
HAL Id: tel-01230550
https://theses.hal.science/tel-01230550v1

Submitted on 18 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed clock generator for globally and locally
synchronous chips with a large size

Chuan Shan

To cite this version:
Chuan Shan. Distributed clock generator for globally and locally synchronous chips with a large
size. Operating Systems [cs.OS]. Université Pierre et Marie Curie - Paris VI, 2014. English. �NNT :
2014PA066623�. �tel-01230550�

https://theses.hal.science/tel-01230550v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
l’UNIVERSITÉ PIERRE ET MARIE CURIE

École Doctorale Informatique, Télécommunications et Électronique
(EDITE)

Présentée par :
Chuan SHAN

Pour obtenir le grade de :
DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse :

GÉNÉRATEUR DISTRIBUÉ D’HORLOGE POUR PUCES
GLOBALEMENT ET LOCALEMENT SYNCHRONES DE GRANDE

TAILLE

Présentée le :
14.11.2014

Le jury est composé de :

M. Patrick GIRARD LIRMM Montpellier Rapporteur
M. Laurent FESQUET TIMA Grenoble Rapporteur
M. Gérard BERRY Collège de France Examinateur
M. Daniel ETIEMBLE Université Paris Sud, LRI Examinateur
M. Alain GREINER UPMC, LIP6 Examinateur
M. François ANCEAU CNAM Directeur de Thèse
M. Dimitri GALAYKO UPMC, LIP6 Co-directeur de Thèse

DOCTORAL DISSERTATION
PIERRE AND MARIE CURIE UNIVERSITY

Doctoral School of Informatics, Telecommunications and Electronics
(EDITE)

Presented by:
Chuan SHAN

To obtain the degree of :
DOCTOR OF PHILOSOPHY AT UNIVERSITY OF PIERRE AND

MARIE CURIE

Thesis title :

DISTRIBUTED CLOCK GENERATOR FOR GLOBALLY AND
LOCALLY SYNCHRONOUS CHIPS WITH A LARGE SIZE

Presented on :
11.14.2014

Members of jury :

M. Patrick GIRARD LIRMM Montpellier Reviewer
M. Laurent FESQUET TIMA Grenoble Reviewer
M. Gérard BERRY Collège de France Examinator
M. Daniel ETIEMBLE Université Paris Sud, LRI Examinator
M. Alain GREINER UPMC, LIP6 Examinator
M. François ANCEAU CNAM Supervisor
M. Dimitri GALAYKO UPMC, LIP6 Co-Supervisor

Abstract

This thesis addresses the problem of global synchronization of large system on chip
(SoC) in the context of deep submicron technologies.

With the development of the silicon microtechnology and with the increase of density
of integration, conventional clock distribution systems become more and more difficult to
be implemented in modern chips. Some designers turn toward the asynchronous communi-
cations protocols, in order to remove the need of a global clock, however, the cost of this
choice is a lower verification level and a high complexity of design. This research focuses
on the study of an alternative clock generation technique, allowing implementation of highly
reliable synchronous digital circuit in deep submicron CMOS technologies.

My PhD work is subsequent to the project HODISS funded by ANR, in which a dis-
tributed network of all digital phase-locked loop (ADPLL) was presented for the first time.
The basic idea of this approach consists in generating clock signals locally by oscillators
in each synchronous clocking area (SCA), and making these oscillators coupled with their
neighboring ones in phase by using ADPLL technique. If well designed, all the locally gen-
erated clock signals should be synchronized with the reference clock both in frequency and
in phase.

My PhD project aims study and implementation on silicon of a large network of ADPLLs
(10×10), containing 100 nodes generating each a clock for the local digital circuitry. Com-
paring to the study curried out previously in the HODISS project, the design of blocks com-
posing the network was adapted to the constraints related to the network scale. For instance,
the resolution of the phase measurement has been increased (20 ps), the power consumption
was reduced (1 mW per node). The modeling of the ADPLL networks at several abstraction
levels and by different tools (VHDL, Spice, FPGA) allowed a response to study the quality
of the global synchronization between the oscillators in function of different parameters of
the network, and in particular, on the network size.

During my PhD project, the prototype 10×10 was implemented on silicon generating
clocks in the range 903-1161 MHz. It highlights a maximum phase error of less than 40 ps
between two clocks in any neighboring zones. The implemented prototype is under fabrica-
tion at the period of editing of this manuscript.

Another important result of this study is the analysis of phase error between two non-
neighboring oscillators in distance. By studying an FPGA prototype of the network, we
obtained that maximum phase error at steady state between any observed clock signal and
the reference signal is less than three steps of the PFD quantification steps.

In order to validate the performances of the clock synchronization in the implemented
ASIC, we designed an on-chip clocking error measurement circuit, whose operation is based

on a measure of the integrity of a periodic sequence transmitted between two clocking do-
mains. This circuit has a low rate for the off-chip readout (several MHz), and a high resolu-
tion (±2.5 ps).

Reconfigurability is another attractive feature of the distributed network of ADPLLs. In
this research, we have explored this feature and proposed a novel topology with different
configurations for nodes on the border and in the kernel of the network. This topology has
an advantage in prohibiting phase error propagation and reflection.

Thesis title: Distributed clocking for synchronous SoC

Key words: synchronous clocking, multioscillator architecture, all-digital phase locked
loop, on-chip clock error characterization

Thesis Supervisor: François ANCEAU, Professor at Conservatoire national des arts et
métiers

Thesis Co-Supervisor: Dimitri GALAYKO, Associate Professor at Pierre and Marie
Curie University (Paris VI)

It is possible to own too much: a man with one watch knows what time it is, a man with
two watches is never quite sure

Lee Segall.

Acknowledgements

I would like to take this opportunity to express my sincere thanks to all those who par-
ticipated directly or indirectly to the success of my thesis. I would never have been able to
finish my dissertation without the guidance of my committee members, help from friends,
and support from my family.

I would like to express my special appreciation and thanks to my supervisor Dr. Dimitri
Galayko, for his excellent guidance, patience, giving my this opportunity and providing me
with an excellent atmosphere for doing research. I would also like to thank my supervisor
Dr. François Anceau for his brilliant ideas and suggestions, which inspired me a lot. Without
their supervision and constant help this dissertation would not have been possible.

I would like to thank our collaborators Olivier Billoint and Sylvain Féruglio for their
effort spent on this project. Their great experience and competence make our research team
more complete.

I would like also to thank all my colleagues at SoC-LIP6. They created a warm environ-
ment in the SoC department. A special thanks to Eldar Zianbetov and Mohammad Javidan.
They were always willing to help and give their best suggestions. Without their help, I might
spend much more time on the chip implementation.

Many thank to my parents for all of the sacrifices that they have made on my behalf.
They were always supporting me and encouraging me with their best wishes.

Finally I would like to thank all my friends in France and in China. I am grateful for their
constant support and encouragement.

Chuan SHAN

Contents

Introduction: motivation de l’étude . xxiii
Défis de génération d’une horloge globale dans les SoCs xxiii
Défis de caractériser l’erreur de phase entre deux signaux d’horloge xxv

Réseau de PLLs tout numériques pour la génération d’horloge xxvi
Résumé de contribution . xxviii
Conception des composants . xxx

Convertisseur temps-numérique (TDC) . xxx
Filtre numérique . xxx

Le réseau d’ADPLLs tour numériques réalisé xxxii
Caractérisation sur puce de l’erreur de phase entre deux signaux d’horloge xxxv
Conclusion . xxxvii
Perspectives et travail futur . xli

Modélisation d’ADPLL pour l’étude de l’erreur de phase résiduelle dans
l’état d’équilibre . xli

Exploration de la propriété de tolérance de faute xli
La distribution d’horloge pour les circuits en 3-D xlii

1 Introduction 1
1.1 Area of focus . 1

1.1.1 Problem of clocking in large digital circuits 2
1.2 Environment of the PhD project: the starting point and motivations 5

1.2.1 Network of coupled PLLs for clocking: history of the concept . . . 5
1.2.2 Digital phase synthesis . 7
1.2.3 Presentation of an ADPLL network prototype designed at LIP6 prior

to my PhD thesis . 9
1.2.4 Phase frequency detector (PFD) 9
1.2.5 Digital loop control of ADPLL network node 16
1.2.6 Digitally controlled oscillator (DCO) 17
1.2.7 Modeling of ADPLL and of ADPLL network 21
1.2.8 Stability of the PLL networks . 23
1.2.9 Multiplicity of synchronization modes 24
1.2.10 Discussion of test results of the implemented prototype 26

1.3 Original contribution of my PhD project 29
1.4 Thesis outline . 31

xi

xii Contents

2 Network of distributed ADPLLs 33
2.1 Introduction . 33
2.2 The architecture of clocking network proposed in this PhD project 35
2.3 Impact of quantization in ADPLL on its operation in steady state 36

2.3.1 Step 1: Impact of PFD and DCO quantization steps on the residual
error . 36

2.3.2 Step 2: impact of rounding in digital filter on the correction of resid-
ual phase error . 40

2.3.3 Step 3: validation of block parameters by transient simulations . . . 43
2.4 Specification of the network . 46
2.5 Conclusion . 48

3 ADPLL blocks design 49
3.1 Phase frequency detector (PFD) . 50

3.1.1 The digital PFD architecture . 50
3.1.2 Improvement of time-to-digital converter 50
3.1.3 Implementation of PFD . 55

3.2 Digital filter in the ADPLL network . 57
3.2.1 Architecture of digital filter . 57
3.2.2 Implementation of the filter . 59

3.3 Digitally controlled oscillator (DCO) . 60
3.3.1 DCO Architecture . 60
3.3.2 Control algorithm . 61
3.3.3 Implementation . 63
3.3.4 Serial programming interface (SPI) 68
3.3.5 Simulation results . 69

3.4 Conclusion . 75

4 Built-In Clock Error Characterization Circuit 77
4.1 Introduction . 77
4.2 State of art . 79
4.3 Test methodology . 82

4.3.1 Measurement theory . 82
4.3.2 Architecture of measurement circuit 85

4.4 Low frequency discrete circuit prototype 87
4.5 High frequency on-chip prototype . 90

4.5.1 Voltage-controlled delay (VCD) 90
4.5.2 Physical design of test circuit on silicon 93
4.5.3 Modeling of clock generator for system verification 93
4.5.4 Simulation results . 97

4.6 Procedure of measurement . 104
4.7 Conclusion . 106

Contents xiii

5 Clock network FPGA prototyping 107
5.1 Introduction . 107
5.2 Implementation of FPGA based blocks . 110

5.2.1 Synthesizable DCO . 110
5.2.2 Synthesizable TDC . 113

5.3 Experimental results . 116
5.3.1 Stability and prevention of mode-lock 116
5.3.2 Phase error between two remote local clocks 122

5.4 Conclusion . 128

6 Clock network silicon implementation 129
6.1 Introduction . 129
6.2 Methodology of chip design . 130
6.3 Implementation of local clock generator (NODE) 134
6.4 Floorplan of the chip . 138
6.5 Design for test(DFT) . 139

6.5.1 Chip programming . 140
6.5.2 Built-in test circuits placement . 140
6.5.3 Definition of the input/outputs of the chip 141

6.6 Chip layout . 145
6.7 Simulation results . 146
6.8 Conclusion . 148

7 "Swimming pool"-like distributed architecture 149
7.1 Introduction . 149
7.2 Modeling of infinite ADPLL network by a continuous wave propagation

medium . 150
7.2.1 From a discrete network to a continuous medium 151
7.2.2 An analogy with damped wave equation 153

7.3 ADPLL network with limited surface . 154
7.4 Simulation results . 156
7.5 Conclusion . 160

8 ADPLL with sliding-window for wide range frequency tracking 161
8.1 Introduction . 161
8.2 State of art . 163
8.3 "Sliding window" architecture . 166

8.3.1 Reference frequency indicator (RFI) 166
8.3.2 Coarse frequency adjustment . 167
8.3.3 Phase error correction . 172

8.4 Comparison with conventional PLL . 174
8.4.1 Functional Simulation results . 174

xiv Contents

8.4.2 Power consumption comparison 175
8.5 Clock distribution network using "sliding window" ADPLL 176

8.5.1 Network structure . 176
8.5.2 Evaluation of functional performance of system 177

8.6 Conclusion . 182

9 Conclusion and Perspectives 183
9.1 Thesis summary and conclusions . 183
9.2 Future work . 186

9.2.1 Modelling of ADPLL for the study of residual phase error in steady
state . 186

9.2.2 Exploration of fault-tolerance property 187
9.2.3 Clock distribution for 3-D chip . 187

Appendices 191

A VHDL models of the ADPLL blocks 193

B VHDL models for built-in test circuit 219

C Matlab scripts 225

D FPGA prototyping of the clocking network 233

E Tcl script for automatic floorplan of network 239

Bibliography 247

List of Figures

1 Synchronisation des circuits numériques complexes xxiv
2 Definition d’erreur d’horloge ∆ti . xxvi
3 Topology of the proposed clock network and architecture of the network node . xxvii
4 Block diagram of proposed time-to-digital converter xxx
5 Filtre de boucle pour le traitement du signal d’erreur: quatre contrôleurs de

gain d’entrée suivi par l’addition à quatre entrées, filtre PI et trois décodeurs B2T. xxxi
6 Proposed architecture for PLL . xxxii
7 Clocking network architecture . xxxiii
8 Local clock signals together with reference . xxxiv
9 Maximal value of phase error in function of distance to the reference clock . . . xxxv
10 Layout of the test chip of the clock network xxxvi
11 Analyse théorique: (a) PDF d’origine de l’incertitude d’horloge; (b) PDF avec

un décalage ∆ = ∆x; (c) a vs. ∆; (d) ER vs. ∆ xxxvii
12 Architecture of test circuit . xxxviii
13 Différents réseaux de distribution d’horloge 3-D au sein du circuit de test de

[38]: (a) H-arbres, (b) H-arbre et anneaux/mailles locales, (c) H-arbre et anneaux
globaux . xliii

14 L’approche proposée de distribution d’horloge 3-D en utilisant le réseau
d’ADPLL . xliv

1.1 Clock domains in a SoC . 1
1.2 Examples of conventional clock distribution tree structures 2
1.3 Basic idea of multioscillator clocking approach 5
1.4 Topology of the proposed clock network and architecture of the network node . 6
1.5 Phase coupling between two oscillators . 7
1.6 Block diagram of the ADPLL . 8
1.7 Structure of the first ADPLL network . 10
1.8 Structure of a node in ADPLL network . 10
1.9 The phase/frequency detector . 11
1.10 Proposed phase/frequency detector for clock network 11
1.11 Principle of operation of proposed PFD . 12
1.12 Schematic diagram of the bang-bang phase/frequency detector 13
1.13 Proposed in [59] arbiter circuit . 13
1.14 Block diagram of proposed time-to-digital converter 15

xv

xvi List of Figures

1.15 Error signal processing block . 16
1.16 DCO architecture: (a) structure, (b) main inverters, (c) circuit diagram of the

coarse tuning cell, (d) circuit diagram of the additional coarse tuning cell, (e)
circuit diagram of the fine tuning tuning cell 19

1.17 Virtual extension of the 8th stage of the oscillator principle 19
1.18 LTI model of ADPLL for Z-domain transfer function calculation 23
1.19 Representation of the PLL network for stability study in [47] 24
1.20 Cyclic nature of the conventional analog linear phase comparator 25
1.21 Illustration of the mode-locking phenomenon in a 2×2 mesh network 25
1.22 Dynamic reconfiguration of the network from uni- to bidirectional 26
1.23 Synchronous clocks in the bidirectional configuration 27
1.24 Outputs of the PFDs in bidirectional configuration 28
1.25 Structure of work contribution . 30

2.1 Clocking network architecture . 35
2.2 Phase evolution of reference clock and divided oscillator clock: ω1 < ω0 < ω2 38
2.3 Bode diagram of the LTI model of the system (Fig. 1.18): K = 1.2e7 rad/s and

β/α = 0.012 . 42
2.4 Time simulations with different TDC resolution and same filter/DCO pa-

rameters (VHDL model): reference clock frequency: 249.5 MHz, DCO 3 in
Tab. 2.1 used . 44

2.5 Time simulations with the same loop gain and β/α ratio (VHDL model):
reference clock frequency: 249.5 MHz, DCO 3 in Tab. 2.1 used 45

2.6 The maximum values of residual phase errors of an ADPLL in the steady
state with different PFD and filter coefficients (VHDL model) 45

3.1 Proposed phase/frequency detector for clock network 50
3.2 Time-to-digital converter . 51
3.3 Block diagram of proposed time-to-digital converter 52
3.4 Schematic diagram of the delay cells in Vernier TDC 53
3.5 Simulated transfer function of the designed flash time-to-digital converter . . . 54
3.6 Layout of the proposed PFD . 56
3.7 Loop filter for error signal processing: four input gain controllers followed by

the four-input adder, PI filter and three B2T decoders. 57
3.8 Programming sequence of parameters . 59
3.9 Core of the proposed oscillator . 61
3.10 Ring oscillator cell control table . 63
3.11 Schematic of a main inverter of oscillator . 64
3.12 Schematic diagram of the coarse tuning cells 64
3.13 Schematic diagram of the additional coarse tuning cells 65
3.14 Schematic diagram of the fine tuning cells . 65
3.15 Schematic diagram of the feedback frequency divider 65

List of Figures xvii

3.16 Floorplan of the designed oscillator . 66
3.17 Interdigital multi-finger power routing . 67
3.18 Layout of the designed oscillator . 67
3.19 Schematic of the programming interface . 69
3.20 Cascading the programming interfaces of several blocks 69
3.21 Simulated output frequency versus frequency control word (FCW): typical

condition . 70
3.22 Frequency step vs. FCW: typical condition 70
3.23 Simulated output frequency versus frequency control word (FCW) in dif-

ferent process corners: process variations: TT, FF and SS 71
3.24 Simulated output frequency versus frequency control word (FCW) with dif-

ferent supply voltages: 1 V, 1.1 V and 1.2 V 72
3.25 Simulated output frequency versus frequency control word (FCW) at dif-

ferent temperatures: 0◦C, 27◦C, 85◦C and 125◦C 73
3.26 Monte-Carlo simulation at center frequency 73
3.27 Power consumption vs. FCW in different process corners: process variations:

TT, FF and SS . 74

4.1 Definition of the clock error ∆ti . 79
4.2 Gaussian distribution of clock phase error 80
4.3 Delay chain based "Skitter" circuit proposed in [13] 81
4.4 Basic architecture of measurement circuit 82
4.5 Received data integrity: fixed static error . 83
4.6 Received data integrity: dynamic error . 83
4.7 Theory analysis: (a) Original PDF of clock uncertainty; (b) PDF with a shift

∆ = ∆x; (c) a vs. ∆; (d) ER vs. ∆ . 85
4.8 ER distribution with respect to single positive delay 86
4.9 Architecture of test circuit . 86
4.10 Measurement environment of prototype . 87
4.11 Generation of clk2 with static and dynamic errors 87
4.12 Variable delay circuit in discrete circuit prototype 88
4.13 Test of prototype without skew . 88
4.14 Test of prototype with a skew of -40 ns . 89
4.15 Test of prototype with a skew of -40 ns . 89
4.16 ASIC prototype architecture . 90
4.17 Voltage-controlled delay element[24] . 91
4.18 Voltage-controlled delay with 2 stages . 91
4.19 Cell layout template . 92
4.20 Delay element layout template . 93
4.21 layout of VCD and calibration oscillator . 94
4.22 Variable delay in function of control voltage 95
4.23 Place of VCD and calibration oscillator . 95

xviii List of Figures

4.24 Architecture of implemented built-in test circuit 95
4.25 Layout of built-in test circuit . 96
4.26 VHDL model for clock generation: (a) block diagram and (b) generation of a

random variable with normal distribution using Box-Muller transform. 96
4.27 Histogram of clock errors between clk1 and clk2 97
4.28 ASIC prototype error rate (T = 27 ◦C) . 98
4.29 Simulated variable delay value versus control voltage at different temperatures: 99
4.30 ASIC prototype error rate measurement (T = 100 ◦C) 100
4.31 Simulated variable delay value versus control voltage in different process corners: 100
4.32 ASIC prototype error rate measurement (Corner SS) 101
4.33 ASIC prototype error rate measurement (Corner FF) 101
4.34 Simulated variable delay value versus control voltage with power supply variation:102
4.35 ASIC prototype error rate measurement (Vdd=1.2 V + 5%) 103
4.36 ASIC prototype error rate measurement (Vdd=1.2 V - 5%) 103
4.37 The integration of proposed test circuit on the chip 104

5.1 Structure of the implemented clock network 109
5.2 Repeating discrete ramp function in the DDFS 111
5.3 Schematic diagram of the proposed FPGA implementation of the oscillator . . 112
5.4 Conventional phase detector . 114
5.5 Block diagram of the node in a FPGA prototype with observation points 116
5.6 Local clock signals together with reference . 117
5.7 Local clock signals together with reference . 118
5.8 Local clock signals around Node 10 together with reference and integer sum of

the node errors (Total_Err) . 118
5.9 Local clock signals together with reference . 119
5.10 Local clock signals around Node 10 together with reference and integer sum of

the node errors (Total_Err) . 119
5.11 Local clock signals together with reference . 120
5.12 Local clock signals around Node 10 together with reference and integer sum of

the errors . 120
5.13 Local clock signals together with reference . 121
5.14 Unidirectional mode topology . 122
5.15 Clocks in unidirectional mode at steady state 122
5.16 Experiment principle diagram (Prototype-2): bidirectional configuration, ini-

tial frequencies of nodes are different . 123
5.17 Histogram of phase errors between local clock signals and the reference in

10×10 prototype: unidirectional . 124
5.18 Histogram of phase errors between local clock signals and the reference in

10×10 prototype: bidirectional . 125
5.19 Maximal value of phase error in function of distance to the reference clock . . . 126
5.20 RMS value of phase error in function of distance to the reference clock 127

List of Figures xix

6.1 Design hierarchy . 130
6.2 Design environment . 131
6.3 Top-down design flow . 132
6.4 Top-down verification flow . 133
6.5 Structure of a NODE: one DCO, two PFDs and digital processing block (SPI

and loop filter) . 134
6.6 Layout of the block NODE: one DCO, two PFDs and digital processing block

(SPI and loop filter) . 135
6.7 Post-layout simulation of one NODE . 137
6.8 Preliminary floorplan of the test chip . 139
6.9 The connection sequence of the programmable blocks of the network 141
6.10 Layout of the test chip of the clock network 145
6.11 Clock signals in the network in steady mode 146
6.12 PFD outputs between NODE5-3 and its neighboring nodes: A) programming

mode; B) unidirectional mode; C) bidirectional mode 147

7.1 Interconnection and structure of the ADPLLs 150
7.2 (a) Interconnection of nodes at the border of network: (→: unidirectional;

↔, −: bidirectional) (b) overflow channel of a swimming pool 154
7.3 Proposed network topology (→: unidirectional;↔, −: bidirectional) 155
7.4 The surface of phase error between each local clock signal and reference:

(a) in frequency/phase acquisition mode; (b) a perturbation happened; (c) the
propagation of phase error; (d) the stable state is re-established 157

7.5 Histogram of absolute phase errors at steady state: (a) inner clock signals;
(b) border clock signals . 157

7.6 Transient response of perturbation: (a) conventional 10×10 network (b) "Swim-
ming pool"-like 10×10 network . 158

7.7 Absolute phase errors of clock signals in proposed network with different
parameters: (a) overdamped; (b) underdamped 159

8.1 Conventional PLL structure . 163
8.2 Tierno PLL structure[30] . 163
8.3 Tierno PLL structure[60] . 164
8.4 Proposed architecture for PLL . 166
8.5 Sliding window algorithm . 167
8.6 Mean filter implementation . 168
8.7 State diagram of controller . 169
8.8 Implementation of memory in mean filter 169
8.9 Chronograph of mean filter . 170
8.10 Data flow diagram in the mean filter . 171
8.11 CFA structure . 171
8.12 Transfer function of 3-bits PFD . 172

xx List of Figures

8.13 Adaptive loop filter structure . 173
8.14 Simulation of conventional architecture K p = 1,Ki = 15/211 174
8.15 Simulation of new architecture with regular PI filter K p = 1,Ki = 15/211 . 175
8.16 Simulation of new architecture with adaptive filter K p = 1 or 3, Ki = 15/211 175
8.17 PLL network topology . 176
8.18 PLL with sliding window . 177
8.19 Error entries of node 16 mutiplied by kw (reference code=theoretical code) . . . 179
8.20 Error entries of node 16 mutiplied by kw (reference code=theoretical code + 1) 179
8.21 Error entries of node 16 mutiplied by kw (reference code=theoretical code + 2) 179
8.22 Error entries of node 16 mutiplied by kw (reference code=theoretical code + 3) 180
8.23 Error entries of node 16 mutiplied by kw (reference code=theoretical code + 4) 180
8.24 Error entries of node 16 mutiplied by kw (static offset = 5) 180
8.25 Error entries of node 16 mutiplied by kw (dynamic offset -5 to 5, only the first

phase from 0 to 90 us is displayed) . 181

9.1 Various 3-D clock distribution approaches within the test circuit of [38]: (a)
H-trees, (b) H-tree and local rings/meshes, (c) H-tree and global rings 188

9.2 Proposed 3-D clock distribution approach using the network of ADPLL . . 189

D.1 Functional diagram of Cyclone II DSP Development Board 237
D.2 Top view of Cyclone II DSP Development Board 237
D.3 FPGA prototyping platform . 238

List of Tables

1 Parameters of FPGA and VLSI implementations xxxiii
2 Caractéristiques du réseau de PLLs tout numériques conçu xxxv

1.1 C-element truth table . 14

2.1 Characteristics of DCOs and maximum residual phase errors due to DCO
quantization . 40

2.2 Maximum residual phase errors due to PFD quantization 40
2.3 1st network test chip characteristics summary 46
2.4 2nd network test chip specification . 47

3.1 Values of τ1 and τ2 with different Non . 54
3.2 DCO chip performance summary . 72

4.1 Post-layout simulation results (T = 27 ◦C) 98

5.1 Parameters of the 1st generation FPGA and VLSI implementations 115
5.2 Parameters of the 2nd generation FPGA and VLSI implementations 115
5.3 Minimum/Maximum values of phase errors between local clock signals and

the reference in 10×10 prototype (ns) . 126
5.4 RMS values of phase errors between local clock signals and the reference in

10×10 prototype (ns) . 126

6.1 Simulation parameters and conditions . 136
6.2 Summary of IO pads . 143
6.3 Summary of power supply pads . 144

8.1 Control table . 168
8.2 DCO chip performance summary . 174
8.3 Power consumption of two architectures . 175
8.4 Simulation procedure . 178

xxi

Génération distribuée d’horloge pour

SoCs synchrones

Cette thèse aborde le problème de la synchronisation globale de grand système sur puce
(SoC), dans le cadre des technologies submicroniques profonds.

Ce travail de thèse est déployé dans le cadre d’un projet de recherche au laboratoire LIP6
sur les techniques de synchronisation du circuit. Il a commencé à 2007 et financé par deux
subventions de l’ANR consécutifs (HODISS, 2008-20012 et HERODOTOS, 2011-2014).
Le projet a porté sur l’étude d’une architecture particulière de génération d’horloge, basé
sur un réseau d’oscillateurs couplés par un réseau de tout-numérique Phase Locked Loops.
L’objectif du projet est le développement d’une nouvelle technique de synchronisation et de
sa validation par la conception de deux prototypes de circuits intégrés.

Ma thèse est directement liée à cet objectif et le point de départ de mon projet était les
résultats obtenus par les travaux antérieurs. Mon projet de thèse vise l’étude et la mise en
œuvre de silicium d’un vaste réseau de ADPLLs (10 ×10), contenant 100 nœuds générant
chacun une horloge pour le circuit numérique local. En comparaison avec l’étude effecturée
précédemment (un réseau 4×4), la conception de blocs du réseau a été adapté aux contraintes
liées à l’échelle du réseau. En plus, afin de valider les performances de la synchronisation
d’horloge dans le circuit ASIC, nous avons conçu un circuit de mesure d’erreur d’horloge
sur puce.

Le manuscript de thèse présente toutes les étapes de conception du prototype, en détail-
lant la méthodologie de conception, la modélisation et les techniques de prototypage util-
isées.

Introduction: motivation de l’étude

Défis de génération d’une horloge globale dans les SoCs

Les progrès de la technologie CMOS ont conduit à une réduction exponentielle de la taille
des circuits numériques et une augmentation du nombre de transistors par mm2. Le SoC
moderne peut être considéré comme des micro-réseaux permettant à différentes parties des

xxiii

xxiv List of Tables

systèmes de travailler ensemble et de communiquer. Synchronisation de la communica-
tion devient un sujet de la plus haute importance de la recherche. Cette étude porte sur le
problème de la génération d’horloge global et la distribution à l’intérieur de SoC complexe et
large, de manière à permettre une communication complètement synchrones sur la puce. Elle
est motivée par les inconvénients des approches de génération d’horloge classiques telles que
l’arbre d’horloge dans le contexte des technologies CMOS submicroniques profonds.

Génération d’horloge traditionnelle dans des circuits complexes utilise des structures
d’arbres ou grille [8, 5, 1]. Le matching entre les différents chemins d’horloge est le point clé
de la conception du réseau d’horloge. Dans un grand circuit, un tel mis en matching global
est difficile à réaliser. Le signal d’horloge global doit être acheminé sur toute la surface de
la puce, alors que le délai correspondant doit être garantie avec une résolution picoseconde.
Pour résoudre le problème de mismatch, la taille des buffers doit être augmentée pour être
moins sensible aux erreurs de fabrication, ce qui rend cependant la solution très coûteuse,
principalement en termes de consommation d’énergie.

Une autre façon de penser consiste dans la partition d’une grande puce dans les domaines
d’horloge locale (domaines) [71, 42, 26, 41]. Ces domaines sont également connus comme
des zones isochrones [4] ou zones synchrones d’horloge (SCA) [21] (cf. Fig. 1). Ces zones
sont suffisamment petits que la distribution d’horloge à l’intérieur peut être réalisée sans
difficulté par des techniques classiques. La taille de la zone est déterminée par le délai
maximal de propagation à intérieur de la zone qui ne violerait pas les contraintes de temps
du circuit. Ce délai dépend de la technologie utilisée et le routage des fils, où la zone n’a
pas une dimension exacte. Un nombre empirique des portes / verrouillage à l’intérieur de la
zone est d’environ 200-300 milliers.

isochronous zone

clock amplifier

initial clock

i

(a) (b)
functional isochronous zone

h

Figure 1: Synchronisation des circuits numériques complexes

La communication à l’intérieur du SCA est synchrone, donc le problème de la commu-
nication globale est réduite à la communication à travers les frontières des zones . La com-
munication entre les blocs situés dans différentes SCA peut être synchrone ou asynchrone.
Dans le premier cas, la puce est GSLS (globalement synchrone localement synchrone), dans
ce dernier cas la puce est GALS(globalement asynchrone localement synchrone).

Introduction: motivation de l’étude xxv

En raison des difficultés de synchronisation globale, les ingénieurs SoC orientent leur
choix vers les GALS. Ceci est réalisé en utilisant des interfaces bi - synchrone (ex. FIFO
) garantissant l’intégrité du signal au prix d’une complexité de conception et d’ augmen-
tation de la latence. Par ailleurs, dans les circuits asynchrones, la fiabilité est difficile à
garantir, à l’étape de conception, pour deux raisons. Tout d’abord, la vérification exhaus-
tive d’un système asynchrone est impossible, puisque le temps est continu. Deuxièmement,
le risque de métastabilité peut être pire que d’habitude prévu, parce que les horloges de
SCA ne sont pas totalement indépendant. En effet, ces horloges sont dérivées d’une horloge
d’entrée unique et distribués aux différents modules. Leurs déphasages relatifs dépendent
de paramètres changeantes rapides et lents comme le vieillissement (lent), la température
(vitesse moyenne), et de la tension (rapide). Métastabilité peut se produire pour certaines
valeurs de ces paramètres. Pendant une courte période de temps , les paramètres lents ne
changent pas, ce qui entraîne la métastabilité de se reproduire de manière répétitive, aug-
mentant le risque de défaillance du système.

Défis de caractériser l’erreur de phase entre deux signaux d’horloge

Une communication synchrone nécessite les horloges de l’émetteur et du récepteur être par-
faitement synchronisés. Dans la pratique, une synchronisation parfaite est impossible: les
événements d’horloge doit-être-simultanées sont séparés par des intervalles de temps (erreur
de l’horloge). La prise de conscience de l’erreur d’horloge maximale est nécessaire pour
l’établissement de budget de temps pour la communication et le traitement des données.

Dans un circuit synchrone, le signal d’horloge est distribué à différents endroits de la
puce par une certaine méthode, ex. arbre d’horloge. Tous les signaux d’horloge doivent
être synchronisées avec presque la même période moyenne T . L’incertitude de l’horloge ou
erreur de phase (∆ti) entre deux horloges clk1 et clk2 avec la même période moyenne T est
définie comme clk2 ith front montant (descendant) t2

i moins clk1 ith front montant (descen-
dant) t1

i (Fig. 4.1). Ici i est l’indice de cycle d’horloge. Dans cette étude, l’erreur de phase
entre les horloges est censé être beaucoup plus petite que la période d’horloge moyenne
(nominale), et aucune dépendance existe entre ∆ti. Ce sont des hypothèses raisonnables dans
le contexte de l’horloge sur puce. Par conséquent, ∆ti peut être exprimée par les équations
suivantes:

∆ti = t2
i − t1

i (1)

‖∆ti‖ � T (2)

{∆ti}i∈N est un processus aléatoire à temps discret caractérisé par le temps en moyenne
Sin = ∆t appelé inclinaison et la composante dynamique de l’erreur de phase {∆ti−Sin}i∈N.
Ce processus est généralement considéré comme ergodique. Les valeurs d’une réalisation du

xxvi List of Tables

Figure 2: Definition d’erreur d’horloge ∆ti

processus {∆ti}i∈N sont caractérisés par une fonction de distribution, qui est aussi une fonc-
tion de densité de probabilité (PDF) puisque le processus est ergodique. Dans la pratique,
une fonction de densité de probabilité d’une erreur d’horloge est une fonction définie sur un
domaine limité à des valeurs non nulles minimales et maximales.

La mesure de l’erreur d’horloge peut être nécessaire dans beaucoup de cas. Les er-
reurs typiques d’horloge pour les horloges de gigahertz sont des dizaines de picosecon-
des ou moins. Une mesure hors puce nécessite la transmission de signaux d’horloge de
la puce, introduisant ainsi des retards supplémentaires dont les valeurs sont difficiles à con-
trôler [68, 65, 65]. Le taux d’échantillonnage et le gain vertical des outils de mesure sont
également des enjeux majeurs.

«On-chip» solutions sont généralement basées sur des techniques de mesure du temps à
l’aide d’une chaîne de délai en cascade. Lorsque la valeur absolue de l’erreur d’horloge doit
être connu, plusieurs travaux visant à une mesure directe de l’erreur d’horloge utilisent un
convertisseur temps-numérique basée sur une chaîne de délai avec un grand nombre d’étapes
(par exemple, 129 dans [13]). Les sorties des étages sont ensuite traitées par des circuits
numériques à haute vitesse. Bien qu’un tel procédé fournit une valeur précise de l’erreur à
chaque période, il est cher dans le sens de surface et d’énergie, puisque dans la plupart des
cas, seulement des statistiques de l’erreur d’horloge sont suffisants (la moyenne, les valeurs
minimale et maximale). En outre, le processus CMOS est très sensible à la température,
donc une calibration fréquente avec une référence est nécessaire.

Réseau de PLLs tout numériques pour la génération d’horloge

Le générateur d’horloge proposé appartient à la famille des architectures multi-oscillateur
sur la base d’un réseau d’oscillateurs couplés. Dans un tel schéma d’horloge, une puce
est divisée en zones d’horloge locale, chacun d’eux ayant son propre générateur d’horloge
(oscillateur) qui doit être synchronisé avec ses voisins dans le domaine de phase. Le but du
réseau distribué de PLL est afin de synchroniser chaque oscillateur en phase et en fréquence.
Dans un état stable, un tel réseau est une source d’horloges locales réparties entièrement
synchrones.

L’architecture proposée par Pratt et Nguyen[39] est un réseau de maillage cartésien avec
deux dimensions, dans lequel les nœuds sont les générateurs d’horloge locale et les arcs

Réseau de PLLs tout numériques pour la génération d’horloge xxvii

représentent les liaisons de couplage entre les générateurs locaux. Chaque générateur local
est liée uniquement à ses voisins immédiats cartésiennes. Une telle topologie nécessite les
chemins les plus courts pour la transmission d’information - ce qui est un avantage principal
d’une telle architecture comparé avec des méthodes de génération d’horloge centralisée.

CLK i,j

Error
combiner

Distributed PLL

CLK i,j-1

PFD

CLK i+1,jPFDCLK i-1,j PFD

CLK i,j+1

PFD

Divider

/N

Total error

Local high freq. clock

Local divided clock

cl
oc

k
to

 c
irc

ui
tr

y

Proportional path

Integral path

Z -1

CLKFLT

Control signal

DCO

Digital PI filter

NODE i,j

Figure 3: La topologie du réseau d’horloge proposé et l’architecture du nœud

Le couplage entre les oscillateurs est mis en œuvre dans le domaine de phase via des
comparateurs de phase, Fig. 3(a). Chaque comparateur de phase fournit une mesure de
l’erreur de phase entre les deux oscillateurs. Cette mesure est ensuite utilisée par le circuit
de commande associé à l’oscillateur pour fournir un signal de commande forçant l’oscillateur
pour synchroniser avec ses voisins. Le signal de contrôle détermine directement la fréquence
de l’oscillateur - ce qui est un dérivé de la phase de l’oscillateur.

La nature analogique de ce système mis en place par Gutnik et Chandrakasan [15] est son
principal inconvénient pour la génération d’horloge. Le générateur d’horloge est générale-
ment intégré avec les blocs numériques qui utilisent le signal d’horloge. La performance
d’une PLL analogique dans un environnement numérique peut être considérablement dé-
gradé par les perturbations à cause de la commutation dans les circuits numériques. En
outre, utilisant le réseau de PLL analogique pour la génération d’horloge rend la migration
de la technologie plus difficile et réduit la portabilité de la conception globale du système sur
puce.

Pour ces raisons, notre recherche porte sur l’étude du réseau de PLLs tout numérique
(ADPLL). Dans un réseau d’ADPLL, un comparateur de phase analogique à générer un sig-
nal proportionnel à l’erreur de phase est remplacé par un comparateur de phase et fréquence
(PFD) numérique, qui génère un code numérique proportionnel à l’erreur. Ce code est traité
par un filtre de boucle numérique. Par la suite, le signal provenant de la sortie du filtre est
utilisé pour commander un oscillateur commandé numériquement (DCO).

Basé sur les principes présentés ci-dessus, un réseau d’ADPLLs couplés a été étudié et

xxviii List of Tables

mis en œuvre au cours du projet HODISS. L’architecture est un réseau 4×4 avec 16 nœuds.
La fonction numérique a fait l’objet d’études. Il a démontré la faisabilité de la mise en œuvre
d’un tel réseau de PLL tout numérique.

La première puce de test est fabriquée et mesurée. Les résultats de test montrent que
un générateur d’horloge numérique distribué est réalisable. Et les résultats de mesure corre-
spondent bien à des études théoriques. Cependant, au cours du processus de conception et
de test, nous trouvons quelques problèmes à résoudre et des points à améliorer:

1. Preuve de l’évolutivité. D’après les résultats de mesure du premier prototype on con-
state que, bien que l’erreur de phase est plus grand entre deux nœuds dans la distance
qu’entre deux nœuds voisins, il ne s’accumule pas de façon linéaire en fonction de la
distance. Mais puisqu’il n’y a que quatre nœuds sur la diagonale d’un réseau 4×4, le
premier prototype ne peut pas bien démontrer la relation entre l’erreur de phase et la
distance. Pour mieux observer cette relation et aussi d’étudier l’évolutivité du réseau
ADPLL, un vaste réseau (ex. 10×10) est nécessaire. Une mise en œvre d’un plus
grand réseau nécessite une optimisation des blocs existants, afin de minimiser la con-
sommation d’énergie du circuit. Par exemple, le DCO mis en œuvre dans le premier
prototype consomme 16 mA de courant d’alimentation, qui, multiplié par 100, les rend
de 1,6 A: c’est prohibitif pour une mise en œuvre IC.

2. Amélioration de la qualité de synchronisation. La résolution du convertisseur temps-
numérique (TDC) and le PFD du premier prototype est limitée à 30 ps en raison de la
contrainte de sa structure et le retard minimum d’un porte en technologie 65 nm. Pour
améliorer cette valeur, une autre architecture TDC doit être utilisé.

3. Puce caractérisation: mesure de l’erreur de phase sur puce. Comme expliqué précédem-
ment, les résultats de mesure hors puce fournissent des informations pessimistes quant
à l’erreur de phase. Une méthode sur puce est nécessaire pour caractériser l’erreur
d’horloge et de suivi de la performance à grande SoC. Un exemple de ce type de cir-
cuit est le circuit «Skitter» utilisé dans les processeurs IBM[13].

Le paragraphe suivant présente un résumé de notre contribution.

Résumé de contribution

Le objectif principal de ce projet de thèse est la conception d’un réseau de ADPLL 10×10,
complété par un outil de mesure de l’erreur de synchronisation sur puce. La conception est
basée sur l’architecture du premier prototype de taille réduite, mais corrige des inconvénients
de la puce mentionnée dans le dernier paragraphe.

Tout d’abord, une méthode visant à réduire l’erreur résiduelle dans l’état d’équilibre a été
proposé. Il permet de choisir le pas de quantification de TDC et les paramètres appropriés

Résumé de contribution xxix

de DCO afin de atteindre une bonne performance avec faible effort de mise en œuvre. Sur
la base de cette étude, nous avons conçu les blocs d’ADPLL pour le réseau d’horloge. En
particulier, le pas de quantification optimale pour le DCO conçu est 20 ps, ce qui est inférieur
au retard minimum d’une porte logique à la technologie utilisée. Pour atteindre cette valeur,
un TDC avec une nouvelle structure est conçue.

Deuxièmement, en raison de la forte consommation d’énergie du premier prototype
(186,2 mA), les 4×4 réseau était difficile d’être étendu à une dimension de 10×10. Pour
réduire la consommation d’énergie du réseau de ADPLL, nous avons étudié la source de
consommation d’énergie. Les blocs affamés d’énergie dans ce système sont le DCO et le
filtre de boucle. Le DCO peut être optimisé en réduisant le nombre de cellules de réglage
ainsi le nombre de pas de réglage (256 pas au lieu de 1024 pas). Moins de pas signifie moins
de bits pour le mot de commande (8 bits au lieu de 10 bits), ce qui simplifie également le
filtre de boucle.

En fait, la forte consommation d’énergie de filtre de boucle résulte principalement de
l’opération arithmétique à haute vitesse. Dans mon projet de thèse, nous avons conçu deux
types de filtres de boucle, qui non seulement réduisent la puissance, mais aussi d’accélérer
la vitesse de correction d’erreur. Le premier filtre est basé sur l’architecture classique d’un
filtre proportionnel-intégral (PI) avec un retard réduit au chemin proportionnel. Et la taille
des opérateurs arithmétiques est plus petite. Le second filtre est de séparer l’acquisition
de fréquence et le suivi de phase. A l’état stationnaire, seulment quelques bits de poids
faible du mot de contrôle sont mises à jour pour le suivi de phase. Il n’est pas nécessaire
de recalculer l’ensemble du mot de contrôle de chaque cycle. Les deux architectures ont été
conçus au cours du projet, mais seulement la première a été mis en œuvre dans le prototype
conçu du réseau. Ce choix est motivé par un risque élevé qui serait présente si une nouvelle
architecture d’un filtre a été choisi.

Ces blocs conçus sont assemblés dans un réseau 10×10. Cette architecture est mise
en œuvre dans un premier temps sur FPGA puis sur silicium. Topologies différentes sont
étudiées sur la base de cette architecture.

Pour des raisons expliquées précédemment, un circuit de mesure d’erreur d’horloge sur
puce est nécessaire pour la caractérisation de l’erreur de phase entre deux signaux d’horloge
dans le réseau (générée par deux nœuds, soit à côté de l’autre ou en éloignement). Le circuit
conçu dans ce projet de thèse est basée sur une méthode indirecte facile à mettre en œuvre:
au lieu de mesurer la valeur de l’erreur de phase de chaque cycle, il permet de calculer
les valeurs minimum/maximum et moyenne d’erreur pendant une période. En utilisant ce
circuit, une caractérisation précise de l’erreur de phase sur puce est possible, donc il a une
grande importance dans la preuve de l’évolutivité du réseau d’ADPLL. Il a été conçu comme
un IP analogique et placé à quatre emplacements différents de la puce.

xxx List of Tables

Conception des composants

Convertisseur temps-numérique (TDC)

En fait, la résolution TDC de la première puce d’essai est limitée à 30 ps à cause de la
contrainte de sa structure et le retard minimum de porte logique dans la technologie de 65
nm. Pour améliorer cette valeur sans évoluer la technologie, une autre architecture doit être
appliqué. L’idée de base consiste à utiliser la valeur différentielle des deux unités de délai
pour atteindre une valeur inférieure à la chacun des unités de délai (technique Vernier).

Comme montré dans la Fig. 4, l’entrée de la chaîne de délai lente (τ1) est un signal appelé
START, dont le front descendant signifie le début de l’intervalle entre deux signaux d’horloge
dans la comparaison. L’autre chaîne de délai (τ2, τ2 < τ1) a une entrée STOP, dont le front
descendant marque la fin de l’intervalle.

START

S0

STOP
2

1

ARBITER0A

0B

p

nZ

Z

S1

2

1

ARBITER1A

1B

p

nZ

Z

S5

2

ARBITER5A

5B

p

nZ

Z

1

2

ARBITER

1

2

1

ARBITER

I1 I2 I6 I7 I8

I10 I11 I15 I16 I17

I19 I20 I24 I25 I34I28 I29 I33

2

1

ARBITER

SAMPLE

I9

I18

I35

Figure 4: Schéma de principe du convertisseur temps-numérique

Dans chaque étage, les deux signaux retardés sont comparés en utilisant un arbitre.
Comme les événements qui arrivent sont définis par les fronts descendants de START et
STOP, si à un certain étage i, le front descendant retardé de START arrive à Ai encore plus tôt
que l’événement arrive à bi, Ai est égal à ’0 ’ et bi est égal à ’1’. Par conséquent, Zp est égale
à ’1’ et Zn est égal à 0. Comme τ1 est plus grande que τ2, après chaque étage, l’intervalle de
temps entre deux signaux est réduit par τT DC = τ1− τ2. La position de la ligne de délai, à
laquelle le signal STOP retardé rattrape le signal START retardé définit la différence de temps
entre les signaux d’origine avec une résolution de τT DC. Les registres produisent l’instantané
de l’état de la chaine de délai au moment où l’événement SAMPLE arrive, donc contiennent
un code thermomètre représentant l’intervalle à mesurer.

A l’aide de cette technique, nous pouvons obtenir une résolution de 20ps, ce qui est
inférieur au retard minimum d’un délai en technologie CMOS 065 (30 ps). La résolution
peut être encore améliorée, mais dans ce cas, l’erreur de phase résiduelle à l’état d’équilibre
ne peut pas être réduit davantage. Ceci est prouvé par l’étude théorique et les résultats de
simulation. Par conséquent, 20 ps est la valeur optimale pour ce système.

Filtre numérique

La puissance de la première puce de test est principalement consommé par DCO et le filtre
de boucle. L’objectif de la conception du prototype n’atteint pas une grande dynamique de

Conception des composants xxxi

réglage de la fréquence, donc le DCO peut être optimisée par la réduction du nombre de
cellules de réglage ainsi les étapes de réglage (256 pas au lieu de 1024 pas). Moins d’étapes
signifie moins de bits pour le mot de commande (8 bits au lieu de 10 bits), ce qui simplifie
également le filtre de boucle peut être simplifié. En fait, la forte consommation d’énergie
du filtre de boucle résulte principalement de son opération arithmétique à grande vitesse. En
plus de réduire le mot de commande de sortie à 8 bits, il existe deux autres méthodes. La
première méthode consiste à réduire le nombre de bits réservés aux cœfficients du filtre, ainsi
la taille des opérateurs. Le schéma est affiché sur la Fig. 5. Le nouveau bloc de contrôle de
boucle comporte quatre entrées permettant de recevoir au plus quatre entrées binaires de 4
bits des mots signés et génère un mot de 8 bits non signé pour le contrôle DCO (la sortie de
l’additionneur ADD5). Ce signal est codé à A, B et C, qui sont appliquées à l’entrée de la
DCO.

3

7

7

1/212

2

3

3

Kp (0, 1, 0.5, 0.25)

Ki A

B

C

to
 D

C
O

128

Kw1

Kw2

Kw3

Kw4

1
4

2

3

4

B2T
Decoder B

B2T
Decoder C

B2T
Decoder A

from
 P

F
D

div

Z -1

div

Z -1

div

Z -1

div

Z -1

div

Z -1

4

4

4

6

6

6

6

7

7

8
Divider

2

numKw

6

2

6

2

2

2

2

8

14 820

8

6

ADD1

ADD2

ADD3 FF1 ADD4

FF2

ADD5

FFC

FFB

FFA

Figure 5: Filtre de boucle pour le traitement du signal d’erreur: quatre contrôleurs de
gain d’entrée suivi par l’addition à quatre entrées, filtre PI et trois décodeurs B2T.

La deuxième méthode consiste à séparer l’acquisition de fréquence à partir de la pour-
suite de phase. La raison est qu’à l’état d’équilibre, seulement quelques bits de poids faible
du mot de commande sont mis à jour pour le suivi de phase. Il n’est pas nécessaire de re-
calculer l’ensemble du mot de commande de chaque cycle. Cette architecture de PLL est
montré dans Fig. 6. Un indicateur de la fréquence de référence (RFI), en dehors du circuit
principal, donne un code (codere f) correspondant à la fréquence d’horloge de référence. Ce
code est ensuite transmis aux PLLs dans le réseau de distribution d’horloge. Poursuite de
phase est réalisée par un PFD à 3 bits et un filtre de 6 bits signé générant un code de 6 bits en
fonction de la différence de phase entre deux horloges. La poursuite de fréquence est réalisé
par un filtre moyen, qui reçoit un flux de codes à 6 bits et calcule la moyenne des huit les
plus récemment reçus. Le signe de la valeur moyenne (+1, −1 ou 0) estime le rapport de
fréquence entre deux horloges, et est utilisé par le bloc du réglage grossier de la fréquence (
CFA) pour le réglage du code. Le code de sortie de CFA plus la sortie du filtre forme le mot
de commande du DCO.

L’avantage de cette structure est que le bloc CFA peut toujours mettre à jour la fréquence
grossier (f c) de la DCO en fonction de la relation référence-l’horloge locale, et cet ajuste-

xxxii List of Tables

Figure 6: Proposed architecture for PLL

ment est effectué à une fréquence inférieure à la fréquence d’échantillonnage du système
(div). PFD et filtre, travaillant à la fréquence div, réglent la fréquence de DCO autour de f c.
Ce processus de réglage corrige l’erreur de phase et en même temps travaille en collabora-
tion avec CFA pour assurer que la fréquence de référence est toujours dans l’intervalle de
reglage. Comme l’intervalle est relativement faible, un grand nombre de bits pour PFD et le
filtre n’est plus nécessaire.

Le réseau d’ADPLLs tour numériques réalisé

La puce de prototypage a été conçu et mis en œuvre pendant ma thèse. Il possède une
topologie étendue par rapport à la première. Il a une dimension de 10 x 10 fournissant des
signaux d’horloge pour autant de 100 domaines d’horloge synchrones locales (de SCA1-1 à
SCA10-10 dans la Fig. 7).

Dans Fig. 7 nous pouvons observer le bloc FO (filtre + oscillateur) dans chaque SCA, la
génération du signal d’horloge pour la zone isochrone locale. Un PFD à la frontière entre
deux zones voisines compare deux signaux d’horloge et renvoie l’erreur de phase entre eux
avec la même valeur absolue mais de signe opposé (e and e). Toutefois, en raison de la
consommation d’énergie élevée (186.2 mA), 4 le réseau 4×4 est difficile d’être étendu à une
dimension de 10×10.

Avant la fabrication de la puce de test utilisant ces blocs améliorés, un prototype FPGA
d’un réseau de 10×10 de ADPLLs. Ce prototype a deux objectifs: d’abord, il permet de
valider la fonctionnalité d’un tel grand réseau avant la mise en œuvre en silicium; D’autre
part, avec ce prototype, on peut étudier la relation entre la valeur d’erreur de phase et de
la distance. Ce prototype a la même dimension et topologie que la puce de test (Fig. 7).
Les principales limites de prototypage FPGA concernent l’impossibilité de mettre en œuvre
correctement (a) les blocs de signaux mixtes: le PFD et le DCO et (b) la fréquence de

Le réseau d’ADPLLs tour numériques réalisé xxxiii

FO

P
F
D FO

P
F
D

FO

P
F
D

PFD

FO

P
F
D

FO

P
F
D

FO

P
F
D

PFD PFD

PFD PFD PFD

FO
P
F
D

FO

P
F
D

FO

P
F
D

PFD PFD PFD

+

SCA1-1 SCA1-2 SCA1-3

SCA2-1 SCA2-2 SCA2-3

SCA3-1 SCA3-2 SCA3-3

+

Reference
clock

PFD

PFD

FO

P
F
D

FO

P
F
D

FO

PFD

PFD

P
F
D FO

PFD

SCA1-10

SCA2-10

SCA3-10

PFD

FO

P
F
D

FO

P
F
D

FO

P
F
D

PFD PFD

SCA10-1 SCA10-2 SCA10-3

P
F
D

FO

PFD

SCA10-10

F
c
lk
(1
,1
)�
��
� P
F
D

Fref��

F
c
lk
(2
,1
)�
��
�

F
c
lk
(2
,1
)�
��
�

F
c
lk
(3
,1
)�
��
�

Fclk(2,1)����

Figure 7: Clocking network architecture

Table 1: Les paramètres de la mise en œuvre de FPGA

Parameter FPGA
Fréquence de sortie nominale 77.93 kHz

Pas de fréquence du DCO 97.05 Hz
Plage de réglage de la fréquence de sortie 67.28 kHz∼92.73 kHz

Résolution de TDC 68.065 ns

fonctionnement élevée. Un modèle numérique commun des modules basé sur l’étage de
temps est un chronomètre; Pour le deuxième problème, il suffit de réduire l’ensemble des
paramètres de fréquence avec le même facteur d’échelle. Tab. 1 résume les paramètres du
TDC et du DCO mis en œuvre pour le prototype FPGA du réseau 10x10 d’ADPLL.

Fig. 8 montre les dix signaux d’horloge dans les nœuds diagonale du réseau. Dans cette
expérience, les nœuds du réseau ont diverses fréquences initiales, mais avec l’aide de la
configuration dynamique, tous les signaux d’horloge locaux ont la même fréquence et sont
bien alignées en phase, ce qui démontre une bonne performance de l’architecture proposée
dans un grand réseau.

xxxiv List of Tables

Figure 8: Horloges signaux locaux avec la référence: configuration bidirectionnelle, dif-
férentes fréquences initiales des nœuds

Afin de valider le fait que dans un tel réseau d’ADPLL couplés, les erreurs de phase ne
sont pas accumulés comme dans un arbre d’horloge, on a mesuré sur chaque cycle d’horloge
pendant certain temps, la différence de phase entre les signaux d’horloge locaux dans les
nœuds diagonaux et l’horloge de référence. Ensuite, nous pouvons tracer une courbe d’erreur
de phase maximale en fonction de la distance à l’horloge de référence. Il faut noter que
la distance mentionnée ici n’est pas la distance physique en microns, mais la distance de
Manhattan l’information de phase de référence doit parcourir avant d’arriver à un nœud
local.

De Fig. 9 nous pouvons observer que en mode unidirectionnel, l’erreur de phase s’accumule
comme l’information de phase de référence se déplace plus loin. En mode bidirectionnel,
qui est le mode à laquelle le réseau fonctionne à l’état d’équilibre, les erreurs de phase entre
tous les nœuds du réseau et la référence sont bien limitées à ± 3 fois le pas de quantification
du PFD.

le prototype AISC avec la même dimension que le prototype FPGA a été conçue dans
une technologie CMOS 65 nm, en utilisant le PFD, DCO et le bloc numérique de traite-
ment d’erreur présentés précédemment. La conception de puces applique une stratégie de
réutilisation de l’IP et un flot de conception à signal mixte.

L’assemblage des blocs de réseau d’horloge a été fait dans un flot standard de conception
numérique avec l’aide d’outils de CAO. La disposition réelle de la puce est donné dans
Fig. 10. La taille de la puce est 2734×2756,8 µm2 dans laquelle le cœur du réseau occupe
1805×1771 µm2. Les paramètres du réseau sont résumés dans la Tab. 2.

Caractérisation sur puce de l’erreur de phase entre deux signaux d’horloge xxxv

Figure 9: La valeur maximale de l’erreur de phase en fonction de la distance par rap-
port à l’horloge de référence

Table 2: Caractéristiques du réseau de PLLs tout numériques conçu

Paramètre Valeur
Fréquence de sortie nominale FCLK 1,036 GHz

Plage de réglage de la fréquence de sortie 903∼1161 MHz
Pas de fréquence du DCO ∆ω/(2π) 1,01 MHz

Erreur de timing < 40 ps
Taux de convergence ≈ 5 MHz/µs

Tension d’alimentation 1,2 V
Consommation 600 mW @ Fclk = 800 MHz
Taille des SCA ∼ 0,022mm2

Taille de puce ∼ 7,54mm2

Caractérisation sur puce de l’erreur de phase entre deux sig-

naux d’horloge

Comme présenté précédemment, il est difficile de mesurer l’erreur de phase entre les signaux
d’horloge à haute fréquence. Dans cette étude, nous avons étudié une stratégie de test pour
la caractérisation des statistiques d’erreur d’horloge entre deux domaines d’horloge dans les
systèmes d’horloge à grande vitesse (gigahertz et plus). Le procédé permet une mesure indi-
recte (pas basé sur la mesure de l’intervalle de temps) de la distribution de l’erreur d’horloge
par l’observation de l’intégrité d’une séquence périodique transmis entre deux domaines
d’horloge. La méthode est compatible avec l’implémentation sur puce, et la lecture des ré-
sultats aux signaux hors puce est cadencée à faible taux. La stratégie vise à la résolution de
picosecondes sans calibration complexe.

xxxvi List of Tables

BIT

N
O
D
E

2734�um

IO

C
O
M
P
E
N
S
A
T
IO
N

C
E
LL

2
7
5
6
.8
�u
m

1
7
7
1
�u
m

1805�um

Figure 10: Layout de la puce de test du réseau d’horloge

Le circuit de mesure est mis en œuvre comme représenté sur la Fig. 12. Une séquence
binaire «... 1010 ...» est généré sur la puce dans le domaine de clk1 par une bascule de
type D synchronisée avec l’horloge CLK1 (Fig. 12). La séquence binaire est envoyé au
domaine d’horloge clk2 après un délai contrôlable (∆). Ce délai est équivalent à un skew
supplémentaire entre les deux horloges. En faisant varier le délai ∆, nous changeons le skew
effectif, par conséquent, le taux d’erreur (ER) mesuré, qui est maintenant une fonction de ∆.

De l’autre côté, l’introduction du délai ∆ (Fig. 12) modifie le skew entre les horloges,
et donc la fonction de densité de probabilité (PDF) effective de la distribution des erreurs
d’horloge, par le mapping de ∆t → ∆t +∆. Nous pouvons trouver une relation mathéma-
tique entre l’ER et la PDF d’origine de l’erreur d’horloge par l’observation de deux cycles
d’horloge voisins. Comme illustré dans Fig. 11, le délai ∆ = ∆tB ou ∆ = ∆TC déplace la PDF
d’origine à droite/à gauche jusqu’à a = 0 ou a = 1, où a(∆) = P(∆ti < 0) est la probabilité

Conclusion xxxvii

que l’erreur de phase du cycle ie est négative. Il a été prouvé que ∆B et ∆C correspondent
respectivement aux valeurs de ∆td aux points B et C de PDF d’origine (Fig. 11(a)), qui sont
les valeurs min/max d’erreur d’horloge.

