χk

dz2 +
[
A(k) − 2q sin(2z)

]
χk = 0, (1.77)

where q ≡ g2Φ2

4m2
φ

, A ≡ k2

m2
φ

+ 2q, and z ≡ mφt. In certain region of the parameter space {A, q}, the solutions

of Eq. 1.77 show an exponential instability within the sets of resonance bands (parametric resonance).
These correspond to exponential growth of occupation numbers of quantum fluctuations that can be
interpreted as particle production. The reheating mechanism is outside the scope of this thesis and can
be found, for example, in Lyth & Liddle (2000).

1.3 Temperature anisotropies

In sec.1.2 we have seen how inflation generates the seeds that grow to form, not only the structures that we
seed today, but also the anisotropies of the CMB. However, unlike structure formation, the smoothness
of the photon distribution implies that photon perturbations are small and one can safely use linear theory
for most computations. This allows fast modern Boltzmann codes (sec.1.5.1) to do precise calculations,
and in the end, with the growing precision of CMB data, to precisely constrain physics.
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1.3 Temperature anisotropies

Generally speaking, the Boltzmann equations in an expanding background, describe the evolution of
a phase space distribution f = f (x,p) of a system due to all possible collision terms

d f
dt

= C[ f ]. (1.78)

The distribution of CMB photons reads

f (x,p, t) =

[
exp

(
p

kT (t)[1 + Θ(x, p̂, t)]

)
− 1

]−1

. (1.79)

Here the zero-order temperature T is a function of time only. Θ is the perturbation ∆T/T . Eq. 1.79 can
be expanded about its zero-order Bose-Einstein value f 0

f ' f 0 − p
∂ f 0

∂p
Θ (1.80)

In absence of collisions (C=0), the Boltzmann equation simply recovers that T ∝ a−1, i.e. the photon

wavelength is stretched by expansion.

Figure 1.7: The anisotropies of the Cosmic microwave background (CMB) as observed by Planck
(Planck Collaboration. X. 2015).

The detailed description of the Boltzmann equations for the evolution of the photon-baryon fluid and
the generation of temperature anisotropies as are seen today is out of the scope of this thesis.

In this section we define the CMB privileged observable, the power spectrum (sec. 1.3.1), we then
specify the gauge for the metric used (sec. 1.3.2) and sketch the equations that describe the photon fluid.
Even in a simplified “instantaneous last scattering” scenario one can recognise the main physical effect
that influence the CMB: the Sachs-Wolfe (SW) effect, the Doppler effect and the integrated SW (ISW)
effect. The shape of the CMB power spectrum is described and linked to these effects in sec. 1.3.5.

For a more rigorous and detailed description of the physics, the interested reader has a huge literature
available. Here we refer especially to Dodelson (2003) and Challinor & Peiris (2009).

1.3.1 Power spectrum

The CMB temperature anisotropies are directly related to cosmological perturbations, that are predicted
to be Gaussian (sec. 1.2). If it is the case, they can be entirely captured by the the 2-point correlation
function

C(û, v̂) = 〈Θ(û)Θ(v̂)〉, (1.81)
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1. THE COSMIC MICROWAVE BACKGROUND

where û and v̂ are two directions in the sky. The angle brackets in this equations denote the average over
en ensemble of realisations of the fluctuations.

The statistical properties of the fluctuations in a perturbed cosmology are expected to respect the
symmetries of the background model, hence in a FLRW metric, one imposes the isotropy and homo-
geneity of the universe (sec. 1.1.2). Eq. 1.81 is then simply a function of the angle θ between the two
directions and the 2-point correlation function can be decomposed on the basis of Legendre polynomials

C(θ) =
∑
`

2` + 1
4π

C`P`(θ). (1.82)

Eq. 1.82 naturally defines the power spectrum C` that contains all the information on temperature
anisotropies. The variable ` is called multipole and is homogeneous to the inverse of an angular scale
θ ∼ 2π/`. Since the signal comes from a sphere around us, it is useful to decompose it on a spherical
harmonic basis to be able to construct CMB anisotropy maps (Fig. 1.7)

∆T (n̂) =
∑
`m

a`mY`m(n̂), (1.83)

where the coefficients a`m read

a`m =

∫
∆T (n̂)Y`m(n̂)dΩ, (1.84)

and satisfy the following properties

〈a`m〉 = 0 (1.85)

〈a`ma∗`′m′〉 = C`δ``′δmm′ . (1.86)

Eq.1.85 reflects the fact that the fluctuation have zero mean, while Eq. 1.86 is a consequence of the
orthogonality of the Y`m functions on the full sky. The power spectrum estimate is

Ĉ` =
1

2` + 1

∑̀
m=−`

|a`m|2. (1.87)

For every `, the corresponding power is the squared mean of 2`+1 coefficients. The statistical uncertainty
associated to the evaluation of the C` is then given by

∆C`

C`
=

√
2

2` + 1
. (1.88)

This is named cosmic variance and is a fundamental limit to our capacity of measuring the CMB
anisotropies. Indeed, for all the small values of `, corresponding to the large scales, the cosmic variance
dominates over the other observational errors, since the number of pairs to compute Eq. 1.82 diminishes
if the angle increases.

When built from the same map, Eq. 1.87 is called auto spectrum. Since every measurement comes
with an associated noise, it is useful to define the notion of cross spectrum between two different maps
A and B

Ĉ`
AB

=
1

2` + 1

∑̀
m=−`

aA
`maB∗

`m. (1.89)

Interestingly, if the noise components of the two maps are uncorrelated, the noise term vanishes in mean
in the cross spectrum. Cross spectra are extensively used along all this thesis and are the central theme
of chapter 5.

22



1.3 Temperature anisotropies

1.3.2 Scalar metric perturbations

Metric perturbations can be decomposed into a scalar, a vector and a tensor component evolving inde-
pendently one from each other. This classification refers to the way in which the fields transform under
three-space coordinate transformations on the constant-time hyper-surface. The vector components are
generally ignored, as there are few known physical processes in which they can be generated and they
decay with time. Tensor perturbations generates gravitational waves (sec. 1.4.4). Scalar perturbation
are the only ones that couple with matter, and thus the ones interesting for describing the temperature
anisotropies of the CMB. In Conformal Newtonian gauge the scalar first order metric perturbations take
a simple form that depends only on two functions ψ and φ

ds2 = a(η)[(1 + 2ψ)dη2 − (1 − 2φ)dx2], (1.90)

where η is the conformal time defined in Eq. 1.18 and x the comoving position. The two scalar potentials,
ψ and φ, play a role similar to the Newtonian gravitational potential. In the absence of the anisotropic
stress, ψ + φ = 0.

1.3.3 The Boltzmann equation for photons

Eq. 1.80 can be written explicitly for the photon fluid. The left-hand side needs to be expanded to first
order. One finds

d f
dt

∣∣∣∣∣
1st order

= −p
∂ f 0

∂p

[
∂Θ

∂t
+

p̂i

a
∂Θ

∂xi +
∂φ

∂t
+

p̂i

a
∂ψ

∂xi

]
. (1.91)

The first two terms describe the free streaming that creates anisotropies on smaller and smaller scales
while the universe expands. The second pair of terms describes the effect of gravity.

For the collision term C[ f ] instead, one has to account for Compton scattering off free-electron (with
proper number density ne) that changes the photon distribution. Considering non relativistic electrons
and a small energy transfer, the scattering term can be written as

C ≈ −p
∂ f 0

∂p
neσT

[
Θ0 − Θ( p̂) + p̂ · ~vb

]
, (1.92)

where vb is the baryon velocity and Θ0 is the monopole term of the spherical harmonic expansion of Θ.
When the scattering Compton is efficient, only the monopole survives. Indeed, since the mean free path
for photons is small, γs from different directions tend to have the same temperature.

Combining the two equations and rewriting it in Fourier domain one obtains

Θ̇ + ikµΘ + φ̇ + ikµψ = −τ̇
[
Θ0 − Θ + µvb

]
, (1.93)

with τ̇ ≡ −nfree
e σTa and µ ≡ k̂ · p̂. Photons do not only have the monopole contribution but also a dipole,

a quadrupole, etc.
Eq. 1.93 is partial differential equation coupling the photons to ψ, φ and vb

2.

1.3.4 Initial conditions

We have reported the Boltzmann equation governing the photon perturbation around a smooth back-
ground, but the initial condition still need to be specified. At early times, the perturbation k satisfies
kη � 1. This means that the term Θ̇ ∼ Θ/η is bigger than all terms proportional to kΘ. All the relevant

2Note we have omitted the coupling term with polarisation.
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1. THE COSMIC MICROWAVE BACKGROUND

perturbations, at early times, have k−1 larger than causal physics scale, implying that only the photon
monopole Θ0 is relevant. Eq. 1.93 simply reads

Θ̇0 + φ̇ = 0. (1.94)

The same equation for dark matter and baryons is

δ̇ = −3φ̇, (1.95)

where δ describes the over-density.
From the combination of the Einstein equation and Eq. 1.94, and in the approximation φ = −ψ, one

finds
φ̈η + 4φ̇ = 0 (1.96)

Setting φ = ηp, the previous equation has two solutions. A decaying mode that has no impact in the
evolution of the universe and a constant mode that, once excited, can be recognised to be responsible for
the perturbation in the universe.

The combination of Eq. 1.94 and Eq. 1.95 gives

δ = 3Θ0 + cst. (1.97)

If the constant term is zero, the perturbations are named adiabatic and have nm/nγ constant (where
the subscription m stands for both baryons and cold dark matter) . Otherwise, are named isocurvature
perturbations. We consider only adiabatic initial conditions.

1.3.5 Primary anisotropies

Given the initial conditions, the formal solution of Eq. 1.93 can be obtained running a Boltzmann code
like CLASS (sec. 1.5.1).

Approximating the last scattering as instantaneous, ignoring the effect of reionisation and the anisotropic
nature of Thompson scattering, one finds

Θ(n̂) + ψ|0 = (Θ0 + ψ)|∗ + n̂ · ~vb
∣∣∣
∗

+

∫ η0

η∗

(φ̇ + ψ̇)dη (1.98)

The various terms correspond respectively to the SW effect, the Doppler effect and the ISW effect. These
are showed in Fig. 1.8, where acoustic peaks and the damping tail are also visible.

Sachs-Wolfe effect

Eq. 1.98 says that the temperature received along n̂ is the isotropic temperature of the CMB at last
scattering event on the line of sight ( (Θ0|∗), corrected for the gravitational redshift due to the difference
ψ∗ −ψ0. The plateau on the C` at large scales comes from the contribution of Θ0 +ψ ∼ φ/3. These mode
have had no time to oscillate by recombination.

Doppler effect

From the equation for the evolution of photon energy density, is deduced that baryon peculiar velocity
oscillates π/2 out of phase with the photons. This cause the Doppler term to tend to fill in the troughs of
the angular power spectrum.
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1.3 Temperature anisotropies

Integrated Sachs-Wolfe effect

A photon suffers a net redshift climbing out of a potential well that correspond to a negative temperature
fluctuation (and viceversa). Hence, time variations of the metric perturbations contribute to this so called
Integrated SW effect (ISW). Late-time ISW is sourced by the dark energy domination at low redshift
and thus add power incoherently. It is responsible for the upturn of the C` at ` < 10. There is also a
contribution from early-ISW coming from the evolution of potentials around recombination. It peaks
close to the first acoustic peak adding power coherently. This effect enhances the first peak since φ̇ + ψ̇

has the same sign as Θ0 + ψ.

Acoustic peaks

Before recombination, baryons are tightly coupled to photons. The perturbations in the gravitational
potential, dominated by dark matter (we are already well inside matter domination), evolve driving oscil-
lation in the photon-baryon fluid. The photon pressure and some inertia from baryon provide a restoring
force to gravitation collapse. At recombination, this oscillation pattern is imprinted in the fluid and be-
comes projected on the sky as an harmonic series of peaks. The physical length scale associated with
the peaks is the sound horizon at last scattering. This is projected onto the sky, leading to an angular
scale θ∗ that is our most precisely measured observable (chapter 7). The first acoustic peak (` ∼200),
is the mode that terminates its first compression at decoupling. The second peak (` ∼500), correspond
to a compression followed by a dilatation, while the third peak (` ∼800) has underwent also a second
compression, etc.

Diffusion damping

The high-` part of the spectrum is damped out by photon diffusion at recombination that erased the
structures smaller than the mean free path of Thompson scattering lp.

lp = −τ̇−1 =
1

aneσT
(1.99)

One can thus calculate the mean-squared distance that a photon will have moved by its random walk, by
the time η∗ ∫ η∗

0

dη′

aneσT
∼

1
k2

D

. (1.100)

The damping scale k2
D damps as e−k2/k2

D the perturbation at wavenumber k, and has on C` a similar
behaviour (Fig. 1.8).

1.3.6 Secondary anisotropies

While CMB photons travelled from the last scattering surface toward us, there have been some modifi-
cation in their patter due to gravitational interaction or to the interactions with the forming matter in the
universe. These are called secondary anisotropies3.

3The late ISW is, actually, a secondary anisotropy.
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1. THE COSMIC MICROWAVE BACKGROUND

Figure 1.8: Contribution of the various terms in Eq. 1.98 to the temperature anisotropiy power spectrum
from adiabatic initial condition. The figure is taken from Challinor & Peiris (2009). Note
that the units of the spectrum are arbitrary.

Lensing

The CMB photons are deviated by the presence of structure gradients in their trajectory toward us. This
effect is of the order of 2′ and is a coherent effect on the degree scale. These deviations slightly smooth
the acoustic peaks and generate power in the high-` part of the spectrum (chapter 7). Lensing also
converts some E mode into B modes as described in sec. 1.4.5. Lensing can be measured directly from
the CMB 4-point correlation function (chapter 6).

Thermal Sunyaev-Zeldovich effect

Clusters of galaxies of 1014 − 1015 M� (where M� is the solar mass unity whose value is (1.98855 ±
0.00025) × 1030 kg) trap gravitationally hot electron gas at temperature around the keV. This gas consti-
tutes roughly a quarter of the mass of the clusters and emits via radiation bremstrasstrahlung process in
the X domain. It also interacts via inverse Compton with the CMB photons. This is the so called thermal
Sunyaev-Zeldovich (tSZ) effect (Sunyaev & Zeldovich 1970). The tSZ weakly distorts the CMB black
body (e.g. Carlstrom et al. (2002); Planck Collaboration XXI (2014)), shifting it to higher frequencies
(Fig. ??). Its intensity is related to the integral of the pressure across the the line-of-sight via the Compton
parameter

y =

∫
kBσT

mec2 neTedl, (1.101)

where dl is the distance along the line of sight, ne and Te are the electron number density and the
temperature respectively. In unit of CMB temperature, the contribution for a given observation frequency
ν is

∆TCMB

TCMB
= g(ν)y. (1.102)
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1.3 Temperature anisotropies

Figure 1.9: An example of the spectral distortion of the CMB photons due to thermal Sunyaev-Zeldovich
effect in galaxy clusters. The figure is taken from Carlstrom et al. (2002).

In the non relativistic approximation one has

g(ν) =

[
xcoth

( x
2

)
− 4

]
, with x = hν/(kBTCMB) (1.103)

The function g(ν) has a peculiar spectral signature that vanishes at 217 GHz and is negative at lower
frequencies and positive at higher frequencies. This allows the Planck satellite to measure the effect
(chapter 3). Note that the tSZ distortion is independent from redshift, allowing to detect clusters at
different z and thus to test cosmological models (Luzzi et al. 2015).

Kinetic Sunyaev-Zeldovich effect

The global movement of the thermal distribution of the hot electrons in clusters with respect to the CMB
reference frame, constitutes an additional source of distortion, even if an order of magnitude smaller
than the tSZ effect. This is called the kinetic Sunyaev-Zeldovich (kSZ) effect (e.g. Sunyaev & Zeldovich
(1980)). The clusters peculiar velocities (of the order of ∼ 300km s−1) creates a dipole anisotropies
of the CMB photons, seen by the electrons. As a consequence, the amplitude of the effect is directly
proportional to the cluster radial velocity vr. In terms of CMB temperature one has

∆TCMB

TCMB
= −

vr

c
τe, (1.104)

where τe =
∫

neσT dl is the line of sight optical depth. The variation is positive if the cluster moves away
from us and negative in the other case. Note that the kSZ effect is independent of the frequency.

Reionisation

During recombination, from a ionised state, the universe enters the so called “dark ages”, becoming
neutral. However, the birth of the first stars and quasars, at late epochs (z ∼ 6 − 15), ionised again the
surrounding matter (Gunn & Peterson 1965). Reionisation is not an instantaneous but a patchy process:
every source begins ionising a growing radius bubble around it and bubbles eventually joint (Ferrara
& Pandolfi 2014). Fortunately, reionisation begins sufficiently late in the evolution of the universe that
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1. THE COSMIC MICROWAVE BACKGROUND

the free electron density is small enough to affect only slightly the mean free path of CMB electron.
However, even in small fraction, CMB photons do diffuse on these free electrons and are deviated. For
a given direction on the sky n̂ there is a fraction of genuine “n̂” photons that is lost and a fraction of
scattered photons, originally coming from other directions, and with mean temperature TCMB, that is
gained. The net effect is a suppression of temperature anisotropies parametrised by the optical depth τ

∆T
T

(n̂)→
∆T
T

(n̂)e−τ (1.105)

This is reflected, at the power spectrum level, as a e−2τ suppression, and the amplitude of the observed
spectra is proportional to Ase−2τ. This degeneracy is well know and discussed in more detail in chapter 7.
The effect of reionisation is peculiar also in polarisation, as described in sec. 1.4.5.

1.4 Polarization anisotropies

The standard cosmological model predicts that ∼10% of the photon radiation is polarised. This signal
is unique to shed light on both the beginning of the universe through constraints on inflation (sec. 1.2),
and on late time epoch through constraints on reionisation (sec. 1.3.6). Present ground based and future
CMB polarization experiment will be able to measure the CMB lensing potential up to high accuracy
(chapter 2). Here we revise briefly the formalism for polarization.

1.4.1 Stokes parameters

To completely determine experimentally the polarization of a beam of photons, a set of four measure-
ments is needed (e.g. McMaster (1954)):

• the intensity of the beam

• the degree of plane polarization with respect to two arbitrary orthogonal axis

• the degree of plane polarization with respect to a set of axis oriented at 45◦ with respect to the
previous one

• the degree of circular polarization

Consider an electromagnetic wave ~E(t) = (E1, E2) propagating in a direction n̂. Its polarization state can
generically be described by the intensity matrix

Pi j = 〈Ei(n̂)E∗j (n̂)〉 (1.106)

where brackets denote time averaging. As Pi j is a hermitian 2x2 matrix, it can be decomposed into the
Pauli basis

σ0 =

(
1 0
0 1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(1.107)

It thus reads
P = I(n̂)σ0 + Q(n̂)σ3 + U(n̂)σ1 + V(n̂)σ2 (1.108)

where

I = |E1|
2 + |E2|

2, Q = |E1|
2 − |E2|

2, U = (E∗1E2 + E∗2E1) = 2Re(E∗1E2), V = 2Im(E∗1E2) (1.109)

are the Stokes parameters that encode all the electromagnetic information. I is simply the total intensity.
Clearly, if Q = U = V are zero, the wave is not polarised.
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1.4 Polarization anisotropies

Q and U characterise the linear polarization. The circular polarization V can be ignored in cosmology
since it cannot be generated by Thompson scattering (sec.1.4.3). Note that the temperature signal T ≡ I/4
is invariant under right handed rotation in the plane perpendicular to the direction n̂, but Q and U are not.
Under a rotation of an angle ψ we have

Q′ = Qcos2ψ + Usin2ψ (1.110)

U′ = −Qsin2ψ + Ucos2ψ (1.111)

In sec 1.3.1 we computed the correlation function and the corresponding power spectrum for temperature.
In the analogous calculation for polarization, Q and U depend on the coordinate system. This coordinate
system is well defined on a small patch on the sky (the so called flat sky limit) but not well defined on
the whole sphere (Zaldarriaga & Seljak 1997).

1.4.2 All-sky formalism: E and B modes

The current power spectrum analysis for polarization uses Zaldarriaga & Seljak (1997) formalism of E
and B mode. A similar formalism has been developed at the same time by Kamionkowski et al. (1997).

Eq.1.110 can be rewritten as

(Q ± iU)′(n̂) = e∓2iψ(Q ± iU)(n̂) (1.112)

thus constructing two quantities from Stokes Q and U with a definite value of spin s=2. Temperature,
that is a scalar field on the sphere, has been expanded in sec.SECCC into spherical harmonics Y`m(θ, φ),
which form a complete and orthonormal basis. These can not be used for s,0. Instead is used a similar
basis called spin-s spherical harmonics Y s

`m(θ, φ), satisfying the completeness and orthogonality relations.
The decomposition on this basis reads

(Q ± iU)(n̂) =

∞∑
`=2

+∑̀
m=−`

a±2
`mY±2

`m (n̂) =

∞∑
`=2

+∑̀
m=−`

(aE,`m ± iaB,`m)Y±2
`m (n̂) (1.113)

where the E and B mode have been defined as

aE,`m = 1
2 (a+2

`m + a−2
`m) aB,`m = −i

2 (a+2
`m − a−2

`m) (1.114)

Under a parity transformation (n̂→ −n̂) E-modes remains invariant while B-modes change sign, similar
to the gradient and the curl component of the electromagnetic field. Because of their opposite parity the
cross correlation between B and E or B and T vanish. To characterize the full statistic of CMB one thus
needs only four power spectra

CTT
` =

1
2` + 1

∑
m

〈a∗T,`maT,`m〉

CEE
` =

1
2` + 1

∑
m

〈a∗E,`maE,`m〉

CT E
` =

1
2` + 1

∑
m

〈a∗T,`maE,`m〉

CBB
` =

1
2` + 1

∑
m

〈a∗B,`maB,`m〉 (1.115)
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1. THE COSMIC MICROWAVE BACKGROUND

with

〈a∗T,`′m′aT,`m〉 = CTT
` δ`′`δm′m

〈a∗E,`′m′aE,`m〉 = CEE
` δ`′`δm′m

〈a∗T,`′m′aE,`m〉 = CT E
` δ`′`δm′m

〈a∗B,`′m′aB,`m〉 = CBB
` δ`′`δm′m

〈a∗E,`′m′aB,`m〉 = 〈a∗T,`′m′aB,`m〉 = 0 (1.116)

The power spectra are shown in Fig.1.10 for a standard cosmology. In order to give a more physical
meaning to these quantities and understand their specific features we have first to discuss in more details
the mechanisms that generates polarisation.

Figure 1.10: Temperature (black), E-mode (green), B-mode (blue) and TE cross-correlation (red) CMB
power spectra from curvature perturbations (left) and gravitational waves (right) for a
tensor-to-scalar ratio r=0.24. The B-mode spectrum induced by weak gravitational lensing
is also shown in the left-hand panel (blue). The figure is taken from Challinor & Peiris
(2009).

1.4.3 The origin of the polarised signal

Prior to recombination, the non polarised photons interact with free electrons via Thompson scattering,
the elastic diffusion of a photon on a low energy electron. If the radiation received by the electron is
isotropic and not polarised, the diffuse beam will not be polarised either. Nevertheless, a quadrupolar
anisotropy in the incoming radiation can induce a linear polarisation. In fact, the Thompson differential
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1.4 Polarization anisotropies

cross-section for an incoming wave linearly polarized in the direction ε̂′ and diffuse in the direction ε̂ is

dσ
dΩ

=
3σT

8π
|ε̂ · ε̂′|2 (1.117)

The scalar product |ε̂ · ε̂′| favours the absorption of the components that are parallel to the incoming one.
This is shown in Fig.1.11(a) where the observer see a resulting polarisation corresponding respectively
to the vertical or the horizontal part of the incoming radiation. This can be shown more rigorously via
direct calculation (we follow Kosowsky (1996)), combining Eq.1.117 and Eq.1.109, and considering
a non polarised incoming radiation (thus |E1|

2 = |E1|
2 = I/2). We define the polarisation vector of

the outgoing beam so that ε̂1 is perpendicular to the scattering plane (we can chose x̂) and ε̂2 is in the
scattering plane (we can chose ŷ). The Stokes Q parameters of the outgoing wave is the difference
between the cross-section for photons polarised in the ε̂1 and ε̂2 direction

Q =
3σT

8π

 2∑
j=1

|ε̂1 · ε̂
′
j(n̂
′)|2 −

2∑
j=1

|ε̂2 · ε̂
′
j(n̂
′)|2

 (1.118)

In our case of interest, the CMB, the outgoing wave (on ẑ) is the result of the summation of the incoming
wave in all the directions. Integrating over all n̂′ and expressing the incoming polarization in term of
their cartesian coordinates, one obtains

Q(ẑ) =

∫
dΩI′(n̂′)sin2θ′cos(2φ′) (1.119)

The Stokes U parameter can be derived in the same way just considering that it is proportional to the
difference between the cross-section of the outgoing photons polarised in the (x̂ + ŷ)/

√
2 and (x̂− ŷ)/

√
2

directions.
U(ẑ) = −

∫
dΩI′(n̂′)sin2θ′sin(2φ′) (1.120)

Decomposing I′(n̂′) on an spherical harmonic basis and using orthonormality one finds

(Q − iU)(ẑ) =
3σT

2π

√
2π
15

a′22 (1.121)

It is now clear that polarization of the outgoing beam can be obtained if the quadrupole moment a′22 of
the incoming radiation in not zero.

1.4.4 Quadrupolar anisotropies at recombination

Thompson diffusion can therefore generate a polarised radiation provided the existence of a quadrupolar
structure in the incident radiation. Such a structure can be caused by the perturbations present in the
cosmic fluid at recombination. As we have seen in sec. 1.3.2 these arise either from scalar or tensor
perturbations (assuming vector perturbations washed out during inflation).

Polarization from scalar perturbation

For scalar perturbation, the polarised signal arises from the gradient of the peculiar velocity of the photon
fluid (Zaldarriaga & Harari 1995). Near an over-density, for example, the fluid fall into the gravitational
well faster the closer it is from the center (if we neglect the radiation pressure). A particular electron thus
sees the rest of the fluid moving away from it in the radial direction and approaching in the transverse
direction. Since our problem has a spherical symmetry, we can define the radial Stokes parameters Ur
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1. THE COSMIC MICROWAVE BACKGROUND

(a) (b)

Figure 1.11: (a) Thompson differential cross section (see text) favours the absorption of the components
that are parallel to the incoming one. Hence, a quadrupolar anisotropy in the incoming
radiation can induce a linear polarisation (Hu & Dodelson 2002). (b) Examples of E-mode
and B-mode patterns of polarisation. Adapted from Baumann et al. (2009).

and Qr. The over-density thus leads to a polarization with Ur = 0 and Qr > 0. The case of the under-
density can be easily deduced to have Ur = 0 and Qr < 0. The gradient of the velocity is along the
direction of the wavevector so we have a pure E-mode (Fig.1.11(b)). An over-density, since photons
need energy to escape from the potential well, is seen as a cold spot and corresponds to E < 0. On the
contrary, E > 0 is associated to a hot spot. The velocity of the fluid is 90◦ out of phase with respect to
temperature meaning that the turning point of oscillator are zero point of the velocity. As can be seen in
Fig.1.10, EE polarization peaks are at troughs of the temperature peaks.

In sec.1.4.2 we saw that B-modes do not correlate with the temperature (there is no TB contribution).
Nevertheless temperature correlates with E-modes. It is actually an anti-correlation since minima and
maxima of compression correspond to turning points of the velocity of the fluid. An E-mode is modulated
in the direction of, or perpendicular to, its polarization axis. To be correlated with the temperature, this
modulation must also correspond to the modulation of the temperature perturbation. The two options are
that E is parallel or perpendicular to crests in the temperature perturbation (Hu & White 1997). Also, TE
correlation, oscillates at double frequency with respect to E and T (Fig.1.10).

Polarization from tensor perturbation

The inflationary model predicts the existence of gravitational waves. They are created as vacuum fluctu-
ations of the density perturbation and correspond to spatial metric perturbations (e.g. Dodelson (2003)).

ds2 = a2
[
dη2 − (δi j + 2hi j)dxidx j

]
(1.122)

where hi j is traceless and transverse. Substituting into Einstein equation, and using Fourier modes of the
form eiki xi

one finds
ḧi j + 2aHḣi j + k2hi j = 8πGΣT

i j (1.123)

where ΣT
i j is the transverse and traceless part of the anisotropic stress. This equation has two types of

solutions called in literature h+ and h× (Fig.1.12(a) and Fig.1.12(b)). The crossing of a gravitational
waves produces a quadrupolar distortion in the temperature of the CMB and produces both E and B
modes. Indeed, the h× solution can induce a polarisation pattern with a curl component, thus a B-mode.
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1.4 Polarization anisotropies

The E and B modes generated have similar amplitude (Zaldarriaga & Seljak 1997). The effect is only
important at large scales since gravitational waves are damped inside the horizon (Fig.1.10). Note also
that the tensor contribution to temperature and E-modes is weak with respect to the scalar contribution.
On the contrary, tensor perturbations are the only (known) source of primordial B-modes. Gravitational
waves at recombination carry a direct information about the energy scale of inflation (sec.1.2.3). Their
detection at large angular scales is a fundamental goal of CMB experiments. To date, the challenge is still
open (sec.1.5.2). The level of the signal is proportional to the tensor-to-scalar ratio r defined in sec.1.2.2.
So the smaller r, the more challenging is the detection. At the level of precision of Planck, with a proper
treatment of systematics, we can at least give a credible upper limit (chapter 6).

(a) (b)

Figure 1.12: The effects of a passing gravitational wave can be visualized by imagining a perfectly flat
region of spacetime with a group of motionless test particles lying in a plane (the black
dots). As a gravitational wave passes through the particles along a line perpendicular to
the plane of the particles, the particles will follow the distortion in space-time. In (a) the
distortion follows the h+ while in (b) the h× solution. This latter generates a polarisation
pattern with a curl component and thus a B-mode. The amplitude of the oscillation is
amplified for illustration purpose.

There are features in the spectra of Fig.1.10 that we have not yet describe. Next section is thus
dedicated to the effect of non primordial sources of polarisation.

1.4.5 Non primordial sources of polarisation

CMB photons are polarised by the perturbations present in the fluid at recombination. Since we observe
them today, they carry also information about the late time universe and contributions from the structures
from the last scattering surface to us. In sec.1.3.6 we have discussed the sources of secondary anisotropies
for temperature. In polarisation we have to deal again with similar effect related to reionisation and weak
lensing.

Effect of reionisation

At a late epoch, the formation of stars and quasars ionises again the universe that was neutral since the
recombination. The density of free electrons is not enough to change substantially the mean free path of
photons but diffusion on these free electron can be again a source of polarisation as seen in sec.1.4.3. In
this case, the quadrupolar structure is carried by the CMB photons themselves.

Considering a fluctuation of scale k, the observed multipole ` can be calculated as ` ∼ k(ηobs − ηrec)
where ηobs − ηrec is the time elapsed from recombination up to the observation. If one considers the
quadrupole ` = 2 at reionisation one finds (e.g. Maurin (2013))

`obs
reio ∼ kreio(η0 − ηreio) ∼ 2

η0 − ηreio

ηreio − ηrec
∼
√

zreio (1.124)
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where the last equivalence follows from the dependence of η on the scale factor a and z during MD.
Eq.1.124 is a simplified way to understand the fact that the polarised spectra in Fig.1.10 show a peak
around ` ∼ 3−4. Polarisation is thus useful to constrain the epoch and the degree of reionisation because
the amplitude is significantly increased and has this characteristic signature. Indeed CT E

` ∝ τe−τ and
CEE
` ∝ τ2. On the contrary, on the temperature spectra, reionisation tends to suppress the anisotropies at

high-` suffering from a degeneracy with As. In this thesis we have available a measurement of the low-`
E signal (chapter 6.1) which is crucial for breaking the τ − As degeneracy and improves the constraints
on cosmological parameters.

Effect of weak gravitational lensing

Gravitational lensing (sec.1.3.6 and chapter 6) from the forming structures deviate locally the direction
of the CMB photons. Zaldarriaga & Seljak (1998) showed that these random deflections mix E and B
modes. Even for a pure scalar fluctuation, one has the generation of B-modes at small scales (Fig.1.10).
This effect becomes dominant after ` ∼ 100 thus hiding the signal from primordial B-modes. It is anyway
important as a genuine measure of the lensing field and a tracer of the underlying matter distribution.
Relevant to this thesis, future ground based CMB measurements will be able to put strong constraint on
the sum of neutrino masses (chapter 2).

1.5 The ΛCDM cosmology

(a) (b)

Figure 1.13: (a) Different observables point toward a flat universe with the ∼ 73 % made up of an
unknown dark energy component that accelerate the expansion. (Kowalski et al. 2008) (b)
The various component of the total energy density. Beside the dark energy component,
the universe is made of ∼ 23 % of dark matter. Baryonic matter, photons and neutrinos
constitute only the remaining 4% of the energy density.
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1.5 The ΛCDM cosmology

The present understanding of the universe and its evolution relies on a range of different types of
observations that have allowed the establishment of a standard cosmological model.

This model can be described with five to ten parameters, from expansion rate and the curvature, to
the matter budget of the Universe.

Here we list these parameters that have been already defined in the previous sections.
The current value of each parameter has been obtained with complementary probes providing con-

sistency checks. Combining different observable allows to brake degeneracies and to place the strongest
constraints. This is also the goal of this thesis, where we combine the Planck data with the latest results
from other experiments (chapter 6).

The ΛCDM model consists in a perturbed Robertson–Walker space-time metric with dynamics gov-
erned by Einstein’s equations.

To describe the homogeneous universe one only needs the current values of all the density parameters
and the Hubble constant H0 (or h, see Eq. 1.8). As described in sec.1.1.3, the density parameters include
photons Ωγ, neutrinos Ων, baryons Ωb, and cold dark matter Ωc. The total present matter density is Ωm.
The physical densities of the matter components, Ωih2, is often used instead of the simple Ωi.
The curvature density is Ωk. Up to know, data are consistent with spatial flatness, thus Ωk=0 (Fig.1.13(a)).
This simplify the number of parameters needed to describe the energy density of the universe. For exam-
ple, the dark energy density ΩΛ is derived as 1 − Ωm. It is treated as the contribution from cosmological
constant, as a simple ΩΛ ∼ 0.7 is a good match to existing different data (Fig.1.13(a),1.13(b)). This is
why ΛCDM model is also called the concordance model.

The neutrino energy density is not taken as an independent parameter. While neutrino are relativistic
and considering three active families (Neff=3.046), Ων can be related to the photon density using thermal
physics arguments. Also, from oscillation experiments it is known that neutrinos have a mass. Even
if small, this mass has potentially observable effect on structure formation. A fixed minimal value for
the mass is thus assumed in the base set of parameters,

∑
mν=0.06 eV. The neutrino sector is discussed

further in chapter 2.

The statistical deviation from homogeneity is described by the power spectrum of the initial scalar
perturbation, that are considered Gaussian and adiabatic. Gaussianity means that, since the phases of
the Fourier modes associated with the perturbations in the value of the scalar field are independent, the
central limit theorem assures that the density probability distribution at any point in space is Gaussian.
Gaussianity refers to a property of the initial perturbations, before they evolve, since gravitational insta-
bility generates non-Gaussianity.
Adiabaticity means that all types of material in the universe share a common perturbation, so that if the
space-time is foliated by constant-density hypersurfaces, then all fluids and fields are homogeneous on
those slices, with the perturbations completely described by the variation of the spatial curvature of the
slices (Olive et al. 2014).

One can approximate the spectrum by a power-law described by the spectral index ns and the ampli-
tude As (sec.1.2.2).

In sec.1.2 inflation has been presented as the simplest mechanism for generating the observed per-
turbations. The quantum fluctuations are amplified and stretched to astrophysical scales by the rapid
expansion, and the primordial power spectrum can be expressed as a function of the slow roll parameters
(sec.1.2.3).

Theory predicts also tensor perturbations but since they are believed to be weak, the base model
assumes r = 0. If this condition is released, a simple single field inflation is in general assumed, so that
r and nt are not independent and that the consistency equation (Eq.1.70) is used.

The universe is known to be highly ionised at low redshift. This is described using the optical
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depth τreio; in the approximation of instantaneous and complete reionisation, this could equivalently be
described by the redshift of reionisation zreio.

In the base ΛCDM model used in this thesis one of the parameter is the angular scale of the sound
horizon at last-scattering

θ∗ = rs(z∗)/DA(z∗), (1.125)

where z∗ is the redshift of recombination (sec.1.1.7), DA the angular diameter distance (Eq.1.25) and

rs(z) =

∫ η(z)

0

dη′√
3(1 + ρb/4ργ)

, (1.126)

with η being the conformal time.

The values of the cosmological parameters described above, are known at present with good accuracy.
Present and future experiments will be able to put even stronger constraints and test in deeper the present
understanding of the universe. This thesis describe how they can be constrained using the latest Planck
data or in combination with other datasets from ground based CMB experiments or late time distance
measurements. The general agreement between CMB and these latter is shown in Fig.1.13(a). Baryon
Acoustic Oscillation (BAO) and Supernovae of type Ia (SNIa) data (chapter 6), point, with the CMB,
towards a flat universe with Ωm ∼ 0.3 and ΩΛ ∼ 0.7.

The model can be extended to include non standard physics for example for the dark energy sector
or for the neutrino sector. We postpone a more detailed explanation on standard model extension, when
needed, to later in this thesis.

1.5.1 C` computation

For each set of the cosmological parameters, the evolution of perturbation, can be accurately followed (at
least until perturbation stays small) using a linear theory numerical code such as CAMB4 or CLASS5, to
solve the Boltzmann equations. These are suited to compute CMB anisotropies.

While official Planck results uses CAMB, in this thesis results are obtained using the CLASS (Blas
et al. 2011; Lesgourgues & Tram 2011).

Since we perform, in chapter 7, some comparisons to Planck published results we check the compat-
ibility of the results in sec. 7.1.

Codes like CLASS or CAMB are a necessary ingredient to construct a likelihood of the data (chapter
5) and to extract the constraints on the cosmological parameters (chapter 7, 8.

In Fig.1.14 are shown the different shape of the power spectra obtained with a Boltzmann solver using
different values for the cosmological parameters. Changing the curvature Ωk, for example, modifies the
angular distance under which we see the CMB anisotropies, shifting the position of the peaks. The
baryon density Ωb changes the ratio between the amplitude of compression and dilatation peaks and the
amplitude of the peaks, while the cold dark matter density Ωc enhances compression peaks.
The CMB spectrum, almost entirely defined by recombination physics is almost insensitive to the late
time contribution of the dark energy. Therefore, any measurements of ΩΛ, in a non-flat cosmology, must
rely on external datasets. We recall that in the standard flat cosmology ΩΛ = 1 −

∑
i Ωi (Eq. 1.17).

Different parameters change the spectrum in similar ways and complicated degeneracies prevents a
clear statement on the separate effect of each of them. While discussing our results we will however
enters in more details on this.

4http://camb.info/
5http://class-code.net/
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1.5 The ΛCDM cosmology

Figure 1.14: The different shapes of the temperature power spectrum with different values for the dark
energy density, the baryon density, the cold dark matter density and the curvature. The
figure is taken from Hu & Dodelson (2002).

1.5.2 Observational status of temperature and polarisation

The development of the present-day cosmological model was made possible by the improvement in the
quality of the CMB temperature data achieved in the last decades. This thesis makes use of the latest
Planck data, as described in details in chapter 5. Data from the previous release are shown in Fig.1.15
together with the WMAP power spectrum estimate and smaller scale results from ACT (Das et al. 2014a)
and SPT (Story et al. 2013). The agreement is very good.

While the first detection of CMB temperature anisotropies dates back to 1965, polarisation, which is
one or two orders of magnitude weaker, was only detected in 2002 by the DASI experiment (Kovac et al.
2002).

Nowadays, beside Planck data, the TE signal has been detected by many experiments from WMAP
(Larson et al. 2011) to BICEP (Chiang et al. 2010), BOOMERANG (Piacentini et al. 2006), CBI (Sievers
et al. 2007), DASI (Leitch et al. 2005) and QUAD (Brown et al. 2009) (Fig.1.16(a)).

The expected anti-correlation at ` ' 150 and ` ' 300 (see for example (Peiris et al. 2003)) are
well visible. Since the polarisation anisotropies are generated at the last scattering surface, the existence
of correlation at angles above about a degree (see sec.1.2.1) demonstrate that there were super-Hubble
fluctuations at the recombination epoch (Olive et al. 2014). The sign of the correlation also confirm the
adiabatic paradigm (sec. 1.3.4).

At large angular scales (` < 10) the excess signal compared to the one expected from temperature
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1. THE COSMIC MICROWAVE BACKGROUND

Figure 1.15: Status of the temperature power spectrum measurements. In black are shown the Planck
2013 data. The agreement with WMAP (red) and ACT (green) and SPT (blue) is very
good. The figure is taken from the Particle Data Group (PDG) (Olive et al. 2014).

alone, is an indication of the reionisation bump discussed in sec.1.4.5. The effect is also confirmed in
WMAP CEE

` results and is compatible with z ' 10 but with large uncertainties. The analysis of Planck
data in this thesis (Chap.5) tells us more about reionisation.

The EE spectrum, which is even more difficult to measure, from again WMAP, BICEP, BOOMERANG
(Montroy et al. 2006), CBI, DASI, QUAD, and adding CAPMAP (Bischoff et al. 2008) and QUIET
(QUIET Collaboration: D. Araujo et al. 2012) experiments, is shown in Fig.1.16(b). The peak at ` ' 400,
corresponding to the first trough in temperature oscillations, is indeed clearly visible. Planck polarisation
data (Chap.5) are much more precise, showing at least four peaks in the EE spectrum.

These polarisation measurements are a clear supporting evidence of the general cosmological pic-
tures, with polarisation patterns coming from Thompson scattering at z ' 1100.

We conclude with a few word on the BB spectrum (Fig.1.17). The first indication of the existence
of a BB signal has come from the detection of the lensed B modes, originated by the conversion, by the
effect of gravitational lensing, of E to B-modes (sec.1.4.5). The SPT experiment derived a measurement
using a cross correlation technique between polarisation and the lensing potential (Hanson et al. 2013).
The POLARBEAR experiment achieved a direct measurement of the lensed B-modes in the range 500 <
` < 2100, rejecting the hypothesis of no B-mode polarization power from gravitational lensing at 97.5%
confidence (The Polarbear Collaboration: P. A. R. Ade et al. 2014).

In Fig.1.17 are also shown the data point from the BICEP2 experiment (Ade et al. 2014) down to the
recombination peak at ` ' 100. The conclusion of the joint Planck and BICEP analysis (BICEP2/Keck
and Planck Collaborations 2015) is that the signal is compatible with the polarised dust emission mea-
sured with Planck 353 GHz at these low scales.
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(a) (b)

Figure 1.16: Pre Planck status of TE (a) and EE (b) measurements. The figure is taken from the Particle
Data Group (PDG) (Olive et al. 2014)

Conclusions

In this chapter we have described the standard cosmological model, the cosmic microwave background
and its interplay with the evolving universe. We have summarised the assumptions of the ΛCDM model
and the role of the minimal set of parameters needed to describe the present cosmological data. We
have seen that the CMB is not the only relic of the hot Big Bang, there is also a background radiation
composed of neutrinos that decoupled when the universe was a few seconds old. This latter, and in
general the neutrino properties, are the subject of the next chapter.
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Figure 1.17: Status of BB measurements. In green the POLARBEAR direct measurements of the lensed
B-modes (The Polarbear Collaboration: P. A. R. Ade et al. 2014). In blue the SPT points
derived from cross correlation with lensing (Hanson et al. 2013). In red the BICEP2 mea-
sure at the level of the recombination bump (Chiang et al. 2010). The figure is taken from
the Particle Data Group (PDG) (Olive et al. 2014)
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Chapter 2

Neutrinos and Cosmology

In this chapter we give an overview of neutrino physics and their impact on cosmology. In sec. 2.1 we
briefly describe the role they have in the standard model of particle physics and in sec. 2.2 the general
idea of why new physics is required to give them mass. Indeed, we know that they are massive from
neutrino oscillation measurements. In sec. 2.3 we report some of the latest results, also discussing the
neutrino hierarchy question. Since in this thesis we are interested in the measurement of the absolute
scale of neutrino mass using cosmological data, we report in sec. 2.4 the status and the future prospects
of direct mass measurement using β- and ββ-decays. Sec. 2.5 describes the cosmic neutrino background
and its impact on the CMB through the parameters Σmν and Neff , the absolute scale of neutrino masses
and the number of relativistic degrees of freedom, respectively. In sec. 2.6 we briefly discuss the role
of massive neutrino on large scale structure (LSS) and present the forecast for future experiments on the
joint constraints from CMB and LSS in sec. 2.7. We conclude the chapter reporting Planck constraints
on sterile neutrinos (sec. 2.8).

2.1 Neutrinos in the Standard Model

Although radioactivity coming from β decays was known since the early twentieth century, it was only
in 1930 that Pauli imagined the existence of a new weakly interacting light particle that could explain the
observed continuous spectrum. Three years later, Fermi included the neutrino in its four-fermion contact
interaction to explain the decay of the muon (Fermi 1934). This effective low energy theory has been
further enriched since then and β decays are now described by the well know maximal parity violating
V-A structure, where only left-handed particles and right-handed antiparticles interact (e.g. Peskin &
Schroeder (1995))

Lβ =
GF
√

2
(pγµ(1 − γ5)n)(eγµ(1 − γ5)ν), (2.1)

It is part of the Lagrangian of weak interaction of the standard model (SM).
The standard model of particle physics is a gauge theory described by two symmetry groups: S U(3)C

for strong interaction and S U(2)L × U(1)Y which describes the unified electro-weak interaction. The
Brout-Englert-Higgs scalar field spontaneously breaks this latter symmetry down to U(1)Q, which de-
scribes the electromagnetic interaction. The electro-weak model has a specific structure for the lepton
sector in which the left-handed component for a charged lepton lies within a doublet with the correspond-
ing neutrino, while the right handed component is a singlet. The SM does not contains right handed
neutrinos, preventing the construction of a Yukawa term that could describe their mass, in analogy to
charged leptons.
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2. NEUTRINOS AND COSMOLOGY

Hence, the experimental results on neutrino oscillations (sec. 2.3.1), implying a mass for the neutrino,
point to the existence of new physics beyond the standard model. The physical laws that allow neutrino
to be massive are still open to debate. Next section briefly describes the main idea of the mass generation
mechanism.

2.2 Mass generation mechanisms

One of the open challenge of particle physics is to answer the question whether neutrinos are Dirac
or Majorana particles. We start this section with some useful definition to point out the differences
between the two. A rigorous treatment is out of the scope of this thesis and more on the subject can
be found in Peskin & Schroeder (1995); Maggiore (2004); Giunti & Kim (2007); Lesgourgues et al.
(2013) between others. The standard model Lagrangian is constructed to be invariant under gauge and
relativistic transformations. The SM is thus a Lorentz-invariant field theory. Since parity is know to be
violated by the weak interaction, the Weyl (chiral) spinors ψL and ψR are commonly used to describe the
matter content. One can define the operation of charge conjugation C on Weyl spinors to be

ψc
L = iσ2ψ∗L, (2.2)

where σ2 is the Pauli matrix and σ2ψ∗L transform as a right handed spinor. Charge conjugation thus
transforms a left spinor ψL in a right one.

Beside Weyl spinors, it is also possible to construct a Dirac field such as

Ψ =

(
ψL

ψR

)
(2.3)

This has four complex components, and it provides a basis for a representation of both Lorentz and parity
transformations. With a Dirac field is possible to construct the bilinear term ΨΨ = Ψ†γ0Ψ that is scalar
under a Lorentz transformation. Associated with a dimensionful constant it plays the role of a Dirac
mass term

mΨΨ = m(ψ†RψL + ψ†LψL), (2.4)

that is invariant under the redefinition Ψ → eiαΨ and thus under the global charge symmetry associated
with it.

Dirac spinors are not the only four-component spinors having the correct transformation rules under
a Lorentz transformation, one can also construct a spinor in which ψL and ψR are not independent, but
rather ψR = iσ2ψ∗L

ΨM =

(
ψL

iσ2ψ∗L

)
. (2.5)

This is called a Majorana spinor and is invariant under charge conjugation C

(ΨM)c = ηΨM, (2.6)

where η is a global phase factor. For a Majorana spinor the particle and the antiparticle are identical.
Also, it is possible to write a Majorana mass term (Majorana 1937)

mΨ
c
MΨM = m(ψ†L,Rσ

2ψ∗L,R + ψT
L,Rσ

2ψL,R) (2.7)

Contrary to Eq.2.4, this term violates the conservation of any global charge associated to ΨM. This means
that a spin 1/2 particle which carries a U(1) conserved charge cannot have a Majorana mass. However, a
possible candidate for a particle which could have a Majorana mass is the neutrino.
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2.2 Mass generation mechanisms

Both Dirac and Majorana mass terms are not invariant under the gauge group S U(2)L × U(1)Y .
However, Dirac terms for the charged lepton are generated in the standard model by the spontaneous
symmetry breaking (SSB) mechanism. In the absence of right handed neutrino νR, the same can not be
done to generate a Dirac neutrino mass. On the other hand, the generation of a Yukawa term with νc

LνL

term via SSB requires an Higgs scalar field with isospin I=1 that is not the standard one. A neutrino mass
term thus requires extensions to the standard model. Considering the SM as a low energy effective theory
valid only up to a certain energy scale, one can introduce an effective non-renormalisable dimension 5
operator, built with the Higgs field H (Weinberg 1979)

L = LSM +
(H̃†νL)2

2ΛL
+ ... (2.8)

where ΛL is an energy scale related to new physics. Inserting the Higgs VEV, one end up with a
Majorana mass term with mν ∼

v2

ΛL
∼ 0.1 eV and thus ΛL ∼ 1014 GeV, just below the GUT scale

(ΛGUT ∼ 1016 GeV).

2.2.1 Dirac or Majorana?

The straightforward extension to the standard model is the addition of a right handed neutrino νR. Since
it is not seen in weak interaction it needs to be “sterile” or interacting much more weakly than the left-
handed neutrinos. The neutrino νR allows to construct a Dirac mass term. The Yukawa term mννRνL +

νLνR, is proportional to the Higgs vacuum expectation value (VEV) v, since mν = λ v√
2
. The order of

magnitude of mν ∼ 0.1 eV thus requires low coupling constant λ ∼ 10−12. Also, gauge invariance allows
to construct a Majorana mass term for the neutrino right, so a pure Dirac-type neutrino would require
this mass to be zero.

