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Abstract

English

A novel concept of utilizing electro-optical active oxides in silicon photonic
devices is developed and realized in the frame of this thesis. The integra-
tion of such oxides extends the silicon photonics platform by non-linear
materials, which can be used for ultra-fast switching or low-power tuning
applications. Barium titanate is used as active material as it shows one
of the strongest Pockels coefficients among all oxides. Three major goals
are achieved throughout this work:

First, thin films of BaTiO3 are epitaxially grown on silicon substrates
via molecular beam epitaxy (MBE) using thin SrTiO3 buffer layers.
A shuttered co-deposition growth technique is developed in order to
minimize the formation of defects in the BaTiO3 films by achieving a 1:1
stoichiometry between barium and titanium. The layers show a tetragonal
symmetry and are therefore well-suited for electro-optical applications.
The orientation of the long c-axis of the BaTiO3 crystal can be tuned
to point perpendicular or parallel to the film surface, depending on the
growth conditions. In addition, thin MBE-grown seed layers are combined
with rf-sputter deposition. With this hybrid growth approach, rather thick
(> 100 nm), epitaxial BaTiO3 layers on silicon substrates are obtained
with a commercially available, wide spread deposition technique.

As a second goal, a strong Pockels coefficient of reff = 148 pm/V
is determined in the epitaxial BaTiO3 films. This first experimental
result on the electro-optical activity of BaTiO3 layers on silicon shows
a clear enhancement compared to alternative non-linear materials such
as lithium niobate with reff ∼ 31 pm/V. By means of the electro-optical
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characterization method, also the presence of ferroelectricity in the films
is demonstrated.

Third, the electro-optical active BaTiO3 layers are embedded into
silicon photonic devices. For this purpose, a horizontal slot-waveguide
structure with a ∼50 nm-thick BaTiO3 film sandwiched between two
silicon layers is designed. With this design, the optical confinement in the
active BaTiO3 layer is enhanced by a factor of 5 compared to Si-waveguide
structures with a standard cross section and BaTiO3 as cladding. Straight
BaTiO3 slot-waveguides with propagation losses of 50 − 100 dB/cm as
well as functional passive devices such as Mach-Zehnder-interferometers,
couplers, and ring resonators are experimentally realized. Additionally,
first active ring resonators with Q-factors of Q ∼ 5000 are fabricated.
The physical origin of the observed resonance shift as a function of the
applied bias voltage, however, can not be conclusively clarified in the
present work.

The combination of high-quality, functional BaTiO3 layers with silicon
photonic devices as demonstrated in this thesis offers new opportunities
by extending the design palette for engineering photonic circuits with
the class of electro-optical active materials. The integration of oxides
such as BaTiO3 enables novel device concepts for tuning, switching, and
modulating light in extremely dense photonic circuits. The integration
also opens exciting challenges for material scientists to tailor the electro-
optical properties of those oxides by strain engineering or fabrication of
superlattice structures, which could ultimately lead to another boost of
their electro-optical properties.

Français

Dans le cadre de cette thèse, un nouveau concept de dispositifs pour la
photonique sur silicium est abordé. Ce concept est basé sur l’utilisation
d’oxydes électro-optiquement actifs, monocristallins et directement inté-
grés sur silicium. Dans la cadre de la photonique sur silicium, l’ajout de
tels matériaux rend possible l’exploitation d’effet non-linéaires dans un
large champ d’application, que ce soit pour des modulateurs ultra-rapides
ou bien pour des dispositifs d’ajustement fonctionnant à très basse puis-
sance. Le titanate de baryum BaTiO3, avec un coefficient de Pockels
parmi les plus larges existant, a été particulièrement utilisé dans ce travail
au cours duquel trois résultats essentiels ont été obtenus.
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En premier lieu, des couches minces épitaxiales ont été obtenues sur des
substrats de silicium grâce à l’utilisation de l’épitaxie par jets moléculaire
et de couches tampons de titanate de strontium SrTiO3. Une technique
de croissance par co-déposition a été développée de manière à obtenir un
rapport Ba:Ti proche de la stœchiométrie, et ce afin d’éviter la formation
de défauts cristallins dans la couche de BaTiO3. Le matériau déposé
cristallise dans une structure de symétrie quadratique, ce qui est un
pré-requis pour l’obtention de propriétés électro-optiques. De plus, selon
les conditions de croissance, l’axe c de la maille élémentaire quadratique
a pu être ajusté de manière à être aligné parallèlement ou perpendic-
ulairement à la surface du substrat. L’utilisation d’une mince couche
tampon de nucléation a également permis de croitre des films minces
BaTiO3 épitaxiées par pulvérisation, technique largement répandue en
milieu industriel.

Un coefficient de Pockels élevé a par la suite été obtenu sur de telles
couches épitaxiées. La valeur mesurée de 148 pmV est clairement supérieure
aux valeurs admises dans la littérature pour d’autres matériaux non-
linéaires tels que le niobate de lithium, pour lequel un coefficient de
31 pmV est rapporté. La méthode de caractérisation électro-optique
développée à cette occasion révèle également le caractère ferroélectrique
des couches de BaTiO3, observé pour la première fois dans de tels matéri-
aux épitaxiés sur silicium.

Finalement, ces couches minces électro-optiquement actives ont été
intégrées dans des dispositifs photoniques sur silicium. Dans cette optique,
une structure de guide d’onde à fente a été utilisée en insérant 50 nm de
BaTiO3 entre deux couches de silicium. Dans ce type de structure, le con-
finement optique est 5 fois supérieur à celui obtenu pour des guides d’onde
en silicium avec une gaine à base de BaTiO3. Des guides d’ondes rec-
tilignes ont tout d’abord été fabriqués, pour lesquels des pertes optiques de
l’ordre de 50 − 100 dB/cm ont été mesurées. Par la suite, des composants
passifs fonctionnels ont été fabriqués, tels que des interféromètres type
Mach-Zehnder, des résonateurs circulaires et des coupleurs. Finalement,
la fonctionnalité de composants actifs a été démontrée pour la première
fois, en se basant notamment sur des résonateurs ayant un facteur de
qualité Q d’environ 5000, et pour lequel la résonance varie en fonction
du champ électrique transverse. L’origine physique de cette variation n’a
cependant pas pu être expliquée sur la seule base de l’effet Pockels.
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Cette thèse démontre que l’utilisation de nouveaux matériaux électro-
optiquement actifs au cœur de dispositifs photoniques sur silicium crée
de nouvelles opportunités pour la conception et l’ingénierie de circuits
photoniques. L’intégration d’oxydes tels que barium titanate permet
d’envisager de nouveaux concepts de dispositifs pour ajuster, moduler ou
commuter la lumière au sein de circuits photoniques denses. De nouveaux
défis et perspectives s’ouvrent également aux scientifiques pour modifier
artificiellement les propriétés électro-optiques de ces matériaux, que ce
soit par contrainte, dopage ou par l’ingénierie de multicouches. De telles
avancées pourront sans aucun doute fortement améliorer les performances
des dispositifs.
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CHAPTER 1

Introduction

1.1 Advancements and challenges in silicon photonics

Silicon technology has experienced tremendous progress since the first transistor
was developed in 1947 at Bell Labs and the concept of integrated circuits (ICs)
has evolved in the late 1950s. Decades of research and development resulted in
highly efficient silicon microprocessors, which can be produced in large volumes
and at low costs. The key to the success of this technology was to reduce the
size of the transistors, as it reduced the power consumption, while the speed
was increased. The scaling follows the empirical Moore’s law, which anticipates
a doubling of the transistor count every ∼18 months. At last, this resulted in
22 nm-small feature sizes of current circuits with more than a billion transistors
per microprocessor.

One of today’s main challenges when combining a high integration density
with clocking speeds of several GHz lies in interconnecting the individual
units within the circuits. This “interconnect bottleneck” will eventually limit
the performance of the next technology nodes. Using current state-of-the-art
technology, electrical interconnects are fabricated with multiple metal layers,
which are connected to each other through vias in the back-end-of-line (BEOL)
[1]. Further down-scaling of the critical dimensions gives however rise to two
main problems for electrical interconnects:

• Increasing propagation delay. For feature sizes in the µm-range the delay of
electric signals is rather small (< 2 ps/mm) as the propagation is mainly
limited by the speed of the electro-magnetic wave [1]. In contrast, smaller
node sizes (< 32 nm) have an increased resistance of the connection lines
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core 1 core 2

electro optical
modulator

light

electrical
signal

multiplexer de-multiplexer

routing of optical signals

detector

electro-optical
switches

Fig. 1.1 Illustration of a potential silicon photonic transceiver system to
connect different cores of a microprocessor. An electric signal from the first
core is encoded into the optical domain using an electro-optical modulator.
Wavelength-division multiplexing (WDM) is used to combine and, after routing
the signal through the optical network, split several optical frequency ranges. A
detector finally converts the optical into an electrical signal which is delivered
to the target core.

and the signal propagation is therefore limited by the larger RLC-time
constant. The estimated propagation delay for electrical connections is
up to ∼40 ps/mm in the 22 nm node [2], hence, causing signal delays in
the order of the clock cycle for connections across the full chip [1, 3].

• Increased power consumption. Due to different scaling laws, the ratio of
the power dissipation of electrical interconnects and transistors increases
by a factor of ∼30 when scaling down feature sizes from 1 µm to 32 nm
[1]. By now, interconnects have become a significant contribution to
the overall power consumption of integrated circuits, and are one of the
primary constraints on the clock speed of the processors [4].

One possible solution to overcome these fundamental limitations of electrical
interconnects is to transfer them from the electrical into the optical domain.
Fiber optics have been used for long-haul communication for decades, motivated
by the negligible heat dissipation in transparent media, low cross talk, and, most
importantly, the high carrier frequency of > 100 THz which enables bandwidths
of > Tb/s [1, 5]. The excellent performance of optical links, the transparency
of silicon at important telecommunication wavelengths of 1.3 µm and 1.55 µm,
and the low-cost fabrication in current CMOS (complementary metal-oxide-
semiconductor) lines triggered the development of silicon photonics. Indeed,
shorter interconnect delay times, advantages in the total power consumption,
and an increased bandwidth compared to electrical interconnects have been
predicted for integrated photonics [2, 4, 5]. Manifold novel devices were designed
to guide, couple, filter, or modulate light [6–8] - all based on silicon. A co-
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integration of such optical links with electric circuits envisions the fabrication of
ultra-fast electro-optic transceiver systems for intra-chip data communication
with high bandwidth when exploiting multiplexing schemes, as explained in
fig. 1.1. A concept that is close to reality, as indicated by first silicon photonic
links with > 100 Gb/s that are already commercially available [9].

Despite these great advancements in the field of silicon photonics, many
challenges still need to be solved. On the system level, an advanced design
methodology is required to engineer such complex, highly integrated photonic
networks with methods similar to those used for electronic design processes
[10]. Also, strict alignment tolerances when connecting photonic networks with
optical fibers during the packaging process need to be met [10]. On the device
level remaining challenges are the search for non-reciprocal structures for optical
isolation [11], integrated light sources [12], and efficient detectors at a wavelength
of λ = 1.55 µm [13]. Although first implementations of modulators operating at
high speeds of more than 40 Gb/s have been shown [8, 14], the ideal compromise
between bandwidth, insertion loss, power consumption and footprint has not
yet been found. Additional device challenges arise from the fact that resonant
photonic devices are extremely sensitive to changes in the optical path length.
Such changes can occur during fabrication or can be induced by temperature
variations. For example, if the radius of a ring resonator varies by only 3 nm
around a target value of 5 µm, its resonance frequency at λ ≈ 1.55 µm shifts
by ∼100 GHz, which is more than the typical spacing between two channels in
systems using dense wavelength division multiplexing. Furthermore, due to the
thermo-optic effect of silicon [15], local and global temperature variations will
change the refractive index and thus the optical path length and the resonance
frequencies in resonators. Different approaches to address these issues have been
shown, such as using claddings with a negative thermo-optic effect [16], active
tuning by locally heating the structures [17, 18], or moving to non-resonant
structures. However, the drawbacks of these approaches lie in difficult additional
processing steps, increased power consumption, or larger footprints.

The examples show that despite the recent progress in silicon photonics, plenty
of limitations still have to be solved. A large community is therefore focused on
combining silicon with new materials to enrich the variety of properties available
in the photonic platform for new device concepts. Examples are the integration
of III/V materials for integrated lasers [10], Ge for photodetectors [13] and SiGe
for future modulators [19]. Surprisingly, the class of electro-optical materials,
which is critical for state-of-the-art telecommunication links, has hardly been
considered for silicon photonic devices.
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1.2 Barium titanate thin films for silicon photonics

The great potential of materials showing a strong linear electro-optical effect
(Pockels effect) in optical communication systems is visible in the example
of lithium niobate (LiNbO3). Lithium niobate has been used for decades to
modulate light at high frequencies [20] and until today, it is a major component
of most telecommunication networks [21]. The Pockels effect, which describes
the change of the refractive index of a material when exposed to an electric
field, occurs even at very high frequencies (> THz) [22]. The linearity of the
effect has been crucial for exploiting advanced modulation formats such as
quadrature amplitude modulation (QAM) that further increase the bandwidth
of optical links [21, 23]. However, all these devices are based on bulk LiNbO3

crystals and are therefore incompatible with silicon photonics.
Yet, the presence of a strong electro-optically active material in optical circuits

in silicon would offer several opportunities: first, it would allow the replication
of the previously developed, mature modulation technique of LiNbO3, second,
due to a change of the refractive index without current flow it would enable
novel devices such as zero-power tuning elements and third, by exploiting the
ferroelectric nature of many electro-optically-active material, non-volatile optical
memories could be envisioned. Silicon itself cannot be used for such devices
because its Pockels effect vanishes due to the centro-symmetric crystalline
structure of silicon [24]. Even though this symmetry can be broken by applying
strain gradients [25, 26], the resulting Pockels coefficients in silicon are by a
factor of ∼20 smaller than in LiNbO3. Therefore, the heterogeneous integration
of another material is essential in order to obtain efficient devices based on the
Pockels-effect.

Barium titanate (BaTiO3) represents an excellently suited-material system
for integration into silicon photonics, since it fulfills three main criteria:

1. Bulk BaTiO3 has one of the highest Pockels coefficients (rBTO > 1000
pm/V [28]) among all well-known materials (fig. 1.2a). In particular, the
electro-optical properties of bulk BaTiO3 are ∼30 times larger than in
LiNbO3 and ∼600 times larger than the ones of strained silicon.

2. The feasibility of using BaTiO3 for high speed modulation has been
demonstrated previously for thin films grown on magnesium oxide sub-
strates [29, 31, 32] (fig. 1.2b).

3. Deposition routes have been shown to epitaxially integrate single-crystalline
perovskite oxides, such as BaTiO3 or strontium titanate (SrTiO3), on
silicon (fig. 1.2c) [33, 34].

In order to use BaTiO3 integrated into silicon photonic devices, it is required
to merge the above mentioned criteria, which so far have been investigated only
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Fig. 1.2 (a) Comparison of Pockels effect for various material systems from
literature [26–28], barium titanate shows extremely high values in bulk crystals.
(b) Demonstration of BaTiO3-based optical modulators on MgO substrates
[29] (reproduced by permission of AIP Publishing LLC). (c) Demonstration of
epitaxial growth of ferroelectric SrTiO3 on silicon [30] (reproduced by permission
of The American Association for the Advancement of Science). (d) Scope of
this thesis, and outline of the chapters.

individually. The route from bare silicon wafers to integrated, electro-optically-
active photonic devices are the scope of this thesis. In particular the following
points are addressed in different chapters, as illustrated in fig. 1.2d:

• Epitaxial growth. Different routes to grow high-quality, single-crystalline
BaTiO3 thin films on silicon substrates by means of molecular beam
epitaxy are developed. Focus is put on investigating the symmetry of
the crystals and finding ways to enhance the crystalline quality since the
electro-optical properties are strongly linked to the BaTiO3 crystalline
structure. Additionally, a hybrid growth approach is established that
utilizes a commercially wide-spread deposition method (rf-sputtering) for
obtaining epitaxial BaTiO3 films on silicon substrates (chapter 2).
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• Electro-optical characterization of BaTiO3 thin films. The properties of
thin films can significantly vary from those of bulk crystals. An exam-
ple is the presence of ferroelectricity in thin layers of SrTiO3, which is
non-ferroelectric as bulk crystal (see fig. 1.2c). The electro-optical prop-
erties of BaTiO3 typically degrade when deposited on oxide substrates,
compared to bulk crystals [27]. Furthermore, no investigation of the
Pockels coefficients of BaTiO3 on silicon substrates has been made so far.
In order to characterize BaTiO3 thin films, an electro-optical setup is
built and a systematic study on the response of BaTiO3/Si samples is
performed (chapter 3).

• BaTiO3-based, silicon photonic devices. In a final step, a concept for
embedding electro-optically active BaTiO3 thin films into silicon photonic
structures is developed. This development included the engineering of
slot-waveguides with strong confinement of the optical mode in the
BaTiO3 region, the design of photonic components such as couplers
and resonators, and the benchmarking of the estimated performance
with state-of-the-art active silicon photonic elements. Passive and active
BaTiO3-based devices are fabricated, and optically and electro-optically
characterized (chapter 4).



CHAPTER 2

Fabrication of thin films

2.1 Background

2.1.1 Epitaxial film deposition

The monolithic integration of high quality crystalline films on host substrates
like silicon paves the way to the realization of devices and systems with a
broad range of applications. A key enabler is epitaxy, the process of growing a
crystalline material on top of a crystalline substrate where both crystal lattices
have well-defined orientations in respect to each other. Discovered already in
the 19th century [35], the physical phenomenon of epitaxy has been theoretically
as well as experimentally investigated throughout the decades. Epitaxially
grown layers have been used for many important applications, such as the
fabrication of opto-electronic devices using epitaxial combinations of GaAs and
AlxGa1-xAs thin films [36].

When growing an epitaxial film on a substrate of different composition and
structural parameters (heteroepitaxy), one of the crucial steps is the arrange-
ment of the first deposited atoms on the host crystalline surface. Generally,
numerous options exist of how the new elements will stabilize on the substrate,
ranging from amorphous, polycrystalline to single crystalline layers. Even a re-
evaporation of the atoms can occur. Physically, the process and product of the
deposition is described by the laws of thermodynamics, statistics, and quantum
mechanics, as excellently reviewed by Herman et al. [35]. The complexity of
the atomistic aspects of the deposition process provides a large opportunity
for scientists to create novel crystalline structures that naturally do not exist.
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The key in achieving such structures is to influence the reaction kinetics by
carefully choosing the process conditions in order to enforce or block desired
chemical reactions.

The structure of the grown heteroepitaxial layers is strongly dependent on
the first atomic layers that are deposited on the substrate. The atoms can for
example nucleate and grow in small islands, each having a slightly different
crystalline orientation, or homogeneously wet the surface and arrange regularly
to the crystalline lattice of the substrate. Due the mismatch of lattice constants
between substrate and film in many cases, strain is created in the film that
relaxes by the formation of crystalline defects. The number of such defects can
either increase when the film grows, or they can be reduced by annihilation
between different defects. Furthermore, a mismatch in the thermal expansion
coefficient between the materials will have an impact on the final layer quality.

All of these examples show parameters that can artificially be varied during
the deposition process: The wetting is influenced by adhesion layers, the lattice
constant is often tunable by the film composition, and the influence of the
thermal expansion can be varied by selecting the growth temperature. Under-
standing, controlling, and fine-tuning these numerous parameters represent the
challenges and opportunities in the research field of epitaxial growth.

2.1.2 Functional oxides on silicon

Perovskites on silicon The epitaxial growth of complex oxides on silicon
substrates is an excellent example of a structure that naturally does not exist,
but could only be realized by thoroughly choosing the process conditions and
using advanced deposition tools. The main issue to be solved is that Si tends to
oxidize in the presence of oxygen: the consequent formation of an amorphous
interfacial SiO2 layer hinders then epitaxial growth. The research field was
pioneered by McKee et al. [33] who for the first time epitaxially deposited a
perovskite material, barium titanate (BaTiO3), on silicon substrates. They
defined a process which relies on the formation of ordered alkaline earth metal-
silicide structures (i.e. SrSi, BaSi) at high temperature, fully commensurate to Si
and stable upon cooling. The layer-by-layer thermodynamic equilibrium which
is maintained at atomic level during the process allows a stable, heteroepitaxial
transition from the Si to the crystalline oxide. The precision at the atomic level
required by this process is achieved using molecular beam epitaxy (MBE) with
tools working in an ultra high vacuum (UHV) environment (see section 2.1.4).

Due to the numerous properties of perovskite oxides that are absent in silicon
such as ferro- and piezoelectricity, a large research community explored the
integration path with the vision of enabling new devices and functionalities
for silicon-based electronics [34, 37]. However, the interest in this research
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field has mainly been motivated by the use of oxides in the electronic domain,
in particular as high permittivity gate dielectric in field-effect transistors [38].
Therefore, the growth process of perovskites has been carefully optimized [39]
and single crystalline layers of strontium titanate (SrTiO3) were fabricated even
on large-scale 8 inch substrates [40]. Lately, it has also been claimed that the
perfection of epitaxially grown SrTiO3 surpasses those of bulk crystals [41] due
to the very high quality of nowadays available silicon substrates and epitaxial
processes. The feasibility of epitaxially combining such virtual oxide substrates
with many other perovskite materials opened the door for realizing novel
material systems, such as two-dimensional electron gases at SrTiO3/LaAlO3

interfaces on silicon substrates, which can ultimately be used for all-oxide
electronics [42].

Barium titanate on silicon BaTiO3 (BTO) is a well-studied perovskite ma-
terial, that undergoes a transition from a ferroelectric tetragonal phase to a
paraelectric cubic phase when heated above its Curie temperature of Tc = 123 ◦C
[43]. In the cubic phase the Ti atoms are octaedrally coordinated by six O
atoms. In the tetragonal phase atoms are displaced along the z-direction and
the unit cell is elongated along the c-axis (fig. 2.1a). Tetragonal BaTiO3 has a
variety of functional properties such as piezoelectricity [44], ferroelectricity [45],
and electro-optic activity [27, 46], which originate from a displacement of the Ti
atoms along the c-axis with respect to their centrosymmetric position in the unit
cell (fig. 2.1b). These properties can be exploit for manufacturing active devices,
such as piezoelectric actuators [47], or nonvolatile ferroelectric memories [48].
Owing to its excellent electro-optical bulk properties, rBTO > 1000 pm/V [49],
BaTiO3 is also a promising candidate for modulating and tuning components
in silicon photonics [27, 29, 46]. The integration of such oxide on Si enables the
fabrication of functional devices in the silicon CMOS and photonics platform
using high volume low cost production methods.

The functional properties of BaTiO3 are absent in the cubic phase [24].
Although the tetragonal phase is stable at room temperature in bulk BaTiO3

[50], thin films consisting of polycrystalline BaTiO3 tend to stabilize in the
cubic symmetry [51, 52]. It is therefore important to ensure epitaxial growth
conditions during the monolithically integration of BaTiO3 thin films onto Si
substrates in order to control the crystalline structure of the perovskite. Indeed,
thin layers of tetragonal BaTiO3 can be grown on Si but their orientation
with respect to the substrate varies with the growth parameters due to the
lattice and thermal coefficient mismatch between the two materials. During the
epitaxial growth of BaTiO3 on silicon substrates, the huge lattice-mismatch of
∼26 % is reduced to ∼4° − 5 % by a rotation of the BaTiO3 crystalline lattice
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Fig. 2.1 (a) Tetragonal unit cell of BaTiO3 with one long c-axis and two shorter
a-axes. (b) Two ferroelectric polarization states in tetragonal BaTiO3 due to
different positions of the Ti atom relative to the O atoms. (c) Epitaxial growth
of SrTiO3 on silicon: The perovskite unit cell is rotated by 45° in respect to
the silicon unit cell. The interface between the two layers is simplified in the
illustration compared to first-principle calculations [53, 54].

by 45° [33] to form the epitaxial relationship [100]BTO ‖ [110]Si (fig. 2.1c). The
orientation of the long axis of the tetragonal lattice is determined by the different
thermal expansion coefficients of silicon and BaTiO3 (table 2.1): at high growth
temperatures, relaxed BaTiO3 layers crystallize in a cubic structure. Due to
the smaller thermal expansion coefficient of Si, BaTiO3 layers are subjected to
biaxial tension when cooled through the Curie temperature. To relieve such
biaxial tensile strain the films tend to orient with their longer c-axis in the
plane of the substrate and the short a-axis out-of-plane, resulting in an in-plane
ferroelectric polarization of the BaTiO3 films.

Since for many applications c-axis oriented films are preferred, alternative
BaTiO3 growth paths on specific buffer layers have been explored. For instance,
the growth of pure tetragonal c-axis oriented BaTiO3 on Si has been reported
using 10 − 30 nm thick Ba0.7Sr0.3TiO3 buffer layers [55]. In the current work,
it will be discussed (section 2.3) how purely c-axis oriented BaTiO3 layers can
be grown onto Si substrates using much thinner SrTiO3 buffers (4 nm), similar
to recently published work [48, 56]. The evolution of the crystalline orientation
of BaTiO3 thin films as a function of their thickness has been found to provide
a way to tune the crystalline orientation of the films.

Towards thicker BaTiO3 layers The thickness range of the functional oxide
layer as required for optical [27, 29] and piezoelectric [61–63] applications
(50 nm − 1 µm) is rather broad. It is hardly covered by MBE deposition, which
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is the standard method for growing epitaxial perovskites on silicon and which
is operated at rather low deposition rates (< 100 nm/h). It was previously
shown that thin MBE-grown seed layers can be combined with pulsed laser
deposition to obtain thicker, but still epitaxial films [48]. A new hybrid growth
process is developed in the framework of this thesis: It consists of the growth
of a seed BaTiO3/SrTiO3 layer onto a Si substrate by MBE, followed by the
deposition of a thicker BaTiO3 layer by radio-frequency (rf) sputtering. The
influence of the MBE seed layer thickness, as well as the sputtering and post-
sputtering annealing conditions on the crystalline structure of the hybrid layers
are thoroughly analyzed (section 2.4).

2.1.3 Properties of barium titanate

Barium titanate has been heavily investigated since the 1940s in the form of
bulk crystals [50, 64, 65], and more recently in the form of thin films on various
substrates [45, 66, 67]. Some of the properties which make BaTiO3 interesting
for fundamental science [68] as well as more application driven research [69]
are reviewed in the following section.

Structural properties As previously mentioned, the origin of most functional
properties lies in the crystalline structure of BaTiO3 (fig. 2.1), which is de-
scribed in the non-centrosymmetric tetragonal P4mm space group at room
temperature with one long c-axis and two short a-axes (table 2.1). Barium

Table 2.1 Crystal symmetry, lattice constants, and linear thermal expansion
coefficient α of BaTiO3 [57, 58], SrTiO3 [59] and silicon [60] at different
temperatures. For silicon, the distance between the atoms along the [110]
direction is given in brackets, as it is the the relevant parameter for the
perovskite growth due to the rotation of the crystal lattice by 45° (fig. 2.1c).
For BaTiO3 and SrTiO3, the lattice mismatch relative to Si is given in brackets.
The crystalline structure of Si and SrTiO3/BaTiO3 is diamond (diam.) and
perovskite (perov.), respectively.

material crystal
symm.

lattice parameter [Å] α [10−6 × 1/K]
25 ◦C 600 ◦C 25 ◦C 600 ◦C

silicon diam. 5.431 (3.840) 5.443 (3.849) 2.55 4.2

BaTiO3 perov.
a=3.994 (+4.0%)

c=4.038 (+5.2%)
4.031 (+4.7%)

16.9 (a)

-13.9 (c)
13.2

SrTiO3 perov. 3.905 (+1.7%) 3.978 (+3.4%) 32.3 31.7
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Fig. 2.2 (a) Lattice parameters and crystalline symmetry measured for bulk-
BaTiO3 at different temperatures. Transitions between the different crystalline
phases are indicated by gray lines. Open symbols and the dashed line correspond
to calculated values assuming a cubic structure with constant cell volume. All
data replotted from ref. [50]. (b) Phase diagram for different compositions of
BaO and TiO2 (replotted from ref. [72]). Only the major phases are labeled.
The full diagram can be found in ref. [72].

titanate experiences several phase transitions when varying the temperature
(fig. 2.2a). The most important one for many applications is the highest one at
TC = 123 ◦C [43] to the cubic phase where many properties such as ferroelec-
tricity or electro-optic activity disappear. The actual transition temperature in
thin films can however vary significantly from the bulk transition temperature
due to clamping and strain effects, or microstructural defects such as grain
boundaries. For example, a cubic symmetry for thin, polycrystalline BaTiO3

films has already been reported at room temperature [51], while an increase to
TC ≈ 177 ◦C has been observed in epitaxial films on MgO substrates [70].

The compositional phase diagram between BaO and TiO2 (fig. 2.2b) shows
a variety of different compositions and crystalline symmetries, with BaTiO3 as
the special case for the exact ratio of 1:1. If the ratio is slightly off, typically
solid solutions of two different phases will form, for example a mixture of
BaTiO3 and BaTi2O5 for Ti-rich crystals. Therefore, in order to obtain high
quality single crystalline films, the composition of Ba:Ti has to be controlled
carefully. Keeping the proper stoichiometry during the perovskite deposition is
a challenge for most thin film deposition methods [71].

Functional properties The exploration of the functional properties of BaTiO3

started with the discovery of the ferro- and piezoelectric properties [64, 73] and is
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still being continued. It has for example recently been shown by calculations that
BaTiO3 can exhibit a piezoelectric response comparable to PZT (lead zirconate
titanate), on of the most common materials used for piezoelectric applications
[74]. The first electro-optical measurements of BaTiO3 were performed in
the 1970s and revealed very high Pockels coefficients of r42 ≈ 1640 pm/V and
rc = r33 − r31 ≈ 108 pm/V at room temperature at a wavelength of 546.1 nm
[75, 76]. Calculations taking into account the coupling of different physical
effects such as the elasto-optic, piezo-electric and electro-optic effect, show a
slight decrease of the response in the infrared wavelength region, and illustrate
the different electro-optical effect for clamped and unclamped crystals [28, 77].
In the clamped situation (constant strain), the electro-optic effect is typically
by a factor of ∼2 smaller than in the unclamped case (constant stress), where
elasto-optic contributions add to the pure electro-optic effect. The elastic
deformations are caused by the piezo-electric effect, which vanishes at high
frequencies.

Applications and recent development The interest in BaTiO3 has been
high for more than half a century, and still nowadays, new understanding of
fundamental physics is gathered and novel devices are realized by using BaTiO3.
For example, an ultra low critical thickness for ferroelectricity of ∼2.4 nm [66], an
enhanced remanent polarization and coercive field due to strain-effects [45], and
ferroelectric superlattices of BaTiO3 and SrTiO3 [67] were demonstrated. Insight
into the ferroelectric ordering of nano-scale crystals were recently obtained by
investigating BaTiO3 crystals as small as 5 nm. Furthermore, BaTiO3-based
plasmonic modulators [69] and drastically improved tunneling barriers by using
BaTiO3 thin films [78] represent recent work on BaTiO3-based devices and
illustrate the still very present interest in the material system barium titanate.

2.1.4 Growth and characterization methods

Molecular beam epitaxy

Principle of MBE Molecular beam epitaxy (MBE) is a deposition method to
grow high quality epitaxial films in a very clean environment, often with very
low pressures in the ultra-high vacuum (UHV) regime (p < 1 × 10−9 mbar) [35,
79]. The mean free path length of atoms is in the order of several kilometers
at these low pressures. Therefore, solid materials such as metals can locally
be evaporated and, in a properly-designed chamber, directed as an atomic
or molecular beam towards a specific position where the sample is mounted
(fig. 2.3a). The atomic compositions at the sample surface can be controlled
by blocking the beams of different sources by mechanical shutters. Cryopanels



14 2 Fabrication of thin films

(a) (b)

θ θ
incident
beam

e-

screen

reciprocal rods

Ewald
sphere

specular
reflection

diffracted
beam

sample

side view

top view

incident
beam

e-

electron
beam

RHEED
pattern

rotating 
heater

shutter

O
2
 plasma 
source

effusion
cell

sample

Fig. 2.3 (a) Schematics of a MBE system (after [79]). (b) Physical principle of
RHEED (after [80]). Due to the gracing incidence, the electrons only penetrate
into the top few atomic layers of the sample. The reciprocal space of such a
2D-lattice is represented by rods whose intersection with the Ewald sphere is
line-shaped due to the finite extension of the rods. A streaky diffraction pattern
is therefore typically observed, as shown in (a).

cooled with liquid nitrogen typically cover the walls of the growth chamber to
prevent atoms from re-evaporation. Sub-monolayer (ML) coverages can be well
controlled by using low atomic fluxes. The rates are determined using a quartz
crystal micro-balance (QCM) prior to the deposition process. The QCM is
placed at the sample position, and the shift of the quartz resonance frequency
is monitored. The resonance frequency depends on the material coverage on
the quartz, which allows to calculate the evaporation rates of the sources.

Gases such as oxygen can be introduced into the chamber in either a molecu-
lar or in a more reactive radical form by plasma-cracking the molecular bonds.
By means of MBE, process conditions can be created that lead to growth mech-
anisms controlled by surface kinetics and that result in crystalline structures
far from the thermodynamic equilibrium.

RHEED The high vacuum in MBE reactors allows for the utilization of
RHEED (reflection high energy electron diffraction) as a technique to character-
ize the sample surface during the growth [35, 80]. As indicated in fig. 2.3a, an
electron beam is pointed at a gracing incident angle onto the sample. Since the
wavelength of the electrons (∼10 − 20 keV) is in the order of the atomic spacing,
a diffraction pattern of the crystal is monitored on a fluorescent screen. Due to
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the gracing incidence, the electrons only penetrate into the top-most atomic
layers, making the technique very surface sensitive. The reciprocal space of a
2-dimensional crystalline surface layer consists of infinite rods extending per-
pendicular to the sample surface which create a typically line-shaped diffraction
pattern. Figure 2.3b illustrates the construction of the diffraction lines, which
are defined by the intersection of the Ewald’s sphere (having a large radius for
electrons) with the reciprocal space (rods). A more precise and mathematical
description of the physics of RHEED can be found in ref. [80].

The reflected electron beam provides additional information to the diffraction
pattern: When following the intensity of the reflected electrons (specular spot),
the coverage of the currently growing monolayer can be estimated if the film
grows two-dimensionally. Each full period of the oscillating intensity corresponds
to the deposition of one single monolayer: while the minima correspond to a
surface covered with atoms of half a monolayer where the reflected electrons
between the upper and the lower surface regions interfere with each other [80],
the maxima correspond to a completely, homogeneously covered surface.

Chambers used in this thesis Two different MBE reactors with base pressures
of ∼5 × 10−10 mbar are used to fabricate epitaxial films, a 2 inch Riber system
(MBE32), and a 8 inch DCA reactor. The latter is also capable of handling
2 inch substrates. The relevant sources in both chambers are strontium effusion
cells, typically operated at ∼350 ◦C, and titanium ebeam evaporation cells. The
titanium cell is controlled by the filament current in the DCA system, while
a mass spectrometer monitoring the Ti-signal is used to stabilize the emitted
Ti-flux in the Riber. A barium effusion cell, typically operated at ∼500 ◦C,
is used in the Riber system to grow BaTiO3 layers. In specific cases, after
SrTiO3 deposition, the sample is transferred from the DCA to the Riber system
for subsequent BaTiO3 growth. The quality of the SrTiO3 template layer is
not degraded by the short exposure to air as observed in unchanged RHEED
patterns. Both systems are equipped with plasma gas sources to create atomic
oxygen, QCMs for calibrating the deposition rates, and RHEED systems by
k-space.

The sample temperature is determined by a pyrometer operating at a wave-
length of ∼10 µm (Riber system). The readout value of the pyrometer depends
on many parameters such as the emissivity of the sample (surface), the angle
of incidence, the focus of the pyrometer, and internal reflections for samples
consisting of multiple layers (for example SOI substrates). Those parameters
are difficult to determine, which thus prohibits a precise absolute temperature
determination for comparing different MBE systems. In addition, since silicon
is transparent below ∼ 300 ◦C in the infrared wavelength region, the pyrometer



16 2 Fabrication of thin films

magnetic field
target

substrate

argon

+

-

Ar+ - plasma

pump

~

-

-

Fig. 2.4 Illustration of a rf-sputtering system: Ar-atoms are ionized in a
rf-electric field, and confined in a region close to the target by a magnetic field.
Atoms from the target are released by collisions with Ar-ions, and accelerated
to the substrate [79].

cannot be used at low temperatures. Instead, a thermocouple mounted at
the sample manipulator has to be used. The real temperature of the sample
can however strongly deviate from the manipulator temperature, in particular
during heating and cooling processes. In the DCA system, no pyrometer but
solely a thermocouple is used for controlling the temperature.

RF sputtering

A rf-magnetron sputtering system Von Ardenne CS 320S operating at a a
rf-frequency of 13.56 MHz is used for the hybrid growth of epitaxial BaTiO3

films on MBE-grown seed layers (section 2.4). For the deposition, Ar-ions are
created in a plasma and accelerated with energies of 50 − 1000 eV towards the
ceramic BaTiO3 target. A magnetic field confines the electrons closer to target,
creating a larger concentration of Ar-ions. The bombardment causes surface
atoms to be ejected from the target, which are then collected at the surface
of the sample [79]. In particular for insulating substrates, such as BaTiO3 as
used in the experiments, an AC-bias is applied in order to avoid charging of
the target. Figure 2.4 illustrates the sputtering process.

Annealing

The sputtered BaTiO3 films require a post-deposition annealing step in order to
fully crystallize. The annealing process is performed in a rapid thermal annealing
system (AS one by AnnealSyS). Slow heating rates (∼25 ◦C/min) are used in
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order to reach the target annealing temperature of ∼650 ◦C within 20 min in O2

atmosphere at ambient pressure. The temperature is hold for another 20 min
before cooling down to room temperature. To study the change in crystallinity,
some of the annealing experiments are performed with a XRD tool, equipped
with a heating system and a dome to provide an oxygen atmosphere for the
sample.

Material characterization tools

X-ray diffraction The crystalline structure of the epitaxial layers is character-
ized by means of x-ray diffraction (XRD) [81]. The physical principle of XRD
is illustrated in fig. 2.5: The sample is exposed to x-rays with a wavelength
similar to the atomic distances (1.54 Å for a Cu-anode as used in this work).
The diffraction pattern of the x-rays scattered at the atoms of the crystal is
recorded by varying the angle of incidence of the x-rays, as well as the angle of
the detector relative to the crystal (fig. 2.5b). Mainly two modes of operation
are applied throughout the experiments:

• In symmetric θ − 2θ-scans, the angle of incidence is equal to the angle
between the detector and the sample. In this configuration, the recorded
diffraction pattern is sensitive to atomic planes and their distances parallel
to the sample surface (out-of-plane lattice constants). Epitaxial films
have a well-defined crystalline orientation, and thus only a small set of all
possible atomic planes contribute to the recorded diffraction pattern. In
contrast, polycrystalline films are randomly oriented and all crystalline
planes contribute to the diffraction pattern. Polycrystalline films can
thus clearly be distinguished from epitaxial films.
Samples are also analyzed in gracing incidence geometry in this work. In
that case the x-rays are diffracted at atomic planes perpendicular to the
sample surface, thus revealing the in-plane lattice constants.

• Rocking curves (RC) are used to judge the crystalline quality of an
epitaxial layer: The angle between incident beam and detector (2θ) is
fixed at a value corresponding to a specific diffraction line, while the
angle of the sample ω relative to the incident beam (rocking angle) is
slightly varied during the scan. For a perfect single crystal, the diffraction
condition is only fulfilled for a single ω-position, resulting in a sharp
rocking curve. If the sample consists of slightly misaligned crystalline
domains, each domain contributes at a different ω to the diffraction
pattern, resulting in a broader curve [81].

Throughout the work, a four circle D8 Discover X-ray diffractometer sys-
tem from Bruker AXS, equipped with a Cu-rotating anode is used. Lattice



18 2 Fabrication of thin films

θ

2θ

incident
X-rays

scattered
X-rays

d

crystalline planes

2θ
ω

x-ray tube
+ optics

moveable
counter + optics

x-rays

rotateable
holder

sample

(a) (b)

Fig. 2.5 (a) Scattering of x-rays at atoms of different crystalline planes. Since
the wavelength of the x-rays is in the same order of magnitude as the distance
of the atomic planes d, a diffraction pattern is visible. (b) Illustration of a XRD
system (top view).

parameters are determined by fitting the diffraction peaks using pseudo-Voigt
functions.

TEM Transmission electron microscopy (TEM) is used to study the microstruc-
ture of epitaxial films in cross-sectional and plan-view geometry. Electron diffrac-
tion, high-resolution transmission electron microscopy (HRTEM), high-angle
annular dark-field scanning transmission electron microscopy (HAADF-STEM),
electron energy-loss spectroscopy (EELS), and energy-dispersive X-ray (EDX)
spectroscopy are performed using a JEOL 2200FS TEM/STEM microscope.
The tool is operated at 200 kV and equipped with a Gatan DigiScan system
and an in-column Omega-type energy filter. For STEM, the convergence and
collection semiangles are set to 10.8 mrad and the inner semidetection angle of
the annular dark field detector is calibrated at 100 mrad. For these operating
conditions, the microscope provides a spatial resolution of about 1.6 Å. For
cross-sectional geometry, the samples are cut parallel to the (011) planes of
the Si substrate, while for plan-view samples are cut with an ultrasonic disk
cutter into disks with a diameter of 3 mm. In both cases, the samples are
then mechanically ground with a tripod polisher to a thickness of about 20 µm,
followed by Ar ion milling until electron transparency. Alternatively, a focused
ion beam tool is used to cut lamellae that are thinned down to ∼ 100 nm.

Scanning probe microscopy The surface morphology of the films is investi-
gated by conventional atomic force microscopy (AFM) operating in tapping
mode in a Dimension V and Dimension FastScan tool by Bruker. To analyze
the piezo-response of the BaTiO3 films, the tools are operated in the PFM
(piezo force microscopy) mode [82]: Therefore, a conductive tip (Pt-coated
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Fig. 2.6 (a) Working principle of a PFM: The topography causes a deflection
of the laser beam when no electric field is applied. (b) The surface is deformed
when a voltage Vac is applied to the sample. Depending on the polarization
P of the ferroelectric domains and the direction electric field, the cantilever
is deflected differently [82] (Figure courtesy of Asylum Research, an Oxford
Instruments company and Stephen Jesse, Oak Ridge National Laboratory).
(c) Illustration of the setup used for I/V and C/V measurements. The sample
is fixed on a copper block using a In/Ga paste.

silicon tip or PtSi tip) is scanned in contact over the sample surface. At the
same time, an electric AC-field is applied between the tip and the grounded
sample. For piezoelectric samples, the electric field deforms the surface, which
results into a deformation of the cantilever. By using a lock-in amplifier, the
modulated deformation can be separated from the surface topography. The
working principle of a PFM is illustrated in figs. 2.6a and 2.6b.

In order to write patterns into the ferroelectric film, a DC voltage of V0 =
±10 V is applied to the tip while scanning over the surface. Highly doped
Si-substrates (ρ < 0.005 Ω cm) particularly used for these experiments serve as
back electrode. After writing structures, a smaller AC voltage (Vac ∼ 1 V) is
applied to the tip to read out the patterns. The operating frequency is chosen
to be close to the cantilever resonance in order to enhance the sensitivity [82].

