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Chapter 1

Introduction

This first chapter will present the context and objectives of the the-
sis. It begins with some explanations about the driven Rotary Fric-
tional Welding (RFW) and the current Finite Element (FEM) mod-
els. It also contains a state of the art related to the most common
meshless methods and their limitations to model the friction welding

processes.
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1 Direct Driven Rotary Friction Welding Process
(RFW)

1.1 Context

This thesis is a part of an industrial project aiming to develop a direct driven
Rotary Friction Welding (RFW) machine able to weld large parts. This project
involved two companies, ACB [http://www.acb-ps.com| and Jeumont Electric
[http://www.jeumontelectric.com|, and three laboratories, the GeM (Institut de
recherche en Genie civil et Mécanique) institute, the IMN (Instutut des matériaux
de Nantes) institute and the LAMPA (Laboratoire Arts et Métiers ParisTech
d’Angers) institute.

The project was build around two observations. First, the current industrial REFW
machines are not sufficient to cover the needs of the aeronautical industry such as
the need to weld large parts together in order to build larger engines for instance.
Then, even if there are a lot of manufacturer in the world, only two of them can
be considered as main manufacturers. This situation has been considered as an
opportunity to propose an alternative to existing industrial solutions.

A consortium was created in order to build this alternative. It has three main
objectives. The first one is to develop a pole of industrial and academical expertise
by the collaboration of the previously mention organisms. The second one is to
develop RFW applications in the aeronautical industry by building larger machines
with a more accurate control of the process than any other market offer. The last
one is to propose an industrial alternative allowing ACB to become a global actor
in the friction welding domain thanks to the experience of the consortium gained
since 2007 with the work on the linear friction welding process.

In this context, a meshless method based on the Local Maximum Entropy (LME)
approach is proposed to deal with coupled thermo-mechanical phenomena includ-
ing contact conditions and large deformations. This type of approach avoids the
issues related to the remeshing steps in the Finite Element Method (FEM) and the
subsequent degradation of the temperature fields for example. This last point is
crucial in the case of the RFW modeling to ensure the quality of the prediction of
the metallurgical state of the material after the welding.

1.2 The RFW process

Rotary Friction Welding (RFW) has been industrially exploited for more than sixty
years and is still the most widely used of friction technologies. The first patent
about RFW was taken out in 1891 in the US. However, the first experiments with
the welding of two metals were only realized in 1940. In 1945, Caterpillar has
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4 Introduction

developed the inertial RFW process which uses a pre-loaded inertia wheel to have
the power required by the welding. In 1960, RFW was used in the US to weld the
oil drilling rods and the first industrial machine was made in 1961. In the 70s, the
direct driven RFW was used in aeronautical industry and in the 90s, the inertial
RFW process was used for the largest parts.

The RFW process allows to weld two different parts of which one at least has a
cylindrical shape. The direct driven process may be divided into four stages:

@ . ROTATING PART
FIXED PART ~ FORCE :\ FIXED PART

ROTATING PART

NOTATING PART

FIXED PART

Figure 1.1: The four stages of the RFW process

Stage 1:
The two parts are put in the machine: the cylindrical one in a spindle and the
other one in a stationary vice. The spindle is attached to the motor and is put
to a prescribed rotary speed.

Stage 2:
Initial contact. A pre-determined pressure is applied at the bottom of the
rotating part and puts the two parts in contact. The contact is maintained
until the friction removes the surface irregularities. The frictional heating
starts.

Stage 3:
The mechanical energy is converted into heat energy and mechanical deforma-
tion to increase the temperature at the welding interface. This temperature is
generally very close to the melting temperature and a plasticized layer is cre-
ated at the interface. The incompressibility of this layer leads to the formation
of flashes, which leads to the component shortening, also called upset.

Stage 4: Forge.
The motor is stopped. A larger force is applied in order to end the welding

LME interpolation approach for coupled thermo-mechanical problems
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by removing the last remaining impurities via the flashes. The temperature is
decreasing. After a certain time, the components are unloaded and removed
from the machine for the final cooling-down.

CEMENTED

i)

I
Ml
EL AL

MALVE MATERIAL (AUTOMOGTIVE]
HICREL

| ELT

STEEL — SINTERED

ZIRCONIUM ALLOYS
TUNGSTEN CARBI
N
STEEL — TOOL _
STEEL — STAINLESS,
| [5TERL — MARAGING
STEEL — FAEE MACHINING
STEEL — CARBON
TEEL — ALLOY!
SILVER ALLOYS
ML
MAGNESIUM ALLOYS
MAGNESIIM

LIRLARLING

RIDERIM ALLOYS

K

N

M

MOLY

IRCN SINTERED

LCOPPER MICKEL

COLLMBILISA
RAMI

CAST IR

CARBIDES CEMENTED

E
TITANLIM ALLOYS

ALLIMINUM
ALUMINLIM ALLOYS.
BRASS I
BRONZE

CARBIDES CEMENTED
CAST IRON

CERAMIC

COBALT

COLUMBIUM

COFPER

COPPER MIGREL

IRON SINTERED

LEAD

MAGNESILM

TITANIIM
Ti ILIN
| [ TanTaLina

.
-
",

MAGNESILUM ALLOYS
MOLYBDENUM
MDNEL
NICKEL
NICKEL ALLOYS
HIMONIC
NIDBILM
RIQBILM ALLOYS

IVER
SIVER ALLOYS
STEEL — ALLOYS
STEEL — CARBON
STEEL — FREE MACHINING
STEEL — MARAGING
STEEL — SINTERED
STEEL _ STAINLESS
STEEL _ TOOL [ FULL STRENGTH METALLURGICAL BOND. (IN SGME
TANTALUM CASES IT MAY BE NECESSARY TO PERFORM AN
THORIUM APPROPRIATE POST WELD HEAT TREATMENT TO
TITANSLINM REALIZE THE FULL WELD STRENGTH )
TITANIUM ALLOYS
;:_',mr';tﬁ TARBIOE CENERTED [d CAN BE FRICTION WELDED. BUT WILL NOT PRO
UMHM,UM DUCE A FULL STRENGTH BOND
VANADIUA
WALVE MATERIAL AL TOMOTIVE
TRCONIUM ALLOYS

Figure 1.2: Weldable materials [www.ardindustries.com|

Compared to other welding processes, such as TIG (Tungsten Inert Gas), EBW
(Electron Beam Welding), plasma and laser, RFW has many advantages. First
of all, there is no porosity default at the interface since they are all ejected in the
flashes. Then, there is no material addition and the welding is of forged type. Hence
the characteristics of the welding are in general at least as good as the one of the
welded materials separately. The microstructure of the welding area is of wrought
type, which means that unweldable material can be welded such as Nickel superalloy.
It is also possible to weld together different materials as shown on figure 1.2.
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6 Introduction

1.3 Current RFW modeling using Finite Elements Method
(FEM)

The mechanical computation of the RFW process using a Finite Element (FEM)
approach is now relatively well known. At the beginning, studies used to consider
only a purely thermal model. In 1990, Sluzalec [Stuzalec, 1990] modeled the driven
RFW considering the thermo-mechanical coupling. During the last twenty years,
numerous researches have also been conducted considering the coupling for the
inertia RFW process [Soucail et al., 1992] [Moal and Massoni, 1995]. Commercial
codes, like Abaqus for instance [Simulia Abaqus, 2010], propose the necessary
scripts to "easily" run the coupled thermo-mechanical computation using FEM.

1,78 231s  3,51s 5,00s

Figure 1.3: Remeshing steps during Abaqus computation of RFW
[Simulia Abaqus, 2010]

The results obtained with FEM are close enough to experimental data to be con-
sidered as a reliable prediction, even when the welding of two dissimilar materials
is modeled [D’Alvise et al., 2002].

However, standard FEM may not be the most adapted method to model this process
since they also present some drawbacks. Indeed, the thermo-mechanical coupling
has a very important role and requires a high accuracy level, which the FEM might
not reach because of the large deformations.

To handle the large deformations, FEM computations proceed to a certain number of
remeshing steps as shown on figure 1.3. Studies put in evidence that in general, adap-
tive meshes may give reasonable prediction but may also totally miss certain physi-

LME interpolation approach for coupled thermo-mechanical problems



Objectives of this work 7

cal phenomena such as wrinkling and shear band phenomena [Lee and Bathe, 1994].
Moreover, the accuracy on the thermal field might not be sufficient for metallurgy
purpose.

