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Abstract

Long term avalanche risk quantification for mapping and the design of defense structures is done in most
countries on the basis of high magnitude events. Such return period/level approaches, purely hazard-
oriented, do not consider elements at risk (buildings, people inside, etc.) explicitly, and neglect possible
budgetary constraints. To overcome these limitations, risk based zoning methods and cost-benefit analyses
have emerged recently. They combine the hazard distribution and vulnerability relations for the elements
at risk. Hence, the systematic vulnerability assessment of buildings can lead to better quantify the risk
in avalanche paths. However, in practice, available vulnerability relations remain mostly limited to scarce
empirical estimates derived from the analysis of a few catastrophic events. Besides, existing risk-based
methods remain computationally intensive, and based on discussable assumptions regarding hazard mod-
elling (choice of few scenarios, little consideration of extreme values, etc.). In this thesis, we tackle these
problems by building reliability-based fragility relations to snow avalanches for several building types and
people inside them, and incorporating these relations in a risk quantification and defense structure optimal
design framework. So, we enrich the avalanche vulnerability and risk toolboxes with approaches of various
complexity, usable in practice in different conditions, depending on the case study and on the time available
to conduct the study. The developments made are detailed in four papers/chapters.

In paper one, we derive fragility curves associated to different limit states for various reinforced concrete
(RC) buildings loaded by an avalanche-like uniform pressure. Numerical methods to describe the RC
behaviour consist in civil engineering abacus and a yield line theory model, to make the computations as
fast as possible. Different uncertainty propagation techniques enable to quantify fragility relations linking
pressure to failure probabilities, study the weight of the different parameters and the different assumptions
regarding the probabilistic modelling of the joint input distribution. In paper two, the approach is extended
to more complex numerical building models, namely a mass-spring and a finite elements one. Hence, much
more realistic descriptions of RC walls are obtained, which are useful for complex case studies for which
detailed investigations are required. However, the idea is still to derive fragility curves with the simpler,
faster to run, but well validated mass-spring model, in a “physically-based meta-modelling” spirit. In
paper three, we have various fragility relations for RC buildings at hand, thus we propose new relations
relating death probability of people inside them to avalanche load. Second, these two sets of fragility
curves for buildings and human are exploited in a comprehensive risk sensitivity analysis. By this way,
we highlight the gap that can exist between return period based zoning methods and acceptable risk
thresholds. We also show the higher robustness to vulnerability relations of optimal design approaches on
a typical dam design case. In paper four, we propose simplified analytical risk formulas based on extreme
value statistics to quantify risk and perform the optimal design of an avalanche dam in an efficient way. A
sensitivity study is conducted to assess the influence of the chosen statistical distributions and flow-obstacle
interaction law, highlighting the need for precise risk evaluations to well characterise the tail behaviour of

extreme runouts and the predominant patterns in avalanche - structure interactions.
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CHAPTER 1

Introduction




1. Introduction

1.1 Casualties due to snow avalanches

Snow avalanches threaten mountain communities and are, at fine spatio-temporal scales,
fairly unpredictable. Several winters of the last decades remain in the collective memory
as having been very lethal or destructive in mountain valleys. For instance, the Val d’Isere
avalanche in February 1970, which has initiated in France a real policy of recognition of
avalanche risk at the state level, killed 39 people. Similarly, February 1999 was a black
month in Alpine countries: 12 people died in dwellings in Evolene (Switzerland), 38 people
were buried in Galtir and Valziir ski resorts (Austria) and 12 people passed away in chalets

due to the Péclerey avalanche in Montroc (France) (Ancey et al., 2000).

More recently, a remarkable avalanche cycle occurred in December 2008 in the Southern
French Alps (Queyras and Mercantour, France). Several people were buried without any
death, but few buildings were partially destroyed and ski resorts isolations, ski lifts and
forests damages were reported (Eckert et al., 2010b). Extreme avalanches exceeding the
limits of the official avalanche map were also observed in the Piedmont Region in Italy
(Maggioni et al., 2009). Also, casualties are recorded every year among back country skiers

(Jarry, 2011). All in all, in France, avalanches kill an average of 30 people per year.

Not only do avalanches injure and kill people but they also cost to population and local
authorities. As shown in catastrophic events causing materials damages, the decision to
protect and at which extent is a difficult question. Decision makers have to determine
the protective measures that conjugate safety and economy for populations. Decisions can
affect various elements at risk such as ski resorts, buildings and communication axes. For
instance, ski resorts can be partially closed due to avalanche risk or avalanche damages. For
example, the recent impressive avalanche in Saint-Francois-Longchamp ski resort nearly
destroyed a ski chairlift and the decision was taken to protect the ski tracks with stabi-
lization devices (260k€). These were assessed as being less expensive than the damages
due to a new potential avalanche (360k€) (Roudnitska, 2013).

However, cost-benefit approaches are not as simple to apply to complex systems as to
single elements at risk. The example of road closure is relevant. For instance, the access
road to the Mont-Blanc tunnel is an important international axe and its closure can cost a
lot to French and Italian companies and, more widely, to different actors. At a more local
scale, some ski resorts, such as for instance Isola 2000 whose access road often suffers from
cut offs, are regularly isolated, inducing consequences difficult to evaluate as a whole. For
buildings, economic losses are calculated according to insurance payments due to damages,
and to the costs of rescuing and rebuilding (Johannesson and Arnalds, 2001; Fuchs and
Briindl, 2005). For the 1998-99 winter, the SLF institute in Davos estimated the material

damages in the whole Alpine area to about 1 billion Euros.



1.2 Avalanche risk management

1.2 Avalanche risk management

1.2.1 Short term risk versus long term risk

Short-term risk quantification deals with the estimation of avalanche activity at a short
temporal horizon (1-5 days). Mainly used by mountain practitioners, short-term risk
quantification consists in providing a 1 to 5 index revealing the daily risk of avalanche
triggering. Short-term risk quantification is deduced according to meteorological and
physical observations and modelling of the snow. Short term risk quantification is not in
the scope of this work. In contrast, long term risk quantification aims at providing tools to
decision makers in order to manage land use planning and optimize permanent mitigation

measures such as defense structures construction. This is what we deal with in this thesis.

1.2.2 From long term risk mapping to risk zoning

Local authorities in charge of population safety are in front of an intricate situation. To
manage this natural threat and ensure the most adequate decision making for stake holders,
risk to people exposed to snow avalanches must be well quantified. Beyond this human
aspect, economical, environmental and cultural issues must also be taken into account.
Buildings (hotels, industries, shopping centres, schools, hospitals, places of worship ...)
have to be preserved to ensure a socio-economic activity in mountain valleys. On the other
hand, land use spread due to increasing area devoted to urbanisation, see for instance the
time evolution of urban sprawl in Bessans (Savoie, France) (Fig. 1.1), encourages the

development of more accurate risk quantification tools.
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Figure 1.1 — Cumulative evolution of urban sprawl (e), that is to say urbanised area
(whatever its use: residential, economic, transport infrastructure), and built surfaces (e)
from 1945 to 2010 in Bessans township. Source by: http://www.observatoire.savoie.
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1. Introduction

Current approaches are using the estimation of return periods to delineate land use
planning zones. The decision maker needs to define three zones: the red zone corresponds
to an interdiction of new constructions, the blue zone corresponds to zones with regulated
new constructions subjected to requirements and recommendations (e.g. structures resist-
ing to a 30 kPa pressure, no opening in the wall facing the flow, etc.) and the white zone
is defined as the zone with no restriction (Givry and Perfettini, 2004). To do so, generally,
only high magnitude events are used, defined on the basis of typical return period cal-
culations. A search for normalisation and equal exposition against risk at the FEuropean
scale has been attempted, but a large diversity of legal thresholds between countries is still
observed: 100-year in France, 30- and 300-year in Switzerland, 30- to 100-year depending
on regions in Italy (Maggioni et al., 2006), 150-year in Austria and 1000-year in Norway.
Arnalds et al. (2004) underlined the original individual risk approach adopted in Iceland
in 2000 as a new regulation tool for avalanche hazard zoning, using the estimation of
avalanche frequency, runout distribution but also vulnerability of people inside buildings.

In France, in practice, hazard maps are first proposed by avalanche expert (Fig.
1.2(a)) ; then, on this basis, a PPR (Risk Prevention Plan) zoning defining potential
interdictions and prescriptions is defined (Fig. 1.2(b)). Hazard assessment to determine
potential pressures and runouts includes various steps like analysis of historical data,
terrain analysis, analysis of aerial photos, modelling, expert judgement, etc. but no of-
ficial methodological guide actually exists to systematize the calculation of references
avalanches. Besides, in existing methods, no standardised way to take consistently the
elements at risk into account, for example by performing cost benefit analyses, is yet

available (except in some ways in the Icelandic example).



1.2 Avalanche risk management

(b) Example of PPR.

Figure 1.2 - Maps concerning the Chamonix valley, Haute-Savoie,
France. Source by: www.haute-savoie.gouv.fr/Politiques-publiques/

Environnement-risques-naturels-et-technologiques/Prevention-des-risques-naturels

ot
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1.2.3 Snow avalanche protection

Avalanche protections can be sorted into different types, depending on their action. When
the protection prevents the avalanche from triggering in the release area, it is called active
protection ; in contrast, when the protection slows down or stops the avalanche once it is
triggered, it is called a passive protection. Such protections devices can be temporarily or

permanently installed (Tab. 1.1).

Table 1.1 — Usual classification of countermeasures protection against snow avalanches.

Temporary Permanent

Passive warning, closure (road avalanche de-  deflecting dams, breaking mounds,
tector), evacuation plans catching dams, buildings reinforce-

ment, hazard zoning

Active  artificial release (explosive or gas), snow sheds (galleries or tunnels),
snow grooming steel snow bridges, snow nets, ter-

races, silvicultural measures

Permanent passive structures are under interest for long term land use planning in
avalanche prone areas. Historically made according to empirical observations or according
to expert knowledge, defence structures design is now gaining interest in the scientific
community. The influence of their size and shape on the flow intensity reduction was
studied in small scale laboratory experiments and on full-scale experimental sites (Faug
et al., 2008; Caccamo, 2012). To better understand their behaviour and improve future de-
sign, some researches aim at well determining their dynamical response against avalanches
(Berthet-Rambaud et al., 2008; Ousset et al., 2014). Beyond these mechanical questions,
optimal design approaches were developed based on a cost-benefit analyse taking into ac-
count uncertainty sources within a Bayesian framework (Eckert et al., 2008a, 2009). This

approach allows performing the design within the risk evaluation using decision theory.

1.3 Sub-models for risk calculation

As previously explained, current risk approaches rely, for most of them, on incomplete
calculations of risk by only considering hazard description. In this section, we will see how
to treat elements at risk via vulnerability/fragility curves. Second, monovariate (runouts)
and multivariate (runout/pressure) snow avalanche models are briefly exposed. Risk quan-

tification as an expected damage will not be introduced here since it is described in the

6



1.3 Sub-models for risk calculation

chapters of the thesis where risk calculation is needed. Furthermore, a detailed presenta-
tion of the framework can be found in the review from Eckert et al. (2012) presented in

appendix B of the thesis and to which I collaborated at the beginning of my PhD.

1.3.1 Vulnerability assessment and vulnerability /fragility distinction

The need for assessing the vulnerability of elements at risk against avalanches was recently
highlighted and is now kept under close research interests. For example, the Irasmos (In-
tegral Risk Management of Extremely Rapid Mass Movements) project was interested in
rock avalanches, debris flows, and snow avalanches. Review and development of vulnera-
bility relations was one of the outcome of the project. In that context, Naaim et al. (2008a)
made efforts to express available vulnerability curves in a single pressure intensity unit
(Fig. 1.3(a)). More recently, Bertrand et al. (2010) obtained some vulnerability relations
for reinforced concrete structures impacted by snow avalanches using a displacement-based
damage index and a parametric study to investigate the damage domain of a reinforced
structure (Fig. 1.3(b)).
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(a) (b)

Figure 1.3 — Example of vulnerability relations: (a) vulnerability curves reviewed in the
Irasmos project (Naaim et al., 2008a), (b) vulnerability function according to a displace-
ment damage index obtained for several values of maximum compressive strength of con-
crete (Bertrand et al., 2010).

Fragility curves are increasing curves providing a [0, 1] failure probability according to
a solicitation magnitude of the studied natural hazard. Vulnerability and fragility curves
have different definitions. A vulnerability curve provides a damage index conditionally
to an intensity value: for instance, Bertrand et al. (2010) expressed a displacement ratio,

that is to say, the ratio between the displacement at a given pressure and the ultimate
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displacement the structure can tolerate ; others expressed the damage index as the ratio
between a reparation cost and the cost of the building (Fuchs et al., 2007a). Fragility
curves express a failure probability, i.e. a structural limit state exceedence probability, for

a given applied pressure.

Today, vulnerability curves exist in several natural hazard engineering domains, but few
were obtained with reliability approaches. Examples can be found for rockfalls impacts
(Mavrouli and Corominas, 2010a), landslides or debris-flows (Papathoma-Kohle et al.,
2012). Seismic engineering vulnerability research figures as exception, since structural
reliability studies have been numerous in this field (Ellingwood, 2001; Li and Ellingwood,
2007; Lagaros, 2008; Sudret et al., 2014).

Structural reliability studies of complex structures consist in covering a range of steps
from the civil engineering model choice to the statistical treatment of the system. First, the
whole complex system is simplified to a single structural element which failure behaviour
represents the failure of the whole system. Second, a numerical method to simulate the
structure is chosen (analytical approach, Finite Element Analysis, etc.). Third, a failure
criterion needs to be established in order to define a damage or a limit state for the
structure. Fourth, uncertainties on the inputs of the numerical model have to be considered
and modelled by PDF distributions. Finally, two ways for assessing fragility curve can be
followed: i) for each hazard intensity, the failure probability is calculated and the fragility
curve is discretely built, ii) the resistance (or capacity) of the system is known as the
numerical output and the fragility curve is the CDF distribution of the capacity of the
studied element. To carry out uncertainty propagation and evaluate the failure probability,

Lemaire (2005) gives an overview of current commonly used reliability methods.

In avalanche engineering, such methods have been seldomly used and mostly for the
detailed study of reinforced concrete structures, but not to build fragility curves (Kyung
and Rosowsky, 2006; Daudon et al., 2013). Note by the way that reinforced concrete is
one of the most common construction materials that can be found in moutanious areas ;
others are masonries, steel structures or framed buildings. Reinforced concrete is widely

used for snow avalanche protection measures (Berthet-Rambaud et al., 2007; Nicot, 2010).

1.3.2 Avalanche models

To better understand avalanche extension, runout distance distribution models have long
attracted widespread attention. However, to build risk maps, other quantities are required,
mainly pressure fields. Whereas runouts and flow depths can be obtained as direct outputs

of avalanche model runs, the derivation of pressure fields requires an additional step.



1.3 Sub-models for risk calculation

Three classes of avalanche models

Some statistical approaches, namely the alpha-beta and runout ratio methods use topo-
graphical considerations (the typical local slope characteristics) to predetermine avalanche
runout positions (Lied and Bakkehoi, 1980; McClung and Lied, 1987), sometimes with ex-
plicit references to extreme value theory (Keylock, 2005). Research is still active at a more
regional scale (Lavigne, 2013) or in a cross validation perspective (Schlappy et al., 2014).

Statistical approaches have long been opposed to fully deterministic hydraulic-based
models. The latters are based on the resolution of hydraulic equations in the framework of
continuum mechanics (Savage and Hutter, 1989). The snow avalanche can be considered
and modelled as a multilayer flow (Issler, 1997; Naaim, 1998), but, for practical needs,
only the dense layer is generally taken into account when modelling (Bartelt et al., 1999).
Nowadays, in practice, for deterministic flow modelling, two approaches prevail (Ancey,
2006): the snow avalanche can be considered as a sliding block subjected to a basal friction
or can be treated with Saint-Venant equations. Both remain dependant on the choice of
rheological friction laws.

To take advantage of numerical hydraulic models developments, statistical-mechanical
models are gaining popularity among the avalanche scientists community (Bozhinskiy
et al., 2001; Barbolini and Keylock, 2002). This consists in picking up the inputs of
deterministic models in statistical distributions. The joint distribution of outputs under
interests such as the velocity of the flow or its depth is then obtained. In such studies,
Monte Carlo simulations are the predominant method. Last improvements used Bayesian

framework to better assess uncertainties in input distributions (Eckert et al., 2007a, 2010c).

Pressure derivation

For the design of defense structures, the dense part of the flow is more crucial as it
represents the greatest threat in terms of potential damage due to its high density (p ~
200—500 kg.m~3). The medium velocity of a dense avalanche is around 40 m.s~!. Typical
dense avalanche deposits can be observed in figure 1.4 threatening back country skiers
(a) and exposed buildings (c). Snow avalanche velocities are direct output quantities of
avalanche dynamical models. Meanwhile, mechanical structural models need pressure-like
inputs expressed in Pascal to determine a wall failure. This paragraph is devoted to the
question of pressure derivation.

Several field (Gauer et al., 2007; Sovilla et al., 2008b) or laboratory (Caccamo et al.,
2012) experiments have been conducted to assess the avalanche pressure on an obstacle.
The col du Lautaret site (Fig. 1.4(b)) and the instrumented mounds in the Taconnaz
avalanches path (Ravanat et al., 2012; Bellot et al., 2013) enabled to obtain relevant field
data (Thibert et al., 2008; Baroudi and Thibert, 2009). A spatio-temporal variation of the
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Figure 1.4 — Dense avalanches: (a) near a back country skier in the Brian¢onnais, Ecrins,
Hautes-alpes, (b) deposit of a dense avalanche in the Irstea experimental site of col du
Lautaret, (c) avalanche that occurred after a warming period in january 1980, the Eymen-

dras chalet was destroyed in Le Sappey-en-Chartreuse, Isere (Valla, F.).

avalanche pressure signal is observed (Schaer and Issler, 2001) but, for convenience, it is
often assumed that the pressure is uniformly loading the structure and that the maximum

pressure over all the loading time is the main relevant feature of the avalanche intensity.

Apart from on-the-field data, numerical models provide velocities. As already ex-
plained, avalanche impact pressure is an important data to know when considering obsta-
cle/flow interactions. We want here to know what are the possible relations linking the
velocity to the applied pressure on an obstacle. The dynamic pressure in a free surface

flow is defined as pV2. For a free surface flow, the impact pressure can be expressed as:
L
Pr= C’zépv , (1.1)

where C, is the total drag coefficient, p is the fluid density and v is the flow velocity.
The drag coefficient expresses the size and shape of the impacted obstacle considered.
For obstacles small enough, the drag coefficient is equal to 2. This calculation is the
most common engineering approach but it is admitted that the dynamical pressure is
then under-estimated. Thus, the drag coefficient C, can be expressed according to the
empirical formulation of Sovilla et al. (2008a) or the semi-empirical formulation of Naaim
et al. (2008b) considering the Reynolds number, the Froude number, the lateral dimension

of the obstacle and the flow height of the snow avalanche as additional control parameters.

10
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1.4 Aim of this work and lecture grid

1.4.1 Overview of the work

Grounding on this overview of methods and models potentially usable in snow avalanche
risk quantification, we aim in this thesis at addressing the long term risk assessment prob-
lem by combining reliability-based fragility curves together with integrated risk assess-
ment. The work done is fully numerical and consists in mixing civil engineering models
together within statistical and combined statistical-numerical avalanche models with a
common framework. The thesis core is made of 4 chapters, each chapter is intended to be
a self-containing journal published article. For instance, the first chapter has been pub-
lished in Natural Hazard and Earth System Sciences, the third is accepted in Cold Regions
Science and Technology. The two others are not yet submitted but will be soon. The
thesis addresses two aspects of the risk analysis: the vulnerability which is treated in the
chapters 2-3 and the risk quantification and sensitivity which is tackled in the chapters 4-5.
Chapter 6 is a brief general conclusion. My contribution to the four articles consists in all
technical developments, and the major part of the writing. As usual, my co-authors/PhD
supervisors had a close look on the work and helped me organise and smooth the ideas

and the writing.

1.4.2 Chapters content

In Chapter 2, we derive systematic fragility curves associated to different limit states for
various reinforced concrete (RC) buildings loaded by an avalanche-like uniform pressure.
The work aimed at building fragility curves according to different technologies depending
on their boundary conditions. Four limit states were taken into account. Thanks to simple
mechanical resolution via basic civil engineering abacus and a yield line theory model, we
succeed in obtaining a spectrum of forty fragility relations using Monte Carlo simulations.
We took advantage of various inputs distributions (normal, log-normal, correlated or not,
etc.) to weight the effects of different choices on the fragility curves determination (Sobol
indices and a quantitative comparison).

In Chapter 3, we focus on more refined mechanical models for the behaviour of RC
walls. We developed a mass-spring model validated according to a finite element model and
to limit analysis. The mass-spring model can be seen as a meta-model of the more complex
model based on finite element theory. The non-linearities of the materials can well be taken
into account and mechanical justifications ensure to stay close to physical reality. One wall
was tested, and fragility curves were obtained considering various statistical distributions
as inputs. Due to important computation times, we choose methods alternative to the

standard Monte Carlo sampling picked up in the reliability toolbox to evaluate fragility
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curves.

In Chapter 4, to take advantage of the vulnerability curves set of chapter 2, human
fragility curves are proposed, based on the state of the building. Risk was then calculated
considering successively human and buildings fragility curves. For various abscissas in
the path, risk values obtained are compared to acceptable risk thresholds showing the
limits of classical return period based zoning method. A sensitivity index is calculated
to understand the influence of the fragility curves on the risk quantification. An optimal
design calculation is done on a simple case.

In Chapter 5, an analytical expression of the risk is proposed based on extreme value
statistics. More particularly, a generalized Pareto distribution (GPD) is used. The an-
alytical expression guarantees a fast calculation for the risk and the optimal design of a
dam. The goal was first to assess the influence of the statistical distributions. Then, two
flow-obstacle interaction laws were tested to quantify how the patterns occurring when the
avalanche hits an obstacle affect the risk calculation. A sensitivity index is built and shows
that the GPD input distribution choice is more influential on the risk than the interaction
law choice.

In Chapter 6, we remind the main results and conclusions of the thesis, and we propose

perspectives to pursue this work.
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CHAPTER 2

A reliability assessment of physical vulnerability of reinforced

concrete walls loaded by snow avalanches

Le contenu de ce chapitre a été publié dans Natural Hazard and Earth System Sciences, la
citation est : Favier, P., Bertrand, D., Eckert, N., and Naaim, M. (2014). A reliability as-
sessment of physical vulnerability of reinforced concrete walls loaded by snow avalanches.
Nat. Hazards Earth Syst. Sci., 14:689-704.