Electrical measurements

Platinum pads of different sizes (typically square-shaped, 40 × 40 µm2, or
circular shaped with a diameter of 225 µm) serve as top electrodes for electrical
measurements. The silicon wafer mounted with an indium-gallium paste on
a copper block serves as back contact, as illustrated in fig. 2.6c. An Agilent

4284A LCR Precision Meter is used for four point capacitance-voltage (C/V )
measurements, during which a small sinusoidal ac signal and a larger dc bias is
applied to the top electrode. Thus, the capacitance of the film can be analyzed
for different band bending regimes of the metal-oxide-semiconductor (MOS)
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structure, such as accumulation, flat-band, or depletion [36, 83]. Two-point
current-voltage (I/V ) measurements are performed in the same experimental
geometry using an Agilent 4155C parameter analyzer.

2.2 Epitaxial growth of strontium titanate on silicon

Although the direct growth of epitaxial BaTiO3 on silicon was reported first
[33], the route of integrating epitaxial SrTiO3 films has been explored in greater
detail [37, 38, 41, 53, 84–86]. In the effort to replace SiO2 with a high-dielectric-
constant gate dielectric, SrTiO3 represented a better candidate than BaTiO3

due to the smaller lattice mismatch to Si (table 2.1). Indeed, thin SrTiO3

layers were expected to better match the underlying Si crystalline structure and
therefore to be characterized by a lower amount of electrically active interface
defects. Regarding the applications targeted in this thesis, thin SrTiO3 films
represent an ideal buffer layer for accommodating the larger BaTiO3 to silicon
lattice mismatch and enable therefore the integration of high quality optically
active BaTiO3 layers (section 2.3).

In this chapter, two different growth routes to obtain SrTiO3/Si are discussed,
with focus on the crystalline quality of the oxide layers. The routes either
rely on a single or on a multi-step crystallization process. Additionally, the
growth process on other substrates than low-doped silicon wafers is explored, in
particular SOI wafers as required for integrated photonic devices (chapter 4).

Deposition procedure

Sample preparation The preparation of the wafers prior to the growth is
identical for all experiments: Before loading the typically slightly p-doped
(boron), (001)-cut silicon wafers (ρ = 0.1 − 0.5 Ω cm) into the UHV chamber,
the surface is cleaned with an oxygen plasma, followed by a megasonic and
ozone clean to remove particles and organic contaminants. The native SiO2

is then removed by a buffered HF solution. The last step is repeated with an
intermediate ozone clean, before loading the wafer with little delay (∼5 min)
into the MBE system. The HF dip creates a hydrogen terminated silicon surface
that suppresses the oxidation of silicon in ambient environment.

Single-step crystallization process Because of the rather short process time
compared to multi-step crystallization processes as discussed later in this
section, a deposition route with only one single annealing step is explored to
grow epitaxial SrTiO3 layers on silicon. The process tries to minimize the
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amount of SiO2 forming at the SrTiO3/Si interface during the growth [87], and
consists of four major steps (visualized in fig. 2.7):

1. High temperature Sr. The deposition of 0.5 ML of Sr at a substrate
temperature of ∼625 ◦C in UHV creates an interfacial strontium silicide
layer. This silicide layer does not only prevent silicon oxidation in the
subsequent steps [84, 88], but also represents the template for the following
epitaxial growth being commensurate to the Si crystalline structure
underneath. The high substrate temperature during Sr deposition is
required to allow the Sr atoms to rearrange on the Si surface and to form
a specific surface reconstruction which is the template for the subsequent
epitaxial steps [53].
The desorption of the hydrogen while heating is monitored by the RHEED
pattern, which shows a transition from a 1x1 to a 2x1 periodicity of
the Si-surface. During the Sr deposition, a 3x1 surface reconstruction is
formed when reaching a coverage of 1/6 ML [53]. Monitoring the RHEED
intensity at the position of the 3x1 diffraction line (fig. 2.7a) is used as
a feedback to control the overall shuttering time and evaluating the Sr
deposition process. The substrate temperature during Sr deposition is
slightly reduced compared to the values of 650 ◦C to 700 ◦C as typically
reported for similar process routes [84, 87, 88] to suppress the formation
of SiC which is caused by a background contamination of the Riber MBE
chamber.

2. Low temperature SrO. Additional 0.8 ML of metallic strontium are de-
posited at ∼100 ◦C to prevent the formation of SiO2 during the intro-
duction of O2 into the growth chamber. 1.2 ML SrO2 are then deposited
under oxygen pressure of ∼5 × 10−9 mbar. All steps are controlled by fol-
lowing the intensity of the specular spot in the RHEED system (fig. 2.7b).
SrO is a strongly ionic oxide and grows epitaxial on the Sr-Si template at
the low temperature and pressure reported above. This ensures that only
a minimum amount of Si gets oxidized during the first SrTiO3 deposition
steps.

3. Amorphous SrTiO3. SrTiO3 is then deposited onto the SrO template. The
Sr and Ti cells are first calibrated in oxygen (∼5×10−8 to 2 × 10−7 mbar).
Higher oxygen pressure is required at this stage to oxidize Ti due to
its ionic character. By keeping the substrate at the low temperature
of ∼50 ◦C, again minimum substrate oxidation is ensured. 10 unit cells
(UC) of SrTiO3 are deposited in a layer-by-layer manner. The final film
is in the amorphous state.

4. Crystallization of SrTiO3. Finally, the amorphous SrTiO3 is crystallized
by solid state epitaxy when heating the sample above ∼480 ◦C. Typically,
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Fig. 2.7 Epitaxial growth of SrTiO3 on silicon with a single crystallization
step. (a) RHEED diffraction pattern at various stages during the growth. (b)
Evolution of the layer stack of the sample, and process conditions for the four
main deposition steps. (c) Intensity of the x2 and x3 diffraction lines during
the initial deposition of 0.5 ML Sr. The maximum in the x3 line indicates a
coverage of 1/6 of a monolayer. (d) Intensity of the specular spot during the
deposition of 2 ML SrO. Oscillations are visible for different deposition steps as
marked in the plot. The experimental data corresponds to a SOI wafer, but is
similar to ordinary silicon substrates.

the oxygen is kept at the same pressure as used during the SrTiO3

deposition.

Optionally, a direct deposition of SrTiO3 at 500 to 550 ◦C is performed in
oxygen (∼2 × 10−7 mbar) to obtain thicker SrTiO3 layers.

Multi-step crystallization process Alternatively, the growth of SrTiO3 is
performed in multiple steps of depositing 2 − 4 UC-thick amorphous SrTiO3

layers and subsequently annealing them. Such multi-step crystallization process
typically enhances the crystalline quality of the SrTiO3 layer [88–90] in the
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Fig. 2.8 (a) RHEED diffraction pattern of SrTiO3 at different layer thicknesses.
(b) Illustration of the multi-step crystallization deposition process. In contrast
to the single-step crystallization process (fig. 2.7b), SrTiO3 is directly deposited
on the Sr/Si template at low temperature (step 2), followed by an annealing
step in UHV. The process is cycled several times, before depositing SrTiO3 at
higher temperature to reach larger layer thicknesses. The samples are heated to
750 ◦C prior to step 1 to desorb any SiO2 that might be created before loading
the wafer into the MBE chamber.

expense of increasing the process time. A description of the individual process
steps, and details of the pressure and temperature profiles are given in fig. 2.8
and the corresponding figure caption. As the major differences compared to
the single-step crystallization process, the deposition of 2 ML of SrO is omitted
because of its low thermal stability at higher temperatures [90], and the SrTiO3

is deposited in several steps. All multi-step crystallization experiments are
performed in the DCA MBE system which provides an active cooling system
and consequently allows rather short annealing cycles (∼30 − 60 min per cycle).

Comparison of SrTiO3 quality

As visible from the RHEED patterns for the first 10 UC (4 nm) of SrTiO3

(figs. 2.7a and 2.8a), both deposition processes result in thin films with flat
surface and epitaxial relationship to the silicon substrate. These features are
maintained also in thicker SrTiO3 layers (> 10 nm, figs. 2.9a and 2.9d). The
surface roughness of such layers determined by AFM analysis is low for both
growth methods (∼0.3 − 0.4 nm rms, figs. 2.9b and 2.9c), in agreement with
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Fig. 2.9 Comparison of SrTiO3 layers grown with a single recrystallization
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(e) Rocking curves of the [002]STO peak. (f) X-ray diffraction pattern in out-of-
plan geometry, and magnification of the [002]STO peak. The lattice parameters
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multiple crystallization steps, respectively. The positions of the bulk diffraction
peaks are indicated in gray.

the RHEED patterns. The formation of small islands (fig. 2.9c) in some of the
films could not be correlated to the deposition process. The islands might be
due to small deviations from the 1:1 stoichiometry between Sr and Ti. The
concentration of any crystalline phases other than SrTiO3 is however small since
no evidence was found in x-ray diffraction (fig. 2.9f) and RHEED investigations.

The major difference between both growth methods is the significantly higher
crystalline quality of SrTiO3 layers grown with the multi-step crystallization
process, indicated by the sharper diffraction lines in the RHEED patterns
(figs. 2.9a and 2.9d). The higher quality is evidenced by the smaller full width
at half maximum (FWHM) of the rocking curve (∆ωSTO = 0.37°) compared to
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the layer grown with a single crystallization step (∆ωSTO = 1.54°) (fig. 2.9d).
The analysis of several films confirms this trend of a reduced FWHM of the
rocking curve independent of the layer thickness (fig. 2.10a). The comparison
also reveals rather large sample-to-sample variations, which are the consequence
of the strong impact of the chamber conditioning on the deposition process. A
conclusive analysis of the dependence of layer thickness on the SrTiO3 quality
is thus not possible. Nevertheless, the highest crystalline quality among all
samples is achieved with a relatively thick film (104 nm) grown by the multi-step
crystallization process (fig. 2.10a). The FWHM of the RC is only ∆ωSTO = 0.27°
in that particular sample, which is close to values reported for bulk SrTiO3

crystals (0.035° − 0.108° [41]). The good quality of thick films is in agreement
with a systematic study of SrTiO3/Si films that shows an enhancement in the
SrTiO3 quality for an increasing film thickness [40].

The rather large FWHM of the rocking curve of the SrTiO3 layer grown with
the single crystallization method (fig. 2.9d) is caused by slightly misoriented
crystalline domains. Such defects are formed in order to relax strain that
originates from the lattice mismatch between silicon and SrTiO3 (table 2.1).
The relaxation already occurs in the 2 ML SrO and the first 4 nm of SrTiO3,
which are deposited amorphously and then crystallized in a single-step solid-
state epitaxial process. Since the deposition is performed at low temperature,
strain due to the mismatch of the thermal expansion coefficients is absent and
a bulk-like SrTiO3 lattice constant is observed (fig. 2.10b). Thicker (> 10 nm)
SrTiO3 layers grown at 500 ◦C are relaxed during the deposition. When cooling
down to room temperature, tensile strain establishes due to the mismatch of
the thermal expansion coefficients between Si and SrTiO3 (table 2.1). The
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crystalline symmetry is therefore slightly distorted. In particular, the out-of-
plane lattice constant is compressed to values slightly smaller than the bulk
lattice constant, as seen in fig. 2.9e.

In contrast, thin layers of SrTiO3 grown with the multi-step crystallization
method show a significantly larger out-of-plane lattice constant compared
to bulk crystals (fig. 2.10b). The increased lattice parameter results from
compressive strain in the SrTiO3 crystal due to the lattice mismatch of ∼1.7 %
(table 2.1) relative to the Si substrate. In agreement with sharper SrTiO3

rocking curves (fig. 2.10a), less defects are created in strained SrTiO3 layers
at the interface to the high-quality silicon substrate compared to fully relaxed
SrTiO3 films. The large strain levels are however only present in thin SrTiO3

layers (fig. 2.10b). Thicker layers grow relaxed at the growth temperature of
500 ◦C, and tensile strain originating from the thermal expansion mismatch
causes a slightly reduced out-of-plane lattice parameter compared to bulk
crystals (fig. 2.10b). A transition between layers with compressive and tensile
strain is visible at a SrTiO3 thickness of ∼20 nm (fig. 2.10b). More data for
intermediate layer thicknesses would however be required to analyze the critical
thickness in detail.

In conclusion, the multi-step crystallization process leads to a significantly
better SrTiO3 crystalline quality compared to the single-step crystallization
method, mainly because the first monolayers grow highly strained and experience
thus a reduced defect density compared to relaxed films. The introduction of
periodic annealing steps might be the key to avoid defects in the very first
unit cells, similar to methods developed for the growth of III/V semiconductor
materials [91]. Additionally, the absence of 2 ML SrO between the SrTiO3

crystal and the silicon surface might contribute to the improvement of the
crystalline quality: Such SrO buffer layer mainly serves to avoid oxidation of
the Si interface [39]. Due to the large lattice mismatch to the silicon substrate
(aSrO = 5.144 Å [92], ∼5.6 % mismatch), defects might form within the first
SrO monolayers, which are continued in the successive SrTiO3 layer.

The first monolayers on top of the Sr-terminated silicon surface are crucial
for reaching a high quality epitaxial growth, and should therefore be further
investigated, independently of the subsequent annealing procedure. Several
methods have been reported to grow the initial oxide layer on silicon. As an
example, Park et al. [41] deposited 3 ML SrO and subsequently 2 ML TiO2,
which interdiffuses into the SrO layer to form SrTiO3 during the first annealing
step. Their approach resulted in the currently smallest SrTiO3 rocking curves
of perovskite films on silicon substrates with a FWHM of ∆ωSTO = 0.006° for
the [002]STO peak.
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Growth on different Si-substrates

In this work, the growth process is mainly investigated on low-doped silicon
wafers, as previously described. Different substrates are however required for
many applications, such as silicon-on-insulator (SOI) wafers for the fabrication
of photonic devices (chapter 4). Furthermore, highly resistive Si-wafers are
necessary for the electro-optic characterization (chapter 3) and, in some cases,
highly doped silicon wafers are needed for determining the piezoelectric proper-
ties of the BaTiO3 films. The main challenge in adapting the growth process
to these different substrates is the adjustment of the temperature during the
growth. In the MBE chamber, the wafers are heated via radiation from a hot
filament. The actual temperature of the wafer at a specific heating power varies
between different substrates for two reasons: First, the absorption of the wafer
is dependent on the doping [93], and second, radiation is reflected at interfaces
between the different layers in a SOI wafer. Such interfaces are not present in
standard silicon substrates. Additionally, differently doped wafers show differ-
ent emissivity values, which has an impact on the temperature readout of the
pyrometer. Since a thermocouple to directly measure the surface temperature
is not available, the actual temperature can not be determined consistently
between different substrates.

In order to experimentally account for these differences in temperatures, a
coarse calibration is performed in the ASone RTA, where a thermocouple as
well as a pyrometer are installed. Figure 2.11 shows the ratio between both
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temperature readouts for a sample temperature of 650 ◦C as determined by the
thermocouple. Ideally, this ratio should be one for a well calibrated pyrometer.
Significantly deviations from the low-doped silicon wafers are visible for the
highly doped and the SOI wafer. Taking these deviations into account when
performing the growth, SrTiO3 films with good crystalline quality are achieved
(see fig. 2.7 as example for SOI substrates).

2.3 Epitaxial deposition of barium titanate thin films

SrTiO3/Si templates as described in the previous section are used for fabricating
epitaxial BaTiO3 thin films. The approach of depositing epitaxial BaTiO3

on silicon was previously reported [55, 94–96], but is much less explored than
the growth of SrTiO3 layers. Generally, the larger lattice mismatch between
BaTiO3 and Si (∼4.0 %) compared to SrTiO3 and Si (∼1.7 %, table 2.1) makes
it more difficult to obtain barium titanate films of high structural quality on
Si substrates. Additionally, the properties of BaTiO3 thin films are influenced
by anomalous distortions of the lattice parameters and strain, as observed in
the presence of nano-scale BaTiO3 grains [97, 98]. Achieving control over the
sample morphology is therefore a key condition for obtaining high-quality films
with bulk-like functional properties, as desired for most BaTiO3-based devices.

Therefore, different growth processes and their impact on the crystalline
quality and the microstructure of the films are discussed below (sections 2.3.1
and 2.3.2). A detailed analysis of the crystalline symmetry of the BaTiO3 layers
is given in section 2.3.3.

2.3.1 Layer-by-layer deposition

Growth process and epitaxial relationship

Barium titanate is deposited at ∼600 ◦C on top of 10 UC epitaxial SrTiO3 on
silicon grown by the single-step crystallization process (section 2.2). BaO and
TiO2 are therefore deposited sequentially to achieve a layer-by-layer growth
with typical fluxes corresponding to ∼15 s/ML. Variations of the growth
temperatures between 575 ◦C and 650 ◦C have no influence on the crystalline
quality as determined by RHEED and rocking curve analyses and do not
change the surface roughness of the films. The formation of oxygen vacancies
in the perovskite layers is minimized by using atomic oxygen at a pressure
of p ≈ 2 × 10−5 mbar, which is close to the upper limit allowed in MBE
systems. The evolution of the RHEED pattern during the BaTiO3 deposition
(figs. 2.12a and 2.12b) shows that the crystalline quality of the initial SrTiO3
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Fig. 2.12 (a) RHEED patterns at various stages during the growth process
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layer is maintained during the BaTiO3 deposition. X-ray diffraction analysis
(figs. 2.12c and 2.12e) confirm the epitaxial relationship, and reveal a similar
FWHM of the RC as observed for SrTiO3 layers grown by a single crystallization
process (fig. 2.10a). Also, the low surface roughness of 0.4 nm of the BaTiO3

layers (fig. 2.12d) matches the roughness of the SrTiO3 seed layers (fig. 2.9).

The XRD diagrams for the in- and out-of-plane orientation (fig. 2.12c)
show two clearly different lattice parameters, which is in accordance with a
tetragonal crystal symmetry expected for BaTiO3. For the specific sample
shown in fig. 2.12, BaTiO3 is oriented with the longer c-axis perpendicular to
the sample surface (“c-axis” film). However, the orientation of the c-axis varies
with the growth conditions, the layer thickness, and the chemical composition
of the buffer layer [55, 94, 99], as discussed in more detail in section 2.3.3.

The atomic arrangement and epitaxial relationship of the BaTiO3 layer
relative to the SrTiO3 layer is visualized by line scans in a HRTEM micrograph
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Fig. 2.13 (a) HRTEM image of the BaTiO3/SrTiO3 interface. The green and
yellow arrows indicate the direction of line scans parallel and perpendicular
to the interface (b). The scans reveal a commensurate growth of BaTiO3

on SrTiO3 with a different out-of-plane lattice constant. (c) The different
splitting of the diffraction peaks in the FFT of the HRTEM image highlights
the different out-of-plane lattice parameters (yellow circles), and confirms the
identical in-plane constants (green circles).

of a BaTiO3/SrTiO3/Si layer stack1 (figs. 2.13a and 2.13b): Scans parallel to
the interface show the identical in-plane registry of the atoms, in agreement to
the presence of one single in-plane diffraction peak for the BaTiO3 and SrTiO3

films in the XRD pattern (fig. 2.12c). The in-plane lattice parameter a‖ of both
layers is identical, and the growth of BaTiO3 is commensurate to the SrTiO3

seed layer.
Contrary, the scans perpendicular to the interface show a different lattice

spacing between the BaTiO3 and the SrTiO3 layers, again in agreement to
two different out-of-plane lattice constants a⊥ as seen in the XRD analysis
(fig. 2.12c). The fast Fourier transform (FFT) of the HRTEM image (fig. 2.13c)
visualizes the observations of different out-of-plane constants: a splitting of the
diffraction spots is only visible in the out-of-plane direction (yellow circles). For
the in-plane direction, only single diffraction peaks are present (green circles).

Thin BaTiO3 layers which grow commensurately on the SrTiO3 seed layer

1 In addition to the MBE-deposition as described above, 100 nm BaTiO3 is sputtered
on top of the stack at 500 ◦C, which results in an amorphous phase (details in
section 2.4). The amorphous phase is preferentially milled away during the sample
preparation and is thus not visible in the microscopy images. Since the thermal
budged of the MBE deposition is not significantly increased by the sputter process,
no influence on the MBE-layers by the sputtering process is assumed.
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Fig. 2.14 (a) Edge dislocation in the BaTiO3 layer, which is formed to relax the
strain caused by the epitaxial growth on the SrTiO3 buffer layer. (b) [001]BTO

Bragg filtered version of (a). The missing lattice plane in the BaTiO3 crystal
compared to the SrTiO3 film is highlighted in red.

are highly strained due to the lattice mismatch of ∼2.3% between both layers at
room temperature (table 2.1). The strain is partially reduced by the formation
of dislocations at the BaTiO3/SrTiO3 interface in order to minimize the energy
of the films [56]. When the layer thickness is increased, strain is further released
by the formation of dislocations within the BaTiO3 layer. Figure 2.14 shows an
example of an edge dislocation in the BaTiO3 layer at a distance of ∼5 nm from
the BaTiO3/SrTiO3 interface. As discussed in section 2.3.3, a layer thickness
greater than ∼30 nm is required to fully relax the BaTiO3 film. A way to avoid
the formation of edge dislocations is the reduction of the strain by tuning the
lattice constant of the buffer layer closer to the one of BaTiO3. One option
to experimentally realize such adjustment is by mixing barium into the buffer
layer, and creating a BaxSr1−xTiO3 solid solution [55].

The commensurate growth of BaTiO3 on SrTiO3 seen in fig. 2.13 indicates
that the BaTiO3 crystalline quality is determined by the SrTiO3 template. X-
ray analysis with a similar FWHM of the [002]BTO rocking curve (∆ωBTO = 2.1°,
fig. 2.12e) compared to the [002]STO rocking curve of SrTiO3 layers grown with
the single-step crystallization process (fig. 2.10) are in agreement with these
TEM observations. Generally, the formation of dislocations to release strain
(fig. 2.14) might result in a degradation of the crystalline quality in the BaTiO3

film.

Analysis of interfacial layers

The high resolution STEM micrographs (figs. 2.13a and 2.14a) of the interfaces
not only show the epitaxial ordering of the crystalline BaTiO3 and SrTiO3
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Fig. 2.15 (a) EEL+ spectra at different positions of the BaTiO3/SrTiO3/Si
layer stack2, as indicated in the (b) ADF-STEM image. The spectra are
calibrated with literature values for the Ti-L and O-K edge [102]. (c) EDX line
profiles perpendicular to the interface. The distance is centered at the lower
SrTiO3 interface.

layers in respect to the silicon substrate. They also reveal an amorphous SiO2

layer at the SrTiO3/Si interface with a thickness of ∼3 nm. Although SrTiO3

growth process was originally designed to avoid any interfacial SiO2 formation
[39], the SrO/Si interface is rather unstable against high temperatures and
high oxygen pressures [38, 100, 101]. In particular, the BaTiO3 growth process
with atomic oxygen is much more aggressive for the interface than the SrTiO3

deposition only. Likely, oxygen diffuses through the SrTiO3 layer at the high
temperature used during the BaTiO3 deposition and oxidizes the Si underneath.
Since SiO2 forms after the crystallization of SrTiO3, it does not harm the
epitaxial relationship of the subsequently deposited layers.

The assignment of the amorphous layer at the SrTiO3/Si interface (black
layer in fig. 2.15b) to SiO2 is justified by the EEL spectra, which show the typical
oxygen edge of amorphous SiO2 (fig. 2.15a). The spectra also show a crystal

2 The sample under investigation is identical to the one described in footnote 1
(page 30) with the exception of the top BaTiO3 layer, which is sputtered at 600 ◦C.
Since the thermal budged of the MBE deposition was not significantly increased
by the sputter process, no influence on the MBE-layers by the sputtering process
is assumed.
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field splitting in the titanium L2 and L3 edge within the BaTiO3 and SrTiO3

layers as expected in crystalline layers. However, at the SrTiO3/SiO2 interface,
the Ti-L edge shows no crystal field splitting, which indicates the presence of
an amorphous interfacial species that contains Ti. It was previously reported
that amorphous TiSix silicide can form at temperatures higher than > 450 ◦C
in Ti/Si multilayers [103]. Silicide may form also at the SrTiO3/Si interface
at high temperatures [100] and in oxygen deficient conditions. In oxygen rich
conditions, more likely a Ti-rich silicate layer forms as previously observed at
similar interfaces [101]. The Ti-rich amorphous phase is observed in several,
similarly fabricated samples, and seems to be characteristic to the growth
process. A systematic study, in particular using XPS (x-ray photoelectron
spectroscopy) analysis, is required to identify the character and the cause for
the formation of that interfacial layer.

The composition of the amorphous SiO2 layer is in agreement with EDX
line scans across the interface (fig. 2.15c), which show the presence of oxygen
and silicon at the SrTiO3/Si interface. The upper part of the amorphous
layer appears clearly brighter in the STEM image (fig. 2.15b) indicating the
presence of heavier elements that originate from the SrTiO3 layer. Indeed, the
EDX profiles confirm the interdiffusion of Sr into the SiO2 layer. They also
show a Ti-peak close to the SrTiO3 interface, consistent with a Ti-rich silicate
phase (fig. 2.15c). The diffusion of barium into the SrTiO3 layer as observed in
fig. 2.15c is not detected in the TEM analysis of similarly fabricated samples.
The diffusion might be due to slight variations in the BaTiO3 deposition
temperature for the specific sample shown in fig. 2.15.

The role of the BaTiO3 composition

Compared to the growth of SrTiO3, which keeps a good crystalline structure
even for off-stoichiometric Sr:Ti ratios by for example forming Ruddlesden-
Popper phases [71], meeting a 1:1 ratio of Ba and Ti is very critical to obtain high
quality BaTiO3 films. This is in particular true for rather thick BaTiO3 layers
(> 50 nm) as required in electro-optical devices (chapter 4). The comparison of
three samples with different Ba:Ti ratio of 1.03:0.97, 1.00:1.00, and 0.97:1.03
(fig. 2.16) shows the strong impact of the film composition on the growth process:
Between the streaky diffraction lines corresponding to the BaTiO3 matrix,
individual diffraction spots are visible in the RHEED patterns, indicating 3D
crystalline features. These features are oriented at a specific crystalline direction
relative to the BaTiO3 crystal. For Ti-rich samples, such diffraction spots are
not visible but the pattern is characterized by a rather blurry background which
might be attributed to the presence of amorphous species. The spotty features
in the diffraction patterns are most pronounced in the Ba-rich sample, but
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Fig. 2.16 Influence of the Ba:Ti ratio on the BaTiO3 layer quality. (a) RHEED
patterns of the initial SrTiO3/Si templates grown by single-step crystallization.
(b) Diffraction pattern after successively depositing 20 nm BaTiO3 with Ba-rich
(red, Ba : Ti = 1.03 : 0.97), stoichiometric (blue, Ba : Ti = 1.00 : 1.00), and
Ti-rich (yellow, Ba : Ti = 0.97 : 1.03) conditions, respectively. 3D diffraction
features are visible in addition to the 2D-streaks for some of the samples. (c)
Topography measured by AFM. The cross section of the layer stack is illustrated
on the left.

are also visible in the nominally stoichiometric sample. The real stoichiometry
might be indeed slightly off, because the calibration of the fluxes via QCM is
prone to systematic errors as discussed in section 2.3.2.

A clear trend for the formation of “precipitates” in Ba-rich samples is visible
not only in the diffraction patterns, but also in the evolution of the surface
topography with an increasing density of small islands (fig. 2.16c). According
to the BaTiO3 phase diagram (fig. 2.2), Ba2TiO4 or Ba1.054Ti0.964O2.964 might
form for Ba-rich growth conditions. Possibly due to their low volume fraction
and thus low diffraction intensities, such phases are not observable by means of
XRD investigations. In particular, no correlation could be made between the
composition and the crystalline quality as determined by the FWHM of the
BaTiO3 rocking curves.
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Fig. 2.17 (a) RHEED pattern of a 130 nm-thick BaTiO3 layer grown with
layer-by-layer deposition. Individual diffraction spots in addition to the streaky
pattern of the two-dimensional, crystalline surface are indicated by arrows.
(b) BF-STEM image showing small, rectangular shaped defects in the BaTiO3

film. (c) Atomic resolution DF-STEM image revealing APBs with missing TiO2

planes, likely caused by Ti-deficiency during the growth. (d) Schematics of an
APB in BaTiO3 with a missing TiO2 plane.

To further understand the origin of the “preciptates”, HRTEM analysis
are performed on a rather thick (130 nm) BaTiO3 film with similar RHEED
patterns (fig. 2.17a). In these patterns, traces of polycrystalline domains are
visible in addition to individual diffraction spots. The plan-view STEM analysis
of the sample shows ∼5 nm-small, planar crystalline defects of rectangular shape
(fig. 2.17b). These defects are indeed anti phase boundaries (APBs) as seen at
atomic resolution (fig. 2.17c). In particular, the TiO2 lattice plane is missing,
indicating a Ti-deficiency of the film, which is equal to Ba-excess. As shown
in fig. 2.16, the individual diffraction spots in the RHEED pattern are indeed
characteristic for barium excess. Since the APBs are regularly embedded in
the BaTiO3 matrix, the local distortion of the lattice constant might give rise
to additional diffraction features visible in the RHEED patterns.

As discussed for La1−xCaxMnO3 films grown on SrTiO3 substrates [104],
APBs can serve as origin for the formation of islands, which would also result
in RHEED patterns with 3D diffraction features. The topography seen in off-
stoichiometric, Ba-rich films (fig. 2.16c) as well as their RHEED patterns with
individual diffraction spots are consistent with such island formation triggered
by APBs due to Ba-excess.

In addition to small APB defects, the cross-sectional analysis shows columnar
shaped features perpendicular to the surface (figs. 2.18a and 2.18b). The
columns lead to domains with increasing mis-orientation towards the surface of
the film, where some of the columns detach and small pores are formed. The
columnar structure is confirmed in the plan-view geometry by the presence
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Fig. 2.18 TEM analysis of a 130 nm-thick MBE-grown BaTiO3 layer showing
a columnar structure and the formation of pores. (a) High and (b) low magnifi-
cation cross-sectional DF-STEM images. (c) Rectangular-shaped columns are
visible in the plan-view TEM images at low and (d) high magnification.

of rectangular defects which are surrounded by pores (figs. 2.18c and 2.18d).
Electron diffraction patterns (not shown) reveal the same crystalline symmetry
of the pores and the surrounding matrix with a slight rotation of the crystalline
planes in the columns. No different composition between the columns and
the matrix could be identified via EDX scans. It is therefore unlikely that
the columns represent a different phase such as Ba2TiO4 that might form in
non-stoichiometric BaTiO3 (fig. 2.2).

Stress during cooling down as a consequence of the different thermal expansion
coefficients between silicon and BaTiO3 is unlikely to be the origin for the pore
formation. First, because the BaTiO3 films would only marginally be strained
(ǫ ≈ 0.5%), and second, because stress relaxation typically leads to cracks in
the film which are not observed in MBE grown BaTiO3 layers. If other phases
than BaTiO3 are locally established due to off-stoichiometric growth conditions,
these phases might however have different elastic moduli and could thus act as
breaking points of the film. As suggested by Lebedev et al. [104], also APBs
might promote the formation of columnar structures that are separated by
pores. Minimizing the creation of APBs by avoiding off-stoichiometric growth
conditions would thus be a key for obtaining homogeneous and dense layers
without pores.
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2.3.2 Shuttered co-deposition

Challenges for controlling the Ba:Ti stoichiometry

In order to avoid the formation of other crystalline phases than BaTiO3, a
precise 1:1 ratio between Ba:Ti has to be obtained. Therefore, two main
challenges have to be solved for the MBE deposition process:

• Systematic errors in the flux calibration have to be eliminated. One error
arises from the assumption that the atoms evaporated from the sources
have the same sticking coefficient on the quartz during the calibration
and on the sample surface during the film growth. Since the quartz is
kept cool at 25 ◦C and the sample is heated at ∼600 ◦C, the sticking
coefficient might however differ between both cases. In addition, the
choice of the shuttering cycles has an impact on the flux measurements:
During the calibration, the shutters of the sources are typically opened
and closed for 1 min each, while the real shuttering during the deposition
is much faster. The calibrated rates for different shutter cycles vary by
more than 10 % (fig. 2.19a). Reasons for that variation are the finite
shutter closing/opening time during one cycle. Furthermore, heat is
reflected back into the cell when the shutter is closed, which eventually
varies the temperature of the cell core and the thermocouple in the
cell. The calibration errors could be compensated by carefully varying
the composition in various calibration samples, and thus determining
corrected calibration curves.

• The titanium source exhibits a slow, long term drift which stabilizes only
after several hours of operation (fig. 2.19b). Even though a short-term
extrapolation of the flux is possible, the fabrication of a 50 nm thick
BaTiO3 film with a deposition time of 1 − 2 h would require several
recalibration steps during the process.

Due to these difficulties in properly determining the actual flux, the formation
of precipitates as seen in the RHEED patterns for films with a thickness of
> 20 nm (figs. 2.16b and 2.17a) is hardly avoidable. A way to overcome this
lack of composition control is by co-depositing both metal oxides at the same
time while using a fast shuttering sequence to compensate off-stoichiometry, as
described in the following.

Concept of shuttered co-deposition

The simultaneous deposition of BaO and TiO2 onto the sample provides several
advantages compared to the BaTiO3 layer-by-layer growth.
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Fig. 2.19 (a) Deposition time for one monolayer of Sr for different calibra-
tion settings while keeping the cell temperature constant. The amount of Sr
deposited on the QCM during one calibration cycle is measured in order to
determine the Sr-flux. Therefore, the shutter is iteratively opened for the
time topen and closed for tclose to compensate temperature variations of the
quartz due to thermal radiation from the hot Sr-cell. The Sr flux increases
(reduction of deposition time per monolayer) when the relative shutter opening
time is reduced. The increased rate is likely caused by back reflections of the
thermal radiation of the cell at the closed shutter, which increases the cell core
temperature. (b) Long-term drift of the TiO2 and BaO deposition times per
monolayer for fixed source settings. Solid lines are guides for the eye.

• Some studies report an improved layer quality in SrTiO3 films grown
by co-deposition compared to layer-by-layer deposition [105, 106]. The
simultaneous deposition influences the growth kinetics as the presence
of strontium promotes the oxidation of titanium [107]. The improved
oxidation might also be valid for the chemically similar BaTiO3.

• The deposition time is reduced by a factor of 2 which lowers the impact
of drifting fluxes of Ba and Ti.

• As the key advantage, the stoichiometry is only determined by one
parameter, namely the ratio of the fluxes of the two sources. The second
parameter, the absolute magnitude of the fluxes, determines the total
thickness of the film, where small deviations are less critical for most
applications. In contrast, during a layer-by-layer deposition, both fluxes
have to be known exactly to determine the deposition time of 1 ML for
BaO and TiO, respectively.

Typically, both fluxes are set to identical rates when co-depositing both
materials. During the growth, drifts of the fluxes have to be compensated to
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Fig. 2.20 (a) Comparison of shutter sequences for layer-by-layer growth and
shuttered co-deposition. During the shuttered co-deposition, only ∆t has to
be controlled to ensure a stoichiometry growth. tBa and tTi are the deposition
times for 1 ML of Ba and Ti, respectively, and tBa > tTi is chosen as an example.
(b) Diffraction patterns of a Ti-rich and Ba-rich BaTiO3 surface, respectively,
used to control ∆t. The yellow ellipse highlights a x2 surface reconstruction.

maintain a 1:1 flux ratio between Ba and Ti. Therefore, either the temperature
of the Ba-effusion cell can be adapted, or the ebeam filament current of the
Ti-source can be changed. Adjusting the effusion cell suffers however from a
rather long delay (several min) before reaching stable conditions, and changing
the Ti-source requires a QCM recalibration since the Ti-flux is very sensitive
to the filament current and thus hardly predictable.

Therefore, a shuttered co-deposition is developed to realize a stoichiometric
growth without changing the source settings. Both sources, Ba and Ti, are
set to roughly the same flux corresponding to ∼15 s/ML as determined via
QCM calibration. The deposition times for 1 ML are tBa and tTi. For the
case of tBa > tTi, as an example, both shutters are simultaneously opened for
tTi. To compensate the different fluxes, only the Ba-source is afterwards kept
opened for a short time ∆t = tBa − tTi (typically around ∼1 s), as illustrated in
fig. 2.20a. If tBa < tTi, the Ti- and Ba-cycles are switched. Thus, for most of
the time during the deposition both shutters are opened (co-deposition), and
small deviations are compensated by a fast shutter sequence. By changing ∆t

during the deposition, a quick way to adjust the stoichiometry with only one
parameter is given.

A feedback mechanism is required to compensate off-stoichiometric BaTiO3

growth in real time. For example, the evolution of the intensity oscillations in
the RHEED specular spot has been used to control the stoichiometry during
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Fig. 2.21 BaTiO3 film grown by the shuttered co-deposition method on a
SOI substrate. (a) XRD diagram showing the epitaxial relationship between
BaTiO3 and Si. The in- and out-of-plane lattice constant are different due
to the tetragonal crystal symmetry as seen in the inset. (b) Rocking curve of
the [002]BTO diffraction peak. (c) Topography determined by AFM, showing a
surface roughness of ∼0.3 nm rms.

the layer-by-layer growth of SrTiO3 [71, 108] and could be adapted to BaTiO3

growth. This technique has however several drawbacks: First, the sample
cannot be rotated which causes local inhomogeneities in film thickness and
stoichiometry. These might be irrelevant for small substrate sizes as often
used in research laboratories, but are generally not acceptable for larger wafers.
Second, the off-stoichiometry is typically only visible after some oscillations
corresponding to several atomic layers. Such delay is not acceptable for the
growth of BaTiO3 since the time during which the onset of a precipitate
formation can be reversed is extremely short (1 − 2 ML).

During the SrTiO3 growth, a surface reconstruction with x2 symmetry
becomes visible when the upper layer is non-stoichiometric [30, 106]. The
symmetry of this reconstruction differs between Ti-rich and Sr-rich conditions,
and hence allows to adjust the fluxes with very short delay (∼1 ML). A similar
reconstruction behavior is observed during the BaTiO3 growth (fig. 2.20b).
Notably, the unwanted BaTiO3 surface reconstructions are visible even for fast
rotating samples, are very sensitive to small deviations from stoichiometry, and
can be used for adjusting the ∆t instantaneously. Clearly, the utilization of
this feedback mechanism works only for co-deposition, where a stoichiometric
surface ideally should not show any reconstruction. In case of a layer-by-layer
deposition, the surface oscillates between Ti-rich and Ba-rich conditions.

As a result of the shuttered co-deposition growth, the formation of precipitates
is avoided even for 50 nm thick layers, and a very flat surfaces with a roughness
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Fig. 2.22 Dark-field TEM images at various magnification levels of a 50
nm thick BaTiO3 film grown via shuttered co-deposition. The film is very
homogeneous and does not show any pores or islands.

of ∼0.3 nm rms and a reduced FWHM of the RC of ∆ωBTO = 0.74° is obtained
(fig. 2.21) compared to the layer-by-layer deposition. The reduction of ∆ωBTO in
that particular sample might also be related the utilization of SrTiO3 seed layers
grown with the multi-step crystallization method which yields higher SrTiO3

crystalline quality (section 2.2). Nevertheless, the prevention of precipitate
formation is a clear advancement to the layer-by-layer growth. Indeed, the
HRTEM investigation fig. 2.22 shows a drastically improved BaTiO3 quality,
with no pores, no larger defects, and no island formation observable. The film
appears very homogeneous in high as well as in coarse magnification, confirming
the advancement of the shuttered co-deposition growth process.

2.3.3 Crystalline symmetry

Evolution of crystalline orientation The BaTiO3 layers under investigation
show tetragonal symmetry with the long c-axis oriented perpendicular to the
film surface, confirmed by in- and out-of-plane XRD (fig. 2.12c) and HRTEM
analysis (fig. 2.13). Previous reports claim that thin SrTiO3 buffer layers lead
to a-axis oriented BaTiO3 [95] and that thicker BaxSr1−xTiO3 buffer layers
(10 − 30 nm) are needed to obtain technologically interesting c-axis oriented
films [41, 55, 99]. On the opposite, the present work shows that it is possible
to obtain c-axis BaTiO3 films for 4 nm-SrTiO3 buffer layers, in agreement with
recently published studies [48, 56]. To understand the origin of the crystalline
orientations, the lattice parameters and resulting strain values are calculated
for two special situations (details of the calculations in appendix B):

• The BaTiO3 layer is assumed to be fully commensurate to the SrTiO3
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Fig. 2.23 Lattice parameters and strain values of BaTiO3 on SrTiO3/Si
templates, calculated for two special cases. (a)/(b) BaTiO3 fully commensurate
to the SrTiO3 layer which is assumed to be relaxed at the deposition temperature
of 100 ◦C. (a) In-plane strain when the in-plane lattice parameter is the short
(a-axis, yellow) or the long axis (c-axis, green) in the tetragonal phase. (b)
In-plane lattice constant of the c-axis BaTiO3 layer (solid red), out-of-plane
parameter (solid blue) when the cell-volume is kept at the bulk value, and bulk
BaTiO3 lattice constants (dashed). (c)/(d) BaTiO3 fully relaxed at the growth
temperature of 600 ◦C. (c) In-plane strain and (d) lattice constants. No out-
of-plane lattice parameter can be given at low temperatures to the formation
of domains at the phase transition. In both cases the thermal expansion is
determined by the silicon substrate, to which the BaTiO3 and SrTiO3 layers
are clamped. Literature values are used to calculate the thermal expansion of
BaTiO3 [57, 109] and silicon [60] (appendix B).

buffer layer. The SrTiO3 layer is considered to be relaxed at the deposition
temperature of ∼100 ◦C, in agreement with the relaxed out-of-plane lattice
constant for thin SrTiO3 layers grown with the single crystallization
process (fig. 2.10b). Slightly strained films as observed for different SrTiO3

deposition conditions have only marginal influence on the following
considerations.

Large strain levels of ∼ −2.7% are present in the commensurate BaTiO3

layer at the growth temperature of 600 ◦C, which are reduced while cooling
down (fig. 2.23a). The strain is reduced when the smaller a-axis is oriented
in-plane at the phase transition to the tetragonal phase, therefore a c-axis
BaTiO3 film establishes. As a consequence of the compressive in-plane
strain, the c-axis would be strongly elongated compared to bulk crystals
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(fig. 2.23b). In first approximation, when the volume of the BaTiO3 unit
cell is assumed to be bulk-like, the estimation of the out-of-plane lattice
parameter shows a c-axis lattice constant of 4.20 Å at room temperature
(fig. 2.23b). For a more realistic approximation, the change in the cell
volume has to be taken into account. However, literature values for the
Poisson’s ratio defining this volume change are not available for BaTiO3

at high growth temperatures [55].

• The BaTiO3 layer is assumed to be fully relaxed at the growth tempera-
ture, and clamped to the buffer layer while cooling down. In that case,
the strain level is reduced at the phase transition if the longer c-axis
is oriented parallel to the surface (fig. 2.23c), resulting into an a-axis
film (fig. 2.23d). In this case a simple approximation of the out-of-plane
lattice constant is not possible when the crystal symmetry is considered
to be tetragonal with one long c-axis: Both the a- and the c-axis lattice
parameter are influenced by the clamping at the phase transition from
cubic to tetragonal. The formation of crystalline domains rotated by 90°
occurs, as discussed below. As a consequence, both lattice parameters
are strongly correlated due to local strain fields, which prohibits a simple
separation between a and c, unlike to c-axis films.