In the general case where the SM is enlarged with the addition of right handed chiral fields that are
gauge singlet, one can define

ν =
ψL + (ψL)c

√
2

, X =
ψR + (ψR)c

√
2

. (2.9)

The most general mass term reads

Lm = −MLνν − MRXX − MD(νX + Xν), (2.10)

where ML and MR are Majorana mass term and MD a Dirac mass term that couples the two fields. One
can assume ML = 0 since, as previously pointed out, a Majorana mass term for the left-handed neutrino
can not be generated by the SM Higgs field. Eq. 2.10 can be rewritten in matrix form for N flavours

Lm = −(ν X)M
(
ν

X

)
, M =

(
0 MT

D
MD MR

)
(2.11)

where nowMR etMD have dimension N × N. Note that ifMR also vanishes one is left with N Dirac
neutrinos. This matrix can be diagonalised. In the simpler problem of only one flavour one can see that,
if MD � MR, the eigenstate are Majorana neutrinos: a light one with mass m ∼ M2

D/MR and a heavier
one with mass MR. This is the basic principle of the see-saw mechanism (e.g. Mohapatra & Senjanović
(1980)). It allows to justify the smallness of the active neutrino mass and leave open to new physics the
generation of the mass for the sterile neutrino. Also, integrating out νR, the NR interaction of Eq. 2.2 is
recovered.

Neither oscillation experiments or cosmology are able to clarify the nature of neutrino mass and the
only dedicated experiment is the search for neutrino-less double-β (0ν2β) decays briefly discussed in
sec. 2.4.
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2. NEUTRINOS AND COSMOLOGY

2.3 Neutrino mixing

The results of oscillation experiments (sec. 2.3.1) state that neutrinos are massive, in analogy with the
quark sector and the CKM matrix (Kobayashi & Maskawa 1973), the flavours eigenstates (νe, νµ, ντ) are
not the mass ones (ν1, ν2, ν3) and the two are related by a unitary matrix

|να〉 =

3∑
k=1

U∗αk|νk〉 (α = e, µ, τ). (2.12)

Using the notation ci j = cos θi j and si j = sin θi j, the Pontecorvo-Maki-Nakagawa-Sakata (Maki et al.
1962) mixing matrix can be decomposed as

U =

 1 0 0
0 c23 s23
0 −s23 c23


 c13 0 s13e−iδ

0 1 0
−s13e−iδ 0 c13


 c12 s12 0
−s12 c12 0

0 0 1


 1 0 0

0 e−iλ2 0
0 0 e−iλ3

 (2.13)

The parameter of the first matrix describe the mixing in the atmospheric sector, the second is related to
reactor neutrinos (the phase δ describes CP-violation), the third one to the solar sector, and the last one
contains the Majorana phases. One can show that the oscillation probabilities depend on the square mass
differences. The measurements of oscillation thus confirm that neutrino are massive. However, they
cannot establish the absolute scale of neutrino masses. There are direct mass measurements dedicated to
this (sec 2.4), but a privileged laboratory is indeed cosmology, both from neutrino mass effect on LSS
(sec. 2.6) or on the CMB (sec. 2.5). This latter is the central theme of chapter 8.

2.3.1 Oscillation measurements

In this section we briefly describe some of the experimental techniques for the determination of the
oscillation parameters.

Solar sector

The solar sector is historically the first one to have been investigated, even if the imprecise knowledge
of the Sun model prevented to have a clear idea on the results. The Solar model is now well established
and electron neutrinos νe are known to be produced mainly by pp and pep chains. The density in the
center of the Sun is such that electron neutrinos are produced as pure mass eigenstates ν2. The electron
density decreases going towards the outside of the Sun and this affects the propagation of neutrinos since
the effective potential can strongly modify the transition probability with respect to the vacuum state.
Indeed, via the Mikheyeyev-Smirnov-Wolfestein (MSW) effect (e.g. Wolfenstein (1978)), if the electron
density reaches a critical value, a resonance is produced and the eigenstate ν2 is no more a νe but a linear
combination of νµ and ντ. Once the surface of the sun is reached, the neutrinos undergo the standard
vacuum oscillation till the Earth. Hence, solar neutrino experiments are sensitive to disappearance of
electronic neutrinos and allow the measurement of θ12 and ∆m2

21. This latter parameter is known to be
positive, since the MSW resonance is not otherwise possible. This information is important for neutrino
hierarchy (sec. 2.3.2).

Solar neutrinos can be detected via inverse β-decay or neutrino elastic diffusion on electrons using
water as the target. It is however the Sudburby Neutrino Observatory1 (SNO), that, using heavy water

1http://www.sno.phy.queensu.ca
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2.3 Neutrino mixing

and thus both charged and neutral current interaction, has definitively proven the oscillations in the solar
sector. The current results on solar neutrino parameters are (Olive et al. 2014)

∆m2
21 = 7, 58+0,22

−0,26 × 10−5eV2 sin2 θ12 = 0, 306+0,018
−0,015. (2.14)

Atmospheric sector

Atmospheric neutrinos are produced as secondary products of the interaction between the atmosphere and
the cosmic rays. Being very energetic, also muon neutrinos νµ can be observed with Cherenkov detectors.
These experiments are sensitive to νµ disappearance caused by the oscillation νµ → ντ, allowing the
measurement of the parameter θ23 and |∆m2

23|. Since oscillations are in vacuum, this latter is known
without the sign. This missing information is at the origin of the hierarchy problem (sec. 2.3.2). The best
constraints come from long-baseline neutrino experiments. Recent results are from MINOS2 and T2K3

with similar precision. This latter reported (Abe et al. 2014)

|∆m2
23| = 2, 51 ± 0.10 × 10−3eV2 sin2 θ23 = 0, 514+0,055

−0,056 (2.15)

Reactors/Accelerators

With reactor and accelerator experiments is possible to measure the angle θ13. Roughly speaking, reactor
experiments search for νe disappearance, while accelerator experiment search for appearance of other
flavour from muon neutrinos. θ13 is an important measurement since this angle is coupled to the CP
violation phase δ (Eq. 2.13). The best constraint has been obtained combining the results from the
reactor experiments Daya Bay4, RENO5, and Double Chooz6 (Olive et al. 2014)

sin2 θ13 = 0.0251 ± 0.0034. (2.16)

The CP phase is still unknown but there are some preferences for sinδ ∼ −1 that could be strengthened
by the T2K antineutrino appearance results.

2.3.2 Neutrino hierarchy

Oscillation measurements leave open the question of neutrino hierarchy, since it is still not known
whether the solar neutrino doublet (ν1, ν2) has a mean mass smaller than or greater than the remain-
ing atmospheric neutrino (ν3). Indeed, as just seen in sec. 2.3.1, while the solar sector measures the
mass square difference with the sign (a peculiarity of neutrino oscillation in matter), the atmospheric
neutrino results is known only with an absolute value. As shown in Fig. 2.1, if the solar doublet has
smaller mass than ν3, the hierarchy is said to be normal, otherwise it is called inverted (e.g. Mena &
Parke (2004)). Up to now there is still no statistically significant information on hierarchy from the
available data. Although it might be possible to measure hierarchy using long base lines (at least at 3σ)
(LBNE Collaboration et al. 2013), crucial results will come from the new dedicated extension of neutrino
telescopes, e.g ORCA (Franco et al. 2013).

As discussed in sec. 2.7, also future cosmological data will be able to distinguish between the two
hierarchies. Indeed, the two cases have different lower limits for Σmν (the sum of the mass eigenvalues),
deduced from oscillation results.

2https://www-numi.fnal.gov/
3http://t2k-experiment.org/
4http://dayabay.ihep.ac.cn/twiki/bin/view/Public/
5http://hcpl.knu.ac.kr/neutrino/neutrino.html
6http://doublechooz.in2p3.fr
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2. NEUTRINOS AND COSMOLOGY

Figure 2.1: The two possible hierarchies are shown. The three mass eigenstate are color coded with
an example of the flavour content of the three neutrino mass eigenstates consistent with all
existing data. Figure taken from Hew (2012).

• Normal Hierarchy: m1 � m2 < m3 with

m2 ' (∆m2
�)1/2 ' 0.0087 eV and m3 ' |∆m2

A|
1/2 ' 0.050 eV (2.17)

• Inverted Hierarchy: m3 � m1 < m2 with

m1,2 ' |∆m2
A|

1/2 ' 0.050 eV (2.18)

In NH and considering the lightest neutrino to be massless, one obtains Σmν > 0.06 eV, as assumed in
the base ΛCDM model used in this analysis (sec. 1.5). For the IH, one gets Σmν > 0.10 eV. This means
that, if one measures with sufficient precision Σmν < 10 eV, the IH can be excluded.

2.4 Mass measurements

The oscillation results described in sec. 2.3.1 are not able to constraint the total value of the neutrino
masses. In the next section we will see how cosmological data can constraint the absolute scale via the
neutrino impact on the growth of structures. It is however possible to constrain directly the electronic
neutrino mass via β or 0ν2β decays.

• The end of the β decay spectrum is sensitive to the mass of the electronic neutrino defined as
m2
β =

∑
i |Uei|

2m2
i . The best limit up to date comes from the Troitsk experiment (Aseev et al. 2011)

mνe < 2.05eV 95% CL. (2.19)

KATRIN (KATRIN collaboration 2001), a new generation tritium beta decay experiment, is cur-
rently under commissioning and will have sub-eV sensitivity (∼ 0.2eV). This measurement is
kinematic and independent of whether the neutrino is of Dirac or Majorana type.
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• The typical time of the neutrinoless double β decay can be related to the effective Majorana mass

mββ = c2
12c2

13m1 + e2iλ2 s2
12c2

13m2 + e2i(λ3−δ)s2
13m3 (2.20)

with ci j and si j the cosine and sine of the angle of the mixing PMNS matrix of Eq. 2.13. δ is the
CP violation phase and λ2 and λ3 the Majorana phases. In Fig. 2.2 mββ is shown as a function of
the lightest neutrino mass with 2σ uncertainties. Note that there are combination of the PMNS
matrix for which the effective mass can vanish.

The detector NEMO7, for example, non observing a signal studying 7 kg of 100Mo, fixed the limit

T 0ν
1/2(100Mo) > 1.0 × 1024ans 90% CL, (2.21)

which corresponds to a limit on the mββ mass of

|mββ| ≤ (0.31 − 0.96) eV 90% CL. (2.22)

The next generation SuperNEMO, is expected to have a sensitivity of

|mββ| ≤ (0.048 − 0.118) eV 90% CL. (2.23)

A detailed analysis can be found in Blondel (2013). Similar sensitivities will be attained by other
experiments like CUORE (Giachero et al. 2015) and GERDA8.

Figure 2.2: Effective Majorana mass mββ (with 2σ uncertainties) as a function of the lightest neutrino.
Prediction are indicated for normal hierarchy (NH), inverted hierarchy (IH) and the quasi
degenerate case (QD). Red zones are in correspondence of CP violation. (Olive et al. 2014)

7http://nemo.in2p3.fr
8http://www.mpi-hd.mpg.de/gerda/
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2.5 Neutrinos and the CMB

In sec. 1.1.7, while going through the thermal history of the universe, we have said that, at Tdec ≈

1 MeV, neutrinos decoupled from the plasma creating what is nowadays called the cosmic neutrino
background (CνB). Since neutrinos are fermions, their distribution is a Fermi-Dirac (with negligible
chemical potential) and their average momentum is a given function of the temperature 〈p〉 = 3.15Tν.
A direct detection of this signal is still far but there are some proposal using capture on tritium (e.g.
PTOLEMY (Betts et al. 2013)). Indirect detection of the cosmic neutrino background can be achieved
using its effects on the CMB power spectrum and it is thus possible to study it with experiments such as
Planck.

2.5.1 The cosmic neutrino background

The standard cosmological model predicts that the CνB temperature today is T 0
ν = 1.9 K. This temper-

ature is computed in relation to the well known CMB temperature, using conservation of the quantity
S (a)a3, where S is the entropy density (e.g. Dodelson (2003)). Neutrino where already decoupled at
T ≈ me when electron positron annihilation heated the photons. This argument leads to the prediction

Tν = (4/11)1/3Tγ. (2.24)

As for the CMB, Tν simply falls as a−1. Neutrinos have no impact on recombination history. At the level
of background cosmology, they only affect the expansion rate, during radiation domination when they are
relativistic, and during matter and the late dark energy domination era when they become non-relativistic
(Lesgourgues et al. 2013). This section gives an overview of how the impact of the CνB is in general
treated in CMB studies, i.e. the parameters Σmν and Neff .

• Σmν is the sum of the masses of the three active neutrinos (m1 +m2 +m3). As discussed in sec 2.3.2
its minimal value is 0.06 eV (0.10 eV) in normal (inverted) hierarchy. In principle, cosmology,
although insensitive to the nature of neutrino mass (Dirac or Majorana) would be sensitive to the
three mass splitting. However, at the level of accuracy of Planck (and of the next generation
of CMB experiments) one can safely consider the degenerate scenario. Note that large scales
structures (sec. 2.6) are potentially much more sensitive to the separate effect of masses than the
CMB (Jimenez et al. 2010). The effects of Σmν on the temperature power spectrum are discussed
in sec. 2.5.2.

• The parameter Neff is in general associated with neutrinos, but it accounts for any (∼massless)
degree of freedom beyond photons, relativistic during radiation domination. These include axions,
any light relics, or even background of gravitational waves (Henrot-Versillé et al. 2015). It is
defined as (e.g. (Lesgourgues et al. 2013; Abazajian et al. 2013)

ρν =
7
8

(
4

11

) 4
3

Neffργ ' 0.2271Neffργ, (2.25)

where the 7/8 comes from the F-D statistic. In sec. 2.5.3, the effects of Neff on the temperature
spectra are examined.

In chapter 8, we will discuss in details the constraints on these quantities from our analysis.

The energy density of massive neutrino species as a function of the comoving momentum q ≡ pa
and T 0

ν reads

ρν(a) =
1
a4

∫
q2dq
π2

1

eq/T 0
ν + 1

∑
i

√
q2 + m2

ν,ia
2. (2.26)
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Using the definition of Neff of Eq. 2.25, and assuming neutrino species have equal mass, one can write
Eq. 2.26 as Komatsu et al. (2011)

ρν(a) = 0.2271Neffργ f (mνa/T 0
ν ), (2.27)

with

f (y) ≡
120
7π4

∫ ∞

0
dx

x2
√

x2 + y2

ex + 1
. (2.28)

Eq. 1.31 can now be rewritten exactly for the more general case of massive neutrinos

H(a) = H0{
(Ωc + Ωb)

a3 +
Ωγ

a4 [1 + 0.2271Neff f (mνa/T 0
ν )] +

Ωk

a2 + ΩΛ}
1/2 (2.29)

2.5.2 Effect of Σmν on the CMB

Figure 2.3: The location of three main effects of massive neutrinos on the temperature power spectrum.
The figure is taken from a talk of Julien Lesgourgues.

Today, standard neutrinos for which Eq. 2.24 can be considered valid, have

〈p〉0 = 3.15(4/11)1/3T0 = 5.28 × 10−4 eV (2.30)

and have had, at equality,
〈p〉eq = (1 + zeq) 5.28 × 10−4 eV ' 1.5 eV (2.31)

So neutrinos with mass between this range, become non relativistic during matter or dark energy dom-
ination (e.g.Lesgourgues et al. (2013)). More massive neutrinos Σmν > 1.5 eV would had been already
non relativistic at recombination with much deeper impact on the CMB.

It is in general difficult to properly describe the effect of a specific parameter on the CMB spectra
since there are degeneracies and some parameters combinations can mimic other different parameters.
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It is important, for example, to keep unchanged the redshift of equality or the positions of the peaks
since they are well constrained by present CMB data. Three main effects for massive neutrino can be
recognised Lesgourgues et al. (2013), as depicted in Fig. 2.3.

• The variation of Σmν keeping zeq, ηbγ, and θ∗ fixed, induces a variation in Ωmh2 that can be com-
pensated by changes in h and ΩΛ. Neutrinos thus play an indirect role in the duration of the Λ

dominated era, the induces a late-time ISW effect at very low multipole (sec. 1.3.5). This effect is
however hidden by cosmic variance (Eq. 1.88).

• The largest effect is in the range 20 < ` < 500 and is caused by the early-ISW effect (sec. 1.3.5)
since the neutrino masses impact the evolution of φ + ψ. Its amplitude is approximately given by

∆C`

C`
' −

( mν

10 eV

)
. (2.32)

Note that the effect decreases with neutrino mass. The WMAP limit on Σmν comes from this effect.

• The last effect is due to CMB lensing (sec. 1.3.6). The lensing deflection can probe the growth
of structure at small redshift and is thus sensitive to neutrino masses. Neutrinos damp the scales
smaller than their free-streaming length, hence wave-numbers bigger than

k̄ ' 0.018Ω
1/2
m

( m
1 eV

)1/2
h Mpc−1, (2.33)

where k̄ is calculated at their non relativistic transition

(1 + zNR) ' 2000(m/1 eV) imposing mν = 3.15T 0
ν (1 + zNR). (2.34)

It is a high multipole effect and Planck offers a unique opportunity to precisely constrain Σmν since
it measures small scales down to ` = 2500.

2.5.3 Effect of Neff on the CMB

To catch the true effect of Neff on the CMB spectra, one should keep fixed the zeq (Eq. 1.39) and the an-
gular size of the sound horizon θ∗ (eq. 1.125), resulting in a high-` effect almost entirely due to increased
Silk damping, caused by the increased expansion rate (Hou et al. 2013). Indeed, Neff affects the ratio
rd/rs between the diffusion distance at recombination rd and the sound horizon rs. Since rd ∝ 1/

√
H but

rs ∝ 1/H, globally
rd

rs
∝
√

H (2.35)

Thus, the CMB can measure the expansion rate in the early universe and, as a consequence, Neff . The
effect on the damping tail can be seen in Fig. 2.4. Also, during radiation domination, neutrinos reduce
metric fluctuation resulting in a reduction of the oscillation amplitude (Hu & Sugiyama 1995; Lesgour-
gues et al. 2013)

∆C`

C`
=

(
1 +

4
15

[
0.2271Neff

1 + 0.2271Neff

])−2

. (2.36)

A further effect of the presence of a neutrino background is a unique phase shift of the CMB mode
oscillations, caused by the “neutrino drag”, the gravitational effect of neutrino perturbations on CMB
(Bashinsky & Seljak 2004). This results in a smaller value of ` for the acoustic peaks, with a shift of
∆`peak ' 10 (Lesgourgues et al. 2013). This effect can be used to constrain the properties of the neutrino
background perturbations, described via the parameters ceff and cvis, respectively the neutrino sound
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speed in its reference frame and a viscosity parameter (due to the anisotropic stress) (Hu 1998). Results
are, up to now, compatible with the expected values for a standard, non-interacting, neutrino background
(c2

eff
, c2

vis) = (1/3, 1/3) (Smith et al. 2012). Planck results, with the addition of polarisation, exclude a
vanishing value for cvis at 9σ (Planck Collaboration. XIII. 2015).
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Figure 2.4: The effect of Neff = 4 on the CMB temeprature spectra (in red) with respect to the standard
3.046 value (in black). There is globally en effect on the damping tail (see text). The C`

have been computed with CLASS.

2.5.4 Neff from particle physics

The standard model of particle physics still miss an explanation on why the number of active neutrino
families Nν should be three9. However, it has been precisely measured from studies of Z production
in e+e− collisions (Groom et al. 2000). The difference between the total Z width and the width corre-
sponding only to Z decays into quarks and charged leptons, is called the invisible partial width Γinv. It is
assumed to be due to Nν light neutrino species each one contributing to the neutrino partial width Γν as
given by the standard model. To reduce the model dependency, instead of using directly (Γν)SM, the ratio
of neutrino to charged leptonic partial widths (Γν/Γ`)SM is used. The combined result from the four LEP
experiments is

Nν =
Γinv

Γ`

(
Γ`

Γν

)
SM

= 2.984 ± 0.008 (2.37)

2.5.5 Neff and BBN

In sec. 1.1.7, we have mentioned that, when the universe was about three minutes old, the first light
elements synthesised. The so called Big-Bang nucleosynthesis (BBN) is sensitive to physical conditions

9We call this number Nν and not Neff just because it has a different definition. In the case of only three active families and
no light relic in the early universe, the two coincide.
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in the early radiation dominated universe and primordial abundances inferred from observational data
are in agreement with the standard cosmological model (Olive et al. 2014). These abundances have been
determined by different processes which happened around T ∼ 1 MeV. Indeed, this is roughly the typ-
ical binding energy for light nuclei (Q = mn − mp ∼ 1.3 MeV), the neutrino decoupling temperature
(Eq. 1.38), and the electron non-relativistic transition temperature. This latter has only an indirect effect
(e.g. Strumia & Vissani (2006)): at T ∼ me the eē → γ annihilation heated photons and not neutri-
nos10. The neutron fraction at “freeze-out” n/p = e−Q/Tfr ' 1/6 (using Eq. 1.35), is indeed sensitive to
both strong and electromagnetic interactions. After neutrino decoupling, the neutrons β-decay until the
universe is sufficient cold to bound them in nuclei. The n/p fraction is reduced to 1/7. Note that this
happens at T ∼ 0.07 MeV (Fig. 2.5). Almost all neutrons form 4He because it is the light nucleus with
the largest binding energy. The prediction for the 4He mass fraction11 is Yp ≈ 2nn/(nn + np) ≈ 0.25, and
it weakly depends on the baryon/photon ratio ηbγ and on Neff (e.g. Strumia & Vissani (2006)). The other
nuclei (D, 3He, T, 7Li, ...) have smaller abundances (Fig. 2.5) that also depend on ηbγ and Neff .

Although produced ∼ 180 seconds after the Big-Bang, BBN abundances are observed at much later
epochs and are polluted by stellar processes, inducing systematics errors in the measurements. It is,
however, possible to estimate from them constraints on ηbγ (and thus Ωbh2) and Neff . In Planck Col-
laboration. XIII. (2015), using the PArthENoPE code (Pisanti et al. 2008), which gives a prediction for
Yp(Ωbh2,Neff), BBN measurements are compared to CMB predictions on these parameters. In particular,
the 4He bounds from Aver et al. (2013) and the deuterium bounds from Cooke et al. (2014) are used. In
Fig 2.6, 68% and 95% constraints in the Ωbh2−Neff plane from Planck temperature and polarisation data
are plotted together with the direct BBN bounds. The agreement between CMB and BBN is clear, and
CMB constraints lie at the intersection between 4He and deuterium estimates.

2.6 Neutrinos constraints from large scale structures

We have seen in sec. 2.5, that the CMB is sensitive to neutrino masses since their free streaming sup-
presses the growth of structures. However, the derivation of the initial conditions in sec. 1.3.4 considers
that structure formation does not distinguish between photons and neutrinos. A qualitative discussion
on the effect of neutrino on LSS (e.g. Strumia & Vissani (2006)) is interesting at this point. For a more
detailed and rigorous treatment see for example Lyth & Liddle (2000); Lesgourgues et al. (2013).

Small fluctuations in the dark matter density δDM = δρDM/ρDM � 1 evolve according to

δ̈DM + 2Hδ̇DM = 4πGδρ, (2.38)

where δρ is the fluctuation around the average total density, accounting for both dark matter and neutri-
nos. Until neutrino are relativistic, they can not cluster and δρν = 0. Eq. 2.38 can be rewritten as

δ̈DM + 2Hδ̇DM = 4πGρ(1 − fν)δDM, (2.39)

where fν ≡ ρν/ρDM. If fν = 0, structures evolve during matter domination, only in the presence of
dark matter as δDM ∝ t2/3 ∝ T−1, increasing primordial fluctuations by a factor roughly eV/Tnow ∼5000
producing the observed LSS.

10Note that, as said in sec. 2.5.3, that this is not entirely true since the small correction to Neff = 3 comes from non-completed
neutrino decoupling by the time of electron-positron annihilation.

11The most important experimental parameter for this prediction is the neutron lifetime τn. In Planck analysis is used the
fiducial value 880.3 s.
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Figure 2.5: Evolution of the main nuclear components of the BBN. The figure is taken from Strumia &
Vissani (2006)

Figure 2.6: Planck constraints in the Ωbh2 − Neff plane compared to confidence regions derived from
4He and deuterium measurements. Yp is fixed as a function of Ωbh2 and Neff . Figure is
taken from Planck Collaboration. XIII. (2015).

On the contrary, if fν > 0, there is a suppression of the growth of structures and the solution, for
constant fν, becomes

δDM(t) ∝ a(t)p with p =

√
1 + 24(1 − fν) − 1

4
. (2.40)
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Note that fluctuations do not grow if fν = 1 (i.e. a universe dominated by relativistic particles) and one
recovers the decay mode of sec. 1.3.4. If neutrino started to be non relativistic at aNR, for a > aNR, the
term fν slows the growth of fluctuation suppressing the matter power spectrum P(k). This suppression
can be approximated as

PΣmν

PΣmν=0
= a2(1−p)

NR ≈ e−8 fν (2.41)

This is a maximal effect realised only at small scales. The results of a more accurate calculation are
reported in Fig. 2.7 for different values of Σmν. The wave-number k̄ of Eq. 2.33 determines the begin
of suppression. In principle, the different masses for the three neutrinos have slightly different effects,
allowing to be sensitive to the hierarchy. In Fig. 2.7 are also reported the sensitivity ranges of various
cosmological probes. Indeed, galaxy surveys, 21 cm surveys, and the Lyman-α forests trace the underly-
ing baryonic matter clustering in LSS, and it can be shown that this follows, up to a bias, the dark matter
distribution, allowing to measure the matter power spectrum.

Via Lyman-α forests in quasar spectra, one can reconstruct the hydrogen density fluctuations along
several lines of sight in a given redshift range. If only linear scales are probed, the hydrogen fluctua-
tions can be assumed equal to the total baryon fluctuations. However, Lyman-α observations typically
constraint the matter power spectrum in the wavenumber range 0.3 < k < 3h/Mpc (Fig. 2.7) and in
the redshift range 2 < z < 5, where also mildly nonlinear scales are concerned (Croft et al. 2002), re-
quiring hydrodynamical treatment of baryons. Viel et al. (2010) presented a conservative analysis based
on Ly-α-SDSS data that includes massive neutrinos as hot dark matter in N-body simulations, finding
the constraint Σmν < 0.9 eV (95% CL). More recent constraints using 1D Ly-α flux power spectrum
measurements from SDSSIII-DR9 data release in combination with CMB data leads to an upper limit of
Σmν < 0.15 eV (95% CL) (Palanque-Delabrouille et al. 2013).

Redshift-space distortions could, in principle, be an even more powerful probe since these mea-
surements can break the degeneracy between the bias and the amplitude of the dark matter fluctuations
(Abazajian et al. 2013). Also, via high angular resolution observations one can reveal the gravitational
weak lensing of background galaxies in the presence of other LSS (cosmic shear). This can be used to
infer neutrino mass since it provides a way to measure the matter fluctuation spectrum at low redshift
(the CFHTLens survey data (Heymans et al. 2012), for example, are used in (Planck Collaboration. XIII.
2015)).

2.7 Forecasts from near-future and future experiments

The Planck measurements of the full sky temperature and polarization anisotropies used in this thesis
provide good constraints for the parameters Σmν and Neff . However, in the search for B-modes, an
accurate estimation of CMB polarization still needs a deep understanding of foregrounds and systematics
as well as new data from suborbital experiments and future space missions. The Simons array, the funded
expansion of PolarBear, and similar experiments, will be able to measure the sum of the neutrino masses
via the measurement of lensed B modes (sec. 1.4.5). These accurate lensing measurements will have an
uncertainty of only 58 meV, which will reduce to 16 meV when combined to BAO data12. Large-scale
structure data provide a precious late-time measurement of distances, allowing to break the intrinsic
degeneracies of the CMB. The significant improvement on the constraint of Σmν might allow to reach
the limit to discern between normal or inverted hierarchy (sec. 2.3.2). In the longer term the combination
of CMB data with Euclid 13, to be launched in 2020, will constrain the sum of the neutrino masses with

12http://bolo.berkeley.edu/polarbear/
13http://sci.esa.int/euclid/
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2.8 CMB and sterile neutrino constraints

Figure 2.7: Fractional change in the matter density power spectrum as a function of the comoving
wavenumber k for different values of Σmν. On the top of the figure the range of sensitivity
for representative probes are also shown. Figure taken from Abazajian et al. (2013)

a statistical error of only 3 meV, sufficient to distinguish unambiguously between the two hierarchies. In
Fig. 2.8, taken from Abazajian et al. (2013), are shown the current constraints and the forecast sensitivity
of cosmology to the neutrino mass in relation to the hierarchy. The current cosmology bound on Σmν

is the subject of this thesis and it is discussed in chapter 8. The KATRIN limit on the lightest neutrino
mass has been mentioned in sec. 2.4. The sensitivity from future long base line experiments, already
mentioned in sec. 2.3.2, is also shown.

2.8 CMB and sterile neutrino constraints

Neutrino oscillation experiments reported some hints for eV-scale sterile neutrinos from
(−)
νe and

(−)
νµ dis-

appearance and
(−)
νµ→

(−)
νe appearance (Lasserre 2014). The global fits of the data involve one or two sterile

neutrinos mixing with the three active ones (the so called 3+1 and 3+2 schemes). An explanation of all
hints in terms of oscillations seems to suffer from tensions between appearance and disappearance neu-
trino data (Kopp et al. 2013). It is however interesting to search for sterile neutrino in cosmological data.
This kind of analysis is model-dependent so results should be compared with care. In sec. 2.5 we have
described the two parameters Σmν and Neff . Let’s clarify again that Σmν account for the mass of the three
active neutrinos and Neff > 3 would be a sign of the presence of extra massless degrees of freedom. To
search for massive sterile neutrino one need to specify another framework. We report in this section the
result from Planck Collaboration. XIII. (2015) on this subject. There, it is assumed a model where there
are one massive active neutrino, carrying the whole mass Σmν, two massless active neutrinos14 and one

14As already notice, considering three degenerate neutrinos with mass mν = Σmν/3 or one massive neutrino mν = Σmν and
two massless, makes no important differences in the results. However, this latter configuration is computationally faster in
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Figure 2.8: Current constraints and the forecast sensitivity of cosmology to the neutrino mass in rela-
tion to the hierarchy. The two black diamonds present two typical cases, the lowest Σmν

value would be measured at 4σ level. Note that forecast are performed using Fisher matrix
approach where the likelihood is supposed to be Gaussian. Figure is taken from Abazajian
et al. (2013).

massive sterile neutrino. This latter is assumed to be thermally distributed with an arbitrary temperature
Ts. Since ρ ∝ T 4, one has

Neff − 3.046 = ∆Neff = (Ts/Tν)4. (2.42)

If Ts coincides with the thermalisation temperature of the active neutrino Tν (Eq. 2.24), this model has
one extra degree of freedom and thus Neff ≈ 4. For cosmological data this parametrisation is undistin-
guishable from the Dodelson-Widrow scenario Dodelson & Widrow (1994) with active-sterile neutrino
mixing (Lesgourgues et al. 2013). The massive sterile neutrino is parametrised by meff

ν,sterile, that is related
to the true mass via

meff
ν,sterile = (∆Neff)3/4mthermal

sterile . (2.43)

In Fig. 2.9 are reported samples of the Planck temperature chains in the Neff-meff
ν,sterile plane. The

dashed lines constrain the physical thermal mass and report values in eV. For low values of Neff this
physical mass is very large. It thus describes sterile neutrinos that are already non relativistic well before
recombination. In this case they behave like dark matter and cannot be uncorrelated from the Ωch2

parameter15 (see also the results in Planck Collaboration. XVI. (2014)). It is thus considered a prior
mthermal

sterile < 10 eV or even 2 eV for the following final tighter constraint

95%, Planck +lensing+BAO

Neff < 3.7
meff
ν,sterile < 0.38 eV

(2.44)

CLASS.
15Note that warm dark matter (∼keV) as well is completely unconstrained by CMB data.
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Note that the the combination Neff ≈ 4 and mthermal
sterile ≈ 1, the one preferred to solve oscillation anomalies,

is disfavoured by Planck data. In Fig. 2.9, the sample are also color coded to show the vale of σ8. As
we will discuss in chapter 8, a non standard neutrino sector has been proposed to solve, for example, the
tension between Planck power spectrum analysis and Planck cluster counts or CFHTLens galaxy weak
lensing constraints on this parameter (Planck Collaboration. XIII. 2015). One can obtain a low value of
σ8 with low values of ∆Neff and allowing for a massive sterile neutrino, helping in reducing the tension
with ΛCDM estimate. However, Planck is perfectly consistent with no massive sterile neutrinos.

Figure 2.9: Samples from Planck data in the Neff-meff
ν,sterile plane, color coded by σ8. The physical mass

of the sterile neutrino mthermal
sterile is constrained along the grey dashed, with indicated the mass

in eV. The grey region is excluded in the analysis. (Planck Collaboration. XIII. 2015).

Conclusions

In this chapter we have discussed the need for physics beyond the standard model to justify a mass term
for the neutrino. The striking evidence that neutrinos are massive comes from the measurements of neu-
trino oscillations of which we have presented the current status and the open hierarchy question. While
oscillation experiments are insensitive the the absolute scale of neutrino masses, this can be measured
using cosmological data. The relic neutrino background and its subtle impact on the CMB, encoded in
the two parameters Σmν and Neff , has been described. For constraining these parameters, one needs high
quality CMB data. In this thesis we use the results from the Planck satellite, that is presented in the next
chapter.
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Chapter 3

The Planck mission

Third generation spatial mission after COBE (Smoot et al. 1992) and WMAP (Bennett et al. 2003),
Planck is an ESA satellite dedicated to the measurement of the CMB anisotropies. A picture is shown
in Fig.3.1(a). Launched in May 2009, it has collected data until October 2013 from the Lagrange L2
point of the Earth-Sun system. The nominal mission data, released in 2013, consisted in 15 months of
observations. The full mission data, used in this thesis, consider all the 29 months of the High Frequency
Instrument (HFI) data and include polarisation.

In this chapter we describe the satellite, the data processing and the main products of the mission,
focusing in particular on what is relevant for this thesis.

3.1 The satellite

As described in Tauber et al. (2010), Planck is an imager based on an off-axis Gregorian telescope.
The optical system is made of two mirrors: the primary of about 1.5m and the secondary of about 1m
(Fig.3.1(b)). They have to stay cooled to stem thermal noise. Their operative temperature is around
45K obtained by isolating with a baffle that shields also from parasite light. With the focal plane, the
optical system and the baffle compose the payload of the satellite. The remaining part assures the correct
behaviour of the instrument and is the service module. It contains the solar panels, all the necessary
electronics, and the attitude control, the antenna, the cryogenic system and the helium and hydrazine
reservoirs for manoeuvres. The two parts are isolated via a V-grooves passive cooling. A schematic
picture of the satellite can be found in Fig.3.1(b).

3.1.1 Cryogenic system

Conceived to achieve a full-sky cartography of unprecedented precision and angular resolution, Planck
focal plane contains two separate instruments: the Low frequency Instrument (LFI) (Bersanelli et al.
2010) and the High Frequency Instrument (HFI) (Lamarre et al. 2010).

To achieve the required precision the noise level has to be controlled and kept very low. To this
purpose, LFI and HFI have to be kept cooled down to 20K and 0.1K respectively. This is achieved with
a complex structure combining the passive cooling of the V-grooves with an active cooling system. Me-
chanical cooling is delicate since one has to minimise the impact of vibration and transfer of momentum
to the focal plane.
There are three successive stages to reach the desired temperature (Planck early results. II. 2011):

• The sorption cooler is a closed-cycle sorption cooler using hydrogen as the working fluid with a
Joule- Thomson (JT) expansion, which produces temperatures below 20 K. It cools the LFI focal
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plane to its working temperature of 20K and provides a pre-cooling to HFI.

• The 4He − JT cooler is a closed-cycle cooler using a Stirling cycle compressor and 4He as the
working fluid with a JT expansion, which produces temperatures of 4 K. It is the temperature of
the LFI reference loads and another pre-cooling stage for HFI.

• The dilution cooler phase is twofold. The first phase is a cooling to 1.6K again throw a JT ex-
pansion, this time of 4He and 3He. The second phase is based on a micro-gravity dilution cooler
principle (Benoit et al. 1997). Dilution of 3He bubbles in 4He capillaries allows to reach 100mK
on the HFI focal plane. After dilution the gas is expelled into space.

(a) (b)

Figure 3.1: (a) A picture of Planck. (b) Schematic representation of the satellite. The various compo-
nents are highlighted. (Tauber et al. 2010).

3.1.2 Scanning strategy

Planck observes the sky from the Lagrangian L2 point of the Earth-Sun system. Its scanning strategy
(Delabrouille et al. 1998; Dupac & Tauber 2005) has been conceived to optimise data redundancy, sky
coverage and also to attain a measure for polarisation. Its spin axis is almost aligned with the Sun-L2
axis and the solar panels are kept oriented towards the Sun. The direction of observation, is oriented at
85◦ with respect to the spin axis. Planck scans the sky with wide circle every minute (Fig.3.2(a)). It is
kept stable for periods ∼40-50 minutes long called rings for which data are redundant. This redundancy
is vital for optimising SNR and for treating systematics, in particular 1/f noise.

After a ring, the satellite is then shifted by 2 arcmin resulting in a mean shift of 1◦ per day. If the angle
between the spin axis and the direction of observation were exactly 90◦ we would have had a perfect full
sky coverage in 6 months and ring intersection exactly at the ecliptic poles. In order to have a more
homogeneous sky coverage, the spin axis of the satellite precedes around the Sun-L2 axis, describing a
cycloid with an amplitude of 7.5◦ and a 6 months period. This has been chosen to respect the constraints
imposed by the thermal stability (thus avoiding Sun exposure) and also to assure the dispersion of the
orientations of detectors needed for the reconstruction of polarisation (sec.3.2).

An almost complete scan of the sky, called survey is realised in 6 months. Full mission data, that
are used in this thesis, consists of ∼5 surveys (29 months). Surveys 1,3 and 5 and 2, 4 respectively, are
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similar in sky coverage and scanning path, while 1,2 and 3, 4 scanned almost the same sky with opposite
directions.

In Fig.3.2(b) is reported, in galactic coordinates, the number of observations per pixel (clipped at
5000 for illustration purpose). Hits counts show that the sky coverage is not homogeneous and that there
is redundancy around the ecliptic poles.

(a)

hit counts

0 5000

(b)

Figure 3.2: (a) The Planck satellite is located in the lagrange point L2 and its spin axis is in precession
around the Sun-L2 axis. It pivots around the spin axis at the speed of 1 tour per minute,
keeping a fixed pointing for ∼40 minutes (a ring). It progress of 1◦ per day. (b) Hit number
maps in galactic coordinates (Mollweide projection), cut at 5000 for representation purpose.

3.2 Detectors characterisation

The Planck focal plane contains the two instruments LFI and HFI, observing the sky at different frequen-
cies from sub-millimeter to micro-waves. LFI measures the sky in three bands centred respectively on
30, 44 and 70 GHz, and based on radiometer technology (sec.3.2.2). HFI uses bolometers and focuses on
higher frequencies from 100GHz to ∼1THz sampled in 6 bands (sec.3.2.1). The actual detectors for the
two instruments are preceded by corrugated horns serving as wave-guides. The wide frequency coverage
is designed to target the peak of the CMB emission but also the foreground emissions like synchrotron,
free-free, and Galactic dust thermal emission.

Detector photometry

At each time t, the response of a polarisation sensitive detector to a polarised signal can be approximated
as (Jones et al. 2007):

dt = g(I + ρ[Qcos(ψt + α) + Usin(ψ + α)]) + nt (3.1)

in which n is the noise, g is the total gain, ρ is the polarisation efficiency, ψ is the angle between the
focal plane and the reference system in which Q and U are defined and α stands for the relative detector
orientation with respect to the focal plane.

Polarisation reconstruction

The reconstruction of the full-sky polarised signal requires the combination multiple polarisation sen-
sitive devices. To determine (I,Q,U) we need to combine the signal of at least three detector that have
measured d with different values of the total angle ψ + α (modulation). The Planck scanning strategy
(sec.3.1.2) does not allow to have this variety of angles for a single detector (with the exception of the
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spot around the ecliptic poles). It is thus necessary to combine detectors with different orientations.
As can be seen in Fig.3.5(b), different pairs of detectors, for a given frequency, are tilted by 45◦. This
configuration allows for the optimal reconstruction of the polarisation, where the measurement errors in
the Stokes parameters I, Q and U are independent of the direction of the focal plane and decorrelated
(Couchot et al. 1999).

Nevertheless, combining more than one detector has inevitably some problems. Any difference be-
tween intensity measurements will induce leakage of intensity to polarisation. In particular, an error
on the relative calibration causes a leakage between the reconstructed Stokes parameters; this induces
temperature to polarisation leakages, and E to B leakage at the level of the spectra(Rosset et al. 2010),
with dramatic consequences on the precision we can reach. This is why a calibration (sec.3.3.3) is very
important.

Next section describes in more details the HFI instrument that it is the of this thesis. Some notions
on LFI are given in sec.3.2.2.

3.2.1 The High Frequency Instrument

HFI measures the sky in 6 frequencies centred respectively at: 100, 143, 217, 353, 545, 857 GHz. These
numbers have been chosen for attaining specific scientific goals, from the characterisation of the CMB
anisotropies to the study of Galactic and extragalactic foregrounds. They are discussed in more detail in
sec. 3.5.

The HFI detectors are bolometers. The radiation energy is left via Joule effect on an absorber of
low heat capacity, which is a grid of gold wires on a silicium nitrate support. The incoming radiation is
absorbed causing a rise in temperature measured through a thermistor, namely, a Neutron Transmutation
Doped (NTD) germanium thermistor. The thermistor is polarised in current so that the rise in temperature
causes a measured change in the bolometer output voltage.

HFI is equipped of two types of bolometers: those sensitive only to the intensity of the incoming
radiation and those sensitive to polarisation. The placement of the wires determines this specific property.

Spider Web Bolometers (SWB) (Bock et al. 1995), in Fig.3.3(left), collect the CMB total power with
a spider-web-like grid. This configuration enhances sensitivity and robustness to vibration, and reduces
time response and cross section with astro-particles (Tristram & Ganga 2007). The grid characteristic
scale is related to the wavelength of the radiation of interest, reducing the background coming from lower
wavelength. The NTD thermistor is at the center of the web.

For Polarisation-Sensitive Bolometers (PSB) (Jones et al. 2003), in Fig.3.3(right), the grid is rectan-
gular. In this configuration, only the two perpendicular directions are important. In each PSB, absorbers
do cover only one of these directions, giving sensitivity to the linear polarisation in to this orientation.

Ideally, the polarisation efficiency ρ of Eq.3.1 is one for a PSB. Inversely, ρ = 0 for a perfect SWB
and thus only a measurements of the total intensity is obtained.

In practice, SWBs are slightly sensitive to polarisation (ρ ∼ few%) and PSBs have ρ ∼ 90% since
there are some leakages in the direction orthogonal to the polarisation we want to measure (Rosset et al.
2010).

A system of horns leads the radiation through bolometers (Fig3.5(a)). In Fig.3.4 are shown the
various stages of this optic line with the cryogenic temperature associated. The collection of incoming
photons is achieved via two back-to-back horns. This stage at 4K is a waveguide in between the two
horns that pre-filter the accepted frequencies. The next stage, at 1.6K, completes the filtering. There is
then a last horn at the working temperature of 100mK. It is isolated from the rest of the optic line and
optic coupling is ensured by a lens.

Fig.3.5(b) is a schematic representation of the focal plane. HFI consists in 52 bolometers plus 2 blind
bolometers for the estimation of instrumental effect like temperature fluctuation of the focal plane. 20
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bolometers are SWBs and 32 are PSBs. PSBs are assembled in pairs of orthogonal polarisation sensitivity
(called PSB-a and PSB-b). Only the four lower frequencies are sensitive to polarisation.

The angular acceptance, called beam, depends on the whole optic chain, from the shape of the mirrors
to the shape of the horns. It is estimated from the observation of planets, mainly Saturn and Mars1. For
a given direction of observation, the signal received is the convolution of the real signal with the beam.
When the beam are not rotationally invariant, the total signal depends on the orientation of the satellite.
Beams are thus important in the map-making process and in the building process for spectra. We will
come back to this in chapter 5.

In general the angular resolution of the instrument is defined as the full width at half maximum
(FWHM) of the Gaussian adjusted on the mean beam for each frequency. The ellipticity has to be
accounted for. HFI angular resolution varies between 10 and 5 arcmin. A summary of the properties of
HFI can be found it Table3.1.

Table 3.1: Characteristics of the HFI detector (Planck Collaboration. I. 2015)

Central freq. (GHz) 100 143 217 353 545 857
Bandwidth (GHz) 32.9 45.8 64.5 101.4 171.3 245

Num of detectors 8 8 8 8 4 4
(of which polarised) (8) (4) (4) (4) - -

Effective beam FWHM1 [arcmin]a 9.68 7.30 5.02 4.94 4.83 4.64
Effective beam FWHM2 [arcmin]b 9.66 7.22 4.90 4.92 4.67 4.22
Effective beam ellipticity εc 1.186 1.040 1.169 1.166 1.137 1.336

Temperature noise [ µKCMBdeg] 1.29 0.55 0.78 2.56
Temperature noise [kJysr−1deg]d ... ... ... ... 0.78 0.72
Polarisation noise [ µKCMBdeg] 1.96 1.17 1.75 7.31 ... ... e

a FWHM of the Gaussian whose solid angle is equivalent to that of the effective
beams.

b FWHM of the elliptical Gaussian fit.
c Ratio of the major to minor axis of the best-fit Gaussian averaged over the full sky.
d Estimate of the noise in intensity scaled to 1◦ assuming that the noise is white.
e Estimate of the noise in polarisation scaled to 1◦ assuming that the noise is white.

HFI noise sources

There are several physical processes that give a white noise contribution to the measurements.

• photon noise is an unavoidable contribution. It is due to the Poisson fluctuations of the number of
photons that hit the detector and comes from the CMB signal itself.

• phonon noise, residual thermal noise

• Johnson noise from electronics, reduced by the low temperature.

The last two are reduced thanks to the cryogenic cooling at the very low temperature of 100mK, to
the control of the thermal noise, and to the readout electronics that is fast and low noise.
A supplementary parasite effect for some of the channel is the random telegraphic signal of unclear origin

1There is also a tiny contribution from the far-side lobes originated by multiple reflections, diffraction and diffusion of the
light, that are estimated with full simulation of the optical architecture .

63



3. THE PLANCK MISSION

Figure 3.3: Picture of a 143 GHz spider web bolometer (left) and of a 217 GHz polarisation-sensitive
bolometer (right). The temperature sensor is at the center of the SWB and at the upper edge
of the PSB (Lamarre et al. 2010).

Figure 3.4: System of horns and bolometers. The three horns back-to-back guide the wave through the
frequency filters and to the bolometer. Different cooling levels are also shown (Lamarre
et al. 2010)

that causes a rapid random shift of the mean level of data (the “pop-corn" noise). The bolometer 143-8,
545-3, and 857-4 has been excluded from the analysis for an excess of this noise.

3.2.2 The Low Frequency Instrument

As the COBE Differential Microwave Radiometer (DMR) and WMAP, LFI is composed of differential
radiometers. A radiometer is a device whose output voltage is proportional to the power received by a
horn antenna. This output is then amplified by a High Electron Mobility Transistor (HEMT). HEMTs are
well suited for CMB experiments since they have a low noise and a wide bandwidth but their sensitivity
is limited by long scale gain variations. The 1/f noise can be reduced using differential radiometers
where the input is not a single antenna but an antenna and a reference load. The two signal paths are in
antiphase so that common 1/f vanishes.

LFI differential radiometers, based on the same technologies than previous space missions, represent
however a step forward in terms of performances. They are cryogenically cooled down at 20K to reduce
amplifier noise and make them more sensitive. The reference load temperature is the 4K stage of HFI.
Having the reference load temperature close to the temperature of the signal limits the effects systematics
(Tristram & Ganga 2007).

In the focal plane (Fig.3.5(a)) LFI horns are around HFI ones since they are less sensitive to optical
aberrations. There are 22 radiometers all sensitive to polarisation. OrthoMode Trasducters (OMT) are
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(a) (b)

Figure 3.5: (a) HFI and the LFI horns picture taken during ground tests. (b) Focal plane scheme: fre-
quencies are identified by colors and the horn identification numbers are also indicated (LFI
horns in red, HFI horns in blue). The black crosses indicate the direction of sensitivity to
linear polarisation for pairs of bolometers or radiometers within each horn (horns with no
cross correspond to bolometers sensitive to total power only) (Tauber et al. 2010).

used to separate the orthogonal polarisations with minimal losses. Relative sensitivity per pixel (∆T/T
par pixel) is of a few 10−6 and the angular resolution is of 33, 28 and 13 arcmin for the 30, 44, and 70
GHz respectively. There are 4 detector at 30 GHz, 6 at 44GHz and 12 at 70GHz. This latter has a larger
number of detectors, since it is in the window where foregrounds are minimal and thus has a special
interest for cosmological results.

The LFI instrument can be used to constrain the large scale part of the CMB power spectrum and
its polarisation data can be used to put constraint on reionisation. In chapter 6.1 we briefly describe
how the low-` part of the likelihood can be built using the 70GHz maps cleaned with the 30GHz for the
synchrotron and HFI 353GHz for Galactic dust.

3.3 HFI data treatment

The exploitation of Planck measurements to achieve precise cosmological and astrophysical results,
relies on a complex chain of data treatment and analysis. We focus here only on the HFI detector. In
Fig3.6 this three level process is reported in a schematic view.

At Level 1 raw data transmitted by the satellite are uncompressed and re-organised to create the time
ordered data (Time Ordered Information, TOI). At this stage a number of checks on the parameters of
the instruments are also performed to understand if the instrument and its devices are working correctly
(looking at the housekeeping telemetry) and to assess the quality of scientific data (looking at the Science
Telemetry).

Level 2 includes a series of modules for the processing of the TOI (Fig3.7). The final products of this
stage are the sky maps for each frequency. TOI processing is briefly described in sec.3.3.1. The main
stages of the calibration process are summaries in sec.3.3.3

At Level 3 the maps and the relevant informations on the instruments are used for the realisation of
several products of high scientific interest that are released to the community. These are the component
maps, where the different spectral properties of the CMB and the foregrounds are used to disentangle
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them (Appendix A.2), compact source catalogs (Appendix A.1), and the likelihood. This latter is the
central theme of this thesis and is discussed in details in chapter 5.
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Figure 3.6: Schematic picture of the data analysis pipeline. Adapted from Planck Collaboration. VI
(2014).

