
N˚attribué par la bibliothèque: 2015ENSL1032

THÈSE

en vue de l’obtention du grade de

Docteur de l’Université de Lyon, délivré par École Normale Supérieure de
Lyon

Discipline : Informatique

Laboratoire de l’Informatique du Parallélisme

École Doctorale en Informatique et Mathématique de Lyon

présentée et soutenue publiquement le 3 novembre 2015 par

M. Arnaud LEFRAY

Security for Virtualized Distributed Systems:
From Modelization to Deployment

Sécurité des Systèmes Distribués Virtualisés :
De la Modélisation au Déploiement

Directeurs : M. Eddy CARON
M. Christian TOINARD

Après l’avis de : M. Nicolas ANCIAUX
M. Gilles DEQUEN

Devant le jury composé de :

M. Nicolas ANCIAUX Inria Paris-Rocquencourt Rapporteur
M. Eddy CARON École Normale Supérieur de Lyon Directeur
M. Gilles DEQUEN Université de Picardie Jules Verne Rapporteur
M. Marc LACOSTE Orange Labs Membre
Mme. Christine MORIN Inria Irisa Rennes Membre
M. Jean-Marc PIERSON Université Toulouse 3 Paul Sabbatier Membre
M. Jonathan ROUZAUD-CORNABAS INSA de Lyon Co-encadrant
M. Christian TOINARD INSA Centre Val de Loire Directeur

Contents

1 Introduction 1
1.1 Motivations . 2
1.2 Information Security . 3

1.2.1 Security Policy . 3
1.2.2 Security Properties . 3
1.2.3 Mandatory and Discretionary Control 5
1.2.4 Access Control . 5
1.2.5 Information Flow Control . 6

1.3 Distributed Systems . 10
1.3.1 Clusters . 10
1.3.2 Grids . 10
1.3.3 Clouds . 11

1.4 Virtualization . 13
1.4.1 Full Virtualization . 14
1.4.2 Paravirtualization . 15
1.4.3 Operating-system-level Virtualization 15

1.5 Discussion . 15
1.6 Virtualized Application Use Case . 16

1.6.1 Advertising Content Manager for Airports (Ikusi) 16
1.7 Contributions . 17
1.8 Structure of this Document . 18

2 Modelization of Security Requirements for Virtualized Distributed Sys-
tems 21
2.1 State of the Art . 21

2.1.1 Security Requirements Models . 22
2.1.2 Component-based Models . 23
2.1.3 Model-Driven Engineering and Metamodeling 24
2.1.4 Our Unified Metamodel . 25

2.2 Modelization of Virtualized Distributed Systems 27
2.2.1 Virtualized Application Metamodel 27
2.2.2 Infrastructure Metamodel . 30

2.3 Modelization of Security Requirements 35
2.3.1 Attribute-based Contexts . 36
2.3.2 Security Properties . 38

2.4 Conclusion . 41

iii

3 Formalization of Security Properties 43
3.1 Logic 101 . 44

3.1.1 Syllogistic or Classical Logic . 44
3.1.2 Propositional Logic . 45
3.1.3 Predicate or First-Order Logic . 45
3.1.4 Modal Logic . 46
3.1.5 Verification of Logics . 46

3.2 State of the Art . 47
3.2.1 Information Flow Control properties 47
3.2.2 Logic-based Policies . 49
3.2.3 Discussion . 50

3.3 Overview . 51
3.4 System Model: Traces Acquisition . 53

3.4.1 Traces with Observable Events 54
3.4.2 Traces with Functional Events . 55
3.4.3 Traces with Information Flows . 56
3.4.4 Summary . 57

3.5 Security Properties: Information Flow Past Linear Time Logic 58
3.5.1 Temporal Many-Sorted Logic with Information Flow 58
3.5.2 IF-PLTL Syntax . 60
3.5.3 IF-PLTL Semantics . 62

3.6 Dynamic Monitoring . 64
3.6.1 Memory . 64
3.6.2 Monitoring Algorithm . 66
3.6.3 Complexity Analysis . 67

3.7 Evaluation . 69
3.7.1 Isolation Policy . 69
3.7.2 Discussion . 70

3.8 Conclusion . 71

4 Security Deployment for Virtualized Distributed Systems 75
4.1 Preprocessing of Security Requirements 75

4.1.1 Equivalence for Confidentiality, Integrity and Isolation 76
4.1.2 Implicit to Explicit Properties . 78
4.1.3 Model-based Property Split . 80
4.1.4 Conclusion . 83

4.2 Placement-based Security . 83
4.2.1 State of the Art . 84
4.2.2 Information Leakage Quantitative Metric 88
4.2.3 Information Leakage Aware Placement 92
4.2.4 An Automated Approach . 100

4.3 Automatic Configuration of Security Mechanisms 102
4.3.1 A Network of Security Agents . 103
4.3.2 Capabilities and Placement Decision 103

4.4 Conclusion . 104

iv

5 Use Case: An Advertising Content Manager for Airports 107
5.1 Ikusi Corporation . 107
5.2 Modeling . 108

5.2.1 Virtualized Application Model . 108
5.2.2 Security Policy . 110

5.3 Deployment . 114
5.3.1 Preprocessing . 115
5.3.2 VM Security Solving . 116
5.3.3 Placement-based Enforcement . 116
5.3.4 Configuration-based Enforcement 118
5.3.5 Production Platform Integration 121

5.4 Conclusion . 122

6 Conclusions and Perspectives 123
6.1 Short-Term Perspectives . 125
6.2 Long-Term Perspectives . 126

A Annex 129
A.1 Publications . 129

A.1.1 Journal . 129
A.1.2 Book Chapter . 129
A.1.3 International Conferences . 129
A.1.4 National Conference . 130
A.1.5 Poster and Talk . 130

v

List of Figures

1.1 Cloud Stacks and Separation of Duties 12
1.2 Non-virtualized and virtualized systems 14
1.3 n-tier architecture example . 16
1.4 Overview of the Thesis . 19

2.1 Metamodeling hierarchy . 25
2.2 Integration of GMF and Xtext with EMF 26
2.3 Root objects of the security-aware virtual distributed system metamodel

in UML . 27
2.4 Virtual Layer Node Components . 28

(a) VM . 28
(b) Client . 28
(c) Security Domain . 28

2.5 Virtual Network Components . 28
2.6 Virtual Layer Metamodel . 29
2.7 System application domain with SSH service accessing Logs data 29
2.8 Application Layer Metamodel . 30
2.9 Infrastructure Layer Metamodel . 31
2.10 SMP architecture principles . 32
2.11 NUMA architecture principles . 32
2.12 Intel Xeon E5420 QC Uniform Memory Access topology (Grid’5000 Genepi

Node) from Hwloc . 33
2.13 Intel Xeon E5-2630 Non-Uniform Memory Access topology (Grid’5000

Taurus Node) from Hwloc . 34
2.14 Microarchitecture Metamodel . 35
2.15 Model-to-system workflow . 36
2.16 Model of a SSH service in a System application domain inside VM1 virtual

machine . 37
2.17 Security attributes and contexts metamodel 38
2.18 Binding metamodel . 39
2.19 Virtualized Application Model with 2 VNets, 2 VMs and 1 client. 39

3.1 Direct and indirect flows . 50
3.2 Alice and Bob must not exchange information with each other. 51
3.3 Monitor Architecture . 52
3.4 Overview of the computation of traces 53
3.5 Trace of observable events . 55

vi

3.6 Trace of functional events . 56
3.7 Trace of information flows . 57
3.8 Indirect path scenario with Alice and Bob 70

4.1 Sam4C Model with a security domain of 3 VMs and 2 VNets. 78
4.2 Microarchitectural Side and Covert Channels 85

(a) Side Channel . 85
(b) Covert Channel . 85

4.3 SVF and CSV workflow . 88
4.4 Cached-based timing covert channel transmitting "10". 90
4.5 Memory address cache line and page mapping. 90
4.6 Timing Cached-based Covert Channel on Intel Xeon E5420 QC. 91
4.7 Strict memory allocation policy for 2 VMs (1 core then 3 cores). 94
4.8 Strict memory allocation policy for 2 VMs (3 cores then 1 core). 94
4.9 Microarchitecture Metamodel with Virtual NUMAs. 95
4.10 NUMA Structure Model with 3 VMs sequentially instantiated. 97
4.11 NUMA Structure Model with 3 VMs sequentially removed. 98
4.12 Metric-based Placement Decision Workflow. 101
4.13 Taurus (with NUMAs) and Genepi memory read latencies. 101
4.14 Security Agents (SA) Location . 103
4.15 Complete Placement Decision Workflow. 105

5.1 Ikusi Advertising Content Manager for Airports 108
5.2 Screenshot of the Ikusi use case from Sam4C 109
5.3 Sam4C Model of Ikusi Use Case . 110
5.4 Infrastructure Initial State. 117
5.5 Infrastructure State after placing Proxy and Musik_MAD. 118
5.6 Taurus1 Final State. 119
5.7 Taurus2 Final State. 119
5.8 Security Agent Architecture. 120
5.9 LDAP tree structure. 120

vii

List of Tables

3.1 Interpretation and satisfaction of the isolation between A and B. 72
3.2 Correspondence between Access Control and IF-PLTL. 73

4.1 Covert timing channels summary for Cloud environments 86
4.2 Taurus latency measurements . 102
4.3 Genepi latency measurements . 102

5.1 Ikusi VMs Resource Requirements . 109
5.2 Correspondence between Quality Levels and Grades 114
5.3 Correspondence between Quality Levels and Bitrates 117
5.4 Taurus L3-based Covert Channel Bitrates 117

viii

List of Algorithms

4.1 Implicit to Explicit Procedure . 80
4.2 Singleton Split Procedure . 81
4.3 Typed Split Procedure . 82
4.4 Compose NUMA Procedure . 96
4.5 Decompose NUMA Procedure . 96
4.6 Allocation Procedure . 99
4.7 Deallocation Procedure . 99

ix

x

Chapter 1

Introduction

In our contemporary society, most IT services are going online. Nowadays, any user of
a service such Gmail expects to access it from anywhere on earth, without delay, at any
time and in a responsive and efficient manner.

To cope with our growing needs, the infrastructures hosting these services have con-
tinuously evolved taking the shape of distributed systems, the most recent being the
Cloud computing. The idea behind Clouds is simple: mutualize the resources to decrease
the cost and mutualize the expertise to propose robust platforms offering on-demand
resources. The key technology enabling these concepts is virtualization. It gives the im-
pression to a user of having dedicated resources where in fact the underlying real resources
are shared amongst several independent users.

Cloud providers offer many promises such as highly available platform (e.g., up to
99.999999999% over a year for Amazon S3 1). But one fundamental aspect is left be-
hind this gigantic trend: security. And this negligence is a bargain for hackers. In 2009,
numerous systems of the major Cloud provider Amazon were hijacked to run Zeus bot-
net nodes. In April 2010, the same Amazon experienced a Cross-Site Scripting (XSS)
bug that allowed attackers to hijack credentials from the site. On April 20, 2011, Sony
Playstation Network, which is Cloud-based, was break down and nearly 77 million ac-
counts were compromised due to an external intrusion few days before and the network
was operational again only on May 1. These examples concern major stakeholders which
should have the means to protect themselves. With similar stories covering national
newspapers, people start realizing that security is critical.

Despite that virtualization has slightly improved security by providing a sense of
isolation, many studies have demonstrated some flaws in virtualization that allow the
exfiltration of critical information. Moreover, if we look at current security practices, we
will find out that security configurations are usually done by hand with all the problems
it implies: human errors, gap between the user requirements and the understanding of
the security expert, lack of adaptability, and absence of scalability.

Nevertheless, many companies outsource their applications/services to these
virtualization-based infrastructures. However, the provider security does not always
match tenants’ concerns. For instance, Amazon Web Services (AWS) have the following
terms of use:

1 https://aws.amazon.com/s3/details/

1

https://aws.amazon.com/s3/details/

1.1. MOTIVATIONS CHAPTER 1. INTRODUCTION

“AWS products that fall into the well-understood category of Infrastructure
as a Service (IaaS) – such as Amazon EC2, Amazon VPC, and Amazon S3
– are completely under your control and require you to perform all of the
necessary security configuration and management tasks. For example, for
EC2 instances, you’re responsible for management of the guest OS (including
updates and security patches), any application software or utilities you install
on the instances, and the configuration of the AWS-provided firewall (called a
security group) on each instance. These are basically the same security tasks
that you’re used to performing no matter where your servers are located."

In short, the tenant has to do the same effort as for on-premise infrastructures to secure
its outsourced business. Meanwhile, because the massive adoption of Clouds makes them
a much more attractive target for hackers, the tenant’s application is more at risk than
before. Moreover, in case an application is compromised and it is determined that the
source of the infection is a weakly secured component, the tenant of the last may be held
responsible.

In this Thesis, our goal is to provide an end-to-end security of virtualized distributed
systems: from the user modelization to the deployment of its application and security.

1.1 Motivations

This Thesis revolves around two ideas. The first idea is to follow a user-centric approach
which is an alternative to the security by default or by design model usually proposed
by most providers and many researchers. We are interested in the security of the end-
user application and not in the security of the provider platform. The second idea is to
bridge the gap between the user’s ability to specify security requirements and complex
configurations of security mechanisms.

We believe that virtualized distributed systems such as Clouds are to become mas-
sively adopted in the near future. It follows that our first goal is to offer an end-to-end
security for real applications deployed on such distributed systems. Moreover, a security
is relevant only for the application it protects i.e., each application may have different
security requirements. Therefore, a second goal is to facilitate the expression of the users’
requirements for both the application and its security. Also, the security offered to the
end-user should be supported by strong guarantees. A strong security cannot be a patch-
work of mechanisms configured by hand. Moreover, the end-user should not manage the
complexity of the underlying middleware and related security services. Instead, our third
goal is to provide an automatic deployment of the application and automatic enforcement
of its security with a formal basis to demonstrate a safe enforcement. Our solution must
be as flexible and generic as possible to encompass a wide range of security mechanisms.

In the next sections, we discuss security foundations and targeted infrastructures:
distributed systems. First, we explain what is security in computer sciences, what does
this term cover and what kind of security we are interested in. Then, we review the
evolution of computing infrastructures and highlight their specificities i.e., what makes
their security different.

2

CHAPTER 1. INTRODUCTION 1.2. INFORMATION SECURITY

1.2 Information Security

Information security means protecting information and information systems from
unauthorized access, use, disclosure, disruption, modification, or destruction. An in-
formation system (or system for short) is the combination of people and computers
processing or interpreting information. Information security is a general term that can be
used regardless of the form the data may take (e.g., electronic, physical). When applied
to computing devices, the term used is Cybersecurity (or Information Technology se-
curity). Cybersecurity may include physical security i.e., preventing theft of equipments.
In this Thesis, our concern is information security on digital data against logical threats
i.e., attacks conducted using software tools. Accordingly, protecting physical access to
equipments is out of scope. In the rest of this document, the term Security is used for
information security on digital data.

In the rest of this section, we lay the basis of security and determine our scope of
interest for this Thesis.

1.2.1 Security Policy

The definition of what it means to be secure is expressed by the Security Policy. A policy
constrains actions between entities in a system. An action is any operation changing
the state of the system when performed e.g., reading a file, sending a packet over the
network, modifying permissions, log in. An entity is anything existing concretely or
abstractly regardless of its nature or complexity e.g., a user, a process, a piece of data, a
network.

Central to security is the protection of assets. An asset is anything of value either
substantial like data, computing resources, storage space but also intangible like reputa-
tion. For example, disrupting access to service will damage the reputation of the brand
and users will be more willing to go for a competitor if it provides a more reliable service.

A key concept of security is the notion of authorization. A security policy can be
seen as a set of authorization or denial rules. Enforcing these rules requires preliminary
steps. The first step of a security process is identification: assigning an identity to
an entity. For example, an individual (Bob) wants to attend a conference, he declines
his identity by telling his name. Because his word should not be taken for granted, his
identity must be verified: this is the authentication. Therefore, the conference organizer
authenticates Bob by asking for his ID card. Next, an authorization is delivered based
on a control mechanism. The conference organizer checks if Bob is on the participants’
list before allowing him to attend the event. Even if the first 2 steps are mandatory, they
are already well covered and solutions exist even for distributed systems. Thus, in this
Thesis, we will focus on the control mechanisms itself i.e., the authorization step.

1.2.2 Security Properties

A security policy may be composed of basic rules defining what it is to be secure. Never-
theless, subsets of rules may enforce more general objectives called security properties.
For example, you may install sensors and alarms in your house. Your rules are to acti-
vate the sensors whenever you are away from home and trigger the alarms if someone is

3

1.2. INFORMATION SECURITY CHAPTER 1. INTRODUCTION

detected by a sensor. But your general objective i.e., the property you want to hold, is
to be protected from theft and your installation is a mean to enforce this property. A
security policy may be directly stated as a set of security properties.

In security, three main concepts commonly known as the CIA-triad (not to be confused
with the US agency) has been widely used for decades: Confidentiality, Integrity and
Availability. Both the Department Of Defense guidelines (TCSEC/Orange Book) [115]
edited in 1985 and the more recent Common Criteria (ISO/IEC 15408) international
standard define security as an integration of availability, confidentiality and integrity.
They define the three as follows.

Confidentiality

It is the absence of unauthorized disclosure of information. Often companies have inter-
nal confidential documents for the sole use of agents with appropriate clearance. These
documents can contain trade-secrets or marketing strategies and their public disclosure
may result in loss of competitive advantages or loss of reputation. It should not be con-
fused with privacy which is the right of individuals to hold information about themselves
in secret, free from the knowledge of others [94]. For example, improper enforcement of
confidentiality of healthcare records may arise privacy issues, especially if records are not
anonymized.

Integrity

It is the absence of unauthorized system alteration. Information has values only if we are
sure that it has not been tampered with. For example, if you are transferring $100.00 to
a remote account, you do not want the amount to be changed to $10,000.00. Integrity
ensures the absence of malicious or unintentional modification or destruction of an asset.

Availability

It is the absence of unauthorized denial of use. A service or data is available if any
authorized entity accessing it is served in a reasonable timeframe. Availability may be
related to fault-tolerance and reliability [77]. For example, an attacker floods the network
to saturate accesses to a website. The website would not be able to serve all users in
timely manner due to the huge proportion of dummy requests. The attacker has disrupted
the ability of the website to deliver its service in the expected timeframe. In particular,
he has not necessarily read or modified any unauthorized data but he has prevented an
authorized user to do so and thus has broken the availability property.

Isolation

It is the absence of unauthorized disclosure and/or modification of information. It is a
composition of integrity and confidentiality properties. In the general sense, isolation is
used to refer to the absence of any possible interactions (except intended ones e.g., public
interfaces) between two entities. As a straightforward example, isolating two antagonistic
persons may be done by putting them into two separate rooms. This idea is used for
isolating applications from each other or from the rest of the system.

4

CHAPTER 1. INTRODUCTION 1.2. INFORMATION SECURITY

1.2.3 Mandatory and Discretionary Control

The enforcement of security properties depends on the environment they apply to. At
first, information security was a critical matter for the military. Typically, information
was classified into top-secret, secret or public domains and an agent with top-secret clear-
ance could access all three domains whereas an agent with public clearance would be
limited to accessing public domain information. These constraints on the information are
part of the security model. Nowadays, information security is critical to everyone and
these models are not suitable outside the military domain.

A Security Model specifies the entities of the system, the classification/hierarchiza-
tion of entities, how permissions are set or may be updated. It usually focuses on one or
few security properties.

A Control Model defines who is in charge of delivering permissions.
The most widely used control model is the Discretionary Control model where

controls on access to an object may be changed by the owner of the object itself. For
example, in the traditional read-write-execute GNU/Linux permissions, a file’s owner
may change its permissions as he wishes. Moreover, the privileged (root) user is allowed
to update permissions for any object in the system. Consequently, a juicy situation for an
attacker is to obtain the root identifier. Furthermore, as human configuration of security
permissions is error-prone, it often leads to globally insecure systems.

In opposition to the discretionary control model is the Mandatory Control model.
In it, a third-party distinct from any user of the system (privileged or not) regulates
the set of permissions. Consequently, even the most privileged user must follow the
security policy and has no ability to modify it. For instance, SELinux [83] is a mandatory
access control implementation on Linux-based systems developed by the NSA where
even the root user may be constrained by its permissions. Originally, SELinux was an
implementation of the Flask operating system security architecture [112] which focuses
on providing an administratively-defined security.

1.2.4 Access Control

In an Access Control (AC) model, permissions about accesses to entities are explicitly
stated. Typically, the question you ask is: “Can I read this file?” and the answer depends
on your identity, your affiliations (e.g., groups, domains), for example: “Because you are
an administrator, access is granted to you”. Access control models may be classified as
discretionary or mandatory.

Lampson The first Discretionary Access Control (DAC) model was formalized by
Lampson in 1971 [76]. He divided entities into active and passive entities, respectively
called subjects and objects. A subject is typically a user or a running process whereas an
object is a file or a binary code. Subjects are grouped into domains. He proposed an access
matrix with domains in rows and objects in columns to define permissions. Lampson’s
model was improved by Harrison et al. [59] with the HRU model introducing generic
permissions (e.g., own, read, write, execute), system commands (e.g., create file, update
rights), and actions to add/delete permissions/entities. Harrison et al. demonstrated
that, in the general case, verifying a discretionary control model is undecidable. This

5

1.2. INFORMATION SECURITY CHAPTER 1. INTRODUCTION

proof is essential to discard discretionary approaches for guaranteed security properties.

Bell-Lapadula The Bell-Lapadula model [12] focus on data confidentiality in a military
context. It is a Mandatory Access Control (MAC) model. It relies on the concept of state
machine where all possible states of the system are divided into secure and insecure
states. Consequently, It is proven that a secure system can only transit from a secure
state to another secure state. A state is secure when permissions of subjects to objects
comply with the security policy that includes the following main security properties:

• A subject at a given security level may not read an object at a higher security level
(no read-up).

• A subject at a given security level must not write to any object at a lower security
level (no write-down).

Bell-Lapadula model only applies to multilevel security systems based on clearance or
need-to-know principles. As a result, it is not suited for any collaborative/competitive
structure not representable by a lattice. Furthermore, without declassification process,
the data tends to go up the security clearance level without any chance to go down.

Biba The Biba model [16] is a MAC model focusing on data integrity. It is the direct
inverse of Bell-Lapadula confidentiality model adapting no-read-up and no-read-down
properties into no-write-up and no-write-down. Again, it only applied to multilevel secu-
rity systems.

Role-based Access Control In previous models, permissions are set for each user
and users may be attached to groups. It was noticed that computing permissions or
group membership does not scale in a decentralized model (e.g., discretionary). For
example, in the read-write-execute Linux model, determining the right for accessing a
file requires computing the traversal of all directories. To support larger systems, Role-
based Access Control (RBAC) was proposed [108]. Instead of having groups of users,
users have roles. A major difference between groups and roles is that groups are typically
treated as a collection of users but not as a collection of permissions. A role, serving as
an intermediary, is both a collection of users and a collection of permissions. Role-based
access control model tackles delegation [118]: allowing a lower-level user to do an action
in the upper-level user stead. For example, the grant permission is implemented in most
databases to add a permission to users. OASIS [4] is a RBAC architecture for secure
interoperation of services in an open, distributed systems.

RBAC eases the specification and administration of security by structuring entities
around roles and emphasizing on delegation of rights, but it does not improve security.

1.2.5 Information Flow Control

In an Information Flow Control (IFC) model, the goal is to understand and control
how information flows between entities that is how entities interfere with each others. To
the same question “Can I read this file?”, an IFC mechanism will wonder: “It depends on
what you and the other entities have done before”.

6

CHAPTER 1. INTRODUCTION 1.2. INFORMATION SECURITY

Information Flow Control and Access Control can be seen as different but comple-
mentary approaches to security [67]. Access Control makes explicit statements about
permissions for a subject to realize a specific action on a resource whereas information
flows are implicit. However, IFC makes explicit statements about permitted information
flows whereas permissions for a specific action are implicit.

In short, Access Control checks place restrictions on the release of information but
not its propagation. Once the information is released from its container, a program may
(maliciously or unwillingly) leak the information to an unauthorized entity. Denning [41]
performed basic research on IFC in 1976. He defined the concept of an information flow
policy as a triple ă SC,Ñ,‘ ą where:

• SC is a set of security classes.

• ÑĎ SC ˆ SC is a binary may-flow relation.

• ‘ : SC ˆ SC Ñ SC is a binary class-combining or join operator on SC.

An important property in IFC research is non-interference [51]. It means that a
group of users, using a certain set of commands will not interfere with another group of
users if what the first group does with those commands has no effect on what the second
group of users can see. This property demonstrates the key difference with access control
by looking at effects and consequences rather than permissions.

IFC allows enforcing end-to-end security policies: from the place information origi-
nates to leaving the system [107]. It is studied at two levels: language and system.

Language-based Information Flow Control

A Language-based IFC focuses on flows inside a program, in particular between vari-
ables [107]. Flows can be explicit or implicit. Suppose the following programs with 2
variables (secret and public):

public := secret

An explicit flow is created between the two: public contains the secret value.

if secret then
public := 1

An implicit flow is created between secret and public: inspecting the value of public
allows inferring the boolean value of secret.

It is particularly important for a cryptographic library not to expose critical informa-
tion such as secret keys used to encode data. For example, in [25], Brumley et al. has
shown that extracting private AES keys from a remote client based on OpenSSL imple-
mentation is practical.

One direction envisioned to tackle explicit and implicit flows is Security-Type Sys-
tems [111]. In this approach, the types of program variables and expressions are aug-
mented with annotations that specify policies on the use of the typed data. Then, infor-
mation flows are statically checked at compile-time to guarantee that no paths exhibit
an insecure flow. In [90], Myers proposes JFlow: an extension to the Java language per-
mitting static checking of flow annotations. For example, to the previous implicit flow,
he proposes to attach labels to types and he obtains the following solution:

7

1.2. INFORMATION SECURITY CHAPTER 1. INTRODUCTION

int{public} x;
boolean{secret} y;

if y then
x := 1

Language-based solutions cannot cope with system-wide security which is essential to
tackle large systems involving multiple organizations.

System-based Information Flow Control

A System-based IFC focuses on controlling flows of a system. The goal is to track
and control how information flows between entities e.g., processes, files, sockets. The ap-
proach is less invasive than language-based IFC i.e., it does not require any modifications
of the application. However, it comes with a loss of granularity and cannot cope with the
previous example of cryptographic library leaks.

System-based IFC has been popular for building Intrusion Detection Systems
(IDS) where the objective is to monitor activities in a system and detect potential intru-
sion by a malicious user/program [62, 99, 126, 132]. PigaOS [23] is a context-based IFC
system originally designed as an IDS supervising indirect flows within a SELinux policy
but it has evolved into a control mechanism later on. The complexity of writing a policy
often leads PigaOS to detect false positives (i.e., normal flows detected as malicious).

Most models relies on Tainting techniques. The idea is to attach colors to entities
and to propagate them whenever an interaction is made [36]. For example, if a sensitive
file is tainted in red and as a user you read it, you will inherit the red color. If now you
write another non-sensitive file, it will be contaminated by the red color too. In [44],
Enck et al. propose TaintDroid: a system information-flow tracking system for realtime
privacy monitoring on smartphones. Information is tracked at multiple-levels: variable-
level, method-level and file-level. The process itself is not purely system-based: variables
and methods are tracked. But this is only possible for a system based on a single language
e.g., Java for Android.

Decentralized Information Flow Control

A Decentralized Information Flow Control (DIFC) is an approach to security that
allows application writers to control how data flows between the components of an appli-
cation and the outside world [73]. In a DIFC approach, part of the security is managed
independently by multiple components.

In [91], Myers proposed JIF (previously JFlow), a language-based DIFC dedicated to
privacy protection in Java. JIF is based on decentralized labels where labels are attached to
variables. Example of a label is to1 : r1, r2; o2 : r2, r3u where o1, o2 are owners and r1, r2, r3

readers. Owners and readers are principals : groups or roles composed of entities, and
principals are ordered under a lattice. The particularity of decentralized labels is that a
principal may choose to selectively declassify its own data, but does not have the ability
to weaken the policies of other principals.

The decentralized labels of JIF are reused in AsbestOS [43], HiStar [127] (which is
based on AsbestOS) and Flume [73] at the system level. AsbestOS and HiStar implement

8

CHAPTER 1. INTRODUCTION 1.2. INFORMATION SECURITY

labels as a combination of categories (similar to principals) and security levels. Flume
uses secrecy and integrity as distinct labels.

All these works focus on a limited set of security properties (i.e., confidentiality and/or
integrity) in multi-level security systems.

Access Control and Information Flow Control

It is not easy to see if an AC policy can leak information to a potential attacker and
many studies have been led in this direction, namely AC policy analysis [14]. In [54],
Guttman et al. use model checking to determine whether information flow security goals
hold in a system running SELinux. Information flow statements are expressed in Linear
Time Logic [98] i.e., a logic with temporal modalities where formulas are statements
about the future of executions e.g., , a condition will be true or will be after another fact
becomes true. Similarly, Hicks et al. [61] check SELinux policies against information
flow properties formalized as a logic implemented in Prolog. Nevertheless, this analysis
process is done offline and must be redone every time the policy changes. Accordingly,
it is impossible to do it on a dynamic system where some actions may impact the policy
(e.g., creating or deleting a user).

At the opposite, in [68], Kahley et al. factorize high-level information flow specifica-
tions into low-level access controls. Their model is limited to confidentiality and integrity
labels to cope with composable specifications.

Discussions

Access control approaches are easy to verify and thus incur low overhead. But they lack
the ability to control the propagation of information in a system which is important
to guarantee end-to-end security. Static analysis of access controls may permit verifying
information flow properties but it cannot cope with dynamic systems where users, groups,
roles are created or removed at runtime (i.e., elasticity is out of the scope of this Thesis).

Most AC or IFC approaches tackle small sets of properties, usually confidentiality and
integrity (or both). Adapting them to integrate more flexible properties seems at least
difficult. Most models are based on multi-level security which we believe is too rigid to
represent multi-organizational systems where security levels alone have no sense.

Languaged-based IFC and system-based IFC can be seen as complementary. The first
is suitable to control flows between programs’ variables and can deny implicit flows but
to provide system-wide security the second is more appropriate. The downside of IFC is
the computation complexity graving performances.

Most of the literature tends to associate discretionary or mandatory terms to access
control and neglects the fact that information flows can also be controlled in a discre-
tionary or mandatory fashion. Discretionary approaches cannot provide strong, provable
security guarantees despite their are widely available and somehow necessary.

In this Thesis, we mainly consider on Mandatory Information Flow Control at
system level and see it not only as a standalone security mechanism but also as a way
to configure other security mechanisms such as access controls, firewalls, cryptographic
protocols and placement algorithms. That is why the considered formal logic mainly deals
with Information Flows. However, that formal logic enables to automatically compute

9

1.3. DISTRIBUTED SYSTEMS CHAPTER 1. INTRODUCTION

or configure the underlying security mechanisms even if mandatory mechanisms are not
available.

1.3 Distributed Systems

Distributed Systems [52] are groups of interconnected computers. Physical machines
(computers) are distributed across different locations from the room next door to the other
side of the globe and communicate through a network. Each machine has its own local
storage and processing power and shares information with other machines to complete
a common objective. Machines may collaborate to process a complex computational-
intensive task such as weather forecast. Each machine may deliver more lightweight
services e.g., webmail, data storage to users and thus share resources to diminish costs
and/or provide high availability. In a distributed system, each machine is referred as a
node of the system.

In this section, we focus on major targeted infrastructures and highlights their key
characteristics.

1.3.1 Clusters

A Cluster consists of a set of loosely or tightly connected computers working together.
Initially, the idea was to interconnect commodity hardware to build a cost-efficient dis-
tributed system at a time when a single computer was not powerful enough to deal with
users’ needs. Clusters exist in all possible scales: from two to thousands of nodes.

Nowadays, web giants build and maintain large Clusters to sustain users growing
demand in high quality services processing massive data sizes. For example, in 2003,
Google [7] reported combining more than 15,000 commodity-class computers in multiple
Clusters in order to handle web search queries all over the world. Their high-throughput
solution is more cost-effective than a comparable system built out of a smaller number of
high-end servers such as mainframes.

In private sector, a Cluster is typically for the sole use of a single company
(e.g., Google, Facebook, Yahoo) and must be secured against external threats: cyber-
attacks conducted through Internet.

1.3.2 Grids

As Clusters are very popular and widely adopted by many organizations, a natural ques-
tion is whether it is possible to federate the resources of organization to build an even
more powerful distributed system. Grids provide a solution to this issue. The term orig-
inated as a metaphor: any user should be able to access computing resources as easily as
on US electrical power grid and in a standard fashion. In [50], Foster et al. define that
Grids solve the problem of coordinated resource sharing and problem solving in dynamic,
multi-institutional virtual organizations.

The key shift is the virtual organizations characteristic. In [49], Foster et al. discuss a
security architecture for Grids. They devise a security policy integrating an heterogeneous
collection of locally administered users and resources but fall short in sound and scalable

10

CHAPTER 1. INTRODUCTION 1.3. DISTRIBUTED SYSTEMS

solutions. In particular, the question of interoperability between local access control
policies is left open.

In practice, Grids in production are mostly scientific national or international plat-
forms where users are supposed to be honest i.e., no intentional misbehavior. Therefore,
security are mainly strengthened for authentication and credentials [27, 49, 66, 101, 125].
The Grid is an highly heterogeneous platform from the hardware infrastructure, the mid-
dleware to provision resources, and the security managed locally by each organization.
In such environment, providing strong security guarantees over the whole Grid is more
than difficult.

1.3.3 Clouds

The concept of Cloud Computing [128] goes back to 1960 with the introduction of
Utility as a service [95] by John McCarthy speaking at the MIT Centennial. The goal
was to bill computing power as water or electricity. The computing power would have
been provided by a large infrastructure such as a shared Grid. In the past, building
such infrastructure was impossible due to high costs and the lack of network efficiency.
However, nowadays with affordable and efficient hardware, it has become possible.

The mainly considered characteristics are:

• On-demand resources. Users can use computing or storage resources as needed
automatically without requiring human interaction with the service provider.

• Elasticity as dynamic scaling. Users can automatically adjust their resources up-
ward or downward depending on the current workload hence reducing costs.

• Multi-tenants provisioning. Utilization of resources is maximized by sharing them
between multiple tenants.

• Pay-as-you-go. Most widely known economical model, users pay per time slice (1̃
hour) of provisioning.

Cloud Computing enables cost reductions due to resource sharing. Instead of investing
into on-premises infrastructures they have to manage, maintain and secure, companies
can take advantage of Cloud elasticity and scalability to dynamically adjust (and pay)
their resources according to their business. For example, an online tickets shop has a peak
demand during the few days whenever an event is open for tickets sale. Cloud Computing
is well-suited and promising in such cases. Without, it would have bought and managed
resources according to the peak thus having an overdimensioned infrastructure for normal
periods.

Four organizational models have been identified for Cloud architectures:

• Public. The service is available to the general public and managed by a third party.

• Private. The service is dedicated to a company but may be managed by a third
party.

• Community. The service is shared between a common community composed of
multiple parties and may be managed by a third party.

11

1.3. DISTRIBUTED SYSTEMS CHAPTER 1. INTRODUCTION

• Hybrid. The service is orchestrated between at least two Cloud models (public, pri-
vate or community). Usually, an organization provides and manages some resources
in-house (private) and has others provided externally (public).

Cloud computing is usually divided into three service models. Figure 1.1 illustrates
the differences between each model and in respect to on-premises infrastructures where
the provider manages the entire stack.

