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Résumé

Les isolants topologiques sont des isolants qui ne peuvent étre différenciés des isolants
atomiques que par une grandeur physique non locale appelée invariant topologique.
L’effet Hall quantique — et son équivalent sans champ magnétique, 'isolant de Chern
—sont des exemples d’isolant topologique. En présence d’interactions fortes, des exci-
tations exotiques appelées anyons peuvent apparaitre dans les isolants topologiques.
L’effet Hall quantique fractionnaire (EHQF) est la seule réalisation expérimentale
connue de ces phases.

Dans ce manuscrit, nous étudions numeériquement les conditions d’émergence
de différents isolants topologiques fractionnaires. Nous nous concentrons d’abord
sur I’étude de 'EHQF sur le tore. Nous introduisons une méthode de construction
projective des états EHQF les plus exotiques, complémentaire par rapport aux méth-
odes existantes. Nous étudions les excitations de basse énergie sur le tore de deux
états EHQF, les états de Laughlin et de Moore-Read. Nous proposons des fonctions
d’ondes pour les décrire, et vérifions leur validité numériquement. Grace a cette
description, nous caractérisons les excitations de basse énergie de ’état de Laughlin
dans les isolants de Chern. Nous démontrons également la stabilité d’autres états
de 'EHQF dans les isolants de Chern, tels que les états de fermions composites,
Halperin et NASS. Nous explorons ensuite des phases fractionnaires sans équiva-
lent dans la physique de PEHQF, d’abord en choisissant un modéle dont 'invariant
topologique a une valeur plus élevée, puis en imposant au systéme la conservation
de la symétrie par renversement du temps, ce qui modifie la nature de 'invariant
topologique.

Mots-clés:
effet Hall quantique, isolant topologique, isolant de Chern, anyon, frac-
tionalisation
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Abstract

Topological insulators are band insulators which are fundamentally different from
atomic insulators. Only a non-local quantity called topological invariant can distin-
guish these two phases. The quantum Hall effect is the first example of a topological
insulator, but the same phase can arise in the absence of a magnetic field, and is
called a Chern insulator. In the presence of strong interactions, topological insula-
tors may host exotic excitations called anyons. The fractional quantum Hall effect
is the only experimentally realized example of such phase.

In this manuscript, we study the conditions of emergence of different types of
fractional topological insulators, using numerical simulations. We first look at the
fractional quantum Hall effect on the torus. We introduce a new projective con-
struction of exotic quantum Hall states that complements the existing construction.
We study the low energy excitations on the torus of two of the most emblematic
quantum Hall states, the Laughlin and Moore-Read states. We propose and validate
model wave functions to describe them. We apply this knowledge to characterize the
excitations of the Laughlin state in Chern insulators. We show the stability of other
fractional quantum Hall states in Chern insulators, the composite fermion, Halperin
and NASS states. We explore the physics of fractional phases with no equivalent in a
quantum Hall system, using two different strategies: first by choosing a model with a
higher value of the topological invariant, second by adding time-reversal symmetry,
which changes the nature of the topological invariant.

Keywords:
quantum Hall effect, topological insulator, Chern insulator, anyon, frac-
tionalization
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Introduction

Categorizing and understanding the different phases of matter is one of the primary
goals of physics. Actions as trivial as boiling a pot of water or watching ice melt in
a glass provide us with the daily illustration of a phase transition. Even focusing on
solids yields countless different phases. A solid can indeed be described by its mag-
netic properties, or its ability to conduct electricity, among other properties, which
all come with many nuances. Condensed matter physics aims at understanding the
properties of all different types of condensed phases (solids and liquids). Most of-
ten, these properties arise from the collective behavior of many atoms, and have
no equivalent in few-particle systems. This illustrates the concept of emergence,
whereby "the behavior of large and complex aggregates of elementary particles [...]
is not to be understood in terms of a simple extrapolation of the properties of a few
particles" [4]. The complexity originates in the interaction between individual con-
stituents (electrons in many cases), and, at large scales, makes it extremely hard to
derive any condensed matter property from first principles. To approach condensed
matter problems, one thus most often relies on effective models and field theories.

Landau’s theory of phase transitions is a paradigmatic example of such an effec-
tive theory of condensed matter. Within this framework, one can define a physical
quantity called order parameter, whose mean value changes at the phase transition.
For example, the net magnetization takes a non-zero value in a ferromagnetic state,
and vanishes in the paramagnetic phase. A key property of Landau’s order parame-
ter is its local character: in our example, the magnetic nature of the phase is directly
related to the fluctuations of the local magnetization at the microscopic level. The
positive correlation of the local magnetization at two different points of the sys-
tem define the presence of ferromagnetic order. The notion of order parameter is
strongly tied to that of symmetry breaking. Indeed, a disordered system is invari-
ant under a large set of continuous transformations, corresponding to a continuous
symmetry group. Upon ordering, the system is no longer invariant under some of
these transformations. In a ferromagnetic solid, for example, the non-zero net mag-
netization spontaneously breaks the rotational invariance of the system by choosing
a privileged direction for the orientation of the magnetic moments. Landau’s theory
of symmetry breaking has been very successful at describing many types of phase
transitions, such as the liquid-solid transition, or the transition from the ordinary
conductor to the (BCS) superconductor.

The integer and fractional quantum Hall effects, respectively discovered in
1980 [83] and 1982 [162], both fall outside of this paradigm. These phases arise
at low temperature when a gas of electrons is confined to two dimensions and sub-
jected to a strong perpendicular magnetic field. In these conditions, an electric
current traversing the sample provokes the apparition of an electric voltage in the
perpendicular direction. Upon varying the strength of the magnetic field, the as-
sociated transverse conductivity — or Hall conductivity — forms plateaus while the



longitudinal conductivity vanishes. On each plateau, the Hall conductivity is equal
to a rational (integer in the case of the integer quantum Hall effect) multiple of
the quantum of conductance. The bulk of the system behaves like an insulator
(characterized by a gap) but differs from an atomic insulator (defined as a solid
where the electronic density is highly localized around each atom, with negligible
electronic density in between atoms). In spite of this difference, no local measure-
ment can make a distinction between the two phases. In other words, no local order
parameter can be defined to distinguish them. However, a global parameter called
a topological invariant can be used to characterize these phases. By definition, a
topological invariant is a quantum number that can be computed in any gapped
system (insulator), and is insensitive to the microscopic details of the system. It
stays invariant for any adiabatic perturbation of the system, as long as this per-
turbation does not close the gap. A phase that is characterized by a non-trivial
topological invariant is called a topological phase. In the case of the integer quan-
tum Hall effect, the number of topologically protected edge modes is a topological
invariant which is different on each conductivity plateau. It can be determined by
a transport experiment, a non-local measurement. The atomic limit insulator is a
trivial insulator, since any edge mode it may have can be gapped out.

The quantum Hall effect was the first example of a topological insulator. Re-
cently, more topological insulators have been defined, and sometimes observed ex-
perimentally. First, it was predicted in 1988 [60] that phases analogous to the
quantum Hall effect could be realized in the absence of a magnetic field. These
phases, dubbed Chern insulators, are described by the same topological invariant
(the Chern number) as the integer quantum Hall effect, and thus fall in the same
universality class. They were observed experimentally for the first time in 2013 in
solid state systems [32]. Due to the chirality of their edge modes, integer quantum
Hall and Chern insulator systems break time reversal symmetry. The theoreti-
cal prediction in 2005-2006 |77, 23| (and subsequent experimental observation in
2007 |85, 84]) of topological insulators preserving this symmetry was a big step in
this field. It opened the door to the realization of topological phases in other di-
mensions, since topological insulators preserving the time-reversal symmetry can
also exist in three dimensions, unlike the quantum Hall effect. Moreover, imposing
other symmetries on a system — such as charge conjugation or parity — allows to
realize other types of topological phases. All non-interacting topological phases have
been classified according to the number of spatial dimensions, and their preserved
symmetries [145, 80].