In both cases, the thermal expansion is assumed to be determined by the
expansion of the silicon substrate to which the perovskite layers are clamped.
A possible bending of the wafer to reduce the strain is neglected. Thin BaTiO3

layers grow commensurately to the SrTiO3 layer (fig. 2.13), but form edge
dislocations at the BaTiO3/SrTiO3 interface to accommodate for the large
lattice mismatch [56]. The BaTiO3 layers are still strained compared to bulk
crystals, and start to relax by forming defects above the critical thickness.
This thickness was calculated by Vaithyanathan et al. as ∼2 nm for BaTiO3

at 600 ◦C with in-plane strain of 2.7 % relative to the SrTiO3 layer [55]. In
their work [55] a thicker BaxSr1-xTiO3 buffer with larger lattice constant was
required to reduce the strain to < 1 % in order to increase the critical thickness
to ∼10 nm.

The reason for the reduced buffer thickness needed to obtain c-axis films in
the current work might be the higher defect density in the SrTiO3 and BaTiO3

layers (FWHM of the BaTiO3-RC: ∆ωBTO = 0.7° − 2.1°, figs. 2.12 and 2.21)
compared to the previous study (∆ωBTO = 0.38° [55]). The defects in the
SrTiO3 layer might serve as centers to release strain in the BaTiO3 layer at
the BaTiO3/SrTiO3 interface while still maintaining a commensurate growth.
The critical thickness could thus be larger than 2 nm. This conclusion is in
agreement with observations of c-axis BaTiO3 on 5 nm-thick SrTiO3 buffer
layers on silicon by Niu et al. [48], who measured FWHMs of the rocking curves



44 2 Fabrication of thin films

0 25 50 75 100 125

3.96

4.00

4.04

4.08

4.12
out-of-plane
in-plane

BTO-bulk, a-axis

la
tt

ic
e

co
n
st

a
n
t

[Å
]

BaTiO
3

layer thickness [nm]

BTO-bulk, c-axis

c-axis film a-axis film

BaTiO
3

SrTiO
3

Si

Fig. 2.24 Out-of-plane (red) and in-plane (blue) lattice parameter of BaTiO3

films on SrTiO3/Si grown via MBE with a critical thickness of ∼30 nm. The
in-plane parameter shown for the 130 nm data point corresponds to the larger
parameter when deconvoluting the data (fig. 2.25c) with two peaks. The open
red square shows a second peak visible at a thickness of 30 nm, indicating a
transition regime with both a- and c-axis domains. The dashed lines correspond
to the bulk lattice constants. The illustrations show a c-axis and an a-axis
film, respectively, where white arrows indicate the direction of the ferroelectric
polarization which is parallel to the crystalline c-axis.

of ∆ωBTO = 0.7°, which are similar to the current work and larger than those
observed by Vaithyanathan et al. [55].

In order to experimentally determine the critical thickness, the out-of-plane
lattice parameter of several BaTiO3 films is measured as a function of the film
thickness (fig. 2.24). Here, the critical thickness is referred to the BaTiO3

layer thickness where a transition from c-axis to a-axis orientation occurs. A
relaxation of the highly strained c-axis out-of-plane lattice constant for very
thin layers (< 8 nm) is visible for an increasing film thickness up to ∼20 nm.
The relaxation occurs by forming edge-dislocations (fig. 2.14) to release the
large strain. For thicknesses > 50 nm, the out-of-plane lattice constant is equal
to the bulk a-axis parameter. The a-axis orientation matches the expectations
for thick films that grow relaxed at the high deposition temperature (fig. 2.23).
The experimentally determined “critical thickness” for the transition from
c-axis to a-axis oriented layers is ∼30 nm. Consistent with the behavior of the
out-of-plane lattice constant, the in-plane parameter changes from a-axis-like
in thin films to c-axis-like for films above the critical thickness (fig. 2.24).
A fraction of BaTiO3 domains with c-axis orientation might be present at
the BaTiO3/SrTiO3 interface even for thicker a-axis films, as indicated by
geometrical phase analysis of HR-STEM images in a recent study of identical
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Fig. 2.25 (a) Plan-view TEM image of a 20 nm thick c-axis BaTiO3 film
showing a Moire pattern with domain sizes in the order of 10 − 50 nm, which
are illustrated in (b) as slightly tilted crystalline regions. (c) XRD diagram
of a 130 nm-thick a-axis BaTiO3 film. The inset shows a magnification of the
BaTiO3 as [200]/[002] peak obtained with out-of-plane and in-plane geometries.
The in-plane peak is a convolution of the diffraction peaks corresponding to
the a-axis and the c-axis. The vertical lines show the bulk values of tetragonal
BaTiO3 [58]. (d) Illustration of the domain structure in an a-axis film, with
randomly oriented spontaneous polarization associated with the direction of
the c-axis (white arrows in blue cuboids).

BaTiO3/SrTiO3/Si layer stacks [56].

Domain structure Epitaxial thin films consist of many crystalline domains,
which are slightly misoriented regions in the crystal. The size of these domains
is assessed by imaging the Moire pattern created by the perovskite and silicon
crystalline lattice for a 20 nm thick c-axis BaTiO3 film (fig. 2.25a). The size of
homogeneous areas in the Moire pattern indicates single domains with a typical
size of ∼ 10 − 50 nm. Figure 2.25b illustrates the slightly tilted crystal lattice
between adjacent domains in a cross-sectional view. In plan-view geometry
(not shown) the domains would be slightly rotated in respect to each other.

For thicker a-axis films, domains have inevitably to be formed even when
any tilted domains could be avoided by perfect growth conditions: Because
the template for the epitaxial growth is a cubic Si substrate, two equivalent
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orientations of the elongated tetragonal c-axis exist. By forming domains in
which the c-axis is rotated by 90° within the plane of the film, strain fields
originating from the mismatch between the cubic Si and tetragonal BaTiO3

lattice are compensated. The existence of two orthogonal domains is evidenced
in a 130 nm thick BaTiO3 film by the presence of the convoluted [200]BTO and
[002]BTO diffraction peaks in the grazing incidence XRD data (fig. 2.25c). As
no intentional miscut is present in the substrates, the population ratio of these
domains is assumed to be 1:1 for symmetry reasons. The schematics of domains
in an a-axis film (fig. 2.25d) also indicates the ferroelectric polarization of each
domain (white arrows), which does not necessarily coincide with the structural
domains [110]. The Moire pattern analysis for the thicker sample did not reveal
distinct, domain-like areas, which prohibits a domain size assessment.

2.4 Hybrid growth of barium titanate via

rf-sputtering

Due to the low deposition rate during the MBE growth (∼50 nm/h), and the
requirements of films with thicknesses of several 100 nm for many applications
(section 2.1), a hybrid growth approach to increase the thickness of the layers
with commercially available deposition methods is developed3. This approach
combines seed layers of BaTiO3 and SrTiO3 epitaxially grown on Si-substrates
as described in sections 2.2 and 2.3 with rf-sputtering. Indeed, the epitaxial
relationship to the silicon substrate is maintained even for larger thicknesses of
> 100 nm.

2.4.1 Experimental details of the hybrid growth

After growing MBE seed layers, thicker BaTiO3 layers are successively deposited
by rf-sputtering at 300 W and 10−5 bar of Ar atmosphere containing 20 % O2.
The substrate temperature is varied in different sputtering experiments between
500 ◦C and 600 ◦C, the latter one being the maximum temperature permitted
in the tool. The sputtering conditions for a reference sample without any seed
layer are slightly modified: The first 10 nm of BaTiO3 are sputtered in Ar
atmosphere to avoid oxidation of the HF-cleaned silicon surface. The remaining
90 nm are deposited with the same conditions as described above.

3 The content of this chapter has been published in Nanotechnology [111]. Text
excerpts and figures are reproduced by permission of IOP Publishing Limited.
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To study the impact of the seed layer on the crystallinity of the sputtered
layer, BaTiO3 films of ∼100 nm thickness are sputtered

• directly onto a bare Si substrate at 500 ◦C and subsequently annealed at
650 ◦C

• onto MBE-SrTiO3/Si seed layers with a MBE-SrTiO3 thickness ranging
from 4 nm to 12 nm

• onto MBE-BaTiO3/4 nm MBE-SrTiO3/Si seed layers with a MBE-BaTiO3

thickness ranging from 2 nm to 20 nm.

For investigating the influence of the annealing conditions on the films,
samples sputtered at T = 500 ◦C are annealed in atmospheric pressure of O2

for 20 min at different temperatures, varying from 500 ◦C to 725 ◦C.

2.4.2 The role of the MBE seed layer

BaTiO3 layers sputtered directly onto a Si substrate at 500 ◦C are amorphous.
After a subsequent anneal in oxygen at 650 ◦C, they become polycrystalline
with randomly oriented grains, as inferred from the relative peak intensities of
the θ − 2θ scan (fig. 2.26a, grey curve): A strong [110] peak is visible, similar
to polycrystalline BaTiO3 ceramics [58]. Likely, the formation of SiO2 during
sputtering prevents atomic ordering on the Si surface and hinders epitaxial
growth during the post-sputter-deposition anneals.

A different behavior is observed for BaTiO3 films sputtered and annealed
onto MBE-BaTiO3/SrTiO3 seed layers. When sputtered and annealed onto seed
layers thinner than about 6 nm, the BaTiO3 consists of a majority of epitaxial
[00l] domains, although domains with different orientations, for example [110],
are also observed (fig. 2.26a, green curve). The situation improves for thicker
seed layers. After sputtering at 500 ◦C onto a 8 nm BaTiO3/4 nm SrTiO3

template (fig. 2.26a, red curve), partially crystalline samples presents only
epitaxial [00l] diffraction peaks. After annealing at 650 ◦C, the amount of
the crystalline epitaxial phase increases and no crystalline orientations other
than [00l] (or [h00]) are observed (fig. 2.26a, blue curve). BaTiO3/SrTiO3

seed layers with a total perovskite thickness between 6 and 24 nm behaves
the same. In addition, as seen in fig. 2.26b, a BaTiO3 film sputtered onto a
single 12 nm SrTiO3 seed layer behaved similarly to one sputtered onto a mixed
8 nm BaTiO3/4 nm SrTiO3 seed layer. Namely, for the same seed layer total
thickness, BaTiO3 layers sputtered on either SrTiO3 or BaTiO3 termination
shows only [00l]/[h00] crystallographic directions with similar out-of-plane
lattice constants.
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Fig. 2.26 (a) θ − 2θ scans of 100 nm BaTiO3 (i) sputtered-and-annealed on a
bare Si substrate (grey), (ii) sputtered-and-annealed on a 2 nm BaTiO3/4 nm
SrTiO3 seed layer (green), (iii) sputtered on a 8 nm BaTiO3/4 nm SrTiO3 MBE
seed layer at 500 ◦C (red) and subsequently annealed at 650 ◦C (blue). The
black curve is a 8 nm BaTiO3/4 nm SrTiO3 MBE seed layer only. (b) θ − 2θ
scans of 100 nm BaTiO3 sputtered onto a 12 nm MBE-SrTiO3 seed layer at
500 ◦C (red) and annealed at 650 ◦C (blue) (visualized in the schematics). The
black curve is the SrTiO3 seed only. (c) Schematics of the crystalline structure
of the samples. The white arrows indicate the orientation of the BaTiO3 c-axis.

The epitaxial relationship between BaTiO3 and Si is confirmed by in-plane
grazing incidence diffraction experiments discussed in section 2.4.5. A noticeable
variability is found in the sputtering process, with some as-sputtered samples
being amorphous and some partially crystalline. Indeed, since the sputtering
temperature is close to the crystallization temperature for BaTiO3 thin films,
small variations in the deposition conditions might have a significant influence
on the as-sputtered samples. Because air exposure between the MBE and
sputtering processes may also have an impact, the time elapsed between the
two steps is kept minimal. However, although some variations are visible at
this intermediate stage, the samples behaves identical after the final annealing
step.

The comparison of different seed layers shows that thin perovskite seed layers
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Fig. 2.27 Out-of-plane lattice constant a⊥ as a function of the seed layer
total thickness (4 nm SrTiO3 + 0 − 20 nm BaTiO3) for MBE-BaTiO3 only (red
squares, measured before sputtering), for 100 nm BaTiO3 sputtered at 500 ◦C
(blue circles), and for 100 nm sputtered BaTiO3 annealed at 650 ◦C for 20 min
in O2 (yellow triangles).

strongly favor epitaxial BaTiO3 growth during the hybrid deposition process.
In particular, such layers prevent the formation of any randomly oriented phases
when thicker than ∼4 nm. Due to the chemical similarity between SrTiO3 and
BaTiO3 and due to the same in-plane lattice constant for thin, strained layers
(see section 2.4.5), both seed layer terminations show a similar behavior.

2.4.3 Effect of seed layer thickness

As can be inferred from the [002]/[200] diffraction peaks reported in fig. 2.26a,
the out-of-plane lattice constant a⊥ of the initial 8 nm thick MBE-BaTiO3

layer (black curve) is close to the bulk BaTiO3 c-axis value (table 2.1). The
out-of-plane orientation of BaTiO3 can then be described as [001]BTO ‖ [001]Si,
(c-axis-oriented BaTiO3, a⊥ = c). In contrast, the as-sputtered BaTiO3 layer
(red curve) is found to be only partially crystalline and it is not possible to
unambiguously define whether BaTiO3 is tetragonal or cubic or a mixture of
the two phases.

After an oxygen anneal at 650 ◦C, the total BaTiO3 peak area increases,
which can be attributed to the crystallization of the amorphous parts of the
sputtered layer (fig. 2.26). Additionally, a⊥ shrinks to a value closer to the bulk
BaTiO3 a-axis value (table 2.1 and fig. 2.27) and is clearly different from the
bulk cubic lattice parameter (acub = 4.031 Å [112]). For a tetragonal crystal
symmetry with one long c-axis, the orientation of the layer is described by
[001]BTO ‖ [100]Si (a-axis oriented BaTiO3, a‖ = c). The amorphous part of
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the 100 nm-thick sputtered BaTiO3 layers crystallizes in a relaxed phase at the
high annealing temperature. As discussed in section 2.3.3, due to the thermal
expansion coefficient mismatch between BaTiO3 and the silicon substrate, a-
axis films are formed during cooling down. As shown later, the initially c-axis
oriented BaTiO3 does not relax during the anneal, maintaining its tetragonal
c-axis orientation (schematics in fig. 2.26c).

The evolution of a⊥ of the BaTiO3 layers as function of the total seed
layer thickness for a fixed sputtering temperature of 500 ◦C and post-annealing
temperature 650 ◦C is reported in fig. 2.27. The seed layers consist of 4 nm
MBE-SrTiO3 and MBE-BaTiO3 of variable thickness, while the thickness of the
sputtered BaTiO3 layer is kept at 100 nm. The partially crystalline as-sputtered
layers (circles) are most likely c-axis oriented, whereas the fully crystallized
annealed layers (triangles) are clearly a-axis oriented. This orientation is
observed for all sputtered BaTiO3 layers, independent of the thickness of the
initial seed layer. As discussed in section 2.3.3, all MBE-BaTiO3 layers (squares)
in the thickness range 2 − 20 nm are c-axis oriented.

2.4.4 Effects of post-deposition annealing

In order to follow the impact of the annealing temperature on the crystalline
structure of the sputtered BaTiO3, θ − 2θ scans are acquired on the same
sample after successively annealing steps in oxygen. The scan range includes
the [110]BTO peak, which is the strongest diffraction peak in randomly oriented
domains [58]. Only [00l] (or [h00]) diffraction peaks are observed for all annealing
temperatures. The out-of-plane lattice constant a⊥ changes monotonously from
bulk c-axis to bulk a-axis values between 300 ◦C and 650 ◦C, saturating at
T ≈ 650 ◦C (fig. 2.28). Similarly, the area of the [00l]BTO/[h00]BTO diffraction
peaks increases and saturates in the same temperature range. As seen from the
reduction of the FWHM of the BaTiO3 rocking curves from ∆ωBTO ∼ 4° to
∼2° (fig. 2.28), the overall crystalline quality of the BaTiO3 layers increases
during the annealing step. These observations show that an annealing step at
T ≥ 650 ◦C is required in order to fully crystallize the BaTiO3 layers sputtered
at 500 ◦C.

2.4.5 Micro-structure and strain analysis

A deeper characterization of the crystalline structure and morphology of a
100 nm thick BaTiO3 layer (i) sputtered at 500 ◦C and (ii) subsequently annealed
at 650 ◦C, as well as (iii) directly sputtered at 600 ◦C is performed by cross
correlating in-plane and out-of-plane XRD with HRTEM data. The seed layer
of all three samples is 8 nm BaTiO3/4 nm SrTiO3 grown by MBE.
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Fig. 2.28 (a) Area of the [002]BTO and [004]BTO diffraction peaks, out-of-
plane lattice parameter a⊥, and FWHM of the BaTiO3-rocking curves ∆ωBTO

as function of post-sputter annealing temperature for a 100 nm BaTiO3 film
sputtered at 500 ◦C onto 8 nm BaTiO3/4 nm SrTiO3 MBE seed layer. The
sample is kept at each temperature in O2 for 20 min, and subsequently cooled
down to room temperature for the measurements. (b) [002]BTO rocking curves
for various annealing temperatures.

The amorphous BaTiO3 film of the sample sputtered at 500 ◦C could not be
investigated as it was milled away during the sample preparation, and mainly
the MBE grown seed layers remained. The remaining 8 nm-thick BaTiO3

layer is tetragonal and c-axis oriented, in agreement with the characteristics
of MBE-grown BaTiO3 layers discussed in section 2.3.3. Consistently, the
x-ray diffraction data of that particular sample shows a main peak originating
from the tetragonal c-axis MBE-BaTiO3, and the less intense one from the
MBE-SrTiO3 (fig. 2.29a, red curve). The in-plane XRD data shows only one
clear peak, which corresponds to the smaller a‖ of the BaTiO3 and SrTiO3

layer.

Three components are needed to fit the out-of-plane diffraction peak after
the annealing step (fig. 2.29a, blue curve): the main one corresponding to a-axis
BaTiO3, the second one to c-axis BaTiO3, and the third one to SrTiO3. The
three components suggest that the sample consists of a mainly tetragonal a-axis
BaTiO3 film mixed with some minor c-axis areas. Consistently, the in-plane
peak (fig. 2.29b, blue curve) can be deconvoluted into two components, one
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Fig. 2.29 (a) Out-of-plane and (b) in-plane θ − 2θ scans of 100 nm BaTiO3

sputtered onto a 8 nm BaTiO3/4 nm SrTiO3-MBE seed layer at 500 ◦C (red)
and annealed at 650 ◦C (blue), or alternatively sputtered at 600 ◦C (green).

corresponding to the BaTiO3 c-axis, and one corresponding to both the BaTiO3

a-axis and the SrTiO3 with same a‖. Likely, the initial BaTiO3 seed layer keeps
its c-axis orientation, while the sputtered-and-annealed BaTiO3 is mainly a-axis
oriented. As discussed in section 2.3.3, the a-axis orientation originates from
the relaxed growth above the critical thickness of ∼30 nm. Consistently, the
average c/a-ratio in the sputtered-and-annealed sample decreases with respect
to the MBE-BaTiO3 (table 2.2), since the strain due to the lattice mismatch
between the Si-substrate and the perovskite layers is reduced in relaxed films.

Table 2.2 Summary of the BaTiO3 lattice constants as extracted from the
XRD data. Values in bold correspond to the main component. Bulk lattice
constants for comparison are given in table 2.1.

sample BaTiO3 a⊥ [Å] BaTiO3 a‖ [Å] c/a

+ sputtered (500 ◦C) 4.062 3.966 1.024
+ sputtered (500 ◦C)

+ ann. (650 ◦C)
3.984 4.033 4.042 3.966 1.015

+ sputtered (600 ◦C) 4.054 4.035 1.005
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Fig. 2.30 Low-magnification and high-resolution HAADF-STEM images of
(a) 100 nm BaTiO3 sputtered at 500 ◦C and annealed at 650 ◦C. (b) 100 nm
BaTiO3 sputtered at 600 ◦C onto the same 8 nm BaTiO3/4 nm SrTiO3-MBE
seed layer. “P” indicates a pore (area of darker contrast).

The cross-sectional HAADF-STEM image in fig. 2.30a reveals that the
sputtered-and-annealed BaTiO3 film is epitaxial but consists of many domains
slightly misoriented, in particular in the upper part of the film. Porosity is
occasionally visible as areas of darker contrast, but without any amorphous
phase inside the pores.

The cross-sectional HAADF-STEM image of the sample sputtered at 600 ◦C
(fig. 2.30b) exhibits a different morphology: The layer consists of nano-crystalline
domains with sizes smaller than 5 nm and with small misorientation. Notably,
no porosity is observed. However, the electron diffraction patterns (not shown)
display no peak splitting, indicating the presence of a mainly cubic phase, or a
tetragonal phase with little tetragonality. The tetragonal crystalline structure
is indeed confirmed by the XRD data with BaTiO3 peaks for the out-of-plane
and in-plane diagram at different, but very close positions (fig. 2.29, green
curves). The strong reduction of the tetragonality with almost cubic c/a-ratio
(table 2.2) is likely caused by the formation of nano-domains and may originate
from interface effects [97], and from the change of the Ti bonding character
observed in small grains [98]. It is shown in ref. [97] that large stress fields
can establish in small domains favoring the formation of a cubic phase, thus
reducing the tetragonality. Such stabilization is thermodynamically explained
by the “internal stress model” by Buessem et al. [113].

Stress at the MBE-BaTiO3/sputtered BaTiO3 interface could for the same
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reasons influence the crystalline quality of the atomic layers at that interface.
The interfacial region is clearly visible in fig. 2.30 between the MBE-BaTiO3

and the sputtered BaTiO3 layers. The contrast between these layers originates
from differences in density and overall crystalline quality. However, despite the
high resolution, any different crystalline phase at this interfacial region could
not be determined.

In summary, the morphology and crystalline structure of the sputtered
BaTiO3 films on epitaxial seed layers is strongly dependent on the sputtering
conditions: Depositing amorphous layers at rather low temperatures (T =
500 ◦C) with an additional post-deposition annealing step creates tetragonal
a-axis oriented and partially porous layers with epitaxial relationship to the
silicon substrate. In contrast, layers sputtered at temperatures high enough
to directly crystallize the BaTiO3 layer (T = 600 ◦C) show no pores, but
epitaxially crystallize in a tetragonal phase with strongly reduced c/a-ratio.
This reduced tetragonality most likely originates in the formation of nano-scale
domains. Such formation does not occur in the solid phase epitaxy process
when crystallizing the amorphous layer during the post-deposition anneal.
The epitaxial relationship of the BaTiO3 films with well-defined crystalline
structure, tetragonal symmetry, and a thickness of ≥ 100 nm makes the layers
grown with the hybrid growth process well-suited for devices that rely on the
functional properties of barium titanate, such as piezo-electric and electro-optic
applications.

2.5 Functional properties of barium titanate films

2.5.1 Electrical properties

Resistivity Bulk BaTiO3 is an excellent electric insulator at room temperature
with resistivity values of ρ > 1012 Ω cm [114, 115]. However, doping with
small amounts of foreign atoms such as La or Nb can increase the electron
concentration and consequently reduce ρ by several orders of magnitude (ρ ≈
10−2 Ω cm for 0.1 % of Nb doped BaTiO3 [116]). In MBE-grown films with
little impurity concentration, the conductivity is mainly determined by the
concentration of oxygen vacancies [117] that can act as electron donors and can
thus have a significant impact on the resistivity [118–120]. MBE is in particular
prone to the formation of oxygen vacancies due to the low oxygen pressures
used during the deposition.

In most applications utilizing the functional properties of BaTiO3, including
electro-optic devices, a highly conductive BaTiO3 layer is detrimental. The
current-voltage characteristics of a 8 nm-BaTiO3/4 nm-SrTiO3/Si layer stack
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Fig. 2.31 (a) Exemplary j(
√

V ) and resistivity curve of a 8 nm-BaTiO3/4 nm-
SrTiO3/Si sample. The current is normalized to the size of the electrical
pad (diameter of 225 µm). (b) Resistivity ranges at the same electric field
E = 3 × 107 V/m measured for various MBE-grown samples with different
thicknesses d. Samples with d > 100 nm are grown with the hybrid growth
approach (section 2.4).

shows low current densities of |j| < 100 nA/cm2 for small applied voltages
(|V | < 2 V) (fig. 2.31a). The actual current density is below the measurement
range of the experimental setup. The resistivity is bulk like (ρ > 1013 Ω cm,
fig. 2.31a). This is an improvement over previous studies reporting much lower
resistivitiy values (ρ < 109 Ω cm at 2 V for 50 nm thick, undoped BaTiO3 films
grown by MBE) [117]. The difference might originate from a more efficient
oxygen plasma in the MBE reactor used in the current work, which results in a
better oxidation of Ba and especially of Ti during the growth.

At larger electric fields, the transport mechanism in ferroelectric films is typi-
cally described by either the Poole-Frenkel or the Schottky-emission conduction
[121, 122]. In both cases the current density j is exponentially dependent on
the square root of the applied field E, or the applied voltage V :

j ∝ exp
(√

E
)

∝ exp
(√

V
)

(2.1)

Such behavior is observed in the BaTiO3 layer for electric fields E > 2 × 108

V/m as seen in the linear slop when plotting j(
√

V ) (fig. 2.31a). BaTiO3 films
of different thicknesses between 6 and 320 nm show consistently high resistivity
values at high electric fields (fig. 2.31b). The data is determined from different
electrical pads and samples. The large scattering of the values (as indicated by
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the bar-diagram) might be caused by not uniformly distributed pin-holes that
lead to locally higher current densities.

Concluding the I/V analysis, all BaTiO3/SrTiO3/Si samples are very re-
sistive similar to bulk-crystals. The high resistivity confirms a low oxygen
deficiency in the films even though the samples are grown at rather low oxygen
partial pressures compared to the fabrication of single crystals. The BaTiO3-
layers are therefore well-suited for applications relying on their functional
properties. The properties between BaTiO3 and SrTiO3 could not be separated
in the experiments.

Permittivity Depending on microstructure and composition, the relative per-
mittivity ǫ of BaTiO3 can reach very high values of ǫ > 104 close to the Curie
temperature TC = 120 ◦C and ǫ > 103 at room temperature [64, 113, 114,
123]. The permittivity is of great significance when designing the electric
field distribution for integrated devices (section 4.3.4) and is therefore experi-
mentally determined via capacitance-voltage measurements in MOS structures
(fig. 2.32a): Since p-doped silicon substrates are used, an accumulation of charge
carriers at the semiconductor-oxide interface is reached for a negative gate bias
[83]. From the corresponding capacitance Cacc, the relative permittivity ǫox of
the oxide can be determined via

Cacc/A = ǫ0 · ǫox/dox (2.2)

Here, d is the thickness of the film and ǫ0 the vacuum permittivity. The ∼3 nm
thick SiO2 layer between the perovskite layer and the silicon (fig. 2.15) con-
tributes to the measured capacitance and has to be taken into account when
extracting the perovskite properties. Using ǫSiO2 = 3.9 [36], the average permit-
tivity of the BaTiO3/SrTiO3 layer stack of a 8 nm-BaTiO3/4 nm-SrTiO3/p-Si
sample (fig. 2.32a) is calculated as ǫper = 35.2, which is significantly lower than
values for bulk BaTiO3 ceramics [113]. The determination of the permittiv-
ity is very sensitive to the SiO2-thickness estimation: The assumption of a
3.5 nm-thick SiO2 layer results in a significantly higher permittivity value of
ǫper = 56.3.

A clear trend to an increasing permittivity for larger film thicknesses is
visible, with a saturation at ǫper ∼ 150 (fig. 2.33). This trend, and in particular
the small permittivity values for thin films (d < 50 nm) are consistent with
the by more than one order of magnitude smaller permittivity along the c-axis
compared to the a-axis-permittivity of BaTiO3 [64]. The structural analysis
revealed the transformation from low-permittivity-c-axis to high-permittivity-a-
axis films for an increasing thickness (fig. 2.24). The permittivity values are in
agreement with other reports of nanometer-scaled BaxSr1−xTiO3 layers [123]
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Fig. 2.32 (a) C/V characteristics of a 8 nm-BaTiO3/4 nm-SrTiO3/p-Si layer
stack measured at different frequencies. The capacitance is normalized to the
electrode area of 4 × 10−4 cm2. (b) Mean permittivity of the BaTiO3/SrTiO3

perovskite layer stack for different film thicknesses assuming a 3 nm-thick SiO2

layer at the SrTiO3/Si interface. The error bars indicate the variation of the
extracted permittivity when changing the SiO2-thickness by ±0.5 nm.

and provide a good data set for device simulations.
In order to separate the properties of BaTiO3 and SrTiO3, a systematic study

would be required where both layer thicknesses are varied independently. In
particular, SrTiO3-films without any additional BaTiO3 have to be characterized
to determine ǫSTO. Due to the thickness dependency of the permittivity of the
perovskite layers, no separation is possible with the current data.

Finally, the similar C/V behavior at different frequencies (fig. 2.32a) indicates
little trapping of charges at the interfaces or inside the oxide layer [36]. The
deviation of the low-frequency data at positive gate bias is expected when
reaching the inversion regime at the interface [83].

Ferroelectricity The capacitance-voltage characteristic of metal/ferroelectric/-
insulator/semiconductor (MFIS) structures are expected to show a hysteresis
behavior [124, 125], which has also experimentally been observed [126]. Im-
portantly, the sense of orientation is counter-clockwise for p-doped substrates
when cycling the gate bias. In contrast, a clockwise hysteresis is often ob-
served in MOS structures on p-substrates, which can be attributed to positive,
fixed charges that are trapped at or de-trapped from the oxide/semiconductor
interface [36].

The BaTiO3/SrTiO3/SiO2/p-Si films are also MFIS structures, and a counter-
clockwise hysteresis would be expected. Most of the investigated samples show
C/V curves similar to those shown in fig. 2.32, without any considerable
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Fig. 2.33 C/V curve of a sputtered BaTiO3 film of 110 nm thickness on top
of 4 nm SrTiO3/p-Si with an electrode size of 40 × 40 µm2. The counter-clock
wise hysteresis loop indicates a ferroelectric behavior of the film.

hysteresis. However, some pads show a counter-clockwise hysteresis (fig. 2.33)
which can be attributed to a ferroelectric behavior of the BaTiO3 layer. There
are several possibilities why such behavior is typically not seen for the samples:

• The BaTiO3 layer is not ferroelectric. This can occur in thin films due to
strong depolarization fields [127, 128], in particular when the ferroelectric
material is not sandwiched between two metals but rather in contact with
a dielectric. The latter is the case for the samples under investigation
where the BaTiO3 is grown on top of a dielectric SrTiO3/SiO2-layer.

• The hysteresis voltage is too small to be detected. Assuming the coercive
field of bulk-BTO of 0.5 kV/cm, the switching voltage of a 20 nm thick
perovskite layer is only 1 mV. Even taking into account the voltage
drop over a 3 nm thick SiO2 layer, the coercive voltage is still only 3 mV,
and thus probably smaller than effects caused by trapped charges. On
the other hand, the coercive field in thin films is typically increased by
several orders of magnitude compared to bulk [127] which would raise
the switching voltages.

• Leakage due to too large metalic pads might cause a de-charging of both
electrodes, thus depolarizing the film.

• Only c-axis films should show out-of-plane ferroelectric behavior, which
is in contradiction with the observations from fig. 2.33. However, the
initial c-axis MBE-layer is still present even for thicker a-axis films as
shown by Dubourdieu et al. [56] (see fig. 2.26).
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Additional polarization-voltage measurements could not confirm the ferro-
electricity in the films. By means of electro-optical characterization, the ferro-
electricity is however unambiguously confirmed for a-axis films (section 3.4.4).
The reason why most electric measurements performed on the films do not show
ferroelectric behavior might indeed be the large voltage drop across the SiO2

layer in combination with a strongly enhanced coercive field, which hinders
domain switching at voltages accessible in the experiments.

2.5.2 Piezo-electric properties

The ferro- and piezoelectric properties of the BaTiO3 thin films with different
thicknesses and thus different crystalline orientations are investigated by means
of PFM. In particular, a 30 nm-thin, MBE-grown film with mainly c-axis
domains, and a 108 nm a-axis film, fabricated with the hybrid deposition
process, are investigated. The thick film is sputtered at 500 ◦C and afterwards
annealed at 650 ◦C. Details of the layer stacks are visualized in fig. 2.34.

When applying an electric field to BaTiO3, ferroelectric domains whose
polarization is parallel to the field can be flipped [129], whereas domains whose
polarization is orthogonal to it keep their polarization state. During the PFM
measurements, the applied electric field is perpendicular to the surface of the
sample, resulting into a different PFM response between the two domain types:
c-axis domains are exposed to a field parallel to their spontaneous polarization,
and are therefore switchable. The amplitude of the PFM signal is sensitive
to the deformation of the surface. This deformation is mainly determined by
the longitudinal piezoelectric effect, which is calculated as d33,f = 35 pm/V
along the [001]BTO direction for c-axis domains in ref. [74]. In contrast, d33,f

approaches 0 pm/V along the [010]BTO direction [44, 74], which causes the
amplitude of the PFM signal to vanish for a-axis domains. Furthermore, a-axis
domains would require an electric field parallel to the surface to flip their
polarization, which is not available during the PFM measurements.

For the c-axis BaTiO3 film, domains with up/down orientation can be written
(fig. 2.34). While the height signal indicates a flat topography, the structure
written into the film is clearly visible in the PFM amplitude and phase image.
The phase between two different domain states changes by 180°, as expected
for domains oriented in opposing directions. Also, the vanishing amplitude of
the PFM signal at the edges of the written structure is in agreement with the
behavior at domain walls [130]. The structure is stable for more than an hour.
After 12 h, the contrast decays, most likely due to relaxation effects caused by
strong depolarization fields and polarization shielding, which are in particular
present in MFIS structures [128].

In contrast to the c-axis film, no stable domain pattern could be written into
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Fig. 2.34 Top: sketches indicating the sample structure investigated by PFM.
Bottom: topography, amplitude and phase of the PFM signal measured on
a mainly c-axis oriented BaTiO3 thin film after initially writing the letters
”BTO“. No PFM contrast is observable for the thicker, a-axis oriented sample.

the a-axis film. As discussed, this behavior is due to the electric field being
orthogonal to the direction of the spontaneous polarization, which does not
allow switching of domains.

The PFM experiments confirm the presence of piezoelectricity and, due to the
observed bistability, the presence of ferroelectricity in the thin c-axis film. The
switching of ferroelectric domains might be promoted in PFM measurements
compared to C/V -measurements as shown in section 2.5.1 due to the large
electric field strength at the PFM tip compared to metallic pads. The electric
field might thus be above the BaTiO3 coercive field. For thicker, a-axis films,
piezo- and ferroelectricity can neither be confirmed nor excluded with the
PFM setup due to the inability of applying in-plane electric fields. By means
of electro-optical characterization as described in chapter 3 the presence of
ferroelectricity in a-axis films is however determined.
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2.6 Conclusion and outlook

In the current chapter, different routes to deposit epitaxial BaTiO3 and SrTiO3

films on silicon substrates by means of MBE deposition and rf-sputtering are
discussed. A solid phase epitaxial process is used to obtain SrTiO3 seed layers
by first depositing amorphous layers and subsequently annealing them. The
crystalline quality of the perovskite layers is strongly enhanced if the annealing
step is iteratively repeated after each deposition of ∼1 nm-thick amorphous
layers, in comparison to a single crystallization step for the typically 4 nm-thick
films. The cycled annealing process suppresses the formation of defects in the
first SrTiO3 unit cells, and results in strained layers with low surface roughness
(≤ 0.4 nm rms) and sharp rocking curves (∆ωSTO ∼ 0.3°), indicating a good
crystalline structure. To further improve the quality of the films towards bulk-
like properties [41], the growth conditions of the initial SrTiO3 monolayers
have to be carefully investigated. In particular, the oxygen partial pressure
and the temperature range have to be adjusted in order ensure full oxidation
of the SrTiO3 layer while avoiding the formation of SiO2 at the same time.
Furthermore, post-deposition annealing steps in oxygen might significantly
improve the SrTiO3 crystallinity [41].

The quality of BaTiO3 thin films epitaxially grown on such SrTiO3/Si tem-
plates is sensitive to the precise 1:1 stoichiometry between barium and titanium.
As a consequence, the formation of islands, precipitates, and micro-structural
defects such as pores and anti-phase boundaries are visible, in particular in
thicker films (> 20 nm). The limitations in the precise stoichiometry control in
a layer-by-layer growth approach are resolved with a shuttered co-deposition

growth technique, which provides a quick feedback of the Ba:Ti ratio in addition
to the option of almost instantaneously compensating off-stoichiometric growth
conditions. The growth procedure yields high quality BaTiO3 layers with
sharp rocking curves (∆ωBTO ∼ 0.7°), low surface roughness (≤ 0.3 nm rms),
homogeneous microstructure without pores, and tetragonal crystal symmetry.
The orientation of the long c-axis can be tuned from out-of-plane to in-plane
as a function of the layer thickness, which is in agreement with the lattice
constant and thermal expansion mismatches between BaTiO3, SrTiO3 and
silicon. The transition between both orientation occurs at a film thickness
of ∼30 nm. Tuning the orientation of the crystalline symmetry provides an
excellent degree of freedom for engineering nano-scale devices that rely on the
ferroelectric polarization of BaTiO3 thin films, for example for active photonic
devices as discussed in chapter 4.

In order to reach larger film thicknesses (> 100 nm), a hybrid growth process
is developed combining thin MBE-grown seed layers with rf-sputtering. The
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sputtered layers crystallize epitaxially to the silicon substrate, when the thick-
ness of the MBE-grown seed layer is larger than 6 nm. Above that threshold,
the crystallinity and morphology is mainly influenced by the details of the
sputtering process and post annealing steps rather than the seed layer thickness
or its termination. Tetragonal, a-axis oriented BaTiO3 can be obtained with a
solid phase epitaxy process, which includes an amorphous BaTiO3 deposition,
followed by an annealing step in oxygen. Alternatively, crystalline layers can
directly be obtained by sputtering at higher temperatures. This process results
in a pore-free, tetragonal BaTiO3-layer with strongly reduced tetragonality,
consisting of nano-domains. The systematic investigation of the role of the
initial perovskite seed layer on the crystalline quality and morphology of the
sputtered BaTiO3 layer extends recent work, in which epitaxial BaTiO3 layers
were obtained on silicon combining pulsed laser deposition and MBE [48]. By us-
ing rf-sputter deposition, the feasibility of obtaining relatively thick, tetragonal
BaTiO3 layers on silicon substrates is shown by a rather wide-spread deposition
method which is available in many research and development environments.

The BaTiO3 layers show bulk-like electrical properties with large resistivity
values of ρ > 1013 Ω cm for small electric fields, indicating a good composition
and little amount of oxygen vacancies. The permittivity of the layer of ∼50−200
is in agreement with previously published studies. Both the permittivity
and the resistivity are important parameters for the proper design of electro-
optical devices (chapter 4). While no consistent electric confirmation of the
ferroelectricity of the films is obtained, PFM measurements show the presence
of piezo- and ferroelectricity with the spontaneous polarization along the out-of-
plane direction for thin c-axis BaTiO3 films. Piezo- and ferroelectricity are not
visible in thicker, a-axis films, as expected for the PFM geometry used in the
experiments. The presence of ferroelectricity in thin, MBE-grown BaTiO3 layers
is a clear advancement in obtaining functional layers on silicon compared to
previous investigations, which either required a substantially thicker buffer layer
[55] or which could only observe dielectric behavior in MBE-grown layers due
to oxygen deficiency [48]. A recently published study confirms the presence of
ferroelectricity in thin BaTiO3/SrTiO3/Si layers as observed in this thesis [56].
Polarization measurements with metallic pads and a systematic study on films
with different thicknesses should be carried out to confirm the ferroelectricity
independent of the PFM measurements. As a first step towards the confirmation,
the presence of ferroelectricity in a-axis films is shown in this thesis by means
of an electro-optic characterization method, as discussed in chapter 3.



CHAPTER 3

Electro-optical characterization

Bulk barium titanate shows a strong linear electro-optical effect with Pock-
els coefficients of r > 1000 pm/V, among the largest of all oxides (fig. 1.2a
and section 2.1.3). The Pockels effect describes the variation of the refractive
index n of a material when applying an electric field E. In a simplified version,
neglecting any tensor properties [49], it can be formulated as [27]

n (E) = n0 − 1
2

rn3
0E, (3.1)

where r is the Pockels coefficient and n0 the refractive index when no electric
field is applied. Thin films of BaTiO3 show a large deviation from the bulk
Pockels coefficients with typically much lower values as little as 22 pm/V for
thin polycrystalline layers [131–133]. The linear electro-optical effect is even
reported to completely vanish if strontium is mixed into the film [134, 135].

Due to the large variation of previously reported values, it is crucial to
experimentally determine the Pockels coefficient for the films grown in this
work, before starting to fabricate active devices. This is in particular important
as previous studies investigated BaTiO3 films grown on oxide substrates, but no
study about the electro-optical properties of BaTiO3 films on silicon substrates
existed. However, the substrate and the deposition method has a large impact
on the morphology and crystalline structure of the thin film, as discussed in
chapter 2. Also the oxide/semiconductor interface might strongly impact the
film properties for example by creating interfacial charges that in turn create
depolarization fields. An estimation of the Pockels effect from previous studies
is therefore not possible.

The following sections summarize different ways of how to characterize the
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electro-optical properties of thin films, the physical background of the Pockels
effect, and the setup used for the experiments, before discussing the results of
the electro-optical effect in BaTiO3/Si samples1.

3.1 Electro-optical characterization methods

Light propagating through an electro-optically active material experiences a
phase-shift when applying an electric field, as a consequence of the modification
of the refractive index (eq. (3.1)). This phase shift can cause a change in
the polarization or the intensity of the probing light, which is experimentally
detectable. There are however two main challenges in the measurements:

• The change of the refractive index n is relatively small (typically, ∆n ∼
10−3 − 10−5) which often results in only small changes of the observed
signal. These small changes can be at the edge of the experimental
resolution, in particular for thin films where the interaction length between
light and the electro-optical active material is very short.

• The tensorial nature of the electro-optical effect (section 3.2.1) makes the
determination of the Pockels tensor complicated because the measurement
values depend on the relative orientation between the crystal, the applied
electric field, the direction of the propagation and the polarization of the
light. Furthermore, the existence of ferroelectric domains has to be taken
into account.

Different solutions have been reported that tackle these issues. The most
common methods to electro-optical characterize thin-films are briefly compared
in the following paragraphs, and their applicability to the BaTiO3/Si samples
is discussed.

