
HAL Id: tel-01228524
https://theses.hal.science/tel-01228524

Submitted on 13 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimal sets, existence and regularity
Yangqin Fang

To cite this version:
Yangqin Fang. Minimal sets, existence and regularity. General Mathematics [math.GM]. Université
Paris Sud - Paris XI, 2015. English. �NNT : 2015PA112191�. �tel-01228524�

https://theses.hal.science/tel-01228524
https://hal.archives-ouvertes.fr


No d’ordre :

Université Paris-Sud
Faculté des Sciences d’Orsay

THÈSE

présentée pour obtenir

LE GRADE DE DOCTEUR EN SCIENCES
DE L’UNIVERSITÉ PARIS XI
Spécialité : Mathématiques

par
Yangqin FANG

Ensembles minimaux, existence et régularité

Directeur de thèse : M. Guy DAVID

Rapporteurs : M. Francesco MAGGI
Mme. Severine RIGOT

Soutenue le 21 Septembre 2015 devant le jury composé de :

M. Guy DAVID : Directeur de thèse
M. Antoine LEMENANT : Examinateur
M. Simon MASNOU : Examinateur
M. Pierre PANSU : Examinateur
Mme. Severine RIGOT : Rapporteur
M. Fillippo SANTAMBROGIO : Examinateur



Thèse préparée au
Département de Mathématiques d’Orsay
Laboratoire de Mathématiques d’Orsay (UMR 8628), Bât. 425
Université Paris-Sud
91405 Orsay Cedex
France



Remerciements

En premier lieu, je tiens à remercier chaleureusement mon directeur de
thèse Guy David. Guy, je te remercie de m’avoir accordé ta confiance en
me proposant ce sujet de thèse que j’ai trouvé extrêmement intéressant et de
m’avoir laissé cette chance de travailler avec quelqu’un d’aussi formidable que
toi. Merci pour ta disponiblité, ta gentillesse, ta bonne humeur constante, ton
efficacité hors du commun, ton optimisme à toute épreuve et ton expérience
des mathématiques qui m’a tellement émerveillé et fasciné. Merci d’égale-
ment d’avoir toujours été à mon écoute lorsque j’en avais besoin. Toutes les
qualités humaines que tu possèdes ont marqué mon esprit à jamais et j’espère
sincèrement réussir à me servir, dans mon futur métier, de toutes ces valeurs
que tu m’as transmises.

Je remercie Séverine Rigot et Francesco Maggi qui ont accepté de rappor-
ter ma thèse et l’on fait avec grand. Merci tout particulièrement à Séverine
pour ses questions posées, qui m’a invité à faire un exposé à Nice m’a posé
de nombreuses questions et a apporté des améliorations significatives à mon
manuscrit. Merci beaucoup à Francesco pour sa relecture très attentive et ses
remarques.

Merci à Filippo Santambrogio, Pierre Pansu, Antoine Lemenant et Simon
Masnou d’avoir accepté de faire partie de mon jury.

Je souhaite également exprimer ma reconnaissance à Vincent pour ses
conseils avisés. Merci pour m’avoir inviter à faire un exposé.

Je remercie vivement zhiyin Wen et Jiayan Yao. Un grand merci pour leur
soutien et leurs encouragements constants pendant mes études de recherche.

Sincères remerciements au Professeur Ulrich Menne qui m’a invité à faire
un séminaire au MPI. En même temps, un grand merci pour votre offre de
postdoc qui est une occasion parfaite pour moi en ce moment.

Je tiens à remercier particulièrement Thierry pour tout ce qu’il a fait pour
moi. Thierry, merci pour votre soutien.

Et merci à Xiangyu Liang, pour le partage des connaissances dans diffé-
rentes conferences mathématiques.

Je voudrais remercier à mes collegues dans mon bureau : Haiyan Xu, Shen
Lin, Ziyang Gao, Alex Amenta, Yeping Zhang, Thibault Paolantoni, Edoardo
Cavallotto, pour un joyeux environnement de travail.

Je remercie également mes amis pour m’accompagner : Guocai Liu, Men-
ger Huang, Xiaoqun Huang, Haoming Wang, Xiaotian Zuo, Yi Huang, Son-
gyan Xie, Bo Xia, Yiwen Ding, Xiaodong Wang, Shu Shen, Yinshan Chang,
Jingzhi Yan, Yueyuan Gao, Guokuan Shao etc.



Enfin, je remercie ma famille sans qui je ne sais pas ce que je serais. Ma
femme, Fan, merci pour votre confiance et votre amour qui m’ont donné la
force nécessaire pour accomplir cette thèse. J’adresse une pensée tendre à mes
parents et mon frère en Chine, merci pour pour l’amour incommensurable
que vous me portez. Merci beaucoup pour votre soutien, votre confiance et
votre générosité.



Résumé

Cette thèse s’intéresse principalement à l’existence et à la régularité des
ensembles minimaux.

On commence par montrer, dans le chapitre 3, que le problème de Plateau
étudié par Reifenberg admet au moins une solution. C’est-à-dire que, si l’on
se donne un ensemble compact B ⊂ Rn et un sous-groupe L du groupe d’ho-
mologie de Čech Ȟd−1(B;G) de dimension (d−1) sur un groupe abelien G, on
montre qu’il existe un ensemble compact E ⊃ B tel que L est contenu dans
le noyau de l’homomorphisme Ȟd−1(B;G) → Ȟd−1(E;G) induit par l’appli-
cation d’inclusion B → E, et pour lequel la mesure de Hausdorff Hd(E \B)
est minimale (sous ces contraintes).

Ensuite, on montre au chapitre 4, que pour tout ensemble presque mi-
nimal glissant E de dimension 2, dans un domaine régulier Σ ressemblant
localement à un demi espace, associé à la frontière glissante ∂Σ, et tel que
E ⊃ ∂Σ, il se trouve qu’à la frontière E est localement équivalent, par un
homéomorphisme biHöldérien qui préserve la frontière, à un cône minimal
glissant contenu dans un demi plan Ω, avec frontière glissante ∂Ω. De plus
les seuls cônes minimaux possibles dans ce cas sont ∂Ω seul, ou son union
avec un cône de type P+ ou Y+.
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Abstract

This thesis focuses on the existence and regularity of minimal sets.
First we show, in Chapter 3, that there exists (at least) a minimizer

for Reifenberg Plateau problems. That is, Given a compact set B ⊂ Rn,
and a subgroup L of the Čech homology group Ȟd−1(B;G) of dimension
(d − 1) over an abelian group G, we will show that there exists a compact
set E ⊃ B such that L is contained in the kernel of the homomorphism
Ȟd−1(B;G) → Ȟd−1(E;G) induced by the natural inclusion map B → E,
and such that the Hausdorff measure Hd(E \ B) is minimal under these
constraints.

Next we will show, in Chapter 4, that if E is a sliding almost minimal set
of dimension 2, in a smooth domain Σ that looks locally like a half space, and
with sliding boundary ∂Σ, and if in addition E ⊃ ∂Σ, then, near every point
of the boundary ∂Σ, E is locally biHölder equivalent to a sliding minimal
cone (in a half space Ω, and with sliding boundary ∂Ω). In addition the only
possible sliding minimal cones in this case are ∂Ω or the union of ∂Ω with a
cone of type P+ or Y+.
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Chapitre 1

Introduction
L’étude des propriétés géométriques des ensembles est centrale dans la thé-
rie géométrique de la mesure. En particulier, l’existence et la régularité
d’ensembles ayant des propriétés de minimalité sont des sujets très popu-
laires. Souvent ces ensembles sont associés à des notions physiques fortes.
Par exemple, les films de savon sont bien modélisés par les ensembles mini-
maux au sens d’Almgren (définis ci-dessous). La théorie géométrique de la
mesure est née de l’étude du problème de Plateau, qui vient cependant de
l’observation expérimentale par un physicien, Joseph Plateau, qui observa
que lorsque l’on plonge un fil de fer dans de l’eau savonneuse, puis qu’on le
retire, la forme qu’on obtient est un ensemble minimal porté par le fil. En
gros le problème de Plateau est celui de l’existence, puis de la régularité,
d’ensemble minimaux avec une contrainte de frontière.

1.1 Existence

Au cours du 20ième siècle, le problème de Plateau a été résolu avec de nom-
breuses modélisations différentes. La première solution a été donnée par Jesse
Douglas [15] and Tibor Radó [37], en décrivant les films comme des images
paramétrées d’un disque. Leur manière d’énoncer le problème est célèbre ;
cependant les solutions ne tiennent pas compte de ce qui se produit lorsque
deux surfaces se croisent, et oublient les surfaces non orientables, de sorte
que certains types de films de savon ne sont pas représentés.

La manière la plus populaire d’énoncer et de résoudre le problème de Pla-
teau est d’utiliser les ensembles de périmètre fini (De Giorgi) et les courants
(Federer and Fleming). En particulier, Federer and Fleming [20] ont intro-
duit les courants dans le sujet. Ils ont démontré un théorème d’existence
très général, pour un courant intégral S dont la masse est minimale sous
la contrainte de bord ∂S = T (où T est un courant intégral donné de bord
nul), comme conséquence d’un résultat de compacité. Les courants minimaux
(pour la masse) ont une théorie de régularité très riche ; voir [30] pour une
bonne description du sujet.

Reifenberg [38] a utilisé l’homologie de Čech pour décrire le problème de
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Plateau comme suit. Soient B ⊂ Rn un ensemble compact (qu’on voit comme
un bord) d ∈ (0, n) un entier, et G un groupe abélien. On se donne aussi
un sous-groupe L du groupe d’homologie de Čech Ȟd−1(B;G) de dimension
d−1 sur B. On dit que l’ensemble compact S ⊂ Rn a un bord algébrique qui
contient L quand B ⊂ S et L est contenu dans le noyau de l’homomorphisme
Ȟd−1(B;G) → Ȟd−1(S;G) induit par l’inclusion iB,S : B → S. Reifenberg
[38] a démontré que quand B est un ensemble compact de dimension (d− 1)
et G est un groupe abélien compact, alors il existe toujours au moins un
ensemble compact S ⊃ B, qui a un bord algébrique contenant L, et dont la
mesure de Hausdorff d-dimensionnelle est minimale (sous cette contrainte).
On appelle S un minimiseur de Reifenberg homologique.

Plus récemment Thierry De Pauw [34] a démontré l’existence de minimi-
seurs aussi quand G = Z est le groupe des entiers relatifs, n = 3, d = 2, et
B est formé de courbes lisses.

Nous allons généraliser les résultats de Reifenberg à tout groupe abélien
G et tout ensemble compact B : nous montrerons que pour tout choix de
groupe abélien G et d’ensemble compact B ⊂ Rn, et pour tout sous-groupe
L ⊂ Ȟd−1(B;G), il existe un compact S, qui a un bord algébrique contenant
L, et qui minimise Hd(S \B) parmi les ensembles compacts qui ont un bord
algébrique contenant L. De plus nous pourrons remplacer la mesure de Haus-
dorff Hd(S \B) par JF (S \B), l’intégrale sur S \B d’un “intégrant elliptique
généralisé” F . Disons quelques mots de la notation JF et des intégrants el-
liptiques ; les définitions précises se trouvent au paragraphe 3.1, et l’énoncé
correspondant est le théorème 3.19. On note G(n, d) la Grassmannienne des
sous-espaces vectoriels de dimension d de l’espace euclidien Rn. On pose,
lorsque E est de mesure de Hausdorff Hd(E) finie et F : Rn×G(n, d)→ R+

est positive,

JF (E) =

∫
x∈Erec

F (x, TxE) dHd(x) +

∫
x∈Eirr

{
sup

π∈G(n,d)

F (x, π)
}
dHd(x),

où Erec et Eirr sont les parties rectifiable et purement non rectifiable de E. Un
intégrannt elliptique généralisé est une fonction positive F : Rn ×G(n, d)→
R+ telle que

0 < c1 ≤ F ≤ c1 < +∞, pour certaines constantes c1, c2 > 0,

et
JF (π ∩B(x, r)) ≤ JF (S) + h(r)rd

pour tout d-plan affine π passant par x et tout ensemble rectifiable compact
S ⊂ B(x, r) qui contient π ∩ ∂B(x, r) mais ne peut pas être envoyé dans
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π ∩ ∂B(x, r) par une application Lipschitzienne ϕ : Rn → Rn telle que
ϕ|π∩∂B(x,r) = id ; ici h : [0,+∞] → [0,∞] est une fonction croissante donnée
à l’avance telle que limt→0 h(t) = 0.

S

π∩∂B(x,r)

Figure 1.1 : JF (π ∩B(x, r)) ≤ JF (S) + h(r)rd

Pour l’auteur, les minimiseurs de Reifenberg homologiques donnent sou-
vent une meilleure description des films de savon que les courants minimiseurs
de masse, et ils sont plus proches des (supports fermés des) courants mini-
miseurs de taille, qui sont les courants S qui minimisent la quantité Size(S)
sous la même condition ∂S = T que plus haut, mais où la taille Size(S) est,
en gros, la mesure de Hausdorff de l’ensemble où la fonction multiplicité qui
définit S comme courant intégral est non nulle. Ainsi, la masse de S compte
la multiplicité, mais pas la taille. On renvoie à [19,20,34] pour des définitions
précises, et un compte-rendu plus détaillé du problème de Plateau pour les
minimiseurs de taille. Faisons juste deux observations ici, en rapport avec le
problème de Reifenberg. La Figure 1.2 représente le support d’un courant
minimiseur de taille, mais pas de masse (la multiplicité sur le cercle central
est 2, donc la masse est plus grande que la taille).

Même quand le courant de bord T est le courant d’intégration sur une
courbe lisse (mais possiblement nouée) dans R3, il n’y a pas de théorème
général d’existence pour les courants minimiseurs de taille. Cependant Frank
Morgan [30] a démontré l’existence d’un courant minimiseur de taille lorsque
le bord est une variété lisse contenue dans la frontière d’un corps convexe, et
Thierry de Pauw and Robert Hardt [35] ont démontré l’existence de courants
qui minimisent des énergies qui se situent entre masse et taille (typiquement,
obtenues en intégrant une petite puissance de la multiplicité).

La raison pour laquelle la démonstration usuelle (par compacité) d’exis-
tence pour les courants minimiseurs de masse ne passe pas aux minimiseurs
de taille est que la taille de S ne donne aucun contrôle sur la multiplicité,
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Figure 1.2 : courant minimiseur de taille, mais pas de masse

de sorte que la limite d’une suite minimisante pourrait très bien ne pas avoir
une masse finie, donc ne même pas exister en tant que courant. Cette obser-
vation est liée à la raison pour laquelle Reifenberg s’est restreint aux groupes
compacts (de sorte que les multiplicités ne tendent pas vers l’infini).

Dans [2], F. Almgren propose une méthode pour prouver le théorème de
Reifenberg, et même l’étendre à des groupes G quelconques et des intégrants
elliptiques assez généraux. La méthode utilise les varifolds (alors récemment
découverts), ou les chaînes bémol, et un argument de feuilles multiples pour
résoudre le problème des grandes multiplicités. L’argument est aussi fort
subtil et elliptique. Incidemment, Almgren utilise les groupes d’homologie
relative de Vietoris Hv

d au lieu des groupes d’homologie de Čech. Dans son
papier, le bord B est un ensemble compact (d − 1)-rectifiable dans Rn, tel
que Hd−1(B) < +∞, et une surface est un ensemble compact d-rectifiable
S ⊂ Rn. Pour tout σ ∈ Hv

d (Rn, B;G), on dit que S engendre σ quand
ik(σ) = 0, où l’on note Hv

d (Rn, B;G) le d-ième groupe d’homologie relative
de Vietoris de la paire (Rn, B), et où

ik : Hv
d (Rn, B;G)→ Hv

d (Rn, B ∪ S;G)

est l’homomorphisme induit par l’inclusion i : B → B ∪ S. Signalons que
Dowker, in [16, Theorem 2a] a démontré que les groupes d’homologie de
Čech et Vietoris sur un groupe abélien G sont isomorphes pour des espaces
topologiques quelconques.

Le problème de Plateau homologique est clairement lié au problème des
minimiseurs de taille, et par exemple T. De Pauw [34] montre que dans le cas
simple où B est une courbe lisse, les infimums pour les deux problèmes sont
égaux. Dans le même papier, T. De Pauw étend également le théorème de
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Reifenberg (pour des courbes dans R3) au groupe G = Z. Malheureusement,
bien que sa démonstration utilise de la minimisation de courants, elle ne
donne pas l’existence d’un courant minimiseur de taille (il faudrait encore
construire un courant sur l’ensemble minimal obtenu).

Soient C une collection d’ensembles compacts et F un intégrant. On
renvoie au début du chapitre 3 pour des définitions précises des intégrants,
des intégrants elliptiques généralisés, et de l’intégrale JF (E) d’un intégrant
F sur l’ensemble E.

On pose
m(C , F ) = inf{JF (E \B) | E ∈ C }.

Au chapitre 3.2, on démontre le résultat d’existence général suivant.
Theorem 3.17. Soient F un intégrant elliptique généralisé et C une classe
de parties compactes de Rn. On suppose que C vérifie les conditions sui-
vantes :

(1) Pour toute fonction Lipschitzienne ϕ : Rn → Rn telle que ϕ|B = idB
et tout E ∈ C , ϕ(E) ∈ C ;

(2) Pour toute suite {Ek}∞k=1 ⊂ C telle que Ek → E en distance de
Hausdorff, E ∈ C .

Alors il existe E ∈ C tel que JF (E \B) = m(C , F ).
En fait, l’existence de minimiseurs homologiques de Reifenberg est une

conséquence immediate de ce théorème. En effet, soient B ⊂ Rn un en-
semble compact, F intégrant elliptique généralisé, G un groupe abélien, et
L un sous-groupe de Ȟd−1(B;G). Notons CČech(B,G,L) la collection des en-
sembles compacts E tels que B ⊂ E et L est contenu dans le noyau de
l’homomorphisme Ȟd−1(B;G) → Ȟd−1(E;G) induit par l’application d’in-
clusion B → E.
Theorem 3.19. Il existe un ensemble compact E ∈ CČech(B,G,L) tel que

JF (E \B) = m (CČech(B,G,L), F ) .

La démonstration du théorème repose sur deux développements récents
qui lui permettent de fonctionner plus facilement et d’éviter les problèmes de
grande multiplicité.

Le premier développement est un lemme introduit par Dal Maso, Morel,
et Solimini [28] dans le contexte de la fonctionnelle de Mumford-Shah, et
qui donne une condition suffisante, portant sur une suite d’ensembles Ek qui
converge en distance de Hausdorff vers une limite E, pour qu’on ait l’inégalité
de semicontinuité inférieure

Hd(E) ≤ lim inf
k→+∞

Hd(Ek). (1.1.1)

9



Ce résultat sera très pratique quand on cherchera un minimiseur à l’aide d’une
suite minimisante. Les hypothéses originales du lemme de [28] ne sont pas
toujours agréables à vérifier, mais heureusement Guy David [7] a décrit des
moyens de l’appliquer à une suite d’ensembles quasiminimaux. Il a démontré
que si {Ek} est une suite d’ensembles quasiminimaux (réduits) avec une
même constante de quasiminimalité, alors la limite de Hausdorff de la suite
est aussi quasiminimale, avec la même constante de quasiminimalité, et de
plus l’inégalité de semicontinuité (2.1.1) est satisfaite. Voir le théorème 3.4
dans [7]. La démonstration utilise le lemme de [28].

Ici on veut non seulement trouver un ensemble qui minimise la mesure de
Hausdorff, mais aussi obtenir le même résultat pour l’intégrale d’un intégrant.
Pour ceci il semble crucial de disposer d’une inégalité de semicontinuité in-
férieure pour l’intégrale d’un intégrant. Heureusement, pour une classe assez
large d’intégrants, on peut obtenir l’inégalité de semicontinuité

JF (E) ≤ lim inf
k→+∞

JF (Ek), (1.1.2)

où l’on renvoie au chapitre 3.1 pour une définition précise de JF (E), et au
théorème 3.8 pour un énoncé precis de l’inégalité de semicontinuité. Signa-
lons que notre démonstration du théorème 3.8 (pour l’inégalité 2.1.2) est fort
différente de la preuve du lemme de [28] ou du théorème 3.4 dans [7]. Par
ailleurs, il ne faut pas espérer que l’inégalité (2.1.2) soit vraie pour tout in-
tégrant. Pour certains intégrants, on trouve aisément une suite d’ensembles
quasiminimaux telle que (2.1.2) est fausse ; voir l’exemple en fin de para-
graphe 3.1.3.

Mais l’outil principal pour notre démonstration du théorème 3.17 sera un
résultat récent de V. Feuvrier [22], où il construit des réseaux polyédriques
adaptés à un ensemble rectifiable donné (penser aux cubes dyadiques usuels,
mais où l’on se débrouille pour que les faces soient souvent presque parallèles
à l’ensemble) qui lui permettent de construire une suite minimisante compo-
sée d’ensembles qui sont localement uniformément quasiminimaux, de sorte
qu’on peut lui appliquer notre inégalité de semicontinuité.

Une telle construction a été utilisée par Xiangyu Liang [26], pour démon-
trer des résultats d’existence d’ensembles minimisant la mesure de Hausdorff
sous des conditions homologiques qui généralisent des contraintes de sépara-
tion (en codimensions supérieures à 1).

Donnons une idée de la démonstration du théorème 3.17. On part d’une
suite minimisante {Ek} ⊂ C . On utilise une technique découverte par Vincent
Feuvrier, qui permet de construire une nouvelle suite {E ′′k}, où E ′′k est un
compétiteur de Ek,

JF (E ′′k \B) ≤ (1 + 2−k)JF (Ek \B),
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et avec des propriétés supplémentaires (quasiminimalité uniforme) qui per-
mettent d’appliquer un résultat de semicontinuité inférieure (le théorème 3.8)
et montrer que l’ensemble limite E = limE ′′k est un minimiseur. Pour le théo-
rème 3.19, on doit juste montrer que CČech(B,G,L) vérifie les deux conditions
du théorème 3.17. La première est claire, et la second vient de la propriété
de continuité de l’homologie de Čech vis à vis des limites inverses.

1.2 Régularité

Dans [9, 10], Guy David a proposé d’étudier une variante du problème de
Plateau, avec des conditions de bord glissantes. On se donne un ensemble
fermé B ⊂ Rn, et un ensemble initial fermé E0 ⊃ B. Un compétiteur de
E0 dans l’ouvert U est un ensemble ϕ1(E0), où {ϕt}0≤t≤1 est une famille
d’applications de E∩U dans U telle que ϕ0 = id, ϕt(E∩B) ⊂ B, la fonction
(x, t) 7→ ϕt(x) est continue sur E ∩ U × [0, 1] et coincide avec l’identité
hors d’une partie compacte de E × [0, 1] ; on renvoie au chapitre 4 pour les
détails. On veut trouver un compétiteur E dont la mesure Hd(E \ B) soit
minimale. La condition au bord ϕt(E ∩B) ⊂ B semble très naturelle pour le
problème de Plateau (décrire des films de savon). L’un de ses avantages (par
rapport à fixer les points de B) est qu’il semble alors plus facile de prouver
des propriétés de régularité au bord. En fait, [11] est une préparation à la
démonstration de telles propriétés.

Le théorème 3.17 ne donne aucun résultat d’existence pour le problème
de Plateau avec conditions glissantes au bord. Mais dans [25,36], les auteurs
proposent une approche directe au problème de Plateau. Ils prouvent un
résultat d’existence, qui dit que quand B est un ensemble fermé tel que
Hd(B) = 0, il existe (au moins) un minimiseur pour le problème de Plateau
avec conditions glissantes au bord (et en prenant pour E0 l’ensemble lui-
même). Une autre approche, plus désagréable, est la suivante : commencer
par prouver que les ensembles minimaux glissants ont assez de régularité au
bord pour être la cible de rétractions lipschitziennes dans un voisinage, puis
appliquer ceci à la limite d’une suite minimisante pour montrer qu’elle est
encore un compétiteur du E0 initial.

Il est important et intéressant d’étudier la régularité des films de savon.
Joseph Plateau déclara que les surfaces formées par des bulles de savon ne
sont en contact que de deux manières possibles : soit trois surfaces se ren-
contre, avec un angle de 120◦ le long d’une courbe, soit six surfaces se ren-
contrent en un sommet, en faisant des angles de 3 arccos(−1

3
) ≈ 109◦. C’est

ce qu’a prouvé Jean Taylor [39]. Elle a démontré que tout ensemble presque
minimal de dimension 2 dans R3 est localement C1-équivalent à un cône mi-
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nimal dans R3, et que les seuls cônes minimaux dans R3 sont les plans, et les
cônes de type Y (voir la Figure 1.3), et de type T (Figure 1.4).

Figure 1.3 : un cône de type Y Figure 1.4 : un cône de type T

Ainsi, pour certaines solutions du problème de Plateau, le théorème de
Jean Taylor’s donne une description claire et élégante de leur comportement
loin du bord. Par contre on sait trés peu de choses sur leur comportement
au bord. En fait, il y a assez peu de résultats de régularité qui vont jusqu’au
bord. Dans [1], on trouve un résultat pour les varifolds ; dans [23], un résultat
pour les solutions d’un problème de Plateau spécifique ; dans [41], un résultat
pour les courants qui minimisent la masse. Citons également un résultat de
J. Taylor [40] sur le comportement au bord de chaînes bémol minimisantes,
ou de manière équivalente d’ensembles de périmètre finis minimisants. On
trouve également dans [24] ou [32] une conjecture concernant les divers types
de singularité d’un film de dimension 2 près de la frontière. On est encore
loin de résoudre cette conjecture.

Dans [8] et [6], Guy David donne une démonstration nouvelle et plus dé-
taillée d’une bonne partie du résultat de régularité de Jean Taylor’s sur les
ensembles presque minimaux au sens d’Almgren, de dimension 2 dans R3,
et généralise le résultat à Rn (mais avec seulement une équivalence Höldé-
rienne). En même temps, il prouve un théorème de presque monotonie de
la densité pour les ensembles presque minimaux (loin du bord). En fait, sa
démonstration de régularité Höldérienne repose sur la propriété de presque
monotonie et un théorème de paramétrage de Reifenberg. Dans [11, Part VI :
Monotone density], il démontre un résultat semblable (presque monotonie de
la densité) mais au bord pour un ensemble presque minimal glissant. C’est
ce qui nous permettra de démontrer un résultat de régularité Höldérienne
jusqu’au bord, pour certains ensembles presque minimaux glissants. C’est le
théorème suivant.
Theorem 4.31. Soit Σ ⊂ R3 un ensemble fermé connexe dont la frontière
∂Σ est une variété de classe C1 de dimension 2. Soient x un point de ∂Σ,
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U un voisinage de x, et E ⊂ Σ un (U, h)-ensemble presque minimal glissant
associé à la frontière ∂Σ et tel que E ⊃ ∂Σ. Alors pour tout petit τ > 0, on
peut trouver un rayon ρ > 0, un cône minimal glissant Z dans un demi espace
Ω associé à la frontière L1 = ∂Ω, et enfin un homéomorphisme biHöldérien
φ : B(x, 3ρ/2) ∩ Ω→ B(x, 2ρ) ∩ Σ tel que

φ(x) ∈ ∂Σ pour x ∈ L1 ∩B(x, 3ρ/2), ‖φ− id‖∞ ≤ 3τρ,

C |z − y|1+τ ≤ |φ(z)− φ(y)| ≤ C−1 |z − y| 1
1+τ ,

B(x, ρ) ∩ Σ ⊂ φ

(
B

(
x,

3ρ

2

)
∩ Ω

)
⊂ B(x, 2ρ) ∩ Σ,

E ∩B(x, ρ) ⊂ φ

(
Z ∩B

(
x,

3ρ

2

))
⊂ E ∩B(x, 2ρ).

La liste des cônes minimaux glissants dans le demi espace Ω associés à
la frontière L1 = ∂Ω, et qui contiennent L1, n’est pas compliquée. Ce sont
le cône L1 seul, et les cônes L1 ∪ Z, où Z est un cône de type P+ ou Y+.
Voir le chapitre 4.2 pour des définitions précises, et le théorème 4.15 pour un
énoncé.

Notre hypothèse que E ⊃ ∂Σ semble une condition raisonnable pour des
films de savon. Quand on trempe un fil de fer dans de l’eau savonneuse, puis
qu’on le retire, on obtient (souvent) un film de savon ; le fil est notre frontière
glissante et le film serait modélisé par un ensemble presque minimal glissant.
En fait la surface semble bien contenir le fil (tout le fil est mouillé). Ainsi
notre hypothèse que E ⊃ ∂Σ semble naturelle à l’auteur.

Il serait aussi très intéressant de considérer la régularité au bord des
ensembles presque minimaux glissants, sans la contrainte de contenir le bord.
Mais malheureusement, sans supposer que E ⊃ ∂Σ, nous n’avons pas de
résultat satisfaisant. C’est parce que dans ce cas, les limites par explosion
de E en un point du bord peuvent aussi être des cônes de type T+ (voir le
chapitre 4.2 pour définition, et la figure 1.5) ou de type V (cette fois voir
[12, p. 9], et la figure 2.6).

Quand E a une limite par explosion de type V, on s’attend à des difficultés
sérieuses pour la démonstration (voir la figure 1.7, qui est un exemple poten-
tiel de film de savon, pour lequel la régularité semble difficile à démontrer).

Pour tout λ ∈ [0, 1], on considère la mesure µλ = H2 − (1 − λ)H2x∂Σ
définie par µλ(E) = λH2(E ∩∂Σ) +H2(E \∂Σ) pour tout ensemble E ⊂ R3.
On définit les ensembles presque minimaux pour µλ comme on l’a fait dans
la définition 4.2, mais en remplaçant la mesure de Hausdorff usuelle par µλ ;
on dira dans la suite que ces ensembles sont (U, h, µλ) presque minimaux glis-
sants. Le théorème ci-dessus dit que tout ensemble (U, h, µ0) presque minimal
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Figure 1.5 : cône de type T+

α
α ≤ 30◦

Figure 1.6 : cône de type V

glissant (dans Σ, et avec la frontière glissante ∂Σ) est localement biHölder-
équivalent à un cône minimal glissant (pour la mesure µ0 et dans un demi
espace Ω avec la frontière glissante ∂Ω). Une question naturelle est de savoir
si tout ensemble (U, h, µλ) presque minimal glissant est localement biHölder-
équivalent à un cône minimal glissant (pour la mesure µλ). En fait, le cas
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Figure 1.7 : Une limite par explosion en 0 est un cône de type V

où λ = 1 est équivalent à ce dont on a parlé ci-dessus, à savoir la régula-
rité au bord des ensembles presque minimaux glissants sans supposer qu’ils
contiennent la frontière, et la question semble difficile. Quand 0 < λ < 1, il
faut d’abord donner la liste des cônes minimaux pour la mesure µλ, et nous
ne souhaitons pas élaborer ici.