2 Objectives of this work

Control of the direct driven RFW process is achieved by manipulating three main
operating parameters: the rotary speed w(t), the torque N(t) and finally the pressure
P(t) applied on the bottom of the rotary part. The use of experimental trials
to determine optimum process parameters has proven effective but a substantial
number of test pieces are required to find the good settings. The empirical approach
is expensive and lacks flexibility in term of geometry and design optimization.
Finite Element computations are effective but require a substantial number of
remeshing steps, which represent a loss of time but also a loss of accuracy because
of the transfer of the different fields from the old mesh to the new one.

On the other hand, meshless methods have some superiors features compared to
conventional grid-based methods such as FEM. The most relevant argument in this
context is that meshless methods can easily handle large deformation because of
the absence of any mesh: they need no mesh generation, suffer no mesh distortion
nor mesh alignment sensitivity and no remeshing are necessary. The other main
advantages are the high smoothness of the shape functions, the generally better
convergence and finally that the volumetric locking may be alleviated by tuning the
dilation parameter of the kernel function.

The aim of this study is to develop and propose a meshfree approach based on
the Local Maximum Entropy method (LME). This approach must be able to pre-
dict the temperature, heat affected zone dimensions, material shortening (upset),
stress, residual stress and strain fields. This code should bring to the industry a
representation correct enough to be able to perform microstructure studies.

LME basis functions have been used in computational mechanics for only a few
years but already provide very impressive results, especially in the modeling of
high velocity impacts in the Optimal Transportation Method (OTM) of Li et al.
[Li et al., 2010]. Therefore, it is expected that a LME approach should give good
results in the modeling of the REW.

3 Meshless approximations

A multitude of different meshless methods has been published in the last decades.
Despite the number of methods, there are significant similarities between many of
them and the major difference lies in the manner of constructing the approximation
of a single function u(x) in the domain based on a set of scattered nodes. This
section will describe the most common approximations used for meshless methods.
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Cueto and Chinesta [Cueto and Chinesta, 2013] recently made a review about the
efficiency of different meshless methods for the simulation of material forming.

3.1 Smooth Particle Hydrodynamics (SPH)

Smooth Particle Hydrodynamics (SPH) has been introduced in 1977 by Lucy
[Lucy, 1977| and Gingold and Monaghan [Gingold and Monaghan, 1977] and is one
of the earliest particle method. SPH basically consists in approximating a function
u(z) on a domain ) by a convolution.

uh(z) = /Qcpq>("” ; Yyuly)dy (1.1)

where u" is the approximation of u, ® is a function defined on a compact usually
called weight, window function or kernel function and p is the dilation parameter.
C, is called normality property of the window function and is a constant such that

/ Cpq)(%)dy ~1 (1.2)

The discrete SPH form is obtained using numerical quadratures

Tr — x,
P

u'(x) = ZCqu( YUqWa (1.3)

where x, are the nodes called particles and w, are the weights of the associated
quadrature. u, = u(x,) is the value of the original function u at particle x,.
The discrete window function is defined by

xr—x,

p ) (1.4)

Therefore, the SPH meshless approximation can be defined by

w(x — x4, p) = Cpd(

up(@) =Y Na(a)ug (1.5)

with the approximation basis N,(x) = w(x — x4, p)wa-
The window function ® plays an important role in this meshless method. It is
required to satisfy the following conditions [Monaghan, 1982]:

— w(x — x4, p) > 0 on a subdomain €, of Q;
— w(x — x4, p) = 0 outside of the subdomain €,;

— w(x — x4, p) = I(x — x,) the Dirac function as p — 0;

(
(
(
(

., p) is a monotonically decreasing function.

\
g
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The three most commonly used window functions are the cubic spline, (Gaussian and
quartic spline. For example, let d, = ||x — x,||, r = d,/d**® with d*** the size of
the support of the a-th particle. The window functions can be written as a function
of the normalized radius r:

2 —4r? 440 forr <1
cubic spline : w(r) =49 3 —4r+4r2 —3r%  for i <r<1 (1.6a)
0 for r > 1
exp(—(ar)?)—exp(—a?) <
Gaussian: w(r) = 1-exp(—a?) for r < 1 (1.6b)
0 for r > 1
a2 3_ 9.4 <
quartic spline: w(r) = { (1) Or” + 8t = 3r igi 77: > 1 (1.6¢)

Even if the continuous form of SPH meshless approximation is zeroth-order complete
and most of the window functions satisfy higher order consistency condition, the
discrete SPH form is not able of even reproducing constant fields and hence, is not
a partition of unity. The conditions for zeroth-order and first order consistency are:

> Na(w) =1 (1.7a)

> No(w)z, = (1.7b)

Consistency is generally necessary for convergence, which directly contributes to the
interpolation error. Corrections must be made to the window functions for conver-
gence and accuracy of SPH method. Numerous improvements have been developed
to fulfill the completeness: Johnson-Beissel correction [Johnson and Beissel, 1996],
Randles-Libersky correction [Randles and Libersky, 1996], Krongauz-Belytschko
correction |Belytschko et al., 1998], Monaghan’s symmetrization on derivative ap-
proximation [Monaghan, 2005], etc. However, most of the analysis related to the
convergence, stability and accuracy properties are based on uniformly distributed
particles and the results obtained by such analysis are often limited to idealized
circumstances. In general cases implying large deformations where the particles are
disordered, the obtained results may not always be reliable since the effect of the
particle irregularity on the accuracy of the solution is not very clear.

Moreover, the SPH shape functions are not interpolant since u”(z,) # u, and they
do not verify the Kronecker delta property:

No(s) # Oat (1.8)

Thus it is not easy to apply boundary conditions on nodes, which is absolutely nec-
essary for the use of meshless method in solid mechanics, without special techniques.

LME interpolation approach for coupled thermo-mechanical problems
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3.2 Moving Least Squares (MLS)

The objective of the Moving Least Squares (MLS) is to obtain an approximation
based on an array of nodes in the considered domain, but with high accuracy
and high order of completeness. The MLS method was first introduced in curve
and surface fitting by Lancaster and Salkauskas |Lancaster and Salkauskas, 1981]
and then in solid mechanics in the diffuse element method by Nayroles et al.
[Nayroles et al., 1992]. Other studies and applications are made in the Element-
Free Galerkin (EFG) methods by Belytschko et al. |Belytschko et al., 1994]. Ba-
sically MLS is about approximating u(x) through a polynomial of order m with
non-constant coefficients in the domain:

u'(z) = Zpi(w)bi(w) =p' (x)b() (1.9)

where po(x) = 1 and p;(x) are monomials in the space coordinates & =
(21, ...,749)7 € R? so that the basis is complete. For example, in one dimension,
a complete polynomial p of order m is

p(z) = (1,z,2% ..., 2™ (1.10)

and b(z) is given by

b(x) = (bo(z), by (), by (), ..., by ()T (1.11)

where the unknown parameters b;(x) at any given point are determined by minimiz-
ing the difference of a weighted discrete Lo-norm between the local approximation
at that point and the nodal parameter u, as follow:

i%fJ with J = Zw(a; _ wa)(uh<wa) o ua)Q
i (1.12)
= Z w(x — x,) (P’ (2,)b(x) — uy)?

where w(x — x,) is a window function with compact support as mentioned in SPH
methods, n is the number of nodes in the neighborhood of ® and u, is the nodal
value of u at @ = x,. The stationarity of J in equation 1.12 with respect to b(z)
leads to a linear relationship between b(x) and wu,:

b(x) = A (z)B(x)u (1.13)
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Meshless approximations 11

where
A(x) = wa(z)p(z) © p(a) (1.14a)
B(z) = [wi(@)p(x1), wa(@)p(22), ...\ wn(@)p(@n)]" (1.14b)
w = [ug, Uy, ..., )" (1.14c)

Hence, the approximation u"(x) is

u'(x) =Y " No(x)u, (1.15)

where the shape function related to node a is

No(z) = Zpi(m)(A_l(w)B(w))m (1.16)

The MLS approximation perfectly reproduces all the polynomials in p(x). There-
fore, the consistency of order m is satisfied by the MLS approximation if the basis is
complete in the polynomials of order m. However, the main drawback of the MLS is
the efficiency: in order to obtain an accurate shape function and compute the inverse
matrix A~!, the number of nodes in the influence domain is usually much greater
than the number of monomials in the polynomial basis, especially in two or three
dimensions. It also must be noted that MLS does not satisfy the Kronecker delta
criterion either, therefore associated shape functions are not interpolant: the nodal
parameters u, are not the nodal values of u"(x,) and the approximation on the
boundary of the domain may depend on the nodal data of interior nodes. Just like
SPH, this property makes the imposition of boundary conditions more complicated
than with finite elements.

