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Examinateurs :

Dr. Christophe BICHARA (CINAM Marseille)
Dr. Marie-Laure BOCQUET (ENS Paris)
Dr. Florent CALVO (LiPhy Grenoble)





UNIVERSITE CLAUDE BERNARD - LYON 1 

Président de l’Université 

Vice-président du Conseil d’Administration 

Vice-président  du Conseil des Etudes et de la Vie Universitaire  

Vice-président du Conseil Scientifique 

Directeur Général des Services 

M. François-Noël GILLY 

M. le Professeur Hamda BEN HADID 

M. le Professeur Philippe LALLE 

M. le Professeur Germain GILLET 

M. Alain HELLEU 

COMPOSANTES SANTE 

Faculté de Médecine Lyon Est – Claude Bernard 

Faculté de Médecine et de Maïeutique Lyon Sud – Charles 
Mérieux 

Faculté d’Odontologie  

Institut des Sciences Pharmaceutiques et Biologiques 

Institut des Sciences et Techniques de la Réadaptation 

Département de formation et Centre de Recherche en Biologie 
Humaine 

Directeur : M. le Professeur J. ETIENNE 

Directeur : Mme la Professeure C. BURILLON 

Directeur : M. le Professeur D. BOURGEOIS 

Directeur : Mme la Professeure C. VINCIGUERRA 

Directeur : M. le Professeur Y. MATILLON 

Directeur : Mme. la Professeure A-M. SCHOTT 

COMPOSANTES ET DEPARTEMENTS DE SCIENCES ET TECHNOLOGIE 

Faculté des Sciences et Technologies 
Département Biologie 
Département Chimie Biochimie 
Département GEP 
Département Informatique 
Département Mathématiques 
Département Mécanique 
Département Physique 

UFR Sciences et Techniques des Activités Physiques et Sportives 

Observatoire des Sciences de l’Univers de Lyon 

Polytech Lyon 

Ecole Supérieure de Chimie Physique Electronique 

Institut Universitaire de Technologie de Lyon 1 

Ecole Supérieure du Professorat et de l’Education 

Institut de Science Financière et d'Assurances 

Directeur : M. F. DE MARCHI 
Directeur : M. le Professeur F. FLEURY 
Directeur : Mme Caroline FELIX 
Directeur : M. Hassan HAMMOURI 
Directeur : M. le Professeur S. AKKOUCHE 
Directeur : M. le Professeur Georges TOMANOV
Directeur : M. le Professeur H. BEN HADID 
Directeur : M. Jean-Claude PLENET  

Directeur : M. Y.VANPOULLE   

Directeur : M. B. GUIDERDONI  

Directeur : M. P. FOURNIER 

Directeur : M. G. PIGNAULT 

Directeur : M. le Professeur C. VITON 

Directeur : M. le Professeur A. MOUGNIOTTE 

Directeur : M. N. LEBOISNE 



Laboratoire d’accueil

Institut Lumière Matière
UMR5306 CNRS
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Résumé

Les applications des nanoparticules métalliques nécessitent la production d’assemblées mono-
disperses et thermiquement stables sur un substrat. Des substrats carbonés tels que le graphène
ou le graphite représentent des supports chimiquement inertes couramment utilisés. En parti-
culier, le graphène en épitaxie sur métal (GEM) est étudié car il facilite l’auto-organisation des
nanoparticules à sa surface. En effet, la différence entre les constantes de réseau du graphène
et du métal conduit à un effet de moiré qui se traduit par la corrugation régulière du graphène
sur une maille d’un ordre de grandeur plus grande que celle du graphène. Ce super-réseau
comporte certaines régions privilégiées pour l’adsorption des nanoparticules. En fonction du
support métallique, il existe une multitude de structures de moiré qui se différencient par leur
taille, la déformation du graphène et la nature de l’interaction entre le métal et le graphène.
Expérimentalement, des nanoparticules peuvent soit être déposées soit crôıtre sur place par
épitaxie par jets moléculaires.

Une monocouche de graphène en épitaxie peut conduire à la passivation chimique d’une sur-
face métallique. Ces surfaces pourraient représenter un miroir pour des nouvelles techniques
de microscopie basées sur des atomes ou molécules neutres. Des nanoparticules de métaux
de transition habituellement en dépôt sur graphite mais aussi sur graphène ont des propriétés
intéressantes en chimie de catalyse où le grand rapport surface sur volume de ces métaux rares
est exploité : des nanoparticules de platine ont de nombreuses applications potentielles en
catalyse, par exemple dans la technologie des piles à combustible où ils catalysent la réduction
d’oxygène et l’oxydation d’hydrogène. Ces nanoparticules peuvent aussi augmenter la capacité
de stockage d’hydrogène dans des milieux nano-poreux de carbone. De plus, des agrégats ferro-
magnétiques sont étudiés en vue de leur utilisation comme support d’enregistrement magnétique
à haute densité. Cependant, toutes ces applications nécessitent en amont une compréhension
fine des mécanismes physiques. Nous avons développé des modèles numériques permettant
de simuler ces systèmes afin de comprendre à terme les mécanismes qui sont responsables de
la formation d’un réseau de nanoparticules auto-organisées. A ce jour, les expériences sont
largement basées sur l’empirisme et une compréhension détaillée de la physique prenant part
dans ce système à température finie fait cruellement défaut. Ce travail est consacré surtout aux
systèmes Ru-C et Pt-C où nous nous sommes intéressé au substrat du GEM nu, des agrégats du
même métal y étant déposés, et des agrégats métalliques sur une surface de graphite. Quelques
résultats concernant le système Ni-C seront également donnés ainsi qu’une discussion des diffi-
cultés particulières au système Ir-C.

Le potentiel à ordre de liaison de Brenner permet d’effectuer des études en dynamique moléculaire
sur ce type de système. Couramment utilisé pour la description des semi-conducteurs et de
carbone, mais aussi pour des métaux ainsi que des mélanges entre ce deux types d’atomes,
ce potentiel tient compte de l’environnement local et des liaisons directionnelles. Dans le cas
du système platine-carbone, nous basons les calculs sur une paramétrisation déjà existante.
Cependant, pour le système Ru-C une paramétrisation dédiée était nécessaire. Pour ces deux
systèmes la partie métallique du système est décrite par un potentiel basé sur l’approximation
du deuxième moment dans le modèle des liaisons fortes (TB-SMA) dont une paramétrisation
pour le Ru pur est disponible. Il a été montré que le TB-SMA peut être réécrit sous la forme
du potentiel de Brenner, ce qui permet une description uniforme du système entier. Afin de
trouver un jeu de paramètres pour les interactions Ru-C nous avons employé une approche
à deux étapes : premièrement, une optimisation de paramètres avec un algorithme de Monte
Carlo d’échange a été effectuée. Pendant cette procédure la fonction de coût à minimiser a
contenu des géométries optimisées en théorie de la fonctionnelle de la densité (DFT) ainsi que
l’énergie d’interaction de la couche de graphène ou des adsorbats éventuels. Dans une deuxième
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étape les meilleurs jeux de paramètres ont été optimisés localement avec un algorithme de
Levenberg-Marquardt, mais avec une fonction de coût raffinée comprenant des données concer-
nant la géométrie et l’énergétique après optimisation structurale effectuée à chaque itération
de l’algorithme. La même approche a été suivie pour la paramétrisation du champ de force
pour le système Ir-C. Pour ce système, des calculs type DFT ont montré que le graphène n’est
pas stable sur une surface Ir(111) sans prise en compte explicite de forces de dispersion et il
s’avère qu’une description du graphène lié uniquement par physisorption faible représente une
difficulté supplémentaire.

Basé sur l’approximation deuxième moment dans le modèle de liaisons fortes, le potentiel de
Brenner néglige les interactions au-delà des premiers voisins, dont les forces de dispersion. Dans
beaucoup de situations ces forces sont négligeables devant les liaisons chimiques traitées par
ce potentiel interatomique. En revanche, à la surface d’un substrat étendu, elles contribuent
d’une manière non-négligeable à l’énergie d’adsorption. Dans le cas du graphène sur Ru(0001)
l’interaction est amplifiée d’un ordre de grandeur par l’interaction de dispersion dispersion.
Bien qu’incluses conceptuellement dans les calculs de la structure électronique, les fonctionnelles
d’échange-corrélation locales ou semi-locales courantes ne suffisent pas pour la description de
forces de dispersion. Pour cette raison, plusieurs approches dédiées ont été développées afin de
répondre à ce défaut. Les corrections de dispersion de Grimme modélisent empiriquement les
interactions non-covalentes. La version D2 correspond à un potentiel de paires supplémentaire
et la version D3 tient compte en outre de l’environnement local. Au niveau du temps de
calcul, l’évaluation des forces de dispersion avec ces deux modèles est plus coûteuse que le
calcul des forces covalentes et métalliques avec le potentiel de Brenner. Par conséquent nous
avons cherché à développer une version implicite pour les forces non-covalentes. En s’inspirant
des travaux de Steele, ce modèle gros grain basé sur le modèle D2 de Grimme exploite la
géométrie du substrat qui consiste en une suite de couches presque planes et équidistantes.
En négligeant la corrugation du substrat, nous intégrons rigoureusement la contribution d’une
infinité de monocouches individuelles et ce sans introduire de paramètre supplémentaire. Ce
modèle implicite décrit bien l’adsorption des agrégats sur graphite, or pour le graphène épitaxié
les forces de dispersion issues de la partie métallique du substrat sont surestimées à cause
des effets d’écrantage non pris en compte, pouvant néanmoins être importants car provenant
d’électrons délocalisés. Pour combler ce problème nous avons suivi plusieurs approches tenant
compte de ces effets empiriquement.

Basé sur ce champ de force nous montrons des propriétés statiques (structurales et énergétiques)
à température nulle pour des nanoparticules de platine et de ruthénium sur substrats carbonés.
Nous avons évalué le modèle implicite pour les forces de dispersion en comparant les calculs
impliquant les modèles explicites Grimme D2 et D3. Par ailleurs, des comparaisons avec des
calculs DFT avec ou sans traitement explicite de la dispersion montrent un bon accord. Des
optimisations systématiques d’agrégats métalliques (Ru et Pt) réalistes (structures 2D et 3D
de dizaines à milliers d’atomes) sur graphène et graphite ainsi que sur graphène en épitaxie
sur métal [Pt(111) ou Ru(0001)] ont également été effectuées. Grâce à des simulations de
dynamique moléculaire, la stabilité thermique des adsorbats ainsi que de la couche de graphène
a été étudié dans le contexte de la dynamique vibrationnelle et de la diffusion globale. Le
comportement thermique souligne ainsi le rôle clé des forces de dispersion pour la stabilité
des adsorbats. Les propriétés vibrationnelles de graphène seul ou en contact avec le substrat
métallique révèlent une forte sensibilité à la température et aux contraintes. En accord avec
des expériences, la mobilité des adsorbats de ruthénium sur une surface de graphite a été
trouvée très élevée. Le substrat du GEM a été étudié à température finie pour différentes
commensurabilités [graphène/Ru(0001)] et différents angles entre le graphène et le réseau de la
surface métallique [graphène/Pt(111)]. Ceci a rendu des comparaisons avec une multitude des
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données expérimentales sur le GEM obtenues notamment par microscopie à force atomique ou
diffraction des rayons X. Finalement, l’étude de l’effet de la température sur des adsorbats en
dépôt sur graphène épitaxié a montré une grande stabilité vis-à-vis de la fusion et diffusion des
agrégats par rapport à ceux en contact avec une surface de graphite.

Mots clés: Matériaux nanostructurés, Stabilité thermique des nanoparticules, Matériaux
à base de carbone: graphène et graphite, Modélisation et simulations numériques, Diffusion
d’agrégats
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Atomistic modeling of metallic nanopar-
ticles on carbonaceous substrates and
epitaxial graphene on metals

Abstract

Applications of metal nanoparticles require the production of mono-dispersed assemblies that
are thermally stable on a substrate. Because of their chemical inertness carbon substrates such
as graphene or graphite are commonly used supports. In particular, epitaxial graphene on metal
(GOM) facilitates the self-organization of nanoparticles on its surface. The lattice mismatch
between graphene and the underlying metal surface leads to a moiré effect which results in
the regular corrugation of the graphene leading to a nanomesh having a lattice constant one
order of magnitude larger than that of graphene. This superlattice has certain areas, called
registries, which favor the adsorption of nanoparticles. Depending on the metal support, there is
a plethora of moiré structures that differ by their size, the deformation of the graphene and the
nature of the interaction between the metal and the graphene. Experimentally, nanoparticles
may be deposited onto this substrate or grown on site by molecular beam epitaxy.

A monolayer of epitaxial graphene can lead to chemical passivation of a metal surface. These
surfaces may constitute a mirror for new microscopy techniques based on neutral atoms or
molecules. Transition metal nanoparticles typically deposited on graphite, but also on graphene
have interesting properties in catalyst chemistry where the large surface to volume ratio of
these rare metals is exploited: platinum nanoparticles have many potential applications in
catalysis in fuel cell technology where they catalyze oxygen reduction and hydrogen oxidation.
These nanoparticles can also increase the hydrogen storage capacity of nanoporous carbon
materials. In addition, ferromagnetic clusters may be used in high-density magnetic information
storage technology. However, all these potential applications require a detailed understanding
of the underlying physical mechanisms. We have developed numerical simulations to study
these systems in order to understand the mechanisms that are responsible for the formation
of a self-organized nanoparticle network. To date, experiments are only described empirically
and a detailed understanding of the physics involved in this system at finite temperature is
lacking. This work addresses the Ru-C and Pt-C systems by studying the bare GOM substrate,
aggregates of the same metal deposited thereon and metal clusters on graphite surfaces. Some
results concerning the Ni-C system are also presented, as well as a discussion of the specific
difficulties related to the description of the Ir-C system.

The Brenner potential of bond order type allows performing molecular dynamics studies on this
type of system. Commonly used for the description of semiconductors and carbon, but also for
metals and mixtures of the two types of atoms, this model represents a bond-order potential
that takes into account the local environment and directional bonding. In the case of the
platinum-carbon system, we base the calculations on an existing parametrization. However, for
the Ru-C system a customized parametrization was necessary. The metal part of the system is
described by a potential based on the second-moment approximation in the tight-binding model
(TB-SMA), where a parametrization for pure Ru is available in the literature. It has been shown
that the TB-SMA can be rewritten under the form of the Brenner potential, which allows in
turn a uniform description of the entire system. In order to find a parameter set for Ru-C
interactions, we used a two-step approach: first, a parameter optimization was performed with
the help of an exchange Monte Carlo algorithm. During this procedure the cost function to be
minimized contained geometries obtained by density functional theory (DFT) calculations and
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the interaction energy of the graphene layer or possible adsorbates. In the second step, the best
parameter sets were optimized locally with a Levenberg-Marquardt algorithm on the basis of a
refined cost function including geometric and energetic data of structural relaxations performed
at each iteration of the algorithm. The same approach was followed for the parametrization of
the force field for the Ir-C system. For this system, DFT calculations have shown that graphene
is not stable on the Ir(111) surface without explicit account for dispersion forces and it turns
out that graphene bound only by weak physisorption represents an additional difficulty for its
description with a Brenner potential.

Based on the second-moment approximation in the tight-binding model, the Brenner potential
neglects interactions beyond nearest neighbors and, therefore, long-ranged dispersion forces. In
many situations, these forces are negligible compared to chemical bonds modeled by the Brenner
potential. However, on the surface of an extended substrate, they contribute in a significant
amount to the total adsorption energy. In the case of graphene on Ru(0001), the interaction
is amplified by one order of magnitude by the dispersion interaction. Although conceptually
included in electronic structure calculations, dispersion forces are not fully represented in local
or semilocal exchange-correlation functionals. Several dedicated approaches have thus been
developed to address this shortcoming. The Grimme dispersion corrections model empirically
the non-covalent interactions. The D2 version is an additional pairwise potential and the D3
version takes into account also the local environment. The evaluation of the dispersion forces
with these two models is computationally more intensive than the calculation of the bonding
interactions with the Brenner potential. Therefore, we sought to develop a coarse-grained
version for the description of non-covalent forces. Following the Steele approach, we base this
coarse-grained model on the Grimme D2 dispersion correction and exploit the geometry of
the substrate which consists of a sequence of almost flat and equidistant layers. Neglecting
the corrugation of the substrate, we rigorously integrate the contribution of infinite individual
monolayers and this without introducing additional parameters. This implicit model describes
well adsorption of clusters on graphite, but in the case of epitaxial graphene, dispersion forces
caused by the metal portion of the substrate are overestimated because of neglected screening
effects due to delocalized electrons. To address this issue, we follow several approaches taking
into account these effects empirically.

Using this model, we calculated static properties at zero temperature for platinum and ruthe-
nium nanoparticles. We evaluated the implicit model for dispersion forces by comparing to
calculations involving the explicit Grimme D2 and D3 model. Additional comparisons with
DFT calculations with or without such explicit dispersion corrections show also good agree-
ment. Systematic optimizations of realistic Ru and Pt clusters (2D and 3D structures of tens
to thousands of atoms) on graphene and graphite as well as on epitaxial graphene on metal
[Pt (111) and Ru (0001)] have been carried out. Using molecular dynamics simulations, the
thermal stability of adsorbates and the graphene layer have been studied in the context of
vibrational and diffusion dynamics. The thermal behavior underlines the key role of dispersion
forces for the stability of the adsorbates. The vibrational properties of graphene alone or in
contact with the metal substrate show a strong sensitivity to temperature and strain. In agree-
ment with experiments, the mobility of ruthenium adsorbates on a graphite surface was found
to be very high. The GOM substrate was studied at finite temperature for different moiré
commensurabilities (graphene/Ru(0001)) and angles between the graphene and the metal sur-
face lattice (graphene/Pt(111)). This allowed for comparisons with many experimental data
on GOM obtained e.g. by atomic force microscopy or X-ray diffraction measurements. Finally,
we studied the effect of temperature on adsorbates deposited on epitaxial graphene, where we
found increased thermal stability against adsorbate melting and diffusion compared to clusters
on a graphite surface.
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Chapter 1

Introduction

1.1 Nanoscience and metal nanoparticles (NPs)

Nanoscience deals with the production and analysis of nanoscaled systems. These are sys-
tems of typical sizes ranging from one up to hundreds of nanometers. These length scales
may apply in one, two or three dimensions, such as in thin films, nanorods or nanoparticles
(NPs), respectively. Commonly these materials consist of carbon [1–3], metals [4], semiconduc-
tors [5], oxides [6] or polymers [7]. The diversity in dimensionality, size, shape and composi-
tion of nanosystems allows for a vast scope of novel materials with unconventional properties.
Nanosized objects may be created naturally during combustion, in volcanic eruptions or ocean
spray [8]. The most complex nano-objects occur in biological systems for example in the form of
proteins or viruses [9]. Without the awareness of their existence, NPs have been used since long
time ago. For example gold NPs have been used in stained glass since the Roman ages [10]. An-
other example is carbon black that finds application as pigments in paints and inks [11]. More
recent applications include titanium oxide NPs in sunscreens or paint, silver NPs for antimicro-
bial coatings [12] and nanostructured water and dirt repellent coatings [5]. Currently research
is carried out on nano-composite high strength materials [2], NPs as catalysts [13] and a range
of biomedical nanomaterials for targeted drug delivery, tissue engineering or biosensors [14],
just to name a few potential applications. Research effort is also directed to the understanding
and avoidance of nanosized air pollutants and the health and environmental impact of nanoma-
terials [8]. Nanoscience is about the understanding, characterization and deliberate elaboration
of these materials.

Concerning the fabrication of NPs, two main approaches can be followed. First, starting of
from the bulk material, the top-down methods reduce the object size. This can be achieved
by milling and grinding, but also more sophisticated techniques such as laser ablation, pho-
tolithography or electron beam lithography fall into this category. The second approach relies
on building up the nano-objects from their atomic constituents. This can be achieved by
chemical synthesis in the liquid phase or chemical vapor deposition (CVD) on a substrate that
possibly favors self-organization of NPs. The physical and chemical processes involved in the
formation of NPs are subject of active research [15]. The aim is to gain control over the size
and shape that determine other properties of the NPs as practical applications usually require
the avoidance of coalescence and uniform sizes of the NPs.

A major interest in NPs originates from their distinct properties compared to the bulk
material or single atoms, making them a distinctly new type of material. The properties of
the NPs depend strongly on their size. This is the case for basic properties such as shape
and stability, but also for optical effects (surface plasmon resonances), magnetic anisotropy
or chemical activity, which is studied with the objective of rational catalyst design. Growth
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and catalytic activity take place at the surface of the NPs and therefore at increased rates
compared to the same mass of material in larger particles due to their high surface to volume
ratio. Chemical activity is also influenced by the shape of the NPs and the nature of their
surface. For example the (111) surface of platinum is several times more active than the (100)
surface for the catalysis of aromatization reactions [16].

In the so-called scalable regime applicable to larger particles, properties such as interatomic
distances and cohesive energies depend monotonically on the number of atoms and converge to
the bulk values. For smaller particles, where the number of atoms at the surface is comparable
to those at the inner part of the particle, quantum-mechanical effects become important and
the dependency of the particles’ properties follows non-monotonic trends with clusters size [13].
In particular, the chemical properties of lowly coordinated sites at the edges and corners of
the particles gain relative importance. Noble gas or metallic clusters are found to form regular
polyhedra built up by concentric atomic shells and thus contain certain preferred numbers of
atoms known as magic numbers [13]. Using the Wulff construction, such regular NPs with
well-defined crystal facets can be geometrically built by minimizing the surface Gibbs energy,
which is assumed to be known for macroscopic crystal surfaces as a function of lattice planes.
Conforming to the jellium model, other magic numbers occur in small alkali metal clusters
where the electronic structure dominates and therefore high stability is found in the case of full
electronic shells. In this model the electrons are delocalized over the entire cluster, while the
atomic cores provide a uniform background of positive charge [13].

The range of properties of metallic NPs can be strongly increased by considering mixtures of
different metals, referred to as nanoalloys. Their properties may be tuned via the composition
and varying chemical ordering in addition to cluster size. Several types of structures can be
identified according to their mixing patterns: Core-shell structures are composed of a core of a
certain atomic species surrounded by a shell of atoms of another type. Additional shells may be
added to form multi-shell nanoalloys with an onion-like structure. Mixed structures represent
another type of nanoalloys where the different atomic species occupy random sites or follow
ordered patterns similar to macroscopic alloys [17].

It should be noted that free NPs are idealizations from the experimental reality where these
objects are produced in a solution or on a support and are possibly covered by stabilizing agents.
Clearly, the environment may strongly affect the equilibrium structure of the NPs [18]. However
this is not necessarily a drawback as the environment may be used to change the properties of
the NPs in a controlled way. In addition, nano-patterned substrates may make the control over
their size and shape more easy, help to avoid coalescence and even favor self-organization [19].
These ideas are the motivation for this work where we studied transition metal NPs deposited
on carbonaceous substrates. In the next section, we give an overview of this class of substrates.

1.2 Carbonaceous substrates

The use of NPs for practical applications requires stabilizing them against thermal motion and
protecting them against possible degradation and reactions due to the external medium, e.g.
through appropriate coating with surfactant molecules. In surface science, the particles are
either grown on the substrate from the atoms, or deposited after their initial formation in the
gas phase [20–22]. Owing to their high versatility, relative chemical inertness and reasonable
production costs, carbon materials are often employed as substrates for NP deposition [19, 23–
28]. Even without NP decoration, these substrates represent an entire field of research. The
following paragraphs briefly present the scope of these materials.
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1.2.1 Graphene

Graphene is the two-dimensional allotrope of carbon where the atoms are arranged in a honey-
comb lattice consisting of two equivalent triangular sublattices. The carbon-carbon bond length
in graphene is 1.42 Å [29]. Since it was shown to be obtainable by mechanical exfoliation of
graphite [3], the material has attracted much research interest: On the one hand, graphene
can be regarded as a model system in fundamental physics due to its linear dispersion relation
in combination with its sublattice symmetry (amongst others). On the other hand graphene
has also promising practical applications for example in nanosized ultrafast transistors [30].
Furthermore, graphene can be seen as the building block for a number of other (sp2) nanoma-
terials represented in Fig. 1.1. Graphite is built up by stacked graphene layers on top of each
other. Carbon nanotubes can be understood as graphene rolled up into cylindrically shaped,
one dimensional nano-objects consisting of one or several layers (single- and multi-walled nan-
otubes) [31]. They are superior in terms of stiffness, strength and resilience to any other current
material and also have interesting electronic properties which can be either metallic or semi-
conducting, depending on tube chirality [2]. Finally, buckminsterfullerenes also consist solely
of sp2 hybridized carbon arranged in pentagonal and hexagonal rings [1].

Figure 1.1: Graphene as the conceptual building block of other sp2 carbon allotropes: (a)
graphene, (b) graphite, (c) carbon nanotube, (d) buckminsterfullerene. Figure from Tetlow
and coworkers [32].

The graphene unit cell consists of two carbon atoms with four valence electrons each. Three
of these electrons are sp2 hybridized and form in-plane σ-bonds with the three nearest carbon
atom neighbors. The remaining two valence electrons in the unit cell (one for each of the
mentioned sublattices) are delocalized into a bonding π and an anti-bonding π∗ band (valence
and conduction band, respectively). The two bands touch at the K and K ′ points of the first
Brillouin zone making graphene a zero band gap semiconductor. Using a tight-binding (TB)
model, Wallace showed that the dispersion relation turns out to be linear close to these points,
which are referred to as Dirac points [29]: E = h̄kvF with h̄k the norm of the momentum
and vF the Fermi velocity which amounts to about 1/300 of the speed of light. This unusual
dispersion relation of its charge carriers makes them behave like massless Dirac fermions, which
is interesting because it allows to study the effects of quantum electrodynamics governed by
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the relativistic Dirac equation with comparably simple experimental setups [33]. Together
with the sublattice symmetry, this is related to the observation of an anomalous half-integer
quantum Hall effect [33] and high charge carrier mobility with a ballistic transport regime for
submicrometer distances up to room temperatures [3]. Also related to the two-dimensional
structure and the gapless electronic spectrum, graphene absorbs a fraction of 2.3% of the light
in the range of the near infrared and visible electromagnetic spectrum, which is surprisingly
high considering that it is only one atom thick [34].

The strong inplane σ-bonds between the carbon atoms make graphene the material with
the highest tensile strength and the largest Young’s modulus ever measured [35]. However, in
practice, the strength of macroscopic graphitic materials is limited because of defects and grain
boundaries. Despite the large research effort put into graphene recently, other basic material
properties such as the thermal expansion coefficient (TEC) are still under debate [36, 37].

Graphene monolayers prepared by mechanical exfoliation have good quality and reached
sizes of up to 10 μm already since 2004, which made them useful for various investigations [3].
However, this method of preparation is not practical for large-scale production. A promising
alternative is the epitaxial growth of graphene, which can be achieved by CVD, temperature
programmed growth or segregation based methods [32]. We discuss epitaxial graphene in a
separate section below as this material has been studied in this work as a substrate for NP
deposition.

1.2.2 Graphite

Graphite consists of graphene layers following different sequences, both stackings ABAB (Bernal
stacking) and ABCABC (rhombohedral) occur in nature. Those planes are bound to each other
by weak van der Waals forces that originate from the delocalized π electrons of the individual
layers. The spacing between the layers is about 3.35 Å [38] which is much more than the inplane
nearest-neighbor distance of carbon atoms. Parallel to the graphite layers, the material is a
good electrical and thermal conductor, which is not the case perpendicular to the layers. The
weak van der Waals intralayer interactions allow for sliding of the layers with respect to one
another which makes graphite a good lubricant [38]. The modeling of graphite requires often
special care for the interlayer interaction, because they are not described correctly in empirical
or DFT calculations without explicit account for van der Waals forces.

Graphite is studied as a relatively cheap substrate for cluster deposition in view of applica-
tions in catalysis [39, 40]. In particular, it has been shown that NP coalescence can be avoided
despite surface diffusion, which are two key factors for NP self-organization [23]. In comparison
to NPs on epitaxial graphene on metal (GOM), metal clusters on graphite may experience high
surface diffusion rates [41, 42] following a Lévy-type stick-slip mechanism [42]. Interestingly,
this behavior is only observed for clusters but not for single adatoms [42]. Such processes are
also investigated in the present work.

1.2.3 Epitaxial graphene on metal (GOM)

Discovered at least 50 years ago [43, 44], GOM has attracted growing interest during the last
decade [32, 45]. Epitaxially grown graphene monolayers provide sufficient amounts of carbon
to chemically passivate a metal surface, and such surfaces could provide a mirror for future
neutral atom or molecule microscopes [46]. Due to the mismatch between the lattice constants
of the two materials, moiré structures of different sizes are observed upon contact, with different
geometries and relative stabilities. Those moiré patterns constitute two dimensional nanoscale
meshes that can serve as a template for depositing small clusters [19] with potential applications
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in high-density information storage [4, 19, 47]. The self-assembly of metal clusters on epitaxial
graphene has been observed experimentally [19, 48–52] and modeled by kinetic Monte Carlo
(MC) simulations [53, 54].

Depending on the underlying metal, the deformation of the graphene monolayer (and, to
a lesser extent, of the metal itself) varies, as the result of the different interactions ranging
from physisorption (platinum, iridium or copper) to stronger chemisorption (ruthenium, nickel
or cobalt) [32]. In the case of weak interaction, the interaction energy and the spacing of
the graphene layer is similar to the interaction energy and spacing of the topmost layer in
graphite. The spacing of epitaxial graphene in the strongly interacting systems on the other
hand resembles the spacing between two metal layers of the bulk crystal. The size of the
moiré structure depends on the commensurability that may change with temperature due to
unequal TECs of the two materials [55]. In addition, an inplane angle between graphene and
metal surface may decrease the size of the moiré structure. Non-zero inplane angles are more
common in weakly interacting systems [32].

Figure 1.2: STM topograph of: (a) graphene/Ir(111), (b) Ir clusters on graphene/Ir(111).
Figure adapted from N’Diaye and coworkers [19].

Due to its nanostructuration, epitaxial graphene may favor self-organization of metal adsor-
bates at their surface [19]. This can be achieved by on site growth using atomic deposition [19]
or by the deposition of preformed clusters in the gas phase [37]. In comparison to adsor-
bates on graphite, clusters on epitaxial graphene are very stable and show reduced diffusion
propensity [56, 57]. Fig. 1.2(a) shows a scanning tunneling microscopy (STM) topograph of the
graphene/Ir(111) moiré. The small scale structures correspond to the graphene lattice while
at a larger length scale of about 25 Å (as highlighted by the white lines) the moiré pattern is
clearly visible. Panel (b) shows Ir clusters deposited onto the moiré structure.

There is a considerable number of complementary experimental techniques suitable for in-
vestigations on these systems. Apart from STM, most common are atomic force microscopy
(AFM), low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray
diffraction measurements and Raman spectroscopy. Some of the cited techniques may require
ultra high vacuum or low temperatures achieved by liquid helium cooling, which may be ex-
perimentally challenging. A comprehensive review of these methods and related ones can be
found in Ref. [32]. Reliable experimental techniques are key for the classification and measure-
ment of nanoscaled systems, while numerical simulations offer a complementary approach to
experiments allowing detailed studies of idealized systems. The next section introduces some
common techniques.
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1.3 Commonly used modeling tools

In the following we give a brief overview of the most widely used simulation methods which
have successfully been employed for the modeling of adsorbates on carbonaceous systems. In
principle all observables can be derived from the solution of the full many-body Schrödinger
equation. However this proves intractable for systems comprising more than several electrons.
The systems of graphene on metal moiré structures that we wish to model contains about
10×10 graphene unit cells with 2 carbon atoms each. The model needs to include at least
three metallic layers for a distinction between ABAB and ABC stackings, which adds about
10×10 metal atoms per layer with about 20-80 electrons each. Furthermore, possible adsorbates
amount to another typically 10–100 metal atoms. In order to be able to simulate systems of
this size, especially at finite temperature, approximate theories have been developed. In the
following, we give an overview over the most common.