Les auteurs souhaitent alerter le lecteur sur le fait que les courbes de fragilité développées
dans ce chapitre ne doitvent pas étre utilisées pour tout type de batiments en béton armé
mais pour ceur répondant aur meéme caractéristiques structurelles que celles énoncées
et se trouvant dans la gamme des paramétres matériaux et géométriques balayée par les

distributions statistiques choisies dans ce chapitre.
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2. A reliability assessment of physical vulnerability of reinforced concrete walls loaded by snow

avalanches

Abstract

Snow avalanches are a threat to many kinds of elements (human beings, communication axes, structures,
etc.) in mountain regions. For risk evaluation, the vulnerability assessment of civil engineering structures
such as buildings and dwellings exposed to avalanches still needs to be improved. This paper presents an
approach to determine the fragility curves associated with reinforced concrete (RC) structures loaded by
typical avalanche pressures and provides quantitative results for different geometrical configurations. First,
several mechanical limit states of the RC wall are defined using classical engineering approaches (Eurocode
2), and the pressure of structure collapse is calculated from the usual yield line theory. Next, the fragility
curve is evaluated as a function of avalanche loading using a Monte Carlo approach, and sensitivity studies
(Sobol indices) are conducted to estimate the respective weight of the RC wall model inputs. Finally,
fragility curves and relevant indicators such a their mean and fragility range are proposed for the different
structure boundary conditions analyzed. The influence of the input distributions on the fragility curves
is investigated. This shows the wider fragility range and/or the slight shift in the median that has to be
considered when a possible slight change in mean/standard deviation/inter-variable correlation and/or the

non-Gaussian nature of the input distributions is accounted for.

2.1 Introduction

The increasing urban development in mountainous areas means that issues associated with
rockfalls, landslides and avalanches need to be addressed (Naaim et al., 2010). Prospective
human casualties and physical civil engineering structures damages are of concern for snow
avalanche risk management. Depending on the external loading applied to the structure,
that is to say the natural hazard considered (rockfall, landslide, earthquake, etc.), the
physical vulnerability of civil engineering structures is usually assessed differently depend-
ing on the nature of the failure modes involved. If a relevant failure criterion is defined
that represents the overall damage level of the structure, the potential failure of the system
can be assessed and even its failure probability if the calculations are performed within a
stochastic framework.

Avalanche risk mapping is often carried out by combining probabilistic avalanche haz-
ard quantification (e.g., Keylock, 2005; Eckert et al., 2010c) and vulnerability (determinis-
tic framework) or fragility (probabilistic framework) relations to assess individual risk for
people (Arnalds et al., 2004) and buildings (Cappabianca et al., 2008). For instance, the
Bayesian framework (Eckert et al., 2009, 2008a; Pasanisi et al., 2012) makes it possible to
take into account uncertainties in the statistical modeling assumptions and data availabil-
ity. On the other hand, a better definition of vulnerability or fragility relations remains
a challenge for the improvement of the integrated framework of avalanche risk assessment
(Eckert et al., 2012).
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A review of vulnerability approaches for alpine hazards (Papathoma-Koéhle et al., 2011)
mentioned various studies conducted to derive vulnerability relations. Several definitions
have been proposed. One point of view is to define the vulnerability of a structure by
its economic cost and not its physical damage (Fuchs et al., 2007a), which necessitates
an expression for the recovery cost (Mavrouli and Corominas, 2010a). Another point of
view suggests that human survival probability inside a building is commonly related to the
vulnerability of the building itself by empirical relations (Jénasson et al., 1999; Barbolini
et al., 2004a). For instance, Wilhelm (1998) introduced thresholds to build vulnerability
relations for five different construction types impacted by snow avalanches, and Keylock
and Barbolini (2001) proposed relating the vulnerability of buildings with their position in
the avalanche path. More recently, Bertrand et al. (2010) suggested using a deterministic
numerical simulation to assess the structural failure susceptibility of reinforced concrete
(RC) structures.

To describe the failure probability of civil engineering structures exposed to snow
avalanches and thus derive fragility curves, reliability approaches can be considered. For
instance, in earthquake engineering (Ellingwood, 2001; Li and Ellingwood, 2007; Lagaros,
2008) or for RC structures subjected to blast loading (Low and Hao, 2001), the latter tech-
nique is often used. In hydraulic risk research, some studies focus on assessing dam safety
using reliability methods (Peyras et al., 2012). Direct simulations (such as Monte Carlo
methods) give robust results but can be time-consuming. As an alternative, simulation-
based or surface approximation methods are used to avoid the direct calculation of the
failure probability (Lemaire, 2005), but convergence of the algorithm can be cumbersome.

In the snow avalanche context, vulnerability relations are often derived from back-
analyzed in situ data, which are often very scarce. These relations give the fraction of
destroyed buildings as a function of the avalanche loading. A reliability assessment of
vulnerability relations (fragility curve derivation) is therefore a useful complementary tool
for examining the interaction between the avalanche and the structures at different scales
(avalanche path, urban area, individual house, etc.). This paper attempts to improve risk
evaluations by proposing an innovative way to derive refined fragility curves that can be
used in snow avalanche engineering.

As RC is the most usual material used to build structures exposed to potential
avalanche loadings, herein we focus on this technology. First of all, the RC structure
is described. Secondly, the mechanical model of the RC wall and the snow avalanche load-
ing description are exposed. Then, the damage level definitions opted for in the structure
limit state description are presented. The next part deals with statistical distributions
of the inputs of the deterministic mechanical model. Finally, fragility curves are derived
and their sensitivity to input parameters, modeling assumptions and failure criterion are

discussed.
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Figure 2.1 — Dwelling house impacted by a snow avalanche: loading applied onto the

structure (a); RC wall geometry and orthogonally distributed reinforcement (b—c).

2.2 Methods

To protect people against snow avalanches, French legal hazard zoning defines three re-
gions, which correspond to several levels of danger. The white zone corresponds to the
geographic zone where the consequences of an avalanche in terms of structural damage
have been estimated negligible. Hence, no specific recommendations related to the ability
of the structure to resist to an avalanche are needed. In the red zone, the avalanche return
period has been estimated less than 100 yr and thus no construction is allowed. In the last
zone (blue zone), civil engineering structures, such as buildings or houses, can be built only
within certain restrictions. For the wall facing the avalanche, no opening is allowed and
the wall has to resist at least a pressure of 30 kPa. Several technologies are available. As
mentioned by Givry and Perfettini (2004), the most common are wooden, masonry, RC or
mixed structures. RC technology appears to provide the best value for money. Moreover,
RC is usually the most frequently encountered material for such structures and in partic-
ular for dwelling houses. The most vulnerable part of a structure built in an avalanche
path is the wall facing the flow (Fig. 2.1). Thus, the damage of the entire structure can be
assessed from the wall’s resistance capacity. Indeed, the pressure applied by the avalanche
flow on the structure is balanced almost solely by the wall facing the avalanche. Thus, as
a first approximation, the damage of the entire structure is reduced to the damage of the

structural elements directly exposed to the load, i.e., a flat vertical RC wall.
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2.2.1 RC wall description

First, the features of the wall considered are presented (geometry, mechanical properties
of reinforced concrete, boundary conditions). Then, the out-of-plane mechanical response
of an RC wall is described. The nature of the damage and the different damage stages
the structure undergoes are presented as a function of the loading magnitude. From the
physical vulnerability assessment point of view, relevant performance functions dedicated
to quantifying the damage level of the RC wall can be proposed. Finally, the wall loading

due to a snow avalanche is presented and discussed.

RC wall features

The RC wall is composed of concrete and steel bars. The bars are distributed homoge-
neously along the horizontal and vertical directions in the region of the wall where tensile
stresses can develop (Fig. 2.1b—). The number of steel bars is calculated from the steel
density (ps) needed to ensure the resistance of the RC wall. The usual sizes of dwelling
houses situated in mountainous regions have been considered. Depending on the con-
struction solution chosen, the RC wall boundary conditions can vary from one dwelling
to another. The modeling of such various technologies of construction is considered in
the boundary conditions of the wall. Three kinds of boundary conditions are usually en-
countered. Each edge of the wall can be considered either simply supported or clamped
or free (e.g., can move without any constraint). From a mechanical point of view, con-
crete strength differs from compressive to tensile regimes. The characteristic compressive
strength (feos) is generally 10 times greater than the tensile strength (f;). The compres-
sive strength allowable for calculation is defined as fp. by the Eurocode 2 (Committee,
2004), as a function of the loading time parameter, i.e., the creep consideration, 6 and the

safety factor 7, described below:

0.85 s

fbc H’Yb

(2.1)

Steel’s behavior exhibits two typical limits. First, the yield strength (f;) exceeding
corresponds to the development of permanent strain inside steel; secondly, the ultimate
tensile strain (eyx) highlights the ability of steel to undergo more or less substantial yield
strain before failure. The RC behavior is a combination of the two materials. Figure 2.2
depicts the typical evolution of an RC member subjected to a monotonic loading. Four
stages can be identified. The first stage represents the elastic response of the RC wall. The
second stage corresponds to crack appearance and growth in the tensile zone of concrete.
Once the crack distribution is fully developed (beginning of stage 3), the opening of the
cracks continues. For higher loading and for low reinforced concrete, the capacity of the

RC wall is only controlled by the resistance of the steel bars. When a steel bar starts
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Figure 2.2 — Typical mechanical response of RC members subjected to a pushover test
(monotonic loading until the collapse of the system), derived from (Favre et al., 1990,
p. 343).

to undergo plastic strain, it is the beginning of the fourth stage. The end of the stage 4
corresponds to the collapse of the RC wall, where strains are concentrated through yield
lines that can be described as macro-cracks. At the scale of the RC member, this last
stage ends when a typical fracture line pattern develops over the entire RC structure.

This failure mechanism induces the structure’s loss of equilibrium, leading to its collapse.

Limit state definitions

The structural failure is assumed to be due to excessive bending of the wall. The RC wall
collapses under a bending failure mode. The first damage level is defined as when the RC
wall is no longer elastic. See for instance the European standard dedicated to the design
of RC members: the Eurocode 2 provides mechanical design recommendations for several
types of loadings. In this paper, the mechanical states used to describe the damage level
of the structure are inspired from the Eurocode 2. The second and third damage levels
are defined from Eurocode 2 (Mosley et al., 2007), where typical safety coefficients are
proposed. Finally, the collapse of the RC wall is modeled by yield line theory (Johansen,

1962). It allows for calculating the ultimate pressure that the structure can support before
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Table 2.1 — Safety coefficients on steel and concrete strength for ULS and ALS calculations
(Committee, 2004).

ULS safety coefficient ALS safety coefficient
Steel vs = 1.15 s =1
Concrete v, = 1.5 Y = 1.15

collapse. The first three stages are defined from the local mechanical balance of the cross
section where the highest bending moment arises, whereas stage 4 considers the whole

failure pattern of the wall.

Elastic limit state

The first crack in the concrete defines the upper limit of stage 1. Beyond the first stage
upper limit, the RC wall is no longer elastic. This limit is defined as when the tensile

strength inside the concrete is reached.

Ultimate limit state (ULS)

This mechanical state is defined in the Eurocode 2 regulation and concerns the safety
of people inside buildings and that of the building itself. In this paper, the Eurocode 2
terminology is used, but it can be a bit confusing. Indeed, the ULS does not correspond
to the “real” ultimate resistance of the RC wall, which is here assessed by the yield line
theory (see Sect. 2.2.1). From the Eurocode 2, the ULS is related to potential loadings
that can arise during the “normal” life of the RC wall. The loadings are either permanent
or transitory but not exceptional. Thus, the safety factors associated to the ULS loading
are calculated based on “normal” life of the structure. Under bending, the ultimate limit
state is obtained when either the concrete reaches its ultimate compressive strain or the

steel its ultimate tensile strain.

Accidental limit state (ALS)

When dimensioning, the ALS differs from the ULS only in the loading description. Load-
ings are assumed exceptional (i.e., accidental) and not usual or “normal” as for the ULS.
The probability of occurrence of such loadings is often low and explains why the safety
factors are lower than in the ULS case and thus the margin to support the loading is lower
(Table 2.1). Using ALS as a structural limit state the structure could reach consists in
applying a different multiplicative safety coefficients on the strength of the two materials

comparing to those applied in the ULS approach.
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Collapse

Finally, the collapse of the structure is characterized by its failure pattern. Under bending,
yield lines develop through the RC member, leading to the structure’s collapse. In order
to obtain the ultimate load, the yield line theory is used, which is based on limit analysis
theory (see for instance Nielsen and Hoang, 2011). In the literature, some theoretical
and experimental studies have been compared. These studies proposed collapse failure
patterns as a function of boundary conditions (Sawczuk and Jaeger, 1963). Favre et al.

(1990) provide theoretical solutions for RC slabs under various geometrical configurations.

Snow avalanche loading

Different types of avalanche flows can be observed in the Alps, inducing various loadings
on the impacted structures. Spatial and temporal changes in snow avalanche loadings
were experimentally observed and measured. For instance, small-scale experiments were
conducted to reproduce the granular behavior of snow and study its interaction with
obstacles (Faug et al., 2010). Moreover, real-scale experiments have been conducted to
measure the pressure magnitudes reached by dense avalanche flows (Thibert et al., 2008)
and powder avalanches (Sovilla et al., 2008a).

An open question concerning the physical vulnerability assessment of civil engineering
structures is whether the problem should be considered with a dynamical approach or
a quasi-static approach. Various studies (Daudon et al., 2013) have considered that the
dynamic effect has to be taken into account, whereas others have obtained vulnerability
results assuming quasi-static approaches (Bertrand et al., 2010). In addition, in some cases
(powder avalanches for instance) negative pressures can arise during the loading and thus
can modify the failure mode of the structure considered. However, as already suggested,
the type of avalanche controls the type of loading (quasi-static or dynamic), and here the
avalanche type is considered as dense, which cannot generate negative pressures.

To determine whether a dynamic or a quasi-static approach has to be considered, a
modal analysis has to be performed to compare avalanche loading and structural natural
periods. In this paper, it is assumed that the duration of the accidental loadings is not
creating dynamical effects. Thus, the pressure of the avalanche is supposed to be quasi-
static, as proposed by Bertrand et al. (2010). Moreover, a uniform pressure distribution
is applied to the wall even if vertical variations are observed (Baroudi et al., 2011). The
pressure is uniformly distributed on the entire facing wall, along = and y axes. Due
to the quasi-static assumption, the response of the RC wall is calculated considering the
maximal pressure reached over time. The time variation is not considered because only the
peak pressure for a quasi-static approach is relevant. The assumption of uniform pressure

distribution is conservative, since the maximum is applied over the entire vertical, whereas
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Figure 2.3 — Transitions between each damage level (Elas: elastic limit; ULS: ultimate
limit state; ALS: accidental limit state; YLT: yield line theory).

in reality it decreases with the vertical coordinate.

2.2.2 Mechanical approaches

Figure 2.3 depicts the transitions between each damage level (Elas: elastic limit; ULS:
ultimate limit state; ALS: accidental limit state; YLT: yield line theory). For each point,
a loading pressure (qglas, QULS, ALS, ¢yLT) can be calculated. For the first three cases, the
load is obtained from the mechanical balance of the cross section, which is subjected to
the maximal bending moment inside the RC wall (Fig. 2.4). For the collapse load, yield

line theory is used.

RC wall design under bending
Bending moment expression

First, the loss of RC elasticity is related to crack appearance when the tensile strength of
concrete is exceeded. At this stage, the steel contribution in the overall behavior can be

ignored. The bending moment can thus be expressed as

I.h?
MElas = ft 6 . (22)
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Figure 2.4 — Flowchart to calculate loading pressure related to each moment based on
damage levels (Elas/ULS/ALS): first levels include geometry, mechanical characteristics
and moment calculation; then, by inverting the Bares abacus (Bares, 1969), the corre-

sponding loads are deduced.

The second (third) damage limit is attained when the bending moment defined by the

ULS (ALS) is reached. In this case, the following assumptions are made:
e Sections remain planar during loading.
e No slip can occur between concrete and steel.
e The strain is linear along the thickness.
o Concrete’s tensile strength is ignored (f; = 0).

o The ultimate compressive strain of the concrete (ep.) and the ultimate tensile strain

of the steel (eyk) are limited to 3.5 %o and 10 %o, respectively.
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Figure 2.5 — Strain-stress calculation diagrams of the steel: perfect elasto-plastic grey
diagram for the ALS and YLT calculations, black dotted line for the ULS calculation
diagram where the steel yield strength is modified by the safety coefficient s (a), and

strain—stress calculation diagram of the concrete (b).

As functions of the ULS and the ALS, concrete and steel strengths change with the
safety coefficients (7, and 75). As a consequence, the corresponding maximal bending
moments also change. Figure 2.5 depicts assumed behaviors of the concrete and the steel.

The RC wall design consists in attaining the maximum strengths in concrete and in the
steel at the same time. The compressive strength of concrete fy. (Eq. 2.1) is estimated: no
creep effect is taken into account (0 = 0.85), and the safety coefficient v, = 1.15. According
to assumptions previously made, the Eurocode 2 supplies the coefficient uap = 0.186.
Thus, knowing the effective depth of the RC cross section d, the corresponding moment

per linear meter developed in the section can be calculated:

Mg = paBd? foe. (2.3)

Next, by knowing the lever arm z ~ 0.9d, the amount of steel (i.e., the percentage of steel
inside concrete if normalized by the section area) needs to ensure that the balance of the
bending moment is equal to

M
A, = AB

2.4)
I (
e

where vs = 1.15 for ULS. The ULS and ALS bending moments differ in the value taken
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by the safety coefficient 5. Finally, the ULS and ALS (75 = 1.0) bending moments are

expressed as
Murs = Mas, (2.5)

Mars = Aszﬁ. (2.6)

S

Boundary conditions

When the RC wall is subjected to a uniform pressure, the spatial distribution of bending
moments depends on the boundary conditions of each wall edge. Many combinations can
be considered (free edge, clamped edge or simply supported edge). Bares (1969) proposed
a useful abacus that gives the maximal bending moments developed in elastic rectangular
plates for numerous configurations of boundary conditions.

In this paper, the derivation of vulnerability relations is carried out within a relia-
bility framework. Thus, to calculate the failure probability of the RC wall, many runs
are needed. By using the abacus to assess the RC wall’s resistance capacity, the compu-
tational time to perform a single run is very low, which makes it possible to use robust
but computationally intensive reliability methods such as Monte Carlo simulations. Ten
boundary conditions were implemented (1 to 10, cf. Table 2.2). A linear spline is fitted
to extrapolate coefficients from available coeflicients (8, and f3,) provided by the abacus.
Knowing the limit bending moment for each damage stage, the corresponding pressure is

deduced for each direction x and y:

. M
=5 (2.7)
M

RC wall collapse (yield line theory)

The ultimate resistance of RC slabs under uniformly distributed pressure can be derived
from the classical yield line theory (Johansen, 1962). This theory provides the collapse
mechanism of the RC wall. Under an external loading, cracks will develop to form a
pattern of “yield lines” until a mechanism is formed. A yield line corresponds to a nearly
straight line along which a plastic hinge has developed. To perform the yield line theory
algorithm, the bending moment along yield lines needs to be calculated. The bending
moment per unit length along those lines remained constant and equal to the moment
calculated in Eq. (2.6). Indeed, as we are considering a uniform and equal reinforcement

along the horizontal and vertical directions, the steadiness is verified. Then the energy
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Table 2.2 — Maximum bending moment coefficients (8, ) for a rectangular plate sub-

jected to an uniform load. The Poisson’s ratio v = 0.15 and % = 0.5.

Boundary conditions Bz By

(1) four simply supported edges 0.0991 0.0079
(2) simply supported on the two large edges 0.0835 0.0088
clamped on the two small edges

(3) simply supported on one large edge 0.0550 0.0045
clamped on the three other edges

(4) one free large edge —v x f, 0.0268
clamped on the three other edges

(5) one free large edge —v x [y 0.0575
simply supported on the three other edges

(6) clamped on one small edge 0.0908  0.0084
simply supported on the three other edges

(7) simply supported side by side 0.0570 0.0040
clamped on the two other edges

(8) four clamped edges 0.0405  0.0024
(9) one free large edge/one clamped large edge —v x 3y, 0.0288
simply supported on the two small edges

(10) one free large edge/one simply supported large edge —v x 3, 0.0361

clamped on the two small edges

balance between external and internal forces is calculated. According to the assumed yield

line pattern, each adjacent plate can rotate. The plates rotate around axes defined by the

edges of the slab and the yield lines. During the rotation, energy is dissipated inside the

material by yielding. The dissipated energy is calculated as MgGiLi, where Mg is the

plastic moment of the yield line considered i, 8; the magnitude of the angle of rotation,

and L; the length of the yield line. The ultimate load is calculated from the equality

between the external energy (Wext) and the internal energy (Wipn). In order to find the

most likely collapse pattern, the kinematic theorem is used. It consists in determining the

failure pattern minimizing the collapse load. Thus, the following equations are derived:

{ Wine = Y1ty M} .0;.L;
Wext = q [[ 6(x, y)dzdy
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Boundary Conditions Possible Collapse Schemes

(1) 4 simply supported edges

avalanches

Q
(AN

(0
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N

(2) simply supported on the 2 large edges
and clamped on the 2 small edges

(3) simply supported on one large edge
and clamped on the 3 other edges

— clamped (4) one free large edge / clamped on the 3
other edges

DR

_—— Slmply (5) one free large edge / simply supported
supported on the 3 other edges

(6) clamped on one small edge / simply
supported on the 3 other edges

(7) simply supported side by side /
clamped on the 2 other edges
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I_I_IZ

(8) 4 clamped edges

Bl X
- [T

(9) one free large edge / one clamped large
edge / simply supported on the 2
small edges

(10) one free large edge / one simply
supported large edge / clamped on the 2 y “

small edges

Figure 2.6 — Failure patterns according to several boundary conditions when considering

yield line theory.

where ny, is the number of yield lines, §(z,y) is the displacement field of the slab and ¢ is
the uniform load applied on the slab. Various failure patterns were considered as functions
of the boundary conditions (Fig. 2.6). For each boundary condition, two failure patterns
are mainly observed (Fig. 2.6, col. 2 and 3). Each pattern depends on an angle ay or ao

calculated in order to minimize the energy.

2.2.3 Reliability framework

The structure’s safety cannot be assessed from a deterministic point of view because
several properties of the system are uncertain. Thus, the study is performed in a reliability

framework.
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Failure probability definition

The failure probability P is defined as the probability for the resistance of the structure

r to be less than or equal to an event size s:
S
P =P[r<s|= / fr(r)dr. (2.10)
—00

To solve Eq. (2.10), the probability density function of the resistance fr(r) needs to be
known. The Monte Carlo algorithm is used to generate data samples. Depending on what
it is calculated with, it is a robust but time-consuming method. By randomly generating
N variables from the input probability distributions, N mechanical runs can be performed.
Thus, the probability density function of the response can be approximated by the Monte
Carlo integral: ]3f. The central limit theorem provides a (1 — «)) asymptotic confidence
interval reflecting a significance level of a:

. P1-P A Pi1-P
Py (1 — Zla/gf\(/ﬁf)> < Py <Py <1 +Zla/2f\(/ﬁf)> )

where z1_,/5 is the a quantile of the normal distribution.