3.3.1 TOI processing

At the L2 level, the raw timelines are corrected for the effect of systematics induced by the detection
chain or by the environmental effects. To identify and subtract properly all these effects, an on-the-fly
characterisation of the instrument has been performed along the entire mission, updating constantly the
instrument model that is then used to TOI processing (Fig.3.6). The various steps of TOI processing
include demodulation, degliching, correction for bolometers non linearities and for temperature fluctu-
ations of the environment, correction of 4K lines and, finally, flagging of the unusable samples. In this
section we briefly review these steps. For a detailed description see Planck Collaboration. VI (2014);
Planck Collaboration. VII (2015).

Demodulation

To avoid as much as possible 1/ f noise due to electronics, the polarisation current at the bolometer
bounds is alternate (AC bias) (Lamarre et al. 2010). To optimise this process, the modulation frequency
is chosen to be fmod = facq/2 = 90Hz, where facq = 180Hz is the frequency at wich data are sampled.
The first step in TOI processing is thus the demodulation and decompression of the signal.

ADC correction

An analog-to-digital converter (ADC) device is used to convert the continuous voltage measurement to a
digital number that represents the voltage’s amplitude. ADCs suffer from non-linearity errors caused by
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3.3 HFI data treatment

Figure 3.7: Level2 schematic HFI pipeline (Planck Collaboration. VII 2015). The left part of the
schematic involves TOI processing and beams production, while the upper-right part rep-
resents the map-making steps. Blue: what has been update between the 2013 and 2015
analysis. Yellow: released data products.

their physical imperfections, resulting in a deviation from linearity in their response.
In the 2013 analysis, this errors where found responsible for an apparent gain variation in the data,

that had been treated at the map-making stage (Planck Collaboration VI 2014). For the 2015 data release,
the correction for this systematic errors has been implemented as a direct ADC correction at the TOI
level.

In general, the defects of an ADC chip are fully characterised by the input levels corresponding to
the transitions between two consecutive output values. An ADC defect mapping is usually run on a
dedicated ground test bench. This had not be performed for HFI ADC devices. Nevertheless, dedicated
flight data (”warm data"), were recorded during the 1.5 years of the LFI extended mission, between
February 2012 and August 2013. During this period the bolometer temperature was stable at about 4 K
and HFI bolometers where measuring no signal anymore but only Gaussian noise. The defect mapping
was obtained by inverting the histograms of the accumulated fine-grain sampled raw data and has been
use to correct the non-linearity.

Degliching

One of the main systematic effects that need to be subtracted is the energy deposition from high energy
cosmic rays for which the shielding of the baffles is not sufficient. There is on average one event per
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seconds. The rate is anti-correlated with solar activities2 and includes mainly cosmic rays of Galactic
origin. The typical signal is a glich, namely a rapid rise of the signal followed by a slower decrease.
These gliches are iteratively detected and subtracted at the TOI level.

Gain non-linearities correction

The timelines must be corrected to account for slightly varying power absorbed by the bolometers. These
variations comes from the sky load and 100mK bolometer plate temperature fluctuations. To cure these
non linear effects, the Voltage-to-power conversion step is parametrised by a second order polynomial
and fitted over the sky.

Thermal drift decorrelation

A common mode due to temperature fluctuation of the 100mK cooler stage has to be removed during this
step of TOI processing. This correction relies on the measurements of the coupling coefficients between
the bolometers and the bolometer plate temperature. The variations of this latter are measured using the
two dark bolometers as proxies3. The effect is anyway not big and negligible for the 1.6K and 4K stages.

4K cooler line removal

Frequency vibrations of the 4K cryogenic stage are harmonics of the signal sample frequency (10, 20,
30, 40, 50, 60, 70, 80 and 17 Hz). This electromagnetic interference produces peculiar lines in the signal
power spectrum that are removed using a Notch filter reducing contamination to be less then 3% of other
sources of noise4.

In 2013 data, there was, however, a residual effect affecting multipoles at ` ' 60( f /1Hz) i.e., 600,
1020,1200,1800,..with a particularly visible features at ` ∼ 1800.

In the 2015 analysis, additional selection processes has been introduced to mitigate the effect and the
` ∼ 1800 feature has disappeared (Planck Collaboration. VII 2015).

Transfer function deconvolution

The temporal response of a bolometer and its electronic have to be properly taken into account. There is
typically a delay in the reaction to a rapid signal that acts like a low-pass filter. The time constants are
generally from a few milliseconds to few tenths of seconds. They are characterised using the response to
intense point source as planets.

The identification of very long time constants (VLTC) of the order of a few seconds and their in-
clusion in the analysis, is one of the calibration process greatest improvement of the 2015 analysis with
respect to the 2013 results (Planck Collaboration. VIII 2015). VLTCs, if not corrected, introduce a sig-
nificant shift in the apparent position of the Solar dipole, resulting in a leakage of the Solar dipole in the
orbital dipole. This is important since the dipole is used for the calibration of the data. Some details of
the calibration process are described in sec.3.3.3.

Jump correction and Sample flagging

In some pointing periods, signal removed TOI show sudden jumps. The jumps (in average a few per day)
are corrected subtracting a constant template from the timelines and are flagged around the recovered

2More solar activities means stronger magnetic fields that deviates away the cosmic rays that are charged particles.
3HFI 100mK thermometers have too many cosmic hits to be used.
4It affects anyhow the ability to characterise and remove ADC nonlinearities
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position (these flags correspond to only a fraction 10−5 of data). Flags are also associated to unstable
pointing periods (7% of data), gliches (8-20%), and transit of solar system objects (planets and asteroids).
The flagging of data is important to distinguish which data need to be projected at the map making level.

In Fig.3.8 is shown a portion of TOI data after processing. At the end of TOI processing, there are
still some systematics in the data seen as a correlated noise component at low frequency. This is treated
at mapmaking level.

Figure 3.8: Two minutes portion of a ring from bolometer 143-a after TOI processing. The global
modulation is the dipole. At 2020 seconds we recognise the Galaxy; 30 seconds after there
is again the signal from the Galaxy but weaker (we are farther from the center). Grey lines
are the flags (17% of the whole ring). Figure taken from (Racine 2014).

3.3.2 In-flight characterisation

As shown in Fig.3.6, at Level 2, data are used to build a model for the HFI instrument, the IMO. The
IMO is used to update the TOI processing and optimise mapmaking and calibration.

We have already underlined, for example, that the knowledge of the temporal response of the bolome-
ters is vital for a correct analysis of the TOIs. The characterisation of the transfer function comes together
with other in-flight detector descriptions that are necessary for any further analysis.

Detector pointing

The mapmaking process requires the knowledge of the pointing of individual detectors. The satellite
pointing comes from the star tracker camera subsystem but in practice we need pointing of each detector.
The detailed geometry can be measured by comparison with the position of Mars, that is a bright and
nearly pointlike object. The actual construction of rings (sec.3.3.3) is done using this reconstructed focal
plane geometry.

Detector beams

As said in sec.3.2.1, the estimation of beams relies on the observations of planets. We have quoted in
Table 3.1 the mean value, for each HFI frequency, of the beam using a Gaussian approximation. A more
complete characterisation for the beams can be done using a decomposition on two different orthogonal
basis: the Gauss-Hermite polynomials and the B-spines5 (Planck Collaboration. VI 2014). This latter

5A spline is a numeric function that is piecewise-defined by polynomial functions, and which possesses a sufficiently high
degree of smoothness at the places where the polynomial pieces connect (which are known as knots). Any spline function of
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Figure 3.9: B-spline hybrid scanning beams reconstructed from Mars, Saturn, and Jupiter. The beams
are plotted in logarithmic contours. PSB pairs are indicated with the a bolometer in black
and the b bolometer in blue (Planck Collaboration. VII 2015).

is the one used by the Planck Collaboration. In Fig.3.9 are shown B-spline hybrid6 scanning beams
reconstructed from Mars, Saturn, and Jupiter. Their shape depends on the optic of the instrument but
also on the time-response of bolometers and the scanning strategy since the focal plane sees the sky with
a fixed scanning direction. This direction is indeed recognisable from the beams “tails" in the figure.

The map-making process (sec.3.3.3) implies that each pixel in a map is the sum of different samples
in the timelines, and each of this sample has a different location within the pixel and a different scan
direction. This is why, effective beams are also calculated taking into account the specific scanning
strategy in order to include any smearing and orientation effects on the beams themselves.

3.3.3 Calibration and map-making

The representation of the data in full-sky maps requires a choice for the pixelisation for the celestial
sphere and of a coordinate system. The Hierarchical Equal Area isoLatitude Pixelisation (HEALPix)
framework (Górski et al. 2005) has been chosen. Each pixel has the same area (quadrangles of different
forms) and its center lies on sets of rings at constant latitude. This is the most common pixelisation
scheme in CMB since it is well suited for the fast Fourier transform analysis used for the decomposition
of the map into spherical harmonics. The resolution of the map is defined by the parameter Nside, the
number of divisions of the side on 12 base pixels. The total number of pixels is then npix = 12 × N2

side
and the resolution is ∼

√
4π/npix =

√
π/(
√

3Nside).
Maps are then represented in the Mollweide projection and the privileged coordinate system is the

given degree can be expressed as a linear combination of the B-splines (basis-spline) of that degree.
6Hybrid scanning beams include sidelobes.
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Galactic one where the Milky way lies in the center.
In this section, after the presentation of the map-making problem (Tristram et al. (2011) and refer-

ences therein), we briefly describe the procedure used by the Planck Collaboration for the production of
the various maps.

The TOIs (with the flags) issued from the cleaning process are measurements in Watt units and need
to be calibrated into astrophysical units. Maps and their calibration are obtained iteratively.

The map-making problem

Given the pointing (a given direction in the sky) and the instrumental beam, HFI bolometers measure the
brightness of the sky. The time ordered data at time t of Eq.3.1, dt can thus be modelled as:

dt = Atp · Tp + nt (3.2)

where:

• Atp are the elements of the pointing matrix that relates each time sample t to the corresponding
pixel p.

• Tp is the signal from the sky

• nt is the noise

In general, we can include the effect of the beam in the signal, solving for beam-convolved maps. The
pointing matrix A contains only three (we have to reconstruct I,Q and U) non null value in each row, as
each sample is sensitive to only one pixel. Its size is thus Ns × 3Np. Here we consider noise as Gaussian
and stationary. All its statistical information is thus included in its covariance matrix N = 〈nnT 〉.

The most general solution of the mapmaking problem is obtained by minimising the likelihood of
the data given a noise model which is the generalised least squares (GLS) equation (Tristram et al. 2011).
The estimate for the signal T̂ and its covariance N̂ reads

T̂ =
(
AT N−1A

)−1
· AT N−1d, (3.3)

N̂ = AT N−1A (3.4)

Planck angular resolution allows the reconstruction of maps with Nside=2048 including more than 50
millions of pixels making the calculation of the covariance matrix computationally prohibitive. Nev-
ertheless, if one approximates the noise as white, the matrix for N is diagonal. This means that the
estimation of the signal T̂ reduces to the mean of the measurements for every pixel, weighted by the
noise. This is called co-addition.

The first step of the Planck analysis is the construction of HEALPix rings (HPR). As explained in
sec.3.1.2, a ring is the time-ordered collection of circular scans obtained with a stable position for the
spin axis. An HPR is the collection of pixels visited during the ring. It is a partial map of the sky, already
at the good resolution, where the signal is obtained at each pixel by co-addition. It also allows to improve
the pointing (Planck Collaboration. VIII 2015).

The determination of HFI noise properties points out that beside the white noise contribution, a low
frequency 1/f component is still present in the data. This means that, after TOI processing, there are
still systematics left (Fig.3.10(a)), resulting in a wrong reconstruction of the mean level of the signal
in a pixel when combining measurements spread in time leading to “stripes”. This is treated directly
at map-making stage via a procedure called destriping (Tristram et al. 2011), where these mean level
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derivatives are estimated at ring level and subtracted before projection. In this approach, the noise in a
ring r is represented by an offset or (Fig.3.10(b)) and a white noise part n7.

Orbital-dipole calibration

The bolometer signal is proportional to the small variations in the incoming power from the sky. To obtain
the measurement in sky temperature units, we need to determine a gain for each detector (see sec.3.2)
using a known source in the sky. At high frequencies (545 and 857 GHz), calibration is performed on
planets. For the lower HFI frequencies, the central CMB channels which are the mostly used in this
thesis, the primary calibrator is the orbital dipole (Planck Collaboration. VIII 2015).

The relative motion of the satellite with respect to the last scattering surface causes a Doppler effect

TDoppler =
TCMB

γt(1 − βt · û)
, (3.5)

where û is the unit vector along the line of sight, βt = vt/c, with vt the satellite velocity, and γt =

1/
√

1 − β2
t . The dominant component of vt is the solar system motion with respect to the last scattering

surface, the solar dipole. It can be considered stationary during Planck observations and it contributes as
an ` = 1 component. A residual contribution comes from the yearly motion of the satellite with respect
to the solar system barycentre, the orbital dipole. Its brightness is an order of magnitude lower than the
solar one but its time variability is determined by the satellite velocity. Calibration using orbital dipole,
peculiar of the 2015 release, has allowed for an independent measurement of the solar dipole (3364.5 ±
0.8 µK), and a recalibration of the HFI spectra lading to a better agreement with WMAP and a precision
of ±0.1% (Planck Collaboration. XIII. 2015).

3.4 Planck-HFI maps

The whole process of map-making for HFI (HEALPix ring making, destriping and calibration, and pro-
jection) is carried out at LAL and is summarise in the right part of Fig.3.2(a). Revising eq.3.2, we obtain
for a given bolometer (Planck Collaboration. VIII 2015):

dt = g
(
Atp · Tp + tsolar + torb

)
+ Γtr · or + nt (3.6)

where Γtr is the ring-pointing matrix (a data sample t is associated with the ring r) and tsolar and torb are
the contributions from the solar and orbital dipole respectively. The non stationary contribution from
the thermal emission of the Solar system, namely the Zodiacal light, is also subtracted prior to the final
projection on a map.

The main product of the mapmaking pipeline are six intensity maps that cover the six frequencies
(100-857 GHz) for the full mission (Fig.3.11). Maps resolution is Nside=2048 and the pixel size is 1’7.

In Figure 3.12 are presented the polarization maps at the four first frequencies (100, 143, 217, and
353 GHz), degraded to lower resolution (Nside=256) in order to enhance the signal-to-noise ratio. In
both intensity and polarization, the emission from the Galactic dust (sec.3.5) increase with frequency. In
intensity, CMB anisotropies are visible at high latitude in the low-frequency channels (between 100 and
217 GHz).

For each frequency, temperature and polarisation maps are also produced using detector sets (DS), or
pairing Survey 1-2 and 3-4 to obtain Year 1 and Year 2 maps. Half Mission (HM) maps are also produced

7Also, for breaking the degeneracy between the signal and the offsets the mean level for these latter is arbitrary fixed to zero.
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(a) (b)

Figure 3.10: (a) The effect of low frequency noise on a map are peculiar strips parallel to the scan
direction. We can also recognise the Galactic plane and the solar dipole. (b) Illustration of
1/f noise. The offset are considered constant for each ring. and are fitted and subtracted at
mapmaking level (Filliard 2012).

adding Survey 5 and splitting in two halves. These latter are the maps from which the official values of
the cosmological parameters are obtained (Planck Collaboration. XIII. 2015).

For checking the noise and the consistency of the data many more maps are produced. For example
maps from different halves of each ring period since half ring half differences give a good estimation of
the noise level in a map. These kind of null test, called jacknives, can be constructed also for HM and
DS maps.

Noise spectra (Fig.3.13) show significant deviation from white noise, resulting in a correlation be-
tween pixel.

• The half-ring difference is sensitive to high-frequency noise since most low-frequency modes are
common to both data sets and thus vanish. At high resolution, pixels are correlated by time re-
sponse deconvolution and filtering (sec.3.3.1). At large scales is the low frequency noise residual
due to the destriping that dominates.

• The half-mission differences, allows to check for long-time-scale variations and for apparent gain
variation with time due to ADC nonlinearities.

• Detector-set map differences shows systematic effects that are bolometer-dependent. Also, there
is a tilt in the spectrum of the detector-set difference maps relative to the half-ring or half-mission
split. This is due to a different time response function for the two halves in the case of detector set.
At 353 GHz, signal residuals are larger due to relative calibration uncertainties between detectors.
Despite these comments, DS maps are used in this thesis since their systematic effects are not
dramatic and they provide a strong consistency check for the robustness of cosmological parameter
estimation.

3.5 Planck foregrounds

Revealing the cosmological information concealed in the CMB signal comes together with the study of
the foregrounds emission from the cosmic structures at all scales located between the CMB and us.
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Figure 3.11: Planck HFI full mission intensity maps at 100, 143, 217, 353, 545 and 857 GHz (Planck
Collaboration. VIII 2015).

In appendix A.1 we briefly describe some of the astrophysical products of the Planck Collaboration,
as the catalogue of Compact Source that is relevant for us since we need to construct a mask to avoid this
contamination for cosmological parameter estimation.

Also, the wide frequency coverage of the Planck mission is fundamental to characterise and separate
diffuse foregrounds. Eight types have been identified: dust thermal emission; dust anomalous emission
(from rotating small grains); three CO rotational lines; free-free emission; synchrotron emission; the
Cosmic Microwave Background (CIB); Sunyaev-Zeldovich secondary CMB distortions; and the back-
ground of unresolved radio sources.

The characterisation of these foregrounds is fundamental for a proper estimation of the cosmological
parameters. In this section, to revise the various component, we show some results extracted from Planck
maps, using different techniques, and in some cases with the help of external ancillary maps tracing
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Figure 3.12: Planck-HFI full mission Q (left) and U (right) polarization maps. from top to bottom: 100
GHz, 143 GHz, 217 GHz, and 353 GHz

specific astrophysical components or prior knowledge of the spectral energy distribution of the power
spectrum.
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Figure 3.13: TT and EE power spectra reconstructed from the half-difference between data subset maps
(Planck Collaboration. VIII 2015).

Foregrounds maps can be obtained using CMB component separation techniques. In this thesis,
component separated maps are not directly used since a more detailed `-by-` removal of foregrounds
and a proper account of different frequencies contribution is needed to obtain the best cosmological
parameters. A brief description of component separation methods is postponed to appendix A.2.

However, it is interesting to have an overview of all the foregrounds seen by Planck satellite, both
to justify the choices of the frequencies bands and to have a first description of the foreground models
relevant for the HiLLiPOP likelihood, discussed in more details in chapter 5.

Fig.3.14, 3.15(a) and 3.15(b) are obtained using the Commander algorithm (sec. 6.1.1).This compo-
nent separation algorithm employs detector and detector set maps and adds 9-year WMAP temperature
sky maps (Bennett et al. 2013) and 408 MHz survey map (Haslam et al. 1981, 1982).

Main temperature foregrounds

In the foreground emission a Galactic and an extragalactic component can be identified.
In temperature, one can distinguish the following Galactic contaminations:

• Above 100 GHz the dominant radiation mechanism is thermal emission from the interstellar dust
grains mostly made of graphites, silicates, and PAHs (Polycyclic Aromatic Hydrocarbons) in the
Galaxy (e.g.Ichiki (2014)). Thermal dust emission is thus the most important foreground that we
have to treat in our likelihood analysis.

Its spectrum is well described by a modified black-body of the form I(ν) ≈ νβd Bν where Bν(T )
is the Planck spectrum. Along the Galactic plane, a temperature gradient can be seen from the
outer Galactic regions to the Galactic center from T ≈ 14 − 15 K to T ≈ 19 K probably due
to more active star formation in the inner regions of the Galaxy (Planck Collaboration 2011).
Clearly, considering only a gray-body with a single component of grains is a rude approximation
and a more complete description has to deal with different sizes and compositions for the grains.
To proper model Galactic dust also the subtraction of extragalactic sources, appearing as Cosmic
Infrared Background (CIB) is needed8 (sec.5.6.1).

8The model used by the Commander does not separate the Galactic thermal dust emission from CIB fluctuations. These
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3.5 Planck foregrounds

Figure 3.14: Maximum posterior intensity maps obtained using the Commander algorithm. From left to
right, up to down: CMB, syncrothron, free-free, spinning dust, 94/100 GHz (a general line
emission map which capture a combination of emission line detected with HFI 100 GHz
and WMAP W bands ( 94 GHz)), and CO lines J = 1 → 0, J = 2 → 0 and J = 3 → 2
respectively (Planck Collaboration. X. 2015).

• At lower frequencies there is the diffuse synchrotron emission, generated by relativistic cosmic-ray
electrons spiraling in the galactic magnetic field. Its intensity follows a power law I ∼ να with
α ∼ −3. Although the lowest Planck frequency is dominated by synchrotron emission, the map in
Fig.3.14 is also completely determined by the 408 MHz survey.

• The free-free is the bremsstrahlung radiation from electron-ion collision. The spectral emission is
again a power law but the spectral index is weaker (α ∼ −2). For Commander the free parameter
in the model is the emission measure (EM) namely the integrated squared electron density along
the line of sight, measured in cm−6pc.

• There is also an anomalous foreground emission at 20–60 GHz for which the currently most plausi-
ble candidate is tiny PAH particles spinning with dipole moments, i.e., spinning dust (e.g.Lazarian
& Finkbeiner (2003); Ichiki (2014)).
Using Commander, neither WMAP nor Planck data have the statistical power to disentangle spin-
ning dust from synchrotron but the joint global analysis give the results in Fig.3.14. There is
however a disagreement with WMAP results on the relative amplitude of synchrotron and spin-
ning dust, sign of the complexity of the astrophysical foregrounds at low frequencies (Planck
Collaboration. X. 2015).

therefore constitute a significant contaminant in this thermal dust model on small angular scales.
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(a) (b)

Figure 3.15: (a) Brightness temperature rms as a function of frequency and astrophysical component for
temperature. Each component is smoothed to an angular resolution of 1◦ FWHM, and the
lower and upper edges of each line are defined by masks covering 81 and 93% of the sky,
respectively. (b) The same is shown here for polarization, the corresponding smoothing
scale is 40′, and the sky fractions are 73 and 93%. (Planck Collaboration. X. 2015)

• Between the foreground emissions of the Galaxy at microwave frequencies, also the rotational
transitions of carbon monoxide (CO) have to be considered. In fact, the frequencies of the lowest
three rotational transitions of CO, namely J = 1 → 0 at 115 GHz, J = 2 → 0 at 230 GHz, and
J = 3 → 2 at 345 GHz are respectively in the 100 GHz, 217 GHz, and 353 GHz transmission
bands of HFI. In Fig.3.14 a general line emission map which capture a combination of emission
line detected with HFI 100 GHz and WMAP W bands ( 94 GHz) is also shown together with CO
lines maps for the three transitions respectively.

Residual extragalactic foregrounds are composed of emissions from SZ clusters, radio sources, and
dusty galaxies. They contain Poisson terms and, for SZ and the CIB, correlated terms as well.

• The Sunyaev Zel’dovitch effect (SZ) is the distortion of the CMB spectrum dues to inverse Comp-
ton interaction with electrons in clusters (sec.1.3.6). The Planck Collaboration has released a
catalogue of clusters detected via the SZ effect (appendix A.1). Via adapted component separation
techniques, is possible to extract the angular power spectrum of the unresolved thermal SZ (tSZ).
This techniques has some advantages over cluster counts since no explicit measurement of cluster
masses is required. However, the tSZ angular power spectrum include potential contamination
from point sources and other foregrounds (Planck Collaboration. XXI. 2014).

• The relic emission from galaxies formed throughout cosmic history appears as a diffuse, cosmo-
logical background. The CIB is the far-infrared part of this emission and it contains about half
of its total energy. Produced by the stellar-heated dust within galaxies, the CIB carries a precious
information about the process of star formation (Lagache et al. 2005). First seen with the COBE
satellite (Puget et al. 1996), it is now well measured by the Planck satellite (Planck Collaboration.
XXX. 2013).

• The unresolved part of point sources contains both synchrotron emission from radio galaxies and
a component from dust emission in galaxies. The spatial correlation of this sources can be consid-
ered negligible and, therefore, their power spectrum is simply Poissonian.
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Main polarisation foregrounds

For polarisation, at the level of sensitivity of current experiments, only two diffuse components, beside
CMB, have been clearly detected:

• Synchrotron photons are emitted by cosmic ray electrons accelerated by the magnetic fields, and
therefore are polarized perpendicular to the field lines. and the mean polarization degree is ∼ 14%
at high Galactic latitudes. It is however negligible in polarization at high frequencies, so it will
be not included in our analysis. Interesting, while synchrotron is polarised, the thermal free-free
emission is intrinsically unpolarised because the scattering directions of electrons are isotropic and
random (Dulk 1985).

• The only polarised foreground relevant for our analysis is the thermal emission rising from aligned
interstellar dust. It is really important to have a deep understanding of this foreground since it
limits our capabilities of measuring large scale E and B modes and all the interesting physics that
goes with it (sec.1.4). Even if one suppose to know the composition of grains, their polarization
depends on the grain shape and grain alignment. The latter is quite complex to characterise since
one may expect variations of alignment depending on grain environment, which can introduce
substantial variations of the polarization with frequency.

Fig.3.15(b) summarises these polarised contributions in term of brightness temperature rms. This is
the first version of such a plot that is based on observations alone.

Conclusions

In this chapter we have described the Planck satellite, an ESA project with two main instruments in the
focal plane, LFI and HFI. Based on the bolometric technology, the data from this latter are the central
theme of this thesis. Its three lowest frequency channels are indeed dominated by the CMB signal we
want to study. We have briefly presented the HFI data treatment pipeline unto the map-making process to
produce temperature and polarisation full-sky maps that are used in chapter 5. The last part of the chapter
has been dedicated to the description of the unavoidable foreground emission present in the Planck wide
frequency coverage. This will also be useful in chapter 5 when dealing with the masks and the residual
foreground contamination.
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Chapter 4

Estimation of cosmological parameters

In chapter 5 we will describe how to build a model for the Planck experiment in the form of a likelihood

LPlanck(θ = (Ω,ψ)) = LPlanck(data|C`(Ω),ψ)) (4.1)

where the model depends on the cosmological parameters Ω through the C` and we have included in ψ
all the nuisance parameters.

In this chapter we anticipate the description of the statistical methods used to extract from L(θ) the
“best” estimations of the parameters θ̂ and their credible or confidence intervals.

We present two different methods:

• The Bayesian Monte Carlo Markov Chain (MCMC), main-stream method in cosmology, is pre-
sented in sec.4.2. MCMC is not intrinsically a Bayesian method but allows to avoid lengthy (or
impossible) calculation of high dimensional integrals; its application to cosmological parameter
estimation for the CMB, proposed in Christensen et al. (2001), has known a growing success in
the last decades.

• The second method (sec.4.3) adopts the frequentist Profile Likelihood approach, widely used in
particle physics, and recently exploited for the 2013 Planck release (Planck Collaboration A54
2014).

The comparison of the two methods is particularly interesting for the determination of the sum of
neutrino mass, where the presence of a physical boundary (the sum of the masses being greater then
zero) can be a subtle issue to deal with. It is also interesting in the case of highly correlated variables
as (τ, As) in the high-` region, treated differently in the two cases. While in this chapter we detail these
methods, we postpone a discussion on the results obtained with Planck data to chapter 8.

4.1 The frequency and the subjectivity

The founding concepts of frequentist and Bayesian statistics are deeply different. More naturally applied
in the context of particle physics analysis, the frequentist approach is not popular in cosmology. The
contrary is also true, even if Bayesian analysis exist in particle physics (e.g. Casadei & Kröninger
(2015)). Alongside the adepts of one or the other, there is a part of the scientific community that uses both
methods, choosing the most suited one to answer some questions of interest. In this thesis, joining this
agnostic community, we use the two methods for the extraction of cosmological parameters. However,
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the profound conceptual interpretation remains incompatible between the two methods. This section
outlines these differences1.

In frequency theory, the probability of an event A is defined as the limit of the number of times we
observe the event

P(A) = lim
N→∞

n
N

(4.2)

The frequency of occurrence of a random event, despite the irregular behaviour of a single event, con-
verges to a constant value when the number of experiments (performed in stable conditions) tends to
infinity. In a finite sample, the frequency is subject to fluctuations but these are assumed to decrease
when the sample size increases and eventually tend to the true value.

A typical example is the measurement of the lifetime of unstable atoms, the true unknown value being
τ. We measure a sequence of results {t1, t2 · · · tN}. Although unknown, τ is fixed and we can not make
probability statement on it. The ti are, on the contrary, random variable distributed with a likelihood

t ∼ f (t|τ) (4.3)

The values of τ that produce an unlikely value of the data have to be rejected.

In Bayesian statistics, the fact that τ is unknown means that it is subject to probabilistic statements.
On the contrary, data, once measured, are no longer random variables, but are fixed. The likelihood f (t|τ)
is a subjective distribution that express the experimenter’s believe on τ, prior to the data. Thus, while in
frequency theory probabilities are absolute as they expresses a status of nature, in Bayesian theory they
are just assigned and reflect our belief in the proposition. It is a measure of plausibility expressed as a
real number between 0 and 1. Before doing the experiment, we have a prior knowledge on τ, P(τ). Then
we measure t1 and we can use Bayes theorem2 to invert the expression

P(τ|t1) =
f (t1|τ)P(τ)∫
f (t1|τ)P(τ)dτ

(4.4)

Our knowledge has increased and we can use the posterior probability P(τ|t1) as the prior for the next
measurements, showing how our subjective degree of belief evolves with time and knowledge.

The prior P(τ) represent what we know about the parameter which may result from other experiments
or just our opinion on its value. It is a very natural way of encoding our previous knowledge but what if
two different scientists have different opinions? The defence to this point is that there are indeed priors
that are shared by the community (for example we built experiments to search for value of r strictly
smaller then one (sec.1.2.2)). Logical consistency difficulties may arise also if we would like to keep
the priors un-informative (imagine we know nothing and we have no a-prior opinion). Different choices
for the parametrisation of the same data can lead to different results because the constant probability
has been associated to different parameters. There are however several methods that try to define them
consistently (Jefferys 1983).

4.2 Bayesian inference via Markov Chain Monte Carlo methods

We can rewrite the Bayesian posterior for our likelihood in Eq.4.1, using Eq.4.4

P(θ|Planck) =
LPlanck(Cl,ψ)P(θ)∫
LPlanck(Cl,ψ)P(θ)dθ

(4.5)

1The discussion about the Bayesian vs. frequentist approaches is addressed in many books and articles. This section is
inspired by the public available notes on statistic of T. del Prete: https://delprete.web.cern.ch/delprete/statistics.html

2P(A|B)P(B) = P(B|A)P(A)
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4.2 Bayesian inference via Markov Chain Monte Carlo methods

Given the data, the degree of belief in the assumed model is given by this posterior probability. P(θ)
represents the priors.

As has been described in chapter 5, the likelihood of Eq.4.1 (and thus P(θ) and P(θ|Planck)) depends
on a sizeable number of parameters. These includes the six ΛCDM parameters (plus the parameters for
some extended models, in our case

∑
mν or Neff but also Alens or the DE sector or Ωk, r, etc.), plus all the

astrophysical parameters and the calibrations. The dimension of the problem is thus already greater than
20. We may also want to add all the parameters needed to describe the very-high-` data of SPT and ACT
(describe in chapter 6), growing faster to about 40 parameters.

For computing the mean or a credible interval for each parameter we have to integrate the posterior
distribution which is a computationally challenging high-dimensionality integration. Also the calculation
of the normalising constant at the denominator of Eq.4.5 poses the same problem, even though it can be
forgotten in the inference problem being only important for model selection.

The complexity of the problem at hands makes impossible an analytic solution and we have to rely on
numerical techniques. A classical non-probabilistic method is to use a regular grid to perform numerical
integration. Unfortunately, the problem grows extremely fast with the dimension in this case.

Monte Carlo methods propose to use stochastic samples instead of the grid. The development of
these techniques is thus intrinsically linked to random number generators. Beside Fermi’s studies on
neutron diffusion in the 1930s, the modern Monte Carlo technique have been invented by Ulam during
the wartime period at Los Alamos, and successfully applied by von Neumann and others (Ulam et al.
1947). The fundamental role of this technique in physics, decisively boosted by the beginning of the era
of digital computers, is now an evidence. In the next section we briefly revise the Monte Carlo principles
and describe some famous techniques. These standard algorithms are limited when dealing with high
dimensionality (say greater than ∼10). The principle of using ergodic Markov Chains for Monte Carlo
integration is described in sec.4.2.3. In MCMC methods the time needed to sample a distribution grows
approximately linearly with dimension, allowing to find in reasonable time a solution to our problem.

Note that Monte Carlo and MCMC are not intrinsically Bayesian. They provide only approximate
integrals and sample from distributions. We present them in this section because they are fundamental to
the Bayesian formulation. Interestingly, the story went the other way: the capabilities of these techniques
to compute high-dimensional integrals boosted the popularity of Bayesian statistics.

4.2.1 Monte Carlo integration

Imagine we have a probability density function π(x) (e.g. the posterior distribution of Eq.4.5) and we
would like to calculate the expectation value

E[ f (x)] =

∫
f (x)π(x)dx (4.6)

We can approximate it numerically using a grid of equally spaced points and reconstruct the entire
integral. This is inefficient and computationally costly. The Monte Carlo principle suggests to evaluate
E[ f (x)] by drawing identical and independent distributed (i.i.d) samples xt, t = 1, ...,N from π(x), and
use

E[ f (x)] '
1
N

N∑
t=1

f (xt) (4.7)

Using the i.i.d samples from π(x) is more efficient since there will be more points in the high probability
regions of π(x), that weights more in the calculation of the integral. Moreover, the Law of large numbers
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tells us that, by increasing N, the approximation can be as accurate as desired. The standard deviation
of the approximated integral is proportional to 1/

√
N. This dependence is characteristic of the sampling

nature of the method and is the same independently of the dimensionality of the problem. But we must
be able to draw i.i.d samples from π(x).

In some simple cases the problem of sampling from π(x) can be bypassed by a transformation of
variable that guides us to an easier-to-sample distribution. In other cases, if the cumulative distribution
is known, is sufficient to draw sample from an uniform distribution U in [0, 1] since F−1(U) ∼ π.

More interesting are the techniques to deal with more complex π(x)

Rejection Sampling

If we are able to find a simple distribution q and a constant M > 0, such that

π ≤ Mq (4.8)

where in general q is a Gaussian or a Gamma distribution, then we can sample according to q. The point
is then accepted or rejected using the following criterion developed by von Neumann

• sample x∗ ∼ q and u ∼ U[0,1]

• if u < π(x∗)
Mq(x∗) accept x∗

• else reject x∗

This guarantees that the final accepted sample are distributed according to π(x).
A good knowledge of q and M is required; the closer Mq to π, less samples are rejected. It is however

not obvious to be able to find good q and M. In this case, important sampling can be used.

Importance Sampling

This method is based on the following identity∫
f (x)π(x) =

∫
f (x)

(
π(x)
q(x)

)
q(x)dx = Eq(x)

[
f (x)

(
π(x)
q(x)

)]
(4.9)

If we are able to sample q(x), then using Eq.4.7, we can write∫
f (x)π(x) '

1
N

N∑
t=1

f (xt)
(
π(xt)
q(xt)

)
(4.10)

where xt ∼ q(x).
The idea behind this formula is to get samples from the interesting and important region of π(x). This

is done by sampling from a distribution that overweights the important region, hence the name impor-
tance sampling. In Eq.4.10, by making a multiplicative adjustment to f , we compensate for sampling
from q instead of π. The adjustment factor π(x)

q(x) is called the likelihood ratio, the distribution q is the
importance distribution and π is the nominal distribution. This method allows to avoid wasting of sam-
ples but the choice of a good importance sampling distribution requires some “educated guessing” and
sometimes numerical search3.

3For a more detailed discussion see for example the notes of Professor Art B. Owen from Stanford University
http://statweb.stanford.edu/ owen/courses
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4.2 Bayesian inference via Markov Chain Monte Carlo methods

Going to high dimensionality, these methods have limitations. Let σ be the variance of π. For
rejection sampling, the fraction of accepted samples goes as σ−d thus a lot of samples are wasted and the
algorithm is very inefficient.

For importance sampling, the variance of the likelihood ratio can go as σd (Bardenet 2013).
The methods that can replace standard Monte Carlo integration efficiently when dealing with high

dimensional integrals are described in the rest of this section. We use no more i.i.d. samples but ergodic
Markov chains.

4.2.2 Markov Chain Monte Carlo

Monte Carlo Markov Chain methods supply a way to sample from a high dimensional probability dis-
tribution π(.) (where (.) means any vector) using an ergodic Markov chain X with desired stationary
distribution. The main idea is thus to substitute the Monte Carlo principle of Eq.4.7 with

Eπ[ f ] ' f̄N =
1
N

N∑
t=1

f (Xt) (4.11)

where now Xt is the t-th element of the Markov chain and the sum is an ergodic average.

Next section is dedicated to the clarification of some basic concepts regarding Markov chains. In
sec. 4.2.4 the classical Metropolis-Hasting algorithm is presented with an analysis on how to tune it for
proper and efficient convergence. This motivates the choice for an easier-to-tune version of the algorithm,
the adaptive MCMC, detailed in sec. 4.2.6. This latter is used for CMB parameter estimation in the rest
of this thesis.

4.2.3 Markov chains: basic concepts

We follow here the discussion of Gilks et al. (1996) and Walsh (2004).
A Markov chain is a random process {X0, X1, ...} with the following property: the system at Xt depend
only on Xt−1. In other words, the only information about the past needed to predict the future (Xt), is the
current state (Xt−1). This can be written as

P(Xt ∈ X|X0, X1, ..., Xt−1) = P(Xt ∈ X|Xt−1), (4.12)

where X is the set of values that compose the chain. In a compact notation one can define Pi j(t) = P(Xt =

j|X0 = i) as the transition probability or kernel to go from a point i in parameter space to a point j.

Under several conditions the distribution of X converge to a stationary distribution. For this to
happen, the chain needs to be irreducible, aperiodic and positive recurrent.

• X is called irreducible if ∀ i, j ∃ t > 0 s.t. Pi j(t) > 0.
In some number of iterations, one can always go from a state to another.

• An irreducible chain X is called aperiodic if the number of steps required to move between two
states is not a multiple of some integer. The chain is thus not oscillating between different sets of
states in a periodic way.

• An irreducible chain X is called recurrent if P[τii < ∞] = 1, where τii = min{t > 0 : Xt = i|X0 = i},
i.e. the minimum number of steps to come back on a point in parameter space.
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• An irreducible recurrent chain X is called positive recurrent if E[τii] < ∞, or equivalently

∀ j, t ≥ 0 ∃ π(.) s.t.
∑

i

π(i)Pi j(t) = π( j), (4.13)

where π(.) is the stationary distribution. This means that if the initial value X0 is sampled from
π(.), also the subsequent iterates will be distributed according to it.

A sufficient condition for a unique stationary distribution is that

π(i)Pi j = π( j)P ji (4.14)

in this case the chain is said to be reversible. This condition implies Eq.4.13. One can consider that this
condition holds for the chains produced via MCMC algorithms.

If X is positive recurrent and aperiodic then its stationary distribution is the unique one satisfying
4.13. Then one says that X is ergodic and:

• Pi j(t)→ π( j) as t → ∞ ∀i, j

• I f Eπ[| f (X)|] < ∞, then P[ f̄N → Eπ[ f (X)] = 1

This latter condition is the crucial point validating MCMC methods in the sense of Eq.4.11. Nevertheless,
we have no clue on how long to run a Markov chain before its iterations are distributed according to π(.)
and we have no estimate of the error on f̄N . One can thus require a particular kind of ergodicity.

A chain X is geometrically ergodic, if there exist 0 ≤ λ ≤ 1 and a function V(.) > 1 such that∑
j

|Pi j(t) − π( j)| ≤ V(i)λt (4.15)

for all i. The smallest λ (λ∗) for which there exist a function V(.) satisfying this condition is called rate
of convergence. The geometric convergence allows the existence of the central limit theorem for ergodic
averages

N1/2( f̄N − Eπ[ f ])→ N(0, σ2) (4.16)

for some positive constant σ, as N → ∞. It can also be demonstrated that σ2 ≤ 1+λ∗

1+λ∗ . Clearly to asses the
validity of the MCMC method one need to be able to estimate σ2. The precise mathematical framework
to describe convergence criteria is out of the scope of this thesis. We will however treat how, in practice,
a diagnostic of convergence can be performed (sec.4.2.8).

4.2.4 Metropolis-Hastings algorithm

The use of Markov chains for Monte Carlo methods date back to the Monte Carlo origins at the Los
Alamos Scientific Laboratory (Metropolis & Ulam 1949; Metropolis et al. 1953). The algorithm pro-
posed by Metropolis and others was generalised by Hastings in 1970 (Hastings 1970). Both require the
use of an auxiliary function q(X|Y), such that q(.|Y) is the probability density for each Y . As for stan-
dard MC methods, one wants to explore a support spending more time in place where π(.) is high. The
transition probability density from the point X to Y thus read

PXY = q(X|Y)α(X,Y) where α = min
[
1,
π(Y)q(X|Y)
π(X)q(Y |X)

]
(4.17)

Since we want to deal with d-dimensional problems, each point X in the chain is a vector of d compo-
nents.
The Metropolis-Hastings (MH) algorithm is the following
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Figure 4.1: A visual representation of Metropolis-Hastings algorithm. The target distribution π(.) is
a 2D Gaussian. The stating point is in red. The chain explores the space spending more
time where π(.) is high. Rejected moves are showed in violet, accepted moves in light blue.
Already from this first few point we can guess the shape of the target distribution.

1. Choose a starting point X0;

2. generate a value Y from a proposal density q(Y |Xt);

3. evaluate the test ratio α (Eq.4.17);

4. generate a value u uniformly distributed in [0, 1];

5. if u ≤ α(Xt,Y) set Xt+1 = Y else set Xt+1 = Xt;

6. increment t.

There is indeed also the possibility to reject a proposed move. This is done with probability 1-α. A
visual example of the behaviour of the algorithm is presented in Fig.4.1.
The difference between the Metropolis and the Hastings version of the algorithm reside in the properties
of the proposal density q.
We have considered an arbitrary transition probability function q(Y |X) = P(X → Y) that is not necessarily
symmetric in X e Y . The Metropolis algorithm is a special case of the MH, where q(Y |X) = q(X|Y).
Looking at Eq.4.17 we see that in this case the expression for α simplifies to

α = min
[
1,
π(Y)
π(X)

]
. (4.18)

For a problem similar to the one we have to deal with, the most convenient choice is a symmetric pro-
posal. We will come back on this soon. Note that the posterior appears always in a ratio. This means that

one is not force to calculate the normalisation factor of π(.), i.e. the integral at denominator in Eq.4.5.
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Single-component Metropolis-Hastings

At every step in the iteration, MH algorithm updates simultaneously the the n-dimensional element of
the chain X. There are however methods where, for every step of the chain, the components of the vector
X. {X.1, ..., X.n} are considered separately. Here . means whatever iteration.

Following again the notation of Gilks et al. (1996) one can define

Xt.−i ≡ {Xt.1, ..., Xt.i−1, Xt.i+1, ..., Xt.n}. (4.19)

At step t, Xt.−i is a n − 1-dimensional vector that comprises all of Xt except X.i.
At iteration t+1, to update Xt, one uses the MH algorithm for every component of the vector. Imagine

at step i of iteration t+1, one has already updated the components 1, 2, ..., i−1. To update Xt.i, a candidate
from distribution qi(Y.i|Xt.i, Xt.−i) is proposed. This is indeed a candidate only for the i-th component of
Xt. It may depend on the current values of any of the other component. This candidate is accepted with
probability

α(X.−i, X.i,Y.i) = min
(
π(Y.i|X.−i)qi(X.i|Y.i, X.−i)
π(X.i|X.−i)qi(Y.i|X.i, X.−i)

)
, (4.20)

where π(X.i|X.−i) is the full conditional distribution for X.i under π(.). If the candidate is accepted Xt+1.i =

Y.i, otherwise Xt+1.i = Xt.i.

A special case of this single-component version of MH is the Gibbs sampling (Geman & Geman
1984). In this case the proposal distribution for the update of the i-th component reads

qi(Y.i|X.i, X.−i) = π(Y.i|X.−i). (4.21)

From Eq.4.20 it is easy to see that α is always one, in other word the point is always accepted.
This is probably one of the most used MCMC sampler, since it is powerful and easy to implement.

In Planck data analysis it pops up frequently. It is used for component separation inside the Commander
algorithm (see sec.A.2) but also to provide a nuisance-free version of the likelihood to the community
(Planck Collaboration A13 2015).

Note that this version of the algorithm updates components always in the same order. This is not
necessary and one can imagine more complicated techniques where the i-th component is selected with
fixed probability, or where we spend more time updating the more correlated ones. All these techniques
can speed up the convergence but inevitably complicate the mathematical justification of the method.

A bunch of other MCMC techniques are discussed later in this chapter but the discussion is by no
means exhaustive. For a detailed discussion see again Gilks et al. (1996) or Berg (2004) and Hobson
et al. (2010).

Marginalisation

The posterior distribution of Eq.4.5 is a joint distribution of the cosmological parameters and the nuisance
parameters, but one may want to reconstruct the posterior distribution of a single parameter of interest.

Imagine we have a 2D distribution depending on two parameters, α and β. The marginalised distri-
bution of β reads

p(β|D) =

∫
p(α, β|D)dα. (4.22)

This can be easily generalised to a multidimensional problem, requiring the integration of the posterior
distribution over all the parameters that one would like to exclude.
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(a) (b)

Figure 4.2: (a) Posterior distribution of bivariate Normal distribution sampled via MCMC algorithm.
(b) The marginalised posterior distribution of one of the two is automatically obtained as the
histogram of the element of the chain corresponding to it.

Indeed, one of the great advantage of using MCMC techniques is the simplification of this marginal-
isation problem. Going back to our 2D example, using whatever MCMC algorithm one generates a
chain (αt, βt) from the joint distribution p(α, β|D). This automatically provides (βt) from the marginal-
ized PDF. There is no need to compute the integral. The distribution of the parameter β of the chain
follows the distribution of Eq.4.22. Clearly this is true also for α: the values αt are distributed according
to p(α|D) =

∫
p(α, β|D)dβ. A simple visual example is given in Fig.4.2(a) and 4.2(b).

4.2.5 Choice of the Proposal Distribution

A proper choice of the proposal distribution q(Y |Xt) is fundamental for an efficient exploration of the
posterior. If we have small trial steps, the acceptance rate (the number of accepted moves on the total
tried) is too high since the difference between π(Y) and π(Xt) is in general small for close points in a
smooth distribution. In this case the chain behaves locally like a random walk and it is not spending
more time where π(.) is high with respect to the tails. On the contrary, for too large trial steps, the chain
remains stuck at one point before accepting a step, resulting in a very low acceptance rate. The initial and
final point are almost uncorrelated but the jump occur infrequently. The exploration is slow and possibly
inaccurate.

So how do we choose the proposal? This is not a trivial issue and depends of the problem at hands.
Mostly for practical reasons, the standard choice is a multivariate Gaussian distribution centred on the
last point of the chain q(.|Xt) = N(Xt,Σ). A Gaussian distribution is a symmetric proposal in the sense of
q(Y |X) = q(X|Y). Eq.4.18 is thus valid and we are in the case of simple Metropolis algorithm.

Let’s imagine we have a simple problem for which we do not need the off-diagonal terms of the
matrix Σ. We are left with a collection of one-dimensional Gaussian proposals with variance σ2. We
can thus reformulate the problem: how can one choose the tuning parameter σ? A simple example of
how the value of σ intervenes in the exploration of the posterior is shown in Fig.4.3(a) and Fig.4.3(b),
where the target distribution is a χ2-distribution with 3 d.o.f.. With σ = 1 for the proposal (Fig.4.3(a))
the number of consecutive rejections stays small and the acceptance rate is too high. With σ = 10
(Fig.4.3(b)), consecutive rejections are much more common and acceptance rate is low. In practice,
building an histogram with these samples would give very poor results. A good rule of thumbs, for the

89



4. ESTIMATION OF COSMOLOGICAL PARAMETERS

acceptance rate when both the proposal and the target are Gaussian is (Gelman et al. 1996):

σprop

σtarget
=

2.4
√

d
, (4.23)

where d is the dimension of the problem. Then:

• for d = 1, 2, acceptance rate should be ∼ 0.5

• for d ≥ 3, acceptance rate should be ∼ 0.25

In our example of sampling a χ2-distribution with 3 d.o.f., the target distribution is unidimensional but
not Gaussian. However, this standard value of 0.5 for the acceptance rate is still an indication to follow,
as we will see in sec. 4.2.8. In Fig.4.6(b) is shown the posterior distribution obtained using a tuned value
of the proposal.

(a) (b)

Figure 4.3: Histograms of the number of consecutive rejections obtained sampling a χ2-distribution with
3 d.o.f. using, for the proposal, a Gaussian distribution with σ = 1 in (a) and σ = 10 in (b).
In these two cases the acceptance rate is respectively too high (0.88) and too low (0.36).

Interestingly for our problem of estimating cosmological parameter, Eq.4.23 tells us that, up to a
rescaling factor, the best choice for the tuning parameter σprop is the σtarget. This means that if we
know it already, or if we have an idea of it, we are able to use the Metropolis algorithm in a fast and
efficient way. On the contrary, choosing a good proposal requires a long fine tuning especially when
there are unknown correlation among the parameters. The Adaptive algorithm (sec.4.2.6) that we have
implemented to estimate cosmological parameters in this thesis obviates this problem.

4.2.6 The Adaptive algorithm

The Metropolis algorithm works very well on all the toy Gaussian cases that we have studied. We can
easily sample any multivariate normal distribution using another multivariate normal distribution with a
simple diagonal covariance matrix. Using the rule of thumb of Eq.4.23, if we have an idea of the order
of magnitude of Σii = σi (i.e. the error on each parameter in our problem), we reach convergence in a
reasonable time. This remains true when we run the algorithm on toy cosmological models, namely a
multivariate normal distribution that mimics the dimensionality (the ∼20 parameters discussed in chapter
5), the correlations and the order of magnitudes of the errors of the posterior distribution of a full-sky
CMB experiment like Planck or WMAP.