1.3.1 Density functional theory (DFT)

DFT is one of the most widely used methods for quantum chemical modeling in material science.
Allowing to study the electronic structure of systems containing a large number of electrons and
nuclei, the method has comparably high predictive power as it contains no (or few) empirical
ingredients. DFT methods express the total energy E of a configuration of electrons in the
ground state at zero temperature as a functional of the electronic density ρ(�r) at position (�r)
units) [58] (assuming atomic units):

E [ρ] =

∫
Vn(�r)ρ(�r)d�r +

∫∫
ρ(�r)ρ(�r′)

2|�r − �r′| d�rd
�r′ +G [ρ] , (1.1)

where Vn(�r) represents an external potential created by the atomic nuclei, which are assumed
to be fixed (Born-Oppenheimer approximation) and the second term the Coulomb interactions
between electrons VH . The functional G contains the kinetic, exchange, and correlation energy
and is universal, meaning that it is independent of the nature of the system. Unfortunately
it is not known, Kohn and Sham developed self-consistent expressions which map the system
of interacting electrons onto a system of non-interacting electrons thus treated by an effective
potential Veff(�r) = Vn(�r)+VH(�r)+Vxc(�r), with Vxc the exchange-correlation potential [59]. This
makes the kinetic energy dependent only on the one-electron orbitals ψi, which can be obtained
by the variation of the total energy:[

Vn(�r) + VH(�r) + Vxc(�r)− 1

2
Δ

]
ψi = εiψi. (1.2)

In practice self-consistency is reached iteratively, starting from an initial guess for the electronic
density. Still, unfortunately there is no exact expression for the exchange-correlation term,
however some approximations exist: In solid state physics the most popular are the local density
approximation (LDA) and the generalized gradient approximation (GGA). LDA designates local
functionals which depend only on the local electronic density while GGA methods also take
the gradient of the electronic density into account and are therefore referred to as a semi-local.
In order to facilitate practical calculations, normally only valence electrons are taken explicitly
into account. This can be achieved by replacing the external potential by pseudopotentials.

Both local and semi-local functionals do not take into account long range correlations which
give rise to dispersion interactions that are usually negligible with respect to the covalent or
metallic interactions. However, for the interaction of adsorbates with bulk or semi-infinite sub-
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strates, one important contribution is that of long-range dispersion forces [60–69]. To overcome
this shortcoming, several dedicated approaches have recently been developed [70], relying either
on electronic density-based corrections or on empirical pairwise approximations. The former
class of methods includes both truely nonlocal functionals [71, 72] and the highly parametrized
forms of metahybrid approximations [73, 74]. The second class of methods, which includes
DFT-D, uses in its most basic form a pairwise atomistic additive correction of dispersion with
a C6 coefficient and a damping function [75, 76] for which several parametrizations and expres-
sions have been proposed [77–81].

Among the conclusions of those recent developments, dispersion forces were found to be
significantly influenced by the local environment, appropriate C6 coefficients possibly varying
by one order of magnitude depending on the size and shape of the structure [66, 82, 83]. For
instance, in order to model adsorption on metallic or semiconducting substrates, electron delo-
calization can also screen dispersion forces, which introduces some dependence on temperature
and on the range, notably through retardation effects at longmost distances [84]. Such effects
have been investigated also experimentally in the case of organic molecules in contact with a
metal surface [85].

Using the Hellmann-Feynman theorem, forces on the atomic nuclei can be evaluated directly
from the orbitals without the knowledge of their gradient with respect to atomic positions. This
allows to carry local structural optimizations or even molecular dynamics MD simulations for
studying temperature effects. However, especially with MD this task becomes computationally
very intensive in the case of system sizes cited above, notably to obtain reasonable statistical
averages. TB methods or empirical atomistic potential are in many situations more practical
for such calculations.

1.3.2 Tight-binding model and empirical atomistic potentials

Tight-binding theory

While the DFT approach currently stands as the most realistic way of treating atomic and
molecular interactions in complex systems, it is computationally limited in terms of size and
time scales. The TB model still offers a quantum mechanical description at reduced computa-
tional cost. As its name suggests, the model assumes that electrons are tightly bound to the
atomic cores, so that there is only limited interaction with neighboring atomic sites. However,
there is no single model to describe the TB method [86] and the following introduces the general
formulation by following the discussion of Ashcroft and Mermin [87].

The true Hamiltonian H is approximated by a sum of isolated atom Hamiltonians (Hat)
located at site i:

H =
∑
i

Hat(�r − �Ri) + ΔU(�r), (1.3)

where ΔU represents a small correction due to the presence of the other atomic sites. The
eigenstates of the atomic Hamiltonian ψn are well localized on the atomic sites and are assumed
to become small on neighboring sites. The ψn are referred to as atomic orbitals and the
electronic state Ψi at a given atomic site can be expressed as a linear combination of them:

Ψi(�r) =
∑
n

bnψn(�r), (1.4)

with the expansion coefficients bn. The Bloch theorem can be satisfied by combining these
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states into the following form of a solution for the total N atomic sites located at �Ri:

Φ(�r) =
∑
Ri

exp
(
i�k.�r

)
Ψi(�r − �Ri), (1.5)

where �k designates a reciprocal lattice vector in the range of the first Brillouin zone. Applying
the Hamiltonian of expression (1.3) yields the Bloch energies E(�k):

HΦ(�r) = HatΦ(�r) + ΔU(�r)Φ(�r) = E(�k)Φ(�r) (1.6)

Multiplying with an atomic wave function of ψ∗
m leads to the following matrix equation:∑

n

A(�k)m,nbn = E(�k)
∑
n

B(�k)m,nbn, (1.7)

where the matrices A and B can be determined as:

A(�k)m,n =
∑
Ri

exp
(
i�k �Ri

)∫
ψ∗
m (�r)Hψn

(
�r − �Ri

)
d�r (1.8)

B(�k)m,n =
∑
Ri

exp
(
i�k �Ri

)∫
ψ∗
m (�r)ψn

(
�r − �Ri

)
d�r. (1.9)

Two integrals can be identified in the matrix elements:

s(�Ri) =

∫
ψ∗
m (�r)ψn

(
�r − �Ri

)
d�r (1.10)

t(�Ri) =

∫
ψ∗
m (�r)ΔU(�r)ψn

(
�r − �Ri

)
d�r, (1.11)

which are commonly referred to as overlap and hopping integrals, respectively. Usually, in the
so-called two-center approximation, only the nearest neighbors are taken into account in the
hopping integrals t(�Ri). In addition, the overlap integrals s(�Ri) are sometimes neglected (for
�Ri �= 0), leading to orthogonal TB. If this second approximation is not made, the generalized
eigenproblem can be solved by applying a Löwdin transformation [88]. In the TB method, the
values of the matrix element are not calculated explicitly, but are modeled directly as a function
of the atomic positions [86].

Atomistic potentials

For calculations on larger systems and longer timescales, semi-empirical analytical potentials
should be applied. In particular, MD necessitate the derivatives of the potential energy with
respect to atomic coordinates. Their evaluation is particularly efficient when analytical ex-
pressions exist, as is the case for many empirical potentials. This is of course to the price of
chemical accuracy and transferability. The analytical expressions of the potentials depend only
on interatomic distances, but may be related to theory, TB for example. Nonetheless, they
contain empirically adjusted parameters and empirical correction terms. Care must therefore
be taken when employing such a potential in situations deviating too far from the training set
on which they were parametrized. These force fields for modeling covalent or metallic materials
also typically neglect dispersion forces altogether rather similarly to the way DFT approaches
were neglecting those corrections until last decade (and still often do). Dispersion interactions
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between metal adsorbates and extended substrates have been explicitly taken into account in
some empirical models based on the Lennard-Jones (LJ) potential [89] but otherwise lacking
chemical consistency.

In this work, we make use of such formulations in order to study temperature effects on
adsorbates in contact with carbonaceous substrates. Following the Grimme (D2) strategy often
used in combination with DFT calculations, we propose some analytical extensions taking into
account the crystalline and semi-infinite natures of the substrate and, in the case of epitaxial
graphene, the possible screening of the van der Waals interaction by the bulk underlying metal.

1.4 Outline of the manuscript

In the following chapter, we introduce in detail the methods that have been employed in this
work. In particular, we introduce the semi-empirical atomistic potentials, their parameteriza-
tion and extension to long-ranged dispersion forces, followed by the details of the simulation
methods, in particular local structure optimization and MD simulations. Chapter 3 treats
the system of Pt NPs on graphite and graphene/Pt(111). As graphene/Pt(111) is one of the
weakly interacting systems, dispersion forces are particularly important, which makes the sys-
tem a good testing ground of the dispersion models introduced in chapter 2. In addition a
fully parametrized atomistic potential is available in the literature for Pt-C, which allowed
to focus on the non-bonding interaction. Systems containing ruthenium and carbon i.e. Ru
NPs on graphite and graphene/Ru(0001) are addressed in chapter 4. A parameterization of
the semi-empirical potential for this system was applied with satisfactory success, which is the
main goal of the chapter. Even though graphene/Ru(0001) is a strongly interacting system
governed by covalent and metallic interactions, dispersion still plays an important role and is
therefore included in a similar way as for the Pt–C system. Another parameterization of the
semi-empirical potential, for the Ir–C system, is attempted in chapter 5. Due to problems
specific to this system, less comprehensive calculations could be carried out. The chapter also
presents a few calculations on the strongly interacting graphene/Ni(111) system based on a
more sophisticated (but also more involved) potential. Finally, in chapter 6 we summarize and
suggest other applications of the present methodology to related systems.
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Chapter 2

Methodology

The calculation of the total cohesive energy of an atomic structure necessitates in principle the
resolution of the Schrödinger equation. While the two-body system can be solved exactly, for
larger systems numerical solutions become rapidly too difficult and time-consuming to obtain.
Analytical interatomic potentials are approximations that provide simplified expressions for the
quantum-mechanical interactions of electrons and nuclei. They allow the numerical simulation
of much larger systems and on longer timescales. The elaboration of the functional form of
a such potential requires a qualitative understanding of the nature the quantum-mechanical
bonding of atoms. The functional form is the result of a number of empirical approximations
and possible additional corrective terms. Unfortunately, no form has been found that could
describe arbitrary systems. However, for several types of bonding, dedicated potentials have
been developed and employed with great success, such as the LJ potential [90] for noble gases,
the embedded-atom model (EAM) [91, 92] for metals or the bond-order potentials (BOPs) for
semiconductors [93]. Generally, semi-empirical interatomic potentials depend on a number of
parameters that need to be adjusted in order to make them practical for a particular application.
This corresponds to a nontrivial optimization problem, where the adjustable parameters are
varied in order to reproduce reference data from a training set. These databases may contain
for example interatomic distances, cohesive energies or elastic constants. Once a potential is
appropriately parametrized, it may be used for the calculation of structural, statistical and
dynamical properties of a system. This can be achieved by methods such as local geometry
optimization, MC and MD simulations for which the specific methodologies are detailed in this
chapter.

The following sections 2.1-2.3 present the interatomic potentials that have been used for
the modeling of the generic system of transition metal adsorbates on extended carbonated sub-
strates. The global optimization approach followed in order to obtain a parametrization for the
specific cases of the ruthenium–carbon and the iridium–carbon systems is given in section 2.4.
The covalent interatomic potential has further been extended by an empirical correction for dis-
persion interactions, which may play an important role for adsorption phenomena on extended
substrates. Based on the Grimme D2 approach this correction is integrated as a coarse grained
contribution into the description of the system as detailed in section 2.5. Section 2.6 discusses
the basis of the numerical simulation methods mentioned above and section 2.7 presents the
observables employed for the characterization of the system.
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2.1 Tight-binding theory in the second moment approx-

imation (TB-SMA)

The TB theory represents one of the most simple quantum mechanical methods for describing
semiconductors, simple and transition metals. Applying several further approximations to this
theory allows to derive an analytical expression for the band energy, leading to an explicit
potential known as TB in the second moment approximation (TB-SMA). The purpose of this
section is to give an overview of these approximations and to present the form of the TB-SMA
potential.

The binding energy in transition metals and their alloys is mainly due to the d-band elec-
tronic density of states [94]. If only one atomic orbital is taken into account, the total binding
energy V i

B for atom i can be expressed as [95]:

V i
B =

∫ Ef

−∞
(E − εi)Ni (E) dE, (2.1)

where Ni is the electronic density of states at atomic site i and Ef the Fermi energy. For the
next step, the electronic density of states is approximated by its average value and effective
width Wi. Its average value would then be 10/Wi for a full d-band. The interaction will
therefore be restricted to first neighbors only. Further assuming local charge neutrality, the
bond energy can be expressed as [96]:

Ṽ i
B = − 1

20
WiNd (10−Nd) , (2.2)

with Nd the number of electrons in the d-band. Note that Ṽ i
B is proportional to the effective

width of the electronic density of states in this approximation. With the average value for the
electronic density of states, its second moment μi can be calculated as

μ2
i =

∫ ∞

−∞
E2Ni (E) dE =

∫ Wi/2

−Wi/2

10

Wi

E2dE =
10

12
W 2

i . (2.3)

Comparing to its value expressed as a function of the two-center hopping integrals hij

μ2
i = 10

∑
j �=i

h2
ij, (2.4)

this leads to W 2
i /12 =

∑
j �=i h

2
ij [96]. Because Ṽ

i
B is proportional to Wi, the binding energy can

be written as

Ṽ i
B = const. ·

√∑
j �=i

h2
ij (2.5)

where h2
ij can be identified with the electron density ρi [96]. Assuming a typical exponential

form for the dependence ρi on the interatomic distance rij and adding an empirical repulsive

pair potential Ṽ i
R also of the exponential form (Born-Mayer repulsion) leads to the expression

of the TB-SMA potential:

E =
∑
i

∑
j �=i

Aije−pij(rij/r̃ij0 −1) −
[∑

j �=i

ξ2ije
−2qij(rij/r̃ij0 −1)

]1/2

(2.6)
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whereAij, ξij, p
ij, qij and r̃ij0 take the role of adjustable parameters. The square root dependence

of the band energy is of quantum-mechanical origin and conveys the many body character of
the potential. The functional form of the potential is very similar to the one employed within
the EAM [91, 92], however the TB-SMA derivation makes the physical basis more transparent
and the approximation that were necessary for its derivation help to understand its limitations.

The next section introduces BOPs that have been routinely used to model a broad variety of
metallic and covalent materials. Their ability to describe both types of bonding has motivated
us to choose such a potential to model metallic NPs on carbon substrates. Furthermore, it
turns out that the TB-SMA potential can be rewritten as a special case of a BOP [97], which
allows for a uniform description of a system jointly using both potentials.

2.2 Brenner bond-order potential (BOP)

BOPs were developed in such a way that the bond strength would depend on the local en-
vironment according to the Pauling concept of bond order [98, 99]. In general, highly co-
ordinated atoms form weaker bonds, which can stabilize lowly coordinated structures. This
effect cannot be reproduced by pair potentials. In addition, three-body potentials such as the
Stillinger-Weber potential [100] cannot achieve this environment effect, which in turn causes
transferability problems. This means the potential cannot be used in situations for which it has
not been explicitly developed. Adding more terms, such as four- or even five-body contribu-
tions would lead to a hardly traceable high number of parameters and unreasonably increased
computational cost. To overcome these difficulties, Tersoff introduced a n-body potential that
gives up on introducing higher order body-terms, but builds the relevant chemistry and physics
directly into its functional form via a bond-order term [93]. This approach proved successful
for increasing the transferability of the potential. The bond-order term decreases the interac-
tion strength for higher coordinated atoms. If this term is strong it stabilizes lowly coordinated
compounds such as diatomics and, if the dependence on the local environment is weak, it favors
closed-packed lattices.

However, further analysis showed that the Tersoff potential is unable to reproduce sev-
eral properties of carbon such as a proper description of radicals and conjugated versus non-
conjugated double bonds [101]. For a correct description of these intermediate bonding situa-
tions, the Brenner potential was developed. Originally, it was used for diamond and graphene
as well as for hydrocarbon molecules and is now widely used in materials science owing to its
ability to model metals and covalently bound systems in a common framework [97] (see below).
In the Brenner BOP the total binding energy of the system at the collective set of Cartesian
coordinates R = {�ri} is expressed as a sum over individual bonds [101]:

E =
∑
i

∑
j<i

f ij(rij)
(
V i
R − b̄ijV

i
B

)
, (2.7)

where the repulsive (V i
R) and attractive (V i

B) parts both take exponential expressions, so V i
R −

b̄V i
B has a Morse-like form:

V i
R =

Dij
0

Sij − 1
e−βij

√
2Sij(rij−rij0 ), (2.8)

V i
B =

SijDij
0

Sij − 1
e−βij

√
2/Sij(rij−rij0 ). (2.9)

The parameters in these equations are set separately for each type of pairs of atoms, i.e.
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carbon-carbon, metal-metal and metal-carbon. Dij
0 and rij0 correspond to the binding energy

and equilibrium distance of an isolated diatomic, Sij and βij denote six additional adjustable
parameters that can be related to the dependence of the bond energy on the nearest neighbor
distances and the harmonic vibrational frequencies of the diatomics, respectively. The bond
order b̄ij carries the many-body character of the potential, and involves triplets (i, j, k) of atoms
where both k and i are neighbors of j:

b̄ij =
1

2
(bij + bji) (2.10)

bij =

{
1 +

∑
k �=i,j

f ik(rik)g(Θ)e2μijk[(rij−rij0 )−(rik−rik0 )]

}− 1
2

. (2.11)

In the above equation we have introduced the bending angle Θ = ĵik between atoms i, j and
k, and the angular dependence of the function g is explicited as

g (Θ) = γijk

[
1 +

(
c2ijk
d2ijk

− c2ijk

d2ijk + (1 + cosΘ)2

)]
, (2.12)

where μijk, γijk, cijk and dijk are additional adjustable parameters. The function f ij finally
provides a smooth cut-off between the distances R(1) and R(2):

f ij(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 r < R

(1)
ij

1
2

[
1 + cos

(
π

r−R
(1)
ij

R
(2)
ij −R

(1)
ij

)]
R

(1)
ij ≤ r ≤ R

(2)
ij

0 r > R
(2)
ij

(2.13)

In the original publication the bond-order expression contains additional special terms for non-
conjugated carbon and hydrocarbon molecules [101]. They were dropped here because they
are not necessary for the description of graphene, for which the potential is used in this work.
Brenner gives two parametrizations of the potential: one that reproduces better the bond
lengths and vacancy formation energies and another that is more precise in reproducing bond
rigidities at the expense of a degraded reproduction of the other quantities [101]. We chose the
latter as it promises a better description of the behavior at finite temperature that we want to
simulate with the help of MD.

2.3 Unification of Brenner BOP with TB-SMA

As mentioned above, the TB-SMA potential represents a special case of the Brenner BOP
as shown by Brenner [97]. This makes the modeling of a system, where some interatomic
interactions are described by the TB-SMA potential and others by the full Brenner BOP with
angular terms that enable directional bonding where necessary, practical. The following algebra
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steps are performed to express the TB-SMA potential under the Brenner form:

Ṽ i
B =

[∑
j �=i

ξ2e−2q(rij/r̃0−1)

]1/2

(2.14)

=

{∑
j �=i

ξ2e−2q(rij/r̃0−1)

}[∑
k �=i

ξ2e−2q(rik/r̃0−1)

]−1/2

(2.15)

=

⎧⎨⎩∑
j �=i

ξ2e−2q(rij/r̃0−1)

[∑
k �=i

ξ2e−2q(rik/r̃0−1)

]−1/2
⎫⎬⎭ (2.16)

=
∑
j �=i

ξ2e−2q(rij/r̃0−1)

[
ξ2e−2q(rij/r̃0−1) +

∑
k �=i,j

ξ2e−2q(rik/r̃0−1)

]−1/2

(2.17)

=
∑
j �=i

ξe−q(rij/r̃0−1)

[
1 +

∑
k �=i,j

e−2q/r̃0(rik−rij)

]−1/2

. (2.18)

This roots the Brenner bond-order formalism indirectly into the moments expansion of the
TB model and allows for a uniform description for systems that contain interactions that are
modeled partly by the TB-SMA and partly by the Brenner potential. However, this mapping
of the TB-SMA onto the Brenner potential is only approximate since the cut-off function is
applied in different ways in the two potentials. More importantly, the above derivation is
valid only for potentials for one atomic species and it is not possible to transform a TB-SMA
potential that describes more than one species into a Brenner BOP. This limitation is caused
by the dependence of the parameter μ on triplets of atoms, whereas the TB-SMA does not
contain such a parameter. Therefore the indices of the parameters have been dropped in the
above calculation.

Comparing the Brenner BOP presented in section 2.2 to Eq. (2.18) leads to the following
identities that give the Brenner parameters as a function of those of the TB-SMA:

S =
p

q
(2.19)

β =
1

r̃0

√
pq

2
(2.20)

D0 = 2ξ

(
1− q

p

)(
Ap

ξq

) q
q−p

(2.21)

r0 =

[
1 + ln

(
Ap

ξq

)
1

p− q

]
r̃0 (2.22)

γ = 1 (2.23)

c = 0 (2.24)

d = 1 (2.25)

2μ =
2q

r̃0
, (2.26)

where it should be emphasized that r0 �= r̃0. Obviously, the other direction of expressing a
Brenner BOP under the form of a TB-SMA potential is not possible in general, because of
the explicit angular terms contained in the BOP. The connection between the two forms is
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basically a consequence of the similar bondings in semiconductors and in d transition metals in
the TB-SMA approach [96].

2.4 Parametrization procedure

The Brenner BOP has already been parametrized for a number of combined elements such as
C-H [101], Pt-C [96], Si-C [102], Zn-O [103], Fe-C [104] and even Be-C-W-H [105], among others.
However, not for all of the systems that have been studied in this work do such parametrizations
exist. We thus attempted to parametrize the BOP model for ruthenium and iridium in contact
with carbon. Details about the specific interaction types are discussed in chapter 4 for the
Ru-C system and in chapter 5 for the Ir-C system. This section describes the general approach
that was taken for the search of appropriate parameter sets.

2.4.1 Problem of parameter optimization

The Brenner potential expresses the total cohesive energy as a function of several parameters
that we collectively denote as

X = {S, β,D0, r0, R
(1), R(2), γ, c, d, μ}.

These parameters were adjusted by optimizing an error function targeting several reference
properties obtained from DFT calculations. More information about these DFT calculations
which have been carried out by our collaborators are given in the sections dedicated to the
specific interaction types. The error function χ2 includes sums of square gradient components
on the relaxed geometries (vanishing force at equilibrium) and the interaction energies of the
graphene monolayer and of adsorbates on the same substrate:

χ2(X) =
∑
i

∑
ν

|∂V (Ri)/∂qν |2 +
∑
i

ρi[Γi − Γ
(ref)
i ]2, (2.27)

whereX denotes the set of parameters to be adjusted, the first and last sum are over equilibrium
configurations Ri, the second sum over atomic positions qν . In the last sum, Γi and Γ

(ref)
i denote

the interaction energy E
(int)
i of the graphene layer or of possible adsorbates obtained with the

BOP or acting as target for configurationRi, respectively. We also define the interaction energy
E

(int)
i as the energy difference between the two subsystems in contact and at infinite separation

but kept at the same configuration. The factor ρi is introduced to assign certain weights to the
deviations from the reference adsorption energies of geometry Ri, relative to each other and
relative to the sums of square gradient components. The fitness of a particular parameter set
X to reproduce the reference data can therefore be quantified by χ2.

The optimization of the error function by varying the potential parameters amounts to
a global optimization problem. The fitting database comprised up to six geometries, and the
evaluation of the error function for a particular set of parameters can take up to several seconds
of CPU time. While the search range for some of the Brenner parameters such as the cut-off
distances may be restricted to a rather small interval, other parameters may change over several
orders of magnitude during the optimization process. Even though the number of parameters
to optimize may seem small, the task of finding optimal numerical values for all of them is
therefore far from trivial. Sampling the error function on a regular grid or at random values
for the parameters is not feasible, and instead it is preferable to use a MC procedure.

The principle of MC optimization for minimizing the error function is not different from the

32



CHAPTER 2. METHODOLOGY 2.4. PARAMETRIZATION PROCEDURE

context of structural optimization of molecular geometries, as discussed below. MC simulations
are widely used for this purpose of global optimization, but have also broad range of other
applications, such as a tool for the calculation of thermodynamical averages. Other applications
of MC methods include the simulation of the passage of particles through matter [106] or even
for the weather forecast [107].

2.4.2 Metropolis MC simulations in the canonical ensemble

Originally, the MC method was introduced for simple numerical integration in high-dimensional
spaces, which found a natural application in the numerical calculation of the equation of states
of liquids with the advent of fast computers by Metropolis and coworkers [108]. We use the
standard Metropolis-Hasting algorithm for calculating averages in the classical canonical (NVT)
ensemble [108, 109].

In the canonical ensemble under constant number of particles N and volume V , the expec-
tation value of observable A at temperature T is expressed as

〈A〉 =
∫
Ω
A(x)e

−H(x)
kBT dx∫

Ω
e
−H(x)

kBT dx
=

∫
Ω

W (x)A(x)dx (2.28)

where the integration is over all accessible phase space Ω, and H (x) the Hamiltonian of the
system at the phase space position x and kB the Boltzmann constant. We consider only cases
where A does not depend on the momenta and thus the integrals can be restricted to the con-
figurational space and the Hamiltonian replaced by the potential energy. Still, due to the high
dimensionality of the system, the number of configurations to consider for obtaining reasonable
averages is astronomic and not practical for direct sampling. Most of these configurations would
have high potential energies and therefore do not contribute to the average of A because of the
very small Boltzmann weight associated to them. This can be exploited by the so-called impor-
tance sampling, where mostly configurations with significant Boltzmann weight are considered
for the averaging. In this purpose, configurations according to the probability distribution of
W (x) need to be generated. Other probability distributions have also proven useful, but this
is the most straightforward case, as the average of A can then be simply estimated by

〈A〉 = 1

N

N∑
i=1

A(xi) (2.29)

where xi are N generated configurations that follow W (x). This makes it also unnecessary to
evaluate the denominator of the fraction in Eq. (2.28).

The configurations according to W (x) may be generated using a Markov chain where new
states or configurations are created on the basis of random perturbations of the previous state.
The chain must be ergodic, meaning that every state in the chain can be reached from any other
state under a finite number of moves. A criterion that allows to determine whether to accept
a newly randomly generated configuration as the next state of the chain is needed. The states
generated on the basis of the criterion need to follow W (x). At equilibrium, the probability of
leaving a state is equal to the probability of reaching it (detailed balance). This is satisfied for
individual microstates if

W (a)P (a → b) = W (b)P (b → a) (2.30)

where P (a → b) designates the probability for accepting a transition from microstate a to
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microstate b. The Metropolis criterion

P (a → b) =

{
W (b)
W (a)

if W (b) < W (a)

1 otherwise
(2.31)

fulfills Eq. (2.30). For an efficient sampling it is recommended that new configurations are
generated such that about half of them are accepted on the basis of the above criterion. As
it stands this algorithm is usually for the estimation of thermodynamical averages of A, which
become increasingly accurate with the number of configurations that contribute to the average.
More details about the Metropolis MC method can be found in Refs. [110] and [111].

2.4.3 Local optimization with MC simulations at zero temperature

In the special case where the temperature is set to zero, only configurations that decrease the
potential energy are accepted. This allows to carry out simple local geometry optimizations.
The very same approach can be taken for the optimization problem cited above, where an
optimal parameter set for an empirical potential is researched. In this most simple form of
MC optimization, a Markov chain is constructed starting from a reasonable point X0 taken
as parameters from the literature for similar atom types. For the transition from one state
or parameter set to the next the parameters are slightly changed by a random amount. The
probability that a new state is realized is one when the error function decreases and zero when
it increases. The amount by which a parameter is changed is different for all of them, because
they all have a distinct physical meaning and affect the error function in quite different ways.
In order to determine suitable values for these variations, trial runs where only one parameter
is changed at a time, are carried out before starting the main optimization. During the trial
runs, the variations are gradually decreased starting from high values close to the interval that
is physically acceptable, where most of the time the error function increases, down to variations
for which about half of the transition moves are accepted.

2.4.4 Global optimization with parallel tempering Monte Carlo (PTMC)
simulations

The problem with zero-temperature MC optimization is that the algorithm allows only to climb
down the pseudoenergy surface of the error function, making it likely that a local minimum
close to the original parameter set is obtained, which represents an absorbing state for the
Markov chain. Several methods such as simulated annealing [112, 113] have been developed
in order to overcome this problem and achieve efficient global optimization, allowing (in prin-
ciple) the system to escape from local traps. Unfortunately, the simulated annealing method
is not efficient against multiple funnel energy landscapes, and we chose instead the PTMC
algorithm [114], which performs much better in such situations [115].

The idea of PTMC is to carry out simultaneously several MC simulations at different tem-
peratures and to allow from time to time exchanges of configurations between neighboring
thermostats. These exchanges allow to escape local minima for the chains at lower tempera-
ture, if at higher temperature a parameter set with a reasonable value of its error function was
found. So the purpose of the chains at higher temperatures is to explore broader regions of the
parameter space and exchanging parameter sets from promising parameter space regions down
to the chains at lower temperatures. Their purpose is to probe narrower but potentially deeper
regions of parameter space in more detail. This idea is schematized in figure 2.1.
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Figure 2.1: Principle of PTMC. Markov chains at high temperatures allow to explore broad
regions of configuration space and help the chains at lower temperatures to escape local minima
though successive swapping moves, resulting in a much faster equilibration. In the context
of global optimization, the low temperature replicas can also discover previously unexplored
regions much more efficiently.

In PTMC several Markov chains with transition probabilities corresponding to different sta-
tistical ensembles ruled by different temperatures are generated. Occasionally, swapping moves
between the configurations Xi and Xj of trajectories at temperatures Ti and Tj, respectively,
are attempted and accepted with probability that combines the two probabilities on both sides
of the exchange:

P (Xi ⇀↽ Xj) =

{
exp (−ΔS) if ΔS > 0

1 otherwise,
(2.32)

where ΔS = [χ2(Xi)− χ2(Xj)] · (1/Tj − 1/Ti).

When performing parallel tempering simulations it is important to adjust the spacing be-
tween the temperatures so exchanges are accepted with a significant probability. At the same
time it is not desirable to use a very fine grid in temperature, since it would not necessarily carry
much more information and would slow down the communications between successive replicas.
As in conventional MC, a 50% acceptance rate is close to ideal. In practice, 24 chains with
geometrically distributed temperatures were propagated on a parallel computer, and two stages
of PTMC optimizations were performed successively, reducing the temperature range during
the second run. In a final step the error function was refined so that it contains properties
of locally optimized geometries. These optimizations are carried out via a conjugate gradient
method (see section 2.6.3) applied at each iteration of the algorithm. This new error function
takes much more time to evaluate, but focuses on the more important equilibrium properties
that we want to evaluate. In particular, because the forces calculated with a trial parameter
set do never vanish exactly, the cohesive energy calculated during the PTMC procedure is al-
ways underestimated. Only with this refined error function, the cohesive energies of relaxed
structures are evaluated. The Levenberg-Marquardt algorithm used for this final optimization
requires only several tens of evaluations of the error function. This algorithm is able to locate
the closest minimum of the error function in the parameter space that has been found by the
parallel temperature procedure up to numerical precision.
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2.5 London dispersion forces

Long-range dispersion forces are missing from the previously described BOP, and as such the
model cannot properly describe adsorption phenomena on semi-infinite substrates. These
nonbonding interactions are for instance almost exclusively responsible for the adhesion of
a graphene layer on Pt(111) or Ir(111) [32]. However, the adsorption energy of graphene
chemisorbed on Ru(0001) surfaces can also be enhanced by almost one order of magnitude
by dispersion interactions [67]. A reasonable description of these nonbonding interactions rep-
resents therefore an integral part of the modeling of GOM and the adsorption of adsorbates
thereon.

The description of physisorption phenomena on semi-infinite substrates by analytical po-
tentials has been conveniently described by Steele [116] who integrated the LJ potential over
a succession of crystallographic planes. We propose an extension of this approach to the case
of metallic adsorbates on carbon substrates, taking into account the possibility of chemisorp-
tion as well. Our strategy is based on a Brenner BOP that is able to model both covalent
and metallic parts of the system, and also mixtures of the two elements after appropriate
parametrization [96]. We have enriched this potential with dispersion corrections in order to
gain the ability of modeling correctly physisorption phenomena that are potentially essential
for NPs in contact with extended environments. Those corrections follow the Grimme D2
model [76] employed for DFT calculations, as well as the Steele approach for integrating the
van der Waals energy over the entire support. The Brenner force field has been further ex-
tended to include non-additive dispersion interactions in the case of electronically delocalized
substrates, as present e.g. in GOM.

