
HAL Id: tel-01228072
https://theses.hal.science/tel-01228072v1

Submitted on 12 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static/Dynamic Analyses for Validation and
Improvements of Multi-Model HPC Applications.

Emmanuelle Saillard

To cite this version:
Emmanuelle Saillard. Static/Dynamic Analyses for Validation and Improvements of Multi-Model
HPC Applications.. Distributed, Parallel, and Cluster Computing [cs.DC]. Université de Bordeaux,
2015. English. �NNT : 2015BORD0176�. �tel-01228072�

https://theses.hal.science/tel-01228072v1
https://hal.archives-ouvertes.fr

Thèse présentée
pour obtenir le grade de

DOCTEUR DE
L’UNIVERSITÉ DE BORDEAUX
École doctorale de Mathématique et Informatique de Bordeaux

Spécialité : Informatique

Par Emmanuelle SAILLARD

Analyse statique/dynamique pour la validation et
l’amélioration des applications parallèles

multi-modèles

Après avis de :

M. Matthias S. Müller Professeur à l’université de RWTH Aachen Rapporteur
M. Fabrice Rastello Chargé de recherche, INRIA Rapporteur

Soutenue le 24 septembre 2015 devant la commission d’examen composée de :

M. Emmanuel Jeannot Directeur de recherche, INRIA Président du jury
M. Denis Barthou Professeur à l’université de Bordeaux, INRIA Directeur de thèse
M. Patrick Carribault Ingénieur-chercheur au CEA, HDR Encadrant CEA
M. Matthias S. Müller Professeur à l’université de RWTH Aachen Rapporteur
M. Fabrice Rastello Chargé de recherche, INRIA Rapporteur
M. Torsten Hoefler Professeur Assistant, ETH Zürich Examinateur

Résumé
L’utilisation du parallélisme des architectures actuelles dans le domaine du calcul hautes per-
formances, oblige à recourir à différents langages parallèles. Ainsi, l’utilisation conjointe de
MPI pour le parallélisme gros grain, à mémoire distribuée et OpenMP pour du parallélisme de
thread, fait partie des pratiques de développement d’applications pour supercalculateurs. Des
erreurs, liées à l’utilisation conjointe de ces langages de parallélisme, sont actuellement diffi-
ciles à détecter et cela limite l’écriture de codes, permettant des interactions plus poussées entre
ces niveaux de parallélisme. Des outils ont été proposés afin de palier ce problème. Cependant,
ces outils sont généralement focalisés sur un type de modèle et permettent une vérification dite
statique (à la compilation) ou dynamique (à l’exécution). Pourtant une combinaison statique/-
dynamique donnerait des informations plus pertinentes. En effet, le compilateur est en mesure
de donner des informations relatives au comportement général du code, indépendamment du jeu
d’entrée. C’est par exemple le cas des problèmes liés aux communications collectives du modèle
MPI. Cette thèse a pour objectif de développer des analyses statiques/dynamiques permettant la
vérification d’une application parallèle mélangeant plusieurs modèles de programmation, afin
de diriger les développeurs vers un code parallèle multi-modèles correct et performant. La véri-
fication se fait en deux étapes. Premièrement, de potentielles erreurs sont détectées lors de la
phase de compilation. Ensuite, un test au runtime est ajouté pour savoir si le problème va réelle-
ment se produire. Grâce à ces analyses combinées, nous renvoyons des messages précis aux
utilisateurs et évitons les situations de blocage.

Mots clés: Calcul haute performance, Analyse statique, MPI, OpenMP, Débogage

Contexte de la recherche
Le calcul est un outil essentiel pour résoudre de nombreux problèmes scientifiques. Seulement, pour

résoudre ces problèmes dans un temps raisonable, nous avons recours au calcul parallèle sur des grosses
machines appelées supercalculateurs. Même si aujourd’hui les supercalculateurs atteignent une puissance
de calcul de l’ordre du pétaflop, c’est-à-dire qu’ils sont capables d’effectuer plus d’un million de milliards
d’opérations par seconde (1015 FLOP/s), il existe toujours un besoin croissant pour plus de puissance de
calculs. Pour répondre à ce besoin, les supercalculateurs deviennent de plus en plus puissants et se complex-
ifient.

L’utilisation du parallélisme des architectures actuelles oblige à recourir à différents langages parallèles.
Ainsi, l’utilisation conjointe de MPI pour le parallélisme gros grain, à mémoire distribuée et OpenMP pour
du parallélisme de thread, fait partie des pratiques de développement d’applications pour supercalculateurs.
Dans le cas des programmes hybrides MPI+OpenMP, chaque processus MPI contient plusieurs threads (ou
processus légers) qui sont chargés des communications entre processus. Des erreurs liées à l’utilisation
conjointe de ces langages de parallélisme sont actuellement difficiles à détecter et cela limite l’écriture des
codes permettant des interactions plus poussées entre ces niveaux de parallélisme.

Des outils ont été proposés afin de palier ce problème. Cependant, ces outils sont généralement focal-
isés sur un type de modèle et permettent une vérification dite statique (à la compilation) ou dynamique (à
l’exécution). Pourtant une combinaison statique/dynamique donnerait des informations plus pertinentes. En

2

effet, le compilateur est en mesure de donner des informations relatives au comportement général du code,
indépendamment du jeu d’entrée. C’est par exemple le cas des problèmes liés aux communications collec-
tives du modèle MPI. Les développeurs font donc face à des erreurs difficiles à analyser et à corriger dans
leurs applications parallèles avec bien souvent très peu d’aide.

Lors de cette thèse, nous nous sommes intéressés à la détection des blocages dans les applications paral-
lèles. Nous avons développé la plateforme PARallel COntrol flow Anomaly CHecker (PARCOACH) qui com-
bine des analyses statiques et dynamiques afin de détecter les blocages dans les applications MPI, OpenMP et
MPI+OpenMP. La détection se fait en deux étapes. Dans un premier temps, PARCOACH détecte de poten-
tiels blocages à la compilation. Ensuite, PARCOACH vérifie si ces blocages vont se produire à l’exécution
grâce à une instrumentation statique du code.

Démarche adoptée
Le but de cette thèse est d’apporter de l’aide au programmeur en repérant les éventuelles fautes de

parallélisme dans son programme. Le compilateur analyse le code et peut donc fournir des informations que
l’on peut exploiter pour détecter les fautes. C’est pourquoi, nous avons dans un premier temps réfléchi à
des analyses statiques qui détectent des erreurs de programmation dans chaque fonction d’un programme.
Cependant, comme le jeu d’entrée n’est pas encore connu à la compilation, nous ne pouvons affirmer qu’un
programme comporte réellement des erreurs: nous ne détectons que des erreurs potentielles. C’est pourquoi,
nous avons couplé cette analyse avec une instrumentation du code pour vérifier les erreurs une fois le jeu
d’entrée connu. Ainsi, chaque fois qu’une potentielle erreur est détectée dans une fonction, celle-ci est
instrumentée.

Dans cette thèse, nous nous sommes focalisés sur la détection de la source des blocages. Un blocage est
générallement causé par la non-occurence de quelque chose. Le programme reste alors bloqué dans un état
d’attente infini sans jamais se terminer.

Lorsqu’un développeur souhaite écrire un code parallélisé avec MPI et OpenMP, il doit au préalable
décider de la façon dont les processus MPI vont intéragir avec les threads OpenMP. Cette intéraction définit
un niveau de support de threads à utiliser. Notre première contribution consiste à vérifier si les applications
hybrides MPI+OpenMP sont conformes vis à vis du niveau de support de threads demandé dans une appli-
cation. Pour cela, l’idée a été de suivre les directives OpenMP par une analyse statique des codes. L’objectif
a été de trouver où se placer dans la chaîne de compilation pour mettre en avant le flot de contrôle du pro-
gramme, c’est-à-dire tous les chemins possibles du code, puis de choisir la représentation intermédiaire la
plus utilisée dans la majorité des compilateurs. Le Graphe de Flot de Contrôle (CFG), généré par fonction,
nous a paru être la représentation la plus adaptée à adopter puisqu’il modèlise le transfert de contrôle d’un
programme. Il permet également de visualiser rapidement la présence éventuelle d’erreurs. Dans un CFG,
les noeuds représentent des blocs de base, c’est-à-dire des séquences maximales de code linéaire et les arcs
représentent le flot de contrôle (branchement, appel de fonction). Pour les besoins de notre analyse, nous
devons savoir où se trouvent les communications MPI. Nous avons donc annoté ce graphe afin de mettre en
avant les noeuds contenant des communications MPI. Par un parcours du CFG annoté, nous avons associé
des mots aux noeuds du CFG représentant le contexte dans lequel les communications sont appelées. Ainsi,
il est possible de vérifier le niveau de support de thread requis par une application. Cette contribution nous
a permis de réaliser l’intérêt que pourrait avoir une suite de benchmarks d’erreurs. En effet, avec une telle
suite de programmes, on pourrait mettre en avant les fonctionnalités des outils de débogage.

Vérifier l’intéraction entre les modèles de programmation parallèle est la première étape en vue de
déboguer une application hybride. Une fois l’intéraction vérifiée, nous pouvons nous focaliser sur chaque

3

modèle en particulier et vérifier leur bonne utilisation.

Notre deuxième contribution adapte l’analyse précédente afin d’identifier au plus tôt d’où proviennent
les blocages liés aux collectives MPI et OpenMP dans les applications MPI et OpenMP.

La norme MPI impose que tous les processus appellent les mêmes opérations collevctives dans le même
ordre. Une collective MPI non appelée par tous les processus peut provoquer un blocage ou deadlock.
Le but de cette nouvelle analyse est de vérifier que cette condition est bien respectée. Nous avons alors
réalisé une analyse statique basée sur une étude du CFG annoté afin d’identifier les conditions responsables
d’éventuels blocages. L’idée a été d’adapter un formalisme connu, la frontière de postdomination itérée,
pour un ensemble de noeuds contenant des communications collectives. Grâce à cette analyse, les portions
de code pouvant bloquer sont instrumentées. Une fonction de validation est insérée avant chaque opération
collective et avant la fin de la fonction. Cette instrumentation s’appuie sur les résultats de l’analyse statique.
Si une fonction ne présente pas d’éventuels blocages, celle-ci n’est pas instrumentée. Nous réduisons ainsi
l’impact de la vérification dynamique et évitons une instrumentation systématique du code.

Nous avons ensuite adapté cette démarche afin de trouver la source d’eventuels blocages liés aux syn-
chronisations de threads et aux worksharing constructs dans les applications OpenMP. Les barrières et work-
sharing constructs présentent les mêmes contraintes que les opérations collectives Pour les besoins de cette
analyse, nous avons ajouté des arcs au CFG annoté afin de mettre en avant le flot de contrôle dû aux régions
OpenMP du code. Nous avons ensuite adapté la méthode précédente sur ce nouveau CFG.

Certaines erreurs de parallélisme surviennent seulement lorsqu’une application mélange deux modèles.
Ces erreurs ne peuvent être détectées par une analyse séparée de chaque modèle. La dernière contribution
reprend les analyses précédentes afin d’identifier d’où proviennent les blocages liés aux communications
collectives MPI dans un contexte multi-threadé. Cette analyse vérifie que la séquence de communications
collectives est la même pour tous les processus et déterministe. Nous vérifions par exemple qu’il n’y ait pas
d’appels concurrents interdits au sein d’un processus.

Résultats obtenus
Nous avons implémenté la plateforme PARCOACH dans le compilateur GCC (GNU Compiler Collec-

tion) sous forme d’un plugin. PARCOACH est ainsi capable de vérifier des applications écrites en Fortran,
C et C++, sans recompilation du compilateur. Lorsque PARCOACH détecte de potentielles erreurs à la
compilation, un message d’avertissement est renvoyé à l’utilisateur avec la ligne de la potentielle source du
problème. Ensuite, si cette potentielle erreur est sur le point de se produire à l’exécution, la fonction de
validation insérée par notre analyse arrêtera le programme et renverra un message d’erreur au programmeur.
Afin de se rendre compte du surcoût induit à la compilation comme à l’exécution par nos analyses, nous
les avons testées sur différents benchmarks (NAS, Coral, EPCC) et des applications du CEA (EulerMHD,
HERA). Pour tous les programmes testés, avons obtenu des surcoûts faibles à la compilation et à l’exécution
(moins de 25%).

Afin de se rendre compte du bon fonctionnement de PARCOACH, nous avons développé une suite de
benchmarks parallélisés avec MPI, OpenMP et MPI+OpenMP contenant des erreurs. Grâce à cette suite de
programmes, nous avons pu mettre en avant les fonctionnalités de notre analyse. A chaque fois, PARCOACH
a été capable de trouver les erreurs et leurs sources.

4

Conclusion
Afin d’aider au mieux les développeurs travaillant dans le domaine du calcul haute performance, il

est nécessaire de mettre à leur disposition des outils fiables et performants permettant de détecter effi-
cacement les errreurs de parallélisme comme les blocages. La plateforme PARCOACH rassemble des
analyses statiques/dynamiques qui ont pour but d’aider les développeurs à déboguer et écrire des appli-
cations MPI+OpenMP. La particularité des ces analyses est qu’elles mettent en avant la source des eventuels
blocages et renvoient des messages précis aux utilisateurs le plus tôt possible. La combinaison statique/dy-
namique permet à PARCOACH d’informer les utilisateurs d’une erreur avant que celle-ci se produise et de
limiter l’impact d’une instrumentation dynamique.

PARCOACH détecte des erreurs en analysant chaque fonction d’un programme. Il est donc possible que
PARCOACH rate certaines erreurs, seulement visibles en considérant le programme entier avec le contexte
d’appels des fonctions. Cette limite de PARCOACH peut être repoussée par le développement d’une analyse
interprocédurale. L’analyse du programme ne se fait plus fonction par fonction mais sur toutes les fonctions
en même temps en prenant en compte les relations appelantes/appelées qui existent entre les fonctions. Cette
extension de PARCOACH a été explorée lors du stage de fin d’étude de Hugo Brunie en 2015 au CEA.

Plusieurs pistes d’amélioration de PARCOACH sont envisageables:

• Vérifications plus poussées des modèles MPI et OpenMP
PARCOACH est pour l’instant focalisé sur la détection des blocages dûs aux collectives MPI et
OpenMP. Il serait intéressant d’étendre les analyses existantes afin de détecter plus d’erreurs (ex.,
vérification des arguments des fonctions MPI).

• Intégration de PARCOACH dans un outil existant
En tant que plugin, PARCOACH peut facilement être utilisé avec des outils de validation existants
comme MUST. Pour aller plus loin, on pourrait penser à une totale collaboration entre PARCOACH et
un outil dynamique. Par exemple, PARCOACH se chargerait de la détection d’erreurs à la compilation
et l’outil dynamique vérifierait ces erreurs à l’exécution et utiliserait les informations rassemblées à la
compilation par PARCOACH.

• Intégration de PARCOACH dans d’autres compilateurs
PARCOACH a été intégré au compilateur GCC mais pourrait être intégré à n’importe quel compilateur
utilisant une représentation sous forme d’un CFG, comme le compilateur LLVM.

Au delà du parallélisme, PARCOACH peut être vu comme un outil vérifiant n’importe quelle propriété
de sémantique et d’ordre d’un programme. Dès lors qu’un ordre doit être respecté, PARCOACH peut être
utilisé pour s’assurer que l’ordre est respecté et trouver les points de divergence.

Les travaux réalisés pendant cette thèse ont donné lieu à différentes publications en conférence (Eu-
roMPI’13, PPoPP’15, EuroPar’15, EuroMPI’15), en workshop (IWOMP’14) et dans un journal (IJHPCA’14).

Cette thèse a été préparée au CEA, DAM, DIF, F-91297 Arpajon, France.

5

Abstract
Supercomputing plays an important role in several innovative fields, speeding up prototyping or
validating scientific theories. However, supercomputers are evolving rapidly with now millions
of processing units, posing the questions of their programmability. Despite the emergence of
more widespread and functional parallel programming models, developing correct and effective
parallel applications still remains a complex task. Although debugging solutions have emerged
to address this issue, they often come with restrictions. However programming model evolutions
stress the requirement for a convenient validation tool able to handle hybrid applications. Indeed
as current scientific applications mainly rely on the Message Passing Interface (MPI) parallel
programming model, new hardwares designed for Exascale with higher node-level parallelism
clearly advocate for an MPI+X solutions with X a thread-based model such as OpenMP. But
integrating two different programming models inside the same application can be error-prone
leading to complex bugs - mostly detected unfortunately at runtime. In an MPI+X program not
only the correctness of MPI should be ensured but also its interactions with the multi-threaded
model, for example identical MPI collective operations cannot be performed by multiple non-
synchronized threads. This thesis aims at developing a combination of static and dynamic anal-
ysis to enable an early verification of hybrid HPC applications. The first pass statically verifies
the thread level required by an MPI+OpenMP application and outlines execution paths leading
to potential deadlocks. Thanks to this analysis, the code is selectively instrumented, displaying
an error and synchronously interrupting all processes if the actual scheduling leads to a deadlock
situation.

Key words: High Performance Computing, Static analysis, MPI, OpenMP, Debugging

6

Acknowledgement

“C’était...pas...mal...”

Pierre Gaillard, dans le bus 7A

Avant de tourner la page de cette aventure pour en commencer une nouvelle de l’autre côté de l’atlantique,
je tiens à remercier mes encadrants Denis et Patrick de m’avoir permise de réaliser cette thèse. J’ai pris beau-
coup de plaisir à travailler avec vous. Merci pour votre suivi, vos conseils avisés, votre précieuse aide et votre
soutien. Je serai ravie de continuer à travailler avec vous.

J’adresse également mes remerciements à mes rapporteurs Matthias Müller et Fabrice Rastello pour la
lecture de mon manuscrit et leurs propositions d’amélioration. Merci à Emmanuel Jeannot et Torsten Hoef-
fler d’avoir acceptés de se joindre à mon jury en tant que président de jury et examinateur.

Un grand merci à tous mes collègues doctorants du CEA. Merci à mon binôme Antoine (merci d’avoir
lavé la machine à café ;)), merci aux précurseurs de l’apple time Sébastien M. et Julien A., à mon co-bureau
Camille, Thomas G. pour ta bonne humeur, Xavier le chanteur, Thomas L., Gautier, Rémi, Hoby et Chris-
telle sans oublier les anciens: Jean-Yves, Sébastien V., Jean-Baptiste, Jordan, Bertrand et Alexandre. Merci
à mes compagnons de badminton David et Adrien et un grand merci à Marc et Julien J. pour toute leur aide
et les bons moments qu’on a passé ensembles.

Pendant ces trois ans j’ai eu l’occasion de faire de très belles rencontres. Je pense à Jérôme, Sylvain,
Alexis, Agnès, Pierre, THugo, Estelle, BHugo et Arthur avec qui j’ai eu le plaisir de travailler, Augustin et
Aurèle. Merci pour tout Agnès, ces trois ans n’auraient pas été pareils sans toi miss! Merci à Pierre et Alexis
de m’avoir supportée et écoutée dans le bus ;)

Merci à ma hiérarchie et au personnel du CEA qui a largement participé au bon déroulement de ma thèse
(Stéphanie, Brigitte, Isabelle V., Isabelle B., Eliane, Patrice, Thao et Denis L.) et merci à l’équipe runtime
de Bordeaux qui m’a à chaque fois bien acceuillie comme si je faisais partie intégrante de l’équipe.

J’aimerais également remercier toute ma famille qui a toujours su être présente pour moi. Merci les
cactus, chouquettes et pistaches ;) Un merci tout particulier à mes grand-parents, mes parents et mes deux
soeurs. C’est certain que sans votre soutien, je ne serais pas là aujourd’hui. Maman, je pense que tu as bien
fait de venir me chercher sur le rond-point ;) Merci les filles pour les deux bonnes nouvelles que vous m’avez
annoncées pendant ma dernière année de thèse: un mariage et un neveu trop mignon!

Merci à Tiffany, Testi, Fred, Karine, Philippe et Diane qui ont eu le courage de lire des morceaux de mon
manuscrit.

Enfin, merci Philippe. Je n’aurais pas pu rêver mieux que de te rencontrer. Tu as su me supporter,
m’écouter et me donner le courage d’affronter les moments difficiles et stressants ma dernière année de
thèse. Vive les conférences au Brésil! ;)

7

Preamble
In the High Performance Computing (HPC) field, one of the major issue consists in debugging parallel

applications. With progress to exascale systems, this is particularly true. Parallel programming models
evolve with new features and are getting more complex. Furthermore with the increase of core number
per node, the trend is to make applications hybrid by mixing models. As scientific applications mainly
rely on the MPI parallel programming model, progress to exascale systems advocates for MPI+X solutions
with X a thread-based approach like OpenMP. But integrating two different programming models inside the
same application makes the debugging phase more challenging (complex models, new errors, ...). Although
debugging solutions have emerged to address this issue, they often come with restrictions. Developers then
face errors more difficult to locate and correct with few efficient help.

To fill this gap, this thesis aims at developing a combination of static and dynamic analysis to enable a
precise and early verification of hybrid HPC applications. That is why we designed the PARallel COntrol
flow Anomaly CHecker framework. The framework detects errors in two steps. The first pass statically
verifies the thread level required by an MPI+OpenMP application and outlines all execution paths leading to
potential deadlocks. With the help of this analysis, the code is then selectively instrumented, displaying an
error and synchronously interrupting all processes if the actual scheduling leads to a deadlock situation.

Manuscript Outline

This thesis is organized in five chapters. The first chapter describes the context of the thesis. After a brief
introduction to the high performance computing domain, the first chapter points out exascale challenges
induced by supercomputer architecture evolution (Section 1.1). Then the chapter focuses on the parallel
applications debugging challenge and gives an overview of the current state of work in this area especially
on MPI and OpenMP, that are the two most used models in HPC applications (Section 1.2).

The three following chapters present the contributions of the thesis:

1. Verification of the compliance of MPI+OpenMP applications with MPI thread levels defined in the
MPI-2 standard (Chapter 2);

2. Detection of MPI collective errors origin in MPI applications (Chapter 3);

3. Detection of the misuse origin of OpenMP barriers and worksharing constructs in OpenMP applica-
tions (Chapter 3);

4. Detection of MPI collective errors origin in a multi-threaded context (Chapter 4);

5. Based on the fact that no benchmark exists to highlight functionnalities of debugging tools, we propose
an error benchmark suite reflecting common errors made when using MPI and OpenMP programming
models (Chapter 2);

Finally the last chapter opens a discussion and concludes the thesis (Chapter 5).

8

Contents

Preamble 9

1 Introduction 11
1.1 Introduction to High Performance Computing . 11

1.1.1 Modern Supercomputers . 11
1.1.2 Thesis Computing Environment . 12
1.1.3 Programming Models for HPC . 13
1.1.4 MPI: Message Passing Interface . 14
1.1.5 PGAS . 16
1.1.6 Pthreads . 16
1.1.7 OpenMP . 17
1.1.8 Heterogeneous Architectures Programming . 18
1.1.9 Exascale Challenges . 18
1.1.10 Summary . 19

1.2 Debugging Parallel Constructs of HPC applications . 20
1.2.1 Software Life-Cycle Models . 20
1.2.2 Debugging Parallel Applications . 22
1.2.3 Verification of MPI Applications . 26
1.2.4 Verification of OpenMP Applications . 29
1.2.5 Verification of MPI+OpenMP Applications . 32

1.3 Outline . 32

2 Interaction Between MPI and shared memory models 35
2.1 MPI Thread-Level Checking for MPI+OpenMP Applications 35

2.1.1 Analysis of the Multithreaded Context . 36
2.1.2 Thread-Level Compliance Checking . 40

2.2 PARallel COntrol flow Anomaly CHecker (PARCOACH) 46
2.3 Revealing PARCOACH Functionalities . 47
2.4 Summary . 48

3 Detection of Collective Errors Origin in Parallel Applications 53
3.1 Combining Static and Dynamic Analyses to Find the Origin of MPI Collective Errors 53

3.1.1 Compile-Time Verification . 55
3.1.2 Static Instrumentation for Execution-Time Verification 58
3.1.3 Evaluation . 60

3.2 Combining Static and Dynamic Analyses to Find the Origin of OpenMP Collective Errors . 63
3.2.1 Checking OpenMP Directives and Control Flow 64
3.2.2 Intra-Procedural Analysis . 65
3.2.3 Static Instrumentation for Execution-Time Verification 68

9

CONTENTS

3.2.4 Inter-Procedural Analysis . 68
3.2.5 Evaluation . 69

3.3 Summary . 71

4 Detection of Collective Errors Origin in Applications Mixing Parallel Programming Models 73
4.1 Static and Dynamic Validation of MPI Collective Communications in Multi-threaded Context 73

4.1.1 Problem Statement . 75
4.1.2 Compile-Time Verification . 76
4.1.3 Static Instrumentation for Execution-Time Verification 80
4.1.4 Evaluation . 83

4.2 Summary . 85

5 Conclusion and Perspectives 87
5.1 Conclusion . 87
5.2 Work in progress . 88
5.3 Perspectives . 93

5.3.1 Short-term Improvements . 93
5.3.2 General Perspectives . 95

Appendices 97

A GCC, the GNU Compiler Collection 99
A.1 Structure of GCC . 99
A.2 GCC’s history . 100

B Key concepts 103
B.1 Dominance/Postdominance . 103
B.2 Dominance/Postdominance Frontier . 104

C Details on benchmarks 105
C.1 NAS Parallel benchmarks . 105
C.2 Coral . 106

Bibliography 107

List of Figures 117

List of Tables 119

10

Chapter 1

Introduction

“The continued drive for higher- and higher-performance systems [...]
leads us to one simple conclusion: the future is parallel”.

Michael J. Flynn and Kevin W. Rudd in Parallel Architectures [1]

The purpose of this chapter is to set the context of the thesis. Section 1.1 introduces basic concepts
related to the High Performance Computing (HPC) field. The section exposes supercomputers architecture
and their evolution, makes a short summary of parallel programming models and ends with the challenges
induced by supercomputer evolution and the issues targeted in the scope of this thesis. Section 1.2 discusses
development methodology and more precisely the debugging phase (error location and correction). Then the
section summarizes common errors in MPI and OpenMP applications and gives existing debugging solutions
for these parallel programming models.

1.1 Introduction to High Performance Computing

Computation is an essential tool in solving many of today’s highly complex scientific and engineering
problems. Performing realistic simulations requires a sufficient computational power to obtain results with
the desirable degree of accuracy in a reasonable time. Furthermore since the amount of memory consumed
by large and complex problems is high, a lot of storage capacity is also required. These requirements cannot
be bought by common computers. That is why supercomputers were born. The term supercomputer was
defined in [2] by C. Morris as any of a category of extremely powerful, large-capacity mainframe computers
that are capable of manipulating massive amounts of data in an extremely short time. Thus a supercomputer
can be seen as one of the largest, fastest, and most powerful computer available at a given time.

The first supercomputer, a 64-processor SIMD machine called ILLIAC IV, was designed in 1967 by the
University of Illinois and the Burroughs Corporation. At that time, ILLIAC IV was the fastest computer
achieving record speeds of 200 million instructions per second (Mips). It contained four control units: each
one was controlling a 64 arithmetic and logic unit array processor. Since then, huge technological progress
has been achieved. Today most supercomputers are massively parallel machines and contain thousands of
processors, heterogeneous processing clusters, and can compute quadrillions calculations per second.

1.1.1 Modern Supercomputers

Twice a year, the most powerful systems are tested and ordered based on their Linpack1 performance
to form the TOP500 list [3]. Supercomputers are ranked by their ability to solve a dense system of linear

1The Linpack Benchmark is a measure of a computer’s floating-point rate of execution

11

1.1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING

equations. In November 2014 the Chinese supercomputer Tianhle-22 was recorded as the most powerful su-
percomputer with a performance of 33.86 petaflop/s (1015Flop/s) on the Linpack benchmark. As a compar-
ison, the most powerful supercomputer reached a performance of 170 gigaflop/s (109Flop/s) in November
1994 and a performance of 70.7 teraflop/s (1012Flop/s) in November 2004, almost one thousand times less
powerful than today’s supercomputers. Figure 1.1(a) shows the performance evolution of the first and the
500th supercomputer since the TOP500 project was launched in 1993. The predicted performance evolution
until 2020 is presented on Figure 1.1(b). As pointed out in the figure, supercomputing power is growing
exponentially and exascale systems (1018 FLOP/s) are coming shortly. There are however good chances that
this evolution does not go forever as many argue the end of Moore’s law.

59.7Gflop/ s

0.4Gflop/ s

33.9Pflop/ s

153.4 Tflop/ s

Years

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

F
L
O
P
/s

GFLOP/s

TFLOP/s

PFLOP/s

EFLOP/s

N=1

N=500

(a) Performance Evaluation

 1995 2000 2005 2010 2015 2020

F
LO

P
/s

GFLOP/s

PFLOP/s

EFLOP/s

Years

TFLOP/s

N=500

N=1

(b) Projected Performance Evaluation

Figure 1.1: Growth of supercomputing power of the first (N=1) and the last (N=500) supercomputer
recorded by TOP500 list (see http://www.top500.org)

1.1.2 Thesis Computing Environment

All experiments of this thesis were conducted on Tera 100 [4] and Curie [5] petaflopic supercomputers
and Inti, a prototype of Tera 100. Tera 100 was developed by Bull in 2008 for the French Atomic Energy
Commission (CEA) and designed for the French nuclear simulation program. Tera 100 hosts 4 370 compute
nodes for a total of 138 368 cores. Each compute node gathers four eight-core Nehalem Ex processors at
2.27 GHz and 64 GB of RAM. Tera 100 aggregated a peak performance of 1.05 petaflop/s and was the sixth

2Tianhle-2 (Milkyway-2) - TH-IVB-FEP cluster, Intel Xeon E5-2692 12C 2.200GHZ, TH Express-2, Intel Xeon Phi 31S1P

12

CHAPTER 1. INTRODUCTION

supercomputer of the TOP500 list in november 2010. Curie was ordered by GENCI3 and was operated into
the TGCC4 by CEA. Curie is open to scientists through the French participation into the PRACE5 research
infrastructure. Curie was the ninth supercomputer in november 2012 with a peak performance of 1.359
petaflop/s. Tera 100 and Curie are both manufactured by Bull and thus feature a similar design. Table 1.1
summarizes a description of these machines (current rank in the TOP500 list, total number of cores, ...).

Table 1.1: Characteristics of Tera 100, Curie and Inti supercomputers (2014, [3])

Characteristic Tera 100 Curie Inti
TOP 500 rank 47 33 -

Total Number of cores 138 368 77 184 872
Linpack Performance (Rmax) 1 050 TFlop/s 1 359 TFlop/s -

Theoretical Peak (Rpeak) 1 254.5 TFlop/s 1 667.17 TFlop/s -
Processor type Intel Xeon 7500 Intel Xeon E5-2680 Intel Xeon E5640

Memory per core 2 GB 4 GB 2.725 GB
Total Memory 276 736 GB 308 736 GB 2 376.2

Operating System Linux (Redhat) Linux (Redhat) Linux (Redhat)
Interconnect Infiniband Infiniband Infiniband

Network Topology Fat-tree Fat-tree Fat-tree

Building such powerful systems is not sufficient. Dedicated parallelism programming is needed to obtain
the desired performance. The next section describes the possibilities to exploit supercomputers.

1.1.3 Programming Models for HPC

Wilkinson et al. characterize in [6] the parallel programming as programming multiple computers, or
computers with multiple internal processors. The aim is to solve a problem at a greater computational speed
than it is possible with a single computer. A parallel program gathers concurrently executing processes,
which may be connected to one another through either message-passing or accesses to shared data. A parallel
programming model specifies what data can be named by the processes, what operations can be done on the
named data, and what ordering exists among these operations. There is today a large variety of programming
models exposing these two prevailing parallel computing memory architectures.

Shared memory machines have been classified as UMA (Uniform Memory Access) and NUMA (Non-
Uniform Memory Access), depending on memory access times (see Figure 1.2(a)). UMA is commonly
represented by Symmetric Multiprocessor (SMP) machines when processors are identical. NUMA is made
by physically linking several SMPs. One SMP can directly access memory of another SMP. In shared
memory approaches as Pthreads or OpenMP, data are shared and it is the user responsibility to ensure the
coherency of concurrent accesses in global memory. This issue can not arise in distributed memory as each
instance has its private copy of data. Data are moved from the address space of a process to another process
address space through cooperative operations on each process. The programmer has to specify what data
to send and where. These architectures are mostly managed with message passing models like PVM or
MPI. Distributed memory systems require a communication network to connect inter-processor memory
(see Figure 1.2(b)).

Laments about the difficulty of using MPI (e.g., the lack of compile or runtime help, complexity of
nonblocking communication) have bought new approaches that enables a tradeoff between distributed and
shared memory approaches as it is the case for PGAS models. Some PGAS languages include UPC, Co-
Array Fortran, Chapel, X10, Phalanx, Titanium as will be seen in more details later.

3GENCI: Grand Equipement National de Calcul Intensif
4TGCC: Très Grand Centre de Calcul
5PRACE: Partnership for Advanced Computing in Europe

13

1.1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING

CPU CPU CPU

Memory Memory
CPU CPU

CPU CPU

Memory
CPU CPU

CPU CPU

CPU CPU

CPU CPU
Memory

CPU CPU

CPU CPU
Memory

(UMA) (NUMA)

Bus interconnect

(a) Shared Memory

Memory

CPU

Memory Memory

Network

CPU CPU

(b) Distributed Memory

Figure 1.2: Shared and Distributed Memory Architectures

One of the most challenging characteristics of today’s parallel environment is the emergence of hetero-
geneity systems. The growth of computer games have encouraged the development of graphics co-processors
especially attractive to the HPC field for energy efficiency. Heterogeneous architectures have lead to parallel
programming models devoted for accelerators (OpenACC, CUDA, OpenCL).

1.1.4 MPI: Message Passing Interface

The Message Passing Interface [7] is a message-passing library interface specification created in 1993.
MPI is a specification, not a language. All MPI operations are expressed as functions, subroutines or methods
for C and Fortran languages. Each MPI process executes a parallel instance of a program in a private address
space and exchanges data across distributed memory systems via messages. MPI exposes multiple ways to
express communications between tasks/processes including point-to-point and collective. While point-to-
point functions involve only two tasks, collective communications involve a group (called communicator) of
processes. Figure 1.3 shows an example of a MPI program with three MPI processes. Each MPI process
runs on one CPU6 core. In the figure, a process sends a message to another process.

Network

CPU
core

Local memory

CPU
core

Local memory

CPU
core

MPI Process MPI Process MPI Process

Local memory

...

MPI_Send(...)

...

MPI_Recv(...)

...

...

MPI_Send(...)

...

MPI_Recv(...)

...

...

MPI_Send(...)

...

MPI_Recv(...)

...

Figure 1.3: Example of three MPI processes executing point-to-point communications (send/recv).

6CPU: Central Processing Unit

14

CHAPTER 1. INTRODUCTION

broadcast scatter gather

1 3 5 7

16

reduction

Figure 1.4: Collective Communication Routines [8].