Sobol’s index

Sobol’s index provides the contribution of inputs to model outputs. It consists in quanti-
fying the contribution of each input variable to the entire system’s variability. It is based
on a variance sensitivity analysis (Sobol, 2001). Saltelli et al. (2010) provide different
numerical estimates and a comparison between their efficiency. For independent input
variables, Sobol’s first-order sensitivity coefficient .S; is equal to the total effect index St;.
Considering Y as the model output and X as the vector of inputs, Sobol’s indices are
defined as

_ Vx(Ex. (Y]Xi))
S — ) : (2.11)
Spi=1— VXNZ- (E‘i((zl(/})quz))’ (2_12)

where V' is the variance and more particularly Vx, is the variance of the argument taken
over X;, Vx,(Ex_,(Y|X;)) is the expected reduction in variance that would be obtained if
X; could be fixed.

According to Saltelli et al. (2010), Jansen (1999) provides the most efficient estimator
of Eq. (2.12) through the approximation

. 1 Y ;
Sri = 53 2 (), — F(AE);) (2.13)
j=1
where Y = f(X1,Xs,...,X), A and B are an N X k matrix of input factors and Ag) is
a matrix where column 7 comes from matrix B and all other £ — 1 columns from matrix
A.

B
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Table 2.3 — Distribution parameters of material inputs.

Variable Mean Standard deviation
I, (m) 8.0 0.4

ly (m) 4.0 0.2

h (m) 0.2 0.01

feas (MPa) 30 1.5

fy (MPa) 500 x 105 25 x 10°

fr (MPa) 2 0.1

2.2.4 Vulnerability assessment

Statistical distributions of inputs need to be defined. Here, six input variables were chosen
and their distributions were determined: I, Iy, h, fes, f, and f;. Different sets of distri-
butions are used: a set of normal independent distributions, a more realistic distribution
provided by the Joint Committee on Structural Safety (2001) (JCSS) and intermediate
cases. Thus, building cumulative distribution functions of mechanical capacity load out-

puts allows for fragility curves to be assessed.

Statistical description of inputs
Normal distributions

First, to analyze the effect of each variable separately, a normal distribution describes
each variable. Low and Hao (2001) provided several references identifying distributions
for material inputs involved in a reinforced concrete slab problem. Mirza and MacGregor
(1979) assumed normal distributions to model the variability /uncertainty regarding the
sizes of slabs. After in situ experiments, a coefficient of variation of 0.05 is suggested
and the designed value is adopted as the mean distribution value. To carry out a first
statistical description of the proposed model, a coefficient of variation of 0.05 is assumed
for all the inputs considered, leading to the means and standard deviations provided in
Table 2.3.

JCSS distributions

As reported by the JCSS, correlations between input variables can be taken into account.
Steel’s yield strength is still independent and follows a normal distribution. On the other
hand, the tensile strength (f;) and the compressive strength of the concrete (fy,) distribu-

tions are deduced from the basic concrete compression strength (fe2g) distributions. For a
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Table 2.4 — Table presenting the marginal distributions of independent material inputs for
the JCSS distribution case. Other inputs are computed according to Egs. (2.14), (2.15)
and (2.16) of Sect. 2.2.4.

Variable  Mean Standard deviation
Iy (m) 8.0 0.4
ly (m) 4.0 0.2
h (m) 0.2 0.01

fy (MPa) 560 x 10¢ 30 x 106

ready-mixed concrete type with a C'25 concrete grade, based on the given parameters, the
values of m,v,s,n are m = 3.65, v = 3, s = 0.12 and n = 10, and ¢, is a random variable

from a Student distribution for v degrees of freedom:
Lios
fe2s = exp(m +t,s(1 + 5) ?). (2.14)

Then, f; and fi. are calculated with A, Y7 and, Y5. A is a factor taking into account
the systematic variation of in situ compressive strength and the strength from standard
tests. Finally, (Y;)i=12 are lognormal variables representing additional variations due to
special placing, curing, and hardening of the concrete. In our case, a. is considered equal

0.85.

to W

froe = acfdsY1, (2.15)
fr = 0315, (2.16)

For all parameters, the marginal mean and standard deviation were set according to the
JCSS recommendation (Table 2.4). Difference with the previous case (Table 2.3) concerns

(feos) for which they are higher in this case.

Intermediate distributions

To bridge the gap between the realistic JCSS distributions case and the normal indepen-
dent choice, seven intermediate distributions were considered, differing from each other in

terms of distribution type and/or covariance matrix:

e A lognormal distribution for three multiplicative variables: the tensile strength and
the compressive strength of concrete, and the steel yield strength with parameters

of Table 2.5. Means and standard deviations are the same as for the normal case.

o A lognormal distribution for the tensile strength and the compressive strength of
concrete, and the steel yield strength with parameters of Table 2.6. Means and

standard deviations are the same as for the JCSS case.
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Table 2.5 — Table presenting the marginal lognormal distributions used for the tensile
strength and the compressive strength of concrete, as well as the steel yield strength.
Means and standard deviations are the same as in Table 2.3. The parameters urn and

oLN are the resulting parameters of the lognormal distributions.

Variable Mean Standard purn  oLN
deviation

ft (MPa) 2 0.1 0.69 0.05

feos (MPa) 30 1.5  3.40 0.05

f, (MPa) 500 x 106 25 x 105 20.03 0.05

Table 2.6 — Marginal JCSS-based lognormal distributions used for the tensile strength

and the compressive strength of concrete, as well as the steel yield strength.

Variable Mean Standard N OLN
deviation

fit (MPa) 2.38 0.76  0.82 0.31

feos (MPa) 38.9 6.11 3.65 0.16

fy (MPa) 560 x 105 30 x 10° 20.14 0.053

o A lognormal distribution for the tensile strength and the compressive strength of con-
crete, and the steel yield strength. According to the Table 2.6, standard deviations

are multiplied by 2 to emphasize lognormal distributions asymmetry.

e A normal joint distributions for all the variables with variance—covariance matrix
deduced from the JCSS distributions and the means from Table 2.3.

« A normal joint distribution for the six parameters I, Iy, h, fcos, fy and f; using mean
and standard deviation from Table 2.3 and correlation coefficients (covariance) of the
JCSS case. The main correlation is the relation between feos and fi: p(feos, ft) =

0.31; others are lower than 0:01, i.e., close to independence.

e A normal joint distribution for the six parameters l,, l,, h, fcos, fy and f; using

mean, standard deviation and correlation coefficients (covariance) of the JCSS case.

e Uncorrelated JCSS distributions: to assess the effect of correlation on the JCSS case,

each modeled variable was selected independently to break down dependencies.
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800 ‘ 1

0.8r

0.6

0.2r

60 80 40 50 60 70
x (kPa) x (kPa)

Figure 2.7 — Output histogram of the ULS case for a rectangular wall with one free
edge and three clamped edges with normal independent inputs (a), and the cumulative

distribution function associated (b).

Fragility curves derivation

A fragility curve F'(x) is a monotonic curve providing a failure probability as a function
of the magnitude of a loading, here a pressure applied, hence the cumulative distribution
function F'(x) of the failure probability for the load z. The usual way to compute fragility
curves is to set a pressure and vary the inputs from their statistical distributions. Thus,
for each pressure a failure probability is obtained to build the fragility curve. In this
paper, the approach is somewhat original because failure probabilities are derived from
an inverse resolution. First, the structure capacity of resistance is found; then, by abacus
inversion, a load distribution is assessed. Finally, the cumulative distribution function of
the latter distribution makes it possible to link a failure probability to a pressure. As an
example, Fig. 2.7 depicts an output histogram of the ULS case for a rectangular wall with
one free edge and three clamped edges with normal independent inputs and the fragility

curve associated through its cumulative distribution function.
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—Elas

YLT

Figure 2.8 — Fragility curves according to boundary conditions sorted by failure criterion:

(a) linear frame and (b) semi-log frame.

2.3 Results

2.3.1 Fragility curves with uncorrelated normally distributed inputs

Overview of all configurations

Using 10000 runs per curve, smooth fragility curves are obtained. Figure 2.8 depicts
fragility curves according to explored boundary conditions. They are sorted by the four
failure criteria. Two visual groups are formed. First, all the curves representing the elastic
limit state are gathered at low pressure loads. By considering the minimum 2.5 % quantile
and their maximum 97.5% quantile, their fragility range is [2.8,27.2] (kPa). They do
not interfere with fragility curves of the other failure criteria. On the other hand, the
ULS, ALS and YLT fragility curves are defined on a range from 22.7kPa to 218.6 kPa.
It is interesting to note that the ALS fragility curves are scaled from the ULS curves by
the safety factor 1.15. This is easily explained by the definition itself of the ALS failure
criterion.

Another point of view can be taken by plotting the same data according to the de-
scription of their boundary conditions (Fig. 2.9). Sets of fragility curves can be deduced.

The four weakest structures present free edges. Rectangular walls with one free edge are
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Figure 2.9 — Fragility curves according to boundary conditions sorted by boundary con-

ditions: (a) linear frame and (b) semi-log frame.

sorted from the weakest by their boundary conditions as below: (1) one free edge and
three supported edges; (2) one supported edge, two clamped edges and one free; (3) one
clamped edge, two supported edges and one free*; and (4) one free edge and three clamped
edges (*exception for the YLT limit state where 3 and 4 are exchanged). Then the sec-
ond set of curves gathers the rectangular wall with supported edges ((5) four supported
edges, (6) one clamped edge and three supported ones, (7) two supported edges and two
clamped ones, (8) two supported edges and two clamped edges side by side, and (9) one
supported edge and three clamped ones). Finally, the less vulnerable rectangular wall has

four clamped edges.

Equation (2.17) provides the p quantile of each vulnerability curve:

F(z)=Pr(X <z)=p. (2.17)

The previous equation allows considering a more quantitative approach. Table 2.7
sums up the 50 % quantiles and similar conclusions as described above are set up. The
fragility range is defined as an interval: the lower bound is the 2.5 % quantile and the
upper bound is the 97.5 % quantile of the fragility curve, which could be considered as

very useful quantitative thresholds for engineering applications.
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Table 2.7 — The 50 % quantile of the CDF fragility curves according to boundary conditions
and failure criterion, and (2.5 %, 97.5 %) quantile defining a fragility range (kPa).

Boundary conditions Elas ULS ALS YLT
(1) four simply supported 8.4 60.2 69.3 97.0
edges

(6.5,10.9)  (52.3,60.1)  (60.2,79.5)  (85.5,109.5)
(2) simply supported on the 10.0 71.6 82.4 121.0
two large edges
clamped on the two small (7.7,13.0)  (59.4,87.6)  (68.3,100.7) (104.8,139.1)
edges
(3) simply supported on one 15.2 108.6 124.9 158.5
large edge
clamped on the three other (11.6,19.7) (95.0,124.2) (109.3,142.8) (138.8,180.2)
edges
(4) one free large edge 7.8 56.0 64.4 80.5
clamped on the three other (6.0,10.3) (49.9,63.7) (57.4,73.2) (66.6,96.7)
edges
(5) one free large edge 3.6 26.0 29.9 38.1
simply supported on the three  (2.8,4.7) (22.7,29.6) (26.1,34.1) (30.9,46.7)
other edges
(6) clamped on one small edge 9.2 65.8 75.7 109.5
simply supported on the three (7.1,11.9) (56.0,77.6) (64.4,89.2) (95.6,124.7)
other edges
(7) simply supported side by 14.6 104.7 120.4 145.5
side
clamped on the two other (11.2,19.2) (93.1,117.6) (107.1,135.3) (128.3,164.4)
edges

(8) four clamped edges 20.7 147.9 170.0 194.0
(15.6,27.5) (133.3,163.4) (153.3,187.9) (171.1,219.2)
(9) one free large edge / one 7.2 51.9 59.7 55.9

clamped large edge

simply supported on the two  (5.3,10.3) (43.2,58.9) (53.2,67.8) (47.2,65.8)
small edges

(10) one free large edge / one 5.8 41.4 47.6 60.9
simply supported large edge

clamped on the two small (4.4,7.5) (33.5,50.8) (38.5,58.5) (48.9,74.1)
edges
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Table 2.8 — Quantiles of fragility curves illustrated in Fig. 2.13.

Approach Qas% oo Qorsn Qors W25 %
Deterministic 55.5 0
JCSS 44.9 62.4 86.8 41.9
JCSS independent 45.3 62.6 86.8 41.6
Normal independent 50.2 56.3 64.3 14.1
Correlated normal 50.3 56.3 64.0 13.6
Normal, correlation and variance from  33.7 56.6 79.4 45.7
JCSS case

Lognormal, mean and variance from nor-  51.3 56.2 63.6 12.3
mal case

Normal, correlation, variance and mean  42.8 63.3 84.5 41.7
from JCSS case

Lognormal, mean and variance from JCSS  45.2 62.4 86.2 41.0
case

Lognormal, mean and variance (x4) from  32.0  60.3  114.6 82.6
JCSS case

An example: one free edge and three clamped edges

To investigate Monte Carlo confidence interval quantification, a focus on a particular case
was required. The selected case is the rectangular wall with one free edge and three
clamped edges (Fig. 2.10). The four limit state fragility curves can be distinguished to-
gether with Monte Carlo confidence intervals. As mechanical runs are not time-consuming,
the number of calls N can be high enough to make numerical uncertainty negligible. Thus
10000 runs induce thin confidence intervals near the curve, giving confidence in all the

numerical results provided.

2.3.2 Parametric study

This section is devoted to the analysis of total Sobol indices. As each of the input variables
is independent, their sum is equal to 1. Sensitivity pie charts of outputs according to the
input distribution can be plotted (Fig. 2.11). Four input parameters influence the fragility
assessment based on the elastic failure criterion: f;, Iz, [, and h. The variable h is the
predominant variable affecting the elastic-based failure probability. The ULS and ALS
have the same sensitivity pie charts. Three input parameters are involved in the variability
of ULS- and ALS-based failure probabilities: I, [, and fcog. fcog seems to be the variable

influenced the most by these outputs. This indicates which variables should be considered
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Figure 2.10 — Vulnerability curves and their 95 % confidence intervals from Monte Carlo

simulations of a slab with one free edge and three clamped edges.

with the greatest care while designing a structure in practice, depending on the chosen

failure criterion.

2.3.3 Sensitivity to input distributions choice

Fragility curves are highly dependent on the input distributions used. Outcomes were
obtained from the two first distributions previously described (Fig. 2.12). As a general
overview, more elaborated distributions induce greater spread in fragility curves. Their
fragility ranges have a higher amplitude than the range derived from independent nor-
mal approaches. One explanation is that taking into account correlations makes certain
“extreme” combinations of inputs more likely than in the independent case. Another ex-
planation lies in the number of variables considered: the more numerous they are, the
more uncertainties are taken into account, and also the larger the fragility range of the
fragility curves is.

To ascertain and detail this conclusion, Fig. 2.13 focuses on the ULS example for the
same boundary conditions. It appears clearly that, from the deterministic point of view (a
simple 0—1 response if the fragility limit is attained or is not attained) to the JCSS-based
approach, fragility curves have wider fragility ranges. Quantiles at 2.5 %, 50 % and 97.5 %
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Figure 2.12 — Comparison of fragility curves from different input distributions of a slab
with one free edge and three clamped edges: (a) normal independent distributions, (b)
JCSS distribution.

support these results (Table 2.8). Note, however, that the more complex case (i.e., the
JCSS case), despite its wider spread, shows higher (and thus “safer”) modal values, and
therefore simpler approaches (normal or lognormal inputs) can be used in practice, at least

as first approximations.

The 50 % quantile depends nearly only on the means of the three material parameters
fy, feog and f;i. Indeed, the 50 % quantile remains fully constant to ~ 56 kPa regardless of
the covariance matrix for Gaussian inputs with f,, fcos and f; centered on their nominal
values 500 x 10%, 30 and 2 MPa, respectively. Switching to the JCSS leads to a higher
50% quantile ~ 62kPa independent of the correlation structure. In addition, the 50 %
quantile remains nearly unchanged with independent lognormally distributed inputs with
the same mean even if these, by definition, introduce non-symmetry into the problem.
This asymmetry effect is, however, visible when the standard deviation is multiplied by 2.

By the way, the fragility range is logically also increased (Table 2.8).

All in all, the fragility range and fragility curves shape changes mainly according to
the marginal variances, much higher in the different JCSS cases, with covariance between

the different inputs and marginal distribution types having less influence.

38



2.4 Conclusion

1 L = = = Deterministic
JCSS
- - = JCSS independent
0 8 [ Normal independent
- = =Correlated Normal
____Normal, correlation and
— 0 . 6 [ variance from JCSS case
\>_<, _ _ _LogNormal, mean and variance
L from normale case
0.4} 1 Normal, correlation, variance
and mean from JCSS case
_ . .LogNormal, mean and variance
0 2 [ from JCSS case
LogNormal, mean from JCSS and
0 variance from JCSS x 4

Figure 2.13 — Comparison between a deterministic approach and fragility curves computed
with different input distributions. Fragility curves are here calculated for a slab with one

free edge and three clamped edges under ULS considerations.

2.4 Conclusion

The proposed approach can be considered as a comprehensive framework providing
fragility curves for RC walls exposed to a snow avalanche pressure load. It could be
considered with benefits for other sorts of problems and in particular for other types
of civil engineering structures (structures with different materials, structures built using
another technology, etc.) or natural hazards.

In detail, the influence of the boundary conditions and of the stochastic input distribu-
tions were systematically investigated, so as to provide robust fragility curves for various
building types. Their most useful application may be individual risk assessment, including
sensitivity analyses, for which the main concern is to evaluate the survival probability as
a function of space for a hypothetical individual within different building types.

Four limit states based on the RC wall’s mechanical response were considered: three
local (cross-section scale) and one global (wall scale). For instance, the distinction between
the ULS, concerning the safety of people, and the real collapse, where the structure is no
longer standing, could lead to considering different thresholds for risk boundary assess-
ment, leading to refined risk maps taking into account the winter usage of each building.

It has also been shown that, from a statistical point of view, stochastic input distri-
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butions strongly influence the shape of the fragility curves. Hence, mean and standard
deviation of each variable, independent or correlated variables as well as the number of
variables considered, constitute important factors in the variability of fragility curves.
This sensitivity to the input parameter distributions highlights that it seems important to
consider and describe precisely the uncertainty sources for each application.

The deterministic simulations were carried out through simplified and effective me-
chanical models in terms of CPU time. This allowed using the Monte Carlo method,
which gave robust results for the failure probability assessment. Probabilistic input dis-
tributions are provided by the literature, but no statistical inference has been performed.
Future work should therefore take real data into consideration and a Bayesian approach
could then be appropriate to update the information conveyed by numerical simulations
(Eckert et al., 2009).

Finally, it should be noted that more sophisticated mechanical models for civil engi-
neering structures exist, based on the finite-element (FE) method, which can simulate the
structure in greater detail and in particular describe how the damage field evolves when
material nonlinearities develop inside the concrete and the steel reinforcement. However,
these FE models are often more complex (i.e., in term of convergence) and time-consuming.
Hence, they may be less well adapted to a generic individual risk base approach, but more
useful for studies deriving refined fragility curves for specific structures included in precise

engineering projects.
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Table 2.9 — Nomenclature.

Ps density of steel

Iy length of the slab

ly height of the slab

h thickness of the slab

feas cylinder characteristic compressive strength of concrete (age, 28 days)
foe compressive strength of concrete

[t tensile strength of concrete

fy steel yield strength

€uk ultimate tensile strain of the steel

Vb, Vs safety coefficients on concrete and steel strength

qULS, ALS, QElas, QLT characteristic loading at the ultimate limit state, at the accidental limit state, at

the first cracks of the concrete in the tensile zone and at the collapse

€he ultimate compressive strain of the concrete
0 loading time parameter

Mag rational dimensioning moment

LAB ULS rational dimensioning coefficient

d effective depth of the RC cross section

z lever arm in the section

By, Bz Bares coefficient

v Poisson coefficient

Wint internal virtual work

Wext external virtual work

nr, number of yield lines

Mli unitary plastic moment along the ith line
L; length of the 7th line

0; rotation angle of the ith element

o(z,y) displacement matrix

q uniform load

aq, Qg angles of YLT patterns

P failure probability

r resistance of the structure

s solicitation

@ significance level of confidence interval
fr(r) probability density function of the resistance
S first-order Sobol sensitivity coefficient
STi total Sobol sensitivity coefficient

Qo coefficient from the JCSS distribution
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CHAPTER 3

Reliability-based physical vulnerability assessment of a RC
wall impacted by snow avalanches using a nonlinear SDOF

model

Le contenu de ce chapitre a vocation & étre soumis apres travail a Reliability Engineering
and System Safety, les auteurs sont : Favier, P., Bertrand, D., Eckert, N., Ousset, . and
Naaim, M..
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Abstract

As often in reliability engineering, the CPU time required to obtain accurate and robust results is the main
issue. Here, the objective is to propose a simplified modelling of the RC structure keeping the involved
physics and especially the dynamic nature of the structure’s mechanical response. This paper presents
the assessment of the physical vulnerability of a Reinforced Concrete (RC) wall subjected to an avalanche
loading within a reliability framework. A Single Degree-Of-Freedom (SDOF) model is used to describe the
dynamical response of the RC member. The non-linear behaviour of the material is taken into account by
a Moment-Curvature approach which allows describing the overall bending response of the RC wall until
the collapse. The deterministic SDOF model is validated by Finite Element Analysis (FEA) and by limit
analysis.

A reliability analysis is conducted in order to derive fragility curves providing the limit state reach
as function of avalanche pressure. A performance analysis is carried out which underlines the necessity
to use efficient numerical models in terms of computation time. For our case of snow avalanche loadings,
a SDOF model seems to be an interesting option to derived rapidly fragility curves keeping a sufficient
accuracy. Several reliability methods (Monte-Carlo, Kernel smoothing, Taylor expansion) are used and
compared suggesting that non parametric methods (not based on parametrized families of probability
distributions) have a good potential to approach fragility curves. Finally, the sensitivity to strength
parameters (material tensile and compressive strengths, reinforcement ratio) and to loading parameters
are proposed. It highlights that both have influences on the fragility curve derivation; the loading rate has
also a significant influence on both the shape and the mode of the fragility curve. Discussion is proposed
with regards to the seldom fragility curves available in this field.

Keywords: Vulnerability Relations; Fragility Curves; RC Wall; Reliability; Natural Hazard; Snow
Avalanche; Risk; SDOF model; Finite Element Analysis.

3.1 Introduction

Nowadays, risk analysis is more and more used in order to help decision makers. In safety
domains, such as natural hazards prevention and mitigation engineering, the construction
of hazard models together with vulnerability relations are needed. Vulnerability relations
are used to represent a degree of damage of the considered system, or fragility curves which
express the probability to reach a given limit state. Vulnerability curves are deterministic
in opposition to fragility curves which are probabilistic.