2.5.1 Grimme models

The approach we follow to include dispersion corrections is similar to the Grimme approach in
DFT [76], and consists of adding a posteriori some dispersion energy to the covalent, metal-
lic (and possibly ionic) contributions. In the fully atomistic Grimme D2 approach [76] the
dispersion correction reads:

ED2
disp = −s6

∑
i

∑
j �=i

C ij
6

r6ij
f ij
dmp (rij) (2.33)

where C ij
6 = (C i

6C
j
6)

1/2 are the parameters of the dominant van der Waals contributions, f ij
dmp

being a Fermi-type damping function so that dispersion only acts at long range and does not
alter the covalent part:

f ij
dmp (rij) =

1

1 + exp
[
−20

(
rij

Rij
r
− 1

)] . (2.34)

Table 2.1 sums up the corresponding numerical values relevant for this work, which were ex-
tracted from the Grimme source code [76]. The prefactor s6 is to be adjusted depending on
the functional. We adopt here the value s6 = 1.05 as indicated for the purely dispersionless
functional BP86 [76]. In contrast to Grimme’s original formulation, we consider dispersion
interactions only up to the size of the simulation box neglecting interactions of the system with
itself.

We have also tried the more recent and more realistic D3 version of Grimme’s dispersion
correction scheme [77, 78], in which the short-range damping takes another form and additional
C8 terms are considered, the van der Waals coefficients being given further flexibility with some
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Atomic species C6 (eVÅ6) Rr (Å)
C 18.1376 1.452
Ru 255.6890 1.639
Ir 842.0014 1.7721
Pt 842.0014 1.7721

Table 2.1: Grimme D2 C6 coefficients and van der Waals radii for carbon and the different
metals of relevance in this work.

Atomic species Rcov (Å) Q (Å2)
C 0.75 2.6996
Ru 1.13 9.4730
Ir 1.11 10.2650
Pt 1.12 9.7066

Table 2.2: Covalent radii as computed by Pyykkö and Atsumi [117] (values for metals decreased
by 10%) and values for Q computed by Grimme and coworkers [77] for C and the various metals
of relevance in this work.

dependence on the local coordination number (CN) of individual atoms:

ED3
disp = −

∑
i

∑
j �=i

∑
n=6,8

sn
Cn

ij

rnij + f(Rij
0 )

n
. (2.35)

Here the function f(Rij
0 ) = a1R

ij
0 + a2 ensures the rational damping with Rij

0 = (C ij
8 /C

ij
6 )

1/2.
The original authors gave parameters for a1, a2, the sn for various DFT methods for which this
correction has been designed to work with. For our purposes, we choose again the parameters
recommeded for use with the BP86 functional (a1 = 0.3946, a2 = 2.5673 Å, s6 = 1 and
s8 = 3.2822). The C ij

8 coefficients were obtained via C ij
8 = 3C ij

6

√
QiQj with Q depending on

electronic multipole expectation values (see Ref. [77] for more details). Numerical values for
these parameters are given in Table 2.2. The C ij

6 and C ij
8 coefficients explicitly depend on the

CN accordingly with [77]

CNi =
∑
j �=i

1

1 + exp
[
−16

(
4
3
Ri

cov+Rj
cov

rij
− 1

)] , (2.36)

with Rcov the covalent radius of the corresponding atom [117]. The parameters for the D3
dispersion model were taken from Refs. [77, 78], the covalent radii from Ref. [117]. The cor-
responding numerical values are also shown in Table 2.2; note that the values for metals have
been decreased by 10% in order to avoid excessively high CNs for these elements. Fig. 2.2 gives
an idea on how much coordination may vary for a typical system studied here.

Grimme and coworkers [77] have computed values of C ij
6 for pairs of atoms of the 94 elements

and several CNs. A Gaussian distance-weighted average was used for interpolation between
different CNs. The authors applied a cutoff at 40 bohr for the CN and a cutoff at 95 bohr for
the dispersion forces. In the case of periodic boundaries with box sizes smaller than the cutoff,
they considered dispersion interactions of the system with itself until the cutoff is reached.
This feature has not been implemented in the present work, instead we consider dispersion
interactions only up to the size of the simulation box.

However, the added complexity of the D3 model produces a much less favorable scaling with
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Figure 2.2: Typical initial configuration of a Pt55 cluster deposited on graphene, showing color-
coded CNs ranging from teal (CN= 3.3) to red (CN= 11.3).

increasing number of atoms [in O(n3)], even compromising the use of the BOP in the first place.
The D3 dispersion model was thus used occasionally for comparison with the explicit D2 model
and only for static properties, with explicit dispersion interactions being evaluated only up to
the first periodic images of the system. Also, an adsorbate may influence the coordination
of the substrate atoms in contact with it. This coordination-dependent dispersion model was
therefore not pursued further in our attempt to construct a general coarse-grained model of
dispersion forces on semi-infinite substrates.

2.5.2 Implicit model for dispersion interactions

We now consider the semi-infinite extension of the carbon substrate, assuming that the surface
of the substrate lies perpendicular to the z axis. When using periodic boundary conditions,
only the immediate contributions to the dispersion energy are explicitly included, and it may
be necessary to integrate the missing contribution away from the primitive cell. These ideas
were originally developed by Steele [116] who integrated the LJ potential for adsorption over an
infinite stack of flat crystalline layers. One additional subtlety here is the presence of a short-
range cut-off in the dispersion correction, which must be taken into account when carrying out
the integration.

Aiming for a similar coarse-grained (implicit) model of the adsorbate-substrate dispersion
interaction, we thus assume that the support can be described by a succession of flat layers
with surface density σ. In the case of GOM, σ will denote the density of the topmost graphene
layer, all metallic layers underneath having a possibly different surface density σ′. Although
the following coarse-graining procedure can be used for integrating the many-body (but short
ranged) component of the interactions [18], we use it here only for the long-range dispersion
forces that are more sensitive to the infinite nature of the environment.

The interaction of the adsorbate with the first layer can be integrated as follows. We denote
by di = zi − z̄ the separation along the z axis of atom i of the adsorbate to the average
layer position z̄ (see Fig. 2.4). For integration purposes we temporarily replace the Fermi-type
damping function of the Grimme D2 model by a sharp short-distance cutoff placed where the
original f ij

dmp equals 1/2, namely at the position rij = Rij
r :

f ij
dmp(rij) ≈

{
0 rij ≤ Rij

r

1 otherwise.
(2.37)

The dispersion interaction of an adsorbate (ads) with a single substrate layer is then integrated
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as

Ẽ
(1)
disp =

−s6σC6π

2
·
∑
i∈ads

{
R−4

r |di| < Rr

d−4
i otherwise,

(2.38)

where C6 is chosen appropriately to the atom-substrate under consideration and Rr denotes
the cut-off of the dispersion interaction also chosen for the atom types in question. It should be
noted that this requires the simulation box to be larger than 2Rr in both lateral dimensions.

Due to the introduction of a sharp cut-off in fdmp, this expression is not differentiable at
di = Rr, hence we replace the constant part by an expression of the form adni + b, set to match
the original expression at di = 0 and to produce a continuously differentiable function:

Ẽ
(1)
disp =

−s6σC6π

2

∑
i∈ads

⎧⎨⎩− 4
n

[(
1 + 4

n

) 1
4 Rr

]−4−n

dni +R−4
r , |di| < Rr

(
1 + 4

n

) 1
4

d−4
i otherwise.

(2.39)

For n → ∞, the original form is recovered. Choosing n = 50 is a good compromise between an
acceptable approximation and a sufficiently low curvature, as shown in Fig. 2.3.
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Figure 2.3: Dispersion energy Ẽ
(1)
disp of a Pt adatom as a function of the distance from a flat

graphene sheet as computed with the original and its continuously differentiable version.

Eq. (2.39) is appropriate for describing the van der Waals contribution from the single
graphene monolayer, but requires further summation for graphite. We thus sum the dispersion
energy between the adsorbate and the infinite stack of layers of the substrate that we assume
are distant from one another by a fixed quantity dL. In summing up the above expression
of Eq. (2.39) the condition |di| < Rr (1 + 4/n)1/4 is satisfied only up to a finite number of
uppermost layers, as depicted in Fig. 2.4. In practice, this concerns the first two layers, for
which Eq. (2.39) has to be explicitly used. For the remaining layers the summation leads to

Ẽ
(∞)
disp = −s6σC6π

2

∑
i∈ ads

∞∑
j=0

(jdL + di3)
−4 (2.40)

= −s6σC6π

2d4L

∑
i∈ ads

ζ

(
4,

di3
dL

)
(2.41)

where di3 = zi− z̄+ d1L+ dL is the distance between an adsorbate atom and the third substrate
layer and d1L the spacing between the first two substrate layers. For graphite, d1L = dL. In
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�

�

Figure 2.4: Interaction between an adsorbate atom i and a succession of planar layers, smoothly
excluding regions within cut-off distances. See text for notations.

the previous equation, ζ denotes the Hurwitz zeta function, which in practice was numerically
evaluated using the gsl sf hzeta function of the GNU Scientific Library.

In the case of the substrates considered here, the first layer is always a graphene sheet with
an atomic surface density of σ = 4/

(√
3a2

)
of carbon atoms, where a = 2.51 Å is the graphene

lattice parameter at 0 K (as computed with the present Brenner potential). The same surface
density is used for all other layers in the case of the graphite substrate. For GOM, the metal
layers all have the surface density σm = 2/

(√
3a2m

)
with am the first neighbor distance of the

metal atoms in the triangular lattice at (111) fcc or (0001) hcp surfaces.

As a final comment for this section, it should be emphasized that the coarse-grained model
for dispersion corrections assumes a planar substrate surface, in contrast with the original
Steele potentials where binding is purely of the van der Waals type [116]. In the present
models, lateral corrugation over the carbonated substrates is included through the bond-order
contribution, which is always explicit. Lateral corrugation due to the periodic nature of the
crystalline substrate is assumed to be much lower than the integrated contribution from the
semi-infinite medium, and is therefore neglected.

2.5.3 Intra-graphite dispersion interactions

The original Brenner potential is not able to bind graphite layers together, and adding dispersion
corrections of the Grimme type would not suffice because the covalent part does not operate
at the experimental interlayer distance due to a too short cut-off. It is thus necessary to also
modify the repulsive component of the potential. This problem was already pointed out by
Tersoff who suggested to add a long-ranged pair potential in order to stabilize graphite [93].
This idea was taken up by Che and coworkers [118] and we follow their approach by addressing
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these two issues simply by adding a LJ potential between atoms of different layers,

ELJ
i =

∑
j

′ ε

2

[(
σgr

rij

)12

− 2

(
σgr

rij

)6
]
, (2.42)

where the primed sum indicates that the j atoms belong to a different layer than i. For
this contribution we adopt the same parameters as in Ref. [118], namely ε = 3 meV and
σgr = 3.805 Å. The LJ interaction is included in explicit models of graphite.

In order to derive a fully implicit model, we integrate Eq. (2.42) above over the flat monolayer
to get the well-known result [116]

E
(1)
LJ,i =

πσε

2

(
σ12
gr

5d10i
− σ6

gr

d4i

)
(2.43)

in which di is the average distance between atom i and the layer. E
(1)
LJ is minimal for di =

dmin
C = 2−1/6σgr = 3.390 Å at 25 meV/atom, which corresponds to the equilibrium spacing

and binding energy a graphene bilayer. This has to be compared to the binding energy of
22meV/atom at a bilayer separation of 3.32 Å computed by Gould and coworkers [119] with
DFT in the LDA with dispersion corrections. Using a similar calculation, but with an infinite
number of layers, we obtain for the equilibrium spacing a value of dC = 2079−1/6πσgr. With
the values for σgr and ε of Che and coworkers [118], the interlayer distance and binding energy
of graphite reported by Gould and coworkers are reasonably recovered (3.346 Å vs 3.34 Å and
57 meV/atom vs 48 meV/atom, respectively). The difference between dmin

C (for the bilayer)
and dC (for infinite graphite) is only of 1.3%, therefore the spacing of the uppermost layers of
a half space of graphite is expected to be close to the value in bulk graphite.

The summation of Eq. (2.43) over a semi-infinite number of layers leads to the non-covalent
interaction energy between one carbon atom and a half space of graphitic layers distant by dC,

E
(∞)
LJ,i =

πσε

2

[
σ12
gr

5d10C
ζ

(
10,

di
dC

)
− σ6

gr

d4C
ζ

(
4,

di
dC

)]
, (2.44)

thereby recovering again the results first obtained by Steele [116]. This expression represents
an external potential on the only graphitic layer that is explicitly present in the implicit model
for describing GOM.

2.5.4 Screening of dispersion forces on metal substrates

Dispersion forces on a metal substrate are screened at long distance owing to electron delo-
calization [120]. Such non-additive effects can be empirically accounted for by introducing an
additional Thomas-Fermi (TF) screening factor into the Grimme D2 model in the case of the
interaction with the metal part of the substrate [121–123]:

E
(D2,scr.)
disp =

∑
i∈ads

∑
j∈subst

−s6fscr (di)

1 + exp
[
−20

(
rij

Rij
r
− 1

)]C ij
6

r6ij
(2.45)

fscr (di) = exp [−2 (di/rTF)] (2.46)

where rTF is the screening length. In the previous equation, the layered structure of the
substrate (subst) was explicitly taken into account through the additional and translationally
invariant dependence on the distance di between atom i and the layer to which j belongs to.
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Approximating the substrate by a series of equidistant uniform atomic monolayers with density
σ′ allows summing over entire layers as before, and the result reads

Ẽ
(scr)
disp = −s6σ

′C6π

2d4L

∑
i∈ads

e
−2di
rTF L

(
e

−2dL
rTF , 4,

di
dL

)
, (2.47)

where L(z, s, a) denotes the Lerch zeta function

L(z, s, a) =
∞∑
k=0

zk

(k + a)s
. (2.48)

The case without screening of dispersion is recovered for rTF → ∞, whereas taking rTF = 0
corresponds to removing the dispersion correction entirely. As was the case previously, the two
uppermost layers must be dealt with separately owing to distances shorter than the cut-off, and
Eq. (2.39) with the additional screening factor has to be used instead. In this expression the C6

and Rr parameters must be chosen appropriately for the pair of subsystems in consideration,
which can be adsorbate-graphene, adsorbate-metal substrate or graphene-metal substrate. In
addition, σ needs to be replaced be σ′ for the second layer. In practice, the Lerch zeta function
was evaluated with the lerch function of the POLPAK library [124].

As a side note, we emphasize that Eq. (2.47) applies to the dispersion interactions exerted
by the semi-infinite metallic substrate on both the metal adsorbate and the epitaxial graphene
layer even in absence of any adsorbate.

2.6 Simulation tools

The atomistic potential presented in the previous sections was used to explore the structural
and energetic properties of adsorbates and epitaxial graphene, and to determine the influence of
temperature on its thermal stability and dynamical properties. In the following, we explain how
to deal with laterally periodic systems (boundary conditions) and how to construct epitaxial
graphene under different commensurability ratios. We also detail the basic methods to locate
low-energy structures, and give the general principles of MD simulations.

2.6.1 Periodic boundaries

The generic system that has been studied in this work is a substrate with possible adsorbates
on its surface. All calculation methods presented in the following for obtaining structural,
statistical and dynamical information are used in combination with lateral periodic boundary
conditions. The boundary above the surface is left free, while the atoms at the opposite
boundary from the lowermost substrate layer are kept immobile. In most cases, three or four
substrate layers have been taken into account explicitly.

For the lateral periodic boundaries a rectangular shape has been chosen, always as a multiple
of the graphene unit cell with a lattice constant of a. This means that the height/width ratio
naturally assumes

√
3/2. Two different ways of joining the simulation box with its periodic

images have been employed: If not indicated otherwise, we used a rhombic shape, which is
equivalent to a rectangular shape with a brick-like tiling, which is depicted in Fig. 2.5(a,b). Only
for the calculations concerning the nickel-carbon system, simple rectangular lateral periodic
boundaries were used as schematized on panel (c). The use of periodic boundaries avoids
boundary effects, however finite size effects remain and it is always necessary to ensure that
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(a) (b) (c)

Figure 2.5: Schematic of the lateral periodic boundary conditions used in this work. (a)
Rhombic shape chosen as a simulation cell in most cases. (b) Brick-like tiling of a rectangular
cell which is equivalent to the rhombic shape. (c) Simple rectangular simulation cell used only
in a few occasions for the Ni–C system.

the simulation cell is large enough so that the studied properties do not depend (too much)
on the cell size. Especially for calculations involving isolated adsorbates, special care was
taken that they do not interact with their periodic images via the Brenner BOP. Still, the
use of periodic boundaries always influences the properties of the system because it reduces
its spatial symmetries. Isotropy is lost in the directions in which the periodic boundaries are
applied, furthermore the homogeneity of space is lost for fixed boundaries. This influences the
number of degrees of freedom of the system and should therefore be taken into account notably
when applying the equipartition theorem to evaluate the temperature from the averaged kinetic
energy.

2.6.2 Moiré structures

Moiré structure geometry of epitaxial graphene

In the context of epitaxial graphene, the use of periodic boundaries requires to find a common
simulation cell for the underlying metal and the graphene parts. Many different materials have
been experimentally used as a substrate for epitaxial graphene [32, 45]. The present work is
restricted to the (111) fcc surfaces of platinum, nickel and iridium and the (0001) hcp surface
of ruthenium. Those are all monatomic transition metal surfaces with a equilateral triangular
motif. For a common simulation cell it is necessary that an integer number of graphene unit
cells x × x matches and integer number y × y unit cells of the equilateral triangular surface
lattice of the metal substrate. We designate a such structure as x on y moiré.

In general, it is impossible to find such a cell because the ratio between the lattice constants
of the surface metal lattice and of graphene is not rational. This is even more relevant for
simulations at finite temperature, since the TECs of the two subsystems are likely to differ. It
is thus necessary to apply some strain on one of the two subsystems, which may influence some
of the system properties. In particular, graphene has a high inplane stiffness and therefore
reacts strongly to such strain by buckling. This paragraph discusses how a simulation cell for
epitaxial graphene can be constructed for the general case where inplane angles between the
graphene and the metal surface are involved.

Epitaxial graphene with non-zero inplane angles

For those metal surfaces for which the interaction with graphene is rather weak, domains of
different inplane angles are observed experimentally [125–127]. In addition, epitaxial graphene
on polycrystalline surfaces leads to domains of different inplane angles even if the interaction is
strong. Graphene contains two equivalent equilateral triangular sublattices. It is not possible
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to connect one of these lattices to the other when crossing the periodic boundaries. Therefore
it is sufficient to consider only one of the sublattices for establishing the simulation cell. The
other will then fit automatically into the cell.

(a) (b) (c)

(d) (e) (f)

Figure 2.6: Moiré geometry of an epitaxial graphene sheet (represented by black circles) on
metal (blue circles) with an inplane angle. The different panels illustrate the procedure that
was adopted for the construction of an appropriate simulation cell, as described in the text.
(a) Superposition of the hexagonal graphene lattice on a metallic triangular surface lattice at
an arbitrary inplane angle. The lattices share a common origin indicated by a red plus; (b)
Detection of carbon atoms that are nearly in direct superposition with metal atoms on the
basis of a simple distance criterion. Such close concordances are highlighted by yellow stars;
(c) The distance criterion is tightened until only one concordance per group is left. These
concordances are indicated by green crosses. (d) The inplane angle is precisely adjusted so that
the origin and the close concordances on both lattices at the opposite corner of the simulation
cell (green cross) are aligned; (e) The graphene lattice is scaled so that the close concordance
at the opposite corner of the simulation cell (indicated by yellow lines) becomes an exact one;
(f) Final simulation cell surrounded by eight of its periodic images.

Procedure for the determination of simulation cells for moiré structures

At arbitrary inplane angles, the system is not periodic and therefore no finite common simu-
lation cell can be found. Panel (a) of figure 2.6 shows such a moiré structure at an arbitrarily
chosen inplane angle by which the graphene has been twisted around the origin, as indicated
by a red plus on the figure. Superficial visual inspection suggests a periodic moiré structure,
however a second glance reveals that the structure is rather only quasiperiodic. Experimen-
tally, such quasi-periodic structures may very well be observable, but calculations with periodic
boundaries require a common simulation cell (and enforce periodicity anyway). Several authors
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have also addressed the determination of commensurate moiré structures in the specific case of
epitaxial graphene [128, 129]. In particular, Merino and coworkers [126] followed a similar nu-
merical approach for addressing these issues as presented in the following. We have developed
a procedure for the identification of inplane angles that produce truly periodic moiré structures
up to a certain system size. Due to the symmetry of the problem (equilateral triangles), the
inplane angle can be restricted to the range of 0◦ to 30◦.

In a first step, close concordances of the two lattices, i.e. regions were the two lattices are
in phase, are identified based on a simple distance criterion and highlighted by yellow stars in
panel (b). In the graphene only carbon atoms belonging to the same sublattice as the atom
at the origin are taken into account during this search. In a next step, the distance criterion
is gradually tightened until only one close concordance per group is left [panel (c)]. These
concordances are highlighted by green crosses. It appears that the concordances found this way
do not form an exactly periodic superlattice. Therefore only the concordance that is closest to
the origin is used for the construction of the simulation cell: the vector connecting the origin
forms one of the basis vectors of the moiré and the second basis vector is of the same length but
rotated by 60◦. Adding both basis vectors to the origin leads to the opposite corner of the moiré
on the graphene lattice. However, in general this carbon atom is not precisely superimposed on a
metal atom, which would be required for perfect periodicity of the simulation cell. Consequently
the inplane angle is adjusted to align this atom with its closest metal neighbor and the origin.
Panel (d) shows the resulting new moiré structure with the opposite corner of the structure
indicated by a green cross. In addition, the moiré has been rotated so that one of the basis
vectors is horizontally aligned. This allows to identify two angles, namely the inplane angle Θ
between the graphene and the metal lattice and the angle between the graphene lattice and the
now horizontally aligned moiré structure. This second angle α is used in Wood’s notation [130]
that describes the moiré structure with respect to graphene as (k × k)Rα, where k is the edge
length of the moiré structure in terms of the graphene lattice constant. Note that there is no
general relation between these two angles and they are both needed for the identification for a
particular moiré structure. Exact periodicity can be reached in a final step where the graphene
lattice is scaled as to superimpose the two lattices (that were already aligned in the previous
step) at the corner of the simulation cell, which is highlighted by yellow lines in panel (e). This
last step of scaling of the graphene lattice is not necessary if the lattice constants of the metal
surface lattice and the graphene are the same, which is a good approximation in the case of
graphene/Ni(111). Panel (f) shows the final moiré structure surrounded by eight of its periodic
images.

For the determination of all possible such moiré structures the procedure is repeated for
inplane angles in the range of 0◦ to 30◦. The inplane angle increment from one trial geometry
to the next is chosen small enough in order not to miss possible intermediate structures.

2.6.3 Structural optimizations

The problem of local optimization consists of finding the closest minimum in the potential
energy surface of a given configuration. It is a relatively simple problem that can be solved
by a number of algorithms such as the Nelder and Mead, the Levenberg-Marquardt algorithm
and the MC method at zero temperature as discussed above when the gradient of the potential
energy is not known. When the gradient is available, several more efficient algorithms exist such
as steepest decent, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) and the class of conjugate
gradient algorithms. The search of the global minimum is a much more difficult task, because
the typical number of local minima of a configuration even with a relatively small number of
atoms is astronomic and there is no way of knowing whether a particular minimum is the global
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one or not. Yet some methods such as parallel tempering as described above or other global
minimizers such as basin hopping [131] or genetic algorithms [132] exist that can be employed
for the search of the global minimum. The latter two in turn depend on local optimizers that
they make use of in a systematic way.

In this section, we present the local minimization strategy used in this work for obtaining
geometrical properties such as bond lengths and angles or differences of potential energies of
two or more geometries. Compared to the evaluation of properties at finite temperature, this
local geometry optimization is much faster and therefore commonly used in situations where
the evaluation of the energy is time consuming, as is the case for calculations employing an
explicit description of electronic structure.

The conjugate gradient method stands as one of the algorithms that are particularly efficient
when the analytical expressions for the gradient of the potential energy are known, which is the
case for the empirical potentials described above. When the algorithm is started, it searches a
line minimum along the gradient g calculated for the initial geometry. Then, instead of following
the gradient g′ calculated at the new position (as in steepest-descent minimization), it is more
efficient to update the search direction using a conjugate gradient formula, which allows to
construct an approximation of the curvature of the energy surface close to the minimum. We
use the Polak-Ribiere formula

p′ = −g′ + βp, (2.49)

where
β = |g′ · (g′ − g)|/|g|2 (2.50)

for the determination of the new search direction p′, as implemented in the
gsl multimin fdfminimizer conjugate pr function of the GNU Scientific Library. If the
potential energy surface is harmonic, the solution is found by repeating the line searches along
updated search directions in a number of steps equal to the dimensionality N of the problem.
However, in the case of local structure optimization, the energy surface is usually not harmonic
and therefore the line search directions need to be reset to the gradient from time to time,
at least after N iterations. This is repeated usually until the norm of the gradient is below
a certain threshold. Further technical details about this method are discussed for example in
Ref. [133].

In this work, the conjugate gradient method found application in several contexts: It allowed
for comparison with literature results that employed more detailed models. Furthermore it was
used for exploring quickly the energy surfaces of a large number of initial geometries as well as
for determining geometric and energetic properties of larger systems. Additional applications
include the preparation of initial geometries for MD simulations and the determination of
suitable geometries for subsequent normal mode analysis.

In theory, the only minimum of interest is the global minimum, which corresponds to the
only configuration that is classically realized at zero temperature. However, sometimes the
global minimum is not the most physically relevant, because it might be separated by high
energy barriers from the initial geometry (which is chosen to be similar to the experimentally
observed structure). Depending on the barrier height, the system may never reach this geometry
even on experimental timescales. Furthermore, the global minimum is not necessarily observed
experimentally, because temperature effects may stabilize other higher-lying isomers (entropic
stabilization).
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2.6.4 Molecular dynamics

In order to derive physical properties at finite temperature from the interaction potentials, the
method of MD may be employed when the gradients of the total cohesive energy are available.
The advantage of MD over MC simulations is then that the former give access to the dynamical
properties of the system, such as diffusion dynamics or vibrational spectra. The idea of classical
MD is to integrate numerically Newton’s equations of motion for all atoms in the system and
to calculate the properties along the trajectory generated in phase space. Due to the Lyapunov
instability, these trajectories are generally chaotic, i.e. trajectories of two systems with nearby
initial conditions diverge exponentially in the course of time. This is not necessarily a problem
since the aim is not to predict the precise trajectory for a given initial condition, but to sample
a certain statistical ensemble. It can even be seen as an advantage, because due to this chaotic
behavior the system may explore more of the phase space, which is demanded by the ergodic
hypothesis [111]. This hypothesis states that the time averages that are calculated in MD are
equal to the ensemble averages that are assumed to be observed experimentally. The idea is
that if the system evolves long enough it will eventually reach all possible microstates.

Therefore, throughout a MD simulation a variety of quantities of interest that need to be
expressed as a function of microscopic variables can be calculated as time averages. The long
time average 〈A〉 of observable A is expressed as:

〈A〉 = lim
t→∞

1

t

∫ t

0

A(t′)dt′ (2.51)

Since the equations of motions are numerically integrated in a stepwise manner, this equation
is replaced by a discrete sum and the averages become more and more precise as the number
of integration steps increases and a sufficient number of representative configurations of the
ensemble are generated.

Integration

Starting from a certain initial configuration, that is obtained as detailed below, MD simulations
relies on the integration of Newton’s equation of motion with respect to the time t:

�fi = mi · d
2�ri
dt2

−→ �ri(t) (2.52)

The coordinates of atom i of mass mi are �ri and the force �fi acting on it is calculated as the
negative gradient of total potential energy Vtot.

The integration of Newton’s equations of motion in the simulations is achieved by means of
the velocity Verlet scheme. It is not only simple and fast, but it also displays long-term energy
conservation. The latter is important, as this property ensures that the system stays in the
intended microcanonical ensemble. Higher-order schemes may guarantee a higher short time
precision, but often they produce a long-term energy drift, which makes them less valuable
for MD. Another interesting property is that the generated trajectories are time-reversible
(symplectic). This holds of course only within the numerical precision, but it is independent of
the length of the time step [111].

The velocity Verlet integrator is given by the following set of equations, where �vi designates
the velocity vector of atom i and dt the time step.
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�ri(t+ dt) = �ri(t) + �vi(t)dt+
�fi(t)

2mi

dt2 (2.53)

�vi(t+ dt) = �vi(t) +
�fi(t+ dt) + �fi(t)

2mi

dt (2.54)

The error is O(dt4) for both positions and velocities.

Nosé-Hoover thermostat

Solving the equations of motion cited above leads to the conservation of energy and the sampling
of the microcanonical ensemble. Now we consider a system in equilibrium with a thermostat
that determines its temperature. In MD, various methods exist to achieve this goal of not only
imposing a temperature, but also generating configurations that rigorously follow canonical
statistics. For the simulations presented in this work the choice fell on the deterministic Nosé-
Hoover thermostat. It allows to drive the system to an imposed temperature and maintain
it there. More importantly, this type of thermostat generates configurations that follow the
canonical distribution [111]. It should be noted that also in the canonical ensemble temper-
ature fluctuations occur for finite systems. Therefore, in contrast to simple velocity rescaling
thermostats, where the total kinetic energy is a conserved quantity, the instantaneous temper-
ature of a system in contact with the Nosé-Hoover thermostat fluctuates. For the Nosé-Hoover
thermostat these fluctuations follow the real canonical fluctuations.

In contrast to the Andersen or Langevin thermostats that also correctly reproduce canoni-
cal statistics, the Nosé-Hoover thermostat is time-reversible and deterministic [111]. An extra
variable with a coordinate s and momentum ps is added to model the heat bath, interacting
with the physical system through a specific potential designed in such a way that the canon-
ical ensemble at a given temperature is sampled. The Nosé-Hoover thermostat features one
parameter which corresponds to the inertia Q of the heat bath that can be seen as a coupling
strength. The numerical value of this coupling parameter is important for the efficiency of the
thermostat and must therefore be chosen with care. The equations of motion for the system in
contact with the Nosé-Hoover thermostat read [110]:

d�ri
dt

=
�pi
mi

(2.55)

d�pi
dt

= −∇iVtot

mi

− ps�pi
Q

(2.56)

dps
dt

=
∑
i

�pi
2

mi

− fkBT (2.57)

ds

dt
=

ps
Q

(2.58)

The target temperature of the thermostat is designated by T , which appears together with
the Boltzmann constant kB and the total number of degrees of freedom of the system, f , while
�pi designates the momentum of atom i.

The entire system including the thermostat is again found to sample a microcanonical ensem-
ble. This property allows the definition of a conserved quantity, namely the following extended
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Hamiltonian [110]:

Hs = Vtot +
∑
i

p2i
2mi

+
ps
2Q

+ fkBTs. (2.59)

The conservation of this quantity can therefore be used to validate the simulation code.

In practice, the integration scheme for this thermostat is also of the velocity Verlet form,
and was taken from Ref. [134]. The main difference with the original microcanonical version is a
slightly more complicated evaluation of velocities, owing to their explicit presence as a damping
force in the equations of motion. They must be solved self-consistently given the thermostat
variables.

Initialization

The MD procedure usually begins with an initialization process where a configuration at equi-
librium at zero temperature is prescribed and random initial velocities are assigned to each
atom. The velocities are to be rescaled according to the equipartition theorem so that one can
already impose at the beginning an approximate temperature to the system. However, in the
microcanonical ensemble one should use a temperature about twice as high as desired, because
about half of the kinetic energy will be transformed into potential energy in the equilibration
part of the simulation. This is not strictly exact if the interaction potential is anharmonic,
which is usually the case, but this method can put the system at least in the vicinity of the
target temperature. Later on, in the course of the simulation the temperature can be deter-
mined also via the equipartition theorem, which assigns to a given total kinetic energy Ekin a
temperature value T such that

Ekin =
1

2

∑
i

mi

(
v2ix + v2iy + v2iz

)
=

f

2
kBT. (2.60)

Here viα is the component α of the velocity vector of atom i, f is the number of degrees of
freedom of the entire system. It should be noted that f depends on the presence of the substrate:
For a system without interaction to the substrate there are 3N − 6 degrees of freedom, 3N for
the atoms minus six that are lost to the conservation of linear and angular momenta. 3N
degrees of freedom are found for the system in interaction with a fixed substrate layer, since in
this case all spatial symmetries are broken.