Figure 11: Analyse théorique: (a) PDF d’origine de l’incertitude d’horloge; (b) PDF avec
un décalage ∆ = ∆x; (c) a vs. ∆; (d) ER vs. ∆

Pour obtenir l’ER, la séquence de données est échantillonnée dans le domaine de clk2.
Pour éviter métastabilité dans le bascule[18], un registre à décalage avec 4-étage échantil-
lonne le signal d’entrée (D2) du domaine de clk2. Une porte NXOR avec 2 entrées détecte
les erreurs de transmission en comparant les sorties R3 et R5; chaque événement de détec-
tion est alors prise en compte par le compteur de n bits C1 cadencée par clk2. Le rôle du
compteur C2 est de générer un événement de tous les 2n− 1 cycles de CLK2: ceci fournit
un intervalle de temps pendant lequel C1 compte les erreurs. La valeur de C1 est écrit dans
le registre de sortie Rs quand C2 déborde. Les registres Rs stocke la valeur signal de Nerr. Il
représente le nombre d’erreurs lors de 2n−1 cycles de CLK2 et peut être facilement transmis
hors de la puce, car l’affichage est à une fréquence 2n inférieure à la fréquence d’horloge.

L’idée a d’abord été validé par un prototype discret avec des fréquences à échelle réduite,
puis un prototype avec la fréquence élevée sur puce a été conçu en utilisant la technologie
CMOS 65 nm.

Conclusion

La génération et la distribution d’horloge sont des techniques importantes dans la domaine
des circuits VLSI. La qualité du signal d’horloge a un grand impact sur les performances
du circuit et de la consommation d’énergie. De nos jours, une grande variété de solutions

xxxviii List of Tables

Figure 12: Architecture of test circuit

d’horloge comme l’arbre d’horloge, le maillage hybride d’horloge, la communication asyn-
chrone sont utilisées. Ces techniques présentent une limite supérieure de la taille de circuit
qui peut être synchronisé. Dans les technologies submicroniques profonds, c’est difficile de
générer d’une horloge globale utilisable dans une grande puce par ces techniques classiques
d’horloge.

L’objectif de cette recherche est une étude d’une solution alternatif de synchronisation,
qui utilise un réseau des oscillateurs couplés par PLL tout numérique(ADPLL). Un tel sys-
tème est appelé «réseau d’ADPLL». Ce projet de doctorat inclus une étude théorique, la
modélisation, prototypage CMOS et FPGA des réseaux d’ADPLL. En comparaison avec les
études précédentes, qui ont montré la possibilité principale de génération d’horloge par un
réseau d’ADPLL, cette étude a démontré une faisabilité d’un grand réseau d’ADPLL, et ré-
solu des problèmes spécifiques liés à la grande taille du réseau. Ce rapport de thèse décrit
en détail la conception d’une puce contenant un réseau cartésien de 10x10 nœuds, chacun
d’eux générant une horloge locale synchronisée en phase et en fréquence avec les horloges
voisines. La modélisation du réseau à différents niveaux d’abstraction était une partie impor-
tante du projet. Le réseau d’ADPLL est un système complexe: seulement son modèle réduit
peut être décrit par des équations, et des effets réalistes ne peut être prise en compte qu’avec
une modélisation numérique. Cependant, nous avons proposé un modèle réduit utilisé pour
la conception, se rapportant aux paramètres de réseau à la qualité de la synchronisation des
signaux d’horloge locaux.

La conception d’un prototype VLSI du réseau utilisée était basée sur l’étude précédem-
ment réalisée dans le projet HODISS, où un réseau de prototype de faible taille a été mis
en œuvre. Cependant, dans cette thèse, nous avons adapté le modèle de plusieurs blocs du
réseau aux contraintes liées à la taille du réseau, et nous avons modifié le détecteur de phase
de manière à améliorer la résolution (2O ps au lieu de 32 ps dans le travail précédent) . Pour
réaliser cette résolution, l’architecture Vernier a été utilisé. Le bloc DCO a été simplifié (la
taille et la consommation d’énergie réduites). Nous avons conçu deux versions du filtre: une
architecture nouvelle avec l’optimisation de la vitesse de convergence et la consommation de

Conclusion xxxix

la puissance, et l’autre étant une version simplifiée de l’architecture utilisée dans le premier
prototype de faible taille de réseau. La puce contenant un 10×10 réseau d’ADPLL est en
cours de fabrication en technologie 65 nm.

Manycore circuits sont probablement des applications potentielles les plus importantes
de la solution d’horloge proposée. Pour de tels systèmes, la question de l’évolutivité est
primordiale: comment la performance du système change si la taille du système augmente?
Pour notre solution de synchronisation, la question peut être formulée comme suit: com-
ment la qualité de synchronisation (l’erreur de l’horloge) changer avec la taille du réseau (le
nombre de nœuds)? Notre étude fournit la réponse suivante à cette question:

- Si l’erreur de phase entre les horloges voisines est considéré, la réponse est «l’erreur
d’horloge exprimée en unités de temps ne change pas lorsque la taille du réseau augmente» .
L’erreur d’horloge entre les nœuds voisins ne dépasse pas deux étapes de résolution de la
mesure d’erreur de phase. La résolution de la mesure d’erreur de phase s’améliore à la
réduction de la taille des transistors CMOS (de la même manière que les retards de portes
numériques).

- Si l’erreur de phase entre deux nœuds du réseau est pris en compte: on a montré que,
bien que l’erreur de phase augmente avec la distance de Manhattan entre les nœuds (de façon
équivalente, avec la taille du réseau), une saturation est observée, et l’erreur est limitée à trois
étapes de la résolution de mesure d’erreur de phase.

Ces faits ont été vérifiés expérimentalement, sur un réseau de 10x10 nœuds mis en œuvre
sur une plate-forme FPGA; limitations matérielles nous ont empêchés de test sur des réseaux
de taille plus grande.

L’un des avantages principaux du réseau d’oscillateurs couplés par ADPLL est la possi-
bilité de reconfigurer dynamiquement sa topologie, le connectivité, les paramètres de blocs
de traitement, etc. Ceci permet une mise en œuvre des comportements différents du réseau,
avec la même plate-forme matérielle. Cette propriété a été utilisée avec succès pour la sélec-
tion du mode synchronisé souhaitable. En outre, nous avons exploré une technique originale
inspirée de l’hydrodynamique, ce qui permet à l’élimination des vagues qui pourraient ap-
paraître dans le réseau debout. En configurant le bord du réseau d’une façon différente du
noyau du réseau, le bord du réseau peut être considéré comme un anneau indépendant et
synchrone. Les nœuds qui composent cet anneau excitent le noyau interne et absorbent les
ondes d’erreur qui reviennent du noyau, comme les canaux d’évacuation d’une piscine. Cette
«piscine» topologie a été étudié et conçu. Son avantage dans la prévention de la propagation
d’onde et de réflexion d’erreurs a été démontrée par les résultats de la simulation.

La mesure de l’erreur d’horloge peut être nécessaire dans de nombreux cas: pour la
caractérisation, ou pour l’auto-test du système d’horloge. Comme le signal d’horloge est
continue dans le temps et il est très sensible au bruit, La mesure hors puce n’est pas appro-

xl List of Tables

priée pour les signaux de haute fréquence. Dans ce projet, nous avons conçu un circuit de
mesure d’erreur d’horloge sur puce, qui mesure les statistiques d’erreur d’horloge entre deux
domaines d’horloge dans les systèmes d’horloge à grande vitesse (gigahertz et plus). Le ré-
sultat de la mesure peut être lu hors puce à faible taux. La stratégie vise à la résolution des
picosecondes sans calibration complexe. Après validation de la technique sur un prototype
discret, un bloc de circuit intégré a été conçu en utilisant la technologie de 65 nm. Cette IP
avec signal mixte a été utilisé dans la puce contenant un grand réseau de ADPLL, pour la
mesure des erreurs entre des horloges dans quatre endroits du réseau.

Le circuit de génération et de distribution d’horloge, avec le circuit de test intégré con-
stitue un système de synchronisation complet, qui propose une alternative aux techniques
d’horloge classiques et existants pour les grands systèmes sur puce.

Perspectives et travail futur xli

Perspectives et travail futur

La puce de test est toujours en cours de fabrication lorsque ce document est écrit. Par con-
séquent, le premier travail à l’avenir devrait être tester la puce et analyser les résultats de
mesure. Si les résultats des tests sont satisfaisants, la prochaine étape sera l’intégration du
système d’horloge proposé dans un SoC multiprocesseur réel.

En outre, au cours de la recherche, on a trouvé certaines difficultés ou des points d’amélioration
par rapport à la modélisation d’un tel système non-linéaire, la robustesse de distribution
d’horloge et le déploiement dans des circuits intégrés 3D.

Modélisation d’ADPLL pour l’étude de l’erreur de phase résiduelle dans

l’état d’équilibre

Un défi dans l’analyse du comportement de correction d’erreur de phase d’un ADPLL ou un
réseau d’ADPLLs consiste en les fonctions non-linéaires. La non-linéarité apparaît pour les
raisons suivantes:

• La caractéristique du détecteur de phase est mod 2π.

• L’interfaces analogique/numériques entre le filtre numérique et le DCO, et entre le
DCO et le PFD.

• L’échantillonnage de la bascule dans le filtre est commandé par la sortie du DCO: un
auto-échantillonnage

Les techniques les plus courantes et les plus efficaces sont ceux qui proviennent de la
théorie du contrôle pour les systèmes LTI. Toutefois, la suppression de quantification con-
duit aux prévisions inexactes pour les erreurs résiduelles (c’est à dire quand un réseau est
très proche de l’état synchronisé). Par exemple, un modèle LTI continu d’un PLL à deux
intégrateurs résiduel prédit l’erreur de phase nulle. Cependant, dans un réseau de ADPLL
réaliste, l’erreur résiduelle est au moins égale au pas de quantification du PFD, et, est un pro-
cessus stochastique avec une forte corrélation. Le cas où le système reste la plupart du temps
aux petites erreurs de phase est «nominale» pour un réseau d’ADPLL et, par conséquent,
la défaillance du modèle LTI pour décrire ce mode de fonctionnement est un inconvénient
sérieux.

Exploration de la propriété de tolérance de faute

Un problème très grave avec des arbres d’horloge ou d’autres approches centralisées consiste
à le manque de robustesse. Si en raison de certains défauts de fabrication, un fil interne ou un
buffer dans un arbre d’horloge se brise, l’ensemble de la sous-arbre du point cassé cesseront
de fonctionner correctement. Le système d’horloge proposé, une approche distribuée, c’est
mieux dans ce sens. Mais comme l’ensemble du réseau est couplé, si un lien entre deux do-
maines d’horloge est cassé ou un oscillateur fonctionne anormalement, les nœuds voisins et

xlii List of Tables

même l’ensemble du réseau seront également touchés. Cependant, étant donné que les PFDs
observent toujours la fonction de génération d’horloge locale, et le système est numérique,
il est possible de développer un mécanisme pour détecter la position de défaut et pour con-
tourner le point de défaut automatiquement.

En général, il existe deux types de défauts dans le réseau: un lien cassé et un nœud
défaillant. Si un lien se brise, le PFD ne peut ainsi pas détecter l’erreur de phase entre les
deux horloges ou ne peut pas renvoyer des résultats corrects. Dans ce cas, ce lien ne doit pas
être pris en considération lors du calcul du mot de commande DCO. Sachant que toutes les
liens ont leurs cœfficients de poids, il est facile de désactiver un lien s’il est cassé. Un nœud
défaillant est plus difficile à traiter. Une possibilité consiste à contourner ce nœud et utiliser
le signal d’horloge voisine provisoirement.

De cette façon, même s’il y a une erreur quelque part dans le système, la puce ne sera pas
brisé rapidement. Il faut noter qu’il existe un compromis entre la complexité et la robustesse
du système.

La distribution d’horloge pour les circuits en 3-D

Trois-dimension (3D) IC est une technologie émergente poursuivie par l’industrie et les lab-
oratoires. Il offre de nouveaux niveaux d’efficacité, de puissance, et d’autres avantages.
La distribution d’horloge dans le circuit doit être dans trois dimensions spatiales, ce qui aug-
mente la complexité du générateur d’horloge. Plusieurs recherches portent sur ces problèmes
[34, 35, 38, 6]. Trois topologies typiques ont été résumées dans Fig. 9.1[38]. En général,
ils combinent différentes topologies utilisés dans les circuits 2-D, comme arbre d’horloge,
l’anneau et la maille. Le point commun dans les trois approches présentées dans Fig. 9.1 est
qu’un arbre d’horloge est mis en œuvre dans le 2ème plan. La racine de l’arbre d’horloge est
reliée à l’horloge de référence. Dans Fig. 9.1(a), deux autres arbres d’horloge sont utilisés
dans les deux autres plans. Les nœuds racines dans les deux plans sont reliés à la racine du
2ème plan par TSV. Il en résulte un arbre d’horloge 3-D avec un seul nœud racine réel, et
le déphasage entre deux nœuds de feuille est plus grande que dans un arbre d’horloge 2-D.
Dans Fig. 9.1(b), le 1er et 3ème plans utilisent structure maillée à la place de la structure de
l’arbre. Chaque nœud dans les mailles sont connectés avec un nœud dans le 2ème plan par
TSV, donc un grand nombre de TSV sont nécessaires. Il en résulte une difficulté de mise
en œuvre au niveau physique. Dans Fig. 9.1(c), les anneaux d’horloge sont utilisés dans le
1er et 3ème plans, et que les quatre nœuds de coin sont reliés aux nœuds de coin du 2ème
plan. Cependant, si le plan est grand, la synchronisation entre les nœuds centraux dans les
plans différents est difficile à garantir. Nous pouvons voir les problèmes de ces solutions
2-D classiques sont multipliés par la mise en œuvre 3-D. En conséquence, ces solutions sont
d’efficacité limitée.

Nous proposons une méthode basé sur l’étude de ce projet de thèse. Cette méthode (cf.
Fig. 9.2) est inspiré par l’approche affichée dans Fig. 9.1(c). Au lieu d’utiliser un arbre

Perspectives et travail futur xliii

Figure 13: Différents réseaux de distribution d’horloge 3-D au sein du circuit de test de
[38]: (a) H-arbres, (b) H-arbre et anneaux/mailles locales, (c) H-arbre et anneaux globaux

d’horloge dans le 2ème plan, une architecture distribuée du réseau ADPLL présenté dans ce
document (cf. Fig. 2.1) peuvent être mettre en œuvre. Un coin du réseau est relié à l’horloge
de référence. Deux autres réseaux d’ADPLLs sont construits dans le 1er et le 3ème plans.
Les quatre nœuds de coin dans chacun de ces deux plans sont couplés avec les quatre nœuds
de coin du 2ème avion aussi en utilisant la technique d’ADPLL. Par ailleurs, puisque les
réseaux d’horloge dans le 1er et le 3ème plans ont quatre signaux d’horloge de référence,
ces deux plans peuvent être configurés comme une architecture «piscine» proposée dans
Chapter 7. Cette approche proposée exploite la fiabilité et l’évolutivité de réseau d’ADPLL
par rapport aux approches classiques utilisés dans Fig. 9.1.

xliv List of Tables

Figure 14: L’approche proposée de distribution d’horloge 3-D en utilisant le réseau
d’ADPLL

Chapter 1

Introduction

Contents
1.1 Area of focus . 1

1.2 Environment of the PhD project: the starting point and motivations . . . 5

1.3 Original contribution of my PhD project 29

1.4 Thesis outline . 31

1.1 Area of focus

Advances in CMOS technology have led to an exponential reduction in size of digital cir-
cuits (logic cells, transistors). The modern SoC can be regarded as micro-networks allowing
different parts of the systems to work together and communicate. Synchronization of the
communication becomes a research subject of utmost importance. This study addresses the
problem of global clock generation and distribution inside complex and large SoC, so as to
allow a full-synchronous communication on the chip. It is motivated by deficiencies of con-
ventional clock generation approaches such as clock tree in the context of deep sub-micron
CMOS technologies. The developed clock generation technique is based on a network of
coupled oscillators distributed over the chip.

isochronous zone

clock amplifier

initial clock

i

(a) (b)
functional isochronous zone

h

Figure 1.1: Clock domains in a SoC: (a) isochronous zone and (b) their placement in SoC

1

2 Chapter 1. Introduction

1.1.1 Problem of clocking in large digital circuits

Traditional clock generation in complex circuits uses tree or grid structures [8, 5, 1]. The
matching between different clock paths is the key point of the clock network design. In large
chips designed in advanced CMOS technology, such a global matching is difficult to achieve.
Because even if positions of the leaf nodes are symmetric with regard to the source point of
the clock, mismatches between the buffers and the lines introduce uncontrollable skew. In
practice, the local clock areas have different sizes and positions, making difficult a perfect
clock tree equilibrium. To solve the problem of mismatch, the size of the lines and buffers
must be increased so to become less sensitive to fabrication errors, which however makes the
solution very expensive, mainly in terms of energy consumption and area[61, 5].

Buffer
 (amplifier)

Clock area
H-tree

X-tree

Branch-tree

Clock area

Clock area

PLL

Figure 1.2: Examples of conventional clock distribution tree structures: Branch-tree,
H-tree and X-tree

Possible improvements of the original tree distribution system consist in providing the
clock generator with a skew compensation mechanism [46, 62, 9, 25, 12, 63, 69, 20, 48, 7].
The skew monitoring and control are performed by a dedicated controller called skew com-
pensator gathering information about the skew in all characteristic points of the chip. Its role
is to ensure that the clock ticks sent to all clock domains arrive at the same time. It is diffi-
cult to implement this strategy because of the requirements imposed on the interconnections
of the various regions. In addition, this strategy does not solve the problem of high power
consumption associated with buffering of high frequency clock signals.

Even though the cost is high, clock tree or grid is still attractive for industry for now
because of it is a mature method for synchronizing the chip and is well supported by current
EDA tools. According to the recent published papers of industry, Sumsung’s new 28 nm
mobile application processor[54], Applied Micro’s 3GHz 64b ARM v8 Processor [70] uses
a hybrid structure of H-tree and clock mesh.

However, it is obvious that this method is not scalable. With the increase of circuit com-
plexity and number of cores in a processor, centralized clock generation will be too expensive

1.1. Area of focus 3

to realize. A different way of thinking consists in partition a large chip into local clock ar-
eas (domains) [71, 42, 26, 41]. These domains are also known as isochronous zones [4] or
Synchronous Clocking Areas (SCA) [21](cf. Fig. 1.1). These zones are small enough so that
clock distribution inside can be achieved without any difficulty by conventional techniques.
The size of the zone is determined by the maximal clock signal propagation delay inside the
zone that would not violate timing constraints of the circuit. This delay depends on process
technology and wire routing, hence the zone does not have an exact dimension. An empirical
number of gates/latches inside the zone is approximately 200-300 thousands.

The communication inside the SCAs is synchronous, thus the problem of global commu-
nication is reduced to communications through the borders of the zones. The communication
between the blocks situated in different SCAs can be synchronous or asynchronous. In the
first case the chip is GSLS (Globally Synchronous Locally Synchronous), in the latter case
the chip is GALS (Globally Asynchronous Locally Synchronous).

Because of the difficulties of global synchronization, SoC engineers orient their choice
toward the GALS[37]. This is achieved by using bi-synchronous interfaces (ex. FIFO)
guaranteeing the signal integrity at price of design complexity and increased latency. More-
over, in asynchronous circuits, the reliability is difficult to guarantee at design stage for two
reasons. First, an asynchronous system is analog, because the time is continuous, and its
exhaustive verification is impossible. Second, the metastability risk may be worse than usu-
ally expected, because the clocks of SCAs are not really fully independent. Indeed, these
clocks are derived from a single input clock and distributed to different modules. Their
relative phase shifts depend upon fast and slow changing parameters like aging (slow), tem-
perature (medium speed), and voltage (fast). Metastability could occur for certain values of
these parameters. During a short period of time, slow and medium speed parameters do not
change, leading the metastability to reoccur repetitively, so increasing the risk of the system
failure[50].

Therefore, although by using GALS there is no more worry about mismatch between
clock signals in different domains, it gives away the advantage of global synchronous circuit
like reliability, deterministic behavior and high communication rate. Loosely synchronous
[58] arises when some bounds on the frequencies or phases of communicating blocks are
known. In this style, if the clock generation method ensure that timing requirements are met,
the handshaking is unnecessary for data transfer, resulting in higher circuit performance.
However, synchronizers and FIFOs are still necessary, so metastability is not avoided. More-
over, to determine the optimal size of FIFO buffers, a timing analysis is necessary to bound
how far the relative phase difference between the sender and receiver may drift. This kind of
timing analysis is not yet common for on-chip timing and not supported by EDA tools.

This work contributes to this subject by studying an distributed clock generation method
for synchronizing a large circuit. It is addressed to the designers developing GSLS circuits:
the proposed solution is an alternative to traditional global clock distribution techniques.

4 Chapter 1. Introduction

The following section presents an overview of the distributed clock generation proposed
during HODISS project.

1.2. Environment of the PhD project: the starting point and motivations 5

1.2 Environment of the PhD project: the starting point and

motivations

This PhD work is deployed in the framework of a research project at LIP6 laboratory focused
on techniques of alternative clocking, started at 2007 and funded by two consecutive ANR
grants (HODISS, 2008-20012 and HERODOTOS, 2011-2014). The project was focused on
a study of a particular architecture of clock generation, based on a network of oscillators
coupled by a network of All-Digital Phase Locked Loops. The goal of the project is a
development of a novel clocking technique and its validation by design of two IC prototypes.
My PhD thesis is directly related to this objective. Before my arrival, the project were carried
out by a PhD student Eldar Zianbetov who finished his PhD when I arrived, and a post-
doctoral researcher Mohammad Javidan. Since the starting point of my PhD project was
the result obtained by the previous work, in this section I will summarize the state of the
project at that time. In Subsection 1.2.10 I will explain the shortcoming and challenges which
motivated the opening of my PhD position, and in Section 1.3 I will present the objectives of
my PhD.

1.2.1 Network of coupled PLLs for clocking: history of the concept

In 1995 Gill Pratt and John Nguyen proposed a distributed clock generator based on network
of coupled analog PLLs [39]. Our work is based on this kind of architecture. For this reason,
this subsection provides essential information about that.

The proposed clock generator belongs to the family of multioscillator architectures based
on a network of coupled oscillators. In such a clocking scheme, Fig. 1.3, a chip is partitioned
into local clock areas, each of them having its own clock generator (oscillator) which must be
synchronized with its neighbors in the phase domain. The goal of the distributed PLL(phase-
locked loop) network is to synchronize each oscillator in phase and in frequency∗. In a steady
state, such a network is a source of fully synchronous distributed local clocks.

(SCA)
Synchronous Clocking Area

Clock source
with conventional
clock distribution

chip boundary

Figure 1.3: Basic idea of multioscillator clocking approach

∗A synchronization in phase implies a synchronization in frequency

6 Chapter 1. Introduction

The architecture proposed by Pratt and Nguyen is a 2 dimensional Cartesian mesh net-
work (cf. Fig. 1.4(a)), where the nodes are the local clock generators and the arcs represent
the coupling links between these local generators. Each local generator is linked only with
its immediate Cartesian neighbors. In such a topology, a global distribution of clock signal is
replaced by local signal transmission using short coupling links. This is the main advantage
of such an architecture comparing with centralized clock generation approaches.

CLK i,j

Error
combiner

Distributed PLL

CLK i,j-1

PFD

CLK i+1,jPFDCLK i-1,j PFD

CLK i,j+1

PFD

Divider

/N

Total error

Local high freq. clock

Local divided clock

cl
oc

k
to

 c
irc

ui
tr

y

Proportional path

Integral path

Z -1

CLKFLT

Control signal

DCO

Digital PI filter

NODE i,j

Figure 1.4: Topology of the proposed clock network and architecture of the network
node

The coupling between the oscillators is implemented in the phase domain via phase com-
parators, Fig. 1.4(b). Each phase comparator measures the phase error between the neigh-
boring two oscillators. This measure is then used by the control circuit associated with the
oscillator in order to provide a control signal forcing the oscillator to synchronize with its
neighbors. The control signal impacts directly the frequency of the oscillators – which is a
derivative of the oscillator phase. For each oscillator a, the phase error ea,b is defined as the
difference between its own phase and the phase of its neighbor b. The phase φ and the phase
error are defined modulo 2π: the most common definition of the phase error is [39]:

ea,b = (π+φa−φb) mod 2π−π. (1.1)

According to this definition, ea,b can have values in the interval [−π,π]. The phase error
"seen" by the oscillator b between b and a is eb,a = −ea,b. For this reason, each phase
comparator is associated with two oscillators and generates two phase error signals e and
−e.

Fig. 1.5 presents an example of an autonomous (without input reference signal) network
composed of two oscillators. In a more complex network, each oscillator (i, j) receives ni, j

errors with its ni, j neighbors (Fig. 1.4). These errors are processed by the control block
including an error combiner and a loop filter. The error combiner can be in the simplest
case a weighted adder. The filter processes the combined error signal called Total error so to

1.2. Environment of the PhD project: the starting point and motivations 7

+

Phase
comparator

Network interconnet
Oscillator a

CLKbCLK

Oscillator b
Node bNode a

Node a Node b a

ea,b ea,b-

Figure 1.5: Phase coupling between two oscillators

generate a control signal on the oscillator input. The objective of the control is to keep at the
signal Total error close to zero.

It has been proved that such a system has a stable operation mode in which all oscillators
have the same phase. The existence of this mode is conditioned by a right choice of the
network parameters, in particular, the parameters of the control blocks of the nodes. It has
been shown that apart from the mode in which all oscillators have the same phase, there are
several modes in which a fixed phase shifts between the oscillators exists. Pratt and Nguyen
studied this phenomenon and indicated several solutions for the selection of the desirable
stable synchronous mode. This issue is discussed in Subsection 1.2.9.

The architecture proposed by Pratt and Nguyen has been successfully implemented by
Gutnik and Chandrakasan [15]. The implemented chip contains 4×4 voltage controlled
oscillators (VCO) synchronized by a PLL network.

The analog nature of this system is its main drawback. The clock generator is usually
integrated with the digital blocks which use the clock signal. The performance of an analog
PLL in a digital environment may be drastically degraded by perturbations due to switching
in the digital circuits. Moreover, using analog PLL network for clock generation makes
technology migration more difficult and reduces the design portability of the overall SoC.

For this reason, the project carried out at UPMC is focused on a digital architecture of the
network of PLL for local clock synchronization[43]. In the next subsection we present the
principles of digital phase synthesis and its advantages for the distributed clock generation.

1.2.2 Digital phase synthesis

This subsections explains how all-digital PLLs can be used for generation of clock for large
digital circuits.

The principle of digital phase synthesis can be illustrated by a single All-Digital Phase-
Locked Loop (ADPLL) as an example. Known since a long time but actively used since one
decade, the digital PLLs has recently gained ground on the analog PLLs [55]. The ADPLL
operates following the same principle as conventional analog PLL, and functionally has the
same structure (Fig. 1.6).

8 Chapter 1. Introduction

MDPC N DLF

DCO

Divider

/N

Reference
clock High frequency

clock

Figure 1.6: Block diagram of the ADPLL

An analog phase comparator generating a signal proportional to the phase error is re-
placed by a digital phase comparator (DPC), which generates a digital code proportional to
the error. This code is processed by a digital loop filter (DLF). Thereafter, the digital signal
from the filter output is used to control the Digitally-Controlled Oscillator (DCO) directly.
The divider defines the ratio between the reference (input) and output frequencies of the
ADPLL, i.e. the frequency multiplication factor.

A digital PLL is a system processing mixed analog/digital signals: the target control
quantity is analog (the phase), thus in a broad sense, the DCO and the digital phase com-
parators are digital analog converter(DAC) and analog digital converter(ADC) respectively.
However, as it will be shown in Chapter 3, these two blocks can be implemented with digital
cells. Such a circuitry is weakly sensitive to the perturbations generated by digital circuit
environment. Hence, the drawbacks usually associated with analog circuits are attenuated.

A digital PLL has the following particular property. The phase error (the quantity to
be regulated) is sampled by the divided DCO output signal; the same signal is used for the
digital processing block clocking. However, the DCO output signal depends on the output
of digital processing block. By consequence, an ADPLL is a self-sampled system. This
fact significantly complicates the system analysis; the properties of the ADPLL network
related to the self-sampled operation were studied in the frame of the PhD project of Jean-
Michel Akré [2]. Comparing with analog frequency synthesis, the digital phase synthesis
has numerous advantages:

• Use of digital design techniques.

• Reconfigurability and programmability.

• Immunity to perturbations.

These advantages of digital phase synthesis inspired the research team at LIP6 to study
the possibility of synchronization of an array of oscillators by a network of all-digital PLLs.
A first prototype of such system was designed in CMOS 65 nm technology. The prototype
implemented a 4×4 network with 16 nodes. It is presented in the next section.

1.2. Environment of the PhD project: the starting point and motivations 9

1.2.3 Presentation of an ADPLL network prototype designed at LIP6

prior to my PhD thesis

Fig. 1.7 presents the architecture of the network and the location on different blocks on a
chip. A chip is divided into zones we call "SCA" (Synchronous Clock Areas, similarly as in
GALS literature). In the center of each zone there is a digital loop control filter and a DCO
(Filter/oscillator block (FO) in Fig. 1.7). Each phase frequency detector (PFD) is shared by
two neighboring SCAs.

The structure of one network node (NODEi, j) in this specific ADPLL network is dis-
played in detail in Fig. 1.8. Compared with an analog PLL network in Fig. 1.4(b), it uses
digital phase/frequency detector, a proportional-integral (PI) digital loop control filter, and
a digitally controlled oscillator. Four clock signals generated by neighboring nodes around
NODEi, j are used as references. PFDs quantize the phase differences between these ref-
erence signals and the locally generated divided clock. These quantized binary codes are
summed by Error combiner and then processed by the PI filter, which updates the control
signal for DCO at each cycle. The PI filter is sampled by the local divided clock, by conse-
quence, this is a self-sampled system.

The following subsections Subsection 1.2.4 to Subsection 1.2.6 present the principles and
implementations of these blocks designed in LIP6, and emphasize the features specifically
related to the digital nature of this system.

1.2.4 Phase frequency detector (PFD)

PFD principle

A phase comparator is a device measuring the difference between phases of two periodic or
quasi-periodic signals. Modern PLL circuits use phase comparators providing the sign of the
phase error [14]. They are usually called phase-frequency detectors (PFD), for the reason
which will be explained later. In this document, the following convention is used: the input
signals of the phase comparator are named ref (signifies the reference clock) and div (signify
the divided feedback clock), and we concern their rising edges. When the rising edge of ref
is leading, the phase error is positive.

The main difference between digital and analog PFD, is that the digital PFD generates
a digital value of the error immediately after the end of the measurement, and the result
is stable until the next measurement. Whereas existing analog PFDs codes the measured
phase difference with a PWM(pulse width modulation) signals [14]. A confusion is often
made between analog PFDs composed of digital components but whose output information
is contained in the widths of output pulses (sometimes called "digital") and a digital PFD
defined in the present paragraph. These PFDs using PWM signals are analog because their
analog pulses are continuously variable analog quantities.

10 Chapter 1. Introduction

FO

P
FD FO

P
FD FO P
FD FO

PFD

FO

P
FD FO

P
FD FO

P
FD FO

PFD PFD PFD

PFD PFD PFD PFD

FO P
FD FO P
FD FO

P
FD FO

PFD

FO P
FD FO

P
FD FO

P
FD FO

PFD PFD PFD

PFD

+

SCA00 SCA01 SCA02 SCA03

SCA04 SCA05 SCA06 SCA07

SCA08 SCA09 SCA10 SCA11

SCA12 SCA13 SCA14 SCA15

+

Reference
clock

PFD

PFD

FO

Figure 1.7: Structure of the first ADPLL network

CLK i,j

Error
combiner

Distributed PLL

CLK i,j-1

PFD

CLK i+1,jPFDCLK i-1,j PFD

CLK i,j+1

PFD

Divider

/N

Total error

Local high freq. clock

Local divided clock

cl
oc

k
to

 c
irc

ui
tr

y

Proportional path

Integral path

Z -1

CLKFLT

Control signal
DAC VCO
#/^

DCO
Digital PI filter

NODE i,j

Figure 1.8: Structure of a node in ADPLL network

In a digital PFD, the phase error sign detection is achieved with a four states finite-state
automaton. These states are described by values of two internal binary signals MODE and
SIGN. A measurement cycle starts when the MODE signal is zero and the value of the SIGN
signal has the value of the last measured error sign. In this state the automaton is ready for a
new measurement and waits for an event on one of the inputs. When an event arrived on the

1.2. Environment of the PhD project: the starting point and motivations 11

input, the MODE goes to ’1’ and the SIGN value takes either ’0’ or ’1’, depending on the
input which registered the event. After that, the automaton waits for an event on the other
input, ignoring all following events on the first input. As an event arrives on the other input,
the MODE bit goes to ’0’ and a new measurement cycle can start.

Figure 1.9: The phase/frequency detector:(a) transfer function and (b) state diagram

Hence, the SIGN signal value indicates which input receives a rising event first during
the last measurement cycle. By convention, when ref is leading, SIGN is high (a positive
phase error). Such a function is called in literature bang-bang(BB) phase detection, and the
corresponding hardware block bang-bang detector.

Considering the finite-state automaton studied above, we can note that duration of the
MODE signal provides the time equivalence of the absolute value of the phase error. This
signal can be used as an input of an analog phase detector, or passed through a time-to-digital
converter (TDC) so as to obtain a digital output, which is then combined with the sign bit
so as to obtain a signed digital result. We used the latter approach to obtain a fully-digital
PFD. Its architecture and input-output characteristic is given Fig. 1.10. Note, that the aspect
of the characteristics for small phase errors is chosen so to maximize the information carried
by the digital signal: The phase error less than one step of PFD is represented by +1 or -1
depending on its sign. Thus the minimum output of PFD is ±1. The PFD has two outputs,
the phase error eri[n] and ēri[n] =−eri[n].

BB-PFD

TDC

Arithmetic
block

SIGN

MODE

CLK1

CLK2

(b)(a)

1-bit offset
saturation

Amax

Amin

Figure 1.10: Proposed phase/frequency detector for clock network: (a) block diagram
and (b) transfer function

The dynamic range of the PFD depends on the application context, as well as on the
shape of the PFD transfer characteristic (linear or not). For this implementation, a linear

12 Chapter 1. Introduction

ref

div

SIGN

MODE

+A

-A

0

t

Figure 1.11: Principle of operation of proposed PFD: initial fault result about sign of the
frequency error can be observed at the beginning; resolved at the next cycle of operation

characteristic of the digital PFD is chosen. The linear range of the PFD may not necessarily
cover the range of±π: starting from certain value ∆φr of input error, the output may saturate.
This is because the essential operation mode of a PLL is when the synchronization is close
to be achieved. In this mode the phase error is small and falls in the linear range of the
characteristic. That allows a reduction of the number of bits of the PFD output while keeping
a high measurement precision.

The waveforms in Fig. 1.11 illustrate the operation of the circuit. The initial states of the
BB-PFD and TDC are unknown and MODE bit has low logical level. Thus, independently
of the initial state of the phase error sign, when the ref event happens, the SIGN becomes
’0’ and TDC waits for the div event, counting the time elapsed from the first ref event. After
the div event happens, the error code is ready, and the MODE bit becomes ’0’ again, waiting
for one of the events div or ref. It is very important to note that the information at the output
of the proposed multi-bit PFD is ready only at the falling edge of the MODE bit, as it can be
observed on the diagram.

Implementation of digital PFD by the LIP6 team, prior to my PhD

The bang-bang detector architecture used for this project is inspired by [59]. As mentioned
previously, the BB-detector measures the sign of the phase error and generates a time interval
corresponding to the absolute phase error value.

The detector architecture consists of two input flip-flops, the arbiter circuit filtering the
metastability, the output buffer latch and the reset logic (Fig. 1.12).

The input registers detect the input events and generate ’0’ at the outputs Q̄ as the events
arrive. The principal role of the flip-flops is to detect the first event arriving on one of the
inputs re f or div and to ignore all subsequent events arriving at the same input till the first
event arriving on the other input. In the waiting state, the outputs Q̄ are ’0’, when events

1.2. Environment of the PhD project: the starting point and motivations 13

ref

FF

R

div

FF

R

reset

Q1

Q2

'1'

'1'

TDCCLK

TDCIN

C-elem

I1

I2
I3

I4

I5
Input latch 1

Input latch 2

Store triggerArbiter

Figure 1.12: Schematic diagram of the bang-bang phase/frequency detector: taken from
[59]

arrive, the outputs Q̄ return to ’1’.

The arbiter plays two roles. The first one is the generation of the signals at the outputs
A f irst and B f irst which are ’1’ or ’0’ depending on which input either A or B receives an event
first. This information is then stored till the end of the measurement cycle. The second role
is to filter the possible metastability resulting from simultaneous arriving of events at inputs
A and B.

The principle of the metastability filter is shown Fig. 1.13. If the flip-flop goes to a
metastable state (V dd/2, V dd/2), the metastability filter composed of the transistors M1-
M4 produces ’1’ as long as the difference between the output voltages of the flip-flop does
not exceed the transistor (M3 or M4) threshold voltage. After that, the actual state of the
flip-flop is propagated to the output. This circuit makes impossible a metastable state at its
output, however, it generates a delay of unpredictable value, which is surely able to produce
a metastability in the further stages.

Figure 1.13: Proposed in [59] arbiter circuit

The bang-bang detector operates as follows. In the initial (waiting) state, the arbiter
inputs are at ’1’ level, and the arbiter has ’1’ at both outputs, keeping the buffer trigger in the
storage mode. The buffer trigger keeps the SIGN value detected from the last measurement
cycle. When one of the signals Q1 and Q2 goes low, the trigger of the arbiter is set to a
well-defined state, and after the second signal goes low, the arbiter trigger is in the storage

14 Chapter 1. Introduction

Table 1.1: C-element truth table

A B C Z
0 0 0 0
1 0 0 Zn−1
0 1 0 Zn−1
1 1 0 Zn−1
0 0 1 Zn−1
1 0 1 Zn−1
0 1 1 Zn−1
1 1 1 1

mode. If the falling edges on A and B inputs of the arbiter arrive simultaneously or with a
vary small time interval, the flip-flop of the arbiter can trap into a metastable state. In this
case, the arbiter outputs ’1’. In this case, the output buffer trigger is in the storage state, and
it outputs the sign value detected from the last measurement cycle. If the phase error is far
from zero and if there is no metastability problem, the sign value is defined just after the
arriving of the first event (after the flip-flop delay). Otherwise, the correct value of the phase
error sign may be established on the output with a delay whose value is random.

The buffering RS trigger is needed to store the value of the phase error sign during the
measurement cycles.

The truth table of the Muller C-element is given in Tab. 1.1. Its role is to generate a reset
signal for the input flip-flops only when two conditions are fulfilled simultaneously:

• Events are detected on both inputs by the input registers

• The arbiter is out of the metastable state, and the output of the buffer register is set to a
well-defined state. This condition is verified by the combinational logic composed of
gates I1-I3

The reset of the input latches marks the end of a measurement cycle. The duration of
this reset pulse is determined by the loop delay: C-element keeps the value ’0’ till the input
registers reset their states and the arbiter’s trigger comes to the state with ’0’ at both outputs
(and ’1’ at the outputs of the metastability filter). This state corresponds to an initial state of
the bang-bang detector.

As we said at the beginning of this subsection, the second role of the bang-bang detector
is a generation of the MEASURE signal whose duration is equal to the time equivalent of
the phase error. This time interval is then quantized by the TDC. The MEASURE signal
is delimited by two events T DCIN and T DCCLK generated by a combinational logic from

1.2. Environment of the PhD project: the starting point and motivations 15

the outputs of the input latches (Fig. 1.12). The event T DCIN marks the start of the time
interval, T DCCLK marks its end.

A simple architecture using delay chains is applied for the TDC design in the first test
chip. The typical resolution of a delay chain has the same order as the elementary buffer
delay available in the technology. For CMOS 65 nm this is 30 ps. Hence, for the project
HODISS, 30 ps is defined as TDC resolution. The dynamic range of the phase comparator
(−∆φr,+∆φr) was chosen to be−π/4,π/4. For the nominal output frequency 1 GHz divided
by 4, ∆φr corresponds to 500 ps. This range needs about 15 measurement steps, which can
be coded by 4 bits. With one bit added for the sign of phase error, the output PFD word has
5 bits.

The proposed architecture of the TDC is based on a tapped delay line, and is inspired by
the architecture presented in [33]. The delay line implements a discrete set of time (delay)
values defining the output ADC grid. The time interval to be measured is compared with
values of this set, and a corresponding digital code is produced. This architecture is similar
to flash ADC, where measured signal is compared to discrete reference levels. The time
interval to be measured ∆T is defined by the starting and ending events given by the rising
fronts of the signals T DCIN and T DCCLK. The starting event is applied to the input of the
delay line. If initially all output buffers had ’0’ values, after the rising front on the signal
T DCIN there is a propagation of ’1’ through the line. The depth of this propagation is
proportional to the elapsed time. The latches detect its propagation depth through the delay
line during the measured time interval. Hence, the outputs of the buffer can be considered as
a digital chronometer giving the digitized time elapsed from the starting event. The latches
produce the snapshot of the state of the delay line at the moment when the ending event
arrives. The obtained thermometer coded word is then converted to a binary code and is used
to generate the output phase error code of the PFD.

The implemented TDC uses 14 delays which provide 15 quantization levels (0-14τT DC,
τT DC is resolution of TDC, which equals to the single delay value) including zero and the
saturation level (Fig. 1.14). The PFDout is in the range [−15,−1]∪ [1,15].

TDCIN

S0 S1 S2 S3
TDCCLK

S13S4

R

reset

R

reset

R

reset

R

reset

R

reset

R

reset

Figure 1.14: Block diagram of proposed time-to-digital converter

16 Chapter 1. Introduction

1.2.5 Digital loop control of ADPLL network node

This subsection describes the digital loop corrector of node used in the 1st prototype designed
at LIP6. The simplified architecture of this block is given in Fig. 1.8. This block processes
the phase errors between the local clock and 2, 3 or 4 neighbors issued by the corresponding
PFDs. The purpose of this block is to generate a control word for the input of the DCO. It
includes two cascaded elements: an error combining block and a proportional-integral digital
filter.

A detailed schematic of the implemented digital processing block is provided in Fig. 1.15.
The block receives four 5-bit signed binary words as inputs, and generates a 10-bit unsigned
word for the DCO control (the output of the adder ADD5). This signal is applied to the input
of the DCO. The schematic in Fig. 1.15 includes the encoder converting this input binary
code to the A, B and C signals necessary to control the DCO core. This encoder is described
in Subsection 3.3.2.

12

5

21

3

7

31

21

14 9

9

1/25

1/212

2

3

5

10

Kp

Ki A

B

C

to
 D

C
O

512
8

9

7

7

Kw1

Kw2

Kw3

Kw4

1
5

2

3

4

5

2

2

75

2

8

75

2

B2T
Decoder B

B2T
Decoder C

B2T
Decoder A

from
 P

F
D

div

Z -1

div

Z -1

div

Z -1

div

Z -1

div

Z -1

RGC

RGB

RGARGACC

RGF

A
D
D
5DIV1

DIV2

ADD1

ADD2

ADD3

ADD4

MUL5

MUL6

MUL1

MUL2

MUL3

MUL4

Figure 1.15: Error signal processing block: four input gain controllers followed by the
four-input adder, PI filter and three Binary-to-Thermometer(B2T) decoders. Shown timings
are maximal in a worst conditions.

The error combining block receives four 5-bit 2-complement coded words representing
the phase errors with neighbors. These values are passed through four gain blocks (multipli-
ers with a constant) MUL1-MUL4 and then summed using three two-inputs adders ADD1-
ADD3. The weighting coefficients of the gain blocks Kw1−Kw4 are programmable (cf.
Subsection 3.3.4). Each gain can take independently a value in the set {0,1,2,4}. These
values are powers of 2: the product is implemented as a binary shift.

The four inputs adder operates with four 7 bit operands and produces a 9 bit sum. This
adder is based on the carry look-ahead (CLA) architecture. The output of the adder ADD3 is
buffered with a register RGF. This is necessary to complain with the timing constraints and
keep sufficient timing margin. The digital block is sampled with the local divided clock (div
signal).

1.2. Environment of the PhD project: the starting point and motivations 17

The transfer function of the PI filter given in Fig. 1.8 between the points "Control signal"
and "Total error" is given by Eq. (1.2).

H(z) = α+β
1

1− z−1 =
(α+β)−αz−1

1− z−1 (1.2)

where α and β are the gain coefficients of the proportional and the integral paths respectively.

In order to multiply the configurations in which the prototype can be tested, the coeffi-
cients of the filter were made programmable. Theoretical investigations [28, 27, 3, 2] pro-
vided for the coefficients the following specifications: α ∈ {1 . . .0.03}, β ∈ {1 . . .0.00024}

The calculations inside the filter are achieved in fixed point arithmetic. For the propor-
tional part, the coefficient α is represented as a ratio of a programmable integer number and
a power of 2 integer number:

α =
Kp

25 , (1.3)

where Kp is integer in the range {0, 31}. The 9 bit input word is first multiplied with Kp then
divided by 25. The fractional part of the result is then ignored, and only the integer part on
9 bits is applied on the input of the last adder ADD5.

The integral coefficient β is defined as a ratio:

β =
Ki

212 , (1.4)

where Ki is in the range (0,212−1).

Note that the adder ADD5 before DCO receives integer values, by consequence, the
fractional parts of the results of the proportional and integral branches (yp,n and yi,n) are
rounded. The actual formula for the DCO input yn is :

yi,n = yi,n−1 +βxn

yp,n = αxn

yn = [yi,n]+ [yp,n]

(1.5)

where xn is the input of the PI filter (output of ADD3).

1.2.6 Digitally controlled oscillator (DCO)

There is an extensive literature about CMOS implementation of Digitally Controlled Oscil-
lators [72, 56, 31]. A deep study of DCO suitable for clock generation in the context of
the ADPLL network has been carried out at LIP6 prior to my PhD. This section presents

18 Chapter 1. Introduction

the key information about the implemented DCO, necessary to understand the contribution I
provided to this project.

The designed oscillator is a CMOS DCO with frequency range 999-2480 MHz and 1024
equal frequency steps within it, with highly linear and monotonous code-frequency char-
acteristic. The DCO ring includes 7 inverting stages. The frequency control is achieved
through a width modulation technique [59, 23, 36] using an array of tuning CMOS invert-
ers. A control scheme employing a mixed thermometer/weighted encoding provides a high
frequency precision and monotonicity of the DCO. This technique is a result of compromise
between the DCO precision and area economy. In addition, a frequency divider produces all
necessary clock signals for the digital filter, the local clocking zone and feedback.

DCO architecture

The ring oscillator is constituted with seven main inverters (MI0-6), each one associated
with a column of individually controlled tuning inverters (I0-I6). The oscillation frequency
is modulated by the number of simultaneously activated controllable cells. It can be roughly
considered that the input and output capacitance of a tuning inverter doesn’t depend on its
state (active or not). In this case, the load capacitance of all seven stages is constant in time.
The number of active inverters defines the driving charging/discharging current, hence, the
total delay of the chain and by consequence, the oscillation frequency. The number of stages
is chosen so to be closed to a power of 2, and is large enough to produce a well-shaped
rectangular signal [17].

Detailed architecture of the DCO is given in Fig. 1.16(a). While the main inverters are
simple CMOS inverters (Fig. 1.16(b), MI0-MI6), the tuning inverters are connected in paral-
lel to each stage and distributed over all 7 stages of oscillator. Each tuning cell is a control-
lable inverter associated with a local control logic decoding the row and column actuation
code (Fig. 1.16(c-e)). These tuning elements are organized in three arrays implementing a
coarse and a fine frequency tuning.

Coarse tuning

The coarse tuning is achieved by two arrays of identical tuning cells (Fig. 1.16(c,d)). The
first array consists of 224 (7 stages × 32 rows) coarse-tuning inverters (CTI) (Fig. 1.16(c)).
The second array consists of 42 tuning cells (7 stages × 6 rows). 32 cells of second array
are called "additional coarse-tuning inverters" (Fig. 1.16(d), CTIA); they are used for virtual
extension of the number of the columns in array to 8 (a power of 2), in order to simplify the
decoding of the binary input word (cf. Section 1.2.6). The 11 remaining cells of the second
array are used for the oscillation frequency trimming. CTI and CTIA total 256 identical
elements and are designated as #000–#255. Together, they provide 28− 1 equal frequency
steps.

1.2. Environment of the PhD project: the starting point and motivations 19

MI0 MI1 MI5 MI6

FTI0 FTI1 FTI2

R
o

w
s
 a

n
d

 c
o

lu
m

n
s
 c

o
a

rs
e

 t
u

n
in

g
 d

ig
it
a

l
c
o

n
tr

o
l

Retiming register
3 fine tuning tri-state

inverters (FTI)

7 x 6 additional coarse

tuning tri-state inverters (CTIA)

7 x 8 coarse tuning

tri-state inverters (CTI)

Dividers and output buffers

(a)
7 x 8 coarse tuning

tri-state inverters (CTI)

7 x 8 coarse tuning

tri-state inverters (CTI)

7 x 8 coarse tuning

tri-state inverters (CTI)

(b)

A7

A6

B4

S
ta

g
e

 5

M1

M2

M4

M3

S
ta

g
e

 6

#062

(c)

A5

A4

S
ta

g
e

 5

S
ta

g
e

 6

S
ta

g
e

 4

M1

M2

M4

M3

#047

M1

M2

M4

M3

C
1

(d)

S
ta

g
e

 2

S
ta

g
e

 3

S
ta

g
e

 4

FTI1

HCLK

DIV16

DIV

CLK

HCLK

<9:0>
<9:2>

<1:0>

DCO control

-4-2 -2: : :

R
e

ti
m

in
g

 r
e

g
is

te
r

Rows fine tuning digital control

div

div

M1

M2

(e)

S
ta

g
e

 5

S
ta

g
e

 6

MI1

HCLK

Figure 1.16: DCO architecture: (a) structure, (b) main inverters, (c) circuit diagram of the
coarse tuning cell, (d) circuit diagram of the additional coarse tuning cell, (e) circuit diagram
of the fine tuning tuning cell

Figure 1.17: Virtual extension of the 8th stage of the oscillator principle

Fig. 1.17 presents the principle of virtual extension of stages. The CTIAs are considered
by the control blocks as if they were at the 8th (or 23) stage of the DCO.

Fine tuning

Fine tuning is implemented with three identical fine-tuning inverters (Fig. 1.16(e), FTI0-
FTI2) connected to the stages 1, 3 and 5. These cells are smaller than the CTI and CTIA cells,

20 Chapter 1. Introduction

and provide 4 "small" frequency tuning steps inside each coarse tuning step. Together with
coarse-tuning inverters, these fine-tuning cells allow 1024 DCO frequency steps. The size of
transistors in FTI cells is defined by the dimensions of transistors in CTI/CTIA divided by
the number of the fine tuning steps corresponding to each coarse tuning step (size ratio 1:4).
The number of fine tuning steps must be a power of two for control simplicity, and was set
to 4 as a compromise between the precision (monotonicity may degrade when the number of
fine tuning steps increases) and the obtained gain in the overall number of frequency steps.

Control algorithm

The goal of the digital control circuit is to generate the individual command signals for all
tuning cells from the 10 bits binary input signal. The whole array is controlled with three
thermometer signals A, B and C, whose integer values are derived from the input 10 bit DCO
binary code W following the equations which are very easy to implement in digital circuit:

A =W%32+1
B = (W modulo 32)%4
C =W modulo 4

(1.6)

where % means the integer division. Note that the bit A0 of the thermometer coded A bus is
set as always 1 by this formula.

The logical equation for individual enable signal of the coarse tuning inverters is given
by:

ENcti i, j =

{
Ai+1∨B j∧Ai, i≤ 30;
B j∧Ai, i = 31;

(1.7)

where i ∈ {0,1, ..31} is the number of the CTI row and j ∈ {0, ..6} are the number of the
CTI column. In this formula j defines the physical columns of the array and its range doesn’t
include the virtual extended row.

For the additional coarse tuning cells implementing a virtual row the logical function is
given by:

ENctia i = Ai+1, i = 0...30. (1.8)

Here i is the index of additional cell equal to the index of the CTI row completed by this cell.

The individual enable signals for FTI are:

EN f ti i =Ci (1.9)

where i = 0..2, i is the index of the FTI cell.

All the tuning cells have the same geometrical constraints as the standard design kit cells
and are controlled by digital signals, making the block compatible with digital circuits such
as the filter.

1.2. Environment of the PhD project: the starting point and motivations 21

Section Subsection 1.2.8 and Subsection 1.2.9 will present the stability issue of the AD-
PLL network.

1.2.7 Modeling of ADPLL and of ADPLL network

An ADPLL is a non-linear dynamic system. A network of coupled ADPLLs is an even more
complex system with high order. To study their behavior and performance, they should be
described by models. Transistor level modeling is the most precise way to model a circuit.
However, for a circuit with a large amount of transistors, simulation at this level takes long
time. Moreover, transistor level modeling is not flexible if we need to modify system param-
eters. For these reasons, some abstract models at behavior or analytical levels are necessary.
By consequence, models at different levels have been created for different steps during the
design procedure.

Transistor level modeling — Transistor level modeling is a precise tool for the charac-
terization of an ADPLL. We can use this model to simulate the system as close as possible
to the real circuit to be fabricated. For instance, we can verify the system performance at
different process corners (TT, SS, or FF) or with variations of PVT (process, voltage and
temperature). Transistor-level modeling is unavoidable for mixed signal blocks (TDC and
DCO), whereas purely digital blocks may be accurately modeled by VHDL/Verilog descrip-
tion. Transistor-level description of the ADPLL network is presented in detail in Chapter 3.

HDL modeling — Models written in VHDL or Verilog HDL describe systems with
discrete (digital) signals defined on discrete or continuous time. It allows a time simulation of
an ADPLL network, and an observation of its behavior in transient and steady-state regimes.

A VHDL language provides a possibility to model a system at different abstraction levels.
At the top of the hierarchy, macroscopic behavioral modeling provides only correct relations
between the inputs and the outputs. A structure model represents the topology of the real
digital circuit, and may be more or less detailed. The most detailed model accounts for all
elementary digital gates realizing the function of the block. If the Design Kit (DK) of the
used technology contains reliable models of the used gates with correct timing information,
the simulation provides a result very close to the real behavior of the chip.

In the ADPLL, there are two digital blocks: the PFD and the PI filter. A PI filter can be
modeled by its structure in VHDL (cf. Fig. 1.15), with simplified behavioral modeling of
all sub-blocks (adders, multipliers, etc.). Otherwise, a detailed gate-level model of the filter
provides a very reliable information about the filter behavior. In our project, both mentioned
models of filter were used at different design stages.

A TDC can also be modeled at a high abstraction level by a macro-model, but it can
also be described by the netlist (interconnection) of elementary digital gates. However, a
TDC belongs to the class of asynchronous logic circuit, and the DK we used did not contain

22 Chapter 1. Introduction

specific gates (e.g., Muller C-element, arbiter, delays, ...), we did not used a VHDL model
of the TDC for low structural level.

Since the physics of the DCO operation use techniques issued from the analog electronics
(the frequency control by the transistor width modulation, cf. Section 3.3), only high-level
behavioral model was used for the DCO. It is implemented with a look-up table containing
the output frequency value corresponding to each value of the input control word. The output
clock is expressed as:

c l k <= not c l k a f t e r p e r i o d

Details of these models can be found in Appendix A.

In some cases, VHDL models defined at high abstraction level may be used for the syn-
thesis of the electrical schematic of a digital block by tools such as Design Compiler of
Synopsys. In our project, this was only used for the filter design. Indeed, only this block
was compatible with the requirement of a standard "compiled" digital design flow available
in our environment.

By consequence, we have divers models of each block in behavior level, structural level
and transistor level. And we note that there is a trade-off between modeling precision and
simulation speed at different levels. Thus the study requires an open platform able to in-
tegrate different levels of description. In our study, we use the AdvanceMS tool to build a
mixed-level model of system (VHDL, Verilog and transistor-level Spice), and AMS (analog
mixed signal) simulations can be performed using this model.

Mathematical modeling — The models presented above are complex, and can only be
solved numerically. However, at the earlier stages of the design, it is desirable to have sim-
plified analytical models of the system, providing simple relations between the system pa-
rameters and the main system performance. So, we need a mathematical (analytical) model
to study the transient behavior of a single PLL and to know how the parameters of individual
blocks affect the behavior of such a system.

However, an establishment of truthful simplified analytical models is difficult, because
of two features of an ADPLL: the self-sampling and the discretization of the signals. An
ADPLL circuit is a self-sampled system because the loop-filter operates on the irregular
rising edges of the divided clock of DCO.

For this reason, in this PhD project, linear time-invariant (LTI) models with both discrete
time and continuous time have been created. Fig. 1.18 shows the LTI model of ADPLL
for Z-domain transfer function calculation. Quantization is not modeled and the sampling
frequency is fixed at the nominal DCO output frequency divided by 4, which is the division
factor used in our circuit design. The transfer function of each block in the model is expressed
as:

1.2. Environment of the PhD project: the starting point and motivations 23

x

y
Proportional path

Integral path

Z -1

Total error

Control code

PFDK Z -1

Z -1
DCOH

Reference signal
i

i

Figure 1.18: LTI model of ADPLL for Z-domain transfer function calculation

HPFD = KPFD =
1

∆TT DC ·2π fs

HFilter = α+
β ·Ts(Z +1)

2(Z−1)
·Z−2

HDCO =
KDCO ·Ts(Z +1)

2(Z−1)

(1.10)

where KPFD is the gain of PFD, which is reversely proportional to the resolution of TDC
(∆TT DC). α and β are coefficients of the proportional and integral paths of PI filter (cf.
Subsection 1.2.5). The existence of Z−2 can be explained by the two cycles delay introduced
by the two registers in the loop filter (cf. Fig. 1.18). The gain of DCO (KDCO) is proportional
to the tuning step of DCO (∆ fDCO).

By consequence, the system is described in this analytical model using parameters of its
blocks. Using this model we can define the generic analytical relation between the system
parameters and the performance (cf. Subsection 2.3.2).

The VHDL and transistor level models presented above can easily be extended for mod-
eling of a network of ADPLLs. Functionality and performance of the network can be verified
by performing time simulations at these levels.

However, interconnecting several PLLs in a network increases the order of the system,
making the analytical modeling of a network complex. A robust design procedure guaran-
teeing the global stability of network is presented in the next subsection.

1.2.8 Stability of the PLL networks

In the context of the HODISS project, our colleagues from the CEA-LETI and AMPÈRE
laboratories developed a mathematical tool based on the control theory. It allows synthesiz-
ing the node loop filter for the global stability (cf. [3, 27, 28, 29, 2]). The model used in this
mathematical tool is in continuous time without considering quantization (cf. the preceding
subsection).

24 Chapter 1. Introduction

The design procedure is based on the decentralized H∞ control technique making use
of the dissipative properties of the system [47]. The system is first represented as a loop
including a sub-system of a unidirectional chain of the network nodes T̃ , and a sub-system M̃
representing interconnections in the network (Fig. 1.19). ref represents the input phase of the
reference, ε represents the phase errors between neighbors which should converge to zero. In
this way, the procedure of filter synthesis is done in two steps: firstly, the local stability (that
of the matrix T̃ is ensured), then the global stability is guaranteed. The procedure provides
to the implementation engineers the range of stable PI filter coefficient values.

Figure 1.19: Representation of the PLL network for stability study in [47]

1.2.9 Multiplicity of synchronization modes

The work of Pratt and Nguyen in [39] highlighted a fundamental problem specifically related
to the PLL networks. A PLL network may have several modes in which the local oscillators
are synchronized in frequency and in phase, but with fixed phase errors between the oscil-
lators. The residual errors may be zero or not. In our project, only the mode in which the
phase errors are zero is suitable for the clocking application. However, when several syn-
chronization modes exist, the actual mode depends on the initial conditions of the system –
which cannot be controlled in practice. This section presents this phenomenon in details and
provides a review of the solutions to this problem.

Definition of the problem

The multiplicity of synchronization modes has been called mode-locking in the literature.
It is caused by the cyclic (modular) nature of the phase: the transfer function of the phase
comparator is defined modulo 2π (Fig. 1.20).

Such a nonlinear transfer function of phase comparator and a large number of degrees of
freedom of a PLL network define multiple synchronization modes. Depending on the initial
conditions, the system can converge either to desired state (all oscillators has the same phase)
or to undesirable state (oscillator phases misaligned).

The mode-lock phenomenon is illustrated on the example of a 4 nodes network Fig. 1.21,
in which the error processing block receives the sum of the errors with two neighbors. The

1.2. Environment of the PhD project: the starting point and motivations 25

Figure 1.20: Cyclic nature of the conventional analog linear phase comparator

error processing block operates so to keep the Total error equal to zero. The Total error can
be zero if :

1) the phases φ1, φ2, φ3 and φ4 of the oscillators are equal

2) the phases have the values given in Fig. 1.21.