Jean Taylor [40, Theorem 5] a démontré des résultats de cet ordre (et
en fait plus précis), en étudiant la régularité au bord pour des problèmes de
capillarité. La situation était quand même différente, parce qu’elle considérait
des chaînes bémol (ou de manière équivalente, d’ensembles de Caccioppoli) ;
La situation était quand même différente ; en particulier, Y+ (qui sépare
l’espace en trois composantes) n’intervient pas comme cône tangent dans
son étude.
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Chapter 2

Introduction
English version

The study of geometric properties of sets is the core topic in geometric mea-
sure theory. In particular, the study of the existence and regularity of sets
with some minimal properties is very popular. Usually, these sets enjoy a
strong physics background. For example, soap films are well modeled by Alm-
gren minimal sets (defined below). The geometric measure theory is born out
of solving Plateau’s problem. However Plateau’s problem was introduced by
the physicist Joseph Plateau through experimental observation. Plateau no-
ticed that if we dip a wire into some soapy water, when we pull it out we
obtain a minimal set created by the soap film. Roughly speaking, Plateau’s
problem is to show the existence and then the regularity of minimal sets
under some boundary constraints.

2.1 Existence

During the 20th century Plateau’s problem was solved with many different
modelings. The first solution was given by Jesse Douglas [15] and Tibor Radó
[37]. This is a celebrated way to state the Plateau problem, where surfaces are
considered as parametrized images of a disk, but the solutions do not account
for crossing surfaces and nonorientable surfaces, thus some reasonable forms
of soap film are not taken into account.

The most popular way to state and prove existence results for Plateau’s
problem has been through sets of finite perimeter (De Giorgi) and currents
(Federer and Fleming). In particular, Federer and Fleming [20] introduced
currents in the subject. A very general existence result for an integral current
S whose mass is minimal under the boundary constraint ∂S = T immediately
follows from a compactness property, where T is a given integral current such
that ∂T = 0. Mass-minimizing currents have a very rich regularity theory;
we refer to [30] for a nice overview.

Reifenberg [38] used Čech homology to depict Plateau’s problem. Let a
compact set B ⊂ Rn (considered as boundary) and an integer d ∈ (0, n) be
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given. Also let G be an abelian group, and pick a subgroup L of the (d− 1)
dimensional Čech homology group Ȟd−1(B;G). Let S ⊂ Rn; we say that
S is of algebraic boundary containing L, if B ⊂ S and L is contained in
the kernel of the homomorphism Ȟd−1(B;G) → Ȟd−1(S;G) induced by the
inclusion map iB,S : B → S. Reifenberg [38] proved that when B is a (d− 1)
dimensional compact set and G is a compact abelian group, then among all
the compact sets S of algebraic boundary containing L, there exists (at least)
one with smallest d-dimensional Hausdorff. We call such a set S a (Reifenberg
homological) minimizer.

More recently, Thierry De Pauw [34] proved the existence of minimizers
also when G = Z is the group of integers, n = 3, d = 2, and B is a nice curve.

We will generalize Reifenberg’s results to any abelian group G and any
compact set B. That is, for any abelian group G, any compact set B ⊂ Rn,
and any subgroup L ⊂ Ȟd−1(B;G), we will show that there exists a compact
set S which is of boundary containing L and that minimizes the quantity
Hd(S \B) among all those compact sets. Moreover, we can replace the Haus-
dorff measure Hd(S \B) by JF (S \B), the integral of an generalized elliptic
integrand F on S \ B. We quickly introduce the notation JF and general-
ized elliptic integrand, but we refer to section 3.1 for precise definitions, and
to Theorem 3.19 for a precise statement. We denote by G(n, d) the Grass-
mannian which consist of d-dimensional subspaces of euclidean space Rn.
Given a set E of finite Hausdorff measure Hd(E), and a positive function
F : Rn ×G(n, d)→ R+, we put

JF (E) =

∫
x∈Erec

F (x, TxE) dHd(x) +

∫
x∈Eirr

{
sup

π∈G(n,d)

F (x, π)
}
dHd(x),

where Erec and Eirr are the rectifiable and purely unrectifiable parts of E.
A generalized elliptic integrand F is a positive continuous function Rn ×
G(n, d)→ R+ such that

0 < c1 ≤ F ≤ c1 < +∞, for some c1, c2 > 0,

and that

JF (π ∩B(x, r)) ≤ JF (S) + h(r)rd

for any d-plane π through x and any rectifiable compact set S ⊂ B(x, r)
which contains π∩∂B(x, r) and can not be mapped into π∩∂B(x, r) by any
Lipschitz map ϕ : Rn → Rn with ϕ|π∩∂B(x,r) = id, where h : [0,+∞]→ [0,∞]
is a nondecreasing function with limt→0 h(t) = 0.
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S

π∩∂B(x,r)

Figure 2.1: JF (π ∩B(x, r)) ≤ JF (S) + h(r)rd

In the author’s view, Reifenberg’s homological minimizers often give a
better description of soap films than mass minimizers, and they are much
closer to (the closed supports of) size minimizing currents. Those are currents
S that minimize the quantity Size(S) under a boundary constraint ∂S = T
as before, but where Size(S) is, roughly speaking, the Hd-measure of the
set where the multiplicity function that defines S as an integral current is
nonzero. Thus the mass counts the multiplicity, but not the size. We refer to
[19,20,34] for precise definitions, and a more detailed account of the Plateau
problem for size minimizing currents. We shall just mention two things here,
in connection with the Reifenberg problem. Figure 2.2 depicts the support of
a current which is size minimizing, but not mass minimizing (the multiplicity
on the central disk is 2, so the mass is larger than the size).

Figure 2.2: size minimizing but not mass minimizing

Even when the boundary current T is the current of integration on a
smooth (but possibly linked) curve in R3, there is no general existence for
a size minimizing current. However, Frank Morgan proved the existence of
a size minimizing current [30] when the boundary is a smooth submanifold
contained in the boundary of a convex body, and in [35] Thierry de Pauw
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and Robert Hardt proved the existence of currents which minimize energies
that lie somewhere between mass and size (typically, obtained by integration
of some small power of the multiplicity).

The reason why the usual proof of existence for mass minimizers, using a
compactness theorem, does not work for size minimizers, is that the size of S
does not give any control on the multiplicity, and so the limit of a minimizing
sequence may well not have finite mass (or even not exist as a current). This
issue is related to the reason why Reifenberg restricted to compact groups
(so that multiplicities don’t go to infinity).

In [2], F. Almgren proposed a scheme for proving Reifenberg’s theorem,
and even extending it to general groups and elliptic integrands. The scheme
uses the then recently discovered varifolds, or flat chains, and a multiple
layers argument to get rid of high multiplicities, but it is also very subtle
and elliptic. Incidentally, Almgren uses Vietoris relative homology groups Hv

d

instead of Čech homology groups. In his paper, a boundary B is a compact
(d − 1)-rectifiable subset of Rn with Hd−1(B) < +∞, and a surface S is a
compact d-rectifiable subset of Rn. For any σ ∈ Hv

d (Rn, B;G), a surface S
spans σ if ik(σ) = 0, where we denote by Hv

d (Rn, B;G) the d-th Vietoris
relative homology groups of (Rn, B), and

ik : Hv
d (Rn, B;G)→ Hv

d (Rn, B ∪ S;G)

is the homomorphism induced by the inclusion map i : B → B ∪ S. We
should mention that Dowker, in [16, Theorem 2a], proved that Čech and Vi-
etoris homology groups over an abelian group G are isomorphic for arbitrary
topological spaces.

There is some definite relation between Reifenberg’s homological Plateau
problem and the size minimizing currents, and for instance T. De Pauw [34]
shows that in the simple case when B is a nice curve, the infimums for
the two problems are equal. In the same paper, T. De Pauw also extends
Reifenberg’s result (for curves in R3) to the group G = Z. Unfortunately,
even though the proof uses minimizations among currents, this does not yet
give a size minimizer (one would need to construct an appropriate current
on the minimizing set).

Let C be a collection of compact sets and let F be an integrand. We refer
to the beginning of the chapter 3 for the precise definitions of integrands,
generalized elliptic integrands and the integral JF (E) of an integrand F on
a set E.

We set
m(C , F ) = inf{JF (E \B) | E ∈ C }.

In Section 3.2, we will prove the following general existence result.
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Theorem 3.17. Let F be a generalized elliptic integrand, C a class of com-
pact subsets in Rn. If C satisfies the following conditions:

(1) For any Lipschitz function ϕ : Rn → Rn with ϕ|B = idB and any
E ∈ C , ϕ(E) ∈ C ;

(2) For any sequence {Ek}∞k=1 ⊂ C with Ek → E in Hausdorff distance,
then E ∈ C .

Then we can find E ∈ C such that JF (E \B) = m(C , F ).
In fact, the existence of Reifenberg homological minimizers immediately

follows from the above theorem. Indeed, let the compact set B ⊂ Rn, a
generalized elliptic integrand F , an abelian group G, and a subgroup L of
Ȟd−1(B;G) be given. We denote by CČech(B,G,L) the collection of compact
sets E which satisfy that B ⊂ E and that L is contained in the kernel of
the homomorphism Ȟd−1(B;G)→ Ȟd−1(E;G) induced by the inclusion map
B → E.
Theorem 3.19. There exists a compact set E ∈ CČech(B,G,L) such that

JF (E \B) = m (CČech(B,G,L), F ) .

The proof of the theorem relies on two recent developments that make it
work more smoothly and ignore multiplicity issues.

The first development is a lemma introduced by Dal Maso, Morel, and
Solimini [28] in the context of the Mumford-Shah functional, and which gives
a sufficient condition, on a sequence of sets Ek that converges to a limit E
in Hausdorff distance, for the lower semicontinuity inequality

Hd(E) ≤ lim inf
k→+∞

Hd(Ek). (2.1.1)

It will be very convenient when we seek a minimizer through a minimizing
sequence. But it is not so pleasant to verify the conditions for the original
lemma in [28]. Fortunately, Guy David [7] found ways to apply it to a se-
quence of quasiminimal sets. He proved that when {Ek} is a sequence of
quasiminimal sets with a same quasiminimal constant, then the Hausdorff
limit of the sequence is also quasiminimal even with same quasiminimal con-
stant, and the lower semicontinuity inequality (2.1.1) holds. See Theorem 3.4
in [7]. The proof uses the lemma in [28].

Here we not only want to find a minimizer for the Hausdorff measure, but
also to get the same result for the integral of an integrand. For this a lower
semicontinuity inequality for integral of an integrand seems crucial. Fortu-
nately, for some kind of special integrands, the following lower semicontinuity
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inequality also holds :

JF (E) ≤ lim inf
k→+∞

JF (Ek), (2.1.2)

where we prefer to refer to Section 3.1 for a precise definition of JF (E), and
to Theorem 3.8 for a precise statement of the lower semicontinuity inequality.
Let us mention that our proof of Theorem 3.8 (for inequality 2.1.2) is quite
different from the proof of the lemma in [28] or Theorem 3.4 in [7]. Also,
don’t expect that the inequality (2.1.2) holds for any integrand. For some
integrands, we can easily find a sequence of quasiminimal sets such that
(2.1.2) is false; see the example in the end of subsection 3.1.3.

But our main tool for the proof of Theorem 3.17 will be a recent result of
V. Feuvrier [22], where he uses a construction of polyhedral networks adapted
to a given set (think about the usual dyadic grids, but where you manage
to have faces that are very often parallel to the given set) to construct a
minimizing sequence for our problem, but which has the extra feature that
it is composed of locally uniformly quasiminimal sets, to which we can apply
our lower semicontinuity inequality.

Such a construction was used by Xiangyu Liang [26], to prove existence
results for sets that minimize the Hausdorff measure under some homological
generalization of a separation constraint (in codimension larger than 1).

Let us give a rapid sketch of the proof of Theorem 3.17. First we take a
bounded minimizing sequence {Ek} ⊂ C . Next, we use a technique found by
Feuvrier to construct a new sequence {E ′′k}, such that each E ′′k is a competitor
of Ek,

JF (E ′′k \B) ≤ (1 + 2−k)JF (Ek \B),

and with some extra properties (of uniform quasiminimality) that allow us
to use a lower semicontinuity result (Theorem 3.8) and show that the limit
set E = limE ′′k is a minimizer. For Theorem 3.19, we only need to check that
CČech(B,G,L) satisfies the two conditions in Theorem 3.17. The first one is
quit clear, and the second one comes from the continuity of Čech homology
with respect to inverse limits.

2.2 Regularity

In [9, 10], Guy David proposed to consider a variant of Plateau’s problem,
with sliding boundary conditions. We are given a closed set B ⊂ Rn, and
an initial closed set E0 ⊃ B. A competitor of E0 is a set ϕ1(E0), where
{ϕt}0≤t≤1 is a family of mapsE ∩U → U such that ϕ0 = id, ϕt(E ∩B) ⊂ B,
the function (x, t) 7→ ϕt(x) is continuous on E ∩ U × [0, 1] and coincides
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with the identity outside of a compact set of E × [0, 1]; we refer to Chapter
4 for more detail. We aim to find a competitor E for which Hd(E \ B) is
minimal among competitors of E0. The sliding condition ϕt(E ∩ B) ⊂ B
seems very natural for Plateau’s problem (to describe soap films). One of
its advantages (compared to fixing points of B) is that it may be easier to
prove some regularity at the boundary. In fact, Paper [11] paves the way to
showing the regularity.

Theorem 3.17 does not imply any existence result for the Plateau prob-
lem with sliding boundary conditions. But in [25, 36], the authors proposed
a direct approach to the Plateau problem. Eventually they proved an exis-
tence result, which says that when B is a closed set with Hd(B) = 0, then
there exists (at least) a sliding minimizer for the Plateau problem with slid-
ing boundary conditions. Another approach to the existence may be a little
unpleasant: that is, first prove enough regularity for sliding minimal sets to
find a Lipschitz neighborhood retraction, and then the limit set of a nice
minimizing sequence will be a minimizer.

It is important and interesting to study the regularity of soap films. Joseph
Plateau claimed that soap bubble surfaces always make contact in one of two
ways: either three surfaces meet with 120◦ angles along a curve, or six surfaces
meet at a vertex, forming angles of 3 arccos(−1

3
) ≈ 109◦. This was proved by

Jean Taylor [39]. She proved that any two-dimensional almost minimal set
in R3 is locally C1-equivalent to a two-dimensional minimal cone in R3, and
that two-dimensional minimal cones in R3 are planes, cones of type Y (see
Figure 2.3), and cones of type T (see Figure 2.4).

Figure 2.3: a cone of type Y Figure 2.4: a cone of type T

Thus, for some solutions of Plateau’s problem, Jean Taylor’s theorem
gives a very clear and nice description of its behavior away from the boundary.
But we know very little about its boundary behavior. In fact, not so many
regularity results exist that go to the boundary. In [1], there is a result for
varifold; in [23], there is a result for solutions of a special Plateau problem;
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in [41], there is a result for mass minimizers; let us also mention a result
of J.Taylor [40] that concerns the behaviour at the boundary of flat chains
modulo 2, or equivalently sets of finite perimeter. In [24] or [32], there is a
conjecture about the types of singularities of a soap film near the boundary.
We still have a long way to achieve solving the conjecture.

In [8] and [6], Guy David gave a new, more detailed, proof of a good
part of Jean Taylor’s regularity theorem for Almgren almost minimal sets
of dimensional 2 in R3, and generalized it to Rn (but with only a Hölder
equivalence in general). At the same time, he established a theorem of almost
monotonicity of density for almost minimal set away from boundary. In fact,
his proof of Hölder regularity relies on the property of almost monotonicity
of density and a Reifenberg parameterization. In [11, Part VI: Monotone
density], he proved a similar result (a theorem of almost monotonicity of
density) at the boundary for sliding almost minimal sets. This will allow us
to prove the Hölder regularity of these sets at the boundary in some case.
That is, the following theorem.
Theorem 4.31. Let Σ ⊂ R3 be a connected closed set such that the boundary
∂Σ is a two-dimensional C1 submanifold. Suppose that x is a point in ∂Σ, U
is a neighborhood of x, E ⊂ Σ is an (U, h)-sliding-almost-minimal set with
sliding boundary ∂Σ and E ⊃ ∂Σ. Then for each small τ > 0, we can find a
radius ρ > 0, a sliding minimal cone Z in Ω with sliding boundary L1 and a
biHölder map φ : B(x, 3ρ/2) ∩ Ω→ B(x, 2ρ) ∩ Σ such that

φ(x) ∈ ∂Σ for x ∈ L1 ∩B(x, 3ρ/2), ‖φ− id‖∞ ≤ 3τρ,

C |z − y|1+τ ≤ |φ(z)− φ(y)| ≤ C−1 |z − y| 1
1+τ ,

B(x, ρ) ∩ Σ ⊂ φ

(
B

(
x,

3ρ

2

)
∩ Ω

)
⊂ B(x, 2ρ) ∩ Σ,

E ∩B(x, ρ) ⊂ φ

(
Z ∩B

(
x,

3ρ

2

))
⊂ E ∩B(x, 2ρ),

where Ω ⊂ R3 is a closed half space, and L1 is the boundary of Ω.
The list of sliding minimal cones in the half space Ω with the sliding

boundary L1 = ∂Ω and that contain L1 is not complicated. It consist of the
cones L1 and the cones L1 ∪ Z, where Z is a cone of type P+ or Y+. See
Section 4.2 for precise definitions and Theorem 4.15 for a precise statement.

It seems to be a reasonable condition for soap film that E ⊃ ∂Σ. In soap
film experiments, if we dip a shape of wire into some soapy water, when
we pull it out we obtain a surface created by the soap film. The wire is
considered as the sliding boundary, and the surface is considered as a sliding
almost minimal set. Actually, this surface seems to contain the wire. Thus
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the assumption E ⊃ ∂Σ seems natural to the author.
It would be also very interesting to consider the regularity at the bound-

ary of sliding almost minimal sets which we do not necessarily contain the
boundary. But unfortunately, without the assumption E ⊃ ∂Σ, we do not
have a satisfactory result. Because in this case, the blow-up limits of E at
a point x ∈ E ∩ ∂Σ could be cones of type T+ (see Section 4.2 for precise
definition, and see following picture 2.5) or cones of type V (see [12, p. 9] for
precise definition, see ?? for a picture). When a blow-up limit is a cone of

O
A1

B1

C1

A

B

C

Figure 2.5: minimal cone of type T+

type V, we will meet trouble (Figure 2.7 is an example of potential soap film
for which regularity seems difficult to prove).

For any λ ∈ [0, 1], we consider the measure µλ = H2 − (1 − λ)H2x∂Σ
defined by µλ(E) = λH2(E ∩ ∂Σ) +H2(E \ ∂Σ) for any set E ⊂ R3. As in
Definition 4.2, we can define sliding almost minimal sets with respect to µλ by
replacing the usual Hausdorff measure with µλ; we shall call them (U, h, µλ)
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α
α ≤ 30◦

Figure 2.6: cône de type V

Figure 2.7: blow-up limit at 0 is a cone of type V

sliding almost minimal. Then the above theorem is equivalent to saying that
any (U, h, µ0) sliding almost minimal set (in Σ, with sliding boundary ∂Σ) is
locally biHölder equivalent to a sliding minimal cone (minimal for the mea-
sure µ0, in a half space Ω, and with sliding boundary ∂Ω). A natural question
is whether any (U, h, µλ) sliding almost minimal set is locally biHölder equiv-
alent to a sliding minimal (for the measure µλ) cone. In fact, the case when
λ = 1 is equivalent to what we mentioned before, that is, the regularity at the
boundary of sliding almost minimal sets which we do not necessarily contain
the boundary, and it seems difficult to answer. When 0 < λ < 1, the list of
sliding minimal cones for measure µλ is not ready, so omit discussing these
cases here.

Jean Taylor [40, Theorem 5] proved a very similar (and even more precise)
result, that arose from getting boundary regularity for capillarity problem.
The setting was different, though, because she studied the boundary of min-
imizing flat chains modulo 2 (or equivalently Caccioppoli sets); in particular,
Y+, which bounds three components, does not arise as a tangent cone in her
study.
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Chapter 3

Existence of minimal sets under
some boundary constraints

Let n ≥ 2 be an integer, Rn be the n-dimensional Euclidean space with usual
Euclidean structure. Let d ∈ (0, n) be an integer. We shall denote by Hd(E)
the d-dimensional Hausdorff measure of the Borel set E ⊂ Rn. That is,

Hd(E) = lim
δ→0+

Hd
δ(E),

where

Hd
δ(E) = inf

{∑
j

diam(Uj)
d

∣∣∣∣∣ E ⊂⋃
j

Uj, diam(Uj) < δ

}
,

i.e., the infimum is over all the coverings of E by a countable collection of
sets Uj with diameters less than δ. We refer to [19, 29] for the basic prop-
erties of Hd; notice incidentally that we could also have used the spherical
Hausdorff measure, or even some more exotic variants, essentially because
the competition will rather fast be restricted to rectifiable sets, for which the
two measures are equal.

For any set E, any point x ∈ E and any radius r > 0, we set

θE(x, r) =
Hd(E ∩B(x, r))

ωdrd
,

where ωd denote the Hausdorff measure of d-dimensional unity ball. If the
limit

lim
r→0

θE(x, r)

exists, we will denote it by θE(x), and it will be called the density of E at
the point x. When E is given, and there is no danger of confusion, we may
drop the subscript E and denote it by θ(x).

A d-plane in Rn is a translation of a subspace of dimension d. A hyper-
plane in Rn is a (n− 1)-plane. A set in Rn is called a (closed) half space if it
can be written as

{x+ ru | x ∈ H, r ≥ 0},
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where H is a hyperplane and u ∈ Rn is vector. A polyhedron of dimension n
in Rn is a compact with non-empty interior intersection of finitely many half
space. A polyhedron of dimension k < n in Rn is a polyhedron of dimension
k in a k-plane.

A set E ⊂ Rn is called d-rectifiable, if there is a sequence of Lipschitz
maps fi : Rd → Rn such that

Hd
(
E \ fi(Rd)

)
= 0.

A set E is called purely d-unrectifiable (or d-irregular) if Hd(E ∩ F ) = 0
for any d-rectifiable set F . See [29, Definition 15.3] or [19, 3.2.14]. When d is
clear, we may say rectifiable and purely unrectifiable instead of d-rectifiable
and purely d-unrectifiable respectively.

Let E ⊂ Rn be a d-rectifiable set, x ∈ E be any point. A d-plane π is
called an approximate tangent plane if

lim sup
r→

Hd(E ∩B(x, ρ))

rd
> 0

and for any ε > 0,

lim
r→0

Hd(E ∩B(x, ρ) \ C(x, π, r, ε))
rd

= 0,

where C(x, π, r, ε) = {y ∈ B(x, r) | dist(y, π) ≤ ε|y − x|}.
A d-plane π is called a (true) tangent plane if for any ε > 0, there exists

rε > 0 such that

E ∩B(x, r) ⊂ C(x, π, r, ε), for 0 < r < rε.

We will denote by TxE the tangent plane of E at x, if it exists. Some times
we may identify the tangent plane TxE with the tangent space TxE − x.
In particular, when we consider TxE as an element in the Grassmannian
manifold G(n, d), we always mean the vector space TxE − x.

If Hd(E) <∞, then E has a decomposition into d-rectifiable and purely
d-unrectifiable subsets Erec and Eirr:

E = Erec ∪ Eirr.

See [29, Theorem 15.6]. If we suppose, in addition, that E is Hd measurable,
then for almost every x ∈ E, the density θE(x) of E at x is 1, and there is a
unique approximate tangent plane. We refer to [29, Chapter 15] for the more
properties of rectifiable sets.
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3.1 Integrands

Let 0 < d < n be two integers. Let G(n, d) be the Grassmannian of d-
dimensional subspaces of euclidean space Rn. That is, collections of unori-
ented d-dimensional subspaces in Rn equipped with the distance dG defined
by

dG(V,W ) = sup
v∈V,|v|=1

dist(v,W )

for any d-dimensional subspaces V and W .
An integrand is a continuous function F : Rn × G(n, d) → R+ which is

bounded, i.e. there exist 0 < c ≤ C < +∞ such that c ≤ F (x, π) ≤ C for all
x ∈ Rn and π ∈ G(n, d).

For any d-dimensional set E ⊂ Rn with Hd(E) <∞, it can be written as
the union of its rectifiable part and unrectifiable part, i.e. E = Erec ∪ Eirr,
where Erec is rectifiable, and Eirr is purely unrectifiable. For any integrand
F and any positive function f : Rn → R+, we set

JF,f (E) =

∫
x∈Erec

F (x, TxErec)dHd(x) +

∫
x∈Eirr

f(x)dHd(x).

For short, we denote JF (E) = JF,F̃ (E), where F̃ is a function Rn → R+

defined by
F̃ (x) = sup

π∈G(n,d)

F (x, π).

A gauge function h is a nondecreasing function [0,+∞] → [0,+∞] such
that

lim
t→0

h(t) = 0

An integrand is called generalized elliptic integrand if there exists a gauge
function h such that

JF (π ∩B(x, r)) ≤ JF (S) + h(r)rd, (3.1.1)

for some gauge function h, where S ⊂ B(x, r) is any rectifiable compact set
which contains π∩∂B(x, r) and can not be mapped into π∩∂B(x, r) by any
Lipschitz ϕ : Rn → Rn which leaves π ∩ ∂B(x, r) fixed.

A slightly less general class of integrands was introduced by F. Almgren
[3]. That is, called elliptic integrands, integrands F which satisfies following:
for each compact set K ⊂ Rn, there exists a number 0 < Γ < ∞ such that
for each x ∈ K,

JFx(S)− JFx(D) ≥ Γ[Hd(S)−Hd(D)],
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whenever D = B(0, 1)∩π for some π ∈ B(n, d) and S is a compact rectifiable
subset of Rn which cannot be mapped into P ∩ ∂B(0, 1) by any Lipschitz
mapping Rn → Rn which leaves P∩∂B(0, 1) fixed, where F x : Rn×G(n, d)→
R+ is defined by F x(y, π) = F (x, π).

An integrand is called almost polyhedral convex, if there exists a gauge
function h such that for any polyhedron ∆ of dimension (d+ 1),

JF (E1) ≤
m∑
i=2

JF (Ei) + h(r)rd, (3.1.2)

where E1, . . . , Em are (all of) the d-dimensional faces of ∆, and r = diam(∆).
Lemma 3.1. Any generalized elliptic integrand is almost polyhedral convex
with same gauge function.

We denote by L (x, r) the collection of all of Lipschitz ϕ : Rn → Rn which
leaves π ∩ ∂B(x, r) fixed, and by S (x, r, π) the collection of all of compact
set S which contains π ∩ ∂B(x, r) and can not be mapped into π ∩ ∂B(x, r)
by any ϕ ∈ L (x, r).

Proof. If an integrand F satisfies (3.1.1) for some gauge function h, and any
S ∈ S (x, r, π), we will show that F is a generalized elliptic integrand. For
any (d+1)-dimensional polyhedron ∆, we denote by E1, E2, · · · , Em the faces
of ∆. We take x ∈ E1, and let π be a d-plane through x such that E1 ⊂ π.
Then ∆ ⊂ B(x, r0), where r0 = diam(∆). We can see that

S = E2 ∪ · · · ∪ Em ∪
(
B(x, r0) ∩ π \ E1

)
∈ S (x, r0, π).

Thus
JF (B(x, r0) ∩ π) ≤ JF (S) + h(r0)rd0.

Hence

JF (E1) ≤ JF (E2 ∪ · · · ∪ Em) + h(r0)rd0 ≤
m∑
i=2

JF (Ei) + h(r0)rd0.

Lemma 3.2. If d = 1, then any almost polyhedral convex integrand F :
Rn ×G(n, d)→ R is a generalized elliptic integrand.

We will give a proof of this lemma at the end of subsection 3.1.2. We
have a chance to show that polyhedral convex integrands are also generalized
elliptic when d = n− 1, but the proof will be long and boring, so we omit it
here.
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3.1.1 Lower semicontinuity for integral of an integrand
on quasiminimal sequence

In this subsection, we will prove a lower semicontinuity inequality as we
mentioned before. Let’s begin with some definitions.
Definition 3.3. A polyhedral complex S is a finite set of closed convex
polyhedrons in Rn, such that two conditions are satisfied:

(1) If Q ∈ S, and F is a face of Q, then F ∈ S;

(2) If Q1, Q2 ∈ S, then Q1 ∩Q2 is a face of Q1 and Q2 or Q1 ∩Q2 = ∅.
The subset |S| := ∪Q∈SQ of Rn equipped with the induced topology is called
the underlying space of S. The d-skeleton of S is the union of the faces whose
dimension is at most d.

A dyadic complex is a polyhedral complex consisting of closed dyadic
cubes. Let us refer to [21,22] for the definition of dyadic cubes.

Let Ω ⊂ Rn be an open subset, 0 < M < +∞, 0 < δ ≤ +∞, ` ∈ N,
0 ≤ ` ≤ n. For any map f : Ω→ Ω, we set

Wf = {x ∈ Ω | f(x) 6= x}.

A δ-deformation is a family of maps {ϕt}0≤t≤1 from Ω into itself, which satisfy
that ϕ1 is Lipschitz and ϕ0 = idΩ, the function

[0, 1]× Ω→ Ω, (t, x) 7→ ϕt(x)

is continuous, Ŵ is relatively compact in Ω and diam(Ŵ ) < δ, where

Ŵ =
⋃
t∈[0,1]

(Wϕt ∪ ϕt(Wϕt)) . (3.1.3)

Definition 3.4. Let E be a relatively closed set in Ω. We say that E is an
(Ω,M, δ)-quasiminimal set of dimension ` if, H`(E ∩ B) < +∞ for every
closed ball B ⊂ Ω, and

H`(E ∩Wϕ1) ≤MH`(ϕ1(E ∩Wϕ1))

for every δ-deformation {ϕt}0≤t≤1.
We denote byQM(Ω,M, δ,H`) the collection of all (Ω,M, δ)-quasiminimal

sets of dimension `.

We note that, for any open set Ω′ ⊂ Ω, any positive numbers δ′ ≤ δ, and
any M ′ ≥M , if E ∈ QM(Ω,M, δ,H`), then E ∩ Ω′ ∈ QM(Ω′,M ′, δ′,H`).

31



Definition 3.5. Let Ω, M , δ and ` be as above, and let ε ∈ [0, 1) be given.
We shall denote by GQM(Ω,M, δ, ε,H`) the set of closed subsets E of Ω
such that H`(E ∩B) < +∞ for every closed ball B ⊂ Ω, and

H`(E ∩Wϕ1) ≤MH`(ϕ1(E ∩Wϕ1)) + εδ`

for every δ-deformation {ϕt}0≤t≤1.
Definition 3.6. Let Ω be an open subset of Rn. A relatively closed set E ⊂ Ω
is said to be locally Ahlfors-regular of dimension d if there is a constant C > 0
and r0 > 0 such that

C−1rd ≤ Hd(E ∩B(x, r)) ≤ Crd

for all 0 < r < r0 with B(x, 2r) ⊂ Ω.
Lemma 3.7. Let E be a d-rectifiable subset of Rn. If E is a local Ahlfors-
regular and Hd(E) < +∞, then for Hd-a.e. x ∈ E, E has a true tangent
plane at x, i.e. there exists a d-plane π such that for any ε > 0, there is a
rε > 0 such that

E ∩B(x, r) ⊂ C(x, π, r, ε), for 0 < r < rε,

where
C(x, π, r, ε) = {y ∈ B(x, r) | dist(y, π) ≤ ε |y − x|}.

