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Abstract

Ultracold atom-ion systems have been a topic of interest for atomic physicists
studying chemical reactions and since recently, the cold ion community (ion trap
quantum computation and simulation). They have been looking at the possibility
of using an ultracold atom gas to sympathetically cool ions since intrinsic mo-
tional modulation i.e micromotion is an inherent cause of decoherence in coherent
applications of cold ions. Interest is also piqued by the possibility of using this
hybrid system for studying impurity physics and to better understand ion-neutral
reactions aimed at creation of molecular ions.

In this thesis, we aim to study the effect of ion micromotion in atom-ion col-
lision. As a prelude, we treat the 1D collision of a particle in a harmonic trap
(ion) and a free particle (atom) using different numerical schemes. This system
is of interest in its own right due to the mixed 0D-1D dimensionality. Atom-ion
potential is simplified to a zero range potential all through out the work. Next
we deal with a similar problem but with the trapped particle in a time dependent
harmonic trap identical to an ion Paul trap. Finally we extend the study of mi-
cromotion to a model system in 3D with an ion in a 3D spherical Paul trap and a
heavy atom at the trap centre. We discuss the effect micromotion has on potential
applications of such a system, like a quantum phase gate.

Résumé

Les systémes composes d’atomes et d’ions ultrafroids one étés un sujet d’interet
pour les physiciens atomiques et, plus récemment, pour la communauté des ions
froids (simulation et calcul quantique avec des ions piégés). Ils sont considéré
la possibilité d’utiliser un gaz d’atomes ultrafroids pour refroidir sympathetique-
ment les ions car la modulation intrinséque du movement, le micromouvement,
représente une source de décohérence dans les applications des ions froids. L’interet
envers ce systéme mixte est aussi movité par I'étude de la physique d’impuretés
et par une meilleure comprehension des réactions entre espéces ioniques et neutre
ayant pour but la création d’ions moléculaires.

Cette these a pour objectif d’étudier les effets du micromouvement dans les
collisions atome-ion. Nous traitons au préalable les collisions & 1D d’une particule
dans un piége harmonique (un ion) et d’un particule libre (une atome) en utilisant
différentes approches numériques. Ce systéme est intéressant en soi en raison de
la dimensionnalité miste 0D-1D. Le potentiel atome-ion est modélisé par une in-
teraction a portée nulle tout au cours de ce travail. Par la suite, nous traitons
un probléme similaire mais dans le cas d’une particule dans un piége harmonique
décrivant un piége de Paul. Enfin, nous généralisons I’étude du micromouvement
a un systéme modele 3D avec un ion dans un piege de Paul sphérique 3D et un
atome lourd au centre du piege. Nous discutons de 'influence du micromouvement
en vue d’applications potentielles de ce systéme telle que la porte logique de phase.
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Chapter 0

Résumé en Francais

‘avénement de mélasses optique et du refroidissement par laser, le développe-

ment ultime des piéges magnéto-optiques (MOT) servant & piéger et a re-
froidir les atomes ont suscité énormément d’intérét dans plusieurs domaines de la
physique. En effet, ces avancées ont mis en perspective le fait de pieéger un nombre
presque déterministe d’atomes ou d’ions par des champs électromagnétiques afin
d’étudier leur comportement quantique. Dés lors, le domaine de la physique des
atomes froids s’est enrichi d’applications potentielles et de tests de physique fon-
damentale allant de la métrologie aux communications quantiques, permettant la
simulation de phénomeénes fondamentaux repoussant ainsi les frontiéres du cal-
cul quantique et méme la simulation quantique de phénomeénes de haute énergie.
Le domaine de la physique des atomes froids englobe I'étude de différents sys-
témes comprenant des atomes, des molécules, des ions, des ions moléculaires, des
photons, les mélanges de différents atomes et également d’atomes et d’ions. Le
systéme hybride atome-ion a suscité énormément d’intérét puisqu’il était quasi-
inexploré jusqu’a une époque récente. Depuis peu, des propositions et des mises
en ceuvre de systémes hybrides de ce type émergent, couvrant un large variété
d’applications et de champs d’études.

Motivation

La plupart des propositions d’étude des systémes hybrides atome-ion exploitent
le potentiel de polarisation & longue portée et la richesse de la physique qui
sous-tend son utilisation. Il existe aussi des propositions de mise au point de
I’équivalent atomique d’une sonde de balayage afin de détecter les propriétés lo-
cales des atomes ultra-froids [1,2]. La forte interaction atome-ion porte en elle la
possibilité d’échange de charge au sein du systéme hybride [3,4], et de ce fait ont
été étudiées par ailleurs les transitions de phases entre des états isolant et conduc-



0. RESUME EN FRANCAIS

teur [5]. L’utilisation de systémes ultra-froids pour simuler la physique d’autres
systémes a toujours attiré 'attention et a cette fin il a été proposé d’utiliser des
systémes hybrides atome-ion pour simuler la physique de I’état solide, en faisant
interagir un gaz ultra-froid avec un cristal ionique linéaire [6]. Peut-étre que I'une
des premicéres idées consistant a utiliser un systéme hybride atome-ion a émergé de
I'exigence en calcul quantique des piéges ioniques de trouver des moyens de réduire
la décohérence. Le domaine des piéges ioniques dépend par nature étroitement du
temps et n’est pas conservatif, ce qui pose des problémes & ceux qui souhaitent
utiliser des états cohérents d’ions pour effectuer des opérations logiques quan-
tiques. Les idées consistaient initialement & utiliser un nuage d’atomes ultra-
froids comme un réfrigérateur pour refroidir les ions [7,8|. La communauté des
spécialistes en atomes froids est en général trés attachée a essayer de comprendre
les systémes condensés hétérogénes et comment les impuretés dans les systémes
ultra-froids peuvent étre utilisées a des fins utiles. Dans ce but, de nombreuses
expériences ont été réalisées, démontrant l'introduction d’impuretés controlées
dans de la matiére ultra-froide via I'immersion d’un atome neutre [9-11]| dans
un Condensat de Bose-Einstein, mais également d’un ion [27,28|. De nombreux
découvertes théoriques ont vu le jour ainsi que des propositions d’expériences au
sujet des impuretés ioniques dans les gaz dégénérés [12-16]. L’idée d’insérer une
impureté de forte interaction dans un gaz homogeéne ultra-froid va naturellement
motiver I’étude des polarons dans les gaz ultra-froids [17-20]. Il y a eu également
des propositions de mise en ceuvre de porte quantique atome-ion utilisant la phase
accumulée par la particule durant un transfert adiabatique selon des croisements
évités [38—40] dans des systémes liés accordables [37].

Ions piéges et micro-mouvements

Les piéges a particules chargées sont des systémes non-conservatifs dépendant du
temps, qui reposent sur une localisation basée sur un temps moyenné de 1'ion en-
trainant le piégeage. Cette particularité inhérente au piége est sujette a des micro-
mouvements de haute fréquence de la trajectoire de 'ion sur la partie supérieur
de l'orbite lent. Ce mouvement est entrainé par un champ de radio-fréquences
permettant un piégeage dynamique. Les micro-mouvements peuvent étre réduits
mais pas supprimés totalement. Bien que dans la plupart des calculs et simu-
lations théoriques I'impact de ces micro-mouvements soit négligé, en pratique il
n’est pas négligeable. Dans le meilleur des cas les expérimentateurs s’assurent que
l'ion est refroidi et que son micro-mouvement est réduit [103,104] avant de contin-
uer a utiliser I'ion pour des applications cohérentes. Les systémes atome-ion sont
particuliéerement intéressants a cause de la présence d’un potentiel d’attraction
a grande distance qui évolue en —Cy/(2r*) et la présence de micro-mouvements,



un artefact intrinseque aux champs de confinement dynamique utilisés pour 1’ion.
Les expériences impliquant un ion interagissant avec des gaz ultra-froids rappor-
tent des détails essentiels au sujet des effets des micro-mouvements, des sections
efficaces pour les collisions avec des potentiels de si longue portée, des échanges
in¢lastiques d’énergie entre les atomes et les ions, des échanges de charge, etc.
Bien que de nombreux aspects de la collision entre atomes et ions aient été
étudiés dans les régimes froid et ultra-froid [42-46], 'intérét d’un travail théorique
se penchant sur les effets des micro-mouvements n’a été suscité que récemment.
Aussi, bien que les mises en ceuvre expérimentales aient fait état d’effets dus aux
micro-mouvements, il existe relativement peu de littérature disponible au sujet
du traitement quantique complet des micro-mouvements dans les systémes hy-
brides atome-ion, excepté les travaux de Nguyen et al. [48] et de Krych et al. [47].
Dans [48], l'effet réel des micro-mouvements est moyenné sur la période de la
radio-fréquence utilisée, selon 'approximation harmonique fournie par Cook et
al. [51]. Ceci dans le but de réduire le mouvement de I'ion & une oscillation har-
monique efficace dont on se référera comme étant nommeée séculaire dans cette
these. Cette méthode offre ainsi une relative facilité de calcul numérique et une
base de comparaison par rapport a un oscillateur statique, isolant en un certain
sens l'effet des micro-mouvements. Ils rapportent la possibilité de mise en ceuvre
d’une porte de phase quantique en utilisant des passages adiabatiques. Krych et
al. [47] quant & eux fournissent une description compléte des micro-mouvements
et modélisent l'interaction d’un ion et d’'un condensat de Bose-Einstein. Les
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Figure 2 | Atom loss from a Bose-Einstein condensate due to collisions maximum-likelihood estimate is shown. b, Atom loss during sympathetic
with a single lon. The solid line is a fit using a theoretical model (Methods)  cooling. While the ion is hot, atom losses are small and the cooling rate
and is used to determine o, the cross-section for neutral-atom loss. Each approaches 1,000 vibrational quanta per collision. When the ion cools, it
data point is averaged over approximately 40 repetitions of the experiment  localizes inside the region of higher density and the atom loss rate increases.
and the standard error is given. The bare atom loss rate, that is, the lossrate  The standard errors are shown. Each data point is averaged over

without the ion present, has been subtracted. approximately 200 repetitions of the experiment.

Interaction time (ms)

Figure 1: Pertes d’atomes du condensat et refroidissement sympathique de I'ion,
d’aprés Zipkes et al. [27].

paramétres a et ¢ du piége a ion (Cf. Appendice.A.1) qui déterminent les con-
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finements statique et dynamique sont utilisés comme parameétres d’entrée. Ils ne
rapportent pas de refroidissement de 1’ion, excepté dans le cas ot le piége opére a
la limite de la zone de stabilité, 1 ou 'effet des micro-mouvements est prononceé.
D’autre travaux détaillent I'effet des micro-mouvements sur la collision entre un
atome et un ion en utilisant des approches classiques ou semi-classiques [49, 50].
Cetina et al. [49] effectuent un calcul classique dynamique afin d’estimer le travail
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trapped ion population and distribution is experimentally determined when

the ions are held in the trap without MOT atoms (red filled circles) and
N with MOT atoms (blue empty circles). (a) Plots the number of Rb* ion

5§43 2 | 0 counts as a function of 1. Without a MOT, the ions exit the trap rapidly,

whereas with cold atoms the ion loss is much slower and a stable number

of ions (187+9) is trapped without detectable loss beyond 7,22 min. The

inset in (@) shows the detail of the ion loss (red circles) when the ions are

held without the MOT atoms. This ions loss is fitted with a function (black

solid line) obtained by the Monte-Carlo model described in the text.

(b) lllustrates the variation of the FWHM of the ion ToF distribution

against Ty,. In the absence of the MOT atoms, the FWHM increases in

time as the trap empties out, the detail of which is shown in the inset.

In contrast, when ions are held with the MOT atoms, a systematic

atom number [v10H] decrease in the ion ToF distribution is seen, consistent with ion cooling.

For 7,22 min, when the trapped ion number has stabilized, the ToF

width is still decreasing indicating continued ion cooling, as illustrated

by a least square fit to the last six data points. The statistical s.d.e. bars

interaction time © |s]
(b)

FIG. 1. Atomic signals afler atom-ion interaction. (a) Evolution of atom num-
bers (upper panel) and atomic temperatures (lower panel) during interaction
with a single ion. The measurement was performed both for & < 0.1V/m
(blue data points) and for &, = 4V /m (black data points). (b) Histogram of 7€ Shown.

Figure 2: Perte d’atome et échauffe- Figure 3: Refroidissement d’un nuage

ment atomique, selon Hérter et al. [29]. d’ions, d’aprés Ravi et al. [31].

du champ sur l'ion. Ils incluent le potentiel réel atome-ion dans le probléme et
postulent que l'interaction du potentiel de polarisation de longue portée avec le
champ radio-fréquence de piégeage provoque le déplacement de I'ion du centre du
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piége et peut méme introduire des changements soudains dans la phase de 1'ion
au moment de collision.

Ils concluent qu’en raison de l'effet cumulé de ces facteurs, le refroidissement
sympathique des ions a une limite naturelle et est maximisé dans les cas ou la
masse de l'atome est inférieure a celle de ion. Chen et al. [50] arrivent a la
méme conclusion en utilisant 'approche d'une équation de taux, ou ils estiment
la distribution d’énergie de I'ion selon les trois dimensions spatiales en raison de
la collision.

Les expériences sur les systémes atome-ion [21 - 36| signalent également large-
ment le taux de pertes d’atomes du piége lorsque l'ion est introduit dans le nuage
atomique ultra-froid. Quelques mesures sont présentées sur les Fig.1.1, Fig.1.2 et
Fig.1.3.

Plan de la thése

Cette these fournit une approche plus directe dans le traitement des micro-
mouvements lors des collisions entre un atome et un ion en conservant la dépen-
dance temporelle mais en la transformant dans I’espace des fréquences et en util-
isant des méthodes standard de dynamique moléculaire quantique, comme la
propagation de la dérivée logarithmique pour résoudre 1’équation de dispersion
de Schrédinger. Le comportement en dépendance par rapport au temps des fonc-
tions d’onde des ions a été analytiquement et élégamment dérivé par Glauber [52]
et ces fonctions sont utilisées comme des fonctions asymptotiques pour le systéme
a micro-mouvements. Nous utilisons un potentiel atome-ion simplifié modélisé
par un pseudo-potentiel delta dans une dimension (Cf. Ch.3 et Ch.4) ainsi que
dans les trois dimensions (Cf. Ch.5). Bien qu'’il ne décrive pas exactement les
conditions réelles des expériences, ce potentiel sert a comprendre les effets de
micro-mouvements dépendant du temps tout en gardant raisonnables les temps
de calcul.

La thése commence par une bréve description des différentes méthodes numériques
utilisées. Le Chapitre 3 décrit une modélisation simplifiée de collision en une di-
mension entre un atome confiné dans une dimension mais pouvant s’y mouvoir
librement dans un guide d’ondes, et une autre particule dans un potentiel har-
monique monodimensionnel. Nous étudions les propriétés de diffusion et les état
liés du systéme. Dans le Chapitre 4, le systéme est alors étendu pour y inclure
une oscillation du potentiel harmonique dépendant du temps, dans une dimen-
sion. La nature du domaine temporel du piége & ion est transformé dans 1’espace
fréquentiel, ce qui permet d’analyser le spectre d’énergie de Floquet de I'ion. La
collision et les effets suivant ’échange inélastique d’énergie entre I'atome et 1’ion
sont étudiés dans des conditions de confinement fort ou faible de l'oscillateur.
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Les résultats obtenus sont examinés dans le contexte des résultats expérimentaux
disponibles et d'un travail théorique similaire.

La nature fondamentale des micro-mouvements entraine des limitations numériques
qui ne permettent pas de dépasser une certaine gamme de valeurs pour le paramétres
q qui peut étre artificiellement introduit pour étudier la physique dans des con-
ditions de confinement fortement dynamique. Un changement de coordonnées
a permis de résoudre le probléme, quoique partiellement. Dans les expériences
réelles le confinement de l'ion est presque exclusivement dynamique mais ce cas
est numériquement trés difficile a faire converger étant donné qu’'un tel systéme
subissant de forts micro-mouvements aurait une fonction d’onde de l'ion forte-
ment délocalisée et il faudrait une grille trés large dans la mesure o1 on garderait
constante la grille de densité de points. De tels problémes deviennent numérique-
ment énormes et ne permettent pas de converger. La perte progressive de conver-
gence avec*croisement des paramétres d’entrée est documentée pour ces méthodes
numériques.

Nous avons essayé d’étendre 1’étude d’'une a trois dimensions grace & une
méthode robuste de discrétisation par éléments finis d’ordre élevé des états liés
d’un ion en présence de micro-mouvements et interagissant avec un atome infin-
iment lourd au centre du piége. Un cylindre anisotrope de type piege de Paul
est utilisé pour modéliser le piége a ion et l'interaction atome-ion est modélisée
a nouveau par un pseudo-potentiel delta au lieu d’un potentiel de longue portée.
Puisque le probléme est résolu dans 'espace fréquentiel, la base du domaine de
fréquences et la base d’harmoniques sphériques utilisée pour décrire ce probléme
tridimensionnel rend le taille de matrice de probléme tres large. L’utilisation de
potentiel & longue portée aurait des limitations séveéres en terme d’espace mé-
moire, de temps de calcul etc. Le but est d’étudier les croisements évités et réels
des niveaux d’énergie de I'ion dans un tel piége en présence d’une interaction ac-
cordable en pseudo-potentiel delta au centre du piége. Les références existent qui
documentent bien 'utilisation de piéges séparés d’atomes et d’ions pour effectuer
des opérations de portes logiques lors des passages adiabatiques.

Ce travail de thése se termine par une conclusion et une annexe qui clarifient
la dynamique classique et la dynamique quantique d’un unique ion dans un piége
de Paul a une dimension. Etant donné que le mouvement de l'ion est séparable
en trois dimensions, le résultat de I'annexe peut étre généralisé a trois dimensions
pour comprendre le mouvement d’un ion dans un piege tridimensionnel.



Chapter 1

Introduction

he advent of optical molasses, laser cooling and eventual development of the

magneto-optical trap (MOT) to trap and cool atoms encouraged much inter-
est from many branches of physics since it presented the prospect of trapping an
almost deterministic number of atoms or ions with electromagnetic fields to study
quantum behaviour. Since then the field of cold atom physics has developed po-
tential applications and tests of fundamental physics ranging from metrology to
quantum communications, from simulating fundamental phenomena to help move
forward the frontier of quantum computation and even quantum simulations of
high energy phenomena. The field of cold atom physics has seen the study of
various types of systems including atoms, molecules, ions, molecular ions, pho-
tons, mixtures of different atoms and recently mixtures of atoms and ions as well.
The hybrid atom-ion system has sparked much interest since it had been fairly
unexplored until recent times, with proposals and implementations coming up for
using hybrid systems range over a wide variety of applications and fields of study.

1.1 Motivation

Most of the proposals on atom-ion hybrid systems exploit the long range polar-
ization potential and the rich physics that underlies its use. There are proposals
to build an atomic analogue of a scanning probe to sense the local properties of
ultracold atoms [1,2]. The strong atom-ion interaction carries with it the possi-
bility of charge exchange interactions in a system [3,4| and exploiting this, there
is a proposal to study transitions from insulating to conducting phases of mat-
ter [5]. Use of ultracold systems to simulate the physics of other physical systems
has always drawn attention and to this end there is a proposal to use atom-ion
systems to simulate solid state physics by having an ultracold gas interact with a
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linear ion crystal [6]. Perhaps one of the very first ideas to use atom-ion hybrid
systems came out of the demand in ion trap quantum computation community
to find ways to reduce decoherence. The ion trapping field by its nature is time
dependent and non-conservative which poses an issue to those wishing to use
coherent state of ions to perform quantum logic operations. The ideas initially
were to use an ultracold atom cloud as a refrigerator to cool the ions [7,8]. The
cold atom community at large is very keen on trying to understand heteroge-
nous condensed systems and how impurities in ultracold systems can be used for
fruitful applications. To this end, there have been experiments that have demon-
strated introducing controlled impurities in ultracold matter via immersion of a
neutral atom [9-11] in a Bose Einstein Condensate and also an ion [27,28|. There
have also been many theoretical findings and proposals on ionic impurities in
degenerate gases [12-16]. The idea of having a strongly interacting impurity in
a homogenous ultracold gas will naturally motivate the study of polarons in ul-
tracold gases [17-20]. There have also been proposals to implement an atom-ion
quantum gate using phase accumulated by the particle during adiabatic transfer
across avoided crossings [38—40] in tunable bound systems [37].

1.2 Trapped Ions and Micromotion

Charged particle traps are time dependent dynamical, non-conserved systems
that rely on time averaged localization of the ion leading to trapping. This in-
herent feature of the trap is prone to micromotion, a high frequency jitter of the
ion trajectory on top of the global slow moving orbit in the trap. This motion
is driven by a radio frequency field that gives dynamical trapping. Micromotion
can only be reduced but never avoided. Though in most theoretical calcula-
tions and simulations the effect of micromotion is neglected, in practice its effect
cannot. At the least experimenters ensure the ion is cooled and micromotion
is reduced [103,104] before continuing to use the ions for coherent applications.
Atom-ion systems are particularly interesting due to the presence of a long range
attractive potential between the atom and ion that goes as —C,/(2r*) and the
presence of micromotion, an intrinsic artifact of the dynamical confinement fields
for the ion. Experiments involving an ion interacting with ultracold gases report
vital details about the effects of micromotion, cross sections for collisions with
such long range potentials, inelastic exchange of energy between the atoms and
ion, charge exchange phenomena etc.

Though various aspects of atom-ion collision have been studied in the cold and
ultracold regime [42-46], interest in theoretical work on addressing the effects of
micromotion rose only recently. Although the experimental implementations re-
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port observation of effects due to micromotion, not much literature can be found
on the full quantum treatment of micromotion in atom-ion systems except for
Nguyen et. al. [48] and Krych et al. [47]. In [48], the true effect of micromotion is
averaged out over the time period of the radio frequency, using the harmonic ap-
proximation formulated by Cook et al. [51]. This is done to reduce the ion motion
to an effective harmonic motion, referred to as secular motion in this thesis. This
provides computational ease and a basis of comparison to a static oscillator, thus
in a sense isolating the effect of the micromotion.They report on the possibility
of implementation of a quantum phase gate using adiabatic transitions. Krych et
al. [47] on the other hand provide a full description of micromotion and model a
system of ion interacting with a Bose condensate. The ion trap parameters a and
q (See Appendix.A.1) that decide the static and dynamic confinement are used
as input parameters. They report no ion cooling, except for the case when the
trap operates at the edge of the stability region, where the effect of micromotion
is pronounced. Some literature exists that details the effect of micromotion on
atom-ion collision using classical and semi-classical approaches [49,50]. Cetina
et al. [49] perform a classical dynamical calculation to estimate the work done
by the field on the ion. They include the real atom-ion potential in the problem
and postulate that the interplay of the long range polarization potential and the
ion trapping rf field cause the ion to be displaced from the trap centre and even
introduce sudden change in ion phase at the instance of collision. They conclude
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Figure 2 | Atom loss from a Bose-Einstein condensate due to collisions maximum-likelihood estimate is shown. b, Atom loss during sympathetic
with a single lon. The solid line is a fit using a theoretical model (Methods)  cooling. While the ion is hot, atom losses are small and the cooling rate
and is used to determine o, the cross-section for neutral-atom loss. Each approaches 1,000 vibrational quanta per collision. When the ion cools, it
data point is averaged over approximately 40 repetitions of the experiment  localizes inside the region of higher density and the atom loss rate increases.
and the standard error is given. The bare atom loss rate, that is, the lossrate  The standard errors are shown. Each data point is averaged over

without the ion present, has been subtracted. approximately 200 repetitions of the experiment.

Figure 1.1: Atom loss from the condensate and ion sympathetic cooling, reported
by Zipkes et al. [27].

that due to cumulative effect of these factors ion sympathetic cooling has a nat-
ural limit and is maximized for cases where the mass of the atom is lighter than


Introduction/IntroductionFigs/01kohlresult1.eps

1. INTRODUCTION

the mass of the ion. Chen et al. [50] arr

ive at a similar conclusion using a rate

equation approach, where they estimate the energy distribution of the ion along

the three axes due to the collision.
Experiments on atom-ion systems [21
of atom loss from the trap, when the ion

- 36] also report extensively on the rate
is introduced into the ultracold atomic

cloud. Some of the measurements are shown in Fig.1.1, Fig.1.2 and Fig.1.3.
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FIG. 1. Atomic signals afler atom-ion interaction. (a) Evolution of alom num-
bers (upper panel) and atomic temperatures (lower panel) during interaction
with a single ion. The measurement was performed both for & < 0.1V/m
{blue data points) and for & = 4V /m (black data points). (b) Histogram of
Figure 1.2: Atom loss and atom heat-

ing, reported by Hérter et al. [29].
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Figure 4 | Experimental demonstration of ion cooling. Evolution of
trapped ion population and distribution is experimentally determined when
the ions are held in the trap without MOT atoms (red filled circles) and
with MOT atoms (blue empty circles). (a) Plots the number of Rb* ion
counts as a function of 7,. Without a MOT, the ions exit the trap rapidly,
whereas with cold atoms the ion loss is much slower and a stable number
of ions (187+9) is trapped without detectable loss beyond 7,22 min. The
inset in (@) shows the detail of the ion loss (red circles) when the ions are
held without the MOT atoms. This ions loss is fitted with a function (black
solid line) obtained by the Monte-Carlo model described in the text.

(b) lllustrates the variation of the FWHM of the ion ToF distribution
against Ty,. In the absence of the MOT atoms, the FWHM increases in
time as the trap empties out, the detail of which is shown in the inset.

In contrast, when ions are held with the MOT atoms, a systematic
decrease in the ion ToF distribution is seen, consistent with ion cooling.
For 1,22 min, when the trapped ion number has stabilized, the ToF

width is still decreasing indicating continued ion cooling, as illustrated

by a least square fit to the last six data points. The statistical s.d.e. bars
are shown.

Figure 1.3: Cooling of ion cloud, re-
ported by Ravi et al. [31].
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1.3 Plan of the thesis

The work in this thesis assumes a more direct approach in treating the micromo-
tion in atom-ion collisions by retaining the time dependence but transforming it
into frequency domain and using standard methods of quantum molecular dynam-
ics like Log Derivative Propagation to solve the scattering Schrodinger equation.
The time dependent behaviour of ion wavefunctions has been analytically and
elegantly derived by Glauber [52| and are used as asymptotic wavefunctions for
the system with micromotion. This work uses a simplified atom-ion potential
modelled by a delta pseudopotential in one dimension (in Ch.3 and Ch.4) and
in three dimensions (in Ch.5). Though it does not correctly describe the real
conditions in experiments, it serves to understand effects of time dependent mi-
cromotion and keeping the computational size of the problem fairly manageable.

The thesis begins with a brief description of the various numerical methods
used. Chapter 3 describes simplified model of collision in one dimension between
an atom confined to move freely in one dimension, in a waveguide and another
particle in a one dimensional harmonic oscillator potential. We study the scat-
tering properties and bound state properties of the system. In Chapter 4 the
system is then extended to include a time dependent oscillation of the harmonic
oscillator potential in one dimension. The time domain nature of the ion trap is
transformed to frequency domain, which helps analyze the ion’s Floquet energy
spectrum. The collision and the effects due to inelastic exchange of energy be-
tween the atom and the ion are studied under the conditions of tight and weak
static confinement of the oscillator. The results obtained are discussed in the
context of the available experimental results and similar theoretical work.

The basic nature of micromotion results in numerical limitations which do
not give results over a wide range of micromotion parameter ¢ that can be arti-
ficially introduced to study the physics under strongly dynamical confinement of
the ion. A change of coordinates at one stage served to solve the problem, albeit
partially. In real experiments the ion confinement is almost purely dynamical
but numerically that case appears very difficult to converge since such a system
at high micromotion would have a highly delocalized ion wavefunction and one
would require a very large grid if keeping a constant grid density of points. Such
problems become computationally huge and yield fairly bad convergence. The
gradual loss of convergence with input parameters is documented for these nu-
merical methods.

As an attempt at extending the study from one to three dimensions, a robust
high order finite element discretization method is used to study the bound states
of an ion in the presence of micromotion and interacting with an infinitely heavy
atom at the trap centre. An anisotropic cylindrical Paul trap geometry is used
to model the ion trap and the atom-ion interaction is again modelled by a delta
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1. INTRODUCTION

pseudopotential instead of the use of long range potentials. Since the problem is
solved in frequency domain, the frequency domain basis and the spherical har-
monic basis used to describe the problem in 3D, makes it very large. Use of
long range potentials would have severe limitations in terms of memory usage,
computation time etc. The goal is to study the avoided and real crossings of the
energy levels of the ion in such a trap configuration in the presence of a tunable
delta pseudopotential interaction at the trap centre. Literature exists that well
documents the use of separated traps of atoms and ions to perform logic gate
operations using adiabatic crossings of the ion molecular levels. The thesis ends
with a conclusion and an appendix that elucidates the classical and quantum
dynamics of a single ion in a Paul trap in one dimension. Since the ion motion
is separable in three dimensions, the result in the appendix can be generalized to
three dimensions to understand the ion motion in 3D traps.

12



Chapter 2

Numerical Methods

he various numerical methods used in the thesis to solve the Schrédinger

equation are discussed in this chapter. The problem explained in Ch.3 and
Ch.4 is a two-body problem for collision in one dimension. We attempt to solve
the two body Schrodinger equation for this problem using three different methods
(a) The Schrodinger equation is recast into an integral equation which is solved
numerically by pseudospectral method [63-66]. (b) The Schrédinger equation
is written as a matrix equation in terms of the logarithmic derivative (or log-
derivative) of the wavefunction and solved by a propagation algorithm [67-70].
(c) The Spectral Element Method which recasts the Schrodinger Equation as a
sparse matrix using high order finite element discretization of the Hamiltonian.
The resulting linear equation is then solved using a standard sparse linear solver,
called PARDISO [77-81].

The problem explained in Ch.5 is an eigenvalue problem in three dimensions.
The Schrodinger equation is written for a system consisting of an ion in a time
dependent trap interacting with a heavy atom in the trap centre through a nor-
malized delta pseudopotential. Since the atom mass is much greater than the ion
mass, the problem is reduced to solving a one body Schrodinger equation for the
ion. The Schrédinger equation in three dimensions is discretized using a high or-
der (or spectral) finite element representation scheme. The resulting Hamiltonian
is diagonalized using a sparse matrix eigenvalue solver called FEAST [75, 76].