Ellipsometry Spectroscopic ellipsometry is a wide-spread technique to char-
acterize the optical properties of thin films. It is based on the detection of
the polarization changes of light in thin films for a broad wavelength range
and different angles of incidence. The detected signal is then compared with
a model of the sample in order to obtain values such as the refractive index,
layer thicknesses, or interface roughnesses [137]. The commercially available
tools can be extended to characterize electro-optical properties by applying an

1 Parts of this chapter have been published in Nature Communication and Proceedings

of SPIE [46, 136]. Text excerpts and figures are reproduced by permission of Nature
Publishing Group.
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Fig. 3.1 Common methods to investigate the electro-optical properties of thin
films. (a) Reflection methods sensitive to changes in the polarization, such as
spectroscopic ellipsometry or the Teng-Man method. (b) Prism coupling to
excite planar optical modes in the active layer. The reflected intensity drops
for specific angles of incidence, which can be shifted by applying an electric
field (see inset). (c) Active Mach-Zehnder interferometer as example for an
integrated device. The transmission is modified for electro-optical structures
when applying a voltage to the electrodes (see inset).

electric field to the sample and comparing the refractive indices as determined
for different field strengths [138]. Typically, thin, semi-transparent metal top-
electrodes and the grounded substrate are used to apply an field (fig. 3.1a).
The method suffers however from a rather low sensitivity, as a reliable detection
of ∆n ∼ 10−3 is at the limit of the technique, in particular for very thin films
of only a few 10 nm. Additionally, the electro-optical effect is not implemented
in the standard modeling tools which make the tensorial analysis complicated.
Still, the effective Pockels coefficients ∼1 µm-thick oxides have successfully been
measured with spectroscopic ellipsometry [138]. Due to the low sensitivity,
especially for films < 100 nm and potentially low Pockels coefficients, other
methods (see below) are preferred in this thesis.

Teng-Man reflectometry A similar method like ellipsometry with a signif-
icantly better resolution was suggested by Teng et al. [139] and Schildkraut
[140] which is often referred to as Teng-Man method. The major difference to
spectroscopic ellipsometry is the modulation of the electric field in combination
with a lock-in detection scheme, which increases the sensitivity by several orders
of magnitude. Additionally, a laser instead of a broadband light source is used.
Beside this standard configuration, many modifications such as a combination
of perpendicular incidence with interdigitated electrodes for in-plane electric
fields have been implemented [141]. Although the Teng-Man technique is widely
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spread for thin film characterization [142, 143], it is prone to misinterpretation
of the measurement signals [142]. Interference effects from multiple reflections,
the influence of the semi-transparent electrode, and the non-perpendicular
angle of incidence that requires the consideration of all electro-optical tensor
elements for a proper analysis are some of the typical error sources [142, 144].
Due to these possible measurement artifacts, the method described in the next
paragraph is used in the current work.

Transmission measurements Based on the same principle of detecting changes
in the polarization but by using a transmission geometry (section 3.3), the
data evaluation is simplified, in particular with a perpendicular angle of in-
cidence. Already the first electro-optical measurements of BaTiO3-crystals
were performed in transmission with static applied fields [75]. The drastically
reduced interaction length between the light and the electro-optical material
requires lock-in amplification techniques in order to study thin films [145–147].
Typically, the method is used to obtain effective Pockels values rather than
single tensor elements. Transmission measurements are the method of choice in
this thesis. A detailed description and mathematical treatment of the extraction
of single tensor elements is discussed in section 3.3. It should be noted that
the transmission measurements can be converted into the standard Teng-Man
geometry with only little modifications.

Prism coupling A very sensitive method to measure the refractive index of
thin films with a resolution of ∆n ∼ 5 × 10−4 is prism coupling [148]. With
this method, a guided planar waveguide mode in the film is excited by using a
prism in contact to the film and a laser beam at a specific angle of incidence
(fig. 3.1b). When the angle of incidence is varied, the reflected signal shows
sharp minima when film modes are excited. The refractive index can be deduced
from multiple of these specific angular positions. Options for an electro-optical
characterization of the film by applying an electric field between the prism
and the sample [149–151] are commercially available. However, the method
cannot be easily applied to BaTiO3/Si samples used in the current work. First,
no guided modes exist in this material stack due to the high refractive index
of silicon. Second, film thicknesses of several 100 nm are required to support
multiple modes, which is significantly more than the film thicknesses under
consideration.

Integrated devices The fabrication of test devices such as Mach-Zehnder
interferometers (fig. 3.1c) [26, 131, 152] or resonant structures like ring resonators
[153] can be used to determine the electro-optical properties of a material
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included in this structure. While devices can reveal even small Pockels effects
(< 2 pm/V [153]), the design and processing is an additional workload compared
to a pure material characterization technique. This is in particular true for
BaTiO3/Si structures where non-typical design and process steps are involved
in the device fabrication (chapter 4), which can also influence the electro-optical
characteristics.

Alternative techniques Beside these most common methods, a variety of
other techniques for characterizing the electro-optical properties of thin films
exist, such as the utilization of diffraction patterns caused by a local variation
of the refractive index with interdigitated electrodes [154], the inclusion of
electro-optically active materials into cavities [155, 156], or by detecting the
interference pattern of a double slit [157]. These methods are more specialized,
and do not provide any obvious advantage for the BaTiO3/Si analysis compared
to transmission measurements.

3.2 Physical background

The simplified description of the linear electro-optical effect (eq. (3.1)) is not suf-
ficient to describe and correctly interpret the experimental results (section 3.3).
The following section provides therefore a tensorial treatment of the Pockels
effect, specifically for BaTiO3. A phenomenological description of the Pockels
effect is used to calculate the behavior of parameters such as the orientation of
the optical axis and the refractive index, which are accessible in the experiment.
A microscopic model of the Pockels effect and first-principle studies of the origin
of the optical nonlinearities specifically for BaTiO3 are found in the literature
[158–160].

3.2.1 The Pockels tensor

In nonlinear optical materials the refractive index is dependent on the applied
electric field Eext. The elements nij of the refractive index tensor as a function
of the electric field are defined as [161]

nij (Eext) = n − 1
2

rijln
3Eext,l − 1

2
ξijlmn3Eext,lEext,m. (3.2)

In eq. (3.2) Einstein notation is used, r refers to the Pockels tensor, ξ to the Kerr
tensor, and Eext,l/m to different components of the applied field. In the following,
the second order Kerr effect will be neglected since in BaTiO3 it is typically
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much smaller than the Pockels effect [77] at electric field strengths accessible
in the experiments discussed below. Furthermore, a simplified representation
of the Pockels tensor is used: The rank of the 3 × 3 × 3 Pockels tensor (27
elements) can be reduced by one to a 6 × 3 Pockels tensor2 (18 elements) [49].
Due to the P4mm symmetry class of tetragonal BaTiO3, the entries of this
tensor can be represented by three different elements only, r13, r33, and r42

[28].
As can be deduced from eq. (3.2) the electro-optical response on the light

depends on the wavevector k and the polarization relative to the electric field
Eext and the crystalline orientation, which defines the coordinate system of the
equation. The impact of the wavevector and the polarization on eq. (3.2) is
reflected by the refractive index tensor nij [161]. A visualization of eq. (3.2) is
shown in fig. 3.2 in which the simulated optical indicatrix η̂ =

(

n̂−1
)2

and its
modification upon applying an electric field is plotted [161]. The polarization of
light traveling through a birefringent material such as BaTiO3 does not change
if the polarization is oriented along one of two specific axes. The corresponding
ordinary and extraordinary refractive indices no and neo, respectively, as well
as the orientation of these axes can be constructed from η̂ as explained in the
caption of fig. 3.2.

The properties accessible through the experiment (section 3.3) are changes
in no and neo and the rotation of the axes. In order to obtain these values from
eq. (3.2), the optical indicatrix η̂ = η̂ (Eext) can be written as an eigenvalue
equation using the displacement field D of the electro-magnetic light wave, the
normalized wavevector uk = k/k0 with k0 = 2πn/λ, and the refractive index n:

−uk ×
(

uk × η̂ (Eext) D
)

=
1

n2
D. (3.3)

A detailed derivation of this equation can be found in ref. [161]. The dependency
of the tensor η̂ (Eext) =

(

n̂−1 (Eext)
)2

on the static electric field Eext is given
through equation eq. (3.2). The eigenvalues n and eigenvectors D of uk ×
(

uk × η (Eext)
)

correspond to the refractive indices and the direction of the
major optical axes of the crystal, respectively.

3.2.2 Electro-optical response of a single domain

For the experiments (section 3.3), the angle of incidence is set to 90° and pairs
of electrodes separated by a small gap are deposited on a-axis BaTiO3-films in

2 a notation is used that combines two indices (i, j) into one index p, where i, j = 1..3
and p = 1..6 with special mapping rules [49]
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Fig. 3.2 Three-dimensional representation of the optical indicatrix η̂ =
(

n̂−1
)2

and the impact of an applied electric field on it, using the bulk BaTiO3 Pockels
tensor (compare table 3.1). The electric field strength is taken to be very large
(Eext = 108 V/m) for a clear visualization. (a) Illustration of the construction of
the refractive indices for a specific orientation of the incoming light k (dashed,
blue) and the electric field Eext (yellow line): the short and long axis of the
intersection ellipse (red) between the indicatrix and a plane perpendicular
to k correspond to the ordinary and extraordinary index, respectively. The
orientation of the BaTiO3 crystalline axes is indicated by the coordinate system
on the top. (b) Optical indicatrix for various orientations of the electric field.

order to create an in-plane electric field Eext (fig. 3.3a). The direction of the
electric field is varied in the experiment by fabricating electrodes with different
orientations relative to the main crystalline axes ([001]BTO and [100]BTO). How-
ever, even for a fixed electrode geometry, the relative orientation between Eext

and the ferroelectric polarization varies between different domains (fig. 3.3a).
Therefore, the changes of the optical indicatrix as a function of the angle ϕE

between Eext and the ferroelectric polarization is calculated for a single domain.
The results are then used to describe the response of multiple domains.

The parameters used for the simulations (table 3.1) are based on literature
values for BaTiO3. Since the Pockels effect in thin films is typically reduced by
an order of magnitude compared to bulk BaTiO3 [27, 29], the bulk literature
values are scaled by a factor of 0.1 in the simulations in order to obtain
more realistic results. The changes of the refractive indices ∆no/eo = n0

o/eo −
no/eo (Eext) and the birefringence ∆nb = no (Eext) − neo (Eext), as well as the
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Fig. 3.3 (a) Experimental geometry: two electrodes create an in-plane electric
field which is oriented at an angle ϕE relative to the main crystalline axes
of the a-axis film (tetragonal c-axis parallel to the surface, see section 2.3.3).
The light is transmitted perpendicular to the sample between the gap. The
white arrows indicate the ferroelectric polarization of different domains. (b)
Refractive index ellipse in BaTiO3, showing the refractive index nx and nz

along different crystalline directions. (c) Applying an electric field Eext rotates
the optical axis by ∆γ and (d) changes the birefringence ∆ (nb) depending on
the orientation of Eext (not to scale).

rotation of the optical axis ∆γ are simulated as a function of ϕE (fig. 3.4). The
largest rotation ∆γ of the optical axis is observed when Eext is perpendicular to
the crystalline c-axis (ϕE = ±90°), as illustrated in fig. 3.3c. For that geometry,
the change in the refractive indices is minor. When Eext is parallel to the
c-axis (ϕE = 0°/180°) the situation is reversed: The rotation of the optical axis
vanishes while the change in ∆nb becomes maximal (schematics in fig. 3.3d).

Table 3.1 Parameters used for simulating the electro-optical response. The
refractive indices are calculated with the Sellmeier equation using parameters
from ref. [162] with λ = 1550 nm. The stress-free (unclamped) electro-optical
bulk properties from ref. [28] (λ = 1550 nm) are scaled by 0.1 to take into
account the typically observed reduction of the bulk values for thin films [27,
29].

param. no neo r13 r33 r42 |Eext|
value 2.297 2.268 0.8 pm/V 8 pm/V 100 pm/V 3 × 105 V/m
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Fig. 3.4 (a) Simulated response for a single ferroelectric domain: (b) Rotation
of the optical axis and (c) variation of the birefringence ∆nb and the ordinary
and extraordinary refractive index ∆no (scaled by ×5) and ∆neo, respectively,
as a function of the direction of the applied field. Solid and dashed lines
correspond to positive and negative values, respectively.

3.2.3 Electro-optical response of multiple domains

In a multi-domain film with various orientations of the ferroelectric polarization,
different domains have a different effect on the polarization of the transmitted
light. When the size of the ferroelectric domains is on the order of or smaller
than the wavelength (λ = 1.55 µm), interference effects between the different
polarization states have to be considered to describe the transmitted light. In
particular, when simulating the detected power P in the experimental setup
(section 3.3), the electric field vectors of the light E1 and E2 after transmission
through two different domains have to be added first (P ∝ E = (E1 + E2)2)
rather than treating them separately (E1

2 + E2
2).

First, a set of two 180° oriented domains is considered. Applying an electric
field at an arbitrary direction causes a rotation of the optical axis in the opposite
direction in each domain (fig. 3.5a). Also, the change in birefringence is almost
opposite between the two domains. For both domains, the polarization of the
light will change after transmitting through the sample. However, the phase
shift between the ordinary and extraordinary light component will be opposite.
This results into the opposite sense of rotation of the elliptically polarized light.
The interference of these two polarization states, being left- and right-circular
polarized, respectively, will result in a zero net-change in the polarization of
the transmitted light.

By applying an electric field above the ferroelectric coercive field, domains
can flip their orientation and 180° domains will be eliminated. In contrast, 90°
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Fig. 3.5 Rotation of the optical axis and change in the birefringence for two
domains with different ferroelectric polarization (white arrows in schematics on
the left) as a function of direction of the electric field, (a) 180° domains and
(b) 90° domains. Solid and dashed lines correspond to positive and negative
values, respectively.

domains are linked to a different crystallographic orientation and still exist
after such a poling process. The response of two 90° domains shows generally a
different magnitude when the direction of the electric field is varied (fig. 3.5b).
Thus, even if the two polarization states interfered destructively, they would
not fully cancel out each other. It can be deduced from further calculations
that the changes of the different polarization states even interfere constructively
for 90° oriented domains (not shown here).

These consideration of multiple domains show that the net changes in the
polarization due to an electric field will nearly cancel out in unpoled a-axis
films containing 180° ferroelectric domains. In contrast, the 90° domain pattern
after applying an electric field above the coercive field will effectively vary the
polarization state of the transmitted beam which can eventually be measured,
as described in section 3.3.
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3.3 Description of setup

3.3.1 Principle of measurement

A linearly polarized laser beam will generally be elliptically polarized when
transmitted through a birefringent material. As discussed in the previous
chapter, applying an electric field to an electro-optical active material causes
a change in that birefringence. As consequence, the polarization of the trans-
mitted light will differ from the case without applied field. When detecting
these polarization changes as a function of parameters such as magnitude and
orientation of the electric field and incident polarization, it is possible to confirm
or disprove the existence of a linear electro-optical effect. Furthermore, by
thoroughly comparing the data with a proper model of the material system,
the reconstruction of the Pockels tensor is possible.

The main experimental challenge is the small change of the polarization,
in particular for thin films. The setup described in the following section is
however capable of detecting small rotations δ of linearly polarized light of only
δ ≈ 10−5 degrees, which enables the analysis of very thin layers (∼10 nm).

3.3.2 Electro-optical setup

The experimental setup is illustrated in fig. 3.6: A single-mode diode laser from
New Focus operating at λ = 1550 nm is first polarized with a Glan-laser prism
(extinction ratio > 2 × 105 : 1). A successive half-wave plate mounted on a
motorized stage (Newport URS50BPP) is used to set the incident polarization,
before focusing the Gaussian-shaped beam with a spot size of ∼15 µm (FWHM)
on the typically 7 µm-wide gap between two electrodes at an angle of incidence
of 90°. Variations of the angle of incidence as a result of focusing the beam
are small (< 1°) and are thus neglected during the analysis (section 3.3.3).
To center the beam in the gap, the sample is moved with a xyz-stage while
following the signal of a camera. The camera is focused on the sample through
the same optics as the laser beam using a dichroic mirror. The alignment
between the laser beam and the camera operating in the visible light regime is
done by comparing the video signal with the transmitted power at the edges of
large, metallic alignment pads prior to the electro-optical measurements.

Owing to the birefringence of BaTiO3, the transmitted light is generally
slightly elliptically polarized. A quarter-wave plate after the sample and a
second Glan-laser prism, both mounted on motorized stages, are iteratively
rotated to minimize the power of the transmitted light on an InGaAs detector
(Femto OE-200 IN2 ). For the condition of minimal transmission, the quarter-



74 3 Electro-optical characterization

θ i δ
θa

AC + DC
voltage source

lock-in
amplifier

voltmeter

laser

aperture

dichroic

m
irror

polarizer
λ/2 plate

lens

lens
λ/4 plate

polarizer

lens

sam
ple

camera

lens

detector

electrical

probes

trigger

incident beam after sample after λ/4 plate after analyzer

(a)

(b)

k

Fig. 3.6 (a) Polarization states at various positions of the laser beam in the
experiment. (b) Schematics of the optical setup used for the electro-optical
characterization. Details and operation principle are described in the text.

wave plate compensates the ellipticity induced by the birefringence and the
transmitted light is linearly polarized.

3.3.3 Measurement and analysis procedure

After applying a voltage offset of Voff = 40 V for ∼1 min to align the ferroelec-
tric domains, a sinusoidal, alternating voltage of Vac = 3.0 V (peak-to-peak
amplitude) at a frequency f = 17.3 kHz with Voff = 25 V is applied during the
measurements. The modification of the refractive index due to the applied
field leads to an elliptic polarization of the transmitted beam after the sample,
which is transformed into a rotation of the linear polarization by an angle δ by
the quarter-wave plate (fig. 3.6a). After passing through an analyzer oriented
at an angle θa relative to the polarization of the incident beam (fig. 3.6a), the
transmitted power is mainly determined by the angle between the two polarizers
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θa as [49]

P = Pmax cos2 (θa − δ) , (3.4)

but it also depends on the induced rotation δ of the polarization. Pmax is the
maximum transmitted power for parallel polarizers. For small angles δ, the
power variations ∆P are expected to be proportional to the derivative dP /dθa.
Therefore, the transmitted power P and the power variations ∆P are recorded
simultaneously while rotating the analyzer θa in small steps in combination
with a lock-in detection scheme in order to gain sensitivity. The rotation of the
polarization δ is determined by first obtaining the analytical function of P̃ (θa)
by fitting the experimental values P (θa) to

P̃ (θa) ≈ Pmax cos2 (θa − θa,off) + Pbg, (3.5)

which is an approximation of eq. (3.4) for small δ. The fitted values Pbg and
θa,off take into account the finite extinction ratio of the polarizing elements, and
a small misalignment in the analyzer offset position, respectively. Imperfections
of the quarter-wave plate are compensated by the initial iterative alignment
procedure (appendix C), and do not contribute to eq. (3.5). The derivative
dP̃ (θa)/dθa of the fitted function is calculated to fit ∆P/P (θa) using

∆P (θa)
P (θa)

=
1

P̃ (θa)

(

δ
dP̃ (θa)

dθa
+ A

)

(3.6)

to obtain δ. In this equation A corresponds to background contributions,
which are proportional to the transmitted power and caused by interference
effects between the domains. The normalization ∆P /P improves the fit quality
by eliminating artifacts that arise for example from a changing background
illumination or voltage offsets between the different detector gain settings. The
fitting procedure allowes the detection of rotations in the polarization down to
δ = 10−5 degrees, which is significantly better than the mechanical resolution
of the rotation stages. δ is normalized by the amplitude of the applied ac-field
Eac as

δ′ = δ/Eac. (3.7)

The magnitude of the applied electric field E is calculated by approximating the
field in the gap of width d by E = V/d. Notably, despite the large voltages of
Voff = 40 V, only small currents of a few µA are observed between the electrodes
(size ∼150 µm × 350 µm) when measuring the current-voltage characteristics
(fig. 3.7). In particular, no electric breakdown is observed for these voltages.
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Fig. 3.7 Current-voltage characteristics: Only small currents in the µA range
between two electrodes (size ∼150 µm × 350 µm) separated by a gap of 7 µm
are measured. In particular, no electric break down is observed.

The c-axis Pockels coefficient rc is often used as an effective Pockels value to
describe the change of the refractive index when the electric field is parallel to
the crystalline c-axis. rc is determined at ϕE = 0° by [146]

rc = Γλ/
(

πn3dνEac

)

(3.8)

where Γ is the induced phase shift in the sample, d the thickness of the layer,
and ν = 0.5 is the relative volume fraction of the domains parallel to the
electric field, which contribute to the electro-optical response. The phase shift
can be obtained from the rotation angle of the polarization δ as Γ = 2 × δmax

[145] where δmax corresponds to the maximum rotation angle when varying the
incident polarization θi. The effective Pockels coefficient reff is calculated at
ϕE = 45° in the same way using ν = 1.

By varying the voltage offset Voff, the ferroelectric behavior of the layer
can be investigated. Slowly reversing the Voff results in a reorganization of
the domains, first creating 180° domains, before at even higher voltages the
orientation of the initial domains is flipped. As discussed section 3.2.3, 180°
domains show a vanishing electro-optical response. Thus, by looping the applied
voltage, hysteresis curves can be recorded. To ensure a depolarized domain
state prior to the measurements, the sample is first heated above the Curie
temperature to 250 ◦C for 10 min, and then cooled down to room temperature.
Then, for each Voff, a full sweep in θa is performed to determine δ, which lasts
∼10 min. The typical duration of the measurement of one hysteresis loop is
∼5 h.

A LabVIEW based software is developed in order to control the setup, in
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particular to perform alignment procedures and systematic sweeps of several
parameters such as the position of the analyzer and the applied voltage. Wolfram

Mathematica scripts are used for analyzing the data. A more detailed discussion
of both procedures is given in appendix C.

3.4 Determination of Pockels tensor

3.4.1 Description of sample

A 130 nm-BaTiO3/4 nm-SrTiO3/Si sample grown with the layer-by-layer de-
position process (section 2.3) is used for the electro-optical measurements. A
high-resistive silicon substrate (ρ = 104 Ω cm) prevents the electric field between
a pair of electrodes to be shortcut through the substrate, as it would be the case
for conductive samples. The actual film thickness is determined by spectroscopic
ellipsometry (Woollam VASE). X-ray analysis (data in fig. 2.25c) confirms the
BaTiO3 film to be a-axis oriented in agreement with the expectations for thick
BaTiO3 layers (fig. 2.24). The formation of 90° crystalline domains in a-axis
films (fig. 2.25d) is assumed to relax strain due to the symmetry mismatch
between cubic silicon and tetragonal BaTiO3 (see section 2.3.3).

The backside of the wafer is polished for optical transmission measurements
after the growth. Electrode pairs of 300 nm-Pt/10 nm-Ti with varying orienta-
tion between the BaTiO3 crystallographic axes and the electrode gap (0° to 90°)
with an accuracy of ±1° are fabricated on the samples using standard optical
lithography techniques. Unless stated differently, the optical measurements are
performed on devices with electrodes having a gap size of ∼7 µm.

3.4.2 Variation of analyzer angle

To qualitatively confirm the presence of the Pockels effect in the BaTiO3 layer,
it is necessary to test (1) if the detected power is varied by applying an electric
field, (2) if the variation of the power ∆P follows eq. (3.6), and (3) if there is a
linear dependence between the applied voltage and ∆P .

Indeed, the experiment shows a power modulation by the applied field, and
an excellent agreement of the measured response with the expected dependence:
The transmitted power P (fig. 3.8b, top) follows a cos2 behavior (eq. (3.4)),
and the power variation ∆P (fig. 3.8b, bottom) is clearly proportional to the
derivative of P (eq. (3.6)). The good agreement between the data and the fitted
curves provides an initial validation of the model and confirms the presence
of a polarization change of the transmitted light. For fitting ∆P it was taken
into account that a phase shift of 180° between the applied voltage and the
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Fig. 3.8 (a) Illustration of the measurement: The analyzer position θa is varied
for a fixed incident polarization θi = 0°, with an applied applied voltage offset
of Voff = 25 V across a 17 µm-wide gap oriented at ϕE = 45°. (b) Transmitted
power P , variation in power ∆P and the lock-in amplifier phase φ∆P due to the
electro-optical effect as a function of the analyzer position θa. (c) Normalized
change of the transmitted power ∆P /P at θa = 45° as a function of the
peak-to-peak amplitude Vac.

power modulation instead of measuring the negative amplitude is recorded.
The field-normalized magnitude of the rotation of the polarization δ′ (eq. (3.7))
is determined from the fits.

A varying absorption as the origin of the power modulation ∆P can be
ruled out because in that case, ∆P would be proportional to the absolute
transmitted power, in contrast to the observed electro-optical response. The
linear dependence of ∆P on the applied field (fig. 3.8c) further precludes the
quadratic electro-optical Kerr effect to be dominant and thus confirms the
presence of the linear Pockels effect in the sample.

3.4.3 Variation of electric field orientation

To further explore the tensor nature of the Pockels effect, the dependence
of δ′ on the angle between the applied electric field, incident polarization,
and crystallographic orientation has to be considered carefully (section 3.2.1).
Applying an electric field to an anisotropic material with a linear electro-optical
effect results in a rotation of the optical axis by ∆γ (fig. 3.3c) and a change of
the birefringence by ∆nb (fig. 3.3d). In the measurement geometry used for the
experiments, both effects cause a rotation of the polarization of the transmitted
beam, but the magnitude of δ′ depends on the incident polarization: If ∆γ is
dominant, δ′ is maximal when the incident polarization is parallel to the optical
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axis of the crystal (θi|δ′
max

= 0°), which is experimentally observed when the
applied electric field E is oriented along the [101]BTO direction (fig. 3.9). If
∆nb is dominant, on the other hand, δ′ is maximal for

∣

∣θi|δ′
max

∣

∣ ∼ 45°. Also
this regime is observable in the measurements, when the E is oriented along
the [001]BTO/[100]BTO axes. The slight deviation from

∣

∣θi|δ′
max

∣

∣ = 45° (fig. 3.9)
is due to the small misorientation of the electrodes relative to the crystalline
orientation, as discussed in section 3.4.6.

The modeled response of BaTiO3 for a single domain (fig. 3.4) shows a
vanishing rotation of the optical axis when E is parallel to [001]BTO (E ‖
[001]BTO), whereas a change in the birefringence remains. In contrast, a
strongly enhanced rotation of the optical axis is expected for E ‖ [101]BTO.
Both features of the model agree well with the experimental results.

The dependence of the electro-optical response on the orientation of the
electrodes precludes any polarization-dependent absorption or plasmonic effect
from the edges of the metallic pads. Such effects would be independent of the
orientation of the electrodes with respect to the BaTiO3 crystalline axis, which
is in contrast to the data shown in fig. 3.9. For the same reason, the potential
impact from ionized particles in the air due to the high electric field strength
can be ruled out to impact the measured signal.
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Fig. 3.10 Optical response as a function of the offset field Eoff. The data set
is collected in three successive loops measured at 25 ◦C after heating the film
above its bulk Curie temperature (green) and sweeping Eoff up (red) and down
(blue) again. The inset shows the relaxation of the remanent δ′ value at room
temperature.

3.4.4 Reorientation of domains

To quantify the elements of the Pockels tensor, one must take into account
not only a single domain but the overall ferroelectric domain structure of the
BaTiO3 film (fig. 3.3a): As discussed in section 3.2.3, the net electro-optical
response of two anti-parallel domains (direction of ferroelectric polarization
differs by 180°) with the same size will cancel out. However, anti-parallel
domain pairs can be eliminated by flipping their ferroelectric polarization when
the applied electric field component E[001] along the crystallographic [001]BTO

axis is above the coercive field Ec. Hence, a ferroelectric hysteresis loop would
be expected in the optical measurements of δ′ upon varying the offset of the
applied electric field Eoff. This is indeed observed experimentally (fig. 3.10).

As expected, the random domain orientation after heating the sample above
the Curie temperature of BaTiO3 (TC = 123 ◦C [43]) initially shows no electro-
optical response at Eoff = 0. The presence of equally distributed 180° domain
pairs cancel out any net electro-optical contribution. By increasing Eoff, a strong
enhancement in δ′ is visible, resulting from the switching of the ferroelectric
domains, which eliminates anti-parallel domains. The hysteresis loop monitored
during the sweep of Eoff (fig. 3.10) is a clear signature of the ferroelectric nature
of the film. Once poled, the ferroelectric domain structure remains stable for
several days at least, as can be seen from the small relaxation of the remanent
electro-optical response (fig. 3.10, inset). From the shape of the hysteresis, a
coercive field of Ec = 5 × 105 V/m is extracted, which is an order of magnitude
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larger than in bulk BaTiO3. Such increase is typically observed for ferroelectric
thin films because of domain pinning and finite depolarization fields [79, 127].
The finite, linear slope in the hysteresis loop at large electric fields Eoff as
observed in fig. 3.10 is caused by second-order electro-optical effects.

The hysteresis in the optical signal qualitatively excludes any influences from
the Si-substrate on the electro-optical response of the sample. As recently shown,
non-vanishing Pockels coefficients are induced in silicon if strain-gradients are
present [26, 163]. However, Si remains non-ferroelectric and thus no effects of
poling are visible, in clear contrast to the hysteresis behavior. The measurements
shown in fig. 3.10 also allow to exclude that ferroelectric domain switching
[164] has a significant contribution on the electro-optical response presented
in figs. 3.8 and 3.9: These measurements are performed in the saturation
regime of the hysteresis loop (|Eoff| > 3 × 106 V/m). The saturation indicates
that small changes in the applied field hardly change the domain population.
Therefore, the modulation of the electric field by Eac = ±0.2 × 106 V/m ≪ Eoff

(see section 3.3.2) for the lock-in detection induces only a negligible error
in the determination of δ′ and thus of the electro-optical constants. More
generally, if domain switching contributed to the electro-optical response, a
strong enhancement of δ′ for the regime of |Eoff + Eac| < Ec would be expected,
because the relative change of the domain population is the strongest for small
electric offset fields. This behavior would also be expected for the unpoled
sample and is contrary to the vanishing electro-optical signal observed in that
regime (fig. 3.10), thus excluding domain switching to be a major contribution
to the rotation of the polarization by δ′.

3.4.5 Quantitative analysis of Pockels tensor

Determination of rc

The hysteresis behavior is utilized for the quantitative determination of the
electro-optical constants: Because the offset in the electric field E applied
during the measurements (fig. 3.9) is significantly above the coercive field, the
ferroelectric domains are assumed to be aligned to the electric field component
E[001]. Domains orthogonal to E experience no electric field component along
their long [001] axis, thus keep their anti-parallel configuration without any
net contribution to the electro-optical response. Taking this domain structure
into account, it is possible to calculate the individual components of the
Pockels tensor, which contains three distinct elements for tetragonal BaTiO3

(section 3.2.1), r13, r33, and r42.
For E ‖ [001]BTO, the optical properties are determined by r13 and r33 which
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define the c-axis Pockels coefficient rc as [49]

rc = r33 −
(

no/neo

)3
r13. (3.9)

Using eq. (3.8), the value of rc = 30 pm/V can be determined. This rc value
is more important for the performance of electro-optical devices than the
individual components r13 and r33 [29], which are correlated and cannot be
independently determined with the geometry of the experiment.

Determination of r42

The r42 Pockels coefficient is determined by simulating the expected signal for
the optical setup and comparing it with the experimental results. To model
the setup, the transmitted light is described using the Jones formalism with
standard matrices for the incident polarizer and the quarter-wave plate [49].
Imperfections of the optical elements are neglected. The BaTiO3 sample is
treated as a wave retarder with a phase shift of Γ (nb) = 2πnbd/λ, where d is
the thickness of the sample. The orientation of the optical axis of the retarder
is set by the angle γ relative to the laboratory coordinate system. Ferroelectric
domains with orthogonal optical axes, which are parallel to the crystalline
c-axis (fig. 3.3), are modeled by rotating the optical axis γ of the wave retarder
accordingly.

In order to obtain the Jones vector of the beam transmitted through the
sample with multiple domains, the transmission for the individual domains
is simulated in a first step. The resulting Jones vectors are weighted with
the relative domain population and summed up in a second step. With this
procedure any interference effects between different types of domains are taken
into account.

The phase shift Γ (nb) and rotation angle γ are linked to the variations in
the birefringence ∆nb (fig. 3.4c) and the orientation of the optical axis ∆γ

(fig. 3.4b) due to the electro-optical effect as a function of the applied electric
field E. The procedure to obtain these functions is described in section 3.2.1. By
comparing the Jones vectors for two different electric fields E1 = Eoff − Eac/2
and E2 = Eoff + Eac/2, the normalized rotation angle δ′ is determined as
δ′ = δ′|E2 − δ′|E1 , where δ′|E is the field-normalized angle (eq. (3.7)) of the
orientation of the linear polarization after the quarter-wave plate with respect
to the laboratory coordinate system. For the special case of E ‖ [101]BTO, both
90° domains vary the transmitted light identically, which makes r42 independent
of the actual domain population. This independence is validated by deliberately
varying the population in simulations (not shown here).

Using the parameters listed in table 3.2, δ′ is simulated as a function of r42
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coefficient r42 when comparing the simulation with the experimental value δ′

exp

(solid, yellow).

(fig. 3.11). The refractive index of the film n is experimentally determined
by spectroscopic ellipsometry. Due to the small thickness and the domain
structure of the film, the birefringence nb can however not be determined with
that method, and the bulk value nb = 0.03 [162] is used instead. The influence
of nb on δ′ is however small, as indicated in fig. 3.11. By comparing the
simulation with the experimental value δ′

exp = 12.5 × 10−9 degree/(V/m) for
the same orientation of the electric field (fig. 3.9), the r42 value of the BaTiO3

film is determined as r42 = 105 pm/V. Figure 3.11 shows that smaller values
of nb as reported for BaTiO3 thin films on oxide substrates (nb = 0.02 [165])

Table 3.2 Parameters used for simulating δ′ as a function of r42. The birefrin-
gence nb is calculated as the difference between the ordinary and extraordinary
bulk refractive index (table 3.1). The Pockels coefficients r13 and r33 are
scaled with r42, keeping their ratio to the bulk ratio of r13/r42 = 0.01 and
r33/r42 = 0.08 (table 3.1), respectively.

par. domains Eac d θi n nb

val. 0°/90° 3.0 × 105 V/m 130 nm 0° 2.26 0.03

par. ϕE Eoff λ r13 r33 r42

val. 45° 3.6 × 106 V/m 1550 nm 0.01 · r42 0.08 · r42 r42
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would result in even slightly higher r42 values.

Effective Pockels effect reff

For comparison with previous work [27, 146], an effective value reff = 148 pm/V
is calculated by neglecting the tensor nature of r and simply considering the
field-induced phase shift between two orthogonal components of the transmitted
light (see section 3.3.2). The orientation of the electric field is chosen such
that a maximal induced phase shift is obtained (E ‖ [101]BTO). The results
represent a major improvement compared with the limited number of published
data on electro-optical properties of lead-free oxides integrated on silicon [150,
153, 166].

3.4.6 Validation of measurement results

The Pockels tensor and the model with multiple domains are validated by
experimentally varying the orientation of the applied electric field (fig. 3.14)
and comparing the results with simulations using values for r42 and rc as
determined in the previous sections. For this comparison, a model is created to
calculate the electro-optical response for different orientations ϕE of the applied
electric field E. Due to the strong influence of the ferroelectric domain structure
on the electro-optical response, the reorientation process of the domains has to
be taken into account by that model. The shape of the hysteresis loop obtained
at ϕE = 45° (fig. 3.10) is used for that implementation, as discussed below.

Description of model

The modeling is based on the same Jones algorithm as described in the pre-
vious section. Experimental values of the Pockels tensor are included in the
simulations. Therefore, r13 is set to an arbitrary value r′

13, and r33 is calculated
from the experimental value rc using eq. (3.9) with no/neo ≈ 1. As validated by
simulations (not shown here), the actual value of r′

13 does not influence δ′, due
to the correlation of r13 and r33 in the measurement geometry. The remaining
parameters in the simulation are identical to those used in the previous section
(table 3.2), except the number and population of the different domain types: In
order to accommodate the reorientation of the ferroelectric domains dependent
on the direction of the electric field E, four domains oriented at γ = 0°, 90°,
180° and 270° (fig. 3.12a) with variable relative volume fraction νγ have been
implemented. Completely randomly distributed ferroelectric domains corre-
spond to ν0° = ν90° = ν180° = ν270° = 0.25, while νγ = 1 represents a single
domain state.
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Fig. 3.12 (a) Schematics of the electric field in a single domain. A random
domain distribution (γ = 0°, 90°, 180° and 270°) is exposed to an electric field
(left). Angles are defined in the magnification of the red domain (right) which is
oriented at γ = 180°. The projection of the electric field E (green vector) on the
direction of the ferroelectric polarization P (black vector) is shown as E[001]

(red vector). (b) Electro-optical hysteresis loop at ϕE = 45° (E ‖ [101]BTO).
The solid curves are calculated based on an empirical model (see text for details)
where different colors correspond to different sweep directions. The same data
as shown in fig. 3.10 is used.

The estimation of νγ (E) is based on the shape of the hysteresis loop for
ϕE = 45° (E ‖ [101]BTO, fig. 3.10). The hysteresis loop is empirically modeled
(fig. 3.12b) by

δ′ = a1

(

tanh
(

a2 (Eoff − Ec,45°)
)

+ a3Eoff

)

. (3.10)

Ec,45° is the offset field which is required to switch the mean polarization at
ϕE = 45°. The point of switching the mean polarization corresponds to an equal
population of all domains with no net electro-optical response (δ′ (Ec,45°) = 0).
In order to obtain the coercive field Ec of a single domain, the magnitude of
the electric field component E[001] that is parallel to the crystalline [001]BTO

axis (fig. 3.12a) has to be calculated, resulting in Ec = Ec,45° cos (45°) for the
specific data discussed in (fig. 3.12b). The parameters a1, a2 and a3 in eq. (3.10)
are used to adjust the shape of the model function to match the experimental
data. The resulting fit values are listed in table 3.3. The initial polarization
curve in fig. 3.12b is approximated by setting Ec,45° = 0.

Using eq. (3.10) with parameters shown in table 3.3, the fraction of aligned
domains νγ (E) is calculated for an arbitrary magnitude of the applied field.
For initial tests of the model, the domain structure of the sample is simplified
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Fig. 3.13 (a) Modeled alignment process of domains for an imperfectly poled
sample as function of the electric field component E[001] parallel to the crystalline
c-axis [001]BTO. Initially, due to a strong poling field Ep (vertical line, solid,
blue), the absolute fraction of aligned domain increases (solid, green), but is
reduced (solid, yellow) upon lowering the offset field to the value Eoff,[001] used
during the electro-optical measurements (vertical line, solid, red). The yellow
curve is obtained by shifting the saturated hysteresis curve for the same sweep
direction (dashed, red) by δν, where δν corresponds to the difference between
the saturated hysteresis curve and the initial curve (green) at E = Ep. (b)
Relative domain population in a simplified model assuming two domains only.
ν0° and ν180° are the relative volume fractions of domains with a spontaneous
polarization along the ϕE = 0° and ϕE = 180° direction, respectively.

to consist of only two domains that are polarized parallel (γ = 0°) and anti-
parallel (γ = 180°) relative to the electric field at ϕE = 0° (E ‖ [001]BTO). The
simplification is abandoned in the final simulations to account for the overall
domain distribution with additional domains at γ = 90° and γ = 270°. The
parameter a3 in eq. (3.10) originates from the nonlinear electro-optical response
of a single domain at large fields and is not related to a reorientation process of
the domains. It is therefore set to a3 = 0 when estimating the relative domain
population νγ (E).

Experimentally, a large poling field Ep is applied prior to the electro-optical

Table 3.3 Parameters used to model modeling hysteresis curves with eq. (3.10).

param. Ec,45° Ec a1 a2 a3

unit V/m V/m °(V/m) (V/m)−1 (V/m)−1

value 7.0 × 105 4.9 × 105 1.5 × 10−9 9.5 × 10−5 −6 × 10−6
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measurement to align the initially randomly oriented domains. During this
initial poling, the net fraction of domains ν0° − ν180° aligned to Ep,[001] is
described by the initial polarization curve in the model (solid green line in
fig. 3.13a). When the component Ep,[001] of the poling field Ep parallel to
the [001]BTO axis is too small to completely align all domains, the sample is
not fully poled. In that case, as shown in the example of fig. 3.13a, the net
fraction of aligned domains is reduced by δν compared to saturated hysteresis
curve (dashed red line in fig. 3.13a). Otherwise, for larger poling fields Ep,[001],
all domains will be re-oriented along Ep,[001] and δν becomes δν = 0. When
reducing the offset field, the change of the domain population is modeled by
subtracting δν from the saturated hysteresis curve. The resulting curve (solid
yellow) in fig. 3.13a) represents the fraction of aligned domains ν0° −ν180° during
the electro-optical measurements which are performed at an offset field of Eoff,
after initially poling the sample at higher fields Ep.

In order to obtain the domain population νγ (E) as a function of the orienta-
tion ϕE of the electric field, the component E[001] (ϕE , γ) = E cos (ϕE − γ) has
to be considered to describe the switching process (fig. 3.12a). By implement-
ing this dependence into the poling mechanism described above, the relative
population νγ (ϕE) of two domains can be calculated (fig. 3.13b) using the
parameters in table 3.3 and the experimental value Ep = 6 × 106 V/m. The
simulation of δ′

max shown in fig. 3.14b additionally includes the domains at
ν90° and ν270°. The total volume fractions of both domain types are adjusted
accordingly (ν0° + ν180° = ν90° + ν270° = 0.5). This equal domain distribution
is based on the cubic symmetry of the substrate (section 2.3.3) and the identi-
cal electro-optical response measured for different electrode orientations with
∆ϕE = 90° (fig. 3.14b).

The field-dependent domain population νγ (ϕE) is finally implemented in the
simulations of δ′ (ϕE) as a weighting factor when summing the Jones vectors of
all four domains as described above (see section of determining r42). In order
to obtain the maximum rotation angle δ′

max (ϕE) and θi|δ′
max

(ϕE), δ′ (ϕE , θi) is
simulated as a function of the incident polarization and maximized with respect
to θi, similar to the experimental procedure shown in fig. 3.9.

Comparison with experimental data

The experimentally determined electro-optical response for different orientations
of E agrees well with the calculated response based on the model described
above (fig. 3.14b). When the electric field is oriented close to the [101]BTO

orientation, the electro-optical response originates from a rotation of the optical
axis (θi|δ′

max
∼ 0°), and the magnitude of the response approaches a maximum.