Proof. Since E is rectifiable, by Theorem 15.11 in [29], for Hd-a.e. x ∈ E, E
has an approximate tangent plane π at x, i.e.

lim sup
ρ→0

Hd(E ∩B(x, ρ))

ρd
> 0,

and there exists a d-plane π such that for all ε > 0,

lim
ρ→0

Hd(E ∩B(x, ρ) \ C(x, π, ρ, ε))
ρd

= 0. (3.1.4)

We will show that π is a true tangent plane. Suppose not, that is, there
exists an ε > 0 such that for all ρ > 0, E ∩ B(x, ρ) \ C(x, π, ρ, ε) 6= ∅. We
take a sequence of points yn ∈ E \ C(x, π, ρ, ε) with |yn − x| → 0, we put
ρn = 2 |yn − x|, then

B(x, ρn) \ C
(
x, π, ρn,

ε

2

)
⊃ B

(
yn,

ερn
4

)
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and

ρ−dn Hd
(
E ∩B(x, ρn) \ C

(
x, π, ρn,

ε

2

))
≥ ρ−dn Hd

(
E ∩B

(
yn,

ερn
4

))
≥ C−1

(ε
4

)d
,

this is in contradiction with (3.1.4), so we proved the lemma.

Let {Ek} be a sequence of closed sets in Ω, and E a closed set of Ω. We
say that Ek converges to E if

lim
k→∞

dK(E,Ek) = 0 for every compact set K ⊂ Ω,

where
dK(E,Ek) =

{
sup

x∈E∩K
dist(x,Ek), sup

x∈Ek∩K
dist(x,E)

}
.

For any set E ⊂ Rn, we set

E∗ = {x ∈ E | Hd(E ∩B(x, r)) > 0, ∀r > 0};

we call E∗ the core of E. We see from [8, p.78] that

Hd(E \ E∗) = 0,

and that E∗ is also (generalized) quasiminimal when E is (generalized) quasi-
minimal with same constant. So we always assume that E = E∗.

Given a sequence of quasiminimal sets with the same constant and a
generalized elliptic integrand, we will prove the following lower semicontinuity
properties.
Theorem 3.8. Let Ω ⊂ Rn be an open set. Let (Ek)k≥1 be a sequence of
quasiminimal sets in GQM(Ω,M, δ, ε0,Hd) such that Ek converges to E. We
assume that ε0 ∈ (0, 1) small enough, depending on d and M . Then for any
generalized elliptic integrand F ,

JF (E) ≤ lim inf
k→+∞

JF (Ek).

Proof. We may suppose that

lim inf
k→+∞

Hd(Ek) < +∞;

otherwise we have nothing to prove. By Theorem 3.4 in [7], we have that

Hd(E) ≤ lim inf
k→+∞

Hd(Ek) < +∞.
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We take 0 < ε < 1− ε0, ε′ > 0 and ρ ∈ (0, 1) such that

(1 + C(M,d))M23dωdε < 1− 2ε0

ωd
, ε′ <

ε

8
and 1− (1− ρ)d <

ε

2
,

where ωd denote the Hausdorff measure of d-dimensional unit ball. Here we
can suppose that ε0 <

ωd
2

because we have already assumed that ε0 small
enough. The constant C(n, d) will be chosen later.

Applying Theorem 4.1 in [7], we get that E ∈ QM(Ω,M, δ,Hd), hence
rectifiable (see [4]), then by Theorem 17.6 in [29], for Hd-a.e. x ∈ E,

lim
r→0

Hd(E ∩B(x, r))

ωdrd
= 1.

So we can find a set E ′ ⊂ E with Hd(E \ E ′) = 0 such that for any x ∈ E ′
there exists r′(ε′, x) > 0,

(1− ε′)ωdrd ≤ Hd(E ∩B(x, r)) ≤ (1 + ε′)ωdr
d,

for all 0 < r < r′(ε′, x).
Then

Hd(E ∩B(x, r) \B(x, (1− ρ)r)) ≤ (1 + ε′)ωdr
d − (1− ε′)ωd(1− ρ)drd

=
(1 + ε′)− (1− ε′)(1− ρ)d

1− ε′ (1− ε′)ωdrd

≤
(

2ε′

1− ε′ +
(
1− (1− ρ)d

))
Hd(E ∩B(x, r))

≤ εHd(E ∩B(x, r)).

Since E is quasiminimal, by Proposition 4.1 in [14], we know that E is
local Ahlfors regular, since E is rectifiable and Hd(E) < +∞, by lemma 3.7,
we have that for Hd-a.e. x ∈ E, E has a tangent space TxE at x, so we can
find E ′′ ⊂ E ′ with Hd(E ′ \E ′′) = 0 such that for all ε′′ > 0 and for all x ∈ E ′′
there exists r′′(ε′′, x) > 0 such that for all 0 < r < r′′(ε′′, x),

E ∩B(x, r) ⊂ C(x, r, ε′′),
where

C(x, r, ε′′) =
{
y ∈ B(x, r)

∣∣∣ dist(y, TxE) ≤ ε′′ |x− y|
}
.

We consider the function ψρ,r : R→ R defined by

ψρ,r(t) =



0, t ≤ (1− ρ)r
3
ρr

(t− (1− ρ)r) , (1− ρ)r < t ≤ (1− 2ρ
3

)r

1, (1− 2ρ
3

)r < t ≤ (1− ρ
3
)r

− 3
ρr

(t− r), (1− ρ
3
)r < t ≤ r

0, t > r,
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It is easy to see that ψρ,r is a Lipschitz map with Lipschitz constant 3
ρr
.

We take the Lipschitz map ϕx,ρ,r : Rn → Rn given by

ϕx,ρ,r(y) = ψρ,r(|y − x|)Π(y) + (1− ψρ,r(|y − x|))y,

where we denote by Π : Rn → TxE the orthogonal projection. It is easy to
check that

ϕx,ρ,r|B(x,(1−ρ)r) = idB(x,(1−ρ)r)

and
ϕx,ρ,r|B(x,r)c = idB(x,r)c .

Let ε′′ and h be such that ε′′ < ρ
3
and 0 < ε′′ < h < ρ

3
, and put

Ah =
{
y ∈ B(x, r)

∣∣∣ dist(y, TxE) ≤ hr
}
,

then C(x, r; ε′′) ⊂ Ah. We will show that

Lip (ϕx,ρ,r|Ah) ≤ 2 +
3h

ρ
.

We set
Π⊥(y) = y − Π(y), y ∈ Rn,

then ∣∣Π⊥(y)
∣∣ ≤ hr, ∀y ∈ Ah.

For any y1, y2 ∈ Ah,

ϕx,ρ,r(y1)− ϕx,ρ,r(y2) = y1 − y2 + ψρ,r(|y1 − x|)Π⊥(y1)− ψρ,r(|y2 − x|)Π⊥(y2)

= (y1 − y2) + ψρ,r(|y1 − x|)
(
Π⊥(y1)− Π⊥(y2)

)
+ (ψρ,r(|y1 − x|)− ψρ,r(|y2 − x|)) Π⊥(y2),

thus

|ϕx,ρ,r(y1)− ϕx,ρ,r(y2)| ≤ |y1 − y2|+ |y1 − y2|+
3

ρr
||y1| − |y2|| rh

≤
(

2 +
3h

ρ

)
|y1 − y2| ,

and we get that

Lip (ϕx,ρ,r|Ah) ≤ 2 +
3h

ρ
.

Since Ek → E in Ω, and B(x, r) ⊂ Ω and

E ∩B(x, r) ⊂ C(x, r, ε′′) ⊂ Ah,
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there exist a number kh such that for k ≥ kh,

Ek ∩B(x, r) ⊂ Ah.

Since
ϕx,ρ,r|B(x,r)c = idB(x,r)c

and
ϕx,ρ,r(B(x, r)) ⊂ B(x, r),

we have that

ϕx,ρ,r(Ek ∩B(x, r)) = ϕx,ρ,r(Ek) ∩B(x, r).

We put r′ =
(
1− ρ

3

)
r, r′′ =

(
1− 2ρ

3

)
r, r′′′ = (1− ρ)r, π = TxE, and put

Dπ,r′′ = B (x, r′′) ∩ π

and
Sk,r′′ = ϕx,ρ,r(Ek) ∩B (x, r′′).

Note that
∂B (x, r′) ∩ π ⊂ ϕx,ρ,r(Ek)

and

ϕx,ρ,r(Ek) ∩B (x, r′) ⊂ B (x, r′′) ∪ ((B(x, r′) \B(x, r′′)) ∩ π) .

We will show that for any Lipschitz mapping ϕ : Rn → Rn which is identity
on ∂Dπ,r′′ cannot map Sk,r′′ into ∂Dπ,r′′ . Suppose not, that is, there is a
Lipschitz map ϕk : Rn → Rn such that

ϕk|∂Dπ,r′′ = id∂Dπ,r′′

and
ϕk(Sk,r′′) ⊂ ∂Dπ,r′′ .

We consider the map

φ̃k : B(x, η)c ∪ [(B(x, η) \B(x, r′′)) ∩ π] ∪B(x, r′′)→ Rn

defined by

φ̃k(x) =

{
x, x ∈ B(x, η)c ∪ [(B(x, η) \B(x, r′′)) ∩ π]

ϕk(x), x ∈ B(x, r′′),
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where η is a number such that r′′ < η < r′. It is easy check that φ̃k is a Lips-
chitz map, by Kirszbraun’s theorem, see for example [19, 2.10.43 Kirszbraun’s
theorem], we can get a Lipschitz map φk : Rn → Rn such that

φk|B(x,r′′) = ϕk|B(x,r′′)

and
φk|B(x,η)c = idB(x,η)c ,

and
φk|(B(x,η)\B(x,r′′))∩π = id(B(x,η)\B(x,r′′))∩π.

Recalling the construction of ψρ,r, we have that

0 ≤ ψρ,r ≤ 1, ψρ,r|[0,r′′′] = 0, ψρ,r|[r′′,r′] = 1, ψρ,r|[r,+∞) = 0;

and then recalling the construction of ϕx,ρ,r, we have that

ϕx,ρ,r|B(x,r)c = idB(x,r)c , ϕx,ρ,r(B(x, r)) ⊂ B(x, r), ϕx,ρ,r(B(x, r′′)) ⊂ B(x, r′′).

and

ϕx,ρ,r|B(x,r′)\B(x,r′′) = ΠB(x,r′)\B(x,r′′), ϕx,ρ,r|B(x,r′′′) = idB(x,r′′′),

where Π is the orthogonal projection onto the plane π. Thus ϕx,ρ,r coincide
with the orthogonal projection Π on the annulus B(x, r′) \ B(x, r′′). Note
that ε′′ < ρ

3
, we get that

1− 2ρ

3
<
(

1− ρ

3

)√
1− ε′′2.

We now let the number η be such that r′′ < η < (
√

1− ε′′2)r′. Since Ek ∩
B(x, r) ⊂ C(x, r, ε′′), we have that

ϕx,ρ,r(Ek ∩B(x, r′′)) ⊂ B(x, r′′), ϕx,ρ,r(Ek ∩ (B(x, r′) \B(x, r′′)) ⊂ π,

and
ϕx,ρ,r(Ek ∩ (B(x, r) \B(x, r′))) ⊂ B(x, r) \B(x, η),

thus

ϕx,ρ,r(Ek) ∩ (B(x, η) \B(x, r′′)) ⊂ (B(x, η) \B(x, r′′)) ∩ π,

and

φk (ϕx,ρ,r(Ek) ∩B(x, η) \B(x, r′′)) ⊂ (B(x, η) \B(x, r′′)) ∩ π.
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Thus we get that

φk(ϕx,ρ,r(Ek ∩B(x, r))) = φk(ϕx,ρ,r(Ek) ∩B(x, r))

⊂ ϕx,ρ,r(Ek) ∩ (B(x, r) \B (x, r′′))

⊂ ϕx,ρ,r (Ek ∩B(x, r) \B(x, r′′)) .

SinceHd(E) <∞, we have thatHd(E∩∂B(x, r)) = 0 for almost every where
r ∈ (0, r′′(ε′′, x)), if we take any r ∈ (0, r′′(ε′′, x)) with Hd(E ∩ ∂B(x, r)) = 0
and r < δ, by using Lemma 3.12 in [8], we get that

lim sup
k→+∞

Hd
(
Ek ∩B(x, r) \B(x, r′′′)

)
≤ (1+C(M,d)ε0)MHd(E∩B(x, r)\B(x, r′′′)).

We put M ′ = (1 + C(M,d)ε0)M . Then we have the following inequality:

Hd
(
E ∩B(x, r)

)
= Hd(E ∩B(x, r))

≤ lim inf
k→+∞

Hd(Ek ∩B(x, r))

≤ lim inf
k→+∞

MHd (φk ◦ ϕx,ρ,r(Ek ∩B(x, r))) + ε0r
d

≤ lim inf
k→+∞

MHd (ϕx,ρ,r(Ek ∩B(x, r) \B(x, r′′′))) + ε0r
d

≤ lim inf
k→+∞

MHd
(
ϕx,ρ,r(Ek ∩B(x, r) \B(x, r′′′))

)
+ ε0r

d

≤ lim inf
k→+∞

M

(
2 +

3h

ρ

)d
Hd
(
Ek ∩B(x, r) \B(x, r′′′)

)
+ ε0r

d

≤M

(
2 +

3h

ρ

)d
lim sup
k→+∞

Hd
(
Ek ∩B(x, r) \B(x, r′′′)

)
+ ε0r

d

≤M

(
2 +

3h

ρ

)d
·M ′Hd

(
E ∩B(x, r) \B(x, r′′′)

)
+ ε0r

d

≤MM ′
(

2 +
3h

ρ

)d
εHd

(
E ∩B(x, r)

)
+ ε0r

d

≤MM ′3dεHd(E ∩B(x, r)) + ε0r
d

≤
(
MM ′3dε+

2ε0

ωd

)
Hd(E ∩B(x, r)).

This is a contradiction since

MM ′3dε+
2ε0

ωd
= (1 + C(M,d)ε0)M23dε+

2ε0

ωd
< 1

and
Hd (E ∩B(x, r)) > 0.
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Since F is a generalized elliptic integrand, by Lemma 3.2, we have that

JF (Dπ,r′′) ≤ JF (Sk,r′′) + h(r′′)(r′′)d.

Since E is a d-rectifiable set and Hd(E) < +∞, the function f : E →
G(n, d) defined by f(x) = TxE is Hd-measurable. By Lusin’s theorem, see
for example [19, 2.3.5. Lusin’s theorem], we can find a closed set N ⊂ E
with Hd(E \ N) < ε such that f restricted to N is continuous. We put
E ′′′ = (E ′′ ∩N), then E ′′′ ⊂ E and

Hd(E \ E ′′′) < ε,

by Lemma 15.18 in [29], we have that for Hd-a.e. x ∈ E ′′′,

TxE
′′′ = TxN = TxE.

The map f̃ : E ′′′ → Rn × G(n, d) given by f̃(x) = (x, TxE) is continuous.
Since F is continuous, thus the function F ◦ f̃ : E ′′′ → R is continuous, for
any x ∈ E ′′′, we can find r(ε, x) > 0 such that

(1− ε)F (x, TxE) ≤ F (y, TyE) ≤ (1 + ε)F (x, TxE),

for any y ∈ E ′′′ ∩B(x, r(ε, x)). Thus, for all 0 < r < r(ε, x),

(1− ε)JF (TxE ∩B(x, r)) ≤ JF (E ′′′ ∩B(x, r)) ≤ (1 + ε)JF (TxE ∩B(x, r)).

For any x ∈ Rn, there exists r′′′(ε) > 0 such that h(r) < ε for all 0 < r <
r′′′(ε). We put

r(x) = min{r(ε, x), r′(ε′, x), r′′(ε′′, x), r′′′(ε), δ}, for x ∈ E ′′′.

Then {
B(x, r)

∣∣ x ∈ E ′′′, 0 < r < r(x),Hd(E ∩ ∂B(x, r)) = 0
}

is a Vitali covering of E ′′′, so we can find a countable family of balls (Bi)i∈J
such that

Hd

(
E ′′′ \

⋃
i∈J

Bi

)
= 0.

We choose a finite set I ⊂ J such that

Hd

(
E ′′′ \

⋃
i∈I
Bi

)
< ε.

39



So we get that

JF (E ′′′) =
∑
i∈J

JF (E ′′′ ∩Bi) ≤
∑
i∈I

JF (E ′′′ ∩Bi) + (supF )ε.

We denote Bi = B(xi, ri), for i ∈ I, and put

ϕ =
∏
i∈I

ϕxi,ρ,ri .

By definition, we get ϕ|Bi = ϕxi,ρ,ri |Bi . Thus ϕ|B(xi,r′′′i ) = idB(xi,r′′′i ),

ϕ(Ek) ∩B(xi, r
′′
i ) \B(xi, r

′′′
i ) ⊂ ϕ(Ek ∩B(xi, ri) \B(xi, r

′′′
i )),

and

πi ∩B = πi ∩ ((B(xi, ri) \B(xi, r
′′
i )) ∪ (B(xi, r

′′
i ) \B(xi, r

′′′
i )) ∪ (B(xi, r

′′′
i ))) ,

and ϕ|Ah ≤ 3. We get that

Hd(ϕ(Ek ∩B(xi, ri) \B(xi, r
′′′
i ))) ≤ 3dHd(Ek ∩B(xi, ri) \B(xi, r

′′′
i )),

for k ≥ kh.
We denote a = sup{F (x, π) | x ∈ Rn, π ∈ G(n, d)}. Then for any i ∈ I,

JF (E ′′′ ∩Bi) ≤ (1 + ε)JF (πi ∩Bi)

≤ (1 + ε)
(
JF (πi ∩B(xi, ri) \B(xi, r

′′
i )) + JF (πi ∩B(xi, r

′′
i ))
)

≤ (1 + ε)
(
JF (Sk,r′′) + ε(x, r′′i )(r

′′
i )
d + (supF )(rdi − (r′′i )

d)
)

≤ (1 + ε)JF (Sk,r′′) + 2ε(r′′i )
d + 2(supF )

(
(rdi − (r′′i )

d)
)

≤ (1 + ε)JF (Ek ∩B(xi, r
′′′
i ))

+ (1 + ε)JF (ϕ(Ek ∩B(xi, ri) \B(xi, r
′′′
i )))

+

(
2ε+ 2a

(
1−

(
1− 2ρ

3

)d))
rdi

≤ (1 + ε)JF (Ek ∩B(xi, r
′′′
i ))

+ 2a3dHd(Ek ∩B(xi, ri) \B(xi, r
′′′
i ))

+
(

2ε+ 2a · ε
2

) 2

ωd
Hd(E ∩B(xi, ri)).
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Hence

JF (E ′′′) ≤
∑
i∈I

JF (E ′′′ ∩Bi) + aε

≤ (1 + ε)JF (Ek) +
∑
i∈I

(2ε+ aε)
2

ωd
Hd(E ∩Bi) + aε

+ 2a3d
∑
i∈I
Hd
(
Ek ∩B(xi, ri) \B(xi, r

′′′
i )
)
,

thus

JF (E ′′′) ≤ lim inf
k→+∞

(1 + ε)JF (Ek) + (2ε+ aε)
2

ωd
Hd(E) + aε

+ 2a3d lim inf
k→+∞

∑
i∈I
Hd
(
Ek ∩B(xi, ri) \B(xi, r

′′′
i )
)

≤ lim inf
k→+∞

(1 + ε)JF (Ek) + (2ε+ aε)
2

ωd
Hd(E) + aε

+ 2a3d(1 + C(M,d)ε0)M
∑
i∈I
Hd
(
E ∩B(xi, ri) \B(xi, r

′′′
i )
)

≤ lim inf
k→+∞

(1 + ε)JF (Ek) + (2ε+ aε)
2

ωd
Hd(E) + aε

+ 2a3d(1 + C(M,d)ε0)MεHd(E),

and

JF (E) = JF (E ′′′) + JF (E \ E ′′′)
≤ JF (E ′′′) + aHd(E \ E ′′′)
≤ (1 + ε) lim inf

k→+∞
JF (Ek) + 2aε

+

(
4 + 2a

ωd
+ 2a3d(1 + C(M,d)ε0)M

)
Hd(E)ε.

We can let ε tend to 0, we get that

JF (E) ≤ lim inf
k→+∞

JF (Ek).

Let g : Rn → R be a continuous function such that there exists constant
c, C > 0 such that for all x ∈ Rn

0 < c ≤ g(x) ≤ C < +∞.
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As I mentioned before, the integrand F defined by

F (x, π) = g(x),∀x ∈ Rn, π ∈ G(n, d)

is a generalized elliptic integrand.
We will give some more examples of generalized elliptic integrand. For

simplicity, we suppose that n = 2, d = 1. For any periodic continuous function
λ : R → R with period π, λ can be regard as a contionuos function on the
Grassmannian G(2, 1). If λ is positive, i.e. λ(θ) > 0 for all θ ∈ R, then the
function F : R2 ×G(2, 1)→ R defined by

F (x, θ) = λ(θ) for any x ∈ R2 and any θ ∈ G(2, 1)

is an integrand.
Example 3.9. Let a and b be two real number such that a > |b|. Then the
integrand F defined by F (x, θ) = a+b cos θ is a generalized elliptic integrand.
Let ABC be a triangle. We denote by α, β and γ the angle between the x-axis

A

B

C

αβ

γ

Figure 3.1: triangle

and the segment AB, the angle BAC and the angle ABC respectively. Then

JF (AB) = (a+ b cosα)|AB|, JF (AC) = (a+ b cos(α + β))|AC|

and
JF (BC) = (a+ b cos(α− γ))|BC|.

We put Λ = JF (AC) + JF (BC) − JF (AB). Since |AB| = |AC| cos β +
|BC| cos γ and |AC| sin β = |BC| sin γ, we get that

Λ = (a+ b cos(α + β))|AC| − (a+ b cosα)|AC| cos β

+ (a+ b cos(α− γ))|BC| − (a+ b cosα)|BC| cos γ

= a(1− cos β)|AC|+ a(1− cos γ)|BC|
≥ 0.
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Thus
JF (AB) ≤ JF (AC) + JF (BC), (3.1.5)

and F is a generalized elliptic integrand.
Example 3.10. For any periodic C2 function λ : R → R with period π,
there exists a constant C0 such that for any C > C0 the integrand F defined
by F (x, θ) = C + λ(θ) is a generalized elliptic integrand.

For any α ∈ [0, π], we consider the function fα : [−π, π]→ R defined by

fα(θ) =


λ′(α + θ) sin θ − λ(α + θ) cos θ + λ(α)

1− cos β
, if θ ∈ [π, 0) ∪ (0, π];

λ(α) + λ′′(α), if θ = 0.

We will show that fα is continuous. Indeed, for any θ ∈ [−π, π]\{0}, we have
that

fα(θ) = λ(α+ θ) +
(λ′(α + θ)− λ′(α)) sin θ

1− cos θ
− λ(α + θ)− λ(α)− λ′(α) sin θ

1− cos θ
.

Thus
lim
θ→0

fα(θ) = λ(α) + λ′′(α),

and fα is continuous. We get that the function f : [−π, π] × [−π, π] → R
defined by f(α, θ) = fα(θ) for any α, θ ∈ [−π, π] is continuous. We take

C0 = max

{
sup

α,θ∈[−π,π]

|f(α, θ)|, sup
α∈[−π,π]

|λ(α)|
}
.

For any C ≥ C0, we consider the integrand F defined by F (x, θ) = C +λ(θ).
We let ABC be a triangle, denote by α, β and γ the angle between the x-axis

A

B

C

αβ

γh

Figure 3.2: triangle

and the segment AB, the angle BAC and the angle ABC respectively. We
put h = dist(C,AB). Then

JF (AC) = (C + λ(α + β))
h

sin β
, JF (BC) = (C + λ(γ − α))

h

sin γ
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and
JF (AB) = (h cot β + h cot γ) (C + λ(α)).

We put Λ = JF (AC) + JF (BC)− JF (AB). Then

Λ = h
λ(α + β)− λ(α) cos β + C(1− cos β)

sin β

+ h
λ(α− γ)− λ(α) cos γ + C(1− cos γ)

sin γ

For any α ∈ [−π, π], we consider the function gα : (−π, π)→ R defined by

gα(β) =


λ(α + β)− λ(α) cos β + C(1− cos β)

sin β
, if β ∈ (−π, 0) ∪ (0, π);

λ′(α), if β = 0.

We will show that gα ∈ C1(−π, π) and that g′α ≥ 0. Indeed, we have that

lim
β→0

gα(β) = lim
β→0

(
λ(α + β)− λ(α)

sin β
+

(C + λ(α))(1− cos β)

sin β

)
= λ′(α).

Thus gα is continuous. Since

gα(β)− gα(0)

β
=

(λ(α + β)− λ(α)− λ′(α) sin β) + (C + λ(α))(1− cos β)

β sin β
,

we get that

g′α(0) = lim
β→0

gα(β)− gα(0)

β
=

1

2
(λ′′(α) + λ(α) + C).

But for any β ∈ (−π, 0) ∪ (0, π), we have that

g′α(β) =
λ′(α + β)− λ(α + β) cos β + λ(α) + C(1− cos β)

sin2 β
=
fα(β) + C

1 + cos β
.

And hence
lim
β→0

g′α(β) =
1

2
(λ′′(α) + λ(α) + C) = g′α(0).

We get that g′α ∈ C1(−π, π). Since |fα| ≤ C0 ≤ C, we get that g′α ≥ 0.
Since β, γ ∈ (0, π), we get that

Λ = gα(β)− gα(−γ) ≥ 0.

Thus
JF (AB) ≤ JF (AC) + JF (BC),

and F is a generalized elliptic integeand.
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Example 3.11. Let λ : R → R be a positive periodic continuous function
with period π, g : R2 → R be a continuous function such that 0 < c ≤
g ≤ C < +∞ for some constant c and C. If the integrand F defined by
F (x, θ) = λ(θ) is a generalized elliptic integrand, then the integrand F̃ de-
fined by F̃ (x, θ) = g(x)λ(θ) is a generalized elliptic integrand.

3.1.2 Polyhedral approximation

In this section we will adapt some results of [21,22].
Proposition 3.12. Suppose that 0 < d < n and that F is integrand. Then
there is a positive constant M > 0 such that for all open bounded domain
U ⊂ Rn, for all closed set E ⊂ U with finite Hausdorff measure, and all ε > 0,
we can build a n-dimensional complex S and a Lipschitz map φ : Rn → Rn

satisfying the following properties:

(1) φ|Rn\U = idRn\U and ‖φ− id‖ ≤ ε;

(2) φ(E) is contained in the union of d-skeleton of S, and |S| ⊂ U ;

(3) JF (φ(E)) ≤ (1 + ε)JF (E).

This is only a small improvement over Theorem 4.3.17 in [21] and Theo-
rem 3 in [22], but the proof is almost same as that of V. Feuvrier in [21,22].

The inequality JF (φ(E)) ≤ (1+ε)JF (E) can be replaced by JF,f (φ(E)) ≤
(1 + ε)JF,f (E) with a function f : Rn → R+ which satisfies

f(x) ≥ sup
π∈G(n,d)

F (x, π),

but the proof is same.

Proof. we decompose E as E = Erec t Eirr, where Erec is d-rectifiable and
Eirr is d-irregular. For any ε′ > 0, by Lemma 4 in [22], for Hd almost every
x ∈ Erec, we can find rmax(x) > 0, ρ ∈ (0, 1), u > 0 and TxErec such that for
all r ∈ (0, rmax),

Hd(ΠH,ρr,C(x,r,u)(E∩B(x, r+rρ)\C(x, r, u))) ≤ ε′Hd(E∩B(x, r+rρ)), (3.1.6)

where H we denote the approximate tangent plane TxErec.
Since Erec is a d-rectifiable set and Hd(Erec) < +∞, the function g :

Erec → G(n, d) defined by g(x) = TxErec is Hd-measurable. By Lusin’s the-
orem, see for example [19, 2.3.5. Lusin’s theorem], we can find a closed set
E ′ ⊂ Erec with Hd(Erec \ E ′) < ε′Hd(E) such that g restricted to F is con-
tinuous. Thus the function E ′ → E ′ × G(n, d) defined by x 7→ (x, TxErec)
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is continuous. For any x ∈ E ′, we can find r′max(x) > 0 such that for all
y ∈ E ′ ∩B(x, r′max),

(1− ε′)F (x, TxErec) ≤ F (y, TyErec) ≤ (1 + ε′)F (x, TxErec). (3.1.7)

We consider the function F̃ : Rn → R defined by

F̃ (x) = sup
π∈G(n,d)

F (x, π),

F̃ is continuous, thus for any x ∈ Rn there exists r′′max > 0 such that

∀y ∈ B(x, r′′max), (1− ε′)F̃ (x) ≤ F̃ (y) ≤ (1 + ε′)F̃ (x)

Since F is a continuous function and G(n, d) is compact, for any x ∈ Rn

we can find r′′′max > 0 such that for all y ∈ B(x, r′′′max) and π ∈ G(n, d),

(1− ε′)F (x, π) ≤ F (y, π) ≤ (1 + ε′)F (x, π).

Let B be the collection of closed balls with center in E ′ and radius at
most

min

(
rmax
1 + ρ

, r′max, r
′′
max, r

′′′
max,

ε

2

)
.

By a Vitali covering lemma, we can find a countable many pairwise disjoint
balls {Bi}∞i=1 ⊂ B such that

Hd

(
E ′ \

∞⋃
i=1

Bi

)
= 0.

We take an integer N such that

Hd

(
E ′ \

N⋃
i=1

Bi

)
≤ ε′Hd(E).

We suppose that Bi = B(xi, r′i) with xi ∈ E ′ and r′i ≤ rmax(xi). We put
ri =

r′i
1+ρi

, Ki = C(xi, ri, ui) and Hi = Tx1Erec, where ρi and ui are the
numbers ρ and u in (3.1.6).

We consider the map

ψ0 =
N∏
i=1

ΠHi,riρi,Ki ,
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it is γ-Lipschitz with

γ ≤
(

2 + max
1≤i≤N

ui
ρi

)
,

and by the construction, we know that ψ0 is identity on (∪Ni=1Bi)
c.

Since ψ0 is identity on ∪1≤i≤NBi, we have

JF

(
ψ0

(
E \

N⋃
i=1

Bi

))
= JF

(
E \

N⋃
i=1

Bi

)
.

Let b = sup(x,π) F (x, π) and a = inf(x,π) F (x, π). Since ψ0 is γ-Lipschitz and

Hd(E ∩Bi \Ki) ≤ ε′Hd(E ∩Bi),

we get that

JF (ψ0(E ∩Bi \Ki)) ≤ γdbε′Hd(E ∩Bi) ≤
γdbε′

a
JF (E ∩Bi).

and

JF (ψ0((Erec \ E ′) ∩Ki)) ≤ γdbHd((Erec \ E ′) ∩Ki)

≤ γdbHd((Erec \ E ′) ∩Bi).

By (3.1.7), we get that

(1− ε′)F (xi, Hi)Hd(E ′ ∩Ki) ≤ JF (E ′ ∩Ki) ≤ (1 + ε′)F (xi, Hi)Hd(E ′ ∩Ki),

JF (ψ0(E ′ ∩Ki)) ≤ (1 + ε′)F (xi, Hi)Hd(ψ0(E ′ ∩Ki))

≤ (1 + ε′)F (xi, Hi)Hd(E ′ ∩Ki)

≤ 1 + ε′

1− ε′JF (E ′ ∩Ki)

≤ 1 + ε′

1− ε′JF (E ′ ∩Bi).