Figure 1.1: Cloud Stacks and Separation of Duties

Infrastructure as a Service (IaaS) Virtual resources such as computation, storage
or network resources are offered as a service. For example, Amazon Web Services (EC2
for the computing and S3 for the storage), Microsoft Azure provide IaaS solutions.

Platform as a Service (PaaS) A computing platform is offered as a service. It
includes execution runtimes, databases, web servers. Google App Engine and Salesforce
provide PaaS solutions.

Service as a Service (SaaS) Also referred to as on-demand software, it proposes
services for end-users. For example, Google Drive and Dropbox provide SaaS solutions.

The main enabling technology for Cloud computing is virtualization. It allows
offering homogeneous virtual resources to the tenant on top of heterogeneous physical
resources. Shared resources are efficiently managed and, to some extent, isolate tenants
between each other. We detail virtualization techniques in Section 1.4.

Federated Clouds

A single Cloud provider is bounded in number of clients. If he wants to sustain a huge peak
demand, he must invest in a larger infrastructure at the risk of overprovisioning, otherwise
he will be forced to refuse new clients at the risk of loosing reputation and potential
business. A profit-oriented approach consists in building a Cloud federation [32]. In

12

CHAPTER 1. INTRODUCTION 1.4. VIRTUALIZATION

this approach, the benefit is mutual: a saturated provider could delegate extra requests
to other providers; the first keeps satisfying the demand and the second generates new
revenues from its underused infrastructure. Federated Clouds are also supposed to provide
users with better quality of service.

Federated Clouds face many obstacles. Because Clouds provider have different ar-
chitectures, technological choices, pricing models, etc., building a unified interoperable
federation is a challenge. Moreover, how can one be sure that each provider of the feder-
ation is able to ensure the same security guarantees.

Cloud Security

In a 2015 security survey in collaboration with 250,000+ contributors2, security is still the
biggest perceived barrier to further Cloud adoption. Yet, 22% of the contributors have
experienced less security breaches in public Clouds compared to on-premise whereas 28%
have experienced more breaches. This result could be explained as small and medium-
sized enterprises cannot afford costly security solutions for their in-house infrastructures.
As a result, for them Clouds concentrate security expertise and thus improve their overall
security even if Clouds providers secure their infrastructures and not what is deployed
(e.g., VMs, applications, data) on top.

However, Clouds present a real challenge to security researchers [133]. With the
augmentation of parties, threats of data compromises increase as well. Outsourcing data
in the Cloud is similar to delegating control over data to the provider. Then, the question
is how much do you trust your provider. Furthermore, multitenancy is at several levels
including hardware: an attacker may provision resources to sit next to his victim and
conduct exploits.

In short, Clouds must face both external threats (as on-premise data centers do) and
internal threats due to multitenancy.

In Clouds, resources provisioning is opaque. It means the provider may arbitrarily
provision resources located in the US or in Europe. However, depending on the country
the resources are located, the legislation may differ and it matters [96]. The risk ex-
ists that personal data may be used for profiling using data mining techniques or that
business secrets are revealed to foreign competitors. For example, nothing forbid the US
government to take a look at your data if you are not a US citizen and the problem is
that major public Cloud providers have their infrastructures located in the US.

1.4 Virtualization

Virtualization consists in creating a virtual (rather than actual) version of computing
components. It includes (but not limited to) hardware components (e.g., CPU, memory,
devices), networks, operating systems, file systems, databases and applications. Virtual-
ization is used to multiplex a single resource into multiple virtual ones. Accordingly, it
allows the sharing of physical resources while virtual resources seem to be dedicated.

Hardware Virtualization is the virtualization of hardware components and oper-
ating systems. For example, virtualization allows for running Windows OSes on top of a

2 http://www.infosecbuddy.com/download-cloud-security-report/

13

http://www.infosecbuddy.com/download-cloud-security-report/

1.4. VIRTUALIZATION CHAPTER 1. INTRODUCTION

Linux-based OS.
Figure 1.2 illustrates the principle of hardware virtualization. Compared to non-

virtualized systems, the operating system is replaced by an Hypervisor (or Virtual
Machine Monitor) which role is to manage and run Virtual Machine (VM). A virtual
machine is a virtual container for an operating system called Guest OS in opposition to
the hypervisor sometimes referred as the Host OS.

Figure 1.2: Non-virtualized and virtualized systems

Multiple solutions have been designed to implement hardware virtualization.

1.4.1 Full Virtualization

In Full Virtualization, the hardware is almost completely simulated to allow the guest
OS to run unmodified. The guest OS is not aware it is being virtualized and it does not
require any modifications to run correctly.

Because guest OS and hardware are completely decoupled, full virtualization provides
good security and performance isolation for virtual machines. Furthermore, migration
(i.e., moving the guest OS from one hypervisor to another) is simple and portability is
ensured: the same OS can run in a virtual machine or on a native hardware.

A key challenge for full virtualization is the interception and simulation of privileged
operations, such as I/O instructions. A privileged operation has the ability to modify
the state of other virtual machines. To keep privileged operations contained, binary
translation [104] techniques analyze the guestOS binary code to trap such operations
and replace them with safe equivalent instruction sequences. The downside of binary
translation is the high overhead it incurs.

Existing full virtualization technologies include Parallels, VMware, VirtualBox, Qe-
mu/KVM.

Hardware-assisted Virtualization

The concept of hardware-assisted virtualization first appears on the IBM System/370
in 1972. To improve full virtualization (but also paravirtualization) efficiency and in par-
ticular overcome privileged instructions issues, hardware manufacturers have developed

14

CHAPTER 1. INTRODUCTION 1.5. DISCUSSION

new processor extensions to specifically support virtualization. Intel and AMD have in-
dependently designed Intel VT-x and AMD-V for virtualization on x86 architectures.
For instance, they both allow for direct access to I/O devices bypassing the hypervisor.

1.4.2 Paravirtualization

In Paravirtualization, the guest OS is offered a software virtualization interface to run.
Therefore, the hardware is not simulated, instead the guest OS needs to be ported for the
paravirtualization API (Application Program Interface). The value proposition of par-
avirtualization is in lower virtualization overhead: some instructions are non-virtualizable
thus providing an API makes their execution by the hypervisor much more efficient.
Hence, non-virtualizable instructions are replaced by hypercalls. Critical kernel operations
(i.e., memory management, interrupt handling and time keeping) can also be managed
through hypercalls.

In resume, a conventional OS distribution that is not paravirtualization-aware can-
not be run on top of a paravirtualizing hypervisor. Paravirtualized OSes have better
performance compared to full virtualization and also ensure isolated executions.

Existing paravirtualization technologies includes Xen and VMware.

1.4.3 Operating-system-level Virtualization

Operating-system-level virtualization is a shared-kernel virtualization technique. As
such, it is not an hardware-based virtualization. In classic OS architectures, addresses
space is divided into one user space and one kernel space. With operating-system-level
virtualization, the kernel allows for multiple isolated user-space instances called contain-
ers. All containers share the same kernel but run as if they were standalone operating
systems. Operating-system-level virtualization does not interpose any hypervisor or in-
terface and contained applications run with native performances.

Existing operating-system-level virtualization includes chroot, LXC (linux containers),
Solaris Containers, FreeBSD Jails. Docker is a recent yet popular software based on LXC
to easily build, package and distribute applications.

Currently, containers are not recommended for strong security isolation [102]. As
they share the kernel, applications can exploit any vulnerabilities to pierce through the
container’s boundaries and infect the rest of the system3. However, with popularization,
more effort will be put to provide additional security features to containers.

1.5 Discussion

Nowadays, most current applications are distributed to either process huge sets of data
or offer highly available services. In the mean time, the evolution from Clusters to Grids
then to Clouds demonstrate the need for systems supporting multiple organizations with
the inherent risk of antagonistic concerns. In these shared environments, security is a key
issue: how to store, process or exchange data in a securely manner. Clouds inherit major
security concerns from Grids and Clusters plus introduce new ones. These new issues are

3 http://opensource.com/business/14/7/docker-security-selinux

15

http://opensource.com/business/14/7/docker-security-selinux

1.6. USE CASE CHAPTER 1. INTRODUCTION

due to massive multitenancy but also to virtualization as a milestone to effectively build
Clouds. We believe future systems design will all be about virtualization as it comes with
large benefits e.g., flexibility, portability and interoperability.

Therefore, in this Thesis, we tackle any virtualization-based distributed system with
multiple organizations sharing the infrastructure.

1.6 Virtualized Application Use Case
We need to have a good understanding of what to protect before designing any solution.
In this Thesis, we focus first on virtualized static n-tier applications even if our approach
can tackle other classes of applications providing some adaptations. By virtualized, we
suppose that the applications (processes, data, etc.) are packed into virtual machines
and deployed on a virtualization-based infrastructure. Static, as opposed to dynamic,
suppose that the application does not need any scale (up or down) at runtime. Once the
application is deployed, it will run indefinitely without changing its resource requirements.
Finally, n-tier characterizes an application usually composed of a set of low-level services
(i.e., tier) offering a high-level one. The most common n-tier application is the 3-tier
web service. It is composed of 3 low-level services: a frontend, a processing service and
a backend database. Each of the low-level service can be instantiated multiple times to
sustain the load, requiring a load-balancing mechanism to spread it between instances.
Figure 1.3 illustrates a 3-tier architecture where the user sends requests to a web server
(e.g., Apache). The request is relayed to an application server (e.g., Tomcat) providing
a service. Finally, the service stores and retrieves its data from/to a database server.

Figure 1.3: n-tier architecture example

This Thesis has been conducted within the Seed4C project [19] where several use cases
have been proposed. To better picture the kind of constraints and needs such applications
may require, we present thereafter Ikusi’s Advertising Content Manager for Airports: a
multi-organizational n-tier use case for airport-related content.

1.6.1 Advertising Content Manager for Airports (Ikusi)

The Ikusi company offers a broad range of operational management solutions for smart
cities, airports, security, mobility (including railways) and health. In particular, it pro-
poses airport management systems coupled with public information and entertainment

16

CHAPTER 1. INTRODUCTION 1.7. CONTRIBUTIONS

systems. These systems manage all airport services such as check-in/boarding, automatic
processing of baggage delivery, public information (i.e., gates, announcements) and ad-
vertisements. Ikusi solutions are highly mutualized: the company proposes an external
management of multiple airports with the same virtualized infrastructure. Airlines send
information messages to an airport database application like planes routes, delays, pas-
sengers, then these information are exposed to airports operators and devices.

Because Airport management is complex, our use case focuses on the Advertising
Content Manager called Musik4. This use case is highly multi-tenant with several airports
organized in groups. Each group has private information and data exposed by the Content
Manager. For instance, employees information must be kept confidential to the airport
they work for.

1.7 Contributions

Our problem is how to allow an end-user to specify a secured application and how to
automatically enforce and guarantee the required security. In this Thesis, we propose a
user-centric approach providing an automatic deployment of virtualized applications with
an automatic enforcement of security policies. Our approach is materialized as a toolbox
called Sam4C (Security-Aware Models for Clouds).

The contribution of this Thesis is to propose an end-to-end framework from an easy-
to-use modelization interface for the end-user to the deployment and enforcement of this
model. First, we propose a unified model including the virtualized application i.e., the
end-user application to deploy, and security requirements i.e., the application security
properties to enforce. The idea is to model a virtualized distributed system i.e., a set of
interconnected virtual machines, and the associated security policy. This modelization
does not rely on any characteristic of the infrastructure. In particular, the user does not
know about available security mechanisms. He specifies what he wants and the satisfac-
tion of his requirements, how to implement them, is up to the deployment engine. Using
Sam4C Modeling (implemented as a standalone Eclipse application5), the application
can be modeled graphically and the security properties are textually specified with direct
references to entities of the application model.

Second, the security enforcement relies on the hosting infrastructure, therefore we
propose an infrastructure model i.e., a set of physical machines and networks, and a
microarchitectual model i.e., the internal architecture of physical machines. The mi-
croarchitecture is used to compute our risk-metric quantifying how much information
can leakage between two VMs sharing the same physical machine.

Third, we propose a formalization of the security properties called IF-PLTL. This for-
malization serves as a proof basis to divide a global property (securing a set of entities)
into local typed properties (securing a single specific entity) during a phase called pre-
processing. Indeed, existing enforcement solutions enforce properties on specific types of
entities (e.g., VMs, Data, Network) whereas a property specified by the end-user protects
different types of entities and cannot be enforced directly. Furthermore, we propose a dy-
namic monitor enforcing any property expressed in IF-PLTL and show that this monitor

4 http://www.ikusi.com/en/fids-musik-public-information-system-advertising-content-manager
5 http://www.eclipse.org/

17

http://www.ikusi.com/en/fids-musik-public-information-system-advertising-content-manager
http://www.eclipse.org/

1.8. STRUCTURE OF THIS DOCUMENT CHAPTER 1. INTRODUCTION

is effective but at the cost of complexity in time and space.
Fourth, using these models (obtained after preprocessing) as input, we propose a de-

ployment with two different but complementary enforcement solutions: by placement and
by automatic configuration. In the placement solution, the objective is to guarantee that
the microarchitectural resources (CPU, RAM, etc.) allocated to the end-user satisfy the
security policy. Indeed, shared resources may be used as a channel to illegally exfiltrate
information. In the automatic configuration solution, security agents are dispatched in
the virtual machines or at the infrastructure level. The idea is that each agent has a list
of properties it knows how to enforce. Indeed, it knows the predefined security tools and
policies and can select the right ones automatically. The deployment phase is realized
by Sam4C Scheduler (implemented as a Java application). Sam4C Scheduler has been
integrated with an open source Cloud software platform called OpenStack6.

Fifth, we illustrate our entire end-to-end workflow on a real industrial use case where
the modelization has been realized by the company itself.

1.8 Structure of this Document
This Thesis’ structure is mapped on our solution architecture depicted in Figure 1.4.
In Chapter 2, we present our modelization composed of the virtualized application and
the infrastructure detailed in Section 2.2, plus the security requirements detailed in Sec-
tion 2.3. Then, Chapter 3 presents our IF-PLTL language formally defining security
properties. In Chapter 4, we describe the deployment phase. This phase includes first the
preprocessing (Section 4.1) which transforms the specified global security requirements
into local security properties using formally proved equivalences, then the placement (Sec-
tion 4.2) which maps VMs to physical hosts while satisfying some security properties, and
finally the automatic configuration (Section 4.3) which enforces properties using mecha-
nisms at the VM or host level. Lastly, Chapter 5 run through each previous steps with
an Airport Content Manager use case.

6 https://www.openstack.org/

18

https://www.openstack.org/

CHAPTER 1. INTRODUCTION 1.8. STRUCTURE OF THIS DOCUMENT

Figure 1.4: Overview of the Thesis

19

1.8. STRUCTURE OF THIS DOCUMENT CHAPTER 1. INTRODUCTION

20

Chapter 2

Modelization of Security Requirements
for Virtualized Distributed Systems

In the previous chapter, we have motivated the need to bridge the gap between security
enforcement methods and specification requirements. To do so, we need to rely on a
description of the characteritics of the application to secure and a description of these
security requirements. To construct an house, an architect needs its plans and not the
house itself. Similarly, we need a simplified representation (i.e., a model) of the appli-
cation in order to deploy it and enforce a security relevant to this application. Besides,
a model exposes an easy-to-use interface to the user to describe its application and the
requirements (including the security).

This chapter discusses existing modelization methods. Using the efficient model-
driven engineering approach, we propose a modelization of virtualized distributed sys-
tems, their security requirements and infrastructures they are deployed on.

2.1 State of the Art

Amodel is a simplified view of the reality. A model focuses on some aspects of the system
it represents. For example, to build a house, an architect will use different plans: some
for describing how the building will look like including the dimensions of each room and
others to describe accesses to electrical, water and telecommunication networks. In our
case, our goal is to describe how the user’s application is structured and what security the
user needs. The level of details must be sufficient to automatically deploy the application
and enforce the security requirements. The last model to provide is the infrastructure
hosting the application. Indeed, some security issues are due to insecure configurations
at the host level. For example, sharing too many resources with a malicious tenant is
dangerous. Having a comprehensive infrastructure resource model is critical to control
which resources may be shared.

In this section, we review existing works on security models for virtualized distributed
systems and show that despite many approaches have been proposed to model applica-
tions, security models are mainly limited to RBAC policies and there is little effort to
propose a sound and formal global security view of a complex distributed application.

21

2.1. STATE OF THE ART CHAPTER 2. MODELIZATION

2.1.1 Security Requirements Models

Many models have been proposed to model security requirements (also security proper-
ties). In the previous chapter, we have presented the main security models (e.g., access
control, information flow) but they are mathematical models which are too complex to
be exposed to a user as is (we will discuss them in the next chapter). In this section we
are interested in approaches for specifying security properties of a complex application in
a user-friendly fashion with automatic enforcement procedures whenever possible.

Security Level-Agreements

One trend is to consider security as a service which can be qualified i.e., measured and
evaluated.

A Service-Level Agreement (SLA) [69] is a service contract between service
provider and service user. A SLA is composed of a list of Service-Level Objectives (or
Service-Level Target) where each objective is a quality-of-service value for a specific char-
acteristic. For example, a user may require a minimum network bandwidth measuring in
Mbps (Mega bits per second). As a SLA is a contract, it also mentions the responsibilities
of the involved parties (i.e., penalties), especially in case the provider fails to delivery the
expected level of service. If the approach sounds compelling for security, one major issue
is how to evaluate the quality of protection and know whether the objectives are fulfilled.

In [60], Henning discusses the possibility of establishing a security SLA for enterprises.
His approach is based on standards and recommendations and focuses on contingency
planning and user training. For example, one service requirement is Security violations
introduced by individuals due to oversight or intentional introduction to the systems and it
is measured as a percentage of security incidents introduced by users within target systems.
Then, the best quality of service is achieved if there is less than 2% of security incidents.
The author himself asked whether such metric is relevant to indicate the quality of the
organization security.

In [13], Bernsmed et al. propose a security SLA for federated Clouds. Their approach
is based on security mechanisms divided into three resource types i.e., Storage, Processing
and Network. For instance, one network security mechanism is integrity protection but
the objective is stated in textual form e.g., All text messages will be digitally signed.

To our knowledge, security service requirements works are aligned on standards and
recommendations (e.g., Cloud Security Alliance, NIST, Common Criteria) where security
is expressed in natural language. These work can be viewed as a list of good practices
which may relatively improve the security but cannot enforce end-to-end security with
strong guarantees (e.g., with formal proof).

Security Policy Standards

Specific standards have been elaborated to express security policies for distributed web
services.

WS-Security [2] aims at providing quality of protection to SOAP (Simple Object
Access Protocol) messages1. The WS-Security standard describes for example how to
encrypt a message (for confidentiality), how to sign a message (for integrity) or how to

1 SOAP is a protocol based on XML for exchanging structured information.

22

CHAPTER 2. MODELIZATION 2.1. STATE OF THE ART

attach security tokens to a message. Therefore, it contains a low-level specification of
how the security is implemented (e.g., which cryptographic algorithm, what size of keys)
and do not focus on the security objectives to achieve.

XACML [89] (for eXtensible Access Control Markup Language) is an OASIS standard
defining access control policies in XML. It comprises access rules, roles and delegation
concepts. One goal is to promote interoperability between access control implementations
by multiple vendors. In XACML, a rule may be conditional to be triggered in reaction
to a situation or event. The functionalities are similar to Ponder [39]. Both XACML
and Ponder focus on access control which is not sufficient to enforce end-to-end security
objectives (i.e., information flows).

Model-Driven Security

For a decade, model-driven security has been investigated as a mean to help engineers
integrate security concerns at design. SecureUML [8, 82] is designed to specify authoriza-
tions policies based on RBAC extended with constraints. Constraints are expressed in
OCL (Object Constraint Language) and mapped to a first-order logic to be able to use
formal verification such as theorem-proving tools. This is a good step toward automatic
security. But, SecureUML is limited to expressing access controls for applications. It
cannot help secure with existing applications and cannot tackle high-level objectives such
as information flows.

Interestingly, Nguyen et al. have conducted a system review of model-driven security
in [92] by selecting the 80 most relevant papers from 10.633 relevant papers. They found
that:

• Most papers focus on authorization and confidentiality while only a few address
other security concerns (e.g., integrity, availability, authentication).

• Most security modeling languages lack a thorough semantic foundation (which the
authors recognized to be important).

• An integrated approach for the generation of functional code and security infras-
tructures was incomplete.

According to the authors, the literature is limited to specific, isolated security concerns,
and lack formality, automation, process-integration and evaluation.

Most of the literature focuses on designing secure applications whereas our goal is
to design secure systems composed of applications. To our knowledge, no model-driven
work has tried to tackle larger systems with information flows as security objectives.

2.1.2 Component-based Models

Many frameworks and models have been proposed to design applications in virtualized
distributed systems.

A popular approach is to use component-based models [113]. A component is a
functional piece of code exposing its interfaces to communicate or coordinate with other
components. The idea is to have reusable modules.

23

2.1. STATE OF THE ART CHAPTER 2. MODELIZATION

One approach is to use components to automatically deploy and configure the applica-
tion stack within virtual machines. These tasks are traditionally done using hand-made
scripts. For example, in [45], Etchevers et al. presents VAMP, a Virtual Applications
Management Platform. Automated steps are the generation of VM images2, launch of
VM instances3, local configuration of software and global configuration of dependencies
between components. The OASIS standardization consortium has defined a Topology
and Orchestration Specification for Cloud Applications (TOSCA)4 [18] to enhance the
portability and management of Cloud applications and services across Clouds and during
their whole lifecycle. Many works are based on TOSCA to propose a runtime for TOSCA-
based Cloud applications [17] or provide a modeling tool to ease the specification [72].
In [119], Waizenegger et al. define security policies in TOSCA and propose a mechanism
for automatic processing of these policies. As an example, the authors describe a region
policy constraining VMs to be instantiated in specific geographical regions (e.g., EU,
US). We do not consider geographical constraint as security. It does not provide any
security feature and cannot fit alongside properties like confidentiality or integrity. In-
stead, we consider it as an environmental constraint such as energy power. Similar to
TOSCA is MODAClouds [38] which supports the design of multi-cloud applications and
aims at automatic provisioning, deployment and adaptation at runtime on the basis of
an application model.

Component-based models are sound and appealing. Many complex frameworks have
been developed. However, as our primary concern is security, we prefer to focus first
on designing a much simple but security-centric model rather than investing extensive
engineering effort to adapt existing frameworks for security. Integrating our findings back
to standard frameworks is part of our future work though.

As model-driven security before, component-based models follow a model-driven ap-
proach we detail thereafter.

2.1.3 Model-Driven Engineering and Metamodeling

Thanks to object-oriented programming, engineers and computer scientists are familiar
with the notions of abstraction and representation. They define classes or objects and
instantiate them i.e., each attribute has a value. For example, one can define vmalice

and vmbob: instances of a class VM where attribute vcpu is set to 2 and 4 respectively.
A metamodel is a model of models and a model is designed to be an instance of a
metamodel. In the previous example, VM is a model of vmalice, vmbob and the object
Class is a model of VM. Indeed, we can define other classes e.g., Network, Data
instances of Class.

As depicted in Figure 2.1, metamodeling is divided into 4 levels (from M0 to M3)
with:

• M0 – System. It is the real system without simplification or abstraction. In our
context, M0 includes the real (physical) infrastructure, the virtual machines (as
implemented in KVM or Xen) and virtual networks.

2 A VM image is a virtual copy of a physical hard disk drive. It contains complete contents and data
structure of a hard disk.

3 An instance is a running VM obtained by executing a VM image.
4 https://www.oasis-open.org/committees/tosca/

24

https://www.oasis-open.org/committees/tosca/

CHAPTER 2. MODELIZATION 2.1. STATE OF THE ART

• M1 – Model. It is a simplified representation of the reality. As presented above,
the representation of two VMs (called vmalice, vmbob) is a model.

• M2 – Metamodel. It is an abstraction of models. Using the previous example, the
object VM is a metamodel of the model (vmalice, vmbob).

• M3 – Metametamodel. Also called Meta-Object Facility (MOF), it is a model to
describe metamodels. For example, UML (Unified Modeling Language) allows us
to define the object VM and thus, it falls into the metametamodel category. There
is no need for upper levels as metametamodels can represent themselves e.g., UML
can be modeled in UML.

M3 – Meta-meta-model

M2 – Meta-model

M1 – Model

M0 – System

Figure 2.1: Metamodeling hierarchy

We have previously said that component-based models and model-driven security fol-
low a model-driven engineering methodology. Model-Driven Engineering (MDE) is a
software development methodology that aims at automating complex programming tasks
such as providing support for system persistence, inter-operability, and distribution [3].
Its foundation is the metamodeling paradigm. Reducing complex programming tasks can
be achieved by abstracting system-specific constraints and providing automatic transfor-
mation. For example, an engineer often faces the problem of designing a multi-platform
application. In a model-driven approach, he will design a generic model of the application
and use automatic tools to refine it into system-specific versions.

2.1.4 Our Unified Metamodel

Security specification is often complex and requires field expertise. For instance, SELinux
exists for decades and is recognized as a great security mechanism. But writing a correct
SELinux policy is complicated even for a knowledgeable administrator. We believe that
if a security specification tool is simple to use, it will be an incentive to a wider adoption.
Therefore, we acknowledge this challenge and work toward a more user-friendly interface.

To do so, we follow a MDE approach to have a unified view of a security-aware system
and automatically process it to obtain a secure deployment. In addition, we benefit
from MDE to generate a multi-platform (Windows, Linux and MacOS) modeling tool
with automatic upgrades as metamodels are progressively enriched with new constraints

25

2.1. STATE OF THE ART CHAPTER 2. MODELIZATION

or features. For this purpose, we use the Eclipse Modeling Framework (EMF) to
generate and maintain our modeling toolbox called Sam4C (Security-Aware Models for
Clouds)5 [79].

Sam4C is designed to be easy to pick up for end users like the Seed4C partners hence
it offers a graphical interface to model the application and a textual language to specify
the security requirements. The graphical interface is generated using GMF6 (Graphi-
cal Modeling Framework) and the textual language (called Domain Specific Language) is
generated using Xtext7. Both frameworks are based on EMF as illustrated in Figure 2.2.
An EMF resource is a persistent document containing modeled contents. It is abstract : it
is only a template (i.e., list of classes and methods). We depicted two existing implemen-
tations: XMIResource and XtextResource which generate respectively an XMI file (XML
Metadata Interchange) and a text file. It implies that the same model may be exported
in XMI (this is the default implementation) or text (providing a grammar). Finally, the
model can be manipulated graphically with a GMF Editor.

The underlying metamodel is described in UML and stored in an ecore file. The
security part is presented as a DSL (Domain Specific Language) using Xtext whereas the
application part is presented graphically using GMF. The important point is that every
element (textual, graphical or none of the two) are specified in single unified UML model:
our metamodel.

Figure 2.2: Integration of GMF and Xtext with EMF

To begin with our presentation, Figure 2.3 is part of the UML metamodel for security-
aware virtualized applications (without the infrastructure). In a MDE approach, all
objects must be contained in a root object. In Sam4C, All is the root object containing
our two-fold description:

• The architecture part describing the components of an application and their rela-
tions

• The security part describing the components of security requirements and their
relations.

5 Demo Videos at https://www.youtube.com/playlist?list=PLXdZx0WBaqWpJCRs_
0peBeH0Wtba4yHSq

6 https://wiki.eclipse.org/GMF
7 https://eclipse.org/Xtext/

26

https://www.youtube.com/playlist?list=PLXdZx0WBaqWpJCRs_0peBeH0Wtba4yHSq
https://www.youtube.com/playlist?list=PLXdZx0WBaqWpJCRs_0peBeH0Wtba4yHSq
https://wiki.eclipse.org/GMF
https://eclipse.org/Xtext/

CHAPTER 2. MODELIZATION 2.2. VIRTUALIZED DISTRIBUTED SYSTEMS

Figure 2.3: Root objects of the security-aware virtual distributed system metamodel in
UML

In the following of this chapter, we present our metamodels of virtualized distributed
systems (virtualized application and infrastructure) in Section 2.2 and their security in
Section 2.3.

2.2 Modelization of Virtualized Distributed Systems

In this section, we present our metamodels of a virtualized distributed system which
is composed of the tenant’s virtualized application and the virtualization-based
infrastructure it is deployed on.

2.2.1 Virtualized Application Metamodel

Our virtualized application metamodel is composed of two layers: the virtual layer and
the application layer. Our metamodel must be able to represent a n-tier virtualized
application.

Virtual Layer

At the virtual layer, the modeling consists in describing a set of interconnected virtual
machines. Our model contains several node types:

• VM (Figure 2.4a). It encapsulates the application data and processes. As depicted
in Figure 2.6, it is characterized by:

– image. This is the disk image from which the VM is instantiated.

– vcpus. The processing power requirement is usually specified as a number of
virtual cpus in Clouds.

– ram. The VM requires memory space to run.

– storage. This is the disk space attached to the VM.

– location. A VM may be constrained to be deployed only in a specified region
(e.g., France, USA) for legal purpose.

27

2.2. VIRTUALIZED DISTRIBUTED SYSTEMS CHAPTER 2. MODELIZATION

(a) VM (b) Client (c) Security Domain

Figure 2.4: Virtual Layer Node Components

• Client (Figure 2.4b). A virtualized application must usually be accessible remotely.
This entity represents an external endpoint and how the network should be config-
ured accordingly.

• Security Domain (Figure 2.4c). It is an abstract container for virtual machines
and networks. It is useful to specify security properties on a group rather than
on each individual entity. For example, one may want to specify that part of his
application is isolated from the other.

The last entities of our virtual layer are networking components. As depicted in
Figure 2.5, instead of representing a graph of VMs, we explicitly model the network,
called VNet, as a circle (intranet on the figure). A VM has (one or multiple) virtual
interfaces called Veth (eth0 on the figure) where each virtual interface is linked to
a single virtual network via a VLink. Such modelization allows modeling two VMs
to communicate through two different virtual networks e.g., a “public” network and an
administration network, with distinct security properties.

Figure 2.5: Virtual Network Components

Figure 2.6 is our virtual layer metamodel in UML. Any entity (VM, VNet, etc.)
inherits from the abstract object Element, they all have a name, and composes the
architecture root node.

Application Layer

At the application layer, the modeling consists in describing Data (e.g., files, databases)
and Services (e.g., processes such as database engines) composing the application at a

28

CHAPTER 2. MODELIZATION 2.2. VIRTUALIZED DISTRIBUTED SYSTEMS

Figure 2.6: Virtual Layer Metamodel

granularity relevant to security. Application entities may be logically grouped into an
AppDomain or linked with an AppLink to model the interaction between entities.
Figure 2.7 depicts an AppDomain called System with an SSH service reading or writing
Logs as represented by the green AppLink.

Figure 2.7: System application domain with SSH service accessing Logs data

Figure 2.8 is our application layer metamodel in UML. Similarly to virtual entities,
any application entity (Data, Service, etc.) inherits from the abstract object Element,
they all have a name, and composes either the architecture (for describing applications
only) or the VM.

29

2.2. VIRTUALIZED DISTRIBUTED SYSTEMS CHAPTER 2. MODELIZATION

Figure 2.8: Application Layer Metamodel

2.2.2 Infrastructure Metamodel

Our virtualization-based infrastructure metamodel describes the platform virtualized ap-
plications are deployed on. It is divided into two layers, the infrastructure layer and the
microarchitecture layer.

Infrastructure layer

Figure 2.9 is the root part of the infrastructure metamodel. Our model comprises:

• Node. Also referred as host or physical machine, it is characterized by disk space
and a location. The location is not sensu stricto a security concept, and thus not
included in the security part. However, due to differences in region or country
legislation, it is important for users to specify a location constraint.

• INet (Infrastructure Network). In a virtualized infrastructure, virtual networks
such as Software Defined Networks (SDN) [53] can be instantiated between virtual
machines. Multiple VNets may be mapped to the same INet. We discuss in Sec-
tion 4.4 a preliminary solution where any constraint-free VNet with an external
endpoint (e.g., a client) may be mapped on the same public INet.� �

<?xml version="1.0" encoding="UTF -8"?>
<infra:Infrastructure xmi:version="2.0" xmlns:xmi="http://www.omg.org/

XMI" xmlns:infra="http:// avalon.inria.fr/infra/">
<hasNodes name="taurus -0" disk="598.0" location="lyon">
</hasNodes >
<hasNodes name="taurus -1" disk="598.0" location="lyon">
</hasNodes >
<hasINets name="Public"/>

30

CHAPTER 2. MODELIZATION 2.2. VIRTUALIZED DISTRIBUTED SYSTEMS

</infra:Infrastructure >� �
Listing 2.1: Infrastructure XML with 2 Nodes and 1 INet

The infrastructure metamodel has no graphical view as it is not exposed to the client
and can be automatically generated. Listing 2.1 is the XML representation of an infras-
tructure composed of 2 Nodes (i.e., taurus-0 and taurus-1) located in Lyon with 598Gb
disk storage each and a single public INet.

Figure 2.9: Infrastructure Layer Metamodel

Microarchitecture layer

In our approach, one way of satisfying isolation security properties is by placement. A
class of security attacks consists in exploiting the shared microarchitecture to conduct
cross-VM exploits (more details in Section 4.2). Traditional approaches from the lit-
erature ensure isolation through collocation/anti-collocation constraints [28, 64]. These
approaches never consider a more fine-grained allocation i.e., exploiting the microarchi-
tecture to improve the consolidation and tackle the very reason for cross-VM attacks.

Themicroarchitecture is the internal organization of a physical machine. It includes
the implementation of the processor and peripheral devices (e.g., I/O devices).

Nowadays, most physical machines are multiprocessors i.e., computers with two or
more processing units sharing main memory and peripherals, in order to simultaneously
process programs. Our model comprises both the two existing shared memory access
models: SMP (Symetric MultiProcessing) and NUMA (Non-Uniform Memory Access).

A SMP architecture possesses multiples parallel cores connected to a single main
memory (usually accessed uniformly across cores) through a memory bus and multiple
levels of cache in between as illustrated in Figure 2.10.

A NUMA architecture is a logical evolution of the SMP architecture where shared
memory is decomposed in multiple sockets and memory access latencies differ when a
core accesses a local NUMA node or a remote NUMA node. As depicted in Figure 2.11,
access to distant memory is done through an interconnection network.

For instance, Figure 2.12 is a model of a traditional SMP architecture as obtained
from the Hwloc tool8 [24]. There is a single memory of 8005MB and 2 processor sockets

8 http://www.open-mpi.org/projects/hwloc/

31

http://www.open-mpi.org/projects/hwloc/

2.2. VIRTUALIZED DISTRIBUTED SYSTEMS CHAPTER 2. MODELIZATION

Figure 2.10: SMP architecture principles

Figure 2.11: NUMA architecture principles

each one composed of 4 cores with a private level 1 (L1) cache of 32KB per core and a
level 2 (L2) cache of 6144KB per pair of cores. The element PU is a processing unit. It
can be seen as a thread inside a core. In the architectures we address, there is one or
two PUs. This element is irrelevant to our model as we do not take them into account
for our placement decision. Indeed, as explained in [97], nearly all providers disable the
possibility of sharing PUs due to the easiness of building a L1 covert channel.

Figure 2.13 is a NUMA architecture with two NUMA nodes of 16GB each (total of
32GB). Each processor socket has 6 cores sharing a level 3 (L3) cache of 15MB with
private L1 (32KB) and L2 (256KB) caches per core.