In the first case, all phase errors of the network are obviously zero, their sum is zero as
well. For the second case, the phase errors are non-zero, but the Total error value is zero.
For example, for the Node 1: the phase difference with the Node 2 is φ1−φ2 =+π/2, which
is compensated by phase difference with the Node 4 φ4−φ1 = −π/2. In this way, the sum
for all nodes of this network is zero despite the unequal phases of all oscillators. It can be
proven that such a state is stable; once acquiring this operation mode, the network remains
in it, since the control objective (zeroing the Total error quantity) is fulfilled.

For a network with more complex topology (more nodes), several undesirable states can
exist, with fixed phase errors of any values. Hence, in a more complex network, the probabil-
ity of appearance of undesired synchronization modes increases. Therefore, it is important
to take into account this phenomenon during the design of the network. In the following sub-
section we present the solutions we have studied to design a stable network, spontaneously
converging to a state where all oscillators are synchronized in phase and frequency.

=01 2 = /2

3=
4=- /2

- /2

+ /2

+3 /2=- /2

+ /2

Figure 1.21: Illustration of the mode-locking phenomenon in a 2×2 mesh network

Synchronization mode selection: dynamic network reconfiguration

This technique is based on the fact that each stable mode of a dynamical system has a basin of
attraction: if the system starts from an initial condition corresponding to a point in this basin,

26 Chapter 1. Introduction

the system settled up to the corresponding stable mode. The idea of the method suggested
by Pratt and Nguyen[39] is to bring the system to a state close to the desired synchronization
mode by configuring the network to be unidirectional as the left mesh in Fig. 1.22 [45, 44].
When the system is synchronized, the links between the oscillators are reconfigured so to set
the network in the bidirectional configuration (right one in Fig. 1.22). Since in this case the
bidirectional network starts in a state close to the desired synchronization, it remains in this
mode.

Figure 1.22: Dynamic reconfiguration of the network from uni- to bidirectional

This method is particularly suitable for digital implementation since it is very easy to
reconfigure the network and to distribute the global signal ordering the reconfiguration. We
note that in the original publication of Pratt and Nguyen this technique was judged as being
inappropriate for the analog implementation.

In this technique it is not necessary for the digital phase comparator to have a large
dynamic range. It can be shown that even if the phase comparators have only one bit of res-
olution (if they detect only the sign of the phase), the unidirectional network still converges
to a state with the phase errors close to zero. However, when the network switches to the
bidirectional configuration, the phase comparator characteristic should be linear with posi-
tive slope at the phase error values less than ∆φr. Hence, the phase comparator characteristic
may have a limited linear range as in Fig. 1.10(b), as far as the residual error obtained in
unidirectional mode is within this range.

This technique is selected for the desired synchronization mode selection in our project.
The validation of this method has been done by simulation and on a FPGA platform. Details
of this implementation can be found in Chapter 5.

1.2.10 Discussion of test results of the implemented prototype

A network of coupled ADPLLs (Fig. 1.7) was implemented in CMOS 65 nm technology.
The test of the implemented chip consisted in measuring the phase errors between the local
oscillators of the network. This measurement was made out of chip, on signals with divided
frequency. An example of measured outputs is given in Fig. 1.23: the 16 nodes of the network
have very close phases, suggesting a synchronization of the network.

1.2. Environment of the PhD project: the starting point and motivations 27

Fig. 1.24 displays the measurement results of the quantized phase errors among the four
clock signals the most remote from the reference clock input. The maximum error be-
tween local clocks are within ±60 ps range, which signifies that timing errors do not exceed
±2 steps of PFD quantization step. This result is the best one can achieve with an ADPLL
network, according to our study. Indeed, it has been demonstrated that when such a network
is synchronized, there are always some neighboring clocks whose residual errors are more
that one PFD quantization step. By consequence, in the best case, the maximum phase error
between any two neighboring nodes has a value between one and two quantization steps.
As show the measurement, the prototype operates in this best case, where the errors don’t
exceed 2.

Figure 1.23: Synchronous clocks in the bidirectional configuration

Test results of the first prototype demonstrate the feasibility of such a digital distributed
clock generator. However, during the design and test process, we find some problems to be
resolved and some points to be improved:

1. Proof of scalability. From measurement results of the first prototype we observe that
although phase error is larger between two nodes in distance than between two neigh-
boring nodes, it does not accumulate linearly in function of distance. But since there
are only four nodes on the diagonal of a 4×4 network, the first prototype cannot well
demonstrate the relation between phase error and distance. To better observe this re-
lation and also to study the scalability of the ADPLL network, a larger network (ex.
10×10) is necessary. An implementation of a larger network requires an optimization
of the existing blocks, in order to minimize the power consumption of the circuit. For
example, the DCO implement in the first prototype consumes 16 mA of supply current,
which, multiplied by 100, yields 1.6 A: that is prohibitive for an IC implementation.

2. Improvement of the quality of synchronization. The TDC resolution of the first pro-
totype is limited to 30 ps due to the constraint of its structure and the minimum gate

28 Chapter 1. Introduction

Figure 1.24: Outputs of the PFDs in bidirectional configuration: Nodes 11, 12, 15 and 16

delay in 65 nm technology. To improve this value, another TDC architecture should
be used.

3. Chip characterization: on-chip phase error measurement. Last but not least, during
the measurement process we found it very difficult to measure and compare output
clock signals with picosecond precision in an off-chip way. The difficulties mainly
come from the noise on chip pads, probe, test equipment and mismatch on routing.
Actually, the off-chip measurement results provide pessimistic information about the
phase error. An on-chip method is necessary for characterizing clock error and mon-
itoring performance of large SoC. One example of this kind of circuit is the "Skitter"
circuit used in IBM processors[13].

1.3. Original contribution of my PhD project 29

1.3 Original contribution of my PhD project

The main goal of this PhD project is the design of a 10×10 ADPLL network, complemented
with an on-chip synchronization error measurement tool. The design is based on the ar-
chitecture of the first prototype with reduced size, but addresses shortcomings of the chip
mentioned in Subsection 1.2.10.

Firstly, a method aiming to reduce the residual error in steady state has been proposed. It
allows choosing appropriate TDC quantization step and DCO frequency parameters in order
to achieve a good performance with low implementation effort. Based on this study, we
designed the ADPLL blocks for the clocking network. Especially, the optimal quantization
step of TDC for the designed DCO is 20 ps, which is below the minimum delay of a logic
gate in the used technology. To achieve this value, a TDC with a new structure is designed.

Secondly, due to the high power consumption of the first prototype (186.2 mA), the
4×4 network was difficult to be extended to a dimension of 10×10. To reduce the power
consumption of the ADPLL network, we have studied the source of power dissipation. The
energy hungry blocks in this system are the DCO and the loop filter. The DCO can be
optimized by reducing the number of tuning cells thus the tuning steps (256 steps instead of
1024 steps). Less steps means less bits for the control word (8 bits instead of 10 bits), which
also simplifies the loop filter.

In fact, the high power consumption of loop filter mainly results from arithmetic oper-
ation at high rate. In my PhD project, we have designed two different kinds of loop filters,
which not only reduce the power but also accelerate the speed of error correction. The first
filter is based on the conventional architecture of a proportional-integral (PI) filter with re-
duced delay in proportional path. And the size of arithmetic operators is smaller. The second
filter is separating the frequency acquisition from phase tracking. At the steady state, only
a few LSBs of the control word are updated for phase tracking. It is not necessary to re-
calculating the whole control word each cycle. The both architectures have been designed
during the project, but only the former one has been implemented in the designed prototype
of the network. This choice is motivated by a high risk which would be present if a novel
architecture of a filter was chosen.

These designed blocks are assembled in a 10×10 network. This architecture is imple-
mented at first on FPGA and then on silicium. Different topologies are explored based on
this architecture.

For reasons explained in Subsection 1.2.10, an on-chip clocking error measurement cir-
cuit is necessary for the characterization of phase error between two clock signals in the
network (generated in nodes either next to each other or in distance). The circuit designed
in this PhD project is based on an indirect method easy to be implemented: instead of mea-
suring the value of phase error each cycle, it allows calculating the minimum/maximum and

30 Chapter 1. Introduction

mean values of clocking error during a period. By using this circuit, a precise on-chip char-
acterization of phase error is possible, thus it has a great importance in proving the scalability
of ADPLL network. It has been designed as an analog IP and placed at 4 different locations
of the chip.

In general, the structure of my work can be illustrated in Fig. 1.25.

10 x 10 Network

¤ Block assembly and integration
¤ FPGA prototyping
¤ Circuit modeling
¤ ASIC physical design and simulation
¤ Configuration exploration

PFD

¤ New TDC structure (Vernier)
¤ Reduced number of steps

¤ Novel structure:
 Separation between frequency
 acquisition and phase tracking
¤ Modified structure:
 Reduced number of bits

DCO

¤ Reduced number of
 tuning steps

On-chip test circuit

¤ Discrete device prototype
¤ Integrated IP design

Filter

Method of choosing block parameters

Objective:
¤ linking block performance and system
 performance together
¤ reducing the residual error in steady state

Figure 1.25: Structure of work contribution

1.4. Thesis outline 31

1.4 Thesis outline

This thesis is composed of three parts. The first part comprising Chapter 2, Chapter 3 and
Chapter 4 presents the ADPLL network from system level description to components im-
plementation, from analytical study to physical design. This part is deployed in a top-down
hierarchical way: The topology of proposed network is introduced in Chapter 2. The depen-
dency of residual phase error on block parameters is also studied in this chapter. Then design
of system components including clocking network cells and built-in test cell is detailed in
Chapter 3 and Chapter 4. The second part comprising Chapter 5 to Chapter 6 presents two
implementations of ADPLL network using the designed components. Implementation de-
tails and solutions to specific problems are also presented in this part. In the third part,
including Chapter 7 and Chapter 8, two ADPLL networks with improved performance are
explored. Both of the two circuits are based on the architecture presented previously but
from two different points of view. The circuit presented in Chapter 7 proposes an innovative
network topology in order to attenuate phase error propagation and reflection in the network.
The method in Chapter 8 focuses on the improvement of one single ADPLL in terms of phase
locking speed and power consumption, thus improving the ADPLL network performance in
these two aspects.

The content of each chapter is described as follows.

Chapter 2 presents the studied system. It describes the topology of the ADPLLs network
and impact of quantization in ADPLL on its operation in steady state, especially the value of
residual phase error. A method is proposed to minimize the residual phase error at a lowest
DCO and PFD circuit design effort. The chapter ends with a summary of the specifications
for each block of the network.

Chapter 3 presents the design of the blocks measuring and processing the phase error:
the digital phase frequency detector (PFD) and the digital proportional-integral filter. The
local clock generation block — digitally controlled oscillator (DCO) is also presented in
this chapter. The 4-bit PFD with 20 ps resolution is implemented with a Vernier delay line
structure. The PI filter has a coefficient-programmable feature. The 0.9-1.16 GHz 8-bit
DCO is based on a ring oscillator architecture. These three kinds of blocks are the basic
components of the clocking network.

Chapter 4 explains the reason why a special circuit for clocking error characterization is
useful, and how the analog built-in test circuit targeting at picosecond precision measurement
is designed. This block allows giving the minimal/maximal and mean values of phase error
between two clocks during a long test experience. This circuit uses differential technique so
that it has a strong immunity to PVT variation.

Chapter 5 presents an FPGA prototype of a 10×10 network of ADPLLs. This prototype
has two objectives: First, it allows validating the functionality of such a large network be-

32 Chapter 1. Introduction

fore the implementation in silicium; Second, with this prototype, we can study the relation
between phase error and distance.

Chapter 6 explains in detail the implementation of the ASIC prototype in 65 nm technol-
ogy. The chip consists in a distributed clock generator with a 10×10 dimension using blocks
presented in Chapter 3. It also contains 4 test blocks presented in Chapter 4 for clock error
characterization. Design methodology and implementation details are stated in this chapter.

Chapter 7 shows a distributed clock generator with a "swimming pool" like architecture.
This architecture is based on the network structure presented in previous chapters but ex-
plores a new configuration of the connectivity between local clock generators. Simulation
results have proved the improvement in attenuation of phase error propagation and reflection
in the network.

Chapter 8 shows another ADPLL network designed during this PhD work. It uses the
same network topology of prototypes presented in Chapter 5 and 6, but an innovative struc-
ture of digital filter. In this novel ADPLL, phase error correction functionality is separated
from frequency tracking, which shortens the frequency acquisition time and decreases power
consumption.

The report is finished by conclusions and perspectives for the development and research
associated with proposed clocking approach. The academic contribution consists in the arti-
cles published and presented on international conferences.

Chapter 2

Network of distributed ADPLLs

Contents
2.1 Introduction . 33

2.2 The architecture of clocking network proposed in this PhD project 35

2.3 Impact of quantization in ADPLL on its operation in steady state 36

2.4 Specification of the network . 46

2.5 Conclusion . 48

2.1 Introduction

As presented in the previous section, the objective of this PhD project consists in designing
an ADPLL network with a large dimension (10×10) as well as an on-chip method of phase
error characterization. From the first prototype we found that the power consumption of
DCO and filter is too large so that these two blocks cannot be reused in a network with
large dimension. To lower the power consumption, the DCO frequency range should be
reduced, the structure of filter should be improved and the dynamic range of PFD can also
be decreased so that the arithmetical calculation of the filter can be simplified. Moreover,
since prior to the first prototype, no study has been carried out on the ADPLL behavior in
the steady state, especially the dependency of residual phase error on block parameters, in
the first prototype, the quality of synchronization in steady state is limited by the resolution
of PFD.

The design of a DCO is a time consuming task. It was not the scope of my PhD. For
this reason, in my work I used DCO IP cells available in my environment, designed in the
frame of the HERODOTOS project (by LIP6 and by CEA-LETI). This chapter discusses the
methodology of choosing the appropriate parameters of DCO, PFD and filter so to minimize
the residual phase error at a low implementation cost.

This chapter is organized as follows:

33

34 Chapter 2. Network of distributed ADPLLs

In Section 2.2 we describe the topology of a 10×10 ADPLL network for clock genera-
tion.

Section 2.3 highlights the effects of quantization in the ADPLL and studies the link
between block parameters and residual phase errors. A method is proposed to minimize the
residual phase error at a lowest DCO and PFD circuit design effort.

A specification of the 10×10 ADPLL network is defined in Section 2.4 based on the
method presented in Section 2.3 and previous stability study in Section 1.2.8.

2.2. The architecture of clocking network proposed in this PhD project 35

2.2 The architecture of clocking network proposed in this

PhD project

The proposed system has a dimension of 10×10 providing clock signals for as many as 100
local synchronous clocking areas (from SCA1-1 to SCA10-10).

FO

P
F
D FO

P
F
D

FO

P
F
D

PFD

FO

P
F
D

FO

P
F
D

FO

P
F
D

PFD PFD

PFD PFD PFD

FO

P
F
D

FO

P
F
D

FO

P
F
D

PFD PFD PFD

+

SCA1-1 SCA1-2 SCA1-3

SCA2-1 SCA2-2 SCA2-3

SCA3-1 SCA3-2 SCA3-3

+

Reference
clock

PFD

PFD

FO

P
F
D

FO

P
F
D

FO

PFD

PFD

P
F
D FO

PFD

SCA1-10

SCA2-10

SCA3-10

PFD

FO

P
F
D

FO

P
F
D

FO

P
F
D

PFD PFD

SCA10-1 SCA10-2 SCA10-3

P
F
D

FO

PFD

SCA10-10

F
c
lk
(1
,1
)�
��
� P
F
D

Fref��

F
c
lk
(2
,1
)�
��
�

F
c
lk
(2
,1
)�
��
�

F
c
lk
(3
,1
)�
��
�

Fclk(2,1)����

Figure 2.1: Clocking network architecture

From Fig. 2.1 we can observe the FO block (filter + oscillator) in each SCA, generating
the clock signal for the local isochronous zone. A PFD at the border between two neighbor-
ing zones compares two clock signals and send back the phase error between them with the
same absolute value but opposite signs (e and e).

Before the implementation of this architecture, it is necessary to choose the appropriate
values of the block parameters. The following section in this chapter provides a study on the
link between the quality of synchronization of ADPLL (the residual phase error in steady
state) and the parameters of its blocks.

36 Chapter 2. Network of distributed ADPLLs

2.3 Impact of quantization in ADPLL on its operation in

steady state

Previous study presented in Subsection 1.2.8 focuses on the global stability of system, and
not on the optimization of its operation in steady state when the whole system converges.
Moreover, these studies were based on an analog model of the system, which did not account
for quantization. Indeed, in an analog PLL network with 2 integrators in each node, in
absence of noise, the residual error is zero[39]. However, it is not the case with all digital
PLLs, because the PFD and DCO, which implement signal conversion between the analog
and digital domains, introduce unavoidable quantization errors. Moreover, the digital filter
operates at fixed point arithmetic, and rounding code applied to the DCO may also be a
source of errors.

The study presented in this section provides a method aiming to minimize the absolute
phase error between reference clock and divided DCO clock in steady state at a lowest DCO
and PFD circuit implementation cost. Although this study is based on the model of one
single PLL, it has an instructive meaning for the estimation of the quality of quantization in
an ADPLL network.

This method presented in the following three subsections is summarized as follows. First,
the analysis presented in Subsection 2.3.1 estimates the relation between the residual error
in steady-state and the parameters of the DCO and PFD individually. This analysis allows a
rough selection of DCO and PFD.

Afterwards, in Subsection 2.3.2, the effect of quantization in the digital filter is high-
lighted and a solution is proposed. Thanks to this solution, for a target loop gain and a given
DCO, we can estimate the required PFD resolution.

Then in the third step (cf. Subsection 2.3.3), behavior VHDL model considering quan-
tization in the ADPLL is created. Time simulations using this model can show the residual
error in steady state with different block parameters. Simulations validate our study in Sub-
section 2.3.1 and Subsection 2.3.2 and help estimating the optimal combination of parame-
ters, which can minimize the residual phase error.

2.3.1 Step 1: Impact of PFD and DCO quantization steps on the residual

error

In this step, we study the PFD and DCO blocks separately. First, we study the limit imposed
by the finite resolution of PFD. In an ADPLL system, the residual phase error in steady state
does not exceed two steps of TDC resolution (cf. Subsection 1.2.10). Hence, in the best case
(optimal operation of the DCO and filter), the phase error expressed in time units between
neighbors ∆τ will be in the following interval:

2.3. Impact of quantization in ADPLL on its operation in steady state 37

−2∆TT DC ≤ ∆τ≤ 2∆TT DC (2.1)

where ∆TT DC is the TDC quantization step value in second. We define a parameter ∆τPFD

which characterizes the maximal absolute phase error expressed in time unit due to quanti-
zation of PFD in the best case:

∆τPFD = 2∆TT DC (2.2)

In this analysis we express the phase error in the time units, since such a phase error is
invariant with regard to the frequency division.

Now we study the limit imposed by the quantization of the DCO characteristic. The
objective of a PLL is to equalize the phase of the feedback signal coming from the DCO and
divider, on the signal of the input reference (Fig. 1.6). It means that the PLL feedback signal
have the same frequency as the input reference signal. However, whereas the input signal
can have any frequency belonging to some continuous interval, the DCO generates a signal
whose frequency belongs to a discrete grid of values. When the DCO signal passes through
a divider, the frequency values are downscaled, but remain discrete. Hence, if the PLL input
(reference) frequency is between two neighboring values of the divided grid, the PLL closed
loop generates a variable input DCO code, so that the output frequency of the DCO switches
permanently between the two corresponding values of the grid. This is done with the help of
feedback loop which minimizes the phase error.

In the analysis which will follow, we will estimate the maximal synchronization error
introduced by the DCO quantization in the best case, with an ideal input command of the
DCO, which will also be defined in the analysis.

Fig. 2.2 shows the accumulated phases of reference clock and divided DCO clock. We
suppose that the frequency of reference clock is f0 (ω0 in radian), which corresponds to a
linear phase evolution. The phase of the divided DCO output signal must approximate as
close as possible this trajectory. However, the phase of the divider output can only follow
the lines with discrete slopes defined by the DCO divided frequency grid. The slope (the
frequency) can change in function of the input DCO command word arriving with cadence
fs, where fs is the clock frequency of the PLL digital filter (cf. Fig. 1.6). If the input reference
frequency is not exactly one of the divided DCO frequency grid values, in the steady state
of convergence, an ideal control loop switches the divided output frequency of the DCO
between two neighboring values f1 (ω1 in radian) and f2 (ω2 in radian) with a cadence fs, so
to minimize the tracking (quantization) error. The maximum tracking error is at the instants
when DCO changes its frequency (∆φ1 and ∆φ2 in Fig. 2.2).

Now we search the optimal command the DCO should receive at its input in order to
minimize the tracking error. For simplicity, we limit the demonstration to the case where

(ω2−ω0)/(ω1−ω0) = P, (2.3)

38 Chapter 2. Network of distributed ADPLLs

reference clock

oscillator clock with

Ts,n-2 Ts,n-1 Ts,n Ts,n+1 Ts,n+2 Ts,n+3 Ts,n+4

Fref<

Ts

2

+
ω

Fosc

oscillator clock with Fref<Fosc

Time

P
ha

se

ω 1

ω 2

ω
2

ωω 1

0ω

1

Tsr

Ts(1-r)

Figure 2.2: Phase evolution of reference clock and divided oscillator clock: ω1 <ω0 <ω2

where P is an integer superior or equal to 1.

Fig. 2.2 presents an ideal trajectory of the phase of DCO output. The DCO output stays
at frequency ω2 during one clock cycle Ts (Ts is the inverse of the frequency of digital filter
fs), and at ω1 during P clock cycles. Evidently, the phase of the DCO output will present a
periodic signal with period (P+1)Ts.

We focus on a segment of Ts during which the DCO output frequency is ω2. The cross-
point of the the segment and the trajectory of the reference divides the time interval into two
parts: r ·Ts and (1− r) ·Ts, where 0 < r < 1. The phase error between the DCO output and
the reference signal is the largest at the beginning and the end of the segment. We define the
two values as ∆φ1 and ∆φ2 as shown in Fig. 2.2, and we look for the optimal r for any ω1,
ω2 and ω0 complying with Eq. (2.3). The position of crosspoint and the difference between
two frequencies decide the phase error absolute values in radians:

∆φ1 = (ω2−ω0) · r ·Ts

∆φ2 = (ω2−ω0) · (1− r) ·Ts
(2.4)

The maximum among these two values is the smallest if r = 0.5. Hence, we have for the
maximal phase error in the ideal case:

∆φ =
1
2

ω2−ω0

fs
(2.5)

During the operation of a PLL, the value of ω0 can be any between ω1 and ω2, by conse-

2.3. Impact of quantization in ADPLL on its operation in steady state 39

quence, the error Eq. (2.5) is the largest when ω0 is close to ω1. In this way, in the ideal case,
a DCO is able to synchronize its output with a reference signal with precision given by:

∆φDCO =
1
2

∆ωDCO

fs
(2.6)

where ∆ωDCO is the tuning step of DCO in radian/second.

This quantity can be expressed as a relative phase error normalized to the period:

errDCO =
1
2

∆ fDCO

fs
(2.7)

where ∆ fDCO is the tuning step of DCO in Hertz. It is also interesting to express the maximal
error in the time units :

∆τDCO =
1
2

∆ fDCO

fs

1
fDCO

=
1
2

∆ fDCO

fDCO
Ts (2.8)

where fDCO is frequency of DCO output. The parameter ∆τDCO is useful, because it
demonstrates that the timing error is independent of frequency divider of the DCO output.
Indeed, in this case, both fDCO and ∆ fDCO are divided.

Eq. (2.2) and Eq. (2.8) provide the optimistic estimation of the largest synchronization
error which an ideal ADPLL may achieve. In practice, the error will obviously be greater,
but the knowledge of this principal limit is important for the selection of PFD and DCO.

The equations show that the maximum phase error is function of filter clock frequency,
in other words, the speed at which the DCO input refreshes. Evidently, if we raise the filter
frequency, the maximum phase error will be smaller. However, it demands high processing
speed of the filter, which makes the timing constraint more stringent. In practice, the output
signal of the local DCO (divided by a power of 2 ratio) is used for the filter clocking. We
keep the ratio 4 between the output DCO frequency and the filter clock frequency, as in the
previous prototype of the network. Moreover, the above analysis highlights that to minimize
the phase error, the DCO input word should switch between two neighboring values (cf.
Subsection 2.3.2).

Three available DCOs were designed in my environment (cf. Tab. 2.1): one of them
issued from CEA-LETI (the partner of our project), the second one used in the first prototype,
and the third one with reduced tuning range of frequency designed in my group on the base of
the previous prototype. One of them should be selected for the prototype under development.

Tab. 2.1 displays the characteristics of these DCOs. Using these known parameters
(∆ fDCO, fc and fs), we can calculate the maximum residual phase error (∆τDCO) by using
Eq. (2.8).

40 Chapter 2. Network of distributed ADPLLs

Table 2.1: Characteristics of DCOs and maximum residual phase errors due to DCO
quantization

Mean frequency step Nominal frequency filter clock frequency ∆τDCO
∆ fDCO fc fs = fc/4

DCO 1a 3.91 MHz 742 MHz 186 MHz 14.18 ps
DCO 2b 741 KHz 872 MHz 218 MHz 1.95 ps
DCO 3c 1.01 MHz 1.04 GHz 260 MHz 1.87 ps

a DCO designed by CEA Leti
b DCO designed by LIP6 for the first prototype of ADPLL network
c DCO designed by LIP6 for the second prototype of ADPLL network

A PFD with a resolution of 30 ps was implemented in the first prototype. From Eq. (2.2)
we can get the maximum residual error due to PFD quantization (∆τPFD) is 60 ps. Tab. 2.2
shows also the values of ∆τPFD for resolutions of 20 ps and 10 ps.

Table 2.2: Maximum residual phase errors due to PFD quantization

PFD 1 (30 ps/LSB)1 PFD 2 (20 ps/LSB) PFD 3 (10 ps/LSB)
∆τPFD 60 ps 40 ps 20 ps

1 Used in the first prototype of LIP6

Now we can compare ∆τDCO and ∆τPFD to estimate whether a PFD is suitable with a
given DCO in a PLL. It should be mentioned that ∆τDCO is calculated based on an ideal PLL
control: no delay in the loop, DCO switches between two adjacent frequency grids, etc. The
maximum residual phase error limited by DCO quantization in practice should be larger than
∆τDCO displayed in Tab. 2.1.

The DCO and PFD blocks used in the first prototype are DCO 2 in Tab. 2.1 and PFD 1 in
Tab. 2.2. Apparently, ∆τDCO2 is a very small value compared with ∆τPFD1. In other words,
in the first prototype, DCO is over-precise with respect to PFD. Hence, in this PhD project,
we can release the design effort on DCO properly and try to improve the PFD resolution, for
example, to 20 ps (PFD 2 in Tab. 2.2). Moreover, we can observe from Tab. 2.1 that ∆τDCO

of DCO 1 has a large value (14.18 ps), which is almost the same as the resolution of PFD
2 (20 ps). Thus the tuning step of DCO 1 may not be precise enough. By consequent, the
combination of DCO 3 and PFD 2 may be a good choice. This is to be verified by further
study in the next subsections.

2.3.2 Step 2: impact of rounding in digital filter on the correction of

residual phase error

This section presents the problems related to the rounding in the digital filter of the ADPLL,
and proposes some solutions. As in previous subsection, the analysis will be demonstrated

2.3. Impact of quantization in ADPLL on its operation in steady state 41

on a single ADPLL using the analytical model presented in Subsection 1.2.7, but the results
are also valid for a network of ADPLLs.

The filter receives integer words, and the input of the DCO is integer as well (arbitrarily,
it is possible to define fractional and integer part of the DCO word, but the simplest choice
is to consider DCO input as an integer). However, in the filter, the proportional coefficient
α and integral coefficient β (as shown in Eq. (1.2)) are generally not integers, but as said in
Subsection 1.2.5, the output of the proportional and integral branches are rounded.

The rounding of the integral branch is fundamentally harmful, since it limits the precision
of the output frequency definition. But the origin of this rounding is not in the integral branch
itself, but in the limited width of the DCO input word, (equivalently, in the limited DCO
resolution). The discretization the DCO frequency value is a fundamental property of an all-
digital PLL, which is supposed to be corrected thanks to the modulation of the input DCO
word between two neighboring values.

However, the most important danger for the ADPLL operation is the rounding in the
proportional part. Imagine that α is smaller than 1. In this case, small phase error xi such
that xi ·α < 1, yields a zero output of the proportional path, as if α was zero. Hence, small
error cannot be corrected by proportional path, and it is well known that a PLL with a zero
proportional path oscillates [14]. In the context of digital PLL, a small α leads actually to a
variable α: for large errors it has its nominal value, but for small errors it is zero. Such an
ADPLL exhibits an output phase error oscillating with amplitude corresponding to the limit
between the modes "rounding of small error" and "correct detection of big error".

In contrast, an α larger than 1 is equivalent to a normalized α with an enlarged DCO
tuning step (a reduced resolution). For instance, if α equals 2, in steady state, instead of
switching between two adjacent frequency values, the DCO changes at least two steps each
time. In this case, the high resolution of the designed DCO is wasted.

For this reason, the best choice for α from the point of view of steady-state operation is
around 1.

However, α impacts not only on the steady-state mode, but also on the dynamics of the
PLL in transient mode, stability, etc. These characteristics are usually studied on a LTI
discrete time model presented in Subsection 1.2.7. There are only two parameters defining
the dynamic properties of such a system: the ratio between α and β and the PLL gain.

K = KPFD ·α ·KDCO rad/sec, (2.9)

where KPFD is the gain of PFD, which is reversely proportional to ∆TT DC. KDCO is the gain
of DCO, which is equal to its frequency tuning step.

For a single ADPLL, these parameters are found by standard methods of the control
theory. For a network of ADPLL, extensive studies were made in the frame of the HODISS

42 Chapter 2. Network of distributed ADPLLs

project at Supelec and CEA-LETI, cf. Subsection 1.2.8.

The parameters (K and β/α) which define the transient dynamics of the ADPLL can be
achieved by different combinations of ∆TT DC, Kp, ∆ fDCO. However, due to the rounding in
the digital loop filter, they may have different characteristics in steady state. This is discussed
in the next subsection.

As far as these parameters are defined, the sizing procedure is the following: α is fixed
to 1, and the gains of the PFD and DCO are chosen so to obtain the target value of gain.
Note that the choice of gains of PFD and DCO (actually, their resolutions) must consider the
steady-state mode behavior, (cf. Subsection 2.3.1). The integral coefficient is then chosen.
Usually, the order of magnitude of the ratio β/α is a small fraction of unity.

We now illustrate the presented analysis on a example of a single ADPLL. First, we
study it with standard tools of the control theory, with use of an LTI discrete time model
(cf. Subsection 1.2.7). We select the appropriate gain K=1.2e7 rad/s and β/α = 0.012. This
yields the phase margin around 68 degree and the gain margin around 13 dB (Fig. 2.3), which
corresponds to a satisfactory transient process.

Usually, DCO is the most complex block for the design. For this reason the sizing of
the ADPLL parameters starts from fixing the characteristics of the DCO (the frequency step
∆ fDCO). Since α is fixed at 1 and K is known from the LTI model analysis, the required TDC
gain is calculated from Eq. (2.9). If the DCO 3 is chosen (cf. Tab. 2.1), the required TDC
resolution is about 20 ps.

Figure 2.3: Bode diagram of the LTI model of the system (Fig. 1.18): K = 1.2e7 rad/s and
β/α = 0.012

2.3. Impact of quantization in ADPLL on its operation in steady state 43

2.3.3 Step 3: validation of block parameters by transient simulations

The goal of this step is a validation of the study carried out at steps 1 and 2. This validation
is done by behavioral modeling accounting for the quantization and for self-sampling. This
model is implemented at VHDL language, as explained in Subsection 1.2.7. This validation
is necessary, since the steps 1 and 2 provides only an estimation of the PLL parameters,
on the basis of simplified LTI model. A more precise VHDL model is used to validate the
obtained value of parameters, or eventually to correct them.

To validate the choice of the PFD gain after fixing the DCO parameters, we propose two
modeling experiment.

1) We fix the proportional coefficient α as 1 (for reasons explained in Subsection 2.3.2),
and we try different PFD resolutions seeking for the smallest error in the steady-state opera-
tion. The simulation results for three values of TDC resolution are given in Fig. 2.4.

Here we choose DCO 3 in Tab. 2.1 and filter parameters α = 1, β = 0.012. When
∆TT DC = 30ps, the PFD is not precise enough compared with DCO. Although its PFD output
is within ±2, the residual error exceeds 40 ps. When ∆TT DC = 20ps, the maximum residual
phase error has a value less than 40 ps as show in the zoomed figure from 7.3 µs to 7.9 µs
in Fig. 2.4. However, ∆TT DC = 10ps is an over high resolution, the DCO cannot generate a
frequency precise enough to follow the phase correction. The steady-state error is far above
40 ps. Hence, we can estimate that 20 ps is an optimal value of PFD resolution, and the loop
gain has an appropriate value with this group of parameters.

2) We fix the DCO parameters and the ADPLL loop gain K, and we perform three sim-
ulations with different PFD resolutions (10 ps, 20 ps, 40 ps), and with β/α fixed. In order
to maintain the same gain for the three simulations, the β and α are adjusted. As shown in
Fig. 2.5, all three ADPLLs have similar stability and transient process, but only the ADPLL
(∆TT DC = 20 ps, α = 1, β = 0.012) has a residual phase error always smaller than 40 ps.

Indeed, for ADPLL (∆TT DC = 10 ps, α= 0.5), due to the "rounding of small error", small
PFD output codes (±1) are considered zero by the proportional path, the PLL is undamped
and operates as a second order oscillator. The maximum PFD outputs in steady state are ±6.

For ADPLL (∆TT DC = 40 ps, α = 2), phase error are amplified by the digital filter, so the
output of filter for DCO varies in a larger range (99∼112) compared with ADPLL with α= 1
(104∼107). The phase error in steady-state is much larger than for the two other TDCs.

It should be noted that the time of frequency acquisition is different for the three AD-
PLLs. This is because of a limited dynamic range of phase detection in the PFD. At the
beginning of the frequency acquisition stage, since the phase error is large, the output of
PFD saturates at ±15 (5-bit signed). The filter with a larger α and β has a faster correction
speed.

44 Chapter 2. Network of distributed ADPLLs

Through these twos sets of simulations (Fig. 2.4 and Fig. 2.5), we have validated our
study in the two previous steps on the impacts of PFD, DCO and filter parameters on the
residual error in steady state. We confirmed that the PFD with ∆τPFD = 20ps is the optimal
choice.

The results of this study can be represented graphically, so to put forward an existence of
an optimal value of the PFD resolution for a given DCO.

Fig. 2.6 traces the maximum residual phase error with different PFD and filter parame-
ters, for two DCOs (DCO 2 and 3). The curves are obtained in the following way. On the
right of the point labelled as "saturation point", we fix α at 1 as simulations in Fig. 2.4, and
only the TDC resolution are varied. On the left of the saturation point, we keep the same loop
gain as simulations in Fig. 2.5. The saturation point indicates the optimal PFD resolution for
a given DCO. For DCO 3, this value is about 23 ps, while for DCO 2, it is about 10 ps.

Similar simulations can also be performed on a network of ADPLL. After a consideration
of steady state behavior and circuit complexity, power, etc., we decided to design a PFD with
a resolution of 20 ps for DCO 3. The detailed specification is displayed in the next section.

Figure 2.4: Time simulations with different TDC resolution and same filter/DCO pa-
rameters (VHDL model): reference clock frequency: 249.5 MHz, DCO 3 in Tab. 2.1 used

2.3. Impact of quantization in ADPLL on its operation in steady state 45

Figure 2.5: Time simulations with the same loop gain and β/α ratio (VHDL model):
reference clock frequency: 249.5 MHz, DCO 3 in Tab. 2.1 used

saturation point

saturation point

PFD resolution (ps)

M
a
x
im

u
m

 p
h
a
se

 e
rr

o
r

in
 t

h
e
 s

te
a
d
y
 s

ta
te

 (
p
s)

Figure 2.6: The maximum values of residual phase errors of an ADPLL in the steady
state with different PFD and filter coefficients (VHDL model)

46 Chapter 2. Network of distributed ADPLLs

Table 2.3: 1st network test chip characteristics summary

Parameter Value
Central frequency of the SCA 870 MHz

Frequency range 550∼1190 MHz
DCO gain 1.5 MHz/LSB

DCO control word width 10 bits
PFD resolution ∼30 ps

PFD output bit number 5 bits
Filter integral path bit number 12 bits

Filter proportional path bit number 5 bits
Timing error 1 < 60 ps

Convergence rate 2 ≈ 5 MHz/µs
Supply voltage 1.2 V

Power consumption 3 186.2 mW @ Fclk = 800 MHz
Clocking core area ∼ 0.72 mm2

Chip area ∼ 2.04 mm2

1 between neighbor nodes
2 with coefficients α = 1.0±10%, β = 0.0028±10%
3 analog and digital

2.4 Specification of the network

The first ASIC prototype of a 4×4 ADPLL network has been designed prior to this study.
This prototype has the characteristics summarized in Tab. 2.3. As analyzed in Section 2.3,
the ADPLL used in this prototype has an over precise DCO and the residual phase error is
limited by the resolution of PFD.

During this PhD work, a 10×10 prototype has been designed in order to study the clock-
ing network in a large circuit, and to observe especially the phase error between two clock
signals in distance. Before the design of this circuit, a specification has been defined based
on the method presented in Section 2.3 and previous stability study in Section 1.2.8.

In this specification, we did the following modifications compared with the first proto-
type: First, we improve the resolution of PFD to 20 ps and reduce its output to 4 bits; Second,
we reduce the DCO tuning range from ± 37% to ± 10-20%; Third, less number of bits are
used for filter coefficient programming. Fourth, since the DCO tuning range is reduced, less
number of bits can be used for DCO control word (8 bits is decided after analysis). Tab. 2.4
summarizes the specification of the second version test chip design.

2.4. Specification of the network 47

Table 2.4: 2nd network test chip specification

Parameter Value
Central frequency of the SCA 1 GHz

Frequency range central frequency ± 10 - 20%
DCO gain 1 - 1.5 MHz/LSB

DCO control word width 8 bits
PFD resolution ∼20 ps

PFD output bit number 4 bits
Filter integral path bit number 8 bits

Filter proportional path bit number 2 bits
Supply voltage 1.2 V

Power consumption < 1 W @ central frequency

48 Chapter 2. Network of distributed ADPLLs

2.5 Conclusion

In this chapter we have introduced the architecture of the ADPLL network designed in this
PhD project. It is a 10×10 network based on the principle presented in Chapter 1.2.1. Pre-
vious work on the first test chip has justified the feasibility of this approach and has also
shown some problems as explained in Chapter 1.2.10. Section 2.3 in this chapter addressed
the problem of block parameter limitation on the residual phase error and proposed a method
on three steps to minimize the residual error at low cost.

Finally, we have derived specifications for the implementation of clocking network,
which are used as input data for design of each block. The implementation of blocks is
detailed in the following chapters.

Chapter 3

ADPLL blocks design

Contents
3.1 Phase frequency detector (PFD) . 50

3.2 Digital filter in the ADPLL network . 57

3.3 Digitally controlled oscillator (DCO) 60

3.4 Conclusion . 75

This chapter present the transistor-level design of the blocks composing the network of
ADPLL: the phase frequency detector (PFD) (Section 3.1), the digital filter (Section 3.2),
the digitally controlled oscillator (DCO) (Section 3.3) and the serial programming interface
(Subsection 3.3.4).

49

50 Chapter 3. ADPLL blocks design

3.1 Phase frequency detector (PFD)

3.1.1 The digital PFD architecture

The structure of the PFD designed in the second prototype is given in Fig. 3.1. The difference
between the first prototype is that the TDC receives the input signal, and not the MODE
signal. The task of the bang-bang detector is only a detection of the sign of error. The output
of the TDC is then combined with the sign bit to obtain a signed 2-complement digital word.
As in the first prototype, the PFD has a linear characteristic (cf. Fig. 3.1(b)).

BB-PFD

TDC

Arithmetic
block

SIGNCLK1

CLK2

(b)(a)

Amax

Amin

Figure 3.1: Proposed phase/frequency detector for clock network: (a) block diagram and
(b) transfer function

3.1.2 Improvement of time-to-digital converter

In this subsection we discuss the architecture of TDC allowing a measurement of the absolute
timing error ∆T between two clock signals.

TDC architecture

The TDC used in the first test chip has an flash ADC architecture, implemented with a single
delay chain(cf. Fig. 1.14). Such a TDC has a quantification step of the same order as the
elementary buffers delay available in the technology, which is about 30 ps for CMOS 65 nm.
As analyzed in Chapter 2, 20 ps is required in order to optimize the system operation.

Another modification in the original TDC architecture concerns the dynamic range. In
the first prototype, it was (0-450 ps), which corresponded to a phase error of ∆φr = 0.4 ·2π if
the nominal output DCO frequency is 1000 MHz. However, if the network operates properly,
the phase error will be few percents of the period, and the role of the PFD will be to measure
small errors. hence, such a big linear range of PFD is not useful. For this reason, the
parameter ∆φr was chosen to be 2π/32. For the nominal DCO output frequency 1 GHz, ∆φr

correspond to 125 ps. This range is obtained with 6.25 measurement steps: we round this
value down to 7, so to allow the output TDC word to be coded by 3 bits. When output of the
TDC is combined with the sign of the phase error, one bit is added, the output PFD word has
4 bits and the real dynamic range is ±140 ps. Consequently, the PFD designed for this test
chip is a 4-bit detector with a resolution of 20 ps.

3.1. Phase frequency detector (PFD) 51

To obtain the desirable resolution of TDC, we designed an architecture based on Vernier
delay line (Fig. 3.2) inspired by the work of [11]. The Vernier delay line utilizes two delay
chains (Fig. 3.2(a)). One delay chain (the left one in Fig. 3.2(a)) consists of buffers with delay
τ1 while the other delay chain has buffers with delay τ2. The time interval to be measured ∆T
is defined by the starting and ending events given by the rising fronts of the signals P2 and
P1. Assume that P2 comes before P1 and τ1 is larger than τ2. As signals P2 and P1 propagate
through the delay lines, the time difference between them is decreased by TR = τ1− τ2 after
each stage. The position in the delay line, at which the delayed P1 signal catches up the
delayed P2 signal defines the time difference between the original P1 and P2 signals with a
resolution of TR. The principle of this operation is depicted in Fig. 3.2(b). The resolution of
this TDC does not depend on the delays of the unit elements used in the delay chains, but
rather on their difference. Therefore, time intervals that are smaller than a single inverter
delay in a given process technology can be measured. In order to have 7 measurement steps,
6 stages are necessary. The TDC outputs values are from 0 (the error is less than ∆τT DC) to
6 (the error is greater than 6∆τT DC).

P1

P2

Q0

Q1

Q2

Qn

P1

'0'

'0'

'1'

'1'

(a) (b)

1 2

1 2

1 2

1 2

1 2-()

1 2-2()

1 2-3()

1 2-(n+1)()

P2

1 2>

Figure 3.2: Time-to-digital converter based on Vernier delay line: (a) block diagram and
(b) principle of operation

As for any quantifier, there is a risk of metastability if after a certain number of delay
stages, the value of the interval is reduced to a value within the setup/hold timing window
of the output register. Moreover, the rising edges of CK of sampling registers in Fig. 3.2 do
not arrive at the same time. They are the same signal with different delays, thus with skews.
This results in glitches at the output of PFD.

To solve these problems, we propose the circuit displayed in Fig. 3.3. The solution relies
on two points: First, to observe which signal arrives first at each stage, instead of using

52 Chapter 3. ADPLL blocks design

START

S0

STOP
2

1

ARBITER0A

0B

S1

ARBITER1A

1B

S5

ARBITER5A

5B

ARBITER ARBITER

I1 I2 I6 I7 I8

I10 I11 I15 I16 I17

I19 I20 I24 I25 I34I28 I29 I33

ARBITER

SAMPLE

I9

I18

I35

2

1

2

1

2

1

2

1

2

1

Figure 3.3: Structure of proposed time-to-digital converter

one of them to sample the other, we compare the two delayed signals by the arbiter circuit
used for BB block (cf. Fig. 1.13). This helps filtering metastability during the comparison;
Second, to avoid glitches at the output of TDC, the outputs of all arbiters are sampled at the
same time by the signal named SAMPLE. The generation of SAMPLE is explained later in
this section.

As shown in Fig. 3.3, the entry of the delay line (τ1) is a signal called START, whose
falling edge signifies the beginning of the interval whose duration is to be measured. The
other delay line (τ2, τ2 < τ1) has an entry STOP, whose falling edge marks the ending of
the interval. The two signals for the delay line inputs are generated from the clocks whose
phases are being compared:

START = ref OR div

STOP = ref AND div (3.1)

The operation of the TDC is presented on an example of the time interval ∆t such that
∆τ1−∆τ2 < ∆t < 6(∆τ1−∆τ2).

The two signals START and STOP representing the interval are sent to the two delay
lines. In each stage, an arbiter decides which signal comes first, and sets "1" at the cor-
responding output (cf. Subsection 1.2.4). Since STAR arrives before STOP, and the first
arbiters of the chain detects that START arrives before STOP. However, as τ1 is larger than
τ2, after each stage delay between two signals is reduced by ∆τT DC = τ1−τ2. After a certain
number of stages M, the delayed STOP signal will arrive before the delayed START signal.
Hence for stage i, 0 ≤ i < M, B f irst = 0, while for i ≥M, B f irst = 1. This data provides an
idea about the value of the initial time interval under measurement.

The reading of the TDC measurement result is done synchronously with the falling edge
of the signal SAMPLE. It is obtained by delaying the START pulse by 3 delays of τ1, which
allows enough time for establishment of the arbiter outputs and metastability resolving. We
can observe that at the falling edge of CK, Q takes the complement value of the input D (B f irst

in TDC). By consequence, the registers in the TDC contain a digital word in thermometer
code representing the time interval to be measured. For stage i, 0≤ i < M, Si = 1, while for

3.1. Phase frequency detector (PFD) 53

i ≥ M, Si = 0. The obtained thermometer code can be one of the 7 values from 000000 to
111111. It is then combined with the SIGN and converted to a 2’s complement binary code
as output of the PFD.

We note that in the three last stages (arbiters I25-I35) only delays τ1 are used. Other
blocks (delays τ2 and arbiters) are dummy, and provide equivalent load for the last stage as
for the previous stages. This is important for the linearity of TDC within its dynamic range.

Implementation of blocks of the TDC

In the implemented TDC, the key cells which are D-register, arbiter and delay are imple-
mented as custom cells. The register and the arbiter are the same as implemented in the first
prototype, and are described in [74]. Here we provide information about the implementation
of the delays.

The delay elements τ1 and τ2 are the essential blocks of the architecture, since they decide
the resolution of TDC (∆τT DC). The two delay blocks have the same schematic topology (cf.
Fig. 3.4) but employ transistor with different sizes.

D0

D0 D0 D1 D1 D2 D2

D2D1D0

D1 D2

IN OUT
Cell τ1 τ2

Parameter W µm L µm W µm L µm
M1,3 1.4 0.15 1.4 0.12
M2,4 1.0 0.15 1.0 0.12

M5,7,9 0.28 0.12 0.28 0.12
M6,8,10 0.2 0.12 0.2 0.12

M11 1.12 0.12 1.12 0.12
M12 0.8 0.12 0.8 0.12

Figure 3.4: Schematic diagram of the delay cells in Vernier TDC

As shown in Fig. 3.4, the delay cell is based on a 2-stage inverter line (M1,2 and M3,4)
with additional pull-down NMOS (M6,8,10) and pull-up PMOS (M5,7,9) whose gate ports are
controlled by binary signals D〈2 : 0〉 and D〈2 : 0〉 respectively. For such a circuit with given
sizes of transistors, the load capacitance is fixed. However, by programming D〈2 : 0〉, we can
choose the number of transistors turned on, thus we can tune the charging and discharging
current of the inverters. It should be noted that since M6,8,10 have the identical size (the same
case for M5,7,9), the delay of the cell is decided by the number of tuning transistors turned

54 Chapter 3. ADPLL blocks design

Table 3.1: Values of τ1 and τ2 with different Non

Non τ1 (ps) τ2 (ps)
0 81.5 68.7
1 77 64
2 73.6 60.8
3 71 58

29.5 50 70.5
0

1

2

3

4

5

6

Timing error, ps

O
u

tp
u

t
th

e
rm

o
m

e
te

r
co

d
e

91 111.5 132 152.59 173

Figure 3.5: Simulated transfer function of the designed flash time-to-digital converter:
measuring resolution 20.5 ps, range 0-152.5 ps

on (defined as Non). By consequence, one delay cell can have four different delay values
(Non from 0 to 3). For instance, if M6,8,10 and M5,7,9 are all turned off (Non = 0), it has
the smallest current and largest delay. If all the transistors are turned on (Non = 3), it has
the smallest delay. Tab. 3.1 displays the values of τ1 and τ2 with different Non obtained by
post-layout simulation. From the table we can see that if we want ∆τT DC to be about 20 ps,
we can set the Non of delay cell τ1 to be 0 and that of τ2 as 2 in schematic level design. In
physical design, we just need to connect D〈2 : 0〉 to supply or ground rail, according to the
wanted delay value.

With all the cells presented above (arbiter, register and delay), we designed the TDC cir-
cuit in transistor level. Precise transistor-level simulations provided a 20.5 ps quantification
step of the TDC, with D = {000} for τ1 and D = {101} for τ2. Fig. 3.5 demonstrates the
code/error characteristics obtained from the post-layout simulations of the designed TDC.
From Fig. 3.5, three regions of TDC operation can be noted:

1. The time interval is less than the first delay element plus the delay of one logic gate
(Eq. (3.1)): the output register generates a word with all zeros;

2. If the time interval to be measured is greater than the delay of the first buffer but less
than the total delay of the line: first bits of the register are at 1, and the rest are at zero
(Fig. 3.2(b));

3.1. Phase frequency detector (PFD) 55

3. The input time interval is greater than the overall line delay: all bits of the register are
at ’1’. The TDC is unable to discriminate the time interval values, and the TDC output
is in saturation providing the maximal code.

In that way, the output of the parallel register S0−S5 provides a thermometer code from
000000 to 111111 representing the measured and quantified value of the time interval in the
range (0, 7·∆τT DC).

3.1.3 Implementation of PFD

The block diagram of the implemented PFD is presented in Fig. 3.1. The output of PFD is
obtained by combining the TDC and BB detector outputs through an arithmetic block. The
role of the arithmetic block is a generation of the binary coded 2’s-complement signed word
corresponding to the measured phase error. Its absolute value is composed of the thermome-
ter coded output word of the TDC and the sign provided by the BB detector, accordingly to
the following formula:

PFDout = (T DCout +1)SIGN. (3.2)

The arithmetic block is implemented by standard design flow starting from a behavioral
description in VHDL, by using Design Compiler of Synopsis and Encounter of Cadence.

The TDC outputs values from 0 (the error is less than ∆τT DC) to 6 (the error is greater
than 6∆τT DC). Hence, the PFDout is in the range [−7,−1]∪ [1,7]. The minimum output of
PFD is ±1 to maximize the information carried by the output code (cf. Subsection 1.2.4).
The PFD has two output of 4 bit binary signed words: the error eri[n] and its complement
value ēri[n].

The sub-blocks for the PFD are assembled and Fig. 3.6 presents the layout of designed
PFD. The I/O ports are located on the border of the cell and placed at Metal3 layer. The
supply network is organized so to provide the compatibility with the global floorplan of the
clock network chip.The designed PFD has a total area of 53.8×31.4 µm2, which is smaller
compared with the first version(53.0×40.04 µm2) PFD designed with the same technology.

56 Chapter 3. ADPLL blocks design

3
1
.4
�u
m

53.8�um

Figure 3.6: Layout of the proposed PFD

3.2. Digital filter in the ADPLL network 57

3.2 Digital filter in the ADPLL network

The architecture of the filter is similar with that used in the first prototype. The modifications
aimed essentially a reduction of the power consumption (cf. Section 1.3), an acceleration of
the speed of error correction. The implemented architecture benefits from the reduced word
width of the PFD output, and from reduced range of the coefficients for the programmable
Proportional-Integral filter. This allows also a reduction of the delay in the proportional
branch of the filter, which is critical for the error correction in the steady-state mode.

As in the first prototype, the filter includes an error combining blocks at its input. It
processes phase errors between the local clock and clocks issued from neighboring PFDs.

3.2.1 Architecture of digital filter

The schematic of designed digital filter is displayed in Fig. 3.7. It has four entries allowing
receiving at most four 4-bit signed words as inputs and generates an 8-bit unsigned word for
the DCO control (the output of the adder ADD5). This signal is encoded to A, B and C,
which are applied to the inputs of the DCO (cf. Section 3.3).

3

7

7

1/212

2

3

3

Kp (0, 1, 0.5, 0.25)

Ki A

B

C

to
 D

C
O

128

Kw1

Kw2

Kw3

Kw4

1
4

2

3

4

B2T
Decoder B

B2T
Decoder C

B2T
Decoder A

from
 P

F
D

div

Z -1

div

Z -1

div

Z -1

div

Z -1

div

Z -1

4

4

4

6

6

6

6

7

7

8
Divider

2

numKw

6

2

6

2

2

2

2

8

14 820

8

6

ADD1

ADD2

ADD3 FF1 ADD4

FF2

ADD5

FFC

FFB

FFA

Figure 3.7: Loop filter for error signal processing: four input gain controllers followed by
the four-input adder, PI filter and three B2T decoders.

The error combining block (from inputs to ADD3) has the same structure as the one
presented in cf. Subsection 1.2.5. The weighting coefficients of the gain blocks Kw1−Kw4

are programmable. Each gain can take independently a value in the set {0,1,2,4}. The adders
(ADD1-3) operate with four 4-bit operands and produce a 8-bit sum. This adder is based on
the carry look-ahead (CLA) architecture. Its delay is less than 510 ps in the worst case.
The filter processes the average value of the sum of errors (eri1, eri2, eri3 and eri4)(cf. [29]),
so the output of the adder ADD3 is followed by the block "Divider", which calculates the
mean value of quantified phase errors. In fact, at functional level, this block is not necessary,
because a division by N can be realized implicitly by programming both the proportional and
integral coefficients N times smaller. However, the introduction of an explicit division has
two advantages:

58 Chapter 3. ADPLL blocks design

1. The calculation after division is simplified: less bits are needed for operators (adders,
multipliers and integrators), thus the arithmetic operation is faster and the filter has
smaller area;

2. The proportional and integral coefficients for all ADPLLs in the network are unified:
without this block "Divider", Kp and Ki should be programmed diversely in function
of the number of Eri entries, which depends on the position of the ADPLL and the
configuration of network. This needs a pre-calculation of coefficients for each filter
and each configuration, which is unnecessary extra effort for users of the proposed
methodology.

However, it should be noted that a 2-bit number (numKw) should be programmed to-
gether with other coefficients. It indicates the number of entries, in other words, the divisor.
The integer value of numKw could be 1, 2 or 4. All are powers of 2 in order to simplify the
arithmetic operation (in case of dividing by 3, the divisor 4 is used).

After the division, the value is sent to the integral and proportional paths.

The calculations inside the filter are achieved in fixed point arithmetic. For the propor-
tional path, the 2-bit parameter Kp allows choosing the proportional coefficient α from a set
of 4 values {0,1,0.5,0.25}.

α = 0, when Kp = 3;
= 1

2Kp , when others.
(3.3)

Each value of α in the subset 1,0.5,0.25 is a power of 2, thus the multiplication is simple
enough allowing the whole proportional path processing to be finished within one cycle.
Hence no delay is introduced in the proportional path so that it can react quickly to the
measurement result of PFD in each clock cycle. The ADD5 receives the rounded-to-integer
result of the proportional branch, on 8 bits.

The integral coefficient β is defined as a ratio:

β =
Ki

212 , (3.4)

where Ki is in the range (0,28− 1). Since the accumulator in this path (ADD4 and FF2 in
Fig. 3.7) takes time for calculation, the divided value is buffered with a register FF1, provid-
ing time of two clock cycles for the arithmetic operations. This is necessary for sufficient
timing margin in the integral path.

The architecture of the integrator path is given in Fig. 3.7. The main point of the inte-
grator design is an appropriate choice of the size of the integrator register FF2. Here we
summarize the integrator path design procedure.

3.2. Digital filter in the ADPLL network 59

A particularity of an integrator is an unlimited range of the output when this block is
considered alone. Hence, a design of an integrator requires a specification on the range
of the output value. This specification is defined by the system-level considerations and is
practically ensured by a feedback. For the case of the PLL, the integrator defines the rough
value of the frequency of the DCO; hence, the normal operation range is that of the DCO
input (0, 255).

The integrator outputs unsigned integer values on 8 bits, receives input integer values on
7 bits. According to Eq. (3.4), the integral coefficient has a precision of up to 12 binary digits
after the binary point. To achieve an integration without loss of information, the accumulator
must be able to store a number on 12+8=20 bits. The 12 LSB are then ignored (this is
represented by the block dividing by 2−12 in Fig. 3.7), and only the integer part on 8 bits is
applied on the final adder ADD5.

After the global system reset, the integrator outputs 0, and the initial frequency of the
ADPLL network node is the minimal one. If the target frequency is close to the maximal
output frequency, the accumulator should increase its value from 0, and the frequency acqui-
sition time can be long. To reduce the maximal frequency acquisition time, the integrator is
preset with an initial value of 128 (the middle of the scale). This is done by adding a constant
offset of 128 to the output value of the filter.

The parameters (Kw, K p, Ki, numKw) are programmed to each loop control block in the
network by using the SPI technique presented in Subsection 3.3.4. 20 bits are necessary for
each node, and they are organized as shown in Fig. 3.8.

0 1

K
p

K
i

K
w

1

K
w

2

K
w

3

K
w

4

192 3 4 5 6 7 8 1615 1718

num
K
w

9 10 111213 14

Figure 3.8: Programming sequence of parameters

3.2.2 Implementation of the filter

The digital filter has been implemented using standard RTL-to-GDS design flow with help
of EDA tools. It was at first described in VHDL language (cf. Appendix A for details). The
gate-level netlist and the layout was synthesized using standard cell library of STMicroelec-
tronics.

At the layout level, the standard cells composing the filter were placed and routed to-
gether with the DCO and PFD macroblocks (blackbox view at Encounter), so to optimize
the chip area. The details of implementation of this physical block called NODE is pre-
sented in Fig. 6.6, and is discussed in Section 6.3. The digital filter occupies a area of about
7.6×103 µm2 in the NODE.

60 Chapter 3. ADPLL blocks design

3.3 Digitally controlled oscillator (DCO)

Basically, the DCO presented in this section has the same architecture with the first DCO
designed for the first test chip (cf. Subsection 1.2.6) but with reduced tuning steps thus less
tri-state transistors in parallel for each stage.

3.3.1 DCO Architecture

Detailed architecture of the DCO is given in Fig. 3.9. It is a ring oscillator controlled by
three thermometer coded signals A, B and C converted from a 8-bit binary code generated
by the loop filter. The ring oscillator is constituted with 7 stages. Each stage contains one
main inverter (MI0−MI6), which is always active. The tuning inverters are connected in
parallel with each stage and distributed over all 7 stages of oscillator. Each tuning cell is
a controllable inverter associated with a local control logic decoding the row and column
actuation code.

These tuning elements are also organized in three arrays implementing a coarse and a
fine frequency tuning. If we reserve 4 fine tuning steps for each coarse tuning step as in
Subsection 1.2.6, and we want totally 256 tuning steps, 64 coarse tuning steps are needed.
Since the ring oscillator has 7 stages plus 1 virtual stage, for the first array we need only 8
rows instead of 32 rows in Fig. 1.16. Consequently, only one row of 7 virtual extension cells
is enough for the 8 rows in the first array (the last row does not need an extension because
256 steps means 255 changes from 0 to 255).

In summary, the three arrays are organized as follows. The first array consists of 56 (7
stages × 8 rows) coarse-tuning tri-state inverters (CTI). The second array consists of a bank
of 7 additional coarse-tuning inverters (CTIA) (7 stages × 1 row). They are implemented as
the virtual extension of ring stages (cf. Subsection 3.3.2 for details). The CTI and CTIA cells
(totally 63 identical elements) provide 26 equal frequency steps. The third array is imple-
mented with three identical fine-tuning tri-state inverters FT I0−FT I2, which are connected
with stage 1, 3, 5. These cells provide 4 fine frequency tuning steps by each coarse tuning
step. Together with coarse tuning inverters, they provide 256 frequency steps.