Classifying the interacting topological phases is a much more complicated, open
problem, which comes at the intersection of two of condensed matter most inter-
esting fields: topological phases, and strongly correlated phases. The fractional
quantum Hall effect is the first example of a topological phase where the strong
interactions between electrons cause an entirely new topological phase to emerge.
The various plateaus of the Hall conductivity attest to the existence of several such
fractional phases. One of the most striking features of the fractional quantum Hall
effect is the nature of its excitations, which behave like fractions of electrons, called



anyons. Indeed, their charge is a fraction of the electronic charge, and their ex-
change statistics is neither that of a boson nor that of a fermion. The wave function
of a group of identical particles returns to itself up to a phase after two particles are
exchanged. This phase is respectively 0 and 7 for bosons and fermions, but takes
different values for anyons. For even more exotic anyons, called non-abelian anyons,
the knowledge of each anyon’s coordinates is not enough to specify the state of the
system, and the form of the wave functions after successive exchanges depends on
the order in which these exchanges are performed. The formation of anyons — a
process sometimes called fractionalization — is accompanied by an extremely robust
degeneracy of the ground state, which only depends on the genus of the surface, not
on the details of its geometry. The expression fopological order is often used to qual-
ify a phase where fractionalization takes place. Besides their fascinating properties,
non-abelian anyons could have potentially revolutionizing applications in the field of
quantum computing. Indeed, as theorized by Kitaev [79], the quantum state formed
by a system of non-abelian anyons could be used as a unit storage of information,
or qubit. The exchange of two particles — a unitary operation — could be used as a
logical gate to modify the state of this qubit. The fact that no local measurement
can lift the system degeneracy guarantees that no local perturbation will change its
state, and would constitute a protection against decoherence.

Fractional quantum Hall phases may host both abelian and non-abelian anyons.
They are in fact the only credible candidate for the realization of these exotic ex-
citations. Following the example of non-interacting topological phases, we can very
well imagine that they are merely the representatives of some universality classes,
and that analogous phases can be realized in other systems. In the absence of inter-
actions, Chern insulators are extremely similar to the integer quantum Hall effect.
When interactions are turned on, they are thus the primary candidates to realize
topological order in a different setting. The absence of need for a magnetic field
would make them more versatile materials for the engineering of electronic devices.
In fact, shortly prior to the beginning of my PhD, several simple Chern insulator
lattice models were proposed, and numerically shown to host the simplest of all frac-
tional quantum Hall states [110, 146, 131], the Laughlin state. This fractional phase
was dubbed fractional Chern insulator. In this context, several questions related
to the realization of topologically ordered phases in the absence of a magnetic field
arise.

The first natural question concerns the limits of the analogy between the frac-
tional quantum Hall effect and its lattice realization in Chern insulators. Besides
the Laughlin state, is it possible to realize other fractional quantum Hall states in
a Chern insulator? It is particularly important to quantify the stability of these
new phases, by identifying the lattice models in which they might arise, the form
of the interaction that favors them, and the range of parameters that guarantee
their stability. The stability of a phase is directly related to the nature of its low
energy excitations, and this question should thus also be explored in FCIs. Non-
abelian phases have been numerically identified in fractional Chern insulators, but
mostly in the presence of rather unrealistic interactions [24, 166]. The question of



the realization of these phases in realistic lattice models is thus also extremely rel-
evant. Also, can Chern insulators host entirely new phases, that have no fractional
quantum Hall equivalent? Moving further away from the fractional quantum Hall
physics, topological insulators with additional symmetries (such as time-reversal)
offer a new ground for the exploration of strongly correlated topological phases,
and we will try to identify some of these new phases. The results presented in this
manuscript aim at offering a better understanding of these questions.

To explore the physics of topologically ordered phases, I relied on finite size
calculations, which are necessary to assess the stability of a phase. In particular,
I used exact diagonalization, which allows one to obtain the low energy spectrum
and eigenstates of a Hamiltonian without making any assumptions on the nature
of the ground state. This is particularly useful to assess the nature and stability
of a phase, to avoid any bias towards the fractional phase or any competing phase.
The drawback of this method is the limited sizes that can be reached using exact
diagonalization. Drawing conclusions that hold in the thermodynamic limit from
results obtained with very few particles (N ~ 10) is the main difficulty of this
method. In these conditions, one has to work with maximally symmetric systems,
to reduce the dimension of the effective spaces to be diagonalized. As a result, I
performed all of my numerical simulations in closed systems, which have the maximal
symmetry. For a 2D lattice system, it means using periodic boundary conditions
in both directions, to preserve the translation symmetries. Fortunately, fractional
quantum Hall systems are known to have a short correlation length, allowing the
observation of the signatures of these phases even in very small systems.

The physics of the fractional quantum Hall effect on the torus can be an ex-
tremely useful guide to the physics of fractional Chern insulators. We will see that
not all Chern insulators can become fractional Chern insulators when interactions
are turned on. It can therefore be insightful to clarify the properties of the fractional
quantum Hall effect in the system where it appears in its purest, most stable form.
The torus is an appropriate choice for many reasons: it is a closed surface and has
a non-trivial genus 1. Most importantly, it has the same genus as a lattice system
with periodic boundary conditions, the geometry that I used for all FCI numerical
simulations. This point is crucial, since the physics of topologically ordered phases
depends on few parameters but the genus of the surface. To explore the low energy
excitations above the Laughlin state on the torus, I developed a generalization of
the single mode approximation on the torus [138]. This approach [49, 50] describes
the low energy excitations of a fractional quantum Hall state as some density mod-
ulations of the ground state. This study served mostly as a guide to replicate the
single mode approximation in FCIs. Finding a realistic model for the realization of
non-abelian excitations in a FCI is a complicated task, the completion of which goes
beyond the scope of this manuscript. However, the projective construction [30] of
the non-abelian quantum Hall states in a continuous system might be a promising
first step. Indeed, as proposed in Refs. [128, 112, 139, 17, 119, 163, 183, 47, 99, 123],
non-abelian order could emerge in bilayer systems thanks to this construction. It
builds the non-abelian Read-Rezayi states of the fractional quantum Hall effect us-



ing the simpler Laughlin state as a building block. While the construction is well
known on the sphere, difficulties arise on the torus. I realized that the projective
construction was not complete in finite size on the torus, and participated in build-
ing the tools that would make it complete in the bosonic case [137]. T numerically
implemented these new tools, and generated the trial states, so that they could be
systematically compared to the states obtained from exact diagonalization. To that
end, I wrote an optimized exact diagonalization code for the n-body contact interac-
tion on the torus, which is the model interaction for the Read-Rezayi states. I used
this code to generate the Read-Rezayi states on the torus, as well as all numerically
accessible quasihole states, which allowed me to prove the validity and completeness
of the construction. T also used this code to obtain the low energy excitations of the
Moore-Read state, one of the states of the Read-Rezayi series. Representing this
spectrum in a meaningful way allowed me to identify the low energy mode above
the Moore-Read state as a single mode. I also showed that the trial states obtained
using the single mode approximation were excellent approximations of these exact
states.

Focusing on fractional Chern insulators, I first worked on the identification of the
composite fermion states, which are fractional quantum Hall states different from the
Laughlin state, in these models. Using the models that had already been identified
as good hosts to the Laughlin state, I used exact diagonalization to find evidence of
the composite fermion states in the low energy spectrum of these systems [98]. The
comparison of the number of quasihole states of these phases to their number in the
equivalent FQH system was a strong test for the recently developed mapping [24].
Entanglement spectroscopy [97, 153] — a numerical method to obtain information
on the excited states using only the ground state — proved especially helpful to
confirm the nature of the phase. I also performed an extensive numerical study of
the Laughlin state on the ruby lattice Chern insulator model. I further developed
and numerically implemented the method introduced in Ref. [89] to define tilted
boundary conditions of the lattice. This method allows for a large freedom in the
choice of the geometric aspect ratio of the system, a quantity that can greatly
influence the value of the manybody gap. T used this method to show that even
small systems have very little finite size effect, and thus justify the extrapolation
of finite size results to the thermodynamic limit. Using this exact diagonalization
study, I worked on generalizing the single mode approximation to fractional Chern
insulators, thus providing insight into the nature of the low energy excitations of this
phase. The dispersion relation of these low energy excitations was previously hidden
in the incomplete information provided by the energy spectrum. After pointing out
the similarities of fractional Chern insulators with the fractional quantum Hall effect,
I worked on the fractional phases that were supported by Chern insulators with a
Chern number larger than one [154]. In some conditions, these systems host phases
that have no fractional quantum Hall effect analog. Some of these phases were
not completely understood at the time, but prompted more analytical as well as
numerical research [174, 176, 152] that unveiled their subtle properties.

Finally, I studied an interacting topological insulator where time-reversal sym-



metry is preserved. A simple model for such a system consists in gluing together two
copies of a Chern insulator with opposite chiralities. By adding strong interactions
in each copy, one can realize two Laughlin states with opposite chiralities. This
system is trivially gapped, since the copies are decoupled, and the existence of a gap
in the total system is guaranteed by the presence of a gap in each individual copy.
I studied the influence of different types of coupling between the two copies on the
stability of this phase [136]. I performed an extensive exact diagonalization study,
and showed that the chosen model hosted a very robust phase, even more robust
than the phase realized by gluing together two copies of the Laughlin state with the
same chirality.