MPI Collective Operations

A collective operation involves all processes in a MPI communicator. By default, all MPI processes are in
MPI_COMM_WORLD. Then they can be partitioned in new communicators (e.g., MPI_Comm_split,
MPI_Comm_create). The MPI specification requires that all processes must call blocking and non-
blocking collective operations in the exact same order. If all processes in a communicator do not participate
in the collective, unexpected behavior, including program failure, can occur. Non-blocking collectives are
available since the MPI-3 standard. They follow the same principle as non-blocking point-to-point commu-
nication. A call to a non-blocking collective operation on a communicator initiates the collective without
completing it. However while it is possible to match a blocking send (resp. non-blocking send) with a
non-blocking receive (resp. blocking receive), it is not possible to do the same with collective operations.
For example, a call to the blocking barrier MPI_Barrier on some processes of the communicator cannot
match with a call to the non-blocking barrier MPI_Ibarrier on the remaining processes. All processes
have to call MPI_Barrier or MPI_Ibarrier to be correct.

There are three main types of collective operations: Synchronization (barrier), Data Movement (broad-
cast, scatter/gather, all to all) and Collective Computation (reductions). Figure 1.4 shows the fourth basic
collectives. MPI_Bcast broadcast a message from the process with rank root to all processes of the group,
itself included. With the MPI_Gather function, each process, root process included, sends the contents of
its send buffer to the root process. Conversely, the root process scatters its send buffer to all other processes
in the group with MPI_Scatter. The MPI_Reduce function performs a global reduction operation (sum,
min, max, etc.). One member of the group collects data from the other members and effectuates the reduction
operation on that data. The reduction operation can be either one of the predefined list of operations, or a
user-defined operation.

MPI Implementations

Two main MPI libraries have been developed and are open source: MPICH [9] (and its recent successor
MPICH3) and Open MPI [10]. Some machine constructors have created their own MPI implementation.
Some examples are IntelMPI [11], BullxMPI [12], IBM Platform MPI [13] and Cray MPI. The MultiPro-
cessor Computing Framework (MPC) [14,15] implements a thread-based MPI runtime. It provides a unified
runtime with its own implementation of the POSIX threads, OpenMP [16] and MPI. Since the project started
in 2003, it now conforms to POSIX threads, OpenMP 2.5 standard and is fully MPI 1.3 compliant. It also
supports the MPI_THREAD_MULTIPLE level. The compilation of a program is done through a patched
version of GCC called MPI_GCC. This one converts standard C, C++ and Fortran MPI codes into a thread-
based MPI implementation [17]. As other MPI implementation, MPC is constantly evolving and is freely
available [18].

15

1.1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING

Process Process

Memory

Process

Memory Memory

Process

Memory

CPU
core

CPU
core

CPU
core

CPU
core

Process Process

Memory

Process

Memory Memory

Process

Memory

CPU
core

CPU
core

CPU
core

CPU
core

Node Node

Shared

Private

Network

Figure 1.5: Example of the PGAS model.

The Success of MPI

MPI is widely used in scientific applications. Its success is explained by W. D. Gropp in [19]. In this
article, the author gives six properties that make MPI so successful: portability, performance, simplicity and
symmetry, modularity, composability and completeness. According to the author, these properties should be
satisfied by any parallel programming model to succeed.

MPI has the ability to run on most parallel platforms (portability) which ensures parallel applications
durability and to deliver the available performance of the underlying hardware (performance). MPI is simple
in the sense that using MPI requires learning only a few concepts (simplicity). Indeed many MPI programs
can be written with only a few routines. In addition to being a complete programming model (completeness),
which means any parallel algorithm can be implemented with it, MPI enables the exploitation of other tools
improvements (composability) and supports a large enough community (modularity). MPI was designed to
work with other tools such as compilers and debuggers.

1.1.5 PGAS

Partitioned Global Address Space (PGAS) [20] is a distributed shared-memory model. The global address
space means that threads may directly read/write remote data and partitioned means that data is designated
as local or global. It allows a global view of data by an abstracted shared address space and hides the
distinction between shared and distributed memory. Common PGAS languages include Unified Parallel
C [21] (an extension of the C programming language for SPMD parallel programming), Co-Array Fortran (a
small set of extensions to Fortran 95 for SPMD parallel programming), Titanium [22] , X-10 [23] (a language
developed by IBM) and Chapel [24] (a language led by Cray).

We can mention two UPC projects: the Berkeley Unified parallel C project [25] and the GNU UPC [26].
The last one provides a compilation and execution environment for UPC programs. UPC combines the
programmability advantages of the shared memory programming paradigm, the control over data layout
and performance of the message passing programming paradigm. In a UPC program, threads operate in a
partitioned global address space logically distributed among them. Each thread has affinity with a portion
of the globally shared address space and has a private space. UPC provides synchronization mechanisms
(barriers, locks, fence, spinlocks). As an example, the barrier synchronization is achieved by the function
upc_barrier. Like MPI, UPC requires that all threads/processes have the same sequence of collective
operations.

1.1.6 Pthreads

The POSIX Threads, commonly referred to as Pthreads [27] stands for the official IEEE POSIX 1003.1c
standard (1995), which was established by the IEEE standard committee [28]. It uses the shared memory

16

CHAPTER 1. INTRODUCTION

approach where a unique memory is shared between CPUs. A Pthreads program starts with a single default
thread. All other threads must be explicitly created by the programmer and have direct access to data inside
a node (but can have their own private data) and have the same address space. The Pthreads interface offers a
set of C functions for thread management (e.g., pthread_create, pthread_exit, pthread_join),
mutexes (e.g., pthread_mutex_init, pthread_mutex_lock), condition variables (e.g., pthread
_cond_init) and thread synchronization (e.g., pthread_barrier_init,pthread_barrier_wa
it).

1.1.7 OpenMP

OpenMP [29] is a shared memory programming model and is based on the fork-join model of parallel
execution. An OpenMP program begins as a single thread of execution (initial thread) which creates a team
of itself when it encounters a parallel construct (fork). At the end of the parallel region, all threads are
asleep except the initial thread (join). Nested parallelism and orphaned directives are allowed [30].

The following typical work-sharing constructs are available.

For construct

The first construct that has been implemented since OpenMP 1.0 and probably what OpenMP is best
known for, enables loop parallelization. The user can control how the runtime handles the loop using addi-
tional clauses, which can change the scheduler and/or the granularity of the loop.

Tasking construct

Since OpenMP 3.0, the task construct has been added. The programmer can use this construct to create
tasks explicitly, and can create synchronization points between them using a taskwait directive. As of
OpenMP 4.0, the programmer can also specify data dependencies between tasks instead of using an explicit
synchronization, leaving this responsibility to the runtime. As for the for construct, the programmer can
specify clauses for the task construct, which provide more control on how tasks are created (e.g., control
the grain when using task-generating loops).

Target construct

In order to address a wider variety of computer devices, a support for accelerators has been added since
OpenMP 4.0. The target directive can be used to specify a portion of code which can be executed ei-
ther on the host or offloaded to a device. The OpenMP specification initially supported only one kind of
accelerator device, but support for multiple accelerators will be added in OpenMP 4.1 (e.g., CPU + GPU +

Intel MIC7). There is also quite a few clauses to specify how and when the data needed for a target region
should be transfered to the device, which can have an important impact on performances, as transfer costs to
external devices are usually very high.

For all work-sharing construct, the programmer can specify how the data should be handled in each
threads, this is known as data-sharing information. Some common data-sharing clauses which can be applied
on variables are the following :

• shared: the variable will be shared by all threads, thus allowing for data races on the variable.

7MIC: Many Integrated Core

17

1.1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING

• private: each thread will have its own uninitialized copy of the variable, which will be destroyed at the
end of the construct.

• firstprivate: the same as above, but for each thread the variable is initialized to the value it had when
the construct was created.

When inside a parallel region, synchronization constructs (e.g., barrier) coordinate threads in a team
and data accesses. The specification requires all threads of a team executing a parallel region to execute
a barrier or none at all. An implicit barrier is called at the end of a parallel, sections, single,
workshare regions and at the end of a loop construct unless a nowait clause is specified. Thus the
OpenMP specification forces all threads of a team to encounter the same sequence of worksharing constructs.

1.1.8 Heterogeneous Architectures Programming

Heterogeneity is emerging in supercomputers. It is then important to understand how to program on these
architectures (e.g., how to create an adherence between codes and devices). Most known and used models
devoted to work on accelerators are presented below.

OpenACC [31] is a high-level implicit programming model that enables offloading of compute-intensive
loops and code regions from a host CPU to an accelerator using simple compiler directives in C, C++ and
Fortran. Programmers create high-level host+accelerator programs without the need to explicitly initialize
the accelerator, manage data or program transfers between the host and accelerator. All of these are managed
by the OpenACC API-enabled compilers and runtimes.

CUDA8 [32] is a lower-level explicit programming model developed by NVIDIA. CUDA is an extension
of the C programming language. OpenCL9 [33] is similar to CUDA. It is a low-level API that runs on
CUDA-powered GPUs.

1.1.9 Exascale Challenges

Why exascale? Even if powerful supercomputers are now available, we still face "Grand Challenges"
problems [34]. A Grand Challenge problem is a problem that cannot be solved in a reasonable time with
today’s computers [6]. Scientific and engineering challenges in both simulation and data analysis already
exceed petaflops. This is especially due to more complex scientific models with higher resolution, large-
scale computation and lots of data. Exascale could facilitate more realistic and accurate simulations and
also benefit to other fields such as economics and medecine. Studies [35–37] have highlighted this and give
scientific challenges requiring exascale computing resources (e.g., modeling global climate change over long
periods [38]).

This increase in the processor power of supercomputers presents many challenges for applications de-
velopers and programming models particularly concerning performance, correctness and portability. It also
rises practical problems as a need to reduce the power consumption from supercomputers (the electric power
would likely exceed a gigawatt).

Exascale programming models The increase of cores per node raises the issue of the right programming
model to use for the future. The creation of new programming languages adapted for future machines can
be considered. However rewrite applications from scratch is a laborious task and requires considerable
time. Moreover developers can not be forced to start over with a new programming model when a new
feature is needed. Thus any application and programming model should be prepared to evolve in order to
run effectively on many generations of parallel computers. This is already happening as existing scientific

8CUDA: Compute Unified Device Architecture
9OpenCL: Open Computing Language

18

CHAPTER 1. INTRODUCTION

applications are modified to make them gradually hybrid (by mixing parallel programming models). This
leads to consider interoperability of models.

It seems that using a shared memory model inside shared memory nodes and message passing across
nodes tends to be a good fit to fully exploit the performance of future machines. E. Lusk and A. Chan
report for instance some successful use cases of OpenMP threads exploiting multiple cores per node with
MPI communicating among the nodes [39]. As most HPC applications are parallelized with MPI, combining
MPI with a shared memory model is becoming a standard. Figure 1.6 shows an example of a MPI+OpenMP
execution model. In this figure, we suppose the machine has four-cores nodes. Each MPI process runs on a
node and contains four OpenMP threads.

MPI Process

OpenMP
Thread 0 Thread 1 Thread 2 Thread 3

Local memory

CPU
core

CPU
core

CPU
core

CPU
core

MPI Process

OpenMP
Thread 0 Thread 1 Thread 2 Thread 3

Local memory

MPI Process

OpenMP
Thread 0 Thread 1 Thread 2 Thread 3

Local memory

Network

CPU
core

CPU
core

CPU
core

CPU
core

CPU
core

CPU
core

CPU
core

CPU
core

Figure 1.6: Example of a hybrid model combining MPI and OpenMP programming models. In this
example, each MPI task is executed on a node and contains four OpenMP threads.

Interoperability of parallel programming models - Focus on MPI The adoption of MPI+X program-
ming has made the MPI committee to produce solutions that enables full interoperability between MPI and
system-level programming models (e.g., X10, Chapel, UPC) as well as node-level programming models
(e.g., OpenMP, threads, TBB). The MPI-2 standard has progressed in this direction by defining degrees
of thread support. The first thread support MPI_THREAD_SINGLE specifies MPI calls are performed
outside threaded regions. The second thread support, MPI_THREAD_FUNNELED ensures only the main
thread makes MPI calls while the MPI_THREAD_SERIALIZED level ensures multiple threads may make
MPI calls but only one at a time. The highest thread support MPI_THREAD_MULTIPLE enables multiple
threads to call MPI, with no restriction. This thread support should be used with caution to respect thread
safety within processes. Mixing parallel programming models does not facilitate the debugging phase.

1.1.10 Summary

This section summarizes parallel programming models used in HPC and provides a picture of what are
HPC challenges today. Regarding these models, supercomputers evolution questions applications duration
as well as models interoperability. The reducing amount of memory per compute core tends more to mix
parallel programming models instead of using one model to avoid a complete rewrite of applications. This
makes the debugging process of an application harder. Besides, using a supercomputer is only relevant
if results obtained are correct. It does not matter how fast the application can run if the application is
erroneous. That is why it is crucial to provide effective debugging tools to help developers especially for
hybrid applications. But as set out further, very few debugging tools exist to debug hybrid applications (non-
reproducibility of experiments execution, more problems in hybrid programs). The next section paints a state
of the art about approaches to detect errors in parallel applications for the purpose of solving the debugging
exascale challenge. In the scope of this thesis we target MPI and OpenMP models as they are widely used in

19

1.2. DEBUGGING PARALLEL CONSTRUCTS OF HPC APPLICATIONS

the HPC world. We then will focus on MPI, OpenMP and MPI+OpenMP applications. Problems adressed
here can also be found when using other parallel solutions like MPI+Pthreads or PGAS.

1.2 Debugging Parallel Constructs of HPC applications

The previous section introduced supercomputer evolution and related challenges. In this section we take
interest in the area of parallel constructs error detection in parallel applications.

1.2.1 Software Life-Cycle Models

Software life-cycle models define the different activities in the software development, their relative or-
der and their relations in the software development process. The software life-cycle typically includes a
requirement phase, design phase, implementation phase, testing phase and an installation and maintenance
phase. There exist a wide variety of life-cycle models with strengths and weaknesses. We generally distin-
guish three types of models: linear, cyclic and multi-cyclic models. Among linear models, we can mention
waterfall models, transformational and V-form models. Among cyclic models we find prototyping, spiral,
incremental and evolutionary models [40]. The Waterfall model, the spiral model and the V-model are part
of the main life-cycle models and are described below. It shall be noted that our descriptions of software
life-cycle models will remain brief as the purpose here is to solely give an overview in order to provide a
sufficient context of the work done in this thesis.

Waterfall Model

The Waterfall model, first introduced by Royce in 1970 [41], is the most common approach. It can be
seen as a chronological sequence of activities, progressing downwards (like a waterfall). The model as
described by Boehm is presented Figure 1.7 [40]. It contains five main activities: Requirements, Design,
Implementation, Testing and Maintenance. In this model, an activity cannot be done if the previous one has
not successfully completed. This model works well for projects that are relatively simple.

System

Requiremens

 Validation Software

Requiremens

 Validation Preliminary

Design

 Validation Detailed

Design

 Validation Code and

Debug

Development

Test Test and

PreOperations

Validation

Test Operations +

Maintenance

 Revalidation

Figure 1.7: Boehm’s version of the Waterfall Model

V-Model

The V-Model can be seen as a derivation of the waterfall model. Despite its V shape, like presented
Figure 1.8, the model is still a sequence of consecutive phases. The V form delimits early analyzing and
design steps from the integration and verification steps.

20

CHAPTER 1. INTRODUCTION

System
Requirements

General
Design

Detailed
Design

Implementation

Unit
Testing

Integration
Testing

Acceptance
Testing

Figure 1.8: Example of V-Model development cycle

Spiral Model

The spiral model combines elements of various models and particularly the waterfall and prototyping10

models. It is composed of four phases: Planning, Risk Analysis, Engineering and Evaluation. These phases
are repeatedly passed in cycles [42]. The model is described Figure 1.9.

1. Determine objectives

Require-
ments plan

Risk Analysis

Prototype 1

Test

2. Identify and
resolve risks

3. Development
and Test

4. Plan the next
iteration

Prototype 2

Concept of
operation

Concept
of require-
ments

Integration

Implementation

Code

Detailed
design

Draft

Cumulative cost

Review

Release

Operational
Prototype

Require-
ments

Risk Analysis

Risk Analysis

Verification
& Validation

Verification
& Validation

Development
plan

Test plan

Figure 1.9: Example of Spiral development cycle model

Testing and Debugging

In the scope of this thesis we are interested in the testing phase of the software life-cycle. The testing
phase consists in the verification and the validation of a program. Verification is used to prove the program
correctness according to its specification and validation checks the program execution for a limited sets of
inputs. The goal of the testing phase is correctness or reliability. Boehm gives different types of automated
aids for the testing phase, between the point at which the code has been written and the point at which it is
pronounced acceptable [43]:

• Static Code Analysis

10The software prototyping Model relies on creating and testing prototypes of software applications. An initial prototype is
tested and reviewed. Then the feedback is used to improve the prototype.

21

1.2. DEBUGGING PARALLEL CONSTRUCTS OF HPC APPLICATIONS

• Test Case Preparation

• Test Monitoring and Output Checking

• Fault isolation, debugging

• Retesting (once a presumed fix has been made)

• Integration of routines into systems

• Stopping

Static code analysis gathers information without requiring program execution. It includes usual com-
piler diagnostics and data-type checking. Moreover control flow and reachability analysis are applied with
structural analysis programs. As an extension of structural analysis, test case preparation provides assistance
in choosing data values to make the program execute along a desired path. This tactic succeeds on simple
cases and only helps generate inputs as the expected outputs have to be manually calculated. Various kinds
of dynamic data-type checking and assertion checking, and for timing and performance analysis have been
developed to enable automatic testing. Debugging is probably the most important part of testing as program-
mers generally spend a lot of time in it. Furthermore, a program is useless if it is incorrect. Debugging, as
defined in the ANSI/IEEE standard glossary of software engineering terms [6], is the process of locating,
analyzing, and correcting suspected errors.

Once the code is fixed, retesting is used to check the differences in codes, inputs and outputs between
corrected codes and previous test cases. Even far from complete criteria for determining when to stop testing,
tools exist to quantify the amount of testing performed.

1.2.2 Debugging Parallel Applications

Developers generally spend a lot of time to debug an application. This section aims at understanding the
debugging phase of the application development cycle in order to help selecting best tools and best practices
to reduce this time.

History of Debugging

It is said that the term "bug" was first used in 1945. On September 9, 1945, Grace Hopper was working on
Mark II calculator at the Computation Laboratory of Harvard University when the machine abruptly stopped
for no apparent reason. She and her Harvard technical team discovered the computer glitch was due to a
moth. The moth was removed from the machine and Grace added the caption "First actual case of bug
being found" to her manual logbook (see Figure 1.10). Since, the term "bug" was popularized to signify any
system malfunction [44].

Figure 1.10: First computer "bug"

Before we look more closely at the debugging cycle, it is interessting to focus on the language used in
the debugging field.

22

CHAPTER 1. INTRODUCTION

Definitions

Applied to programs, a bug can mean an incorrect program code or an incorrect program state or an
incorrect program execution. This lack of precision can cause confusions and has lead to the use of more
precise terms. This section aims at summarizing existing terms and definitions used in the debugging field.

An informal definition of the basic term "error" for computer science is given below.

Definition 1. An error is defined as the computation (calculation and outputting) of one or more incorrect
results by a computer.

The ambiguity of the term bug has lead
Zeller defines the terms defect, infection and failure in [45]. His definitions are given below.

Definition 2. A defect is an incorrect program code.

Definition 3. An infection denotes an incorrect program state.

Definition 4. The term failure is used for an observable incorrect program behavior.

The IEEE standards define a fault as Zeller defines a defect and a bug as the synonym of Zeller’s definition
of a defect. Debugging is thus the activity of removing defects in the software.

The terms error and fault are frequently used as a synonym of infection and for mistakes made by the
programmer. Failures are called issues or problems.

In view of the above, we define a correct parallel program as follows:

Definition 5. A correct parallel program is a program that terminates, complies to the semantics and the
specification of the parallel model used and for all given inputs reacts with correct outputs.

Debugging Cycle

The testing and debugging phase of the software life-cycle operates in two cycles represented by a flow-
diagram presented Figure 1.11. The testing cycle (on the left in the figure) is used to detect incorrect
computations and the debugging cycle (on the right in the figure) allows the user to get information about
program states and intermediate results during execution. The debugging phase is only applied in case of the
existence of an error to identify, locate and correct.

An error can be either a program failure or incorrect results. In case of a program failure, the program
abruptly ends at an incorrect state while in case of incorrect results, the program ends correctly but outputs
wrong results. This last case requires a check of output validity. In both cases, as the programmer does not
know what he is looking for, the program error could be solved by getting back in time in order to find what
caused it. Thus after an error is noticed, each step in reverse time order is checked. However this solution
is in fact hard or even impossible to achieve. As a consequence the classic approach to debugging resorts to
backtracking by re-executing a program with the illusion to get back in time. To that end, a breakpoint is
added where the error is supposed to be in the program and this one is re-executed from the beginning until
reaching the breakpoint. From the breakpoint, the user can get information needed to identify and correct
the problem. If this is not the case, the user must find another possible location of the error and remake the
procedure.

This style of debugging is called cyclical debugging [47]. The method is not efficient as it requires a lot
of time especially in large programs.

23

1.2. DEBUGGING PARALLEL CONSTRUCTS OF HPC APPLICATIONS

Begin

Correction

Program
instrumentation

Set breakpoint at suspected
error location

Execution

Breakpoint
stateAnalysis

End

Bug
detected?

NO

YES

Begin

Select input
data

Verification of
results

Correct?
NO

YES

Execution

Failure?

NO

YES

Figure 1.11: Testing and debugging cycle [46]

Once an error is reproducible, this process of bug-tracking is described by Zeller [45] in seven steps
(which initial letters form the word TRAFFIC): Track (create an entry in the problem database), Reproduce
the failure, Automate and simplify the test case, Find origins by following back the dependences from the
failure to possible infection origins, Focus to possible origins, Isolate the origin of the infection and Correct
the defect [45].

Several tools have been developed to assist users in the testing and debugging phases of sequential pro-
grams. Some users tried to use them in parallel programs but faced obstacles. These obstacles are discussed
in the next section.

Sequential Debugging VS Parallel Debugging

In practice, a parallel program can be seen as several concurrent sequential programs which can communi-
cate. In this way the difficulties encountered to debug sequential programs are the same in parallel programs.
However parallel programs have specific characteristics that must be taken into consideration. For example,
even run with the same inputs, parallel programs do not always have reproducible behavior and can be com-
pletely different from run to run. As a result, the cyclical debugging approach is not applicable on parallel
programs (an undesirable behavior may not appear when the program would be reexecuted). In addition, the
order of events occuring in distinct, concurrently processors may hardly be determined.
Parallel debugging then requires the rethinking of traditional debugging goals in the context of parallelism.

A first difference between sequential and parallel debugging is the amount of debugging data to be ana-
lyzed and the required storage. Debugging is based on program results and the states of the program during
execution. In parallel programs, analyzing the results and the state in which parallel instances are is difficult.
Another difference is that at large scale, anomalous effects can appear in parallel programs. Furthermore,

24

CHAPTER 1. INTRODUCTION

synchronization and communication between concurrently executing tasks can increase the occurrence of
unexpected event and results.

These difficulties have lead to the emergence of parallel debugging tools to help parallel application
developers to fix errors.

Parallel Debugging Tools

A debugging tool is defined in [44] as follows:

Definition 6. A debugging tool is anything that provides useful knowledge about a program execution and
its occuring program state changes.

Like regular debuggers, a parallel debugging tool has some essential prerequisites. First any debugging
tool should take a reasonable time. Then as an error can occur much earlier in a program than the manifested
effects, a debugging tool should provide truthful information to step the user in the right direction for correct-
ing errors. In addition of sequential debugging tools prerequisites, a parallel debugging tool should be valid
for any scale of parallel programs and support different programming models and hardware architectures.
The necessity of parallel programs to exchange data and to synchronize parallel instances introduces effects
that do not exist in sequential programs. Therefore, additional functionality for handling these communica-
tion effects is a basic requirement for parallel debugging tools.

Tactics of Debugging

In principle, there are two main activities that have to be carried out during debugging: (1) the detection
of faulty behavior and (2) the location of code responsible for the faulty behavior. In order to manage these
two activities, we can mention three tactics of debugging: (i) debuggers, (ii) static analysis and (iii) dynamic
analysis (including post-mortem analysis) [48].

(i) Debuggers are the most common used tactic of debugging. They help tracking down, isolating and
removing bugs. As we have seen previously, programmers generally start to debug their program from
a faulty state and re-launch their program using a debugger in order to explore its state.

(ii) Static analysis examines a program without executing it. It enables the consideration of all possible
states of a program and typically detects synchronization (e.g., deadlock) and data-usage errors (e.g.,
usual sequential data-usage errors, processes simultaneously updating a shared variable).

(iii) Contrary to static analysis, dynamic analysis observes the execution of a program. Dynamic analysis is
limited to few input sets. The trace-based approach consists in storing events separately of the program
in a tracefile. This method allows the analysis of the program from the beginning to its termination.
Managing large tracefiles can be challenging as they grow rapidly with both event verbosity and the
number of cores.

A combination of these tactics could improve the debugging phase as they have different purpose and
cannot catch all errors.

The following sections describe existing tools to debug applications parallelized with the most used paral-
lel models for distributed and shared memory. Section 1.2.3 describes common MPI errors and related work
on MPI debugging analysis, focusing on deadlocks due to collective operations. Section 1.2.4 provides a
summary of common OpenMP errors and existing debugging tools for OpenMP programs.

25

1.2. DEBUGGING PARALLEL CONSTRUCTS OF HPC APPLICATIONS

1.2.3 Verification of MPI Applications

As stated in Section 1.1.4, HPC applications are mainly parallelized with MPI. This section describes
common MPI errors and existing tools to prevent and/or correct them. In the MPI debugging tools section
we focus on deadlocks caused by MPI collective operations.

Classification of Common MPI Errors

In [49], authors give a number of properties that any MPI program should satisfy. Among these properties,
we can mention that the program [should be] input-output deterministic and the program contains no un-
necessary barriers. A classification of common MPI errors has been made by authors in [48]. In this paper,
MPI errors are grouped into six categories:

• Deadlocks

• Data races

• Memory

• Mismatches

• Resource handling

• Portability

Deadlocks are generally caused by the non occurrence of something (mismatched send/recv operations or
collective calls). The program stays blocked in an infinite waiting state preventing the program to terminate.
We make a distinction between two types of deadlock: real deadlock, which corresponds to deadlock that
necessarily occurs and potential deadlock, which occurs under certain circumstances. Code 1 Figure 1.12
depicts a case of real deadlock. In this example, both processes of rank 0 and 1 perform a MPI_Recv
before a MPI_Send. Data races can be caused by various reasons like the use of a receive call with the
wildcard MPI_ANY_SOURCE as source argument as presented in Code 2. In this code, an error may occur
depending on the order of the receives made by the process with rank 0. Memory contains all incorrect
codes involving memory as a code where a memory still in use is reused. For example, Code 3 shows a code
where MPI_Alloc is not followed by a MPI_Free_mem. Allocated datatypes, communicators, requests,
etc should always be freed. Mismatches addresses calls with wrong type or number of arguments. Code 4
presents a datatype mismatch: MPI_Type_contiguous11 is called on NULL datatype. This results in
an error. Another example is to match a send MPI_INT with a receive MPI_DOUBLE. Resource handling
corresponds to all incorrect construction, usage and destruction of MPI resources (e.g., communicators,
groups). Finally, in the portability category are all decisions made by implementors.

This thesis is focused on the detection of MPI standard violations about collective communications.
A standard violation results in undefined, implementation dependent behavior. A deadlock is a possible
outcome.

MPI Debugging tools

Related work on MPI code verification can be organized in five main categories: (i) debuggers, (ii) static
analyses, (iii) online dynamic analyses, (iv) special MPI libraries, and (v) trace-based dynamic analyses.

MPI Debuggers Although it has no support for MPI, it is possible to attach the well-known debugger
gdb [50] to each MPI process of an application. The mpirun command that runs MPI processes under
the control of gdb is called mpigdb. The same can be done with Valgrind. Debugging MPI applications
with mpigdb succeeds with a limited number of MPI processes. More convenient parallel debuggers like
TotalView [51] and DDT [52] provide usual functionality of debuggers but also allows the user to monitor

11MPI_Type_contiguous: is the simplest datatype constructor which allows a replication of a datatype into contiguous location
[7]

26

CHAPTER 1. INTRODUCTION

Code 1

1 ...
2 // Communications between process 0 and 1
3 if(rank==0){
4 MPI_Recv(&Recv_buf, 1, MPI_INT, 1, tag, MPI_COMM_WORLD, &status[0]);
5 MPI_Send(&Send_buf, 1, MPI_INT, 1, tag, MPI_COMM_WORLD);
6 }else if(rank==1){
7 MPI_Recv(&Recv_buf, 1, MPI_INT, 0, tag, MPI_COMM_WORLD, &status[1]);
8 MPI_Send(&Send_buf, 1, MPI_INT, 0, tag, MPI_COMM_WORLD);
9 }

10 ...

Code 2

1 ...
2 if(rank==0){
3 MPI_Recv(&Recv_buf, 1, MPI_INT, MPI_ANY_SOURCE, tag, MPI_COMM_WORLD, &status

[0]);
4 MPI_Recv(&Recv_buf, 1, MPI_INT, 1, tag, MPI_COMM_WORLD, &status[1]);
5 }
6 else if(rank==1)
7 MPI_Send(&Send_buf, 1, MPI_INT, 0, tag, MPI_COMM_WORLD);
8 else if(rank==2)
9 MPI_Send(&Send_buf, 1, MPI_INT, 0, tag, MPI_COMM_WORLD);

10 ...

Code 3

1 char *ap;
2 ...
3

4 MPI_Alloc_mem(count, MPI_INFO_NULL, &
ap);

5 for(j=0; j<count; j++) {
6 ap[j] = (char)(j & 0x7f);
7 }
8 ...

Code 4

1 ...
2 MPI_Datatype typeNULL, type;
3 typeNULL = MPI_DATATYPE_NULL;
4 ...
5 MPI_Type_contiguous(1, typeNULL, &

type);
6 ...
7 MPI_Type_free(&type);
8 ...

Figure 1.12: Examples of erroneous MPI codes.

and act on groups of processes in a single debugging session [48]. TotalView is a debugger from RogueWave
software, Inc [51]. It can be used to debug both serial and parallel programs. It works with C, C++ and
Fortran applications, supports several HPC platforms and can handle multiple types of HPC parallel coding
(MPI, OpenMP, UPC and GA, OpenACC and CUDA). TotalView provides key features like a graphical
data visualization and a memory leaks and malloc errors debugging. The Allinea DDT debugger [52] also
supports various HPC platforms and models. This tool has shown that it could work at petascale.

Static tools This class of tools is mainly based on model checking and requires symbolic program exe-
cution, at the expense of combinatorial number of schedules or reachable states to consider, making this
approach challenging. TASS [53], a successor of MPI-SPIN [54] follows this approach: using model check-
ing and symbolic execution, it checks numerous program properties explicitly annotated with pragmas. If

27

1.2. DEBUGGING PARALLEL CONSTRUCTS OF HPC APPLICATIONS

a property is violated (such as an incorrect order of collective calls) by exploring reachable states of the
model built, an explicit counter-example is returned to the user in the form of a step-by-step trace through
the program showing the values of variables at each state of the synthesized model.

MPI-Checker [55] is a static analysis checker for MPI codes that uses Clang12’s Static Analyzer [56].
It enables AST (e.g., unmatched point-to-point calls, unreachable calls, type mismatch, invalid argument
type, collective call in rank branch) and path-sensitive (e.g., double request usage of nonblocking calls,
missing wait) checks. The analysis emits bug reports only if an invariant is surely violated but is limited to
C programs.

More focused on send-receive matching and dataflow analysis, [57] presents a compiler analysis frame-
work that extends traditional dataflow analyses to message passing applications. This framework is defined
for a communication model with unbounded number of processes that communicate exclusively via send
and deterministic receive operations. Authors define a parallel control flow graph (pCFG) and dataflow
equations to analyze applications. pCFG is an extension of CFG by representing all possible control-flow
states and state transitions that may be performed by multiple sets of processes. For example, it represents
possible send-receive matching and rules for dataflow propagation. Currently intra-procedural, the frame-
work could be extended to support context-sensitive interprocedural dataflow analyses. Authors suggest to
compute a function summary for every pCFG node where some process set performs a function call.

Online dynamic tools Dealing with dynamic tools, we can mention DAMPI [49, 58], Marmot [59, 60],
Umpire [60, 61], MPI-CHECK [60, 62] and MUST [63, 64].

Umpire, Marmot and MUST rely on a dynamic analysis of MPI calls instrumented through the MPI
profiling interface (PMPI). They are able to detect mismatching collectives either with a timeout approach
(DAMPI, Marmot and MPI-CHECK) or with a scheduling validation (Umpire and MUST). Methods per-
forming deadlock detections through a timeout approach are known to produce false positives, for example
in case of abnormal latencies. DAMPI uses a scalable algorithm based on Lamport Clocks (vector clocks
focused on call order) to capture possible non deterministic matches. For each MPI collective operation,
participating processes update their clock, based on operation semantics. Umpire, limited to shared memory
platforms, relies on dependency graphs with additional arcs for collective operations to detect deadlocks.
In Marmot, an additional MPI process performs a global analysis of function calls and communication pat-
terns. Both of these approaches, however, have limited scalability, forwarding MPI call information to a
central manager for collective correctness. MUST overcomes such limitation by relying on a tree-based lay-
out [65,66]. Finally, MPI-CHECK [62] instruments the source code at compile time adding extra arguments
to MPI calls. The resulting instrumented program is then compiled and produces an instrumented executable
which outputs errors and warnings upon execution.

MPI libraries Validation can also be done inside MPI libraries or as an extension of a library (as for
MPICH for instance or NEC-MPI), allowing collective verification for the full MPI-2 standard [67–70]. The
detection of runtime deadlock causes is however limited to the information available to the MPI routines.

Trace-based dynamic tools Intel R© Message Checker (IMC) [60, 71] collects all MPI-related information
in trace files and performs the post-mortem analysis of these traces. This tends to be difficult and with limited
scalability due to the trace sizes, correlated to the number of cores and the execution time of the application.
IMC was recently replaced by Intel R© Trace Analyzer and Intel R© Trace Collector (ITAC) [72] which are part
of Intel Cluster Tools (ICT). Intel R© Trace Analyzer analyzes event trace data generated by the Intel R© Trace
Collector to detect performance problems and programming errors.

12Clang: a C language family front-end for LLVM compiler

28

CHAPTER 1. INTRODUCTION

Summary A comparative study of all tools mentioned above is presented Table 1.2. The table categorizes
tools according to their debugging tactic.