A brief summary of pseudospectral discretization method is provided initially.
These methods show super algebraic convergence with point density and rely on
very efficient quadrature rules which give exact results for polynomial functions of
degree 2N -1 or less for N discretization points. The Integral Equation Method is
then explained concisely but a detailed summary of this methods is given in [63],
which is also based on previous results by [64-66]. Then we explain the Log
Derivative method of solution of the close coupled Schrédinger Equation followed
by the Spectral Element Method.

13



2. NUMERICAL METHODS

2.1 Pseudospectral Method

An introduction to the pseudospectral method is provided in [56 p.89 - 58| and
is extensively used in various applications of quantum scattering calculations.
An introduction to applications of the subject and applications is provided in
[96-97]. Pseudospectral method is a specific variation of the method of weighted
residuals. We begin by briefly introducing the method of weighted residuals. The
method is based on the fact that a solution of a partial differential equation can
be expressed as a series expansion over a basis of trial functions. A sufficiently
large finite basis can be used to represent the solutions to very high accuracy.
Consider a linear differential operator £ with boundary conditions defined on a
boundary 2 given by

Lu(x)=f(x) with  w(Q)=u (2.1)

where u(z) and f(z) are functions of z. Let solutions to the differential equation
(2.1) be a linear combination of N basis functions ¢;(z) given by

u(z) = JEV;CZ(bZ(x) (2.2)

The basis functions ¢;(x) are also called trial functions and ¢; are the coefficients
of expansion. The solution u(z) satisfies the differential equation (2.1) and is
nearly exact but leaves a small residual given by

R = La(z) - f(x) (2.3)

If the chosen trial functions are polynomials of high order and smooth over the
whole integration interval, the method is termed a Spectral Method. Since a basis
is chosen of high order polynomials the Spectral method is similar to taking a
Fourier series expansion of functions and hence the name. Low order and smooth
polynomials chosen as trial functions over the whole integration interval give a
Finite Difference Method. They are overlapping polynomials since more than
one of those functions are non-zero at each discretized point. Low order smooth
polynomials can also be chosen only over selected intervals or elements. They
can be taken to be zero outside the elements to give the Finite Element Method.
For periodic problems, Fourier series (trigonometric functions) are chosen as trial
functions and orthogonal polynomials (Chebyshev or Legendre) are chosen for
non-periodic problems.

The aim of the method of weighted residuals is to minimize the residual R
such that the solution u(x) tends to the exact solution of the differential equation.
The residual is minimized in an approximate sense by taking its inner product

14



2.1 Pseudospectral Method

with certain test or weight functions x;(x), given by
(L) - f@) xi())e = [ (Lalr) ~ F@)xa)de =0
o [ Coymitorts = [ (s 2.4)

which in matrix form can be written as Lc = f. The matrix linear equation can
be solved to obtain the set of expansion coefficients ¢; of the solution. The exact
form of the test functions y;(z) determines the specific variety of weighted resid-
ual method being employed.

The Galerkin Spectral Method uses the trial functions per se as test functions.
The Collocation or Pseudospectral Method uses delta functions x;(z) = d(x — x;)
as test functions at specific collocation points x; with associated weights w; which
are determined by a certain quadrature rule. In DVR, cardinal functions are cho-
sen as the set of trial functions, on a set of discrete grid points. A delta function
and a cardinal function are qualitatively similar to the extent that matrix ele-
ments are computed using Gauss quadrature rule corresponding to the chosen
DVR basis. This in essence means the Pseudospectral method is a special case
of Galerkin Spectral method. The integration limits [a, 3] in (2.4) determine
the kind of quadrature rule being used. All problems described in this work
use Gauss-type quadrature rule. An interval of [a, 5] = [-1,+1] uses either a
Legendre polynomial basis or a Chebyshev Polynomial basis and is accordingly
called Gauss-Legendre quadrature or Gauss-Chebyshev quadrature respectively.
Similarly an interval of [, 3] = [—o00, +00] uses a Hermite polynomial basis and is
called Gauss-Hermite quadrature. Though integrals of Hermite polynomials do
not converge over any interval, this method uses a Gaussian term e=* as weight
function for the integral that results in functions that are similar to eigenfunc-
tions of harmonic oscillator states that tend to zero as x - oo and they converge
numerically (See 59 or 62). Gauss-Legendre quadrature is used in the Integral
Equation Method, where the points for an arbitrary interval of [«, 3] can be
rescaled to [-1,+1].

The Pseudospectral Method with delta functions as test functions and an ap-
propriately chosen Gauss quadrature rule gives a residual minimization criterion.

(Roxi(e)). = [ (Cae) - F@)xale)dr =0
;cj f:l Loj(x)o(x —x;)dx = f;l f(x)o(x - z;)dx (2.5)

Over a discrete set of points, the integral reduces to

;Cjﬁ%(%) = f(wi) (2.6)
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2. NUMERICAL METHODS

This criterion clearly gives the residue R = 0 at the discretization or collocation
points x; which are chosen as per the appropriate Gauss quadrature rule. The
trial functions ¢;(x) can be chosen to form an orthogonal basis with respect to a
weight function. For an interval of [«, 8] = [-1, +1], we choose a basis of Legendre
polynomials of the order (N —1). The normalization condition can be given by

+1 N
[ e@ei@dr=d; oras Y om)o@w=dy;  (27)
k=1

The solutions u(z) expanded over a basis of trial functions taken to be Legendre
polynomials is given by

U —Nc-~x Werec:; (), ulx
u(:v)—;l iFi(z) where ¢ ||Pi(x)HQ(R( ),u(x)). (2.8)

The scalar product (P;(x),u(x)) can be integrated using Gauss-Legendre quadra-
ture as

+1 N
[, P@u@)dz = Y Py, (2.9)
_ =
where x; and w; are the Gauss-Legendre points and weights respectively. The
coefficients ¢; are then given by

1
Pals

C; =

Y. Pi(x)u(z;)w;  where ”PiHQZkZ:le‘(fEk)Pi(l'k)wk (2.10)

7=1

2.2 Integral Equation Method (IEM)

Drawing from pseudospectral method of discretization that gives super-algebraic
convergence with number of grid points used, integral equations can be efficiently
solved using appropriately chosen basis functions as demonstrated in [63-65].
Integral equations in scattering theory have a form given by

(@) =o) + [ Gl V) (2.11)

The integral involving the kernel G(z,3")V (y’) on the right hand side can be
written as

W) = [ Gy W)y then v(x) = (I-W) o) (212)

Thus the solution to the integral equation reduces to solving a linear system once
the integral is discretized. To better illustrate the Integral Equation Method we
consider an example. Let the integral equation we wish to solve be

() = g(x) + f :° ¢kl £ (1) da! (2.13)
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2.2 Integral Equation Method (IEM)

where g(x) is an initial condition for the function f(z). The idea is to use
pseudospectral method to solve the integral in Eq.(2.13), as demonstrated in [63].
Alternately, the integral in the above equation can also be computed using the well
known trapezoidal method and also by a modification to the Simpson’s method,
as suggested in [82]. We describe below the pseudospectral integration method
and the modified Simpson’s methods.

2.2.1 Pseudospectral Integration

The integration coordinate is partitioned into sectors of equal size and a local
discretization is done using a Gauss-Legendre DVR basis within the sectors, as
shown in Fig.2.1. The schematic is shown for an integration range of [—oco,+o0].
The N points chosen per sector are the zeroes of the N-th order Legendre poly-
nomial.

The integral in Eq.(2.13) can be split into two as

sector j sector (J+1)

<‘l/ / L \l/

1 1 1
7 7 1

1 | ]
|| 1 1
-00 xl(J)x(J) x(, 'XN +00

Figure 2.1: Schematic of 1ntegrat10n coordinate with N local Legendre quadrature
discretization points per sector. x; @) denotes the ith point of the j* sector.

flx)=g(x)+ [/: e @) £ (2" da' + '/;oo e‘ik(”ﬁ_”ﬁl)f(:c’)d:c’] (2.14)

where the arguments of the exponential terms are always positive, in keeping
with the fact that the original integrand is e**l===I f(z') in Eq.(2.13). We take a
large finite integration range of [-b, +b], the range is partitioned into N, different
sectors of equal length L = 2b/N,. N, can be taken as even to ensure symmetric
partitioning about the origin. The end points of the sectors are given by a_y, /> <
a_nyj241 < ... <ag <ag =0 <a; <...<ayy < anye, Where aiy,p = +b.
Integration is performed over N discretization points in each sector and the result
is added to obtain the total integral. Following the method in [63], the integration
on a discrete set of points can be performed by a simple right-multiplication of the
integrand with a spectral integration matriz that is built for the particular basis
function used for discretization (Legendre polynomial for Gauss-Legendre basis,
as in this case). The definition and procedure of building the spectral integration
matrix for integration over a sector is described below.
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Spectral Integration Matrices and Their Usage: To build spectral inte-
gration matrices for the Gauss-Legendre polynomial basis, we begin by noting
that DVR basis functions (See 98 p.8 or 99) are given by

¢i(x) = ;AikPk(x) = kz—:l VWi Py () Pp () (2.15)

where Py (x) are unit normalized Legendre polynomials with normalization con-
stant \/(2k + 1)/2 and the matrix element A, = \/w; Py (x;) forms the DVR-FBR
transformation matrix A with the basis polynomials along the columns (See 96,
97, 98 p.8 and 99). The DVR functions evaluated at the grid points (quadrature
points) gives

N N
¢Z($]) = ];Alkpk(l’]) = ];AikAjkwjl/z = (51']'11};1/2 (216)

Orthonormality relations in arguments and in order over an arbitrary interval
[a,b] (where a and b maybe +o0) for the DVR functions are given by

im(nm(w] = 6;; and f ¢i(x)¢;(x)dx = 8y (2.17)

As an example, we consider the integrand of Eq.(2.13) F(z,a') = etle=='| f(z").
Expressing the integrand F'(x,z") in DVR basis over a set of discrete points in 2’
variable, we have

F(z,z") = ;ak(:p)m(:p’) (2.18)

and the two integrands in Eq.(2.14) as

N N
) f(2') = Y (@)on(a') and € HE f(a) = Y du(@)au(a)  (219)
k=1 k=1

To integrate the function over the global interval [-b, +b], we partition the integra-
tion coordinate into N, sectors (with N points per sector) and sum the integrals
over the sectors. The end points of the sectors are given by a_y, /2 < a_n, /241 <

.<a.p <ag=0<a; <...<anyp1 < ay,2, Where a,y,;p = £b. Similar to
Eq.(2.14), the two integral terms are partitioned into integrals over each sector,
over the ranges Ja;, (V] and [z, a;,1[ respectively. x() is a variable in each sec-
tor labelled [ such that z® e [2" 2] and 1 = (-N,/2,..., N,/2). This ensures
the arguments of the exponential terms are always positive, in keeping with the
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2.2 Integral Equation Method (IEM)

fact that the original integrand is e*l*=2'l f(z') in Eq.(2.13).

* Ny/2-1 z ag41
[b b F(% x')dl" _ lzg\;b/Q (fal eik(m—m’)f(x/)dl,/ 4 /ﬂ; eik(:vx’)f(x/)dl,/)
Ne/2-1 x ar+1
= 2 (Z f () (x")dx' + f dk(x)qsk(a:’)dx’) (2.20)
I==Ny/2 \ 'k J@ — Jo

Substituting Eq.(2.15), into Eq.(2.20)

N Ny/2-1 .
fbbF(:L‘,ZL")d:L"= > (ch(:p) Ll Z\/w_ij(:pk)Pj(x')d:p’+

- 1=-Ny/2 \ &

a1 Np/2-1 "
S di(e) f Z\/w_jpj(xk)Pj(x')dx'): 3 (chk(x)Ajk f Py(a')dz'+

=-Ny2 \E J
>y A [ P;»(x')dx') (221)

A, are matrix elements of A. Thus the integration of a given function is reduced
to an integral over the polynomial chosen as basis, unit-normalized Legendre
polynomial in this case. From [60] and [61], using the recurrence relation for non-
unit normalized polynomials P,(z') such that [ P, (2')P,(z")da’ = @ty O
we get

pn—l(x)_pnﬂ(x) o+
o 1 =Sy (z) and

z _ P -P,_
f Pn({L")dZL‘IZ n+1(l’) n 1(37)
-1 2n+1

+1 _
f P,(z")dz" =

=S (r) (2.22)
with n = 1,2,3,... and special conditions for n = 0 set by [;1 Py(a')dx' =1~

Pi(z) and [ By(a")da’ = Pi(x) + 1. Writing these in terms of unit-normalized

polynomials P,(z"), we have P,(2') = \/ 525 P.(2"). Thus rewriting Eq.(2.22) in
terms of unit-normalized polynomials P,(z"), we have

Si(z) = [mﬂ Py (z")dz" = \/2:L_+1 (\ / 2n1— 1Pn-1($) -\/ T{L?)Pnﬂ(x))
Si)= [P = @1_” (\/2n1+3pn+1(x)—\ /ﬁpnl(x)) (2.93)
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2. NUMERICAL METHODS

It is seen the matrix representation of Eq.(2.23) has a tri-diagonal structure in
the n index basis. Thus defining 3, = 1/y/(2n+1)(2n-1) if n = 1,2,3,... and
with condition that fy = +1 we can write the spectral integration matrix as

1
+[
0
0

0
0
+[32
0

0
s
0
+[0

0
0

F3
0

0

O ] —
Py(x)
Pi(x)
Py(x)
Ps(x)
0 .
: :FBN—l Prx_i(x
+0n-1 0 ) i (=) i

| S5(2) |

= M*P(z) = S*(x) (2.24)

where the vectors P(x) = [Py(z), Pi(),..., Py_1(2)]T and

S*(x) = [Sz(x), St (x),...,5%_(x)]". The spectral integration matrices M* are
in the function basis (FBR). Given any two functions f(z) = ¥, axPr(x) and
F(z) =Y PrPr(x), an integral F(zx) = f;, f(z")dz’ can be computed using these
matrices in FBR as 8 = M*@. These can be converted to DVR and rescaled to
the sector size as

G* = ATM*A (L/2)

(2.25)

Thus, analogous integration in DVR can be given as F(z) = ATM*A f = G* f.
Defining the integrands over the grid e#(*=2") and e-*(+-2") as elements of two
matrices C(k) and ID(k), given by

. @ (1) . (1)
—ik(x} ' —x k(z) ' —x
ij/(k) _ o (w5 =2 ); Djj’(k) _ el (z; =)

It is important to note that the term (x

(1)

®

J

@ .y .

) with x;D € [$1 RN ]’lel) € [x;(l)vx;\(fl)]

(2.26)

- x;(,l)) € [0,2y[ and is independent

of the sector since they are taken to be of equal length. So the integration can
be done just once instead of being repeated for each sector. The two integrals in
Eq.(2.20) done over each sectors can be written as matrix product involving the
solution term f(x) defined over each sector as

ap

xT

where the vector f; = [f(:cgl)

index [. The superscripts and subscripts for the grid points x

[t panda v [T e (o) dat > DG+ CRGE (2.27)

),f(xgl)), . ,f(x%))]T is defined over a sector with

O]

. are as defined in

Fig.2.1. Thus we re-write the integral equation in Eq.(2.14) in discretized form
over a sector and its final solution in the sector, on the lines of Eq.(2.12)

fi =g+ [D(k)G f; + C(k)G'fi] = f, = (I- [D(k)G + C(k)G']) ' g
where the vector g; = [g(xgl)),g(xgl)), .

g
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2.3 Log Derivative Propagation

2.2.2 Modified Simpson’s Method

Simpson’s method is another way to discretize an integral equation. It can for
instance be applied for an example problem given in Eq.(2.13). Integral equation
of a similar form also arises in one dimensional collision problem of a particle in
a harmonic oscillator and a free atom, as shall be explained in Sec.3.1.1. The
integrand of Eq.(2.13) has a cusp discontinuity that arises from the e#l=-2'l term
in the integrand. The adaptation done to handle such discontinuity has been
presented in [82] and is briefly reproduced here. Three point trapezoidal rule
works well for integrands with discontinuous first derivative. Simpson’s rule works
well as long as the cusp is located on the end of a three-point Simpson’s rule but
shows poor convergence if the cusp is located at the midpoint. Simpson’s method
is modified for this problem by using a modified Simpson’s rule when the cusp
falls on the midpoint of the three point step. Let x1,z5 be the endpoints and
x3 as the midpoint. If the cusp discontinuity is at the center of a three point

X1 X3 X2

Figure 2.2: Schematic of a three-point grid for modified Simpson’s integation.

step, [82] suggests using the following second order modification to the Simpson’s
rule

T2 1 . .
f eFle=zsl [ (1) dx = gAx [F(:pl)e’kmﬁ +(4+ikAx)F(z3) + 62kA$F($2):| (2.29)
1

where Ax = x5 — x3 or Ax = x3 — x7 is always positive. This expression reduces
to the regular Simpson’s rule if £ = 0. After computing the integral with the
modified Simpson’s method, the final solution is obtained using Eq.(2.12).

2.3 Log Derivative Propagation

Log derivative propagation is a robust numerical technique used to obtain the
solution of a Schrodinger equation [67-70]. It has the advantages of being easy
to implement, easy of handling energetically closed channels and the step size
of propagation can be changed easily. This method is numerically stable even
if propagation is started from deep inside the forbidden region of the potential.
We present a brief reproduction of this well-known method (Also see 70 and 68).
The coupled channel Schrodinger equation can be written in a general form as

[I[dd—; + W(x)] W(z)=0 (2.30)
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where I is the identity matrix, the wavefunction ¥(x) is a square matrix of linearly
independent solutions and W(z) = 2u/h?(IE - V(z)). E is the total energy, u
is the reduced mass and the potential matrix V(x).We define the log-derivative
matrix as

Y(x) = O (a) ¥ (z)! (2.31)

Substituting Eq.(2.31) into Eq.(2.30), we get a first order differential equation for
the log-derivative matrix

Y'(z) + W(z) +Y?*(z) =0 (2.32)

The matrix equation Eq.(2.32) cannot be solved by standard numerical integra-
tion since the log derivative is singular at points where the wavefunction is zero.
Instead the log derivative is propagated directly instead of the wavefunction and
its derivative.

2.3.1 Propagation

The log derivative algorithm [67-70] is fundamentally a solution following method
where the initial log derivative matrix is built with the boundary condition for the
wavefunction i.e at x = 0 for zero-range potentials and x > 0 for realistic potentials.
A brief description of Manolopoulos modification [70] of the original log-derivative
algorithm by Johnson [67] is provided here. We note the log derivative matrix
is indeterminate if W(x) is singular. To overcome this an imbedding-type prop-
agator, ) is defined. A sector [x,,xp.1], is divided into two half-sectors with a
mid-point x,, = (z, +x,.1)/2 and step size h = (41 —2,)/2. Thus, the imbedding
type propagators over a half-sector [x',2"] are given by

\I/'(Jfl) - yl(l",l’") yQ(SL”,SL’") —\I/(Jfl)
[@'(%”)‘l - lyg(x/’x//) y4($’,$”)] l@(x//)] (233)

where the interval [2/,2"] are the two half sectors [z, 2, ] and [2,,, Tp1]. We
obtain a recursion relation from the two linear equations above, given by

Y(:L’") — y4(xl’xll) _ ys(xl’xll) % [Y(xl) + yl(xl’xll)]71y2(xl’xll) (234)

A constant reference potential is defined over each sector as W.r(z);; = 51']'7%2»

where are k; are the reference wave vectors. We define a residual potential matrix

Q(z) as
Q(l‘n) = g(W(l‘n) _Wref(xn))§ Q(xm) = % |:I[— %Q(W(l‘m) —Wref(l‘m)):l - ]I%

Qi) = (W (1) ~ Wy (wunr)) (2.35)
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2.3 Log Derivative Propagation

The half-sector propagators ), over [z/,2"] for locally open channels with wave
vectors k:J2 > () are given by

Vi(a',x")i; = bisk;/ tan(k;h) + Qi (2'); Ya(a',2")ij = 0yk;/ sin(k;h)
yg(ZL", :L‘”)ij = (SZ]]{?]/SIII(I{?]}L)7 y4(l‘,, x”)ij = 5Z~jk‘j/tan(kjh) + Qij(x”) (236)
and for locally closed channels with ka <0 as
yl (SL’,,SL’H)Z‘J‘ = 5Uk]/tanh(kjh) + Qij (SL’,), yQ(.T,,.T”)Z'j = (SZ]kJ/Sth(kjh)
yg(ZL", ZL‘”)Z']‘ = (SZ]]{?j/SlIlh(k’jh)7 y4(l‘,, x”)ij = 5Ukj/tanh(kjh) + Qij(x”) (237)
The half-sector propagators ), and )3 are diagonal matrices and ), and ), are
full matrices. Given a log derivative matrix at a point x,,, the relation in Eq.(2.34)
gives the matrix at a point n + 1. Splitting up the propagation coordinate into a

set of discrete points (xg,x1,2,...,Ty) We can iteratively propagate the matrix
to zy in N steps.

2.3.2 Asymptotic Matching

The log derivative matrix is propagated to a large enough value of ) such that
we are in the asymptotic region where the potential goes to zero. The asymptotic
wavefunction for a particle is composed of a regular and irregular parts, given by

Wy () =F(2) + G(2)K (2.38)

We can obtain the Reactance matrix or K-Matrix from the asymptotic wavefunc-
tion. In the region x > xx, we can write the log-derivative matrix as

UP=F+GK; ¥'=F+G K=Y(z)=(F+G K)(F+GK)™" (2.39)
The prime denotes a derivative with respect to x and K-Matrix is
K= (Y(z)G -G')™ (F' - Y(z)F) (2.40)
The K-Matrix contains elements connecting open and closed channels.
KOO KOC
K = [Kco ch] (2.41)
The S-Matrix is related to the K-Matrix by a Cayley transform given by
[+:K
= =, 2.42
I-1K,, ( )

The log derivative method described thus far is with respect to the relative
coordinate for collision problem of two particles. Log derivative propagation for
the collision problem can also be done in plane polar coordinates (See Sec.3.1.3
and Sec.4.4).
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2. NUMERICAL METHODS

2.4 Spectral Element or High Order Finite Ele-
ment Method

The general idea of Spectral Method was discussed in Sec.2.1. The method of
weighted residuals with smooth trial functions chosen over a finite interval gives
the Finite Element Method. Spectral Element Method as the name suggests
is a combination of both Finite Element and Spectral Methods where smooth,
high order trial functions are chosen for each interval or element. The local

1

0.8

0.6

04

0.2

-0.2

I I I I
-1 -05 0 0.5 1

Figure 2.3: Legendre-Gauss-Lobatto Cardinal basis functions for N=8.

discretization basis is composed of high order polynomials using an appropriate
quadrature rule. Legendre-Gauss-Lobatto quadrature is used to determine the
points and weights. An example of the Legendre-Gauss-Lobatto cardinal basis
for NV =8 is shown in Fig.2.3. Convergence can then be optimized by varying (a)
the order of the element polynomial basis i.e number of points per sector or (b)
the number of elements or (c¢) the size of elements.

Elements, Basis Functions and their Properties

The integration range is divided into several elements(sectors) with one point
common to adjoining elements(sectors) with the condition that the global solution
is continuous at the points of intersection, as shown in Fig.2.4. Considering an
example with NV points per sector and M sectors, the index j indicates the element
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2.4 Spectral Element or High Order Finite Element Method

(sector), then the intersection or inter-element point is such that

20 =20 with  j=(2,..M). (2.43)
In each element (sector) N Legendre-Gauss-Lobatto points and weights (SL’ZU ), wl.(] )
sector 1 sector 2 sector 3 sector 4

) \: Voo
0 Ll 1 1 1 1 11 1 1 1 1 1 111 1 1 1 1 11 1 1 1 1 L1 >

i I | I I (II)I |(2)| | | | (E)I L) | 1 | (lz)l I‘J)I L] I I 1 I(.‘)
P - peky ) X7 2 XM x; H)«)x

> \_;1) — X:z) ’(;") Y(%) x;h — Y:J) X7

Figure 2.4: Schematic of the Spectral Element grid with N =8 local quadrature
discretization points per sector and M = 4 sectors. xgj ) denotes the ith point of
the j*» sector.

where 7 = 1,2, ..., N are generated to implement a quadrature rule for the element,

given by
e)

N . .
oy F@)s =30 1a) 2.4

The Legendre- Gauss—Lobatto cardinal functions are rescaled and taken to be over

the interval (xl ,x(j)) as
(7)
2
P (z) =C ( ((f) 21 ])) 1) (2.45)
(zx )

where the corresponding cardinal functions C;(z) are defined over the interval

(-1,+1) and can be found in [56]p.572. The argument xgj) denotes a grid point

in the interval (:Egj ),x%)) These cardinal functions are defined at grid points in

(J))

an element j such that pU )(x = 0; and zero outside the element such that

Z.J )(xg,] )) =0;170;5-. The normalized basis functions are then given by

<])(1‘ J)(‘,E)/1 / (J (2.46)

The quadrature weight w ) at the inter-element grid point is taken as the sum

of the weights of the two adjacent elements i.e w](\? Dy wij ). The corresponding

basis function at these inter-element grid point is given by

1 i1 i1 i1
o) ) (J )(x)/ w% )+w§J) T (J ) (J )] )4
(b ) J) (J-1) ) (J) (J) ( ) 7)
p (@) \Jwy T +w, ve [z, xy’]
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2. NUMERICAL METHODS

Hamiltonian Discretization

The Hamiltonian is then developed, with local representation in internal coor-
dinates at each grid point. The resulting matrix representation of the linear
differential operator has a sparse structure. For solving a scattering problem,
similar to Eq.(2.30), consider an example of a Schrédinger equation for a 1D col-
lision of two particles written in centre-of-mass and relative coordinates (X and
x respectively).

2

" 9 (e, x) - [‘ﬁa@@ + %V(w,X) _ k?] W(z, X) (2.48)
where k? = 2 E/h?. The global finite element discretization is done in the propa-
gation variable. z is chosen as the propagation coordinate and X as the internal
coordinate. We present here the discretization of an example Hamiltonian over a
element (sector) in the = coordinate with the range [ Ry, Ra]. We expand the solu-
tions W(x, X) over a set of DVR basis functions ¢;(x) as ¥(z, X) = ¥, ¢;(z) F;(X)

Za ) ) - 2 oda

2u
aXQF(X) 2V(x,x);¢i(a:)Fi(X)

K Y 6,(x)F(X) =0 (249)

Multiplying from the left by ¢;(z) and integrating over the range (R;, Ry) with
respect to x, we get

—Zf ¢;() 8 (bZ(x)F(X) MaXQZf ¢ (x)pi(2) Fy(X)da+
ﬁgﬂ(X)le <bj(:v)V(:c,X)<bi(:c)dx—k2;Fi(X)le ¢;(x)¢i(x)dx =0

(2.50)
The first term in Eq.(2.50) above can be integrated by parts as
32¢z(37) 9¢i(x) iz 0¢;(x) 9¢i(x)
[ o o8 e = [0y 2 ]ijm ) oo
061 (2) 1" [0¢;(x) | 99:(x)
o) 250] - (258 2o ) (2.51)

The second term on the right hand side in Eq.(2.51) above can also be written
using the projection operator ¥, |¢r(2)) (¢ ()|, which acts as the identity in the
finite dimensional space spanned by DVR functions. We have

<6¢5g(6x) 8%;:5)) :Z<8¢5(x) e > < o )|8¢z($> _(ATA); (252)

k
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2.4 Spectral Element or High Order Finite Element Method

The term (ATA);; is an element of the matrix ATA. Substituting this into
Eq.(2.50) we obtain the matrix elements of the equation in = coordinate basis

SATA) () - T

i

LX) + ’; 28V (i, X) Fo(X)-
M]RQ (2.53)

Ry

B Y050 = [05(0)

The term §;;V (;, X) = V?VH(X) is the diagonal representation of the potential
energy on the DVR basis in x coordinate, with x; as the grid points within the
element. Let the indices i, 7 be associated with the basis in x coordinate and «,
with the basis in X coordinate. The solutions W(x, X') can further be expanded
over a DVR basis in the X coordinate as U(z, X) =¥, ¥, ¢i(2)Xa(X)V;q. Thus
we take Fi(X) =Y, Xa(X)V;q, substitute into Eq.(2.53), multiply from the left
by x5(X) and integrating over the range (-L,+L) with respect to X, we have

2. Z(ATA)ﬁ(Sﬁa\Ifm—ﬂ Z Z(Sﬂ f L X5 (X)aLX(X)\Ifde k2 Z Zajlaﬁa\pm

Zzéﬂéﬁav(%vxﬁ i ZZI:(Z)]( )6¢Z(x):| 05aVia (2.54)

We adopt Dirichlet boundary conditions for the X coordinate grid over [-L,+L],
such that ¢(-L) = ¢(+L) = 0. It is noted that eigensolutions of a particle in
a infinite square well have an identical boundary condition and can be used to
define DVR functions, as explained in [100] (Also known as Fourier grid basis).
Performing integration by parts on the second term in Eq.(2.54) above and using
a projection operator Y. |xx (X)) (xw (X)|, which acts as the identity in the finite
dimensional space spanned by DVR functions, we have

(axgﬁ(fX) ‘ 8X§)(<X)> =2 (&(5—;(;() ‘XMX )) (v (0)| 2l - (B7B),,

(2.55)

k’
The term (BTB)g, is a matrix element of B”B.
> (AT A0 Biat 47 Z 2 63t (BB) s J 2 ! Z 2 SV (g, X)W~

K ZZ%% ia ZZ(@(RQ %(Rg)—¢J(R1)8¢’8(51))5Ba\1/m (2.56)
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2. NUMERICAL METHODS

Using the property of the DVR functions ¢;(x;) = 0;;1/,/w;, the right hand term
reduces to

(017 24T _ gy 20LT0))

(5L 06 1 08i(R)
AN N Jwr or

(2.57)

The potential term Vgj.0; = 6;:03,V (2;, X3) is a matrix element with composite
row(column) indices Bj(ai). Eq.(2.56) above can thus be written as a matrix
equation

[T+W-1k*] ¥ = 0,P[2;*  where 9,0 = g (2.58)

Ox
24

T has elements Tg;j.0; = (ATA);i050 and Waj.a; = %5]@-(BTB)BO¢ + 72 Vi

where the column vector ¥ = [, ¥, ..., ¥x]T or

W o= (U, Por,. s Ut), (Wig, oo, oo, Woo), oo, (W, Wany, ..., W) |7, where
a € [1,n]. We have N discretization points in x coordinate and n discretiza-
tion points in the X coordinate.