This manuscript is organized as follows. The first chapter introduces the physics
of non-interacting topological insulators, focusing on the integer quantum Hall ef-
fect, Chern insulators, and topological insulators preserving time reversal symmetry.
The second chapter is an introduction to the physics of strongly interacting topolog-
ical phases. The third chapter focuses on the Read-Rezayi states of the fractional
quantum Hall effect and their low energy excitations, as realized on the torus. The
fourth chapter is devoted to fractional Chern insulators. The fifth chapter proposes
a strongly interacting topological insulator model preserving the time reversal sym-
metry and analyses its stability. This manuscript is based on the five articles that
I have contributed to [154, 138, 137, 98, 136]. The fifth chapter is solely based on
Ref. [136], but the third and fourth chapters present different aspects of the re-
maining articles to provide a more unified perspective on the topics I have worked
on.
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Condensed matter physics aims at understanding the ways in which matter or-
ganizes itself depending on the external conditions such as temperature, pressure,
electric or magnetic field, etc. Gases, liquids, solids or magnets are some of the most
commonly known phases of matter but a closer examination using the laws of quan-
tum mechanics yields a multitude of other phases. Superconductors, Bose-Einstein
condensates, charge density waves, antiferromagnets are among the many examples
of phases that have been theoretically studied and experimentally observed in the
twentieth century. All of these phases share a fundamental property: they can be
understood using the concept of symmetry breaking introduced by Landau in the
1930s. This theory postulates that different phases of matter can be characterized
by a local order parameter, which is invariant under the transformations of a given
symmetry group. For instance, the density distribution in a liquid has a continuous
rotational invariance, which is broken when the atoms order to form a solid.

The discovery of the integer quantum Hall effect shed light on a new type of
phases, which could not be described within the theory of Landau symmetry break-
ing. The integer quantum Hall effect is indeed the first example of a topological
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| BT Ry
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Figure 1.1: Basic setup for a Hall experiment. A voltage difference Vy is applied on
the sample, resulting in current /. A magnetic field B applied along the z direction
results in a voltage drop Vp in the direction transverse to the current I. The Hall
resistance Ry = Vi /I thus measured is proportional to the magnetic field.

phase, a phase that cannot be described by a local order parameter, but is rather
defined by a topological invariant. The goal of this chapter is to introduce the
physics of non-interacting quantum Hall systems, and to understand how it fits in
the more general framework of phases that share the same topological invariant,
the Chern number. I will also present its time-reversal equivalent, the quantum
spin Hall effect, and show that it can be described by another type of topological
invariant.

1.1 The integer quantum Hall effect

1.1.1 Experimental observation

In 1879, E. Hall discovered [63| that applying a magnetic field and an electric field
on a conductor leads to a current perpendicular to these two fields. Conversely,
applying a current I to a sample subjected to a magnetic field creates a transverse
voltage drop V. Fig. 1.1 gives the basic experimental setup for this observation.
This phenomenon now called the classical Hall effect can be entirely understood
using classical mechanics: as it is accelerated through the sample by an electric field
E, an electron of charge —e is subjected to the influence of the Lorentz force

Fp = —c(E+vxB) (1.1)

For transverse electric and magnetic fields £ = Fe, and B = Be, (see Fig. 1.1), it
results, in stationary regime, in a drift velocity perpendicular to the current direction
Ex B
V=
The resulting Hall current density is 7 = —epv where p is the electronic density.
Hence the Hall resistivity (which in two dimensions is equal to the resistance)

FE B
RH:ny:jy:—% (1.3)

(1.2)
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Measuring the Hall resistance Ry = Vi /I as shown in Fig. 1.1 is a convenient way
to obtain the charge sign and density p of carriers, since Ry is proportional to these
quantities. Thanks to this relation, the Hall effect enabled the discovery of holes as
carriers in p-conducting semiconductors. To this day, using a Hall effect sensor is
still one of the preferred ways to measure the amplitude of a magnetic field.

About a century after the discovery of E. Hall, in 1980, Von Klitzing et. al. [83]
discovered that the electric response in a Hall experiment could drastically differ
from the classical behavior in some specific conditions. When the geometry of the
conducting sample is such that the electrons are confined to two dimensions, at
very low temperature (T < 4K) and high magnetic field (a few tesla), the integer
quantum Hall effect occurs: the Hall resistivity p., = Ry is not proportional to the
magnetic field, but rather quantized, forming plateaus at values %, where p is an
integer, and h is the Planck constant. Meanwhile, the longitudinal resistivity py.
vanishes. The results of the experiment of Ref. [83] are shown in Fig. 1.2. It is also
useful to define the conductivity tensor o;;, which is the inverse of the resistivity
tensor p;;. When the longitudinal resistivity vanishes, the Hall conductivity o, is
just the inverse of the Hall resistivity pgy.

Realizing an integer quantum Hall effect experiment calls for the confinement
of an electronic gas in two dimensions. Among the different implementations, this
can be achieved by carefully growing (using molecular beam epitaxy — MBE) one
type of semiconductor (GaAs) on top of another (Al,Ga;_,As). These two materi-
als are chosen for their similar lattice constants, accompanied by slightly different
band gaps. Upon doping, the electrons are trapped in the atomically thin interface
between the two compounds, thus effectively creating a 2D gas of electrons.

The quantized value of the Hall resistivity is achieved with an extreme accuracy,
to a degree that is unprecedented in condensed matter physics (a relative error of
the order of 107 is observed [9, 39, 75, 70, 124]). This accuracy is so remarkable,
that it is now used in metrology to define the fundamental unit of resistance, or Von
Klitzing constant

h
Ry = — = 25.812806k) (1.4)

e2

This value is independent of the device in which the integer quantum Hall effect
occurs: it does not depend on the disorder or concentration of impurities in the
sample. Nor does it depend on the material itself: the integer quantum Hall effect
has been observed in materials as diverse as AlGaAs, GaN heterostructures, strained
Si quantum wells in Si-SiGe heterostructures, and graphene. A quantity whose value
does not depend on the microscopic details of the material is the physical definition
of a well defined mathematical concept: the topological invariant. This point will
be further detailed later in the manuscript.
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Figure 1.2: Results of the Von Klitzing experiment, reporting the discovery of the
integer quantum Hall effect in Ref. [164]|. The graph shows the evolution of the
transverse resistivity p,y, = Ry and of the longitudinal resistivity p,. = Rr = V. /1
as a function of the magnetic field. At low magnetic field, p., is proportional to
B: this is the classical Hall effect. For higher fields, p,, becomes quantized and p.;
vanishes.
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1.1.2 Landau levels
1.1.2.1 Energy spectrum

The quantization of the Hall resistance, as well as its expression in terms of the
Planck constant h are clear signs that quantum mechanics is needed to explain the
discovery of Von Klitzing ef. al.. In this paragraph, we solve the Hamiltonian of a
non-relativistic single electron confined in the (x,y) plane, in a transverse magnetic
field B = Be,. The Hamiltonlan writes

H_

= 5 (P + eA (7))? (1.5)

where m, is the mass of the electron, —e the charge of the electron, A is the vector
potential that generates the magnetic field B = V x A(#). p = (Pz,py) and
# = (&,7) are the conjugate momentum and position operators of the electron, that
verify the canonical commutation relations

(.0,) = ih, [2.5,] =0 (1.6)

For a uniform magnetic field, A (7) is a linear function of the particle coordinates.
As a result of this spatial dependency, the momentum does not commute with the
Hamiltonian, and the system is not translationally invariant. Additionally, p is a
gauge dependent operator (since A (#) is defined up to a gauge choice). We define
the operator

II = (II,,IIy) = p+ eA(F) (1.7)

which is a more physically relevant quantity, since it is proportional to the electron
velocity, and thus gauge independent. In terms of the gauge independent momen-
tum, the Hamiltonian simply writes

=t (I + 112) (1.8)

 2me

The two components of IT have a non-vanishing commutator:

[chvﬂy] = 6([17}7141/]_[173;7"41:}) (1.9)

B 0Ay . . 0A, . . 0A; . . . 0A; . . .
= e( 5 (D, T] + oy [z 4] pe [y, #] 9y [py,y])

where we have used the relation

01,1 (02)] = 28101, (1.10)
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which is valid for any operators Op,O2 whose commutator is a number. Using
Eq. (1.6), we find that

0A 0A
I, II,] = —ieh|—%— —=
[Tz, 11, e <0:1: 8@/)
= —ieh(VXxA)- e,
= —iehB
h2
= _iﬁ (1.11)
B

where we have introduced the magnetic length

Ig = \/?B (1.12)