3.3 Reproducing Kernel Particle Method (RKPM)

The Reproducing Kernel Particle Method (RKPM) introduced by Liu et al.
[Liu et al., 1995] is an improvement of the continuous SPH approximation. A cor-
rection function C(x, y) is introduced into equation 1.1 in order to increase the order
of completeness of the approximation

-y
(@)= [ Cla ey (1.17)
Q
where K(x,y) = C(z,y)w(x —y, p) is defined such that the approximation is m-th
order consistent. Suppose that p(x) is a complete array of monomial up to m-th

order. Then any m-th order polynomials can be written

u(x) = p’(x)b (1.18)
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where b are the unknown coefficients. Then

/Qp(y) (—y,p)u(y)dy = (/Qp(y)pT(y)w(w—y,p)dy> b (1.19)

which is a system of equations for b. A substitution in equation 1.18 leads to

u%wzpwm(Ap@mﬂwwm—ymw4y mew@—ymw@wyuzm

Thus the correction function is

IS
B
L
3
S

C(z,y) = p' (z) (/Q p(y)p’ (y)w(z -y, p)dy> e p' () (

(1.21)
The discrete RKPM form is obtained using numerical quadratures
= Z O, To)w(T — X4 Ugwy
(1.22)

= p ZP "Ba -CC - wa)uawa

Numerical integration is also required to evaluate the moment matrix M (x)

M (z) =/ w(@ — g, p)p(y)p" (v)dy

2: 20 p)p(@ )P (@)

(1.23)

Just like the SPH approximation, RKPM does not verify the Kronecker delta prop-
erty and special techniques are needed to impose essential boundary conditions such
as described by Chen [Chen et al., 1997].

3.4 Natural Element Method (NEM)

The Natural Element Method (NEM) introduced by Sukumar [Sukumar, 1998]
[Sukumar and Moran, 1999] [Sukumar et al., 2001| is the first really successful at-
tempt for a method free of error in the interpolation of the essential variable along
the boundary. The NEM was originally a Galerkin method in which the interpolation
was achieved through natural neighbor (NN) methods [Sibson, 1980] [Sibson, 1981]
[Belikov et al., 1997] [Belikov and Semenov, 2000]. More recently, a book has been
written by Chinesta et al. [Chinesta et al., 2013] about the use of the NEM in the
simulation of structures and processes.
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As Element Free Galerkin Method (EFGM) [Belytschko et al., 1994|, NEM con-
structs the connectivity of each material point using the concept of Delaunay tri-
angulation. The advantage of the NEM is the good accuracy provided despite the
distortion of this triangulation, as proved by Sukumar [Sukumar, 1998|. The De-
launay triangulation |Delaunay, 1934| of a cloud of nodes X = {x,, xs, ..., z,} C R?
is the unique triangulation of the cloud that satisfy the so-called circumcircle crite-
rion. The dual structure of the Delaunay triangulation is the Voronoi diagram. It
is composed by a tessellation of the space into cells of the form

T,, ={x € R" | Vb #a, dx,x,) < d(x,x)} (1.24)

where T, represents the Voronoi cell and d(.,.) the Euclidean distance. The most
popular natural neighbor (NN) interpolant is due to Sibson [Sibson, 1981]. Consider
the second-order Voronoi cell:

Typzy ={x € R" | Ve & {a,b}, d(x,x,) < d(x, ) < d(x, x.)} (1.25)
Then the Sibsonian shape function is defined as

bula) = 5

where A,(z) is the Lebesgue measure of the cell T, ,, and A(z) = Y I A, (x) is
the Lebesgue measure of the cell T,.

The NN interpolation defined by these shape functions has remarkable properties.
First, the partition of unity property is verified:

(1.26)

PRACIES (1.27)

The partition of unity property implies the non-negativity and convexity of trial
function:
0 < ¢a(x) <1 (1.28)

Moreover, the cardinal, or Delta-Kronecker, property is fulfilled and the shape func-
tions are interpolant:

ba(@p) = Oap , U (®a) = g (1.29)

The linear completeness property (it can exactly reproduces linear displacement
fields) is also verified:

x = Zgzﬁa(:z:):ca (1.30)

The supports of the shape functions are compact, and hence a local interpolation
scheme is realized. Finally, the shape functions are smooth (C') everywhere except
at the nodes where they are simply continuous (C°).
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Despite the interesting properties of NN interpolation, the main drawback of NEM
is its high computational cost, especially for Sibson interpolation. An analysis
of the computational cost of several meshless method was made by Alfaro et al.
[Alfaro et al., 2006]. It is shown that mesh distortion could lead to important inac-
curacies when using FEM while Sibson interpolation is several orders of magnitude
heavier to compute than traditional piecewise polynomial shape functions for finite
elements. However, in non-linear computations, while frequent Newton-Raphson
iterations are needed, the relative cost of shape function is obscured by the cost of
updating tangent stiffness matrix.

3.5 Material Points Method (MPM)

The Material Point Method (MPM) introduced by Sulsky et al
[Sulsky et al., 1993] [Sulsky et al., 1995] is an extension of the particle-in-cell
method [Evans et al., 1957]. This method is not about interpolating but about
being able to consider the history dependency of the constitutive equations in a
broad class of engineering problems such as penetration, impact or large rotations
of solid bodies. It is a discrete solution procedure for computational solid mechanics
which is generalized using a variational form and a Petrov-Galerkin discretization
scheme, resulting in a family of methods named the Generalized Interpolation
Material Point (GIMP) |Bardenhagen and Kober, 2004]. The essential idea is
to take advantage of both the Eulerian and Lagrangian methods, which can be
summarized as follows.

If a continuous material under a purely mechanical loading is considered, the gov-
erning differential equations can be derived from the conservation equation of mass
dp

halis L = 1.31
dt+va 0 (1.31)

and the conservation equation of momentum
pa =V -s+ pb (1.32)

supplemented with a suitable constitutive equation and kinematic relations between
strain and displacement. In the equations 1.31 and 1.32, p(x,t) refers to the mass
density, v(x,t) is the velocity, a(x,t) is the acceleration, s(x,t) is the Cauchy
stress tensor, b(x,t) is the specific body force and « is the current position at time
t of any material point. The key difference among different spatial discretization
methods is the way in which the gradient and divergence terms are calculated.

The MPM discretizes a continuous body by using a finite set of n, material points
in the original configuration that are tracked throughout the deformation process.
Let «f, i € {1,..,n,} denote the current position of material point p at time ¢. Each
material point at time ¢ has an associated mass M, density p;, velocity 'v;, Cauchy
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stress tensor s:f), strain e; and any other internal state variables necessary for the
constitutive model. Thus these material points provide a Lagrangian description
of the continuous body. Since each material point contains a fixed amount of
mass for all time, equation 1.31 is automatically satisfied. At each time step, the
information from the material points is mapped to a background computational
mesh (grid). This mesh covers the computational domain of interest and is chosen
for computational convenience. After the information is mapped from the material
points to the mesh nodes, the discrete formulation of equation 1.32 can be obtained
on the nodes.

By using the same procedure used in FEM, the weak form of equation 1.32 is given
by

/pw-adQ:—/pSS:deQ+/pcs-wdS+/pw-bdQ (1.33)
Q Q e Q

where w is the test function, s® = %s is the specific stress, ) is the current
configuration of the material, S¢ is the part of the boundary subject to a traction
and w is assumed to be zero on the boundary with a prescribed displacement.

Since the whole continuum body is described with the use of a finite set of material
points, the mass density at a general position x is

plx,t) = Z M0 (x — x}) (1.34)

where ¢ is the Dirac delta function (with dimension of the inverse of a volume).
In other words, the mass is non-null only at the material points. The substitution
into equation 1.33 converts the integrals into the sums of quantities evaluated at the
material points:

— Z M, [—ss (.t) - Vwl,, +w (xht) - (zh, t) b +w (2l 1) - b (m;,t)}
(1.35)

with h the thickness of the boundary layer. The interactions among different ma-
terial points are reflected only through the gradient terms, and a suitable set of
material points must be chosen to represent the boundary layer. In the MPM, a
background computational mesh is required to calculate the gradient terms. To do
S0, we suppose that a computational mesh is constructed, using 2-node cells in 1D,
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3-node cells in 2D and 4-node cells in 3D for example. These cells are then em-
ployed to define standard FEM nodal basis functions N;(x) related to the spatial
nodes x;(t) with ¢ € {1,...,n} where n is the total number of mesh nodes. The
coordinates of any material point in a cell can be represented by

x, = Z z/N; () (1.36)
i=1

In the same way, the displacement of any material point in a cell are defined by the
nodal displacement u!(t). Therefore:

uy, = Z u;N; (x}) (1.37)
i=1

Since the same basis functions are used for both spatial coordinates and displace-
ments, kinematic compatibility demands that the basis functions advect with the
material, as in the updated Lagrangian framework. In other words, the material
time rates of the basis functions must be zero. Hence, it follows that the velocity
and acceleration of any material point in a cell are represented by

vl =) ulN; (o) (1.38)
i=1
and
a, = Z alN; (x}) (1.39)
i=1

where v;, and a; are respectively the nodal velocities and accelerations. The test
function is also defined by

w) = Z’wai () (1.40)
i=1

Those equations ensures that the associated vectors are continuous across the cell
boundary. However, their gradients are not continuous due to the the use of linear
shape functions. Substituting equations 1.39 and 1.40 into equation 1.35 yields

