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Abstract

This thesis describes the applications of natural language processing (NLP)
to industrial risk management. We focus on the domain of civil aviation,
where incident reporting and accident investigations produce vast amounts of
information, mostly in the form of textual accounts of abnormal events, and
where efficient access to the information contained in the reports is required.

We start by drawing a panorama of the different types of data produced
in this particular domain. We analyse the documents themselves, how they
are stored and organised as well as how they are used within the community.
We show that the current storage and organisation paradigms are not well
adapted to the data analysis requirements, and we identify the problematic
areas, for which NLP technologies are part of the solution.

Specifically addressing the needs of aviation safety professionals, two initial
solutions are implemented: automatic classification for assisting in the coding
of reports within existing taxonomies and a system based on textual similarity
for exploring collections of reports.

Based on the observation of real-world tool usage and on user feedback, we
propose different methods and approaches for processing incident and accident
reports and comprehensively discuss how NLP can be applied within the safety
information processing framework of a high-risk sector. By deploying and
evaluating certain approaches, we show how elusive aspects related to the
variability and multidimensionality of language can be addressed in a practical
manner and we propose bottom-up methods for managing the overabundance
of textual feedback data.
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CL-ESA Cross Lingual Explicit Semantic Analysis

DGAC Directorate General for Civil Aviation (Direction Générale de l’Aviation
Civile)

EASA European Aviation Safety Agency

ECCAIRS European Co-ordination Centre for Accident and Incident Re-
porting Systems

ESA Explicit Semantic Analysis

ETL Extract Transform Load

FAA Federal Aviation Administration

GUI Graphical User Interface

ICAO International Civil Aviation Organisation

IR Information Retrieval

KPI Key Performance Indicator
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NASA National Aeronautics and Space Administration

NLP Natural Language Processing

NTSB National Transportation Safety Board

PMI Pointwise Mutual Information

PPMI Positive Pointwise Mutual Information

R&D Research and Developpement

TSB Transportation Safety Board of Canada



Introduction

The first accident report

On one cold evening a very long time ago, shortly after our an-
cient ancestors had discovered the virtues of fire, in an attempt to
quickly heat-up his dwelling one of them overstocked the fireplace
with some particularly dry wood and struck a flint. At first all
went well. The interior of the hut got cozy and warm. But the
flames kept getting larger and larger. All of a sudden an ember
sprung out and landed on the straw-lined floor of the hut. Another
one landed on the stockpile of firewood close by. Both caught fire.
Something was wrong. After an unsuccessful attempt to put the
fire out, the man fled in panic and helplessly watched his home
burn to the ground. The tribe gathered and, with the charred re-
mains of the hut still looming in the background, the man started
recalling his story to his puzzled audience. The man did his best to
describe the events. The fire, the stockpile of firewood, the horror
he just went through. They looked up to the full moon, it was
the day the spirits of the dead came out. Something must have
upset them. Then another member of the tribe recalled that, just
the other day, something not much unlike this had happened to
him. An ember had landed on his own stockpile of wood but he
had managed to take it off just in time. A young boy recalled that
earlier that day he had stumbled upon a pale green lizard and had
kicked it into the river. The elders of the tribe united in a nearby
hut and pondered on the situation for some time, trying to make
sense of it all. Finally they came up with a solution. In order to
appease the spirits, the tribe shall gather some food and, on the
next full moon throw it in the fire. Pale green lizards were declared
sacred and are to never be bothered again. Just in case the former
didn’t work, wood shall be stockpiled as far as possible from the
huts’ fireplaces.
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That day the first accident caused by man’s poor understanding and im-
proper use of complex technology had occurred. The first accident report had
been submitted. The first post-accident investigation had been conducted and
the first set of safety-related regulations had been issued.

Today millions of fires burn around the globe, breathing life in the immense
apparatus that keeps our society on its feet. Complex techno-social systems
such as energy extraction and production, transportation, healthcare, man-
ufacturing and the military often involve thousands of individuals working
with complex machinery, channelling vast amounts of energy. We take it for
granted that these systems almost never fail. We entrust our lives on to while
expecting them to forever innovate and outperform. Yet, safety is not a nat-
ural byproduct of the industrial process. In order to achieve and maintain
acceptably low levels of failure, modern systems rely on a framework of reg-
ulatory processes that guide day to day work practices and decision making.
And, as much as energy is the lifeblood of any industry, information is the
vital fluid of its immune system.

Knowledge about past events is one of the primary components of safety
management. One simply wants to know as much as possible about what has
already happened in order to anticipate what might happen and prevent it.

From all the high-risk industries, civil aviation is the one that takes infor-
mation about past events most seriously. When accidents occur, an inquiry is
made to analyse its causes and provide recommendations to prevent the same
accident from occurring in the future. Programs aimed at collecting data
about incidents are in place from the 70’s. Efforts at standardising informa-
tion about past events have produced complex accident models, taxonomies
and dedicated software for safety experts working with such data. Information
is shared and disseminated, making it relatively easy to obtain.

Of this information, most still circulates in the form of texts. From simple
narratives jotted down by a stressed-out pilot on an i-pad to accident reports
compiled by a committee after a year long investigation, incident and accidents
reports consist mostly of natural language accounts. Due to the current modes
of collection, these parts are practically unusable once stored in a database,
yet safety experts are unanimous that, despite the normalisation and coding
efforts, the texts contain valuable information, which when accessed helps
them gain insights on the current state of the system.

Given the ubiquity of natural language in incident and accident reports,
NLP1 methods and techniques provide potential solutions to a variety of is-
sues. Some, such as providing basic full-text search capabilities are easy to
implement, but in order to apply them correctly, one needs to take into ac-
count not only the specific needs of the industry but also the specific char-
acteristics of the textual material, such as its particular writing styles and

1Natural Language Processing
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the heavy use of domain specific vocabulary. For such solutions to be useful,
one also needs to take into account the redundant information and overlap
between taxonomies and natural language descriptions. Likewise, given the
widespread use of taxonomies, text categorisation, a well proven technology,
is applicable to incident and accident data and has the power to reduce the
need for manual coding, while increasing the coverage of industry-standard
metadata throughout a given collection. This requires however a thorough
understanding of the specificities of these nomenclatures in order to correctly
define the classification task.

In this thesis we take a computational linguist’s perspective and look at
the subject, using the textual data as a starting point. In such, our objective
is twofold:

• We first explore the information involved in managing safety in com-
plex techno-social systems, how the information is produced, conveyed,
stored, aggregated, transformed, used, misused and sometimes lost as it
flows through the regulatory framework of civil aviation. In doing so, we
redefine the place occupied within this flow by the basic building block
of information - written text.

• Having identified the needs of safety experts and explored the informa-
tional landscape in which they engage in their activities, we show how
NLP can contribute to improving the tools used by them when working
with incident and accident reports stored in electronic format and incor-
porate language processing in tools specifically tailored to the industry’s
requirements.

We show that text can be viewed not only as the vehicle of information
between humans, but also as a resource that, when properly tapped and ex-
ploited has the potential to improve the overall quality of communication of
safety-related information within a given system. And we show that by con-
sidering the specificities of the data and the sector, one both improves the
quality of NLP applications designed to operate within the specific domain,
better chooses specific NLP methods and technologies and better adapts them
to the precise needs expressed by the community.
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Background, context, evolution and achievements of this thesis

This thesis was launched in September 2010 in the form of a private-public
research partnership between CFH - Safety Data2, a small enterprise based in
Toulouse and CLLE-ERSS3 research institute, part of University of Toulouse
- Jean Jaurès and the CNRS, with backing from the French state through a
CIFRE4 program.

CFH - Safety Data at the time were (and still are) working with a num-
ber of actors from civil aviation, both public entities such as the French state
regulator (DGAC5), the authority responsible for carrying out safety inves-
tigations (BEA6), the European Aviation Safety Agency (EASA7) as well as
private aircraft manufacturers and service providers.

They were developing a text-based document classification solution for in-
cident and accident reports (Hermann et al., 2008) and were seeking to expand
their R&D8 effort to more than just classification of accident reports. This
project was thus launched in partnership with the NLP group of CLLE-ERSS,
with an initial focus on prediction and identification of human-factors related
issues in free text with the objective to integrate such functionalities in CFH
- Safety Data’s existing commercial solutions destined at safety professionals.

At that time, with the usual enthusiasm associated with the beginning
of a thesis, we focused the initial research project around the idea of “weak
signal detection” and our goal was to propose methods for identifying new
and unseen risky scenarios in incident and accident report narratives. We
started looking at methods for detecting outliers and statistical anomalies.
As some of these methods are based on distance (or similarity), we started
playing with document-document similarity and very early on (winter 2010)
we proposed a basic application for identifying similarities among incident and
accident reports. In order to present these reports, rather than showing a list
of documents to the user, the application would make use of an interactive
visualisation technique, combining chronological distribution and textual sim-
ilarity. When we presented the prototype to the clients of CFH - Safety Data
data they immediately found it very pertinent to their everyday needs. The
prototype became the timePlot system, which we present in Chapter 5.

2http://www.safety-data-analysis.com/
3http://w3.erss.univ-tlse2.fr/
4Industrial Agreements for Training Through Research(Conventions Industrielles de For-

mation par la REcherche)
5Directorate General for Civil Aviation(Direction Générale de l’Aviation Civile)
6Bureau for Safety Investigations and Analysis for Civil Aviation(Bureau d’Enquêtes et

d’Analyses pour la Sécurité de l’Aviation Civile)
7European Aviation Safety Agency
8Research and Developpement

http://www.safety-data-analysis.com/
http://w3.erss.univ-tlse2.fr/
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In all honesty the commercial success of the system astounded us as we
quickly discovered that the domain of aviation safety was particularly ill-
equipped for dealing with large amounts of textual information. While ev-
eryone was accustomed to using powerful search engines in their everyday
activities, the applications used by safety experts still relied on decades-old
boolean retrieval methods. Partly driven by the commercial success of the
timePlot system (and the need to develop and maintain it), and partly by
our discovery, that there was a clear need for tools allowing easy access to
the textual information, we shifted our focus on exploring the needs of CFH
- Safety Data’s clients in their daily uses of incident and accident reports.

We found out that access to information in databases of incident and ac-
cident reports relies primarily on hand coded metadata attributes and that
due to a number of factors, these are not always reliable. Sometimes they
aren’t available at all. This creates a particularly frustrating situation, where
information about life threatening issues hides inaccessible in masses of un-
structured data, while it continues to pile up by the thousands of reports due
to a monumental effort, made in order to collect information about potentially
life threatening issues.

So, as computational linguists, we compared large amounts of incident-
data from a variety of sources, both public and private and drew a panorama
of the current collection, exchange, storage and analysis paradigms. We iden-
tified a significant gap between the intentions of the systems’ designers and
the reality of the data, particularly when it accumulates over time. Even
more, when considering data exchange between institutions, a current topic
of interest, format incompatibility hinders free information flows within the
system. Considering the current top-down approach of mapping data to static
pre-established taxonomies, we propose a robust bottom-up method that, in
our opinion has the potential to complement or (in time) even replace certain
aspects of the established data codification strategies.

The timePlot system proved to us that we were on “the right track” from
a user point of view and prompted us to further refine the needs, this time
based on observations of the actual use of the system and on conversations
and interviews with its users. This lead CFH - Safety Data to invest into a
production grade system destined specifically at incident and accident reports.

At the same time we continued to explore the notion of textual similar-
ity and played with some of the “hot” current technologies, such as Topic
Modelling and explored the redundancies between taxonomies and natural
language narratives. Having proven the usefulness of textual similarity in
the context of data driven risk management, we explored its different facets
and complexities, questioning for example the unidimentional character of the
(similarity) scores compared to the inherent multidimensionality of the data.
We also faced more practical issues, such as multilingual data sets and propose
robust methods for language independent similarity modelling.
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Also, working with the feedback from the document-document similarity
based methods we identified the limitations of the proposed approach, such
as the need to provide a single document as a point of entry. Building on
the experience we propose a method and process, allowing the user to directly
model and project a given aspect (or dimension) of interest on the data, using
iterative machine-learning for control and validation of the results.
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Document outline

This document is organised as follows:
Chapter 1 introduces the basics of accident prevention. We first discuss

the events that need to be studied in order to prevent accidents. Next, we
take a look at safety as a multidisciplinary and broad problem, ranging from
airplanes to politicians and how information about incidents plays a key role
in managing it. Finally, through an example, we discuss how this information
is used.

Chapter 2 presents incident and accident data and how it circulates through
the regulatory framework of civil aviation. We will start by applying a risk
management model to the sector and list the different entities involved in the
safety process. Next, we will see a representative cross-section of the types of
occurrence data, how it is produced and what information it vehicles. Next,
we will explain how this data is stored and organised using taxonomies, before
showing examples of how this data is used in order to improve the safety of
civil aviation and discussing what the main problems that arise when manip-
ulating occurrences on a large scale are. Finally we draw up a list of needs
can be addressed by NLP applications.

Chapter 3 presents the domains of Information Retrieval and Text Cat-
egorisation and how they answer the needs expressed by the aviation safety
community. Each section is organised by first presenting the domain and the
key concepts, before discussing the specific implication of their application to
occurrence data.

Chapter 4 is divided in two parts. First, we present our solution to the
problem of normalising the textual material we encounter in incident and
accident reports in order to transform it to formats suitable for vector space
modelling. Next, we discuss the vector space modelling framework, central to
many current NLP methods.

Chapter 5 presents the timePlot system for detecting similar occurrence
reports. We present the tool’s graphical interface and show examples of the
results it presents to the users. We then discuss how the tool was really used
and how, by observing the actual use of such a tool, we came to gain further
insight into the needs of the users.

Chapter 6 explores the notion of similarity from several different angles,
each addressing a different aspect of the complex notion. We first present a
method that learns from documents and their associated metadata attributes
and allows to filter out one or another facet of similarity. Next, we address
the question of multilingual databases and explore the potential of second-
order similarity methods to model collections of documents written in different
languages. Next, we compare the results of Topic Modelling to the information
in ASRS’s metadata and study their overlap. Finally, we present an approach
based on active learning, allowing a user to model a certain aspect of an
accidental scenario by providing the system with a few initial examples.





Chapter One

Basics of accident modelling and risk
management

“Pay attention, that’s all,” Eliza said. “Notice things. Connect
what you’ve noticed. Connect it into a picture. Think of how the
picture might be changed; and act to change it.”

— Neal Stephenson, The Confusion

In this chapter we introduce the basics of accident prevention. In Section 1.1
we define the events that need to be studied in order to prevent accidents.
Next, in Section 1.2 we take a look at safety as a multidisciplinary and broad
problem ranging from airplanes to politicians and how information about inci-
dents plays a key role in managing it. Finally in Section 1.3 we briefly discuss
how this information is used by safety experts.
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1.1 What is an accident?

Today we all seem to think we know what an industrial accident is. Industrial
accidents are those events when we lose our mastery over technology we built
ourselves, when things get out of control and cause damage, injuries or death.
We are all familiar with the scenes of utter devastation immediately following
a plane crash or a factory explosion as they are favourite prime-time material
for the media. Burning wreckage and grieving victims’ relatives fill the TV
screens and grip the public’s mind. The media debate in the immediate af-
termath is quick to recall other similar1 accidents from the past, instituting
a (fortunately temporary) sense of helplessness in the face of the rapidly ad-
vancing technology and inevitably leading to a debate about the (un)safeness
of whatever system happened to fail.

In a way we are right. Spectacular crashes involving loss of life are ex-
tremely good examples of accidents. Fortunately they are also extremely rare
and isolated events. In 2012 the probability2 of dying on a single flight on one
of the top 39 airlines was one in twenty million, roughly that of winning the
French national lottery with a single ticket. During the last decade3 nearly
a third less lives were lost in aviation accidents worldwide than in traffic ac-
cidents in Bulgaria, a country home to about 0.1% of the world population.
Also, safety in air travel is constantly improving. ICAO4 reports 2013 as the
year having the lowest accident rate (2.8 accidents per million departures)
since they started keeping the record (ICAO, 2014). The system is becom-
ing safer. In the vast majority of cases, even when something serious, such
as an in-flight engine malfunction happens, the accident is avoided and the
aircraft lands safely. Even more often something could have happened but
was avoided in time. Today when two airplanes are on a collision course, on
board automated systems detect the danger well in advance and advise pilots
on the appropriate evasive maneuver. Finally, even after an accident occurs,
one’s chances of survival are much greater today than several decades ago, due
to ever improving cabin design, passenger evacuation and ground emergency
procedures.

1.1.1 From normality to disaster

So what is an accident? According to Hollnagel (2004):

1By similarity, the media seem to think that the outcome in terms of death tolls is more
important than the comparability of the events themselves.

2Source:OAG Aviation & PlaneCrashInfo.com accident database, 20 years of data (1993
- 2012)

3From 2003 to 2013, 5085 perished in Aircraft accidents, while over 8400 deaths are
recorded in the official Bulgarian statistic for traffic accidents.

4International Civil Aviation Organisation
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[A]n accident can be defined as a short, sudden and unexpected
event or occurrence that results in an unwanted and undesirable
outcome. The short, sudden, and unexpected event must directly
or indirectly be the result of human activity rather than e.g., a
natural event such as an earthquake. It must be short rather than
slowly developing. The loss of revenue due to an incorrect business
decision can therefore not be called an accident, regardless of how
unwanted it is. It must be sudden in the sense that it happens
without warning. The slow accumulation of toxic waste in the
environment is not considered an accident since in this case the
conditions leading to the final unwanted outcome - the disruption
of the ecology - were noticeable all along.

Accidents leading to loss of life, injury or property damage are however
just the most extreme manifestation of a whole spectre of events that we can
order from most severe to least severe: events where something went wrong,
events where something could have gone wrong or simply events where in one
way or another things didn’t work out as we expected them to.

Considering the above definition as a basis for prevention, Hollnagel also
points out that an accident is the coupling of an event and an outcome and
that the end goal of accident prevention is ensuring that “recipient comes to
no harm”, in other words avoiding the outcome, even if the event itself is
unavoidable.

The high level process-oriented view of a developing accident, provided by
C. W Johnson (Johnson, 2003) using Turner’s model of system failure (Turner,
1992), allows us to better understand how a catastrophe develops.

Initially the system is in a normal state. During an incubation period con-
ditions, such as undermaintained components or inappropriate work practices
gradually build up, rendering the system accident-prone. (Flammable mate-
rial is stored next to a potential ignition source). The accident is waiting to
happen. A triggering event (an ember flies out of the fireplace) causes failure
and triggers a sudden and unexpected event (The straw on the floor ignites).
As the event unfolds, it may trigger a set of other sudden unexpected events
and the situation may escalate rapidly (The small fire grows large, the furni-
ture starts burning, the hut collapses.) A chain reaction leads to disaster. The
loop on the left of Figure 1.1 illustrates this chain reaction. Immediately after
the event, efforts are made to mitigate the failure, (The small fire is rapidly
put out) returning the system to a normal state. This is illustrated by the
loop on the right of Figure 1.1. Actions are taken to return the system to a
normal state. During salvage and rescue5 the system physically recovers from

5Including rescue in this stage creates, in our opinion, some overlap with the mitigation
phase as the rescue effort is part of damage control procedures and thus limits the severity
of the outcome.
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Figure 1.1: The process of system failure

consequences of the event and at the final stage, cultural readjustment, lessons
are (hopefully) learnt from what just happened.

An accident can therefore be described as a complete instantiation of the
process from stage 1 trough 7. The magnitude of the accident depends on
the mitigation measures taken in order to stop a minor event from escalating.
Stopping before the situation gets out of control signifies breaking the chain
reaction between the onset (stage 4) and a new triggering event (stage 3).

The (initial) triggering events, however can be so insignificant that im-
mediate mitigation measures are so effective that the accident is “stopped in
its tracks” and phases 6 and 7 do not occur. Furthermore, as we will see, a
properly functioning system by definition does not allow development further
than phase 2. Gradual build-up of the very conditions potentially leading to
an accident is not allowed.

In any case accident prevention is largely about monitoring and under-
standing the system. When an accident occurs, crucial lessons are learned.
Those lessons are applied to the system so the process of failure is interrupted
at the earliest possible stage. In civil aviation, official accident investigations
(§2.1.2) produce this kind of feedback. However, as the system gets safer, we
(fortunately) have less and less concrete examples of accidents to work with.
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In order to improve safety, we therefore have to work with cases, where the
failure process was initiated but was stopped before becoming a full-blown
catastrophe: incidents and abnormal situations. Monitoring such events be-
comes the focal point of the ongoing effort of improving the safety of an almost
perfect system.

1.1.2 A complicated definition

We saw in the previous section how an accident can be defined, but we also
saw that there are events that do not fit into this definition. Defining them
is no easy task. Seeking to discretise the spectre from the edge of normality
to total devastation has led to a plethora of definitions. Hollnagel (2004), for
example proposes four categories of events:

• Accidents: events resulting in death, injury and/or serious property
damage

• Incidents: events having an unwanted outcome, that had the potential
to progress to accidents.

• Near miss events: Events without an unwanted outcome, that had
nonetheless the potential to become incidents or accidents

• Unsafe acts: Events that almost reached the threshold of near miss
events

In the same spirit, in civil aviation, events which should be reported are
split in three categories. Annex 13 to the Convention on International Civil
Aviation (ICAO, 2001) gives the definitions shown in Figure 1.2.

In ICAO’s definition a continuum is clearly present. An accident is defined
as a function of the severity of the occurrence. An incident is defined as
opposed to an accident and a serious incident, defined as an incident that was
almost an accident, manifesting the overlap between the two concepts.

Johnson (2003, pp. 17-18) perfectly illustrates the difficulty of defining
events ranging from, say, the discovery of an apple on the floor of a jet-
liner’s cockpit6 to the meltdown of Chernobyl’s reactor core. He gives a
meta-definition, listing seven different strategies at attempting to define these
events.

It is not in the scope of this thesis to discuss the conflicting definitions of
what an accident or incident is, nor to provide yet another one. So, in order
to skirt the accident/incident dichotomy and the need to discretise what is
clearly a continuum, we will employ the term occurrence and define it in a

6This particular event comes from the internal incident reporting program of an airline.
The danger is that the fruit may block the rudder pedals at an inappropriate moment during
the flight.
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• Accident: An occurrence associated with the operation of an aircraft which
takes place between the time any person boards the aircraft with the inten-
tion of flight until such time as all such persons have disembarked, in which:

• a) a person is fatally or seriously injured as a result of:

∗ being in the aircraft, or
∗ direct contact with any part of the aircraft, including parts which

have become detached from the aircraft, or
∗ direct exposure to jet blast,

except when the injuries are from natural causes, self-inflicted or in-
flicted by other persons, or when the injuries are to stowaways hiding
outside the areas normally available to the passengers and crew; or

• b) the aircraft sustains damage or structural failure which:

∗ adversely affects the structural strength, performance or flight
characteristics of the aircraft, and

∗ would normally require major repair or replacement of the af-
fected component

except for engine failure or damage, when the damage is limited to the
engine, its cowlings or accessories; or for damage limited to propellers,
wing tips, antennas, tires, brakes, fairings, small dents or puncture
holes in the aircraft skin.
or

• the aircraft is missing or is completely inaccessible.

• Incident: An occurrence, other than an accident, associated with the op-
eration of an aircraft which affects or could affect the safety of operation.

• Serous incident: Serious. An incident involving circumstances indicating
that an accident nearly occurred.

Figure 1.2: ICAO’s Annex 13 official definitions of reportable events.

very open manner.

An occurrence is an observable manifestation of a deviation from
normality within a given socio-technical system.

At this stage we choose to qualify the deviation as “observable”, rather
than observed, because the very notion of the observer may vary as will be
seen in the following sections. An occurrence may, for example, be observed
by someone but, as is often the case, the information may not be available to
whoever is in a position to correct it.

The notion of normality is to be taken here at face value. A system func-
tions normally when it does everything as it is intended to. The frontier
between normal and abnormal is fuzzy at best, but there is still much to
be done in areas that are clearly on the abnormal side and away from the
fuzziness.
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1.1.3 Severity, frequency and visibility

Now that we saw the types of events that interest us, let us look at how they
are distributed. Working on industrial accident prevention in the 1930s, safety
science pioneer William Heinrich compared thousands of accident reports and
came up with a ratio, stating that for every accident causing major injury,
there are 29 accidents causing minor injuries and 300 accidents causing no
injuries (Heinrich et al., 1980).

A similar study done by Bird (1984) came up with a 1:10:30:600 ratio
(commonly illustrated as seen in figure 1.3) studying close to two million
industrial accidents.

Figure 1.3: The failure type pyramid

Known as the Heinrich Pyramid, these ratios illustrate a relationship of
inverse proportion between the severity of events and their frequency. The
exact ratio varies between industries, but the relationship always stands. For
every death, there are many more injuries. For every injury there are many
more incidents resulting in no injury and for every such incident there are
many more near miss events, where the incident was completely avoided.

We will not discuss the (mis)uses of this model for statistical prediction
of injury based on reported occurrences, nor the actual ratios reported by
Heinrich or Bird (Manuele, 2013). For our purposes, the pyramid is useful
as a purely theoretical construct. Every occurrence can be placed somewhere
on the pyramid. With the fuzzy frontier of normality at its very base it
follows that, as a whole the pyramid contains all the information about every
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deviation from normality in a given system.
What is important is that in reality there is also an inverse relationship

between severity and visibility. We can be certain about the number of ac-
cidents. Failures with lesser consequences are reported with less consistency
and reliability. Near-miss events are only rarely reported (Hollnagel, 2004).

The iceberg metaphor is more than tempting. In a natural state, without
any effort, Heinrich’s pyramid could be thought of as an iceberg. At the
very top, visible from afar, are the spectacular disasters we all know. The
information about them is accessible and available. However the main body
of the information about abnormalities in the system lies beneath the water-
line and is not accessible without taking concrete measures to make it visible.
And the further we dive, the darker it gets.

Gaining access to this information boils down to providing a feedback
channel to handle the data about minor occurrences and creating the social
environment and favourable conditions for the production and use of the data.
The practice of organised collection of data about abnormal events is known
as incident and accident reporting.

1.1.4 The basics of incident reporting

Gathering data on adverse occurrences is done through incident reporting
programs. Individuals in the workforce are incited to share information trough
an established feedback channel. Throughout industries, such programs are
becoming more and more common. In civil aviation reporting is mandatory
(ICAO, 2001).

Programs vary in size scale and complexity, from highly specific local en-
deavours to national programs involving multiple actors across institutions.
Their ultimate aim however remains the same: to identify the causes of previ-
ous failures and to use this understanding to avoid or reduce future problems.
(Johnson, 2003).

Figure 1.4 shows the generic process of gathering information about ad-
verse events (Johnson, 2003).

When an event occurs, it must first be detected and an initial notification
produced. Follows a data gathering stage during which relevant information
(facts) about the occurrence are collected. Follow reconstruction and analysis
phases during which the incident scenario is developed and the causes of the
failure identified. Building on this information, recommendations about how
to act and change the system are producd. Finally this information is shared
with other interested parties.

Information is produced and transformed at all stages of the process by
different actors. How exactly depends on the specific implementation of the
incident reporting program. As they vary in scale they also vary in complex-
ity. Johnson discusses in detail different implementations of such programs
(Johnson, 2003, ch. 4) and we will see examples in the next chapter.
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Figure 1.4: Stages of incident reporting

Whatever the specific implementations, all such programs have in common
that they are in effect active channels of communication. Information about
occurrences circulates in them mostly in the form of electronic documents7.
While the occasional phone call and face to face interaction are integral part of
incident reporting, the information that they generate is used either to create
a new document or to complement an existing record.

At the beginning of the incident reporting process a detected occurrence
is reported in most cases by the person who experienced it in the form of a
short narrative combined with summary factual information. The report is
often filed using standardised forms in paper or electronic format.

When the initial report is received, it is processed and, depending on the
specifics of the implemented architecture, more or less normalised. It is also
at this stage that, based on how safety-critical the occurrence is, the report
may be routed for immediate attention and further processing or just stored.

7By documents here we refer to any piece of electronic matter that contains information
or evidence.
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The bulk of information is generated during the reconstruction and anal-
ysis phase. At this phase software solutions such as ECCAIRS8 (§ 2.2.3.5)
assist the analysts by providing a description framework and a work flow to
assist the process. The textual narratives are complemented with predefined
attributes containing the required factual data (§ 2.2.2). The occurrence is
coded. However, in some cases this stage is skipped altogether for non-critical
occurrences and they are just stored in the collection.

The last phase of the reporting process involves sharing the information.
In the next section we will see how this information fuels the risk-management
process. Information shared at this stage also constructs the body of available
knowledge and data to which practitioners are free to turn and look whenever
safety-critical decisions require evidence to back them up. It is also at this
stage that information gets fragmented and tools such as aggregated databases
with powerful search and coherent classifications have the potential to assist
experts working on this body of information.

1.2 Risk management in a complex systems

In order to better understand how such information fuels the risk management
process as a whole, we can turn to the model proposed by Rasmussen et al.
(2000). In his view accidents are caused by dysfunctions at every level of a
complex and far-reaching interconnected system. In other words, decisions
taken by pilots as well as politicians impact the overall safety of the system.

In this model, risk management is viewed as a problem of controlling work
in order to avoid loss of control over physical processes. The model is a hier-
archy, ranging from government, companies, management trough to systems
operators. Figure 1.5 (Rasmussen, 1997) provides an example, although the
exact number of levels may vary across industries.

Starting from the very immediate proximity to the work practice, Ras-
mussen’s “ladder” represents the system as a series of levels where each higher
level has some form of control over the lower one.

The lowest level, L6 concerns the technology itself - how equipment is
designed and how the operating procedures for the equipment are communi-
cated and understood. Level L5 concerns the activities of the individuals
that interact directly with technology. Level L4 concerns management - how
staff is controlled and how work is organised. Level L3 concerns the activities
within a given company, how regulation is understood and applied within its
perimeter. Level L2 concerns the activities of various regulators, whose task
is to implement the legislation in their respective sectors. Finally, level L1
concerns the activities of government, crafting legislation that controls the
practices of safety in society.

8European Co-ordination Centre for Accident and Incident Reporting Systems
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Figure 1.5: Hierarchical model of risk management

In a dynamic and constantly evolving world, the different levels are subject
to various disruptive forces to which the system must adapt. L1 for exam-
ple is influenced by shifts in public opinion and politicians seek to respond
by changing legislation. On the level of individual companies, changes in the
market such as competition or shortage of resources call for counteraction. On
the level of staff and (L4, L5) management, phenomenons such as “normali-
sation of deviance” (Vaughan, 1996) introduce a gradual and continuous shift
towards riskier behaviours. Finally the ever more rapidly evolving technology
causes constant changes to level L6.

Understanding each level involves different academic disciplines: political
science (L1, L2), law (L1, L2), economics and sociology, (L1, L2, L3), or-
ganisational psychology and management theories (L3, L4), human-machine
interaction and human factors (L5) and various engineering disciplines (L6).
Change affects the system as a whole, but radically different frameworks are
used to analyse and adapt to change at different levels of the hierarchy. This
leads to misalignments that weaken the system and lead to catastrophes.

When changes are made at higher levels, they often disregard the implica-
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tions that they have on the lower levels of the hierarchy. When changes occur
on lower levels of the hierarchy, the higher ones must be adequately informed
in order to adapt accordingly.

In order to ensure safe operations within the system, vertical alignment of
the different levels must be maintained. This boils down to ensuring effective
two-way information flow within the hierarchy.

1.2.1 The descending flow: controlling the processes

First and foremost, decisions taken on the higher levels must transmit ade-
quately to the lower levels of the hierarchy. Political decisions taken by gov-
ernment (L1), must be translated to regulation (L2) and respect of regulation
must be ensured through some form of control. The same goes to practices
within a given company (L3). Safety-related decisions (such as new operat-
ing procedures) must be transmitted to management (L4) which must ensure
that they are respected by operators (L5), whose actions on the controls must
result in the expected behaviour of the equipment (L6). This descending flow
of control forms the “backbone” of safety management.

Traditionally, the descending flow of control and regulation has been the
subject of efforts to increase safety. In the last few decades, however the
attention is shifting more and more towards the ascending one, that of process-
levels information arriving and informing decision-making ones. The reasons
for this shift of attention are multiple:

• Systems today operate on ever increasing scales. In a interconnected
world it is not uncommon for a given industry to become continental or
even global, as is the case with international rail systems or aviation.
This brings the need for synchronisation of decisions on a much greater
scale by introducing greater distance between operations and decision
making, putting increasing demand on the existing feedback channels.

• Systems get more and more complex with time. With scale and advanc-
ing technology, the number of “moving parts” within a system, both in
a strict sens and metaphorically speaking increases dramatically. There
are millions of parts in a single airplane. In most cases they are pro-
duced by hundreds of subcontractors from all over the world. For a single
flight to be completed thousands upon thousands of interactions need to
be performed ranging from the pilot acting upon the throttles, through
different air-traffic controllers ensuring a free corridor up to the airline
personnel calculating fuel needs and even booking the hotel for the pi-
lots. Each one of these interactions has the potential to impact safety
and all need to be considered. With complexity the need for empirical
data for decision making is increasing.
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• Technology advances at an ever more rapid pace. The development
cycles of products are becoming shorter and shorter. Innovations are
becoming operational faster than before. As every change in the system
has the potential to affect safety, the demand for adequate monitoring
of the effects of these changes increases.

• Systems are becoming safer. With time and well functioning risk man-
agement, common and “simple” sources of failure are eliminated. In
consequence, today’s accidents are of a far more complex and uncom-
mon nature than those of yesteryear. Understanding and preventing
them thus requires a far more detailed knowledge of the underlying pro-
cesses and of the system as a whole (Amalberti, 2001).

1.2.2 The ascending flow: information driven decision
making

In order to make adequate decisions at the higher levels, information about
processes at the lower ones needs to propagate freely up the hierarchy. Decision
makers can not operate “in the dark”, without knowledge of the system they
are controlling. This goes for all levels of the hierarchy.

At the lowermost levels of the hierarchy, the immediate state of the sys-
tem (L6) must be understood by the operators (L5) through an adequately
designed human-machine interface. As a car’s dashboard must coherently
present information such as speed and remaining fuel, an aircraft’s cockpit
instruments or a nuclear power plant’s control-room must present all the rel-
evant information to the operators.

In the same manner management (L3) and company (L4) must be kept
informed by the operators (L2) on the current state of operations. Often work
practices diverge significantly from official procedures. It is thus impossible for
management to adequately control work without up-to-date knowledge about
the reality of operations and feedback channels (internal incident reporting)
inform management when the processes start to drift towards unacceptable
levels of safety. At this level however information starts being produced by
humans, rather than machines and its adequate consumption on the higher
level is highly dependant on both the capacity of the channel and the inter-
pretation techniques used at its reception to handle the inherent variability
and instability of human communication. Natural language, with all its
imperfections becomes the only available interface.

At the level of regulators (L2), changes on the lower levels must be thor-
oughly understood and monitored. At this level (and to some extent at the
previous level in large companies), information overload starts being an is-
sue. Feedback channels must not only be in place, but adequate aggregation,
synthesis and signal analysis methods are needed to efficiently filter relevant
from irrelevant information and cope with the increase of scale. Data over-
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abundance becomes a problem.

Placed within Rasmussen’s model, the bulk of the work in this thesis ad-
dresses issues situated on the ascending flow of information between the front
line operators and the higher levels of the hierarchy. It is this information that
safety experts need in order to gain insight on the overall state of operations.

1.3 Looking for patterns
When collected, information about occurrences is interpreted by safety experts
looking for indications of a potentially risky situation.

Operations within any given system are of a cyclical nature and have
a clearly defined perimeter. Air travel is ultimately about a whole lot of
airplanes flying from point A to point B. Manufacturing is about transforming
raw materials and making the final product over and over again. Healthcare
is ultimately about transforming sick people into healthy people. In each case
the process is repeating itself. This repetitivity entails that similar failure
processes are initiated again and again forming a pattern.

Occurrences therefore also are of an interrelated nature. When looking
through incident reports, experts exploit there interconnected nature to gain
insights and perceive risky scenarios. Making patterns, drawing connections
and perceiving novelty are some tactics experts use when working with such
data. Macrae (2007), observed safety experts at their work and gives the
following two examples to illustrate these tactics:

Example 1 : “An aircraft nearly used the full length of a runway
to land.
The crew reported that on an approach in heavy rain they failed
to override the automatic reverse thrust due to unrelated confu-
sion over the apparent failure of a windscreen wiper. This event
was immediately deemed [by the expert doing the analysis] “a bit
of a QF1”, referring to the flight code of another airline’s air-
craft that had overrun a runway and ended up in a field a few
years previously. In that case, a water logged runway, poor crew
communication and an inadequate braking technique were con-
tributory factors. These factors were the basis of the connection
drawn between that accident and this incident. This connection
lead the investigator to suspect that a superficially inconsequential
incident may point to an emerging and unrecognised problem in
landing and approach discipline.”