As a result, II, and II, are canonically conjugate operators, and the Hamiltonian
Eq. (1.8) is that of a one-dimensional harmonic oscillator, where II, and II, play
the respective roles of a standard oscillator’s position and momentum operators. A
convenient way to solve this Hamiltonian is to introduce ladder operators

lB lB

T e /2

such that they obey the canonical commutation relation

a (T1, — 4IT,) al = (IL,, + 411,) (1.13)
[a, aq ~ 1. (1.14)
In terms of the ladder operators, the Hamiltonian writes
h? 1
H = 5 (aTa—i— >
mely 2

= T, (aTa+;> (1.15)

where w, is the cyclotron frequency and writes

h

— 1.16
mel% ( )

We =
It follows that the eigenvalues of the Hamiltonian are those of the number operator
a'a. The spectrum of the two-dimensional non-interacting electron gas in a magnetic
field thus consists of a series of energy levels, all separated by the same energy gap
hw,, called Landau levels, and labeled by a positive integer n

Ep = hwe <n—|—;) (1.17)

The lowest energy level (n = 0) is also called lowest Landau level (LLL).
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Figure 1.3: Energy spectrum of a non-interacting bidimensional gas of electrons
immersed in a transverse magnetic field. The spectrum consists of perfectly flat,
degenerate Landau levels. Each level is split into two due to the Zeeman effect. In
the symmetric gauge (see Eq. (1.22)), the states in each Landau level are labeled
with a positive integer m.

Note that we have omitted the Zeeman term in the Hamiltonian, which lifts the
degeneracy between electrons of opposite spin:

Hz =gupS-B = —gupS.B (1.18)

where pup is the Bohr magneton, g is the Landé g-factor, and S is the spin angular
momentum of the electron. In GaAs, the value of the g-factor is g ~ —0.4, causing
a splitting of the Landau levels AE; ~ 0.33B [T'] K, which is much smaller than the
Landau level separation in this same material: fiw. ~ 24B[T] K. As a result, each
Landau level will split into two bands with a given value of S, , but the Landau
levels will not mix due to the Zeeman effect. Note that this small energy splitting
is actually increased by the interactions. The electronic many-body wave function
must be antisymmetric, which can be achieved if the spatial part is antisymmetric
(with a symmetric spin part of the wave function), or symmetric (in which case the
spin part must be antisymmetric). Since a repulsive interaction is better screened by
a spatially antisymmetric wave function, there is a tendency towards a ferromagnetic
ordering, and double occupations correspond to a higher energy. The Zeeman gap
is thus increased, with a corrective factor of the order of the Coulomb interaction

e; ~ 4.6y/B|[T] (1.19)
elp

The split Landau levels are represented in Fig. 1.3.
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1.1.2.2 Degeneracy

Defining the ladder operators is enough to obtain the eigenvalues of the Hamilto-
nian, but it does not suffice to fully determine the quantum states. Indeed, the
initial Hamiltonian (1.5) was written in terms of {wo commuting pairs of conjugate
operators: 2, py, and 9, p,. Eq. (1.15) uses only one such pair (a, a'), so there must
be an additional pair of conjugate operators that commute with H, a and af, and
the Landau levels must be degenerate. In a similar manner to Eq. (1.7), we define
the pseudo-momentum

= (ﬁm,ﬁy) =P — eA(7) (1.20)

whose components, while being separately gauge dependent, have canonical com-
mutation relations:
- k2
[HI,HZ/} =iz (1.21)
B
I, and ﬁy do not generally commute with II;, II,, and thus with the Hamiltonian.
However, the treatment of the Hamiltonian was completely gauge independent until
this point, and we can choose a gauge that fixes this issue. The mixed commutators

[ﬁi, Hj} vanish in the symmetric gauge, which is defined as:

(_g7 "i)v 0) (122)

Thanks to the canonical commutation relation (1.21) of I, and II,, we can define
the new ladder operators similarly to those of Eq. (1.13)

b:li(ﬁ +z‘ﬁ) bT:li(ﬁ —2'1:[) (1.23)

w2\t w2\t '

which again verify the canonical commutation relation [b, bT] = 1. Since the system
is invariant under any rotation around the z axis, the z component of the angular
momentum L, is conserved, and commutes with the Hamiltonian. In terms of the
number operators a'a and b'b, it writes:

L.=h (aTa - bTb) (1.24)

We can thus diagonalize H and L, simultaneously. We call —m# the eigenvalue of
L,: m is an integer that can take any value superior to the opposite of the Landau
level index —n (see Fig. 1.3 for a representation of the energy levels as a function of
n and m). In the symmetric gauge, the eigenstates of H are thus labeled with two
integers n, m, and write:

()™ (ah)"
Vi m)l /o)

|n,m) = |0, 0) (1.25)
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In the lowest Landau level, the wave functions write:

$om (r) = (r[0,m) = (1.26)

where z = x—iy ' and Z = z+1y. In the lowest Landau level, apart from a Gaussian
factor, the eigenstates of L, and H are monomials in z. Any wave function can be
written in this basis, and is thus a polynomial in z. The corresponding density only
depends on the distance to the center r, and writes

_ 12 r2
T‘2m6 213,

- l%,mQﬂ'me!

pm (1) = |pom (r) [* (1.27)
The maximum density of probability for an electron in the orbital m of the symmetric
gauge is along a circle of radius v/2mlg, and most of the electronic density is localized
along this circle.

While the physical meaning of IT is not obvious from the definition of Eq. 1.20,
the pseudo-momentum has a semi-classical interpretation. Let us first express the
position operator as a function of the gauge independent momentum and the pseudo-
momentum, in the symmetric gauge:

A I, II,

= — - = 1.28
y eB eB ( )
I ﬁy 1,
v " eB + eB

The classical equation of motion for an electron in a magnetic field writes
mef = —e 1 X B (1.29)
We obtain the expression of the velocity by integrating this equation

i = —we(§—Y) (1.30)
= we(d—X)

where R = (X,Y) are integration constants, and represent a constant of motion:
it is the guiding center of the electron. Moreover, we know from Eq. (1.8) that the
velocity can also be expressed as a function of the gauge independent momentum
7 = II/m.. Consequently

10,

i o= Y- % 1.31

y eB (1.31)
i

A i

v t B

'!One could easily absorb the minus sign in the definition of z by changing the sign of the
magnetic field, to obtain the more conventional z = = + iy.
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Comparing Egs. (1.28) and (1.31), we immediately see that in the symmetric gauge,
the pseudo-momentum is proportional to the guiding center coordinates

11, I1,
B Y=
We can thus deduce the commutation relation of the coordinates of the guiding
center from those of 11, and II, (see Eq.(1.21)), associated with the corresponding
Heisenberg inequality

(1.32)

[(X,Y] =il% AX AY > 2nl% (1.33)

In a quantum Hall system, a quantum state thus occupies a minimal surface of 2#[%:
in a given Landau level, the electron can never be fully localized. This inequality
allows us to compute the number of states allowed on a given area A

A A AB
T AXAY 273 hje (1:34)

N

where h/e is the magnetic quantum flux unit, and AB is the magnetic flux through
the surface A. The number of states in a Landau level for a given surface is thus
equal to the number of magnetic flux quanta that pierce this surface.

1.1.3 Eigenstates in the torus geometry

In the previous section, we derived the spectrum of a free electron confined in two
dimensions in a magnetic field using a gauge-independent method, and introduced
the symmetric gauge (1.22) so that we could define the ladder operators b, bf, and
have a complete set of quantum numbers to determine the eigenstates. While very
convenient for rotationally invariant systems, this treatment is more cumbersome
for systems with a translational invariance. This is the case of many of the systems
presented in this thesis: among the diverse two-dimensional systems that I have
studied during my PhD, most have periodic boundary conditions. To reflect this
orientation, I will derive here the wave function for a single electron on a rectangular
torus spanned by the vectors L,e, and Lyey, subjected to a magnetic field Be..

The Landau gauge is the most convenient one for a system with translational
invariance

Ap (7) = B(0, —i, 0) (1.35)

In this gauge, the Hamiltonian (1.5) does not depend on the second position coor-
dinate y, and the eigenvalue hk, of the momentum operator p, is a good quantum
number. The y-dependent part of the wave function is thus a plane wave e?*v¥. We
obtain the Hamiltonian of a one-dimensional harmonic oscillator:

H =

~ 92 B A 2
S (22 + (—eBi + ik )?) (1.36)

and the corresponding eigenfunction writes

) - (z—1%k,)? — 12k
(z)n,ky (m,y) :Nnezkyye 212B( Bky) H, <xlBBy> (137)
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where n is the Landau level index, N, is a normalization constant, and H, are
Hermite polynomials.