Np Np
} : t } : t ot
p=1 p=1
’I’Lp np n n
==Y wi- Y Ms* VN, +» wi-ci+ ) w- bl (1.41)
- i D it i G i " Y :
p=1 p=1 i=1 i=1

at time . In equation 1.41, the consistent mass matrix is given by
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=3 M, () N, () (1.42)

with corresponding lumped nodal masses
mi =" M,N; (x!) (1.43)

The discrete specific traction is then
Tp

¢l =Y Mey'h'N; (=) (1.44)
p=1

with ¢ = c;, (a:;';, t) while the specific body force is discretized as

b, =Y Mb.N; (z!) (1.45)
p=1

with b;f;t = b, (a:;, t). One should notice that if b is a known function of position and
time, as gravity for instance, then the nodal body force can be computed directly
by bl = b (x},t) m!.

Since the w! are arbitrarily chosen except where the components of displacement
are prescribed, for a lumped mass matrix, equation 1.41 simply becomes:

mial = ()™ + (£)" (1.46)

where the internal force is given by:

(r)™ = —ZMsst () (1.47)

with s3' = s* (!, 1), G; (2!)) VNA% and the external force is

p?

(F)" =+ bt (1.48)
As shown in the previous equations, the information is mapped from material

points to the nodes of the cell containing these points through the use of shape
functions.

The key feature of MPM is the use of the same set of nodal basis functions for
both the mapping from material points to cell nodes to solve equation 1.46 and the
mapping from cell nodes to material points to update the material point information
for the next time step. This method has the advantage to be able to handle large
deformation but just like the methods presented previously, it is very difficult to
apply boundary conditions [Chen and Brannon, 2002]. Finally, MPM can only be
used for isothermal mechanics analysis.
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3.6 Optimal Transportation Meshfree (OTM) method: an
example of LME interpolation use

The Optimal Transportation Meshfree (OTM) method has been developped by Li
et al. [Liet al., 2010] a few years ago to simulate general solid and fluid flows,
including fluid-structure interaction, and is mostly used to perform high velocity
impact simulations such as the ones presented on figure 1.4. Tt combines the
MPM approach and the maximum entropy interpolation (see chapter 2) in order to
generalize the Benamou-Brenier differential formulation of optimal mass transporta-
tion problems to problems including arbitrary geometries and constitutive behaviors.

D/H=3.4 D/H=0.35
V=6.0km/s . ; V=5.4km/s
0=0 degree , ; 0=0 degree

Figure 1.4: Three high velocity impact simulations using OTM on a metallic target
with distinct thicknesses.

The algorithm used to run a mechanical simulation is the following:

Algorithm OTM - Elastic solid flow [Li et al., 2010]

1. Initilization: Set k& = 0, initialize nodal coordinates x,_1, 40, shape func-
tions N, o, material points coordinates x,(, volumes v, o, densities p,o and
deformation gradients F), .

2. Compute mass matrix My, linear moment [ and internal forces f; (same as
MPM).

3. Update nodal coordinates:

_ t — t_
Tppr = Tp + (tpyr — te) M (lk + %ﬁg)

4. Update material point coordinates using the LME basis functions ¢:

Tpk+1 = ¢h,k—>k+1 (:L'p,k)
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5. Update material point volumes:
Vpt1 = det Vo ki1 (2p5)Up i

6. Update material point mass densities:

mp

Ppk+1 =
Up,k+1

7. Update material point deformation gradients and right Cauchy-Green defor-
mation tensors:

Fprt1 = v¢h,k—>k+1(xp,k)Fp7k

_ T
Cpha1 = Fp7kz+1Fp,k+1

8. Recompute shape functions N, j+1(xp k1) and derivates VN jy1(2p41) from
updates nodal set.

9. Reset k «— k+ 1. If k = N exit. Otherwise go to (2).

Our work and the OTM method have a lot in common: the use of material points
and the LME basis functions (see chapter 2). The main difference is that the OTM
method has a dynamic approach based on the optimal transportation principle
whereas out work is based on a Galerkin approach (the mass matrix is assumed to
be constant). The current limitations of the OTM method are that it is somewhat
restricted to use an explicit time integration scheme and cannot simulate conduction
problems and thus cannot perform coupled thermo-mechanical analyses.

4 Thesis outline

In this thesis, we aim at building a meshless method using the Local Maximum
Entropy (LME) interpolation combined to a strongly coupled thermo-mechanical
variational formulation. The objective is to be able to model coupled thermo-
mechanical problems with large deformation which may include complex boundary
conditions such as contact and/or convection.

In chapter 2, we present an energy-based variational modeling of strongly coupled
thermo-mechanical problems adapted to a meshless method. We first present
the time-continuous evolution problem and its variational formulation, followed
by the time-discrete (or incremental) variational formulation and finally the
timed-space-discrete variational formulation considering the meshless environment.
Then some flow stress models are presented considering the variational framework.

In chapter 3, the LME interpolation approach is described. The construction of
LME shape functions and how the LME-based meshless method is working are
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detailed. A particular attention is paid to the localization of the material points.
Then, some features are exposed and finally, we present some adjustments needed
to work in an updated-Lagrangian framework.

In chapter 4, test cases are proposed in order to verify our implementation of the
LME-based meshless method. From a simple conduction test to a tensile test
considering conduction, convection, large deformation and coupled thermo-visco-
plasticity passing by some classical benchmark tests as the Taylor bar or the patch
test, the possibilities, but also the limits, of our implementation are exposed.

Finally, the chapter 5 is dedicated to the modeling of the RFW process. We are
presenting some specific modules implemented such as the contact in the friction area
and the resulting heat flux. Numerical results are then presented and analyzed, in
the light of available experimental observations.
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Chapter 2

Thermo-mechanical problem

A wvariational approach is proposed for the modeling of strongly cou-
pled thermo-mechanical problems. In this chapter, variational for-
mulations and associated principles are described and used to es-
tablish the variational thermo-mechanical framework that is used in
our implementation. Then, some flow stress models are presented
and the associated stored and dissipative plastic energy are detailed.
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1 Energy-based variational method and variational
principles

Variational principles have played an important role in mechanics for several decades
|Lanczos, 1970] and have been mostly developed for conservative systems. The most
eminent examples are Hamilton’s principle [Hamilton, 1834 in dynamics and the
principle of minimum potential energy in statics. Some variational principles are
also used for dissipative systems, such as principles of maximum plastic dissipation
for limit analysis.

From a mathematical but also numerical point of view, variational approaches
present many attractive features such as unicity, convergence and stability of the
formulations. This has motivated a lot of interest following the pioneering work
of Biot [Biot, 1956]. It as well concerns isothermal settings such as elasto-visco-
plasticity [Comi et al., 1991] [Ortiz and Stainier, 1999| or isothermal brittle and
ductile damage [Francfort and Marigo, 1998| [Balzani and Ortiz, 2012] and coupled
thermo-elastic and thermo-visco-elastic problems [Herrmann, 1960] [Batra, 1989).

Basically, a variational principle is an optimization approach used to derive the
balance and the evolution equations of a boundary values problem. The most
popular principles are Hamilton’s and Veubeke-Hu-Washizu’s.

Let us define ¢(t) as the transformation mapping describing the state of the sys-
tem at the time ¢ [Marsden and Hughes, 1994]. We then seek to write variational
principles determining the evolution of the system, in a dynamical or quasi-constant
setting.