The size of transistors in FTI cells is defined by CTI/CTIA transistor dimensions divided
by the number of the fine tuning steps within each coarse tuning step (size ratio 1:4). The
number of fine tuning steps must be a power of two for control simplicity, and set to 4 as
a compromise between the precision (monotonicity may degrade when the number of fine
tuning steps increases) and the obtained gain in the DCO overall number of frequency steps.
In the 8 bit input control binary code, the coarse and fine frequency tuning correspond to the
6 MSB and to the 2 LSB frequency variation respectively.

3.3. Digitally controlled oscillator (DCO) 61

OSC to divider

Fine tuning
cells

Main
inverters

Coarse
 tuning
cells

Additional
 coarse

tuning cells

B1 B2 B3 B4 B5 B6B0

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN

EN EN EN

C1 C2C0

A1

A2

A3

A4

A5

A6

A0

gnd

vdd

EN

Bj

Ai-1

iA
i,j

A0 A1 A2 A3 A4 A5 A6

gnd gnd gnd gnd gnd gnd gnd

Digital control

D
igital control

Digital control

Local control logic

35 36 37 38 39 40 41

42 43 44 45 46 47 48

49 50 51 52 53 54 55

Line 0

Line 1

Line 2

Line 5

Line 6

Line 7

Figure 3.9: Core of the proposed oscillator: MI - main inverters, CT I - coarse-tuning
inverters, FT I - fine tuning inverters

3.3.2 Control algorithm

A binary-to-thermometer (B2T) decoder is needed to generate three thermometer coded sig-
nals A, B and C from the 8-bit binary input code W . A, B and C are in charge of row, column
and fine tuning cell controls respectively. From the explanation in Subsection 3.3.1 we can
get that the code A, which controls the row selection (8 rows), should be decoded from the 3
MSBs of W (W 〈5 : 7〉). The code B, which decides the selected stages (7+1 stages), should
be decoded from the middle 3 bits of W (W 〈2 : 4〉). The code C, which controls the 4 fine
tuning steps, are from the 2 LSBs of W (W 〈0 : 1〉). Therefore, the control signals A, B and C

62 Chapter 3. ADPLL blocks design

are defined by the following equations:
A =W%32
B = (W modulo 32)%4
C =W modulo 4

(3.5)

where % means the integer division. The operation (K modulo 2p) on a binary coded signal
K is implemented by selection of p LSB from K, the operation K%(2p) is a right shift of
K by p position. We note that Eq. (3.5) is almost the same as Eq. (1.6) although the two
DCOs do not have the same number of tuning steps and control bits. The reason is that they
have the same number of fine tuning steps in each coarse tuning steps and the number of
stages does not change neither, thus B and C keep the same. As for A, its width is smaller
along with the reduction of rows. Moreover, since A0 in the old version DCO is always 1 (cf.
Eq. (1.6) in Subsection 1.2.6), we connect the row control of cells in the first row with vdd
(cf. Fig. 3.9), and we don’t need to add 1 to the formula of A.

The logical equation for individual enable signal of the coarse tuning inverters is given
by:

ENcti i, j =

Ai∪B j, i = 0;
Ai∪ (B j∩Ai−1), 1≤ i≤ 6;
B j∩Ai−1, i = 7;

(3.6)

where i ∈ {0,1, ..7} and j ∈ {0, ..6} are the number of the CTI row and column respectively.

For the additional coarse tuning cells, their enables are given by:

ENctia i = Ai−1, i = 1...7. (3.7)

Here i is the index of additional cell equal to the index of the CTI row completed by this
cell. Note that the last CTI row with index 7 doesn’t have the extension. That is because
the coarse tuning cells provide 23 frequency values, and for that 23−1 coarse tuning cells is
required.

The corresponding individual enable signals of the code C is given by

EN f ti i =Ci (3.8)

where i = 0..2, i is the index of the FTI cell.

These operations are implemented directly in the tuning cells (Fig. 3.12, Fig. 3.13 and
Fig. 3.14).

Fig. 3.10 demonstrates the order in which the inverters are activated when the input code
changes from 0 to 2016. When the input code is 0016, only MIs are active and the output fre-
quency is the lowest. When the input code equal to 0116, FTI0 becomes active, so increasing
the charge/discharge current of the stage 1, resulting in the decrease of this stage’s delay and
thus total delay of the loop. After the activation of all FTIs (the code 0316), the next code

3.3. Digitally controlled oscillator (DCO) 63

0416 activates the first CTI #000, deactivating three FTIs. The codes 0516− 0716 activate
again three FTI. The cycle repeats for the FTIs until the activation of the CTI #001 and so
on. When all FTIs and the first row CTIs are activated, the code is equal to 1F16. The next
code 2016 keeps the 1st row CTIs on and activates the 1st CTIA in the additional bank. Such
a cycle repeats 8 times when the input code goes from 0 to FF16. At FF16, all tuning cells
in arrays are active, and total delay of the oscillator loop is the lowest and the corresponding
output frequency is highest.

Figure 3.10: Ring oscillator cell control table

3.3.3 Implementation

Sizing of tuning cells

Since the number of tuning cells is reduced, the load capacity is not the same as before.
Moreover, the specification has been modified. Consequently, the transistors should be re-
sized. The sizing procedure follows the same methodology used for the DCO for the first
test chip. It is repeated as follows.

The ratio between the frequency step ∆F (∆Fcoarse and ∆Ff ine) and the initial frequency
F0 is given by the ratio between the currents generated by the main cells (Im) and the tuning
cells (Icti and I f ti) respectively. It can be roughly considered that the current generated by an
inverter is proportional to the W/L ratio of the N transistor. Hence, we come to the following
relation:

(
W
L

)
main

:
(

W
L

)
cti

:
(

W
L

)
f ti

= F0 : ∆Fcoarse : ∆Ff ine (3.9)

The parameters F0 and ∆Ff ine are given by the specifications (cf. Section 2.4). From the
architecture of the designed DCO, ∆Fcoarse/∆Ff ine = 4.

This double relation includes three unknowns (the W/L ratios of the three cell types). The
third missing equation is given by the requirement about the absolute value of F0 or Fmax.
The W/L should be such that when all tuning cells are activated, the ring oscillates at the

64 Chapter 3. ADPLL blocks design

maximal desired frequency corresponding to the maximal input code value. A simulation-
based adjusting/tuning has been performed to obtain the desired absolute value of Fmax.

After fixing the W/L value, the values of L and W must be chosen. An immediate ap-
proach consists in minimizing the size of the smallest inverter of the architecture. However,
in order to reduce the impact of the fabrication errors on the DCO code-frequency character-
istic, the use of tuning cells with minimal sizes allowed by the technology should be avoided.
We chose the L of the tuning cells equal to twice the minimal size allowed in the used 65 nm
CMOS technology.

The dimensions of the PMOS and NMOS devices in inverters obtained from mentioned
considerations are given in tables in Fig. 3.11, Fig. 3.12, Fig. 3.13 and Fig. 3.14.

8 inverters

59 0

Cell Main
Parameter W µm L µm
M1−M8 1.38 0.07
M9−M16 0.98 0.07

Figure 3.11: Schematic of the main inverter of oscillator: 8 inverters connected in parallel.

Cell CTI
Parameter W µm L µm

M1 1.26 0.2
M2 0.9 0.2
M3 1.26 0.06
M4 0.9 0.06

M5,7,8,10 0.28 0.06
M6,9,11,12 0.2 0.06

Figure 3.12: Schematic diagram of the coarse tuning cells

Dividers and buffers

The divider block generates three clock signals: CLK is a buffered OSC clock signal (the
output of the ADPLL network clock generator), DIV is a divided-by-4 clock for the feedback
of ADPLL and for the phase coupling with neighbors. The signal DIV 8 is a divided-by-8
clock routed on the chip pads for the off-chip test purposes. Only this signal can be properly
measured outside of the chip, because the communication frequency of the I/O pads available
in the design kit is limited to 270 MHz.

3.3. Digitally controlled oscillator (DCO) 65

Cell CTIA
Parameter W µm L µm

M1 1.26 0.2
M2 0.9 0.2
M3 1.26 0.06
M4 0.9 0.06
M5 0.28 0.06
M6 0.2 0.06

Figure 3.13: Schematic diagram of the additional coarse tuning cells

Cell FTI
Parameter W µm L µm

M1 0.28 0.2
M2 0.2 0.2
M3 0.28 0.06
M4 0.2 0.06
M5 0.28 0.06
M6 0.2 0.06

Figure 3.14: Schematic diagram of the fine tuning cells

OSC

CLK

DIV8

DIV

R

RST

R R

Figure 3.15: Schematic diagram of the feedback frequency divider

Fig. 3.15 shows the schematic of the divider. It consists of input buffering inverter and
three D flip-flops with inverted output. Besides the original clock signal generated by the
oscillator, it generates two additional divided clock signals: the divided-by-4 DIV signal and
the divided-by-8 DIV 8 signal.

DCO Floorplan

The general floorplan of the oscillator includes 8 groups of blocks. They are towered in stack
in the order depicted in Fig. 3.16. These groups are:

• frequency dividers;

• main inverters;

• arrays of CTI cells;

66 Chapter 3. ADPLL blocks design

7 main inverters

Frequency dividers & buffers

Feedback and supply decoupling

8x7 coarse tuning cells

Feedback and supply decoupling

7 additional coarse tuning cells

3x1 fine tuning cells

Feedback and supply decoupling

Figure 3.16: Floorplan of the designed oscillator

• arrays of CTIA cells;

• array of FTI cells;

• feedback line and supply decoupling cells.

The dividers are located far from the sensitive tuning cells. They are aligned with the
main inverter row. A group of CTI cells (composed as 8×7), a row of CTIA cells, decoupling
capacitors and global loop feedback lines are placed under the main inverter row. The array
of FTI cells is placed at the bottom of this stack.

DCO layout

The proposed DCO has a regular structure. The main challenge of the DCO layout imple-
mentation is placement of the CTI array and routing of the control signals. The implementa-
tion strategy must optimize the performances of the DCO and the circuit area. The following
techniques have been used for the DCO layout design:

• Cell based design. The DCO layout is an assembly of identical elementary blocks
implementing CTI, CTIA, FTI, MI and interconnections;

• Connection by abutment. The cell layout is designed so that they are connected by
geometrical abutment;

• A flow oriented location of the cells. The placement choice of cells depends on signal
propagation direction;

• Cell oriented supply design. As in conventional geometries of digital circuit layouts,
the supply is routed through multi-finger structures (Fig. 3.17). That allows each cell
to share its ground and supply pads with the neighbors.

3.3. Digitally controlled oscillator (DCO) 67

GND

Cells

Cells

Cells

Cells

Cells

Cells

Figure 3.17: Interdigital multi-finger power routing geometry

Fig. 3.18 shows the layout of designed DCO. It has a dimension of 52 µm× 53.8 µm.
The core is about 45 µm× 45 µm surrounded by guard rings, which decrease the effect of
substrate coupling with surrounding digital circuits.

52�um

5
3
.8
�u
m

Frequency divider

M
ai

n
in

ve
rt
er

CTIA

CTI

Feedback and supply decoupling

FTI

Figure 3.18: Layout of the designed oscillator

68 Chapter 3. ADPLL blocks design

3.3.4 Serial programming interface (SPI)

A complex programming interface is needed for three reasons.

• For the testing purposes, parameters of the filter are programmable. The programming
interface should allow a definition of the network parameters before each start-up of
network. These parameters are Kp and Ki in the loop filter and Kw1−Kw4 in the gain
controller.

• The normal operation of network is start by a reset signal: the reset should be generated
after the network parameters are programmed.

• The dynamic mode selection technique chosen for our system (cf. Subsection 1.2.9)
requires an interface allowing a dynamic (on the fly) reconfiguration of the network.
The reconfiguration process must not perturb the operation of the network.

The programming interface must be flexible and extensible, so to be easily adaptable to
the topology of the network (number of nodes, etc.). Since the number of the bits to be
programmed is large (20 bits per filter), serial interface should be used for the programming
sequence transmission.

The designed serial programming interface (SPI) fulfils the above mentioned require-
ments. It is composed of two registers and one flip-flop (Fig. 3.19). The register XI0 is a
serial-to-parallel converting register receiving the input series data on SDAi and generating a
parallel word at its outputs parallel data out. The actual values of the outputs of XI0 repre-
sent the values to be programmed. However, during the input sequence reading, the parallel
data out outputs have transient meaningless values. For this reason, the outputs of this regis-
ter are not applied directly to the node block, but to the storage parallel register XI2 playing
the role of a buffer. This loading is ordered by a global UPD signal.

This programming interface complies with the above mentioned specifications:

• The start-up of the ADPLL network operation can be perfectly controlled: the global
reset signal controlling the initial state of all registers of the network is not applied to
the programming interface register. In this way, once the network is programmed, the
global reset can be applied and the network starts from a well-established state.

• If the network parameters need to be modified during a regular network operation (for
example, the weight coefficients Kwi), the new values are firstly loaded in the register
XI0. Then the UPD signal is sent, and after a delay, the network operates with updated
parameters. This delay is short comparing with one clock cycle of the DIV signal. It is
equal to the propagation time of the UPD signal and the settling delay of the parallel
register (few tens of picoseconds).

3.3. Digitally controlled oscillator (DCO) 69

• The programming interface is easily extensible by cascading (Fig. 3.20). The pro-
gramming interfaces of two blocks are joined by connecting the last output bit of the
register XI0 of one block to the SDAi of the another block. The two blocks share the
same UPD and SCK signals. In this way, for any length of the programming sequence,
the interface requires only three external pads: SCK, SDA and UDP (clock, data and
load signals).

SCK

SDAi

UPD

N

Serial In
 Parallel Out

 register

Serial data in

Parallel data out

SDAi+1SCK
XI1

Parallel data out

Parallel data in
Parallel In

 Parallel Out
 register

coefficients
to signal processing

block and PFDs

to following
 SPI blocks

XI0

XI2

0 1

K
p

K
i

K
w

1

K
w

2

K
w

3

K
w

4

192 3 4 5 6 7 8 1615

Data sequence for one signal processing block

from previous
 SPI blocks

1718

num
K

w

Figure 3.19: Schematic of the programming interface

Figure 3.20: Cascading the programming interfaces of several blocks

3.3.5 Simulation results

This subsection presents simulation results of the DCO block. The Tab. 3.2 presents the
performance and parameters summary.

Tuning curve in typical conditions

Fig. 3.21 shows the measured transfer function of DCO in typical condition (1.1 V power
supply, 27◦C). We can observe a good linearity of designed block. Fig. 3.22 demonstrates
the monotonic and linear feature of the block in another way: the variation of frequency
tuning step corresponding to each FCW. We can observe that there is no negative frequency
step, which guarantees the monotonicity of DCO.

70 Chapter 3. ADPLL blocks design

0 50 100 150 200 250
0.9

0.95

1

1.05

1.1

1.15

F
re

q
u

e
n

c
y,

 [
G

H
z]

FCW

TT 1.10V 27C

FCW
0 50 100 150 200 250

0.90

0.95

1.00

1.05

1.10

1.15

1.20
O

u
tp

u
t

fr
e
q
u

e
n
cy

 (
G

H
z)

Figure 3.21: Simulated output frequency versus frequency control word (FCW): typical
condition

0 50 100 150 200 250
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

F
re

q
u
e
n
cy

,
[M

H
z]

FCW

TT 1.10V 27C

FCW
0 50 100 150 200 250

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Fr
e
q
u
e
n
cy

 s
te

p
 (

M
H

z)

Figure 3.22: Frequency step vs. FCW: typical condition

PVT variations

Fig. 3.23, Fig. 3.24 and Fig. 3.25 shows the simulated code-frequency characteristics under
different process, supply voltage and temperature conditions. We observe that the circuit has

3.3. Digitally controlled oscillator (DCO) 71

a good immunity of temperature variation. The relative variation of the oscillation frequency
compared with the typical condition is less than 4 % at 125◦C, and is less than 2 % at 0◦C.
However, to achieve lower power consumption, smaller transistors are used compared with
the first version DCO [74]. At a cost, the designed DCO is more sensitive to process and
supply voltage variation. But it should be noted that the monotonicity and linearity of transfer
function are always guaranteed in different working conditions, which is the most important
thing for a network of coupled oscillators.

0 50 100 150 200 250

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

F
re

q
u
e
n
cy

,
[G

H
z]

FCW

TT 1.10V 27C
FF 1.10V 27C
SS 1.10V 27C

+264.0 MHz(+29.2%)

-200.8 MHz(-22.2%)

O
u
tp

u
t

fr
e
q
u
e
n
cy

 (
G

H
z)

FCW
0 50 100 150 200 250

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

-247.3 MHz(-21.3%)

+320.7 MHz(+27.6%)

Figure 3.23: Simulated output frequency versus frequency control word (FCW) in dif-
ferent process corners: process variations: TT, FF and SS

A Monte-Carlo simulation is performed on the designed DCO working at its central
frequency in typical condition. Fig. 3.26 displays the result with a 392 KHz interval.

Power consumption

To implement the proposed clock generator in a large dimension, the power consumption
of each block, especially the DCO is essential. And it is one of the key improvements in
the second version prototype. In typical condition, this block has a consumption of 1.1 mW
working at central frequency and 1.2 mW working at its maximal frequency. Powers for
different working conditions are traced in Fig. 3.27.

72 Chapter 3. ADPLL blocks design

0 50 100 150 200 250

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

F
re

q
u
e
n
cy

,
[G

H
z]

FCW

TT 1.00V 27C
TT 1.10V 27C
TT 1.20V 27C

FCW
0 50 100 150 200 250

O
u

tp
u

t
fr

e
q

u
e
n

cy
 (

G
H

z)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

+242.8 MHz(+26.9%)

-246.5 MHz(-27.3%)

+307.3 MHz(+26.5%)

-311.2 MHz(-26.8%)

Figure 3.24: Simulated output frequency versus frequency control word (FCW) with
different supply voltages: 1 V, 1.1 V and 1.2 V

Table 3.2: DCO chip performance summary

Parameter Value
Central frequency 1.036 GHz

Output divided frequencies 259/129.5 MHz
Tuning range (typical) 903∼1161 MHz

Gain 1.01 MHz/LSB
Supply voltage 1.1 V

Power consumption 1.2 mW @ Fmax or ∼1.17 mW/GHz
Area ∼2797.6 µm2

3.3. Digitally controlled oscillator (DCO) 73

0 50 100 150 200 250
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

F
re

q
u
e
n
cy

,
[G

H
z]

FCW

TT 1.10V 0C
TT 1.10V 27C
TT 1.10V 85C
TT 1.10V 125C

FCW
0 50 100 150 200 250

O
u
tp

u
t

fr
e
q
u
e
n
cy

 (
G

H
z)

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-44.4 MHz(-
3.8%)

+19.5 MHz(+1.7%)

+13.5 MHz(+1.5%)

-30.9 MHz(-3.4%)

Figure 3.25: Simulated output frequency versus frequency control word (FCW) at dif-
ferent temperatures: 0◦C, 27◦C, 85◦C and 125◦C

0.98 1 1.02 1.04 1.06 1.08 1.1
0

1

2

3

4

5

6

7

8

9

10
x 10

10

Output frequency, GHz

TT 1.10V 27C

0
0.98 1 1.02 1.04 1.06 1.08 1.1

1

2

3

4

5

6

7

8

9

10
10

10

Output frequency (GHz)

N
u
m

b
e
rs

 p
e
r

3
9
2

 K
H

z
in

te
rv

a
l

Figure 3.26: Monte-Carlo simulation at center frequency

74 Chapter 3. ADPLL blocks design

0 50 100 150 200 250
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

C
u

rr
e

n
t,

 [
m

A
]

FCW

TT 1.10V 27C
FF 1.10V 27C
SS 1.10V 27C

FCW
0 50 100 150 200 250

C
u
rr

e
n
t

(m
A

)

0.88

0.99

1.10

1.21

1.32

1.43

1.54

1.65

0.77

+0.27 mW(+27.1%)

-0.21 mW(-21.1%)

+0.31 mW(+24.7%)

-0.24 mW(-19.6%)

Figure 3.27: Power consumption vs. FCW in different process corners: process varia-
tions: TT, FF and SS

3.4. Conclusion 75

3.4 Conclusion

This chapter presents the digital blocks of the designed ADPLL. We have explained the
principle of phase and frequency error measurement in PFD, which will be placed at the
border between neighboring clock domains. We have also presented the architecture of loop
filter and DCO, which are two local blocks generating the clock signal in each clock domain.

These blocks introduced in this chapter are essential components of one NODE in the
coupled clocking network. In general, a block NODE is the whole circuit necessary for one
locally synchronous clocking area. The implementation of this IP block is presented in detail
in Chapter 6.

Chapter 4

Built-In Clock Error Characterization

Circuit

Contents
4.1 Introduction . 77

4.2 State of art . 79

4.3 Test methodology . 82

4.4 Low frequency discrete circuit prototype 87

4.5 High frequency on-chip prototype . 90

4.6 Procedure of measurement . 104

4.7 Conclusion . 106

4.1 Introduction

In modern large-scale integrated circuit, a global clock distribution system is used to syn-
chronize communications between various points in the system [57][52]. A synchronous
communication requires the clocks at the transmitter and receiver sides to be synchronized,
i.e., to have the same phase and frequency. In practice, a perfect synchronization is impos-
sible: the must-be-simultaneous clock events are separated by time intervals called "clock
error". The awareness of the maximal clock error is necessary for establishment of timing
budget for communication and data processing.

In this chapter, we investigate a test strategy for characterization of clock error statis-
tics between two clock domains in high-speed clocking systems (gigahertz and more). The
method allows precise characterization of the clock error by observing the integrity of a
periodic sequence transmitted between two clocking domains. The critical tasks of the mea-
surement related to delay sensitivities and high speed signals are completely achieved on
the chip; the readout of the results and the calibration of the instrument are achieved with
an off-chip interface, with signals cadenced at low rate. The proposed technique aims at

77

78 Chapter 4. Built-In Clock Error Characterization Circuit

picoseconds measurement resolution, without complex calibration procedure. The idea was
first validated on a discrete prototype operated at downscaled frequencies, and then a high
frequency on-chip prototype was designed using 65 nm CMOS technology. Simulation re-
sults predict a measurement precision of less than ±2.5 ps. The chapter presents the theory,
exposes the hardware implementation, and reports the experimental validation and simula-
tion results of two prototypes.

This chapter is organized as follows. Section 4.2 presents state of the art of current clock
error measurement methods, and does a brief comparison between them and the proposed
circuit. Section 4.3 explains measurement principle and proposed circuit. In Section 4.4,
the discrete device prototype and measurement results are presented. Post-layout simulation
results of ASIC prototype are exhibited in Section 4.5.

4.2. State of art 79

4.2 State of art

In a synchronous circuit, clock signal is distributed in different places of the chip by a certain
method, ex. clock tree. In an ideal case, all clock signals (the leaves of the tree) must
be synchronized in phase and have the same period T . In practice, because of unmatched
delays and noise, there are clock errors and fluctuation of the clock period. To formalize
the method of clock error measurement, we make two hypotheses. 1) the average value of
the period of all clocks is the same (T), 2) the clock error is small comparing to the average
clock period. The second hypothesis means that the clocks are roughly synchronized, but
some small perturbation exits. These two hypotheses are true in practically useful cases:
the method we developed is intended to characterize small (residual) synchronization errors
between clocks in an operational clock generator.

Let us consider two clock signals, clk1 and clk2. The two hypotheses presented above
states that (i) for each period T there is in average one clock event for each signal, and (ii) it
is possible to choose the numeration of the clock events so that to each clock event of clk1
number i corresponds to a clock event of clk2 with the same number, so that

‖∆ti‖� T, (4.1)

where

∆ti = t2
i − t1

i , (4.2)

t1
i is the ith edge arriving time of clk1, t2

i is the ith edge arriving time of clk2.

We call ∆ti the clock error between two clocks clk1 and clk2, at the period number i
(Fig. 4.1).

Figure 4.1: Definition of the clock error ∆ti

{∆ti}i∈N is a discrete time random process characterized by the time average Sin =∆t that
we call skew∗ and the dynamic component of the phase error {∆ti− Sin}i∈N. This process
is usually considered as ergodic. The values of a realization of the process {∆ti}i∈N are
characterized by a distribution function, which is also a probability density function (PDF)
since the process is ergodic. In practice, a probability density function of a clock error is a
function defined on a limited domain with minimal and maximal non-zero values B and C
(for example, a truncated Gaussian distribution as in Fig. 4.2).

∗Sometimes in the literature, the term "skew" is used as a synonym of "clock error". In this manuscript, we
only employ this term according to the definition given in this paragraph.

80 Chapter 4. Built-In Clock Error Characterization Circuit

The measurement of clock error can be required in many cases. This work is motivated
by the need for characterizing clocks generated by the distributed clock generator presented
before. The typical clock errors for gigahertz clocks are of tens of picoseconds or less. An
off-chip measurement requires the transmission of clock signals off the chip, thus introducing
additional delays whose values are difficult to control [68][65]. The sampling rate and the
vertical gain of available measurement tools are also major issues.

Figure 4.2: Gaussian distribution of clock phase error

On-chip solutions are usually based on time measurement techniques using a cascaded
delay chain [13], cf. Fig. 4.3. When a local clock is sent down to the inverter chain, the
sampling latches record the number of inverters that the clock edges travel through before
being latched. Every sampling latch output is XNORed with its neighbor to obtain a 1 at
the location of the detected edge. The result of the XNOR is written into a second register
called the accumulation, or âĂIJstickyâĂİ register. However, the minimum delay of a CMOS
buffer is of the same order as the clock error to be measured, and a precise measurement of
small error is not possible. An improvement may be achieved by using a Vernier delay line
[11] [10][16], explained in Subsection 3.1.2.

Precise measurement of the clock error may require a large number of stages (e.g., 129
in [13]). The outputs of the TDC stages are then processed by digital circuits at high rate.
Although the methods using TDC provides precise value of timing error at each period, it is
area and energy expensive, since in most cases only the statistics about the clock error are
required (the mean, the minimum and the maximum values).

The technique proposed in this chapter is based on an integrity check of a periodic se-
quence transmitted from one clock domain to the other. If there is a clock error, the received
sequence contains errors. The error rate is related to both static and dynamic errors between
two clock domains. To characterize the process {∆ti}i∈N, an externally controlled on-chip
delay element is inserted in the test sequence data path. By varying the delay value, the error
rate is modulated, and then the intrinsic clock error characteristics of the process {∆ti}i∈N

4.2. State of art 81

Figure 4.3: Delay chain based "Skitter" circuit proposed in [13]

can be abstracted by a simple processing unit. Only one bit is processed at each clock cycle,
different from existing methods based on direct time interval quantification (e.g., 129 bits are
processed in architecture described in [13]). The measurement resolution is defined by pre-
cision of the delay control. An on-chip delay with a high precision (few ps) can be achieved
by techniques described in Section 4.5.

82 Chapter 4. Built-In Clock Error Characterization Circuit

4.3 Test methodology

The proposed test method is based on the architecture presented in Fig. 4.4, which detects
the variation of the sign of clock error ∆t. It is done in the following way. The test pattern
generator issues a periodic sequence "...010101..." which is synchronized with clk1. This
pattern is transmitted to the clk2 domain, and a processing unit block checks its integrity.
The received pattern is considered correct if and only if it is the same as the sent pattern.
The circuit cannot detect the delay between two patterns since they are not in the same clock
domain. Hence, if ∆ti sequence is constant (only a static error is present), the transmission
is always correct (Fig. 4.5). This circuit cannot detect a pure static error (skew) between
clocks.

However, if the clock error has a dynamic component – which is usually the case in
practice – the clock error may change its sign. In this case, the sequence received by the
processing unit contains two successive 0 or 1 (Fig. 4.6): the integrity of the sequence is
violated and can be detected by the processing unit. After that, digital circuits can easily
estimate the error rate ER. The error rate obtained from such a measurement is related to
both the static and dynamic component of the clock error. For example, if the skew is greater
than the amplitude of the dynamic component, the sign never changes, and the detected error
rate is zero. If there is no skew, the sign change happens on average once over two clock
events, and the measured error rate is 1/2.

Now we insert a controlled delay ∆ in the transmission path(Fig. 4.4). This delay is
equivalent to an additional skew between the clocks. By varying the delay ∆, we change the
effective skew, hence, the measured error rate (ER), which is now a function of ∆. The next
section shows the analysis providing the relation between the measured function ER(∆) and
the unknown PDF of the clock error.

Processing

unit

clk
1

clk 2

Test pattern

generator

clock domain border

"...1010..." err

Figure 4.4: Basic architecture of measurement circuit

4.3.1 Measurement theory

The introduction of the delay ∆ (Fig. 4.4) modifies the skew between the clocks, and hence
the effective PDF of the clock error distribution, by mapping ∆t → ∆t +∆ (Fig. 4.7(a,b)).

4.3. Test methodology 83

clk1

clk2

0 01 1
test

pattern

clk1

clk2

0 01 1
test

pattern

(a) positive skew clk2 lags (b) negative skew clk2 leads

Figure 4.5: Received data integrity: fixed static error

clk1

clk2

0 01 1
test

pattern

(a) dynamic error two ’1’s received

clk1

clk2

0 01 1
test

pattern

(b) dynamic error two ’0’s received

Figure 4.6: Received data integrity: dynamic error

We can find a mathematical relation between the error rate ER and the original PDF of clock
error by observing two neighboring clock cycles.

The error rate represents the probability of the sign change of the effective (modified by
the delay) clock error. Considering that there is no dependency between ∆ti and ∆ti+1 (cf.
above in Section 4.2), we have :

ER = P(∆ti > 0 and ∆ti−1 < 0)
+P(∆ti < 0 and ∆ti−1 > 0)

= P(∆ti > 0)P(∆ti−1 < 0)
+P(∆ti < 0)P(∆ti−1 > 0)

= 2P(∆ti < 0)P(∆ti−1 > 0)
= 2P(∆ti < 0)(1−P(∆ti−1 < 0))

(4.3)

where P(·) means "probability". Since the clocks errors are independent, we may replace
P(∆ti−1 < 0) by P(∆ti < 0), which we name a. We have:

ER = 2P(∆ti < 0)(1−P(∆ti < 0)) =
= 2a(1−a),

(4.4)

where a = P(∆ti < 0) is the probability that the ith cycle phase error is negative (Fig. 4.7(c)).
Note that a depends on ∆, and it is given by:

a(∆) = P(∆ti < 0)

=
0∫
−∞

PDF(z+∆)dz =
∆∫
−∞

PDF(y)dy.
(4.5)

When ∆ is equal to the intrinsic skew Sin, on average, clock errors are positive in 50%
of clock cycles and negative in the other 50% cycles. In this case the measured error rate
is equal to 1/2 and is maximal (cf. Fig. 4.7(c)). This allows a measurement of the intrinsic

84 Chapter 4. Built-In Clock Error Characterization Circuit

skew. To find the original PDF, the expression (Eq. (4.5)) is derived:

PDF(∆) =
∂a
∂∆

. (4.6)

According to the definition of a(∆), a is greater than 1/2 when the effective skew Sin−∆ is
positive, otherwise, a is less than 1/2. Hence, from (Eq. (4.4)), a can be expressed as:

a =

1+
√

1−2ER
2

∆≥ Sin

1−
√

1−2ER
2

∆ < Sin

(4.7)

By differentiating, (Eq. (4.7)) turns into the following equation:

∂a
∂∆

=
1√

1−2ER
∂ER
∂∆

sign(Sin−∆). (4.8)

where sign(x) =

{
1 x≥ 0
−1 x < 0

From (Eq. (4.6)) and (Eq. (4.8)), we obtain:

PDF(∆) =
1√

1−2ER
∂ER
∂∆

sign(Sin−∆). (4.9)

The PDF(∆) calculated by the formula (Eq. (4.9)) is non-zero only when the variation of
function ER(∆) doesn’t equal zero. Hence, the maximal and minimal dynamic error values
(points B and C in Fig. 4.7(a)) can be easily calculated. The largest and the smallest ∆ values
at which PDF(∆) is non-zero are given by the limit of the ∆ range at which ER(∆) is non-
zero (points B and C in Fig. 4.7(d)). Indeed, the delay ∆ = ∆B or ∆ = ∆C shifts the original
PDF rightward/leftward until a = 0 or a = 1. Hence, ∆B and ∆C correspond respectively to
∆t values at points B and C of original PDF (Fig. 4.7(a)), which are the min/max clock error
values.

However, to abstract the full original PDF of clock error, ∆ must be able to take either
positive or negative values. However, a real delay is always positive. A negative delay can
be imitated by two methods. The first way is to use a single variable delay whose value is
close to the clock period. The relation between ∆ and the implemented physical delay ∆td
can be expressed by the following equation:

∆ = (T/2+∆td) mod T −T/2. (4.10)

In this case, the relation between the ER distribution and the real delay value is illustrated
in Fig. 4.8, where delay values at points A, B, and C correspond to the skew and min/max
clock errors respectively.

4.3. Test methodology 85

Figure 4.7: Theory analysis: (a) Original PDF of clock uncertainty; (b) PDF with a shift
∆ = ∆x; (c) a vs. ∆; (d) ER vs. ∆

The second way to have a negative delay is to use a differential delay pair – one delay for
each clock domain. Therefore, the real delay introduced between two clocks is the difference
value between two delays. If the range of a single delay is [a, b], that of a differential delay
using two identical delays is [-(b-a), b-a].

We have studied the two techniques in our work: the former technique has been imple-
mented in a low frequency discrete circuit prototype (cf. Section 4.4); the latter has been
implemented in a high frequency ASIC prototype (cf. Section 4.5).

4.3.2 Architecture of measurement circuit

The measurement circuit is implemented as shown in Fig. 4.9.

A binary sequence "...1010..." is generated on-chip in clk1 domain by a D flip-flop syn-
chronized with the clock clk1 (Fig. 4.9). The binary sequence is sent to the clk2 clock
domain after a controllable delay (∆), which allows varying the effective static error between
two clocks manually.

The data sequence is sampled in the clk2 domain. To reduce the probability of metasta-
bility in flip-flops [19], a 4-stage shift register samples the input signal (D2) of the clk2

86 Chapter 4. Built-In Clock Error Characterization Circuit

Figure 4.8: ER distribution with respect to single positive delay

Figure 4.9: Architecture of test circuit

domain. A 2-input NXOR gate detects transmission errors by comparing R3 and R5 outputs;
each detection event is then counted by the n-bit counter C1 cadenced by clk2. Counter
C2 has two roles. The first one is to generate an over f low event every 2n clk2 cycles: this
provides a time interval during which C1 counts the errors. When C2 overflows, the counter
C1 is reset to 0 to restart counting in the next 2n clk2 cycles. The second role of C2 is to
generate another signal sample, which is used as a sampling clock signal. When the rising
event of sample arrives, the value of C1 is written into the output register Rs. The event
of sample is generated one period before the event of over f low to avoid the concurrency
between sampling and reset of the value of C1. Therefore, the value stored in the register
Rs represents the number of errors during 2n−1 clk2 cycles and it can easily be transmitted
off-chip, because the readout is at a frequency 2n lower than the clock frequency.

4.4. Low frequency discrete circuit prototype 87

4.4 Low frequency discrete circuit prototype

A low frequency prototype using discrete devices is implemented to evaluate the proposed
test method. The test environment is shown in Fig. 4.10.

Figure 4.10: Measurement environment of prototype

Two 8-bit counters (C1 and C2 in Fig. 4.9) are implemented for sign changes rate cal-
culation. A 8-bit register (Rs) samples the counter result every 256 clock cycles. Negative
delays are implemented with the first technique described in Subsection 4.3.1.

clk1, a 500 KHz signal with a 50% duty cycle, is generated by a function generator. The
clock clk2 with dynamic error and skew is generated from clk1 by the circuit in Fig. 4.11.
RC delay provides a positive delay (a negative skew is obtained by a large delay close to the
clock period, cf.Subsection 4.3.1). A clock edge uncertainty with max/min value of±100 ns
is achieved by adding a noise signal over the power supply of inverter. To eliminate glitches,
a Schmitt trigger is used at the output.

Vcc

clk1 clk2

74HCT04N HEF4007UB

TRIMMER 15 TOURS 10K

C=500 pF HEF4093B

Figure 4.11: Generation of clk2 with static and dynamic errors

88 Chapter 4. Built-In Clock Error Characterization Circuit

The controllable variable delay ∆td is implemented as a 4-stage delay chain shown in
Fig. 4.12, in which the resistor is a trimmer. Four delay stages could generate a large delay
with a value comparable to the period of the sequence Q1. To acquire the function ER(∆td),
the delay ∆td varies from 0 to 2 µs and the output ER value is observed.

Q1

D2

sel

TRIMMER 15 TOURS 10K

C=500 pF
74HCT04N

Figure 4.12: Variable delay circuit in discrete circuit prototype

Figure 4.13: Test of prototype without skew

We have performed three tests to evaluate the prototype. In the first test, only pure dy-
namic errors without skew ([-100 ns, 100 ns]) are added. The measured error range is [-120
ns, 130 ns] as illustrated in Fig. 4.13. In the second test, a negative skew of 40 ns exists along
with±100 ns dynamic errors. Test result shown in Fig. 4.14 (mean value -50 ns, range [-150
ns, 80 ns]) is in good agreement with the values we measured directly (mean value -40 ns,
range [-140 ns, 60 ns]). In the third test, a positive skew of 110 ns with ±50 ns dynamic
errors are added on clock 2. The measured result has a skew of 100 ps with a range of [43
ns, 168 ns], which has a difference of less than 10 ns with respect to ideal values. The ob-
tained plots (Fig. 4.13, Fig. 4.14) and Fig. 4.15) are qualitatively similar to those predicted
by theory (Fig. 4.8).

4.4. Low frequency discrete circuit prototype 89

Figure 4.14: Test of prototype with a skew of -40 ns

Figure 4.15: Test of prototype with a skew of -40 ns

90 Chapter 4. Built-In Clock Error Characterization Circuit

4.5 High frequency on-chip prototype

The prototyped architecture has a serious drawback for the on-chip implementation, in what
concerns the implementation of the delay ∆: First, an approximation of a pure delay by
RC networks is only efficient for delays largely inferior to characteristic time of the signals.
However, the implementation of negative ∆ requires pure delays of the same order as the
signal period. Second, small values of ∆ are difficult to implement, because of the threshold
imposed by intrinsic technology delays. To overcome these difficulties, ∆ is defined as dif-
ferential delay. The new topology of the on-chip measurement system is shown in Fig. 4.16.
One variable delay ∆td1 is used in the test pattern path, the other delay ∆td2 is applied to the
clock clk2. As explained in Section 4.3.1, the effective delay value is ∆ = ∆td1−∆td2, which
can be a very precise value (either positive or negative) close to zero. Moreover, the delay
range is doubled. Implementation details and characteristics of proposed variable delay are
presented in Subsection 4.5.1.

Figure 4.16: ASIC prototype architecture

4.5.1 Voltage-controlled delay (VCD)

VCD topology

The voltage controlled delay element (VCDE) is based on the topology in Fig. 4.17. It
is composed of two CMOS inverters. The charging and discharging currents of the output
capacitance of the first inverter (M4-M5) are controlled by a PMOS (M2) and a NMOS (M7),
respectively. M1 and M6 constitute a current mirror for controlling the gate voltage of M2
and M7. Hence in this delay, both the rising and falling edges of the input signal can be
controlled. The second inverter (M8-M9) improves the rise and fall times of the circuit.

In this prototype, to have a large delay range, two VCDE as shown in Fig. 4.17 are
cascaded (Fig. 4.18). To be aware of the delay during measurement, a replica of variable
delay is repeated and set as a ring oscillator. Since the exact delay value is known during

4.5. High frequency on-chip prototype 91

M1 M2

M3

M4

M5

M6 M7

M8

M9

Vctrl

Din

Dout

Vdd

Vdd

gnd

gnd

Vcp

Vcn

Figure 4.17: Voltage-controlled delay element[24]

the test, a complex calibration is no more necessary. It should be noted that in order to
measure exactly the value of variable delay, each VCDE and each replica of VCD should
have the same load capacity. That is the reason why inverters with the same size are added
at the output of the replica. Moreover, since a critical requirement for ring oscillator is that it
should contain an odd number of inverters, three inverters are used in VCD. Another inverter
is added between the output of VCD and the input of processing unit not only to have a
non-inverted delay but also to make sure the VCD has same load as its replicas in the ring
oscillator.

Din

Vctrl

VCDE VCDE

VCD

Dout

Figure 4.18: Voltage-controlled delay with 2 stages

VCD layout design

To guarantee the compatibility with digital circuit and facilitate place and route, we use
the cell oriented design methodology for layout design of the delay element. In the cell
oriented design, the functional blocks are implemented as cells having common geometrical
parameters. For compatibility with the standard library cells, the custom VCD cell must have
the same geometrical constraints as the standard design kit cells:

1. The height of the cells;

2. The topology of the supply/ground wires;

3. The location and maximal dimensions of substrate and N-well polygons

92 Chapter 4. Built-In Clock Error Characterization Circuit

Fig. 4.19 demonstrates a template of the cell with prerouted supply and reserved space
for active transistors and routing wires. The prerouted supply and ground are done in metal
layer Metal1. The width of the power strips is 0.56 µm. They are shared with the neighboring
cells from bottom and top sides.

The routing of signals is free within the cell area at the levels of metal Metal2-Metal7.
The routing space is only limited by the supply strips at metal layer Metal1.

The active zones of transistors should be placed inside the area specified by the red dotted
rectangle. The N-well zone is specified by the blue rectangle area: it is reserved for P
transistors. The green rectangle specifies the P-well zone for the N transistors.

N-well

Routing space

P-transistor space

N-transistor space

GND

Figure 4.19: Cell layout template: routing space includes the whole cell area, the N-well
defines the location of the P-transistors. The height of the cell (2.6 µm) and the supply/ground
polygons size are the same as those of the standard library cells.

However, in order to get better matching in current mirror, M1-M3, M6 and M7 should
have large size, and the 2.6 µm space for active transistors is not enough. To have enough
space for sizing without violating geometrical constraints of standard cells, we created a new
template (illustrated in Fig. 4.20) whose height is three times the one shown in Fig. 4.19.
The borders of the template are standard filler cells of design kit. At each side, three cells are
connected by abutment. Since the VDD and GND stripes alternate, each pair of neighboring
cells must have an vertical symmetry, hence the middle cell is mirrored with respect to the
other two cells. By doing this, the placement space is three times the standard cell, and no
DRC rule is violated thanks to the standard cell border. The layout of one variable delay
element is displayed in Fig. 4.21.

VCD characteristics

Fig. 4.22 shows the delay-voltage relations at different input signal frequency conditions and
the delay measured by ring oscillator. From Fig. 4.22, we can observe that if the control volt-
age is greater than 0.85 V, the delay value used for manipulation matches the value measured
by oscillator with a difference of less than 2 ps. The delay range is [333.89 ps, 435.97 ps]
for one delay, hence for the differential delay the range is [-102 ps, 102 ps]. The latter range
is large enough comparing with typical phase errors between synchronized high frequency
on-chip clocks. The resolution of the differential delay control is about 2 ps/5 mV at high

4.5. High frequency on-chip prototype 93

N-well

Routing space

P-transistor space

N-transistor space

87

GND GND GND

GNDGND

Figure 4.20: Delay element layout template: routing space includes the whole cell area,
the N-well defines the location of the P-transistors. The height of the cell (7.8 µm) and the
supply/ground polygons size are the same as those of the standard library cells.

control voltage and 5 ps/5 mV at low control voltage. A step of 5 mV with a precision of less
than 0.05% can be achieved by a modern voltage supply device (ex. Agilent 6625A Power
Supply); therefore we can have a precision of ±1 ps for small clock error measurements and
±2.5 ps for large error.

4.5.2 Physical design of test circuit on silicon

As illustrated in Fig. 4.23, five replicas of voltage controlled delay block (VCD0) are flipped
horizontally (VCD1−2) or vertically (VCD3−5) and connected as a ring oscillator. The six
delay blocks are placed in two rows. The connection VCD2→VCD3 and VCD1→VCD5 are
routed manually, and the rest connections between blocks in the ring oscillator are realized
by abutment. A control voltage signal V ctrl is routed in the space between the two rows so
that all variable delays share the same signal. This compact layout is displayed in Fig. 4.25.

In practice, the position of Pattern Generator and variable delay ∆td1 in Fig. 4.16 can
be swapped without affecting the functionality of circuit. In this way, the two digital blocks
Pattern Generator and Processing Unit can be realized in one digital circuit. This has two
advantages: First, it makes the whole circuit symmetric (as shown in Fig. 4.24), which de-
creases the mismatch; Second, it helps optimizing the digital circuit during synthesis and
place & route.

The layout of the proposed test circuit is shown in Fig. 4.25.

4.5.3 Modeling of clock generator for system verification

In order to verify the performance of proposed circuit, we need a model of DUT (Device
Under Test), which generates two clock signals with deterministic static and dynamic phase

94 Chapter 4. Built-In Clock Error Characterization Circuit

7
.8

 u
m

10.5 um

Figure 4.21: layout of VCD and calibration oscillator

errors, with close-to-realistic statistical properties of the error sequence. The test sequence
should be repeatable, so that we could compare measurement results with original values,
and expect the proposed circuit to give the same accurate value even with process, voltage
supply or temperature (PVT) variations.

Because of its high controllability, observability, simulation speed and precision, an ideal
candidate of DUT is a VHDL model. In the clock generator model, a clock signal with a fre-
quency f can be generated by the instruction clock => not clock a f ter T/2, where T is the
period (T = 1/ f). The jitters are modeled by adding a random Gaussian variable Yn to the
value T at each period of the output signal. This variable represents the additive random fluc-
tuation at each ideal time-stamp of clock signal. VHDL library does not provide a dedicated
command for the generation of random variables with normal distribution. Instead, it pro-
vides a function generating pseudo-random numbers with uniform distribution, which can be
used by Box-Muller transform to generate a Gaussian variable. The Box-Muller transform
generates a normally distributed random variable from the two uniformly distributed random

4.5. High frequency on-chip prototype 95

Figure 4.22: Variable delay in function of control voltage

CLK

Vctrl

VCD VCD
out

VCD

VCD VCDVCD

CLK

in

oscillator

12

3 4 5

0

Figure 4.23: Place of VCD and calibration oscillator

Figure 4.24: Architecture of implemented built-in test circuit

96 Chapter 4. Built-In Clock Error Characterization Circuit

Figure 4.25: Layout of built-in test circuit

variables. This transform is given by

Yn =
√
−2lnx1 cos(2πx2) (4.11)

where Yn is a normally distributed variable with expected value 0 and variance 1; x1 and
x2 are independent random variables uniformly distributed in the interval [0, 1].

DFF
Period-

-to-clock
convert

T

Box-Muller
transform

YnX1

X2

FCLK2

float
time

KRMS

Uniform Normal

Box-Muller
transform

X1

X2

Yn

0

(a)

(b)

DFF
Period-

-to-clock
convert

FCLK1

delay 2

delay 1

Figure 4.26: VHDL model for clock generation: (a) block diagram and (b) generation of a
random variable with normal distribution using Box-Muller transform.

Once we get the Gaussian variable, we can inject dynamic errors by multiplying the
variable by a RMS (root mean square) value and adding the result to ideal period value T .
By adjusting the delay value in each clock generation path (Fig. 4.26(a)), we can introduce a
static error, which could be both positive and negative. The total relative phase error of clk2
with respect to clk1 can be expressed as:

4.5. High frequency on-chip prototype 97

phase error = jitter+delay2−delay1 (4.12)

The complete listing of the precise VHDL macro-model is given in Appendix D.

4.5.4 Simulation results

To evaluate the proposed circuit, we performed various post-layout simulations. In the test-
bench, normally distributed phase errors are added between two 1 GHz clock signals. The
mean value (skew) is -20 ps and max/min error values are 19.6 ps/-53.4 ps. The histogram
of the generated clock error distribution during 1020 cycles is displayed in Fig. 4.27.

The error rate (ER) is calculated as the total number of errors during 4 cycles of test
(255 periods each cycle for the reason explained in Subsection 4.3.2), which yields 1020
clock periods. The measured ER(∆) curve is drawn in Fig. 4.28. Tab. 4.1 records detailed
results of each step. The measurement allows a localization of the minimum error (∆B in fig.
Fig. 4.7a) in the interval of [-55.62 ps, -53.21 ps), whereas the real minimum error value is
-53.4 ps, a precision of [-2.22 ps, 0.19 ps) is achieved. In the same way, the maximum error
(∆C in fig. Fig. 4.7a) is between 16.62 ps and 20.3 ps, which has a difference lying in the
range (-2.98 ps, 0.7 ps] with respect to the real value 19.6 ps. If we define the median value
of the range as an estimation of real value, we find that the estimation error is within ±2 ps.
The measured skew is -20.73 ps, which is 0.73 ps less than the real value. The measurement
results demonstrates a good precision in accordance with the theory.

Figure 4.27: Histogram of clock errors between clk1 and clk2

Temperature variation immunity

Fig. 4.29 shows the measured voltage-delay characteristics under different temperature con-
ditions. We observe that the circuit has a good immunity of temperature variation. At high

98 Chapter 4. Built-In Clock Error Characterization Circuit

Table 4.1: Post-layout simulation results (T = 27 ◦C)

Vctrl1 (V) Vctrl2 (V) ∆td1 (ps) ∆td2 (ps)
∆ (ps) err (255 periods each cycle)

Error rate
(∆td1−∆td2) 1st cycle 2nd cycle 3rd cycle 4th cycle total

0.95 0.87 418.57 474.19 -55.62 0 0 0 0 0 0
0.945 0.87 420,98 474,19 -53,21 0 2 0 0 2 0.001968504
0.945 0.875 420.98 469.76 -48.78 10 2 2 8 22 0.021653543
0.945 0.88 420.98 465.5 -44.52 14 4 4 12 34 0.033464567
0.945 0.885 420.98 460.97 -39.99 30 14 10 22 76 0.07480315
0.945 0.89 420.98 456.78 -35.8 29 33 44 46 152 0.149606299
0.945 0.895 420.98 452.76 -31.78 70 58 47 58 233 0.229330709
0.945 0.9 420.98 448.88 -27.9 84 75 70 75 304 0.299212598
0.945 0.905 420.98 445.2 -24.22 104 93 117 109 423 0.416338583
0.945 0.91 420.98 441.71 -20.73 128 127 122 134 511 0.502952756
0.945 0.915 420.98 438.36 -17.38 123 122 124 122 491 0.483267717
0.945 0.92 420.98 435.15 -14.17 114 113 112 112 451 0.443897638
0.945 0.925 420.98 432.04 -11.06 71 82 88 86 327 0.321850394
0.88 0.875 465.5 469.76 -4.26 42 48 30 46 166 0.163385827
0.88 0.88 465.5 465.5 0 30 32 18 32 112 0.11023622
0.88 0.885 465.5 460.97 4.53 12 16 10 10 48 0.047244094
0.88 0.89 465.5 456.78 8.72 0 4 6 0 10 0.00984252
0.88 0.895 465.5 452.76 12.74 0 2 4 0 6 0.005905512
0.88 0.9 465.5 448.88 16.62 0 0 0 2 2 0.001968504
0.88 0.905 465.5 445.2 20.3 0 0 0 0 0 0

Figure 4.28: ASIC prototype error rate (T = 27 ◦C)

control voltage (∼ 1 V), the relative variation of the oscillation frequency compared with the
typical condition is about 12 % at 100◦C, and about 5 % at 0◦C. At low control voltage (∼
0.8 V), the variation is only 1 %.

To prove the temperature variation immunity property of proposed circuit, a simulation
under 100 ◦C is performed. The same clocks in previous simulation are applied. Measure-
ment results shown in Fig. 4.30 localize the minimum error in the interval of [-56.97 ps,
-50.36 ps). Compared to the real minimum error value -53.4 ps, a precision of [-3.57 ps,

4.5. High frequency on-chip prototype 99

o

o

o

+48.9 ps (12.2%)

-19.8 ps (-4.9%)

-1.8 ps (-0.3%)

6.2 ps (1.1%)

Figure 4.29: Simulated variable delay value versus control voltage at different temper-
atures: 27 ◦C, 0 ◦C, 100 ◦C

3.04 ps) is achieved. In the same way, the maximum error is in the interval (15.42 ps, 20.81
ps], which has a difference lying in the range (-4.18 ps, 1.21 ps] with respect to the real value
19.6 ps. The measured skew is -20.81 ps, which is 0.81 ps smaller than the real value 20 ps.

Process variation immunity

Fig. 4.31 shows the measured voltage-delay characteristics at different process corners. In
the SS case, the variation is from 23.2 % to 32.3 % with respect to TT condition. While in FF
case, the variation is between 18.3 % and 23.3 %. We can see that different from temperature
variation, the circuit is more sensitive to process variation at low control voltage.

To evaluate the immunity level of process variation, two tests are performed in "SS"
corner and in "FF" corner. Fig. 4.32 demonstrates measurement results in "SS" corner. A
precision of [-2.98 ps, 4 ps) is achieved for minimum error detection, and the precision of
maximum error measurement is (-2.95 ps, 2.95 ps]. The experimental value of skew is -19.23
ps. For the "FF" case, as shown in Fig. 4.33 the experimental minimum error has a difference
of [-1.33 ps, 3.35 ps) compared to real value. The precision of maximum error measurement
is (-3.92 ps, 1.94 ps]. The measured skew -21.09 ps is 1.09 ps less than 20 ps.

100 Chapter 4. Built-In Clock Error Characterization Circuit

Figure 4.30: ASIC prototype error rate measurement (T = 100 ◦C)

+93.2 ps (23.2%)

-73.5 ps (-18.3%)

180.3 ps (32.3%)

-130.3 ps (-23.3%)

Figure 4.31: Simulated variable delay value versus control voltage in different process
corners: process variations: TT, FF and SS

4.5. High frequency on-chip prototype 101

Figure 4.32: ASIC prototype error rate measurement (Corner SS)

Figure 4.33: ASIC prototype error rate measurement (Corner FF)

Supply voltage variation immunity

Fig. 4.34 shows the measured voltage-delay characteristics with three different supply volt-
ages (the standard 1.2 V and 1.2 V ± 5 %). At high control voltage (∼ 1 V), the relative
variation of the oscillation frequency compared with the typical condition is less than 7 %.

102 Chapter 4. Built-In Clock Error Characterization Circuit

At low control voltage (∼ 0.8 V), the variation is about 1 %. We observe that the circuit has
a good immunity of power supply variation.

+26.2 ps (6.5%)

-18.5 ps (-4.6%)

+8.3 ps (1.5%)

-4.3 ps (-0.8%)

Figure 4.34: Simulated variable delay value versus control voltage with power supply
variation: nominal and changed by ±5%

To evaluate the immunity level of supply voltage variation, two tests are performed with a
supply at 1.26 V (Vdd=1.2 V + 5%) and at 1.14 V (Vdd=1.2 V - 5%). Fig. 4.35 demonstrates
measurement results with Vdd at 1.26 V. The test circuit achieves a precision of [-1.58 ps,
2.9 ps) for minimum error detection, and a precision of (-5.12 ps, 0.8 ps] for maximum error
measurement. The experimental value of skew is -20.40 ps.

When the supply voltage is 1.14 V (Vdd=1.2 V - 5%), as shown in Fig. 4.36, the exper-
imental minimum error has a difference of [-2.12 ps, 2.04 ps) compared to real value. The
precision of maximum error measurement is (-3.93 ps, 0.02 ps]. The measured skew -19.62
ps is 0.38 ps less than 20 ps.

In conclusion, although the voltage controlled delay value varies at different PVT con-
ditions, from Fig. 4.34, Fig. 4.29, and Fig. 4.31 we can see that the delay-voltage relation is
always linear and monotonic. And a delay range of more than 100 ps is guaranteed. More-
over, since we use the differential value of two variable delays close to each other, the two
delay cells have similar PVT conditions. The curves and data presented in this chapter are
limited to certain working conditions. By measuring the delay value using integrated ring

4.5. High frequency on-chip prototype 103

Figure 4.35: ASIC prototype error rate measurement (Vdd=1.2 V + 5%)

Figure 4.36: ASIC prototype error rate measurement (Vdd=1.2 V - 5%)

oscillator, we can know the delay value in current test environment.

104 Chapter 4. Built-In Clock Error Characterization Circuit

4.6 Procedure of measurement

This designed test circuit can be injected in the chip of clocking network (cf. Fig. 4.37) and
is used to measure the phase error between two clock signals in the chip. In this section, we
present the user interface of the test method and the procedure of measurement.

Vctrl1

Vctrl2

clkcalib
1

clkcalib
2

clkDUT
1 clkDUT

2

Nerr
8 bits

Built-in
test circuit

Chip under test

Figure 4.37: The integration of proposed test circuit on the chip

The proposed test circuit has four inputs and three outputs. Two of the inputs — the clock
signals under test (clkDUT

1 and clkDUT
2 in Fig. 4.37) are internal signals of the chip. They can

be the divided clock signals generated by DCOs or the input reference clock. One block of
test circuit results in five additional pins of the chip: two input pins (V ctrl1 and V ctrl2) for
the control and three additional output pins (clkcalib

1 , clkcalib
2 and Nerr) for the observation

(cf. Fig. 4.37). A specification of the I/O pins are as follows:

• V ctrl1 and V ctrl2: Analog control signals. Their voltage values decide the values of
variable delay elements inside the test circuit. These two inputs should have a range
from 0.7 V to 1.1 V with a tuning step of 5 mV and a precision of 1 mV. They can be
generated by an external power supply device such as Agilent 6625A, which allows a
precision of less than 0.05%.

• clkcalib
1 and clkcalib

2 : Clock signals generated by calibration oscillators (oscillator1 and
oscillator2 in Fig. 4.24). By observing the period value of these two periodical signals,
we can get the values of the variable delay elements inside the block, and we can tune
the corresponding control signals V ctrl1 and V ctrl2 until we get the desired delay
values. The frequency of these two signals are in the range from 143 MHz to 333
MHz. They can be observed on oscilloscope such as LeCroy WaveRunner 625Zi.

• Nerr: 8-bit digital signal. Its value represents the number of errors during the last 255
clock cycles. The update rate of this output signal is around 1 MHz. The multi-bit
value can be captured by Agilent 16902B Modular Logic Analysis System.

As presented in Section 4.5, the basic manipulation of measurement is as follows:

4.6. Procedure of measurement 105

1. Modify voltages of the two control signals V ctrl1 and V ctrl2, and observe the fre-
quencies of clkcalib

1 and clkcalib
2 . From the values of frequencies we get the values of

variable delays (∆td1 and ∆td2 in Fig. 4.16). Tune the control voltages until ∆td1 and
∆td2 give a desirable effective delay value ∆ (∆ = ∆td1−∆td2).

2. Fix the voltages of V ctrl1 and V ctrl2 and run the test for a certain number of clock
cycles (at least 256 cycles). Capture the value of Nerr by logic analyzer.

3. Repeat the two previous steps for other values of ∆ and note the corresponding Nerr
values.

4. Calculate the error rate ER for each ∆ and trace the curve of ER in function of ∆. Find
the points A, B and C in the curve as shown in Fig. 4.7(d). The ∆ values at the three
points correspond to the skew, min/max clock errors between the two clock signals
under test.

106 Chapter 4. Built-In Clock Error Characterization Circuit

4.7 Conclusion

A simple test circuit is proposed to evaluate the clock error statistics between two clock sig-
nals in chip. It provides an easy and straightforward way to measure static error (skew) and
minimum/maximum dynamic error values. Not based on a direct time interval measurement,
this on-chip test method reduces cost and difficulty of high frequency clock distribution qual-
ity test. The method was validated experimentally on a low-frequency discrete prototype,
and a high-frequency integrated prototype was designed in 65nm CMOS technology and
validated by simulation.

Chapter 5

Clock network FPGA prototyping

Contents
5.1 Introduction . 107

5.2 Implementation of FPGA based blocks 110

5.3 Experimental results . 116

5.4 Conclusion . 128

5.1 Introduction

FPGA prototyping is a conventional and effective verification step in the digital ASIC design
flow. In particular, it allows a validation of the functionality of the designed systems or some
of its blocks and detects potential problems and errors before the ASIC fabrication against
very small additional design efforts. In our case, the FPGA prototyping allows :

• validation of the programming interface;

• validation of the design of the error processing block ;

• validation of the technique of elimination of undesirable synchronization mode (mod-
elocks);

• functional validation of the global operation of ADPLL network, particularly of net-
work having large size, e.g. 10×10 or 12×12;

• estimation of the quality of synchronization between non-neighboring nodes.