To represent both architecture types, our microarchitecture metamodel depicted in
Figure 2.14 explicitly defines two types of micro-elements, Core and Numa, as part of

32

CHAPTER 2. MODELIZATION 2.2. VIRTUALIZED DISTRIBUTED SYSTEMS

Figure 2.12: Intel Xeon E5420 QC Uniform Memory Access topology (Grid’5000 Genepi
Node) from Hwloc

a Node. We view the SMP architecture as a NUMA architecture with a single memory.
The placement of a VM onto a host is realized by selecting a configuration of NUMAs
and Cores that will be allocated to the VM.

As an example is Listing 2.2, the extension of the infrastructure model presented in
Listing 2.1 with microarchitectural elements (i.e., cores and NUMAs). As the reader
may notice, Taurus nodes are the simplified representation of the Intel Xeon E5-2630
presented in Figure 2.13.� �
<?xml version="1.0" encoding="UTF -8"?>
<infra:Infrastructure xmi:version="2.0" xmlns:xmi="http://www.omg.org/

XMI" xmlns:infra="http:// avalon.inria.fr/infra/">
<hasNodes name="taurus -0" disk="598.0" location="lyon" availableNumas

="// @hasNodes .0/ @hasNumas .0 // @hasNodes .0/ @hasNumas .1"
availableCores="// @hasNodes .0/ @hasCores .0 // @hasNodes .0/ @hasCores
.1 // @hasNodes .0/ @hasCores .2 // @hasNodes .0/ @hasCores .3 // @hasNodes
.0/ @hasCores .4 // @hasNodes .0/ @hasCores .5 // @hasNodes .0/ @hasCores .6
// @hasNodes .0/ @hasCores .7 // @hasNodes .0/ @hasCores .8 // @hasNodes

.0/ @hasCores .9 // @hasNodes .0/ @hasCores .10 // @hasNodes .0/ @hasCores

.11">
<hasNumas name="0" memtotal="16384.0" memfree="16384.0"/>
<hasNumas name="1" memtotal="16384.0" memfree="16384.0"/>
<hasCores name="0"/>
<hasCores name="1"/>
<hasCores name="2"/>
<hasCores name="3"/>

33

2.2. VIRTUALIZED DISTRIBUTED SYSTEMS CHAPTER 2. MODELIZATION

Figure 2.13: Intel Xeon E5-2630 Non-Uniform Memory Access topology (Grid’5000 Tau-
rus Node) from Hwloc

<hasCores name="4"/>
<hasCores name="5"/>
<hasCores name="6"/>
<hasCores name="7"/>
<hasCores name="8"/>
<hasCores name="9"/>
<hasCores name="10"/>
<hasCores name="11"/>

</hasNodes >
<hasNodes name="taurus -1" disk="598.0" location="lyon" availableNumas

="// @hasNodes .1/ @hasNumas .0 // @hasNodes .1/ @hasNumas .1"
availableCores="// @hasNodes .1/ @hasCores .0 // @hasNodes .1/ @hasCores
.1 // @hasNodes .1/ @hasCores .2 // @hasNodes .1/ @hasCores .3 // @hasNodes
.1/ @hasCores .4 // @hasNodes .1/ @hasCores .5 // @hasNodes .1/ @hasCores .6

34

CHAPTER 2. MODELIZATION 2.3. SECURITY REQUIREMENTS

Figure 2.14: Microarchitecture Metamodel

// @hasNodes .1/ @hasCores .7 // @hasNodes .1/ @hasCores .8 // @hasNodes
.1/ @hasCores .9 // @hasNodes .1/ @hasCores .10 // @hasNodes .1/ @hasCores
.11">

<hasNumas name="0" memtotal="16384.0" memfree="16384.0"/>
<hasNumas name="1" memtotal="16384.0" memfree="16384.0"/>
<hasCores name="0"/>
<hasCores name="1"/>
<hasCores name="2"/>
<hasCores name="3"/>
<hasCores name="4"/>
<hasCores name="5"/>
<hasCores name="6"/>
<hasCores name="7"/>
<hasCores name="8"/>
<hasCores name="9"/>
<hasCores name="10"/>
<hasCores name="11"/>

</hasNodes >
</infra:Infrastructure >� �

Listing 2.2: Infrastructure XML with 2 Nodes and 1 INet

2.3 Modelization of Security Requirements
There is a vast range of security mechanisms which have been proven efficient in practice.
Each mechanism can guarantee specific security properties (e.g., confidentiality, integrity)
for particular entities. For example, cryptography may protect data in transit or at
rest against unauthorized accesses but cannot be employed for controlling applications’
behavior. We believe a key concept is to deliver on-demand security: a user should be able
to specify what is the required secure behavior of his system. To do so, we rely on existing
security mechanisms to enforce security properties. The process of specifying/configuring
a security policy is usually very complex and error-prone. Even with security expertise,
a human can still realize unintended misconfiguration leading to security breaches. For
this very reason, security policies should be enforced in an automatic fashion i.e., , where
human intervention only occurs if strictly necessary. Though the intended behavior of a

35

2.3. SECURITY REQUIREMENTS CHAPTER 2. MODELIZATION

system i.e., what a system should or should not do, falls into human knowledge.
In this Thesis, we follow a specification-driven approach: the user specifies the security

he wants without knowledge of how it will be enforced. Halpern et al. [57] state that
security policies described in a natural language have quite ambiguous semantics. On the
other hand, a formal language or logic can provide clear syntax and semantics. Therefore,
our specification language should be logic-based.

In this section, we review existing models and languages to specify security properties
and discuss important security properties. Then, we present our security metamodel: how
to uniformly address different security mechanisms to enforce the same property. Finally,
we define precisely what does mean a security property by proposing a new logic-based
formalization.

In our specification-driven approach, the user describes components of a virtualized
application and its security. Similar to our system-agnostic modelization of applications,
we propose an enforcement-agnostic modelization of security requirements. As depicted
in Figure 2.15, though the enforcement process itself is driven by the security policy, it
applies to the real system. Therefore, we must link entities described in the model to
their real implementation counterpart. To do so, we propose a domain-specific language
(DSL) to specify security policies.

Figure 2.15: Model-to-system workflow

2.3.1 Attribute-based Contexts

Our security DSL must address any entities/resources independently from system-specific
resources naming to address any systems. For example, one can describe a Service
entity called SSH without specifying what SSH is or where it is physically located. In
most Linux architectures, the SSH service daemon is located in /usr/sbin/sshd and the
configuration files are in /etc/ssh. For security specification, we want the real path to
be abstracted. Our solution is to use attribute-based contexts.

A context is an identifier referring to a (single or) group of entities. Security
properties of our language apply to contexts. Therefore, entities with the same con-
text are constrained by the same properties. An attribute-based context is com-
posed of key-value pair of attributes where each attribute provides information about
the resources it identifies. In a virtualized application model, the user can specify com-
ponents of an application using names. For instance, Figure 2.16 is the model of a

36

CHAPTER 2. MODELIZATION 2.3. SECURITY REQUIREMENTS

service named SSH contained in an application domain named System and packed
into a virtual machine named VM1. Then, the context identifying the SSH service is
(VM="VM1"):(AppDomain="System"):(Service="SSH").

Figure 2.16: Model of a SSH service in a System application domain inside VM1 virtual
machine

Any node elements of our virtualized application metamodel is an attribute: Domain,
VM, Client, VNet, Veth, AppDomain, Data and Service. This metamodel con-
tains only static architectural elements and it is often useful to refer to other character-
istics. Typically, a system user has different rights whether he is a standard user or an
administrator. Therefore, our language allows defining new attributes as follows:� �
#attribute Role = (StandardUser , SystemAdmin , SysnetAdmin);� �
In the above example, a new attribute Role has been defined and it accepts 3 values
StandardUser, SystemAdmin, SysnetAdmin.

Using attributes, new contexts can be defined. Here is an example with a context
ctxAdmins addressing any entity with the SystemAdmin role:� �
#context ctxAdmins = (Role=" SystemAdmin ");� �

Any context may be reused to form new, more precise contexts. Here is an ex-
ample with ctxSSH_Admin referring to the SSH service (of System of VM1) with the
SystemAdmin role:� �
#context ctxSSH_Admin = (VM="VM1"):(AppDomain =" System "):(Service ="

SSH"):ctxAdmins;� �
Attributes values are regular expression strings. In the previous scenario Figure 2.16,

instead of specifying SSH of VM1, any VMs’ SSH service may be selected using the star
character: (VM="*"):(AppDomain="System"):(Service="SSH").

To uniquely address an element defined in a virtualized application model, a con-
text is derived from the model’s hierarchy. In our example, SSH derived context is
VM1.System.SSH. It follows the same grammar as other contexts, for example:� �
#context ctxSSH_Admin = VM1.System.SSH:ctxAdmins;� �

To sum up, Figure 2.17 presents the metamodel security part limited to context and
attribute definition. In our metamodel, a Context is a list of either:

• References i.e., contexts’ names defined with the #context keyword.

37

2.3. SECURITY REQUIREMENTS CHAPTER 2. MODELIZATION

• or ContainmentReferences. It can be a ValuedAttribute
(e.g., (AttributeKey=Value)) or an ElementList which is a list of Ele-
ments from the virtualized application metamodel (e.g., VM, Domain, Data,
Service).

Figure 2.17: Security attributes and contexts metamodel

Bindings

A context represents a set of entities with common characteristics. We call binding the
association of a context to “real” entities. For instance, the binding of ctxSSH_Admin
could be:� �
/usr/sbin/sshd ctxSSH_Admin
/home /*/. ssh/* ctxSSH_Admin� �

In our metamodel, the binding relation is depicted in Figure 2.18 where a binding is
a path and multiple bindings can be associated to the same context.

2.3.2 Security Properties

In our language, a security property is a property on contexts we model as a security
function with parameters (i.e., contexts). Semantics of properties are explained after in

38

CHAPTER 2. MODELIZATION 2.3. SECURITY REQUIREMENTS

Figure 2.18: Binding metamodel

Chapter 3, we use informal definitions in this section.

Confidentiality, Integrity and Isolation The common characteristics of these
3 properties are what is secure and what is authorized. Their template is
Property(ctxSecured, ctxAuthorized). For example, the confidentiality property
protects against unauthorized read accesses. Suppose only a user with Admin role is
allowed to read a Log file. In our language, the property is:� �
#property Confidentiality ((Data="Log"), (Role="Admin"));� �
Authentication This property has the particularity of changing an entity’s context.
Typically, a user can log as an admin hence changing his role from standard user to
admin. This authentication is realized by a third entity. The authentication property has
3 parameters that are what is the source context, what is the authentication process and
what are the valid destination contexts. Suppose an unknown user wants to authenticate
using SSH and acquire system-user or admin rights, then the corresponding property is:� �
#property Authentication ((Username =""), (Service ="SSH"), (Role="

Admin|SystemUser "));� �
Model-based Authorization Inference One of our goals is to ease the specification
for the user. The virtualized application model provides useful operational information
which could appear redundant in the security policy. For example, Figure 2.19 depicts
an application with VM1 connected to a Client and VM2 through respectively Internet
VNet and Intranet VNet. It is natural to assume that a security policy should allow
VM1 to access Internet and Intranet: this information from the model is implicit.

Figure 2.19: Virtualized Application Model with 2 VNets, 2 VMs and 1 client.

39

2.3. SECURITY REQUIREMENTS CHAPTER 2. MODELIZATION

Suppose we want VM1 to be isolated from any network, the implicit exceptions
(Internet and Intranet) can be deduced from the model. Therefore, we introduce the
concept of implicit properties with only one parameter i.e., what is secure; authoriza-
tions are deduced from the virtualized application model. Hence, the following implicit
property can be written:� �
#property Isolation(VM1);� �

Then, an automatic transformation procedure (presented in Section 4.1)infers the
list of exceptions (i.e., authorized elements) from the virtualized application model to
produce an equivalent explicit property:� �
#property Isolation(VM1 , {Internet , Intranet});� �

This transformation is only viable for simple properties (i.e., Confidentiality, Integrity,
Isolation) without user-defined attributes (e.g., Role).

Properties with Grades As explained after in Chapter 3, our security properties have
a unique and clear interpretation. Intuitively, the enforcement of a security property
should guarantee a secure system. However, in practice, there is no perfect security but
rather a scale from weak to strong security. Indeed, nearly all systems rendering a service
can be exploited providing sufficient time and resources. For example, cryptography is
used to guarantee Confidentiality and Integrity of data. The quality of protection differs
depending on the cryptographic algorithm used (e.g., AES, RSA) and the size of the
key(s). It is said to be computationally secure i.e., it is theoretically possible but either
it would take too much time or there is no known solutions yet. Even if a protection
mechanism is considered to be foolproof, humans using the system are far from it. This
quality of protection is encompassed in security practices by the notion of risk. Many risk-
evaluation frameworks have been proposed for virtualized environments [109, 130]. The
common principle is to associate the likelihood of an asset to be attacked with a security
counter-measure of equal or superior strength thus diminishing the risk by making the
attack “not worth it”. The vast range of existing risk metrics highlights the difficulty of
defining a good and sound one. The main reason for evaluating risks is to deploy cost-
effective security measures. For an organization, security is often disregarded due to its
cost and its absence of visible benefits.

In this Thesis, we do not want to improve generic risk metrics and evaluations State of
the Art. Yet, as we tackle Cloud-like platforms, we must consider the financial impact of
security and thus allow a user to specify his security requirements with different quality
of protection. Accordingly, we propose to simply extend our properties with a grade.
The grade is specified by the end-user hence it should be independent from the type of
the protected entities or the enforcement mechanism. We believe a coarse-grain grading
system (e.g., Low, Medium, Strong) is more relevant and offers a good compromise. For
future flexibility, we implement a grade as an integer value. Informally, a higher grade
means a stronger security and a lower grade means a weaker security. Then, our grades
can be specified as follows:� �
#property Isolation(VM1 , grade);� �

40

CHAPTER 2. MODELIZATION 2.4. CONCLUSION

Properties without explicitly specified grades are implicitly associated with the highest
value (e.g., 100). In preliminary work [29], we have first envisioned the grade as a vector
of security mechanisms but this approach has been discarded in this Thesis as it is
not mechanism-agnostic. However, in Chapter 4, we propose a metric for a specific
type of attacks called covert-channels and we discuss its relation to our grading system.
Nevertheless, the problem of defining more relevant grades or generic risk metrics is part
of our future work.

2.4 Conclusion
We have shown the necessity of a specification-driven approach where a user expresses its
security constraints in a simple and clear way. These constraints are high-level security
objectives, agnostic of any enforcement mechanisms, that apply to elements of an appli-
cation which needs to be modeled as well. In the literature, there is no security aware
application models suitable to enforce the end-to-end security of virtualized applications.
Instead, the literate only exhibits application models without security or security models
without application descriptions. Accordingly, we have proposed a unified metamodel
embracing both the virtualized application and its security policy.

Furthermore, we have detailed the infrastructure metamodel hosting virtualized ap-
plications. This metamodel is used and extended in Chapter 4 to integrate security
solutions. In particular, we will show how to enforce security properties between VMs
with a security-aware placement algorithm and how to configure security mechanisms
according to the security policy.

But before, as the main drawback of the literature is the lack of formalism, we propose
in the next chapter a logic giving a unique and clear description of what confidentiality,
integrity or isolation means. Then, this logic is used in Chapter 4 to refine our global
security policy into multiple local properties enforceable by placement or by configuring
local security mechanisms.

Our models could be enriched in the future. In particular, one of the key feature of the
Cloud we do not support is elasticity. It would be interesting to study the integration of
component-based approaches to tackle dynamic applications. For example, a broad class
of applications spawns replicas of services depending on the load. Besides, a complete
approach would be able to add or remove part of the application at runtime resulting in
a completely different architecture.

41

2.4. CONCLUSION CHAPTER 2. MODELIZATION

42

Chapter 3

Formalization of Security Properties

In the previous chapter, we have presented a list of security properties a user can use
to specify the security policy of a virtualized application. This policy defines what a
secure system is i.e., what this system is allowed or forbidden to do. But one question
is left aside: what is the meaning of a security property. Previously, we have given
general definitions in a natural language (i.e., English) as formulated by standardization
institutes (e.g., Common Criteria, NIST). But as stated by Halpern et al. [57], security
policies described in a natural language have quite ambiguous semantics. On the other
hand, a formal language or logic provides clear syntax and semantics. By formal, we
mean the specification is based on a strong mathematical foundation. The syntax is the
grammar of the language, how a correct sentence is structured. The semantics is the
meaning of the sentence. For example, “He was the first” and “He was the last” have the
same structure (i.e., subject, verb, noun) but not the same meaning.

Our goal is to use existing (maybe future) protection mechanisms to enforce informa-
tion flow properties. It implies our formal language must be expressive enough to map a
property to a configuration of a protection mechanism. However, the security properties
modeled using Sam4C are global whereas existing security mechanisms are mostly local.
For instance, it is easy to state that our house must be globally secured but this state-
ment shall be implemented with local solutions such as putting locks on doors, installing
an alarm, etc. Similarly, the most important application of our logic is to prove the
equivalence between a global property and a set of locally enforceable properties. This
transformation, occuring during the preprocessing step of our approach, is detailed later
in Section 4.1.

In this chapter, we first lay the foundation for understanding advanced logic notions.
Then we review related work on logics for security properties. After, we present our logic
called IF-PLTL to specify information flow properties for concurrent and distributed sys-
tems. Finally, because IF-PLTL is strictly more expressive than any existing mechanisms,
we give a complete algorithm to dynamically monitor any IF-PLTL formula. This mon-
itor can be viewed as a potential “ideal” mechanism but due to its complexity (in space
and time), an implementation of this monitor would incur an high overhead.

43

3.1. LOGIC 101 CHAPTER 3. FORMALIZATION

3.1 Logic 101

This section is intended to help readers with no logic background to grasp basic notions
and go through the rest of this chapter more handily. For the ones that have such
background, you can skip this section.

First, many definitions of the term logic have been given and it seems the debate is
still going on. Instead, we prefer to present three principles of logic (or guidelines) as
defined by Ferreiro in [47]:

1. Logic is concerned with an analysis of (valid and invalid) deduction.

2. Logic does not depend on how things are, it is independent of considerations of
existence. Logic should enjoy universal applicability.

3. Logic only studies the form of arguments and deductions, never the matter. The
basic idea was embodied in the use of variables A, B by Aristotle.

Formal logic encompasses a wide variety of logic systems from Aristotle’s classical
logic to modern systems emerging in the mid-19th century.

3.1.1 Syllogistic or Classical Logic

Syllogic or Classical Logic refers to Aristotle logical system based on syllogism. A syl-
logism is a two-premise deductive argument in which a conclusion is inferred from two
premises. Let’s take an example:

All men are mortal
Socrates is a man
Therefore, Socrates is mortal

The two first sentences are premises and the third the conclusion. This construction
is called an argument. The premises and the conclusion are called propositions. What
is important is to decorrelate the notion of Truth from the argument itself. First, we
must consider the construction (the form) of the argument to determine if it is valid. An
argument is valid if considering the premises are true then the conclusion must be true.
But it does not tell us if the premises are true or false, just if you admit them, you must
admit the conclusion. Classical logic is founded on three laws called axioms :

• The identity: If a proposition is true, then it is true.

• The excluded middle: A proposition is either true or false. There is no other possible
outcome.

• The non-contradiction: A proposition cannot be both true and false.

44

CHAPTER 3. FORMALIZATION 3.1. LOGIC 101

3.1.2 Propositional Logic

Some logicians found Classical logic to be limited: indeed not every argument could fit in
3 lines. So they introduced new symbols, the most common being: negation (), conjunc-
tion (^), disjunction (_), conditional (Ñ) and equivalence (“). These are connectives:
they connect propositions to make more complex propositions. An atomic proposition is
usually a single letter e.g., p, q. Then, a complex proposition could be: pp_ qq.

In Classical logic, determining a valid or invalid argument is based on forms
(i.e., patterns). In propositional logic, there are no forms, instead we can rely on Truth
tables (but not only) to analyze all permutations of true and false for every atomic propo-
sition. For example, suppose these two statements pp_ qq and p p^ qq to be logically
equivalent. By dressing the truth table, you will see that whenever the first is true, the
second is also true and whenever the first is false the other is false as well. This is one
of De Morgan’s theorems and it is a tautology : the logical equivalence is true whatever
the truth-values of p and q. In propositional logic, an argument is valid if and only if its
conditional form (i.e., using Ñ) is a tautology.

3.1.3 Predicate or First-Order Logic

Propositional logic is not suited to formalize some valid arguments. The previous
example All men are mortal;Socrates is a man;Therefore, Socrates is mortal
in propositional logic yields p ^ q Ñ r. Because, there are no relations between the 3
atomic propositions (p, q and r), this argument is not valid. For instance, we can assign
truth-values to p, q and r to obtain true ^ true Ñ false which is intuitively wrong.
In predicate logic, propositions are enriched with predicates i.e., boolean functions. For
example stating that Socrates is a man would be Manpsocratesq with Man a predicate
and socrates an individual. In addition, logicians introduce the notion of quantification
with “for all” (@) and “it exists”(D).

Now, the three statements of our example can be expressed as follows: @xManpxq Ñ
Mortalpxq, Manpsocratesq and Mortalpsocratesq.

Individuals are referred to using a constant (e.g., socrates) or a variable (e.g., x).
The difference between the two is that Manpsocratesq is either false or true but the
truth-value of Manpxq depends on the individual represented by x. The replacement of
x by a constant is called an assignment. Hence, the truth-value of Manpxq only exists
after assignment. In addition to constants, variables and predicates, predicate logic may
contain functions. For example, the statement 2 ` 2 “ 4 may be formalized using a
function Plus and a predicate Equals. It can be written as EqualspPlusp2, 2q, 4q.

Predicate logic is a generic term encompassing first-order (and higher) logics, modal
logic and others. The set of elements under discussion is called the domain of dis-
course. It can be the set of natural numbers, the set of species on Earth or the set of
processes in a system. In first-order logic, variables (i.e., x) can only range over these
elements e.g., “It exists an individual x who have donated more than 100$ to charity” is
pDxqpDonationpxq ą 100q. In second-order logic, quantifiers may range over sets of func-
tions and predicates as well e.g., “It exists an organization O such as all organization’s
members have donated more than 100$ to charity” is pDOqp@x P OqpDonationpxq ą 100q.
Second-order logic is strictly more expressive than first-order logic and cannot be reduced

45

3.1. LOGIC 101 CHAPTER 3. FORMALIZATION

to first-order logic. It means that a second-order formula cannot be transformed into a
first-order formula (e.g., by adding relations).

3.1.4 Modal Logic

In 1918, Clarence Irving Lewis introduced a formal modal logic system. Modal logic
integrates the modalities of necessity and possibility. Modalities allows expressing propo-
sitions such as “It will rain today” (necessity) or “It might rain today” (possibility). A
statement can be possible but not true. To clearly picture this notion, it can be viewed
as possible worlds (or alternate universes). Then, the necessity modality is true if the
related proposition is true in every possible world and the possibility modality is true if
the proposition is true in at least one world.

Modal logic includes deontic and temporal logic.

Deontic Logic

In deontic logic, the modalities are related to the concept of obligation. “You must do this”
and “You may do this” are close to necessity and possibility. One particularity of deontic
logic is the concept of necessitation. This property says that whatever is necessitated by
a moral requirement is itself a moral requirement. Suppose that you are morally required
to break a door to save someone surrounded by fire. You are logically necessitated to
break the door in order to save the person. The necessitation property tells you that
you are obliged to save this person so you have an obligation to break the door. This is
contestable because taken independently you have no obligation to break this door. This
principle is the reason for many paradoxes in deontic logic [58].

Temporal Logic

In temporal logic, the modalities are related to the notion of time. A proposition is
qualified by when it occurs, for example “It will eventually rain”, “It will always rain”
or “It has rain yesterday”. In 1977, Pueli [98] proposed using temporal logic to formal-
ize the behavior of concurrent programs of a system. He expressed properties like the
mutual exclusion i.e., two processes cannot enter the same critical section. To do so, he
models the system as a state-transition system: an execution is a sequence of transitions
(e.g., actions, commands) where a transition changes the state of a system to another. He
introduced two operators F and G to express respectively that something will eventually
happen and something will always happen. In our previous example, “It will eventually
rain” is captured by F prainq and “It will always rain” by Gprainq. Later, new operators
have been introduced to discuss past events, namely P (once in the past) and H (always).
For instance, “It has rained one day” is captured by P prainq and “It has always rained”
by Hprainq.

3.1.5 Verification of Logics

One interest of logics is verification: showing that a system satisfies its specification. A
system is described as a model and the specification is a formula of a formal language.

46

CHAPTER 3. FORMALIZATION 3.2. STATE OF THE ART

We consider two types of verifications: model-checking [33] and runtime verifica-
tion [10].

In model-checking, all executions of a given system are examined to answer whether
these satisfy a given property (i.e., formula). The verification against all possible execu-
tions is typically been carried out by generating the whole state space of the underlying
system, which often becomes unfeasible due to its huge size. Model-checking suffers from
the state explosion problem.

In runtime verification, we examine a single execution, the one currently under
scrutiny. The objective is to check if the current execution satisfies (or violates) a given
property. Runtime verification does not suffer from state-explosion as there is no sys-
tematic exploration of multiple executions. This verification can be achieve offline by
replaying recorded traces or online by making decisions as events occur. In the rest of
this manuscript, we always refer to online runtime verification.

3.2 State of the Art

In this thesis, we propose a formalization of information flow security properties. We
recall that Information Flow Control focuses on the propagation of information in a
system. In this section, we review related work on formalization of security properties
and present important information flow properties.

3.2.1 Information Flow Control properties

The main question is what kind of properties are needed to control information flows or
rather what properties can we consider.

Trace properties

Security properties are properties of the system’s behavior. In [75], Lamport has shown
that a concurrent system’s behavior can be modeled by all execution traces generated by
this system where an execution trace is a sequence of state transitions.

It follows that a security property can be defined as a property on individual traces
called traces properties. In [1], Alpern and Schneider have proved that a trace property
is an intersection between a safety and a liveness property. The safety property ensures
that nothing bad will happen and the liveness that something good will always happen.
The safety is quite straightforward: a security policy forbid any “bad” behavior of the
system. The liveness is more delicate to apprehend. It is somewhat close to the concept
of availability. While being protected, it means the system keeps delivering its service as
it should. As the availability, we believe it has more to do with reliability and quality of
service than strict protection. Proposed by Pnueli in [98], Linear Temporal Logic (LTL)
is a well-known formalism to express safety and liveness properties in concurrent systems.

Hyperproperties

It has been pointed out that some important security policies could not be captured by
traces properties [35]. For example, stipulating a bound on mean response time over all

47

3.2. STATE OF THE ART CHAPTER 3. FORMALIZATION

executions is an availability policy that cannot be specified as a property of individual
traces. Each execution response time is conditioned by the others. Another property is
the noninterference introduced by Goguen and Meyers [51]. This confidential property
stipulates that commands executed by a user with high-level clearance has no observable
effects for users with low-level clearance. Noninterference has been revisited by Haigh and
Young [56] then Rushby [105]. Noninterference would seem to be a fundamental notion
in information security. It arises from the need to understand why a program would
leak some bits of information. But noninterference seems to characterize the absence
of information flows when in reality we want to control flows not forbid any of them.
We discard noninterference as a system-level property based on the following argument
stated in [106]:

Most “real” security policies are concerned with specifying who has access to
what resources under what circumstances. Non-interference is never men-
tioned. Furthermore, non-interference is in practice impossible to realize in
any real system: contention for resources, etc. render it unfeasible.

In [35], Clarkson and Schneider have described these properties as hyperproperties.
They observed that there is a vast range of security properties that cannot be stated
on individual traces but rather on sets of traces. For example, noninterference typically
involves 2 traces (i.e., high and low) and the mean response time property applies to k
traces. Informally, an hyperproperty is a property on sets of traces while a trace property
is a property on traces. Hyperproperties are considered as really powerful. They are more
general than security properties (in the sense of confidentiality and integrity); they allow
making statements on quality of service for instance.

Now, the question is whether modelchecking and runtime verification of hyperprop-
erties are decidable. A problem is said decidable if there exists an effective method to
give an answer (e.g., yes or no) in finite time to this problem. Therefore, providing an
algorithm for modelchecking of hyperproperties implies that it is decidable. Clarkson
and Schneider noted that the full power of second-order logic is necessary to express
hyperproperties and thus it does not exist any general methods to verify an hyperprop-
erty [35]. However, considering a fragment (i.e., subset) may be decidable. Thus, in [34],
Clarkson et al. have proposed temporal logics for some hyperproperties called HyperLTL,
HyperCTL and HyperCTL* and detailed a modelchecking procedure to verify them.

We recall that modelchecking is a static method that necessitates a model to repre-
sent (or generate) all executions. For hyperproperties, it must represent all sets of all
executions. This state explosion problem is an impediment to tackle existing production
systems.

More importantly, in his thesis “Reasoning about hyperproperties” [87], Milushev
discusses the possibility of dynamic enforcement of hyperproperties: even if some en-
forcement methods have been proposed for single specific hyperproperties, decidability of
dynamic enforcement of broader classes is still an open question.

Nevertheless, we argue that HyperLTL (and their extensions) cannot tackle runtime
verification for security properties. The argument is simple. Consider the following
example of a trace property, the reachability problem. It is defined as: Does it exist an
execution (a trace) where a given state is reached i.e., it appears in the trace. It is clear
that such trace property is satisfiable in the static case i.e., with complete knowledge

48

CHAPTER 3. FORMALIZATION 3.2. STATE OF THE ART

of states of the system but it is not the case for runtime verification. In the latter, the
question must be answered at a time when a trace only represents what has occurred
but never what will occur. This problem has been circumvented by Bauer in [10] when
monitoring LTL formulas at runtime by introducing a three-state output: true, false or
inconclusive. Applied to security, it would mean that if one requests access to a file, the
answer is either “yes”, “no” or “cannot decide yet” which is not acceptable.

With dynamic traces (i.e., runtime verification), it is generally impossible to know in
advance the next state of the system or make decisions based on the future.

In conclusion, we will focus on security properties verifiable at runtime i.e., trace
properties.

3.2.2 Logic-based Policies

Access Control Logics

Access control may be viewed as a simple trace property where the decision is generally
independent from previous or future states of the system.

Many work use logic to model access control. Halpern et al. [57] apply First-Order
(FO) logic to digital rights management. Datalog [63] is a logic programming language
oftenly used to query databases. It is reducible to FO logic. Cassandra [11] is a role-based
trust management system based on Datalog with constraints. It specifies AC policies for
large-scale systems. Binder [42] also uses and extends Datalog to express distributed
security statements. It can express operations like certification or delegation. Bruns
et al. [26] propose a specification in Belnap logic for analyzable AC policy composition.
Finally, the authors of [6] specify and implement (Temporal) Role-Based Access Control
policies in constraint logic programming. Despite that all previously cited works exclu-
sively tackle access control models (and not IFC), they are very interesting for their strong
formalism allowing static analysis and modelchecking e.g., for Operating System policies
analysis [55]. Again, the issue with modelchecking approaches is the need to represent a
complex system with an automaton-like model. Indeed, to be able to do so, the system
must be a whitebox. Moreover, if the application/system changes, then the automaton
changes as well. This leads to redo all analyses. Putting aside the question of the model
size, this modeling constraint does not seem to suit current virtualized architectures where
dynamicity and multitenancy are key-features.

Direct and Indirect Flows

Many attack patterns circumvent access controls by making indirect accesses.
As depicted in Figure 3.1, information may be transferred either directly or indirectly

from an entity to another. Suppose the direct flow A to B is followed by the flow B to C
then it creates an indirect flow from A to C. If the flows were to happen in reverse order
(i.e., B to C, then A to B), it would not have created an indirect flow as the information
of A would have been carried only to B and not relayed thereafter. An indirect flow can
involve a sequence of direct flows of arbitrary length.

Indirect flows are important as they allow controlling the path of propagation of
information.

49

3.2. STATE OF THE ART CHAPTER 3. FORMALIZATION

Figure 3.1: Direct and indirect flows

In this chapter, we are interested in expressing properties depending on previous
actions. One of our contributions is to consider all indirect paths resulting from entities
interactions instead of controlling indirect flows by construction.

To our knowledge, the closest work from ours has been proposed by Basin et al. in [9].
The authors propose a runtime monitoring with a Metric First-Order Temporal Logic
(MFOTL) and provide algorithms to enforce formulas. Their approach is similar in the
way that MFOTL includes the Linear Time Logic temporal modalities and the system
behavior is modeled as (sets of) traces. Our formalization is noticeably inspired from this
work. Nonetheless, the authors’ proposal differs from ours in the language expressiveness.
Indeed, there is a class of properties expressible with our approach and not with MFOTL.

In short, the indirect flow relation is the transitive closure of the flow to relation
(i.e., direct flow). Without the transitive closure, it is not possible to express an un-
bounded chain of flows with a finite formula. Suppose Alice wants to transfer information
to Bob and to do so communicates through a chain of intermediates. Without the transi-
tive closure relation, forbidding this indirect communication would necessitate specifying
every possible chain of intermediates of any length. This is an infinite enumeration thus
not expressible. Even with a bounded chain of flows, the formula’s size is linear in the size
of the chain. More generally, both MFOTL and our approach is reducible to First-Order
(FO) formulas. Ronald Fagin [46] has shown that first-order logic extended with Tran-
sitive Closure (TC) is strictly more expressive than FO. It’s called FO(TC) and yields
NL i.e., the problems solvable in nondeterministic logarithmic space. In consequence, we
choose to trade more expressiveness for more complexity.

3.2.3 Discussion

Our goal is to formalize traditional security properties such as confidentiality or integrity
as information flows. This formalization must encompass direct and indirect flows, and be
strictly more expressive than most security mechanisms. The idea is to have a mapping
between a security mechanism and a formula in our logic without targeting specific secu-
rity mechanisms. Nonetheless, we limit our scope of mechanisms to runtime verification
(i.e., monitors) in opposition to modelchecking which is an offline analysis.

Multiple formal systems have been proposed to reason about security properties. First,
there is not a single definition of a security property. We have presented two formulation
mainly adopted: trace properties and hyperproperties. Hyperproperties are too expressive
for our protection point of view e.g., they allow for statements on quality of service.
Moreover, there are serious doubts on the possibility of monitoring hyperproperties at
runtime. On the other hand, trace properties can be monitored at runtime and existing

50

CHAPTER 3. FORMALIZATION 3.3. OVERVIEW

security mechanisms enforce trace properties though they enforce simple ones.
As we focus on system-level information flow, it seems unrealistic to modify applica-

tions or assume a complete and perfect representation of them (like it would be needed
for modelchecking). Instead, we consider applications to be blackboxes i.e., we do not
know their internal operating or logic. However, we suppose to have a partial knowledge
i.e., though applications are blackboxes, we can capture their system-level operations
(e.g., read, write) and we know how they ought to interact with other entities. Let’s
illustrate what we call partial knowledge with a simple example drawn in Figure 3.2.
Two users, Alice and Bob, are using the same application hosted on a server. We want
the following information flow property:

Alice and Bob are isolated from each other i.e., information cannot flow
from Alice to Bob (and vice versa).

Figure 3.2: Alice and Bob must not exchange information with each other.

From a specification point of view, this system-wide isolation property is expressed
on a blackbox i.e., without any knowledge of the application. As a consequence, our
approach is specification-driven in opposition to configuration-driven approaches where
the property is realized by a thorough configuration of credentials, labels or tags. From
an enforcement point of view, information flow events must be interposed to either allow
or deny them with respect to their consequences. In short, any event leading Bob to have
information from Alice must be denied.