1.1 Hamilton’s principle

Hamilton’s principle [Hamilton, 1834] is a statement that the dynamics of the physi-
cal system can be determined by an unique function, the Lagrangian, which contains
all physical information concerning the system and the forces acting on it. Hamil-
ton’s principle states that the true evolution ¢(t) of a system between two specified
times ¢; and t, is a stationary point for the functional

S(¢) = /t2 L (cb? d>,t) dt (2.1)

t1

where L <q’), (ﬁ, t) is the Lagrangian. In other word, the evolution ¢(t) of a system
is the solution of

Vop, Dy [S ()] (0¢) =0 (2.2)
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1.2 Hu-Washizu-Fraeijs de Veubeke’s principle

Hu-Washizu-Fraeijs de Veubeke’s principle [Washizu, 1955] [de Veubeke, 1972]
[Hu, 1984] is the canonical principle of static elasticity. It depends on three in-
dependant fields which are: the configuration ¢, the deformation gradient F' and
the Piola stress tensor P. The associated functional H (¢, F', P) is defined by

[W(FTF)+ P- (V¢ —F)] dV —/

By

m£-¢dv>i/ t-pdA

9 Bo

(2.3)
where W is the inner elastic strain energy depending on the Cauchy-Green tensor
C = FTF to ensure the independence of the coordinate system, b is the body forces
(gravity for instance) and ¢ the imposed force applied on the part 9, By = 9By \dpBo
of the external surface of the body. Then, the quasi-static evolution of the system
is described by a sequence of equilibrium status, each satisfying the variational
principle

’H(qb,F,P):/

By

ik, sup H (¢, F, P) (2.4)
An admissible configuration ¢ must verify the essential boundary conditions ¢ = ¢
on JpBy. An admissible deformation gradient F' must verify the material impen-
etrability condition det F' > 0. Every tensor can be an admissible stress tensor
P.
The Gateaux derivatives Dy [H (¢, F, P)|(6¢p), Dp[H (¢, F,P)|(6F) and
Dp[H (¢, F, P)] (0 P) respectively yield the static equilibrium equation 2.5, the
constitutive equation 2.6 and finally the compatibility equation 2.7.

V-P" +pb=0 (2.5)
oW (C)
P =2F 2.6
5C (2.6)
F =V,.¢ (2.7)
Thus, the stress Piola-Kirchhoff tensor is given by
_ oW (C)
S=F"'P=2 2.8
5C (2.8)

1.3 Hellinger-Reissner’s principle

Hellinger-Reissner’s principle is obtained from the previous principle. Let us intro-
duce the complementary strain energy density, obtained by a Legendre transforma-
tion of the energy density

W (S) = sup [%s .C— W(C)] (2.9)
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The inverse transformation is

W(C) = sup Bs .C— W*(S)] (2.10)

If the compatibility equation F' = V ¢ is verified, then we obtain the functional

H(o.5) - |

By

1o T i _ T _ n
[25.(v¢ A W(S)] dv /Bopobq_’)dV /(%BotgbdA

(2.11)
and the boundary value problem has the following variational form:

inf sup H(¢,S) (2.12)

¢ adm. g 5qm,

1.4 Minimum potential energy principle

As an example, let us consider how the minimum potential energy principle is used
to build the variational modeling.

If the compatibility equation 2.5 and the constitutive equation 2.6 are assumed
verified, then the functional 2.3 becomes [Marsden and Hughes, 1994]

H(p) = W (Vo' Vo) dV — / pobp AV — / top dA (2.13)
Bo Bo s Bo
=U(p) - W(¢)
with the potential strain energy
Up)= | W(Vop" — Vo) dV (2.14)
Bo
and the energy from external forces
W(p) = / pobep AV +/ top dA (2.15)
Bo s Bo

where pg is the mass density, b is the body force, Vy is the material gradient and #
the imposed force. Assuming the compatibility condition and constitutive relations
are satisfied, the boundary value problem via variational principle is described by

inf (U(¢) ~W(e)) (216)

Its stationary point with respect to ¢ corresponds to the conservation of momentum
in elasticity (see equation 2.19).
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As illustrated by many examples, the variational form of equations is very con-
venient for the numerical simulations, and the uniqueness and existence of the
solutions in the problem are easily analyzed from a mathematical point of view.
By means of this energy-based variational method, we emphasize that a physical
problem is transformed to a mathematical optimization, and then a series of
optimization algorithms can be applied in the analysis of physical fields.

1.5 Balance equations in local coupled thermo-dynamical
model

The variational formulation of a coupled thermo-mechanical problem includes the
three classical conservation equations of mechanics:

e Conservation of mass
pdet F' = py (2.17)

where p is the mass density in the deformed configuration, py is the mass
density in the initial configuration and F' is the deformation gradient.

e Counservation of linear momentum
podp = Vo - P + pb (2.18)

where P is the first Piola-Kirchhoff (or Piola) stress tensor and b represents
the applied bulk forces per mass unit.

e Conservation of angular momentum

PF" = FP” (2.19)

The thermo-mechanical coupling involves two more conservation laws which repre-
sent the laws of thermo-dynamics:

e Conservation of energy (first law of thermo-dynamics)
poIn=P:F+Y%: Z Vo H~+pQ (2.20)

where H is the nominal (Lagrangian) heat flux vector, @ the applied bulk
heat source (per mass unit) and 7 is the internal entropy density (per mass
unit).

e Clausius-Duhem Inequality (second law of thermo-dynamics)
: 1
TP =Dy — —H - VI >0 (2.21)

where T is the absolute temperature and I denotes the net entropy production
rate.
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Furthermore, a boundary value problem is described by the above governing equa-
tions including material constitutive relations and compatibility conditions. Ac-
cording to the variational method, by multiplying a small constrained but arbitrary
variation [ € V = {l € R*|l = 0 on the boundaries}, the weak form of the problem
can be obtained.

For instance, consider the following mechanical problem:

Vo P+ pyB =0

(2.22)
P-n=T1onlL
where 7 is the traction on the boundary L. The weak form is defined by
Find ¢ € P such that VI € V, G(¢,1) =0 (2.23)
where
G(qﬁ,l):/(P:Vl—poB-l)dV—/T-ldL (2.24)
1% L

with ¢ € P = {qb € R3|¢p = ¢ in the boundaries}. If the physical fields and I are C*,
the weak form is equivalent to the strong form. In view of the weak form, Marsden
and Hughes [Marsden and Hughes, 1994| pointed out that there is a potential E
such that DgE(¢) -1 = G(¢,1) if, and only if,

Vo € P, V(1,€) € V2, D1G(¢,1)- & = D1G(¢,€) - 1 (2.25)

and its corresponding form is

E(¢) = / Glte, §) dt (2.26)

Thereby, a formulation embodying equilibrium equations, material behaviors and
boundary condition is built in the variational framework. Even if the weak form of
conservation laws seems to be a basis to build the variational pseudo-potential, the
symmetry still has to be guaranteed.

In 1999, Ortiz and Stainier [Ortiz and Stainier, 1999] obtained a variational for-
mulation for general viscoplastic solids with respect to different dissipative rela-
tions in finite deformation regime. They developed a constitutive update modeling
as an optimization to a scalar function with a set of internal variables, including
Hembholtz free energy, conjugate inelastic potential and viscous part. The associ-
ated constitutive updates can be defined by minimization of an incremental pseudo-
potential about deformation over the time step. This work represents a new and
active research area, the applications of this variational structure to general dis-
sipative materials are continuously developed [Stainier et al., 2002|. For instance,
constitutive visco-elastic formulations are as following provided to embody the non-
linear viscous behavior based on this theoretical framework [Stainier et al., 2005]
[Fancello et al., 2006] [Mosler and Bruhns, 2009] [Weinberg et al., 2006].
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By considering temperature effects, a variational formulation of thermo-mechanical
boundary-value problems was proposed by Yang et al. [Yang et al., 2006]. They
introduced the equilibrium temperature in the formula, thus making the weak form
symmetric. In addition, the characteristic of this formulation is that it allows to
describe the thermal and mechanical balance equations, including irreversible and
dissipative behaviors, as an optimization of an energy-like variational form. In addi-
tion, beyond unifying a wide range of constitutive models in a common framework,
the variational formulation also presents the interesting mathematical properties,
like symmetry of its bilinear form, which is an important feature compared to the
alternative coupled thermo-mechanical formulations. By applying this variational
formulation, Stainier [Stainier and Ortiz, 2010] successfully presented an experimen-
tal validation of three thermo-viscoplastic materials: aluminum alloy, a-Titanium
and Tantalum. These theoretical conclusions will be used to build a meshless solver
for finite thermo-mechanical problems such as REW modeling.