In the context of avalanche risk mitigation, technical prescriptions for buildings lying
in dangerous runout zones impose that the part of the structure facing the snow flow has
to resist to pressures up to 30kPa. Several kind of construction technologies can be used
to achieve this resistance (masonry, wood or metallic structures, etc.). In a first step, only
reinforced concrete is considered in this paper. Indeed, most of usual constructions which
can be found in the Alps are built with this composite material. Thus, this paper deals
with the definition of the fragility curves for RC walls impacted by a snow avalanche. For

a given magnitude of avalanche loading, a fragility curve provides the probability that the
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RC wall would reach a given damage level.

Until now, very few fragility curves established within the context of snow avalanche
risk are available. Indeed, most studies dedicated to the assessment of physical vulnerabil-
ity to snow avalanches are dealing only with vulnerability curves and not fragility curves
(Papathoma-Kohle et al., 2011). Vulnerability relations are often empirically assessed,
based on historical observations (Keylock and Barbolini, 2001; Barbolini et al., 2004a;
Cappabianca et al., 2008). Because these relations were deduced from scarce data which
can be site dependent, the accuracy and the generalization of such relations is question-
able. Recently, in order to propose an alternative way to derive vulnerability curves, Finite
Element Analysis (FEA) was used to described the damage level of typical RC structures
subjected to an avalanche pressure field (Bertrand et al., 2010). The main advantage of
numerical approaches is to define and control accurately the studied structure (geometry,
resistance, reproducibility, etc.).

Second, fragility curves are non homogeneously used with natural or anthropic hazards.
For instance, the failure probability quantification of structures within an industrial con-
text is currently undertaken (explosions (Low and Hao, 2001; Nassr et al., 2012), geotech-
nical works (Mollon et al., 2013), etc.). Besides, for multistorey buildings exposed to
earthquake loadings, the probability to overpass a drift limit according to the peak ground
acceleration is very often described via reliability-based fragility curves (Ellingwood, 2001;
Kyung and Rosowsky, 2006; Li and Ellingwood, 2007; Lagaros, 2008). However, for rock-
falls (Mavrouli and Corominas, 2010a,b), landslides or debris flows (Papathoma-Ké&hle
et al., 2012), tephra falls (Spence et al., 2005), fragility curves are seldom used and vul-
nerability relations are preferred.

The failure probability assessment is based on the well-established framework of relia-
bility analysis (Lemaire (2005)). Once the deterministic model and the failure criterion of
the system are chosen, the uncertainties related to the random variables are propagated
through the mechanical model to calculate the failure probability. Usually, simulation
methods are used. These methods are more or less based on the Monte-Carlo approach
and give robust results. However, they can be time consuming depending on the rapidity
of the deterministic model. In some cases, if too many runs are needed to get a good
accuracy of the failure probability or if the deterministic model is not effective enough in
terms of CPU time, approximation methods can be alternatively used in order to lower the
number of simulation calls. However, the convergence is not always ensured, depending,
inter alia, on the non linearity of the deterministic model and on the number of random
variables involved.

Alternative models to highly time-consuming models are preferred in reliability anal-
ysis. Reducing the calculation time can be made by performing simplifying assumptions

on the mechanical model together with keeping the involved physics. Reinforced concrete
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structures are broadly studied and various numerical models exist to describe the me-
chanical response of the structure and possibly its failure. For snow avalanche loadings,
FEA have already been used in order to better understand the interaction between the
avalanche and the RC structure. For instance, a FEA has been performed on deflective
RC walls of the protection system of Taconnaz (Berthet-Rambaud, 2004; Ousset et al.,
2013). Besides, typical structure geometries have been considered for residential buildings,
i.e. three vertical walls with a U-like shape (Bertrand et al., 2010). Within a stochastic
framework, the main drawback of these approaches is the CPU time needed to performed
a single simulation. As an alternative, the mechanical capacity of a RC structure can be
estimated using classical civil engineering abacuses allowing the use of reliability analysis.
Thus, for a wide range of boundary conditions, the failure probability calculation of RC
slabs impacted by snow avalanches has been proposed by Favier et al. (2014a). The main
assumption consists in supposing that the response of the structure is quasi-static. Nev-
ertheless, this approach does not account for potential inertial effects or strain rate effects
due to the dynamical nature of the loading.

In order to find a compromise between simplified time effective models and refined mod-
els but time consuming, RC structures can be described using Single-Degree-of-Freedom
(SDOF) approaches (Biggs, 1964). The structure is modeled by an equivalent mass and an
equivalent spring. This approach has been largely used and validated in the field of struc-
tures subjected to blast loads (Ngo et al., 2007; Jones et al., 2009; Carta and Stochino,
2013). In this paper, a simply supported RC wall is considered and modeled by a SDOF
approach. The model is able to describe the ultimate state of the RC wall, i.e. its collapse
which corresponds to the ultimate bending moment which can be undergone. A FEA and
limit analysis are used to validate the ultimate mechanical state predicted by the SDOF
model. Then, several inputs of the SDOF model are randomized and a reliability anal-
ysis is performed in order to established fragility curves according to various simulation
and approximation methods. A comparison of the relevance and efficacy of the reliability
methods is proposed. Finally, a parametric study is presented which underlines the rela-
tion between random input variables and, particularly, the effect of variable correlations

and the coeflicients of variation of each variable.

3.2 Deterministic SDOF model

3.2.1 RC wall description

Geometry and loading

The considered RC wall is rectangular with a length L of 8m, a width b of 1m and a
thickness h of 20cm (Figure 3.1a). The RC wall is simply supported along the two smaller
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Figure 3.1 — Simply supported RC wall (a) and time evolution of the pressure (b).
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Figure 3.2 — Stress-strain relations for concrete (a) and steel (b).

edges. This boundary condition allows considering the system as a 2D problem and thus
the RC wall can be assimilated to a simply supported beam.

The snow avalanche applies an uniform pressure p(t) along the y axis which evolves
through time from 0s to teng up to the maximal pressure P,,q, which is reached for te,q/2.

This time evolution is shown in figure 3.1b. The loading rate (ﬁm—“j‘) is fixed at 0.3 kPa.s~1.

Steel and concrete

Many stress-strain relations for concrete and steel are available in the literature (Bazant
and Oh (1983); Mazars (1986); De Borst and Guitiérrez (1999); Wang and Hsu (2001);
CEB-FIP (2010), etc.). As a function of the problem assumptions (cyclic loading, 3D

formulation, etc.), the evolutions of the stress-strain relations can be more or less complex.
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In this paper, the concrete and steel behaviour laws are piecewise linear relations describing
the evolution of stress (0,,) as a function of strain (€,,) along the longitudinal axis = of
the slab (Figure 3.2a).

The behaviour laws proposed by Leprétre et al. (1988) have been used. The elastic
part of the behaviours laws is described by the Young modulus of steel (E;) and concrete
(E.). For concrete, compressive and tensile responses have been distinguished (Figure
3.2a). Under compression regime, the stress (o.) increases as a function of the strain (e.)
up to the compressive strength of concrete (f.) which corresponds to a strain of e.,. Then
a negative hardening compressive behaviour develops. When the ultimate compressive
strain (€q,) is reached, o. = 0. Under tensile regime, the same behaviour is qualitatively
used. The tensile strength of concrete (f;) and the ultimate tensile strain of concrete (e;)
are involved. The strain associated to f; equals €y, = f;/E.. For steel, the behaviour law
is supposed elastic perfectly plastic (Figure 3.2b). f, is the yielding stress associated to
the yield strain ez, and e, is the ultimate strain of steel.

Reinforced concrete is a composite material for which the quantity of steel included
within concrete plays a major role. The steel reinforcement ratio (p,) is defined as the
ratio between the steel area (As) on the cross-section surface (h x b) and equals 0.4%.

Figure 3.3a depicts a cross sectional view of the RC wall.

3.2.2 SDOF model

The pressure is applied out-of-plan of the RC wall and thus bending and shearing efforts
exist through cross-sections. Because the loading is uniformly applied and the time of
loading is quite higher than the fundamental frequency of the structure (5Hz, thus an
oscillation period of 0.2s), it can be assumed that the failure mode occurs by excessive
bending at midspan (Figure 3.4c). Thus, it justifies to use SDOF modelling to represent
the RC wall mechanical response.

The proposed SDOF model corresponds to a mass-spring system loaded by a uniform
pressure (Figure 3.4a-b). An equivalent concentrated mass (M,) is maintained by a
spring of stiffness K.4. The expressions of M., and K., are deduced respectively from the
deformed shape (Biggs, 1964) and from the Moment-Curvature relationship presented in
the section 3.2.2. Finally, no viscous damping has been considered because, if the structure
collapses, the failure criteria will be necessarily achieved during the loading phase and thus

it is not necessary to account for the post peak oscillation regime.

Elasto-plastic overall response

The elasto-plastic behaviour of the SDOF model can be represented by a bilinear Load-

Displacement curve which is derived from the Moment-Curvature (M — x) relationship
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Concrete

Neutral axis

COMPRESSION

TENSION

Figure 3.3 — Cross-section of the RC beam (a), stress diagram (b), strain diagram (c).

Figure 3.4 — Simply supported beam (a), mass-spring system (b) and failure mode of the
RC wall (c).
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deduced at the cross-section scale (c¢f. paragraph 3.2.2). The bending moment M, cor-
responds to the beginning of either steel yielding or concrete crushing depending on the
reinforcement ratio. The ultimate bending moment M, corresponds to the achievement
of the ultimate strain value either within concrete or steel. Related curvatures are x, and
Xu-

The first part of the Load-Displacement bilinear curve represents the elastic response
and the second part is the plastic response of the RC wall. Two forces are respectively

8M, . . .
expressed such as P, = —* and P, = % which can be transformed into a uniform

pressure as p = P/L (Figure 3.4a). Then, the expression of the midspan displacement

corresponding to the transition from elastic to plastic is

5P, L3
Vy = =,
V384K

(3.1)

where K = % which is the bending stiffness of the RC wall. The ultimate midspan

displacement is deduced from

1
Uy = Uy + Z(XU —xy) L1, , (3.2)

where [, is the plastic hinge length (Figure 3.3c) which can be estimated by the relation
l, = d+0.05L (Mattock, 1967) where d is the effective depth of the cross-section (Figure
3.3a). Finally, the Load-Displacement curve (Figure 3.5b) has two stiffnesses which are

defined such as

P,
Kg=-", (3.3)

Uy

P,-P
Ky=—". 3.4
pl Uy — vy (3.4)
Moment-Curvature relationship

The curvature, defined as y = %2;’2" where v, is the midspan displacement, is obtained

assuming that the strain distribution along the y axis follows classical Euler-Bernoulli
assumptions which means that sections remain plane and orthogonal to the neutral axis
during the loading of the RC wall (Figure 3.3b). Thus, the curvature can be calculated by

Q)
o
~~
<
Il
|
[Nl
S~—
)
w
—
<
Il
IS8
|
|
S—

X = = , (3.5)



3. Reliability-based physical vulnerability assessment of a RC wall impacted by snow avalanches

using a nonlinear SDOF model

where z, is the neutral axis depth. z, is deduced from the translational mechanical balance

along x of the cross-section which can be expressed by the equation

T h
b/ ’ oedy = 05 Ag + b/ o.dy . (3.6)
0 Ty

The Moment-Curvature relationship is constructed step by step by calculating the position
of the neutral axis for a given strain distribution, i.e. a given curvature y, which fulfil the

condition of equation 3.6. Then, the bending moment is calculated from

M(x) =b /O Y oe(d—y)dy . (3.7)

At the end of the process, My, M,, xy and X, are identified on the M — x curve and used
to derive the Load-Displacement curve of the SDOF model.

Equations of motion

By applying the fundamental principle of dynamics, the mechanical balance of the SDOF
leads to the following differential equations. For the elastic phase (0 < v, < vy), it comes:
d?v,(t)
Melw + Kelvo(t) = P(t) ) (38)
and, for the plastic phase (v, < v, < vy):

d?v,(t)
Mo =2

where P(t) is the time evolution of the external force deduced from the uniform pressure

+ Kpivo(t) + (Ket — Kpi)vy = P(1) (3.9)

p(t) applied to the RC wall. In order to solve through time equations 3.8 and 3.9, usual

Newmark’s algorithm technics have been used (Newmark, 1959).

3.2.3 Validation

Finite Element Analysis

In order to validated the SDOF model, a Finite Element simulation of the RC wall re-
sponse to avalanche loading has been undertaken with the computational software Cast3M
(Millard, 1993). The analysis is carried out in 2D (plane stress). Concrete (resp. steel) is
meshed using eight node quadrilateral (resp. two node segment) finite elements (Figure
3.6a). 100 finite elements are placed along the = axis and 10 along the y axis. A per-
fect adhesion between concrete and steel is supposed and thus no slip can occurs. The
same behaviour laws previously described are adopted but formulated here in plane stress

conditions.
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— - —_— ————— =6.2-10°
.?.g_.:‘ F_; V ,,“ ,' : ,,“ max( o,,)=6.2-10"MPa

min(o,,) =-2.6-10"MPa

Figure 3.6 — Mesh of the FEA in black and deformed shape in red (a) and stress field

(04z) at the collapse pressure (b).

A uniform pressure is applied. As for a pushover test, the loading increases linearly
up to reach either the ultimate strain within steel or concrete. Thus, the midspan dis-
placement can be expressed as a function of the pressure applied. The stress field at the
collapse is depicted in figure 3.6b.

Furthermore, a modal analysis has been carried out. The first (resp. the second) mode
of vibration has a frequency of 4.92Hz (resp. 19.64Hz) which match the theoretical values
4.91Hz (resp. 19.63Hz).

Limit analysis

The ultimate resistance of RC slabs under uniformly distributed pressure can be derived
from the classical yield line theory (Johansen, 1962) which also provides the collapse
mechanism of the RC member. Under an external loading, macrocracks will develop to
form a pattern of ”yield lines” until a mechanism is formed and leads to the collapse.
A yield line corresponds to a nearly straight line along which a plastic hinge develops
where the bending moment becomes constant and equals the plastic bending moment.
The ultimate pressure is deducted from the energy balance between external and internal
energies. The external energy coming from the loading and the internal energy is due to
energy dissipation within the yield lines.

For a one-way simply supported slab, the only collapse mechanism that can arise is



3. Reliability-based physical vulnerability assessment of a RC wall impacted by snow avalanches

using a nonlinear SDOF model

10 —

Force (kPa)

2r : ——Finite element response |
—SDOF response
Elastic response
‘ ‘ - - -Limit analysis
% 002 004 006 008 01 012 0.14
Displacement (m)

Figure 3.7 — Load-displacement curve obtained with FEA and SDOF model. The green

curve represents the elastic response of a beam loaded by a uniform pressure.

depicted in figure 3.4c. Under an uniform pressure, a single yield line would develop

at mispan and thus, for a given arbitrary midspan rotation 6, the internal work (26M,,)
L

equals the external work (2 [;? 6z qdz = 9%) and finally leads to the ultimate pressure

Qv LT = % where M, is the plastic bending moment of the RC member. M, can be

obtained by (Favre et al., 1990):

M,=A, f,09d, (3.10)
which leads to M, = 57.5 kN.m and finally ¢y 17 = 7.2 kN.m?.

Results comparison

Table 3.1 summarizes inputs of FE and SDOF models and Table 3.2 gives a comparison of
ultimate displacement, ultimate pressure and computation time. Results are compared in
figure 3.7 which demonstrates that Load-displacement curves of both models are in good
agreement. The elastic regime is accurately reproduced by the SDOF model. Moreover,
the ultimate pressure is also well predicted. The limit analysis gives the same result. A
slight difference can be noticed concerning the ultimate displacement which is higher in the
case of the FEA. It can be explained by the formulation of the behaviours laws. Indeed,

in the case of FEA, the plane stress assumption leads to enable stress redistribution which
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Parameters Symbol Value
Length L 8m
Width b 1m
Thickness h 20 em
Concrete cover Cexc 4 cm
Mass density (S) Ps 7500 kg.m =3
Mass density (C) Pe 2500 kg.m ™3
Young modulus (S) E, 200 GPa
Young modulus (C) E. 30 GPa
Poisson ratio (S)* Vs 0.3
Poisson ratio (C)* Ve 0.2
Ult. tensile strain (S) Esu 0.01
Ult. compressive strain (C) €cu —0.0035
Ult. tensile strain (C) €t 3fi/E. = 4.1074
Ult. tensile strength (C) fi 4 MPa
Ult. compressive strength (C) fe 30 M Pa
Reinforcement ratio Pr 0.4%
Yield strength (S) fy 500 M Pa
Ult. bi-compressive strength (C)* foic 1.15f.

Table 3.1 — Parameter values for models comparison (* only needed in the FEM model due
to plane stress formulation). The following notations are adopted : Ult. means Ultimate,

S (resp. C) means Steel (resp. Concrete).

cannot be accounted for by the SDOF approach and leads to a the stiffer response of the
SDOF. Within a reliability context, those observations ensure the SDOF model to provide
conservative and hence safe results for ultimate state prediction of the RC wall.

Finally, the computational time of each approach is compared (Table 3.2). With the
same computer, a computation time of 40 minutes is needed for the FE analysis whereas
the SDOF model runs and finish calculations in less than half a minute. Limit analysis

can be time effective but only provides the ultimate pressure.

3.3 Vulnerability assessment

3.3.1 Failure probability

In a reliability framework, model inputs (z) allows defining the Probability Density Func-

tion (PDF) fr(r) which represents the structure resistance (or structure capacity) and
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Models Ult. pressure | Ult. displacement | Comp. time
SDOF 7.58 kPa 0.0923 m ~35s
FEA 7.65 kPa 0.1283 m ~ 40 min
Limit Analysis 7.56 kPa — ~0.2s

Table 3.2 — Ultimate displacement, ultimate pressure and CPU time provided by the three

approaches.

where r is the capacity of the structure for a given input vector x. For a solicitation s,
the failure probability is obtained by (Lemaire, 2005)

Py(s) = P(r < s) = /SOO Fr(r) dr (3.11)

The capacity r of the RC wall is defined by the ultimate pressure p,. The fragility
curve is the Cumulative Density Function (CDF) of the structure capacity according to the
ultimate pressure limit state and gives the failure probability as a function of the pressure
magnitude applied to the structure (p). In the following, PDF inputs distributions are

presented. Then, the different methods to derive fragility curves are exposed.

3.3.2 Inputs statistical distributions

Two classes of inputs are considered as random variables: geometrical (L, b and h) and
strength (f:, fe, fy and p,) parameters. The mean value of the input vector refers to the
deterministic case (Table 3.1). The inputs variables are supposed either independent or
correlated.

First, input distributions are normal PDF and no correlation is supposed between
random variables. Values of Coefficients Of Variation (COV) are considered through three
typical cases. First, 5% is often used when no specific COV values are available (Tab. 3.3,
sets (1.a.a)). Second, values can be proposed from literature justifications (sets (2.5.b)).
The last set (sets (3.7.c)) corresponds to the deterministic point of view (COV=0).

Then, random variable correlation is assumed between strength parameters (f;, f. and
fy)- The variable correlation is taken into account following the Joint Comity of Structural

Safety recommendations (Joint Committee on Structural Safety, 2001).

Marginal PDF distributions

To describe geometrical uncertainties, normal distributions are largely assumed (Lu et al.,
1994; Val et al., 1997; Low and Hao, 2002; Kassem et al., 2013). COV are usually taken in
a range from 0.01 to 0.07. Three sets (1, 2, 3) of COV are tested using normal distributions
(Table 3.3).
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’ Inputs ‘ Mean CoVv
set 1 | set 2 set 3
L 8m 0.05 0.03 | determ.
b 4m 0.05 0.03 | determ.
h 20cm 0.05 0.03 | determ.

set a | set B | set v
Pr 0.4% 0.05 | 0.03 | determ.

set a | set b | set c
ft 4MPa 0.05 0.18 | determ.
fe 30MPa | 0.05 0.18 | determ.
Iy 500MPa | 0.05 0.08 | determ.

Table 3.3 — Marginal distributions of inputs parameters. “determ.” means deterministic
which corresponds to a COV equals to zero. In the case of independent variables, normal

distributions are used.

Concerning strength parameters, in a first approximation, normal distributions with
a COV of 0.05 are considered (set a). In a second step, more realistic COV are used (set
b). For the compressive strength of concrete f. the normal distribution is an usual choice
(Mirza et al., 1979; Val et al., 1997; Low and Hao, 2001, 2002) and COV ranging between
0.11 and 0.18 are generally used. Here, a COV of 0.18 is used. For the tensile strength of
the concrete, a normal distribution with a COV of 0.18 can also be assumed (MacGregor
et al., 1983). Finally, for f,, normal, lognormal or beta distributions are often proposed
(MacGregor et al., 1983) and the COV varies from 0.08 to 0.11 (Val et al., 1997). In the
paper, a normal distribution is adopted and the COV equals 0.08. All these choices are
summarized in Table 3.3.

Eventually, no datum is already available about the reinforcement ratio’s COV. Be-
cause p, is defined from geometrical parameters, a normal PDF is assumed and COV is

supposed equal to 0.03 or 0.05, depending on the set considered (Table 3.3).

Strength parameters correlation

The case of strength parameter correlation is also considered. The JCSS (Joint Com-
mittee on Structural Safety, 2001) proposed more realistic distribution descriptions by
accounting for their potential dependencies.

The concrete tensile strength (f;) is expressed according to the compressive strength
of the concrete f.. The distribution of f. is deduced from the basic concrete compression

strength f.og distribution. For a ready-mixed concrete type with a C'25 concrete grade, it
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Figure 3.8 — Statistical distributions for f., f; and f, according to Tab. 3.3, and compar-
ison with JCSS distributions.
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yields:

1
feas = exp(m +t,s(1 + g>0'5)’ (3.12)

where the values of the parameters m, v, s,n are: m = 3.65, v = 3.0, s = 0.12, n = 10
and, t, is a random variable from a Student distribution with v degrees of freedom. Then,
f+ and f. are calculated with A, Y7 and, Ys. The parameter A is taken equal to 0.96 and
is a factor taking into account the systematic variation of in situ compressive strength
and the strength from standard tests. The coefficient a. equals 0.92. Finally, (Y;);=12 are
log-normal variables representing additional variations due to special placing, curing, and

hardening of the concrete:

fc = Oécfc/\ngla (3.13)

fo =032V, (3.14)

where Y7 and Y5 means are 1 and their respective coefficients of variation are 0.06 and
0.3. For all other parameters, the marginal mean and standard deviation were also set
according to the JCSS recommendation.

For the yield strength of steel (f,) and based on JCSS assumptions, a normal distri-
bution can be adopted with a mean of 560 MPa and a COV of 0.054. Figure 3.8 depicts
strength parameter distributions used in this paper and underlines observed differences
related to f, and f; PDF definitions.

3.3.3 Reliability methods

From inputs PDF distributions (z) and by propagating uncertainties through the deter-
ministic model (M), output PDF distribution (fg(r)) can be obtained ((Saltelli et al.,
2004; Faivre et al., 2013)). As the capacity r of the RC wall is defined by the ultimate
pressure p,, the output PDF distribution can be noted (fp,(py)). Two approaches are
considered. Either the output is described through the direct approximation of its PDF or
by the estimation of the output’s moments (mean and variance). In order to perform these
calculations, effective methods exist such as Kernel Smoothing (KS) or Taylor Expansion
(TE) (Lemaire, 2005).