Table 1.2: Classification of MPI Debugging Tools. T: Trace-based, OD: Online dynamic analysis,
L: MPI library

Tool Debugger Static Analysis Dynamic Analysis
DDT x

mpigdb x
MPI-SPIN x

TASS x
MPI-Checker x

Umpire OD
Marmot OD
MUST OD

MPI-CHECK OD
DAMPI OD

NEC-MPI L
MPICH L

IMC T
ITAC T

1.2.4 Verification of OpenMP Applications

Node-level parallelization is becoming increasingly important with the emergence of multi- and manycore
architectures. OpenMP has emerged as the most widely used standard for shared memory parallel program-
ming. Furthermore, efforts to establish error handling capabilities in the OpenMP standard encouraged
studies of common OpenMP errors to classify them. This section first exposes the classification of possible
mistakes in OpenMP applications and then details the state of the art on existing debugging OpenMP tools.

Classification of Common OpenMP Errors

A study of most frequent errors made by students in OpenMP programs and best practices to adopt in
order to avoid them was done in [73]. When this article was published, OpenMP 2.5 was the most recent
standard specification. In this article, authors distinguish two main types of mistakes: Correctness mistakes
and Performance mistakes. Correctness mistakes are errors impacting the correctness of a program (e.g.,
access to shared variables not protected) while performance mistakes are errors impacting the speed of a
program (e.g., too much work inside a critical region).

A more detailed description of OpenMP usage errors that covers newer OpenMP constructs has been
recently published in [74]. This work distinguishes syntactic and semantic programming errors (defect) and
performance issues. The latter affects the efficiency of the application and are not necessarily specific to
OpenMP. A syntactic error adresses code non compliant with the OpenMP grammar (e.g., mistyped direc-
tives). A semantic error is a programming mistake that can cause execution aborts, deadlocks or incorrect
results. These errors can be divided in four subclasses: violation of the standard, conceptual defect, race
condition and deadlock. Figure 1.13 presents a visual classification of OpenMP errors. Violation of the
OpenMP standard and conceptual defects are programming errors. Violation of the OpenMP standard in-
cludes worksharing constructs not encountered by all threads of a team (see Code 1 Figure 1.14) and invalid
nesting of regions like a single region nested in a single region (see Code 2 Figure 1.14). These kind
of prohibition can be detected by compilers. For example, the GCC compiler (version 4.9.1) returns the
following warning for Code 2 Figure 1.14.

example2.c: In function "main":

29

1.2. DEBUGGING PARALLEL CONSTRUCTS OF HPC APPLICATIONS

example2.c:12:12: Warning : work-sharing region may not be closely nested
inside of work-sharing, critical, ordered, master or explicit task region

and the ICC compiler (14.0.3 20140422) returns the folowing error message:

example2.c(12): error: "single" region may not be closely nested inside a
"single" region
#pragma omp single

^

compilation aborted for example2.c (code 2)

A conceptual defect is when a code does not explicitly violate the OpenMP standard but results in un-
wanted behavior. An example is to use a parallel directive instead of a parallel for (see Code 3
Figure 1.14).

ISSUE

Semantic defect

Performance issueSyntactic defect

Violation of the

standard
Conceptual defect Race condition Deadlock

Programming errors Error manifestation

- Uninitialized lock

- Barrier w.o. all threads

- Worksharing w.o. all threads

- Invalid nesting of regions

...

- Parallel instead of parallel for

- Single producer w.o. worksharing

- Incorrect assumption

 about number of threads

...

- On the host side

- On the accelerator side

- btw. host/accelerator

- Deadlocks with multiple locks

- Deadlock with a single lock

Figure 1.13: Classification of Common Issues in OpenMP Applications [74]

Code 1

1 #pragma omp parallel
2 {
3 if(omp_get_num_threads()

%2)
4 {
5 #pragma omp for
6 for(int i=0; i<N; i++)
7 ...
8 }
9 }

Code 2

1 #pragma omp parallel
2 {
3 #pragma omp single
4 {
5 #pragma omp single
6 {
7 ...
8 }
9 }

10 }

Code 3

1 double a[N], b[N], c[N
];

2 ...
3 #pragma omp parallel
4 for(int i=0;i<N;i++)
5 a[i]=b[i]*c[i];

Figure 1.14: Examples of semantic defects (Violation of the standard and Conceptual defect).

In this thesis, we have decided to focus on the detection of OpenMP standard violations about barriers
and worksharing constructs.

30

CHAPTER 1. INTRODUCTION

OpenMP Debugging Tools

OpenMP applications are prone to concurrency errors such as data races and deadlocks. Debugging tools
generally check the correctness of OpenMP programs either at compile-time or during the execution of a
program, both methods having advantages and inconveniences. This section summarizes some existing tools
to detect data races and deadlocks in OpenMP applications.

Static tools The well-defined semantics of OpenMP makes static analyses common to check the correct-
ness of OpenMP applications. Several static approaches exist: First we can mention the OpenMP Analysis
Toolkit [75] (OAT) that uses symbolic analysis to detect concurrency errors. It relies on the ROSE compiler
infrastructure to encode every parallel region into Satisfiability Modulo Theories (SMT) formulae. Those
formulae are then solved with a SMT-solver like Yices [76]. OAT terminates its analysis by instrumenting
the source code with fault injection techniques to confirm the reported errors. OmpVerify [77] is a static tool
integrated in Eclipse IDE using the polyhedral model to detect data races in OpenMP parallel loops. This tool
is restricted to program fragments called Affine Control Loops but it has the advantage of reporting accurate
errors to the user. Lin [78] describes a concurrency analysis technique to detect whether two statements will
not be executed concurrently by different threads in a team. The method is an intra-procedural analysis based
on phase partioning using an OpenMP Control Flow Graph (OMPCFG) that models the transfer of control
flow in an OpenMP program.

Similarly, Zhang et al. [79] use a concurrency analysis to detect unaligned barriers in OpenMP C pro-
grams. This inter-procedural method consists in four phases: A CFG construction to model the various
OpenMP constructs, a barrier matching to find threads barriers that synchronize together, a program division
into phases (sequence of basic blocks separated by barriers) and an aggregation of phases with matching bar-
riers. Any two basic blocks from the same aggregated phase are said to be concurrent. For the verification
of the whole program Zhang et al. export a barrier tree. Detection can also be done by compilers like GCC
when lowering the OpenMP constructs to GOMP function calls [80] (e.g., GCC issues a warning for wrong
nested parallelism as seen earlier).

Dynamic tools Among dynamic tools we can mention the Adaptative Dynamic Analysis Tool [81] (ADAT)
and RaceStand [82, 83] for focused data races detection and Intel Thread Checker [84, 85] and Sun Thread
Analyzer [86] for both data races and deadlocks detection. ADAT is a data-race detection tool using clas-
sification and adaptation mechanisms. The tool creates a pseudo-instrumented source code and an Engine
Code Property Selector (ECPS) table and then transforms the pseudo-instrumented source code into an ex-
ecutable by using the ECPS table information. With a C compiler supporting OpenMP, the instrumented
source code is compiled and executed to detect data races. RaceStand by GNU utilizes an on-the-fly dy-
namic monitoring approach to detect data races and has recently improved its check with a dynamic binary
instrumentation technique based on Pin software framework. This tool detects the existence of races and lo-
cates races between two accesses not causally preceded by other accesses also involved in races (first races)
for each shared variable in a program. Intel R© Thread Checker and Sun Thread Analyzer both require an
application instrumentation and trace references to memory and synchronization operations during the ap-
plication execution. Sun Thread Analyzer necessitates program recompilation with the Sun compilers. To
find data races the program must be executed with two or more threads. Unlike Sun Thread Analyzer, Intel
Thread Checker does not depend on the number of threads used. It dynamically detects data races using a
projection technology which exploits relaxed OpenMP programs. More precisely, the projection technology
checks the data dependency of accesses to shared variables using sequentially traced information. But Intel
Thread Checker does not consider OpenMP program specifications and can therefore report false positives.
Li et al. present in [87] an online-offline model to test the correctness of every OpenMP parallel region.
The online correctness testing model is used to find parallel regions with incorrect execution results (not

31

1.3. OUTLINE

corresponding to serial execution results), identify all places that caused errors (directives used improperly
or located wrongly) and correct them. Then the offline correctness testing model tests the correctness of
regions with corrected directives.

1.2.5 Verification of MPI+OpenMP Applications

Even if it is now possible to profile and visualize profiles and traces (for instance with Jumpshot [88]) for
MPI+OpenMP programs, debugging tools especially those detecting collective operations errors and thread
levels compliance are practically non-existent. Among profiling and tracing tools we can mention Intel R©

Thread Checker [85], Totalview [89], TAU [90], Scalasca [91], Vampir [92], DDT [93] and ompP [94].
Although it is possible to debug a program with a trace file, the post-mortem approach does not allow
early errors detection. Indeed an error is noticed at the same time it occurs. Only a debugging tool could
help to detect errors and find what caused them. The ISP dynamic debugger for MPI programs has been
adapted to verify a large hybrid MPI/Pthread program. It uses a "record/replay" mechanism inspired by
Output Deterministic Replay (ODR) [95]. To our knowledge, Marmot [96] is the only tool that provides a
support for detecting collective errors in MPI+OpenMP programs. Marmot uses the MPI profiling interface
(PMPI) to introduce artificial data races only occuring when some constraints are violated and detect them
with the Intel Thread Checker tool. The authors define five constraints based on the definition of the thread
levels mentioned in the MPI standard. These constraints imply violations, including simultaneous multiple
collective calls on the same communicator (referred to constraint IV). Marmot generates HTML reports witch
output error messages with the line of the collective and the nesting level between MPI and OpenMP the
programmer should use. Marmot has been included in both the DDT debugger and the CUBE visualization
tool. To our knowledge, Marmot [96] is the only tool that provides a support for detecting violations in
MPI+OpenMP programs.

1.3 Outline

This chapter helps understanding the context of this thesis. It sums up existing parallel programming
models, exascale challenges and the importance of the debugging phase of an application development cycle.

Debugging summarizes the activities of error detection and performance analysis of the software life-
cycle. Both activities can be tedious and difficult, especially in parallel programs. The state of the art about
debugging solutions for MPI, OpenMP and MPI+OpenMP programs has shown a lack concerning precise
and early detection of errors in parallel applications. Indeed, existing debugging tools whether static or
dynamic are able to detect the line in the source code where an error occured but rarely the line responsible
for this situation. Although the compile-time offers the possibility to detect and correct errors earlier than
at runtime, few tools rely on purely static analysis because of the combinatory aspect of methods used like
model checking (e.g., TASS for MPI verification). Dynamic tools detect an error when the corresponding
effects occur and are limited to the input dataset of a run. Indeed, even if dynamic tools return no false
positive, they can miss errors as they are correlated to one execution of a program (e.g., one input set).

The chapter shows how hybrid debugging tools are crucial for the Exascale era. Indeed, the MPI+OpenMP
approach is one solution to tackle the increasing node-level parallelism and the decreasing amount of mem-
ory per compute unit. But writing hybrid programs is driven by the availability of hybrid debugging tools
and there is a complete lack in helping developers to find errors in hybrid programs.

This thesis investigates the combination of static and dynamic analysis to enable an early detection of
control flow anomaly in parallel programs. More precisely, the two-step analysis provides an early and
precise detection of collectives errors origins in MPI, OpenMP and MPI+OpenMP parallel programs. The
contributions are:

32

CHAPTER 1. INTRODUCTION

1. The first contribution checks the compliance of MPI+OpenMP applications. We designed a novel
approach in which the compiler is a valuable partner in solving problems occuring in parallel ap-
plications. The idea was to analyze applications at compile-time to verify the compliance of hybrid
applications with the MPI thread level provided. Then only potential non-compliant portion of codes
are instrumented to verify the non-compliance at runtime. We validate the analysis on computational
benchmarks and applications showing a small impact on performance and the ease integration of our
techniques in the development process. This contribution enables us to realize the interest of an error
benchmark suite to verify the good detection of errors in parallel applications. (Chapter 2);

2. The second contribution adapts the previous analysis to detect the origin of collective errors in MPI
and OpenMP applications. This contribution is based on the fact that MPI collective communications
and OpenMP barriers and worksharing constructs have similar constraints. All MPI processes (resp.
OpenMP threads of a team) have to call the same sequence of collective communications (resp. the
same sequence of barriers and worksharing constructs). (Chapter 3);

3. The last contribution extends the combining approach to detect the origin of MPI collective errors
in MPI+OpenMP applications. The idea is to verify the sequence of MPI collective communications
of all MPI processes and to detect concurrent calls within a process. To this end we highlight the
multithreaded context in which MPI collective operations are called. (Chapter 4).

These contributions have been published and presented in the European MPI Users’ Group Meeting
(EuroMPI) 2013 [97], the International Journal of High Performance Computing Applications (IJHPCA)
2014 [98], the International Workshop on OpenMP (IWOMP) 2014 [99], the Symposium on Principles and
Practice of Parallel Programming (PPoPP) 2015 [100], the European Conference on Parallel and Distributed
Computing (EuroPar) 2015 [101] and the European MPI Users’ Group Meeting (EuroMPI) 2015 (to appear).

33

1.3. OUTLINE

34

Chapter 2

Interaction Between MPI and shared
memory models

As stated Section 1.1.4, MPI is one of the most widely used model in HPC applications. However as
we progress from petascale to exascale systems, MPI evolves to be mixed with shared-memory approaches
like OpenMP to efficiently exploit future systems. The adoption of MPI+X raises two crucial issues: the
interoperability of models and how to assist developers to write conform hybrid applications. Mixing models
means one model feature can be used in the context of the other. To avoid an interference between models, a
context of use must be defined. Up to now debugging tools were mainly focused on one programming model
and one step of the application development cycle (mostly compilation time or execution time). However a
combination of compile-time and runtime informations could give more precise and efficient analyses.

Based on this fact, this chapter introduces a two-step method which aims at helping application devel-
opers to check which model interaction support is required for a specific hybrid code. The method is simple
to use, compliant to hybrid MPI+X1 programs and compatible with existing dynamic tools. The chapter
focuses on MPI+OpenMP applications and reproduces a published article [101].

2.1 MPI Thread-Level Checking for MPI+OpenMP Applications

To address the challenges of exascale systems, MPI+OpenMP applications are becoming the norm in high
performance computing. In such cases, special care is required for MPI calls to ensure the multi-threaded
model does not interfere with MPI. As an example, within a process, the same communicator may not be
concurrently used by two different MPI collective calls. This means MPI collective operations may not be
called by multiple parallel threads. For instance, the function MPI_Allreduce Example 1 Figure 2.1
will be called by each thread created in the parallel region (line 2). In that case, the sequence of MPI col-
lective calls is not deterministic as it should be. The MPI-2 standard defines four thread-safety levels to
indicate how MPI should interact with threads. These levels are from the most restrictive to the less re-
strictive levels: MPI_THREAD_SINGLE, MPI_THREAD_FUNNELED, MPI_THREAD_SERIALIZED and
MPI_THREAD_MULTIPLE. According to the MPI standard, it is the user responsibility to prevent races
when threads within the same application post conflicting communication calls ([7], page 482 lines 45-46).
This should be checked above all for the fully multithreaded case (MPI_THREAD_MULTIPLE).

Figure 2.1 illustrates some of the possible issues related to MPI communications in a multithreaded
context through six examples written in C. MPI_Send in Example 2 is called outside the threaded region.
This example is compliant to the MPI_THREAD_SINGLE level if the function f is not called in a parallel
construct. MPI_Allreduce in Example 3 is called in a single block, MPI_THREAD_SERIALIZED

1X should be a shared-memory approach with perfect nested parallelism like OpenMP

35

2.1. MPI THREAD-LEVEL CHECKING FOR MPI+OPENMP APPLICATIONS

Example 1

1 void f(){
2 #pragma omp parallel
3 {
4 MPI_Allreduce(..)
5 }
6 }

Example 2

1 void f(){
2

3 #pragma omp parallel
4 {
5 /*...*/
6 }
7

8 MPI_Send(..)
9 }

Example 3

1 void f(){
2 #pragma omp parallel
3 {
4 /***/
5 #pragma omp single
6 {
7 MPI_Allreduce(..)
8 }
9 }

10 }

Example 4

1 void f(){
2 #pragma omp parallel
3 {
4 #pragma omp single \
5 nowait
6 {
7 MPI_Reduce(..)
8 }
9 /***/

10 #pragma omp single
11 {
12 MPI_Reduce(..)
13 }
14 }
15 }

Example 5

1 void f(){
2 #pragma omp parallel
3 {
4 #pragma omp single
5 {
6 MPI_Reduce(..)
7 }
8 /***/
9 #pragma omp single

10 {
11 MPI_Reduce(..)
12 }
13 }
14 }

Example 6

1 void f(){
2 /***/
3 if(...){
4 #pragma omp parallel
5 {
6 /***/
7 #pragma omp master
8 {
9 MPI_Recv(..)

10 MPI_Send(..)
11 }
12 }
13 }
14 /***/
15 }

Figure 2.1: MPI+OpenMP examples showing different uses of MPI calls.

then corresponds to the minimum level of compliance. However if the function f is called itself in a parallel
construct, the collective is executed in a nested parallel region, possibly leading to more than one concurrent
call to this collective. This erroneous situation always occurs unless only one thread is created in the first
parallel region or in both regions. Example 4 illustrates a more complex case: two MPI_Reduces are exe-
cuted in single constructs in the same OpenMP parallel region. As the first construct contains a nowait
clause, both MPI_Reduces can be executed concurrently by different threads. This requires a thread-level
equal to MPI_THREAD_MULTIPLE, assuming the communicators used by the two collectives are different.
If they are identical, the code is incorrect. On the contrary, in Example 5, the two MPI_Reduces are called
one after the other because of the implicit thread synchronization at the end of the first single region (line
7). This piece of code requires a minimum thread-level equal to MPI_THREAD_SERIALIZED. In Exam-
ple 6, function f is compliant with the MPI_THREAD_FUNNELED level. However, if the master directive
line 7 is replaced by a single directive, the MPI_THREAD_SERIALIZED level is the minimum thread-level
required. Thus, these examples illustrate the difficulty for a developer to ensure that MPI calls are correctly
placed inside an hybrid MPI+OpenMP application whatever the required thread-level support.

2.1.1 Analysis of the Multithreaded Context

This subsection details the static analysis that helps the application developer to check which thread-
level support is required for a specific code. The analysis proposed does not depend on one particular run

36

CHAPTER 2. INTERACTION BETWEEN MPI AND SHARED MEMORY MODELS

and finds all possible situations of non-compliance to a given thread level. As it is conservative, it can
be complemented by an instrumentation phase that checks the occurrence of these situations. An essential
part of this analysis consists in determining the multi-threaded context in which MPI calls (Point-to-point and
Collectives) are performed. The method described in this section computes a parallelism word to characterize
this context in each point of the function analyzed. Programs are supposed to be SPMD (Single Program
Multiple Data) MPI programs. It means that every MPI rank calls the same functions in the same order. This
covers a large amount of scientific simulation applications for High-Performance Computing.

The Augmented Control Flow Graph

The analysis operates on the code represented as a control-flow graph (CFG) [102, 103]. The control-
flow graph is an intermediate representation built in almost all compilers. It models the control flow of a
function and is defined as a directed graph (V, E) where V represents the set of basic blocks2 and E is the
set of edges. Each edge u −→ v ∈ E depicts a potential flow of control from node u to v. Each node
in V has a set of successors and a set of predecessors denoted as S UCC(u) and PRED(u). Moreover two
unique artificial nodes are appended for entry and exit points. Each function has one entry but can have
several returns. To ensure one entry and one exit per function, all returns are bring together into one node.
An example of a control-flow graph and its associated C code (example.c) is presented Figure 2.2. The
code example.c.013t.cfg is obtained by the command gcc -fdump-tree-cfg example.c
-o example. It shows basic blocks built by the GCC compiler. This CFG contains four nodes: the first
one represents the variable c affectation and the if statement evaluation while the second and third ones
respectively contain the if body and the else body. Finally the last one denotes the return instruction.
Statements in node 2 are executed one after the other in a sequential order. Depending of the value of the
conditional statement at the end of node 2, the variable c equals a − b (node 3) or b − a (node 4). The
execution of the conditional results in a choice which gives rise to two paths: node 2 −→ node 3 and node 2
−→ node 4. From nodes 3 and 4, paths converge in node 5.

example.c

1 int f(int a, int b)
2 {
3 int c=0;
4

5 if(a>b)
6 c=a-b;
7 else
8 c=b-a;
9

10 return c;
11 }

example.c.013t.cfg

1 <bb 2>:
2 c = 0;
3 if (a > b)
4 goto <bb 3>;
5 else
6 goto <bb 4>;
7

8 <bb 3>:
9 c = a - b;

10 goto <bb 5>;
11

12 <bb 4>:
13 c = b - a;
14

15 <bb 5>:
16 D.1600 = c;
17 return D.1600;

bb 0

entry

bb 2

c = 0

i f (a < b)

bb 3

c = a − b

bb 4

c = b − a

bb 5

return c

bb 1

exit

Figure 2.2: Example of a simple C code with its associated CFG.

2Basic block: Maximal sequence of linear code

37

2.1. MPI THREAD-LEVEL CHECKING FOR MPI+OPENMP APPLICATIONS

The compile-time verification then consists in a static analysis of the CFG for each function of a pro-
gram. The CFG is augmented to highlight nodes containing MPI calls (collectives and P2P) and as for some
compilers like GCC, OpenMP directives are put into separate basic blocks. Hence new nodes are added
for explicit and implicit thread barriers. For sake of clarity in figures, implicit thread barriers at the end of
parallel regions are denoted by end parallel. Algorithm 1 details how the CFG is augmented. The
algorithm takes as input the CFG of the current processed function built by a compiler and returns the aug-
mented CFG G+. When a node with a MPI call is encountered, the node is tagged (line 6 in the algorithm).
When a node contains an OpenMP construct, the node is split as shown Figure 2.3 (line 9 in the algorithm).
If the OpenMP directive is the first statement or the last statement of the node, the node is split into two
nodes and three nodes otherwise. The sets of nodes and edges are up to date as well as the successors and
predecessors of each node. Assuming the splitting phase takes time O(T), the augmented CFG construction
takes time O(T.|V |).

Algorithm 1 Building the augmented CFG G+

1: function CFG+_CONSTRUCTION(G = (V, E)) . G: CFG
2: V+ ← V , E+ ← E
3: for each n ∈ V do
4: for each statement s ∈ n do
5: if s is a MPI call then
6: Tag n . n contains a MPI call
7: end if
8: if s is a OpenMP construct then . includes explicit and implicit barriers
9: Split n into n1, n2 and n3 such as n2 only contains the statement s

10: Tag n2 . n2 contains an OpenMP directive
11: Up to date V+ and E+:
12: V+ ← V+ − n
13: V+ ← V+ ∪ {n1, n2, n3}

14: E+ ← E+ − {PRED(n)→ n, n→ S UCC(n)}
15: E+ ← E+ ∪ {PRED(n)→ n1, n1 → n2, n2 → n3, n3 → S UCC(n)}
16: Up to date successors and predecessors of n1, n2, n3 and each node in S UCC(n) and PRED(n)
17: end if
18: end for
19: end for
20: return G+ = (V+, E+)
21: end function

PRED(n)

A

s

B

SUCC(n)

A

s

B

n1 = A, n2 = s, n3 = B

PRED(n)

s

B

SUCC(n)

s

B

n1 = ∅, n2 = s, n3 = B

PRED(n)

A

s

SUCC(n)

A

s

n1 = A, n2 = s, n3 = ∅

Figure 2.3: Different splitting phases according to the origin node. The statement s is supposed to
be an OpenMP construct or an implicit or explicit barrier. The origin node is presented
on the left and the result of the splitting phase on the right.

38

CHAPTER 2. INTERACTION BETWEEN MPI AND SHARED MEMORY MODELS

Parallelism Words Construction

To highlight the thread context in which a MPI call is performed, we define a parallelism word for
a node in G+ as the sequence of OpenMP parallel constructs (pragma parallel, single, . . .) sur-
rounding this block and the barriers traversed from the beginning of a function to the block. Parallel re-
gions containing the block are denoted by Pi, with i the id of the basic block with the OpenMP construct
(CFG+_CONSTRUCTION Algorithm 1 ensures there is only one OpenMP directive per node) . Similarly,
regions executed by the master thread are denoted by Mi and other single threaded regions are denoted S i.
Finally, barrier corresponds to B. OpenMP defines a perfectly-nested parallelism, thus the control flow
has no impact on the parallelism word.

Algorithm 2 Building the parallelism word for all CFG nodes
1: function Depth_First_Search(G+ = (V+, E+), n) . G+: CFG augmented
2: Tag n
3: set_parallelism_word(n)
4: for u ∈ S UCC(n) do
5: if u is not tagged then
6: pw[u] = pw[n]
7: Depth_First_Search(G+, u)
8: end if
9: end for

10: end function

Algorithm 3 Parallelism word construction of a node
1: function set_parallelism_word(n) . n: a node of the CFG
2: switch n
3: case #pragma omp parallel
4: push(P,pw[n])
5: break
6: case #pragma omp barrier or implicit barrier
7: push(B,pw[n])
8: break
9: case #pragma omp single/section/task

10: push(S,pw[n])
11: break
12: case #pragma omp master
13: push(M,pw[n])
14: break
15: case end of parallel region
16: while head(pw[n]),P pop(pw[n]) end while
17: pop(pw[n])
18: break
19: case end of single/master/section/task region
20: pop(pw[n])
21: break
22: default
23: break
24: end switch
25: end function

Algorithm 2 presents the depth-first search that traverses the entire graph to construct the parallelism
word of each node of the augmented CFG. Each node n is associated to a parallelism word denoted pw[n].
The Depth_First_Search function starts the depth-first search with the unique successor of the entry node

39

2.1. MPI THREAD-LEVEL CHECKING FOR MPI+OPENMP APPLICATIONS

and explores each branch of the CFG as far as possible. Each node sets its parallelism word depending on its
predecessor and the OpenMP directives it contains. Algorithm 3 presents the parallelism word construction
of a node: P is added when a parallel region is encountered, S is added when a single, section or task region is
traversed, M is added when a master construct is traversed and B is added when an implicit or explicit thread
barrier is met. A simplification is done when OpenMP regions end. The Depth_First_Search procedure is
linear in the size of G+ and takes time O(|E+|) and the parallelism word construction in a node takes time
O(1). The entire parallelism word construction for a G+ then takes time O(|E+|). Figure 2.4 shows examples
of CFG with their associated parallelism words. Functions presented are supposed to be called in a sequential
thread context, the initial parallelism word at the function entry is then empty.

entry

2 - parallel

3 - single

4 - MPI_Allreduce

5 - barrier

6 - end parallel

exit

Initial prefix: ∅

2: P2

3: P2S 3

4: P2S 3

5: P2B

6: ∅

(a) CFG of Example 3

entry

2 - parallel

3 - single

4 - MPI_Reduce

5 - single

6 - MPI_Reduce

7 - barrier

8 - end parallel

exit

Initial prefix: ∅

2: P2

3: P2S 3

4: P2S 3

5: P2S 5

6: P2S 5

7: P2B

8: ∅

(b) CFG of Example 4

entry

2

3 - parallel

4

5 - master

6 - MPI_Recv

MPI_Send

7 - end parallel

8

exit

Initial prefix: ∅

2: ∅

3: P3

4: P3

5: P3 M5

6: P3 M5

7: P3B

8: ∅

(c) CFG of Example 6

Figure 2.4: Augmented Control Flow Graph and parallelism words of codes in Figure 2.1

Parallelism Words Analysis

The automaton Figure 2.5 defines the possible parallelism words. Nestings forbidden by the OpenMP
specification (S S , MS ,...) are not considered by the automaton. If such forbidden nested regions are ob-
tained, our analysis returns the error message: invalid state, error. The language of accepted parallelism
words will depend on the specified thread level. As we check each function independently, the level of
parallelism in which a function is called is unknown. To provide an accurate picture of the level of thread
parallelism in which function occurrence is called, statistics on the NAS Parallel Benchmarks multizone
(NASPB-MZ) using class B [104] have been collected and are shown in Table 2.1 per thread, in each pro-
cess. We notice that functions are mainly called within one level of multithreading.

Thus to consider all possible initial conditions, each callsite is instrumented in order to capture the initial
parallelism word of each function. This word corresponds to a prefix Pi for all basic blocks of the called
function and defines an initial state in Automaton Figure 2.5 (all states are possible initial states). The user
can choose the initial state at compile-time.

2.1.2 Thread-Level Compliance Checking

This subsection describes how the non-compliance of thread levels can be detected at compile-time. For
that purpose we use the parallelism words introduced in the previous subsection to check the placement of
MPI calls within a process.

40

CHAPTER 2. INTERACTION BETWEEN MPI AND SHARED MEMORY MODELS

0 1

2

3

4

5

6

of the application
starting point P

P

P

M,S

P
M

PS

S,M P

S,M,B

B

B

P,B P: Parallel
M: Master

S: Single

B: Barrier

Figure 2.5: Automaton of possible parallelism words. Nodes 0, 2 and 3 correspond to code executed
by the master thread or a single thread. Nodes 1 and 4 correspond to code executed in
a parallel region, and 5 and 6 to code executed in nested parallel region.

Table 2.1: Level of threads parallelism at function entries for NASPB-MZ

Benchmark # function calls # calls in sequential # calls in parallel # calls in nested
(state 0,2,3) (state 1,4) (state 5,6)

BT-MZ 396,918,403 45,379 396,873,024 0
SP-MZ 15,479,425 116,161 15,363,264 0
LU-MZ 3,017,513 40,745 2,976,768 0

Static Analysis and Interface to Dynamic Checkings

For each possible thread level we define a language of valid parallelism words based on the automaton
Figure 2.5. For a given basic block, its parallelism word consists in the prefix (obtained from the callsite
of the function or user-defined) and the word computed from previous analysis. The analysis verifies if the
nodes containing MPI calls (point-to-point and collectives) are associated with an accepted word. Thread
barriers can be safely ignored as they do not influence the level of thread parallelism. In case of the detection
of a possible error, a warning related to the initial level with the name of the call is returned to the program-
mer. Algorithm 4 takes as input the CFG augmented and the language L of correct parallelism words and
outputs two sets: S and S ipw. These sets respectively contain the nodes violating the input language and the
nodes that dominate these nodes before the execution/control flow changes (see appendice B.1 page 103 for
the definition of domination). This set will be given as one of the input parameters of the dynamic analysis.
In the algorithm, line 7, the node u corresponds to the node preceeding n in the CFG and that is the immediate
successor of a control flow node (with two successors) or of a pragma node (changing the parallelism word).
Assuming the dominators before execution/control flow changement of each node are known, this algorithm
takes time O(|V+|) in the worst case.

The nodes in the set S ipw correspond to execution points where compliance should be tested at runtime,
in order to handle possible false-positives detected statically. A unique parallelism word pwe is computed
at runtime and updated after each OpenMP construct. Compared to the compile-time parallelism words,
parallel regions created with only one thread correspond to the parallelism word ε. This implies that such
region has no impact on the current multithreaded context.

41

2.1. MPI THREAD-LEVEL CHECKING FOR MPI+OPENMP APPLICATIONS

Algorithm 4 Detection of parallelism words for multithreaded regions

1: function Multithreaded_regions(G+ = (V+, E+), L) . G+: augmented CFG, L: accepted language
2: S ipw ← ∅

3: S ← ∅
4: for each n ∈ V+|n contains a MPI call do
5: if pw[n] < L then
6: S ← S ∪ {n}
7: u← Node that dominates n before execution/control flow changement
8: S ipw ← S ipw ∪ u
9: end if

10: end for
11: Output S ipw and nodes in S as warnings
12: end function

MPI_THREAD_SINGLE

By setting the MPI_THREAD_SINGLE level, the user ensures only one thread will execute MPI calls
([7], page 486 line 1). This means all MPI calls should be performed outside multi-threaded regions.
Thus all nodes of the CFG containing a MPI call must be associated with an empty parallelism word. The
language L of accepted parallelism words is then defined by L = {ε}. Algorithm 4 with L = {ε} returns the
non-compliant MPI calls (set S). Algorithm 5 details the entire compliance verification.

Algorithm 5 Verification of the MPI_THREAD_SINGLE level compliance

1: function SINGLE_Verification(G+, L) . G+: augmented CFG, L = {ε}

2: Depth_First_Search(G+, S UCC(entry)) . Building the parallelism word for all CFG nodes
3: Multithreaded_regions(G+, L) . Detection of parallelism words for multithreaded regions
4: end function

MPI_THREAD_FUNNELED

The use of MPI_THREAD_FUNNELED level means the process may be multi-threaded but the applica-
tion must ensure that only the thread that initialized MPI can make MPI calls ([7], page 486 lines 3-5). For
this level, State 3 in Automaton Figure 2.5 is the accepting state and the language L = (PB∗M)+ describes
the accepted words. With Algorithm 4 and L, our analysis detects MPI calls that are not executed in a master
region. Algorithm 6 details the entire compliance verification.

Algorithm 6 Verification of the MPI_THREAD_FUNNELED level compliance

1: function FUNNELED_Verification(G+, L) . G+: augmented CFG, L = (PB∗M)+

2: Depth_First_Search(G+, S UCC(entry)) . Building the parallelism word for all CFG nodes
3: Multithreaded_regions(G+, L) . Detection of parallelism words for multithreaded regions
4: end function

MPI_THREAD_SERIALIZED

The MPI_THREAD_SERIALIZED level means the process may be multi-threaded but only one thread at
a time can perform MPI calls ([7], 12.4.3). The accepting states in Automaton Figure 2.5 are states 2 and
3. Thus, the language L = (PB∗S |PB∗M)+ describes the accepted words. This language contains parallelism

42

CHAPTER 2. INTERACTION BETWEEN MPI AND SHARED MEMORY MODELS

words ending by S or M without a repeated sequence of P. Critical sections and locks are not supported
here.

To verify the compliance of this level, Algorithm 4 is used to make sure all MPI calls are performed in a
monothreaded context. Different MPI calls in the same monothreaded region are sequentially performed as
only one thread executes it. However, calls in different monothreaded regions may be called simultaneously
if monothreaded regions are executed in parallel (no thread synchronization between monothreaded regions).
Special care is requested for MPI collective operations. All MPI processes should execute the same sequence
of MPI collective operations in a deterministic way. That means there is a total order between MPI collective
calls. Algorithm 7 shows the detection of concurrent calls. It takes as input the CFG and outputs two sets:
S and S cc. When nodes containing a MPI call with the same number of B are detected these nodes are put in
the set S and the nodes that begin the monothreaded regions are put in the set S cc for the dynamic analysis.
A warning is then issued for nodes in S . Algorithm 8 details the entire compliance verification.