2 General framework

2.1 Variational formulation in thermo-mechanical coupling

Thermo-mechanical couplings are a common phenomenon in solid mechanics, and
associated effects are of importance in the manufacturing of parts and structures.
For general dissipative materials, the thermo-mechanical coupling can easily provoke
some localization zones associated with large deformation and high temperature,
e.g. the formation of adiabatic shear bands [Su et al., 2014|. Their occurrence is
a precursor to material macroscopic fracture. Here we are considering a strongly
coupled boundary value problem. Thus the five conservation laws detailed previously
should be respected. The corresponding finite constitutive equations for thermo-
mechanical coupling can be given in local form as following [Yang et al., 2006]

FP" = PF” (2.28)
E=P:F+pQ—-Vo H (2.29)
: . po@ H

=p—"—24+V-=2>0 2.30
V=Pl = g + T = (2.30)

where P is the first Piola stress tensor, F' is the deformation gradient, V is the
acceleration, pg is the density (per mass unit) of the undeformed volume, B is the
body force per mass unit, Q and H are the specified heat source (per mass unit)
and the nominal heat flux. T is the absolute temperature. We assume the existence
of H and of the free energy W (F',T) such that 7 is the specific entropy defined by

ow

Pot = T oT (2.31)
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By using Legendre-Frenchel transform, the internal energy density E is defined:

E = sup (ponT + W) (2.32)
T
and has the property
E
T= 0 (2.33)
9(pon)

Consider the general pseudo-potential dissipation A defined by

A=U"Z,Z,T)+ ¢*(F,F,T)) — x(H,T) (2.34)

where U* ¢* and x are the kinetic potential, viscous potential (Kelvin-Voigt visco-
elasticity) and conduction potential. Z represents the internal variables, such as
cumulated plastic strain for thermo-visco-elastic material for instance. F' is the
deformation gradient. Let us define P as the first Piola-Kirchoff stress conjugate to
F as

ow
P = 9 (2.35)
The alternate representations of constitutive relations can similarly be obtained by
using the conjugate pairs of stress-strain tensors (Cauchy stress and Chauchy-Green
strain, second Piola-Kirchhoff stress and Green-Lagrange finite strain, etc.). Let us

define Y the conjugate force to cumulated plastic deformation:

ow
Y=—7" 2.36
57 (2.36)
The evolution equations gives
ov*
= — (2.37)
0Z

where U* is a dual pseudo-potential obtained from a Legendre-Fenchel transform of
kinetic potential W defined by

U* = sup {Y-Z—\II} (2.38)
Y
and 9u
Z=__ 2.39
5y (2.39)
If
U* is convex, ¥*(0)=0, " >0 (2.40)

the second law of thermo-dynamics is verified. Therefore for thermo-visco-plasticity
material, the first law of thermo-dynamics can also be written
"W . oPW

A A, int . .
o F+Tamo Z+D" +pQ = Vo H (2.41)
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where D"t =Y - Z is the intrinsic dissipation and C'is the heat capacity defined as

O*W
o1?

poC = =T (2.42)
which depends on the temperature and state variables in the physical system. As
shown in [Stainier and Ortiz, 2010| in finite plastic strains, the variational formu-
lation naturally included provides an accurate formulation of the Taylor-Quinney
parameter to calculate the ratio of intrinsic dissipation converted to total plastic
power.

The second law of thermo-dynamics can be simplified as

. . 1

TI = D™ — ﬁH VT >0 (2.43)
where I' is the net entropy production rate. As the kinetic potential ¥* is convex,
if x is convex then the Clausius-Duhem inequality is automatically verified.
Based on the previously described thermo-dynamic framework, the energy-based
variational formulation of the coupled thermo-mechanical boundary-value problem
proposed by Yang [Yang et al., 2006| can be summarized. The potential for general
standard dissipative materials is stated as following:

<I><gi>,T,7'7,Z> _/ [E—pOTmA(TF Ly ——VT)] dv
B

0’6
—/pOB-qde— T-¢dS (2.44)
B drB
T T
+ log — dV — Hlog — dS
/B po T, o5 & T

where T is the applied traction over the traction boundary drB. H is the outward
heat flux over the Neumann boundary condition d,5. In equation 2.44, the authors
introduced two temperatures © and T, which are respectively an equilibrium or
internal temperature and an external temperature, necessary to recover the balance
equations. © is a scaling variable and can be obtained as following

OF
d(pon)

This variational formulation works for general dissipative materials including finite
elastic and plastic deformation, rate-sensitivity, arbitrary flow and hardening rules,
as well as heat conduction. In addition, the thermal and mechanical balance equa-
tions, the constitutive relations, as well as the equilibrium between the external
temperature and the internal temperature can be obtained as Euler-Lagrange equa-
tions of the following variational formulation:

0= (2.45)
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inf sup ¢ (c’b, T, 1, Z) (2.46)
¢.Zn T

The equilibrium derivation is well described in [Yang et al., 2006].

Energy-based variational method is an optimization strategy using a single function
to describe all the intrinsic characters for the coupled thermo-mechanical boundary
value problem. The stress-strain relation, as well as temperature-entropy relation do
not have to be defined separately, which can directly follow from the optimization
with regard to internal variables and temperature. For example, a nonlinear equation
about Z can be obtained to calculate equivalent plastic strain from the variational
method:

D, [cb <¢'>,T,7'7, Z)} (52) ~0 (2.47)

It is also a mathematical transformation of well-known return-mapping method,
and more convenient in the application of mathematical algorithm. The thermo-
mechanical coupling for general dissipative materials can thus be described as
an optimization problem, and many mathematical algorithms, such as trust re-
gion method, Levenberg-Marquardt algorithm, are suitable to seek a minimum or
maximum value with respect to physical fields. In contrast to conventional cou-
pled thermo-mechanical problem formulation, this variational approach intrinsically
yields a symmetric stiffness matrix. Indubitably, these characteristics allow the ap-
plication of a broad range of mathematical algorithms, contributing to numerical
efficiency in matrix storage and nonlinear programming. Furthermore, this varia-
tional formulation seamlessly works for general standard materials.

2.2 Discretized variational formulation

As described in Chapter 1 about the Material Point Method (MPM), the considered
system is described by using a certain number of material points. These points will
be tracked throughout the deformation process. At a given time ¢, each material
point has an associated mass, density, velocity and any other internal state variable
necessary for the constitutive model.

The discretization is made in two steps: first the potential is discretized in time and
then discretized in space.

2.2.1 Time-discretization of the variational problem

The time-discretization, as detailed in [Yang et al., 2006], is used to reduce
time-dependent problems to a sequence of incremental problems each character-
ized by a minimum principle. For instance, it has been employed to formulate
incremental minimum principles for plasticity that establish a connection between
non-attainment and the formation of micro-structures [Ortiz and Repetto, 1999]
[Ortiz et al., 2000] [Carstensen et al., 2002] [Aubry and Ortiz, 2003]. In addition,
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the time-discretization is a key step in the numerical implementation of constitutive
equations.

Formally, the time-discretized incremental variational problem can be derived by re-
course to minimizing path, as in deformation theories of plasticity. Let us consider a
sequence of time tg, ..., t,, t,41, ... and seek to characterize the state (¢, T, 7, Z) of the
solid at each of these times. Assuming the state (¢, Ty, M, Z,) at time ¢, is known,
the objective is to consistently approximate the state (¢ni1, Thi1, Mni1, Zns1) at
time ¢,,1. A consistent approximation means that the limits of the divided differ-

¢n+1 *({bn Tn+1 —Th Zn+1 —Zn
At ’ At ’ At

field equations. The incremental functional is introduced:

ences } as A = t,,1 —t, tends to zero satisfy the rate

tnt1 . .
q)n (¢n+17 Tn+17 77n+17 Zn+1) = inf / o (¢7 T7 777 Z> dt (248)

paths tn

where the subscript n means that @, (¢,+1, Thi1, Mnt1, Znt1) depends parametri-
cally on the initial state (¢dn, Ty, M, Z,) at time t,. The minimum is taken over all
admissible paths joining times ¢, and ¢,,.,. For economy notation, let:

. . _ T T
G(¢,T) z—/pr-qst— T-¢dS+/p0Qlog—dV— Hlog — dS
B B To 8B To

(2.49)

orB

Then, equation 2.48 can be written as:

dt
(2.50)

tna1 . .
By (bosts Tt 1s M1y Zngr) = inf / { / (B—pTi+A) av+G (T
B

paths tn

N—
——

with A evaluated as in equation 2.44.

Despite the conceptual appeal of this approach, their explicit determination can only
be effected in simple cases [Ortiz and Martin, 1989]. In calculations, it suffices to
identify any convenient incremental potential ®,, consistent with the fields equations.
An example of a family of consistent incremental potentials is:

(I)n (¢n+17 TTL+17 ﬁn-&-l? Zn—‘rl)

- / [(ETH-l - Eﬂ) - pOTn+1 (nn—i-l - nn> + AtAn+1] av
B

- / poBry1 - (Pni1 — dn) dV — Toi1- (P — bn) dS
B orB
Tn+1 T Tn+1
+ Atpan_H IOg dV — AtHn_H log dS (251)
B Tn onB Tn
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where

Tty - Tht1 -
App1=A (T—HFTL—H; T—HZTH—I; G, Foyt, oy, Zn+1) (2.52)
and
; Fn+1 _ Fn
F, =" 2.53
+1 At ( a)
> Zn+1 - Zn
Ly =—"1" 2.53b
= (2.53b)
VT,
Gy = — 2t (2.53c)
Tn+1

The incremental functional 2.51 may be regarded as a backward-Euler approxima-
tion of equation 2.50. Other approximations, such as trapezoidal or midpoint rules
of integration, may be formulated likewise.