These characteristics are expected for a large r42 coefficient when the electric



88 3 Electro-optical characterization

0 20 40 60 80
-45

-30

-15

0

15

30

(δ'
max

)

i|
[°

]

' m
a
x

[1
0

-9
°/

(V
/m

)]

(
' m

a
x)

[101]
[100]
[001]

[100]
[001]

'
max

i
|

E
[°]

0

5

10

15

(a)

(b)

(c)

Fig. 3.14 (a) Schematics indicating the different ferroelectric domain configu-
rations for various orientations of E (green), with domains oriented towards
the field (red) and randomly oriented ones (blue). (b) Maximum rotation angle
δ′

max and corresponding angle of incident polarization θi|δ′
max

for various values
of ϕE . The error bars show the standard deviation from several measurements
on different electrode pads. The simulated curves (dashed lines) are based on
the Pockels tensor that is experimentally determined. (c) Illustration of various
electrode orientations used to experimentally realize different orientations of
the electric field ϕE .

field is not parallel to the [001]BTO direction (fig. 3.4). The situation is reversed
when E is aligned to the [001]BTO and [100]BTO axes: The electro-optical
response is minimal and determined by the change in birefringence (θi|δ′

max
∼ 45

°) rather than by the rotation of the optical axis, in excellent agreement with the
simulation. The calculations also show that dθi|δ′

max
/dϕE is large at θi|δ′

max
=

45°: A small variation of ∆ϕE = 1°, which is below the alignment accuracy
of the electrodes relative to the crystalline orientation, results in a change of
∆θi|δ′

max
= 10°. Such deviation from θi|δ′

max
= 45° is indeed experimentally

observed (fig. 3.9). Finally, the identical electro-optical response when rotating
the electric field by 90° matches the picture of equally distributed orthogonal
domains inferred from the structural characterization (section 2.3.3). Thus, the
Pockels tensor and domain structure derived in the study are consistent with
the experimentally observed electro-optical behavior for various orientations of
the applied electric field.
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3.5 Conclusion and outlook

In order to investigate the electro-optical properties of BaTiO3 films epitaxially
grown on silicon substrates, an experimental setup for studying the transmission
through the sample is realized. Small variations of the polarization of the light
due to the electro-optical activity in BaTiO3 are detected and used to reconstruct
the Pockels tensor of the film. Despite the small layer thickness of ∼100 nm of
the BaTiO3 film and consequently a short interaction length between the laser
and the active material, the sensitivity is high enough to excellently resolve the
electro-optical properties of the layer.

As a result, a strong linear electro-optical effect with an effective Pockels
coefficient of reff = 148 pm/V is determined for a 130 nm-thick a-axis BaTiO3

layer on silicon. This value exceeds previous data reported for integrated LiNbO3

by at least a factor of five, and for strained Si by a factor of 100. Additionally,
the presence of ferroelectricity with a spontaneous in-plane polarization are
unambiguously determined by using this electro-optical characterization method.
By complementing the measurements with electro-optical simulations, a method
to investigate the tensor nature of the Pockels effect of multi-domain thin films
is developed. Tensor elements of rc = 30 pm/V and r42 = 105 pm/V are
extracted for the BaTiO3 film. The knowledge of the full Pockels tensor is
essential for properly designing optical devices (section 4.3). The demonstration
of strong electro-optical properties in the BaTiO3 layers are a fundamental step
for continuing the approach of fabricating BaTiO3-based, electro-optical active
devices (chapter 4).

The experimental setup in combination with the opportunities in the epitaxial
integration of BaTiO3 on silicon (chapter 2) enables many new studies: On the
one hand, the growth conditions can be varied in order to tailor the intrinsic
electro-optical properties, for example by changing the layer thickness to obtain
different strain levels, depositing BaTiO3 layers with the hybrid sputtering
process, doping the layers, or fabricating superlattices. On the other hand, the
experimental conditions can be modified in order to extrinsically change the
electro-optical properties even in a dynamic fashion, such as applying strain via
wafer bending, or changing the temperature during the measurements. All these
modifications are templates for obtaining new insight into the electro-optical
properties of BaTiO3 based films, and might eventually serve as a base to reach
or even enhance the large Pockels coefficients of bulk BaTiO3.





CHAPTER 4

Barium titanate enhanced silicon photonic devices

4.1 Background

4.1.1 Basics of silicon photonics

Silicon technology is the most mature semiconductor platform for electronic
applications, which results in the smallest structures while handling the largest
wafers and obtaining the highest yields. This maturity combined with the ex-
pectations for ultra-high data transmission rates, tiny footprints, co-integration
with electronic circuits, and very low power consumption strongly motivated
the development of complex integrated photonic circuits on silicon [1, 5, 167].
Great progress has been made over the past decade, and numerous building
blocks of optical networks are already in an advanced state. One of them are
silicon waveguides: The potential of guiding light in silicon at reasonably low
losses has been one of the major driving forces in the research field of silicon
photonics.

Two physical phenomena are the basis for silicon waveguides: First, silicon
shows a transparency window in the near infrared which is compatible with
important wavelength regions at λ = 1.3 µm and 1.55 µm used for telecommu-
nication applications. Second, the high refractive index of silicon nSi = 3.45 at
λ = 1.55 µm [168] leads to a strong light confinement in the waveguide core and
consequently enables very small bending radii in the order of a few µm, which al-
lows the design of very compact individual devices and complex optical circuits.
In the simplest form, a rectangular-shaped cross section with dimensions similar
to the wavelength are etched into silicon to serve as a waveguide (fig. 4.1a). To
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Fig. 4.1 (a) Cross section of a 400 nm-wide silicon photonic waveguide with
strongly-confined modes, as seen from the power distribution of the TE and
TM mode, respectively. The orientation of the main electric field component of
the optical mode is indicated by a yellow arrow. (b) Schematics of a test setup
to characterize integrated photonic devices.

avoid leakage into the silicon substrate, the optical mode has to be confined also
in the vertical direction. Therefore, silicon-on-insulator (SOI) wafers with a
thick (2−3 µm) buried oxide (BOX) layer and a typically ∼220 nm-thick silicon
device layer are used. Figure 4.1a shows the optical power distribution of such
single-mode waveguide, supporting only one single TE (transverse-electric) and
one single TM (transverse-magnetic) mode. Most optical power of the modes
is stored in an electro-magnetic wave with an electric field parallel (TE) or
perpendicular to the substrate plane (TM) (see yellow arrows in fig. 4.1a).

Silicon waveguides are the building blocks of many devices in integrated
circuits, such as splitters, filters, and resonators. The functionality of these
devices is determined by the proper design of how to arrange the waveguides
on the chip. Other building blocks however require more complex design and
processing steps, for example when targeting active devices such as modulators
[8] or switches [169]. In order to investigate the properties of such passive and
active devices, test environments as illustrated in fig. 4.1b are commonly used:
Optical fibers are utilized to couple light into and out of the chip, thus allowing
to probe the optical and electro-optical characteristics of individual elements of
a photonic circuit.

The field of silicon photonics is constantly evolving, and many unsolved
tasks exist (see section 1.1). A lot of effort is invested in the integration
of other materials such as germanium for detectors [13] or III/V layers for
lasing [170]. Adding an electro-optical material such as BaTiO3 to silicon
photonics would enable a variety of novel devices and functionalities which
could drastically reduce the power consumption of tuning elements, enable
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high-frequency modulators, and result in ultra-fast switches, as discussed in
section 1.2. In this chapter, specific solutions for integrating BaTiO3 into silicon
photonic structures will be shown. In particular electro-optical active devices
working at high- and low speed are designed, fabricated and experimentally
characterized.

4.1.2 State-of-the art electro-optical silicon photonic devices

Due to the strong electro-optical activity (chapter 3), BaTiO3 thin films are
well suited for photonic devices whose functionality relies on a change of the
refractive index. Examples of such devices are high-speed modulators, switches,
and zero-power tuning elements. The Pockels effect offers two features, which
make its exploitation for optical devices particularly appealing:

1. The Pockels effect is an ultra-fast effect peresent even in the THz-regime
[22]. It therefore provides an excellent option to fabricate modulators
and switches working at extremely high speed.

2. The Pockels effect is an electric field effect (eq. (3.1)) which does not
require any current flow. Thus, tunable devices with ultra-low power
consumption can be envisioned. It should be noted that in real devices
charge has to be transferred to the electrodes in order to create an electric
field, which is a major contribution to the power consumption of (any)
high-speed device. This power consumption is however not an issue when
tuning photonic elements: tuning is required to for example compensate
temperature drifts which occur on much longer time scales.

Pockels-based high-speed LiNbO3 modulator have been used for decades in
the field of telecommunication [20], and are even up to now state-of-the-art
[21]. In silicon photonics, such devices have hardly been considered so far
because of the vanishing Pockels effect in silicon due to the centro-symmetric
crystal structure, and the unavailability of electro-optical active materials on
silicon. An exception is the integration of electro-optically active polymers
that are spin-coated as a cladding layer on top of slot-waveguides, resulting
in high modulation speeds of ∼40 Gb/s [152, 171]. The integration of such
devices into the processing line of silicon photonic circuits is however difficult
due to the low thermal budget of polymers. Therefore, other physical effects
have been exploited in silicon-based electro-optical devices [8], such as the
plasma dispersion-effect, the quantum-confined Stark effect (QCSE) [172], the
Franz-Keldysh effect [173], or thermo-optical effects [17, 174].

The plasma dispersion-effect describes the dependence of the refractive index
from the charge carrier concentration [8]. It is the most widely used effect
for realizing silicon photonic modulators, mainly because no other materials
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than silicon are required. This makes the process flow compatible with any
CMOS fabrication line. However, such devices rely on a variation of the charge
carrier profile, which involves rather slow carrier recombination processes in
silicon in the ∼ns regime. By driving the modulator in the depletion regime,
this limitation has been addressed and high speed modulators operating from
40 Gb/s [178] up to 60 Gb/s [14] were demonstrated (table 4.1). One major
drawback of using the plasma dispersion effect is the change of the absorption
when applying a voltage. The variation prevents the utilization of higher order
modulation formats which are commonly used in telecommunication.

Both the QCSE and the Franz-Keldysh effect are field-effects that rely on
the change of a semiconductor bandgap and thus the absorption as a function
of the applied electric field. The Franz-Keldysh effect is the limit of the QCSE
for very thick layers. Electro-absorption based modulators can potentially be
more power efficient than plasma-dispersion based modulators [8]. Yet, another
material than silicon is required for their realization, which complicates the
fabrication process. The QCSE has nevertheless been explored in particular in
Ge/SiGe multi-quantum wells on silicon substrates [19, 172] and high-speed
modulation at 10 GHz has been shown [179]. Despite these promising results,
only few waveguide-based electro-absorption devices on silicon were reported
up to now [180].

Noteworthy are some recent studies of introducing a strain gradient into
silicon waveguides by using a well-tuned Si3N4 cladding. These strain gradients

Table 4.1 State-of-the art silicon photonic Mach-Zehnder modulator with char-
acteristic properties: voltage × length product (Vπ × L), bandwidth, extinction
ratio (re), and insertion loss (on-chip loss). Bulk-LiNbO3 modulators are listed
for comparison.

State of the art silicon photonic MZ-modulator

year 2013 [14] 2012 [175] 2013 [152] 2009/2013
material silicon silicon polymer LiNbO3

physical effect
carrier

depletion
carrier

depletion
Pockels Pockels

Vπ × L [V mm] 16-20 20-30 2.7 53.5 [176]
bandwidth [GHz] 60 20 10 33 [177]

re [dB] 3.6 4.2 4-11 >20 [177]
insertion loss [dB] 1.9 13.7 9 3.2a [177]

a off-chip insertion loss
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break the symmetry in the crystalline structure and result in a non-vanishing
Pockels effect in silicon [25] that has been used to fabricate electro-optical
modulators [26]. The effective Pockels effect is however significantly smaller
(reff ≈ 1.7 pm/V) [26] than in polymer or LiNbO3-based devices, and in par-
ticular smaller than of BaTiO3 films as presented in this work (chapter 3).
Typical figures of merit for state-of-the art silicon photonic modulators based
on nonlinear polymers and the plasma dispersion effect are listed in table 4.1.
Bulk-LiNbO3 modulators are included for comparison.

Beside these high-speed applications, low speed tuning is an important topic
in silicon photonic networks. In particular resonant structures as present for ex-
ample in filters require active tuning due to size variations during the fabrication
and temperature variations during operation. For the latter, local variations
caused by hot spots on the chip as well as global variations originating from
different temperatures of the environment have to be compensated. Commonly,
two approaches are followed to tackle these tasks: First, athermal cladding
layers with a negative thermo-optic effect are used. When properly designed, the
cladding can cancel the positive thermo-optical effect of silicon waveguides and
make the device characteristics independent of the temperature [16]. Deviations
in the device geometry originating from process variations can however not be
compensated. Second, thermal heaters are placed on top of critical devices to
shift the wavelength of resonant structures by the thermo-optic effect [17, 18].
Although this approach can also be used to compensate fabrication tolerances,
it is rather power consuming (∼40 mW per 10 ◦C [174]) and hence not suited
for highly integrated devices. Nonlinear optical materials provide another way
to tune the optical mode index by applying an electric field without any current
flow, being a very power efficient solution. Furthermore, both directions, tuning
and trimming, are addressed when the linear electro-optical effect is utilized.

BaTiO3-based silicon photonic devices offer an excellent novel way to ad-
dress both domains, high-speed modulation and low-speed, zero-power tuning.
Possible ways to implement such layers into silicon photonic structures, as well
as an analysis of the expected device performance for different geometries are
discussed in detail in sections 4.3 and 4.3.4. The fabrication and characteriza-
tion of first BaTiO3-based silicon photonic passive and active devices is shown
in the subsequent sections (sections 4.4 and 4.5.1).

4.2 Workflow and strategy

The integration of BaTiO3 layers into silicon photonic devices is a novel ap-
proach, and no prior studies are available. Also no comparable electro-optical-
active functional oxide has previously been utilized in silicon photonic structures.
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Fig. 4.2 Strategy to obtain active BaTiO3-based integrated photonic devices:
(a) Design of the waveguide-cross section to embed BaTiO3 efficiently into
silicon photonic structures. (b) Die-by-die processing and characterization of
passive devices, and iterative adjustment of the mask-design. (c) Full fabrication
of active devices including electrodes based on the parameters obtained from
the passive measurements.

Therefore, several challenges have to be tackled when targeting a BaTiO3-based
electro-optical-active photonic demonstrator:

1. Design of cross section. The cross section of silicon waveguides with an
embedded BaTiO3 layer (fig. 4.2a) differs significantly from standard
waveguides. In principle, BaTiO3 could simply be used as a cladding. Due
to the low refractive index, the efficiency of such structure would be rather
low. Therefore, as a first step, a proper cross section is defined, taking
into account the optical confinement, process compatibility, bending
losses, and single mode operation. The issues and solutions are discussed
in sections 4.3 and 4.3.2.

2. Realization of a “BaTiO3-based photonic platform”. Several passive build-
ing blocks to enable simple test devices are developed. Such building
blocks are grating couplers, directional couplers, curved waveguides, ring
resonators, and Mach-Zehnder interferometers (section 4.3.3). These
devices are needed because the same layer stack is used for the whole
photonic circuit and not only for the region of active devices, in order to
keep the fabrication process as simple as possible.

3. Fabrication of active devices. Based on the results of the passive devices,
more complex active structures (fig. 4.2c) involving additional process
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steps are designed, fabricated, and characterized.

Two different strategies exist for handling the fabrication flow: First, a
wafer-by-wafer route benefits from simplified processing steps because many
tools are optimized for handling full wafers, or even require full wafers (such as
laser lithography). The drawback of that strategy is the requirement of many
BaTiO3/Si wafers to test individual process steps and to iteratively adjust the
design based on experimental results. This drawback is severe since the growth
of BaTiO3 layers is at the current stage a rather slow process (∼1 wafer/day),
limited by the tools available for this work.

A second strategy, a die-by-die processing (fig. 4.2b), is therefore chosen in
order to significantly reduce the requirements on the epitaxial growth. Only
single dies are iteratively processed without dicing the wafer into pieces in order
to keep the compatibility to all tools (details in section 4.4).

4.3 Device design

4.3.1 Waveguide cross section

The need of a slot waveguide structure

The simplest way to integrate barium titanate into silicon waveguides is to
deposit BaTiO3 as a cladding (fig. 4.3a). This configuration however suffers
from a rather low confinement ΓBTO of the optical power in the BaTiO3 layer
due to the large refractive index of silicon (nSi = 3.45) compared to BaTiO3

(nBTO ≈ 2.26, table 3.2) at λ = 1.55 µm. Γ is the integrated power of the
Poynting vector in a specific area of the waveguide, normalized by the total
power of the mode. For typical silicon waveguide dimensions (400 nm × 220 nm)
and a BaTiO3 thickness of 50 nm, the confinement is only ΓBTO,TE = 6.7 % for
the TE, and ΓBTO,TM = 6.0 % for the TM mode. Hence, for active devices, the
change of the effective mode index is reduced by a factor of ∼15 compared to
the refractive index change in the BaTiO3 layer.

The confinement factor within a material of low refractive index n can
strongly be increased by embedding a thin layer between two high-n layers
[181]. Figure 4.3b shows an example of such so-called “slot waveguide” applied
on a BaTiO3/Si material system with an additional top-silicon layer. The
confinement in this structure (ΓBTO,TM = 24.8 %, ΓBTO,TE = 10.9 %) is signifi-
cantly enhanced compared to the cladded version. Additionally, slot waveguides
provide a way to apply very strong electric fields across the narrow slot by
using both silicon layers as electrodes, as demonstrated with polymer filled slot
waveguides [152].
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Fig. 4.3 Comparison of the light confinement ΓBTO in the BaTiO3 layer (a)
in a standard silicon photonic waveguide with BaTiO3 as a cladding and (b)
in a slot-waveguide structure. In both cases, the waveguides have a width of
400 nm and support multiple TE modes, but only one TM mode. The direction
of the major electric-field component of the modes is indicated in the profiles.

In the next sections, the physical background of slot waveguides and the
application on the BaTiO3/SOI material system is discussed. The design of
possible cross sections is presented with strong considerations of the feasibility
of fabricating such structures.

Physical background of slot waveguides

The concept of slot waveguides was first theoretically suggested by Almeida
et al. [181], and experimentally realized only a short time afterwards [182]. The
strong field confinement in slot waveguides results from the continuity of the D⊥

component of the electric displacement field perpendicular to an (uncharged)
interface between two materials, according to Maxwell’s equations. For materials
with different permittivity ǫ, a discontinuity of the normal component of the
electric field E⊥ occurs

ǫlowE⊥,low = D⊥,low = D⊥,high = ǫhighE⊥,high (4.1)

E⊥,low =
ǫhigh

ǫlow
E⊥,high =

n2
high

n2
low

E⊥,high (4.2)

where the indices “low” and “high” refers to the low-n and high-n material,
respectively, and where the relationship ǫ = n2 is employed [161]. The electric
field at the BaTiO3/Si-interface is thus enhanced by n2

Si/n2
BTO ≈ 2.3 within

the BaTiO3 layer. This enhancement however decays exponentially with the
distance from the interface [181]. In a slot waveguide, two symmetric interfaces
are separated closer than the decay length, which results in a nearly constant
high field over the full slot region, as shown in fig. 4.4. The key task in designing
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Fig. 4.4 (a) Power distribution of the TM-mode in a horizontal slot waveguide
with dimensions, refractive indices, and the main component of the electric
field Ey as indicated in the figure. (b) Magnitude of Ey of the optical field in
the center (green arrow in (b)) of the waveguide. The dashed lines correspond
to Ey of modes with the BaTiO3 layer and the lower (blue) or upper (yellow)
silicon block only. The second silicon block is replaced by SiO2. The vertical
dotted gray lines indicate the interfaces between the buried oxide (BOX), silicon,
BaTiO3, silicon, and the cladding, respectively.

a slot waveguide is to dimension the different layer thicknesses in a way to
achieve a maximal power confinement in the low-n material [181].

Vertical versus horizontal slot design

Slot waveguides can be fabricated either with a horizontal [182] or with a vertical
[152] slot geometry (fig. 4.5). Vertical slots benefit from the potential to fill them
with liquid materials, for example to embed electro-optical active polymers [152]
or to detect biological reactants [183]. Contrary, the waveguide propagation
losses αp are typically higher in vertical (αp > 12 dB/cm, [183, 184]) than
in horizontal slots (αp < 7 dB/cm, [185]) due to the strong influence of the
roughness of the slot interfaces on the propagation: The sidewall roughness
caused by the etching steps in vertical slots is typically much larger than the
interfacial roughness between two smooth layers in horizontal slot waveguides.

For silicon slot waveguides, both silicon blocks in a vertical slot can be used as
electrodes, resulting in a high electric field in the slot region [152]. Contacting
both silicon blocks in the horizontal configuration is more challenging. For
the current work, a horizontal slot structure is followed because only this
structure is compatible with the fabrication method: By means of MBE,
vertical slots with high aspect ratio cause shadowing effects, and no homogenous
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(a) (b)

Fig. 4.5 Examples of cross-sections for a (a) horizontal and (b) vertical slot
waveguide. The thin, unetched silicon layer is not needed for passive waveguides,
but can be used to electrically contact the silicon block(s) in active devices.

deposition in prestructured devices is possible. Other methods such as atomic
layer deposition or chemical vapor deposition would be required. In contrast,
horizontal structures can be realized by growing BaTiO3/Si thin films via MBE
as discussed in chapter 2 and structuring them afterwards (section 4.4).

Maximizing the BaTiO3-light confinement

The mode profile of slot waveguides is calculated by systematically varying the
geometry in order to optimize the cross section. The targets of this optimization
procedure are

• Maximization of the optical confinement in the BaTiO3 layer

• Single TM-mode operation

• Compatibility of the fabrication route to available processing tools

• Reasonable robustness of the waveguides against variations of the geome-
try during fabrication.

The simulations are predominantly performed with the commercial mode solver
FieldDesigner by PhoeniX Software using a field-mode-matching and finite
difference solving method. The latter is applied when propagation losses due
to metal electrodes or bent waveguides are calculated.

Type of waveguide The starting layer stack for all simulations consists of
a SOI wafer with a thick BOX layer (2 µm), a device silicon layer of variable
thickness, a 50 nm-thick BaTiO3-layer, a top-silicon layer of variable thickness,
and a SiO2-cladding (fig. 4.6a). The 4 nm-thick SrTiO3 film is included in the
BaTiO3 layer in the simulations due to the similar refractive index (nSTO = 2.28
at λ = 1.55 µm [168]) compared to BaTiO3 (nBTO ≈ 2.26, table 3.2). 5 nm-thick
SiO2 layers are embedded at both interfaces of the BaTiO3 layer to account for
interfacial SiO2 that establishes during the growth (fig. 2.15), and to account
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Fig. 4.6 (a) Starting structure for all waveguide simulations. Cross section
of a (a) fully etched (FE), (b) halfway etched (HE), and (c) partially etched
waveguide (PE).

for a SiO2 layer that is deposited prior to the top-silicon deposition to avoid
contamination of the Si-deposition chamber (see section 4.4). Depending on
the processing route, the top-silicon layer is hydrogenated amorphous silicon (a-
Si:H), or crystalline silicon (c-Si) (section 4.4). Literature values of the refractive
indices are used, except for BaTiO3 and a-Si:H for which experimental values
obtained via spectroscopic ellipsometry are applied.

Etch-depth First, different etch stop levels within the initial layer stack
(fig. 4.6a) are considered. Notably, no etch process for BaTiO3 has been reported
that yields smooth sidewalls as required for low-loss waveguiding. Studies on
etching BaxSr1−xTiO3 thin films are focused on isotropic wet chemical processes,
which would under-etch the slot, Ar-sputtering [186] with low selectivity against
silicon, and dry etching [187, 188] with low selectivity against HSQ (hydrogen
silsesquioxane), which is used as etching mask (section 4.4). Therefore, cross
sections that do not rely on a BaTiO3 etching step are preferred among the
possible waveguide layouts:

• Fully etched waveguides (“FE”, fig. 4.6b). The high optical confinement
in the waveguide core of fully etched waveguides allows small bending
radii. However, the unexplored etching process for BaTiO3 might re-
sult in a high sidewall roughness and consequently in high propagation
losses. Furthermore, fully etched structures suffer from a low electric field
strength inside the BaTiO3 slot due to its high permittivity (section 2.5)
compared to the SiO2-cladding layer (discussed later, in fig. 4.14).

• Halfway etched waveguides (“HE”, fig. 4.6c). Etching only the top-silicon
layer results in strip loaded waveguides that generally have lower propa-
gation losses than fully etched waveguides. On the other hand HE-type
waveguides suffer from higher bending losses at the same bending radius
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compared to FE-type waveguides. Compared to FE waveguides, the
electric field produced by two electrodes parallel to the waveguide is
rather strong since no voltage drop in the cladding occurs (discussed
later, in fig. 4.14). This cross section is the structure of choice for most
of the fabricated devices throughout this thesis.

• Partially etched waveguides (“PE”, fig. 4.6d). Compared to HE waveguides,
not completely etching the top-silicon results in a laterally less confined
mode and thus in larger bending losses. The main advantage of this
structure is the possibility to utilize the top-silicon block as an electrode
which is contacted next to the waveguide via the thin, unetched top-
silicon layer. Applying a voltage relative to the device silicon layer results
in large electric fields across the thin BaTiO3 layer. Structures of this
type are experimentally realized in this work.

Due to their good process compatibility without any BaTiO3 etching step, the
properties of both HE and PE waveguides is simulated in more detail in the
following sections.

Thickness of device-silicon Numerous geometrical parameters can be varied in
the cross sections discussed above (fig. 4.6). The thickness of the device-silicon
(fig. 4.6a) layer td-Si is defined by the initial SOI-wafer, and cannot be changed
during the processing simply by varying the mask layouts or the deposition
conditions. As a first step of the waveguide optimization, the influence of td-Si

is investigated to allow a proper choice of the SOI substrate.
To reduce the parameter space, the thickness of the BaTiO3 layer is fixed

to tBTO = 50 nm as typically used during the growth. The waveguide width is
set to wWG = 400 nm, which is similar to commonly used silicon waveguides.
Variations of these parameters did not yield radically different conclusions.
When varying the experimentally easily changeable top-silicon thickness tt-Si

simultaneously with the device silicon thickness td-Si in HE-type waveguides
(fig. 4.7), a large regime without any supported TM modes is visible. In
particular no TM modes are guided for thick device-Si layers, where the lateral
confinement in the waveguides is small. Single TM-mode operation is only
possible in a small regime (highlighted in yellow, fig. 4.7). This regime is very
similar for PE-type waveguides (not shown).

The experimental realization of the structures is limited by the availability
of substrates with proper dimensions in td-Si. The only two commercially
available substrate types in that thickness regime with a > 2 µm-thick BOX
layer are indicated in fig. 4.7 (dashed, red lines). The SOI wafer type with
td-Si = 70 nm is compatible with single mode operation and is therefore used
for the experiments.
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Fig. 4.7 Effect of the thicknesses of the device- and top-silicon layers on the
presence of TM modes. The BaTiO3 thickness and waveguide width is fixed
to tBTO = 50 nm and wWG = 400 nm, respectively. The dashed lines indicate
commercially available SOI wafers with a thick (> 2 µm) BOX layer. Cross
sections for two regimes marked with the green arrows are illustrated on the
sides.

Variation of waveguide dimensions While keeping tBTO = 50 nm and td-Si =
70 nm, the thickness of the top-silicon layer tt-Si and the waveguide width wWG

are varied since they can easily be modified in the experiment. As shown in the
highlighted region in fig. 4.8b, the waveguide only guides a single TM-mode in
a certain regime of both parameters. Outside this regime, either no or multiple
TM-modes are guided.

The confinement factor ΓBTO for the single-TM mode region is color encoded
in fig. 4.8b: ΓBTO becomes large for thin top-silicon layers and wide waveguides.
However, the process window to obtain single-TM-mode operation also becomes
smaller in that range, which means an additional risk for the fabrication. Not
only is it hard to control the a-Si:H layer thickness better than ∆tt-Si < 10 nm,
also the refractive index of the layer can vary depending on the hydrogen content
and deposition conditions. The refractive index has direct impact on the region
of single-mode operation. Therefore, the design point is set to tt-Si = 210 nm
and wWG = 575 nm (green lines in fig. 4.8b), which provides a good tradeoff
between a strong confinement (ΓBTO = 19.9 %) and reasonably high process
tolerances. The effective index and the group index of the TM-mode for such
geometry is neff,TM = 2.21 and ng,TM = 3.67, respectively.

When calculating ΓBTO for a specific waveguide width (wWG = 575 nm) as a
function of the thickness of the top-silicon layer (fig. 4.8d), a clear maximum
for the TM mode is found. Also the much larger confinement compared to
the TE-modes is visible, for which no field enhancement due the refractive
index contrast is present. The different mode profiles (fig. 4.8c) for specific
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Fig. 4.8 Variation of the HE-waveguide cross section. (a) Change of the
waveguide width wWG and the thickness of the top-silicon tt-Si layer. (b) Regions
with different numbers of TM modes. The colored area corresponds to the
single-TM-mode regime where the confinement factor ΓBTO is color-encoded.
The dashed green lines are the targeted design point. (c) Magnitude of the
Poynting vector of modes corresponding to different waveguide geometries, and
different polarizations. The yellow arrows indicate the direction of the major
electric field component of the modes. The hybrid mode contains similar power
in the Ex (TE) and Ey (TM) field. (d) ΓBTO for a 575 nm-wide waveguide.
Open symbols corresponds to poorly confined hybrid TE/TM modes.

tt-Si-thicknesses show the field enhancement in the BaTiO3 layer and the low
optical confinement in the waveguide for modes simulated at the edges to the
cut-off condition. These modes might disappear if the fabricated waveguide is
slightly different from the simulations due to process variations. The low mode
confinement also prohibits small bending radii and hence makes the waveguides
not applicable for small photonic structures.

Partially-etched (PE) waveguides In contrast to HE-waveguides discussed in
the previous section, PE waveguides provide a way to use the upper silicon block
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Fig. 4.9 Number of modes for a partially-etched (PE) waveguide as a function
of the etch depth tetch and the width of the waveguide wWG. The total thickness
of the device silicon is fixed at tt-Si = 220 nm (tetch + tside-Si = tt-Si). The green
lines indicate the design point for PE-waveguides.

as an electrode. The block can be electrically contacted with metal electrodes on
the side of the waveguide via a thin, unetched silicon layer (fig. 4.9). By doping
the top-silicon layer properly, a balance between high-speed (highly doped) and
low absorption (lowly doped) has to be found. For low speed operation, the
slightly doped silicon of a standard photonics SOI wafers (ρ ≈ 10 Ω cm) could
be used as electrodes to create a strong electric field in the BaTiO3 layer, which
has a significantly higher resistivity (ρ ≈ 1010 Ω cm, section 2.5).

On the one hand, the thickness tside-Si of the unetched silicon should be as
large as possible in order to minimize the series resistance between the metal
pads and the waveguide core. On the other hand, the TM-mode will laterally
be less confined and eventually not be guided anymore if tside-Si is too high.
Figure 4.9 shows the region of single-TM operation, for different etch depth tetch

and waveguide width wWG. The top-silicon thickness is kept at tt-Si = 220 nm.
This restriction originates from the availability of regular SOI wafers, which
are needed in order to obtain a slightly conductive top-silicon layer via wafer
bonding (section 4.4). To ensure single TM mode operation, the un-etched
silicon layer has to be kept thin, and the waveguide width has to be increased
compared to HE-waveguides. The design point is set to wWG = 950 nm and
tside-Si = 40 nm, as a compromise between process robustness, a reasonable
thickness for electrical contacts, and a large ΓBTO = 21 % (not shown here).

Conclusion for geometry variations The previous paragraphs discuss different
aspects for designing an “optimized” waveguide cross section for BaTiO3-based
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slot waveguides. Two solutions are developed, a halfway-etched (HE, fig. 4.6c),
and a partially-etched (PE, fig. 4.6d) slot waveguide. Both structures provide a
strong field enhancement in the BaTiO3 slot region, single-TM mode operation,
a decent tolerance to variations of the dimensions during the fabrication, and
avoid any BaTiO3-etching steps.

Bending losses of waveguides

Compared to fully etched waveguides (fig. 4.6b), the modes in halfway etched
waveguides are laterally less confined. This is in particular true for TM-modes.
The simulated losses for HE-type waveguides for different bending radii r

confirm this behavior (fig. 4.10): While TE modes exhibit low bending losses of
αb = 1 dB/cm for r ∼ 4.5 µm, TM-modes require a significantly larger bending
radius of r ∼ 20 µm to achieve similar bending losses. As indicated in fig. 4.10,
slightly over-etching into the BaTiO3 layer can be utilized to reduce the bending
radii while keeping the losses constant due to a better mode confinement.

Since a high integration density with aggressively scaled devices is not in
the focus of this thesis, the bending radii in active devices are designed as
r ≥ 30 µm with negligible bending losses (αb,TM ≈ 0.01 dB/cm). The absolute
losses for a 90° bend are as low as 6 × 10−5 dB. The modal overlap between a
30 µm-bend and a straight waveguide is very high (99.92 %), and consequently
no significant additional losses are expected. For non-active devices, such as
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β onto the grating is diffracted into the plane of the waveguide. (b) FDTD-
simulation using MEEP for a grating coupler with a duty cycle of D = 0.8 and a
HE-waveguide cross section. For the simulation, a point source is placed in the
waveguide, and the light coupled out of the grating is considered. The color code
red/blue indicates the magnitude and phase of the electric Ey field. (c) Mask
layout of a focusing grating coupler used in the experiments. Anti-reflection
wedges on the left side reduce back reflections into the waveguide [10].

connecting waveguides, very large bending radii of 100 µm are used.

4.3.2 Grating couplers

Grating coupler provide a way to couple light into and out of a silicon photonic
circuit with optical fibers in close proximity to the surface (fig. 4.1b). In
contrast to butt coupling, they enable the characterization of individual devices
placed anywhere on a chip. The untypical cross section of the BaTiO3 slot
waveguides prohibited the usage of standard silicon photonic couplers, but
required a redesign of the grating dimensions as explained in the following
section.

Cross sectional design

The key design parameters for the grating couplers used in this work are the
grating period Λg (fig. 4.11a) and the duty cycle D. The duty cycle is defined
as ratio between the length of an unetched grating tooth and Λg. The etching
depth, as well as the cladding are defined by the waveguide cross section and
are not modified in the coupling region to avoid additional processing steps.

Different strategies can be followed to properly design photonic grating cou-
plers. One of them is the utilization of finite-difference time-domain simulation
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tools in combination with photonic Eigenmode solvers [10, 189] to take into
account the exact two dimensional cross-sectional structure. Alternatively, the
grating region can be treated as an effective material with refractive index neff

grat.
An analytical solution to describe the diffraction of a wave at a grating can be
applied [190]

neff
grat = nclad cos(β) + λ/Λg, (4.3)

where β is the angle of incidence as defined in fig. 4.11a and nclad the refractive
index of the cladding. The approximation of the grating region with a homo-
geneous “effective” material results in a deviation between the two simulation
approaches. Both calculation strategies are followed in the current work, but
only small differences for the structure under investigation are found. Motivated
by the much smaller computational effort, the algebraic solution is thus used
for the design process.

In a first step, neff
grat is calculated as a function of the duty cycle using a mode

solver. The effective refractive indices of the etched layers neff
etched are therefore

defined as mixtures between the refractive index of the unetched layers in the
grating teeth and the cladding in the gaps of the grating:

neff
etched (D) = D × nunetched + (1 − D) nclad. (4.4)

Depending on the etch depth, this approximation is applied for the top-silicon,
BaTiO3, and device-silicon layer. Layers that are not etched in the grating region
are treated similar to the previous simulations of the waveguide geometry. The
cross section in the coupling area is considered as a planar waveguide because
of the large width of the couplers (∼10 µm ≫ λ). Hence, a one-dimensional
mode solver is used.

Λg (λ, D, β) is obtained by replacing neff
grat in eq. (4.3) with the solutions of

the mode solver where D is embedded via eq. (4.4). The center wavelength is
fixed at λ = 1550 nm, and the angle of incidence is set to β = 80° to reduce
reflections from the fiber back into the grating compared to a perpendicular
angle of incidence. The duty cycle determines the diffraction strength of a
single tooth, and the reflection of the grating [189]. The grating is simulated for
different values of D using the FDTD (finite-difference time-domain) simulation
software MEEP [191]. A value of D ≈ 0.8 results in planar waves in the
coupling region, and is therefore used in the following considerations. No full
quantitative analysis is performed per FDTD, in particular the spot size of the
diffracted light is not further adjusted in order to match the size of the fiber
core for example by chirping the grating [6].

The grating period Λg is calculated as a function of the etch depth tetch in
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Fig. 4.12 Simulated grating period Λg of grating couplers as a function of the
etching depth. The simulation is based on HE-waveguides with varying etch
depth. The couplers are designed for the wavelength λ = 1550 nm, a coupling
angle of β = 80°, and a duty cycle of D = 0.8.

order to take into account both the HE and PE waveguide structures, as well
as effects of potential under- and over etching during the fabrication (fig. 4.12).
Solutions for TE and TM modes, and different cladding materials are shown.
Due to the higher mode index, the grating period of the TE couplers is smaller
than the TM couplers.

Mask layout

Focusing grating couplers are used to keep the footprint of the couplers low
and thus to obtain a high density of test devices and a low exposure time
during the ebeam lithography step. For an optimal design, the bending of the
grating teeth has satisfy an algebraic equation of the sixth order as described
by Waldhäusl et al. [190]. A simplified elliptical equation [190] is used to design
the mask layout of the couplers (fig. 4.11c). Anti-reflection wedges are added at
the end of the couplers in order reduce back reflection into the waveguide [10],
which eventually results in unwanted interference patterns in the transmission
spectra.

4.3.3 Directional couplers

Directional couplers provide a way to transfer optical power between two
adjacent waveguides. They can be used as basic building block of Mach-
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Zehnder (MZ) interferometers, which are among the different types active
device that are targeted in this thesis. The specific cross section of the BaTiO3

slot waveguides requires a customized design of the couplers.

Directional couplers are well described by coupled mode theory, which can
be used to obtain coupling coefficients and energy transfer functions for even
complex, asymmetric couplers with multiple waveguides [192]. In the case of
a symmetric coupler with two waveguides, a simplified treatment is possible
[192]: In close proximity of two single-mode waveguides, a symmetric and an
anti-symmetric supermode are formed (fig. 4.13a). Their effective indices ns

and nas depend on the gap size g between both waveguides and are generally
different (fig. 4.13a). The superposition of both modes with the same phase
ϕ0 corresponds to the situation when all power is confined in one of the two
waveguides. After propagating a distance L along the waveguide pairs, a phase
delay of ∆ϕ establishes between both modes due to the different propagation
constants. When the phase shift is ∆ϕ = π, the relative phase of the electric
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field between both modes is reversed compared to the initial situation at ϕ0.
The optical power of the superposition of both modes is thus confined in the
other waveguide.

The length Lc (fig. 4.13c) of a coupler that transfers all energy from one
waveguide to the other can be calculated by [193]

Lc =
λ

2|ns − nas|
. (4.5)

The coupling length for BaTiO3-waveguides is plotted in fig. 4.13c: The TM-
mode is laterally more expanded than the TE-mode, which results in a stronger
coupling coefficient and thus in shorter Lc. Longer couplers are more tolerant
to small size variations during the fabrication. Therefore, g = 300 nm and
accordingly Lc = 36 µm is targeted for active TM-devices. For passive devices
also smaller gap sizes are tested (section 4.5.5).

Notably, symmetric directional couplers can ideally transfer 100 % of the
power from one waveguide to the other one. While eq. (4.5) only represents
the shortest coupling length, it can be increased by multiples of 2Lc [192].

4.3.4 Active devices

In the following section the design and estimated performance of electro-optical
active devices that utilize the Pockels effect of the BaTiO3 layer are discussed.
If not mentioned differently, waveguide cross sections of HE-type (fig. 4.6)
are used. The behavior of PE-waveguides differs significantly only for specific
electric field configurations, as highlighted accordingly.

Placement of electrodes

In order to vary the effective index of the optical mode, an electric field has to
be applied to the BaTiO3 region within the waveguide core. Two substantially
different electrode geometries can be designed, resulting in a horizontal, in-plane
electric field (fig. 4.14a), or in a vertical out-of-plane electric field (fig. 4.14b).
The proper choice of the electric field configuration depends on the type of
application and on the details of the BaTiO3 microstructure, as discussed below.

In-plane electric field A horizontal electric field is obtained by placing two
electrodes parallel to the waveguide on top of the BaTiO3 layer (fig. 4.14a).
A waveguide having such in-plane (x-direction) electric field configuration is
marked with a ‖-sign in the following. The distance del between the electrodes
and the waveguide has to be large enough to avoid high optical losses due to the
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Fig. 4.14 Electric field in the BaTiO3 layer in the core of slot waveguides
when applying a voltage of V = 1 V to the electrodes. (a) HE‖-waveguides with
in-plane component Ex of the electric field originating from 1.5 µm × 50 nm
electrodes separated by del = 1.5 µm from the waveguide. The field distribution
for a FE‖-waveguides is shown for comparison. (b) Electrodes to obtain an
out-of-plane electric field in a HE⊥-waveguide. A large drop of the voltage
occurs in the low-permittivity SiO2-cladding. When directly applying the
voltage to the device-silicon layer in PE⊥-waveguides, the electric field in the
BaTiO3 core is significantly enhanced. The dimensions of the bottom electrodes
are identical to (a), with an additional 0.5 µm × 50 nm metal electrode on top
of the 1.0 µm-thick SiO2-cladding. Dashed gray lines indicate the interfaces
between the layers.

absorption of the metal. For a low-loss configuration with del = 1.5 µm, the elec-
tric field in the BaTiO3 layer can be approximated by E ≈ ∆V /(2del + wWG)
when applying a voltage ∆V between both electrodes. Figure 4.14a shows
a more accurate simulation of the x-component of the electric field E in the
center of the BaTiO3 layer in a HE‖-waveguide, calculated with FielDesigner

by Phoenix. All materials but the platinum metals are treated as dielectrics
with permittivity values as shown in table 4.2. Platinum is chosen due its
excellent conductivity for high speed applications, but can be replaced by other
metals such as aluminum.

In contrast to HE‖-waveguides, the field distribution in fully etched FE‖-
waveguides shows a large drop of the electric field within the BaTiO3 layer in
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the waveguide core (fig. 4.14a). This drop is caused by the large permittivity
of BaTiO3 compared to the SiO2 cladding, which leads to a reduction of the
electric field across the BaTiO3/SiO2 interface by

Ex,BTO =
ǫSiO2

ǫBTO
Ex,SiO2 ≈ 0.1Ex,SiO2 , (4.6)

due to the boundary conditions of the electric field component, as described in
eqs. (4.1) and (4.2). The drop of the electric field at the BaTiO3/SiO2-interface
in FE‖-waveguides leads to a reduction of the mean electric field Êx-component
in the center of the waveguide by a factor of ∼4 compared to HE‖-waveguides.
Due to the stronger lateral optical confinement in the FE‖-waveguides, the
electrodes could however be fabricated closer to the waveguide while keeping
the losses low, thus increasing the electric field in the center. A quantitative
analysis is not performed, because FE-waveguides are not targeted due higher
processing challenges (section 4.3.1).

The Phoenix software package used for the simulation does not take into
account the semiconducting nature of the device-silicon layer and the silicon
handle wafer. The real electric field distribution might vary from the discussion
above due to compensation of the electric field by charge separation in these
layers. However, due to the small concentration of the dopants (∼1015/cm3

boron atoms) in the silicon layers (ρSi ≈ 10 Ω cm) [36], the concentration of
charges and their influence on compensating the electric field is considered to
be low.

Out-of-plane electric field By applying a voltage between the device-silicon
layer (lower silicon layer, see fig. 4.6a) and an electrode placed on the cladding
on top of the waveguide, an out-of-plane electric field is created in the BaTiO3

layer (fig. 4.14b). Such out-of-plane configuration is labeled with a ⊥-sign in
this work. The top electrode has to be separated from the waveguide via the
cladding to avoid high losses in HE⊥-waveguide due to the metal electrode.
This separation results however in a large drop of the voltage in the cladding
due to the low permittivity of SiO2 compared to BaTiO3, as discussed in the
previous paragraph. The influence of the permittivity on the field distribution is

Table 4.2 Permittivity values used for simulating the static electric field
distribution (from [36] and section 2.5).

param. ǫSi ǫSiO2 ǫBTO

value 11.68 3.9 50
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visible in the strong enhancement of the magnitude of the out-of-plane electric
field component Ey in the 5 nm-thick SiO2 layer between the BaTiO3 and the
top-silicon layer (fig. 4.14b). Despite the large voltage drop across the cladding,
the out-of-plane electric field Ey = 2 × 105 V/m in BaTiO3 in the waveguide
core for an applied voltage of V = 1 V is by a factor of ∼5 larger than the
bulk coercive field of barium titanate [194]. It is thus suitable for switching the
domains. However, as discussed in section 3.4.4, the actual coercive field in
thin films might be higher than in bulk crystals.