When we are facing the real posterior distribution of Eq.4.5 this is no more the case. The Metropolis
algorithm becomes slow if the covariance matrix of the proposal is not well estimated. We are forced to
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run long chains, then try to guess the covariance matrix from them, and use again this estimation as a new
input tp the proposal. With this reiterated procedure we time since every call of the likelihood function
implies a call to the Boltzmann code (sec.1.5.1) that can need up to a few seconds to complete. Moreover,
if the shape of the foreground posteriors is highly non Gaussian the algorithm may not properly converge
at all.

Clearly, a simple Metropolis algorithm is not what is used in general for estimating CMB cosmolog-
ical parameters (e.g. (Lewis & Bridle 2002; Lewis 2013; Das & Souradeep 2014)). There are plenty of
fancy solutions to speed up the estimation. For the work in this thesis we have implemented an adaptive
(AM) version of the base algorithm (Haario et al. 2001) as proposed to us by the AppStat group at LAL.
In this case the tuning of the design parameter of the algorithm (i.e. the entries of the Σprop of the pro-
posal) is automatic and on the fly. It makes use of all the previous steps of the chain. The implementation
is easy since we may apply a recursion formula and, more importantly, the rapid start of the adaptation
diminishes the number of function evaluations needed.

Keeping memory of all its history, the process is no more Markovian. So, does the adaptive algorithm
have the correct ergodicity properties? It is indeed mathematically difficult to deal with non basic MCMC
methods, and a lot of the algorithm used by the scientific community are not assured to have the right
properties for convergence. Nevertheless, for the AM algorithm, the asymptotic dependence between
the elements of the chain is weak enough to apply the theorems of large numbers (Andrieu & Moulines
2006).

The Adaptive Metropolis algorithm is the following:

1. Choose a starting point X0, a starting covariance matrix Σ0 and a tuning parameter c;

2. generate a value Y from a proposal density N(Xt−1, cΣ);

3. evaluate the test ratio α = min[1, π(Y)
π(X) ];

4. generate a value u uniformly distributed in [0, 1];

5. if u ≤ α(Xt,Y) set Xt+1 = Y else set Xt+1 = Xt;

6. update running mean and covariance:

µt = µt−1 +
1
t

(Xt − µt−1), Σt = Σt−1 +
1
t

((Xt − µt)(Xt − µt)T − Σt−1) (4.24)

7. Increment t.

In practice, we have implemented some changes to the algorithm to use it properly in our case. These
are discussed in sec.4.2.9.

4.2.7 Others sampling techniques

The diffusion of Bayesian techniques in many fields of research has motivated the widespread of differ-
ent MCMC techniques. Each algorithm is in general tailored to particular problems and comparisons
between algorithms exist in literature (e.g. (Allison & Dunkley 2014)) and point in general to more effi-
cient techniques than the Metropolis or the Gibbs algorithms. To obtain the official Planck results, and
often for cosmological parameter estimation in general, the CosmoMC code, based on the MH algorithm,
is used (Lewis & Bridle 2002; Lewis 2013). CosmoMC is briefly described in sec.4.2.10 and compared
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to the Adaptive Metropolis we have developed in this thesis.
Clearly, other interesting algorithms exist. The Nested sampling (Skilling 2004, 2006), for example, af-
ter a first rapid exploration of the entire volume, oversamples the more likely regions. The samples are
then reweighed appropriately. Starting with Bassett & Kunz (2004), this technique has known a growing
success and is particularly suited for the Bayesian evidence estimation. When dealing with multi-modal
and curving distributions, more refined techniques need to be developed. Luckily, the current knowledge
of CMB data is strong enough to know that we deal in general with uni-modal and smooth distributions.
We have however implemented the Affine-invariant ensemble sampler (Goodman & Weare 2010). This
multi-particles method is also quite popular (e.g. (Akeret et al. 2012; Foreman-Mackey et al. 2013)) and
its main property is the invariance under linear transformation of the parameters space. As presented
later on, a curved distribution as the one in Fig.4.4(b), is as easily treated as a isotropic Gaussian. Even
if we do not use it for cosmological parameter estimation, this method is interesting in the presence of
computer clusters allowing for massive parallelisation (Allison & Dunkley 2014).

Ensemble samplers with affine invariance

The affine-invariant sampler presented in this section (in literature sometime called stretch move) is
realised simultaneously evolving an ensemble of k walkers S = {Xk} (Goodman & Weare 2010). Con-
sidering parallel chains is the basic idea of the multi-particle methods.

Let π(.) be the target distribution. Any walker is a d-dimensional chain, with d the dimension of the
posterior to sample.

The proposal for one walker is based on the current position of the others. Indeed, the proposed move
Y of the walker i drawing randomly a walker j from the set S −i = {X1, .., Xi−1, Xi+1, .., Xk}

Xi(t)→ Y = X j + Z[Xi(t) − X j], (4.25)

where Z is a random variable drawn from a distribution g(z).
If g(z−1) = zg(z) the proposal of Eq.4.25 is symmetric and the ergodic theorem is valid. The distri-

bution used is:

g(z) ∝
 1√

z if z ∈ [ 1
a , a] with a = 2

0 otherwise
(4.26)

The algorithm is the following:

for i = 1, ..., k do

1. Draw a walker X j at random from S −i;

2. generate a value z from the distribution g(z);

3. draw Y using Eq.4.25;

4. calculate q = zd−1π(Y)/π(Xi(t));

5. Generate a value u uniformly distributed in [0, 1];

6. if u ≤ q set Xi(t + 1) = Y else set Xi(t + 1) = Xi(t);

end for.

We follow some implementation advices from (Foreman-Mackey et al. 2013). We keep acceptance
rate in agreement with the rule of thumb of Eq.4.23. This can be done tuning the parameter a of Eq.4.26
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that is inversely proportional to the acceptance rate. It is also preferable to run the algorithm with a large
number of walkers (∼ 100). In Fig.4.4(a) we show the posterior distribution for one of the dimension
of a 6D parameter space, the target distribution being a multivariate Gaussian. Using 10 walkers and
running the chains for 1000 steps is indeed less efficient in the reconstruction of the target distribution
than running 100 walkers for 100 steps (this is linked to the discussion on multi chains convergence of
sec.4.2.8)

To reveal the advantages of the method we challenge it on a difficult 2D-case.
Let π(.) be the Rosenbrock density:

π(x1, x2) ∝ exp(−
100(x2 − x2

1)2 + (1 − x1)2

20
). (4.27)

The anisotropic cases pose, in general, severe problems to all MCMC samplers (for example our metropo-
lis algorithm fails to converge).

However, under affine transformation Eq.4.27 turn into a much easier problem. With almost no need
to tune the algorithm we obtain the posterior of Fig.4.4(b).

(a) (b)

Figure 4.4: (a) Posterior distributions for one of the six dimensions of a 6D multivariate Normal distri-
bution using the stretch move algorithm in different configurations: 10 walkers with 1000
steps (top) and 100 walkers with 100 steps (bottom). In fitting the distribution, we note a
trend (that is general) of better performance of the algorithm when the number of walkers
is larger. (b) Histogram of the posterior distribution of the Rosenbrock density (Eq.4.27)
easily sampled via the stretch move algorithm.

4.2.8 The question of convergence

The way MCMC works, does not rely on the Monte Carlo principle of having identical and independent
samples X1, X2, ..., neither on the fact that the chain has marginal distribution π(.). However, we have
seen that the marginal distribution of Xt is close to π(.) if the number of samples is large Geyer (1991).
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This consideration introduces the fundamental idea that, for being useful, our chain needs to be long
enough for Eq.4.11 to hold. Thus, to properly use a MCMC algorithm, convergence needs to be checked.
The issue is not trivial. What is typically done is to run a chain until the starting point is “forgotten”. This
period is called the burn-in. In Fig.4.5 is shown how, in a few steps, from four different starting points, as
many chains find the peak of the distribution. In general burn-in periods are chosen quite long for safety,
although Geyer (1991) argues that there is no need to wait too long and discarding 5% is enough. After
the burn-in each draw follows the stationary distribution.

The length of the burn-in phase is not easy to calculate. If the starting point is far from the peak of
the distribution, the “no dependence” regime is luckily to be reached in a longer time. Another example
in this sense is in Fig.4.6(a).

In practice, since our computational resources are limited, a too long burn in period is intractable.
As a consequence we have to make sure that the chain is really efficiently exploring the parameter space.
In literature this is often referred to as mixing. A by eye check on the behaviour of the chain is again a
useful test. In Fig.4.7(a) is shown an example of bad mixing while the chain in Fig.4.7(b) has a good
mixing.

Figure 4.5: Example of burn-in phase. Using Metropolis algorithm with a Gaussian proposal distribu-
tion (see sec.4.2.5), the space is explored with four chains, having different starting points.
The target distribution is a simple bivariate (2D correlated Gaussian centred in (0,0)) so in a
few steps every chain finds the peak.

Beside this simple diagnostic of bad mixing there are a lot of more sophisticated methods that have
been developed by the community. We present here some of them.

Gelman-Rubin test

In Fig.4.5 and 4.6(a) we have shown the behaviour of multiple chains on the same problem. In sec.4.2.7
we have also presented results using a multi particle method. As discussed in Geyer (1991), the use
of many short run, say m independent realisations of the same algorithm, should not be preferred to a
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(a) (b)

Figure 4.6: (a) The target distribution is a χ2-distribution with 3 d.o.f. The proposal distribution is a
Gaussian with fixed σ (see sec.4.2.5). Four chains are run using different starting points.
After step=400 the chains are clearly sampling the same distribution. (b) Posterior from one
of the chains after burn-in phase is cut out which agrees properly with a χ2

3.

single long chain4. First because the burn-in period has to be thrown away from each chain and secondly
because the sum

1
m

m∑
j=1

f (X j
n), (4.28)

has not the right ergodic convergence property. If m → ∞ some kind of law of large number enters the
game while a proper convergence would require not only m→ ∞ but also n→ ∞, i.e. long chains.
Multiple chains have, however, a diagnostic power and we always run more than one chain (in general
four) in the case of estimation of cosmological parameters and then merge the chains together, after
throwing the burn-in period. One of the test based on multiple chains that one can use to check conver-
gence is the Gelman-Rubin (GR) test (Gelman & Rubin 1992).

The basic idea of this test is to compare several sequences drawn from different starting points and
check if they are indistinguishable. Moreover, GR test gives an idea of how much the distribution esti-
mate may improve as iteration continues.

Suppose one runs m chains of 2n elements and considers only the last half n: X j
i with i = 1, .., n and

j = 1, ...,m. The following quantities can be defined:

• X̄ j = 1
n
∑n

i=1 X j
i mean of the chain;

• X̄ = 1
nm

∑n
i=1

∑m
j=1 X j

i mean of the distribution;

• B = n
m−1

∑m
j=1(X̄ j − X̄)2 variance between chains;

• W = 1
m(n−1)

∑n
i=1

∑m
j=1(X j

i − X̄ j)2 variance within a chain;

From this quantities one calculates the potential scale reduction factor (PSRF)

R ≡
n−1

n W + B
n ( m+1

m )
W

. (4.29)

4This is of course not a definitive statement but may depends on the type of problems and algorithm at hands.
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Figure 4.7: (a) Example of bad mixing for a given variable (b) Example of good mixing for another
given variable. These example are nuisance parameters taken from different test run of our
CMB likelihood.

The numerator is an estimate of the variance that is unbiased if one is sampling from the stationary
distribution, otherwise is an overestimation.
The denominator is, on the contrary, an underestimation of the variance of the target distribution if
the single chain is not yet converged. If R is high, either the chain has not reached yet the stationary
distribution, either W can still decrease meaning that the single chain has not yet explored the entire
target distribution. One expects R to be ∼ 1 when the chains are converged.

The prescription (e.g. Verde (2007)), which is used for the results of this thesis, is then to run the test
until:

R − 1 always < 0.03 (4.30)

A value of R as a function of the length of the chain should be calculated for each dimension of the
parameter space. The results of the test on the HiLLiPOP likelihood (chapter 5) is shown in Fig.4.8. Four
chains are run using the Adaptive algorithm (sec.4.2.6).

Estimation of autocorrelation

Another method to analyse the convergence of a chain is the estimation of its autocorrelation. At a fixed
distance between elements, called the lag, we can calculate

γ̂(lag) =
1
N

N−lag∑
i=1

[ f (Xi) − f̄N][ f (Xi+lag) − f̄N], (4.31)

where f̄N is defined in Eq.4.11. We would expect this autocorrelation to be smaller as the lag increases,
since in presence of good mixing the chain should forget its past.

If, on the contrary, autocorrelation is still relatively high for high values of the lag, this indicates that
there is still a high degree of correlation between our draws; a sign that mixing is slow and the chain is
stuck somewhere instead of exploring the whole parameter space.

It is also useful to calculate the integrated autocorrelation time τ̂int, namely the sum, over all possible
values of the lag, of the autocorrelation γ̂(lag). In order to get a god estimate it is necessary to down-
weight the terms for a large lag which are essentially noise due to the lower combinatorics (Geyer 1991).

96



4.2 Bayesian inference via Markov Chain Monte Carlo methods

1•104 2•104 3•104 4•104

length of the chain

0.0

0.2

0.4

0.6

0.8

1.0

R
-1

omega_b
omega_cdm
100*theta_s

tau_reio
n_s

log(10^10A_s)
nuisances

Figure 4.8: The Gelman-Rubin test R (Eq.4.29) as a function of the length of the chains. Four chains
are used for sampling the HiLLiPOP likelihood, then R is calculated for each parameter. We
show with different colors the cosmological parameters and in dahed blue all the nuisances
parameters included in the likelihood (chapter 5). The test is passed when R − 1 < 0.03.

σ proposal 0.5 1 3 6 10 20

acceptance rate 0.93 0.88 0.70 0.50 0.36 0.45

τ̂int 64.12 16.07 4.44 3.50 3.60 4.45

Table 4.1: Using χ2-distribution with 3 d.o.f. as the target distribution, we explore different choices
for the σ of the Gaussian proposal distribution. For every value we compute the value of
the acceptance rate and of the autocorrelation time (using Eq. 4.32). The minimum for τ̂int

corresponds to σ = 6 and acceptance rate ∼ 0.5, in agreement with the expectations.

One can write

τ̂int =

∞∑
lag=−∞

ω(lag)γ̂(lag) (4.32)

where ω(lag) is 1 for a small lag and 0 for a large lag, with any smooth curve connecting the two extrema
as a scaled cosine.
This estimate τ̂int is a useful diagnostic of convergence, the higher it is, the more samples are needed.
This can be used also the other way round: chains with lower value of the autocorrelation time have
better mixing. A simple example is given in Fig.4.9(a) and 4.9(b). We chose again a χ2

3-distribution
as the target and we plot the evolution of the autocorrelation as a function of the lag. We then fit the
exponential decay. The value of τ obtained in the fit is roughly equivalent to the one of Eq.4.32. We
conclude for this case that a value of σ = 1 for the proposal is less efficient than σ = 6. The values
in Table.4.1, obtained directly using Eq. 4.32, confirm that the choice σ = 6 coincides with the lowest
value for the autocorrelation time. Note that this also correspond to an acceptance rate of 0.5 as suggest
by the rule of thumb of Eq.4.23.

We have mentioned in sec.4.2.3 that the ergodic theorem allows the existence of the Central Limit
Theorem for ergodic averages for N → ∞ (Eq.4.16) with some finite σ. This latter can be estimated
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(a) (b)

Figure 4.9: Value of the autocorrelation γ̂ as a function of lag (computed using Eq.4.31) for two chains
with different σ for the Gaussian proposal distribution (σ = 1 for (a) and σ = 6 for (b)). The
target distribution is a χ2

3. Fitting for an exponential decay we can recover approximately
the value of the the integrated autocorrelation time τ̂int of Table 4.1.

directly from the Markov Chain (Geyer 1991). One has

σ̂2
π = var( f̄N) ∝ τ̂int. (4.33)

This justifies the diagnostic we used just before. A high value of τ̂int goes with a bigger error on the
proper estimation of the target distribution.
We show in Fig.4.10(a), in the case of multivariate distribution of different dimensions, the value of τ̂int

as a function of the scaling factor between the covariance matrix of the proposal and the target (the ratio
σprop/σtarget). The minimum of it is around what is expected from the rule of thumb of Eq.4.23. In
Fig.4.10(b), we can also see that these values correspond to the prescription of an acceptance rate of
approximately 0.25.

(a) (b)

Figure 4.10: (a) Integrated autocorrelation time τ̂int as a function of σprop/σtarget for two multivariate
Gaussian distributions of dimension d = 4 (solid line) and d = 10 (dashed line). The mini-
mum is around the value expected from Eq.4.23, and corresponds indeed to an acceptance
rate around 0.25 (b).

Interestingly, when checking mixing using the autocorrelation, one can see the gain we have using the
Adaptive Metropolis as our baseline algorithm. We chose, as target distributions, multivariate Gaussian
distributions of different dimensions and covariance matrices with non negligible off-diagonal terms
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shoot at random. Then, we use both the Metropolis and Adaptive algorithm starting with a diagonal
proposal distribution. In Fig.4.11(a), we show that, for the Adaptive algorithm, the autocorrelation of the
chains decrease more rapidly and convergence is faster. Clearly, when the covariance matrix of the target
distribution is diagonal, both algorithm are equivalent (Fig.4.11(b)).

(a) (b)

Figure 4.11: Autocorrelation as a function of lag to compare Matropolis (in solid) and the Adaptive
(in dashed) algorithm for the case of a multivariate Gaussian posterior with different di-
mensions (d=10 in black, d=6 in blue, and d=4 in green). The proposal distribution is
a Gaussian with diagonal covariance matrix. Note that the Adaptive algorithm performs
better than the standard Metropolis (a). In the case the covariance matrix of the target
distribution is diagonal, the Adaptive algorithm gives equivalent results to the Metropolis
one.

Fourier analysis

Another interesting instrument of diagnostic is the spectral analysis of the MCMC chains since estimating
the autocorrelation of a chain is equivalent to estimating its power spectrum P(k). For a good sampler,
the correlation of the successive element of the chain is almost zero thus we expect a flat (white noise)
power spectrum. The nature of an actual MCMC sampler, however, always induces some small scale
correlation and thus a suppression of power at high k. The small scale behaviour is well approximated by
a power law of the form P(k) ∝ k−α, with α ∼ 2, since we are not far from a random walk (α = 2). Also,
the position of the “knee” that distinguishes the regime of white noise from the approximate random
walk, reflects the inverse correlation length.
A template form to fit this behaviour is (Dunkley et al. 2005)

P(k) = P0

k∗
kα

k∗
kα + 1

(4.34)

where P0 is the amplitude in the k → 0 limit and k∗ the position of the knee.

The criteria for being sure that the chain has converged are then:

• j∗ = k∗( N
2π ) > 20, this ensure kmin to be in the white noise regime;

• convergence ratio r =
σ2

x
σ2

0
'

P0
N < 0.01.
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Figure 4.12: The posterior here is a 6-D correlated Gaussian distribution. We select one of the dimen-
sion to show the spectral analysis proposed by e.g Dunkley et al. (2005). In green is shown
the fit of the power spectrum P(K), obtained with an FFT, using the template formula of
Eq.4.2.8. We find j∗ = 79 and r = 0.001. As expected, α ∼ 2.

In Fig.4.12 we show the power spectrum of a selected dimension of a six dimensional multivariate
problem. We then fit with the template form of Eq.4.2.8 and check the relevant parameter for conver-
gence.

As a further example we check again the case of the χ2
3-distribution of Fig.4.9(a). Using the Fourier

analysis we arrive at the same conclusion than before on the optimal choice of the σ for the proposal
(Fig.4.13(a) and 4.13(b)).

When convergence is under control, MCMC techniques are a powerful tool to simulate direct draws
from a complex distribution of interest. The root method is the Metropolis algorithm widely use for
parameter estimation, however, for what concerns the cosmological results discussed in this thesis, we
remind that we use the Adaptive algorithm that is an easy and powerful modification of the standard
algorithm.

We have also discussed other methods (multi-particle methods, nested sampling) but we conclude
that Adaptive is the most suited for our purposes since it allows an automatic search for an efficient
covariance matrix for the proposal, able to explore a correlated posterior distribution. Indeed, as we will
see in chapter 7 and 8, the cosmological and nuisance parameters of the CMB likelihood have complex
correlations.

In the following section we discuss some technicalities on the implementation of the Adaptive algo-
rithm when dealing with the CMB likelihoods.

4.2.9 Implementation of the Adaptive algorithm

In sec.4.2.6 we have described the Adaptive algorithm as was formulated in Haario et al. (2001). For a
toy case of multivariate Gaussian distributions it works very well as it is.
However, to obtain satisfactory results in the case of more complex target distributions as the one built
in chapter 5 ad hoc changes are needed.

We would like to start with a diagonal Σ0 as the first guess matrix. This is not always possible since,
when the number of nuisance parameters is high, and correlations are strong (for example when we add
data from ACT and SPT to Planck), the adaptation process can be inefficient. In these cases we are
forced to use an empirical covariance of the chains as a new input to the algorithm. Also, we can use a
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(a) (b)

Figure 4.13: Fourier diagnostic (template fit of the power spectrum using Eq.4.2.8) for the case of a χ2-
distribution with 3 d.o.f. In (a) we have chosen σ = 1 for the proposal. The convergence
criteria (see text) are not respected, in agreement with what we has estimate before using
the autocorrelation method. In (b) are presented the fitted values for a proposal with σ = 6.
The convergence is achieved, again as expected.

minimiser like MINUIT (sec.4.3) and use the Hessian matrix associated to the minimisation as the input
matrix.

We implemented also other upgrades, based on the indications of the AppStat team at LAL. First we
recall the recursive formula for the adaptation of the covariance matrix. At step t we have

µt = µt−1 +
1
t

(Xt − µt−1), Σt = Σt−1 +
1
t

((Xt − µt)(Xt − µt)T − Σt−1). (4.35)

The proposed move is then Y ∼ N(Xt−1, cΣt), where c is some scale factor.
In practice, if we try to start the adaptation from the first steps, the correction we make to the initial guess
matrix Σ0 is too big and numerically unstable. We thus introduce the parameter t0, that can be tuned,
and that represents the number of steps we have to wait before starting the adaptation. In general this
phase does not need to be long and t0 ∼ 10d (where d is the dimension of the parameter space) is a safe
assumption. Clearly, the algorithm is only weakly dependent on this choice, for example, going from the
∼ 20 parameter of the HiLLiPOP likelihood to the ∼ 50 of HiLLiPOP +ACT/SPT we can use the same
value for t0.
For all steps before t0, the algorithm is thus a simple Metropolis. In this phase the chain starts exploring
the parameter space, and it is not essential to have a very reliable first estimate for the covariance matrix;
it is preferable to have a high acceptance rate and underestimate the optimal step than to risk remaining
stuck at the starting point. The scale c in the proposal is thus chosen to be quite small, say 0.001
(Fig.4.14(a)).

At step t0 we calculate the sample variance of the chain. The estimate of the covariance between the
parameter j and the parameter k is simply

Σ jk =
1

t0 − 1

t0∑
i=1

(Xi j − X̄ j)(Xik − X̄k). (4.36)

If t0 is properly tuned, the constructed matrix is a fair first guess of the covariance of the posterior.
Hence, the scale c (Fig.4.14(a)) can be set to the standard value of 2.42/d (Eq.4.23).

In sec.4.2.5 we have seen that the optimal acceptance rate (a.r.) is around 0.25 and that it can be
controlled via the size of the steps for exploring the parameter space. It is hence possible to tune the
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scale factor c accordingly.

ct+1 = ct · (1 −
1
t

) +
1
t

(a.r. − 0.25) (4.37)

To switch on this kind of adaptation, we introduce in the algorithm the parameter ts. For t > ts, the
scale factor is modified according to Eq.4.37. The a.r. is computed “locally” using, each time, only the
previous 100 steps of the chain. Clearly, ts needs to be greater than t0. If we set ts = t0 the adaptation of
the scale factor starts immediately after the Metropolis phase. This can be useful if the estimation of the
covariance matrix is still really poor at the end of this phase.

Different configurations have been tried until an optimal one was found for our HiLLiPOP likelihood.
The algorithm has also been tested on several versions of other Planck likelihoods (Plik and CamSpec).
The different foreground modellings for the likelihoods play a role in how to optimally tune the algorithm
since they change the full correlation matrix. However, the ergodic properties of the algorithm reassures
on the fact that the choice for t0 and ts is not unique. In practice, a lot of the results presented in this
thesis have been obtained with t0 = 200 and ts = 10000.

If the process of adaptation is going too fast, the algorithm can be slowed down by re-weighting, in
Eq.4.35, each step with 1/tα instead of a simple 1/t, with α ∈ ( 1

2 , 1]. While the AppStat team advocated
a value α = 0.7 we found that for the case of CMB this lowering of α leads to an underestimation of the
posterior variance that depends on the dimension of the problem. The best results was obtained with the
standard α = 1 value.

(a) (b)

Figure 4.14: An example of a configuration for t0 and ts for the Adaptive algorithm for the HiLLiPOP
likelihood. The four different chains are shown with different colors. In (a) is plotted the
evolution of the scale factor c as a function of the length of the chain. Until t0 = 200, c is
kept very low, then is set to the optimal value of Eq.4.23 until ts = 10000. From ts on we
start adapting c as in Eq.4.37. These choices for the value of c allow the acceptance rate to
reach the standard value of ∼ 0.25. In (b), we report the consequent evolution of the a.r as
a function of the length of the chain.

Generating random numbers

The performance of all the Monte Carlo methods depends on the reliability of the random number gen-
erators. For our analysis we use the AbsRand package5, that consists in a set of efficient C++ classes

5http://planck.lal.in2p3.fr/wiki/pmwiki.php/Softs/AbsRand

102

 http://planck.lal.in2p3.fr/wiki/pmwiki.php/Softs/AbsRand


4.2 Bayesian inference via Markov Chain Monte Carlo methods

organised in an object oriented framework. It contains high quality uniform and Gaussian generators.
We also mention that it contains a very fast 1/ f 2 noise generator based on random-walk, and a 1/ f fast
generator based on the previous one (Plaszczynki 2007). This software is used in the Planck experiment.

• The random number generator is planck_rng, an implementation, in the context of the Planck
satellite experiment, of a new generation algorithm: the xorshift generator described in Marsaglia
(2003). This class of pseudo random number generator gives the next number in its sequence by
repeatedly taking the exclusive or of a number with a bit shifted version of itself. It has been
performed and tested by M. Reinecke (Max Planck Institute fur Astrophysik, Garching)

• for generating x ∼ N(0, 1) the radial Box-Muller transform (Box & Muller 1958) is used.

As described in sec.4.2.5, for our MCMC methods we need to generate d-dimensional samples dis-
tributed as a multivariate Gaussian distribution with a given µ and Σ.
This is done using the Cholesky decomposition Σ = LLT (e.g. Nash (1990)).

Once the covariance matrix is decomposed, giving the lower-triangular L, one has just to multiply it
with a vector of uncorrelated samples, x ∼ N(0, 1).
The vector Lx has the covariance properties of the system modelled with Σ.

4.2.10 Cross check with CosmoMC

The public CosmoMC code6, combined with the Boltzmann code Camb (sec.1.5.1) are the official setting
for the analysis of Planckdata.

This algorithm is based on the Metropolis-Hastings one with some important CMB-oriented upgrades
(Lewis & Bridle 2002; Lewis 2013).

The scaling with dimension is improved separating the slow from the fast parameters. An example
of slow parameter is the matter density (changing it requires a full recalculation of the evolution of the
background model and the perturbation) while all the nuisance parameters are in general fast (only the
dependent likelihood function needs to be recomputed, not the C`).

The base parameters are orthogonalised so that proposals are made to nearly independent combina-
tions of the original base. Even if fast and slow parameters are correlated, it is possible to make a linear
parameter redefinition to keep the fast parameters independent of the slow ones. Parameters are then
grouped in sets of similar “speed” and the proposed moves are made along random directions in these
equal speed sub-spaces. This allows to oversample the fast sets.

Another peculiarity of the algorithm is the actual shape of the proposal distribution which is a radial
function not necessarily with the same dimensionality than the posterior. It is also corrected to increase
the probability for small or large steps for a better exploration in the case of a non-Gaussian posterior.

In Fig.4.15 we show the comparison, using the Plik likelihood, between the posterior distribution
obtained with CosmoMC+CAMB and the Adaptive algorithm implemented in this thesis in combination
with the CLASS Boltzmann code (sec.1.5.1). The agreement is very good with minor differences that
may come from the slight difference at high-` between the spectra computed by two Boltzmann codes.
The disagreement on θ is expected since it is defined differently in the two codes (sec. 7.1).

In Fig.4.16 we juxtapose the correlation matrix obtained with CosmoMC and the one obtained with
the Adaptive algorithm to show the agreement between the methods.

6http://cosmologist.info/cosmomc/
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Figure 4.15: Posterior distributions obtained using the Adaptive algorithm for the Plik likelihood and
the CLASS code (red) against the results from the official chains obtained using CosmoMC
and Camb (black). The difference in θ comes from a different definition of this parameter
in the two codes. The minor disagreement on some foreground parameters can originate
from the differences at high-` between CLASS and Camb (sec. 7.1).

4.3 Frequentist approach

The extreme precision of the data used in this thesis offer the possibility of a fine check on the robustness
of the results with respect to the statistical methodology.

Unlike the Bayesian method, the frequentist approach do not have priors (and therefore the con-
ceptual difficulties that may arise in defining them properly, see sec.4.1). By definition, the quantity
one wants to measure has a true fixed value and hence can not have a distribution. This can be an im-
portant difference since it have been shown that priors may affect parameter determination (Hamann
et al. 2007; Gonzalez-Morales et al. 2011; Hamann 2012). Moreover, the process of marginalisation
(sec.4.2.4), favours regions of parameter space that contain a large volume of the probability density in
the marginalised directions, and this may lead to the so called volume effects (e.g. (Hamann et al. 2007)).

In this section, some of the methods of the frequentist framework are presented. First the search for a
“best fit” is performed using a high precision minimiser (sec.4.3.1) and then the procedure for extracting
error bars is described (the profile likelihood, sec.4.3.2).
The subtle case of a limit in the presence of a physical boundary is illustrated in sec.4.3.3. In Bayesian
statistic, with the possibility of adding a “step-like” prior, it is straightforward to define a credible interval
with respect to the no boundary case. For the frequentist framework, where a confidence interval has to
preserve the right coverage properties, one needs to refine the procedure (Feldman & Cousins 1998).
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Figure 4.16: Correlation matrix obtained sampling the Plik temperature likelihood with Cos-
moMC+Camb (a) or with the Adaptive algorithm described in this thesis + CLASS (b).

4.3.1 Maximum likelihood estimation

What is commonly called “best-fit” is the maximum of the likelihood function (MLE) or equivalently the
minimum of the χ2 = −2 lnL function. To be properly determined, complicated numerical derivatives,
have to be computed, relying on a high precision minimizer. For the work in this thesis, and also for
the one presented in Planck Collaboration A54 (2014), the powerful MINUIT software 7 has been used.
This package is fundamental in High Energy Physics, its role in the Higgs mass determination (ATLAS
Collaboration 2013) being only one example. Initially developed at CERN in the 70’s (James & Roos
1975), it has been continuously improved and recently rewritten into C++ (we use this C++ version,
MINUIT2). It contains several tools for minimizing a function and for special error analysis.

For our purpose of cosmological parameters estimation, we minimize the χ2 function using the
MIGRAD algorithm, which is based on Fletcher’s “switching” algorithm (Fletcher 1970). This is done
in a two step process. At first, all parameters are bounded by large (or physical) limits during the ex-
ploration. Then, once a minimum is found, all cosmological parameters limits are released, and again
the MIGRAD minimization is performed. The limits on nuisance parameters are kept in order to avoid
exploring unphysical regions.
MIGRAD belongs to the category of variable metric methods (e.g. Davidon & Laboratory (1959)) which
allows to calculate a factor of merit for the convergence, the “Expected Distance to Minimum” (EDM),
hence helping in rejecting poor fits. At the end of these operations, we use the HESSIAN procedure to
refine the local covariance matrix.

However, since the problem is highly non-linear, the Hessian is only a crude approximation to the
parameters “errors” and a complete treatment goes through the construction of the profile-likelihood. As
explained in sec. 4.2.9, it can serve, however, as a starting covariance matrix for the Adaptive MCMC.

7http://seal.web.cern.ch/seal/work-packages/mathlibs/minuit/index.html
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4.3.2 Profile likelihoods

Using the minimisation procedure described in the previous section we are able to estimate the global
maximum likelihood (or the χ2

min) given the entire set of parameters.
A profile-likelihood allows instead to estimate the MLE of a chosen parameter θ of this d-dimensional
parameter space and its confidence level interval. Formally, one builds

Lp(θ) = L(θ, ˆ̂ψ(θ)), (4.38)

with ˆ̂ψ(θ) the ψ that maximizes L at fixed θ.
One often speaks about the minimum χ2 = −2 lnL instead of the maximum of L.
An example of the result is shown in Fig.4.17: to obtain the profile, one scans, within some range, dif-
ferent value of θ and, at each point, runs the χ2 minimization with respect to all other parameters. The
minimum χ2 value is reported for this θ value.

Given the procedure, the solution at the minimum of χ2(θ), for every parameter, coincides with
the standard χ2

min solution, which ensures we are avoiding the potential “volume effects” that appear in
projecting MCMC samples.

To extract a confidence region, which has the correct frequentist coverage properties, one needs to
build the likelihood ratio statistic, or, equivalently, the ∆χ2(θ) = χ2(θ)−χ2

min distribution (that is actually
what is shown in Fig.4.17).
For a parabolic χ2(θ) shape (i.e. gaussian estimator distribution), a 1-α-level confidence interval, is
obtained by the set of values ∆χ2(θ) ≤ χ2

1(α), where χ2
1(α) denotes the 1-α quantile of the χ2-distribution

with 1 degree of freedom, and is 1, 2.7, 3.84 for 1 − α = 68, 90, 95% respectively. In other words, if we
are looking for a 68% CL, we have just to cut the profile at 1 (see again Fig.4.17).

This procedure is still valid if the profile-likelihood is non-parabolic. The MLE in fact, does not
depend on the choice of the set of parameters: if θ̂ is the MLE of the parameter θ, the MLE of any
function of θ, τ(θ), is simply τ̂ = τ(θ̂). For example, one can build the ∆χ2(As) distribution from the
∆χ2(log(1010As)) profile by simply switching the log(1010As)→ As axis.
This invariance property allows to build an approximate confidence interval since one can imagine a
transformation that would make it quadratic in the new variable. The (asymmetric) confidence interval
is obtained by cutting the non-parabolic ∆χ2 curve at the corresponding χ2(α) values of the parabolic
case (Wilks 1938). In MINUIT, the routine implementing this method is called minos and it is exact up
to order O( 1

N ) , N being the number of samples (James 2007).

In chapter 7 results on cosmological parameters obtained using the profile-likelihood based con-
fidence intervals, will be discussed and confronted to Bayesian credible intervals, finding agreement
between the two methods. This is somehow expected since, for ΛCDM, the shapes of the posteriors are
all almost Gaussian (parabolic ∆χ2).

Nevertheless, the profile-likelihood can be useful in exploring strong degeneracy as the (As, τ) one
as discussed in sec. 7.2.7.
Also, the procedure described above is not well defined if the parameter of interest has a physical bound-
ary. As an example, the neutrino absolute scale parameter Σmν, that is central to this thesis, is necessarily
greater than zero (Σmν > 0).
Clearly, also the marginalized posterior distribution is not Gaussian any more but largely peaked towards
zero, making the estimation of the upper limit sensitive to its detailed shape. Hence we may expect some
relevant differences between the frequentist and Bayesian methods, or at least a finer diagnostic power
for the robustness of the upper limit on Σmν in this comparison. Postponing the detailed discussion of the
results to chapter 8, we present in the next section the revised frequentist procedure for such an estimate.
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Figure 4.17: Profile-likelihood based 68% confidence interval (see text) on H0 for CMB only (in blue)
and CMB + BAO (in red). This figure is taken from Planck Collaboration A54 (2014).

4.3.3 Limit in presence of a boundary

We describe here the procedure to statistically set an upper-limit near the physical boundary Σmν > 0
(Fig.4.18). First, as before, we scan different physical value for the Σmν parameter (i.e. positive) and we
report the ∆χ2(Σmν) after the minimisation on all the other parameters. Then we perform a parametric
parabolic fit

χ(Σmν) = χ2
min + [(Σmν − m0) /σν]2 , (4.39)

for estimating the minimum m0 and the curvature σν.
Far from its minimum, the function is not necessarily quadratic, hence the farthest points are discarded
in the fit.

If there were no boundary the 95%CL interval would have been obtained “thresholding” at 3.84
(sec.4.3.2). In a correct approach, we cannot do this any more; instead we use the classical “unified
approach”, i.e. the Feldman-Cousins prescription (Feldman & Cousins 1998).

This procedure first constructs the ordering principle based on the likelihood ratio R:

R =
L(x|µ)
L(x|µbest)

(4.40)

where x is the measured value of the sum of neutrino masses, µ is the true value and µbest is the best fit
value of

∑
mν given the data and the physically allowed region for µ. Hence, we have µbest = x if x ≥ 0

and µbest = 0 if x < 0, and the ratio R is given by:

R =

exp(−(x − µ)2/2) for x > 0
exp(xµ − µ2/2) for x ≤ 0

(4.41)

We then search for the interval [x1, x2] such that

R(x1) = R(x2) and
∫ x2

x1

L(x|µ)dx = α (4.42)

with α = 95%CL. These intervals are tabulated in (Feldman & Cousins 1998).
We then read off the confidence interval [µ1, µ2] for x = m0/σν extracted from the parabola fit on the

χ2 profile. The upper limits are calculated as µ2 × σν.
As a check, we vary the range of points used in the parabolic fit to ensure that the limit we obtain is

always lower than the one we report as the result, in other words, ensuring that we are conservative.
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Figure 4.18: Example of profile likelihood for
∑

mν. In presence of a physical limit at zero the Feldman-
Cousins prescription has to be applied to correctly extract the upper limit at the 95% CL.

Conclusions

In this chapter we have described the estimation of cosmological parameters using the Bayesian Markov
Chain Monte Carlo method and the frequentist profile likelihood analysis. The former efficiently extend
the idea of Monte Carlo integration to problems in high dimensions, using the Markov chain properties.
We have discuss convergence tests and the implementation of an Adaptive algorithm that has been used
to obtain all the posterior distributions presented in this thesis. The frequentist profile analysis has been
also presented. This method is particularly suited for the estimation confidence intervals in the case of
highly correlated variables, as τ and As (chapter 7), or a physical boundary, as for Σmν (chapter 8).

Both methods apply to any likelihood function. The next chapter is dedicated to the construction
of a high multipole likelihood from the Planck CMB data described in chapter 3. In chapter 6 we will
complete the description of the cosmological data used in this thesis, briefly presenting the large scale,
the lensing, and the very high-` CMB likelihoods together with the BAO and Supernovae ones.
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Chapter 5

The HiLLiPOP high-` likelihood

With the aim of extracting the cosmology encoded in the CMB, the full-sky high resolution of the Planck
temperature and polarisation maps presented in chapter 3, are impossible to be handled directly. Fortu-
nately, since primordial fluctuation are believed and observed to be Gaussian (sec.1.5), all the information
contained in maps can be translated into angular power spectra (sec.1.3.1).

The angular power spectrum of the CMB, before the large WMAP and Planck sets of data, was
mainly obtained through maximum likelihood estimators requiring the inversion and multiplication of
Nd × Nd matrices, where Nd is the size of the data vector (e.g. Tegmark (1997)). These methods,
although allowing to obtain a precise estimation of spectra and the error bars of the covariance matrix,
become computationally prohibitive to be used for all the Planck detectors and at the full resolution
(`max ' 2500).
Efstathiou (2004) has proposed an hybrid strategy that uses maximum likelihood methods only for the
low-` part of the spectrum on low resolution maps. The high-` (` &30) part, is estimated using the cross
spectra methods that are more tractable and almost optimal. These methods require approximations for
the covariance matrix that are less accurate at low-` but precise at high-`. The use of cross spectra
(sec.5.10 and 5.5.2) allows the reconstruction of the correlation between two different sky maps. The
advantage of cross spectra is that they are not biased by the noise since it cancels out in mean between
the two maps.

The composite strategy just described, is the one adopted in Planck data analysis. The cross spectra
approach is used at high-`, where a Gaussian likelihood approximation is appropriate (Hamimeche &
Lewis 2008). For ` ≤30, low resolution Commander temperature maps derived from Planck, WMAP, and
408MHz are combined with template cleaned LFI 70 GHz polarization maps in a pixel based approach.
We refer to this likelihood as LowTEB. A more detailed discussion is postponed to sec.6.1, where is
also discussed a different approach called Lollipop based on the modification of the Hamimeche-Lewis
likelihood (Mangilli et al. 2015).

For the high-` part, in Planck there are four likelihood codes (Planck Collaboration A13 2015):

• Plik: the Paris LIKelihood developed at IAP and official likelihood for the 2015 release

• CamSpec: from the Cambridge team, official likelihood for the 2013 release

• Mspec: from the USA team, which include a simplified component separation step

• HiLLiPOP: developed at the Laboratoire de l’Accelerateur Lineaire and topic of this chapter
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Having different likelihoods allows to test the robustness of the results to different approximations
and allows a more profound understanding of the effects of foreground or instrumental modelling arising
from different parametrization choices.

Indeed, the main difficulty in the analysis is how to treat the astrophysical foregrounds. Using the
HFI 100, 143 and 217 GHz channels, dominated by the CMB signal, we can safely extract the C` from
the maps with appropriate masks and deal with foregrounds at the power spectra level. Doing this, one
is assuming that the two-point correlation function completely describes the shape of the foregrounds.
This is the choice adopted by the four likelihood codes mentioned above. Another strategy can be to use
directly the spectra computed from the component separation maps and estimate the cosmological pa-
rameters from these CMB only spectra. This is done by the XFaster likelihood (Planck Collaboration.
IX. 2015).

This chapter describes in details the HiLLiPOP likelihood (High L Likelihood Planck Orsay Project).
The final result is shown in Fig.5.1 and 5.2.
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Figure 5.1: The HiLLiPOP cross-half-mission coadded temperature power spectra at ` ≥ 50. The red
data point are binned in ∆` = 31, while the grey data points are unbinned. In green in the
upper panel is plotted the best-fit base ΛCDM theoretical fitted to the combined HiLLiPOP
+ LowTEB likelihood. Residuals with respect to this model are shown in the lower panel.
The green lines show the 68% unbinned error bars.
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Figure 5.2: Same as Fig. 5.1 for EE (a) and TE (b).

5.1 The basic structure of the high-` likelihood

At high-`, the likelihood can be written as the one for a Gaussian distributed variable and thus simply
reads:

− 2lnL(Cmodel
` ) =

∑
modes

∑
cross

(Cdata
` − Cmodel

` )Σ−1(Cdata
` − Cmodel

` ). (5.1)

Where the sum is on all the cross spectra used and on all the modes that we want to include (TT, EE,
TE) and Σ is a constant covariance matrix. Note that, in principle, the matrix Σ depends on the CMB
signal CCMB

`
. We use here a model fixed around the minimum which ensure a good approximation for

the error bars and no bias in the posteriors.
The CMB cross power spectrum (sec.1.3.1) is the central element of the likelihood. Hence, an

estimation of the C` need to be extracted from maps. Although we have available Planck all-sky maps
(sec.3.4), the thermal emission from the galaxies largely dominates over the CMB signal at low galactic
latitude. We are thus forced to mask this contamination, searching, at each frequencies, for a compromise
between a cleaner signal and statistics. We postpone a detailed discussion on the masks used to sec.5.3.
Partial sky coverage correlates the power spectrum estimators at different ` and complicate its extraction
(sec.5.4).

The construction of the covariance matrix Σ is addressed in Sec.5.5. In the limit of an ideal full-sky
surveys this calculation would have been simple. Masks and beams effects (sec.5.4.1) induce `-by-`
correlations that need to be properly handled.

Residual foregrounds, still present after masking, are then parametrised in terms of power spectrum
models. As detailed in sec.5.6, we use physically motivated template result of Planck internal works.
These residual foregrounds vary with multipole and frequency ranges and are modelled as a contribu-
tion, beside the signal part from the CMB

C
model,XY
`

∝ C
CMB,XY
`

+
∑
fg

Afg(X,Y)Cfg,XY
`

, (5.2)

where we have written explicitly the cross spectra notation XY . For each foreground and each cross
spectrum, the angular shape of the residual foreground is fixed. A scaling parameter is let free in each
case.
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The last part of the chapter is dedicated to some consistency checks and a discussion of the differences
between our likelihood and the other likelihoods approaches.

5.2 Maps

As described in sec.3.4 different sets of maps have been produced. The likelihood has been developed
in parallel to successive internal releases of data, but the results presented in chapter 7 and 8 refer only
to the public latest release. We remind that only the 100, 143 and the 217 GHz maps are used in the
analysis. We use two maps per frequency that we will refer to as: 100A, 100B, 143A, 143B, 217A,
217B. More details are given in Table 5.1. The maps used are:

• Detector Set (DS) maps. These have been used to put constraints on cosmological parameters also
in the 2013 analysis, although our DS maps are constructed slightly differently (see Table 1 in
Planck Collaboration XV (2014) for the definition of DetSet);

• Half Mission (HM) maps, from which have been obtained the 2015 results;

• in this thesis also Year maps (Yr) have been considered. Yr maps are similar to the HM maps but
do not include the 5th Planck survey.

map name Detector maps Year maps Half Mission maps
Temperature Polarization

combination of PSB and SWB
100A 100-DetSet1 100-DetSet1 100-Yr1 100-HM1
100B 100-DetSet2 100-DetSet2 100-Yr2 100-HM2
143A 143-DetSet1 + 143-5 + 143-7 143-DetSet1 143-Yr1 143-HM1
143B 143-DetSet2 + 143-6 143-DetSet2 143-Yr2 143-HM2
217A 217-DetSet1 + 217-1 + 217-3 217-DetSet1 217-Yr1 217-HM1
217B 217-DetSet2 + 217-2 + 217-4 217-DetSet2 217-Yr2 217-HM2

Table 5.1: Maps used in the analysis. We refer to Fig.5.3 for the identification of the various PSB and
SWB. Details on the construction of DetSet can be found in Table 1 of Planck Collaboration
XV (2014)

5.3 Masks

The contamination of the foregrounds discussed in sec.3.5 has to be handled if we want a proper estima-
tion of the CMB signal. The first, immediate strategy is to get rid of the strongest foregrounds masking
their emission. Hence, frequency dependent Galactic, CO and Point Source masks are applied on the
maps described in sec.5.2.

Galactic masks

Diffuse Galactic dust emission is the main foreground for CMB measurements in both temperature and
polarization and is dominant at high frequency (ν > 300 GHz) (sec.3.5). The masks for the Galactic
thermal dust emission are derived from the 353 GHz map in intensity. For polarisation analyses we
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Figure 5.3: HFI Focal plane layout as seen from outside the celestial sphere. PSB orientations are
indicated, with a red rod for the “a” elements and a blue rod for the “b” elements. Green
circles are for the SWBs. Near each detector is reported its name.

employ the masks derived for temperature, as they are relevant to cut off polarised dust emission on
small scales.

Dust polarisation at large scale does not look like dust in intensity, since, at these scales, one sees
only the effect of the magnetic field, which is quite different from the distribution of matter, responsible
for the emission of dust. Down to smaller scales however, one starts seeing the effect of turbulence, that
is due to the distribution of matter. This means that, for small scales (typically smaller than 2◦), the dust
polarisation is traced very well by the intensity of its emission. Hence, a good mask for intensity, is also
a good mask for polarisation.

Conversely, if one builds the mask using the polarisation of the dust, the large scale structures of
polarisation will be well masked, but not the small scales. Since we are interested in small scales, this
justifies our choice of using the same masks in intensity and in polarisation.

The mask are based on a threshold in intensity of the 353 GHz map. In practice, the procedure for
constructing the masks is the following. First the 353 GHz map is smoothed with large Gaussian beams,
then, the histograms of the map are derived and used to obtain the cumulative distribution of the pixel
value. These distributions are used to obtain the list of the N brightest pixels that will be set to 0 in order
to mask a N/Npix fraction of the sky, Npix being the total number of pixels in the map. Hence, mask are
in general identified via the sky fraction fsky that is kept in the analysis.

In Fig.5.4 we show an example of a binary mask covering the 30% of the sky, hence with fsky=70%.
As it is, the mask causes problems at the Fourier analysis level since the transition between the pixel at 0
and at 1 is step-like. To avoid spurious effects in the a`m extracted from the map (Fig. 5.5(a)), a procedure
of apodisation is necessary: as can be seen in Fig. 5.5(b), the C` of the unapodised map show structures
at high-` that are non physical.

Apodisation can be done applying an apodising profile, that can be any smooth function that goes
from zero to one, to the distance map of a mask. The distance map represents the distance of each pixel
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0 1

Figure 5.4: An example of a binary mask covering the 30% of the sky ( fsky=70%). The mask needs to
be apodised to be properly used in the analysis.

to the nearest zero pixel of the mask. This technique is used for Point Sources for example. However,
apodisation using the distance map, present some “spiky” features along particular directions where the
distance is almost constant. This is why, for the Galactic mask, we chose to smooth the masks with a
Gaussian in the a`m space rather than using the distance map function. The procedure has the drawback
of injecting some signal in the initially blocked regions. This can be handled using initially a slightly
bigger mask and, after the smoothing procedure, a smaller mask to make sure the signal is erased in the
blocked regions, or using a threshold to remove part of the leakage in the mask. Note that, with our
procedure, the fsky stays the same before and after apodisation.

-0.01 0.01%
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Figure 5.5: (a) % residuals of the subtraction between the fsky=70% unapodised mask and the same
mask Fourier (i.e. Harmonic) transformed back and forth. (b) In blue is shown the power
spectrum of the unapodised mask of Fig. 5.4. There are structures at high-` that arise from
the ringing artefacts near the sharp transitions of the mask. The apodised mask has a different
C` spectrum (in green) where the high frequency power is reduced.

The mask are thus apodised through a Gaussian smoothing with a large FWHM of 8◦. Once the
smoothing is applied, we set the threshold such that all pixels of the map with values less than 10−4 are
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forced to 0 and pixels with values greater than 1 − 10−4 are forced to 1. In Fig. 5.5(b) we can see how
the apodisation process suppresses spurious structures at high-` in the power spectrum of mask.