The consistency of the scheme has been verified by Yang et al. [Yang et al., 2006].

It appears that the dependence of the rate functional ® on Z and 7, or of the incre-
mental functional ®,, on Z,,, and 7,1, does not involve their gradients. Therefore,
the minimization with respect to n and Z in the rate problem, and with respect to
N1 and Z, .1 in the incremental problem, may be effected pointwise. This is in
contrast to the dependence of the rate functional ® on ¢ and T, or the incremental
functional ®,, on ¢, and 7,1, which involves their gradients. Thus, it follows
that the reduced incremental functional

(I)n (¢n+1a Tn+1) = inf (I)n (d)n—i—la Tn—i—la Tn+1, Zn+1> (254)

77n+17Zn+1

is of the form

(I)n (d)n—l—la Tn—l—l) :/ wn (EL+17 ﬂL—l—lu Gn+1) av
B

- /BPOBnJrl (Pni1 — Pn) AV — Tn-i—l (Pni1 — bn) dS

orB

T, — T,
+ / AtpoQni1 log =L qv — / AtH, 1 log == dS (2.55)
B Tn onB Tn

where

(0 (Fn+17 Tog1, Gn+1) = . +ian [(EnJrl - En) — polni1 (ﬁn+1 - nn) + AtAnJrl]
n+1,4n+1
(2.56)
=W, — AtX(Gn_H)

because
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Wn = inf [(En-H - En) - pOTn-i-l (nn—f—l - nn) + AtAn—i—l]

Mn+1

= ntl — Wn + p()T]n(Tn_H — Tn) + AtAn+1 (257)

where x(G) is a convex Fourier potentiel (as known as Biot dissipation function)
and such that
1% vT

= 8_G(G) - G = — (2.58)

1, may be regarded as a non-equilibrium thermo-elastic energy density. The reduced
minimum problem is then

inf sup @, (Gnt1, Tnt1) (2.59)

¢’ﬂ+1Tn+1

2.2.2 Space-discretization of the variational problem

Let consider a time step [t,,t,+1]. Let V the space of the admissible thermo-
mechanical configurations at t¢,,;. From variational principle 2.55, it is possible
obtain a space-discretization via a standard Rayleigh-Ritz approach. As for the
MPM, nyo4es nodes and n, material points are used to describe the domain B.
Therefore,

¢'(@) = D Ni(w)z, (2.60)

Thz) = ) Ni(a)T, (2.61)
a=1
where x, and T, are the positions and the temperatures of the n,,,4.s in the current
configuration. The shape functions N,, defined all over the domain B, are the
Local Maximum Entropy (LME) basis functions and will be described in the next
chapter. Note that the shape functions for the approximation of the displacements
and the temperature are the same.

The discretized deformation gradient and temperature gradient are

Nnodes

F'(x) = Z VN, (x)z, (2.62a)
G () = —2mami YV Na(@)Ta (2.62b)

20l Na(@) T,

and the reduced variational principle 2.59 becomes
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inf Sup(I) (¢n+1, n+17¢n7Tn7 Z ) (263)

¢"+1Tn+l

From now on, the subscript n + 1 will be omitted for readability reasons. The
Dirichlet boundary conditions are applied by setting the nodal variables x, and T,
on the boundaries.

By substitution into the incremental potential 2.55, the stationarity equations are:

Yoz, adm.,
Nnodes Nnodes o
> fubza= ) {/ [P"V N, — pobN,] dV —/ TN, dS} 0z, =0
a=1 a=1 B orB
(2.64a)
VT, adm.,
Mnodes Nnodes VN Gh
_ h h
; Q.0T, = ; {/B [—poAﬁeffNa +AtH ( Th + Th N) + AtpoQ n} av
—N,
- / A e dS} 5T, = 0 (2.64b)
on n
where P", An!;, and H" are respectively defined by:
oW,
P = F'"T".F,,T,,Z 2.
OF ( ny =My ) ( 65)
8W
Pl = —— (F",T" F,.T,, Z,) (2.66)
o' = 2 (@ k.1, 2,) (2.67)
8G Y Y

The stationarity equations 2.64 lead to the discretized equation of mechanical and
thermal equilibrium which can also be written:

int ext
a —Ja — 0
{ AN N CES RN (2.68)
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where the inner and external forces and fluxes are given by:

fot = / P"VN, dV (2.69a)
B

fgxt:/pObNa dv+/ TN, dS (2.69b)
B orB

- VN, G"

QM = / {poAnsffNa—AtHh< = +ﬁNa)} dv (2.69¢)

B
H

Q™ = / AtPCO N, av - At=—N, dS (2.69d)

B Tn 8etaB Tn

It is interesting to note that every integral is done over the whole domain B because
the shape functions are defined all over the domain. On the contrary, if classical
FEM shape functions are used, and since they are defined over elements were used,
all the [-symbol in equation 2.69 would be replaced: [, would become U™ [,

nelems nelems

5,5 would become Upei™ [0 and [, . would become Ug<i™ [,

In reality, the LME interpolation functions will not be define over the whole domain.
Since they drop relatively quickly to zero, it is possible to cut the domain and so
not to have full matrices (see chapter 3).

3 Variational framework and flow stress models

The evolution of the yield surface is often expressed as an equation consisting of
some invariant of stress and a model for the yield stress (or plastic flow stress).
An example is von Mises or Jy plasticity. In those situations the plastic strain
rate is calculated in the same manner as in rate-independent plasticity. In other
situations, the yield stress model provides a direct means of computing the plastic
strain rate. Numerous empirical and semi-empirical flow stress models are used in
the computational plasticity. In the following, we will restrict ourselves to isotropic
hardening and we define p as the cumulated plastic strain.

The Johnson-Cook model (JC) [Johnson and Cook, 1983] is purely empirical and is
one of the most widely used. However, this model exhibits an unrealistically small
strain-rate dependence at high temperatures. The Steinberg-Cochran-Guinan-Lund
(SCGL) model [Steinberg et al., 1980] [Steinberg and Lund, 1989] is semi-empirical.
The model is purely empirical and strain-rate independent at high strain-rates.
A dislocation-based extension based on [Hoge and Mukherjee, 1977| is used at
low strain-rates. The SCGL model is used extensively by the shock physics
community.  The Zerilli-Armstrong (ZA) model [Zerilli and Armstrong, 1987]
is a simple physically based model that has been used extensively. A more
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complex model that is based on ideas from dislocation dynamics is the Me-
chanical Threshold Stress (MTS) model. [Follansbee and Kocks, 1988].  This
model has been used to model the plastic deformation of copper, tantalum
[Chen and Gray, 1996], alloys of steel [Goto et al., 2000][Banerjee, 2007], and
aluminum alloys |Puchi-Cabrera et al., 2001]. However, the MTS model is limited
to strain-rates less than around 107s™'. The Preston-Tonks-Wallace (PTW)
model |[Preston et al., 2003| is also physically based and has a form similar to the
MTS model. However, the PTW model has components that can model plastic
deformation in the overdriven shock regime (strain-rates greater that 107s7').
Hence this model is valid for the largest range of strain-rates among the five flow
stress models.

The variational framework is compatible with these strain rate and temperature
dependent models. Here four flow stress models are described: the Johnson-Cook
and Zerilli-Armstrong since they are very classical model, phenomenological power
law model [Stainier and Ortiz, 2010] and the Norton-Hoff model [Norton, 1929]
[Hoff, 1954] since they may be used in the modeling of the RFW process (see
chapter 5).

For each of them, the related stored and dissipated energy are precised. The stored
part is obtained by the integration of o, (py, pp, T') regarding p and only keeping the
terms which do not depend on p. The dissipated part is obtained simply by the
integration of oy, (pp, pp, T') regarding p.