The boundary term 9, W[2=F = [(¥1,, Uy, ..., 0/ 1),0,...,0, (W, Uhr, ..., ¥ )7,
is taken over end points of elements in the x coordinate such that they cancel at
the interelement nodes.

This matrix equation can be written for an example case of N = 3 points per
sector and 2 sectors as follows. Thus 7,7 € [1, N] and «, § € [1,n], where we have
n discretization points in the X coordinate. The range [0, R] is partitioned and
can be written as

T+ Wy -INE T Tis
T Top + Woe —INE Tos
T T3y T35+ Wy —InE
AR
v, | = 0 (2.59)
R -
and
T33+ Was —INE T34 T35
Ty3 Tas+ Wy -InE Tys
Tss Tsq Tss + Wis - InE
W[
v, = 0 (2.60)
vy -vL
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2.4 Spectral Element or High Order Finite Element Method

We note the elements of the diagonal matrices T;; = Tj;.4; and those of the full
matrices Wj; = Wpj.; and the vectors W; = [Wy;, Uy, ..., ¥,,;]7. The first and
last points of each sector of the right hand side of Eq.(2.52) are taken to be of
opposite sign so as to retain the boundary condition over the global range [0, R]
after the sectors are all linked. The matrix element value at intersection points,
in this case point-3, is the sum of the values of this point from each sector.

Ty +Wy -InE T2 T3
Ta Too + Wo —InE T3
T3y T3, 2[T33 + Woy - HNE]
0 0 Tys
0 0 Tss
0 0 v, J 1
0 0 v, 0
Ts4 Tss v, [=| 0 (2.61)
T44 + W44 - ]INE T45 @4 0
T54 T55 + W55 - HNE @5 —‘i’g

The propagation variable has a global finite element structure which is sparse.
This representation essentially reduces a log-derivative propagation algorithm to
a linear system of equations solved in a one-shot computation. The above equa-
tions are written for a single solution denoted by the column vector W,, with
i =[1,...,N]. For multichannel calculations, we can denote the solutions by a
matrix W = Wg,.;, where we take J = n x N linearly independent solutions to
ensure a square marix. The boundary condition on the right hand side in the
above equations are thus determined by matrices ¥y = WUgy.q; and Wy = Wgn.an-
For a scattering problem, we use the boundary condition ¥/, = ¥’y \Ilfl\Ill =Y ¥,
at the first point of propagation coordinate and an R-matrix at the last step of
propagation given by Wl =1 = W5 = R. This sparse matrix can then be solved
with linear solution packages optimized to exploit matrix sparsity like PARDISO
[77-81].

The Eq.(2.61) can also be used to compute bound states. We drop the right
hand side term in Eq.(2.61). The term [y £ in the diagonal blocks of the Hamilto-
nian now becomes the unknown in the right hand side. We also drop the first and
last rows and columns of the matrix on the left hand side due to the boundary
conditions for bound states imposed of the vectors ¥, = W5 = 0. The Hamiltonian
to be diagonalized reduces to the central 3 x 3 sub-matrix of the left hand side in
Eq.(2.61). This sparse matrix can be diagonalized to solve for bound states by
using sparsity based eigenvalue solvers like FEAST |75, 76].

The global sparse matrix structure is show in Fig.2.5, for an example case with
N =4 grid points per element and M =5 elements. The overlap matrices are di-
agonal square matrices if the discretization basis size in the internal coordinates
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2. NUMERICAL METHODS

1 ;
X l( ) H E\ <— Overlap matrices

RN

Figure 2.5: Schematic of the Spectral Element Representation of the Hamiltonian,
in M =5 elements, with NV = 4 points per element. The diagonal blocks are full, as
explained earlier. The sectors share a common grid point at intersection (labelled
with arrows). Overlap matrix (in lighter shade) are diagonal square matrices but
can be rectangular and full if sectors have different discretization basis size in the
internal coordinates.

are held constant across the two adjacent sectors. If the internal coordinate basis
size is different, these matrices are rectangular and full.
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Chapter 3

Collisions 1n Mixed Dimensions

We begin the study of collisions in mixed dimensions with a simple model in
one dimension to study collision of a free particle and a particle in a time
independent harmonic oscillator potential. The interaction potential between the
particles is simplified in this problem by using a zero-range Delta pseudopotential
to aid in studying the effects of confinement geometry on scattering parameters.
Such a system is modelled in experiments by a very shallow harmonic confinement

O - Atom

hw\ / ® -lon
I\ /

[T1°

Collision Energy

Total Energy

Figure 3.1: Atom-Ion collision in one dimension

potential along the longitudinal z-axis (w;) and tight confinement of the particles
along two transverse axes (w, ), with wj <« w,. Due to the tight confinement along
transverse directions the energy levels have a large spacing in these two axis. This
creates an effective one dimensional motion or a waveguide. The shallow trapping
potential along the longitudinal axis results in very closely spaced oscillator levels
along this axis, thereby creating a quasi-continuum i.e free motion of the particle
along the wave guide axis. Such a waveguide is spatially overlapped with another
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3. COLLISIONS IN MIXED DIMENSIONS

particle in an isotropic harmonic trap, as shown in Fig.3.1. In the model we
consider, it is assumed that the trapped particle is in a harmonic potential in one
dimension such that w = w) and w << w,, implying collision along the waveguide
axis would result in energy transitions of the trapped particle between oscillator
energy levels of the order of hw do not cause transitions of the trapped particle
within the transverse energy levels Aw,. Thus it is good to approximate the
problem to one dimension. We are interested in studying the transmission and
reflection probability of the free particle after collision and the probability of
transition of the trapped particle between the eigenstates of the trap. Such a
model also serves as a prelude to an atom-ion collision problem, where the ion is
in a time dependent one dimensional potential, presented in Chapter.4.

3.1 The Two Body Hamiltonian

To serve as a prelude to what lies ahead, we assume the particle trapped in the
harmonic potential is an ion and free particle in the one dimensional waveguide
is an atom. The two-body Hamiltonian for this collision problem is given by

B2 92 B2 92 1
0 0 + —mpw?r? + g6(xa - x7) (3.1)

2ma 0% 2my0x? 2

where my, x4 (my, z;) are the atom (ion) mass and coordinate respectively. Using
harmonic oscillator units, with lengths in units of ay, = \/h/(m;w) and energy in
units of Aw, the time independent Schrédinger equation can be rewritten as
1 92 10 1, _
e o+ = Te + §0(Ta — 1) | (T4, 1) = EV(T 4,7 3.2
5ot g a0@ o) W) B (2
where m = m4/m; is the mass ratio, £ = E/(hw), Z1 = &1/ahe, Ta = Ta/an, and
g = g/(ap,hw). The pseudopotential coupling indicated by g here is related to
physical parameters in 3D, given by the elegant result by Olshanii [86]

g:z‘;w (1-@“(1/2)"3”)1 (3.3)

ho Qho

where the Reimann zeta function (¢ is given by ((1/2) = 1.4603. The 3D scat-
tering length asp relates to 3D pseudopontetial coupling gsp by asp = 55293p.
Since the potential in this case is time independent, the time dependence of the
Schrodinger equation via the term ih%—‘f appears as a phase term e it in the
total solution. For notational simplicity variables Z;,Z 4, g and E will be denoted
by x;,x 4,9 and E respectively, and oscillator units are implied unless otherwise
stated. This Schrédinger equation can be solved either by (a) Integral Equa-
tion Method (Sec.2.2) or (b) Log Derivative Propagation (Sec.2.3) in Cartesian
coordinates or (c) in plane polar coordinates.
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3.1 The Two Body Hamiltonian

3.1.1 Solution by IEM

The Integral Equation approach to solving this Hamiltonian has been well eluci-
dated in [82], [84]. The motivation for the study of such a system originally was
to describe the collinear collision of an atom and a diatomic molecule simplified
as a harmonic oscillator. The Schrodinger equation can be written as
1o 100 1,
l—%@ - 56—;(;% + 51‘1 —E:| \I/([L'A,ZL']) = —gé(l’A —l’[)\I/(ZL'A,ZL']) (34)
We can define a Green’s function for the differential operator by

1 0? 1 02 1, o , ,
—%@—aa—ﬁ+§xl—E G(xa,xr;x’y,xh) =0(xs —a'y)o(x; —2h)  (3.5)

The harmonic oscillator eigenfunctions in oscillator units are given by

1 =7
¢ho,n(x1) = —Hn(l‘[)eT
2nnl\/T
The Green’s function in terms of ¢, (xr) is well known (See 117, p.803) and
given by

(3.6)

o mwh ,'(l’l)wh 7'(1” )eikj‘JBA*m:“
G(anxl;l”A’x’I):; = 2(;;@» : '

(3.7)

where k; = \/2m(E - (j +1/2)) are the wave vectors in the calculation and j
are the oscillator level indices. The wave vectors are real for energetically open
channels and imaginary for closed channels. The integral equation now has the
general form

) [eS) ) o m, (x . .IJ )
\I[nz (:L,A’xl) — wh@,nz (xl)e—zanmA n Z [ [ who,j( {)?/Jho,a( I)ezkj‘ng—gj/A‘
§=0 7~ —00 2'lkj

go(az'y — )V, (2, 2h)da'ydx;  (3.8)

where the subscripts n; indicate the initial state. The infinite sum in the Green’s
function is truncated to a sufficiently high value. The convergence properties of
the method and dependence on truncation of this term is discussed in Sec.3.1.1.1.
Following the method used in [83|, we define an Amplitude Density Function
F;,,(z4). The scattering problem can be partitioned into smaller problems and
later added to obtain the total solution by recasting the integral equation in terms
of Amplitude Density Functions. Thus we define F},,,(z4) as

Fj,m(ﬂfA) = [: @/)ho,j($1)g5($,4—$1)‘1’n, (wA,wf)dm = @/)ho,j (IEA)Q‘I’n, ($A,$A)-
(3.9)
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3. COLLISIONS IN MIXED DIMENSIONS

In the asymptotic region where x4 is large, the real potential V(x4 — x;) =
-Cy/(2(x4 — 7)) goes to zero. So the amplitude density functions is zero at
points where the potential or the wavefunction goes to zero. Substituting Eq.(3.9)
in the integral equation Eq.(3.8) we get

AF i (T)
’lk]’

!/
dz'y

me—zk x
nl(fL'AafL'I) whOn[(fL‘I) an1$A+Z¢hO]($I)ezk mAf

(3.10)
The second term on the right hand side is due to scattering and it is seen the
asymptotic solution is defined by the integral term. This term can be easily
calculated if the amplitude densities F},, («',) are known. Thus to recast the
integral equation to solve for F} ,,, (',), we multiply Eq.(3.10) by ¥ne j(21)gd (x4~
xr) and integrate over the interval [-oo, 0], to get

A > mP;; oo ,
Fj/,m(m):Pj/m(m)e-sz;]m#k@ [T et B (ol (311)
j= J et

where Py, (z4) is given by

P, (z4) = foo Vhojr(21)96(x A = 1) hom, (T1)dT1 = Yho j1(4) GVhon, (T 4)
(3.12)
The solution of this integral equation has been attempted by three discretization
schemes (a) Pseudospectral Method (Sec.2.2.1) (b) modified Simpson’s rule as
explained in [82] (Sec.2.2.2) (c) Trapezoidal method.

Discretization

The integral in equation Eq.(3.11) can be replaced by a discrete sum. The ion is
in an initial state n; before collision. Discretization for solution by Integral Equa-
tion Method using pseudospectral integration (See Sec.2.2.1) gives an equation
similar to Eq.(2.28). The integration coordinate 2/, is partitioned into sectors as
explained in Fig.2.1 (and Sec.2.2.1) and a discretized integral equation is written
for a solution vector which is defined over a sector [ with N points. The spectral
integration matrices G* and G~ are given in Eq.(2.25). We then have

51
B, (2a) = Q§531,($A)+%mp§i(w [D(k)G FY, (24) + Ck))G* B (24)]
" J (3.13)
where we define the vectors
QY (@4) = [Py (@) o5 P (2 D)) ®nr0 L Py, (0D e o aln ]
P; 2”(“) [P; n,(x(l) ), Py m(fC(l) )..... Py nl(x(l) ]T
B (4) = [Fj, (@5)), o, (210), m(xm I (3.14)
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3.1 The Two Body Hamiltonian

and similar to Eq.(2.26) the matrices C(k;) and D(k;) as
C(kj) = Cu(kj) = e Mian==at) and D(k;) > Dy(ky) = e*iranan) — (315)

To avoid multiple subscripts atom coordinate is changed to x4 — 24, for the
following equation alone. The discretization for solution by Integral Equation
Method using modified Simpson’s integration (See Sec.2.2.2) and trapezoidal rule
gives the integral equation as

. Nch P.,. A N .
Fj’,nf(l‘é) = le](l‘ﬁ)e_zknlxﬁ + Z m%]{flz‘rl) Zwleﬂi‘j'xﬁ_l‘f‘ﬂ,nl (.1'24) (316)
=0 i =

The discrete integral equation for Fj ,,(x4) in Eq.(3.13) and Eq.(3.16) can
then be decomposed into complex reflection and transmission amplitudes for an
incoming channel I as

o0

muw;e” A _ = mawge
Tjn] = Z 72]{; Fj,nl (l‘l ) and t]nl = Z 72]{;
I=1 LR I=1 LR

A A
ikjx; ikjx;

Fjn,(21)  (3.17)

The transmission amplitudes given here is without the shadow term i.e [¢;|> =0
when ¢ = 0 for an incoming channel 7. Thus the real transmission probability is
Tij = [tij]* = |ti; + 0;j]> The wave vectors are given by k, = \/2m(E - (n +1/2)
withn ={(1-n;),(2-n;s),...,(ne—ny)}. For a given total energy of the system,
real values of k,, are the energetically open out-going channels.

3.1.1.1 Convergence Properties of IEM with Pseudospectral Integra-
tion

The calculations are done for Na atom as the free particle and Ca* ion as the
trapped particle with a mass ratio m = myq/meq+ = 0.57.

Influence of Number of Channels

The Green’s function in Eq.3.7 is a slowly converging infinite series over the chan-
nels. This summation is truncated at a sufficiently large number of channels (NV.,)
for the test case with total energy Fi; = 1.7 hw, 2 open channels and ion in the
trap ground state initially (n; =0).
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0.001—

~— Strong coupling g=+1 ]

0.0001F

Absolute Error
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<] ~— Weak coupling g=0.1 1
5 J
S1e06) .
g
<

1e-07,

Figure 3.2: Strong coupling g = +1 requires large N, (top panel) but the method
converges very well for weak couplings (bottom panel).

We take a grid with 15 points per sector and 10 sectors over a range of
[-10 apo, +10 ap,]. The calculation is done to estimate the number of channels
Ny, required in the case of a weak (¢ = 0.1) and strong (g = 1) pseudopotential
coupling respectively. We calculate absolute error on the total reflection prob-
ability i.e reflection probability summed over all open channels Ry = ij:"g 7052
with an incoming channel n; = 0. The forward difference of the y-axis data (i.e
the total reflection probability) at a point is taken as the absolute error.

A strong pseudopotential coupling (g = 1) couples to a large number of chan-
nels, even closed channels. We note from Fig.3.2 that we require N, ~ 80 to
obtain an absolute error ~ 2 x 1075. At weak couplings g = 0.1 the calculation
converges with absolute error ~ 1 x 1077 requiring only around N, ~ 40. With
the above specified grid parameters, the calculation with N, =5 takes ~ 3 secs
and with N, = 50 takes ~ 9 mins. The calculation at strong couplings with
around N, = 90 is the maximum possible when using the maximum allotted
memory of 128G B on a machine and takes ~ 45 mins. Running on MATLAB,
this calculation is done without parallelism.

Influence of Number of Points and Closed Channels
The convergence depends on the number of closed channels in the calculation.
More closed channels are needed in the calculation with increasing collision en-

ergy.
We consider an example case of ion in ground state (n; = 0), weak coupling of

36


Chapter2/Chapter2Figs/EPS/errvsnch_IEM.eps

3.1 The Two Body Hamiltonian
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Figure 3.3: Convergence with number of closed channels in the calculation, using
pseudospectral method.

g = 0.1 and energy Ei, = 5.1 hw i.e 5 open channels. We calculate the relative
error on the summed reflection probability as a function of the number of points.
For relative error we use a reference calculation done with 10 sectors, 15 points
per sector taken over [—10 ap,, +10 ap,], Nep = 50 and vary the number of closed
channels in the calculation to see in Fig.3.3 that a minimum of at least 10 closed
channels are required for a convergence better than 1x10~8 with sufficient number
of points.

Comparison of Convergence Rates

To illustrate the super-algebraic convergence of pseudospectral method a com-
parison is made with modified Simpson’s and trapezoidal methods, with respect
to the total number of integration points as shown in Fig.3.4.

The absolute error on the summed reflection probability is calculated with
respect to a reference calculation with 10 sectors, 15 points per sector over
[-10 ano, +10 apo], Nep = 50, Eypr = 2.1 hw and weak coupling g = 0.1. The trape-
zoidal and Simpson’s methods are known to be O(n=2) and O(n™*) respectively,
where n is the total number of points. The convergence rate of pseudospectral
method is seen to be exponential (or super-algebraic) i.e O(n™") (See 56), as seen
in Fig.3.4.
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Figure 3.4: Comparison of convergence properties of pseudospectral, modified
Simpson’s and Trapezoidal methods.

3.1.2 Solution by Propagation in Cartesian Coordinates

We introduced solution method by IEM in the previous section and explained the
convergence characteristics of the method with various grid and physical parame-
ters. The slow convergence of the Green’s function limits the range of parameters
that can be used, requires a large memory and has a very large computation
time. As an alternative to the integral equation method, we implement the log
derivative method, which is considerably faster and more robust. A concise in-
troduction to the method was given in Sec.2.3.

Rewriting the Schréodinger equation in Eq.(3.2) in centre-of-mass and relative
coordinates, we have

1 2 10 1 mo\2
M OXE e T2 (X— Mx) +g5(x)] U(X,2)=EU(X,z) (3.18)

where X = (mxa +x7)/(m +1) is the centre-of-mass, mass ratio is m = ma/my,
M =m+1 is the total mass, the reduced mass is p = [1/m+1]"" and relative
coordinate is x = x4 — ;. The atom and ion coordinates in terms of the centre-
of-mass and relative coordinates are in turn given by

xA=X+% and :UI:X—%:U. (3.19)

The centre-of-mass is taken as the internal coordinate and relative coordinate is
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Centre-of-Mass axis X
m
A / 0= tan“[ A ]
m

Xatom

Asymptotic matching region

X

Relative coordinate

Figure 3.5: Schematic of Log-Derivative propagation in Cartesian coordinates.
The relative coordinate z is also oriented at an angle 6 with respect to the centre-
of-mass axis X depending on the mass ratio m. 6 =45° if m = 1. Labels 1 and 2
denote the propagation direction for mass ratios m << 1 and m >> 1 respectively.

the propagation coordinate. Since the atom-ion potential is modelled by a delta
pseudopotential Vi, = gd(x), the potential is non-zero only if z; = x4. Thus
any potential that is a function of the relative coordinate fixes the centre-of-mass
axis at a 45° angle from the z-axis (labelled x4, in Fig.3.5). The direction
of propagation angle 6 = tan™'(y/ma/m;) is proportional to the mass ratio, as
shown in Fig.3.5. For smaller values of m, the propagated grid between points A
and B along the X axis remains within the defined waveguide width or oscillator
size (labelled 1 in the figure) and thus can completely define the asymptotic
wavefunctions which gives good matching at the boundary. The method begins
to fail for higher values of m (labelled 2 in the figure) where the grid AB moves
out of the waveguide region and one would have to define an extremely large grid
with sufficient point density. This increases the size of the propagated matrix. Let
the solutions be given by W;(X,z) = ¥, ¢#(X)Fir;(z). Following the procedure
in Sec.2.3, we substitute these solutions in Eq.(3.18), multiple by ¢;(X) and
integrate with respect to X. We have

88_;51(55) = Z (0s(X) | W (2, X) | ¢ (X)) x Fyrj(x) = W(z)F(z) (3.20)
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where the effective potential matrix W(z) has matrix elements

¢ZI(X)> +

X

Winta) = =45 (0000 sz | 0 )) 20 (00| (- )

2pg0;0(x) — 2,uE5“~,] (3.21)

2
bu(X)) =
Oir (Xi - %x)Q The various grid and physical parameters for a converged calcu-
lation are specified in Sec.3.1.2.2. The log derivative matrix defined in terms of
the relative coordinate is Y(x) = F’(z)F-!(z) and is propagated along the z axis.
The second derivative kinetic energy term in the effective potential is repre-
sented by a matrix in DVR (See 96, 97). This term has a standard representation
on a Fourier basis (See 100). The log derivative algorithm has been briefly ex-
plained in Sec.2.3.

The second term on the right side is diagonal since <<;5Z-(X ) | (X - %x)

3.1.2.1 Initial Condition

The analytical boundary condition at the origin for 1D scattering of a particle of
mass m from a delta pseudopotential go(x) is well known.Following [100], a basis
of sine functions is taken for this case. The pseudopotential is centered at the
origin, this gives the initial log derivative YV = F’(x)F-1(x)|,—0. The solution
U(X,z) is expanded on a basis of trignometric DVR functions ¢;(X) along the
X axis as Wi(2,X) = ¥; ¢;(X)Fji(z). Fji(z) are the propagated functions and
their properties at the location of the delta pseudopotential (x=0) determine the
correct initial condition. Substituting it into Eq.(3.18) and integrating in z over
[—€, +€], where € - 0, we arrive at

1

517 | Fi@)dko,(X)da a Fi(@)6;(X)|c+g [ Fu@)oy(X)5(2)da

1 +e€
= " E()65(X) (X - Mx) a= [ CEF(0)6,(X) de (3.22)
where dx and 0, denote the derivatives with respect to X and x respectively. All
terms except the second and third terms on the left hand side tend to zero as
e - 0. Multiplying Eq.(3.22) by ¢;(X) and integrating with respect to X gives
(Fi-6) = Fi(e) +2ug [ Fiu()d(w)de =0
If F/,(€) = —F};(=¢) = Fj(0) = ji(O)/(gu) = + total parity YﬁN =2gpd;i
If F/,(€) = F;(=¢) = F;;(0) = 0 = — total parity Y};" = cod;; (3.23)
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3.1 The Two Body Hamiltonian

Writing the solution as a product of functions ¥(z, X) = F(x) f(X), V(-z,-X) =

+W(z, X) for the positive (or negative) total parity respectively.

+ total parity— VU (-z,-X) = F(-z) f(-X) =+F(z). = f(X)

- total parity— V(-z,-X) = F(-z) f(-X) =+F(z). ¥ f(X)

The initial log derivative matrix is built on the X coordinate basis that is ob-
tained by symmetrizing the Fourier DVR grid!. Details of symmetrization pro-
cedure is given in Appendix B. The potential matrix in Eq.(3.21) is accordingly
symmetrized at each step of propagation. Thus for positive total parity we have

(Qg,u 0 ... ... 0
0 29p ... 0
: 0 ... oo 0
0 0 oo

The grid point X =0 is always of positive parity, thus the corresponding element
along the diagonal in the above matrix will be 2gu. The negative total parity
initial condition interchanges the values co and 2gu along the diagonal.

3.1.2.2 Asymptotic Matching

The procedure of asymptotic matching has been explained in Sec.2.3.2. From
Eq.(3.19) we see x4 and z; are functions of x and X. Asymptotic functions are
to be built at the final step of propagation z = zp, on the X coordinate grid
X; e[-L,+L]. The regular and irregular asymptotic functions .# and ¢ used to
build the matrices F and G are

F = \/1]€7fi(k;j,xA)¢ho7j'(x[) = \/%fi (k:j/ [Xj + x—N]) Yho,jr (Xj - m901\/)

1 1 x m
Gy = —=9"(kjwa)noy (1) = g (kj’ [Xj + —N]) Vo, (Xj - —ﬂfN)

(3.25)

where wave vectors kj = \/2m(E - (j' + 1/2)) are real for energetically open chan-
nels and imaginary for closed channels, ¢, j(x;) are asymptotic harmonic oscil-
lator ion wavefunctions given in Eq.(3.6), f*(kjx4) and g*(kjx 4) are the regular
and irregular free asymptotic solutions for the atom. Since f*(kjxa), g*(kjxa)
and p, ;(zr) are functions of both 2 and X and are expanded on a DVR function
basis along the X coordinate by integration which gives value of the integrand at

!Symmetrization follows a consistent convention in all routines.
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3. COLLISIONS IN MIXED DIMENSIONS

the DVR grid points. The functions f*(kjz4), g*(k;x4) for the open channels
are taken as

f+(kjlfL'A) = kf;,l/QCOS(kfj/[L'A) g+(kjle) = k?;,l/QSin(kjl|$A|)
[ (kjxa) = k;,l/Qsin(kj/xA) g (kjxa) = —k;,l/Qsign(a:A)cos(kj/:cA) (3.26)

and for the closed channels as

Pexp(~kj|z.a])

f+(kjlfL'A) = k;,l/QCOSh(kfj/[L'A) g+(kjl$A) =
= k;;,l/ /ZSign(xA)eXp(—kjl|xA|) (3.27)

-1

—k;,
[ (kjxa) “sinh(kjaa) g (kjaa) =k,
These functions are linearly independent since their Wronskian for each parity is
non zero, giving W(f*,g*) = 1. The parity of these functions are chosen depend-
ing on the parity of the oscillator functions 1, j(x;) for a given total parity of
the total solution.

Given N, channels are propagated, in the asymptotic region N, channels
with (Ngasy < Nep,) are taken to build the functions .%; (x4, 2r) and ¥, (x4, ).
Ngsy is chosen so as to include all energetically open channels and sufficient num-
ber of closed channels to account for exponentially decaying yet non-negligible
amplitude in the closed channels. It is seen from Fig.3.5 that there is a 45° an-
gle between the asymptotic region and the propagated log derivative along the
X-axis grid. Strongly closed channels need to be eliminated during matching
asymptotic solutions and this truncation can be done by a basis transformation.
This transformation matrix T is built with the eigenfunctions of the lowest N,
eigenvalues of the matrix of the effective potential W(z) given in Eq.(3.21), com-
puted at the final propagation point xy. The second derivative term (first term
on the right hand side) is a full matrix. The final log-derivative Y; for N,
number of channels in the asymptote is then given by

Y;=TLY,;Ty (3.28)

The K-matrix for a given parity is then given by Eq.(2.40) and the S-matrix is
obtained from open-open blocks of the K-matrix, using Eq.(2.42). The total S-
Matrix is then given in terms of the positive and negative parity S-matrices S*
and S~ of dimension (N,, x N,,) where N,, the number of open channels

Stotal = (329)

1[s*+S §*-§
2|S* -5 St+§

Grid and Physical Parameters From Fig.3.5, if the grid X € [-L,+L] with
Nx number of points, then x; € [- (L - x%) ,+ (L - x%)], thus in the asymptotic
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3.1 The Two Body Hamiltonian

region precision with respect to the number of grid points is lost if (a) we propa-
gate to large distances x for a given mass ratio and/or (b) mass ration m is high.
These two parameters determine if the asymptotic matching is done efficiently.
Since we use a zero-range potential, we need to propagate to a distance xy o< /g
(a few oscillator lengths) so as to converge the weakly closed channels in the x
coordinate. The propagation step size needed is ~ 1 x 107 with N, ~ 20 closed
channels. Some of the grid and physical inputs for a converged calculation are
specified here.

For mass ratio m = 0.1 - L = [-10,+10], Nx = 120, 2y = 5.

For mass ratio m = 0.57 - L = [-10,+10], Nx = 130,z = 5.

For mass ratio m =2 - L =[-20,+20], Nx =250, 2y = 5.

It is thus seen that we require a very large grid and number of points to con-
verge the calculation with high mass ratios (m > 2). It is seen from Fig.3.5 that
at high mass ratios the propagated grid along X-axis shifts out of the oscillator
region. The pseudopotential coupling and total energy constrain the minimum
propagated distance. To overcome this constraint we propagate in plane polar
coordinates, avoiding the need for a basis transformation at the final step of
propagation.

3.1.3 Solution by Propagation in Plane Polar Coordinates

The Log Derivative propagation in Cartesian coordinates has intrinsic limitations
while solving for a two body problem since it requires having very large grids for
higher mass ratios ma/m; >> 1, as explained in Sec.3.1.2.2. This increases the
number of channels N, to be propagated and since the propagation algorithm
involves matrix inversion and multiplication, the computation time increases as
O(N?3,). This drawback can be overcome if we propagate in plane polar instead
of Cartesian coordinates. Rewriting the two body Hamiltonian in Eq.(3.2) in
oscillator units

1 02

1 19 1
2m 0x% 2 0x2

§$§+95(S€A—$1)]\I’(m,x1) = BV (x4, 17) (3.30)

and using mass-ratio scaled coordinates taking 74 = \/mx 4, we have

192 10% 1

[—5@ - 56—1‘? + 51’% + 95(.%,4 - x[)] \I](.%A,.T[) = E‘I’(i’A,ZUI) (331)
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3. COLLISIONS IN MIXED DIMENSIONS

In plane polar coordinates, with p = /7% + 2%, the Hamiltonian is rewritten as

1 02 10 10 1._
[—2—p2w - §a—p2 - ﬁa_p + §[p COS(O() - p COS(H—OZ):I2

+ 2500)| (o) = B (0) (332

where p = OO’ and a = tan™'(\/m), as shown in Fig.3.6. The origin is redefined
to O’ and p-axis is at an angle « before propagation. The grid end points p; and
po are chosen sufficiently far apart so to encompass the waveguide region during
propagation and p > 0. Thus at any angle 6 along the propagation coordinate é,
the atom and ion coordinates can be given by x4 = [psin(«) + psin(f — «)] and
xy = [peos(a) — pcos(f - a)].