This account taken from Macrae (2007) shows how the nature of the exper-
tise is manifested in the very creation of the relation. Drawing a connection
between these events means first isolating the factors that were alike in both



BASICS OF ACCIDENT MODELLING AND RISK MANAGEMENT 39

incidents (runway overrun, water logged runway) factoring out elements such
as the ineffective crew communication and filtering out factors such as the
malfunctioning windscreen wiper, which was incidental in one of the events.

Example 2 : “A series of events indicating improperly secured
cargo
Over a couple months, investigators noticed several similar events
involving pieces of cargo in the aircraft hold being found, on ar-
rival, to be improperly fastened down, not fastened at all, or flight
crew reporting hearing a ‘thump’ or ‘bump’ during flight. Unre-
strained cargo can be a problem if it moves around and affects the
trim and handling of the aircraft. Three events had been reported
in the first month, and then it went up to about seven in the second
month, and they had been seeing “bigger lumps of cargo” moving
around into the bargain. Although the incidents themselves had
little actual impact, investigators flagged this up as a “minor issue
snowballing”. These events presented a clear pattern, suggesting
that something was amiss in the loading of cargo. On closer exami-
nation, investigators found that all the events could be traced back
to the same terminal, reinforcing and localising their suspicion of
an underlying problem with work practices there.”

In this example, not knowing the existence of all of the cargo-related events
would have obviously prevented the experts from making the connections.
The opposite is also true. Having to keep track of hundreds or even thou-
sands of parallel occurrences would exceed the capacity of any single human.
Furthermore the final element needed to make the connection was extrinsic
information - the identical localisation of all the occurrences. This example
shows the importance of access to well organised and categorised databases.

In both examples interpreting the occurrences was based first and foremost
on establishing a relation between them and categorising the nature of that
relation. In both cases the reasoning was based on a thorough expertise of the
domain and information about the occurrences. Investigators had knowledge
about these events. In the first example it seems that the “QF1” occurrence
was well known, and immediately came to mind. In the second example inves-
tigators probably became “alert” when several similar events were reported
over a short period and were looking out for more of the same kind. Effec-
tiveness of these tactics depends mostly on the expertise of investigators and
providing them with just the right amount of information.

This type of reasoning pointed us to the basic need in the industry for
facilitated access to information contained in incident and accident narratives
and ultimately to the prototype presented in chapter 5 and the further re-
search into the subject presented in chapter 6.
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1.4 Chapter conclusion
We saw in this chapter how system safety depends on monitoring and analysis
of incidents and accidents and that, in safer systems we do not have the
“luxury” of learning from fully developed accidents and need to shift focus
towards minor events. These events are however, by definition much more
numerous and difficult to get at without effective feedback channels. We also
saw that the issue of control of the risk-prone processes involves a complex of
individuals and entities, ranging from pilots to politicians and how information
ensures adequate decision-making at every level. It follows that, even when
captured, due to the integral nature of safety prevention within a complex
and interconnected system, such as aviation, effectively using this information
becomes a problem of even grater scale. The availability of proper storage,
processing, exchange and analysis mechanisms become a necessity.

At the end, however, most of the feedback data circulates in the form
of uncontrolled natural language accounts of occurrences. As we will show,
these accounts are today still treated as “dead weight” in the system and
intended for human consumption only. It is our objective in this thesis to
show that these texts can instead be considered as the raw input material to a
series of automated processes that reinforce the aforementioned synthesis and
analysis mechanisms already in place. For this, let’s now look at how safety is
maintained within civil aviation and in particular at the data being produced,
the solutions for its storage and the particular ways in which it is consumed.



Chapter Two

Safety information in civil aviation:
actors, models and data

“I never saw a wreck and never have been wrecked, nor was I ever
in any predicament that threatened to end in disaster. [...] I can-
not imagine any condition which could cause a ship to founder.
I cannot conceive of any vital disaster happening to this vessel.
Modern shipbuilding has gone beyond that.”

— Cpt. Edward Smith (Captain of Titanic)1

This chapter is about incident and accident data and how it circulates through
the regulatory framework of civil aviation. We will start by applying a risk
management model to civil aviation and listing the different entities involved
in the safety process. In Section 2.1 we will see a representative cross section
of the types of occurrence data and how it is produced. Next, in Section 2.2 we
will explain how this data is stored and organised using taxonomies. We will
introduce the concept of meta data and show examples of different solutions.
Then, in Section 2.3 we will show how this data is used in order to improve
the safety of civil aviation. Finally in Section 2.4 we will discuss what are the
main problems that arise when manipulating occurrence on a large scale and
how NLP solves some of them.

1New York Times, April 16, 1912
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A century of failures

As we saw in the previous chapter, when the system fails, light is shed on its
inherent weaknesses and actions are subsequently taken in order to improve
its robustness. Civil aviation is no exception, where significant accidents are
also the most important catalysts for improving safety. Major changes are
introduced to the system, in the wake of every plane crash, slowly shaping the
manufacturing and regulatory landscape as we know it today. Before diving
in the details of how data is produced, managed and used, let us take a look
at three major early accidents that influenced aviation on the manufacturing
and organisational levels..

On the manufacturing level, airplane design has been a continuous process
of trial and error. Starting from the Comet Crashes in 1954 (RAE, 1954),
meticulous investigation of accidents helped reveal the causes of countless
technical failures and propose solutions and design improvements that are
present in all of today’s aircraft. The De Haviland Comet was the first com-
mercial passenger jetliner and it was not before two of them exploded in mid
air instantly killing all aboard, that they were declared unsafe to fly, due to a
combination of poor design and manufacturing techniques.

Pressurisation-depressurisation cycles caused fatigue cracks to form at the
corners of the airplanes’ square windows. The cracks grew bigger and bigger
until structural integrity was lost and the aircraft literally popped like a bal-
loon. Today, due to the lessons learned from these accidents, mid-air explosive
decompression due to metal fatigue is a thing of the past.

This particular series of accidents also has the merit to have founded the
discipline of accident investigation itself. In the immediate aftermath, the
United Kingdom saw its ambitions at becoming a global leader in commercial
jet-powered aviation suddenly grind to a halt. Consequently, a considerable
political will2 was directed at finding the problem. Given that both aircraft
had disintegrated at cruising altitude and over the Mediterranean sea, very
little evidence to what went wrong was readily available. The investigators
had to seek help from the Royal Navy in recovering the wreckage from the sea
bed (a first) and then workout a theory to why the aircraft had exploded. The
hypothesis gradually narrowed down to metal fatigue and in order to prove
their theory, the investigators conducted a real-scale test by enclosing the
same aircraft in a sealed water tank and subjecting it to endless pressurisation
cycles until the fuselage lost structural integrity, thus proving the metal-fatigue
theory. All aircraft with a pressurised cabin manufactured since have rounded
windows.

On the organisational level things are similar. One particular accident,
the Grand Canyon Collision in 1956 (NTSB, 1957) laid the foundations of

2Rumour has it that Sir Winston Churchill himself was personally involved in the enquiry
following the crashes.



SAFETY INFORMATION IN CIVIL AVIATION: ACTORS, MODELS
AND DATA 43

commercial aviation as we know it today. That particular accident, consisting
in a mid-air collision of two passenger airliners over the Grand Canyon, did not
involve any technical failure. The two airplanes were in perfect working order.
The causes were to be found in the very way flying was (or rather wasn’t)
organised at the time. Once outside of the immediate vicinities of the airport,
the responsibility for maintaining separation and avoiding collisions fell solely
on the flight crews. They were tasked with communicating their positions
among each other and negotiating with one another to ensure that they pass
at a safe distance. In case the radio communications failed, the only barrier
preventing collisions was the eyes of the pilots on the lookout for conflicting
traffic and the relative vastness of the skies. It was not before long that two
planes collided over the Grand Canyon. After the collision, public outcry put
enough pressure on government that flight safety became an issue at the very
highest political level. A monumental effort was undertaken to ensure that
such accidents do not occur in the future in the US leading, among other
things to the introduction of continuous radar tracking of flights, minimum
separation standards, mandatory flight corridors and the creation of the FAA3,
the US state regulator.

A major accident even kicked off voluntary incident reporting. The inves-
tigation of a crash in 1974, when a passenger jet flew into a mountain, found
out that the crew had misunderstood instructions from ATC4 (NTSB, 1975).
It also revealed that only six weeks prior to the accident, at the same location,
another aircraft had misunderstood the clearance and only narrowly avoided
the mountain. The airline had rushed to inform its own flight crews about
the danger but, due to a lack of an adequate feedback channel, other airlines
had not received any warning. The obvious avoidability of the accident led to
an agreement between the FAA and NASA5 in 1976 to create and operate a
voluntary confidential non-punitive reporting program called ASRS6 (§2.1.4).
ASRS is currently considered as one of the success stories in voluntary inci-
dent reporting and the model is being copied to other industries (Barach and
Small, 2000).

2.1 Producing occurrence data

In this section we will provide overview of a representative cross section of the
different types of occurrence data that is commonly produced and consumed
by the different entities, part of civil aviation’s ecosystem. As we saw in the
previous chapter (§1.1.3), there is a whole spectrum of reportable occurrences.
Putting aside the question of under-reporting (Winder and Michaelis, 2005)

3Federal Aviation Administration
4Air Traffic Control
5National Aeronautics and Space Administration
6Aviation Safety Reporting System
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every such event generates information which is stored in an electronic format:
occurrence data.

2.1.1 The actors

Accident causation (and prevention) can be looked upon as a problem of main-
taining control over a system at different hierarchical levels (§1.2). We saw
how control is ultimately a function of making adequate and informed deci-
sions based on reliable feedback information. Before going on and speaking
about the different types of data produced let us take a look at the actors
involved in the civil aviation landscape.

Figure 2.1: Types of actors in civil aviation

Figure 2.1 shows the main types of entities that participate in the system,
which we have arranged according to their proximity to the actual physical
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processes involved with flying airplanes. At the very bottom are the individ-
uals doing the work (the operators): Pilots, technicians, ground crews, air
traffic controllers, airport staff etc. . . . Safetywise, they are tasked with con-
trolling the physical processes that they are responsible for: flying, controlling
maintaining. The arrows represent the flow of feedback information from the
level of operations to the higher levels of the system.

Operators are almost all part of a larger entity (the service providers):
Airlines, airports, ATC, etc. . . They are responsible for providing and ensuring
a safe working environment for their staff by crafting procedures and rules and
enforcing them within the relative perimeter.

On the government level, several distinct entities are involved in the safety
process. These are the national regulators, who are responsible for crafting
the rules that each service provider must oblige with as well as for enforcing
these rules. In France the DGAC is the national regulator, in the United states
it’s the FAA, in Canada it’s the Ministry of Transport (Transport Canada). At
the national level we also find the accident investigation authorities, like
for example the BEA (France), the NTSB7 (USA), the TSB8 (Canada) as well
as various programs designed for information exchange, such as voluntary
reporting programs.

Finally, as commercial aviation is not confined to within national borders
there are a number of entities that regulate and coordinate the activity on an
international level. The most notable are ICAO, and in Europe the EASA
and Eurocontrol, responsible for European ATC.

Generally speaking the entities closer to the bottom are the ones that
mostly produce feedback data and those closer to the top are the ones that
mostly consume it. Also, as data propagates from the bottom up, the higher
the entity, the more diverse data sources and data types it accumulates. The
DGAC for example collects data from all the service providers as well as
from the accident investigation authority and from other regulatory author-
ities through data exchange programs. Programs such as ASRS effectively
bypass the company level and aim specifically at collecting information from
the operators on the government level.

However information also propagates from top to bottom. This is called
dissemination. Accident investigation authorities publish their findings and
the information is consumed at lower levels, public data sources (in North
America) are maintained by the FAA and the Canadian authorities publishing
large amounts of data and, of course, everybody can read the specialised press
dedicated to incidents and accidents in aviation.

Besides the above-mentioned entities, there are a number of other actors
that produce and consume the data that we are concerned with. These are:

7National Transportation Safety Board
8Transportation Safety Board of Canada
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• Companies such as ASCEND9 sell feeds of compiled data about incidents
and accidents.

• Insurance companies also keep records of descriptions of incidents.

• Specialised press, such as The Aviation Herald (§2.1.6) and websites such
as the Aviation Safety Network run parallel inquiries and often collate
important detail about recent accidents well before the official accident
report is published.

Finally worth mentioning is the Aviation Safety Network’s “Wikibase”
where individuals are encouraged to contribute and maintain a repository of
occurrence information on a voluntary basis, effectively crowdsourcing incident
data.

We will now see examples of the data produced by these entities.

2.1.2 Official accident investigations

2.1.2.1 The process

As we saw at the beginning of this chapter, major accidents and the subsequent
investigations are the main force driving the improvement of safety. The
documents produced and published after an official investigation today span
decades of operations, concern tens of thousands of accidents and incidents
and form a global record.

The authorities carrying out the investigations are specific to each country
and rules specify who will conduct the investigation. Usually it is the authority
of the country where the accident occurred with the help of experts from the
country where the unfortunate aircraft was registered and the country where
the aircraft was produced.

The goals of accident investigation are simple:

• Gather the necessary evidence and determine the exact circumstances
of the accident.

• Identify the probable causes of the accident as well as any notable factors
that contributed to the particular outcome.

• Come up with the measures that need to be taken so that the same event
never reproduces itself in the future.

Investigations can take anywhere from a few weeks to several years before
all the relevant data is gathered and analysed. The end result is an accident
report and often a change in regulation and/or policy aiming at introducing
barriers to the specific accident scenario being investigated.

9http://www.ascendworldwide.com/

http://www.ascendworldwide.com/
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2.1.2.2 Report examples

An official accident investigation report details all10 the relevant facts about
the incident, provides information about the investigation itself, exposes the
findings of the investigation, determines the probable causes of the accident
and produces recommendations about how to improve the system.

Typically most accident reports contain 4 major parts:

• Factual part: The facts and circumstances of the accident are pre-
sented. Typically this part includes a detailed description of the event
unfolding and is a collection of factual data about the event. It is often
supplemented by a more thorough description of those aspects of the
event or of the circumstances that are relevant to the particular inci-
dent. If, for example, weather was a factor the weather conditions will
be exposed in detail.

• Analytical part: The part which presents the analysis of the investi-
gators based on the gathered facts. Based on those facts the sequence
of events that led to the accident is reconstructed and the causes deter-
mined.

• Conclusions and probable cause: The part which synthetically presents
the investigators’ conclusions as to what the causes of the accident were.

• Recommendations: The actions that should be taken and by whom
so that a similar accident does not reoccur in the future.

Figure 2.2 represents the the table of contents of the NTSB’s report on the
Asiana flight 214 accident on July 06 2013 and shows the different sections.

10Considered relevant by the investigating body
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Figure 2.2: Table of contents of NTSB/AAR-14/01

The different parts have different rhetorical functions. Figure 2.3 shows
excerpts from the beginning of the document. There is an overall summary of
the accident as well as a very detailed chronological narrative of the accidental
sequence. These parts “paint” the overall picture and context and present the
facts as they were collected by the investigation authorities.
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On July 6, 2013, about 1128 Pacific daylight time,1 a Boeing 777-200ER,
Korean registration HL7742, operating as Asiana Airlines flight 214, was on
approach to runway 28L when it struck a seawall at San Francisco Interna-
tional Airport (SFO), San Francisco, California. Three of the 291 passengers
were fatally injured; 40 passengers, 8 of the 12 flight attendants, and 1 of
the 4 flight crewmembers received serious injuries. The other 248 passen-
gers, 4 flight attendants, and 3 flight crewmembers received minor injuries
or were not injured. The airplane was destroyed by impact forces and a
postcrash fire. Flight 214 was a regularly scheduled international passenger
flight from Incheon International Airport (ICN), Seoul, Korea, operating un-
der the provisions of 14 Code of Federal Regulations (CFR) Part 129. Visual
meteorological conditions (VMC) prevailed, and an instrument flight rules
(IFR) flight plan was filed.

At 1127:32.3, an electronic voice announced “two hundred.” At 1127:33.6,
the PM stated, “it’s low,” and the PF replied, “yeah.” At 1127:36.0, one of
the flight crewmembers made an unintelligible comment. At 1127:39.3, the
quadruple chime master caution alert sounded. When the alert sounded,
the airplane was about 0.45 nm from the runway at 124 ft RA, the air-
speed was about 114 knots, and the descent rate was about 600 fpm. At
1127:41.6, an electronic voice announced “one hundred.” At 1127:42.8, the
PM stated, “speed.” Less than a second later, both thrust levers were ad-
vanced by the PM.24 At 1127:44.7, the A/T mode changed from HOLD
to THR. At 1127:46.4, the CVR recorded the stick shaker activating, and
the lowest airspeed during the approach of about 103 knots was recorded
by the FDR at 1127:46.9. At this time, the airplane was about 0.35 nm
from the runway at 39 ft RA, the descent rate was about 700 fpm, the N1
speeds for both engines were increasing through about 50%, and the pitch
attitude reached about 12°nose up. The airspeed then began to increase. At
1127:47.8, the PM called out, “go around,” and at 1127:48.6, the airspeed
was about 105 knots, and the stick shaker stopped. The initial impact with
the seawall occurred at 1127:50. At that time, the N1 speeds for both engines
were increasing through about 92%, and the airspeed was about 106 knots.25

Figure 2.3: Excerpts from the “Factual Information - History of Flight” (§1.1,
p. 19) section of NTSB/AAR-14/01

For high profile cases, such as the Asiana crash, the level of detail of
the facts can be very minute. Figure 2.4 is an excerpt from the “Personnel
Information” section where the morning activities of the pilot plying (PF) are
presented. Similar sections exist for all three members of the flight crew.
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On Saturday, July 6, the PF woke about 0700 feeling rested. He went jogging,
returned about 0800, and ate breakfast. He took a bus to ICN about 0930,
arrived about 1030, and began preparing for the flight. The official show
time was 1510, but he met his instructor (the PM) about 1440, and they
began briefing for the flight. The PF had a cup of coffee when he arrived at
the airplane.

Figure 2.4: Excerpts from the “Factual Information - Personnel Information”
(§1.5, p. 33) section of NTSB/AAR-14/01

The analytical section presents the analysis of the investigation authori-
ties. Its rhetorical function is to argument and present as clearly as possible
how the investigators came to their conclusions. Figure 2.5 is an excerpt
from this section. We can see how the language changes slightly. Phrasings
such as “might be attributable, at least in part, to fatigue” denote that the
investigators are presenting their expert opinion rather than stating facts.

The PF made several errors that might be attributable, at least in part,
to fatigue. These errors included his selection of FLCH SPD at 1,550 ft
without remembering that he had already selected the go-around altitude in
the MCP altitude window less than 1 minute earlier, being slow to understand
and respond to the observer’s sink rate callouts, not noticing the decrease in
airspeed between 500 and 200 ft, and not promptly initiating a go-around
after he detected the low airspeed condition.
The PM also made several errors that might be attributable, at least in part,
to fatigue. These errors included not noticing the PF’s activation of FLCH
SPD at 1,550 ft or subsequent indications on the FMA, not ensuring that a
“stabilized” callout was made at 500 ft, not noticing the decay in airspeed
between 500 and 200 ft, and not immediately ensuring a timely correction to
thrust was made when he detected the low airspeed.

Figure 2.5: Excerpts from the “Analysis - Flight Crew Performance” (§2.5, p.
86) section of NTSB/AAR-14/01

Figure 2.6 shows a passage from the analytical section where a system is
described in detail. Their primary function is to define the objects that are
discussed in the report.
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The 777 was equipped with a low airspeed alerting system that was first
certified on the 747-400 in 1996 and then certified for the 777-200B in 1997.
This system, developed as a result of a safety-related incident reported by a
customer airline in 1995,101 was designed to alert flight crews of decreasing
airspeed to avoid imminent stalls. The system, which activates when airspeed
decreases 30% into the amber band, was not designed to alert crews that their
airspeed had fallen below Vref during approach. According to Boeing, the
triggering threshold for the low airspeed alert was selected to avoid nuisance
alerts during normal operations and to minimize them during intentional
operations at low airspeeds. Minimizing nuisance alerts is an important
consideration in the design of alerts because too many false alerts can increase
flight crew response times or cause crews to ignore alerts altogether.

Figure 2.6: Description of the “low airspeed alerting system" system (§2.7, p.
104) of NTSB/AAR-14/01

Figure 2.7 is the probable cause statement of the investigative authority.
In a way this is the official conclusion as to what caused the accident and
the concentration of all the work in the report. Generally speaking after
a probable cause statement is issued (and the report published) the case is
considered closed.

The National Transportation Safety Board determines that the probable
cause of this accident was the flight crew’s mismanagement of the airplane’s
descent during the visual approach, the pilot flying’s unintended deactiva-
tion of automatic airspeed control, the flight crew’s inadequate monitoring
of airspeed, and the flight crew’s delayed execution of a go-around after
they became aware that the airplane was below acceptable glidepath and
airspeed tolerances. Contributing to the accident were (1) the complexities
of the autothrottle and autopilot flight director systems that were inade-
quately described in Boeing’s documentation and Asiana’s pilot training,
which increased the likelihood of mode error; (2) the flight crew’s nonstan-
dard communication and coordination regarding the use of the autothrottle
and autopilot flight director systems; (3) the pilot flying’s inadequate training
on the planning and executing of visual approaches; (4) the pilot monitor-
ing/instructor pilot’s inadequate supervision of the pilot flying; and (5) flight
crew fatigue, which likely degraded their performance.

Figure 2.7: Probable Cause (§3.2, p. 147) of NTSB/AAR-14/01

Finally figure 2.8 shows the recommendations section of the report. This
is a manifestation of the overall safety process. After the accident, the inves-
tigators invite the regulator (in this case the FAA) to craft new legislation as
well as different protagonists to reconsider certain aspects of their operations,
all in the object off never repeating the same accident.
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As a result of this investigation, the National Transportation Safety Board
makes the following new safety recommendations:
To the Federal Aviation Administration: Require Boeing to develop
enhanced 777 training that will improve flight crew understanding of au-
tothrottle modes and automatic activation system logic through improved
documentation, courseware, and instructor training. (A-14-37)
[14 more. . . ]
To Asiana Airlines: Reinforce, through your pilot training programs, flight
crew adherence to standard operating procedures involving making inputs to
the operation of autoflight system controls on the Boeing 777 mode control
panel and the performance of related callouts. (A-14-52)
[3 more. . . ]
To Boeing: Revise the Boeing 777 Flight Crew Operating Manual to include
a specific statement that when the autopilot is off and both flight director
switches are turned off, the autothrottle mode goes to speed (SPD) mode
and maintains the mode control panel-selected speed. (A-14-56)
[1 more. . . ]
To the Aircraft Rescue and Firefighting Working Group: Work with
the Federal Aviation Administration and equipment manufacturers to develop
and distribute more specific policies and guidance about when, how, and
where to use the high-reach extendable turret’s unique capabilities. (A-14-
58)
[4 more. . . ]
To the City and County of San Francisco: Routinely integrate the
use of all San Francisco Fire Department medical and firefighting vehicles in
future disaster drills and preparatory exercises. (A-14-62)
[1 more. . . ]

Figure 2.8: Some of the recommendations (§4, p. 148) of NTSB/AAR-14/01

All in all, official accident reports are the most comprehensive source of
information about a particular occurrence, and taken as a whole constitute
the repository of all that we have learned about why airplanes crash, during
almost a century of flying them.

Data-wise these documents present major challenges. They are intended
for “human consumption” only and are formatted accordingly. Mostly pub-
lished as pdf files they are difficult to exploit automatically. Even “simple”
tasks such as indexing in a full-text search engine (§2.3.1) require specific pre-
processing to gain access to text in machine-readable form. Furthermore the
quantity of (redundant) information they contain and the internal structuring
and formatting make it rather difficult to access the relevant parts.

Searching for reports where crew fatigue was a factor, for example will be
difficult using off-the-shelf search engines. Querying for the term fatigue will
bring far too many reports where the term “fatigue" itself is present without
being relevant to the task at hand.

Working with such reports, Thibert (2014) in his master’s thesis demon-
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strated that even for (apparently) simple tasks such as the one mentioned
above keyword-based approaches are insufficient and factors such as lexical
ambiguity and negation need to be taken into account.

Internal structuring and formatting of such documents imply that differ-
ent sections have different rhetorical roles (Teufel and Moens, 2002). Some
are explanatory, some are argumentative, some are descriptive. Automatically
discerning the roles of a section has the potential to vastly improve perfor-
mance of information retrieval (§3.1) and text mining systems by targeting
the analysis on those parts of the document that are susceptible to contain
the relevant information, rather than on the whole document. If one is inter-
ested in extracting the sequence of events, fo example one would target the
(descriptive) “history of flight” section of a report. Exploring this possibility
Campello Rodrigues (2013) showed in his master’s thesis that automatically
discerning rhetorical function of the different parts is a feasible task.

We also used official accident reports as a resource for calculating simi-
larity between documents written in two distinct languages. In this system
we leveraged the redundancy of the present information and the fact that, in
Canada, accident reports are systematically published both in English and in
French, to provide a interlingual layer of processing for language independent
similarity calculation and achieved encouraging results (§6.3) (Tulechki and
Tanguy, 2013)

2.1.2.3 Acquiring the data

Official accident reports are part of the public record. They can be consulted
on the websites of the accident investigation authority usually in pdf format.
More specifically:

• TheBEA (France) have 2442 reports published on their website11. They
are in the form of pdf files.

• The BST (Canada) have 1093 reports published on their website12).
The reports are available both as pdf files and html pages. The reports
are available in English and in French.

• The NTSB (USA) have 463 reports currently published on their web-
site13. The full reports are available in pdf format and the summaries as
html pages. The NTSB also maintain a data exchange program where
accident and incident report data sets are available for bulk download
and as data feeds in a variety of formats (xml, ms-access databases,
plain text, ECCAIRS (§2.2.3.5) etc. . . ). The service is described on a
dedicated website14. A total of 76631 records are available through this

11http://www.bea.aero/
12http://www.bst-tsb.gc.ca/eng/rapports-reports/aviation/index.asp
13http://www.ntsb.gov/investigations/AccidentReports/Pages/aviation.aspx
14http://www.ntsb.gov/_layouts/ntsb.aviation/index.aspx

http://www.bea.aero/
http://www.bst-tsb.gc.ca/eng/rapports-reports/aviation/
http://www.ntsb.gov/investigations/AccidentReports/Pages/aviation.aspx
http://www.ntsb.gov/_layouts/ntsb.aviation/index.aspx
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service.

2.1.3 Preliminary reports and accidents briefs

2.1.3.1 The process

At the same time as official accident investigations, information about minor
incidents is often published by the regulatory or accident investigation author-
ities. These publications can have different forms and serve several functions.
High profile accidents generate considerable public interest and updates are
published by the authorities as the investigation progresses. These reports
are in the form of preliminary information. Generally they only state a small
amount of facts, such as the date, a summary of the incident and make and
model type. Figure 2.9 represents such a report published by the Canadian
authorities using the CADORS15 system.

Making such information publicly available is a decision of the authorities
in question. While most regulators maintain databases of a large number
of incidents, some may decide not to publish them. CADORS is today the
most advanced system of publicly available accident briefs. Updated daily it
contains over 200,000 reports. The FAA’s AIDS16 is a similar initiative in the
United States. In France, the DGAC does not maintain a similar system.

2.1.3.2 Report examples

The report in figure 2.9 represents the narratives from a preliminary report
in the Canadian CADORS database. CADORS is unique as they publish
information systematically in English and in French. In this report, we can
see how the information is progressively updated. The initial notification was
published on April 17 and an update giving some more information was added
to the record on April 22.

This collection is interesting in part due to the fact that documents are
systematically published in two languages (as are the reports from the Cana-
dian TSB), thus making them perfect candidates for building parallel corpora
(Véronis, 2000). We used this collection for evaluating the performance of a
system for detecting similarities across languages (§6.3).

15Civil Aviation Daily Occurrence Reporting System
16Accident and Incident Data System
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[2015-04-17] A 2115828 Ontario Inc. Cessna 172N (C-GZTJ) from Vancouver
/ Boundary Bay, BC (CZBB) to Qualicum Beach, BC (CAT4) experienced
an engine failure while doing a VFR photo survey work over Texada Island.
The aircraft overturned while landing on a field. Two other aircraft working
with C-GZTJ circled overhead awaiting emergency personnel. Pilot was
able to walk to a farmhouse with minor injuries.

[2015-04-22] UPDATE: JRCC SARSUM Report[V2015-00599]: (494020N
1242520W - Texada Island). Comox Tower called to report a Cessna C-172,
C-GZTJ, had declared a Mayday and was attempting a forced landing on
Texada Island after losing engine power. Two companion aircraft circled
overhead and relayed the crash position. R904, Cape Kuper and Cape
Cockburn were tasked. A resident called to say they had the pilot with
them and that the pilot had very minor injuries. The pilot was tended to by
Emergency Health Services (EHS), Fire and police and the Corm and Coast
Guard vessels were stood down. Transport Canada was notified.

[2015-04-17] Un Cessna 172N de 2115828 Ontario Inc. (C-GZTJ) en
provenance de Vancouver / Boundary Bay, C.-B. (CZBB) et à destination
de Qualicum Beach, C.-B. (CAT4) a subi une panne de moteur lors d’un
levé photographique en vol VFR au-dessus de l’île Texada. L’aéronef a
capoté en atterrissant dans un champ. Deux autres aéronefs qui travaillaient
avec C-GZTJ tournoyaient en survol en attendant le personnel d’urgence.
Le pilote a pu se rendre à pied dans une ferme avec des blessures mineures.

[2015-04-22] MISE À JOUR : Rapport SARSUM [V2015-00599] du
JRCC : (494020N 1242520W - île Texada). La tour de Comox a appelé pour
signaler qu’un Cessna C-172 (C-GZTJ) avait lancé un appel « Mayday »
et essayait d’effectuer un atterrissage forcé sur l’île Texada après avoir subi
une perte de puissance moteur. Deux aéronefs qui l’accompagnaient ont
décrit des cercles au-dessus du lieu de l’accident et ont transmis la position
d’écrasement. R904, Cape Kuper et Cape Cockburn ont reçu la mission. Un
résident a appelé pour signaler qu’il se trouvait en présence du pilote et que
ce dernier avait subi des blessures très mineures. Les services d’urgences de
santé (SUS), les services d’incendie et les services de police se sont occupés
du pilote, tandis que le Cormorant et les navires de la Garde côtière ont été
libérés. L’incident a été signalé à Transports Canada.

Figure 2.9: Narratives form CADORS accident briefs (nu 2015P0532)

The report in figure 2.10 is an accident brief from the FAA’s AIDS database.
It is a summary of an accident presented in a concise manner. It is interesting
to note the concise writing style and the (deliberate?) choice to use all capital
letters, even though this particular occurrence dates from February 2015.

While it might seem trivial, the fact that the text is written in all capital
letters might pose a problem for tools that automatically identify sentence
boundaries (tokenisers §4.1.1) as they often rely on capitalisation as a cue to
determine where a sentence starts (Kiss and Strunk, 2006). The equivalent
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in German would also pose a problem for POS-tagging as capitalisation in
German indicates a noun.

AIRCRAFT N9602Q DEPARTED RST AIRPORT ENROUTE TO MNM.
CLIMB TO 9000 FT, 30-40 MINUTES LATER CLIMB TO 10000 NO
ICE. 30 - 40 MILES FROM MNM CONTROLLER TOLD THE PILOT
TO DESCEND AT PILOT DISCRETION, PILOT ASK IF THERE WAS
ANY ICE REPORTED, CONTROLLER RESPONDED NO ONE FLEW
THE ROUTE TO REPORT.[. . . ] LANDED ON RUNWAY 11 HARD AND
THE AIRCRAFT SKIDDED TO THE LEFT INTO A SNOW BANK.
THE THREE LANDING GEARS BROKE FROM THE AIRPLANE, PRO-
PELLERS HIT THE GROUND AND BENDED. AIRCRAFT FINALLY
STOP ABOUT 50 YARDS FROM THE INTERSECTION OF RUNWAY 11
AND THE TAXI WAY. 5 PASSENGER ON BOARD 3 MINOR INJURIES,
NO POST CRASH FIRE.

Figure 2.10: FAA AIDS Report nu 20140213000969I

2.1.3.3 Acquiring the data

CADORS has 200933 published reports on its website17. The reports are in
the form of highly structured html pages (see fig. 2.20 for a screenshot). Since
April 2014, CADORS also provides a data feed by email where two xml files
(for English and French) are sent on a daily basis.

AIDS data is available on their website18 and 98865 reports are retrievable
through the web service.

2.1.4 Voluntary reporting programs

2.1.4.1 The process

Voluntary reporting programs are provided by regulators aimed at gather-
ing and aggregating information directly from operators (pilots, ATC, airport
staff, maintenance, cabin crews, etc. . . ) on perceived dangerous situations.
Protected by guarantees like anonymity and often incentivised by non-punitive
policies, operators are encouraged to share any deviations they have encoun-
tered.

ASRS is the first and without doubt the most famous voluntary incident
reporting program. Operational since 1976, it has processed over a million
incident reports and averages 6736 monthly (322 daily) submissions (NASA,
2014). Figure 2.11 presents the evolution of submitted incident reports since
1981 and shows how the tendency is on the rise.

17http://wwwapps.tc.gc.ca/Saf-Sec-Sur/2/cadors-screaq/m.aspx
18http://www.asias.faa.gov/

http://wwwapps.tc.gc.ca/Saf-Sec-Sur/2/cadors-screaq/m.aspx
http://www.asias.faa.gov/
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Figure 2.11: ASRS monthly report intake

The basic function of such programs is to collect information about occur-
rences that are not subject to mandatory reporting (§2.1.5). As is explicitly
stated in the ASRS procedure, one should not report events (which should
be reported to the FAA through other channels) but only minor incidents
and perceived dangerous situations. ASRS thus fills in a “void” effectively
descending even further down the failure type pyramid (§1.1.3). ASRS’s is
nevertheless a fully functional incident reporting system as it provides feed-
back loops and independent investigation on reported occurrences. Before
they are published on the website, the reports go through an initial screen-
ing and if a dangerous situation is identified, ASRS notifies the FAA to take
appropriate actions. Also ASRS staff may follow up with the reporters for
additional information if such would benefit the safety of the system.

2.1.4.2 Report examples

The report in figure 2.12 is an example of an ASRS report illustrating the
high-level organisation of the narrative information. The event involves an
aircraft entering onto a runway on which another aircraft is about to take
off. The report consists in total of six19 narratives each written by a different
protagonist in the event. Three are written by flight crews and three by ATC
controllers working in the tower at the moment. A short synopsis written by
ASRS staff summarises the situation.

19we selected three for illustrative purposes.
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Synopsis
Three pilots and three controllers reported an incident where, due to Con-
troller coordination issue, one air carrier started takeoff roll when another
was crossing the runway downfield, resulting in an aborted takeoff.
Narrative: 3
There was an unnecessary distraction in the Tower just prior to the event
that could have led to the near collision of the aircraft on the runway. For the
greater part of the afternoon we had in trail restrictions for our departures,
due to weather around our airspace. During this time, the Supervisor we
had in the Tower was letting the system work, and the Tower was quiet and
calm. This Supervisor was relieved by another Front Line Manager (FLM).
The first thing [the new FLM does is] to call Center, and ask for re-routes for
the departures for no reason. Like I said before, the system was working fine;
we weren’t delaying aircraft that could depart. However, in doing this, the
FLM was able to get one aircraft exempt from the 20 mile in trail restriction.
This aircraft had already taxied out, and in the Local East Bay. This drew
the attention of the Local East Controller, along with the Ground East Con-
troller. If their attention wasn’t diverted to this unnecessary coordination,
they would have been scanning better and possibly been able to stop this
event from happening.
Narrative: 5
On our taxi out to Runway XXL we were instructed to hold short of XXL
at Taxiway AAA which we complied with. We were then told to cross XXL
left on D full length, aircraft on XXL will be position and hold. I confirmed
with my First Officer cleared to cross, when we proceeded to cross I noticed
the aircraft was commencing the takeoff roll. I immediately added thrust
to expedite across and questioned Ground on the clearance. He initially did
not respond and then told us to go to Tower. We noticed the CRJ2 had also
aborted the takeoff.
Narrative: 6
We were instructed to line up and wait on XXL. After the preceding aircraft
rotated we were cleared for takeoff. We took a few seconds on the runway
to check for landing traffic and to finish the Takeoff Checklist. After a brief
delay of 4-5 seconds the pilot flying (Captain) pushed the thrust levers for-
ward and I was setting the thrust. Shortly after setting the thrust we both
noticed the CRJ7 at least half a plane length across the hold short line and
continuing to cross in front of us on Taxiway AAA. The Captain called for
the abort and initiated the aborted takeoff. Due to the close proximity of
the crossing aircraft, I applied the brakes as well. Soon after we had the
aircraft stopped, Captain was making an announcement to the passengers
and ATC was communicating with us. After the CRJ7 cleared the runway
we were instructed to turn right. It is hard to say how things could have
been done differently since the CRJ7 was still on Ground Control and we
could not hear ATC clearing them to cross XXL. The day VMC conditions
definitely allowed us to easily spot the crossing aircraft.