Algorithm 7 Detection of potential concurrent calls

1: function Concurrent_calls(G+ = (V+, E+)) . G+: CFG
2: S cc ← ∅

3: S ← ∅
4: if ∃ u, v ∈ nodes in concurrent monothreaded regions then
5: S ← S ∪ {u, v}
6: i, j← nodes immediate successors of nodes creating monothreaded regions
7: S cc ← S cc ∪ {i, j}
8: end if
9: Output S cc and nodes in S as warnings

10: end function

Algorithm 8 Verification of the MPI_THREAD_SERIALIZED level compliance

1: function SERIALIZED_Verification(G+, L) . G+: augmented CFG, L = (PB∗S |PB∗M)+

2: Depth_First_Search(G+, S UCC(entry)) . Building the parallelism word for all CFG nodes
3: Multithreaded_regions(G+, L) . Detection of parallelism words for multithreaded regions
4: Concurrent_calls(G+) . Detection of potential concurrent calls
5: end function

MPI_THREAD_MULTIPLE

This level is the least restrictive level. It enables multiple threads to call MPI with no restriction ([7], page
486 line 10). However MPI calls should be thread safe, meaning that when two concurrently running threads
make MPI calls, the outcome will be as if the calls executed sequentially in some order. Special care is
requested for MPI collective operations. Indeed it is harder to ensure thread safety with this type of commu-
nication. The verification of this level follows the same analyses as for the MPI_THREAD_SERIALIZED
level. Both levels are subject to the same constraints. Algorithm 9 details the entire compliance verification.

Selective Static Instrumentation

Previous sections detailed the static detection of possible MPI thread-level non-compliance. To dynam-
ically verify the total order of MPI calls sequences in each MPI process, validation functions are inserted
in nodes in the sets S ipw and S cc generated by Algorithms 4 and 7: CCipw and CCcc. These functions are

43

2.1. MPI THREAD-LEVEL CHECKING FOR MPI+OPENMP APPLICATIONS

Algorithm 9 Verification of the MPI_THREAD_MULTIPLE level compliance

1: function MULTIPLE_Verification(G+, L) . G+: augmented CFG, L = (PB∗S |PB∗M)+

2: Depth_First_Search(G+, S UCC(entry)) . Building the parallelism word for all CFG nodes
3: Multithreaded_regions(G+, L) . Detection of parallelism words for multithreaded regions
4: Concurrent_calls(G+) . Detection of potential concurrent calls
5: end function

Algorithm 10 Library Functions To Check MPI calls
1: function CCipw(L) . Detect calls in multithreaded regions
2: if pwe < L then . pwe: execution parallelism word
3: MPI_Abort(com, 0)
4: end if
5: end function
6:
7: function CCcc(L) . Detect concurrent calls
8: CCipw(L)
9: if collective_lock = 1 then

10: MPI_Abort(com, 0)
11: else
12: #pragma omp atomic write
13: collective_lock = 1
14: end if
15: end function

depicted Algorithm 10. Function CCipw detects incorrect execution parallelism words (pwe) and Function
CCcc detects concurrent collective calls.

For each node n in S ipw, if the corresponding execution parallelism words pwe[n] is not in L the
program stops through a call to MPI_Abort and an error message is returned to the programmer. For
each node n in S cc, a check is done to ensure the node is actually in a monothreaded region. Counting
the number of threads concurrently executing a given basic block cannot be done by the simple use of
omp_get_num_thread(). Indeed, the control flow may select only a subset of the total number of
threads for the execution of a basic block. Similarly to the previous case, we resort to a shared variable
collective_lock. This variable is used to prevent another thread from entering the region in S cc. The shared
variable is reset to 0 right after the barrier(s) (if any) successor of the region concerned. The intuition is
indeed to reset the lock at the first barrier following the possible concurrent monothreaded regions. Each
function of a program is instrumented by Algorithm 11. If an error is about to occur the program is stopped
and an error message is returned with error type information.

In Figure 2.4(b), nodes 4 and 6 have the same number of thread barriers in their parallelism words
(node 4: P2S 3, node 6: P2S 5) so the collective operations involved are potential concurrent collective calls.
The algorithm outputs a warning for collective calls located nodes 4 and 6 (S = {4, 6}) and flags nodes
4 and 6 for dynamic checks (S cc = {4, 6}). CCcc functions are then inserted in nodes 4 and 6 as shown
Figure 2.6. Suppose function f of example 3 Figure 2.4 is called in a parallel construct. Node 4 has an
incorrect parallelism word for a collective node. The algorithm outputs a warning for the collective that can
be called by multiple processes: S = {4} and S ipw = {3}. Thus a CCipw function is inserted node 3.

Correctness Proof

The instrumentation depicted Algorithm 11 is correct if all situations are captured and if the inserted code
does not generate errors or deadlocks.

44

CHAPTER 2. INTERACTION BETWEEN MPI AND SHARED MEMORY MODELS

Algorithm 11 Selective Static Instrumentation
1: function Instrumentation(G+, S , S ipw, S cc)
2: . G+: augmented CFG, S , S ipw, S cc: sets created at compile-time
3:
4: if S , ∅ then
5: STEP 1: Parallelism words for multithreaded regions detection
6: for n ∈ S ipw do
7: Insert call to CCipw() as the first statement of n
8: end for
9:

10: STEP 2: Concurrent MPI calls detection
11: for n ∈ S cc do
12: Insert call to CCcc() as the first statement of n
13: Insert collective_lock = 0 after the barrier(s) successors of the region created by n
14: end for
15: end if
16:
17: end function

entry

2 - parallel

3 - single

4-CCcc()

MPI_Reduce

5 - single

6-CCcc()

MPI_Reduce

7 - barrier

collective_lock = 0

8 - end parallel

exit

(a) Figure 2.4(b) CFG instrumented

entry

2 - parallel

3 - CCipw()

single

4 - MPI_Allreduce

5 - barrier

6 - end parallel

exit

Initial prefix: P

2: PP2

3: PP2S 3

4: PP2S 3

5: PP2B

6: P

(b) Figure 4.5(a) CFG instrumented with
an initial prefix P

Figure 2.6: Instrumented CFG Figures 2.4(b) and 4.5(a) (Algorithm 11)

45

2.2. PARALLEL CONTROL FLOW ANOMALY CHECKER (PARCOACH)

• If no potential error is reported from the compile-time analysis then no validation function is added.
No error or deadlock is added in the code.

• Suppose the non-compliance of one thread-level is detected at compile-time. Algorithm 11 then in-
serts CCcc and CCipw functions. CCcc and CCipw functions are inserted as soon as possible before
MPI calls. All threads do not have to call CCcc and CCipw functions, only one thread detects that an
error is going to occur in a program. CCipw prevents from the execution of a call in a multithreaded
context, i.e., when multiple threads are about to execute the same operation simultaneously. For CCcc,
the second thread to execute CCcc raises an error and avoids the unordered execution of different col-
lective operations. As the collective_lock variable is only reset after a barrier following the parallel
region where the check occurs, this detection does not depend on the thread scheduling. Whenever a
thread enters a monothreaded region containing collective calls while another thread is already exe-
cuting a monothreaded region also containing a collective call the thread detects an error and stops the
program. In both cases the program is stopped before an error can occur.

We validate a thread-level given by the compiler or parsed at compile-time.

2.2 PARallel COntrol flow Anomaly CHecker (PARCOACH)

The two-step method checking MPI thread-level compliance in MPI+OpenMP applications was imple-
mented in GCC 4.7.0 [105] as a plugin. It is simple to deploy in existing environments as it does not modify
the whole compilation chain. The plugin called PARCOACH for PARallel COntrol flow Anomaly CHecker
is located in the middle of the compilation chain where the source code is represented in an intermediate
form (CFG). PARCOACH performs a new pass inserted inside the compiler pass manager, after generating
the CFG information. The GNU Compiler Collection (GCC) was chosen because of its wide use but the
method works with all compilers using a CFG representation. The analysis is language independent and
thus enables the verification of C, C++ and Fortran programs. It is written in GIMPLE [106], a tree-address
representation derived from GENERIC (see Figure 2.7). Figure 2.8 gives an overview of PARCOACH.

Source

code Front End Back EndMiddle End

C

C++

Fortran

...

GENERIC GIMPLE RTLRTL
Assembly

code

Executable

GENERIC

COMPILATION

Figure 2.7: Architecture of GCC

To show the impact of PARCOACH on the compilation time, we present experimental results obtained
on the NAS Parallel benchmarks multizone (NAS-MZ v3.2) using class B [104], five MPI+OpenMP Coral
benchmarks [107] (AMG2013, LULESH, HACC, SNAP, miniFE) and a large multi-physics 2D/3D AMR
hydrocode platform named HERA [108], which is a production test case.

Table 2.2 shows the language and the number of lines of each tested benchmark. The 4th and 5th columns
depict the thread level provided (level actually returned to the user, might be lower than the desired level, de-
pending on the MPI implementation) and the minimum thread level required by the application (thread-level
the user should use). The last column displays the compliance our analysis returned. For each benchmark,
the overhead obtained at compile-time is presented Figure 2.9. This overhead corresponds to the difference

46

CHAPTER 2. INTERACTION BETWEEN MPI AND SHARED MEMORY MODELS

EXECUTION

PROGRAM

WRITTEN IN C,

C++ or FORTRAN

FRONT

END

MIDDLE-END

BACK

END

PARCOACH

DYNAMIC

LIBRARY

WARNINGS

ERROR MESSAGES

Figure 2.8: Overview of PARCOACH

Table 2.2: Compliance Results

Benchmark Language Lines of code Thread level Min thread level Compliantprovided required
BT-MZ Fortran 6,779 SINGLE SINGLE yes
SP-MZ Fortran 4,862 SINGLE SINGLE yes
LU-MZ Fortran 6,542 SINGLE SINGLE yes

AMG2013 C 75,000 SINGLE SINGLE yes
LULESH C 5,000 SINGLE SINGLE yes
miniFE C++ 50,000 SINGLE SINGLE yes
HACC C++ 35,000 SINGLE SINGLE yes
SNAP Fortran 3,000 SINGLE SINGLE yes
HERA C++ 500,000 SERIALIZED SERIALIZED yes

between a basic serial compilation and a serial compilation with PARCOACH. The overhead obtained is
acceptable as it does not exceed 6%.

The analysis issues warnings at compile-time with potential error information (lines of MPI calls, line
where the dynamic check is inserted,...). With existing benchmarks, we can quantify the overhead of our
analysis but we can’t promote its functionality. As benchmarks tested are correct, PARCOACH did not find
non-compliance of thread levels. That is why we created a microbenchmarks suite containing purposely non-
compliance of MPI thread-levels to reveal PARCOACH MPI thread-levels compliance checking capability.

2.3 Revealing PARCOACH Functionalities

To assure the functionality of PARCOACH, we created a microbenchmarks suite containing MPI+OpenMP
programs written in C and MPI thread-level non-compliant. This section shows results on four hybrid pro-
grams from this microbenchmarks suite (coll_single, coll_funneled, coll_serialized, p2p_multiple). The
code of these benchmarks is depicted Figures 2.10 and 2.11.

Table 2.3: Compliance Results

Benchmark Lines of code Thread level provided Thread level required Compliant
coll_single 29 SINGLE FUNNELED no

coll_funneled 36 FUNNELED SERIALIZED no
coll_serialized 47 SERIALIZED MULTIPLE no
p2p_multiple 45 SERIALIZED MULTIPLE no

47

2.4. SUMMARY

 0

 1

 2

 3

 4

 5

 6

BT-MZ SP-MZ LU-MZ AMG2013 LULESH miniFE HACC SNAP HERA BenchError

O
v
e
rh

e
a
d
 i
n
 %

Compile-time overhead

Figure 2.9: Overhead of average compilation time

Notice that the MPI_THREAD_MULTIPLE level was not supported by the MPI implementation we used.
Table 2.3 shows our analysis was able to find the thread-level non-compliance in the error microbenchmarks
suite. All programs has been detected as in conformity with the standard.

The following example shows what a user can read on stderr when compiling the program coll_serialized

in function ’f’:
Warning: PARCOACH: possible non-compliance of MPI_THREAD_SERIALIZED level
Potential concurrent MPI collective calls within a process : MPI_Reduce l.11
may be called simultaneously with MPI_Reduce l.6
PARCOACH: Minimum thread-level required: MPI_THREAD_MULTIPLE
PARCOACH inserted a check after the single directive l.4
PARCOACH inserted a check after the single directive l.9

In this example the MPI_Reduces are in fact called on different communicators. As PARCOACH does
not check communicators both single regions are instrumented to check if the non-compliance of the thread
level is confirmed at runtime. In comparison, the error message returned by the dynamic tool Marmot at
runtime is the following:

Marmot finds that the code should be executed within the MPI_THREAD_FUNNELED thread level whereas
PARCOACH finds the level MPI_THREAD_MULTIPLE. The reason comes from the fact that Marmot de-
tects conformance w.r.t. one execution, and in particular to one parallel schedule. During the execution
monitored by Marmot, the SINGLE constructs are executed by the master thread leading to a serialized se-
quence of these constructs. However, from a conformance point of view, this is not correct and the thread
level MPI_THREAD_MULTIPLE as analyzed by PARCOACH should be chosen.

2.4 Summary

Supercomputers evolution encourages the development of hybrid applications. As most HPC applica-
tions are parallelized with MPI, the main solution adopted is to mix MPI with a shared memory model like
OpenMP. But this does not facilitate the debugging phase and raises the issue of models interoperability.

48

CHAPTER 2. INTERACTION BETWEEN MPI AND SHARED MEMORY MODELS

coll_single.c

1 int main(int argc, char **argv)
2 {
3 int provided, required;
4 required=MPI_THREAD_SINGLE;
5

6 MPI_Init_thread(&argc, &argv,
required ,&provided);

7

8 #pragma omp parallel
9 {

10 MPI_Barrier(MPI_COMM_WORLD);
11 }
12

13 MPI_Finalize();
14 return 0;
15 }

coll_funneled.c

1 int main(int argc, char **argv)
2 {
3 int provided, required;
4 required=MPI_THREAD_FUNNELED;
5

6 MPI_Init_thread(&argc, &argv,
required ,&provided);

7

8 #pragma omp parallel
9 {

10 #pragma omp single
11 {
12 MPI_Barrier(MPI_COMM_WORLD);
13 }
14 }
15

16 MPI_Finalize();
17 return 0;
18 }

coll_serialized.c

1 int main(int argc, char **argv)
2 {
3 int rank,res=0,temp=0, provided, required;
4 required=MPI_THREAD_SERIALIZED;
5

6 MPI_Init_thread(&argc, &argv, required, &provided);
7 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
8

9 temp=rank;
10

11 #pragma omp parallel
12 {
13 #pragma omp single nowait
14 {
15 MPI_Reduce(&temp,&res,1,MPI_INT,MPI_SUM,0,MPI_COMM_WORLD);
16 }
17 #pragma omp single
18 {
19 MPI_Reduce(&temp,&res,1,MPI_INT,MPI_SUM,0,MPI_COMM_WORLD);
20 }
21 }
22

23 MPI_Finalize();
24 return 0;
25 }

Figure 2.10: Examples of MPI thread-level non-compliant codes.

One of the MPI challenges is its interoperability with other programming models. Even if it is now
possible to profile and visualize profiles and traces for MPI+OpenMP programs, debugging tools especially
those detecting thread levels compliance are practically non-existent. To our knowledge, Marmot [96] is the

49

2.4. SUMMARY

p2p_multiple.c

1 int main(int argc, char **argv)
2 {
3 int rank, provided, required, tag=1000, buff_size=1;
4 MPI_Status status;
5 int* buff_addr1= malloc(sizeof(int)*buff_size);
6 int* buff_addr2= malloc(sizeof(int)*buff_size);
7 required=MPI_THREAD_MULTIPLE;
8

9 MPI_Init_thread(&argc, &argv, required, &provided);
10 MPI_Comm_rank(MPI_COMM_WORLD,&rank);
11

12 #pragma omp parallel
13 {
14 if(rank==0){
15 if(omp_get_thread_num()==0){
16 MPI_Recv(buff_addr1,buff_size,MPI_INT,1,0,MPI_COMM_WORLD,&status);
17 }
18 MPI_Send(buff_addr2,buff_size,MPI_INT,1,tag,MPI_COMM_WORLD);
19 }
20 if(rank==1){
21 if(omp_get_thread_num()==0){
22 MPI_Recv(buff_addr2,buff_size,MPI_INT,0,0,MPI_COMM_WORLD,&status);
23 }
24 MPI_Send(buff_addr1,buff_size,MPI_INT,0,tag,MPI_COMM_WORLD);
25 }
26 }
27

28 MPI_Finalize();
29 return 0;
30 }

Figure 2.11: Examples of MPI thread-level non-compliant codes.

only tool that provides a support for detecting violations in MPI+OpenMP programs. Marmot uses the MPI
profiling interface (PMPI) to introduce artificial data races only occuring when some constraints are violated
and detect them with the Intel Thread Checker tool. The authors define five restrictions for hybrid MPI
applications based on the definition of the thread levels mentioned in the MPI standard. The fifth restriction
is the non-violation to the provided thread level. However, as Marmot only relies on profiling, it may find
for one run that the program is non compliant to a given thread level, and for another run find its compliance
(so defining a compliance per run). The same happens for bugs, where detection may require many runs in
a profile-only approach. On the contrary, PARCOACH finds statically the possible non-compliance of the
code, pinpointing non-compliant code fragments and situations. The runtime instrumentation only checks
whether these situations occur.

We have designed a static analysis followed by a static instrumentation of MPI+OpenMP programs to
check which model interaction support is required for such an application. The analysis proposed finds the
right MPI thread level to be used and identifies code fragments that may prevent conformance to a given
level and presents a small impact on compilation-time with an overhead lower than 6%. Our method, named
PARallel COntrol flow Anomaly CHecker, has been implemented in GCC as a plugin to avoid compiler
recompilation. It supports applications written in C, C++ and Fortran and can be extended to any MPI+X
applications with X a shared memory model with perfect nested parallelism.

PARCOACH was integrated in GCC but can be used in all compilers using a CFG representation. It was

50

CHAPTER 2. INTERACTION BETWEEN MPI AND SHARED MEMORY MODELS

designed to be complementary to existing debugging tools. It then could be integrated in PMPI-based tools
like Marmot or MUST to cover other errors like calls arguments (e.g., communicators) or to report warnings
concerning the execution path responsible for bugs related to MPI thread-level compliance.

Many benchmarks exist to highlight the performance of debugging tools but there is no benchmark to
demonstrate their efficiency and compare them in term of errors detection. This lack leads us to create a
microbenchmarks suite containing wrong MPI+OpenMP programs. This error microbenchmarks suite will
be used to validate all PARCOACH functionnalities.

This chapter aims at detecting a wrong MPI initialization in MPI+OpenMP applications. Verify the in-
teraction between programming models is the first step to debug an hybrid application. Once the right
interaction of models ensured, the correctness of each model can be checked separately. The next chapter
suggests an adaptation of the method detecting MPI thread-level non-compliance to detect misuse of MPI
and OpenMP collectives (MPI collective communications, OpenMP barriers and worksharing constructs) as
soon as possible.

51

2.4. SUMMARY

52

Chapter 3

Detection of Collective Errors Origin in
Parallel Applications

When a bug occurs in an application it is generally difficult to identify what caused it. This is particularly
true in parallel applications. Sections 1.2.3 and 1.2.4 have provided a state of the art about debugging tools
for MPI and OpenMP applications. We noticed a lack regarding the detection of errors as soon as possible.
Thus in this chapter, we took an active interest in the identification of errors origin in the source code as well
as in the development cycle of an application.

MPI and OpenMP models have collectives constraints meaning that tasks of the considered model have
to encounter the same sequence of collectives in the same order. In MPI, collectives are blocking and non-
blocking collective operations and in OpenMP, collectives are threads synchronizations and worksharing
constructs. This chapter describes the extension of the method introduced in the previous chapter to detect
the origin of collective errors in MPI and OpenMP applications. Its content has been published in articles
[97–99] and is reproduced in this chapter.

3.1 Combining Static and Dynamic Analyses to Find the Origin of MPI Col-
lective Errors

Nowadays most of scientific applications are parallelized based on MPI communications. The MPI stan-
dard requires that MPI collective communications have to be executed in the same order by all processes
in their communicator and the same number of times, otherwise they do not conform to the standard and
a deadlock or other undefined behavior can occur. As soon as the control flow involving these collective
operations becomes more complex, in particular including conditionals on process ranks, ensuring the cor-
rection of such code is error-prone. In this section, we focus on detecting blocking and non-blocking MPI
collective operations errors in Single Program Multiple Data applications, assuming MPI calls are not nested
in multithreaded regions.

Based on the distributed-memory paradigm, this model exposes multiple ways to express communications
between tasks/processes including point-to-point and collective. While point-to-point functions involve only
two tasks, collective communications require that all processes in a communicator invoke the same opera-
tion. Each process does not have to statically invoke such collective function at the same line of the source
code, but the sequences of collective calls in all MPI processes must be the same and corresponding function
calls should have a compatible set of arguments. Due to the control flow inside an MPI program, processes
may execute different execution paths. Such behavior may cause errors and deadlocks difficult for the user
to detect and analyze.

53

3.1. COMBINING STATIC AND DYNAMIC ANALYSES TO FIND THE ORIGIN OF MPI COLLECTIVE
ERRORS

A simple example

1 void f(int r) {
2 if(r == 0)
3 MPI_Barrier(

MPI_COMM_WORLD);
4 return;
5 }
6 void g(int r) {
7 f(r);
8 MPI_Barrier(MPI_COMM_WORLD

);
9 exit(0);

10 }

The instrumented simple example

1 void f(int r) {
2 int res;
3 if(r == 0) {
4 MPI_Reduce(1,&res,1,MPI_INT,equalsop

,0,MPI_COMM_WORLD);
5 if (rank==0 && res == -1)
6 MPI_Abort(MPI_COMM_WORLD,0);
7 MPI_Barrier(MPI_COMM_WORLD);
8 }
9 MPI_Reduce(0,&res,1,MPI_INT,equalsop,0,

MPI_COMM_WORLD);
10 if (rank==0 && res == -1)
11 MPI_Abort(MPI_COMM_WORLD,0);
12 return;
13 }

Figure 3.1: A simple example and its instrumentation

The following simple example (Listing 3.1) illustrates the potential issues with collective communica-
tions. Assume here that g is called by all processes. Depending on the value of the input parameter r, a
process will execute or not the barrier in the if statement in f. If r is not uniformly true or false among
MPI processes, some tasks will be blocked in f while the remaining process ranks will reach the barrier in
g. These processes will then terminate, while the first ones will be in a deadlock situation at the barrier in g.
The machine state when the deadlock occurs does not help to identify the cause of the deadlock. As the value
of r is unknown at compile time and might be the same for every MPI process, the dynamic state of control
flow has to be checked in order to prevent from entering a deadlock state. Transforming the previous example
would lead to the code presented in Listing 3.2. Notice that the function g does not need to be transformed
since it does not introduce a collective that may be the cause of a deadlock or an unspecified behavior. In
order to partition processes according to their behavior regarding the conditional in f, two calls to the collec-
tive MPI_Reduce with the equalsop operation (bit equality checking) are inserted in the code: One before
the barrier operation with the input value 1 (1st parameter of the call), and one before the return state-
ment with the input value 0. All processes call the MPI_Reduce collective, whatever their execution path.
However, input values should be the same, otherwise the function is incorrect and MPI_Abort is issued in
order to prevent from deadlocking. We consider only monothreaded MPI programs (the analysis also works
on multithreaded programs if all MPI collectives are performed in monothreaded regions). In our context a
function is said to be correct regarding collective communications if all MPI processes entering the function
eventually exit without leaving any process blocked inside a collective operation or in a completion call for
non-blocking operations. Whenever a function contains a collective in a loop, the function is considered as
incorrect.

While it is possible to match a blocking send (resp. nonblocking send) with a nonblocking receive
(resp. blocking receive), it is not possible to do the same with collective operations. The MPI-3 API
clearly states that Nonblocking collective operations do not match with blocking collective operation [...].
All processes must call collective operation (blocking and nonblocking) in the same order per communi-
cator ([7], page 198 lines 1-4). For example, a call to a MPI_Barrier on some processes can not
match with a MPI_Ibarrier on the remaining processes. They should encounter at some point a call
to MPI_Barrier for the collective operation to be valid.

As our analysis is focused on the detection of mismatching collectives, other possible sources of dead-
lock (e.g., infinite loops, blocking IOs and other deadlocks) which would require dedicated analysis are not

54

CHAPTER 3. DETECTION OF COLLECTIVE ERRORS ORIGIN IN PARALLEL APPLICATIONS

checked. While all types of blocking and non-blocking collectives are handled, collective operations are
assumed to be called on the same communicators, with compatible arguments.

To prove an MPI program is correct, the method is decomposed into two phases: A compile-time ver-
ification and an execution-time verification. All source code functions are either proved statically correct,
or potentially incorrect, depending on the control flow. Correct functions are filtered out and the code of
the remaining functions is transformed to prevent deadlock situations. Only functions with collective calls
that can deadlock are instrumented. This filtering approach avoids systematic instrumentation, thus reducing
the overhead due to the dynamic analysis. When a deadlock situation occurs in a run, an error message
is returned with information gathered at compile-time: The location and the type of the collective and the
control-flow code responsible for this situation.

3.1.1 Compile-Time Verification

The principle of the proposed static analysis is to detect functions that have paths with different sequences
of collectives (either not the same number or not the same collectives). When two such paths are found, the
node responsible for this possible control flow divergence leading to deadlock is identified. First, the CFG
is augmented as in Algorithm 1, page 38 to only highlight collective nodes (nodes containing a collective
operation). Algorithm 12 details the compile-time analysis to detect if a function is correct. The algorithm
takes as input the CFG of the current function and outputs nodes that may lead to collective errors and their
collectives that may deadlock (set O). This set will be given as parameter for a code instrumentation. Note
that the algorithm can handle any MPI collective operation, and based on our context, only the name of the
collective is used in the algorithm.

Algorithm 12 Step 1 - Static Pass
1: function Static_Pass(G = (V, E)) . G: CFG
2: O← ∅ . Output set
3: Remove loop backedges in G to compute execution orders for nodes with collectives
4: for r in node orders do
5: for c in collective names of execution order r do
6: Cr,c ← {u ∈ V |r is the max. execution order of u, u executes a collective with name c}
7: if PDF+(Cr,c) , ∅ then
8: O← O ∪ (c, PDF+(Cr,c))
9: end if

10: end for
11: end for
12: for each collective c in a loop do
13: O← O ∪ (c, {loop exit nodes})
14: end for
15: Output nodes in O as warnings and for Step 2.
16: end function

The main steps of the algorithm are the following: we compute for each node of the CFG the number
of collectives on the execution paths from the function entry to the node. This number is 0 for nodes before
the first collective (including the node with the first collective), 1 for nodes reached after one collective and
so on. When multiple paths exist, nodes can have multiple numbers, at most the number of collectives in
the function. Loop backedges are removed to have a finite numbering and the algorithm is applied to the
CFG of each loop separately. For nodes with collectives, these numbers define an execution order between
collectives within a function. Collectives with different numbers are executed sequentially while directives
with the same number can be executed in parallel. These numbers are called in the following execution

55

3.1. COMBINING STATIC AND DYNAMIC ANALYSES TO FIND THE ORIGIN OF MPI COLLECTIVE
ERRORS

orders. If the same node has multiple execution orders, only the highest one is considered.
In a correct function (from a static point of view), for any given order k, all execution paths from entry

to exit should traverse the nodes of order k with the same collective operation. Conversly a function is not
correct if there are nodes with out-going paths traversing nodes of execution order k and other paths that
do not traverse nodes of order k or with different collectives. It should be noted that whenever a function
contains a collective call in a loop, it is considered as statically incorrect. The analysis does not account the
number of iteration as this information is unknown at compile time. To address that, a data-flow analysis is
needed.

Nodes corresponding to possible control-flow divergence leading to deadlocks can be computed using
the iterated postdominance frontier [109]. A node u postdominates a node v if all paths from v to exit
go through u. We extend this relation to sets: A set U postdominates a node v if all paths from v to exit go
through at least one node of U. The postdominance frontier of a node u, PDF(u) is the set of all nodes v such
that u postdominates a successor of v but does not strictly postdominate v. If� denotes the postdominance
relation,

PDF(u) = {v | ∃ w ∈ S UCC(v), u � w and u 4 v}

In other words all paths from w to the exit node go through u. On the contrary v is not postdominated by u
so there exists a path from v to exit node that does not traverse u.

This notion is extended to a set of nodes U,

PDF(U) = {v | ∃ w ∈ S UCC(v),∀u ∈ U, u � w and u 4 v}.

All paths from w to the exit node go through a node u in the set U. On the contrary v is not postdominated
by any node u in U so there exists a path from v to exit node that does not traverse a node in U. The
iterated postdominance frontier PDF+ is defined as the transitive closure of PDF, when considered as a
relation [109].

Algorithm 12 describes this computation applied to each function and loop, entry and exit being then
defined as loop entry and exit. The execution order computation corresponds to a simple traversal of the
acyclic CFG, counting traversed nodes with collectives. Then for each execution order r, the nodes calling the
same function c, at order r are clustered into Cr,c. The iterated postdominance frontier of this set corresponds
to nodes that can lead both to the execution of such collective or not.

Lemma 1. Algorithm 12 statically detects all deadlock situations due to a collective operation.

Proof. We prove that the algorithm computes a non-empty set O if and only if the function is incorrect,
and nodes in O correspond exactly to the nodes that can lead to a deadlock. We recall that the algorithm
is applied at compile-time and regarding collective communications, a function is said to be correct if all
MPI processes entering a function eventually exit without leaving any process blocked inside a collective
operation.

Consider an element (c, S) of O, with c a collective and S the set PDF+(Cr,c) for some order r. If u
denotes a node from S, there is an outgoing path from u that goes through c of order r, and another path that
reaches the exit node without going through a collective c of same order. If the second path never reaches
a collective c (any order) and if both paths are executed by different tasks, then some tasks will wait at
the collective c while the other tasks will either wait at another collective (a deadlock) or exit the function
(incorrect function). In both cases, the function is incorrect. If both paths traverse the same collective c,
since the orders are different, one of the paths has more collectives c than the other. Again, this leads to an
incorrect function. The algorithm is applied on each loop separately. This separate analysis identifies at least
loop exit nodes as control-flow nodes that may be responsible for deadlocks, when the loop calls collectives.
Indeed, static analysis does not count iterations and collectives in loops may be executed a different number
of times for each process.

Now consider an incorrect function: when executing this function with multiple tasks, some tasks may
reach the exit node while other tasks are waiting at a collective c inside the function. If this collective is

56

CHAPTER 3. DETECTION OF COLLECTIVE ERRORS ORIGIN IN PARALLEL APPLICATIONS

entry

1

2

3-Barrier 4-Barrier

5-Barrier

exit

0

0
0 0

0 or 1

(a) CFG 1

entry

1

2-Barrier

3

exit

(b) CFG 2

entry

1

2

3 4-Barrier

5

6

7-Barrier 8

9

exit

(c) CFG 3

entry

1

2-Barrier 3-Ibarrier

4

exit

(d) CFG 4

Figure 3.2: Example of Control Flow Graphs. From the left, a CFG showing execution orders,
CFG of function f and two other CFGs

entry

1

2

3-Barrier

4

5

6

7-Barrier 8-Barrier

9

11

10-Allreduce

12
13

exit

(a) CFG 5 before Algorithm 12 pass

entry

1

2

CC(com, iB, S B)

3-Barrier

4
5

6

CC(com, iB, S B)

7-Barrier

CC(com, iB, S B)

8-Barrier

9
11

CC(com, iA, S A)

10-Allreduce

1213

CC(com, 0, S ∅)

CC(com, 0, S ∅)

exit

(b) CFG 5 instrumented (see Algo. 13)

Figure 3.3: Example of a CFG from a Benchmark and their instrumentation (see Algorithm 13)

inside a loop, loop exit nodes are considered as control-flow nodes that may be responsible for deadlocks
and are inserted in O (S contains loop exit nodes and c the collective in the loop). If this collective is not
inside a loop, by definition of the execution order, this implies that the exit node and the node with the
collective c have the same execution order r. As nodes may have multiple execution orders, let us consider
the smallest r. There is a collective c′ of order r such that the set of nodes Cr,c′ is not empty. Besides,
PDF+(Cr,c′) , ∅ since there is a path to the exit that does not traverse the rth collective. Hence Algorithm
1 detects the function as incorrect. A similar proof holds for the case where the tasks are executing two
different type of collectives. �

Figure 3.2(a) shows an example of execution orders (numbers near each node) computation for a simple
CFG. MPI_Barrier node 5 can be the first collective called (path entry→1→5) or the second one (path en-
try→1→2→3 or 4→ 5). On this CFG, the set of nodes {3, 4} postdominates node 2: {3, 4} � 2 but {3, 4} 4 1
so node 1 is in the iterated postdominance frontier of the set of nodes {3, 4}: PDF+({3, 4}) = {1}. This node
may be responsible for a deadlock, while 2 is not. Figure 3.2(b) depicts the CFG extracted from the simple
example Figure 3.1. It contains 3 nodes: The first one represents the if statement while the second one

57

3.1. COMBINING STATIC AND DYNAMIC ANALYSES TO FIND THE ORIGIN OF MPI COLLECTIVE
ERRORS

contains the if body with the collective call. Finally the last one denotes the return instruction. The
algorithm considers the set C0,Barrier = {2} corresponding to the collective MPI_Barrier. As its iter-
ated postdominance frontier is node 1, the algorithm outputs a warning for the condition located in node 1
and flags the collective MPI_Barrier for the following dynamic analysis (set O). Figure 3.2(c) presents
a CFG containing two MPI_Barrier nodes 4 and 7. These nodes are of order 0. C0,Barrier = {4, 7}
and PDF+(C0,Barrier) = {2, 6, 1}. The CFG Figure 3.2(d) contains two collective nodes. Node 2 has
a MPI_Barrier while node 3 has a MPI_Ibarrier. The algorithm computes C0,Barrier = {2} and
C0,Ibarrier = {3}. The iterated postdominance frontiers of both sets contain node 1. Node 1 can potentially
be the cause of a deadlock. Figure 3.3(a) presents another CFG extracted from a real benchmark. This
example contains 2 collectives: MPI_Barrier (nodes 3, 7 and 8) and MPI_Allreduce (node 10). The
algorithm first removes the backedge 5 → 2 from the loop and computes orders. Nodes 7, 8 are of order 0,
10 of order 1. For the collectives in C0,Barrier = {7, 8}, the iterated postdominance frontier corresponds to
node 1. Note that node 6 is postdominated by the set {7, 8} according to the definition of previous section.
C1,Allreduce contains only node 10 and PDF+(C1,Allreduce) = {1, 9, 11}. Indeed from these nodes, it is
possible to execute the MPI_Allreduce or not. Finally, the same algorithm is applied once more on the
graph with nodes {2, 3, 4, 5} corresponding to the loop, without the backedge. Node 2 is marked as entry and
exit. This node is the only one in the iterated postdominance frontier of the barrier in node 3. To sum up,
node 1 decides of the number of execution of barriers in 7, 8, nodes 9, 11 decide of the number of execution
of MPI_Allreduce and node 2 is responsible for the number of barriers executed in node 3.

Potential errors reported by the static analysis can be false positives relatively to the global CFG that is
possibly not correlated with the actual control flow. Our static analysis only returns candidate nodes which
can possibly lead to a deadlock as we favoured a filtering approach in order to avoid the combinatorial aspect
of execution simulation. To deal with false positive results caused by the compiler, a static instrumentation
of the source code takes place to check at execution-time if warnings outputed by the static analysis will
eventually lead to an error.