Considering the gap in related work to express information flows with our require-
ments, in particular the transitive closure, we propose a new logic called Information
Flow Past Linear Time Logic (IF-PLTL). Our logic is based on the past fragment of LTL
(PLTL) which is known to be suited for describing the behavior of a concurrent system.

3.3 Overview

In the rest of this chapter, we detail our formalization of information flow properties
namely IF-PLTL. Even though our goal is to encompass a vast range of protection mech-
anisms, we present our logic as an “ideal” protection mechanism by providing a monitoring

51

3.3. OVERVIEW CHAPTER 3. FORMALIZATION

algorithm to verify properties at runtime in a concurrent system (e.g., an operating sys-
tem) as shown in Figure 3.3.

As we have stressed in Section 3.2, it is mandatory to take into account direct and
indirect information flows to control the propagation of information. But a system like an
operating system do not have any abstraction to capture information flows directly. It is
why we explain in the next section how to reconstruct information flow traces (including
indirect information flows) from low-level System Events. In Figure 3.3, this process is
represented as the Trace Computation box. It receives System Events from the Events
Interposition box and produces Information Flow Events. How to implement an Events
Interposition mechanism is quickly discussed in Section 3.4.1.

Figure 3.3: Monitor Architecture

The Information Flow Event is received by the Decision box. But it is not always
possible to reason on a single Information Flow Event. Indeed, it would mean taking a
decision without any knowledge of the past decisions (and the related information flows
that have happened). Consequently, the Decision box takes a second input: the Memory
i.e., IF-Trace. Its formalism is described in the next section. On top of the Information
Flow Event, this box also receives as input a Policy. In Section 3.5, we present our
logic and its semantics allowing expressing such policy. Moreover, as we need to reason
on past events, the logic is based on PLTL that brings such ability without the cost of
too much complexity. Our logic allows expressing global security property with partial
knowledge. It means that a user can express its security requirements without the need
of a fine grained knowledge of the underlying systems and applications (as explained in
Section 3.2.3).

The Accept and Refuse octagons in Figure 3.3 reflect the fact that the System Event
(and the related Information Flow Event) satisfies (or not) the Policy. In the first case
(Accept), the event is allowed to happen and the Memory is updated with the related
information flow to keep track of it. If the event does not satisfy the policy, the event
is not allowed and thus does not happen. Accordingly, there is no need to update the
Memory. We describe how our logic can be used to implement such dynamic monitoring

52

CHAPTER 3. FORMALIZATION 3.4. SYSTEM MODEL

in Section 3.6. In Section 3.7, we conclude by presenting how our approach can be used
to enforce a simple yet widely spread security requirement: the isolation between 2 users
(or groups of users).

To summarize, our proposal can be classified as a System-based Information Flow
Control mechanism. At the best of our knowledge, it is the only System-based Information
Flow Control with a strong theoretical logic that considers all the direct and indirect
information flows.

3.4 System Model: Traces Acquisition

To recapitulate, our goal is to decide whether the system’s behavior modeled as traces
satisfies a security policy using logic formulas as formal representation. In this section,
Trace Computation part in Figure 3.3 details how to construct information flow traces
from low-level system events.

As shown in Figure 3.4, a system (App) does not directly produce information flows
but low-level observable events instead. These events are transformed into functional
events and finally into information flows.

Figure 3.4: Overview of the computation of traces

Let’s first propose the following definitions:

Definition 1 (Primitive System). A blackbox with an internal state τ and an interface
accepting a set of actions.

Definition 2 (System). A (recursive) composition of primitive systems.

53

3.4. SYSTEM MODEL CHAPTER 3. FORMALIZATION

System behavior as traces

Every entity inside the Operating System (OS) environment can be viewed as systems
e.g., files, processes, databases. As previously said, a concurrent system behavior can be
modeled by all execution traces generated by this system [75], where an execution trace
is a sequence of state transitions. We give afterwards a general definition (Definition 3)
of traces including the concept of observer (Definition 4). Let’s suppose a system with
only three entities (a,b,c). a has a partial trace including all events from or to itself but
does not see events between b and c. Moreover, an event from a to b is both in a and b
traces. As a result, the union of all partial traces forms a complete trace of the system.

Definition 3 (Trace). A sequence of state transitions triggered by events, as viewed by
an observer.

Definition 4 (Observer). A passive entity with a system view (potentially partial).

Contexts

As entities are heterogeneous, they are identified using contexts (Definition 5). We sup-
pose the existence of a method to map a context to every entity, where two entities with
the same context have a set of common characteristics e.g., behavior, security domain,
type. These expressiveness of the contexts can be used to mimic the labels and tags
proposed in other approaches. Nevertheless, the contexts are as expressive as the system
allows and as it is required to enforce the security. Indeed, with finer-grained contexts,
the security policy can specify finer-grained properties. For example, a context file-editor
could be associated to the path /usr/bin/vim and/or C:\Windows\bin\notepad.exe In
the following, we note SC the set of all contexts.

SC: The set of all contexts.

Definition 5 (Context). An abstract concept to refer to entities with a (set of) common
characteristic(s).

3.4.1 Traces with Observable Events

The execution platform has a complete view of all traces of the system. For the sake of
clarity, let’s take the example of processes running on top of the OS kernel. System calls
(executed in kernel space) e.g., sys_read, sys_write, sys_fork, are made from an entity
to another one (potentially newly created in the fork case). In current Linux kernels, the
Linux Security Module (LSM) [121] provides all needed kernel hooks to generate system
traces from system calls. However, these hooks only occur before system calls and cannot
see whenever a call ends. These pre-call hooks are not sufficient to represent the duration
of an event and a fortiori the concurrency between two overlapping calls. In the following,
we suppose to be able to capture begin and end events of any call. One should note it is

54

CHAPTER 3. FORMALIZATION 3.4. SYSTEM MODEL

possible to implement such module in any Linux kernel [19]. The same could be done for
network flows by creating a netfilter plugin1.

An observable event (Definition 6) is an atomic event viewed by an observer e.g., the
kernel. It is a triple pa, eop, bq where a, b are contexts and eop is an elementary operation,
for instance palice, begin_read, logsq.

EOP : set of elementary operations (begin_read, . . .)
OE : set of observable events (SC ˆ EOP ˆ SC)

Definition 6 (Observable Event).

oe P OE ”def pa, eop, bq where

#

a, b P SC
eop P EOP

The low-level trace (Definition 7) produced by the system is a set of observable events.
Figure 3.5 shows an example of trace for a system composed of three entities (a, b, c), a
read operation has finished and a write operation is still occurring (no ending event).

Definition 7 (Trace of observable events).
T ”def toe1, oe2, . . . , oenu where oei P OE

Figure 3.5: Trace of observable events

3.4.2 Traces with Functional Events

Observable events are discrete events: they occur at a precise point in time. Nevertheless,
read and write operations programmers are familiar with, last for a certain period of time:
they are continuous events we call functional events.

With begin and end events, we can build the corresponding functional event (Def-
inition 8) including the functional operation e.g., read, write. An entity may perform
multiple functional operations in parallel. Let’s suppose a context a is reading twice
a context b e.g., two entities with the context a read a file with the context b. To
correctly associate the end event and the begin event, an observer must discriminate
the two parallel read operations even if the sources and the destinations are identical.
Therefore, we suppose two functions is_begin_event and is_end_event, determining
respectively if an observable event oei is the beginning of a functional operation op and
if an observable event oej is the ending of a functional operation op starting at oei. For
example, suppose eo1 “ palice, begin_read, logsq. It is the begin event of a read but
eo2 “ palice, end_read, logsq may be the end event of eo1 read operation.

All events in the functional trace (Definition 9) are in the set FE and all operations
in the set FO.

1 http://www.netfilter.org/

55

http://www.netfilter.org/

3.4. SYSTEM MODEL CHAPTER 3. FORMALIZATION

FO: set of functional operations (read, write, . . .)
FE : set of functional events (SC ˆ FO ˆ SC)

The two functions is_begin_event and is_end_event are defined as follows:

is_begin_event: OE ˆ FO Ñ ttrue, falseu
is_end_event: OE ˆOE Ñ ttrue, falseu

A functional event is a continuous event and thus considering a timeframe ri, js, it
occurs at every instant k if the begin event appears before or exactly at time i and the
end event after or exactly at time j.

Definition 8 (Functional Event).

@k P ri, js, pa, op, bqk P FE ”def

$

’

&

’

%

a, b P SC, op P FO
Di1 ď i, oei1 “ pa, eopbegin, bqi1 ^ is_begin_eventpoei1 , opq
Dj1 ě j, oej1 “ pa, eopend, bqj1 ^ is_end_eventpoej1 , oei1q

Definition 9 (Trace of functional events).
T ”def tfe1, fe2, . . . , fenu where fei P FE

Figure 3.6 is the result of projecting observable events of Figure 3.5 into functional
events. In this trace, the first observable event (a, begin_read, b) and the third observable
event (a, end_read, b) are transformed into a functional event (a, read, b) occurring at
every moment between the beginning and the end included.

Figure 3.6: Trace of functional events

3.4.3 Traces with Information Flows

Information flow models differ by their expressiveness and their relations. Nonetheless,
we can outline two common relations/operators:

• The flow-to relation e.g., an information flows from a to b.

• The relabeling operator e.g., an entity labeled with a is relabeled with b.

Relabeling is a classic operator allowing a user to change his identity (e.g., su com-
mand in Linux). In terms of information flow, when transiting from label a to label b,
the entity brings to b all the information he has as a. Therefore, there is a flow from a
to b; the relabeling operation is classified as a write operation.

As a result, we consider only one relation in our information flow traces:

56

CHAPTER 3. FORMALIZATION 3.4. SYSTEM MODEL

A flow from a to b is defined as pa ą bq

To transform functional events into information flows, we introduce two functions
determining if an arbitrary functional operation (op P FO) is equivalent to a read or a
write operation:

is_read_like: FO Ñ ttrue, falseu
is_write_like: FO Ñ ttrue, falseu

The informal semantics of the previous operations are:

• a reads from b: information flows from b to a.

• a writes to b: information flows from a to b.

Definition 10 formally defines the relation (ą) using the functions is_read_like and
is_write_like.

Definition 10 (Flow-to Relation).

pa ą bq P IF ”def Dop P FO

$

’

&

’

%

ppb, op, aq ^ is_read_likepopqq
_

ppa, op, bq ^ is_write_likepopqq

Figure 3.7 is the result of projecting functional events in Figure 3.6 into information
flows. pa, read, bq and pc, write, bq are substituted by pa ă bq and pc ą bq respectively.

Figure 3.7: Trace of information flows

3.4.4 Summary

Instead of directly dealing with IF-traces, we have shown how to obtain them over more
concrete traces. The two functions is_begin_event and is_end_event are sufficient to
model continuous operations (functional events) over atomic ones (observable events).
Then, with the two functions is_read_like and is_write_like, we have described how to
finally obtain IF-traces.

The reader should note that despite we used the OS/kernel trace, the approach is
not limited to this type of systems and has been historically applied to mobile systems
(Android), JVM clusters and hypervisors [19] and could be applied to network flows,
application services [48] or even to cryptographic primitives.

57

3.5. SECURITY PROPERTIES: IF-PLTL CHAPTER 3. FORMALIZATION

3.5 Security Properties: Information Flow Past Linear
Time Logic

After presenting how to transform “real” low-level events into information flows, we
can now reason solely on these flows.

In runtime verification, we consider a unique finite trace representing the history of
the current execution. Our goal is to verify a vast range of trace properties. We adopt the
same definition of trace properties (Definitions 11) as defined by Clarkson et al. in [35].
We recall that a trace property is expressed on traces that come from a single observer
e.g., the kernel.

Definition 11 (Trace Property). A set of infinite traces.

3.5.1 Temporal Many-Sorted Logic with Information Flow

In order to model trace properties, we need amany-sorted first-order temporal logic
on information flows.

Temporal A temporal logic implicitly defines the flow of time over which formulas
are evaluated. It allows making statements on past events such as “Alice cannot get
information from Charlie if Bob has previously sent information to him”.

First-Order A first-order logic allows using quantifiers to express properties such as:
There is a context a from which flows are initiated.

Many-sorted Finally, a many-sorted logic, as opposed to a single-sorted logic, allows
defining several sorts of domains instead of an homogeneous domain of discourse over
which a quantifier iterates. With single-sorted logic, in the formula @xP pxq, variable x
can range over any value under a single domain of discourse. To make sense, this domain
should contain entities of same “kind” e.g., contexts. But, in practice, we need to represent
logical groups of contexts called domains e.g., assign Alice and Bob to groups like Users or
Admins. One possibility would be to represent groups as predicates e.g., Adminspaliceq
would be true if Alice is an administrator. But then, iterating over domains and express-
ing properties such as “Any contexts of any domains other than Admins may not send
information to Alice” would require the power of second-order logic which poses several
decidability and complexity issues we would not detail here.

Instead, using multiple sorts easily allows us distinguishing contexts and domains
without requiring to use a second-order logic. Quantifiers are sorted and iterate over a
single sort e.g., contexts with @ctxx or domains with @domd.

In the following, we first give general definitions of a many sorted signature i.e., the
non-logical symbols of a many-sorted logic, to further detail the concrete signature of
IF-PLTL.

Let’s describe a many-sorted signature (Definition 12).

Definition 12 (Many-Sorted Signature). A many-sorted signature is a tuple Σ “

pS,C, F, P q where:

58

CHAPTER 3. FORMALIZATION 3.5. SECURITY PROPERTIES: IF-PLTL

• S “ tσ1, . . . , σnu where n ą 0 and σi is a sort.

• C “ tc1, . . . , cnu where n ě 0 and ci is a constant symbol of sort σ P S.

• F “ tf1, . . . , fnu where n ě 0 and fi is a function symbol of arity2 m ě 0 with sorts
pσ1 ˆ . . .ˆ σmq Ñ σ where σi P S and σ P S.

• P “ tp1, . . . , pnu where n ě 0 and pi is a predicate symbol of arity m ě 0 with sorts
pσ1 ˆ . . .ˆ σmq where σi P S.

Past-LTL

We can make implicit temporal information by using PLTL (Past-LTL) modalities [22,
98]. PLTL is a well-known formalism to express safety and liveness properties in con-
current systems. As a many-sorted logic is well-suited to specify IF properties, PLTL is
well-suited to express temporal IF properties.

We would like to highlight that the goal is to decide if an event is allowed/forbidden
according to past (and current) flows. Moreover, as explained before, we construct the
trace as the system progresses i.e., the future has yet to happen; any property on the
future is unsatisfiable. Therefore, only pure-past PLTL modalities are satisfiable on
dynamic traces. As a result, we consider the following PLTL modalities:

1. Y pϕq (Previous): ϕ had to hold at the previous state.

2. Hpϕq (Globally in the past): ϕ had to hold on the entire subsequent path.

3. P pϕq (Eventually in the past): ϕ eventually had to hold (somewhere on the
subsequent path).

4. pϕ1qSpϕ2q (Since): ϕ1 had to hold since ϕ2 held.

2 The arity of a symbol is the number of “parameters” it takes

59

3.5. SECURITY PROPERTIES: IF-PLTL CHAPTER 3. FORMALIZATION

The modalities P and H are derived modalities and can be defined from the S modality
as follows:

Pϕ ” JSϕ
Hϕ ” P ϕ

In the rest of this chapter, we will only use the past modalities S and Y as others can be
rewritten into S-only formulas.

Although only pure-past modalities can be used in formulas, a security policy must
be true at any point in time from the initialization of the system. Accordingly, we add
LTL modality G:

• Gpϕq (Globally in the future): ϕ has to hold on the entire subsequent path.

As a result, a policy Ψ is defined as Gpϕq where ϕ is a closed pure-past IF-PLTL
formula. A closed formula (also ground formula) is a formula without any free variables.
For instance, P pxq is not closed as x is a free variable i.e., there is no quantifier preceding
x whereas @xP pxq is a closed formula. A free variable is not quantified and can take any
values.

3.5.2 IF-PLTL Syntax

The syntax describes how to construct well-formed formulas of our logic. A formula is
well-formed when it is part of our formal language. In other words, a non-well-formed
formula cannot be interpreted by our system: the formula has no meaning.

We first give the signature for temporal information flows and then describe the for-
mation rules. To define the set C of constants, we use SC the set of contexts and introduce
SD the set of domains.

Signature

ΣIF´PLTL “ pS,C, F, P q

S “ tctx, domu

C “ SC Y SD

F “ H

P “

tą," : ctxˆ ctx
P : ctxˆ domain
P : domainˆ domain
« : ctxˆ ctx
« : domainˆ domainu

60

CHAPTER 3. FORMALIZATION 3.5. SECURITY PROPERTIES: IF-PLTL

We consider two sorts ctx and dom to designate contexts and domains i.e., sets of
contexts. Similarly to IF-traces, the flow-to relation (ą) is naturally defined between
contexts. We also introduce the indirect flow relation ("), the transitive closure of the
direct flow-to relation (ą); it is inferred from a sequence of direct flows. For example,
the IF-trace in Figure 3.7 (Page 57) satisfies the property c " a at the second and third
moments because of the indirection c ą b and b ą a.

The set membership relation (P) is firstly defined between a context and a domain
but also between domains to allow the specification of hierarchical sets. For example,
suppose a context a, a domain Set and a domain SuperSet, we can define hierarchical
relations where a P Set is true, Set P SuperSet is true and a P SuperSet is false.

Finally, we consider the equality relation («) defined between either contexts or do-
mains.

As we do not need any function, the set of functions F is empty.

Formation rules

Σ-TERM t ::“ xσ | cσ | fpt1, . . . , tnq where

$

’

’

’

&

’

’

’

%

xσ is a variable of sort σ.
cσ is a constant symbol of sort σ.
f : σ1 ˆ . . .ˆ σn Ñ σ is a function symbol
with Σ-TERM ti of sort σi.

Σ-ATOM a ::“ ppt1, . . . , tnq where p : σ1 ˆ . . .ˆ σn is a predicate symbol with ti Σ-TERM of
sort σi.

Σ-FORMULA ϕ ::“ a | ϕ | ϕ1 ^ ϕ2 | Dσxϕpxq | Y pϕq | ϕ1Sϕ2 where a is a Σ-ATOM and x a
variable of sort σ

Atoms and formulas can be enriched with the classical syntactic sugar, namely:

ϕ1 _ ϕ2 ” p ϕ1 ^ ϕ2q

@σxϕpxq ” pDσx ϕpxqq
pa R sq ” pa P sq

We give some abbreviations for simplicity in formulas expression:

p@x P yqϕpxq ” p@xq
`

px P yq Ñ ϕpxq
˘

pDx P yqϕpxq ” pDxq
`

px P yq ^ ϕpxq
˘

Well-formed formula

Let’s give an example of a well-formed formula:

Gpp@ctxa, bqpDdomsqpa ą bq ^ pa P sq Ñ pb P sqq

This formula states that at every moment of the execution, for any pair a, b of contexts,
there is a domain s such as if information flows from a to b and a is in domain s, then b
is also in domain s.

61

3.5. SECURITY PROPERTIES: IF-PLTL CHAPTER 3. FORMALIZATION

3.5.3 IF-PLTL Semantics

The semantic describes how to evaluate any well-formed formula of IF-PLTL. First, we
define a FO many-sorted structure (Definition 13) obtained at every moment of the
execution; there is no temporal notions in such structure. Next, we define a FO temporal
structure (Definition 14) interpreting the flow of time. Then, we give the definition of
the satisfaction relation (|ù) between an IF-PLTL structure and an IF-PLTL formula.

A FO many-sorted structure M1 is composed of a domain D and an interpretation
function I. The domain is a set of all objects of sorts ctx, dom. The interpretation
function defines the meaning of all symbols appearing in a formula (without temporal
modalities).

Definition 13 (A First-Order Many-Sorted Structure).
A FO-many-sorted ΣIF´PLTL-structure (or model) is a tuple M1 “ pD, Iq with:

1. D “
Ť

σPS Dσ a many-sorted domain with Dσ a non empty domain. @σ1, σ2 P

S,Dσ1 XDσ2 “ H.

2. I an interpretation function over D satisfying the following properties:

(a) Each sort σ P S is mapped to a non empty domain Dσ.

(b) Each constant symbol c P C of sort σ is mapped to an element cI P Dσ.

(c) Each function symbol f P F of sorted arity σ1 ˆ . . . ˆ σn Ñ σ is mapped to a
function fI : Dσ1 ˆ . . .ˆDσn Ñ Dσ.

(d) Each predicate symbol p P P of sorted arity σ1ˆ . . .ˆσn is mapped to a subset
pI Ď Dσ1 ˆ . . .ˆDσn.

A FO temporal structure M is composed of a flow of time F , the same domain D and
a function A associating every moment of the execution to a FO many-sorted structure
previously introduced.

Definition 14 (A First-Order Temporal Structure).
A FO-temporal ΣIF´PLTL-structure (or model) is defined by M “

〈
F ,D,A

〉
with:

1. F “
〈
T,ă

〉
a strict linear order representing intended flow of time with T Ď N.

2. D “
Ť

σPS Dσ a many-sorted domain with Dσ a non empty domain. @σ1, σ2 P

S,Dσ1 XDσ2 “ H.

3. A a function associating with every moment k P T a first-order many-sorted struc-
ture Apkq “

〈
D, Ik

〉
with Ik the interpretation at moment k.

We use the notation pM, kq for the FO many-sorted structure at moment k.
The satisfaction relation (or truth-relation) pM, kq |ù ϕ between a model (structure)

M and a formula ϕ at the moment k is defined as follows:

62

CHAPTER 3. FORMALIZATION 3.5. SECURITY PROPERTIES: IF-PLTL

pM, kq |ù pa « bq iff pa « bq P Ikp«q
pM, kq |ù pa ą bq iff pa ą bq P Ikpąq
pM, kq |ù pa P sq iff pa P sq P IkpPq
pM, kq |ù pa " bq iff pM, kq |ù pa ą bq or

Di, p0 ď i ď kq, Dctxc,

$

’

&

’

%

pM, kq |ù pc ą bq

and
pM, iq |ù pa " cq

pM, kq |ù ϕ iff pM, kq |ù ϕ
pM, kq |ù ϕ1 ^ ϕ2 iff pM, kq |ù ϕ1 and pM, kq |ù ϕ2

pM, kq |ù Dσxϕpxq iff pM, kq |ù ϕrxI{xs for some xI P Dσ
pM, kq |ù Y ϕ iff 0 ă k and pM, k ´ 1q |ù ϕ

pM, kq |ù ϕ1Sϕ2 iff Di, p0 ď i ď kq,

$

’

&

’

%

pM, iq |ù ϕ2

and
@j, pi ă j ď kq, pM, jq |ù ϕ1

Satisfiability

As previously explained, the existence of a future state is unsatisfiable for a dynamic
trace (constructed as events occur). Here, we make two general observations:

Observation 1. In the general case, a model M at moment k can satisfy a theory T (set
of closed formulas), but not at moment k ` 1.
pM, kq |ù T ùñ pM, k ` 1q |ù T

Observation 2. In the general case, a model M would not satisfy a theory T at moment
k, but could at moment k ` 1.
pM, kq |ù T ùñ pM, k ` 1q |ù T

Let’s clarify observations 1 and 2. Suppose a theory forbidding information to directly
flow from an entity a to another entity b i.e., pa ą bq. If at moment k, a has never sent
any information to b, then the theory is satisfied. Now, if a sends information to b at
moment k ` 1, then the property is not satisfied, which concludes Observation 1. In the
opposite, suppose a theory compelling information to directly flow from an entity a to
another entity b that is pa ą bq. If at moment k, a has never sent any information to b,
then the theory is not satisfied. Now, if a sends information to b at moment k ` 1, then
the property is satisfied, which concludes Observation 2.

Isolation

An important problem in distributed systems with a large number of users such as
Clouds is the isolation between users. We propose the following definition of isolation:

Definition 15 (Isolation).
Two entities A and B are isolated from each other in a system if there is no direct or
indirect flow between A and B inside this system.

63

3.6. DYNAMIC MONITORING CHAPTER 3. FORMALIZATION

Applied to groups, this property can be translated in IF-PLTL as:

(@u1 P D1qp@u2 P D2q pu1 " u2q ^ pu2 " u1q

Accordingly, to enforce the isolation between the two users of our example shown in
Figure 3.2, we just need to specify 2 groups: DAlice (that contains the Alice user) and
DBob (that contains the Bob user).

3.6 Dynamic Monitoring

Even if our primary goal is to prove the equivalence between a global property and a
set of local properties (see Section 4.1), a dynamic monitor can be designed to encompass
the full expressivity of IF-PLTL with higher complexity in space and time than traditional
mechanisms.

This section describes the Decision and Memory boxes of the IF-PLTL monitoring
architecture depicted in Figure 3.3. To that end, a valuation operator v.wk is introduced
to better understand what data needs to be kept from time step to time step and then a
full decision algorithm is given and its complexity discussed.

3.6.1 Memory

In order to evaluate if a system’s trace satisfies a given IF-PLTL formula at a given
moment k, some information from previous moments (before k) is required. Storing the
complete trace up to moment k would be correct but would require a linearly increasing
amount of memory as time passes. The present section introduces a more efficient way
to store information.

A first thing to notice is that, according to the satisfaction relation (defined in Sec-
tion 3.5.3), only three relations require information from the past: S, Y and ".

For example, suppose

ψ “ p@ctxxqY px ą Aliceq ^ pBob ą xq

The satisfaction of ψ at moment k depends on moment k ´ 1 due to the Y operator.
More specifically, the satisfaction of ψ depends on occurrences of events of the form
x ą Alice at moment k ´ 1. Since there is no other occurrence of S, Y or " in ψ,
only these events are relevant to compute the satisfaction. All other events can safely be
forgotten.

To generalize this observation, we introduce a valuation operator vϕwpM,kq which as-
sociates to a formula ϕ with free variables all the assignments for these variables which
satisfy ϕ at moment k according to model M. We simplify this notation by writing vϕwk,
the model M being implicitly defined.

The valuation vϕwk can take up to three forms:

• trsu the tautology;

64

CHAPTER 3. FORMALIZATION 3.6. DYNAMIC MONITORING

• trx1 : δ1 . . . xn : δns
˚u the list of valid assignment vectors (substitutions such as ϕ is

true);

• H the falsity.

The operators Y, X and t.u are defined as the usual sets operators, namely the set
union, the set intersection and the set complement over domain of discourse D. However,
we introduce a small subtlety: the compact vector.

Let’s suppose two sets of compact vectors (S1, S2) with x0, . . . , xi, xi`1 free variables:

S1 “ t

»

—

–

x0 : v0
...

xi : vi

fi

ffi

fl

u and S2 “ t
“

xi`1 : vi`1

‰

u

The free variable xi`1 does not appear in S1 meaning that it is not a free variable in
the formula whose valuations are S1. Thus, any value of xi`1 in S1 is also a solution.
As a result, S1 can be unfolded with all values vji`1 P |D|. The unfolded result Sunfold1 is
given herebelow:

Sunfold1 “ t

»

—

—

—

–

x0 : v0
...

xi : vi
xi`1 : v0

i`1

fi

ffi

ffi

ffi

fl

,

»

—

—

—

–

x0 : v0
...

xi : vi
xi`1 : v1

i`1

fi

ffi

ffi

ffi

fl

, . . . ,

»

—

—

—

–

x0 : v0
...

xi : vi
xi`1 : v

|D|
i`1

fi

ffi

ffi

ffi

fl

u

The same unfolding operation can be applied on S2 and thus the set operators apply
without changing their semantics. For example, the compact results of X and Y are:

S1 X S2 “ t

»

—

—

—

–

x0 : v0
...

xi : vi
xi`1 : vi`1

fi

ffi

ffi

ffi

fl

u and S1 Y S2 “ t

»

—

–

x0 : v0
...

xi : vi

fi

ffi

fl

,
“

xi`1 : vi`1

‰

u

This compact form is compliant with our tautology and falsity definitions.
And finally, removepL, xq is the vector operator removing key x from vector L.
The rules to compute the valuation can be directly deduced from the IF-PLTL satis-

faction relation:
va « bwk “ tra : xI , b : xIs | @xI P Dctxu

va ą bwk “ tra : xI , b : yIs | @xI , yI P Dctx, pxI ą yIq P Iku

va P swk “ tra : xI , s : yIs | @xI P Dctx, @yI P Ddom, xI P yIu

v ϕwk “ vϕwk

vϕ1 ^ ϕ2w
k
“ vϕ1w

k
X vϕ2w

k

vDσxϕpxqw
k
“ tremovepL, xq | L P vϕpxqwku

vY pϕqwk “ vϕwk´1

vpϕ1qSpϕ2qw
k
“ vϕ2w

k
Y pvϕ1w

k
X vpϕ1qSpϕ2qw

k´1
q

65

3.6. DYNAMIC MONITORING CHAPTER 3. FORMALIZATION

So far, all valuations at moment k depend only on moment k and valuations at moment
k´ 1. This is a desirable property since we want to limit memory usage. The case x " y
is more difficult and building a rule for it straight from the satisfaction relation would
require storing events further in the past. To avoid this, we propose to compute vx " ywk

from a reachability list. If pa ą bq P Ikpąq i.e., event pa ą bq occurs at k then:

@x, if a P reachpxq then reachpxq Ð reachpxq Y tbu

As a result, px " yq valuations are defined as:

vx " ywk “ tpx, yq | y P reachpxq ^ Dz, pz ą yq P Ikpąqu

Overall, it is possible to compute satisfaction of a formula from an up-to-date reachability
list and from up-to-date valuations of every subformula ψ such that Y pψq or Spψq appears
in Ψ. We denote subfmpΨq this set of subformulas which is the set of all formulas to be
monitored.

Memory-wise, this is a more efficient approach than storing all events. Its complexity
is discussed further in Section 3.6.3.

3.6.2 Monitoring Algorithm

This section presents the decision algorithm itself and how memory is updated. Let’s
recall that decision occurs within the architecture presented in Figure 3.3. More pre-
cisely, the Decision box receives information flow events one-by-one and is responsible
for accepting or rejecting them and for updating the memory.

Let’s assume that the policy to be enforced is GpΨq where Ψ is a closed formula.

Initialization

At startup, the list of subformulas whose valuations are to be computed is established.
As we have seen in the previous section, this list comprises the subformulas of subfmpΨq.
This list is initialized at startup as a list of vectors of valuations and is denoted valpre.
The initial (empty) reachability list is also initialized at startup and is denoted reachpre.

During Execution

Upon reception of an information flow event, the Decision box of our monitoring
architecture executes the following algorithm:
Variables: reachpre, valpre,Ψ
upon event px ą yq do
reachnew Ð ADDREACH(reachpre, x ą y)
INIT(valnew)
for all ϕ P subf(Ψ) do
{Monitored subformulas ordered by depth-inverse}
valnewrϕs Ð COMPUTEVAL(ϕ, valpre, valnew)

if SAT(Ψ, valnew) then
UPDATE(reachnew, valnew)

66

CHAPTER 3. FORMALIZATION 3.6. DYNAMIC MONITORING

ACCEPTpx ą yq
else

REFUSEpx ą yq

Upon reception of an event, it is not yet known if this event is going to be accepted
or not. Thus, the algorithm cannot update valpre and reachpre right away and must work
with local copies called valnew and reachnew. The INIT function initializes an empty
valnew in a way similar to the initialization of valpre. The function ADDREACH updates
the reachability list with a new event (as described in Section 3.6.1) and returns the new
updated list which is stored in reachnew.

Then, updated valuations are computed using the valuations rules given in Sec-
tion 3.6.1 which are implemented by function COMPUTEVAL. To achieve that, the valu-
ations of the monitored subformulas are computed in a depth-inverse fashion (i.e., smaller
subformulas first). Valuations of subformula ψ at moment k depend on valuations at mo-
ment k and k´1 of subformulas which appear in ψ itself. By ordering the computations,
we make sure that computed valuations depend only of valuations already computed.

After the valuations have been computed, the satisfaction of Ψ is evaluated with the
SAT function. SAT is based on the same valuation rules as COMPUTEVAL but it does
not need to compute all valuations for Ψ and its result is not stored. Indeed, a single
valuation which satisfy Ψ is enough to return true while false is returned if there is no
such valuation.

If SAT returns true then the event satisfies Ψ and is thus accepted. ACCEPT trans-
mits the information that the event is accepted to the Event interposition box of the
monitoring architecture. In this case, the event will take place and the memory must be
updated accordingly. The UPDATE function accomplishes this by simply storing valnew
and reachnew instead of valpre and reachpre in the Memory box.

If SAT returns false then the event does not satisfy Ψ and must be rejected. REFUSE
transmits the information to the Event interposition box of the monitoring architecture.
In this case, the event will not take place and thus memory is not updated.

3.6.3 Complexity Analysis

Let Ψ be a formula to evaluate with regard to model M and D be the domain of
discourse of M. The complexity of the algorithm presented above can be decomposed as
follows:

Space

The overall space required by the algorithm consists of the space taken by valpre, valnew,
reachpre and reachnew. valpre and reachpre are the contents of the Memory box in Fig-
ure 3.3 while valnew and reachnew are temporary spaces initialized upon reception of an
event and freed upon decision (see Section 3.6.2). In the following, we simply denote val
and reach and do not distinguish between memory and temporary structures (since they
have the same size).

67

3.6. DYNAMIC MONITORING CHAPTER 3. FORMALIZATION

First, we can decompose the size of val into the sizes of its elements:

spacepvalq “
ÿ

ϕPsubfmpΨq

spacepvalrϕsq

At worst, the space taken by the valuations for a given subformula ϕ (using compact
vectors) is all the possible valuations for the free variables of ϕ:

spacepvalrϕsq “ |D|freepϕq ď |D|maxfreempΨq

Where freepϕq is the number of free variables in ϕ and:

maxfreempΨq “ maxϕPsubfmpΨq freepϕq

This gives us the following upper bound overall:

spacepvalq ď
ÿ

ϕPsubfmpΨq

|D|maxfreempΨq ď |subfmpΨq| ˆ |D|maxfreempΨq

The space taken by reach is easier to assess. Indeed reach is a function from D ˆD
to t0, 1u. Thus:

spacepreachq “ Op|D|2q
Overall, the space complexity of our algorithm is:

Op|subfpΨq| ˆ |D|maxfreempΨq ` |D|2q

Time

The overall time to process an event depends on ADDREACH, COMPUTEVAL and
SAT.

ADDREACH consists in adding a new context (a Op1q operation) to the reachability
list of every context (of which there are at most |D|). Thus:

timepADDREACHq “ Op|D|q

As we noted in Section 3.6.2, SAT is a simpler problem than COMPUTEVAL. The overall
complexity of both functions will thus be dominated by COMPUTEVAL.

COMPUTEVALpϕq consists in going recursively through the subformulas of ϕ and
applying valuation rules (see Section 3.6.1).

The bottom cases of this recursion are 1) encountering a valuation which can be com-
puted immediately (i.e., «, ą or P); 2) encountering a S or Y operator whose valuation
has already been computed. It is not possible to encounter a S or Y operator whose
valuations have not yet been computed since we have sorted the monitored subformu-
las so as to avoid this case (see Section 3.6.2). Consequently, over the execution of all
the COMPUTEVAL instances (i.e., the entire for loop), the number of valuation rules
applied is exactly the number of operators in Ψ which we denote nbopspΨq.

Even with naive implementations of the set operations, their complexity is in Opp|D|ˆ
maxsq2q where maxs is the size of the largest valuation vector set which appears in the

68

CHAPTER 3. FORMALIZATION 3.7. EVALUATION

operation. The maximum number of valid valuation compact vectors for subformula ϕ is
|D|freepφq since only free variables appear in compact vectors.