2.7 Observables

Along the MD and MC simulations it is possible to extract quantities that are based on the
microscopic variables of the system. In this work we were mainly interested in the effect of
temperature on adsorbates in contact with carbonaceous substrates. This behavior is quantified
by the following dynamical indicators, while the shape of the adsorbates was monitored by an
asphericity index. Furthermore, in the case of MD simulations, the thermal stability of adsor-
bates was further characterized by surface diffusion coefficients. In addition, vibrational spectra
were calculated in order to gain insight into the anharmonicities of the atomistic potentials and
to allow, to a certain extent, for comparison with experimental Raman spectra.
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2.7.1 Lindemann indices and adsorbate shape

The thermal stability of adsorbates may be evaluated based on the root mean square bond
length fluctuation of selected atomic pairs. The intrinsic rigidity within the particles can be
measured by

δintra =
1

N(N − 1)

∑
i∈ads

∑
j∈ads
j �=i

√
〈r2ij〉 − 〈rij〉2

〈rij〉 , (2.61)

where N is the number of atoms in the adsorbate and 〈·〉 a time average. Similarly the global
mobility of the adsorbate relative to its substrate can be evaluated by the index

δinter =
1

N ·M1

∑
i∈ads

∑
j∈subst
1stlayer

√
〈r2ij〉 − 〈rij〉2

〈rij〉 , (2.62)

M1 denoting the number of atoms in the upper layer of the substrate.
At low temperature, where both the substrate and adsorbate vibrate around their equilib-

rium positions, the interatomic distances only exhibit some minor fluctuations and the two
indices keep low values, typically below a few percents. Conversely, an index exceeding approx-
imately 10–15% indicates some qualitative motion of the atoms within the adsorbate (fluxional
or liquid state detected on δintra) or relative to the substrate (global diffusion detected on δinter).

In addition to these dynamical indicators, the shape of the adsorbate was quantified from
the principal momenta of inertia A ≥ B ≥ C, from which an asphericity index is defined as

χ = 3(2A− B − C)/2(A+B + C). (2.63)

The NPs deposited on the substrate are initially symmetric (truncated octahedra with χ = 0),
and variations in shape are directly manifested on χ. By construction, χ is always positive and
deviates from zero as the system increasingly deforms, values reached for oblate deformations
(A � B  C) being higher than for prolate deformations (A  B � C). When interested in
equilibrium properties that do not depend on time, the statistics for the quantity in question
becomes better as the simulation time increases. A major change in the average of such a
quantity in the course of the simulation would indicate that the system is not in equilibrium.

2.7.2 Surface diffusion coefficients and activation energy

In the case of MD simulations, the adsorbate mobility can be quantified further by the cal-
culation of diffusion coefficients. Care should be taken when a thermostat is present as it is
not clear how much the thermostat influences dynamical properties like diffusion constants.
In order to minimize this effect, we never applied the thermostat directly to the adsorbates
and in most cases, when several substrate layers were simulated, also the surface layer was not
subjected to the thermostat. The surface diffusion coefficient D may be evaluated from the
long time variations of the mean square displacement (MSD) of the adsorbate center of mass
(com) �rcom as

D = lim
t→∞

1

4t

〈
[�rcom(0)− �rcom(t)]

2〉 , (2.64)

where the angular brackets specifically indicate here an average over equilibrated initial config-
urations at time t = 0. For the data presented in this work, the MSD was evaluated over time
windows of 20 ps, and the long-time regime was considered to be reached over the last 40% of
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the time window. Often the diffusion process follows the following Arrhenius type law:

D ≈ D′
0e

−Eact/(kBT ) (2.65)

where Eact is the activation energy of the surface diffusion process, kB the Boltzmann constant
and D′

0 a system specific constant prefactor.

2.7.3 Vibrational spectra

The vibrational spectrum was calculated from the Fourier transform of the velocity time auto-
correlation function Cvv(t) = 〈�v(t) · �v(0)〉. At low temperature, the system should behave as a
collection of harmonic oscillators. The harmonic vibrational frequencies of the global system
were calculated from the diagonalization of the mass-weighted Hessian matrix at the locally
relaxed position. The second derivatives necessary for the determination of the matrix were ob-
tained by numerical differentiation of the analytical gradient. Comparing the spectra obtained
via the velocity autocorrelation function at low temperatures with the normal mode spectra
thus provides a consistency check of the simulation code. The spectra contain all frequencies
of the system, on the basis of the underlying potential, however without the knowledge of the
dipole moments or polarizabilities, it is unclear which of the modes are active in an infrared or
Raman spectrum.
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Chapter 3

The platinum-carbon system

As a first application of the general methodology exposed in the previous chapter, these ideas
are tested in the specific case of platinum NPs deposited on graphene, graphite, and graphene
epitaxially grown on Pt(111). For the Pt-C system a BOP is already available, as parametrized
by Albe and coworkers using a combination of experimental and theoretical data [96], so our
contribution to the overall potential is to account for long-range dispersion forces.

The model thus obtained can be validated against electronic structure calculations available
for several static structures. Using systematic optimizations at zero temperature, the relative
stability of various NP shapes on their support could be determined for adsorbates containing
several thousand atoms. At finite temperature, MD simulations shed light on the thermal
behavior and emphasize the key role of dispersion forces on the stabilization of the adsorbates.
The vibrational properties of graphene layers in contact with a Pt NP or epitaxially grown on
Pt(111) could also be determined, revealing some clear sensitivity on temperature and strain.

3.1 Introduction

Platinum NPs interacting with carbon substrates have become an active field of research due
to numerous potential applications in catalysis [26–28, 135] or in hydrogen-based technolo-
gies [136]. One motivation is clearly to exploit the high surface/volume of NPs in order to
reduce the amount needed of this expensive metal. Platinum NPs have notably been used in
fuel cells as catalysts for oxygen reduction but also for promoting hydrogen oxidation at low
temperature [26, 27, 137]. Pt NPs have also been shown to enhance the hydrogen storage
capacity of carbon porous nanomaterials [136]. By favoring dissociative chemisorption of hy-
drogen at their surface, NPs contribute to diffuse hydrogen toward adjacent surfaces, a process
commonly referred to as hydrogen spillover. The selective permeability of graphene toward
thermal protons but not to molecular hydrogen has recently been found to be further increased
by platinum adsorbates [138]. All these applications need well distributed and stable assemblies
of Pt clusters, which in turn requires that the mechanisms of formation and adsorption of such
nanomaterials to be fully understood.

The aforementioned applications involve extended substrates, for which the problem of dis-
persion forces is particularly important. In this chapter we apply and evaluate the dispersion
models evaluated in the previous chapter. For the Pt-C system a Brenner BOP parametriza-
tion is already available for modeling the metallic and covalent interactions, thus allowing us
to focus on the specific role of dispersion forces. The purpose of this chapter is therefore to
critically discuss the importance of dispersion interactions on the physical behavior of platinum
NPs on a variety of ordered carbon substrates ranging from graphene to multilayer graphite
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and epitaxial graphene on Pt(111). The various coarse-grained models we are proposing here
were adapted to these different situations, and compared against all-atom calculations at zero
and finite temperature on various observables such as adsorption energies, dynamical indicators
of rigidity and the vibrational spectra. One main conclusion is that dispersion forces contribute
significantly to the adsorption energy and that the uppermost layers of the substrate dominate
this contribution.

Different variants of the dispersion model were compared on simple test cases and for more
realistic adsorbates on graphite at finite temperature in section 3.3. The model was further
extended in section 3.4 to describe the specific interactions of epitaxial graphene on Pt(111)
possibly acting as a substrate for Pt NPs, and again at zero and finite temperatures. Our
results here emphasize the importance of screening and non-additivity of the van der Waals
interactions on the resulting dynamical behavior. Finally, in section 3.5 we summarize the most
important conclusions.

3.2 Computational details

The different dispersion models presented in the previous section have been compared against
each other for various adsorbates on several substrates. All simulations employed periodic
boundary conditions along the two lateral dimensions. In the static limit, Pt NPs containing
between 1 and several thousand atoms were locally optimized starting from high-symmetry
morphologies such as multilayer icosahedra or truncated octahedra (Wulff shapes). For both
types the NPs were initially deposited in epitaxy on the graphite substrate, exposing their (111)
facets to the honeycomb lattice. From those structural optimizations, adsorption energies and
geometry relaxations could be quantified.

In addition to these static investigations, MD simulations at finite temperature were con-
ducted to assess the thermal stability and dynamical properties of adsorbates on their carbon-
ated substrates. Here we used a combination of methods to simulate the real time dynamics,
essentially MD at finite temperature imposed by coupling a Nosé-Hoover thermostat to the
substrate. In order not to alter the time-dependent properties, thermostatting was not applied
to the subsystem of interest (adsorbate or upper layer in the case of epitaxial graphene), but
to the remaining substrate only.

MD trajectories for 64-atom NPs on substrates kept at a fixed temperature were initiated
from locally relaxed structures occupying a two-layer configuration similar to experimentally
observed NPs formed in situ on epitaxial graphene on (111) metal surfaces [19, 25, 139, 140].
Various observables were calculated in order to probe the intrinsic mobility of the NPs, their
possible diffusion on the substrate as well as their spontaneous rearrangement toward lower-
energy structures. Vibrational spectra were also evaluated from the Fourier transform of the
velocity time autocorrelation function. Unless otherwise mentioned, all MD trajectories em-
ployed a time step of 1 fs and were carried out over 5.5 ns, the first 500 ps being discarded from
the averages for equilibration purposes.

For the static computations of the smaller Pt adsorbates on graphite the periodic boundaries
contained 15× 15 graphene unit cells, unless otherwise mentioned, and for the larger Pt adsor-
bates (from 923 atoms on) 30×30 unit cells. In the case of the MD simulations of Pt64 clusters
on (possibly defective) graphite a simulation box of 10× 10 graphene unit cells was chosen. It
was made sure that these simulation boxes are large enough for the adsorbates to not interact
with their periodic images, i.e. the cell width is larger than the diameter of the adsorbate plus
the cut-off of the covalent interatomic potential. Regarding epitaxial graphene on Pt(111), the
size of the simulation cell is imposed by the periodicity of the moiré and varies as a function of
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the inplane angle between the graphene and the Pt lattice, as discussed in section 3.4. At large
inplane angles, larger sizes were simulated in order to circumvent the problem of small primitive
cells. All calculations using explicit dispersion models such as Grimme D2 and D3 employed
three graphene slabs in the case of graphite (ABA fashion), and three metallic slabs in the case
of epitaxial graphene on Pt(111) (ABC fashion) independently of the dispersion model. Rigid
boundary conditions were applied to the bottom layer in the MD simulations and local opti-
mizations. In the implicit description of graphite, the rigid boundaries were released and only
the uppermost graphene layer was included as it contributes to possible covalent interactions.

In order to determine the ability of the present dispersion models to describe the interaction
of such particles on pristine graphite, we start by defining the adsorption energy of a general
adsorbate or nanoparticle (np) on its substrate (sub) through Eads = Etotal−Esub−Enp, where
Etotal is the energy of the entire system after relaxation, Esub and Enp the potential energies of
the relaxed substrate and nanoparticle, respectively.

3.3 Pt NPs on pure carbonated substrates

In this section we discuss the most straightforward case of purely graphitic substrates containing
one (graphene) or an infinite number (graphite) of monolayers.

3.3.1 Comparison of dispersion models: the adatom case

The performance of the different interaction models was first assessed on static properties
involving the local relaxation of adsorbates on the substrates. In the simplest case of single Pt
adatoms adsorbed on graphene and graphite, various interaction sites are illustrated in Fig. 3.1.
The alpha and beta sites are found on top of a carbon atom and differ from each other only
once multiple graphene layers are taken into account. Such differences are only relevant in
the explicit models, however they were found to be negligibly small and the two sites will be
considered as equivalent here. The bridge and hollow positions lie above the midpoint of a C-C
bond and the center of a 6-membered carbon ring, respectively.

hollow
bridge

alpha
beta

1st layer
2nd layer

Figure 3.1: High-symmetry adsorption sites of adatoms on graphite: The atoms of the upper-
most graphitic layer are represented as black rings, the atoms of the layer below as gray circles.
In the implicit models the alpha and beta sites are equivalent.

Energy profiles were calculated for Pt adatoms approaching perfectly flat graphene and
graphite surfaces containing laterally 10 × 10 graphene unit cells vertically at these various
sites. Here, the substrate atoms where kept fixed to their optimized positions without adatom.
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It should be noted that the distance of the adatom to the graphitic layer differs from the
smallest Pt-C separation in the case of the bridge and hollow sites.

The variations of the energy profiles with atom-substrate distance are represented in Fig.
3.2 for the three relevant adsorption sites and for the graphene and graphite substrates, with a
reference energy assigned at infinite separation. For both substrates, correcting for dispersion
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Figure 3.2: Energy profiles of a Pt adatom approaching flat graphitic surfaces along various
sites, as obtained from the BOP corrected with different dispersion models. Upper panels (a-c):
single-layer graphene; Lower panels (d-f): semi-infinite graphite.

forces further binds the adatom by 0.5–1 eV depending on the model, and introduces a shallow
long-distance van der Waals minimum close to the cut-off of the covalent part of the potential,
which is at 2.8 Å. This minimum should be considered as a physisorbed state.

Comparing the curves obtained with the Grimme D2 model and the implicit dispersion
model, the implicit model appears to work particularly well in this simple test case where the
assumption of an uncorrugated substrate surface is strictly satisfied. The minor discrepancies
between the Grimme D2 and D3 models can be explained based on the varying coordination of
the adatom as it approaches the substrate: adsorption on an alpha/beta site produces a singly
coordinated Pt atom, whereas the adatom is two- and sixfold coordinated at the bridge and
hollow sites, respectively. Within the D3 model, higher coordinations tend to decrease the C6

coefficients accordingly, which explains the slight attenuation of the van der Waals energy at
short distances for hollow sites with respect to the D2 model. Those observations are valid
for both substrates, and unsurprisingly the profiles obtained for graphene and graphite look
very similar. Further inspection indicates that, as they should, the chemisorbed minima are
slightly more bound in graphite by 86, 107, and 130 meV for the alpha, bridge, and hollow sites,
respectively, as the result of additional dispersion forces. Those values for the implicit model
are consistent with those obtained with the Grimme D2 model (namely 66, 88, and 111 meV),
the 20 meV difference arising from the neglect of van der Waals forces beyond the simulation
supercell in the Grimme approach.

The main conclusion of Fig. 3.2 is the very satisfactory performance of the implicit dispersion
model to describe the global long-range London forces for Pt atoms on both graphene and semi-
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Single Stone-Wales Stone-Wales
vacancy site A site B

No dispersion
Eads (eV) -6.46 -2.61 -2.63
dC,Pt (Å) 1.97 2.04 2.05
Grimme D2
Eads (eV) -7.10 -2.92 -3.06
dC,Pt (Å) 1.98 2.05 2.06
Grimme D3
Eads (eV) -7.18 -2.76 -2.91
dC,Pt (Å) 1.97 2.05 2.05
Implicit model
Eads (eV) -7.44 -3.33 -3.38
dC,Pt (Å) 1.97 2.04 2.05

Table 3.1: Adsorption of a Pt adatom on defective graphite: Adsorption energy Eads and
closest distance dC,Pt between the Pt atom and a C atom. In the case of the Stones-Wales
defect, adsorption sites A and B are indicated in Fig. 3.3(c).

infinite graphite, as well as the clear presence of chimisorbed and physisorbed minima separated
by well defined barriers.

3.3.2 Pt adatoms on defective graphite

Defects on surfaces can have a significant influence on the structural and dynamical properties
of adsorbates and can be tailored to trap them and even promote self-assembly [141]. The role
of defects on the adsorption of a Pt adatom on a graphitic surface has been investigated with
the present explicit (Grimme D2 and D3) and implicit dispersion correction models, as well as
without any such correction. Two defects were considered here, namely a single vacancy and
a topological Stone-Wales (5775) defect. For both defects the graphitic surfaces were locally
reoptimized, and the adsorption of a Pt adatom above the defective substrate was monitored
as a function of its lateral position, the distance of the adatom perpendicular to the surface
being optimized in the process (but at fixed substrate geometry). For the static computations
of Pt-adatoms on defective graphite a simulation box containing 5 × 5 graphene unit cells was
employed.

The resulting energy landscapes obtained with the explicit D2 and the implicit dispersion
models are shown in Fig. 3.3 for both defects. In the case of the vacancy a strong minimum
is found away from the uppermost graphitic layer, originating from the longer Pt-C bond
compared to C-C bonds. For the Stone-Wales defect, four equivalent energy minima denoted A
in Fig. 3.3(c) are found at a bridge position of the 7-membered rings connecting to hexagons,
and four other equivalent minima denoted B can be defined at the alternative bridges connecting
to pentagons.

To better evaluate the relative energies of the various adsorption sites, full relaxations of the
substrate and adatom were carried out with the D2, D3, and implicit dispersion corrections.
The results of these optimizations for the adsorption energy and lowest Pt-C distance are
summarized in Table 3.1.

Regarding the Stone-Wales defect, site B turns out to be the most stable for all dispersion
correction models. As was the case for adsorption on perfect substrates, additional dispersion in
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Figure 3.3: Potential energy of a Pt adatom on a graphite surface with a single vacancy (upper
panel) or a 5775 Stone-Wales defect (lower panel) as obtained with the explicit D2 and implicit
dispersion models. The defective carbon lattice is explicitly shown for the D2 model. For the
Stones-Wales defect, two adsorption sites A and B are highlighted as defined in the text.

graphite relative to graphene further strengthens the interaction energies in presence of defects,
by about 0.1 eV according to the implicit dispersion model. Based on those results, defects of
both types at the uppermost graphite layer are expected to bind Pt adsorbates more strongly
than pristine graphite.

3.3.3 Interaction of larger adsorbates

Metal NPs can be prepared in the gas phase before their subsequent transfer on substrates [37,
142–144]. Such particles can be quite large, and sustain a much more significant binding
to the substrate than single adatoms. Regular icosahedral and truncated octahedral (Wulff)
NPs display (111) facets that make them highly stable [145] and compatible with epitaxial
deposition on ordered graphite substrates, although such a deposition involves some notable
strain owing to the different lattice constants in platinum (bond distance of 2.8 Å) and in
carbon (2.5 Å). Fig. 3.4 shows the adsorption energy of such NPs deposited on graphene and
graphite and locally optimized from an initial configuration with the metal atoms lying on
top of the most stable bridge sites, using different dispersion models. Adsorbates containing
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between 13 and 3871 atoms, or between one and eleven icosahedral shell and as many as six
truncated octahedral shells were considered here. In the original BOP without any dispersion
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Figure 3.4: Adsorption energies of Pt NPs on graphene and graphite, computed for different
treatments of dispersion forces, and normalized by the number of metal atoms in contact with
the substrate. (a) No dispersion correction; (b) Explicit correction (Grimme D2); (c) Implicit
dispersion model. The adsorption energies, as defined in the text, for graphene and graphite are
denoted by full and empty symbols, respectively. Icosahedral (ico) and truncated octahedral
(toct) adsorbates are indicated by circles and squares, respectively. Available DFT results have
been superimposed in panel (b) [39].

correction, only the single adatom and the 13-atom icosahedron appear stable. The chemical
interaction with the substrate distorts Pt13 significantly, the mutual distances between the
three atoms in contact with the uppermost graphitic layer being increased from 2.7 Å for the
free Pt13 to 3.3 Å upon deposition. Similar deformations are found if deposition occurs on
alpha/beta sites, however no major distortion occurs at the hollow site. Those conclusions are
essentially unchanged once dispersion corrections are accounted for. For this small 13-atom
cluster the rather large distortion leads to a relatively small adsorption energy when compared
to the larger NPs, because most of the interaction energy is consumed for deformation (about
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42% for the Grimme D2 and 55% for the implicit model as compared to an average of 13% and
14% for larger icosahedra). The closest distance between the adsorbate and the substrate is in
the 2.0–2.1 Å range in the case of the adatom and Pt13. This distance increases up to slightly
below the cut-off of the Pt-C Brenner potential for the larger adsorbates, as a response to the
repulsive part of the covalent potential close to the cut-off.

Epitaxial alignment on the bridge sites is essentially lost for the larger clusters, with a slight
preference for the hollow site in the case of the 55-atom icosahedron. As the NPs become
larger, the mismatch in the lattice constants between Pt(111) and graphite(0001) results in
some excessive strain that the NPs cannot accommodate well. For these larger clusters, the
adsorption energy is roughly proportional to the number of atoms at the facet in contact
with the substrate. The slight weakening in adsorption seen in Fig. 3.4(b,c) is due to the
decreasing fraction of less coordinated atoms at the edge of the facet in contact. We attribute
the weaker interaction per interface atom in truncated icosahedra to their higher area exposed
in contact with the substrate. If the implicit dispersion model uses the average position z̄
from the carbon atoms in the simulation cell, the planar approximation may break down for
large adsorbates due to excessively large deformations and the tendency to minimize the global
interaction. This in turns introduces some dependence of the results on the size of the simulation
supercell. Therefore, a large box of 30× 30 graphene unit cells has been used for the implicit
dispersion model. This issue, which is illustrated in the inset of Fig. 3.4(c), can be tackled
by fixing vertically the graphene layer during the minimizations. Repeating the minimizations
with the implicit model under this constraint leads to better behaved adsorption energies also
shown in Fig. 3.4(c), however the need for this trick clearly indicates that the implicit models
should be reworked for large NPs on graphene, despite their correct behavior for graphite
owing to the interlayer repulsion. One straightforward correction specific to graphene could
be to have the implicit model only act beyond the simulation box (i.e. to account for the
non-primitive cells only), and keep an explicit description within the primitive cell, which
incidentally would not cause a large computational overhead since the relevant distances are
needed for the covalent/metallic contributions anyway.

For graphite, good agreement between Figs. 3.4(b) and 3.4(c) is reached independently
of adsorbate size, indicating that the approximations underlying the implicit model are well
fulfilled. In particular, the substrate corrugation due to the interaction with the deposited NP
remains moderate enough for the assumption of a planar upper layer to remain valid. For the
adsorption on graphene the agreement between the implicit and the Grimme D2 dispersion
model is not as good due to high corrugation. As will be seen below from our dynamical
simulations, significant structural rearrangements take place already in small adsorbates, and
it is rather unclear as to what the optimal shape of the particles should be in such large NPs
deposited on nonrigid substrates.

3.3.4 Comparison with DFT calculations

The predictions of the present semiempirical models can be compared against available elec-
tronic structure reference data obtained at the level of DFT. Ramos-Sanchez and Balbuena [39]
investigated the interaction of a Pt adatom and small Pt adsorbates deposited on various sites
of graphite by means of dispersion-corrected DFT employing the projector augmented wave
(PAW) pseudopotentials and treating the electron-exchange correlation within the spin polar-
ized GGA and the Perdew-Becke-Ernzerhoff (PBE) and the Revised Perdew-Becke-Ernzerhoff
functionals. The adsorption energy for the adatom found by these authors amounts to −2.18 eV
at the bridge site with a shortest Pt-C bond of 2.03 Å, both quantities being in satisfactory
agreement with the present calculations where values of−2.74 eV (implicit model) and−2.75 eV
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(Grimme D2) are respectively obtained at a common closest Pt-C distance of 2.06 Å.

In the case of graphene, several other DFT data without dispersion corrections have been
reported for the adatom, but the values are significantly spread out. The adsorption energies
for a Pt adatom at the most stable bridge position thus range from −0.37 [146] to −1.5 [147],
−1.57 [148], −2.03 [149], −2.17 eV [150] and −3.2 eV [151], with equilibrium distances that
always exceed the values obtained with dispersion corrections, although the variations among
the different authors are much smaller (2.148, 2.101, 2.10, 2.12, 2.08, and 2.15 Å, respectively).

Results for the icosahedral Pt13 adsorbate are much more scarce, however Ramos-Sanchez
and Balbuena [39] reported an adsorption energy (total, not per contact facet atom as in
Fig. 3.4) of −6.97 eV at the bridge site, which is noticeably larger than the values obtained
here of −4.27 eV and −3.40 eV in the explicit and implicit dispersion models. Using a finite
cluster model of the graphene substrate, Okamoto [152] computed an adsorption energy of
−1.08 and −2.08 eV at two other adsorption sites, but with the same orientation of Pt13 on a
graphene sheet. Additional DFT results are available in the case of Pt adatoms on defective
graphene [148, 153]. Our values for the adsorption of a Pt adatom on a vacancy in graphite
reported in Table 3.1 are comparable to the adsorption energy of a Pt atom on a vacancy
in graphene of −7.45 eV at a Pt-C distance of 1.94 Å calculated at the DFT level without
dispersion correction by Fampiou and coworkers [148]. These authors further reported an
adsorption energy of −6.68 eV obtained with the Albe potential at 1.98 Å Pt-C separation,
which is in good agreement with our own values for graphite. Repeating the calculations for
defective graphene yields an adsorption energy of −7.37 eV at 1.98 Å separation. The difference
with the aforementioned semiempirical energy of Fampiou et al. thus quantifies the additional
dispersion interaction beyond the simulation cell.

Additional adsorption energies for larger Pt adsorbates containing up to 27 atoms have
been reported by Qi et al. from DFT calculations without dispersion corrections [153]. Unfor-
tunately, comparison with those results is not straightforward because the structures considered
by those authors differ significantly from ours.

3.3.5 Finite temperature dynamics of adsorbates on graphite

Thermal stability of Pt adsorbates on graphite

One essential advantage of analytical potentials over methods based on an explicit description
of electronic structure is their ability to address physical properties on much stronger statistical
grounds. Here we discuss the thermal stability of two-layered Pt64 NPs on graphitic substrates,
using MD trajectories spanning the nanosecond regime. The two Lindemann indices introduced
in chapter 2 were used to monitor the dynamical evolution of the adsorbates as a function of
increasing temperature, where index δintra monitors the internal rigidity of the adsorbates and
δinter the global mobility of the adsorbate relative to its substrate.

Figure 3.5(a,b) shows the variations of these order parameters with increasing temperature
for the example of the Pt64 adsorbate assumed to initially occupy a bilayer shape in near
epitaxy with the graphite substrate at low temperature. The simulations were performed
using the explicit (D2) and implicit models of dispersion corrections. Simulations neglecting
dispersion corrections altogether were also performed, but produced unphysical results with the
spontaneous desorption of the adsorbate already below room temperature. This behavior was
actually anticipated as it is consistent with the vanishing adsorption energy of clusters larger
than 13 atoms unless dispersion forces are accounted for [see Fig. 3.4(a)]. For both dispersive
correction models, the adsorbed NPs undergo increasingly large vibrations as temperature
is increased, and a progressive but clearly visible transition to a more disordered state with
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Figure 3.5: Temperature variations of the Lindemann indices measuring the internal rigidity of
the Pt64 adsorbate (δintra) and the mobility of the adsorbate at the graphite surface (δinter), and
average adsorbate height σ as obtained from the explicit (Grimme D2) and implicit dispersion
models.

δintra > 0.15 near 1000-1200 K. However, the other index δinter reveals that the dynamics of the
adsorbate on the substrate depends very sensitively on the model. In the explicit D2 description
the NP moves relative to the substrate already above 200 K, whereas 750 K are necessary for
such a motion to take place in the implicit model. These qualitative differences are quite
significant, and reveal some contrasted energetic behaviors between the two approaches. We
have examined the structural evolution of the adsorbate by calculating its geometric extension
(or thickness) σ perpendicular to the substrate. Starting from a bilayer particle with σ ≈ 2.7–
4.1 Å, the variations of 〈σ〉(T ) with temperature are shown in Fig. 3.5(c).

The different thermodynamical behaviors can now be related to different variations in the
shape of the adsorbate, which becomes more spherical in the explicit D2 description (〈σ〉 ∼ 8 Å),
but conversely much flatter (〈σ〉 ∼ 1 Å) if the dispersion correction is coarse-grained in the
implicit model. The structural transitions here simply originate from the lower energy of those
structures in their respective models, and the different temperatures of their onsets found in the

62



CHAPTER 3. PT–C SYSTEM 3.3. PT NPS ON PURE CARBON SUBSTRATES

variations of 〈σ〉(T ) roughly match the regions where δintra increases in Fig. 3.5(a), albeit more
smoothly due to the more regular one-layer structure of the adsorbate. Local minimization
of the high-temperature structures confirms that the ellipsoidal isomer is much more stable in
the explicit D2 model, by 5.6 eV, the flat isomer conversely lying 14.5 eV below the initial
structure in the implicit dispersion model. These results motivate more systematic work on
global optimization, which would shed more light onto the wetting behavior of the different
dispersion models but lie beyond the present effort.

Although the present trajectories were carried out of equilibrium from a metastable state,
they were able to locate low-energy minima shedding light onto different binding properties
of the present dispersion models. The greater extent of wetting obtained with the implicit
model thus reflects a stronger London interaction that is even comparable in magnitude to the
metallic contribution holding the adsorbate together. From the purely energetic perspective,
the dispersion corrections in the implicit model were expected to be stronger, simply because
the explicit approach neglects the contributions from the semi-infinite substrate beyond the
atoms from the simulation cell. What Fig. 3.5(b) further shows is that this stronger pinning
of the adsorbate to the substrate also has dynamical consequences, the ability to diffuse being
significantly suppressed. That the most stable structures of Pt adsorbates are so significantly
affected by the nature and magnitude of dispersion interactions was itself not so obvious a
priori, and constitutes one major finding of the present work that confirms the importance of
those “corrections” on the global potential energy surface.

Diffusion mechanism of adsorbates on graphite

The imperfect nature of the epitaxial contact between the metal adsorbate and the substrate
causes some jiggling motion that was further investigated in details by following not only the
center of mass, but also the global orientation of the adsorbate relative to the substrate. More
precisely, we evaluated the angle θ between the planar, horizontal projection of the bonds
within the substrate and those at the contact facet of the adsorbate, defined by symmetry in
the reduced range 0 ≤ θ ≤ 30◦, as a measure of alignment between the two lattices. A value
θ = 0 corresponds to perfect epitaxial alignment, whereas maximal orientational mismatch is
attained for θ = 30◦. In the MD simulations, snapshots were taken every picosecond and the
time series θ(t) was analyzed.

At low temperature, the particle is stable on the substrate and vibrates. At sufficiently high
temperature the diffusion motion starts to take place through some occasional jumps and jig-
gling. Fig. 3.6 illustrates the origin of this jiggling motion on a typical time series θ(t) obtained
for a trajectory at 900 K, together with the corresponding effective velocity of the center of
mass of the adsorbate. The simulations were performed here with the implicit dispersion model.
At this reasonably high temperature, most of the time is spent in good alignment between the
adsorbate and the substrate, but misalignment occurs on short time scales and in correlation
with sudden increases in the velocity modulus. Crossing these energy barriers gives the adsor-
bate enough velocity to travel rather long distances, the diffusion process showing properties
similar to those of a (truncated) Lévy flight [154] with long residences between shorter jumps.
Such processes have already been identified for NP diffusion on surfaces [42, 155, 156]. Fig. 3.7
illustrates this feature, showing the distribution of displacements of the center of mass of the
adsorbate computed in time windows of 10 ps. In most time windows the adsorbate diffuses
only little, while much larger displacements occur on rare occasions.
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Figure 3.6: Short-time average angle between the Pt64 adsorbate and substrate lattices, and
center of mass velocity of the adsorbate, as obtained from a MD trajectory at 900 K using the
implicit model for dispersion corrections. Adsorbates under maximal (left) and minimal (right)
alignment are also depicted.