For galactic masks, fsky decreases with frequency since the emission of the Galaxy becomes more
and more important from 100 GHz to 217 GHz.

CO masks

For our analysis, CO emission has to be masked at 100 GHz and at 217 GHz since there are emission
lines from molecular clouds at 115 GHz and 230 GHz that enter the bandwidth (sec.3.5). The CO masks
are constructed by first smoothing the CO map to 30 or 120 arcminutes. Those two smoothed maps are
then cut using a threshold in Kcmb units. The resulting masks are apodised at 15′. In Fig. 5.6(a) and
5.6(b) the two masks with different smoothing are shown. We have used both during the analysis but
the final results have been obtained with the 30 arcmin smoothing mask that is more conservative and
masks more structures at high latitude. In practice, the CO masks are almost completely covered by the
Galactic one, causing a diminution of fsky of only few %.

(a) (b)

Figure 5.6: CO masks at 100 GHz obtained smoothing the CO maps to 30 (a) and 120 (b) arcmin.
Apodisation is at 60′. The masks have been producted by the Planck Consistency Group.

Point Source masks

The mask used in the 2013 analysis is the union of the point sources detected in the PCCS (appendix
A.1) from frequencies 100 to 353 GHz (Planck Collaboration. XVI. 2014). This mask, as the ones used
in the Plik likelihood for the analysis of the latest Planck data, are based on simple high flux cuts that
are shown to remove too many knots that are not real point sources but rather Galactic structures or
bright cirrus. Hence, in this thesis, we prefer to use the masks produced by the Planck consistency group
(PSCG) where cirrus are first identify before constructing the mask.

Final combined masks

The characteristics of the masks that are used for the results presented in this thesis are summarized in
Table 5.2. We show in Figure 5.7 the M72, M62 and M48 ( fsky = 72%, 62%, 48%) masks associated with
the 100 GHz, 143 GHz and 217 GHz channels, respectively. These are not the only ones used; along
the analysis other masks have been tested. A lot of test has been carried out using more conservative
Galactic masks named M65, M55 and M40 for 100, 143 and 217 GHz respectively (and with fsky =

65%, 55%, 40%). Their sky coverage is, however, bigger than the one used in the 2013 Planck analysis
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where only the 58%, and 37.3% of the sky was retained at 100 GHz and 143 and 217 GHz , respectively.
This choice was made to ensure the Galactic dust emission to be small. We postpone a discussion on the
robustness of results to the mask choices to sec. 5.8.2.

mask name Galactic mask compact objects mask
100 GHz point source mask

M72 fsky = 72% 100 GHz Conservative CO
nearby galaxies masks

M62 fsky = 62% 143 GHz point source
nearby galaxies masks
217 GHz point source

M48 fsky = 48% 217 GHz Conservative CO
nearby galaxies masks

Table 5.2: Details of the masks used in the analysis. Galactic masks are apodised at 8◦, while compact
object masks are apodised at 15’.

5.4 Calculation of spectra: Xpol

We have seen in chapter 1 that the cross-spectrum of Eq. 1.89, is an unbiased estimator of the CMB
power spectrum. If one decomposes directly the observed maps in harmonic space, the cross power
spectrum is a biased estimator, where the bias is introduced by instrumental effects as the beams and the
incomplete sky coverage. This estimator defined from decomposition of data in spherical harmonics

C̃AB
` ≡

1
2` + 1

∑̀
m=−`

dA
`mdB∗

`m (5.3)

is called cross pseudo-C`. The d`m are the decomposition into spherical harmonics of the observed maps.
For example, for temperature

d`m =

∫
dn̂T map(n̂)W(n̂)Y`m(n̂), (5.4)

where the window function W(n̂), takes into account the mask and can be, in turn, decomposed into
spin-0 spherical harmonics

W(n̂) =
∑
`m

w`mY`m(n̂). (5.5)

To unbias the estimator of cross-power spectra from the maps, we use Xpol, an extension of the
Xspect algorithm (Tristram et al. 2005) to polarisation. Xpol is a pseudo-C` based method which is able
to compute analytically the error bars and the covariance matrix directly from data.

The cross-pseudo-C` of Eq. 5.3, for an experiment such as Planck, can be written in term of the true
value C` as

C̃AB
` =

∑
`′

MAB
``′ BA

`′B
B
`′〈C

AB
`′ 〉, (5.6)

where we remind that, considering independent detector, there is no contribution from noise. The B`
are the effective beams window function (sec.5.4.1) and MAB

``′ is the mode coupling matrix that depends
only on the masks. For temperature, the M``′ calculation is described in Hivon et al. (2002) and involves
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Figure 5.7: The M72, M62 and M48 masks. A combination of apodized Galactic mask and apodized
compact objects mask is used at each frequency as described in Table 5.2.

product of integrals of three spherical harmonics that can be rewritten in term of 3j-wigner symbols. The
generalisation to cross-spectra reads

MAB
`1`2

=
2`2 + 1

4π

∑
`3

(2`3 + 1)W̃AB
`3

(
`1 `2 `3
0 0 0

)2

(5.7)

with W̃AB
` =

∑
m wA

`mwB∗
`m/(2` + 1), the scalar cross-power spectrum of the masks.

The cross spectra CAB
`′ can be obtained solving Eq. 5.6, namely inverting the mode coupling matrix

MAB
``′ .

In our analysis, using Xpol we also include polarisation. The extension to polarisation can be found
in (Kogut et al. 2003).
For CAB

` =
(
CTATB
`

,CEAEB
`

,CBABB
`

,CTAEB
`

)
, the relation between pseudo-C` (C̃`) and C` is a generalisation

of Eq.5.6
C̃AB
` =MAB

``′ C
AB
`′ , (5.8)
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where we have definedM``′ = MAB
``′ BA

`′B
B
`′ to include beam window functions. The coupling matrix that

translate pseudo spectra to power spectra reads

MAB
``′ =


ΞTT,TT 0 0 0

0 ΞEE,EE ΞEE,BB 0
0 ΞBB,EE ΞBB,BB 0
0 0 0 ΞT E,T E

 (`, `′; wA,wB) (5.9)

where ΞTT,TT is the matrix defined in Eq.5.7, and

ΞEE,EE(`1, `2; A,B) =
2`2 + 1

16π

∑
`3

(2`3 + 1)W̃AB
`3

(1 + (−1)L)2
(
`1 `2 `3
−2 2 0

)2

ΞEE,BB(`1, `2; A,B) =
2`2 + 1

16π

∑
`3

(2`3 + 1)W̃AB
`3

(1 − (−1)L)2
(
`1 `2 `3
−2 2 0

)2

ΞT E,T E(`1, `2; A,B) =
2`2 + 1

8π

∑
`3

(2`3 + 1)W̃AB
`3

(1 + (−1)L)
(
`1 `2 `3
0 0 0

)(
`1 `2 `3
−2 2 0

)
(5.10)

with L = `1 + `2 + `3.

From the six maps of sec. 5.2, we thus derive 15 cross-power spectra i.e. one 100x100, 143x143,
217x217 and four 100x143, 100x217, 143x217 for each CMB mode (TT, EE and TE).

Even if the final results are on HM maps, DS maps have been used all along the development of the
final likelihood. We remind that we have two maps at each frequency. For DS, we could have used more
maps. For example, the 5 and 6 individual DetSet maps of Table 1 of Planck Collaboration XV (2014)
can also be used at 143 GHz and 217 GHz, respectively. Therefore, more cross-power spectra can be
estimated at 100x143, 100x217, 143x143, 143x217 and 217x217. On the other hand, each map that we
consider is significantly less noisy than any of the individual DS map at 143 GHz and 217 GHz. So we
prefer to keep using only two maps with lower noise.

5.4.1 Beam window functions

In sec.3.3.2 we mentioned how the instrument beams can be reconstructed observing point-like bright
sources as the planets. Beam convolution smooths small structures on the maps, resulting in a reduction
of high-` power in multipoles. A correct estimation of the power spectra of the measured maps, needs
the inclusion of the effect of these beams, hence, in the power spectrum estimation, we correct for this
using their respective beam window functions. The effective beam window functions B` account for
the scanning strategy and the weighted sum of individual detectors performed to obtained the combined
maps (Planck Collaboration. VII 2015). It is constructed from MC simulations of CMB convoluted with
the measured beam on each TOI sample. Note that temperature and polarization beams are different.
This is due to the fact that we consider a combination of PSB and SWB in temperature while only PSB
are used in polarization. The uncertainties in the determination of the HFI effective beams come directly
from the MC and can be described in terms of beam eigenmodes. It is possible to solve for the beam
eigenmode amplitudes for each spectra used in the likelihood. In the 2013 analysis it was found that, in
practice, only the first beam eigenmode for the 100×100 spectrum was relevant (Planck Collaboration.
XVI. 2014). For the 2015 analysis, the higher quality estimation of the beams allows to avoid considering
the beam eigenvalues in the likelihood. The results of this thesis have been obtained using the latest beam
produced by the Planck collaboration.
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5.4.2 Multipole range

The multipole ranges have been chosen to limit the contamination of the Galactic dust emission at low-`
and the noise at high-`. Table 5.3 gives the multipole ranges, [`min, `max], considered for each of the six
cross-frequencies in TT, EE, TE and ET. Note that `max increases with frequencies since the 217 GHz
channel has smaller beams than the 100 GHz. Also `min increase with frequency since the contamination
from Galactic dust emission at low-` follows the same trend (Fig. 3.11 and 3.12).

To allow consistency checks, we use the same `-range for every datasets (HM, Yr, DS). The lower
`min in our analysis is 50 (higher than the `min = 30 of Plik and CamSpec). This choice keeps us safer in
the Gaussian approximation for the likelihood function and avoids worsening residual dust contamination
without any significant change in the results.

100x100 100x143 100x217 143x143 143x217 217x217 n`
TT [50,1200 ] [50,1500] [500,1500] [50,2000] [500,2500] [500,2500] 9 556
EE [100,1000] [100,1250] [400,1250] [100,1500] [400,1750] [400,2000] 7 256
TE [100,1200] [100,1500] [200,1500] [100,1750] [200,1750] [200,2000] 8 806

Table 5.3: Multipole ranges used in the analysis. The numer of degree of freedom is n` = `max−`min +1.
The full likelihood (TT+EE+TE) has n` = 25 618.

5.5 Covariance matrix

The 15 spectra that we have at disposal for each CMB mode of interest (TT,EE,TE), are not independent.
We thus need an estimation of their correlation. Furthermore, as a result of the masking, we also expect
each cross power spectrum to be correlated for adjacent multipoles. The complex resulting matrix Σ

AB,CD
``′

thus includes the correlations between the pseudo cross- power spectra (AB) and (CD) and multipoles `
and `′.

5.5.1 A semi-analytical calculation

The matrix can be defined as

Σ
AB,CD
``′

≡ 〈∆ĈAB
` ∆ĈCD∗

`′ 〉 =
(
MAB
``1

)−1
〈∆C̃AB

`1
∆C̃CD∗

`2
〉
(
MCD∗
`′`2

)−1
(5.11)

with
〈∆C̃AB

` ∆C̃CD∗
`′ 〉 = 〈C̃AB

` C̃CD∗
`′ 〉 − C̃AB

` C̃CD∗
`′ . (5.12)

This second order correlation term can be rewritten as

〈∆C̃XaXb
`

∆C̃XcXd∗

`′
〉 =

1
(2` + 1)(2`′ + 1)

∑
mm′

{
〈Xa

`mXc∗
`′m′〉〈X

b∗
`mXd

`′m′〉 + 〈X
a
`mXd∗

`′m′〉〈X
b∗
`mXc

`′m′〉

}
, (5.13)

where we have used the notation X = T, E.
The actual calculation, implemented in Xpol, thus need the determination of all the first order correlation
term. Some approximations are made along the calculation, similar to that of Efstathiou (2006).

In Xpol, the computations relies on data estimates. More specifically, we use a smooth version of
each power spectrum such that the contributions from noise (correlated and uncorrelated), sky emission
(from astrophysical and cosmological origin) and the associated cosmic variance are implicitly taken
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into account in this computation. The coupling matrix is then used to translate the correlation between
pseudo cross-power spectra into cross-power spectra (Eq. 5.11).

Note that TE and ET do not carry exactly the same information since computing T from the map A
and E from the map B is not the same as computing E from the map A and T from B. Hence, both TE
and ET blocks are computed individually and are eventually averaged.

The full covariance matrix has 25 618 × 25 618 elements (see Table 5.3). It is symmetric, definite
positive and needs to be inverted to be used in the likelihood function. The inverse of the full covariance
matrix is shown in Figure 5.8. It has been derived for the cross-power spectra estimated on HM maps.
The condition number is ∼ 108.

The expression for Σ
AB,CD
``′

can be simplified if the variation in multipole space of the CMB spectrum
is smaller then the spectral width of the window function (i.e. small mask). In this case the matrix is
dominated by the diagonal part and the effect of inhomogeneity in the sky coverage becomes a simple
function of the i-th moment of the mask W (Hivon et al. 2002).

For illustration purpose we show the validity of this approximation in computing the error bars on a
given cross spectra

Σ
AB,AB
``

≡ (∆CAB
` )2 '

1
f AB
sky

[
(CAB

` )2 + CAA
` CBB

`

]
(5.14)

where f AB
sky is estimated from the first moments of the mask used for A and B. The cross spectra CAB

`

contain only signal but the auto-spectra CAA
` and CBB

` contain a contribution from noise NA
` and NB

` ,
respectively. Eq. 5.14 can thus be rewritten as

(∆CAB
` )2 '

1
f AB
sky

[
2(S `)2 + S `(NA

` + NB
` ) + NA

` NB
`

]
(5.15)

In Fig. 5.9 the various terms of the approximation of Eq. 5.15 are shown. Their sum (in red) is plotted
together with the analytical computation from Xpol (in black). As expected, the approximation works
better, both in temperature and in polarisation, at 100 GHz than at 217 GHz since the sky coverage is
larger. We also show the results from the simulations to give an idea of the level of accuracy of both the
analytical and the approximate solutions. Validation on simulations is discussed further in sec. 5.5.2.

5.5.2 Validation on simulations

The precision of the semi-analytical estimation has been tested using Monte-Carlo simulations. The
procedure, uses the Planck 2013 ΛCDM best fit to generate the signal. A CMB map is then generated on
top of which we add realistic noise. For each simulation, this procedure is repeated six times using the
beams and the variance map associated to each of the six maps. The same mask used for the analysis are
then applied and cross-power spectra are computed. A total of ∼ 15 000 sets of cross-power spectra have
been produced. When comparing the diagonal of the covariance matrix from the analytical estimation
with the corresponding simulated variance, a precision better than a few percents is found. This is
illustrated in Fig 5.10 for the 143-143 GHz block. For a Gaussian likelihood, this percents precision on
the covariance matrix do not bias the results and has negligible consequences on the final error bars.

5.5.3 Effect of PS mask on the matrix

As can be noted in Fig 5.10, the ratio between the estimation of the diagonal of the covariance matrix
from simulation and its analytical calculation shows an oscillation pattern. This is due to the the point
source (PS) mask contribution. We remind that we use the PSCG mask, from the consistency working
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Figure 5.8: The inverted full covariance matrix that is used in the likelihood analysis. Each block de-
scribes a different combination of cross-spectra and has different dimensions depending on
the different [`min, `max] ranges of Table 5.3. We also recognise the different blocks for CMB
modes, TT, EE and TEET (the combination of TE and ET).

group. The choice for the PS has consequences also on the modelling of the residual thermal dust
emission (sec.5.6.1). In Fig. 5.11 we compare simulations and analytical calculation with or without the
PS masks. For the cross involving the 217 GHz channel, there is an additional effect of the PS masks: the
approximations made in the analytical result overestimate the error bars up to a maximum of 5 % effect.

The significance of the effect of the PS masks changes with the PS masks being considered. We
remind that

• the PCCS mask, used in the 2013 analysis, is the union of the point sources detected from frequen-
cies 100 to 353 and based on simple high flux cut;

• the PSCG is the mask that we use. It has been produced by the Planck consistency group to avoid
masking cirrus at high latitude.

In Fig. 5.12 we compare the effect found using our masks with the results of the Plik likelihood if
the PCCS based mask are used. The oscillation pattern follow the signal in both cases but the amplitude
is reduced when the PSCG is used.

This shows that the analytical estimation of the covariance matrix has difficulties in handling the
specific shape of the PS mask. These tests lead to the conclusion that the PSCG mask, with its proper
treatment of the cirrus and a smaller numbers of holes in the mask, gives an analytical estimate of higher
precision.
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Figure 5.9: The analytic computation of the diagonal of the covariance matrix Σ (in black) is compared
to the approximation of Eq.5.14 (in red). The various terms of the equation are also shown.
In (a) is reported the error bars for the cross 100×100 in temperature and in (b) in polarisation
EE. f AB

sky in this case is simply the fsky used for the 100 GHz (72%). The same is shown in
(c) and (d), for TT and EE respectively, for the cross 217×217, with fsky=48%. In all the
figures is also shown (light grey) the results from simulation discussed in sec. 5.5.2.

5.6 Residual foregrounds

The foreground emissions present in the range of frequencies covered by the Planck satellite have been
introduced in sec.3.5.
The masking strategy discussed in sec.5.3, and an appropriate choice of `-range, help in reducing their
impact. There are, however, still some residual contaminations left. For a proper estimation of the CMB
signal, and thus of the cosmological parameters, they need to be properly taken into account at the power
spectrum level.

Generally speaking one expects residual diffuse Galactic foregrounds to dominate at low-`, with a
minimum in the 70 to 100 GHz range, while extragalactic residuals dominates at multiple larger than
∼200 (Planck Collaboration. I. 2014).

In temperature, for the three frequencies of interest in this thesis (100 GHz, 143 GHz, and 217 GHz),
free-free and synchrotron can be safely neglected. On the contrary, thermal dust emission is the most
important foreground to deal with, together with unresolved PS, CIB, tSZ, kSZ and the cross correlation
between tSZ and CIB.
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(a)

(b)

Figure 5.10: The analytical estimation of the covariance matrix Σ
AB,CD
``′

is validated on simulations. The
covariance matrix is estimated from 15.000 simulations (see text). As an example, the
results are shown for the diagonal in multipole space for the 143×143-143×143 block.
(a) Left. The diagonal TT-TT (red), TE-TE (blue) and EE-EE (yellow) extracted from
simulations are plotted against the analytic result (black). Right. Here is reported the
ratio between the results from simulations and the analytic results, color coded as before.
The agreement is at % level. The oscillation pattern is due to the effect of the PS mask
(sec.5.5.3). (b) Left. Here are shown the off-diagonal block for the CMB modes, i.e. the
TT-EE (red), TT-TE (yellow) and EE-TE (blue), again with the analytical result in black.
Right. We report the difference between the simulation and the analytic results rescaled
with respect to the value at ` = 300.

The model used to describe the Planck TT power spectra thus reads:

Cmodel,TiT j

`
∝ CCMB,TT

`
+ ATT

dustC
dust,TiT j

`
+ ATiT j

PS

+ACIBCCIB,TiT j

`
+ AtS ZCtSZ,TiT j

`

+AtS ZxCIBCtSZxCIB,TiT j

`
+ AkS ZCkSZ

` (5.16)

In polarization, the only relevant foreground is the polarised dust. Synchrotron emission is known to
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5. THE HILLIPOP HIGH-` LIKELIHOOD

(a) (b)

Figure 5.11: Ratio between the diagonal of the covariance matrix extracted from simulations and the an-
alytical calculation. In red is shown the result using a different set of simulations that does
not include the PS masks; in blue the result from simulations including the PS masks. In
(a) we consider the 100×100-100×100 block in temperature. In (b) the 217×217-217×217
block, again in temperature. In this case the PS mask induce also an additional effect
besides the signal-like oscillation: the error bars are underestimated by a 5%.

(a) (b)

Figure 5.12: Ratio between the estimation of the diagonal of the covariance matrix from simulations
and the analytical calculation. In (a) is used the HiLLiPOP likelihood and the PSCG masks
for the point sources. In (b) is shown the result using the Plik likelihood and the PCCS
masks (Figure from M.Millea).

be significantly polarized but it scales with frequency following a power law with spectral index close to
-3. It is then subdominant in Planck HFI channels and we can neglect its contribution (e.g. Tucci et al.
(2005)). The contribution of polarized point sources is also expected to be negligible (Tucci & Toffolatti
2012).

Hence, the EE and TE power spectra models simply read:

Cmodel,EiE j

`
∝ CCMB,EE

`
+ AEE

dustC
dust,EiE j

`
, (5.17)

Cmodel,TiE j

`
∝ CCMB,T E

`
+ AT E

dustC
dust,TiE j

`
. (5.18)

In HiLLiPOP, we use physically motivated templates of foreground emission power spectra, based on
Planck measurements. We assume a C` model for each foreground with a fixed spectral and ` dependency
and rescale it with a free parameter A that should be equal to unity in the perfect case. Only the residual
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5.6 Residual foregrounds

point source are treated differently. An independent parameter fits their free amplitude at each cross-
frequency.

The next sections are dedicated to a description of the various models and their physical basis.

5.6.1 Galactic dust

For the Planck HFI frequency used here, at low to intermediate multipoles, the dominant foreground
is the residual Galactic emission both in temperature and in polarization. In Planck Collaboration XV
(2014) and Planck Collaboration. Int XXII. (2014) residual Galactic dust emission is find to be com-
patible with a power law in multipoles, both in temperature and polarization. Our templates are built
following the same methodology presented in Planck Collaboration Int. XXX (2014).

For the temperature, we first estimate the TT half-mission cross-power spectra at 353 GHz in different
masks combinations (Fig. 5.13) and then subtract the best-fit CMB power spectrum from the Nominal
mission data analysis of Planck Collaboration. XVI. (2014). The CIB power spectrum (see Planck
Collaboration XXX 2014) is further subtracted. A good fit is obtained on the resulting power spectra
using the power-law model A`α + B, where B describes the Poisson contribution from unresolved point
sources. Both A and B depend on the mask used. It is worth stressing that compatibility of the shape
of the Galactic dust component with a power law is restricted to a particular choice of point source
mask. As described in sec. 5.5.3, the PCCS masks remove some Galactic structures and bright cirrus
generating a knee in the residual dust power spectra around ` ∼ 300 (Fig. 5.14). The PSCG masks from
the Consistency Group used in this analysis, treat more properly these cirrus and do not show this bias1.

For EE and TE we again estimate half-mission cross-power spectra at 353 GHz in the different com-
binations of masks (Fig. 5.15 and Fig. 5.16) and then subtract the best-fit CMB power spectrum. We
do not have contribution from CIB in polarization and polarized point sources are negligible2. Hence, a
simple power-law model A`α is considered. The values of α fitted are in agreement with the ones from
Planck Collaboration Int. XXX (2014), although slightly flatter then the ones for temperature at high `
and at high frequency (Planck Collaboration. XVI. 2014).

Once A and α are obtained for each mask combination and for each mode, the templates for Eq. 5.16,
Eq. 5.17 and Eq. 5.18 are constructed as follows:

CXiX j

`,dust = A × cνi × cν j × `
α (5.19)

with cνi = 353 GHz→ i the coefficients for rescaling from the 353 GHz to the frequency of interest. They
are estimated using a map domain regression, at large angular scales, of the 353 GHz map after CMB
removal. The extrapolated factors are given in Table 5.4 and are compatible with Planck Collaboration.
Int XXII. (2014). When the template of Eq. 5.19 is used in the likelihood, it is multiplied by a single
scaling parameter for each mode ATT

dust, AEE
dust and AT E

dust. We expect these parameters to be compatible
with one. For the estimation of cosmological parameters we use Gaussian priors on these amplitudes
1 ± 0.2, that reflect the uncertainty of the model (sec. 5.8.4).

1If we try to model dust using a simple power law in the case of the knee feature, there are consequences of this improper
treatment on the estimation of cosmological parameters (e.g. shifts are up to 0.6σ for ωb).

2In Planck Collaboration Int. XXX (2014) PCCS mask is used in order to prevent the brightest polarized sources from
producing ringing in the power spectrum estimation, while avoiding the removal of dust emitting region and their statistical
contribution to the angular power spectrum. We keep our PSCG masks for polarization
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c100 GHz c143 GHz c217 GHz

HiLLiPOP I 0.01957 0.03982 0.13185
Q/U 0.01703 0.03605 0.12498

Planck Collaboration. Int XXII. (2014) I 0.0199 0.0387 0.1311
Q/U 0.0179 0.0384 0.1263

Table 5.4: Values for the cνi coefficients for rescaling the 353 GHz to the frequency of interest.

(a) (b)

Figure 5.13: (a) 353x353 TT power spectra. The dashed black line is the 353x353 CIB power spectrum
and the black line is the CMB TT power spectrum. The color lines are the CMB and
CIB subtracted 353x353 power spectra estimated for different set of masks as defined in
sec. 5.3. (b) Fit of the CMB and CIB subtracted 353x353 TT power spectrum estimated
for M40xM40. The black squares are the data and the red dashed line is the best fit to these
data.

5.6.2 Unresolved point sources

Extragalactic radio sources contribute significantly to temperature fluctuations only at small angular
scales. At frequencies higher than 100 GHz, the contribution of dusty galaxies should also be taken into
account (Tucci et al. 2005). Due to its limited angular resolution, Planck cannot significantly constraint
these foregrounds. To avoid modelling errors, dusty and radio sources are not considered separately but
included in a scale independent term, ATiT j

PS , for each cross-frequency. In other words, we consider a
Poisson-like flat power spectrum.

In sec.5.9, the agreement between the levels of unresolved PS expected from source counts and our
Poisson terms amplitudes is discussed.

In polarization we can instead safely neglect point source contributions both from radio and dusty
galaxies (Tucci et al. 2004).
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5.6 Residual foregrounds

(a) (b)

Figure 5.14: (a) Effect of the PCCS 2013 mask on the shape of the power spectra of the dust. We see a
knee in the in the power spectra around ` ∼ 300. (b) The ` ∼ 300 is clearly visible if we
plot the ratio of the power spectra using the PCCS or the PSCG.

(a) (b)

Figure 5.15: (a) 353x353 EE power spectra. The black line is the CMB EE power spectrum. The color
lines are the CMB subtracted 353x353 EE power spectra estimated for different set of
masks as defined in sec. 5.3. (b) Fit of the CMB subtracted 353x353 EE power spectrum
estimated for M55xM55. The black squares are the data and the red dashed line is the best
fit to these data.

5.6.3 Cosmic Infrared Background

The frequencies above 353 GHz are dominated by Galactic and extragalactic infrared emission. The
extragalactic component is the CIB produced by thermal radiation of dust heated by UV emission from
young stars (sec.3.5). The CIB constitutes an important foreground, especially at 217 GHz, that needs to
be treated properly at power spectrum level in our analysis. The CIB power spectrum templates that we
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Figure 5.16: Left: 353x353 TE power spectra. The black line is the CMB TE power spectrum. The
color lines are the CMB subtracted 353x353 TE power spectra estimated for different set
of masks as defined in Table 5.2. Right: fit of the CMB subtracted 353x353 TE power
spectrum estimated for M55xM40. The black squares are the data and the red dashed line
is the best fit to these data.

use at each cross frequencies, are based on a halo model linking directly the galaxy luminosity to their
host dark matter halo mass. They are presented in Planck Collaboration XXX (2014).

The halo model formalism, that is used also for the tSZ and the tSZ-CIB models described in sec.5.6.4
and 5.6.6 respectively, has the general expression (e.g. Planck Collaboration. XXIX. (2015))

C` = CAB,1h
`

+ CAB,2h
`

, (5.20)

where A and B stand for tSZ effect or CIB emission, CAB,1h
`

is the 1-halo contribution, and CAB,2h
`

is the
2-halo term. The 1-halo term CAB,1h

`
is computed as

CAB,1h
`

= 4π
∫

dz
dV

dzdΩ

∫
dM

d2N
dMdV

W1h
A W1h

B , (5.21)

where d2N
dMdV is the dark-matter halo mass function from Tinker et al. (2008), dV

dzdΩ
the comoving volume

element, and W1h
A,B is the window function that accounts for selection effects and total halo signal. The

contribution of the 2-halo term, CAB,2h
`

, accounts, instead, for correlation in the spatial distribution of
halos over the sky.

For the CIB, the 2-halo term (i.e. the term that considers galaxies belonging to two different halos),
is dominant at low and intermediate multipoles and is very well constrained by Planck. The 1-halo term,
instead, is not well measured, and is degenerate with the shot noise. Hence, in Planck Collaboration
XXX (2014) strong priors on the shot noises have been used to get the 1-halo term.
The power spectra template are available in Jy2sr−1 units with the IRAS convention νI(ν) =cst. To
convert them in µK2

CMB units we use the values in Table 5.5, taken from a slightly updated version of
Table 6 in Planck Collaboration IX (2014). Then, our CCIB

`
model is simply the C` CIB template, rescaled

with a single parameter ACIB, that is expected to be one (sec.5.8.4).

CXiX j, CIB
`

= ACIBCXiX j, temp
`

(cic j)−1 (5.22)
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5.6 Residual foregrounds

c100 GHz c143 GHz c217 GHz

UC IRAS [MJy sr−1K−1
CMB] 244.1 371.66 483.485

Table 5.5: Values for the cνi coefficients for converting MJysr−1 units in KCMB units for the frequency of
interest (see Table 6 in Planck Collaboration IX (2014)).

Figure 5.17: The CIB cross power spectra templates used in this analysis.

The cross power spectra templates are reported in Fig. 5.17. Note that at 100 GHz, the CIB is
negligible, while C217x217,CIB

`
is 63.6 µK2

CMB at ` = 3000.

5.6.4 Unresolved thermal Sunyaev Zel’dovich (tSZ) component

At Planck intermediate frequencies, from 70 to 217 GHz, although the sky emission is dominated by
the CMB, we are slightly sensitive to the distortion of the CMB black body caused by the tSZ effect
(sec.1.3.6 and 3.5). To give an idea of the order of magnitude of the effect, the ground based CMB
experiment SPT and ACT (sec. 6.3) find, in D` at `=3000, a contribution of 9 µK2

CMB at 100 GHz and
4 µK2

CMB at 143 GHz. The effect is zero at 217 GHz. The template used is based on Tinker et al. (2008)
for the mass function and Arnaud et al. (2010) for the universal pressure profile. It contains both the 1
and 2-halo terms defined in sec. 5.6.3 (Taburet et al. 2011). A full description can be found in Planck
Collaboration. XXII. (2015). In Table 5.6 we report the conversion factors for the Compton parameter of
Eq.1.101 to CMB temperature (KCMB), for each frequency channel of interested, after integrating over
the instrumental bandpass. These numbers are taken from Table 1 of Planck Collaboration. XXII. (2015).
The CtSZ

`
model used in the likelihood is normalised at 143 GHz and rescaled with a single parameter

AtSZ, that is expected to be one.

CXiX j, tSZ
`

= AtSZCtSZ,143
`

cνicν j

c2
143 GHz

. (5.23)

The templates are reported, for each cross frequency, in Fig. 5.18 (in D`). Note that, in the Plik likeli-
hood is fitted instead the contribution of the tSZ to D143x143

`=3000 at 143 GHz in µK2
CMB(Planck Collaboration

129



5. THE HILLIPOP HIGH-` LIKELIHOOD

c100 GHz c143 GHz c217 GHz

TCMB g(ν) KCMB -4.031 -2.785 0.187

Table 5.6: Values for the cνi coefficients for converting MJysr−1 units in KCMB units for the frequency of
interest (see Table 6 in Planck Collaboration IX (2014)).

Figure 5.18: The tSZ power spectra templates. A global scaling, AtSZ, is let free in the analysis

A13 2015), and the template considered is different. As in the 2013 analysis, they use the Efstathiou
& Migliaccio (2012) template with ε = 0.5. However, cosmological parameter estimation is not very
sensitive to the tSZ effect, and that templates are all very similar at ` < 2000 and can not be distinguish
by Planck alone data. In Planck Collaboration. XIII. (2015), a prior on the SZ effect coming from ACT
and SPT data is used. This is described further in chapter 7.

5.6.5 Kinetic Sunyaev-Zeldovich (kSZ) component

As described in sec.1.3.6, the peculiar velocities of the clusters containing hot electron gas induce a
frequency independent Kinetic Sunyaev-Zeldovich effect. The theory gives only upper bounds: the kSZ
is believed to be D` <7K2

CMB at ` = 3000. We use the template from M.Douspis and N.Aghanim
(Fig. 5.19), and we rescale it with a parameter AkSZ

CkSZ
` = AkSZ

(
ChKSZ
` + CpKSZ

`

)
, (5.24)

where:

• ChKSZ
`

is the homogeneous kSZ, arising when the reionisation is complete. It is taken from Shaw
et al. (2012);

• CpKSZ
`

is the contribution from the patchy (or inhomogeneous) reionisation that arises before
the reionisation is complete from the proper motion of ionised bubbles around emitting sources
(Aghanim et al. 1996). The power spectrum is taken from Battaglia et al. (2013).

The Plik likelihood considers only the homogeneous part. As for the tSZ, Planck alone can only put
loose constraints on this effect so the difference does not impact parameter estimation.
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5.7 The likelihood function

Figure 5.19: The frequency independent kSZ template from the Planck Consistency Working Group.

5.6.6 tSZ-CIB correlation

The halo model can naturally account for the correlation between two different source populations, each
tracing the underlying dark matter but having different dependence on host halo properties (Addison
et al. 2012). An angular power spectrum can thus be extracted for the correlation between unresolved
clusters contributing to the tSZ effect, and the dusty sources that make up the CIB. While this latter has
a peak in redshift distribution between z ' 1 and z ' 2, and is produced by galaxies in dark matter halos
of 1011-1013 M�, the tSZ is mainly produced by local (z < 1) and massive dark matter halos (above 1014

M�). This implies that the CIB and tSZ distributions present a very small overlap for the angular scales
probed by Planck, and it is thus hard to detect (Planck Collaboration. XXIX. 2015). There are, however,
constraints provided by the ground based CMB experiments ACT and SPT. The ACT collaboration set
upper limits on the tSZ-CIB cross correlation ρ < 0.2 (at 95% C.L) (Dunkley et al. 2013) and the SPT
collaboration reported 0.113+0.057

−0.051 (68% C.L) (George et al. 2014); a zero correlation is disfavoured at
99% confidence level.

We use the template from P.Serra (Fig. 5.20). The tSZ power spectrum template is based on Efs-
tathiou & Migliaccio (2012), while for the CIB is used the template described in sec.5.6.3. The power
spectra template are available in Jy2sr−1 units with the convention νI(ν) =cst. To convert them in µK2

CMB
units we use again the values of Table 5.5.

We rescale with a single parameter AtSZxCIB

CXiX j, tSZxCIB
`

= AtSZxCIBCXiX j, temp
`

(cic j)−1 (5.25)

5.7 The likelihood function

Now that maps, `-ranges, masks and residual foreground models have been described, we write down
the likelihood function used in the analysis. First, we reduce the 15 cross-power spectra into 6 frequency
cross-power spectra (100 × 100, 100 × 143, 100 × 217, 143 × 143, 143 × 217 and 217 × 217) in TT, EE,
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Figure 5.20: The tSZxCIB power spectra templates from the Planck Consistency Working Group.

and TE and compress the covariance matrix accordingly. The HiLLiPOP likelihood then reads

− 2 lnL(Cmodel
` ) =

∑
X,Y

X′,Y′

∑
i6 j

i′6 j′

`
XiY j
max

`
X′

i′
Y′

j′
max∑

`=`
XiY j
min

`′=`
X′

i′
Y′

j′
min

R
XiY j

`

[
Σ

XiY j,X′i′Y
′

j′

``′

]−1
R

X′i′Y
′

j′

`′
. (5.26)

R
XiX j

`
= ĈXiX j

`
− Aplanckcic jC

model,XiX j

`
denotes the residual of the estimated cross power spectra (Ĉ`) with

respect to the model (Cmodel
`

) defined in Eq. 5.16, 5.17 and 5.18. These models come with a multiplication
factor Aplanck describing the error on the absolute calibration. It is allowed to vary around 1 with a
Gaussian prior of 2.5‰ (Table 5.7). We use also 5 coefficients ci for the relative calibration of each
map with respect to the 143A map. More on calibration parameters can be found in sec. 5.8.5. The
full covariance matrix Σ, is described in sec. 5.5. The frequency band (100, 143 and 217 GHz) is given
by the i, j indices and the CMB modes (T, E) by X,Y . The multipole ranges [`min,`max] are chosen
differently for each power spectrum to limit contaminations. Given the number of degree of freedom n`,
we expect the χ2 to be approximately Gaussian distributed with a mean of n` and a dispersion

√
2n`,

where n` = `max − `min + 1.

The model is a function of the 6 or more cosmological parameters (ΛCDM and possible extensions),
and the nuisance parameters: Cmodel

`
(Ω, ν). As listed in Table 5.7, there are 6 instrumental parameters

describing calibration, and a scaling parameters for each foreground modelling described in sec.5.6. Note
that these latter includes different parameters for the different CMB modes considered. In polarisation
there is only the corresponding Adust to be considered, while in temperature there are the 6 free Poisson
amplitudes (one for each of the 6 compressed cross-spectra) plus the 4 scaling parameters for the SZ and
CIB sector, plus the dust parameter. At the end, we have a total of 19 free nuisance parameters in the full
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name definition prior (if any)
instrumental

c0 map calibration (100 GHz) 0.000 ± 0.002
c1 map calibration (100 GHz) 0.000 ± 0.002
c3 map calibration (143 GHz) 0.000 ± 0.002
c4 map calibration (217 GHz) 0.002 ± 0.002
c5 map calibration (217 GHz) 0.002 ± 0.002
Aplanck absolute calibration 1 ± 0.0025

foreground modelling
A100×100

PS PS amplitude in TT (100x100 GHz)
A100×143

PS PS amplitude in TT (100x143 GHz)
A100×217

PS PS amplitude in TT (100x217 GHz)
A143×143

PS PS amplitude in TT (143x143 GHz)
A143×217

PS PS amplitude in TT (143x217 GHz)
A217×217

PS PS amplitude in TT (217x217 GHz)
ASZ scaling parameter for the tSZ in TT
ACIB scaling parameter for the CIB in TT
ATT

dust scaling parameter for the dust in TT 1.00 ± 0.20
AEE

dust scaling parameter for the dust in EE 1.00 ± 0.20
ATE

dust scaling parameter for the dust in TE 1.00 ± 0.20
AkSZ scaling parameter for the kSZ effect
ASZxCIB scaling parameter for cross correlation SZ and CIB

Table 5.7: Nuisance parameters for the HiLLiPOP likelihood

(TT, EE, TE) model. In Table 5.7, we also list the Gaussian prior, that are optionally used in the analysis,
for the calibration and dust scaling factors. Other combinations have been tried during the development
of the likelihood and the consequences of these different choices have been investigated (see sec. 5.8.4
and sec. 5.8.5). On all parameters, large flat prior to avoid non-physical values are always considered.

5.8 Robustness tests

In this section, we describe the tests we have performed in order to establish the robustness of the results
with respect to some of the details of the foreground modelling, the data used, the masks, the multipole-
range, and the implementation of the calibration coefficients.

5.8.1 Consistency between datasets

Although the results in chapter 7 have been obtained using HM data, along the process of validation of
the likelihood, DS and Yr data have been extensively tested. Yr data do not differ substantially from HM
data. The only difference is the inclusion or not of the 5th survey. HM data thus contains more statistics,
but Yr data are more naturally related to the scanning strategy.

In Fig. 5.21 we show the parameters shifts for the temperature-only HiLLiPOP likelihood between the
DS, Yr and HM data. The cosmological parameters do not show important variations with the exception
of 0.6σ down shift for ns in the DS configuration. HM and Yr data show a little discrepancy only on the
estimate of θ.

133



5. THE HILLIPOP HIGH-` LIKELIHOOD

Note that since calibration parameters are related to different maps, a dispersion is perfectly normal.
The most visible shift are, however, in the values for the Poisson amplitude involving the 100 GHz
channel, resulting in a lower value for the tSZ effect. Poisson amplitude are discussed further in sec.5.8.4.

The DS cross-spectra likelihood has higher signal to noise with respect to the HM likelihood, but low
level uncorrected correlated noise and residual 4-k line systematics has driven the Planck collaboration
to prefer the latter (Planck Collaboration. XIII. 2015). The cosmology is really little influenced by this
choice but the final results presented in this thesis have been obtained using the HM likelihood.

Figure 5.21: Posterior distribution for the temperature only HiLLiPOP likelihood (in combination with
LowTEB) using DS data (green) or Yr data (yellow) or HM data (red).

5.8.2 Masks choice

In sec. 5.3 the masks used in the analysis have been presented. They are frequency dependent combina-
tion of Galactic, point source, CO and nearby galaxy masks. The M72, M62 and M48 masks associated
to the 100 GHz, 143 GHz and 217 GHz channels, respectively, are described in Table 5.2. We refer to
this set of masks as the MaskSuperExt.
Along the analysis we tried different masks. For the Galactic emission, for example, we have extensively
used a more conservative set, M65, M55 and M40 that we will refer to as MaskExt. Also, the CO masks
have been changed during the analysis, choosing, for the final analysis, a more conservative one. For HM
data, the different value of χ2

min obtained with the different combination of mask are listed in Table 5.8.
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The shift induced on the cosmological parameters are shown in Fig.5.22. Results are quite stable to the
different masks. The SZ source masks, created using a Compton parameter Y map (Planck Collaboration
XXI 2014), have not be retained in the final masks since the SZ emission is sub-dominant, and, as for
the PCCS masks, the analytical approximations in the covariance matrix computation are less accurate.

mask name χ2
min χ2

min/n` ∆χ2/
√

2n`
MaskExt 9979.18 1.00 3.06

MaskExt (Conservative CO) 9990.67 1.05 3.14
MaskSuperExt (Conservative CO) 9949.69 1.04 2.85

MaskSuperExt (Conservative CO, SZ mask) 11622.6 1.22 14.95

Table 5.8: Values for the χ2
min, χ2

min/n` and ∆χ2/
√

2n` (with n` = `max − `min + 1=9556) using the HM
TT HiLLiPOP likelihood (with LowTEB at low-`) with different masks. If not specified the
CO masks are the ones smoothed at 120 arcmin (sec.5.3). Conservative CO masks are instead
smoothed at 30 arcmin, leaving more structures at high latitude. The impact of the SZ mask
is important since the χ2

min values dramatically increases. Hence, this mask is not used in our
analysis.

5.8.3 Extended `-range

Dependence of the cosmological parameters on multipole-range is a complicate subject. In this section
we extend the `-range as detailed in Table 5.9 and check that there are no major changes. We do this for
both DS and Yr, considering the case of temperature alone.

Cross-spectrum baseline range extended range
100 GHz × 100 GHz [50,1200] [50,1500]
100 GHz × 143 GHz [50,1500] [50,1700]
100 GHz × 217 GHz [500,1500] [50,1700]
143 GHz × 143 GHz [50,2000] [50,2000]
143 GHz × 217 GHz [500,2500] [50,2500]
217 GHz × 217 GHz [500,2500] [50,2500]

Table 5.9: Details of the extended `-range. The `min is lowered for the cross-spectra involving the
217 GHz. `max is slightly shifted to higher values for the 100 GHz.

Lowering `min the cross-spectra involving the 217 GHz, and rising `max for the 100 GHz, we expect to
have better constraints on the foregrounds. In Fig. 5.23 we see that this is indeed the case. The error bars
for the dust and the CIB are tighter by more than a factor two. At 100 GHz, where the dust and the CIB
have minor contributions, the extended `-range allows a (weak) detection of the tSZ signal. This lowers
the values of the Poisson amplitudes involving this frequency, now more in agreement with the external
astrophysical results. The consistency of the Poisson amplitudes with their astrophysical determination
is discussed further in sec.5.8.4. Also the up shift of CIB is compensated by a lower value for the Poisson
amplitudes at 217 GHz. The cosmological parameters are not much sensitive to this extended `-range.
This is reassuring for the robustness of the foreground modelling. In any case, since especially lowering
`min we are extending the residual dust model to regions where its validity is not assured, we keep using
the conservative `-range of Table 5.3 for the results of chapter 7.
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Figure 5.22: Posterior distributions for the six ΛCDM parameters obtained sampling the HM TT
HiLLiPOP likelihood constructed using different masks. Note that changing the Galactic
masks causes only little shifts in cosmological parameters and that the different CO masks
have almost no impact. Adding the SZ mask has only a little impact on θ, but worsens
considerably the χ2

min (Table 5.8). This mask is not used in our analysis.
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Figure 5.23: Posterior distributions from the TT HiLLiPOP likelihood (in combination with a τ prior
0.07±0.02 to mimic the low-`). In blue are shown DS and in red Yr data. Solid line
correspond to normal ranges and dashed to the extended one described in Table 5.9.

5.8.4 Foreground modelling

We check here the consistency of the foreground models used in our analysis. We recall that we adjust
each foreground component to the data using a single rescaling amplitude, that should be found compat-
ible with one. The only exception are the residual point sources, for which an absolute amplitude is left
free for each cross-spectra. These are discussed at the end of this section.

In temperature the dust amplitude is recovered almost perfectly (ATT
dust = 0.99 ± 0.11) while the ACIB

estimation lies 1.7σ away (0.60 ± 0.24). Using the full (TT, EE, TE) likelihood, the dust TT remains
perfectly compatible with one and the shift in the CIB amplitude is reduced to 0.5σ (0.89 ± 0.21). The
polarized dust amplitudes (AT E

dust and AEE
dust) are compatible within about 2σ with one: AT E

dust = 0.69± 0.14
and AEE

dust = 1.28 ± 0.13. Using Planck only data, we are not very sensitive to SZ components. In any
case, the marginalized posteriors on AtSZ, AkSZ and AtSZxCIB are compatible with the expectations.

Compatibility with A = 1 for the foreground scaling parameters is a good test for the consistency
of the internal Planck templates. We also test the stability of the cosmological results with respect to
the use of priors on these scaling parameters, by considering a set of Gaussian priors, A = 1 ± 0.2. The
χ2

min values remain unchanged with almost no shift in cosmological parameters (Fig. 5.24). For the final
results presented in this thesis, we have decided to use priors on the dust parameters as described in
Table 5.7.

The expected amplitude of the Poisson amplitudes can be computed from any theoretical model that
makes a prediction for the multi-frequency differential number counts dN/dS . In Planck Collaboration
A13 (2015) is presented an accurate way for computing, for each cross-frequency, the expected ampli-
tude, taking into account also the details of the construction for the point source masks, such as the fact
that the flux cut varies across the sky or the “incompleteness” of the catalogue from which the mask are
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5. THE HILLIPOP HIGH-` LIKELIHOOD

built at each frequency. We show here only the comparison between the estimations obtained using the
model of Tucci et al. (2011) for radio sources and our fitted values. In Table 5.10, results are reported
in D` at ` = 3000 in µK2, while often presented as C` values in the posterior distribution plots. The
estimates are presented only for the radio sources. Note that, while at 100 GHz the contribution from
dusty galaxies is negligible, at 217 GHz it provides about five times more power than the radio sources.
Hence, the disagreement at 217x217 is only apparent since the reported number takes into account only
radio sources. For the other cross frequencies, we find good agreement between the priors from source
counts and the posteriors from chains, with the exception of the 100 GHz where the prediction is lower
than the measured value by around 6 σ. This could be a sign of foreground modelling error or residual
systematic in the data and was not present in the 2013 analysis. We note again that increasing `max at
100 GHz (sec.5.8.3) reduces the tension. In any case, we do not expect this discrepancy to affect pa-
rameters as very little cosmological information comes from the range in multipoles at 100 GHz which
constrains the Poisson amplitude (Planck Collaboration A13 2015).

The preference for a higher value for the Poisson amplitude is clearly not only a chance adjustment
in the foreground sectors. If we put a Gaussian prior compatible with the expected value for the A100×100

PS ,
the rest of the nuisance parameters and the cosmology find solutions strongly incompatible with their
expected values. Up to now, we have found no way to reconcile our A100×100

PS value with the predictions,
and that also the Plik likelihood shows a similar tension.

As a further consistency test, we check the impact of cosmology on the foregrounds. In Fig. 5.25
we show the changes of the posterior distributions in the case of fixed cosmology. The nuisance and the
cosmological parameters are not much correlated, the posteriors are almost identical but, as expected,
slightly tighter. We postpone a more detailed discussion on the likelihood parameter correlation matrix
to chapter 7.

100 GHz × 100 GHz 143 GHz × 143 GHz 143 GHz × 217 GHz 217 GHz × 217 GHz
Radio 141 47 18 12
Dusty ∼0 - - ∼Radio × 5
HiLLiPOP 372±38 58±21 53±24 105±18

Table 5.10: Estimation of the radio source Poisson amplitudes, given the Consistency point source
masks (PSCG) used in this thesis and the model from Tucci et al. (2011). Entries are re-
ported in D` at ` = 3000 in µK2. Rough estimations for dusty galaxies are also reported.
The sum of the two is compared to the HiLLiPOP value obtained using TT only and a τ prior
0.07±0.02.

5.8.5 Effect of calibrations

In this section we discuss the impact of the calibration parameters on the results. We remind that we use
6 maps that we identify as 100A, 100B, 143A, 143B, 217A, 217B. Depending on which data we want to
use, these maps can be obtained from HM, Yr or DS combinations.
In the likelihood function, a parameter ci is associated to each of this map such as c0 = 100A, c1 =

100B, c2 = 143A, c3 = 143B, c4 = 217A, c5 = 217B. To break the degeneracy with the absolute ampli-
tude we fix c2 = 143A = 1, so we have 5 relative calibration parameters.
The way calibrations enter in the model is the following

Ĉmodel,XiY j

`
∝ Acic j

CCMB,XY
`

+
∑
fg

AfgCfg
`

 , (5.27)
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Figure 5.24: Posterior distribution for the TT HiLLiPOP likelihood considering Gaussian priors A =

1 ± 0.2 on the foreground modelling parameters ASZ, ACIB, and Adust (in black) or just flat
large priors (in yellow). Results validate the foreground modelling with almost no shift on
cosmological parameters.

with X,Y ∈ {T, E}. Strong priors, validated during the mapmaking process (Planck Collaboration. VIII
2015), are used on these parameters: a Gaussian prior 1± 2× 10−3 for c0, c1 and c3 and a Gaussian prior
1.002 ± 2 × 10−3 for c4 and c5. Note that the calibration priors on the 217 GHz maps is shifted up by
2‰. The parameter Aplanck is the absolute calibration (sec. 5.7), and allows to propagate the calibration
errors at the cross-spectra level and thus to the amplitude of the primordial power spectrum As. We use
the same calibration factors for temperature and polarisation.