Since ψ0 is the orthogonal projection to Hi in a neighborhood of Ki,

ψ0(Eirr ∩Ki) ⊂ Hi ∩Bi,

ψ0(Eirr ∩Ki) is rectifiable,

JF (ψ0(Eirr ∩Ki)) ≤ (1 + ε′)F (xi, Hi)Hd(ψ0(Eirr ∩Ki))

≤ (1 + ε′)F (xi, Hi)Hd(Eirr ∩Ki)

≤ (1 + ε′)2JF (Eirr ∩Ki).
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Put S = ∪Ni=1Bi. Note that

E ∩Ki = ((Erec \ E ′) ∩Ki) ∪ (E ′ ∩Ki) ∪ (Eirr ∩Ki),

we have that

JF (ψ0(E)) ≤ JF (ψ0(E \ S)) + JF (ψ0(E ∩ S))

≤ JF (E \ S) + JF (ψ0(E ∩ S))

≤ JF (E \ S) + γdbHd(Erec \ E ′ ∩ S)

+
1 + ε′

1− ε′JF (E ′ ∩ S) + (1 + ε′)2JF (Eirr ∩ S)

≤
(

1 +
2ε′

1− ε′ + 2ε′ + ε′2 +
γdbε′

a

)
JF (E).

(3.1.8)

We put E1 = ψ0(E), Di = Hi ∩ Bi. Since ψ0 is indentity on Sc, we
know that ψ0(Eirr \ S). Since ψ0(E ∩Ki) ⊂ Di, we know that ψ0(E ∩Ki) is
rectifiable. Thus

(E1)rec \
N⋃
i=1

Di ⊂ ψ0(Erec \ S) ∪
N⋃
i=1

ψ0(E ∩Bi \Ki),

so

Hd

(
(E1)rec \

N⋃
i=1

Di

)
≤ Hd (ψ0(Erec \ S)) +

N∑
i=1

Hd (ψ0(E ∩Bi \Ki))

≤ 2ε′Hd(E).

Let α > 0 be small number such that

α < min
1≤i≤N

(
1

2
riρi

)
.

For 1 ≤ i ≤ N , we take a dyadic complex Si of stride α in an orthonormal
basis centered at xi with d vectors parallel to Hi such that

Ki ⊂ |Si| ⊂ B

(
xi,

(
1 +

1

2
ρi

)
ri

)
,

then for any 1 ≤ i < j ≤ N ,

dist (|Si| , |Sj|) ≥ min
1≤k≤N

(
1

2
rkρk

)
,
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we can apply Théorèm 2.3 in [21] (or Theorem 1 in [22]), there is a complex
S such that |S| ⊂ U , and that Si, 1 ≤ i ≤ N are subcomplexes of S, and that
R(S) ≥ cmin{R(S1), · · · ,R(SN)}, where c > 0 is a constant only depends
on n, and we denote by R(S) the rotondity of complex S which is defined in
[22, p.8] or [21, Définition 1.2.25].

Now, we do a Federer-Fleming projection which maps E1 into d-skeleton
as in [22, p.33], we can get a Lipschitz map ψ : Rn → Rn with ψ|Uc = idUc
such that ψ(E1) is contained in the union of d-skeleton of S, and ψ((E1)irr)
is still d-irregular, and

ψ

(
N⋃
i=1

Di

)
⊂

N⋃
i=1

Di,

this is because that ∪Ni=1Di is contained in the union of d-skeleton of S, thus

Hd(ψ((E1)irr)) = 0

and there exist a constant C only depend on n and d such that

Hd

(
ψ

(
(E1)rec \

N⋃
i=1

Di

))
≤ CHd

(
(E1)rec \

N⋃
i=1

Di

)
≤ 2Cε′Hd(E).

We take φ = ψ ◦ ψ0, then

JF (ψ(E1)) ≤
(

1 +
bCε′

a

)
JF (E1),

thus

JF (φ(E)) ≤
(

1 +
bCε′

a

)(
1 +

2ε′

1− ε′ + 2ε′ + ε′2 +
γdbε′

a

)
JF (E).

We let ε′ tend to 0, we get that

JF (φ(E)) ≤ (1 + ε)JF (E).

Using this theorem, we can prove the following lemma.
Lemma 3.13. Suppose that 0 < d < n and that U ⊂ Rn. Suppose that F
is an integrand. Then there is a positive constant M ′ > 0 depending only
on d and n such that for all relatively closed set E ⊂ U with locally finite
Hausdorff measure, for all relatively compact subset V ⊂ U and all ε > 0,
we can find a n-dimensional complex S and a subset E ′′ ⊂ U satisfying the
following properties:
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(1) E ′′ is a diam(U)-deformation of E over U , by puttingW = ˚|S| the in-
terior of |S| we have V ⊂ W ⊂ W ⊂ U , and there is a d-dimensional
skeleton S ′ of S such that E ′′ ∩W = |S ′|;

(2) JF (E ′′) ≤ (1 + ε)JF (E);

(3) there are d+ 1 complexes S0, . . . ,Sd such that S` is contained in the
`-skeleton of S and there is a decomposition

E ′′ ∩W = Ed t Ed−1 t . . . t E0,

where for each 0 ≤ ` ≤ d,

E` ∈ QM(W `,M ′, diam(W `),H`),

where {
W d = W

W `−1 = W ` \ E`

{
Ed =

∣∣Sd∣∣ ∩W d

E` =
∣∣S`∣∣ ∩W `.

The proof of this lemma is also the same as the proof of the Lemme 5.2.6
in [21] or the Lemma 9 in [22], therefore we omit the proof. This lemma is
very useful to seek a minimizer.

We now go to prove Lemma 3.2. In fact, Proposition 3.12 will be used in
the proof. Let us recall the lemma.
Lemma 3.2. If d = 1, then any almost polyhedral convex integrand F :
Rn ×G(n, d)→ R is a generalized elliptic integrand.

Proof. Let ` be a line, and x ∈ ` be any point. For any r > 0, we denote by
Xr and Yr the two endpoints of the segment ` ∩ B(x, r). Let S ⊃ {Xr, Yr}
be any compact set such that S ⊂ B(x, r) and S cannot be mapped into
{Xr, Yr} by any Lipschitz map which leaves Xr and Yr fixed.

For any ε > 0 small enough, by Proposition 3.12, we can find a polyheral
complex K and a Lipschitz map φ : Rn → Rn such that φ = id out of
B(0x, r + ε), ‖φ− id‖ ≤ εr, φ(S) is contained in the union of 1-dimensional
skeletons of K, and that

JF (φ(S)) ≤ (1 + εr)JF (S).

Since S cannot be mapped into {Xr, Yr} by any Lipschitz map which
leavesXr and Yr fixed, we get that φ(S) also cannot be mapped into {φ(Xr), φ(Yr)}
by any Lipschitz map which leaves φ(Xr) and φ(Yr) fixed. Since φ(S) con-
sists of segment, we can get that that there is a path γ from φ(Xr) to φ(Yr),
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which consists of segments, suppose that is γ = A1A2 · · ·Am, A1 = φ(Xr),
Am = φ(Yr). By the definition of the almost polyhedral convex, we get that

JF (A1Am) ≤ JF (γ) + h(r + ε)(r + ε) ≤ (1 + ε)JF (S) + h(r + ε)(r + ε).

Let π′ be the line which throug A1 and Am. Since ‖φ− id‖ ≤ εr, we get
that dG(π, π′) ≤ 2ε. We let ε → 0, we will get that JF (A1Am) → JF (XrYr)
and that

JF (XrYr) ≤ JF (S) + h(r)r.

Thus F is a generalized elliptic integrand.

3.1.3 Lower semicontinuity of integral of an integrand
on almost minimal sequence

Let W1 and W2 be two subspace of Rn, L : W1 → W2 be a linear map.
d = dim(W1). The d-dimensional jacobian Jd(L) of L is defined by

Jd(L) = ‖ ∧d L‖.

In fact, the number Hd(L(A))/Hd(A) does not depend on the choice of A
when Hd(A) > 0, which is exact the jacobian of L.

Let E ⊂ Rn be a d-dimensional rectifiable set. Suppose that V is a d-plane
in Rn, i.e. a translation of a d-dimensional subspace. We let PV : Rn → V be
the orthogonal projection.
Lemma 3.14. Let E, V and PV be as above, let ϕ = PV |E : E → V . If the
tangent plane TxE of E at point x ∈ E exists, then

apJdϕ(x) = Jd(DPV (x)|TxE) (3.1.9)

and
dG(TxE, V ) ≤

√
2 ·
√

1− apJdϕ(x), (3.1.10)

where we denote by apJdϕ(x) the approximate jacobian of ϕ at point x, see
[19, Chapter 3].

Proof. Equation (3.1.9) comes directly from the definition of approxiamte
tangent plane, see [19]. Let’s prove inequality (3.1.10). Let V and W be any
two d-dimensional subspace. We will show that

dG(W,V )2 + Jd(PV |W )2 ≤ 1.

Indeed, for any small ε > 0, we can find w ∈ W with |w| = 1 such that

dG(W,V )− ε ≤ dist(w, V ) ≤ dG(W,V ).
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We take an orthogonal basis w1, w2, · · · , wd of W with w1 = w. Then

Jd(PV |W ) = |PV (w1) ∧ · · · ∧ PV (wd)| ≤ |PV (w1)| · · · |PV (wd)| ≤ |PV (w1)|.

Thus

Jd(PV |W )2 ≤ |PV (w)|2 = 1− |w − PV (w)|2 ≤ 1− (dG(W,V )− ε)2.

We let ε tend to 0, then we get that

Jd(PV |W )2 ≤ 1− dG(W,V )2.

Since PV is a linear map, we have that DPV (x) = PV . Thus we get that

dG(TxE, V ) ≤
√

1− apJdϕ(x)2 ≤
√

2 ·
√

1− apJdϕ(x).

Theorem 3.15. Let F be an integrand. Let U be an open set. Let {Ek} be a
sequence of sets such that

Ek ∈ GQM(U,Mk, εk, δ).

Suppose that Mk → 1, εk → 0 and Ek → E. Then

JF (E) ≤ lim inf
k→∞

JF (Ek).

Proof. For simplify the proof, we assume that Mk ≥ Mk+1, εk ≥ εk+1 for all
k ≥ 1. Let ε ∈ (0, 1) be small enough. We take ε′ > 0 and ρ > 0 such that
1− (1− ρ)d < ε/2 and ε′ < min{ε/10, ε2, ρ}.

By Lemma 3.3 in [8], we get that

E ∈ GQM(U,Mk, εk, δ), ∀k ≥ 1, (3.1.11)

and for any ball B(x, r) ⊂ U ,

Hd(E ∩B(x, r)) ≤ lim inf
k→∞

Hd(Ek ∩B(x, r)). (3.1.12)

From (3.1.11), we can see that E is almost minimal.
We always assume that

lim inf
k→∞

Hd(Ek) <∞;

otherwise we have nothing to prove. Then

Hd(E) ≤ lim inf
k→∞

Hd(Ek) <∞.
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Similar as in [8], we can see that E is rectifiable, thus for Hd-almost
every x ∈ E, θE(x) = 1 and E has an approximate tangent plane TxE, see
for example [29]. Since E is Ahlfors-regular, see [8], by Lemma 3.7, TxE is a
true tangent plane. Thus we can find E ′ ⊂ E with Hd(E \E ′) = 0 such that
for any x ∈ E ′, and any ε′ > 0, there exists r1 = r1(x, ε′) > 0 such that

(1− ε′)ωdrd ≤ Hd(E ∩B(x, r)) ≤ (1 + ε′)ωdr
d (3.1.13)

and
E ∩B(x, r) ⊂ C(x, r, TxE, ε′), (3.1.14)

for any r ∈ (0, r1], where C(x, r, P, ε) = {x ∈ B(x, r) | dist(x, P ) ≤ ε |x|}.
We put rρ = (1− ρ)r, then

Hd(E ∩B(x, r) \B(x, rρ)) ≤ (1 + ε′)ωdr
d− (1− ε′)ωdrdρ ≤ εHd(E ∩B(x, r)).

We consider the Lipschitz function ψρ,r : R→ R defined by

ψρ,r(t) =


1, t ≤ rρ

− 1
ρr

(t− r), rρ < t ≤ r

0, t > r

and Lipschitz map Φx,ρ,r : Rn → Rn defined by

Φx,ρ,r(y) = ψρ,r(|y − x|)Πx(y) + (1− ψρ,r(|y − x|))y,

where we denote by Πx : Rn → TxE the orthobonal projection. It is easy to
check that

Φx,ρ,r|B(x,rρ) = Πx|B(x,rρ)

and
Φx,ρ,r|B(x,r)c = idB(x,r)c .

We take h ∈ (ε′, ρ) and

Ax,r,h =
{
y ∈ B(x, r)

∣∣∣ dist(y, TxE) ≤ hr
}
.

Then similar to Theorem 3.8, we can show that

Lip
(
Φx,ρ,r|Ax,ρ,h

)
≤ 2 +

h

ρ
.

Since Ek converge to E, and E ∩B(x, r) ⊂ C(x, r, TxE, ε′) for r ∈ (0, r1],
and h > ε′, we get that Ek ∩B(x, r) ⊂ Ax,r,h when k ≥ k(x) and 0 < r < r1.
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Since Ek ∈ GQM(U,Mk, εk, δ), and Mk → 1, εk → 0, we can see that

Φx,ρ,r(Ek) ⊃ B(x, rρ) ∩ TxE,

when 0 < r < r0 = min{r1, δ} and k large enough (still assume that we have
it when k ≥ k(x)).

By Theorem 3.2.22 in [19], we have that∫
Ek∩B(x,rρ)

apJdΦx,ρ,r(y)dHd(y) =

∫
V

#
(
Φ−1
x,ρ,r(z) ∩B(x, rρ)

)
dHd(z) ≥ ωdr

d
ρ,

where we denote by V the tangent plane TxE. By Lemma 3.14, we have that∫
Ek∩B(x,rρ)

dG(TyEk, V )dHd(y) ≤
√

2

∫
Ek∩B(x,rρ)

√
1− apJdΦx,ρ,r(y)dHd(y).

By low semicontinuous property, see for example Lemma 3.3 in [8], we
get that

Hd(E ∩B(x, r)) ≤ lim inf
k→∞

Hd(Ek ∩B(x, r)). (3.1.15)

Since Mk+1 ≤Mk and εk+1 ≤ εk, we get that

Ek ∈ GQM(Ω,Mk0 , εk0 , δ,Hd), for k ≥ k0.

By Lemma 3.12 in [8], we can get that

(1 + Cεk0)Mk0Hd(E ∩B(x, r)) ≥ lim sup
k→∞

Hd(Ek ∩B(x, r)), (3.1.16)

but we know that Mk → 1,εk → 0, we get that

Hd(E ∩B(x, r)) ≥ lim sup
k→∞

Hd(Ek ∩B(x, r)). (3.1.17)

Thus, if Hd(E ∩ ∂B(x, r)) = 0, then

Hd(E ∩B(x, r)) = lim
k→∞
Hd(Ek ∩B(x, r)). (3.1.18)

In fact, for H1-almost every r ∈ (0, r0), Hd(E ∩ ∂B(x, r)) = 0. For any
r ∈ (0, r0), we can always arrange ρ such that Hd(E ∩ ∂B(x, rρ)) = 0.

Since (3.1.13) and (3.1.18), we can assume that when k ≥ k(x),

Hd(Ek ∩B(x, rρ)) ≤ (1 + ε′)Hd(E ∩B(x, rρ)) ≤ (1 + 3ε′)ωdr
d
ρ.

We put

Ix,k =

∫
Ek∩B(x,rρ)

dG(TyEk, V )dHd(y).
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Then

Ix,k ≤
√

2

∫
Ek∩B(x,rρ)

√
1− apJdΦx,ρ,r(y)dHd(y)

≤
√

2(ωdr
d
ρ)

1
2

(∫
Ek∩B(x,rρ)

1− apJdΦx,ρ,r(y)dHd(y)

) 1
2

≤ 2
√
ε′ωdr

d
ρ.

(3.1.19)

We first consider that F is an Lipschitz integrand. That is, an integrand
which satisfies that there exists a constant C such that for any xi, x2 ∈ Rn

and any π1, π2 ∈ G(n, d),

|F (x1, π1)− F (x2, π2)| ≤ C(|x1 − x2|+ dG(π1, π2)).

We put

Ĩx,r,ρ,k = |JF (Ek ∩B(x, rρ))− F (x, V )Hd(Ek ∩B(x, rρ))|

Then

Ĩx,r,ρ,k =

∣∣∣∣∣
∫
Ek∩B(x,rρ)

F (y, TyEk)− F (x, V )dHd(y)

∣∣∣∣∣
≤ Lip(F )

∫
Ek∩B(x,rρ)

|y − x|+ dG(TyEk, V )dHd(y)

≤ 2Lip(F )(rρ +
√
ε′)ωdr

d
ρ.

Similarly, we can get that

|JF (E ∩B(x, rρ))− F (x, V )Hd(E ∩B(x, rρ))| ≤ 2Lip(F )(rρ +
√
ε′)ωdr

d
ρ.

So we get that when 0 < r < min{r1(x, ε′), δ, ε} and k ≥ k(x),

|JF (E∩B(x, rρ))−JF (Ek∩B(x, rρ))| ≤ 4Lip(F )εωdr
d
ρ ≤ 8Lip(F )εHd(E∩B(x, rρ)).

We consider a family a balls

B = {B(x, rρ) | x ∈ E ′′, and r, ρ are as above}.

It is a Vitali covering of E ′. By a Vitali covering theorem, see for example
[???], we can find a finite or countably infinite disjoint balls

{Bi}i∈I ⊂ B
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such that

Hd

(
E ′ \

⋃
i∈I
Bi

)
= 0.

We can find a finitely many balls {Bi}i∈J ⊂ {Bi}i∈I such that

Hd

(
E ′ \

⋃
i∈J

Bi

)
≤ εHd(E ′).

We denote Bi = B(xi, ri) when i ∈ J . When k ≥ max{k(xi) : i ∈ J}, we get
that

JF (E) = JF (E ′) = JF

(
E ′ \

⋃
i∈J

Bi

)
+ JF

(
E ′ ∩

⋃
i∈J

Bi

)
≤
∑
i∈J

JF (E ∩Bi) + ε(supF )Hd(E)

≤
∑
i∈J

(Ek ∩Bi) + ε(supF )Hd(E) +
∑
i∈J

8Lip(F )εHd(E ∩Bi)

≤
∑
i∈J

(Ek ∩Bi) + (supF + 8Lip(F ))Hd(E)ε

≤ JF (Ek) + (supF + 8Lip(F ))Hd(E)ε.

we let ε tend to 0, we get that

JF (E) ≤ lim inf
k→∞

JF (Ek).

We now suppose that F is any integrand. Let {Um} be a sequence of
open set such that Um ⊂ Um+1 for any m ≥ 1,

⋃
Um = U , and each Um is

bounded.
Since Um is bounded, we can find a sequence of Lipschitz integrands {F`}

such that F` converges uniformly to F on Um. Since F` is Lipschitz, we can
see that

JF`(E ∩ Um) ≤ lim inf
k→∞

JF`(Ek ∩ Um).

Thus we get that

JF (E ∩ Um) ≤ lim inf
k→∞

JF (Ek ∩ Um).

Hence
JF (E) ≤ lim inf

k→∞
JF (Ek).
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In above theorem, the integrand F can be any continuous integrand, but
we require some condition on the sequence of sets {E}k. In fact, for general
integrand we could not expect an lower semicontiuous property without any
assumption on the sequence of sets.
Example 3.16. For simplicity, we consider n = 2, d = 1, and take

U = R2 \ {(0, 0), (1, 0)}.

Let g : R→ R be a positive continuous function such that g(θ) = g(π− θ) =
g(π + θ) for any θ ∈ R and that

√
2g(π

4
) < g(0). We consider the integrand

F defined by
F (x, θ) = g(θ).

It quite easy to see that F is not generalized elliptic integrand.
We put

Ak,i =

(
2i

2k
, 0

)
, Bk,i =

(
2i+ 1

2k
,

1

2k

)
.

(0,0) (1,0)

B1,0

B2,0 B2,1

B3,0 B3,1 B3,2 B3,3

Figure 3.3: quasiminimal sets Ek

Let Ek be the union of segments [Ai, Bi] and [Bi, Ai+1], 0 ≤ i ≤ 2k−1.
That is,

Ek = [A0, B0] ∪ [B0, A1] ∪ [A1, B1] ∪ · · · ∪ [B2k−1−1, A2k−1 ].

We can easily check that

Ek ∈ QM(U,
√

2,∞,H1),

and that Ek converges to the segment E which join the points (0, 0) and
(0, 1) in Hausdorff distance.

We can see that
JF (E) = g(0),

and that
JF (Ek) =

√
2g
(π

4

)
.
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Thus
JF (E) > lim inf

k→∞
JF (Ek).

3.2 Existence of minimizers under Reifenberg
homological conditions

In this subsection, we will see some existence results. Let B ⊂ Rn be a com-
pact set. Let C be a class of compact subsets in Rn. Let F be an integrand.
We set

m(C , F ) = inf{JF (E \B) | E ∈ C }.

Theorem 3.17. Let F be a generalized elliptic integrand. If C a class of
compact subsets in Rn which satisfies the following conditions:

(1) For any deformation {ϕt}0≤t≤1 in Rn \ B and any E ∈ C , we have
that ϕ1(E) ∈ C ;

(2) For any sequence {Ek}∞k=1 ⊂ C such that Ek converges to some com-
pact set E in Hausdorff distance, we have that E ∈ C .

Then we can find E ∈ C such that JF (E \B) = m(C , F ).
Of course the problem will only be interesting when m(C , F ) < +∞,

which is usually fairly easy to arrange. We subtracted B because this way we
shall not need to assume that Hd(B) < +∞, but of course if Hd(B) < +∞
we could replace JF (S \B) with JF (S) in the definition.

Proof. We claim that we can find a ball B(0, R) and a sequence of compact
sets (Ek)k≥1 ⊂ C such that B ⊂ B(0, R), Ek ⊂ B(0, R) and

JF (Ek \B)→ m(C , F ).

We take any sequence of compact sets (E ′k)k≥1 in C such that

JF (E ′k \B)→ m(C , F ).

We take
U ′k = {x ∈ B(0, Rk) | dist(x,B) > 2−k},

where
Rk > max{k,Rk−1 + 1, dist(0, E ′k) + diam(E ′k) + 1}.
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By lemma 3.13, we can find a Lipschitz map φ′k : Rn → Rn and a complex
Sk such that

φ′k|U ′ck = idU ′ck , U
′
k−1 ⊂ |Sk| ⊂ U ′k,

and
φ′k(E

′
k) ∩W ′

k = Fk t F ′k,
where W ′

k = ˚|Sk| and

Fk ∈ QM(W ′
k,M, diam(W ′

k),Hd),

and F ′k is contained in the union of (d− 1)-dimensional skeleton of Sk.
We now prove that (Fk)k≥1 is bounded, i.e. we can find a large ball B(0, r)

such that B ∪ (∪kFk) ⊂ B(0, r). Suppose not, that is, suppose that for any
large number r > R1 there exist k > 4r such that Fk \ B(0, 2r) 6= ∅. If
x ∈ Fk \ B(0, 2r), we take a cube Q centered at x with diam(Q) = r, then
by using Proposition 4.1 in [14], we have that

Hd(Fk ∩Q) ≥ C−1diam(Q)d,

where C only depend on n and M . If we take r large enough, for example

rd >
2C

inf F
(m(C , F ) + 1),

and take k large enough such that JF (E ′k) < m(C , F ) + 1, then

C−1rd ≤ Hd(Fk ∩Q)

≤ 1

inf F
JF (φ′k(E

′
k))

≤ (1 + 2−k)

inf F
JF (E ′k)

<
2

inf F
(m(C , F ) + 1),

this is a contradiction. Thus ∪kFk is bounded. It is easy to see that ∪k(φ′k(E ′k)∩
W ′c
k ) is bounded, so we can assume that both B∪(∪kFk) and ∪k(φ′k(E ′k)∩W ′c

k )
are contained in a large ball B(0, R). We take map ρ : Rn → Rn defined by

ρ(x) =

{
x, x ∈ B(0, R)
R
|x|x, x ∈ B(0, R)c,

ρ is 1-Lipschitz map. We put Ek = ρ ◦ φ′k(E ′k), then Ek ∈ C , and

Ek = (φ′k(E
′
k) ∩W ′c

k ) ∪ Fk ∪ ρ(F ′k).
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Since Hd(F ′k) = 0, we have that

JF (Ek \B) = JF (φ′k(E
′
k) \B) ≤ (1 + 2−k)JF (E ′k \B),

therefore
JF (Ek \B)→ m(C , F ),

and (Ek)k≥1 is a sequence which we desire.
If JF (Ek \ B) = 0 for some k ≥ 1, then m(C , F ) = 0 and Ek is a

minimizer, we have nothing to prove. We now suppose that for all k ≥ 1,
0 < JF (Ek \B) < +∞. Thus 0 < Hd(Ek \B) < +∞.

We put

U = B(0, R + 1) \B, Vk = {x ∈ B(0, R + 1− 2−k) | dist(x,B) > 2−k}.

By lemma 3.13, we can find polyhedral complexes Sk, Lipschitz maps
φk : Rn → Rn and a constant M ′ = M ′(n, d) such that

(1) Vk ⊂ |Sk| ⊂ Vk+1, φk|V ck+1
= idV ck+1

, and there exists a d-dimensional
skeleton S ′k of Sk such that E ′′k ∩Wk = |S ′k|, where E ′′k = φk(Ek) and
Wk = |Sk|;

(2) JF (E ′′k \B) ≤ (1 + 2−k)JF (Ek \B);

(3) there exist complexes S0
k , . . . ,Sdk such that S`k is contained in the `-

skeleton of Sk and there is a disjoint decomposition

E ′′k ∩ W̊k = Ed
k t Ed−1

k t · · · t E0
k ,

where for each 0 ≤ ` ≤ d,

E`
k ∈ QM(W `

k ,M
′, diam(W `

k),H`),

where {
W d
k = W̊k

W `−1
k = W `

k \ E`
k

{
Ed
k =

∣∣Sdk ∣∣ ∩W d
k

E`
k =

∣∣S`k∣∣ ∩W `
k ,

and W̊k is the interior of Wk.

We note that for each k, Ek and Wk are two compact subsets of Rn, thus
E ′′k ∩Wk is a compact subset of Rn. We may suppose that E ′′k ∩Wk → E ′ in
Hausdorff distance, passing to a subsequence if necessary. We put E = E ′∪B.
We will show that E is a minimizer.
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First of all, we show that E is in the class C , i.e. E ∈ C . Since φk is
Lipschitz map and φk|V ck+1

= idV ck+1
, in particular, φk|B = idB, thus E ′′k =

φk(Ek) ∈ C . Since Vk ⊂ Wk ⊂ Vk+1, we have that

φk(Ek) \Wk ⊃ φk(Ek) \ Vk+1 ⊃ B,

and
φk(Ek) \Wk ⊂ φk(Ek) \ Vk ⊂ B(2−k),

where we denote by B(ε) denote the ε-neighborhood of B. Thus E ′′k \Wk → B
in Hausdorff distance, so that

E ′′k = (E ′′k ∩Wk) ∪ (E ′′k \Wk)→ E ′ ∪B = E,

and we have that E ∈ C .
Next, we will show that JdF (E \B) = m(C , F ).
Passing to a subsequence if necessary, we may assume that

Ed
k → Ed in U, for 0 ≤ ` ≤ d,

For any 0 ≤ ` ≤ d, we put

U ` = U \
⋃

`<`′≤d
E`′ ,

we assume that E`
k → E` in U . Then

E \B =
⋃

0≤`≤d
E`.

Since
Ed
k ∈ QM(W d

k ,M
′, diam(W d

k ),Hd),

we can apply the Theorem 3.8, and get that

JF (Ed ∩W d
k ) ≤ lim inf

m→∞
JF (Ed

m ∩W d
k ) ≤ lim inf

m→∞
JF (Ed

m).

Since Vk ⊂ Wk ⊂ Vk+1 and W d
k = W̊k, we have⋃
k

W d
k =

⋃
k

Vk = U,

thus
JF (Ed) ≤ lim inf

m→∞
JF (Ed

m).
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For any 0 ≤ ` ≤ d, for any ε > 0, we put Ud
ε = B(0, R + 1− ε) ∩ Ud and

U `
ε =

{
x ∈ B(0, R + 1− ε)

∣∣∣∣∣ dist

(
x,
⋃

`<`′≤d
E`′

)
> ε

}
.

Then U `
ε1
⊂ U `

ε2
for any 0 < ε2 < ε1, and⋃

ε>0

U `
ε = U `.

Since E`
k → E` in U , we have that E`

k ∩ U `
ε → E` ∩ U `

ε in U `
ε . We will show

that for any ε > 0, there exists kε such that for k ≥ kε,

E`
k ∩ U `

ε ∈ QM(U `
ε ,M

′, diam(U `
ε),H`).

Indeed, for any ε > 0, we can find kε such that U `
ε ⊂ W `

k . We prove this
fact by induction on `.

First, we take a positive integer kε such that 2−kε < ε, then Ud
ε ⊂ W d

k for
any k ≥ kε.

Next, we suppose that there is an integer kε such that U `
ε ⊂ W `

k for k ≥ kε.
Since E`

k → E` in U ` and

W `−1
k = W `

k \ E`
k, U

`
ε =

{
x ∈ U `

ε

∣∣ dist
(
x,E`

)
> ε
}
,

we can find k′ε such that U `−1
ε ⊂ W `−1

k for k ≥ k′ε.
Since U `

ε ⊂ W `
k and

E`
k ∈ QM(W `

k ,M
′, diam(W `

k),H`),

we get that
E`
k ∩ U `

ε ∈ QM(U `
ε ,M

′, diam(U `
ε),H`).

For any δ > 0, we put Ωδ = {x ∈ Uε | dist(x, U c
ε ) ≥ 10δ}. E`

k ∩ Ωδ is a
compact set, and {B(x, δ) | x ∈ E`

k ∩Ωδ} is an open covering of E`
k ∩Ωδ, we

can find a finitely many balls {B(xi, δ)}i∈I which is a covering of E`
k ∩Ωδ, by

the 5-covering lemma, see for example the Theorem 2.1 in [29], we can find
a subset J ⊂ I such that B(xj1 , δ)∩B(xj2 , δ) = ∅ for j1, j2 ∈ J with j1 6= j2,
and ⋃

i∈I
B(xi, δ) ⊂

⋃
j∈J

B(xj, 5δ).

Since B(xj1 , δ) ∩B(xj2 , δ) = ∅ for ji, j2 ∈ J , we have that

Ln(Uε) ≥
∑
j∈J
Ln(B(xj, δ)),
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thus
#J ≤ L

n(Uε)

ωnδn
.

By the Proposition 4.1 in [14], we have that

C−1(5δ)` ≤ H`(E`
k ∩B(xj, 5δ)) ≤ C(5δ)`,

so

H`(E`
k ∩ Ωδ) ≤

∑
j∈J
H`(E`

k ∩B(xj, 5δ)) ≤
∑
j∈J

C(5δ)` ≤ ω−1
n Ln(Uε)5

dδ`−nC.