Surface diffusion constants and activation energy

The diffusion process has been further quantified by calculating the surface diffusion coefficient
by linear regression of the long time regime of the MSD of the center of mass. Such diffusion
coefficients are represented in Fig. 3.8 as a function of inverse temperature, as obtained from
simulations with the Grimme D2 and the implicit dispersion correction. The alignment of the
data points indicates that the diffusion follows Arrhenius behavior of eq. (2.65). As already
pointed out, diffusion is reduced when the infinite extension of the substrate is taken into
account via the implicit dispersion model. In the Arrhenius plot this has two consequences: the
diffusion coefficients as obtained with the implicit dispersion model are lower and they increase
faster with temperature relative to the calculations using the Grimme D2 dispersion. According
to the Arrhenius law, this indicates higher activation energies for the diffusion process. As a side
note, the data for the calculations with the implicit dispersion model are more dispersed. This
is due to the lower values of the diffusion constant, which leads to higher relative uncertainties,
but more importantly to the weaker convergence of the MSD due to the Lévy-type diffusion
process as discussed previously.

MD simulations have also been carried out for smaller two layer adsorbates such as Pt19,
Pt31 and Pt46. As in the case of Pt64, Arrhenius plots again give access to the activation
energy of surface diffusion. These activation energies are shown as a function of adsorbate size
in Fig. 3.9. The activation energy increases significantly with cluster size as the contact area
with the graphite surface is also increased. This effect is less pronounced for larger adsorbates
in the case of Grimme D2 dispersion, since in these cases a structural reorganization into a
more ellipsoidal adsorbate shape may occur which reduces the contact with the substrate. The
error bars indicate the quality of the linear regression carried out in the Arrhenius plots. As
was the case for Pt64, the stick-slip Lévy type diffusion induces greater uncertainty into the
determination of the diffusion coefficients in the simulation using the implicit dispersion model.

Defects on surfaces can significantly alter the diffusion properties of adsorbates [157]. The
influence of the vacancy and Stone-Wales defects in the uppermost graphitic layer on the
diffusion propensity of Pt64 adsorbates was also addressed by MD simulations, using the implicit
dispersion correction model. The results (not shown) indicate only a modest slowing down in
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Figure 3.7: Occurrence of jumps of the center of mass of the Pt64 adsorbate in windows of 10 ps,
as obtained from MD trajectories at 900 K using the implicit model for dispersion corrections.
Most displacements of the adsorbate in this time window are well below 100 Å, while some are
much larger.

the dynamics that amounts to a few percents reduction in the diffusion constant.

Vibrational spectra

In addition to the long-time diffusion dynamics, the MD simulations provide a wealth of in-
formation about the vibrational dynamics occuring on shorter time scales. The vibrational
spectrum was calculated from the Fourier transform of the velocity time autocorrelation func-
tion accumulated over windows of 4 ps at intervals of 1 fs from 1 ns long trajectories, which sets
the spectral resolution to 10 cm−1 and a maximum detectable frequency of 15 · 103 cm−1 While
the formula for Cvv(t) involves a further average over all atoms, the specific contributions of
the adsorbate and substrate can also be evaluated separately.

The harmonic spectrum obtained from the dynamical matrix is expected to resemble the
vibrational spectrum determined from the MD simulations only at low temperature, hence the
comparison between the two types of calculations provides direct insight into anharmonicities
and their manifestations at finite temperature in terms of band shifting and broadening.

The implicit dispersion model was again used for those static and dynamical calculations,
the simulations at finite temperature being performed at 300 and 1000 K. Fig. 3.10(a) shows
the vibrational spectra of the free graphitic surface and the free two-layered Pt64 at these
temperatures as well as the normal mode frequencies of these two systems. All spectra exhibit
similar features, with intense lines corresponding to grouped modes at low frequencies and
reaching about 1700 cm−1. The far-infrared range corresponds to the frequencies of the metal
adsorbate, which fall into a rather continuous range below 350 cm−1. For the adsorbate itself,
deposition on graphite does not alter the vibrational properties very markedly. In contrast,
the graphite substrate undergoes a more significant perturbation due to the adsorbate with
clear band broadening and even merging of many small peaks up to 700 cm−1. As expected,
the spectral features corresponding to stretching C-C modes at higher frequencies are less
affected. The perturbation exerted by the adsorbate on the vibrations of the graphitic layers
appears more clearly at finite temperature, and we speculate that the extended range of these
perturbations results from hot and combination bands.

Anharmonicities are also evidenced on the highest frequency band near 1600 cm−1, which
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Figure 3.8: Surface diffusion coefficients of Pt64 and on graphite shown as an Arrhenius plot.
The simulation data were obtained from MD trajectories at temperatures covering the range
500–1500 K using the Grimme D2 dispersion model and the implicit model for dispersion
corrections, and linear interpolations are also shown.

displays some slight broadening but more importantly some red shifting as temperature varies
from 0 to 300 K and finally 1000 K. This peak, which dominates the G band of graphite, has
been further quantified below in the case of epitaxial graphene on fcc platinum.

3.4 NPs on epitaxial graphene on Pt(111)

The implicit dispersion correction model has been extended to describe epitaxial graphene
on Pt(111) and Pt adsorbates on such substrates. Epitaxial graphene [32] on platinum has
been experimentally studied by AFM [158] and by STM [159, 160] possibly coupled to other
techniques such as local tunneling barrier height [161] or LEED [125, 162]. Though usually
synthetised by CVD, epitaxial graphene on Pt(111) has also been produced by colliding car-
bonated molecules such as methane [163] or C60 [126], by subsurface segregation [164] and by
liquid phase deposition [165].

3.4.1 Modeling of supported graphene

Geometric properties of the moiré

The lattice constant of graphene is about 1/8 smaller than the equilateral triangular surface
lattice of Pt(111) and therefore a moiré pattern can be produced if the two lattices are superim-
posed under the commensurate 9/8 size ratio. In comparison to other transition metals such as
nickel, graphene interacts with platinum rather weakly, which further allows additional moiré
patterns with different periodicities to be formed by varying the inplane angle Θ between the
two lattices [32].

Fig. 3.11 depicts the geometry of a typical moiré structure formed by epitaxial graphene and
the relevant adsorption sites resulting from these two commensurate lattices in contact with
each other. In addition to the aforementioned alpha, bridge, and hollow adsorption sites on
bare graphene, there are several regions of alignment or misalignment between the two lattices.
In the fcc region, the carbon atoms are on top of Pt atoms of either the first or second Pt layer.
In the top region, the center of the 6-membered carbon rings is on top of the Pt atoms of the
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Figure 3.9: Activation energy for surface diffusion of bilayer Pt adsorbates as a function of
their size in simulations using the Grimme D2 dispersion model and the implicit model for
dispersion.

uppermost layer. Finally, the hcp region has those rings aligned with the atoms of the second
Pt layer.

Using the dedicated procedure presented in chapter 2, possible moiré structures up to a
certain predefined size can be listed. The edge length of the supercell obtained by this purely
geometric procedure is illustrated in Fig. 3.12. The general decrease in the edge length of
the moiré supercell with increasing Θ is equivalent to an increase in periodicity (full circles
in Fig. 3.12), except at low angles where the monotonic relation does not hold and where the
periodicity is better represented by an approximate half value (empty circles in Fig. 3.12). The
minor deviations from monotonic behavior arise from the slight adjustment made to graphene
to match the common cell size.

A similar numerical approach for the determination of moirés was followed earlier by Merino
and coworkers [126]. The names assigned by these authors to some specific structures are
detailed in Table 3.4.1 and are also indicated in Fig. 3.12. Near the angle of 1.71◦ a structure
very similar to the λ moiré reported by Merino et al. was found but with twice the size of the
super cell. This structure is denoted as ”λ” in Table 3.4.1.

Moiré structures and screening of dispersion

Using the present potentials, the moiré structures were locally optimized in order to determine
the magnitude of corrugation Δz of the graphene layer and its separation with the metal. The
adsorption energies averaged over all moiré structures and obtained with the Grimme D2 model
(334 meV/carbon atom) or the implicit dispersion model (355 meV/carbon atom) are very
similar to each other but significantly overestimate the recent predictions of 43 meV/carbon
atom by Vanin and coworkers [167] based on vdW-DF calculations, which satisfactorily agree
with earlier computations by Khomyakov and coworkers (38 meV/carbon atom for the α moiré
[166]) and by Gao et al. (38.6 and 39.8 meV/carbon atom for the ξ and α moirés, respectively
[125]).

The overestimation with the present models is due to the absence of screening in both
explicit and implicit dispersion models, which is important owing to the delocalized nature
of the electron cloud in the bulk metal. One empirical way of accounting for these screening
effects consists of considering the contributions to the London interactions of the uppermost
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Figure 3.10: Vibrational spectra for a two-layer Pt64 adsorbate on graphite obtained from the
velocity time correlation function at finite temperatures (continuous lines) and in the harmonic
limit (histograms pointing downward). (a) Spectra of isolated substrate (upper part) and
adsorbate (lower part); (b) Global spectra of the entire system (upper part) and of adsorbate
alone (lower part) but interacting with the substrate. The calculations were performed with
the implicit dispersion correction model.

layer only [61, 168]. Repeating the calculations under such conditions leads to a significantly
reduced adsorption energy of 273 meV/carbon atom, still off by a factor 6 with respect to the
reference data of Vanin et al. [167], the uppermost metal layer alone contributing to about 77%
of the total dispersion energy.

Alternatively, introducing a TF screening factor as in Eq. (2.46) can achieve a similar effect,
but to an even greater extent. Fig. 3.13(a) shows the variations of the adsorption energy of the
graphene layer in epitaxial contact with Pt(111), as a function of the screening length rTF and
for three different inplane angles Θ corresponding to the structures denoted as ξ, γ and β in
Table 3.4.1. The damping of the global London attraction is particularly prominent, and the
vdw-DF reference value of 43 meV/carbon atom is recovered approximately for rTF = 2.9 Å.
The adsorption of epitaxial graphene is also found not to depend significantly on the type of
moiré pattern, which is also true for the other dispersion models considered in this work (results
not shown).

The natural corrugation of the graphene layer was evaluated from the locally relaxed struc-
tures and as a function of the screening length rTF. Its variations, shown in Fig. 3.13(b), are
found to be correlated to those of the magnitude of the adsorption energy, which is the ex-
pected behavior since stronger binding also tends to increase the natural corrugation due to
incommensurability, and also corrugate the carbon monolayer.
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Figure 3.11: Inventory of moiré sites of the graphene/Pt(111) system with a vanishing inplane
angle (ξ structure).

The interplay between corrugation and the strain exerted by the two materials in contact was
further investigated by considering not only the magnitude Δz of the graphene corrugation, but
also the average separation δz between the carbon sheet and the uppermost metal layer. Those
properties were evaluated at 0 K from local minimizations of structures that were obtained via
MD simulations at 300 K. The variations of these geometric properties with increasing inplane
angle are represented in Fig. 3.14. As a general trend, corrugation decreases with increasing
inplane angle, which can be understood from the natural increase of the moiré periodicity
with the inplane angle. The average distance δz is fairly independent of the inplane angle and
lies near the 2.8 Å cut-off of the covalent part of the BOP. Dispersion interactions affect the
corrugation magnitude in a rather similar way as the adsorption energies in Fig. 3.13, where
stronger dispersion lead to larger corrugations. However, this relation may be reversed when
the graphene layer experiences comparably high compressive strain, which is the case for the
δ structure at Θ = 10.9◦, and especially in the ξ moiré at Θ = 30◦ where the unscreened
models yields extreme values for the corrugation (Δz = 2.7 Å) and separation (δz = 3.5 Å) due
to excessive lateral compression that cannot be compensated by the attraction to the metal.
Limiting the dispersion forces from the uppermost metal layer attenuates this problem but does
not solve it entirely. This effect is essentially geometric and arises due to slight squeezing or
stretching of the graphene sheet necessary for matching the moiré within a common periodic
simulation box also for the other moiré structures. Although we took care to perform all
simulations with sufficiently large system sizes, size effects could still affect the corrugation of
the graphene when it is highly subjected to compressive strain. Since graphene is a highly stiff
material [169], minor adjustments in the geometry produce relatively large effects especially
when dispersion forces are weak or absent, as precisely occurs for the unscreened or top layer
dispersion models.

Effect of temperature on graphene/Pt(111)

Thermal effects were investigated for two specific moiré structures, namely the ξ and γ patterns
at Θ = 0 and 13.9◦, respectively. MD simulations were carried out at increasing temperatures,
and the average magnitude of the corrugation and graphene-metal separation were both eval-
uated. They are reported in Fig. 3.15 for the four dispersion models. Once thermal effects
are taken into account, the vibrational fluctuations make the graphene layer slightly shift away
from the metal substrate for all models. According to Fig. 3.15 this shift amounts to approxi-
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Figure 3.12: Edge length of moiré structures obtained for graphene on Pt(111) by varying the
inplane angle between the two lattices obtained by geometric construction (red circles) and
observed in experiments (green circles, see also Table 3.4.1 for the assignment of the different
structures). Full and empty circles refer to simple commensurate lattices and to commensurate
lattices of twice the size of the apparent moiré periodicity, respectively.

mately 0.1–0.3·10−3 ÅK−1. Thermal fluctuations also tend to increase the corrugation by about
0.3–1.4·10−3 ÅK−1 depending on the model. The four descriptions of dispersion forces agree
well with each other for the ξ moiré, but differ more sensitively for the other γ structure, the
top layer dispersion model predicting some early increasing in both geometric properties but
also some saturation already near room temperature.

For both values of the inplane angles, the graphene layer experiences no compressive strain,
and thermal effects are rather similar. Notable differences are found in moirés characterized by
high compressive strain such as the δ or α structures, with stronger slopes and greater variations
among models (data not shown). It should also be kept in mind that the simulation results
presented in Fig. 3.15 were obtained at constant density. However, the two materials in contact
have different TECs and in practice simulations at finite pressure would be more appropriate.
However, even then it would be rather difficult to find a common box size that is suitable for
both materials, especially when their TECs differ. While those refinements lie beyond the scope
of this work, our results indicate how structural properties as basic as corrugation amplitude or
interlayer separation are sensitive to the details of the interactions for such complex materials.

Some comparison between the present results and available experimental measurements and
electronic structure calculations can also be attempted. Corrugation of epitaxial graphene
accessed through STM height profiles have been reported to lie in the 0.3–0.8 Å range [125].
Those values are in good agreement with our calculations at 300 K. Similar measurements
carried by Land and coworkers [159] specifically for the ξ structure have found that corrugation
amounts to 0.8 Å, however the authors indicate that part of this corrugation could be due
to the tunneling current. In their DFT study of the ξ structure at 0 K (without dispersion
corrections), Gao and coworkers [125] reported a buckling magnitude of 0.53 Å, which agrees
with our calculation only in the extreme case of unscreened dispersion.

The graphene-metal separation has been experimentally measured by Sutter et al. [164] using
LEED who found a value of about 3.3 Å. Similar values of 3.3 Å [166] and 3.1 Å [125] have been
obtained in DFT calculations at 0 K and neglecting dispersion corrections, and surprisingly in
their dispersion corrected DFT calculation Vanin and coworkers reported a significantly higher
separation of 3.67 Å [167], all these values again for the ξ moiré structure. Those values
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Moiré in Wood’s notation Θ(◦) Name [126] References
(9 × 9) R0.00◦ 0.00 ξ [125, 126, 159, 165]

(
√
244×√

244) R26.33◦ 0.46

(
√
73×√

73) R5.82◦ 0.77 μ [126, 158]

(
√
84×√

84) R10.89◦ 1.32 o [126]

(
√
229×√

229) R16.63◦ 1.71 ”λ”

(
√
79×√

79) R17.00◦ 2.11 ν [126]

(
√
63×√

63) R19.11◦ 2.68 κ [126, 158]

(
√
76×√

76) R23.41◦ 2.92

(
√
199×√

199) R7.05◦ 3.09

(
√
61×√

61) R26.33◦ 3.67 ι [126, 158, 161]

(
√
61×√

61) R26.33◦ 4.54

(
√
157×√

157) R3.96◦ 4.99
(7 × 7) R21.79◦ 5.69 θ [126]

(
√
39×√

39) R16.10◦ 7.15 ζ [126]

(
√
31×√

31) R8.95◦ 8.95 ε [126, 158]

(
√
21×√

21) R10.89◦ 10.89 δ [126]
(4 × 4) R0.00◦ 13.90 γ [125, 126]
(3 × 3) R0.00◦ 19.11 β [125, 126, 158, 160, 162–164]
(2 × 2) R0.00◦ 30.00 α [125, 126, 159, 166]

Table 3.2: Moiré patterns obtained from geometric considerations, refered to using Wood’s
notation for the geometry with respect to graphene and ordered with increasing inplane angle
Θ. When applicable, the name assigned to the structure by Merino and coworkers [126] is also
reported. References where the corresponding structures have been studied for graphene on
Pt(111) are given in the last column.

are thus slightly higher than those obtained in the present model calculations, even at finite
temperature, but it is clear that separations much larger than the 2.8 Å cut-off of the covalent
potential cannot be reached since the dispersion interaction is purely attractive.

Vibrational properties of epitaxial graphene on Pt(111)

The vibrational properties of epitaxial graphene can be straightforwardly evaluated from MD
simulations, allowing to demonstrate the potential of the present models to fully capture anhar-
monic properties as a function of temperature. The implicit dispersion model with screening
length rTF = 2.9 Å was employed for moiré structures of the ξ and γ types, and for com-
parison additional simulations were performed for freestanding graphene. From the 1 ns long
MD trajectories, the vibrational spectra were again obtained by Fourier transformation of the
velocity time autocorrelation function. Similar to Fig. 3.10 one peak dominates the spectrum
near 1600 cm−1, which we attribute to the G band in the Raman spectrum of graphite [170].
This attribution is supported by normal mode analyses performed for increasingly strained
structures, as represented in Fig. 3.16. The corresponding frequency depends on strain linearly
with a slope of about −70 cm−1 per percent of strain. Very similar values of −63 cm−1/% [171]
and −70± 3 cm−1/% [172] have been reported at 300 K.

Having assigned the calculated peak to the Raman G band, we have evaluated its robustness
against finite size effects by evaluating its variations with increasing size of the periodic cell in
the simulation. Normal mode analysis indicates that convergence is reached already at 3 × 3
unit cells, as expected for such strong inplane modes.

Because the moiré pattern depends sensitively on the lateral strain experienced by the
epitaxial layer, it is expected that the vibrational signature of the G band should depend on
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Figure 3.13: Variations of (a) adsorption energy and (b) corrugation of the graphene monolayer
in epitaxial contact with Pt(111), as obtained from the implicit dispersion model as a function of
the screening length rTF. The curves were obtained for various moiré structures corresponding
to different inplane angles Θ = 0◦ (ξ), 13.9◦ (γ) and 19.1◦ (β) and based on local relaxations.
In panel (a) the adsorption energies predicted by other dispersion models are also indicated as
horizontal lines.

the inplane angle. This speculation is confirmed from our numerical results, which have been
represented in Fig. 3.17 as a function of temperature. For the three systems, the peak positions
exhibit some nearly linear red shifting with increasing temperature, which is the behavior known
for pure graphite [173–175]. For pristine graphene, the variations show a slope of approximately
−0.050 cm−1K−1, in good agreement with Raman spectroscopy measurements [176–178].

In the case of epitaxial graphene, the G peak is not much altered in the ξ moiré structure
with no inplane angle, whereas the γ moiré exerts some rather high stretching strain leading to
a significant redshift of about 80 wavenumbers already at low temperatures. As temperature is
increased, the additional redshift caused by anharmonicities is again manifested by nearly linear
variations and slopes in the range −0.039–−0.028 cm−1K−1 for the ξ and γ moirés, respectively.
These results obtained for the ξ moiré are in agreement with the only Raman measurements
that we know of, namely by Kang and coworkers [160] who reported some blue shift of the G
band of epitaxial graphene on platinum relative to bulk graphite due to compressive strain.
In contrast to the ξ structure, which undergoes some compressive strain at finite temperature,
strain in the γ moiré is of the stretching type. Its manifestation as a redshift in the vibrational
spectrum is thus also consistent with the measurements by Kang et al. [160].
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Figure 3.14: (a) Corrugation Δz and (b) interlayer separation δz of a graphene layer epitaxied
on Pt(111) as a function of the inplane angle Θ, as obtained from different dispersion models
at T = 0. The values predicted by the model with screened dispersion forces lie beyond the
respective upper values of the graphs at Θ = 30◦ (see text for discussion).

3.4.2 NPs on moiré substrates

The atomistic models developed so far are now applied to an even more complex situation of Pt
adsorbates on epitaxial graphene on Pt(111). The two layer Pt64 adsorbate was deposited onto
the ξ moiré structure initially at the fcc region and in the bridge epitaxial position and locally
relaxed. We compare the predictions of the different dispersion correction models, namely the
fully explicit (Grimme D2) approach and the implicit model without any screening or with
rTF = 2.9 Å. From the trajectories, the Lindemann indices of internal and adsorbate-substrate
mobilities were calculated, as well as the adsorbate thickness used to monitor the possible
structural transitions.

The variations of those indicators δintra, δinter and σ with increasing temperature, as obtained
with the three models, have been represented in Fig. 3.18(a-c). Interestingly, the fluxionality
in the adsorbate as measured by δintra shows similar variations among the three models, with
a rather flat behavior until 1000 K where sudden jumps occur. The adsorbate-substrate mo-
bility index, δinter, is also similar between the explicit and unscreened implicit models, however
adsorbate mobility is clearly found with the screened implicit model already above 550 K.

Inspection of the shape indicator σ reveals notable differences that are reminiscent of similar
conclusions obtained in the case of the graphite substrate in Fig. 3.5, with a tendency of the
explicit model to produce more spherical shapes, and conversely flatter shapes with the un-
screened implicit model. At temperatures exceeding 1100 K, the adsorbate is highly disordered
and no longer thermally stable. In addition, due to its low adsorption energy, the graphene
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Figure 3.15: Thermally averaged corrugation Δz (upper panels) and graphene-metal separation
δz (lower panels) of a graphene layer epitaxied on Pt(111) as a function of temperature, as
obtained from different dispersion models for the ξ moiré (inplane angle Θ = 0◦, left panels)
and the γ moiré (inplane angle Θ = 13.9◦, right panels).

sheet itself begins to thermally desorb above this temperature with the weakly binding screened
dispersion model.

The diffusion dynamics can be probed from the MSD of the adsorbate more quantitatively
than the index δinter. Visual inspection indicates that even on this moiré substrate diffusion
proceeds by a stick-slip mechanism with its Lévy flight properties. However, an additional
mechanism is discernible in which the graphene layer slightly slides over the metal substrate
(data not shown). This sliding process is found with all dispersion models, including the fully
corrugated explicit treatment. Its contribution to the global diffusion is not obvious, nor its
physical significance as such global motions could be markedly affected by size effects. In
addition, the present approximation of a fixed density could also produce excessive strain in
the substrate. Releasing this strain in constant-pressure simulations could well modify the
diffusion behavior, although the problem of strain due to forcing the two subsystems in a
common simulation box would remain.

3.5 Conclusions

In this chapter, we have extended the Brenner BOP by a dispersion correction for long-ranged
forces. In a first approach this has been achieved by simply adding the Grimme D2 or D3
descriptions. Due to their long range these explicit descriptions of dispersion turned out to
be computationally expensive in comparison to the BOP model for the covalent and metallic
interactions. Therefore, in a second effort, we exploited the geometry of the system where an
adsorbate is in contact with a layered substrate. Approximating the substrate layers by flat
homogeneous atomic densities allows to integrate the contribution to the dispersion interaction
of entire layers and summing up these contributions for a semi-infinite stack of substrate layers.
This does not only significantly speed up the calculations, but more importantly this way the
true semi-infinite nature of the substrate is included in the dispersion correction. However, it
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Figure 3.17: Position of the intense G peak as a function of temperature, as obtained from MD
simulations of freestanding graphene and epitaxial graphene on Pt(111) forming ξ and γ moiré
patterns. The simulations of epitaxial graphene used the implicit dispersion correction model
with a screening length of rTF = 2.9 Å.

turns out that in the case of the metallic substrates, the dispersion interaction may be screened
rather efficiently by delocalized electrons. This problem could be addressed by the introduction
of an additional empirical screening factor into the implicit model for dispersion.

These ideas have been tested on several systems of Pt adsorbates on carbonated substrates.
From local structure optimizations, comparisons with existing dispersion corrected DFT cal-
culations could be made, confirming the ability of the implicit dispersion correction model to
reproduce reasonably well the structural and energetic properties of epitaxial graphene. Al-
ways comparing the different dispersion descriptions, MD simulations have been carried out,
which showed clear differences in the thermal behavior between adsorbates on graphite and
adsorbates deposited onto epitaxial graphene. On epitaxial graphene, adsorbate diffusion is
very much suppressed, while on graphite particularly high diffusion rates could be identified.
This could be explained by the strong dispersion interaction between the metal adsorbate and
the metal part of the substrate that may pin the graphene layer firmly between the two Pt
subsystems. Due to the reduced dispersion interaction of the adsorbate with graphite a such
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Figure 3.18: Lindemann indices of intra-adsorbate mobility and adsorbate-support and thick-
ness of Pt64 on graphene/Pt(111) in the ξ moiré structure as a function of temperature for
different dispersion correction models.

effect is not observed in this system.
Epitaxial graphene interacts rather weakly and mostly only by dispersion interactions with

the Pt(111) surface. In contrast, the graphene/Ru(0001) system treated in the following chap-
ter interacts strongly. Nonetheless dispersion interactions play also an important role in this
system.
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Chapter 4

The ruthenium-carbon system

In contrast with the Pt-C system, where different dispersion models could be evaluated on
various static and dynamical properties, we focus here on the Ru-C system for which no BOP
was available at the beginning of this thesis. Our model for the Ru-C system aims to describe
epitaxial graphene on Ru(0001) and ruthenium NPs on such substrates or on graphite. The
model has been parametrized on electronic structure calculations and improved to account for
long-range London dispersion forces following an approach similar to the Grimme D2 correction
scheme, as well as possible non-additive screening effects that are relevant for GOM. As will
be shown below, the model correctly reproduces a variety of structural properties for different
commensurate moiré structures as observed in experiments or predicted by DFT calculations.
As achieved previously for Pt-C systems, the energetic and thermal stabilities of Ru NPs on
graphite and epitaxial graphene have been addressed using local optimizations and MD simu-
lations. While NPs exhibit relatively fast diffusion on the graphite substrate, the corrugation
of epitaxial graphene is found to strongly stabilize them against internal rearrangement and
global diffusion. The simulated vibrational spectra of epitaxial graphene show variations with
moiré structure and temperature that provide insight into anharmonicities and emphasize the
role of strain.

4.1 Introduction

Ruthenium is a transition metal to which epitaxial graphene binds rather strongly [179]. Exper-
imentally, epitaxial graphene on Ru(0001) can be prepared by methane [180] or ethylene [181–
190] decomposition, surface segregation [44, 184, 191–197], carbon vapor deposition [198] or by
temperature programmed growth where hydrocarbon molecules are adsorbed at low tempera-
ture and subsequently annealed to higher temperatures [184]. Experimental characterization
has been achieved most commonly using STM [180–182, 184, 186, 187, 189–192, 194, 195, 197],
LEED [44, 181, 187, 188, 190, 191, 193, 194] and AES [44, 187, 191, 192, 194]. On the theoret-
ical side, epitaxial graphene on Ru(0001) has been studied extensively by electronic structure
calculations [199–203] but usually at zero temperature.

From the quoted studies, several periodicities of moiré structures appear to have been con-
sidered. The cases of 10 on 9 [44], 11 on 10 [67, 203–205], 12 on 11 [180, 188, 191, 194, 199,
203, 205, 206] and 13 on 12 moirés [188, 203, 206] are among the most documented. While
these relatively small values of both x and y make them convenient for theoretical modeling,
surface X-ray diffraction studies have confidently shown that experimental moirés of graphene
on Ru(0001) are more likely of the 25 on 23 type [181, 185]. The 25 on 23 system is ap-
proximately four times as large as the aforementioned structures, and has also recently been
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addressed by DFT calculations using the Gaussian and plane wave method (GPW) [203]. It
contains four subsystems called moirons, each containing a topographic buckling or hill in the
graphene layer. Detailed analysis shows that three of them are equivalent [203].

Graphene usually grows in alignment with the underlying Ru(0001) surface, however on
polycrystalline Ru moiré finite inplane angles and a plethora of periodicities have been re-
ported [46, 201, 207]. Further bilayer graphene may be grown on Ru(0001) [200, 208–211], also
with different orientations or stacking order of the two layers [212].

Because of the rather large moiré structures, this system is challenging for ab initio cal-
culations, especially at finite temperature where no predictions have been reported so far. In
this chapter, we have constructed and parametrized a many-body potential to model epitaxial
graphene on Ru(0001), allowing in turn large scale statistical simulations at finite temperature
for this complex substrate, but also for deposited ruthenium NPs. Our potential combines the
BOP for carbon developed by Brenner [101] with an EAM for ruthenium. Among the various
existing EAMs for this metal [213–218] we have chosen the form and parameters by Li and
coworkers [215–217] that can be rewritten under the BOP format [97], providing a uniform and
simple expression for the general Ru-C potential, similar to previous efforts carried by Albe and
coworkers for the Pt-C system [96]. In order not to degrade these original potentials for the
pure elements, only the parameters corresponding to mixed Ru-C interactions were adjusted in
order to reproduce available electronic structure data [201, 206] as best as possible.

Recent DFT calculations have additionally shown that London dispersion interactions could
be a significant contribution to the binding of monolayer graphene on Ru(0001), owing to their
long-range nature and to the semi-infinite extension of the two materials [67, 200, 202, 203].
We have thus completed our model for the Ru-C system by including dispersion corrections
as well, following the simple pairwise model of Grimme and coworkers (D2 version) [76]. Non-
additive screening effects due to delocalized electrons in the metal substrate [66] were included
phenomenologically by considering the contribution from the first metal layer only [61, 168].
Besides the substrate itself, our model can be used straightforwardly to treat ruthenium NPs
on carbonaceous substrates such as graphene, graphite, or epitaxial graphene. Ru NPs are
interesting in their own and have been shown to have applications in catalysis for ammonia
synthesis [219], hydrogen storage [136], and the oxidation of carbon monoxide [220] and a wide
range of alcohols [221]. Their practical use requires formation (or deposition) on a substrate in a
stable fashion, carbon providing a low-cost and versatile element for such supports [52, 221, 222].

In the following section we present the parametrization for the Ru-C system aimed toward
epitaxial graphene. Section 4.4 discusses applications for Ru clusters deposited on graphite, for
epitaxial graphene on Ru(0001) in bare form and acting as a substrate for Ru clusters as well.
In addition to structural and energetic properties, the dynamical behavior at finite temperature
has been investigated from MD simulations. In particular we report activation temperatures for
Ru NPs diffusing on graphite as well as a vibrational analysis of anharmonic properties through
the graphene Raman G band. Both properties, of experimental relevance, were obtained from
long time scales trajectories that would not have been practical had the electronic structure
of the system been described explicitly. Finally we conclude in section 4.5 by giving a brief
summary of the main results from this chapter.

4.2 Bond-order potential for Ru-C

The original Brenner BOP naturally includes many-body contributions for metals in TB-SMA
scheme [223], which have notably been parametrized for ruthenium [215–217]. The BOP frame-
work was thus naturally chosen to model the system of interest here, namely epitaxial graphene
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Ru-Ru Ru-C C-C
S 19.039 40.089 1.22
β (Å−1) 1.5444 1.2139 2.1
D0 (eV) 3.8503 0.71573 6
r0 (Å) 2.5584 2.0833 1.39
R(1) (Å) 4.0 2.71 1.7
R(2) (Å) 4.3 3.01 2

Ru-Ru-Ru permutations of C-C-C
Ru-Ru-C and Ru-C-C

γ 1 0.0038154 0.00020813
c 0 244.84 330
d 1 9.3054 3.5
2μ (Å−1) 1.0011 0.35614 0

Table 4.1: Pair-type dependent parameter set for the Brenner potential for Ru-C systems.

on Ru(0001) and Ru NPs deposited on carbon substrates.

Similarly to the previous chapter, the carbon parameters were taken from the original
source [101], and more specifically its Table III, without the overbinding corrections that are
mostly relevant for radicals. These parameters are summed up in Table 4.1. For pure ruthe-
nium, the parameters were borrowed from the work by Li and coworkers [215] who managed
to successfully reproduce various properties of hcp Ru, including the experimental cohesive
energy, the lattice and elastic constants. In contrast with the original work of Li et al., who
used a sharp cut-off at 4 Å [215], the same smooth function f ij(r) already used in the BOP
was employed here with inner and outer cut-off radii at 4 Å and 4.3 Å, respectively. The other
parameters of the Ru-Ru potential are detailed in Table 4.1 as well.