3.1.2 Static Instrumentation for Execution-Time Verification

The code fragments leading potentially to incorrect functions and detected with the previous analysis
are transformed in order to raise an error message at the execution time: whenever MPI processes take
execution paths that cannot lead to the same number of collectives, in the same order, the program stops.
This subsection presents the code transformation involved.

Some potential errors may depend on the control flow taken by the different processes. The main idea is to
modify the code so that before each MPI collective call, we check that all processes within the communicator
are about to call the same collective. Besides, we also check that when a process is going to exit the function,
all processes are exiting. This is achieved by a function, CC that counts the number of processes that are going
to execute a given collective operation or to exit the function in which the MPI collective operation is invoked.
CC is also a collective operation, as it gathers the processes of the communicator into groups depending on
what they are going to call (collective type or exit). Function CC is depicted in Algorithm 14. It takes as
input the communicator related to the collective call c, an integer ic identifying the type of collective and the
set of nodes generated by the previous algorithm (see the compile-time verification). We define a new MPI
operator named equalsop which returns −1 if there is at least two different integer among processes. Relying
on the CC function, Algorithm 13 describes the instrumentation for the execution-time verification. The
function INSTRUMENTATION is called on MPI_COMM_WORLD. For each node n containing a call to the
collective c, MPI_Reduce is called just before calling c. The root process provides the combined value and
test if all processes have the same input value. If input values are different among all processes, an error is
issued and the program is aborted through a call to MPI_Abort. This process is repeated for each collective

58

CHAPTER 3. DETECTION OF COLLECTIVE ERRORS ORIGIN IN PARALLEL APPLICATIONS

operation c in the set O. Finally, in the closest node of collective nodes that postdominates and joins all paths
of the CFG, MPI_Reduce with the input value 0 is added to eventually catch up processes not calling any
additional collective. An example of CFG instrumented is presented Figure 3.3(b).

Algorithm 13 Step 2 - Selective Static Instrumentation
1: function Instrumentation(communicator,G,O) . G: CFG, O: set created by Algorithm 12
2: for (c, S) ∈ O do
3: for n in nodes containing a call to collective c do
4: Insert call to CC(communicator, ic, S) before the call to c
5: end for
6: end for
7: Insert call to CC(communicator, 0, ∅) before return statements
8: end function

Algorithm 14 Library Function To Check Collectives (CC)
1: function CC(communicator, ic, S)
2: int rank, res
3: MPI_Comm_rank(communicator,&rank)
4: MPI_Reduce(&ic,&res, 1,MPI_INT, equalsop, 0, communicator)
5: if rank == 0 && res == −1 then
6: Display error for all nodes in S
7: MPI_Abort(communicator,0)
8: end if
9: end function

Lemma 2. Algorithm 13 is correct: all deadlock situations are captured by the instrumentation and the new
collectives inserted do not generate a deadlock themselves.

Proof. We define a control sequence as the sequence of collective calls executed by a process in a program
execution. For an execution of a given function, a control sequence is denoted as c1c2..cn with ci the i-th col-
lective called. Algorithm 13 rewrites each collective c j from the set O into s jc j corresponding to the function
MPI_Reduce called by CC based on the color j and the initial collective c j. The function MPI_Reduce
with color 0 denoted as s0 is added after all collective nodes. To ease the proof, we will assume that this con-
ditional rewriting, performed only for collectives found by the static analysis, is conducted for all collectives
of the control sequence. Consequently, a sequence c1..cn becomes s1c1..sncns0. If all control sequences are
the same for all processes, the function executes with no deadlock. By applying Algorithm 13, the modified
control sequences are still identical, this algorithm does not introduce deadlocks. If a function deadlocks due
to collective operations,

• Either a process calls a collective communication ci while another process calls a collective function
ck with k , i. The control sequence of both processes differ only with their last collective, ck and ci,
and both are prefixed by c1..ci−1.

• Or a process calls a collective communication while another one exits the function (a deadlock may
occur at a later point in the execution or outside of the function). The control sequence of the process
exiting the function is c1..ci−1 and the process inside the function executes the same prefix sequence
with one more collective ci.

In the first case, the algorithm changes both control sequences into s1c1..si−1ci−1si and s1c1..si−1ci−1sk. These
sequences stop with si and sk since CC(x,i) and CC(x,k) lead to an error detection and abort. Hence the

59

3.1. COMBINING STATIC AND DYNAMIC ANALYSES TO FIND THE ORIGIN OF MPI COLLECTIVE
ERRORS

modified function no longer deadlocks. In the second case, the algorithm changes both control sequences
into s1c1..si−1ci−1si for the process inside the function, and s1c1.. si−1ci−1s0 for the one trying to leave the
function. Note that the process is stopped before leaving the function since CC(x,i) and CC(x,0) both abort,
generating an error message. Again, the modified function does not deadlock anymore.

To conclude, Algorithm 13 is indeed correct and prevents all deadlock situations. �

3.1.3 Evaluation

The analyses were integrated in the PARCOACH tool. The pass applies Algorithms 12 and 13. This
section presents experimental results obtained on representative C++ MPI applications: EulerMHD [110],
solving the Euler and ideal magnetohydrodynamics equations both at high order on a 2D Cartesian mesh
and HERA [108], a large multi-physics AMR hydrocode platform. We also selected six benchmarks from
the MPI NAS Parallel benchmarks [104] (NASPB v3.2) using class C to test both C and Fortran programs.
The error benchmark suite introduced in the previous chapter was extended with MPI programs following
the errors categories depicted in [48] (deadlocks, data races, mismatches, resource handling, memory and
portability).

CC Function Implementation

The goal of the CC function that checks MPI collective operations at runtime is to gather MPI pro-
cesses calling the same collective call. For that purpose, we can split the communicator through a call to
MPI_Comm_split, gather or reduce information about collectives with MPI_Allgather, MPI_Gather,
MPI_Allreduce or MPI_Reduce, the best approach depending on the implementation. To determine
which MPI function performs better, we used the Intel MPI Benchmark suite [111] (IMB) v3.2.3 with a 4B
message as we only want to send an integer related to the type of the collective about to be called. Figure 3.4
shows the time spent in each candidate function for a range of MPI processes. In this figure, MPI_Reduce
seems to be the most scalable [112]. Hence we opted for this function.

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

T
im

e
 (

µ
s
)

MPI Processes

Reduce
Gather

Comm split
Allreduce
Allgather

Figure 3.4: Execution time of collective calls from IMB

Static Check Results

At compile time, a warning is returned to the programmer when a potential deadlock situation is detected.
The following example shows what a user can read on stderr for NAS benchmark IS:

60

CHAPTER 3. DETECTION OF COLLECTIVE ERRORS ORIGIN IN PARALLEL APPLICATIONS

Benchmark #coll. calls #nodes in S % instrumented collectives #calls to CC
EulerMHD 14 14 36% 26

BT 10 5 78% 8
LU 16 2 14% 6
SP 9 5 75% 7
IS 5 2 40% 3

CG 2 0 0% 0
FT 10 0 0% 0

HERA 644 578 84% 3,255

Table 3.1: Compilation and Execution Results of MPI Applications

is.c:In function ‘main’:
is.c:1093:1: warning: STATIC-CHECK: MPI_Reduce may not be called by all
processes in the communicator because of the conditional line 923 - Check
inserted before MPI_Reduce line 994

This warning provides the name of the collective that may deadlock (MPI_Reduce) and the line of
the conditional leading to the collective call (line 923). This collective call is instrumented at line 994 as
described in Algorithm 13. In this case, a test over the number of processes which if higher than 512
produces an error requesting a lower number of processes, before finalizing the program. This particular
warning does not lead to a deadlock as all processes inside the same communicator share the same value for
MPI_Comm_size. However, notice that the line number where the control flow divergence may occur is
not close to the collective call: The conditional that may be responsible for a deadlock in a MPI_Reduce is
71 lines far from the collective.

Figure 3.5 details the overhead of compilation time when activating our GCC plugin. This overhead
remains acceptable as it does not exceed 5% for HERA. It is presented with and without the code generation
which accounts for the insertion of CC function calls (see Algorithm 14). This specific step is mainly
responsible for the overhead except for CG and FT. Indeed, according to the static analysis, these benchmarks
are correct, so no collective operation is instrumented. For each benchmark, Table 3.1 presents the number
of static calls to a collective communication and the number of nodes found by Algorithm 12 (set S =

∪(PDF+(Cr,c) ∈ O)). The location of the static analysis in the compilation chain explains the high number
of collective calls found in HERA. Indeed, C++ templates are instantiated and, therefore, duplicated before
entering the middle-end part of GCC. For all nodes in S, the control-flow does not depend on process ranks
and the functions are correct. Nevertheless, this table shows that the static analysis is able to reduce the
amount of instrumentation needed to check the collective patterns (third column). Reducing further the
number of instrumented collectives would require an inter-procedural data-flow analysis on the nodes in S .

Execution Results

Figure 3.7(a) shows the overhead obtained for NASPB class C from 4 to 512 cores (CG and FT have no
overhead as no collective is instrumented). The overhead does not exceed 18% and tends to slightly increase
with the number of cores. Figure 3.7(b) presents weak-scaling results for EulerMHD from 1 to 1,280 cores
where the overhead remains comparable with a higher overhead as it is related to the number of CC calls,
with the same increasing trend. Figure 3.6 presents the overhead obtained for HERA from 1 to 384 cores.
The overhead also increases with the number of processes and does not exceed 12%. Highest execution
times are of the order of 10 min for the benchmarks. The last column of Table 3.1 depicts the number of
calls to the CC function during the execution of the benchmarks. Processes about to call collectives identified
as potential deadlock sources are counted. If some processes are missing, the abort function is called to stop
the program before deadlocking. An error is printed to stderr with the line number, the collective name

61

3.1. COMBINING STATIC AND DYNAMIC ANALYSES TO FIND THE ORIGIN OF MPI COLLECTIVE
ERRORS

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

EulerMHD IS CG BT SP LU FT HERA

O
v
e

rh
e

a
d

 i
n

 %

Benchmark

Without verification code generation
With verification code generation

Figure 3.5: Overhead of average compilation time with and without verification code generation
(CC functions insertion)

0

2

4

6

8

10

12

14

16

1 4 32 64 192 256 320 448 1024 1120 1280 1376 1504 1600

O
ve

rh
e
a
d
 in

 %

MPI processes

Figure 3.6: Execution time overhead for HERA with strong scaling

and conditionals responsible (informations gathered at compile-time):

DYNAMIC-CHECK: Error detected on rank 0 - Abort is invoking before MPI_Barrier
line 47 in function f (program.c)

DYNAMIC-CHECK: See warnings about conditional(s) line(s) 45

This section presented an application of the PARCOACH two-phase analysis to detect incorrect collective
patterns in MPI programs. The first pass statically identifies the reduced set of MPI collective communi-
cations that may eventually lead to potential deadlock situations, and issues warnings. Using this analysis,
a selective instrumentation of the code is achieved, displaying an error, synchronously interrupting all pro-
cesses, if the schedule leads to a deadlock situation. The compile-time overhead obtained is very low (5%).
Dealing with the runtime overhead, it could be non-negligible at larger scale as PARCOACH adds collectives
for instrumentation. However, with the help of collective selection, the runtime overhead remains acceptable
(less than 20%) at a representative scale on a C++ application.

The next section presents the detection of the origin of improper uses of OpenMP barriers and workshar-
ing constructs (single, for, section, workshare) in OpenMP applications. Thread barriers and
worksharing constructs are considered as collectives and present the same constraint as MPI collective oper-
ations.

62

CHAPTER 3. DETECTION OF COLLECTIVE ERRORS ORIGIN IN PARALLEL APPLICATIONS

0

1

2

3

4

5

6

7

8

9

10

4 8 16 32 36 64 100 128 196 256 324 484 512

O
v
e
rh

e
a
d
 i
n
 %

MPI processes

IS
LU
SP
BT

(a) Execution time overhead for NASPB

0

2

4

6

8

10

12

14

16

18

20

1 128 256 384 512 640 768 896 1024 1152 1280

O
v
e
rh

e
a
d
 i
n
 %

MPI processes

(b) Execution time overhead for EulerMHD

Figure 3.7: Execution time overhead for NASPB class C with strong scaling and for EulerMHD
with weak scaling

3.2 Combining Static and Dynamic Analyses to Find the Origin of OpenMP
Collective Errors

OpenMP is a popular parallel programming model for shared memory machines that aims at making
parallel programming easier. However there are a number of improper uses of worksharing constructs and
barriers that are not statically detected by compilers and may lead to deadlock or unspecified behavior. This
section presents how the two-step method used in PARCOACH can detect the control flow codes responsible
of improper uses of barriers and worksharing constructs in OpenMP applications.

The OpenMP specification requires that all threads of a team must execute the same sequence of work-
sharing constructs and barriers [29]. However in practice no error occurs when all threads of a team do not
execute exactly the same barrier. That is why we authorize threads synchronizations with different barriers
and defined two verbosity levels (0 and 1) defining soft and hard barriers verifications. To show the difficulty
to enforce this constraint in OpenMP codes, consider the motivating examples in Figure 3.8. In function f of
the deadlock situation 1, each thread may or may not encounter the single construct line 9, depending on
the control flow (line 6). According to the OpenMP specification, all threads in a team should encounter the
same single, or none of them. However, compiling this code and executing it does not lead to a syntactic
error but to a deadlock. Indeed, if the result of the conditional is not the same among all threads, the first
barrier executed will be for some threads the implicit barrier line 12 (end of single) while for others, it
will be the explicit barrier line 14. Then the first group of threads will stop at the explicit barrier line 14 while
the second group will stop at the barrier related to the end of the parallel region. Finally, the first set
of threads will be released and eventually deadlock at this last barrier. Note that if we modify this example
by adding an else statement with another single, the code is still potentially erroneous since all threads
should encounter the same single. A more complex case appears in the deadlock situation 2. A deadlock
can occur at the end of the parallel region of function main because of the conditional line 12. Depending
on the control flow the barrier in f may be not encountered by all threads. The error is more difficult to detect
and an interprocedural analysis is required. This illustrates the fact that the machine state does not help to
identify the cause of deadlocks (in these two examples, conditionals).

63

3.2. COMBINING STATIC AND DYNAMIC ANALYSES TO FIND THE ORIGIN OF OPENMP COLLECTIVE
ERRORS

Deadlock Situation 1

1 void f(){
2 if(...)
3 {
4 #pragma omp parallel
5 {
6 if(...)
7 {
8 /*...*/
9 #pragma omp single

10 {
11 /*...*/
12 }
13 }
14 #pragma omp barrier
15 /*...*/
16 }
17 }
18 }

Deadlock Situation 2

1 void f() {
2 /*...*/
3 #pragma omp barrier
4 return;
5 }
6

7 int main() {
8 int r;
9 #pragma omp parallel private(r)

10 {
11 r=...;
12 if(r == 0)
13 f();
14 }
15 exit(0);
16 }

Figure 3.8: Examples of deadlock situation in OpenMP programs

3.2.1 Checking OpenMP Directives and Control Flow

In OpenMP programs, the threads of a team can synchronize through the #pragma omp barrier
directive or at an implicit barrier at the end of worksharing regions (unless a nowait clause is specified).
Worksharing constructs distribute the execution of the associated region among the threads of a team [29].
Worksharing constructs are loop, sections, single and workshare constructs. The OpenMP specification gives
some restrictions to barriers and worksharing constructs. Indeed, each barrier/worksharing region must be
encountered by all threads in a team or by none at all, unless cancellation has been requested for the innermost
enclosing parallel region ([29] Sections 2.7, p.53 and 2.12.3, p.124). However, due to the control flow inside
an OpenMP program, the threads may execute different execution paths with different numbers of barriers
and worksharing regions. Such behavior can lead to a deadlock or unspecified behaviors.

The principle of the static analysis we propose is the following. For each function of the code, we check
that for all threads entering the function and for all teams created within it, the same number of barriers
are executed, whatever the execution path taken by the threads. If the number of barriers may depend on
the control flow, the control structures responsible for this are shown with a warning. This is a conservative
approach, since we do not check that the conditional of an if statement for instance is dependent on the ID of
the threads. Moreover, we check that worksharing constructs may not be conditionally executed, potentially
leading to unspecified behaviors. This intra-procedural analysis on barriers and worksharing constructs is
complemented by a simple inter-procedural analysis: User-defined functions are subsumed by the number
of worksharing constructs and barriers executed by the entering threads. This captures all potential improper
uses of barriers and worksharing constructs.

The program to analyze is represented using the OMPCFG intermediate representation, briefly described
in the following section. Then the intra- and inter-analyses are presented.

Intermediate Representation: OMPCFG

Lin [78] extended the notion of CFG to a representation for parallel OpenMP programs, called OMPCFG.
Each node of the OMPCFG represents a basic block (basic nodes) or an individual block containing an

64

CHAPTER 3. DETECTION OF COLLECTIVE ERRORS ORIGIN IN PARALLEL APPLICATIONS

OpenMP directive (directive nodes). In the OMPCFG, implicit barriers are made explicit and each com-
bined parallel worksharing construct is separated into a nowait worksharing construct nested in a parallel
region. Moreover the OMPCFG has a single Entry and single Exit nodes. New edges are inserted between
basic nodes and directive nodes according to OpenMP semantics. As a result, the master directive is rep-
resented as a conditional. Table 3.2 lists the OpenMP directives and their corresponding directive node in
the OMPCFG. Note that Lin also adds edges from the end construct directive to the begin construct directive
nodes denoted as construct edges. These edges are not considered here as they do not reflect any control
flow.

Table 3.2: Directive nodes in the OMPCFG

Directive name Control flow Worksharing
construct

parallel, critical, atomic, section, barrier, ordered, lineartask, taskwait, taskyield
master if/else

for, single if/else ∗

sections, workshare switch/case ∗

Figure 3.9 shows examples of OMPCFG. All directive nodes containing a barrier are represented as
thick nodes and all directive nodes containing a worksharing construct are colored in gray. Directive nodes
containing a parallel construct are considered as barriers but are not considered in our Algorithms. Out
of clarity, implicit barriers at the end of worksharing and parallel regions are not designated by barriers but
by region-name end.

void f()
{

#pragma omp parallel
{

#pragma omp single
{

/*...*/
}
/*...*/

}
}

(a) Source code

entry

2 - parallel begin

3 - single begin

4

6 - single end

7

8 - parallel end

exit

(b) OMPCFG

entry

2 - parallel begin

2

3 - barrier 4 - barrier

5

6 - barrier

7

8 - parallel end

exit

(c) OMPCFG with barriers

Figure 3.9: Example of a simple code (a) with its corresponding OMPCFG (b) and an example of
OMPCFG containing barriers (c)

This representation is the base of the PARCOACH compiler analysis. GCC uses a graph representation
similar to the OMPCFG from version 4.2.

3.2.2 Intra-Procedural Analysis

This section details the static verification of barriers and worksharing constructs for each function of a
program. We define two levels of verbosity for barriers verification: level 0 that returns warnings only if

65

3.2. COMBINING STATIC AND DYNAMIC ANALYSES TO FIND THE ORIGIN OF OPENMP COLLECTIVE
ERRORS

there may be an execution error and level 1 that returns warnings in strict accordance with the specification.
For the verbosity level 0, we identify barrier statements that synchronize together. To that purpose,

we introduce a number, the sequential order, counting the number of barriers traversed before reaching a
barrier. This number is assigned to each node in the OMPCFG. Two nodes with different sequential order
are sequentially ordered thanks to barriers. This number is 0 for nodes before the first barrier (including the
node with the first barrier), 1 for nodes reached after one barrier and so on. When multiple paths exist, nodes
can have multiple numbers, at most the number of barriers in the function. Loop backedges are removed
to have a finite numbering. A function is not correct if there are nodes with multiple orders. These nodes
correspond to possible control-flow divergence leading to deadlocks. In Zhang et al. [79], this notion of
sequential order corresponds to phases, computed through an inter-procedural liveness analysis and a barrier
aggregation step. While both methods can be used for our goal, our approach is simpler, more adapted to the
verification of barriers. The computation of the execution order uses the Algorithm 12, page 55.

This algorithm detects possible control-flow divergence leading to a deadlock in a MPI barrier. MPI
barriers are numbered by so-called execution ranks (similar to sequential order here). MPI barriers of same
execution rank r are put into a set Cr,c as matching MPI barriers. c is used to differentiate MPI collective
operations names. In our case, only barriers are considered so the c is useless and only Cr sets are created.
Algorithm 15 is an adaptation of this method for OpenMP barriers, from line 6 to line 12. Barriers with
multiple sequential orders are put in the set Cr with r corresponding to their maximal sequential order. For
example the OMPCFG Figure 3.9(c) contains three explicit barriers nodes 3, 4 and 6 and one implicit barrier
node 8. The sequential order for nodes 3 and 4 is 0, for node 6 , 1 and for node 8, 2. The algorithm computes
C0 = {3, 4}, C1 = {6} and C2 = {8}.

For the verbosity level 1, we verify each barrier is encountered by all threads of a team. This is described
from line 14 to line 16 in Algorithm 15.

Algorithm 15 Step 1 - OpenMP Intra-procedural Control-flow Analysis
1: function Function_verification(f , υ) . f : a function of the application
2: . υ: level of verbosity
3: Compute G = (V, E) the OMPCFG of f
4: O← ∅, O′ ← ∅ . Output sets: Conditional nodes
5: if υ = 0 then . level 0 of verbosity
6: Remove loop backedges in G and Compute sequential order of all nodes
7: for r in node orders do
8: for barriers of sequential order r do
9: Cr ← {u ∈ V |u of order r}

10: O← O ∪ (barrier, PDF+(Cr))
11: end for
12: end for
13: else . level 1 of verbosity
14: for u ∈ V s.t. u contains an explicit barrier do
15: O← O ∪ (barrier, PDF+(u))
16: end for
17: end if
18:
19: for u ∈ V s.t. u contains a worksharing construct w do
20: O′ ← O′ ∪ (w, PDF+(u))
21: end for
22: Output nodes in O and O′ as warnings
23: end function

The algorithm takes the OMPCFG of the current function and the verbosity level as input parameters
and outputs a message error for conditional nodes that may lead to a deadlock in a barrier (set O). The core
of the algorithm is based on the postdominance frontier. If barriers with the same sequential order r have a

66

CHAPTER 3. DETECTION OF COLLECTIVE ERRORS ORIGIN IN PARALLEL APPLICATIONS

non-empty PDF+ set, then some threads may not perform the nth synchronization. Due to the representation
of all worksharing constructs (as if/else or switch), barriers inside these worksharing constructs are detected
as incorrect.

The lines 19 to 21 of the algorithm detect if worksharing constructs may not be executed by all threads of
a team. For each node u containing a worksharing construct, we compute the iterated postdominance frontier
of u. If the PDF+(u) is not empty then some threads may execute the construct while others may avoid it.
The set of nodes detected are put in the set O′ for warnings.

Lemma 3. Algorithm 15 is correct: it detects all deadlock situations due to barrier and worksharing
regions.

Proof. The levels of verbosity enable a strict verification of barriers in compliance with the specification. In
that purpose Algorithm 15 detects if all threads of a team have strictly the same sequence of barriers. A soft
verification is also possible. The algorithm then verifies all threads of a team encounter the same number of
barriers. The proof has been done Section 3.1.1. Then Algorithm 15 computes the set O′ of control-flow
nodes that have execution paths with different number or type of worksharing constructs from the node to
the Exit node. We prove that nodes in O′ correspond exactly to the nodes that lead to a deadlock. �

entry

2

3 - parallel begin

4

5 - single begin

6

7 - single end

8 - barrier

9

10 - parallel end

11

exit

(a)

entry

2

3 - parallel begin

4

5 - barrier

6

7 - parallel end

exit

(b)

entry

2 - parallel begin

3

4 - do begin

5 - barrier

6

7 - do end

8

9 - parallel end

exit

(c)

Figure 3.10: Functions f OMPCFG of Listing 2.3 ((a)) and main OMPCFG of Listing 2.6 after
function f replacement ((b), see Algorithm 18) and an example of an OMPCFG with
a loop ((c))

As an example, the first OMPCFG Figure 3.10(a) contains one explicit barrier (node 8), two implicit
barriers (nodes 7 and 10) and one worksharing construct: single (node 5). Algorithm 15 computes
sequential orders. Node 7 is of sequential order 0, node 8 is of sequential orders 0 and 1 and finally node
10 is of sequential orders 1 and 2. Thus we have C0 = {7}, C1 = {8} (node 8 is in C1 as it has multiple
sequential orders) and C2 = {10}. PDF+(C1) = ∅ and PDF+(C2) = ∅ but PDF+(C0) = {4}. Node 4 is the
only node in the iterated postdominance frontier of node 7 as the conditional node 2 is outside the parallel
region. Then the conditional node 4 is returned as the possible cause of a deadlock in a barrier. For node

67

3.2. COMBINING STATIC AND DYNAMIC ANALYSES TO FIND THE ORIGIN OF OPENMP COLLECTIVE
ERRORS

5, PDF+(5) = 4. To sum up for Listing 2.3, a warning is issued for the conditional located in node 4 as
potentially leading to different barriers and worksharing constructs sequence among threads. The OMPCFG
Figure 3.10(b) contains one explicit barrier node 5 and one implicit barrier node 7. The algorithm computes
C0 = {5}, C1 = {7} and PDF+(C0) = {4}. Last, the OMPCFG Figure 3.10(c) contains one worksharing
construct node 4, one explicit barrier node 5, two implicit barriers nodes 7 and 9 and a loop (composed of
nodes 4, 5, 6, 7). First Algorithm 15 removes the loop backedge from node 7 to node 4. Then sequential
orders are computed: C0 = {5}, C1 = {7} and C2 = {9}. A warning is issued for the conditional node 4 as
PDF+(C0) = {4}. For the loop construct node 4, the iterated postdominance frontier is empty.

3.2.3 Static Instrumentation for Execution-Time Verification

A test verifying if all tasks are going to synchronize or encounter the same worksharing construct is
done before each collective OpenMP by the function CC (see Algorithm 17). Relying on the CC function,
Algorithm 16 describes the instrumentation for the execution-time verification. If there is only one thread
in the team, the code is correct. Otherwise, each thread updates ic, an integer associated to the type of the
collective they are about to call. Barriers and the end of parallel regions are differentiated. If threads of the
team are not all going to call a collective, abort is called. The atomic directive ensures shared variables are
updated by only one thread at a time.

Algorithm 16 Step 2 - Selective Static Instrumentation
1: function Instrumentation(G,O,O′) . G: CFG, O,O′: sets created by Algorithm 15
2: for (c, S) ∈ O,O′ do
3: for n in nodes containing a call to collective c do
4: Insert call to CC(c, S) before the call to c
5: end for
6: end for
7: Insert call to CC(0, ∅) before return statements
8: end function

Algorithm 17 Library Function To Check Collectives (CC)
1: function CC(c, S)
2: int ic
3: if omp_get_num_threads()!=1 then
4: # pragma omp atomic
5: ic + + . each task updates the variable relied to its barrier
6: # pragma omp barrier
7: if ic! = omp_get_num_threads() then
8: Display error for all nodes in S
9: Abort()

10: end if
11: Reset_collective_integers()
12: end if
13: end function

3.2.4 Inter-Procedural Analysis

This section describes the analysis for the whole application code. We assume the application is not using
recursion, meaning the callgraph of the application has no cycle.

The method iterates through the callgraph, in reverse topological order. It starts with functions that do not
call other functions in the code, then callers of these functions, and so forth. After the previous analysis of

68

CHAPTER 3. DETECTION OF COLLECTIVE ERRORS ORIGIN IN PARALLEL APPLICATIONS

Algorithm 15, each function retains the minimal number of barriers executed by the team of threads entering
the function (excluding the barriers executed by teams created inside the function), as well as the number of
worksharing constructs executed by this same team. These numbers are denoted nbarrier for the number
of barriers, nd for worksharing constructs (among for, worksharing, sections, single). They are
obtained through a simple traversal of the OMPCFG of the function. When a function g is called from a
function f , g is replaced by as many barriers and worksharing constructs as these values. For worksharing
constructs, only the number of constructs matters for the analysis. Indeed, we verify each callee function
with worksharing constructs are not depending on the control flow in caller functions. Then the analysis
Function_verification is called on f . These steps are described in Algorithm 18.

Algorithm 18 Step 1 - OpenMP Inter-Procedural Analysis
1: function Code_verification(CG, υ) . CG: call graph . υ: level of verbosity
2: Sort CG in reverse topological order
3: for f ∈ CG do
4: for g a callee in f do
5: Compute nd(g) for d =barrier and worksharing constructs . nd: minimal number of directives d

executed by entering threads
6: Replace g in f by nd(g) empty worksharing constructs and nbarrier(g) barriers.
7: end for
8: Compute Function_verification(f , υ)
9: end for

10: end function

(a) (b)

Figure 3.11: Callgraph of Listing 3.4 (a) and BT from NASPB-OMP (b)

Figure 3.11 shows callgraphs of Listing 3.4 and BT from the NAS parallel benchmarks OpenMP. Nodes
colored in gray are first nodes considered by Algorithm 18. In the example of the Listing 3.4 callgraph,
Algorithm 18 computes nworksharing(f) = 0 and nbarrier(f) = 0 which are the minimal numbers of barriers
and worksharing constructs in function f. Function f is then replaced by these numbers in main.

3.2.5 Evaluation

PARCOACH was enhanced to detect collective errors in OpenMP applications. The pass applies Algo-
rithms 15 and 16. This section presents experimental results on the NAS parallel Benchmarks OpenMP
(NASPB-OMP) [104] v3.2 using class B and HERA [108]. Even if the test case used by HERA is paral-
lelized with MPI+OpenMP, only the correctness of OpenMP barriers and worksharing constructs have been
checked. The error benchmark suite was extended with OpenMP programs containing the Violations of the
Standard/Nonconforming Program class depicted in [74]. The number of lines and the language of each
benchmark is presented Table 3.3.

69

3.2. COMBINING STATIC AND DYNAMIC ANALYSES TO FIND THE ORIGIN OF OPENMP COLLECTIVE
ERRORS

0.01

0.1

1

10

BT CG DC EP FT IS LU LU−HP MG SP UA HERA

O
v
e

rh
e

a
d

 i
n

 %

Figure 3.12: Overhead of average compilation time for NASPB-OMP and HERA

PARCOACH issues warnings for barriers and worksharing constructs potentially not encountered by all
threads of a team. The name of the OpenMP directive with potential improper use and the line of the
conditional leading to this situation are returned to the programmer. The following example shows what a
user can read on stderr when compiling Listing 2.3 with our plugin.

in function ’f’:
example.c: warning: STATIC-CHECK: #pragma omp single line 9 is
possibly not called by all threads because of the condition line 6

Table 3.3 shows the number of barriers and worksharing constructs found in each benchmark and the
number of nodes in the sets S and S ′ generated by Algorithm 15 with the two verbosity levels. For all
these nodes, the control flow does not depend on thread ID and therefore functions are correct. A data-flow
analysis could be done to complement our analysis to reduce the number of false positives. Indeed, a check
on the conditionals in S ∪ S ′ could help the plugin to detect control flow not depending on threads ID and
avoid false positives. This is left for future work. The table also presents first results for the inter-procedural
analysis by giving the number of functions executed in parallel with a non null minimal number of barriers
or worksharing constructs. These functions may be replaced by their callee functions in the source code to
report errors considering the entire program.

Table 3.3: Static Results for each benchmark (F=FORTRAN)

Benchmark NASPB-OMP HERABT CG DC EP FT IS LU LU-HP MG SP UA
Language F F C F F C F F F F F C++

lines 3,835 1,204 3,295 294 1,336 940 3,921 3,875 1,497 3,309 8,375 827,739
explicit

0 0 0 0 0 2 3 0 0 0 0 92barriers
worksharing 31 18 0 1 8 5 37 37 15 35 77 1,622

Verbosity 0
nodes in 0 0 0 0 0 0 0 0 0 0 0 564

S ∪ S′ Verbosity 1
0 0 0 0 0 0 0 0 0 0 0 587

functions with
3 3 0 0 0 0 8 4 2 3 15 398

(nbarrier + nd) , 0

The compile-time overhead obtained when compiling the applications and activating our plugin is shown
Figure 3.12. The overhead remains acceptable as it does not exceed 0.25% for NASPB-OMP and 10% for
HERA (caused by the size of the code, it takes 52.3 minutes to compile HERA with PARCOACH).

70

CHAPTER 3. DETECTION OF COLLECTIVE ERRORS ORIGIN IN PARALLEL APPLICATIONS

This section presented an application of the PARCOACH two-phase analysis to detect misuse of OpenMP
collectives (barriers and worksharing constructs). The intra-procedural analysis proposed verifies if all
threads entering a function and created in it have the same sequence of worksharing regions and depending
of the verbosity level, the same sequence of barriers (verbosity 1) or the same number of barriers (verbosity
0) in OpenMP applications. Potential errors are automatically returned to the user with the line of the er-
roneous conditionals by a simple analysis of the OMPCFG. Thus the user knows exactly what can cause
a deadlock and correct it. The compilation-time overhead obtained is low as it is under 10%. An inter-
procedural analysis complements the analysis for checking the whole application by considering functions
interconnections.

3.3 Summary

This chapter explains how the first version of the GCC plugin PARCOACH is extended to detect collective
errors in MPI and OpenMP applications. Our method detects incorrect functions by combining both static
and dynamic approaches.

The static analysis detects all incorrect functions of a program and issues warnings for potential errors.
Then because these potential errors might not appear during execution, the code is transformed in order to
check only the reported warnings. In the case of an actual deadlock situation, the program aborts allowing a
program state exploration with a debugger.

Like all static tools, our method has the advantage of not requiring execution of the program but can
produce false positives. PARCOACH is based on the MPI semantics and is thus independent on MPI im-
plementation. Unlike the MPI tool TASS, our static check analyzer requires no source-code modifications
since it is integrated within a compiler. Potential errors are automatically returned to the programmer with
their context (including the line of the erroneous conditional) through a low-complexity control-flow graph
analysis. However a pragma-based approach could be useful to improve our static analysis (for example by
tagging MPI rank dependent variables), thus reducing false-positive possibilities. Besides, in our approach,
the combinatorial aspect of detecting effective mismatch is avoided by the runtime check. We perform a run-
time check, taking advantage of the compile time analysis results (code locus and potential error filtering)
in order to scale to large programs, avoiding instrumentation of the whole MPI interface or systematic code
instrumentation like in MPI-CHECK. Compared to other dynamic analysis tools, our method provides more
precise errors including the conditionals responsible with our static check help. Our analysis complements
existing MPI-only debugging tools in that it focuses on detecting and avoiding collective errors.

Contrary to MPI, PARCOACH is based on GCC optimizations and thus is limited in the use of OpenMP.
Compared to existing work, in particular the method of Zhang et al. [79], our OpenMP verification technique
is fast (introducing little overhead) and able to scale to large applications. Furthermore, our analysis is lan-
guage independent and verifies woksharing-construct placements in a program. To detect possible deadlocks
we use the graph representation defined in [78]. Potential errors are automatically returned to the user with
the line of the erroneous conditionals by a simple analysis of the OMPCFG. Thus the user knows exactly
what can cause a deadlock and correct it.