Therefore, PE⊥-type waveguides are considered, where the top-silicon is
contacted via the unetched thin silicon layer. This electrode configuration leads
to extremely high electric fields of Ey = 2 × 107 V/m for V = 1 V (fig. 4.14b)
within the BaTiO3 layer in the waveguide core. The strong field for small
voltages in PE⊥-waveguides is very appealing for zero-power tuning and slow
switching applications. For high-speed applications, the resistance of the thin
silicon layer which electrically connects to the metal pads with the waveguide
has to be lowered through doping while taking care of keeping the absorption
losses low. Alternatively, low-absorbing transparent electrodes such as indium-
tin-oxide (ITO) can be brought much closer to the waveguide. However, such
electrodes still have a rather high absorption in the infrared [195] and a lower
conductivity than metals which might limit high-speed operation.

Requirements from BaTiO3 symmetry The actual preferred field configura-
tion is strongly dependent on the crystalline orientation of the BaTiO3 layer.
The 50 nm-thick BaTiO3/Si films are a-axis-oriented (fig. 2.24) and thus re-
quire the electric field to be in-plane in order to pole the ferroelectric domains.
The poling is necessary since the electro-optical response of two 180° domains
cancels out (section 3.2). In order to achieve a maximal electro-optical effect
in poled films, the electric field must be oriented along the [101]BTO direction
(fig. 3.14). Such field orientation can be achieved by depositing the electrodes
at an angle of 45° relative to the main crystalline axes of the epitaxial BaTiO3

layer. Generally, in-plane electrodes allow a rather simple processing route
because both electrodes can be fabricated with the same lithography step.

In contrast, two separate processing steps are required to obtain an out-of-
plane electric field: One electrode is placed on top of the cladding, whereas
the other is below the cladding. Additionally, an out-of-plane field cannot
be used to pole a-axis-oriented films. It can however eliminate 180° domains
in a c-axis BaTiO3 layers. For c-axis BaTiO3 and vertical electric field, only
the rc rather than the larger r42 coefficient of the Pockels tensor is exploited.
Nevertheless, rc in bulk BaTiO3 (rc = 108 pm/V) is still significantly higher
than in many other materials, such as LiNbO3. To obtain c-axis films with



4.3 Device design 115

0.0 0.5 1.0 1.5 2.0 2.5

10-7

10-5

10-3

10-1

101

TE, r = 30฀µm
TE, r infinity

TM, r = 30 µm
TM, r infinity

lo
ss

e
s

p
[d

B
/c

m
]

side-electrode distance d
el

[µm]

0.0 0.5 1.0 1.5

10-7

10-5

10-3

10-1

101

TE, r = 30฀µm
TE, r infinity

TM, r = 30µm
TM, r infinity

lo
ss

e
s

p
[d

B
/c

m
]

cladding thickness t
clad

[µm]

(a) (b)

Fig. 4.15 Simulated propagation losses αp for different distances between
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guides. (a) Side electrodes with variable separation del from the waveguide. (b)
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insets illustrate the different electrode configurations.

the growth process described in section 2.3, the BaTiO3-thickness has to be
thinner than tBTO ≤ 30 nm. Using different growth procedures, c-axis oriented
layers with tBTO ≥ 50 nm on silicon substrates are feasible [196].

In summary, the crystalline structure has to be considered for obtaining the
optimal electrode configuration. For the case of 50 nm-thick BaTiO3 films as
grown in the current work, electrodes creating an in-plane electric field have to
be fabricated.

Losses due to electrodes While bringing the electrodes closer to the waveguide
core is beneficial for obtaining large electric fields, the propagation losses αp

will increase due to the absorption of the metal. Because of the larger lateral
dimensions, the TM mode is stronger influenced by metallic side electrodes than
the TE mode (fig. 4.15a): a separation of del ≥ 1.2 µm between the waveguide
core and the electrodes is required to keep the TM-losses low (αp ≤ 1 dB/cm).
Bent waveguides, as for example present in ring resonators, require even larger
separations of del ≥ 1.5 µm to keep the losses at the same level for a radius of
r = 30 µm. This requirement is a consequence of the additional bending losses
and the slightly asymmetric mode profile resulting in a stronger modal overlap
with the metal region at the outer face of the bend. Platinum electrodes with
dimensions as described in fig. 4.14 are used for the loss simulations with a
refractive index of n = 5 and an extinction coefficient of k = 7 at λ = 1.55 µm
[197].
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To keep the losses below αp ≤ 1 dB/cm for an electrode configuration with
out-of-plane electric field, the cladding thickness tclad has to be at least tclad =
0.7 µm for TM-modes (fig. 4.15b). Bent waveguides with r = 30 µm are purely
dominated by bending losses for cladding thicknesses tclad > 1.0 µm. Again,
the TE modes suffer from lower losses due to the better optical confinement.

Variation of mode index

The electric-field-induced change of the refractive index nBTO varies the effec-
tive index neff of the optical mode when applying a voltage. The change of
neff is dependent on the overlap of the optical mode with the BaTiO3 layer,
described by the confinement factor ΓBTO. Neglecting the tensor nature of
the Pockels effect and using the simplified representation of the electro-optical
effect (eq. (3.1)) with an effective Pockels coefficient reff, the change of the
mode index on the applied voltage V is

dneff

dV
=

∂neff

∂nBTO

dnBTO

dV
≈ ΓBTO × 1

2
n3

BTOreff × dÊ

dV
. (4.7)

The mean electric field Ê in the BaTiO3 region is estimated from the electric
field distribution shown in fig. 4.14 as

Ê
x,HE‖ (V ) ≈ 2.3 × 105 V/m × V/V (4.8)

Êy,PE⊥ (V ) ≈ 2 × 107 V/m × V/V (4.9)

for the in-plane field in HE‖-waveguides and the out-of-plane electric field in
PE⊥-waveguides, respectively. Using these electric field strengths, the experi-
mental values for the effective Pockels coefficient (reff = 148 pm/V, section 3.4)
and nBTO (table 3.2), as well as the simulated confinement factors (section 4.3.1),
the shift of the optical mode index when changing the applied voltage by ∆V

is described by eq. (4.7) as

∆n
eff,HE‖ ≈ 3.9 × 10−5∆V/V (4.10)

∆neff,PE⊥ ≈ 3.6 × 10−3∆V/V. (4.11)

In order to properly treat spectral characteristics of devices, for example in
ring resonators, the dispersion of the waveguide has to be taken into account
by using the group index [198]

ng = neff − λ
dneff

dλ
. (4.12)
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The dependence of ng (neff) is determined by simulating the group index and
the effective index for small variations in the refractive index of BaTiO3 in HE
and PE waveguide cross sections. For both waveguides, the variations of the
group index can be approximated by

∆ng ≈ 0.8∆neff. (4.13)

Equations (4.10) and (4.11) are based on effective Pockels values, and any
rotation of the optical axis of BaTiO3 is neglected. For a more accurate
description, the tensor nature of the electro-optical effect has to be considered.
In particular for ring resonators with circular electrodes, the dependence of the
electro-optical-response on the in-plane direction of the electric field has to be
taken into account, because ring resonators cover a large range of angles between
the electric field and the BaTiO3 main crystalline axes. These tensor-based
calculations of the expected performance are however omitted in this thesis.

To increase the device performance, the changes of the effective index as
calculated in eqs. (4.10) and (4.11) can be enhanced by:

• utilizing less absorbing electrodes, such as ITO, which can be brought
closer to the waveguide core (∆neff enhanced by a factor of f × ∼2).

• replacing the SiO2-cladding by a high-k material to reduce the voltage
drop in the cladding in HE⊥ and FE‖ waveguides (f × ∼2 − 5).

• increasing ΓBTO by growing thicker BaTiO3 layers (f × ∼2 for HE‖-
waveguides).

• improving the electro-optical properties of BaTiO3 towards bulk values
(f × ∼10)

The combination of these measures could thus result in a f ∼ 4 − 200 times
improved performance.

Equation (4.11) strongly motivates the usage of PE⊥-like waveguides as
tuning elements to compensate thermal drifts of resonant structures. The
thermal induced change of the refractive index of silicon [15]

dnSi

dT
= 2 × 10−4/K (4.14)

is compensated with a voltage of V = 56 mV/◦C. For bulk-like BaTiO3

properties, a temperature range of 100 ◦C can thus be covered by applying
only ±0.28 V, assuming a thermo-optic effect of BaTiO3 similar to silicon
(dno/dT < 3 × 10−5/K, dneo/dT ≈ 2.5 × 10−4/K [199]).
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Fig. 4.16 Simulated transmission spectrum of ring resonators for different
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Ring resonators

Bending a waveguide to a closed ring adjacent to a straight waveguide forms
a ring resonator structure (fig. 4.16d), which can be resonantly excited. The
resonances result in periodic dips in the transmission spectra of the straight
waveguides, which can be described analytically [198, 200]. The extinction ratio
re at a resonance is determined by the coupling between the waveguide and
the ring, and the losses in the ring. When the amount of energy coupled into
the ring is equal to the energy lost during one roundtrip, the ring is “critically
coupled” to the waveguide, and the extinction ratio re = Tmax/Tmin between
the maximal and minimal transmission Tmax and Tmin, respectively, becomes
re → ∞ [200].

The spectral positions λ0 of the resonance peaks are determined by the
optical path length of the ring. A change of ng modifies this optical path
length, and thus shifts the spectral positions of the resonances. Using ng (V )
derived from eqs. (4.10), (4.11) and (4.13), the estimated shift of the resonances
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in rings with radius r = 30 µm is estimated (fig. 4.16) based on the analytic
solutions given in the literature [198]. The coupling coefficient is adjusted to
obtain an extinction ratio of re ≈ 25 dB as typically observed in the experiments
(section 4.5.4).

Figures 4.16a and 4.16b show a shift of the resonance by ∆λ0 ∼ 80 pm
for ∆V = 5 V in HE‖ waveguides at λ ≈ 1550 nm. The transmission of the
rings is strongly influenced by the propagation losses αp: When using a ring
resonator as active switch, the wavelength is fixed at a resonance λ = λ0,
which results in a low transmission of the device. By applying a voltage ∆V ,
λ0 is shifted and the transmission T at λ becomes ideally Ton = 1 (= 0 dB).
For ∆V = 5 V, a transmission of Ton ≈ −5 dB is visible in the “on-state” for
αp = 50 dB/cm (compare red and green curve in fig. 4.16b). Either larger shifts
or lower propagation losses are required. The latter leads to sharper resonances,
as seen in fig. 4.16a (Ton ≈ 0 dB with αp = 3 dB/cm and ∆V = 5 V).

For PE⊥-waveguides, where the top-silicon is used as electrode, a much
stronger change in ng results in significantly larger shifts of the resonance
wavelength λ0 (fig. 4.16c): Only ∆V ∼ 50 mV is required to change λ0 by
∆λ ∼ 80 pm. The voltage requirement is thus by ∼100 lower than in HE‖-
waveguides.

The calculated shifts of the resonances shown in fig. 4.16 are significantly
larger than the spectral resolution of ∆λ ≈ 10 pm of the measurement equipment
used for characterizing the devices (section 4.5.1). A confirmation or disapproval
of the electro-optical-effect in active BaTiO3-based ring resonators is thus
expected to be possible.

Mach-Zehnder interferometer

In a Mach-Zehnder interferometer (MZI) light is first split into two separate
arms and then, after some distance, recombined again. If the arms have a
different optical path length (fig. 4.17c), the optical field will exhibit a relative
phase shift between the two arms, and interference effects are visible at the
output ports. MZIs can be used as passive devices such as cascaded filters [7],
and as active devices such as modulators [201]. The latter relies on a variable
phase shift between the arms that is used to modulate the power at one single
output port, or switch the power between two ports. Compared to modulators
based on ring resonators, Mach-Zehnder modulator are broadband and suffer
less from thermal drifts and size variations during the fabrication, on the cost
of a larger footprint. They are widely used as high-speed modulators in silicon
photonics [14, 175, 201] as well as in telecommunication [20, 21].

Analytical transfer functions of MZIs can be derived dependent on the
symmetry and perfection of the couplers and the phase shift between the two
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Fig. 4.17 Simulated transmission spectrum for the bar port of a BaTiO3-
based MZI with a delay line of ∆L = 100 µm and different applied voltages. (a)
1000 µm-long MZI with HE‖ cross section. (b) 100 µm-long MZI with PE⊥-type
cross section. (c) Schematics of the top view of a Mach-Zehnder interferometer
with symmetric bends in both arms and a delay line of length ∆L. The “bar”
and “cross” ports are labeled accordingly.

arms due to their different physical length ∆L [192]. Using the transfer function
of a MZI with two identical, ideal 50:50 couplers [192], the transmission spectrum
at the “bar” port (fig. 4.17c) is calculated for a delay line of ∆L = 100 µm
(fig. 4.17a). Applying a voltage of V = 5 V to electrodes along the shorter arm
shifts the transmission spectrum as a consequence of the change in ng and
the resulting phase shift ∆ϕ between both arms (fig. 4.17a). The length of
the shorter arm is fixed to L = 1000 µm. For PE⊥-waveguides with a much
stronger electric field, similar shifts can already be obtained for short devices
(L = 100 µm) and lower voltages (V = 1 V), as indicated in fig. 4.17b. For both
estimations the electric field is only applied to one of the two arms.

The figure of merit for active MZI at low frequency is the product between
the voltage Vπ inducing a phase shift ∆ϕ = π between the arms and the length
of the arms L. L × Vπ is defined by

π = ∆ϕ =
2π

λ
× L × ∆ng (Vπ) . (4.15)

Applying the voltage induced change ∆ng (V ) from eqs. (4.10), (4.11) and (4.13),
values of

Vπ × L = 25 V mm (HE‖ waveguide) (4.16)

Vπ × L = 0.27 V mm (PE⊥ waveguide) (4.17)
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are obtained at a wavelength of λ = 1550 nm for HE‖- and PE⊥-waveguides,
respectively. As discussed in the next section, these figures of merit are very
promising in comparison with alternative modulator designs.

4.3.5 Benchmarking active barium-titanate devices

The previous discussion shows a strong dependence of the performance of
active BaTiO3-based slot waveguide devices on the actual geometry of the cross
section and the electrodes. HE‖-waveguide structures can be used for high-speed
modulation because no limitations are given for the lateral size and thickness of
the metal connections. Thus the electrode design can be tuned for rf-operation
with thick metal layers. The performance of MZIs with Vπ × L = 25 V mm
is almost identical to state-of-the-art silicon photonic modulators based on
the plasma dispersion effect, and by a factor of ∼3 better than LiNbO3-based
modulators (table 4.1). The best polymer based modulators are however ∼10-
times more efficient than the expected BaTiO3 performance due to a strong
electric field confinement in the slot region in those devices [152]. In principle
there is no inherent limitation of the operation speed of BaTiO3/Si-modulators
since the Pockels effect does not vanish even at THz-frequencies. The actual
bandwidth is therefore determined by the design of the electrodes, and phase
matching between electrical and optical waves. The proper rf-design is a similar
challenge to non-BaTiO3-based devices, which has for example been addressed
in traveling wave electrode designs.

When benchmarking the expected performance, it has to be considered
that the BaTiO3-slot waveguide design is novel and much less mature than
LiNbO3 or silicon photonic modulators. The shift of the ng can be increased
by different electrode layouts, stronger optical confinements, and improved
BaTiO3 quality with bulk-like Pockels coefficients. Those measures could lower
the Vπ × L product by a factor of up to 200, as discussed in section 4.3.4.
Such increase would provide a significant performance boost in the field of
modulators. Clearly, research on silicon photonic modulators is still ongoing
and further improvements are expected. The progress for LiNbO3 devices has
however already faded in the recent years [21].

PE⊥-waveguides are expected to show already in the current design stage
a superior figure of merit with Vπ × L = 0.27 V mm. This value is by a factor
of ∼100 − 200 lower than in current state-of-the-art plasma-dispersion-based
modulators, and by ∼10 lower than in polymer-based modulators. The geometry
used to derived eq. (4.17) assumes electrodes adjacent to the BaTiO3 layer.
Therefore, the electric field is assumed to be maximal and the figure of merit
further cannot be improved by an optimized electrode design. Still, increasing
the confinement factor and approaching bulk-like Pockels values would enhance
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the performance by ∼10 to Vπ × L = 0.027 V mm.
The drawback in the PE⊥-waveguide geometry is the rather large capacitance

and high series resistance of the electrodes, which limits the maximal operation
frequency. By properly adjusting doping profiles, and using different electrodes
in a closer vicinity to the waveguide core, the bandwidth can be increased,
similar to vertical slot waveguide modulators [152]. Rf-simulations are however
not performed in the frame of this thesis. Devices with the current layout can be
operated at lower frequencies and are usable as tuning elements. Temperature
drifts of 10 ◦C can be compensated with low voltages of V 2

∆10 ◦C ∼ 0.5 V. The
static power consumption Pel,∆10 ◦C due to leakage currents required to balance
such temperature variation can be calculated per length L of the waveguide as

Pel,∆10 ◦C =
V 2

∆10 ◦C

R
=

wel × L

tBTO × ρBTO
V 2

∆10 ◦C = 2.5 × 10−9 W/m × L. (4.18)

The experimental resistivity ρBTO = 1010 Ω cm, a BaTiO3 thickness of tBTO =
50 nm and a width of the top-silicon electrode of wel = 5 µm are used in that
equation. The absolute power consumption is extremely low: To compensate
the phase shift in a 500 µm-long waveguide induced by a temperature variation
of ∆T = 10 ◦C, only Pel ≈ 1 pW is required. This power consumption is more
than 10 orders of magnitude below typical values for thermal tuners with similar
dimensions (∼40 mW [174], section 4.1.2). BaTiO3-tuning elements can thus
be considered as zero-power tuning devices.

4.4 Fabrication

The fabrication of passive and active BaTiO3-based waveguide structures
involves the development of a processing route, the design of lithography masks,
and the preparation of the BaTiO3/SOI starting wafers. The fabrication route
from a BaTiO3/SOI starting wafer into photonic devices can be split into three
major blocks, as visualized in fig. 4.18

(A) Preparation of slot-waveguide layer stack. The top-silicon layer is either
integrated by depositing an amorphous silicon layer, or alternatively by
bonding another SOI wafer and back-etching the handle-wafer.

(B) Fabrication of passive waveguides. In a first step, only the top-silicon layer
is structured, and optionally covered with a SiO2 cladding in order to
obtain passive devices.

(C) Fabrication of active devices. In several additional steps, metal electrodes
connected to larger pads for the electrical characterization are deposited
on the wafer.
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Fig. 4.18 General processing route of BaTiO3/SOI photonic devices: First, a
top-silicon layer is deposited on an initial BaTiO3/SOI wafer (step “A”), before
passive devices (“B”) and finally electrodes (“C”) are fabricated. For passive
devices the deposition of a cladding is optional during step B.

These different processing blocks are discussed in detail in the next sections,
after the initial description of the mask design procedure.

4.4.1 Mask design

Several different device types are designed in order to benchmark the BaTiO3-
slot waveguide platform. The designs are based on calculations discussed in
section 4.3, but iterative adjustments depending on intermediate experimental
results are performed. Some design parameters are solely determined by
analyzing fabricated structures, such as the gap between ring and straight
waveguide in ring resonators. A theoretical determination of the target gap size
is not possible due to unknown parameters such as the losses in the structures.
The main structures under investigation are listed in table 4.3. These devices are
typically arranged in dense arrays with slightly different geometrical parameters
within a 1 × 1 cm die as indicated in fig. 4.19a. The density of active devices is
significantly reduced due to the space requirements of the large electrical pads
for contacting the electrodes (fig. 4.19b).

In order to facilitate the variation of the numerous parameters, all device
layouts are programmed fully parametrized with the open source mask design
software package IPKISS, which is developed by the Ghent University and imec.
The parametrized approach is in particular beneficial for designing active devices
where a strong correlation between different elements exist. For example, the
position of the electrodes, vias and pad connections in a ring resonator have to
be properly adjusted when varying the gap size between the ring and the straight
waveguide. Functions to automatically generate data files containing all device
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Fig. 4.19 Typical mask layouts for (a) passive and (b) active devices. Sections
for different device types with a variety of device geometries are designed.

parameters are implemented in the design scripts. These data files are used to
generate measurement procedures in the fiber-optical-setup (section 4.5.1) and
to analyze the experimental results.

4.4.2 Fabrication of Si/BaTiO3/Si layer stack

50 nm-thick BaTiO3 layers on SOI substrates are used as initial wafers for
the device fabrication, following both MBE-growth recipes as described in

Table 4.3 Devices types, purpose and varied parameters for BaTiO3-slot
waveguide structures.

device type purpose/analysis parameters varied

straight waveguide propagation losses length (250 µm - 9 mm)
spiral propagation losses length (1 cm - 5 cm)
bent waveguide bending losses bending radius
grating coupler input/output coupler grating period, duty cycle
directional coupler design of MZI coupling length, gap size
MZ-interferometer active switching couplers, delay length, arm

length, electrode layout
ring resonator active switching radius, coupling gap, cou-

pling shape, ring shape,
electrode layout
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Fig. 4.20 Fabrication of the Si/BaTiO3/Si layer stack. (a) Deposition of
210 nm a-Si:H by VHF-PECVD on top of a BaTiO3/SOI wafer coated with
a 5 nm-thin SiO2 protection layer. (b) Transfer of a crystalline silicon layer
via molecular bonding: a SOI wafer is bonded on top of a BaTiO3/SOI wafer,
both coated with 5 nm of Al2O3. The handle wafer and the BOX is afterwards
ground and etched away. The bonded wafer stack is flipped during the process,
and the handle wafer of the initial wafer is removed.

section 2.3. If not stated differently, all SOI wafers consist of a 70 nm-thick
device silicon layer on top of a 2 µm-thick buried oxide (BOX) layer. The silicon
layer on top of the BaTiO3 layer is either deposited in a plasma-enhanced vapor
deposition process (PECVD) (fig. 4.20a) or transferred via bonding (fig. 4.20b),
as described below.

Amorphous silicon deposition

Hydrogenated amorphous silicon (a-Si:H) layers are deposited by PECVD at
200 ◦C with a 1:1 mixture between H2 and SiH4 in an Octopus I cluster tool
developed by INDEOtec SA. The tool is operated at very high frequency (VHF)
of 40.68 MHz. The low temperature is necessary to avoid hydrogen diffusion out
of the film. The hydrogen serves as passivation for dangling bonds in silicon,
which are strongly absorbing in the infrared [202]. To avoid contamination of
the tool with BaTiO3, a 5 nm-thin SiO2 layer is deposited by PECVD on top
of the BaTiO3/SOI-stack prior to the a-Si:H process in a Oxford Plasmalab

System 100 PECVD tool.
The low adhesion of the a-Si:H layer on top of the SiO2/BaTiO3-layer is

a major challenge for this processing route: Bubbles are formed during the
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a-Si:H deposition and in successive process steps due to local delamination of
the silicon layer. The delamination might be triggered by degasing of hydrogen
from the a-Si:H films. The density of the bubbles with a typical diameter of
∼100 µm is low enough (< 1000 per 2inch-wafer) to still yield many functional
devices, such as ring resonators. However, the bubbles serve as nucleation center
to delaminate larger parts of the a-Si:H-film, for example when performing
mega-sonic cleans. Therefore, the bubbles are individually etched away, and
trenches to confine possible delamination processes in small areas are structured
into the a-Si:H layer. With this procedure, the wafers could be well-processed
with all required subsequent steps.

Transfer of crystalline silicon

In an alternative approach, a molecular bonding process is developed in order
to transfer a thin crystalline silicon (c-Si) layer onto the BaTiO3-layer, leading
to a novel c-Si/BaTiO3/c-Si layer stack. In contrast to a-Si:H, the c-Si-layer
is slightly doped (ρ ≈ 10 Ω cm) and can thus be used as top electrode in
PE⊥-waveguides while avoiding high absorption losses. The fabrication of PE⊥-
waveguides with a-Si:H as top-silicon is not possible due to the low conductivity
of these layers.

A BaTiO3-layer grown on a SOI wafer with 220 nm device silicon and a
blanked SOI wafer with 70 nm device silicon serve as templates for the bonding
process (fig. 4.20b). After thoroughly cleaning both wafers to remove any
particles and organic contaminants, 5 − 10 nm-thick Al2O3-layers are deposited
at 250 ◦C by atomic layer deposition (ALD) on both surfaces. Ozone cleaning
ensures a molecular water film on both wafers that activates the successive
direct bonding process. The bonded stack is annealed at 250 ◦C, before grinding
one of the handle-wafers down to a thickness of 50 µm. The remaining silicon
is then etched away with a 25 %-concentrated TMAH (tetramethylammonium
hydroxide) solution, which is very selective to the buried SiO2 (BOX) layer
below the silicon. The BOX is removed in a final step by a long buffered-HF
(BHF) dip to obtain a layer stack as shown in fig. 4.20b.

The bonding process is very sensitive to clean surfaces with low roughness
below 0.5 nm rms (root mean square). Polishing of rougher surfaces is not
possible due to the low BaTiO3 layer thickness. High bonding yields (> 90 %)
could only be obtained for BaTiO3-layers grown with the improved shuttered
co-deposition process, which reduces the surface roughness by suppressing the
formation of islands (section 2.3).

The c-Si/BaTiO3/c-Si layer stack shows very smooth interfaces without
any voids, and a homogeneous BaTiO3-layer of high quality (fig. 4.21b). The
waveguide cross section shown in fig. 4.21a is discussed in section 4.4.3.
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Fig. 4.21 STEM cross section of a waveguide fabricated from a c-Si/BaTiO3/c-
Si layer stack. (a) Overview of the waveguide in BF-STEM mode. (b) The
magnification of the interface in DF-STEM mode shows smooth interfaces. The
red arrow indicates the orientation of the magnified image.

4.4.3 Fabrication of waveguide structures

Die-by-die processing

A strategy was devised to re-use the 2 inch-wafers for several, iterative process-
ing rounds in order to reduce the effort in growing BaTiO3/SOI layers (see
section 4.2). After fabricating a set of devices on a specific die, the waveguides
are characterized and the designs of the successive dies are adjusted accordingly
(fig. 4.2b). Since most of the processing tools are optimized for handling full
wafers (for example homogenous dry etching or PECVD), or even required full
wafers (such as laser lithography), the 2 inch-wafers are not diced into single
dies.

However, the handling of full wafers requires an adjustment of the process
flow to protect the wafer while processing only individual dies. Figure 4.22
schematically shows the fabrication of passive devices in a single die while
keeping the remaining wafer in its initial state for further process iterations.
The principle is also applied when additional steps such as the fabrication of
electrodes are performed. Metallic alignment markers are the only exception of
the die-by-die handling: They are fabricated prior to any photonic structures
on the full 2 inch-wafer as shown in fig. 4.22a.

Etching of waveguides

170 nm-thick HSQ, which serves as etching mask for fabricating the waveguide
structures, is exposed in a Vistec EBPG 5200 ebeam lithography tool operating
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Fig. 4.22 Schematic of the die-by-die processing without dicing the wafer into
small pieces. (a) Alignment marks are fabricated on the full wafer. (b) The
wafer except the dies being processed are protected with photoresist before (c)
etching the silicon layer. (d) The cladding is first deposited on the full wafer
before (e) masking the dies being processed and (f) removing the cladding from
the remaining wafer again.

at 100 kV. Subsequently, ∼1.2 µm-thick positive optical photoresist (AZ6612 )
is spun on the wafer, exposed with a DWL 2000 laser writer (Heidelberg

instruments), and developed with standard recipes. The mask used for this laser
lithography step is designed to only expose dies that contain HSQ structures
and thus protect the remaining wafer as depicted in fig. 4.22b.

The top-silicon layer is then dry etched in a Oxford Instruments Plasmalab

System 100 ICP-RIE using a 2-step HBr process as described in table 4.4. An
initial short HBr step is used to etch the native SiO2 layer on top of the wafer,
before adding O2 into the plasma. The mixture between O2 and HBr strongly
impacts the selectivity between etching SiO2 and Si and the sidewalls of the
structures [203]. If O2 is used, a passivation layer is formed at the surface of the
etched silicon, preventing a lateral etch process. A well-tuned O2/HBr mixture
yields perpendicular waveguide sidewalls. An example of a HE-waveguide that
was etched with too little O2 admixture, resulting into ∼83° sidewall angle, is
shown in fig. 4.21.

The HBr process is controlled by end-point detection when fabricating HE-
waveguides, where the full top-silicon layer is removed. Time-based etching is
used for PE-waveguides since a ∼40 nm-thin top-silicon layer has to be retained
rather than etching down to the BaTiO3 surface.

Generally, the process conditions in the ICP-RIE (inductively coupled plasma
- reactive-ion etching) tool vary between the runs, resulting in fluctuations of
the etch quality. The variation is on the one hand due to issues with properly
conditioning the chamber prior to the process. On the other hand, the initially
used HBr-etch recipe operating at low ICP-powers (400 W) is at the edge of
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Fig. 4.23 SEM images of grating couplers after etching the top-silicon with
HBr. (a) Rough and smooth sidewalls adjacent to each other on the same
device due to locally varying plasma conditions with an ICP power of 400 W.
Residuals of HSQ are visible on top of the left structure. (b) Smooth side walls
when etching with a stable plasma at an ICP power of 800 W. The HSQ layer
has not been removed for that sample.

obtaining a stable plasma. Figure 4.23a shows an example where even local
variations of the plasma conditions are observed in two adjacent waveguides
with rough and smooth sidewalls, respectively. The process is stabilized by
increasing the ICP power on the cost of a higher etch rate and thus less control
for PE-waveguides. Nevertheless, the modified process is better reproducible
and results in smooth sidewalls as visible via scanning electron microscopy
(SEM) (fig. 4.23b). A quantitative measurement of the sidewall roughness is not
performed, but optical loss measurements indicated a low roughness comparable
with state-of-the-art silicon photonic structures (section 4.5.2).

After the etching process, the HSQ layer is typically not removed. Due to the
similar optical properties of exposed HSQ and SiO2, the remaining HSQ layer is
nearly invisible for the guided light when a SiO2 cladding is used. The removal
of the exposed HSQ layer by BHF is avoided because of the non-uniform etching
of the BaTiO3 film, which results in a roughening of the surface, as seen in

Table 4.4 Typical process parameters when etching the top-silicon layer by
ICP-RIE. The table temperature is kept at 50 ◦C, and the chamber pressure at
4 mTorr

step purpose time O2 HBr RF ICP

1 pump out 180 s
2 SiO2 + Si etch 10 s 40 sccm 80 W 800 W
3 Si etch ∼65 s 2 sccm 38 sccm 80 W 800 W
4 pump purge 5 × 60 s
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fig. 4.23a. Figure 4.24a illustrates the cross section after the HBr etching step,
including the mask design and an optical microscopy image of a ring resonator
at that processing stage.

Cladding layer

A cladding layer is required for active devices in order to fabricate metallic
bridges over the waveguides to contact the electrodes. Because the cladding
influences the mode profiles and thus the device parameters of couplers and
resonators, the cladding is typically also fabricated on passive waveguide struc-
tures in order not to maintain two different designs. Several requirements have
to be fulfilled when depositing the ∼1 µm-thick cladding:

• Low deposition temperature, preferable below 200 ◦C to avoid de-hydro-
genation of the a-Si:H layer, and delamination of the bonded device
silicon.

• Low stress in the cladding layer to avoid cracks or delamination of the
top-Si layers.

• Uniform coverage around the waveguiding structures.

Different methods are tested, including spin-coating thick HSQ and subsequent
post-annealing, as well as PECVD using SiH4, and PECVD using TEOS
(tetraethoxysilane) precursors. All of these processes yield to SiO2-like layers.
The TEOS process proved to be the best solution: It neither shows the formation
of cracks as observed in HSQ claddings, nor are any voids at the edges of the
waveguides visible as seen with SiO2 grown by PECVD (SiH4). A smooth
coverage around the waveguides is obtained (fig. 4.21). Additionally, the stress
in the cladding could be tuned to low values (σ < 10 MPa), which reduces to
risk of delaminating the waveguiding layers. The potential influence of the
TEOS-SiO2 cladding on the propagation losses due to O-H-bondings [204] is
tested by comparing standard silicon waveguides with and without the cladding.
No increased propagation losses are observable.

4.4.4 Fabrication of electrical connections

Active devices require the fabrication of electrodes in addition to the passive
waveguides. Supplementary processing steps are discussed for the example of
HE‖-waveguides with side electrodes. Additional remarks will be made on small
deviations in the process flow of active PE⊥- and HE⊥-waveguides.
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Fig. 4.24 Evolution of the mask design, top view, and schematics of the cross
section, when fabricating active HE‖-waveguide devices with in-plane electric
field. The cross section corresponds to the dashed red line shown in the mask
designs. (a) The initial layer stack is (b) dry-etched using a HBr plasma to
form waveguides. (c) Side electrodes are deposited on top of the BaTiO3 layer
using a lift-off process, before (d) depositing a TEOS-SiO2-cladding and etching
openings to the electrodes. (e) The electrodes are connected to larger pads
with a 200 nm-thick tungsten layer.
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Side electrodes

Figure 4.24c shows the mask layout for a pair of electrodes parallel to the
waveguide in a ring resonator. The widths of the electrodes is kept small
(∼1 µm) to avoid a large capacitance that could limit the performance of the
devices during high-speed operation. Larger pads connected to the electrodes
serve as bottom contact for vias through the cladding, as shown in the next
step. The electrodes are fabricated with a lift-off process before depositing
the cladding layer. Therefore, a ∼150 nm-PMMA (polymethyl methacrylate)
and a ∼250 nm-MMA (methyl methacrylate) layer are first spin coated on the
wafer and baked for 5 min at 180 ◦C, then exposed by ebeam lithography, and
finally developed with MIBK (methyl isobutyl ketone) dissolved in isopropanol.
Ebeam lithography is required to ensure a good alignment of the metal pads
to the waveguide, which are separated by 1 − 3 µm. A combination of 10 nm-
Ti/150 nm-Pt/10 nm-Ti is evaporated on the wafer, before a lift-off step in hot
NMP (N-methyl pyrrolidone). Ultrasonic cleaning is used only at low powers
to reduce the risk of delaminating the a-Si:H layer. The titanium layers are
used to promote a good adhesion of the electrode to BaTiO3 and the following
cladding layer, while the rather thick platinum layer ensures low resistance
for high-speed operation. In principle, also CMOS-compatible metals can be
used for that step. A schematics of the cross section and an optical microscopy
image after the metal deposition is shown in fig. 4.24c.

To obtain an out-of-plane electric field, a BHF (buffered HF) dip is performed
prior to the metal evaporation in order to locally remove the BaTiO3 layer and
thus contact the device silicon layer. The PMMA/MMA resist stack is etched
at extremely low rates by BHF and thus protects the waveguiding structures.

Vias

After depositing the TEOS-SiO2-cladding layer as described in section 4.4.3,
vias are etched through the cladding in order to connect the electrodes with the
probing pads for the electro-optical characterization. Circular structures with
a diameter of 5 µm are written by laser lithography into an optical photoresist
(AZ6612 ). Laser lithography is the method of choice since no physical masks
are required. Thus, the designs can quickly be adjusted and directly be written
on the wafer without contacting the surface. The size of the vias is kept small
to reduce the capacitance of the device, analogous to the electrode design.

After the development, the resist is baked for 3 min at 130 ◦C: the reflow
process lowers the angle between the resist sidewalls and the surface of the
wafer to ∼60°. This beveled shape is transferred into the SiO2-cladding with
a dry etch process in a Oxford RIE PlasmaPro NGP 80 etching tool. The
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combination of O2 and CHF3 with rf-powers of 200 W is very selective to the
metal pads with a negligible platinum etch rate. The cross section, mask layout
and resulting structure is shown in fig. 4.24d.

The top electrode in HE⊥-waveguides is deposited onto the cladding prior to
the fabrication of the vias. The wafer is then coated with another thin cladding
layer to allow the connections to both electrodes to be crossed. Subsequently,
both vias for the bottom electrode as well as the top electrode are etched in a
single step.

Probing pads

Finally, the side electrodes are connected through the vias with larger metal
pads on the cladding (fig. 4.24e): first, a 200 nm thick tungsten layer is therefore
deposited via magnetron sputtering on the full wafer. Insulating TiO2 on the
electrodes is removed with a short argon sputtering step prior to the metal
deposition. Laser lithography is used on a 1.2 µm-thick AZ6612 -photoresist
layer to define the electrical connections and the contact pads. The tungsten
layer is dry-etched via RIE with identical parameters as used when etching the
alignment markers. A short Ar-etch is performed on the contact pads as a final
step to remove any insulating oxide layer. The mask designs is adjusted for
HE⊥ and PE⊥ waveguides. Figure 4.24e shows the final cross section and top
view of a fully processed HE‖-type device with in-plane electrodes.

4.4.5 Fabrication of reference waveguides

Several waveguide structures with other layer stacks than Si/BaTiO3/SOI are
fabricated in order to separate the impact of the prpoerties of the waveguide ma-
terials from the impact of the slot waveguide design on the device performance.
In particular, as will be discussed in section 4.5.2, unforeseen high propagation
losses in the BaTiO3 waveguides are observed. The following waveguides are
used to identify the loss channel:

• SOI waveguides (fig. 4.25a). Standard, fully etched silicon photonic
waveguides are fabricated from SOI wafers with 220 nm-thick device
silicon layer in order to obtain propagation losses mainly caused by
sidewall roughness to be compared with literature values. This comparison
allows to judge the quality of the HBr-etching conditions.

• Fully etched a-Si:H waveguides (fig. 4.25b). The losses in amorphous
silicon are strongly dependent on the deposition conditions and can vary
by several orders of magnitude [205]. Since no process for obtaining
low-loss a-Si:H layers has been available for this work, various deposition
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Fig. 4.25 Reference samples fabricated to determine losses (a) in standard
SOI waveguides, (b) in FE a-Si:H waveguides, and (c) in PE a-Si:H waveguides.
(d) The BaTiO3 layer is replaced by a 50 nm-thick Si3N4 layer to verify the
existence of a TM mode, and to analyze the propagation losses. (e) PE-
waveguides samples with sputtered, polycrystalline BaTiO3.

methods are compared by fabricating fully etched waveguiding structures.
Amorphous silicon is fabricated (1) by MBE-deposition in hydrogen
plasma, (2) by rf-sputtering, (3) by rf-PECVD operating at 13.56 MHz
with 2 %-SiH4 precursor gas diluted in He, and (4) by the VHF-PECVD
process as described above. The sputtered and rf-PECVD deposited
films are post-annealed at 200 ◦C in forming gas (10 %-H2/90 %-N2) to
incorporate additional hydrogen into the layers.

• Halfway etched a-Si:H waveguides on SOI wafers with 70 nm-thick device
silicon layers (fig. 4.25c). Therefore, a-Si:H is deposited by means of
VHF-PECVD on top of a 5 nm-thick SiO2 layer protection layer, similar
to a-Si:H/BaTiO3/SOI structures.

• Slot-waveguide structures with dimensions identical to those of BaTiO3-
waveguides, but where the BaTiO3 layer is replaced with a Si3N4 layer
grown by PECVD (fig. 4.25d). By increasing the Si-content, the refractive
index of the Si3N4 layer is tuned to ∼2.2, similar to the index of BaTiO3-
thin films.

• a-Si:H/BaTiO3/SOI waveguide structures with sputtered, and subse-
quently post annealed BaTiO3 at 700 ◦C in oxygen fig. 4.25e. Since no
MBE seed layer is used, the BaTiO3 films are polycrystalline.

Beside identifying the origin of the high propagation losses, Si3N4 slot wave-
guides are also used to verify the simulations of the optical modes. In particular,
the existence of a TM mode for the designed slot waveguide geometry is verified
experimentally.
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Fig. 4.26 (a) Schematics of the experimental setup for optically characterizing
integrated devices. (b) Photograph of the system.

4.5 Characterization

4.5.1 Experimental procedure

Electro-optical fiber setup

Figure 4.26 shows the setup used to optically and electro-optically characterize
the integrated devices: An EXFO optical test system IQ-203 with a tunable
(1510−1610 nm) laser (IQ-2600B) having a maximum output power of −3 dBm
serves as light source. The EXFO system also contains an InGaAs photo diode
(lower detection limit of −90 dBm) (IQ-1600 ), which is electrically triggered by
the source when performing wavelength sweeps. After passing a polarization
controller, the light is coupled into the waveguides via grating couplers using a
cleaved single-mode fiber mounted at an angle of ∼10° relative to the surface
normal. The light transmitted through the devices is collected with a second
cleaved fiber. Both fibers are mounted on motorized xyz-stages, which are
movable with a step size of 50 nm and controlled by a computer system. A
camera provides feedback for positioning the fibers above the grating couplers.
Electrical and low-speed electro-optical measurements are performed with a
parameter analyzer (Agilent Technologies B1500A) and ground-signal-ground
probes mounted on a manual xyz stage.
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Measurement and analysis procedure

Automated fiber alignment The fibers are roughly placed on top of the grating
couplers using the video camera, before iteratively varying the x and y axes
of the fiber holder in small steps and maximizing the transmitted power. The
procedure is repeated multiple times for an accurate alignment. The fibers are
placed 10 µm above the sample surface close to the device under investigation
using video feedback. Once the fibers are well aligned, optical measurement
such as recording transmission spectra are started.

In this work hundreds of irregularly arranged devices distributed over the
wafer are characterized. The existing LabVIEW control software is therefore
extended to fully automate the measurement procedure for passive devices.
Recipes to measure, for example, only specific ring resonator structures are
directly created during the mask generation. For each wafer, three devices have
to be aligned manually. From these alignment positions the transformation
matrices between the coordinate system of the mask and the stages are deter-
mined. These matrices are used to directly move the fibers to any device on the
wafer. An automated fine-alignment to maximize the transmission is performed
prior to any measurement. Long term drifts for example due to temperature
variations are compensated by automatically recalibrating the transformation
matrices during the measurement procedures. The placement of the electrical
probes is performed manually when characterizing active devices.