The wave function (1.37) takes into account the periodicity of the system along
the y direction, but not along the z direction: it is thus a valid wave function on
the cylinder, but not on the torus. We now need to impose the periodic boundary
conditions of the torus. Let us denote T, = €®P the operator that translates the
electron by a vector a in real space. The usual boundary conditions, defined in
terms of T, cannot be consistently enforced, because T, does not commute with
the Hamiltonian. Instead, we define the magnetic translation operator

To = elneAl@ T, (1.38)

which verifies [H,74] = 0. The magnetic translation operators associated with
different vectors a and b do not necessarily commute, but rather follow the Girvin-
Platzmann-MacDonald [50] (GMP) algebra

[Ta, To] = —2sin <2;2€z (@ x b)>7;+b (1.39)
B

This fundamental property of the quantum Hall effect can be seen as another man-
ifestation of the impossibility to fully localize a wave function (see the uncertainty
principle (1.33) concerning the guiding center coordinates). Indeed, 74 can be inter-
preted as the operator that translates the guiding center by a vector a. Note that
e, - (a x b) is the area enclosed in the parallelogram (a,b). The argument of the
sine function in Eq. (1.39), which is equal to

ez‘(axb)BW

he (1.40)

is the number of flux quanta enclosed in the parallelogram (a,b) times 7. As a
result, 7o and T, commute as soon as the flux enclosed in (a,b) is an integer.
Another interesting consequence of the GMP algebra is the Aharonov-Bohm phase
that a single-particle wave function picks up when it goes around a loop. Eq. (1.38)
implies that
—l%ez~(a><b)

TaTo = ToTae 'B : (1.41)

For a closed cycle ab (—a) (—b), the product of magnetic translation operators thus

writes v
—l%ez-(axb)

TaToTa Ty = e

The wave function of the electron thus picks up a phase equal to the magnetic flux

(1.42)

enclosed by its path when it goes around a loop. Note that while these results were
derived in specific gauges, they stay valid in any gauge because they only involve
gauge invariant quantities.

After a translation of the electron around the full torus, the wave function may
accumulate some phase. We want to impose that this phase does not depend on the
order of translations along the two directions of the torus. This constraint imposes
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[TLI%,TLyey} = 0. For a rectangular torus (ez- e, = 0), this writes hi;engLy = Ny,
where N is an integer. We recognize the unit flux quantum h/e in this equation: the
number of flux quanta Ny piercing the torus must be integer valued. We can write
the previous equality in terms of the magnetic length, such that for a rectangular
torus

LyLy, = 2nNyl% (1.43)

The wave functions ¢y, ¢, (7, y) of Eq. (1.37) do not respect the periodic boundary
conditions in both directions, but can be recombined into states that do. We note
Pk, the eigenstates of both the Hamiltonian and the translation operators. Using
the expression of the magnetic translation operator Eq. (1.38), this writes

; 2
(I)n,ky (377 y) = Ememq)n,k:y (l’, y) = eZLwy/lB(I)nch (.T + L:m y) (144)
(I)n,ky (m, y) = ﬁyey (I)n,k:y (l‘, y) = q>n,ky ($, Y+ Ly)
The second equation imposes the quantization of the momentum quantum number:

ky = %Zky, where ky is an integer. To obey the first equation, it is necessary to
make the wave function of Eq. (1.37) periodic. This writes

> — L (B ky+mLy—x)? 2 —
q)n,ky (fl:', y) = ML Z el(l%ky-i_mLz)y/lQBe 2l23 ( B y+m I) Hn (lBky + mLx x)

m=—0oQ

B

(1.45)
where N, is a normalization constant. It is easy to see that k, and ky, + Ny yield
the same wave function (the additional term can always be absorbed by shifting the
sum index m by one). All the Landau levels thus have the same degeneracy Ny
on the torus. In the lowest Landau level (n = 0), Hy = 1, and the wave functions
are localized at positions z = l%ky, with a gaussian decay, while being completely
delocalized in the y direction.

1.1.4 Transport properties of a quantum Hall system

The discussion in Sec. 1.1.2 is the basis to understand the integer quantum Hall
effect. Let us define the filling fraction v, the number of occupied Landau levels (a
non integer value of v corresponds to partially filled Landau levels)

where p is the density of electrons. It can also be expressed as a function of the total
number of electrons in the sample N divided by the number of flux quanta piercing
it

N

V:m

(1.47)

In terms of the filling fraction, the classical Hall conductance (see Eq. (1.3)) writes

h

ve?

Ry = (1.48)
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Figure 1.4: Effect of disorder on the quantum Hall effect. a) Schematic potential
landscape for a finite sample with charged impurities. The equipotential lines are
closed in the bulk (localized states), and open at the edge (extended states). b)
Density of states in a disorder system. The degenerate Landau levels broaden into
bands in the presence of disorder, with extended states in the center, separated by
localized states.

The plateaus of the Hall resistivity observed experimentally correspond to v integer,
and thus to fully filled Landau levels. While this draws a connection between the
plateaus and the energy levels, it does not explain the quantization of the resistivity
when the Landau levels are partially filled. For that, it is essential to take into
account the disorder that exists in any sample, as well as its finite extent.

Let us consider a semiconducting heterostructure — such as AlGaAs — that real-
izes a good approximation of a two dimensional electron gas. The potential land-
scape is not perfectly flat unlike what was implicitly assumed in Sec. 1.1.2. Fig. 1.4a
represents the equipotential lines of a plausible potential landscape. First, there is
a confinement potential associated with the finite extent of the sample. Also, the
presence of charged impurities in the material creates potential hills (for negative
impurities), as well as as potential valleys (for positive impurities). This space-
dependent potential causes the Landau levels to widen. However, not all states
within the broadened Landau levels contribute to the transport in the same way.
The confinement potential, which is constant in the bulk, dramatically increases
at the edge of the system. The equipotential lines reflect this behavior by staying
open, connecting one end of the sample to the other. The edge states are thus
delocalized (or extended), and contribute to the conductance. Due to the magnetic
field, the edge states are chiral: the current flows in one direction on one edge of the
sample, in the opposite direction on the opposite edge. In the bulk, however, most
equipotential lines are closed, resulting in localized states that do not contribute to
the electrical conductance of the sample. The gap that separates two Landau levels
is thus filled with localized states, and called a mobility gap (see Fig. 1.4b). The
chirality of the edge states can be understood using the semi-classical picture of an
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Figure 1.5: Semi-classical picture of the motion of an electron in a finite two-
dimensional sample in a magnetic field. In the bulk, the electron goes around
closed orbits and thus does not contribute to transport. At the edge, the confine-
ment potential prevents the electron from undergoing a closed loop, resulting in a
"bouncing" motion. The direction of the magnetic field imposes a counterclockwise
loop, resulting in the chirality of the edge transport modes.

electron in a magnetic field performing skipping orbits at the edge, as depicted in
Fig. 1.5. To explain the behavior of the Hall resistivity, let us consider a system
with an integer filling fraction v. As the electron density increases, more localized
states become occupied, with no modification to the Hall conductance, until the
extended states start filling up. The Hall conductance then increases linearly with
the electron density, until the narrow band of extended states is completely filled,
and the next plateau has been reached.

These arguments explain the qualitative behavior of the transverse and longi-
tudinal conductivities o, and 04y, but does not explain why the value of the Hall
conductivity is so perfectly quantized to the same value in all systems. This latter
phenomenon relies on the topological nature of the Hall conductance, which will be
explored in the next section.

1.2 Chern insulators

In the previous section, I have explained the apparition of plateaus of the Hall con-
ductivity o, when a strong magnetic field is applied to a two-dimensional electron
gas. While this argumentat is correct, it does not convey the topological charac-
ter of ogy. In Ref. [158], Thouless, Kohmoto, Nightingale and den Nijs (TKNN)
showed that the Hall conductance could be expressed as a function of an integer
— the Chern number — independent of the details of the microscopic model, thus
fitting the definition of a topological invariant. This insensitivity to microscopic
details is the origin of the robust quantization of the Hall conductance mentioned
in Sec. 1.1.1. This property makes the integer quantum Hall effect the first example
of a topological phase, a phase not characterized by a local order parameter, but by
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a topological invariant. As shown by Haldane [60] in 1988, the argument of TKNN
can be generalized to systems that have a zero net magnetic field, but still break
time-reversal symmetry (which a magnetic field does for free). This phenomenon
— non-zero Hall conductance in the absence of Landau levels — is called anomalous
quantum Hall effect, and appears in systems named Chern insulators. Chern insu-
lators are band insulators, where one (or more) Bloch bands have a non-zero Chern
number and play the role of Landau levels. They could potentially be observed in
easier experimental conditions: since the cyclotron energy is proportional to the
magnetic field B, both a high magnetic field and a very low temperature are re-
quired to observe the quantum Hall effect. Chern insulators, on the other hand, do
not require any magnetic field, and could even be observed at high temperature if
the band gap is large enough. Their first experimental observation in a solid state
system is very recent: Ref. [32] reported the observation of the anomalous quantum
Hall effect in magnetic insulators in 2013. Even more recently, they were engineered
in cold atoms by a few independent groups |76, 2, 102].