Applying the theorem 3.4 in [7], we get that

H`(E` ∩ Ωδ) ≤ lim inf
k→∞

H`(E`
k ∩ Ωδ) ≤ ω−1

n Ln(Uε)5
dδ`−nC,

and dimHE` ∩ Ωδ ≤ `, hence dimHE` ≤ `, thus Hd(E`) = 0.
we get that

JF (E \B) = JF (Ed)

≤ lim inf
k→∞

JF (Ed
k)

≤ lim inf
k→∞

JF (E ′′k \B)

≤ lim inf
k→∞

(1 + 2−k)JF (Ek \B)

= lim inf
k→∞

JF (Ek \B)

= m(C , F ).

Since E ∈ C , we have that

JF (E \B) ≥ m(C , F ),

therefore
JF (E \B) = m(C , F ).

The following proposition is taken from [34, 3.1 Proposition].
Proposition 3.18. Let B ⊂ Rn be a compact subset. Suppose that for j =
1, 2, . . ., Sj ⊂ Rn is a compact set with B ⊂ Sj, and that Sj converge in
Hausdorff distance to a compact set S ⊂ Rn. Let L ⊂ Ȟk−1(B;G) be a
subgroup such that L ⊂ ker Ȟk−1(iB,Sj). Then L ⊂ ker Ȟk−1(iB,S).
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The proof of the proposition is essentially the same as the proof of Propo-
sition 3.1 in [34], so we omit the proof.

We now to prove our existence result for Reifenberg’s Plateau problem.
It can be deduced from Theorem 3.17 and Proposition 3.18.

Let B ⊂ Rn be a given compact set, G be an abelian group. If S is
another compact set that contains B, we shall denote by iB,S : B → S the
natural inclusion, by Hk(iB,S) : Hk(B;G) → Hk(S;G) the corresponding
homomorphism between homology groups, and by Ȟk(iB,S) : Ȟk(B;G) →
Ȟk(S;G) the corresponding homomorphism between Čech homology groups.
Let L be a subgroup of Ȟd−1(B;G). Recall that a compact set S ⊃ B is
called with algbraic boundary containing L if L ⊂ ker Ȟd−1(iB,S).

A simple case is when L is the full group Ȟk(B;G); then S ⊃ B spans
L in Čech homology precisely when the mapping Hk(iB,S) is trivial. But it
may be interesting to study other other subgroups L, and this will not make
the proofs any harder.

We have a similar definition which we just replace Ȟd−1(iB,S) withHd−1(iB,S).
It would be very nice if our existence theorem was in terms of singular ho-
mology, but unfortunately we cannot prove the corresponding statement at
this time.

We set

CČech(B,G,L) =

{
S ⊂ Rn

∣∣∣∣ S ⊃ B is a compact set with
algebraic boundary containing L

}
Theorem 3.19. Let the compact set B ⊂ Rn, a generalized integrand F , an
abelian group G, and a subgroup L of Ȟd−1(B;G) be given. Then there exists
a compact set E ∈ CČech(B,G,L) such that

JF (E \B) = m (CČech(B,G,L), F ) .

As was mentioned before, this theorem was proved by Reifenberg in [38],
under the additional assumption that G be compact.

Proof. We only need to prove that CČech(B,G,L) saitisfies the conditions in
Theorem 3.17.

For any Lipschitz map ϕ : Rn → Rn with ϕ|B = idB, and any compact
set E ∈ CČech(B,G,L), we have iB,ϕ(E) = ϕ ◦ iB,E, thus

Ȟd−1(iB,ϕ(E))(L) = Ȟd−1(ϕ) ◦ Ȟd−1(iB,E)(L) = 0,

this implies that
L ∈ ker

(
Ȟd−1(iB,ϕ(E))

)
,
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so
ϕ(E) ∈ CČech(B,G,L).

For any sequence

{Ek}∞k=1 ⊂ CČech(B,G,L),

if Ek converge to E in Hausdorff distance for some compact set E ⊂ Rn, then
by Proposition 3.18, we get that

E ∈ CČech(B,G,L).

The class CČech(B,G,L) saitisfies the two conditions in Theorem 3.17,
thus we can find a compact set E ∈ CČech(B,G,L) such that

JF (E \B) = m(CČech(B,G,L), F ).

Let us look at an another related example called free boundary Plateau
problem, see for example in [33]. Given a compact set B ⊂ Rn, an abelian
group G, and a subgroup L of Ȟd−1(B;G). We call compact set X ⊂ Rn is a
surface with free boundary including L, if

L ⊂ Ȟd−1(iX∩B,B)
(
ker Ȟd−1(iX∩B,X)

)
.

We set

Cfree(B,G,L) =

{
E ⊂ Rn

∣∣∣∣ E is a compact set with
free boundary including L

}

Theorem 3.20. Let B, G, L and F ba as in Theorem 3.19. Then we can
find E ∈ Cfree(B,G,L) such that

JF (E \B) = m (Cfree(B,G,L)) .

Proof. We will show that Cfree(B,G,L) saitisfies the two conditions in The-
orem 3.17. It is fairly easy to verify the frist condition, so we omit it.

Let {En}∞n=1 ⊂ Cfree(B,G,L) be a sequence of compact sets such that
En → E in Hausdorff distance for some compact sets E ⊂ Rn. We put

Xn =

(⋃
k≥n

Ek

)⋃
E.

By Lemma 3 in [33], we know thatXn ∈ Cfree(B,G,L), then we apply Lamma
4 in [33], we get that E =

∞∩
n=1

Xn ∈ Cfree(B,G,L).
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Here we have show that there exists (at least) a minimizer to minimize
quantity

JF (E \B).

It would be more interesting to minimize

JF1(E \B) + JF2(E ∩B)

for free boundary problem, where F1 and F2 are two integrand. But unfortu-
nately we cannot prove the corresponding existence result here, because we
do not have any lower semicontinuous property for JF2(E ∩B).

It should be also interesting to regularity of minimizers for the Reifenberg
Plateau problem. In fact, if the genralized elliptic integrand F donot depends
on the direction, i.e.

F (x, θ) = f(x), for all x ∈ Rn, θ ∈ G(n, d),

for some continuous function f : Rn → R with 0 < c ≤ f ≤ C < ∞, then
any minimizer in Theorem 3.19 is almost minimal in Rn \B. But when F is
a general generalized elliptic integrand, we donot know whether or not such
a minimizer is almost minimal. Of course, we can get, from the proof, that
such a minimizer is quasiminimal.
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Chapter 4

Regularity of sliding almost
minimal sets at the boundary

Recall that a gauge function is a nondecreasing function h : [0,∞]→ [0,∞]
with limt→0 h(t) = 0. Let δ > 0 and an open set U ⊂ Rn be given. A δ-
deformation in U is a family of maps {ϕt}0≤t≤1 from U into itself such that

ϕ1 is Lipschitz and ϕ0 = idU ,

the function
[0, 1]× U → U, (t, x) 7→ ϕt(x)

is continuous, Ŵ is relatively compact in U and diam(Ŵ ) < δ, where

Ŵ =
⋃
t∈[0,1]

(Wt ∪ ϕt(Wt)) , Wt = {x ∈ U ;ϕt(x) 6= x}. (4.0.1)

We say that a relatively closed d-dimensional set E ⊂ U is (U, h)-almost-
minimal if it satisfies

Hd(E ∩W1) ≤ Hd(ϕ(E ∩W1)) + h(δ)δd,

for any δ-deformation {ϕt}0≤t≤1. In [39], Jean Taylor proved that if U is an
open set in R3, E is a reduced (U, h)-almost-minimal set and h(r) ≤ crα,
then for any x ∈ U , there is a small neighborhood of x contained in U and in
this neighborhood, E is C1 diffeomorphic to a 2-dimensional minimal cone,
while 2-dimensional minimal cones are planes, cones of type Y and cones of
type T.

In this chapter, we concentrate on boundary regularity, and always con-
sider the following sliding boundary conditions. Let Ω ⊂ Rn be a closed
domain in Rn. Let L1 be a closed sets (it will be consider as the sliding
boundary).
Definition 4.1. Let U be an open set. For δ > 0, we say that a one parameter
family {ϕt}0≤t≤1 of maps from U into itself is a δ-sliding-deformation in U , if
it satisfies the following properties: ϕ0 = idU , ϕ1 is Lipschitz, (t, x) 7→ ϕt(x)

is continuous on [0, 1] × U , ϕt(x) ∈ L1 for any x ∈ L1 and any t ∈ [0, 1], Ŵ
is relatively compact in U and diam(Ŵ ) < δ.
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Let E ⊂ Ω be closed in Ω; we say that a closed subset F ⊂ Ω is a
competitor of E in U , if F = ϕ1(E) for some sliding deformation {ϕt}0≤t≤1

in U .
Definition 4.2. Let E ⊂ Ω be closed in U . We say that E is (U, h)-sliding-
almost-minimal, if for each ball B, Hd(E ∩ B) < +∞, and for each δ > 0
and each δ-sliding-deformation {ϕt}0≤t≤1, we have

Hd(E ∩W1) ≤ Hd(ϕ1(E ∩W1)) + h(δ)δd, (4.0.2)

where W1 = {x ∈ U ;ϕ1(x) 6= x}.
We say that E is an A+-sliding-almost-minimal set in U if under the same

circumstances,

Hd(E ∩W1) ≤ (1 + h(δ))Hd(ϕ1(E ∩W1)).

In the definition of (U, h)-sliding-almost-minimal set, we can replace in-
equality (4.0.2) by the inequality

Hd(E \ ϕ1(E)) ≤ Hd(ϕ1(E) \ E) + h(δ)δd,

at least if that L1 is not too bed, see [11].
When Ω, L1 and gauge function h are clear, and U = Rn. For simplicity,

we may say that an (U, h)-sliding-almost-minimal set E is sliding almost
minimal (in Ω with sliding boundary L1). It quite easy to see that for any
(U, h)-sliding-almost-minimal set E, E \ L1 is (U \ L1, h)-almost-minimal.

We say that E is (sliding) minimal in U if it is (sliding) almost minimal
with gauge function h = 0, that is,

Hd(E ∩W1) ≤ Hd(ϕ1(E ∩W1))

or
Hd(E \ ϕ1(E)) ≤ Hd(ϕ1(E) \ E)

for any (sliding) deformation {ϕt}0≤t≤1 in U .
We say that a d-dimensional set E is reduced if E = E∗, where

E∗ = {x ∈ E | Hd(E ∩B(x, r)) > 0 for every r > 0}.

We can prove that
Hd(E \ E∗) = 0

and that E∗ is also (sliding) almost minimal when E is (sliding) almost
minimal, see for instance [8, 11]. In this paper, we always assume that a
sliding almost minimal set is reduced.
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Recall that for any set E, any point x ∈ E, we have defined a function
θE(x, ·) by setting

θE(x, r) =
Hd(E ∩B(x, r))

ωdrd
.

If the limits
lim
r→0

θE(x, r)

exists, we will denote it by θE(x) (or θ(x)), and call it the density of E at
the points x. A property of almost monotonicity of density for sliding almost
minimal set will be often used. That is, Proposition 5.27 in [8] and Theorem
28.7 in [11]. We now put them together, it can be stated rough as follows:

θE(x, r)eλA(r) is a nondecreasing function of r, (4.0.3)

when r small, where E is a sliding almost minimal set with gauge function h,
A(r) =

∫ r
0
h(2t)dt

t
, and λ is a constant that depends only on d and n. Let’s

refer to [11, Section 5] and [8, Section 28] for more detailed statement. It
will be will be used frequently. From the fact (4.0.3), we can get that for any
sliding almost minimal set E, θE(x) exists for every x ∈ E.

A blow-up limit of a set E at x ∈ E is any closed set in Rn that can be
obtained as the limit of a sequence {r−1

k (E − x)} with limk→∞ rk = 0.
A set E in Rn is called a cone centered at origin 0 if for any x ∈ E and

any t ≥ 0, tx ∈ E. A cone centered at x ∈ Rn is the translation of a cone
centered at origin 0 to x.

Suppose that E is a sliding almost minimal set, and x ∈ E. If x is not
contained in the sliding boundary, then any blow-up limit of E at x is a
minimal cone in Rn, see [8]; if x is in the sliding boundary, then any blow-up
limit of E at x is a sliding minimal cone, see [11]. We refer to [8] and [11] for
the basic properties of blow-up limits.

4.1 One dimensional sliding minimal sets in a
half plane

In this section we discuss one dimensional sliding minimal sets in a half plane.
We discuss the one dimensional case, because it is very easy, and the list of
one dimensional sliding cones will be used to classify the two dimensional
sliding minimal cones in a half space. For simplicity, we assume that

Ω = {(x, y) ∈ R2 | y ≥ 0},
L1 = {(x, 0) ∈ R2 | x ∈ R}. (4.1.1)
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For any t ∈ R, and any α ∈ (0, π
2
), we set

Pt = {(t, y) | y ≥ 0}

and
Vα,t = {(x, y) : y = |x tanα + t|}.

It is very easy to see that the set Pt and Pt ∪ L1 are sliding minimal. It is
also not hard to see that Vα,t is minimal if and only if 0 < α ≤ π

6
.

Lemma 4.3. Let Ω and L1 be as in (4.1.1). Suppose that E is a minimal
cone in Ω with sliding boundary L1 centered at 0. Then E is one of L1, P0,
P0 ∪ L1 and Vα,0 for some α ∈ (0, π

6
).

Proof. LetK = E∩∂B(0, 1). We note thatK is a finite set because otherwise
H1(E∩B(0, 1)) =∞. Write K = {a1, · · · , an}, and denote by li the ray form
0 through the point ai. Suppose ai, aj ∈ Ω \ L1, i 6= j. Similarly to (10.3) in
Lemma 10.2 in [8], we can get that

Angle(li, lj) ≥
2π

3
.

Therefore, there are at most four point in K.
Case 1, if there is only one point in K, i.e. K = {a1}. It is easy to see

that a1 6= (1, 0) and a1 6= (−1, 0). If a1 = (0, 1), it is very easy to see that E
is minimal. If a1 6= (0, 1), we put a1 = (x, y), then

E ′ = {(x, ty) | 0 ≤ t ≤ 1} ∪ {(tx, ty) | t ≥ 1}

is a competitor of E, and H1(E ′) < H1(E). Then E could not be minimal.
In this case, E = P0 is a ray which is perpendicular to L1.

Case 2, there are two points in K, i.e. K = {a1, a2}. If a1 = (−1, 0) and
a2 = (1, 0), then E = L1. If a1 = (−1, 0) and a2 6= (1, 0), then

E ′′ = (E \B(0, 1)) ∪ [a1, a2]

is a competitor of E and H1(E ′′) < H1(E). Then E could not be minimal. If
a2 = (1, 0) and a1 6= (−1, 0), for the same reason as before, E is not minimal.
If a1, a2 6∈ {(−1, 0), (1, 0)}, we put a1 = (cosα1, sinα1), a2 = (cosα2, sinα2)
and ã2 = (cosα2,− sinα2) with 0 < α2 < α1 < π, then

H1([a1, 0] ∩ [0, a2]) ≥ H1([a1, ã2]),

and with equality if and only if α1 + α2 = π. It means that when a2 6=
(− cosα1, sinα1), E could not be minimal. We now suppose that a2 = (− cosα1, sinα1).
Then E = Vα1,0, and 0 < α1 ≤ π

6
because E is minimal.
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Case 3, there are three point in K. Write K = {a1, a2, a3}, a1 = (x1, y1),
a2 = (x2, y2) and a3 = (x3, y3), x1 < x2 < x3. If x1 6= −1 and x3 6= 1, then

Angle(l1, l2) ≥ 2π

3
and Angle(l2, l3) ≥ 2π

3
; (4.1.2)

that is impossible. If x1 = −1 and x3 6= 1, then

Angle(l2, l3) ≥ 2π

3
,

thus −1 < x2 < −
√

3
2
. We can see that

E ′′′ = (E \B(0, 1)) ∪ [0, a1] ∪ [(x2, 0), a2] ∪ [0, a3]

is a competitor of E, and H1(E ′′′) < H1(E), thus E could not be minimal.
Similarly, we can see that we cannot have x1 6= 1 and x3 = −1. We now
suppose that x1 = −1 and x3 = 1, i.e. a1 = (−1, 0) and a3 = (1, 0). If x2 6= 0,
then

E ′′′′ = L1 ∪ {(x2, ty2) | 0 ≤ t ≤ 1} ∪ {(tx2, ty2) | t ≥ 1}
is a competitor of E, and H1(E ′′′′) < H1(E), E is not minimal, impossible!
If x2 = 0, then a2 = (0, 1). That is, E = P0 ∪ L1.

Case 4, there are four point in K. If there are at least three point in
∂B(0, 1)∩Ω \L1, similarly to (4.1.2), that is impossible. Thus there at most
two point in ∂B(0, 1)∩Ω\L1, so there are exactly two point in ∂B(0, 1)∩Ω\L1

and exactly two point in ∂B(0, 1) ∩ Ω ∩ L1. We put K = {a1, a2, a3, a4},
a1 = (−1, 0), a2 = (x2, y2), a3 = (x3, y3), a4 = (1, 0), ã2 = (x2, 0) and
ã3 = (x3, 0). Then

H1([a2, 0] ∩ [0, a3]) > H1([a2, ã2]) +H1([a3, ã3]),

which means that E could not be minimal.

Proposition 4.4. Let Ω and L1 be as in (4.1.1). Suppose that E is a sliding
minimal set in Ω with sliding boundary L1, and E ⊃ L1. Then either E = L1

or E = Pt ∪ L1 for some t ∈ R.

Proof. For r > 0, we put Er = 1
r
E, Ar = Ω ∩B(0, r) and Sr = Ω ∩ ∂B(0, r).

We claim that there exists a sequence {rn}, such that rn →∞ and there
are at most three point in E ∩ Srn .

Since E is sliding minimal, we have that θE(0, r) is nondecreasing and
bounded, see [11, Theorem 28.4]. Thus for any ε > 0, we can find rε > 0
such that θE(0, r) ≥ θE(0,∞) − ε for r ≥ rε, where we denote θE(0,∞) =
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lim
r→∞

θE(0, r). We can easily see that θEr(0, t) = θE(0, rt). If we take r > 2rε,
then

θEr(0, t) = θE(0, rt) ≥ θE(0,∞)− ε = θEr(0,∞)− ε, ∀t ≥ 1

2
.

We now let τ with 0 < τ < 1
2
and ε be as in Proposition 30.3 in [11].

We take t0 > 2 and apply Proposition 30.3 in [11], and get that there is a
minimal cone T centered at 0 such that

dist(y, T ) ≤ τt0, for y ∈ Er ∩B(0, t0 − τ) \B
(

0,
1

2
+ τ

)
,

dist(z, Er) ≤ τt0, for z ∈ T ∩B(0, t0 − τ) \B
(

0,
1

2
+ τ

)
,∣∣H1(Er ∩B(y, u))−H1(T ∩B(y, u))

∣∣ ≤ τt0 (4.1.3)

for any B(y, u) ⊂ B(0, t0 − τ) \B
(

0,
1

2
+ τ

)
, and∣∣H1(Er ∩B(0, t))−H1(T ∩B(0, t))

∣∣ ≤ τt, ∀1

2
+ τ ≤ t ≤ t0 − τ. (4.1.4)

If we put N(t) = # (∂B(0, t) ∩ E), then by Lemma 8.10 in [8] or Theorem
3.2.22 in [19],

1

s

∫ s

0

N(t)dt ≤ 1

s
H1(E ∩B(0, s)).

Combining this with (4.1.4), we can get that, for
(

1
2

+ τ
)
r ≤ s ≤ (t0 − τ)r,

1

s

∫ s

0

N(t)dt ≤ 1

s
H1(T ∩B(0, s)) + τ ≤ 3 + τ.

But t0 can be chosen arbitrarily large, thus we can find a sequence {sn}∞n=1

such that sn →∞ and N(sn) < 4. Since L1 ⊂ E, we have that N(s) ≥ 2 for
any s > 0, thus 2 ≤ N(sn) ≤ 3.

If N(s) = 2 for some s > 0, by minimality of E, we can get that

E ∩B(0, s) = L ∩B(0, s).

If N(s) = 3 for some s > 0, we suppose that

E ∩ ∂B(0, s) = {(−s, 0), Xs, (s, 0)}, X = (xs, ys).

If the points Xs and 0 are not in the same component of E ∩ B(0, s), then
by minimality of E, we can see that Xs is the only point in the component
of E ∩B(0, s) which contains the point Xs, and

E ∩B(0, s) = L ∩B(0, s).
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If the points Xs and 0 are in the same component of E ∩B(0, s), then there
is a path in E ∩B(0, s) from Xs to 0, we denote it by γ : [0, 1]→ E ∩B(0, s)
with γ(0) = Xs and γ(1) = 0. Let

v0 = inf{v ∈ [0, 1] | γ(v) ∈ L1}.

Then
E ′ = [Xs, γ(v0)] ∪ (E \B(0, s)) ∪ (L1 ∩B(0, s))

and
E ′′ = [(xs, ys), (xs, 0)] ∪ (E \B(0, s)) ∪ (L1 ∩B(0, s))

are competitors of E, and

H1(E ′′ ∩B(0, s)) ≤ H1(E ′ ∩B(0, s)) ≤ H1(E ∩B(0, s)).

By minimality of E, we get that E ′′ = E ′ = E. We put γ(v0) = (ts, 0), then

E ∩B(0, s) = (Pts ∪ L1) ∩B(0, s).

If there exists a sequence {nk}∞k=1 such that N(snk) = 2, then

E ∩B(0, snk) = L1 ∩B(0, snk)

for any k ≥ 1; thus we get that E = L1.
If there exist an integer n0 ≥ 1 such that N(sn) = 3 for n ≥ n0, then

E ∩B(0, sn) = (Ptsn ∪ L1) ∩B(0, sn),

and tsn = tsn0 for any n ≥ n0. By putting t = tsn0 , we get that E =
Pt ∪ L1.

4.2 Two dimensional minimal cone with sliding
boundary

In this section we consider a simple case in R3: our domain Ω is a half space,
and the boundary L1 is the plane which is the boundary of Ω. In the domain
Ω, we will see what does a sliding minimal cone look like. For simplicity, we
assume that

Ω = {x = (x1, x2, x3) ∈ R3 | x3 ≥ 0},
L1 = {x = (x1, x2, x3) ∈ R3 | x3 = 0}. (4.2.1)

Let us refer to paper [8] for the definition of cones of type Y and T. We
say that a cone Z ⊂ Ω is of type P+, if Z is a closed half plane which is
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perpendicular to L1 and through 0, i.e. the intersection of Ω with a plane
which is through 0 and meets L1 perpendicularly; similarly we say that a
cone Z ⊂ Ω is of type Y+ if it is a intersection of Ω with a cone in R3 of type
Ywhich is perpendicular to L1. Recall that a cone Z in R3 of type Y is the
union of there half planes bounded by a line `, called the spine of Z. Here we
say that a cone of type Y is perpendicular to L1, if the spine of the cone is
perpendicular to L1. We will check that cones of type P+ or Y+ are sliding
minimal.

Let Z be a cone of type T, we say that Z is perpendicular to L1 if the
center of Z locates at the origin and Z ∩ Ωc is a cone of type Y+ in the
domain Ωc.

We say that a cone Z ⊂ Ω is of type T+ if it is the intersection of Ω
with a cone of type T which is perpendicular to L1. In this paper, we do not
discuss whether or not a cone of type T+ is sliding minimal.

A cone Z ⊂ Ω is called of type V is it can be written as Z = R(R×Vα,0)
where R is a rotation which maps L1 into L1, Vα,0 is cone in a half plane
defined as in Section 4.1 and 0 < α < π

2
.

Lemma 4.5. Let Ω, L1 be as in (4.2.1). If Z is a cone of type P+ or Y+,
then Z is a sliding minimal cone. If Z = Z ′ ∪L1 and Z ′ is a sliding minimal
cone of type P+ or Y+, then Z is also a sliding minimal cone.

Proof. Suppose that Z is of type P+ or Y+, which is not sliding minimal.
Then there is a competitor of Z, say E, such that

H2(E \ Z) < H2(Z \ E).

Let σ : R3 → R3 be the reflection with respect to the plane L1. That is, for
any (x1, x2, x3) ∈ R3, σ(x1, x2, x3) = (x1, x2,−x3). Then Ẽ = E ∪ σ(E) is a
competitor of Z̃ = Z ∪ σ(Z), and

H2(Ẽ \ Z̃) < H2(Z̃ \ Ẽ).

But we know that Z̃ is a plane or a cone of type Y, which is minimal in R3,
that gives a contradiction.

Now suppose that Z = Z ′ ∪ L1, where Z ′ is cone of type P+ or Y+. Let
E be any competitor of Z. Suppose that E coincide with Z out of the ball
B(0, r/2). Let π : R3 → R be the function defined by π(x1, x2, x3) = x3. By
using Lemma 8.10 in [8] or Theorem 3.2.22 in [19], we get that∫

E∩B(0,r)

apJmπ(z)dH2(z) =

∫
y∈R

∫
z∈π−1(y)

1B(0,r)∩E(z)dH1(z)dH1(y),
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where apJmπ(x) is the approximate Jacobian, see [19]. We can check that
apJmπ(z) ≤ 1 for any z ∈ E. Thus

H2(E ∩B(0, r) \ L1) ≥
∫ r

0

∫
z∈π−1(y)

1E∩B(0,r)(z)dH1(z)dH1(y).

For any 0 < y < r, π−1(y) is a plane, and Z ∩ π−1(y) is a line or a Y
in this plane, so it is minimal in the plane. But E ∩ π−1(y) coincide with
Z∩π−1(y) out of the ball B(0, 1), and it is not hard to check that E∩π−1(y)
is connected. Thus∫

z∈π−1(y)

1E∩B(0,r)(z)dH1(z) = H1(E ∩B(0, 1) ∩ π−1(y))

≥ H1(Z ∩B(0, 1) ∩ π−1(y))

=

∫
z∈π−1(y)

1Z∩B(0,r)(z)dH1(z),

hence

H2(E ∩B(0, r) \ L1) ≥
∫ r

0

∫
z∈π−1(y)

1Z∩B(0,r)(z)dH1(z)dH1(y).

Since Z = Z ′ ∩ L1, and Z ′ is a cone of type P+ or Y+, we have that

H1(Z ∩B(0, r) \ L1) =

∫ r

0

∫
z∈π−1(y)

1Z∩B(0,r)(z)dH1(z)dH1(y).

We get that

H2(E ∩B(0, r) \ L1) ≥ H1(Z ∩B(0, r) \ L1),

thus
H2(E \ Z) ≤ H2(Z \ E),

and Z is minimal.

Let Q be any convex polyheddron, x be a point in the interior of Q. If
F ⊂ Q is a compact set with x 6∈ F , then we can find a Lipschitz mapping

ΠQ,x : R3 → R3 (4.2.2)

such that
ΠQ,x|Qc = idQc , ΠQ,x(E) ⊂ ∂Q. (4.2.3)
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Indeed, we take a very small ball B(x, r) such that B(x, r) ∩ F = ∅, and
consider the mapping ϕ : R3 \B(x, r)→ R3 defined by

ϕ(y) =

{
y, y ∈ Qc;

{ty + (1− t)x | t ≥ 0} ∩ ∂Q, x ∈ Q \B(x, r).

ϕ is Lipschitz on R3 \B(x, r). By the Kirszbraun’s theorem [19, 2.10.43], we
can find a Lipschitz mapping ΠQ,x : R3 → R3 such that

ΠQ,x|R3\B(x,r) = ϕ.

Lemma 4.6. Let Ω, L1 be as in (4.2.1). If Z ′ is a cone of type T+, then the
cone Z = L1 ∪ Z ′ is not minimal.

Here we do not want to talk about whether or not a cone of type T+

is minimal, it is not so obvious. Recall that a cone of type T has six faces,
that meet by sets of three and with 120◦ angles along four edges (half lines
emanating from the center).

Proof. We put O = (0, 0, 0), A1 = (2
√

2
3
, 0, 0), A2 = (−

√
2

3
,
√

6
3
, 0), A3 =

(−
√

2
3
,−
√

6
3
, 0), B1 = (2

√
2

3
, 0, 1

3
), B2 = (−

√
2

3
,
√

6
3
, 1

3
), B3 = (−

√
2

3
,−
√

6
3
, 1

3
). We

denote by C the triangular prism A1A2A3B1B2B3, by Γ the union of eight
edges of C. Without loss of generality, we assume that

Z =
⋃
t≥0

tΓ.

We denote by F0, F1, F2 and F3 the faces A1A2A3, A3A1B1B3, A1A2B2B1 and
A2A3B3B2 of the prism C respectively. Consider Z̃ = (Z\C)∪F0∪F1∪F2∪F3.
We will show that Z̃ is a competitor of Z.

We take x0 = (0, 0, 1
4
), then x0 is in the interior of the triangular prism.

We take a Lipschitz mapping ΠC,x0 as in (4.2.2). Then Z̃ = ΠC,x0(Z) is a
competitor of Z.

Since Z∩C consists of faces (triangles) A1A2A3, OA1B1, OA2B2, OA3B3,
OB1B2, OB2B3 and OB3B1. By a simple calculation, we can get that

H2(Z ∩ C) =
4
√

2 +
√

3

3
.

Similarly, ∩C consists of faces F0, F1, F2 and F3, thus

H2(Z̃ ∩ C) =
2
√

6 +
√

3

3
.
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Therefore
H2(Z̃ \ Z) < H2(Z \ Z̃),

and Z is not minimal.

Definition 4.7 ([31, Definition 2.1]). Let B0 be a closed subset of Rn. Let
δ, c, α > 0 be given. We say that a nonempty bounded subset S ⊂ Rn \B0 is
d-dimensional (M, crα, δ)-minimal relative to B0 if

Hd(S) <∞, S = supp(HdxS) \B0,

and
Hd(S ∩W ) ≤ (1 + crα)Hd(ϕ(S ∩W ))

whenever ϕ : Rn → Rn is Lipschitz with diam(W ∪ ϕ(W )) = r < δ and
dist(W ∪ ϕ(W ), B0) > 0, where W = {z ∈ Rn | ϕ(z) 6= z}.

When B0 = L1, h(r) = crα, E ⊂ Ω is a reduced bounded (U, h)-
A+-sliding-almost-minimal set, then it is very easy to see that E is also
(M, crα, δ)-minimal relative to B0. With help of this property, we can use a
result of Morgan [31, Regularity Theorem 3.8], which is stated as follows.
Theorem 4.8. Fix δ, c, α > 0. Let B0 be a closed subset of Rn. Let S be a
one-dimensional (M, crα, δ)-minimal set with respect to B0. Then S consists
of C1,α/2 curves that can only meet in three at isolated points of Rn \B0 and
with 120◦ angles .

Let E be a sliding minimal cone in Ω. Set K = ∂B(0, 1)∩E, S = K \L1.
We want to show that S is (M, crα, δ)-minimal with respect to B0 = L1 for
some α, c, δ > 0.
Proposition 4.9. Let Ω, L1 be as in (4.2.1), B0 = L1. Let E be a reduced
sliding minimal cone in Ω, K = ∂B(0, 1) ∩ E. If K \ L1 6= ∅, then K is
A+-sliding-almost-minimal for some gauge function h such that h(r) = cr
for r < 1

100
.

Proof. Let {ϕt}0≤t≤1 be a deformation with diam(Ŵ ) = r < 1
100

, where Ŵ
as in (4.0.1). If Ŵ ∩K = ∅, we have nothing to prove. We now suppose that
Ŵ ∩K 6= ∅; we can find a point x0 ∈ S, such that Ŵ ⊂ B(x0, r).