Although it satisfies both scalability and functional requirements, PARCOACH is only intra-procedural
with the possible drawback of missing conditional statements out of function boundaries. A solution to move
towards inter-procedural analyses was presented for OpenMP applications. The solution consists in a traver-
sal of an application callgraph in reverse topological order. Then each function is analyzed and summarized
by the minimal number of collectives (barriers and worksharing constructs) in it. This approach follows
bottom-up approaches.

This chapter focuses on MPI and OpenMP models. However every model following the same collective
constraints can be checked by the analyses. For instance, the UPC language based on the PGAS model (see

71

3.3. SUMMARY

Section 1.1.5) has a UPC_barrier that should be called by all threads. Furthermore, PARCOACH can be
seen as a preliminary work setting the basis for a wider set of analyses combining static and dynamic aspects
and extended to hybrid (OpenMP + MPI) parallelisms. MPI and OpenMP analyses can be performed one
after the other to detect errors in MPI+OpenMP applications if these models are distinct (corresponding to
MPI_THREAD_SINGLE and MPI_THREAD_FUNNELED levels in an MPI+OpenMP program). But this
can be insufficient as some errors can occur only when models are mixed. For example concurrent MPI
collective calls within a MPI process. The next chapter exposes an extension of the two-step analysis to
detect collective errors in MPI+OpenMP applications.

72

Chapter 4

Detection of Collective Errors Origin in
Applications Mixing Parallel Programming

Models

Even if hybrid applications are more and more common, most debugging tools are focused on one type
of parallelism model. However errors in hybrid programs (whatever the thread-level support) can result
from the combination of both forms of parallelism. Besides integrating two different programming models
inside the same application can generate complex bugs very hard to identify. These kind of errors cannot
be found by one-model debugging tools. This chapter proves the needs of dedicated analyses and supplies
them to detect bugs related to misuse of MPI collective operations inside and outside threaded regions.
More specifically the chapter localizes the source of MPI collective errors in MPI+X applications with X
a shared memory model. We target SPMD (Single Program Multiple Data) MPI programs and explicit
fork/join multi-threaded models with perfectly nested regions. OpenMP corresponds to this kind of model.
Thus throughout the chapter, examples provided are parallelized with MPI+OpenMP. This work has been
published in a poster [100] which content is reproduced in this chapter.

4.1 Static and Dynamic Validation of MPI Collective Communications in
Multi-threaded Context

Three thread levels enable MPI communications inside OpenMP parallel regions. In particular, the
MPI_THREAD_MULTIPLE level authorizes multiple threads to call MPI functions simultaneously. This
configuration allows a full exploitation of resources with concurrent OpenMP threads and MPI communica-
tions. However, according to the standard, it is the user’s responsibility to ensure that MPI communications
(including collective calls) are correctly placed, according to the thread level used. More specifically, if the
number of expected calls to a collective operation or their sequence is not the same for all processes, this can
lead to errors or deadlocks. For example in the simple code given previously:

#pragma omp parallel
{

MPI_Allreduce(...);
}

there will be as many calls to MPI_Allreduce as the number of threads created by the parallel region. This
is an issue because the sequence of MPI collective calls should be deterministic within each MPI process, or
the order of collective calls is not guaranteed. Finding such bugs and, moreover, the source of the errors may
be challenging.

73

4.1. STATIC AND DYNAMIC VALIDATION OF MPI COLLECTIVE COMMUNICATIONS IN
MULTI-THREADED CONTEXT

The previous simple example illustrates the case where the multithreaded programming model may
change the execution flow leading to a deadlock due to one misuse of MPI collective communications.
In an MPI+OpenMP program, not only the correctness of MPI should be ensured but also the multi-threaded
model should not interfere with MPI. Figure 4.1 illustrates some of the possible issues related to MPI col-
lective communications in a multithreaded context through six examples. We focus here only on such errors.
Issues related to OpenMP workshare constructs can be detected by other existing tools.

Code 1

1 void f(){
2 #pragma omp parallel
3 {
4 #pragma omp

parallel
5 {
6 /***/
7 #pragma omp

single
8 {
9 MPI_Allreduce

(...)
10 }
11 }
12 }
13 }

Code 2

1 void f(){
2 #pragma omp parallel
3 {
4 #pragma omp single

nowait
5 {
6 MPI_Reduce(...)
7 }
8 /***/
9 #pragma omp single

10 {
11 MPI_Reduce(...)
12 }
13 }
14 }

Code 3

1 void f(){
2 #pragma omp parallel
3 {
4 #pragma omp single
5 {
6 MPI_Reduce(...)
7 }
8 /***/
9 #pragma omp single

10 {
11 MPI_Reduce(...)
12 }
13 }
14 }

Code 4

1 void f(){
2 #pragma omp parallel
3 {
4 #pragma omp single
5 {
6 if(...)
7 MPI_Allreduce

(...)
8 else
9 /***/

10 }
11 /***/
12 }
13 }

Code 5

1 void f(){
2 if(...)
3 {
4 #pragma omp

parallel
5 {
6 /***/
7 #pragma omp

single
8 {
9 MPI_Allreduce

(...)
10 }
11 }
12 }
13 }

Code 6

1 void f(){
2 #pragma omp parallel
3 {
4 /***/
5 if(...) {
6 #pragma omp

parallel
7 {
8 /***/
9 #pragma omp

single
10 {
11 MPI_Allreduce

(...)
12 }
13 }
14 }
15 /***/
16 }
17 }

Figure 4.1: MPI+OpenMP examples showing different uses of MPI collectives.

First of all, within a process the same communicator may not be used concurrently by two different MPI
collective calls. This means MPI collective operations should not be called by multiple parallel threads.
Although MPI_Allreduce in Code 1 is called in a single block, the nested parallel regions could
lead to more than one concurrent call to this function. This erroneous situation always occurs unless only

74

CHAPTER 4. DETECTION OF COLLECTIVE ERRORS ORIGIN IN APPLICATIONS MIXING PARALLEL
PROGRAMMING MODELS

one thread is created in the first parallel region or in both regions. However, executing collectives in a
monothreaded region is not sufficient: multiple monothreaded regions may be executed in parallel, creating
bugs, as illustrated by the function f in Code 1: It contains two single constructs in one OpenMP parallel
region. Even if this piece of code seems to require only a low thread-level support, the first construct contains
a nowait clause, therefore both MPI_Reduce can be called simultaneously by different threads. On
the contrary, the threads in Code 3 synchronize at the implicit OpenMP barrier at the end of the single
construct. In this case the different MPI_Reduce functions are not performed concurrently, unless the
function f is called from a worksharing region.

In addition to check that collective calls cannot be concurrently executed by different threads, the se-
quence of such calls is also of interest. The order of MPI collectives have to be the same for all MPI
processes. A function is said to be correct if all processes entering a function do not exit leaving a pro-
cess blocked inside a collective operation. This property still have to be ensured in MPI+OpenMP pro-
grams as those shown in Codes 4, 5 and 6. In Code 4, the thread executing the single region may not call
MPI_Allreduce depending on the previous conditional statement (line 6). If the result of the conditional
is not the same for all processes, some MPI tasks will call the collective while others will not. In the same
way, MPI_Allreduce in Code 5 may not be called by all processes because of the conditional line 2.

These examples illustrate the difficulty for a developer to ensure that MPI collective operations are cor-
rectly used inside an hybrid MPI+OpenMP application whatever the required thread-level support. To tackle
this issue, we propose a compile-time method to check that MPI collective calls are executed with the same
deterministic sequence for each process in presence of a thread-based programming model, for all thread
levels proposed by MPI.

4.1.1 Problem Statement

In our context, the problem statement can be expressed as follows: A hybrid program is correct if all MPI
processes execute the same MPI collective operations in the same order in a deterministic way. This means
there is a total order between MPI collective calls within each process and this order is the same for all MPI
processes.

The compile-time analysis we propose in the following section analyses the code in order to prove this
property, and when this depends on runtime conditions (such as the control flow or the number of threads
executing a statement), these conditions are inserted in the code. Note that whenever the compile-time
analysis is able to prove the condition statically, no code is inserted into the program, lightening the impact
of the transformation on the execution time. In order to prove that a hybrid program is correct, the analysis
is decomposed into three phases proving the following statements:

1. Within an MPI process, all collectives are executed in a monothreaded context;

2. Within an MPI process, if (1) holds, two collective executions are ordered sequentially, either because
they belong to the same monothreaded region or because they are separated by a thread synchroniza-
tion;

3. Once (1) and (2) have been proved, the sequence of collectives for all MPI processes does not depend
on the control flow.

(1) and (2) ensure that collective operations are executed in an order that does not depend on the number of
threads, nor on their execution schedule. (3) shows that the same sequence of collectives is executed for all
MPI processes, and when the compile-time analysis is not able to prove this property due to some control
flow statements, checks are inserted at these statements. This corresponds to the instrumentation required
for the verification. Figure 4.2 subsumes this decomposition of the problem statement into the analysis of
categories of errors corresponding to the previous items.

75

4.1. STATIC AND DYNAMIC VALIDATION OF MPI COLLECTIVE COMMUNICATIONS IN
MULTI-THREADED CONTEXT

MPI Processes

MPI collective

operations called

simultaneously by

multipe threads?

...

no
yes

no

no

PN

Thread 0 Thread 1

P0

Thread 0 Thread 1

P0

Thread 0 Thread 1

MPI collective operations

in a multithreaded

context?

P0, ... and PN have the

same sequence of

collective operations?

Category 1

Category 2

Category 3

Figure 4.2: Possible errors in a hybrid program with N MPI processes and 2 threads per process

A function is said to be incorrect if at least one of the three categories presented in Figure 4.2 is verified.
Functions f in Codes 1 and 6 verify the first category whereas the function f in Code 2 is in the second
category and in Codes 4, 5 and 6, f is in the third category. To conclude functions presented in Codes 1, 2,
4, 5 and 6 are considered as incorrect functions. Function f in Code 3 is the only correct function regarding
these categories, provided the function is not called within a multi-threaded context (such as a parallel
for block).

4.1.2 Compile-Time Verification

This section describes how categories depicted in Figure 4.2 can be detected at compile-time.
The CFG is augmented as to highlight collective nodes (represented as thick nodes) and, as for the GCC

compiler, OpenMP directives are put into separate basic blocks. Hence new nodes are added for explicit and
implicit thread barriers. For greater clarity, implicit thread barriers at the end of parallel regions are referred
as end parallel. Figure 4.3(a) depicts the CFG of Code 1.

As stated in the previous section, the static analysis aims at verifying the total order of MPI collective
calls within a process as well as between processes. To this end, we use the notion of parallelism word for a
basic block defined Section 2.1.1.

Detecting Category 1 Situations

This phase of the compile-time analysis corresponds to the detection of MPI collectives that are not exe-
cuted in a monothreaded region.

For this part, thread barriers can be safely ignored as they do not influence the level of thread parallelism.
Checking that a collective is executed in a monothreaded region boils down to check the parallelism word of
its basic block. This requires to use MPI with at least a level defined by MPI_THREAD_SERIALIZED. If
a collective is executed in a multithreaded region, this requires further the use of the level MPI_THREAD_
MULTIPLE and the code is then correct if only one thread execute the collective. To be in a monothreaded
region, the parallelism word has to end with an S (ignoring Bs). Moreover, if the parallelism word has a

76

CHAPTER 4. DETECTION OF COLLECTIVE ERRORS ORIGIN IN APPLICATIONS MIXING PARALLEL
PROGRAMMING MODELS

entry

2 - parallel

3

4 - parallel

5

6 - single

7 - MPI_Allreduce

8 - barrier

9 - end parallel

10

11 - end parallel

exit

(a)

Initial prefix: ∅

2: P2

3: P2

4: P2P4

5: P2P4

6: P2P4S 6

7: P2P4S 6

8: P2P4

9: P2

10: P2

11: ∅

(b)

Initial prefix: Pi

2: Pi P2

3: Pi P2

4: Pi P2P4

5: Pi P2P4

6: Pi P2P4S 6

7: Pi P2P4S 6

8: Pi P2P4

9: Pi P2

10: Pi P2

11: Pi

(c)

Figure 4.3: CFG of Code 6 and the parallelism words associated at each node

sequence of two or more P with no S in-between, it implies the parallelism is nested: Even if the word ends
with an S , one thread for each thread team can execute the collective. We assume then the collective is not
executed in a monothreaded region.

For instance, in Code 2 the function MPI_Reduce line 6 is called in a single construct inside a parallel
region. Its associated parallelism word is PS . PS defines a monothreaded context as the single construct
creates a portion of code executed by one thread in the current team. The function MPI_Allreduce line
9 of Code 1 is called in a single construct inside two nested parallel regions. Its associated word is PPS .
There will be as many threads executing the single region as the number of threads created at the first parallel
region. This parallelism word thus defines a multithreaded region.

We define a finite-state automaton Figure 4.4 that recognizes the language of parallelism words corre-
sponding to monothreaded regions. This automaton is a variation of automaton Figure 2.5, page 41 where
master sections are not differentiated from single sections. The state 0 is the accepting state and the language
L defined by L = (S |PB∗S)∗ describes the accepted parallelism words. This language contains parallelism
words ending by S without a repeated sequence of P.

Lemma 4. A node n is in a monothreaded context if pw[n] ∈ L.

Proof. We suppose pw[n] < L. Hence the automaton with the input pw[n] stops either in the state corre-
sponding to (S |PB∗S)∗PB∗ or in the state corresponding to (S |PB∗S)∗PB∗P(P|S |B)∗. It implies that:

• Either pw[n] ends with a word in PB∗: Multiple threads may execute n.

• Or pw[n] contains a string in PB∗P. This corresponds to a nested parallelism region.

Both cases do not correspond to a monothreaded region. We conclude that n is in a monothreaded context if
its corresponding parallelism word pw[n] is in L. �

To consider all possible initial conditions, the initial parallelism word of the function is an initial prefix Pi

unknown at compile-time. Figure 4.3(c) presents parallelism words of the CFG Figure 4.3(a) with an initial

77

4.1. STATIC AND DYNAMIC VALIDATION OF MPI COLLECTIVE COMMUNICATIONS IN
MULTI-THREADED CONTEXT

0 1 2
of the application

starting point
P

S

P

S B P,S,B

P: Parallel

S: Single

B: Barrier

Figure 4.4: Automaton of possible parallelism words. Node 0 corresponds to code executed by the
master thread or a single thread. Node 1 correspond to code executed in a parallel
region and 3 to code executed in nested parallel region.

prefix. Considering level 1 as the initial condition, the language of correct parallelism words recognized by
automaton Figure 4.4 is L = S (S |PB∗S)∗. A level superior or equal to 2 as initial condition has no accepted
language.

In order to limit the number of warnings emitted during this analysis, the programmer can select with an
option given to the analysis the initial level to consider at compile-time. Based on the language of correct
parallelism words, Algorithm 4 detects if an MPI collective operation is called in a multithreaded context. In
that case a warning related to the initial level with the name of the collective is returned to the programmer.
The algorithm takes as input the CFG and the language L of correct parallelism words and outputs two sets:
S and S ipw.

The CFG Figure 4.3(a) contains only one MPI collective: MPI_Allreduce (node 7). This collective
may be called by multiple threads at runtime as pw[7] = P2P4S 6. Indeed, the parallelism word of node 7 is
not in L. As pw[7] corresponds to a multithreaded execution context„ Algorithm 4 gets the uppest node that
dominates the collective node before the execution or control flow changes. From node 4 the execution flow
changes. Finally the algorithm outputs a warning for node 7 (S = {7}) and flags the node 5 for the dynamic
analysis (S ipw = {5}). If indeed both parallel constructs create teams of strictly more than 1 thread, then
there is an error.

Detecting Category 2 Situations

For this analysis, the MPI collectives are assumed to be called in monothreaded regions, as defined in
previous section. However, different MPI collectives can still be executed simultaneously if monothreaded
regions are executed in parallel.

Different MPI collective operations in the same monothreaded region are sequentially performed as only
one thread executes it. However, collective operations in different monothreaded regions may be called
simultaneously. The following lemma defines this difference.

Lemma 5. Two nodes n1 and n2 are said to be in concurrent monothreaded regions if they are in monothreaded
regions and if pw[n1] = wS ju and pw[n2] = wS kv where w is a common prefix, j , k, u and v words in
(P|S |B)∗. Two nodes in monothreaded regions can be executed simultaneously if and only if they are in
concurrent monothreaded regions.

Proof. Consider two nodes n1 and n2 in monothreaded regions. Let w1, w2 be their resp. parallelism words.
We first show that these nodes can be executed in parallel only if they are in concurrent monothreaded
regions.

To be executed simultaneously, the two nodes need to have parallel region (a P in both parallelism
words). If w is their common prefix (possibly empty), w1 and w2 can therefore be written either w1 =

w.Pib1S k.u and w2 = w.Pib2S h.v (same parallel region) with b1, b2 words of B∗, or w1 = w.Pib1S k.u and
w2 = w.P jb2S k.u (different parallel regions). Indeed, n1 and n2 are in monothreaded regions, enforcing a
sequence of alternative S and P, interleaved with B.

78

CHAPTER 4. DETECTION OF COLLECTIVE ERRORS ORIGIN IN APPLICATIONS MIXING PARALLEL
PROGRAMMING MODELS

When n1 and n2 are in the same parallel region (first case), the nodes can be executed simultaneously
only if b1 = b2. In this case, the common prefix is wPib1, corresponding to the fact that n1 is in n2 concurrent
monothreaded region. When n1 and n2 are in different parallel regions (second case), there exists a h such
that w ends with S h (monothreaded region). It implies that the parallel constructs Pi and P j are sequentially
ordered. n1 and n2 cannot be executed simultaneously. This shows the result.

Showing that two concurrent monothreaded regions can be executed simultaneously is obvious. �

For example, the CFG in Figure 4.5(a) contains two collective nodes: 4 and 6 and three thread barriers
colored in gray (the parallel construct is considered as a thread barrier but does not appear in parallelism
words). Parallelism words of nodes 4 and 6 are pw[4] = P2S 3 and pw[6] = P2S 5. Then nodes 4 and 6 are
in concurrent monothreaded regions respectively created by nodes 3 and 5. Both regions can be executed
simultaneously.

Algorithm 7 shows the detection of concurrent collective calls. It takes as input the CFG and outputs
two sets: S and S cc. When collective nodes with the same number of B are detected these nodes are put in
the set S and the nodes that begin the monothreaded regions are put in the set S cc for the dynamic analysis.
A warning is issued for nodes in S .

entry

2 - parallel

3 - single

4 - MPI_Reduce

5 - single

6 - MPI_Reduce

7 - barrier

8 - end parallel

exit

Initial prefix: ∅

2: P2

3: P2S 3

4: P2S 3

5: P2S 5

6: P2S 5

7: P2B

8: ∅

(a) CFG of Code 2

entry

2 - parallel

3 - single

4 - MPI_Reduce

5 - barrier

6 - single

7 - MPI_Reduce

8 - barrier

9 - end parallel

exit

Initial prefix: ∅

2: P2

3: P2S 3

4: P2S 3

5: P2B

6: P2BS 6

7: P2BS 6

8: P2BB

9: ∅

(b) CFG of Code 3

Figure 4.5: Examples of CFG with monothreaded regions highlighting thread barriers

In Figure 4.5(a), nodes 4 and 6 have the same number of thread barriers in their parallelism words so the
collective operations involved are potential concurrent collective calls. The algorithm outputs a warning for
collective calls located nodes 4 and 6 (S = {4, 6}) and flags nodes 4 and 6 for dynamic checks (S cc = {4, 6}).
On the contrary, Figure 4.5(b), collective nodes 4 and 7 are in different monothreaded regions separated by
a thread synchronization (node 5) so the collective operations cannot be called simultaneously (S = ∅ and
S cc = ∅). There is no need for a dynamic check.

Detecting Category 3 Situations

Once the sequence of MPI collective calls is verified in each process we must check that all sequences
are the same for all processes. For this purpose, we resort to the Algorithm 12. It detects MPI collective
mismatches by identifying conditionals potentially leading to a deadlock (set S) and flags MPI collective
operations that can deadlock (set O). A warning is also issued for collective calls located in a loop as they
can be called different times if the number of iterations is not the same for all MPI processes.

79

4.1. STATIC AND DYNAMIC VALIDATION OF MPI COLLECTIVE COMMUNICATIONS IN
MULTI-THREADED CONTEXT

For example, conditionals line 6 and 2 in Codes 4 and 5 are reported as potentially leading to a deadlock
in MPI_Allreduce. This function is then flagged as a collective that can deadlock.

Static Pass Algorithm

To wrap-up all static algorithms, Algorithm 19 shows how the different analyses are combined. Note that
each function of the program is verified independently. First the algorithm constructs the parallelism words
of the function CFG. Then the placement of MPI collective operations within a process is checked and finally
the algorithm detects collective calls mismatches between processes. Algorithm 19 issues a warning when
a potential error is detected and creates sets S , S ipw and S cc for the following dynamic analysis.

Algorithm 19 Step 1: Static Pass of hybrid programs
1: function Hybrid_Static_Pass(G = (V, E), L)
2: . G: CFG, L: language of correct parallelism words
3:

4: DFS(G, entry(G)) (Algo. 2)
5: . parallelism words construction
6: Multithreaded_regions(G, L) (Algo. 4)
7: . creates sets S ipw and S
8: Concurrent_calls(G) (Algo. 7)
9: . creates sets S cc and S

10: Static_Pass(G) (Algo. 12)
11: . creates sets O and S
12: end function

4.1.3 Static Instrumentation for Execution-Time Verification

The compile-time analyses presented in the previous section outputs warnings for MPI collective oper-
ations that may lead to an error or deadlock. Nevertheless the static analysis could lead to false positives
relatively to the CFG that is possibly not correlated with the actual control flow. Besides, parallel construct
can create parallel regions with only one thread, that is a sequential region. To deal with false positives
results, a dynamic instrumentation is added. A unique parallelism word is computed at runtime and updated
after each OpenMP construct. Compared to the compile-time parallelism words, we introduce a new letter,
P1, accounting for parallel regions created with only one thread. P1PS is for instance a correct execution
parallelism word and is differentiated from PPS .

This section describes the code transformation that checks if all warnings returned by the static analysis
will eventually lead to an error.

Algorithm Description

To dynamically verify the total order of MPI collective sequences in each MPI process, validation func-
tions are inserted in nodes in the sets S ipw and S cc generated by Algorithms 4 and 7: CCipw and CCcc.
These functions are depicted Algorithm 21. Function CCipw detects incorrect execution parallelism words
and Function CCcc detects concurrent collective calls.

Based on the alphabet {P1, P, S , B}, correct execution parallelism words are in the language Le of regular
expression (S |P1|PB∗S)∗ recognized by Automaton Figure 4.4. For each node n in S ipw, if the corresponding
pwe[n] is not in Le the program stops through a call to MPI_Abort and an error message is returned to the
programmer. For each node n in S cc, a check is done to ensure the node is actually in a monothreaded region.
Counting the number of threads concurrently executing a given basic block cannot be done by the simple

80

CHAPTER 4. DETECTION OF COLLECTIVE ERRORS ORIGIN IN APPLICATIONS MIXING PARALLEL
PROGRAMMING MODELS

use of omp_get_num_thread(). Indeed, the control flow may select only a subset of the total number
of threads for the execution of a basic block. Similarly to the previous case, we resort to a shared variable
collective_lock. This variable is used to prevent another thread from entering the region in S cc. The shared
variable is reset to 0 right after the barrier(s) (if any) successor of the region concerned. The intuition is
indeed to reset the lock at the first barrier following the possible concurrent monothreaded regions.

To dynamically verify the total order of MPI collective sequences between processes, a check function
CC is inserted before each MPI collective operation and before return statements. CC takes as input the
communicator comc related to the collective call c and a color ic specific to the type of collective. As multiple
threads may call CC before return statements, this function is wrapped into a single pragma. CC is
depicted Algorithm 14. Each function of a program is instrumented by Algorithm 20. If an error is about
to occur the program is stopped and an error message is returned with error type information.

Algorithm 20 Step 2: Selective Static Instrumentation
1: function Instrumentation(communicator,G, S , S ipw, S cc)
2: . G: CFG, S , S ipw, S cc: sets created at compile-time
3:
4: if S , ∅ then
5: STEP 1: Control flow errors detection
6: for n in nodes containing a call to collective c do
7: Insert call to CC(comc, ic) before the call to c
8: end for
9: Before return statements insert

10: if(omp_in_parallel()){
11: # pragma omp single
12: CC(communicator, 0)}
13: else
14: CC(communicator, 0)
15:
16: STEP 2: Collectives in multithreaded regions
17: for n ∈ S ipw do
18: Insert call to CCipw() as the first statement of n
19: end for
20:
21: STEP 3: Concurrent MPI calls detection
22: for n ∈ S cc do
23: Insert call to CCcc() as the first statement of n
24: Insert collective_lock = 0 after the barrier(s) successors of the region created by n
25: end for
26: end if
27:
28: end function

Figure 4.6 presents the transformation achieved by Algorithm 20 on CFG Figures 4.3(a) and 4.5(a).
The CFG Figure 4.6(a) has neither collective in O nor node in S ipw but two potential concurrent calls. Thus
only CCcc functions are inserted. The CFG Figure 4.6(b) has no potential concurrent call. However it
contains a collective call that may be called by multiple threads of a process and may not be called by all
processes. Thus CCipw and CC functions are inserted.

Correctness Proof

The instrumentation depicted Algorithm 20 is correct if all Figure 4.2 situations are captured and if
the code inserted does not generate errors or deadlocks. We provide here a short correctness proof for
Algorithm 20.

81

4.1. STATIC AND DYNAMIC VALIDATION OF MPI COLLECTIVE COMMUNICATIONS IN
MULTI-THREADED CONTEXT

Algorithm 21 Library Functions To Check MPI collectives
1: function CCipw . Detect collectives in multithreaded regions
2: if pwe < Le then
3: MPI_Abort(com, 0)
4: end if
5: end function
6:
7: function CCcc . Detect concurrent collective calls
8: CCipw

9: if collective_lock = 1 then
10: MPI_Abort(com, 0)
11: else
12: #pragma omp atomic write
13: collective_lock = 1
14: end if
15: end function
16:
17: function CC(comc, ic) . Detect collective calls mismatches

entry

2 - parallel

3 - single

4-CCcc()

MPI_Reduce

5 - single

6-CCcc()

MPI_Reduce

7 - barrier

collective_lock = 0

8 - end parallel

exit

(a) Fig. 4.5(a) CFG instrumented

entry

2 - parallel

3

4 - parallel

5 - CCipw()

6 - single

7- CC(com, iA)

MPI_Allreduce

8 - barrier

9 - end parallel

10

11 - end parallel

12 - CC(com, 0)

exit

(b) Fig. 4.3(a) CFG instrumented

Figure 4.6: Instrumented CFG Figures 4.3(a) and 4.5(a) (Algorithm 11)

If no potential error is reported from the compile-time analysis or only CC functions are inserted, no
error is added and all category 3 situations are detected as proven Chapter 3.

Suppose all category situations are detected at compile-time. Algorithm 20 inserts CC, CCcc and CCipw

functions. CC functions are inserted just before collective calls whereas CCcc and CCipw functions are
inserted as soon as possible before collective calls. CCcc and CCipw are then executed before CC functions.
If CCcc and CCipw codes capture all errors due to the multithreaded context, CC functions do not add bugs

82

CHAPTER 4. DETECTION OF COLLECTIVE ERRORS ORIGIN IN APPLICATIONS MIXING PARALLEL
PROGRAMMING MODELS

and detect deadlock situations between MPI processes.
All threads do not have to call CCcc and CCipw functions, only one thread detects that an error is going

to occur in a program. CCipw prevents from the execution of a collective in a multithreaded context, i.e.
when multiple threads are about to execute the same collective operation simultaneously. For CCipw, the
second thread to execute CCipw raises an error and avoids the unordered execution of different collective
operations. As the collective_lock variable is only reset after a barrier following the parallel region where
the check occurs, this detection does not depend on the thread scheduling. Whenever a thread enters a
monothreaded region containing collective calls while another thread is already executing a monothreaded
region also containing a collective call the thread detects an error and stops the program. In both cases the
program is stopped before an error can occur.

Finally, since the CC function uses the same communicator as the collective it precedes, if there are
errors in the use of these communicators, the bugs are propagated inside the CC function. In such case,
others tools such as MUST can be used to detect such situations.

4.1.4 Evaluation

This section presents experimental results obtained on the NAS Parallel benchmarks multizone (NASPB-
MZ v3.2) using class B [104], a mixed mode MPI/OpenMP benchmark suite v1.0 [113, 114] (EPCC suite),
HERA [108], five MPI+OpenMP Coral benchmarks and one code of the error microbenchmark suite (col
l_deadlock).

At compile-time PARCOACH issues warnings for potential MPI collective errors within an MPI process
and between MPI processes. The type of each potential error is specified (collective mismatch, concurrent
collective calls in an MPI process,..) with the names and lines in the source code of MPI collective calls
involved. The following example shows what a user can read on stderr when compiling Code 2.

in function ’f’:
Warning: STATIC-CHECK: Concurent MPI collective calls in a process :
MPI_Reduce l.11 may be called simultaneously with MPI_Reduce l.6
STATIC-CHECK check inserted after the single directive l.4
STATIC-CHECK check inserted after the single directive l.9

In this example, both single regions are instrumented as described in Algorithm 20.
For each benchmark, the overhead obtained at compile-time with and without code generation (corre-

sponding to CCipw , CCcc and CC functions insertions) is presented in Figure 4.7. This overhead is accept-
able as it does not exceed 6%. Table 4.1 shows the number of static MPI collective calls and the number
of nodes in the set S found by Algorithm 12. The language of correct parallelism words was adapted for
each benchmark depending on statistics done about the initial condition in which functions are generally
called in it (see Algorithm 4). A data flow analysis on nodes in S as a complement to our static phase
could reduce further this set as it can be shown that the control flow for all conditional nodes in S does not
depend on process ranks since the benchmarks checked are correct. The 4th column depicts the percentage
of the benchmarks functions instrumented. For the most part we notice a good impact of the static analysis
on the selective instrumentation. The two last columns show the number of expected errors and the number
of errors found by the analysis. As all benchmarks tested are correct no error was found except for the
coll_deadlock program from the error benchmark suite.

The execution overhead obtained for each benchmark is presented in Figures 4.8 and 4.9. Figures 4.8(a)
and 4.9 show respectively the overhead obtained for NASPB-MZ from 1 to 16 MPI processes and 1 to 64
MPI processes with eight threads each (up to 512 threads) and the overhead obtained for the mixed mode
MPI/OpenMP benchmark from 1 to 128 MPI processes with 8 threads each (up to 1024 threads with a
target time of 20 sec). The overhead for the NASPB-MZ tends to sightly increase with the number of MPI
processes (and thus the number of threads). The overhead remains under 25% (for an initial execution time

83

4.1. STATIC AND DYNAMIC VALIDATION OF MPI COLLECTIVE COMMUNICATIONS IN
MULTI-THREADED CONTEXT

 0

 1

 2

 3

 4

 5

 6

 7

BT−MZ SP−MZ LU−MZ EPCCsuite HERA AMG

O
ve

rh
ea

d
in

 %

Warnings
Warnings + verification code generation

Figure 4.7: Overhead of average compilation time with and without verification code generation

Table 4.1: Compilation and Execution Results

Benchmark # coll. # nodes % functions # expected # errors
calls in S instrumented errors found

NASPB-MZ 0 0
BT-MZ 15 7 8,57% 0 0
SP-MZ 15 7 8,57% 0 0
LU-MZ 20 7 8,82% 0 0

EPCC suite 58,2% 0 0
barrier 5 5 100% 0 0
alltoall 6 5 40% 0 0

broadcast 6 5 66,7% 0 0
scatter 7 9 66,7% 0 0

allreduce 7 9 100% 0 0
HERA 574 375 <1% 0 0

AMG2013 86 75 13.33% 0 0
LULESH 3 1 1.44% 0 0
miniFE 4 6 2.56% 0 0
HACC 26 11 1.41% 0 0
SNAP 9 13 10% 0 0

coll_deadlock 1 1 100% 1 1

of 18.36 sec for the highest overhead) for HERA. Figure 4.8(b) presents strong scaling results for HERA
from 1 to 256 MPI processes with 8 threads per process (up to 2048 threads).

If multiple threads are about to call an MPI collective operation in a process, the program stops through
a call to MPI_Abort and an error message is returned to the programmer with the names of the collectives
and their lines in the source code. The error message reported at runtime to the programmer for Code 2 is
presented below.

DYNAMIC-CHECK: Error detected in f (example3.c)
DYNAMIC-CHECK: Two or more threads are about to call the same MPI collective

operation
DYNAMIC-CHECK: Abort is invoking before calling MPI_Reduce l.6 MPI_Reduce l.11

The amount of messages generated dynamically is reduced compared to the amount of messages gen-
erated statically. No false positive are generated in this case. Similarly, if a deadlock due to a collective
mismatch is about to occur, an error is printed to stderr with the collective name, the line number and con-
ditionals responsible. The error message reported at runtime to the programmer for Code 4 is presented
bellow.

84

CHAPTER 4. DETECTION OF COLLECTIVE ERRORS ORIGIN IN APPLICATIONS MIXING PARALLEL
PROGRAMMING MODELS

0

1

2

3

4

5

6

1 2 4 8 16 32 64

O
v
e
rh

e
a
d
 i
n
 %

MPI processes

BT−MZ
SP−MZ
LU−MZ

(a) Execution-Time Overhead for NASPB-MZ (Strong
scaling)

0

5

10

15

20

25

1 2 4 8 16 32 64 128 256

O
v
e

rh
e

a
d

 i
n

 %

MPI processes

Hera

(b) Execution-Time Overhead for HERA (Strong scaling)

Figure 4.8: Execution-time overhead for HERA and NASPB-MZ Class B with 8 threads per MPI
process

0

2

4

6

8

10

12

14

1 2 4 16 32 64 128

O
v
e
rh

e
a
d
 i
n

%

MPI processes

Barrier
Alltoall

Broadcast
Scatter

Reduction

Figure 4.9: Execution-Time Overhead for the EPCC suite (Weak scaling) (8 threads per process).
The benchmark suite contains measurements for the following operations : Barrier,
Reduce, Broadcast, Scatter and Alltoall.

DYNAMIC-CHECK: Error detected in f (example1.c)
DYNAMIC-CHECK: Abort is invoking before calling MPI_Allreduce l.7
DYNAMIC-CHECK: see warnings about conditional line 6

4.2 Summary

Although large hybrid applications appear, the lack of debugging tools for hybrid programs does not en-
courage the development of such applications and limits the use of thread levels. This chapter presented a
debugging method to overcome this issue, extending the GCC plugin PARCOACH. First PARCOACH stat-
ically identifies MPI collective operations that can deadlock or be performed by multiple non-synchronized
threads. Then these potential errors/deadlocks are validated during execution by a code transformation. The
cost of the runtime checks is limited by a selective instrumentation, thanks to the compile-time analysis,
avoiding unnecessary checks. We have shown a small impact on performance with a compile-time overhead
less than 6%. Besides with the help of the static phase, the runtime overhead remains acceptable (less than

85

4.2. SUMMARY

25%) for a large application.