In this section, I focus on lattice — rather than continuous — systems. I show that
the Hall conductivity is related to a number that does not depend on the microscopic
details of the system. This derivation constitutes a definition of the Chern number
as a topological invariant. I give an interpretation of the Chern number as an
obstruction to the Stokes theorem, which serves as a proof that the Chern number
is an integer. I then describe two simple microscopic lattice models with a non-
trivial topology, with and without a net magnetic flux through the lattice. Finally,
I give two examples of the experimental observation of a Chern insulator, one in a
solid state system, the other in a cold atom lattice.

1.2.1 Definitions for the lattice systems
1.2.1.1 Lattice Hamiltonian

We consider non-interacting electrons on a N, x N, two-dimensional translationally
invariant lattice with m orbitals per unit cell. The only other constraint on the
Hamiltonian is that it must have a band gap (the system is an insulator). We
implement periodic boundary conditions, resulting in the quantization of the pseudo-
momentum k:

2 2
k= (kg ky) = <J\;rkz, ]\;rky) , ke=0, .Ny—1, k,=0, ..N,—1 (1.49)
x Yy

Thanks to the discrete translational invariance, the Hamiltonian is block-diagonal
in momentum space. It writes

H=> c h*k)eps (1.50)
k

where CL . (respectively cg o) creates (respectively annihilates) an electron in the
orbital & = 1,...,m, at momentum k, and h(k) is a m x m matrix (there is an
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implicit summation on the orbital indexes « and ). Diagonalizing h(k) gives us
the dispersive bands of the Hamiltonian €, (k), as well as the Bloch vectors |u, k),
where p is the band index. The diagonalized Hamiltonian writes

H = ZZ@ ) |, k) (1, K| (1.51)

k p=1

We call |0) the vacuum. CL o |0) is a state of momentum k, localized on the atoms o
of the lattice, while |u, k) represents a state of momentum k in the band u. These
two types of orbitals are related by the matrix u(k), whose elements write

uy (k) = (0| e, |11, ) (1.52)

For each value of the band index p, the vector u, (k) is an eigenvector of the matrix
h(k).
h(k)u, (k) = e, (k)u,(k) (1.53)

1.2.1.2 Flat-band limit

The goal of this paragraph is to introduce a useful mathematical trick, the flat-band
limit, which consists in flattening the bands of a dispersive Hamiltonian. By defi-
nition, the topological properties of the Hamiltonian do not depend on its energies,
only its eigenstates. Thanks to this property, working in the flat-band limit does
not affect the topological properties of the Hamiltonian.

We consider a system with a finite bulk gap, and place the Fermi level e inside
the insulating gap. We call p the number of filled bands, such that for all k:

e1(k) < .. <ep(k) <ep <eppr (k)< ... <em(k) (1.54)

We pick two arbitrary energies e (for ground state) and e (for excited) respectively
below and above the Fermi level

eq <ep <E€g (1.55)

We are now equipped to define the interpolation of all energies below (respectively
above) the Fermi level to eg (respectively eg), controlled by the interpolation pa-
rameter ¢:
k)(1—t t 1<u<
en(k)(I1=t)+egt p+1<pu<m

It is crucial that the gap remain open throughout the interpolation procedure, as
is that none of the energy bands cross the Fermi level for any ¢. The Hamiltonian
interpolates between the original system of Eq. (1.51) and the flat-band system, but
with unchanged eigenstates

H(t) = Z hy (k (1.57)

he(k) = Z (k. t) 1, k) {1, B
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The flat-band Hamiltonian corresponds to the t = 1 limit:

p m
hi(k)=c¢ Y |wk) (nkl+eg > | k) (Kl (1.58)
p=1 p=p+1

-~

PG PE

where we have defined two operators, P; and Pg as the projectors onto the oc-
cupied and empty bands. As per their projectors nature, they verify the following
properties:

Pg+Pg=1 PgPp=0 PiZ=P; Pi=Pg (1.59)

1.2.2 Topological nature of the Hall conductance
1.2.2.1 Hall conductivity and Chern number

The Hall conductance can be computed using the Kubo formula, in the framework
of the linear response theory [111]. We consider a many-body Hamiltonian with
eigenstates |U,,) and associated eigenenergies E,. For a non-interacting insulator
at integer filling p, the ground state | V) is obtained by writing the Slater determi-
nant of all the states |u, k) in the p lowest band, and is non-degenerate. The Hall
conductance writes

i62h Z <¢0| @I ’¢n> <¢n‘ @y |'¢0> - <¢0| @y ’¢n> <¢n‘ @x W)O)

g =
" LxLy n>0 (EO o En)Q

(1.60)

where v = (vg, vy) is the velocity operator. Using this formalism, TKNN [158] have
shown that the Hall conductance can be can be expressed as the integral over the
whole phase space of a vector field F. In the case of a lattice system, the integral
runs over the Brillouin zone. F' is called the Berry curvature and writes

Fresm 2;: (5 bkl <8i k) - (aj‘; o) (- o)) (o

where the sum runs over all p occupied bands. It is remarkable that this quantity
depends only on the Bloch states |u, k), and not on their energies. The Berry
curvature F' writes as the curl of a vector potential Ap called the Berry potential

F =V xAp (1.62)
where the Berry potential writes

— p </J'7k’ % ’M7k>
Ap =) | (kg k) (1.63)
p=1 0

The Hall conductivity is thus the integral of the Berry curvature over the Brillouin
zone, for all occupied bands.

2
oy = % /dkmdky (V x Ap) - e, (1.64)
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This quantity does not depend on the energies of the system: the spectrum can
be continuously deformed into a different one, as long as the band gap does not
close in the process. In particular, the flat-band limit introduced in the previous
paragraph can be used to compute the Hall conductivity, thus greatly simplifying
the calculation [20]. If we allowed the gap to close, the Bloch states of the occupied
bands would be able to mix with those of the excited bands, thus modifying the value
of the Berry curvature. The integral in Eq. (1.64) is thus a topological invariant,
called the Chern number.

1.2.2.2 Edge states of a Chern insulator

The relation of the Hall conductivity with a topological invariant explains the ex-
tremely precise quantization of o,, which is measured to be exactly the same in
diverse materials. Indeed, no perturbation (such as a disorder Hamiltonian) can
change the value of the Chern number — as long as it does not close the bulk gap.

In the Landauer-Buttiker approach to transport, the quantization of o, reveals
that the transport occurs in C distinct chiral conduction channels, without any dis-
sipation. The absence of dissipation indicates that backscattering is impossible in
the edge states, which is due to the chirality of the edge states. Numerically, the
simplest way to observe the edge states is to use the cylinder geometry. The cylin-
der has periodic boundary conditions in the = direction, such that the momentum
quantum number k, is still a good quantum number, but open boundary conditions
in the y direction. The edge states are thus localized at both ends of the cylinder
(see Fig. 1.6a). The typical spectrum of a Chern insulator is shown in Fig. 1.6b. It
reveals that the two edge states traversing the bulk gap have opposite velocity, and
are thus chiral. In the case of a trivial insulator, there are no edge states traversing
the bulk gap (see Fig. 1.6¢).