The Log Derivative built along the p axis is propagated along the angular

2
0’
o m, || Xion *
a=tan"| [ Pl / d
ml .
4
--------------------- '—0--—- - o w Wm m oWm m om m
1
~ "' p ll)I
4
X atom O "'
'l‘ ~
I’ O
.
.
4
y
----------- . LR I R I
4
p2 , _
s <« Asymptotic matching
- .
.. ol region
A .
Centre-of- &’
. .
Mass axis <0
\ p2

Figure 3.6: Log-Derivative Propagation in plane polar coordinates.

coordinate 6. So taking p as the internal coordinate, we apply the angular log
derivative propagation to

0? 102 10 1,._
w‘l’(%@) = -2p? [58—/)2 Yo 5[,0 cos(a) = p cos(0 - )]’

- %@5(9) . E] U(p,0) (3.33)
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3.1 The Two Body Hamiltonian

Let the solutions be given by W;(p,0) = X, ¢i(p)Firj(6). Following the proce-
dure in Sec.2.3, we substltute these solutions in Eq.(3.33), multiple by ¢;(p) and

integrate with respect to % p . This modification to the DVR basis is explained in
Sec.3.1.3.1. We have

82

5z L (0) = 2 (0:(p) [W(p,0) | 65 (p)), Frs (0) — W(O)F(0) (3.34)

where the effective potential matrix W(#) has matrix elements

W)=~ (00| (115 + 255 [040) +2058m(0) 1) ol (), 300}
{0:(p) | (p°[p cos(@) = p cos(0 - )]?) | b (p)) =2(ei(p) | p* |0 (p)) E (3.35)

All terms in the above equation except the first are diagonal in the p basis. The log
derivative matrix defined in terms of the relative coordinate is Y(0) = F'(0)F-1(0)
is propagated along the ¢ axis. Log derivative algorithm has been briefly explained
in Sec.2.3. The derivative term in the right hand side in Eq.(3.35)

0 0
2t e (3.36)

is unlike the second order derivative term encountered in most problems. It is
important to have a symmetric representation of this term.

3.1.3.1 Modified DVR Basis

The kinetic energy term T = p? a =+ P a in the effective potential is represented

on a Legendre-Gauss-Lobatto grld [56]p. 572. Modified DVR basis functions ¢,(p)
are needed for a symmetric representation of this term. A modified basis with
coordinate dependent weights is defined as

6;(p) -cj<p>\/7, with  ¢;(p) = (225_;’;) 1) (3.37)

The functions ¢;(p) are the rescaled Legendre-Gauss-Lobatto cardinal functions
defined over the interval (p1, p2) and C;(p) are the same cardinal functions defined
over (-1,+1), as given in [56]p.572. The orthonormality in order is given by

@0, = [ 6:(0)0s(0) o =0, (3.38)
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3. COLLISIONS IN MIXED DIMENSIONS

In this modified basis, we check if the matrix representation of Tp is symmetrix.
Taking matrix elements of this operator

op? dp
= [ Ty (0) - i) ()] do

p1

WL = [ 0| 2P0 - 20 L,

Integrating the first term on the far right hand side, we have

()T s (o)) = =0 + [ 7 [0io)ous (o) + Tt Yeso) -
Diyse) | dp

The first term on the right hand side tends to zero since we adopt Dirichlet
boundary condition as p €]p1,p2[= ©¥(p1) = ¥(p2) = 0 and the second term is
symmetric upon integration with respect to dp/p in the new representation

(L PIT l5(p)) = fpg Vi(p)pv;(p)dp = fpg w;(p)p%j',(p)%dp_

pP1 P1

The DVR weights have a 1/,/p dependence. The eigensolutions and eigenvalues
for a differential operator of the kind Tp are similar to eigensolutions of a particle
in an infinite square well.

2.2

Yn(p) =sin lM] with A, v

In(pa/p1) T 102 (pa/p1) (3.39)

The eigenvalues and eigenfunctions of the Tp operator are derived in Appendix.C.

3.1.3.2 Initial Condition and Asymptotic Matching

The derivative term 7’ » is built along the p axis, symmetrically about the origin
O, over a set of grid points given by X; = (p — p;), where p; €]p1, po[. Since DVR
weights have a 1/,/p; dependence, it is noted that symmetrization like that done
in Sec.3.1.2.1 about the origin O of the p grid is a non-orthogonal transformation
since the grid weights are dependent on the coordinate as given in Eq.(3.37). The
potential matrix cannot be symmetrized at each step of propagation and thus the
initial log derivative is transformed to Finite Basis Representation (FBR) [93-95].
The Legendre-Gauss-Lobatto DVR, basis is changed to a new basis of sine (and
cosine) functions or box functions (i.e solutions to a particle in a box) assuming
the box of half-width L with endpoints at p; and ps (See [100] and Sec.3.1.2.1).
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3.1 The Two Body Hamiltonian

The transformation matrix elements corresponding to positive and negative parity
basis functions are

1 X 1 X
T;j = —=cos (]ng)\/wi/pi and T;; = ﬁsin(‘]ng) wi/ p; (3.40)

where X; = (p—p;) and p; €]p1, po[. w; are the Legendre-Gauss-Lobatto weights
at the grid points and \/w;/p; refers to the modified DVR weights at the grid
points as shown in Eq.(3.37). Thus we build a matrix Ty with the functions in
Eq.(3.40) along the columns of the matrix. Following the method in Sec.3.1.2.1,
an expansion of the solution W¥(p,#) on a basis of DVR functions ¥;(p,0) =
> ¢;(p)F;i(0). Substituting this into Eq.(3.32) and integrating over [—e¢, +€]
with respect to 6 with € » 0, we have

- F Q- [ FuO)F6i0)d0+p [ Fi(0)0,0,(p)d0+
[ 202 Viao(p.0) F(0)65(p)0 + 2pgsin(a) [ Fiu(0)5()6(6)a0
2°E [ Fu@)oi ()0 (3.41)

where d, and 9y denote the derivatives with respect to p and 6 respectively. The
harmonic oscillator potential is Viyo(p,0) = [p cos(a)—p cos(f-a)]?. All terms in
this equation except the first and fifth terms on the left side are zero. Multiplying
Eq.(3.41) from the left by ¢;(p) and integrating with respect to p leaves

(=FJi(€) + Fli(=€)) + 2gsin(a) F};(0) (¢5(p) | p| ¢5(p)) = 0 (3.42)

Taking M;;» = (¢;/(p) | p|¢j(p)) = pjd;; as a matrix element of matrix M, we
see it is diagonal in DVR. From Eq.(3.42) above, we define log derivative channels
YN (0) = FJ,(0)F;(0)

If F/i(€) = —F};(=¢) = F;:(0) = x;(0)M;' /(gsin(cr)) = + total parity channels
Vi = gM;sin(a)
If F;(€) = F};(—¢) = F};(0) = 0 = — total parity channels Y;}" = oo 1
3.43

It is noted that the initial log derivative is transformed to FBR by TgY; NTE}M‘H
where Tp is the matrix of basis functions, with elements given in Eq.(3.40).
Matrix Tp is a full matrix and since log derivative term has infinities along the
diagonal, the initial condition will have matrix elements close to infinity and
remain insensitive to the value of pseudopotential coupling g. We instead choose
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3. COLLISIONS IN MIXED DIMENSIONS

to begin propagation with an R-Matrix condition which is R/Y = (Y/V)~1. Thus
we have the initial conditions for each parity as

1
gsin(a)
YjIZ-N = 00; RJIZN =0 - Negative total parity (3.44)

lez‘N =9 Sin(&)sz’; R]IZN = Mj}l - Positive total parity

The initial condition matrix for positive total parity is given by

1/(gsin(a)) 0 0 0
0 0 0 0 ...
RN =T 8 8 1/(9831(04)) 8 o T M (3.45)

The terms 0 and 1/(gsin(«)) are interchanged to obtain an initial condition with
negative total parity. Since R-Matrix initial condition chosen here is singular, the
initial few steps (1 ~ 3) of propagation are modified to propagate the R-matrix ini-
tial condition after which it is found to be non-singular for stable inversion. After
the initial few steps of modified R-matrix propagation the regular Log Derivative
recursion relation in Eq.(2.34) is used. The recursion relation in Eq.(2.34) over
an interval [2',2"'] is modified as

V(") = Vala',a") = Dyl a) x [T+ RO (', 2" (RG) x Dol )
(3.46)

where R(z') is the R-matrix at the propagation coordinate /. Taking the inter-
val to be two half-sectors x,,, z,, and [x,,, Tn41], where the z,, is the midpoint of
[%1, Tns1], the resulting Log Derivative after propagation in the first half-sector
is inverted and the resulting R-Matrix is propagated again to obtain the Log
Derivative. This relation gives a non-singular Log Derivative Y (x,,1) at step
Zps1. This can be further inverted to give R(z,.1) = Y (2,41)7" and this process
is repeated for the initial few steps only (approximately 1 ~ 3 steps), until the
Log Derivative inversion is stable. These few steps involve extra matrix multipli-
cations and inversions and thus is it computationally efficient to continue the rest
of the propagation with the usual Log Derivative recursion relation as explained
in Sec.2.3.1.

The procedure for asymptotic matching is similar to that in Sec.3.1.2.2, with
asymptotic wavefunctions transformed to the appropriate coordinates.

Grid and Physical Parameters
From Fig.3.6, we specify the length of segments [, and d as inputs to define the
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3.2 Results and Discussion

p-axis grid over interval ]pi, po[ with N, points. We require d of at least one os-
cillator length to include the weakly closed channels the calculation. Propagation
in the § coordinate is over 6 € [0, a], where the limit o = tan™'(y/ma/m;) is fixed
by the mass ratio of the system. The propagation step size needed is ~ 1 x 1074,
d = lay, and all propagated channels are included in the asymptotic matching
since the method is devised to specifically forego the intermediate basis selection
procedure, explained in Sec.3.1.2.2. Some of the grid and physical inputs for a
converged calculation are specified here.

For mass ratios m = [0.1,0.57] - [,,, = 10, N, = 150.

For mass ratio m =1.0 - [,,, = 10, V,, = 200.

For mass ratio m = 2.0 - [,,, = 10, N, = 210.

For mass ratio m =5.0 - [,,, = 10, N, = 340.

3.2 Results and Discussion

Asymptotic matching at the end of propagation gives the K-Matrix directly, as
per Eq.(2.40) and using Eq.(2.42) the S-matrix is obtained from the open-open
block of the K-Matrix (in Eq.(2.41)). The transmission and reflection probabil-
ities and their relation to parity dependent S-matrix elements are given in the
beginning of Sec.3.2. The reflection and transmission coefficients are Ry = |r;¢|?
and Ty = |t;f|? respectively. r and ¢ are the complex transition amplitudes, I, f
are the initial and final state of the trapped particle in the harmonic oscillator.
The complex reflection and transmission amplitudes are elements of the total S-
Matrix. From Eq.(3.29), the complex transmission and reflection amplitudes are
given in terms of the elements of the parity dependent S-matrices by r;s = S} f—S; I
and i1y = S7; + ST respectively.

The scattering wavefunction in 1D for this problem has the asymptotic form

U, (xa,27) =Up(xa,27) + Z Jri(ky = sign(x) k)i (xa, x7) (3.47)

k2>0

where the relative coordinate is defined as © = x4 — ;. The reflection and trans-
mission coefficients can then be given in terms of scattering amplitudes as

Rnn’ = |fnn’(kn - Sign(aj)kn’”2 and Tnn’ = |5nn’ + fnn’(kn - Sign(aj)k”’”2 (348)

with the sign convention as shown in Fig.3.7. Following the analysis of [85], we
define the scattering amplitudes in terms of even and odd parity components as

fone (ke = sign(@) k) = f +sign(x) f,, where f£,=iK*(I-iK*)™" (3.49)

nn'

49



3. COLLISIONS IN MIXED DIMENSIONS

R sign(x)=<0

T —

- | <—— Incidence
R ——— 1] | - x
Incidence sign(x)=0

Figure 3.7: Sign convention adopted for incoming and outgoing particles.

where K* is the K-Matrix of the concerned total parity. The summed reflection
probability is defined for an incoming channel n; = 0 as Ry = ZjN:"Op |70;]?, where
Nop is the number of open channels for the given collision energy.

From Eq. (3.49) and Eq. (3.48), one can also define the even and odd parity
scattering amplitudes in terms of the complex reflection and transmission ampli-
tudes for the low energy elastic open channel as

fJO = (7’00 + EO(])/Q and fO_O = (fo(] - TOQ)/Q (350)

where tog = tgg — 0pns is the complex transmission amplitude without the shadow
and rgy and tyy are the complex reflection and transmission amplitudes. Scat-
tering by a delta pseudopotential and a harmonic oscillator can be characterized
by an effective coupling constant. This coupling constant g.ss is equivalent to
modelling a new delta pseudopotential, with the coupling term that encapsulates
the combined effect of the 1D delta and harmonic oscillator potentials. g.s¢ for
each parity can be given by

. iRe(fy) 4 o iRe(f;)
%is = ae RS M 9T 5@ R e

(3.51)

where p = (m;/ma +1)~!. To obtain the above expressions (See 92), we take a
general asymptotic form of solution for scattering on the redefined delta pseudopo-
tential g.;0(x) as Y& (x) = e7** + f*eiblel and substitute it in the Schrédinger
equation [—(2m)~'d?/dx* + g% ;0(x)]¢(z) = E(x), to give these expressions.
The effective coupling 9rt characterizes the combined effect of the harmonic
confinement and pseudopotential coupling as a 1D zero-range interaction given
by gesro(x). In oscillator units, the effective coupling is related to the scattering
length aip by gesr = —1/(mayp) where the scattering length is a;p = —limk_,O@
with ¢(k) as the phase shift of the asymptotic form of solution. The interplay of
the harmonic oscillator and the delta pseudopotential is expected to give rise to
new bound states for this system.
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3.2 Results and Discussion

Born Approximation

As an initial test to check if the different methods are in agreement, we compare
the results from the three methods with Born approximation.
For this 1D scattering problem the reflection coefficient using Born approxima-
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~.~ Born Approximation )
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Figure 3.8: Born Approximation for elastic and inelastic collision. Comparison
of the three methods - IEM, Log Derivative Propagation in Cartesian and plane
polar coordinates.

tion is given by

2

‘LOO Loo1/}1(37147x1)95($)¢f($A,$1)dxAdxl (3.52)

m

R =
i Sk

where (x4, ;) and 1 (x4, 2;) are the asymptotic incoming and outgoing wave-
functions. They are the product of the wavefunction of the two particles. Reflec-
tion coefficient is calculated for elastic and inelastic collision. As an example, we
take an energy of E/(hw) =1.6 for a system of Na atom and Ca* ion, with mass
ratio m = 0.57. The ion is in an initial state n; = 1 of the trap.

The reflection coefficient for the elastic channel is Ry = |r11|? and Ryg = |r10/?.
As one might expect, it is seen that the reflection coefficients calculated with the
three methods for elastic and inelastic channels agree very well with the Born ap-
proximation at low pseudopotential couplings. The Born Approximation is not a
valid approximation for the scattering amplitude at larger values of the coupling

g.
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3. COLLISIONS IN MIXED DIMENSIONS

Resonance and Threshold Features
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Figure 3.9: Resonance peaks and threshold features in the summed reflection
probability for various values of coupling g.

In Fig.3.9, the summed probability over all open channels with the ion initial
state as the oscillator ground state and N, is the number of open channels. For an
incoming channel of ny = 0, resonance peaks are observed for negative pseudopo-
tential couplings i.e for positive 1D scattering lengths. In 1D systems, the scat-
tering length a;p is related to the pseudopotential coupling g by g = =2h2/(uaip),
for a system of reduced mass ;. The scattering quantities in Fig.3.9 are seen to
obey Wigner laws near zero collision energy i.e when total energy £ — (n + ).
To further illustrate the threshold phenomenon at new channel openings we plot
the reflection probability in each open channel, with g = -1. From Fig.3.10, as
the collision energy crosses the threshold for a new channel i.e an excited har-
monic oscillator state, we notice a new transition probability evolves from zero
at the threshold energy. The resonance peaks occurring at energies F > 1.5hAw
can now be decomposed into contributions arising due to transitions to different
open channels like Ry, Ry2 and Ry3 in this case.

The asymptotic property of the even and odd total parity elastic scattering am-
plitudes f; and f,, for the nth channel with infinitesimal collision energy go
as |90]

r ~=-1+0(k,) and f, —0 (3.53)
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Figure 3.10: Resonance peaks and threshold channel openings for state-to-state
reflection probability at coupling g = —1.

It is easy to see from the above that the particle will be reflected with probability
~ 1 at thresholds where collision energy goes to zero and odd scattering amplitude
goes to zero. As total energy increases, new channels open i.e with larger energy
the ion has a probability to end up in one of the open excited state of the oscillator.
From [90], the even and odd total parity scattering amplitudes to newly opened
inelastic channels n’ are given by f* , ~ k.

It is interesting to note that since the scattering amplitudes ff are dependent on
total parity, the behaviour of the elastic channel threshold laws change depending
on the parity of the harmonic oscillator state in the elastic channel. For example,
since n; = 0 state of the oscillator has positive parity, the threshold laws in the
elastic channel hold as explained in Eq.(3.55) for E.,; ~ 0 but for a low collision
energy and ny = 1 as the incoming channel, the threshold laws in the elastic
channel for positive and negative total parities are reversed, that is
* =0 and f. ~-1+0(k,) (3.54)

nn

To continue the study on these lines, we decompose the resonance-like peaks
into contributions from the even and odd total parity scattering amplitudes f ,
and f-,. These can be constructed using the resulting K-Matrix from the log
derivative propagation and using Eq.(3.49). In order to study the first resonance
peak in Fig.3.10, arising from the elastic channel, we plot fj, and f,, calculate the
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Figure 3.11: Reflection in the elastic channel Ry, and contribution of fj, and fg,
to the resonances-like peaks.

reflection coefficients Roo = | fi,— fool?- A pattern of alternating parity dependence
of the different resonance peaks is observed. The first peak in the elastic channel is
seen to have contribution from the negative parity f;,. The delta potential affects
only the positive parity (s-wave) during scattering, yet in this case a contribution
from the negative parity f, is observed. This is due to the fact that the total
parity of the problem can be decomposed into parities along the two coordinates
X and z. Though the grid along the X-axis is symmetrized, propagation is
done with different initial conditions for different parities along the z-axis. This
coupling between the centre-of-mass and relative coordinates results in a negative
parity contribution to resonance peaks at low energies. Analyzing the time delay
involved with such peaks will confirm if they arise out of resonant interaction.
Olshanii [86] predicts that with delta potentials the odd parity scattering
amplitude f,,, — 0, indicating only an even parity contribution for resonances
observed at positive scattering lengths. It is also reported for short range neutral
atom scattering [88]. The elastic channel resonance at low energy is seen to
have a contribution from negative parity f;,. Granger et al. [89], show that
this case is analgous to a p-wave contribution. They report on the collision of
two spin-polarized fermions in quasi-1D, under 3D free-space p-wave scattering
which can be mapped to a system of two 1D bosons in collision and resulting in
a contribution of only the odd parity scattering amplitude to resonance at low
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3.2 Results and Discussion

energies.

Time Delay of S-Matrix

Resonances have a dependency on energy that goes as a Lorentzian function,
with the characteristic peak. In the ultracold regime however the Lorentzian is
modified due to background scattering. To help conclusively confirm such peaks
as resonances, it is instructive to calculate the time delay matrix @)*, from the
S-Matrix [91]. The time delays for resonances show up as broad positive peaks
in delay time, as function of energy. The time delay matrix is a derivative of the
S-matrix with energy, for each parity. It is given by

ds*

Q* = —ih(5*)! =

(3.55)

The time delay matrix is obtained using only the open channel S-matrix. The
eigenvalues of the time delay matrix are the delay times, which essentially indi-
cate phase is accumulated by the outgoing particle due to scattering. The delay
time can be positive or negative. A positive delay time indicates a positive phase
accumulated by the particle i.e it is slowed down by the scatterer due to attrac-
tive potential. This generally indicates a bound state or molecular resonance-like
feature. Conversely, a negative delay time indicates the is particle accelerated
and thus accumulates negative phase. It indicates repulsive potential in the scat-
tering.

The diagonal elements correspond to elastic channels i.e in this model sys-
tem the ion remains in the same oscillator state. The off-diagonal elements of
the S-matrix indicate inelastic processes and the total delay time for a given
incoming channel can be obtained as explained in [91]. The delay-time ma-
trix can be built with from parity-specific S-matrices from the relation At =
Re[-ih(S*)"'dS*[dE]. The matrix elements At;; are time delays of a particle in
the incoming channel ¢ and outgoing channel 7. Thus the total time delay in the
presence of inelastic transition probabilities is obtained as a sum of the time delays
over all open channels weighted by the probability of the j* outgoing channel,
for an incoming channel i, given by (At;) = ¥, [S;[?Aty; = Re [-ih Y, ngdSij/dE].

The eigenvalues of the life time matrix @Q* are thus the time delays (eigen-
lifetimes) in the elastic channels. We plot the maximum eigenvalue for a given
incoming channel, for each parity separately against energy and we find reso-
nances show a broad positive bell-shaped profile in time delay. The S-matrix is
unitary such that S.St ~ I, thus S.ST has very low values for the off diagonal
elements (usually less than 1 x 107! for very well-converged calculations). Thus
we take only the real parts of the time delay (eigenlifetime) matrix Q*.

We plot the eigenvalue at points before the n = 1 threshold and two largest
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Figure 3.12: Delay time (eigenlifetime) indicating the peaks are of resonant na-
ture. Two largest eigenvalues of +parity time delay matrix Q* (top panel) and
-parity time delay matrix - (bottom panel).

eigenvalues before the n = 2 threshold. The resonances showed contribution from
one of the parities and these peaks are at fixed distance from thresholds in Sec.3.2.
Similarly they show clear parity dependence even in this case. The first peak in
the elastic region at low energies before the n = 1 threshold is seen to have a
negative parity delay time. Sharp discontinuities in delay times are observed at
thresholds that occur at E = (n+1/2) with n=1,2,3,...

Dependence on Mass Ratio

The numerical approaches used can accommodate the use of a wide range of mass
ratios, as seen in Fig.3.13. The numerical methods used are stable and guarantee
a relative error of < 107® with larger mass ratios. As a test parameter, the relative
error is taken on the off-diagonal elements of the K-matrix at an arbitrary energy
and two open channels. K-matrix elements are ensure to be converged and stable
with respect to grid and other input parameters when calculating the relative
error. The diagonal elements are also seen to guarantee a relative error of < 1075
with larger mass ratios.
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3. COLLISIONS IN MIXED DIMENSIONS

The plots are made for g = —1 and ion in an initial state n; = 0. The reflection
coefficient taken in Fig.3.13 is Ry = Zj]\i"é’ 704]2, with N,p, number of open channels.

To better illustrate the effect of mass ratio on the probability of decay of the
ion to lower states in the oscillator, we show the probability of the ion relaxation
to lower trap levels if the ion starts in an excited state. It is instructive to plot the
sum of the state-to-state reflection and transmissions coefficients for each lower
open channel, with the ion in an initial state n; > 0. The plots in Fig.3.14 are
made for two steep mass ratios of m = 0.1 and m = 5 and with ion in an initial
state ny = 3.

For large mass ratios (m4 >> my), ion has comparatively greater probability
of relaxation to lower trap levels. Lighter ion tends to cool more efficiently in this
model with a delta pseudopotential. At low collision energies, far from thresholds
and resonances (3.5hw < E < 4.5hw), the ion tends to decay to states with same
parity as the incoming channel. n =3 and n =1 are negative parity ion states.

Zero Energy Resonances as Signatures of Bound States

Since we would like to look for zero-energy resonances, the calculation is done at
a low total energy F — 0, thus the complex amplitudes f* and f~ are scalar (not
a matrix). We plot gz calculated as a function of pseudopotential coupling g at
low total energies E' ~ 0. The effective couplings g/, and g_;, as a function of
pseudopotential coupling g at low energies show signatures of bound states arising
at negative couplings g, in Fig.3.16. They form a two particle complex at negative
energies, arising due to the combined effect of pseudopotential coupling g and
harmonic oscillator potential. These signatures show up as zero crossings of the
symmetric effective couplings g7, and divergences of the anti-symmetric effective
couplings 9.t 0 Fig.3.15. It is seen in the plot that these signatures coincide with
values of the z-axis intercept (coupling g) of bound states, indicating a signature
of underlying molecular levels at negative energies. These resonances that show
up at £ »~ 0 coincide with the location of the bound states and evolve further
into resonances that are dependent on physical parameters (trapping geometry
and potential). It is also noted that the positive (negative) parity zero-energy
signatures correspond to positive (negative) parity bound states. The bound
states calculated are largely influenced by the parity characteristics of harmonic
oscillator levels since a negative delta potential alone has only one bound state.
Upon closer examination, more than one bound states are found for a given value
of g, in Fig.3.16. So the multiple bound states are in essence a contribution of
the harmonic oscillator to the effective coupling. These bound states are seen
to follow the parity of harmonic oscillator states since on comparison with zero
energy resonances, it is see that the resonance structures in the g, follow the
parity ordering of harmonic oscillator levels.
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3. COLLISIONS IN MIXED DIMENSIONS

The divergence of 9ory labelled G at positive coupling constant is the position
where a;p = 0 and thus shows up as a divergence in g.ss.The bound states are
generated using the integral equation method and the zero-energy resonances
with the log derivative method.

3.3 Conclusions

Thus we have presented three different methods to solve the Schrédinger equa-
tion for a collision problem of an ion in a harmonic potential and a free atom in
1D. The numerical characteristics of log derivative method is well documented
in literature since it has been in use over many years. The limitation of Integral
Equation Method (IEM) due to the infinite summation term of Green’s function
term in the kernel, is explained in Sec.3.1.1.1 and efforts were ensured to get
converged results with respect to the number of states taken in the summation
term when using this method. We also made a comparison of IEM with finite
or lower order grid methods to highlight the super-algebraic convergence of the
method.

Foreseeing possible limitations (in Sec.3.1.3) in solving the Schrodinger equa-
tion over a range of mass rations with linear log derivative method, a solution
in an alternate coordinate system is presented. The use of linear log derivative
method is limited to a small range of mass ratios m = ma/m; and use of this
geometry for larger mass ratios will require very large grid and matrix sizes. In-
stead, propagation in plane polar coordinate is proposed, with proof provided
that the matrix representation of the Hamiltonian is symmetric. It is thus seen
in the results section that angular propagation is indeed robust over a fairly wide
range of mass ratios.

To conclude it is noted that study of 1D collision of a free particle and a
trapped particle reveals rich underlying physics of confinement induced resonance-
like structures even with a simplified delta pseudopotential. The study of such
confinement induced effects will help in tailoring cold atom experiments in low
dimensions and to exploit the intrinsic scattering characteristics arising out of
the geometry. The existence of zero-energy resonances further serves to illustrate
fundamental principles of bound and scattering states and the interplay of the
two at the zero-energy interface. The collision problem is shown to exhibit relax-
ation probability of the trapped particle (ion) to lower states and the influence
of mass ratio on this relaxation probability is discussed.
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Chapter 4

One Dimensional Atom-Ion
Collision with Micromotion

he study of collision of a free atom and a particle (ion) in a time indepen-

dent harmonic trap was described in Ch.3. Fundamental electrostatics states
that no charged particle can be held in a stable equilibrium by a stationary, time
independent configuration of charges and(or) fields. This is other wise known
as Earnshaw’s Theorem [101]. This condition also arises due to the fact that
any general potential ® used to confine ions have to fulfill the Laplace equation
V2P = 0. Owing to this fact an ion can only be dynamically contained in a given
volume of space using time dependent fields. Due to the time dependent nature of
such a trap, the dynamics of an ion is not harmonic but is composed of multiple
frequencies. Though the time averaged motion of an ion is nearly harmonic, it
shows high frequency oscillations on a smaller time scale superimposed on the
harmonic motion on longer time scales called secular motion. This short time
scale, high frequency motion of the ion is called the micromotion. The classical
and quantum dynamical equations of an ion in such a model time dependent
potential is explained in Appendix A. We study the one dimensional of an ion
in such a time dependent rf-trap and a free atom. The system can be modelled
in experiments in a manner similar to that explained in Ch.3. The harmonic
trapping potential is seen to have a high frequency time dependency apart from
the static quadratic term, as shown in Fig.4.7. The long range atom-ion poten-
tial that goes as ~ 1/r* is modelled by a zero range delta pseudopotential in this
model.

The quantum mechanical description of a single trapped ion in such a trapping
potential was elegantly derived by Glauber [52] and is presented in Appendix.A.2.
Following Glauber’s description of a single ion, the chapter is started with an ex-
planation of the general idea of ion traps and energy spectrum of an ion in a
time dependent Paul trap. We then describe the one dimensional collision model
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4. ONE DIMENSIONAL ATOM-ION COLLISION WITH
MICROMOTION

used and the Fourier-Floquet Decomposition used to convert the time dependent
problem from time domain to frequency domain, followed by the solution schemes
attempted in Cartesian and plane polar coordinates respectively. A comparison
of a realistic long range atom-ion polarization potential and the delta pseudopo-
tential is provided. The chapter concludes with a discussion of results to study
the effect of micromotion on scattering in confined geometry. The effect of mi-
cromotion in cooling (and/or hearing) of the ion is discussed. The limitations of
the methods used are also explained.

4.1 Ion Traps and the Floquet Spectrum

The time dependent electric potential for the ion is taken to be a static harmonic
potential superimposed on a time varying harmonic potential going as cos(w; st).