Figure 2.12: Synopsis and narratives of ASRS ACN1002555

Given that ASRS capture data since the 1970s, the form of the reports
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evolved considerably over time. In roughly the first two decades of its exis-
tence, the system imposed a particular writing style to the report narratives.
Rather than writing in standard English, the reports were keyed in using a
semi controlled and standardised language, making heavy use of abbrevia-
tions for common aviation terms such as ACFT for “aircraft” and WX for
“weather”. The reports were also written using only capital letters. Figure
2.13 shows an example of this writing style, along with its "translation".

Such reports present issues mainly due to their domain specific terms. A
search engine for example (§3.1) needs to be provided with a list of abbre-
viations and a specific normalisation layer (§4.1.2) in order to be capable of
retrieving documents employing such wording.

FLT (flight) WAS SBND (southbound) ON J-209 AND HAD BEEN CLRED
(cleared) TO FL390a BY A PREVIOUS CTLR (controller). OVER SBYb

VORc, CLIMBING THRU (through) FL360, TFC (traffic) WAS CALLED
BY ZDCd NBOUND (northbound) AT FL370 AND 4 MI (military) TFC
(traffic) WAS OBSERVED AND CENTER THEN HAD US DSND (descend)
TO FL350.

aFlight Level 39000 feet
bSalisbury–Ocean City–Wicomico Regional Airport
cVHF Omni Directional Radio Range navigation system
dWashington Air Route Traffic Control Center

Figure 2.13: Narrative of ASRS ASN45677 using the old writing style

2.1.4.3 Acquiring the data

ASRS data is available online on the website20 and can be searched through
a complex search engine. The results of the query can be viewed in html
format and downloaded in xls (ms-excel), csv and doc (ms-word) formats.
The queries are limited to 5000 results. The whole database is also available
upon request through a form on the website and a CD-ROM is sent free of
charge containing a Oracle database dump of all the data. Currently there
are over 160000 reports in the database.

2.1.5 Safety management systems and mandatory reporting

2.1.5.1 The process

A safety management system (or SMS) is a “systematic approach to manag-
ing safety, including the necessary organisational structures, accountabilities,
policies and procedures” (ICAO, 2001) and they are becoming mandatory all
over the world.

20http://asrs.arc.nasa.gov/

http://asrs.arc.nasa.gov/
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Incident reporting is a crucial component of any SMS. Companies are
required to provide the necessary feedback channels for reporting incidents
and ensure that the reports are as truthful as possible, via non-punishment
and anonymisation policies.

Such internal incident reporting programs generate potentially large amounts
of data. In a large national airline company, for example, production of reports
can be over 1000 documents per month.

Furthermore, mandatory sharing regulations oblige operators to forward
reports gathered through SMS to the national regulators. In France the DGAC
thus receives reports from all the service providers operating on French soil,
which amounts to between 4000 and 5000 new reports per month.

2.1.5.2 Report examples

Figure 2.14 shows the narratives of three reports from a large airline company’s
SMS system. For clarity we chose reports in English, but the database we
used contains a mix of both English and French. We can see the uncontrolled
writing style, non standard use of punctuation and first person wording.

Another particularity is that the titles are systematically in French. This
helps retrieval and access to the reports.

The wording and (lack of) grammar employed in these reports makes all
but the most basic language processing very inefficient. Lack or non-standard
use of punctuation (such as the use of a semi-colon in place of a period for
separating sentences) makes sentence splitting difficult. Token identification
can also be tricky, given that terms such as “v/s” contain delimiter characters.
The third report is difficult even at the most fundamental level - that of iden-
tifying the language in which it is written, (vital information for all language
processors). In the same report we can also see a (not so uncommon) encoding
issue. The apostrophe is replaced by a question mark, probably during data
migration.
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REFUS DE REPONSE DE L’ATC A LA DEMANDE DE
ROULAGE.

Ready to taxi to RWY 03 at PHC. No answer of the ATC controller after
many calls on the tower frequency. It appears that probably the ATC con-
trollers were watching match Nigeria vs South Korea. We have been waiting
for 20 minutes before we deserve an answer of the tower controller. What
could happen in case of an emergency in the meantime ? It is simply unbe-
lievable !

AIRPROX DEPOSE. MANOEUVRE D EVITEMENT SUITE
RA TCAS

AIRPROX On heading 270;descending to fl 100. Atc said:heading 330;then
atc said:stop descent now then we had a Tcas Ra:Climb(red until v/s
+1000ft/min) estimated separation:800ft.

ANOMALIE FICHE DE TERRAIN

CONSIGNE « ILS 17L GLIDE UNRECIABLE ?? PEU CLAIRE EN DOC
AF Chef Jeppesen; un paragraphe « other information » indique : « caution
: on approach to RWY 17L/35R expect momentary distorsions or interrup-
tions of GS signal. GS fluctuations depending on taxiing of departing ACFT
possible. ATC wil clear landing ACFT for ILS approach without GS. Phrase-
ology will be ?cleared for ILS approach; glide path unreliable?. En carto AF;
l?info est quasi absente. En effet; la seule référence est dans le paragraphe
NOISE ABATEMENT ! On y lit : « ATC may clear LDG aircraft for ILS
approach without GP (31R/17L) the phraseology will be cleared for ILS ap-
proach; glide path unreliable?. On constate : 1/ que ce qui motive cet usage
est absent. 2/ que le paragraphe choisi n?est pas pertinent (abatement). Du
coup; un complément (partiel) est mis en RCNI.

Figure 2.14: Examples of reports from a SMS system

2.1.5.3 Acquiring the data

Reports from service provider’s SMS is protected private data. It is not pub-
licly available. The formats differ and are usually custom build solutions
integrated in the service providers data management system.

2.1.6 Other sources of occurrence data

2.1.6.1 Specialised data providers

Figure 2.15 is an example of a report from the ASCEND data feed. It is
roughly equivalent to accident briefs we saw in section 2.1.3. The information
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it contains is factual and concise. The reports are collected from a variety21

of sources and are coded and checked internally before publishing.

A330, Hard landing, Caracas

During the final stage of an approach to Runway 10 at Caracas the aircraft
apparently developed a high sink rate and touched down hard. The landing
was completed safely and the aircraft taxied to the gate for normal passen-
ger disembarkation. Following a hard landing inspection the aircraft was
released to return to Paris, however, after take-off, the undercarriage appar-
ently would not retract and the flight returned to Caracas. A more detailed
inspection found damage to the main undercarriage. The accident happened
in daylight (1425L). Weather; wind, variable, visibility 9,000m in drizzle and
cloud, broken at 1,300ft. aircraft was operating a flight from Paris Charles
de Gaulle.

Figure 2.15: Report from ASCEND data feed

2.1.6.2 Acquiring the data

ASCEND subscription costs 12000GBP/year and reports are then updated on
a regular basis via an xml feed.

2.1.6.3 Press

The Aviation Herald22 in an example of a free press service, specialised in
incident an accident data. The Aviation Herald’s founder and editor shares23

that the project started from a personal collection of incident data that he
decided to render public. Through the years, his “constant editorial line” and
quest to provide factual an unbiased information has gained him the industry’s
respect.

In 2012 he reported over a million visits per months. We can but speculate
that at the time of this writing the number has increased. Also, by providing
a rudimentary commenting system, TAH has managed to engage an active
community, consisting largely of aviation professionals discussing the more
interesting cases while they unfold.

The report in figure 2.16 is an example narrative from the website.

21The provider does not wish to provide details.
22http://avherald.com/
23The interview is available on the website

http://avherald.com/
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Incident: Jetblue A320 near Amarillo on Mar 27th 2012, captain
incapacitated by panic attack

A Jetblue Airbus A320-200, registration N796JB performing flight B6-191
from New York JFK,NY to Las Vegas,NV (USA), was enroute at FL340
about 55nm north of Amarillo,TX (USA) when the captain suffered a panic
attack and behaved entirely incoherent forcing the first officer to seek assis-
tance by cabin crew and passengers to overpower the captain, lock him out of
the cockpit and have him restrained in the passenger cabin. Another Jetblue
pilot flying as passenger assisted the first officer while diverting to Amarillo
for a safe landing about 20 minutes later.
The airline confirmed the flight diverted because of a medical condition with
the captain. Another captain travelling as passenger on the flight joined the
first officer in the cockpit for the landing and assumed duties as a captain
after landing. The ill captain was taken to a local hospital. A replacement
aircraft is going to be dispatched to Amarillo to continue the flight. A re-
placement Airbus A320-200 registration N624JB reached Las Vegas with a
delay of 6.5 hours.
Passengers reported the captain had visited the bathroom and when return-
ing to the cockpit basically went nuts and screamed about terrorists and
bombs on the aircraft knocking the cockpit door. The first officer locked him
out of the cockpit and had him overpowered. It took six people to sit on the
captain to restrain him. Another pilot on board went to the cockpit to assist
the first officer for the diversion.
On Mar 28th Federal Authorities filed charges against the captain for inter-
fering with flight crew. A court affidavit claims the captain told the first
officer they were not going to Las Vegas and started ranting, then left the
cockpit and began shouting about a bomb.
The airline reported on Mar 28th the captain has been suspended. He is still
in hospital care.

Figure 2.16: Report from The Aviation Herald

2.1.6.4 Community efforts and user generated content

Finally, websites such as The Aviation Safety Network24 also provide useful
data about incident and accidents. Not affiliated with any official organism,
this site is run by a non for profit organisation and aviation enthusiasts who
have compiled a comprehensive collection of occurrence reports, constantly
updated as new events occur.

Figure 2.17 is a narrative from an ASN report.

24http://aviation-safety.net/

http://aviation-safety.net/
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A Swearingen SA226-TC Metro II turboprop aircraft was destroyed when it
burst into flames after impacting the side of a highway, shortly after takeoff
from Querétaro Airport (QRO), Mexico. All five on board suffered fatal
injuries, according to authorities. Preliminary reports indicate the aircraft
operated on a post-maintenance test flight. Local news sources report that
the aircraft went down on the side of Highway 57 Querétaro-Mexico City
close to the TransporMex building, some 11 km southwest of the airport.

Figure 2.17: Report from ASN

2.1.6.5 Acquiring the data

Currently there are 16865 articles on the Aviation Herald website25 in html
format. On ASN’s website26 there are 15800 reports published by ASN staff
and 162336 crowd sourced reports in the wikibase27. Both are available in
html format. See figure 2.19 for a screenshot.

2.1.7 A typology of occurrence reports

Now that we saw the main types of information we can summarise their general
characteristics. We will provide an external typology, based on the different
situational characteristics and an internal typology, listing the main differences
in the documents themselves.

2.1.7.1 External categorisation

Table 2.1. Inspired from (Biber, 1993) we distinguish the collections by their
situational characteristics:

• Type: The type of entity responsible for maintaining the collection
(§2.1.1).

• Occurrence class: The type of event that generated the report (§1.1).
• Producer: The person or institution responsible for writing the report.
• Purpose: What the purpose of the document is.
• Addressee: Who the document is addressed to.
• Published: Whether the document is available to the public.
• Edited: If document is subject to an editorial process.
• Dynamic: Whether the document is changed or updated over time.

25http://avherald.com/
26http://aviation-safety.net/
27http://aviation-safety.net/wikibase/

http://aviation-safety.net/
http://aviation-safety.net/wikibase/
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Collection Type Occurrence class Producer Addressee Purpose Published Edited Dynamic

ASRS Voluntary Reporting Incidents
Operator
Institution

Aviation community
Authorities

Report error
Inform about danger Yes

Corrections
Deidentification No

CADORS Regulator
Accidents
Incidents Institution Aviation community Inform Yes NA Yes

TSB
BEA
NTSB Investigators Accidents Institution

General public
Aviation community

Authorities
Specific entities

Inform
Explain
Persuade
Rule Yes Proofread No

Aviation Herald Press
Accidents
Incidents Private initiative

Aviation community
General Public

Inform
Explain Yes Autopublication Yes

ASN Press Accidents Private initiative
Aviation community

General Public Inform Yes Autopublication Yes

ASN Wikibase Wiki Accidents
Community

(user generated) Inform Aviation Community Yes Autopublication Yes

DGAC Regulator
Accidents
Incidents

Multiple
(aggregation)

Regulator
Company

Multiple
(aggregation) No Raw Yes

ASCEND Data Provider Accidents Institution (commercial)
Businesses
Institutions Inform Limited NA NA

Internal SMS SMS Incidents Operator Management

Report error
Inform about danger
Mandatory report
Express opinion No Raw No

Table 2.1: External typology of occurrence report corpora
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2.1.7.2 Internal categorisation

We will now see the most important aspects of internal variation of the doc-
uments. Without doubt the most notable one is the quantity of information
present in a report. Figure 2.18 shows the size distribution of documents in
four different databases we have worked with, for which we calculated the
distributions of documents according to their size. These are:

• BST: (390 documents) The Canadian safety investigation authority
• Aviation Herald (AvH): (167343 documents) A specialised press ser-

vice for incident data
• ASRS: (13090 documents). US voluntary reporting program
• DGAC: (136851 documents) The French regulatory authority
• SMS: A large airline’s internal reporting program

Figure 2.18: Size comparison of reports from various sources in number of
words

The boxplots in figure 2.18 show the distribution of document size across
the database. The whiskers show the extremes. First of all we can see that,
besides the official accident reports of the BST (1248 words on average), doc-
uments tend to be relatively short, about 100 words for SMS and DGAC and
200 words for ASRS and AvH on average.

In every collection, there tend to be some much longer documents. Both
the DGAC’s and The Aviation Herald’s databases contain reports of over
4000 words, corresponding to high profile accident investigations for which
a lot of information is generated. In both cases this is not surprising. The
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DGAC collect occurrences from a variety of sources and thus work both with
very succinct incident reports coming from service providers and long accident
reports coming from the BEA and other investigative authorities through data
exchange channels. The Aviation Herald reports on accidents and depends on
the amount of information their staff is able to gather. Sometimes they work
with accident briefs and sometimes they report all through the investigation
process of a major crash, thus accumulating vast amounts of data.

Reports from the SMS tend to be relatively stable with only a few docu-
ments longer than 500 words and so do ASRS’s. This stability is due to the
fact that these databases are constituted by a single unique process and thus
the reports are comparatively homogeneous.

We can also distinguish between the collections according to the following
characteristics:

• Informational content: Another way reports vary in style is by the
type of information that is present. Official accident investigations, as
we saw collect and organise all the available information about an oc-
currence. They are exhaustive. This is not always the case for other
types of reports. They tend to fall in two categories - partial and brief.
Brief reports are those accounts of incidents that concisely present the
event and its circumstances. They are written by independent entities
not involved in the event. Examples of such reports are the ones from
CADORS (fig.2.9) and the data in the ASN database (fig 2.17). On the
other hand we have partial, first person accounts, such as the ones in
ASRS (fig. 2.12) and the reports from the SMS (fig. 2.14). They are
much more subjective and present the particular point of view of their
authors and describe only a selected aspect of the event. Such reports
are by definition not exhaustive.

• Writing style: Writing style also varies across reports. Official accident
reports (§2.1.2.2) are formal documents written carefully and proofread
before publication. Other cases, such as first person narratives written
(or typed into an i-pad) on the fly on a cockpit table (such as the example
in fig. 2.14) exhibit non standard use of punctuation, spelling mistakes
and a mix of standard and very technical language. Other cases, such
as early reports from ASRS (fig. 2.13) and AIDS reports (fig. 2.10)
use all capital letters. Early ASRS reports also use a standardised set
of aviation abbreviations, a remnant from the times when screen real
estate was a scarce commodity.

• Structure: Most reports exhibit little or no structure. Short narratives
and rarely even contain paragraphs. Official accident reports are on the
other hand semi-structured documents, with multiple levels of headings
(Feldman and Sanger, 2007). Some of the articles in the Aviation Herald
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exhibit weak structure as they have zones with different functions, but
no explicit signalling such as headings.

• Multimodality: Except for metadata, which will be discussed in the
next section, reports are mostly monomodal, as they only contain text.
Official accident reports and press articles on the other hand also con-
tain diagrams, tables, and pictures. The online sources, ASN and the
Aviation Herald also contain video material and hyperlinks to external
sources, such as general press articles about incidents or the official pdf
report.

All in all occurrence data can take many forms and serve various initial
functions. One thing is common to all reports - they might carry very valuable
information. We will now see the various storage solutions that help organise
this data and give access to the information it contains.
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Collection Corpus size (nb docs) Mean length (nb. words) Informational content Writing style Structure Multimodality Language

ASRS 167,000 254
subjective
partial

First person
abbreviations

CAPS
multiple narratives

organised by taxonomy None English

CADORS 200,933 ≈ 150 partial
third person

formal None None
English
French

TSB
BEA
NTSB

TSB: 1093
BEA: 2432
NTSB: - 1249 (TSB) exhaustive

formal
third person semi-structured documents

images
diagrams
tables

English
French

Aviation Herald 13,090 214 brief to exhaustive formal, third person weakly-structured

images
diagrams
tables
videos

hyperlinks English

ASN 19,127 NA (short accounts) brief formal, third person None

images
diagrams
tables
videos

hyperlinks English

ASN Wikibase 162,336 NA (very short accounts) brief formal, third person None

images
diagrams
tables
videos

hyperlinks English

DGAC 443,181 106 mixed mixed None unstructured
French

some English

SMS NA 92
subjective
partial

informal
first person

use of abbreviations None unstructured
French
English

Table 2.2: Internal typology of occurrence report corpora
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2.2 Storing and organising occurrence data

In the previous section we saw examples from the different types of information
that is out there. Now let us take a closer look at how it is stored and managed.

2.2.1 The occurrence and its lifecycle

Using data implies organising it in collections. Whether this data is stored
in folders on a library shelf or in complex relational databases one must first
define the highest level of discreetness - that of the record. Fortunately, when
thinking about accidents and incidents, their discreetness is implied by defini-
tion and thus directly transposable to whatever data model is being created.

The term “occurrence” is used to denote a record in an incident database
in order to lift any ambiguity with “event” as, at a finer grain, an occurrence
can be represented as a sequence of discrete events (see the example in fig.
2.24). An occurrence in a given incident collection can be defined as the
entire body of recorded information related to a specific incident.

An occurrence is created when news that an incident has taken place ar-
rives at whatever institution or entity is responsible for the collection. In its
absolute minimal form an occurrence can be only a date, a location and an
indication about the existence of an incident. “A airplane crashed today in
Russia” is enough to be considered a valid occurrence, albeit not very infor-
mative. At the other end of the spectrum is the official accident report of the
same incident, filed months or years after the event, containing all the facts
and information considered pertinent by the corresponding investigative body.

As we saw in the previous chapter (§1.1.4), most, if not all reporting and
collecting architectures imply some form of “lifecycle” of the occurrence. In
some cases, such as internal incident reporting programs the lifecycle is asso-
ciated with the investigation and treatment process. Additional information
is added progressively to the occurrence either by experts working with the
initial data or by explicitly seeking it out through the follow-up investigation.
In programs where the accent is on collecting and/or aggregating data from
multiple sources, occurrences are gradually updated and folded together as
novel information about the event is received.

2.2.2 Accident models, coded data and taxonomies

We saw in the previous chapter how thinking about accidents has evolved
and is, today both complex and abstract. Modelling efforts, such as the one
presented in section 1.2 are becoming ever more complex and the analysis of
the causes looking ever further from the actual events. A failing component,
for example, may be analysed as a dysfunction of the application of a novel
regulation about maintenance procedures. With applied systemic models not
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far over the horizon, complexity of the analysis is naturally expected to grow
(Hollnagel, 2004).

Just the pure factual data required to understand a modern aviation
mishap is of considerable scale. Such facts include, for example information
about the context of the occurrence (place, time, meteorological conditions)
about the aircraft (make, model, series, maintenance history), information re-
lated to human factors (age and experience of the pilot(s), crew composition)
and many more.

When considering occurrences on an isolated basis this complexity isn’t
an immediate hurdle. One can choose a particular analysis methodology,
adapted for the occurrence in question. The gathered facts can be organised
in an ad-hoc manner in, say a spreadsheet. Or as is the case with official acci-
dent investigations, just describe the accident and the analysis using natural
language.

When designing a system to store and analyse occurrence data, however, all
the choices related to the particular organisation of both analytical and factual
data have to be done prior to storing the first occurrence. They also have to
be generic and applicable to all stored occurrences. Designing the underlying
data-model is, thus a major issue. It basically boils down to the question
of how much of the occurrence’s description (both factual and analytical)
is reflected in the data model and usable via standard database queries or
retrievable via an indexing scheme.

Even at a relatively low level of granularity, dozens of fields are required
in order to accommodate bits of information such as the make and model of
the aircraft, the components that failed, the conditions of the flight, where the
accident occurred, where the aircraft departed from and was bound for, etc.

At a higher granularity, information such as the service history of the pilot
and the first officer, the wetness of the runway, or the quality of response of
the emergency rescue services may be required.

Collectively we refer to these attributes as factual metadata.
When the database is required to support not only the factual description,

but the subsequent analysis of the accident, one has to chose an underlying
accident model. As we will see, at one end of the spectrum we can have a
collection that simply stores occurrences in a flat fashion, (as files or database
records), where all the relevant information is only present in human-readable
form, such as a simple narrative or more complex (semi-)structured files, such
as official accident reports in pdf format (§ 2.1.2). On the other end of the
spectrum, specifically designed collections allow access to all relevant bits
of information concerning the occurrence. An example of such a system is
the ECCAIRS environment (§2.2.3.5) and the ADREP taxonomy, where each
potentially relevant bit of information is represented by a dedicated field of a
certain type.

This type of metadata we refer to as analytical metadata, as it requires
expert reasoning or inference in order to produce.
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We will now see several examples of coding solutions.

2.2.3 Examples of metadata

2.2.3.1 Simple factual information

The Aviation Safety Network’s website provides systematic coding of several
attributes for each report. Figure 2.19 shows a report with its associated
metadata. Information about the outcome such as the number of fatalities,
the location, and damage to the aircraft is given alongide its make and model
name and the make of its engines.

Figure 2.19: Metadata in ASN

2.2.3.2 Standard descriptors of the accident sequence

Similar to the example from the previous section, reports from CADORS
also provide metadata. In Figure 2.20 we can see the same sort of factual
information as in the ASN report, but also a set of descriptors of the accident
in the form of occurrence categories and a list of discrete events in the “aircraft
events” part. These are coded by CADORS staff upon analysis of the event
and represent analytical metadata.
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Figure 2.20: Occurrence information in CADORS
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ACN: 1002555 

Time / Day 

Date : 201204 
Local Time Of Day : 1801-2400 

Place 

Locale Reference.Airport : ZZZ.Airport 
State Reference : US 
Altitude.AGL.Single Value : 0 

Environment 

Flight Conditions : VMC 
Light : Daylight 

Aircraft : 1 

Reference : X 
ATC / Advisory.Tower : ZZZ 
Aircraft Operator : Air Carrier 
Make Model Name : Regional Jet 200 ER/LR 
(CRJ200) 
Crew Size.Number Of Crew : 2 
Operating Under FAR Part : Part 121 
Flight Plan : IFR 
Flight Phase : Takeoff 
Route In Use : None 

Aircraft : 2 

Reference : Y 
ATC / Advisory.Ground : ZZZ 
Aircraft Operator : Air Carrier 
Make Model Name : Regional Jet 700 ER/LR 
(CRJ700) 
Crew Size.Number Of Crew : 2 
Operating Under FAR Part : Part 121 
Flight Plan : IFR 
Flight Phase : Taxi 
Route In Use : None 

Person : 1 

Reference : 1 
Location Of Person.Facility : ZZZ.Tower 
Reporter Organization : Government 
Function.Air Traffic Control : Local 
Qualification.Air Traffic Control : Fully Certified 
ASRS Report Number.Accession Number : 
1002555 
Human Factors : Human-Machine Interface 
Human Factors : Situational Awareness 

Person : 2 

Reference : 2 
Location Of Person.Facility : ZZZ.Tower 
Reporter Organization : Government 
Function.Air Traffic Control : Supervisor / CIC 
Qualification.Air Traffic Control : Fully Certified 
ASRS Report Number.Accession Number : 
1002968 

Person : 3 

Reference : 3 
Location Of Person.Facility : ZZZ.Tower 
Reporter Organization : Government 
Function.Air Traffic Control : Other / Unknown 

ASRS Report Number.Accession Number : 
1003030 
Human Factors : Distraction 

Person : 4 

Reference : 4 
Location Of Person.Aircraft : Y 
Location In Aircraft : Flight Deck 
Reporter Organization : Air Carrier 
Function.Flight Crew : First Officer 
Function.Flight Crew : Pilot Flying 
Qualification.Flight Crew : Commercial 
ASRS Report Number.Accession Number : 
1003083 
Human Factors : Communication Breakdown 
Communication Breakdown.Party1 : Flight Crew 
Communication Breakdown.Party2 : ATC 

Person : 5 

Reference : 5 
Location Of Person.Aircraft : Y 
Location In Aircraft : Flight Deck 
Reporter Organization : Air Carrier 
Function.Flight Crew : Captain 
Function.Flight Crew : Pilot Flying 
Qualification.Flight Crew : Air Transport Pilot 
(ATP) 

ASRS Report Number.Accession Number : 
1003084 
Human Factors : Communication Breakdown 
Communication Breakdown.Party1 : Flight Crew 
Communication Breakdown.Party2 : ATC 

Person : 6 

Reference : 6 
Location Of Person.Aircraft : X 
Location In Aircraft : Flight Deck 
Reporter Organization : Air Carrier 
Function.Flight Crew : First Officer 
Function.Flight Crew : Pilot Not Flying 
Qualification.Flight Crew : Commercial 
ASRS Report Number.Accession Number : 
1005043 
Human Factors : Communication Breakdown 
Communication Breakdown.Party1 : Flight Crew 
Communication Breakdown.Party2 : ATC 

Events 

Anomaly.ATC Issue : All Types 
Anomaly.Conflict : Ground Conflict, Less Severe 
Detector.Automation : Air Traffic Control 

Detector.Person : Flight Crew 
When Detected : In-flight 
Result.Flight Crew : Rejected Takeoff 
Result.Air Traffic Control : Issued Advisory / Alert 
Result.Air Traffic Control : Issued New Clearance 

Assessments 

Contributing Factors / Situations : Human 
Factors 
Primary Problem : Human Factors 

  

Figure 2.21: Metadata of ASRS ASN1002555
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2.2.3.3 The ASRS coding schema

Alongside the narrative data, ASRS (§2.1.4) provides extensive description of
the accident with metadata. These descriptors are coded by ASRS staff upon
reception and analysis of the occurrence.

The ASRS taxonomy (ASRS, 2014) is organised around seven high level
concepts (or entities):

• Time: factual information about when the event occurred.
• Place: information about where the event occurred.
• Environment: information about the context of the occurrence, such as me-

teorological conditions, lighting and flight conditions.
• Aircraft: Information about each implied individual aircraft.
• Component: Information about individual (failing) components, such as their

manufacturer and the the eventual problem with the component.
• Person: Information about the people involved, their certification, role etc. . .
• Events: The abnormal events constituting the occurrence.
• Assessment: Information about the analysis of the occurrence by ASRS staff.

What the primary problem and the contributing factors were.

Each entity is specified by a number of (hierarchically) organised attributes
with constrained values.

Person for example is characterised by the attributes “Function”, “Qual-
ification” and “Experience”, each having a different set of potential values.

Figure 2.21 shows the metadata of the report in figure 2.12. We can see
information about each of the redactors of the six narratives in the Person
entities, information about the two aircraft involved in the incident in the
Aircraft entities and general information such as the time of day and the
location28 in the Time / Day, Place and Environment entities. Analytical
metadata is present both in the form of the Assessment entity and in some of
the attributes, such as the Human Factors attributes of the Person entities.

Querying ASRS is possible via a web interface on the ASRS website29. We
will discuss in details the query language and the query builder in section 2.3.1.

2.2.3.4 SMS systems and the bow-tie model

SMS systems (§2.1.5) sometimes rely on relatively abstract ways of categoris-
ing incidents and use the bow-tie or barrier model (Reason, 2000).

The Bow-Tie Accident Model (fig. 2.22) represents a synthetic view of
an accident scenario, combining both causal and consequential information.
It is centred on the concept of hazard, or “unwanted event” (e.g. “Level

28Which in this particular report is annonymised to protect the ATC personnel’s identi-
ties.

29http://asrs.arc.nasa.gov/

http://asrs.arc.nasa.gov/
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Figure 2.22: The bow-tie accident model

Bust” or “Communication Loss”). Once the hazard is identified, a fault tree
is built on the left hand side, representing the cause of the hazard in the
form of a set of threats which have contributed to it and a set of barriers
which have (or have not) prevented these threats from contributing to the
hazard (for example “MTO: Turbulence” or “A/C: Noisy Cockpit”). On the
right hand side, an event tree is built representing the barriers that allowed
recovery from the hazard, as well as the potential accident and the potential
mitigation measures that may or may not have been put in place. Hazards
which have not occurred due to proper functioning of prevention barriers are
also represented.

Categorising incident reports within this schema requires the coder to
choose an item from sets of categories which list all identified threats, barriers,
unwanted events, mitigation means and potential accidents (like “CFIT” or
“Loss of Control”).

Once categorised, individual reports are exploited both in a quantitative
way by producing statistics and trends and in a qualitative way, where the
categorisation is queried to identify and extract individual reports of interest
for further investigation (§2.3).

Such modelling requires a specific taxonomy organising the various at-
tributes and their relations. It is important to note that such taxonomies
could be very abstract and require extensive reasoning from the part of the
people responsible for the coding. Imagining the possible (but avoided) out-
come means that considerable information is added to the incident record by
the coders and is the result of their analysis.

2.2.3.5 ECCAIRS and ADREP

Finally without doubt the most complex system for storing and manipulating
incident data is ECCAIRS associated with the ADREP30 taxonomy.

30Accident/Incident Data Reporting
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ECCAIRS (European Coordination Centre for Accident and Incident Re-
porting Systems) is an ongoing effort at standardising accident and incident
data collection and exchange within the European Union (Menzel, 2004). De-
veloped by the European Commission’s Joint Research Center, ECCAIRS’s
mission is “to assist national and European transport entities in collecting,
sharing and analysing their safety information in order to improve public
transport safety” and is freely available to any interested party. It takes the
form of a software platform that covers most of the collection, indexing and
querying of incident reports. Figure 2.23 shows the user interface of ECCA-
IRS.

Every European country maintains an ECCAIRS database, and these are
merged at the community level by EASA31. The ECCAIRS software platform
allows for complex querying of the databases, with a clear focus on helping
the user manage the complexity of the taxonomy, at the expense of textual
search. ECCAIRS databases are rarely32 public and their target users are
safety managers and analysts. The French DGAC, with whom Safety Data
collaborate on several projects also uses this software.

Figure 2.23: ECCAIRS GUI

31European Aviation Safety Agency
32The FAA distribute occurrences in an outdated ECCAIRS format (e4f) via the ASIAS

website (http://www.asias.faa.gov/).

http://www.asias.faa.gov/
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The ECCAIRS philosophy is to be able to represent a maximum of useful
information in a controlled and systemic manner. Unlike official accident
reports, that rely mostly on natural language, narrative data in ECCAIRS is
just one node of a complex multilevel taxonomy used to represent occurrences
called ADREP.

The taxonomy is the result of an effort at standardisation of aviation inci-
dent and accident information supported by ICAO (Stephens et al., 2008) and
is intended for a very broad coverage. ADREP is an international standard
and thus needs to potentially adapt to every possible situation and scenario.
Factual descriptors (time, place, aircraft models, engine and component man-
ufacturers etc.) and analytical descriptors of the occurrence, such as event
types and explanatory factors are organised in a complex multilevel hierarchy
with more than 800 attributes and 160,000 possible values.

Most interesting are the analytical branches of the taxonomy used to model
the accident or incident scenario. The Occurrence Category branch provides
a high-level description of the corresponding event. In theory, every event
can be reliably categorised using one or more of the 36 labels. A consistently
labelled database would allow safety experts to examine trends and statistics
based on the labels, as well as filtering incident searches by label. Like the
rest of the ADREP taxonomy, the labels themselves are normalised and are
associated with a set of conditions that describe when they should be used.
Table 2.3 shows the list of possible values.

While occurrence categories are relatively simple, ADREP provides a much
more detailed way of describing almost any incident by constructing an event
sequence using the Event entities and combining them with secondary and
tertiary attributes from a set of (very large) closed lists of descriptors.

Figure 2.24 represents the accident sequence of the Concorde accident of
July 2000 in the form of a sequence of events in ECCAIRS format. To better
understand this information we have provided the probable cause statement
of the official report in figure 2.25, it gives roughly the same information in
narrative form.
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Figure 2.24: Sequence of events in ECCAIRS for the Concorde crash

3.2 Probable Causes The accident was due to the following causes:

• High-speed passage of a tyre over a part lost by an aircraft that had
taken off five minutes earlier and the destruction of the tyre.

• The ripping out of a large piece of tank in a complex process of trans-
mission of the energy produced by the impact of a piece of tyre at
another point on the tank, this transmission associating deformation
of the tank skin and the movement of the fuel, with perhaps the con-
tributory effect of other more minor shocks and /or a hydrodynamic
pressure surge.

• Ignition of the leaking fuel by an electric arc in the landing gear bay or
through contact with the hot parts of the engine with forward propa-
gation of the flame causing a very large fire under the aircraft’s wing
and severe loss of thrust on engine 2 then engine 1.

In addition, the impossibility of retracting the landing gear probably con-
tributed to the retention and stabilisation of the flame throughout the flight.

Figure 2.25: Probable causes section of BEA report on the Concorde crash

Each event from the sequence is a set of assembled attributes. The fourth
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event in the sequence, for example, is composed of four different descriptors:

• The Event Type: (“Aircraft wing related event” in blue) comes from
a four level hierarchy listing all possible events that can occur on an
aircraft.

• The Flight Phase:(“during Take-off run” in blue) comes from a sepa-
rate list and specifies at which point of the flight the particular event
occurred.

• A cross reference to theAircraft (“F-BTSC” in blue) specifies the regis-
tration of the aircraft concerned by the event (in this case the Concorde)

• The Descriptive factor (“Wing plates/skins” in red) further specifies
the event by providing the part of the wing that was affected

• The Explanatory factor (“Aircraft manufacturing design staff” in
black) specifies which elements of the system should be addressed in
order to correct the problem.

The ADREP taxonomy has proven to be very useful when used correctly,
facilitating data exchange and providing a common frame of reference when
speaking about incidents and accidents in aviation (Stephens et al., 2008).

However most of the time, fine-grained categorisation is simply not avail-
able, as in the case of the DGAC database we are working with, where only a
third of the occurrences are coded with the occurrence category, and even less
for more precise information such as event types, which is the main branch in
ADREP for abstracting information about the precise sequence of sub-events
that occurred.
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Acronym Term and detail
ARC Abnormal runway contact - Any landing or takeoff involving abnormal runway

or landing surface contact.
BIRD Birdstrike - Occurrences involving collisions / near collisions with bird(s) /

wildlife; A collision / near collision with or ingestion of one or several birds.
CFIT Controlled flight into or toward terrain - Inflight collision or near collision

with terrain, water, or obstacle without indication of loss of control.
CTOL Collision with obstacle(s) during take-off and landing - Collision with ob-

stacle(s), during take-off or landing whilst airborne.
F-NI Fire/smoke (non-impact) - Fire or smoke in or on the aircraft, in flight or on

the ground, which is not the result of impact.
GCOL Ground Collision Collision while taxiing to or from a runway in use.
LOC-I Loss of control - inflight Loss of aircraft control while or deviation from intended

flightpath inflight.
MAC Airprox/ ACAS alert/ loss of separation/ (near) midair collisions Airprox,

ACAS alerts, loss of separation as well as near collisions or collisions between
aircraft in flight.

RAMP Ground Handing Occurrences during (or as a result of) ground handling opera-
tions.

RE Runway excursion A veer off or overrun off the runway surface.
RI-A Runway incursion - animal Collision with, risk of collision, or evasive action

taken by an aircraft to avoid an animal on a runway or on a helipad/helideck in
use.

RI-VAP Runway incursion - vehicle, aircraft or person Any occurrence at an aero-
drome involving the incorrect presence of an aircraft, vehicle or person on the
protected area of a surface designated for the landing and take-off of aircraft.

SCF-NP System/component failure or malfunction (non-powerplant) Failure or
malfunction of an aircraft system or component - other than the powerplant.

SCF-PP Powerplant failure or malfunction Failure or malfunction of an aircraft system
or component - related to the powerplant.
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USOS Undershoot/overshoot A touchdown off the runway surface.
ATM ATM/CNS Occurrences involving Air traffic management (ATM) or communi-

cations, navigation, or surveillance (CNS) service issues.
LOC-G Loss of control - ground Loss of aircraft control while the aircraft is on the

ground.
TURB Turbulence encounter In-flight turbulence encounter
FUEL Fuel related One or more powerplants experienced reduced or no power output

due to fuel exhaustion, fuel starvation/mismanagement, fuel contamination/wrong
fuel, or carburetor and/or induction icing.

ADRM Aerodrome Occurrences involving aerodrome design, service, or functionality is-
sues.