1.2.2.3 The Chern number as an obstruction to Stokes’ theorem over
the Brillouin zone

The Bloch wave functions in the filled band of an insulator have a U(1) gauge degree
of freedom. The topological character of a Chern band is characterized by the
fundamental impossibility to define a smooth gauge throughout the whole Brillouin
zone. We explore this obstruction in this paragraph by studying a generic two-
orbital model, the simplest example of a band insulator. In such system, the vector
uy, (k) defined in Eq. (1.52) is two-dimensional. To remove the phase ambiguity,

we choose the first component ug(kz) to be real and positive. This choice only

0

makes sense when u,, is non-zero, and we need to define an alternative gauge choice

when this is not the case. At any point in the Brillouin zone, at least one of the

vector components u2 or ui must be non-zero. For any momentum kg such that
ug(kzs) = 0, there is thus a vicinity of ks where ut(k) # 0. We regroup all such

vicinities in one subset R of the Brillouin zone:

R ={keBZ || |k—ky| <e, ul(ks) =0, uy(k) #0} (1.65)
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Figure 1.6: Chern insulator lattice system on a cylinder. a) The transport in a
Chern insulator is due to the presence of edge states at both ends of the cylinder,
represented by the blue and red arrows at either end of the cylinder. b) Band
structure of a typical Chern insulator on the cylinder, represented as a function of
the momentum k, in the periodic direction. Two edge states with opposite chiralities
connect the valence and conduction band of the bulk. The edge states are physically
separated, and they respectively correspond to the blue and red edge states of a),
with the same color code. c¢) Typical band structure of a trivial insulator on the
cylinder. Note the absence of edge states.

where € is the smallest radius of all vicinities. The gauge can be fixed to one

convention on RS (u/ﬂ(k) real and positive), and a different one on the rest of the

0

(k) real and positive). More formally, this writes

Brillouin zone (u

0 + _ pE
{uﬂ(k)‘E?R if ke BZ — R (1.66)

ul(k) € RTif k € RE

We are now set up with a zoning of the Brillouin zone, with one well defined Berry
potential in each zone. On the boundary between the two zones, these potentials
are related by a gauge transformation

Apr: = Apz_r: + Vx(k) (1.67)
where x(k) is the phase that differentiates the vectors in the two regions
u,(k)pe = ™y (k) p7_ps (1.68)

We can now determine the Hall conductance (which, as an observable quantity, is
gauge invariant) using the Stokes theorem in both domains (they have identical
boundaries with opposite orientations):

62

Opy = — (/ V X% ABZ*R% + V X ARE) (169)
h \ JBz-R: Re
o2
= h% dk - (Ars — ABz_R:)
o

where O is the oriented boundary of the RS zone. As a result, the Chern number is
equal to

C= jidk:.vx(k:) (1.70)
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The Bloch wave functions must be single-valued: they return to their initial value
after a closed loop in the Brillouin zone. This property must be true in any gauge,
which implies (using Eq. (1.68)) that e®™ must return to its initial value after a
loop. This writes:

X(kT) = x(k7) =n (1.71)

where x(k™) and x(k™) are the values of x(k) after and before going around the
loop, and n is an integer, called the winding number of y. Since the contour O
is made of one or more closed loops, the Chern number is the sum of all winding
numbers around each loop of the contour O, and is thus an integer.

More generically, the integral of the Berry potential on a given path P is called
the Berry phase.

w:/ARM (1.72)
P

For an adiabatic evolution in parameter space, the ground state of the Hamiltonian
picks up a phase that is the sum of the dynamical phase %f E(t)dt and the Berry
phase «vp. Per the above argument, the Berry phase for a closed path P is gauge
independent and an integer. For instance, the Aharonov-Bohm phase of Sec. 1.1.3
is a form of Berry phase, emphasizing the similar nature of the Berry potential Ap
and the vector potential A.

1.2.3 Two microscopic models

While the considerations in the previous paragraph apply to a quantum Hall system,
there is no explicit reference to the magnetic field. Rather, the Chern number
appears as a property of the Bloch states, independently of the underlying system.
In the next paragraph, I describe how the presence of a magnetic field modifies the
Hamiltonian of a lattice system. This will give us the ingredients to build a lattice
model with non-zero Chern number in the absence of a magnetic field.

1.2.3.1 Square lattice in a magnetic field

As detailed in Sec. 1.1.3, applying a magnetic field onto a system modifies its trans-
lation properties dramatically, as the usual translation operators do not commute
with the Hamiltonian. Instead, we have defined magnetic translation operators (see
Eq.(1.38)), which commute with the Hamiltonian, and obey the GMP algebra de-
fined in Eq. (1.39). It is insightful to investigate the implications of these properties
for a lattice Hamiltonian.

We consider a square lattice spanned by the vectors ae, and aey, where a is
the lattice constant. In the Landau gauge (as defined in Eq.(1.35)), the magnetic
operators that translate a particle by a lattice vector respectively write

_;a2n

T (m,n) = e BTy (m,n) (1.73)
Ty (m,n) = Ty (m,n)
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where T, and T, are the lattice translation operators, and (m,n) are the lattice
coordinates. The lattice Hamiltonian in the absence of a magnetic field can be
fully expressed in terms of T, and Tj. For instance, the simplest tight-binding
Hamiltonian consists of a square lattice with only nearest neighbor hopping terms
and writes

H = —t Z CI,H_anmJL + Cin,n—&-lcmﬂl + h.c. (1.74)
m,n

= —tz:TgC (m,n) + T, (m,n) + h.c.

m,n

To take the magnetic field into account, one can simply substitute the magnetic
translation operators for the usual translation operators. This operation, called
a Peierl’s substitution, results in the one-particle wave function accumulating the
Aharonov-Bohm phase due to the presence of the magnetic field when it goes around
a lattice unit cell. Note that if the magnetic flux enclosed in the lattice unit cell
is a multiple of the flux quantum (a?/1% = 2mng, n, integer), the phase in the
definition of 7, cancels, and there is no change to the Hamiltonian. If, however,
this quantity is a rational fraction (a?/l1%4 = 27p/q, p and ¢ relative primes), the
magnetic translation operators do not commute, but only a power of them does

T Ty = TyTd (1.75)

The presence of the magnetic field thus results in a change of the periodicity of
the lattice: the magnetic unit cell is enlarged ¢ times such that it contains an
integer number of magnetic quantum fluxes. Consequently, the area of the first
Brillouin zone is reduced by a factor of ¢, and the number of bands is multiplied by
q. This model is called Hofstadter model, and gives rise to the celebrated Hofstadter
butterfly energy spectrum when the number of magnetic flux quanta piercing a
lattice unit cell is an irrational number.

1.2.3.2 The two-orbital square lattice Chern insulator model

In 1988, Haldane introduced the first model of a Chern insulator [60], which consists
of a honeycomb lattice with complex next nearest neighbor hopping. This complex
hopping is the essential ingredient that allows the Chern number to be nonzero: it
is the equivalent of the Peierl’s substitution introduced in the last paragraph, in
the absence of a net magnetic field. Instead of the Haldane model, we introduce a
simpler model, the square lattice model with two orbitals, and complex inter-orbital
hopping.

Let us consider a system made of a square Bravais lattice and 2 orbitals per
unit cell. As noted in the last paragraph, a complex hopping term is equivalent to
enclosing a non trivial magnetic flux inside the lattice plaquettes. While the Peierl’s
substitution breaks translational invariance, it is possible to choose the hopping
amplitudes phases in such a way that the lattice periodicity is preserved. This can
be achieved by enclosing a staggered magnetic flux, instead of a homogeneous one:
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Figure 1.7: The two-orbital square lattice model. The two orbitals A and B are
colored in red and green, respectively. The nearest neighbor hopping terms between
orbitals of the same type have an amplitude +t2. The amplitude of the interorbital
nearest neighbor hopping term is 4it; in the x direction, along the arrow, +t; in
the y direction. The counterclockwise (respectively clockwise) arrow cycles enclose
a /2 (respectively —7/2) flux, resulting in a zero net magnetic field. This figure
was slightly adapted from Ref. [172]
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the opposite contributions of the magnetic flux in adjacent plaquettes add up to a
zero net magnetic field. This is such system that I describe here. The Hamiltonian
congists of a mass term of amplitude M and of nearest neighbor hopping terms,
whose amplitude is real for the hopping between orbitals of the same type, and can
be complex or real for the hopping between orbitals of a different type depending
on the hopping direction.

_ § : T T T T
H - t2 <Cm+17n7Acm7n7A + Cm,n+1,ACmvn+1aA - Cm+1,TL7BCm1n7B - Cm,TL-‘rl,chvn?B
m,n
; T T
+ ity g <Cm+17n7Acm,n,B — Chy10,BCmn,A h.c. (1.76)
m,n
§ : T T
+ 1 <Cm,n+1,Acman7B ~ Cnont1,B6mn,A + h.c
m,n
.I.
+ MZ (Cin,n,Acmvn:A - Cm,n,BCm:an
m,n

where Cin,,n,a (respectively ¢pn.q) creates (respectively annihilates) an electron at
lattice coordinates (m,n) on orbital o = A, B. Fig. 1.7 represents the two-orbital
square lattice model, with the various hopping terms. The lattice has a finite size,
with respectively N, and IV, unit cells in the x and y direction, and periodic bound-
ary conditions.