The key limitations of the FPGA prototyping concern the impossibility to implement
properly (a) the mixed signal blocks : the TDC and the DCO and (b) blocks operating at high
frequency. The former problem is solved by implementing digital equivalent of the mixed
signal blocks (behavioural models implemented in the hardware), as it will be shown in this
chapter. To address the latter problem, it is enough to downscale all frequency parameters
with the same scaling factor. Details of these techniques are presented in Section 5.2.

107

108 Chapter 5. Clock network FPGA prototyping

The FPGA prototyping of the ADPLL network was one of the tasks I animated in the
research project, in the frame of HODISS and HERODOTOS grants of ANR. Two FPGA
prototypes have been realized during this PhD project. The FPGA prototype with a di-
mension of 4×4 realized in 2011 is the first physical hardware implementation of ADPLL
network, published in [52]. This study proved the feasibility of a fully synchronized clock
distribution for 16 clock domains before the fabrication of a chip with the same architecture
in 65 nm CMOS. Moreover, it allowed studying complex phenomena related with coupled
ADPLL operation. Before the tapeout of the 10×10 version of silicon chip, an equivalent
FPGA prototype with the same size is realized to validate this design and to explore the syn-
chronization performance in a large network. Since the two FPGA prototypes share the same
principle, we present them together in this chapter. In Section 5.2, we present the implemen-
tation of the system and its block. Downscaling of parameters are also explained in this
section. While in Section 5.3, we first present the experimental results of the first prototype,
which demonstrate the stability of system and the effectiveness of dynamic reconfigurability
in undesired steady state prevention.

The test of the FPGA prototypes of a large ADPLL network responded to a fundamental
question about the scalability of this clocking solution. In particular, by testing a 10× 10
FPGA prototype, we have proven that the phase error between non-neighboring nodes in-
creases according a "slow" law and exhibits a saturation. It means that the proposed ap-
proach is suitable for synchronisation of networks containing a very large number of local
clock sources.

Since the two prototypes share the same structure, we only present the architecture of the
second prototype in Fig. 5.1. The implemented clock network has 100 nodes. It is configured
as 10×10 Cartesian 2 dimensional mesh. Each node is composed of the ADPLL blocks
whose design is addressed in preceding Chapter 3. The reference clock is injected at a corner
node. The implemented network topology is chosen so to compare the designed clocking
system with the unique implementation of PLL network based clock generator reported in
literature [15].

5.1. Introduction 109

FO

P
F
D FO

P
F
D

FO

P
F
D

PFD

FO

P
F
D

FO

P
F
D

FO

P
F
D

PFD PFD

PFD PFD PFD

FO

P
F
D

FO

P
F
D

FO

P
F
D

PFD PFD PFD

+

SCA1-1 SCA1-2 SCA1-3

SCA2-1 SCA2-2 SCA2-3

SCA3-1 SCA3-2 SCA3-3

+

Reference
clock

PFD

PFD

FO

P
F
D

FO

P
F
D

FO

PFD

PFD

P
F
D FO

PFD

SCA1-10

SCA2-10

SCA3-10

PFD

FO

P
F
D

FO

P
F
D

FO

P
F
D

PFD PFD

SCA10-1 SCA10-2 SCA10-3

P
F
D

FO

PFD

SCA10-10

F
c
lk
(1
,1
)�
��
� P
F
D

Fref��

F
c
lk
(2
,1
)�
��
�

F
c
lk
(2
,1
)�
��
�

F
c
lk
(3
,1
)�
��
�

Fclk(2,1)����

Figure 5.1: Structure of the implemented clock network

110 Chapter 5. Clock network FPGA prototyping

5.2 Implementation of FPGA based blocks

Here we summarize the principal issues limiting the efficiency of the FPGA prototyping for
validation of an ASIC:

• Difficulty of implementation of analog/mixed features. The key limitation of the
FPGA prototyping flow is an impossibility of implementing a pure continuous-time
delay. In particular, the VHDL code with time definition

A <= B a f t e r d e l a y

which are used for behavioral modeling of TDC is not synthesizable. Hence, blocks
using continuous-time delays of the gates in ASIC cannot be implemented through a
standard FPGA design flow, for instance, the behavioral VHDL model of DCO using
expression like

c l k <= not c l k a f t e r p e r i o d

where period is a time-type variable. Moreover, the designed DCO needs non-standard
CMOS tri-state inverters (cf. Subsection 3.3.3) which are not available in FPGA. As
a result, the FPGA implementation of the ADPLL requires a different architecture
for the TDC and DCO, and the silicon design of these two blocks cannot be verified
through FPGA prototyping.

• Frequency. The typical clock frequency of the commercially available FPGA chips
is in a range of hundreds of MHz: that is obviously insufficient for the prototyping of
an oscillator generating gigahertz frequency signal. By consequence, a downscaling
of the frequencies is needed for the FPGA prototype.

The frequency downscaling of the FPGA prototype of the ADPLL network follows the
following principle: all timing parameters of the system are scaled linearly with the same
scaling factor α:

f fpga/ f asic = α,

t fpga/tasic = 1/α. (5.1)

Here f and t denote the frequencies and the time parameters of the FPGA and ASIC systems.

The next two subsections present the design of the DCO, of the TDC and the procedure
of choice of optimal frequency scaling.

5.2.1 Synthesizable DCO

The aforementioned structure of DCO including an array of tri-state inverters or a matrix of
variable capacitors is not implementable in the FPGA platforms.

However, the well-known direct digital frequency synthesis (DDFS) technique can be
used to synthesize a fully digital DCO, which, in the context of ADPLL, behaves similarly
with a mixed-signal DCO whose design is presented in Section 3.3.

5.2. Implementation of FPGA based blocks 111

The DDFS consists of two steps. The first step is the synthesis of the digital phase for the
oscillator. A digital phase is a digital sequence {si}i∈N defined in the discrete time given by
the external clock with period T fpga

clk . The sequence {si} provides a saw-tooth digital signal
with period equal to the period of the signal to be synthesized (Fig. 5.2).

Figure 5.2: Repeating discrete ramp function in the DDFS

The second step is the use of the sequence values to generate a function f (si) defining
the waveform of the periodic signal. The output signal is digital, and can be converted to an
analog representation with an DAC if required. In a contrast with the mixed-signal DCO, the
output signal of the DDFS oscillator is synchronous with the clock defining the digital phase
sequence, and the period of the obtained DCO signal T fpga

DCO is necessarily a multiple of the
period of this clock T fpga

clk DCO. If T asic
DCO << T fpga

DCO, the DDFS DCO is a fair model of a proper
mixed-signal DCO.

The phase synthesis is achieved with a programmable counter/divider receiving the FPGA
clock signal and generating an increasing digital phase sequence at its output. When the
counter output reaches the maximal value, the count starts from zero, so generating the phase
waveform as in Fig. 5.2. The ADPLL DCO may use the overload output of the counter which
marks the end of the current period and the beginning of a new period. In such a context,
the counter is used as a programmable frequency divider whose division coefficient is equal
to the desired period of the output sequence (measured in number of T fpga

clk DCO). This period
(the duration of one teeth of the saw) can be modulated by loading the initial output value K
of the counter at the beginning of the new cycle (Fig. 5.3(a)). In this way, the period of the
output sequence is given by:

T fpga
DCO = T fpga

clk DCO(2
N−K) (5.2)

where N is the number of bits of the counter.

The corresponding period-code and frequency-code DCO characteristics are given in
Fig. 5.3(b,c). In contrast to ASIC DCO, the code-frequency characteristic of FPGA DCO is
nonlinear. However, it is not critical for the ADPLL prototyping, since the target ADPLL
operation mode is when the output frequency is settled, and the input DCO code varies in
a small range, so to correct the residual phase error. Consequently, the fluctuations of the
frequencies in a network will be small and the DCO characteristic can be considered as
locally linear (cf. Fig. 5.3(c)).

112 Chapter 5. Clock network FPGA prototyping

However, because of nonlinearity of the FPGA DCO frequency-code characteristic, it is
not possible to ensure a linear scaling (Eq. (5.1)) at all frequencies. Hence, the downscaling
is defined for a particular frequency considered as nominal. Arbitrarily, we define that the
the nominal divided frequency of the ASIC DCO Fasic

n is in the middle of the tuning range,
(218 MHz which corresponds to the code 512 for prototype-1; 265 MHz which corresponds
to the code 128 for prototype-2).

Control code K CLK

 N-bit register
N

counter with parallel load

CLKfpga

N
+1

N
1

0
N

<n> MSB

T = T (2 - K)N

<N:1>

(a) Block diagram

Control code fill factor

P
e
ri
o
d

(b) Period/code relation

F
re
q
u
e
n
cy

(c) Frequency/code relation

Control code fill factor
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F

real
approx

quazi-linear region

Fmin

Fmax

fpga2
N
T

T (2 - K)N
clk, DCO

fpga

clk, DCO

fpga

fpga

n

fpga

clk, DCO

fpga

DCO

fpga

Figure 5.3: Schematic diagram of the proposed FPGA implementation of the oscillator:
(a) schematic, (b) period/code and (c) frequency/code characteristics

The FPGA-prototyped ADPLL must emulate the ASIC system, however, it is clear that
the FPGA based clock generator cannot output signals at the same frequencies as the origi-
nal system. The maximal internal FPGA clock frequency is a hundred of megahertz, and, as
stated, the synthesized frequency must be much lower than the DDFS DCO clock frequency.
Hence, a frequency downscaling is necessary. The following calculation allows an identi-
fication of the necessary downscaling of the DCO frequency so to provide a representative
model of the ASIC DCO.

Given that the tuning step of clock period of the FPGA DCO is equal to the period of the
external clock T fpga

clk DCO, the frequency step of the FPGA DCO ∆F fpga
n is related to the FGPA

DCO nominal output frequency F fpga
n by the following relation :

∆F fpga
n = F fpga

n − 1
1

F fpga
n

+T fpga
clk DCO

. (5.3)

At the same time, we want the relation between the nominal frequency and the frequency
gain to be the same in the FPGA and in the ASIC DCO (cf. Eq. (5.1)). Hence, the second

5.2. Implementation of FPGA based blocks 113

relation between F fpga
n and ∆F fpga

n is:

F fpga
n

∆F fpga
n

=
Fasic

n
∆Fasic

n
(5.4)

These two equations has one free parameter T fpga
clk DCO. It cannot be superior to the minimal

period of the FPGA internal clock, whose typical frequency is a hundred of MHz, depending
on the used FPGA platform. Its actual value depends on the constraint about the scaling of
the TDC, which is discussed in the next subsection.

We want the FPGA based DCO to have the same number of steps as the ASIC DCO.
Hence, the maximal and minimal frequencies of the FPGA DCO are given by

F fpga
min = 1

1/F fpga
n +127T fpga

DCO
prototype−1

= 1
1/F fpga

n +511T fpga
DCO

prototype−2
(5.5)

and

F fpga
max = 1

1/F fpga
n −128T fpga

DCO
prototype−1

= 1
1/F fpga

n −512T fpga
DCO

prototype−2.
(5.6)

It should be noticed that since the frequency-code characteristic of the FPGA based DCO
is nonlinear, the scaling (5.1) is not valid for F fpga

max and F fpga
min .

5.2.2 Synthesizable TDC

The proposed TDC for FPGA prototyping is a digital chronometer counting the number of
external high frequency clock cycles during the interval to be measured. The interval length
is specified by the MODE pulse duration (Fig. 5.4). The pulse is applied to the counter
enable input EN. The counter output increments till the end of the pulse. The XI1 register
stores the result synchronously with the falling edge of the input pulse. At a small delay
time, the RESET input of the counter receives an active level, so preparing the counter to a
new measurement cycle.

Comparing the counter-based TDC with a delay line based TDC, we can notice that they
both quantize the input interval duration. However, in the counter-based TDC, the start of
the input pulse isn’t synchronized with the clock of the counter. It means that in a counter-
based TDC, the first quantization step can be less than one period of the TDC clock. On the
contrary, in the delay-based TDC the first quantization step is always equal to the delay of
the first delay element, since its operation is always synchronous with the input pulse. This
results in a different behavior for small errors inferior to the quantization step, in which case
the counter-based TDC may sometimes identify as ’1’, whereas the delay line based TDC
always outputs ’0’.

114 Chapter 5. Clock network FPGA prototyping

Figure 5.4: Conventional phase detector: (a) circuit diagram, (b) state diagram (c) wave-
forms and (d) transfer function

It is obvious that such a TDC cannot measure synchronization errors of gigahertz fre-
quency signals, since the frequency of the TDC clock should be much higher that the fre-
quency of the signals to be measured. Hence, again, a frequency downscaling is necessary.
The only time parameter of the TDC is the quantization step τ

fpga
T DC, which must be related

to the ASIC TDC quantization step τasic
T DC by the same scaling factor α as the DCO time/fre-

quency parameters of both ASIC and FPGA systems:

τ
fpga
T DC/τ

asic
T DC = Fasic

n /F fpga
n . (5.7)

The free parameter of the Equation (5.7) is the clock period of the FPGA based TDC
τ

fpga
T DC (or T fpga

clkT DC
). From the Eq. (5.7), Eq. (5.3) and Eq. (5.4) and from the parameters of the

blocks designed for ASIC, the ratio between the clock frequencies of the DCO and TDC was
calculated:

F fpga
clkDCO

/F fpga
clkT DC

= 8.915 (prototype−1)
= 4.25 (prototype−2)

(5.8)

where F fpga
clkT DC

= 1/τ
fpga
T DC.

Hence, the F fpga
clkDCO

should be set at the maximal clock frequency available in the used
FPGA platform, the other frequency parameters are calculated through the Eq. (5.7), Eq. (5.3),
Eq. (5.4) and Eq. (5.8). Tab. 5.1 and Tab. 5.2 summarize the parameters of the TDC and of
the DCO implemented for the first and second FPGA prototypes of the ADPLL network.

The complete description of the synthesizable VHDL code of the proposed DCO and
TDC can be found in Appendix A.

5.2. Implementation of FPGA based blocks 115

Table 5.1: Parameters of the 1st generation FPGA and ASIC implementations

Parameter ASIC FPGA
Fn 218 MHz∗ 48.904 kHz

∆Fn 185.25 kHz∗ 38.236 Hz
Fmin 125 MHz∗ 34.916 kHz
Fmax 310 MHz∗ 81.486 kHz
τT DC 32 ps 143 ns

F fpga
clkDCO

– 62.5 MHz

F fpga
clkT DC

– 7.01 MHz

∗
for DIV clock

Table 5.2: Parameters of the 2nd generation FPGA and ASIC implementations

Parameter ASIC FPGA
Fn 265.516 MHz∗ 77.93 kHz

∆Fn 330 kHz∗ 97.05 Hz
Fmin 232.2 MHz∗ 67.28 kHz
Fmax 295.9 MHz∗ 92.73 kHz
τT DC 20 ps 68.065 ns

F fpga
clkDCO

– 62.5 MHz

F fpga
clkT DC

– 14.7 MHz

∗
for DIV clock

116 Chapter 5. Clock network FPGA prototyping

5.3 Experimental results

5.3.1 Stability and prevention of mode-lock

Two FPGA prototypes of the network whose architecture are given in Fig. 5.1 were imple-
mented. The TDC and DCO blocks were designed as described in the last section. The
digital processing block and the programming interface were synthesized from the same
code as that used for the ASIC design.

The system was implemented on the Altera evaluation test board with Cyclone II EP2
C70F672C6 chip. The basic information about this board, as well as the information about
measurement set can be found in Appendix D. The synthesis and implementation were per-
formed in Altera Quartus II environment. The FPGA was programmed, and controlled on
the fly by Altera USB blaster cable. The reference signal for the input of the clock network
was synthesized by external generator with high precision and temporal stability.

The behavior of the system was observed with help of a digital oscilloscope at the points
indicated in Fig. 5.5. The signals at each output of the PFD and DCO were observed. In
such a way, we have the information about the phases of the local clock signals and by
consequence, we know the phase error between them.

DIVFILTER DCO

CLK1 PFD

PFD

PFD

PFD

Accumulator
type oscillator

CLK2

CLK3

CLK4

observation points

Figure 5.5: Block diagram of the node in a FPGA prototype with observation points

On the first 4×4 network prototype, we have performed two experiments to demonstrate
the system stability and the effect of dynamic configuration on mode-lock prevention.

The first experiment was done with an ideal network, in which all DCOs have the same
initial frequency (corresponding to 512 DCO code) and the same initial phase. In this con-
figuration, the network converged to a synchronized state. The input (reference) clock fre-
quency is set to 51.13 kHz and corresponds to DCO control integer code 566. The network
has bidirectional configuration and with the following values of the signal processing block:
gains Kw1,w2,w3,w4=1, Kp=1 and Ki = 0.0028. In Fig. 5.6 we can see that with these condi-
tions, after the transitional process, all clocks have the same frequency and phase as reference
clock.

However, this behavior may be non-representative of the real behavior of an ASIC net-

5.3. Experimental results 117

Figure 5.6: Local clock signals together with reference (Prototype-1): bidirectional con-
figuration, initial frequencies of nodes are equal

work. Indeed, in VLSI implementation, due to the local variations and local drop of the
supply voltage, the local frequencies of the nodes differ and the local oscillators do not start
with the same phase. In particular, in the idealized configuration used in the experiment,
undesirable synchronized modes (i.e. mode-locks) were not observed.

In the next experiment we randomized the initial conditions of the network, by diversi-
fying the initial phases of the local oscillators. The initial frequencies of the DCO are set to
the values distributed around the nominal value with a dispersion ±20 %. Fig. 5.7 presents
the outputs of the local oscillators after the transient process. A static phase error between
clock signals is observed. Fig. 5.8 demonstrates the waveforms of the clock signals from the
neighbors of the Node 10 and total error signal in Node 10 processed by its filter: whereas the
phase errors are non-zero, the total error is zero, and the frequencies of all local oscillators
are the same. This state is a typical for a mode-lock.

The next experiment aims at a verification of the proposed mode-lock elimination tech-
nique, which is based on a dynamic reconfiguration of the clock network. The set-up of
the network is achieved in two stages. In first stage, the network operates in unidirectional
mode. The phase/frequency information from the reference clock is propagated to the oppo-
site corner of the network, without any feedback. The value of the filter coefficients remains
the same as in previous experiments, the value of the control block gains are Kw1,w4=0 and
Kw2,w3=1. Fig. 5.9 presents the operation in unidirectinoal mode after a transient process.
There exist static accumulative phase errors. The phase errors increase from the corner node
directly coupled with the reference signal, toward the opposite corner where error reaches

118 Chapter 5. Clock network FPGA prototyping

Figure 5.7: Local clock signals together with reference (Prototype-1): bidirectional con-
figuration, initial frequencies of nodes are different

Figure 5.8: Local clock signals around Node 10 together with reference and integer sum
of the node errors (Total_Err), Prototype-1: bidirectional configuration, initial frequencies
of nodes are different, undesired synchronized state

the highest value. However, these errors are smaller than in a mode-lock state as one can
observe by comparing Fig. 5.10 showing the neighbor clocks of the Node 11, and Fig. 5.8.

In the second stage, the network is configured to operate in the bidirectional mode. The

5.3. Experimental results 119

Figure 5.9: Local clock signals together with reference (Prototype-1): unidirectional con-
figuration, initial frequencies of nodes are different

Figure 5.10: Local clock signals around Node 10 together with reference and integer
sum of the node errors (Total_Err), Prototype-1: unidirectional configuration, initial fre-
quencies of nodes are different, static errors exist

bidirectional mode is switched on once the unidirectionally configured network set up in a
steady state mode. The mode switching is done by setting to 1 the gains Kw1,Kw4 . Fig. 5.11
shows the steady state operation in the second stage. These plots indicate that the static
residual phase errors appeared in a previous unidirectional mode are compensated and min-

120 Chapter 5. Clock network FPGA prototyping

Figure 5.11: Local clock signals together with reference (Prototype-1): bidirectional con-
figuration, initial frequencies of nodes are different

Figure 5.12: Local clock signals around Node 10 together with reference and integer
sum of the node errors (Total_Err), Prototype-1: bidirectional configuration, initial fre-
quencies of nodes are different, synchronized state with zero total error

imized. The plots of Fig. 5.12 demonstrate that they are small. Observation of the PFD
outputs demonstrates that the errors between neighboring oscillators do not exceed 2 phase
errors quantization steps.

The same experiments are also performed on the second prototype with a 10× 10 di-

5.3. Experimental results 121

Figure 5.13: Local clock signals together with reference (Prototype-2): bidirectional con-
figuration, initial frequencies of nodes are different

mension. Because of the limit of pin numbers, we cannot observe all the 100 local clock
signals at the same time. Fig. 5.13 shows the 10 clock signals in the diagonal nodes of the
network. In this experiment, nodes in the network have divers initial frequencies, but when
the network synchronizes, all the local clock signals share the same frequency and are well
aligned in phase, which demonstrates a good performance of the proposed architecture in a
large network.

In large networks, the length of unidirectional chains in the unidirectional mode may be
large, so that the accumulated phase errors aren’t small enough to prepare the network to the
synchronization in a bidirectional mode. To study this problem, we present two topology of
unidirectional networks in Fig. 5.14. To compare them, we introduce a parameter D standing
for the phase error propagation distance between two clock domains, which is equal to the
number of clock domain borders that the information passes through from one node to the
other. Criteria of choosing the best unidirectional configuration is that the parameter D from
the reference clock to each node in the network should be as small as possible. The topology
in Fig. 5.14(a) uses a zigzag chain to connect all the nodes together. In this way, the value
of D increases linearly as the geometry gets larger. In a 4×4 network, the distance between
the last node at the end of the chain and the reference is 16, while in a 10×10 network, the
value is 100. Fig. 5.14(b) shows a network with a comb topology. In this case, the distance
D between each node and the reference is the Manhattan distance. The Manhattan distance
between a node X=(X1, X2) and a node Y=(Y1, Y2) is defined as: |x1− x2|+ |y1− y2|,
which is the shortest distance between two intersections in a grid. In a 4× 4 network, the
longest distance is 7. For a 10×10 network using this configuration, the longest distance is
19. Both configuration topologies have been implemented in FPGA and tested.

Fig. 5.15 demonstrates the clock signals of the main network diagonal nodes, when the

122 Chapter 5. Clock network FPGA prototyping

ref
(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(4, 1) (4, 2) (4, 3) (4, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

ref
(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(4, 1) (4, 2) (4, 3) (4, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

(a) (b)

Figure 5.14: Unidirectional mode topology: (a) type 1 - zigzag; (b) type 2 - comb (the
arrows show the connection in the network and the error propagation direction)

Figure 5.15: Clocks in unidirectional mode at steady state: (a) type 1 - zigzag; (b) type 2
-comb

network is configured in unidirectional mode. For the reasons explained above, the phase
error between CLK10-10 (clock generated at SCA10-10 in Fig. 5.1) and the reference clock
REF is smaller with comb shaped configuration compared with the zigzag type. For this
reason, the comb shaped topology is chosen for unidirectional mode as the first phase of the
dynamic configuration process.

5.3.2 Phase error between two remote local clocks

In order to validate that in such a coupled ADPLL network the phase errors are not accu-
mulated as in a conventional clock tree, we measured on each clock cycle the phase differ-
ence between local clock signals in the diagonal nodes and the reference clock (as shown in
Fig. 5.16). Then we can draw the curve of phase error maximum and RMS values in function
of the distance to the reference clock. It should be noted that the distance mentioned here
is not the physical distance in microns, but the Manhattan distance D the reference phase
information has to travel before arriving at a local node. For instance, the shortest distance

5.3. Experimental results 123

REF

SCA 1-1

SCA 2-2

SCA 3-3

SCA 10-10

Figure 5.16: Experiment principle diagram (Prototype-2): bidirectional configuration,
initial frequencies of nodes are different

in Fig. 5.16 is from the reference and SCA1-1, which equals to 1, and the longest one is to
SCA10-10, which equals to 19.

To measure the phase error of each cycle on the fly, a built-in measurement block is
embedded in each node. This block has the same principle and architecture of PFD block
but with a higher precision. The measurement result is captured by the digital analyzer and
stored in a data file. Then we can observe the distribution of phase error from its histogram.
Fig. 5.17 presents the histograms of each measured phase error in unidirectional mode (clk1:
clock signal in SCA1-1...clk10: clock signal in SCA10-10). Fig. 5.18 shows the case of
bidirectional mode. By comparing the two groups of histograms, we can observe that in
unidirectional mode phase error is accumulated as the reference phase information travels
further, just like in a conventional clock tree. While in bidirectional mode, which is the
mode at which the network works at steady state, phase errors between all the nodes in the
network and the reference are well constrained within ±3 times PFD quantification steps.
This can be better observed in the two tables which summarize the minimum/maximum
values (Tab. 5.3) and RMS values(Tab. 5.4). Fig. 5.19 and Fig. 5.20 trace the maximum
absolute value and RMS value in function of the distance, from which we can get the same
conclusion as previous analysis.

124 Chapter 5. Clock network FPGA prototyping

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

100

200

300

clk1 error (ns)

co
un

ts

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

100

200

300

clk2 error (ns)

co
un

ts

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

100

200

300

clk3 error (ns)

co
un

ts

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

100

200

300

clk4 error (ns)

co
un

ts
−500 −400 −300 −200 −100 0 100 200 300 400 500
0

100

200

300

clk5 error (ns)

co
un

ts

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

100

200

300

clk6 error (ns)
co

un
ts

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

100

200

300

clk7 error (ns)

co
un

ts

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

100

200

300

clk8 error (ns)

co
un

ts

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

100

200

300

clk9 error (ns)

co
un

ts

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

100

200

300

clk10 error (ns)

co
un

ts

(a)

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

50

100

150

200

250

300

X: −356
Y: 18

co
un

ts

error (ns)

X: 396
Y: 20

X: 412
Y: 0

X: −372
Y: 0

X: 44
Y: 280 clk1

clk2
clk3
clk4
clk5
clk6
clk7
clk8
clk9
clk10

(b)

Figure 5.17: Histogram of phase errors between local clock signals and the reference in
10×10 prototype: unidirectional

5.3. Experimental results 125

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

100

200

300

clk1 error (ns)

co
un

ts

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

100

200

300

clk2 error (ns)

co
un

ts

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

100

200

300

clk3 error (ns)

co
un

ts

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

100

200

300

clk4 error (ns)

co
un

ts

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

100

200

300

clk5 error (ns)

co
un

ts

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

100

200

300

clk6 error (ns)

co
un

ts
−500 −400 −300 −200 −100 0 100 200 300 400 500

0

100

200

300

clk7 error (ns)

co
un

ts

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

100

200

300

clk8 error (ns)

co
un

ts

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

100

200

300

clk9 error (ns)

co
un

ts

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

100

200

300

clk10 error (ns)

co
un

ts

(a)

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

50

100

150

200

250

300

X: −180
Y: 0

co
un

ts

error (ns)
X: −164
Y: 3

X: 156
Y: 0

X: 140
Y: 1

X: −36
Y: 276

clk1
clk2
clk3
clk4
clk5
clk6
clk7
clk8
clk9
clk10

(b)

Figure 5.18: Histogram of phase errors between local clock signals and the reference in
10×10 prototype: bidirectional

126 Chapter 5. Clock network FPGA prototyping

Table 5.3: Minimum/Maximum values of phase errors between local clock signals and
the reference in 10×10 prototype (ns)

Phase error (ns)
Node Unidirectional Bidirectional
SCA 1-1 −80 · · ·80 −80 · · ·80
SCA 2-2 −128 · · ·112 −80 · · ·96
SCA 3-3 −144 · · ·144 −144 · · ·128
SCA 4-4 −176 · · ·176 −144 · · ·160
SCA 5-5 −224 · · ·224 −144 · · ·160
SCA 6-6 −240 · · ·272 −144 · · ·176
SCA 7-7 −288 · · ·336 −144 · · ·160
SCA 8-8 −352 · · ·400 −144 · · ·128
SCA 9-9 −352 · · ·336 −96 · · ·112
SCA 10-10 −336 · · ·384 −80 · · ·112

Table 5.4: RMS values of phase errors between local clock signals and the reference in
10×10 prototype (ns)

Phase error (ns)
Node Unidirectional Bidirectional
SCA 1-1 43.9191 39.9564
SCA 2-2 68.4472 42.2609
SCA 3-3 81.8778 63.4479
SCA 4-4 91.4903 72.7273
SCA 5-5 107.3229 76.9506
SCA 6-6 123.9706 77.3304
SCA 7-7 136.3794 73.5529
SCA 8-8 140.8230 64.3260
SCA 9-9 136.3400 53.9767
SCA 10-10 135.0824 53.7999

Figure 5.19: Maximal value of phase error in function of distance to the reference clock

5.3. Experimental results 127

Figure 5.20: RMS value of phase error in function of distance to the reference clock

128 Chapter 5. Clock network FPGA prototyping

5.4 Conclusion

In this chapter we presented two FPGA prototypes implemented on Altera Cyclon II platform
for the proposed clocking system. Both have validated the theoretical study results of the
clocking solution.

The first prototype modelizes a 4× 4 ADPLL network, which was designed before the
implementation of the first ASIC circuit with the same architecture. The principal chal-
lenges of this experiment are the implementation and emulation of the mixed-signal blocks
such as TDC and DCO in a 100 % digital environment. A frequency downscaling allowed
an implementation of ADPLL network isomorphic compared with the original ASIC based
implementation, and having similar behavior although operating at lower frequencies. The
measurement results show that the operation of the proposed clock generator is similar to
what predicted in theoretical studies (presence of mode-locking, numeric parameters of the
transient, validity of the developed methods allowing a desirable state selection, etc.). The
results of the work on this FPGA implementation were published in proceedings of FPT2011
conference [49].

To demonstrate scalability of the proposed architecture, a second FPGA prototype was
designed before the second generation ASIC chip. This prototype has a dimension of 10×10
and parameters downscaled from those of the new ASIC circuit. Experimental results show
the feasibility of this idea in such a large network. Other experiments performed on this pro-
totype demonstrate that phase errors in the distributed clock generator are not accumulated,
which also provides an argument for the scalability of the proposed solution. The results of
this work were published in proceedings of Reconfig2013 conference [53].

Chapter 6

Clock network silicon implementation

Contents
6.1 Introduction . 129

6.2 Methodology of chip design . 130

6.3 Implementation of local clock generator (NODE) 134

6.4 Floorplan of the chip . 138

6.5 Design for test(DFT) . 139

6.6 Chip layout . 145

6.7 Simulation results . 146

6.8 Conclusion . 148

6.1 Introduction

This chapter discusses practical issues of the 10×10 ADPLL network AISC prototype design
in a 65 nm CMOS technology, using the PFD, DCO, digital error processing block and built-
in test circuit presented previously.

The chip design applies an IP reuse strategy and mixed-signal digital-centric design flow,
which are presented in Section 6.2. Then Section 6.3 presents implementation of the basic
component of network — NODE. Chip floorplan is introduced in Section 6.4. Since this
is a test chip, controllability and observability are very important for validation of circuit
functionality and performance. The DFT issue is discussed in Fig. 6.5. At last, the top
layout is displayed in Section 6.6 and simulation results are presented in Section 6.7.

129

130 Chapter 6. Clock network silicon implementation

6.2 Methodology of chip design

Since the chip design is hierarchical (cf. Fig. 6.1), each block in Fig. 6.1 can be regarded as
an IP (Intellectual Property) cell, an IP reuse strategy is applied. The methodology explained
below in this section is based on this strategy.

DCO

layout
schematic

vhdl

layout
schematic

COARSE_TUNING_INVERTER

layout
schematic

FINE_TUNING_INVERTER

layout
schematic

MAIN_INVERTER

PFD

layout
schematic

vhdl

BB DETECTOR

layout
schematic

vhdl

TDC

layout
schematic

vhdl

vhdl
schematic

ARITHEMETIC BLOCK

vhdl
schematic

Digital loop filter

BIT

layout
schematic

vhdl

layout
schematic

VARIABLE DELAY

vhdl
schematic

PROCESSING UNIT

NETWORK

layout
schematic

vhdl

NODE

layout
schematic

vhdl

Figure 6.1: Design hierarchy

As explained previously, the performance of the designed clock generator is sensitive
to the timing properties of some cells used for the PFD, DCO and the test circuit. For this
reason, these critical blocks are designed in a custom or semi-custom way: some steps of
the standard “compiled” design flow of digital circuits were made manually. In this way, the
physical implementation of the ADPLL network deals with 4 kinds of physical cells:

• Standard cells provided by the Design Kits: basic logic cells, pads, etc.

• Full custom cells specific to the project. The schematic and layout are designed manu-
ally. These cells are DCO components, delay cell, C-element and arbiter for the PFD,
delay cells in the on-chip test circuit, etc.

6.2. Methodology of chip design 131

• Complex functional blocks obtained by standard digital synthesis flow: the filter, PFD
encoder, processing unit in the on-chip test circuit, etc. These blocks use the standard
digital cells of the DK.

• Semi-custom blocks, whose design uses the standard digital design synthesis flow but
with some steps performed manually (e.g., the PFD, whose schematic level design is
realized manually, and it uses both full custom cells and standard cells). These blocks
are DCO, PFD, NODE, test circuit, etc. This type of the cells are defined as hard IPs,
and are then used for the construction of the architecture of the ADPLL network at the
top level.

In order to assemble the hard IPs together, we chose the approach “digital on top”. It
means, that all blocks of the network are integrated in a digital design flow, and the final
assembly of the chip is done in the digital design environment.

As shown in Fig. 6.2, the IC design environment of Cadence was used for this chip
design. We used the Virtuoso tool for the custom design of the critical cells, and Encounter
for automatic place and route of the complex blocks and on the top-level assembly. Custom
cells are regarded as black boxes. Basic geometry information of the custom and hard IP
cells, especially layer and location of pins and stripes, is extracted from custom layout and
is stored in the cell LEF file. This information is enough for automatic floorplanning and
placement by Encounter. The complete layout data of a custom cell is stored in the GDSII
format and is imported to Virtuoso for the final tasks of the chip integration and verification.

Virtuoso Encounter

LEF

GDSII

65 nm techfile

Figure 6.2: Design environment

More details about the design flow is provided in Fig. 6.3. The diagram presents a top-
down design flow based on digital-centric mixed signal design methodology.

On the left side, the green flow diagram describes the design flow of full custom cell IP.
In this chip, this kind of cells are the DCO cells and the DCO core, some cells used in the
PFD and voltage controlled variable delay in the test circuit. These cells are designed in
schematic level, then the layout is drawn in Virtuoso. The extracted LEF file are provided to
higher level block. LIB file supplies timing information of the circuit for higher level timing
optimization and routing.

132 Chapter 6. Clock network silicon implementation

The middle diagram presents the design flow of hard IPs. They are obtained from stan-
dard and custom cells, and they use some steps of standard digital flow, in particular, the
automatic place and route. Their schematic is done manually.

The design flow of the top circuit is similar, except that it uses the hard IP cells as building
blocks for the top-level layout.

Synthesis

Floorplanning

Power planning

Placement

Clock tree
 synthesis

Timing optimization

Routing

 Physical
verification

RTL netlist Library Constraints

Top level floorplan

Power planning

Placement

Clock tree
 synthesis

Timing optimization

Top level routing

 Physical
verification

Chip integration

Schematic design

Physical design

Extraction

 Physical
verification

Schematic
verification

Custom cell
design flow

Digital-centric hard IP
 design flow

Top circuit
design flow

LEF

LIB

GDSII

 Block
Integration

 Extraction

RTL netlist Library Constraints

LEF

LIB

GDSII

Figure 6.3: Top-down design flow

Verification is performed along with the design in different steps. As shown in Fig. 6.4,
the arrow direction signifies the dependency in the flow. Since the bottom blocks like custom
cells and pure digital cells can be designed in parallel, their verification can also be performed
independently. Then the functionality of higher-level blocks and of the whole chip can be
verified by behavioral simulation. Two kinds of models are used for behavioral modelling of

6.2. Methodology of chip design 133

the custom cells: at the early design stage, the model is built with use of the desired block
parameters given by the specification; at the final verification stage, the behavioral model
uses the post-schematic or post-layout simulation results, so to describe block functionality
with precision. If the design passes behavior level verification, we can performed more
precise and time consuming mixed simulation. The mixed simulation mixes the models
defined at different levels (VHDL, transistor, extracted schematic view, etc.), in order to
verify the impact of the realistic behavior of critical blocks on the system operation.

Behavior model simulation

 Mixed-level
performance validation

 Custom cell IP
Characterization

Behavior model simulation

 Mixed-level
performance validation

Custom cell
Verification

 Hard IP
Verification

 Top chip
Verification

Behavior model
 Simulation

 Post-synthesis
 Simulation

 Digital block
 Verification

Figure 6.4: Top-down verification flow

134 Chapter 6. Clock network silicon implementation

6.3 Implementation of local clock generator (NODE)

Since the network has a regular mesh structure, and the local clock generators in different
isochronous zone possesses the same components (DCO, PFD, filter, etc.), the physical im-
plementation of the network follows the methodology of an hierarchical IP reuse. A mixed
IP block named NODE is designed as the basic node element of the network (Fig. 6.5). It
contains the following blocks:

PFD1

Filter

SPI

P
FD

2

DCO

SDI
SCK

SDE

SDO

clk2_o

cl
k4

_o

clk1_i

clk3_i

div

NODE

Er1_o

Er3_o

Er2_i

Er4_i

Er1_i

Er
3

_i

COEF

Figure 6.5: Structure of a NODE: one DCO, two PFDs and digital processing block (SPI
and loop filter)

• Two PFDs: PFD1 and PFD2 compare the local divided clock signal with clocks gen-
erated by the neighboring NODE on top and the one on left, respectively. These two
blocks are shared with its neighbors when we combine several NODEs together. Since
the mesh is two dimensional, two PFDs are enough: one for vertical neighbors, the
other for horizontal ones;

• Loop filter: the digital processing unit receives the output of local phase frequency
comparators PFD1 and PFD2 and also comparison results with the other two neigh-
boring clocks from two primary inputs of NODE (Er2_i and Er4_i). It processes the
phase errors and generates a control word for DCO;

• DCO: the local clock generator. Its signal, after the frequency division, is used for the
phase comparison, and for cadencing the filter of the node.

6.3. Implementation of local clock generator (NODE) 135

• Serial programming interface (SPI): a shift register streaming in the 1-bit series data
from one side and streaming out on the other side for the next NODE. The data corre-
spond to the values of the filter coefficients and to the connectivity parameters defining
the operation of each node. When the enable signal SDE is activated, it stores the data
in a parallel register, and the values are permanently available on its parallel output
ports COEF.

Fig. 6.6 shows the layout of NODE. It should be mentioned that the location of pins is
chosen so that when the network of ADPLL is assembled, the neighboring nodes formed by
the NODE block can be connected by abutment or by short wires. For example, clk1_i and
clk2_o are on the same horizontal level, Er4_i and Er3_o have the same vertical coordinate.
It is the same case for clk3_i and clk4_o, Er2_i and Er1_o, SDI and SDO. The dimension of
the NODE block is 149 µm×145.3 µm = 0.014mm2.

Figure 6.6: Layout of the block NODE: one DCO, two PFDs and digital processing block
(SPI and loop filter)

136 Chapter 6. Clock network silicon implementation

Table 6.1: Simulation parameters and conditions

Parameter Value
Fre f 265.8 MHz
α 1
β 0.005

Kp 0
Ki 20

Kw1,Kw3 1
Kw2,Kw4 0
Fdiv initial 258 MHz

To verify functionality and performance of a single NODE, a transistor-level simulation is
performed using post layout extracted model of the NODE. The parameters of this modeling
experiments as well as the programmed coefficient values are summarized in a Tab. 6.1. To
test the operaiton of the sub-system of the NODE block, two identical reference clock signals
drive the two ports clk1_i and clk3_i in Fig. 6.5. A programming sequence defining the filter
coefficients and the connectivity of the node is generated at the beginning of simulation.

The plots of Fig. 6.7 present the waveforms of the divided frequency of the DCO, of
the filter output code and of the output of the PFD obtained by a post-layout transistor level
simulation. After the power up, the node is in the programming mode (Section A in Fig. 6.7):
the correct values of the programmable parameters are being loaded, and the correct values
are only set at the end of the programming mode. The output signals of the ADPLL blocks
are irrelevant during this mode. The signals SDI, SCK and SDE are generated by voltage
sources whose waveforms are read from a data file. The datafile used for the programming
is generated by a script (cf. Appendix C). When the filter coefficients have correct values,
the reset signal is sent: the ADPLL starts the frequency and phase acquisition mode (Section
B in Fig. 6.7), where it adjusts the frequency and phase of the local clock according to the
reference signal. In the phase tracking mode (Section C in Fig. 6.7), the ADPLL output
signal is in phase with the reference signal. It should be mentioned that this is a test of the
node functionality, which doesn’t target an optimal operation. The desired performance can
be achieved according to specification by modifying the coefficients, for instance, if a shorter
frequency acquisition time is needed, we should program a larger Ki.

6.3. Implementation of local clock generator (NODE) 137

Figure 6.7: Post-layout simulation of one NODE

138 Chapter 6. Clock network silicon implementation

6.4 Floorplan of the chip

The chip is mainly composed of 100 assembled NODE blocks presented in the previous sec-
tion. They constitute the core of the implemented chip, responsible for the clock generation.
Four built-in test circuits (BIT) are implemented around the core for the phase error char-
acterization. A preliminary floorplan of the implemented circuit is given in Fig. 6.8. The
core area is partitioned into SCAs where the NODEs are placed. Between the neighboring
NODEs, a free space of 35µm width is reserved for the routing: in particular, for the the
communication lines between NODEs and for the connections to the chip pads of the signals
we want to observe. In the real conditions, the free space inside the NODE and the routing
channel will be used by the functional circuit. Since the number of the test signal we route
to the chip pads is big, our chip is “I/O constrained”: that means that the size of the chip is
constrained by the size of the pad ring, and not by the size of the core circuit. The free space
left on the chip is filled with fillers, decoupling capacitances or left empty.

The floorplan of the chip is defined by a parametrizable TCL script, which generates
automatically the block placement in the Encounter environment. The parameters of the
script are: the size of blocks and pads, the number of pads at each side, the space between
blocks and the minimum space between chip border and the core. The parametrizable script
allows a parallel design of the blocks and the global chip floorplanning: if the layout of a cell
is modified, the chip floorplan can be immediately regenerated without extra work. Details
of this script can be found in Appendix E.

Several challenges exist in the test chip floorplan.

First, the programming interface is distributed over all error processing blocks using the
technique presented in Fig. 3.19 and Fig. 3.20. While on the top chip level, how to program
the 100 NODEs in an effective way without blocking the routing channel is the first issue to
be think about in the physical design stage.

Second, since the network has a large dimension and each NODE has several functional
blocks, in order to verify the chip functionality we cannot observe all the signals. Moreover,
although the built-in test circuit doesn’t cost much, it cannot be put everywhere in the chip,
because it needs pads to output the test results, and the number of pads is the dominant factor
of the chip size. How to test the chip with limited number of pads directly decides the cost
of test chip.

The two floorplan challenges consist in chip controllability and observability, which are
two main issues in design for test study.

6.5. Design for test(DFT) 139

FILTER

D
C
O

PFD

P
FD

SPI

FILTER

D
C
O

PFD

P
FD

SPI

FILTER

D
C
O

PFD

P
FD

SPI

FILTER

D
C
O

PFD

P
FD

SPI

FILTER

D
C
O

PFD

P
FD

SPI

FILTER

D
C
O

PFD

P
FD

SPI

FILTER

D
C
O

PFD

P
FD

SPI

FILTER

D
C
O

PFD

P
FD

SPI

FILTER

D
C
O

PFD

P
FD

SPI

P
FD

P
FD

P
FD

P
FD

FILTER

D
C
O

PFD

P
FD

SPI

FILTER

D
C
O

PFD

P
FD

SPI

FILTER

D
C
O

PFD

P
FD

SPI

PFD PFD PFD PFD

FILTER

D
C
O

PFD

P
FD

SPI

FILTER

D
C
O

PFD

P
FD

SPI

FILTER

D
C
O

PFD

P
FD

SPI

FILTER

D
C
O

PFD

P
FD

SPI

Chip boundary

BIT

"Processor" unit

NODE

BIT

BIT

B
IT

Figure 6.8: Preliminary floorplan of the test chip

6.5 Design for test(DFT)

As introduced in [32], DFT is an important stage of the chip design. The term DFT desig-
nates all issues, techniques and strategies making possible test, validation and verification of
the chip after the fabrication. The DFT related functions in this test chip are the following:

• The possibility to program the chip parameters. This allows a reconfiguration of the
network topology and a choice of the loop filter coefficients. It multiplies the number
of configurations in which the chip can be tested, so it increases the impact of the chip
test on the validation of the concept of ADPLL network based clock generation.

• The routing of critical and relevant internal circuit signals toward the chip pads, so to
make them observable ([66],p.114). Since the number of pads is limited, the selection
of the internal signals for observation depends on the strategy of the chip test, aiming
a maximization of the knowledge about the chip operation.

The next two subsections present these two issues.

140 Chapter 6. Clock network silicon implementation

6.5.1 Chip programming

The programming interface for each block was presented in Section 3.3.4. As explained in
that section, the interface is designed so to be extensible: by cascading the programming
interfaces, any number of blocks can be programmed with the single programming process.
The required number of the external input chip pads (3 pads) does not depend on the number
of cascaded blocks.

The topology of the programming interface cascading on the designed chip is given in
Fig. 6.9. The corresponding programming sequence for the developed network consists of S
bits

S = N · (Si +Sp +Skw ·4+Snum) (6.1)

where N=100 is number of the network nodes, Si=8 is width of the integral path coeffi-
cient, Sp=2 is the width of the proportional path coefficient, Spath=2 is the width is the input
gain control coefficients, Snum = 2 signifies the number of neighboring clock inputs taken
into consideration. The length of one node is 20 bits, while for the designed network, the
total length of a programming sequence is 2,000 bits. They can be transferred with a high
rate (tens of MHz) and in this way a total time for the network programming procedure will
be negligible (200 µs @ 10MHz).

The connection topology of the programmable blocks of the network is depicted in
Fig. 6.9. It is programmed in a zigzag way to avoid long routing wires from the last node
of one row to the first node of the next row. As explained in Section 6.3, each node has
SPI interface: the input programming signal pin SDI on one side and the output pin SDO
on the other side. This allows programming the nodes effectively in sense of the shortest
routing distance. However, since the nodes of odd and even rows are programmed in inverse
directions, we need two kinds of NODEs with exactly the same functionality and floorplan
but different pin locations: one type of NODE in odd rows with SDI on the left and SDO on
the right; the other type in even rows with opposite pin position.

A correct configuration of the chip programming is the first thing to verify before other
functional verification. In order to control the correctness of the programming, we reserved
four chip pads connected to four bits of the programming interface registers, situated at fours
network corners (observation points in Fig. 6.9).

6.5.2 Built-in test circuits placement

The PFD blocks at the node boundary only compare the two neighboring clock signals. For
reasons explained in Subsection 1.2.10, a special analog circuit named built-in test circuit
(BIT) is designed for measuring phase error between two clock signals in distance. Due to

6.5. Design for test(DFT) 141

NODE1-1 NODE1-2 NODE1-3 NODE1-10

NODE2-1 NODE2-2 NODE2-3 NODE2-10

NODE3-1 NODE3-2 NODE3-3 NODE3-10

NODE10-1 NODE10-2 NODE10-3 NODE10-10

Data in

Kw1-1(0)

Kw10-1(0)

Kw1-10(0)

Kw10-10(0)

o
b
se

rv
a
ti

o
n
 p

o
in

ts

o
b
se

rv
a
ti

o
n
 p

o
in

ts

Figure 6.9: The connection sequence of the programmable blocks of the network

the limited chip area and pad number, we decided to implement four BIT blocks in the test
chip (Fig. 6.8) for the following tasks:

• one BIT block at the northwest corner of the chip measuring the phase error between
the reference clock and NODE1-1;

• the second BIT block at the west border of the core measuring the phase error between
the reference clock and center node NODE5-5;

• the third BIT block at the northeast corner of the chip measuring the phase error be-
tween the reference clock and NODE10-10;

• the last BIT block at the center of south border measuring the phase error between
NODE10-5 and NODE10-6.

The first three BIT blocks in the above list allow collecting phase error information as a
function of distance from the reference clock signal in the northwest corner. The last BIT
block tests the clock difference between two neighboring nodes.

6.5.3 Definition of the input/outputs of the chip

The pins are classified in five categories: control signals, input signals, output signals, built-
in test circuit signals and power supplies.

142 Chapter 6. Clock network silicon implementation

1. control signals for network (8 pads: 4 digital input pads + 4 digital output pads)

Control signals are used for programming and configuration of the network.

• RST (1 bit): a global reset signal.

• SDA (1 bit): a stream of programming data.

• SCK (1 bit): programming clock signal.

• Enable (1 bit): the signal which allows loading programming bits to local coefficients
register.

• Digital output pads (4 bit): output 4 bits of programmed coefficients for verification.

2. Input signals of network core (4 pads)

The only input signals of the network are the four reference clock signals. As presented
in previous chapters, normally only one reference clock (the one in the northwest corner)
is used. Due to the utmost importance of this signal, reference clock inputs are reserved at
each chip corner to improve the chip reliability after fabrication. Another reason is that for
some configurations, more than one reference clocks are needed, which is presented later in
Chapter 7.

3. Output signals of network (60 output pads)

• Replicas of reference (4 pads): Reference clock signals at the node input ports are
connected to output pad for verification during chip test.

• Divided DCO clock signals (36 pads): Since the network has 100 locally generated
clocks, if we want to observe all of them, one or more multiplexers are needed. They
will introduce additional delay and skews, which is unfavorable for chip test and de-
bug. Fortunately, the network is symmetric, we decided to output certain typical local
clock signals in this chip: the 20 clock signals in two diagonals, 8 clock signals in a
vertical border, and 8 clock signals in a horizontal border, thus 36 pads totally.

• PFD output (20 pads: 4 × 5): The outputs of 4 PFDs are readout for test. Each PFD
has 4 signed bits and another 1-bit signal (inner reset signal in Bangbang detector)
should be used for synchronization. Hence 5 pads for each PFD and 20 pads in total.
The four PFDs are the follows:

1. PFD between reference and NODE1-1

2. PFD between NODE6-1 and NODE7-1

3. PFD between NODE9-1 and NODE10-1

4. PFD between NODE10-9 and NODE10-10

4. Built-in test circuit signals (52 pads: 12 inputs + 40 outputs)

Input signals (3 pads)

6.5. Design for test(DFT) 143

Table 6.2: Summary of IO pads

category input output sum
control signals 4 4 8
PLL network 4 60 64
BIT circuit 12 40 52

total 28 104 124

• testEnable (1 bit): to enable the test. Otherwise, the device is shut down to save energy.

• voltage control signal (2 pads): one voltage signal for the control of each variable
delay.

Output signals (10 pads: 8 digital output bits + 2 oscillator clock signals)

• digital output bits (8 pads): the number of errors is counted by a 8-bit counter and the
result is sampled every 2 power 8 cycles.

• oscillator clock signals (2 pads): to measure the exact delay values, the replicas of
each delay is connected as a ring oscillator. The oscillator clock signals are measured
outside of the chip to get the delay values.

We plan to put 4 test circuits in different locations of the chip, thus the total number is 52
pads (13×4).

5. Power supplies (76 pads: 24+4+10 pairs)

• VDDE/GNDE (24 pairs): among all the output pads above, the dynamic output pads
are divided clock signal (36 pads), PFD output (20 pads), test circuit output data (32
pads) and test circuit oscillator clocks (8 pads). The total number is 96 pads. If we use
one VDDE/GNDE pair for each four pads, we need 24 pairs.

• VDDA/GNDA (4 pairs): one pair for each built-in test circuit

• VDD/GND (10 pairs): global power supply for the core

Therefore, we need 32 pairs (24+4+4) of power supply, thus 64 pads.

The summary of I/O and power supply pads are displayed in Tab. 6.2 and Tab. 6.3. In
summary, the chip has 28 input pads, 104 output pads and 76 power supply pads. It is totally
200 pads.

144 Chapter 6. Clock network silicon implementation

Table 6.3: Summary of power supply pads

category number of pairs number of pads
VDD/GND 10 20

VDDE/GNDE 24 48
VDDA/GNDA 4 8

total 38 76

6.6. Chip layout 145

BIT

N
O
D
E

2734�um

IO

C
O
M
P
E
N
S
A
T
IO
N

C
E
LL

2
7
5
6
.8
�u
m

1
7
7
1
�u
m

1805�um

Figure 6.10: Layout of the test chip of the clock network

6.6 Chip layout

The assembling of the clock network blocks has been done in a standard digital design flow
with a help of EDA tools. The actual layout of the chip is given in Fig. 6.10. The size of the
chip is 2734×2756.8 µm2 where clocking network core occupies 1805×1771 µm2.

146 Chapter 6. Clock network silicon implementation

Figure 6.11: Clock signals in the network in steady mode

6.7 Simulation results

During the edition of this manuscript, this test chip is under fabrication, thus no measurement
result is available. Due to the long time of transistor level simulation for a whole network,
only the network start-up is simulated, which allows a verification of the programming inter-
face and the basic functionality of the blocks. In order to check the performance of network
in steady state, VHDL level simulations have been performed.

Fig. 6.12 shows the reference clock wave and some locally generated clock signals in
steady mode. We can observe that all the signals are synchronized in frequency and in phase.
Fig. 6.12 illustrates the outputs of PFDs around NODE5-3. When the whole system starts
working after programming period, there is a short period of time (about 500 ns) during
which the signals varies sharply. This is the frequency acquisition process. After that the
phase tracking starts and phase errors are attenuated.

6.7. Simulation results 147

A B C Error1 NODE5-3

Error2 NODE5-3

Error3 NODE5-3

Error4 NODE5-3

Figure 6.12: PFD outputs between NODE5-3 and its neighboring nodes: A) program-
ming mode; B) unidirectional mode; C) bidirectional mode

148 Chapter 6. Clock network silicon implementation

6.8 Conclusion

In this chapter, the implementation of a 10×10 network ASIC prototype is presented. This
chapter can be divided into three parts. The first part presents the design methodology and the
used design flow. The second part presents the topology and layout of the basic construction
block of network: the NODE block, which is repeated 100 times in the network. The last
part from Section 6.4 to Section 6.7 discusses practical implementation of the chip. This
chip is presently under fabrication. Its functionality was validated by simulation at different
abstraction levels.

Chapter 7

"Swimming pool"-like distributed

architecture

Contents
7.1 Introduction . 149

7.2 Modeling of infinite ADPLL network by a continuous wave propagation
medium . 150

7.3 ADPLL network with limited surface 154

7.4 Simulation results . 156

7.5 Conclusion . 160

7.1 Introduction

This chapter studies the robustness of the ADPLL network with regard to the perturbations,
when the network is globally synchronized. If a node of a large synchronized ADPLL net-
work is get perturbed (i.e., for some reason, its phase or frequency becomes very different
from the neighbors), the error may propagate, affecting several nodes of the network in the
nearby area. If the perturbation is large enough so that phase error propagates to the border
of the network before it is attenuated locally, since the network has a limited dimension,
phase error may be reflected and results in a wave interference and even in a standing wave.

The work presented in this chapter is inspired by the theory of wave propagation on a
liquid surface. In Section 7.2, we start by studying one local clock generator in a large
unlimited network. Then, we introduce an analogy between the surface of the phase error
in a network of ADPLL and a water surface. In Section 7.3 we study the phenomena of
error wave propagation and reflection in an ADPLL network with limited surface, and we
also explain the advantage of proposed "Swimming pool"-like architecture in preventing
error wave reflection. Simulation results are presented in Section 7.4 to demonstrate the
performance of proposed architecture.

149

150 Chapter 7. "Swimming pool"-like distributed architecture

7.2 Modeling of infinite ADPLL network by a continuous

wave propagation medium

This section shows that a network of ADPLL as it is designed in this PhD project can be
modeled by equations describing the waves propagating on a liquid surface, or an elastic
membrane. The link between the corresponding wave equation and the parameters of the
ADPLL network is demonstrated.

The derivation of the equivalent model starts from the assumption that the ADPLL net-
work is a space-discrete model of a continuous wave propagation medium. This vision is
presented in the fig. 7.1, which puts again the architecture of the ADPLL network and the
structure of one node. The dynamic quantity of the media is the phase of each oscillator,
which, in the scale of the network, depends on time and on the coordinates. In this section,
we study an infinite ADPLL network, or an area of the ADPLL network which is far from
the borders.

In this analysis, we consider the continuous time model of the ADPLL network, since the
mathematical tool related to the wave propagation are essentially developed for continuous
time.

CLK
x,y

Local
oscillator

Loop
filter

Error
combiner

Node
x,y

ADPLL structure

CLKx,y-1

PFD

CLKx+1,y
CLKx-1,y

CLKx,y+1

Divider

/N

Average error

Local high freq. clockLocal divided clock

c
lo

c
k
 t

o
 c

ir
c
u

it
ry

PFD PFD

PFD

y

y-1

y+1

xx-1 x+1

(a)

(b)

Interconnection of the ADPLLs

Figure 7.1: Interconnection and structure of the ADPLLs

7.2. Modeling of infinite ADPLL network by a continuous wave propagation medium 151

7.2.1 From a discrete network to a continuous medium

In this section we show how the discrete space structure of the ADPLL network can be
modeled by partial differential equations defined in continuous space.

Each node of the network modeled in the continuous time can be described by ordinary
differential equations. These equations can be obtained if one considers the transfer function
of each block expressed in the Laplace domain:

HPFD = KPFD =
1

δPFD ·2π fs

HFilter = (Kp +
Ki

s
) · e−sτ

HDCO =
KDCO

s

(7.1)

where KPFD and KDCO are the gains of PFD and DCO. δPFD is the timing resolution
of PFD and fs is the sampling frequency. Kp and Ki are the gains of the proportional and
integral paths in the PI filter, respectively. τ is the delay in loop filter. The closed loop
transfer function of feedback system can be expressed as:

H =
HPFD ·HFilter ·HDCO

1+HPFD ·HFilter ·HDCO

=
KPFD(Kp +

Ki
s)e
−sτ KDCO

s

1+KPFD(Kp +
Ki
s)e
−sτ KDCO

s

=
KPFD(Kps+Ki)e−sτKDCO

s2 +KPFD(Kps+Ki)e−sτKDCO

=
M(Kps+Ki)e−sτ

s2 +M(Kps+Ki)e−sτ

(7.2)

where M = KPFDKDCO.

The ADPLL receives the phase of input signal φinput The phase comparison part consist-
ing of four PFDs compares φinput with the phase of output clock signalφoutput, and generates
the average value of phase errors (Fig. 7.1(b)). The input of feedback loop φinput for the
node (x,y) can be regarded as the mean value of the phase of the four neighboring clocks
(φx+1,y +φx−1,y +φx,y+1 +φx,y−1)/4. The output φoutput is the phase of local oscillator φx,y.
Each node in the network satisfies the following equation:

φoutput = φinput ·H

φx,y =
φx+1,y +φx−1,y +φx,y+1 +φx,y−1

4
·H

(7.3)

152 Chapter 7. "Swimming pool"-like distributed architecture

The sum of phase error is:

Σerror =(φx+1,y−φx,y)+(φx−1,y−φx,y)+

(φx,y+1−φx,y)+(φx,y−1−φx,y)

=φx+1,y +φx−1,y +φx,y+1 +φx,y−1−4φx,y

(7.4)

Thus Eq. (7.3) can be rewritten as

φx,y = (
Σerror

4
+φx,y) ·H (7.5)

Eq. (7.4) coincides with the discretization (cf. Eq. (7.7)) of the Laplacian (cf. Eq. (7.6))
of a scalar field Φ in 2-dimensional continuous space.

∆Φx,y =
∂2Φ

∂x2 +
∂2Φ

∂y2 (Definition of Laplacian) (7.6)

∆Φx,y '(φx+1,y−φx,y)− (φx,y−φx−1,y)+

(φx,y+1−φx,y)− (φx,y−φx,y−1) (Discretization of Laplacian)

=φx+1,y +φx−1,y +φx,y+1 +φx,y−1−4φx,y

(7.7)

Hence, we can perform a "reverse discretization" process, and describe the discrete net-
work in continuous medium. Eq. (7.5) becomes

Φx,y = (
∆Φx,y

4
+Φx,y) ·H

= (
∆Φx,y

4
+Φx,y) ·

M(Kps+Ki)e−sτ

s2 +M(Kps+Ki)e−sτ

(7.8)

By performing a reverse Laplace transform on Eq. (7.8), we arrive at the following dif-
ferential equation:

∂2Φ

∂t2 =
MKp

4
∂∆Φ(t− τ)

∂t
+

MKi

4
∆Φ(t− τ) (7.9)

To simplify the equation, we make two approximations. First, during a very small vari-
ation of time t, ∆Φ(t− τ) ' ∆Φ(t)− ∂∆Φ(t)

∂t · τ; Second, a variation of local clock phase Φ

introduces a change of phase differences ∆Φ with its neighboring nodes clocks. Since the

7.2. Modeling of infinite ADPLL network by a continuous wave propagation medium 153

loop filter processes the mean value of four phase errors, according to Eq. (7.7), during a
small variation of time, ∂∆Φ

∂t '−4∂Φ

∂t .