Kernel Smoothing

Direct MC simulations of input variables can provide a discrete PDF distribution of
model’s outputs. However, the resulting curve is a piecewise linear function. KS al-

lows approximating the output PDF distribution considering a normal kernel function K
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such as

n (z)
Fou(pu) = Z < ) : (3.15)
=1

(4)

where py’ is the i*" component of the output sample of ultimate pressure of size n and

the kernel function is expressed as

K(z) = ——e 3% (3.16)

and hg is the optimal bandwidth which is evaluated with Silverman rule (Wand and
Jones, 1995).

Taylor Expansion

Mean and variance of the output vector of a model M can be calculated directly from
MC simulations but this can be time consuming. TE allows approximating the output
moments of the model more quickly. The moment approximations suppose that the mean
of the output (uyp,) can be well estimated by model TE around the input mean (p;). The
mean (fi,,) and variance (&gu) of the output p, are approximated though the following

expressions:

o R
Hp. = 2 kZ: a$k Czk ) (317)
T OM oM
A2 v oM ‘

ik=1

where m is the number of input variables, u, is the mean of the input vector z and C;i, is the
1k component of the variance-covariance matrix of . The non linearity of the deterministic
model should not be too strong in order to ensure a satisfactory approximation of the
second partial derivatives of the model and, hence, of the results fi,, and 6 0’ . provided by
this method. If no covariances is considered (C;; = 0 if i # k), preceding equatlons can

be rewritten more simply as

1 & 9°M
fp = M(pz) + 5> 55 () Cii (3.19)
P 2 = ax?
Upu - P 8@ :u.l‘ (X .



3.3 Vulnerability assessment

3.3.4 Fragility curves derivation

Four methods are proposed to derive fragility curves. First, non-parametric approaches
are exposed (crude MC simulations and MC simulations combined with Kernel Smoothing
(KS)) and then parametric estimation methods are presented (TE-based method and
Maximum Likelihood Estimation (MLE) method). Non parametric approaches consist
in a direct estimation deriving the fragility curve without performing any assumptions
regarding the form of the output function. Parametric approaches consist in assuming the
shape of the output PDF distribution and approximating its constitutive parameters. The
OpenTURNS software is dedicated to the treatment of the uncertainty, risk and statistics,

its extensive reliability methods library was used to build fragility curves.

Empirical CDF via crude MC simulations (ECDF)

Fragility curves can be assessed directly by crude MC simulations such as

A 1 .

Py(pu) =~ Z;I (02 <pu) (3.21)

i—

where p is the external pressure applied to the RC wall, pg ) corresponds to the ultimate
pressure of the i** simulated RC wall, and n is the number of simulations. The indicator
function I(p, > pgf)) equals 1 if the structure collapses and 0 otherwise. Because of
CPU time limitations, the resulting Empirical CDF (ECDF) is often a rough but robust
approximation. Another limitation is that the ECDF is non differentiable and non strictly

monotonous.

MC using KS approximation (MCKS)

By contrary to crude MC approaches, smoothing methods allows obtaining strictly
monotonous and bijective curves. An approximation of the fragility curve can be ex-
pressed integrating out equation (3.15), which gives the following expression

Py(py) = " fpu(@)dg - (3.22)

— 00

TE using log-normal and normal CDF (TECDF)

If the shape of the fragility curve is postulated (normal or lognormal CDF), the CDF
distribution can be deduced from its first (fi,,) and second (6,, ) central moments approx-
imation based on TE (Equations (3.17) and (3.18)). For an assumed normal CDF Fl, the
following expression comes

5 N Pu— flp,

Opy
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—u2
where ¢(z) = [* é e 2 du is the CDF of the standard normal distribution.
For an assumed log-normal CDF, the estimators (urn,orn) are deduced from the

following relations:

i 52
pin =log [ —=2~—— and oy = ,|log Ag“ +1. (3.24)
6’%1[. + ﬂ%U/ Mpu

A random variable has a log-normal CDF distribution (u7ny and ofy) if its logarithm

has a normal PDF with mean ujy and standard deviation o7y. Then, the fragility curve

can be approximated by the log-normal CDF Fpn

5 R R lo — UL
Pt(pu) = FLn(pulpin, oLN) = ¢ (W) . (3.25)

MLE using log-normal and normal CDF (MLECDF)

From the MC sampling, the output CDF can be also fitted assuming the fragility curve

shape. MLE allows calculating estimators ,LijM LE

and 6}/[“3 for the normal or the log
normal CDF. ji; MLE and 6}” LE aim at maximizing the probability of having obtained the

sample actually at hand (Fisher, 1922). Fragility curves are expressed as:

Pr(pu) = Fj(pu|i;MEE, 6 MLEY | (3.26)

E ~MLE

where /ijM LE and ; are, respectively, the mean and variance MLE estimate of the

output PDF; j equals N (resp. LN) in the case of a normal (resp. log-normal) CDF.

3.4 Results

3.4.1 Reliability methods comparisons

The comparison between each methods is carried out using the input PDF defined by the
set (1l.a.a) where all COVs are fixed to 0.05. For the reliability methods using MC simula-
tions (ECDF, MLECDF and MCKS), the number of simulations is set to respectively 30,
300 and 1,000. The ECDF method is the most robust and its accuracy increases with the
MC sample size. Thus, the reference fragility curve is derived by the 1,000 simulations
ECDF sample (Figure 3.9a).

Depending on the expected fragility range (the pressure range on which the CDF
increases from ~ 0 to ~ 1), a large number of simulations can be needed to obtain
smooth fragility curves. Since the MCKS method by definition smooths the CDF curve

approximation, fewer simulations than with ECDF method are required to obtain a valid
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Figure 3.9 — Reliability methods comparisons.
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Figure 3.10 — Advantages and drawbacks of each method to derive fragility curves
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curve (Figure 3.9b). The same conclusion can be drawn in the case of MLECDF method,
which by definition always lead to smooth curves. A significant effect of the assumed
output CDF can be noticed for low simulation numbers but it disappeared when 300

simulations are performed (Figure 3.9¢).

In the case of the TECDF method, the approximation of the first and the second cen-
tred moments combined with normal or log-normal CDF needs only 15 simulations at the
15¢ order. One simulation allows approximating the mean at the 15¢ order and 14 simula-

2nd order mean estimation

tions allow approximating the variance at the 1% order. The
needs 113 simulations. For TECDF method, the approximation of fragility curve exhibits
slight differences compared to the ECDF fragility curve whatever the assumed output
CDF (Figure 3.9d). This method is based on the assumption that a good estimator of
the output mean of the model can be calculated with the mean of input variables (central
answer). This assumption is fully valid when the deterministic model is linear. Thus, the
observed differences can be due to the non-linearity of the SDOF model. Nevertheless,
if non linearities of the deterministic model are not too significant, few simulations are
needed which allows deriving quickly fragility curves. The efficiency and drawbacks of each
methods are summed up in the scheme of figure 3.10. To conduct the sensibility analy-
sis of fragility curves, the kernel smoothing method is a good compromise. It allows to
take into account possible non-linearities of the deterministic model and to obtain smooth
curves without too much MC simulations and without any assumption on the shape of

the fragility curve.

3.4.2 Fragility curve sensitivity to inputs
Input PDF effect

Four cases are considered. First, all COVs are set to 0.05 (set 1.a.a). Second, COVs are set
to their maximal value deduced from the literature (set 1.a.b). Intermediate COV values
(set 2.6.b) are used for the third case. These latter combinations involve independent
random variables. The last case used JCSS PDF distributions (set 2.8.J, J refering to
section 3.3.2) where correlation between strength parameters is accounted for. The derived
fragility curves are depicted in figure 3.11.

Independent input PDFs give similar fragility curves when they are centered around
the same nominal values. For the three independent cases, the 50% quantile is similar and
the fragility range, defined as the interval between the 2.5% and 97.5% quantile, varies
slightly (Table 3.4). The more the COV have important values, the more the fragility
curve is spread. Finally, correlations between strength parameters induce a shift of the

fragility curve toward higher pressures.
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Figure 3.11 — Vulnerability depending on types of statistical inputs PDF based on MCKS

method.

Input PDF set | 2.5% | 50% | 97.5%
set (1.av.a) 56 | 7.5 9.9
set (1.a.b) 5.4 7.4 10.1
set (2.6.) 6.0 7.6 9.2
set (2.5.J) 6.9 8.3 9.9
set (3.c.a) 6.7 | 7.57 | 84
set (3.v.a) 6.9 | 7.59 | 8.2
set (3.7.¢) (-) | 7.56 (-)

Table 3.4 — The 2.5%, 50% and 97.5% quantiles (in kPa) of the fragility curves according

to the input PDF reference set. J refers to section 3.3.2.
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Figure 3.12 — Effect on fragility curves of the number and the class of input parameters.
The black curve corresponds to the determinist case. Red (resp. blue and black dashed)
curves are derived from MCKS (resp. ECDF and MLECDF) method.

Number and class of random variables

Three combinations of input PDFs are considered. First, the deterministic case (set 3.7.c)
is taken as the reference fragility curve. Second, only geometrical inputs are supposed
deterministic (set 3.a.a). Third, only the material strength parameters are described as
random variables (set 3.7v.a). Finally, all the input variables are considered as random
variables (set 1.a.a). Results are presented in figure 3.12.

The number of inputs random parameters controls the fragility curve spreading (Tab.
3.4). If the geometrical uncertainties are not considered, the fragility range drops from
[5.6 — 9.9] kPa to [6.7 — 8.4] kPa. Assuming the reinforcement ratio as deterministic, the
fragility range drops from [6.7 — 8.4] kPa to [6.9 — 8.2] kPa. The more random input
variables are considered, the more wide is the fragility range. Finally, one can notice
the asymmetry of the fragility range even if inputs distributions are symmetric (normal
PDFs).

3.4.3 Effect of physical parameters
Length effect

The ultimate pressure value (p,,) is significantly influenced by the nominal length of the
RC wall (Figure 3.13a). The longer the RC wall is, the lower the ultimate pressure is
(P, = 8w). The 2.5%, 50% and 97.5% quantiles underline the fragility curve spreading

(Table 3.5). In a semi log-scale, the fragility range is almost the same for each fragility
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Figure 3.13 — Effect of the length of the RC wall on fragility curves. Red (resp. blue and

black dashed) curves are derived from MCKS (resp. ECDF and MLECDF (log-normal))
method.
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RC wall length (L) 2.5% | 50% | 97.5%

4 m 224 1 29.79 | 40.3
8 m 5.6 7.45 9.9
16 m 1.5 1.85 24
Reinforcement Ratio (pr)
0.3% 5.2 5.8 6.2
0.4% 6.9 7.6 8.2
0.5% 8.6 9.3 9.9
1.8% 174 | 18.8 204

Table 3.5 — The 2.5%, 50% and 97.5% quantiles (in kPa) of the fragility curves according

to the length and reinforcement ratio.

curve (Figure 3.13b). If the fragility range spreading is normalized by the 50% quantile
((Qo7.59% — Qa5%)/Q50%) it leads to 0.48, 0.58 and 0.60 for respectively 16m, 8m and 4m.

Reinforcement ratio

The influence of reinforcement ratio is explored for several typical values. Lower the
reinforcement ratio is, lower the ultimate pressure is (Figure 3.14). The values of the 50%
quantile are presented in Table 3.5. In a semi-log scale (Figure 3.14b), fragility range
spreading is almost the same for each fragility curves respectively to the 50%-quantile.
Because, the reinforcement ratio plays an important role in the failure mode of the
structure, high density reinforcement ratio is tested (1.8%). For a low reinforcement
ratio (< 1%), the failure of the RC member occurs by reaching the ultimate stain within
steel. On the contrary, for a high reinforcement ratio, the concrete reaches its ultimate
strain first. This aspect is implicitly taken into account by the Bending moment-Curvature
relationship. Nevertheless, for highly reinforced RC members, the failure mode can change
depending on the magnitude of traversal shearing forces (along y axis) and, thus, a bending

failure mode can be questionable when the length of the RC wall becomes small.

Loading rate effect

Depending on the structure mechanical features and the snow avalanche loading, inertial
effects can develop and modify the structural response through time. For all the previous
results, a loading rate of 0.3 kPa.s~! has been used. In order to assess the SDOF model
sensibility to loading rate, higher values were tested: 6 and 10 kPa.s~!. Resulting fragility
curves are depicted in figure 3.15. For higher loading rates, inertial effects are more

predominant, which leads to an artificial increase of the structure strength. However, this
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Figure 3.14 — Effect of the reinforcement ratio on fragility curves. Red (resp. blue and
black dashed) curves are derived from MCKS (resp. ECDF and MLECDF (log-normal))

method.
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Figure 3.15 — Loading rate effect on the fragility curve. Red (resp. blue and black dashed)
curves are derived from MCKS (resp. ECDF and MLECDF (log-normal)) method.

result should be used with caution. In this paper, a triangular shape describes the time
evolution of the loading. Thus, for high loading rates, the duration of the applied pressure
becomes shorter. The limit case is the Dirac loading signal which induces an impulsive
response of the structure. The energy transferred to the structure is low and the collapse
of the structure can occur only for higher pressures than in the static case. Obviously, in
the case of higher loading duration, for instance using a trapezoidal loading signal, the

fragility curves would be significantly affected.

3.4.4 Comparison to Favier et al. (2014a)’s fragility curves

Based on classical design engineering approach, (Favier et al., 2014a) proposed to obtain
ultimate pressures related to typical limit states of the RC structure. Four limit states
have been defined (Elast, ULS, ALS and YLT). The limit state “Elast” is related to the
reaching of the elastic limit within the RC member. “ULS” (resp. “ALS”) is based on
the classical definition of the ultimate (resp. accidental) limit state given in the Eurocode
2, which allows calculating the ultimate pressure considering safety coefficients related to

strength parameters of the RC member. The last limit state allows obtaining the collapse
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Figure 3.16 — Fragility curves comparison with Favier et al. (2014a)’s study.

pressure deduced from the classical yield line theory (“YLT”). Several boundary conditions
were investigated (clamped, supported, free and combination of these latter).

The comparison with our results is presented in figure 3.16. The same input PDFs have
been considered in both studies where COVs equal to 0.05 for all random variables (set
l.a.a). The derived fragility curve shows that the structure collapses for lower pressure
values compared to Favier et al. (2014a) which is mainly due to boundary conditions.
Indeed, one-way slab configuration lead to lower structural capacity compared to those
considered by Favier et al. (2014a).

3.4.5 CDF Tails

Methods presented in this study allows defining accurately the central response of the
fragility range. An important aspect, for instance in structure design, is the estimation
of the extremal quantile of the fragility curve. For instance, in a risk analysis framework,
it is important to determine accurately very low quantiles of the fragility curve which
correspond to the lowest loadings for which collapse cannot be excluded. To improve the

estimation of these low quantiles and symetrically of the high quantiles, in the studied case,
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Figure 3.17 — GPD fitting of the tails and data generated by MCKS method (central

anwser).
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the two tails of the sample are assumed to follow a Generalized Pareto Distribution (GPD)
statistical distribution (Coles, 2001) which is the suitable distribution for exceedances of
high thresholds (Pickands, 1975). For the middle of the sample (90% of the data), the
MCKS method is used to fit data. The figure 3.17 depicts the results of this approach
(MCKS + GPD tail) to full parametric approaches (normal and log-normal). It underlines
that even if the full parametric approaches will be relevant to estimate the central part of
the fragility curve, they may lead to wrongly estimate very high / low quantiles. If these
are really important, extrapolation beyond the empirical sample should be performed

rather with specific approaches as the GPD extreme value based one.

3.5 Conclusions

This paper presents solutions to derive fragility curves to snow avalanches within a reliabil-
ity framework. A one-way simply supported RC wall exposed to snow avalanche loadings
has been considered. A deterministic model based on mass-spring system equivalence has
been used. The ability of the SDOF model to predict the RC wall mechanical response
has been validated by FEA and limit analysis comparisons. Using a SDOF approach al-
lows reducing significantly the CPU time (70 times faster than FEM simulations) needed
to perform a single simulation and allows accounting for the physics involved up to the
collapse of the structure during the interaction between the wall and the avalanche.

Four methods have been proposed to derive fragility curves. ECDF and MCKS are
mainly based on MC simulations. For TECDF and MLECDF methods, the shape of the
fragilty curve is the main assumption. The fragility curves are obtained following two steps:
(1) postulate CDF functions (lognormal or normal CDF) and (2) calculate parameters of
the CDF by maximum likelihood estimation or by Taylor expansion approximation. All
methods give similar results whatever the configuration considered at least for the core of
the distribution. If very low / high quantiles are needed, our preliminary GPD application
approaches should be accounted, focusing on specific techniques from EVT. This could be
considered for structural engineering when very low failure probability are of interest.

The advantages and drawbacks of each methods have been identified. This framework
could be used for a large range of reliability-based engineering applications. The simplified
mechanical model allows to reduce computation time. The choice of well adapted relia-
bility methods is crucial. It will mainly depend on the available calculation time and the
expected accuracy of the fragility curve (good definition of the central behaviour, better
description of the tails...). From our specific engineering field, systematic fragility curves
have been derived. They supplement the seldom curves already available.

Parametric studies have underlined that fragility curves are very sensitive to physical

)
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parameters such as the RC wall’s geometry, its reinforcement ratio or the loading features.
In particular, the fragility range spreading can strongly vary. From a relative point of view,
if the fragility range is normalized by the 50% quantile, the relative fragility spreading
remains almost the same.

By definition, snow avalanche is a dynamic loading which can involve inertial effects
during the mechanical response of the structure. As a function of the structure’s me-
chanical features (stiffness and mass distribution) and the loading characteristic time, the
loading rate can influence significantly the fragility curve, especially for flexible civil en-
gineering structures which might develop fundamental periods close to the typical time
variation of the pressure applied. If the fundamental period of the structure is lower than
typical loading time, the structure mechanical response can be supposed quasi-static and
thus classical engineering methods of design can be used. Otherwise, dynamic effects have
to be accounted by the deterministic model.

As a perspective, the main difficulty concerns the modelling of the avalanche pressure
which can vary significantly as a function of meteorological conditions and specially in
terms of pressure magnitude and typical time of variation. Pressure magnitude is im-
plicitly taken into account by the fragility curves but the time of variation can have a
significant influence on the structure mechanics. The structure mechanical features are
generally better known than the avalanche loading time evolution. Thus, further researches
accounting for several typical time evolutions of the pressure might be of specific interest
to highlight the influence of avalanche loadings.

Then, the application of this approach to other types of structures is forecasted. Dif-
ferent technologies (masonry, timber, metallic, etc) with more complex geometries might
be investigated using these approaches. The challenge will remain to propose simplified
mechanical models able to account the main involved phenomenon with a reduce CPU

time.
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CHAPTER 4

Sensitivity of avalanche risk to vulnerability relations
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1. Sensitivity of avalanche risk to vulnerability relations

Abstract

Long-term avalanche risk assessment is of major importance in mountainous areas. Individual risk methods
used for zoning and defense structure design are now gaining popularity in the effort to overcome the major
drawbacks of approaches based on high return period events only. They require, for instance, precise
vulnerability relations, whereas available knowledge mostly consists in coarse curves inferred from a few
catastrophic events. In this paper, we first considerably expand the vulnerability curve sets in use today
for reinforced concrete buildings and humans inside them. To do so, we take advantage of the results of
a comprehensive reliability analysis of various building types subjected to avalanche loads, and we adapt
them to humans inside buildings using different link functions. The fragility curves obtained propose
refined destruction (building) / death (people) rates as a function of avalanche pressure that can be used
in the risk context exactly like deterministic vulnerability curves.

Second, since land use planning should be done for a reasonably large class of buildings rather than
for a very precise single building type, this study shows how a comprehensive risk sensitivity to vul-
nerability /fragility relation analysis can be conducted. Specifically, we propose bounds and indexes for
individual risk estimates and optimally designed defense structures of both theoretical (quantifying uncer-
tainty /variability that cannot be simply expressed in a probabilistic way) and practical (minimal/maximal
plausible values) aspects. This is implemented on a typical case study from the French Alps. The re-
sults show that individual risk estimates are extremely sensitive to the choice of the vulnerability/fragility
relation, whereas optimal design procedures may well be more robust, in accordance with mathematical
decision theory. These two outcomes are of crucial importance in practice. For example, the individual
risk for buildings and people at various positions in the runout zone spreads over several orders of magni-
tude. For risk zoning, this suggests that the usual (tri)centennial choice may be seen as optimistic since
only abscissas above the 1000-year return period are below standard risk acceptance levels with certainty
according to plausible variations of human fragility. On the other hand, the optimal height of a protective

dam can be more precisely determined, promoting the use of cost-benefit analyses in avalanche engineering.

Keywords: snow avalanche; building vulnerability and fragility; human fragility; risk bounds; risk

sensitivity; optimal design sensitivity; acceptable risk.

4.1 Introduction

Snow avalanches are a serious threat to mountain communities. For their inhabitants, land
use planning and zoning are crucial steps that define where it is “reasonably” safe to build.
Standard engineering procedures generally consider high return periods as reference design
events, e.g. the commonly used 30-, 100- and 300-year return period events. For planners,
zoning then results from the combination of these with additional social and political
considerations. However, this is a simplified means of handling the multivariate danger
resulting from impact pressure, flow depth or deposit volume within a single avalanche
event, that is to say, all the tangible quantities that describe hazard intensity. Furthermore,

high return period-based zoning methods do not explicitly take into account the elements
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at risk and /or possible budgetary constraints, which does not guarantee that unacceptable
exposure levels cannot be reached and/or that the mitigation choices made are optimal.

To overcome these limitations, an integrated quantitative risk evaluation is an appeal-
ing additional instrument. This approach is based on a solid formalism (Eckert et al.,
2012), for individual or collective risk mapping. Individual risk mapping consists in eval-
uating the expected damage for a typical element at risk at any position in an avalanche
path (Keylock et al., 1999). In contrast, collective risk mapping implies considering a two-
to three-dimensional hazard description together with all elements potentially impacted.
In both cases, zoning then includes both hazard and elements at risk. Another possible
outcome of a quantitative risk approach is the optimal design of mitigation measures based
on risk minimisation, that is to say, a cost-benefit assessment performed throughout the
hazard distribution and, if possible, over a continuous space of potential decisions to be
taken. Mitigation measures of maximal economic efficiency can then be chosen (Eckert
et al., 2008a, 2009; Rheinberger et al., 2009). As a consequence of these advantages over
purely hazard-oriented approaches (high return periods), integral risk management is now
gaining popularity among stakeholders, and has increasing importance in practice (Briindl
et al., 2009).