Analysis of transmission spectra During many experiments transmission
spectra are recorded to obtain characteristics such as quality factors of resonators
or propagation losses. For non-resonant devices, the spectra are fitted with a
Gaussian function

P (λ) = P0 exp

(

− (λ − λ0)2

2σ2

)

(4.19)

where λ0 is the center wavelength (fig. 4.27a), 2
√

2 ln 2σ the full width at half
maximum (FWHM) of the transmission peak and P0 the maximal transmitted
power. P0 measured for different waveguide lengths L is then used to determine
the propagation losses αp by applying

P0 (L) = 2αg × Ps × 10−(αp/10)L (4.20)

where αg is the insertion loss of one grating coupler in dB, Ps the power
delivered from the source to the first grating coupler, and αp the losses in
dB/m. Larger defects on the wafer, such as bubbles in the a-Si:H layer or badly
bonded parts, lower the transmission through the waveguides unrelated to the
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Fig. 4.27 (a) Fitted transmission spectrum of a waveguide with two grating
couplers coupling the light in and out of the device. The maximal transmission
P0 and the center wavelength λ0, both determined from the fit, are indicated
with dashed, gray lines. (b) Transmission T of several waveguides of different
length. Only the maximal values for each L are used for fitting the data with
eq. (4.20) to determine the propagation losses αp and coupling losses αg.

propagation losses. Straight waveguides are placed at several positions all over
the wafer, and multiple waveguides are measured for each length L. Rather
than calculating the mean value, which would also include losses caused by
rare, larger defects, only the maximal P0 (L) is used for determining αp with
eq. (4.20). Figure 4.27b shows the transmission T = P0 (L)/Ps for all devices
(red) and those actually used for the fitting procedure (blue) measured of a
specific sample. The slope of the linear fit in the logarithmic representation
of T corresponds to αp, and the extrapolation for L = 0 to 1

2
αg. Any losses

within the fibers and connectors of the optical setup contribute to αg, but are
neglected since they are typically much smaller (< 1 dB) than the coupling
losses. In the following sections, only the maximal values T for each L are
plotted in the figures.

4.5.2 Straight waveguides

Reference waveguides

SOI waveguides Fully etched SOI waveguides with air cladding show prop-
agation losses of αp = (2.8 ± 1.0) dB/cm for the TE mode (fig. 4.28a). This
value is in the same range as typical losses in fully etched silicon waveguides
(2 − 4 dB/cm, [206, 207]), and only slightly higher than in the best waveguides
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Fig. 4.28 (a) Transmission T of differently fabricated FE a-Si-waveguides
(fig. 4.25b), and standard FE SOI waveguides (fig. 4.25a) of different length L.
The VHF-PECVD waveguides are halfway etched (HE) (fig. 4.25c). (b) T for
TE and TM modes in Si3N4 slot waveguides with a-Si:H as top-silicon grown
via VHF-PECVD. The propagation losses αp are indicated in the figures. All
waveguides are characterized without cladding.

with similar geometry published in the literature (0.9 dB/cm, [208]). This good
agreement with previous studies confirms that the processing route used in
this work results in good waveguiding structures. In particular, it confirms the
sidewall roughness after the silicon etch step to be similar to state-of-the-art
waveguides.

SOI waveguides are used to measure the influence of different cladding
layers on the propagation losses (not shown). Both unbaked-HSQ-cladding
(αp = (3.3 ± 0.1) dB/cm) and TEOS cladding layers (αp = (2.6 ± 0.1) dB/cm)
show almost identical propagation losses to those of air-cladded waveguides.
HSQ can thus be utilized as a cladding that is simply spin coat on the waveguides
for intermediately characterizing devices. Since non-exposed HSQ can easily be
removed afterwards by acetone, the fabrication process can be continued, for
example to add electrodes.

Amorphous silicon layers The losses of the a-Si:H-waveguides strongly depend
on the fabrication methods: values between (387 ± 6) dB/cm and (5.6 ± 0.5)
dB/cm are measured for TE modes in air-cladded waveguides (fig. 4.28a).
The large losses in sputtered and MBE-grown a-Si films are likely due a low
saturation of dangling Si-bonds [202]. This assumption is supported by the
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even higher losses for these films (∼150 dB/cm more than shown in fig. 4.28a)
when no additional H2/N2 anneal to saturate dangling bonds is performed after
the deposition.

The significantly lower losses in VHF-PECVD grown films compared to
rf-PECVD films can also be related to the large hydrogen content in the VHF-
PECVD process (50 %) and the utilization of pure SiH4-gas. The rf-PECVD
tool is limited to only 2 % concentrated SiH4. These process parameters
severely impact the losses of a-Si layers [209]. Additionally the data of the
VHF-PECVD sample corresponds to HE-like waveguides (fig. 4.25c) with less
influence of the sidewall-roughness on the propagation losses, while all other
a-Si waveguides are fully etched (fig. 4.25b). The propagation losses of the
VHF-PECVD are close to those of the best amorphous silicon waveguides with
similar dimensions (∼3.4 dB/cm for fully etched, and ∼1.4 dB/cm for shallow
rip-waveguides [209]). By increasing the width of the waveguides to 2.5 µm,
the effect of sidewall roughness is reduced in the VHF-PECVD waveguides and
losses as low as (3.0 ± 0.7) dB/cm are measured (not shown).

Layers of a-Si:H deposited via VHF-PECVD thus provide a good material
system to fabricate low-absorbing BaTiO3-slot waveguides, and are therefore
used for all samples described in the following sections.

Si3N4 slot-waveguides Slot waveguides with Si3N4 in the slot region (fig. 4.25d)
have low TE-propagation losses of only αp = (4.7 ± 1.0) dB/cm (fig. 4.28b).
Importantly, the structures show the existence of a TM-mode, which confirms
the results of the simulations of the cross section (section 4.3.1). The propa-
gation losses of the TM mode having a strong field enhancement in the Si3N4

regions are αp = (6.9 ± 0.9) dB/cm. They are comparable to those of previously
reported slot Si-slot waveguides [185, 210].

Conclusion from reference structures The various test waveguides indicate
the process route to be well-suited for fabricating BaTiO3-slot waveguides with
reasonably low losses: The Si-etch process results in a good sidewall roughness,
the a-Si:H layers show low absorption, and the cladding does not increase the
propagation losses. Furthermore, the existence of highly confined TM-modes in
the slot waveguide cross sections is experimentally confirmed. The measured
losses of ∼7 dB/cm for that mode might be reduced by further optimizing the
a-Si:H-deposition and -etching process.
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Barium titanate-slot-waveguides

Sputtered BaTiO3 Compared to the reference structures, air-cladded slot
waveguides with sputtered BaTiO3 instead of Si3N4 show significantly higher
propagation losses of αp ≈ 64 dB/cm and αp ≈ 133 dB/cm for TE and TM
modes, respectively (fig. 4.29a). Since bulk-BaTiO3 is non-absorbing at λ =
1550 nm, the high losses are mainly attributed to scattering losses in the
polycrystalline BaTiO3-layer. Scattering of light can occur at the BaTiO3

surface, which shows a roughness of typically > 4 nm (rms) on the sputtered
layers, and at local inhomogeneities with a characteristic size of ∼2 − 10 µm as
visible in the optical microscope (fig. 4.29b). Also the high porosity of > 10 %
measured with ellipsometry might contribute to scattering losses. Generally,
large variations in the propagation losses (∆αp ∼ 50 dB/cm) between several,
independently processed samples are observed. The variation might in fact be
caused by different grain, pore and crack sizes due to the strong dependence of
the morphology of sputtered BaTiO3 layers on the annealing conditions.

MBE-grown BaTiO3 In contrast to sputtered BaTiO3 layers, epitaxial barium
titanate shows a very uniform, crack-free surface with a roughness below
0.5 nm (rms) (section 2.3). However, the propagation losses obtained for slot
waveguide structures with MBE-grown BaTiO3 films are unexpectedly high
(fig. 4.29a): HE-waveguides with a-Si:H as top-silicon layer show TE-losses
of αp,TE ∼ (319 ± 7) dB/cm, while PE-waveguides capped with c-Si result in
even higher losses of αp,TE ∼ (575 ± 21) dB/cm. Due to the low absorption
of lowly-doped c-Si a better performance than with a-Si:H layers would be
expected. The deposition of a SiO2 cladding reduces αp only marginally as
shown in fig. 4.29a by the dashed green line. The propagation losses measured
on several samples with different MBE-BaTiO3 layers show large variations but
are consistently high (αp,TE = 200 − 400 dB/cm). The propagation losses of
TM modes are even higher, typically αp,TM ≫ 500 dB/cm.

Origin of high losses From the relatively low losses of the reference waveguides,
several possible mechanisms can be exclude as the dominant loss channel in
the MBE-BaTiO3 waveguides:

• The top VHF-PECVD-grown a-Si:H layer is only slightly absorbing and
does not result in propagation losses of αp > 200 dB/cm. Also, the high
losses in c-Si capped PE-slot waveguides confirm the minor influence of
the top-silicon on αp: The c-Si layer is lowly doped and shows thus a low
absorption.
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Fig. 4.29 (a) Transmitted power P through air-cladded slot waveguides of
various length L with differently deposited BaTiO3 layers. Waveguides with
a-Si:H as top-silicon layer are HE-type, while c-Si capped waveguides are PE-
type. c-Si waveguides with SiO2 cladding (open green symbols, dashed line)
show very a similar propagation loss (αp = (559 ± 15) dB/cm) to the uncladded
ones. (b) Bright-field (top) and dark-field (bottom) optical microscopy images
of sputtered BaTiO3 layers showing a non-uniform, grainy morphology.

• Sidewall roughness limits the losses to ∼3 dB/cm in FE SOI reference
waveguides. The Si-etch process thus does not result in such high losses
as measured for MBE-BaTiO3 structures. Simulations of the propagation
losses show that even very rough waveguides (standard deviation of 10 nm
with a correlation length of 50 nm) result in much lower propagation
losses (< 40 dB/cm) for fully etched waveguides of similar size [211]. Even
higher roughness values would be required to account for the observed
propagation losses. Such high roughness is in contrast to the smooth
sidewalls seen in the SEM investigation (fig. 4.23b).

• Possibly, TM modes are not guided in the waveguide cross section and
radiate into the device-silicon layer. This would however be in contrast
to the rather low TM losses in Si3N4-slot waveguides, and could also not
account for the high losses of the TE modes, which cannot be cut off due
to the symmetry structure of cladded waveguides.

• Scattering effects in the MBE-BaTiO3 layers can be neglected compared
to sputtered BaTiO3 due to a significantly higher crystalline quality and
very homogeneous morphology in the MBE-BaTiO3 layers.

Previous studies show that the absorption in undoped BaTiO3 at λ = 1550 nm
is negligible [212]. Waveguides made from epitaxial barium titanate on MgO
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cladding (“mod.”). The losses per grating coupler αg for the modified process
are indicated on the left.

substrates show low propagation losses of 2 − 4 dB/cm [131, 165, 213] which
are mainly determined by scattering losses. Losses due to abortion in the
BaTiO3-layers are therefore considered to be very unlikely, but provide on the
other hand the only reasonable explanation for the high losses of MBE-BaTiO3

slot waveguides. The reason why BaTiO3 shows a rather high absorption
despite the excellent crystallinity is not clear.

Reduction of propagation losses With additional experiments and careful
analyses, the origin of the high absorption losses could finally be identified, and
a way to strongly reduce them with few additional process steps was found.
Figure 4.30 shows the lowest αp-values for HE slot waveguides fabricated with
the original process. Additionally, data for MBE-BaTiO3 slot waveguides with
the modified fabrication process are shown1. The cross section of the waveguides
is not altered and still a a-Si:H/BaTiO3/SOI stack with the same dimensions
as described above. With the modified process, the losses are reduced to
αp,TE = (47 ± 2) dB/cm and αp,TM = (98 ± 3) dB/cm for TE and TM modes
in cladded structures, respectively. The sample to sample variation is still high,
and losses as low as αp,TM = (67 ± 4) dB/cm are observed for the TM mode.

1 Due to a pending patent application, no further details on the slightly modified
process can be given here.
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All BaTiO3-waveguides discussed in the following sections are fabricated with
the modified process.

Grating couplers

Using eq. (4.20), the coupling losses αg at L = 0 µm are determined from the
data shown in fig. 4.30 as αg,TE = (2.4 ± 0.3) dB and αg,TM = (8.3 ± 0.3) dB
for TE and TM grating couplers, respectively. Waveguides fabricated with the
original process that are shown in fig. 4.30 show slightly higher coupling losses
since no cladding was used for these particular devices.

The coupling efficiency of the TE-couplers is comparable with state of the
art grating couplers, while the insertion loss for the TM couplers is by ∼4 dB
higher [10, 214]. By chirping the duty cycle of the gratings, and adjusting the
design iteratively based on experimental results, the efficiency of both couplers
might be increased. In the same way, reflections from the couplers back into
the waveguide can be reduced. Such undesired reflections are visible as periodic
modulation of the transmitted power due to interference effects (see fig. 4.27a).
The efficiency of the couplers is however sufficient at the current state in order
to characterize electro-optical active devices.

4.5.3 Bent waveguides

Bending losses are determined using several MBE-BaTiO3-slot waveguides
consisting of multiple 180° bends with different bending radius r (fig. 4.31a,
inset). The total length of the bent waveguides is kept constant at L ∼ 2 mm.
To reduce losses due to mode mismatch between the differently curved parts,
short straight waveguides (L∆ = 2.5 µm) are placed in between bends with
opposing bending directions. For both the TE and the TM mode, a transition
from a regime dominated by bending losses (r < 10 µm) and one dominated by
propagation losses independent of the bending (r > 20 µm) is visible (fig. 4.31a).

The transmission T of the devices is calculated based on the experimentally
determined propagation losses αp of straight waveguides (fig. 4.30) and the
simulated bending losses αb (fig. 4.10):

T =
1
2

× αg × 10−αp(L+mL∆)−αbL. (4.21)

In this equation, m ≈ L/ (πr) is the number of 180° bends and αg the coupling
losses as determined from fig. 4.30. The losses of the TE mode are higher
than the calculated bending losses (fig. 4.31a), which is likely caused by an
increased sidewall roughness for small curvatures due to the finite pixel size
in the ebeam lithography process. In contrast, the TM mode shows lower
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Fig. 4.31 (a) Experimental and simulated transmission for waveguides with
different bending radii r. The total length of the waveguides is ∼2 mm. The
inset schematically shows the mask design of devices with different bending
radii. (b) Bending losses per 90°-bend calculated from the data shown in (a).
The error bar is based on the uncertainty in determining the transmission in
waveguides without significant contribution of bending losses (r > 20 µm).

losses than expected. This reduction might originate from a better confinement
due to overetching and thus lower bending losses (fig. 4.10). Because of the
large propagation losses αp, only few data points are collected in the regime
where bending losses dominate the transmission of the waveguides. An accurate
comparison between the simulations and experimental data is therefore not
possible.

The losses per 90°-bend αb,90° for small bending radii are estimated using
eq. (4.21), experimental values of αg (fig. 4.30) and T (fig. 4.31a), and

αb,90° =
αb

πr/2
. (4.22)

αp is determined from the data shown in fig. 4.31a in the regime where bending
losses are negligible (r > 20 µm). For small radii, the bending losses per 90°-
bend are αb,90° < 0.02 dB (fig. 4.31b), which is significantly smaller than the
propagation losses along a straight waveguide with the same length (∼0.3 dB
for r = 20 µm and αp = 98 dB/cm (TM-mode, see fig. 4.30)). Bending losses
are therefore negligible in ring resonators with r = 30 µm, which is the design
point for devices discussed in the following sections.
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4.5.4 Ring resonators

Ring resonators from both Si3N4-slot waveguides as well as BaTiO3-slot wave-
guides show sharp resonances for TM-modes, depending on the actual device
geometry. At a resonance, the transmitted power P (λ) is approximated with a
Lorentzian peak function in order to analyze typical figures of merit such as
the quality factor and propagation losses in the ring:

P (λ) = P0 − (P0 − Pmin)
(δλ/2)2

(λ − λ0)2 + (δλ/2)2
. (4.23)

In this equation, λ0 is the center wavelength of the resonance, δλ the full width
at half transmission, P0 the transmitted power next to the resonance, and Pmin

the transmission at the resonance. From the fitted parameters, the extinction
ratio re = P0/Pmin can be calculated, as well as the quality factor Q [161]:

Q ≈ λ0

δλ
(4.24)

For critically coupled rings, the quality factor Qcr is used to estimate the
propagation losses αp in the rings with group index ng [198, 215]

αp =
πng

Qcrλ0
. (4.25)

The condition of critical coupling is fulfilled when the extinction ratio approaches
infinity. The group index can experimentally be determined by measuring the
free spectral range FSR between two resonances, and using [198]

FSR ≈ λ2

ngL
, (4.26)

where L = 2rπ is the cavity length in the ring with radius r. A more general
determination of the losses for arbitrary coupled rings [198] is not needed
here because the gap of the waveguide and the ring is varied to reach critical
coupling.

Si3N4 slot waveguides Figure 4.32 shows the TM-transmission spectrum of
a Si3N4-slot waveguide ring resonator with radius r = 30 µm. The resonances
show an extinction ratio of re > 15 dB, which corresponds to nearly critically
coupled rings. The finesse of the resonator is F = FSR/δλ ≈ 38 [216]. From
the quality factor Q = 2.0×104 and the group index ng = 3.89, the propagation
losses in the ring are estimated as αp = 17 dB/cm. The propagation losses
are higher than in straight waveguides (αp = (6.9 ± 0.9) dB/cm, section 4.5.2).
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Fig. 4.32 TM-transmission spectrum of a Si3N4-slot waveguide ring resonator
with r = 30 µm. Resonances with quality factors of Q = 2.0 × 104 are measured.
The width of the resonance δλ at half transmission (−3dB) is indicated in the
right plot.

Bending losses are supposed to be < 0.1 dB/cm for waveguides with 30 µm
bending radius and do not account for the higher losses. The deviations between
both measurements might rather be related to local inhomogeneities on the
wafer. Investigating multiple rings combined with a better statistical analysis
could reduce the measurement uncertainty. Such an in-depth analysis is not
performed in this work. The sharp resonances with δλ ≈ 0.06 nm (fig. 4.32) are
sufficient to resolve the resonance shifts which are expected for electro-optical-
active BaTiO3-based devices (fig. 4.16).

BaTiO3 slot waveguides Due to the higher propagation losses in BaTiO3

slot waveguides compared to those with Si3N4 core, the resonances of ring
resonators with identical dimensions show lower quality factors of Q ≈ 5.4×103

and lower finesses of F ≈ 12 for TM-modes (fig. 4.33). The group index
of the TM mode is ng = 3.90. This value is close to the simulated index
(ng,TM = 3.67, section 4.3.1) and the index of Si3N4-slot waveguides, and
confirms a good match of the geometry and index profiles between simulations,
reference structures and BaTiO3-waveguides. The propagation losses obtained
from the rings (αp = 64 dB/cm) are similar to the values obtained from straight
waveguides (lowest values measured αp,TM = (67 ± 4) dB/cm, section 4.5.2).
The analysis of several rings shows a variation of ∆αp > 20 dB/cm. These
rather strong fluctuations between different devices are in agreement with
local inhomogeneities due to defects, which are also visible when measuring
multiple straight waveguides as shown in fig. 4.27b. The width of the resonances
δλ ≈ 0.25 nm (fig. 4.33) makes the BaTiO3-devices suited to sense shifts of
∆λ0 = 0.1 nm in subsequent electro-optical-measurements.
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Fig. 4.33 TM-transmission spectrum of a critically coupled BaTiO3-slot
waveguide ring resonator. The quality factor of the magnified resonance is
Q = 5.4 × 103. The width of the resonance δλ at half transmission (−3 dB) is
indicated in the right plot.

The extinction factor re at the resonances is strongly dependent on the losses
in the ring and on the coupling coefficient [216]. The latter is systematically
varied by changing the gap size g between the ring and the straight waveguide in
order to find the condition of critical coupling (fig. 4.34a): While for small gap
sizes (g < 80 nm), too much light is coupled to the rings, resulting into broad
resonances, the resonances disappear for large distances (g > 350 nm). For
intermediate gap sizes gcr ≈ 190 nm, the extinction factor shows a maximum
of re > 25 dB (fig. 4.34b). Rings fabricated with gcr are critically coupled
to the waveguides. The parameter gcr is used for fabricating active devices,
and therefore determined for all waveguide geometries used in this work, such
as race track resonators, or rings with different radii and different coupling
geometries.

In addition to the TM ring resonators discussed above, TE modes are
analyzed: Generally, higher quality factors of Q ∼ 1.0 × 104 and smaller gcr

are observed, which is in agreement with the lower propagation losses, and the
stronger lateral confinement and consequently the lower coupling strength of
TE modes.

4.5.5 Directional couplers

As a prerequisite for properly designing Mach-Zehnder interferometers, the
dimensions for symmetric directional couplers calculated in section 4.3.3 are
experimentally verified for BaTiO3-slot waveguide structures. Couplers with a
gap size of g = 200 nm show an oscillating power transfer between the bar and
the cross port (fig. 4.35b) when the length L of the parallel waveguides in the
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Fig. 4.34 Analysis of the coupling between ring resonators and straight wave-
guides. (a) TM-transmission spectra for various gap sizes g. The spectra are
slightly shifted in order to match the resonance wavelength, which differed
between the devices due to fabrication variations. (b) Extinction ratio re for
various gap sizes obtained from fitting the resonances at λ ≈ 1570 nm, the
wavelength of maximal transmission of the grating couplers. The dashed line is
a guide for the eye. All Data corresponds to rings with r = 30 µm and with
slightly curved (see inset in (a)) BaTiO3-slot waveguides.

coupling region is varied (fig. 4.35a), as expected for directional couplers [192].
The data is fitted with

P (L) = P0 sin

(

2π
L − L0

2Lc

)2

, (4.27)

where Lc is the minimal length of the coupler to transfer all energy into the
other waveguide, L0 the offset, and P0 the total transmitted power through
both ports. The offset L0 originates from the energy transfer in the bent
waveguides before and after the parallel waveguides. Due to the large bending
radius of r = 100 µm in that region, most energy is transferred into the bar
state already for L = 0. The period of the oscillation of the power between
both ports is 2Lc = 2 × (17.9 ± 0.2) µm, which is in excellent agreement with
calculated coupling length of 17.3 µm (fig. 4.13). This agreement indicates a
good match between the targeted design and the actual fabricated waveguide
geometry.

Other gap sizes between 100 and 400 nm for TM coupler as well as TE
coupler are investigated. Because of the stronger confinement and thus lower
coupling strength between the waveguides, TE couplers are generally longer,
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Fig. 4.35 (a) Transmitted power P in the bar and the cross port of symmetric
directional couplers with different length L. The error bars show the standard
deviation between several identically designed couplers. The fits (solid lines)
reveal a coupling length of Lc = (17.9 ± 0.2) µm to transfer all power from one
waveguide to the other one. (b) Schematics of measurement geometry.

with Lc = (55 ± 10) µm for a gap size of g = 200 nm. Since small gap sizes
are more prone to process variations due to the exponential dependence of the
coupling strength on g, a larger gap size than shown in fig. 4.35 is used for
fabricating Mach-Zehnder interferometers (g = 300 nm and Lc = (38 ± 3) µm).

4.5.6 Mach-Zehnder interferometers

However, due to a mistake in the design process, the actual couplers used in
subsequently fabricated MZIs are not accurate 50:50 splitters. The asymmetric
splitting ratio results in different extinction ratios in the bar and cross port for
MZIs with a delay line of ∆L = 200 µm (fig. 4.36a). The good extinction in the
cross port (re > 25 dB) shows that both couplers in the MZI are identical [192],
and indicates a good etching homogeneity on local scale. The extinction ratio
in the bar port decreases for larger wavelengths, where the coupling strength
is generally higher. The couplers are thus over-coupled. Shorter couplers or
larger gap sizes have to be designed to obtain symmetric conditions in the bar
and cross ports.

Such symmetric behavior is obtained despite the non-symmetric couplers
for MZIs devices with longer delay lines of ∆L = 800 µm (fig. 4.36b): the
rather high losses in the waveguides of several dB/mm require over-coupled
splitters in order to compensate the additional losses in the longer arm. These
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Fig. 4.36 Mach-Zehnder interferometer with a delay line length of (a) ∆L =
200 µm and (b) ∆L = 800 µm. In both cases, the shorter arm has a length
of ∼350 µm. The directional couplers used for the interferometers are not
perfect 50:50 splitters, which results in a relatively low extinction ratio in
the bar configuration in (a). The unbalanced splitting is compensated by the
propagation losses in longer delay lines as seen in (b).

results show the importance of including the outcome of the measurements of
directional couplers (section 4.5.5) as well as the propagation loss measurements
(section 4.5.2) in the design of future BaTiO3-slot waveguide MZI devices.

4.5.7 Active devices - current state and future work

Active HE‖-slot waveguide ring resonators with in-plane electrodes are manu-
factured based on geometrical parameters obtained from the optimization of
passive devices. The presence of the electrodes separated by del = 1.0 − 3.0 µm
from the waveguide core does not alter the transmission spectra of the devices.
This behavior is expected from the simulations which show propagation losses
of αp < 10 dB/cm in bent waveguides with del = 1.0 µm and radius r = 30 µm
(fig. 4.15). These propagation losses only marginally influence the total propa-
gation losses of TM modes with αp > 50 − 100 dB/cm as measured in straight
waveguides (section 4.5.2).

In the frame of this thesis only few devices could be investigated and no
complete analysis can be provided here. In particular, many device parameters
which were varied during the device design and many external parameters during
the characterization such as temperature variations could not be considered.
The following discussion indicates the state of the current work and provides
an outlook for future experiments.
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The initial electro-optical measurement are performed on racetrack ring
resonators with electrodes only along the straight “tracks” (figs. 4.37a and 4.37c).
The electric field in these devices is homogeneous along the full active region
relative to the BaTiO3 crystalline axes. Due to the tensor nature of the electro-
optical effect (section 3.2.1), a different performance of the devices is expected
for differently oriented race track resonators. The influence of the orientation
of the electric field is visible in the characterization of thin films in chapter 3,
where a maximal electro-optical response is observed when the the electric field
is oriented parallel to the [101]BTO direction (fig. 3.14).

Shift of resonance wavelength

Indeed, devices with differently oriented electrodes show a different electro-
optical response: Hardly any shift of the resonance wavelengths λ0 is visible
when the electrodes are parallel to the [001]BTO/[100]BTO-axes (figs. 4.37a
and 4.37b). For this configuration only the rather small r13 and r33 elements
of the Pockels tensor contribute to the electro-optical response, which might
thus be below the experimental resolution of ∆λ ≈ 0.01 nm.

When the electrodes are oriented along the [101]BTO axes, a different behavior
is observed: By applying a voltage V to the electrodes, λ0 increases (figs. 4.37c
and 4.37d). The shift of λ0 is caused by a change of the group index ∆ng,
which can be calculated as

2π
ng,0L

λ0
= 2πm (4.28)

2π
ng,V L

λV
= 2π

(ng,0 + ∆ng) L

λ0 + ∆λ0
= 2πm (4.29)

∆ng = ng,0
∆λ0

λ0
= 3.91

0.34 nm
1552.5 nm

= 8.6 × 10−4. (4.30)

In this derivation, m is the order of the resonance, ∆λ0 = 0.34 nm the shift
of the resonance extracted from fig. 4.37d, and ng,0 = 3.91 the group index of
the TM-mode in HE-waveguides which was determined from the free spectral
range using eq. (4.26). The indices “V ” and “0” indicate the applied voltage
(V = 18 V and V = 0 V, respectively). The shift per applied voltage is

∆ng = 4.8 × 10−5∆V /V. (4.31)

This change of the group index ∆ng is in the same order of magnitude than
the expected performance, which is calculated as ∆ng = 2.0 × 10−5∆V /V from
eqs. (4.10) and (4.13) when assuming a linear scaling of the electric field with
the inverse distance of the electrodes.
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Fig. 4.37 (a) Optical microscopy image and (b) transmission spectra for various
applied voltages of an active racetrack resonator with electrodes parallel to the
[100]BTO direction or parallel to the [101]BTO direction ((c) and (d)) seperated
by 2.5 µm from the waveguide. The radius of the bends is r = 30 µm with
75 µm-long tracks and 10 µm-long straight coupling regions. The directions of
the main crystalline axes of BaTiO3 are indicated in the microscopy images.
The spectra shown in (d) are normalized by ∼1 dB to match the slightly varying
background levels which might have been caused by a drift of the fiber position
relative to the grating couplers. Different spectral ranges are used during the
measurements due to a mistake in the measurement scripts, which however is
not expected to alter the results.



4.5 Characterization 153

-30 -20 -10 0 10 20 30

-0.4

-0.2

0.0

0.2

0.4

E || [101]
BTO

E || [100]
BTO

∆
0

[n
m

]

applied voltage V [V]
-30 -20 -10 0 10 20 30

10-10

10-9

10-8

10-7

10-6
E || [101]

BTO

E || [100]
BTO

cu
rr

e
n

t
I
[A

]
applied voltage V [V]

10-11

10-9

10-7

10-5

e
le

ct
ri

ca
lp

o
w

e
r

P
e

l
[W

]

(a) (b)

(c)

current 
flow

Fig. 4.38 (a) Change of the resonance wavelength λ0 for various applied
voltages in devices with an electric field along the [100]BTO/[001]BTO and
[101]BTO direction, respectively. The arrows show the direction of the voltage
sweeps. No data points with negative bias are obtained for the device with
E ‖ [100]BTO. (b) Illustration of a possible path of electric current (pink lines),
which could flow vertically through the BaTiO3 layer below the electrodes and
horizontally in the device-silicon layer due to the high resistivity of BaTiO3.
(c) Current-voltage characteristics (solid lines) for both devices shown in (a).
The dashed lines show the corresponding power consumption Pel.

A systematic variation of the applied voltage confirms the different electro-
optical response for the devices with differently oriented electrodes (fig. 4.38a).
However, the device with the electric field oriented along the [101]BTO shows
a hysteretic behavior in ∆λ0 when sweeping the applied voltage, which is
not expected when the shift of the resonance wavelength is solely caused by
the Pockels effect. The hysteretic behavior indicates the presence of another
electro-optical process in the device. In order to identify such process, several
mechanisms that can cause a shift of λ0 are discussed in the following. In
particular, the magnitude and a possible hysteretic response of those effects
are compared with the current data.

• Plasma dispersion effect. The influence of the charge carrier concentration
on the optical properties can be estimated from the current-voltage
characteristics of the devices: Only small currents I < 100 nA at voltages
of V = 25 V are observed (fig. 4.38c). The exponential I(V ) behavior
seen in fig. 4.38c is expected for charge transport through the BaTiO3

layer (section 2.5.1). Most likely, the current flows vertically through the
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BaTiO3 film below the electrodes, and horizontally through the device-
silicon layer (fig. 4.38b) because silicon has the lowest resistivity among
all layers in the waveguide core. Since there is no pn or pin junction in
the structure, the charge carrier concentration in the silicon layer will not
increase by the low current, and the plasma dispersion effect has thus no
influence on the transmission spectra.
Alternatively, due to the strong electric field, charge carriers in the
silicon layer could be pulled out of the active region. The equilibrium
concentration of free carriers when no field is applied is limited by the
low doping (∼1015/cm3), which results in only a small change of the
refractive index (∆nSi < 10−5) when the structure is fully depleted [217].
This change is more than one order of magnitude lower than observed in
the measurement (see eq. (4.30)).
Additionally, due to the symmetric electrode configuration, the plasma
dispersion effect should be symmetric for positive and negative applied
voltages (∆λ0 (V ) = ∆λ0 (−V )), independent of the orientation of the
electric field, and without hysteretic behavior. Such symmetric behavior
is in contradiction to the measurements shown in fig. 4.38a. All of these
three aspects rule out the plasma dispersion as the dominant electro-
optical effect in the BaTiO3-slot waveguide devices.

• Thermo-optic effect. Joule heating might change the temperature of
the waveguide, which could influence the optical properties due to the
thermo-optic effect. In order to achieve a change of the effective index
∆ng = 8.6 × 10−4 (eq. (4.30)), a temperature variation of ∆T = 4.3 ◦C
is required (eqs. (4.13) and (4.14)). The calculation is based on the
similar thermo-optic effect in BaTiO3 and silicon (section 4.3.4). It seems
unlikely to reach such temperature variation with the low electric power
consumption of Pel ∼ 1 µW (fig. 4.38c), particularly when considering
previous studies: A three orders of magnitude higher electrical power
(Pel ∼ 1 mW) is needed to tune the resonance of ring resonators (r =
15 µm) with metallic heaters by the same magnitude (∆λ0 ≈ 0.34 nm)
[17].
Furthermore, the thermo-optic effect would neither depend on the ori-
entation of the electrodes nor on the direction of the current flow, in
contrast to the observations in fig. 4.38a. Also, no significant hysteresis of
the temperature would be expected due to the slow measurement speed
(∼1 min per data point in fig. 4.38a), and the good thermal contact of
the waveguide to the substrate, which ensures that thermal equilibrium
is quickly reached.

• Pockels effect. The magnitude of ∆λ0 as well as the different behavior
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Fig. 4.39 Simulated transmission spectrum for a ring resonator with the same
cavity length as the race track resonators shown in fig. 4.37. The simulations
were performed at λ ≈ 1550 nm for different propagation losses αp based on
the method described in section 4.3.4. The coupling between the ring and the
straight waveguide was set to obtain an extinction ratio of re ≈ 20 dB.

for differently oriented electrodes are in agreement with the Pockels effect.
The electro-optical response when applying positive or negative voltages
might generally be different due to poling of ferroelectric domains in the
BaTiO3 layer. However, a symmetric hysteresis (∆λ0 (V ) = ∆λ0 (−V ))
would be expected. In particular, the same position of the resonance for
V = 0 V should be observed, in contrast to the data shown in fig. 4.38a.

Thus, none of these effects can account for all features seen in the shift
of the resonance wavelength. A combination of several mechanisms, or an
additional process has to be present in the samples. One possible effect would
be the diffusion of ions within the BaTiO3 layer, which could create or move
charged defects. The space charge region around such defects creates an electric
field which changes the refractive index of BaTiO3 via the Pockels effect. Such
two-step process is called “photorefractive effect” and is observed in ferroelectric
materials [218, 219]. Additional experiments that could confirm or exclude such
ion diffusion as origin of the electro-optical response are discussed at the end of
this section.

Influence of propagation losses

Beside the shift of the resonance wavelength, the device with the electric field
oriented along the [101]BTO axis shows a change in the extinction ratio from
re ≈ 8 dB to 18 dB when increasing the voltage (fig. 4.37d). Variations of re
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are hardly visible in the device with electrodes along the [100]BTO/[001]BTO

axes (fig. 4.37b). A change of re results either from a variation of the losses in
the ring, or from a modified coupling between the resonator and the waveguide.
The latter is unlikely since the electrodes are at a large distance to the coupling
region (figs. 4.37a and 4.37c) and should thus not have any significant effect on
it.

To estimate the effect of variable losses on the measurements, the transmis-
sion of a racetrack resonator is calculated based on the method described in
section 4.3.4. Therefore, the experimental propagation losses are first obtained
from the data set in fig. 4.37d with the highest extinction ratio. The procedure
described in section 4.5.4, which is valid for critically coupled rings, results in
αp ∼ 55 dB/cm. For non-critically coupled rings with lower extinction ratio,
the propagation losses and coupling losses are strongly correlated and could
thus not unambiguously be distinguished when fitting the spectra with the
analytic description of a ring resonator [198]. To calculate the transmission
spectra, the coupling coefficient between the resonator and the waveguide is
fixed at a value that yields an extinction ratio of re ≈ 20 dB, as observed in
the experiments fig. 4.37d. The extinction ratio varies by ∆re ∼ 10 dB when
the propagation losses are changed by ∆αp ∼ 10 dB/cm (fig. 4.39). These
simulated changes of ∆re reproduce the experimental observation in the device
with the electric field oriented along the [101]BTO direction (fig. 4.37d).

In principle, a varying concentration of charge carriers can change the
absorption in the waveguide, and hence, account for a change in the extinction
ratio. For carrier depletion in the low-doped device-silicon layer, the effect
would be ∆αp < 0.01 dB/cm [217], which is much smaller than ∆αp ∼ 10
dB/cm as used in the simulations (fig. 4.39). To reach changes of 10 dB/cm,
a ∼1000-fold increase of the carrier concentration to ∼1018/cm3 [217] would
be required, which is unlikely due to the absence of a pn or pin region in the
waveguide. Furthermore, a modulation of the charge carrier concentration would
be independent of the orientation of the electrodes relative to the crystalline
axes, in contrast to the observations from fig. 4.37.

Temperature variations ∆T are also considered not to influence the extinction
ratio as they do hardly impact the absorption of silicon at low temperatures.
The little influence on re is evidenced by previously reported experiments
on ring resonators covered with metal heaters to tune the resonances: The
extinction ratio of the rings hardly changes from room temperature to high
temperatures of ∆T > 100 ◦C [17].

The Pockels effect only influences the real part of the refractive index and has
no effect on the propagation losses. However, a variation of the birefringence
in BaTiO3 might change the polarization of the optical mode, and thus create
an additional loss channel by converting TM into TE-like modes. Such effect
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would be dependent on the relative orientation between the electric field and
the crystalline axes, as observed in fig. 4.37. Alternatively, the variation of
ionic defects in the BaTiO3 layer might alter the absorption of the crystal
(“photochromic effect”) [219]. However, due to the limited amount of data, the
analysis of the variation in the extinction ratio is restricted to the previous
discussion, without definite conclusion. Possible future experiments to further
understand the origin of the variations in re are discussed below.

Conclusion of electro-optical active devices

Optical switching in active race track resonators has been observed when
applying an electric field. The order of magnitude of the response as well as
the different behavior between differently oriented race track resonators match
the expected performance of BaTiO3-slot waveguides with strong Pockels effect.
Artifacts such as a variation of the temperature or charge carrier concentrations
in the silicon layer have been shown to be unlikely. However, the observed
hysteresis in the shift of the resonance wavelength and the change of the
extinction ratio cannot be attributed to a nonlinear optical response caused by
the Pockels effect in BaTiO3. Hence, a combination of several physical effects
has to be considered in order to conclude the experiments, such as the coupling
between TE and TM modes due to the birefringence of BaTiO3, or the drift of
ions in the BaTiO3 layer which modifies the refractive index via the Pockels
effect.

Future experiments

Additional experiments are required to identify the electro-optical process in
the BaTiO3 slot waveguide structures. A selection of important experiments is
given below:

• Frequency dependent measurements. By changing the frequency of the
applied voltage from ∼0 Hz to several GHz, the time constant τ of the
electro-optical process can be analyzed. It allows to separate effects from
ion diffusion (τ > ms, [219]) and thermo-optical effects (τ > µs) from
the much faster Plasma-dispersion and Pockels-effect (τ < ns). If the
operation speed of the device is not electrically limited by the electrode
design, the Pockels effect (τ ∼ ps) might be distinguished from charge
carrier effects (τ ∼ 0.1 ns). As a first step, the limitations due to the
electrodes can be estimated by simulating the rf-performance for the
specific device layout.

• Variation of the applied voltage profile. The dependence of the hysteresis in
∆λ0 on the initially applied voltage should be investigated. In particular,
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it has to be tested whether the hysteresis is already visible for the first
measurements with small applied voltages, or only created after applying
large voltages. The latter would indicate that a poling process of the
ferroelectric domains might occur or that ionic filaments are created. In
contrast to drifted ions, the poling of domains should be fully reversible
by heating the sample above the Curie temperature, as seen during the
electro-optical characterization of the BaTiO3 layers (section 3.4.4). The
experiment would hence give indications about the physical origin of the
observed hysteresis.

• Direct correlation between ∆λ0 and I. By simultaneously measuring the
current I and the optical response, it might be possible to separate the
influence of the Pockels effect, which does not require any current flow,
and charge carrier and temperature effects. In particular it is important
to see whether the strong change in ∆λ0 at large voltages (fig. 4.38) is
related to a similar increase in the current flow.

• Variation of device layout. Several device parameters should system-
atically be varied: (1) The dependence of the electro-optical response
on the orientation of the electric field can be tested by characterizing
devices with differently oriented electrodes. In particular other directions
than [001]BTO and [101]BTO should be investigated. (2) By changing the
distance between the electrodes and the waveguides, the response due to
the electric field and due to current flow can be further separated due
to the different scaling of the current and the field. (3) MZIs provide
a way to characterize the electro-optical response independently of any
resonant conditions and are thus less dependent on parameters such
as temperature drifts. (4) The potential change of the polarization of
the optical mode might be investigated by fabricating several straight
waveguides with side electrodes and different combinations of grating
couplers (for TE and TM-modes, respectively). It might thus be tested
if by applying a voltage the total transmission is reduced, or if power is
redistributed between the TE and TM mode.

• Temperature dependent measurements. By varying the sample tempera-
ture in a controlled way, the effective thermo-optic effect of BaTiO3/SOI
waveguides can be accessed. The influence of temperature changes on
the resonant wavelength and the extinction ratio can thus be concluded
or excluded.
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4.6 Conclusion and outlook

This chapter discusses the implementation of thin epitaxial BaTiO3 films on SOI
wafers into silicon photonic structures for electro-optical active devices. Cross
sections of horizontal slot waveguides with BaTiO3 embedded between two
silicon layers are designed to achieve a strong mode confinement in the active
region and single-mode operation, and to provide compatibility with common
processing routes. Components such as grating couplers and directional couplers
are designed to enable basic test structures for passive and electro-optical active
operation.

Active devices can be optimized for low speed or high speed operation: Com-
pared to state of the art electro-optical devices in silicon photonics (table 4.1),
BaTiO3-based low-speed tuning structures promise by 2-3 orders of magnitude
larger wavelength shifts for the same drive voltage (table 4.5). In terms of
power consumption, BaTiO3-based devices exceed the performance of current
solutions using metallic heaters by up to 10 orders of magnitude.

For high-speed operation, similar figures of merit to state-of-the art modula-
tors regarding voltage requirements are expected (table 4.5). Ways to lower
the driving voltage in BaTiO3 slot waveguides by one order of magnitude are
discussed. The major benefits for high-speed operation are the low power
requirements and the ultra-high modulation speed enabled by the Pockels effect.

Table 4.5 Calculated Vπ × L for BaTiO3-based Mach-Zehnder silicon photonic
modulators, based on the Pockels effect of BaTiO3/Si structures (section 3.4).
The values in parenthesis are estimations for the maximal device performance
after optimizing the cross sectional design and the material properties (see sec-
tion 4.3.4). The Vπ × L product of experimentally realized devices is calculated
from the voltage induced change of the refractive index (eq. (4.31)) of a race
track resonator, using eq. (4.15). State-of-the-art silicon photonic modulators
are listed in table 4.1 for comparison.

properties of BaTiO3-based MZ modulators

origin calculated calculated from experiment
cross section HE‖ PE⊥ HE‖

physical effect Pockels Pockels ambiguous
Vπ × L [V mm] 25 (0.2) 0.27 (0.03) 16

bandwidth rf
limited by BaTiO3

capacitance / Si-
series-resistance

not determined
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Rf-simulations are needed to properly design the geometry of the electrodes
and leads in order to reach these high modulation speeds. In particular, speed
limitations due to the large permittivity of BaTiO3 and therefore the potentially
large capacitance between the electrodes have to be evaluated. Such simulations
are not performed in the frame of this thesis.

Besides the design of the waveguides, a processing route is developed that
relies mainly on standard fabrication steps. One major challenge is to obtain
the Si/BaTiO3/SOI layer stack with a low-loss top-silicon layer. Two solutions
are successfully applied, based on the deposition of a-Si:H and on the layer
transfer of a c-Si layer via molecular wafer bonding.