∂2Φ

∂t2 '
MKp

4
(
∂∆Φ

∂t
− ∂2∆Φ

∂t2 τ)+
MKi

4
(∆Φ− ∂∆Φ

∂t
τ) −first approximation

' −(MKp−MKiτ)
∂Φ

∂t
+MKpτ

∂2Φ

∂t2 +MKi∆Φ −second approximation

(7.10)

Hence, Eq. (7.9) can be approximated as:

∂2Φ

∂t2 ' −
M(Kp−Kiτ)

1−MKpτ

∂Φ

∂t
+

MKi

4(1−MKpτ)
∆Φ (7.11)

7.2.2 An analogy with damped wave equation

Up here, we have performed a reverse discretization passage from ADPLL mesh φ to a
continuous surface of phase errors Φ. Eq. (7.11) is the same as the damped wave equation
describing water surface movement with dissipation [64]:

∂2h
∂t2 =−k

∂h
∂t

+ c2
∆h (7.12)

Here h is the height of the water, c is the wave speed and k is the damping constant. We
can make an analogy between the level of water and the phase error of synchronous network.
By comparing Eq. (7.11) and Eq. (7.12) we get the k and c parameters of the synchronization
errors surface.

k =
M(Kp−Kiτ)

1−MKpτ
, c =

√
MKi

4(1−MKpτ)
(7.13)

The transient process of an unlimited ADPLL network in phase domain can be seen as
analogous to the wave movement in a vast expanse of water. In equilibrium, the whole water
surface is flat. Similarly, when the ADPLL network is synchronized, all the locally generated
clocks are in phase. However, if there is a local perturbation, a wave may appear, propagating
through the network. This is an undesirable phenomena. The solution aimed to limit it is
proposed in the next section.

154 Chapter 7. "Swimming pool"-like distributed architecture

7.3 ADPLL network with limited surface

When an infinite network is synchronized in phase, in a local micro region, the difference of
phase level between the nodes (x+1,y) and (x,y) approximates the inverse of phase difference
between nodes (x-1,y) and (x,y), thus the Laplacian of local phase approaches zero, which
means the local region 〈φx+1,y,φx,y+1,φx−1,y,φx,y−1〉 can be regarded as flat.

y

y-1

y+1

x(x-1) x+1

virtual
nodes

border
nodes

kernel
nodes

(a) (b)
Figure 7.2: (a) Interconnection of nodes at the border of network: (→: unidirectional;
↔, −: bidirectional) (b) overflow channel of a swimming pool

However, on the boundary of a limited network as in Fig. 7.2(a), since a node (x,y) on
the left border of the network has no neighboring node on its left, φx−1,y does not exist, the
local phase region is not flat in x-direction. The phase difference φx+1,y− φx,y makes node
(x,y) changes its frequency, which will result in a fluctuation of phase in this local region,
including the node (x+1, y) itself. In other words, the error wave reflects on the border. As
explained previously, to have a flat surface of phase and suppress the reflection, we need an
infinite network. To have such a network, we need additional virtual nodes beyond the border
to balance the phase in x-direction, as shown in Fig. 7.2(a). Since node (x-1,y) doesn’t exist,
it is enough to eliminate the link from node (x+1,y) to the border node (x,y) and keep the
link from the border to the kernel.

These anti-reflection considerations lead to isolate a border only distributing its clock
to a kernel surface in which the nodes are connected as in the case of unlimited network
(Fig. 7.3).

All ADPLLs (border and kernel) are used to generate local clocks. The network border
can be regarded as an independent and synchronous ring exciting the inner kernel as a mem-
brane. This ring, with the reference clock signals at its 4 corners, produces a reference for
ADPLLs in the kernel and absorbs the error waves. In the "Swimming pool"-like analogy,
the ring of the ADPL network acts as the overflow channels of a pool (cf. Fig. 7.2(b)).

7.3. ADPLL network with limited surface 155

ref

x

y

1
1

2

2

10

10

Figure 7.3: Proposed network topology (→: unidirectional;↔, −: bidirectional)

156 Chapter 7. "Swimming pool"-like distributed architecture

7.4 Simulation results

A 10×10 network as shown in Fig. 7.3 is modeled in VHDL. A PFD with a resolution of 20
ps and a DCO with a nominal frequency of 1 GHz and mean frequency step of 2.26 MHz
are used in this work. The simulations allow studying the behavior of network with different
parameters and validating the theoretical analysis.

To observe the process of synchronization and phase error attenuation, phase errors of
local clocks with respect to the reference clock are sampled each cycle and used to create a
3-D animation. The four images in Fig. 7.4 show the surface of phase error in the network at
four different moments, giving us a direct idea of the synchronization process.

Fig. 7.4(a) shows the the phase errors before the network is synchronized in phase. The
network works in the frequency/phase acquisition mode. We observe that the border is very
stable with a relatively low amplitude of errors, while the kernel acts like a membrane fluc-
tuating up and down with an amplitude smaller and smaller until the whole network gets in
phase.

When the network is synchronized in phase, the surface is flat. We add a perturbation on
one node in the network as shown in Fig. 7.4(b). The phase error propagates to the border
like a wave(cf. Fig. 7.4(c)) . Since the border is isolated from the kernel, instead of affected
by the error wave, it attenuates the amplitude of wave until the surface returns to a flat level
(cf. Fig. 7.4(d)). We can say the error is absorbed by the border like the water flows into the
overflow channel of a pool.

When the whole network is in phase, the phase difference between two neighboring
clocks is within±40 ps, which is two steps of PFD resolution. We measure the phase error of
each clock with respect to the reference clock REF so as to obtain the clock error distribution
histogram of nodes in the kernel (Fig. 7.5(a)) and that of nodes in the ring border (Fig. 7.5(b)).
It is obvious that the border clocks have smaller errors than kernel clocks, which agrees with
our previous analysis.

A significant advantage of the proposed circuit is its good performance of perturbation
attenuation. To prove it, we compare the proposed architecture shown in Fig. 7.3 with a con-
ventional 10×10 fully connected topology without ring. When the network is in phase, we
add an artificial perturbation on CLK35 at the node (3,5), and observe the transient response
on nodes (3,5), (2,5) and the nearest border node (1,5).

In the conventional circuit, it is obvious that CLK15 is affected by the perturbation put on
CLK35. The reflection produces some wavelet on node (1,5) (Fig. 7.6(a)). In the proposed
"Swimming pool"-like topology, we can observe that thanks to the strong ring border, CLK15
is not affected and there is no more wavelet on CLK35 (Fig. 7.6(b)).

According to Eq. (7.13)), the wave speed and damping constant depend on design pa-

7.4. Simulation results 157

(a)
(b)

(c) (d)

Figure 7.4: The surface of phase error between each local clock signal and reference:
(a) in frequency/phase acquisition mode; (b) a perturbation happened; (c) the propagation of
phase error; (d) the stable state is re-established

(a) (b)

−150 −100 −50 0 50 100 150
0

5000

10000

15000

clock error (ps)

c
o
u
n
ts

CLK11

CLK12

CLK13

CLK14

CLK15

−150 −100 −50 0 50 100 150
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

clock error (ps)

c
o
u
n
ts

CLK22

CLK33

CLK44

CLK55

Figure 7.5: Histogram of absolute phase errors at steady state: (a) inner clock signals;
(b) border clock signals

158 Chapter 7. "Swimming pool"-like distributed architecture

Figure 7.6: Transient response of perturbation: (a) conventional 10×10 network (b)
"Swimming pool"-like 10×10 network

rameters (gains of PFD and DCO, filter coefficients, etc.). The reconfigurability of loop filter
allows modifying features of the control system according to the specification[21]. Fig. 7.7
shows phase errors of clock signals in the principal diagonal of the proposed network with
two different parameter sets. We can observe that if the system is overdamped, the system
takes a shorter time to acquire the reference frequency, but the phase error in steady state
is relatively larger (± 100 ps in Fig. 7.7(a)) compared to an underdamped system (± 50 ps
in Fig. 7.7(b)). Designers can choose the appropriate parameters to meet requirements of
convergence speed and maximum error limit.

7.4. Simulation results 159

Figure 7.7: Absolute phase errors of clock signals in proposed network with different
parameters: (a) overdamped; (b) underdamped

160 Chapter 7. "Swimming pool"-like distributed architecture

7.5 Conclusion

An ADPLL network with "Swimming pool"-like topology is proposed for synchronization in
large many-core SoC. This topology is based on the architecture of coupled ADPLL network.
However, this configuration enhances the stability of system by improving its capacity of
perturbation attenuation. Theory analysis presented in this chapter supports design of the
proposed architecture for different specifications. Simulation results proved the feasibility
of a fully synchronized circuit with a large size. This possibility allows the use of large
globally synchronous architecture, so offering a possibility of designing and verifying SoCs
with well-established and secure design methods.

Thanks to the reconfigurability of ADPLL, we can realise this topology on the circuit
presented in Chapter 6. The work presented in this chapter may serve as an example of
innovative topology exploration by using the coupled ADPLL network as a research and
development platform. Other topologies may be inspired for specific needs or improvement.

Chapter 8

ADPLL with sliding-window for wide

range frequency tracking

Contents
8.1 Introduction . 161

8.2 State of art . 163

8.3 "Sliding window" architecture . 166

8.4 Comparison with conventional PLL . 174

8.5 Clock distribution network using "sliding window" ADPLL 176

8.6 Conclusion . 182

8.1 Introduction

This chapter presents a study aiming to improve the dynamic and power performance of
the digital PI filter of the ADPLL. In particular, the goal of the study is to reduce the time
of the frequency acquisition of the ADPLL network, in comparison with the conventional
architecture of the PI filter presented in Chapter 1.

This study was carried out at an early stage of the PhD, and the resulting solution for
the architecture of the filter was a candidate for use in the silicon prototype of the ADPLL
network. However, the proposed filter architecture was quite new, additional parameters
have been introduced by new functional blocks in the proposed structure, which increases
the degree of freedom of the non-linear system. When this solution is used in a coupled
network, the non-linearity issue is more complex. This makes the solution risky to be used
in the 10x10 network of ADPLL operating at high frequencies. Hence, in the prototype, we
preferred to use the conventional architecture of filter presented in Chapter 3.

However, the study of the alternative solution for the filer was an important part of the
PhD project, the results were very satisfying, and the solution was validated at different

161

162 Chapter 8. ADPLL with sliding-window for wide range frequency tracking

levels. For this reason, we include the presentation of this study in this PhD report.

The large frequency acquisition time is related to the limited output range of the PFD:
when the phase error is very large (the frequency are different), the PFD outputs the maximal
value allowed by the capacity of the output digital word (±15 in the first prototype presented
in Chapter 1 and ±7 for the second prototype presented in Chapter 6). For this reason, the
frequency acquisition time is roughly proportional to the difference between the reference
frequency (the input) and the divided DCO frequency. The acquisition time may be very
high if the DCO frequency range is large.

The response to this problem is a different processing of frequency acquisition and phase
acquisition. We implemented it with an architecture which we called “PI filter with slid-
ing window”, which is described in this chapter. The chapter is organized as follows: in
Section 8.2, previous work aiming at the same targets are described, and their drawbacks
are indicated. Section 8.3 explains in detail the principle of proposed architecture and func-
tionality of each block. Then Section 8.4 presents simulation and synthesis results of both
conventional and proposed circuit, which demonstrate high performance of the new architec-
ture. At last in Section 8.5, the "sliding window" ADPLL is implemented in a 4×4 network.
Verification with non-ideal cases consideration is performed. The power consumption of a
network using the proposed technique is compared with a network composed of conventional
ADPLLs.

8.2. State of art 163

8.2 State of art

As presented in previous chapters, the structure of a typical PLL is presented in Fig. 8.1 [73].
A PFD detects the phase/frequency difference between the locally-generated clock and a
reference clock, and generates a signed binary code. This code is then processed by a loop
filter, so as to generate a control word for the Digitally Controlled Oscillator (DCO). The
frequency divider is used to generate a clock with a frequency higher than the one at which
the error phase information is processed.

Figure 8.1: Conventional PLL structure

Figure 8.2: Tierno PLL structure[30]

A traditional ADPLL with PI filter has two disadvantages in the case where the DCO
frequency range is wide, as required for the modern clocking and RF systems. One is long
frequency acquisition time, because a single PFD is not efficient enough to give the fre-
quency relation between two clocks under comparison. The other is high power consump-
tion of high-frequency multi-bit arithmetic operations related to the PI filter processing. The
second disadvantage is more serious in our case. Because coefficients in the loop filter are
programmable, to achieve a calculation with precision, large number of bits are reserved for
coefficients, thus the arithmetic operators (adder, multiplier, integrator...) cost much area and
power. Moreover, in steady state, since the PLL already converges, normally only one or two
LSBs are updated each cycle. It is not necessary to calculate the whole control word at high
rate.

164 Chapter 8. ADPLL with sliding-window for wide range frequency tracking

Fast lock can be achieved using a dual-loop architecture: one loop for frequency tracking,
the other for phase error correction, with different filter characteristics. The block diagram
of a DPLL architecture proposed in [30] is shown in Fig. 8.2. It consists of two loops:
an FLL (Frequency Locked Loop) and a PLL. On power-up only the FLL is active. The
frequency detector (FD) determines the frequency difference in digital format (DOUT) and
provides it to the accumulator (ACC). The output of ACC controls the frequency of a digitally
controlled oscillator (DCO) via a 10-bit current mode digital-to-analog converter (DAC),
which allows for a wide tuning range. The lock detector (LD) detects when the frequency
lock is acquired, and then deactivates the FLL and activates the PLL. The sign of the phase-
frequency difference in the PLL is determined by a bang-bang phase-frequency detector
(!!PFD) that consists of a conventional PFD followed by a sampling D flip-flop. The one-
bit digital output of the bang-bang PFD is filtered by a digital PI loop filter (DLF). The
proportional path drives the DCO directly through a high-speed path consisting of only a
1-bit DAC (PDAC). In order to improve the tracking range of the DPLL, a phase-frequency
error monitoring circuit (MC) and a state machine (SM) have been incorporated in parallel
with the DLF.

Figure 8.3: Tierno PLL structure[60]

As we can see, this approach is very expensive in term of hardware resources: in addition
to common PLL blocks (PFD, DLF and DCO), other blocks like FD, ACC, MC PDAC and
SM are needed. This may result in a potential increase of circuit area and power consump-
tion. For certain applications, for instance, a clocking network using many ADPLLs, this
approach is not appropriate.

A simpler solution is proposed by J.A. Tierno [60]. This method divides DCO dynamic
range into several segments: the most significant bits (MSB) for frequency tracking (at low
rate), which are sent directly to the digitally controlled oscillator (DCO), and the least signif-
icant bits (LSB) for phase tracking (at high rate), which are sent to a third-order sigma-delta
modulator and are used to enhance the frequency resolution of the DCO. However, a problem
of this approach is that boundaries of segments are predefined by the lengths of MSBs and
LSBs. If the code corresponding to the reference frequency happens to be at the boundary

8.2. State of art 165

between two segments, MSBs value will hop between two adjacent code, the MSBs must
change with high frequency in order to achieve the phase tracking.

A new method with floating frequency segment is proposed in this study to solve this
problem. As in some previous works [60], actual DCO control code is obtained as sum of
a large coarse value and a small signed correction code. Generally, the coarse code repre-
sents the bits with high weight, and the correction (fine) code represents the bits with small
weight. However, in the proposed architecture, the LSB of the coarse code and correction
code have the same weight. Coarse frequency code is dynamically updated at a relatively
slow frequency. A PFD and a filter calculate a signed correction code, which is periodically
added to the coarse frequency code. It allows fast updating of DCO control word within
a certain range around the coarse frequency. This structure implements a 4 bit range fre-
quency window slowly sliding on 10 bits range. An update of the coarse frequency code
provides an immunity to slow variations of the DCO initial frequency due to temperature,
etc. This method provides a substantial economy of high frequency arithmetic operations,
which results in a power saving.

166 Chapter 8. ADPLL with sliding-window for wide range frequency tracking

8.3 "Sliding window" architecture

The architecture of proposed PLL is shown in Fig. 8.4. A Reference Frequency Indicator
(RFI) block, apart from the main PLL circuit, gives a code (codere f) corresponding to the
reference clock frequency. This code is then sent to PLLs in clock distribution network.
Phase tracking is achieved by a 3-bit PFD and a 4-bit filter generating a 4-bit signed code
based on the phase difference between two clocks. Frequency tracking is achieved by a
mean filter, which receives a stream of 4-bit codes and calculates the average of eight most
recently received ones. The sign of the average value (+1, −1, or 0) estimates the frequency
relation between two clocks, and is used by the Coarse Frequency Adjustment (CFA) block
for coarse frequency code adjustment. The output code of CFA block plus the 4-bits filter
output forms DCO control word.

PFD+LF

Mean Filter

CFA

1/N

+1,0,-1

4 bits 10 bits

div

ref

RFI coderef

code

ref

fc
code

ref

10 bits

10 bits

10 bits

DCO

Figure 8.4: Proposed architecture for PLL

The advantage of this structure is that CFA block can always update the coarse frequency
(f c) of DCO according to the reference-local clock relation, and this adjustment is performed
at a frequency lower than sampling frequency of system (div). PFD and filter, working at
frequency div, tune DCO frequency around f c. This tuning process corrects phase error
and at the same time works together with CFA to make sure that the reference frequency is
always in the tuning interval. As the interval is relatively small, a big number of bits for PFD
and filter is no longer necessary.

8.3.1 Reference frequency indicator (RFI)

A RFI is an extra block for one PLL or a clock distribution network. It gives the system a
10-bits coarse estimation code of the reference frequency (codere f) at starting stage. A RFI
block can be implemented as a Look-Up Table (LUT), which takes reference frequency and

8.3. "Sliding window" architecture 167

some other parameters like temperature as inputs and gives corresponding code with certain
precision at a fast speed. The implementation of this block is not an emphasis of this work.

8.3.2 Coarse frequency adjustment

The coarse frequency acquisition is achieved by the mean filter block and CFA block (red
rectangle in Fig. 8.4).

Mean filter

A mean filter uses a FIR (Finite Impulse Response) architecture which calculates the average
value of last 8 values at the input. The equation of a mean filter with input x[i] at a given
moment i is:

sum[i] = x[i−7]+ x[i−6]+ · · ·+ x[i] (8.1)

avg[i] = sum[i]/8 (8.2)

where sum[i] and avg[i] are sum value and average value. If we define a signal new[i] for
the new input data and another signal old[i] for the oldest data value at that moment, sum[i]
can also be represented by Eq. (8.3).

sum[i] = sum[i−1]−old[i]+new[i] (8.3)

There are two options to design such a filter: shift register and circular buffer, whose
principles are presented in Fig. 8.5.

Figure 8.5: Sliding window algorithm

A shift register stores the last N data dynamically. At each clock event, all the data are
left shifted. The data in the leftest register, which is the oldest, is popped out. And a new

168 Chapter 8. ADPLL with sliding-window for wide range frequency tracking

data is pushed in the rightest register. The block always calculates the sum and average value
of data in all the N registers.

A circular buffer [40] is a memory storing the last N output data of filter. An index points
out register which stores the oldest data. The data stored in the register pointed by the index
is substituted with the new input. Instead of shifting the data, the index is shifted at each
clock event. In this case, only one register need to be updated, thus a circular buffer requires
less power than a shift register.

For this reason, circular buffer is chosen to implement the mean filter. To avoid read-
write conflicts, the mean filter works in two phases, one phase (S1) for reading the oldest
data and subtracting it from sum, and the other phase (S0) for writing new data and adding it
to last calculation result. Transitions of phases are sensitive to edges of clk signal, as shown
in Fig. 8.7. A controller, implemented as a finite state machine (FSM), verifies transition
conditions of working state, generates the write enable signal (WE) and new index for the
circular buffer (idx), updates the input for ALU (IN1), and calculates the average value (avg)
of sum and its sign avg_sign. The block diagram of the whole mean filter is presented in
Fig. 8.6. Tab. 8.1 details definition and output signal values of two different working states.

Figure 8.6: Mean filter implementation

Table 8.1: Control table

clk state idxn WE ALU_state
1 S1 (idxn−1 +1) mod N 0 1 (mode)
0 S0 idxn 1 0 (mode ⊕)

The circular buffer storing last N output data of filter is implemented as an array of N
registers (N=8 here) with a N-to-1 multiplexer and a 1-to-N demultiplexer. In writing mode,
the value of idx signal defines which clock signal flips, and hence, which register stores the
new data_in value. The data update of each register is done only at the rising edge of its

8.3. "Sliding window" architecture 169

Figure 8.7: State diagram of controller

clock signal. In reading mode, the output always takes value of the register selected by idx.
As shown in the chronograph (Fig. 8.9), data_in and idx are always prepared half clk period
before the rising edge of WE.

Figure 8.8: Implementation of memory in mean filter

This operation of mean filter can be described by the data flow diagram in Fig. 8.10. In
general, a full cycle starts with S1 and ends with S0. Before S1, tmp stores the sum value of
last cycle. idx points to the oldest data in last cycle. At the beginning of S1, the average value
of last cycle and its sign avg_sign are calculated by operation avg, which is applied in the
controller because it is as simple as a right binary shift. The idx is also shifted to point to the
oldest data in the current cycle. In the mean time, the controller takes the temporary result
tmp (calculated by ALU), and prepares one input of ALU IN1 for its next operation. The
other input of ALU is always the output data of memory (data_out) pointed by its current
idx. However, the value is different in different states:

data_out(s1)[i] = old[i] (8.4)

data_out(s0)[i] = new[i] (8.5)

170 Chapter 8. ADPLL with sliding-window for wide range frequency tracking

Block ALU is an adder/subtracter. Its working mode depends on ctrl signal value. The
output of ALU tmp is either the intermediate calculation result (at state S1) or a new sum
value (at state S0):

tmp(s1)[i] = sum[i−1]−old[i] (8.6)

tmp(s0)[i] = tmp(s1)[i]+new[i] (8.7)

clk

state

data_in

idx

WE

tmp

IN1

S1 S0

memory

data_out

read write

Figure 8.9: Chronograph of mean filter

Some timing constraints have to be met for correct functionality of circuit. First, update
of signal idx and subtraction operation should be carried out within the first state S1. Second,
new income data is stored in proper register and an addition gives the new sum value, which
should be finished before the end of the second state S0. Each state lasts half period of clk
signal.

To verify the timing conditions, synthesis is done using Synopsys Design Compiler under
a CMOS 65nm technology. Timing report shows that the work of each state is finished within
1 ns under a timing constraint of 2.5 ns for clock period. There is a positive slack of 250 ps
in each state. Timing constraints are satisfied.

Coarse Frequency Adjustment block (CFA)

The role of the CFA block is to calculate a coarse frequency code code f c based on the output
of mean filter in the last few cycles. CFA updates the coarse frequency code by ±1 or 0
at each cycle. To identify an eventual regular error on the coarse frequency, the mean filter
needs to accumulate the output of the phase tracking blocks during several cycles. There
is a trade-off between the coarse frequency tracking precision and hardware complexity.
Apparently, to better estimate the frequency relation between reference clock and generated

8.3. "Sliding window" architecture 171

Figure 8.10: Data flow diagram in the mean filter

clock, an adequate number of cycles should be taken into consideration, which defines the
size of shift register and ALU in Fig. 8.6.

To relax the constraint in mean filter, an integrator and a saturator are used in the CFA
structure (cf. Fig. 8.11). The first integrator accumulates mean filter output value. If there
is overflow or underflow, this integrator is reset to 0. The second integrator, which is initial-
ized to codere f , takes the overflow/underflow value to adjust coarse frequency progressively.
The result is combined with phase error correction blocks presented in the next subsection
Section 8.3.3 to perform a complete phase locking process.

overflow/

underflow

reset

code
code

from Mean Filter

+1, 0, -1

div

0

1

+1, 0, -1
5 bits +1

-1
15

-15

10 bits

10 bits

DQ
DQ

ref

fc

Figure 8.11: CFA structure

172 Chapter 8. ADPLL with sliding-window for wide range frequency tracking

8.3.3 Phase error correction

Phase error is corrected by a 3-bit PFD and a 4-bit PI filter. To compare the circuit proposed
in this chapter with a ADPLL with conventional structure, we use the same structures and
principles as the PFD block presented in Section 3.1 and the filter in Section 3.2 except
for less number of bits. The use of coarse frequency adjustment cells presented in the last
section share the work of frequency tracking, making less bits for PFD and filter possible.
However, the 3-bit PFD has a very small absolute phase comparison range, which results in
some potential drawbacks.

Drawbacks related to a small PFD range

The PLL transfer function in s-domain is:

H(s) =
KPFDKDCO(Kps+Ki)

s2 + sKPFDKDCOKp +KPFDKDCOKi
(8.8)

where KPFD and KDCO are the gain of PFD and the gain of DCO respectively. Kp and Ki

are the proportional and integral coefficients of the PI filter.

If we compare Eq. (8.8) with the common transfer function of 2nd order system, the
damping factor ξ is obtained.

ξ =
Kp

2

√
KPFDKDCO

Ki
(8.9)

As shown in Fig. 8.12, due to the dynamic range limit of a 3-bit PFD, there is saturation
when phase error is larger than 3∆TT DC or less than−3∆TT DC. Hence the gain KPFD is much
smaller in the saturation region than the one in quasi-linear region. According to Eq. (8.9),
this results in a relatively small damping factor ξ in the saturation region, which causes a
relatively slow correction speed at the beginning when the phase error is still large.

Figure 8.12: Transfer function of 3-bits PFD

8.3. "Sliding window" architecture 173

Solution - Adaptive filter

According to Eq. (8.9), the damping factor ξ is function of KPFD, KDCO, Kp and Ki. Since
KPFD and KDCO are defined by design specification, only the filter coefficients can be mod-
ified to compensate the effect of KPFD diminution in saturation region. Ki is less effective
than Kp, because Ki is under root and it has already a very small value in current design. If
this value is reduced furthermore, the integral path performance is also reduced.

Hence, the solution consists in using an adaptive filter with a variable Kp (cf. Fig. 8.13)
instead of a regular PI filter in order to change damping factor of system on the fly when PFD
works in different regions [67]. In this implementation, we set the value of Kp in saturation
region three times as large as that in quasi-linear region.

The key points of implementation consist in two mechanisms: detection of PFD working
region and modification of the Kp for the case where the PFD is in the saturation. To detect
the saturation at the PFD output, we just need to verify if the PFD output value equals to its
minimum/maximum values (±3). This costs just a few logic gates and tens of picoseconds.

Figure 8.13: Adaptive loop filter structure

174 Chapter 8. ADPLL with sliding-window for wide range frequency tracking

Table 8.2: Parameter summary of two ADPLLs

Parameter "sliding window" ADPLL Conventional ADPLL
PFD resolution 30 ps 30 ps

PFD number of bits 3 bits 5 bits
LF output number of bits 4 bits 10 bits
DCO Central frequency 1.744 GHz 1.744 GHz

DCO Output divided frequencies 872/218/109 MHz 872/218/109 MHz
DCO Tuning range 999∼2480 MHz 999∼2480 MHz

DCO Gain 1.482 MHz/LSB 1.482 MHz/LSB

8.4 Comparison with conventional PLL

In this section, we compare the proposed "sliding window" ADPLL with a conventional
one presented in [73] in terms of functional performance and power consumption. Tab. 8.2
summarizes parameters of the two circuits under comparison.

8.4.1 Functional Simulation results

Fig. 8.14 shows the phase error between the reference clock and clock generated by an AD-
PLL using a conventional PI digital filter, as in sec. XXX [22]. The reference frequency is
297.3 MHz at first, and it changes to 225 MHz since 10 us. It takes 13.5 us for PLL to be
re-synchronize with the new frequency.

Figure 8.14: Simulation of conventional architecture K p = 1,Ki = 15/211

Fig. 8.15 presents result of a simulation of the new ADPLL structure presented in this
study, which use a PI filter without dynamic adaptation of the Kp (cf. explications for fig.
8.13). Same initial condition and stimulus as last one are applied. The coarse frequency code
of PLL is reset with the new code after the change of frequency at 10 us. In this case, the
re-convergence time is 2 us.

If an adaptive PI filter is implemented in the model as shown in fig. 8.13, the re-
convergence time is shortened to 1 us (Fig. 8.16). As expected, the proposed PLL highlights
a very high convergence speed.

8.4. Comparison with conventional PLL 175

Figure 8.15: Simulation of new architecture with regular PI filter K p = 1,Ki = 15/211

Figure 8.16: Simulation of new architecture with adaptive filter K p= 1 or 3, Ki= 15/211

8.4.2 Power consumption comparison

Syntheses using Synopsys Design Compiler are done for conventional architecture [22] and
proposed architecture under ST Microelectronics CMOS 065 nm technology. The div signal
is chosen to be at PLL nominal frequency. Tab. 8.3 shows the power consumption of two
architectures in µW . We can see that 37.4% of total power consumption is reduced by using
the proposed architecture.

Table 8.3: Power consumption of two architectures

Conventional Proposed
cell Architecture Architecture

PFD 20.9 16.1
Loop Filter 51.0 12.4
Mean Filter - 11.7
Incrementer - 4.8

Total 71.9 45.0

176 Chapter 8. ADPLL with sliding-window for wide range frequency tracking

8.5 Clock distribution network using "sliding window" AD-

PLL

From the analysis above, we can see the proposed "sliding window" ADPLL possesses two
advanced features: fast locking speed and lower power consumption. Locking speed and
power consumption, especially the latter are two important indexes for evaluation of a clock
generation and distribution system. In this chapter, we try to employ this "sliding window"
ADPLL technique in a coupled clocking network presented in previous chapters, and evalu-
ate the network performance in terms of functionality and power.

8.5.1 Network structure

In this work, we use a 4×4 network shown in Fig. 8.17, which has the same topology as the
network presented in Chapter 1. It is composed of Phase Frequency Detectors (PFD) and
16 Filter/Oscillator (FO) blocks. PFDs are placed on each border between two synchronous
clock areas (SCA), measuring the phase error between each couple of neighboring oscilla-
tors. The PFD placed in the upper left corner compares the phase of the input reference and
the first oscillator in the network.

Figure 8.17: PLL network topology

Fig. 8.18 shows the architecture of one typical local clock generation node (NODE6) in
Fig. 8.17. Phase tracking is achieved by 3-bit PFDs and a 6-bit filter generating a 6-bit signed
code based on the phase difference between local generated clock and its neighboring-node
clocks. The neighboring nodes taken into account depends on configuration of the whole

8.5. Clock distribution network using "sliding window" ADPLL 177

system and can be reconfigured by programming the coefficients kw1, kw2, kw3 and kw4,
which have 2 bits. In this experiment, in most cases, kw is programmed as 0 or 1.

Figure 8.18: PLL with sliding window

The coarse estimation code of reference frequency (codere f) comes from the outside,
through the programming interface. This is necessary for coarse frequency code update by
CFA, so it should be provided to the nodes in the start stage of system.

8.5.2 Evaluation of functional performance of system

As presented in Section 8.1, the proposed novel structure of digital filter has introduced
additional parameters for ADPLL, thus increased the degrees of freedom. Subsection 8.4.1
has demonstrated that in the ideal case, one single ADPLL using this kind of filter is stable
and has a fast establishment speed if the frequency of reference clock is constant. An ideal
case is defines as follows:

1. Reference code given by RFI block (codere f) is equal to the DCO control word corre-
sponding to the desired frequency (reference frequency).

2. No fabrication mismatch. DCOs in different positions of the chip operate have exactly
the same characteristics (same gain and transfer function).

3. No change of DCO frequency due to temperature variation.

However, in a network of coupled oscillators , one node receives at most four reference
clocks, whose frequencies are not always constant, especially in the frequency acquisition
mode. Whether the network is still stable is the utmost question. When the desired stable
state is established, if we change the frequency of reference clock, whether the system can
re-establish to the new synchronized state should be verified.

178 Chapter 8. ADPLL with sliding-window for wide range frequency tracking

Moreover, if the condition of the ideal case (cf. List 3) is not satisfied, the performance
of system in terms of convergence speed and residual phase error should also be observed.

For these reasons, we have performed various simulations on the network of ADPLL
with "sliding-window", and we observed phase error between each two neighboring nodes.
In this section, we only display the values of phase error between NODE16 (the most remote
node to the reference) and its two neighbors.

Each simulation has two phases. The first phase is from 0 to 90 us. In this phase,
the frequency of reference clock is 200 MHz. In the second phase from 90 us, to observe
the re-establishment speed, the reference changes its frequency to 327 MHz at 90 us. The
corresponding reference code is reprogrammed. Moreover, to avoid undesired steady state,
in each phase, the network is dynamically configured, first in unidirectional mode, then in
bidirectional mode(cf. Fig. 1.22). This procedure is displayed in Tab. 8.4.

Table 8.4: Simulation procedure

time (us) 0∼ 30 30∼ 90 90∼ 120 120∼ 150
ref clock (Hz) 200M 200M 327M 327M

code_ref 253 253 900 900
configuration mode unidirectional bidirectional unidirectional bidirectional

Besides the ideal case simulation, three other kinds of simulations are carried out to
evaluate performance of proposed system in non-ideal cases.

The following simulations have been performed to verify the functionality of network in
different cases (fabrication mismatch, temperature variation, etc.)

1. Ideal case (cf. List 3): Phase errors between NODE 16 and its two neighboring nodes
are displayed in Fig. 8.19. From the simulation result, we can see that there is no
undesired steady state, and maximum phase errors are ±2 as in one single ADPLL.

2. Non-ideal case 1: reference code (codere f) has an offset compared with the theoretical
DCO control word which corresponds to the desired frequency (reference frequency):
the reference code (codere f) is estimated by RFI block. However, the frequency of
DCO may change due to PVT variations, thus the estimated codere f may has an offset
with respect to the theoretical code calculated from the frequency and the transfer
function of DCO. Fig. 8.20-Fig. 8.23 show simulation results when reference code has
an offset of 1, 2, 3 or 4 compared to the correct code. We can see that in all these
simulations, the NODE 16 is synchronized with its neighbors with residual errors less
than ±2 times of PFD resolution. However, compared with the ideal case (cf. List 3),
the frequency tracking takes longer time.

3. Non-ideal case 2: static disparity among nodes: due to fabrication mismatch, DCOs
in different positions of the chip may generate different frequencies with the same

8.5. Clock distribution network using "sliding window" ADPLL 179

command code. Fig. 8.24 proves the static offset immunity of proposed system when
there is a constant offset error of 5 over transfer function of the DCO in NODE 16.

4. Non-ideal case 3: dynamic disparity among nodes: due to temperature variation, the
frequency of some nodes may vary in function of time during the operation of circuit.
A dynamic offset (-5 to +5) is added to the transfer function of the DCO in NODE 16.
Simulation result shown in Fig. 8.25 demonstrates that in most of the time, the residual
errors are less than ±2 times of PFD resolution.

Figure 8.19: Error entries of node 16 mutiplied by kw (reference code=theoretical code)

Figure 8.20: Error entries of node 16 mutiplied by kw (reference code=theoretical code + 1)

Figure 8.21: Error entries of node 16 mutiplied by kw (reference code=theoretical code + 2)

From the simulation results we can get three conclusions: First, in all the above test
conditions, the whole network can be synchronized with the reference clock with a certain

180 Chapter 8. ADPLL with sliding-window for wide range frequency tracking

Figure 8.22: Error entries of node 16 mutiplied by kw (reference code=theoretical code + 3)

Figure 8.23: Error entries of node 16 mutiplied by kw (reference code=theoretical code + 4)

Figure 8.24: Error entries of node 16 mutiplied by kw (static offset = 5)

precision (maximum error: ±2 or ±3 times PFD resolution). Second, a RFI block with
bad precision could degrade the system mainly in frequency tracking speed. Third, PVT
variations of DCO may also result in degraded performance in terms of convergence speed
and phase error.

8.5. Clock distribution network using "sliding window" ADPLL 181

Figure 8.25: Error entries of node 16 mutiplied by kw (dynamic offset -5 to 5, only the first
phase from 0 to 90 us is displayed)

182 Chapter 8. ADPLL with sliding-window for wide range frequency tracking

8.6 Conclusion

In this chapter, an ADPLL architecture with sliding window is proposed to accelerate fre-
quency tracking and to reduce power consumption.

In the first part of this chapter, we discusses the drawbacks of conventional ADPLL
and existed approaches for fast frequency acquisition. These solutions mainly suffer from
complex structures thus large area and power. Hence, they are not appropriate for clock
generation and distribution. To solve this problem, we present a new ADPLL architecture
with separated control for frequency acquisition and phase error correction. System structure
and block working mechanism are explained. Then behavior level simulations are performed
and power consumption is analyzed. Some results of the research on it have been published
on the international conference NEWCAS2012[51].

In the second part of this chapter, this "sliding window" technique is implemented in a
4×4 clock distribution network. Simulation results demonstrate a good performance even
with DCO disparity.

However, blocks like mean filter and CFA introduce additional parameters to the trans-
fer functional of ADPLL, thus increase the degree of freedom of the non-linear system. To
achieve best performance, a theoretical analysis is necessary for choosing appropriate pa-
rameters like the number of values stored in the circular buffer of the mean filter and the
depth of the integrator in the CFA block.

Chapter 9

Conclusion and Perspectives

Contents
9.1 Thesis summary and conclusions . 183

9.2 Future work . 186

9.1 Thesis summary and conclusions

Clock generation and distribution are important techniques in the field of VLSI circuits. The
quality of the clock signal has a great impact on circuit performance and power consumption.
Nowadays, a variety of clocking solutions like clock tree, hybrid clock mesh, asynchronous
communication is being used. These techniques exhibit an upper limit of the circuit size
which can be synchronized. In deep submicron technologies, these conventional clocking
techniques fail the generation of a global clock usable at any point of the chip.

The objective of this research is a study of an alternative clocking solution, which em-
ploys a network of oscillators coupled by all-digital PLLs (ADPLL) technique. Such a sys-
tem is called “network of ADPLL”. This PhD project included a theoretical study, modeling,
CMOS and FPGA prototyping of networks of ADPLL. In comparison with previous re-
searches, which showed principal possibility of clock generation by network of ADPLL, this
study proved a feasibility of a large network of ADPLL, and solved some problems specif-
ically related with the large size of network. This PhD report describes in detail the design
of a chip containing a Cartesian network of 10x10 nodes, each of them generating a local
clock synchronized in phase and in frequency with the neighboring clocks. The modeling of
the network at different abstraction levels was an important part of the work. The ADPLL
network is a complex system: only its reduced model can be described by equations, and re-
alistic effects can only be accounted for with a numerical modeling. However, we proposed
a reduced model used for the design, relating the network parameters to the quality of the
synchronization of the local clock signals.

The design of a VLSI prototype of the network used was based on the study previously

183

184 Chapter 9. Conclusion and Perspectives

achieved in the HODISS project, where a low-size network prototype was implemented on
silicon. However, in this PhD, we adapted the design of several blocks of the network to
the constraints related to the size of the network, and we modified the phase detector so to
improve its resolution (20 ps instead of 32 ps in the previous work). To realize this resolution,
a Vernier architecture was used. The DCO block was simplified (reduced size and power
consumption). We designed two versions of the filter: one with architecture optimizing
the convergence speed and power consumption, and one being a simplified version of the
architecture used in the first low size prototype (4×4) of network. The chip containing a
10×10 network of ADPLL has been fabricated in 65 nm technology, and is presently under
test.

Manycore circuits are probably the most important potential applications of the proposed
clocking solution. For such systems, the question of scalability is paramount: how the perfor-
mance of the system changes if the size of the system increases? For our clocking solution,
the question can be formulated as follows: how will the synchronization quality (the clock
error) with the size of the network (the number of nodes) change? Our study provides the
following response to this question:

– If the phase error between the neighboring clocks is considered, the response is “the
clock error expressed in time units doesn’t change when the size of the network increases”.
The clock error between the neighboring nodes is equal to 2 steps of resolution of the phase
error measurement. The phase error measurement resolution scales down with sizes of the
CMOS transistors (in the same way as the delays of the digital gates).

– If the phase error between any two nodes of the network is considered: we showed that
although the phase error increases with the Manhattan distance between the nodes (equiva-
lently, with the size of the network), a saturation is observed, and the global error is limited
to 3 steps of the phase error measurement resolution.

These facts were verified experimentally, on a network of size 12x12 nodes implemented
with an FPGA platform; hardware limitations prevented us from test on networks with larger
sizes.

One of the main advantages of network of oscillators coupled by ADPLL networks is
the possibility to dynamically reconfigure its topology, connectivity, parameters of the pro-
cessing blocks, etc. This allows and implementation of different network behaviors, with
the same hardware platform. This property have been successfully used to select of the de-
sirable synchronized mode. As well, we explored an original technique inspired from the
hydrodynamics, allowing an elimination of standing waves which may occur in the network.
By configuring the network border differently from the network kernel, the network border
can be regarded as an independent and synchronous ring. The nodes composing this ring
excite the inner kernel and absorb the error waves coming back from the kernel, like the
overflow channels of a swimming pool. This "swimming pool"-like topology has been stud-

9.1. Thesis summary and conclusions 185

ied and designed. Its advantage in preventing error wave propagation and reflection has been
demonstrated by simulation results.

The measurement of clock error can be required in many cases: for characterization, of
for self-test of the clocking system, ... Since clock signal is continuous in time and it is very
sensitive to noise, off-chip measurement is not appropriate for high frequency signals. In this
project, we designed an on-chip clock error measurement circuit, which measures the clock
error statistics between two clock domains in high-speed clocking systems (gigahertz and
more). The result of measurement may be read off-chip with low rate. The strategy aims at
picoseconds resolution without complex calibration. After a validation of the technique on a
discrete prototype, an IC block was designed using 65 nm technology. This mixed signal IP
was used in the the test chip containing a large ADPLL network, for measurement of errors
between neighboring clocks in 4 places of the network.

The built-in test circuit, together with the clock generation and distribution circuit, con-
stitutes a complete clocking system, which proposes and alternative to existing conventional
clocking techniques for large digital systems on chip.

186 Chapter 9. Conclusion and Perspectives

9.2 Future work

The test chip has been fabricated, and the test is being prepared at the time when this docu-
ment is being written. If the test results are satisfying, the next step will be integrating the
proposed clocking system in a real multiprocessor SoC.

Moreover, during the research, we found some challenges or points of improvement with
respect to the modeling of such a non-linear system, the robustness of clock distribution and
the deployment in 3D integrated circuits.

9.2.1 Modelling of ADPLL for the study of residual phase error in steady

state

A challenge in analyzing the behavior of phase error correction of an ADPLL or a network
of ADPLLs comes from the nonlinearities of these systems. The non-linearity appears due
to the following reasons:

• The characteristic of the phase detector is mod 2π.

• The analog/digital interfaces between the digital filter and the DCO, and between the
DCO and PFD.

• The sampling of the DF by the DCO whose signal is controlled by the filter output: a
self-sampling

The most common and efficient techniques are those originated from control theory for Lin-
ear Time-Invariant (LTI) systems. To apply the analysis tools coming from the LTI system
theory, it is necessary to neglect the quantization in the ADPLLs. This leads to inaccurate
predictions of residual errors (i.e. when a network is very close to the synchronized state).
For example, a continuous LTI model of a PLL with two integrators predicts a zero residual
phase error. However, in a realistic ADPLL network, the residual error is at least equal to the
quantization step of the PFD, and is a function of time looking like a stochastic process. The
mode when the phase errors are small is ”nominal” for an ADPLL network which is close to
the synchronization, and hence, the failure of the LTI model to describe this operation mode
is a serious drawback.

In Chapter 2, we have proposed a reduced numerical model of ADPLL and a method of
analyzing the impacts of characterization of PFD, DCO and digital filter on the residual phase
error of an ADPLL in steady state. This method serves as an estimation of the maximum
value of residual error with different block parameters (quantization steps of PFD and DCO,
filter coefficients, etc.). A more precise and complete model considering the non-linearity is
necessary for the study of steady-state behavior of ADPLL in a coupled network.

9.2. Future work 187

9.2.2 Exploration of fault-tolerance property

A very serious issue with clock tree or other centralized approaches is the lack of robustness.
If due to some manufacturing defect, one internal wire or buffer in a clock tree breaks,
the whole sub-tree starts from the broken point will stop working correctly. The proposed
clocking system, as a distributed approach, is probably more robust. But since the whole
network is coupled, if one link between two clock domains breaks or one oscillator works
abnormally, the neighboring nodes and even the whole network may also be affected. A
possible solution may be a use of the phase detectors, which always observe the efficiency of
the local clock generators. Since the system is digital, it is possible to develop a mechanism
detecting the position of the failure, and reconfiguring the network so minimize the impact
of the failure on the behavior of the network.

In general, there are two kinds of faults in the network: a broken link and a faulted node.
If a link breaks, the PFD cannot well detect the phase error between two clocks or cannot
send back the correct results. In this case, this link should not be taken into consideration
while calculating the DCO control word. Since all the links have their weight coefficient, it
is easy to deactivate a link if it is broken. A faulted node is more difficult to deal with. One
possibility is bypassing this node and using the neighboring clock signal provisionally.

These solutions have a hardware cost, and the designers should find a trade-off between
the hardware overhead and the system robustness.

9.2.3 Clock distribution for 3-D chip

Three-dimensional (3D) IC is an emerging technology being pursued by industry and labo-
ratories. It offers new levels of efficiency, power, performance, and other advantages. The
clock distribution in this circuit must be in three spacial dimensions, and this increases the
complexity of the clock generator. Several researches address these problems [34, 35, 38, 6].
Three typical topologies have been summarized in Fig. 9.1[38]. In general, they combine
different topologies used in 2-D circuits, such as clock tree, ring and mesh. The common
point in the three approaches displayed in Fig. 9.1 is that a clock tree is implemented in the
2nd plane. The root of clock tree is connected with the reference clock. In Fig. 9.1(a), two
other clock trees are used in the other two planes. The root nodes in both planes are con-
nected with the root of the 2nd plane by Through-Silicon Via (TSV). This results in a 3-D
clock tree with only one real root node, and the skew between two leaf nodes is larger than
in a 2-D clock tree. In Fig. 9.1(b), the 1st and 3rd planes use mesh structure instead of tree
structure. Each node in the meshes are connected with the 2nd plane node by TSV, thus a
large number of TSVs are necessary. This results in a difficulty of physical implementation.
In Fig. 9.1(c), clock rings are used in the 1st and 3rd planes, and only the four corner nodes
are connected with the corner nodes of the 2nd plane. However, if the plane is large, the
synchronization between central nodes in different planes is difficult to be guaranteed. We
can see the native problems of these 2-D conventional clocking solutions are multiplied by

188 Chapter 9. Conclusion and Perspectives

the 3-D implementation. As a result, these solutions are of limited efficiency.

Figure 9.1: Various 3-D clock distribution approaches within the test circuit of [38]: (a)
H-trees, (b) H-tree and local rings/meshes, (c) H-tree and global rings

The study presented in this PhD project suggest a different solution to the problem of
synchronization in 3D chips. This method (cf. Fig. 9.2) is inspired by the approach dis-
played in Fig. 9.1(c). Instead of using a clock tree in the 2nd plane, a distributed architecture
of ADPLL network presented in the document (cf. Fig. 2.1) can be implemented. One cor-
ner of the network is connected with the reference clock. Two other networks of ADPLLs
are constructed in the 1st and 3rd planes. The four corner nodes in each of these two planes
are coupled with the four corner nodes in 2nd plane also by using ADPLL technique. More-
over, since the clocking networks in the 1st and 3rd planes have four reference clock signals,
these two can be configured as "swimming-pool" architecture proposed in Chapter 7. This
proposed approach exploits the reliability and scalability of ADPLL network compared with
conventional approaches used in Fig. 9.1.

9.2. Future work 189

Figure 9.2: Proposed 3-D clock distribution approach using the network of ADPLL

Appendices

191

Appendix A

VHDL models of the ADPLL blocks

This appendix presents the behavioral and RTL-level VHDL models of the ADPLL blocks:
a BB-detector, a TDC, a digital signal processing block (i.e. loop filter) and DCO.

Listing A.1: VHDL model of the digitally-controlled oscillator

l i b r a r y IEEE ;
use IEEE . STD_LOGIC_1164 . a l l ;
use IEEE . STD_LOGIC_ARITH . a l l ;
use IEEE . STD_LOGIC_UNSIGNED . a l l ;
use IEEE .MATH_REAL. a l l ;
use IEEE . NUMERIC_STD . a l l ;

e n t i t y DCO_V2 i s
g e n e r i c (

TYPEDCO : i n t e g e r := 1 ; −− DCO t y p e : 1 − LIP6 TT , 2 − LIP6 SS , 3 − LIP6 FF
RESOLUTION : t im e := 1 f s ; −− f i n e s t t i m e r e s o l u t i o n , f s
DCO_INIT_DELAY : t i me := 1 ps ; −− i n i t i a l o s c i l l a t i o n de lay , ns
DELTA_F : r e a l := 0 . 0 ; −− f r e q u e n c y o f f s e t , MHz
DCO_JRMS : t ime := 0 f s ; −− j i t t e r rms , f s −− 1821 f s
DCO_WRMS: t i me := 0 f s −− wander (a c c u m u l a t i v e j i t t e r) rms , ps
) ;

port (
C : in STD_LOGIC_VECTOR(2 downto 0) ;
B : in STD_LOGIC_VECTOR(6 downto 0) ;
A : in STD_LOGIC_VECTOR(6 downto 0) ;
RST : in STD_LOGIC ;
CLK, DIV , DIV16 : out s t d _ l o g i c
) ;

end DCO_V2 ;

a r c h i t e c t u r e b e h a v i o r a l of DCO_V2 i s
−−===

s i g n a l e n a b l e : s t d _ l o g i c := ’ 0 ’ ;
s i g n a l DCO_IN : STD_LOGIC_VECTOR(9 downto 0) := " 0000000000 " ;
s i g n a l DCO_CODE : i n t e g e r range 0 to 1023 := 0 ;
s i g n a l f r e q u e n c y _ d c o : r e a l := 1 . 0 ;

193

194 Appendix A. VHDL models of the ADPLL blocks

s i g n a l smp : b i t := ’ 0 ’ ;
s i g n a l p e r i o d 0 : t im e := 1 ns ;
s i g n a l Q1 , Q2 , Q3 : s t d _ l o g i c := ’ 0 ’ ;
s i g n a l D1 , D2 , D3 : s t d _ l o g i c := ’ 1 ’ ;
s i g n a l CLK_TMP: s t d _ l o g i c ;
type LIP6_TT i s array (0 to 255) of r e a l ;
s i g n a l f r e q _ l i p 6 _ T T : LIP6_TT : = (

0 => 0.9300370537880846 ,
1 => 0 .9314933063967212 ,
2 => 0 .9327363758105037 ,
3 => 0 .9339820993709525 ,
4 => 0 .9341469253729105 ,
5 => 0 .9355143576421766 ,
6 => 0 .9367689231684877 ,
7 => 0 .9380246199233998 ,
8 => 0 .9382774501565182 ,
9 => 0 .9396552288145633 ,
10 => 0.9409152019478633 ,
11 => 0.9421816085211267 ,
12 => 0.942434865588007 ,
13 => 0.9438237077209502 ,
14 => 0.9450084998977326 ,
15 => 0.946285862506654 ,
16 => 0.9466387151988006 ,
17 => 0.9480404344121861 ,
18 => 0.9492327538251522 ,
19 => 0 .95051551955283 ,
20 => 0.9508613686147231 ,
21 => 0.9522756907203746 ,
22 => 0.9534797275460731 ,
23 => 0.9546865840703788 ,
24 => 0.9551165951716415 ,
25 => 0.9565436327568848 ,
26 => 0.957758204323161 ,
27 => 0.9589734456211345 ,
28 => 0.9594535730158974 ,
29 => 0.9608867344280492 ,
30 => 0.9621120484568325 ,
31 => 0.9633385064584414 ,
32 => 0.9635115184762559 ,
33 => 0.9648595848196898 ,
34 => 0.9660955347772218 ,
35 => 0.9673322479637345 ,
36 => 0.9673219727702526 ,
37 => 0.9685919359191155 ,
38 => 0.9698378354967289 ,
39 => 0.9710846891070695 ,
40 => 0.9714170594790796 ,
41 => 0.9726959223095312 ,
42 => 0.9739472760028322 ,

195

43 => 0.9752037515171227 ,
44 => 0.9755492269766837 ,
45 => 0.9768396173055278 ,
46 => 0.9780185289690061 ,
47 => 0.9792864251065894 ,
48 => 0.9797249749019787 ,
49 => 0.9810260642889341 ,
50 => 0.9822126079644305 ,
51 => 0.9834859504302272 ,
52 => 0.9839184826703808 ,
53 => 0.9852304139412236 ,
54 => 0.9864281895272759 ,
55 => 0.9876277064555761 ,
56 => 0.9881447390114096 ,
57 => 0.9894692902110069 ,
58 => 0.9906769448884141 ,
59 => 0.9918847185511414 ,
60 => 0.9924402228791357 ,
61 => 0.9937689464745228 ,
62 => 0.9949871587910142 ,
63 => 0.996205950638606 ,
64 => 0.9964658577029665 ,
65 => 0.9978049978635253 ,
66 => 0.9990265861960093 ,
67 => 1.0002550116783496 ,
68 => 1.0002512245286794 ,
69 => 1.001513937689658 ,
70 => 1.0027464685446398 ,
71 => 1.0039835863467727 ,
72 => 1.0040555971801971 ,
73 => 1.005325032936361 ,
74 => 1.0065620293795377 ,
75 => 1.0078103082670074 ,
76 => 1.0081496984007677 ,
77 => 1.0094309213624125 ,
78 => 1.0105984622125846 ,
79 => 1.0118557871706545 ,
80 => 1.0122964540808017 ,
81 => 1.0135901594223622 ,
82 => 1.0147638127022536 ,
83 => 1.0160257464795259 ,
84 => 1.0164571784011593 ,
85 => 1.0177588246342813 ,
86 => 1.0189443828094932 ,
87 => 1.0201359351918826 ,
88 => 1.0206480161282774 ,
89 => 1.0219617651579865 ,
90 => 1.0231579238853046 ,
91 => 1.0243566202651181 ,
92 => 1.0249126065984685 ,

196 Appendix A. VHDL models of the ADPLL blocks

93 => 1.0262319785377972 ,
94 => 1.0274378102949708 ,
95 => 1 .02864680746881 ,
96 => 1.0289053953625891 ,
97 => 1.0302380381995705 ,
98 => 1.031376267293398 ,
99 => 1.0325966106838765 ,
100 => 1.0326760723468008 ,
101 => 1.0339327870647023 ,
102 => 1.0350802089537807 ,
103 => 1.0363092676419543 ,
104 => 1.0364539483583242 ,
105 => 1.0377180158447331 ,
106 => 1.038868973413971 ,
107 => 1.0401072466198446 ,
108 => 1.0402594324753714 ,
109 => 1.0415343717763726 ,
110 => 1.0426234941634994 ,
111 => 1.0438712169721174 ,
112 => 1.0443679098375208 ,
113 => 1.0456535957469052 ,
114 => 1.0467485691210318 ,
115 => 1.0480011887837504 ,
116 => 1.0484954199858787 ,
117 => 1.0497911540400287 ,
118 => 1.0508970297898504 ,
119 => 1.0520804372134308 ,
120 => 1.0526516289075247 ,
121 => 1.0539589130422671 ,
122 => 1.0550724281794993 ,
123 => 1 .05626375874356 ,
124 => 1.0568812395562282 ,
125 => 1.0581926843265866 ,
126 => 1.0593160319459548 ,
127 => 1.0605182820933722 ,
128 => 1.060863442931976 ,
129 => 1.0621849999102244 ,
130 => 1.0633151776059666 ,
131 => 1.0645215355855339 ,
132 => 1.0646121565383941 ,
133 => 1.0658617002144246 ,
134 => 1.067000736532671 ,
135 => 1.0682140856411849 ,
136 => 1.0683725644162426 ,
137 => 1 .06962996320408 ,
138 => 1.0707744529445549 ,
139 => 1.0719968485981051 ,
140 => 1.0721503277759079 ,
141 => 1.0734182586645921 ,
142 => 1.0745021366535702 ,

197

143 => 1.0757341845167482 ,
144 => 1.075975486255241 ,
145 => 1.0772518859639344 ,
146 => 1.078340568491569 ,
147 => 1.079577143718022 ,
148 => 1.0800600694385784 ,
149 => 1.0813468602477622 ,
150 => 1.082445413493106 ,
151 => 1.0836167398246546 ,
152 => 1.084182153111391 ,
153 => 1.0854793388439317 ,
154 => 1.0865865473748093 ,
155 => 1.087764898465793 ,
156 => 1.0883741063849676 ,
157 => 1.0896766314112573 ,
158 => 1.090792344312327 ,
159 => 1.0919799153780513 ,
160 => 1.0923111916650488 ,
161 => 1.0936232249195786 ,
162 => 1.0947478647457294 ,
163 => 1.095873001410797 ,
164 => 1.096037633436344 ,
165 => 1.0972790961406708 ,
166 => 1.0984121337775466 ,
167 => 1.0995448507451782 ,
168 => 1.0997751425286994 ,
169 => 1.101025132788564 ,
170 => 1.1021619589375002 ,
171 => 1.103302413609939 ,
172 => 1.103532517387344 ,
173 => 1.1047910663998597 ,
174 => 1.1058696948103037 ,
175 => 1.107017909625944 ,
176 => 1.107323317080391 ,
177 => 1.1085916538760455 ,
178 => 1.109676828876273 ,
179 => 1.110829052075874 ,
180 => 1.111127186398971 ,
181 => 1.1124050312671583 ,
182 => 1.1134982723904018 ,
183 => 1.1145915357962072 ,
184 => 1.115202495535452 ,
185 => 1 .11649064638043 ,
186 => 1.1175918726114063 ,
187 => 1.1186919136951094 ,
188 => 1.119359433722918 ,
189 => 1.1206533433416233 ,
190 => 1.1217629419967327 ,
191 => 1.122872762497417 ,
192 => 1.1232614260909624 ,

198 Appendix A. VHDL models of the ADPLL blocks

193 => 1.124566364255586 ,
194 => 1.125683900548983 ,
195 => 1.126799920844845 ,
196 => 1.1269691268044276 ,
197 => 1.1282060321781397 ,
198 => 1.1293317341510592 ,
199 => 1.130454608953153 ,
200 => 1.1306854018233223 ,
201 => 1.1319309047572412 ,
202 => 1.1330601958766427 ,
203 => 1.1341899497169578 ,
204 => 1.1344189193765202 ,
205 => 1.1356729862795563 ,
206 => 1.1367456832427793 ,
207 => 1.1378847993243437 ,
208 => 1.1381890905483081 ,
209 => 1.1394513823449812 ,
210 => 1.1405303945448925 ,
211 => 1.1416738293515332 ,
212 => 1.1419599059027288 ,
213 => 1.1432308239535463 ,
214 => 1.1443179846199658 ,
215 => 1.145403814449554 ,
216 => 1 .14575918837563 ,
217 => 1.1470392276249652 ,
218 => 1.1481328998483229 ,
219 => 1.1492249624058905 ,
220 => 1.149874814165585 ,
221 => 1.1511598660878904 ,
222 => 1.1522606218196583 ,
223 => 1.1533618270264697 ,
224 => 1.1537984132083445 ,
225 => 1.1550880654104817 ,
226 => 1.1561968494264178 ,
227 => 1.1573066446221745 ,
228 => 1.1574760473916996 ,
229 => 1.1586938725351493 ,
230 => 1.1598101259862483 ,
231 => 1.1609260013288355 ,
232 => 1 .16116755716054 ,
233 => 1.162393615220309 ,
234 => 1.163513596815299 ,
235 => 1.1646373300748365 ,
236 => 1.1648712198680549 ,
237 => 1.166105866329324 ,
238 => 1.1671703109316738 ,
239 => 1.1683009340075846 ,
240 => 1.168611994244867 ,
241 => 1.1698536703885126 ,
242 => 1.1709250044716103 ,

199

243 => 1.1720595287042913 ,
244 => 1.1723543849659193 ,
245 => 1.1736051203171525 ,
246 => 1.174683674791986 ,
247 => 1.175761681055491 ,
248 => 1.1761149761936955 ,
249 => 1.1773733180630202 ,
250 => 1.178458229245494 ,
251 => 1.1795430191574976 ,
252 => 1.1799544782818189 ,
253 => 1.1812190791906478 ,
254 => 1.1823124380448046 ,
255 => 1.1834041379314458