In Fig.5.26 the posterior distributions for the calibration parameters are shown. Even when strong
Gaussian priors are used, there are ∼ σ level disagreements in the results. However, the estimation of
cosmological parameters is not affected neither in the temperature alone case, nor for the full likelihood
where the presence of polarisation could have had play a role (Fig.5.27). We have not found any in-
strumental reason for the calibration factor to vary between temperature and polarisation. We identify
that the bad χ2

min value of the full likelihood configuration (9.7 σ) is probably due to this disagreement
between calibrations. For the polarisation alone cases, the situation is more dramatic. The values of the
cosmological parameter changes if the priors on calibrations are released as shown in Fig. 5.28.

As a possible solution we tried to take into account the difference between T and E calibration,
adding, for the polarisation case, new parameters through the redefinition c→ c(1+ε). Clearly, the cases
that are interesting to test are TE or the full likelihood. The calibrations in temperature are kept fixed
and the εs are left free in the analysis. Unfortunately this does not cure the bad χ2

min for the full likelihood.

During these tests we noticed that the determination of the calibration coefficients through Eq. 5.27
suffers from highly non linear degeneracies and that a linearisation around 1 yields to more stable results.
We thus redefine ci as 1 + ci, where now the calibration parameters are centred on zero. The priors are
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5. THE HILLIPOP HIGH-` LIKELIHOOD

Figure 5.25: Posterior distribution for the foreground parameters of the TT HiLLiPOP likelihood (red)
compared to the posteriors obtained fixing the cosmological parameters to their best fit
(blue).

Figure 5.26: Posterior distribution for the 5 calibration parameters. Even in presence of strong priors
there is a dispersion of values for the different modes.

shifted accordingly.
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Figure 5.27: Posterior distributions for the full (TT+EE+TE) HiLLiPOP likelihood in case of strong
Gaussian priors on calibration parameters (red) or letting the calibration free (blue).
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Figure 5.28: Posterior distributions for the EE HiLLiPOP likelihood in case of strong Gaussian priors
on calibration parameters (red) or letting the calibration free (blue).
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5.9 Comparison of likelihoods

The HiLLiPOP likelihood is one of the high-` likelihood developed by the Planck Collaboration, along
with Plik, CamSpec and Mspec. These codes have been used to perform data consistency checks, to
test various analysis choices, and as a cross-check on the correctness of each code by comparing results
among them. In this section we discuss their inter-comparison. In general, good agreement between the
codes is found, with only minor differences in cosmological parameters. The Plik, CamSpec, and Mspec
codes are, like HiLLiPOP, based on pseudo-C` estimators and an analytic computation of the covariance
(Efstathiou 2004, 2006), with some differences in the approximations used. All of the codes use similar
Galactic masks, but differ in point source masking as discussed in sec.5.5.3. The codes additionally differ
in foreground modelling, data combinations used, and `-ranges. The comparison shown here uses HM
maps.

Figure 5.29 shows a comparison of the power spectra and error bars from each code. In temperature,
we note that the HiLLiPOP spectra are globally lower than the other ones. This difference does not,
however, lead to very large differences in cosmological parameters, but for a lower value for As. This is
discussed further in chapter 7.
Note also an excess of power attributed to the CMB by Plik and CamSpec at high-` at 100 GHz with
respect to HiLLiPOP. Less power to the CMB means higher value for the foregrounds, hence higher
Poisson power. This is consistent with the fact that the tension with astrophysical estimations of the
Poisson amplitude (sec. 5.8.4), is slightly higher in HiLLiPOPwith respect to the Plik likelihood (Planck
Collaboration A13 2015). There is also a dip near ` = 1400 at 217 × 217 in temperature. The dip is
reduced by about 1σ for Mspec. Since this latter has a different dust cleaning procedure, the dip can be
partially sourced by a chance CMB-galaxy correlation. However, this dip does not substantially affect
the final results as it has been shown varying `max in Planck Collaboration A13 (2015).

For TE and EE, the figure shows spectra which have been averaged across frequencies using mini-
mum variance weights as calculated based on each codes’ covariance matrix. Even with the present not
complete level of understanding of systematics, the agreement between spectra is good.

In Fig. 5.30 is shown a ratio between the error bars from each code to the ones from the baseline
Plik. The bins width is ∆`=100, and thus, results are sensitive to the correlation structure of each code
covariance matrix up to 100 multipoles into the off-diagonal. For all codes and for temperature and
polarization, the correlation between multipoles separated by more than ∆` = 100 is less than 3 %, thus
Fig. 5.30 contains the majority of the relevant information about each code covariance.

The error bars for TT at 143×217 from our HiLLiPOP likelihood are tighter than the other codes.
This is because we consider four 143×217 spectra, unlike the other likelihood that have only two spectra
since they give zero weight to the cross where both the 143 and 217 GHz maps come from the same
half-mission.

For TE and EE, after ` = 1000 we see the HiLLiPOP estimation of error bars diverging slowly from
the CamSpec value and a sudden jump after ` = 1750. The reason for this discrepancy is in our `-range
(Table 5.3). Progressively less spectra are kept until, after ` = 1750, there is only the 217×217 left. This
is not the case for CamSpec which set the same `max for all the cross-spectra.

The differences in ΛCDM parameters from TT are shown in Table. ??. Generally, parameters agree
to within a fraction of a σ. In particular, this shows the stability of the results with respect to Galactic
cleaning procedure, since HiLLiPOP and Plik use different procedures with respect to Mspec. Addi-
tionally, point source masking, which is handled differently by HiLLiPOP and Plik (sec.5.8.4), does not
lead to large shifts either.

The largest difference between HiLLiPOP and Plik is the lower value of Ase−2τ, which is coherent
with the global lower value of the spectra. Also note the bigger error bars in ns that can be related to the
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5.9 Comparison of likelihoods

difference in foreground modelling, since ns is the parameter more sensitive to the foregrounds.

These two parameter are also different between Plik and CamSpec. There is a difference in ns, which
is higher by about 0.45σ for CamSpec, with a related downward shift of Ase−2τ. About half of this shift
on ns is likely due to the difference in the dust template used at relatively high-`, i.e. in the regime where
it is the hardest to determine the template accurately since the dust contribution is only a small fraction of
the CIB + point source contributions . An additional 0.16σ difference can be attributed to the inclusion
in Plik of the first 500 multipoles at 143×217 and 217×217, which are excised in CamSpec. This 0.3σ
difference is believed to be illustrative of the systematic error on ns associated with the uncertainties in
the modelling of foregrounds, the largest systematic uncertainty in TT (Planck Collaboration A13 2015).
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Figure 5.29: A comparison of power spectra residuals from different high-` likelihood codes. A best-fit
Galactic and extra-galactic foreground model, estimated individually by each code from a
ΛCDM+τ-prior run, has been subtracted. A best-fit calibration factor has also been divided
out of this best-fit model (as opposed to being multiplied into each spectrum). These plots
thus show how much power (up to a calibration) each code attributes to the CMB, and
power spectrum differences driving small cosmological parameter shifts between the codes
are visible here. For easier visual comparison, a best-fit CMB model has been subtracted
in each of the panels above, which here is the best-fit from Plik. The above power spectra
are binned in bins of width ∆` = 100, the y-scale changes at ` = 500 for TT and ` = 1000
for EE, as marked with vertical dashes (Planck Collaboration A13 2015).
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Figure 5.30: A comparison of error bars from the different high-` likelihood codes. The error bars are
given as a ratio to the Plik error bars and are for bins of width ∆` = 100. Only regions
which are within the ` range of both Plik and the code being compared are shown (Planck
Collaboration A13 2015).
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Parameter Plik CamSpec HiLLiPOP Mspec XFaster (SMICA)

Ωbh2 . . . . . . . . . . 0.02219 ± 0.00023 0.02224 ± 0.00023 0.02218 ± 0.00023 0.02218 ± 0.00024 0.02184 ± 0.00024
Ωch2 . . . . . . . . . . 0.1208 ± 0.0022 0.1201 ± 0.0023 0.1201 ± 0.0022 0.1204 ± 0.0024 0.1202 ± 0.0023
100θMC . . . . . . . . 1.0408 ± 0.00048 1.0407 ± 0.00048 1.0407 ± 0.00046 1.0409 ± 0.00050 1.041 ± 0.0005
τ . . . . . . . . . . . . . 0.084 ± 0.018 0.087 ± 0.018 0.075 ± 0.019 0.075 ± 0.018 0.069 ± 0.019
109Ase−2τ . . . . . . 1.885 ± 0.014 1.877 ± 0.014 1.870 ± 0.011 1.878 ± 0.012 1.866 ± 0.015
ns . . . . . . . . . . . . 0.962 ± 0.0063 0.965 ± 0.0066 0.961 ± 0.0072 0.959 ± 0.0072 0.960 ± 0.0071

Each column gives the results for various high-` TT likelihoods at ` > 50 when combined with a prior of τ = 0.07± 0.02. Note

that the SMICA parameters were obtained for `max = 2000.

Table 5.11: A comparison between the parameters of different high-` codes (Planck Collaboration A13
2015).

5.10 Power spectra and residuals

In this section are presented the HM HiLLiPOP power spectra and residuals with respect to the ΛCDM
best-fit model (chapter 7).

For each cross-spectrum, foreground and nuisance parameters can be fixed to their best-fit values and
CMB only power spectra can be derived subtracting the foregrounds. Results are shown in Fig. 5.31 for
TT together with the residuals with respect to the best fit values. The points are binned with ∆` = 31,
and shown with their associated 1σ error bars. Note these errors are underestimated in the plots since we
are neglecting `-by-` correlations.

For TT, as mentioned in (Planck Collaboration A13 2015), the 2013 deficit at ` ∼1800 due to im-
perfect removal of the 4K cooler line (chapter 3) is reduced as for the Plik likelihood. We also report a
few ∼ σ deviation at `=1450, and a deficit roughly in correspondence of the second and the third peak.
Globally the temperature spectra are in very good agreement with the the ΛCDM best fit model.

Results for polarisation are shown in Fig. 5.32 for EE, and in Fig. 5.33 for TE. The inter frequency
residuals with respect to the best fit model TT shows some deviation at a few µK2 level (in ∆D`) that are
averaged out in the co-added spectra of Fig. 5.2. These residual systematics can be due, for example, to
temperature to polarisation leakage (Planck Collaboration A13 2015). However, in chapter 7 we will see
that temperature and polarisation give compatible cosmology. Polarisation is thus used in this thesis.

In Table 5.12, the reduced χ2 are calculated, for each cross-frequency residual plot, and for each
mode, with respect to full the TT+EE+TE best fit model. In this case, the `-by-` correlations from the
associated band covariance matrix are taken into account.

We show the level of foregrounds, after CMB subtraction, in Fig. 5.34 and Fig. 5.35. The level
of each foreground contribution, fixed to the best fit value for the scaling parameter and the power
spectrum shape described in sec. 5.6, are overplotted to the CMB-subtracted data. In polarisation, only
the polarised dust emission is considered.

Conclusions

In this chapter we have presented the HiLLiPOP high-` likelihood, a cross-spectra based Gaussian likeli-
hood including both the Planck temperature and polarisation data. We have described the maps used and
the frequency dependent masks for the Galactic, the CO-lines and the point source emissions. We have
explained the computation of the covariance matrix, its validation at a few % precision through Monte
Carlo simulations, and the role of the masks on its accuracy, leading to the conclusion that a proper cirrus
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χ2/Ndof 100x100 100x143 100x217 143x143 143x217 217x217
TT 0.98 0.92 0.87 1.16 1.04 1.15
EE 1.05 1.75 1.90 1.67 1.24 0.87
TE 1.10 1.24 1.26 0.84 1.02 1.51

Table 5.12: Reduced-χ2 with respect to the TT+EE+TE best fit model for the cross-frequency spectra,
calculated for the binned points (∆ = 31) and their 1σ errors computed from the associated
band covariance matrix, in the multipole range considered for the HiLLiPOP likelihood
(Table 5.3).

treatment is needed. We have also described the foreground residuals template used in both temperature
and polarisation.

Assuming the ΛCDM model, we have then presented the test performed to check the consistency
between different datasets, the robustness to the mask choice and the `-range, the validity of the residual
foreground models or the impact of the calibration parameters. These latter reveal that there are still some
untreated systematic effects in polarisation, but we will see that the impact for cosmological parameter
estimation is negligible.

The HiLLiPOP results have then been compared to the other high-` likelihood ones, showing good
agreement for both spectra, error bars, and cosmological parameters. In the last section, the foreground
subtracted cross power spectra and residuals are presented for TT, EE and TE, along with the reduced χ2

with respect to the TT+EE+TE best fit, and the CMB subtracted foreground residuals. All show good
agreement between the data and the model.

Before going to the results of chapters 7 and 8, we dedicate the next chapter to a brief description
of the Planck low-` likelihoods, the CMB lensing, the ACT and SPT small scales data, and the BAO
and Supernovae distance measurements. These datasets will complement the HiLLiPOP likelihood and
reduce the CMB intrinsic degeneracy, allowing to better constrain the cosmological parameters.
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Figure 5.31: Foregrounds-subtracted TT cross-power spectra and residuals. For each cross-frequency,
the top panel gives the best-fit CMB model (green curve) derived from a fit of the temper-
ature data along with the estimated TT cross-power spectrum (gray points). The red points
show averages in bands of width ∆ = 31 together with 1σ errors. The orange dotted ver-
tical lines delimit the the considered multipole range (Table 5.3). The bottom panel shows
the residuals with respect to the best fit model.
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Figure 5.32: Same as Fig. 5.31, but for EE.
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Figure 5.33: Same as Fig. 5.31, but for TE.
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Figure 5.34: Temperature foreground residuals for all the cross-frequency spectra. The best fit level of
each residual foreground contribution is also plotted.
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5.10 Power spectra and residuals

Figure 5.35: Polarization foreground residuals for the 217x217 cross-frequency. The best fit level of the
polarised dust contribution is also plotted.
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Chapter 6

Complementary datasets

In chapter 5 we have described in details the HiLLiPOP likelihood, a cross-spectra based approach at
intermediate and high multipoles (50 ≤ ` ≤ 2500), for both Planck temperature and polarisation data.
With the aim of obtaining the best constraints on cosmological parameters, in chapter 7 and 8 we combine
this likelihood with the complementary data presented here.

In sec. 6.1 we describe the Planck large scale information in temperature and polarisation that are
fundamental to break the τ-As degeneracy. In sec. 6.2 we present the Planck lensing likelihood based on
the power spectrum of the matter deflection field estimated from the 4-point correlation function. Planck
data can also be combined with the small scale structure data from the CMB ground based experiment
ACT and SPT. These are described in sec. 6.3. Although CMB alone has strong constraining power,
the combination with late time distance measurements is a powerful lever arm to break the CMB degen-
eracies. In particular, we add Baryon Acoustic Oscillations (sec. 6.4) and Supernova Ia data (sec. 6.5).
The combination with the complementary datasets described in this chapter improves cosmological con-
straints on the ΛCDM model, but are also fundamental to constrain neutrino extensions as is shown in
chapter 8.

6.1 The Low-` likelihood

The official Planck results are obtained combining the high-` information with a joint pixel-based like-
lihood including both temperature and polarization for multipoles ` ≤ 29, dubbed LowTEB (sec. 6.1.1).
For temperature, the formalism uses the cleaned Commander (Eriksen et al. 2004, 2008) maps, while for
polarization the 70 GHz LFI maps are used, cleaned using the 30 GHz as a tracer for the synchrotron
emission and the 353 GHz maps for dust emission. The pixel based approach computes an exact CMB
likelihood function in pixel space, L = P(d|C`), with d ≡ M(p) =

∑
`m a`mY`m(p). Indeed, since the

CMB anisotropies and noise are compatible with a Gaussian distribution with random phases (sec. 1.3.1),
the a`m coefficient follow a multi-variate Gaussian distribution. The likelihood function, written in pixel
space or, equivalently, in terms of the a`m coefficients, is Gaussian and therefore can be computed exactly
(e.g. Gorski et al. (1994)). In chapter 7 and 8 the main results of the HiLLiPOP likelihood are obtained
in combination with the LowTEB likelihood.

As a further test we also make use of the lollipop likelihood that extends the cross-spectra approach
presented in chapter 5 to large angular scales (sec. 6.1.2). It is based on a modification of the Hamimeche-
Lewis likelihood (Hamimeche & Lewis 2008) that has been proposed recently in Mangilli et al. (2015).
Used on Planck HFI data, it allows a very precise constraint on τ that is interesting to combine with the
high-` HiLLiPOP likelihood, and we will use it to test the robustness of our results to the low-` spectrum
part.
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6. COMPLEMENTARY DATASETS

6.1.1 Pixel based approach: LowTEB

The low-` pixel based likelihood LowTEB contains both temperature and polarisation. The general for-
malism has been described for instance by Tegmark & de Oliveira-Costa (2001), Page et al. (2007), and
in Planck Collaboration XV (2014).

In order to use low multipoles the likelihood adopts a HEALpix resolution of Nside = 16 which has
3072 pixels per map; this accommodates multipoles up to `max ' 3Nside = 46, and, considering separate
maps of T , Q, and U, corresponds to a maximum of Npix = 3 × 3072 = 9216 pixels. As described
in Planck Collaboration A13 (2015), after component separation, the data are modelled as a sum of the
cosmological CMB signal and instrumental noise, ~m = ~s + ~n. The signal ~s is assumed to have auto- and
cross-power spectra CXY

` (with XY = {TT, EE, BB,T E}) and, in analogy with Eq. 1.82, a pixel-space
covariance matrix

S (C`) =

`max∑
`=2

∑
XY

CXY
` PXY

` . (6.1)

Here PXY
` is a beam-weighted sum over the corresponding Legendre polynomials. For temperature, the

explicit expression is

(PTT
` )i, j =

2` + 1
4π

B2
` P`(n̂i · n̂ j). (6.2)

where n̂i is a unit vector pointing towards pixel i, B` is the product of the Legendre transformed instru-
mental beam and the HEALpix pixel window, and P` is the Legendre polynomial of order `1.

The instrumental noise is also assumed to be Gaussian distributed. Its covariance matrix N depends
on the Planck detector sensitivity and the scanning strategy (chapter 3). The full data covariance is
M = S + N and the likelihood reads

L(C`) =
1

|2πM|1/2
exp

(
−

1
2
~mT M−1~m

)
(6.3)

As mentioned in chapter 5, the inversion of the matrix and the computation of the determinant are com-
putationally costly since they scales as O(N3

pix). Hence, this direct approach can only be used at large
angular scales, where the number of pixels is low.

Temperature

For temperature, as in 2013 (Planck Collaboration XV 2014), the Commander likelihood is used (Planck
Collaboration. X. 2015). It is a component separation method that assumes an explicit parametrisation
for the CMB and for the foreground models. These latter have been introduced in chapter 3.

A CMB map at an angular resolution of 1 ◦ FWHM (Fig 6.1(a)) is obtained combining, in the spher-
ical harmonic domain, solutions from different combination of input channels at multiple resolutions.
Commander employs detector and detector set maps rather then full frequency maps, excluding specific
maps if there are significant systematic errors, but adding 9-year WMAP temperature sky maps (Bennett
et al. 2013) and 408 MHz survey map (that carries information on synchrotron emission) (Haslam et al.
1981, 1982).

In Fig 6.1(b) are compared the 2013 and 2015 marginal posteriors low-` power spectrum derived
using a Blackwell-Rao estimator (Chu et al. 2005).
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6.1 The Low-` likelihood

−250 250µKcmb

(a) (b)

Figure 6.1: (a) Commander CMB maps obtained combining Planck data with the 9-year WMAP and
the 408 MHz Haslam et al. observations. The mask for temperature covers the 7% of the
sky and its contours is showed in gray. The masked area has been filled with a constrained
Gaussian realisation. (Planck Collaboration. X. 2015). (b) Planck 2013 (blue) and Planck
2015 (red) posteriors low-` power spectrum derived using the Commander algorithm. The
9-year WMAP temperature spectrum is also shown for comparison in light gray points. The
dashed lines show the best-fit ΛCDM obtained combining low- and high-` data. Both figures
are taken from Planck Collaboration A13 (2015).

Polarisation

In polarisation, the 70 GHz channel of the LFI instrument is used. The Surveys 2 and 4 have been
conservatively removed since they did not pass some consistency tests (Planck Collaboration A13 2015).

The Planck Q and U 70 GHz maps are cleaned using 30 GHz maps to generate a template for low-
frequency foreground contamination, and 353 GHz maps to generate a template for polarized dust emis-
sion. The final cleaned Q and U maps, shown in Fig. 6.2, retain a fraction fsky = 0.46 of the sky.

The template-fitting procedure starts defying ~m ≡ [Q,U] as

~m =
1

1 − α − β
(
~m70 − α~m30 − β~m353

)
, (6.4)

where ~m70, ~m30, and ~m353 are band-pass-corrected versions of the 70, 30, and 353 GHz maps (Planck
Collaboration III 2015; Planck Collaboration VII 2015), whereas α and β are the scaling coefficients for
synchrotron and dust emission, respectively. The latter are estimated minimising the quantity

χ2 = (1 − α − β)2~mTC−1
S +N~m , (6.5)

where
CS +N ≡ (1 − α − β)2〈~m~mT〉 = (1 − α − β)2S (C`) + N70 . (6.6)

Here N70 is the pure polarization part of the 70 GHz noise covariance. The C` power spectrum is taken
form Planck 2015 best fit.

The best fit values obtained in the minimisation of Eq. 6.5 (using fsky46 %), correspond to spectral
indices (with 2σ errors) nsynch = −3.39±0.40 and ndust = 1.50±0.16, for synchrotron and dust emission
respectively.

1For corresponding polarization components, see, e.g. Tegmark & de Oliveira-Costa (2001)
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6. COMPLEMENTARY DATASETS

Figure 6.2: (a)Foreground cleaned, 70 GHz Q (top) and U (bottom) maps used for the low ` polarization
part of the likelihood. Each of the maps covers 46 % of the sky (Planck Collaboration A13
2015).
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Figure 6.3: Polarised QML spectra from foreground cleaned maps. In the figure are also shown the 2013
best fit (dot-dashed), where τ = 0.089 and the 2015 best fit (dashed), with a lower optical
depth τ = 0.068. In dotted blue is reported the the 70 GHz noise bias Planck Collaboration
A13 (2015).
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6.1 The Low-` likelihood

Low-` spectra and parameters

From foreground-cleaned Q and U maps and Commander temperature map, the angular power spectra
are derived using a quadratic maximum likelihood (QML) power spectrum estimator (Tegmark 1997;
Tegmark & de Oliveira-Costa 2001). Figure 6.3 presents all five cross-polarisation power spectra (TE,
EE, BB, TB, EB). In the case of EE and T E the Planck 2013 best fit power spectrum model are plotted.
The Planck 2013 estimate for the optical depth τ = 0.089, had been derived using the low-` likelihood
from WMAP-9 polarization maps (Bennett et al. 2013). This value is higher with respect to the one for
the 2015 assumed model, which is τ = 0.068. The optical depth τ, along with the scalar amplitude
As, is the parameter that has the largest effect at low-`. Indeed, temperature spectra are sensitive to the
combination Ase−2τ, while their lowest multipoles, that have not been reprocessed by reionisation, are
only sensitive to As (sec. 1.3.6). Polarisation is instead sensitive to the combination Asτ

2 (sec. 1.4.5). To
properly break the τ-As degeneracy, a combination of temperature and polarisation is needed. In Planck
Collaboration. XIII. (2015), τ and As are left free in the analysis while the others parameters are fixed to
their Planck 2015 ΛCDM best-fit value. The results are shown in Table 6.1. The low-` only value of τ is
lower than the previous WMAP estimation.

Parameter ΛCDM
τ 0.067 ± 0.023

log[1010As] 2.952 ± 0.055

zre 8.9+2.5
−2.0

109As 1.92+0.10
−0.12

Ase−2τ 1.675+0.082
−0.093

Table 6.1: Results for the parameters (τ, As) that have been sampled in the LowTEB likelihood. Unsam-
pled parameters are fixed to their ΛCDM 2015 best-fit fiducial values. All errors are 68 %
c.l.(Planck Collaboration A13 2015).

6.1.2 A cross-spectra approach: lollipop

The pixel based approach requires the noise matrix to be reconstructed with extreme accuracy to avoid
spurious bias on parameters reconstruction. This is indeed a difficult task due to the presence of residual
systematics related to the instrument, the scanning strategy or the improper treatment of foregrounds.
Previous studies, (Percival & Brown 2006; Hamimeche & Lewis 2008), developed a CMB analysis
on large angular scales based on the likelihood definition in harmonic space in terms of auto-spectra,
but these methods still need a perfect estimation of the noise and an accurate characterization of the
systematics effects.

On the contrary, working in harmonic space using the cross-spectra method (as in chapter 5), al-
lows to get rid of noise biases and to minimise the residual systematic effects by exploiting the cross-
correlation between different CMB maps. In Mangilli et al. (2015) it is proposed to extend the cross
spectra approach to large scales. The main difficulty with this low-` extension is that the distribution of
the Ĉ` estimator is non Gaussian and the central limit theorem can not be invoked. The lollipop likeli-
hood, for the estimation of spectra uses, as HiLLiPOP, the Xpol algorithm (sec. 5.4) based on pseudo-C`

estimator. It is sub-optimal with respect to the QML mentioned in sec. 6.1.1, but `-by-` correlations are
taken into account using Monte Carlo simulations. The level of correlation depends on the sky cut and
the dataset considered. In Fig. 6.4(a) is shown the covariance matrix of the low-` pseudo spectra directly
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(a) (b)

Figure 6.4: (a) Correlation matrix for the 100 GHzx143GHz using 50% of the sky. Each block corre-
spond to TT, EE, BB, TE Mangilli et al. (2015). (b) Posterior of the EE cross-spectrum
obtained from the cross-correlation between HFI 100 and 143 GHz maps cleaned from dust
and synchrotron by using the 353GHz and the 30GHz respectively.

derived in Mangilli et al. (2015) from MC simulations, for the Planck 100GHzx143GHz dataset using
fsky=50%. The correlation are strong and can reach 50%.

In order to model the non-Gaussianity of the Ĉ` estimators, the approximation that is proposed, is
based on the modification of the Hamimeche&Lewis likelihood (H&L) (Hamimeche & Lewis 2008),
adapted for the cross-spectra CA×B

`
and at low-`. The general form of the H&L likelihood is defined for

auto-spectra at intermediate and small scales (` > 30) as

− 2lnL(Cth
` |Ĉ`) =

∑
``′

[Xg]T
` [M−1

f ]``′[Xg]`′ . (6.7)

The [M−1
f ]``′ is the inverse of the C`-covariance matrix that allows to quantify the `−` and the correlations

of the T, E, B fields, while [Xg]` is the H&L transformed C` vector.
If the single EE field is considered the vector [Xg]` reads

[Xg]EE
` =

√
CEE,fid
`

g
 ĈEE

`

CEE,model
`

 √
CEE,fid
`

, (6.8)

where g(x) =
√

2(x − lnx − 1).
For cross-spectra and at large angular scales, the ĈEE

` is not guaranteed to be positive. Mangilli et al.
(2015) propose to add en effective offset oEE

` so that the function g(x) is always well defined.
The offset can be derived form simulations, and depends on the shape of the C` at each ` but also on

the noise level of the maps and on the masks used. There is, however, only a mild dependence on the
fiducial model assumed.

The covariance matrix [M f ]``′ and the offset functions are computed from Monte Carlo simulations
based on the correlated noise estimates derived from the jack-knives and for a given fiducial model.

[M f ]``′ = 〈
(
(CEE

` )AxB
sim −CEE,fid

`

) (
(CEE

`′ )AxB
sim −CEE,fid

`′

)
〉Nsim . (6.9)

This ensures that the likelihood is unbiased and gives error bars that account for the systematic effects
included in the simulations.
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6.2 The CMB lensing

The lollipop likelihood version used in this thesis makes use of the EE cross-spectrum between HFI
100 and 143 GHz maps. These latter are cleaned using the 353 GHz as a template for the dust emission
and the 30GHz for synchrotron emission. The lollipop likelihood considers a conservative skycut with
fsky=0.5 and a multipole range ` = [4, 20].

The likelihood is sampled varying τ in the range [0.01, 0.15] with a step ∆τ = 0.001 while all other
parameters are fixed to the Planck-2015 best fit values. The degeneracy between As and τ is broken by
fixing the amplitude of the first peak of the TT spectrum (directly related to Ase−2τ) at ` = 200. The
results on the optical depth is showed in Fig. 6.4(b) and reads

τ = 0.063 ± 0.007 (68%, lollipop). (6.10)

There is a factor ' 3 improvement in the error-bars with respect to the LowTEB estimate presented
in sec. 6.1.1. The result is promising but not definitive, since there can be residual systematics to be
accounted for, that, properly treated, may reveal an even lower value for the optical depth. The lollipop
likelihood will therefore used in this thesis as a benchmark to assess the dependency of the cosmological
parameters in a limiting case (τ with a very small error).

6.2 The CMB lensing

The Planck collaboration achieved the most significant measurement of the CMB lensing potential at a
level of 40σ (Planck Collaboration. XV. 2015). As mentioned in chapter 1, the CMB photons carrie
informations about the late time universe through the gravitational deflection they experience in the path
toward us. This effect is subtle but can be measured statistically with high angular resolution and low-
noise data such as the one from Planck. CMB fluctuations are remapped from n̂ to n̂ +∇φ(n̂) where φ(n̂)
is the lensing potential, an integrated measurement of the mass distribution back to the last scattering
surface (e.g. Lewis & Challinor (2006a)). It is sensitive to late time parameters that modify the growth
of structures, as the neutrino mass (Smith et al. 2009).

The measurement of Cφφ
`

is based on foreground cleaned SMICA (Appendix A.2) maps combining
all the nine Planck frequencies band. Being mainly a small scale effect, most of the lensing information
comes from the 143 and 217 GHz channels, which have small beams and low noise (see Table 3.1).

The lensing potential is reconstructed using a quadratic estimators that exploits the statistical anisotropy
induced by lensing (Okamoto & Hu 2003). There are five possible estimators (the five combination of T,
E and B neglecting BB) that are combined together to form a mininum-variance estimator φ̂MV (Fig 6.5).
The 4-point correlation function of the lensed CMB probes the power spectrum of the lensing potential
since, at leading order, the connected part (trispectrum) is proportional to the latter (Hu 2001). There
are also a disconnected part that, non zero even in absence of lensing, needs to be corrected for, relying
partially on simulations (Planck Collaboration XVII 2014; Planck Collaboration. XV. 2015).

6.2.1 Lensing likelihood and parameter constraints

A likelihood can be constructed directly for the lensing power spectrum (Planck Collaboration. XV.
2015). This Gaussian log-likelihood in bandpowers of the estimate power spectrum is given by

− 2logLφ = B`i (Ĉφφ
`
−Cφφ, th

`
)
[
Σ−1

]i j
B`
′

j (Ĉφφ
`′
−Cφφ, th

`′
), (6.11)

where i and j index the bins, B`i is the bandpower binning function for the i-th bin, and Σ the covariance
matrix for the bin estimates.

As discussed in Planck Collaboration. XV. (2015) and Planck Collaboration. XIII. (2015), the pri-
mary parameter dependency of Cφφ

`
is through As and `eq, where `eq ∝ 1/θeq) is the angular multipole
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Figure 6.5: Planck 2015 full mission Cφφ
`

measurement together with 2013 Planck measurement and
SPT and ACT measurement. In black is shown the fiducial ΛCDM theory power spectrum.
The figure is taken from (Planck Collaboration. XV. 2015).

corresponding to the horizon size at matter radiation equality. The lensing likelihood alone is able to
constrain a combination of σ8 and Ωm with a few % precision

σ8Ω0.25
m = 0.591 ± 0.021 (68%, lensing). (6.12)

Combining lensing with high-` temperature data, a constraint independent of the low-` polarisation can
be put on the optical depth since lensing partially breaks the As-τ degeneracy

τ = 0.070 ± 0.024 (68%, Plik + Commander + lensing). (6.13)

This is true also for the lensing information encoded in the CMB temperature power spectrum, meaning
that τ can be (weakly) constrained using high-` data alone (chapter 7). When one tries to put constraints
on non-flat models, the use of CMB temperature power spectrum alone suffers from the geometrical
degeneracy (e.g. Stompor & Efstathiou (1999)), i.e. it provides multiple ways to combine late time
parameters to give the same observed angular diameter distance. Therefore, one needs an information at
another redshift and the addition of lensing allows a measurement of the curvature from CMB alone data

Ωk = −0.005+0.009
−0.007 (68%, Plik + LowTEB + lensing). (6.14)

In principle, since the Planck power spectra are sensitive to the lensing smoothing of the acoustic peaks,
the geometrical degeneracy is slightly broken also without using the lensing information from the trispec-
trum. There is however a subtle point: the temperature power spectrum prefers a larger lensing smoothing
than expected from ΛCDM (around 2σ level) (Planck Collaboration. XVI. 2014; Planck Collaboration.
XIII. 2015), pushing, for example, the curvature constraints to negative values, and, for what concern
this thesis, neutrino masses to low values. This effect is partially regularised by the addition of the lens-
ing likelihood. However, constraint on neutrino masses have been found to be sensitive to the lensing
multipole range used. The more aggressive 8 6 ` 6 2048 range, with respect to the official conservative
40 6 ` 6 400 range, shows a mild preference for a non zero neutrino mass, but the multipole range
300 6 ` 6 900 fails some serious consistency tests Planck Collaboration. XV. (2015). The influence of
lensing on the neutrino mass constraints of the HiLLiPOP likelihood is discussed in chapter 8.
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6.3 The very high-` data

Although Planck alone is able to put strong constraints on the cosmological parameters, its sensitivity
on the foregrounds is limited. As discussed in chapter 5, for example, we have not much constraining
power on the SZ effect. In order to tighten the constraints on foregrounds parameters, in chapter 7 and 8,
we add the information from high resolution datasets from the Atacama Cosmology Telescope2 (ACT)
and the South Pole Telescope3 (SPT) projects to the Planck CMB likelihood. Those additional data are
called “very high-`” (VHL) throughout this thesis.

Atacama Cosmology Telescope

We use the final ACT temperature power spectra presented in Das et al. (2014b). These are 148 GHz,
143x218 and 218 GHz power spectra built from observations on two different sky areas (“south” and
“equatorial”) and several seasons of observation, for multipoles between 1000 and 10000 (for 148 GHz)
and 1500 to 10000 otherwise.

South Pole Telescope

Two distinct datasets from SPT are considered. The higher ` part, dubbed SPT_high, comes from the
complete 24560 deg2 SPT-Sz survey described in George et al. (2014). It results from observations at
95, 150 and 220 GHz. The cross-spectra cover the ` range between 2000 and 13000. We also include
the Story et al. (2012) dataset, dubbed SPT_low, consisting of a 150 GHz power spectrum which ranges
from ` = 650 to 3000. All spectra are expressed in KCMB. In (Planck Collaboration. XVI. 2014), this
latter dataset had been excluded, after a thorough evaluation of its compatibility with Planck data. Its
combination with WMAP-7y data gave results in tension with Planck 2013 cosmology (Hou et al. 2014),
pointing, for example, to a higher value of H0. This was linked to a potential SPT/WMAP intercalibration
systematic due to their limited multipole overlap and respective S/N ratios in that area. This systematic
is much lower with the Planck data that extend to much higher ` than WMAP: at ` > 1800 the agreement
with Planck is good. Since the Planck calibration has changed since then, and we do not notice any
incompatibility between Planck and ACT+SPT cosmology, we decided to use it in our analysis. In
chapter 8, we give, however, results on neutrinos with and without SPT_low to test the robustness.

6.3.1 Foregrounds modelling

We chose to use as much as possible a model for astrophysical foregrounds coherent with what has
been set-up for HiLLiPOP. For all datasets, we use the same template for tSZ, kSZ, CIB and tSZxCIB
described in sec. 5.6. As these templates have been computed for the Planck frequencies, they need to
be extrapolated to the ACT and SPT frequencies and bandpasses.

For tSZ we scale the template with the usual fν = x coth x/2 − 4 function where x = hν/kBTCMB
(sec. 5.6.4), using the effective frequencies given in Dunkley et al. (2013).

For CIB and tSZxCIB, we start from the templates in Jy2sr−1 in the IRAS convention (νI(ν) = cste
spectrum) for Planck frequencies and band-passes, already described in sec. 5.6.3 and sec. 5.6.6. Then,
for CIB, we use the conversion factors from Planck to the ACT/SPT bandpasses, assuming, for the CIB,
the Béthermin et al. (2012) spectral energy density (SED) combined with unit conversion factors to
KCMB, for the ACT and SPT bandpasses (Lagache 2014). These factors are given in Table 6.2.

2http://www.princeton.edu/act/
3https://pole.uchicago.edu/
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In the 2013 analysis (Planck Collaboration. XVI. 2014) the CIB has been modelled with a power law
with spectral index γCIB not taking into account the transition from the 2-halo to the 1-halo clustering.
This resulted in a tension between the Planck and Planck + VHL results (VHL preferred a stepper value
for the spectral index γCIB = 0.4 with respect to the value fitted with Planck alone γCIB = 0.8).

Dataset Frequency MJy sr−1/KCMB HFI freq. conversion
(GHz) (GHz)

ACT 148 401.936 143 0.85
218 485.311 217 1.056

SPT 95 234.042 100 1.090
150 413.540 143 0.7688
220 477.017 217 1.061

Table 6.2: Conversion factors used for the foreground template extrapolation to ACT and SPT band-
passes (Lagache 2014).

For the tSZxCIB, for the (ν1×ν2) cross-spectrum (from the ACT or SPT dataset), we scale the nearest
HFI cross-spectrum (νP

1 × ν
P
2 ) using the ratio :

S ν1,ν2 =
fν1Cν2 + fν2Cν1

fνP
1
CνP

2
+ fνP

2
CνP

1

(6.15)

prior to convert it to KCMB using the above factors. As shown on Figure 6.6 this scaling applies within
10% for the HFI cross-spectra.

2.0•103 4.0•103 6.0•103 8.0•103 1.0•104 1.2•104

multipole

-0.5

0.0

0.5

1.0

1.5

2.0

tS
Z
xC

IB
/tS

Z
xC

IB
(1
43
x1
43
)

100x100
100x143
100x217
143x217
217x217

Figure 6.6: Ratios between the tSZxCIB cross spectra for HFI with the 143x143 GHz one (plain lines)
compared with the ratios of the results of equation 6.15 for the same frequencies (dashed
lines). The template follows the scaling from equation 6.15 to better than 10% on average.

We have to add to this common set of foreground templates a few more specific to each datasets:
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• Point sources: We model the unresolved (and unmasked) point source components in the ACT and
SPT spectra with one amplitude (APS) parameter per cross-spectrum, in analogy with sec. 5.6.2.
This thus introduces six additional nuisance parameters for the ACT, 6 for the SPT_high and one
for the SPT_low datasets, respectively.

• Galactic dust: following Dunkley et al. (2013) and Das et al. (2014b), we model the dust contribu-
tion in the ACT power spectra as a power law :

Bdust
` (i, j) = Adust

(
`

3000

)−0.7 νiν j

ν2
0

3.8 [
g(νi)g(ν j)

g(ν0)2

]
(6.16)

We therefore introduce two nuisance parameters Adust, one for each part of the ACT dataset, and
set the reference frequency ν0 to 150 GHz.

For the SPT datasets, following George et al. (2014), we use a fixed template, with amplitudes
0.16, 0.21 and 2.19 µK2

CMB (at `=3000) at 95, 150 and 218 GHz , respectively and an `−1.2 spatial
dependency.

6.3.2 Likelihoods

We compute one likelihood for each of the five VHL datasets following the method described in (Dunkley
et al. 2013), the main difference being the use of the 2014 SPT spectra. We use the respective published
window functions to bin the (CMB + foregrounds) model, and the released covariance matrices Σ to
compute the likelihood4. In all cases, these include beam uncertainties. For the George et al. (2014)
dataset, since we fit the relative calibration, we choose to use the covariance matrix which did not include
calibration uncertainties.

We use a Gaussian approximation for the binned power spectra bandpowers Cb to write this likeli-
hood

− 2L =
(
Cb −Cth

b

)T
Σ−1

(
Cb −Cth

b

)
. (6.17)

As we combine several datasets together, we introduced 9 additional nuisance parameters to account
for their relative calibration uncertainties (at map level). As the different datasets have been calibrated in
different ways we have to impose priors on some of them. The Das et al. (2014b) and Story et al. (2012)
datasets have been calibrated on WMAP maps, while the more recent George et al. (2014) was calibrated
on Planck 2013 maps. The Planck 2013 data presented a calibration offset with respect to WMAP. The
2015 release, on the contrary, due to an independent calibration, is now much closer to WMAP. Hence,
we impose for the SPT_high dataset calibration parameters Gaussian priors centred on 1.01 with widths
equal to 1,1 and 2% for each frequency, respectively.

Table 6.3 summarises the nuisance parameters associated to the VHL likelihoods.
We check in Fig. 6.7 that the new ACT+SPT data are consistent with the Planck ones. To this

purpose we compare the VHL likelihood alone results to HiLLiPOP, determining independently the cos-
mology+nuisance parameters of each experiment. The ΛCDM cosmology is consistent between both
experiments, and, as expected, the VHL data constraints on the (common) foreground parameters are
tighter than in the HiLLiPOP case.

4http://lambda.gsfc.nasa.gov/product/
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name definition prior (if any)
SPT_high

SPT_high_95_cal map calibration (95 GHz) 1.01 ± 0.01
SPT_high_150_cal map calibration (150 GHz) 1.01 ± 0.01
SPT_high_220_cal map calibration (220 GHz) 1.01 ± 0.02
SPT_high_Aps_95x95 PS amplitude (95x95 GHz)
SPT_high_Aps_95x150 PS amplitude (95x150 GHz)
SPT_high_Aps_95x220 PS amplitude (95x220 GHz)
SPT_high_Aps_150x150 PS amplitude (150x150 GHz)
SPT_high_Aps_150x220 PS amplitude (150x220 GHz)
SPT_high_Aps_220x220 PS amplitude (220x220 GHz)

SPT_low
SPT_low_Aps PS amplitude
SPT_low_cal map calibration

ACT_south/equat
ACT_[field]_148_cal map calibration (148 GHz)
ACT_[field]_220_cal map calibration (220 GHz)
ACT_[field]_ADust dust amplitude
ACT_[field]_Aps_148x148 PS amplitude (148x148 GHz)
ACT_[field]_Aps_148x220 PS amplitude (148x220 GHz)
ACT_[field]_Aps_220x220 PS amplitude (220x220 GHz)

Table 6.3: Nuisance parameters for the ACT and SPT likelihoods

6.4 The Baryon Acoustic Oscillations

Baryon Acoustic Oscillations (BAO) are the imprints left by acoustic waves in the primordial fluid on
the structures we see today (e.g.Bassett & Hlozek (2010)). The measurements of the BAO feature in
the correlation function of large-scale structure (LSS) have been obtained from different galaxy redshift
surveys. They provide constraints on the distances at redshift 0.1 ≤ z ≤ 0.7 (Anderson et al. 2014)
and even up to z ∼ 2.3 with Lyα forest (Delubac et al. 2015). The first convincing detection came
in 2005 from the SDSS Data Release 3 (Eisenstein et al. 2005). BAO measurements are an extremely
powerful complementary data set to Planck data since they are a precise and almost systematics-free
geometrical measurement. This geometrical nature helps in breaking the degeneracies of CMB data and
gives better constraints on ΛCDM and on extensions to models with curvature or with free parameters
for dark energy. On the neutrinos side, the BAO allows to significantly lower the bound on the absolute
mass scale and reduce also the error bars on Neff (chapter 8). Interestingly, the addition of redshift space
distortion (RSD) data from BOSS CMASS-DR11 to Planck data, shows a few sigma preference for a
non-zero neutrino mass (Beutler et al. 2014). This is discussed further in sec. 8.1.7. We included in our
analysis the latest BAO measurements, using only the low redshift datasets that are not in tension with
Planck data5.

5Lyman α BAO measurements, at higher redshift, have almost 3σ tension with Planck ΛCDM cosmology and bigger errors.
In Planck Collaboration. XIII. (2015) and Aubourg et al. (2014) is argued that, this can be the sign of some still uncounted
systematics in the more complex Lyα BAO reconstruction. We thus decided not to include this data in our final analysis.

164



6.4 The Baryon Acoustic Oscillations

0.020 0.021 0.022 0.023 0.024

0.0
0.2
0.4
0.6
0.8
1.0

0.020 0.021 0.022 0.023 0.024
omega_b

0.0
0.2
0.4
0.6
0.8
1.0

0.10 0.11 0.12 0.13
omega_cdm

0.0
0.2
0.4
0.6
0.8
1.0

1.036 1.038 1.040 1.042 1.044
100*theta_s

0.0
0.2
0.4
0.6
0.8
1.0

0.02 0.04 0.06 0.08 0.10 0.12 0.14
tau_reio

0.0
0.2
0.4
0.6
0.8
1.0

2.8 2.9 3.0 3.1 3.2
log(10^10A_s)

0.0
0.2
0.4
0.6
0.8
1.0

0.90 0.92 0.94 0.96 0.98 1.00 1.02
n_s

0.0
0.2
0.4
0.6
0.8
1.0

0.5 1.0 1.5 2.0 2.5 3.0
Asz

0.0
0.2
0.4
0.6
0.8
1.0

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Acib

0.0
0.2
0.4
0.6
0.8
1.0

2 4 6 8 10
Aksz

0.0
0.2
0.4
0.6
0.8
1.0

2 4 6 8
Aszxcib

0.0
0.2
0.4
0.6
0.8
1.0

hlpTT_tp_LCDMPico_MC vhl_tp_LCDMPico_MC

Figure 6.7: Posterior distributions of the cosmological and nuisance parameters obtained from the ACT
SPT likelihood (in red) and from HiLLiPOP (in green). For the sake of simplicity we only
display the parameters that are common to both likelihoods but all nuisance parameters are
sampled in each case. A Gaussian prior τ = 0.07 ± 0.02 has been used in both cases.

6.4.1 A standard ruler

The measurements of the acoustic scale at various redshift, allow to infer the angular diameter distance
DA (Eq. 1.25) and H(z) (Eq. 1.31). The acoustic length scale (Eq. 1.126) can be computed as the comov-
ing distance that the sound waves could have travel from Big Bang to the baryon dragging epoch zdrag, i.e
the time at which the baryons are released from the Compton drag of the photons (Hu & Sugiyama 1996;
Eisenstein & Hu 1998; Eisenstein et al. 1998). It depends on Ωmh2 and Ωbh2, that are well measured by
the relative height of the CMB acoustic peaks. The scale is large, about 150 Mpc comoving, not much
influenced by late-time non linear physics (Seo & Eisenstein 2005) and thus an excellent standard ruler.

The BAO measurements allow to access H(z)rs through separation along the line of sight and DA(z)rs

through separation transverse to the line of sight (Fig. 6.8). However, what is in generally inferred is the
spherically averaged 2-point measurements, fixed by the projection of rs(zdrag)

DV(z) =

(
(1 + z)2D2

A
cz

H(z)

)1/3

, (6.18)

and only the latest DR11 release of SDSS data recommends to use the anisotropic measurement, i.e.
H(z) and DA separately.
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Figure 6.8: The BAO measurement allow to infer the angular diameter distance DA and H(z). The figure
is taken from D. Einseinstein’s talk at ESLAB

6.4.2 BAO measurements

Although we have tested various combination of the available BAO measurements, in our final configu-
ration we use:

• low z (zeff = 0.1) measurement from 6dF (Beutler et al. 2011), giving

rs(zd)/DV (zeff) = 0.336 ± 0.015 (6.19)

• the BOSS DR11 release (Anderson et al. 2014) including:

– LOWZ measurement at zeff = 0.32

DV (zeff) = (1264 ± 25 Mpc)
(

rs

rfid
s

)
(6.20)

– CMASS anisotropic measurements at zeff = 0.57

DA(zeff) = (1421 ± 20 Mpc)
(

rs

rfid
s

)
(6.21)

H(zeff) =
(
96.8 ± 3.4 Km s−1Mpc−1

) (rfid
s

rs

)
(6.22)

The rs/rfid
s term considers the difference in the calculation of the sound horizon between the Eisenstein

et al. (1998) and the CLASS (or CAMB) definition6.

To add the BAO information to our analysis, we minimise the following function

χ2
BAO = (dz − dBAO

z )†C−1
BAO(dz − dBAO

z ) (6.23)

6For example with Anderson et al. (2014) fiducial cosmology rs(zdrag)fid = 153.19Mpc against the 149.28 Mpc from CAMB.
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where dBAO
z is the vector including all the previous measurements and CBAO is the covariance matrix.

We use CLASS for the computation of geometrical observables. In Fig. 6.9 we report the comparison
between the BAO results (assuming Gaussian measurement) obtained with 6dF and BOSS and the CMB
estimation obtained with HiLLiPOP + LowTEB (with and without VHL data). The agreement is within
1σ.

In Aubourg et al. (2014) is reported the measurement

H0 = 67.3 ± 1.1 Km s−1Mpc−1 (68%,BAO+SN (CMB-calibrated)), (6.24)

obtained from the combination of BAO and the Supernova Ia (SN) data (described in sec.6.5). This in
agreement with our estimation from CMB TT alone

H0 = 67.2 ± 0.9 Km s−1Mpc−1 (68%,CMB (TT)). (6.25)

The combined constraint yields a reduction in error bars

H0 = 67.6 ± 0.55 Km s−1Mpc−1 (68%,CMB + BAO + SN). (6.26)

This is discussed further in chapter 7.
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Figure 6.9: In blue are reported the measurements (assuming they are Gaussian) obtained by different
galaxy redshift surveys: 6dF and BOSS (both for LOWZ and CMASS the isotropic mea-
surement is considered). In red the posterior distributions of the same parameters obtained
sampling the TT HiLLiPOP + LowTEB (solid red) or the HiLLiPOP +LowTEB with the addi-
tion of the VHL data (dashed red).