We consider the Lipschitz function φ : R→ [0, 1] defined by

φ(t) =



0, t ≤ 1
4

4(t− 1
4
), 1

4
< t ≤ 1

2

1, 1
2
< t ≤ 2

−4(t− 2) + 1, 2 < t ≤ 9
4

0, t > 9
4
.

77



We consider π : Rn → Rn defined by

π(x) = (1− φ(|x|))x+ φ(|x|) x|x| ;

when |x| ≤ 1
4
or |x| ≥ 9

4
, π(x) = x; when 1

2
≤ |x| ≤ 2, π(x) = x

|x| . Also π is a
Lipschitz map with

Lip
(
π|B(x0,r)

)
≤ 1

1− r . (4.2.4)

We put ϕ̃ = π ◦ ϕ1; then

ϕ̃(∂B(0, 1) ∩ Ω) ⊂ ∂B(0, 1) ∩ Ω.

For ε > 0 small, we consider the Lipschitz map ψε defined by

ψε(x) =
(

1− φ̃ε(|x|)
)
x+ φ̃ε(|x|) |x| ϕ̃

(
x

|x|

)
,

where φ̃ε : R→ [0, 1] given by

φ̃ε(t) =


1, t ≤ 1

−1
ε
(t− 1) + 1, 1 < t ≤ 1 + ε

0, t ≥ 1 + ε.

It is clear that ψε(x) = x for |x| ≥ 1 + ε, ψε(x) = |x| ϕ̃
(
x
|x|

)
for |x| ≤ 1.

We consider the map π̃ : R3 → R3 given by

π̃(x) =


x, 0 ≤ |x| ≤ 1
x
|x| , 1 < |x| ≤ 2

(2 |x| − 3) x
|x| , 2 < x ≤ 3

x, |x| ≥ 3,

it is Lipschitz, thus the map ψ̃ε := π̃ ◦ ψε is also Lipschitz. It is easy to see
that Ẽ := ψ̃ε(E) is a competitor of E, because that {ϕ′t}0≤t≤1 defined by
ϕ′t = (1 − t)id + tψ̃ε is a deformation. We will compare Ẽ with E. Since E
is a cone, π̃(x) lie in the line through 0 and x, π̃ is the radial projection into
the sphere ∂B(0, 1) on the annulus 1 ≤ |x| ≤ 2, and ψ̃ε is identity out of the
ball B(0, 1 + ε), we can get that Ẽ and E coincide out of the ball B(0, 1).
Since E is minimal, we have that

H2(E ∩B(0, 1)) ≤ H2(Ẽ ∩B(0, 1)). (4.2.5)
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Recall that Ŵ ⊂ B(x0, r); if we put

R = diam((W1 ∩K) ∪ ϕ̃(W1 ∩K)), (4.2.6)

where W1 = {x | ϕ1(x) 6= x}, then R ≤ r, thus on the sphere ∂B(0, 1), we
can see that Ẽ and E coincide out of B(x0, R), thus we can easily get that

H2(Ẽ ∩ ∂B(0, 1)) = H2(Ẽ ∩ ∂B(0, 1) ∩B(x0, R)) ≤ 4πR2. (4.2.7)

Applying Theorem 3.2.22 in [19], we have

H2(E ∩B(0, 1)) = H2(E ∩B(0, 1)) +H2(E ∩ ∂B(0, 1))

=

∫ 1

0

H1(E ∩ ∂B(0, t))dt

=

(∫ 1

0

tdt

)
H1(E ∩ ∂B(0, 1))

=
1

2
H1(E ∩ ∂B(0, 1)).

(4.2.8)

By the construction of Ẽ, we know that Ẽ coincide with a cone in the ball
B(0, 1), thus the same reason as above, we have

H2(Ẽ ∩B(0, 1)) =
1

2
H1(ϕ̃(E ∩B(0, 1))) +H2(Ẽ ∩ ∂B(0, 1)).

We combine this with (4.2.5), (4.2.7) and (4.2.8), and get that

H1(K) ≤ H1(ϕ̃(K)) + 8πR2.

By our construction of ϕ̃, we have that for any x ∈ ∂B(0, 1), if ϕ1(x) = x,
i.e., x 6∈ W1, then ϕ̃(x) = x, thus K \W1 = ϕ̃(K \W1). We get that

H1(K ∩W1) = H1(K)−H1(K \W1)

≤ H1(ϕ̃(K))−H1(K \W1) + 8πR2

≤ H1(ϕ̃(K ∩W1)) + 8πR2.

(4.2.9)

Since R = diam((W1 ∩K) ∪ ϕ̃(W1 ∩K)), we can show that

H1(K ∩W1) +H1(ϕ̃(K ∩W1)) ≥ R,

combine this with (4.2.9), and get that

H1(K ∩W1) ≤ 1 + 8πR

1− 8πR
H1(ϕ̃(K ∩W1)) ≤ (1 + 100R)H1(ϕ̃(K ∩W1)),
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and by (4.2.6) and (4.2.4),

H1(K ∩W1) ≤ 1 + 100R

1− r H1(ϕ1(K ∩W1)) ≤ (1 + 200r)H1(ϕ1(K ∩W1)),

the result immediately follows.

Proposition 4.10. Let Ω, L1 be as in (4.2.1). Let E ⊂ Ω be a minimal cone,
and set K = E ∩∂B(0, 1). Then K consists of arcs Ci of great circles. These
arcs can only meet at their extremities. For each extremity, if it is not in
L1, then it is a common extremity of exactly three arcs which meet with 120◦

angles.
A point in K \ L1 is called to be a Y -point if it is a common extremity

of exactly three curves which meet with 120◦ angles.

Proof. Applying Theorem 4.8 and Proposition 4.9, we can get K \ L con-
sists of C1,1/2 curves, these curves only meet at their extremities. For each
extremity, if it is not in L1, then it is a common extremity of exactly three
curves which meet with 120◦. For any point x in the interior of such a curves
Cj, by the same proof as in [8, Proposition 14.1], we can get that there is a
neighborhood Ux such that Ux ∩ Cj is an arc of great circles. From this, we
can immediately deduce the result.

Lemma 4.11. Let Ω, L1, E,K be as in the proposition above. For any x ∈ L1,
we denote by Ωx the half plane through 0 which is perpendicular to L1 and
the straight line joining x and 0. Then, for any point x ∈ K ∩ L1, any blow-
up limit of K at x is a sliding minimal cone in Ωx with sliding boundary
Lx = Ωx ∩ L1.

The proof of this Lemma is almost the same as in the first part of the
proof of Theorem 8.23 in [8].

Proof. Without loss of generality, we assume that x = (1, 0, 0). Then Ωx =
{(0, x2, x3) | x2 ∈ R, x3 ≥ 0}, Lx = {(0, x2, 0) | x2 ∈ R}. Let rk > 0, rk → 0.
Suppose that

1

rk
(K − x)→ Z

and
1

rk
(E − x)→ F.

It is quite easy to see that Z ⊂ Ωx and Z ⊂ F . Theorem 24.13 in [11] says
that F is a sliding minimal cone in Ω with sliding boundary L1. We denote
by D the line though the points 0 and x. As in [8], page 140, we can get that

F = D × F ] where F ] = F ∩ Ωx.
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Similarly, we can get F ] is a sliding minimal cone in Ωx with sliding boundary
Lx. Let us check that Z = F ]. It suffices to show that F ] ⊂ Z, since we
already know that Z ⊂ F ]. We take any z ∈ F ], then there exists a sequence
zk ∈ E such that

zk − x
rk

→ z. (4.2.10)

Since z ∈ Ωx, and Ωx is perpendicular to the line D which pass through the
points 0 and x, we get that the angles between the line D and the segments
which join the pints x and zk tend to π

2
, i.e.

θk = Angle(zk − x,D)→ π

2
.

If z = 0, by (4.2.10), we get that

|zk| − 1

rk
→ 0. (4.2.11)

If z 6= 0, we will show that
|zk| − 1

|zk − x|
→ 0. (4.2.12)

We put γk = Angle(zk, x). Then γk → 0. Since z 6= 0, we have that |zk−x| 6= 0
and γk 6= 0 for k large. We consider the triangle formed by the vertices 0, x
and zk. We get that |zk − x| ≥ |zk| sin γk. Thus∣∣∣∣cos γk − 1

|zk − x|

∣∣∣∣ ≤ 1− cos γk
|zk| sin γk

→ 0.

Since
〈x, zk − x〉 = |x||zk − x| cos θk = |zk − x| cos θk

and
〈x, zk − x〉 = 〈x, zk〉 − |x|2 = |zk| cos γk − 1,

we get that
|zk| cos γk = 1 + |zk − x| cos θk.

Hence
|zk| − 1

|zk − x|
=

cos θk
cos γk

+
1− cos γk
|zk − x| cos γk

→ 0.

In the case z 6= 0, we get, from (4.2.10) and (4.2.12), that

|zk| − 1

rk
→ 0. (4.2.13)
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Thus, from (4.2.11) and (4.2.13), we get that

1

rk

(
zk
|zk|
− x
)

=
1− |zk|
rk

· zk|zk|
+
zk − x
rk

→ z.

But we know that zk
|zk| ∈ K, thus z ∈ Z.

Lemma 4.12. Let Ω, L1, E be as in the proposition above, S = K \ L1. For
any x ∈ S ∩ L1, there is a radius r > 0 such that there is no Y -point in
S ∩ B(x, r). Moreover, if a blow-up limit of K at x is a cone Vβ,0 for some
β ∈ (0, π

6
], then K ∩B(x, r) is a union of two arcs of great circles meeting at

x; in the other cases, S∩B(x, r) is an arc of great circle which perpendicular
to L1.

Proof. We will prove that there ais only finite number of Y points in S. We
denote S+ = {(x1, x2, x3) ∈ S2 | x3 > 0}. Let A be a connected component
of S+ \ S, A be the closure of A

If A∩L1 = ∅, then A is a convex. Indeed, we get, from Proposition 4.10,
that each Y -point in S must connect three arcs, these three arcs meet with
120◦. Thus at each corner of ∂A, the interior angle of ∂A at this point must
have be 120◦, and A must be convex.

Now, if A ∩ L1 6= ∅, A is also convex. For the same reason, if the vertex
of a corner of ∂A is contained in S+, then the interior angle of ∂A at this
point must have be 120◦. If the vertex of a corner of ∂A is contained in L1,
then the the interior angle of ∂A at this point is no more than 180◦. Thus A
must be convex.

The number corners in ∂A must be finite. Indeed, there are at most
four corners which touch the boundary L1, because A is convex. If there
are infintely many corners in ∂A, then we can very easily to find 8 corners,
saying at points B1, B2, . . . , B8, such that these 8 points are contained in S,
and the geodesic connecting Bi and Bi+1 is contained in ∂A, i = 1, 2, . . . , 7.
We now consider the convex spherical polygon B1B2 · · ·B8. By using the
Gauss-Bonnet theorem, for example see [5, Theorem V.2.7], we get that

α1 + α2 +
π

3
× 6 + Area(A) = 2π, (4.2.14)

where α1 and α2 are the exterior angle of the corners of ∂A at point B1

and B8 respectivly. But that is impossible, the equation (4.2.14) gives an
absurdity.

If A are contained in S+, we assume that ∂A has n cornes, then Gauss-
Bonnet theorem says that

nπ

3
+ Area(A) = 2π,
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thus n < 6, and Area ≥ π
3
. Since the totall area of Ω ∩ ∂B(0, 1) is π, there

are at most 6 such connected components. Thus there is only a finite number
of Y -point in S; otherwise, it should be infintely many connected component
of S+ \ S such that its corners does not touch L1.

Since there is only a finite number of Y -point in S, we get that for any x ∈
S ∩L1, there is a radius rx > 0 such that there is no Y -point in S ∩B(x, rx).

Since K is sliding almost minimal, any blow-up limit of K at x is a sliding
minimal cone, denote by Z, and

θK(x) = H1(Z ∩B(0, 1)).

If Z is a cone like Vβ,0 for some β ∈ (0, π
6
], then K∩B(0, rx) must be two arcs,

each of these two arcs is a part of a great cicle, and these two arcs meet at x
with angle π − 2β. If Z is a half line perpendicular to L1, then K ∩B(0, rx)
is an arc which is a part of a great cicle, perpendicular to L1 and through x.
If Z is the union of a line in L1 and a half line which is perpendicular to L1,
then K is the union of B(0, rx)∩{(x1, x2, 0) | x2

1 + x2
2 = 1} and an arc which

is a part of a great cicle, perpendicular to L1 and through x.

Lemma 4.13. Let Ω, L1 be as in (4.2.1). Let E ⊂ Ω be a sliding minimal
cone, K = E ∩∂B(0, 1), S = K \L1. Suppose that for each x ∈ S ∩L1, there
is a radius r > 0 such that B(x, r) ∩ S is an arc of a great circle which is
perpendicular to L1. Then there are only there possible kinds of S, that is,
S = Z ∩ ∂B(0, 1), where Z is a sliding minimal cone of type of one of P+,
Y+ and T+. And hence, E = Z or E = Z ′ ∪ L1 where Z ′ is a cone of type
P+ or Y+.

Proof. We put S+ = Ω ∩ ∂B(0, 1) \ L1. Let A be a connected component of
S+ \ K, A be the closure of A. By Proposition 4.10 and Lemma 4.12, the
boundary of A is a spherical polygon whose sides are geodesics of the unit
sphere. Using the Gauss-Bonnet theorem, see [5, Theorem V.2.7], we get that

α1 + α2 + · · ·+ αn + Area(A) = 2π, (4.2.15)

where α1, α2, · · · , αn are the exterior angle of the corners of ∂A. From Lemma
4.12 and Proposition 4.10, we can see that, if a corner touch L1, then, in the
situation of this lemma, the corresponding exterior angle must be π

2
; if a

corner do not touch L1, the corresponding exterior angle must be always π
3
.

It is quite clear that there are at least two corners on ∂A, and it cannot
happen that there only one corner touching L1.

We now consider the equation (4.2.15). If n = 2, then the two corners
must touch L1, thus α1 = α2 = π

2
, and Aera(A) = π. A is a quarter of unity

sphere.
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Let us split n = 3 into two cases. If there is no corner touching L1, then
α1 = α2 = α3 = π

3
, and A is an equilateral polar triangle with Area(A) = π.

If it has corner on ∂A, then there are at least two, thus α1 = α2 = π
2
, α3 = π

3
,

and A is a isosceles polar triangle with Area(A) = 2π
3
. More precisely, the

base of A is an arc contained in L1 ∩ ∂B(0, 1) with length 2π
3
, the vertex

opposite to the base is the point (0, 0, 1).
Similarly, for n = 4, we can get two kinds of spherical quadrilaterals, one

is spherical quadrilaterals with equal angles 2π
3
and with area 2π

3
, another one

is spherical quadrilaterals with one side contained in L1 ∩ ∂B(0, 1) and with
area π

3
.

We can easily see that n can not be larger than 5; otherwise, we can
deduce from (4.2.15) that Area(A) ≤ 0, which is impossible. For the same
reason, when n = 5, there is only one kind of spherical pentagons. That is, a
spherical with all of corners are contained in S+ and with area π

3
.

Since each connected component of S+ ∩ ∂B(0, 1) \ K has at least area
π
3
, and the total area of Ω ∩ ∂B(0, 1) is 2π, there are at most six connected

component. If there is no Y point on S+, E∩S+ must be a half circle which is
contained in Ω∩∂B(0, 1) and perpendicular to L1. Thus E = Z or E = L1∪Z,
where Z is a cone of type P+, hence S = Z ∩ ∂B(0, 1).

If there is only one Y point on S+, then each connect component of
S+∩∂B(0, 1)\K must be a polar triangle with base contained in L1∩∂B(0, 1).
By our discussion for n = 3, we get that each such connected component is an
isosceles polar triangle with area 2π

3
. Thus this Y point must be (0, 0, 1), and

E = Z or E = L1∪Z, where Z is a cone of type Y+, hence S = Z∩∂B(0, 1).
If there are two Y points on S+, then there are at least two polar triangles

with base contained in L1 ∩ ∂B(0, 1), and the vertices opposite to the bases
must be the point (0, 0, 1), that is impossible.

If there are three Y points on S+, then these three points must be the
vertices of a polar triangle which is contained in S+, and this triangle is an
equilateral polar triangle with area π. Each side of this triangle is a side of
spherical quadrilateral, and the opposite side ot this spherical quadrilateral
is contained in L1 ∩ ∂B(0, 1). In this case E = Z or E = L1 ∪ Z, where Z is
a cone of type T+, thus S = Z ∩ ∂B(0, 1).

Since each polar triangle contained in S+ has area π, there only one such
triangle. If there are four Y point in S+, then these four point in E ∩ S+

must form a spherical quadrilateral, and S+ \K consists of five region, that
is, five connect component, each of them is a spherical quadrilateral, one of
them is contained in S+, and each of the rest quadrilateral must has one side
contained in L1. Without loss of generality, we suppose that (1, 0, 0) ∈ S, then
those four Y points are (

√
6

3
, 0,

√
3

3
), (0,

√
6

3
,
√

3
3

), (−
√

6
3
, 0,

√
3

3
) and (0,−

√
6

3
,
√

3
3

),
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we denote them by B′1, B′2, B′3 and B′4 respectively. In this case, we will show
that is impossible. We put B1 = (

√
6

3
, 0, 0), B2 = (0,

√
6

3
, 0), B3 = (−

√
6

3
, 0, 0)

and B4 = (0,−
√

6
3
, 0), and denote by C the cube B1B2B3B4B

′
1B
′
2B
′
3B
′
4, by

Γ the union of the edges of cube C. We denote by F0 the face B′1B′2B′3B′4 of
the cube C, denote by F1 and F2 the rectangle B1B3B

′
3B
′
1 and B2B4B

′
4B
′
2

respectively.

We denote by O and O′ the points (0, 0, 0) and (0, 0,
√

3−
√

2
3

) respec-
tively, and denote by Q1, Q1, Q3 and Q4 the polyhedrons B1B2OB

′
1B
′
2O
′,

B2B3OB
′
2B
′
3O
′,B3B4OB

′
3B
′
4O
′ andB4B1OB

′
4B
′
1O
′ respectively. We now take

points x1, x2, x3 and x4 in the interior of pyramids OB1B2B
′
2B
′
1, OB2B3B

′
3B
′
2,

OB3B4B
′
4B
′
3 and OB4B1B

′
1B
′
4 respectively.

Let mappings ΠQ1,x1 , ΠQ2,x2 , ΠQ3,x3 and ΠQ4,x4 be as in (4.2.2). We take
ψ = ΠQ4,x4 ◦ΠQ3,x3 ◦ΠQ2,x2 ◦ΠQ1,x1 . Then ψ is a Lipschitz mapping. We now
consider the competitor Ẽ = ψ(E) of E.

We denote B5 = B1. By a simple calculation, we can get that

H2(E \ Ẽ)−H2(Ẽ \ E) =
4∑
i=1

|OB′iB′i+1| −
(

4∑
i=1

O′B′iB
′
i+1 +

4∑
i=1

|OO′B′i|
)

=
2
√

2 + 4
√

3− 4

3
> 0,

that is contradict to minimality of E.
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It could not happen that there are at least six Y point in S+, because
otherwise, there will be at least six spherical quadrilaterals which touch L1,
but we know that such a quadrilateral has area π

3
, and total area of S+ is

2π, that is impossible. If there are five Y point in S+, similar to above case,
these five point form a spherical pentagon. By the same techniques used for
the above case, we can prove that this is impossible.

Lemma 4.14. Let Ω, L1 be as in (4.2.1). Let E ⊂ Ω be a sliding minimal
cone, K = E ∩ ∂B(0, 1). If there exists a point x0 ∈ K ∩ L1 such that a
blow-up limit of K at x0 is a sliding minimal cone Vα,0 for some α ∈ (0, π

6
],

then E is a cone of type V.

Proof. By Lemma 4.12, there exists a radius r > 0 such that S ∩B(x0, r) is
a union of two arcs. That is, E ∩ B(x0, r) = Z ∩ B(x0, r) where Z is a cone
of type V. Without loss of generality, we assume x0 = (1, 0, 0).

We denote S+ = Ω ∩ ∂B(0, 1) \ L1. Let A be a connected component of
S+\K which contains a corner with interior angle α. Using the Gauss-Bonnet
Theorem, see [5, Theorem V.2.7], we get that

α1 + α2 + · · ·+ αn + Area(A) = 2π, (4.2.16)

where α1, α2, · · · , αn are the exterior angle of the corners of ∂A. We know that
there are two corners which touch the boundary L1, assume that α1 = π−α
and α2 are the corresponding exterior angles. It is quite easy to see that A is
contained in a spherical lune enclosed by two great circles with angle α, thus
Area(A) ≤ 2α.

x3

x1

x2

α ≤ 30◦
one of corners
of ∂A, with
interior angle α

the spherical
lune containing
A

Figure 4.1: spherical lune

86



If α2 = π
2
, then Area(A) < 2α,

(π − α) +
π

2
+
π

3
× (n− 2) + Area(A) = 2π,

thus
π

2
− α < n− 2

3
π <

π

2
+ α.

Since α ∈ (0, π
6
], we get that 3 < n < 4, that is impposible.

If α2 6= π
2
, then α2 ≥ 5π

6
, thus

2π = (π − α) + α2 +
(n− 2)π

3
+ Area(A) > (π − α) +

5π

6
+

(n− 2)π

3
.

Since α ≤ π
6
, we get that 2 ≤ n < 3, hence n = 2. In this case, A must

be a spherical lune enclosed by two great circles with angle α, and E =
R× Vα,0.

Theorem 4.15. Let Ω, L1 be as in (4.2.1). Let E ⊂ Ω be a sliding minimal
cone. If L1 ⊂ E and E \ L1 6= ∅. Then E = Z ∪ L1, Z is a cone of type P+

or Y+.

Proof. The result immediately follows from Lemma 4.12, Lemma 4.13 and
Lemma 4.14. Indeed, by putting K = E ∩ ∂B(0, 1) and S = K \ L1, Lemma
4.11 says that any blow-up limit of K at a point x ∈ K ∩L1 is a one dimen-
sional sliding minimal cone. By Lemma 4.3, there exist only there possible
cases for such a minimal cone. That is, a half line P0 perpendicular to L1,
or P0 union the line which pass though x perpendicular the segment [0, x]
and is contained in L1, or a cone Vα,0. If it is a cone Vα,0, then by Lemma
4.14, E = R×Vα,0, which is impossible. For any x ∈ S ∩L1, by Lemma 4.12,
there exists a radius r > 0 such that S ∩ B(x, r) is an arc of a great cicle
which is perpendicular to L1, and by Lemma 4.13, E = Z ∪L1, where Z is a
cone of type of one of P+, Y+ and T+, but for the last case, it is impossible,
because we know that Z ∪ L1 is not minimal when Z is of type T+. We get
that E = Z ∪ L1, where Z is a cone of type P+ or Y+.

Remark 4.16. We claim that the list of sliding minimal cones is the follow-
ing: cones of type P+, cones of type Y+, the plane L1, cones like R(R×Vα,0)
with 0 < α ≤ π

6
, cones L1∪Z where Z are cones of type P+ or Y+, and cones

type T+.

We did not prove that a cone of type T+ is sliding minimal. Indeed it can
probably be proved by using calibration, but this may take us too much time,
we do not want to do it here. It is also not too hard to check that a cone like
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R× Vα,0 is sliding minimal if and only if 0 < α ≤ π
6
. One of possible ways to

do this is to sue almost the same technique as in Lemma 4.5, but again we
omit it. In fact, we do not need know whether or not a cone of type T+ or
like R× Vα,0 is minimal in this paper. For the rest in the list, we know from
Lemma 4.12, Lemma 4.13 and Lemma 4.14 that they are sliding minimal.

4.3 Reifenberg’s theorem

We want to use a result, Theorem 2.2 in [13]. But here we are in the half
space, the theorem can not be used directly, it should be adapted a little bit.

Let n and d be two integers with 2 ≤ d < n. We take

Ωn = {(x1, x2, · · · , xn) ∈ Rn | xn ≥ 0},
L1 = {(x1, x2, · · · , xn) ∈ Rn | xn = 0}. (4.3.1)

We let σ be the reflection with respect to L1. That is, the function Rn → Rn

defined by
σ(x1, · · · , xn−1, xn) = (x1, · · · , xn−1,−xn).

Let TG be a class of sets defined as in [13, p.6], which consists of 3 kinds
of cones (centered at any point in Rn) of dimension d in Rn. In particular,
if n = 3, d = 2, TG consists of planes, cones which are the union of three
half planes bounded by a line while the angle between any two half planes
is larger than a constant τ0 > 0 (they look like cones of type Y), and cones
which are union of several faces that meet only by sets of three and with
angles between two adjacent faces and angles between the spines larger than
a constant τ0 > 0 (cones of type T and cones look like of type T are such
cones; cone Z ∪ σ(Z) is also a such cone, where Z is a cone of type Y+ or
T+. Of course, far more than these cones).

For any x ∈ Rn, r > 0, we will consider dx,r a variant of the Hausdorff
distance on closed sets, which is defined by

dx,r(E,F ) =
1

r
max

{
sup

z∈E∩B(x,r)

dist(z, F ), sup
z∈F∩B(x,r)

dist(z, E)

}
.

If E and F are two cones centered at x, then dx,r(E,F ) = dx,1(E,F ) for any
r > 0.
Theorem 4.17. Let E ⊂ Rn be a compact set that contains origin with
σ(E) = E, and suppose that for each x ∈ E∩B(0, 2) and each ball B(x, r) ⊂
B(0, 2), we can find Z(x, r) ∈ TG that contains x, such that

dx,r(E,Z(x, r)) ≤ ε.
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Suppose, additionally, that Z(σ(x), r) = σ(Z(x, r)). If ε > 0 is small enough,
depending only on n, d and τ0, then there exist a cone Z ∈ TG centered at
origin and a mapping f : B(0, 3/2)→ B(0, 2) with the following properties:

σ(Z) = Z, f ◦ σ = σ ◦ f, ‖f − id‖∞ ≤ α,

(1 + α)−1 |x− y|1+α ≤ |f(x)− f(y)| ≤ (1 + α) |x− y| 1
1+α ,

B(0, 1) ⊂ f

(
B

(
0,

3

2

))
⊂ B(0, 2),

E ∩B(0, 1) ⊂ f

(
Z ∩B

(
0,

3

2

))
⊂ E ∩B(0, 2),

(4.3.2)

where α only depends on only n, d, τ0 and ε, and τ0 is defined as in [13, (2.7)
and (2,8)].

Proof. The proof is essential the same as in [13], we only need do a little
change. Here we use same notation as in [13]. We firstly remark that σ(Ei) =
Ei, i = 1, 2 or 3, where Ei are defined as in [13, p.11, p.12].

Next, we modify a little the construction of a good covering of E at scale
2−n, that is in Section 5 in [13, Covering and partition of unity]. The first step
is just same the as the original construction; if the condition (4.36) in [13]
holds, we cover E3 ∩ B(0, 199/100) = {0} with the ball Bi0 = B(0, 2−n−20),
and set I3 = {i0}; if the condition (4.35) in [13] holds, we take I3 = ∅ and
choose no ball. In the second step, for the construction of a covering of

E ′2 = E2 ∩B(0, 198/100) \ 7

4
Bi0 ,

we modify a little the original construction to adapt to our case. We put
E ′′2 = E ′2 ∩ Ωn, then E ′2 = E ′′2 ∩ σ(E ′′2 ). Select a maximal subset X ′′2 of E ′′2 ,
with the property that different points of X ′′2 have distances at least 2−n−40.
We put X2 = X ′′2 ∪ σ(X ′′2 ), and for accounting reasons, we suppose that
X ′′2 = {xi}i∈I′′2 , I ′′2 ∩I3 = ∅, and thatX ′2 = σ(X ′′2 ) = {xi}i∈I′2 , I ′2∩(I ′′2 ∪I3) = ∅.
Let I2 = I ′2 ∪ I ′′2 , X2 = X ′2 ∪X ′′2 . We put ri = 2−n−40 and Bi = B(xi, ri) for
i ∈ I2. We can see that the balls Bi, i ∈ I2, cover E ′2. In the third step, we
put

V2 =
15

8
Bi0 ∪

⋃
i∈I2

7

4
Bi and E ′ = E1 ∩B

(
0,

197

100

)
\ V2.

Similarly to the above step, put E ′′1 = E ′1 ∩ Ωn, and select a maximal subset
X ′′1 of E ′′1 , with the property that different points of X ′′1 have distances at
least 2−n−60, and then suppose that X ′′1 = {xi}i∈I′′1 with I1 ∩ (I2 ∪ I3) = ∅,
and that X ′1 = σ(X ′′1 ) = {xi}i∈I′1 with I ′1∩ (I ′′1 ∪ I2∪ I3). Set I1 = I ′1∪ I ′′1 , and
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Bi = B(xi, 2
−n−60) for i ∈ I1. It is very easy to see that the balls Bi, i ∈ I1,

cover E ′1. For the fourth and last step of the construction of the covering, we
put

V1 =
31

16
Bi0 ∪

⋃
i∈I2

15

8
Bi ∪

⋃
i∈I1

7

4
Bi and E ′0 = R3 \ V1.

We put E ′′0 = E ′0 ∩ Ωn, and pick a maximal subset X ′′0 of E ′′0 , such that
different points of X ′′0 have distance at least 2−n−80, and then suppose that
X ′′0 = {xi}i∈I′′0 with I ′′0 ∩ (I1 ∪ I2 ∪ I3) = ∅, and that X ′0 = {xi}i∈I′0 with
I ′0∩ (I ′′0 ∪ I1∪ I2∪ I3) = ∅. Set I0 = I ′0∪ I ′′0 , and Bi = B(xi, 2

−n−80) for i ∈ I0,
then the balls Bi, i ∈ I0, cover E ′0.

For the selection of a partition of unity in equation (5.10) in [13], we
choose the θ̃i as the translation and dilation of a same model θ, where θ is
a smooth function such that θ(x) = 1 in B(0, 2), θ(x) = 0 out of B(0, 3),
0 ≤ θ(x) ≤ 1 everywhere, and σ ◦ θ = θ ◦ σ. The rest of proof will be the
same as in [13].

We now verify that σ ◦ f ∗ = f ∗ ◦ σ. It is clear that σ ◦ f ∗0 = f ∗0 ◦ σ,
σ ◦ f0 = f0 ◦ σ, σ ◦ ψ∗i0 = ψ∗i0 ◦ σ, and σ ◦ ψi0 = ψi0 ◦ σ. By our construction
of X0, X1 and X2, we can see that

g∗n(x) =
∑
i∈In

θi(x)ψ∗i (x)

= θi0(x)ψ∗i0(x) +
∑

i∈I′0∪I′1∪I′2

(
θi(x)ψ∗i (x) + θi(σ(x))ψ∗i (σ(x))

)
,

thus σ ◦ g∗n = g∗n ◦ σ. By induction on n, we can get that σ ◦ f ∗n = f ∗n ◦ σ for
all n ≥ 0. f ∗ is the limit of the sequence f ∗n, thus σ ◦ f ∗ = f ∗ ◦ σ.

Finally, by the same proof as above, we can prove that σ ◦ f = f ◦ σ.