) ;
type LIP6_SS i s array (0 to 255) of r e a l ;
s i g n a l f r e q _ l i p 6 _ S S : LIP6_SS : = (

0 => 0.47353787163148445 ,
1 => 0 .4750798961481912 ,
2 => 0 .4768305416578326 ,
3 => 0.47845576313639486 ,
4 => 0 .4795212193780018 ,
5 => 0 .4808333267036447 ,
6 => 0.48255190454449844 ,
7 => 0.48423397108080786 ,
8 => 0.48542209156169176 ,
9 => 0.48689056003567094 ,
10 => 0.4885839096161608 ,
11 => 0.49032214815937483 ,
12 => 0.491821352175315 ,
13 => 0.4933086319105339 ,
14 => 0.4948530515003635 ,
15 => 0.4966102131143899 ,
16 => 0.49827458497373366 ,
17 => 0.4997843375446064 ,
18 => 0.5014101291899685 ,
19 => 0.5031475795023409 ,
20 => 0.5047927272363789 ,
21 => 0 .50640697660733 ,
22 => 0.50788545852076775 ,
23 => 0.5093913215244703 ,
24 => 0.51157417913163006 ,
25 => 0.51311792770676214 ,
26 => 0.5146215278257331 ,
27 => 0.5161917003287998 ,
28 => 0.5183706412641029 ,
29 => 0.5199887065628765 ,
30 => 0.5215984022642016 ,
31 => 0.52316217890890926 ,
32 => 0.5243155184656028 ,
33 => 0.5256358673447322 ,

200 Appendix A. VHDL models of the ADPLL blocks

34 => 0.5273221167265943 ,
35 => 0.5289111488492946 ,
36 => 0.52945016901847017 ,
37 => 0.53055889424871963 ,
38 => 0.53232898374084157 ,
39 => 0.53386523152192974 ,
40 => 0.53541561655824476 ,
41 => 0.5367355853884937 ,
42 => 0.5382939823493819 ,
43 => 0.5400694765335377 ,
44 => 0.5416467362118495 ,
45 => 0.5428526415731839 ,
46 => 0.5445714412795614 ,
47 => 0.5462208827432398 ,
48 => 0.5479939341319919 ,
49 => 0.5494189642254376 ,
50 => 0.5510803180633459 ,
51 => 0.5527312582559662 ,
52 => 0.5545738433900838 ,
53 => 0.5560167377388471 ,
54 => 0 .55765487624655 ,
55 => 0.5590242986505578 ,
56 => 0.561343237794428 ,
57 => 0.5626927361813105 ,
58 => 0.5642405292674373 ,
59 => 0.5658676345562271 ,
60 => 0.5679745409069881 ,
61 => 0.5694863013373543 ,
62 => 0.5710219937302508 ,
63 => 0.5726409956844348 ,
64 => 0.5740078199252572 ,
65 => 0.5754656912456834 ,
66 => 0.5771356638468138 ,
67 => 0.5787676840012825 ,
68 => 0.5792299831903584 ,
69 => 0.5807054065542051 ,
70 => 0.5823731293426238 ,
71 => 0.583962101012873 ,
72 => 0.5846443726614448 ,
73 => 0.5859297374899429 ,
74 => 0.5874501276426165 ,
75 => 0.5893172363958257 ,
76 => 0.5907515038305264 ,
77 => 0.5921084758695554 ,
78 => 0.5936654976071548 ,
79 => 0.5952363095865492 ,
80 => 0.5972839698959626 ,
81 => 0.5984611156355463 ,
82 => 0.6000331923289115 ,
83 => 0.6017462752481478 ,

201

84 => 0.6037124272936218 ,
85 => 0.6050019657100149 ,
86 => 0.6066113172651185 ,
87 => 0.608254326597133 ,
88 => 0.6101866208893467 ,
89 => 0.6117760447581635 ,
90 => 0.6132604607428234 ,
91 => 0.6149414650521972 ,
92 => 0.6169056778105348 ,
93 => 0.6185529940398048 ,
94 => 0.6202089239819356 ,
95 => 0.6218605018892102 ,
96 => 0.6231692043035017 ,
97 => 0.6246433793248394 ,
98 => 0.6260863021538861 ,
99 => 0.6277391916562314 ,
100 => 0.6287814661789652 ,
101 => 0.6300380352159535 ,
102 => 0.631510504721479 ,
103 => 0.6331706091267807 ,
104 => 0.6341975435829443 ,
105 => 0.6356565852331095 ,
106 => 0.6368901629440649 ,
107 => 0.6386303846864995 ,
108 => 0.6397501464001434 ,
109 => 0.6410536162355187 ,
110 => 0.6423612125774307 ,
111 => 0.6441764791009432 ,
112 => 0.6460555776588376 ,
113 => 0.6474142521556888 ,
114 => 0.6487949317999672 ,
115 => 0.6504395034371071 ,
116 => 0.6525719532353883 ,
117 => 0.6539643698430109 ,
118 => 0.6550069180244018 ,
119 => 0.6567459161002191 ,
120 => 0.659137346725542 ,
121 => 0.6605538019516782 ,
122 => 0.6617630639931386 ,
123 => 0.6633831351027545 ,
124 => 0.6657896757076938 ,
125 => 0.6672366578013157 ,
126 => 0.6686227809132576 ,
127 => 0.670153793206122 ,
128 => 0.6720401235302867 ,
129 => 0.6733390502228686 ,
130 => 0.6746592038624804 ,
131 => 0.6763526433246473 ,
132 => 0.6772877621572591 ,
133 => 0.6786493387941203 ,

202 Appendix A. VHDL models of the ADPLL blocks

134 => 0.679866071793677 ,
135 => 0.6816491609535787 ,
136 => 0.6825722534397978 ,
137 => 0.6838451740270474 ,
138 => 0.6852219027413515 ,
139 => 0.6869410817665379 ,
140 => 0.6877248281691186 ,
141 => 0.6891011713488133 ,
142 => 0.6904825009157798 ,
143 => 0.6919765198098598 ,
144 => 0.6932651689065175 ,
145 => 0.6947914712479113 ,
146 => 0.6959615141842906 ,
147 => 0.6977185075771053 ,
148 => 0.6997234964677187 ,
149 => 0.7011396163992823 ,
150 => 0.7025452327658045 ,
151 => 0.7039758541905105 ,
152 => 0.7063838483097038 ,
153 => 0.7077527782698398 ,
154 => 0.7090738661435417 ,
155 => 0.7106521650912834 ,
156 => 0.7128747093740522 ,
157 => 0.7143319833749319 ,
158 => 0.7157432952982041 ,
159 => 0.7173201608214239 ,
160 => 0.7191593651802464 ,
161 => 0.7205613132692655 ,
162 => 0.7219387283302767 ,
163 => 0.7233797241041741 ,
164 => 0.7242563530203192 ,
165 => 0.7253987570930805 ,
166 => 0.7268769117586603 ,
167 => 0.7282515906974636 ,
168 => 0.7291882559743241 ,
169 => 0.7304939170988497 ,
170 => 0.7320351935893528 ,
171 => 0.7335724036768407 ,
172 => 0.7347035688246788 ,
173 => 0.7361426858734515 ,
174 => 0.7375086553750641 ,
175 => 0.7392697987219986 ,
176 => 0.7405076624851545 ,
177 => 0.7419163430368987 ,
178 => 0.743233125246393 ,
179 => 0.7447957755597245 ,
180 => 0.7461447602014381 ,
181 => 0.7476380454807353 ,
182 => 0.7490693275896487 ,
183 => 0.7503772443568345 ,

203

184 => 0.7527753631931735 ,
185 => 0.7541317098817691 ,
186 => 0.7554812295723163 ,
187 => 0.7570247061247135 ,
188 => 0.7593012604084753 ,
189 => 0.7606275233489214 ,
190 => 0.7619249139527565 ,
191 => 0.7634305617972767 ,
192 => 0.7653415231833966 ,
193 => 0.7668264586062019 ,
194 => 0.7683303514209092 ,
195 => 0.769932477362855 ,
196 => 0.7707268021707914 ,
197 => 0.7720881799519732 ,
198 => 0.7736118058921466 ,
199 => 0.7750141677680416 ,
200 => 0.7762661572246499 ,
201 => 0.7774470113301194 ,
202 => 0.7787626817759277 ,
203 => 0.7802785555167195 ,
204 => 0.7815510225425582 ,
205 => 0.782878486348019 ,
206 => 0.7840736112457241 ,
207 => 0.7856473420127618 ,
208 => 0.7870747916544464 ,
209 => 0.7885601858224511 ,
210 => 0.7898237365168896 ,
211 => 0.7911685155845295 ,
212 => 0.792643655936216 ,
213 => 0.7939534155379362 ,
214 => 0.7953663084606063 ,
215 => 0.7968465071963443 ,
216 => 0.7983898347816966 ,
217 => 0.7998287749181893 ,
218 => 0.8012771230515684 ,
219 => 0.8026520225796071 ,
220 => 0.8050596172876132 ,
221 => 0.8062145190115328 ,
222 => 0.8078811009065503 ,
223 => 0.8093424448940842 ,
224 => 0.8111460840856409 ,
225 => 0.8125647692534343 ,
226 => 0.8138626247757113 ,
227 => 0.8153625065811672 ,
228 => 0.8164450035169256 ,
229 => 0.8173915291450429 ,
230 => 0.8188494183123528 ,
231 => 0.8205346026282175 ,
232 => 0.8216296492443256 ,
233 => 0.8228693928784833 ,

204 Appendix A. VHDL models of the ADPLL blocks

234 => 0.8245087857049716 ,
235 => 0.8260530199874566 ,
236 => 0.8272410088673272 ,
237 => 0.8285102711539702 ,
238 => 0.8298596309478512 ,
239 => 0.8314209624208616 ,
240 => 0.8328848330049176 ,
241 => 0.8341316409887373 ,
242 => 0.8356267322730019 ,
243 => 0.8372768562719824 ,
244 => 0.8386791136317068 ,
245 => 0.8396917349432461 ,
246 => 0.8411387453735073 ,
247 => 0.8425034206267366 ,
248 => 0.8444903399946134 ,
249 => 0.8457292337631282 ,
250 => 0.8470230261369495 ,
251 => 0.8483720440975616 ,
252 => 0.8498344261593518 ,
253 => 0.8513374925291146 ,
254 => 0.8524226914672161 ,
255 => 0.8543287256351534

) ;
type LIP6_FF i s array (0 to 255) of r e a l ;
s i g n a l f r e q _ l i p 6 _ F F : LIP6_FF : = (

0 => 1.158529288680616 ,
1 => 1 .1619138154839776 ,
2 => 1 .165580298413822 ,
3 => 1 .1688350165364096 ,
4 => 1 .1715554943100219 ,
5 => 1 .17476535379232 ,
6 => 1 .1781864786654544 ,
7 => 1 .1817045761501765 ,
8 => 1 .1852834686905904 ,
9 => 1 .1887271675683846 ,
10 => 1.192370385204907 ,
11 => 1.1960831770219748 ,
12 => 1.1999874412848694 ,
13 => 1.2029465466041825 ,
14 => 1.2059010483429685 ,
15 => 1.2095259918573184 ,
16 => 1.2145426488245616 ,
17 => 1.2173182544049292 ,
18 => 1.220500850842421 ,
19 => 1.2244149913553207 ,
20 => 1.2287068241940174 ,
21 => 1.2320009870603101 ,
22 => 1.235570289260339 ,
23 => 1.2390111842571993 ,
24 => 1.2436831721468773 ,

205

25 => 1.2468733631488767 ,
26 => 1.2505330673483355 ,
27 => 1.253897467747421 ,
28 => 1.2596196212733536 ,
29 => 1.2629287435914066 ,
30 => 1.2662070291671405 ,
31 => 1.2693876228323681 ,
32 => 1.2724860639718556 ,
33 => 1.2757796268555734 ,
34 => 1.2794896044862542 ,
35 => 1.2829719543345366 ,
36 => 1.2840728071753368 ,
37 => 1.2868789175125206 ,
38 => 1.2901613053859148 ,
39 => 1.2936371089596581 ,
40 => 1.2977121518541749 ,
41 => 1.3001354586434317 ,
42 => 1.303850695088519 ,
43 => 1.307463993148757 ,
44 => 1.312127532557108 ,
45 => 1.314712117269279 ,
46 => 1.317719440786665 ,
47 => 1.321283148608179 ,
48 => 1.326473554121573 ,
49 => 1.3292600540338883 ,
50 => 1.332660507176742 ,
51 => 1.3368217271560185 ,
52 => 1.3401909420702891 ,
53 => 1.3434174933632329 ,
54 => 1.3470645896732647 ,
55 => 1.3502951399314013 ,
56 => 1.3562329713082175 ,
57 => 1.359050026757597 ,
58 => 1.3621076168667016 ,
59 => 1.3655809493524187 ,
60 => 1.3710899165658858 ,
61 => 1.3740094797269263 ,
62 => 1.3776729057324474 ,
63 => 1.3811180851787722 ,
64 => 1.384438741655832 ,
65 => 1.387320346184784 ,
66 => 1.3912862759045827 ,
67 => 1.3944023664653583 ,
68 => 1.3971712895320547 ,
69 => 1.399534921031269 ,
70 => 1.4028919001977315 ,
71 => 1.4066779279400606 ,
72 => 1.408750194475159 ,
73 => 1.4119896260008757 ,
74 => 1.4155406160989327 ,

206 Appendix A. VHDL models of the ADPLL blocks

75 => 1.419131570315183 ,
76 => 1.4232253994523118 ,
77 => 1.4259395448861134 ,
78 => 1.428884996089662 ,
79 => 1.4325475160761673 ,
80 => 1.4372383201730478 ,
81 => 1.4404414076431684 ,
82 => 1.4432208216467025 ,
83 => 1.446967452849532 ,
84 => 1.4521141155446832 ,
85 => 1.4545832005210605 ,
86 => 1.4576599075221238 ,
87 => 1.4610315783690238 ,
88 => 1.4666643724866774 ,
89 => 1.469582843235469 ,
90 => 1.4728543605012076 ,
91 => 1.476233768651031 ,
92 => 1.4817599893916447 ,
93 => 1.4846801872934232 ,
94 => 1.487856871071663 ,
95 => 1.4913152250742683 ,
96 => 1.495037108570962 ,
97 => 1.4983302693038068 ,
98 => 1.5013464856518562 ,
99 => 1.5047470346026783 ,
100 => 1.507090576112938 ,
101 => 1.5094296755930922 ,
102 => 1.5128774890096014 ,
103 => 1.5163742911384816 ,
104 => 1.519157419936596 ,
105 => 1.5222235485648031 ,
106 => 1.5254740609402688 ,
107 => 1.5290912187930715 ,
108 => 1.5315489502990239 ,
109 => 1.5343843013499923 ,
110 => 1 .53722251302808 ,
111 => 1.540970946874547 ,
112 => 1.5464723027036724 ,
113 => 1 .54933907458462 ,
114 => 1.552092608931706 ,
115 => 1.5558354992479644 ,
116 => 1.560765740895693 ,
117 => 1.563535792358255 ,
118 => 1.5669533426083593 ,
119 => 1.570301843355766 ,
120 => 1.5756941392444808 ,
121 => 1.5789649421244576 ,
122 => 1.5816951284236927 ,
123 => 1.5851849545085084 ,
124 => 1.5910222808854399 ,

207

125 => 1.593850112743153 ,
126 => 1.5967820351869588 ,
127 => 1.6000433305724776 ,
128 => 1.6033404978268707 ,
129 => 1.6069179814199374 ,
130 => 1.6097505589855468 ,
131 => 1.6132573638226004 ,
132 => 1.6158460353580425 ,
133 => 1.6184714218781767 ,
134 => 1.6216013847840803 ,
135 => 1.625505295561103 ,
136 => 1.6279854941700768 ,
137 => 1.631259404273856 ,
138 => 1.6339443620031025 ,
139 => 1.6377403135490441 ,
140 => 1.6402417688848581 ,
141 => 1.643134401280881 ,
142 => 1.6457429688351052 ,
143 => 1.649641293012406 ,
144 => 1.652682684339663 ,
145 => 1.6554743415311034 ,
146 => 1.6586496310012598 ,
147 => 1.6625815757792394 ,
148 => 1.6675250274173834 ,
149 => 1.670523288970108 ,
150 => 1.6727650505363948 ,
151 => 1 .67617989061416 ,
152 => 1.6816233691196935 ,
153 => 1.6854002242114506 ,
154 => 1.6878959247708433 ,
155 => 1 .69105693134803 ,
156 => 1.6970512215467355 ,
157 => 1.700101935150643 ,
158 => 1.7025640968332038 ,
159 => 1.705823445041661 ,
160 => 1.7102160898716593 ,
161 => 1.7127647104372923 ,
162 => 1.7165921578383834 ,
163 => 1.719698998175245 ,
164 => 1.7219760770541673 ,
165 => 1.724832266698679 ,
166 => 1.728542175859351 ,
167 => 1.7316795417113533 ,
168 => 1.7341658964877315 ,
169 => 1.7367840202971954 ,
170 => 1.7398768561092062 ,
171 => 1.7431885744107175 ,
172 => 1.7464495143805695 ,
173 => 1.748740044633683 ,
174 => 1.7516373266119874 ,

208 Appendix A. VHDL models of the ADPLL blocks

175 => 1.7547416436346374 ,
176 => 1.7579533946016626 ,
177 => 1.7607323985991066 ,
178 => 1.7634683476619577 ,
179 => 1.7670064284632096 ,
180 => 1 .77052899091156 ,
181 => 1.773412157038285 ,
182 => 1.7762871643844433 ,
183 => 1.7794243837504072 ,
184 => 1.7849098530913239 ,
185 => 1.7878875675118027 ,
186 => 1.7911383441790307 ,
187 => 1.7939773975419376 ,
188 => 1.7999207427935522 ,
189 => 1.8025841857704022 ,
190 => 1.805433701412458 ,
191 => 1.8083969986037288 ,
192 => 1.8129344820105476 ,
193 => 1.8157744688576055 ,
194 => 1.8189768557925353 ,
195 => 1 .82212612808812 ,
196 => 1.8242847414613554 ,
197 => 1.8274061257552705 ,
198 => 1.8306826739840887 ,
199 => 1.8336998386464005 ,
200 => 1.836631849594167 ,
201 => 1.8393124718180048 ,
202 => 1.8421962991164508 ,
203 => 1.8454086775183556 ,
204 => 1.8485128358411138 ,
205 => 1.8514454687199352 ,
206 => 1.8541875264415157 ,
207 => 1.8576248635980055 ,
208 => 1 .86163241337171 ,
209 => 1.8643085639350755 ,
210 => 1.8676644434374166 ,
211 => 1.8706868477516222 ,
212 => 1.8741804467494745 ,
213 => 1 .87735350500781 ,
214 => 1.8798902458570385 ,
215 => 1.8826378191186128 ,
216 => 1.8864361725742764 ,
217 => 1.8895206819341211 ,
218 => 1.8927214027594426 ,
219 => 1.8956650963578055 ,
220 => 1.9008873331755688 ,
221 => 1.9039634016751113 ,
222 => 1.9066605014974766 ,
223 => 1.910417686650256 ,
224 => 1.914385225666489 ,

209

225 => 1.9174316189527519 ,
226 => 1.9208317948911102 ,
227 => 1.9235660551932635 ,
228 => 1.9261799507157757 ,
229 => 1.928849566071833 ,
230 => 1.9319561288231184 ,
231 => 1.9349496447991903 ,
232 => 1.9378225293494835 ,
233 => 1.9402470092627501 ,
234 => 1.943450600983126 ,
235 => 1.9465664199462767 ,
236 => 1.9500647466481588 ,
237 => 1.952825495333771 ,
238 => 1.9555199004827342 ,
239 => 1.9587012864817889 ,
240 => 1.9625178046759255 ,
241 => 1.965796624185307 ,
242 => 1.9683123836267145 ,
243 => 1.9718863421158822 ,
244 => 1.9749091207605898 ,
245 => 1.9771611797409794 ,
246 => 1.9804819521427279 ,
247 => 1.9834790810730858 ,
248 => 1.986575941363926 ,
249 => 1.990278863754896 ,
250 => 1.9935744824069893 ,
251 => 1.9963807584446278 ,
252 => 1.9991913681416159 ,
253 => 2.0020573710045884 ,
254 => 2.0054993220065284 ,
255 => 2.0093235399725347

) ;

begin
−−===
DECODER_A:

with A s e l e c t −− t u r n i n g back t o b i n a r y . . .
DCO_IN(7 downto 5) <= " 000 " when " 0000000 " ,
" 001 " when " 0000001 " ,
" 010 " when " 0000011 " ,
" 011 " when " 0000111 " ,
" 100 " when " 0001111 " ,
" 101 " when " 0011111 " ,
" 110 " when " 0111111 " ,
" 111 " when " 1111111 " ,
"−−−" when o t h e r s ;

−−===
DECODER_B:

with B s e l e c t
DCO_IN(4 downto 2) <= " 000 " when " 0000000 " ,

210 Appendix A. VHDL models of the ADPLL blocks

" 001 " when " 0000001 " ,
" 010 " when " 0000011 " ,
" 011 " when " 0000111 " ,
" 100 " when " 0001111 " ,
" 101 " when " 0011111 " ,
" 110 " when " 0111111 " ,
" 111 " when " 1111111 " ,
"−−−" when o t h e r s ;

−−==
DECODER_C:

with C s e l e c t
DCO_IN(1 downto 0) <= " 00 " when " 000 " ,
" 01 " when " 001 " ,
" 10 " when " 011 " ,
" 11 " when " 111 " ,
"−−" when o t h e r s ;

−−===
SWITCHER :

with TYPEDCO s e l e c t
f r e q u e n c y _ d c o <= f r e q _ l i p 6 _ T T (c o n v _ i n t e g e r (DCO_IN)) WHEN 1 ,

f r e q _ l i p 6 _ S S (c o n v _ i n t e g e r (DCO_IN)) WHEN 2 ,
f r e q _ l i p 6 _ F F (c o n v _ i n t e g e r (DCO_IN)) WHEN 3 ,
f r eq_cea_TT (c o n v _ i n t e g e r (DCO_IN)) WHEN 4 ,
f r e q _ c e a _ S S (c o n v _ i n t e g e r (DCO_IN)) WHEN 5 ,
f r e q _ c e a _ F F (c o n v _ i n t e g e r (DCO_IN)) WHEN 6 ,

1 . 0 when o t h e r s ;
−−==
PERIOD_SYNTHESIZER :

−− c a l c u l a t i n g t h e p e r i o d o f o s c i l l a t i o n
p e r i o d 0 <= RESOLUTION ∗ (1 0 0 0 0 0 0 . 0 / f r e q u e n c y _ d c o) ;

−−==
PERIOD_CONTROLLED_OSCILLATOR :

p r o c e s s (smp)
v a r i a b l e i n i t i a l : b o o l e a n := t r u e ;
v a r i a b l e j i t t e r : t i me := 0 ns ;
v a r i a b l e j i t t e r _ p r e v : t ime := 0 ns ;
v a r i a b l e wander : t im e := 0 ns ;
v a r i a b l e p e r i o d : t ime := 1 ns ;
v a r i a b l e s1 , s2 , s3 , s4 : p o s i t i v e ;
v a r i a b l e x1 , x2 , x3 , x4 , r an dv a r 1 , r a n d v a r 2 : r e a l := 0 . 0 ;

begin
i f i n i t i a l then

p e r i o d := p e r i o d 0 ; −−a d j u s t t h e n e x t p e r i o d
un i fo rm (s1 , s2 , x1) ; −−add Gaussian−d i s t r i b u t e d j i t t e r
un i fo rm (s1 , s2 , x2) ;
r a n d v a r 1 := s q r t (−2.0∗ l o g (x1)) ∗ cos (2 . 0 ∗MATH_PI∗x2) ;
j i t t e r := r a n d v a r 1 ∗ DCO_JRMS ;
p e r i o d := p e r i o d + j i t t e r − j i t t e r _ p r e v ;
j i t t e r _ p r e v := j i t t e r ;
un i fo rm (s3 , s4 , x3) ; −−add Gaussian−d i s t r i b u t e d wander

211

un i fo rm (s3 , s4 , x4) ;
r a n d v a r 2 := s q r t (−2.0∗ l o g (x3)) ∗ cos (2 . 0 ∗MATH_PI∗x4) ;
wander := r a n d v a r 2 ∗ DCO_WRMS;
p e r i o d := p e r i o d +wander ;
smp <= not smp a f t e r p e r i o d ;
CLK_TMP <= ’1 ’ , ’0 ’ a f t e r p e r i o d / 2 ;−−temp i n t e r n a l c l k 50% d u t y c y c l e

e l s e
p e r i o d := p e r i o d 0 +DCO_INIT_DELAY ; −− CURRENTLY NOT IN USE
CLK_TMP <= ’ 0 ’ ; −− CURRENTLY NOT IN USE
smp <= ’ 1 ’ ; −− f i r s t t r a n s i t i o n
i n i t i a l := f a l s e ; −− CURRENTLY NOT IN USE

end i f ;
end p r o c e s s ;

−−==
e n a b l e <= ’1 ’ a f t e r 1 ps ; −− o p e r a t i o n a l d e l a y 4250 ns

−−==
CLK <= CLK_TMP and e n a b l e ; −− o u t p u t o f h ig h f r e q . c l o c k

−−==
DIVIDER_2_1 :

p r o c e s s (CLK_TMP)
begin

i f CLK_TMP’ e v e n t and CLK_TMP= ’1 ’ then
Q1 <= D1 ;

end i f ;
D1 <= not Q1 ;
end p r o c e s s ;

−−===
DIVIDER_2_2 :

p r o c e s s (Q1)
begin

i f Q1’ e v e n t and Q1= ’1 ’ then
Q2 <= D2 ;

end i f ;
D2 <= not Q2 ;
end p r o c e s s ;

−−==
DIV <= Q2 and e n a b l e ; −− o u t p u t a f t e r d i v i d e r on 4

−−==
DIVIDER_2_3 :

p r o c e s s (Q2)
begin

i f Q2’ e v e n t and Q2= ’1 ’ then
Q3 <= D3 ;

end i f ;
D3 <= not Q3 ;
end p r o c e s s ;

−−===
DIV16 <= Q3 and e n a b l e ; −− o u t p u t a f t e r d i v i d e r on 8

−−===
end b e h a v i o r a l ;

212 Appendix A. VHDL models of the ADPLL blocks

Listing A.2: VHDL model of the sign detector

l i b r a r y IEEE ;
use IEEE . STD_LOGIC_1164 . a l l ;
use IEEE .MATH_REAL. a l l ;
use IEEE . NUMERIC_STD . a l l ;
use IEEE . STD_LOGIC_ARITH . a l l ;
use IEEE . STD_LOGIC_UNSIGNED . a l l ;

e n t i t y BB i s
port (

REF , CLK, RESET : in STD_LOGIC ;
SIGN , nSIGN , TDCIN , TDCCLK: out STD_LOGIC
) ;

end BB;

a r c h i t e c t u r e arch_BB of BB i s
−−−− g e n e r a t i n g o f t h e c o n s t a n t s and s i g n a l s −−−−−−−−−−−−−−−−−−−−−−−−−−

c o n s t a n t VCC_CONSTANT : STD_LOGIC := ’ 1 ’ ;
s i g n a l Ao , Bo , D, Q1 , A_S , Q2 , B_R , A _ f i r s t , B _ f i r s t , nQ3 , Q3 : STD_LOGIC ;
s i g n a l NET1 , NET2 , OUT_C, RESET_LOCAL : STD_LOGIC ;
s i g n a l rnd_vec : s t d _ l o g i c _ v e c t o r (1 downto 0) ;

begin
D <= VCC_CONSTANT; −− h igh l e v e l t o t h e D−i n p u t s o f t h e l a t c h e s
−−==
D_FLIP_FLOP_1 : −− i n p u t
Q1 <= ’0 ’ when RESET_LOCAL= ’1 ’ e l s e −− l a t c h
D when (REF’ e v e n t and REF= ’1 ’) e l s e Q1 ; −− f o r REF
A_S <= not Q1 ; −−
−−==
D_FLIP_FLOP_2 : −− i n p u t
Q2 <= ’0 ’ when RESET_LOCAL= ’1 ’ e l s e −− l a t c h
D when (CLK’ e v e n t and CLK= ’1 ’) e l s e Q2 ; −− f o r CLK
B_R <= not Q2 ; −−
−−==
RS_FLIP_FLOP : −− INPUT SR FLIP−FLOP on NOR g a t e s

p r o c e s s (A_S , B_R)
−− v a r i a b l e s f o r pseudo−random number g e n e r a t o r
v a r i a b l e seed1 , seed2 : p o s i t i v e ;
v a r i a b l e r an d : r e a l ;
v a r i a b l e i n t _ r a n d : i n t e g e r range 0 to 1 ;
v a r i a b l e rnd : STD_LOGIC ;

begin
−−==
RANDOM_NUMBER_GENERATOR: −− pseudo−random number g e n e r a t o r
UNIFORM(seed1 , seed2 , r and) ;
i n t _ r a n d := INTEGER(TRUNC(ran d ∗ 2 . 0)) ;
rnd_vec <= CONV_STD_LOGIC_VECTOR(i n t _ r a n d , 2) ;
rnd := rnd_vec (0) ;

213

−−==
−− s t a t e t a b l e o f t h e two NOR e l e m e n t s
i f (A_S = ’ 0 ’) and (B_R = ’ 0 ’) and (Bo = Ao) then

Ao <= rnd ; −− a s s i g n m e n t o f t h e random number
Bo <= not rnd ; −− i n c as e o f a r r i v i n g o f two ’0 ’

e l s i f (A_S = ’ 0 ’) and (B_R = ’ 0 ’) then
Ao <= Ao ;
Bo <= Bo ;

e l s i f (A_S = ’ 1 ’) and (B_R = ’ 1 ’) then
Ao <= ’ 0 ’ ;
Bo <= ’ 0 ’ ;

e l s i f A_S = ’1 ’ then
Ao <= ’ 1 ’ ;
Bo <= ’ 0 ’ ;

e l s i f B_R = ’1 ’ then
Bo <= ’ 1 ’ ;
Ao <= ’ 0 ’ ;

end i f ;
end p r o c e s s ;
−−==
FILTER : −− D i s c r i p t i o n o f m e t a s t a b i l i t y f i l t e r

p r o c e s s (Ao , Bo)
begin

−− s t a t e t a b l e o f t h e f i l t e r
i f (Ao = ’ 0 ’) and (Bo = ’ 0 ’) then

A _ f i r s t <= ’ 1 ’ ;
B _ f i r s t <= ’ 1 ’ ;

e l s i f (Ao = ’ 0 ’) and (Bo = ’ 1 ’) then
A _ f i r s t <= ’ 1 ’ ;
B _ f i r s t <= ’ 0 ’ ;

e l s i f (Ao = ’ 1 ’) and (Bo = ’ 0 ’) then
A _ f i r s t <= ’ 0 ’ ;
B _ f i r s t <= ’ 1 ’ ;

e l s i f (Ao = ’ 1 ’) and (Bo = ’ 1 ’) then
A _ f i r s t <= ’ 1 ’ ;
B _ f i r s t <= ’ 1 ’ ;

end i f ;
end p r o c e s s ;
−−==
SR_FLIP_FLOP : −− s t o r e f l i p −f l o p
nQ3 <= not (B _ f i r s t and Q3) ;
Q3 <= not (A _ f i r s t and nQ3) ;
−−==
LOGIC_BLOCK : −− l o g i c NOR and OR e l e m e n t s
NET1 <= (not (A _ f i r s t or nQ3)) or (not (B _ f i r s t or Q3)) ;
−−==
C_ELEMENT: −− C−e l e m e n t
OUT_C <= ’1 ’ when (NET1= ’1 ’ and Q1= ’1 ’ and Q2= ’1 ’) e l s e
’0 ’ when (NET1= ’0 ’ and Q1= ’0 ’ and Q2= ’0 ’) e l s e OUT_C;
−−==

214 Appendix A. VHDL models of the ADPLL blocks

RESET_LOGIC :
RESET_LOCAL <= OUT_C or (not RESET) ; −− r e s e t OR e l e m e n t
−−==
TDCIN <= not (Q1 nor Q2) ; −− g e n e r a t i n g o f t h e measure b i t
TDCCLK <= not (Q1 nand Q2) ;
nSIGN <= Q3 ;
SIGN <= nQ3 ;

−−==
end arch_BB ;

Listing A.3: VHDL model of the TDC

l i b r a r y IEEE ;
use IEEE . STD_LOGIC_1164 . a l l ;
use IEEE .MATH_REAL. a l l ;
use IEEE . NUMERIC_STD . a l l ;
use IEEE . STD_LOGIC_ARITH . a l l ;
use IEEE . STD_LOGIC_UNSIGNED . a l l ;

e n t i t y TDC_LIP6 i s
port (

TDCCLK, TDCIN , TDCRES : in STD_LOGIC ;
S : out STD_LOGIC_VECTOR (6 downto 0)
) ;

end TDC_LIP6 ;

a r c h i t e c t u r e b e h a v i o r a l of TDC_LIP6 i s
−−−− g e n e r a t i n g o f t h e c o n s t a n t s and s i g n a l s −−−−−−−−−−−−−−−−−−−−−−−−−−

s i g n a l Q_TDC: STD_LOGIC_VECTOR (6 downto 0) ; −− l a t c h s i g n a l i n TDC
s i g n a l t a u : t ime :=20 ps ;

begin
−−==

Q_TDC(0) <= TDCIN a f t e r t a u ;
Q_TDC(1) <= Q_TDC(0) a f t e r t a u ;
Q_TDC(2) <= Q_TDC(1) a f t e r t a u ;
Q_TDC(3) <= Q_TDC(2) a f t e r t a u ;
Q_TDC(4) <= Q_TDC(3) a f t e r t a u ;
Q_TDC(5) <= Q_TDC(4) a f t e r t a u ;
Q_TDC(6) <= Q_TDC(5) a f t e r t a u ;

p r o c e s s (TDCCLK, TDCRES)
begin

i f TDCRES= ’0 ’ then
S <= " 0000000 " ;

e l s i f (TDCCLK’ e v e n t and TDCCLK= ’1 ’) then
S (6 downto 0) <= Q_TDC(6 downto 0) ;

end i f ;
end p r o c e s s ;

215

end b e h a v i o r a l ;

Listing A.4: VHDL model of the digital processing block

l i b r a r y IEEE ;
use IEEE . STD_LOGIC_1164 . a l l ;
use IEEE .MATH_REAL. a l l ;
use IEEE . STD_LOGIC_ARITH . a l l ;

e n t i t y FILTER_V2 i s
port (

CLKFLT , RESFLT : in STD_LOGIC ;
ERRORIN1 , ERRORIN2 , ERRORIN3 , ERRORIN4 : in s t d _ l o g i c _ v e c t o r (3 downto 0) ;
COEFS : in s t d _ l o g i c _ v e c t o r (19 downto 0) ;
A : out s t d _ l o g i c _ v e c t o r (6 downto 0) ;
B : out s t d _ l o g i c _ v e c t o r (6 downto 0) ;
C : out s t d _ l o g i c _ v e c t o r (2 downto 0)
) ;

end FILTER_V2 ;

a r c h i t e c t u r e b e h a v i o r a l _ 8 b i t s _ v 2 _ 4 of FILTER_V2 i s
−− S i g n a l s f o r b l o c k o f c o e f f i c i e n t s programing
s i g n a l k i n t I : i n t e g e r range 0 to 2∗∗8−1;−− K i n t and Kprop are n e v e r "0"
s i g n a l ERROR1, ERROR2, ERROR3, ERROR4 : i n t e g e r range −2∗∗3 to 2∗∗3−1;
s i g n a l add e r _ in _1 , a d d e r _ i n _ 3 : i n t e g e r range −2∗∗5 to 2∗∗5−1; −−6 b i t s
s i g n a l add e r _ in _2 , a d d e r _ i n _ 4 : i n t e g e r range −2∗∗5 to 2∗∗5−1; −−5 b i t s
s i g n a l TOTAL_ERROR8 : i n t e g e r range −2∗∗7 to 2∗∗7−1; −−8 b i t s
s i g n a l TOTAL_ERROR8_vector : s t d _ l o g i c _ v e c t o r (7 downto 0) ; −−8 b i t s
s i g n a l AVG_ERROR6: i n t e g e r range −2∗∗5 to 2∗∗5−1; −−6 b i t s
s i g n a l AVG_ERROR6_DELAYED: i n t e g e r range −2∗∗5 to 2∗∗5−1;
s i g n a l AVG_ERROR6_vector : s t d _ l o g i c _ v e c t o r (5 downto 0) ; −−6 b i t s
s i g n a l AVG_ERROR8: i n t e g e r range −2∗∗7 to 2∗∗7−1; −−8 b i t s
s i g n a l AVG_ERROR8_vector : s t d _ l o g i c _ v e c t o r (7 downto 0) ; −−8 b i t s
s i g n a l v_xi_K_prop : i n t e g e r range −2∗∗5 to 2∗∗5−1; −−6 b i t s
s i g n a l v _ x i _ K _ i n t : i n t e g e r range −2∗∗13 to 2∗∗13−1; −−14 b i t s
−− i n t e g r a l pa th g i v e s a 8− b i t r e s u l t , t h e d e v i d e r i s 2^12 ,
−− t h u s 20 b i t s f o r i n t e g r a t o r
s i g n a l s_v_x i , s_v_xi_m1 : i n t e g e r range −2∗∗19 to 2∗∗19−1:=0;
s i g n a l numKW, kp : s t d _ l o g i c _ v e c t o r (1 downto 0) ;

s i g n a l PIOUTI : i n t e g e r range 0 to 2∗∗8−1;
s i g n a l PIOUT_BIN : s t d _ l o g i c _ v e c t o r (7 downto 0) ;

−− S i g n a l s f o r DCO decoder
s i g n a l COL1 : STD_LOGIC ;
s i g n a l COL2 : STD_LOGIC ;
s i g n a l COL3 : STD_LOGIC ;
s i g n a l ROW1 : STD_LOGIC ;
s i g n a l ROW2 : STD_LOGIC ;
s i g n a l ROW3 : STD_LOGIC ;
s i g n a l ROW4 : STD_LOGIC ;

216 Appendix A. VHDL models of the ADPLL blocks

s i g n a l ROW5 : STD_LOGIC ;
s i g n a l ROW6 : STD_LOGIC ;
s i g n a l ROW7 : STD_LOGIC ;
s i g n a l A_NONDELAYED : s t d _ l o g i c _ v e c t o r (6 downto 0) ;
s i g n a l B_NONDELAYED : s t d _ l o g i c _ v e c t o r (6 downto 0) ;
s i g n a l C_NONDELAYED : s t d _ l o g i c _ v e c t o r (2 downto 0) ;

begin
−−C o n v e r t i n g t h e s t d _ l o g i c i n p u t e r r o r t o i n t e g e r number

ERROR1 <= c o n v _ i n t e g e r (s i g n e d (ERRORIN1)) ;
ERROR2 <= c o n v _ i n t e g e r (s i g n e d (ERRORIN2)) ;
ERROR3 <= c o n v _ i n t e g e r (s i g n e d (ERRORIN3)) ;
ERROR4 <= c o n v _ i n t e g e r (s i g n e d (ERRORIN4)) ;
k i n t I <= c o n v _ i n t e g e r (u n s i g n e d (COEFS(15 downto 8))) ;

−−=============================== ARITHMETIC BLOCK ============================
ARITH : −− i n p u t w e i g h t e n i n g and a d d i t i o n w i t h a v e r a g i n g

a d d e r _ i n _ 1 <= 0 when (COEFS(7) = ’ 0 ’ and COEFS (6) = ’ 0 ’) e l s e
ERROR1 when (COEFS(7) = ’ 0 ’ and COEFS (6) = ’ 1 ’) e l s e
ERROR1∗2 when (COEFS(7) = ’ 1 ’ and COEFS (6) = ’ 0 ’) e l s e
ERROR1∗4 when (COEFS(7) = ’ 1 ’ and COEFS (6) = ’ 1 ’) e l s e
0 ;

a d d e r _ i n _ 2 <= 0 when (COEFS(5) = ’ 0 ’ and COEFS(4) = ’ 0 ’) e l s e
ERROR2 when (COEFS(5) = ’ 0 ’ and COEFS (4) = ’ 1 ’) e l s e
ERROR2∗2 when (COEFS(5) = ’ 1 ’ and COEFS (4) = ’ 0 ’) e l s e
ERROR2∗4 when (COEFS(5) = ’ 1 ’ and COEFS (4) = ’ 1 ’) e l s e
0 ;

a d d e r _ i n _ 3 <= 0 when (COEFS(3) = ’ 0 ’ and COEFS(2) = ’ 0 ’) e l s e
ERROR3 when (COEFS(3) = ’ 0 ’ and COEFS (2) = ’ 1 ’) e l s e
ERROR3∗2 when (COEFS(3) = ’ 1 ’ and COEFS (2) = ’ 0 ’) e l s e
ERROR3∗4 when (COEFS(3) = ’ 1 ’ and COEFS (2) = ’ 1 ’) e l s e
0 ;

a d d e r _ i n _ 4 <= 0 when (COEFS(1) = ’ 0 ’ and COEFS(0) = ’ 0 ’) e l s e
ERROR4 when (COEFS(1) = ’ 0 ’ and COEFS (0) = ’ 1 ’) e l s e
ERROR4∗2 when (COEFS(1) = ’ 1 ’ and COEFS (0) = ’ 0 ’) e l s e
ERROR4∗4 when (COEFS(1) = ’ 1 ’ and COEFS (0) = ’ 1 ’) e l s e
0 ;

−−================== FOUR INPUT ADDER AND DIVIDER =======================
−− Adding e r r o r s

TOTAL_ERROR8 <=(a d d e r _ i n _ 1 + a d d e r _ i n _ 2 + a d d e r _ i n _ 3 + a d d e r _ i n _ 4) ;
TOTAL_ERROR8_vector <= c o n v _ s t d _ l o g i c _ v e c t o r (TOTAL_ERROR8 , 8) ;
numKW <= COEFS(19 downto 1 8) ;
p r o c e s s (numKW, TOTAL_ERROR8)
begin
cas e numKW i s

when " 00 " => AVG_ERROR8 <= 0 ;
when " 01 " => AVG_ERROR8 <= TOTAL_ERROR8 ; −− one i n p u t
when " 10 " => AVG_ERROR8 <= TOTAL_ERROR8 / 2 ; −− two i n p u t s

when o t h e r s => AVG_ERROR8 <= TOTAL_ERROR8 / 4 ; −− t h r e e or f o u r i n p u t s
end ca se ;
end p r o c e s s ;
AVG_ERROR8_vector (7 downto 0) <= c o n v _ s t d _ l o g i c _ v e c t o r (AVG_ERROR8 , 8) ;

217

AVG_ERROR6 <= c o n v _ i n t e g e r (s i g n e d (AVG_ERROR8_vector (5 downto 0))) ;
−− AVG_ERROR8 i s n e v e r l a r g e r tha n 6 b i t s i n d e e d
p r o c e s s (RESFLT , CLKFLT)
begin

i f RESFLT= ’0 ’ then
AVG_ERROR6_DELAYED <= 0 ;

e l s i f (CLKFLT’ e v e n t and CLKFLT= ’1 ’) then
AVG_ERROR6_DELAYED <= AVG_ERROR6;

end i f ;
end p r o c e s s ;

−−================== PROPORTIONAL−INTEGRAL FILTER ======================
FILTER :−− f i l t e r i n g :
−− p r o p o r t i o n a l pa th :

kp <= COEFS(17 downto 1 6) ;
p r o c e s s (kp , AVG_ERROR6)
begin
cas e kp i s

when " 00 " => v_xi_K_prop <= AVG_ERROR6;
when " 01 " => v_xi_K_prop <= AVG_ERROR6 / 2 ;
when " 10 " => v_xi_K_prop <= AVG_ERROR6 / 4 ;

when o t h e r s => v_xi_K_prop <= 0 ;
end ca s e ;
end p r o c e s s ;

−− i n t e g r a l pa th :
−− add ing and m u l t i p l y i n g :

v _ x i _ K _ i n t <= AVG_ERROR6_DELAYED ∗ k i n t I ;
s _ v _ x i <= v _ x i _ K _ i n t + s_v_xi_m1 ;

−− f i r s t d e l a y r i s i n g edge
−− l a t c h e s :

p r o c e s s (RESFLT , CLKFLT)
begin

i f RESFLT= ’0 ’ then
s_v_xi_m1 <= 0 ;

e l s i f (CLKFLT’ e v e n t and CLKFLT= ’1 ’) then
s_v_xi_m1 <= s _ v _ x i ;

end i f ;
end p r o c e s s ;

PIOUTI <= s _ v _ x i /2∗∗12 + v_xi_K_prop + 1 28 ;
PIOUT_BIN <= c o n v _ s t d _ l o g i c _ v e c t o r (PIOUTI , 8) ;

−−=============================== DCO A− , B− , C− c h a n n e l ENCODERS ========
−−−− Component i n s t a n t i a t i o n s −−−−

C_NONDELAYED(0) <= PIOUT_BIN (1) or PIOUT_BIN (0) ;
C_NONDELAYED(1) <= PIOUT_BIN (1) ;
C_NONDELAYED(2) <= PIOUT_BIN (1) and PIOUT_BIN (0) ;

−− −−
B_NONDELAYED(0) <= PIOUT_BIN (4) or PIOUT_BIN (3) or PIOUT_BIN (2) ;

218 Appendix A. VHDL models of the ADPLL blocks

B_NONDELAYED(1) <= PIOUT_BIN (4) or PIOUT_BIN (3) ;
B_NONDELAYED(2) <= PIOUT_BIN (4) or (PIOUT_BIN (3) and PIOUT_BIN (2)) ;
B_NONDELAYED(3) <= PIOUT_BIN (4) ;
B_NONDELAYED(4) <= PIOUT_BIN (4) and (PIOUT_BIN (3) or PIOUT_BIN (2)) ;
B_NONDELAYED(5) <= PIOUT_BIN (4) and PIOUT_BIN (3) ;
B_NONDELAYED(6) <= PIOUT_BIN (4) and PIOUT_BIN (3) and PIOUT_BIN (2) ;

−−
A_NONDELAYED(0) <= PIOUT_BIN (7) or PIOUT_BIN (6) or PIOUT_BIN (5) ;
A_NONDELAYED(1) <= PIOUT_BIN (7) or PIOUT_BIN (6) ;
A_NONDELAYED(2) <= PIOUT_BIN (7) or (PIOUT_BIN (6) and PIOUT_BIN (5)) ;
A_NONDELAYED(3) <= PIOUT_BIN (7) ;
A_NONDELAYED(4) <= PIOUT_BIN (7) and (PIOUT_BIN (6) or PIOUT_BIN (5)) ;
A_NONDELAYED(5) <= PIOUT_BIN (7) and PIOUT_BIN (6) ;
A_NONDELAYED(6) <= PIOUT_BIN (7) and PIOUT_BIN (6) and PIOUT_BIN (5) ;

p r o c e s s (RESFLT , CLKFLT)
begin

i f RESFLT= ’0 ’ then
A <= " 0001111 " ;
B <= " 0000000 " ;
C <= " 000 " ;

e l s i f (CLKFLT’ e v e n t and CLKFLT= ’1 ’) then
A <= A_NONDELAYED;
B <= B_NONDELAYED;
C <= C_NONDELAYED;

end i f ;
end p r o c e s s ;

end b e h a v i o r a l _ 8 b i t s _ v 2 _ 4 ;

Appendix B

VHDL models for built-in test circuit

This appendix presents the RTL-level VHDL model of the built-in test circuit block: Proces-
sUnit and the functional model of clock signals generator which generates two clock signals
to be measured. Known static phase error and Gaussian distributed dynamic errors can be
injected between two clocks. The distribution of added static and dynamic phase errors is
compared with measurement results of simulations to evaluate performance of the method-
ology presented in Chapter 4.

Listing B.1: Generation of two clock signals with jitters and skew injection

−−
−− Questa ADMS model f o r t e s t g e n e r a t o r _ c l k s adms_vhdl
−−
l i b r a r y IEEE ;
use IEEE . STD_LOGIC_1164 . a l l ;
use IEEE . STD_LOGIC_ARITH . a l l ;
use IEEE . STD_LOGIC_UNSIGNED . a l l ;
use IEEE .MATH_REAL. a l l ;
use IEEE . NUMERIC_STD . a l l ;
use s t d . t e x t i o . a l l ;
use i e e e . s t d _ l o g i c _ t e x t i o . a l l ;

ENTITY g e n e r a t o r _ c l k s IS
PORT (

c lk1 , c lk2 , e n a b l e : out s t d _ l o g i c
) ;

END;

ARCHITECTURE a r c h _ g e n e r a t o r _ c l k s OF g e n e r a t o r _ c l k s IS
s i g n a l smp : b i t := ’ 0 ’ ;
s i g n a l p e r i o d 0 : t im e := 4 ns ;

s i g n a l skew_pos : t ime := 0 ps ;
s i g n a l skew_neg : t im e := 0 ps ;
s i g n a l clk1_tmp , c lk2_tmp : s t d _ l o g i c ;

f i l e f i l e _ o u t : t e x t open wri te_mode i s " . / g e n e r a t o r _ c l k s _ j i t t e r _ B I T _ T O P . t x t " ;

219

220 Appendix B. VHDL models for built-in test circuit

BEGIN

p r o c e s s (smp)
v a r i a b l e i n i t i a l : b o o l e a n := t r u e ;
v a r i a b l e j i t t e r : t i me := 0 ns ;
v a r i a b l e j i t t e r _ p r e v : t i me := 0 ns ;
v a r i a b l e wander : t im e := 0 ns ;
v a r i a b l e p e r i o d : t ime := 4 ns ;
v a r i a b l e s1 , s2 , s3 , s4 : p o s i t i v e ;
v a r i a b l e x1 , x2 , x3 , x4 , r an dv a r 1 , r a n d v a r 2 : r e a l := 0 . 0 ;

v a r i a b l e JRMS : t ime := 32 ps ;
v a r i a b l e BUF: LINE ;
v a r i a b l e e r r _ p h a s e : t ime := 0 ns ;

begin
i f i n i t i a l then

p e r i o d := p e r i o d 0 ; −−a d j u s t t h e n e x t p e r i o d
un i fo rm (s1 , s2 , x1) ; −−add Gaussian−d i s t r i b u t e d j i t t e r
un i fo rm (s1 , s2 , x2) ;
r a n d v a r 1 := s q r t (−2.0∗ l o g (x1)) ∗ cos (2 . 0 ∗MATH_PI∗x2) ;
j i t t e r := r a n d v a r 1 ∗ JRMS ;

e r r _ p h a s e := j i t t e r +skew_pos−skew_neg ;
w r i t e (BUF, e r r _ p h a s e) ;

w r i t e l i n e (f i l e _ o u t , BUF) ;

p e r i o d := p e r i o d +2∗ j i t t e r ;

smp <= not smp a f t e r p e r i o d ;
c lk1_ tmp <= ’0 ’ , ’1 ’ a f t e r p e r i o d 0 / 2 ; −−temp i n t e r n a l c l k 50% d u t y c y c l e

c lk2_tmp <= ’0 ’ , ’1 ’ a f t e r p e r i o d / 2 ;
e l s e

smp <= ’ 1 ’ ; −− f i r s t t r a n s i t i o n
i n i t i a l := f a l s e ; −− CURRENTLY NOT IN USE

end i f ;
end p r o c e s s ;

−−==
e n a b l e <= ’0 ’ , ’1 ’ a f t e r 30 ns ; −− o p e r a t i o n a l d e l a y 30 ns

−−==
c l k 1 <= clk1_tmp a f t e r skew_neg ;

c l k 2 <= clk2_tmp a f t e r skew_pos ; −− o u t p u t o f h ig h f r e q . c l o c k

END;

Listing B.2: VHDL model of the digital process unit in test circuit

−−
−− Questa ADMS model f o r t e s t P r o c e s s U n i t adms_vhdl
−−
l i b r a r y IEEE ;
use IEEE . STD_LOGIC_1164 . a l l ;

221

use IEEE . STD_LOGIC_ARITH . a l l ;
use IEEE . STD_LOGIC_UNSIGNED . a l l ;
use IEEE .MATH_REAL. a l l ;
use IEEE . NUMERIC_STD . a l l ;

ENTITY P r o c e s s U n i t IS
PORT (

e n a b l e : in s t d _ l o g i c ;
c lk2 , c lk 2 _ b : in s t d _ l o g i c : = ’ 0 ’ ;
d a t a I N : in s t d _ l o g i c : = ’ 0 ’ ;
cntOUT : out s t d _ l o g i c _ v e c t o r (7 downto 0)

) ;
END;

ARCHITECTURE a r c h _ P r o c e s s U n i t OF P r o c e s s U n i t IS
s i g n a l da ta INby2 : s t d _ l o g i c : = ’ 0 ’ ;
s i g n a l Q2 , Q3 , Q4 , Q5 : s t d _ l o g i c : = ’ 0 ’ ;
s i g n a l c l k 2 B a r : s t d _ l o g i c ;
s i g n a l s_ nx o r : s t d _ l o g i c ;
s i g n a l over f low , r e a d : s t d _ l o g i c : = ’ 0 ’ ;
s i g n a l cn t1 , c n t 2 : i n t e g e r range 0 to 2∗∗8−1 := 0 ; −−8 b i t s c o u n t e r s

BEGIN
−− d i v i d e i n p u t s i g n a l f r e q u e n c y by 2
p r o c e s s (d a t a I N)
begin

i f (r i s i n g _ e d g e (d a t a IN)) then
da ta INby2 <= not da ta INby2 ;

end i f ;
end p r o c e s s ;

−− R2 and R4
p r o c e s s (c lk2 , e n a b l e)
begin

i f (e n a b l e = ’1 ’) then
i f (r i s i n g _ e d g e (c l k 2)) then

Q2 <= da ta INby2 ;
Q4 <= Q3 ;

end i f ;
end i f ;

end p r o c e s s ;

−−c l k 2 B a r <= n o t c l k 2 ;
−−R3 and R5
p r o c e s s (c lk2_b , e n a b l e)
begin

i f (e n a b l e = ’1 ’) then
i f (r i s i n g _ e d g e (c lk 2 _b)) then

Q3 <= Q2 ;

222 Appendix B. VHDL models for built-in test circuit

Q5 <= Q4 ;
end i f ;

end i f ;
end p r o c e s s ;

s_ nx o r <= not (Q5 xor Q3) ;

−−c o u n t e r 1
p r o c e s s (c lk2 , enab l e , o v e r f l o w)
begin

i f (e n a b l e = ’1 ’) then
i f (o v e r f l o w = ’1 ’) then

c n t 1 <= 0 ;
e l s i f (r i s i n g _ e d g e (c l k 2)) then

i f (s_ nx o r = ’ 1 ’) then
c n t 1 <= c n t 1 + 1 ;

e l s e
c n t 1 <= c n t 1 ;

end i f ;
end i f ;

e l s e
c n t 1 <= 0 ;

end i f ;
end p r o c e s s ;

−−c o u n t e r 2
p r o c e s s (c lk2 , e n a b l e)
begin

i f (e n a b l e = ’1 ’) then
i f (r i s i n g _ e d g e (c l k 2)) then

i f (c n t 2 = 2∗∗8−2) then
r e a d <= ’ 1 ’ ;
c n t 2 <= c n t 2 + 1 ;

e l s i f (c n t 2 = 2∗∗8−1) then
r e a d <= ’ 0 ’ ;
o v e r f l o w <= ’ 1 ’ ;
c n t 2 <= 0 ;

e l s e
o v e r f l o w <= ’ 0 ’ ;
c n t 2 <= c n t 2 + 1 ;

end i f ;
end i f ;

e l s e
c n t 2 <= 0 ;

end i f ;
end p r o c e s s ;

−−Rs s a m p l i n g f o r o u t p u t

223

p r o c e s s (read , e n a b l e)
begin

i f (e n a b l e = ’1 ’) then
i f (r i s i n g _ e d g e (r e a d)) then

cntOUT <= c o n v _ s t d _ l o g i c _ v e c t o r (cn t1 , cntOUT ’ l e n g t h) ;
end i f ;

end i f ;

end p r o c e s s ;

END;

Appendix C

Matlab scripts

Matlab phase/gain margins plot

The Matlab script here presented is used during the step of defining specification of ADPLL. It allows ob-
serving the phase/gain margins of ADPLL and helping us estimate the optimal combination of PFD and DCO
parameters.

Listing C.1: Script plots phase/gain margin of an ADPLL

c l e a r a l l ;
% T h i s s c r i p t a l l o w s t o p l o t t h e l i n e a r f r e q u e n c y t r a n s m i s s i o n c h a r a c t e r i s t i c s
% o f d i g i t a l ADPLL modeled as d i s c r e t t i m e l i n e a r s y s t e m .

% The s a m p l i n g f r e q u e n c y o f t h e f i l t e r . The f i l t e r i s supposed t o be cadanced
% w i t h a f i x e d f r e q u e n c y . T h i s i s n o t e x a c t l y t h e case , s i n c e t h e f i l t e r c l o c k
% s i g n a l i s g e n e r a t e d by t h e l o c a l DCO. However , i n t h e l o c k e d mode , t h e
% b e h a v i o u r o f t h e DCO can be c o n s i d e r e d r e g u l a r and t h e g e n e r a t e d s i g n a l
% p e r i o d i c . We c o n s i d e r t h a t t h e nomian l o u t p u t DCO f r e q u e n c y i s 1 . 0 4 GHz . The
% f i l t e r i s cadenced by t h i s f r e q u e n c y d i v i d e d by 4 .
f s =260 e+6

%t h e s a m p l i g p e r i o d
Ts =1/ f s ;
%a n g u l a r f r e q u e n c y
omega_s= f s ∗2∗ pi ;

%The TDC r e s o l u t i o n
t a u _ t d c =20e−12;

% The v a l u e o f t h e ga in o f t h e phase−f r e q u e n c y d e t e c t o r , e x p r e s s e d i n
% i n t e g e r u n i t s / r a d i a n . T h i s v a l u e i s v a l i d f o r
% t h e l i n e a r zone o f t h e PFD c h a r a c t e r i s t i c , p r o v i d e d by t h e TDC . The PFD i s
% supposed t o i n c r e a s e i t s o u t p u t v a l u e by 1 when t h e phase e r r o r i s i n c r e a s e d
% by 2 p i f s
Kpfd = 1 / (t a u _ t d c ∗2∗ pi ∗ f s) ;

% The DCO ga in i s e x p r e s s e d i n r a d i a n / (second ∗ i n p u t i n t e g e r u n i t s) . S i n c e t h e
% imp le men ted DCO has 2∗ p i ∗1 MHz / i n t e g e r u n i t s , t h e d i v i d e d s i g n a l have a f o u r
% t i m e s m a l l e r ga in :

225

226 Appendix C. Matlab scripts

Kdco =0.253 e6 ∗2∗ pi ; %DCO 3nd v e r s i o n

% The v a l u e s chosen f o r t h e i n t e g r a l and p r o p o r t i o n a l g a i n s o f t h e f i l t e r

Ki= 5 0 / 2 ^ 1 4 ;
Kp = 3 1 / 2 ^ 5 ;

%number o f a d d i t i o n a l d e l a y s
n r e t =2 ;

Hdco = t f ([Ts∗Kdco Ts∗Kdco] , [2 −2] , Ts) ;
H f i l t e r = t f ([Ts∗Ki+2∗Kp −Ts∗Ki−2∗Kp] , [2 −2] , Ts) ;
Hdelay = t f ([1] , [1 0 0] , Ts) ;
Hopen = Hdco∗ H f i l t e r ∗Hdelay ∗Kpfd ;
f i g u r e (4)
margin (Hopen)

Matlab control sequence generators

Here you can find the Matlab scripts used during the step of verification of the ADPLL and
clock network. Each script returns data files, which have been included during the VHDL
and Eldo simulations of the circuits.