To diagonalize this Hamiltonian, we write it in Fourier space (see Eq. (1.50)).
The 2 x 2 Bloch Hamiltonian writes

h(k) = 2ty sin kyo, + 2ty sinkyoy, + (M — 2ty (cos ky + cosky)) 0 (1.77)

where the o; are the Pauli matrices, and k; was defined in Eq. (1.49).
This two-band Hamiltonian is gapped except at the values of M where
(M — 2ty (cos ky, + cos k:y))2 = 412 (sink,® + sink,?). This equation has solutions
in the Brillouin zone when

o M =4dty: (ku k)= (0,0)
o M =0: (kg ky) = (0,m), (m,0)
o M = —4ty: (ky, ky) = (7, )

We want to determine the value of the Chern number in the lowest band, for the
different values of M. A change in the Chern number is a topological phase transi-
tion, which can only happen if the gap closes. The gap remains consistently open
for M > 4ty and M < —4t9: these phases are thus respectively equivalent to the
M — oo limits, i.e. the atomic limit. In this limit, the two sublattices A and B
can be completely decoupled into two independent single-band insulators, and the
insulator is a trivial one. As a consequence, all bands carry a zero Chern number
in the intervals M > 4ty and M < —4ts. We only need to determine the band
topology in the interval —4ty < M < 4t3. As M decreases from the atomic limit
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M — oo to M = 4ty, the gap collapses at the I' = (0,0) point, while all the other
points remain gapped. Consequently, the Berry curvature is a continuous function
of M through the gap closing and reopening everywhere but at the I' point, and
we only need to analyze its evolution in the vicinity of that particular point. The
linearized Hamiltonian reads

h(k) = 2t1kp0, + 2t1]€y0y + (M — 4t2) O, (1.78)

The ground state is characterized by the following energy and eigenfunction:

E. = _\/4t§k:2 + (M — 4ty)?
N 1 ( (M — 4t5) — \/4t§k:2 + (M — 4t5)? )

\/2\/4tfk2+(Mf4t2)2(\/4t%k2+(M74t2)27(M74t2)) 211 (kg — iky)
(1.79)
From the eigenfunction, we analytically derive the expression of the Berry potential:

—2t1k
A, = 1 (1.80)

2\/4t§k:2 + (M — 4t2)2(\/4t§k:2 + (M — 4t)* + (M — 4t5))
21 ky

2\/475%/@2 + (M — 4t2)2(\/4t§k2 + (M — 4t9)* + (M — 4t5))

Ay, =

which yields for the Berry curvature:

. (M — aty)
(M — 4ty)? + 412k2)3/2

(1.81)

We integrate this over a disk D of center I' and radius K.

1 M — 4ty) [5° d(k?
— | Pk F,, = (2)/ (2 ) (1.82)
2m Jp 4 0 (M —4t)” + 43K2)3/2

(M — 4ts)
\/(M — 4t9)? + 4t K2

1
= 5 sign (M — 4t9) —

sign (M — 4ts)
M—4ty 2

K should be chosen such that D is included in the Brillouin zone (0 < K < 7), but
its particular value is not important, as we only need to compute the difference of
Chern numbers at the transition

AC = Cym-aty<0 — Cr—aty>0 (1.83)
1 2 M —4t2<0 M—4t2>0
= %/Bzdk:(ny 20— Fp, m127Y)
and not their absolute value. Since the Berry curvature is a continuous function of

M everywhere but at the I' point, the Berry curvature difference is only non-zero
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Figure 1.8: Bulk band structure of the two-orbital square lattice model at masses
M = 2t9, 4ty, 6to. Both phases at M = 2t9 and 6ty are gapped, and the gap closes
for M = 4ty, at the I point (0,0). The phase at M = 6tz is trivial, while the one at
M = 2ts is topological, but it is impossible to deduce this from the band structure.

at the I' point. Consequently, the integration interval can be reduced to D, and the
choice of K is arbitrary. At the gap closing and reopening transition, the change in
Chern number is thus:

1

— 2 <0 >0
AC = o Dd k(Fy —Fo) (1.84)
~ sign(M —4ta)<o  sign(M — 4t2)0
N 2 2
= -1

Since the state M > 4ty has zero Chern number, the Chern number of the phase
0 < M < 4ty is C = —1. Similarly, to compute the Chern number of the —4ts <
M < 0 phase, we increase M from the atomic limit M — —oo, until the gap closes
at M = —4ty and (7, 7). Examining what happens at this point, we conclude to a
Chern number C' = +1 for that phase. Fig. 1.8 gives the bulk band structure of the
square lattice Chern insulator for different values of M. There is no way to tell that
these spectra correspond to Hamiltonians with different topological properties, since
the Chern number is a property of the eigenstates alone, as seen in Sec. 1.2.2. The
Chern number can however be deduced from the energy spectrum on the cylinder,
which is represented in Fig. 1.6: the number of edge states at either end of the
cylinder gives the value of the Chern number.

1.2.4 Experimental realizations

The prediction of the quantum anomalous Hall effect raises numerous experimen-
tal possibilities. Since there is no need for a magnetic field, it could be observed
in easier experimental conditions than the integer quantum Hall effect. This mo-
tivated the engineering of solid state Chern insulators, which have been observed
very recently for the first time in ferromagnetic semiconductors. Ultracold atomic
gases are another experimental route for the realization of Chern bands, and are
sometimes favored for their versatility, which allows a fine-tuning of the band pa-
rameters. While the observation of the insulating behavior remains elusive because
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of a too large temperature, the Chern number of each band can be measured using
indirect methods. In this paragraph, I give an example of both types of systems,
and explain how the non-trivial topology of the system is measured.

1.2.4.1 Observation of the quantum anomalous Hall effect in ferromag-
netic materials

Two main ingredients are needed to obtain a Chern insulator: a large gap (com-
pared to the temperatures that can be reached experimentally), and a breaking of
time-reversal symmetry, with a complex hopping lattice tunneling term that en-
closes a non-trivial flux. With decades of experience in the field of semiconductors,
condensed matter experimentalists have already produced many solutions to find
the first ingredient in a solid state system. Ferromagnetic long range order is then
required to break time-reversal symmetry. The complex hopping term arises from
spin-orbit coupling through a mechanism called band inversion that will be detailed
in Sec. 1.3.2.1. The quantum anomalous Hall effect has been observed in Cr-doped
thin films of magnetic semiconductors [33, 86, 34, 87|, where Cr plays the role of
a magnetic impurity that creates ferromagnetic order. To detect the topology of
the electrons in the film, one can simply conduct a four-point transport experiment
similar to the one used to detect the quantum Hall effect. When the magnetic field
is varied, the magnetization of the ferromagnetic thin film follows a hysteresis cycle,
and consequently, so do the Hall (0,,) and the longitudinal (o,,) conductivities,
as shown in Fig. 1.9, which reports the experimental results of Ref. [87]. For a
negative magnetic field, the Hall conductivity is on a o4y = —e? /h plateau, which
persists when B = 0, revealing a topological insulating band with Chern number
C = —1. At the coercive field (B ~ 0.157), it goes through a short 0., = 0 plateau,
corresponding to the vanishing of magnetization (and thus to a trivial insulator).
The topology of the insulator is restored for non-zero magnetization, and the Hall
conductance jumps to a plateau corresponding to a C = 1 Chern band. When B
decreases, the plateau persists for vanishing magnetic field. At low temperature,
the longitudinal conductivity o4, is almost zero, in agreement with a dissipationless
conducting mode. [t increases dramatically at the approach of the coercive field,
and reaches a sharp maximum at the transition between the various plateaus. Note
that the temperatures required to observe the o,, = 0 plateau are still much lower
than those employed in a regular integer quantum Hall effect experiment. Indeed,
as shown in Fig. 1.9, ' = 1.9K is the highest temperature at which o, shows an
inflection at a zero value, while even the original results of Von Klitzing et. al. were
obtained at T' = 4K.

1.2.4.2 Measuring the Chern number in optical lattice systems

Ultracold atoms in optical lattices constitute ideal systems to study condensed mat-
ter models in a well-controlled environment. The atoms can be trapped in a three-
dimensional lattice corresponding to a tight-binding Hamiltonian whose tunneling
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Figure 1.9: Evolution of the transverse (A) and longitudinal (B) conductivities of the
Cr-doped (BiSb)2Tes magnetic topological insulator with varying magnetic fields, as
reported in Ref. [87]. Three Hall plateaus can be clearly distinguished, corresponding
to C = —1, 0, 1. The inversion of the Chern number is due to the inversion of the
magnetization of the topological insulator. The longitudinal conductivity reaches a
sharp peak at each plateau transition, and is otherwise negligible at low temperature.

terms can be tuned with a high degree of precision. Simulating magnetic fields in
neutral cold atom systems is a challenge that can be resolved by creating artificial
gauge fields [37]. These methods take advantage of the geometric phase that can re-
sult, for instance, from atom-light interaction, and that mimics the Aharo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>