4.2.1 Parametrization

No set of parameters corresponding to unlike Ru-C pairs is available in the literature. Therefore
the PTMC procedure presented in chapter 2 has been used for the search of an appropriate
Brenner BOP parameter set for Ru–C. Locally optimized geometries of epitaxial graphene
on Ru(0001) and small adsorbates thereon, obtained by dispersion-free DFT calculations by
Bocquet and coworkers [201, 206] served as reference data. The training set comprised config-
urations with three relaxed structures of graphene on Ru(0001): A 12 on 11 and a 13 on 12
moiré structure containing three Ru(0001) layers and a 13 on 12 geometry containing four of
such layers, all obtained from DFT calculations [206]. In addition, two configurations with a
Ru adatom (Ru trimer) on a 12 on 11 moiré at the low fcc moiré registry and at the hollow
(bridge) adsorption site were included as well, again originating from electronic structure cal-
culations at the same level of theory [201]. The exact definitions and more details about these
structures can be found in Ref. [201] and [206]. The data to be reproduced included adsorption
energies of graphene on the Ru(0001) metal, and of the Ru adsorbates on epitaxial graphene
on ruthenium. The adsorption energy of a system composed of two subsystems is defined as
Eads = Etotal −E

(1)
sub −E

(2)
sub, where Etotal is the potential energy of the entire system after local

relaxation, E
(1)
sub and E

(2)
sub the energies of the two subsystems optimized at infinite separations.

The members of this training set and the target values are listed in Table 4.2.

In the error function of Eq. (2.27), the weighting parameters ρi were taken as 20 Å−2 and
100 Å−2 for configurations without and with adsorbates. The Brenner BOP parameters were
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Property DFT DFT reference BOP
Graphene corrugation 1.51 [206] 1.50
Uppermost Ru layer corrugation 0.05 [206] 0.06
Smallest graphene–metal separation 2.22 [206] 2.43
Average graphene–metal separation 2.57 [206] 2.81
Graphene–Ru3 distance 2.06 [201] 2.63
Graphene adsorption energy -3.9 [206] -3.57
Graphene interaction energy -10.0 [206] -6.96
Graphene deformation energy 5.7 [206] 3.28
Ru(0001) deformation energy 0.4 [206] 0.12
Ru3 adsorption energy (eV/atom) -0.77 [201] -0.10

Table 4.2: DFT reference data [201, 206] for graphene on Ru(0001) structures employed for the
parametrization procedure, and predictions of the present BOP Unless otherwise mentioned, all
distances and energies are in Å and eV, respectively. All data are without dispersion correction.

first optimized globally using a PTMC procedure with 24 replicas geometrically distributed in
the pseudo temperature range between T1 = 2 ·10−2 eV2/Å2 and T24 = 2 ·109 eV2/Å2. For each
replica, 2.5 · 105 MC cycles were performed. A subsequent PTMC simulation with the same
number of steps was carried out starting from the parameter set minimizing χ2, using pseudo
temperatures lowered by a factor 20. Finally, low-χ2 configurations from all replicas were
further refined locally using the Levenberg-Marquardt algorithm and structural relaxations at
each optimization step.

The Ru-C parameters optimized using this procedure are shown in Table 4.1, and the quality
of the potential for reproducing the target values can be appreciated from the last column of
Table 4.2. Overall the agreement between target and obtained values is very satisfactory,
which confirms the ability of the original BOP to describe such complex substrates and the
possible presence of adsorbates. The main residual discrepancy is the adsorption energy of the
deposited trimer, which is too low with the BOP. However, reoptimizing the trimer in presence
of dispersion corrections (see general discussion below) significantly stabilizes it, the adsorption
energy increasing from 0.097 eV/atom to 0.645 eV/atom, in much better agreement with the
(dispersion-free) DFT results of Sutter and coworkers [201]. It would be useful to quantify the
effects of dispersion forces at the DFT level also for this system.

4.2.2 Pauling relation

One possible way to assess the transferability of the potential to situations away from the
training set consists of correlating the bond energy to the equilibrium distance under various
configurations. This so-called Pauling relation [98] has been shown by Albe and coworkers [96]
to be a suitable testing ground for measuring the quality of BOPs away from their training set.
The Pauling relation imposes constraints on various parameters of the BOP. If only nearest-
neighbor properties are included in the training set, it is possible to fit a potential in such a
way that the Pauling relation is automatically satisfied. The collective properties of interest
here such as the amplitude of graphene corrugation or the size of moiré domains extend beyond
the first neighbors and are not directly impacted by the Pauling relation. However, it remains
interesting to see how the BOP performs toward this relation especially when compared to
more realistic calculations based on explicit electronic structure.

In principle, the non angular-dependent part of a BOP can be determined straightforwardly
by considering the properties of a dimer and one other compound B of the desired chemical
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species. The dimer bond length directly gives r0, the binding energy D0 and the vibrational
frequency ω that are related to β:

β = 2πω

√
μ∗

2D0

, (4.1)

where μ∗ designates the reduced mass of the dimer. Taking into account first neighbor interac-
tions only, a relation can be found between S, the energy per bond EB and the nearest neighbor
distance rB of compound B as [96]

S =
1

2

[
ln (−EB/D0)

β (r0 − rB)

]2
. (4.2)

The energy per bond as a function of the equilibrium nearest neighbor distance for several Ru-
C compounds [diatomic, NaCl structure (B1), CsCl structure (B2) and zinc-blende structure
(B3)] have been determined with the present Ru-C parametrization and compared to existing
data for the Ru-C diatomic [224, 225] and the B1 and B3 mixed structures [226]. These data
together with the above Pauling relation are represented in Fig. 4.1. Energies per bond of
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Figure 4.1: Satisfaction of Pauling relation (dotted line) for assessing the Ru-C BOP in different
compounds: NaCl (B1), CsCl structure (B2), zinc-blende (B3) and diatomic computed with
the BOP (red dots) and literature data (green squares) from Guo and coworkers [225], and
DaBell and coworkers [224], and Zhao and coworkers [226].

−1.67 eV, −1.30 eV and −1.89 eV have been obtained at nearest neighbor distances of 1.97 Å,
2.24 Å and 1.92 Å for the B1, B2 and B3 compounds, respectively. The exponential decrease of
the bond strength with increasing bond distance indicates a very satisfactory behavior of the
present model toward the Pauling relation. The agreement with existing DFT calculations for
the structures B1 and B3, where bond energies of −1.39 eV and −2.20 eV at bond distances
of 2.17 Å and 1.98 Å have been found [226], is also noteworthy both for the bond energy and
equilibrium distance, especially considering how far these compounds are from the training set.
However, for the bare RuC diatomic the Pauling relation is not satisfied, with a markedly long
bond length of 2.08 Å and too low binding energy of −0.72 eV. Electronic structure calculations
for this molecule [225] indicate a strong chemical bond with a significant charge transfer, the
Pauling relation being not fulfilled. Though lesser in magnitude, deviations from the expected
behavior are also noted for the zinc-blende compounds at the DFT level. These deviations
mitigate the apparent limitations of the present model, the ionic character could also explain
why the adsorption energy of the trimer on epitaxial graphene is predicted to be too low.
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4.2.3 Dispersion corrections

In order to account for dispersion interactions, the empirical Grimme D2 [76] correction was
added to the BOP which only accounts for metallic and covalent interactions due to its short
cut-off distance. Following our previous calculations on Pt-C systems, we have also considered
the possible screening of dispersion interactions involving delocalized electrons over extended
media, as relevant here for the bulk ruthenium metal [84]. Following earlier authors [61, 168],
such screening effects were accounted for empirically by including dispersion interactions in the
D2 model limited to the uppermost layer of Ru atoms only.

Finally, the BOP was also used to model Ru adsorbates on pure carbon substrates such
as graphene or graphite. Again, the LJ pairwise potential of Che and coworkers [118] was
employed between any pair of atoms belonging to different graphene layers, no additional
dispersion correction being included for these intra-substrate contributions in order to avoid
double counting. In order to focus this chapter on the covalent interactions, the coarse graining
approach for dispersion forces presented in the previous chapter has not been employed. Instead,
only the explicit, atomistic dispersion correction à la Grimme D2 was used.

4.3 Simulation details

In the static limit, several geometric and energetic properties were calculated for a number
of adsorbates on graphite and on epitaxial graphene on Ru(0001). At finite temperature,
locally relaxed structures produced during the parametrization stage further served as initial
configurations for MD simulations. Several geometric properties were calculated to monitor the
thermal response of the graphene layer on the Ru(0001) metal for different moiré configurations,
including the corrugation amplitude and average graphene-metal distance.

Adsorbates on graphene, graphite, and epitaxial graphene on Ru(0001) were also simulated
at finite temperature. From the MD trajectories, the global diffusion properties were addressed
by calculating the MSD of the center of mass, from which the diffusion constant could in turn
be evaluated. The velocity time autocorrelation function was also calculated over windows of
40 ps at intervals of 8 fs and Fourier transformed to get the vibrational spectrum for various
systems. This sets the spectral resolution to 1 cm−1 and a maximum detectable frequency of
2085 cm−1.

Unless otherwise mentioned, the MD trajectories employed a time step of 1 fs and were
propagated over 5.5 ns, with the first 0.5 ns disregarded as equilibration period. The simula-
tions were performed in the canonical ensemble using a Nosé-Hoover thermostat. In order to
avoid any perturbation from the thermostat on the physical properties under evaluation, the
thermostat was not directly coupled to the system of interest (adsorbate or epitaxial graphene
layer), but only to the remaining substrate (graphene, graphite or hcp ruthenium). The bottom
layer was also kept fixed so as to prevent undesired drifting of the entire simulation cell.

The graphite substrate was modeled explicitly using three layers (ABA fashion) and 10×10
graphene unit cells per layer, at a surface density matching the equilibrium lattice constant
of graphene in the Brenner model of 2.51 Å at 0 K. In the case of GOM, the graphene layer
plus three Ru(0001) layers were taken into account, with lateral system sizes imposed by the
commensurability of the moiré. The structures considered here comprised the 12 on 11, the 13
on 12 and the 25 on 23 moirés. In all calculations, lateral periodic boundary conditions of fixed
size were applied. In the calculations of epitaxial graphene on Ru(0001), the simulation box was
fixed with respect to hcp ruthenium, for which a lattice constant of a = 2.724 Å was imposed,
the lattice constant of graphene being left to fluctuate as no boundary condition except at the
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bottom layer was applied in the corresponding direction. This choice imposes a strain on the
epitaxial graphene layer depending on the moiré commensurability and temperature.

4.4 Results

The interatomic potential was applied to epitaxial graphene on Ru(0001) and Ru adsorbates
on carbonaceous substrates. In order to evaluate the performance of the BOP in a variety of
situations, we have considered structural and energetic properties in the static limit, as well as
dynamical properties at finite temperature.

4.4.1 Static properties

Single Ru atom on graphene and graphite

A single ruthenium adatom on graphene and graphite was chosen as the most straightforward
testing case for the present model, especially for discussing the possible role of dispersion forces
on such extended substrates. Energy profiles of a Ru adatom approaching the flat graphene
and graphite surfaces were calculated along high symmetry sites. The alpha and beta sites are
found directly over a substrate C atom and differ only from the presence of another C atom at
the alpha position in the subsequent graphitic layer, whereas the beta site lies above the center
of a six-membered carbon ring (in graphene, the alpha and beta sites are thus equivalent to
each other). The bridge and hollow sites lie over a C-C bond and the center of a six-membered
carbon ring, respectively. See also Fig. 3.1.

The corresponding energy profiles along these four adsorption sites were calculated using
the regular BOP and its dispersion-corrected version. Without any dispersion contribution, the
results for planar graphene and graphite are identical to each other, hence only three curves
are shown in Fig. 4.2. For this simple system the results indicate that dispersion forces have
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Figure 4.2: Interaction energy of a Ru adatom approaching planar graphene and graphite
substrates along various high symmetry sites, as a function of the distance from the surface. The
profiles have been computed with the BOP for Ru-C with and without dispersion correction.

a significant effect on the binding energy and, to a lesser extent, on the equilibrium distance
between the adatom and the surface.

In presence of dispersion forces, the bridge site appears as the most stable for both substrates
(−0.60 eV binding energy for graphene, −0.63 for graphite), followed by the alpha and beta
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sites (−0.55/−0.59) and finally the hollow site (−0.48/−0.51), the difference between the alpha
and beta sites being negligible also for graphite. Without dispersion corrections, these values
are reduced by about half an eV. The role of dispersion forces is also manifested on the slightly
higher binding energies obtained on graphite relative to graphene, by about 0.03 eV for all
adsorption sites.

Dispersion interactions also affect the equilibrium position of the adatom, but in a rather
nontrivial way that depends on the site. At the hollow position, dispersion forces push the
minimum away from the surface by 0.2–0.3 Å, whereas they pull the system 0.1–0.2 Å closer
to the surface for the three other sites. This behavior results from the very shallow nature of
the hollow minimum, which in the present model is barely bound at all in absence of dispersion
forces. Relative to graphene, dispersion forces further shift the minima of Ru adatoms closer
to the graphite surface by 0.02–0.04 Å depending on the adsorption site.

It is instructive to consider the lateral energy maps obtained by scanning the unit cell and
minimizing the energy along the perpendicular distance. These maps, as calculated for graphite
with and without dispersion corrections, are shown in Fig. 4.3.
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Figure 4.3: Potential energy map of Ru adatom throughout the graphite unit cell, as obtained
from the BOP without (a) and with (b) dispersion corrections.

Besides energy profiles on selected sites, energy maps have been calculated by minimizing
the energy of a Ru adatom along the perpendicular distance throughout the entire unit cell of
graphite. These maps confirm the bridge position as the most stable within the present models.
Furthermore they demonstrate the absence of other metastable adsorption sites, which suggests
that surface diffusion can proceed from one bridge site to the next via low barriers of less than
0.05 eV.

Larger Ru adsorbates on graphite

The BOP model was subsequently applied to increasingly large Ru NPs deposited on graphite,
for which DFT calculations would be less practical. Ruthenium nanoclusters of icosahedral and
truncated octahedral structure (Wulff shapes) and up to 3871 atoms were deposited on graphite
and subjected to local relaxations. Initially a (111) facet was put into epitaxial contact with
the substrate.
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In the case of a Ru adatom, which has already been discussed above, local geometry opti-
mizations have been carried out at all high symmetry sites. The bridge site remains the most
stable one in calculations without and with dispersion, with adsorption energies of −0.67 eV
and −0.15 eV at closest Ru-C distances of 2.43 Å and 2.71 Å, respectively. Upon relaxation,
also the alpha and beta site become metastable with adsorption energies of −0.61 eV (includ-
ing dispersion) and −0.11 eV (without dispersion) at a Ru-C separation close to 2.5 Å weakly
dependent on dispersion corrections.

The deposition of the icosahedral Ru13 cluster on graphite is still most stable when the
three atoms in contact with the substrate surface occupy the bridge position. The distance
of the trimer to the uppermost graphene layer is about 2.7 Å (without dispersion) and 2.3 Å
(including dispersion) and the adsorption energy with the substrate is −0.99 eV/atom, or about
−0.11 eV/atom in relaxations with and without dispersion, respectively. However, the closest
separation to the substrate does not change significantly compared to the single adatom.

The larger highly symmetric clusters were all initially placed with one facet in epitaxial
contact with the substrate. The center of the contact facet was put into the epitaxial bridge
positions. However, due to unequal lattice constants of the two materials, the adsorption sites
of the contact facet atoms of the adsorbate away from the center may face other sites. In
return, such strain effects lead to a noticeable buckling of the graphite surface that can be
as high as 1.2 Å in calculations including dispersion and still reach 0.5 Å when dispersion
is disregarded. The distortions of the adsorbates remain very limited, though, especially in
absence of dispersion corrections. Their closest distance to an atom of the substrate ranges
from 2.5 Å to 2.7 Å when dispersion is neglected and from 2.0 to 2.4 Å including dispersion.
These closest distances do not differ markedly between icosahedral and truncated octahedral
adsorbates.

As shown in Fig. 4.4, the adsorption energy is almost proportional to the number of atoms
at the contact facet in the case of the largest clusters, which is the expected behavior in the bulk
limit. The difference in interaction energy per facet atom between the two types of adsorbed
NPs is explained by the larger fraction of atoms in contact for the Wulff particles. The slightly
decreasing strength of the substrate interaction with adsorbate size can be attributed to the
diminishing portion that cluster edges contribute to the overall binding. The adsorption of small
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Figure 4.4: Adsorption energy of icosahedral (ico) and truncated octahedral (t.oct) adorbates
on graphite obtained in local relaxations with and without Grimme D2 dispersion correction.

ruthenium adsorbates on graphene and graphite has been theoretically addressed in the past
from DFT, usually focused on the adatom case. The most stable adsorption site on graphene
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was found by various authors to be the hollow site, with an adsorption energy ranging from
-3.2 eV [227] to -4.03 eV [228] and -4.43 eV [229], with a closest separation Ru and C atoms
between 1.62 Å [229] and 2.23 Å [227]. The migration barrier has also been estimated to range
between 0.72 eV [228] and 0.96 eV [229]. Clearly these energetic and structural properties do
not fully agree with the predictions of the present model, which we attribute essentially to its
poor description of charge transfer (almost one electron) in the case of the single adatom [227].
This is also related to the aforementioned weak performance of the BOP to reproduce the
properties of the bare RuC diatomic.

Electronic structure calculations for Ru adsorbates larger than the trimer are scarce, but a
noteworthy effort from Gao and Zhao on the Ru13 cluster adsorbed on the outer face of (12,12)
carbon nanotubes deserves mentioning [227]. These authors reported a Ru-Ru bond distance
of 2.62 Å in the free Ru13, which increases by 9% upon deposition on the nanotube. For this
adsorbate the most stable adsorption sites were found to be the top and bridge positions. These
results on Ru13 compare well with our data obtained for the flat graphite substrate, with similar
most stable adsorption sites. This provides strong support for the model in its ability to treat
larger adsorbates.

Epitaxial graphene on Ru(0001)

The bond-order model was also employed in situations closer to its training set, to treat epitaxial
graphene on Ru(0001) but under different commensurability ratios. In simulations performed
with a common periodic box, the moiré dimensions have to be imposed in advance, which
entails some tensile or compressive strain depending on commensurability, leading in turn to
possible variations in the calculated properties at zero or finite temperatures. Here we have
focused on the 12 on 11, 13 on 12 and 25 on 23 moirés, the latter being closest to experimental
observations but also harder to address with explicit descriptions of electronic structure. The
two smaller moirés provide upper and lower limits on the strain imposed by the common box
size on the graphene layer, while offering a computationally more convenient size about four
times smaller than the 25 on 23 structure. The scaling ratios imposed to graphene relative to
the Ru(0001) surface amount to 0.9938, 0.9974 and 1.0007 for the 12 on 11, the 25 on 23, and
the 13 on 12 moiré structures, respectively.

Upon structural optimization, the interaction between the graphene layer and the Ru(0001)
surface induces corrugation in both materials by amplitudes that we denote Δgr and ΔRu,
respectively. We further denote by ΔRu,gr the shortest distance of the graphene layer from
the laterally averaged position of the topmost Ru layer. These observables, together with
the average adsorption energy Eads per carbon atom, are listed in Table 4.3 as obtained from
calculations without and with dispersion corrections using the screened version of the Grimme
D2 model.

Including dispersion corrections generally reduces the corrugation of the graphene layer and
pulls it about 0.1–0.2 Å closer to the metal surface. Energetic stability is strongly increased by
these long-ranged forces. These static properties appear relatively independent on the particular
moiré commensurability, and only the corrugation of the graphene layer depends rather strongly
on lateral strain imposed by the simulation box. Comparison with existing DFT results also
listed in Table 4.3 indicates very satisfactory agreement for all observables. In particular, we
note that adding the dispersion correction has very similar consequences in the model and in
the DFT calculations, which was achieved without additional fitting parameter. The screening
effect of dispersion forces due to delocalized electrons in the metal seems to be of limited
importance, calculations with the unscreened original Grimme D2 model leading to adsorption
energies only 21% larger than those computed with the screened version. In contrast, fully
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neglecting dispersion forces leads to a 13–17-fold decrease in the adsorption interaction. Stradi
and coworkers [67] carried out structural optimizations of the 11 on 10 moiré, evaluating the
effects of dispersion forces and their screening on the resulting structure. These authors scaled
down the dispersion coefficients to mimic screening and found adsorption energies of −27,
−206 and −163 meV per carbon atom in calculations without dispersion, with unscreened
dispersion and with screened dispersion, respectively. They adjusted their scaling factor for the
C6 coefficients so as to reproduce the experimental interlayer distance and exfoliation energy
of graphite. Their values are fully consistent with the general trends obtained with the present
model.

Several predictions can also be compared to experimental measurements obtained using
different methods such as STM, surface x-ray diffraction (SXRD), x-ray crystal truncation rod
scattering (CTR) or LEED, and carried on different moiré structures produced by CVD, as
listed in the bottom part of Table 4.3. Here also, good overall agreement is reached for most
structural properties, except perhaps for the buckling of the uppermost ruthenium layer which
appears somewhat underestimated in the present calculations. One cause for such discrepancies
could be the finite temperature employed in the experiments, and such effects are discussed in
the following section.

Nevertheless, the adsorption energy of the graphene layer on Ru(0001) as obtained with the
screened dispersion model slightly exceeds the reference values from Stradi and coworkers [67].
In order to better reproduce this reference value, and in addition to taking only the topmost
Ru(0001) layer into account, we attempted to scale the C6 coefficients. Fig. 4.5 shows the ad-
sorption energy of epitaxial graphene, its corrugation and its smallest distance to the Ru(0001)
surface as a function of the fraction of the Grimme D2 dispersion coefficients obtained for locally
optimized structures of the 12 on 11 and 13 on 12 moirés. The figure indicates also the values
from Ref. [67] for these three properties. Unfortunately, it was not possible to reproduce them
all simultaneously and therefore the original (100%) Grimme D2 coefficients were kept for the
subsequent simulations. Both the adsorption energy of the graphene sheet and its distance from
the substrate surface vary linearly with dispersion strength. However, the corrugation of the
graphene sheet does not follow such a simple trend when dispersion is weak (C6/C

(D2)
6 < 20%),

and larger discrepancies appear for the two moiré structures. The strain imposed by the sim-
ulation box on the graphene layer is compressive for the 12 on 11 structure but tensile for the
13 on 12 structure, which naturally reduces the corrugation for the latter. Until dispersion is
strong enough to flatten the graphene layer, the strain difference induces the discrepancies in
the corrugation. In the strong dispersion regime, the differences between the two moiré com-
mensurabilities become less pronounced and the corrugation may slightly increase due to the
geometric effect of the moiré caused by the stronger contact with the Ru(0001) surface.

The deformation of the graphene layer in the 25 on 23 moiré has been closely examined for
a more detailed comparison with literature data [185]. Fig. 4.6(a) defines relevant registries
for this moiré structure. The geometry of the graphene layer on top of two hcp (0001) layers
is very similar to the one of graphene on top of two fcc (111) layers. The differences are the
spacing between the metal layers and the stacking if more than two metal layers are taken
into account. Therefore the moiré registries take different names for graphene/Ru(0001) as
compared to graphene/Pt(111) (see Fig. 3.11). In the (top, hcp) region, the carbon atoms
are on top of Ru atoms of either the first or second Ru layer. In the (hcp-fcc) region, the
center of the 6-membered carbon rings are on top of the Ru atoms of the uppermost layer.
Finally, the (fcc, top) region has these rings aligned with the atoms of the second Ru layer.
Panel (b) shows the height of the carbon atoms or the corrugation of the graphene layer as a
color coded graph. The hills are located in the (hcp, fcc) region, whereas the closest approach
to the metal surface is found in the (fcc, top) region, but similar closest distances to the
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Figure 4.5: Properties of graphene on Ru(0001) moirés as a function of dispersion strength as
obtained upon local relaxations. Only the first layer is included in order to account for screening
effects. Additionally the Grimme D2 C6 coefficients have been scaled. Literature DFT values
(from calculations including screened dirpsersion correction) from Stradi and coworkers [67]
are also indicated; (a) Adsorption energy of graphene; (b) Graphene corrugation; (c) Closest
distance between the graphene and the Ru(0001) surface.

metal surface are also found in the (hcp, fcc) region. These overall trends are the same when
dispersion is neglected, only the shape of the hills and valleys may vary. In both experiments
and electronic structure calculations, there is a wide consensus on this overall geometry of the
graphene corrugation [185, 188, 194, 201, 202, 206, 222], which suggests that the present Ru-C
Brenner parametrization is a good description for the graphene/Ru(0001) system for which it
was developed.

Some evidence for chirality in the epitaxial graphene layer (corresponding to slight inplane
twists) was found by Martoccia and coworkers [185]. This could have interesting applications
for chiral recognition of adsorbates or for spin polarization. However, the existence of such a
chiral domain in graphene/Ru(0001) could not be confirmed in some later studies [203, 230].
Fig. 4.6(c) shows the displacements of carbon atoms in the graphene/Ru(0001) with respect
to freestanding graphene. The highest displacements occur on the flanks of the hills, but no
chirality, which would correspond to a breaking of the symmetry along the long diagonal axis,
is distinguishable.
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Figure 4.6: Local relaxation of the graphene layer in the 25 on 23 moiré, as described using
the screened dispersion model. (a) Top view: graphene: black, first Ru(0001) layer: red,
and second Ru(0001) layer: blue. The different moiré registries are highlighted and explained
in the text; (b) Graphene corrugation: The hills are located in the (hcp, fcc) registry; (c)
Lateral displacement (magnified by 50) of C atoms in the epitaxial graphene with respect to
free graphene. A possible chirality is not discernible.

4.4.2 Finite temperature dynamics

The production of NPs with a narrow size distribution is essential in catalysis and information
storage. One experimental way of optimizing size selection consists of preforming the NPs and
soft-landing them on the substrate of interest [231]. It is important that the NPs thus designed
be thermally stable over reasonably long time scales. The present BOP model is convenient
for addressing this issue with MD directly at the atomistic level. We use the two Lindemann
indices as defined in Eq. (2.61) and Eq. (2.62) to measure the amount of fluctuations within
the NP or between the particle and the substrate (graphite or epitaxial graphene), respectively.
The Lindemann indices should be considered as qualitative, in the sense that they provide
information only about the nature of the dynamics, but not about the isomerization or diffusion
rates. In addition to these dynamical indicators, the shape of the adsorbate was quantified from
the asphericity index as defined in Eq. (2.63).

4.4.2.1 Ru adsorbates on graphite

Thermal stability MD simulations have been performed for Ru38 and Ru201 initially de-
posited with (111) facets in epitaxy on the honeycomb lattice of the graphite surface, at tem-
peratures ranging between 100 and 1500 K, and using the explicit Grimme D2 approach to
account for dispersion forces, or neglecting them altogether. Fig. 4.7 shows the evolution of
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the three dynamical and geometrical parameters δintra, δinter and χ as a function of increasing
temperature. In absence of dispersion forces, the two NPs keep vibrating around their initial
configurations but eventually desorb at 500 K (Ru38) or 1100 K (Ru201) under the time scales
of nanoseconds covered by the MD trajectories.

Once dispersion interactions are included, the NPs appear much more thermally stable and
do not desorb from graphite even at 1500 K. As commonly shown by the sharp increase in
δintra and χ, the smaller 38-atom system rearranges near 700 K into a much less spherical and
flatter structure, but remaining three-dimensional. Internal rearrangements also occur in the
larger adsorbate, but require a much higher temperature T > 1300 K to become discernible.
As shown by the substrate-adsorbate fluctuation index δinter, all adsorbates but Ru201 bound
by dispersion-corrected forces exhibit significant mobility over the substrate already below
room temperature. This mobility can be quantified further by calculating the surface diffusion
coefficient D from the long time variations of the MSD of the adsorbate center of mass.

Surface diffusion Figure 4.8 shows the resulting diffusion coefficients obtained for both
adsorbates bound to the substrate with additional dispersion forces, and for Ru201 in absence
of dispersion corrections but limited to T < 1100 K since above this limit thermal desorption
occurs. The logarithmic plot of D versus 1/T clearly shows that the diffusion constants follow
the Arrhenius behavior of Eq. (2.65). Values for the activation energy of Eact = 0.31 eV
and 0.14 eV are obtained for Ru201 in simulations with and without dispersion correction,
respectively. The higher values obtained for the activation energy for dispersion-corrected
interactions are of course consistent with the lower mobility inferred from Fig. 4.7(b) and from
the greater binding of the NPs on the substrate with dispersion contributions (see Fig. 4.4).
This result confirms the importance of the dispersion correction for the stability of the clusters
and emphasizes their role at finite temperature. For the Ru38 in calculations including the
dispersion correction, activation energies of 0.35 eV and 0.11 eV are obtained at high and
low temperatures, respectively. The higher value of the activation energy high temperature is
consistent with the large contact area of this system after it has annealed and left the truncated
octahedral shape.

Such high adsorbate mobilities are also consistent with experimental results [41], where fast
diffusion of metal clusters on graphite has been attributed to the very flat potential energy
surface felt by the adsorbates owing to the longer equilibrium distance between metal and
carbon atoms relative to carbon-carbon interactions.

4.4.2.2 Epitaxial graphene on Ru(0001)

Geometrical properties The thermal stability of epitaxial graphene on Ru(0001) has also
been evaluated using the same computational methodology for the moiré structures described in
Table 4.3. From 1 ns long MD simulations, the corrugation of the graphene layer was evaluated
from the standard fluctuations of the Cartesian coordinate zC,i of the carbon atoms in the
normal direction to the surface:

Δ′
gr =

[〈z2C,i〉 − 〈zC,i〉2
]1/2

. (4.3)

The distance between the Ru(0001) surface and the graphene layer is here redefined as the
difference between 〈zC,i〉 and the corresponding averaged coordinate 〈zRu,i〉 of the topmost Ru
layer. The advantage of these new observables over earlier definitions chosen for comparison
with DFT data and based on upper and lower distances is their lesser dependencies on extreme
values, hence on system size. However, in comparing the two definitions of corrugation it is
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Figure 4.7: Shape and thermal stability of Ru38 and Ru201 on multilayer graphite, quantified
by (a) δintra, (b) δinter and (c) the asphericity index χ as defined in Eqn. (2.61)–(2.63), and as
obtained from MD simulations based on the BOP model corrected for dispersion forces (disp.)
or uncorrected (no disp.).
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Figure 4.8: Surface diffusion coefficients of Ru38 and Ru201 on graphite shown as an Arrhenius
plot. The simulation data were obtained from MD trajectories at temperatures covering the
range 500–1500 K, and linear interpolations are also shown.

important to notice that the value obtained from the statistical fluctuations (in time and space)
is only a fraction of the one based on extreme values.

Fig. 4.9 shows the variation of Δ′
gr with temperature for the three moiré structures 12 on 11,

13 on 12 and 25 on 23, as obtained from simulations using the BOP model with and without
dispersion corrections. Here, all dispersion corrections were screened by considering only the
contribution of the uppermost metal layer. As expected, temperature generally leads to an
increase in the corrugation of the graphene layer. As already found in the static case, disper-
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Figure 4.9: Graphene corrugation Δ′
gr and graphene-Ru(0001) distance 〈zC,i〉 − 〈zRu,i〉 versus

temperature for the three moiré structures computed with and without dispersion corrections.
For comparison, the corrugation of free graphene having the same surface density as its epitaxial
counterpart is also shown.

sion forces tend to flatten the graphene layer, and these effects remain at finite temperature.
Interestingly we find that the lateral constraints imposed by the different moiré structures have
little influence on the globally averaged graphene corrugation once thermal effects set in. These
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constraints are better appreciated by looking at the corrugation amplitude for the free graphene
layer kept under the same surface density as in the corresponding moiré. Except sometimes at
0 K, these monolayers are always more corrugated than epitaxial graphene, which is consistent
with the larger corrugation experienced by graphene lesser bound to the metal in absence of
dispersion forces.