LALT Low altitude operations Collision or near collision with obsta-
cles/objects/terrain while intentionally operating near the surface (excludes
takeoff or landing phases).

F-POST Fire/smoke (post-impact) Fire/Smoke resulting from impact.
WSTRW Windshear or thunderstorm Flight into windshear or thunderstorm.

ICE Icing Accumulation of snow, ice, freezing rain, or frost on aircraft surfaces that
adversely affects aircraft control or performance.

EVAC Evacuation Occurrence where either:(a) person(s) are injured during an evacua-
tion;(b) an unnecessary evacuation was performed;(c) evacuation equipment failed
to perform as required; or(d) the evacuation contributed to the severity of the
occurrence.

SEC Security related Criminal/Security acts which result in accidents or incidents
(per the International Civil Aviation Organization (ICAO) Annex 13).

CABIN Cabin Safety Events Miscellaneous occurrences in the passenger cabin of trans-
port category aircraft.

AMAN Abrupt Manoeuvre he intentional abrupt maneuvering of the aircraft by the
flight crew.

LOLI Loss of lifting conditions en-route Landing en-route due to loss of lifting con-
ditions.

UIMC Unintended flight in IMC Unintended flight in Instrument Meteorological Con-
ditions (IMC).

GTOW Glider towing related events Premature release, inadvertent release or non-
release during towing, entangling with towing, cable, loss of control, or impact
into towing aircraft / winch.

EXTL External load related occurrences Occurrences during or as a result of external
load or external cargo operations.

MED Medical Occurrences involving illness of persons on board the aircraft.
NAV Navigation error Occurrences involving the incorrect navigation of aircraft on

the ground or in the air.
UNK Unknown or undetermined Insufficient information exists to categorize the

occurrence.
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OTHR Other This category includes any occurrence type that is not covered by any other
category

Table 2.3: ADREP Occurrence categories
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2.2.4 A typology of taxonomies

Table 2.4 summarizes the main characteristics of the different taxonomies
organising occurrence data. The typology refers both to the taxonomy used
and the specific corpus we have studied. Our only example of the ADREP
taxonomy is the DGAC corpus. Thus, the information here does not apply to
every collection organized in ECCAIRS.

We distinguish the following characteristics:

• Structure: How are the attributes organized. A flat structure means
that all attributes are on the same level. A hierarchical structure
means that some of the values are organised in a tree-like fashion. Entity-
based means that both attributes and values are hierarchically organised.
ADREP has a complex organisation as entities are interdependent and
crosslinked.

• Inference: Whether expert reasoning is needed to infer some of the
information in the coded data.

• Independent coding: If an entity other than the producer of the
report is responsible for coding the metadata. ASRS has some inde-
pendent coding, meaning that the producer also fills in some of the
attributes directly in the submission form.

• Cover: What proportion of the documents are sufficiently coded.
• Detail: What proportion of the information about the event is (poten-

tially) representable by the metadata.
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Collection Structure Inference Independant coding Cover Detail
ASRS Entity Yes Some Medium Medium
CADORS Hierarchical Yes Yes Full Low
TSB
BEA
NTSB No taxonomy - - - -
Aviation Herald No taxonomy - - - -
ASN Flat No No Full Very low
ASN Wikibase Flat No No Full Very low
DGAC Complex Yes Yes Low High

Table 2.4: Typology of taxonomies
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2.3 Using occurrence data

In this section we will take a closer look at the way stored occurrence data is
used. We can discern three high-level scenarios:

• Querying the collection: a person working on some issue is searching
for records matching some set of criteria. For example looking for runway
incursions in foggy conditions.

• Producing statistics and KPI33: Using the data set to produce statis-
tics about a particular type of event. For example, chart the number of
runway incursions per month on a particular airport.

• Monitoring the system: Using the data to identify novelty, emerging
trends or, more generally anything out of the ordinary that might need
attention.

2.3.1 Querying the collection

Querying the collection involves searching for records of occurrences matching
a given information need. A user expresses the need via a query and the
system returns a set of documents matching the query. This is without doubt
the most important use made of stored incident and accident reports.

The simplest imaginable query is that for a record, for which the user
knows the reference, filing number or other means of unique identification.
In such a case the system does not need a lot of complexity, beyond that of
simple storage and retrieval capabilities.

More often the information need is more articulate. The following example
comes from the ASRS website tutorial on how to use the web-based search
functionalities provided by the service :

A flight manager for an air carrier notes that the number and severity of
runway incursions at several major airports his air carrier services appear to
be down over the past several years. He feels that the runway safety training
his and other airline conduct, and the work of FAA’s Office of Runway Safety
has had a positive impact. Reviewing his airline’s training material he de-
cides to update the runway safety training material with more recent ASRS
Database examples of runway incursion incidents from the past 4 years.

In this scenario the information required is complex. Isolating relevant
occurrences from the database depends on the information available in the
taxonomy and how it is indexed. The ASRS tutorial continues and points ut
the three fields the user needs to query in order to obtain a subset of records.

33Key Performance Indicator
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Date of Incident = January 2004 – December 2008
Federal Aviation Regs = Part 121
Carrier Location = BOS.Airport, LAX.Airport, ORD.Airport,
DFW.Airport, ATL.Airport, IAD.Airport
Event Type = Ground Incursion, Runway

A further refinement of the query is needed in order to narrow down the
result by searching in the narrative fields, using the (limited) full-text indexing
capabilities provided by the ASRS search engine.

the flight manager notes that there is a wide spectrum of causal and con-
tributory issues in this data set. He really wants to focus on incidents where
confusion or misunderstanding played a role, so he modifies his search strat-
egy.
Step 2: Do not change any of the values for Date of Incident, FAR Part,
Location, or Event Type. Add the following text search terms:
Text = Confus% OR Misunder%

Note: The “%” symbol will find all words where the text begins with what
was entered, i.e., “Confus%” will find “Confusion,” “Confused,” etc. The
“OR” operator will surface records that reference any of these terms. Make
sure both “Narrative” and “Synopsis” are checked.

This example shows how metadata and full-text search are combined in
order to answer the information need of a user. Given the complexity of the
query, GUI34 solutions need to be adapted to the query. Figure 2.26 shows the
query-builder on the ASRS website. A query is formulated by first selecting
the entities one is interested in. Then, for each entity, a separate pop-up
window appears in which the user either chooses the value from a list or types
in a string.

In the next chapter (§3.1) we will discuss solutions to exactly this type of
issues from the field of information retrieval.

2.3.2 KPIs and statistics

Another common use of collections of incident reports is producing statistical
information and key performance indicators. This use relies on aggregating
information for multiple records in order to gain insight into the global state
of affairs at any given time.

Regulators, such as the French DGAC annually publish a report with a
panorama of air safety throughout a given year. In their 2013 report (DGAC,
2013), the DGAC reassure the public that air travel is getting safer every year.

34Graphical User Interface
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Figure 2.26: ASRS search GUI

Figure 2.27 (DGAC, 2013, p. 12) shows that there are fewer fatal accidents,
both per million departures (grey line) and per billion kilometres travailed
(green line) as well as fewer individual fatalities per billion kilometres (black
line).
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Figure 2.27: Fatal air accidents in France since 1987

Detailed breakdowns for different cross sections of the industry are also
provided. Figure 2.28 (DGAC, 2013, p. 30) gives a typology of accidents in
2013 of general aviation aircraft registered in France. The criterion used is
the occurrence category of the ADREP taxonomy (§2.2.3.5). One can see, for
example, that most fatal accidents result from loss of control in flight35, or
that abnormal runway contact accidents36, while being of the most frequent
type did not cause loss of life.

35perte de contrôle - en vol
36contact anormal avec la piste ou le sol
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Figure 2.28: General aviation accidents in France in 2013

The required precision of the underlying data needed to produce such
results varies between the two. While only tracking the number of accidents
and the number of fatalities is sufficient for the first example, a far more
detailed description is necessary for the second. In order to produce coherent
statistics, one needs to accurately classify individual occurrences with a much
finer grain size. Maintaining coherent fine-grain descriptions, as we will see in
the next section can become problematic when huge amounts of incident data
is tracked.

There is no limit on the potential finesse of description needed when per-
forming aggregated analysis for a given type of risk. The risk matrix approach,
for example is a well established decision-making protocol, where the frequency
of a given type of incident is compared with its severity to produce a unified
metric of risk. The rationale behind this approach is that relatively benign
incidents can be allowed to happen frequently with less risk, where more con-
sequential ones should not occur often. Risk matrix analysis allows directing
corrective actions in an informed manner.

Allan (2006), for example, performed a risk matrix type analysis of bird-
strikes and communicated thresholds of bird activity per bird species, over
which airports need to take action in order to both minimise risk and optimise
the resources involved with bird control. The success of this approach hinges



SAFETY INFORMATION IN CIVIL AVIATION: ACTORS, MODELS
AND DATA 89

on the availability of large quantities of incident data regarding birdstrikes,
where the specific species of bird is available as an aggregation criterion. The
same holds for any type of risk matrix analysis. The absolute minimum re-
quirement is having reliable data in the first place.

When we factor in the inherent noisiness of the data, we can easily see
that lack of coherence can skew the results. Allan’s 2006 study would not
have been possible if data about species of birds colliding with the aircraft
was not tracked, coded and stored in the first place.

There are however ways to extract the needed information from data, in
which the information is contained, but not in a readily machine digestible
form. Bird-strikes are a good example. In our experience with incident re-
ports, we often see the precise species mentioned in the free text narrative.
This information is easy to extract and then process for purposes such as the
aforementioned study and in Section 3.2 we show how supervised learning
techniques can produce reliable classifications for bird-related incidents.

In this sense we can almost see the problem of producing KPIs and statis-
tics as a more complex version of querying the collection, where one looks not
only of examples of a given type of event but of all the concerned occurrences
and where noise ought to be kept at minimum.

2.3.3 Intelligence and monitoring

This brings us to the third use of incident and accident data. As Johnson
(2003, p.735) explains:

Identifying trends. Databases can be placed on-line so that in-
vestigators and safety managers can find out whether or not a
particular incident forms part of a more complex pattern of fail-
ure. This does not simply rely upon identifying similar causes of
adverse occurrences and near misses. Patterns may also be seen in
the mitigating factors that prevent an incident developing into a
more serious failure. This is important if, for example, safety man-
agers and regulators were to take action to strengthen the defences
against future accidents.

This type of use essentially bridges the previous two. Starting from a
specific incident the expert will query the collection in order to find others
that resemble it. He will then perform some measure of aggregation, whether
purely statistical (as in counting) or informational, where he will interpret and
summarise his findings. It was already question of such a use in Section 1.3,
where experts trace a series of related events to a common source.

This type of use relies the most on the human expertise involved, as inter-
pretation by an expert is an integral part of the process. One should however
seek to provide them with the best tools suited for the job. This reasoning
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motivated us to research and develop the timePlot system for identifying sim-
ilar reports, which we present in Chapter 5. Identifying the particular ways
in which individual occurrences relate one to another is a viable solution to
aid experts to discover trends.

Intelligence and monitoring, aided by heavily automated components will
surely be part of the systems of the future. We can not but recall here one
of the original (and overambitious, as is often the case) goals of this thesis -
building automatic monitoring systems. Factoring in, on the one hand the dy-
namic nature of activities, one can not only look for trends, but to monitor in
their development over time, identifying relevant occurrences as they happen.
From here it is a small step to imagine anomaly detection components that
automatically identify trends as they start developing, based on disturbance
of the temporal distribution of events in the information flow. In our case, we
quickly came to realise that such systems will only be possible once we find
ways to deal with the noisiness of the data in order to provide inputs of suf-
ficient quality. Thus our focus shifted to the preconditions. We nevertheless
continue to consider automatic monitoring systems as a long term objective
and direction of future research.

Fuelling this use of incident data is a general state of affairs worth mention-
ing. We have dubbed it the ‘collective hindsight bias. Hindsight bias is “is the
inclination, after an event has occurred, to see the event as having been pre-
dictable” (Roese and Vohs, 2012). In the case of high profile accidents there is
a comparable effect on a social level. The mix of emotions focus attention on
the one hand to the experts responsible for preventing the disaster and on the
other prompt “all available hands” go sifting through the record to identify a
trend or a signal that should have alerted someone. With enough manpower
someone always finds a signal, a trend that lead to the catastrophe. If it holds
at least a little bit of credibility this is picked up by mainstream media. In
the but rarest of cases is the trend a genuine type 2 error, but nevertheless
the institutions have no choice but to spend valuable resources explaining or
debunking the hypothesis. The fear of such a situation puts extreme pressure
on safety experts not to miss a pattern in the data.

2.4 Issues when dealing with large collections of
occurrence data

The uses we described in the previous section all depend on available and
high-quality data. Yet as we will see this is not the case in reality. We
have identified a number of issues that hinder the proper execution of those
tasks. In a nutshell, when all the information is present in the form of natural
language, it is nearly impossible to exploit in an adequate manner. For this
reason the industry makes heavy use of taxonomies but those are far from
perfect and suffer from their unique set of problems.
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2.4.1 Issues with natural language reports

As Johnson (2003, § 16.2.4) points out:

It can be difficult to detect patterns of failure amongst the
natural language accounts of adverse events that are produced
by many reporting systems. The volume of prose produced in
national and international systems can make it difficult for any
individual to keep track of common causes or consequences across
many incidents.

When incident and accident reports start to pile up, they become notori-
ously difficult to exploit without the adequate tools. Full-text search engines
are becoming ubiquitous and many off the shelf solutions exist, yet as the
example in the previous section (§2.3.1) illustrates even serious institutions
such as NASA, maintaining the ASRS database struggle to provide full-text
search capabilities that take into account the inherent variability of natural
language even at a basic level.

Official accident reports, most often published in pdf format are sometimes
impossible to query without processing and some publishers only provide the
most basic keyword search capabilities.

The NTSB website’s integrated search for example only allows to search
for contiguous strings of words in the text. It does not account for even basic
variation such as plurals, provides no term highlighting and searches via a
sequential scan of their whole database at each query, considerably slowing
down the process.

Obviously, producing reliable statistics from such reports is also impossible
without first manually classifying them into whatever aggregation criterion one
is looking for. If no metadata is present, in order to produce the example from
the previous section (fig. 2.28), an expert would need to comb through all the
reports and classify them within an occurrence category schema.

Looking for patterns and monitoring the system also would require reading
all incoming reports and manually tracking them.

Multilingual databases also pose their unique set of problems. While En-
glish is the lingua franca of aviation, other languages are sometimes also used.
This is an issue when maintaining large databases of incident reports and seek-
ing to access their content. Large national airline companies often collect data
in both English and the local language in their internal reporting program as
many of the pilots are not native or bilingual. Accessing the data is prob-
lematic and we witness different in house solutions developed for convenience,
such as translating the titles of the reports so that they are all in the same
language (fig. 2.14).

For the above mentioned reasons, in practically all cases some classifica-
tion is performed. Relying on taxonomies though comes with its own set of
problems.
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2.4.2 Issues with coded data and taxonomies

As we saw in the previous chapter, accurately describing an occurrence is a
complex and expertise-intensive task. Even the simplest of incident reporting
system may have tens of fields for factual data and at least one set of high-
level categories. More complex ones such as ICAO’s ADREP taxonomy used
in ECCAIRS have thousands of fields describing every aspect of the occur-
rence. Such systems are designed with scale in mind. The initial ambition of
these systems is that, by using taxonomies, they will constrain every possible
occurrence within a predefined set of possible values with minimum loss of
information. “An uncoded occurrence is a lost occurrence. It is unusable.
It is just dead weight in the database” once told us an expert working with
ECCAIRS data sets, meaning that the quality of coding is paramount to the
success of data-based risk assessments. In reality however, this is rarely the
case for various reasons.

2.4.2.1 Complex codification schemes

Codifying each incident is a time consuming task which requires domain knowl-
edge and expertise to perform. A considerable effort is needed to perform it
consistently for every occurrence and in some cases codifying each occurrence
is simply abandoned. The DGAC’s database contains 404289 occurrence re-
ports from 2004 until September 2014. From these, roughly a third (136861)
are coded with the occurrence category attribute, the most simple high-level
classification of the ADREP categorisation schema, consisting of only 36 val-
ues on a single level.

Such large and omnipotent taxonomies taxonomies are so complex that
coders are required to undergo training in order to use it. Specifications of
when to use and when not to use a given class can be vague and coders might
not fully understand them or interpret them differently. A given occurrence,
it follows will not be coded in a identical manner depending on who coded it.
Johnson (2003, pp. 767-768) mentions that a 75% rate of accuracy in trainee
coders is aceptable for graduation.

When working with aggregated ECCAIRS data we have even seen “di-
alects” appear. Groups of coders (usually in the same company or depart-
ment) agree between them on how to interpret the taxonomy, thus producing
coherent data which however differs from the data coming in from other de-
partments or companies.

2.4.2.2 Dynamic systems and static taxonomies

While the above-mentioned practical issues may be overcome in theory (by
say hiring coders in mass), there are however more fundamental ones when
relying solely on coded data. The system is constantly changing and safety
is a lot about responding to such change and dealing with novel and unseen
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combinations of factors before they start resonating and create an unsafe state
(Hollnagel, 2004). A taxonomy, on the other hand is by definition a static
structure that is designed to accommodate occurrences at a given time. It
follows naturally that novelty will be difficult to account for in a taxonomy
that was designed with occurrences predating the novelty, perceiving novelty
is of critical importance when assessing risk.

Given that, depending on the scale of the system, the update cycle of the
taxonomy might be quite long (as is the case with ECCAIRS) a sub optimal
solution will be required to code those occurrences where the novel elements
are present before the novelty is introduced in the taxonomy.

2.4.2.3 Changing models and taxonomies

The previously cited issue has also an inverse implication. When change is
introduced in the taxonomy it is sudden while the novelty it accounts for is
gradual. It follows that the occurrences collected before the updated taxonomy
will inevitably be coded using whatever sub optimal solution was applied while
those collected after the new version is introduced are codified with the new
classes. This creates a completely artefactual shift in the (already noisy) data.

Novelty is by far not the most extreme case. In the ECCAIRS world
changes are introduced gradually and, while there may be some lag, the data
still is fairly consistent. In other cases however, in particular with less for-
malised incident reporting solutions of a smaller scale, such as localised inter-
nal reporting systems, paradigm shifts in the very way of accounting for risk
imply whole-scale overhauls of the models used, a completely novel taxonomy
and a change in the supporting software solutions.

Such is the case at this moment with a number of airlines that build in-
ternal safety management systems. It follows that at the time the system is
introduced, all occurrences collected before that date are completely incom-
patible with the new way incident reporting is implemented.

As narrative parts are unaffected by changes in models and taxonomies,
they provide a valuable resource for retrofitting occurrences to a newly intro-
duced model using automatic text categorisation (§3.2).

2.4.2.4 Bottleneck effects

Bottleneck effects are specific issue whenever aggregating data is concerned
at the level of (inter)national regulators or at the level of companies working
with various external data sources.

Data originating from structures with varying takes on incident descrip-
tion, using different accident models and taxonomies and employing different
software solutions to manage them, generates a stream with many levels of
fragmentation. Usually the receiving entity employs their own occurrence
management solution and taxonomy and must accommodate the stream of
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occurrence data into their system. Rectification and transformation layers,
custom ETL37 solutions and (where applicable) conventions on the exchange
formats and content provide part of the solution but at the end the data is of-
ten impoverished by the transfer and exchange process. Moreover, contrary to
the change-of-taxonomy scenario, in this type of situations the data is some-
times coherently codified and thoroughly analysed at the source. Valuable
expertise is thus wasted due to format incompatibilities.

Given that collation of reports implies an increase in volume, the need for
adequate data management and analysis solutions is proportional. Narrative
parts of documents are relatively38 “immune” to bottleneck effects and are
transmitted. In the most extreme of cases they vehicle the major part of the
information contained within the reports.

2.5 Summary of the issues and NLP as a solution

In the previous chapter we saw how feedback information gathered through
incident reporting plays a vital role in ensuring the safety of any given system.
In this chapter we saw in particular how this data flows and is used in the
civil aviation community as well as how the data is managed and stored. In
order to summarise and better present the challenge we are addressing, let us
first take a step back and imagine what a perfect world would look like. In
our utopia:

• All incidents will be reported worldwide on time with all the information
about the occurrence will be reflected in the report.

• Anyone who is interested will have access to this body of information.
• The data will be stored in a single common format.
• The data will be organised (via a taxonomy) and indexed in such a way

so that a query could be formulated to (fully or partially) describe any
accident or incident scenario, complete with any level of detail regarding
the occurrence’s context.

• Any grouping on any criterion could be performed in order to produce
aggregations and perform quantitative analysis such as statistics trends.

Basically the utopia boils down to two points: Collecting all relevant data
(which is far from the scope of this work) and providing powerful means for
accessing the information it contains. In a way the second part is already
being addressed by the ADREP taxonomy, which (while far from perfect) in

37Extract Transform Load
38There are cases where narratives are split into different sub fields, each with a different

discursive function that need to be collated into a single one. When gathering ASRS reports
(2.1.4) for example the host solution might not have the structure needed to accommodate
multiple narratives and a separate synopsis.
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itself remains a considerable advance with respect to most other industries.
In theory every accident could be coded in ECCAIRS using ADREP and
then be available to be part of the answer to whatever safety related question
somebody asks. In practice this is not the case. The example we saw in
section 2.2.3.5 on the perfectly coded Concorde crash, came from a PowerPoint
presentation of the tool. In reality we have never seen such a well coded
occurrence in all the years of working with such data. The system simply
does not scale without investing unbelievable resources for consistent manual
coding.

What ADREP really attempts is to normalise this information in a schema
sufficiently abstract to be generalised over a large collection, but yet suffi-
ciently precise to capture most of the intricacies of speaking about flying
airplanes, hence its complexity. However one tends to forget that most of the
information available in an incident or accident report is also contained in the
text. Just compare the natural language and ADREP versions of the Con-
corde crash (figs. 2.24 and 2.25. Almost all the information from the ADREP
version is in the probable cause statement.

So what is it’s status of natural language narratives in the present?
For one, efforts at developing and maintaining taxonomies and adopting

coding-based solutions has had the effect to occult solutions aimed at exploit-
ing the narrative parts. The predominant rhetoric seems to be that (espe-
cially for incidents) natural language accounts are for human consumption
only. They are read at the time of collection and screening, but once the
process is over and the immediate actions taken, the report is archived in a
database. The text only becomes useful if a human reads it once more. But
ironically, natural language accounts are the most resilient bit of data in a ac-
cident report as it flows through the system. They are immune to bottleneck
effects, to format changes and to taxonomy incompatibilities. and they are
ubiquitous - 99% of accident and incident reports have narratives.

So the question we ask is: how, by considering report narratives as
an input material, can we provide safety experts with better access
to the information that incident and accident reports vehicle?

On one hand, if we follow the current trend in the industry, we might
consider that taxonomy based approaches are the only way to go and then
search for methods that help to more efficiently code and maintain the data
using narrative parts as input material for automatic classifiers. We discuss
such work in section 3.2.

On the other hand, we could consider that narratives are all that is needed.
To put it in other words, to declare that taxonomy based approaches are a
failure and start researching how to build the most powerful full-text search
engine to replace them.

Balancing between these two extremes we mostly explored the relationship
between text and metadata in an empirical manner. In the next part we will
show that, by considering natural language as raw input material to various



96 2.5. SUMMARY OF THE ISSUES AND NLP AS A SOLUTION

processes, many of the issues presented above can be addressed, improving
both the overall coherency of the data as well as the specific modes of accessing
it required by the industry. More specifically:

• The first and foremost need we identified with safety experts is to iden-
tify patterns in the data (§1.3, §2.3.3). Out first take on the subject
was to build a system detecting similar occurrences in large incident
databases. In Chapter 5 we describe a system used to detect similar
occurrences in large incident databases. Today the system is used in a
large airline (§2.1.5) and at the DGAC. A demonstration version, soon
to become a commercial product is also available for ASRS (§2.1.4 and
The Aviation Herald (§2.1.6). The system is used also as a full text
search engine, providing a much simpler and more intuitive solution than
ECCAIRS and the search engines provided by the web services of the
data providers. Furthermore, willing to explore the taxonomy/text in-
formational redundancy, we experimented using the DGAC’s database,
looking to neutralise aspects of variation already captured by ADREP
Occurrence Categories in order to find reports that are similar for rea-
sons absent in the original coding. This work is presented in Section 6.2
and is a first step towards devising methods that search for secondary
patterns, hidden by the primary aspects of variation.

• The need to identify particular occurrences (§2.3.1) is broader than
just typing in a query. While a particular incident scenario is easily
constructed in an expert’s mind, it can be impossible to express as a
database or search engine query. For this reason, in Section 6.5 we
present experiments with active learning, a technique using supervised
classification an constant input from the users. This system uses a query
as a starting point and then allows the user to further refine the model by
validating pertinent or invalidating impertinent occurrence reports. We
run a simulation using both the DGAC’s data and the ASRS database
and show that such an approach can be used to model a particular facet
of an incident for which for one reason or another is absent from the
coded data.

• The need to automatically classify reports in a given taxonomy is
straightforward (§2.4.2). In Section 3.2 we present a system using super-
vised classification to automatically produce ADREP occurrence cate-
gories for the the DGAC’s database, which collects between 4000 and
5000 reports every month from all the service providers in France, lead-
ing to problems such as bottleneck effects as well as maintenance issues
when the taxonomy is updated.

• Multilingual databases are an issue for large service providers and for
entities that collect incident information from different sources (§2.4.1).
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In Section 6.3 we present a system inspired by Cross Lingual Explicit
Semantic Analysis (Sorg and Cimiano, 2012) in order to detect similar re-
ports written in different languages (English and French) we use the data
provided by the Canadian accident investigation authority (§2.1.2.2) and
evaluate it on the CADORS database (§2.1.3).

• Finally we address the need to construct a taxonomy from scratch.
While it is not expressed in civil aviation, it can be an issue in many other
industries. A collection of incident reports may only contain narratives.
So, in Section 6.4 we present work that evaluates the application of Topic
Modelling on the ASRS database. We compare the topics produced by
this method to the metadata. We discover first, that Topic Modelling
can identify facets of incidents that are not present in the taxonomy and
second that there is a considerable overlap between the metadata and
the extracted topics. This proves that the method is a valid starting
point for constructing taxonomies in a data-driven manner.

2.6 Chapter conclusion
In this chapter we saw the different types of occurrence data, how it is pro-
duced, stored and used for ensuring safety in civil aviation. We saw that access
to information in large collection is paramount to the process and identified
those areas where the current taxonomy-based paradigm fails to meet expec-
tations in real-life usage scenarios. While natural language is omnipresent in
occurrence data, the existing tools do not allow easy searching within the nar-
rative parts. In order to access the information, one has to rely on taxonomies,
but those are not always adapted, being either too broad to describe the event
or too complex to sufficiently cover the collection.

In the next chapter we will present the domains of NLP that address
the problems of searching in large document collections and automatically
classifying documents based on their textual content and discuss how these
domains potentially improve access to information in collections of incident
and accident reports.





Chapter Three

NLP: domains of application

This chapter presents the domains of Information Retrieval and Text Cate-
gorisation. Each section is organised by first presenting the domain and the
key concepts, before discussing the specific implication of their application to
occurrence data.
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We saw in the previous chapters that safety today is dependant on ac-
cessing information which is contained in a variety of document types. These
documents are stored in collections with different modes of organisation. They
can be anything from flat lists of pdf files to databases organised within highly
complex taxonomies, structuring large lists of metadata attributes.

The information is used for different purposes, from exploratory browsing
and looking for patterns to precise querying for quantitative assessments. The
issues we listed in Section 2.4 boil down to a single question.

How do we provide efficient means for finding information in
these collections?

There are two ways to look at the problem. On one hand, a lot of the
information we are looking for is in the natural language parts of occurrence
reports, we then turn to field of Information Retrieval, the discipline involved
with building search engines. On the other hand, metadata is the de facto
standard way of accessing and exploiting these documents. The quality of
the coding and the availability of coherent metadata are however far from
satisfactory. For this reason we turn to the domain of Text Categorisation
for exploiting the redundancies between text and metadata and automatically
enhance the quality of the coding.

3.1 Information retrieval

Today search engines are ubiquitous and are taken for granted. From Google
to custom industrial solutions used to query highly specific data sets, these
systems provide a solution to our need to be able to find information in a
collection of documents. Information Retrieval is the academic field concerned
with building search engines, or as Manning et al. (2008) put it:

Information retrieval (IR) is finding material (usually docu-
ments) of an unstructured nature (usually text) that satisfies an
information need from within large collections (usually stored on
computers).

3.1.1 Problem definition

The standard way of defining the problem is remarkably simple. The user
has an information need. He formulates the information need via a query.
The system analyses the query, matches it with the documents contained in
its index and returns documents containing the information that satisfies the
user’s need. This way to look at the problem is pretty much stable and is a
reference in the field (Robertson, 1977; Manning et al., 2008).

Figure 3.1 (diagram by (Chevalier, 2011)), presents the U-shaped process
of information retrieval as described by Salton and McGill (1986).
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Figure 3.1: The IR process

Four key phases are part of the Information retrieval process:

• Expression of the information need: The process by which a user
transforms a mental need into a query that he submits to the system.

• Document processing: When documents are added to the system
they must be analysed and stored in such a way as to allow their content
to be available to the users and answer their information need. This
phase is also called indexing.

• The matching process: The identification of relevant documents that
answer a certain information need. The query is compared to the index.

• Displaying of the results: The system returns the relevant documents
and presents them to the user.

3.1.1.1 Information need and query formulation

Marchionini and White (2007) define the process of query formulation as a two
stage process. The user first formulates his problem and then expresses
it to the information retrieval system. “[The] formulation activity follows
acceptance and involves the information seeker conceptualising the bounds of
the information need, imagining the nature and form of information that will
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meet the need, and identifying possible sources of information pertinent to
the need.” Depending on the search system (library, web search, database)
the user will employ a different strategy to express his information need. The
query, in this sense can be, for example a face-to-face conversation with a
librarian or an expert, a full-text query in a search engine or an SQL query in
the database. The expression step is thus highly dependant on the particular
system’s interface.

3.1.1.2 Models of IR for document processing

In the IR process, the phases of Query analysis and Indexing are consistent
with the transformation of documents and queries into a common format in
order for them to be matched at the matching stage. There are currently two
frameworks for performing this operation: the Boolean model, the vector space
model:

• The Boolean model: This is the earliest and most simple framework
for IR. Manning et al. (2008) introduce by the problem with a mock
example:

A fat book which many people own is Shakespeare’s Col-
lected Works. Suppose you wanted to determine which plays
by Shakespeare contain the words Brutus AND Caesar and
NOT Calpurnia.

This is an example of a Boolean query, as the information need is formu-
lated as a Boolean expression, where the result is a subset of documents
from the collection satisfying all the constraints. Boolean search is still
preferred in some cases as it allows for very precise queries and results.

• The vector space model: Unlike Boolean retrieval, which is very pre-
cise, vector space (Salton et al., 1975) modelling allows to quantitatively
represent the relationship between documents and queries and the attri-
bution of a score of relevance to the returned results. Thus the results
can be ranked according to how well they resemble the query (and an-
swer the information need) Vector space modelling is the predominant
paradigm in IR today and will be discussed in detail in the following
chapter (§4.2).

3.1.1.3 Displaying the results

The end results of the information retrieval process is to display relevant doc-
uments to the user. The most common display mode for retrieved documents
is the ranked list with snippets. A snippet is an excerpt from the document
showing the parts that correspond to the query. Usually this is done via some
form of highlighting, like bold face formatting of the query terms. Depending
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on the specific search task, many other display modes are possible and have
been applied (Kules et al., 2008).

3.1.1.4 IR performance

A perfect IR system will return all the relevant documents to a given query and
only those documents. However this is rarely the case. There is always some
irrelevant documents in the results (noise) as well as some relevant documents
are missing from the results (silence). Combining the notions of relevance and
presence in the results, the documents during a given search session can be
split into four categories:

• True Positives: Documents that are relevant and are returned by the
system. (expected)

• False Positives: Documents that are not relevant and are returned
by the system. (noise)

• False Negatives: Documents that are relevant and are not returned
by the system. (silence)

• True Negatives: Documents that are not relevant and are not re-
turned by the system. (expected)

A perfect system thus produces no false negatives and no false positives.

In order to measure these parameters and evaluate IR systems the metrics
of precision and recall are used. Manning and Schütze (1999) define the two
as:

• Precision (P ) is the fraction of retrieved documents that are relevant.

Precision = #(relevant items retrieved)
#(overall relevant items) = P(relevant|retrieved)

• Recall (R) is the fraction of relevant documents that are retrieved.

Recall = #(relevant item retrieved)
#(overall retrieved items) = P(retrieved|relevant)

The higher both values are the better the system performs.

We will now use an example and present some of the issues that arise when
searching information in natural language documents.

3.1.1.5 An example of full text search problem

The predominant mode of interaction with a search engine are free text queries.
The information need is expressed with a string of words without the user
needing to concern himself with the exact underlying Boolean logic. From
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a user’s point of view the process looks simple. Just type in what they are
looking for. However, the relationship between the query and the document
is not always that simple. Let us walk through a real example of a search
scenario and look at the basic language-related issues.

Imagine the following information need:

From a collection of incident reports published by the Aviation
Herald (§2.1.6), an expert is interested in cases where the aircraft
slid off a wet runway.

The term denoting this type of incident is a “runway excursion”. If it were
coded in the ADREP taxonomy, it would have had “RE:Runway Excursion”
as its Occurrence Category attribute (§2.2.3.5). Knowing this, a user will
formulate a query like “wet runway excursion”. If we look at this query as a
Boolean expression, the subset of documents returned can be defined as all
documents containing the words “runway” AND “excursion” AND “wet”. In
this set some documents will satisfy the user’s need for information.

Accident: Iran Aseman F100 at Tabriz on Aug 26th 2010,
runway excursion into a ditch

[. . . ] The airline confirmed the airplane suffered a runway excursion
reporting some damage to the nose section of the aircraft. No injuries
occurred. [. . . ] Reportedly the landing was performed in wet and windy
conditions on a wet runway with one thrust reverser deactivated. [. . . ]

Figure 3.2: AH report 43028227

Accident: Trans States E145 at Ottawa on Jun 16th 2010,
runway overrun

[. . . ] - The smooth landing on a wet runway led to viscous hydroplaning,
which resulted in poor braking action and reduced aircraft deceleration,
contributing to the runway overrun. [. . . ]

Figure 3.3: AH report 42d059bc

Figures 3.2 and 3.3 are excerpts from documents that describe wet run-
way excursions. Both are relevant (true positives) and satisfy the Boolean
constraints.

There are however reports that do not satisfy the constraint and yet satisfy
the user’s information need. An example is the report in figure 3.4, which is
a false negative and part of the silence.
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Incident: Delta Airlines DC95 at Savannah on Sep 27th
2010, overran runway

A Delta Airlines Douglas DC-9-50, [. . . ], was on approach to Savan-
nah in thunderstorms, heavy rain and difficult wind conditions. The
airplane landed [. . . ] but overran the end of the runway coming to a stop
within the paved surface of the overrun area.

Figure 3.4: AH report 4317a108

This is a classical issue of lexical variation - different words sharing sim-
ilar meanings. An overrun is a specific type of (runway) excursion. From a
linguistic point of view we will consider that these words are pseudo-synonyms,
but the issue extends beyond synonyms. The example in Figure 3.4 does not
contain the word “wet” but does contain “heavy rain”. The two are clearly
related and from a system’s point of view, such a relationship must be ac-
counted for in order to improve recall.

Another issue is that of compositionality. Meaning is lost when we take
words out of context. The example in Figure 3.5 illustrates a report that
contains both the words “runway” and “excursion” but is clearly irrelevant1

to the query as it does not concern a “runway excursion”. This document is a
false positive, an example of noise

Report: Flybe DH8D near Southampton on Mar 3rd 2009,
stick shaker activation and temporary loss of control during
turn onto base

[. . . ] While turning onto the base leg for runway 20 the stick shaker
briefly activated due to turbulence, the autopilot disconnected, the airplane
pitched up to 12.5 degrees nose up and rolled to a 43.5 degrees left bank
before the crew was able to regain control. [. . . ] When the autopilot
disconnected she put her hands back onto the control wheel and felt the
stick shaker for a moment. She attributed the following attitude excursions
to turbulence.

Figure 3.5: AH report 42cbc93c

Finally the example (false positive) in Figure 3.6 concerns a report that
makes reference to another report. The search terms are situated in the ref-
erence and not in the main text. It illustrates how discourse structure can
have an impact on the relevance of the results.

1For this example we simplify the information need and omit “wet” from the criteria.
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Incident: SATA A320 at Lajes on Mar 4th 2011, ran over
obstacle on runway

The runway was wet with runway markings hardly recognizeable, re-
surfacing work was in progress. [. . . ] [D]uring roll [ the aircraft ] ran over
a sand bag holding a cable for the temporary runway edge lights causing
damage to a tyre, that did not deflate however. [. . . ] Following another
similiar incident new NOTAMs were released on Mar 11th clarifying the
work in progress and runway modifications, see also Incident: Travel Service
B738 at Lajes on Mar 10th 2011, runway excursion on landing.