6.5 The Supernovae Ia

A Type Ia supernova (SN Ia) is the explosion of a white dwarf star with a carbon-oxygen nucleus in
a binary star system (e.g. Ruiz-Lapuente (2007)). The white dwarf accretes matter from the nearby
companion causing an elevation of the core temperature and density. Once the Chandrasekhar’s limit
(Chandrasekhar 1931) is attained, the electron degeneracy pressure is unable to prevent collapse, and, a
substantial fraction of the matter in the white dwarf undergoes a runaway reaction, that is more important
than the energy loss via neutrinos. The energy in enough to unbind the star in a supernova explosion.
These explosions always release roughly the same amount of energy, and studies of relatively nearby
type Ia supernovae have shown that they reach almost the same peak brightness in every case. Therefore
they can be used as “standard candles” and their true distance can be determined. As discussed in chap-
ter 1, SNe Ia have been fundamental in the discovery of the late time acceleration of the universe and
constitutes a powerful complementary probe to CMB constraints. However, the standardization process
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is complicated and one has to correct their absolute apparent magnitudes using light-curve shape, photo-
metric color at maximum and host galaxy mass. In (Planck Collaboration. XVI. 2014) the discrepancy
on the value of Ωm between Planck and SNe Ia results, was interpreted as residual systematics errors in
the SNe data not properly accounted for in the covariance matrix. Since then the SNe Ia data has been
revised in depth and the Joint Light-curve Analysis (JLA) data (Betoule et al. 2014a) has been released.

6.5.1 The JLA compilation

The JLA compilation is the result of an extensive campaign to improve relative photometric calibration
of SN Ia light curves and associated distances and contains 740 SNe. It contains a selection of 374 SNe
Ia from SDSS-II (Sako et al. 2014) combined with the compilation of (Conley et al. 2011). This latter
includes 242 spectroscopically confirmed SNe from (Guy et al. 2010) in the redshift range 0.2 < z < 1,
14 very high redshift (0.7 < z < 1.4) SNe from the HST (Riess et al. 2007), and low-z (z < 0.08) data
from various origins. The joint analysis of these data was indeed motivated by their complementarity in
redshift, and the final sample covers the redshift range 0.01 < z < 1.2, allowing stringent constraint on
the expansion rate.

6.5.2 Supernovae model and distance estimates

The behaviour of SNe Ia is reasonably well captured by a parameter X1 describing the time stretching of
the light-curve, and another C describing the SN color at maximum brightness (e.g. Tripp (1998)). The
distance estimator of Eq. 1.30, that is widely used in SN studies, is a linear model assuming that object
with identical color shape and galactic environment have, on average, the same intrinsic luminosity for
all redshift. In more details, Betoule et al. (2014a) use

µ = m?
B − (Mb − α × X1 + β ×C) (6.27)

where µ = 5log10(DL/10pc) with DL the luminosity distance defined in sec. 1.26. m?
B is the observed

peak magnitude in the rest frame B-band and α, β and MB are nuisance parameters. The absolute mag-
nitude MB, depends on the host galaxy properties but this dependency in not well understood. It is in
general parametrised as a function of the host stellar mass Mstellar plus a bias ∆M as follows

MB =

{
M′B if Mstellar < 1010M�,

M′B + ∆M otherwise.
(6.28)

The light-curve parameters (m?
B, X1, C) result from the fit of a model of the SN Ia spectral sequence to

the photometric data. They use the SALT2 model (Guy et al. 2007), retrained on JLA data.

In a flat universe, SNe alone provide constraint on Ωm but can not constrain H0. Hence, to fit a
ΛCDM cosmology to their data, Betoule et al. (2014a) have fixed H0 = 70kms−1Mpc−1. Using the
estimator of Eq. 6.27, they minimise the following χ2

χ2
SN = (µ̂ − µΛCDM(z; Ωm))†C−1

SN(µ̂ − µΛCDM(z; Ωm)) (6.29)

where C the covariance matrix that includes both statistical end systematic uncertainties. The free
parameters are thus Ωm and the nuisances α, β, M′B and ∆m.

The result, using the JLA compilation alone for the dark matter density is

Ωm = 0.295 ± 0.034 (68%, JLA alone), (6.30)

and the fitted values for the nuisance parameters can be found in the first column of Table 6.4. In Fig. 6.10
is shown the Hubble diagram and their ΛCDM fit.
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We included in our analysis the C++ code from Betoule et al. (2014a), providing the χ2
SN of Eq. 6.29

to be interfaced to CLASS computation of DL, for a given set of cosmological (+ nuisances) parameters.
Given the consistency between Planck and the JLA sample, the inclusion of such data in the analysis im-
proves constraints on cosmological parameters as discussed in chapter 7 and 8. In Fig. 6.11 we show the
posterior distribution of nuisance parameter of the JLA likelihood sampled together with the HiLLiPOP
likelihood. The means and the 68% error bars are reported in the second column of Table 6.4 and are in
excellent agreement with the JLA-alone analysis.

Parameter JLA HiLLiPOP TT + JLA
α 0.141 ± 0.006 0.140 ± 0.007
β 3.101 ± 0.075 3.101 ± 0.075
M′B -19.05 ± 0.02 -19.12 ± 0.02
∆M -0.070 ± 0.023 -0.069 ± 0.021

Table 6.4: Fitted values for the nuisance parameters. The first column shows values from Betoule et al.
(2014a), obtaining from JLA sample alone. In the second column are reported the values
from the joint HiLLiPOP + LowTEB + JLA fit. The corresponding posterior distributions are
shown in Fig. 6.11.

Figure 6.10: Top: the Hubble diagram for the JLA sample (described in the text). The black line is
the best fit ΛCDM (with fixed H0 = 70kms−1Mpc−1). Bottom: Residuals as a function of
redshift. (Betoule et al. 2014a)

Conclusions

In this chapter we have presented a panoramic view of the likelihoods used in this thesis to complement
the high-` HiLLiPOP likelihood (chapter 5). A fundamental piece are the low-` data, especially the polar-
isation one, allowing to break the τ-As degeneracy. We have described the Planck pixel based likelihood
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Figure 6.11: Posterior distribution for the nuisance paramaters of the JLA likelihood obtained sampling
it in combination with HiLLiPOP and LowTEB.

and the innovative approach of a low-` cross spectra likelihood, lollipop. We have also described the
Planck lensing likelihood obtained from the CMB 4-point correlation function. Then, the small scale
likelihood from the ground based CMB experiments ACT and SPT has been presented with particular
attention to the residual foreground modelling and its consistence with the one used for the HiLLiPOP
likelihood. In the last part of the chapter we have presented the low redshift BAO and the JLA Supernova
compilation data used in this thesis, stressing on their compatibility with the Planck ΛCDM cosmology
and their constraining power. The next chapters is dedicated to the discussion of the results: the precise
constraints on the base ΛCDM model will be addressed in chapter 7, while its natural extensions into the
neutrino sector will be discussed in chapter 8.
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Chapter 7

ΛCDM cosmological parameters

This chapter presents the cosmological results based on the Planck full mission high-` temperature and
polarisation data. We use the HiLLiPOP likelihood described in chapter 5, optionally combined with the
low-` likelihood and the external datasets described in chapter 6. We test the “base” ΛCDM model, i.e.
if Planck temperature and polarisation power spectra are consistent with the spatially-flat six-parameter
cosmology described in chapter 1. We also consider the ΛCDM +AL extension that allows to look for
subtle effects from residual foregrounds and systematics in the data. As in Planck Collaboration. XVI.
(2014); Planck Collaboration. XIII. (2015), we find a very good agreement between the data and the
standard cosmological paradigm. The neutrino sector extension is postponed to chapter 8.

This chapter is organised as follows. In sec. 7.1 we specify the Boltzmann solver used for the com-
putation of the theoretical spectra. We then present the results, using Planck high-` temperature data
alone in sec. 7.2.1, while the consistency with polarisation results is addressed in sec. 7.2.2. In sec. 7.2.3
we cross check the MCMC adaptive posteriors results with the ones obtained via the profile likelihood
procedure. In sec. 7.2.4 the HiLLiPOP constraints are compared with the other results obtained in Planck
Collaboration. XIII. (2015) using the baseline Plik likelihood, finding a very good agreement for both
temperature and temperature plus polarisation results. In sec. 7.2.5 we discuss in more details the effects
of the addition of the low multipoles data and, in sec. 7.2.6, we present the results on the AL parameter
and their implication on the constraints on the τ parameter (sec. 7.2.7). In sec. 7.3.1 we combine the
Planck data with the ones from the CMB ground based experiments ACT and SPT, described in chap-
ter 6. The addition of this very high-` (VHL) data allows to put better constrains on the foregrounds.
Moreover, the VHL seem to help treating the tension related to the AL parameter. Finally, in sec. 7.4,
we present the improved constraints when the powerful late time distance measurement data (BAO and
Supernovae described in chapter 6) are added.

7.1 Boltzmann code(s)

The results of this thesis are obtained using the CLASS (Blas et al. 2011) Boltzmann equation solver which
computes detailed spectra by evolving the cosmological background and perturbation equations. CLASS,
written in C, is modular, thus flexible and well adapted to our analysis framework. It uses a commonly
known notation, following the equations from Ma & Bertschinger (1995). Besides this, CLASS allows
the definition of all the numerical precision parameters that enters the computations. We use two settings
depending on the statistical methodology applied:

• For the Bayesian MCMC sampling of the posterior distribution (sec. 4.2) we use the default CLASS
precision parameters since the nature of the algorithm itself smooths any discontinuity.
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class parameter value
tol_thermo_integration 10−3

tol_perturb_integration 10−6

reionization_optical_depth_tol 10−5

l_logstep 1.08
l_linstep 25
perturb_sampling_stepsize 0.04
delta_l_max 1000
accurate_lensing 1

Table 7.1: High-precision settings of the CLASS non-default parameters used to reconstruct profile-
likelihoods. The last parameter (accurate_lensing) is only usefull (and used) for VHL results
(sec. 7.3.1).

• For the frequentist profile-likelihood method (sec. 4.3), we need to locate very precisely the multi-
dimensional maximum (or −2lnL minimum) and the algorithm requires ∂C`

∂θi
to vary smoothly.

Hence, we need more precision on CLASS computations, still keeping a not too demanding CPU
time. We obtain satisfactory results with the non-default parameters described in Table 7.1, with
a maximum of a factor two increase in computational time. We will refer to those settings as the
high-precision ones.

Since in this chapter (and in the following) we compare our results to the Planck published ones,
which use another Boltzman solver (CAMB), we need to ensure that both CLASS and CAMB give compat-
ible results. We follow for this the prescription of Lesgourgues (2011), i.e. generate with CLASS a C`

spectrum for a fixed cosmology with extremely high precision settings which we use as reference. The
cosmology we use is the Plik +LowTEB best-fit (Planck Collaboration. XIII. 2015), for which we have
at disposal also the best-fit spectrum obtained with CAMB, that we can compare to our reference. We
also investigate how far the CLASS default and high-precision settings lie from the reference. Results
are shown as an absolute and fractional difference in Fig. 7.1. The agreement between CLASS and CAMB
(with the Planck settings) is at the µK2 level. For high-`, CAMB shows about 1 µK2 more power which,
in relative units, goes up to 1% difference at ` = 2500. Such a level of disagreement does not impact
significantly the determination of the standard ΛCDM parameters. This conclusion may not hold when
testing subtle effects such as the one of the AL parameter discussed in sec. 7.2.6.

We also note that the definition of θs is different. CAMB computes only an approximation of the sound
horizon (θMC), while CLASS computes it exactly.

For some of the tests we made on the ΛCDM model, we have used the Pico software1. Pico is based
on the interpolation between spectra trained on the CAMB Boltzmann solver. It is intended to accelerate
the parameter estimation codes, with a good precision that can be improved by using a larger training set
(Fendt & Wandelt 2007). As for CAMB, the only parameter that shows a discrepancy with class is θs, due
to its different definition. In standard ΛCDM cases, and far from the boundary of the trained parameter
space, Pico and CLASS give similar results. However, Pico is trained on an old CAMB version and so
CLASS should be considered more precise. Similarly, the final results on AL are obtained with CLASS
since Pico only implements an approximation (sec. 7.2.6).

1https://sites.google.com/a/ucdavis.edu/pico/
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Figure 7.1: Absolute (upper panel) and relative (lower panel) difference of D` ≡ `(` + 1)C`/2π power
spectra computed with different settings for CLASS and with CAMB. The reference is obtained
from an extremely high precision run with CLASS. The red and blue spectra are obtained us-
ing the default and high-precison CLASS parameters as in Planck Collaboration A54 (2014).
Since the cosmology is the fiducial Planck TT+LowTEB best-fit one (from Planck Collabo-
ration. XIII. (2015)), the black curve shows the comparison to the released Planck spectrum
which was obtained with CAMB.

7.2 Planck alone

In this section we discuss the constraints on the ΛCDM parameters obtained using the Planck data only.
The HiLLiPOP likelihood is able to put strong limits on the parameters since the range of probed scales
is sufficiently large (sec.7.2.5). However, we also make use of the information for the low-` part via the
LowTEB likelihood (chapter 6).

7.2.1 Temperature results

The results from our high-` likelihood, using temperature alone, are presented in combination with
LowTEB. The values for the parameters can be found in Table 7.2, while the posterior distributions are
shown in Fig. 7.2. In the following, we comment on some of them.

The precise measurements provided by Planck of the position of the acoustic peaks in the CMB
temperature power spectrum allow to put robust constraint on the acoustic scale. At 1σ the precision is
at the 0.05%.

100θs = 1.04175 ± 0.00044 (68%, HiLLiPOP +LowTEB). (7.1)

The value of the Hubble constant H0 is more model dependent, and its value depend on the assumption
on the primordial power spectrum or even on the fixed mass for the neutrinos (Ichikawa 2008; Planck
Collaboration. XVI. 2014). We find a 1.5% constraint on H0

H0 = (67.5 ± 1.0) Kms−1Mpc−1 (68%, HiLLiPOP +LowTEB). (7.2)

As shown in Fig. 7.3, this measurement of H0 suffers from a degeneracy with the matter density Ωm ,
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TT
par best fit 68% limits
Ωbh2 0.0222 0.02221 ± 0.00023
Ωcdmh2 0.119 0.1192 ± 0.0022
100θs 1.042 1.04175 ± 0.00044
τ 0.072 0.072 ± 0.020
log(1010As) 3.070 3.068 ± 0.038
ns 0.966 0.9645 ± 0.0071
Ωm 0.311 ± 0.013
H0 67.5 ± 1.0
σ8 0.816 ± 0.015
Aplanck 1.001 1.0007± 0.0025
c0 0.00164 0.0016 ± 0.0016
c1 0.00159 0.0016 ± 0.0016
c3 -0.000247 -0.0004 ± 0.0015
c4 0.00258 0.0026 ± 0.0017
c5 0.00272 0.0027 ± 0.0017
A100x100

ps 0.000250 0.000258 ± 2.4e-05
A100x143

ps 0.000107 0.000114 ± 1.7e-05
A100x217

ps 7.710e-5 9.0e-05 ± 1.6e-05
A143x143

ps 4.250e-5 4.7e-05 ± 1.2e-05
A143x217

ps 3.260e-5 3.8e-05 ± 1.0e-05
A217x217

ps 7.810e-5 7.6e-05 ± 9e-06
Asz 1.500 1.09 ±0.56
Acib 0.920 0.81 ±0.14
ATT

dust 0.955 0.93 ± 0.09
Aksz 1.680 3.58 ± 2.22
Aszxcib 0.000151 1.93 ± 1.38

Table 7.2: Best fit and MCMC results for the parameters of the base ΛCDM cosmology computed using
the HiLLiPOP likelihood on Planck TT spectra at high-` and using the LowTEB likelihood at
low-`. We also show derived parameters and the nuisance parameters for HiLLiPOP likeli-
hood. Corresponding posteriors distribution can be found in Fig. 7.2. These results have been
obtained using CLASS.
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Figure 7.2: Posterior distributions for the temperature only HiLLiPOP likelihood in combination with
the LowTEB likelihood. We show the six ΛCDM parameters and the nuisances (described
in Table 5.7) plus two interesting derived parameters: H0 and σ8. The means and the 68%
errors can be found in Table 7.2. These results have been obtained using CLASS.

Figure 7.3: The degeneracy between H0 and Ωm. The figure is the 2D posterior distribution obtained
from the MCMC sampling of the TT HiLLiPOP + LowTEB likelihood. The Boltzmann code
CLASS has been used.

since the two are only constrained in the combination Ωmh3. We find

Ωm = 0.311 ± 0.013 (68%, HiLLiPOP +LowTEB). (7.3)

The relative heights of the acoustic peaks allow to constrain the density parameters Ωbh2 and Ωcdmh2

with a precision of 1% and 2%, respectively. Changes in these density parameters, however, can be
compensated by changes in ns and there is thus a partial degeneracy (Planck Collaboration. XVI. 2014).

A smaller scalar spectral index ns, means that the density perturbations with longer wavelengths are
stronger, and with shorter wavelengths weaker. This has the effect of raising the CMB power spectrum
on one side and lowering it on the other. Hence, it is also partially degenerate with τ. This is because
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Figure 7.4: Covariance matrix of the posterior distribution obtained sampling the HiLLiPOP temperature
alone likelihood in combination with LowTEB. The Boltzmann code CLASS has been used.

the temperature low-` part does not depend on τ while intermediate and small scales are suppressed as
e−2τ. This degeneracy can be broken using low-` polarisation data. In this case, the constraint on ns, at
the ∼1% precision using the HiLLiPOP likelihood alone, shrink to 0.7%

ns = 0.9645 ± 0.0071 (68%, HiLLiPOP +LowTEB). (7.4)

This is a 5σ detection of a deviation of the scalar spectral index from exact scale invariance. Even the
high-` part of the spectra, i.e. HiLLiPOP alone, is sufficient to reach this conclusion. However, the value
of ns is the most sensitive to systematic errors coming from an improper modelling of the foregrounds
(chapter 5).

Via the amplitude of the lensing smoothing effect, it is possible to put a constraint on the amplitude
of the matter (linear) power spectrum on the scale of 8h−1Mpc

σ8 = 0.816 ± 0.015 (68%, HiLLiPOP +LowTEB), (7.5)

that lies almost 1σ lower than the corresponding Plik value.
The high-` likelihood alone, thanks to the effect of lensing, can also put a (weak) constraint on the

optical depth to reionisation with mean value τreio ∼ 0.1. This estimation is higher than the one obtained
using the low-` only likelihood (sec. 6.1). The constraint also comes from the relative power between
small and large scales and thus depends on the choice for the low-` likelihood. With our configuration
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par (Pico) TT EE TE full
Ωbh2 0.02227 ± 0.00024 0.02416 ± 0.00091 0.02222 ± 0.00024 0.02231 ± 0.00015
Ωcdmh2 0.1190 ± 0.0022 0.1119 ± 0.0037 0.1194 ± 0.0020 0.1182 ± 0.0013
100θMC 1.0409 ± 0.0005 1.0407 ± 0.0008 1.0409 ± 0.0005 1.0410 ± 0.0003
τreio 0.072 ± 0.020 0.077 ± 0.020 0.067 ± 0.020 0.077 ± 0.020
ns 0.966 ± 0.007 1.003 ± 0.013 0.972 ± 0.010 0.966 ± 0.005
log[1010As] 3.070 ± 0.038 3.086 ± 0.041 3.060 ± 0.041 3.078 ± 0.034

Table 7.3: Pico mean and error bars for the six ΛCDM parameters obtained sampling the HiLLiPOP
likelihood using respectively TT only, EE only and TE only data, and the combination of the
three. For the low-` data we use the LowTEB likelihood. The posterior distributions, in the
different cases, are shown in Fig. 7.5.

we have

τreio = 0.072 ± 0.020 (68%, HiLLiPOP +LowTEB), (7.6)

0.5σ lower than the Plik value. We postpone the discussion on the reasons for these differences to
sec. 7.2.4.

In Table 7.2 and in Fig. 7.2 we also show the results on the foreground parameters. These has been
already discussed in chapter 5. We will address the constraints on foregrounds when adding the ground
based CMB data at very high multipoles (sec.7.3.1).

The correlation matrix for all the parameters is reported in Fig. 7.4. It is almost a block matrix.
The lower corner describes the correlation between the cosmological parameters. We recognise the
strong τ-As degeneracy, and the correlation between ns, the density parameters, and again τ, as described
before. Cosmology is decoupled from the calibration coefficients but shows some correlation with the
kSZ and the PS amplitudes. The latter are strongly correlated among them. The upper corner shows the
astrophysical nuisances correlations and has a complex structure.

7.2.2 Consistency between temperature and polarisation

As discussed in chapter 1, the CMB polarisation is a unique source of information about inflation and the
reionisation epoch. For the aim of this thesis, what is more relevant is that the addition of polarisation can
break some degeneracies among the parameters that cannot be accurately resolved with the temperature
data alone.

Furthermore, as described in sec. 3.5 and 5.6, the thermal dust is the only relevant foreground con-
tamination in polarisation. A more detailed discussion on the effect of polarisation on cosmological
parameters can be found in Zaldarriaga et al. (1997) or Galli et al. (2014). Interestingly, if we could have
used the CEE

` spectra in the whole range `min = 30, `max = 2500 of Planck, we would have had the best
constraints on the parameters. This is particularly true for the angular size of the sound horizon θs, whose
effect is to shift the position of the peaks, better determined by polarisation since their dependence on
the gradient of velocity makes them sharper (sec.1.4).

CEE
` are, in theory, also better than temperature in constraining the reionisation optical depth τreio and

the amplitude of the primordial power spectrum log[1010As]. However, there is a strong worsening of
the constraining power of EE spectra, due to an increasing degeneracy between ns and other parameters,
if `min < 130 are excluded from the analysis (Galli et al. 2014). This is indeed our case (Table 5.3) since
we are contaminated by Galactic dust emission at low multipole. This loss of information when cutting
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Figure 7.5: Marginalised constraints on base ΛCDM parameters, for the different CMB modes. TT is
in black, while the full likelihood result is in red. They are compatible within less than
0.4σ. We also show the TE posteriors in blue. The constraining power of this latter is quite
similar to TT only. Finally, in yellow, there are the looser constraints from the noisier EE
only spectra. The mean values and error bars can be found in Table 7.3. In all cases, the
HiLLiPOP likelihood is combined with the LowTEB likelihood for the low-`. These results
are obtained with Pico.

the low-` part of the spectra is specific of the polarisation; in temperature there are only marginal effects
since the low-` part is noisier.

Using CTE
` , one can put constraints comparable to CTT

` on most of the cosmological parameters and
even stronger for Ωcdmh2, allowing to test the robustness of the results.

The HiLLiPOP results on the base ΛCDM model are summarised in Table 7.3 and Fig. 7.5. The
results are consistent between TT and TE spectra within ∼ 0.3σ, with the exception of ns where the
discrepancy is higher but still within less than 1σ. The error bars of TT and TE are almost the same, with
Ωcdmh2 slightly better constrained in TE as expected.

The EE parameters are less in agreement with up to 3σ discrepancies. Since the EE spectra are
noisier than the TT one, their constraining power is significantly smaller than those of TT. The value of
the spectral index in EE is 2.8σ higher than the TT one2.

The full (TT, TE, EE) likelihood parameters are more compatible with TT results, showing deviations
of less than 0.2σ, with only Ωcdmh2 at 0.4σ. This confirms that the small level of systematics still present
in polarisation do not affect much the final results. On the contrary, adding polarisation improves the error
bars up to ∼ 40%.

We report in Table 7.4 the best fit χ2 values when considering TT, EE, TE, or the full data. The
number of degrees of freedom (n`) is simply the total number of multipoles considered, as described in

2This is a peculiarity of our HM results, DS and Yr results still pointing to a (even if not very significant) deviation from
scale invariance.
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CMB mode χ2 n` χ2/n` ∆χ2/
√

(2n`)

TT 9949.7 9556 1.04 2.85
EE 7309.5 7256 1.01 0.44
TE 9322.5 8806 1.06 3.89
TTTEEE 27824.2 25618 1.09 9.8

Table 7.4: HiLLiPOP goodness of fit. The ∆χ2 = χ2 − n` is the difference from the mean (n`) assuming
the model follows a χ2 distribution. ∆χ2/

√
(2n`) expresses ∆χ2 in units of standard deviation.

Table 5.3.

7.2.3 Profile likelihood results

In chapter 4 we have discussed the importance of a verification of MCMC results using the profile
likelihood analysis. This has also been done in Planck Collaboration A54 (2014) for the 2013 release.
Here we study the parameters of the ΛCDM model to check that the results of the profile likelihood
analysis are still in agreement with the MCMC ones. We use the HiLLiPOP temperature alone likelihood
in combination with the LowTEB one. Note that the results have been obtained using Pico. The first
column of Table 7.3 has to be compared with the first column in Table 7.5. The agreement is almost
perfect for the means and the error bars, which is expected given the Gaussian shape of the cosmological
parameter posteriors.

We also compute the contribution of the fit of the nuisance parameters to the full error budget. In
Table 7.5 the error bars given for the full, “statistical” and “nuisance”, errors at 68%CL.
The “nuisance errors” are estimated as follows:

• we first obtain the profile likelihood for each cosmological parameter, from these profiles we ex-
tract both the global error on each parameter (see black curve of Fig. 7.6), and the best fit with a
corresponding set of nuisance parameters values

• we then recompute the likelihood profiles for each cosmological parameter, fixing the nuisance
to the ones obtained for the best fit (red curve of figure 7.6). From these profiles we extract the
“statistical only” error contribution to the global error.

• the “nuisance error” is obtained by quadratically subtracting the statistical uncertainty from the
total uncertainty.

This procedure has been used for instance in Aad et al. (2014) or Lorenzo Martinez (2013).
The Ωbh2 and ns parameters are the most impacted by the nuisance. The parameter which is less

sensitive to the nuisances is θMC . These are consistent with the MCMC correlation matrix of Fig. 7.4.
The same analysis also has been performed for the Plik and CamSpec likelihood in Planck Collaboration
A13 (2015). The “statistical” error for all the parameters are the same for all likelihoods, pointing out that
the differences on the full error do depend on the nuisance modelling that are used to build the likelihood
functions.

7.2.4 Comparison with the Plik likelihood

In chapter 5 we have presented a comparison between the different high-` likelihoods. Here we investi-
gate in more details the differences between the posterior distributions of the six base ΛCDM parameters,
obtained with MCMC sampling of the HiLLiPOP or the baseline Plik likelihoods (Fig. 7.7).
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(a) (b)

Figure 7.6: The profiles likelihood for two representative parameters: Ωcdmh2 (a) and ns (b). The full
profile is in black while the profile in red is obtained fixing the nuisance to their best fit
values. The impact of the fit of the nuisance parameters is strong for ns and smaller for
Ωcdmh2.

Parameter (Pico) profiles stat and "nuisance" errors nuis/tot(%)
Ωbh2 0.02228 ± 0.00025 0.02228 ± 0.00018 (stat data) ±0.00017 (nuis) 67
Ωcdmh2 0.1190 ± 0.0022 0.1190 ± 0.0021 (stat data) ±0.0007 (nuis) 30
100θMC 1.04088 ± 0.00047 1.04088 ± 0.00046 (stat data) ±0.00009 (nuis) 20
τreio 0.072 ± 0.021 0.072 ± 0.017 (stat data) ±0.012 (nuis) 56
ln[1010As] 3.070 ± 0.039 3.070 ± 0.033 (stat data) ±0.022 (nuis) 55
ns 0.9659 ± 0.0077 0.9659 ± 0.0051 (stat data) ±0.0058 (nuis) 75

Table 7.5: The profiles errors are given for the full profile fit and then split between the “nuisance error”
(coming from the nuisance parameter determination) and the “statistical” error coming from
the dataset. We also give the “nuisance/total” ratio to better size the impact of the nuisance.

Parameter (CAMB) Plik (TT) Plik (full)
Ωbh2 0.02222 ± 0.00023 0.02225 ± 0.00016
Ωcdmh2 0.1197 ± 0.0022 0.1198 ± 0.0015
100θMC 1.04085 ± 0.00047 1.04077 ± 0.00032
τreio 0.078 ± 0.019 0.079 ± 0.017
ns 0.9655 ± 0.0062 0.9645 ± 0.0049
log[1010As] 3.089 ± 0.036 3.094 ± 0.034

Table 7.6: Means and 68% error bars for the six ΛCDM parameters obtained sampling the Plik likeli-
hood. These results are taken from Table 3 in Planck Collaboration. XIII. (2015), they have
to be compared to the values in the first and last column of Table 7.3, respectively. Note that
Plik results are obtained with CAMB.
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Figure 7.7: Marginalized constraints for the base ΛCDM model obtained with the HilliPOP likelihood
using TT only (black solid line) and the full temperature and polarization data (red solid
line). For comparison Plik TT (dashed black) and Plik full data (dashed red) results are
also shown. The high−` information is always complemented with LowTEB.

The high−` information is always completed with the LowTEB likelihood for the low-`. The results
from Plik are reported in Table 7.6, to be compared with Table 7.3. When considering the TT data only,
almost all parameters are compatible with the baseline within approximately 0.1σ with the exception of
Ωcdmh2 where the shift is slightly higher (about 0.4σ). The approximately 0.5σ difference in τ and As
is related to a mild preference of the HiLLiPOP likelihood for a lower AL (sec. 7.2.6). Error bars from
the baseline Plik and HiLLiPOP are nearly identical with only a slightly bigger error bar on ns for our
likelihood.

When considering the full data set, the shifts with respect to the baseline Plik still remain within
about 0.5σ. We observe also the same trend for a lower Ωcdmh2. The difference in τ and As is instead
alleviated by the compatibility of AL for the full likelihoods. Again error bars are nearly identical between
the two likelihoods.

7.2.5 Low-` data

We have presented results using the HiLLiPOP likelihood (that has `min=50) in combination with the
LowTEB likelihood. In this section we focus on the results from different choices for the low-` information
and discuss the implication on the cosmological parameters.

Along this thesis, we sometimes mimic the low-` information with a Gaussian prior on the optical
depth τ = 0.07 ± 0.02. An essential remark is that using a prior on it should be considered as a mere
instrument of comparison and diagnostic. Even if it is useful to break the τ-As degeneracy, a Gaussian
prior is not a clean solution. On the other hand, the inclusion of the low-` likelihood in temperature and
polarisation has a complicated influence on the parameters due to the way the solution adjust the tension
between temperature low-` and high-` data.
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In Fig.7.8 are compared the posterior distributions obtained using the LowTEB likelihood or only a τ
prior, with the optional addition of the Commander likelihood that carries the temperature only informa-
tion within `min =2 and `max =29.

The main shift between the τ prior and the LowTEB case is 0.5σ on ns. As discussed earlier, there
is a correlation between τ and the scalar spectral index coming from the comparison between the low-
` and high-` part. Hence, a prior on τ, with respect to the more complex information coming from
temperature and polarisation, is expected to have a different influence on ns. The other parameters shift
by no more than 0.2σ. Interestingly the shift on τ for Plik between the two low-` configurations (τ
prior or LowTEB), is a factor two bigger than for HiLLiPOP. As mentioned before, this is linked to AL
(sec. 7.2.6) and symptomatic of a tension between temperature low-` and high-` data that is worsened
when the full low-` (polarization and temperature) information is added. However, the resulting shift in
ns is similar for the two high-` likelihoods.

The addition of the Commander likelihood drives the cosmological parameters, obtained from the
high-` + prior, to values closer to the HiLLiPOP + LowTEB case. This effect is clear again on ns and
stable with respect to the considered Commander `-range3. On the contrary, there is almost no shift on τ.
This is just because the temperature only Commander likelihood does not contain much information on
τ and the prior drives this parameter.

From Fig. 7.9, we can see that the high-` likelihoods alone can put a constrain on τ, even if weak, as
mentioned in sec. 7.2.1. However, due to the τ-As degeneracy, the profile likelihood technique is more
suited to this problem, so we refer to sec. 7.2.7 for a more precise result. It is also interesting to have
a look on what is the information added if we use a different likelihood for the low-` as a preliminary
version of the lollipop likelihood built on the EE 100 GHz×143 GHz (sec. 6.1). The validation of this
likelihood is still on-going but it provides a strong constraint on the τ parameter, pointing to a low value.
This drives also the constrain on As. Due to the degeneracy ns-τ, ns is pushed to lower values and this is
compensated by shifts in the density parameters.

7.2.6 The AL parameter

In sec. 6.2 we briefly described the Planck lensing likelihood built on the lensing information encoded
in the non-Gaussian trispectrum of the CMB. From the measured trispectrum it is possible to measure
the power spectrum Cφφ

`
of the lensing potential. This is consistent with the prediction from the best-

fit ΛCDM model and can be tested by the introduction of the parameter AφφL that scales the theoretical
lensing trispectrum (Planck Collaboration. XVI. 2014; Planck Collaboration. XIII. 2015). The joint
analysis with the Planck likelihood gives

AφφL = 0.95 ± 0.04 (68%, Plik +LowTEB), (7.7)

in agreement with the expected value of unity.

Lensing also affects the CMB temperature power spectrum smoothing the acoustic peaks and troughs
(e.g. Seljak (1996)). As can be seen in Fig. 7.10, it becomes an order unity effect at ` & 3000 (in the
absence of any other secondary effects) since the unlensed CMB power spectrum has very little power
on these scales due to the Silk damping.

With a Boltzman solver (sec.7.1) one can compute the angular power spectra of both the tempera-
ture/polarization anisotropies C` and of the lensing potential Cφφ

`
. The latter is then used to “lens” the

3The Commander likelihood is available for different value of `max
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Figure 7.8: Posterior distributions for HiLLiPOP likelihood for the high-` part (`min=50) adding for the
low-` part the standard τ Gaussian prior 0.007±0, 02 (green), τ prior + Commander between
`min=2 and `max=29 (yellow), and the LowTEB likelihood (red).

Figure 7.9: Posterior distribution for the base ΛCDM parameters obtained from the TT HiLLiPOP
likelihood alone (green), HiLLiPOP +lollipop EE 100x143 (red), and HiLLiPOP +LowTEB
(bflike) (yellow).
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Figure 7.10: In the upper panel we show a comparison between the lensed (black) and the unlensed
(blue) temperature spectrum obtained with CLASS. The lower panel show the difference
between the two. In absence of foregrounds, the effect becomes dominant at ` & 3000.

CMB spectra i.e. redistribute the power while preserving the brightness in a rather complicated way (e.g
Lewis & Challinor 2006b): (C`,C

φφ
`

)→ C̃`.
The parameter AL, in analogy with AφφL , can be introduced with the aim of measuring the degree of

lensing of the CMB power spectra. The idea, originally introduced in Calabrese et al. (2008), is to rescale
the lensing potential and modify the standard scheme into: (C`, ALCφφ

`
) → C̃`. Sampling the likelihood,

with this parameter free, gives two interesting pieces of informations:

1. from the AL posterior one can check the consistency of the data with the model, which should be
compatible with one for standard cosmology.

2. by marginalising over AL one can, to first order, remove the information due to the lensing from
the CMB power-spectra.

As it was the case for the first release (Planck Collaboration. XVI. 2014), Planck determines a value
of the AL parameters discrepant at more than 2σ with one. The full-mission measurement, based on the
Plik +LowTEB likelihood is (Planck Collaboration. XIII. 2015)

AL = 1.22 ± 0.10 (68%, Plik +LowTEB (CAMB/MCMC)). (7.8)

Note, however, that there is a significant deviation from zero, meaning that there is a clear detection
of lensing at the power spectra level.
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Figure 7.11: The fine impact of different AL on the CMB temperature spectrum (obtained with CLASS):
the case AL=0 (in black) corresponds to the unlensed CTT

` , AL=1 (in red) is the standard
case considered when testing the ΛCDM model, and AL=1.2 (in blue) corresponds to the
value fitted by the Planck high-` likelihood.

The AL discrepancy from unity acts, in Planck temperature spectra, as if there were more lensing
than expected. As can be seen in Fig. 7.11, the effect is not strong but it is sufficient to affect extensions
beyond the standard ΛCDM theory as the ones on curvature or neutrinos (Planck Collaboration. XIII.
2015). This latter is discussed further in chapter 8.

The tension affects also the measurement of two ΛCDM fundamental quantities, the reionization
optical depth τ and the primordial scalar perturbations amplitude As. As discussed in sec. 7.2.1, the
high- ` As-τ degeneracy, can be broken by any low-` polarisation measurement (as the LowTEB likelihood
that carries essentially the EE information), but can be also relieved by the smoothing effect of lensing.
This means that a deviation from unity of AL impacts also our ΛCDM estimation of As and τ. An
overestimation of the lensing effect drives a large As value which in turn drives a large value of τ,
according to the Ase−2τ degeneracy.

The origin of the 2σ discrepancy was attributed, since the 2013 release of data, to the difficulties that
ΛCDM model has in fitting the low-` part of the spectrum from the high-` data and, possibly, to µK2

level foreground residuals (Planck Collaboration. XVI. 2014). In this section we discuss to which extent
the HiLLiPOP likelihood shows the same preference for a higher AL .

First we revise the AL estimation of Plik performing the measurements using CLASS and the profile
likelihood technique. This allows a direct comparison between the Plik and HiLLiPOP estimation of AL
that is shown in Fig. 7.12.

We obtain a result that is larger than the one reported in Eq. 7.8

AL = 1.26+0.11
−0.10 (68%, Plik +LowTEB (CLASS/profile)). (7.9)

As discussed in sec. 7.1, this higher value is due to the use of CLASS instead of CAMB. Since it is obtained
with high precision settings we think it is more precise. With the same settings, the HiLLiPOP results
reads

AL = 1.22+0.11
−0.10 (68%, HiLLiPOP +LowTEB). (7.10)

185



7. ΛCDM COSMOLOGICAL PARAMETERS

0.9 1.0 1.1 1.2 1.3 1.4 1.5

0

1

2

3

4

0.9 1.0 1.1 1.2 1.3 1.4 1.5
AL

0

1

2

3

4

∆
 χ

2

0.9 1.0 1.1 1.2 1.3 1.4 1.50.9 1.0 1.1 1.2 1.3 1.4 1.5

plik+lowTEB

HiLLiPOP+lowTEB

Figure 7.12: Profile-likelihoods of the AL parameter using two different Planck high-` likelihoods (black
for Plik, red for HiLLiPOP) and adding the low-`part (LowTEB).The results are obtained
using CLASS with the high-precision settings described in sec. 7.1.

This estimate of AL, despite being lower than the Plik one, still shows a 2σ discrepancy with one. This
tendency is slightly reduced if we use the polarisation. In Table 7.7 and in Fig. 7.13 can be found the
profile likelihood results for all the modes. Note that the values of AL in TE and EE allow to confirm a
detection of lensing in the polarised spectra, even if less significant than in TT4. The full likelihood result
is

AL = 1.13+0.08
−0.08 (68%, HiLLiPOP (TT,EE,TE)+LowTEB). (7.11)

The estimate of AL, as stated previously, is sensitive to the low-` information. For illustration purpose,
we report in Table 7.8 the means and 68% errors on the AL parameter obtained with different low-`
choices. Indeed, for these results, we used the faster but less precise Pico which has also a slightly
different definition of AL

C` = AL ×Clensed
` + (1 − AL) ×Cscalar

` , (7.12)

so they have to be read as a test on the stability of the parameter. The addition of the LowTEB is the worst
case possible, whereas the HiLLiPOP likelihood alone value is compatible with one.

Moreover, we find that the value is sensitive (at theσ-fraction level) to the different datasets described
in sec. 5.2, hence if we use DS or Yr instead of HM. This has also been found for the Plik likelihood,
where a lower value of AL using DS has been attributed to the presence of correlated noise (sec. 3.4).
Finally, we have also observed shifts with respect to the sky coverage or the beams used, even if minor.

The deviations in AL between Plik and HiLLiPOP are difficult to interpret, but the different parametri-
sation of the foregrounds, resulting in different correlation between parameters plays a non negligible
role. In Fig. 7.14 we compare the correlation matrices of the posterior distributions for the HiLLiPOP
and Plik likelihoods when sampling AL. The correlation between cosmological parameters present
significant divergences in the AL-ns-As block. However, the ΛCDM + AL posteriors are very similar
between HiLLiPOP, Plik and CamSpec, since the marginalisation over AL alleviates the tensions.

4It is worth mentioning that central values for AL in TE and EE shows few σ shifts between the various high-` likelihoods.
This is true even between Plik and CamSpec that agree on their TT value.
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data AL

TT 1.22+0.11
−0.10

EE 1.22+0.24
−0.22

TE 1.11+0.21
−0.20

TTEETE 1.13+0.08
−0.08

Table 7.7: HiLLiPOP profile-likelihood results (obtained using CLASS high-precision settings of
sec. 7.1) for the AL parameter for TT, EE, TE and the full combination. The LowTEB likeli-
hood is always used for the low-` part.

Figure 7.13: Profile-likelihoods of the AL parameter using the HiLLiPOP likelihood in combination with
the low-`part (LowTEB) for TT (green), EE (blue), TE (red) and full (black) likelihood. The
results are obtained using CLASS with the high-precision settings described in sec. 7.1. The
results are also reported in Table 7.7.

AL (Pico)
no low-` 1.06 ± 0.13
τ prior 1.05 ± 0.10
τ prior + Commander 1.11 ± 0.09
Commander 1.12 ± 0.11
lollipop 1.08 ± 0.10
lollipop + Commander 1.11 ± 0.09

Table 7.8: Means and 68% error for the posterior distribution of the AL parameter obtained with the
HiLLiPOP (Yr) TT only likelihood in combination with different informations for the low-
`. Results have been obtained with Pico, where AL has a slightly different definition. It is,
however, interesting to see the shifts.
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Figure 7.14: Correlation matrix extracted from MCMC chains obtained when sampling the ΛCDM +

AL model with the HiLLiPOP likelihood (a) and the Plik likelihood (b). The high-` part is
always combined with LowTEB. The definition of Plik nuisances can be found in (Planck
Collaboration A13 2015)

In both likelihoods, however, there are complex correlations with foreground parameters. Adding
information to better constrain the foregrounds is then useful and can be achieved using the VHL data.
This is done is sec. 7.3.1. Its influence on AL is discussed in sec. 7.3.2.

Regularising the AL problem is important since its deviation from unity is accompanied by changes
in all the other parameters with a complex chain of degeneracies. As already anticipated, this is true for
ΛCDM extensions as non-flat models where AL > 1 drives Ωk < 0 (Planck Collaboration. XIII. 2015).
Also, massive neutrinos have the same effect of an AL < 1, so the limit is pushed to lower value. This
is discussed in more details in chapter 8. How AL and the mismatch between low and high multipoles
influence also our estimate of the optical depth is discussed in sec.7.2.7.

7.2.7 Constraints on τ

The optical depth τ can be measured via the effect of reionisation on the low multipoles of the EE
spectra (sec. 1.4.5). This is a challenging issue since the signal is small and very good knowledges
of instrumental systematics and polarised foreground emissions are required. Before the Planck low-`
result, the WMAP estimate was

τ = 0.089 ± 0.014 (68%,WMAP (Bennett et al. 2013)), (7.13)

where the error does not include a significant uncertainty due to foreground modelling (Komatsu et al.
2009). As briefly described in sec. 6.1, τ can be constrained using the latest Planck low-` polarisation
data alone (Table 6.1). This estimate is lower than the one of Eq. 7.13 but consistent with the revised
measurement from WMAP data cleaned with the Planck 353 GHz polarised map (Planck Collaboration
A13 2015). Interestingly, these values are in tension with the high value of τ coming from the high-` part
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alone. Making use of the profile-likelihood method, which, as emphasized in chapter 4, is particularly
well suited to study strongly correlated variables as τ and As

5, we find for Plik

τ = 0.175+0.035
−0.045 (68%, Plik), (7.14)

that is almost 3σ higher than the low-` estimation. With the HiLLiPOP likelihood instead we have

τ = 0.13+0.049
−0.038 (68%, HiLLiPOP). (7.15)

which is a less than 2σ deviation.
When combining the high-` likelihoods with the LowTEB information we get

τ = 0.078 ± 0.018 (68%, Plik +LowTEB), (7.16)

for the Plik likelihood, and for the HiLLiPOP likelihood

τ = 0.071 ± 0.020 (68%, HiLLiPOP +LowTEB). (7.17)

In Fig. 7.15 we show these results for the two likelihoods. We note that most of the constraint in this
regime indeed comes from the CMB lensing, since marginalisation over AL almost destroys the con-
straint.

The discrepancies on τ in the base ΛCDM cosmology, that are present also on the As estimates, are
a reflect of the AL differences. Because the Plik value for AL is higher than the HiLLiPOP one, it shifts
τ towards a higher value. When adding the lensing measurement (sec. 6.2), which somehow brings AL
back close to unity, the shift is cancelled and one recovers a value more compatible with the low-` alone
estimate.

The AL parameter tension (sec. 7.2.6) is not yet completely understood. There are indications how-
ever, that differences with the Plik value could come from the different parametrisation of the fore-
grounds and from the complex structure of the correlations between the corresponding astrophysical
nuisance parameters (Fig. 7.14). Having AL as much as possible compatible with its expected unitary
value allows a more reliable estimation of τ even if using the power spectrum information alone, i.e
not regularising the problem adding the lensing likelihood (sec. 6.2). To better constrain the foreground
parameters, in sec. 7.3, we use the VHL CMB results of the SPT and ACT experiments.

7.3 Adding the very high-` data

In sec. 6.3 we described the available data from the ground based, high-resolution Atacama Cosmology
Telescope (ACT) and South Pole Telescope (SPT). In sec. 7.3.1 we discuss their impact on the parameter
estimations, both for cosmology and for the foregrounds. They help regularising the AL tension discussed
in sec.7.2.6 allowing to revise our limits on the optical depth (sec. 7.3.2).

7.3.1 Impact on foregrounds

Since the signal to noise ratio is already high for the Planck full mission data, the results presented in
Planck Collaboration. XIII. (2015) do not use the ACT and SPT small-scale measurements directly.
However, the thermal and kinetic SZ effects are almost unconstrained by the Planck data alone. The
VHL data are much more sensitive to these effects, and a combined prior for the tSZ and the kSZ has

5At each step, the variable studied (here τ) is fixed and the minimization is performed with respect to all other parameters.
There is no more any (τ, As) degeneracy.
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Figure 7.15: (a) Profile-likelihoods of the τ parameter using only the Plik likelihood, in the ΛCDM
case i.e AL = 1 (in black) and marginalising over AL (in red). Also shown in dashed, is the
result of the Planck low-` analysis. (b) Same thing for the HiLLiPOP likelihood.

been extrapolated and added in the Plik likelihood, that follows the degeneracy first found in Reichardt
et al. (2013)

Aplik
kSZ + 1.6Aplik

tSZ = (9.5 ± 3)µK2, (7.18)

where Aplik
kSZ is the contribution of the kSZ at D`=3000 and Aplik

tSZ the one of tSZ at D143x143
`=3000 at 143 GHz,

both in µK2 (sec. 5.6.4).
In this section, we present the HiLLiPOP temperature results in combination with the VHL data,

arguing that a better constraining power for the foregrounds is useful for our likelihood and that they
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help to regularise the AL deviation from unity (sec. 7.2.6) and consequently the τ-As values.
The posterior distributions for the cosmological and the nuisance parameters in common with the

HiLLiPOP likelihood are reported in Fig. 7.16. The means and errors are presented in Table 7.9.
Unlike the combination of Plik + VHL reported in Planck Collaboration. XIII. (2015), we find

a 15% gain in error bars for the cosmological parameters that reaches 24% for ns, the most sensitive
one to foregrounds. The difference with Plik probably comes from the different parametrisation of
the foregrounds that induces different correlations between parameters. For HiLLiPOP, the correlation
matrix is shown in Fig. 7.17. It has a complex structure. The strong anti-correlation between the Acib
parameter and the point source amplitudes of ACT and SPT is a consequence of the way the CIB is
extrapolated at high-` (sec. 5.6.3).

As anticipated, we have now lower values for τ and As (Table 7.9). Note also a ∼ 1σ shift in Ωbh2.
The VHL data have a stronger constraining power on the SZ parameters than Planck alone (sec. 6.3).

As in Planck Collaboration. XIII. (2015), looking at the posterior distribution in the AtSZ-AkSZ subspace
(Fig. 7.18), we can infer the correlation

AkSZ + 3.5AtSZ = 3.15 ± 0.25. (7.19)

In Eq. 7.19 we recognise a linear combination as in Eq. 7.18, but with different coefficients because of
our different definitions of AtSZ and AkSZ (sec. 5.6). Our result is consistent with the Plik one6. In
yellow in Fig. 7.16 we also report the posterior distributions obtained when sampling the HiLLiPOP +

LowTEB likelihood imposing the prior from Eq. 7.19 on the AtSZ and AkSZ parameters. The resulting
foreground parameters are adjusted on the prior but the cosmological parameters remain consistent with
our standard TT case.

7.3.2 Revised constraints on AL and τ

In the 2013 release, the AL divergence from unity was stronger when the Planck spectra were combined
with the VHL data. From 2013 to this release, several aspects of data processing have been revised (for
example calibration, see chapter 3), hence, we do not expect the VHL to have the same impact on the
parameters. Interestingly we find that small scale information alleviates the tension of AL with unity
as can be seen in Table 7.10. Note that excluding the SPT_low data, the value of AL is slightly higher,
meaning that the intermediate multipoles7 are important for the regularisation of AL.

In the light of the fact that the HiLLiPOP + VHL combination provides, for the ΛCDM + AL cos-
mology, a value of AL compatible with unity, we can revise the ΛCDM constraint on τ (hence with fixed
AL = 1). We have

τ = 0.060 ± 0.017 (68%, HiLLiPOP +VHL +LowTEB), (7.20)

0.6σ lower than the HiLLiPOP result in Eq. 7.6.
The HiLLiPOP +VHL combination provides also a lower value for σ8

σ8 = 0.811 ± 0.013 (68%, HiLLiPOP +VHL +LowTEB), (7.21)

that shifts in the right direction for alleviating the tension between CMB and clusters estimations. Indeed,
in Planck Collaboration. XX. (2014), allowing the

∑
mν parameter to vary, helps in reducing this tension

since a lower AL acts similarly to a massive neutrino. Working in a configuration with a regularised AL
offers the possibility of putting a more reliable limit on the sum of neutrino masses, as described in
chapter 8.

6Note that since the tSZ and kSZ template are not exactly the same, even though very similar, this is true only approxima-
tively.