Let us denote:
maxfreepΨq “ maxϕPsubfpΨqfreepϕq

where subfpΨq is the set of all subformulas of Ψ. Note that subf and thus maxfree are
different from subfm and maxfreem since they consider all subformulas instead of only
those which must be monitored.

With this notation, we can write the following upper bound on the size of a valuation
set in Ψ:

@ϕ P subfpΨq, |vϕwk| ă |D|maxfreepΨq

So the overall complexity of a full for loop of COMPUTEVAL runs is bounded by:

OpnbopspΨq ˆ |D|2ˆpmaxfreepΨq`1qq

Which dominates the complexity of ADDREACH and is thus the overall time com-
plexity of our algorithm.

Discussion

Neither space nor time complexity depend on k which is a very important property. It
means that, even in very long executions, monitoring time and memory overheads stay
below a bound which depends only on the policy formula and the domain of discourse.

The efficiency of the set operations could very likely be improved and would reduce
the exponent in the time complexity.

The exponents which depend on the number of free variables in subformulas cannot
easily be improved. Indeed, a large maxfree means that a large number of quantificators
are nested which is an intrinsically complex case.

3.7 Evaluation

This section presents an evaluation of our dynamic monitoring algorithm on the Alice-
Bob use-case, where the goal is to enforce the isolation policy between Alice and Bob.
Thereafter, we discuss specification of security policies.

3.7.1 Isolation Policy

The wanted isolation policy can be described, with IF-PLTL, as follows:

Ψ “ Gp pAlice " Bobq ^ pBob " Aliceqq

Let’s suppose the scenario depicted in Figure 3.8 with two domains A (Alice, WorkerA,
AppA) and B (Bob, WorkerB, AppB). Moreover, AppA and AppB share File.

69

3.7. EVALUATION CHAPTER 3. FORMALIZATION

Figure 3.8: Indirect path scenario with Alice and Bob .

The needed sets are configured as follows:

Ddom “ tA,Bu

A “ tAlice,WorkerA,AppAu

B “ tBob,WorkerB,AppBu

Dctx “ AYB Y tFileu

Table 3.1 shows each monitoring step of the isolation policy Ψ on the trace represented
by Figure 3.8. Upon a new flow event, the reach structure is augmented with it. For
example, at k “ 2, the flow pWorkerA ą AppAq implies that AppA is reachable from
WorkerA but also from Alice due to the presence of WorkerA in Alice’s reachability
list. However, at k “ 6, as a consequence of the flow pWorkerB ą Bobq, Bob becomes
reachable from Alice. Then, the formula Alice " Bob is true leading the policy Ψ to be
unsatisfied. Therefore, the event generating the flow pWorkerB ą Bobq must be denied
and our monitor rollbacks to the previous state k “ 5. This concludes the enforcement
of policy Ψ.

3.7.2 Discussion

As shown previously, the isolation policy is enforced regardless of what event happens;
it encompasses many unexpected scenarios other monitors cannot. Let’s suppose an
other scenario where File is a legit configuration file this time; it should not receive any
information. Then, the policy can be modified as follows:

Ψ2 “ Ψ^Gpp@ctxxq px ą Fileqq

With policy Ψ2, any attempt to write File will be denied but any other indirect path
will still be taken into account. In our opinion, it is up to the security officer to specify
a policy in accordance with the system’s expected behavior.

70

CHAPTER 3. FORMALIZATION 3.8. CONCLUSION

We have presented our logic as an “ideal” security mechanism. But one of our goal
is to have a correspondence between a configuration of a protection mechanism such
as SELinux and a formula in IF-PLTL. Though configurations are out of the scope of
this Thesis as they are achieved by project partners, we want to show the intuition in
Table 3.2.

3.8 Conclusion

In this chapter, we have hightlighted the lack of suitable formalism of security policies
for distributed systems. Indeed, we need to encompass direct and indirect information
flows while having a mechanism agnostic language. Therefore, we have proposed IF-
PLTL (Information-Flow Past Linear Time Logic). We have shown that information flow
cannot be captured directly but they are obtained from low-level events. Accordingly, in
Section 3.4, we have detailed how to construct Information Flow Traces from Observable
Events Traces. Then, we have described IF-PLTL syntax and semantics.

Moreover, we have shown the merit of IF-PLTL and its capacity to express any in-
formation flow trace property which are inherently temporal. Our primary goal is to
distribute a global property into multiple local properties we know how to enforce us-
ing several local mechanims. Using IF-PLTL, we present in Section 4.1 the equivalences
enabling this transformation.

Nonetheless, we have presented a dynamic monitor that can enforce any IF-PLTL
formula. However, the complexity in time and space of this monitoring algorithm is too
high to become popularized in practice.

In the future, we will propose methods to ensure the composability of different prop-
erties. We will also work on how IF-PLTL properties can be split to be used by a set
of collaborating observers, in particular, with observers at different Cloud layers (IaaS,
PaaS and SaaS). An interesting work would be to determine whether an IF-PLTL theory
is coherent or not.

71

3.8. CONCLUSION CHAPTER 3. FORMALIZATION

k
E
vent

reach
A
lice

"
B
ob

B
ob
"
A
lice

S
A
T
pΨ
q

1
pA
lice

ą
W
ork

erA
q

A
lice

Ñ
tW

ork
erA

u
false

false
tru

e
2

pW
ork

erA
ą
A
ppA

q
A
lice

Ñ
tW

ork
erA

,A
ppA

u
false

false
tru

e
W
ork

erA
Ñ
tA
ppA

u

3
pA
ppA

ą
F
ile
q

A
lice

Ñ
tW

ork
erA

,A
ppA

,F
ile
u

false
false

tru
e

W
ork

erA
Ñ
tA
ppA

,F
ile
u

A
ppA

Ñ
tF
ile
u

4
pF
ile
ą
A
ppB

q
A
lice

Ñ
tW

ork
erA

,A
ppA

,F
ile,A

ppB
u

false
false

tru
e

W
ork

erA
Ñ
tA
ppA

,F
ile,A

ppB
u

A
ppA

Ñ
tF
ile,A

ppB
u

F
ile
Ñ
tA
ppB

u

5
pA
ppB

ą
W
ork

erB
q

A
lice

Ñ
tW

ork
erA

,A
ppA

,F
ile,A

ppB
,W

ork
erB

u
false

false
tru

e
W
ork

erA
Ñ
tA
ppA

,F
ile,A

ppB
,W

ork
erB

u

A
ppA

Ñ
tF
ile,A

ppB
,W

ork
erB

u

F
ile
Ñ
tA
ppB

,W
ork

erB
u

A
ppB

Ñ
tW

ork
erB

u

6
pW

ork
erB

ą
B
ob
q

A
lice

Ñ
tW

ork
erA

,A
ppA

,F
ile,A

ppB
,W

ork
erB

,B
ob
u

tru
e

false
false

W
ork

erA
Ñ
tA
ppA

,F
ile,A

ppB
,W

ork
erB

,B
ob
u

A
ppA

Ñ
tF
ile,A

ppB
,W

ork
erB

,B
ob
u

F
ile
Ñ
tA
ppB

,W
ork

erB
,B
ob
u

A
ppB

Ñ
tW

ork
erB

,B
ob
u

Table 3.1: Interpretation and satisfaction of the isolation between A and B.
72

CHAPTER 3. FORMALIZATION 3.8. CONCLUSION

Acces Control IF-PLTL
a read b b ą a
a write b a ą b
no-read-up

Gpp@h P Highqp@l P Lowq ph ą lqqno-write-down
confidentiality(S, A) p@x P Sqp@yqpx ą yq Ñ py P S ^ y P Aq
integrity(S, A) p@x P Sqp@yqpx ă yq Ñ py P S ^ y P Aq

Table 3.2: Correspondence between Access Control and IF-PLTL.

73

3.8. CONCLUSION CHAPTER 3. FORMALIZATION

74

Chapter 4

Security Deployment for Virtualized
Distributed Systems

In Chapter 2, we have presented our model of virtualized applications and their secu-
rity requirements. These requirements are security properties which formal semantics
have been detailed in Chapter 3. In this chapter, we present how to deploy virtualized
applications on a virtualization-based infrastructure.

Our deployment must consider the enforcement of the application security but also
the underlying infrastructure security. Multiple approaches may be envisioned to enforce
security properties. We propose two complementary solutions. The first one (described
in Section 4.2) is a security-aware placement to enforce security between virtual machines
(inter-VM security) which may belong to the same or different applications. Then, the
second (described in Section 4.3) is the configuration of security mechanisms to provide
security within applications’ virtual machines (intra-VM security). But first, we explain
how a global property can be preprocessed to be enforced by a set of security mechanisms.

4.1 Preprocessing of Security Requirements

A requirement or property may be specified on a set of entities to simplify the speci-
fication step. Typically, a user requires his virtualized application to be isolated from
others. This application may be arbitrarily complex but the isolation property protects
the whole virtualized application from other tenants. It is much easier for the tenant to
state the property relatively to the application rather than to each element of this appli-
cation. However, a property on an abstract group cannot be directly enforced (i.e., by
a single security mechanism), especially if the group combines different types of entities
e.g., virtual machines and virtual networks.

In this section, thanks to our formal system which allows for reasoning about (explicit)
properties, we first give some equivalences between a property on a set of entities and
a set of properties on each individual entity. Then, based on these equivalences, we
detail our algorithms to extend an implicit property presented in Section 2.3.2 to explicit
properties. Finally, still using the equivalences, we propose splitting algorithms which
transform a global property into locally enforceable properties.

75

4.1. PREPROCESSING CHAPTER 4. DEPLOYMENT

4.1.1 Equivalence for Confidentiality, Integrity and Isolation

In this subsection, we detail the equivalence relations for the Confidentiality property.
The approach (and proof) is strictly the same for Integrity and Isolation properties.

Our confidentiality property states that information may flow from a secured set S
to itself or an authorized set A. In our Sam4C modeling language, the property has the
signature (in the sense of function signature) ConfidentialitypS,Aq. The corresponding
definition in IF-PLTL is:

ConfidentialitypS,Aq ”def p@ctxx P Sqp@ctxyqpx ą yq Ñ py P S Y Aq

According to this definition, information may flow from any context x in S to any
context y if y is either in the authorized domain A or in the secured domain S. The
splitting procedure is valid if there is an equivalence between protecting the confidentiality
of the set S and protecting the confidentiality of each entity x in S.

Suppose the set S can be divided into disjoint subsets S1 and S2 that is S “ S1 Y S2

and S1 X S2 “ H, then we have the following equivalence:

ConfidentialitypS,Aq ” ConfidentialitypS1, AY S2q ^ConfidentialitypS2, AY S1q

Proof. In this proof, we simplify the notation @ctx by @ as we do not quantify over other
sorts. We start with the definition of ConfidentialitypA, Sq that is:

p@x P Sqp@yqpx ą yq Ñ py P S Y Aq (P0)

We define S “ S1 Y S2 such as S1 X S2 “ H, then:

(P0) ” p@x P S1 Y S2qp@yqpx ą yq Ñ py P S1 Y S2 Y Aq (P1)

In the previous chapter, we have introduced the simplification:

p@x P yqϕpxq ” p@xq
`

px P yq Ñ ϕpxq
˘

Then we obtain:

(P1) ” p@xq
`

px P S1 Y S2q Ñ
`

p@yqpx ą yq Ñ py P S1 Y S2 Y Aq
˘˘

(P2)

Due to the equivalence between union set and logical disjunction, namely:

px P S1 Y S2q ” px P S1q _ px P S2q

We have:

(P2) ” p@xq
`

ppx P S1q _ px P S2qq Ñ
`

p@yqpx ą yq Ñ py P S1 Y S2 Y Aq
˘˘

(P3)

The implication operator Ñ is defined as:

pÑ q ” p_ q

76

CHAPTER 4. DEPLOYMENT 4.1. PREPROCESSING

Accordingly, we have:

(P3) ” p@xq
`

p px P S1q ^ px P S2qq _
`

p@yqpx ą yq Ñ py P S1 Y S2 Y Aq
˘˘

(P4)

Because of the distributivity of the logical operators ^ and _ that is:

pp^ qq _ r ” pp_ rq ^ pq _ rq

We obtain:

(P4) ” p@xq

$

’

&

’

%

`

 px P S1q _ pp@yqpx ą yq Ñ py P S1 Y S2 Y Aqq
˘

^
`

 px P S2q _ pp@yqpx ą yq Ñ py P S1 Y S2 Y Aqq
˘

(P5)

We use the previous implication operator equivalence:

(P5) ” p@xq

$

’

&

’

%

`

px P S1q Ñ pp@yqpx ą yq Ñ py P S1 Y S2 Y Aqq
˘

^
`

px P S2q Ñ pp@yqpx ą yq Ñ py P S1 Y S2 Y Aqq
˘

(P6)

Finally, the universal quantifier distributes over conjunction, that is:

@xpϕpxq ^ ψpxqq ” p@xϕpxqq ^ p@xψpxqq

It gives us the result:

(P6) ”

$

’

&

’

%

p@xq
`

px P S1q Ñ pp@yqpx ą yq Ñ py P S1 Y S2 Y Aqq
˘

^

p@xq
`

px P S2q Ñ pp@yqpx ą yq Ñ py P S1 Y S2 Y Aqq
˘

(P7)

Which concludes our equivalence:

(P7) ” ConfidentialitypS1, AY S2q ^ ConfidentialitypS2, AY S1q

For the Integrity and Isolation, the same proof (hence split) hold providing the IF-
PLTL definitions given afterwards.

Our integrity property states that information may flow to a secured set S from itself
or an authorized set A, that is:

IntegritypS,Aq ”def p@ctxx P Sqp@ctxyqpx ą yq Ñ py P S Y Aq

Our isolation property is the conjunction of confidentiality and integrity, that is:

IsolationpS,Aq ”def ConfidentialitypS,Aq ^ IntegritypS,Aq

Therefore, we obtain the following equivalences:

77

4.1. PREPROCESSING CHAPTER 4. DEPLOYMENT

IntegritypS,Aq ” IntegritypS1, AY S2q ^ IntegritypS2, AY S1q

IsolationpS,Aq ” IsolationpS1, AY S2q ^ IsolationpS2, AY S1q

In summary, we have presented some equivalences for Confidentiality, Integrity and
Isolation properties stated with direct flows. For more complex properties e.g., with
indirect flows or temporal modalities, new specific yet not trivial equivalences must be
devised. In the next following subsections, we use these equivalences in two ways. First,
we present how to split an implicit property which is easy to specify for a user into explicit
properties we must enforce. Then, we detail how to split an explicit property into locally
enforceable properties i.e., that we know some security mechanisms can enforce directly
and locally on a VM or host.

4.1.2 Implicit to Explicit Properties

As previously said, our Confidentiality, Integrity and Isolation properties have two pa-
rameters, the secured set and the authorized set. In Section 2.3.2, we have discussed the
possibility of specifying implicit properties such as the user does not express the autho-
rized set but only the secured set. In this subsection, we show how an implicit property
can be extended into an explicit property.

We have introduced in Chapter 2 the Security Domain as an abstract group. Fig-
ure 4.1 depicts a security domain Dom comprising 3 VMs i.e., VM1 to VM3 and one
VNet (Virtual Network) Intranet.

Figure 4.1: Sam4C Model with a security domain of 3 VMs and 2 VNets.

Considering the implicit property below, the problem is to determine the correspond-
ing set of explicit properties.

78

CHAPTER 4. DEPLOYMENT 4.1. PREPROCESSING

� �
#property Isolation(Dom);� �

Informally, the virtualized application model (see Figure 4.1) shows that the three
VMs (i.e., VM1, VM2 and VM3) should be able to exchange information through In-
tranet and only VM1 should also communicate with Public meaning the authorized
set will be different for both cases. These characteristics must be preserved when extend-
ing the implicit isolation property.

To do so, we consider the model as a graph where VMs and VNets are nodes and
VLink are edges. The security domain Dom is abstract i.e., it is an alias for the set
tVM1, V M2, V M3, Intranetu. Then, the equivalent property is:� �
#property Isolation({VM1 , VM2 , VM3 , Intranet});� �

We distinguish two secured sets: the border set and the internal set.

Definition 16 (Border Set). Given a set S of nodes, the border set of S includes all
nodes ni such as it exists at least one edge between ni and a node not in S.

Definition 17 (Internal Set). Given a set S of nodes, the internal set of S includes all
nodes ni such as it does not exist any edge between ni and a node not in S.

In Figure 4.1, VM1 is in the border set of Dom, and the others (i.e., VM2, VM3
and Intranet) is in the internal set of Dom.

The virtualized application model is a graph G “ pV,Eq where G is a pair pV,Eq
with V the set of nodes and E the set of edges. We formalize the model’s constraints as
a function Authpx, S,Gq with x a node, S a set of nodes (including x) and G the model
graph. Auth is defined as follows:

Authpx, S, pV,Eqq “

#

S if p@xi P V qpx, xiq P E Ñ xi P S

S Y txi | p@xi P V qpx, xiq P Eu otherwise

We can see that Auth returns S if x is in the internal set and the list of neighbors union
S if x is in the border set. As a result, Auth returns the same set (i.e., S) for any internal
entities and specific sets for any border entities. Then, using our property equivalences,
we define S1 as the border set Sborder and S2 as the internal set Sinternal. The conditions
S “ S1YS2 and S1XS2 “ H both hold. Thus, we have (Prop stands for Confidentiality,
Integrity or Isolation):

ImplicitProppSq ”

$

’

&

’

%

p@xi P SinternalqpPropptxiu, Authpxiq Y Sinternal Y Sborder ´ txiuqq

^

p@xb P SborderqpPropptxbu, Authpxbq Y Sinternal Y Sborder ´ txbuqq

Because Authpxiq “ S for all xi P Sinternal, we have:

p@xi P SinternalqpPropptxiu, Authpxiq Y Sinternal Y Sborder ´ txiuqq

” p@xi P SinternalqpPropptxiu, S Y Sinternal Y Sborder ´ txiuqq

” p@xi P SinternalqpPropptxiu, S ´ txiuqq

” ProppSinternal, S ´ Sinternalq

” ProppSinternal, Sborderq

79

4.1. PREPROCESSING CHAPTER 4. DEPLOYMENT

Therefore, we finally obtain:

ImplicitProppSq ”

$

’

&

’

%

ProppSinternal, Sborderq

^

p@xb P SborderqpPropptxbu, Authpxbq Y Sinternal Y Sborder ´ txbuqq

This equation is used in Algorithm 4.1 to compute the set of explicit properties from
implicit properties. In this algorithm, an implicit property pi is tuple pT, S, gq where T is
the type of property (i.e., Confidentiality, Integrity or Isolation), S the secured set and
g the grade. The grade is the quality of protection as discussed in Section 2.3.2. It can
be viewed as an annotation that is preserved during the procedure.

Algorithm 4.1 Implicit to Explicit Procedure
Input: Pimplicit: set of implicit properties to extend.
Variables: P ÐH

for all pi “ pT, S, gq P Pimplicit do
Sborder Ð listBorder(S)
Sinternal Ð S ´ Sborder
P Ð P Y pT, Sinternal, Sborder, gq
for all x P Sborder do
Aneighbors Ð listNeighbors(x)
P Ð P Y pT, txu, Sinternal Y Aneighbors Y Sborder ´ txu, gq

return P

From our example depicted Figure 4.1, the result of Algorithm 4.1 is:� �
#property Isolation({VM2 , VM3 , Intranet},{VM1});
#property Isolation({VM1},{Public , VM2 , Intranet , VM3});� �
4.1.3 Model-based Property Split

We have presented how to extend an implicit property to an explicit one. Now, the prob-
lem is to determine the result of splitting an explicit property into individual properties.
To do so, we make use of our previous equivalences in two ways. Firstly, we show how to
split a global property i.e., a property with a secured set of entities, to local properties
i.e., properties on individual secured entities. Secondly, the previous local properties are
specified on multiples types of entities e.g., VMs and VNets but most mechanisms are
dedicated to a single type e.g., either to protect VMs or to protect networks. Therefore,
we show how to discriminate different types of entities and split a property into typed
properties i.e., properties where the secured set only contains entities of the same type.

80

CHAPTER 4. DEPLOYMENT 4.1. PREPROCESSING

Local properties split

A local property is a property with an individual secured entity. Therefore, if we denote
e an individual entity in the secured set S then we can instantiate S “ S1 Y S2 with
S1 “ teu and S2 “ S ´ teu. Accordingly, we obtain the following equivalence:

ProppS,Aq ” Proppteu, AY pS ´ teuqq ^ PropppS ´ teuq, AY teuq

Let a property P be a tuple pProp, S,A, gq with Prop the type of property
(e.g., Confidentiality), S the secured set, A the authorized set and g the grade. We
include the grade (as introduced in 2.3.2) to demonstrate that it is preserved through the
procedure, meaning any global property with a required quality of protection (i.e., the
grade) is split into local property with exactly the same quality. Algorithm 4.2 splits a
global property into singleton properties i.e., with a unique element in the secured set.

Algorithm 4.2 Singleton Split Procedure
Variables: P “ pProp, S,A, gq
if |S| “ 1 then
return tP u

PSet “ H
for all x P S do
PSet “ PSetY pProp, txu, AY S ´ txu, gq

return PSet

Let us apply Algorithm 4.2 to the scenario in Figure 4.1. If we consider the following
(explicit) property in input:� �
#property Isolation({VM2 , VM3 , Intranet},{VM1});� �

Then, the result of this singleton splitting procedure is:� �
#property Isolation({VM2},{Intranet , VM3 , VM1});
#property Isolation({VM3},{Intranet , VM1 , VM2});
#property Isolation({Intranet},{VM3 , VM1 , VM2});� �
Typed properties split

In the result given above, the singleton properties contain entities of different types in
the authorized set e.g., Intranet, VM1. Typically, a security mechanism is dedicated
to protect a single type of entity: different mechanisms are used to protect a VNet or
a VM. Accordingly, we propose a second procedure to split our properties into typed
properties that is properties with a single type.

First, we must consider all existing types. In a Security Domain, only two types
exist namely VM and VNet. Then, the IF-PLTL definitions of Confidentiality, Integrity
and Isolation are adapted to reflect the types, we obtain:

81

4.1. PREPROCESSING CHAPTER 4. DEPLOYMENT

ConfidentialitytypepS,Aq ”def p@x P Sqp@y P typeqpx ą yq Ñ py P S Y Aq

IntegritytypepS,Aq ”def p@x P Sqp@y P typeqpx ă yq Ñ py P S Y Aq

IsolationtypepS,Aq ”def ConfidentialitytypepS,Aq ^ IntegritytypepS,Aq

We consider that information may flow between a combination of VNet or VM
e.g., VNet to VM or VM to VM. Providing the authorized set is divided into VMs and
VNets (i.e., @y range only on VMs and VNets), we can easily prove the equivalence:

ProppS,Avm Y Avnetq ” PropVMpS,Avmq ^ PropV NetpS,Avnetq

Algorithm 4.3 Typed Split Procedure
Variables: P “ pProp, S,A, gq
PSettyped “ H
for all type P tvm, vnetu do
Atyped “ tx | x P A^ x P typeu
PSettyped “ PSettyped Y pProptype, S, Atyped, gq

return PSettyped

Let us apply Algorithm 4.3 to the scenario in Figure 4.1. If we consider our previous
singleton properties in input:� �
#property Isolation({VM1}, {Public , Intranet , VM2 , VM3});
#property Isolation({VM2},{Intranet , VM3 , VM1});
#property Isolation({VM3},{Intranet , VM1 , VM2});
#property Isolation({Intranet},{VM3 , VM1 , VM2});� �

Then, the result of this typed splitting procedure is:� �
#property IsolationVM({VM1}, {VM2 , VM3});
#property IsolationVNet({VM1}, {Public , Intranet});

#property IsolationVM({VM2},{VM3 , VM1});
#property IsolationVNet({VM2},{Intranet});

#property IsolationVM({VM3},{VM1 , VM2});
#property IsolationVNet({VM3},{Intranet});

#property IsolationVM({Intranet},{VM3 , VM1 , VM2});
#property IsolationVNet({Intranet});� �

Consequently, given these local typed properties, we must find a mechanism to enforce
each one. For example, we show in Section 4.2 how to enforce the isolation of VM1 from

82

CHAPTER 4. DEPLOYMENT 4.2. PLACEMENT-BASED SECURITY

any other VMs except for VM2 and VM3 using a placement-based strategy. Similarly,
we could enforce the isolation of VM1 from any VNet except for Public and Intranet by
simply configuring only two network interfaces in VM1.

4.1.4 Conclusion

In resume, we have first detailed how to split an implicit property into explicit properties.
Then, we have shown how to split a global (explicit) Confidentiality, Integrity or Isolation
property on VMs and VNets into their local typed counterparts. In future work, this
approach could be extended to other kinds of properties or for properties on entities
within virtual machines e.g., Data, Service. In Section 4.2, we present our solution to
enforce the isolation between VMs only. Then in Section 4.3, we detail our generic solution
based on the configuration of security mechanisms for other properties in particular those
protecting entities within VMs. Enforcing properties on virtual networks is part of our
future work though we discuss a potential solution in the conclusion of this chapter.

4.2 Placement-based Security

In virtualized distributed systems such as Clouds, multitenancy and shared resources
facilitate attacks and thefts by altering the level of isolation between tenants, processes
or virtual machines. While virtualization could be seen as an isolation mechanism between
tenants, we show in this section that it is not the case [103]. Accordingly, it is required
to have another mechanism to enforce the isolation.

Furthermore, the security of a system is as strong as the weakest link. And, even
with a perfect information flow (or access) control mechanism at the system level
(e.g., Hypervisor or Operating system), information can be silently leaked out (or ac-
cessed) by exploiting (unwillingly) unsecured design or implementation; this is called
covert channels. The literature exhibits multiple covert channels attacks that have been
successfully conducted in Cloud environments [103, 123, 124] (e.g., Amazon EC2) thanks
to the shared hardware components between an attacker and a victim. Previous works opt
for different approaches to tackle this issue: detection of attacks, fine-grained tracking of
resources usage and placement algorithms. Placement algorithms under collocation/anti-
collocation constraints specify if 2 VMs can share the same Physical Machine (PM) or
not. Accordingly, they do not take into account any scenarios where sharing resources is
reasonable when measuring information leakage.

In this section, we propose a new resource allocation mechanism under information
leakage constraints. Our mechanism takes into account microarchitectural components as
they are one of the main reasons of covert channels. Moreover, it allows to have a finer-
grained allocation than previous approaches and thus reduces the quantity of resources
wasted due to security constraints. But first, we need a way to present the quantity of
information that can be leaked between 2 applications. While our allocation algorithm
could use any covert-channel metric, due to the lack of proper metric, we propose a new
information leakage metric that can be used by a tenant and is both application and
hardware independent. This metric quantifies information leakage through microarchi-
tectural covert channels based on the achievable bitrate between 2 applications [78, 115].

83

4.2. PLACEMENT-BASED SECURITY CHAPTER 4. DEPLOYMENT

Using this metric, a tenant can express its isolation properties and specify the accept-
able leakage that fits his security needs. For example, banks, governments and medical
establishments usually require more secure setups than research institutes running ex-
periments. Using the virtualized application model and our metric, we propose our new
resource allocation mechanism. Furthermore, we present how we have tackled the speci-
ficity of NUMA (Non-Uniform Memory Access) allocation policies to encompass both
traditional and modern architectures, and proposed a model for our algorithm.

4.2.1 State of the Art

The major problem of virtualization is a weak isolation. Ristenpart et al. [103] discuss
multiple approaches to exploit the co-residency in Cloud environments such as Cross-
VM performance degradation, Denial of Service (DoS) attacks or stealing cryptographic
keys, thus demonstrating the reality of security threats. They have shown the feasibility of
collocating their VMs on the same physical machine as business targets in EC2. This work
demonstrates that virtualization is far from being sufficient to have a secure environment.

In this section, we focus on the isolation problem of VMs sharing the same hardware
and hypervisor. Furthermore, according to our previous definition of isolation, we will
not consider performance interference. Indeed, it does not allow information modification
or leak even if it is due to improper isolation [116].

Microarchitectural Timing Covert Channels

Cloud providers can provide a large range of security mechanisms to prevent unauthorized
information flows. But, despite all the effort, there is still a potential risk of data leakage
in the Cloud, that is covert channels.

A covert channel is an attack which bypasses the control mechanism using legal means
to leak information to unauthorized neighbors. A covert channel breaks the confidentiality
property and thus, the isolation property. Therefore, even a perfect control mechanism
is useless against covert channels.

Covert channels should not be confused with side channels. A covert channel exists
when 2 cooperative entities, let say Trojan and Spy, use a common protocol to com-
municate or exfiltrate information. For a side channel, only one process, the Spy, collects
unwillingly disclosed information. Because the leaking process can be considered as an
unintentional Trojan, we argue that side channels are special cases of covert channels.
Recent exploits (e.g., Heartblead, Ghost) have shown the easiness of remotely upload-
ing and executing a malicious code. Side and covert channels may exist at any layer
i.e., hardware and software. Our approach is dedicated to improve the isolation between
VMs. Therefore, we only consider covert channels harmful to VMs i.e., microarchitecture-
based covert channels.

As depicted Figure 4.2, side and covert channels may exploit microarchitectural com-
ponents like caches or CPUs to infer or convey information. In this illustration, two VMs
Bob and Mal are collocated on the same host i.e., physical machine. In Figure 4.2a,
VM Mal “listens” to the microarchitecture to extract information from VM Bob, this is
a side channel. Whereas in Figure 4.2b, VM Mal receives information from a Trojan
represented by a square in VM Bob.

84

CHAPTER 4. DEPLOYMENT 4.2. PLACEMENT-BASED SECURITY

(a) Side Channel (b) Covert Channel

Figure 4.2: Microarchitectural Side and Covert Channels

Covert channels are categorized in covert storage channels and covert timing
channels.

A covert storage channel exploits a standard data channel to encode secret informa-
tion. This problem has been described in 1983 by G. Simmons [110] as the prisoner’s
problem. Two prisoners, Alice and Bob, are detained in distinct cells. Their goal is to
elaborate an escape plan. They can communicate with each other by letters only, con-
veyed by the warden. But, they have to consider that the warden is free to read the
content of the letters, remove (part of) it or even forge new content. Consequently, Alice
and Bob have to encode their discussion in an apparently carefree text. This attack is
popular for network protocols, for example by using the reserved or unused bits of a frame
to convey information. As covert storage channels are not due to hardware components
but software design, we will focus mainly on covert timing channels.

A covert timing channel exploits access timings of shared resources. In his work [97],
Percival took advantage of cache hit and miss to convey “0” and “1” respectively. With
collocated VMs sharing multiple resources (hardware and system), virtualization-based
environments are conducive for such exploits. Building a covert timing channel in a
public commercial Cloud (such as Amazon EC2) has been proven feasible [103, 123, 124].
A reliable bandwidth of just a hundred bits per second is enough to silently extract
hundreds of 1024-bytes private keys, or tens of thousands of credit cards in a day. The
DoD guideline [115] (TCSEC / Orange Book) characterizes a covert channel by its bitrate
and error rate. It suggests that covert channels exceeding a threshold of 0.1 bit per second
should be audited and be of concern to security if it performs over 1 bit per second.

In a virtualized environment, covert timing channels can be conducted using some
hardware or system components. In Table 4.1, we draw a summary of previous covert
timing channels works. For the same component, reported bitrates can differ up to 6
orders of magnitude (e.g., 0.2 bps and 190.4 kbps for L2 cache covert channel) depending
on the experimental environment (i.e., setup column). This gap cannot be explained
by hardware differences alone (e.g., CPU clock speed, cache size). How the attack is
implemented also has a major impact on the bitrate.

85

4.2. PLACEMENT-BASED SECURITY CHAPTER 4. DEPLOYMENT

Table 4.1: Covert timing channels summary for Cloud environments

Paper Component Bitrate Error
Rate Setup Access

Pattern
Error

Correction
[97] L1 3.2 Mbps ă25% Lab Parallel (SMT) No

L2 800 kbps ă25% Lab Parallel (SMT) No
[120] SMT/FU 500 kbps NC Lab Parallel (SMT) NC

Speculation 200 kbps NA Lab Sequential Noiseless
[124] L2 262.47 bps NA Lab Sequential Noiseless

L2 3.75 bps 8.59% EC2 Sequential DF
[123] Memory bus 746.8 bps 0.09% Lab Parallel FEC

Memory bus 107.9 bps 0.75% EC2 Parallel FEC
L2 190.4 kbps NC Lab Parallel NC

[93] CPU 0.49 bps NA Lab Sequential Noiseless
[122] Xen 174.98 bps 2% Lab Sequential No

Shared-Mem
[103] Memory bus 0.006 bps NC EC2 NC NC

Hard disk 0.0005 bps NC EC2 NC NC
L2 0.2 bps NC EC2 Sequential DF

NA: do Not Apply; NC: Not Communicated; FEC: Forward Error Correction; DF: Differential Coding.

Mitigation techniques

Covert channels in multitenant environments pose a real threat with bitrates largely over
the 1 bit per second standard threshold. A covert channel is by definition a reliable data
channel, therefore reducing the bandwidth, preventing the channel from being reliable
(i.e., increasing the error rate) or removing the channel are the basic ideas for mitigation
techniques.

We discuss below the mitigation possibilities given 3 perspectives: the tenant, the
provider and the hardware manufacturer.

Tenant The tenant has limited possibilities against covert channels. HomeAlone [131]
is a detection approach to detect unusual L2 cache usage without relying on hardware
support nor hypervisor modification. But HomeAlone’s oracle is not perfect and the Spy
can try to evade the detection. Moreover, according to Wu et al. [123], for memory bus
covert timing channels, this approach would be subject to high performance overhead
and high false positive rate due to non-determinism and higher access latencies. To sum
up, a detection approach at the tenant level cannot be generalized and do not apply to
yet to discover covert timing channels.

Provider On the other side, the Cloud provider has more latitude to mitigate covert
channels. He can use detection techniques at the hypervisor level with lower overhead.
Moreover, he can modify the scheduling policy to implement cache partitioning or page
coloring to isolate cache/memory accesses [100, 114] at the cost of performance. Oth-
ers existing preventive approaches are dedicated instances or collocation/anti-collocation
placement. In this case, the isolation properties can be modeled as collocation and anti-

86

CHAPTER 4. DEPLOYMENT 4.2. PLACEMENT-BASED SECURITY

collocation constraints [31, 65]. Nevertheless, they require to express the list of tenants
with whom each VM is allowed to share resources (or not). Moreover, such measures are
costly for the tenant as he pays extra charges for dedicated physical machines as these
approaches use coarse grain resource allocation model.

On modern public Clouds such as Amazon EC2 and Microsoft Azure, hardware multi-
threading called simultaneous multithreading (SMT) is disabled as L1 cache-based covert
channels attacks are easy to build. For example, L1 caches that are dedicated to one core
are the easiest way to create covert channels between VMs [97]. The NoHype concept [70]
consists in removing the virtualization layer while retaining the key features enabled by
virtualization. They limit covert channels by enabling one VM per core but as we have
shown, other covert channels exist within the microarchitecture components.

Hardware manufacturer A covert channel is based on a faulty implementation. Thus,
the hardware design is the initial reason of most covert channels. The solution would be
to integrate security concerns when designing hardware components. Needless to say, it
will not fix the issues on hardware already in production. Nevertheless, hardware design
is out of scope.