Figure 3.6: AH report 439534d5

3.1.2 Linguistic issues in IR

The main drawback most IR techniques suffer from, as Arampatzis et al.
(2000) put it, is “that they still make the assumption, that if a query and
a document have a (key)word in common, then the document is about the
query”. Language is not merely a bag of words, it has structure, texture and
regularities. “[Language] is a mean to communicate about concepts, entities
and relation, which may be expressed in many forms”. Linguists understand
many of the intricacies of language and how it varies on different levels. Ac-
counting for variation improves the performance of IR systems both in preci-
sion and in recall. Variation is omnipresent in language, and to a large extent
it can be described and measures taken to normalise the inputs to an IR sys-
tem (documents and queries) so they exhibit less variation at the moment of
matching, than they exhibit in their raw unprocessed forms.

Let us look at the main types of linguistic variation, their implications to
IR and some potential solutions.

3.1.2.1 Morphological variation

Morphology describes the internal structure of words. It is usually broken
in two parts, inflectional and derviational morphology. The first describes
changes undergone by words as a result of syntax, while they remain the same
part of speech and keep practically the same meaning. A noun will have a
plural form (excursion, excursions), a verb will have inflections according to
person, tense and mode (land, lands, landed).

Derivations are forms that are derived from a certain word usually to form
a different part of speech. Nominalisations (wet/wetness and land/landing),
for example are created by adding bits to the ending of a word (suffixation).
The derived forms usually keep a common aspect of the meaning of the form
they are derived from although in some cases it is rather implicit (mark,
markings). While English is a morphologically simple language, others such



NLP: DOMAINS OF APPLICATION 107

as Finnish, German and Turkish exhibit a very large number of variants for
every given base form.

Not taking into account morphological variation in an IR system hurts
recall as documents containing variants of the query terms are not retrieved.

Morphological variation can be taken into account in two2 ways in IR
systems, one linguistic and one non-linguistic:

• One can might employ a lemmatiser and derive a base form for all the
variants which will then be used to match them. Plural nouns will
be folded to the singular, gender to the masculine and verbs to their
infinitive form.

• Or one can use a non linguistic method, known as stemming, where
words are stipped of their suffixes and folded down to a common form,
their stem.

Both methods have their pros and cons. Stemming is error-prone but ro-
bust. A stemmer can be applied to any surface form. Because it relies only
on surface forms however, it may incorrectly stem some words. “Organisa-
tion" for example will become “organ", or in French “laser" will become “las"3
Lemmatisation on the other hand is costly, as it needs a resource that lists
all the variants and their common root. Moreover, in order to be correctly
performed the lemmatiser needs to know the part of speech of every term.
For this reason, the lemmatisation is associated with POS-tagging, the pro-
cess that derives parts of speech. For occurrence data, with all the domain
vocabulary, one practically has to build such a resource form scratch. Costly
and difficult as it is, POS-tagging and lemmatisation are however an essen-
tial step if one wants to perform more complex processing such as syntactic
parsing.

3.1.2.2 Lexical variation

Lexical variation implies a whole range of phenomena where words vary in
form due to reasons unrelated to morphology and, like morphological variation,
hurts recall in an IR system. They can be:

2Actually there are three. One might list and add all the variants of all the terms to
the query. This is known as query expansion but it is terribly inefficient both to perform at
every query and to maintain an index with unnormalised terms.

3This particular example plagued us in the timePlot system. The stemmer treats the
string “laser" as the infinitive of a French verb from the first group. Given that laser pointers
are a current subject of interest (5.3.3) and LAS is the airport code of Las Vegas, the system
returned a lot of false positives due to this stemming error, for which we had to account by
introducing lists of stemming exceptions.
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• Surface variation: Words written in capitals, varying use of diacritics,
varying use of intratoken punctuation marks4 (hyphens, slashes etc).

• Spelling errors.

• International spelling variants, such as the -ize/-ise variation of suffixes
between American and UK English.

• Acronyms and abbreviations, such as the ones in the ASRS (TKOFF /
take-off) (also see Figure 4.1).

• Real synonyms. (accurate / precise).

• Pseudo-synonyms. (excursion / overrun)

• Translations, such as the use of English terms in French texts.

ASRS’s IR system’s online documentation illustrates the issue with the
following instructions:

We strongly suggest that for better text search results you use
as many variations of a word as possible including its abbreviation.
For example, if a user is looking for reports that reference the word
"takeoff" in a reports’ body of text, the terms/words "tkof," "take
off," and "take-off," should also be included in the search strategy
in order to obtain the best possible results.

There are two ways to tackle the problem of lexical variation, a symbolic
and a statistical approach:

• Symbolic approaches mean that the information about the equivalences
is encoded in an external lexical resources. Wordnet (Miller, 1995) for
example has been shown to improve results for IR (Gonzalo et al., 1998).
Another way to account for lexical variation is to index documents ac-
cording to a domain Ontology (Hernandez, 2005). Using hand built
substitution lists can also be considered as a symbolical approach. We
discuss a symbolic approach in Section 4.1.2.

• Statistical approaches exploit co-occurrence patterns of words in large
corpora. Also known as distributional semantics (Turney and Pantel,
2010; Baroni and Lenci, 2010; Padó and Lapata, 2007), such methods
identify similarities between individual words based on the similarity
of the contexts they appear in. Morlane-Hondère (2013) showed that
such methods identify a large spectrum of semantic relationships. In
employing them one can either produce substitution lists or they can

4We have encountered all the following variants of “checklist”: check-list, check/list,
c/list, c/l, c-l, checkliste
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be directly incorporated in the vector space model, as is discussed in
Section 4.3 and in Chapter 6.

In order to apply symbolic methods, to specialised texts as aviation occur-
rence reports, the main drawback is resource availability. Generic resources
such as Word Net (Fellbaum, 1998) and general language thesauri are not
adapted. Ad-hoc resource construction is necessary, which is an extremely
costly process. The main obstacle for using statistical methods for with oc-
currence data is quantity. These methods require very large amounts of text
and collecting such quantities in specialised domains is not a trivial task.

3.1.2.3 Compositionality and semantic variation

Semantic variation can be viewed as the inverse of lexical variation. A same
word having different meaning. The textbook example of the “river bank”
and “bank” as a financial institution is commonly used to illustrate semanti-
cal variation (Arampatzis et al., 2000). However, from an IR perspective the
example of “altitude excursion” vs “runway excursion” illustrates the same
phenomenon. The two cases are for our purposes equivalent, given the in-
formation need it is simply not the same kind of “bank” nor is it the same
“excursion”. In order to treat this kind of phenomenon, one needs to take into
account not the inherent meaning of words but their meaning in context. Or
to put it in other words, the compositional character of meaning.

Compositionality is “the principle that the meaning of a (syntactically
complex) whole is a function only of the meanings of its (syntactic) parts
together with the manner in which these parts were combined.” (Pelletier,
1994).

A simple example is the support of polylexical units such as “runway ex-
cursion” from the example. Identifying such units can be done by symbolic
means or in a pure statistical manner on surface forms. Symbolic methods
rely on syntactic structure (Bourigault, 1993) and extract terms based on tem-
plates, such as looking for a sequence of nouns. Statistical methods can be as
simple as extracting collocations (Kilgarriff and Tugwell, 2001).

From an IR point of view this implies that indexing should account for
structure. A simple way this can be done is by using word n-grams (contiguous
sequences of words) as index terms. In more complex methods such as term
dependence models (Croft et al., 2010), ranking is dependant not only on the
frequency of the query terms but on their relative proximity in the documents.

In our experience with occurrence reports, we found out that considerable
effort is needed for accurate syntactic parsing of the non-standard language
common to aviation. For this reason for the time being we preferred a surface
form based approach that we present in Section 4.1.5.
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3.1.2.4 Discourse and document structure

Documents usually have structure (Power et al., 2003) and the different parts
have different rhetorical roles (Mann and Thompson, 1988). Information
present in different parts has different function and their relative importance
differs.

From an IR perspective, taking into account discourse structure can be
viewed as simply identifying the most interesting parts in a document and
giving more weight to the terms found there.

A straightforward example is the status of titles and headings. In semi-
structured documents, such elements are of greater relative importance than
the text (Kronrod and Engel, 2001; Rebeyrolle et al., 2009).

Zones of text may also have different relative importance. In scientific
articles, for example one would look for those parts that present new ideas
and not the parts that expose previous work on the subject, as Teufel and
Moens (2002) point before presenting a method to automatically distinguish
such zones.

This was the main justification for Campello Rodrigues’s Master’s thesis
(Campello Rodrigues, 2013). In it, we would explore ways of zoning accident
reports (§2.1.2.2) and identify parts with different rhetorical roles, such as
argumentative, descriptive and narrative.

3.1.3 IR for occurrence data

We saw in the previous chapter how occurrence data is organised and what
the predominant uses are. Let us now see how this translates int the basic IR
concepts we just saw.

3.1.3.1 Precise information needs

The need for information can be very precise. Users are trained and are experts
in the field of aviation. Thus problem formulation can be highly detailed (see
the ASRS example in 2.3.1). This is the main reason for the extensive use of
taxonomies to organise the information in a well defined manner. However,
as we saw, there is always a narrative part and full text search is often part
of the query. In other words a well designed system must allow for a Boolean
search over the metadata attributes as well as full-text search capabilities for
the narrative fields.

3.1.3.2 Undefined information needs

Another scenario, also common is one where the information need is undefined
or under-defined on purpose. In particular related to the need to look for
patterns (§1.3 and §2.3.3), expressing and formulating an information need
can be viewed as already introducing bias. To put it bluntly, one can not look
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for the unexpected. This is the case when sifting through data on occurrences
and just looking for “something out of the ordinary”. Thus a usage scenario of
a purposefully designed IR system is also to allow easy browsing through the
data, while providing the users with cues to potential patterns. The timePlot
system, which we present in Chapter 5 was initially aimed at just such a usage
scenario.

3.1.3.3 Favouring recall

Lastly a particularity we have repeatedly come through when interviewing
safety experts, is their high tolerance to noise in the results coupled with
the intolerance to silence. They did not want to miss anything out and are
willing to accept a high error rate. In terms of parametrising a system, this
means that a high recall (3.1.1.4) strategy is preferred. In terms of interface
design, this means that a good IR system for occurrence data will facilitate
identification of noise and isolation of the relevant results. In terms of NLP
components, this means that recall-producing strategies, such as query expan-
sion or dimensionality reduction could be favoured.

3.1.4 A broader perspective on the IR problem definition

Putting aside the common issues of IR and how NLP (potentially) solves
some of them, it is also interesting to look at the broader problem of data-
driven risk management from an IR perspective. Working on this thesis we
have come to see that easy access to relevant information is central to the
tasks at hand. As shown in the previous chapter (§ 2.3), experts always seek
answers within large collections of semi-structured data. Whether by asking
specific “questions” (queries), counting aggregations based on the metadata
and plotting them on a bar chart or simply wondering if something interesting
has happened lately, they express a need for information and are demanding
tools that satisfy it. We need to relax the standard “user queries, system
responds with a list of documents” paradigm just a bit and start asking again
some of the fundamental questions of IR.

• What is an information need? The spectrum is large: From the
simple navigational query, where a user searches for a specific document
by its identifier on the one hand, through seeking instances of elaborate
accident scenarios to seeking the unknown and assisting serendipity.

• How is the user input formulated? Is it a full text query, a combi-
naton of textual queries and metadata attributes, a question in natural
language or a polygon drawn on a map?

• How is the user involved throughout the search process? Re-
fining search through brief exploratory queries followed by more precise
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and complex queries based on the initial results is common. What pro-
cessing methods and what interface design choices can assist the users
in understanding the data and the results presented?

• Are the users trained or not to use one specific tool? Do we
assume that the user knows the underlying organisation of the data and
the metadata model or do we need to abstract from them, assume that
no such prior knowledge exists and present results in intuitive ways?

• What does the user expect in return? Is it a list of documents à
la Google? a textual summary? a bar chart?

While not pretending to have a clear answer to these questions, asking
them has helped us shed some light on the complexity of the domain at hand.
While at the beginning of working on this thesis, we loosely framed our prob-
lem around automatic detection of certain scenarios, at the time of writing
this document we are intimately convinced that rephrasing the problem as an
information retrieval task is the key to designing and developing the future
software solutions for risk management.

3.2 Automatic text categorisation

As we saw in the previous chapters (§2.2), taxonomies are the main means to
access collections of incident and accident reports. They however suffer from a
number of issues (§2.4.2), which all amount to either loss of coded data or lack
of such in the first place. Deriving metadata attributes from the information
contained in the natural language narratives is the task of automatic text
categorisation.

3.2.1 Problem definition

The task of classification can be defined as “the task to classify a given data
instance into a prespecified set of categories” (Feldman and Sanger, 2007).
Applied to documents or texts, text categorisation (TC) is simply the pro-
cess of finding the correct category (topic, theme, class, label) from a set of
categories, for every document.

Automatic document classification is today part of our every day lives.
The ads we see on web pages (Blaser et al., 2004) and the spam we don’t see
in our inboxes (Cormack, 2007) are a result of TC techniques. Applications
ranging from filtering potential job candidates for a job by scanning through
their resumes (Singh et al., 2010) to detecting plagiarism in students’ writings
(Lukashenko et al., 2007; Tanguy et al., 2011), from detecting subjective writ-
ing in news feeds (Kim and Hovy, 2006) or on Twitter (Pak and Paroubek,
2010) to trying to detect terrorists based on their email exchanges (Ahsan
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et al., 2013) have made TC one of the more active fields in contemporary
NLP.

TC is studied for at least 60 years (Maron, 1961) and there are basically
two ways to attack the problem. The first is the knowledge engineering ap-
proach where expert knowledge is directly encoded in the system. In other
words, manually produced rules or heuristics are applied to the documents
and based on these rules the systems chooses one category or another. The
other approach is the machine learning approach, where a classifier function
is built inductively from a representative set of already classified examples.
Although useful in some highly controlled environments, the knowledge en-
gineering method requires considerable resources and expertise. This is why
most of the research today is centred on machine learning methods.

The problem can be formally defined as approximating an assignment func-
tion F : D × C → {0, 1}, where D is the set of documents and C the set of
classes. F (d, c) = 1 if one particular document d belongs to the category c.
The classifier is the approximating function M : D × C → {0, 1}. The clas-
sifier needs to be as close as possible to the assignment function F (Feldman
and Sanger, 2007).

Three aspects of statistical TC are important: the nature of the classifi-
cation problem, the choice of classifier and how to represent documents.

3.2.1.1 The nature of the classification problem

Depending on the specific task we can distinguish between binary, single label
and multilabel classification. Binary classification is the simplest task. The
classifier needs to decide whether a document belongs to a given class or not.
When there can be only one possible class for a document, the classifier needs
to decide between all available classes and assign the most probable one. When
each document can be assigned more than one class and the classes are not
mutually exclusive, we have multilabel classification. Binary classification is
the easiest task, single label classification is more difficult but can be solved by
a generalisation of the binary case. Multi-label classification is more difficult
but can be solved by applying as many binary classifiers as there are classes.

3.2.1.2 The choice of classifier

Statistical machine learning is a rapidly developing academic discipline and is
by no means restricted to TC. New methods and algorithms are developed and
released all the time and applied to all kinds of objects and scenarios. Machine
vision for example, is highly dependant on statistical ML techniques. TC is
just the application of general machine learning techniques to the problem of
categorising texts. One has to choose between a number of different systems
and often the choice depends on what is available and the current trend.
Evaluating several different systems allows to make an informed choice but is
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hard work. Often, when a given system has acceptable performance one sticks
to it.

The different systems commonly used in TC applications are:

• Support Vector Machines. (Vapnik, 2006).

• Maximum entropy (Berger et al., 1996)

• Neural networks (or Perceptrons) (Bishop, 1995)

• Decision trees (Quinlan, 1986)

We will not discuss the different classifiers further. Our personal position
on the subject is that any classifier that does the job well is a good choice.
It is worth mentioning however that the models produced by some classifiers
are less opaque than others. In some cases one might be interested in the
exact reasons a given classifier produces a given outcome. Decision trees are
by definitions easy to interpret as the model they build is a hierarchical struc-
ture of binary decisions based on a single feature. They are suited for more
exploratory approaches. SVMs on the other hand are notoriously difficult to
interpret and they are suited for result-oriented approaches.

3.2.1.3 Document representation

A classifier can not just take a text as input. One needs to transform the text
in a set of features. We will discuss this in detail in the next chapter, but in
a nutshell a document is represented by a feature vector. A feature is “simply
an entity without internal structure - a dimension in feature space” (Feldman
and Sanger, 2007). A document is represented as a vector in this space. The
classification task can then be viewed as the process that assigns subspaces to
the different classes.

3.2.2 Specifics of applying TC to occurrence data

Let us now see some of the challenges that may arise when using automatic
TC methods for occurrence data. The issues that TC solves is incoherent or
missing metadata (§2.4.2):

• Metadata incoherence, for example arises when a given coding standard
changes and a collection starts accumulating reports coded by the new
standard alongside the old one. In the original ADREP taxonomy, for
example, the BIRD5 Occurrence Category didn’t exist and was added
later. Originally bird-strikes were coded using the ADRM 6 category. It
is useful to recode the old reports in the new category.

5Bird-strike
6Aerodrome related issues
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• Missing metadata is the case when new reports simply do not have coded
values and the system assigns one to them automatically.

The first issue that arises with applying TC to this problem is the defini-
tion of the classification problem. There is only a tiny subset of all meta-data
attributes that are classifiable in a straightforward manner. Rare are those
attributes that are only simple lists of mutually exclusive values. The flight
phase7 is such an example. More common are multilabel classification prob-
lems such as the ADREP occurrence categories (§2.2.3.5) whose classification
we will discuss in the next section. Hierarchical categories are also common.

Another particularity is that, as metadata is organised in taxonomies,
there is almost always some internal structure and domain specific logic and
rules in its application. The occurrence categories are for example (in theory)
divided in primary and secondary categories. A document must have one
of 15 primary classes and may have one of 21 secondary categories. Thus
the question is more complex than a multi-class TC problem (even though
we treat it as such in the example in the next section). One more aspect of
using complex taxonomies is the fact that there are more than one metadata
attribute to classify and that informational redundancies can be established
between the different branches. An aircraft can not experience an abnormal
runway contact8 during Approach. Exploiting these links between different
branches can potentially produce more coherent classifications.

Lastly and most importantly, the nature of the objects we classify are not
documents in the strict sense. TC as it is defined is just that - assigning
categories to texts or documents. With occurrence data however the object
is not a text, it is a record of an event. Except with official accident reports
(§2.1.2.2), text only vehicles some information about the occurrence. Other
information is only present in metadata attributes. Thus mixed approaches
need to be researched in order to combine the two complementary sources of
information.

Data sparsity is another issue. Usually categories are unevenly distributed,
as we will see in the next section.

For a mix of the above stated reasons, some parts of the metadata are
simply too complex to be approached via TC techniques. With their high
level of structuring, the Events of the ADREP taxonomy for example are a
very hard problem for simple TC. Even if we look at them as a TC problem
(that is that an Event is a label for the occurrence) the sheer number of
values makes and sparsity of the data makes efficient categorisation highly
improbable. The high-level of structuring (§2.2.3.5, Figure 2.24) however is
coherent with a knowledge modelling approach.

7The flight phase simply denotes the different stages of a flight: standing, push-back,
taxi, take-off, climb, cruise, approach, landing, taxi, standing.

8ARC occurrence category
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3.2.3 Automatic classification of occurrence categories: an
example

In this section we present work done in Safety-Data’s RD program and re-
ported in (Tanguy et al., 2015). While not part of the main body of research
in this thesis it is a perfect illustration of the applications of automatic doc-
ument classification to occurrence data. This work was done in anticipation
for replacing the original coding system used by Safety-Data (Hermann et al.,
2008) which addresses the two scenarios we presented in the previous section
(§3.2.2).

3.2.3.1 Context

As we discussed in the previous chapter, the DGAC is France’s national avia-
tion regulator and collects occurrence data from a variety of entities operating
on French territory. Their database contains more than 400,000 occurrences
collected over the past ten years, with approximately 45,000 incoming reports
per year. Reports are mostly written in French (97%), although their authors
make heavy use of technical aviation terms borrowed from English. The oc-
currences are coded with the ADREP taxonomy and stored using ECCAIRS
(2.2.3.5). The branch of ADREP we were concerned with is the occurrence
category. The full list of categories is available in Table 2.3.

Table 3.1 shows some of the categories with their associated descriptions
and their relative frequency in the DGAC corpus.

Label Description % reports
ATM Occurrences involving Air Traffic Management

or communications, navigation, or surveillance
(CNS) service issues.

40.6

BIRD Birdstrike - Occurrences involving collisions /
near collisions with birds.

7.3

RE Runway excursion - A veer off or overrun off the
runway surface.

0.7

GTOW Glider towing related events. 0.03

Table 3.1: Examples of ADREP occurrence categories

3.2.3.2 Corpus size and category distribution

The database currently consists of 404,289 occurrence reports from 2004 until
September 2014. Among these, only one third are labelled with at least one
occurrence category. The corpus used in the study thus contains 136,861
documents, which amount to a total of 15 million words.
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The categories themselves are very unevenly distributed as can be seen in
the examples in table 3.1. The most common category is ATM, assigned to
40.6% of the corpus, while 25 of the 36 labels concern less than 1% of the re-
ports. Some categories are very poorly represented: for example, GTOW, the
category concerning glider-towing related incidents, concerns only 46 reports
or 0.03% of the corpus (in addition to the rarity of these events, this category
was recently added to the taxonomy).

The ADREP scheme considers that an occurrence can be described with
more than one label, which leads to a multi-label classification situation.
Among the labelled reports of the database, 95% have one category, 4% have
two categories and only 1% have three or more (maximum 6).

3.2.3.3 Classifier and classification problem

We used the Support Vector Machines (or SVM) (Vapnik, 2006) supervised
learning algorithm and used the features described in Section 4.1. Training
(i.e. the construction of the predictive model) was performed with the java
port of the Liblinear library9 (Ho and Lin, 2012).

As this is a multi-label classification problem (3.2.1.1), we trained 36 in-
dependent binary classifiers, one for each target category. This means that
each report to be categorised is analysed by these 36 classifiers, and given an
independent yes/no answer for its association with the 36 possible categories.

3.2.3.4 Results

Having a close look at the results, we found obvious inconsistencies in the
original coding. One of the errors we identified was a common confusion
between some of the categories and the OTHR10 category. When looking
through the errors concerning the RAMP11 category we identified that events
concerning spillage of fuel while refuelling were (correctly) classified by the
tool as RAMP events, while in the training corpus, roughly one out of five12

such events had been attributed the OTHR category.
Table 3.2 shows detailed results of the classifier’s performance for various

categories. It appears that our classifier gets very good results (with a pre-
cision exceeding 90%) for several categories, among which we can find some
that are very frequent. For ATM and BIRD, both relatively frequent cat-
egories, the classifier performs well enough to allow for entirely automated
classification with no human supervision.

Other categories are inherently difficult, even when frequently used. There
are many components in an aircraft and they all may fail. The (non-powerplant)

9http://liblinear.bwaldvogel.de/
10Other - the catch-it-all category defined as “Any occurrence not covered under another

category.”
11Ground Handling - Occurrences during (or as a result of) ground handling operations.
12Determined by a manual examination of 200 documents.

http://liblinear.bwaldvogel.de/
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Category Count P (%) R (%) F1 (%)
ATM 55614 96.31 93.09 94.67
BIRD 9943 96.08 93.01 94.51
MAC13 7503 91.54 84.72 87.99
SCF-NP14 9529 80.31 62.42 70.18
SCF-PP15 2530 72.15 53.92 61.68
RE 943 87.62 77.61 82.04
GCOL16 850 59.62 36.47 45.26

Table 3.2: Detailed scores per occurrence category

system component failure category SCF-NP, whose frequency is comparable
to the bird-strike category, is much more difficult to recognise. The difficulty
comes partly from the fact that a component failure will constitute a larger
event and the crew’s actions (such as declaring an emergency, troubleshoot-
ing the error jointly with ATC) will be reported. This surplus of information
creates a much harder problem to solve for the classifier.

Finally while data rarity is an obvious issue when considering machine
learning approaches, it has not been too problematic in the present study.
The RE category, for example, concerns only 94.3 occurrences on average and
is classified with relative reliability. For other rare categories, such as GCOL
(ground collision) the performance is much worse and can be attributed to a
combination of rarity, difficulty17 and inconsistency18.

3.2.3.5 Industrialisation

In all these results validated the adoption of the system within Safety-Data’s
commercialised tools. Given that performance varies according to the different
categories, it was decided to adopt a hybrid strategy where certain documents
will be coded in a fully automatic manner while for others the system will
produce suggestions that should be validated by an expert.

A “high precision” strategy will be adopted for fully automatic classifica-
tion. Given that each of the 36 binary classifiers produces a probability for
a yes answer (that a given category describes a given document), we can cal-
culate the threshold for which the system achieves a certain level of precision
separately for each category. This level was set to 95%. If the probability for
a given document and a given category is above the threshold, the category is
automatically added. If it is below, the document is marked for manual vali-
dation, with the most probable categories presented in the form of suggestions
to the user. For categories such as BIRD, where the system performs well, it

17There are several categories dealing with collisions.
18When reviewing the data, we are convinced that this particular category is largely

under-represented: there are many events that should be coded GCOL and are not.
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produces high recall, where for others such as RE, the recall is relativly poor.
In both cases, though, the quality of the assigned codes is satisfactory.

This case is the inverse of the high recall strategy for IR (§3.1.3.3). While
users tolerate a lot of noise in an IR context, where they have control and
visibility of the results, in the classification task the importance is to have
accurately coded data and the users both have a higher tolerance for silence
and are willing to engage in manual validation of the borderline cases.

3.3 Chapter conclusion
In this chapter we presented the domains of Information Retrieval and Text
Categorisation and how they potentially solve the issues presented by the
uses of incident and accident data. Looking at the issues from an Informa-
tion Retrieval perspective implies a range of considerations from defining the
information needs, the documents to designing interfaces that support the
complexity of the data the system handles. As both TC an IR require first
processing the textual material present in the documents, in the next chapter
we will discuss how text is transformed into an input material for IR and TC
applications.





Chapter Four

From text to vectors

“My dark and cloudy words they do but hold
The Truth, as Cabinets inclose the Gold.”

— John Bunyan, Pilgrim’s Progress

This chapter is divided in two parts. First, in Section (4.1) we present our
solution to the problem of normalising the textual material we encounter in
incident and accident reports in order to transform it to formats suitable for
vector space modelling. Next, in Sections 4.2 and 4.3 we discuss the vector
space modelling framework and present the notion of dimensionality reduction,
central to many current NLP methods.
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We saw in the previous chapter two NLP applications, Information Re-
trieval for searching large document collections and Text Categorisation, for
classifying documents within taxonomies. In order to be able to access the
information contained in the texts, both these applications require first a
transformation of the raw material into representations suitable for numerical
processing. This chapter will describe this transformation.

The predominant paradigm for processing language today is Vector Space
Modelling (Salton et al., 1975; Turney and Pantel, 2010). Documents or texts
are represented as points in a high dimensional space. The process has two
parts - a symbolic transformation, where the texts are broken down into dis-
crete descriptors - the features - and a numerical transformation where , based
upon these features the texts are transformed into mathematical objects -
points in a n-dimensional space. This step is essential for many NLP appli-
cations in general and for all the applications we discussed in the previous
chapter. A search engine (§3.1) for example needs to be able to compare a
query to a document. This comparison is done on the base of shared features
between the two. Likewise in order to find similar documents, the system will
search for those that share the most features. Text Categorisation will assign
a subspace of the vector space to each category.

The processing chain and the principles we present here are ongoing work
in Safety Data and stem from the will to factorise all the linguistic processing
in a single processing chain. Rather than build separate systems for separate
tasks, the feature extractor we describe here is used to process documents for
the full-text search engine, for calculating similarity between texts for the text
categorisation applications such as the one presented in Section 3.2.3.

4.1 Extracting features

Feature extraction is the process of computing a set of discrete descriptors.
A feature is a key-value pair where the value is either of a boolean type or
numerical, “an entity without structure”, as Feldman and Sanger (2007) put
it, “a dimension in feature space” The sum of these descriptors are known as
the feature set. We can distinguish low-level features, which are features that
are extracted from the document and high-level features, which are features
computed for a document (usually based on low-level features) or attributed
to the document based on an external resource (such as metadata). A low-
level feature will be an expression stating that “this text contains the word
bird”. A high level feature would be the expression stating that “this document
has the value BIRD as its occurrence category attribute” We will now discuss
extracting low-level features from text and the challenges this process presents.

Given that we are after the meaning of the text, the first goal of feature
extraction is to keep as much of the information present in the texts as possible.
Meaning is conveyed by the words so they are the obvious candidates. The
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second goal of feature extraction is to account for as much surface variation as
possible. Words, as we saw (§3.1.2) do not always appear in exactly the same
form. We project linguistic knowledge about the modes of variation in order
to capture such surface equivalences. Also, feature extraction should concern
itself with the inherent noise in the surface forms. not all features are vehicles
of meaning. The word “the”, in isolation does not inform us in any way about
the meaning of the text it comes from. The words “landing” and “gear” taken
separately have their inherent meaning but it is not as precise as the meaning
of the compound “landing gear”.

4.1.1 Tokenising

The first step of any feature extractor is splitting the text up into individual
tokens - the words (Grefenstette and Tapanainen, 1994). In western languages
such as English this step seems trivial and often a basic whitespace tokeniser
does the job to a very satisfying degree. But even for English a tokeniser
must be able to handle ambiguous punctuation such as hyphens, full stops in
acronyms and other borderline cases. For other languages, however tokenisa-
tion is much more difficult. Chinese for example does not use whitespace to
separate words, so even at this basic level, a sophistication, such as dictionary
matching of sequences is required.

4.1.2 Levels of normalisation

When text and language are concerned variation is omnipresent. Whether
presented with two words that have the same meaning or two competing trans-
lations of the same book, humans have no particular problem at constructing
the correct mental representation of the information they vehicle. For com-
puters even the slightest difference is significant. Such differences should be
accounted for by a successful NLP system, which in a way should be able to
tell when to consider two forms equivalent and when to consider them differ-
ent. In the previous chapter (§3.1.2) we saw how variation impacts IR. Here
we will take a closer look at our process for handling some of the aspects of
linguistic variation.

First of all, variation is recursive. We usually present the different levels
separately, but as the example from the ASRS database illustrates an overlap
exists between them. In it, variation occurs on both the level of individ-
ual terms and in the manner in which they are combined. The concept of
“maximum takeoff weight” can also be referred to by an acronym, “MTOW”.
However components of the developed form, “weight” and “maximum” can be
abbreviated in “wt” and “max”. The term “takeoff” can be spelled in several
ways. All this variation produces a great number of combinations as illus-
trated in figure 4.1, where all thirteen terms are strictly equivalent. Their
multitude is generated by an articulation of variation on three levels:
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MTOW
MAX TKOF WT
MAX TKOF WEIGHT
MAX TAKE OFF WT
max takeoff weight
max take off weight
Maximum Take Off Weight
Maximum Take-off Weight
maximum take-off weight
MAXIMUM TAKEOFF WEIGHT
Maximum Takeoff Weight
Maximum takeoff weight
maximum takeoff weight

Figure 4.1: Variants of MTOW

• Character level: Variation between upper and lower case needs to be
taken into account. It might seem trivial to normalise, but in many cases
even character variation can be problematic. Characters with diacritics
in French, can sometimes be written deaccentuated, especially when
the whole word is in uppercase. Choosing to normalise accents into
their deacentuated variant will inevitably bind some words with different
meanings, such as “côte” (rib, coast) and “côté” (side) to a single feature.
Choosing not to will produce unrelated features where the same word
is considered if one of the inputs is capitalised. Case variation also
plays a part in the treatment of acronyms, such as ILS1 which should
be differentiated from the french third person pronoun “ils”.

• Token level: Token level variation concerns equivalent forms with dif-
ferent spellings. In the example, the word “weight” and its abbreviated
variant “WT” must produce the same feature. More commonly, mor-
phological variants such as verb inflexions and plurals need to be folded
down to a single form. Pushing the limit one might even consider syn-
onymy and word-to-word translations at this level.

• Supratoken variation: Equivalence between forms of different grain
size such as variants of the term “takeoff” and short and developed forms
of acronyms are examples of such variation, showing the limits of consid-
ering words as atomic elementary units. Without such considerations,
one will produce noise in the form of features such as “take”, “off” or
“take-off” (depending on how one considers the hyphen). Considering it
implies using resources (and their construction if they are unavailable)
and substitutions on a case by case basis. Supratoken variation is also

1Instrument Landing System
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addressed by any normalisation, performed on the syntactic level such
as for example transforming passive into active voice.

The example in figure 4.1 shows how several levels of variation articulate
and produce different surface forms. A feature extractor should be able to
take into account as much as possible such types of variation. We will now
see a processing chain built to account for such cases.

4.1.3 Overview of a processing chain

Figure 4.2 depicts the processing used by of Safety Data’s2 linguistic process-
ing module, in the state a few months prior to the time of writing this thesis.
It is responsible for the feature extraction for all the NLP - related tasks deal-
ing with incident and accident reports, namely automatic report classification
(§3.2), similarity calculation (which will be discussed in detail in §5.1) and a
full-text search engine (§3.1). The different applications do not however all
use the full set of features.

Figure 4.2: A processing chain

2We present it here to discuss and exemplify some of the design choices that deal with
the problems presented in the previous section. While we have participated in some of the
said choices we do not by any means claim ownership of this work, which is a joint effort by
the Safety Data team.
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The example in figure 4.3 is the synopsis of a report from the ASRS
database. It is written in an abbreviated concise writing style, typical for
ASRS until a few years ago. It contains acronyms, such as NMAC and abbre-
viations such as “RWY” (runway). We will use it to exemplify the different
steps of the process.

Table 4.1 shows the end result - the features extracted by the processing
chain.

A SMAa LANDED WITHOUT CLRNC AS ANOTHER ACFT WAS TAK-
ING THE RWY CREATING A NMACb

aSmall Aircraft
bNear Mid Air Collision

Figure 4.3: Synopsis of ASRS ASN796443

There are several consequential stages of processing:

• 0 - Import: The preliminary stage dealing with extraction of the text
data and storing it in the appropriate record in a relational database.
We will not discuss this stage in details. It is sufficient to say that at the
end narrative parts are extracted from whatever format they originally
arrive in (html, xml, excel, relational databases, ECCAIRS and various
proprietary formats).

• 1 - Basic processing: This stage is common to all the applications and
produces the basic features that describe each document. All subsequent
stages are based upon the results of this stage.

• 2 - Word n-gram extractor: This stage produces complex features
(word n-grams).

• 3 - Acronym Detector: This stage produces features responsible for
indexing domain specific acronyms.

We will now see in grater detail the different stages of processing that
produce this output.

4.1.4 Basic processing

Basic processing takes a text as input and produces a set of word stems as
output. The first stage is to determine sentence boundaries. This is done by
a statistical sentence tokeniser, part of the Talismane (Urieli, 2013) parser.
Next, for each sentence a language detector determines the language of the
sentence. This might seem unorthodox, but some texts may have mixed lan-
guages (see Figure 2.14 for an extreme example of such a report). For this
reason, very early on in the processing, language detection on the sentence
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Id Type Name Span Start Span End
1 stopWord a 0 1
2 acronym SMA 2 5
3 wordNgram SMA land 2 12
4 word land 6 12
5 acronymExpansion LWOC 6 26
6 wordNgram land without clearanc 6 26
7 stopWord without 13 20
8 word clearanc 21 26
9 wordNgram clearanc as anoth 21 37
10 stopWord as 27 29
11 word anoth 30 37
12 wordNgram anoth aircraft 30 42
13 word aircraft 38 42
14 wordNgram aircraft was take 38 53
15 stopWord was 43 46
16 word take 47 53
17 wordNgram take the runway 47 61
18 stopWord the 54 57
19 word runway 58 61
20 wordNgram runway creat 58 70
21 word creat 62 70
22 wordNgram creat a NMAC 62 77
23 stopWord a 71 72
24 acronym NMAC 73 77
25 punctuation . 77 78

Table 4.1: Features extracted from ASRS ASN796443

level is needed and information about the language is passed on at the latter
stages.

Next, each sentence is tokenised by a regular expression based tokeniser.
The sentences are split up into individual words, essentially corresponding to
the features of types word, stopWord, acronym and punctuation in table 4.1.

At this stage pre-processing and normalisation rules are applied to known
variants and abbreviations. For example the strings “CLRNC”, “ACFT” and
“RWY” in the original text are replaced by their expanded variants - “clear-
ance”, “aircraft” and “runway’.

Also, regular expression based detection of special types of tokens, such
as dates, urls or units of measurement as well as the stopwords. The latter
are kept in the feature list with a dedicated type as they are useful for later
stages of processing.
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Next, a stemmer reduces morphological variants to a common root. Stem-
ming is done by the Snowball3 stemmer. The word “landed” becomes the
feature “land”. Other morphological variants, such as “landing” and “lands”
will also be reduced to the stem “land”.