1 ~ 1
Va(z,y,z,t) = U§(o/:c2 +B'y* ++'2%) + U cos(w, st) 5(0/’;1:2 +B"y? ++"2%) (4.1)

where o/, ", 3’ 3",v" and «"" are dimensionless quantities. This potential has to
fulfill Laplace equation V2® = 0, which gives the conditions

o +8 +4'=0 and "+p"+4"=0 (4.2)

These conditions decide the configuration of the trapping field to be used in three
dimensions. A choice of

o'=p"=4"=0 and o"+p"=-" (4.3)

gives a purely time dependent three dimensional confinement with an aspect ratio
1:2 in the 2(y) : 2 axes. A choice of

'+ =5 4'>0 and a”"=-p"; 4"=0 (4.4)

gives dynamical confinement in the z and ¢ axes and static confinement in the
Z axis, caused by a static electric field. This configuration is called a Paul trap.
This results in ion trapping at the saddle point of the potential, as shown in
Fig.4.1. For studying the case of collision in one dimension, we take the electric
potential to be of the form

1 .
Ver(z,t) = 3 [Uo/ + Ucos(wrft)oz"] 7 (4.5)
The solution of ion dynamics in a potential of type in Eq.(4.5) is provided in
Appendix A.1. The quantum potential for an ion in a 3D Paul trap in Cartesian
coordinates is separable. The potential along the z-axis is given by

1 w?
Vio(x,t) = §szf [a; + 2q, cos(w,t)] 2’ (4.6)
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4.1 Ion Traps and the Floquet Spectrum

Figure 4.1: Time dependent electric potential of a Paul trap. Ion is dynamically
trapped in the saddle point

where a, and ¢, are dimensionless parameters that dictate the static and time
dependent components of the harmonic potential. As has been explained in
Appendix.A.1 and [102|, a, and ¢, are given by a, = 4Ua’/(m1w3f) and ¢, =
2Ua" [(mw? ). They are related to experimentally valid parameters namely

the static and rf voltages U and U, frequency w, #, ion mass my. The resulting
Schrodinger equation belongs to a general class of differential equations with time
periodic coefficients called Mathieu Equation. The general solutions for these
differential equations follow from the Floquet Theorem (See 117, 119, 120). The
ion wavefunctions are taken to be Floquet solutions of a general form

U(z,t) = e mip(z,t) (4.7)

where E are the ion quasi-energies and the function ¢(x,t) is time periodic with
a period T = 2m/w, ;. The Floquet type ion solutions satisfy the time dependent
Schrodinger equation, with a general time dependent Hamiltonian term H(t).
The Hamiltonian for the one dimensional collision of an ion in a 1D Paul trap and
a free atom is discussed in Sec.4.2. Substituting Eq.(4.7) into the time dependent
Schrodinger equation,

ih%llf(x,t) H()U(a,t) = [H(t) - m%] 6(2,1) = E¢(x,t)  (4.8)

We note in Eq.(4.7) that for any integer n’, we have

U(z,t) = e nte(x,t) = e T @@ty 1) = =w(Een'hw )t [¢(z, t)e st
(4.9)
Thus the two states ¢(z,t) and ¢(z,t)e ' “rst are identical except that their
eigenvalues are £ and E + n'fuv, s respectively. Thus ion spectrum has a mod-
ulo fw, s structure, very similar to that of Brillouin zones for electrons in solids.
The details of classical and quantum equations of motion of the ion are given in
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Appendix.A. It is shown in Appendix.A.2 that the ion quasi-energies are given
by E = (n+ 1/2)hwse., where the modified frequency is referred to as a secular
frequency wge. = fw, /2. [ is the characteristic exponent of the classical solution
of the Mathieu type differential equation (See Eq.(A.7) in Appendix.A.1). The
ion spectrum shows the characteristics of a harmonic oscillator of effective fre-
quency wge. but it ranges over [—oo,+oo]. It can be seen that the ion frequency
is composed of self-similar copies of oscillator states, each separated by integer
multiples of Aw,¢. For convenience we label a set of distinct oscillator states with
the spectrum (n + %)hwsec as manifolds. The total ion spectrum is then given
by (n + %)ghwr ¢ +n'hw, ¢, where n’ is the manifold index that gives the multiple
self-similar copies of a manifold of states (See Fig.4.2).
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Figure 4.2: Ton spectrum in a time-dependent Paul trap potential. The spectrum
shown is for the case when 3 << 1, resulting in energy scales hwsge. << hiw, .

The time dependent term in the potential in Eq.(4.6) is responsible for dynam-
ical trapping which also manifests as micromotion. The analytical wavefunction
for an ion in such a potential was originally derived by Glauber [52](See also
53, 54, 102 p.39). The Mathieu characteristic exponent § must be real to have
confined ion trap states. The values of a and ¢ that give real values of  is shown
in Fig.A.1. Fig.4.3 illustrates the classical trajectory of the ion as a function of
time in one dimension for different values of Mathieu parameters a and q.

Micromotion parameter ¢ can be taken as a perturbation of the time indepen-
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Figure 4.3: Ion motion in 1D shown for different a and ¢q. 7 = w,¢t/2. Image
taken from [102] p.22.

dent harmonic potential in the limit that |a| << 1 and ¢? << 1 (called the lowest
order approzimation) and in such cases the micromotion can be viewed as breath-
ing oscillations of the ion wavefunction. As shown in Fig.A.1, when a = 0 only
q contributes to confinement and in practical ion traps to obtain 3D trapping of
ion, the condition in Eq.(4.4) restrains the trap operation to values of a — 0 in
the 2 and y axes, which gives values of ¢,,q, € [0,+0.9]. This gives values for
<1 and since secular harmonic oscillator has energy scales of Sw, /2, it results
in a very small level spacing in a manifold of oscillator states i.e increases the
density of states within the manifolds.

An interval of energy [0, hw, ] is seen to be composed of states that show an
oscillator spectrum (n + %)hwsec and n’ = 0 i.e with the band character of the
first Brillouin zone (manifold). But there are also energy levels in this interval
corresponding to states of very highly excited character, belonging to harmonic
oscillators that have been shifted in energy by —-n'fiw,; where n’ > 0 i.e highly
excited states of the —(n/)** manifold. As shall be explained later, the present
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calculation can be numerically converged only in the presence of at least a weak
static confinement a > 0.5.

4.1.1 Ion Wavefunction - Micromotion Effect

Analytical expression for the time dependent wavefunction, as derived by Glauber
[52] has been presented briefly in Appendix.A.2. The ion wavefunction for a
oscillator state j € [0, co] from Eq.(A.19) is given by

1 (muw\"* exp(-ij arg[o(t
& (or,t) = —— ( I ) p(=ij gl[/f( )
2751\ mh [p(D)]
m |7 myp ip(t)
H; —Il xy | exp (— ! [1— ]xQ) (4.10)
! ([h|<P(t)|2 ) 2h | pp(t) [T
where p = /2, o(t) = 372 o Cone™rst and v = wyp Yoo Con(n + 5/2) as ex-
plained in Appendix A.2. From the periodic nature of p(t) it follows that the ion
wavefunction can be expressed as a Fourier series, composed of various harmon-
ics. These Fourier series expanded functions are used in asymptotic matching

(See Sec.4.3.1). The general form of the ion quantum wavefunction is similar to
the solution of the ion’s classical equation of motion in Eq.(A.13)

too -,
U, t) = e R (e, t) =R Y &y, n!)e st (4.11)

'=—o00

where n’ is the Fourier basis index, ®;(x,t) are the ion wavefunctions as de-
rived by Glauber and &)j (z7,n’) are its Fourier series expansion. The ion secular
oscillator quasi energies are F = (j + %) Bw,r/2. The Fourier-Floquet expanded
wavefunction ®;(x7,n’) is then given by

~ 27‘—/"-)1”, .y
Qi(z,n') = /(; fq)j(x[,t)e‘m wrrtdt (4.12)

Classical solution of the Mathieu equation in Appendix.A.2 shows that the
Fourier-Floquet spectrum of ion dynamics broadens with increasing micromotion
parameter q. The usage of low micromotion is valid only when Fourier-Floquet
spectrum of the ion is narrow i.e fewer Fourier terms in Eq.(A.4) are required to
converge the series. At points closer to stability edge (boundary) of the stability
plot in Fig.A.1 in the a — ¢ plane, the classical motion of the ion becomes more
complicated (Fig.4.3, panel (c)). The phase space structure of the ion dynamics
also becomes more complex, as seen in Fig.A.2. It means the ion classical trajec-
tory gradually becomes anharmonic and is eventually expelled from the trap as
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one traverses across the stability edge in the a — ¢ plane.

This fact is not directly evident from the ion wavefunction. So the ground
and first excited states of the ion wavefunction as a function of time are shown in
Fig.4.4 to show that low micromotion is related distance of the operating point
of the trap from the stability edge in any direction in the a — ¢ plane.
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Figure 4.4: |®y(xy,t)|? (left column) and |®y (xy,t)|? (right column) from Eq.(4.10)
at a = 2.4,q = 0.1 (top panels) and closer to stability edge at a = 2.4,q = 2.0
(bottom panels). 5 equally spaced snapshots of the wavefunction are taken in
time over a period T;; of the rf-field. At the edge of stability wavefunction cannot
be represented on a grid at all times, thus loses normalization at ¢ = 0.5, (in
bottom left panel).

It is seen in Fig.4.4 that the ion shows low amplitude breathing modes at
g = 0.1 (top panels). At ¢ = 2.0 the ion wavefunction changes drastically at dif-
ferent points in a time period T, since its classical motion is more anharmonic
at the stability edge and spreads out over a larger range. For a trap parameter
of a = 2.4, ion has stable trapped modes over ¢ = [0,2.065] and if a = 0, ¢ ranges
over ¢ =[0,0.908]. In experiments, 3D Paul traps operate at around a ~ 0, there
is no static confinement and trapping is purely dynamical. In such cases, the ion
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is too delocalized to obtain converged numerical results for a scattering problem.
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Figure 4.5: Fourier series expanded ground state ion wavefunction in Eq.(4.12)
|®g(z7,n))|? at a = 2.4,q = 0.1 (top panel) and closer to stability edge at a =
2.4,q = 2.0 (middle and bottom panel). Despite increasing the number terms,
the Fourier series converges very slowly at the stability edge (bottom panel).
Each Fourier-Floquet component has the full wavefunction grid plotted between
the tick marks along z-axis. See Fig.4.6 for plots of individual Fourier-Floquet
components.

The Fourier series spectrum of the ion quantum wavefunction is also narrow
for low micromotion and the spectrum broadens for large micromotion in Fig.4.5.
In Fig.4.5 ion probability in the high frequency components (n’ = 6 in top panel)
is » 0 at ¢ = 0.1 but the same (n’ = £6 or + 10 in middle and bottom panels) is
large ~ 1 x 1073 at ¢ = 2.0. We will present results for two sets of trap parameters
namely (a) tight static confinement with a = 2.4, ¢ € [0,0.908] and (b) for shallow
static confinement with a = 0.5,¢q € [0,0.473]. The Fourier components of the
ground state wavefunction relevant in the numerical calculations are shown in
Fig.4.6.
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Figure 4.6: Relevant Fourier series components of the ion ground state wave-
function ®q(xr,n’') for trap parameters of a = 2.4,q = 0.1 (left column) and
a=0.5,¢=0.1 (right column).

4.2 Atom-Ion Collision and Fourier-Floquet De-
composition

Atom-ion collision in 1D in such a time dependent potential is presented in this
section. A schematic of such a collision in a time dependent harmonic trap for the
ion is shown in Fig.4.7. The time dependent nature of the ion trapping potential
and the resulting energy spectrum have been explained in Sec.4.1. It was shown
that the oscillator energy level spacing fiws.. remains constant in time despite the
potential varying with frequency w,¢. Asin Ch.3, the atom-ion potential is taken
to be a delta pseudopotential. The pseudopotential is a good approximation to the
realistic atom-ion potential if the length scale of the long range interaction is much
smaller than the trap dimensions, which is characterized by the oscillator length
ap, corresponding to the secular trap frequency given by ap, = \/A/(Mwse:). In
reality the physics of the problem changes drastically when using a long range
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Figure 4.7: Atom-Ion collision with micromotion

polarization potential Cyr~* in a tight trap [38].

4.2.1 Delta Pseudopotential Vs Long Range Potential

We compare the realistic atom-ion potential to the delta pseudopotential to put
the study of this model system into perspective. The properties of the atom-ion
polarization potential are well described in [38]. At large atom-ion separations,
given by r the polarization potential is given by Va;(r) = —ae?/(2r*) = =Cy/(21*).
« is the polarizability of the atom, taken to be at the ground state for most
calculations in literature. We adopt the same here.

This attractive potential between the induced dipole in the atom and the
ion is characterized by a length scale within which the potential is larger than
the centrifugal term A2L2/(2ms2) in the general Schrodinger equation for radial
solutions in three dimensions. The characteristics of inter-particle separation in
comparison with the centrifugal term are used to define the long range nature
of the potential and the potential is considered to be zero if the separation is
r >> R*. This characteristic length for atom-ion polarization potential is given
by R* = \/aue?/h?, where the reduced mass of the system is = (1/ma+1/my)=t.
Delta pseudopotential is a good approximation to the realistic long range potential
only if the length scale characterizing the long range potential is much smaller
than the ion trap size (oscillator length).

The calculations in this work are done for a model system composed of a Ca*
ion and Na atom. From [106], the ground state polarizability of Na in atomic units
is ang = 162.6ag [106], with Bohr radius ag = 5.2917 x 107'm. The reduced mass
of the Na-Ca* system is p = 2.6603 x 10*m, and a mass ratio m = m4/m; = 0.57
(which is used to make most of the plots explained in the results section). This
gives a characteristic length of R* = 2075.983ay.

The properties of an ion trap are explained in Sec.4.1, thus we infer that the
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oscillator length pertaining to secular motion is the length scale to define the trap
dimension. It is given by ap, = (mBw,;/2)"2. From the geometry of the ion trap
potential in Eq.(4.4), 3D Paul traps have an aspect ration of 1:2 in the (7 : 2)
axes. This gives a different values of 3, and j for the two different Mathieu
equations for the Z(y) and Z axes respectively. As an example, we take the trap
parameters for Ca* as mentioned in [107]. This experiment reports measuring
secular frequencies of the ion as w) = 7T00kHz and wye,p = 2M Hz. This gives
secular oscillator lengths as a, || = 896ay and an,, = 530.5a¢ in the longitudinal
and transverse axes. Since R* for a realistic ~ 7~* atom-ion potential is much
larger than the effective trap dimension, the potential cannot be approximated by
a delta pseudopotential to give experimentally valid (quantitative) results. Thus
the calculations done in this work are for a model system with micromotion.

4.2.2 1D Collision with Micromotion

We study the one dimensional collision problem of an ion in a potential time
dependent potential and a free atom. The time dependent potential is taken to
be of type in Eq.(4.6). In a manner similar to Eq.(3.2) but with static harmonic
oscillator term is replaced by the potential in Eq.(4.6), we can write the time
dependent Schrodinger equation as

G s +lm
2ma 0z%  2m;Ox3 2 4

wrela+2q cos(wppt)]a] + go(x) | (2 a, zp,t)

L0
= zha\ll(:m,x[,t) (4.13)

where m 4, my are the atom and ion masses respectively, x4, x; are the atom and
ion coordinate respectively. Rewriting the above in oscillator units, with energy

in units of hw, ¢, lengths in oscillator length ay, = \/h/(mw, ), we have

L O L L oqcos(u )]+ 36(x) | U(aa 21.1)
———-——+-|a cos(wyrt)]x x Ta,Tp,t) =
om oz, 2012 8- 1 fIIrrT g At
. OV (T g, g, t
L (l‘A,l’[, ) (414)
i ot
where Z; = xr/apo, Ta = Talano, § = g/hw,s and mass ratio is m = ma/m;. We
replace Ty, T4 and g by x;, x4 and g for simplicity in notation. The time-
dependent Schrodinger equation for this system in centre-of-mass and relative
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coordinates can be written as

2 2 2
1 0 _i8—+l[a+2qCOS(wrft)] (X—%$) +g5($)]@(X,l’,t)

2M X2 21922 8
OV (X, x,t
_ L ovXat) (4.15)
Wrf ot
where X = (maxq + 27)/(m + 1) is the centre-of-mass, the relative coordinate is
©=xa-x7, M =m+1is the total mass, the reduced mass is p = [1/m +1]"". The
atom and ion coordinates in terms of the centre-of-mass and relatives coordinates
are in turn given by 4 = X + 47 and z; = X - f;2. We assume Floquet type
solutions, given in Eq.(4.7), with a time periodic function ®,(X,z) and having
the form as shown below
+00 ~
U(X,x,t) = e B N el (X, 2,n) (4.16)
where n is the Fourier-Floquet basis index. The time dependent wavefunction is
expanded in terms of Fourier components with the time independent solutions
O(X,x,n) as the coefficients of expansion. The cosine term in Eq.(4.15) is ex-
pressed as cos(w,pt) = (e™rst +e7rst) /2. This leads to coupling terms 6, 41 and
Onn—1 lead to exchange of hw, ; between the ion and the rf-field. Substituting it in
Eq.(4.14), multiplying by e~ (@) /\/T and integrating over [0,T] with respect
to t, we have

2 2 2 =
[ 1 90 19 +1a(X—m$) +g§(x)+n’]q)(X,$an’)+

oM OX? 2u01? 8 M
1 2. 1 2. _
éq(X—%x) O(X,z,n" +1)+ éq(X—%x) O(X,z,n' -1)= EP(X,z,n")

(4.17)

where £ = E/(hw,;). We denote E by E for notational simplicity. The first
term on the left hand side is a diagonal term in the matrix representation of the
Hamiltonian in the Fourier-Floquet basis (n’ index) and the second term forms
the +1 and -1 diagonals of the matrix. The infinite sum in Eq.(4.16) is trun-
cated to a sufficiently large Ny in practice i.e n = [Ny, +N¢]. Thus the time
dependent Schrodinger equation in time domain is converted to a time indepen-
dent Schrodinger equation in frequency domain. This equation is solved by Log
Derivative Propagation (see Sec.2.3) in two system of coordinates namely (a)
Cartesian Coordinates (b) Plane polar coordinates. Two different numerical ap-
proaches were attempted (a) Log Derivative Propagation algorithm (as explained
in Sec. 2.3) (b) Spectral Element Method, where we do a one-shot calculation to
get the R-matrix in the asymptotic region (see Sec.2.4).
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4.3 Solution by Propagation in Cartesian Coordi-
nates

It is seen from Eq.(4.17) that we have to propagate multiple blocks of the Hamil-
tonian, corresponding to each Fourier-Floquet component, indicated by the index
n or n’. This increases the size of the propagated matrix drastically. The row
and column indices are separated by a semi-colon henceforth, in this chapter. Let
the solutions be given by ®;(X, ) = ¥, (X ) Fyi(x). ¢#(X) are the DVR basis
functions related to the grid point in X coordinate.

Following the method in Sec.3.1.2, we substitute these solutions in Eq.(4.17),
multiply by ¢;(X) and integrate with respect to X, we get the second order
equation solved by log derivative method. Eq.(4.17) initially discretized over the
Fourier index n’ is further discretized over the coordinate basis and thus develops
composite indices where if row(column) indices are denoted by the grid point
index ’(j) and the corresponding Fourier index n’(n). This equation for global
row and column indices i'n’ and jn is written as

O Firnyjn ()
8—x]2 = Z Z: (0:(X) [ Wi (X, 2) [ 90 (X)) ¢ Firnrjn(2) = W(2)F(2)
(4.18)
where j is the solution index, i(i") are grid point indices and n(n’) are Fourier-
Floquet basis indices respectively. The term W, (z,X) is in itself a matrix
representation of the effective potential term in the Fourier-Floquet basis. The

effective potential W(x) has matrix elements over a DVR basis ¢;(X), given by

82

M/z'n;i’n’(x) = —ﬁdnn’ <¢Z(X) ﬁ

X

2
+ %(aénn’ + Q[én,n’+1 + 5n,n’—1]) (gbl(X) ‘ (X - %ZL‘) ¢z’(X)>X +

5¢i15nn1n’ - 5”/5””/2ME (419)

where the subscript indices are composite with in(i'n’) denoting the row(column)
index. The structure of the W(x) is as shown in Fig.4.8.

The third term on the right side is diagonal since ((bZ(X) | (X - %x)Q ‘ <bi/(X)>X =

Oisr (X - %x)Z The log derivative matrix is given by Y(z) = F/(z)F-1(x).

The kinetic energy term in the effective potential has a standard representa-
tion on a Fourier basis and is a full matrix, as detailed in [100]. The atom-ion
potential (modelled by a delta pseudopotential) is always diagonal in this repre-
sentation. The effective potential with ¢ = 0 is the same effective potential for
a problem without micromotion, in Eq.(3.21). If ¢ = 0 and n’ # 0, the potential
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Figure 4.8: Structure of the effective potential W(z) over a Fourier-Floquet basis
n(n') = [-3,+3]. Indices of the off diagonal coupling blocks are indicated. All
blocks are matrices of order (N, x Nep).

essentially has a block diagonal structure with n’ as index of the diagonal blocks.
When ¢ # 0 and n’ # 0, besides the global block diagonal structure of the effective
potential, the true potential has a tridiagonal structure in n’ basis. This corre-
sponds to the q[dnnr+1 + Oy 1] term in the harmonic oscillator potential. The
—1th and +1*" diagonal elements of the potential correspond to couplings between
the different Fourier-Floquet blocks of the effective potential.

These couplings, combined with the pseudopotential coupling g enable certain
transitions in energy of the order of hw,; >> hw,(/2, in atom-ion experiments
that operate the ion trap at points in the a — ¢ plane, with § < 1. The numerical
methods for our 1D model are able to converge results only in the presence of

at least a weak static confinement (as shall be explained in Sec.4.5), where the
value of 8 €[0.5,1.6].

4.3.1 Initial Condition and Asymptotic Matching

The initial condition for propagation in this case is exactly similar to the case
in Sec.3.1.2.1 for each of the diagonal Floquet blocks. It is given by Eq.(3.43)
and the initial condition log derivative matrix for each block is identical to the
matrix in Eq.(3.24). The global initial log derivative matrix is diagonal and is
built on the X coordinate basis that is obtained by symmetrizing the Fourier
DVR grid. Details of symmetrization procedure is given in Appendix B. The
potential matrix in Eq.(4.19) is accordingly symmetrized at each step of propa-
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gation. If Ny, number of Floquet components are to be propagated, each with
N, number of grid points in X coordinate, the total log derivative matrix is of
the order Nyt = Nfioq X Nep. Ny is the number of Fourier-Foquet sidebands and
(2N + 1) is the truncated Fourier-Floquet basis size, as explained in Sec.4.1.1.
We thus have the condition that Ny, = (4Ny+1). For our calculation with linear
log derivative propagation, with trap parameters of a =2.0,q = 0.1, we need 120
grid points and Ny, = 13 Fourier-Floquet components. This gives a matrix size
of (1560 x 1560).

Similar to the case in Sec.3.1.2.2, asymptotic functions in Eq.(3.25) are built
with wavefunctions of the atom ¥gsom (knz4) and the ion ¥y, (xr,n') = Cf(a:[,n’)
developed on the DVR grid points in the X coordinate at the final step of propa-
gation in the x coordinate. The atom wavefunction Ygiom (knza) is developed as
the regular and irregular free asymptotic solutions f*(k;x4) and g*(kjxa) for
the positive and negative parities, as in Eq.(3.26) for open channels and Eq.(3.27)
for the closed channels (See Sec.3.1.2.2). The asymptotic wavefunction for the
ion is taken to be the Fourier-Floquet series expanded wavefunction of an ion in
an rf-Paul trap, as given in Eq.(A.18). A brief reproduction of the derivation of
this wavefunction and explanation is provided in Appendix.A.2. It has also been
derived in detail in [52], [53] and [102]. The ion wavefunction in w, s oscillator
units is given in Eq.(4.10). This time domain equation is converted to frequency
domain using Fourier-Floquet expansion in Eq.(4.11) and Eq.(4.12).

As with the case of atom-ion collision without micromotion, as explained in
Sec.3.1.2.2, at final step of propagation the centre-of-mass axis is at a 45° angle
with respect to the asymptote. Thus a basis transformation is necessary to re-
represent the log derivative on a grid of points that is parallel to the asymptotic
region. The energy spectrum of Floquet type problems have no lower bounds.
Thus problems arise when selecting the lowest N, eigenfunctions of the effec-
tive potential matrix in Eq.(4.19) which has a Floquet structure. This matrix is
built on a basis of a truncated infinite series whose spectrum (as seen in Fig.4.2)
theoretically ranges over [-oo,00]. Eigenvalues close to zero will be the best
converged ones. Thus selecting the lowest Ny, eigenfunctions proves ineffective.
This drawback in turn appears as asymmetry of the open-open block of the Reac-
tance matrix K,, and in turn as non-unitarity of the open block of the S-Matrix
Seo- Since asymptotic functions are built with exact expressions for the asymp-
totic ion wavefunctions, attempts were made to select the best possible states by
selecting only those eigenfunctions that have maximum projection onto the N,
states of the Fourier transformed ion wavefunction. This method is effective over
a small range of ¢ values. Thus this inherent drawback is suspected to limit the
convergence of this method at large micromotion i.e maximum value of ¢ ~ 0.35
at which we can propagate and match solutions in the asymptote successfully, as
shall be seen in Sec.4.6.
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4.3.2 Propagation by Spectral Element Method

The Spectral Element Method (explained in Sec.2.4) has also been applied to this
problem with appropriate log-derivative boundary conditions. The propagation
axis, in this case the relative coordinate, is split into elements and each elements
is discretized with a local high order Legendre-Gauss-Lobatto basis (See Fig.2.4).
The main advantage of this method is that the solution is obtained in one shot
by solving the resulting linear system in sparse representation. The K-matrix
calculated by this method agrees to better than 10 decimal places with that
calculated by Log Derivative propagation. Despite the computational advantage
of this method, the inherent drawback of the geometry and the need for a basis
transformation just before performing asymptotic matching limits the accuracy
of this method.

4.4 Solution by Propagation in Plane Polar Coor-
dinates

Solution of the problem by propagation in Cartesian coordinates is possible only
for ¢ < 0.35 and the reasons for this were explained As explained in Sec.4.3.1,
Sec.4.1.1 and Sec.4.6, the drawback is due to the inherent geometry of the problem
which tends to limit the range of micromotion ¢ in which numerical convergence
is possible. To overcome the need for performing the basis transformation and
selecting eigenfunctions from an unbounded spectrum, we attempt to shift the
system to plane polar coordinates. We then propagate the log derivative along
the 6 axis effectively trying to swing the initial centre-of-mass axis by an angle «
which is determined by the mass ratio, to arrive at a grid that is parallel to the
asymptotic region and eventually removing the need for a basis transformation
after the final step of propagation. The propagation geometry is shown in Fig.4.9.

Starting with Eq.(4.14), it can be rewritten in mass-ratio scaled coordinates
with Z4 = \/mZ to give the equation in terms of 74 and Z;

102 102 1 o o
—5@ - 58—%% + g[a+2qus(wrft)]x%+g(5(x) U(2a,7,t) =
La\lf(fi‘A,f[,t)

4.2
i ot ( 0)
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Figure 4.9: Log-Derivative Propagation in plane polar coordinates.

We denote 4,25 and g by x 4,25 and g respectively for notational simplicity, the
equation can be rewritten in plane polar coordinates with p =/ xi + x% as

1 02 102 10 1 _
[—2—/)2% T2072 20 + é[a +2q cos(w,st)][p cos(a) = p cos(f - a)]?
. Mé(e)] W(p,0.1) = ——2X2OD) 4 o)
p Wy ot

where a = tan™(y/m) and p = OO’ is the shift of the origin to O’. The coordinates
x4 and xy are then given by

x4 =(psin(a)+p sin(f —«)) and x; = (p cos(a) — p cos(f — )) (4.22)

Following the same procedure as in Sec.4.2.2 and with Fourier-Floquet general
solution of the form

\I[(pa 97 t) = eiiEt/h Z einwrft(i)(p’ 07 n) (423)

n=—0oo

7


Chapter3/Chapter3Figs/EPS/ang_prop.eps

4. ONE DIMENSIONAL ATOM-ION COLLISION WITH
MICROMOTION

The time dependent Schrédinger equation Eq.(4.21) is converted to a time inde-
pendent Schrodinger equation in frequency domain

19> 102 10 1 . gsin(a) ,
[_Q—Mﬁ_ia—p?_ﬂﬁ_/fréa[p cos(a) = p Cos(H—a)]2+T(5(0)+n]...

L D(p0,n') + %q[p cos(a) —p cos(8 - )2 ®(p,0,n' +1)+

%q[ﬁ cos(a) = p cos(0—a)]> B(p,0,n' 1) = ED(p,0,n') (4.24)

where £ = E/(hw,). We denote E by E for notational simplicity. As explained
earlier in Sec.4.3, we propagate multiple blocks of the Hamiltonian in Eq.(4.24),
corresponding to each Fourier-Floquet component indicated by the index n(n’).
The first term within square brackets on the left hand side in Eq.(4.24) is a
diagonal term in the matrix representation of the Hamiltonian in the Fourier-
Floquet basis (n’ index) and the second term forms the +1 and -1 diagonals of
the matrix.

We recall again that a convention of row and column indices being separated
by a semi-colon is adopted in this chapter. We take solutions with composite index
in and the form ®;(p,0) = ¥ ¢ (p)Fri(0). Since ¢y (p) are DVR basis functions
related to the grid point in p coordinate. Substituting these into Eq.(4.24), left
multiplying by ¢;(p) and integrating over p, we have the second order equation
to be solved by log derivative method. Eq.(4.24) initially discretized over the
Fourier index n' is further discretized over the coordinate basis and thus develops
composite indices where if row(column) indices are denoted by the grid point
index /() and the corresponding Fourier index n/(n). This equation in terms of
global row and column indices ¢'n’ and jn’ is given by

PE ) 5 5 (040 W (0.0 | 900)), Forwn(®) = WOE(S)  (425)

where j is the solution index, i(i") are the grid point indices and n(n') Fourier-
Floquet basis indices respectively. The term W,,../(p, 6) is in itself a matrix repre-
sentation of the effective potential term in the Fourier-Floquet basis. The effective
potential W(#) has elements over a DVR basis ¢;(p) given by

Winsim: (0) = =0 <¢i(p) ‘ (,0286—:2 + pa%) ¢i’(p)> + 020 (0i(p) | 0* |01 (p)),
Onnr2gsin(a) (0i(p) | pl 61 (), 6(8) = 20, E (0 (p) | 07 | 6 (p)),

0000+ 2901+ 800 (04(0) 7 (D 05(@) ~ peos(8 - )| 6u(p)), (4.26)
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where the subscript indices are composite with in(i'n’) denoting the row(column)
index. Simplifying the above equation, we can re-write it as

0? 0
Wit (0) = =6 | &i 22 _)
i (6) 0 <¢(P)‘(092 Pa

gblr(p)) + 5nn15ii/2p2n’ - 25nn/5iilp2E+
P

Onnt0:r2g sin(a) pd (0) + iéii/ (a6 +2q (O i1 +0nm-1) ] p* (P cos(a) —peos(-a))?
(4.27)

4.4.1 Initial Condition and Asymptotic Matching

The initial conditions for propagation in plane polar coordinates is as explained
earlier in Sec.3.1.3.2. Similar to the solution by propagation in Cartesian coor-
dinates, the initial log derivative matrix is diagonal. If Ny, number of Floquet
components are to be propagated, each with N, number of grid points in each
block, the total log derivative matrix is of the order Ny = Npjoq X Nop. We
impose the condition Ny, = (4N + 1), where Ny is the number of truncated
Fourier-Foquet sidebands and (2N; + 1) is the truncated Fourier-Floquet basis
size similar to Sec.4.3.1. This condition ensures the asymptotic functions built
for angular propagation can be square matrices. The asymptotic functions are
built as matrices using the coordinate transforms x4 = [p sin(a)+p sin(0,,4. — )]
and z; = [p cos(a) = p co8(O ez — )], where 0,,,, = @ and asymptotic functions
for matching are built in a similar manner to that in Sec.4.3.1 on propagation in
Cartesian coordinates.