Specifically, risk quantification requires combining the model describing avalanche haz-
ard with a quantitative assessment of consequences for one or several elements at risk. The
avalanche hazard model consists in the distributions of the characteristics of avalanches
that can occur in the site studied. These distributions are (at least partially) site-specific
and have to be estimated with historical events as much as possible. Two main approaches
exist for workable distributions. “Direct” statistical inference can be used to fit explicit
distributions on relevant avalanche data, mainly runout distances (Lied and Bakkehoi,
1980; McClung and Lied, 1987; Keylock, 2005; Eckert et al., 2007b; Gauer et al., 2010).
As an alternative, richer but more computationally intensive, statistical-dynamical ap-
proaches include hydrodynamical modelling within the probabilistic framework (Barbolini
and Keylock, 2002; Ancey et al., 2004; Eckert et al., 2008b), which can be seen as an ex-
tension of Salm’s method (Salm et al., 1990) to multivariate random inputs. They ensure
the joint distribution of all variables of interest, including the spatio-temporal pressure
field variable (Eckert et al., 2010c). These accurate intensity distributions can then be
combined with the damage susceptibility of elements at risk 7.e. the vulnerability relation.

Vulnerability curves are increasing curves with values within the range [0, 1], expressed
as functions of hazard intensity. When studying avalanche-prone areas, the diversity
of elements (people, buildings, infrastructures, etc.) exposed implies the use of several
curves to represent the overall damage potential. For alpine hazards, existing vulnerability
relations mainly focus on buildings. Most of them have been assessed according to field
data (Papathoma-Kohle et al., 2010; Schwendtner et al., 2013; Cappabianca et al., 2008).

'
(
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1. Sensitivity of avalanche risk to vulnerability relations

These empirical curves have drawbacks in that they are based on scarce underlying data
(interpolated with statistical regressions, adding potential approximation errors) and to
be somewhat site-dependent (because of different technology choices in different countries,
for example). More generally, they sometimes fail to provide trustworthy and unique
quantitative damage levels in relation to hazard intensity.

As a consequence, in the specific case of snow avalanches, numerical approaches have
recently emerged to evaluate the vulnerability of buildings more systematically (Bertrand
et al., 2010). Indeed, numerical approaches have the major advantage of being imple-
mentable whenever needed for as many building types/configurations as necessary, pro-
viding a set of vulnerability relations that can be used for risk evaluation. Among existing
numerical approaches, the one detailed in Favier et al. (2014a) made it possible to obtain
fragility curves according to typical limit states of different building types. Limit states are
defined according to relevant ultimate mechanical characteristics for the building studied,
e.g. a maximum allowed displacement or an ultimate strength for a composite material.
The limit state definition remains, however, a difficult task, depending on the interaction
between the hazard and the building (dynamical or quasi-static solicitation) and on the
failure scale chosen (local, semi- local, or global).

The distinction between fragility curves and vulnerability curves is important. For
a given hazard intensity, fragility curves provide a probability of exceeding a limit state
(crudely speaking, a destruction probability), whereas a vulnerability curve provides a
deterministic damage index or rate. As stated above, Favier et al. (2014a) studied the
collapse behaviour of a building within a reliability framework, providing fragility relations
quantifying the probability that the entire building would be completely destroyed. On
the other hand, in the literature, vulnerability curves are often easier to interpret in terms
of a ratio of a building that fails. It is noteworthy that a fragility estimate can be seen as a
conditional expectancy, averaging over the influence of certain factors possibly included in
the “full”, multidimensional, deterministic vulnerability relation (Eckert et al., 2012). As a
consequence, from a mathematical point of view, vulnerability and fragility curves can be
treated and used similarly in the risk framework. However, their intrinsic difference may
induce different interpretations in practice that should be kept in mind while comparing
risk estimates obtained with the two approaches.

Decision-makers typically need to link the vulnerability of buildings to the vulnerabil-
ity of the people inside them. By definition, human vulnerability is always expressed as a
fragility, i.e. as a probability of an individual death as a function of snow avalanche inten-
sity. To do that, some studies have suggested multiplying building vulnerability /fragility
(the distinction is not always clearly made) by a particular coefficient (Wilhelm, 1998).
However, usually, human fragility has been for the most part assessed using past events
(Jonasson et al., 1999; Arnalds et al., 2004; Keylock and Barbolini, 2001; Barbolini et al.,
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1.2 Introduction

2004a), so that existing curves mainly consist in empirical lethality rates brought together
by smoothing approximations. Section 4.2.1 provides a comprehensive review of existing
relations. Their scarcity shows how necessary it is to transpose recent advances in building

physical vulnerability /fragility assessment to human fragility assessment.

According to these observations, the first objective of this paper is to provide an
updated review of available vulnerability/fragility relations for reinforced concrete (RC)
buildings and humans inside them (Sect. 4.2). Indeed, RC is a commonly used material in
areas endangered by snow avalanches, which ensures reasonable safety in areas with high
exposure to avalanche pressure, i.e. in areas where up to 30 kPa snow avalanche impact
pressures are expected. From this RC vulnerability/fragility curve set, and, specifically,
from the fragility curves of Favier et al. (2014a), we then deduce a large set of human
fragility curves. Linking fragility relations for buildings to human death rates has rarely

been done, and we propose four quantitative methods to achieve this goal.

Another major problem in many individual and total risk assessments for land use
planning is that the exact technology of existing buildings and/or potential new buildings
to be built in the future is unknown or, at least, intrinsically variable. As a consequence,
it may not be easy to choose the relevant vulnerability /fragility relation among those in
existence today, even though this choice may have a considerable influence on the final
risk estimates. The second objective of the paper is therefore to study and quantify
risk sensitivity to the choice of the vulnerability/fragility relation, which has never been
attempted to date to our knowledge. The study was conducted on individual risk for
mapping/zoning purposes and within a decisional procedure aiming at minimising risk

with a defense structure construction.

In Sect. 4.3, we detail how bounds for risk or optimal solutions to the risk minimisation
problem taking into account the variability or (mis)specification of vulnerability/fragility
relations can be defined and derived from our systematic building and human fragility
curve sets. In Sect. 4.4, we apply this methodology to a case study from the French Alps,
illustrating how vulnerability /fragility sensitivity logically provides high risk bounds for
buildings and humans inside them as well as for optimal protection design. This range of
plausible values should be preferred to single values with low robustness for zoning and
the design of defense structures. Section 4.5 discusses the major outcomes of the study,
specifically those highly relevant for practice, including comparison with acceptable levels
and with the results of standard engineering approaches using 30-, 100-, 300- year, etc.

return periods as design events. Section 4.6 summarises and concludes.
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1. Sensitivity of avalanche risk to vulnerability relations

4.2 From building vulnerability to human fragility

4.2.1 Review of vulnerability and fragility relations for snow avalanches

Physical vulnerability and fragility relations for buildings

Wilhelm (1998) assessed the damage susceptibility of five types of buildings to dense
avalanche flows: light construction, mixed construction (“chalets”), masonry, concrete
buildings with reinforcement and reinforced concrete buildings. To build damage suscep-
tibility curves, his study assumed that four typical pressures needed to be known: p,,
corresponding to the general damage threshold, i.e. valid for every building type, py;, cor-
responding to the specific damage threshold of the building considered, p,;, corresponding
to the specific demolition limit and p,;, corresponding to the specific destruction limit.

Barbolini et al. (2004a) proposed relations for buildings impacted by mixed snow
avalanches (i.e. snow avalanches composed of two layers, a dense bottom layer and a
powder upper layer). These result from linear fits on two well-documented events in Ty-
rol, Austria and are provided as functions of avalanche impact pressure and flow depth.
Buildings considered are “partly reinforced”. Vulnerability relations are derived by intro-
ducing a specific loss function in addition to the degree of damage evaluated by expert
assessment. The specific loss V,(P) corresponds to the vulnerability of the building b
function of the impact pressure P:

Vo (P) =

0.0207P if P <34 kP
{ i rs “ (4.1)

1 if P>34kPa .

Fuchs et al. (2007b) implemented a monetary-based method to assess the vulnerability
of buildings and humans, providing expected damage expressed in CHF, the Swiss cur-
rency unit, for several avalanche scenarios. Finally, a numerical approach was adopted by
Bertrand et al. (2010). The method consists first in defining a damage index. Exceedence
of a typical value on this index leads to the failure of the building. By scanning possible
input values of the numerical building model, vulnerability curves are obtained. Updating
the review by Cappabianca et al. (2008), Table 4.1 sums up all these vulnerability relations
available for buildings. The approach chosen by each author is specified (e.g. empirical or
numerical modelling).

In an attempt to systematize and increase this limited set, Favier et al. (2014a) related
uniform pressure on a reinforced or partially reinforced concrete wall to failure probabil-
ities. The goal of the study was to obtain fragility curves for buildings impacted by a
uniform dense avalanche using a reliability approach. A reliability approach consists in

considering probabilistic inputs of a deterministic model to study the occurrence of the
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1.2 From building vulnerability to human fragility

output studied. Four typical engineering limit states of RC were considered. By assuming
the material behaviour as imperfectly known (at a certain reasonable level of uncertainty),
the probability for reaching one of the four limit states was assessed. The wall was assumed

to collapse due to flexural failure. The four limit states considered were:

o the elastic limit state (Elas) which defines the step between the reversibility and
the irreversibility of building damage. In the case of the RC under flexural strain
and low reinforcement, it is quantified by the appearance of the first cracks in the

concrete under tensile stresses.

o the ultimate limit state (ULS) defined as the onset of plastic yield within steel.
This limit state is Eurocode 2-based and is characterized by the calculation of the
maximum plastic moment developed in the section combined with safety coeflicients

applied on the material parameters’ behaviour.

 the accidental limit state (ALS) corresponds to the calculation of the maximum
plastic moment developed in the section combined with lower safety coefficients than

those used in the ULS, i.e., it is a “less safe” limit state.

« the collapse is described by the yield line theory (YLT) (Johansen, 1962): this is
assumed to occur when a complete failure pattern composed of yield lines develops
throughout the wall and leads to the collapse of the RC building.

A wall was modelled, considering ten different boundary condition configurations rep-
resenting construction technology choices. The four edges of the wall were successively
assumed to be clamped, simply supported or free. Hence, the ten configurations are: four
supported; two supported and two clamped; one supported and three clamped; one free
and three supported; one free and three clamped; one clamped and three supported; two
supported and two clamped side by side; four clamped; one clamped, two supported and
one free; one supported, two clamped and one free. As already assumed in Favier et al.
(2014a), these ten configurations can be associated with ten building types. Thus, 40
fragility relations were computed (Figure 4.1(a)). Figure 4.1(b) compares them to empir-

ical and numerical literature-based vulnerability relations (see Sect. 4.5.1 for discussion).

Human fragility relations (lethality rates)

It should be remembered that, by definition, human vulnerability is always expressed
as a fragility, 7.e. an individual probability of death (lethality rate) as a function of
snow avalanche intensity. For instance, if the pressure is considered as representing snow
avalanche intensity, human fragility is V,(P), where V), is the probability of death for

people and P is the pressure considered.
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(a) Vulnerability relations from reliability analysis as a function of the
limit state choice for different building types (Favier et al., 2014a). One
wall with ten boundary conditions is considered together with four different
limit states: Elas is the elastic limit state, ULS is the ultimate limit state,
ALS is the accidental limit state and YLT is the collapse of the building.
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Figure 4.1 — Vulnerability relations for buildings comparing historical/reliability-based
relations (semi-log frame). V;(P) is either a probability (reliability point of view) or a
damage level (deterministic point of view). Interpretation of Wilhelm (1998)’s work: (1):
vulnerability is 1 for pressure above pg;; (2): vulnerability linearly rises from p,; to the

specific destruction limit pressure p,; where it reaches 1.
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1.2 From building vulnerability to human fragility

Table 4.1 — Summary of considered vulnerability approaches (RC is Reinforced Concrete).

element at risk approach(data) max. vuln. avalanche type ref.
building (Figure 4.1)
partly reinforced and empirical (Swiss data) 1.0 dense Wilhelm (1998)
RC
partly reinforced empirical (Austrian data) 1.0 mixed Barbolini et al. (2004a)
RC numerical - deterministic 1.0 dense Bertrand et al. (2010)
RC numerical - reliability 1.0 dense Favier et al. (2014a)

human inside building
(Figure 4.2)

partly reinforced and empirical (Swiss data) 0.46 dense Wilhelm (1998)
RC
weak timber or empirical (Icelandic data) 1.0 dense Keylock and Barbolini (2001)
concrete
partly reinforced empirical (Austrian data) 0.27 mixed Barbolini et al. (2004a)
weak timber or empirical (Icelandic data) 0.95 dense Arnalds et al. (2004)
concrete

Fragility of people inside buildings was assessed in Barbolini et al. (2004a) by fitting
linear least square regressions on data from two well-documented events in Tyrol, Austria.
The resulting probability of being killed by a mixed avalanche inside a building as a

function of impact pressure is:

0 if P<5kPa
V,(P) = 0.0094P — 0.0508 if 5< P <34 kPa (4.2)
0.27 if P> 34 kPa .

For each building hit by the avalanche, the authors summarised: the degree of damage
to the building, the impact pressure applied to it, the number of people inside it and the
number of victims. The degrees of damage levels correspond to: 1: no visible damage to
structural elements, damage to frames, windows, etc.; 2: failed chimneys, attics, or gable
walls; damage or collapse of roof; 3: heavy damage to structural elements; 4: partial or
complete failure of the building.

Two other well-documented events in Stdavik and Flateyri, Iceland, were used by
Jonasson et al. (1999) to assess empirical human fragility relations. Considering the same
data, Arnalds et al. (2004) provided a continuously differentiable probability of being killed

by an avalanche V,,(v) as a function of avalanche speed v:

Vo(v) =

{kv2 if v<u (4.3)

ct+% ifv>ur,
where, k = 0.0013, ¢ = 0.95, a = 1.151, b = 18.61 and v; = 23.0 m.s .
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Figure 4.2 — Vulnerability relations from the literature for people inside reinforced or
partially reinforced buildings. Arnalds et al. (2004) is added assuming P = pv? with p =
300kg.m~t. Keylock and Barbolini (2001) parameter pairs in Eq. (4.4): 15¢, (Cy,Cs) =
(0,79.2); 274 (Cy,Cy) = (2.5,73.5); 3", (C1, Cy) = (5,68.3) (kPa)

Jénasson et al. (1999) specified that most of the houses in the Icelandic villages threat-
ened by avalanches are fairly weak timber or concrete structures with relatively large win-
dows facing the mountainside. This means that this relation is valid for people inside any
such constructions, but may not be easy to apply in other European countries where RC
is more common.

Based on this study, Keylock and Barbolini (2001) proposed fragility relations for

people inside similar buildings with pressure as an index variable instead of velocity:

0 if P<C
Vo(P)=1{ &% if Ci<P<Cy (4.4)
1 if P>Cy.

(5 is calculated as a function of C] so that the average fragility remains equal to 0.29.
Three parameter pairs are proposed: (C1;C2) = {(0;79.2), (2.5;73.5), (5;68.3)} (kPa).
As mentioned by Keylock and Barbolini (2001), for pressures lower than C1, the avalanche
is insufficiently powerful to cause substantial damage and it is assumed that no fatalities
would occur within the building; otherwise, for sufficiently high pressures (higher than
(), the avalanche is expected to cause 100% fatalities.

Finally, as the only formulation not based on past events, Cappabianca et al. (2008)
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1.2 From building vulnerability to human fragility

took into consideration Wilhelm (1998), i.e. they used a 0.46 factor to relate the fragility
of a person in a building to the building vulnerability/fragility.

Figure 4.2 and Table 4.1 summarise these relations from the literature for people inside
buildings, showing how rare these relations are. This also highlights the differences in terms
of the methods that were used to derive these relations, and in terms of data quality and
the country and avalanche events on which the calculations were based. For instance, the
building technology variability among and within countries, on which inhabitant fragility
is largely dependent, makes direct comparisons between the different curves difficult. The
extension of the reliability-based approach of Favier et al. (2014a) presented below is an

attempt to fill the gaps by focusing on people within RC buildings.

4.2.2 How can one relate building vulnerability /fragility to lethality
rates?

To take advantage of the systematic curves shown in Figure 4.1, we suggest herein four
ways to derive additional fragility relations for people, connecting the structural fragility
of the building to the lethality rates of humans inside buildings. Four methods are pro-
posed, sorted into three categories. The two empirically based connection methods aim
at providing a coefficient deduced from historical data which can link the two fragility
relations. The ULS-based approach suggests directly using the building fragility relations
obtained with a human safety-based definition of building failure. A more exploratory
method takes advantage of knowing four different probabilities of reaching different limit
states for each building under study. We call this semi-empirical, or the degree-damage

approach.

Empirically

o Asindicated above, Wilhelm (1998) and Cappabianca et al. (2008) suggested choos-
ing a 0.46 reduction coefficient linking building vulnerability/fragility to human
fragility. Figure 4.4(b) applies this approach to the set of building fragility curves

at our hand.

o According to Arnalds et al. (2004), this reduction coefficient can be evaluated as a

function of avalanche pressure (Figure 4.3(a)):

Vo(P) = a(P) x Vy(P), (4.5)

where V), is the human fragility inside a building, V}, is the vulnerability /fragility of

the building and (P) is the pressure value considered. The coefficient «(P) resulting
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1. Sensitivity of avalanche risk to vulnerability relations

from this approach may be valid under certain assumptions only, according to the
validity of Arnalds et al. (2004)’ relations. Nevertheless, we assume here that o(P)
remains a good link between the probability of building failure and the probability
of death inside the building for all structures considered in the reliability study of
Favier et al. (2014a). To be as close as possible to the conditions of Arnalds et al.
(2004), we assessed a(P) from the weakest configuration considered in Favier et al.
(2014a), the RC wall with one free edge and three supported edges. The resulting

human fragility curves are plotted in Figure 4.4(a).

Using ULS considerations

By definition, the Eurocode limit state, if not exceeded, ensures the safety of people
in Eurocode-based design buildings. By calculating the probability for the building to
reach the ULS, we obtain a maximum probability for the people inside the building to be
killed, resulting in the human fragility curves of Figure 4.4(d). Note that this approach
corresponds to the previous approach with a constant «(P) = 1, but a different building

fragility relation based on the ULS criterion instead of building collapse.

Semi-empirically

Let us consider the four degrees of damage defined by Barbolini et al. (2004a), to obtain
vulnerability curves in relation to buildings’ degree of damage. A linear regression is used

to link the building’s degree of damage to the vulnerability of the people inside it:

0.0297 if DD < 1.34

4.6
0.0851DD —0.1140 if DD > 1.34 . (4.6)

wom= |
Here, we assume that the four damage degrees defined in this study correspond to the
four structural limit states as the referred to above elastic limit state, ultimate limit state,
accidental limit state and collapse in the reliability-based approach of Favier et al. (2014a).
The fragility for the people inside buildings is simply:
4 .
Vp(P) =)V (P) x V,(DD;) (4.7)

i=1

where VI'f(P) is the probability for the building b under the pressure P to overpass the
limit state i, i.e. the i" degree of damage DD;, and V,(DD;) is the probability of death
in a building at the i degree of damage DD; according to the fit of Eq. (4.6) depicted
in Figure 4.3(b). The resulting human fragility curves are plotted in Figure 4.4(c).
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(a) Empirical link function: coefficient a(P) depending on avalanche pressure (kPa).
a(P) is Arnalds et al. (2004)’s ratio linking people fragility to Favier et al. (2014a)
fragility relation for a RC building with one free edge and three supported edges.
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(b) Semi-empirical link function for people inside buildings according to the degree of
damage: (1): no visible damage to structural elements, damage to frames, windows,
etc.; (2): failed chimneys, attics, or gable walls; damage or collapse of roof; (3): heavy
damage to structural elements; (4): partial or complete failure of the building. Data
from Barbolini et al. (2004a)

Figure 4.3 — Link functions between building vulnerability /fragility and human fragility.
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4.2.3 Four sets of reliability-based fragility curves for humans inside
buildings

The resulting four sets of human fragility curves are monotonous and differentiable (Figure
4.4). They differ from each other mainly in their maximum probability of death, ranging
from ~ 0.41 (degree-damage approach) to 1 (ULS approach). In addition, two types of
shape can be distinguished. The human fragility curves obtained with Wilhelm’s and
the ULS approaches have a classical sigmoidal shape, increasing from 0 to their maximum
value within a pressure range depending on the building configuration considered. In other
words, these two curve sets look quite similar to the building fragility curves from which
they were derived, except that, with Wilhelm’s approach, human fragility is bounded at
0.46. The two other sets obtained with the degree-damage and Arnalds’s approaches show
more original shapes, variable from one building configuration to another, illustrating the
more complex way they were evaluated. Nevertheless, the pressure range on which they
rise from 0 to their maximum value remains similar to the pressure ranges of the two
other sets, simply showing the underlying fragility curves for buildings from which they

all derive.

4.3 Evaluating risk sensitivity to vulnerability /fragility re-

lations

4.3.1 Formal risk framework

In the following, risk is first quantified in a “static” perspective, which consists in calculat-
ing expected damage in order to obtain annual destruction rates for buildings and annual
death rates for the people inside them. Second, a “dynamic” decisional framework is set
by taking into account a potential countermeasure, a dam in the runout zone. Monetary
costs for the building value and dam construction are necessary together with the dam
effect on the hazard intensity distribution, so as to evaluate the remaining residual risk as
a function of the dam height, and to determine the dam height that minimises this risk.
All static and dynamic computations are made in an individual risk perspective, focusing
on a single element at risk (building or person). However, whereas static computations
are made at the annual time scale, dynamic computations are made over the long term

using an actualisation term that accounts for the dam amortisation period.

“Static” risk without countermeasures

Risk is broadly defined in natural hazards as the expected damage, in accordance with
mathematical theory (e.g., Merz et al. (2010) for floods, Mavrouli and Corominas (2010b)
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(d) Using the ULS approach: a(Pr) =1,
and V,(Pr) is given by the ULS fragility

curves.

(c) Using the degree damage approach

based on Barbolini et al. (2004a) (Eq.

(4.7)).

Figure 4.4 — Human fragility relations derived from the building fragility curve set. The
legend refers to the ten building types of the reliability-based approach which differ from
each other in the boundary conditions of their four edges: four supported; two supported
and two clamped; one supported and three clamped; one free and three supported; one free
and three clamped; one clamped and three supported; two supported and two clamped
side by side; four clamped; one clamped, two supported and one free; one supported, two

clamped and one free.
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1. Sensitivity of avalanche risk to vulnerability relations

for rockfall, Jordaan (2005) in engineering, etc.). Following the notations of Eckert et al.

(2012), the specific risk r, for an element at risk z is:

T, = A/p(y)Vz(y) dy , (4.8)

where A is the annual avalanche rate, that is to say, the annual frequency occurrence of an
avalanche, p(y) is the (potentially multivariate) avalanche intensity distribution (runout,
flow depth, etc.) and V,(y) is the vulnerability-fragility of the element z towards the
avalanche intensity y. By definition, the specific risk is expressed in year—!.