At this stage the basic processing is complete. Positional information in
the original text is kept, as can be seen in table 4.1. This is necessary in order
to keep the link with the original text and be able to display it to the user in
the form of highlighted text. The features are stored in the database.

4.1.5 Word n-gram extractor

The second stage takes the simple features extracted by the basic processing
and combines them in multi-word strings. The word n-gram extractor uses
simple rules and extracts every contiguous string of n stems that does not
start or end with a stopword and does not contain punctuation or a sentence
boundary. In table 4.1, word n-grams correspond to features with the type
wordNgram. The extractor is configured to extract n-grams of length 2 and 3.

Multi-word tokens are useful as they capture more specific information
than stems alone. For applications such as automatic document classification,
they contribute to a better precision of the classifier, as we show in (Tanguy
et al., 2015).

The simple n-gram approach was chosen for its robustness and its ease
of implementation. While less sophisticated than full scale syntactic analysis
or even chunking, the word n-gram approach produces features of the same
nature. The underlying rationale behind this design choice is to keep it simple
at first, observe the behaviour of such features, evaluate their usefulness and
decide if and how more sophisticated processing should be applied and for
what tasks.

4.1.6 Detector of developed acronyms

The third stage is a detector of developed forms for acronyms. Taking simple
text features as input and a long list of domain-specific acronyms associated
with their developed forms, the module looks for contiguous stems that form
the developed form of an acronym. When it finds such a configuration it
creates a new feature in the database, having the acronym as its label and
pointing to the actual positions of the developed form in the text.

In table 4.1, feature number 5 represents the developed form of the acronym
“LWOC”(landed without clearance). We can see how the positional informa-
tion (spans) reflects that it concerns the full twenty characters of the devel-
oped form. In this way, texts containing both forms are indexed in a coherent
manner. Other documents containing the acronym “LWOC” in its condensed

3http://snowball.tartarus.org/

http://snowball.tartarus.org/
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form will be assimilated with this document. Likewise, documents containing
a developed form of “NMAC” or “SMA” will be assimilated with it as well.

This step ends the feature extraction process.

4.2 Representing documents in vector space

We will now see the next step of the transformation of a text into a vector.

When we process incident and accident reports, each occurrence manifests
itself as a document stored in a particular collection. We want to be able to
manipulate these documents, discriminate between them, compare them one
to another, classify them in accordance to some schema or another or identify
those that contain new and unseen information. In other words we want our
functions to have access to the meaning(s) of the individual documents and
to manipulate their meanings relatively to one another.

But computers and meaning don’t get along very well and for a very good
reason. Meaning (and humans) lives in a universe of qualities, where symbols,
concepts, definitions, characteristics and metaphors are manipulated to create
it. Computers exist in a universe of quantity and manipulate only numbers.
While in the previous chapter we saw how to represent qualitative material
for computers to manipulate, there is still one major hurdle to overcome be-
fore they can actually start using it to produce new knowledge: we need to
transform it into quantities, into mathematical objects.

Vector Space Models (VSMs) are a simple and elegant bridge between
these two (incompatible) universes.

VSM models for document collections have been around since the 1970s
and were introduced in the SMART IR4 system (Salton et al., 1975) and
today are arguably the most widespread approach to semantics. Today they
are extensively used both in industry and in academic research. In industry
most (if not all) search engines rely at some point on VSMs to match the user
query against the documents in the collection. A growing body of work ranging
from cognitive psychology and sociology through almost all sub-disciplines of
linguistics have used VSMs with large document collections either to analyse
the structure and content of the collections or to gain knowledge on different
aspects of the functioning of language itself (Turney and Pantel, 2010).

The general idea of VSMs is to represent an individual of a given collection
as a point in a space (or a vector in a vector-space). The relatedness (sim-
ilarity) of the individuals is proportional to the distance between the points
representing them. Point that are close together represent related individuals
and point that are further away - unrelated individuals.

It is convenient to organise the collection in a matrix, where the rows
correspond to the individual documents, each one represented by a document-

4Information Retrieval
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vector and the columns to a set of features that describe them. In the simplest
possible VSM for representing a collection of documents, the features will
correspond to the words contained in the documents. Each document will be
represented by a bag (or multiset5). For example, for the document “Every
day is a new day” the corresponding bag will be {a, day, day, every, is, new}.
We can represent the bag with the vector x = 〈 1, 2, 1, 1, 1 〉, where the
first element in the vector is the frequency of a in the bag, the second element
the frequency of day and so on. Thus the collection of documents (or the set
of bags) can be represented as a matrix X where each row xi: corresponds
to a bag, each column x:j to a unique member and each element xij to the
frequency of the j-th element in the i-th bag.

4.2.1 The term matrix

Building the term matrix is straightforward. It consists in sequentially scan-
ning the texts, extracting the features with a given feature extractor (such
as the processing chain we saw in the previous section) and then building a
sparse matrix representation.

[DOC 1] A SMA LANDED WITHOUT CLRNC AS ANOTHER ACFT
WAS TAKING THE RWY CREATING A NMAC.

[DOC 2] A PA28 LANDS ON THE TXWY INSTEAD OF THE RWY.

[DOC 3] SMT X VISUAL APCH TO WRONG RWY HAD NMAC WITH
SMA Y. SEE AND AVOID CONCEPT.

Figure 4.4: Synopses of ASRS ASN796443, ASN356951 and ASN241893

Table 4.2 shows the term matrix constructed after analysing the three
documents in figure 4.4. For convenience we have only represented single token
features. The term space constructed from these three examples corresponds
to the vocabulary of the (tiny) corpus and after removing stopwords. It is
composed of twenty four unique features. Thus the space is said to have
twenty four dimensions. Each document is represented by a vector in the
space and its coordinates on the n-th dimension correspond to the frequency
of n-th feature in the document.

4.2.2 Feature weighing

Weighing is a statistical transformation of the matrix in order to better cap-
ture the informational content of individual features based on their frequency.
Word distribution in language follows a exponential curve. A few words are
very common and thus very likely to appear in texts. A lot of words only

5A set where duplicates are allowed
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Id Type Name Doc 1 Doc 2 Doc 3
1 word aircraft 1 0 0
2 word anoth 1 0 0
3 word approach 0 0 1
4 word avoid 0 0 1
5 word clearanc 1 0 0
6 word concept 0 0 1
7 word creat 1 0 0
8 word had 0 0 1
9 word instead 0 1 0
10 word land 1 1 0
11 acronymExpansion LWOC 1 0 0
12 acronym NMAC 1 0 1
13 brand PA28 0 1 0
14 word runway 1 1 1
15 word see 0 0 1
16 acronym SMA 1 0 1
17 acronym SMT 0 0 1
18 word take 1 0 0
19 word taxiway 0 1 0
20 word visual 0 0 1
21 word with 0 0 1
22 word wrong 0 0 1
23 word x 0 0 1
24 word y 0 0 1

Table 4.2: Features extracted from ASRS ASN796443

rarely appear in texts. If we think about features as events in an information-
theoretical perspective (Shannon, 1948), then a surprising event has more
informational content than an expected event. In this sense, weighing gives
higher numerical values to surprising events than expected ones.

The most common way to formalise this in the context of term-document
matrices is the tf-idf family weighing functions (Spärck-Jones, 2004). Weight
is computed as the product of the frequency of a given term in a given docu-
ment (tf ) and the logarithm of the inverse frequency of a term in the collection
(idf ). The more frequent a term in a document, the more it is informative
for that particular document. However the more frequent a term is in the
collection, the less important its overall informativeness is.

Consider the terms “land” and “NMAC” and consider the feature matrix
in table 4.2 as part of the corresponding matrix for the whole corpus of ASRS
reports. The two terms appear once in documents 1 and 3. Given that the two
documents are of about equal size, the two terms are equally informative in the
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two documents. “NMAC”’ however appears in (only) 6761 of the total 339320
texts in the collection, whereas “land” is present in 98609 texts. Their idf
values are then respectively 1.7 and 0.53, reflecting the relative importance
of each term. When considering similarity, for example the fact that two
documents share “NMAC” will be considered about 3.5 times more important
than if they share “land”.

Tf-idf is far from the only weighing function out there. Many exist, such
as PMI (Turney, 2001) or Okapi/BM25 (Spärck Jones et al., 2000) and, as
tf-idf itself, each has countless variants.

4.3 Dimensionality reduction methods

Operating on a term document matrix still has one major drawback. The or-
thogonality of dimensions echoes the discreetness of the features. In other
words the mathematical object constructed is still very closely related to
the concrete surface forms (minus whatever linguistic normalisations are per-
formed by the feature extractor) and rather far away from the (abstract)
“meaning” that all text processing applications are ultimately after and for
which text is but a vehicle and which is constructed progressively by combin-
ing terms in larger structures. In order to move still further away from the
surface representations, a number of techniques have emerged, that essentially
transform the initial high-dimensional term-space into a more concise space
with less dimensions, providing just such a more abstract way of representing
texts as vectors.

4.3.1 Smoothing the term matrix

Without doubt the most famous dimensionality reduction method for text is
Latent Semantic Analysis (LSA) (Deerwester et al., 1990) and its related LSI
(Hofmann, 1999b) and PLSA (Hofmann, 1999a). LSA consists compressing
an initial term matrix by a mathematical operation known as a singular value
decomposition (SVD). SVD essentially takes a (large) matrix as input and
produces one of (much) smaller dimensionality, approximating at best the
original matrix.

Turney and Pantel (2010) looks at the effects of LSA in four ways:

• Latent meaning As put forward by the authors of the method (Deer-
wester et al., 1990), compressing a matrix with SVD can be seen as a
method of discovering latent meaning. The low dimensional mapping of
a high dimensional term space captures the relationships between the
terms and their contexts and forces and words with similar meaning
end up mapped to a single dimension, representing their “collective”
meaning.
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• Noise reduction Thinking of the original matrix as composed of sig-
nal and noise, compressing it (reducing randomness) tends to capture
variation due before all to the signal.

• Higher order co-occurrence. While words appearing in identical
context can be said to have similar meanings, LSA captures also the
relationship between words appearing in similar contexts.

• Sparsity reduction. Reducing the dimensionality of the original ma-
trix from several tens of thousands do several hundred dimensions has
the advantage of providing an object that is much easier for machines
to manipulate.

The first two are the most important and are highly related. The process of
compressing the original matrix grounds itself upon the inherent redundancy
of surface forms found in text. When this redundancy is predictable within
a collection there is a high probability that the surface forms are related. If
many texts in the collection contain the words “bird”, “strike”, “collision”
but also “seagull”, “goose” and “falcon”, the algorithm will determine that
these terms can be mapped on a single dimension (instead of 4) without any
major loss of information. This dimension can be then interpreted as related
to bird-strikes, hence the notion of latent meaning.

Since LSA, many other methods of matrix compression have been invented,
most notably Topic Modelling Blei (2012), which we have applied and tested
on the ASRS database (see §6.4).

It is interesting to note that comparable results can be achieved with-
out complex processing of the term matrix as a whole. Random Indexing
(Sahlgren, 2005) is a dimensionality reduction technique that does nothing
more than represent the individual features as vectors that are the sum of
their contexts. By initially assigning a sparse random vector to each feature
and then iteratively scanning the texts and summing the vectors of the fea-
tures in it’s immediate vicinity, this method achieves a similar more abstract
representation of word meaning.

4.3.2 Explicit methods

Another way to look at the problem of sparseness, noisiness and concreteness of
the vector space is by determining beforehand a vector space with the desired
level of abstraction and then finding a way to index a collection within that
space. This is exactly what methods such as Explicit Semantic Analysis (ESA)
(Gabrilovich and Markovitch, 2007) provide. The idea behind ESA is that one
can use an external resource (Wikipedia in the original implementation) with a
more “conceptual” structure. Individual articles in the online encyclopedia can
be viewed as representing real-world concepts. There exists, for example an
article on bird-strikes and, as one would expect it contains a subsection called
“Species”, listing the most common unfortunate aviaries which cause damage
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to aircraft. So, instead of looking to establish relatedness intrinsically, based
on term co-occurrence within a large matrix, one could exploit the content of
the Wikipedia article to establish these links. Thus, in ESA, the resource is
used as an intermediate mapping layer between a high-dimensional term-space
and a lower-dimensional concept space provided by the individual articles.

We explain the process in greater detail in section 6.3, where using ESA
with a purposefully crafted multilingual resource, we present a system allowing
for language independent indexing of documents in English and French.

Explicit methods can be viewed a a somewhat top-down approach to
constructing the vector-space. In fact, Gabrilovich and Markovitch (2007)
lengthily explore different ways to establish a right grain size for the final vec-
tor space by exploiting the hierarchical organisation of Wikipedia. Essentially,
by concatenating articles grouped by a common class at a certain level of the
encyclopedia’s categorical hierarchy, they provide spaces with different levels
of abstractness.

Explicit methods for us are of particular interest as within the highly
specialised domain of aviation safety, conceptual structure and organisation
is already provided by coding taxonomies and meta-data attributes. The
question is what is the relationship between the information contained in the
report narratives related to their metadata attributes, and how to exploit
taxonomy structure in order to provide more realistic and “conceptual” vector
space mappings. In section 6.2 we present a preliminary approach to the latter
question, where we use metadata to filter out dimensions that we already
have information about via the coded attributes. In section 6.4 we show
that there is significant overlap between the topics (dimensionality reduction
mappings) produced by Topic Modelling and the taxonomy structure of the
ASRS database.

4.3.3 Intrinsic or extrinsic, hidden or explicit?

Common to all dimensionality reduction methods is that they seek to define a
function that maps a sparse, noisy and concrete vector space to a more concise,
less noisy and more abstract one which is (in theory) closer to the true nature
of the meaning conveyed by texts and further away from its variable surface
manifestation. There are two ways to look at the problem. First, how do we
define the space. Does it emerge from the collection itself, or do we use some
kind of external resource to obtain it? Second, how interpretable the resulting
dimensions are and can we operate on them on a dimension par dimension
basis?

Method such as LSA and Topic Modelling define a space based on the
collection alone. Yet, in reality all these methods first “learn” the mapping
and then apply it. So it is possible to train a model on an external resource
and then apply it to the collection we are interested in indexing. In fact,
LSA distributes such a mapping learned on a corpus deemed large enough by
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the method’s authors and providing “good enough” latent dimensions, so that
an interested party can index even small collection without having to worry
about first constructing the model. Conversely, the “explicit” nature of ESA
is not mandatory. Claveau (2012), for example, shows that one can use ESA-
like methods in an intrinsic fashion, by constructing a second-order mapping
using the documents from the indexed collection itself.

The second point of interest is the interpretability of the reduced dimen-
sions. What ESA prides itself upon is that the dimensions of the resulting
reduced space are directly interpretable (hence the E for “explicit”). One can
at a glance determine the reason that two texts are considered similar by a sys-
tem by looking at the titles of the Wikipedia articles they are associated with.
LSA avoids altogether the question by stressing on the “latent” and “hidden”
nature of the resulting dimensions. The rhetoric around Topic Modelling is
more nuanced. It puts forward the interpretability of sets of associated terms
that form the dimensions. As one can see by looking at the examples in sec-
tion 6.4, these sets of terms are surely coherent, but nonetheless only provide
a very basic insight into the nature of the resulting dimensions and require
a great deal of interpretive effort to be usable in a real world6 indexing sce-
nario. Furthermore, in our opinion, where interpretability is concerned, there
is no fundamental difference between Topic Modelling and the other smooth-
ing methods, such as LSA where one could extract from the model the n terms
with the highest loading for any given dimension.

4.4 Chapter conclusion
In this chapter we saw how text is transformed into vectors of increasing
levels of abstraction. We saw a concrete example feature extraction and its
adaptation to the domain in the form of specific levels of processing. We also
saw the mathematical transformation that a feature set undergoes in order to
be modelled in a vector space, as well as different dimensionality reduction
techniques, aimed at attaining even higher levels of abstraction.

In the next chapter we will see how a simple vector space model is used
as the base for an application destined at identifying similar incident and
accident reports.

6If we want to provide the reason fo a given similarity score to a user, for example, it
would be quite cumbersome to show him several columns of related terms.





Chapter Five

The timePlot system: detecting
similar reports over time

One cannot hope thus to equal the speed and flexibility with which
the mind follows an associative trail, but it should be possible to
beat the mind decisively in regard to the permanence and clarity of
the items resurrected from storage.

— Vannevar Bush As We May Think

In this chapter we present the timePlot system we have built for detecting sim-
ilar occurrence reports. Section 5.1 presents the problem and how similarity
between documents is computed. In Sections 5.2 and 5.3 we present the tool’s
graphical interface and example of the results it presents to the users. Finally,
in Sections 5.4 and 5.5 we discuss how the tool was used and discuss how, by
observing the users’ interactions with it, we came to gain further insight into
their actual needs.
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As we saw in Sections 1.3 and 2.3.3, one of the main challenges, when
working with databases of occurrence reports, is the identification of recurrent
risks. An obvious manifestation of such risks are multiple distinct events with
almost identical or very similar circumstances. When these events are subject
to incident or accident reports, it is possible to identify them by comparing
the individual entries in a given database and representing their resemblance
by computing a similarity score for each pair of entries.

In a way most events recur all the time. It is not because an event recurs
that it is automatically of interest. However if a certain type of event starts
recurring more than usual, it might indicate a pattern. For this reason the tool
we present combines the notion of similarity and the chronological distribution
of similar events - the “time” in timePlot1.

Now we will present how we apply the existing methods of calculating
textual similarity to the specific task at hand and what the particularities of
the data and the way it is used can teach us about the different methods we
tested and envisioned. Given the heterogeneous and unstable nature of the
coded data (§2.2.2, §2.4), the initial focus was to build a “similarity analysis”
system using only the narrative data as a source. Such a system has the benefit
to be robust and uninfluenced by the many issues and biases of the coded data.
Also, by explicitly considering only the textual parts of the reports the scope of
such an analysis is extended to databases with little or no coding and without a
clearly defined taxonomy. Such is the case of “young", undefined, or constantly
evolving reporting architectures (§2.4.2.3). Loss of coded data may also occur
due to bottleneck effects when data is exchanged between institutions using
different standards and formats (§2.4.2.4).

As we saw in Section 4.2, geometrically representing text is one of the fun-
damental methods in modern NLP, bridging the gap between the inherently
symbolic nature of human language and the numerical objects that machines
manipulate with ease. Both robust and simple to conceive and maintain,
vector-space modelling was the method we chose for building the system.

The basic idea was to exploit the narrative parts of incident and accident
reports and, by computing a similarity score between each pair of documents
in the collections to generate a layer of structure that is presented to the user
in the form of an interactive visualisation.

From an end-user’s perspective, we intended to develop a system requiring
a minimum of initial while allowing interactive browsing of a database of inci-
dents. The basic idea was to stimulate the expert’s serendipity by explicitating
sets of occurrences, that might indicate a pattern. For this an interactive vi-
sualisation replaced the more traditional list of results we are accustomed to
find. This echoes the unspecified information need we described in Section

1We kept the name of the very first prototype. “timePlot.pl” was the file name of the
perl script which printed an outrageous html file with data for the similarities pre-loaded in
javascript variables.
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3.1.3.2.
From a system’s perspective we willingly kept the things simple by only fo-

cusing on the texts in the reports narratives. This allowed both to be immune
to the metadata-related issues discussed in Section 2.4.2 and to use the tool as
a basis for exploring how the narratives relate one to another and effectively
use the system as a stepping stone towards the more complex methods dis-
cussed in Chapter 6. In hindsight this choice proved a wise one, as the system
was rapidly proposed as a service by Safety Data and its simplicity allowed
it to scale to databases of close to half a million documents as well as to be
deployed for clients from other fields than aviation with little or no metadata.

In the next sections we will first discuss how we compute similarity between
documents, next we will present the user interface in detail and we will show
several incident scenarios with different chronological distributions identified
by the system. Last, we will examine how the system was deployed at various
institutions and the lessons learned from examining how it was really used.

5.1 Calculating similarity

5.1.1 At the prototype stage

The core of the similarity calculation at the prototype stage was straightfor-
ward. Given any pair of documents, the system produces a similarity score,
between 0 and 1 representing the relatedness of the documents. The score is
based on the lexical overlap of the narrative parts of the two documents. The
more words they share in common the more similar the documents are. This
is a classical implementation of the vector-space Information Retrieval princi-
ples (Manning et al., 2008) (§3.1), only that similarity is calculated between
documents and not between a query and a document.

For extracting the features, we used the TreeTagger POS tagger (Schmid,
1994) with the stock model provided by the package.

We removed terms based on their POS-tags, keeping only nouns, adjectives
and verbs. In order to normalise morphological variation we used the lemmas
provided by the the tagger. In the (very numerous) cases where no lemma
was produced we used the surface form.

Each document was then represented by a vector where each dimension
corresponds to a term in the collection, and each value is the relative weight
if this term in the document (§4.2).

We used the classical TF*IDF score (Spärck-Jones, 2004) to weigh (§4.2.2)
the document vectors.

Finally for the similarity score between two documents we calculated the
cosine (or dot product) between the vectors that represent them.

The processing was done by Perl scripts in an offline mode, on a static
collection and produced in the end a square similarity matrix containing the
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similarity score for each pair of documents. This matrix was then pruned
for computational efficiency, discarding all the scores below a fixed threshold
(0.10), removing more than 90% of the similarity scores, before manually
loading the results in the system for visualisation and browsing.

5.1.2 From the prototype to a functioning system

When first shown to CFH-Safety Data’s clients the initial prototype was very
well received, as the “success stories” we present in the next section (5.4)
show. It was deployed both at the DGAC and at a large national airline. The
need quickly emerged for the system to be able to handle large collections
of documents, coming from dynamic collections (frequently updated). While
validating completely the similarity based approach for detecting patterns,
this need made us completely rethink the technical details of how the score is
computed. The static system from the prototype was incompatible with these
new requirements. So we switched to the indexing functionalities provided
by the Lucene search engine, effectively integrating it as the system’s back-
end replacing the offline similarity calculation by a on-the fly calculation. We
used the built-in stemmer to process the texts, the stop-list provided by the
package2 and kept the stock configuration of the Lucene package.

In place of calculating similarity in the way described above, we treated
documents as queries, feeding the text of the document’s text to the system
as if it was a query provided by the user. The system identifies the documents
best matching the query and returns them providing a score reflecting how
well the document matches the query. We consider this score as equivalent
to the similarity score, normalise it to be between 0 and 1, apply a threshold
and return the documents to the user.

Adopting the Lucene search engine as a back-end also solved the techni-
cal problems of updating the database incrementally (new documents can be
indexed on the fly) and allowed the possibility to provide full-text search ca-
pabilities, which became one of the most used features of the system. Lucene
also provided the much appreciated functionality to construct Boolean queries
on both the text and the metadata attributes.

We will now see how the results are presented to the user and how he
interacts with the system.

5.2 Presentation of the tool

In this section we will present the tool. The examples come from the DGAC’s
database, containing just over 400,000 reports at the time we took the screen-
shots.

2We use Lucy, a Perl port of Lucene (http://search.cpan.org/~creamyg/Lucy-0.4.
2/)

http://search.cpan.org/~creamyg/Lucy-0.4.2/
http://search.cpan.org/~creamyg/Lucy-0.4.2/
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The interactions start when the user selects a report that he is interested
in. This is the source report, to which all the other reports in the database
will be compared. The user has several choices for selecting the source report:
He can either use the search engine to query the meta-data and the narrative
fields (Figure 5.1), directly provide the text of the report (Figure 5.2)) or
provide a direct reference (id) of the report.

Figure 5.1: timePlot GUI: source report selection via search

Figure 5.1 shows the search engine tab for selecting a source report. Visible
in the upper half of the screen is the query builder that lists the criteria
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available for choosing the source report. They correspond to keyword queries
in the narrative fields (title and text) and to different3 metadata attributes.
The criteria are joined by a logical AND. A document must satisfy all the
criteria in order to be shown in the result list. The list itself is visible on the
bottom half and is simply a table showing the title of the report, the date and
several metadata attributes. In the example shown in Figure 5.1 the user is
searching for documents containing “volcan”4 in their title.

Figure 5.2: timePlot GUI: source report selection via direct input

Figure 5.2 shows the input field where the user could paste the text of an
existing report and find similar reports. This action essentially bypasses the
selection interface (fig. 5.1) and shows the similarity page with the user text
as source report. Initially this feature was intended to be used in order to
circumvent the slow update cycle. The users wanted to be able to search for
similar reports using data, which had not yet been imported into the system,
as source reports. However, as we will see in the next section (§5.5) this
feature was also used as a classical full text search engine, with several query
terms rather than full report narratives.

After the source report has been chosen or entered by the user, the system
identifies similar reports and presents them, alongside the source report, in
the form of an interactive scatter plot (Figure 5.3). On top is the source
report. Underneath is the scatter plot. Time is represented on the X-axis
and similarity to the source report on the Y-axis. Each point on the plot
represents a similar report.

3The attributes that can be used are chosen by the client.
4volcano
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Hovering5 on a point in the scatter plot displays the corresponding report’s
title and underlines in yellow the words in common between it and the source
report. This feature allows the user to quickly understand in what way the
two reports are similar and was much appreciated by the users.

Clicking on the point opens a pop-up dialog with the report in question
and the common terms underlined in yellow. (Figure 5.4). In the pop-up
dialogue, a “Plot”6 button allows him to refocus the report in question as the
source report effectively allowing the user to navigate between reports in an
exploratory manner.

Figure 5.3: timePlot GUI: interactive scatter-plot

5Passing the mouse pointer without clicking
6We did not give much consideration to the naming of this button but it happened that

for the users at the DGAC it became synonymous with the action of “displaying a document
in the timePlot tool”. Thus a new French verb, “plotter” was created and is currently used
by the people using the tool at that particular agency.
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Figure 5.4: timePlot GUI: pop-up dialog of a similar report

Under the scatter plot, a trend-line (visible on figs. 5.6 and 5.5) represents
the variation in frequency of the similar reports over time. Together with the
overall distribution of the points on the plot, these two provide the user with
information related to the behaviour of a given risk over time.

To compute the trend-line, we divide the overall temporal range in a fixed7

number of periods. The score corresponds to the sum of the similarity scores
of the documents in each that period. The values are normalised to their
z-scores and represented as a smooth line chart.

We will now see three examples of different chronological distributions of
risky scenarios, showing the usefulness of the temporal dimension for organ-
ising the results.

5.3 Chronological distributions of risky scenarios
Here are three examples of recurrent incidents with different chronological
distributions: A punctual incident, seasonal events and, most importantly an
emerging risk.

5.3.1 A punctual incident

Figure 5.3 is an example of a punctual event in time. The source report con-
cerns volcanic ash. The cluster of similar reports around May 2010, reflects

7The value is fixed manually anywhere between 30 and 100 depending on the range and
the desired smoothness of the trend-line
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events around the eruption of the Eyjafjallajökull volcano in Iceland, which
caused disruptions in European air travel. Naturally, when the ashes dissi-
pated, the problem disappeared. Although the event in this case is highly
visible (both literally and figuratively) and well-known, quickly identifying
such “peaks” in distributions is key to rapidly taking corrective actions.

5.3.2 Seasonal events

In figure 5.5, the source report concerns a bird strike, the aircraft collided
with a bird on take-off. This is a very common type of occurrence. However,
when we examine its temporal distribution, we can clearly identify a pattern.
Most of the occurrences are concentrated in the warm months of the year (in
Europe). This example of seasonality is not surprising as birds naturally tend
to be less active in winter.
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Figure 5.5: timePlot GUI: Example of seasonality - bird strikes

5.3.3 An emerging risk

Figure 5.6 is an example of an emergent risk. From roughly 2008, relatively
cheap and extremely powerful laser pointers became available for purchase on
the Internet and in some specialised stores. Probably driven by the undeni-
able awesomeness of these devices, people bought them only to be confronted
by their also so flagrant lack of practical applications8. Frustrated by the
aforementioned imbalance, some owners of such devices seem to routinely find
solace in illuminating approaching aircraft from afar. This destructive be-

8The pointers are originally destined at amateur astronomers and used to make some
pointy calculations on the distortions caused by the earth’s atmosphere.
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haviour has the potential to severely disrupt the delicate approach phase and
even permanently blind the pilots. While placing it on the line between ex-
treme stupidity and terrorism is up to the courts of law, it is a fact that since
2008 several thousand of occurrences are documented in France alone and
barriers (such as anti-laser goggles for pilots) are being developed in the US.

Figure 5.6: timePlot GUI: Example of emerging risk - laser pointers

Figure 5.6 also illustrates the built-in transparency of the system. When
hovering on a point on the plot, the system dynamically highlights words that
the reports share. Also, when a similar report is opened in a pop-up dialog
(Figure 5.4), shared words are highlighted in both the source and the similar
report. Besides providing an intuitive way for the user to determine if the
report is of interest, this feature also provides information about the reasons



148 5.3. CHRONOLOGICAL DISTRIBUTIONS OF RISKY SCENARIOS

that a high similarity score was computed. Incorporating transparency in the
system as a design choice partly echoes the high-recall requirements (3.1.3.3)
expressed by the users. Giving information about the precise reasons a report
is returned makes discarding noise much easier.

5.3.4 No chronological pattern

Figure 5.7 shows the tool with a single term, “souffle”9 used as a “source
report”. This is a real query submitted by a user and illustrates the misuse of
the tool we discuss in the next section. Also the results present no temporal
pattern. We can see two vertical clusters. The one higher up corresponds to
documents that have the term “souffle" in the title sections (as they are given
more weight by the system). The points lower on the graph are documents
that have the term only in the body of the document. The vertical pattern is
an artifact of the rounding of the similarity score performed by Lucene.

Even if the tool was not intended for this kind of use, we can see how
the scatter plot visualisation gives a much more concise view of the results
and allows more documents to be returned. Currently the limit is set to 3000
documents. Thus much higher recall is possible. This is appreciated by the
users who have shared with us that they prefer noisy results than ones with a
lot of silence. To put it in other words, having to filter through false results
is preferred to not finding true ones.

9Jet blast



THE TIMEPLOT SYSTEM: DETECTING SIMILAR REPORTS OVER
TIME 149

Figure 5.7: timePlot GUI: Example of a query with no pattern

5.4 timePlot in use

TimePlot has been proposed to aviation safety experts at both the national
(France) and European level. It is currently in active use in the French DGAC
and in large national airline’s safety intelligence service integrated in their
safety management system. The tool handles respectively over 400,000 and
tens of thousands of documents at these two clients.

At the DGAC, where the tool is at a most mature stage, there are cur-
rently 162 active users. Data is synchronised with their ECCAIRS database on
a weekly basis and we have had a largely positive feedback from the users. The
tool provides a much-needed workaround the inherent drawbacks of working
with a imperfect ECCAIRS database. Where in a “perfect” ECCAIRS world
the occurrences are thoroughly coded and thus the coded data is used as an
entry point to the system, in the reality of the DGAC’s database of nearly
half a million occurrences, most of the valuable information still resides in the
narrative parts. As ECCAIRS is, by design, not oriented toward using the
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narratives, timePlot provides ways to quickly and easily find relevant infor-
mation.

The DGAC are also starting an occurrence data sharing program sup-
ported by the tool. The service providers (airports and companies) willing
to share part of their incident data will get free access to the tool with all
the data that other operators participating in the programme have shared.
Currently there are 167 active users and 560 monthly queries are performed
at the DGAC.

One interesting scenario concerns the airline’s testing of the tool. As part
of the test we had provided the tool loaded with a database of publicly avail-
able incident reports. One of the questions that the safety officers were inter-
ested in concerned events that occurred at some of their diversion10 airports.
For one particular airport in central Russia, the tool shed light on a larger
than normal concentration of runway overruns - cases where the landing air-
craft did not manage to stop in time. The problem was related to improper
drainage of the runway surface and the company updated the procedures for
landing there in case of emergency according to these findings.

In another case the experts were asked to investigate a series of specific
incidents. The identification of similar incidents over an extended time period
allowed them to determine that the original cluster was "a statistical accident"
and not a developing trend, thus avoiding the (very costly) creation of a special
investigative task force.

5.5 timePlot in misuse

The timePlot system was initially developed as a proof-of-concept but due to
the positive reactions of CFH - Safety Data’s clients was quickly upgraded to
a fully functional product. Being a prototype and proof-of-concept, a number
of the design decisions were not really thought through. At the same time,
however, the system was self-contained and provided an end-to-end solution
from data-intake to a usable front-end GUI. This very quick “promotion” from
a proof-of-concept to an industrial product provided us with a rather unique
understanding of the users’ needs, as the system started to be used in a number
of untended manners, way beyond the initial design specifications. Monitoring
how the users “hijack” the system provided us with unique insights on the real
world problems they were addressed using this system.

Given that there was no automatic update capabilities, new data was
imported manually on a weekly basis. Anticipating the situation where a
given report is considered interesting by a user, but is not yet present in

10Airports to be used in case of an emergency. Having accurate and up to date information
about these airports is problematic for companies, as they do not use them during normal
operations. At the same time, the need for such information is of paramount importance
when performing an emergency landing.
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the system, we provided a “free text similarity” feature (fig. 5.2) where the
user could copy a narrative from another source and paste it in the timePlot
interface and search for similar incidents within the indexed data. We noticed
two interesting and unintended use-patterns of this feature. The tool was
used as a full-text search engine11 and it was used to model a given accident
scenario.

5.5.1 timePlot used as a full text search engine

Rather than pasting whole narratives, some users started using it more like a
full-text search engine. The user would type in several search terms and then
explore the results on the chronological scatter plot. This identified the need
for such tools within the industry, where current solutions like ECCAIRS back
metadata based exploration and undermine the textual information contained
in the narratives.

A search query such as “approche non conforme ANC”12 basically takes
advantage of the indexing done for calculating similarity between documents
and the dynamic highlighting of the input terms (fig. 5.6) and allows the
user to quickly scan the collection for documents containing any or all of
the terms. The fact that the user entered both the developed form and the
acronym (ANC) clearly shows that the user is aware that the data is noisy
and that the reports he is interested in may contain either of the variants.

A similar tactic was observed in the logs of the version deployed at the
airline, where queries like “souffle jet blast” would be formulated to search in
the narratives of both the reports in English and those in French. This lead
us to search for the methods that allow cross lingual support, that we present
in Section 6.3.

A use case scenario, related to regulation about the use of mobile phones on
airplanes exemplifies this trend. The regulation had recently changed and led
the company to consider allowing their use in the cockpit by the pilots. Using
the tool, they searched for reports about possible interference (by essentially
putting-in related keywords such as “interference”, “cockpit” and the names
of different systems), and found one case where a mobile phone of a passenger
seated in one of the front rows interfered with crucial instruments. Based on
this, it was decided to maintain the ban in the company’s standard operating
procedure.

11While technically a misuse of the tool with regard to its initial purpose, we have to
mention that this is actually the intended purpose of the Lucene search engine, we ourselves
had “hijacked” to allow the tool to scale-up to the quantities of data it now processes.

12Unstabilised approach
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5.5.2 Filtering similarity and modelling aspects of scenarios

We noticed that in some cases this functionality was not used to find a scenario,
but rather to model a certain aspect of an incident. Users would input a variety
of semantically related words or variants in the full-text field essentially using
the system as a (crude) full-text search engine. After calculation, the users
would scan the scatter plot, identify reports not matching their initial need
and try to filter them out with keywords and Boolean operators using the
system’s filtering functions.

A user would, for example enter fatigue, tired, rest, and sleep in the full-
text field. In this example the user tries to identify reports where fatigue
was a factor. Afterwards, when looking at the results the user would notice
that some reports mention ”metal fatigue13” and then apply a filter excluding
the word metal from the results. The realisation that one of the initial terms
(fatigue) is ambiguous, and that searching for it yields irrelevant results would
come when looking at the results after the first iteration and not be expressed
in the initial query. This type of narrowing down of the search criteria and
progressive specification of the information need through query reformulation
is typical for modern information seeking strategies (Jansen et al., 2009).

Another use case we noticed and found interesting was the following: Us-
ing the full text input area as intended, a user would paste the text of an
incident report. He would then however start deleting terms from the text
(and sometimes adding others) thus manually altering the input in order to
“mask” a certain aspect of the incident. Based on this observation, we re-
searched the possibility to automatically identify (and mask) “dimensions” of
similarity based on correlation between terms and metadata attributes (§6.2).

This example shows how a clear understanding of both the tools and the
data they manipulate allows the users to devise more intricate strategies to
satisfy a given need for information. The timePlot tool, not being designed
with such a use in mind naturally does not yield optimal results. However the
fact that it was used in such a way clearly indicated that such needs must be
addressed with a purpose-built system.

Such behaviour from the users is understandable in the sense that the
information they seek is ever more elusive. The term “non-technical signal”
came about in one of our discussions, making a distinction between technical
matters that are clearly identifiable with simple terms (such as the names of
specific components) and non-technical matters, such as human factors issues
where key-word approaches are not powerful enough to reflect complex issues
such as confusion or distraction.