Grid and Physical Parameters From Fig.4.9, we specify the length of seg-
ments [, and d as inputs to define the p-axis grid over interval |py, po[ with N,
points. We require d of at least one oscillator length to include the weakly closed
channels in the calculation. Propagation in the 6 coordinate is over 6 € [0, a],
where the limit a = tan™'(y/ma/m;) is fixed by the mass ratio of the system.
The propagation step size needed is ~ 1 x 1074, d = lay, and all the N;, propa-
gated channels are included in the asymptotic matching since the method is de-
vised to specifically forego the intermediate basis selection procedure, explained
in Sec.3.1.2.2. Some of the grid and physical inputs for a converged calculation
are specified here. The inputs in brackets are the range of values used for increas-
ing micromotion gq.

With tight static confinement a =2.4,¢ = [0,0.5].

For m = 0.1 - I,;, = [10 @po, 12 apo], N, = [160,180], Ny1oq = 13, Nioe = [2054,2314].
For m = 0.57 - I, = [10 apo, 12 ap,), N, = [160, 180], N 10 = 13, Ny = [2054,2314].
For m =1.0 - I,,, = [10 ape, 12 apo|, N, = [160, 180], Ny0q = 13, Ny = [2054,2314].
With shallow static confinement a = 0.5,¢ = [0,0.1].
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For m =0.1 - I, = 18 apo, N, = [160, 190], Ny10q = 13, Ny = [2054,2444].

For m = 0.57 - 1, = 18 apo, N, = [160,190], Nyjoq = 13, Ny = [2054, 2444 ].
Computation time is around the same value for all the above parameter ranges.

On processors with Intel-AVX feature - 25 ~ 30 mins with 8 threads (optimal).

On processors without Intel-AVX feature - 70 ~ 75 mins with 8 threads.

4.5 Ion Cooling and Atom Heating

Many experimental papers [27-32] and theory papers [45-50] explain the role
played by micromotion in affecting the rate of cooling of the ion (possibility
of sympathetic cooling), the rate of heating of the atom and the manifestation
of this effect. Experiments involving a single ion immersed in a BEC report
observing ion cooling with increasing interaction time between condensate atoms
and ion [27]|. Ravi et al. [31] also report on observing cooling of an ensemble of ions
interacting with a cold atom cloud in a magneto-optical trap. At the same time
all these experiments observe a constant loss of atoms from the condensate (cold
cloud) and reason that it could be due to ion micromotion. The experiments
demonstrate this by observing an increased atom loss rate after introducing a
constant electric offset to the ion trap potential, which essentially pushes the ion
off the trap minimum and increases the micromotion. The numerical study based
on Langevin and semiclassical scattering [46] reveals the atom heating rates that
agree with experimental results. By studying collision in 1D of a simpler model
with a delta pseudopotential, it is possible to get a qualitative feel for effect of
the micromotion in atom-ion scattering.

Due to the atom-ion interaction (modelled by a delta potential), there is
always a non-zero probability of transition from the ion incoming channel to all
possible outgoing channels. As illustrated in Fig.4.2, for a given collision energy
there exist Ny < N_; < N5 < ... < N_, secular oscillator levels in the open
channels in the manifolds shifted in energy by 0 < —1hw,; < —2hw,f < ... < =00
with respect to a 0% manifold. Thus transitions between the N, open channels in
the 0" manifold are indicated by the diagonal (Ny x Ny) block in the open-open
S-matrix. Similarly diagonal blocks of dimension (N_, x N_,) indicate the intra-
manifold transitions within the —n** manifold. It is then seen that the off-diagonal
block of dimension (/Ngx N_y) indicates the inter-manifold transitions between the
0% to —1** manifold and all off-diagonal blocks of dimension (Ny x N_,) indicate
inter-manifold transitions between 0** and —n'* manifold. A given ion state can
be interpreted as a linear combination of infinite number of copies each separated
by hw,; and the ion energy is determined by state index ¢ within a manifold
of secular states. Ion transitions to state ¢ in other manifolds leaves the ion
quasi-energy unchanged but ion transitions to all secular states in all manifolds
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Figure 4.10: Transitions between manifolds that cool the ion.

with index j < ¢ amount to ion cooling and are show in Fig.4.10, labelled as (D).
Only one low lying manifold is depicted here for simplicity. Such transitions to
manifolds shifted up by +nhw,;, with n > 0 are all energetically closed in the
example shown. It is possible if the ion incoming channel 7 is very high, there
exist a few outgoing open channels in the manifolds shifted in energy by +nhw,,
labelled (2) in Fig.4.10. Transitions to these states j < i in the +1** manifold also
leads to ion cooling and are indicated by thin solid lines. Transitions to any other
states than the ones indicated by arrows in Fig.4.10 lead to ion heating and the
ion transition indicated by the curved line leaves the ion energy unchanged.

Ion cooling transitions impart the energy lost to atoms, accelerating them.
Thus atom-ion interaction also lead to atom heating in the time scales of the
collision 7 <« T¢. It should however be noted that ion heating transitions are
also non-zero during collisions. In experiments, Paul traps in 3D have a very
low value of a ~ 0 and ¢, € [0,0.454], with 8, € [0,0.335] in the z-axis and
q. € [-0.908,0] with £, € [0,0.993] in the z-axis. Thus the density of states
within each manifold of secular oscillator levels is high if 5 << 1.

The cooling (or heating) probabilities are sum of the modulus squared of
the complex transition amplitudes i.e R;; + T;; = |ry;]? + [ti;>. A notation with
two pairs of subscripts separated by semi-colon are used, where the first pair of
subscripts indicate the incoming secular oscillator level index and the manifold
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index respectively. The second pair indicates the same for outgoing channels.
The 0% manifold is said to have Ny open channels with ion in an initial state 7.
One can define ion cooling probability for an incoming channel index (ip,0) with
0< io < NO as

oo min(Ng—-1,i0-1)
AR > (R + Tigoin) (4.28)
k=—o0 =0

The term in the summation with k£ = 0 corresponds to transitions within the
initial 0% manifold and the rest correspond to inter-manifold transitions (or the
transitions labelled (I) in Fig.4.10).Conversely, if the ion makes a transition to
states j > Ny in all manifolds, it corresponds to ion heating since the ion ends up
in a secular oscillator level of highly excited state character. If Ny indicates the
number of open channels in the k¥ manifold, the ion heating probability is

0 Np o N
afli= > > (Rioo:jk + Tigojk) + Y, >, (Rigosjn: + Tigo:jk)
k=—00 j=min(Ng+1,i0+1) k=1 j=maxz(Ny,io+1)

(4.29)

Similarly, the sum of ion transitions to open channels in all manifolds k£ < 0
result in ion imparting energy and heating the atom. Transitions leading to
ion cooling are a subset of these transitions. Besides the ion decay to lower
states within the 0" manifold, the sum of the inter-manifold ion transitions to
open channels in all manifolds helps understand the contribution of micromotion
to atom heating. This mechanism is seen to be the reason for a constant loss
of condensate atoms in experiments with single ions (27, 28, 29) and multiple
ions interacting with an ultracold cloud of atoms [31]. Using the same subscript
notation as for ion heating, the atom heating rate for any incoming channel (ig,0)
such that 0 <ig < Ny can be given by

oo min(Ny,io)
Ao = D, (Rigo:in + Tioosj) (4.30)
k=—oo  j=0

At large collision energies if N, > 0 for k£ > 0, then the ion cooling transitions
to states in the +1** manifold leads to atom heating and ion heating transitions
to the +1** manifold lead to atom cooling. At the end of the time period T,
the exchange of rf-photons between the ion and the field changes the ion energy.
Thus energy is on average conserved and it is not possible to continuously cool
the ion below an inherent limit because the ion is not a closed system. Ion cooling
shown in our results is valid only for time scales of the order of 7 « T,y = 27wyt
Theoretical and numerical studies on sympathetic cooling of ion in [49, 50| reveal
similar limits on ion cooling. The ion cooling and atom heating probabilities are
probabilities per collision event and multiplied by the atom velocity give the rate.
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4.6 Results: Ion Cooling and Atom Heating Prob-
abilities

The transition probabilities in Eq.(4.28) and Eq.(4.30) are calculated for different
trap parameters and mass ratios and plotted against increasing ¢, total energy
Ei, and pseudopotential coupling g. Since secular frequency Sw,r/2 depends
on a and ¢, when varying ¢ we are essentially changing the trap frequency and
thus shifting the locations of channel thresholds (energy is in units of Aw,; all
through this chapter). So it is important to have a constant collision energy at
all data points and we maintain it at a fixed value with respect to a channel
threshold energy. It is seen in Eq.(4.28) and Eq.(4.30) that the ion cooling and
atom heating probabilities are composed of two types of transitions, transitions
within the initial manifold (intra-manifold) and transitions to all open channels
in other low lying manifolds (inter-manifold). These are not explicitly measured
in experiments but the underlying physics holds true. Though the whole set
of Floquet states are a result of micromotion parameters ¢ and a, it is observed
that intra-manifold transitions have a far higher probabilities than inter-manifold
transition probabilities. So we consider intra-manifold transition probabilities to
highlight the effect of micromotion.

4.6.1 Using Propagation in Cartesian Coordinates

Both the log derivative propagation and the Spectral Element Method are used.
K-matrix elements from the two methods agree to better than 10-digits. The ion
cooling and atom heating probabilities calculated for the Na-Ca* system with
mass ratio 0.57 and two different ion initial states n; = 0 and ny = 1. Plots shown
here are for a constant collision energy of 0.2 3/2 (i.e at a constant distance with
respect to 274 energy threshold occurring at E = 1.55/2). It has two open chan-
nels for the ion, total energy of Fi, = 1.75/2 and tightly confined ion trap with
a=2.0.

Contributions of the inter-manifold and intra-manifold transitions to the cool-
ing and heating probabilities are also shown. The ion cooling probabilities are
seen to increase with micromotion, with a larger contribution to cooling probabil-
ity arising out of inter-manifold transitions. Atom heating due to inter-manifold
transitions in Fig.4.12 rises and nearly saturates with increasing q.
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Figure 4.11: Ion Cooling Probability from all contributions for a = 2.0,m = 0.57
and total energy Fy, = 1.75/2 (collision energy FE..; = 0.23/2).
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Figure 4.12: Atom Heating Probability from all contributions for a = 2.0,m = 0.57
and total energy E,; = 1.75/2 (collision energy F.,; = 0.23/2). Ion in initial state
ny = 1. Atom heating probability at each collision event is non-negligible.
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4.6 Results: Ion Cooling and Atom Heating Probabilities

4.6.1.1 Limitations

As a standard method to quantify error, we calculate the relative error of the
off-diagonal elements in open-open block of the K-Matrix for an arbitrary value
of energy with two open channels. It is ensured the K-Matrix is converged with
respect to all other physical and grid parameters at each of these data points.
With increasing ¢, only the Fourier-Floquet basis size is increased, keeping all
other parameters constant. We ensure a constant collision energy at each data
point. As shown in Fig.4.13, for the case of tight confinement with a = 2.0, the
relative error is very high at ¢ = 0.35. For a test case of weak confinement with
a = 0.5, it is noted that the method fails rapidly at extremely low value of g = 0.02.
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Figure 4.13: Relative error of K-Matrix off-diagonal elements as a test of conver-

gence.

Taking a relative error of 1 x 107 as the maximum permissible, the case with
tight confinement of a = 2.0, has maximum value of ¢ = 0.2 using propagation
in Cartesian coordinates. This corresponds to low micromotion, since we are
still operating deep within the stability plot. The basis transformation identical
to that in Eq.(3.28) is required for the problem with micromotion when using
both Log Derivative Propagation and Spectral Element Method. The inherent
drawback of this process of selecting a transformation matrix was explained in
Sec.4.3.1. Selection of N4, well-converged states from the eigenstates of the po-
tential matrix in Eq.(4.19) is increasingly inefficient with increasing micromotion
q. Since a finite number of Fourier components are propagated, only few eigen-
states of the potential matrix centered around zero will be well converged. These
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are insufficient to form a complete basis, to account for all the closed channels
required for efficient asymptotic matching. Increasing the number Fourier com-
ponents makes the log derivative matrix very large, reaching the numerical limits
of the algorithm with respect to number of propagated channels. If instead we
increase N,q,, we select more badly converged eigenfunctions to build the basis
transformation matrix. Thus these reasons is suspected to be the cause of the
limit in maximum micromotion ¢ < 0.2 that can be used to get converged results
with this method. To bypass the drawback of this basis transformation, a change
to plane polar coordinates is proposed and the log derivative matrix is propagated
in angle 6.

4.6.2 Using Propagation in Plane Polar Coordinates
4.6.2.1 Ion in Tight Static Confinement

The ion cooling, ion heating and atom heating probabilities are calculated as a
function of micromotion parameter ¢, coupling strength ¢ and total energy E},; for
a static confinement parameter a = 2.4. With numerical methods implemented,
plots are shown for a maximum micromotion parameter of ¢ = 0.5. Since the trap
secular frequency changes with a and ¢, we note that the secular frequency varies
only slightly over wge. = [0.7746Aw, r,0.7604hw, s] with ¢ = [0,0.5] in these plots.

Influence of Mass Ratio

It is noted here that ion cooling probabilities depend on the mass ratios m4/m; =
0.1,0.57 and 1.0 in Fig.4.14 and Fig.4.15.

Larger mass ratios (i.e heavier atom, lighter ion) show comparatively greater
probability of ion cooling. A maximum mass ration of m4/m; = 1.0 can be used
ensuring a maximum relative error of 1 x 107, As expected, an ion in an initial
excited state in the trap n = 2 is seen to exhibit greater cooling probability ~ 0.01.
As has been explained in Sec.4.5, these probabilities are per collision and their
long time scale cumulative effects are limited by the periodic exchange of rf-
photons between the ion and field. This is also attested by the fact that the ion
heating probabilities are almost an order of magnitude larger for all mass ratios.
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Figure 4.14: Ion Cooling (left) and Heating (right) probabilities due to inter-
manifold transitions, for mass ratios m = ma/m; = (0.1,0.57,1.0) and total energy
Etot = 27/8/2
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Figure 4.15: Atom Heating probabilities due to inter-manifold transitions with
mass ratios m =ma/m; = (0.1,0.57,1.0) and total energy F =2.73/2.

Similar effect is observed in experiments as reported in [27] and [31], where ion
cooling is oberved with increased interaction time with the atoms (See Fig.1.1,
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1.2, 1.3). At maximum micromotion, the ion cooling probabilities of ~ 1 x 1073
and ~ 1 x 1072 are shown in Fig.4.14, for an example case of ion starting in initial
states of n =1 and n = 2 respectively.

Atom heating probabilities in Fig.4.15 are also seen to increase with micro-
motion ¢. This is a factor contributing to a constant loss of atoms from the
trap, as reported in atom-ion experiments [27-33|. Since ion transitions to states
with highly excited state character are present in the total atom probability, an
appreciably large energy is imparted to the atoms, accelerating them.

Influence of Coupling ¢,p

The inter-manifold transitions are driven by atom-ion interaction under the pres-
ence of micromotion. Larger pseudopotential couplings should give larger proba-
bilities of inter-manifold transitions. Total ion cooling and atom heating proba-
bilities are shown in Fig.4.16 and Fig.4.18 for different values of incoming chan-
nel n; = 1 (left column) and n; = 2 (right column). As in the earlier case,
the intra-manifold cooling transitions are of considerably larger probability than
inter-manifold transitions. This general trend holds true for both ion cooling and
atom heating.

1
1E T e Total probability rr E
E | ! . E 3
K »x | nter-manifold probability 3 E
0.15 01k -
0.01E E e w3
E. ?"*x““”_‘
0.001E" 001k e s +
E E x 3
0.0001E =054 F " 7 N=2,9=05 7
feosbal Lot N1 0T goonb 11 ¥ Ll
> 2 -15 -1 -06 0 05 1 15 2 2 -15 -1 -06 0 05 1 15 2
% L L B B R B lgg T T 71 3
01k g E G|
S 3 o1k 4
& o001 - E 3
2 oonf e wend
S =1 g= E “x ]
§ 0.00015 X nl-l, q—0.31§ oooik *xo Mo N=2,0=0.3]
C qeosle 1 L L XL L ]y ] . PR T S R B [ R !
o 2 15 -1 05 0 05 1 15 2 2 15 -1 05 0 05 1 15 2
T T T T T 1 T ‘
E g E E|
0.01 — 0.1k 4
Q0001 swmmmny | [ e : : ]
- e \ [ | 0-015 n,=2, q=0.
1e0- W 7 oomf e
E W = = g : ?&b*’*\\ x>
1le-08 \ rII 1q 0'1; E * e
PR A T \‘ PR A T 000011 1 1y TPk ) ) 1
2 15 -1 05 0 05 1 15 2 2 15 -1 05 0 05 1 15 2

gthe,a,) g2,

Figure 4.16: Ion cooling as a function of pseudopotential coupling g, at constant
collision energy F.,; = 0.23/2 and ma/m; = 0.57. Probabilities due to inter-
manifold transitions are indicated separately.
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Figure 4.17: Ton heating as a function of pseudopotential coupling g, at constant
collision energy F., = 0.23/2 and ma/m; = 0.57. Probabilities due to inter-
manifold transitions are indicated separately.
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Figure 4.18: Atom heating as a function of pseudopotential coupling g, at con-
stant collision energy E.,; = 0.28/2 and ma/m; = 0.57. Probabilities due to
inter-manifold transitions are indicated separately. Atom heating is seen to sat-
urate for n; = 2 (right column) with coupling.
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Ion cooling probability increases with coupling ¢ at larger values of ¢ from
Fig.4.16. At maximum ¢ = 0.5, ion initial state n; = 2 is seen to have slightly
higher cooling probability ~ 0.03 than the case with ion in n; = 1 initially (~
0.008). In all of the above cases, ion heating probability (in Fig.4.17) due to
inter-manifold transitions is see to be at least an order of magnitude of larger
than ion cooling. Thus ion cooling is a very inefficient process for the mass
ratios at which our calculations give numerical convergence. Where as atom
heating probabilities in Fig.4.18 show clear saturation at larger coupling strengths
g ~ 2.0. In this case too, inter-manifold transitions are more probable at larger
micromotion parameters ¢ = 0.5.

Influence of Collision Energy
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Figure 4.19: Ion cooling as a function of collision energy, for a = 2.4,¢ = 0.3 and
ma/m; = 0.57. Inter-manifold (inset) and total cooling probabilities follow the
resonance peaks and discontinuities at thresholds.

All plots so far were made at constant collision energy and the change in ion
cooling probability with increasing collision energy is studied here. The cooling
probability shows channel openings at n** energy threshold, where total energy
is Byt = nhfw, /2. By comparing Fig.4.19 and Fig.4.26, we note that the cooling
probabilities follow the resonance features exactly, with the peaks located at the
same energies where resonances are observed.
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4.6 Results: Ion Cooling and Atom Heating Probabilities

4.6.2.2 Ion in Shallow Static Confinement

3D ion traps in experiments operate at a ~ 0, so to model a realistic trap we calcu-
late ion cooling probabilities for the least possible value of a = 0.5 i.e shallow static
confinement that converges numerically. Similar to the case of tight confinement,

the secular frequency varies only slightly over wge. =

with ¢ € [0,0.1].
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Figure 4.20: Ion cooling (right) and heating (left) probabilities for shallow con-
finement with m4/m; =0.1,0.57,a = 0.5 and total energy E,,; = 2.73/2.

The maximum mass ratio that gives acceptable relative error (< 1 x 107%) is
ma/my ~0.6. With ion in initial state n; = 2, ion cooling probability is ~ 0.01 at
g =0.1,m =0.57 in Fig.4.20 (bottom panel) i.e the same order of magnitude as
the case with tight confinement a = 2.4 at ¢ = 0.5,m > 0.57 in Fig.4.14 (bottom
panel). Ion heating probabilities due to inter-manifold transitions are again at
least an order of magnitude of larger than ion cooling probabilities. Similarly
atom heating probabilities in Fig.4.21 are also of the same order of magnitude at
a=0.5,q=0.1 for shallow trap and a = 2.4, ¢ = 0.5 for the tight confinement case.
Note that ¢ = 0.1 is the maximum value that gives acceptable convergence and
relative error. The log derivative matrix dimension is » 2000 ~ 2500, nearing the
numerical limit of the log derivative propagation algorithm.
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Figure 4.21: Atom heating probabilities for shallow confinement with m/m; =
0.1,0.57, a=0.5, By = 2.73/2.
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Figure 4.22: Ton cooling (right) and heating (left) probabilities as a function
of pseudopotential coupling g, at constant collision energy E.,; = 0.25/2 and
ma/my = 0.57.
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4.6 Results: Ion Cooling and Atom Heating Probabilities

Similar to the case in Fig.4.16 and Fig.4.18, the ion cooling probabilities shows
low contribution from inter-manifold transitions. But ion heating transitions are
again an order of magnitude larger in comparison. Larger ion cooling probability
is observed with coupling ¢ for ion in an excited initial state. The atom heating
rates saturate with increasing pseudopotential coupling.
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Figure 4.23: Atom heating probability as a function of pseudopotential coupling
g, at constant collision energy F.,; =0.26/2 and ma/m; = 0.57.

4.6.2.3 Limitations

The Log Derivative Angular Propagation has its drawbacks, in that the maximum
micromotion under which the method gives acceptable convergence is a small
range of ¢ € [0,0.5]. As a test parameter, the relative error is calculated on the
off-diagonal K-Matrix elements of a test problem with collision energy resulting
in two open channels of the ion. Like in the earlier instances, it is ensured that K-
matrix elements are converged with respect to all physical and grid parameters
while calculating the relative error. It is seen that this method is limited by
the micromotion ¢ and mass ratios at which it can give converged results with
maximum relative error of 1x 1074, It is easily seen from Fig.4.9, that for larger
mass ratios we require a very large grid since at the final step of propagation a
considerable portion of the grid is lost i.e rendered insignificant for asymptotic
matching due to the ion bound state.
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Figure 4.24: Relative error for tight confinement case a = 2.4, for ma/m; =
0.1,0.57,1.0.
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Figure 4.25: Relative error for shallow confinement case a = 0.5, for ma/m; =
0.1,0.57,1.0.

As shown in Fig.4.24, this method of angular propagation is susceptible to
large errors for the case of shallow confinement. Since the confinement is weaker,
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4.6 Results: Ion Cooling and Atom Heating Probabilities

the ion quasi-stationary states are slightly more delocalized due to stronger dy-
namical confinement. This requires a larger grid with sufficiently large density
of points to converge the results. This increases total number channels propa-
gated is 2000 ~ 2400, which is nearing the numerical limit of the propagation
algorithm. Larger mass ratios require that we propagate over greater angle
a =tan'(y/ma/m;), thus propagating a larger number of steps. The algorithm
begins to accumulate large error with increasing number of steps thus limits the
range of mass ratios that can be used with this method. The requirements vis-a-
vis grid and physical input parameters were presented in Sec.4.4.1.

4.6.3 Discussion

The trap can essentially be considered static over this range, though the calcu-
lation requires 13 Fourier components. The effect of micromotion can be treated
as a perturbation on the secular motion of the ion, along the lines of treatment
in [51]. The overall effect of micromotion on ion cooling in both the cases
with tight and shallow confinement is seen to be rather weak, given the order of
magnitude of the ion cooling probabilities per collision is around < 0.01 for an
ion starting in a initial state n = 2 (over the range of ¢ accessible with the nu-
merical methods we implement). The difference of an order of magnitude in the
ion cooling probability at maximum ¢ between the cases with n; =1 and n; = 2
indicates that intra-manifold transitions dominate over inter-manifold transitions
for excited ion. The cooling probability multiplied by the velocity gives the cool-
ing rates which can possibly be used to estimate the total ion cooling rate in the
presence of an ultra cold atom cloud, along the lines of analysis in [50]. In com-
parison, ion heating from excited levels is seen to be a more dominant process.
Ion heating due to inter-manifold transitions too is seen to be at least an order
of magnitude larger than the cooling probability. Ion cooling shows marginally
better probability with larger mass ratios. The numerical methods used have
poor convergence at larger mass ratios due to the angle between the centre-of-
mass axis and the asymptotic region, in Fig.3.5. It must however be noted that
this model is a simplified one with the delta pseudopotential in place of the long
range polarization potential. Moreover, the ion dynamics is heavily perturbed
at each cycle of the rf-field due to exchange of energy quanta between the ion
and the field. Although ion cooling could be observed to a certain degree, the
cumulative effect of efficient, continued cooling in the presence of micromotion
on longer time scales cannot be expected unless the atom-ion system is strictly
a closed system. Thus one can safely argue that the ion cooling rate would have
a natural saturation, determined by the trap parameters a and ¢q. This is a pos-
sible explanation for the observed saturation/limit of ion cooling observed over
interaction time between a single ion and an ultra atom cloud, as observed in [27,
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31] (Also see Fig.1.1, 1.3). Saturation of ion cooling probabilities with varying
physical parameters like ¢ and pseudopotential coupling ¢ is evident from the
plots shown in Sec.4.6.2.1 and 4.6.2.2, where the ion cooling probabilities show a
gradual saturation with increasing parameter values. Estimates of cooling from
pseudopotential model and based only on the effect of micromotion per collision
can overlook the effect of interaction of the polarization potential and the rf-field.
Classical calculations based on dipole forces given in [49] elegantly illustrate the
subtle interplay of dipole forces and trapping fields. A full quantum calculation
using the master equation approach in [47], where they treat the ultra cold atom
cloud as a thermal bath illustrates a similar effect, that the cooling in the pres-
ence of micromotion is negligible unless the trap is operated at the edge of the
stability region. At the edge of the stability region, the ion dynamics is largely
dictated by the ¢ parameter.

On the other hand, atom heating probabilities are seen to be non-negligible.
It increases with micromotion and the exchange in energy accelerates the atom.
In experiments, this is seen to be the mechanism that drives an atom loss from
an ultracold cloud interacting with an ion. See 27-30, 32 and Fig.1.1, 1.2.
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4.7 Effect of Ion Micromotion on Resonances

The effect of micromotion on scattering theory in one dimension is studied. In
a manner similar to the one dimensional collision problem in Sec.3.2, we study
threshold and resonance features and the effect of micromotion on the same.
Along the lines of Sec.3.2 and [85], the resonance-like peaks are analyzed by
building the time delay matrix.

4.7.1 Collision with Ion in a Tightly Confined Trap
Thresholds and Resonances

The variation of reflection probability is studied as a function of varying total en-
ergy. Plots are made for summed reflection probability for transitions within the
0" manifold, given by Ry = ij:g’ |700.j0|?, reflection probability in all open channels
summed, with ion in initial state n; = 0. Threshold features and resonance-like
peaks are observed in the summed reflection probability. The nt* energy thresh-
old now exists at (n + 1/2)wse. = (n+1/2)w, /2. The plots are made for g = 0.1
and ¢ = 0.3. To isolate the effects of micromotion on these features, we define a
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Figure 4.26: Thresholds and resonance-like peaks at g = -1,¢ = 0.3 and m4/m; =
0.57.

reference secular oscillator. The calculation is repeated for the same system with

no micromotion (¢ = 0) and oscillator frequency set to a = $2, thus the reference
secular oscillator frequency will be fw, /2 (shown in red in the plots).
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It is noted that at ¢ = 0.3, there is very little change in resonance and thresh-
old features with respect to the reference secular oscillator as seen in Fig.4.26.
The threshold and resonance peaks are only slightly shifted with respect to the
reference secular oscillator. The shift of D ~ 1 x 1072Aw, s is seen in the location
of resonance peaks, occurring at a larger energy when ¢ = 0.3, shown inset in
Fig.4.26. This shift in the resonance peaks is proportional to ¢ since comparing
the ¢ = 0.3 and the reference secular oscillator, we find the location of thresholds
at channel openings remain unchanged as expected.

Reflection Probability
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Figure 4.27: Reflection in the elastic channel Ry, and contribution of fj, and fg,
to the peaks at g = -1, =0.3,ma/m; =0.57.

Parity Decomposition of Resonance Features The resonance peak in the
elastic channel at low energies is again analyzed in terms of the contributions of
foo and f, in a manner similar to that explained in Sec.3.2. For a tight confined
ion and ¢ = 0.3, the low energy resonance feature shows contribution only from
the odd parity scattering amplitude fg,. As explained in Sec.3.2, the negative
total parity scattering amplitude also contains contributions from the positive
relative parity.

Time Delay of the S-Matrix

We analyze the resonance peaks in reflection probability by calculating the delay
times, similar to that done in Sec.3.2. The time delay matrix is the derivative of
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Figure 4.28: Delay time plot. Two largest eigenvalues of 4 and -parity time delay

matrix Q* and @~ are shown for g = -1,a=2.4,¢=0.1,m4/m; = 0.57.

the parity dependent S-matrix with respect to energy. Real eigenvalues of this
matrix are the actual delay times and indicate the time delay accumulated by the
scattering particle during collision. Time delay matrix [91]is given by

dsS*

Q* = —ih(Si)TE. (4.31)

The largest two eigenvalues for the time delay matrix of each parity are plotted
against energy. For comparison, the time delay matrix eigenvalues of the reference
secular oscillator, defined in Sec.4.7.1 are also plotted. The S-matrix is unitary
such that S.ST ~ I, thus S.ST has very low values for the off diagonal elements
(usually less than 1 x 10719 for very well-converged calculations). Thus we take
only the real component of the eigentimedelay of the matrix Q*. Resonance peaks
that showed up in reflection coefficients show a positive time delay accumulated
by the scattered particle, with a broad profile (in Fig.4.29 and Fig.4.30). The
time delays show discontinuities at channel thresholds. The time delay plot for
a=24,q=0.3 given in Fig.4.29 and Fig.4.30 show a distinctive peak at energy
E ~1.39hw, s due to micromotion.
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The positive parity time delay matrix ()* is close to the reference oscillator
time delay, except for the slight shift in energy that was observed in Fig.4.26.
This shift is clearly an effect of micromotion since the threshold discontinuities
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coincide for the two plots. In this case too, the shift towards larger energy is
measured to be D ~ 1.1 x 1072.