Corollary 4.18. For each small τ > 0, we can find ε > 0, that depends only
on n, τ and τ0 such that if E ⊂ Ω is a closed set, 0 ∈ E and r > 0 are such
that for y ∈ E ∩ B(0, 3r) and 0 < t ≤ 3r, we can find Z(y, t), which is a
minimal cone in R3 when 0 < t < dist(y, L1) and a sliding minimal cone in
Ω with boundary L1 when dist(y, L1) ≤ t ≤ 3r, such that

dy,t(E,Z(y, t)) ≤ ε,

and in addition Z(0, 3r) is sliding minimal cone centered at 0, then there is a
sliding minimal cone centered at origin and a mapping f : B(0, 3r/2)∩Ω→
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B(0, 2r) ∩ Ω with the following properties:

f(x) ∈ L1 for x ∈ L1 ∩B(0, 3r/2), ‖f − id‖∞ ≤ τr,

C |x− y|1+τ ≤ |f(x)− f(y)| ≤ C−1 |x− y| 1
1+τ ,

B(0, r) ∩ Ω ⊂ f

(
B

(
0,

3r

2

)
∩ Ω

)
⊂ B(0, 2r) ∩ Ω,

E ∩B(0, r) ⊂ f

(
Z ∩B

(
0,

3r

2

))
⊂ E ∩B(0, 2r),

(4.3.3)

where C is a constant which only depends on τ and r.

4.4 Regularity of sliding almost minimal sets I

In this section, we restrict ourselves to the half space Ω, and prove some
boundary regularity for sliding almost minimal sets.
Lemma 4.19. Let Ω and L1 be as in (4.2.1), U an open set. Suppose that
E ⊂ Ω is (U, h)-sliding-almost-minimal. For each τ > 0, we can find ε(τ) > 0
such that if x ∈ E ∩ L1 and r > 0 are such that

B(x, r) ⊂ U, h(2r) ≤ ε(τ),

∫ 2r

0

h(t)

t
dt ≤ ε(τ), θ(x, r) ≤ θ(x) + ε(τ), (4.4.1)

then for every ρ ∈ (0, 9r/10] there is a sliding minimal cone Zρ
x centered at

x, such that
dx,ρ(E,Z

ρ
x) ≤ τ (4.4.2)

and for any ball B(y, t) ⊂ B(x, ρ),∣∣H2(E ∩B(y, t))−H2(Zρ
x ∩B(y, t))

∣∣ ≤ τρ2 (4.4.3)

Moreover, if L1 ⊂ E, then we can suppose that L1 ⊂ Zρ
x.

This lemma is directly following from Proposition 30.19 in [11]. If L1 ⊂ E,
by the original proof in [11, Proposition 30.19], we can go further and assert
that L1 ⊂ Zρ, the proof will be same, we do not even need to do any extra
effort.

If E is a sliding almost minimal set, then for any x ∈ E∩L1, any blow-up
limit of E at x is a sliding minimal cone, see [11, Theorem 24.13]. More-
over, the density of any blow-up limit at origin is aways the value θE(x), see
Proposition 7.31 [8] and Corollary 29.53 in [11]. By Remark 4.16,

θE(x) ∈
{

1

2
,
3

4
, 1, dT+ ,

3

2
,
7

4

}
,
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where we denote by dT+ the density of cones of type T+ at origin. In fact,
dT+ = 3 arccos(−1/3)/π − 3/4 ≈ 1.07452.

If θE(x) = 1
2
, then θZρx(x) = 1

2
, thus Zρ

x is a sliding minimal cone of type
P+ in Ω with sliding boundary L1.

Similarly, if θE(x) = 3
4
, then θZρx(x) = 3

4
, thus Zρ

x is a sliding minimal
cone of type Y+ in Ω with sliding boundary L1.

If L1 ⊂ E, then the blow-up limit is sliding minimal cone containing L1.
We know, by Theorem 4.15, that there are only three kinds of minimal cone
which contain L1. That is, L1 or Z ∪L1, here Z is a minimal cone of type P+

or Y+. Thus, in the case L1 ⊂ E, there are three possible values for θE(x),
that is 1, 3

2
and 7

4
. In particular, if L1 ⊂ E and θE(x) = 1, then Zρ

x = L1.
Lemma 4.20. Let E ⊂ Ω be a sliding almost minimal set, L1 ⊂ E. If a
blow-up limit of E at x ∈ L1 is the plane L1, then there exists r > 0 such
that E ∩B(x, r) = L1 ∩B(x, r).

Proof. Without loss of generality, we assume x = 0. L1 is a blow-up limit of
E at 0. By corollary 29.53 in [11], we get that θE(0) = 1. Let τ > 0 be a
small enough number, let ε(τ) be as in Lemma 4.19. We take 0 < τ2 ≤ ε(τ)

2
,

and let ε(τ2) be as in Lemma 4.19. We take r > 0 such that

(1 + ε(τ2)) exp

(
λ

∫ r
3

0

h(2t)

t
dt

)
<

3

2

and
θE(0, r) ≤ 1 + ε(τ2),

where λ is taken as in Proposition 5.24 in [8].
By lemma 4.19, for any 0 < ρ ≤ 9r

10
,

d0,ρ(E,L1) ≤ τ2, (4.4.4)

and for all ball B(y, t) ⊂ B(0, ρ),∣∣H2(E ∩B(y, t))−H2(L1 ∩B(y, t))
∣∣ ≤ τ2ρ

2. (4.4.5)

Thus, in particular, for any y ∈ B(0, r
3
) ∩ E,

θE

(
y,
r

3

)
=

(
π
(r

3

)2
)−1

H2
(
E ∩B

(
y,
r

3

))
≤ 1 +

4τ2

π
.

For any y ∈ B(0, r
3
) ∩ L1, by Theorem 28.7 in [11], we get that

1 ≤ θE(y) ≤ θE

(
y,
r

3

)
exp

(
λ

∫ r
3

0

h(2t)

t
dt

)
<

3

2
,
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thus
θE(y) = 1.

Therefore, for y ∈ B
(
0, r

3

)
∩ L1,

θE

(
y,
r

3

)
≤ 1 +

4τ2

π
≤ θE(y) + ε(τ).

By lemma 4.19, for any 0 < ρ ≤ 3r
10
,

dy,ρ(E,L1) ≤ τ. (4.4.6)

We shall deduce, from equation (4.4.6), that for any 0 < ρ < r
3
,

E ∩B(0, ρ) = L1 ∩B(0, ρ).

Once we have proved this, the desire result follows. We assume, for the sake
of a contradiction, that

E ∩B(0, ρ) \ L1 6= ∅.

Let z ∈ E ∩ B(0, ρ) \ L1, and let y be the projection of z on L1, then
0 < |z − y| < ρ. We choose ρ′ such that

|z − y| < ρ′ < min

{
ρ,
|z − y|
τ

}
.

From equation (4.4.6), we can get that

|z − y| ≤ ρ′dy,ρ′(E,L1) ≤ τρ′ < |z − y| ,

absurd.

Lemma 4.21. Let Ω, L1 and U be as in Lemma 4.19, let E ⊂ Ω be a (U, h)-
sliding-almost-minimal set with L1 ⊂ E. Let F = E \ L1. Then H2(F ∩L1) =
0, and F is also (U, h)-sliding-almost-minimal.

Proof. We put G = F ∩ L1. Let 0 < ε < 1/100. We assume, for the sake
of contradiction, that H2(G) > 0. Since G is a subset of L1, it is rectifiable,
thus for H2-a.e. x ∈ G, θG(x) = 1. Without loss of generality, we suppose
that θG(0) = 1, then there exists a radius r1 > 0 such that for all 0 < r ≤ r1,

θG(0, r) ≥ 1− ε. (4.4.7)
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Since E is sliding almost minimal, by Theorem 28.7 (almost monotonicity
of density property) in [11], we can find a radius r2 > 0 such that for all
0 < r ≤ r2,

1− ε ≤ θE(0, r)

θE(0)
≤ 1 + ε. (4.4.8)

Since E is sliding almost minimal and L1 ⊂ E, by Lemma 4.19, there exists
r > 0 such that for any 0 < ρ ≤ r, there exists a sliding minimal cone
Zρ

0 ⊃ L1 such that
d0,ρ(E,Z

ρ
0 ) ≤ ε (4.4.9)

and for any ball B(y, t) ⊂ B(0, ρ),∣∣H2(E ∩B(y, t))−H2(Zρ
0 ∩B(y, t))

∣∣ ≤ ερ2 (4.4.10)

We take 0 < ρ ≤ min{r, r1, r2}, and consider a collection of balls

V =

{
B(x, s)

∣∣∣∣ x ∈ G ∩B(0, ρ), s ≤ ερ,B(x, s) ⊂ B(0, ρ)

θG(x, s) ≥ 1− ε, θE(x, s) ≥ (1− ε)θE(x)

}
,

it is a Vitali covering for G ∩B(0, ρ). By a Vitali’s covering theorem for the
Hausdorff measure, see for example, there exists a finite or countably infinite
disjoint subcollection {Bi}i∈I ⊂ V such that

H2

(
G ∩B(0, ρ) \

⋃
i∈I
Bi

)
= 0. (4.4.11)

We now consider two balls B′1 = B(y1, t1) and B′1 = B(y2, t2), where y1 =
(0, 0, 1+ε

2
ρ), y2 = (0, 0,−1+ε

2
ρ) and t1 = t2 = 1−ε

2
ρ. We can see that B′1 ⊂

B(0, ρ) and B′2 ⊂ B(0, ρ), thus by equation (4.4.10), we can get that

H2(E ∩B′1) ≥ H2(Zρ
0 ∩B′1)− ερ2 (4.4.12)

and
H2(E ∩B′2) ≥ H2(Zρ

0 ∩B′2)− ερ2. (4.4.13)

It is very easy to see that {B′1, B′2} ∪ {Bi}i∈I is a family of disjoint balls and

B′1 ∪B′2 ∪
⋃
i∈I
Bi ⊂ B(0, ρ). (4.4.14)

For i ∈ I, we denote Bi = B(xi, si), then xi ∈ G and θE(xi) ≥ 3
2
; otherwise,

θE(xi) = 1, any blow-up limit of E at xi must be L1, and by Lemma 4.20,
there is a small ball B(xi, r

′) such that E ∩B(xi, r
′) = L1 ∩B(xi, r

′), that is
impossible.
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By our choice of V , we have that

θE(xi, si) ≥ (1− ε)θE(xi) ≥
3

2
(1− ε),

thus
H2(E ∩Bi) ≥

3

2
(1− ε)πs2

i ≥
3

2
(1− ε)H2(G ∩Bi), (4.4.15)

and combine with equations (4.4.11) and (4.4.7), to obtain∑
i∈I
H2(E ∩Bi) ≥

3

2
(1− ε)

∑
i∈I
H2(G ∩Bi)

≥ 3

2
(1− ε)H2(G ∩B(0, ρ))

≥ 3π

2
(1− ε)2ρ2.

(4.4.16)

Since 0 ∈ G, we have that θE(0) ≥ 3
2
, thus θE(0) = 3

2
or θE(0) = 7

4
.

If θE(0) = 3
2
, the sliding minimal Zρ

0 which we chose in (4.4.9) can be
written Zρ

0 = L1 ∩Zρ, where Zρ is a sliding minimal cone of type P+. In this
case, Zρ

0 ∩B′i, i = 1, 2, are two disks with radius 1−ε
2
ρ, thus

H2(Zρ
0 ∩B′i) = π

(
1− ε

2
ρ

)2

,

combine this equation with equations (4.4.12), (4.4.13), (4.4.14) and (4.4.16),
we can get that

H2(E ∩B(0, ρ)) ≥
2∑
i=1

H2(E ∩B′i) +
∑
i∈I
H2(E ∩Bi)

≥ 2π

(
1− ε

2
ρ

)2

+
3

2
π(1− ε)2ρ2 − 2ερ2

> (2− 5ε)πρ2,

(4.4.17)

but from equation (4.4.8), we can get that

H2(E ∩B(0, ρ)) ≤ 3

2
(1 + ε)πρ2, (4.4.18)

which contradict with equation (4.4.17), because 0 < ε < 1
100

.
If θE(0) = 7

4
, a very similar calculation as above case, we can get that

H2(Zρ
0 ) = 3× π

2

(
1− ε

2
ρ

)2

,
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and

H2(E ∩B(0, ρ)) ≥ 3

4
(1− ε)2πρ2 +

3

2
(1− ε)2πρ2 − 2ερ2 >

(
9

4
− 11

2
ε

)
πρ2,

but from equation (4.4.8), we obtain that

H2(E ∩B(0, ρ)) ≤ 7

4
(1 + ε)πρ2,

we also get a contradiction. We proved that H2(F ∩ L1) = 0. We will go to
prove that F is also sliding almost minimal.

Let {ϕt}0≤t≤1 be any δ-sliding-deformation. Since E is (U, h)-sliding-
almost-minimal, applying Proposition 20.9 in [11], we get that

H2(E \ ϕ1(E)) ≤ H2(ϕ1(E) \ E) + h(δ)δ2. (4.4.19)

Since E ⊃ L, we have that ϕ1(E) ⊃ L1, and then we get that

H2(E\ϕ1(E)) = H2((E\L1)\ϕ1(E)) = H2 ((E \ L1) \ ϕ(E \ L1)) . (4.4.20)

We know that F = E \ L1 and H2(F ∩ L1) = 0, thus

H2(F \ ϕ1(F )) = H2(E \ ϕ1(E)). (4.4.21)

Similarly, we can get that

H2(ϕ1(E) \ E) = H2(ϕ(E \ L1) \ E) ≤ H2(ϕ(E \ L1) \ (E \ L1)), (4.4.22)

thus
H2(ϕ1(E) \ E) ≤ H2(ϕ1(F ) \ F ). (4.4.23)

From inequalities (4.4.19), (4.4.21) and (4.4.23), we obtain that

H2(F \ ϕ1(F )) ≤ H2(ϕ1(F ) \ F ) + h(δ)δ2.

Applying Proposition 20.9 in [11], we get that F is (U, h)-sliding-almost-
minimal.

If Ω, L1, U , E and F are as in lemma 4.21, and we suppose that 0 ∈ F ,
then θF (0) can only take two values 1

2
and 3

4
. Indeed, since L1 ⊂ E, any blow-

up limit Z of E at 0 is a sliding minimal cone which contains the boundary
L1, thus Z = L1 or Z = L1 ∪ Z ′, Z ′ is a sliding minimal cone of type P+ or
Y+, hence the density θE(0) can only take three values, 1, 3

2
and 7

4
. But if

θE(0) = 1, then by Lemma 4.20, we can see that 0 6∈ F . Therefore, θE(0) = 3
2

or 7
4
. We see that

θE(0, r) = θF (0, r) + 1, (4.4.24)
thus

θE(x) = θF (x) + 1,

and θF (0) = 1
2
or 3

4
.
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Lemma 4.22. Let Ω and L1 be as in (4.2.1), ΠL1 : R3 → L1 be the orthogonal
projection onto L1. Suppose that U is an open set, E ⊂ Ω is (U, h)-sliding-
almost-minimal, 0 ∈ E∩L1∩U and θE(0) = 1

2
or 3

4
. If ε > 0 is small enough,

B(0, 2r) ⊂ U , and for any x ∈ E ∩L1∩B(0, r), and any 0 < ρ ≤ 3r/5, there
exists a sliding minimal cone Zρ

x of type P+ or Y+ centered at x, such that

dx,ρ(E,Z
ρ
x) ≤ ε,

then for any z ∈ E ∩B(0, r/5), we can find a point a ∈ E ∩ L1 ∩B(0, 3r/5)
such that

|ΠL1(z)− a| ≤ 8ε |z − a| . (4.4.25)

Proof. For any z ∈ E ∩ B(0, r/5), we put z′ = ΠL1(z). We take a point
a ∈ E ∩ L1 such that

|z′ − a| ≤ (1 + ε)dist(z′, E ∩ L1).

If z′ ∈ E ∩ L1, a = z′ ∈ B(0, r/5), then nothing needs to be done. If z′ 6∈
E ∩ L1, we claim that a is a point which we desire.

It is quite easy to see that a ∈ B(0, 3r/5); otherwise

2r

5
≤ |z′ − a| ≤ (1 + ε)dist(z′, E ∩ L1) ≤ (1 + ε)|z′ − 0| ≤ (1 + ε)

r

5
;

this gives a contradiction.
We put ρ = 2|a − z|. Since da,ρ(E,Zρ

a) ≤ ε, and Zρ
a is perpendicular to

L1, we can find z′′ ∈ Zρ
a ∩ L1 such that |z′ − z′′| ≤ ερ.

We claim that |z′′− a| ≤ 3ερ; once we have proved our claim, we can get
that

|ΠL1(z)− a| ≤ |z′ − z′′|+ |z′′ − a| ≤ 4ερ = 8ε|x− z|
We assume, for the sake of a contradiction, that |z′′ − a| > 3ερ, then

|a− z′| ≥ |a− z′′| − |z′ − z′′| > 2ερ.

If B(z′′, 3ερ/2) ∩ E ∩ L1 6= ∅, we take x ∈ B(z′′, 3ερ/2) ∩ E ∩ L1, then

|z′ − x| ≤ |z′ − z′′|+ |z′′ − x| ≤ 5

2
ερ,

and
|z − x′| ≥ dist(z′, E ∩ L1) ≥ 1

1 + ε
|z′ − a| ≥ 2ερ

1 + ε
,

thus
2ερ

1 + ε
≤ 5

2
ερ;
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this is a contradiction.
If B(z′′, 3ερ/2)∩E ∩L1 = ∅, we can construct a projection to show that

E is not almost minimal.

Lemma 4.23. Let Ω, L1 be as in (4.2.1), U an open set with 0 ∈ U . Suppose
that E ⊂ Ω is (U, h)-sliding-almost-minimal. If θE(0) = 1

2
, then for each

small τ > 0, we can find a radius r > 0, a sliding minimal cone Z of type
P+ and a biHölder map φ : B(0, 3r/2) ∩ Ω→ B(0, 2r) ∩ Ω such that

φ(x) ∈ L1 for x ∈ L1 ∩B(0, 3r/2), ‖f − id‖∞ ≤ τr,

C |z − y|1+τ ≤ |φ(z)− φ(y)| ≤ C−1 |z − y| 1
1+τ ,

B(0, r) ∩ Ω ⊂ φ

(
B

(
0,

3r

2

)
∩ Ω

)
⊂ B(0, 2r) ∩ Ω,

E ∩B(0, r) ⊂ φ

(
Z ∩B

(
0,

3r

2

))
⊂ E ∩B(0, 2r),

(4.4.26)

where C is a constant which only depends on τ and r.

Proof. We can assume that U is an open ball B(0, R) for some R > 0. For
any τ ∈ (0, 1], we let ε(τ) be as in Lemma 4.19, we suppose that τ is so small,
that

(1 + ε(τ))e(λ+α)ε(τ) <
3

2
,

where λ is taken as in Proposition 5.24 in [8], and α is taken as in Theorem
28.7 in [11]. Let τ2 > 0 and ε(τ2) be as in Lemma 4.19 and such that 100τ2 ≤ τ
and (

1

2
+ ε(τ2)

)
eαε(τ) <

3

4
.

We take 0 < τ1 ≤ min{τ2, ε(τ2)}/100, and let τ1, ε(τ1) be also as in Lemma
4.19. We always suppose that ε(τ1) < ε(τ2) < ε(τ).

By Theorem 28.7 in [11], we can find r0 ∈ (0, R) such that

h(2r0) ≤ ε(τ1), A(r0) ≤ ε(τ1), θE(0, r0) ≤ 1

2
+ ε(τ1),

where

A(r) =

∫ 2r

0

h(t)

t
dt.

By using Lemma 4.19, for any r ∈ (0, 9r0/10], there exists a minimal cone
Zr of type P+ center at 0 such that

d0,r(E,Z
r) ≤ τ1 (4.4.27)
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and for any ball B(y, t) ⊂ B(0, r),∣∣H2(Zr ∩B(y, t))−H2(E ∩B(y, t))
∣∣ ≤ τ1r

2. (4.4.28)

First, we consider any point x ∈ E ∩ L1 ∩ B(0, r0/2). By (4.4.28), if we
take r = 9r0/10, we will get that

H2(E ∩B(x, t)) ≤ H2
(
Z9r0/10 ∩B(x, t)

)
+ τ1

(
9r0

10

)2

≤ π

2
t2 + τ1

(
9r0

10

)2

from this inequality, by taking t = r0/3, we can get that

θE

(
x,
r0

3

)
<

1

2
+ 30τ1 <

1

2
+ ε(τ2). (4.4.29)

By using Theorem 28.7 in [11], we get that

θE(x) ≤ θE

(
x,
r0

3

)
eαA(r0/3) <

3

4
,

thus
θE(x) =

1

2
. (4.4.30)

By Lemma 4.19, we can find minimal sliding cone Zρ
x for any 0 < ρ ≤

3r0/10 such that
dx,ρ(E,Z

ρ
x) ≤ τ2 (4.4.31)

and for any ball B(y, t) ⊂ B(x, ρ),∣∣H2(E ∩B(y, t))−H2(Zρ
x ∩B(y, t))

∣∣ ≤ τ2ρ
2. (4.4.32)

We now consider any point z ∈ E ∩B(0, r0/10) \ L1. From Lemma 4.22,
we get that

|ΠL1(z)− x| ≤ 8τ2 |z − x| ,
thus

dist(z, L1) = |z − ΠL1(z)| ≥ |z − x| − |ΠL1(z)− x| ≥ (1− 8τ2) |z − x| .
(4.4.33)

We take r1 = 1
2
dist(z, L1), and ρ = |z − x|+ r1, then ρ < 3r0

10
. We take Zρ

x

as in (4.4.31), then B(z, r1) ⊂ B(x, ρ), thus

H2(E ∩B(z, r1)) ≤ H2(Zρ
x ∩B(z, r)) + τ2ρ

2 ≤ πr2
1 + τ2ρ

2,
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hence

θE(z, r1) =
H2(E ∩B(z, r1))

πr2
1

≤ 1 +
τ2ρ

2

πr2
1

< 1 + 10τ2 < 1 + ε(τ), (4.4.34)

but we know that
θE(z) ≥ 1,

hence by using a monotonicity property, Proposition 5.24 in [8], we have that

θE(z) ≤ θE(z, r1) exp(λA(r1)) <
3

2
,

thus
θE(z) = 1. (4.4.35)

For any r ∈ (0, 9
10
r1], we can apply Lemma 16.11 in [8], there exists a

plane Z(z, r) through z such that

dz,r(E,Z(z, r)) ≤ τ. (4.4.36)

For any r ∈ ( 9
10
r1,

1
5
r0], we put ρr = |z − x| + r, then ρr ≤ 3

10
r0, and

B(z, r) ⊂ B(x, ρr). We take Zρr
x as in (4.4.31), then

dz,r(E,Z
ρr
x ) ≤ ρr

r
dx,ρr(E,Z(x, ρr)) ≤

ρr
r
τ2 ≤ 5τ2. (4.4.37)

We do not know whether or not the sliding minimal cone Zρr
x passes through

the point z, but we can do a translation of Zρr
x such that it is centered at

ΠL1(z), we denote it by Z(z, r), i.e. Z(z, r) = Zρr
x −(x−ΠL1(z)). Then Z(z, r)

is a sliding minimal cone contains z, and

dz,r(E,Z(z, r)) ≤ |x− ΠL1(z)|
r

+ dz,r(E,Z
ρr
x ) < 20τ2 < τ. (4.4.38)

It follows from (4.4.36) and (4.4.38) that, for any z ∈ E ∩ B(0, r0/10) \ L1,
for any r ∈ (0, r0/5], there exist a cone Z(z, r) such that

dz,r(E,Z(z, r)) ≤ τ, (4.4.39)

where Z(z, r) is a plane when r is small, Z(x, r) is a half plane when r is
large.

From the inequalities (4.4.32) and (4.4.39), we get that, for any x ∈
E ∩ B(0, r0/10) and any r ∈ (0, r0/5], we can find a cone Z(x, r) though x
such that

dx,r(E,Z(x, r)) ≤ τ.
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where Z(x, r) is a minimal cone when 0 < r < dist(x, L1), and Z(x, r) is a
sliding minimal cone of type P+ when dist(x, L1) ≤ r ≤ r0/5.

By Corollary 4.18, we can find a biHölder map φ : B(0, 3r0/20) ∩ Ω →
B(0, r0/5) ∩ Ω and a sliding minimal cone Z0 of type P+ such that (4.4.26)
holds with r = r0/10.

Lemma 4.24. Let Ω, L1 be as in (4.2.1), U an open set with 0 ∈ U . Suppose
that E ⊂ Ω is (U, h)-sliding-almost-minimal. If E ⊃ L1 and θE(0) = 3

2
,

then for each small τ > 0, we can find a radius r > 0, a biHölder map
φ : B(0, 3r/2) ∩ Ω → B(0, 2r) ∩ Ω and a sliding minimal cone Z of type P+

such that

φ(x) ∈ L1 for x ∈ L1 ∩B(0, 3r/2), ‖f − id‖∞ ≤ τr,

C |z − y|1+τ ≤ |φ(z)− φ(y)| ≤ C−1 |z − y| 1
1+τ ,

B(0, r) ∩ Ω ⊂ φ

(
B

(
0,

3r

2

)
∩ Ω

)
⊂ B(0, 2r) ∩ Ω,

E ∩B(0, r) ⊂ φ

(
(Z ∪ L1) ∩B

(
0,

3r

2

))
⊂ E ∩B(0, 2r),

(4.4.40)

where C is a constant which only depends on τ and r.

Proof. We put F = E \ L1, then F is also (U, δ, h)-sliding-almost-minimal.
By lemma 4.23, for each small τ > 0, we can find r > 0, a biHölder map
φ : B(0, 3r/2) ∩ Ω → B(0, 2r) ∩ Ω and a sliding minimal cone Z of type P+

such that

φ(x) ∈ L1 for x ∈ L1 ∩B(0, 3r/2), ‖f − id‖∞ ≤ τr,

C |x− y|1+τ ≤ |φ(x)− φ(y)| ≤ C−1 |x− y| 1
1+τ ,

B(0, r) ∩ Ω ⊂ φ

(
B

(
0,

3r

2

)
∩ Ω

)
⊂ B(0, 2r) ∩ Ω,

F ∩B(0, r) ⊂ φ

(
Z ∩B

(
0,

3r

2

))
⊂ F ∩B(0, 2r).

(4.4.41)

Thus

E ∩B(0, r) ⊂ φ

(
(Z ∪ L1) ∩B

(
0,

3r

2

))
⊂ E ∩B(0, 2r).

Remark 4.25. Suppose that Ω, L1 and U are as in Lemma 4.23, and that
E ⊂ Ω is a (U, h)-sliding-almost-minimal set. Suppose that θE(0) = 1

2
, or
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that θE = 3
2
and L1 ⊂ E. If τ ∈ (0, 1) is small enough, we can find ε′(τ) > 0

such that when the radius r > 0 is such that

B(0, 10r) ⊂ U, h(20r) ≤ ε′(τ),

∫ 20r

0

h(t)

t
dt ≤ ε′(τ), θE(0, 10r) ≤ θE(0)+ε′(τ)

then for any x ∈ E ∩ B(0, r) and any 0 < t ≤ 2r, we can find a cone or
sliding minimal cone Z(x, t) that depends on t such that

dx,t(E,Z(x, t)) ≤ τ,

where Z(x, t) is a minimal cone when 0 < t < dist(x, L1), and Z(x, t) is a
sliding minimal cone when dist(x, L1) ≤ t ≤ 2r.

Indeed, when we look at the proof of Lemma 4.23, we let τ ∈ (0, 1) be
such that (

1

2
+ ε(τ)

)
e(λ+α)ε(τ) <

3

4
.

Then we take
τ1 = min

{
τ

104
,

1

100
ε
( τ

100

)}
,

and let ε(τ1) be as in Lemma 4.19. Finally, ε′(τ) = ε(τ1) will be what we
desire.
Lemma 4.26. Let Ω, L1 be as in (4.2.1), U an open set with 0 ∈ U . Suppose
that F ⊂ Ω is an (U, h)-sliding-almost-minimal set. If θF (0) = 3

4
, then for

each small τ > 0, we can find a radius r > 0, a biHölder map φ : B(0, 3r/2)∩
Ω→ B(0, 2r) ∩ Ω and a sliding minimal cone of type Y+ such that

φ(x) ∈ L1 for x ∈ L1 ∩B()0, 3r/2, ‖φ− id‖∞ ≤ τr,

C |z − y|1+τ ≤ |φ(z)− φ(y)| ≤ C−1 |z − y| 1
1+τ ,

B(0, r) ∩ Ω ⊂ φ

(
B

(
0,

3r

2

)
∩ Ω

)
⊂ B(0, 2r) ∩ Ω,

F ∩B(0, r) ⊂ φ

(
Z ∩B

(
0,

3r

2

))
⊂ F ∩B(0, 2r),

(4.4.42)

where C is a constant which only depends on τ and r.

Proof. As in Lemma 4.23, we can assume U is an open ball B(0, R) for some
R > 0. Let τ > 0 be a positive number, and let ε(τ) be as in Lemma 4.19;
we suppose τ small enough so that

(1 + ε(τ))e(λ+α)ε(τ) <
3

2
,
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where λ is taken as in Proposition 5.24 in [8], and α is taken as in Theorem
28.7 in [11]. Let τ2 > 0 and ε(τ2) be as in Lemma 4.19 so that 100τ2 ≤ τ and(

1

2
+ ε(τ2)

)
eαε(τ) <

3

4
,

(
3

2
+ ε(τ2)

)
eλε(τ) < dT ,

where dT is the constant which is considered in Lemma 14.12 in [8]. We take
0 < τ1 ≤ min{τ2, ε(τ2)}/100. Let τ1 and ε(τ1) be as in Lemma 4.19. We
suppose that ε(τ1) < ε(τ2) < ε(τ).

By Theorem 28.7 in [11], there exist 0 < r0 < R such that

h(2r0) ≤ ε(τ1), A(r0) < ε(τ1)

and
θF (0, r0) ≤ 3

4
+ ε(τ1),

where

A(r) =

∫ 2r

0

h(t)

t
dt.

By using Lemma 4.19, for any ρ ∈ (0, 9r0/10] there exists a minimal cone Zρ

of type Y+ center at 0 such that

d0,ρ(F,Z
ρ) ≤ τ1,∣∣H2(Zρ ∩B(y, t))−H2(E ∩B(y, t))

∣∣ ≤ τ1ρ
2,

for any ball B(y, t) ⊂ B(0, ρ).

(4.4.43)

First, for any x ∈ F ∩L1 ∩B(0, r0/2) \ {0}, we take ρ = 2 |x| and t = |x|,
then by (4.4.43), we have

H2(F ∩B(x, t)) ≤ H2 (Zρ ∩B(x, t)) + τ1ρ
2

≤ π

2
t2 + τ1ρ

2

from this inequality, we can get that

θF (x, |x|) =
H2(E ∩B(x, |x|))

π |x|2
≤ 1

2
+ 4τ1 <

1

2
+ ε(τ2) (4.4.44)

Applying Theorem 28.7 in [11], we get that

θF (x) ≤ θF (x, |x|)eαA(|x|) <
3

4
,

thus
θF (x) =

1

2
.
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Taking r1 = |x|, we get from (4.4.44) that

θF (x, r1) ≤ θF (x) + ε(τ2).