Summary Because of the lack of near-future improvement in hardware design and the
specificity of detection techniques, we propose a covert channel aware placement solution.
Outsourced applications do not have the same level of criticality. For example, a private
individual’s website is less threatened by covert channels than a banking or government
application. Therefore, we consider the tenant to be responsible for specifying an accept-
able information leakage risk and then, the Cloud provider has automated procedures to
decide whether the tenant’s VM should share L1/L2/L3 caches, memory bus, etc. with
other VMs. Such solution can be applied to any Cloud and easily enriched with newly
discovered covert channel attacks. The placement algorithm has to use a general metric to
deduce a value from a given placement/hardware configuration and compare it with the
tenant’s risk requirement but also to compare two configurations and deduce the more
secure one. The following part discusses existing metrics and devises a new metric to
tackle practicability issues. Because of the lack of near-future improvement in hardware
design and the specificity of detection techniques, we propose a covert channel aware
placement solution. Outsourced applications do not have the same level of criticality.
For example, a private individual’s website is less threatened by covert channels than a
banking or government application. Therefore, we consider the tenant to be responsible
for specifying an acceptable information leakage risk and then, the Cloud provider has
automated procedures to decide whether the tenant’s VM should share L1/L2/L3 caches,
memory bus, etc. with other VMs. Such solution can be applied to any Cloud and easily
enriched with newly discovered covert channel attacks. The placement algorithm has to
use a general metric to deduce a value from a given placement/hardware configuration
and compare it with the tenant’s risk requirement but also to compare two configurations
and deduce the more secure one. The following part discusses existing metrics and devises
a new metric to tackle practicability issues.

87

4.2. PLACEMENT-BASED SECURITY CHAPTER 4. DEPLOYMENT

Covert channel aware metric

Due to the recentness of Cloud (and virtualization) covert channel works, the literature
is quite poor in covert channel metric propositions. Published in 2012 and after, the ref-
erence works are the metrics proposed by Demme J. et al. [40] and Zhang T. et al. [129]
with respectively the Side channel Vulnerability Factor (SVF) and the Cache Side chan-
nel Vulnerability (CSV). Firstly, both metrics are design for side channels and not covert
channels, but because side channels and covert channels are intrinsically related, theses
metrics cannot be discard based on this sole argument to motive our new information
leakage metric.

As illustrated Figure 4.3, SVF and CSV are float values between 0 and 1 reflecting
the degree of information leakage an observer can see from an execution. They correlate
the oracle execution traces with the leaked execution traces viewed by another process
in terms of cache accesses, CPU loads, etc. The approach is thus hardware-independent
but the obtained value is application-specific. Indeed, the evaluation is based on the
execution of a cryptographic library and it is hard to deduce if a given value would be
roughly the same for an arbitrary application.

Figure 4.3: SVF and CSV workflow

One problematic is to allow a tenant to specify a value as an acceptable risk. Be-
cause SVF and CSV are correlation factors, they can be easily used for comparison but
except for limit values (0 and 1) it is quite a challenge to give a practical meaning to an
intermediate value (e.g., 0.467), even for a knowledgeable tenant.

Therefore, both SVF and CSV are unspecifiable in practice, and thus we must come
up with an alternative covert channel aware metric presented thereafter.

4.2.2 Information Leakage Quantitative Metric

We have previously shown that both SVF and CSV metrics are not satisfying. Because
the DoD guideline [115] (TCSEC / Orange Book) indicates that a covert channel (char-

88

CHAPTER 4. DEPLOYMENT 4.2. PLACEMENT-BASED SECURITY

acterized by its bitrate and error rate) over 1 bit per second (bps) should be of concern
to security, we use it as a reference value for our metric.

Therefore, we define the Information Leakage Metric as follows:

Definition 18 (Information Leakage Metric). Ratio between the covert channel theoretical
bitrate in a noiseless environment and the reference value (1 bps).

Unlike SVF and CSV, our metric characterizes the worst case scenario. In a security
context, such scenario corresponds to the maximal bitrate a covert channel can theoret-
ically achieve. Thus, to compute this value, we consider a noiseless environment and a
parallel setup (the Trojan and the Spy run on distinct cores). Because our Information
Leakage approach is based on a core characteristic (i.e., the bitrate), a value exists for
any timing covert channel though it can be complex to compute it.

In the following, we exemplify the approach with a cache-based timing covert channel.

Cache-based Timing Covert channels bitrate in Virtualized Environment

In this part, we detail how a cache-based timing covert channels works using Percival
et al. technique [97].

The idea is to time the latency of accessing memory addresses. We distinguish two
cases, that is, if the accessed data are already in the cache, then the latency is small; else
it must be retrieved from the main memory, then the latency is larger. As illustrated in
Figure 4.4, the Spy accesses twice a set of cache lines (by accessing memory addresses
mapped to it). When the data is in the cache, the latency is under a threshold and so
the Spy reads bit “0”, otherwise it reads bit “1”. Its data are now in the cache.

Similarly, to transmit bit “1”, the Trojan accesses the same set of cache lines (by
accessing its own memory addresses mapped to it) i.e., he flushes the Spy’s data off the
cache. To transmit bit “0”, the Trojan lets the cache in the same state by doing nothing.

Bandwidth estimation for set-associative cache A set-associative cache is divided
in sets of cache lines. As shown in Figure 4.5, a memory address can be split into {TAG,
SET, OFFSET} bits where OFFSET is the offset in the cache line, SET the set number
and TAG the stored value to compare addresses. In a w-way set-associative cache, w
addresses mapped to the same cache line can be stored at the same time, generally based
on a LRU replacement policy.

As a result, w addresses must be accessed to fully flush one w-way cache line.
Furthermore, virtual to physical address translation rises the problem of addressing

uncertainty. Nonetheless, in modern operating systems, the memory space is divided in 4
KB pages and the translation mechanism maps a virtual page to a physical page. Thus,
as illustrated in Figure 4.5, the last 12 bits of a memory address remain identical after
the translation, leaving unknownsets possible cache sets for one virtual memory address
where:

unknownsets “
nbsetsˆ linesize

pagesize
(4.1)

Therefore, to evict a Spy’s cache line, the Trojan accesses at least minlines addresses
where:

minlines “ w ˆ unknownsets (4.2)

89

4.2. PLACEMENT-BASED SECURITY CHAPTER 4. DEPLOYMENT

Figure 4.4: Cached-based timing covert channel transmitting "10".

Figure 4.5: Memory address cache line and page mapping.

Given the total cache size is ttsize “ w ˆ nbsetsˆ linesize, to read or transmit a single
bit the trojan accesses at least:

minlines “
ttsize

pagesize
(4.3)

Finally, we suppose the same probability to transmit bit "0" or bit "1" i.e., P p0q “
P p1q “ 1{2. Thus, the final time to read or write a bit is:

platencycached ` latencyflushedq

2
ˆ

ttsize

pagesize
(4.4)

90

CHAPTER 4. DEPLOYMENT 4.2. PLACEMENT-BASED SECURITY

Experiment To show the feasibility of building a timing covert channel, we have con-
ducted a proof-of-concept experiment which result is depicted Figure 4.6. We have
launched two programs running on distinct cores with a shared L2 cache: a writer (or
Trojan) and a reader (or Spy). The upper graph presents the time per access in nanosec-
onds and the lower graph presents the number of L2 cache misses. All values are obtained
from the reader. The green line corresponds to the transmission of only bits 1, the red
line to transmissions of only bits 0 and the blue line is an alternation between the two.
We have a clear correlation between L2 cache misses and access times suggesting the
influence of the former on the latter. In this coarse-grain experiment, the bandwidth is
100 bits per second which is far from the theoretical maximum bitrate of 9.551 Kbps.

Figure 4.6: Timing Cached-based Covert Channel on Intel Xeon E5420 QC.

Discussion

Previous works on covert timing channels are mainly based on experimental results. To
our knowledge, our work is the first attempt to generalize the computation of cache-based
covert timing channel bitrate. For this generalization, we consider the time between writ-
ing and reading to be null whereas experimental approaches must implement a synchro-
nization mechanism. Indeed, there is a vast range of possibilities for this synchronization
between the Trojan and the Spy, and choosing one would alter the quality of our metric.
Moreover, this synchronization can be achieved independently from the attack itself. For
example, in side channels works, the question is to detect when a cache activity corre-
sponds to a cryptographic computation. If the victim is a web server, a simple solution
is to trigger it by accessing a SSL-encrypted web page.

Secondly, our information leakage metric can only be based on known covert timing

91

4.2. PLACEMENT-BASED SECURITY CHAPTER 4. DEPLOYMENT

channel attacks, thus it encompasses neither unknown existing attacks nor yet-to-discover
attack schemes. However, this metric does not rely on execution traces and as so, it
applies to any application and, if properly adapted, any hardware. For example, atomic
memory operations are improperly emulated in x86 virtualized environment [123]. These
atomic operations have been implemented with a big system lock (a lock that freezes all
other activities of the system) to keep the memory consistent. Consequently, a memory
contention generated by one VM can be seen by another one running on the same physical
machine. By observing a contention or its absence, the Trojan and the Spy can transmit
respectively bit “1” or “0”.

A maximum theoretical bandwidth is arguably not the best risk metric i.e., a metric
accurately reflecting the dangerousness of timing covert channels. Nevertheless, it can
apply to any hardware, be automated and we believe it preserves the scale of dangerous-
ness i.e., a low bitrate should mean a low risk when a high bitrate should mean a high
risk. To the best of our knowledge it is the only metric with all discussed features. In
the next subsection, we shown how we use this risk metric in our placement algorithm
to enforce isolation properties between VMs. And then, in Section 4.2.4, we detail our
framework to automate the computation of our information leakage metric.

4.2.3 Information Leakage Aware Placement

This work focuses on the placement of VMs with information leakage constraints specified
as isolation properties. What we want to demonstrate is the effectiveness of our approach
to ensure isolation and what to consider when doing placement-based security i.e., how
to enhance state-of-the-art algorithms to take into account these constraints. In this
subsection we present how isolation properties between VMs are satisfied (i.e., enforced)
during the placement routine. Moreover, we describe the problem of NUMA allocation
and show how we tackle this issue. Finally, we prove the NP-completeness of our place-
ment problem.

Isolation Properties Satisfaction

A placement is the association between a VM and a configuration. We define a configu-
ration as a set of NUMAs and cores. By instantiated VMs, we denote the VMs placed
on a physical machine (on a set of NUMAs and cores).

A candidate VM’s configuration is valid if both following conditions are met:

1. All properties of the candidate VM are satisfied regarding instantiated VMs.

2. All properties of instantiated VMs are satisfied regarding the candidate VM.

An isolation property of a first VM vm1 is satisfied regarding a second VM vm2 if
one of the 2 following conditions is met:

1. vm2 is allowed to transfer information with vm1

2. the information leakage between their configurations is lower than the one specified
by the property (as an acceptable risk).

92

CHAPTER 4. DEPLOYMENT 4.2. PLACEMENT-BASED SECURITY

These two requirements on top of the hardware ones (i.e., CPU, RAM, disk) must be
fulfilled to find a suitable configuration. Furthermore, to be able to ensure that all the
VMs are respecting their isolation properties (and the ones of the others) during their
whole lifetime, it is important to use CPU pinning i.e., to statically associate VMs with
cores. Indeed, by not doing so (i.e., if we let a VM changes core during its lifetime or
randomly selects one at startup), one of the isolation property could be broken and so
the security of the application running inside it as the configuration of the VM would
have changed.

Accordingly, our security-aware algorithm must test all configurations for a VM on
the physical machines and place it as soon as a configuration is valid. Moreover, the
placement routine must update the available resources of the platform. Actually, this
update is more complex than it seems due to the way NUMA allocation works. In the
following part, we present the NUMA allocation problem and the solution we propose.

The NUMA allocation problem

We must consider real-world microarchitectural allocation schemes to counter real-world
microarchitectural attacks (covert channels). Therefore, our proposal is to have a fine-
grained control over which (microarchitectural) component is shared among multiple VMs
to mitigate potential covert channels. With libvirt1, in addition to the selection of specific
cores, we can choose a set of NUMA nodes and one of the 3 available memory allocation
policies:

• interleave that allocates memory on a given set of NUMA nodes in a round-robin
fashion but falls back to other nodes if the allocation is not possible. In the worst
case, any NUMA node can be allocated.

• strict that only allocates memory on a given set of NUMA nodes (or it fails).

• preferred that allocates memory on a given preferred node but falls back to other
nodes if the allocation is not possible. In the worst case, any NUMA node can be
allocated.

We use the strict policy to have a fine-grained control over memory allocation as we have
for CPU cores.

Figure 4.7 illustrates how the strict NUMA allocation works. We consider a physical
machine composed of 2 NUMA nodes with 2 Gb memory and 2 cores each. A first VM
(1 core, 1 Gb memory) is bound to the core c1 and the closest NUMA node (i.e., the
memory banks are directly connected to the core), Numa1. A second VM requiring 3
cores is bound to c2, c3, c4 which are spread on the 2 NUMA nodes. If this VM requires
2 Gb memory, allocating memory from Numa2 is enough. But if 3 Gb memory are
required, both Numa1 and Numa2 are chosen.

In terms of microarchitectural attacks, the information leakage between the 2 VMs is
simply the bandwidth leakage between their bound cores and NUMAs.

Figure 4.8 illustrates our proposal to deal with the memory segmentation. The first
VM (3 cores and 3 Gb of memory) is bound on both Numa1 and Numa2 because it

1 The API for managing the virtualization layer on Linux: http://libvirt.org/

93

http://libvirt.org/

4.2. PLACEMENT-BASED SECURITY CHAPTER 4. DEPLOYMENT

Figure 4.7: Strict memory allocation policy for 2 VMs (1 core then 3 cores).

requires more than 2 Gb. The problem is that there is no indication on how much
memory will be left on Numa1 and Numa2, a total of 1 Gb memory being free though.
As a result, the second VM requiring 1 core and 1 Gb memory is also bound to Numa1

and Numa2. Our solution is to virtually consider the merging of Numa1 and Numa2,
that is Numa1,2 which has a total memory of 4 Gb, 1 Gb being free after the placement
of the first VM.

Then, in terms of microarchitectural attacks, the information leakage between
the 2 VMs is the bandwidth leakage between {c1, c2, c3, Numa1, Numa2} and
{c4, Numa1, Numa2}.

Figure 4.8: Strict memory allocation policy for 2 VMs (3 cores then 1 core).

94

CHAPTER 4. DEPLOYMENT 4.2. PLACEMENT-BASED SECURITY

Metamodel for NUMA allocation Figure 4.9 is an extension of our previous meta-
model described in Figure 2.14 (Page 35) to encompass the NUMA allocation scheme.

We call ComposedNuma the merging of multiple VNumas where a VNumas is
either a real Numa or a ComposedNuma. A VNuma has a name, a total memory
memtotal, a free memory memfree and an internal counter of VMs allocated on it vminsts.

Additionally, we have two references: the list of available Cores and the list of avail-
able VNumas. Both refers to components that can be allocated. They consist in re-
spectively:

• The list of Cores not executing any VMs,

• the list of VNuma that are not part of a ComposedNuma.

Figure 4.9: Microarchitecture Metamodel with Virtual NUMAs.

NUMA Composition and Decomposition Procedures Our NUMA allocation
procedure works as follows. Upon a new memory allocation request, we select a set
of NUMAs lvnumas in the list of available NUMAs such as there is enough memory to
allocate and call the compose procedure presented in Algorithm 4.4. If lvnumas contains
more than 1 NUMA, we merge them and create a new composed NUMA cn, set cn
memory properly, and finally we replace lvnumas from the list available NUMAs with cn.
Otherwise (lvnumas is a singleton hence the procedure does not apply), we just update
numas available memory.

95

4.2. PLACEMENT-BASED SECURITY CHAPTER 4. DEPLOYMENT

Algorithm 4.4 Compose NUMA Procedure
Input: n: Node, lvnumas: List of VNUMAs
Precondition: |lvnumas| ą 1
Variables: cn: ComposedNuma
cn.vminsts “ 0, cn.memfree “ 0, cn.memtotal “ 0
for all VNuma vn P lvnumas do
{Update memory values}
cn.memfree` “ vn.memfree

cn.memtotal` “ vn.memtotal

{Add sub-vnuma into composed numa and update parent}
cn.numasÐ cn.numasY tvnu
vn.parentÐ cn
{Remove sub-vnuma from availability list}
n.numasavailable Ð n.numasavailable ´ vn

{Add new composed to availability list}
n.numasavailable Ð n.numasavailable Y tcnu
return cn

In the decomposition procedure detailed in Algorithm 4.5, we delete a composed
NUMA if and only if there is no more VM allocated on it. When it is the case, we put
the merged NUMAs back in the list of available NUMAs.

Algorithm 4.5 Decompose NUMA Procedure
Input: n: Node, vn: VNuma
{Decompose numas if possible}
if vn is not a ComposedNUMA then
return

ComposedNuma cnÐComposedNuma(vn)
if cn.vminsts “ 0 and cn.parent “ H then
{Remove top-numa}
n.numasavailable Ð n.numasavailable ´ cn
for all VNuma vnsub P cn.numas do

{Remove parent}
vnsub.parentÐH

{Add to availability list}
n.numasavailable Ð n.numasavailable Y tvnsubu
{Recursive decomposition if possible}
decomposeNuma(n, vnsub)

Figure 4.10 depicts the composition phase of our NUMA algorithm with 3 sequentially
instantiated VMs. First, vm1 is allocated onto Numa1 (1 Gb required for 2 Gb available).
Then, vm2 requires 3.5 Gb and we consider Numa2 and Numa3 to be chosen. As a result,
a ComposedNUMA Numa2,3 is created with a total of 4 Gb and 0.5 Gb available after
the instantiation of vm2. At this step, there is 3.5 Gb of memory available spread between
Numa1 (1 Gb), Numa2,3 (0.5 Gb) and Numa4 (2 Gb). Finally, vm3 which requires 3.5

96

CHAPTER 4. DEPLOYMENT 4.2. PLACEMENT-BASED SECURITY

Gb is instantiated. A ComposedNUMA, Numa1,2,3,4 is created for a total of 8 Gb, 3.5
Gb free before the instantiation of vm3 and none after.

Figure 4.10: NUMA Structure Model with 3 VMs sequentially instantiated.

Figure 4.11 depicts the decomposition phase of our algorithm starting from the pre-
vious scenario. First, the termination of vm2 frees 3.5 Gb memory in Numa2,3 and thus
in Numa1,2,3,4. Despite not having any VM referencing it, Numa2,3 is not removed as
it still has a parent (Numa1,2,3,4). But when vm3 is terminated, Numa1,2,3,4 is neither
referenced by any VM nor it has any parent, leading to its removal. The same applies to
Numa2,3 after removing Numa1,2,3,4. At this step, Numa1, Numa2, Numa3, Numa4 can
be directly allocated again. The termination of vm1 returns the physical machine to its
initial state.

Allocation Algorithm Now that we have given our composition and decomposition
procedure for NUMAs, we detail our VM allocation and deallocation procedure.

97

4.2. PLACEMENT-BASED SECURITY CHAPTER 4. DEPLOYMENT

Figure 4.11: NUMA Structure Model with 3 VMs sequentially removed.

Upon the arrival of a new VM, we suppose a set of Cores and VNumas have been
selected according to the information leakage constraints. This selection is simply re-
alized with a First-fit algorithm. In future work, other algorithms such as simulated
annealing [71] or genetic algorithms [88] could be used providing a way to compare two
configurations (i.e., cores and NUMAs) in order to choose the best one. The complete
allocation and deallocation procedures are described in Algorithms 4.6 and 4.7.

Our security-aware allocation is not rendering the placement problem less complex.
Indeed, VM placement (and any placement problem) is known to be NP-hard and can
be abstracted as bin-packing problem [85]. In the next subsection, we prove that our
extension actually increase the complexity of solving the placement problem.

98

CHAPTER 4. DEPLOYMENT 4.2. PLACEMENT-BASED SECURITY

Algorithm 4.6 Allocation Procedure
Input: n: Node, v: VM, lnumas: List of VNumas , lcores:List of Cores
Precondition: lnumas ą 0 {A VM must have some memory}
Variables: vn: VNuma
{Remove cores from availability list}
n.coresavailable Ð n.coresavailable ´ lcoresq
{Compose numas if needed and remove sub-numas from availability list}
if |lnumas| ą 1 then
vnÐ composeNuma(n, lnumas);

else
vnÐ getFirst(lnumas) {There is only 1 numa in lnumas}

{Substract VM’s required memory}
vn.memfree´ “ v.memrequired

{Increment VM instances}
vn.vminsts` “ 1
{Substract VM’s required disk space}
n.disk´ “ v.diskrequired
{Substract VM’s required disk space}
n.disk´ “ v.diskrequired
instantiateVM(v, lcores, vn)

Algorithm 4.7 Deallocation Procedure
Input: n: Node, v: VM, vn: VNuma , lcores:List of Cores
Variables: vn: VNuma
{Decrement VM instances}
vn.vminsts´ “ 1
{Add cores back to availability list}
n.coresavailable Ð n.coresavailable Y lcoresq
{Add back VM’s required memory}
vn.memfree` “ v.memrequired

{Propagate newly free memory to parent NUMAs}
VNuma vnparent Ð vn
while pvnparent Ð vnparent.parentq ‰ Hq do
vnparent.memfree` “ v.memrequired

{Decompose if possible}
decomposeNuma(n, vn);
{Add vack VM’s required disk space}
n.disk` “ v.diskrequired

Complexity of our allocation problem

Let an infinity of cores with the VM deployment capacity C. Let a list of virtual machine
tvm1,1, vm1,2, . . . , vmn,nu. We can split this set of virtual machines, in different sub-set:
tvm1,1, vm1,2, . . . , vm1,nu with a size cn, tvm2,1, vm2,2u with a size c2, and so on. We want
pack objects of different volumes (here a sub-set of VMs) into a finite number of bins

99

4.2. PLACEMENT-BASED SECURITY CHAPTER 4. DEPLOYMENT

(here cores) each of volume C in a way that minimizes the number of bins (/cores) used.
We use the binary code to describe the solution and indicate if a VM is on a core or

not. Variable xij is equal to 1 if the VM i is deployed on the core j, and 0 otherwise.
Boolean variable yj is equal to 1 if the core is used, 0 otherwise. We try to minimize the
number of core used.

min
n
ÿ

j“1

yj (4.5)

This problem is known as the NP-hard problem called the Bin Packing Problem (BPP).
Nevertheless, in our case we have additional constraints due to the security rules. We
can consider these constraints like conflicts. The Bin-Packing Problem with Conflicts is
called BPPC. It consists in determining the minimal number of identically bins (/cores)
needed to store a set of items (VMs) with height is less than the capacity of bins (/cores),
where some of these items are incompatible with each other (isolation rules), therefore
cannot be packed together in the same bin (/core). The BPPC is a variation of the
classical one dimensional BPP which is a combinatorial problem and known also to be
NP-hard [37, 84]. Finally, our problem is even harder as we do not have 1 dimension
(core) but 2 (memory and core). To keep the proof of concept simple, we rely on a
first-fit heuristic to solve this BPPC problem.

4.2.4 An Automated Approach

Our approach is a metric-based placement decision. Due to the lack of suitable metric, we
have introduced a new information leakage metric measured as a bitrate. Nevertheless,
any other sound metric could be substituted. In this subsection, we present our overall
automated workflow for VM placement and then discuss how we integrate the concept of
metric into our security properties.

Metric-based Placement Decision Workflow

Figure 4.12 depicts our workflow for placement decision. First, we statically compute
the risk metric for each host. In the case of our new information leakage metric, we
use two tools: Hwloc [24] to obtain the hardware topology and Lmbench[86] to measure
the microarchitectural latencies. Both the topology and latencies are needed to compute
information leakage values. A tenant provides his virtualized application model com-
prising isolation properties with risk metrics. Then, we finally decide the configuration
(i.e., NUMAs and cores) for each tenant’s VM with the placement procedure previously
described.

Scenario: Metric computation

Let’s exemplify this workflow. We consider two Grid’5000 [5] physical machines called
Taurus and Genepi. The topology as obtained from Hwloc were depicted respectively in
figures 2.13 and 2.12. We recall that Taurus is a NUMA architecture with a shared L3
cache (15 MB) and Genepi is a SMP architecture with a shared L2 cache (6144 KB).

Cache latencies measured using lat_mem_rd from the Lmbench benchmarks suite are
presented in Figure 4.13.

100

CHAPTER 4. DEPLOYMENT 4.2. PLACEMENT-BASED SECURITY

Figure 4.12: Metric-based Placement Decision Workflow.

10-4 10-3 10-2 10-1 100 101 102 103

memory size in MB

100

101

102

103

n
se
c
p
e
r
re
a
d

Taurus local numa latency
Taurus remote numa latency
Genepi latency

Figure 4.13: Taurus (with NUMAs) and Genepi memory read latencies.

From Taurus latency measures reported in Table 4.2, we can identify 4 steps: 3 cache
levels and the main memory (local and remote).

From Genepi latency measures, we can identify 3 steps: 2 cache levels and the main
memory.

Finally, using Equation 4.4, Taurus L3 cache-based timing covert channel can transmit
one bit in 0.5 ˆ p17ns ` 108nsq ˆ 15MB{4KB “ 240.0µs i.e., 4.167 Kbps bitrate on

101

4.3. AUTOMATIC CONFIGURATION CHAPTER 4. DEPLOYMENT

Component Block size latency
L1 cache 1 B to 32 KB 1.43 ns
L2 cache 32 KB to 256 KB 4.3 ns
L3 cache 256 KB to 15 MB 17.0 ns
Local NUMA - 108 ns
Remote NUMA - 184.5 ns

Table 4.2: Taurus latency measurements

Component Block size latency
L1 cache 1 B to 32 KB 1.2 ns
L2 cache 32 KB to 256 KB 6.3 ns
Main Memory 256 KB to 15 MB 130.0 ns

Table 4.3: Genepi latency measurements

local NUMA, and 0.5 ˆ p17ns ` 184.5nsq ˆ 15MB{4KB “ 386.9µs i.e., 2.585 Kbps
bitrate on remote NUMA.

Identically, Genepi L2 cache-based timing covert channel can transmit one bit in
0.5ˆ p6.3ns` 130nsq ˆ 6144KB{4KB “ 104.7µs i.e., 9.551 Kbps bitrate.

Scenario: Tenant specification and Grade

In Section 4.1.3, we have presented our split procedure to obtain typed security properties.
In the placement decision, we enforce isolation properties between VMs such as:� �
#property IsolationVM({VM1}, {VM2 , VM3}, grade);� �

In Section 2.3.2, we propose a coarse-grain grading system i.e., where grade is an
integer. If we directly consider the grade to be our information leakage metric, then a
bitrate would be inappropriate, if not senseless, for other types of entities like VNet,
Data or Service. Indeed, we require the grade to be generic. Therefore, a solution is to
consider a direct mapping between grades and information leakage values. The problem
of defining the most relevant grades and mapping is part of our future work.

4.3 Automatic Configuration of Security Mechanisms

In addition to having a purely placement-based enforcement of specific security properties
(i.e., between VMs), our second complementary solution is the automatic configuration
of security mechanisms spread across the infrastructure. This idea is at the core of
the Seed4C Project: “seeding” and orchestrating a network of security agents. In this
collaborative project, the low-level configuration of security mechanisms comes under our
partners and our contribution focuses on the workflow from specification to triggering
the low-level configuration.

In the rest of this section, we first present the global architecture of security agents.
Then, we detail our solution to integrate security agents into our placement decision.

102

CHAPTER 4. DEPLOYMENT 4.3. AUTOMATIC CONFIGURATION

4.3.1 A Network of Security Agents

All low-level security mechanisms have their own API, language or internal logic. For
instance, SELinux policies are composed of deny or allow rules. Similarly, Iptables can
reject or accept network packets according to condition rules (e.g., accept if the packet
comes from a given IP address). The idea is roughly the same in both cases but their
configuration have nothing in common. For this reason, a Security Agent abstracts
these low-level mechanisms. A security agent is a process that automatically translates
a security property into a configuration of one or more security mechanisms.

A security agent could be placed virtually anywhere it makes sense. As depicted in
Figure 4.14, a security agent may be located in the hypervisor to configure mechanisms at
the host level, and/or it may be located at the guest level to manage mechanisms within
a virtual machine. The two does not bring the same quality of protection. Whether it
is within a VM, we must assume the guest kernel is to be trusted otherwise we cannot
guarantee that the agent duly enforces the security requirements. On the other hand, the
hypervisor is more trustworthy as the end-user cannot directly influence it. However, pro-
tecting entities within VMs is much more limited and complex when using mechanisms
at the host level i.e., outside VMs. Security agents may also be placed with network
controllers to steer the global network configuration (e.g., allocating VLANs and instan-
tiating L3 overlays). In fact, our previously presented placement-based enforcement could
be viewed as a security agent dedicated to enforcing specific properties between VMs.

Figure 4.14: Security Agents (SA) Location

4.3.2 Capabilities and Placement Decision

A security agent may enforce a subset of security properties. This subset depends on the
available security mechanisms underneath the agent. For example, an agent is able to
enforce the confidentiality between Data or Service entities (e.g., with SELinux) but not
for other types of entities. This is related to typed properties except a typed property is
first the result of a split procedure and second it is instantiated. Here, the agent has a
list of capabilities he knows how to enforce. A capability is to a security property what
a function signature is to a function call. In our example, the capability is:

103

4.4. CONCLUSION CHAPTER 4. DEPLOYMENT

Confidentiality(Data | Service, Data | Service)

And the following property matches this capability:� �
#property Confidentiality(Data="Log", Service ="SSH")� �

A security agent may have multiple mechanisms to enforce the same property and
these mechanisms may not provide the same quality of protection. Consequently, capa-
bilities are graded and for a capability to match a property, it must have at least the
same grade. Therefore, we have the following graded capability:

Confidentiality(Data | Service, Data | Service, 80)

Because the capability offers at least the required quality of protection, it matches
the property:� �
#property Confidentiality(Data="Log", Service ="SSH", 50)� �

Figure 4.15 depicts our whole placement decision workflow taking into account security
agents’ capabilities. Security agents can be present at the guest-level i.e., in the VMs of
the virtualized application to deploy, and at the host-level i.e., in the hypervisor of some
hosts. As illustrated, security agents are not necessarily present in each VM or each host.
Each agent has a list of capabilities it can enforce. At the guest-level, this information
is attached to the VM image. Indeed, any instance of a VM image have exactly the
same mechanisms installed and thus the same list of capabilities. At the host-level, each
agent is responsible for publishing its list of capabilities to the placement decision engine.
This dynamic approach allows changing hosts’ software stack i.e., adding or removing
mechanisms (even agents) as needed.

Our decision workflow proceeds as follows. The tenant models its virtualized appli-
cation and security properties. These properties, after the preprocessing procedure, are
sorted into two categories: the capability-based properties with can be enforced by a secu-
rity agent and the risk-based properties which can only be enforced by selecting correctly
hosts and choosing a configuration of NUMAs and cores. Then, a first guest-level solving
procedure maps properties to guest-level agents according to their capabilities. After, if
some properties are left unsolved, a second host-level solving procedure selects, for each
VM, a list of hosts which have the necessary capabilities to solve the VM’s properties.
Finally, our risk-based placement decision presented in Section 4.2 is applied but with
a filtered list of hosts as possiblities. This final step maps each VM to a host and the
computed configuration (i.e., NUMAs and cores) as discussed in Section 4.2, but it also
maps each VM’ properties to the capabilities of their host-level security agents.

4.4 Conclusion

In this chapter, we have first shown the preprocessing steps:

104

CHAPTER 4. DEPLOYMENT 4.4. CONCLUSION

Figure 4.15: Complete Placement Decision Workflow.

1. Implicit to explicit properties: the list of authorized entities can be inferred from
the application model to obtain explicit properties.

2. Explicit to singleton properties: a global explicit property can be split into proper-
ties with a single secured entity

3. Singleton to typed properties: because mechanisms are specialized, a property can
be split into severable properties each one dedicated to a specific type of entity.

Once we obtain typed properties, we have shown two different but complementary meth-
ods to enforce them, namely, a placement-based enforcement and the automatic configu-
ration of security mechanisms.

The virtualization cannot provide a strong isolation on shared resources between VMs
due to covert channel i.e., leaking unauthorized information by exploiting microarchitec-
tural features. Accordingly, we have first proposed a new information leakage metric to
quantify these covert channels, and then an information leakage aware placement algo-
rithm.

The automatic configuration can be achieved with security agents providing capabil-
ities i.e., templates of security properties they can enforce.

105

4.4. CONCLUSION CHAPTER 4. DEPLOYMENT

In this chapter, we have discussed properties on virtual networks but, due to lack of
time, we have not proposed a solution to enforce them. Nevertheless, we could envisioned
to tackle this issue as a group membership problem: any VNets (Virtual Networks) with
the same properties (and same set of secured/authorized members) can be mapped to
the same INet (Infrastructure Network). For instance, VNets without security properties
can be mapped to the same public INet. Finally, it would be interesting to prove some
equivalences for more complex IF-PLTL formulas.

106

Chapter 5

Use Case: An Advertising Content
Manager for Airports

Through this manuscript, we have presented our user-centric approach to propose a
security-aware model and deployment of virtualized applications on virtualization-based
infrastructure.

In this chapter, we illustrate our framework on an industrial use case: an Advertis-
ing Content Manager service for airports. First, we briefly introduce the Ikusi company
and its airport management system. Then, we describe the related virtualized applica-
tion model and security requirements. In Section 5.3, we detail the different steps of
our framework: preprocessing, VM security solving, placement-based enforcement and
configuration-based enforcement. For the automatic configuration, we briefly describe
the actual architecture of security agents as designed by Bousquet et al. in [21].

5.1 Ikusi Corporation

Ikusi is a corporation offering a broad range of operational management solutions for
smart cities, airports, security, mobility (including railways) and health. In particular,
this company proposes airport management systems coupled with public information and
entertainment systems. In this chapter, our use case focus on the Advertising Content
Manager service for airports called Musik.

An airport possesses various spots for advertisements with devices like displays or
TV screens. Any advertiser can rent one or more spots to broadcast his advertising
campaign. This campaign is designed by an operator using the Musik application. The
devices connect to the Musik application to get the content they must broadcast.

As depicted Figure 5.1, the Musik service is a 3-tier application shared between differ-
ent airports (i.e., Airport1 and Airport2). Any operators or devices (from any airports)
access the application by querying a Web Proxy (i.e., tier 1). For instance, an op-
erator from Airport1 can access his advertising web interface by requesting the address
https://musik.ikusi.com/airport1/design. Upon receiving this HTTP request, the
Web Proxy transfers it to Musik1 App (i.e., tier 2) which returns the web interface.
Similarly, a device can query the address https://musik.ikusi.com/airport2/content
to obtain the advertising content from Musik2 App. If there is one Musik App per

107

5.2. MODELING CHAPTER 5. USE CASE

airport, all useful data are stored in a common Database (i.e., tier 3) framework called
AODB (Airport Operational Database).

Figure 5.1: Ikusi Advertising Content Manager for Airports

The four components i.e., Web Proxy, Musik1 App, Musik2 App and Database
are executed inside individual virtual machines and deployed on a virtualization-based
infrastructure like a Cloud. However, airports’ operators and devices are external users
of the advertising service.

In the rest of this chapter, we present the Sam4C model of this Advertising Content
Manager use case including a meaningful excerpt of the security policy. Then, we detail
the successive steps of our approach: preprocessing, deployment and the enforcement
of the required security properties using both the placement and the configuration of
mechanisms.

5.2 Modeling

In this section, we present the modelization of the airport use case using the Sam4C
Modeling tool. A screenshot of the use case model in Sam4C is depicted Figure 5.2. The
left part contains the virtualized application model with the tool palette to graphically
manipule the model. The right part contains the security policy with the definition of
attributes, contexts and properties. The circled upper button triggers the deployment of
the model by sending it to Sam4C Scheduler using its IP address.