The negative parity time delay = for ¢ = 0.3 seems to show similar features as
the positive parity counter-part. The shift in the resonance peaks with respect to
reference oscillator is measured to be the same D ~ 1.1 x 1072, The time delay at
low energies deviates from the behaviour of the reference oscillator. Time delays
of both parities, at ¢ = 0.3 show the distinctive peak at E ~ 1.38Aw,¢.

4.7.2 Collision in Shallow Ion Trap

Lastly, scattering results are obtained for a low static confinement of a = 0.5. The
density of states within the secular oscillator is high for shallow static confinement
and the effect of micromotion is found to be more pronounced even at fairly low
values of ¢, in comparison to the case of tight static confinement a > 1. This
again confirms the argument that the micromotion is dictated not by the value
of ¢ alone but also by the static confinement contribution a and the operating
point of the trap with respect to the stability edge, in Fig.A.1.

Resonances and Thresholds

1 T YL LA L L T I
| ] 1 [ T T T T T rl I
0.9 08— Y l
[ 1
0.6 :
0.8 :
04— :
- !
07 021 [
i [ R

Ll s
%3 0% 04 045 05 05 |
~— a=0.5, g=0.1-> BO.S,O.l

o
o

2 —
—--ap 0501 a=0

Reflection Probability
o ) o o
N w n [$)]

o
[

oL+ L o | v | . . . . PN I I I B [
02 025 03 035 04 045 05 055 06 065 07 075 08 08 09 095
E/thw,)

| | |4 | |

Figure 4.31: Resonances and threshold for shallow confinement with micromotion

Resonance and threshold features are observed in the summed reflection prob-
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ability for transitions within the 0** manifold Ry = Zioé’ [700.j0|?. The nth energy
threshold exist at (n+1/2)wse. = (n+1/)Bw, /2 and in the manner similar to that
explained in Sec.4.7.1, the thresholds and resonance-like features are compared
with that obtained due to a secular oscillator of frequency $/2 and no micromo-
tion.

Even at a low micromotion of ¢ = 0.1 a noticeable change in the features is seen in
Fig.4.31. The resonance-like peaks are shifted to slightly lower values of energy
with respect to those observed in the secular oscillator. The shift in the resonance
peaks is possibly proportional to ¢. This prevents us from further investigating
the increase of the shift in resonance peaks with increasing micromotion param-
eter q.

The resonance in the elastic channel at low energies is again analyzed in
Fig.4.32 in terms of the contributions of fj, and fj, in a manner similar to
Sec.3.2. It is noted that the low energy confinement induced resonance shows
contribution only from the even parity scattering amplitude fj;, as demonstrated
for neutral atom scattering by [88].

Time delay analysis along the lines of Sec.3.2 reveals a large negative parity
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Figure 4.32: Reflection in the elastic channel Ry and contribution of fj, and fy,
to the peaks at g =-1,a=0.5,¢=0.1,ma/m; = 0.57.

scattering amplitude f, elastic channel contribution to the resonance at around
E ~ 0.814hw,s in Fig.4.31, by noting the broad long lived time delay for the
resonance at this location in Fig.4.33, bottom panel. The sharp discontinuity at
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Figure 4.33: Delay time plot. Two largest eigenvalues of -parity time delay matrix
Q) are shown g =-1,a=0.5,¢=0.1,m4/m; = 0.57.

FE ~0.536Aw, ¢, just after the n =1 channel threshold in the plot, is absent in the
reference oscillator curve in Fig.4.31. Time delay at this point shows a long lived,
inverted bell-shape but with negative time delay (Fig.4.33, bottom panel).

4.8 Conclusions

We have presented methods to solve the 1D collision problem with micromotion
with a fair bit of success. Linear propagation, its spectral element analogue and
angular propagation schemes are described and implemented to solve this prob-
lem, with varying degrees of success. The associated error plots describing the
limits of operation of the methods are elucidated. It is noted that the angular
propagation method is comparatively more robust over a range of ion trap pa-
rameters a and q.

The nature of the time dependent ion traps, the resulting Floquet energy
spectrum of the ion and its properties, the wavefunction of the ion both in time
and frequency domain are described. The reason for converged results over a
limited range of trap parameters is explained, with respect to how increased mi-
cromotion complicates the dynamics of the ion. The atom-ion collision problem is
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described, along with a justification as to why the delta pseudopotential instead
of the long range atom-ion potential is a simplification and neglects the dipole
forces that come into play along with the presence of micromotion. Ion cooling
are found to be rather low. We have presented an argument to state as to why
in our trap parameters, isolating the inter-manifold transitions highlights the ef-
fect of trap micromotion. The comparatively low ion cooling probabilities seem
to agree qualitatively with experimental results, shown in Fig.1.1 and Fig.1.3.
Though the classical calculations in [49], [50] point to keeping a low mass ration
m =my/my, our results show that ion cooling probability seems to increase with
mass ratio. It is argued that the disagreement could be due to the fact that our
model system uses a delta pseudopotential, unlike in [49]. In agreement with [47],
we find that the ion cooling is negligible for trap parameters that lie well within
and away from the stability edge of the Mathieu stability region and calculations
with trap parameters near the edge of the stability region is not possible by the
numerical methods we use, as evidenced by the growing relative error on our
calculations for fixed a and increasing q. Atom heating probability is found to
be rather non-negligible in our methods, in qualitative agreement with the ex-
perimentally measured trend of atom loss from the trap. To conclude, we also
find confinement induced resonances, whose resonant origin is confirmed by the
positive time delays for each parities, as shown in Sec.4.7.1.
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Chapter 5

Three Dimensional Atom-Ion
Effective Interaction

he study of micromotion effects is extended to 3D in spherical coordinates.
The problem would be extremely large with six degrees of freedom for a
two body collision problem in 3D. Instead, we choose to study a simplified model
where we assume a heavy atom and lighter ion in a time dependent Paul trap that
is centered on the atom. As with the earlier chapters, a delta pseudopotential is
used instead of the long range atom-ion polarization potential (-Cy/r*). Such a
model system is effectively an ion in a Paul trap with a delta spike at the trap
centre. Resonances can occur between the eigenstates of the trap and molecular
bound states due to the atom-ion potential. If the system parameters like position
of the atom within the Paul trap or the scattering length can be varied, such trap-
induced shape resonances could be of interest since the real atom-ion potential
is long range and interplay of trap eigenstates and molecular bound states can
be expected to be more vigorous for such a system. Since we use a regularized
3D delta pseudopotential instead of the real long-range potential, amplitude and
sign of the s-wave scattering length related to the delta pseudopotential coupling
by (asp =mrgsp/(2mh?)). The s-wave scattering length can then be varied using
magnetic fields to reveal trap induced shape resonances of the system. We aim
to find the eigenvalues of this bound state problem at different s-wave scattering
lengths. Avoided avoided crossings between the Floquet states are found and
by estimating the non-adiabatic transition probabilities and switching speed of
the scattering length, we explore the possibility of using these avoided crossings
for quantum control applications such as adiabatic state transfer of the ion to
different trap states [6,39,40]. The possible limitations in the implementation of
an atom-ion phase gate [37| arising due to micromotion is discussed..
The effective atom-ion interaction in this model is revealed in the interaction
of ion states in a Paul trap with a delta potential in the trap centre. From
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Sec.4.1 it is seen that the constraint on the trapping potentials in 3D would give
either a 2D time dependent confinement, with electrostatic confinement in the
third dimension or a time dependent anisotropic 3D confinement of the ion. We
choose the latter, a cylindrical Paul trap for this system. From Eq.(4.3), it is
seen that the field has an anisotropy ratio of 1:2, which gives the micromotion
parameters for the trapping potential in the three dimensions as a, = a, = —2a,

and ¢, = ¢, = —2¢..

5.1 Micromotion Hamiltonian

The time dependent potential for a cylindrical Paul trap (See [102]) is given by

2
mlwrf

4

1
Vi(z,y,z,t) = 5 [a +2qcos(w,t)] (227 — 2% — y?). (5.1)
Re-writing the term (222 — 22 — y?) = 222 — r2, this potential has an anisotropic
term along the 2 axis, resulting in the cylindrical symmetry. The Hamiltonian in
radial coordinate is given by

. B2 42 A2 L2 1myw?
H=z=—m——+ ——+— g
2mrdr? 2mpr? 2 4

[a +2q cos(w,t)](32% = 1?)
0
+g3D5(T)ET (5.2)

where g3p = 2wh2a3p/p. We will henceforth use atomic units (setting o =1). The
time dependent Schrodinger equation is given by

1 @ 1 12 1mwl

+ +
2myrdr?  2m;r? 2 4

[a +2q cos(w,ft)] (322 - r?)

+ 93D5(7“)§TT] U(r,0,¢,t) = i%llf(r, 0,0,t) (5.3)

Performing the Fourier-Floquet decomposition, similar to what was done in Sec.4.2,
we assume Floquet type solutions given by

+ 00
U(r,0,¢,t) =e™ 37 e d(r,0,6,n) (5.4)

and substituting these solutions into Eq.(5.3), multiply it by e??'“rst/2/\ /T, ; and
integrating over a time period of the rf-field, to get the Schrédinger equation in
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frequency domain as

2 2,2
d? L2 miw

v 0
—o3 + =) + Tfa(?)zQ — 7“2) + 2m1g3D5(r)5r +2myn'w, s | O(r,0,0,n")+
m%wff 2002

miw
q(?)z2 — r2)<1>(r,0, p,n +1)+ 14 rfq(?)zZ - TZ)(IJ(T, 0,p,n" -1) =

4
2miE®(r,0,¢,n") (5.5)

where E = E/w,;. Let E denote E hence forth. The first term within square
brackets on the left hand side is a diagonal term in the matrix representation
of the Hamiltonian in the Fourier-Floquet basis (n/ index) and the second term
forms the +1 and —1 diagonals of the matrix. This is the eigenvalue equation we
solve to calculate the ion states in the presence of a delta potential in the trap
centre. The anisotropy term can also be written as (322 —r?) = 12(3cos?(6) - 1).
It is proportional to a spherical harmonic given by

Y2(0,0) = ;ﬂ (3cos2(6) - 1) (5.6)

It must be noted that since the potential has the spherical harmonic Y7 term,
it implies the solutions have cylindrical symmetry and m quantum number is
conserved. Thus we fix m = 0 for the problem and method will only detect
ion states with L, = 0. For simplicity we drop the argument ¢ in the solution
and rewrite W(r,0,¢,t) - V(r,0,t) and ®(r,0,0,n') - &(r,0,n’). Further the
dependence of ®(r,0,n") on the Fourier-Floquet basis index n’ is expressed by
building multiple diagonal blocks of the Hamiltonian in Eq.(5.5), with different
values of n/. The summation term in Eq.(5.5) is truncated over a basis n' =
(=Ny,+Ny) with Ny chosen sufficiently large to correctly calculate the eigenstates.
We expand the solutions in spherical harmonics as

lmaac

O(r,0,n') = FZO Ri(r,n")Y,°(0) (5.7)

Thus Eq.(5.5) can be represented on the spherical harmonic basis. Substituting
Eq.(5.8) into Eq.(5.5), multiplying from the left by Y;?(6,0) and integrating over
0, we get

EQ

r2

d? 0
[_ﬁ + 2m1g3D5(r)5r + 2m1n’wrf] Ry(r,n')+ Y. (}/},0

1
+>° m?wff\/g (v
1

Y}O> Rl (T7 n,)

Y3 |Y0)r? [aRi(r,n') + qRi(r,n' = 1) + qRi(r,n’ +1)] =

QmIERl/(T7 n') (58)
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The first term on the left hand side in the above is diagonal in both [ and n’
basis, the second term has a diagonal structure in both [ and n’ basis and third
term has a tri-diagonal structure (with 0" +1 and -1 diagonals since an even
parity [ basis is chosen) in the [ basis and is diagonal in n’ basis. Let the total
Hamiltonian be written as H = K +V, where the matrix elements of the operators
K and V are given by
o2
Kl’n’ln(r) = 51’15nn’ o2 (59)

r2

L2
Virin (1) = lam, (Yﬁ =

0
Yl0> + 2m193D5(7”)51'l5nn'a—7” +2my 00y Wy p+
r

2,,2
mlwrf

4 [aénn’ + q(én,n’—l + 5n,n’+1)]4\/§ <Y29

YQO\YIO)?«?] (5.10)

where the operator elements Vj.,,,, (1) form the diabatic term and it is tri-diagonal
in the [’ and nn’ indices of the spherical harmonic and Floquet basis respectively.
The problem now has 3 degrees of freedom namely r, 6 (or the spherical harmonic
index 1) and ¢ (or its conjugate n/, since the Hamiltonian is in frequency domain).
Like the 1D problem, the potential has a tridiagonal structure in the n’ basis.
Since the potential has the form Yy, matrix element on spherical harmonics basis
with m =0 is given in [115], p.618 by

[ Y (6,000,007 (6, 6)d52 -

(-1)™y ‘ % (1'2,00(1,0) (12, m'0|1,-m) (5.11)

where m = 0 and m/ = 0. The potential is tridiagonal in the spherical index [ as
well. The radial coordinate is split into sectors and high order local polynomial
basis is chosen to implement the Spectral Element Method solution to solve this
problem (Sec.2.4). The Hamiltonian is expressed in the form of a sparse matrix, as
described in Eq.(2.48). This sparse eigenvalue problem is then solved with FEAST
[75, 76], which is a sparsity optimized diagonalization package that converts the
eigenvalue problem to a set of linear equations which is solved with PARDISO
[77-81], called from within FEAST itself. The package starts with a randomly
generated trial eigenfunctions which are optimized over a pre-determined number
of iterations. The search interval for the energy E specified is (0, hiw, ), since
this corresponds to the first Brillouin zone of the Floquet spectrum which has an
hw, s modulo structure. In atomic units, hw,f = 6.047 x 10~%a.u. Calculations are
done for a Be* ion in a Paul trap, with w, s =27 x 250M H z.
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5.1.1 Delta Pseudopotential Vs Long Range Potential

Since the Hamiltonian is only for the separable relative motion in a system with
low ion mass and high atom mass, the system consisting of the low mass Be* ion
is chosen. The results could be applied to the systems like Cs-Be* with mass ratio
m =ma/m; = 14.75, Rb-Be* with mass ratio m = ma/m; = 9.6 or Yb-Be* with
mass ratio m = ma/m; = 19.2. The use of delta pseudopotential simplifies the
long range character of the real potential and is equivalent to an ion in very loose
traps. Like in Sec.4.2.1, the characteristic length of the realistic potential for
these species is R* = 2469.62a for Cs-Be*, R* = 2176.55a for Rb-Be* and R* =
1499.66ay for Yb-Be*. Though direct qualitative comparisons to experiments
cannot be made with the results obtained with the delta pseudopotential, it would
help in understanding the physics of adiabatic transitions under the influence of
micromotion and how it affects the proposed implementation of phase gates and
adiabatic state transfer in atom-ion systems. The Be* ion trap rf-frequency is
238 M H z reported in experiments like [109]. We take it to be 250M Hz and run
our calculations for trap parameters a, = a, = 0 and ¢, = 0.1(¢, = —0.2), giving
secular oscillator lengths of ap, , ~ 533.04ag and ap, . » 375.80a0 in the 2(y) and 2
axes. In this case too we notice R* >> ay, for the Yb-Be* system. Calculation are
made for for micromotion parameters of a = 0 and ¢ = 0.1 since in 3D the stability
plot for the ion is the overlapping region of the stability regions of different axes,
as shown in Fig.5.1.

Figure 5.1: Stability region for a 3D Paul trap. Image from Major et al. [102]
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5.2 Floquet Spectrum

Since the atom-ion potential is simplified by the use of a regularized delta pseu-
dopotential, the computed spectrum for non-zero gsp will be of even parity only,
since the delta potential couples only to s-wave. Only states with L, = 0 are
computed.

Since Floquet spectrum is calculated over a large, finite basis, a large num-
ber of states detected in the given search interval are badly converged. For the
system parameters we use, FEAST calculates about 900 ~ 1000 states and about
40 states are found to be well converged. We explain in this section the eigen-
state properties we calculate to define a FEAST state as well converged. As
explained earlier in Sec.4.1, these levels will include excited states from manifolds
shifted from the reference manifold by n'fiw,, where n’ < 0. To eliminate these
badly converged states and select only the good, well converged states, tests are
performed on the final eigenvalues and eigenfunctions calculated by FEAST.

5.2.1 Reference Static Oscillator

We have explained in Ch.4 the notion of a secular oscillator in the presence of
micromotion. The effective trapping frequency of the ion in the three separable
coordinates depends on the Mathieu characteristic exponent [ of the separable
classical potential for the particular coordinate, which for a 3D Paul trap are
Bs = B, and B, respectively. The ion quasi energies calculated using FEAST are
expected to show the secular nature of the oscillators in the three axes. Thus as a
reference, we can calculate the exact spectrum for a time independent anisotropic
3D oscillator with aspect ratio 1:2 which goes as

hwr f

ot [+ 1) B, + (s + %)521 ' (5.12)

Eea:act = 9

where n, = n, + n,, the secular oscillator frequency is f,w,r/2 and [.w, /2 in
the Z(y) and Z directions. The constraint on even parity solutions requires that
ng +ny +n, = 7, where j is any positive even number and the constraint of L, =0
implies n, is conserved and must be even to give a total positive parity even if
n, = 0. This further constraints n, to be even. The Floquet spectrum in the
fundamental manifold is calculated with n’ = 0 in Eq.(5.12). Since the Floquet
spectrum has an fw, ;-modulo structure, multiple copies of the fundamental man-
ifold exist, with each copy shifted by n'fiw,; where n’ is an integer. This means
in any interval of (0,Aw,r), all states are unique and are also composed of the
excited states from all low lying manifolds, which can be calculated by varying
n’ in the interval n’ = (0,-Ny) in Eq.(5.12). This provides a way to check if the
FEAST spectrum calculated at asp = 0 is correct.

110



5.2 Floquet Spectrum

Further the change in the bound state spectrum by varying s-wave scattering
length is plotted for a reference static oscillator. Comparison of such a change
with the change in the spectrum for the original problem with micromotion serves
to isolate the effect of micromotion in creating avoided crossings among the mul-
titude of the ion states detected. The reference oscillator is a time independent
anisotropic 3D oscillator with a regularized delta perturbation at the origin. In
keeping with the secular frequency for each coordinate calculated for the ion trap
with micromotion, the reference oscillator frequencies in the three spatial coor-
dinates are chosen as 2w, where i = x,y,z and 3, = 8,. The time independent
Schrodinger equation in atomic units is given by

1 92 1 [2 1mw
0 P (g2 4 B2+ B222) ¢ g ()
;

(I)(Ta 0, ¢) = Erefq)(T7 0, gb) (513)

+ +
2myOr?2  2myr?2 2 4

Let the solutions be ®(r) = Y, Ri(r)Y;"(0,0), since we choose to fix L, = 0, giving
m = 0 like the original problem with micromotion. From the lowest order ap-
proximation (See 53 or Appendix.A.2) that 8 =\/a + ¢?/2. This gives a reference
oscillator with secular oscillator frequency for each coordinate i.e fw, /2, with
i=x,y,z. With z =rcos(f), the potential term can be reduced as

1mw rf
2 4

1 mw?
(623:2 + B2y + B2z 2) 5% (6%7‘2 + (63 - Bf:) r? 0052(9)) (5.14)
where we take cos?(0) = (% VEYD + 1) from Eq.(5.6). The potential thus reduces
to a sum of a diagonal term and a tri—diagonal term in the spherical harmonic
basis. Re-writing the Schréodinger equation in Eq.(5.13) on the spherical harmonic

basis on the lines of Eq.(5.8) we have
2 d  miw; 1 1(1+1
i gty e L (25 (52 90) + O ety
2,2 T (yo
Sy A 7
zl:mlwrf?)\/;( l

The first and second terms on the left hand side are diagonal and the third term
is tri-diagonal with 0%, +1 and -1 diagonals in the positive parity spherical har-
monic [’ basis. This reference oscillator is also solved with FEAST.

The energy levels shift up or down with respect to +asp or —azp. As azp — +00,
the energy levels reach the same asymptote, giving the spectrum of the unper-
turbed anisotropic oscillator spectrum. In the absence of trapping potentials, the
delta pseudopotential in 3D gives rise to a single bound state (molecular level)

Y2 Y0)r? (82 - B2) Ri(r) = 2mrEyey Ry (r)  (5.15)
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Figure 5.2: Evolution of the reference anisotropic oscillator states are shown as

a function of agp. Though the levels show a periodic pattern, at £ >> 0 many

states are found that are very closely spaced (inset). A single molecular level

(labelled B) arising due to the regularized delta potential is seen at positive asp,

identical to [108].

at positive azp, with binding energy going as 1/a3,. But in the presence of a
trapping potential, the bound state energy is shifted up (See 108). We note
that the energy level rises sharply for the bound molecular level and is useful for
application in phase gates, as shall be explained in Sec.5.4.

5.3 Diabatic-by-Sector Method

Initial trials of the problem indicated that due to the 1 : 2 anisotropy and the
purely dynamical trapping potential, the basis size required in the [ and n’ de-
grees of freedom are too large and requires very large memory, with [, = 80
and n/ .. = 80. See Fig.5.3 for convergence with the [ and n’ primitive basis.
Since the basis of isotropic spherical harmonics (since L, = 0) are chose to rep-
resent anisotropic states, fairly high order spherical harmonics are required to
well describe states that are highly anisotropic and localized far from the trap
centre (long range) i.e excited trap states. This increase in the primitive basis
drastically increases the matrix size.

Though the Hamiltonian is sparse, the full matrix size exceeded dimensions of

112


Chapter4/Chapter4Figs/EPS/AscVsE_ref.eps

5.3 Diabatic-by-Sector Method

~ 4million. Just a fraction of the total elements are non-zero and only those val-
ues are stored in the memory but the solvers by design are memory intensive and
require memory in excess of the maximum available per machine of 128G B for
matrix of such dimensions. To overcome this drawback and to choose a smaller,
better defined basis within each sector, Diabatic-by-Sector (See [110-114]) method
is attempted.

In a general sparse Hamiltonian representation, each grid point in a sector
is a sparse matrix in the various internal degrees of freedom of this problem i.e
Floquet basis index n/ and spherical harmonic basis index [. The diabatic-by-
sector method is used to reduce the matrix dimensions at each grid point. From
Eq.(5.10), the diabatic term is taken at the midpoint ¢ of the i*" sector, giving
a matrix V(r¢ ). This primitive basis matrix in the i sector is of dimensions
(Ni, x N%), where N?, =11 (2(n’)*+1) and [{ ., (n')" are the sizes of spher-
ical and Floquet basis for the it sector. This matrix is diagonalized to given
eigenfunctions

V(i YUL(r) = e Un (1) (5.16)

where « is the solution index. Here again, it is known that the eigenvalue spec-
trum €, is unbounded since V(r¢)) is a Floquet Hamiltonian. Similar to the
eigenstate analysis done for FEAST eigenstates, basis dependent modulii defined
for each of the states U,(r% ) are calculated. The eigenfunctions U,/(r¢,) are
composed of internal coordinate indices n and [ given by U, .(7%,), thus the
partial modulii are defined as

] +Nf ]
||U04(Tin)||l2maz = Z ||Un’lma17a(7,;n)||2 a"nd
77/=—Nf
Imazx . .
o)l = 2 0-Npa ()P + [Usnja(ri)IP) - (5:17)

=0

These properties are computed to check and select states U, (r? ) that are well
defined in the primitive basis of [ and n’ internal coordinates. Only states U, (7! )
with the two partial modulii in Eq.(5.17) lesser than 1075 are chosen as an adia-
batic basis function. The primitive basis in spherical harmonics index is limited
to a maximum size of [ = (0,20) at short range and [ = (0,80) at long range
and in Floquet basis it is a minimum of n’ = (-20,+20) at short range and
n' = (-80,+80) at large range, with linearly scaled variation from one sector to
the next. We select a user defined number of basis functions N,; for each sector
i such that Nog <= (I'(2(n')® +1)). This results in a rectangular transformation
matrix for each sector i denoted by Up(rf,) composed of the chosen basis func-
tions along each column. This matrix is used to transform the sparse matrix in
primitive basis to a full matrix as V(r) = Up(ri )" V(r)Up(ri.). The resulting
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matrix i/(r) is smaller in total size but gives a full matrix at each grid point. For
the given problem with Be* ion, the oscillator lengths in the Z(y) and 2 directions
are apo . = 933 ap and ap, » = 375.8 ag respectively. Thus a grid over the interval
r = (0,6000a0) is taken, with sectors of length dr = 750 ay. For a converged calcu-
lation, diabatic basis of N,4 = 350 basis functions are required. This is verified by
the accuracy of the ground state and initial few states of the ion trap calculated
by FEAST by comparison with the exact spectrum calculated with Eq.(5.12).
This method is seen to give good convergence in calculating the low lying states
of the fundamental manifold of the ion spectrum. Fig.5.3 shows the accuracy of
calculating the ground state eigenvalue. As a test parameter, the relative error of
the states in the 0** (fundamental) manifold calculated by FEAST are compared
with respect to the exactly calculated value, for trap parameters of a =0,q =0.1.

e — Ground state
B S s =
00001 < ~=*1" excited state |
£ d . q
- 2" excited state ]
N\
o N\
<) \
(0 \\
L 10051 X E
i NS
T N
[0 N
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Primitive basis size at long range
Figure 5.3: Relative error of the calculated ground state energy Ej and the first
two excited states as a function of the primitive basis size. The basis in both [
and n’ equal in size.

Much of the computation time is spent in diagonalizing the diabatic matrix
V(r%,) in each sector, with the final sector taking the maximum time. For the
given input values of the grid and primitive bases, the code takes around 11
hours, of which it needs 9 hours to diagonalize all the sector matrices. The sector
basis transformation matrices are written to disk to avoid diagonalization at each
point, if we only intend to vary the scattering length asp. The first sector is
always taken in its primitive, undiagonalized basis to accommodate the changing
initial condition with the delta pseudopotential at r = 0. Effectively the method
only requires 1.5 ~ 2 hours to compute the ion states with FEAST and calculates

114


Chapter4/Chapter4Figs/EPS/errVl.eps

5.4 Adiabatic Passage and Phase Gate

135 states as per the convergence criteria we define. In comparison, a calculation
in fully primitive basis (Hamiltonian is build and only FEAST is used) required
nearly 14 ~ 15 hours for the calculation with grid dimensions of r = (0,6000ay),
primitive basis varying from short range to long range as l,.. = (20,60) and
Nhaw = £Np = (£20,+60). This method calculated around 40 states as per the
defined convergence criteria.

5.4 Adiabatic Passage and Phase Gate

We briefly describe some notions of Landau Zener physics with respect to bound
states. The basic idea of operation of an atom-ion phase gate is provided.

Adiabatic Passage

When a parameter for a system with many bound states is varied, certain states
show evidence of coupling. These occur when two states cross as a function
of the input parameter. Let the two states be labelled [¢1(¢1)) and [1)(t1)) at
time t; and t5 with energies E; and FEj respectively. In the initial state we have

IYa(t2))

()

Iya(tr))

t

Figure 5.4: Avoided crossing of two coupled states that evolve adiabatically.

E4|y, # Es|y, and by varying this parameter with time, the states evolve reducing
the energy gap AE = |E) — Es| — 0, until they are equal at Ei|;, = Fb|s,. The
eigenstate of this system now is a linear combination of [¢);) and [¢). Such
states form an avoided crossing and depend critically on the rate of change of the
system parameter. For example, in the Fig.5.4 if the system parameter is varied
very rapidly state [¢(¢1)) skips any possibility of interaction with the coupled
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state |19(t1)) and just evolves into state |11(t2)). This is also called a non-
adiabatic (diabatic) passage. But if the parameter is varied slowly, an adiabatic
passage is possible such that [¢1(t1)) (Ji2(t1))) very smoothly evolves into |15 (t2))
(|t01(t2))). Thus it is possible with slow switching to effectively change a particle
from one of the states to the other. The requirement for such transitions arise
in the implementation of atom-ion phase gates [37] and coherent processes like
transferring a particle between states [38,39]. The energy gap AFE at the closest
separation between the states and the rate of change of the system parameter are
the crucial parameters that decides successful adiabatic transfer. The probability
of a non-adiabatic passage is generally given by

P, e 2 AEP
= X —_
na = PN T 0B, (1) — OB, (1)|/0t

In a system of an ion in a Paul trap with Floquet spectrum, there could be
many avoided crossings that evolve when a tuning parameter is varied. For the
model problem under consideration, the scattering length agp (i.e pseudopotential
coupling gsp) can be tuned with magnetic fields, on the lines of the method to
address Feshbach resonances to attain dasp/dt. The probability of non-adiabatic
passage (in atomic units) can then be given by

P ( 5 |AE? )
o = €exp | 27

P\ Dasp [0 |0B (1) — OF, (1)]/dasp
The aim would be to reduce the probability P,,. We show the behaviour of P,,

with switching time for a couple of avoided crossings found between the states of
the fundamental band of the Floquet spectrum.