Classically, in a two-dimensional cartesian framework, avalanche intensity is defined
by the joint distribution p(P, zstop) of pressure fields P and runout distances . The

specific risk r,(z;) for the element z at the z} abscissa is then:

v () = A / P(Pl2y < To1op)D( < Tstop) X Vo(P) dP . (4.9)

This holds since p(P, Zstop) = P(P|zp < Tstop)P(Xp < Tstop), Where p(Plzy < Zgtop) is the
pressure distribution at abscissa x; knowing that x; has been reached by an avalanche and
p(xy < Zstop) is the probability for the element at x; to be reached by an avalanche.
According to our approach, the vulnerability of a building is simply the fragility of its
wall facing the avalanche, defined by one of the relations illustrated in Figure 4.1(a). The
resulting annual probability of the building at the abscissa x; reaching its limit state (one

of the four defined above, and used in the specific V;(P) relationship considered) is:

Tb(xb) = )‘/p(P‘-rb < xstop)p(xb < xstop) X ‘/b(P) dpP 5 (410)

and the annual probability of death for somebody inside a building at abscissa xy is:

rp(xp) = )\/p(P\xb < Ztop)P(xp < Tstop) X Vp(P) dP (4.11)

with V,,(P) one of the human fragility relations in Figure 4.4.

Decisional framework: minimising residual risk

To study the sensitivity of decisional procedures to vulnerability relations, the classical
example of the optimal design of a dam height (Eckert et al., 2008a) is reconsidered,
with the fragility curve set from Figure 4.1. The approach minimises the long-term costs
obtained by summing up the construction costs and the expected damage at the building
abscissa x. This is analogous to the precursor work of Van Danzig (1956) for maritime
dykes in Holland, and it is based on an extensive mathematical theory (Von Neumann and
Morgenstern, 1953; Raiffa, 1968). Hence, the residual risk at the abscissa x, and with a

protective dam hy is:

Rb(xb, hd> = Cohd + ClA)\/p(P‘l'b § .’L‘Stop, hd> X p(l‘b S .I'Stop, hd) X Vb(P) dP s (4.12)
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1.3 Evaluating risk sensitivity to vulnerability /fragility relations

where Cy and C are, respectively, the value of the dam per metre height in €-m~! unit
and the value of the entire threatened building situated at abscissa x} in €(the monetary
currency used herein). The notation “.|h;” denotes that runout and pressure distributions
are now modified in the runout zone, conditional to the dam height hy. A = > ;1% ﬁ
is the actualisation factor to pass from annual to long-term costs, with i; the interest rate
for the year t. So the unit for Ry(xy,hq) we consider is €.

Note that the residual risk Ry(zp, hg) is no more than Cohg + C1Amy(xp, hg), with
rp(xp, hq) the specific risk for the building at the abscissa x;, with the dam height hg,
highlighting that the approach remains based on individual risk (a single building at
abscissa xp, is considered at risk). A similar computation or formalism could easily be
proposed and implemented with humans inside buildings as elements at risk, but this
would imply monetising human life, and we prefer to avoid this ethically contestable issue

at this stage.

4.3.2 Hazard distribution

Outputs of a statistical-dynamical model

In Eqs. (4.9-4.12), avalanche hazard is expressed by the joint distribution of runout dis-
tances and pressure fields. To calculate this, we use the statistical-dynamical model devel-
oped by Eckert et al. (2010c) to easily sample from p(P, Zs0p). In this model, the avalanche
is (rather classically) modelled by a shallow-water approximation of the mass and momen-
tum conservation equations supplemented by a Voellmy friction law (Naaim et al., 2004) .
Additionally, a statistical model considers the depth and the length of the release area, the
abscissa of release and the friction coefficients as random input variables, so as to provide
the joint distribution of runout distance and velocity spatio-temporal fields as outputs.
Independently, the frequency parameter (mean annual avalanche rate) A is defined within
a Poisson model of occurrences, a rather usual assumption (e.g. McClung (2003); Eckert
et al. (2007a); Lavigne et al. (2012)). It has recently been proven on case studies using
independent validation data from tree-ring sampling that this statistical-dynamical model
can provide good approximations of the magnitude-frequency relationship in the runout
zone (Schlappy et al., 2014).

Pressure evaluation

To feed the vulnerability relations with the statistical-dynamical simulations, velocities
must be converted into pressures. For a free surface flow, the impact pressure can be

expressed as:

1
P = C'gc§pv2 , (4.13)
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1. Sensitivity of avalanche risk to vulnerability relations

where C,, is the drag coefficient, p is the fluid density and v is the flow velocity. For snow
avalanches, the drag coeflicient C;, can now be expressed in rather realistic ways according,
e.g., to the empirical formulation of Sovilla et al. (2008a) or the semi-empirical formulation
of Naaim et al. (2008c). These depend on the Froude number of the flow, highlighting the
potentially high impact pressures exerted by flows close to rest. Here, to greater simplicity,
we instead use a constant drag coefficient of 2. The dynamic pressure on the impacted
wall considered is then pV2, a common approximation in engineering. Note, however, that
our approach can easily be employed with other drag coefficient assumptions than ours,
as soon as C, can be readily evaluated for each simulation in the statistical-dynamical

set-up, as demonstrated in Eckert et al. (2010c).

Optimal design computations: obstacle / flow interaction and delta propaga-

tion

For the decisional risk calculations, one must also compute the residual risk for each dam
height, which requires the quantification of the dam effects on the flow. According to Faug
et al. (2008), semi-empirical relations can be used to account for the effect of a vertical
dam on snow avalanche flows. Typically, it has been found that the normalised velocity
at the dam abscissa and the normalised flow height are linked through:

vj (xa) ahg

=1—- — 4.14
0 () o 1)

where vy, (zq) is the velocity at the dam abscissa with a dam height hg, vo(z4) is the
velocity at the dam abscissa without the dam, h is the flow height at the dam abscissa
and a = 0.14 is the energy dissipation coefficient determined by Faug et al. (2008) on the
basis of small and real-scale flow experiments and energy budget considerations.

Once the modified velocity at the dam abscissa is known, one must propagate the
effect of the dam on the avalanche characteristics along the entire runout zone. A simple
method consists in assuming a delta propagation. This approach suggests that the velocity
decrease is propagated homogeneously throughout the velocity profile after the dam. First,
the difference of velocities dyeiocity at the dam abscissa is calculated. Then this delta is

subtracted from the rest of the velocity profile:

5velocity =0 (fEd) — Uhy (il?d) (415)

Hence, for any abscissa z in the path, the velocity vy, (x) of the avalanche with the
dam height hg is:

(4.16)

v (:C) — max ((Uo(:(}) - 5velocity), 0) if ©>xy
" 00(2) clsc .
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1.3 Evaluating risk sensitivity to vulnerability /fragility relations

whith vg(z) the velocity of the avalanche at the x abscissa with no dam.
Finally, the optimal dam height A is found by minimising the residual risk expressed
in Eq. (4.12):
hopt = ar%Lmin(Rb(xb, ha)) , (4.17)
d
where the function argmin gives the height hy at which R, is minimal for a building

abscissa position xp.

4.3.3 Quantifying sensitivity to vulnerability/fragility: bounds and in-
dexes

Since the objective of the paper is to study how risk estimates and optimal design values
vary across vulnerability formulations, we now propose quantitative sensitivity indicators

that may illustrate some theoretical (general) and practical (local, for case studies) aspects.

Fragility-based risk bounds for buildings

As detailed in Sect. 4.2, in Favier et al. (2014a), four limit states were used to calculate
probabilities for buildings to reach different limit states, and, hence, as surrogates of de-
struction probabilities as a function of the pressure load. This was done for 10 building
configurations differing in their boundary conditions, providing as many as 40 fragility
relations. By evaluating Eq. (4.10) with these 40 relations throughout the runout zone, a
set of 40 individual risk curves r(xp) representing different evaluations of annual destruc-
tion rates is obtained. The main advantage of doing this is to build plausible intervals for
risk taking into account a certain variability in the response of the RC building considered
to the avalanche load. Hence, as an outline for operational applications aiming at assess-
ing the risk of a building being destroyed, relevant intervals can be determined, taking
into account imperfect knowledge of the most relevant failure state and/or the variability
within a reasonably large building class.

Specifically, a useful but very large interval can be delimited by, as the upper bound,
the risk for the “weakest” building (in terms of geometry / boundary conditions) to reach
the elastic state, and, as the lower bound, the risk for the “strongest” building to reach
the collapse state. Another relevant risk interval, less wide and which enables to remain
consistent among limit states use is defined by: as the lower bound, the risk of the strongest
building collapsing, and, as the upper bound, the risk of the weakest building collapsing,
and, similarly, with the three other limit states considered, providing four specific limit

state intervals whose union corresponds to the overall interval defined above.



1. Sensitivity of avalanche risk to vulnerability relations

Fragility-based risk bounds for humans

By developing new human fragility relations in Sect. 4.2, we have increased the number
of available relations relating avalanche hazard to a probability of death for people inside
buildings. As for buildings, evaluating Eq. (4.11) with these curves makes it possible to
obtain various individual risk curves for people inside buildings in the runout zone.

This panel of human risk curves reflects the same uncertainty /variability sources as
for building fragility, but taking into account the additional uncertainty resulting from the
choice of the link function between human and building fragility. This implies that the
assumptions made above to set a link function have to be kept in mind when interpreting
human risk results. However, with this approach, sensitivity towards fragility relations
of human risk estimates can at least be quantified, a crucial point in practice. As for
buildings, this can be done with upper/lower bounds, either with all the human fragility
curves illustrated in Figure 4.4 together or distinguishing the four sets, corresponding to
Figure 4.4 a-d, depending on the link function: empirically based - Arnalds’s, empirically-
based - Wilhelm, ULS or degree-damage.

Sensitivity indexes in risk minimisation (optimal design)

Finally, to assess the sensitivity to building fragility relations of optimal dam heights, we
evaluate the spread of the solutions based on Eq.(4.17) towards the 10 relations corre-

sponding to the 10 building configurations through:

5h . hopt,ma:ﬂ — hopt,min (418)

opt ~ )

hopt

where hopt mar = . :Hllf-i.).(lo hopt,i (resp. min), with hp; the optimal value minimising the
residual risk obtained in Eq.(4.17), when considering the i** fragility curve for modelling
the fragility of building b. We compute this index for the four limit states separately, and
for different positions x; in the runout zone.

We compare dj,,, to the risk spread that is similarly quantified with the indicator dr

calculated for the 10 fragility relations, for each limit state, as:

_ max(R(zy,0)) — min(R(xp,0))
op = o) . (4.19)

The notation R(zp,0) indicates that the risk spread over fragility relations is evaluated at
the abscissa x;, without any countermeasure (hg = 0).
4.3.4 Numerical risk computations

Classically, Egs. (4.10) and (4.11) are discretely solved for the element z under study (the
building or people inside the building) by the Monte Carlo integral:

94



1.4 Application of risk sensitivity analysis to a case study

N N’
1 1
r.(xp) & )\N Z H{xstop, > xb}ﬁ Z Ve (Pe|stop, = @) - (4.20)
k=1 k=1

with N the number of simulations made with the statistical-dynamical model, P the
pressure for the k" simulation at the x; abscissa, I the indicator function equals to 1 if x;,
is exceeded and 0 if not and N’ the number of simulated runouts exceeding the x; abscissa:
N' = SN Hstop, > v} As Vo(PrlTstop, < xp) =0, Eq. (4.20) can be rewritten:

N
1
ra(mp) M A=Y Va(Py) (4.21)
N k=1
The corresponding 95% asymptotic confidence interval is r, + 1.96 W Similarly,

for various dam heights, Eq. (4.12) is numerically evaluated through:

1 N
Ry(xy, hg) = Cohg + ClA)\N kz::l V.(Py) . (4.22)

4.4  Application of risk sensitivity analysis to a case study

4.4.1 Case study presentation

To study the influence of vulnerability curves on the risk and decisional calculations, we
reuse the case study presented by Eckert et al. (2009, 2010c). The data and topography
come from an avalanche path in the village of Bessans, in the Savoie department of the
French Alps. The abscissa position is evaluated in the 2D-plane of the avalanche path
starting at the top of the path (Figure 4.5). The runout zone has always been free of
permanent habitations, but, due to demographic pressure, it may become impossible to
ban construction in the future, provided the risk is estimated to be low enough in the
current state or after construction of a defense structure. Therefore, the abscissa position
xq of the dam to be potentially built is 1,956.5 m, which is the beginning of the runout
zone. The building (and people inside the building) abscissa x; considered for individual
risk evaluation varies between the dam abscissa and 2,500 m.

To be less dependent on the case study in our conclusions, we will not often refer to
abscissas in the path studied, but, instead, to the corresponding return period 1. For
instance, we will evaluate r,(T"), and 7,(T") for T' up to 1,000 years instead of ry(x)
and rp(xp). For comparison with current land use planning policies based on high return
periods (See Sect. 4.5.3), the runout abscissas {1,953.7; 2,004; 2,064; 2,125.2; 2,164;
2,203.9 and 2,242.1} m corresponding to typical runout periods of {2; 5; 10; 30; 100; 300
and 1,000} years will be specifically studied (the first one is just before the dam abscissa).
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Figure 4.5 — 2D topography of the path studied (Bessans township, French Alps). x4 is
the abscissa where dam construction is envisaged, and x; is the abscissa of the building
at risk. The facing wall is highlighted in red as its failure is assumed to be representative
of the failure of the whole building.

The one-to-one mapping between runout distance and return period results from Eq.
(4.23):

1
T= : (4.23)

A1 = F(zstop))

where )\ is the avalanche rate estimator and ﬁ’(:vstop) is the estimated cumulative distribu-
tion function of the runout distance, approximated by the runout outputs from statistical-
dynamical model simulations conditional to model parameter estimates. These estimates
(best guesses, traditionally denoted by a “hat”) have been obtained using Bayesian in-
ference as detailed in Eckert et al. (2010c). For numerical evaluations (Sect. 4.3.4),
N = 20,000 predictive simulations conditional to these estimates were used.

For the decisional computations, the construction cost for the dam and the building
value (single element at risk) were set to, respectively, 5,530 € - m~! and 3-10% €. A
is fixed to 25, which is obtained with a constant interest rate i; = 4%. Eight abscissa
positions x; in the path were studied for possible building positions: {1,966.5; 1,971.5;
1,976.5; 1,981.5; 1,986.5; 1,991.5; 1,996.5 and 2,001.5 m} (resp. corresponding to a
runout period of {2.3; 2.5; 2.8; 3.1; 3.5; 3.9; 4.3 and 4.8 years}). These relatively low values
were chosen so that the dam would have a greater chance to demonstrate its effectiveness.
Indeed, for buildings situated at positions very rarely reached by avalanches, it is very

unlikely that a large defense structure will be economically sound.
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1.4 Application of risk sensitivity analysis to a case study

4.4.2 Individual risk range for buildings

Figure 4.6 depicts the building risk curves obtained as functions of the runout return period
abscissa for a wall with one free edge and three clamped edges, our weakest configuration.
Given that a very large number of simulations is used for numerical risk evaluations (N =
20,000), confidence intervals are (very) small for low return periods. On the other hand,
they become very large for high return periods because the runout exceedence probability
is very small, so that only very few events among the simulated set provide non-zero
values. For instance, the lower bounds drop to zero as soon as it becomes possible that no
simulation reaches the corresponding abscissa with pressure sufficient to provide a non-
zero destruction probability for the building considered (it should be remembered that the
probability of reaching the limit state is, somewhat abusively, considered the same as the
destruction probability). However, these confidence intervals are numerical artefacts which
do not reflect epistemic uncertainty regarding the concrete behaviour and/or variability
among different elements at risk. They could be reduced even further if necessary (e.g.
for practice) with more simulations and/or with more efficient approximation methods, so

that they would not be considered in the following.

Globally, risk decreases with the runout return period, a trivial result. Also, for a
given runout return period, the risk is higher when the elastic limit state is considered
than when the ULS is considered, etc. for the two other limit states. This is simply
a natural consequence of the definition of the four limit states along the pushover test
curve (see Favier et al. (2014a)). Specifically, in the log-scale in Figure 4.6, the four
risk curves quasi-linearly decrease with T' for return periods up to 500 years, and then
decrease faster and drop to zero, except the elastic limit state-based risk curve for which
the linear decrease goes on even for T' longer than 1,000 years. The linear shape in the
log scale signifies a quasi-exponential decay of runout exceedence probabilities for the case
study, whereas the risk drops to zero as soon as there are close to zero avalanches with
impact pressures strong enough to be associated with significantly non-zero probabilities
of reaching the limit state considered. With the elastic limit state, these probabilities

remain high for the few avalanches that reach very high return periods.

When all building configurations are considered together (Figure 4.7), most of these
conclusions remain true. For instance, even if the variability of building configurations
considered adds “noise”, in general, we still have Elas-based risk > ULS based risk > ALS
based risk > YLT based risk. Nevertheless, for a given return period, risk estimates are
lower than in Figure 4.6 because the nine additional building configurations considered
are stronger, inducing lower probabilities of reaching each limit state. Hence, the pattern
of decay in risk is generally, with regards to Figure 4.6, shifted to the left. For instance,
the annual probability of reaching YLT or even ULS is extremely small for T" > 300 years
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Figure 4.6 — Risk (annual limit states reach probability, solid lines) and associated 95%
confidence interval (dotted lines) for a wall with one free edge and three clamped edges.
The four limit states defined in the text are considered (semi-log frame). On the x-axis,
the runout return period is considered instead of the abscissa position in the path. In the

runout zone, the lower bound confidence intervals quickly drop to zero.

with the strongest buildings considered herein.

The resulting risk bounds are therefore very large, showing an overall high sensitivity
to the limit state considered, and, for a given limit state, to the building configuration. In
other words, risk estimates are highly sensitive to the choice of fragility relations, so that
global bounds over the four limit states may be excessively large to be useful in practice.
Hence, Figure 4.8 displays risk intervals as a function of the limit state choice, and Table

4.2 resumes the thus-obtained bounds for classical high return period abscissas.

For example, for T' = 100 years, the risk estimates range from 4.5-10~3 (very high, with
the weakest building and the Elas limit state) to 5.5- 1077 (very small, with the strongest
building and the YLT limit state), indeed an interval that is too large to be meaningful.
Restricting ourselves to the ULS and ALS, more realistic and useful intervals are obtained,
but still very wide: [1.3-1075 — 1.5-107%] and [5- 1075 — 1.2 - 1073], respectively.

For T' = 1,000 years, the lower bound for risk estimates is non-zero only with the Elas

limit state. The upper bound is ~ 3 - 10~* with the Elas limit states and ~ [3 — 5 - 107]
with the other limit states.
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Figure 4.7 — Risk (annual probability of reaching the limit state considered) in the runout

zone for the ten building types and the four limit states defined in the text (semi-log

frame).

Table 4.2 — Minimal and maximal individual risk values (annual destruction rate bounds)

for a building at typical return period abscissas T, where z is the corresponding return

period (in years). These bounds are derived from the reliability curve sets and are given

as function of the four limit states considered.

b Ts Tho T3 Thoo T300 T1000
Elastic min  0.12 0.058 0.028 0.0041 0.0017 6.7-107%* 8.0-107°
maz  0.28 0.14 0.074 0.011 0.0045 0.0017 3.1-107%

ULS min 0.0048 0.0016 5.3-107% 4.8.107° 1.3-10° 1.1-107F 0
maz  0.10 0.047 0.022 0.0033 0.0015 5.1-107* 4.9-107°

ALS  min 0.0029 89-107* 29.107* 2.7-107° 5.0-10% 26-107° 0
maz  0.091 0.040 0.019 0.0028 0.0012 4.1-10~* 3.8-107°

YLT min 0.0017 46-107* 1.4-107* 1.3-107° 5.5-1077 0 0
maz  0.071 0.031 0.014 0.0020 89-107* 3.0-107% 28.107°

4.4.3 Individual risk range for humans inside buildings

Similarly, our human vulnerability relations allow obtaining a range of human risk curves

that translates the same uncertainty /variability sources as for building fragility, but taking

into account the additional uncertainty resulting from the choice of the link function
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Figure 4.8 — Risk bound definition, 4.e. annual destruction probability bound definition:
delimited by the risk for the weakest building and the risk for the strongest building of

reaching each of the four limit states (linear frame).

between human and building fragility (Figure 4.9). Again, the substantial width of the
resulting risk intervals/bounds highlights the strong variability of human risk estimates
depending on the choice of the fragility curve, and more particularly on the choice of the
type of building (boundary conditions, materials properties, etc.) and the human-building
link function (Figure 4.10).

Globally, one has an exponential-like pattern of decay of human risk curves similar
to that of building risk curves, with very low values reached for (nearly) all building
configurations / link functions for 7" > 1,000 years only (see Sect. 4.5.3 for discussion).
For a given human-building link function, human risk estimates differ from each other as
a function of the building configuration, exactly like the risk for building estimates. From
one link function to another, human risk curves are less separated than, for buildings,
from one limit state to another. Nevertheless, globally, human risk estimates obtained with
Wilhelm’s approach are the lowest (the most “optimistic” due to the small maximum value
of human fragility it postulates). On the other hand, the ULS approach generally provides
the highest estimates, whereas the Arnalds and degree-damage approaches provide less
separated values spread in between. However, these are only general rules because, due to

the strong influence of building configuration, there are many exceptions (Figure 4.9).

For example, for T' = 100 years, the Wilhelm, degree-damage and Arnalds approaches
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Figure 4.9 — Risk (annual probability of death) in the runout zone for the four adapted
human curve sets from the literature obtained in Section 4.2.2 and illustrated in Figure
4.4. They are compared with acceptable risk levels defined by J6nasson et al. (1999): in a
dwelling, the acceptable risk is 0.3 - 107%; in a work place, 1-107%; in a summer cottage,
5-1074.

propose close maximum risk estimates within the [3 — 5 - 107%] range, whereas the ULS
approach does not exclude risk estimates as high as 1.5 - 1073. For 7' = 1000 years,
maximum predicted values are closer, within a factor of 5: ~ 1-107° with the Arnalds
approach,~ 1.5-107° with the Wilhelm and degree-damage approaches, and ~ 5-107
with the ULS approach.

4.4.4 Optimal design range

Figure 4.11 depicts residual risk functions (long-term expected costs) given by Eq. (4.12)
for two limit states and the 10 building configurations. For the elastic limit state, all risk
curves clearly decrease with hg up to close to 15 m optimal dam heights and confused with
the asymptotic construction cost for higher dam heights. With the limit state provided by
the yield line theory, risk curves show more variable shapes, ranging from curves similar
to the elastic limit state curves to strictly increasing curves. As a consequence, optimal
heights are more dispersed, and even do not exist with the “strongest” buildings. Indeed,
it is not economically efficient to try to reduce the solicitations encountered by these

buildings, since they are already strong enough to avoid collapse in most cases. This
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Figure 4.10 — Risk bound definition (annual death probability bound definition): for each
of the four human vulnerability curve sets obtained in Section 4.2.2 and illustrated in
Figure 4.4. The risk bounds are delimited, for a given return period abscissa, by the

lowest risk value (strongest building) and the highest risk value (weakest building).