In this section, we first detail the virtualized application model and then discuss few
security properties.

5.2.1 Virtualized Application Model

The Sam4C Model of the Advertising Content Manager service is depicted Figure 5.3. It
is worth noting that the modelization has been done by Ikusi with limited help from our
side i.e., Sam4C seems to be easy to use. Two airports are considered namely MAD (for
Madrid) and EAS (for San Sebastian). A Security Domain AirportContentMan-
ager contains the 3-tier application which is composed of 4 VMs:

108

CHAPTER 5. USE CASE 5.2. MODELING

Figure 5.2: Screenshot of the Ikusi use case from Sam4C

• Proxy, it is the frontend containing the web proxy. A user (i.e., operator or device)
queries the proxy which checks the permissions then forward the HTTP request to
the proper Musik Application instance.

• Musik_MAD, the Musik application instance for Madrid airport.

• Musik_EAS, the Musik application instance for San Sebastian airport.

• Mysql, the backend containing the database (App_Aodb_database) and an
interface presenting the data to the Musik applications (App_Aodb).

The VMs are interconnected with the Intranet VNet and the web proxy is accessible
by a user through the Public VNet.

The four VM’s resources (i.e., CPU, RAM, Disk) requirements are given in Table 5.1.

VM Cores RAM Disk
Proxy 1 6 GB 20 GB
Musik_MAD 2 6 GB 50 GB
Musik_EAS 2 6 GB 50 GB
Mysql 1 12 GB 100 GB

Table 5.1: Ikusi VMs Resource Requirements

Each VM contains one or two Application Domains grouping coherent sets
of processes and files. For instance, Musik_MAD has an application domain

109

5.2. MODELING CHAPTER 5. USE CASE

Figure 5.3: Sam4C Model of Ikusi Use Case

App_Musik containing the Service App_Musik itself plus its executable source code
(BinaryExecutable), configuration files (Config), the logs generated by the process
(Logs) and some files specific to the instance (File).

5.2.2 Security Policy

The complete use case contains more than 70 properties and it would be too exhaustive
to review each one. Instead, we selected four of them to illustrate our approach. These
security requirements are the following:

1. An external user is authenticated against the web proxy to determine the airport
it belongs to and whether it is a device or an operator.

2. Musik MAD application logs can only be modified by the Musik MAD service.

3. Musik MAD application configuration files can only be read by the Musik MAD
service.

4. The whole AirportContentManager framework is isolated from any other tenant in
the hosting virtualized infrastructure with at least a medium quality.

From these requirements expressed in natural language, we detail afterwards spe-
cific attributes and contexts needed to express the security properties plus the mapping
between contexts and real resources we refer to as bindings.

110

CHAPTER 5. USE CASE 5.2. MODELING

Contexts and Bindings

In this use case, an external user can be either a device or an operator and it belongs to
either Madrid or San Sebastian airport. Therefore, we define two new attributes: Role
and Airport as follows:� �
#attribute Role = (Device , Operator);
#attribute Airport = (MAD , EAS);� �

Listing 5.1: Ikusi Specific Attributes

Proxy Contexts and Bindings For the web proxy VM, we create the alias ctxProxy
for the application domain App_Proxy. Then, we can simply create a context for the
binary source code (ctxBinaryWeb) as being the Data element BinaryExecutable in
ctxProxy.� �
#context ctxProxy = {AirportContentManager.Proxy.App_Proxy};

#context ctxBinaryWeb = ctxProxy :(Data=" BinaryExecutable ");
#context ctxConfigWeb = ctxProxy :(Data=" Config ");� �

Listing 5.2: Proxy Contexts Excerpt

These abstract contexts can be associated with “real” component of the system. This
association is called binding. For instance, ctxConfigWeb represents two real files namely
/etc/httpd/conf/httpd.conf and /etc/httpd/conf.d/ssl.conf.� �
"/usr/sbin/httpd" ctxBinaryWeb
"/etc/httpd/conf/httpd.conf" ctxConfigWeb
"/etc/httpd/conf.d/ssl.conf" ctxConfigWeb� �

Listing 5.3: Proxy Bindings Excerpt

Musik Contexts and Bindings The Musik VM is instantiated once per aiport
i.e., twice in our case. Nevertheless, as they provide exactly the same service, their
security requirements are also the same. As a result, we can optimize the description by
defining the contexts and their bindings without specifying which instance they belong
to. In the listing below, we give the list of contexts by specifying only the application
domain App_Musik.� �
#context ctxBinaryMusik = (Data=" Binary|Executable "):(AppDomain ="

App_Musik ") ;
#context ctxConfigMusik = (Data=" Configuration "):(AppDomain ="

App_Musik ") ;
#context ctxFileMusik = (Data="File"):(AppDomain =" App_Musik ") ;
#context ctxLogMusik = (Data="Log"):(AppDomain =" App_Musik ") ;
#context ctxServiceMusik = (Service =" App_Musik "):(AppDomain ="

App_Musik ") ;� �
Listing 5.4: Musik Contexts Excerpt

111

5.2. MODELING CHAPTER 5. USE CASE

The following listing contains the corresponding bindings. A binding can be expressed
as a regular expression. For instance, "/opt/musik(/.*)?" designates the directory
/opt/musik and all files or subdirectories inside.� �
"/opt/musik (/.*)?" ctxFileMusik
"/opt/musik/properties (/.*)?" ctxConfigMusik
"/opt/musik/musik.lic" ctxConfigMusik
"/opt/musik/rsc (/.*)?" ctxConfigMusik
"/opt/musik/log (/.*)?" ctxLogMusik
"/opt/musik/webapps/musik.war" ctxBinaryMusik

"/opt/apache -.*/ conf/Catalina/localhost (/.*)?" ctxConfigMusik

"/opt/apache -.*(/.*)?" ctxFileMusik
"/opt/apache -.*/ bin (/.*)?" ctxBinaryMusik
"/opt/apache -.*/ lib (/.*)?" ctxBinaryMusik
"/opt/apache -.*/ webapps /*.war" ctxBinaryMusik
"/opt/apache -.*/ conf (/.*)?" ctxConfigMusik
"/opt/apache -.*/ log (/.*)?" ctxLogMusik

"/opt/devmconn (/.*)?" ctxFileMusik
"/opt/devmconn/bin (/.*)?" ctxBinaryMusik
"/opt/devmconn/lib (/.*)?" ctxBinaryMusik
"/opt/devmconn/log (/.*)?" ctxLogMusik
"/opt/devmconn/conf (/.*)?" ctxConfigMusik
"/opt/devmconn/properties (/.*)?" ctxConfigMusik

"/opt/ffmpeg (/.*)?" ctxFileMusik
"/opt/ffmpeg/ffmpeg" ctxBinaryMusik

"/opt/jre .*(/.*)?" ctxFileMusik
"/opt/jre.*/bin (/.*)?" ctxBinaryMusik
"/opt/jre.*/lib (/.*)?" ctxBinaryMusik

"/etc/rc\.d/init\.d/activemq" ctxBinaryMusik
"/etc/rc\.d/init\.d/tomcat" ctxBinaryMusik
"/etc/rc\.d/init\.d/devmconn" ctxBinaryMusik

"/opt/jre1 .7.0 _60/bin/java" ctxServiceMusik� �
Listing 5.5: Musik Bindings Excerpt

Mysql Contexts and Bindings For Mysql VM, we proceed exactly as before by
defining two aliases ctxAodbDB and ctxAodb for the two application domains respectively
the database and the interface.� �
#context ctxAodbDB = {AirportContentManager.Mysql.

App_Aodb_database};

112

CHAPTER 5. USE CASE 5.2. MODELING

#context ctxBinaryDB = ctxAodbDB :(Data=" BinaryExecutable ");
#context ctxConfigDB = ctxAodbDB :(Data=" Config);
#context ctxFileDB = ctxAodbDB :(Data="File);
#context ctxServiceDB = ctxAodbDB :(Service =" App_Aodb_database);

#context ctxAodb = {AirportContentManager.Mysql.App_Aodb};

#context ctxBinayAODB = ctxAodbDB :(Data=" BinaryExecutable);
#context ctxConfigAODB = ctxAodbDB :(Data=" Config);
#context ctxKeyAODB = ctxAodbDB :(Data="Key);
#context ctxLogAODB = ctxAodbDB :(Data="Log);
#context ctxFileAODB = ctxAodbDB :(Data="File);
#context ctxServiceAODB = ctxAodbDB :(Service =" App_Aodb);� �

Listing 5.6: Mysql Contexts Excerpt

Then, the Mysql bindings are the following:� �
"/opt/dbhook (/.*)?" ctxFileAODB
"/opt/dbhook/dbhook.conf" ctxConfigAODB
"/opt/dbhook/jordi.loc" ctxConfigAODB
"/opt/dbhook/keys (/.*)?" ctxKeyAODB
"/opt/dbhook/log (/.*)?" ctxLogAODB
"/opt/dbhook/lua (/.*)?" ctxBinayAODB
"/opt/dbhook/pid (/.*)?" ctxFileAODB
"/opt/dbhook/proxydaemon.sh" ctxBinayAODB
"/opt/dbhook/proxyrun.sh" ctxBinayAODB
"/opt/dbhook/proxystop.sh" ctxBinayAODB
"/usr/bin/mysql -proxy" ctxBinayAODB

"/etc/rc\.d/init\.d/dbhook" ctxBinayAODB
"/usr/lib64/mysql -proxy/lua/luacall \.so" ctxBinayAODB
"/usr/libexec/mysqld" ctxBinaryDB
"/etc/my\.cnf" ctxConfigDB
"/var/lib/mysql (/.*)?" ctxFileDB

"/usr/bin/mysqld_safe" ctxServiceDB
"/usr/libexec/mysqld" ctxServiceDB
"/usr/bin/mysql -proxy" ctxServiceAODB� �

Listing 5.7: Mysql Bindings Excerpt

Security Properties

After having described some contexts and their bindings, we express the four security
requirements as Sam4C security properties.

First, we model the requirement “An external user is authenticated against the web
proxy to determine the airport it belongs to and whether it is a device or an operator.” as
an Authentication property where any Clients (Client="*") authenticates against the
web proxy service in the proxy VM (ctxProxy:(Service="Web_Proxy")) to obtain a

113

5.3. DEPLOYMENT CHAPTER 5. USE CASE

role attribute (Device or Operator) and an airport attribute (MAD or EAS). From this
property, we can express the authorized flows depending on the role and the airport.� �
#property Authentication ((Client ="*"),

ctxProxy :(Service =" Web_Proxy "),
[(Role=" Device|Operator "):(Airport ="MAD|EAS")]);� �

Listing 5.8: Ikusi Authentication Property

Our second and third requirements, namely “Musik MAD application logs can only
be modified by the Musik MAD service.” and “Musik MAD application configuration files
can only be read by the Musik MAD service.”, are respectively an Integrity and a Con-
fidentiality properties. Previously, we have defined Musik contexts without attaching a
particular VM. Therefore, in the following listing, we specialize our contexts with the
VM Musik_App by writing (VM="Musik_MAD"):ctx.� �
#property Integrity ((VM=" Musik_MAD "):ctxLogMusik ,

(VM=" Musik_MAD "):ctxServiceMusik);
#property Confidentiality ((VM=" Musik_MAD "):ctxConfigMusik ,

(VM=" Musik_MAD "):ctxServiceMusik);� �
Listing 5.9: Ikusi Integrity and Confidentiality Properties

Finally, the fourth requirement “The whole AirportContentManager framework is iso-
lated from any other tenant in the hosting virtualized infrastructure with at least a medium
quality.” is simply expressed using an implicit property as:� �
#property Isolation({AirportContentManager}, MEDIUM);� �

Listing 5.10: Ikusi Isolation Property

In Section 2.3.2, we introduced our grade as an integer value. But instead of using the
full range between 0 and 100, we prefer offering only few levels to the user and have a cor-
respondence between quality levels and grades as detailed in Table 5.2. We use indiscrim-

Quality Level Grade
Low 20
Medium 40
High 60
Very High 100

Table 5.2: Correspondence between Quality Levels and Grades

inately the quality level of grade i.e., Isolation({AirportContentManager}, MEDIUM)
and Isolation({AirportContentManager}, 40) are the same property.

5.3 Deployment

In this section, we detail the deployment phase of our use case. First we preprocess our
security properties to obtain locally enforceable properties. Then, we filter the properties

114

CHAPTER 5. USE CASE 5.3. DEPLOYMENT

that can be enforced by a guest-level security agent. After, we enforce other proper-
ties using our placement-based solution. Finally, we present an internal architecture of
security agent and show the configurations enforcing the filtered properties.

5.3.1 Preprocessing

In the four properties we have, only one is eligible to be preprocessed namely:� �
#property Isolation({AirportContentManager}, MEDIUM);� �

Listing 5.11: Ikusi Implit Isolation Property

The three other properties secure entities within VMs and thus splitting them is not
necessary. For the sake of simplicity, we shorten AirportContentManager.Entity into
Entity and, as grades are preserved through split procedures, each one of the following
Isolation properties has implicitly the grade Medium.

First, Algorithm 4.1 (Page 80) extends our implicit Isolation property into the two
following explicit properties:� �
#property Isolation({Musik_MAD , Mysql , Musik_EAS , Intranet},{Proxy

});
#property Isolation({Proxy},{Public , Musik_MAD , Mysql , Musik_EAS ,

Intranet});� �
Listing 5.12: Ikusi Explicit Isolation Properties

The first explicit property states that Proxy is authorized to exchange information only
with Musik_MAD, Mysql, Musik_EAS and Intranet. The second states that any
VMs or VNets (in this model) are authorized to exchange information with Proxy.

Then, Algorithm 4.2 (Page 81) transforms our global explicit properties into local
properties i.e., one property per secured entity:� �
#property Isolation({Musik_MAD},{Proxy , Mysql , Musik_EAS , Intranet

});
#property Isolation({Mysql},{Musik_MAD , Proxy , Musik_EAS , Intranet

});
#property Isolation({Musik_EAS},{Musik_MAD , Proxy , Mysql , Intranet

});
#property Isolation({Intranet},{Musik_MAD , Proxy , Mysql , Musik_EAS

});
#property Isolation({Proxy},{Musik_MAD , Mysql , Musik_EAS , Public ,

Intranet});� �
Listing 5.13: Ikusi Singleton Explicit Isolation Properties

Finally, Algorithm 4.3 (Page 82) split the previous local properties into typed proper-
ties:� �
#property IsolationVNet({Musik_MAD},{Intranet});
#property IsolationVM({Musik_MAD},{Proxy , Mysql , Musik_EAS});
#property IsolationVNet({Mysql},{Intranet});
#property IsolationVM({Mysql},{Proxy , Musik_MAD , Musik_EAS});

115

5.3. DEPLOYMENT CHAPTER 5. USE CASE

#property IsolationVNet({Musik_EAS},{Intranet});
#property IsolationVM({Musik_EAS},{Proxy , Musik_MAD , Mysql});
#property IsolationVNet({Intranet});
#property IsolationVM({Intranet},{Proxy , Musik_MAD , Mysql ,

Musik_EAS});
#property IsolationVNet({Proxy},{Public , Intranet});
#property IsolationVM({Proxy},{Musik_MAD , Mysql , Musik_EAS});� �

Listing 5.14: Ikusi Typed Isolation Properties

5.3.2 VM Security Solving

Except for our Isolation properties, the three others (i.e., Authentication, Confidentiality
and Integrity) may be mapped to a guest-level security agent. In our model, the Proxy
and Musik_MAD VMs have the following capabilities :

Proxy:
Authentication(Client, Service, Role:Airport)
Confidentiality(Service, Client)
Confidentiality(Data, Client)

Musik_MAD:
Confidentiality(Data, Service)
Integrity(Data, Service)

These capabilities matches our three properties. As a result, the Authentication prop-
erty is mapped to the Proxy VM security agent and the Confidentiality and Integrity
properties are mapped to Musik_MAD VM security agent. Suppose the Authentica-
tion capability is not present within the Proxy but any other VM (e.g., Musik_MAD),
then because the authentication must be performed by the Web_Proxy service which
is in Proxy, no solution would have been found and the deployment would have failed.

5.3.3 Placement-based Enforcement

Our security-aware placement algorithm must enforce the four following properties:� �
#property IsolationVM({Musik_MAD},{Proxy , Mysql , Musik_EAS});
#property IsolationVM({Mysql},{Proxy , Musik_MAD , Musik_EAS});
#property IsolationVM({Musik_EAS},{Proxy , Musik_MAD , Mysql});
#property IsolationVM({Proxy},{Musik_MAD , Mysql , Musik_EAS});� �

Listing 5.15: Ikusi Typed IsolationVM Properties

We recall that all these properties have the Medium grade. We arbitrarily define the
correspondence between a grade and a covert channel bitrate in Table 5.3.

116

CHAPTER 5. USE CASE 5.3. DEPLOYMENT

Quality Level Bitrate
Low <6 Kpbs
Medium <3 Kbps
High <1 Kbps
Very High <100 bps

Table 5.3: Correspondence between Quality Levels and Bitrates

To better illustrate our placement algorithms in particular the NUMA allocation pro-
cedure, we consider that our virtualization-based infrastructure is composed of two Tau-
rus nodes of Grid’5000. Taurus microarchitecture is depicted in Figure 2.13 (Page 34).
We recall that Taurus has 12 cores, 2 NUMAs and a shared L3 cache per NUMA. The
achievable cache-based covert channel bitrates for Taurus computed in Section 4.2.4 are
presented in Table 5.4.

Memory (NUMA) Bitrate
Local 4.167 Kbps
Remote 2.585 Kbps

Table 5.4: Taurus L3-based Covert Channel Bitrates

As depicted in Figure 5.4, inially i.e., before deploying the Ikusi use case, Taurus1
node already executes the VM Other on core c1 using 8 GB of memory in Numa0
without enforcing any particular security properties.

Figure 5.4: Infrastructure Initial State.

To place our virtualized application, we use a First-Fit algorithm: a placement
solution is computed for each VM in sequential order (1: Proxy, 2: Musik_MAD,
3: Musik_EAS and 4: Mysql). If a solution exists for all VMs, then the VMs are
effectively deployed otherwise the entire application fails.

Because the Medium grade only authorizes less than 3 Kpbs bitrate, the placement
configuration cannot have a shared L3 cache with local NUMA in common with an other
tenant’s VM e.g., Other, but only a remote NUMA. Using our First-Fit placement
algorithm in conjunction with Algorithm 4.6 (Page 99), Proxy (1 core, 6 GB memory

117

5.3. DEPLOYMENT CHAPTER 5. USE CASE

required) and Musik_MAD (2 cores, 6 GB memory required) are provisioned on the
local cores of Numa1 i.e., no cache is shared with Other. As a result, we obtain the
infrastructure depicted Figure 5.5.

Figure 5.5: Infrastructure State after placing Proxy and Musik_MAD.

At this step, Numa0 has 8 GB of available memory and Numa1 has 4 GB avail-
able memory i.e., a total of 20 GB has been allocated. The next VM in queue
i.e., Musik_EAS required 6 GB memory thus it cannot be allocated on Numa1 but
only on Numa0. To enforce Musik_EAS Isolation property, a solution is to allocate the
4 GB available on Numa1 and the rest (i.e., 2 GB) on Numa0. To satisfy the Medium
grade, no local NUMA can be shared with VM Other and thus Musik_EAS is provi-
sioned on cores c10 and c11. As a result, the NUMA composition procedure detailed in
Algorithm 4.4 (Page 96) merges Numa0 and Numa1 into Numa01 and Musik_EAS
allocates 6 GB on composed NUMA Numa01. The final state of Taurus1 is depicted in
Figure 5.6 where Numa01 has 26 GB used including 8 GB by Other on Numa0, 6 GB
by both Proxy and Musik_MAD on Numa1, and 6 GB allocated across Numa0 and
Numa1 by Musik_EAS. At this point, none of the Ikusi VMs share a L3 cache with
VM Other hence no cache-based covert channel attack can be conducted (or the bitrate
is null)

Finally, Mysql requires 12 GB of memory. With only 8 GB left, Taurus1 cannot
satisfy this constraint. Therefore, our First-Fit algorithm selects Taurus2 and allocates
c1 and part of Numa0. The final state of Taurus2 is depicted Figure 5.7.

5.3.4 Configuration-based Enforcement

In Section 5.3.2, we have associated the three properties (i.e., Authentication, Confiden-
tiality and Integrity) to guest-level security agents in VMs Proxy and Musik_MAD.
After the deployment of the virtualized application described in Section 5.3.3, some se-
curity agents receive a set of properties to enforce. In this subsection, we present the
security agent architecture as designed by Bousquet et al. in [21]. Then, we detail the
enforcement of the Authentication with PAM and the enforcement of the Confidentiali-
ty/Integrity with SELinux. Note that any security agent framework could be used pro-
viding it implements the correct interface like in [117].

118

CHAPTER 5. USE CASE 5.3. DEPLOYMENT

Figure 5.6: Taurus1 Final State.

Figure 5.7: Taurus2 Final State.

A Security Agent Design

In [21], a security agent is called a SEE (Secure Element Extended).
As illustrated in Figure 5.8, a security agent has list of security plugins which are

individual drivers for each security mechanisms. Each plugin publishes the list of ca-
pabilities it can enforce to the capabilities directory. Upon receiving a list of security
properties, a plugin selector selects the suitable mechanisms and delegates to the plugin
manager the orchestration of properly configuring the security mechanisms through their
corresponding plugins.

This architecture can encompass any new mechanism by providing the plugin to drive
the configuration of the new mechanism and publish the list of its capabilities.

Authentication with PAM

A Pluggable Authentication Module (PAM) is a mechanism to integrate multiple low-
level authentication schemes into a high-level application programming interface (API).

119

5.3. DEPLOYMENT CHAPTER 5. USE CASE

Figure 5.8: Security Agent Architecture.

The security agent in Proxy can enforce the following Authentication property with
PAM:� �
#property Authentication ((Client ="*"),

ctxProxy :(Service =" Web_Proxy "),
[(Role=" Device|Operator "):(Airport ="MAD|EAS")]);� �

Listing 5.16: Proxy Authentication Property

Upon receiving this property, the security agent selects the PAM plugin which has
the required Authentication capability. This plugin activates an authentication module
in PAM like Unix users or LDAP (Lightweight Directory Access Protocol). This module
must explicit support the attributes Role and Airport. For instance, Figure 5.9 illustrates
an LDAP tree-structure with our two attributes Role and Airport including respectively
the groups Device and Operator, and MAD and EAS.

Figure 5.9: LDAP tree structure.

Confidentiality and Integrity with SELinux

The security agent in Musik_MAD can enforce the following Confidentiality and In-
tegrity properties with SELinux:

120

CHAPTER 5. USE CASE 5.3. DEPLOYMENT

� �
#property Integrity ((VM=" Musik_MAD "):ctxLogMusik ,

(VM=" Musik_MAD "):ctxServiceMusik);
#property Confidentiality ((VM=" Musik_MAD "):ctxConfigMusik ,

(VM=" Musik_MAD "):ctxServiceMusik);� �
Listing 5.17: Musik_MAD Integrity and Confidentiality Properties

First, the bindings contain all the necessary information to associate paths to
SELinux contexts. For instance, the generation of a SELinux context for ctxLogMusik
((Data="Log"):(AppDomain="App_Musik")) would be:

/opt/musik/log(/.*)? gen_context(system_u:app_musik_r:log_t,s0)
/opt/apache-.*/log(/.*)? gen_context(system_u:app_musik_r:log_t,s0)
/opt/devmconn/log(/.*)? gen_context(system_u:app_musik_r:log_t,s0)

Then, the Confidentiality property can be translated in SELinux by allowing read
operations (everything is denied by default) as follows:

interface(‘confidentiality’,‘
gen_require(‘
type $1;
type $2;
’)
allow $1 $2:file { read_file_perms create_file_perms unlink };
allow $1 $2:lnk_file { read_lnk_file_perms create_lnk_file_perms };
allow $1 $2:dir { search create_dir_perms };
’)

Finally, the application of SELinux confidentiality is the following function call:

confidentiality(app_musik_r:log_t, app_musik_r:app_musik_t)

The same process can be realized to enforce the Integrity property by allowing writes
operations.

5.3.5 Production Platform Integration

The full deployment implementation is called Sam4C Scheduler. It contains all algorithms
and procedures previously presented. Sam4C Scheduler has been integrated in an open

121

5.4. CONCLUSION CHAPTER 5. USE CASE

source Cloud software platform software called OpenStack. This lighweight integration
consists in:

• Replacing the default OpenStack scheduler by Sam4C Scheduler which takes in
input Sam4C models.

• Extending the OpenStack database with information leakage informations.

• Extending the Openstack database with the available security agents and their
capabilities.

• Extending OpenStack agents with new primitives to add/remove security agents/-
capabilities.

• Extending OpenStack allocation primitives with the selection of cores and NUMAs.

Given the aforementioned modifications, Sam4C Scheduler can infer the infrastructure
model from OpenStack database. Upon receiving a request, Sam4C Scheduler computes
the placement and security solutions as previously described, then sends the local se-
curity properties to the security agents and provisioned VMs using the new OpenStack
primitives.

5.4 Conclusion
In this chapter, we have demonstrate the usability of Sam4C to model a real airport
management use case. We have detailed each step of our framework from modelization
to enforcement.

Despite this quite simple application architecture, the quantity of information needed
to automatically compute this deployment and enforce its security is huge. For example,
defining bindings is time-consuming. Moreover, we recall that we only modeled a small
part of the complete airport management framework and only detailed 4 out of 70 security
properties for this part. Nevertheless, even if not presented in this manuscript, all the 70
properties have been enforced in practice using several mechanisms.

122

Chapter 6

Conclusions and Perspectives

The evolution of computing platforms could be viewed as a race between demand
i.e., what applications/services need to run efficiently, and supply i.e., what process-
ing power infrastructures are able to offer. Initially in the 1960s, huge computers called
mainframes were used to run a vast range of services. At the time, security was a primary
concern for the military and secondary for the others. Then, with the sophistication of
these applications requiring more resources, services were dispatched and interconnected
across multiples machines to form clusters. After, with the continuous growing need of
computing and storage resources, grid were designed as a federation of resources oper-
ated by multiple organizations. Consequently, it has introduced the novel security issue
of concurrent users sharing the same infrastructure. Nowadays, any user of a service
like Gmail expects to access the application without delay, from anywhere on earth, at
any time and in a responsive and efficient manner. Therefore, new infrastructures have
been designed to cope with these issues: Clouds. In such virtualization-based distributed
environments, services are deployed on infrastructures providing dynamicity, on-demand
resources and abstraction of the physical components for portability. Like Grids, these
new virtualization-based infrastructures are shared amongst multiple users/tenants from
different organizations from which arise new security issues. Instead of facing external
threats mainly, internal threats are now considered as much of a risk. But security is often
disregarded due to its complexity, costs and absence of tangible benefits. And when we
look at current practices, they mostly rely on multiple independent Access Control meth-
ods and do not take into account the propagation of the information that is information
flows. But with Access Control, once the information is released from its container, a
program may (maliciously or unwillingly) leak the information to an unauthorized entity.
Moreover, as most providers offer a security by default of the infrastructure, security
issues of hosted applications is left to the user. But the task of configuring the security
of an application is complex and error-prone. At the opposite, we believe a user should
be able to specify its security without any knowledge of available low-level security mech-
anisms and should benefit from automatic enforcement methods. In resume, we need a
user-centric approach as opposed to provider-centric.

As a solution, we have proposed a specification-driven approach where the security
is expressed as properties in a mechanism agnostic language. Our specification-driven
approach is materialized as a toolbox called Sam4C (Security-Aware Models for Clouds).

The first part is Sam4C Modeling presented in Chapter 2. We need a simplified repre-

123

CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

sentation (i.e., a model) of the application to be able to deploy it and the list of security
properties to enforce them. By following a model-driven engineering methodology, the
end-user modelization task is rendered easier with a graphical interface for the virtual-
ized application and a textual language for the security requirements. Our modelization
focuses on n-tier applications therefore we have defined a virtualized application as a set
of interconnected VMs containing data and services. Following our user-centric philoso-
phy, the security requirements are properties regulating the propagation of information
between entities modeled in the application. These properties (e.g., Authentication, Con-
fidentiality, Integrity and Isolation) are mechanism-agnostic: they specify what a secure
application is but not how to secure it. As the infrastructure provides the means to
enforce the security, we proposed an infrastructure metamodel hosting virtualized appli-
cations. This metamodel contains both the description of the distributed infrastructure
and the microarchitecture of each physical machine composing it.

If the application part of the model is usually well understood, the exact meaning
of the security properties is still fuzzy. Besides, the main issue with existing security
languages is the ability to formally guarantee the required property. On the one hand,
security policies described in a natural language have quite ambiguous semantics. On the
other hand, a formal language or logic provides clear syntax and semantics. Moreover,
existing mechanisms are dedicated to secure specific type of entities (e.g., VM, Service,
Data, VNet). Therefore, the problem is to have a formal definition of security properties
and proven procedures to transform the end-user’s global security properties into multiple
local properties enforceable by several local mechanisms. For these reasons, we proposed
a logic language called IF-PLTL (Information Flow Past Linear Time Logic) in Chap-
ter 3. Our logic is dedicated to controlling the propagation of information i.e., direct
and indirect information flows. As these information flows cannot be obtained directly,
we have explained their construction from low-level observable events. Security decisions
are naturally expressed according to past actions. Accordingly, IF-PLTL is based on the
past fragment of LTL with the syntax and semantic detailed in Section 3.5. In addition
to using IF-PLTL to transform properties, we have proposed a dynamic monitor that can
enforce the full expressivity of IF-PLTL even if its complexity (in time and space) would
incur a high overhead in practice.

After having a solid formal basis for our security properties, we must consider their
enforcement alongside with the deployment of the application they apply to. If multiple
approaches may be envisioned to enforce security properties, we propose two different
but complementary solutions in Chapter 4. The first one (described in Section 4.2)
is a security-aware placement to enforce security between virtual machines (inter-VM
security) which may belong to the same or to different applications. The second (described
in Section 4.3) is the configuration of security mechanisms to provide security within
applications’ virtual machines (intra-VM security). But these approaches can only enforce
typed properties obtained after the following preprocessing steps detailed in Section 4.1:

1. Implicit to explicit properties: the list of authorized entities can be inferred from
the application model to obtain explicit properties.

2. Explicit to singleton properties: a global explicit property can be split into proper-
ties with a single secured entity

124

CHAPTER 6. CONCLUSIONS AND PERSPECTIVES 6.1. SHORT-TERM

3. Singleton to typed properties: because mechanisms are specialized, a property can
be split into several properties each one dedicated to a specific type of entity.

All these three procedures are based on proven equivalences thanks to IF-PLTL.
In terms of inter-VM security, the virtualization cannot provide a strong isolation

on resources shared between VMs due to covert channels which leak unauthorized in-
formation by exploiting microarchitectural features. Accordingly, we have proposed a
new information leakage metric to quantify these covert channels, and then integrated
this metric into our placement algorithm. The idea is to let the user specify the risk
it is willing to face and strictly enforce this constraint by carefully allocating cores and
NUMAs for each VM. For intra-VM security, the automatic configuration of mechanisms
has been achieved with security agents providing capabilities i.e., templates of security
properties they can enforce. Consequently, the problem has been reduced to choosing
security agents with the right capabilities.

To illustrate our whole framework, we have presented a real industrial use case: An
Advertising Content Manager for Airports in Chapter 5. Using Sam4C Modeling, Ikusi’s
engineers have modeled their application and security requirements with limited external
help i.e., Sam4C seems to be easy-to-use. Each method detailed in each chapter has
been exemplified on this use case. In our opinion, this use case demonstrates two general
points. First, the task of providing an end-to-end automatic security a real application
is not trivial. Many layers from hardware to software code are involved and we are far
from providing a precise and complete modelization of the application. But our second
point is that it is feasible to do so by relying on formal methods and integrating good
practices from domains other than security like model-driven engineering.

6.1 Short-Term Perspectives

Our contributions can be extended in several directions. In this section, we present our
short-term perspectives.

Modelization The current Sam4C implementation can be improved in several ways.

• First, we can provide automatic analysis tools to verify the validity of the mod-
elization i.e., that all the needed information are specified for a deployment or that
the security properties are not contradictory.

• Second, our current metamodel focuses mainly on the IaaS layer with VMs and
VNets; it would be interesting to extend our metamodel to the PaaS and SaaS
layers by providing the corresponding models and propose a cross-layer security
from the hypervisor to application-specific flows.

• Third, we can study new use cases to validate our metamodel or extend it with the
necessary features.

• And last but not the least, our current deployment is limited to provisioning VMs
with components statically installed in those VMs i.e., we suppose that each VM

125

6.2. LONG-TERM CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

contains the correct software stack. The full deployment of all components com-
posing this software stack could be automatized as well. To do so, we believe that
component-based modeling is a key lead bringing more adaptability, dynamicity
and flexibility to our models. An automatic deployment of inner components can
facilitate the enforcement of the security. Indeed, without automaticity, the en-
forcement must be based on the existing architecture which must be accurately
specified by the end-user whereas in an automatic process, all these information
can be known without requiring the end-user’s knowledge.

Logic In our formalization, we have presented a dynamic monitor. It would be inter-
esting to implement it at the system level and evaluate its overhead in practice with a
realistic security policy.

Security Enforcement Regarding the enforcement of security, several points can be
addressed:

• First, our placement decision is constrained by covert channels. These constraints
lead to a deconsolidation of the platform i.e., VMs are more likely to be spread
across the infrastructure than be regrouped on the same host. This side effect is in
opposition with the economical benefit of maximizing the consolidation i.e., security
costs. Therefore, a cost-model for covert channels should be devised to quantify and
monetize this impact.

• Then, we have presented the enforcement of properties between VMs and within
VMs but we have left aside the enforcement of network properties. We have dis-
cussed a potential solution in Section 4.4 and more effort should be put to explore
this direction as securing networks is as important as securing VMs.

• Finally, we have briefly discussed the necessity of having a grading system in Sec-
tion 2.3.2. A short-term contribution would be to effectively propose a user-friendly
grading system and assess its suitability by conducting a survey on a panel of users.

6.2 Long-Term Perspectives

After having presented our short-term perspectives, we discuss in this section our long-
term perspectives.

Modelization We have previously proposed to integrate component-based models in
our modelization to automatically deploy the software stack within VMs. Following
this idea, component-based models are well known to represent dynamic applications
scaling at runtime, for instance by changing the number of instances of a VM delivering
a service depending on the load. This approach can be further extended to encompass
applications which requires some reconfiguration at runtime, for instance to update a
legacy architecture with a more efficient but completely different one. This direction
should be explored alongside a dynamically reconfigurable security detailed later.

126

CHAPTER 6. CONCLUSIONS AND PERSPECTIVES 6.2. LONG-TERM

Logic Our logic formalism can be improve in several ways:

• Thanks to IF-PLTL, we have proved few equivalences specifically for the Confiden-
tiality, Integrity and Isolation properties, but we lack general methods to obtain
local properties i.e., methods taking as input any arbitrary IF-PLTL formula.

• Furthermore, to have a complete approach, we should provide the means to ensure
the correctness of a security policy i.e., prove that a given theory (policy) is coher-
ent. Indeed, allowing an end-user to deploy an incoherent policy is undesirable.

• Our current monitor is not deadlock-free i.e., a sequence of events can lead to
forbidding any future accesses. Consequently, the secured system is overprotected
as it does not render any service anymore. The desirable property for a monitor is
to preserve the liveness while making decisions. One idea is to detect any events
leading to deadlock situation and prevent them.