Listing C.2: Script generates a programming sequence for the clock network

c l c
c l e a r

Ki = 0 . 0 0 5 ;
Kp=1;

KW_coef =1;

i f Kp==1 % 0−>1; 1−>0.5; 2−>0.25
Kprop=0

e l s e i f Kp==0.5
Kprop=1

e l s e i f Kp==0.25
Kprop=2

end

Kin t =round (Ki ∗ (2 ^ 1 2))

KW1(1) = 1 ; KW2(1) = 1 ; KW3(1) = 0 ; KW4(1) = 1 ; Kint_num (1) = K in t ;
Kprop_num (1) = Kprop ; numKW(1) = 3 ;
KW1(2) = 1 ; KW2(2) = 1 ; KW3(2) = 0 ; KW4(2) = 1 ; Kint_num (2) = K in t ;
Kprop_num (2) = Kprop ; numKW(2) = 3 ;
KW1(3) = 1 ; KW2(3) = 1 ; KW3(3) = 0 ; KW4(3) = 1 ; Kint_num (3) = K in t ;

227

Kprop_num (3) = Kprop ; numKW(3) = 3 ;
KW1(4) = 1 ; KW2(4) = 1 ; KW3(4) = 0 ; KW4(4) = 1 ; Kint_num (4) = K in t ;
Kprop_num (4) = Kprop ; numKW(4) = 3 ;
KW1(5) = 1 ; KW2(5) = 1 ; KW3(5) = 0 ; KW4(5) = 1 ; Kint_num (5) = K in t ;
Kprop_num (5) = Kprop ; numKW(5) = 3 ;
KW1(6) = 1 ; KW2(6) = 1 ; KW3(6) = 0 ; KW4(6) = 1 ; Kint_num (6) = K in t ;
Kprop_num (6) = Kprop ; numKW(6) = 3 ;
KW1(7) = 1 ; KW2(7) = 1 ; KW3(7) = 0 ; KW4(7) = 1 ; Kint_num (7) = K in t ;
Kprop_num (7) = Kprop ; numKW(7) = 3 ;
KW1(8) = 1 ; KW2(8) = 1 ; KW3(8) = 0 ; KW4(8) = 1 ; Kint_num (8) = K in t ;
Kprop_num (8) = Kprop ; numKW(8) = 3 ;
KW1(9) = 1 ; KW2(9) = 1 ; KW3(9) = 0 ; KW4(9) = 1 ; Kint_num (9) = K in t ;
Kprop_num (9) = Kprop ; numKW(9) = 3 ;
KW1(1 0) = 1 ; KW2(1 0) = 0 ; KW3(1 0) = 0 ; KW4(1 0) = 1 ; Kint_num (1 0) = Kin t ;
Kprop_num (1 0) = Kprop ; numKW(1 0) = 2 ;

f o r l =1 :8
KW1(10∗ l +1)=0 ; KW2(10∗ l +1)=1 ; KW3(10∗ l +1)=1 ; KW4(10∗ l +1)=1 ;
Kint_num (10∗ l +1)= Kin t ; Kprop_num (10∗ l +1)= Kprop ; numKW(10∗ l +1)=3 ;
KW1(10∗ l +2)=1 ; KW2(10∗ l +2)=1 ; KW3(10∗ l +2)=1 ; KW4(10∗ l +2)=1 ;
Kint_num (10∗ l +2)= Kin t ; Kprop_num (10∗ l +2)= Kprop ; numKW(10∗ l +2)=4 ;
KW1(10∗ l +3)=1 ; KW2(10∗ l +3)=1 ; KW3(10∗ l +3)=1 ; KW4(10∗ l +3)=1 ;
Kint_num (10∗ l +3)= Kin t ; Kprop_num (10∗ l +3)= Kprop ; numKW(10∗ l +3)=4 ;
KW1(10∗ l +4)=1 ; KW2(10∗ l +4)=1 ; KW3(10∗ l +4)=1 ; KW4(10∗ l +4)=1 ;
Kint_num (10∗ l +4)= Kin t ; Kprop_num (10∗ l +4)= Kprop ; numKW(10∗ l +4)=4 ;
KW1(10∗ l +5)=1 ; KW2(10∗ l +5)=1 ; KW3(10∗ l +5)=1 ; KW4(10∗ l +5)=1 ;
Kint_num (10∗ l +5)= Kin t ; Kprop_num (10∗ l +5)= Kprop ; numKW(10∗ l +5)=4 ;
KW1(10∗ l +6)=1 ; KW2(10∗ l +6)=1 ; KW3(10∗ l +6)=1 ; KW4(10∗ l +6)=1 ;
Kint_num (10∗ l +6)= Kin t ; Kprop_num (10∗ l +6)= Kprop ; numKW(10∗ l +6)=4 ;
KW1(10∗ l +7)=1 ; KW2(10∗ l +7)=1 ; KW3(10∗ l +7)=1 ; KW4(10∗ l +7)=1 ;
Kint_num (10∗ l +7)= Kin t ; Kprop_num (10∗ l +7)= Kprop ; numKW(10∗ l +7)=4 ;
KW1(10∗ l +8)=1 ; KW2(10∗ l +8)=1 ; KW3(10∗ l +8)=1 ; KW4(10∗ l +8)=1 ;
Kint_num (10∗ l +8)= Kin t ; Kprop_num (10∗ l +8)= Kprop ; numKW(10∗ l +8)=4 ;
KW1(10∗ l +9)=1 ; KW2(10∗ l +9)=1 ; KW3(10∗ l +9)=1 ; KW4(10∗ l +9)=1 ;
Kint_num (10∗ l +9)= Kin t ; Kprop_num (10∗ l +9)= Kprop ; numKW(10∗ l +9)=4 ;
KW1(10∗ l +10)=1 ; KW2(10∗ l +10)=0 ; KW3(10∗ l +10)=1 ; KW4(10∗ l +10)=1 ;
Kint_num (10∗ l +10)= K in t ; Kprop_num (10∗ l +10)= Kprop ; numKW(10∗ l +10)=3 ;

end

KW1(9 1) = 0 ; KW2(9 1) = 1 ; KW3(9 1) = 1 ; KW4(9 1) = 0 ; Kint_num (9 1) = Kin t ;
Kprop_num (9 1) = Kprop ; numKW(9 1) = 2 ;
KW1(9 2) = 1 ; KW2(9 2) = 1 ; KW3(9 2) = 1 ; KW4(9 2) = 0 ; Kint_num (9 2) = Kin t ;
Kprop_num (9 2) = Kprop ; numKW(9 2) = 3 ;
KW1(9 3) = 1 ; KW2(9 3) = 1 ; KW3(9 3) = 1 ; KW4(9 3) = 0 ; Kint_num (9 3) = Kin t ;
Kprop_num (9 3) = Kprop ; numKW(9 3) = 3 ;
KW1(9 4) = 1 ; KW2(9 4) = 1 ; KW3(9 4) = 1 ; KW4(9 4) = 0 ; Kint_num (9 4) = Kin t ;
Kprop_num (9 4) = Kprop ; numKW(9 4) = 3 ;
KW1(9 5) = 1 ; KW2(9 5) = 1 ; KW3(9 5) = 1 ; KW4(9 5) = 0 ; Kint_num (9 5) = Kin t ;
Kprop_num (9 5) = Kprop ; numKW(9 5) = 3 ;
KW1(9 6) = 1 ; KW2(9 6) = 1 ; KW3(9 6) = 1 ; KW4(9 6) = 0 ; Kint_num (9 6) = Kin t ;

228 Appendix C. Matlab scripts

Kprop_num (9 6) = Kprop ; numKW(9 6) = 3 ;
KW1(9 7) = 1 ; KW2(9 7) = 1 ; KW3(9 7) = 1 ; KW4(9 7) = 0 ; Kint_num (9 7) = Kin t ;
Kprop_num (9 7) = Kprop ; numKW(9 7) = 3 ;
KW1(9 8) = 1 ; KW2(9 8) = 1 ; KW3(9 8) = 1 ; KW4(9 8) = 0 ; Kint_num (9 8) = Kin t ;
Kprop_num (9 8) = Kprop ; numKW(9 8) = 3 ;
KW1(9 9) = 1 ; KW2(9 9) = 1 ; KW3(9 9) = 1 ; KW4(9 9) = 1 ; Kint_num (9 9) = Kin t ;
Kprop_num (9 9) = Kprop ; numKW(9 9) = 3 ;
KW1(1 0 0) = 1 ; KW2(1 0 0) = 0 ; KW3(1 0 0) = 1 ; KW4(1 0 0) = 0 ; Kint_num (100) = K in t ;
Kprop_num (100)= Kprop ; numKW(1 0 0) = 2 ;

f i d _ v h d l = fopen (’ . / param100 . d a t ’ , ’w’) ; %% f i l e t o w r i t e b i n a r y d a ta

o r d e r _ o f _ l o a d i n g =[91 92 93 94 95 96 97 98 99 100 90 89 88 87 86 85
84 83 82 81 71 72 73 74 75 76 77 78 79 80 70 69 68 67 66 65 64 63
62 61 51 52 53 54 55 56 57 58 59 60 50 49 48 47 46 45 44 43 42 41
31 32 33 34 35 36 37 38 39 40 30 29 28 27 26 25 24 23 22 21 11 12
13 14 15 16 17 18 19 20 10 9 8 7 6 5 4 3 2 1] ;
M = l e n g t h (o r d e r _ o f _ l o a d i n g) ;
f o r c o u n t =1 :M
i = o r d e r _ o f _ l o a d i n g (c o u n t)

s e n d _ t o _ f i l e (KW4(i) , 2 , 0 , f i d _ v h d l) ;
s e n d _ t o _ f i l e (KW3(i) , 2 , 0 , f i d _ v h d l) ;
s e n d _ t o _ f i l e (KW2(i) , 2 , 0 , f i d _ v h d l) ;
s e n d _ t o _ f i l e (KW1(i) , 2 , 0 , f i d _ v h d l) ;
s e n d _ t o _ f i l e (Kint_num (i) , 8 , 0 , f i d _ v h d l) ;
s e n d _ t o _ f i l e (Kprop_num (i) , 2 , 0 , f i d _ v h d l) ;
s e n d _ t o _ f i l e (numKW(i) , 2 , 0 , f i d _ v h d l) ;

end
f p r i n t f (1 , ’ Ding VHDL! \ n ’) ;

Z= i m p o r t d a t a (’ . / param100 . d a t ’) ; % l o a d i n g da ta from f i l e
f i d _ e l d o = fopen (’ . / pa ram100_e ldo ’ , ’w’) ; %% f i l e t o w r i t e t i m i n g da ta
N = l e n g t h (Z) ;

Fsck = 2 00 ; % data send r a t e , MHz
t s d a = 1000 / Fsck ; % data send per iod , ns
t r = 0 . 0 3 ;
vdd = 1 . 1 ; % vdd v o l t a g e , V
b i t 0 = Z (1) ;
f p r i n t f (f i d _ e l d o , ’V110 sda 0 PWL (0 %1.2g %2.4 gn %1.2g \ n ’ ,
b i t 0 ∗vdd , t s d a−t r , b i t 0 ∗vdd) ;

f o r p = 2 :N
b i t = Z (p) ;
f p r i n t f (f i d _ e l d o , ’ +%4.6 gn %1.2g %4.6 gn %1.2g \ n ’ , (p−1)∗ t s d a ,

b i t ∗vdd , p∗ t s d a−t r , b i t ∗vdd) ;
end

f p r i n t f (f i d _ e l d o , ’) \ n ’) ;
f p r i n t f (f i d _ e l d o , ’V111 r e s e t 0 PWL (0 1 . 1 1n 1 . 1 1 . 0 3 n 0 3n

229

0 3 . 0 3 n 1 . 1 %4.6 gn 1 . 1 %4.6 gn 0 %4.6 gn 0 %4.6 gn 1 . 1) \ n ’ , 2+p∗ t s d a ,
2+p∗ t s d a + t r , 2+p∗ t s d a + t r +1 , 2+p∗ t s d a + t r +1+ t r) ;

f p r i n t f (f i d _ e l d o , ’V112 ntwrk_en 0 PWL (0 0 %4.6 gn 0 %4.6 gn
0 %4.6 gn 0 %4.6 gn 1 . 1) \ n ’ , p∗ t s d a , p∗ t s d a + t r , p∗ t s d a + t r +1 , p∗ t s d a + t r +1+ t r) ;

f p r i n t f (f i d _ e l d o , ’V113 sck 0 PULSE (%1.2g 0 0 %2.4 gn %2.4 gn %3.4 gn %3.4 gn) \ n ’ ,
vdd , t r , t r , t s d a / 2 , t s d a) ;

f p r i n t f (f i d _ e l d o , ’V114 enab le_BIT1 0 PWL (0 0 10n 0 10 . 03 n 1 . 1) \ n ’) ;
f p r i n t f (f i d _ e l d o , ’V115 enab le_BIT2 0 PWL (0 0 10n 0 10 . 03 n 1 . 1) \ n ’) ;
f p r i n t f (f i d _ e l d o , ’V116 enab le_BIT3 0 PWL (0 0 10n 0 10 . 03 n 1 . 1) \ n ’) ;
f p r i n t f (f i d _ e l d o , ’V117 enab le_BIT4 0 PWL (0 0 10n 0 10 . 03 n 1 . 1) \ n ’) ;
f p r i n t f (1 , ’ Ding ELDO ! \ n ’) ;

Listing C.3: Integer to binary subscript

f u n c t i o n y= i n t e g e r _ t o _ b i n a r y (x , n , s)
% x : l a v a l e u r , n : nombre de b i t , s : s i g n e ou non

x _ f i = f i (x , s , n , 0) ;
f o r i =1 : n

y (i)= i n t 1 6 (b i t g e t (x _ f i , n−i + 1)) ;
end
end

Listing C.4: Script writes the sequence to file

f u n c t i o n y= s e n d _ t o _ f i l e (va lue , n , s , f i d _ v h d l)
v a l u e _ b i n = i n t e g e r _ t o _ b i n a r y (va lue , n , s) ;
f o r i =1 : n
f p r i n t f (f i d _ v h d l , ’%i \ n ’ , v a l u e _ b i n (n−i + 1)) ;
end
y =1;
end

Matlab 3-D video creator for observing ADPLL network tran-

sient process

The Matlab script presented here is used to generate a 3-D video of phase error variation in
an ADPLL network during a transient process.

Listing C.5: Script generates a 3-D video of phase error variation in an ADPLL network

c l c
c l e a r

%==
%=== ANIMATION PARAMETERS ===
%==
code_min = −2048; % minimal h i g h l i g h t e d code

230 Appendix C. Matlab scripts

code_max = 2047 ; % maximal h i g h l i g h t e d code
f p s = 2 4 ; % FPS i n a n i m a t i o n
N = 1 ; % number o f runs f o r a n i m a t i o n
%==
%=== LOADING INPUT WAVEFORMS ==
%==
t i c
f p r i n t f (1 , ’ Loading waveforms . . . ’) ;

% l o a d i n g da ta from f i l e
Z= i m p o r t d a t a (’ . / Mat lab / V i s u a l i z a t i o n / l i s t 1 0 0 . l s t ’) ;
f p r i n t f (1 , ’DONE! \ n ’) ;
t o c
%==
%=== EXTRACTING PARAMETERS OF NETWORK =====================================
%==
M = l e n g t h (Z) ; % number o f t h e samples
K = s i z e (Z ,2) −2 ; % number o f t h e nodes i n ne twork
N = s q r t (K) ; % s i z e o f t h e ne twork N∗N
X = nan (1 ,K) ; % i n i t i a l i z e samples t emporary a r r a y
Y = nan (N, N,K) ; % i n i t i a l i z e da ta s t o r a g e a r r a y
%==
%=== CALCULATING NETWORK STATE MATRICE ====================================
%==
f p r i n t f (1 , ’ M a t r i c e r e s h a p i n g and r o t a t i n g ’) ;
t i c
f o r p = 1 : 1 :M

f o r l = 3 :K+2;
X(1 , l −2) = Z (p , l) ;

end
Y (: , : , p) = f l i p l r (rot90 (reshape (X, N,N) , 3)) ;

end
f p r i n t f (1 , ’DONE! \ n ’) ;
t o c
%==
%=== SAVING STATES ==
%==
f p r i n t f (1 , ’ Sav ing m a t r i c e s ’) ;
save (’WAVES’ , ’Y’ , ’M’) ; % s t o r i n g s t a t e s i n f i l e
f p r i n t f (1 , ’DONE! \ n ’) ;

%==
%=== LOADING INPUT WAVEFORMS ==
%==
f p r i n t f (1 , ’ Loading m a t r i c e s ’)
load (’WAVES’ , ’Y’ , ’M’) ;
f p r i n t f (1 , ’DONE! \ n ’)

%==
%=== CREATING ANIMATION ===
%==
f p r i n t f (1 , ’ C r e a t i n g a n i m a t i o n ’)
t i c

231

w r i t e r O b j = V i d e o W r i t e r (’ n e t w o r k 1 0 0 _ w i t h _ b o r d e r _ w i t h o u t _ p e r t u r b a t i o n _ 5 0 u s . a v i ’) ;
open (w r i t e r O b j) ;

c l i m s = [code_min code_max] ; % c o l o r range s e t t i n g s
c a x i s ([code_min code_max]) ;
c o l o r b a r ;
s e t (gca , ’ n e x t p l o t ’ , ’ r e p l a c e c h i l d r e n ’) ;
s e t (gcf , ’ R e n d e r e r ’ , ’ z b u f f e r ’) ;

f o r j = 1 : 1 0 0 0 :M
s e t (gca , ’ CameraViewAngleMode ’ , ’ manual ’)
colormap hsv
a x i s ([0 10 0 10 code_min code_max])
s u r f (Y (: , : , j)) ;
F (j) = getframe ; % s t o r i n g frame
w r i t e V i d e o (w r i t e r O b j , F (j)) ;

end
c l o s e (w r i t e r O b j) ;
f p r i n t f (1 , ’DONE! \ n ’)
t o c

f p r i n t f (1 , ’ Sav ing f r a me s ’)
save (’FRAMES’ , ’F ’) ;
f p r i n t f (1 , ’DONE! \ n ’)

%movie (F , N , f p s) % p l a y i n g t h e a n i m a t i o n

Appendix D

FPGA prototyping of the clocking

network

Environment and measurement set

The Mentor Graphics AdvaceMS mixed simulator is used to perform behavioral mixed sim-
ulations of the developed code before porting it to Altera Quartus II environment, which has
been extensively used in the design of the clocking network prototype.

The clocking network has been implemented onto EP2C70F672C6 chip. The clocking
network core has been designed keeping in mind the spatial location criterion. This means
that nodes of the network were spatially distributed over the FPGA area so to form an equiv-
alent to the specified 2D mesh network.

The reference clock has been generated by external FLUKE PM 5136 Synthesized Func-
tion Generator. The output signals were captured and processed by LeCroy Waverunner
oscilloscope with Mixed Signal Oscilloscope Option.

The FPGA chip is installed on Cyclone II DSP Development Board. Fig. D.1 depicts the
functional diagram of this platform and Fig. D.2 top view of the board with description.

The measurement set is depicted in a Fig. D.3.

VHDL models

This section introduces the complete synthesizable VHDL models of the proposed DCO and
TDC for FPGA implementation.

Listing D.1: VHDL model of the synthesizable DCO

l i b r a r y IEEE ;
use IEEE . STD_LOGIC_1164 . a l l ;
use IEEE .MATH_REAL. a l l ;
use IEEE . NUMERIC_STD . a l l ;

233

http://assets.fluke.com/images/products/fpm/bench_instruments/funcgen_pm51xx.pdf
http://assets.fluke.com/images/products/fpm/bench_instruments/funcgen_pm51xx.pdf
http://www.lecroy.com/oscilloscope/oscilloscopemodel.aspx?modelid=1936
http://www.lecroy.com/options/productdetails.aspx?modelid=1439&categoryid=18&groupid=54

234 Appendix D. FPGA prototyping of the clocking network

use IEEE . STD_LOGIC_ARITH . a l l ;
use IEEE . STD_LOGIC_UNSIGNED . a l l ;

ENTITY nco_fpga IS
PORT (

CLK_fpga : in STD_LOGIC ;
FLT_OUT : in STD_LOGIC_VECTOR(9 downto 0) ;
CLK_OUT: out s t d _ l o g i c

) ;
END;

ARCHITECTURE r t l OF nco_fpga IS

−−−− g e n e r a t i n g o f t h e c o n s t a n t s and s i g n a l s −−−−−−−−−−−−−−−−−−−−−−−−−−

c o n s t a n t N: INTEGER : = 1 7 8 9 ; −− max v a l u e o f c o u n t e r
s i g n a l M: INTEGER : = 1 1 5 5 ; −− medium v a l u e o f c o u n t e r
s i g n a l sum : INTEGER range 0 to N:=512 ;
s i g n a l FLT_OUT_integer : i n t e g e r range 0 to 1023 ;

BEGIN

FLT_OUT_integer <= c o n v _ i n t e g e r (FLT_OUT) ;
−− The p e r i o d i s e q u a l t o (N−FLI_OUT+1)∗T_CLK_fpga
p r o c e s s (CLK_fpga , FLT_OUT) i s

begin
i f (CLK_fpga ’ e v e n t and CLK_fpga = ’1 ’) then

i f (sum < M) then
sum <= sum + 1 ;
CLK_OUT<= ’1 ’ ;

e l s i f (sum < N) then
sum <= sum + 1 ;
CLK_OUT<= ’0 ’ ;

e l s e
sum <= FLT_OUT_integer ;
M <= (FLT_OUT_integer+N) / 2 ;
CLK_OUT<= ’1 ’ ;

end i f ;
end i f ;

end p r o c e s s ;
END r t l ;

Listing D.2: VHDL model of the synthesizable TDC

l i b r a r y IEEE ;
use IEEE . STD_LOGIC_1164 . a l l ;
use IEEE .MATH_REAL. a l l ; use IEEE . NUMERIC_STD . a l l ;
use IEEE . STD_LOGIC_ARITH . a l l ;
use IEEE . STD_LOGIC_UNSIGNED . a l l ;
use IEEE . n u m e r i c _ s t d . a l l ;

235

e n t i t y t d c _ f p g a i s
port (

ERR, SIGNE , CLK_fpga , RESET : in STD_LOGIC ;
ERREUR, NERREUR: out s t d _ l o g i c _ v e c t o r (4 downto 0)

) ;
end t d c _ f p g a ;

a r c h i t e c t u r e r t l of t d c _ f p g a i s
−−−− g e n e r a t i n g o f t h e c o n s t a n t s and s i g n a l s −−−−−−−−−−−−−−−−−−−−−−−−−−

s i g n a l c p t _ i n t : INTEGER range 0 to 1 5 ;
s i g n a l CODER_OUT: i n t e g e r range −16 to 15 ;
s i g n a l c o u n t _ r e s e t : i n t e g e r range 0 to 7 ;

begin
p r o c e s s (RESET , CLK_fpga , ERR, c p t _ i n t) i s

begin
i f (RESET = ’0 ’) then

c p t _ i n t <=1;
c o u n t _ r e s e t <=0;

e l s e
i f (CLK_fpga ’ e v e n t and CLK_fpga = ’1 ’) then

i f (ERR = ’ 0 ’) then
i f (c o u n t _ r e s e t >2) then

c p t _ i n t <=1;
c o u n t _ r e s e t <=0;

e l s e
c p t _ i n t <= c p t _ i n t ;
c o u n t _ r e s e t <= c o u n t _ r e s e t +1 ;

end i f ;
e l s e

c o u n t _ r e s e t <=0;
i f (c p t _ i n t < 15) then

c p t _ i n t <= c p t _ i n t +1 ;
e l s e c p t _ i n t <= c p t _ i n t ;
end i f ;

end i f ;
end i f ;

end i f ;
end p r o c e s s ;

p r o c e s s (ERR, RESET , SIGNE)
begin
i f (RESET= ’0 ’) then

CODER_OUT<=1;
e l s i f (ERR= ’0 ’ and ERR’ e v e n t) then

i f (SIGNE = ’0 ’) then
CODER_OUT <= −1∗ c p t _ i n t ;

e l s e
CODER_OUT<= c p t _ i n t ;

end i f ;
end i f ;

236 Appendix D. FPGA prototyping of the clocking network

end p r o c e s s ;

−−==
ERREUR<= s t d _ l o g i c _ v e c t o r (t o _ s i g n e d (CODER_OUT, ERREUR’ l e n g t h)) ;
NERREUR<= s t d _ l o g i c _ v e c t o r (t o _ s i g n e d (−1∗CODER_OUT, NERREUR’ l e n g t h)) ;
end r t l ;

237

Figure D.1: Functional diagram of Cyclone II DSP Development Board

Figure D.2: Top view of Cyclone II DSP Development Board

238 Appendix D. FPGA prototyping of the clocking network

Figure D.3: FPGA prototyping platform: Cyclone II EP2C70 DSP Development Board
and LeCroy Waverunner Digital Sampling Oscilloscope

Appendix E

Tcl script for automatic floorplan of

network

Automatic floorplan of network

The Tcl script here presented is used for the automatic placement of the chip at the top
level. The parametrable script allows a parallel design of the blocks and the global chip
floorplanning: if the layout of a cell is modified, the chip floorplan can be immediately
regenerated without extra work.

Listing E.1: Script for automatic floorplan of network

p l a c e m e n t o f b l o c k s i n an ADPLL ne twork
proc max {x y} { expr {$x>$y ? $ x : $y }}

s e t p i t c h 5 . 2
s e t p a d _ h e i g h t 112
s e t pad_wid th 40

s e t pad_numberY 50
s e t pad_numberX 50

d i s t a n c e be tween t h e co re and t h e d i e boundary
s e t d e l t a _ c o r e _ d i e _ l e f t [expr 39 ∗ $ p i t c h + $ p a d _ h e i g h t]
s e t d e l t a _ c o r e _ d i e _ b o t t o m [expr 39 ∗$ p i t c h + $ p a d _ h e i g h t]
s e t d e l t a _ c o r e _ d i e _ r i g h t [expr 40 ∗ $ p i t c h + $ p a d _ h e i g h t]
s e t d e l t a _ c o r e _ d i e _ t o p [expr 40 ∗ $ p i t c h + $ p a d _ h e i g h t]

s e t NODE_width 153 . 0 0 0
s e t NODE_height 148 . 2 0 0

s e t NODEI_width 153 . 0 0 0
s e t NODEI_height 148 . 2 0 0

s e t BIT_width 170 . 0 0 0
s e t B I T _ h e i g h t 23 . 4 0 0

239

240 Appendix E. Tcl script for automatic floorplan of network

s e t PFD_width 51 . 0 0 0
s e t PFD_height 28 . 6 0 0

s e t BIT_core_gapX [expr 4 ∗ $ p i t c h]
s e t BIT_core_gapY [expr 6 ∗ $ p i t c h]

s e t NODE_instance_name {{INODE_10_1 INODE_10_2 INODE_10_3 INODE_10_4 INODE_10_5 \
INODE_10_6 INODE_10_7 INODE_10_8 INODE_10_9 INODE_10_10} \

{INODE_9_1 INODE_9_2 INODE_9_3 INODE_9_4 INODE_9_5 INODE_9_6 \
INODE_9_7 INODE_9_8 INODE_9_9 INODE_9_10} \
{INODE_8_1 INODE_8_2 INODE_8_3 INODE_8_4 INODE_8_5 INODE_8_6 \
INODE_8_7 INODE_8_8 INODE_8_9 INODE_8_10} \
{INODE_7_1 INODE_7_2 INODE_7_3 INODE_7_4 INODE_7_5 INODE_7_6 \
INODE_7_7 INODE_7_8 INODE_7_9 INODE_7_10} \
{INODE_6_1 INODE_6_2 INODE_6_3 INODE_6_4 INODE_6_5 INODE_6_6 \
INODE_6_7 INODE_6_8 INODE_6_9 INODE_6_10} \
{INODE_5_1 INODE_5_2 INODE_5_3 INODE_5_4 INODE_5_5 INODE_5_6 \
INODE_5_7 INODE_5_8 INODE_5_9 INODE_5_10} \
{INODE_4_1 INODE_4_2 INODE_4_3 INODE_4_4 INODE_4_5 INODE_4_6 \
INODE_4_7 INODE_4_8 INODE_4_9 INODE_4_10} \
{INODE_3_1 INODE_3_2 INODE_3_3 INODE_3_4 INODE_3_5 INODE_3_6 \
INODE_3_7 INODE_3_8 INODE_3_9 INODE_3_10} \
{INODE_2_1 INODE_2_2 INODE_2_3 INODE_2_4 INODE_2_5 INODE_2_6 \
INODE_2_7 INODE_2_8 INODE_2_9 INODE_2_10} \
{INODE_1_1 INODE_1_2 INODE_1_3 INODE_1_4 INODE_1_5 INODE_1_6 \
INODE_1_7 INODE_1_8 INODE_1_9 INODE_1_10}}

s e t co re_wid th_min [expr $NODE_width∗10+ $BIT_he igh t +$BIT_core_gapX]
s e t c o r e _ h e i g h t _ m i n [expr $NODE_height∗10+ $BIT_he igh t +$BIT_core_gapX +\

[max $BIT_he igh t +$BIT_core_gapX $PFD_height]]

s e t c o r e _ w i d t h _ p a d _ d e f i n e d [expr $pad_width∗$pad_numberX \
− $ d e l t a _ c o r e _ d i e _ l e f t− $ d e l t a _ c o r e _ d i e _ r i g h t +2 ∗$ p a d _ h e i g h t]

s e t c o r e _ h e i g h t _ p a d _ d e f i n e d [expr $pad_width∗$pad_numberY \
−$ d e l t a _ c o r e _ d i e _ t o p−$ d e l t a _ c o r e _ d i e _ b o t t o m +2 ∗$ p a d _ h e i g h t]

i f { ($ c o r e _ w i d t h _ p a d _ d e f i n e d > $core_wid th_min) \
&& ($ c o r e _ h e i g h t _ p a d _ d e f i n e d > $ c o r e _ h e i g h t _ m i n) } {

puts " # Core d i m e n s i o n s a r e d e f i n d e b by pads "
puts " # Core d i m e n s i o n s : $ c o r e _ w i d t h _ p a d _ d e f i n e d $ c o r e _ h e i g h t _ p a d _ d e f i n e d "

f l o o r P l a n −s $ c o r e _ w i d t h _ p a d _ d e f i n e d $ c o r e _ h e i g h t _ p a d _ d e f i n e d \
[expr $ d e l t a _ c o r e _ d i e _ l e f t− $ p a d _ h e i g h t] \
[expr $ d e l t a _ c o r e _ d i e _ b o t t o m−$ p a d _ h e i g h t] \
[expr $ d e l t a _ c o r e _ d i e _ r i g h t− $ p a d _ h e i g h t] \
[expr $ d e l t a _ c o r e _ d i e _ t o p−$ p a d _ h e i g h t]

s e t d e l t a _ c o r e X [expr ($ c o r e _ w i d t h _ p a d _ d e f i n e d−$ c o r e _ w i d t h _ m i n) / 2]
s e t d e l t a _ c o r e Y [expr ($ c o r e _ h e i g h t _ p a d _ d e f i n e d−$ c o r e _ h e i g h t _ m i n) / 2]

241

puts " # d e l t a _ c o r e X = $ d e l t a _ c o r e X "
puts " # d e l t a _ c o r e Y = $ d e l t a _ c o r e Y "

} e l s e {
puts " # Core d i m e n s i o n s a r e d e f i n e d by t h e c i r c u i t s i z e "
puts " # Core d i m e n s i o n s : $co re_wid th_min $ c o r e _ h e i g h t _ m i n "
s e t d e l t a _ c o r e X 0
s e t d e l t a _ c o r e Y 0
f l o o r P l a n −s $co re_wid th_min $ c o r e _ h e i g h t _ m i n \

[expr $ d e l t a _ c o r e _ d i e _ l e f t− $ p a d _ h e i g h t] \
[expr $ d e l t a _ c o r e _ d i e _ b o t t o m−$ p a d _ h e i g h t] \
[expr $ d e l t a _ c o r e _ d i e _ r i g h t− $ p a d _ h e i g h t] \
[expr $ d e l t a _ c o r e _ d i e _ t o p−$ p a d _ h e i g h t]

}

s p e c i f y B l a c k B o x −c e l l NODE_V2 −s ize $NODE_width $NODE_height
s p e c i f y B l a c k B o x −c e l l NODE_V2_I −s ize $NODEI_width $NODEI_height
s p e c i f y B l a c k B o x −c e l l PFD_V2 −s ize $PFD_width $PFD_height
s p e c i f y B l a c k B o x −c e l l BIT_TOP −s ize $BIT_width $BIT_he igh t

p l a c e m e n t o f t h e NODEs
f o r { s e t i n 0} { $ i n < 10} { i n c r i n } {

f o r { s e t j n 0} { $ j n < 10} { i n c r j n } {
s e t yc [expr $ d e l t a _ c o r e _ d i e _ b o t t o m + $ d e l t a _ c o r e Y \

+ $BIT_he igh t +$BIT_core_gapY+$NODE_height∗$in]
s e t xc [expr $ d e l t a _ c o r e _ d i e _ l e f t + $ d e l t a _ c o r e X \

+ $BIT_he igh t +$BIT_core_gapX+$NODE_width∗$jn]
s e t NODE_coordX ($ i n , $ j n) $xc
s e t NODE_coordY ($ i n , $ j n) $yc
s e t c u r r e n t _ i n s t a n c e _ n a m e [l i n d e x $NODE_instance_name $ i n $ j n]
se tObjFP lanBox I n s t a n c e $ c u r r e n t _ i n s t a n c e _ n a m e $NODE_coordX ($ i n , $ j n) \
$NODE_coordY ($ i n , $ j n) [expr $NODE_coordX ($ i n , $ j n)+ $NODE_width] \
[expr $NODE_coordY ($ i n , $ j n)+ $NODE_height]

}
}

p l a c e m e n t o f t h e BIT_TOP: IBIT_1
(be tween t h e f i r s t node (t o p l e f t) and t h e r e f e r e n c e)
s e t yc [expr $ d e l t a _ c o r e _ d i e _ b o t t o m + $ d e l t a _ c o r e Y + $BIT_he igh t +$BIT_core_gapY \

+$NODE_height∗10+$BIT_core_gapY]
s e t xc [expr $ d e l t a _ c o r e _ d i e _ l e f t + $ d e l t a _ c o r e X + $BIT_he igh t +$BIT_core_gapX]
s e t BIT_TOP1_coordX $xc
s e t BIT_TOP1_coordY $yc
s e t c u r r e n t _ i n s t a n c e _ n a m e IBIT_1
se tObjFP lanBox I n s t a n c e $ c u r r e n t _ i n s t a n c e _ n a m e $BIT_TOP1_coordX $BIT_TOP1_coordY \

[expr $BIT_TOP1_coordX+$BIT_width] [expr $BIT_TOP1_coordY+ $ BIT_he igh t]

p l a c e m e n t o f t h e BIT_TOP: IBIT_2
(be tween t h e r e f e r e n c e and t h e node (5 , 5))

242 Appendix E. Tcl script for automatic floorplan of network

s e t yc [expr $ d e l t a _ c o r e _ d i e _ b o t t o m + $ d e l t a _ c o r e Y + $BIT_he igh t +$BIT_core_gapY \
+$NODE_height∗5−$BIT_width / 2]

s e t xc [expr $ d e l t a _ c o r e _ d i e _ l e f t + $ d e l t a _ c o r e X]
s e t BIT_TOP2_coordX $xc
s e t BIT_TOP2_coordY $yc
s e t c u r r e n t _ i n s t a n c e _ n a m e IBIT_2
se tObjFP lanBox I n s t a n c e $ c u r r e n t _ i n s t a n c e _ n a m e $BIT_TOP2_coordX $BIT_TOP2_coordY \

[expr $BIT_TOP2_coordX+$BIT_width] [expr $BIT_TOP2_coordY+ $ BIT_he igh t]
p l a c e i n s t a n c e $ c u r r e n t _ i n s t a n c e _ n a m e $BIT_TOP2_coordX $BIT_TOP2_coordY R90

p l a c e m e n t o f t h e BIT_TOP: IBIT_3
(be tween t h e nodes (10 , 5) and (10 , 6))
s e t yc [expr $ d e l t a _ c o r e _ d i e _ b o t t o m + $ d e l t a _ c o r e Y]
s e t xc [expr $ d e l t a _ c o r e _ d i e _ l e f t + $ d e l t a _ c o r e X + $BIT_he igh t +$BIT_core_gapX \

+$NODE_width∗5−$BIT_width / 2]
s e t BIT_TOP3_coordX $xc
s e t BIT_TOP3_coordY $yc
s e t c u r r e n t _ i n s t a n c e _ n a m e IBIT_3
se tObjFP lanBox I n s t a n c e $ c u r r e n t _ i n s t a n c e _ n a m e $BIT_TOP3_coordX $BIT_TOP3_coordY \

[expr $BIT_TOP3_coordX+$BIT_width] [expr $BIT_TOP3_coordY+ $ BIT_he igh t]
p l a c e i n s t a n c e $ c u r r e n t _ i n s t a n c e _ n a m e $BIT_TOP2_coordX $BIT_TOP2_coordY R180

p l a c e m e n t o f t h e BIT_TOP: IBIT_4
(be tween t h e r e f e r e n c e and t h e node (10 , 1 0))
s e t yc [expr $ d e l t a _ c o r e _ d i e _ b o t t o m + $ d e l t a _ c o r e Y + $BIT_he igh t +$BIT_core_gapY \

+$NODE_height∗10+$BIT_core_gapY]
s e t xc [expr $ d e l t a _ c o r e _ d i e _ l e f t + $ d e l t a _ c o r e X + $BIT_he igh t +$BIT_core_gapX+$NODE_width∗9]
s e t BIT_TOP4_coordX $xc
s e t BIT_TOP4_coordY $yc
s e t c u r r e n t _ i n s t a n c e _ n a m e IBIT_4
se tObjFP lanBox I n s t a n c e $ c u r r e n t _ i n s t a n c e _ n a m e $BIT_TOP4_coordX $BIT_TOP4_coordY \

[expr $BIT_TOP4_coordX+$BIT_width] [expr $BIT_TOP4_coordY+ $ BIT_he igh t]

List of Abbreviations and Symbols

Abbreviation Description Definition

SoC System-on-Chip page 1
SCA Synchronous Clocking Area page 3
GALS Globally Asynchronous Locally Synchronous page 3
GSLS Globally Synchronous Locally Synchronous page 3
PVT Process, supply Voltage and Temperature page 94
VCO Voltage Controlled Oscillator page 7
PLL Phase-Locked Loop page 5
ADPLL All-digital phase-locked loop page 7
DPC Digital Phase Comparator page 8
DLF Digital Loop Filter page 8
DAC Digital-to-Analog Converter page 8
DCO Digitally-Controlled Oscillator page 8
FO Filter/oscillator page 9
PI Proportional-Integral filter page 9
DFT Design-For-Test page 139
CTI Coarse-Tuning Inverter page 18
CTIA Coarse-Tuning Inverter Additional page 18
FTI Fine-Tuning Inverter page 19
DK Design Kit page 21
AMS Analog Mixed Signal page 22
LTI Linear Time-Invariant page 22
TSV Through-Silicon Via page 187
B2T Binary-to-Thermometer page 16
LUT Look-Up Table page 166
BB Bang-Bang page 11
PWM Pulse Width Modulation page 9
FCW Frequency Control Word page 70
VCD Voltage-Controlled Delay page 90
VCDE Voltage-Controlled Delay Element page 90
PDF Probability Density Function page 79
IP Intellectual Property page 130
TDC Time-to-Digital Converter page 11
PFD Phase-Frequency Detector page 9

243

244 List of Abbreviations and Symbols

Abbreviation Description Definition

CLA Carry Look-Ahead adder page 57
SPI Serial Programming Interface page 68
DDFS Direct Digital Frequency Synthesis page 110
ER Error Rate page 97
RFI Reference Frequency Indicator page 166

245

Symbol Description Definition

φ Phase of the periodic signal page 6
∆φ,ea,b Phase error page 6
F0 Minimal oscillation frequency of DCO page 63
∆ fDCO Oscillator tuning step page 39
fs frequency of digital filter page 38
Fre f Reference frequency page 9
α Proportional coefficient of PI filter page 17
β Integral coefficient of PI filter page 17
Kp Integer proportional parameter of PI filter page 17
Ki Integer integral parameter of PI filter page 17
τT DC TDC resolution page 15
eri[n] Quantified phase error page 11
∆Ff ine Fine frequency tuning step page 63
∆Fcoarse Coarse frequency tuning step page 63
τT DC TDC resolution page 15
∆T Timing error page 50
Kw Filter input weighting coefficients page 57
numKw divisor programmed in the filter page 58
TDCO, f pga DCO clock period in FPGA page 111
Fn,vlsi Nominal divided frequency of ASIC DCO page 112
Fn, f pga Nominal divided frequency of FPGA DCO page 112
∆Fn, f pga Frequency tuning step of FPGA DCO at nominal

frequency
page 112

τ f pga TDC resolution in FPGA page 114

Bibliography

[1] A. Abdelhadi, R. Ginosar, A. Kolodny, and E.G. Friedman. Timing-driven variation-aware
nonuniform clock mesh synthesis. In Proceedings of the Great Lakes Symposium on VLSI
(GLSVLSI), pages 15–20, 2010. [cited at p. xxiv, 2]

[2] J.M. Akre, J. Juillard, D. Galayko, and E. Colinet. Synchronization Analysis of Networks of
Self-Sampled All-Digital Phase-Locked Loops. 59(4):708–720, 2012. [cited at p. 8, 17, 23]

[3] J.M. Akre, J. Juillard, M. Javidan, E. Zianbetov, D. Galayko, A. Korniienko, and E. Colinet.
A Design Approach for Networks of Self-Sampled All-Digital Phase-Locked Loops. In Cir-
cuit Theory and Design (ECCTD), 2011 20th European Conference on, pages 725–728, 2011.
[cited at p. 17, 23]

[4] F. Anceau. Une technique de réduction de la puissance dissipée par l’horlogerie des circuits
complexes rapides Zones isochrones. Evolution. [cited at p. xxiv, 3]

[5] C.J. Anderson, J.G. Petrovick, J.M. Keaty, J. Warnock, G. Nussbaum, J.M. Tendier, C. Carter,
S. Chu, J. Clabes, and J. DiLullo. Physical design of a fourth-generation POWER GHz micro-
processor. In Solid-State Circuits Conference, 2001. Digest of Technical Papers. ISSCC. 2001
IEEE International, volume 13, pages 232–233. IEEE, 2001. [cited at p. xxiv, 2]

[6] Venkatesh Arunachalam and Wayne Burleson. Low-power clock distribution in a multilayer
core 3d microprocessor. In Proceedings of the 18th ACM Great Lakes symposium on VLSI,
pages 429–434. ACM, 2008. [cited at p. xlii, 187]

[7] Keith A Bowman, Carlos Tokunaga, Tanay Karnik, Vivek K De, and James W Tschanz. A 22
nm all-digital dynamically adaptive clock distribution for supply voltage droop tolerance. 2013.
[cited at p. 2]

[8] M. Cabanas-Holmen, E. Cannon, A. Kleinosowski, J. Ballast, J. Killens, and J. Socha. Clock
and Reset Transients in a 90 nm RHBD Single-Core Tilera Processor. IEEE Transactions on
Nuclear Science, 56(6):3505–3510, December 2009. [cited at p. xxiv, 2]

[9] A. Chakraborty, K. Duraisami, A. Sathanur, P. Sithambaram, L. Benini, A. Macii, E. Macii, and
M. Poncino. Dynamic Thermal Clock Skew Compensation Using Tunable Delay Buffers, 2008.
[cited at p. 2]

[10] Antonio H. Chan and Gordon W. Roberts. A jitter characterization system using a component-
invariant vernier delay line. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, 12(1):79–95, 2004. [cited at p. 80]

247

248 Bibliography

[11] Piotr Dudek, Stanislaw Szczepanski, and John V Hatfield. A high-resolution cmos time-to-
digital converter utilizing a vernier delay line. Solid-State Circuits, IEEE Journal of, 35(2):240–
247, 2000. [cited at p. 51, 80]

[12] S.E. Esmaeili, A.J. Al-Khalili, and G.E.R. Cowan. A novel approach for skew compensation in
energy recovery clock distribution networks, 2008. [cited at p. 2]

[13] R Franch, P Restle, N James, W Huott, J Friedrich, R Dixon, S Weitzel, K Van Goor, and
G Salem. On-chip timing uncertainty measurements on ibm microprocessors. In Test Confer-
ence, 2007. ITC 2007. IEEE International, pages 1–7. IEEE, 2007. [cited at p. xvii, xxvi, xxviii, 28,

80, 81]

[14] Floyd M Gardner. Phaselock techniques. John Wiley & Sons, 2005. [cited at p. 9, 41]

[15] V. Gutnik and A.P. Chandrakasan. Active GHz clock network using distributed PLLs. IEEE
Journal of Solid-State Circuit, 35:1553–1560, 2000. [cited at p. xxvii, 7, 108]

[16] Vadim Gutnik and Anantha Chandrakasan. On-chip picosecond time measurement. In VLSI
Circuits, 2000. Digest of Technical Papers. 2000 Symposium on, pages 52–53. IEEE, 2000.
[cited at p. 80]

[17] A. Hajimiri, S. Limotyrakis, and T.H. Lee. Jitter and phase noise in ring oscillators. IEEE
Journal of Solid-State Circuits, 34:790–804, 1999. [cited at p. 18]

[18] Jens U Horstmann, Hans W Eichel, and Robert L Coates. Metastability behavior of cmos
asic flip-flops in theory and test. Solid-State Circuits, IEEE Journal of, 24(1):146–157, 1989.
[cited at p. xxxvii]

[19] J.U. Horstmann, H.W. Eichel, and R.L. Coates. Metastability behavior of CMOS ASIC flip-flops
in theory and test. IEEE Journal of Solid State Circuits, 24(1):146–157, 1989. [cited at p. 85]

[20] H.Y. Hsieh, W. Liu, M. Clements, and P. Franzon. Self-calibrating clock distribution with
scheduled skews, 1998. [cited at p. 2]

[21] M. Javidan, E. Zianbetov, F. Anceau, D. Galayko, A. Korniienko, E. Colinet, G. Scorletti, J.M.
Akre, and J. Juillard. All-digital PLL array provides reliable distributed clock for SOCs. In Cir-
cuits and Systems (ISCAS), 2011 IEEE International Symposium on, pages 2589–2592. IEEE,
2011. [cited at p. xxiv, 3, 158]

[22] Mohammad Javidan, E Zianbetov, F Anceau, Dimitri Galayko, Anton Korniienko, Eric Col-
inet, Gérard Scorletti, Jean-Michel Akre, and Jérome Juillard. All-digital pll array provides
reliable distributed clock for socs. In Circuits and Systems (ISCAS), 2011 IEEE International
Symposium on, pages 2589–2592. IEEE, 2011. [cited at p. 174, 175]

[23] B. Jeon, Y. Moon, and T. Ahn. A study on 11 MHz ∼ 1537 MHz DCO using tri-state inverter
for DAB application. TENCON 2009 - 2009 IEEE Region 10 Conference, pages 1–5, November
2009. [cited at p. 18]

[24] Deog-Kyoon Jeong, Gaetano Borriello, David A Hodges, and Randy H Katz. Design of pll-
based clock generation circuits. Solid-State Circuits, IEEE Journal of, 22(2):255–261, 1987.
[cited at p. xvii, 91]

Bibliography 249

[25] R. Ji, L. Chen, G. Luo, X.X Zeng, J. Zhang, and Y. Feng. A Novel Low-Power Clock Skew
Compensation Circuit, 2008. [cited at p. 2]

[26] C. Johnson, D.H. Allen, J. Brown, S. Vanderwiel, R. Hoover, H. Achilles, C.Y. Cher, G.A. May,
H. Franke, and J. Xenedis. A wire-speed powerTM processor: 2.3 GHz 45nm SOI with 16 cores
and 64 threads. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010
IEEE International, volume 44, pages 104–105. IEEE, 2010. [cited at p. xxiv, 3]

[27] A. Korniienko, E. Colinet, G. Scorletti, and E. Blanco. HâĹd̄ loop shaping control for distributed
PLL network. In 2009 PhD Research in Microelectronics and Electronics, pages 336–339, 2009.
[cited at p. 17, 23]

[28] A. Korniienko, E. Colinet, G. Scorletti, E. Blanco, D. Galayko, and J. Juillard. A clock network
of distributed ADPLLs using an asymmetric comparison strategy, 2010. [cited at p. 17, 23]

[29] A. Korniienko, G. Scorletti, E. Colinet, E. Blanco, J. Juillard, and D. Galayko. Control law
synthesis for distributed multi-agent systems: Application to active clock distribution networks.
In Proceedings of the 2011 American Control Conference, pages 4691–4696. Laboratoire Am-
pere, UMR CNRS 5005, Ecole Centrale de Lyon, 36 Av. Guy de Collongue, 69134 Ecully
cedex, France, IEEE, 2011. [cited at p. 23, 57]

[30] Volodymyr Kratyuk, Pavan Kumar Hanumolu, Kartikeya Mayaram, and Un-Ku Moon. A 0.6
ghz to 2ghz digital pll with wide tracking range. In Custom Integrated Circuits Conference,
2007. CICC’07. IEEE, pages 305–308. IEEE, 2007. [cited at p. xix, 163, 164]

[31] Manoj Kumar, Sandeep K Arya, and Sujata Pandey. Low power digitally controlled oscillator
designs with a novel 3-transistor xnor gate. Journal of Semiconductors, 33(3):035001, 2012.
[cited at p. 17]

[32] Parag K Lala. Digital circuit testing and testability. Academic press, 1997. [cited at p. 139]

[33] P.M. Levine and G.W. Roberts. A high-resolution flash time-to-digital converter and calibration
scheme. In Test Conference, 2004. Proceedings. ITC 2004. International, pages 1148–1157,
2004. [cited at p. 15]

[34] Jacob Minz, Xin Zhao, and Sung Kyu Lim. Buffered clock tree synthesis for 3d ics under
thermal variations. In Proceedings of the 2008 Asia and South Pacific Design Automation Con-
ference, pages 504–509. IEEE Computer Society Press, 2008. [cited at p. xlii, 187]

[35] Mosin Mondal, Andrew J Ricketts, Sami Kirolos, Tamer Ragheb, Greg Link, Narayanan Vi-
jaykrishnan, and Yehia Massoud. Thermally robust clocking schemes for 3d integrated circuits.
In Design, Automation & Test in Europe Conference & Exhibition, 2007. DATE’07, pages 1–6.
IEEE, 2007. [cited at p. xlii, 187]

[36] T. Olsson and P. Nilsson. A digitally controlled PLL for SoC applications. IEEE Journal of
Solid-State Circuits, 39:751–760, 2004. [cited at p. 18]

[37] I Miro Panades, Alain Greiner, and Abbas Sheibanyrad. A low cost network-on-chip with
guaranteed service well suited to the gals approach. Proc. NANONET, 2006. [cited at p. 3]

250 Bibliography

[38] Vasilis F Pavlidis, Ioannis Savidis, and Eby G Friedman. Clock distribution networks for 3-d
ictegrated circuits. In Custom Integrated Circuits Conference, 2008. CICC 2008. IEEE, pages
651–654. IEEE, 2008. [cited at p. xix, xlii, xliii, 187, 188]

[39] G.A. Pratt and J. Nguyen. Distributed synchronous clocking. IEEE Transactions on Parallel
and Distributed Systems, 6:314–328, 1995. [cited at p. xxvi, 5, 6, 24, 26, 36]

[40] Greg Rose. A stream cipher based on linear feedback over gf (2 8). In Information Security and
Privacy, pages 135–146. Springer, 1998. [cited at p. 168]

[41] S. Rusu, S. Tam, H. Muljono, D. Ayers, J. Chang, B. Cherkauer, J. Stinson, J. Benoit, R. Varada,
and J. Leung. A 65-nm dual-core multithreaded XeonÂő processor with 16-MB L3 cache. Solid-
State Circuits, IEEE Journal of, 42(1):17–25, 2007. [cited at p. xxiv, 3]

[42] S. Rusu, S. Tam, H. Muljono, J. Stinson, D. Ayers, J. Chang, R. Varada, M. Ratta, S. Kottapalli,
and S. Vora. A 45 nm 8-core enterprise Xeon processor. Solid-State Circuits, IEEE Journal of,
45(1):7–14, 2010. [cited at p. xxiv, 3]

[43] Stefan Rusu, Harry Muljono, David Ayers, Simon Tam, Wei Chen, Aaron Martin, Shenggao
Li, Sujal Vora, Raj Varada, and Eddie Wang. 5.4 ivytown: A 22nm 15-core enterprise xeon R©
processor family. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014
IEEE International, pages 102–103. IEEE, 2014. [cited at p. 7]

[44] M. Saint-Laurent and M. Swaminathan. A multi-PLL clock distribution architecture for gi-
gascale integration. Proceedings IEEE Computer Society Workshop on VLSI 2001. Emerging
Technologies for VLSI Systems, pages 30–35, 2001. [cited at p. 26]

[45] M. Saint-Laurent, P. Zarkesh-Ha, M. Swaminathan, and J.D. Meindl. Optimal clock distribution
with an array of phase-locked loops for multiprocessor chips. Proceedings of the 44th IEEE
2001 Midwest Symposium on Circuits and Systems. MWSCAS 2001 (Cat. No.01CH37257),
1:454–457, 2001. [cited at p. 26]

[46] J.P. Schoellkopf. Circuit indicating the phase relation between several signals having the same
frequency, 1996. [cited at p. 2]

[47] G. Scorletti and G. Duc. An LMI approach to dencentralized HâĹd̄ control. International
Journal of Control, 74(3):211–224, 2001. [cited at p. xv, 24]

[48] R. Senthinathan, S. Fischer, H. Rangchi, and H. Yazdanmehr. A 600 MHz IA-32 microprocessor
with enhanced data streaming for graphics and video, 1999. [cited at p. 2]

[49] C. Shan, E. Zianbetov, M. Javidan, F. Anceau, M. Terosiet, S. Feruglio, D. Galayko, O. Ro-
main, E. Colinet, and J. Juillard. FPGA implementation of reconfigurable ADPLL network for
distributed clock generation. In 2011 International Conference on Field-Programmable Tech-
nology, pages 1–4. Ieee, December 2011. [cited at p. 128]

[50] Chuan Shan, Francois Anceau, Dimitri Galayko, and Eldar Zianbetov. âĂIJswimming poolâĂİ-
like distributed architecture for clock generation in large many-core soc. In Circuits and Systems
(ISCAS), 2014 IEEE International Symposium on, pages 2768–2771. IEEE, 2014. [cited at p. 3]

Bibliography 251

[51] Chuan Shan, Dimitri Galayko, and François Anceau. Design and modeling of adpll with sliding-
window for wide range frequency tracking. In New Circuits and Systems Conference (NEW-
CAS), 2012 IEEE 10th International, pages 269–272. IEEE, 2012. [cited at p. 182]

[52] Chuan Shan, E Zianbetov, Mohammad Javidan, F Anceau, M Terosiet, S Feruglio, Dimitri
Galayko, Olivier Romain, Eric Colinet, and Jérôme Juillard. Fpga implementation of recon-
figurable adpll network for distributed clock generation. In Field-Programmable Technology
(FPT), 2011 International Conference on, pages 1–4. IEEE, 2011. [cited at p. 77, 108]

[53] Chuan Shan, Eldar Zianbetov, Weiqiang Yu, Francois Anceau, Olivier Billoint, and Dimitri
Galayko. Fpga prototyping of large reconfigurable adpll network for distributed clock genera-
tion. In Reconfigurable Computing and FPGAs (ReConFig), 2013 International Conference on,
pages 1–6. IEEE, 2013. [cited at p. 128]

[54] Youngmin Shin, Ken Shin, Prashant Kenkare, Rajesh Kashyap, Hoi-Jin Lee, Dongjoo Seo,
Brian Millar, Yohan Kwon, Ravi Iyengar, Min-Su Kim, et al. 28nm high-metal-gate heteroge-
neous quad-core cpus for high-performance and energy-efficient mobile application processor.
In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE Interna-
tional, pages 154–155. IEEE, 2013. [cited at p. 2]

[55] R.B. Staszewski, J.L. Wallberg, S. Rezeq, C.M. Hung, O. Eliezer, S. Vemulapalli, C. Fernando,
K. Maggio, R. Staszewski, N. Barton, M.C. Lee, P. Cruise, M. Entezari, K. Muhammad, and
D. Leipold. All-Digital PLL and Transmitter for Mobile Phones. Technology, 40(12):2469–
2482, 2005. [cited at p. 7]

[56] Robert Bogdan Staszewski, Dirk Leipold, Khurram Muhammad, and Poras T Balsara. Digitally
controlled oscillator (dco)-based architecture for rf frequency synthesis in a deep-submicrometer
cmos process. Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transac-
tions on, 50(11):815–828, 2003. [cited at p. 17]

[57] Simon Tam, Justin Leung, Rahul Limaye, Sam Choy, Sujal Vora, and Mitsuhiro Adachi. Clock
generation and distribution of a dual-core xeon processor with 16mb l3 cache. In Solid-State
Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers. IEEE International, pages
1512–1521. IEEE, 2006. [cited at p. 77]

[58] Paul Teehan, Mark Greenstreet, and Guy Lemieux. A survey and taxonomy of gals design
styles. Design & Test of Computers, IEEE, 24(5):418–428, 2007. [cited at p. 3]

[59] J.A. Tierno, A.V. Rylyakov, and D.J. Friedman. A wide power supply range, wide tuning range,
all static CMOS all digital PLL in 65 nm SOI. IEEE Journal of Solid-State Circuits, 43:42–51,
2008. [cited at p. xv, 12, 13, 18]

[60] José A Tierno, Alexander V Rylyakov, and Daniel J Friedman. A wide power supply range,
wide tuning range, all static cmos all digital pll in 65 nm soi. Solid-State Circuits, IEEE Journal
of, 43(1):42–51, 2008. [cited at p. xix, 164, 165]

[61] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez. Reducing power in high-
performance microprocessors. In Proceedings of the 35th annual Design Automation Confer-
ence, pages 732–737. ACM, 1998. [cited at p. 2]

252 Bibliography

[62] Y. Wang, J. Yu, Y. Surya, and C. Huang. A compact delay-recycled clock skew-compensation
and/or duty-cycle-correction circuit, 2011. [cited at p. 2]

[63] R.B. Watson and R.B. Iknaian. Clock-buffer-chip with multiple-target automatic skew compen-
sation, 1995. [cited at p. 2]

[64] John V Wehausen and Edmund V Laitone. Surface waves. Springer, 1960. [cited at p. 153]

[65] Jan Wilstrup. A method of serial data jitter analysis using one-shot time interval measure-
ments. In Test Conference, 1998. Proceedings., International, pages 819–823. IEEE, 1998.
[cited at p. xxvi, 80]

[66] L. Xiu. VLSI circuit design methodology demystified: a conceptual taxonomy. Wiley-IEEE
Press, 2008. [cited at p. 139]

[67] Liming Xiu, Wen Li, Jason Meiners, and Rajitha Padakanti. A novel all-digital pll with software
adaptive filter. Solid-State Circuits, IEEE Journal of, 39(3):476–483, 2004. [cited at p. 173]

[68] Takahiro J Yamaguchi, Mani Soma, Masahiro Ishida, Toshifumi Watanabe, and Tadahiro Ohmi.
Extraction of peak-to-peak and rms sinusoidal jitter using an analytic signal method. In VLSI
Test Symposium, 2000. Proceedings. 18th IEEE, pages 395–402. IEEE, 2000. [cited at p. xxvi, 80]

[69] T. Yamashita, T. Fujimoto, and K. Ishibashi. A dynamic clock skew compensation circuit tech-
nique for low power clock distribution, 2005. [cited at p. 2]

[70] Alfred Yeung, Hamid Partovi, Qawi Harvard, Luca Ravezzi, John Ngai, Russ Homer, Matthew
Ashcraft, and Greg Favor. 5.8 a 3ghz 64b arm v8 processor in 40nm bulk cmos technology. In
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International,
pages 110–111. IEEE, 2014. [cited at p. 2]

[71] M. Yuffe, M. Mehalel, E. Knoll, J. Shor, T. Kurts, E. Altshuler, E. Fayneh, K. Luria, and M. Ze-
likson. A Fully Integrated Multi-CPU, Processor Graphics, and Memory Controller 32-nm
Processor. Solid-State Circuits, IEEE Journal of, (99):1–1, 2011. [cited at p. xxiv, 3]

[72] Jun Zhao and Yong-Bin Kim. A 12-bit digitally controlled oscillator with low power con-
sumption. In Circuits and Systems, 2008. MWSCAS 2008. 51st Midwest Symposium on, pages
370–373. IEEE, 2008. [cited at p. 17]

[73] E Zianbetov, F Anceau, Mohammad Javidan, Dimitri Galayko, Eric Colinet, Jérôme Juillard,
et al. Design and vhdl modeling of all-digital plls. In Proceedings of the 8th IEEE International
NEWCAS Conference (NEWCAS’10), pages 293–296, 2010. [cited at p. 163, 174]

[74] Eldar Zianbetov. Distributed clocking for synchronous SoC. PhD thesis, UPMC, 2013.
[cited at p. 53, 71]