Table 4.3 — Minimal and maximal individual risk values (annual death rate bounds) for a
human inside a building at typical return period abscissas T, where z is the corresponding
return period (in year). Results of three upon four of the adapted human vulnerability
approaches detailed in Section 4.2.2 are provided. The ULS interval is provided in Table
4.2 (same as for the building).

T3 15 Tio EN T100 T300 T1000
Wilhelm min  82-107% 23.107* 7.2-107° 6.6-10% 2.7.1077 0 0
maz  0.035 0.015 0.0068 0.0010 4.4-107* 1.5-107%* 1.4-107°
Arnalds min  0.0015  4.0-107* 1.3-107* 1.1-107® 4.4-107" 0 0
maz  0.027 0.011 0.0051 7.4-107% 3.0-107* 1.0-107* 8.3.107°
Degree Damage min  0.0011 3.4-107%4 1.1-107* 1.0-107° 1.6-107%® 6.7-1078 0
maz  0.037 0.016 0.0073 0.0011 4.7-107% 1.6-107* 1.5-107°

shows that a full decisional treatment of the problem is not always possible, depending on

when the building failure is assumed to occur and on the building configuration chosen.
Figure 4.12 depicts the risk sensitivity index dr function of the decisional sensitivity

Ohop for the four limit states and for eight different (close) building positions in the runout

zone. Each point represents the normalised spread over the 10 building types investigated
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Figure 4.11 — Residual risk (expected loss over the long-term in €) curves as a function
of the dam height provided by Eq. (4.12) for two reliability-based fragility curves sets: a)
Elastic limit state, b) Yield line theory. For each curve, a red circle (o) denotes optimum
(minimum risk). Abscissa position considered for the building is 1,966.5 m, corresponding

to a return period of 2.3 years (just beyond the dam).

for a specific building position in the runout zone. Substantially, dy,,, is always around ten
times lower than dg, a point that argues in favour of much higher robustness of optimal
design approaches with regards to “static” risk evaluations (see Sect. 4.5.4 for discussion).
In greater detail, two scatter-plot groups are observed: an elastic limit state scatter-plot
around dp ~ 1 and another limit state scatter-plot around dr ~ 3, confirming that the
risk spread is lower with the elastic limit state than with the other limit states, as already
suggested by Figure 4.11. Note also that, for the close building positions investigated,
significant variations of dy,, compared to the variations of dr occur, since, for a given
limit state, dr is nearly constant, whereas the optimal design sensitivity index varies from
0 to 0.5.

4.5 Discussion

4.5.1 Reliability-based fragility relations versus empirical vulnerability
relations

Building vulnerability relations from the literature rise from 0 to 1 over the [0 — 50] kPa
range (Figure 4.1(b)), whereas some of the reliability-based fragility relations of (Favier
et al., 2014a) reach 1 above 250kPa only (Figure 4.1(a)). Thus, it seems at first glance

that buildings damaged by avalanches that were reported in the literature were more vul-
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Figure 4.12 — Sensitivity of optimal height to building fragility relations for the four limit
states considered (Eq. (4.18)) versus sensitivity of risk (Eq. (4.19)). Eight abscissa
positions in the path were considered for the exposed building, corresponding to runout

return periods between 2.3 and 4.8 years.

nerable than those considered in (Favier et al., 2014a) and in the present study. This
statement remains questionable, however, since buildings reported in the literature and
the numerically designed buildings in Favier et al. (2014a) are not essentially similar, in
addition to the already discussed variability in technology choices between and within
countries that affects empirical relations. For instance, differences in concrete grade, in
percentages of reinforcement or in the size of the buildings considered could explain dif-
ferences between empirical vulnerability and reliability- based fragility to a given pressure
load.

Another explanation could be a methodological bias: the vulnerability curves reported
in the literature provide damage levels as a function of impact pressures retrieved by
expertise and back-analyses of real events, whereas numerical fragility curves result from
limit states based on mechanical theory whose exceedence probabilities are considered
identical to destruction probabilities. Hence, even if exactly the same building could be
studied with the two approaches, it is presumable that the same vulnerability /fragility
curve would not be obtained. Note also that the failure mode in Favier et al. (2014a)
study was assumed to be the flexural mode, making fragility curves conditional to this

assumption. Other failure definitions could have provided different fragility estimates.
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Comparing empirical vulnerability relations and Favier et al. (2014a) fragility relations
in the risk calculation results in Figure 4.13. For a given runout abscissa/return period,
risk estimates based on literature vulnerability relations are high. They correspond to
those obtained, with the fragility approach, with the “strongest” building configurations
and the elastic limit state definition (the most pessimistic and conservative of the four
limit states considered) or with weaker building configurations and the elastic ULS/ALS
limit state definition (more “optimistic”). For example, literature-based risk estimates
are ~ [8-107% —3-.1073] at the centennial abscissa and still ~ [2-107° —2-107%] at
the millennial abscissa (Table 4.4). Again, this shows that the characteristics of the
vulnerability /fragility relation used (modal value, spread, pressure range within which it
rises from 0 to 1, etc.) are directly propagated on risk estimates, making those highly
sensitive to the choice of the vulnerability/fragility relation.

However, the general shape of the risk curves with the literature vulnerability relations
is essentially similar to the shape of the risk curves with the reliability-based fragility curves
(exponential decay with the runout return period abscissa, Figure 4.13). This suggests
that the fragility relations can be used to supplement the empirical vulnerability curves,
for instance within the risk framework. Indeed, their intrinsic differences in terms of inter-
pretation (deterministic damage index for the empirical vulnerability curves - destruction
probability for the fragility relations) is then totally smoothed in the integral calculation
(Eckert et al., 2012), as illustrated by the different estimates we have obtained for the case
study.

Table 4.4 — Individual risk values (annual destruction rate) for a building at typical return
period abscissas T, where z is the corresponding return period (in year) with the five

considered vulnerability curves from the literature.

Ty Ts Tio T30 Tio0 T300 T1000
Barbolini et al. (2004a) 0.17 0.080 0.041 0.0062 0.0025 0.0010 151074
Wilhelm (1998), part. RC (1) 0.071 0.031 0.014 0.0021 9.0-107% 3.1-107% 3.1.1075
Wilhelm (1998), part. RC (2) 0.063 0.027 0.012 0.0018 7.6-10~% 2.6-10~% 2.4.107
(1998)
(1998)

Wilhelm (1998), RC (1) 0.11 0.051 0.024 0.0036 0.0015 5.7-107* 5.8-107°
Wilhelm (1998), RC (2) 0.096 0.043 0.020 0.0030 0.0013 4.7-107* 4.8-107°

Regarding human vulnerability of mountain community inhabitants, quantitatively
linking it to the structural vulnerability/fragility of housing buildings is a very important
issue in avalanche engineering practice. As for the buildings themselves (and even more
rarely), human fragility relations have been, in the past, mainly empirically assessed on the
basis of well-documented catastrophic events, leading to survival/death rates as a function

of impact pressure. An appealing alternative has been presented herein to simply derive
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Figure 4.13 — Risk (annual destruction probability) for a building in the runout zone with
the literature curves, versus risk with reliability-based fragility curves: YLT, ALS, ULS

and Elas curves from Favier et al. (2014a)).

human fragility relations from building fragility curves in a systematic way, assuming var-
ious (three or four) simple deterministic link functions based on existing work. Therefore
a large set of human fragility curves, a function of the link function and the building
configuration, were obtained.

The strong assumptions made to evaluate these curves must be kept in mind while
using and interpreting them. Specifically, the rather simple link functions used herein
are arguably oversimplified preliminary proposals that could be reconsidered in future
studies. However, as for buildings, these have been sufficient to obtain fragility curves
that have shapes similar to the shapes of the empirical literature curves (although highly
dependent on the building configuration and link function), which promotes their use as
an advantageous supplement to the scarce relations available to date. Furthermore, our
human fragility curves were clearly essential to conduct our risk to vulnerability sensitivity

study on a typical case study.

4.5.2 Risk sensitivity to vulnerability /fragility (mis)specification

Vulnerability /fragility relations are one of the key ingredients of a quantitative risk as-
sessment, directly controlling buildings and individual risk estimates for humans inside

buildings, which are the crucial outputs required for avalanche risk zoning in practice.
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Our application has abundantly illustrated how highly sensitive to the choice of vulnera-
bility /fragility relation these are, whereas existing RC buildings are never perfectly known.
Indeed, existing RC buildings are composed of two materials (concrete and steel) whose
behaviours may be described somewhat inaccurately. Besides, the proportion of steel to-
gether with its arrangement within the concrete matrix can add other uncertainties to the
building description (the same building will never be exactly reproduced).

Furthermore, from a more predictive point of view, risk zoning for land use planning
should not only focus on existing buildings, but should also anticipate the possible con-
struction of a reasonably large class of new construction and still account for the same
uncertainties. From land use planners’ perspective, it is also difficult to know the exact,
most suitable building configuration to choose, as well at the best limit state to concen-
trate on to ensure the safety of building inhabitants together with reasonable architectural
recommendations. This all makes the application of one single curve among the existing
curve set a tricky, if not impossible, task.

How then should this uncertainty/variability and the related high sensitivity of risk
estimates be handled in practice? If this variability /uncertainty could be expressed in a
probabilistic way, the risk framework would easily account for it as an additional source
of randomness to average over. This is illustrated with different examples by Eckert et al.
(2012). For instance, if ¢ is the additional source of “noise” to be considered (e.g. a
parameter of the hazard or vulnerability model), then, one simply needs to evaluate the

Bayesian-like risk:

o) = [ (o0, 0)p(@)d(0) (424)

where 7, (xp, @) is, for example, the risk estimates provided by Eq. ((4.9)) with the pa-
rameter value ¢ and p(¢) its probability distribution . However, in the case of the choice
of a vulnerability /fragility relation, this probabilistic response is presumably not possible.
This is the reason why we chose a “bound approach” instead: ten boundary conditions
were considered, providing ten vulnerability relations for each limit state. Propagating
these curves through the risk calculation allowed us to propose risk bounds, i.e. risk es-
timate ranges that are valid for different boundary conditions and/or different thresholds
above which the building is assumed to fail (limit state).

The width of these intervals precisely quantifies the strong variability of building and
human risk estimates according to the choice of the fragility curve, and more particularly,
to the choice of the type of building (boundary conditions, material properties, etc.).
Bounds are large even for positions in the path only reached by rare avalanches (e.g.
Figure 4.10 for humans), and even higher if the results provided by empirical curves are

considered together with the fragility curves (Tables 4.3 and 4.4).
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In detail, risk bounds can be refined focusing on one type of variability /uncertainty
only. For buildings, the overall interval mixing all limit states and configurations may
be too large (Figure 4.8), requiring additional assumptions to provide usable values in
practice, such as fixing the considered limit state. For humans inside buildings, the four
link functions provide partially imbricated intervals (Figure 4.10), so that, instead of
setting the link function, making additional reasonable assumptions regarding the building

configuration considered may more efficiently reduce the width of risk bounds.

4.5.3 Comparison with acceptable levels and high return period design

events

To go even further in terms of the practical outcomes of the study, the high return period
abscissas currently used as legal risk assessment limits were compared to the abscissas
where risk estimates provided by our approach are acceptable according to Jénasson et al.
(1999). Acceptable risk values from Jénasson et al. (1999) are: in a dwelling: 0.3 - 10™%;

in a work place: 1-107%; in a summer cottage: 5-10~* (Figure 4.9).

Table 4.5 displays abscissa intervals in the path where these conditions are fulfilled. The
interval spread corresponds to the evaluation of risk estimates with our different human
fragility relations. This shows that acceptable risks for dwellings can be observed for houses
situated above 2,086.5 m in the avalanche path for the most “optimistic” human fragility
relation, but only above 2, 255.5 m for the most “pessimistic”. This corresponds to runout
return periods of [11.9 — 1,955] years. Similarly, abscissa intervals of [2,043.6 — 2,235.1]
m and [1,969.6 — 2,205.5] m (respectively corresponding to runout period of [8 — 693.7]
years and [2.4 — 336] years), depending on the choice of the fragility relation, correspond

to acceptable risk thresholds for, respectively, a work place and a summer cottage.

Again, in addition to dramatically highlighting the sensitivity of risk estimates to the
choice of the vulnerability /fragility relation, this clearly illustrates the limit of return
period-based approaches for human risk zoning. Depending on the vulnerability /fragility
relation, traditional return period-based zoning thresholds can overestimate the risk as
well as underestimate the risk, an obviously critical problem. For instance, the acceptable
risk threshold of 0.3 - 10~ (in a residential house or building) is reached for 13 out of
40 fragility-based risk curves before attaining the reference centennial abscissa, but only
abscissa positions above the 1,000-year return period are associated with risk estimates
lower than 0.3 - 10~* with all fragility relations. Hence, only these can be considered as
fully safe for our typical case study if one takes into account all the possible range of

variability of human fragility relations that this study has suggested.
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Table 4.5 — Abscissa / return periods [min;maz| intervals fulfilling the three Jénasson
et al. (1999) requirements of acceptable risk for the four approaches detailed in section
4.2.2 (four sets of human fragility curves depending on the link function). The interval

width highlights the sensitivity to the fragility relation.

Living house: < 0.3-10"* Work place: < 1-10~* Summer cottage: < 5-107%

Wilhelm Zstop(M) [2,086.5; 2,228.4] [2,043.6; 2,210.5] [1,969.6; 2, 159.3]
T(years) [11.9; 592.6] [8.0;379.8] [2.5;87.2]

Arnalds Zstop(M) [2,098.6; 2,223.6] [2,075.1;2,204.4] [1,993.8;2,140.5]
T(years) [14.2;532.2] [10.8; 336.9] [4.0;49.6]

Degree Damage  Zagop(m) [2,096.9; 2, 232.0] [2,070.7; 2, 212.0] [1,984.7; 2, 161.5]
T(years) [13.9; 610.7] [10.5; 387.0] [3.4;91.9]

ULS Zstop(m) [2,146.7; 2, 255.5] [2,109.0; 2, 235.1] [2,074.1; 2, 205.5]

T(years) [57.2; 1959.8] [18.4; 708.0] [10.8; 339.4]

4.5.4 Optimal design sensitivity versus risk sensitivity

A decision can modify the hazard distribution, and implementing this modification within
the risk framework can make it possible to determine the decision that minimises risk.
This requires additional assumptions regarding the decision’s effects on avalanche flows,
in the present case how the perturbation at the dam abscissa is propagated further along
the path. Depending on the avalanche type and the dam shape, different optimal designs
could have been obtained, but we focused on the simple case (dense avalanche, vertical
dam, etc.) herein described by Faug et al. (2008). This was enough for the purpose of
this study: implement the sensitivity to vulnerability /fragility study up to the decisional
analysis. The case study has shown that the sensitivity to vulnerability /fragility relations
is much lower when decisional output values are sought than when risk estimates are the
quantities studied. Specifically the difference between the minimum and maximum values
for risk (depending on the building fragility relationship considered) was 10 times greater
than for the optimal design value.

The choice of the vulnerability/fragility curve is therefore much more important when
calculating risk than for an optimal design procedure. This conclusion was already reached
in Eckert et al. (2009), but with a much smaller number of vulnerability/fragility relations.
More generally, this is not a surprising result since it is in accordance with decision theory
where robustness of optimality towards classes of cost/loss functions is well known (Abra-
ham and Cadre, 2004). Our building and human fragility curve sets do not correspond
exactly to the mathematical definition of classes, but they are close. More importantly,
the practical outcomes of this finding are great: if the objective of the study is to find
the decision (let’s say, the mitigation measure) that minimises risk rather than having an

exact estimate of the risk, then a rougher estimate of the vulnerability /fragility relation
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may be sufficient. This is another point arguing in favour of the use of the systematic but
presumably oversimplified fragility relation set, and also for the promotion of cost benefit

analyses / optimal design approaches in avalanche engineering.

4.6 Conclusion and outlooks

In a nutshell, few relations reflecting vulnerability/fragility to snow avalanches currently
exist for buildings, and even fewer for humans inside buildings. Furthermore, these rela-
tions were mainly derived from catastrophic historical events whose characteristics do not
often correspond to paths where refined risk estimates are needed. In this study, system-
atic reliability analyses of buildings impacted by avalanche loads were used to deduce large
sets of building and human fragility relations according to avalanche pressure. By com-
parison to empirical back analyses, this approach is powerful and infinitely reproducible,
allowing the existing knowledge to be supplemented as needed.

Second, this new large set of curves was used to produce a comprehensive sensitivity
to vulnerability/fragility relation analysis up to the design of a defence structure. To do
so, we promoted the ability of the risk framework to accommodate differences between
vulnerability /fragility, and proposed bounds and indexes of both theoretical (quantifying
uncertainty /variability that cannot be simply expressed in a probabilistic way) and prac-
tical (minimum/maximum plausible values) aspects. In a typical case study, we clearly
showed how highly risk estimates are sensitive to the choice of the vulnerability /fragility
relation, whereas optimal design procedures may be more robust. Even if a certain case-
study dependence may exist, requiring more studies for wider generalisation, these results
enhance our overall understanding of avalanche risk and may therefore well be worth con-
sidering by avalanche engineers. For instance, they clearly show that current runout return
period-based zoning policies can be far from the quantification of true risk. Specifically,
comparisons with acceptable risk levels has highlighted the variability of abscissas in the
path where the acceptable risk threshold is exceeded. For example, for the case study,
only abscissas above the 1,000 year return period may be considered as fully safe.

The generally high sensitivity to vulnerability/fragility relations that has been high-
lighted emphasizes the need for reliable relations, that is to say accurate and systematically
available relations for a large variety of building types, provided e.gq., by fully numerical
approaches. The application presented in this paper was undertaken for a relatively large
class of RC buildings, but using a rather simple numerical engineering approach. Hence,
the results are subjected to all the inherent approximations and assumptions. For example,
the fragility relations were assessed under the assumption of quasi-static pressure loads
only, which is questionable in some typical situations. In the future, a more complex me-

chanical building model could be developed to study a particular geometry and carefully
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propagate confidence intervals up to risk quantification, taking into account additional
epistemic uncertainties and/or variability sources within the various processes involved.
Similarly, we worked with hazard distributions calibrated on a typical case study, but
in a simple (x,z) geometry (no lateral spread), and with only one building or human taken
into account in an individual risk perspective. For real risk mapping and optimal design
of mitigation measures in already urbanised areas, this is not enough, and expanding the
approach to a 2D to 3D avalanche hazard model is still required. Combining its outputs
with more advanced mechanical models accurately describing the existing buildings, as
discussed above, would definitely help refine the quantification of risk to humans and

buildings, and, therefore, be very useful for managing risk in the most delicate case studies.
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CHAPTER D

Avalanche risk evaluation and protective dam optimal design
using extreme value statistics: simple analytical formulae and

sensitivity study to hazard modeling assumptions

Le contenu de ce chapitre a vocation a étre soumis apres travail a Journal of Glaciology,

les auteurs en sont : Favier, P., Eckert, N., Bertrand, D., Faug, T. and Naaim, M..
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5. Avalanche risk evaluation and protective dam optimal design using extreme value statistics:

simple analytical formulae and sensitivity study to hazard modeling assumptions

Abstract

In snow avalanche long term forecasting, existing risk-based methods remain difficult to use in a real
engineering context. Yet, they make use of debatable assumptions for hazard modelling. In this work,
we address these limitations by expanding a quasi analytical decisional model so as to obtain simple risk
formulae to quantify risk and perform the optimal design of an avalanche dam in a quick and efficient
way. These may be usable in a variety of situations, as soon as a very generic additive cost model with
a constant damage susceptibility is found suitable. Specifically, the exponential runout model is replaced
by the generalised Pareto distribution (GPD) that has theoretical justifications that promotes its use for
modelling the different possible runout tail behaviours. Regarding the defence structure - flow interaction,
a simple law based on kinetic energy dissipation is confronted to a law based on the volume stored upstream
of the dam whose flexibility make it able to cope for various types of snow. We finally show how a detailed
sensitivity study can be conducted, leading intervals and bounds for risk estimates and optimal design
values.

Application on a typical case study from the French Alps demonstrates that it is often not easy to fit a
robust runout tail distribution on the basis of the data only, making the forecasted high return levels badly
constrained. A profile likelihood approach can tackle this difficulty, but residual risk estimates and optimal
dam heights remain highly variable towards possible runout tail types. Similarly, a very high sensitivity
to the avalanche-dam interaction law exists: the energy dissipation one generally postulates a higher risk
reduction, but the flexility of the volume catch one makes the case of high deposit shape angles due to wet
snow flows an exception to this rule. Also, with this law, the higher complexity of the dependency to the
dam height makes that no solution to the optimal design problem exists over a large range of abscissas in
the runout zone. The highest sensitivity to the runout tail type and interaction law is fond at abscissas of
legal importance for hazard zoning ( return periods of 10 — 1,000 years), a crucial result for practice. This
all suggests that the tail behaviour of extreme runouts, as well as the energy dissipation and deposition
patterns occurring when an avalanche hits an obstacle should be reinvestigated to reduce uncertainty levels

in operational contexts.

Keywords: Snow Avalanche; Individual Risk; Defense Structure; Risk Minimisation; Extreme Value

Statistics; Runout return period; Interaction Law; Uncertainty Quantification and Propagation.

5.1 Introduction

Snow avalanche long term forecasting for risk mapping and the design of defense structures
is generally done on the basis of high magnitude events defined by their return period
e.g. Salm et al. (1990). Such purely hazard-oriented approaches do not explicitly consider
elements at risk (buildings, people inside, etc.), and neglect possible budgetary constraints.
Therefore, they do not guarantee that unacceptable exposition levels and /or unacceptable
costs cannot be reached. This is well demonstrated in Favier et al. (2014b) by confronting
standard hazard zone limits with acceptable risk levels as defined in Jénasson et al. (1999).

To overcome these limitations, risk based zoning methods (Keylock et al., 1999; Arnalds
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et al., 2004) and cost-benefit analyses (Fuchs et al., 2007a) have emerged recently in this
field, allowing socioeconomic considerations to be included into the analysis (Briindl et al.,
2009) in a proper mathematical framework (Eckert et al., 2012).

Risk quantification requires combining the model for avalanche hazard with a quan-
titative assessment of consequences for the elements at risk. The hazard distribution is
(at least partially) site-specific, and two main approaches exist to determine it. “Direct”
statistical inference can be used to fit explicit probability distributions on avalanche data,
mainly runout distances (Lied and Bakkehoi, 1980; Eckert et al., 2007b; Gauer et al.,
2010). As an alternative, richer but more computationally intensive, statistical-dynamical
approaches include hydrodynamical modelling within the probabilistic framework (Bar-
bolini and Keylock, 2002; Meunier and Ancey, 2004; Eckert et al., 2008a). They lead the
joint distribution of all variables of interest, including the one of spatio-temporal pressure
fields (Eckert et al., 2010c).

Consequences for elements at risk are estimated using vulnerability relations, i.e. in-
creasing curves with values in [0 — 1] quantifying, for various types of elements at risk
(people, buildings, infrastructures ...), the expected damage as function of avalanche in-
tensity. The latter is generally expressed in terms of impact pressure, b