Security Enforcement As stated before, security has a cost but as demonstrated
in this Thesis, a general security is hard to quantify or qualify. We can envision two
directions:

• A generic and precise metric or grading system for security. The first milestone is
to propose a metric to compare two security configurations i.e., being able to have
a partial order on security configurations. Then, the second step is having a metric
scale proportional/coherent with the security risk.

• The previous proposition can facilitate the design of a general cost-model associating
a price to a given security configuration.

Distributed Security If many works have been conducted on system security, pro-
gramming language security and network security, fewer achievements have been ob-
tained on what we call distributed security. Current solutions revolve around a more or
less centralized security of a distributed system and not a fully distributed security. The
closest concept would be decentralized security with is divided into Decentralized Ac-
cess Control [74] and Decentralized Information Flow Control. In AC, the decentralized
component is the delegation authority i.e., the entity delivering roles and permissions,
and controls are locally authorized, for instance a distributed/decentralized Public Key
Infrastructure [81]. In IFC, the major technique is tainting which piggybacks the security
policy on each entity. But this technique is efficient only with lightweight piggybacked
information and has mostly been applied to a single machine. If we consider a large dis-
tributed system with much more entities and conflicting domains, this information grows
too and may not scale. Besides, tainting techniques have only been applied only for
Confidentiality and Integrity properties. Therefore, we lack scalable methods to control
complex information flow properties across a distributed system like Clouds. Generally
speaking, the security of each individual components does not ensure the security of the
whole. Accordingly, a first can be the design of composable security properties to prove
the equivalence between locally enforced properties and a global property of the system.
A collaborative security system could also be interesting to explore.

127

6.2. LONG-TERM CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

Autonomic Security A very interesting perspective is autonomic security. It can be
characterized as a security that can reconfigure itself, recover from intrusions, dynamically
adapt the security to the current state of the system. Currently, the closest concept is
autonomic networking which includes some considerations on security, for instance by
learning from a DDoS network attack to update the firewall rules accordingly. However,
the autonomic security has yet to be designed for systems (e.g., OSes).

Availability and Fault-tolerance In this Thesis, we have deliberately ignored the
Availability property of the CIA triad as it comes under the concept of fault-tolerance.
A denial of service is a common attack which violates the Availability but neither the
Confidentiality nor the Integrity. Yet, it is a threat any security administrator must cope
with. In our opinion, security and fault-tolerance should be more integrated. Indeed, a
byzantine fault (in the fault-tolerance domain) can be seen as a malicious user. Therefore,
the study of byzantines may help designed more robust security systems.

128

Appendix A

Annex

A.1 Publications

A.1.1 Journal

• S. Betgé-Brezetz, A. Bousquet, J. Briffaut, E. Caron, L. Clevy, M.-P. Dupont, G.-
B. Kamga, J.-M. Lambert, A. Lefray, B. Marquet, J. Rouzaud-Cornabas, L. Toch,
C. Toinard, and B. Venelle. Seeding the cloud: An innovative approach to grow
trust in cloud based infrastructures. In A. Galis and A. Gavras, editors, The Fu-
ture Internet, volume 7858 of Lecture Notes in Computer Science, pages 153–158.
Springer Berlin Heidelberg, 2013

A.1.2 Book Chapter

• M. Blanc, A. Bousquet, J. Briffaut, L. Clevy, D. Gros, A. Lefray, J. Rouzaud-
Cornabas, C. Toinard, and B. Venelle. Mandatory access protection within cloud
systems. In S. Nepal and M. Pathan, editors, Security, Privacy and Trust in Cloud
Systems, pages 145–173. Springer Berlin Heidelberg, 2014

A.1.3 International Conferences

• E. Caron, A. D. Le, A. Lefray, and C. Toinard. Definition of security metrics for
the cloud computing and security-aware virtual machine placement algorithms. In
International Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), 2013, pages 125–131, Oct. 2013

• L. Bobelin, A. Bousquet, J. Briffaut, J.-F. Couturier, C. Toinard, E. Caron,
A. Lefray, and J. Rouzaud-Cornabas. An advanced security-aware cloud architec-
ture. In High Performance Computing & Simulation (HPCS), 2014 International
Conference on, pages 572–579. IEEE, 2014

• A. Lefray, E. Caron, J. Rouzaud-Cornabas, and C. Toinard. Microarchitecture-
aware virtual machine placement under information leakage constraints. In IEEE
8th International Conference on Cloud Computing (CLOUD), 2015, pages 588–595,
June 2015

129

A.1. PUBLICATIONS APPENDIX A. ANNEX

A.1.4 National Conference

• A. Lefray and J. Rouzaud-Cornabas. Formalisation de propriétés de flux
d’information avec une logique temporelle du premier ordre pour assurer la sécu-
rité d’une infrastructure de cloud. In Conférence d’informatique en Parallélisme,
Architecture et Système (ComPAS), 2014, 2014

A.1.5 Poster and Talk

• E. Caron, A. Lefray, B. Marquet, and J. Rouzaud-Cornabas. A cloud security
infrastructure validated on Grid’5000. Talk at Grid’5000 Winter School., 2012

• A. Lefray, E. Caron, J. Rouzaud-Cornabas, H. Zhang, A. Bousquet, J. Briffaut, and
C. Toinard. Security-aware models for clouds. Poster at the 22th IEEE International
Symposium on High Performance Distributed Computing (HPDC), Jun. 2013

130

Bibliography

[1] B. Alpern and F. B. Schneider. Defining liveness. Information processing letters,
21(4):181–185, 1985.

[2] B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, P. Hallam-Baker, J. Klein,
B. LaMacchia, P. Leach, J. Manferdelli, H. Maruyama, et al. Web services security
(ws-security). Specification, Microsoft Corporation, 2002.

[3] C. Atkinson and T. Kuhne. Model-driven development: a metamodeling founda-
tion. IEEE Software, 20(5):36–41, 2003.

[4] J. Bacon, K. Moody, and W. Yao. A model of OASIS role-based access control and
its support for active security. ACM Trans. Inf. Syst. Secur., 5(4):492–540, Nov.
2002.

[5] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot, E. Jeanvoine,
A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum, O. Richard, C. Pérez, F. Ques-
nel, C. Rohr, and L. Sarzyniec. Adding virtualization capabilities to the Grid’5000
testbed. In Cloud Computing and Services Science, volume 367 of Communications
in Computer and Information Science, pages 3–20. Springer International Publish-
ing, 2013.

[6] S. Barker and P. J. Stuckey. Flexible access control policy specification with con-
straint logic programming. ACM Trans. Inf. Syst. Secur., 6(4):501–546, Nov. 2003.

[7] L. Barroso, J. Dean, and U. Holzle. Web search for a planet: The Google cluster
architecture. Micro, IEEE, 23(2):22–28, March 2003.

[8] D. Basin, M. Clavel, and M. Egea. A decade of model-driven security. In Proceedings
of the 16th ACM Symposium on Access Control Models and Technologies, SACMAT
’11, pages 1–10, New York, NY, USA, 2011. ACM.

[9] D. Basin, F. Klaedtke, and S. Müller. Policy monitoring in first-order temporal
logic. In T. Touili, B. Cook, and P. Jackson, editors, Computer Aided Verification,
number 6174 in Lecture Notes in Computer Science, pages 1–18. Springer Berlin
Heidelberg, Jan. 2010.

[10] A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol., 20(4):14:1–14:64, Sept. 2011.

131

BIBLIOGRAPHY BIBLIOGRAPHY

[11] M. Becker and P. Sewell. Cassandra: distributed access control policies with tunable
expressiveness. In Proceedings of the Fifth IEEE International Workshop on Policies
for Distributed Systems and Networks, POLICY 2004, pages 159–168, 2004.

[12] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical founda-
tions. Technical report, The MITRE Corporation, 1973.

[13] K. Bernsmed, M. Jaatun, P. Meland, and A. Undheim. Security SLAs for federated
cloud services. In Sixth International Conference on Availability, Reliability and
Security (ARES), 2011, pages 202–209, Aug 2011.

[14] C. Bertolissi and W. Uttha. Automated analysis of rule-based access control poli-
cies. In Proceedings of the 7th Workshop on Programming Languages Meets Program
Verification, PLPV ’13, page 47–56, New York, NY, USA, 2013. ACM.

[15] S. Betgé-Brezetz, A. Bousquet, J. Briffaut, E. Caron, L. Clevy, M.-P. Dupont, G.-
B. Kamga, J.-M. Lambert, A. Lefray, B. Marquet, J. Rouzaud-Cornabas, L. Toch,
C. Toinard, and B. Venelle. Seeding the cloud: An innovative approach to grow
trust in cloud based infrastructures. In A. Galis and A. Gavras, editors, The Fu-
ture Internet, volume 7858 of Lecture Notes in Computer Science, pages 153–158.
Springer Berlin Heidelberg, 2013.

[16] K. J. Biba. Integrity considerations for secure computer systems. Technical report,
The MITRE Corporation, 1977.

[17] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak, and S. Wag-
ner. OpenTOSCA – a runtime for TOSCA-based cloud applications. In S. Basu,
C. Pautasso, L. Zhang, and X. Fu, editors, Service-Oriented Computing, volume
8274 of Lecture Notes in Computer Science, pages 692–695. Springer Berlin Heidel-
berg, 2013.

[18] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann. TOSCA: Portable automated
deployment and management of cloud applications. In A. Bouguettaya, Q. Z. Sheng,
and F. Daniel, editors, Advanced Web Services, pages 527–549. Springer New York,
2014.

[19] M. Blanc, A. Bousquet, J. Briffaut, L. Clevy, D. Gros, A. Lefray, J. Rouzaud-
Cornabas, C. Toinard, and B. Venelle. Mandatory access protection within cloud
systems. In S. Nepal and M. Pathan, editors, Security, Privacy and Trust in Cloud
Systems, pages 145–173. Springer Berlin Heidelberg, 2014.

[20] L. Bobelin, A. Bousquet, J. Briffaut, J.-F. Couturier, C. Toinard, E. Caron,
A. Lefray, and J. Rouzaud-Cornabas. An advanced security-aware cloud architec-
ture. In High Performance Computing & Simulation (HPCS), 2014 International
Conference on, pages 572–579. IEEE, 2014.

[21] A. Bousquet, J. Briffaut, and C. Toinard. An autonomous cloud management
system for in-depth security. In IEEE 3rd International Conference on Cloud Net-
working (CloudNet), 2014, pages 368–374, Oct 2014.

132

BIBLIOGRAPHY BIBLIOGRAPHY

[22] L. Bozzelli, M. Křetínský, V. Řehák, and J. Strejček. On decidability of LTL model
checking for process rewrite systems. Acta Informatica, 46(1):1–28, Feb. 2009.

[23] J. Briffaut, J.-F. Lalande, and C. Toinard. Formalization of security properties:
enforcement for MAC operating systems and verification of dynamic MAC policies.
International journal on advances in security, 2(4):325–343, 2009.

[24] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier,
S. Thibault, and R. Namyst. hwloc: A generic framework for managing hardware
affinities in HPC applications. In 18th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP), 2010, pages 180–186,
Feb 2010.

[25] D. Brumley and D. Boneh. Remote timing attacks are practical. Computer Net-
works, 48(5):701–716, 2005.

[26] G. Bruns and M. Huth. Access control via belnap logic: Intuitive, expressive, and
analyzable policy composition. ACM Trans. Inf. Syst. Secur., 14(1):9:1–9:27, June
2011.

[27] R. Butler, V. Welch, D. Engert, I. Foster, S. Tuecke, J. Volmer, and C. Kesselman.
A national-scale authentication infrastructure. Computer, 33(12):60–66, Dec 2000.

[28] E. Caron, F. Desprez, and J. Rouzaud-Cornabas. Smart resource allocation to
improve cloud security. In S. Nepal and M. Pathan, editors, Security, Privacy and
Trust in Cloud Systems, pages 103–143. Springer Berlin Heidelberg, 2014.

[29] E. Caron, A. D. Le, A. Lefray, and C. Toinard. Definition of security metrics for
the cloud computing and security-aware virtual machine placement algorithms. In
International Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), 2013, pages 125–131, Oct. 2013.

[30] E. Caron, A. Lefray, B. Marquet, and J. Rouzaud-Cornabas. A cloud security
infrastructure validated on Grid’5000. Talk at Grid’5000 Winter School., 2012.

[31] E. Caron and J. Rouzaud-Cornabas. Improving users’ isolation in IaaS: Virtual
machine placement with security constraints. In 7th IEEE International Conference
on Cloud Computing, IEEE CLOUD 2014, Anchorage, USA, June 27-July 2 2014.
IEEE Computer Society.

[32] A. Celesti, F. Tusa, M. Villari, and A. Puliafito. How to enhance cloud architec-
tures to enable cross-federation. In IEEE 3rd International Conference on Cloud
Computing (CLOUD), 2010, pages 337–345, July 2010.

[33] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT press, 1999.

[34] M. Clarkson, B. Finkbeiner, M. Koleini, K. Micinski, M. Rabe, and C. Sánchez.
Temporal logics for hyperproperties. In M. Abadi and S. Kremer, editors, Principles
of Security and Trust, volume 8414 of Lecture Notes in Computer Science, pages
265–284. Springer Berlin Heidelberg, 2014.

133

BIBLIOGRAPHY BIBLIOGRAPHY

[35] M. R. Clarkson and F. B. Schneider. Hyperproperties. J. Comput. Secur.,
18(6):1157–1210, Sept. 2010.

[36] J. Clause, W. Li, and A. Orso. Dytan: a generic dynamic taint analysis frame-
work. In Proceedings of the 2007 International Symposium on Software testing and
analysis, pages 196–206. ACM, 2007.

[37] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms for
NP-hard problems. chapter Approximation Algorithms for Bin Packing: A Survey,
pages 46–93. PWS Publishing Co., Boston, MA, USA, 1997.

[38] M. Da Silva, D. Ardagna, N. Ferry, and J. Perez. Model-driven design of cloud
applications with quality-of-service guarantees: The modaclouds approach, micas
tutorial. In 16th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC), 2014, pages 3–10, Sept 2014.

[39] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder policy specification
language. In M. Sloman, E. Lupu, and J. Lobo, editors, Policies for Distributed
Systems and Networks, volume 1995 of Lecture Notes in Computer Science, pages
18–38. Springer Berlin Heidelberg, 2001.

[40] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan. Side-channel vul-
nerability factor: A metric for measuring information leakage. In 39th Annual
International Symposium on Computer Architecture (ISCA), 2012, pages 106–117,
June 2012.

[41] D. E. Denning. A lattice model of secure information flow. Commun. ACM,
19(5):236–243, May 1976.

[42] J. DeTreville. Binder, a logic-based security language. In Proceedings of the IEEE
Symposium on Security and Privacy, 2002, pages 105 – 113, 2002.

[43] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler, E. Kohler,
D. Mazières, F. Kaashoek, and R. Morris. Labels and event processes in the asbestos
operating system. In Proceedings of the Twentieth ACM Symposium on Operating
Systems Principles, SOSP ’05, pages 17–30, New York, NY, USA, 2005. ACM.

[44] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth. Taintdroid: an information-flow tracking system for real-
time privacy monitoring on smartphones. ACM Transactions on Computer Systems
(TOCS), 32(2):5, 2014.

[45] X. Etchevers, T. Coupaye, F. Boyer, and N. de Palma. Self-configuration of dis-
tributed applications in the cloud. In IEEE International Conference on Cloud
Computing (CLOUD), 2011, pages 668–675, July 2011.

[46] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets.
1974.

134

BIBLIOGRAPHY BIBLIOGRAPHY

[47] J. Ferreirós. The road to modern logic—an interpretation. Bulletin of Symbolic
Logic, 7:441–484, 12 2001.

[48] M. Fonda, C. Toinard, and S. Moinard. Mandatory access control for web ap-
plications and workflows. In The 2013 International Conference on Security and
Management (SAM’13), 2013.

[49] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for
computational Grids. In Proceedings of the 5th ACM Conference on Computer and
Communications Security, CCS ’98, pages 83–92, New York, NY, USA, 1998. ACM.

[50] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scal-
able Virtual Organizations. International Journal of High Performance Computing
Applications, 15(3):200–222, Aug. 2001.

[51] J. A. Goguen and J. Meseguer. Security Policies and Security Models, volume 0.
IEEE Computer Society, Los Alamitos, CA, USA, 1982.

[52] A. Gregory. Foundations of multithreaded, parallel, and distributed programming.
ISBN, 201357526:27–69, 2000.

[53] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker.
Nox: Towards an operating system for networks. SIGCOMM Comput. Commun.
Rev., 38(3):105–110, July 2008.

[54] J. D. Guttman, A. L. Herzog, J. D. Ramsdell, and C. W. Skorupka. Verifying
information flow goals in security-enhanced linux. Journal of Computer Security,
13(1):115–134, 2005.

[55] J. D. Guttman, A. L. Herzog, J. D. Ramsdell, and C. W. Skorupka. Verifying
information flow goals in security-enhanced linux. J. Comput. Secur., 13(1):115–
134, 2005.

[56] J. Haigh and W. Young. Extending the noninterference version of MLS for SAT.
IEEE Transactions on Software Engineering, 13(2):141–150, 1987.

[57] J. Y. Halpern and V. Weissman. Using first-order logic to reason about policies.
ACM Trans. Inf. Syst. Secur., 11(4):21:1–21:41, July 2008.

[58] S. Hansson. Ideal worlds — wishful thinking in deontic logic. Studia Logica,
82(3):329–336, 2006.

[59] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in operating systems.
Commun. ACM, 19(8):461–471, Aug. 1976.

[60] R. R. Henning. Security service level agreements: Quantifiable security for the
enterprise? In Proceedings of the 1999 Workshop on New Security Paradigms,
NSPW ’99, pages 54–60, New York, NY, USA, 2000. ACM.

135

BIBLIOGRAPHY BIBLIOGRAPHY

[61] B. Hicks, S. Rueda, L. St.Clair, T. Jaeger, and P. McDaniel. A logical specification
and analysis for SELinux MLS policy. ACM Trans. Inf. Syst. Secur., 13(3):26:1–
26:31, July 2010.

[62] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using sequences of
system calls. Journal of computer security, 6(3):151–180, 1998.

[63] S. S. Huang, T. J. Green, and B. T. Loo. Datalog and emerging applications:
an interactive tutorial. In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, pages 1213—-1216, 2011.

[64] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally, and E. Snible. Improv-
ing performance and availability of services hosted on IaaS clouds with structural
constraint-aware virtual machine placement. In IEEE International Conference on
Services Computing (SCC), 2011, pages 72–79, July 2011.

[65] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally, and E. Snible. Improving
Performance and Availability of Services Hosted on IaaS Clouds with Structural
Constraint-aware Virtual Machine Placement. In IEEE International Conference
on Services Computing (SCC), 2011, pages 72–79. IEEE, 2011.

[66] H. Jin, W. Qiang, X. Shi, and D. Zou. VO-sec: An access control framework for
dynamic virtual organization. In Proceedings of the 10th Australasian Conference
on Information Security and Privacy, ACISP’05, pages 370–381, Berlin, Heidelberg,
2005. Springer-Verlag.

[67] D. Kafura and D. Gracanin. An information flow control meta-model. In Pro-
ceedings of the 18th ACM Symposium on Access Control Models and Technologies,
SACMAT ’13, page 101–112, New York, NY, USA, 2013. ACM.

[68] K. Kahley, M. Radhakrishnan, and J. Solworth. Factoring high level information
flow specifications into low level access controls. In Fourth IEEE International
Workshop on Information Assurance, IWIA 2006, pages 17 pp.–186, April 2006.

[69] A. Keller and H. Ludwig. The WSLA framework: Specifying and monitoring service
level agreements for web services. Journal of Network and Systems Management,
11(1):57–81, 2003.

[70] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. NoHype: Virtualized Cloud Infras-
tructure without the Virtualization. SIGARCH Comput. Archit. News, 38(3):350–
361, June 2010.

[71] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-
ing. science, 220(4598):671–680, 1983.

[72] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann. Winery – a modeling tool for
TOSCA-based cloud applications. In S. Basu, C. Pautasso, L. Zhang, and X. Fu,
editors, Service-Oriented Computing, volume 8274 of Lecture Notes in Computer
Science, pages 700–704. Springer Berlin Heidelberg, 2013.

136

BIBLIOGRAPHY BIBLIOGRAPHY

[73] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and R. Mor-
ris. Information flow control for standard OS abstractions. In Proceedings of
Twenty-first ACM SIGOPS Symposium on Operating Systems Principles, SOSP
’07, pages 321–334, New York, NY, USA, 2007. ACM.

[74] J. Laganier and P.-B. Primet. Hipernet: a decentralized security infrastructure for
large scale grid environments. In The 6th IEEE/ACM International Workshop on
Grid Computing, 2005, pages 8 pp.–, Nov 2005.

[75] L. Lamport. Specifying concurrent program modules. ACM Trans. Program. Lang.
Syst., 5(2):190—-222, Apr. 1983.

[76] B. Lampson. Protection. In Proc. 5th Princeton Conf. on Information Sciences
and Systems, pages 18–24. Princeton, 1971.

[77] J.-C. Laprie. Dependable computing and fault-tolerance. Digest of Papers FTCS-
15, pages 2–11, 1985.

[78] A. Lefray, E. Caron, J. Rouzaud-Cornabas, and C. Toinard. Microarchitecture-
aware virtual machine placement under information leakage constraints. In IEEE
8th International Conference on Cloud Computing (CLOUD), 2015, pages 588–595,
June 2015.

[79] A. Lefray, E. Caron, J. Rouzaud-Cornabas, H. Zhang, A. Bousquet, J. Briffaut, and
C. Toinard. Security-aware models for clouds. Poster at the 22th IEEE International
Symposium on High Performance Distributed Computing (HPDC), Jun. 2013.

[80] A. Lefray and J. Rouzaud-Cornabas. Formalisation de propriétés de flux
d’information avec une logique temporelle du premier ordre pour assurer la sécu-
rité d’une infrastructure de cloud. In Conférence d’informatique en Parallélisme,
Architecture et Système (ComPAS), 2014, 2014.

[81] F. Lesueur, L. Me, and V. Tong. An efficient distributed pki for structured p2p
networks. In IEEE Ninth International Conference on Peer-to-Peer Computing,
2009. P2P ’09., pages 1–10, Sept 2009.

[82] T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-based modeling
language for model-driven security. In J.-M. Jézéquel, H. Hussmann, and S. Cook,
editors, UML 2002 — The Unified Modeling Language, volume 2460 of Lecture
Notes in Computer Science, pages 426–441. Springer Berlin Heidelberg, 2002.

[83] P. Loscocco and S. Smalley. Integrating flexible support for security policies into
the linux operating system. In Proceedings of the FREENIX Track: 2001 USENIX
Annual Technical Conference, pages 29–42, Berkeley, CA, USA, 2001. USENIX
Association.

[84] M. Maiza and M. S. Radjef. Heuristics for solving the bin-packing problem with
conflicts. Applied Mathematical Sciences, 5(35):1739–1752, 2011.

137

BIBLIOGRAPHY BIBLIOGRAPHY

[85] S. Martello and P. Toth. Knapsack problems: algorithms and computer implemen-
tations. John Wiley & Sons, Inc., 1990.

[86] L. W. McVoy and C. Staelin. lmbench: Portable tools for performance analysis. In
USENIX annual technical conference, pages 279–294. San Diego, CA, USA, 1996.

[87] D. V. Milushev. Reasoning about Hyperproperties. Scholars’ Press, 2014.

[88] M. Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[89] T. Moses et al. Extensible access control markup language (XACML) version 2.0.
Oasis Standard, 200502, 2005.

[90] A. C. Myers. JFlow: Practical mostly-static information flow control. In Proceedings
of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’99, pages 228–241, New York, NY, USA, 1999. ACM.

[91] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label model.
ACM Transactions on Software Engineering and Methodology (TOSEM), 9(4):410–
442, 2000.

[92] P. Nguyen, J. Klein, Y. Le Traon, and M. Kramer. A systematic review of model-
driven security. In Software Engineering Conference (APSEC), 2013 20th Asia-
Pacific, volume 1, pages 432–441, Dec 2013.

[93] K. Okamura and Y. Oyama. Load-based covert channels between Xen virtual
machines. In Proceedings of the 2010 ACM Symposium on Applied Computing,
SAC ’10, page 173–180, New York, NY, USA, 2010. ACM.

[94] D. G. O’Brien and W. A. Yasnoff. Privacy, confidentiality, and security in informa-
tion systems of state health agencies. American Journal of Preventive Medicine,
16(4):351 – 358, 1999.

[95] D. F. Parkhill. Challenge of the computer utility. 1966.

[96] S. Pearson. Taking account of privacy when designing cloud computing services.
In Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges of
Cloud Computing, CLOUD ’09, pages 44–52, Washington, DC, USA, 2009. IEEE
Computer Society.

[97] C. Percival. Cache missing for fun and profit. 2005.

[98] A. Pnueli. The temporal logic of programs. In The 18th Annual Symposium on
Foundations of Computer Science, 1977, pages 46–57, 1977.

[99] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu. Lift: A low-overhead
practical information flow tracking system for detecting security attacks. In 39th
Annual IEEE/ACM International Symposium on Microarchitecture, 2006 MICRO-
39, pages 135–148, Dec 2006.

138

BIBLIOGRAPHY BIBLIOGRAPHY

[100] H. Raj, R. Nathuji, and A. Singh. Resource management for isolation enhanced
cloud services. CCSW ’09 Proceedings of the 2009 ACM workshop on Cloud com-
puting security, page 77, 2009.

[101] L. Ramakrishnan, H. Rehn, J. Alameda, R. Ananthakrishnan, M. Govindaraju,
A. Slominski, K. Connelly, W. Von, D. Gannon, R. Bramley, and S. Hampton. An
authorization framework for a Grid based component architecture. In M. Parashar,
editor, Grid Computing — GRID 2002, volume 2536 of Lecture Notes in Computer
Science, pages 169–180. Springer Berlin Heidelberg, 2002.

[102] E. Reshetova, J. Karhunen, T. Nyman, and N. Asokan. Security of OS-level virtu-
alization technologies. In K. Bernsmed and S. Fischer-Hübner, editors, Secure IT
Systems, volume 8788 of Lecture Notes in Computer Science, pages 77–93. Springer
International Publishing, 2014.

[103] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off of my
cloud: exploring information leakage in third-party compute clouds. In Proceedings
of the 16th ACM conference on Computer and communications security, CCS ’09,
pages 199–212, New York, NY, USA, 2009. ACM.

[104] M. Rosenblum and T. Garfinkel. Virtual machine monitors: current technology
and future trends. Computer, 38(5):39–47, May 2005.

[105] J. Rushby. Noninterference, transitivity, and channel-control security policies. SRI
International, Computer Science Laboratory, 1992.

[106] P. Ryan, J. McLean, J. Millen, and V. Gligor. Non-interference: Who needs it? In
CSFW, page 0237. IEEE, 2001.

[107] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications, 21(1):5–19, Jan 2003.

[108] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. Computer, 29(2):38–47, 1996.

[109] P. Saripalli and B. Walters. Quirc: A quantitative impact and risk assessment
framework for cloud security. In IEEE 3rd International Conference on Cloud
Computing (CLOUD), 2010, pages 280–288, July 2010.

[110] G. J. Simmons. The prisoners’ problem and the subliminal channel. In Advances
in Cryptology: Proceedings of CRYPTO ’83, pages 51–67. Plenum, 1983.

[111] G. Smith, C. E. Irvine, D. Volpano, et al. A sound type system for secure flow
analysis. Journal of Computer Security, 4(3):1–21, 1996.

[112] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, and J. Lepreau. The flask security
architecture: System support for diverse policies. In Proceedings of the Eighth
USENIX Security Symposium, 1999.

139

BIBLIOGRAPHY BIBLIOGRAPHY

[113] C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition
edition, 2002.

[114] K. Taesoo, M. Peinado, and G. Mainar-Ruiz. System-Level Protection Against
Cache-based Side Channel Attacks in the Cloud. In Proceedings of the 21st Usenix
Security Symposium, USENIX Security’12, pages 1–16, Berkeley, CA, USA, 2012.
USENIX Association.

[115] TCSEC. Trusted Computer System Evaluation Criteria. Technical Report DoD
5200.28-STD, Department of Defense, 1985.

[116] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and M. M. Swift. Resource-
Freeing Attacks: Improve your Cloud Performance (At your Neighbor’s Expense).
In Proceedings of the 2012 ACM conference on Computer and communications se-
curity, CCS ’12, pages 281–292, New York, NY, USA, 2012. ACM.

[117] A. Wailly, M. Lacoste, and H. Debar. Vespa: Multi-layered self-protection for
cloud resources. In Proceedings of the 9th International Conference on Autonomic
Computing, ICAC ’12, pages 155–160, New York, NY, USA, 2012. ACM.

[118] J. Wainer, P. Barthelmess, and A. Kumar. W-RBAC—a workflow security model
incorporating controlled overriding of constraints. International Journal of Coop-
erative Information Systems, 12(04):455–485, 2003.

[119] T. Waizenegger, M. Wieland, T. Binz, U. Breitenbücher, F. Haupt, O. Kopp,
F. Leymann, B. Mitschang, A. Nowak, and S. Wagner. Policy4tosca: A policy-
aware cloud service provisioning approach to enable secure cloud computing. In
R. Meersman, H. Panetto, T. Dillon, J. Eder, Z. Bellahsene, N. Ritter, P. De Leen-
heer, and D. Dou, editors, On the Move to Meaningful Internet Systems: OTM 2013
Conferences, volume 8185 of Lecture Notes in Computer Science, pages 360–376.
Springer Berlin Heidelberg, 2013.

[120] Z. Wang and R. Lee. Covert and side channels due to processor architecture. In 22nd
Annual Computer Security Applications Conference, ACSAC ’06, pages 473–482,
Dec. 2006.

[121] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-Hartman. Linux security
module framework. In Ottawa Linux Symposium, volume 8032, 2002.

[122] J. Wu, L. Ding, Y. Wang, and W. Han. Identification and evaluation of sharing
memory covert timing channel in Xen virtual machines. In IEEE International
Conference on Cloud Computing (CLOUD), 2011, pages 283–291, July 2011.

[123] Z. Wu, Z. Xu, and H. Wang. Whispers in the hyper-space: high-speed covert
channel attacks in the cloud. In Proceedings of the 21st USENIX conference on
Security symposium, Security’12, pages 9–9, Berkeley, CA, USA, 2012. USENIX
Association.

140

BIBLIOGRAPHY BIBLIOGRAPHY

[124] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlichting. An
exploration of L2 cache covert channels in virtualized environments. In Proceedings
of the 3rd ACM Workshop on Cloud Computing Security Workshop, CCSW ’11,
page 29–40, New York, NY, USA, 2011. ACM.

[125] F. Yan, W. Qiang, Z. Shen, C. Chen, H. Zhang, and D. Zou. Daonity: An experience
on enhancing Grid security by trusted computing technology. In L. Yang, H. Jin,
J. Ma, and T. Ungerer, editors, Autonomic and Trusted Computing, volume 4158
of Lecture Notes in Computer Science, pages 227–235. Springer Berlin Heidelberg,
2006.

[126] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: Capturing
system-wide information flow for malware detection and analysis. In Proceedings of
the 14th ACM Conference on Computer and Communications Security, CCS ’07,
pages 116–127, New York, NY, USA, 2007. ACM.

[127] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making information
flow explicit in HiStar. In Proceedings of the 7th Symposium on Operating Systems
Design and Implementation, OSDI ’06, pages 263–278, Berkeley, CA, USA, 2006.
USENIX Association.

[128] Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art and
research challenges. Journal of Internet Services and Applications, 1(1):7–18, May
2010.

[129] T. Zhang, F. Liu, S. Chen, and R. B. Lee. Side channel vulnerability metrics:
The promise and the pitfalls. In Proceedings of the 2Nd International Workshop
on Hardware and Architectural Support for Security and Privacy, HASP ’13, pages
2:1–2:8, New York, NY, USA, 2013. ACM.

[130] X. Zhang, N. Wuwong, H. Li, and X. Zhang. Information security risk management
framework for the cloud computing environments. In IEEE 10th International
Conference on Computer and Information Technology (CIT), 2010, pages 1328–
1334, June 2010.

[131] Y. Zhang, A. Juels, A. Oprea, and M. Reiter. HomeAlone: Co-residency detection
in the cloud via side-channel analysis. In IEEE Symposium on Security and Privacy
(SP), 2011, pages 313–328, May 2011.

[132] J. Zimmermann, L. Mé, and C. Bidan. An improved reference flow control model
for policy-based intrusion detection. In E. Snekkenes and D. Gollmann, editors,
Computer Security – ESORICS 2003, volume 2808 of Lecture Notes in Computer
Science, pages 291–308. Springer Berlin Heidelberg, 2003.

[133] D. Zissis and D. Lekkas. Addressing cloud computing security issues. Future Gen-
eration Computer Systems, 28(3):583–592, Mar. 2012.

141

	Introduction
	Motivations
	Information Security
	Security Policy
	Security Properties
	Mandatory and Discretionary Control
	Access Control
	Information Flow Control

	Distributed Systems
	Clusters
	Grids
	Clouds

	Virtualization
	Full Virtualization
	Paravirtualization
	Operating-system-level Virtualization

	Discussion
	Virtualized Application Use Case
	Advertising Content Manager for Airports (Ikusi)

	Contributions
	Structure of this Document

	Modelization of Security Requirements for Virtualized Distributed Systems
	State of the Art
	Security Requirements Models
	Component-based Models
	Model-Driven Engineering and Metamodeling
	Our Unified Metamodel

	Modelization of Virtualized Distributed Systems
	Virtualized Application Metamodel
	Infrastructure Metamodel

	Modelization of Security Requirements
	Attribute-based Contexts
	Security Properties

	Conclusion

	Formalization of Security Properties
	Logic 101
	Syllogistic or Classical Logic
	Propositional Logic
	Predicate or First-Order Logic
	Modal Logic
	Verification of Logics

	State of the Art
	Information Flow Control properties
	Logic-based Policies
	Discussion

	Overview
	System Model: Traces Acquisition
	Traces with Observable Events
	Traces with Functional Events
	Traces with Information Flows
	Summary

	Security Properties: Information Flow Past Linear Time Logic
	Temporal Many-Sorted Logic with Information Flow
	IF-PLTL Syntax
	IF-PLTL Semantics

	Dynamic Monitoring
	Memory
	Monitoring Algorithm
	Complexity Analysis

	Evaluation
	Isolation Policy
	Discussion

	Conclusion

	Security Deployment for Virtualized Distributed Systems
	Preprocessing of Security Requirements
	Equivalence for Confidentiality, Integrity and Isolation
	Implicit to Explicit Properties
	Model-based Property Split
	Conclusion

	Placement-based Security
	State of the Art
	Information Leakage Quantitative Metric
	Information Leakage Aware Placement
	An Automated Approach

	Automatic Configuration of Security Mechanisms
	A Network of Security Agents
	Capabilities and Placement Decision

	Conclusion

	Use Case: An Advertising Content Manager for Airports
	Ikusi Corporation
	Modeling
	Virtualized Application Model
	Security Policy

	Deployment
	Preprocessing
	VM Security Solving
	Placement-based Enforcement
	Configuration-based Enforcement
	Production Platform Integration

	Conclusion

	Conclusions and Perspectives
	Short-Term Perspectives
	Long-Term Perspectives

	Annex
	Publications
	Journal
	Book Chapter
	International Conferences
	National Conference
	Poster and Talk