In the end, whereas modern search engines put the emphasis on precise
results with minimal engagement, we observed that in the context of searching
for complex issues in noisy textual data, a human could not be expected to
produce a coherent enough query ex nihilo. The tools, rather than simply

13Fatigue is used to denote the weakening of a material under forces.
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aiming at the best possible result, should let the user “build a relationship”
with the data they manipulate. After a first (underspecified) query, the tool
ideally would give a picture of both signal and noise and allow the user to
build on that.

This use made us consider ways in which to actively engage the users, and
lead to the approach presented in section 6.5.

5.6 Lessons learned

Building and deploying the timePlot system provided us with a number of
valuable lessons. In essence the application went from an early prototype to a
production tool in very little time and with very little consideration for both
technical issues, such as scaling with data, and usability. We basically provided
the clients of CFH -Safety Data with several novel functionalities and let them
make best use of the system. The fact that the tool was embraced shows how
much the (rather basic) functionalities of the prototype were needed in the
safety community. Way more important though is how, in the absence of
proper prototyping and testing, the initial functionalities were adopted by the
community and put to use in different ways than the intended ones.

The most important is how the unclear distinction between search in the
classical information retrieval sense (§3.1) and similarity gave way to elaborate
search strategies and a (partial) answer to a variety of information needs. We,
as designers of the tool, seeked to understand both what needed to be done to
fully take these needs into account and how such a system should address the
processing of the text. The next chapter elaborates on several more complex
(second order) vector space representations that might provide part of the
solution to more powerful tools in the future.

Another lesson we learned has to do with the usability of a given system.
Somewhat intuitively at first, we wanted to make the tool as easy to use as
possible and, conscious of the noisiness of the input material we sought to pro-
vide as much transparency as we can in the system. We discovered through
the use that this type of functioning is preferred by the users than a more clas-
sical black-box approach. Rather than seeking perfect results and risking the
inevitable cases where the system outputs something not right at all, our lim-
ited resources when building the system made us choose a solution where the
tool embraces the noisiness of the data and the crudeness of the processing by
seeking to communicate them to the user. This way they build a relationship
with the system where, by understanding the underlying processing they in
effect develop a much higher tolerance for the occasional “bad” or impertinent
result.

But all in all the system was an industrial success. We conducted several
interviews with end users and the verdict was unanimous: such a system
benefits the experts working with occurrence data. This gave CFH - Safety
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Data clues to the next generation of tools destined at the exploration of large
databases of incident and accident reports.

5.7 Chapter conclusion
In this chapter we presented the timePlot system designed for identifying sim-
ilar accident reports based on their narratives and grouping them based on a
chronological criterion. The system was an industrial success. We observed
the actual uses of the system and conducted interviews with its users and iden-
tified patterns of usage for which the system was not initially designed. Based
on this we further refined out understanding of the needs of the aviation safety
community and four aspects emerged: the need for a full text search engine,
the need for multilingual support, the need for filtering different aspects (or
dimensions) of the similarities the tool identifies and, finally, the willingness
of the users to engage in a modelling of an accident based on examples.

In the next chapter we will show different approaches addressing these
needs.



Chapter Six

Dimensions of similarity: from simple
lexical overlap to interactive faceting

and multilingual support

“Mad Hatter: “Why is a raven like a writing-desk?”
“Have you guessed the riddle yet?” the Hatter said, turning to
Alice again.
“No, I give it up,” Alice replied: “What’s the answer1?”
“I haven’t the slightest idea,” said the Hatter”

— Lewis Carroll Alice’s Adventures in Wonderland

This chapter explores the notion of similarity from several different angles. It
is a collection of four independent approaches, each addressed at a different
aspect of the complex notion. In Section 6.2 we present a method that learns
from documents and their associated metadata attributes and allows to filter
out one or another aspect of similarity. Next, in Section 6.3, we address the
question of multilingual databases and explore the potential of second-order
similarity methods to provide coherent representations of collections contain-
ing documents written in different languages. We compare the result of Topic
Modelling to the information in ASRS’s metadata in Section 6.4. Finally, in
Section 6.5 we present an approach based on active learning, allowing a user
to model a certain aspect of an accidental scenario by providing the system
with a few examples.

1"Because it can produce a few notes, tho they are very flat; and it is nevar put with
the wrong end in front!"
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6.1 Chapter introduction

In the previous chapter we presented the timePlot system and how its initial
designation was “hijacked” by the users to address several different informa-
tional needs. Independently we also used the system to explore the subject
of document similarity. We were, on the one hand fully conscious that there
is a lot more to modelling resemblance between two documents than can be
captured by simple lexical overlap, such as the linguistic phenomena discussed
in Section 3.1.2 and the faceted nature of similarity itself, which we will dis-
cuss in the next section. On the other hand, we also looked at how different
processing methods might apply to the real world user needs, both in terms of
expected output (multilingual similarity) and in terms of interacting with the
system and the data as in the active learning approach presented in Section
6.5.

Let us also note that by naming this chapter “dimensions of similarity”
we play on the fuzziness of the term “dimensions” that, for us, reflects the
kind of intertwined considerations involved with hard questions we are trying
to answer, namely how do we devise a tool that supports the pattern finding
activity in which safety experts are involved when working with incident and
accident data. In this sense “dimensions” denotes both the high dimensionality
of the data in the strict sense of vector space models (§4.2) and, looked from
the viewpoint of an expert, the fact that there exists not one similarity but
an infinity of them. Thus, the pattern-finding exercise may be reformulated
as finding just the right thread of similarity that weaves multiple occurrences
into a coherent whole and provides a safety expert with the sort of “big picture
understanding” that constantly improving safety depends on.

This chapter collates several independent takes on the subject of modelling
similarity. The methods are, however related as they all build upon a simple
term-document matrix or then apply some sort of transformation to produce
a second vector-space representation of the reports. The methods listed here
are mostly incompatible but they sweep broadly the extent of possibilities that
we are offered when working with this data in this context.

The chapter is organised as follows: We start by discussing how represent-
ing document similarity by a single score confounds different aspects of their
relatedness, which an expert might need to differentiate. We show that the
major aspects of similarity are probably already captured by the metadata
and in order to address this type of situations, in Section 6.2 we present a
method that learns from documents and their associated metadata attributes
and allows to filter out one or another aspect of similarity.

Next, in section 6.3, we address the question of multilingual databases and
explore the potential of second-order similarity methods, to provide coherent
representations of collections containing documents written in different lan-
guages. The method we use is however not limited to an interlingual context.
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We also show how we can obtain much needed resources and inject knowledge
into the system using readily available industry specific corpora.

In Section 6.4 we present how a currently popular dimensionality reduction
technique (§4.3), Topic Modelling, has the potential to produce less noisy and
more coherent representations of the major axes of variation within a given
collection. We compare the produced topics with the rich metadata of the
ASRS database and show that, while they overlap significantly the method
also captures aspects of topicality not reflected by the metadata.

Finally, in Section 6.5 we present an approach directly building on the
lessons learned from the timePlot system and after several years of refining
the users needs. We use an active learning approach that allow users to model
a certain aspect of an accidental scenario by providing the system with a few
examples. A supervised learning algorithm then builds an initial model based
on the examples and the users are encouraged to further refine it by validating
and invalidating the relevance of the documents that the system identifies. We
will present the initial specification and research around the method as well
as a real-world scenario where the method was used to quantify crew fatigue
and produce meaningful KPIs from a collection of incident reports.

6.2 Filtering aspects of similarity based on
metadata

The similarity we use in the timePlot tool is based on lexical overlap. The more
words in common, the more two documents are similar. This approach does
not account for the fact that in many cases there exist (relatively) well coded
metadata attributes capturing important information about the occurrence.
Also, in our observation of the uses of the timePlot tool, we came by examples
where users will delete terms form the text of a source report, deeming that this
particular aspect of the scenario is not important. This lead us to consider
a more global approach where we would exploit the informational overlap
between metadata and text and use the former as a filter, in order to capture
from the text only those aspects of similarity that are not presented in the
metadata. This work was originally presented in (Tulechki and Tanguy, 2012).

6.2.1 Overlap between textual similarity and coded data

Let us start by illustrating the multifaceted character of first-order similarity
with a constructed example.

Consider the following collection, comprising three short “documents”,
each describing an incident.

1. “Bird-strike on takeoff”
2. “Turbulence on takeoff”
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3. “Bird-strike on landing”

If we are interested in the first text and want to identify similar occur-
rences, the system will identify both documents 2 and 3 as similar, with a
score of 0.5, as they both share one token with the first document.

From an expert’s point of view, however, these similarities are quite dif-
ferent. He would instantly differentiate between the pair 1 and 3 where a
a similar event occurred and 1 and 2 where completely different events oc-
curred in similar circumstances. Similarity is, in a way faceted. While the
expert might accept2 such behaviour from the system, in a real world analysis
scenario, it will be helpful to be able to filter out the facets.

Besides, these facets of similarity are already reflected in the coded data. In
ICAO’s ADREP taxonomy (§2.2.3.5), for example, separate branches concern
the flight phase and the occurrence category. The flight phase will indicate
at which moment3 the event occurred. The occurrence category is a list of
36 values, classifying events on a macro level. It happens that both bird-
strikes and turbulence encounters are sufficiently frequent as to have dedicated
occurrence categories. The three documents in the example will then be coded
as follows:

Occurrence Cat. Flight Phase
Doc 1 BIRD Takeoff
Doc 2 TURB Landing
Doc 3 BIRD Landing

In order to measure this overlap more precisely, using information about
occurrence category and flight phase, we constructed a test corpus of 482
documents about turbulence encounters and bird strikes. As both events can
occur on landing and on takeoff, we balanced the corpus as to have an even
distribution of documents on both flight phase and occurrence category:

TURB BIRD Total
Landing 118 133 251
Takeoff 107 124 231
Total 225 257 482

We then computed a standard4 term-space similarity matrix for the set
and we calculated an average overlap score by taking for each document the
30 most similar documents and comparing their metadata with that of the
source document. The results show a significant overlap: Almost nine out

2Given that transparency is incorporated in the results so the user understand the reason
a given result is produced.

3from the parked position before the flight, through cruising at 35000 feet to the parked
position after the flight

4We used the processing chain from the timePlot system prototype (§5.1)
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of ten (89%) similar documents share the same occurence category and 75%
share the same flight phase. Given the balanced nature of the corpus, if no
overlap was present, we would have expected these numbers to be around 50%
in both cases.

6.2.2 Smoothing the major facets

Our next goal was to isolate the major facets of variations and smooth them
out. Put in other words, we do not want textual similarity to convey infor-
mation that is already present in the coded data and, in a way, emphasize the
complementarity of the two.

The first step is to link the descriptors used by textual similarity - the terms
and the coded data, using an interdependence measure, PMI5 (see (Manning
et al., 2008, Section 13.5.1) for the exact algorithm used). In IR, given that
some form of human categorisation of the collection exists, such feature se-
lection methods, are used to reduce the term-space, keeping only those terms
that are statistically correlated with a given class.

The underlying hypothesis in IR assumes that any human classification of
a document collection is a valid source of information about the meaningful
variation within the specific domain and therefore the terms highly associated
with classes will most likely be less noisy and more valid descriptors when
used for indexing the same collection.

In our case, we want the exact opposite. Looking to artificially decorrelate
textual similarity from the coded data, we will subtract the highly associated
terms from the term-space.

First, using 44506 documents we calculate PMI between each term and
each class. The five most correlated terms are presented in table 6.1.

Occurrence Cat. Flight Phase
TURB BIRD Landing Takeoff

1 vent aviaire approche décollage
2 turbulence collision finale poussée
3 gaz oiseau atterrissage rotation
4 arrière impact stabilisation t/o
5 windshear bird arrondir vr

Table 6.1: Highly associated terms for each class

Using this information, we can now selectively filter-out terms associated
with either the flight phase (FPh) and/or the occurrence category (OccCat),

5Pointwise Mutual Information
6All the documents coded with one of the 4 classes in the DGAC’s collection.
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based on a threshold. And calculate and compare the similarities in the filtered
and unfiltered matrices.

Table 6.2 shows average overlap (AO) for both unfiltered similarity and
filtered similarity. We also calculated a mean disturbance rate (DR) represent-
ing, on average, the number of new documents in the top 30 similar documents
when a filter is applied.

AO FlPh AO OccCat DR
Unfiltered 75% 89% -
Filtered for FlPh 64% 84% 9,8
Filtered for OccCat 73% 69% 13,6

Table 6.2: Filtered and unfiltered mean overlap between textual similarity and
coded data

We can see that applying a filter for a given facet reduces the number of
similar documents which share that facet with the source document. For an
incident report concerning bird-strikes on take-off, at average 89% of the 30
most similar reports will be about bird-strikes and 75% of the top 30 , will
concern events occured at take-off. When we filter the occurence category,
the average number of similar reports concerning birdstrikes drops to 69%.
At average there are 13,6 new documents in the top 30.

Let us look more in detail at what this disturbance contributes from a
qualitative perspective and how such a system has the potential to identify
minor secondary facets of similarity. In our test corpus we identified the
following document:

INCURSION VFE SUITE CISAILLEMENT EN FINALE.

Fort cisaillement en finale reporté par les avions précédents. La soudaineté
du phénomène surprend l’OPL PF. Légère incursion dans la VFE (3 ou 4
kts). Réponse des commandes par CDB (double pilotage pendant 1 à 2 s.).
Avion stabilisé, l’OPL reprend les commandes. Atterrissage sans problème.

It is an occurrence concerning turbulence encounter on short final. How-
ever it mentions also a double input7 event.

When looking for similar documents without any filter it comes to no
surprise that the most similar reports concern turbulence encounters while
landing. This is the most-similar document8:

7double input is an means that both pilots acted on the controls simultaneously.
8Shared terms are underlined
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FORT CISAILLEMENT DE VENT EN FINALE 26R CDG.

FORT CISAILLEMENT DE VENT EN FINALE.

However when filters on both flight phase and occurrence category are
applied, documents that share only these facets of similarity will naturally
appear further down the list of similar documents and shared secondary facets,
such as the “double input” event, will be emphasised and contribute more to
the similarity score.

BREF DOUBLE PILOTAGE AU DECOLLAGE.

OPL PF au décollage. Vent travers avec rafales. Brève action réflexe
en latéral du CDB pour contrer rafale et début d’inclinaison à droite. Prise
de priorité peu pertinente pour effet immédiat.

This technique shows how we can exploit the taxonomy of a collection
by linking the textual features to specific metadata categories and then using
these links to influence the behaviour of the similarity computation. In order
to extract the links we need a reasonably large collection of coded reports,
but once the links are computed, the method is also applicable to uncoded
documents and separate similar collections.

6.3 Computing interlingual similarity

In this section we will present a second order similarity technique for calculat-
ing relatedness between documents written in different languages. This work
was originally published in (Tulechki and Tanguy, 2013).

A significant hurdle to adequate processing of incident reports stems di-
rectly from the intrinsically international character of aviation itself. Infor-
mation about incidents comes from variety of sources and, even if English
is the operational ligua franca of choice, incidents are still often reported in
other languages without translation. While this is an evident problem when
aggregating data at higher levels, it can even be an issue at the level of a com-
pany’s own internal reporting. Such is, for example, the case with national
airlines’ internal reporting systems, where the bulk of the data is reported
in the nation’s official language, but as some of the personnel are not native
speakers, English is also permitted. The result is a multilingual incident re-
port database where both languages coexist. This is a major challenge both
for simple applications such as search engines, and more complex applications
such as identification of similar incidents.
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As we saw in Section 4.3, a family of second-order representations such as
ESA9 (Gabrilovich and Markovitch, 2007) or, more generally speaking, vec-
torisation (Claveau, 2012) can outperform simple term-space representations
and present several key advantages related to concurrent second-order repre-
sentation methods:

• Robustness: They do not require lexical resources specifically tailored
to the specific document collection being analysed.

• Interpretability: Each dimension of the final vector-space represents the
relatedness of a document with another one from the external collection.
The second order representations is “explicit” (hence the E in ESA) and
a human is capable of interpreting one by one the individual dimensions.

• Control of the representation: By relying on an external resource (doc-
ument collection) to shape the final vector-space, this family of meth-
ods allows us to be free of frequency-based biases, were under- or over-
representation of a certain class of documents in the collection influence
the dimensions of the resulting second-order vector-space representation.
Furthermore, by making the most of the interpretable character of the
representation, we can influence the results by selecting both which doc-
uments from the external collection are used and how they are grouped
together (Gabrilovich and Markovitch, 2007)

Another key advantage of the vectorisation family of methods is that, by
relying on relatedness to documents rather than terms (or collections of terms),
the final vector-space is, in a way, language independent. A coordinate on a
dimension in this space is no more than the similarity between (the meaning) of
two documents, and by assuming that the meaning of a text and its translation
in another language are identical, we can effectively map documents written
in different languages to the same space. We explored just this property of
vectorisation.

In the original ESA-model, a collection of documents is mapped to a second
order space where each document is represented by a vector of similarities with
a set of pivot documents.

In the multilingual variant of ESA, called CL-ESA10 (Sorg and Cimiano,
2012), the pivots consist of sets of translations of the same document.

Figure 6.1 shows the general principle of CL-ESA. As in ESA, documents
are represented as vectors of similarities with a collection of pivots. In the mul-
tilingual variant each document is compared to the subset of pivots written in
the same language. Assuming that a document and its translation in another
language are semantically identical, we can construct language-independent
second-order representations.

9Explicit Semantic Analysis
10Cross Lingual Explicit Semantic Analysis
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Figure 6.1: Cross-lingual ESA

6.3.1 Constructing the pivots

As Gabrilovich and Markovitch (2007) put forward, this family of methods
allows computing a more semantic relatedness between documents, by map-
ping them to “natural concepts” rather than to noisy and ambiguity-ridden
term-vectors. In the original implementations of both ESA and the cross-
language variant (Sorg and Cimiano, 2012), the authors used articles form
Wikipedia to construct the pivots. As a resource Wikipedia has a very broad
thematic coverage and is well suited for general texts, like the press articles
that Gabrilovich and Markovitch (2007) used to evaluate their system.

A resource, such as Wikipedia is however ill-suited to the highly-technical
and narrow themed writing of documents treating of aviation incidents. Wikipedia’s
concepts are too general to capture the fine topical variation presented in such
documents, while at the same time being too-varied and thus noise-inducing.

An adequate set of pivot documents should, ideally capture most of the
inherent variation in aviation incidents. While the online encyclopedia has
articles on Aviation Safety and, some of the systems and technical components
mentioned in incident reports, it does not cover concepts such as, for example,
different alerts one sees frequently mentioned in the report narratives. At the
same time, Wikipedia’s broad coverage entails that a vast amount of concepts
are a priori irrelevant to aviation safety. Representing an incident report by
its similarity (or dissimilarity) with the article about, say, Walt Disney is not
informative at all.

Following the original ESA philosophy, an ideal pivot corpus must have
documents representing all the relevant concepts potentially present in the
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indexed collection. In our case such a resource simply does not exist. Fortu-
nately, as Claveau (2012) demonstrates, second order similarity can achieve
better results than traditional first order methods even when the corpus of
pivots is a randomly assembled collection of texts, without any structure. To
our knowledge, the question on how to construct the pivot corpus, in the
context of a collection of domain-specific documents has not been explored.

With respect to the above mentioned considerations and heavily con-
strained by practical issues such as availability, we chose a solution half way
between the (presumed) corpus of concepts of the original ESA implementa-
tion and an unstructured collection of texts.

We constructed the pivot corpus using official accident reports (§2.1.2.2)
issued by the investigation authority of Canada, the TSB. Given that, in
Canada, both French and English are official languages, accident reports are
systematically published in both. They are generally long documents and
have identifiable parts, each having a different discursive function. As a re-
minder, the beginning will usually consist of a narrative of the event. Later
on, the analytical parts will “zoom in” and provide descriptions of the exact
mode of failure of a given (human or mechanical) subsystem. It follows that,
taken as a whole, accident reports can not be considered as representative of
concepts. However, when broken up into smaller sections, each section rep-
resents a rather concise theme. The following paragraph from such a report,
for example, has high internal coherence, explaining a particular aspect of the
behaviour of helicopters:

Pushing the cyclic forward following a pull-up or rapid climb, or even from
level flight, produces a low-G (weightless) flight condition. If the helicopter is
still pitching forward when the pilot applies aft cyclic to reload the rotor, the
rotor disc may tilt aft relative to the fuselage before it is reloaded. The main
rotor torque reaction will then combine with tail rotor thrust to produce a
powerful right rolling moment on the fuselage. With no lift from the rotor,
there is no lateral control to stop the rapid right roll and mast bumping
can occur. Severe in-flight mast bumping usually results in main rotor shaft
separation and/or rotor blade contact with the fuselage.

It follows that, documents about out-of-control helicopters will have a high
loading on the dimension represented by this pivot.

For this reason rather than using whole documents as our pivots, we seg-
mented them into paragraphs (using formatting cues such as the </br> html
tag) and then aligned them with their corresponding translations using the
isomorphy of he html structure on the relative pages on the TSB website, thus
obtaining a total of 10032 pairs of pivots from 390 accident reports.
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6.3.2 Indexing the documents

Once the pivot corpus is constructed, processing and indexing documents is
straightforward. As shown in Figure 6.1, each document is represented by a
vector of similarities with the part of the pivot written in the same language.
We first apply, the following processing chain to each document:

• Language detection: The language of the document is detected in
order to determine which part of the pivots it will be matched against
and the parameters of the following processing steps.

• Tokenization: The documents are tokenized (§4.1.1) using the tok-
enizer provided with Apache Lucene.

• Stemming: The tokens are stemmed using the Snowball stemmer.

• Stoplist: A standard stoplist is applied to exclude common tokens, such
as determiners and prepositions.

The same chain is applied once to each of the pivots for them to be com-
patible with the indexed documents.

A first-order vector space representation is constructed and weighing (§4.2.2)
is applied using the PPMI11 method (Turney and Pantel, 2010). Then a simi-
larity score is calculated between each of the documents and each of the pivots
of the corresponding language in order to construct the second-order vectors.

We then calculate a cosine similarity, using the same method as in the
original timePlot implementation (§5.1).

6.3.3 Evaluation in a multilingual context

In order to evaluate the system we devised a protocol similar to the one
used by Sorg and Cimiano (2012). Using a corpus of preliminary reports and
briefs (§2.1.3) from the CADORS database we constructed a test-set of 8394
bilingual documents. Each of these documents is a relatively short report
published in Quebec. Like for the TSB accident reports, local regulation
requires that the documents be translated in English and in French. Table 6.3
shows one such report.

Like Sorg and Cimiano (2012), we used the task of mate retrieval, con-
sisting of searching for the translation (the mate) of a document within the
n-most similar documents retrieved by the system. We first split each of the
documents in the test corpus into two monolingual documents, giving a to-
tal of 16788 entries. We then construct a document-document (second-order)
similarity matrix and, for each document, we calculate the rank of its trans-
lation in the list of the most similar documents returned by the system. If

11Positive Pointwise Mutual Information
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CRQ590M, a Beech A100 operated by
Air Creebec as flight number CRQ590,
was on an IFR MEDEVAC flight
from Chibougamau/Chapais (CYMT)
to Montréal/Trudeau (CYUL). At
1535Z, the crew was instructed to
conduct a missed approach for Run-
way 06R due to the presence of C
FFWJ, an Airbus A-320 operated by
Air Canada as flight number ACA407,
which was lined up for departure
and which had a mechanical problem.
CRQ590 eventually landed without in-
cident at 1546Z.

CRQ590M, un Beech A100 exploité
par Air Creebec sous l’indicatif de vol
CRQ590, effectuait un vol d’évacuation
médicale selon les règles de vol aux
instruments (IFR) depuis Chibouga-
mau / Chapais (CYMT) à destina-
tion de Montréal/Trudeau (CYUL). À
1535Z, l’équipage a reçu l’instruction
d’interrompre son approche pour la piste
06 droite en raison de la présence de C-
FFWJ, un Airbus A-320 exploité par Air
Canada sous l’indicatif de vol ACA407 qui
était aligné au départ et qui avait un prob-
lème mécanique. CRQ590 a finalement
atterri sans encombre à 1546Z.

Table 6.3: An incident report from the CADORS database

it is the first (most similar document) it will be at rang 1, if it is the 7th
most-similar document, it will be at rang 7.

We used the metric of recall at rang k (R@k) to evaluate the overall perfor-
mance of the system. R@k represents the proportion of translations present
within the k most-similar documents for the whole corpus. An R@1 of 1,
means that for every document, its translation is the most similar document
- the system is perfect. A R@10 of 1 means that all documents have their
translations within the 10 most similar documents.

Table 6.4 shows the results of the evaluation task.

FR EN
R@1 0,43 0,45
R@10 0,71 0,74
R@100 0,90 0,94

Table 6.4: Mate retrieval results

As we can see, the results are encouraging. In more than 40% of the
cases, the translated document was the most similar document returned by
the system and in more than 70% of the cases it was within the 10 most
similar documents. For comparison, Sorg and Cimiano (2012) report a R@10
between 0.27 and 0.52.

6.3.4 Discussion

This experiment demonstrated that the ESA family of methods is applicable
in the context of multilingual databases of incident reports.
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The experiments showed however several areas where further research has
the potential to improve the results. The availability of an adequate multi-
lingual resource for the pivots is crucial. While we achieved acceptable re-
sults by just taking paragraphs from accident reports as pivots, our intuition
tells us that the explicit character of the method merits further investigation.
Gabrilovich and Markovitch (2007) emphasises on the importance of having
the “right” concepts and, accordingly, part of the work goes into investigating
the “right” way to concatenate Wikipedia articles based on different levels of
grouping in the categorisation hierarchy of the online encyclopedia. In our
case we can ask ourselves how to smooth the pivot corpus in order to get a
more “natural” set of pivot documents. This can be done in multiple ways.

One will be to provide more advanced methods of “cutting-up” the doc-
uments in conceptually coherent parts. The work we did with Campello Ro-
drigues (2013), aimed at zoning accident reports into sections with different
rhetorical functions, provides an interesting starting point. Being capable of
isolating relevant parts of these documents based on their overall rhetorical
structure, only those zones, having well defined and context-independent in-
formational content (such as the purely descriptive parts) could provide a less
noisy corpus of pivots.

The explicit character of the method also has the advantage af being in-
terpretable. Given that we can identify which of the pivots are contributing
to a given similarity score, one can then extrapolate (for example by using
standard document classification techniques (§3.2) and values from the coded
data) which aspects of an incident are captured by a given cluster of similar
documents, effectively addressing the same concerns discussed in the previous
section.

The aforementioned considerations are valid for both intralingual and in-
terlingual ESA-like methods. For the interlingual part only, the question of the
availability of aligned resources is a central one. While we were “lucky" that
the English-French pair is represented by the Canadian documents, aligned
technical documents for other language pairs are not easy to come by. Cur-
rently one of the needs expressed by the aviation safety community in Europe
(and carried by the European Commission) is putting order in the centralised
incident repositories, where incidents are reported in all of the European lan-
guages. For a ESA-like method to be applicable, all the pivots need to be
translations of the same (domain specific) texts in all official languages in the
EU.

6.4 Topic Modelling applied to the ASRS database

In this section we will present an experiment with Topic Modelling applied to
the ASRS (§2.1.4) database. This work is a summary of the Master’s thesis
of Nicolas Ribeiro (2014) and was presented in (Tanguy et al., 2015).
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6.4.1 Topic Modelling in a nutshell

Probabilistic topic modelling is a generic method initially designed by David
Blei (Blei et al., 2003; Blei, 2012). Following older methods of documents
representation such as Latent Semantic Indexing (Deerwester et al., 1990), its
main purpose is to represent a collection of documents in a vector space with
a reduced number of dimensions or topics (as opposed to traditional vector
spaces where each dimension corresponds to a single term or word). These
topics or latent dimensions are calculated without any kind of supervision
or external knowledge, based solely on the distribution of words in the doc-
uments. Thus, the topics are supposed to be a good representation to the
underlying thematic structure of the collection.

The statistical techniques behind topic modelling make a number of as-
sumption that can be summarised as follows: a document is essentially a set
(or bag) of words; a document expresses a number of topics of varying im-
portance according to a specific distribution; a topic is expressed with words
according to a specific distribution. Thus, by observing a collection of doc-
uments, one can empirically estimate the two distributions (document-topic
and topic-words) that fit the observed frequencies of words in documents. The
basic version of topic modelling details this crudely defined method by select-
ing a well suited distribution (Dirichlet, hence “Latent Dirichlet Attribution”
the name of the most widely used version of topic modelling) as well as the
algorithms that can estimate the actual parameters.

From a practical point of view, given a collection of documents (essentially
their decomposition as bags of words), a fixed number T of topics and a few
hyper-parameters, a topic modelling session produces two matrices.

The first one is a document-topic matrix in which each document is de-
scribed as a vector across the T topics. In other words, it tells us what topics
are the most important ones for each document. This information can be used
as such for indexing and comparing document within a smaller vector space.

The second matrix is a topic-word matrix in which each of the T topics is
represented as weights associated to each word. In other terms, it gives the
words most frequently associated to each topic. This information can be used
to interpret the topics and enable a user to get a readable description of a
document in terms of topics. The following experiments details are as follows,
although they are presented more thoroughly in Ribeiro (2014). We used a
collection of 167,350 documents from the ASRS database (from 1987 to 2012),
and extracted the narrative parts for a total of 17 million words. We used the
TreeTagger part-of-speech tagger to use word lemmas instead of wordforms
and to remove function words (prepositions, determiners, numbers, etc.). In
order to deal with the language variation in the history of ASRS (as described
in section 2.1.4), all technical words were replaced with their standard acronym
(ACFT, WX, etc.). Finally, all tokens were folded to lowercase.

Topic models were computed using the Gensim library (Řehůřek and Sojka,
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2010) using the standard method12 (Gibbs sampling) with a target number of
topics T = 50. Calculation takes about 2 hours on a 4-core 3.1GHz processor
computer.

Although this method is non-deterministic, we could observe through sev-
eral runs that the results are quite stable, as it has already been observed for
corpora this size. The choice of 50 topics is arbitrary, but was finally chosen
as the number for which interpretation of the resulting topics was the most
satisfactory: we will now come to this crucial phase.

6.4.2 Interpreting the topics

As explained before, a topic model for a given corpus consists in two matrices,
document×topic and topic×words. The “Main terms” column of information
shown in table 6.5 comes from the topic×words matrix. This column contains,
for 5 sample topics13, the 15 words that have the highest probability of ex-
pressing it according to the Dirichlet distribution estimated from the observed
word distribution. This information is traditionally used for describing a topic
to a user and used for testing the relevance and cohesion of this representation
(Chang et al., 2009).

# Main terms Expert Metadata (R)
1 rwy, txwy, taxi, hold, short, gnd,

twr, clr, acft, tkof, line, clrnc, ctl,
cross, pos

Ground anomaly:ground incursion
(0.65); phase:taxi (0.65)

2 day, hr, time, trip, crew, duty, flt,
night, fatigue, rest, leg, fly, min,
morning, late

Fatigue anomaly:company policy
(0.11)

3 pax, flt, attendant, cabin, smoke,
capt, cockpit, seat, back, crew,
acft, emer, told, smell, lndg

Cabin anomaly:flight deck/cabin
(0.60)

4 wx, ice, turb, flt, tstm, moderate,
rain, icing, acft, severe, radar,
area, light, encounter, condition

Weather primary problem:weather
(0.45); anomaly:inflight event
(0.37), component:weather
radar (0.12)

5 acft, checklist, flt, call, capt,
maint, lndg, make, l, fo, flap,
time, control,return, continue

??? primary problem:aircraft
(0.24); anomaly:equipment
(0.24); detector:flight at-
tendant (0.23); compo-
nent:turbine(0.13); compo-
nent:flap control (0.13)... (6
more)

Table 6.5: The 5 first topics extracted from the ASRS corpus

12The hyper-parameters were left to their default value: α = 1/T , β = 1/T , 50 passes.
13The topics’ order is insignificant as it is an artefact of the randomisation process at the

beginning of the modelling process.
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A safety expert was presented the 15 most contributing words for each of
the 50 topics, and was asked to describe in a few words what each of these
topics could mean. His feedback is presented in the “Expert” column of ta-
ble 6.5. For 43 topics out of 50 the expert was able to identify a theme or
a small set of themes that could be expressed by the words with the highest
probability values. Although some of the words may seem opaque to a layman,
most of them are in fact quite transparent. Contributing words for topic 4,
for example comprise both the overal category (WX is the standard acronym
for weather), various meteorological phenomena (ice/icing, rain, thunderstorm
(TSTM )), common modifiers (light, moderate, severe) or consequences (turbu-
lences (TURB)); all this make it an easily interpretable topic. This is not the
case for topic #5, where no coherence could be found, as the most contributing
words are scattered across several aspects of flying an airplane.

The document×topic matrix provides another means for interpreting the
topics: each document is represented by a vector of weights across the 50
topics. That means that each topic can be viewed as a distribution over the
documents, and as such can be compared to the documents’ metadata. We
thus computed Pearson’s correlation coefficient between each topic and each
metadata value across the documents (considering 1 if the document’s meta-
data contain this value, and 0 otherwise). This gave us a different, more
objective angle to interpret each topic, as we could identify which metadata
value was the most strongly associated to each topic. These values are in-
dicated in the “Metadata” column of table 6.5, along with the correlation
coefficient’s score14.

First, we can see that for some topics (number 1, 3 and 4 in our selection)
one or two highly correlated values (> 0.4) can be identified, and that these
confirm the expert’s interpretation. Other attributes can appear as secondary
correlates, such as flight phase and reporting person, but nevertheless it ap-
pears that such topics have captured a well-known aspect of incident reports.
This is the case for 38 of the 50 topics. It has to be noted that any aspect
of a report can be thus “captured” by a topic. For example, one particular
topic was associated to flights in California, the contributing words being the
names of locations in this traffic-dense area.

A second case is that of the topics that could easily be identified by the
expert but do not show any marked correlation with the metadata. This is
the case for topic 2 in our selection, where the only correlated attribute is
the company policy, although with a very low score. This kind of topic is
extremely interesting, as it shows that corpus analysis by this kind of method
can make some aspects of incident reports emerge. Only 2 of these could
be identified in the 50 topics examined in our experiment: fatigue and flight

14Only the attributes with a positive correlation higher than 0.1 are presented. This
threshold was chosen arbitrarily as the population is too large to have non-significative
correlations scores.
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planning. It is important to note that the fatigue attribute was added to
the ASRS taxonomy, along with other human factors, in 2009. Even though
the subset it covers is too small for meaningful results, and is heavily biased
because of this temporal constraint, partial analysis indicates that this topic
is highly correlated to this attribute.

The 10 remaining topics could not be associated to any single aspect of
reports. This is the case for topic 5 in our selection, where the correlated
attributes are numerous and scattered, making no more sense to the expert
than the contributing words. Other configurations in this category are topics
for which several identifiable topics are mixed together, and which are split
when a larger number of topics T is extracted.

6.4.3 Discussion

Although we only performed a limited number of experiments with topic mod-
elling on incident reports, it appears that topic modelling is suitable for oc-
currence data. It is a very robust method that takes clear advantage of large
collection of redundant documents as it is the case for incident reports. Most
of the topics identified are in fact relevant aspects of these documents, as
can be seen through an expert’s interpretation. However, only a small frac-
tion of identified topics are both relevant and independent from the metadata
attributes, and as such provide an added value.

One of the main limitations of this approach is the granularity of the
extracted topics, especially when it is compared to the level of details attained
in the organised description and indexing of aviation incident reports. As
seen in the previous analysis of the resulting topics, most of the topics do
little less than confirm an organisation that is clearly expressed by some of
the metadata. If in some cases this method can identify non-encoded aspects,
they are difficult to detect among other unavoidably noisy topics. However,
this technique can be extremely valuable for reports database that are not
supported by a thorough classification scheme and extensive metadata. This
can be the case of databases that need to be consolidated, or even for the
replacement of an unsuitable taxonomy.

On the technical level, topic models are somewhat sensible to a number of
parameters, the first of which is the requested number of topics. We performed
several tests on the same data with T = 10, T = 100 and T = 200. None of the
topics among the 10 were interpretable, as they all mingle several aspects of
the reports. Interesting things happened with 100 topics, including the clear
and expected separation of topics (from the 50 described above) that could
be identified as an agglomeration of quite distinct sub-topics by the expert.
However, this led to only a few such improvements, most other topics were
deemed unnecessarily split. With the highest tested value (200), many result-
ing topics were related to geography, with high-weighted tokens corresponding
to airports, beacon codes and city names (mostly in the US). Although these



172 6.4. TOPIC MODELLING APPLIED TO THE ASRS DATABASE

topics were coherent and easily interpreted, their informational value seems
quite low. Finally, we could identify a few very stable topics across the vari-
ation on T ; this is the case for topic 2 (related to fatigue) that was found
almost identical in all experiments with T > 50. In the end, the optimal value
for T cannot be evaluated without a complete and thorough interpretation of
resulting topics, and is estimated to be highly dependent on the collection of
documents.

Nevertheless, we see potential applications of the technique in both cal-
culating similarity and as an initial step when designing taxonomies for large
collections of textual reports, when a taxonomy is not available15.