Comparing the different moiré structures also gives insight into the respective effects of size
and strain: the 12 on 11 and 13 on 12 moirés have primitive cells with similar sizes, but the
graphene layer experiences strain ratios of 0.9938 and 1.0007, respectively. The 25 on 23 moiré
is about four times larger, but also undergoes some strain (by a factor of 0.9974). Due to the
high inplane stiffness of graphene [169], the resulting differences in strain are large enough to
influence the corrugation significantly. The tensile strain on graphene in the 13 on 12 simulation
cell reduces its corrugation in all three cases. In the 12 on 11 moiré, compressive strain has
an opposite effect on this observable and in the case of epitaxial graphene in the 25 on 23
structure, the intermediate strain leads to intermediate corrugations. Only for free graphene
in the largest simulation cell does the size effect dominate, with a slightly larger corrugation as
the one found for the two smaller free graphene sheets.

For a more thorough distinction between the effect of size and strain on the corrugation
of graphene, simulations on freestanding graphene with 12×12 unit cells and 13×13 unit cells
have been carried out at surface densities matching those of epitaxial graphene in the 12 on 11
and 13 on 12 moirés. From Fig. 4.10, increasing the size of the graphene sheet is seen to also
increase the corrugation, as expected. However, this effect is rather limited in comparison to
the effect of the density difference between the 12 on 11 and 13 on 12 simulation boxes. The
slightly compressive strain (or higher density) in the 12 on 11 box induces a higher corrugation
as the tensile strain in the 13 on 12 box, especially at low temperatures. This confirms the
interpretation of Fig. 4.9(a-c) above.
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Figure 4.10: Corrugation of freestanding graphene as a function of temperature for the two
system sizes of 12×12 and 13×13 unit cells. The calculations have been carried out in simulation
cells that impose the same surface density as in epitaxial graphene in the 12 on 11 and 13 on
12 moiré structures. This allows to discriminate between the effect of size and strain on the
corrugation of graphene.

In addition to the corrugation of the graphene layer, its distance to the metal can be eval-
uated from the MD trajectories. The thermally and spatially averaged separation between
the graphene and uppermost metal layers are shown in panels (d-f) of Fig. 4.9. As expected,
the additional dispersion corrections pull the graphene layer closer to the metal surface by a
fraction of an Angström. As was the case for the intrinsic graphene corrugation, no significant
dependence on the moiré structure is found in presence of dispersion corrections, the distance
between the graphene and uppermost metal layers remaining close to 2.6 Å. However, when
the graphene layer is weakly bound without dispersion forces, its average distance to the metal
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surface mainly decreases with increasing temperature, which suggests that graphene better
accommodates with the metal surface under thermal excitations.

This assumption is supported by looking at the corrugation of the uppermost layer of the
Ru(0001) substrate. Using the definition used in the DFT calculations quoted in Table 4.3,
significant values in excess of 0.3 Å and 0.6 Å are obtained at 300 K and 1000 K, respectively,
independently of the moiré size and possible account of dispersion forces. These larger values
with respect to the static calculations mentioned in Table 4.3 are better compatible with ex-
perimental measurements, which again emphasizes the importance of thermal effects on such
structural observables.
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Figure 4.11: (a) Vibrational spectra of freestanding graphene and epitaxial graphene on
Ru(0001) in the 13 on 12 moiré at 500 K, as obtained from simulations with and without
screened dispersion corrections; (b) Frequency of the graphene G peak as a function of temper-
ature for the 13 on 12 and the 12 on 11 moirés, calculated with and without screened dispersion
corrections. For comparison, the G peak frequencies of free graphene layers having the same
surface densities as their epitaxial counterparts are also shown.

Vibrational properties MD also provides a suitable framework for accessing vibrational
properties in anharmonic regimes. Raman spectroscopy has notably been widely employed to
study graphene and even to count the number of graphene layers on a substrate and to gauge
their quality or the amount of strain [169, 171, 232]. In addition, Raman spectra can be further
processed to give insight into thermomechanical properties such as the TEC [178]. Unfortu-
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nately, the present BOP model lacks electrostatic components and cannot be used to simulate
infrared or Raman intensities directly. Despite these limitations, the entire vibrational spec-
trum can be determined by Fourier transformation of the velocity time autocorrelation function,
enabling a possible correspondence with experimental measurements for specific bands.

Vibrational spectra have been evaluated in the 100–1000 K temperature range for epitaxial
graphene in the 13 on 12 and 12 on 11 moirés, with and without screened dispersion interac-
tions and for the free graphene layers experiencing the compressive and tensile strains at the
same surface densities. Typical spectra obtained for graphene in the 13 on 12 moiré at 500 K
have been depicted in Fig. 4.11(a) in the specific spectral range covering 1560–1720 cm−1 that
corresponds to the Raman G band of graphite [170]. Compared with the results obtained for
the free graphene layer, the interaction with the metal broadens the peak and shifts it to higher
frequencies, especially when dispersion is taken into account. This compares well to experi-
ments, where a blueshift of the G peak has been observed for GOM with respect to freestanding
graphene [160]. The temperature dependence of the peak position in this range is shown in
Fig. 4.11(b) for the six situations considered. In all cases, anharmonicities are manifested by a
linearly increasing redshift with a slope in the range of −0.041–−0.053 cm−1K−1. Comparable
slopes have been observed in experiments on pure graphene [176].

Strain effects are better seen on the overall peak position, rather than its dependence on
temperature. Graphene layers experiencing compressive strain as in the 12 on 11 moiré exhibit
a blueshift, while tensile strain leads to redshift. Size effects have also been quantified by
repeating these simulations for the 25 on 23 moiré, but no difference was noted (data not
shown). Changes in the peak positions in Fig. 4.11 are thus the result of strain effects rather
than minor variations in system size. The difference in compressive strain between the 13 on
12 and the 12 on 11 moiré structures amounts to 0.69% in favor of the latter, which is fully
consistent with recent Raman spectroscopy measurements on graphene where redshifts of the
G peak of 70± 3 cm−1 per percent of strain were reported [172]. It is also noteworthy that in
both cases, binding to the substrate leads to an additional blueshift of the G peak, especially
prominent when dispersion interactions are included. This intuitive effect further confirms that
Raman spectroscopy could also be used to unravel the nature of the graphene-metal interaction
in some of its intimate details.

4.4.2.3 Ru NPs on graphene/Ru(0001)

Finally we have considered the thermal stability of Ru NPs on epitaxial graphene on Ru(0001)
under the 12 on 11 configuration. In contrast with the graphite substrate, which is able to
accommodate NPs of arbitrary size, the relatively restricted spatial extension of the moiré
structures makes it more relevant to focus on small NPs of dimensions not larger than the
moiré lattice. Here we have chosen to focus on Ru38 as a realistic example. In a first series of
MD simulations of the soft-landing type, the adsorbate was initially placed at the low fcc moiré
registry [201] and locally optimized, as depicted in Fig. 4.13(a). The system was subsequently
simulated at increasing substrate temperatures, and the same two Lindemann indices δintra and
δinter already introduced for adsorbates on graphite were calculated to characterize the internal
state of the cluster and its overall motion on the corrugated substrate. Likewise the asphericity
index was evaluated to determine possible shape transformations during the heating process.

Fig. 4.12 shows the variations of these observables as a function of temperature, as obtained
from simulations carried without and with screened dispersion interactions. Without dispersion
and at low temperatures, the diffusion of Ru38 on graphene/Ru(0001) is very similar to its
diffusion on graphite, with the adsorbate moving freely without deforming over the substrate.
A peak in δinter near 300 K and the stabilization of this index to low values above 500 K
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Figure 4.12: Thermal stability and shape of Ru38 on epitaxial graphene on Ru(0001), as quan-
tified by the Lindemann indices (a) δintra; (b) δinter; and (c) the asphericity index. Triangles
correspond to data for soft-landed configurations, circles correspond to simulations restarted
from previously annealed structures. The results are shown for the BOP model with (dashed
lines) and without (solid lines) screened dispersion corrections.

shows that the adsorbate finds a more stable position closer to the substrate than in its initial
deposition site. However, the truncated octahedral structure remains stable up to about 1300 K,
above which the cluster reorganizes and flattens.

In the simulations including dispersion, the trajectories spontaneously converge to a more
stable minimum already at low temperature and above 300 K the cluster isomerizes into a
lower-energy, flatter structure with only three layers instead of four as in the initially deposited
truncated octahedron. Having found lower energy minima, the configurations from the MD
trajectories were systematically minimized for both models and the simulations were restarted
from these annealed structures depicted in Fig. 4.13(b). These additional MD simulations
closer resemble the experimental situations in which the clusters are grown in situ from the
atomic vapor [19]. As expected, the annealed structures appear much more stable over the
entire temperature range, and even rather robust against global diffusion on the substrate. The
NPs also remain rigid and only exhibit some minor fluxionality in presence of dispersion forces
above 700 K, before melting takes place above 1300 K. With dispersion interactions, the NP
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displays lesser mobility and becomes fluxional only at the highest temperatures considered here,
suggesting less rugged energy landscapes and higher isomerization barriers.

(a) soft landed

(b) annealed

Figure 4.13: Low-energy structures of the Ru38 NP on epitaxial graphene on Ru(0001) in the 12
on 11 moiré template. (a) Truncated octahedral minimum obtained assuming soft-landing and
global migration to the most stable (fcc) registry; (b) Flatter minimum obtained by annealing
the high-temperature MD trajectories.

Compared to the flat graphite substrate, Ru NPs deposited on epitaxial graphene are ther-
mally much more stable. When dispersion forces are included, this greater stability can be
traced back to the greater dispersion coefficients between metal atoms. However, even in ab-
sence of dispersion the particles show much less mobility, which we attribute to the moiré effect
and the corrugation of the graphene layer that increases its contact surface with the parti-
cle and binds it more efficiently. Another contribution to the higher stability of the NPs on
epitaxial graphene relative to graphite that was proposed based on electronic structure calcu-
lations [56] is the local change of hybridization of the carbon atoms sandwiched between the
bulk metal substrate and the deposited NP. Although the present model does not explicitly
quantify hybridization levels, a similar behavior is obtained here, as supported by the three-
dimensional structure of the locally optimized configuration represented in Fig. 4.13. Moiré
structures of graphene on metal have also already been used experimentally as substrates for
metallic nanoclusters [19, 37, 233, 234]. Detailed electronic structure calculations gave insight
into geometries of the adsorbates and their binding energy at several sites [19, 233, 234].

4.5 Conclusions

We have parametrized the Brenner BOP for the Ru–C system on several geometries obtained
at DFT level for epitaxial graphene and small adsorbates thereon. Similarly to the previous
chapter a dispersion correction has been added to the force field. However, here we kept the
focus on the Brenner BOP that models the metallic and covalent interactions in the Ru-C
system in order to assess in detail the qualities of the parametrization. Because graphene
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interacts via chemisorption with the Ru(0001) surface, the dispersion description is only a
correction though a significant one.

The Ru-C BOP has been employed successfully in local structure optimizations of epitaxial
graphene, which allowed for comparison with a number of DFT data. The potential is also
able to describe this system well at finite temperature, as shown e.g. from the analysis of the
vibrational spectra of epitaxial graphene. In particular, the G peak in the spectrum reacted
to temperature and strain in the way it was expected from experimental data, which shows
that the BOP parametrization is able to correctly capture some of the anharmonicities of the
potential energy surface. Limitations of the Ru-C BOP could be identified in the description
of small clusters in contact with graphene as in these situations charge transfer may occur,
which could not be modeled explicitly by the BOP. In these situations, the adsorption energies
are underestimated with the BOP. However, for larger adsorbates on graphite and epitaxial
graphene, the expected thermal behavior is recovered.
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Chapter 5

Other transition metal–carbon systems

Epitaxial graphene on Ir(111) and Ni(111) are other examples of weakly and strongly interacting
systems, respectively, that we discuss in this chapter. In the case of Ni, we consider also metallic
nanoclusters deposited onto graphene and epitaxial graphene on the same metal. However, he
investigation on these two systems was carried out in less detail. In the case of Ir–C, we
present a Brenner BOP that has been parametrized on vdW-DF data of epitaxial graphene
on Ir(111) [235, 236]. Discussing the qualities of this parametrization in the following section,
it becomes clear that it is less reliable compared to the Ru–C Brenner BOP parametrization
presented in chapter 4.

For the Ni–C system, we employed a TB model built on a minimal basis, including the s
and p electrons of carbon and the d electrons of nickel [237]. This model has already been
successfully employed for studying the growth of epitaxial graphene on Ni(111) [237–240] or
for simulating the nucleation of carbon nanotubes on Ni NPs [241]. A dispersion correction
was not applied in combination with the Ni–C covalent potential, because the interaction of
graphene with Ni(111) is very strong and chemical bonding clearly dominates [242]. In addition,
dispersion forces are expected to be smaller as for the other transition metals discussed in this
work since Ni has with 28 the lowest number of electrons and is the only transition metal from
the fourth period we considered.

5.1 Iridium–Carbon systems

Similarly to platinum, graphene binds only weakly to iridium surfaces [243], which explains
the observation of several rotational domains [127, 183, 244]. The lattice parameter mismatch
between graphene and Ir depends on temperature as the two materials have different TECs:
The TEC of Ir is positive and the one of graphene possibly negative, but at least considerably
smaller than the one of Ir. Instead of building up strain, graphene on Ir(111) slides, changing the
moiré structure from a 21 on 19 commensurability at low temperature to a commensurability of
10 on 9 at high temperature [245]. We attempt to model this system with the help of a Brenner
BOP in MD simulations at finite temperature. To our best knowledge, a parameter set for Ir–C
of the Brenner BOP is not available in the literature, which makes a custom parametrization
necessary. How it was obtained is described in the following section.

5.1.1 Brenner BOP Ir–C parametrization

The carbon-carbon interactions were again described by the Brenner potential with the param-
eters taken from Table III of the original publication [101], neglecting the overbinding terms
for radicals. The corresponding parameters are reproduced in Table 5.1. The iridium-iridium
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interactions are described by the TB-SMA potential, which has been parametrized for a num-
ber of transition metals by Cleri and Rosato [94]. They adjusted the parameters in order to
reproduce experimental data on lattice constants, cohesive energies and elastic constants. In
the derivation of the binding energy, only first neighbor interactions are taken into account [see
Eq. (2.1)–(2.2)]. Nonetheless, Cleri and Rosato report improvements on the finite temperature
behavior when interactions up to fifth neighbors are included into the total cohesive energy.
Especially in the case of a too short cut-off, the melting temperature might be decreased due
to the atoms being able to escape the interaction sphere too easily. The distance to the fifth
neighbor shell in fcc iridium is aIr/

√
2 ·√5 ≈ 6.1 Å, with aIr = 3.839 Å its lattice constant [94].

For computational efficiency, we have opted for a cut-off at 5.0–5.3 Å which falls between the
third and fourth neighbor shell. Using Eqn. (2.19)–(2.26), we have obtained the values for the
Brenner parameter set for pure iridium, as shown in the first column of Table 5.1.

Figure 5.1: Locally optimized 10 on 9 moiré geometry of epitaxial graphene on Ir(111) as
calculated with the vdW-DF by Atodiresei [235, 236].

To our best knowledge, no Brenner BOP parametrization for the interaction of carbon and
iridium is available in the literature. Using the PTMC procedure presented in chapter 2, we
adjusted a set of Brenner parameters for Ir-C by optimizing an error function that contained
data of a relaxed geometry of epitaxial graphene on Ir(111) obtained at vdW-DF level [235].
This geometry, as depicted in Fig. 5.1, corresponds to a 10 on 9 moiré and contains four
Ir(111) layers with 81 atoms each and an epitaxial graphene layer of 10×10 unit cell with
a total of 200 carbon atoms. In a first attempt, the Grimme D2 dispersion correction was
added to the Brenner BOP trial potentials during the parameter optimization. However, it
turns out that the non-bonding adsorption energy of the graphene layer as calculated with
the Grimme D2 correction exceeds the total adsorption energy as calculated in the reference
vdW-DF calculation. This shows that dispersion interactions calculated by Grimme D2 are
stronger as compared to interactions obtained by the vdW-DF at least in the context of epitaxial
graphene.

Due to these difficulties, the parameter adjustment was carried out in a second attempt
without the dispersion correction coupled to the trial Ir–C Brenner BOP potentials. In order
to capture at least some of the dispersion interaction, the range of the Brenner BOP potential
was increased to at least up to 4.0–4.3 Å during the parameter adjustment. The error function
Eq. (2.27) was computed on the basis of the sum of the square gradient components of the
relaxed vdW-DF geometry as calculated with the trial parameter sets and the interaction
energy of the graphene layer. The weighting factor ρ in Eq. (2.27) was used to assign a relative
weight of 20 to the reproduction of the graphene interaction energy. Two subsequent PTMC
optimizations with 24 replicas were performed with 106 cycles each.

In a second step of the parameter optimization, the Levenberg-Marquardt algorithm was
employed to search for a precise minimum of the error function close to the best performing
trial parameter set obtained by the PTMC procedure. For this last step the error function was
refined: local geometry relaxations were carried out at each optimization step and the target
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Ir-Ir Ir-C C-C
S 6.3099 330.9142 1.22
β (Å−1) 1.7608 1.2956 2.1
D0 (eV) 4.7783 0.1958 6
r0 (Å) 2.4973 0.6574 1.39
R(1) (Å) 5.0 4.047 1.7
R(2) (Å) 5.3 4.463 2

Ir-Ir-Ir and Ir-Ir-C and C-C-C and
Ir-C-Ir C-Ir-Ir C-Ir-C

γ 1 0.1997 0.00020813
c 0 1376.4174 330
d 1 28.5070 3.5
2μ (Å−1) 1.9826 2.5605 0

Table 5.1: Pair-type dependent parameter set for the Brenner potential for iridium and carbon
containing systems.

observables were changed to the properties listed in the first part of Table 5.2. The table gives
these observables as obtained in the reference vdW-DF calculation by Atodiresei [235, 236]
together with the data obtained with the Brenner BOP with the final Ir-C parameter set which
is shown in Table 5.1. Dispersion interactions are implicitly included into the Brenner BOP with
its large cut-off distance for Ir–C, because these interactions were also included in the reference
data during the parameter optimization. Adding dispersion corrections would represent some
sort of double counting of dispersion and degrades the rather satisfactory agreement with the
vdW-DF reference data. However, it should be noted that the long-range character of dispersion
is lost, which represents a major drawback of this approach.

The overall agreement with the reference data is satisfactory for these zero temperature
properties. Only the deformation of the graphene layer is too large, which also translates to an
excessive deformation energy. The graphene corrugation depends very sensibly on temperature
and even more importantly on the strain imposed on the graphene layer not only by the contact
with the substrate, but also by the common simulation box that is used for both subsystems.
Unfortunately, these influences are not very well controlled in these calculations and subject the
deformation of graphene to a rather high degree of uncertainty and systematic error. Despite
the difficulties of administering the interdependent influences of strain and temperature on
this observable, at least the analysis of their effect is attempted below. More important for
the appreciation of the quality of the present Brenner BOP parametrization is probably the
distance of the graphene layer from the metal surface and its adsorption energy. A graphene-
metal spacing similar to the interlayer distance of graphite (3.36 Å) points to a weak interaction
dominated by dispersion forces, which is the case of the graphene/Ir(111) system as opposed
to the graphene-metal spacing of strongly interacting systems such as graphene/Ru(0001) and
graphene/Ni(111), which is of the order of 2.1 Å [188, 250] and therefore similar to the spacing
of the (0001) or (111) metal layers.

The second part of Table 5.2 shows data from other DFT calculations. Busse and cowork-
ers [246] locally relaxed the 10 on 9 graphene/Ir(111) moiré structure using GGA DFT-D where
the Ir C6 dispersion coefficient was determined by comparing DFT-D and nonlocal vdW-DF
calculations for adsorption geometries of benzene on Ir(111). The adsorption energy of graphene
was then obtained via a full vdW-DF calculation of the structure obtained from DFT-D [246].
Using the PW91 GGA functional, N’Diaye and coworkers [19] found a comparatively very small

103



5.1. IRIDIUM–CARBON SYSTEMS CHAPTER 5. IR–C AND NI–C SYSTEMS

Method Δgr ΔIr ΔIr,gr Δ̃Ir,gr Eint Eads Edef

Brenner BOP 0.72 0.03 3.07 3.41 -76.3 -64.6 11.59
vdW-DF [235, 236] 0.46 0.02 3.25 3.44 -72.3 -69.9 2.4
GGA DFT-D/vdW-DF [246] 0.35 3.27 3.41 -50
PW91-GGA [19] 0.27 0.05 3.77 -2
LDA [247] 0.6 3.25
AFM at 4.7 K [248] 0.35±0.1
SXRD at 300 K [236] 0.379±0.044 0.017±0.002 3.39±0.28
EXRR at 300 K [236] 3.38±0.04
LEED I(V ) model at 300 K [249] 0.47± 0.05 3.27
STM at 300 K [183] 0.3

Table 5.2: Properties of the epitaxial graphene on Ir(111) moiré structure (10 on 9 moiré, zero
inplane angle). Data obtained in local structural relaxations with the present Brenner BOP
parametrization and vdW-DF reference data [235, 236] that have been used for its parametriza-
tion. The middle and lower parts of the table indicate DFT and experimental data of the system
taken from the literature. The data include the corrugation of the graphene layer Δgr, the cor-
rugation of the uppermost iridium layer ΔIr, the smallest separation between the graphene
layer and the Ir(111) surface ΔIr,gr, the average separation between the graphene layer and the

Ir(111) surface Δ̃Ir,gr, the interaction energy of the graphene layer Eint, its adsorption energy
Eads and its deformation energy Edef which is defined as the energy necessary to deform a
planar graphene sheet into the corrugated shape as in epitaxy with Ir(111). All distances and
energies are given in Å and meV per carbon atom, respectively.

adsorption energy of the graphene of only 2 meV per carbon atom. The adsorption energy of
graphene on Ir(111) (-69.9 meV per carbon atom [235]) can otherwise be compared to the one
of graphene on Pt(111) (-43 meV per C atom [167]) or to the interlayer adhesion of graphite
(-48 meV per C atom [119]) and is significantly below the value for graphene on Ru(0001)
(-163 meV per C atom [67]). The indicated literature values are from the most detailed DFT
calculations that we are aware of for the respective systems. Following the suggestion of Feibel-
man [56] that LDA calculations may lead to better results in the specific case of the Ir-graphene
interaction, Knudsen and coworkers found with 0.6 Å a similar corrugation of the graphene layer
as obtained with the present semi-empirical BOP.

Finally, in the lower part of Table 5.2, we have reproduced experimental data on this system.
Using a variety of experimental techniques, such as AFM [248], SXRD [236], extended x-ray
reflectivity (EXRR) [236], LEED [249] and STM [183], some of the geometric properties of
this moiré structure could be quantified. Apart from the AFM measurement all the data
were obtained at room temperature and one could therefore expect that the corrugation of the
graphene and topmost Ir(111) layer as well as the spacing of the graphene layer from the metal
surface exceed the zero temperature values of the cited calculations. This temperature effect
seems to be small yet the experimental data are comparable to those from DFT or the present
Brenner BOP. With the BOP we have carried out MD simulations at finite temperature as
presented below, which allows for some additional comparison with experiment.

In order to assess the transferability of the Brenner BOP, the energies per bond and near-
est neighbor distances of the Ir–C diatomic and the Ir–C crystal in NaCl structure have been
calculated. With the B3LYP functional a diatomic distance of 1.649 Å with a binding energy
of 6.43 eV and a ground state vibrational frequency of 1166 cm−1 have been reported [251],
which contrasts with the values of only 0.2 eV at a separation of 0.657 Å and a vibrational
frequency of 230 cm−1 as predicted by the current BOP. Clearly, the performance of the BOP
is poor in this situation which is rather different from the training set. We speculate that this is
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due to the ionic character of the molecule (Ir+C−), which can not be modeled explicitly by the
BOP. Slightly better results are obtained for the stoichiometric IrC compound in NaCl crystal
structure where the BOP predicts an energy per bond of 1.12 eV at a nearest neighbor distance
of 1.93 Å which we compare to 2.28 eV/per bond at a nearest neighbor distance of 2.06 Å
in the same structure, as obtained by ab initio linear-muffin-tin-orbitals total energy calcula-
tions [252]. These transferability problems are not unusual for semiempirical potentials [253],
but are particularly pronounced for the present parametrization despite its capability of reason-
ably reproducing the training set. Particular caution should therefore be used when using the
present Ir–C Brenner BOP in situations that are very different from graphene/Ir(111). A pos-
sible solution to these problems would be to attempt a new parameter adjustment of the BOP
for Ir-C, but including a dispersion correction that could be adjusted jointly with the BOP.
If the screened dispersion model of Eq. 2.47 was used, this would mean to add the screening
length rTF to the adjustable parameters of the force field.

5.1.2 Geometry of epitaxial graphene on Ir(111)
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Figure 5.2: Edge length of the graphene/Ir(111) moiré as a function of the inplane angle Θ
between the graphene and metal lattices obtained by a purely geometric model. Experimental
data from Loginova and coworkers [183] and Jean and coworkers [254] are superimposed. We
have designated the experimental structures by α, β, γ, δ and ε.

Before applying the Ir-C BOP in MD simulations on epitaxial graphene on Ir(111) at fi-
nite temperature, we investigate on possible inplane angles that produce commensurate moiré
structures of graphene/Ir(111). For this purpose, the algorithm introduced in chapter 2.6 is
employed for the 10 on 9 commensurability of graphene/Ir(111). Fig. 5.2 shows the size of
the moiré unit cell as a function of the inplane angle between the graphene lattice and the
triangular lattice at the Ir(111) surface. The figure also shows moiré structures that have been
observed experimentally [183, 254], designated by α, β, γ, δ and ε, which can be identified
with the (10×10)R0.00◦, the (

√
93×√

93)R38.95◦, the (4× 4)R0.00◦, the (3×3)R0.00◦ and the
(2×2)R0.00◦ moiré structure in Wood’s notation with respect to graphene which have inplane
angles Θ of 0.000◦, 2.362◦, 13.898◦, 19.107◦ and 30.000◦, respectively. The agreement between
the experimentally identified commensurabilities with the geometries detected with our geo-
metric procedure is striking. Some of the moiré structures (α, β and γ) have been studied in
more detail with the help of MD simulations at finite temperature.
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In order to avoid finite size effects, several moiré unit cells have been simulated in the
structures with non-zero inplane angle, so that the number of graphene unit cells was at least
equal to the number of graphene unit cells in the structure without inplane angle, that is 10×10.
In addition, lateral periodic boundaries were applied imposing a graphene lattice constant of
2.467 Å, which has been adopted from the DFT calculations on which the Ir-C potential was
parametrized [235]. The lattice constant of Ir is then determined by the particular moiré
structure as the Ir lattice needs to fit into the same simulation box. Below the epitaxial
graphene layer, three Ir(111) layers were included explicitly, while the downmost layer has been
kept fixed during the simulations. In a first step, the geometries were optimized locally before
using them as initial configuration for MD simulations that employed a 1 fs time step and were
propagated over 1.5 ns, with the first 0.5 ns disregarded as equilibration period. Using a Nosé-
Hoover thermostat, the simulations were performed in the canonical ensemble. The thermostat
was applied to the metal part of the substrate.

5.1.3 Effect of temperature on graphene/Ir(111)
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Figure 5.3: Graphene corrugation Δ′
gr and graphene-Ir(111) distance 〈zC,i〉− 〈zIr,i〉 versus tem-

perature for the case of aligned lattices and twisted graphene. For comparison, the corrugation
of free graphene is also shown.

During the simulations, the corrugation of the graphene layer was quantified by its standard
deviation of the out of plane distance of individual atoms (Δ′

gr). In addition, the average
spacing between the graphene layer and the Ir(111) (〈zC,i〉−〈zIr,i〉) surface was also monitored.
Fig. 5.3 shows these observables as a function of temperature for the three graphene/Ir(111)
moiré structure as well as the corrugation of a free graphene layer with a density at which
all strain vanishes at 0 K. Contrary to epitaxial graphene on Ru(0001), the epitaxial contact
with the Ir(111) does not flatten the graphene layer, which can be attributed to the very
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weak interaction for graphene on Ir(111). However, temperature affects the corrugation of free
graphene more than when the graphene is in contact with the Ir(111) surface. Regarding the
graphene corrugation, the differences between the three moiré structures are small and most
likely to be attributed to different strains exerted by the common simulation box. Size effects
are probably not the origin since larger system sizes tend to increase the corrugation. However,
the smallest system in terms of simulated C atoms (the α structure) has the largest corrugation.
Except for some anomaly for the α structure, the distance of the graphene layer from the Ir(111)
surface tends to increase slightly, yet this effect is rather negligible as the increase is only about
0.03 Å over a temperature range of 1000 K. Over the entire temperature range and for all the
three moiré structures, the spacing of over 3 Å is a clear indicator for the physisorbed state of
graphene on Ir.

In conclusion, despite the difficulties to include a dispersion correction for epitaxial graphene
on Ir(111) into the newly parametrized Ir–C BOP, the potential is able to describe reason-
ably well graphene/Ir(111). This is also exactly the system that was included into the fitting
database during parameter optimization. For systems departing from this geometry, especially
when small Ir clusters are involved, the Ir–C BOP exhibits some transferability problems.

5.2 Nickel–Carbon systems

The lattice constants of graphene and the Ni(111) surface lattice are very similar, which leads
to commensurate structures. In contrast to epitaxial graphene on most other transition metal
surfaces, usually no moiré effect is observed for nickel [32]. Even though the adsorption energy
of graphene on Ni(111) of 67 meV per carbon atom is in the range of physisorption, the
electronic structure shows clear signs of chemisorption [255]. In particular, the nickel 3d and the
graphene π bands are hybridized and a partial charge transfer of spin-polarized electrons from
nickel to carbon has been identified using x-ray magnetic circular dichroism and spin-resolved
photoemission measurements [256]. This spin-filtering effect induces a magnetic moment into
the graphene layer and may incidentally have interesting applications in spintronic devices.
Metal contacts (Ohmic or Schottky) are essential for graphene-based devices and in this respect
the metallic behavior of epitaxial graphene is promising [242].

There are three high symmetry geometries of commensurate graphene/Ni(111): The hcp-
fcc geometry, where the centers of the carbon rings in graphene are aligned with the topmost
Ni(111) layer; the top-hcp geometry, where the carbon atoms sit on top of nickel atoms either
from the first or the second Ni(111) layer; and the top-fcc geometry, where the atoms in the
graphene layer are aligned with the atoms of either the first or the third Ni(111) layer. LEED
measurements suggest that the top-fcc configuration is the most stable [250]. Furthermore, the
authors observed a distance of 2.11±0.07 Å from the graphene layer, but with a slight difference
in spacing of 0.05 Å for the two sublattices of graphene. Models of these three structures have
been considered by several authors [250, 255, 257], however intermediate structures where the
center of the carbon-carbon bonds are aligned with the first Ni(111) layer have also been
proposed based on experimental data [258].

Janthon and coworkers carried out local structural optimizations of the top-fcc, the bridge-
top and the hcp-fcc geometry using a number of van der Waals or dispersion-corrected function-
als [68]. The authors found significant differences in the results concerning adsorption energy
and the spacing of the graphene layer. On the basis of comparisons with experimental data,
they concluded that the optB86b-vdW functional and Grimme dispersive corrections resulted
in the best predictions [68]. Additional precise data for the graphene/Ni(111) system were
reported by Mittendorfer and coworkers at the DFT random phase approximation (RPA) level
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of theory [255]. Their calculations predict two potential energy minima for the graphene layer,
namely one at 2.17 Å from the Ni surface with 67 meV per carbon atom and another at 3.3 Å
bound by 60 meV/C atom. The minima were found in the top-fcc and the top-hcp structure,
however the closer minimum to the metal surface was slightly deeper in the case of the top-fcc
structure compared to the top-hcp structure. Despite a low adsorption energy, the electronic
structure of graphene is strongly affected by the epitaxial contact in the case of the closer min-
imum. Furthermore, these results clearly showed that simple LDA or GGA/PBE calculations
are not reliable for this system [255].