86

Chapter 5

Conclusion and Perspectives

“Debugging is the dirty little secret of computer science”.

Henry Lieberman in The Debugging Scandal and What to Do About
It [115]

5.1 Conclusion

Supercomputer evolution shows that exascale will be reached by 2020. This evolution advocates for hybrid
solutions like MPI+OpenMP. But mixing parallel models within the same application leads to more complex
codes. It is then necessary to better support users in the debugging phase of such applications. The time
spent on debugging an application is generally due to the lack of an advanced support to efficiently guide
debugging activities. Moreover the later errors are detected, the higher are the costs to rework the system in
order to function correctly. We therefore created the static/dynamic platform named PARallel COntrol flow
Anomaly CHecker (PARCOACH) that takes advantage of the compiler to enable an early detection of errors
and helps HPC developers to correct them with truthful information. PARCOACH verifies HPC programs
(MPI, OpenMP and MPI+OpenMP programs) in two steps:

1. It detects potential errors with an intra-procedural analysis during the compilation-time (detection per
function);

2. To deal with false positives returned at compile-time, it transforms only potential erroneous codes to
stop the execution whenever a deadlock is about to occur at runtime.

The method tends to better help users by returning warnings and error messages with precise information.
This two-phase method was easily integrated into the GCC compiler as a plugin allowing the verification of
C, C++ and Fortran applications. As a plugin, PARCOACH avoids the compiler recompilation. It is also
linked to a light dynamic library for runtime checks.

Contributions Summary

These contributions have been published and presented in the European MPI Users’ Group Meeting (Eu-
roMPI) 2013 [97], the International Journal of High Performance Computing Applications (IJHPCA) 2014
[98], the International Workshop on OpenMP (IWOMP) 2014 [99], the Symposium on Principles and Prac-
tice of Parallel Programming (PPoPP) 2015 [100], the European Conference on Parallel and Distributed
Computing (EuroPar) 2015 [101] and the European MPI Users’ Group Meeting (EuroMPI) 2015 [116].

87

5.2. WORK IN PROGRESS

• In an MPI+OpenMP application, MPI is initialized with a so-called MPI thread level to indicate the
interaction between MPI processes and OpenMP threads. The first step in the debugging process of
hybrid applications is to verify if this interaction is respected. To that purpose PARCOACH helps
application developers to check which interaction support is required for a specific hybrid code.

Once the correct MPI initialization is ensured, we can check if each model is well used.

• On the MPI side, PARCOACH focuses on an important class of MPI communication errors. It verifies
sequences of collective operations (blocking and non-blocking) of all MPI processes in SPMD MPI
programs. PARCOACH uses the two-step method to detect mismatching collective calls between
processes, assuming MPI collective calls are performed with compatible arguments.

PARCOACH is based on the MPI semantics and is thus independent on MPI implementation. Our
analysis complements existing MPI-only debugging tools.

• On the OpenMP side, PARCOACH verifies if all threads entering a function and created in it have the
same sequence of worksharing regions and, depending of the verbosity level, the same sequence of
barriers (verbosity 1) or the same number of barriers (verbosity 0) in OpenMP applications. It uses the
graph representation defined in [78] for the compilation verification phase.

PARCOACH is restricted to optimizations done by the compiler. PARCOACH would not work on
ICC compiler.

• One would think that detecting errors in hybrid applications means to detect errors of each model
within the application. However there are specific errors only resulting in the mixing of models.
This is the case of MPI collective communications in multi-threaded context. PARCOACH detects
bugs related to misuse of MPI collective communications in MPI SPMD programs mixed with multi-
threaded model with perfect nested parallelism like OpenMP.

This focus on collective bugs in hybrid codes is one of the key issues of a wider use of hybrid codes
with MPI_THREAD_MULTIPLE. Developers are reluctant to use such level of parallelism when
deadlocks difficult to find are possible, with no tool to help them (the dynamic tool Marmot can only
detect errors related to a specific run in MPI+OpenMP programs).

• The creation of PARCOACH has naturally bought the development of an error benchmark suite to
verify its functionnality. The error benchmark suite contains common MPI and OpenMP errors as
well as non-compliance of MPI thread-level in MPI+OpenMP codes.

The main advantage of the PARCOACH method is to highlight the statements responsible for the execu-
tion path potentially leading to future deadlocks or unspecified behaviors. For all analysis, we have shown a
small impact on performance with low compile-time and runtime overheads.

5.2 Work in progress

Our MPI verification analysis is intra-procedural as it checks a program function by function. Thus it can
miss errors out of function boundaries and produce false positive and false negative. A false positive is pre-
sented at Figure 5.1. The figure shows a C program parallelized with MPI with two functions: f and main
and the CFG associated to these functions. The MPI verification performed by PARCOACH checks f and
main separately. It considers f as a correct function regarding MPI collective communications but returns
a warning for the collective MPI_Barrier in function main (C0,barrier = {3} and PDF+(C0,barrier) = {2}).
However a MPI_Barrier is hiding behind function f. This means no matter the path taken in function
main CFG, all MPI processes will encounter a barrier. PARCOACH could avoid emitting the warning by
knowing this information.

88

CHAPTER 5. CONCLUSION AND PERSPECTIVES

Code

1 MPI_Comm CommA;
2 ...
3 int f()
4 {
5 ...
6 MPI_Barrier(CommA);
7 ...
8 }
9

10 int main(int argc, char **argv)
11 {
12 ...
13 if()
14 f();
15 else
16 MPI_Barrier(CommA);
17 ...
18 return 0;
19 }

entry

2 - MPI_Barrier

exit

Function f CFG

entry

2

3 - MPI_Barrier 4 - f

5

exit

Function main CFG

Figure 5.1: Example of a false positive.

Figure 5.2 depicts an example of a false negative. The figure shows the same previous C program paral-
lelized with MPI but without the MPI_Barrier in the else branch in function main. In this example, no
warning is returned by PARCOACH. However all MPI processes may not encounter the barrier in function f
because of the conditional node 2 function main. Likewise the previous example, reporting this information
would help PARCOACH to manage this situation.

Code

1 MPI_Comm CommA;
2 ...
3 int f()
4 {
5 ...
6 MPI_Barrier(CommA);
7 ...
8 }
9

10 int main(int argc, char **argv)
11 {
12 ...
13 if()
14 f();
15 else
16 ...;
17 ...
18 return 0;
19 }

entry

2 - MPI_Barrier

exit

Function f CFG

entry

2

43 - f

5

exit

Function main CFG

Figure 5.2: Example of a false negative.

89

5.2. WORK IN PROGRESS

To extend PARCOACH analyses into inter-procedural analyses and then have a global view of a program,
we use a callgraph (CG). In a callgraph, nodes represent procedures in the program and edges represent
possible calls. An edge f −→ g then depicts a call to g in f . Each node in CG has a set of successors
S UCCCG and a set of predecessors PREDCG that can be empty [102]. For example, the CG of the two
previous programs contains two nodes (f and main) and one edge (main −→ f).

The simplest approach to extend PARCOACH is to use methods like inlining or cloning. The inlining
process replaces callee functions by their entire code in their caller functions. This avoids the loss of infor-
mation between callee and caller functions. When the Control Flow Graph (CFG) of a function is built, it
then contains the CFG of each callee functions. An additional method is cloning. It estimates the frequency
of functions calls and builds a simplified version of functions related to the context in which they are called.
It is then possible to clone functions with their most frequent value. Although simple, these solutions have a
high complexity.

Another solution is to replace each callee function by a summary [117]. This raises the issue of finding
what is important to keep about each function. This is currently explored during the internship of Hugo
Brunie at CEA.

First approach

The idea is to compute and reuse summaries of functions through a traversal of a program callgraph. There
are two possible solutions for the CG traversal: top-down and bottom-up analyses. A top-down analysis starts
at root procedures of a program and proceeds from callers to callees whereas a bottom-up analysis begins
from leaf procedures and proceeds from callees to callers [118,119]. As PARCOACH analyses each function
independently, the more intuitive solution is to use a bottom-up approach. This provides an analysis of all
contexts in which functions are called.

The intra-procedural analysis performed by PARCOACH is changed in order to return the summary
needed for the inter-procedural analysis. Summaries should contain just enough information to be helpful
and not overload functions. For a first approach, we choose to keep the valid sequence of collective operations
of each function. The valid sequence of collective operations corresponds to collective operations all MPI
processes will encounter for sure. The algorithm now returns the set of conditional nodes potentially leading
to a deadlock situation O and the valid sequence of collective operations ValidS eq. Algorithm 22 describes
the first approach to an inter-procedural analysis. In this approach, the summary of a function includes the
valid sequence of MPI collective calls. The algorithm first analyses functions that do not call any function,
then callers of these functions and so on. For every function analysed, callee functions are replaced by the
valid sequence of collective calls they contain. To handle recursivity, we can limit the number of the recursive
function calls to one. We assume potential errors can be found after one step of the analysis.

For the example presented Figure 5.1, Algorithm 22 first analyses function f. The INTRAPROCEDU-
RAL_ANALYSIS procedure is called on f and returns the set (O f = ∅,ValidS eq = {MPI_Barrier}). Then
the INTERPROCEDURAL_ANALYSIS procedure sets f .ValidS eq = {MPI_Barrier} and O = ∅. During
the inter-procedural analysis of function main, f is replaced by {MPI_Barrier}. Thanks to this replace-
ment, no warning is emitted for function main. The same is applied to Figure 5.2. f is also replaced by
{MPI_Barrier} in function main. The INTRAPROCEDURAL_ANALYSIS procedure then returns a warning
to the user for the collective.

Second approach

The first approach reduces the number of false positives returned by PARCOACH and finds potential
errors impossible to detect and locate with an intra-procedural approach. However the first inter-procedural
analysis is a bit light. Figure 5.3 illustrates this point. The possible deadlock in MPI_Allreduce reported
by the intra-procedural analysis in function g is not reported in f. However this information could be useful

90

CHAPTER 5. CONCLUSION AND PERSPECTIVES

Algorithm 22 Inter-procedural anlysis: first solution
1: function INTRAPROCEDURAL_ANALYSIS(CFG) . CFG: Control Flow Graph
2: O← ∅
3: ValidS eq← ∅ . Output set
4: Remove loop backedges in G to compute execution orders for nodes with collectives
5: for r in node orders do
6: for c in collective names of execution order r do
7: Cr,c ← {u ∈ V |r is the max. execution order of u, u executes a collective with name c}
8: if PDF+(Cr,c) , ∅ then
9: O← O ∪ (c, PDF+(Cr,c))

10: else
11: ValidS eq← ValidS eq ∪ {c}
12: end if
13: end for
14: end for
15: return (O,ValidS eq)
16: end function
17:
18: function INTERPROCEDURAL_ANALYSIS(

⋃
f CFG f ,CG) . CFG: Control Flow Graph, CG: Callgraph

19: S eq← {} , O← ∅
20: for each n ∈ CG in reverse topological order do
21: n.ValidS eq← {}
22: On ← ∅

23: for each f ∈ S UCCCG(n) do
24: Replace f in n by f .ValidS eq
25: end for
26: (On,ValidS eq)← INTRAPROCEDURAL_ANALYSIS(CFGn)
27: n.ValidS eq← ValidS eq
28: O← O ∪ On

29: end for
30: return O
31: end function

for debugging.

Reporting the entire CFG can be so expensive (see Table 5.1) that we resort to report a reducted CFG.
This reducted CFG contains only collective nodes and nodes in their iterated postdominance frontier. As an
example, Figure 5.4(a) shows the reducted CFG of function g. g contains two collective nodes (nodes 2 and
4) and one node in the iterated postdominance frontier of node 4 (node 2). Algorithm 23 depicts the second
solution adopted for the inter-procedural analysis. Each callee function is now replaced by its CFG reducted
as presented Figure 5.4(b) where g is replaced by its reducted CFG.

Static instrumentation The intra-procedural analysis of PARCOACH allows a selective instrumentation.
Whenever a potential deadlock is found, all collectives in the function are instrumented: validation functions
are inserted before MPI collective functions and before return statements. With the inter-procedural anal-
ysis this is no longer possible. Whenever a potential deadlock is found, all collectives in the program are
instrumented. This boilds down to instrument a program as dynamic tools like MUST do. Yet validation
functions could be inserted at divergence points to avoid systematic instrumentation. Validation functions
may compare MPI collective sequences of each path directly from divergent points. This instrumentation
enables a deadlock detection as soon as possible at runtime.

91

5.2. WORK IN PROGRESS

Benchmark Number of CFG nodes Number of functionsMax. Min.
EulerMHD 391 3 4 847

NASPB-MPI
BT 135 3 55
CG 57 3 11
FT 63 3 32
MG 77 3 26
SP 147 3 27
DT 64 3 27
IS 67 6 6
EP 49 3 2
LU 147 3 30

Table 5.1: Statistics on EulerMHD and NASPB-MPI v.3.3 class B.

entry

2

4 - g3 - MPI_Barrier

5

exit

(a) Function f CFG

entry

2 - MPI_Barrier

4 - MPI_Allreduce3

5

exit

(b) Function g CFG

Figure 5.3: Example of a problematic case for the first inter-procedural approach.

entry

2 - MPI_Barrier

4 - MPI_Allreduce

exit

(a) Function g CFG reducted

entry

2

2 - MPI_Barrier

4 - MPI_Allreduce

3 - MPI_Barrier

5

exit

(b) Function f CFG after Algorithm 23 pass

Figure 5.4: The applied second inter-procedural approach.

Application to OpenMP and MPI+OpenMP applications This process is made out of GCC. That way,
CFGs are not really modified. We suggest two approaches to the inter-procedural analysis of MPI programs.
Results on real benchmarks and applications are missing to validate the approaches. The same principle can
be applied to OpenMP and MPI+OpenMP applications. Only functions summaries will change.

92

CHAPTER 5. CONCLUSION AND PERSPECTIVES

Algorithm 23 Inter-procedural analysis: second solution
1: function INTRAPROCEDURAL_ANALYSIS(CFG) . CFG: Control Flow Graph
2: O← ∅
3: CFGreducted ← ∅ . Output set
4: Remove loop backedges in G to compute execution orders for nodes with collectives
5: for r in node orders do
6: for c in collective names of execution order r do
7: Cr,c ← {u ∈ V |r is the max. execution order of u, u executes a collective with name c}
8: if PDF+(Cr,c) , ∅ then
9: O← O ∪ (c, PDF+(Cr,c))

10: end if
11: end for
12: end for
13: CFGreducted ← Compute_CFG_reducted(CFG)
14: return (O,CFGreducted)
15: end function
16:
17: function INTERPROCEDURAL_ANALYSIS(

⋃
f CFG f ,CG) . CFG: Control Flow Graph, CG: Callgraph

18: S eq← {} , O← ∅
19: for each n ∈ CG in reverse topological order do
20: On ← ∅

21: for each f ∈ S UCCCG(n) do
22: Replace f in n by (CFGreducted f)
23: end for
24: (On,CFGreductedn)← INTRAPROCEDURAL_ANALYSIS(CFGn)
25: end for
26: return Omain

27: end function

5.3 Perspectives

Further work on PARCOACH would largely improve the platform for debugging purpose. We first con-
sider short-term improvements and then more general perspectives of this work.

5.3.1 Short-term Improvements

We have noted some limitations of PARCOACH (e.g., not handling MPI functions arguments in MPI pro-
grams, critical sections and locks in OpenMP programs). This section presents short-term improvements that
could reduce those limitations.

(a) Data-flow analysis

Some warnings returned by PARCOACH at compile-time are false positives as the conditionals reported
do not involve processes rank variables. This is for example the case of the warning presented page 60. The
code associated to this warning is depicted Figure 5.5. The comm_size variable line 6 has the same value
for all MPI processes and is thus independent on processes rank. A data-flow analysis regarding parallel-
related variables could enhance the static control-flow analysis done in PARCOACH by reducing the amount
of useless warnings. This could be done by tagging variables depending on MPI rank and OpenMP thread ID.
Figure 5.6 (on the left) suggests a pragma-based approach. The variable comm_size is tagged as CONST
PARALLEL which means it does not depend on MPI rank. All conditionals on non-tagged variables would
be removed from the set of conditionals that can potentially lead to a deadlock situation. This is all the more

93

5.3. PERSPECTIVES

interesting with an inter-procedural analysis.

Function main in is.c (original lines: l.923-930 | l.994)

1 int main(int argc, char **argv)
2 {
3 ...
4

5 /* Check to see whether total number of processes is within bounds.
6 [...] */
7 if (comm_size > MAX_PROCS)
8 {
9 if(my_rank == 0)

10 printf(\n ERROR: number of processes %d exceeds maximum %d
11 \n Exiting program!\n\n, comm_size, MAX_PROCS);
12 MPI_Finalize();
13 exit(1);
14 }
15 ...
16 /* End of timing, obtain maximum time of all processors */
17 MPI_Reduce(&timecounter,&maxtime,1,MPI_DOUBLE,MPI_MAX,0,MPI_COMM_WORLD);
18

19 ...
20 }

Figure 5.5: Function main of the NASPB-MPI IS v3.2.

Function main in is.c

1 int main(int argc, char **argv)
2 {
3 ...
4 CONST PARALLEL comm_size;
5 if (comm_size > MAX_PROCS)
6 {
7 ...
8 }
9 ...

10 }

MPI collective calls on different communicators

1 if(...){
2 MPI_Barrier(com1);
3 }
4 else{
5 MPI_Barrier(com2);
6 }

Figure 5.6: Pragma-based approach in function main of the NASPB-MPI IS v3.2 and Example of
MPI communications on different communicators (com1 and com2).

(b) Cover more MPI and OpenMP verification

PARCOACH is focused on the detection of deadlocks related to MPI collective communications, OpenMP
barriers and worksharing constructs. It would also be interesting to extend PARCOACH to detect problems
that occur with MPI point-to-point functions.

94

CHAPTER 5. CONCLUSION AND PERSPECTIVES

For our analyses, we supposed all MPI collective communications are called with compatible arguments.
PARCOACH currently returns no warning for the portion of code presented Figure 5.6 (on the right). With
a data-flow analysis, this assumption is cleared up and collective communications arguments can be checked
(communicators, root, ...).

5.3.2 General Perspectives

HPC applications are still favourable for errors either because of new features that make programming mod-
els more complex or because of the adoption of hybrid solutions. Thus debugging HPC applications remains
crucial and challenging. It is important to continue working further on new solutions to help developers.
This section gives general perspectives to continue in that direction.

(a) Extensions for parallel programming models

Although applied to MPI and OpenMP models the PARCOACH framework can be applicable to any
models with collective constraints. Like MPI, UPC requires that the order of collective operations must be
the same on all threads/processes. UPC-CHECK [120] and UPC-SPIN [121] are the only tools that can
detect deadlocks in UPC programs. UPC-CHECK is based on an algorithm using a distributed shared WFG
to detect deadlocks in collective operations (order and consistency of arguments) and locks.

Besides, beyond parallelism issue, PARCOACH can detect any semantic problems. Since an order should
be guaranteed (an instruction proceeds before another one), PARCOACH can be used to ensure the order is
respected and find potential divergence. For example, PARCOACH can be used to verify sequences of lock-
/unlock in OpenMP applications or for each MPI non-blocking communication that there exists at least a
completion function (MPI_Wait, MPI_Test or their {All, some, any} derivated flavor) associated. Fig-
ure 5.7(a) shows a CFG with one non-blocking collective and one completion call. In this example, there
may be a problem with the completion call.

(b) Full Integration into an existing tool

As a plugin, PARCOACH can be combined with an existing tool for early detection of bugs and verification
at runtime. For that we might expect a compilation with PARCOACH and an execution with a dynamic
debugging tool. PARCOACH could be integrated in existing tools like Marmot or MUST. Besides, our static
analysis can be seen as a valuable advantage to integrate in a dynamic tool by reporting warnings concerning
the execution path responsible for bugs.

It could be interesting to go further with the integration and enable a full interaction between PAR-
COACH and a dynamic tool. The selective instrumentation we propose could help the dynamic tool to re-
duce the amount of checks during the execution. MUST would have the advantage of warnings returned by
our static check and all debug information (line of the cause of a deadlock,...) to avoid systematic instrumen-
tation. Thus validation functions inserted by PARCOACH for runtime checking could also be interpreted by
the dynamic tool. Associated with MUST, PARCOACH does not need to insert validation functions before
return statements as MUST can detect MPI processes calling MPI_Finalize while other MPI processes
calls for another MPI function.

(c) Adaptation to other compilers

PARCOACH was integrated in the GCC compiler but could be integrated in all compilers using the CFG
representation like the LLVM compiler framework [122]. LLVM (Low Level Virtual Machine) is an open-
source compilation platform that competes with GCC in terms of compilation speed and performance of the
generated code. As GCC, LLVM allows compiler extensions through new LLVM passes.

95

5.3. PERSPECTIVES

Going further with the compiler help, whenever PARCOACH finds a potential error at compile-time, the
compiler could help to reorder instructions. For instance, the compiler could switch collective statements
node 3 in Figure 5.7(b) or append coll node 3 in Figure 5.7(c).

entry

2

3-Ibarrier 4

5

6-Wait7

8

exit

(a) Example 1

2

4 - coll.2

coll.1

3 - coll.1

coll.2

(b) Example 2

2

4 - coll3

(c) Example 3

Figure 5.7: Examples for semantic problems detection ((a)) and errors correction by compilers ((b)
and (c)).

(d) Improvement of the Error Benchmark Suite

The error benchmark suite could provide a large and complete comparison of debugging tools in term of
bugs detection. We may expand the work done in [60] with more tools and parallel programming models.
The benchmark suite could also be used to test new features of models and find new possible errors.

96

Appendices

97

Appendix A

GCC, the GNU Compiler Collection

GCC is an integrated distribution of compilers for several major programming languages (C, C++, Objective-
C, Objective-C++, Java, Fortran, Ada and Go). GCC is a part of the GNU project and aims at improving the
compiler used in the GNU system including the GNU/Linux variant. Most of the containt here is from [123].

Driver

gcc
Source

code
Executable

Preprocessor
cpp

Compiler
cc1

Package GCC

Assembler
gas

Package binutils

Linker
ld

Figure A.1: Architecture of GCC

A.1 Structure of GCC

As most compilers, a compilation with GCC is split in three phases: the Front End, the Middle End and the
Back End (see Figure A.2).

The Front End takes the source code and does whatever is needed to translate that source code into a
semantically equivalent, language independent abstract syntax tree (AST). The syntax and semantics of this
AST are defined by the GIMPLE language. GIMPLE is the highest level language independent intermediate
representation GCC has.

The AST is then run through a list of target independent code transformations that take care of such
things as constructing a control flow graph, and optimizing the AST for optimizing compilations, lowering
to non-strict RTL and running RTL based optimizations for optimizing compilations. The non-strict RTL is
handed over to more low-level passes.

The low-level passes are the passes that are part of the code generation process. These passes turn
the non-strict RTL representation into strict RTL. Strict RTL passes include scheduling, doing peephole
optimizations, and emitting the assembly output.

99

A.2. GCC’S HISTORY

Source

code
Front End Gimplifier

Code

Generator
Back End

RTL

Generator

Middle

End

Assembly

code

C/C++/... GENERIC GIMPLE

GIMPLE

RTL

RTLASM

Selected at

build time
Generated at

build time

Figure A.2: Architecture of GCC

A.2 GCC’s history

The very first beta of GCC, then known as the GNU C Compiler, was released on 22 March 1987. Since
then, many improvements were made. GCC has grown to support more languages, more architectures and
has many optimisations. This section gives a GCC timeline with general improvements done in the different
releases of GCC.

• 0.9: March 22, 1987

– First beta release

• GCC 1.0: May 23, 1987

• GCC 3.0: June 18, 2001

– JAVA support in GCC

• GCC 4.0: April 20, 2005

– Merge of the tree ssa branch

– Swing Modulo Scheduling (SMS), an RTL level instruction scheduling optimization intended
for loops

– Intermediate representation GIMPLE

• GCC 4.2.0: May 13, 2007

– OpenMP support for the C, C++ and Fortran compilers

• GCC 4.5.0: April 14, 2010

– New link-time optimizer (LTO)

– Plugins to extend the compiler without modifying its source code

• GCC 4.6.0: March 25, 2011

– Better memory usage and cache locality

– Support for the Go and CAF programming languages

• GCC 4.7.0: March 22, 2012

– OpenMP 3.1

100

APPENDIX A. GCC, THE GNU COMPILER COLLECTION

– C++11 standard

• GCC 4.8.0: March 22, 2013

– GCC now uses C++ as its implementation language

– Full support of C++11 standard

• GCC 4.9.0: April 22, 2014

– OpenMP 4.0

– Experimental support for C++14

– Intel AVX-512 support (inline assembly support, new registers and extending existing ones, new
intrinsics, and basic autovectorization)

– Complete implementation of the Go 1.2.1 release

• GCC 5.0: December 23, 2014

– Support for all C++14 language features

– Preliminary implementation of the OpenACC 2.0a specification

• Current version: GCC 5.1 released in April 22, 2015

101

A.2. GCC’S HISTORY

102

Appendix B

Key concepts

G denotes a Control Flow Graph (CFG) of a program. V is the set of vertex and E the set of edges. Entry
and exit nodes of the CFG are respectively denoted by e and s. X and Y are nodes in the CFG. Each node
X has a set of predecessors (preds(X)) and a set of successors (succs(X)). Most of the definitions are from
Efficiently Computing Static Single Assigment Form and the Control Dependence Graph [109] and [102,103].

B.1 Dominance/Postdominance

Definition 7. X dominates Y if X appears on every path from Entry to Y. We write X�Y. Each node dominates
itself.

e

X

Y

Dom(e) = e

Dom(Y) = (
⋂

p∈preds(Y)

Dom(p)) ∪ {Y}

Definition 8. X postdominates Y if X appears on every path from Y to Exit. We write X�pY. Each node
postdominates itself.

X

X

s

PDom(Y) = (
⋂

p∈succs(Y)

PDom(p)) ∪ {Y}

Definition 9. If X dominates Y and X , nY then X strictly dominates Y. We write X � Y.

sDom(Y) = Dom(Y) − {Y}

Definition 10. If X postdominates Y and X , nY then X strictly postdominates Y. We write X �p Y.

103

B.2. DOMINANCE/POSTDOMINANCE FRONTIER

sPDom(Y) = PDom(Y) − {Y}

Definition 11. The immediate dominator of Y is the closest strict dominator of Y on any path from Entry to
Y.

iDom(Y) = {X|X ∈ sDom(Y)and∀p ∈ sDom(Y)withp ,= X, X ,∈ sDom(p)}

Definition 12. The immediate postdominator of Y is the closest strict postdominator of Y on any path from
Y to Exit.

iPDom(Y) = {X|X ∈ sPDom(Y)and∀p ∈ sPDom(Y)withp ,= X, X ,∈ sPDom(p)}

B.2 Dominance/Postdominance Frontier

Definition 13. The dominance frontier DF(Y) of a node Y is the set of all nodes X such that Y dominates a
predecessor of X but does not strictly dominate X.

e

Y

Px

X

DF(Y) = {X|∃Px ∈ preds(X),Y�PxandY ,� X}

Definition 14. The postdominance frontier PDF(Y) of a node Y is the set of all nodes X such that Y postdom-
inates a successor of X but does not strictly postdominate X.

X

Sx

Y

s

PDF(Y) = {X|∃S x ∈ succs(X),Y�pS xandY ,�p X}

104

Appendix C

Details on benchmarks

We validated the work done in this thesis on several benchmarks and production applications: the NAS
Parallel Benchmarks, EulerMHD, Coral Benchmarks, HERA, EPCC and the error benchmark suite created
in the scope of this thesis.

C.1 NAS Parallel benchmarks

The NAS Parallel Benchmarks (NPB) [104] were developed by the Numerical Aerodynamic Simulation
group at the National Aeronautic and Space Administration (NASA). The benchmarks are a small set of C
and Fortran programs derived from computational fluid dynamics (CFD) applications and consist of five ker-
nels and three pseudo-applications in the original "pencil-and-paper" specification (NPB 1). The benchmark
suite has been extended to include new benchmarks for unstructured adaptive mesh, parallel I/O, multi-zone
applications, and computational grids.

The original eight benchmarks specified in NPB 1 mimic the computation and data movement in CFD
applications:

• five kernels

– IS - Integer Sort, random memory access

– EP - Embarrassingly Parallel

– CG - Conjugate Gradient, irregular memory access and communication

– MG - Multi-Grid on a sequence of meshes, long- and short-distance communication, memory
intensive

– FT - discrete 3D fast Fourier Transform, all-to-all communication

• three pseudo applications

– BT - Block Tri-diagonal solver

– SP - Scalar Penta-diagonal solver

– LU - Lower-Upper Gauss-Seidel solver

Multi-zone versions of NPB (NPB-MZ) are designed to exploit multiple levels of parallelism in appli-
cations and to test the effectiveness of multi-level and hybrid parallelization paradigms and tools. There are
three types of benchmark problems derived from single-zone pseudo applications of NPB:

• BT-MZ - uneven-size zones within a problem class, increased number of zones as problem class grows

105

C.2. CORAL

• SP-MZ - even-size zones within a problem class, increased number of zones as problem class grows

• LU-MZ - even-size zones within a problem class, a fixed number of zones for all problem classes

The extension of the benchmark suite includes unstructured computation, parallel I/O, and data move-
ment.

• UA - Unstructured Adaptive mesh, dynamic and irregular memory access

• BT-IO - test of different parallel I/O techniques

• DC - Data Cube

• DT - Data Traffic

C.2 Coral

The Coral benchmark suite is composed of scalable science benchmarks (LSMS, QBOX, HACC and Nek-
bone), throughput benchmarks (CAM-SE, UMT2013, AMG2013, MCB, QMCPACK, NAMD, LULESH,
SNAP and miniFE), data-centric benchmarks (Graph500, Integer Sort, Hash and SPECint2006), skeleton
benchmarks (CLOMP, IOR, CORAL MPI benchmarks, Memory benchmarks, LCALS, Pynamic, HACC
IO, FTQ, XSBench and MiniMADNESS) and microkernel benchmarks (NEKbonemk, HACCmk, UMTmk,
AMGmk, MILCmk and GFMCmk). In this thesis we tested the following five Coral benchmarks:

• HACC: Compute intensity, random memory access, all-to-all communication. (written in C++)

• AMG2013: Algebraic Multi-Grid linear system solver for unstructured mesh physics packages. (writ-
ten in C)

• LULESH: Shock hydrodynamics for unstructured meshes. Fine-grained loop level threading. (written
in C)

• SNAP: Deterministic radiation transport for structured meshes. (written in Fortran)

• miniFE: Finite element code. (written in C++)

The HACC (Hardware Accelerated Cosmology Code) framework uses N-body techniques to simulate
the formation of structure in collisionless fluids under the influence of gravity in an expanding universe.
The main scientific goal is to simulate the evolution of the Universe from its early times to today and to
advance our understanding of dark energy and dark matter, the two components that make up 95% of our
Universe [124].

AMG is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured
grids [125].

LULESH (Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics) is a shock hydro mini-
app. It performs a hydrodynamics stencil calculation using both MPI and OpenMP to achieve parallelism
[126].

SNAP serves as a proxy application to model the performance of a modern discrete ordinates neutral
particle transport application. This benchmark stresses the memory subsystem and total memory capacity.
It also has the ability to use newer MPI and OpenMP features, such as nested threads and thread multiple
communication when available [127].

miniFE is a Finite Element mini-application which implements a couple of kernels representative of
implicit finite-element applications [128].