(5.18)

(5.19)

Atom-Ion Phase Gate

The idea of a phase gate is fairly simple, in that it exploits the control over cou-
pling between energy levels with external magnetic fields, by essentially changing
the scattering length [37-39]. The atom and ion are trapped in individual po-
tentials and their separation can be varied. The problem we deal with is one
with trap separation set to zero and held constant. Multiple avoided crossings
are observed in the ion Floquet spectrum with varying scattering length. The
qubit states are encoded in the internal hyperfine structure of the particles (atom
and ion), denoted by |ij) = |i);|j)4 with 4,7 = 0,1. A conditional phase gate is
realized, by the following

00) =V= ¢i?000) -5 |00)

01) — €1 {01) - |01)

10) — €10 [10) - |10)

[11) - €11 |11) —» € |11) (5.20)
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The first transformation Up is the application of the external field, that forms the
actual gate operation and the second transformation Ug can reverse the phase
e'?ii accumulated due to the transformation Ug, in all except the |11) channel [41].
This channel gains a phase given by ¢ = ¢gg + @11 — P10 — ¢o1- A phase of ¢ =7 is
termed a phase gate since it replicates a controlled-NOT logical operation.
Since the particles have internal structure, only specific qubit states will feel the
Feshbach resonance (molecular level labelled B in Fig.5.2) due to the field and
these resonances are exploited to accumulate phase in the |11) channel. The
other two-qubit states will only gather much smaller phase due to linear Zeeman
shift of the hyperfine levels. With changing magnetic field, avoided crossings can
appear between the different trap states and these are traversed adiabatically.
The Feshbach resonance that appears is used to create molecular states between
the qubit states and the field is then reversed to go back to two single qubit
states. These two qubit states then will have accumulated a phase and tuning
the magnetic field far enough and back again to gather a phase of ¢ = 7 will create
the controlled-NOT gate. Since we pass avoided crossings adiabatically to access
the molecular state, the rate of change of magnetic field controls the probability
of non-adiabatic passage. To avoid non-adiabatic transfer to excited trap states
one would have to vary the magnetic field slowly enough, thus limiting the speed
of operation of such phase gates.

Coherent Transfer to Excited Trap States

The proposed protocol for adiabatic transfer of particles to excited trap states
in [39] involves controlling the scattering length magnetically and the separation
of the individual single particle traps to shift the location of avoided crossings.
The proposed protocol for such a coherent transfer again utilizes the molecular
level (labelled B in Fig.5.2). The two particle state is driven into a molecular
state magnetically, then the trap separation is varied to shift molecular state to
a region of avoided crossings. The particles are then brought back into the two
particle state by magnetic field sweep but now due to the avoided crossings with
excited levels, they can be transferred to a two particle state in any of the excited
states. Bringing the trap separation to zero will bring the system back to the
unperturbed state with the two particles transferred coherently to excited trap
states.

5.5 Results

The FEAST calculated spectrum is plotted for varying values of the delta pseu-
dopotential coupling, expressed in terms of the 3D scattering length azp. This
problem generates only the positive parity states of ion which have L, = 0. As
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explained earlier, we choose a FEAST eigenvalue search interval of [0, hw, (] =
[0,6.047 x 10-%a.u].

Molecular State of the System

To highlight the effect of micromotion, we also show the calculated spectrum and
the reference static oscillator in red in Fig.5.5.

E (atomic units)

1250 -1000 750 500 250 O 250 500 750 1000 1250
a5/
Figure 5.5: Evolution of all bound states of the ion Floquet spectrum with chang-
ing scattering length azp/ag. Evolution of reference oscillator states are indicated
inred. At azp/ag ~ 700, the molecular state of delta potential in a time dependent
trap (labelled D) evolves into a bound state.

-2e-10H

The dense, quasi-continuous Floquet spectrum shows many avoided crossings
at low scattering lengths in the range [-1400 ag, +1400 ag]. The Floquet spectrum
shows the molecular state due to the 3D regularized delta potential, labelled D
in Fig.5.5.

For a closer look, Fig.5.6 shows the molecular level of the reference static
oscillator (in red) superimposed on the FEAST calculation. Floquet spectrum
for this problem has a modulo-fw, s structure. Thus by adding (or subtracting)
hwo, s we can build the spectrum for different manifolds. Floquet spectrum in the
-1t manifold (shown in blue in Fig.5.6) is built and we notice the excited states
in this manifold indicate the existence of the molecular level and its perturbation
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Figure 5.6: Evolution of the converged bound states of the ion with changing
scattering length asp/ag. Shows strong perturbation due to micromotion at asp >
Ahoz, Where ap, . =533 ag (indicated by green arrow)

due to micromotion. Superimposing the molecular level of the reference static
oscillator, we note that the micromotion perturbed spectrum coincides exactly
with the reference calculation for scattering lengths upto asp ~ 500 ag. The
oscillator lengths for the time dependent trap in x(y) and z are 533 ao and
375 ag respectively, as given in Sec.5.1.1. Thus we note that at larger scattering
lengths, the effect of micromotion becomes more apparent because the binding
energy of the molecular level goes as ~ 1/a3,. We note from Fig.5.6) that at
azp > 500 ag stronger avoided crossings and micromotion perturb the molecular
state and for positive energies the molecular state deviates strongly from the
reference oscillator molecular state. Thus molecular states cannot be created
using qubit states prepared in ground state, with a good fidelity. Moreover the
presence of many avoided crossings introduces an inherent limit to the speed of
operation of an atom-ion gate, since a high switching speed can cause diabatic
transition of the ion to wrong level.
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Adiabatic State Transfer

The spectrum of the reference static oscillator in Fig.5.2 shows that at large scat-
tering lengths azp — +o0, the asymptotic states are the same for +oco and —oco. To
show the same, we vary azp over [—oo, +00] and map it to a normalized scattering
length ¢ over the finite interval of [-1,+1] such that £ = (2/7) tan™!(azp/ano.r)-
azp ranges over [—5x 10* a,, +5x 10* ag], in Fig.5.7. The asymptotic energy levels
are found to be equal (shown by the red-dotted lines).

Thus similar to the asymptotic levels for the reference static oscillator (in

5e-10

4.5e-10

4e-10

3.5e-10

3e-10

2.5e-10

2e-10

E (atomic units)

1.5e-10

1le-10

5e-11

Figure 5.7: Evolution of states with changing normalized scattering length &.

Fig.5.2), we find levels that are asymptotically equal for the ion Floquet spec-
trum as well. Similar to Fig.5.2 (inset), we note that the oscillator states of the
same manifold exhibit avoided crossings at very low scattering lengths. With
asp increasing to very large values, the effect of micromotion is still seen, though
comparatively less pronounced. At very large scattering lengths it shows closely
avoided crossings with Floquet states. Thus implementation of a coherent trans-
fer protocol is difficult since the micromotion badly distorts the molecular level.
More such avoided crossings exist between the Floquet states from different man-
ifolds as well. This further limits the possible controlled shifting of molecular
level to the location of avoided crossings for eventual coherent transfer to excited

120


Chapter4/Chapter4Figs/EPS/AscVsE_highA.eps

5.6 Conclusions

trap states.

5.6 Conclusions

The study of micromotion effects for a model system in 3D was attempted ini-
tially in the primitive, non-diagonalized basis. Sparse representation of this basis
was found to have enormous memory requirement > 128G'B and computation
time ~ 18hours. Not all of the adiabatic basis functions in each sector might be
required for accurate representation of the Hamiltonian and thus the diabatic-
by-sector method was implemented [110-114]. This method was seen to be a
better approach since diagonalization of the Hamiltonian in internal coordinates
within each sector could be done just once and the selected sector basis functions,
saved on file, could be used for calculation with changing scattering length asp.
This drastically reduced the computation time required to build the Hamiltonian,
though the full solution still required 1.5 ~ 2 hours. The implementation of this
method helped understand what constitutes defining a well-converged state from
a quasi-continuum in spectrally unbound systems with internal degrees of free-
dom. The method fails to converge for micromotion ¢, > 0.1 where the method
fails to resolve the ion ground state energy.

The aim of studying this model system was to understand the effect micromo-
tion has on the secular oscillator levels and the resulting trap induced resonances
and avoided crossings. Inherent limitations in the application of a phase gate
is seen, since it relies heavily on using the molecular level of the system. Mi-
cromotion is seen to heavily perturb the molecular level at low binding energies
¢ ~ 1/a%,. Moreover, the molecular level is seen to have many avoided crossings
with Floquet states from different manifolds. Thus presence of micromotion could
drastically limit the operation time of atom-ion phase gates.

The asymptotic nature of the Floquet spectrum at very high scattering lengths
is similar to the reference oscillator spectrum. But experiments involving state
transfer of the ion to excited trap states would again fail even at large scattering
lengths due to multiple closely avoided crossings.
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Chapter 6

Conclusions and Perspectives

In this thesis we have demonstrated a few methods that can be used to solve
the Schrodinger equation in one dimension for a scattering problem involving
a free particle and a particle in a time independent trap. We utilize three dif-
ferent methods, namely (i) Integral Equation Method [63], (ii) Log-Derivative
Propagation [67] and (iii) Spectral Element Method [73]. A modification of the
Log-Derivative method is made for use in plane polar coordinates. Though all
these methods show physical validity by agreement with the Born approxima-
tion, the Integral Equation Method is particularly sensitive number of channels
in the calculations due to a slowly converging Greens function (series) in the ker-
nel. The Log-Derivative method is seen to be a robust method and its variant
in plane polar coordinates solves the problems in asymptotic matching arising
due to the geometry of the problem. The Spectral Element Method is an elegant
adaptation of the idea of Log-Derivative method, developed by [73|, that instead
of propagation a matrix recursively in the solution coordinate, relies on a one
shot solution exploiting sparse representation of the Hamiltonian to directly give
the R-matrix at the final step. The Hamiltonian is discretized using a combi-
nation of pseudospectral basis and finite elements in all spatial coordinates and
Schrodinger equation is re-cast into a linear equation in the solution coordinate.
Sparsity based linear system solvers are used to solve the linear system. The
high order pseudospectral method is used to discretize the grid within each finite
element. The same discretization method can also be used to model eigenvalue
problems and calculate the eigenfunctions and values to a very high accuracy. A
commercially available, robust and thoroughly parallelized sparsity-based linear
system solver, PARDISO and its counter part to solve eigenvalue problems, called
FEAST are utilized for the problem based on the kind of solution needed.

The scattering problem of a free atom and a trapped ion in one dimension
is attempted by using the Integral Equation and Log-Derivative methods. The
atom-ion potential is modelled by a delta pseudopotential all throughout the the-
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sis. An inherent limitation in the range of mass ratios (ma/m;) that can be used
with these method is observed in Cartesian coordinates and is resolved by shifting
the calculation to plane polar coordinates where the propagation is done along
the f-axis instead the relative coordinate z. This method is seen to work very
well with a wide variety of mass ratios. The physics of such a scattering problem
in one dimension is seen to reveal rich variety of physics due to the mixed dimen-
sionality. By varying the collision energy of the system, threshold features and
resonance-like peaks are seen in the reflection probabilities indicating interesting
scattering theory in the system, for an attractive delta potential coupling. The
resonance peaks are analyzed by calculating their time delays and are seen to
show negative time delays, indicating a resonant scattering event that acceler-
ates the incoming particle. The contribution of the positive and negative total
parity scattering amplitudes to these resonance peaks are analyzed, revealing a
negative parity contribution to the peaks at low energies. This result is counter-
intuitive since a delta interaction in free space is known to affect only positive
parity solutions but only positive relative parity. This is also due to a cumulative
effect of the 1D geometry and the delta potential. Using the Integral Equation
method, bound states are detected for the system at negative energies and using
the Log-Derivative method signatures of bound states are detected at low total
energies, yet again indicating that the different numerical methods employed give
the correct physics when tested independently of each other. The ability to use
a wide range of mass ratios is also shown.

Extending the 1D collision problem to include time dependent traps, the ion
in a 1D Paul trap has a time dependent part in the harmonic oscillator po-
tential term, oscillating at radio frequency. The ion solutions as per Floquet
theory and the classical and quantum dynamics of the ion and its wavefunction
are well documented in literature and briefly described in the thesis in the Ap-
pendix.A. We model the system with an ion in a 1D Paul trap and a free atom.
A delta pseudopotential is used here too. The time dependent Schrodinger equa-
tion is Fourier-Floquet transformed (effectively Fourier transformed) to translate
the problem from time domain to frequency domain. The unbounded nature of
the Floquet spectrum and ion wavefunctions are described and relation is drawn
between how the width of the ion dynamics is Fourier-Floquet space is related
to the numerical limitations faced. The method was initially attempted with
Log-Derivative method in Cartesian coordinates and seen to have a serious limi-
tation due to the fact that the propagation is always done at an angle from the
asymptotic solution region, which is partially solved by a basis transformation.
The basis transformation method used works well only for systems with a bound
spectra and in the case of unbounded spectrum the basis is selected by looking
for the basis states which have the best projection on the asymptotic solutions
to the system. This is seen to have shortcomings since it limits the range of the
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parameter ¢ in the Mathieu equation, that we can use. The growth of error with
increasing micromotion is shown.

To avoid this basis transformation, Propagation in plane polar coordinates is
seen to work much better than in Cartesian coordinates but this method too has
limited accuracy and convergence with increasing micromotion g. We calculate
the probability of ion cooling, ion heating and atom heating per collision. We
have explained in detail what kind of transitions constitute an ion cooling and
what contributes to atom heating. We argue qualitatively that since these prob-
abilities are per collision event, the cumulative cooling effect over longer time
scales would not be drastic since the ion interacting with the rf-field changes its
dynamics at each cycle and the average ion energy is conserved. We notice that
the growth of cooling and heating probabilities with micromotion ¢ are qualita-
tively related to observation of ion cooling (and atom loss rate) in experiments.
Ion cooling is seen to increase but saturates with (atom-ion) interaction time
indicating that micromotion puts a fundamental limit to cooling. We also have
studied the scattering threshold features and shifting of resonance peaks in the
system with micromotion. We have also tried to isolate the effect micromotion
has in modifying the scattering results and argue that it is possible to isolate
the contribution only under the low micromotion limit, which is related to the
operating point of the Paul trap in the a — ¢ plane of the Mathieu stability plot
the ion trap. We analyze the peaks for contribution from parity dependent scat-
tering amplitudes and also study the time delay matrix for these features. We
obtain these results for two cases of the ion trap operation. A tightly confined
trap with micromotion and a shallow trap with micromotion. Ion traps operation
without any static confinement in real Paul traps and we provide reasons why
the methods fail in cases without static confinement.

Finally we attempt to extend the study of micromotion effects to 3D with
a model system of an ion in a Paul trap with a regularized delta pseudopoten-
tial at the trap centre. Experimentally the scenario is similar to having a very
heavy atom centered in a Paul trap with a light ion. We use the experimentally
valid trap parameters with zero static, purely dynamical confinement. Since this
system uses a regularized delta potential in 3D, we solve only for the positive
parity solutions of the system. In the future, the problem could be extended to
include both parities by varying the location of the delta spike in the trap along
the axis of symmetry, which would couple partial waves of different parities. The
Hamiltonian for this system is also Fourier-Floquet transformed from time to fre-
quency domain. This increases the size of the problem by a factor of the number
of frequency bands we take in the calculation. Using the Spectral Element, the
Hamiltonian is discretized with a pseudospectral basis and represented in a sparse
matrix. Initial attempts at solution revealed that the problem was too huge in its
memory requirement, even on the node with the maximum memory of 128GB.
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To reduce the problem in size, we adopt the Adiabatic-by-Sector method which
essentially selects the few best basis functions required to represent the Hamilto-
nian. This is done by diagonalizing the Hamiltonian for the internal coordinates
at the centre of each finite element sector and choosing a user-defined number of
basis functions for use with the sector. In this case too, since the Hamiltonian is
of the Floquet kind, it has an unbounded spectrum. So we device tests to check
the eigenstates for convergence in terms of the different internal coordinate bases
used. This method is seen to work for the problem with micromotion ¢ = 0.1 but
fails for larger values of ¢.
Since we wish to study the energy levels of an ion in a trap with a delta at the
trap centre, we cast the problem as an eigenvalue problem that is solved with
FEAST, a sparsity based eigenvalue solver that internally re-casts the problem
into a linear system with an initial trial solution and optimized over a few iter-
ations. We tune the delta potential coupling term gs3p which is proportional to
the scattering length asp and calculate how the ion energy levels evolve. Many
avoided crossings are observed between the energy levels of the same Fourier-
Floquet band and also between the bands. The molecular state evolves smoothly
between different manifolds but due to presence of micromotion shows multiple
avoided crossings. It shows particularly strong avoided crossings with the Flo-
quet spectrum in the range asp € {500,1000}. The presence of avoided crossings
hinders the proposed atom-ion phase gate implementation since the phase gate
utilizes the steep slope of the molecular level to rapidly gain phase in the qubit
states but avoided crossings limits the speed of magnetic field sweep into the
molecular state and slows the gate operation time. Using the molecular states
for coherent transfer to excited trap states is again not an efficient process since
the molecular level and also the ion spectrum shows multiple avoided crossings.
The avoided crossings are not at deterministic positions for controlled shifting of
the molecular levels to their location. This the prospects of coherent transfer of
ion to excited trap states is also limited due to micromotion.

Thus micromotion is seen to play a major role in ultracold-ion experiments.
It is seen to continuously accelerate (heat) atoms in ion-ultracold atom experi-
ments. Owing to micromotion, ion sympathetic cooling seen to have very limited
probability after each two-body collision but scattering observables are show that
micromotion can perhaps be treated perturbatively. The problem in 3D shows
that micromotion could cause serious limitations to coherent processes.
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Appendix A

Classical and Quantum Dynamics

of a Trapped Ion

A.1 Mathieu Equation and Classical Dynamics

The classical dynamics of an ion of mass m; in a time dependent potential of the
form given in Eq.(4.5). Since the three dimensional potential in Cartesian coor-
dinates is separable, the dynamics is described in one dimension only. Assuming
the ion is singly charged, the classical equation of motion along the x-axis can be

written as
d?z el

2 [Uo/ + ﬁcos(wrft)a”] x (A1)
Taking 7 = w, st/2, we get
2 -
Cr Al [Uo/ + UCOS(QT)O/'] T (A2)

2 = 2
dr mrw,

This equation can be converted to the standard form of a Mathieu type dif-
ferential equation (See [117], [119], [120]) by taking a = 4le|lUa’/(m w?;) and

q= 2|e|[~]a”/(m1wff).
d*x
2t [a+2gcos(27)]x =0 (A.3)
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This equation has a general solution of the Floquet form z(7) = e¥7¢(7). 3 is
called the characteristic exponent of the Floquet solution and the solutions are
real and periodic only if § is real. The term ¢(7) is time periodic and in this case
we take ¢(7) as a Fourier series and rewrite the solution as

+o0 +00
z(7) = AeT Z Cs, 2" + Be T Z Oy 2mT (A.4)

n=—oo

The summation term in the above solution has a periodicity of T,f = 27/w, .
Taking only one phase for this example, let B=0. Substituting the above solution
into Eq.(A.3), we expand cos(27) = (€27 +e727) /2. Multiplying Eq.(A.3) by 277
and integrating over a period 7,y = 2w /w, ¢, we have a recursion relation in terms
of the coefficients Cy,, as

[a— (B +2n")?]Con = q(Canrsz + Copr—z) = 0 (A.5)

We truncate the infinite sum in Eq.(A.4) by taking a finite set of values n’/ =
[-Ny,+Ny. This forms the Fourier-Floquet basis for our calculations. The above
recursion relation can be written as a matrix equation called the Hill Matrix

i Py 2 0 0 C,
R s T S o .|l c,
0 - ! . 0 || G [=0 @)
0 S o c:
0 0 0 o w3 1 4
- ; [

The determinant of this matrix for an initial trial value of 3, called the Hill’s
determinant A(/3). The above determinant converges fast for as little as few tens
of terms i.e n’ = (~ =50, ~ +50). The determinant, calculated numerically, is used
to find § for a given value of a and ¢. From the expressions derived in [118], 3 is
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given by

B = %sin1 (\/A(O) sin? (g\/a)) for a#(25)?
B-= %cosl(QA(l) S1) for a=(2)) (A7)

where j is a non-zero positive integer. From the general solution in Eq.(A.4) it
is clear that the ion is subject to driven harmonic motion only if 3 is real. If 5 is
imaginary, the ion will have an unstable orbit in the trapping field before being
expelled out of the trap. [ is real only for certain combination of values of a and
q. Plotting the points in a — ¢ space where [ is real gives us the stability plot
for the ion, shown in Fig.A.1. As the name suggests, the ion shows stable driven
harmonic motion composed of an infinite series of Fourier-Floquet components
at certain values of @ and ¢q. The plot clearly shows that the ion can have stable
trapped motional states even with no static confinement a = 0 or even negative
values of a. The ion also has no trapped states at values of a = n?, where n is an
integer.

The ion dynamics is well described if the Fourier-Floquet basis n’ is chosen to
be sufficiently large value Ny such that n’ € [-N;,+Nf]. A complete basis i.e a
converged Fourier-Floquet series will ideally have the coefficients Cyan, — 0 for
very large values of Ny — oo. In a truncated basis, we choose N; sufficiently
large to ensure Cion, ~ 0. It is seen that at points in the plot that lie close to
the boundaries of the stability region, the ion dynamics is composed of many
Fourier-Floquet components indicating complex ion motion composed of many
high frequency components. At such points, the Fourier-Floquet series is difficult
to converge and the truncation of the infinite sum term in the general solution in
Eq.(A.4) must be done for larger values of Ny. As an illustration of this fact, a
phase space plot of the ion motion in one dimension is shown for different values
of micromotion ¢ and a fixed value of @ = 0.1 in Fig.A.2. To calculate the set

of coefficients Cy,, where n’ € [-Ny,+Ny], we rewrite the recursion relation in
Eq.(A.5) as

q Conrva Coprep )
- - = A8
[a—(8+2n')?] ( Cow Cop : (A4.8)
Taking Dy, = [a - (5 +2n")?]/q, we have
1 (Copia Copn )
1- _ = A.
D2n’ ( CZn’ CQn’ . ( 9)
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Static confinement a
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Figure A.1: Mathieu Equation Stability plot

From the above equation, we can derive partial fractions for positive and negative
n' values of the coefficients Cs,,/, given by

Con |
' _ for positive n’ and
C2n’+2 1
DQn’ - 1
Doyrg = ——
Dgn/,4 - ...
Copnr 1
o for negative n’. (A.10)
CQnLQ 1
2n’ 5 1
/42
’ D2n’+4 T

The recursive calculation of all values of s,/ is done by assuming Cy = 1 and
normalizing over the sum the final set of (2Ny + 1) values of Cy,,. Due to rapid
convergence of partial fractions, we take only 10 terms in each partial fraction
calculation. For given values of a and ¢, we assume the Fourier-Floquet basis size
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A.1 Mathieu Equation and Classical Dynamics
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Figure A.2: Phase space dynamics for an ion in a 1D Paul trap. The plots are
made for a =0.1.

i.e Ny is large enough to describe the classical dynamics of the ion completely if
the values of |Cyy,| and |[C_yy,| are sufficiently small i.e <~ 1076,
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A.2 Ton Quantum Dynamics

The quantum potential for the ion trap is separable in Cartesian coordinates. The
elegant quantum description of ion in a time dependent trap in one dimension was
given by Glauber [52] (Also see 53, 102). This derivation of the ion wavefunction
is briefly reproduced here. The time dependent harmonic potential for the ion is
given in Eq.(4.6). Writing the Hamiltonian for a single ion in such a potential

2 92 w?
he o lml—rf [a +2q cos(w,ft)] 27 (A.11)

L
2my 0x? 2 4

The Hamiltonian can also be written in terms of operators as

2

4Tf [a+2qcos(w,st)] (A.12)

~

. 2
- QP_mI . %W(t)ﬁ taking W (t) =

w

where the operators are written in Heisenberg picture as 2 = mi] and p = -m;W(t)z;.
These expressions can be used to give a differential equation & + Wi(t)z; = 0,
which is similar in form to the classical Mathieu equation in Eq.(A.2). Thus
Z7(t) and wu(t) are solutions to the same differential equation. Eq.(A.11) has
solutions u(t) = erst2p(t) of the Floquet type and it is subject to special
boundary conditions u(0) = 1,4(0) = iv. The periodic function ¢(t) is taken as a
Fourier series given by

+00
u(t) _ Gzﬂw”"ft/QQD(t) _ ezﬂwrft/Q Z anem“”"ft (A.13)

n=—oo

where ¢(t) is a periodic function with period 7, = 27 /w,s. The boundary con-
ditions give

+00 + 00 +o00
u(0) = > Co, =1 and @(0) =ifw, /2 Y Cop+iwyy ». nCoy =iv

n=—oo

with v =w,; C’zn(§+n). (A.14)

n=—oo
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A.2 Ton Quantum Dynamics

From the Wronskian of the solution wu(t) it is seen u(t) and u*(t) are linearly
independent.

W (@)alt) - u(t)a* (t) = u* (0)a(0) - w(0)a* (0) = iv (A.15)

The Hamiltonian in Eq.(A.11) is similar to Eq.(A.3). We see u(t) and z(t)
satisfy the same differential equation. Taking the complex linear combination of
the two solutions, we define the operator

C(t) = %i(u@—m},) with C(0) = (mvi(0) —idr).  (A.16)
1%

1
V2mihv

Eq.(A.15) has the form of an annihilation operator for a static harmonic oscillator
of reference frequency v. Thus C(t) = a and [C,Ct] = [a,al] = 1. Similar to the
case of a static harmonic oscillator, considering a set of basis states |n,t) with n =
0,1,2,...,00. For the ground state |n = 0), we have a|n =0) = C|n=0) = 0. Tak-
ing myz;(t) = p, we have C(t) |n = 0) = [u(t)p — myi(t)i;]|n = 0,t) = 0 and rewrit-
ing the operators as coordinates [u(t)%a%l = myu(t)zr | (zr|n=0,t) = 0. The time
dependence of |n =0,t) appears due to the following. Since C (t) is in Heisen-
berg picture, its equivalent in Schrédinger picture is C(t) = Ut (+)CsU(t), where
U(t) = exp[—i/hH]. U(t)|n =0) is then the time evolution of the ground state,
which can be given by |n=0,t). Thus U)UH(t)CsU(t)|n=0) = Cs|n=0,t),
which is equivalent to

~ _(mgv A | imyu(t) ,
(xr|n=0,t) —( s ) [u(t)]l/QeXp(%mxl)' (A.17)

The basis states |n,t) can be generated with the time independent creation op-

At n
erator in Schrodinger picture as |n,t) = % |n=0,t). The solution u(t) can

then be written in the form of Eq.(A.13) gives

(xr|n,t) = exp [—i (n + %) ,uwrft] d,,(1) (A.18)
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A. CLASSICAL AND QUANTUM DYNAMICS OF A TRAPPED
ION

where p = 5 and the wavefunctions ®,,(t) are given by

1 myv\ /4 exp(—in arg[¢(t)])
O, (zy,t) = ol ( iy ) [o(1)]'72

H l iy :|1/2x ex (—mlu ll—isb(t)]ﬁ) (A.19)
"\rle@r] P2 | e )

It is noted here that the effect of micromotion appears here as a time dependent
term within the arguments of the Hermite polynomial and the Gaussian expo-
nential terms. Physically this manifests as a breathing oscillation of the harmonic
oscillator states. The amplitude of this breathing is determined by ¢ and the
frequency by w,r. The evolution of eigenstates have a phase, from Eq.(A.18),
which indicates that the ion spectrum for such a time dependent harmonic oscil-
lator goes as integer multiples of hu = hf3/2 = hwse., which is called the secular
frequency. It characterizes the effective harmonic motion of the ion in the trap
for a given value of a and ¢. It is noted that the wavefunction ®,,(z;,t) are time
dependent states, so they are not stationary but can be called quasistationary
states with the pseudo-energy spectrum going as (n + 1/2)hwe,.

Finally, in the limit of |a] << 1 and ¢? << 1, the classical Mathieu equation
will have the coefficients C5,,, = 0 for all n’ # 0 which means only the term Cj in
Eq.(A.14) is non-zero and gives v = fw, s/2. This is referred to as the lowest order
approzimation in [53]. This also simplifies the expression for 8 as 8 =\/a + ¢*/2.
Though, in our calculations we use the precise value of § computed using the
Hill’s determinant method described in Appendix.A.1.
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Appendix B

Symmetrization Matrix X

Any function f(x) can be decomposed into symmetric S(z) and asymmetric
components A(z) (See 56 p.163) as

F(x) = S(2)+A(z) where S(z) = LA(‘I) and A(z) = Lé(‘x) (B.1)

In grid representation, if the discretization of x variable over 2N + 1 points is
symmetric about the origin i.e z; € [-L,+L],i ={0,1,..., N}, we have zxy = L
and g = 0. The grid width 2L and the function f(x) can thus be decomposed
into symmetric and asymmetric components as

_fl) + f(-w) an ) = f(x:i) = f(=x)
S(a) = ST d A(z;) 7 (B.2)
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B. SYMMETRIZATION MATRIX X

where i € [1, N]. This will give a matrix representation of the decomposition in
Eq.(B.2) is

1 Loy 5 - ;
O G | GO I B 129
E E : :

0 0 00 f(=x1) S(z1)

Xfe) =| + + + ¢ 1 f(xo) |=| f(xo)
f(fb’l) A(fﬁl)

0 0 0 0
0 -L 0 0 L 0 : :
V2 V2
L a1 f(zn) A(zy)
7 0 0 0 0 7% /b 1 L ]

(B.3)
Multiplication by this matrix essentially places the symmetric components in the
top half of the vector f() and asymmetric components in the bottom half. The
matrix X, which we call the symmetrization matrix is orthogonal i.e XX7 =T and
has the determinant |X|=1. The origin z = 0 is left unchanged and the function
f(z) is taken to be of positive parity at = 0. The above matrix is for an odd
number of points. A symmetric grid in x may also not include the origin, in which
case the symmetrization matrix X for an even number of points is written as in

Eq.(B.4).

% 0O ... ... 0 %
0 0
I
X = vz V2 (B.4)
o . 0
\—% 0 ... .. 0 &

Thus the matrix representation (DVR) of an operator over a symmetric grid
can be symmetrized by two matrix multiplications. For example, if VPVE g
the diagonal representation of a potential, we can symmetrize it by VEVE =
XVPVEXT,
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Appendix C

Eigenfunctions of Tp

We obtain the eigenfunctions of the derivative operator in Eq.(3.36) for a problem
similar to a particle in a box. We write the Schrédinger equation for such a
problem as

2 0 9 -
- (p 07" pa—p) Y(p) = M(p) (C.1)

Changing variables by taking p = e* — u = In(p), we have the derivative operators

1 2 21 1
9_91 4,9 _ 01 91 (C.2)
dp Oup 0p?>  ou?p?> Oup?

Substituting Eq.(C.2) into Eq.(C.1) converts the differential equation into a much
familiar form

_ (88—;2) Y(u) = A\p(u) with solutions (u) = Asin(\/Xu) = Asin(x/Xln(p))_
(C.3)

With boundary conditions Asin(vAln(p)) = Asin(vAln(ps)) = 0, we have
VA(In(ps) = In(p1)) = n. Thus we have the solution

n2m2

T

Un(p) = Asin [M] with eigenvalues A\, =
In (p2/p1)
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