Passive waveguides show unexpectedly high propagation losses of >200
dB/cm. The origin of theses losses can be identified as absorption effects in
the BaTiO3 layer, and a way to strongly reduce them is established. From
these optimized waveguide structures, passive devices such as ring resonators,
couplers, and Mach-Zehnder-interferometers are successfully fabricated. First
active ring resonators show promising results with a shift of the resonance
wavelengths when applying a voltage (table 4.5). However, some features of the
experimental results are not yet understood, such as a hysteretic behavior when
sweeping the applied voltage. The Pockels effect can thus not be identified
as the origin of this electro-optical response. By varying parameters in the
design as well as external parameters such as the temperature or the frequency
of the applied voltage, possible measurement artifacts on the electro-optical
performance have to be excluded in future experiments.

The complete route from designing, fabricating and characterizing BaTiO3-
based active devices presented here opens the door for a new generation of
silicon photonics devices enhanced by the unique properties of advanced oxides.
In order to establish and further optimize the electro-optic properties, three
topics should be addressed in future device designs: First, the electric field
distribution for different frequencies has to be analyzed more carefully. In
particular, the semiconducting nature of the silicon layers has to be taken into
account. Second, the crystalline symmetry and domain structure of the BaTiO3

layer must be considered for a proper estimation of the device performance.
Third, the waveguide cross section should be designed in a way to achieve
a maximal shift of the propagation constant rather than a maximal optical
confinement in the BaTiO3 layer. Therefore, an algorithm taking into account
the mode profile, electric field profile and the propagation losses at the same time
should be used, rather than separately optimizing the individual parameters.

To improve the processing yield, the reduction of defects in the top-silicon
layer has to be further investigated, in particular the poor adhesion of the
a-Si:H layer. Additionally, despite the reduction of the absorption losses in the
BaTiO3 slot waveguides, low losses as obtained for Si3N4 slot waveguides have



4.6 Conclusion and outlook 161

not yet been reached and further improvements are desirable.
Before optimizing the device design and the process flow, the origin of the

electro-optical response has to be identified unambiguously as the very first step.
Various important measurements to get more insight into the physical nature
of the observed switching behavior are described in detail in section 4.5.7.





CHAPTER 5

Conclusion and Outlook

5.1 Conclusion

This thesis presents a novel approach to obtain active, integrated silicon photonic
devices based on barium titanate thin films. Due to the strong nonlinear optical
properties of BaTiO3 and the absence of a linear electro-optical effect in silicon,
these devices offer new solutions for ultra-high speed modulators, fast switches,
and extremely low-power tuning elements. In order to exploit these benefits
of barium titanate thin films in silicon photonic devices, a full route for the
fabrication of such devices is established, starting from a bare silicon wafer.

Thin strontium titanate layers epitaxially grown on silicon substrates by
means of molecular beam epitaxy serve as crystalline template for the BaTiO3

deposition. The comparison of different growth processes shows a clear en-
hancement of the crystalline quality of the SrTiO3-template when utilizing
multiple rather than a single crystallization step of thin amorphously deposited
layers. BaTiO3 films grown on top of these seed layers are epitaxial, but tend
to form crystalline defects and pores, most likely due to small deviations from
stoichiometric growth conditions. The structural quality is strongly enhanced by
a shuttered co-deposition growth technique. The analysis of RHEED patterns
during the growth allows an improved composition control between Ba and
Ti, and ultimately results in homogeneous films with low surface roughness
and a high crystalline quality. Such BaTiO3 layers show tetragonal symmetry,
high resistivity, ferroelectric properties, and a low surface roughness. These key
features are a prerequisite for most electro-optical applications. In addition to
the MBE deposition, a hybrid growth method combining epitaxial seed layers
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with rf-sputtering is developed. This method provides a way to grow rather
thick (≥ 100 nm) epitaxial BaTiO3 layers as needed for many optical but also
piezo-electrical applications with a simple, commercially available deposition
method.

The properties of thin films can vary significantly from bulk properties, and
so far, no study on the electro-optical activity of BaTiO3 thin films on silicon
substrates has been performed. Previous studies of similar BaxSr1−xTiO3 thin
films on different substrates show a large scattering of the electro-optical prop-
erties [131, 133, 220]. Even vanishing Pockels coefficients were reported [135].
Therefore, an electro-optical characterization setup is built capable of sensing
the tensor nature of the optical response in the films. The effective Pockels
coefficient reff = 148 pm/V of BaTiO3-layers on silicon substrates is determined
in this work. The large Pockels coefficient is a major improvement compared to
the limited number of published data on electro-optical properties of lead-free
oxides integrated on silicon [150, 153, 166] and thus makes BaTiO3/Si layers
very appealing for integrated photonic devices.

Until today, no other concept of utilizing epitaxial complex oxides in com-
bination with silicon photonic structures has been demonstrated. As a first
step, a novel waveguiding structure with BaTiO3 embedded between two silicon
layers is developed. A platform of devices including couplers, splitters, and
interferometers based on such slot waveguides is designed and finally fabricated.
These passive devices show the targeted characteristics and demonstrates the
usability of BaTiO3 in photonic circuits. The origin of unforeseen high propa-
gation losses is identified and subsequently removed by a modified fabrication
process.

Finally, active devices relying on the strong Pockels effect in BaTiO3, in
particular tunable ring resonators and Mach-Zehnder interferometers, are tar-
geted. Here, the expected performance is strongly dependent on the kind of
application: The characteristics for high-speed operation in terms of voltage
requirements are similar to state-of-the-art silicon photonic modulators. The
Pockels effect is however present even in the THz-regime and could thus break
the speed barrier of current modulator designs based on the plasma dispersion
effect. For low-speed operation, BaTiO3 devices promise to reduce the voltage
requirements of current tuning solutions by 2 − 3 orders of magnitudes, and the
power requirements by up to 10 orders of magnitude. Such expected perfor-
mance is a clear enhancement compared to state-of-the-art devices. This thesis
shows a first implementation of actively tunable ring resonators. These active
devices are fabricated successfully and indeed show a shift of the resonance
wavelengths when applying a voltage, indicating electro-optical activity in the
devices. Although a conclusive interpretation of the experimental data is not
possible within the scope of this thesis, the results represent a promising first
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step towards understanding the behavior of BaTiO3-based slot-waveguides and
pave the way for future implementations of electro-optically active materials
into silicon photonic devices.

5.2 Outlook

Electro-optically active BaTiO3 films epitaxially grown on silicon substrates
form a platform to engineer novel devices in the field of silicon photonics.
Exciting challenges for material scientists lie in tailoring the electro-optical
properties of such functional oxides, which could be realized by strain engineering
or fabrication of superlattice structures [221]. Molecular beam epitaxy is a
deposition method perfectly suited to address these tasks, since different strain
levels can already be obtained by changing the film thickness (chapter 2).
Stacks of multiple layers can retain large strain even in thick layers beyond the
critical thickness of BaTiO3. Furthermore, doping can be used to change the
chemistry in the layers and thus alter their optical properties. Understanding
the correlation between the crystalline structure and the Pockels tensor could
ultimately lead to another boost of the electro-optical response, and eventually
result in thin films that are superior to bulk crystals. This vision is also
motivated by reports of perovskite thin films on silicon substrates exceeding
the crystalline quality of bulk single crystals [41].

Integrated photonic devices as suggested in this thesis will clearly benefit by
such enhanced electro-optical activity in the BaTiO3 layer. Their performance
can also be improved by further engineering the waveguide design, such as
varying the electrode layout or altering the BaTiO3 thickness. BaTiO3-based
waveguides could finally add various features to the current silicon photonic
platform: First, they offer a different, potentially extremely fast way to modulate
light compared to current solutions. Second, they could solve the problem
of the high sensitivity of silicon photonic circuits on temperature variations
and small size variations during the fabrication. Third, BaTiO3-waveguides
can be used as static tuning elements of resonant structures or filters with
extremely low voltage and power requirements compared to current solutions
based on local heaters. Fourth, completely new non-volatile optical switches or
memories can be envisioned when the ferroelectric properties of BaTiO3 or the
diffusion of ions in the perovskite layer are exploited. Finally, the variations
of the birefringence could be used to implement new device types to actively
change the polarization of the optical modes, in particularly to convert TE and
TM modes.

It can be foreseen that a local integration of BaTiO3 slot waveguides into
current silicon photonic solutions based on 220 nm SOI wafers is possible by
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proper adjustment of the design of the waveguide cross section. Couplers
between the standard-Si waveguides and BaTiO3-slot waveguides as well as
additional processing steps such as etching of BaTiO3 might be necessary, but
do not imply fundamental limitations. Alternatively, the photonic circuits could
be fabricated entirely out of BaTiO3-based structures. Providing the currently
observed losses are reduced, such a platform enables the realization of complex,
integrated photonic circuits - with a design toolbox that is enriched by the class
of strong electro-optically active materials.
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French summary

A.1 Chapitre 1 : introduction

La constante amélioration des performances des puces électroniques se traduit
par une difficulté croissante à gérer les transferts de données par le biais de
câbles électriques [5], non seulement à cause des contraintes en puissance mais
aussi à cause de la demande grandissante en bande passante. Dans ce contexte,
des dispositifs optiques ont vu le jour et des éléments tels que des détecteurs
[222] ou des modulateurs [8] sont d’ores et déjà intégrés sur des plateformes de
silicium. Toutefois, il est intéressant de constater qu’à ce jour la technologie
photonique sur silicium n’ait pas encore exploité les propriétés électro-optiques
linéaires des oxydes.

En effet, l’énorme potentiel des matériaux à fort coefficient électro-optique
linéaire (plus connu sous le nom de coefficient de Pockels) dans les systèmes
de communications optiques est parfaitement illustré par les dispositifs à base
de niobate de lithium (LiNbO3). Au cours des dernières décennies, le niobate
de lithium a été utilisé en tant que modulateur de lumière à hautes fréquences
[20], et est jusqu’à présent un composant majeur de la grande majorité des
réseaux de télécommunication [21]. L’effet Pockels, qui décrit la variation
d’indice de réfraction d’un matériau soumis à un champ électrique, a lieu à
des fréquences de l’ordre du Terahertz [22]. L’aspect linéaire de cet effet a
été fondamental pour exploiter des formats de modulation avancée, comme
par exemple la modulation d’amplitude quadratique qui augmente la bande
passante des liaisons optiques [21, 23]. Malheureusement, tous ces dispositifs
sont déposés sur des substrats de LiNbO3 cristallins et sont donc incompatibles
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avec les circuits photoniques sur silicium.
Utiliser un matériau présentant un fort coefficient électro-optique dans des

circuits optiques sur silicium permettrait d’une part de dupliquer la technique
de modulation du LiNbO3 qui est maintenant parfaitement maîtrisée, et d’autre
part d’élaborer de nouveaux dispositifs qui, grâce à la variation d’indice optique
en l’absence de courant, seraient réglables sans avoir à fournir d’énergie. Enfin,
la création de mémoires optiques non volatiles pourrait être envisagée en
utilisant les propriétés ferroélectriques de nombreux matériaux actifs électro-
optiquement. Pour ces applications il n’est pas possible d’utiliser du silicium
car son coefficient de Pockels est très faible, dû à la structure centro symétrique
de son cristal [24]. Quand bien même cette symétrie pourrait être rompue en
appliquant des gradients de contraintes [25, 26], l’effet Pockels alors obtenu
resterait à peu près 20 fois plus petit que celui du LiNbO3. Par conséquent, il
est nécessaire d’intégrer d’autres matériaux afin de créer des dispositifs tirant
avantage de l’effet Pockels.

Ainsi, le titanate de baryum (BaTiO3) représente un excellent candidat pour
l’intégration en photonique à base de silicium car il remplit les critères suivants :

1. Épais, il a l’un des plus fort coefficient de Pockels connu parmi les
matériaux actifs électro-optiquement supérieur à (rBTO > 1000 pm/V),
voir fig. A.1a). En particulier, les coefficients électro-optiques du titanate
de baryum épais sont 30 fois supérieurs à ceux du LiNbO3 et à peu près
∼600 fois supérieurs à ceux du silicium contraint.

2. Déposé en fines couches sur des substrats d’oxyde de magnésium, il permet
de faire des modulateurs à grande vitesse [29, 31, 32] (voir fig. A.1b).

3. L’intégration d’oxydes cristallins épitaxiés, comme le BaTiO3 ou le ti-
tanate de strontium (SrTiO3) sur silicium a déjà été démontrée (voir
fig. A.1c) [33, 34].

Afin d’utiliser le BaTiO3 intégré sur des dispositifs photoniques à base de
silicium, il est nécessaire de réunir les 3 conditions précédentes qui n’ont été
jusqu’à présent démontrées que séparément. Cette thèse s’est donc intéressée
à définir un moyen de développer des dispositifs photoniques actifs électro-
optiquement à partir de substrats de silicium. Au cours des différents chapitres,
les points suivants ont tout particulièrement été abordés (fig. A.1d) :

• La croissance par épitaxie (chapitre 2) : afin de croître des couches minces
de titanate de baryum cristallin aussi proche que possible du cristal parfait,
différents protocoles de croissance par épitaxie à jet moléculaire ont été
développés.

• La caractérisation électro-optique de couches minces de BaTiO3 (chapi-
tre 3) : les propriétés des couches minces cristallines peuvent sensiblement
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Fig. A.1 (a) Comparaison des coefficients de Pockels de differents matériaux
(d’après les [26–28]), le BaTiO3 épais présente la plus forte valeur. (b) Exemple
de modulateur optique à base de BaTiO3 déposé sur substrat de MgO [29]
(schéma reporté avec la permission d’AIP Publishing LLC). (c) Croissance
épitaxiée de SrTiO3 ferroélectrique sur silicium [30] (schéma reporté avec la
permission de l’association américaine pour l’avancée de la science). (d) Sujet
et plan de la thèse.

varier de celles du même matériau épais. Ainsi, le SrTiO3 en couches
minces est ferroélectrique alors que sous forme de cristal épais, il ne l’est
pas. De même, les propriétés du BaTiO3 ont généralement tendance à se
dégrader lorsqu’il est déposé sur des substrats oxydes, par rapport au
cristal épais [27]. Par ailleurs, aucune étude des coefficients de Pockels
du BaTiO3 déposé sur substrat de silicium n’a été publiée à ce jour.
Afin de caractériser des couches minces de BaTiO3, un banc de mesures
électro-optiques a été élaboré et une étude systématique de la réponse
électro-optique d’échantillons de BaTiO3 sur silicium a été menée.

• Dispositifs photoniques à base de BaTiO3 sur silicium (chapitre 4): enfin,
un concept de couches minces de BaTiO3 électro-optiquement actives
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intégrées sur une plateforme de silicium photonique a été développé. Ce
développement inclut l’ingénierie de guides d’ondes avec un fort con-
finement du mode optique dans le BTO, la conception de composants
photoniques tels que des coupleurs et des résonateurs, et l’analyse com-
parative de leur performance avec des dispositifs photoniques à base de
silicium. Des dispositifs actifs et passifs à base de BTO ont été fabriqués
et caractérisés par des moyens optiques et électro-optiques.
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A.2 Chapitre 2 : fabrication des films minces

Dans le chapitre 2 les différentes routes suivies pour déposer des films épitaxiés
de BaTiO3 et SrTiO3 sur substrat de silicium par MBE et pulvérisation rf sont
discutées. Un processus d’épitaxie en phase solide est utilisé pour obtenir des
couches tampons de SrTiO3, en déposant tout d’abord des couches amorphes
suivi d’un recuit de cristallisation. La qualité cristalline des films de phase
perovskite est fortement améliorée si un recuit est effectué après les dépositions
successives de couches amorphes de ∼1 nm plutôt que de croître un film plus
épais, typiquement 4 nm, en une seule étape de cristallisation. Les cycles de
recuit suppriment la formation de défauts dans les premières cellules unité du
SrTiO3, ce qui conduit à des couches sous contrainte avec faible rugosité de
surface (≤ 0.4 nm rms) et des largeurs de balayage en omega étroites (rocking
curves, ∆ωSTO ∼ 0.3°), ce qui indique une bonne cristallinité. Pour améliorer
la qualité des films au niveau des propriétés de volume [41], les conditions
de croissance des monocouches initiales de SrTiO3 doivent être étudiées avec
attention. En particulier la pression partielle d’oxygène et le domaine de
température doivent être ajustés pour assurer une oxydation de SrTiO3 tout en
évitant la formation simultanée de SiO2. De plus les recuits après dépôt sous
oxygène peuvent améliorer la cristallinité de SrTiO3 de manière significative
[41].

La qualité des films minces de BaTiO3 épitaxiés sur les matrices SrTiO3/Si
est sensible à la stœchiométrie exacte 1:1 entre le barium et le titane. Une
conséquence est la formation d’ilôts, de précipités et autres défauts microstruc-
turaux tels que pores et parois d’antiphase qui sont visibles en particulier
dans les films plus épais (> 20 nm). Les limitations dans le contrôle de la
stœchiométrie exacte lors de la croissance couche-par-couche sont résolues
par une méthode de co-déposition avec obturateur qui donne une information
rapide sur le ratio Ba:Ti en plus de l’option de pouvoir compenser de manière
presque instantanée les conditions de croissance hors-stœchiométrie. Cette
procédure de croissance produit des films de BaTiO3 de haute qualité avec
largeurs de balayage en omega étroites (∆ωBTO ∼ 0.7°), faibles rugosité de
surface (≤ 0.3 nm rms), microstructure homogène sans pores et de symétrie
cristalline tétragonale. L’orientation de l’axe c peut être ajustée entre axe c

parallele ou perpendiculaire au plan de croissance en augmentant l’épaisseur de
la couche, ce qui est en accord avec la disparité des paramètres de maille et
des coefficients d’expansion thermique du SrTiO3, BaTiO3 et du silicium. La
transition entre les deux orientations se produit à l’épaisseur d’environ ∼30 nm.
L’ajustement de l’orientation cristalline procure un excellent degré de liberté
pour la conception de dispositifs nanométriques qui reposent sur la polarisation
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ferroélectrique de films minces de BaTiO3. Un exemple est les composants
photoniques actifs qui sont discutés dans le chapitre 4.

Pour atteindre des épaisseurs de film plus grandes (> 100 nm), un processus
de croissance hybride est développé, qui combine la croissance de couches de
nucléation par MBE avec la pulvérisation rf. Les couches par pulvérisation rf
croissent épitaxialement sur le substrat de silicium, lorsque l’épaisseur de la
couche tampon par MBE dépasse 6 nm. Au dessus de ce seuil, la cristallinité
et morphologie sont influencées d’avantage par les détails du processus de
pulvérisation et les cycles de recuit que par l’épaisseur de la couche de nucléation
ou de sa terminaison. BaTiO3 en phase quadratique et d’orientation selon
l’axe a peut être obtenu par un procédé d’épitaxie en phase solide qui inclut la
déposition de BaTiO3 amorphe suivit d’un recuit sous oxygène. En outre, des
couches cristallines peuvent être aussi obtenues directement par pulvérisation à
hautes températures, une méthode qui conduit à du BaTiO3 à tétragonalité
réduite, sans pores mais sous forme de nano-domaines. L’étude systématique
du rôle de la couche de nucléation sur la qualité cristalline et la morphologie
des couches de BaTiO3 par pulvérisation est une extension d’un travail récent
où des couches épitaxiées ont été fabriquées par la méthode d’ablation laser
combinée avec la MBE [48]. La fabrication de films relativement épais de
BaTiO3 tétragonal sur silicium par pulvérisation rf est démontrée, une méthode
largement utilisé en recherche et développement.

Les couches de BaTiO3 ont des propriétés électriques similaires aux échantil-
lons massifs avec des résistivités élevées ρ > 1013 Ω cm à faible champ électrique,
indiquant une bonne composition et peu de lacunes d’oxygène. La permittivité
des couches ∼50 − 200 est en accord avec la littérature. La permittivité et
résistivité sont deux paramètres importants pour la conception de composants
électro-optiques (chapitre 4). Bien que la ferroelectricité des films ne soit pas
confirmée de manière consistante par les données électriques, les mesures PFM
montrent la présence de piézo- et ferroélectricité avec une polarisation spontanée
hors-plan pour les films minces de BaTiO3 orientés selon l’axe c (fig. A.2). Par
contre piézo- et ferroelectricité ne sont pas visibles dans les films plus épais,
orientés selon l’axe a, comme attendu avec la géométrie utilisée pour les mesures
PFM. La présence de ferroélectricité dans les couches minces de BaTiO3 par
MBE est un réel progrès dans l’obtention de couches fonctionnelles sur silicium.
Par comparaison les études précédentes nécessitaient soit une couche tampon
bien plus épaisse [55] ou alors seul un comportement diélectrique pouvait être
observé à cause d’un défaut important en oxygène [48]. Une publication récente
confirme les résultats de notre travail avec la présence de ferroélectricité dans
des films minces de BaTiO3/SrTiO3/Si [56]. Des mesures de polarisation avec
des contacts métalliques et une étude systématique sur des films d’épaisseur
variable devraient être effectuées pour confirmer indépendamment les résultats
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Fig. A.2 Haut : schémas de la structure des échantillons mesurés par PFM.
Bas : topographie, amplitude et phase du signal PFM mesuré sur film mince de
BaTiO3 orienté selon l’axe c après écriture des lettres ”BTO“. Aucun contraste
du signal PFM n’est observable sur le film plus épais orienté selon l’axe a.

de PFM. Un premier pas dans ce sens est la démonstration dans ce travail
de thèse de la ferroélectricité dans les films en orientation selon l’axe a par la
méthode de caractérisation électro-optique discutée dans le chapitre 2.
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A.3 Chapitre 3 : caractérisation électro-optique

Afin d’étudier les propriétés électro-optiques de films de BaTiO3, épitaxiés
sur des substrats de Silicium, un plan expérimental analysant la transmission
de la lumière à travers l’échantillon a été réalisé. De faibles variations de
la polarisation de la lumière, causées par l’activité électro-optique dans le
BaTiO3, sont observées et utilisées pour reconstruire le tenseur des coefficients
de Pockels du film épitaxié. Malgré la faible épaisseur du film de BaTiO3

(environ ∼100 nm) et par conséquent une faible longueur d’interaction entre le
laser et le film, la sensibilité est suffisamment élevée pour déterminer, de façon
très précise, les propriétés électro-optiques du film.

Un effet électro-optique fortement linéaire avec un coefficient de Pockels
reff = 148 pm/V a été déterminé, pour une couche de BaTiO3 de 130 nm
d’épaisseur, orientée selon l’axe cristallographique a et épitaxié sur un substrat
de silicium. Cette valeur dépasse les données reportées dans la littérature, dans
le cas de films de LiNbO3, d’au minimum un facteur 5 et d’un facteur 100 dans
le cas de films de Silicium contraints. De plus, la présence d’effet ferroélectrique
avec une polarisation spontanée dans le plan a été déterminée sans aucune
ambiguïté grâce à cette technique de caractérisation électro-optique (fig. A.3).

A l’aide de simulations électro-optiques complétant les mesures expérimen-
tales, une méthode d’investigation est développée pour étudier la nature du
tenseur des effets de Pockels d’un film mince. Pour un film de BaTiO3, les
éléments du tenseur rc = 30 pm/V et r42 = 105 pm/V ont été déterminés. La
connaissance du tenseur complet de Pockels est essentielle pour concevoir de
façon optimale les composants optiques (section 4.3). La preuve expérimentale
d’effets électro-optiques intenses dans des couches de BaTiO3 est une étape
déterminante, permettant de continuer la fabrication de composants actifs
électro-optiques (chapitre 4).

Le plan expérimental et les possibilités d’intégration par épitaxie du BaTiO3

sur Silicium (chapitre 2) permettent d’envisager de nombreuses nouvelles études:
d’une part, les conditions de croissance peuvent être modifiées dans le but
d’adapter les caractéristiques électro-optiques intrinsèques du film, par exemple
en changeant son épaisseur pour obtenir différents niveaux de contraintes dans le
film, en déposant les films de BaTiO3 par le processus hybride de pulvérisation,
en dopant les films, ou encore en fabriquant des super-réseaux. D’autre part,
les conditions expérimentales peuvent être modifiées dans le but de changer
les propriétés électro-optiques extrinsèques, comme par exemple en appliquant
une contrainte par déformation du substrat ou en faisant varier la température
durant les mesures. Toutes ces modifications offrent de nouvelles possibilités
pour mieux comprendre les caractéristiques électro-optiques des films de BaTiO3
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Fig. A.3 Réponse optique en fonction du champ électrique Eoff. Les don-
nées sont collectées lors de 3 boucles successives à 25 ◦C après avoir chauffé
l’échantillon au-dessus de la température de Curie du cristal massif (en vert) et
en balayant Eoff vers le haut (rouge) et vers le bas (bleue) de nouveau. L’encart
montre la relaxation de la valeur rémanente δ′ à température ambiante.

et pourront potentiellement servir à améliorer les coefficients de Pockels de
cristaux massifs de BaTiO3.
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A.4 Chapitre 4 : dispositifs photoniques sur silicium

améliorés avec du titanate de baryum

Le chapitre 4 traite de l’introduction de couches minces de BaTiO3 epitaxiées
sur substrat SOI dans des structures photoniques à base de Si afin de réaliser des
composants electro-optiques actifs. La géométrie de guides d’ondes horizontaux
composés comprenant une couche de BaTiO3 entre deux couches de Si est
optimisée afin d’obtenir un fort confinement du mode optique dans la region
active, afin de ne supporter qu’un mode optique, et de rester compatible avec les
procédés de fabrication standards. Des composants tels que des structures de
couplage directionnelles et coupleurs de Bragg sont réalisées afin de permettre
la caractérisation optique des structures de test basiques passives tout comme
celle des composants electro-optiques actifs.

Les composants actifs peuvent être optimisés pour un fonctionnement à
basse ou à très haute fréquence : contrairement à l’état de l’art des composants
electro-optiques à base de photonique sur Si (table 4.1), les structures de réglage
à base de BaTiO3 doivent permettre 2 à 3 ordres de grandeur d’amelioration de
la gamme de réglage en longueur d’onde pour la même tension d’alimentation
(table A.1). En terme de consommation d’énergie, les composants à base de
BaTiO3 peuvent dépasser les performances des solutions utilisant des systèmes
de chauffage métallique de près de 10 ordres de grandeur.

Pour le fonctionnement à très haute fréquence, il est attendu d’obtenir des
tensions d’opération similaires aux meilleurs modulateurs reportés dans l’état
de l’art (table A.1). Toutefois, certaines méthodes pour réduire d’un ordre de
grandeur la tension d’opération pour des guide d’ondes composés à base de
BaTiO3 sont actuellement a l’etude. Les avantages principaux de ces structures
pour l’opération à très haute fréquence sont inherents a l’effet Pockels : vitesse
de modulation extrêmement élevée pour une très faible consommation.

Pour pouvoir atteindre de très hautes fréquences de fonctionnement, des
simulations RF sont nécessaires afin d’optimiser la géométrie des électrodes.
En particulier, la grande constante diélectrique du BaTiO3 induit de grandes
capacités parasites entre les électrodes. Cette effet doit être pris en compte.
Cependant, ce type de simulations ne fait pas partie du cadre de cette thèse.

Au delà des simulations de la géométrie des guides d’ondes, un procédé de
fabrication se basant sur des étapes standards est également proposé (fig. A.4).
La difficulté la plus importante est d’obtenir une couche supérieure de Si ayant
de faibles pertes optiques. Deux solutions sont proposées et réalisées avec succès,
basées sur la déposition de a-Si:H ou sur le transfert par collage moléculaire
d’une couche de c-Si.

Des mesures sur les guides d’ondes passifs révèlent des pertes optiques de
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Fig. A.4 Evolution des niveaux de masque, de la vue de dessus et de la vue
en coupe schematique. La vue en coupe dorrespond a la ligne en pointillé
rouge dans les niveaux de masque. (a) L’empilement initial de couches est (b)
gravé avec un plasma d’HBr pour former des guides d’ondes. (c) Des électrodes
latérales sont déposées sur le BaTiO3, puis une encapsulation de TEOS-SiO2

est déposée et des ouvertures sont gravées pour accéder aux électrodes. (e)
Les électrodes sont ensuite connectées à des bornes de contact plus grandes au
moyen d’une couche de 200 nm de tungstène.
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propagation extrêmement élevées, supérieures a 200 dB/cm. L’origine de ces
pertes est identifiee comme venant de la couche de BaTiO3. Une méthode
pour réduire ces pertes est proposée et réalisée avec succès. Grace à ces
guides d’ondes optimisés, des composants passifs fonctionnels tels que des
résonateurs circulaires (fig. A.5), des coupleurs et des interféromètres Mach-
Zehnder sont démontrés. Les premières mesures sur des résonateurs circulaires
actifs démontrent des résultats prometteurs puisqu’une variation de la longueur
d’onde de résonnance en fonction de la tension d’opération a pu être atteint
(table 4.5). Cependant, certains aspects des résultats expérimentaux ne sont pas
encore complètement compris, comme le comportement à hystérèse en fonction
de la tension appliquée. L’effet Pockels ne peut donc pas être clairement
identifié comme étant à l’origine de la réponse electro-optique. En variant des
paramètres géométriques et extérieurs tels que la température ou la fréquence
de la tension appliquée, l’origine exacte de la réponse electro-optique pourra
être mieux identifiée.

Le procédé complet proposé ci-après qui consiste a optimiser la géométrie
des structures, fabriquer et caractériser les composants actifs à base de BaTiO3

ouvre la voie vers une nouvelle génération de composants photoniques à base de
Si boostés par les propriétés uniques des oxydes fonctionnels. Afin de repousser
les limites des composants electro-optiques présentés dans ce travail, trois sujets

Table A.1 Valeur calculées Vπ ×L pour des modulateurs photoniques sur Si de
type Mach-Zehnder à base de BaTiO3, en utilisant l’effet Pockels des structures
BaTiO3/Si (section 3.4). Les valeurs entre parenthèse sont des estimations de
la performance maximale des composants après avoir optimisé leur géométrie
et les propriétés des matériaux (voir section 4.3.4). Le produit Vπ × L est
calculé pour des résonateurs experimentaux de type “race-track” a partir du
changement d’indice de réfraction en fonction de la tension appliquée (éq. 4.31)
en utilisant l’équation 4.15. Les valeurs de l’etat de l’art pour des modulateurs
photonique a base de silicium sont reportées dans la table 4.1 pour comparaison.

proprietes des modulateurs MZ a base de BaTiO3

origine calculé calculé experimental
coupe HE‖ PE⊥ HE‖

effet physique Pockels Pockels ambigüe
Vπ × L [V mm] 25 (0.2) 0.27 (0.03) 16

bande passante rf
limité par la capacité

du BaTiO3 /
résistance série du Si

indeterminé
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Fig. A.5 Spectre de transmission TM d’un résonateur circulaire à base de
guides d’ondes composés comprenant du BaTiO3, étant couplé au point critique.
Le facteur de qualite extrait de la resonnance agrandie a droite est Q = 5.4×103.
La largeur de la résonance a mi-transmission δλ (−3 dB) est indiquée dans la
figure de droite.

doivent être traités dans le future : premièrement, la distribution du champ
électrique en fonction de la fréquence de fonctionnement doit être prise en
compte. En particulier, le Si doit être réellement traité comme un matériau
semi-conducteur. Deuxièmement, la symétrie cristalline et l’organisation des
domaines de la couche de BaTiO3 doit être pris en compte afin d’extraire
correctement la réelle performance des composants mesurés. Troisièmement, la
géométrie des guides d’ondes ne doit pas être optimisée pour confiner au mieux
le mode optique dans la région active, mais plutôt pour maximiser la variation
des constantes de propagation. L’algorithme d’optimisation doit prendre en
compte simultanément le profil du mode optique, la distribution du champ
électrique et les pertes de propagation, et non pas optimiser ces différents
aspects séparément.

Afin d’améliorer rendement de fabrication, la densité de défauts dans la
couche supérieure de Si doit être réduite et l’origine des problèmes d’adhésion
du a-Si:H doit être identifiée. Egalement, bien que la stratégie proposée pour
réduire les pertes optiques dans les guides d’ondes à base de BaTiO3 fut un
succès, ces pertes doivent encore être réduites afin d’approcher celles mesurées
dans les échantillons de référence avec Si3N4.

Avant de chercher a ré-optimiser la structure des composants et le procédé
de fabrication, l’origine exacte de la réponse electro-optique observée doit
être comprise de manière in-ambigüe. Plusieurs mesures importantes doivent
être conduites (comme décrites en détail dans la section 4.5.7) afin de mieux
comprendre l’origine physique de l’effet de commutation observé.
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A.5 Chapitre 5 : conclusion et perspectives

Cette thèse présente une nouvelle approche pour l’obtention de dispositifs
actifs basés sur des films minces de titanate de baryum, intégrés dans une
technologie photonique silicium. En raison des excellentes propriétés optiques
non linéaires de BaTiO3 et à cause de l’absence d’un tel effet dans le silicium, ces
dispositifs apportent de nouvelles solutions pour la fabrication de modulateurs
ultra-rapides, des commutateurs rapides, et de dispositifs d’ajustement de très
faible puissance. Afin d’exploiter les propriétés des couches minces de BaTiO3

dans des dispositifs photoniques sur silicium, un procédé complet est établi, en
partant de substrat de silicium.

Des couches tampons de titanate de strontium sont tout d’abord obtenues par
croissance épitaxiale sur le silicium en utilisant l’épitaxie par jets moléculaires
(EJM) et l’épitaxie en phase solide. La comparaison des différents processus
de croissance montre clairement une amélioration de la qualité structurale des
couches lorsque l’étape de cristallisation est effectuée de manière séquentielle.
Ces films servent ensuite de couche de nucléation pour le dépôt de BaTiO3

monocristallin. Les films de BaTiO3 sont épitaxiés, mais la densité de défauts
cristallins et la porosité est dépendante de leur stœchiométrie. La qualité
structurale est notamment fortement améliorée en utilisant une technique de
croissance par co-déposition alternée. L’analyse en temps réel pendant la
croissance (par diffraction électronique rasante) permet un contrôle de com-
position fin pour optimiser le rapport Ba/Ti. Cette étude aboutit finalement
à l’obtention de films homogènes ayant une faible rugosité de surface et une
bonne qualité cristalline. Ces couches BaTiO3 cristallisent dans une symétrie
quadratique, ont une résistivité élevée et des propriétés ferroélectriques. Ces
caractéristiques sont une condition préalable pour la plupart des applications
électro-optiques. En plus du dépôt par EJM, un procédé de croissance hybride
incluant une déposition par pulvérisation cathodique est également développé.
Cette méthode simple et industrielle permet de faire croître des couches épi-
taxiales de BaTiO3 avec des épaisseurs (≥ 100 nm) adaptées aux applications
optiques mais également piézo-électriques.

Les propriétés des couches minces peuvent dévier considérablement des
propriétés des matériaux massifs. A ce jour dependant, aucune étude sur
l’activité électro-optique des couches minces de BaTiO3 sur des substrats de
silicium n’a été effectuée. Des études antérieures basées sur des films minces de
BaxSr1−xTiO3 montrent une grande dispersion des propriétés électro-optiques
[131, 133, 220]. Des coefficients Pockels proche de zéro ont même été rapportés
[135]. Un système de caractérisation électro-optique est donc construit afin de
déterminer le tenseur electro-optique dans les films. Un coefficient de Pockels
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reff = 148 pm/V est extrait pour des couches de BaTiO3 sur des substrats de
silicium. Cette valeur représente une amélioration majeure par rapport aux
données publiées sur les propriétés électro-optiques d’oxydes sans plomb intégrés
sur silicium [150, 153, 166]. Ce résultat rend donc le système BaTiO3/Si très
attractif pour la réalisation de dispositifs photoniques intégrés.

Dans un premier temps, un guide d’ondes à fente avec BaTiO3 incorporé entre
deux couches de silicium est développé. Une plate-forme incluant différents
dispositifs (coupleurs , diviseurs, interféromètres..) et basée sur de tels guides
d’ondes est finalement conçue et fabriquée. Les dispositifs passifs présentent
les caractéristiques souhaitées et démontre la facilité d’utilisation de BaTiO3

dans les circuits photoniques. L’origine des pertes de propagation élevées est
également identifiée, et éliminée en utilisant un procédé de fabrication modifié.

Enfin, des dispositifs actifs s’appuyant sur l’effet Pockels dans BaTiO3 sont
fabriqués, en particulier des résonateurs en anneau et des interféromètres de
Mach-Zehnder. Pour de tels dispositifs, les objectifs de performances dependent
de l’application: Les caractéristiques de fonctionnement en tension à haute
fréquence sont similaires aux modulateurs photoniques sur silicium à l’état de
l’art. L’effet Pockels est cependant présent même jusque dans la gamme THz,
et pourrait ainsi offrir des vitesses de modulation supérieures aux modulateurs
actuels basés sur l’effet de dispersion plasma. Pour un fonctionnement à basse
fréquence, par exemple pour des dispositifs d’ajustement, les tensions de travail
pourraient être réduites par 2−3 ordres de grandeur, et les besoins en énergie de
près de 10 ordres de grandeur. Ce gain en performance serait une amélioration
nette par rapport à des dispositifs à l’état de l’art. Cette thèse montre donc
une première mise en œuvre de résonateurs en anneau activement accordables.
Ces dispositifs actifs sont fabriqués avec succès et présentent un décalage des
longueurs d’onde de résonance en fonction de la direction et de l’intensité
du champ appliqué, ce qui indique clairement une activité électro-optique
liée au BaTiO3. Une interprétation complète des données expérimentales à
ce niveau des travaux n’est pas possible dans le cadre de cette thèse. Ces
résultats représentent cependant une étape prometteuse vers la compréhension
du comportement de dispositifs photoniques basés sur BaTiO3, et ouvrent la
voie à de futures implémentations de matériaux électro-optiquement actifs pour
la photonique intégrée sur silicium.





APPENDIX B

Calculation of barium titanate lattice constants

The in-plane strain ǫ‖ in BaTiO3 thin films grown on SrTiO3/Si substrates
shown in fig. 2.23 is calculated by

ǫ‖ (T ) =
a

‖
BTO,f (T )

a
‖
BTO,b (T )

− 1 (B.1)

where a
‖
BTO,b (T ) is the lattice constants of bulk-BaTiO3. a

‖
BTO,f (T ) is the

in-plane lattice parameter of the BaTiO3 film, which is calculated for two
different situations: If the BaTiO3 layer is completely strained to the SrTiO3

seed layer (fig. 2.23b), the BaTiO3 in-plane lattice constant at temperature T

is determined as

a
‖
BTO,f (T ) =

(

aSTO,b (Tg,STO)
aSi,b (T )

aSi,b (Tg,STO)

)

. (B.2)

Here, aSTO,b (Tg,STO) is the bulk-SrTiO3 lattice constant at the SrTiO3 deposi-
tion temperature Tg,STO ≈ 100 ◦C and aSi,b (T ) the lattice constant of bulk-Si.
The out-of-plane lattice constant a⊥

BTO,f (T ) of the BaTiO3 film is calculated as

a⊥
BTO,f (T ) =

√

VBTO,b (T )

a
‖
BTO,f (T )

(B.3)

where VBTO,b (T ) is the volume of the unit cell of bulk BaTiO3.
In the second case, the BaTiO3 film is assumed to be fully relaxed at the

BaTiO3 deposition temperature of Tg,BTO ≈ 600 ◦C. Hence, the in-plane lattice
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constant is determined as

a
‖
BTO,f (T ) = aBTO,b (Tg,BTO)

aSi,b (T )
aSi,b (Tg,BTO)

. (B.4)

In all cases, the literature values are used for calculating the temperature
dependent lattice constants of BaTiO3 [57, 109], SrTiO3 [59], and Si [60].



APPENDIX C

Electro-optical software and analysis tools

C.1 Software to control electro-optical setup

A National Instruments LabVIEW based software is developed in order to
control the measurement setup described in section 3.3. A screenshot and a
description of the user interface is shown in fig. C.1. The program is used
to communicate with all relevant instruments in the measurement setup, in
particular the ac- and the dc-voltage source, three motorized stages, the detector,
the locking-in amplifier, and the analog-digital converter. The sample alignment
is performed manually on a non-motorized xyz-stage. Several design aspects
and specific challenges are addressed in the LabVIEW program, as described
in the following paragraphs.

Measurement flexibility Measurement flexibility is given high priority in the
software design. The standard measurement routine is defined as a “parameters
sweep” which includes the following steps

1. The “measurement procedure” is set. The measurement procedure defines
which signals will be recorded (such as transmitted power P , power
variations ∆P , or both), the parameters used for the data recording
(such as data averaging, or target values for the standard deviation of
the measured signal), and how the data is processed (such as subtraction
of background signals).

2. The inital device parameters are set, such as the frequency f and voltages
of the applied field, integration times for the lock-in amplifier, and gain
settings.
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current progress
and device status

parameter settings
for single sweep

Live feedback
on current scan/

fitting

general settings...
... data saving

... alignment control
... multi-parameter sweeps

... calibration of setup

Fig. C.1 Screenshot of the user-interface of the LabVIEW program developed
for controlling the measurement hardware. The purpose of several different
blocks is indicated on the right.

3. The parameter to be varied during the sweep is defined, as well as the
setpoints for this parameter by a range of values (or multiple ranges).

With this procedure, many different dependencies such as ∆P (f), ∆P (Voff),
or analyzer scans ∆P /P (θa) can be analyzed with ease. Optionally, a second
parameter can be varied in the same way, resulting into two dimensional data
arrays. Examples are the determination of analyzer scans ∆P /P (θa) at various
angles of the incident polarization θi or at various voltage offsets Voff, as required
for measuring hysteresis loops.

The approach of flexibly defining the actual parameter to scan also allows
the setup to be easily extended for future measurements, for example including
temperature variations or a motorized sample stage.

Quarter-wave plate alignment As discussed in section 3.3.2, the quarter-wave
plate compensates the ellipticity of polarization of the light after the sample.
The position has to be set accurately depending on the sample orientation
and the incident polarization. An automated routine is programmed that
iteratively varies the angle of the quarter-wave plate and the analyzer, or both
of them simultaneously. The elements are set to the minimum position of
the transmitted light, which is determined by fitting the angular scans. The
alignment is either stopped by reaching a maximum number of iterations or by
crossing a threshold of minimal transmission.
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Automated gain settings The high extinction ratios of the polarizers results in
a large range of the detected power signal covering 5 orders of magnitude when
rotating the analyzer. Therefore, the detector gain as well as the gain of the
lock-in amplifier has to be adjusted continuously during the measurement. The
device-specific auto-tune functions are rather slow, in particular for the lock-in
amplifier with an integration time on the order of ∼1 s. A much faster, manual
auto-tuning routine is programmed which takes into account the measurement
history and a set of well-defined switching thresholds specific to the devices in
use.

Calibration of polarizing elements The various polarizing elements (two
polarizers, one quarter-wave and one half-wave plate, fig. 3.6) have to be well-
aligned in respect to each other in order to achieve good extinction ratios.
Automated routines are programmed to calibrate the angular offset of the
motorized stages in respect to the first polarizing element. Therefore, the optical
elements have to be inserted and calibrated successively. These calibration
procedures work similar to the above mentioned alignment procedure, and
facilitate the exchange of optical elements.

C.2 Data analysis

The analysis of the measurement data is performed with scripts written in
Wolfram Mathematica. Similar to controlling the measurement hardware, great
care is taken on a flexible way of evaluating the data. The core of gaining large
flexibility is the introduction of a specific data format, that separates the data
values, the description of the data, and the parameters for the measurement
in defined form. Functions in order to manipulate and evaluate the data
with models defined in section 3.3.2 are developed based on the specific data
format. Thus, newly added parameters in the original data files as obtained
from the LabVIEW module can be handled without changing any of the
analysis-functions.
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