The solubility of carbon atoms in bulk nickel is higher than for the other transition metals
(Pt, Ru and Ir) discussed in this thesis [259]. This means that at high temperature con-
siderable amounts of carbon may dissolve into the nickel surface. Upon cooling the carbon
tends to segregate to the surface again and form several layers of graphene depending on the
amount of carbon available. The interaction strength of epitaxial graphene also depends on
the amount of carbon present in the underlying bulk metal. It has been shown that higher
carbon concentrations reduce the adsorption energy of graphene [240]. This makes the forma-
tion of epitaxial graphene/Ni(111) with non-zero inplane angles more likely, as it is a general
trend that weaker interactions of epitaxial graphene layer promote the formation of different
rotational domains [32, 240, 259]. Such domains have been observed in epitaxial graphene on
Ni(111) using room temperature STM: Murata and coworkers identified two moiré structures
of graphene/Ni with inplane angles of 6.4◦ and 23◦ [242].

The calculations cited above showed that the results often depend on the details of the
corresponding models, which makes computationally highly intensive methods such as RPA
necessary [255]. Unfortunately, with these calculations only local relaxations representing the
usual situation at zero temperature can be carried out. We attempt to address the effect of
temperature on these systems with the help of MC simulations based on a TB approach that
we present in the following section.

5.2.1 Tight-binding within the fourth moment approximation

The calculations on the Ni-C system are carried out using the TB model of Amara and cowork-
ers [237]. The method takes the electronic density of states up to the first four moments
into account and is therefore referred to as fourth-moment approximation to the tight-binding
model (TB-FMA). In comparison to the BOP model that has been used throughout the rest of
this work, this TB approach has the advantage of being less empirical and therefore of higher
predictive power. In addition, Los and coworkers [260] developed a particularly efficient imple-
mentation of the potential in the form of a MC code, so that the computational cost of this
TB model is only one order of magnitude higher than the one for the TB-SMA potential. In
the following, we give a brief description of the TB-FMA potential, more details, especially on
the efficient implementation and the potential parameters, can be found in Refs [237, 260].

The basis set of atomic orbitals contains the 2s and 2p states of carbon as well as the
d states of nickel and is written as |k, λ〉 with k the atomic site and λ the orbital index,
(λ = s, px, py, pz, dxy, dyz, dzx, dx2−y2 , d3z2−r2). Direct overlap integrals (〈i, λ|j, μ〉 = δijδλμ) and
three-center integrals are neglected. The Hamiltonian H takes the form of a matrix containing
the hopping integrals βkλ,jμ:

βkλ,jμ = Hkλ,jμ = 〈k, λ|H|j, μ〉 for k �= j, (5.1)

which can be expressed as function of the Slater-Koster parameters [261]. The on-site elements
are assumed to be equal to the atomic levels εkλ: Hkλ,kμ = εkλδλμ. For carbon (nickel), εs and
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εp (εd) had to be determined.

These considerations on the electronic structure can be used in the following atomistic
description. The total energy is written as a sum over all atoms k, containing each an attractive
term corresponding to the band energy Ek

band in the TB model and an empirical repulsive term
Ek

rep:

E =
∑
k

Ek
band + Ek

rep. (5.2)

The band energy in turn is expressed as an integral over the local electronic density of states
nk(E):

Ek
band =

∫ εF

−∞
(E − εk)nk(E)dE, (5.3)

where εF denotes the Fermi energy and εk the energy of atomic level k. The total density of
states is defined as

n(E) =
2

N

∑
N

δ(E − En), (5.4)

where N is the total number of atoms and the factor two has been introduced in order to
account for spin degeneracy. The eigenvalues of the Hamiltonian matrix H are designated by
En. Equivalently, the sum over the eigenvalues of H can be replaced by its trace:

n(E) =
2

N
Tr δ(E · Id−H), (5.5)

where Id denotes the identity operator. Using δ(z) = limε→0+
(−1/π Im [z + iε]−1) as an

expression for the Dirac delta distribution, and introducing the Green’s function operator
G(z) = (z · Id−H)−1, one can write:

n(E) = − 2

Nπ
Tr lim

ε→0+
ImG(E · Id + iε) (5.6)

The local density of states for orbital λ can be obtained by projecting G on |kλ〉:

nk,λ(E) = − 2

π
lim
ε→0+

ImGkλ,kλ(E · Id + iε), (5.7)

where Gkλ,kλ designates a diagonal element of the Green’s function. These elements can be
obtained using the recursive Lanczos tridiagonalization transformation, which allows to rewrite
Gkλ,kλ as the following continuous fraction:

Gkλ,kλ(z) =
1

z − akλ1 − (bkλ1 )
2

...z−akλM −(bkλM )
2 ∑

M (z)

, (5.8)

where the coefficients akλi and bkλi =
(
βkλ
i

)2
correspond to the diagonal and the squares of the

off-diagonal elements of the tridiagonal Hamiltonian matrix, respectively. These coefficients
are also related to the moments of the electronic density of states. In the TB-FMA model,
the coefficients up to M = 2 are considered as they depend on moments lower or equal to the
fourth. Higher order coefficients are taken to be equal to the ones of M = 2. This allows to
find a particularly simple expression for the local density of states.

The repulsive part of the potential Ek
rep is expressed as a functional F of a repulsive pair
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potential φ:

Ek
rep = F

[∑
j �=k

φ (rjk)

]
(5.9)

where rjk stands for the distance between atom j and k. In the case of carbon-carbon in-
teractions, the functional takes the form of a fifth order polynomial and φ the following pair
form:

φ(r) = φ0(d0/r)
mexp{m [−(r/dc)

mc + (d0/dc)
mc ]} (5.10)

In the case of pure nickel or nickel-carbon repulsion, the pair potential Ek
rep takes the Born-

Mayer form, similarly to the repulsive part of the TB-SMA potential. The parameters were
adjusted in order to reproduce certain reference data. In the case of carbon, these data are
obtained from ab initio full potential linearized muffintin orbital calculations on a C3 linear
molecule, an infinite linear chain, a graphene sheet, diamond, simple cubic, and facecentered-
cubic structures [237]. In the case of pure Ni, the data correspond to the experimental values
of the lattice parameter, of the cohesive energy, and of the elastic moduli [237]. Finally, the
parameters for the repulsive term of the Ni–C interactions were adjusted to ab initio data (lattice
constant, bulk modulus and enthalpy of formation) of the hypothetical NaCl structures [237].

5.2.2 Simulation details

The TB model described above has already been successfully employed in grand canonical
MC simulations on the growth of epitaxial graphene on Ni(111) [237], the catalytic nucleation
of carbon nanotubes [237] or the diffusion mechanism of Ni NPs on graphene [260]. Using
the same model, the growth mechanism of graphene on Ni(111) has been identified to follow
the sequential addition of C-hexagons, which leads to a defect-free graphene adlayer [239].
Furthermore, it turns out that defects in the graphene layer heal at faster rates thanks to
the epitaxial contact with a Ni(111) surface [238]. The Ni(111) surface acts as a catalyst for
the formation of graphene and up to a certain hydrocarbon pressure leading to a self limiting
growth [240]. The epitaxial graphene layer in turn leads to a depletion of carbon atoms between
the uppermost two Ni(111) layers. When the hydrocarbon pressure is further increased, the
interaction strength of epitaxial graphene diminishes and eventually additional graphene layers
may form. In the regime of high hydrocarbon pressures where the interaction with the Ni(111)
is reduced, the likelihood of the formation of twisted graphene increases [240].

We use MC simulations in the canonical ensemble in order to assess the effect of temper-
ature of epitaxial graphene on Ni(111) as well as the thermal stability of Ni adsorbates on
freestanding graphene as compared to graphene/Ni(111). During all calculations, rectangu-
lar periodic boundary conditions were applied, with a simulation box size that was adjusted
to fit the graphene layer without producing any strain at zero temperature. The graphene
layer consisted of 10×10 unit cells containing two carbon atoms each. In the case of epitaxial
graphene three additional Ni(111) layers with 100 Ni atoms each were taken into account, with
the downmost layer being kept fixed. For the simulations at finite temperature, a total of 105

MC sweeps (over each atom) were carried out while the first 4× 104 sweeps where disregarded
as equilibration steps.

5.2.3 Epitaxial graphene on Ni(111)

In agreement with the above mentioned DFT-RPA calculations [255], the TB-FMA model for
Ni–C predicts that the top-fcc geometry of the graphene/Ni(111) is the most stable struc-
ture [257]. Therefore the MC simulations at finite temperature have been based on this geom-
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etry. In addition, we considered a graphene/Ni(111) geometry with an inplane angle of 15.2◦.
This structure contained four moiré unit cells each with 43 graphene unit cells and therefore a
total of 344 C atoms, as compared to the graphene/Ni(111) geometry with zero inplane angle
with 200 C atoms. In contrast to the other moirés of epitaxial graphene, the commensurability
of the zero inplane structure of graphene/Ni(111) allows to construct geometries of non-zero
inplane angle with the same almost vanishing strain. This makes the results on the aligned
structure more comparable to the ones with twisted graphene, since no additional effect of
strain comes into play. However, the system size may still have an effect, but it turned to be
rather small in similar systems (see Fig. 4.10).
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Figure 5.4: Graphene corrugation Δ′
gr and graphene-Ni(111) distance 〈zC,i〉 − 〈zNi,i〉 versus

temperature for the case of aligned lattices (no moiré) and twisted graphene (moiré effect) for
graphene/Ni(111). For comparison, the corrugation of free graphene with the same density is
also shown (also calculated with the TB-FMA model).

During the simulations, the corrugation of the graphene layer defined as the standard devia-
tion of the distance of the carbon atoms perpendicular to the plane of the layer was monitored
as well as the average spacing of the graphene from the Ni(111) surface. The data concerning
the geometry with zero inplane angle as well as the structure with an inplane angle of 15.2◦

are shown in Fig. 5.4. For comparison, the figure shows also the corrugation of a free graphene
sheet with the same surface density. The epitaxial contact with Ni(111) appears to decrease
the corrugation of the graphene significantly for both the aligned and twisted structures, and
does not vary significantly with temperature. This is similar to the prediction that we previ-
ously obtained for graphene/Ru(0001). In addition, the spacing between the graphene layer
and the Ni(111) surface depends little on temperature up to 1000 K and is for both of the
structures close to 2 Å. Compared to the aligned structure, it seems though that the spacing in
the case of twisted graphene is slightly reduced while its corrugation is increased, especially at
low temperature. The main goal of this calculation was to find out about the effect of temper-
ature on these two observables of epitaxial graphene on Ni(111), and it seems that it is fairly
low up to 1000 K. This could indicate that the detailed calculations carried out at RPA level
at zero temperature [255] can be compared directly to experimental data obtained at finite
temperature.
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5.2.4 Ni adsorbates on free and epitaxial graphene

The TB-FMA model for Ni–C was next applied to Ni NPs in contact with graphene either
in its freestanding form or in epitaxy on Ni(111), i.e. using the system discussed above as
a substrate. Supported Ni NPs on graphite may be produced experimentally with a narrow
size distribution, which may be useful for the investigation on their size-dependant magnetic
properties or for the catalysis for the size-selective growth of other nanomaterials [262]. It has
also been shown that Ni NPs may destroy Ni supported graphene [263], most likely because the
adsorbates increase the graphene-Ni(111) interaction significantly [264]. This process may find
future applications in the production of nanopatterned substrates where Ni adsorbates could
be used to introduce holes into the graphene layer.
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Figure 5.5: Thermal stability of Ni38 and Ni201 on graphene, quantified by (a) δintra; (b) δinter,
as obtained from MC simulations using the TB-FMA model for Ni-C.

MC simulations using the TB-FMA model above have been carried out on Ni NPs deposited
on graphene. The two Wulff sizes of 38 and 201 atoms with truncated octahedral shapes were
considered. The internal thermal stability of the adsorbates and their stability on the graphene
surface has been monitored by the Lindemann indices δintra and δinter as defined in Eqn. (2.61)
and (2.62), respectively. Fig. 5.5 shows these observables as a function of temperature for the
two adsorbate sizes.

As suggested by the comparatively low values of δinter, the center of mass of both NPs does
not move significantly relative to graphene over the entire temperature range up to 1500 K.
The larger adsorbate remains also internally relatively rigid, whereas the smaller Ni38 cluster
reorganizes into a two-layer shape as the temperature exceeds about 1000 K. Fig. 5.6 shows
the initial and final geometries of the Ni38 and the Ni201 on graphene for the MC simulations
at 1500 K.
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(a) Ni38 initial

(c) Ni201 initial

(b) Ni38 final, T=1500K

(d) Ni201 final, T=1500K

Figure 5.6: MC snapshots of truncated octahedral Ni NPs on graphene. (a) initial geometry
of Ni38 on graphene, (b) final geometry of Ni38 on graphene at 1500 K, (c) initial geometry of
Ni201 on graphene, (d) final geometry of Ni201 on graphene at 1500 K.
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Figure 5.7: Thermal stability of the Ni38 cluster deposited on epitaxial graphene on Ni(111),
as quantified in the MC simulations by the Lindemann indices δintra and δinter.

These results are to be compared with Ni adsorbates on graphene/Ni(111). For this system,
only the smaller adsorbate was examined. Fig. 5.7 shows the variation of the two Lindemann
indices with temperature. Both of them show very similar trends. Comparing the stability
of the cluster on graphene/Ni(111) to the previous case of bare graphene support, no major
difference can be found. However, the internal stability of the cluster is enhanced with respect
to the cluster on graphene. Nonetheless, the reorganization into a two-layer structure at around
1000 K still occurs. In conclusion, the alteration of the epitaxial graphene layer on Ni(111)
by Ni adsorbates reported by Lahiri and Batzill [263] could not be reproduced. This might
be due to too short simulation times, however a more detailed analysis in this direction would
be useful as other experiments showed more interesting properties of Ni adsorbates interacting
with epitaxial graphene on Ni: In particular, it has been shown that Ni NPs in contact with
graphene have the property to act as a chemically driven knife that cuts graphene into ribbons
or triangular patches. Furthermore, the cutting directions, along armchair or zigzag edges,
are believed to be determined by the size of the NPs [265]. Although we did not seek to find
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evidence for this particular mechanism here, it would be interesting to see whether the TB-FMA
potential is able to model such processes.
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Chapter 6

General conclusion

This work was concerned with nanopatterned moiré substrates of epitaxial graphene on transi-
tion metal surfaces. We have studied these materials as a support for the deposition of metallic
clusters comparing their influence on the clusters to pure carbon substrates such as graphene
and graphite. The research was carried on the basis of atomistic computer simulations of
these systems at finite temperature. These simulations rely on the description of the atomic
interactions, which have been modeled by means of bond-order potentials (BOPs). However,
it turns out that dispersion forces influence significantly the structure and dynamics of epi-
taxial graphene on metal (GOM) and adsorbates thereon. Therefore, we added a Grimme
style dispersion correction [76], commonly used in combination with DFT calculations, to the
semi-empirical BOP. In terms of methodology, our contributions concern the development of a
coarse-grained description of the dispersion forces in the case of semi-infinite layered substrates
based on ideas of Steele [116]. Furthermore, for the modeling of Ru-C and Ir-C systems, we
present parametrizations of the Brenner BOP [101] that describe the covalent and metallic
interactions. Finally, these models have been successfully applied to the systems cited above.
The effect of different versions of the dispersion correction was studied in detail at the example
of Pt-C systems for which a Brenner BOP is available in the literature [96]. The work on Ru-C
systems was more concerned with the description of the covalent and metallic interactions by
the BOP, nonetheless dispersion corrections have been applied also for this type of systems.
For both types of systems, Pt-C and Ru-C, the effect of temperature on epitaxial graphene and
adsorbates on carbonaceous substrates has been studied revealing interesting diffusion mech-
anisms. Similar, yet less detailed calculations have also been carried out for Ir-C and Ni-C
systems using a more precise TB model in the case of the latter. In the following, we recall the
main ideas behind the coarse grained dispersion corrections, the most important properties of
the BOP parametrizations and the principal results concerning GOM and metal adsorbates on
carbonaceous substrates.

Modeling dispersion in adsorption phenomena on semi-infinite substrates

London dispersion forces are an essential ingredient of sorption phenomena, and are expected
to play a particularly important role for adsorbates on semi-infinite substrates. The contribution
of long-range van der Waals attraction in DFT is one of the most active topics in this field,
and to a large extent this issue is also problematic in atomistic simulations relying on explicit
potentials that model the metallic and covalent parts of chemical bonding. We have addressed
this issue in the case of transition metal NPs deposited on pure carbonaceous substrates such
as graphene or graphite or epitaxial graphene on a bulk metal. This correction for a bulk
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substrate is especially relevant for the non-covalent contribution to binding because the BOP
ignores those contributions that lie beyond its cut-off. In the case of epitaxial graphene, the
model was modified to account for possible screening effects that convey empirically the non-
additive nature of the van der Waals interaction over an electronically delocalized bulk medium.

Our approach is similar to the explicit Grimme scheme that considers atom-atom van der
Waals interactions that add up to the covalent and metallic part. However, in the same spirit
as the Steele potential for substrate-atom interactions, we have also considered further the
possibility of coarse-graining this long-range contribution by integrating them rigorously over
the semi-infinite layered substrate.

The model was tested for platinum NPs on carbonaceous substrates and epitaxial graphene
on Pt(111), using the BOP for the Pt-C system developed and parametrized by Albe and
coworkers [96]. In the static limit for adsorption on graphite we find a good agreement between
the explicit (Grimme D2) and coarse-grained implicit models for the adsorption energy of
NPs containing up to several thousand atoms, and comparison with available DFT data for
the smaller adsorbates is also satisfactory. When used at finite temperature with molecular
dynamics (MD) simulations, the explicit and coarse-grained models exhibit some dissimilarities,
with a stronger tendency for wetting in the latter case and less diffusion over the substrate.
This behavior was interpreted as due to a slightly stronger physisorption in the implicit model,
whereas interactions are neglected in the explicit approach beyond the simulation cell. The
resulting difference between the models, which amounts to approximately 20 meV/atom in the
adsorption energies, should obviously decrease in larger simulation supercells and bring the
predictions of the explicit model closer to those of the coarse-grained model. The rate at which
the two models converge would be worth investigating in the future, as it would also provide
useful information for the DFT community about the importance of those corrections that are
no longer minor once integrated over the (true) infinite substrate.

Some limitations in our modeling could be noted in the case of graphene, where for large
adsorbed NPs the deformation of the carbon monolayer compromises the planar approximation
employed in the integrated dispersion correction. Although large NPs deposited on pristine
graphene may be more of academic interest, one possibly general way of addressing this issue
could be to use the implicit model only beyond the simulation cell box, and keeping an atomistic
description within it. Under such hybrid models, and as with other boundary problems in
multiscale approaches the transition between the atomistic and coarse-grained contributions
should be carefully chosen. In the case of bulk substrates, the implicit model seems to be
generally valid, although ultimately the accuracy of its predictions should be evaluated against
experiment rather than electronic structure calculations (especially those lacking screening),
the underlying model being semi-empirical instead of ab initio based.

One immediate application of the coarse-grained model would be the determination of op-
timal shapes for NPs containing typically a hundred atoms and placed on the deformable
carbonaceous substrate discussed in the present work. Global optimization would be useful
notably for particles on epitaxial graphene, owing to promises in magnetic storage of such ma-
terials [4, 19, 47]. One other important application of the model could be to treat larger 2D
assemblies of many adsorbates. At equilibrium, the stable patterns adopted by the assemblies
should not only depend on the substrate (and the possible presence of a moiré nanomesh) but
also on the adsorbate itself, as well as other external factors such as diffusion, adsorption or
thermal desorption [15]. Long-range forces could also contribute to stabilizing the assemblies
and should be incorporated in the model as well. Assemblies of NPs on surfaces could be de-
scribed at a fully atomistic level, but also in a more global fashion by extracting the effective
interactions between the NPs at finite temperature and plugging those into a coarse-grained
model whose evolution is ruled e.g. by dissipative particle dynamics [266].
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Platinum-carbon systems

The model was used to describe epitaxial graphene on fcc platinum, and notably the moiré
patterns that such two lattices produce when in contact with one another due to their incom-
mensurability. In the case where the moiré is altered by some inplane angle, the geometric and
finite temperature properties of those patterned substrates were found to depend non trivially
on this angle. The corrugation of the graphene layer and its separation to the uppermost metal
layer were found to be comparable to existing reference data, provided that the dispersion in-
teractions are properly screened: An optimal screening length was evaluated to be as low as
2.9 Å. The vibrational spectra in the region of the Raman G peak of graphite, as obtained with
a complete account of anharmonicities through the velocity time correlation function, were
found to display also notable shifts and variations with temperature and the inplane angle.
Those predictions, which should be amenable to comparison with experiment, highlight the im-
portance of compressive or stretching strain exerted at the metal/carbon contact in the moiré
pattern. Diffusion mechanisms on the graphite substrate were found to proceed via truncated
Lévy flights, as previously identified in the literature [42, 155, 156].

The dynamics of Pt adsorbates on epitaxial graphene was also investigated and shown
to be similar to that on graphite, again with sensible dynamical differences arising from the
nature of the dispersion correction employed in the modeling. In particular, only the most
realistic dispersion model that accounts for non-additive screening effects suggests that the
graphene layer with the adsorbates should thermally desorb above 1000 K, the adsorbates
being excessively pulled to the substrate in absence of screening.

It would also be worth extending the Pt-C model to treat additional hydrogen atoms, which
would imply some further parametrization for terms involving hydrogen and platinum atoms
(the Brenner model can be readily used for C-H atoms). Such an extension would pave the way
to model hydrocarbon molecules on metal surfaces, for which the concerted effects of covalent
and van der Walls forces have been discussed at length [267], including the specific issue of
screening. It could then become necessary to account for charge transfer and polarisation effects
more explicitly (at least those leading to the multipolar nature of the adsorbed molecules), which
would also imply considering the possible effect of image charges.

Ruthenium-carbon systems

We have developed an atomistic potential of the bond-order, Brenner-type family to simulate
ruthenium NPs on epitaxial graphene on ruthenium, and more generally on carbonaceous sub-
strates such as graphene or graphite. Based on existing potentials for pure carbon or ruthenium,
the potential was carefully parametrized on dedicated electronic structure data for reference
structures particularly including epitaxial graphene [201, 206]. Except for very small adsor-
bates or adatoms, the potential is accurate and can be further improved to include dispersion
corrections in the empirical pairwise format made popular by Grimme [76]. Without additional
fitting parameter, the dispersion-corrected BOP also reproduces existing electronic structure
properties likewise evaluated by taking dispersion effects into account [67].

Also for epitaxial graphene on Ru(0001) dispersion forces turn out to be rather significant
in binding the graphene layer to the Ru(0001) substrate, but also for the interaction between
the NPs and the substrates, increasing the adsorption energy by a typical order of magnitude
in the latter case. The thermal stability was addressed by carrying MD simulations, from
which specific dynamical properties were also inferred such as the diffusion constant of adsor-
bates or the main vibrational frequency corresponding to the Raman G band of graphene. Ru
NPs soft-landed on graphite were found to diffuse quite significantly, which agrees with earlier
experiments on other NPs [41] and our own results on platinum.
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Application of the present models to epitaxial graphene on Ru(0001) under different com-
mensurate ratios reveals moiré structures that are in good agreement with existing DFT calcu-
lations or available measurements. Some properties, such as the corrugation of the upper metal
layer, were found to agree best only once thermal effects were taken into account. Although size
effects were not generally found as significant, the strain resulting from employing a common
simulation cell for the two materials was identified as a very sensitive issue notably influencing
the corrugation and the vibrational response.

Ru NPs on epitaxial graphene on ruthenium were also found to be thermally much more
stable than when adsorbed on graphite. To the price of some internal structural rearrangements
upon deposition, the annealed NPs diffuse less and remain solid at high temperatures under the
nanosecond time scale. This observation remains valid in absence of dispersion interactions,
although some differences in the internal isomerization dynamics and in the onset of global
mobility were noted. Those changes in the dynamical behavior suggest different underlying
energy landscapes depending on the magnitude of dispersion forces. Characterizing those land-
scapes could be valuable in the future in order to rationalize the simulation results. Another
natural extension worth considering could be to determine the relative thermal stability of the
deposited NPs on different moiré structures with different commensurabilities or originating
from different relative orientations between the two lattices. In particular, it is unclear whether
such strong stabilities would remain in moirés with larger periodicities associated with lesser
buckling.

Additional applications of interest for the present BOP include bilayer graphene on Ru(0001),
where several rotational domains with different properties have been evidenced experimen-
tally [193, 200, 209, 210, 212]. Local defects in the substrate, especially in the case of graphite,
could also alter the diffusion rates of adsorbates [141, 157], promote pinning and thus enhance
their stability. This is notably relevant in the context of magnetic storage or catalysis, where
coalescence between the deposited NPs should be avoided.

Other transition metal-carbon systems

Another parametrization of the Brenner BOP has been attempted on the basis of a reference
structure of epitaxial graphene on iridium obtained in dispersion corrected electronic structure
calculations [235]. The reproduction of the reference structure of graphene/Ir(111) is reasonable
as well as the behavior of the system in MD simulations at finite temperature. Difficulties were
related to the very weak interaction of graphene with the Ir(111) support caused by dispersion
forces. However the dispersion model developed in this work could not be applied in order
to avoid double counting of these forces since they had already been included in the DFT
calculations that served as a training set for the parametrization of the BOP. Therefore, the
effect of long-range dispersion interactions could not be assessed in the case of these systems.
In addition, the Ir-C BOP turned out to be less reliable for the description of Ir adsorbates,
especially small ones, on carbonaceous substrates.

Epitaxial graphene on Ni(111) and Ni adsorbates thereon as well as on free graphene have
been studied with the help of the TB-FMA model [237, 260] in MC simulations. In contrast
to the other epitaxial graphene on transition metal structures discussed in this work, graphene
on Ni(111) forms mostly (for zero inplane angle between graphene and Ni(111)) commensurate
structures. Geometrically, this has the interesting effect that the artificial strain on the graphene
layer exerted by the common simulation box, that had to be taken into consideration in the case
of the other metals, is independent of the inplane angle. This allowed to discuss the influence
of the pure moiré effect for non-zero inplane angles in comparison to the aligned commensurate
structure. Furthermore, comparing the thermal stability of Ni adsorbates on free graphene
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with those on epitaxial graphene on Ni(111), it was found that their internal stability may
be increased due to the epitaxial contact of their supporting graphene sheet, even though the
TB-FMA model lacks an explicit account for long-ranged dispersion forces.

Perspectives

Experimentally, metal adorbates on GOM with unequal metals for the adorbates and the
epitaxial support have been studied [37]. The present model could be extended to describe
this type of systems. The description of the dispersion forces could be expected to be reusable
simply by adjusting the dispersion coefficients, while a new parametrization for the unequal
metal-metal interactions of the TB-SMA potential would be necessary. In a first attempt, such
parameter sets could be obtained using combination rules for the different coefficients or in a
more involved approach by carrying out full parameter optimizations on experimental or ab
initio data.

Future work could be devoted to constructing a coarse-grained model in order to treat entire
assemblies of NPs over more realistic time and length scales than those covered at the present
atomistic level. Coarse graining could be attempted at different levels: Most straight forward
might be the inclusion of the covalent forces into an implicit model as we did in this work for
dispersion forces so that the interaction of the atoms of the nanoparticles with the substrate
would be described by the coarse grained model only. In addition, the specific coalescence
mechanisms could be addressed by performing biased simulations and determining the effective
interactions (potential of mean force), which would subsequently feed the coarser model through
stochastic dynamics.

It would also be instructive to carry out a more detailed analysis of the vibrational spectra
of epitaxial graphene. In this work, we identified the G peak in the spectra and considered
the effect of system size, temperature and strain on its frequency. However, graphene spectra
have many other features that allow experimentally to assess graphene quality (defects) or the
number of epitaxial layers [171]. It would be interesting to identify other peaks and study the
dependency as a function of these system features with the present model.
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[79] P. Jurečka, J. Černý, P. Hobza, and D. R. Salahub, “Density functional theory augmented
with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent
complexes compared with ab initio quantum mechanics calculations,” J. Comput. Chem.
28, 555 (2007).

[80] P. L. Silvestrelli, “Van der Waals interactions in DFT made easy by Wannier functions,”
Phys. Rev. Lett. 100, 053002 (2008).

[81] A. Tkatchenko and M. Scheffler, “Accurate molecular van der Waals interactions from
ground-state electron density and free-atom reference data,” Phys. Rev. Lett. 102, 073005
(2009).

[82] R. Podgornik, R. H. French, and V. A. Parsegian, “Nonadditivity in van der Waals
interactions within multilayers,” J. Chem. Phys. 124, 044709 (2006).

[83] B. E. Sernelius and C. E. Román-Velázquez, “Beyond the simple proximity force approx-
imation: Geometrical effects on the nonretarded Casimir interaction,” Phys. Rev. A 78,
032111 (2008).

[84] J. Sarabadani, A. Naji, R. Asgari, and R. Podgornik, “Many-body effects in the van der
Waals–Casimir interaction between graphene layers,” Phys. Rev. B 84, 155407 (2011).

[85] C. Wagner, N. Fournier, V. G. Ruiz, C. Li, K. Müllen, M. Rohlfing, A. Tkatchenko,
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[223] D. Tománek, A. A. Aligia, and C. A. Balseiro, “Calculation of elastic strain and electronic
effects on surface segregation,” Phys. Rev. B 32, 5051 (1985).

[224] R. S. DaBell, R. G. Meyer, and M. D. Morse, “Electronic structure of the 4d transition
metal carbides: Dispersed fluorescence spectroscopy of MoC, RuC, and PdC,” J. Chem.
Phys. 114, 2938 (2001).

[225] R. Guo and K. Balasubramanian, “Spectroscopic properties and potential energy curves
of low-lying electronic states of RuC,” J. Chem. Phys. 120, 7418 (2004).

[226] E. Zhao, J. Wang, and Z. Wu, “Structural stability and phase transition in OsC and
RuC,” J. Comput. Chem. 31, 2883 (2010).

[227] H. Gao and J. Zhao, “First-principles study of Ru atoms and clusters adsorbed outside
and inside carbon nanotubes,” J. Chem. Phys. 132, 234704 (2010).

[228] A. Ishii, M. Yamamoto, H. Asano, and K. Fujiwara, “DFT calculation for adatom adsorp-
tion on graphene sheet as a prototype of carbon nanotube functionalization,” J. Phys.:
Conf. Ser. 100, 052087 (2008).

[229] K. Nakada and A. Ishii, “Migration of adatom adsorption on graphene using DFT calcu-
lation,” Solid State Commun. 151, 13 (2011).

[230] K. L. Man and M. S. Altman, “Small-angle lattice rotations in graphene on Ru(0001),”
Phys. Rev. B 84, 235415 (2011).

135



BIBLIOGRAPHY BIBLIOGRAPHY

[231] R. M. Nielsen, S. Murphy, C. Strebel, M. Johansson, J. H. Nielsen, and I. Chorkendorff,
“A comparative STM study of Ru nanoparticles deposited on HOPG by mass-selected
gas aggregation versus thermal evaporation,” Surf. Sci. 603, 3420 (2009).

[232] E. H. Martins Ferreira, M. V. O. Moutinho, F. Stavale, M. M. Lucchese, R. B. Capaz,
C. A. Achete, and A. Jorio, “Evolution of the Raman spectra from single-, few-, and
many-layer graphene with increasing disorder,” Phys. Rev. B 82, 125429 (2010).

[233] E. Sutter, P. Albrecht, B. Wang, B. M.-L., W. L., Z. Y., and S. P., “Arrays of Ru
nanoclusters with narrow size distribution templated by monolayer graphene on Ru,”
Surf. Sci. 605, 1676 (2011).

[234] B. Wang, B. Yoon, M. König, Y. Fukamori, F. Esch, U. Heiz, and U. Landman, “Size-
selected monodisperse nanoclusters on supported graphene: Bonding, isomerism, and
mobility,” Nano Lett. 12, 5907 (2012).

[235] N. Atodiresei, “Private communications,” (2014).

[236] F. Jean, T. Zhou, N. Blanc, R. Felici, J. Coraux, and G. Renaud, “Topography of the
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moiré on Ir(111),” Phys. Rev. B 88, 201406 (2013).

[250] Y. Gamo, A. Nagashima, M. Wakabayashi, M. Terai, and C. Oshima, “Atomic structure
of monolayer graphite formed on Ni(111),” Surf. Sci. 374, 61 (1997).

[251] J. Wang, X. Sun, and Z. Wu, “Theoretical investigation of 5d-metal monocarbides,” J.
Cluster Sci. 18, 333 (2007).
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