By Lemma 4.19, for any 0 < ρ ≤ 9r1/10, there exists a sliding minimal cone
Zρ
x centered at x of type P+ such that

dx,r(F,Z
ρ
x) ≤ τ2, (4.4.45)

and for any ball B(y, t) ⊂ B(x, r),∣∣H2(F ∩B(y, t))−H2(Zρ
x ∩B(y, t))

∣∣ ≤ τ2ρ
2. (4.4.46)

For 9r1/10 ≤ ρ ≤ 3r0/10, we have that

dx,ρ(F,Z
r1+ρ) ≤ r1 + ρ

ρ
d0,r1+ρ(F,Z

r1+ρ) ≤ 19

9
τ1.

Since d0,r1+ρ(F,Z
r1+ρ) ≤ τ1, there exists a point x′ ∈ Zr1+ρ ∩ L1 such that

|x− x′| ≤ (r1 + ρ)τ1. We take Z(x, ρ) = Zr1+ρ + x− x′, that is a translation
of Zr1+ρ; it is a siliding minimal through the point x, and

dx,ρ(F,Z(x, ρ)) ≤ |x− x
′|

ρ
+ dx,ρ(F,Z

r1+ρ) < 5τ1 < τ2. (4.4.47)

It follows from (4.4.45) and (4.4.47) that, for any x ∈ F ∩L1∩B(0, r0/2),
and any 0 < ρ < 3r0/10, there exists a sliding minimal cone Z(x, ρ) centered
at x, either of type P+ or of type Y+, such that

dx,ρ(F,Z(x, ρ)) ≤ τ2. (4.4.48)

Next, We consider z ∈ (F \ L1) ∩ B(0, r0/10). If dist(z, L1) < 1
3
|z|, we

take a point a ∈ F ∩ L1 ∩B(0, r0
5

) such that

|ΠL1(z)− a| ≤ 8τ2 |z − a| .

We take r2 = 1
2
dist(x, L1) and ρ = |z − a|+ r2, then

|z − a| ≤ |z − ΠL1(z)|+ |ΠL1(z)− a| ≤ 2r2 + 8τ2 |z − a| ,

thus
|z − a| ≤ 2

1− 8τ2

r2,

and
ρ ≤

(
1 +

2

1− 8τ2

)
r2 ≤

75

23
r2.
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Since 2r2 = dist(z, L1) ≤ 1
3
|z|, we have that

|ΠL1(z)| ≥ 2
√

2 |z − ΠL1(z)| ≥ 4
√

2r2,

thus
|a| ≥ |ΠL1(z)| − |ΠL1(z)− a| ≥ 4

√
2r2 −

16τ2

1− 8τ2

r2 > 4r2.

Hence
ρ ≤ 9

10
|a| .

Consider the sliding minimal cone Zρ
a as in (4.4.45); it is a minimal cone

centered at point a of type P+. Since B(z, r2) ⊂ B(a, ρ), we deduce from
(4.4.46) that

H2 (F ∩B(z, r2)) ≤ H2 (Zρ
a ∩B(z, r2)) + τ2ρ

2

≤ πr2
2 + τ2ρ

2,

thus

θF (z, r2) ≤ 1 +

(
73

23

)2
τ2

π
≤ 1 + 4τ2 ≤ 1 + ε(τ). (4.4.49)

Applying Proposition 5.24 in [8], we can get that

θF (z) ≤ θF (z, r2)eλA(r2) <
3

2
,

thus
θF (z) = 1.

By Lemma 16.11 in [8], for any ρ ∈ (0, 9r2/10], there exist a plane Z(z, ρ)
through z such that

dz,ρ(F,Z(z, ρ)) ≤ τ. (4.4.50)

For ρ ∈ (9r2/10, r0/10], we put rρ = |z − a|+ ρ, then

rρ ≤
r0

5
+
r0

10
≤ 3r0

10
.

Consider the sliding minimal cone Z(a, rρ) as in (4.4.48), we can get that

dz,ρ(F,Z(a, rρ) ≤
rρ
ρ
da,r(F,Z(a, rρ)) ≤

(
1 +
|z − a|
ρ

)
τ2 ≤

7

2
τ2.

We now take
Z(z, ρ) = Z(a, rρ) + ΠL1(z)− a.
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It is a sliding minimal cone centered at ΠL1(z), thus through the point z,
which satisfy that

dz,ρ(F,Z(z, ρ)) ≤ |ΠL1(z)− a|
ρ

+ dz,ρ(F,Z(a, rρ)) < 4τ2. (4.4.51)

It follows from (4.4.50) and (4.4.51) that, in the case z ∈ B(0, r0/10)∩F \L1

and dist(z) < |z| /3, for 0 < ρ ≤ r0
10
, we can find a cone Z(z, ρ) such that

dz,ρ(F,Z(z, ρ)) ≤ τ, (4.4.52)

where Z(z, ρ) is a minimal cone when ρ is small, and Z(z, ρ) is a sliding
minimal cone when ρ is large.

We now consider the case when z ∈ (F\L1)∩B(0, r0/10) with dist(z, L1) ≥
1
3
|z|. We take r3 = dist(z, L1), and put ρ3 = |z| + r3, then ρ3 ≤ 4r3 <

4r0
10
.

We take Zρ3 a minimal cone as in (4.4.43), then we can get that

H2(F ∩B(z, r3)) ≤ H2(Zρ3 ∩B(z, r3)) + τ1ρ
2
3 ≤

3

2
πr2

3 + τ1ρ
2
3,

thus
θF (z, r3) ≤ 3

2
+

16

π
τ1 <

3

2
+ ε(τ2). (4.4.53)

Applying Proposition 5.24 in [8], we get that

θF (z) ≤ θF (z, r3)eλA(r3) < dT ,

thus θF (z) = 1 or θF (z) = 3
2
.

Case 1. If θ(z) = 3
2
, then for any 0 < ρ ≤ 9

10
r3, by using Lemma 16.11 in

[8], there exists a minimal cone Z(z, ρ) centered at z of type Y such that

dx,ρ(E,Z(x, ρ)) ≤ τ2 (4.4.54)

and for any ball B(y, t) ⊂ B(x, ρ)∣∣H2(E ∩B(y, t))−H2(Z(x, ρ) ∩B(y, t))
∣∣ ≤ τ2r

2
3. (4.4.55)

For any ρ ∈ ( 9
10
r3,

4r0
5

], we put rρ = |z| + ρ, then rρ ≤ 9r0
10
, and |z| ≤

3dist(z, L1) = 6r3, thus rρ < 8rρ. Let Zrρ be the sliding minimal cone which
is considered in (4.4.43), then we can get that

dz,ρ(F,Z
rρ) ≤ rρ

ρ
d0,rρ(F,Z

rρ) ≤ rρ
ρ
τ1.
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We take a point z′ ∈ Zrρ such that |z − z′| ≤ rρτ1, and take Z(z, ρ) =
Zrρ + ΠL1(z)− ΠL1(z

′), which through point z, we obtain that

dz,ρ(F,Z(z, ρ)) ≤ |ΠL1(z)− ΠL1(z
′)|

ρ
+dz,ρ(F,Z

rρ) ≤ 2rρ
ρ
τ1 ≤ 16τ1. (4.4.56)

It follows from (4.4.54) and (4.4.56) that, when z ∈ B(0, r0/10)∩F \L1 and
dist(z, L1) ≥ |z| /3 with θF (z) = 3

2
, for any ρ ∈ (0, 4r0/5], we can find a cone

Z(z, ρ) such that
dz,ρ(F,Z(z, ρ)) ≤ τ2, (4.4.57)

where Z(z, ρ) is a minimal cone when ρ small, and Z(z, ρ) is a sliding minimal
cone with boundary L1 when ρ large.

Case 2. If θF (z) = 1. We set

EY = {0} ∪
{
x ∈ F

∣∣∣∣ θ(x) =
3

2

}
,

and denote `Y (z) = dist(z, EY ). Using the same argument as in Lemma 16.25
in [8, in page 205], we get that for ρ ∈ (0, `Y (z)/3], there is a plane Z(z, ρ)
through x such that

dz,ρ(F,Z(z, ρ)) ≤ τ. (4.4.58)

For ρ ∈ (`Y (z)/3, r0/10], we take a point x ∈ EY such that

|z − x| ≤ 11

10
`Y (z),

and consider the cone Z(x, rρ) as in (4.4.57), where rρ = |z − x|+ ρ. We can
get that

dz,ρ(F,Z(x, rρ)) ≤
rρ
ρ
dx,rρ(F,Z(x, rρ)) ≤

rρ
ρ
τ2.

By a similar argument as before, we can find a cone Z(z, ρ) which is a trans-
lation of Z(x, rρ) such that

dz,ρ(F,Z(z, ρ)) ≤ 2rρ
ρ
τ2 < 10τ2. (4.4.59)

It follows that, when z ∈ B(0, r0/10) ∩ F \ L1 and dist(z, L1) ≥ |z| /3 with
θF (z) = 1, for any ρ ∈ (0, r0/10], we can find a cone Z(z, ρ) such that

dz,ρ(F,Z(z, ρ)) ≤ τ, (4.4.60)

where Z(z, ρ) is a minimal cone when ρ is small, and Z(z, ρ) is a sliding
minimal cone when ρ is large.
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From inequalyties (4.4.48), (4.4.52), (4.4.57) and (4.4.60), we can say that
for any z ∈ B(0, r0/10), and for any ρ ∈ (0, r0/10], there is a cone Z(z, ρ)
such that

dz,ρ(F,Z(z, ρ)) ≤ τ,

where Z(z, ρ) is a minimal cone when ρ < dist(z, L1), and Z(z, ρ) is a sliding
minimal cone when ρ ≥ dist(z, L1).

By Corollary 4.18, we can get our desired result.

Lemma 4.27. Let Ω, L1 be as in (4.2.1), U an open set with 0 ∈ U . Suppose
that E ⊂ Ω is an (U, h)-sliding-almost-minimal set. If θE(0) = 7

4
and E ⊃ L1,

then for each small τ > 0, we can find a radius r > 0, a biHölder map
φ : B(0, 3r/2) ∩ Ω→ B(0, 2r) ∩ Ω and a sliding minimal cone Z of type Y+

such that

φ(x) ∈ L1 for x ∈ L1, ‖f − id‖∞ ≤ τ,

C |z − y|1+τ ≤ |φ(z)− φ(y)| ≤ C−1 |z − y| 1
1+τ ,

B(0, r) ∩ Ω ⊂ φ

(
B

(
0,

3r

2

)
∩ Ω

)
⊂ B(0, 2r) ∩ Ω,

E ∩B(0, r) ⊂ φ

(
(Z ∪ L1) ∩B

(
0,

3r

2

))
⊂ E ∩B(0, 2r),

(4.4.61)

where C is a constant which only depends on τ and r.

Proof. We put F = E \ L1, then F is also (U, δ, h)-sliding-almost-minimal.
By lemma 4.26, for each small τ > 0, we can find r > 0, a biHölder map
φ : B(0, 3r/2) ∩ Ω→ B(0, 2r) ∩ Ω and a sliding minimal cone Z of type Y+

such that

φ(x) ∈ L1 for x ∈ L1 ∩B(0, 3r/2), ‖f − id‖∞ ≤ τr,

C |x− y|1+τ ≤ |φ(x)− φ(y)| ≤ C−1 |x− y| 1
1+τ ,

B(0, r) ∩ Ω ⊂ φ

(
B

(
0,

3r

2

)
∩ Ω

)
⊂ B(0, 2r) ∩ Ω,

F ∩B(0, r) ⊂ φ

(
Z ∩B

(
0,

3r

2

))
⊂ F ∩B(0, 2r).

(4.4.62)

Thus

E ∩B(0, r) ⊂ φ

(
(Z ∪ L1) ∩B

(
0,

3r

2

))
⊂ E ∩B(0, 2r).
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Remark 4.28. Suppose that Ω, L1 and U are as in Lemma 4.26, and that
E ⊂ Ω is a (U, h)-sliding-almost-minimal set. Suppose that θE(0) = 3

4
, or

that 7
4
and E ⊃ L1. If τ ∈ (0, 1) is small enough, we can find ε′(τ) > 0 such

that when r > 0 is such that

B(0, 10r) ⊂ U, h(20r) ≤ ε′(τ),

∫ 20r

0

h(t)

t
dt ≤ ε′(τ), θE(0, 10r) ≤ θE(0)+ε′(τ),

then for any x ∈ E ∩ B(0, r) and any 0 < t ≤ 2r, we can find a minimal
cone or sliding minimal cone Z(x, t) such that

dx,t(E,Z(x, t)) ≤ τ,

where Z(x, t) is a minimal cone when 0 < t < dist(x, L1), and Z(x, t) is a
sliding minimal cone when dist(x, L1) ≤ t ≤ 2r.

Indeed, we can take τ ∈ (0, 1) be such that(
1

2
+ ε(τ)

)
eαε(τ) <

3

4
and

(
3

2
+ ε(τ)eλε(τ)

)
< dT ,

then we take
τ1 = min

{
τ

104
,

1

100
ε
( τ

100

)}
,

and let ε(τ1) be as in Lemma 4.19. We can check from the proof of Lemma
4.26 that ε′(τ) = ε(τ1) is the number what we desire.
Proposition 4.29. Let Ω, L1 be as in (4.2.1), U an open set. Let E ⊂ Ω be
an (U, h)-sliding-almost-minimal set, and x ∈ L1 ∩U be a point. We suppose
that θE(x) ∈ {1/2, 3/4}, or that θE ∈ {3/2, 7/4} and E ⊃ L1, then for each
small τ > 0, we can find a radius r > 0, a sliding minimal cone Z centered
at x and a biHölder map φ : B(x, 3r/2) ∩ Ω→ B(x, 2r) ∩ Ω such that

φ(z) ∈ L1 for z ∈ L1 ∩B(x, 3r/2), ‖f − id‖∞ ≤ τr,

C |z − y|1+τ ≤ |φ(z)− φ(y)| ≤ C−1 |z − y| 1
1+τ ,

B(0, r) ∩ Ω ⊂ φ

(
B

(
0,

3r

2

)
∩ Ω

)
⊂ B(0, 2r) ∩ Ω,

E ∩B(0, r) ⊂ φ

(
Z ∩B

(
0,

3r

2

))
⊂ E ∩B(0, 2r).

(4.4.63)

In addition, if θE(x) = 1
2
, Z is a cone of type P+; if θE(x) = 3

4
, Z is a cone

of type Y+; if θE(x) = 3
2
, Z = Z ′ ∪ L1 where Z ′ is a cone of type P+; if

θE(x) = 7
4
, Z = Z ′ ∪ L1 where Z ′ is a cone of type Y+.
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The proof immediately follows from Lemma 4.23, Lemma 4.24, Lemma
4.26 and Lemma 4.27.

Corollary 4.30. Let Ω, L1 be as in (4.2.1), U an open set. Let E ⊂ Ω be an
(U, h)-sliding-almost-minimal set with E ⊃ L1. Then for each small τ > 0
and each x ∈ L1 ∩ U , we can find a radius r > 0, a sliding minimal cone Z
and a biHölder map φ : B(x, 3r/2)→ B(x, 2r) such that

φ(x) ∈ L1 for x ∈ L1 ∩B(x, 3r/2), ‖f − id‖∞ ≤ τr,

C |x− y|1+τ ≤ |φ(x)− φ(y)| ≤ C−1 |x− y| 1
1+τ ,

B(0, r) ∩ Ω ⊂ φ

(
B

(
0,

3r

2

)
∩ Ω

)
⊂ B(0, 2r) ∩ Ω,

E ∩B(0, r) ⊂ φ

(
Z ∩B

(
0,

3r

2

))
⊂ E ∩B(0, 2r),

(4.4.64)

where C is a constant which only depends on τ and r.

Proof. Since E ⊃ L1, any blow-up limit F of E at x contains L1, so it is a
sliding minimal cone contains L1. By Theorem 4.15, we can get that F = L1

or F = Z ∪ L1, where Z is a cone of type P+ or Y+. If F = L1, by Lemma
4.20, then there exists a ball B(x, r) such that E ∩ B(x, r) = L1 ∩ B(x, r),
thus (4.4.64) hold automatically. If F 6= L1, then F = Z ∪ L1 where Z is
a sliding minimal cone of type P+ or Y+; we get that θE(x) = 3

2
or 7

4
, by

Proposition 4.29, we obtain the conclusion.

4.5 Regularity of sliding almost minimal sets II

In the previous section, we get some regularity for sliding almost minimal
sets with whose boundary is a plane. In this section we will give a similar
result, but with where the boundary is a C1 manifold.

Let Σ ⊂ R3 be a connected closed set such that the boundary ∂Σ is a
2-dimensional C1 manifold. For any x ∈ ∂Σ, the tangent cone of Σ at x is a
half space, and the boundary of the half space is the tangent plane of ∂Σ at
x.

Theorem 4.31. Let Σ be as above, x ∈ ∂Σ, U be a neighborhood of x. Sup-
pose that E ⊂ Σ is an (U, h)-sliding-almost-minimal set with sliding boundary
∂Σ and that E ⊃ ∂Σ. Then for each small τ > 0, we can find a radius ρ > 0,
a sliding minimal cone Z in Ω with sliding boundary L1 and a biHölder map
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φ : B(x, 3ρ/2) ∩ Ω→ B(x, 2ρ) ∩ Σ such that

φ(y) ∈ ∂Σ for y ∈ L1 ∩B(x, 3ρ/2), ‖φ− id‖∞ ≤ 3τρ,

C |x− y|1+τ ≤ |φ(x)− φ(y)| ≤ C−1 |x− y| 1
1+τ ,

B(x, ρ) ∩ Σ ⊂ φ

(
B

(
x,

3ρ

2

)
∩ Ω

)
⊂ B(x, 2ρ) ∩ Σ,

E ∩B(x, ρ) ⊂ φ

(
Z ∩B

(
x,

3ρ

2

))
⊂ E ∩B(x, 2ρ),

(4.5.1)

where Ω is the tangent cone of Σ at x and L1 is the boundary of Ω.
The strategy of the proof will be the same as for Corollary 4.30. We do

not want repeat the whole section above, because most of the statements and
proofs still work. We only give a sketch.

Firstly, Lemma 4.19 is still true when we replace Ω and L1 by Σ and ∂Σ
respectively. That is, it can be stated as follows:
Lemma 4.32. Let Σ and ∂Σ be as in Theorem 4.31. Suppose that E ⊂ Σ is
(U, h)-sliding-almost-minimal. If for each τ > 0, we can find ε1(τ) > 0 such
that if x ∈ E ∩ ∂Σ and r > 0 are such that

B(x, r) ⊂ U, h(2r) ≤ ε1(τ),

∫ 2r

0

h(t)dt

t
≤ ε1(τ), θE(x, r) ≤ θE(x) + ε1(τ),

then for every ρ ∈ (0, 9r/10] there is a sliding minimal cone Zρ
x such that

dx,ρ(E,Z
ρ
x) ≤ τ,

and for any ball B(y, t) ⊂ B(x, ρ),

|H2(E ∩B(y, t))−H2(Zρ
x ∩B(y, t))| ≤ τρ2,

where Zρ
x is a sliding minimal cone in Σx with sliding boundary Tx, where we

denote by Σx and Tx the tangent cone of Σ at x and tangent plane of ∂Σ at
x respectively. If E ⊃ ∂Σ, then we can suppose that Zρ

x ⊃ Tx.
For each x ∈ U ∩ ∂Σ ∩ E, we see that any blow-up limit Z of E at x

is a sliding minimal cone in Σx with sliding boundary Tx, see [11, Theorem
24.13]. If E ⊃ ∂Σ, we have that Z ⊃ Tx, thus Z = Tx or Z = Tx ∪ Z ′, where
Z ′ is a sliding minimal cone in Σx with sliding boundary Tx of type P+ or
Y+. Hence, we get that θE(x) = 1, 3

2
or 7

4
.

Similar to Lemma 4.20, we can get that if E ⊃ ∂Σ is sliding almost
minimal and a blow-up limit of E at x ∈ ∂Σ is the tangent plane Tx of ∂Σ at
that point, then there exists r > 0 such that E∩B(x, r) = ∂Σ∩B(x, r). Once
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we get that, we can show a similar result to Lemma 4.21. That is, if E ⊂ Σ is
(U, h)-sliding-almost-minimal and E ⊃ ∂Σ, then, by putting F = E \ Σ, we
shall have H2(F ∩ ∂Σ ∩ U) = 0 and F is also (U, h)-sliding-almost-minimal.
However, there is not much difference between the proof of these two facts
and Lemma 4.20 and Lemma 4.21. From the later, we get that θF (x) can
only take two values. That is, 1

2
and 3

4
.

Finally, if E ⊂ Σ is sliding almost minimal, x ∈ E ∩ ∂Σ, we can get
that if θE(x) = 1

2
or 3

4
, then the sliding minimal cone Zρ

x which is taken in
Lemma 4.32 is of type P+ or Y+; if E ⊃ ∂Σ and θE(x) = 1, then Zρ

x = Tx; if
θE(x) = 3

2
or 7

4
, then Zρ

x = Tx ∪ Z, Z is of type P+ or Y+.
We also need a lemma like Lemma 4.22.

Lemma 4.33. Let Σ and ∂Σ be as in Lemma 4.32, U be an open set. Let
E ⊂ Σ be a (U, h)-sliding-almost-minimal set. Let ε ∈ (0, 1/100) be a small
number. Suppose that x ∈ U ∩ ∂Σ ∩ E, θE(x) = 1

2
or 3

4
. If B(x, 2r0) ⊂ U ,

and for any y ∈ E ∩ ∂Σ∩B(x, r0) and any 0 < ρ ≤ r0, there exists a sliding
minimal cone Zρ

y in Ωy (the tangent cone of Σ at y) with sliding boundary
∂Ωy such that

dy,r(E,Z
ρ
y ) ≤ ε,

then there exists a radius r > 0 such that for any z ∈ E ∩ B(x, r), we can
find a point a ∈ E ∩B(x, 2r) ∩ ∂Σ satisfying

dist(z, ∂Σ) ≥ (1− 10ε)|z − a|.

Now, we state a similar result as Lemma 4.23 and Lemma 4.26, or rather,
a similar result as Remark 4.25 and Remark 4.28. The proof can be adapted
from the proof of Lemma 4.23 and Lemma 4.26.
Lemma 4.34. Let Σ and ∂Σ be as in Lemma 4.32. Let E ⊂ Σ be a (U, h)-
sliding-almost-minimal set such that θE(x) ∈ {1

2
, 3

2
, 3

4
, 7

4
}, x ∈ E ∩ ∂Σ ∩ U .

If τ ∈ (0, 1) is a small enough number, then we can find ε2(τ) > 0 such that
when

B(x, 10r) ⊂ U, h(20r) ≤ ε2(τ),

∫ 20r

0

h(t)dt

t
≤ ε2(τ), θE(x, 10r) ≤ θE(x)+ε2(τ),

for some r > 0, we have that for any y ∈ E ∩ B(x, r), and any 0 < t ≤ 2r,
there exists a cone or a sliding minimal cone Z(y, t) satisfying

dy,t(E,Z(y, t)) ≤ τ,

where Z(y, t) is a cone when 0 < t < dist(x, ∂Σ), Z(y, t) is a sliding minimal
cone centered at a point in B(x, r) ∩ ∂Σ when dist(y, ∂Σ) ≤ t ≤ 2r.
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Proof of Theorem 4.31. Without loss of generality, we assume x = 0. Let Ω
be the tangent cone of Σ at 0, L1 be the tangent plane of ∂Σ at 0. Then Ω
is a half space, and L1 is its boundary. Let τ > 0 and r > 0 be as in Lemma
4.34. Since ∂Σ is a 2-dimensional C1 manifold, for any ε ∈ (0, τ), we can find
a radius 0 < R < r

2
and a C1 diffeomorphism f : Ω∩B(0, R)→ Σ such that

f(0) = 0, Df(0) = id, f(L1 ∩B(0, R)) ⊂ ∂Σ and

‖Df(x)− id‖ ≤ ε.

We put
F = f−1(Σ ∩B(0, R)).

For any x ∈ F and 0 < t ≤ 2r, by Lemma 4.34, we can find a minimal
cone or a sliding minimal cone Z(f(x), t) such that

df(x),t(E,Z(f(x), t)) ≤ τ,

then
dx,(1−ε)t

(
f−1(E ∩B(0, R)), Z ′(x, t)

)
≤ (1 + ε)τ,

where we assume that Z(f(x), t) is centered at a, and denote

Z ′(x, t) = Df−1(x) (Z(f(x), t)− a) + f−1(a).

We note from Lemma 4.34 that if Z(f(x), t) is a sliding minimal cone, then
it is centered at a point in ∂Σ. Thus a ∈ B(0, R) ∩ ∂Σ, and Z(f(x), t) is a
sliding minimal cone in Σa with sliding boundary Ta.

Since ‖Df(x)−id‖ ≤ ε, we have ‖Df−1(x)−id‖ ≤ 2ε. We take Z ′′(x, t) =
Z(f(x), t)− a+ f−1(a), then

dx,(1−ε)t(Z
′(x, t)), Z ′′(x, t)) ≤ 2ε,

thus
dx,(1−ε)t(F,Z

′′(x, t)) ≤ (1 + ε)τ + 2ε.

Z ′′(x, t) is a minimal cone or a sliding minimal.
Let Ta : R3 → R3 be the translation which send point z to z−a+f−1(a).

Then Z ′′(x, t) = Ta(Z(f(x), t)). If Z(f(x), t) is a sliding minimal cone, then
Z ′′(x, t) is a slding minimal cone in Ta(Σa) with sliding boundary Ta(Ta).
We put y = f−1(a), then it is quite easy to see that Df(y) maps Ω and L1

to Ta(Σa) and Ta(Ta) respectively. Since ‖Df(y) − id‖ ≤ ε, we can find a
rotation Ry centered at point y, which will rotate Ta(Σa) and Ta(Ta) to Ω
and L1 respectively, such that

d0,1(Ry(Z
′′(x, t)), Z ′′(x, t)) ≤ 2ε,
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then R(Z ′′(x, t)) is a sliding minimal cone in Ω with sliding boundary L1.
We take Z(x, t) = R(Z ′′(x, t)) when Z ′′(x, t) is a slding minimal cone,

and take Z(x, t) = Z ′′(x, t) when Z ′′(x, t) is a minimal cone, then

dx,(1−ε)t(F,Z(x, t)) ≤ (1 + ε)τ + 5ε < 7τ.

By Corollary 4.18, we can find a radius r′ ∈ (0, R/2), a sliding minimal
cone Z in Ω with sliding boundary L1, and a biHölder map ϕ : B(0, 3r′/2)∩
Ω→ B(0, 2r′) ∩ Ω such that

ϕ(x) ∈ L1 for x ∈ L1 ∩B(0, 3r′/2), ‖ϕ− id‖∞ ≤ τr′,

(1 + τ)−1(r′)−τ |x− y|1+τ ≤ |ϕ(x)− ϕ(y)| ≤ (1 + τ)(r′)
τ

1+τ |x− y| 1
1+τ ,

B(0, r′) ∩ Ω ⊂ ϕ

(
B

(
0,

3r′

2

)
∩ Ω

)
⊂ B(0, 2r′) ∩ Ω,

F ∩B(0, r′) ⊂ ϕ

(
Z ∩B

(
0,

3r′

2

))
⊂ F ∩B(0, 2r′).

We now take φ = f ◦ ϕ. Then φ : B(0, 3r′/2) ∩ Ω → Σ is a biHölder map,
and we can easily check that (4.5.1) hold if we take ρ = r′/2.

4.6 Existence of two dimensional singular min-
imizers

Let Σ ⊂ R3 be a connected closed set such that the boundary ∂Σ is a 2-
dimensional connected compact C1 manifold. Let G be any abelian group,
L be a subgroup of the Čech homology group Ȟ1(∂Σ;G). We say a compact
set E ⊃ ∂Σ spans L if L is contained in the kernel of the homomorphism
induced by the inclusion map ∂Σ→ E. We set

C = {E ⊂ Σ | E spans L}.

From paper [18], we see that there exist a set E0 ∈ C , we call it a Čech
minimizer, such that

H2(E0 \ ∂Σ) = inf
E∈C
H2(E \ ∂Σ). (4.6.1)

Let’s check that E0 is also sliding minimal with boundary ∂Σ. Let {ϕt}0≤t≤1

be any sliding-deformation in Σ. We put F = ϕ1(E0), denote by i : ∂Σ→ E0

and j : ∂Σ→ F the inclusion maps. We consider the map

ψ : ∂Σ× [0, 1]→ F, ψ(x, t) = ϕt(x).
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It is continuous, and ψ(x, 0) = j(x), ψ(x, 1) = ϕ|∂Σ(x), thus the maps j :
∂Σ → F and ϕ|∂Σ : ∂Σ → F are homotopy equivalent. Then j∗ = (ϕ|∂Σ)∗,
where for any map between two topology spaces f : X → Y , we denote by f∗
the homomorphism Ȟ1(X;G)→ Ȟ1(Y ;G) induced by the map f . However,
we know that ϕ1|B = ϕ1|E0 ◦ i, thus

j∗ = (ϕ1|B)∗ = (ϕ1|E0)∗ ◦ i∗.

But we know that i∗(L) = 0, thus j∗(L) = 0, and F ∈ C , so

H2(F \ ∂Σ) ≥ H2(E0 \ ∂Σ),

E0 is sliding minimal.
We now consider an analogous topic, that replace Čech homology by sin-

gular homology. Since ∂Σ is a two dimensional C1 manifold, the singular
homology groups and Čech homology groups coincide, that is, H1(∂Σ;G) =
Ȟ1(∂Σ;G). We say that a compact subsets E ⊃ ∂Σ spans L in singular ho-
mology, if L is contained in the kernel of the homomorphism H1(∂Σ;G) →
H1(E;G) induced by the inclusion map ∂Σ → E. We consider another col-
lection of compact sets

S = {E | E spans L in singular homology}.

It is quite easy to see that S ⊂ C , that is because there is a canoni-
cal homomorphism from singular homology group to Čech homology group
H1(E;G)→ Ȟ1(E;G), and the following diagram commutes:

H1(∂Σ;G) // H1(E;G)

��
Ȟ1(∂Σ;G) // Ȟ1(E;G).

If E spans L in singular homology, then from the above commutative dia-
gram, we can get that E spans L in Čech homology, thus S ⊂ C . Our goal
is to find a singular minimizer, that is, we want to find a set E ∈ S , we call
it a singular minimizer, such that

H2(E \ ∂Σ) = inf
F∈S
H2(F \ ∂Σ).

Proposition 4.35. Let Σ, G, L be as above. Then there exists a singular
minimizer.
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Proof. Let E0 be a Čech minimizer. We know, from above discussion, that E0

is sliding minimal. Thus for any x ∈ E0, there is a neighborhood of x where
E0 is biHölder equivalent to minimal cone and by a biHölder mapping that
preserves ∂Σ. By a same argument as in [10, Section 6], we conclude that E0

is Hölder neighborhood retract. Let’s check that E0 is a singular minimizer,
It is sufficient to show that E0 spans L in singular homology. Indeed, the
canonical homomorphism H1(E0;G) → Ȟ1(E0;G) is an isomorphism since
E0 is neighborhood retract, see for example [17,27]. Now E0 is a Čech mini-
mizer, E0 spans L in Čech homology, thus E0 spans L in singular homology,
and we get the conclusion.
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