7The SPT_low data covers the multipole range [650, 3000] (sec. 6.3).
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TT+VHL
par best fit 68% limits
Ωbh2 0.0220 0.0220 ± 0.00019
Ωcdmh2 0.120 0.120 ± 0.0020
100θs 1.042 1.042 ± 0.00040
τ 0.0594 0.0586 ± 0.017
log(1010As) 3.046 3.045 ± 0.032
ns 0.963 0.963 ± 0.0054
Ωm 0.315 ± 0.012
H0 67.193 ± 0.88
σ8 0.811 ± 0.013
Aplanck 1.002 1.002 ± 0.0025
c0 0.00215 0.00208 ± 0.0015
c1 0.00209 0.00216 ± 0.0015
c3 0.000605 0.000547 ± 0.0015
c4 0.00192 0.00189 ± 0.0016
c5 0.00208 0.00213 ± 0.0016
A100x100

ps 0.000284 0.000285 ± 1.25e-5
A100x143

ps 0.000132 0.000133 ± 6.26e-6
A100x217

ps 9.000e-5 8.998e-5 ± 6.16e-6
A143x143

ps 6.090e-5 6.114e-5 ± 3.94e-6
A143x217

ps 4.010e-5 3.986e-5 ± 2.75e-6
A217x217

ps 7.460e-5 7.475e-5 ± 4.56e-6
Asz 0.894 0.816 ± 0.092
Acib 1.110 1.085 ± 0.064
ATT

dust 0.916 0.927 ± 0.060
Aksz 4.400e-6 0.287 ± 0.23
Aszxcib 0.221 0.329 ± 0.16

Table 7.9: Best fit and 68% limits for the parameters of the base ΛCDM cosmology computed using
MCMC for sampling the HiLLiPOP likelihood on Planck TT spectra at high-` in combination
with the VHL likelihood, and using the LowTEB likelihood at low-`. We also show derived
cosmological parameters and the nuisance parameters for HiLLiPOP likelihood, omitting, for
simplicity, the VHL nuisances. The corresponding posteriors distribution can be found in
Fig. 7.16. Results are obtained using CLASS.
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Figure 7.16: Posterior distributions for the common parameters for the HiLLiPOP TT likelihood (in
green) and the HiLLiPOP TT + VHL likelihood (in red). For comparison, is also shown
the HiLLiPOP TT results when the prior of Eq. 7.19 is imposed on the SZ foregrounds (in
yellow). All results are in combination with the LowTEB likelihood. Means and 68% error
bars for can be found in Table 7.9.

7.4 Adding BAO and Supernovae

The BAO data are an extremely valuable complementary dataset to Planck, that allows to break degen-
eracies from CMB only measurements. They provide a reliable geometrical measurements since they
are largely unaffected by the uncertainties in the non linear evolution of the matter density field (Planck
Collaboration. XIII. 2015). In sec. 6.4 we report in details the datasets included in this analysis, in good
agreement with Planck ΛCDM cosmology.
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Figure 7.17: Covariance matrix obtained when sampling the HiLLiPOP + VHL likelihood in combina-
tion with the LowTEB likelihood for the low-` part.

Figure 7.18: 2D posterior distribution for the tSZ and kSZ scaling parameters. The degeneracy direction
is in agreement with the one found in SPT data (Reichardt et al. 2013).
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AL

HiLLiPOP (TT) + VHL + LowTEB 1.04+0.08
−0.07

HiLLiPOP (TT) + VHL - SPT_low + LowTEB 1.09+0.07
−0.07

HiLLiPOP (All) + VHL + LowTEB 1.05+0.05
−0.05

Table 7.10: HiLLiPOP +VHL profile-likelihood results (obtained using CLASS high-precision settings
of sec. 7.1) for the AL parameter for TT or the full combination (TT+EE+TE, named “all”)
and using the LowTEB likelihood for the low-` part. For TT is also reported the value of AL
when SPT_low is not considered in the VHL data.

par HiLLiPOP (TT) + BAO + JLA HiLLiPOP (TT,EE,TE) + BAO + JLA
Ωbh2 0.0221 ± 0.00018 0.0222 ± 0.00011
Ωcdmh2 0.119 ± 0.0012 0.119 ± 0.00094
100θs 1.042 ± 0.00037 1.042 ± 0.00026
τ 0.0641 ± 0.016 0.0708 ± 0.013
log[1010As] 3.052 ± 0.031 3.060 ± 0.029
ns 0.966 ± 0.0039 0.965 ± 0.0030
H0 67.72 ± 0.52 67.80 ± 0.43
Ωm 0.307 ± 0.0070 0.307 ± 0.0057

Table 7.11: Means and 68% errors for the cosmological parameters (plus the derived H0 and Ωm) when
adding late time measurement data to the HiLLiPOP + LowTEB + VHL combination. Results
are obtained using CLASS.

Beside BAO, another interesting complementary probe are type Ia supernovae. The JLA sample
(Betoule et al. 2014b), is also in good agreement with Planck data (sec. 6.5).

Although mostly useful when trying to constrain extensions to the ΛCDM cosmology, as non flat
models or theories with a non standard dark energy sector, these late time distance measurements have a
strong impact on the error bars even in ΛCDM. In Fig. 7.19 we report the posterior distributions for the
temperature HiLLiPOP likelihood in combination with the BAO+JLA information. The same is done in
Fig. 7.20 for the full HiLLiPOP likelihood. The values of the cosmological parameters can be found in
Table 7.11.

BAO and supernovae prefer a slightly higher value for H0 and a lower value for Ωm with respect
to the HiLLiPOP temperature only solution. These causes little adjustments of the other parameters as
a lower value for Ωcdmh2, in turn pushing for a lower ns, following the degeneracies described in the
previous sections. The reduction on the error bars are important, There is a 40% gain in the error bars of
Ωm and H0 (and thus in Ωcdmh2). There is also a 30% gain in the error for ns. Full likelihood results are
more compatible with late time distance measurements and the posteriors for the parameters are stable.
The gain in error bars is less strong since the presence of polarisation already tighten the constraints.

Conclusions

In this chapter we have used the HiLLiPOP likelihood in combination with other datasets to test the
ΛCDM model and found good agreement between the two. We started describing the constraints on
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Figure 7.19: The posterior distributions for the HiLLiPOP likelihood in temperature only, in combina-
tion with the VHL and the LowTEB likelihoods for the low-` and very high-` respectively
(green) are compared with the addition of the BAO and SN data (red).

Figure 7.20: The posterior distributions for the HiLLiPOP likelihood using TT,EE and TE, in combina-
tion with the VHL and the LowTEB likelihoods for the low-` and very high-` respectively
(green) are compared with the addition of the BAO and SN data (red).

196



7.4 Adding BAO and Supernovae

cosmological parameters obtained using the Planck CMB data only. The full-sky maps and the good
control on the foregrounds given by the wide frequency coverage, allow to constraint the positions of the
CMB power spectrum peaks with sub-% precision, and the density parameters with a few % precision.
We have obtained a 5σ detection of a deviation from scale invariance for the scalar spectral index ns.
Also, we have shown the consistency between temperature and polarisation results and some interesting
check as the robustness of the results to the two different statistical methods presented in chapter 4, and
the agreement with the Plik likelihood.

Given the level of sensitivity of the Planck data we can look for subtle systematic effects in the
temperature data. We have thus discussed the AL deviation from unity and shown that the addition of the
VHL data regularise the problem allowing a more proper estimation of the τ parameter. Also, the addition
of the BAO and Supernova data shrink the error bars up to a 40% gain and results stayed consistent with
the ΛCDM model. In the next chapter we will consider the straightforward extensions of the standard
model in the neutrino sector.
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Chapter 8

Neutrino results

In chapter 7 we have shown that Planck data are consistent with the standard ΛCDM paradigm. We
have also tested the effect of the inclusion of the complementary datasets described in chapter 6. The
base ΛCDM model considered, as detailed in sec. 1.5, includes a fixed value for the absolute scale of
neutrino masses Σmν = 0.06 eV, which is expected in the normal hierarchy scenario when the lightest
neutrino is assumed massless, and a neutrino energy density resulting from the presence of only three
active families, Neff = 3.046 (chapter 2). In this chapter we investigate the simplest extensions to this
baseline model:

• In sec. 8.1, fixing Neff = 3.046 to its standard value, the Σmν parameter is left free in the anal-
ysis. The TT only constraint and the implications of the AL tension, pointed out in the previous
chapter, are discussed. The robustness with respect to different dataset choices is tested and a final
constraint is obtained when combining late time distance measurements with the CMB.

• In sec. 8.2, the sum of neutrino masses is again fixed to the standard Σmν = 0.06 eV value and Neff

is left free, allowing the presence of (“neutrino-like”) degrees of freedom, that were relativistic
during radiation domination (chapter 2). We discuss the results obtained either in temperature or
polarisation.

The two parameters Σmν and Neff , describe effects that took place, respectively, at late and early
epochs in the evolution of the universe. Their signatures on the CMB spectra are sufficiently uncorrelated
so that, in scenarios with both parameters left free, the results do not vary substantially from the two
separate cases described above (Planck Collaboration. XVI. 2014; Planck Collaboration. XIII. 2015).

8.1 Constraints on the absolute scale of neutrino masses

As discussed in chapter 2, the CMB anisotropies are weakly sensitive to neutrino masses. In practice,
when fitting Σmν we consider a simplified degenerate scenario in which the mass differences between
the three neutrinos are not taken into account1. The effects of massive neutrino in temperature and
polarisation power spectra are similar (e.g.Lesgourgues et al. (2013)). However, the Planck polarisation
spectra do not have enough signal to noise ratio to improve much over constraints extracted from TT only
data. Nevertheless, polarisation is useful in breaking other parameter degeneracies, resulting in tighter
constraints for the parameters in the combination TT, EE and TE with respect to TT (chapter 7).

1To speed up computational time in CLASS we consider only one massive neutrino with mass Σmν and two massless ones.
Our results are insensitive to this kind of implementation details.
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8. NEUTRINO RESULTS

As discussed in chapter 4, the presence of the physical boundary Σmν > 0 is a case for which the
profile likelihood analysis technique is very adequate. Hence, in this section, we make regular use of this
technique. Moreover, the shape of the profile near the minimum is an indicator of the goodness of fit and
thus of possible residual systematics effects.

8.1.1 High-` temperature alone and the AL issue

(a)
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Figure 8.1: (a) Posterior distribution of the sum of neutrino masses obtained when sampling the TT
HiLLiPOP likelihood in combination with the LowTEB likelihood. The black line indicates
the 95% upper limit (Eq. 8.1), obtained by cutting the area of the histogram. (b) Profile
likelihood of Σmν in the same case. From the cut at 3.84, one can extract the approximate
limit Σmν < 0.74 eV at 95% CL.

We start by analysing the constraint using only temperature data at high-`. In Fig. 8.1(a) we report
the MCMC posterior obtained when sampling the HiLLiPOP TT likelihood (chapter 5) in combination
with the LowTEB likelihood (sec. 6.1.1) at low-`. We obtain

Σmν < 0.74 eV (95%, HiLLiPOP + LowTEB). (8.1)

Fig. 8.1(b) displays the corresponding likelihood profile of Σmν. It shows a strange flex near the mini-
mum. As discussed in chapter 4, in the presence of a boundary, the Feldman-Cousin (FC) prescription
allows a proper analytical estimation of an upper limit in the case of a parabolic profile. If the shape
is not parabolic one can only set approximative limits, unless relying on simulations2. Also, non trivial
features near the minimum can be interpreted as hints of possible residual systematic effects. Hence,
the Gaussian (i.e. analytic) FC procedure can not be safely applied in this case and we are not able to
set a proper constraints. In the case of a parabolic profile with a minimum at zero the 95% upper limit
is obtained cutting the ∆χ2 at 3.84. One can still use this recipe to obtain an approximated constraint
neglecting what happens near Σmν ∼ 0. Doing this, we find the exactly the same result as the MCMC
one of Eq. 8.1.

The non trivial shape of the profile likelihood requires further studies. In chapter 7 we have pointed
out that the Planck TT likelihoods have a preference for a high value of AL. Since neutrinos free-
streaming prevents clustering on small scales (chapter 2), massive neutrinos suppress the lensing power.
This suppression has the same effect as a low AL value. Thus, the tension that drives AL can induce

2This has not been done in this thesis due to the complexity of foreground simulations.
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8.1 Constraints on the absolute scale of neutrino masses

an artificially tight constraint, i.e. the Planck TT only minimum of the profile is pulled down to non-
physical (negative) Σmν values resulting in a too “optimistic” limit (Planck Collaboration. XVI. 2014;
Planck Collaboration A54 2014).
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Figure 8.2: The impact of different AL on the Σmν profile. For each profile the AL parameter is fixed to
the indicated value. The standard case when AL = 1 is shown in black.

In Fig. 8.2 we “profile” the Σmν parameter for different fixed value of AL using as before TT only
(in combination with the LowTEB likelihood). The previously discussed standard case with AL = 1 is
in black. Considering larger fixed values for AL, the flex is smoothed out. For AL = 1.2 there is non-
significant preference for a neutrino mass. Indeed, when we are proposing a model with over-amplified
lensing effect (AL & 1.2), leaving Σmν free, the ΛCDM + Σmν cosmology adjusts itself to the less lensed
data increasing the best fit value for Σmν. Indeed, the data are better fitted by a model where massive
neutrinos, through free-streaming, have erased more structures, resulting in a lower lensing effect on the
spectra. This emphasises the need to regularise the AL problem to obtain a robust upper limit for Σmν.
As discussed in sec. 7.3, the addition of the VHL data (chapter 6) results in a AL value in agreement with
unity. In sec. 8.1.2 we thus also consider the ACT and SPT spectra.

8.1.2 The addition of VHL data

When we add VHL data, the shape of the profile changes. As is shown in Fig. 8.3, the flex, present in the
Planck TT only case, is not there any more. We remind that for the two profiles AL is kept fixed at one.
However, in chapter 7 we have shown that the addition of VHL data shifts the fitted AL parameter from
1.22+0.11

−0.10 to 1.04+0.08
−0.07. The resulting effect on Σmν is similar to the one described in Fig. 8.2, justifying

the statement that whatever pushes AL to higher values, pushes also the neutrino mass constraint to lower
values and with an unphysical “flex shape”.

Adding VHL data, we find a minimum χ2 around ∼0.3 eV. However, this is not significant: recalling
that the 68% CL is obtained by cutting the profile at 1, we can infer from Fig. 8.3 that it has barely a 1σ
significance. An approximated 95% limit gives Σmν . 0.86 eV.

In Fig. 8.3, we also show (in red) the result obtained excluding the SPT_low dataset (sec. 6.3) from
the VHL combination. This latter dataset has a more important multipole overlap with Planck data than
the other high-` datasets and removing it, the AL parameter is slightly higher (AL = 1.09 ± 0.07, see
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Figure 8.3: Profile likelihood result obtained scanning the HiLLiPOP TT likelihood in combination with
the LowTEB and the VHL data (in black), compared to the case where we exclude SPT_low
data (in red).

Table 7.10). As a result, we have a tighter constraint on Σmν but we recover a flex. This is a very
subtle effect and since we cannot definitively conclude which combination is better, we will adopt in the
following the most conservative VHL result, i.e. including the SPT_low data.

8.1.3 BAO and Supernova data

In sec. 2.5.2 we have seen that, beside their impact on lensing and on the early ISW effect, neutrinos
affect the angular diameter distance to last scattering DA (Eq. 1.25), constrained with Planck data via the
position of the first acoustic peak. In flat models, as the one we consider, this is degenerate with H0. At
fixed θ∗ (Eq. 1.125), the higher the neutrino mass, the larger DA and the smaller expansion rate at low
redshift. The addition of the latest BAO measurements (sec. 6.4), strongly improves the constraint on
Σmν, and gives to the profile a nice parabolic shape (red in Fig. 8.4). The same effect is observed with
JLA data since an independent measurement of Ωm helps in breaking the degeneracies (black in Fig. 8.4).
In Table 8.1 we report the FC limits in these cases. Note that there is no preference for massive neutrinos
any more.

Data
∑

mν (95% CL)
HiLLiPOP (TT) + LowTEB +VHL+JLA < 0.52 eV
HiLLiPOP (TT) + LowTEB +VHL+BAO < 0.23 eV

Table 8.1: 95% constraints obtained via the FC prescription on Σmν. Relative profiles can be found in
Fig. 8.4.

8.1.4 Robustness with respect to the low-` data

In sec. 7.3.2 we have discussed the interplay between AL and the reionisation optical depth τ. The
addition of VHL data, regularising the AL tension, gives an estimate of the value of τ that is consistent
with the one obtained from HFI low-` polarisation spectra using the lollipop likelihood (sec. 6.1.2). Since
the Σmν constraint depends on lensing, and thus on the value of τ, we do not expect to see much variation
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Figure 8.4: Profile likelihood for HiLLiPOP TT + LowTEB in combination with VHL + JLA (black),
and VHL + BAO (red). Since the shapes of the profiles are parabolic, in Table 8.1 we report
the 95% constraints obtained via the FC prescription.

of this constraint if we switch to lollipop instead of LowTEB for the large scale information. In Fig. 8.5,
we show that this is indeed the case.
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Figure 8.5: The baseline HiLLiPOP (TT) + LowTEB + VHL (in black) is compared to the combination
HiLLiPOP (TT) +lollipop + VHL (in red).

8.1.5 High-` polarisation

We now consider the full (TT, EE, TE) HiLLiPOP likelihood. We expect polarisation to help in breaking
some of the degeneracies in CMB temperature data, allowing for a better constraint. In chapter 7 we have
discussed the consistency between temperature and polarisation. From Table 7.4 we see that EE and TE
spectra have separately good χ2. However, their combination with temperature is more problematic. In
chapter 5, for example, we have pointed out a calibration-like issue between temperature and polarisation
that can be responsible for the bad value for the global χ2. Nevertheless, the ΛCDM results from the
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full HiLLiPOP likelihood are in good agreement with temperature alone. In Fig. 8.6, we show the Σmν

profile for the full likelihood compared to the temperature result. The upper limit is reduced but the
profile near the minimum has a strange behaviour, showing again a flex. However, we have argued
that the temperature result is somewhat over-corrected which may lead to such an effect. Anyway, the
addition of BAO data completely drives the constraints and we will see in sec. 8.1.6 that the limits in the
two cases are not much different.

The essential role of BAO is also clear if we try to obtain a limit for the Σmν using the polarisation
spectra only. In Fig. 8.7 is shown the profile for TE alone3 (black curve). In this case the low signal
to noise ratio does not allow to gain over the constraint coming from the non-relativistic transition at
decoupling (sec. 2.5.2), and we recover Σmν < 1.2 eV (95%)4. Adding BAO and JLA, we find Σmν <

0.24 eV, which is very competitive with the TT limit discussed just below.
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Figure 8.6: The baseline HiLLiPOP (TT) + LowTEB + VHL (in black) is compared to the full HiLLiPOP
likelihood +LowTEB + VHL (in red).

8.1.6 Our best upper limit

For our final upper limit for Σmν, we combine Planck CMB measurements with both BAO and SN
measurements. The value obtained from HiLLiPOP TT (+LowTEB + VHL) (Fig. 8.8), reads

Σmν < 0.22 eV (95%, HiLLiPOP (TT) + LowTEB + VHL + BAO + JLA). (8.2)

When the full HiLLiPOP likelihood is used, we obtain

Σmν < 0.20 eV (95%, HiLLiPOP (TT,EE,TE) + LowTEB + VHL + BAO + JLA). (8.3)

These two values are consistent with the official Planck result. Moreover, the parabolic shape of
the profile and the position of the minimum, give us confidence that no obvious unaccounted systematic
effects are driving the constraint. In addition, this solution is fully compatible with AL = 1.

3Note EE do not contain enough information to constrain Σmν.
4This limit is similar to the WMAP TT alone result (Hinshaw et al. 2013) which did not have enough sensitivity to see the

lensing effect.
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Figure 8.7: Profile likelihood for the Σmν parameter using the TE HiLLiPOP likelihood (in black), and
in combination with BAO and JLA data (in red). Note the LowTEB likelihood is always used
at low-`. Since the profiles are parabolic we apply the FC procedure described in chapter 4.
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Figure 8.8: Profile likelihood for the combination HiLLiPOP (TT) + LowTEB + VHL + BAO + JLA
(black) and the one with the addition HiLLiPOP TE and EE spectra (red). Since the profiles
are parabolic we apply the FC procedure described in chapter 4. The resulting upper limits
can be found in Eq. 8.2 and 8.3, respectively.

8.1.7 Is there a hint for a neutrino mass?

Several results in the literature show a preference for a non zero neutrino mass of the order of 0.3 or 0.4
eV. Beutler et al. (2014) reported a measurement of a neutrino mass 0.34±0.14 eV, using Redshift-space
distortion (RSD) measurements from BOSS, in combination with Planck 2013 chains marginalised over
AL. A neutrino mass was also proposed to help reducing the tension on the σ8 parameter between the
CMB cosmology, and its estimate from cluster counts or weak-lensing data (Planck Collaboration. XX.
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Figure 8.9: Profile likelihood obtained using the HiLLiPOP TT + LowTEB likelihood: in black when
marginalising over AL, while in red adding the Planck lensing likelihood.

2014; Planck Collaboration. XIII. 2015).
A similar preference (∼ 0.2 eV) is obtained if AL is left free together with Σmν (black in Fig. 8.9).

This latter case is similar to what we obtain with the addition of the lensing likelihood, built from the
4-point CMB correlation function (red line). Indeed, the addition of the lensing likelihood, mitigates
the preference for a high AL value. As noted in Planck Collaboration. XIII. (2015), this cures also
the cosmological parameter values in the dark energy sector and for the models with curvature: Planck
TT + lensing has no more preference for a negative Ωk or for an equation of state for the dark energy
in the phantom domain. For neutrino masses, it gives a best fit value for Σmν of about 0.2 eV (note
that the Plik likelihood shows a similar preference when combined with Commander and lensing, with
Σmν = 0.41+0.18

−0.35). However, lensing has not a strong preference for this solution and there is only a
∆χ2

lens ' 1 between the TT+ lensing and the TT alone cosmology. Moreover, the preference for massive
neutrinos comes at the price of a low value for H0 (the anticorrelation between the two has been already
pointed out in sec. 7.2.1). The addition of the Efstathiou (2014) H0 prior ((70.6 ± 3.3) Kms−1Mpc−1),
removes the preference for a non zero mass. We do not include lensing in our baseline, since with VHL
data it is statistically irrelevant and may even introduce some systematic errors (sec. 6.2).

In sec. 8.1.2 we also noted that, with the addition of VHL data, there is a tiny hint for a neutrino
mass. Some characteristic of this best fit solution are given in Table 8.2. Although the value of σ8 has
decreased a lot and it is in better agreement with the cluster counts measurements, the values of H0 is
low and Ωm high, in disagreement with direct H0 measurements, Supernova and BAO data.

As we have also seen in sec. 8.1.3, the preference for a best fit at 0.3 eV for Σmν disappears when
adding BAO and SN, pointing rather toward a systematic effect still to be understood.

8.2 Constraints on the effective number of neutrino species

In the previous section we have investigated the well motivated extension of the ΛCDM model where
the sum of the masses of the three standard active neutrinos is left free to vary. Here we fix Σmν to its
standard minimal value (0.06 eV), and we consider a ΛCDM + Neff cosmology. The number of effective
neutrinos Neff (defined in Eq. 2.25), accounts for all degrees of freedom, other than photons, produced
well before recombination and still relativistic at decoupling. As discussed in sec. 2.5, an excess in
Neff with respect to the expected 3.046 value, could point to the presence of light relics in the Universe,
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Par best fit (CLASS)
H0 64.7
Ωm 0.348
σ8 0.764
fσ8(0.57) 0.453

Table 8.2: Best fit values of some of parameter of the ΛCDM + Σmν cosmology obtained with HiLLiPOP
(TT) + VHL +bflike.

like axions or massless sterile neutrinos5. The measurement of Neff is also important since its precise
estimation allows to exclude Neff = 0 at high confidence, establishing an (indirect) evidence of the cosmic
neutrino background.

The effect of Neff on the CMB temperature spectra appears mainly on the damping tail. It is propor-
tional to the ratio between the angular scale of photon diffusion and the sound horizon, in turn propor-
tional to the square root of the Hubble parameter (sec. 2.5.3). There is thus a positive Neff-H correlation,
i.e. increasing the number of extra degree of freedom also increases the expansion rate and the recombi-
nation takes place earlier in cosmic history.

The posterior distribution for the Neff parameter is almost Gaussian. In this case, the profile likeli-
hood technique is not mandatory and one finds results equivalent to the MCMC analysis. They are thus
presented here using both techniques.

8.2.1 Temperature constraints

We start by analysing the constraint from the temperature HiLLiPOP likelihood in combination with
LowTEB at large scales. We measure (black profile in Fig. 8.11)

Neff = 3.77 ± 0.55 (68%, HiLLiPOP TT +LowTEB), (8.4)

which is 1.4σ higher than the standard 3.046. This result is slightly different from the official Planck
result that is 3.13±0.32. Because of the Neff-H0 correlation, our ΛCDM + Neff cosmology prefers a high
H0 value (the best fit is at 73.7 kms−1Mpc−1), a low Ωm (0.278) and a high σ8 (0.842). This results thus
alleviates the tensions with direct H0 measurements but increase the one, mentioned in sec. 8.1.7, with
weak lensing and cluster counts on σ8. Moreover, there is a positive correlation between Neff and the
spectral index ns. Increasing the number of neutrino species induces more damping at small scales in the
CMB TT power spectrum, which can be compensated by an increase of ns. Our best fit value for ns, in
this ΛCDM + Neff cosmology, is indeed 0.992, 4σ higher than the TT ΛCDM value of Table 7.2, which
could be a sign of residual foreground contamination. The high value of Neff , also tends to delay the
matter-radiation equality, enhancing the TT CMB power spectrum peaks and is thus positively correlated
to Ωch2. All these correlations can be observed in the correlation matrix displayed in Fig. 8.10, obtained
using our MCMC.

Note that the χ2 improvement in this extended cosmology with respect to the standard ΛCDM is
better by only 2 units for an absolute value of 9949.7. The preference for the high value of Eq. 8.4 are
discarded changing the low-` information or adjusting the foregrounds. These solutions are investigated
below.

5Note that in this configuration, we can not search for massive sterile neutrinos since we are considering massless extra
degree of freedom.
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Figure 8.10: Correlation matrix obtained from the ΛCDM + Neff chains sampled using the HiLLiPOP
TT likelihood in combination with LowTEB. Note that Neff is strongly correlated with ns

and Ωch2.

Different low-` choices

We test the dependency of the estimate of Neff with respect to the low-` information. Either using a τ
prior or the lollipop likelihood (sec. 6.1.2), we now find values compatible with the standard 3.046 one
(Table 8.4 and Fig. 8.11). The two profiles are very similar. This is not surprising since the lollipop
likelihood is similar to a pure τ prior (sec 6.1.2). Moreover, Neff influences the early universe and is thus
uncorrelated with a late time parameter like the reionisation optical depth. When the LowTEB likelihood
is used for the low-`, however, the estimate of Neff increases, although most of the Neff constraint comes
from the high-` tail of the temperature spectra6. This can be interpreted as a consequence of the low/high-
` tension in the TT power spectrum, discussed in chapter 7. Indeed, this is confirmed by the high value of
Neff found when the low-` temperature Commander likelihood is added to the τ prior case (green profile
in Fig. 8.11).

Overall these results show that the Neff estimate is not very robust to the low-` data choice.

The impact of foregrounds

In Fig. 8.12 we show the profile likelihoods for Neff obtained using our temperature likelihood, in combi-
nation with the LowTEB likelihood at low-`, and adding different constraints on the foregrounds. First we
note that with the addition of the VHL data, both with (in red) or without SPT_low (in blue), the results
show a ∼ 1.5σ discrepancy with the standard value of 3.046. Indeed, if the profile minimum positions

6A similar effect is present for the Plik likelihood where there is a ∼ σ increase in Neff with respect to the case with a τ
prior.
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Data Neff (68% CL)

HiLLiPOP (TT) + LowTEB 3.77+0.55
−0.55

HiLLiPOP (TT) + tau prior + Commander 3.70+0.55
−0.52

HiLLiPOP (TT) + tau prior 3.05+0.67
−0.52

HiLLiPOP (TT) + lollipop 3.03+0.67
−0.52

Table 8.3: The values of the Neff parameter for different choices of the low-` information. The τ prior is
the standard Gaussian prior 0.07±0.02. The corresponding profiles can be found in Fig. 8.11.
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Figure 8.11: Profiles for the Neff parameter for the HiLLiPOP (TT) likelihood in combination with dif-
ferent choices of the low-` information. The black curve is obtained with the LowTEB
likelihood. The τ prior case (standard Gaussian prior 0.07 ± 0.02) is in red. The τ prior +

Commander case is in green. The lollipop likelihood is also considered (in blue). The cor-
responding mean and errors can be found in Table. 8.3. The vertical dotted line indicates
the standard 3.046 value.

are slightly lower than in the TT alone case, the error bars are also tighter (Table 8.4). In Fig. 8.13 we
report the posterior distributions for the cosmological parameters in the ΛCDM + Neff case. As already
discussed, both TT alone (in red) and TT+VHL case (in green), have high values for the spectral index ns

and Ωch2, with respect to the ΛCDM cosmology7. Looking again at the correlation matrix of Fig. 8.10,
we remark a correlation between Neff , ns and Ωch2 with the kS Z component. Hence, we sample the TT
HiLLiPOP likelihood, in the ΛCDM + Neff case, adding the prior on the SZ foregrounds of Eq. 7.19. As
discussed in sec. 7.3.1, this prior is extracted from the VHL data and constrains the degeneracy between
the kS Z and the tS Z components. The resulting posterior distributions for the cosmological parameters
are shown in yellow in Fig. 8.13. The prior drives the cosmology closer to the ΛCDM case (lower values
of ns and Ωch2, and a higher value for θs), pushing Neff toward its standard value. This shows that, when
we open up the parameter space, the poor control on even small residual foreground contaminations can
play a role on our estimates. Mostly constrained by the temperature damping tail, Neff is especially sensi-
tive to temperature foregrounds. Hence, we do not consider this results as being robust enough and, in the

7Note also that even with Neff free, there is a discrepancy on the estimate of Ωbh2 between TT and TT+VHL, as mentioned
in sec. 7.3.1
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Figure 8.12: Profile likelihoods of the Neff parameter obtained using the HiLLiPOP TT likelihood in
combination with the LowTEB for the low-`, and with different choices for the high-`:
addition of the VHL (in red), addition of VHL but excluding SPT_low (in blue), using the
prior on the SZ foreground of Eq. 7.19 (in green). The TT+LowTEB case of Eq. 8.4 is
shown in black for comparison. Means and error bars can be found in Table 8.4.

following section, we report the constraint from polarisation, where the contamination from foreground
is much smaller.

Data Neff (68% CL)
HiLLiPOP (TT) + LowTEB 3.77±0.55
HiLLiPOP (TT) + LowTEB +VHL 3.52±0.30
HiLLiPOP (TT) + LowTEB +VHL -SPT_low 3.41±0.31
HiLLiPOP (TT) + LowTEB + prior SZ 3.18+0.39

−0.35

Table 8.4: Means and errors on Neff obtained with the profile likelihood technique using the TT
HiLLiPOP likelihood in combination with other datasets. These numbers correspond to
Fig. 8.12.

8.2.2 Polarisation results

We analyse the constraints coming from polarisation. In Fig. 8.14, we report the results for the TE and
EE. Due to the low signal to noise ratio, the EE result is only a weak constraint compatible with 3.046 at
∼ 1σ level.

The TE based constraint is, on the contrary, even statistically better than the TT one thanks to the
lower impact of foregrounds, and it will be considered as our baseline

Neff = 2.89+0.46
−0.42 (68%, HiLLiPOP (TE) + LowTEB). (8.5)

8.2.3 Robustness of the TE result

We would like to assess how robust the constraint coming from the TE spectra is. We first test the impact
of the low-` information used. The HiLLiPOP TE likelihood in combination with a τ prior or with the
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Figure 8.13: Posterior distributions for the cosmological parameters in the ΛCDM + Neff case. The
combination HiLLiPOP TT + LowTEB is in red. The case where the VHL likelihood has
been added is shown in green. The case where the “very high-`” constraining power on
foregrounds is mimicked by a prior on the SZ residuals (Eq. 7.19) is in yellow.

Figure 8.14: Profile likelihood for HiLLiPOP likelihood in combination with the LowTEB at low-`. The
results are are shown in black for TE and in red for EE. The asymmetry of the EE limit
comes from the underline neutrino model assumed. We are, indeed, considering two mass-
less and one massive (0.06 eV) active neutrino, so Neff , in CLASS, is greater than one by
definition.
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(a) (b)

Figure 8.15: (a) Profiles for the Neff parameter for the HiLLiPOP TE likelihood in combination with
different choices of the low-` information. The black curve is obtained with the LowTEB
likelihood. The τ prior case (standard Gaussian prior 0.07 ± 0.02) is in red. The lollipop
likelihood is also considered (in blue). The corresponding mean and errors can be found in
Table. 8.5. (b) Posterior distribution of the Neff parameter obtained with different prior for
the polarised dust parameter ATE

dust: standard prior (black), no prior (blue), ATE
dust fix at one

(yellow) or at zero (red).

lollipop likelihood gives the results of Table 8.5 and Fig. 8.15(a). As for temperature, the estimates are
lower than the LowTEB case but still compatible at ∼ 1σ level with the standard 3.046 value.

We have used the polarisation results to get rid of the residual foregrounds present in temperature.
Indeed, in TE, the only expected contamination comes from polarised dust emission, which is low (chap-
ter 5). In Fig. 8.15(b), we show that the Neff estimate is indeed very stable to various choices for the prior
used for the dust. Even in the case where the dust is completely neglected (in red).

Data Neff (68% CL)
HiLLiPOP (TE) + LowTEB 2.89+0.46

−0.42
HiLLiPOP (TE) + tau prior 2.49 ± 0.46
HiLLiPOP (TE) + lollipop 2.50 ± 0.46

Table 8.5: The values of the Neff parameter for different choices of the low-` information. The τ prior
is the standard Gaussian prior 0.07 ± 0.02. The corresponding profiles can be found in
Fig. 8.15(a).

8.2.4 Our best constraint

To further improve the Neff constraint, we add the distance measurements of chapter 6. Indeed, an
increase in Neff , not only increases the expansion rate so that the universe is younger at recombination,
but also increases H(z) at lower redshift. Therefore adding BAO and Supernovae data, we obtain a
20% error bars reduction in Neff . The profile likelihood results can be found in Fig. 8.16 and related
numbers in Table 8.6. The addition of late time distance measurements also allows to get rid of the low-`
dependency: the results using a τ prior or lollipop are now compatible, and consistent with the standard
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scenario. The HiLLiPOP TE result in combination with LowTEB likelihood reads

Neff = 3.03+0.34
−0.31 (68%, HiLLiPOP TE + LowTEB + BAO + JLA). (8.6)

This result excludes Neff = 4 at more than 99% CL.

Data Neff (68% CL)
HiLLiPOP (TE) + LowTEB + BAO+JLA 3.03+0.34

−0.31
HiLLiPOP (TE) + lollipop + BAO+JLA 2.95+0.33

−0.32

Table 8.6: Results from the profile likelihood analysis of the Neff parameter using the TE HiLLiPOP
likelihood in combination with others. Relative profile can be found in Fig. 8.16.

Figure 8.16: Profile likelihoods of the Neff parameter using the TE HiLLiPOP likelihood. In black is
shown the Planck alone value obtained when adding the LowTEB likelihood at low-`. In
red the final result with the addition of BAO and Supernovae. In blue, the combination
with the lollipop likelihood is also shown for comparison. Means and errors can be found
in Table 8.6.

Conclusions

In this chapter we have presented the separate constraints on the two parameters Σmν and Neff . For the
former we have highlighted, with the help of the profile likelihood technique, a dependence on the AL
parameter that need to be properly treated since it causes either a overoptimistic limit for Σmν or a weak
preference for a non zero neutrino mass. It is however the addition of BAO and Supernova data that drives
the constraint to a rather stable upper-limit. For Neff , the temperature only constraint is sensitive to small
foreground residuals in the data and we have thus decided to use the competitive and less foreground
dependent TE constraint. The results are compatible with the standard ΛCDM scenario.
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The Planck satellite, in service from 2009 to 2013, has produced a high-quality measurement of the
anisotropies of the Cosmic Microwave Background that will continue to be scientifically explored in the
years to come. The work described in this thesis, has been done simultaneously to the treatment and
release of the 2015 full mission temperature and polarisation data, and is focused on the estimation of
the energy content and the evolutionary properties of our universe, encoded in a set of cosmological pa-
rameters Ω of the big bang model. The CMB is, indeed, a unique probe from which all these parameters
can be estimated consistently.

In this thesis, the Planck data are used to construct the HiLLiPOP likelihood function from CMB
power spectra, L(C`(Ω),ψ), where ψ accounts for all the astrophysical and instrumental effects. The
design of this high-` likelihood is described in details. The likelihood compares data and models on the
basis of the cross-power spectra that are estimated from the high resolution HFI 100, 143 and 217 GHz
maps. Although the lower HFI frequencies are dominated by the CMB signal, an unbiased estimation
of the underlining properties of the universe needs a careful treatment of the foreground emissions, both
in temperature and polarization. Hence, frequency dependent masks are applied to the maps to limit
these contaminations. The correlations between modes and multipoles that appear due to the complex
masking, are encoded into the covariance matrix, that is estimated semi-analytically and is tested with
Monte Carlo simulations. Even after this careful masking strategy, the likelihood has to account for as-
trophysical foreground residuals. These include mainly thermal radiation from diffuse Galactic dust both
in temperature and polarization. In temperature, point sources, CIB and SZ effect are also considered.
Physically motivated templates are used. Different choices for these templates have been tested as well
as their effect on cosmological and instrumental parameters.

Once the likelihood is designed, the conventional approach for parameter estimation is based on
Bayesian inference. In this methodology the likelihood is multiplied by some priors (encoding the a-
priori knowledge on the parameter of interest) leading to a posterior distribution. A sampling of this pos-
terior distribution is done using Markov Chains Monte Carlo (MCMC). The standard Metropolis-Hasting
algorithm converges slowly and needs long and computationally costly pre-tuning of the proposal distri-
bution. In this thesis is described the implementation of an Adaptive MCMC code where an on-the-fly
adaptation of the proposal matrix is performed, allowing to bypass the pre-tuning phase and to squeeze
the computational time needed for proper convergence of the algorithm. This method is extensively used
in the analysis to obtain cosmological parameters posterior distributions.

Although widespread in cosmology, Bayesian methods have some limitations: it is difficult to find a
consistent choice for priors and some volume effects may arise from the projection of a multidimensional
space onto only one direction when estimating the error on individual parameters. Unlike the Bayesian
ones, Frequentist methods have some interesting properties such as the invariance of the maximum like-
lihood estimate with respect to the choice of the set of cosmological parameters. For most parameters
with near Gaussian distributions, the two methods give comparable results. We show that this is true also
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for the sum of the neutrino masses, where the presence of the physical boundary requires some dedicated
techniques.

The combination of the Planck experimental measurements, of the accurate theoretical predictions
resulting from the CLASS Boltzmann Code, and of the aforementioned statistical tools, allows to set tight
constraints on the cosmological parameters, revealing good consistency between the data and the stan-
dard ΛCDM cosmological model. Several results are given, using both methodologies and combining
our likelihood to other cosmological datasets. An example is reported in Table ??. The level of precision

par value
Ωbh2 0.0221 ± 0.00018
Ωcdmh2 0.119 ± 0.0012
100θs 1.042 ± 0.00037
τ 0.0641 ± 0.016
log[1010As] 3.052 ± 0.031
ns 0.966 ± 0.0039
H0 67.72 ± 0.52
Ωm 0.307 ± 0.0070

Table 8.7: ΛCDM cosmological parameters obtained using the temperature HiLLiPOP likelihood in
combination with LowTEB, VHL and BAO and JLA data.

of the likelihood enables us to identify subtle residual systematic effects in the data. The temperature
spectra, for example, contain more lensing than expected within a ΛCDM model, resulting in a 2σ devi-
ation from unity for the AL parameter. We show that this preference for a high AL, translates, in a high
value of the optical depth τ (and As as a consequence of the τ-As degeneracy), in tension with the low-`
estimate coming from polarisation alone measurements.

The addition of small scale data from the ground based experiments ACT and SPT, regularises the
AL issue

AL = 1.04+0.08
−0.07 (68%, HiLLiPOP (TT) +LowTEB +ACT/SPT),

and, consequently the tension between the low- and high-` estimate of τ, driving it back to a lower value

τ = 0.060 ± 0.017 (68%, HiLLiPOP (TT) +LowTEB + ACT/SPT).

Letting the sum of neutrino mass Σmν free, the overestimation of lensing drives the constraint on the
absolute scale of neutrino masses to artificially low value. On the other hand, the AL regularisation
points toward a weak preference for a neutrino mass with a minimum of the χ2 around 0.3 eV. This
non-significant preference is erased if the BAO and the Supernova data are added. Our robust constraint,
reads

Σmν < 0.20 eV (95%, HiLLiPOP (TT,EE,TE) + LowTEB + ACT/SPT + BAO/JLA).

We also investigate the constraint on the number of effective neutrinos, i.e. the energy density of
any relic particle, other than photons, still relativistic at decoupling. We show how the temperature
results, although consistent with the standard 3.046 values, have a dependency on the residual foreground
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modelling. Since it is almost independent of the foregrounds, the competitive constraint coming from
the TE spectra, is then considered more robust.

Our best constraint, again with the addition of BAO and Supernovae data is

Neff = 3.03+0.34
−0.31 (68%, HiLLiPOP (TE) + LowTEB + BAO + JLA).

This result excludes Neff = 4 at more than 99% CL.
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Appendix A

Planck products

Here we briefly revise some of the Planck products, namely the catalogue of compact sources, the clusters
catalogue (sec.A.1) and the component separation maps (sec.A.2).

A.1 Catalogues

From the Planck data is possible to produce catalogues of compact sources or clusters. For our analysis
is important to treat these emissions in order not to bias the estimation of cosmological parameter as
discussed in chapter 5.

A.1.1 Catalogue of Compact Sources

Figure A.1: Sky distribution (in Aitoff projection) of the PCCS sources at three different channels: 30
GHz (pink circles); 143 GHz (magenta circles); and 857 GHz (green circles). (Planck
Collaboration. XXVIII. 2014).

The Planck Catalogue of Compact Sources (PCCS) (Planck Collaboration. XXVIII. 2014) is a sam-
ple of reliable Galactic and extragalactic sources (non thermal radio sources and thermal sources), ex-
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Table A.1: Planck Catalogue of Compact Sources (PCCS) characteristics. Adapted from Planck Collab-
oration. XXVIII. (2014).

Freq. (GHz) 30 44 70 100 143 217 353 545 857

S/N threshold:
Full sky 4.0 4.0 4.0 4.6 4.7 4.8 ... ... ...
Extragalactic zone ... ... ... ... ... ... 4.9 4.7 4.9
Galactic zone ... ... ... ... ... ... 6.0 7.0 7.0

Number of sources 1256 731 939 3850 5675 16070 13613 16933 24381

tracted directly from the nominal mission maps1. The total number of sources in the catalogue ranges
from 1256 at 30 GHz to 24381 source at 857 GHz (TableA.1). Compact sources are detected in each fre-
quency maps by looking for peaks after convolving with a linear filter that preserve the amplitude of the
source while reducing large scale structure and small scale fluctuation in the vicinity of the sources. In
particular for the HFI high frequency channels, ad-hoc techniques (e.g. combinations of S/N and χ2 be-
tween observed and predicted behaviour of the source, studies of nearby pixels for rejecting artefact not
removed by the filter) have been implemented to reduce the number of spurious detections with minimal
impact on the number of real sources found (Planck Collaboration. XXVIII. 2014).

The source selection for the PCCS is made on the basis of S/N. Since background properties vary
substantially with the frequency and the sky direction, the S/N has been adapted to each case. At 100,
143, and 217 GHz, the S/N needed to achieve the reliability goal of 80% is determined defining an
extragalactic zone (48% of the sky) but then applied all-sky. This is not the case for the higher frequen-
cies where there is the need to control confusion from Galactic cirrus emission (Planck Collaboration.
XXVIII. 2014). The filamentary structure of Galactic cirrus at small angular scales is often visible as
knots in Planck maps. To control their spurious detection, different S/N cuts have been chosen for the
Galactic and extragalactic zone. S/N cuts are summarised in TableA.1.

Cirrus emission at 353 GHz is relevant for the construction of an adapted mask for cosmological
parameter estimation and has an impact on our dust model as discussed in sec.5.6.1.

A.1.2 Catalogue of clusters

The 2015 release includes also a catalogue of SZ sources (PSZ2; (Planck Collaboration. XXVII. 2015)),
based on the full mission data and, at present, the largest SZ-selected sample of galaxy clusters. It
contains 1653 detection, of which 1203 are confirmed with external datasets.

The galaxy clusters are the most massive formed structures and their evolution with mass and redshift
is a sensitive cosmological probe of the late-time universe. They are composed of dark matter but also
stars, cold gas and dust in galaxies, and a hot ionised intra-cluster medium (ICM). The ICM, which
is the majority of the baryonic material by mass, emits in the X-rays via thermal bremsstrahlung and
line emission, and boosts in energy the cosmic microwave background photons via inverse Compton,
causing a redshift-independent spectral distortion of photons reaching us along the line of sight to the
cluster (the thermal SZ, see sec.1.3.6). X-ray surveys (like ROSAT) are unique in their purity but they
suffer from selection biases that favour low-redshift systems, due, for example, to flux limitations. On the
contrary SZ surveys provide a nearly mass-limited census of the cluster population at high redshift, where
abundance is strongly sensitive to cosmological parameters. The SZ survey observable is the spherically
integrated Comptonisation parameter (YS Z) which is related to the integrated electron pressure and hence

1It will also be extended and upgraded for the latest release.
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the total thermal energy of the cluster gas, that correlates to the mass (Planck Collaboration. XXVII.
2015).

Galaxy clusters provide unique constraints on the normalisation of the matter density fluctuations
(σ8), the mean matter density (Ωm), and on extensions of the minimal model including the dark energy
sector and neutrinos (Planck Collaboration. XXIV 2015).

A.2 Component separation maps

Component separation deals with the extraction of actual CMB signal from the measured maps. Although
not used for cosmological parameter estimation, these maps are useful for the reconstruction of the
gravitational lensing (chapter 6), of the Integrated Sachs–Wolfe effect (ISW), or for the constraints on
non-Gaussianity and isotropy and statistic. In Planck, four component separation algorithms are used
and good consistency between them is found in both temperature and polarization (Planck Collaboration.
IX. 2015). In Fig.A.2 results in temperature from the four different algorithm are shown, clearly visually
consistent outside the mask. In polarization, on angular scales grater then 10◦ (` . 20), systematics are
non negligible compared to the expected cosmological signal. Polarization maps for the 2015 release has
then been high-pass filtered to remove large angular scales. Residual systematics have been dramatically
reduced from 2013 and the 2016 planned release will include all angular scales.

Figure A.2: Component-separated CMB temperature maps at full resolution, FWHM 5′ , Nside = 2048.
(Planck Collaboration. IX. 2015).

The four methods for component separation are described in Planck Collaboration. XII. (2014) and
Planck Collaboration. IX. (2015). Here we just briefly summarise their main characteristics.

There are two types of methods: methods assuming only knowledge of the blackbody spectrum, with
few hypothesis on the shape of foreground emissions, and minimising the variance of the CMB compo-
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nent (NILC and SEVEM); and methods with explicit parametrisations of the CMB and the foreground
models (SMICA and Commander).

NILC It is an implementation of the Internal Linear Combination (ILC) method in the needlet domain.
The ILC methods, first proposed for foreground cleaning in the analysis of COBE data, combine multi-
frequency observations to extract the CMB, in general in the spherical wavelet domain. The methods
assume that the amplitude of CMB emission is frequency independent in thermodynamic units and that
CMB fluctuations are not correlated to foreground signals. The CMB is then estimated as a linear com-
bination of sky maps such that the variance of the estimate is minimum. NILC uses needlets, a special
type of spherical wavelets with good localisation in both pixel space and harmonic space. Needlets have
compact support in the harmonic domain, while still being very well localised in the pixel domain (De-
labrouille et al. 2009). The extension to polarization is achieved performing separation also on E and B
modes.

SEVEM The Spectral Estimation Via Expectation Maximisation produces CMB maps cleaning fore-
ground emissions with template subtraction directly in map domain. The coefficients in front of each
template are obtained such that the the final CMB maps have minimum variance. In practice, foreground
templates are constructed by differentiating pairs of maps at different frequencies to subtract the CMB
contribution. Operating in the map domain, the extension to polarization of this algorithm is more natural
with the direct inclusion of Q and U maps.

SMICA This method reconstructs a CMB map as a linear combination in the harmonic domain of n
input frequency maps with weights that depend on multipole `. In SMICA (Spectral Matching Indepen-
dent Component Analysis) the model for the data is a superposition of CMB, noise and foregrounds.
The latter are not parametrically modelled; instead, the total foreground emission is represented by d
templates with arbitrary frequency spectra, angular spectra and correlations. Using a maximum likeli-
hood approach, the best fit values for the arbitrary parameters (the emission law can be supposed known
only for one or more components, fixing a model for all the others) that are used to construct the model
are found (semi-blind analysis). These are then used to calculate the different weights to combine the
frequency maps in the spherical harmonics domain to produce the final CMB map. Maps of the total
foreground emission in each frequency channel can also be produced. As for NILC the extension to
polarization is done performing separation directly on E and B modes.

Commander This is a Bayesian parametric method that works in the map domain. The algorithm is de-
scribed in some more details in sec. 6.1.1. Physical parametrisation in terms of amplitude and frequency
spectra are chosen and then a joint solution for all components is obtained by sampling from the posterior
distribution with a Gibbs algorithm. Bayesian sampling methods are described in chapter 4.

This richness in frequencies allows to separate the various foregrounds. Hence, adopting specific
models for the different components, a set of maximum-posterior astrophysical parameter maps is ob-
tained (Fig.3.14) for the various foreground emissions (Planck Collaboration. X. 2015). Fig.3.15(a) and
3.15(b) provide an overview of the main components in temperature and polarisation in terms of the
brightness temperature rms.

Component separation methods has limitations in the cosmological parameter estimation with respect
to the likelihood approach used in this thesis. For example, they do not take into account calibration and
beam uncertainties. Commander and SMICA fit only for relative calibration between frequency channels,
but uncertainties from this process are not propagated into the maps. NILC and SEVEM assume perfect
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A.2 Component separation maps

calibration for the frequency channels (Planck Collaboration. IX. 2015). The likelihood approach de-
scribed in chapter 5 is more suited for precision cosmology and does take into account also these kind of
uncertainties.

Component separation maps obtained via the Commander algorithm are discussed in sec.3.5.
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