106

Bibliography

[1] Michael J. Flynn and Kevin W. Rudd. Parallel Architectures. ACM Comput. Surv., 28(1):67–70,
March 1996. pages 11

[2] C.G. Morris and Academic Press. Academic Press Dictionary of Science and Technology. Academic
Press, 1992. pages 11

[3] TOP 500 List. http://www.top500.org/lists/. pages 11, 13, 119

[4] TOP 500 - Tera 100 supercomputer. http://top500.org/system/10589. pages 12

[5] TOP 500 - Curie supercomputer. http://top500.org/system/177818. pages 12

[6] Barry Wilkinson and Michael Allen. Parallel Programming: Techniques and Applications Using
Networked Workstations and Parallel Computers. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1999. pages 13, 18, 22

[7] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface, July 1997.
http://www.mpi-forum.org/docs/docs.html. pages 14, 26, 35, 42, 43, 54

[8] MPI Tutorials. https://computing.llnl.gov/tutorials/mpi/. pages 15, 117

[9] MPICH. https://www.mpich.org/. pages 15

[10] Openmpi : Open source high performance computing. http://www.open-mpi.org/. pages 15

[11] Intel MPI Library. http://software.intel.com/en-us/intel-mpi-library. pages
15

[12] Bullx Cluster Suite - Application Developer @ Ys Guide. 2.1-MPIBull2. pages 15

[13] IBM Platform MPI. http://www-03.ibm.com/systems/platformcomputing/
products/mpi/. pages 15

[14] Marc Pérache, Hervé Jourdren, and Raymond Namyst. MPC: A Unified Parallel Runtime for Clusters
of NUMA Machines. In Emilio Luque, Tomàs Margalef, and Domingo Benitez, editors, Proceedings
of the 14th international Euro-Par conference on Parallel Processing, volume 5168 of Euro-Par ’08,
pages 78–88, Berlin, Heidelberg, 2008. Springer-Verlag. pages 15

[15] Marc Pérache, Patrick Carribault, and Hervé Jourdren. MPC-MPI: An MPI Implementation Reducing
the Overall Memory Consumption. In Matti Ropo, Jan Westerholm, and Jack Dongarra, editors, Re-
cent Advances in Parallel Virtual Machine and Message Passing Interface, Lecture Notes in Computer
Science, pages 94–103. Springer Berlin Heidelberg, 2009. pages 15

[16] Patrick Carribault, Marc Pérache, and Hervé Jourdren. Enabling Low-Overhead Hybrid MPI/OpenMP
Parallelism with MPC. In Sato et al. [129], pages 1–14. pages 15

107

https://computing.llnl.gov/tutorials/mpi/
http://software.intel.com/en-us/intel-mpi-library
http://www-03.ibm.com/systems/platformcomputing/products/mpi/
http://www-03.ibm.com/systems/platformcomputing/products/mpi/

BIBLIOGRAPHY

[17] Patrick Carribault, Marc Pérache, and Hervé Jourdren. Thread-Local Storage Extension to Support
Thread-Based MPI/OpenMP Applications. In Chapman et al. [130], pages 80–93. pages 15

[18] The MultiProcessor Computing Framework download page. http://mpc.paratools.com/
Download. pages 15

[19] William D. Gropp. Learning from the Success of MPI. In Burkhard Monien, ViktorK. Prasanna, and
Sriram Vajapeyam, editors, High Performance Computing — HiPC 2001, volume 2228 of Lecture
Notes in Computer Science, pages 81–92. Springer Berlin Heidelberg, 2001. pages 16

[20] PGAS : Partitioned Global Address Space. http://www.pgas.org. pages 16

[21] Unified Parallel C. http://upc.gwu.edu/. pages 16

[22] Titanium. http://titanium.cs.berkeley.edu/. pages 16

[23] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal
Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented approach to non-uniform
cluster computing. SIGPLAN Not., 40(10):519–538, October 2005. pages 16

[24] Bradford L Chamberlain, David Callahan, and Hans P Zima. Parallel programmability and the Chapel
language. International Journal of High Performance Computing Applications, 21(3):291–312, 2007.
pages 16

[25] Berkeley unified parallel C project. http://upc.lbl.gov. pages 16

[26] GNU unified parallel C. http://www.gccupc.org. pages 16

[27] POSIX threads. https://computing.llnl.gov/tutorials/pthreads/. pages 16

[28] IEEE Standard for Information Technology - Portable Operating System Interface (POSIX). System
Interfaces. IEEE Std 1003.1, 2004 Edition. The Open Group Technical Standard. Base Specifications,
Issue 6. Includes IEEE Std 1003.1-2001, IEEE Std 1003.1-2001/Cor 1-2002 and IEEE Std 1003.1-
2001/Cor 2-2004. Syst, 2004. pages 16

[29] The OpenMP API specification for parallel programming - version 4.0. http://www.openmp.
org, 2008. pages 17, 63, 64

[30] Robit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon.
Parallel programming in OpenMP. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2001. pages 17

[31] OpenAcc Directives for Accelerators. http://www.openacc.org. pages 18

[32] NVIDIA Corporation. NVIDIA CUDA, Compute Unified Device Architecture Programming Guide,
v5.0, 2012. pages 18

[33] OpenCL - the open standard for parallel programming of heterogeneous systems. http://
khronos.org/opencl. pages 18

[34] K. G. Wilson. Grand Challenges to Computational Science. Future Gener. Comput. Syst., 5(2-3):171–
189, September 1989. pages 18

[35] DC Department of Energy, Washington. Exascale Workshop Panel Meeting Report. page 46, January
2010. pages 18

108

http://mpc.paratools.com/Download
http://mpc.paratools.com/Download
http://www.pgas.org
http://upc.gwu.edu/
http://titanium.cs.berkeley.edu/
http://upc.lbl.gov
http://www.gccupc.org
https://computing.llnl.gov/tutorials/pthreads/
http://www.openmp.org
http://www.openmp.org
http://www.openacc.org
http://khronos.org/opencl
http://khronos.org/opencl

BIBLIOGRAPHY

[36] Jack Dongarra, Pete Beckman, and al. The International Exascale Software Project roadmap. Int. J.
High Perform. Comput. Appl., 25(1):3–60, February 2011. pages 18

[37] Stephen S. Pawlowski. Exascale science: the next frontier in high performance computing. In Pro-
ceedings of the 24th ACM International Conference on Supercomputing, ICS ’10, pages 1–1, New
York, NY, USA, 2010. ACM. pages 18

[38] DC Department of Energy, Washington. Challenges in climate change science and the role of com-
puting at the Extreme Scale. page 98, November 2008. pages 18

[39] Ewing Lusk and Anthony Chan. Early Experiments with the OpenMP/MPI Hybrid Programming
Model. In Intl. Conf. on OpenMP in a New Era of Parallelism, pages 36–47, Berlin, Heidelberg,
2008. Springer-Verlag. pages 19

[40] A. Zendler. Advanced Concepts, Life Cycle Models and Tools for Object-oriented Software Develop-
ment. Reihe Softwaretechnik. Tectum, 1997. pages 20

[41] W. W. Royce. Managing the Development of Large Software Systems: Concepts and Techniques. In
Proceedings of the 9th International Conference on Software Engineering, ICSE ’87, pages 328–338,
Los Alamitos, CA, USA, 1987. IEEE Computer Society Press. pages 20

[42] Barry W. Boehm. Spiral Development: Experience, Principles, and Refinements. In Wilfried J.
Hansen, editor, Spiral Development Workshop, Pittsburgh, 2000. pages 21

[43] Richard W. Selby. Software Engineering: Barry W. Boehm’s Lifetime Contributions to Software
Development, Management, and Research (Practitioners). Wiley-IEEE Computer Society Pr, 2007.
pages 21

[44] M. Stitt. Debugging: Creative Techniques and Tools for Software Repair. Wiley professional com-
puting. Wiley, 1992. pages 22, 25

[45] A. Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann, 2009. pages
23, 24

[46] Dieter Kranzlmüller. Event Graph Analysis for Debugging Massively Parallel Programs. PhD thesis,
Instut für Technische Informatik und Telematik, 2000. pages 24, 117

[47] Charles E. McDowell and David P. Helmbold. Debugging Concurrent Programs. ACM Comput. Surv.,
21(4):593–622, December 1989. pages 23

[48] Bettina Krammer, Matthias S. Müller, and Michael M. Resch. Runtime Checking of MPI Applications
with MARMOT. ParCo, 2005. pages 25, 26, 27, 60

[49] Stephen F. Siegel and Ganesh Gopalakrishnan. Formal analysis of message passing. In Ranjit Jhala
and David Schmidt, editors, Verification, Model Checking, and Abstract Interpretation, volume 6538
of Lecture Notes in Computer Science, pages 2–18. Springer Berlin Heidelberg, 2011. pages 26, 28

[50] GDB: The GNU Project Debugger. http://www.gnu.org/software/gdb/gdb.html.
pages 26

[51] Totalview debugger. http://www.roguewave.com/products-services/totalview.
pages 26, 27

[52] Allinea DDT Debugger. http://www.allinea.com/products/ddt/features. pages
26, 27

109

http://www.gnu.org/software/gdb/gdb.html
http://www.roguewave.com/products-services/totalview
http://www.allinea.com/products/ddt/features

BIBLIOGRAPHY

[53] Stephen Siegel and Timothy Zirkel. Automatic Formal Verification of MPI Based Parallel Programs.
In PPoPP, pages 309–310, 2011. pages 27

[54] Stephen F. Siegel. Verifying Parallel Programs with MPI-Spin. In Franck Cappello, Thomas Hérault,
and Jack Dongarra, editors, PVM/MPI, volume 4757 of Lecture Notes in Computer Science, pages
13–14. Springer, 2007. pages 27

[55] MPI-Checker. https://github.com/0ax1/MPI-Checker. pages 28

[56] Clang Static Analyzer. http://clang-analyzer.llvm.org/. pages 28

[57] Greg Bronevetsky. Communication-Sensitive Static Dataflow for Parallel Message Passing Applica-
tions. In Proceedings of the 7th Annual IEEE/ACM International Symposium on Code Generation and
Optimization, CGO ’09, pages 1–12, Washington, DC, USA, 2009. IEEE Computer Society. pages
28

[58] Anh Vo, Sriram Aananthakrishnan, Ganesh Gopalakrishnan, Bronis R. de de Supinski, Martin Schulz,
and Greg Bronevetsky. A Scalable and Distributed Dynamic Formal Verifier for MPI Programs.
In Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pages 1–10, Washington, DC, USA, 2010. IEEE Computer
Society. pages 28

[59] Bettina Krammer, Katrin Bidmon, Matthias S. Müller, and Michael M. Resch. MARMOT: An MPI
Analysis and Checking Tool. In Gerhard R. Joubert, Wolfgang E. Nagel, Frans J. Peters, and Wolf-
gang V. Walter, editors, PARCO, volume 13 of Advances in Parallel Computing, pages 493–500.
Elsevier, 2003. pages 28

[60] Subodh Sharma, Ganesh Gopalakrishnan, and Robert M; Kirby. A survey of MPI related debuggers
and tools. 2007. pages 28, 96

[61] Jeffrey S. Vetter and Bronis R. de Supinski. Dynamic Software Testing of MPI Applications with
Umpire. In Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, SC ’00, Washington,
DC, USA, 2000. IEEE Computer Society. pages 28

[62] Glenn Luecke, Hua Chen, James Coyle, Jim Hoekstra, Marina Kraeva, and Yan Zou. MPI-CHECK:
a Tool for Checking Fortran 90 MPI Programs. Concurrency and Computation: Practice and Experi-
ence, pages 15:93–100, 2003. pages 28

[63] T. Hilbrich, M. Schulz, B.R. de Supinski, and M. Müller. MUST: A scalable approach to runtime
Error Detection in MPI programs. In Matthias S. Müller, Michael M. Resch, Alexander Schulz, and
Wolfgang E. Nagel, editors, Parallel Tools Workshop, pages 53–66. Springer, 2009. pages 28

[64] Tobias Hilbrich, Joachim Protze, Martin Schulz, Bronis R. de Supinski, and Matthias S. Müller. MPI
runtime error detection with MUST: advances in deadlock detection. In Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage and Analysis, SC ’12,
pages 30:1–30:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press. pages 28

[65] Tobias Hilbrich, Fabian Hänsel, Martin Schulz, Bronis R. de Supinski, Matthias S. Müller, and Wolf-
gang E. Nagel. Runtime MPI Collective Checking with Tree-Based Overlay Networks. In European
MPI Users’ Group Meeting, pages 129–134, New York, NY, USA, 2013. ACM. pages 28

[66] Tobias Hilbrich, Joachim Protze, Bronis R. de de Supinski, Martin Schulz, Matthias S. Müller, and
Wolfgang E. Nagel. Intralayer Communication for Tree-Based Overlay Networks. In Intl. Conf. on
Parallel Processing, pages 995–1003, Washington, DC, USA, 2013. IEEE Computer Society. pages
28

110

https://github.com/0ax1/MPI-Checker
http://clang-analyzer.llvm.org/

BIBLIOGRAPHY

[67] Christopher Falzone, Anthony Chan, Ewing Lusk, and William Gropp. Collective error detection for
MPI collective operations. In Proceedings of the 12th European PVM/MPI Users’ Group Conference
on Recent Advances in Parallel Virtual Machine and Message Passing Interface, PVM/MPI’05, pages
138–147, Berlin, Heidelberg, 2005. Springer-Verlag. pages 28

[68] Christopher Falzone, Anthony Chan, Ewing L. Lusk, and William Gropp. A Portable Method for
Finding User Errors in the Usage of MPI Collective Operations. IJHPCA, 21(2):155–165, 2007.
pages 28

[69] Jesper Larsson Träff and Joachim Worringen. Verifying Collective MPI Calls. In Dieter Kranzlmüller,
Péter Kacsuk, and Jack Dongarra, editors, Recent Advances in Parallel Virtual Machine and Message
Passing Interface, volume 3241 of Lecture Notes in Computer Science, pages 18–27. PVM/MPI,
Springer Berlin Heidelberg, 2004. pages 28

[70] Christopher Falzone, Anthony Chan, Ewing Lusk, and William Gropp. A Portable Method for Find-
ing User Errors in the Usage of MPI Collective Operations. Int. J. High Perform. Comput. Appl.,
21(2):155–165, May 2007. pages 28

[71] Jayant DeSouza, Bob Kuhn, Bronis R. de Supinski, Victor Samofalov, Sergey Zheltov, and Stanislav
Bratanov. Automated, scalable debugging of MPI programs with Intel Message Checker. In Proceed-
ings of the Second International Workshop on Software Engineering for High Performance Computing
System Applications, SE-HPCS ’05, pages 78–82, New York, NY, USA, 2005. ACM. pages 28

[72] https://software.intel.com/en-us/intel-trace-analyzer. pages 28

[73] Michael Süss and Claudia Leopold. Common Mistakes in OpenMP and How To Avoid Them A Col-
lection of Best Practices. In Matthias S. Müller, Barbara M. Chapman, Bronis R. de Supinski, Allen D.
Malony, and Michael Voss, editors, Proceedings of the 2005 and 2006 International Conference on
OpenMP Shared Memory Parallel Programming, volume 4315 of Lecture Notes in Computer Science,
pages 312–323, Berlin, Heidelberg, 2008. Springer-Verlag. pages 29

[74] Tim Cramer, Christian Terboven, Matthias Müller, Felix Münchhalfen, Joachim Protze, and Tobias
Hilbrich. Classification of Common Errors in OpenMP Applications. In Luiz DeRose, BronisR.
de Supinski, StephenL. Olivier, BarbaraM. Chapman, and MatthiasS. Müller, editors, Using and Im-
proving OpenMP for Devices, Tasks, and More, volume 8766 of Lecture Notes in Computer Science,
pages 58–72. Springer International Publishing, 2014. pages 29, 30, 69, 117

[75] Hongyi Ma, Steve Diersen, Liqiang Wang, Chunhua Liao, Daniel J. Quinlan, and Zijiang Yang. Sym-
bolic Analysis of Concurrency Errors in OpenMP Programs. In ICPP, pages 510–516. IEEE, 2013.
pages 31

[76] Yices: An SMT solver. http://yices.csl.sri.com. pages 31

[77] V. Basupalli, T. Yuki, S. Rajopadhye, A. Morvan, S. Derrien, P. Quinton, and D. Wonnacott. om-
pVerify: Polyhedral Analysis for the OpenMP Programmer. In Proceedings of the 7th International
Conference on OpenMP in the Petascale Era, IWOMP’11, pages 37–53, 2011. pages 31

[78] Yuan Lin. Static Nonconcurrency Analysis of OpenMP Programs. In Matthias S. Müller, Barbara M.
Chapman, Bronis R. de Supinski, Allen D. Malony, and Michael Voss, editors, IWOMP, volume 4315
of LNCS, pages 36–50. Springer, 2005. pages 31, 64, 71, 88

[79] Yuan Zhang, Evelyn Duesterwald, and Guang R. Gao. Concurrency Analysis for Shared Memory
Programs with Textually Unaligned Barriers. In Vikram S. Adve, María Jesús Garzarán, and Paul
Petersen, editors, LCPC, volume 5234 of LNCS, pages 95–109. Springer, 2007. pages 31, 66, 71

111

BIBLIOGRAPHY

[80] GOMP site. gcc.gnu.org/projects/gomp. pages 31

[81] Young-Joo Kim, Sejun Song, and Yong-Kee Jun. ADAT: An Adaptable Dynamic Analysis Tool for
Race Detection in OpenMP Programs. In ISPA, pages 304–310. IEEE, 2011. pages 31

[82] Young-Joo Kim, Mi-Young Park, So-Hee Park, and Yong-Kee Jun. A Practical Tool for Detecting
Races in OpenMP Programs. In Victor E. Malyshkin, editor, PaCT, volume 3606 of LNCS, pages
321–330. Springer, 2005. pages 31

[83] Ying Meng, Ok-Kyoon Ha, and Yong-Kee Jun. Dynamic Instrumentation for Nested Fork-join Paral-
lelism in OpenMP Programs. In Proceedings of the 4th International Conference on Future Genera-
tion Information Technology, FGIT’12, pages 154–158. Springer-Verlag, 2012. pages 31

[84] Paul Petersen and Sanjiv Shah. OpenMP Support in the Intel Thread Checker. In Michael Voss, editor,
WOMPAT, volume 2716 of LNCS, pages 1–12. Springer, 2003. pages 31

[85] Young-Joo Kim, Kim Daeyoung, and Yong-Kee Jun. An Empirical Analysis of Intel Thread Checker
for Detecting Races in OpenMP Programs. In Roger Y. Lee, editor, ACIS-ICIS, pages 409–414. IEEE
Computer Society, 2008. pages 31, 32

[86] Christian Terboven. Comparing Intel Thread Checker and Sun Thread Analyzer. In Christian H.
Bischof, H. Martin Bücker, Paul Gibbon, Gerhard R. Joubert, Thomas Lippert, Bernd Mohr, and
Frans J. Peters, editors, PARCO, volume 15 of Advances in Parallel Computing, pages 669–676. IOS
Press, 2007. pages 31

[87] Jianjiang Li, Dan Hei, and Lin Yan. Correctness Analysis based on Testing and Checking for OpenMP
Programs. In ChinaGrid Annual Conference, 2009. ChinaGrid ’09. Fourth, pages 210–215. Fourth
ChinaGrid Annual Conference, IEEE, Aug 2009. pages 31

[88] C. Eric Wu, Anthony Bolmarcich, Marc Snir, David Wootton, Farid Parpia, Anthony Chan, Ewing
Lusk, and William Gropp. From Trace Generation to Visualization: A Performance Framework for
Distributed Parallel Systems. In ACM/IEEE Intl. Conf. on SuperComputing, November 2000. pages
32

[89] James Cownie and Shirley Moore. Portable OpenMP debugging with TotalView. 2000. pages 32

[90] Sameer S. Shende and Allen D. Malony. The Tau Parallel Performance System. Intl. J. on High
Performance Computing Applications, 20:287–331, 2006. pages 32

[91] M. Geimer, F. Wolf, B.J.N. Wylie, D. Becker, D. Böhme, W. Frings, M.-A. Hermanns, B. Mohr, and
Z. Szebenyi. Recent Developments in the Scalasca Toolset. In Intl. Workshop on Parallel Tools for
High Performance Computing, 2010. Record converted from VDB: 12.11.2012. pages 32

[92] Holger Brunst and Bernd Mohr. Performance Analysis of Large-Scale OpenMP and Hybrid
MPI/OpenMP Applications with Vampir NG. In Matthias S. Müller, Barbara M. Chapman, Bro-
nis R. de Supinski, Allen D. Malony, and Michael Voss, editors, IWOMP, volume 4315 of Lecture
Notes in Computer Science, pages 5–14. Springer, 2005. pages 32

[93] David Lecomber and Patrick Wohlschlegel. Debugging at Scale with Allinea DDT. In Alexey Chep-
tsov, Steffen Brinkmann, José Gracia, Michael M. Resch, and Wolfgang E. Nagel, editors, Parallel
Tools Workshop, pages 3–12. Springer, 2012. pages 32

[94] K. Fürlinger and M. Gerndt. ompP: A Profiling Tool for OpenMP. In Intl. Conf. on OpenMP Shared
Memory Parallel Programming, IWOMP’05/IWOMP’06, pages 15–23, Berlin, Heidelberg, 2008.
Springer-Verlag. pages 32

112

BIBLIOGRAPHY

[95] W.-F. Chiang, G. Szubzda, G. Gopalakrishnan, and R. Thakur. Dynamic Verification of Hybrid Pro-
grams. In European MPI Users’ Group Meeting Conference on Recent Advances in the Message
Passing Interface, EuroMPI’10, pages 298–301. Springer-Verlag, 2010. pages 32

[96] T. Hilbrich, M. S. Müller, and B. Krammer. Detection of Violations to the MPI Standard in Hybrid
OpenMP/MPI Applications. In Intl. Conf. on OpenMP in a New Era of Parallelism, pages 26–35.
Springer-Verlag, 2008. pages 32, 49

[97] Emmanuelle Saillard, Patrick Carribault, and Denis Barthou. Combining Static and Dynamic Valida-
tion of MPI Collective Communications. In Proceedings of the European MPI Users’ Group Meeting,
EuroMPI’13, pages 117–122, New York, NY, USA, September 2013. ACM. pages 33, 53, 87

[98] Emmanuelle Saillard, Patrick Carribault, and Denis Barthou. PARCOACH: Combining static and
dynamic validation of MPI collective communications. International Journal of High Performance
Computing Applications, page 10.1177/1094342014552204, 2014. pages 33, 53, 87

[99] Emmanuelle Saillard, Patrick Carribault, and Denis Barthou. Static Validation of Barriers and Work-
sharing Constructs in OpenMP Applications. In International Workshop on OpenMP, pages 73 – 86,
Salvador, Brazil, September 2014. pages 33, 53, 87

[100] Emmanuelle Saillard, Patrick Carribault, and Denis Barthou. Static/Dynamic Validation of MPI Col-
lective Communications in Multi-threaded Context. In Proceedings of the 20th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP 2015, pages 279–280, New York,
NY, USA, 2015. ACM. pages 33, 73, 87

[101] Emmanuelle Saillard, Patrick Carribault, and Denis Barthou. MPI Thread-Level Checking for
MPI+OpenMP Applications. In EuroPar, 2015. pages 33, 35, 87

[102] Steven S. Muchnick. Advanced compiler design implementation. Academic Press, 1997. pages 37,
90, 103

[103] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools, second edition. Pearson Education, Inc, 2007. pages 37, 103

[104] NASPB site: http://www.nas.nasa.gov/software/NPB. pages 40, 46, 60, 69, 83, 105

[105] GCC 4.7. gcc.gnu.org/gcc-4.7/. pages 46

[106] Jason Merrill. GENERIC and GIMPLE: A New Tree Representation for Entire Functions. In in Proc.
GCC Developers Summit, pages 171–180. GCC summit, 2003. pages 46

[107] CORAL Benchmarks. https://asc.llnl.gov/CORAL-benchmarks/. pages 46

[108] H. Jourden. HERA: A hydrodynamic AMR Platform for Multi-Physics Simulations. In Tomasz Plewa,
Timur Linde, and V. Gregory Weirs, editors, Adaptive Mesh Refinement - Theory and Applications,
pages 283–294. Springer, 2003. pages 46, 60, 69, 83

[109] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck. Efficiently Computing Static
Single Assignment Form and the Control Dependence Graph. In ACM TOPLAS, pages 13(4):451–
490, 1991. pages 56, 103

[110] M. Wolff, S. Jaouen, and H. Jourdren. High-order dimensionally split lagrange-remap schemes for
ideal magnetohydrodynamics. In Discrete and Continuous Dynamical Systems Series S. NMCF, 2009.
pages 60

113

gcc.gnu.org/gcc-4.7/
https://asc.llnl.gov/CORAL-benchmarks/

BIBLIOGRAPHY

[111] IMB. software.intel.com/en-us/articles/intel-mpi-benchmarksl. pages 60

[112] Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, Sameer Kumar, Ewing Lusk, Rajeev
Thakur, and Jasper Larsson Träff. MPI on a million Processors. In Proceedings of the 16th Euro-
pean PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pages 20–30, Berlin, Heidelberg, 2009. Springer-Verlag. pages 60

[113] J. M. Bull, J. P. Enright, X. Guo, C. Maynard, and F. Reid. Performance Evaluation of Mixed-Mode
OpenMP/MPI Implementations. Intl. J. of Parallel Programming, 38(5-6):396–417, 2010. pages 83

[114] Lorna Smith and Mark Bull. Development of Mixed Mode MPI / OpenMP Applications. Sci. Pro-
gram., 9(2,3):83–98, 2001. pages 83

[115] Henry Lieberman. The Debugging Scandal and What to Do About It (Introduction to the Special
Section). Commun. ACM, 40(4):26–29, 1997. pages 87

[116] Julien Jaeger, Emmanuelle Saillard, Patrick Carribault, and Denis Barthou. Correctness Analysis of
MPI-3 Non-Blocking Communications in PARCOACH. In EuroMPI, 2015. pages 87

[117] S. Gulwani and A. Tiwari. Computing Procedure Summaries for Interprocedural Analysis. In
R. De Nicola, editor, European Symp. on Programming, ESOP 2007, volume 4421 of LNCS, pages
253–267, 2007. pages 90

[118] Xin Zhang, Ravi Mangal, Mayur Naik, and Hongseok Yang. Hybrid Top-down and Bottom-up In-
terprocedural Analysis. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, pages 249–258, New York, NY, USA, 2014. ACM.
pages 90

[119] Xin Zhang, Ravi Mangal, Mayur Naik, and Hongseok Yang. Hybrid Top-down and Bottom-up Inter-
procedural Analysis. SIGPLAN Not., 49(6):249–258, June 2014. pages 90

[120] I. Roy, G. R. Luecke, J. Coyle, and M. Kraeva. A scalable deadlock detection algorithm for UPC
collective operations. In Proceedings of the Fifth Conference on Partitioned Global Address Space
Programming Models, PGAS’13, pages 2–15, The University of Edinburgh, 2013. pages 95

[121] A. Ebnenasir. UPC-SPIN: A Framework for the Model Checking of UPC Programs. In Proceedings
of the Fifth Conference on Partitioned Global Address Space Programming Models, PGAS’11, 2011.
pages 95

[122] The LLVM Compiler Infrastructure. http://llvm.org/. pages 95

[123] GCC. https://gcc.gnu.org/. pages 99

[124] HACC summary. https://asc.llnl.gov/CORAL-benchmarks/Summaries/HACC_
Summary_v1.5.pdf. pages 106

[125] AMG summary. https://asc.llnl.gov/CORAL-benchmarks/Summaries/AMG2013_
Summary_v2.3.pd. pages 106

[126] LULESH summary. https://asc.llnl.gov/CORAL-benchmarks/Summaries/
LULESH_Summary_v1.pdf. pages 106

[127] SNAP summary. https://asc.llnl.gov/CORAL-benchmarks/Summaries/SNAP_
Summary_v1.3.pd. pages 106

114

software.intel.com/en-us/articles/intel-mpi-benchmarksl
http://llvm.org/
https://gcc.gnu.org/
https://asc.llnl.gov/CORAL-benchmarks/Summaries/HACC_Summary_v1.5.pdf
https://asc.llnl.gov/CORAL-benchmarks/Summaries/HACC_Summary_v1.5.pdf
https://asc.llnl.gov/CORAL-benchmarks/Summaries/AMG2013_Summary_v2.3.pd
https://asc.llnl.gov/CORAL-benchmarks/Summaries/AMG2013_Summary_v2.3.pd
https://asc.llnl.gov/CORAL-benchmarks/Summaries/LULESH_Summary_v1.pdf
https://asc.llnl.gov/CORAL-benchmarks/Summaries/LULESH_Summary_v1.pdf
https://asc.llnl.gov/CORAL-benchmarks/Summaries/SNAP_Summary_v1.3.pd
https://asc.llnl.gov/CORAL-benchmarks/Summaries/SNAP_Summary_v1.3.pd

BIBLIOGRAPHY

[128] miniFE summary. https://asc.llnl.gov/CORAL-benchmarks/Summaries/MiniFE_
Summary_v2.0.pdf. pages 106

[129] Mitsuhisa Sato, Toshihiro Hanawa, Matthias S. Müller, Barbara M. Chapman, and Bronis R. de Supin-
ski, editors. Beyond Loop Level Parallelism in OpenMP: Accelerators, Tasking and More, 6th Interna-
tionan Workshop on OpenMP, IWOMP 2010, Tsukuba, Japan, June 14-16, 2010, Proceedings, volume
6132 of Lecture Notes in Computer Science. Springer, 2010. pages 107

[130] Barbara M. Chapman, William D. Gropp, Kalyan Kumaran, and Matthias S. Müller, editors. OpenMP
in the Petascale Era - 7th International Workshop on OpenMP, IWOMP 2011, Chicago, IL, USA, June
13-15, 2011. Proceedings, volume 6665 of Lecture Notes in Computer Science. Springer, 2011. pages
108

115

https://asc.llnl.gov/CORAL-benchmarks/Summaries/MiniFE_Summary_v2.0.pdf
https://asc.llnl.gov/CORAL-benchmarks/Summaries/MiniFE_Summary_v2.0.pdf

BIBLIOGRAPHY

116

List of Figures

1.1 Growth of supercomputing power of the first (N=1) and the last (N=500) supercomputer
recorded by TOP500 list (see http://www.top500.org) . 12

1.2 Shared and Distributed Memory Architectures . 14
1.3 Example of three MPI processes executing point-to-point communications (send/recv). . . . 14
1.4 Collective Communication Routines [8]. 15
1.5 Example of the PGAS model. 16
1.6 Example of a hybrid model combining MPI and OpenMP programming models. In this

example, each MPI task is executed on a node and contains four OpenMP threads. 19
1.7 Boehm’s version of the Waterfall Model . 20
1.8 Example of V-Model development cycle . 21
1.9 Example of Spiral development cycle model . 21
1.10 First computer "bug" . 22
1.11 Testing and debugging cycle [46] . 24
1.12 Examples of erroneous MPI codes. 27
1.13 Classification of Common Issues in OpenMP Applications [74] 30
1.14 Examples of semantic defects (Violation of the standard and Conceptual defect). 30

2.1 MPI+OpenMP examples showing different uses of MPI calls. 36
2.2 Example of a simple C code with its associated CFG. 37
2.3 Different splitting phases according to the origin node. The statement s is supposed to be an

OpenMP construct or an implicit or explicit barrier. The origin node is presented on the left
and the result of the splitting phase on the right. 38

2.4 Augmented Control Flow Graph and parallelism words of codes in Figure 2.1 40
2.5 Automaton of possible parallelism words. Nodes 0, 2 and 3 correspond to code executed by

the master thread or a single thread. Nodes 1 and 4 correspond to code executed in a parallel
region, and 5 and 6 to code executed in nested parallel region. 41

2.6 Instrumented CFG Figures 2.4(b) and 4.5(a) (Algorithm 11) 45
2.7 Architecture of GCC . 46
2.8 Overview of PARCOACH . 47
2.9 Overhead of average compilation time . 48
2.10 Examples of MPI thread-level non-compliant codes. 49
2.11 Examples of MPI thread-level non-compliant codes. 50

3.1 A simple example and its instrumentation . 54
3.2 Example of Control Flow Graphs. From the left, a CFG showing execution orders, CFG of

function f and two other CFGs . 57
3.3 Example of a CFG from a Benchmark and their instrumentation (see Algorithm 13) 57
3.4 Execution time of collective calls from IMB . 60

117

LIST OF FIGURES

3.5 Overhead of average compilation time with and without verification code generation (CC
functions insertion) . 62

3.6 Execution time overhead for HERA with strong scaling . 62
3.7 Execution time overhead for NASPB class C with strong scaling and for EulerMHD with

weak scaling . 63
3.8 Examples of deadlock situation in OpenMP programs . 64
3.9 Example of a simple code (a) with its corresponding OMPCFG (b) and an example of OM-

PCFG containing barriers (c) . 65
3.10 Functions f OMPCFG of Listing 2.3 ((a)) and main OMPCFG of Listing 2.6 after function

f replacement ((b), see Algorithm 18) and an example of an OMPCFG with a loop ((c)) . . 67
3.11 Callgraph of Listing 3.4 (a) and BT from NASPB-OMP (b) 69
3.12 Overhead of average compilation time for NASPB-OMP and HERA 70

4.1 MPI+OpenMP examples showing different uses of MPI collectives. 74
4.2 Possible errors in a hybrid program with N MPI processes and 2 threads per process 76
4.3 CFG of Code 6 and the parallelism words associated at each node 77
4.4 Automaton of possible parallelism words. Node 0 corresponds to code executed by the

master thread or a single thread. Node 1 correspond to code executed in a parallel region and
3 to code executed in nested parallel region. 78

4.5 Examples of CFG with monothreaded regions highlighting thread barriers 79
4.6 Instrumented CFG Figures 4.3(a) and 4.5(a) (Algorithm 11) 82
4.7 Overhead of average compilation time with and without verification code generation 84
4.8 Execution-time overhead for HERA and NASPB-MZ Class B with 8 threads per MPI process 85
4.9 Execution-Time Overhead for the EPCC suite (Weak scaling) (8 threads per process). The

benchmark suite contains measurements for the following operations : Barrier, Reduce,
Broadcast, Scatter and Alltoall. 85

5.1 Example of a false positive. 89
5.2 Example of a false negative. 89
5.3 Example of a problematic case for the first inter-procedural approach. 92
5.4 The applied second inter-procedural approach. 92
5.5 Function main of the NASPB-MPI IS v3.2. 94
5.6 Pragma-based approach in function main of the NASPB-MPI IS v3.2 and Example of MPI

communications on different communicators (com1 and com2). 94
5.7 Examples for semantic problems detection ((a)) and errors correction by compilers ((b) and

(c)). 96

A.1 Architecture of GCC . 99
A.2 Architecture of GCC . 100

118

List of Tables

1.1 Characteristics of Tera 100, Curie and Inti supercomputers (2014, [3]) 13
1.2 Classification of MPI Debugging Tools. T: Trace-based, OD: Online dynamic analysis, L:

MPI library . 29

2.1 Level of threads parallelism at function entries for NASPB-MZ 41
2.2 Compliance Results . 47
2.3 Compliance Results . 47

3.1 Compilation and Execution Results of MPI Applications 61
3.2 Directive nodes in the OMPCFG . 65
3.3 Static Results for each benchmark (F=FORTRAN) . 70

4.1 Compilation and Execution Results . 84

5.1 Statistics on EulerMHD and NASPB-MPI v.3.3 class B. 92

119

	Preamble
	1 Introduction
	1.1 Introduction to High Performance Computing
	1.1.1 Modern Supercomputers
	1.1.2 Thesis Computing Environment
	1.1.3 Programming Models for HPC
	1.1.4 MPI: Message Passing Interface
	1.1.5 PGAS
	1.1.6 Pthreads
	1.1.7 OpenMP
	1.1.8 Heterogeneous Architectures Programming
	1.1.9 Exascale Challenges
	1.1.10 Summary

	1.2 Debugging Parallel Constructs of HPC applications
	1.2.1 Software Life-Cycle Models
	1.2.2 Debugging Parallel Applications
	1.2.3 Verification of MPI Applications
	1.2.4 Verification of OpenMP Applications
	1.2.5 Verification of MPI+OpenMP Applications

	1.3 Outline

	2 Interaction Between MPI and shared memory models
	2.1 MPI Thread-Level Checking for MPI+OpenMP Applications
	2.1.1 Analysis of the Multithreaded Context
	2.1.2 Thread-Level Compliance Checking

	2.2 PARallel COntrol flow Anomaly CHecker (PARCOACH)
	2.3 Revealing PARCOACH Functionalities
	2.4 Summary

	3 Detection of Collective Errors Origin in Parallel Applications
	3.1 Combining Static and Dynamic Analyses to Find the Origin of MPI Collective Errors
	3.1.1 Compile-Time Verification
	3.1.2 Static Instrumentation for Execution-Time Verification
	3.1.3 Evaluation

	3.2 Combining Static and Dynamic Analyses to Find the Origin of OpenMP Collective Errors
	3.2.1 Checking OpenMP Directives and Control Flow
	3.2.2 Intra-Procedural Analysis
	3.2.3 Static Instrumentation for Execution-Time Verification
	3.2.4 Inter-Procedural Analysis
	3.2.5 Evaluation

	3.3 Summary

	4 Detection of Collective Errors Origin in Applications Mixing Parallel Programming Models
	4.1 Static and Dynamic Validation of MPI Collective Communications in Multi-threaded Context
	4.1.1 Problem Statement
	4.1.2 Compile-Time Verification
	4.1.3 Static Instrumentation for Execution-Time Verification
	4.1.4 Evaluation

	4.2 Summary

	5 Conclusion and Perspectives
	5.1 Conclusion
	5.2 Work in progress
	5.3 Perspectives
	5.3.1 Short-term Improvements
	5.3.2 General Perspectives

	Appendices
	A GCC, the GNU Compiler Collection
	A.1 Structure of GCC
	A.2 GCC's history

	B Key concepts
	B.1 Dominance/Postdominance
	B.2 Dominance/Postdominance Frontier

	C Details on benchmarks
	C.1 NAS Parallel benchmarks
	C.2 Coral

	Bibliography
	List of Figures
	List of Tables