6.4.4 Application to similarity

In order to apply topic modelling to similarity, one just needs to compute the
similarity scores between documents based on their score for each topic. Such
an application will essentially address the same issue we described in section
6.2, where the user will be able to “switch on/off” different topics and thus
influence the similarities identified by the system. To build on the previous
examples (table 6.5) if for some reason an expert is not interested in the role
weather played in an incident he would turn off topic 4. Thus documents
similar because of weather related issues will not be identified. Such a shift in
similarity will hopefully bring to light another more sable or hidden pattern
in the data.

6.4.5 Application to uncoded collections

In determining the significant overlap between the produced topics and the
metadata we can now consider topic modelling as a viable solution for treat-
ing large uncoded (or ineffectively) coded collections. Essentially the same
interpretation exercise we performed in this experiment can be considered as
a base for a first version of a coding taxonomy. An expert would be presented
with the major topics and asked to interpreting them. Thus an initial set of
metadata categories can be established. Such an approach would also have
the added value that, by definition, the categories will be easy to classify by
automatic classification techniques as they will be reflected in the narrative
parts.

15As is sometimes the case in industries and sectors where incident reporting is a more
recent enterprise.
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6.5 Active learning for interactive model
construction

In this section we describe the intended approach, the algorithm we designed
and a simulation we are currently running as part of Safety Data’s R&D
program in order to better understand the behaviour of the active learning
approach and tune it before we submit it to real users. This work was done
in collaboration with Assaf Urieli and is presented in (Tanguy et al., 2015).

We described in the previous section our observations on how the timePlot
tool was used to model a facet of an incident (§5.5). This usage scenario
and the successful performance of the machine learning approach described in
section 3.2 led us to design a system that relies on the availability of an expert
and use a variant of machine learning techniques: active learning(Olsson,
2009). These variants are based on traditional supervised learning methods,
but take into account the fact that training data are expensive to get when
an expert is required for labelling items. Active learning strategies try to
make a smart usage of the expert’s time by submitting to his judgement only
the difficult or borderline items. This can only be done through an iterative
process with a dose of interaction with the user.

6.5.1 An interactive approach to signal detection

The basic idea behind the system is to allow the users to model a given aspect
of an incident by providing examples of documents that are related to the
particular aspect. We start with the assumption that the aspect is partially
identifiable by a query using a full text search engine and available metadata.
A user interested in confused flight crews will presumably start by querying
the system for documents containing the word “confusion”. This set will,
however contain some documents that do not match the user’s information
need16. When looking through the documents, the user will notice this and
would like to exclude them from the search. At the same time there will be
documents that do not contain the word “confusion” and that are relevant.
The system should also be able to identify such documents.

We have systematised this process into what we have call “creating a Di-
mension”. A Dimension, from a user’s point of view is a dynamically created
label that can potentially apply to any report in the corpus, as well as any
new report introduced. Conceptually, creating a Dimension can be compared
to introducing a new metadata attribute / value pair to an existing taxon-
omy. However, the difference is that we seek to render the process the least

16Consider documents speaking for confusing call signs, for example. AF259 and AF299
flying at the same time in the same area makes it rather hard to communicate with ATC
over the radio but does not necessarily amount to the flight crews being confused about
what they are supposed to do.
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time-consuming as possible and not require extensive coding of all the existing
reports.

From a system’s point of view a Dimension is no more than a classifier
that produces a yes/no partitioning of the corpus. The algorithm described
in the next section shows the process for creating and training this classifier.

6.5.2 Active learning algorithm

The outline of our system is the following: we start with a rough estimation
of what the expert considers as the target (positive) reports. We train a
classifier based on this data, and then apply it to the entire collection. Due to
the nature of classification algorithms (and their need for generalisation), this
classifier provides a different set of positive reports. Using the error margin
(or probabilistic confidence score) provided by the classifier, we can identify
borderline reports, on both side of the decision: we select these few fairly
positive and fairly negative items and submit them to the expert’s judgement.
Based on his decisions, we obtain a new approximation of his needs, and
can build another classifier, and so on until the expert reaches a satisfactory
result. This active learning principle is also called uncertainty-based sampling
and has been proposed in a number of NLP tasks (e.g. Kristjannson et al.
(2004) for information extraction, Roth and Small (2006) for semantic role
labelling).

Algorithm 6.5.1 shows in details the active learning algorithm for train-
ing a Dimension. Given a corpus C of safety reports, we wish to calculate a
dimension vector D assigning a dimension yes/no value to each document in
the corpus. The expert kicks the system off by providing an initial approx-
imate set of positive examples P. These are either the result of a keyword
search for keywords highly suggestive of the target dimension, a set of similar
reports identified with timePlot or a handful of manually selected documents.
The system also requires a set of training parameters which depend on the
classifier used (e.g. C and ε for a linear SVM classifier), and a set of training
features F to represent the textual content of the reports. The final input
parameters are the “bootstrap” threshold t, giving the minimal distance from
the SVM hyperplane for a document to be included in the positive set on
the next iteration, and the review count n giving the number of documents
to be reviewed at the end of each iteration in the margin of the SVM hyper-
plane. The training set T is comprised of four sets of documents: T .P, the
real positives which have already been reviewed by the expert, T .N , the real
negatives which have already been reviewed by the expert, T .p, the positives
automatically calculated by the previous model above the bootstrap threshold
(initially provided by the expert in P), and T .n a random sample of docu-
ments assumed to be negative, with a cardinality to balance the positive and
negative examples. It is of course possible (and desirable) to give reviewed
positives and negatives a higher weight than calculated positives/random neg-
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Input: corpus C, initial positive set P, training parameters, feature set
F , bootstrap threshold t, review count n

Output: dimension vector Dn

1 T ← new training set;
2 T .p ← P;
3 T .P ← ∅;
4 T .N ← ∅;
5 i ← 0;
6 repeat
7 // Train model
8 T .n ← random sample with cardinality (|T .P|+ |T .p|)− |T .N| ;
9 Train modelMi using T .P ∪ T .p as positive and T .N ∪ T .n as

negative examples and F as features;
10 // Calculate dimension vector
11 T .p ← ∅;
12 Di ← new dimension vector;
13 foreach doc ∈ C indexed by j do
14 Di[j] ← applyMi to docj using F ;
15 // Bootstrap calculated positives
16 if Di[j] > t then add docj to T .p;
17 end
18 // Review marginal documents closest to hyperplane
19 for n positive and n negative docs /∈ T .P ∪ T .N closest to

hyperplane do
20 Expert reviews docj ;
21 Expert adds docj to T .P or T .N ;
22 end
23 i← i+ 1;
24 until expert satisfied;
25 return Di;

Algorithm 6.5.1: Iterative dimension training

atives. At each iteration, the system first trains a new model Mi given the
current training set T . It then calculates a new dimension vector Di using the
modelMi. Within the algorithm, we’ll assume D contains a real positive or
negative distance from the SVM hyperplane, although it is trivial to convert
this to a yes/no answer by taking positives to be yes and negatives to be no.
Finally, the system reconstructs T as follows: T .p is automatically calculated
by taking all documents where the distance from the hyperplane exceeds the
bootstrap threshold. The expert is then asked to review the n documents
closest to the hyperplane margin on both sides, and determine whether they
are really positives or negatives, assigning them respectively to T .P or T .N .
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The assumption is that correctly reclassifying a small number of documents in
these marginal areas allows us to converge much more quickly than a random
review of documents.

The learning ends when the expert is satisfied with the dimension values
assigned to documents—presumably when the hyperplane correctly distin-
guishes the majority of documents reviewed.

6.5.3 Simulation and results

In order to better understand the behaviour of the system and assess its
usefulness, we ran several simulations using existing metadata as a validation
criterion, substituting itself to the expert’s judgement. At each iteration,
reclassifying the documents from the marginal areas is done based on whether
they are true positives or negatives for the target metadata attribute.

We used the feature extractor described in section 4.1 (stems and stems
n-grams) and a linear SVM classifier. For an estimation of the classifier’s
margin we used the probabilities provided by the libLinear library, which are
based on the distance between an item and the trained model’s hyperplane.
The bootstrap threshold t is set at 0.8.

As a metric of performance, at each iteration we measured precision, recall
and F1 scores for overlap between the documents identified by the system and
the documents classified according to the target metadata attribute.

Table 6.6 shows the results of the simulation on a subset of the French
DGAC corpus consisting of 44,191 documents. The task consists of creating
a Dimension for bird strikes. The initial set T .p contains all documents that
contain the word “oiseau”17. We have set the review count n to 10, meaning
that at each iteration the 10 positive and 10 negative items with the low-
est margins are submitted to the expert (or here, have their status revised
according to their metadata).

The first row of table 6.6 shows the state of the system at query-time. The
query has returned 1,534 documents. From those, 1,413 are considered true
positives (have the occurrence category BIRD). The query is quite precise,
with a precision of 92.11%, but its recall is 43.85%, meaning that less than
half of the documents categorised as BIRD contain the word “oiseau” (in fact,
most reports signal the exact species of bird encountered).

The second row shows the state of the system after a model has been
trained on the initial set. T .p now contains the documents classified by the
model. While no “human” reclassification has yet been performed, 346 new
true positive documents have already been correctly identified by the system.

The subsequent rows show the state at each iteration. At iteration 3, for
example the expert has reclassified a total of 40 documents (28 as positives
and 12 as negatives). After the corresponding retraining, the system identifies

17“bird” in French.
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176 more true positives as compared to the state at iteration 1. We can see
that the F1 score is steadily increasing with each iteration, illustrating how
expert input on a small amount of documents iteratively refines and tunes the
classifier.

i T .p T .P T .N True+ P (%) R (%) F1 (%)
0 1534 0 0 1413 92.11 43.85 59.42
1 1957 0 0 1759 89.88 54.59 67.93
2 2035 17 3 1804 88.65 55.99 68.63
3 2205 28 12 1935 87.76 60.06 71.31
4 2379 41 19 2104 88.44 65.30 75.13
10 3347 140 40 2877 85.96 89.29 87.59

Table 6.6: Results for bird-strike (DGAC corpus)

Table 6.7 shows the results of another simulation, this time on 7,025 doc-
uments from the ASRS database (selected on a temporal criterion from the
corpus described in section 2.1.4). We simulated the search for incident re-
ports where confusion was a factor and we use the Human Factors attribute
of the Person entity as a validation criterion. We tested for those documents
classified with the value Confusion. The initial query is the word “confusion”.

While this configuration is closer to the real-word use the system is in-
tended for, it is also a much more difficult task than identifying bird-strikes.
This difficulty can be estimated by training a simple classifier for this meta-
data: our best configuration achieved only 66% F1-score, while we reach 95%
for the BIRD category in the DGAC corpus.

Accordingly, the system performance is worse than in the previous sce-
nario, but the behaviour is comparable. At iteration 3 the system has iden-
tified 253 more true positive documents with only 40 being submitted to the
expert for validation. After 10 iterations, if the F1 score is still below 50%,
recall has doubled.

i T .p T .P T .N True+ P (%) R (%) F1 (%)
0 774 0 0 472 60.98 25.46 35.92
1 1048 0 0 574 54.77 30.96 39.56
2 1280 14 6 670 52.34 36.14 42.76
3 1443 24 16 725 50.24 39.10 43.98
4 1564 26 34 765 48.91 41.24 44.74
10 1936 57 123 900 46.49 48.54 47.49

Table 6.7: Results for confusion (ASRS corpus)

Globally these results are encouraging. They demonstrate that it is pos-
sible to better capitalise on the expert’s time and, with this type of active
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iterative process, effectively “propagate” the judgement to a large proportion
of the documents. While validating the general principle, these experiments
also pose a number of questions. The most important one currently is the
relationship between the initial query and the output of the system. We have
observed that the system behaves differently depending on both the precision
and the recall of the query. We also observed that, depending on the query,
varying parameters such as the bootstrap threshold, the review count and the
additional weight given to documents already reviewed have different effects
and can greatly improve performance. As we can not have control on the
query itself, we are searching for methods to automatically determine the op-
timal values of these parameters. We are also looking forward to building the
graphical user interface and proposing the system to real word users. This will
allow for much more realistic testing as we will be able to directly measure
performance based on the proportion of yes/no judgements at each iteration.

6.5.4 Using Dimensions to produce KPIs: a use case

One very recent and interesting example came to us from a client of Safety
Data who had once again “hijacked” the system and used it in a way we
would not have easily imagined. The user trained a Dimension to recognise
documents where fatigue was an issue. Rather than using the scores as a
search criterion he used them in an aggregated form to track how “fatigue”
distributes chronologically over the data and for each family of aircraft. The
end18 result is a line chart, with one line per family, the sum of the score of
the fatigue Dimension on the Y axis and time on the X axis. One could, for
example, notice peaks of fatigue around charged periods (such as Christmas
holiday season). This example shows how this particular method bridges the
gap between the symbolic nature of documents and the need to address them
quantitatively in order to study trends and look for patterns.

6.5.5 Possible application to similarity

There are two axes of reasoning when we think about how to benefit from
such methods for a “better” document document similarity. The first one is
do we really need document-document similarity when a system as the one we
described addresses the same need as the timePlot system. The documents
scoring high on a given Dimension are those that are most similar to the ones
used for training. Besides, by encouraging the user to validate and invalidate
some of the returned documents, he will quickly zero in on the exact aspect
of similarity that interests him.

We can also leverage the output of such a system by considering that the
model generated for a given “Dimension” is effectively capturing some of the

18Due to confidentiality concerns, we can not show the exact figures and go into more
detail.
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users knowledge. Thus, provided enough people use the system frequently we
will have a large number of models, each dealing with a particular aspect of
the data that was relevant for a user at a given time. Thus, for every document
in the collection (and every new document available) we can compute a score
for each “Dimension” These scores can then be compared by a normal cosine
method to produce similarity scores based on aspects of interest. Such scores
can be combined with any other vector-space model, such as topic modelling
and would enrich the available facets that the system identifies. Besides,
provided that this goes on in a live implementation, one could imagine that
users go on and search for the latest “trends”, the ones that are by definition
not captured in the coded data. Thus these facets will quickly turn up in the
similarity scores.

6.6 Lessons learned and future work

In this chapter we looked at the notion of similarity from different perspec-
tives. First, we asked the question of how to transform the concrete textual
manifestations into a measure of relatedness. While using a direct mapping
to a first order vector space model (such as the one in the timePlot system)
is certainly a good start, directly mapping the terms to their corresponding
dimensions is not always satisfactory. Multilingual databases are the most
extreme example, but in a sense it can be viewed as just a radical manifes-
tation of linguistic variation. So we used dimensionality reduction methods,
such as ESA and Topic Modelling to produce an additional layer of transfor-
mation from the surface forms to a more abstract representation, closer to the
meaning of the analysed documents. We verified the pertinence of the topics
identified by topic modelling by comparing them to the metadata attributes
of the ASRS corpus. This showed us that, while there is a general overlap,
some of the topics not correlated to the metadata are very pertinent. On the
other hand there are topics that are clearly noisy and uninterpretable. We be-
lieve that a similar situation will be observed for any dimensionality reduction
technique.

On the other hand we looked at the notion of similarity in relation to the
particular uses it is put to - identifying similar incidents for the purpose of
helping experts find patterns in the data. We saw that users are willing to
engage in an interaction with the system in order to influence the results,
both to reduce noise, to achieve higher recall and to “isolate” a certain facet
of the similarities identified by a system. Building on these observations, we
leveraged the overlap between metadata and textual similarity and looked at
methods that allow us to isolate facets of similarity and to “mask” the major
dimensions in order to shed light on the secondary ones. In parallel, given
the willingness of the users to interact with the system, we applied an active
learning method, specifically designed for such an interaction.
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Let us sum up the main advantages and drawbacks of the four methods
presented in this chapter:

• Filtering similarity (§6.2) based on metadata attributes has the po-
tential to isolate hidden secondary dimensions of relatedness. It follows
that such an approach is dependant on the quality of the metadata and is
applicable only in cases where the taxonomy’s cover is sufficient. Also,
having implemented it directly on surface forms, the method suffers
from the same variation related issues as all first order representations
(§3.1.2). Furthermore it is not clear in what manner a user might be
involved in such an approach. Designing a usable interface which allows
the filtering of similar results based on such criteria is no easy task. A
potential extension to this line of reasoning, solving (some of) the varia-
tion related issues is incorporating domain knowledge in Topic Modelling
or researching the interface between ESA and metadata.

• We applied the second order similarity (§6.3) method to multilin-
gual databases with encouraging results. The second order vector space
representation addresses language variability even at its most extreme
form - texts written in different languages. The main problem with these
methods is the quality of the resource used for the pivots. A term absent
from the pivots, for example will not be accounted for in the final vector
space, even if it is present in multiple documents. This kind of silence
is particularly undesired in the context of safety related texts, where
emergent phenomena are of a prime concern. The acronym designating
a new system, for example will show up in many documents if the sys-
tem is problematic. A potential solution to such a silence is to associate
both vectorisation (Claveau, 2012) (using the indexed collection as piv-
ots) and an external resource, but in such an approach one would lose
the “conceptual” nature of the representation and should find means
to control biases, potentially introduced by the uneven distribution of
documents in the topical structure of the indexed collection.

• In Topic Modelling (§6.4) we see two distinct advantages. First, like
ESA it reduces variation by producing more abstract representations.
Moreover, (contrary to ESA) the topicality is abstracted in an endoge-
nous manner, based on term coocurrence within the indexed collection.
This makes the technique suitable for collections where external re-
sources are not available. It follows that the topical structure can be
used as a basis for initial construction of taxonomies (an issue for many
industries), by involving experts and interpreting the resulting topics.
The main drawback of the approach we used was the need to determine
in advance the number of topics and the flat nature of the resulting top-
ical structure. These are nevertheless both issues with “vanilla” Topic
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Modelling. The field is very active and different methods exist for auto-
matically determining the number of topics (Arun et al., 2010), for pro-
ducing hierarchical models (Teh et al., 2006) as well as for incorporating
domain knowledge (Andrzejewski et al., 2009) and human judgement
Hu et al. (2014). How these aspects articulate with one another is a
different matter. . . .

• The Active Learning (§6.5) approach was purposefully built around
user involvement. We see a major potential in it and, as part of Safety
Data’s R&D we are continuing to develop it and searching for different
ways to integrate it in a user-oriented process. Incorporating the user’s
judgement at every step of the process allows a higher level of control over
the result, ultimately building a more accurate model. The persistence
of the model is also an interesting factor. Once constructed it can be
applied to newly introduced documents and (if needed) further refined
by the users. We also see potential in using the method for collaborative
approaches, where multiple users judge pertinence on the same model.
One limitation is the opaqueness of the constructed model. It is difficult
to explicitly know (and show) why a given score is attributed to a given
document.

Of the four approaches we discussed, none is conclusive. We can not, at
this point say that we have found the method to calculate similarity and built
the application that will support pattern finding activities of safety experts.
In one thing we are certain, however: That without simultaneously taking
into consideration the data, the domain and the user, it is not possible to
design such a system.





Conclusion

NLP as a component in a safety related information
processing framework

In this thesis we explored the domain of aviation safety from a computational
linguist’s point of view with the goal to integrate NLP methods in the safety-
related information processing framework of a high-risk industry. We focused
on civil aviation, in part because we simply had access to this particular
community and in part due to the fact that it is the industry where the
collection and usage of occurrence data is the most advanced. This does not
mean that the research presented here is not applicable to other industries.
Every high-risk industry can use civil aviation as an example and many do
(Barach and Small, 2000).

The main issue we addressed is efficient access to information, contained
in large databases of incident and accident reports. The main point of entry
to these collection today is still based on pre-established taxonomies, which
are costly to maintain and do not easily scale. Natural language accounts, on
the other hand, are both ubiquitous and do not pose a problem when data
starts accumulating. We showed how, by exploiting them as input to Text
Categorisation methods, it is possible to automatically improve the quality
and the cover of the coded data. Furthermore we demonstrated that, even if
natural language is varied and noisy, a sufficient portion of the variation can
be accounted for. Therefore methods, such as textual similarity, based only
on the natural language parts of incident and accident reports are sufficiently
powerful to serve as basis for an application designed for browsing and search-
ing collections of reports. Exploring the informational redundancy between
taxonomies and natural language showed that robust bottom-up methods,
such as Topic Modelling are capable of abstracting a topical structure close to
the one described in the coded data. We also looked at possibilities to filter
out the redundant information in order to capture the signal present only in
the narrative parts.

How users relate to both the data and the application became clearer as
we observed the actual uses, analysed feedback and conducted interviews with
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safety experts. It became apparent that, combined with some specific expecta-
tions, such as high recall and transparent results, users were willing to engage
in iterative and prolonged search strategies. Based on these observations, we
developed an iterative process allowing example-based modelling of a given
scenario, with the added benefit of producing a persistent model that can be
applied to any document.

All in all, this thesis shows that text can be viewed not only as the vehi-
cle of information between humans, but also as a resource that, when prop-
erly tapped and exploited, improves the overall quality of communication of
safety-related information within a given system. We are confident that by
incorporating NLP components in the information processing framework of
a high-risk system, it is possible to conceive robust, bottom-up and scalable
methods allowing more efficient use of large quantities of occurrence data,
leading ultimately to an even better understanding of complex socio-technical
systems and rendering them even more reliable in the future.

Furthermore, we are not alone in believing in the potential of language
processing technologies applied to safety-related information. Today, time-
Plot’s successor, PLUS19, an industry-ready commercial application, built by
a team of talented engineers, based largely upon the results of this research is
a proof of the contributions NLP has to offer to the domain of risk manage-
ment. The application was built with the same functionalities as the timePlot
system and all the principles discussed in Chapter 5 also hold for it. At the
time of this writing, the tool is operational or in the phase of being deployed
at companies and government institutions, both in the civil aviation domain
as well as in other sectors. Here is a (non exhaustive) list of CFH - Safety
Data’s clients using or about to use the tool:

• Civil Aviation: EASA, DGAC, Air France, Dassault Aviation, WFP20

• Space: Astrium
• Rail: SNCF, RATP
• Energy: EDF
• Medical: UGECAM

As a consequence, we are also starting to notice how, by introducing cus-
tom tools and processes built around NLP technologies, practices within the
community are starting to shift and the available data started to be looked
upon in novel ways. While until recently report narratives were meant for “hu-
man eyes only”, now we start hearing voices from the community stating that
automatic processing of languages can replace21 the current taxonomy-based
paradigm.

19PLUS stands for Processing Language Upgrades Safety.
20the World Food Program is in charge of the United Nation’s transport operations.
21We personally find this claim a bit too extreme and overambitious, but we feel flattered

nonetheless.



CONCLUSION 185

This thesis is coming to an end, but work on the subject is all but begin-
ning. As we hope it has become clear in, we believe that access to data and to
users are the essential prerequisites to successfully apply NLP to a given task.
It also goes without saying that there are considerable engineering challenges
associated with managing data and building applications.

We have reached now, with CFH - Safety Data the point where a compre-
hensive NLP-based solution for safety related data is becoming mature. It is
therefore time for us to ask the question we were asking at the beginning of
the thesis in a different manner. While our objective was then to apply NLP
to risk management in civil aviation, now the question becomes: “what is the
best way to proceed in the future?” In other words, how do we evaluate the
contribution of the different NLP-components in this particular context, how
do we choose between alternatives and how do we optimally parameter them?

Evaluation of NLP components in context

We worked in the particular context of risk management and we proposed NLP
solutions to some of the needs we identified in the industry. Those solutions
were bundled into applications and the applications put to the test in a real
world environment. The most important positive evaluation is therefore the
fact that people are using them and manage to accomplish their tasks in a more
efficient manner than before they had access to the applications. Nevertheless
when the system matures, evaluation of its performance becomes mandatory
in order both to correctly parameter it and to be able to compare alternative
approaches to any given problem and choose between them.

How to evaluate a given system (or component) is dependent on a variety
of factors. Let us first introduce several basic concepts of the topic before
presenting our vision on the subject.

According to Clark et al. (2013), “NLP is concerned with producing ar-
tifacts that accomplish tasks. The operative question in evaluating NLP is
therefore the extent to which it produces the results for which it was designed”
and gives the following dimensions to the topic:

• Intrinsic vs. extrinsic evaluation: Intrinsic criteria are those re-
lated to the system’s objectives, while extrinsic criteria are those related
to the system’s function. (Jones and Galliers, 1995). In other words,
performing intrinsic evaluation can be viewed as judging the system’s
output according to a predefined criterion, say the proportion of cor-
rectly identified tokens by a tokeniser (§4.1.1). Performing extrinsic
evaluation, on the other hand asks the question of how good the system
is in the context of a specific task, treating the system as an “enabling
technology” whose value resides in its contribution to a larger applica-
tion (Clark et al., 2013). The tokeniser, being a part of a larger system
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can be extrinsically evaluated by observing how changing its parameters
improves the performance of a Information Retrieval system.

• Component vs end-to-end evaluation: As NLP systems are often
modular, one might evaluate either the different components separately
or evaluate the processing chain as a whole.

• Automatic vs manual evaluations: The third dichotomy is between
automatic or manual evaluations. In an automatic evaluation, one sim-
ulates the behaviour, judgement and expectations of the user while in a
manual evaluation, users are asked to directly judge the performance of
the system. Automatic evaluations are easy to conduct (and can be run
multiple times at no extra cost) but depend on accurate simulation of
the users. Hand-crafting such simulations in the form of gold standards
is labour intensive and, as Poibeau and Messiant (2008) discuss, can
be an unnecessary burden for intrinsic, component evaluations in cases
where a given system can be assessed extrinsically as a whole (end-to-
end). Manual evaluations, on the other hand, are costly to conduct,
slow and can generally be run only a few times. They also suffer from a
number of biases such as the inherent inconsistency of humans to judge
what is “good”.

Given that the objective of this thesis is to equip specific users with tools
that satisfy specific needs, we look at the question of evaluating the system(s)
from an extrinsic perspective and on an end-to-end basis. Given the variety of
tasks, we came to think about the possibility to conduct such evaluations. We
see it as a spectrum, ranging from the necessary and straightforward approach
to cases where conducting formal evaluations is unreasonably difficult:

1. Necessary and straightforward: This is the case of automatic text
categorisation, a case where extrinsic and intrinsic evaluation overlap
and where measuring performance is an integral part of the supervised
classification task. The system’s task is to assign categories to docu-
ments. We can directly measure the system’s performance and compare
it to documents classified by humans. The system we present in Sec-
tion 3.2.3 was evaluated in this manner, and the results directed the
particular choice of industrialisation.

2. Feasible and straightforward: This is the case where an existing
protocol can be adapted and tweaked in order to reflect a particular
desired outcome. Such is the case with the multilingual second order
similarity experiments (§6.2). We performed an automatic evaluation
by using a parallel corpus and measuring the system’s capabilities of
finding translations among the reports. While this task proved us that
the system worked, it is still an artificially constructed task. It does not
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inform us on the performance of the systems when presented the data
it is intended for (Multilingual databases of incident reports (§2.1.5)).

3. Feasible but costly: For IR systems, for example, the evaluation needs
to simulate the users expectations. The TREC competitions provide
ample examples of both the difficulty of the task and the necessity for a
great number of separate simulations in order to cover different contexts
of IR searching in a firm’s internal document collection (Balog et al.,
2008) is different than searching the web (Collins-Thompson et al., 2014).
Building a similar evaluation protocol for incident and accident data is
certainly feasible but will be a very costly enterprise. For the time being
it is not reasonable, at least until we have both sufficiently refined our
understanding of the information needs and sufficiently observed real
world user interactions with an IR system in this particular context.

4. Unreasonably costly: Performing extrinsic end-to-end evaluations on
a system identifying similar documents or on an application that aids
experts in identifying patterns raises a lot of questions. In both cases
the task is too vague in order to be formally defined. In the case of
similarity, for example,we have an intuitive understanding of the notion
of similarity, but in order to conduct an evaluation of such a system, we
would need to construct a model taking into account all the facets and
dimensions of similarity, to which to compare the system’s output. In
the case of a pattern-finding activity, the task is so abstract that a formal
definition of “a pattern” and how it relates to the data and the context
is practically unfeasible. In consequence, one way we imagine an evalu-
ation of such a system is in the form of a manual and simulation-based
approach. A sort of “treasure-hunt”, where a domain expert introduces
a set of related documents into a collection of unrelated reports and an-
other expert tries to identify them using the system. While imaginable,
in order to be valid and significant one should control parameters such
as the unrelated nature of the collection, the validity of the artificially
introduced patterns (hence the need for a peer-based approach) and the
fact that the users are unbiased. One would also have to repeat the
exercise many times with different users and scenarios. These variables
render such an approach to all extents unreasonably difficult. Should
this impossibility at evaluating such system stop us from attempting to
build one?

We are certain that the bulk of the tasks NLP applications in the domain
of risk management will fall in the last category. Which brings us to recon-
sider the current evaluation paradigms, apply them whenever possible, but
also look for complementary means of ensuring acceptable performance. Our
approach is twofold and revolves around the notions of transparency and user
involvement.
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• Incorporating transparency into the system means ensuring that the
underlying processing remain both comprehensible and visible to the end
user. It became clear from the timePlot system that even basic visual
cues such as highlighting shared terms gives the user information about
why a given document was returned. In other words to understand the
process that leads to this particular result. He can then effortlessly
assess the pertinence of the results and, if needed, interact with the
system to either filter the results or modify his initial query. An example
of incorporated transparency is the highlighting of similar terms in the
timePlot system (§5.2).

• User involvement is transparency viewed backwards. Explaining to
the users what the system does and how it does it, makes them more
able to perform their tasks. Of course, this partly depends on user
base, but in our case we were very lucky22. People dealing with safety
issues know that machines are imperfect and demand to understand both
the capabilities and the limits of the systems they are interacting with,
regardless if it is a helicopter or a search engine. We largely based the
development of the active learning approach (§6.5) around the notion of
user involvement.

We would also to be able to act on the smallest possible level of grain and
thus prefer modular approaches to monolithic approaches for any given task.
In other words we would prefer having the possibility to intervene at a very23

small scale in order to adjust a particular problem or error produced by the
system.

It follows that, by building transparent and modular processing, while
maintaining a channel for feedback from an informed (and involved) user will
allow us to act a posteriori and act based on a concrete example of an unde-
sirable result.

Regarding the work we presented in this thesis, the main consequence of
these considerations is that they make us reconsider using (opaque) dimen-
sionality reduction techniques as the unique abstraction layer between
text and representation. As a consequence, we will start looking for ways to
progressively integrate symbolic and knowledge rich methods in the tools we
propose.

22Such a position would be completely unthinkable and counterproductive for other types
of applications, such as web search engines, where people constantly try to “game” the system
for higher visibility in the search ranks. As a consequence the system’s performance depends
on the opaqueness of the underlying processing.

23A trivial example is the one we mentioned about the stemming of the word “laser” to
“las” (§3.1.2) in this case we do not want to have to reinvent a stemming algorithm, but to
be able to manually add an exception.
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Towards symbolic knowledge rich methods

Whether it is a Text Classification component, a Search Engine or a system
for identifying similar documents, the ultimate goal of the NLP component is
to account for the meaning of the input text, manipulate it, compare it either
to a model, to the meaning of a query or the meaning of another text. The
main obstacle to overcome before one can even start talking about meaning
(as opposed to simple lexical overlap), is that of variation (§3.1.2, §4.1.2). In
other words, to move further away from noisy surface forms and more toward
abstract unambiguous meaning representations.

There are basically two ways to address the problem. One could either
describe meaning and its relation to language or one could (try to) abstract it
statistically, based on a (very large) collection of texts and on frequency and
patterns of coocurrence.

In light of the manifest difficulty of extrinsically evaluating NLP compo-
nents in context of risk management, we have to look back critically on the
dimensionality reduction techniques we used in this thesis. Methods such as
ESA (§6.2) or Topic Modelling (§6.4) produce such more abstract representa-
tions. Whether “conceptual dimensions” or “topics” these methods map the
surface forms to vectors of a higher order dimensions that account for some
aspect of the meaning of the text they encounter. While they can, and are be-
ing applied with relative success to a number of tasks, this family of methods
present a number of inherent limits. These are:

• They tend to be opaque. The model (automatically) constructed by any
such techniques is at best partially interpretable.

• It follows that they offer little if no direct control over the mappings. It
is difficult24 to act on a small scale and, say, add or remove variants of
a given term.

• They are monolithic. Because they account for different aspects of how
language varies, they tend to be applied as single components with basic
tokens as input and “conceptual” dimensions as an output.

As a function of these three limitations, such statistical methods, relying
on quantity and frequency all reach a ceiling at some point. And when the
ceiling is reached, there is not much one can do than “stir the probabilistic
cauldron”, maybe add more data to the system or change for a better and
newer technique hoping to improve performance. This entails that using such
methods implies designing formal evaluation criteria. This, as we saw in the
previous section is, in some cases impossible ot at least very costly. In this light

24Work is however being done to incorporate interactivity in Topic Modelling (Hu et al.,
2014).
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we will continue to test and use dimensionality reduction in those areas where
either an objective formal evaluation is possible (such as Text Categorisation)
or where they come as an aid to humans for necessary modelling tasks, such
as building and maintaining lexicons.

The other option as we saw is to describe meaning and its relationship to
its primary vehicle (text). A knowledge-rich approach implies constructing
a world model as a central resource for extracting meaning from text. For
Nirenburg (2004) a knowledge rich approach for NLP is comprised of:

1. A set of static knowledge sources: An ontology, a fact-repository and a
lexicon (mapping the ontology to natural language).

2. Knowledge representation languages for specifying meaning structures.

3. A set of processing modules - semantic analysers.

And while to Turney and Pantel (2010) it “seems possible that all of the
semantics of human language might one day be captured in some kind of
Vector Space Model”, we know that the semantics of language can be described
and, provided there is a resource with sufficient cover and scale, can be applied
to extract the underlying meanings from text in an understandable form.

The main criticism of knowledge-rich methods is that the sheer effort
needed to construct the model is forbidding their practical application outside
small and controlled lab environments. In other words they lack robustness.
Such approaches were mainstream from the 1960’s to the 1990’s but were
gradually replaced by statistical NLP in the late 1990’s (Spärck-Jones, 2001).
Now they are starting to (spectacularly) come back with systems such as
IBM’s Watson (Gliozzo et al., 2013) or Inquire (Chaudhri et al., 2013).

Lannoy (1996) discusses a potential application of full scale semantic repre-
sentations to the domain of risk management only to show that the complexity
of the modelling effort is forbidding. It also illustrates two fundamental prob-
lems with a number of such approaches:

• First the goal of this particular “expert system” is to, in a nutshell,
extract meaning from the texts of incident reports then reason on the
meaning representations in order to identify the causes of an incident. In
other words replace the expert by an automatic process. While we can
not but credit such a goal for its ambition, we believe that it completely
misses the point, mainly that human experts need not be replaced but
assisted in working with the ever increasing amounts of data and the
information it contains.

• Secondly, (given the ambitious goal) the success of such a system de-
pends upon the completeness of all the modelling (all levels of language
and a complete model of the domain) in its entirety before it is capa-
ble of delivering any usable results. In practice knowledge rich methods
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need not be extremely sophisticated and a result of a year long modelling
effort in order to deliver a practical improvement of an NLP component.
Simply listing all the species of birds and attaching them to the con-
cept of BIRD will give higher recall for an IR system when searching for
bird-strikes.

We nevertheless are confident that, in the particular context of risk man-
agement in civil aviation, knowledge-rich methods are both inevitable if we
want to achieve long term progress and feasible as a basis for robust NLP
applications. Here are the main reasons:

• Existing modelling culture: In civil aviation (and risk management)
there is a long lasting modelling tradition as the various accident models
(Qureshi, 2007), such as (parts of) ADREP (§2.2.3.5), the Bow-tie model
(§2.1.5) or activity models describing the sequence of a commercial flight
(Ale et al., 2005) testify. moreover some of these models are instantiated
over large numbers of accident and incident reports.

• Large quantities of natural language data: Accident reports in par-
ticular are ideal text mining candidates for knowledge extraction (Tou-
ssaint, 2011; Poibeau, 2003) and can also serve as a basis for partially
populating existing resources.

• Expert availability: Safety experts we have worked with both are in
high demand of means to better access information and understand the
challenges that such systems pose. They are willing to participate in a
modelling effort, provided that it is conceived in such a way as to have
short to medium-term returns in the form of better and more usable
applications.

• Scale: Civil aviation is a global system. Accounting for a small subset
of domain specific phenomena (such as pilot fatigue for example) will be
of interest for a very large community.

• High stakes: Aviation accidents are incredibly costly and even a slight
improvement of safety saves a lot of money.

Adding that, today contrary to the 90’s:

• The technology to build systems that scale to terabytes of data exists.

• Users generate more and more quality information and are being ex-
ploited for knowledge acquisition (Lafourcade, 2007; Wang et al., 2012).

• Robust large scale methods for knowledge extraction from text are avail-
able, partially as an answer to the availability of large quantities of an-
notated texts (Bellot et al., 2014).
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• The technology, infrastructure and methodologies to build truly global
web applications is mature.

We believe that in the future knowledge-rich methods will be the basis of
the NLP-components civil aviation’s information processing framework.
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