3.1 Power law flow stress model

The power law model used in [Stainier and Ortiz, 2010] represents the material flow
as a function of the temperature, the strain and the strain rate. The model we use
is composed of a classical power-law term and an exponential saturation term.
oL
. p m
Uy(p7p7 T) = 00(p7 T) + Uv(T) (p_) (270)
0

where

and where B, D, n, n and ¢ are material parameters. The stored and dissipative
parts are then given by:
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Figure 2.1: Influence of the ratio dissipative/stored energy using a power law
model.

n  oy(T)

W ) =77 p

(1+ Bp)%Jrl +01(T) [p + %exp(—Dp)] (2.72)

U (p;p, T) = oo(p, T)p +

D L41
oo(T)p | — 2.73
o (L) 2.7
The figure 2.1 shows the material behavior for a maximal stored energy and for a
maximal dissipated energy for a uniaxial traction on a mild-steel material. In the
two cases, the loading is the same. The evolution of the stress as a function of
the strain is the same in both cases. However, the evolution of the temperature
inside the material is very different. In the maximal stored case, the temperature
is relatively "stable" whereas in the maximal dissipated case, the temperature is

greatly increasing.

3.2 Norton-Hoff flow stress model

The Norton-Hoff model [Norton, 1929| [Hoff, 1954] represents the material flow as
a function of the strain and the strain rate. It is defined by:
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Figure 2.2: A purely dissipative model: Norton-Hoff model.

o (p,T) = K(T) (p%)l/m (p%)yn

@R e

where m is the strain-rate dependency exponent, n the hardening coefficient and
A and B material constants. This model is purely dissipative and the dissipated

energy is given by
1 1
K NS 1
V(i p, T) = — (3) (3) (2.75)
m+ 1 \ po Do

The figure 2.2 shows the material behavior for a uniaxial loading on a mild-steel
material.

3.3 Johnson-Cook flow stress model

Johnson-Cook model [Johnson and Cook, 1983] is considered as the most simple and
widely used model to represent the material flow stress as a function of the strain
rate, temperature and large equivalent strain. It is empirically defined by

o, (0., T) = [A + Bp%] [1 +Cln (ﬁﬂ [1 - (T*)ﬂ (2.76)

Po

where A,B,C,n and m are material constants. The normalized temperature 7™ is
defined by

0 if T < T
T-T,
= T <T<T 2.77
T,—1, "0 (2.77)
1 it T > 1T,
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Figure 2.3: Influence of the ratio dissipative/stored energy using Johnson-Cook
model.

where py is the effective plastic strain rate of the quasi-static test used to determine
the yield and hardening parameters A,B and n, Tj is a reference parameter and T},
is the melting temperature of the material.

In the variational framework, the stored and the dissipative part of the model should
be dissociated. They are respectively defined by

Wo.1) = (A o) (1- (%) (2.78)

U (pp, T) = [(Ad + de%> bt (A+ Bp%) Cpo (p% In (3) _P 1)} (1 (T

Do Do
(2.79)
with AS+Ad:Aand BS+Bd:B

The figure 2.3 shows the material behavior for a maximal stored energy and for a
maximal dissipated energy for a uniaxial loading on the titanium Ti-6Al-4V alloy.
Again, the curve stress/strain is the same in the two cases but the evolution of the
temperature is very different.
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3.4 Zerilli-Armstrong flow stress model

The Zerilli-Armstrong (ZA) model [Zerilli and Armstrong, 1987| is based on sim-
plified dislocation mechanics. The general form of the equation for the flow stress
is

0y (€p, ép, T) = A+ Bp" + (Cy + Con/p) exp(—CsT)p" (2.80)

where A is a parameter depending on the micro-structure (microstructural stress
intensity, average grain diameter, contribution due to solutes and initial dislocation
density) and B,C,Cy andC3 are depending on the type of material: face center
cubic (fce), body-center cubic (bee), hexagonal close packed (hep) or alloys.

As for JC flow stress model, the stored and dissipated part of the model should be
dissociated. They are respectively defined by

B
WP(p,T) = | Agp + ——p"*! 2.81
(p,T) ( PP ) (2.81)

* [ . ny - exp _C’T g
V' (#:p,T) = (Aa+ Bap )P+(Cl+02\/l_?)c(T—+?i> o

For instance, a fcc material implies that By, = B; = 0 and C} = 0 whereas a bcce
material implies that Cy = 0.

(2.82)

4 Conclusion

A variational framework has been implemented. An incremental approach has
been used so that the continuous formulation has successively been temporally and
spatially discretized. The spatial discretization has been made regarding that a
meshless method and material points integration are going to be used. The fact
that the shape functions are defined over a domain larger than the FEM elements
is used in equation 2.69.

Now that this framework is set, we are going to construct the LME interpolation in
the next chapter. In this chapter, the LME shape functions will to be constructed.
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Chapter 3

Local Maximum Entropy
interpolation

In this chapter, the theory of mazrimum entropy interpolation is
presented. From its historical origins to the shape functions expres-
stons, its main characteristics will be explained and demonstrated.
The principle of the method is quite simple: from data given on a
cloud of points, find the optimal interpolation functions in the sense
of the information theory by mazrimizing the entropy and then use
and adapt these functions in a meshless method.
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1 Information theory

The information theory has been developed by Claude E. Shannon [Shannon, 1948].
It is a probabilistic theory used to quantify the information contained in a given data
set. One of the characteristics of this theory is that it gives an entirely physical status
to the information notion: left to itself, information can only go in the direction of its
disorganization, that is to say, the entropy increase. When an information suffers
a transformation such as transmission or coding, it also suffers an inevitable and
increasing degradation. This is how Shannon defines the entropy as a measure of
the information:

H(p) = —plog(p) (3.1)

where p is the probability related to a given event.

This is very close to the entropy 1 defined by Boltzmann-Gibbs in thermo-dynamics
and used into he previous chapter (even if it is a coincidence since there is no direct
"relationship" between those two).

Therefore, the entropy H of the set X is defined for a set X of n events ¢ associated
to the probabilities p;. The probabilistic distribution which is maximizing H is the
most natural and the least-biased possible.

Theorem 3.1 ([Shannon, 1948]). Consider Aj,...,A, n events associated to
the probabilities p,...,p,. Let H(py,...,p,) the entropy, a measure of the uncer-
tainty related to the events Ay,...,A,.

Therefore, H : R™ — R must verify:

— H is positive and must be continuous in each of its variables,

~ifVa € [1,n],p, = +, then H must be monotone and growing when n is
increasing,

— if there are numerous levels of choice, then H is the sum of the sub — H.
Example: Let us consider a, b and ¢ positive such that a +b+c = 1.

Then H(a,b,c) :H(a,l—a)—k(l—a)[{(#wﬁcc)
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The only functions H verifying those three conditions are:

H(pi,.opn) = =K Y pilog(p:)
=1

with K € R,

Proof. Let Py, ..., P, n equiprobable events linked to the probabilities p, ..., pp.
Therefore, 3A € C°(R,R) : A(n) = H(%, ..., %).

The third conditions gives (s, t,m,n) e Ni‘*?A(sm) = mA(s) and A(t") = nA(t).
Vn large enough, Im : s™ < t" < ™,

— Because the log function is increasing and log(s) > 0 :

log(t) m <

log(s) n

S|

— According to the second condition, A is monotone. Therefore:
A(s™) < A(t") < A(s™H).
By using the first condition:

m  A(t) 1
— = < —= 3.3
n  A(s)| T n ‘ (3:3)
Equations 3.2 and 3.3 result in
A log(t)
— L=< A4
50 o] < 34

This is true ¥(s,t) and A is increasing therefore
1
K eR’ : A(n) = Klog(—) (3.5)
n
Now, consider a first case of n events Bi,..., B, associated to probabilities

q1, -, qn Such as Va € [1,n],q. = < and for each event B, there are n,
j=1"Mj

equiprobable "sub-events”.

Then this first case is equivalent to the second case where 2?21 n; equiprobable
events.

H(case 2) = Klog(z Na) (3.6)

and according to the third condition,

H(case 1) = H(q1, ..., qn) + Kan log(n,) (3.7)
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Therefore
H(qr, . qn) + K galog(ng) = Klog() ny) (3.8)
And finally:
H(qi, .., qn) = —Kan log g, (3.9)
a=1
O

Example 3.1. Consider a set X of two events A; and A, with the two following
probability distributions:

. A1 AQ o Al AQ
X1 = (0.5 0.5) and Xz = (0.8 0.2
The result of the first case scenario is more uncertain than the second one:
H(Xy) > H(Xy).

Example 3.2. Consider a more physical example. Suppose that the value of a
Young modulus E must be known. All that is known about it is that E € [Ey, Es).
How must the probability density law be chosen to approximate E a priori without
more information 7

®(E) ?

| | |

| | |

| | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
| | | | | |
| | | | | |
1 1 1 1 1 1

Ey Es Ey Es Ey Es

Figure 3.1: Choice of probability density law a priori ?

Shannon’s maximum entropy principle stipulates that the good choice is the last
displayed on figure 3.1 because it maximizes the entropy.

2 Local Maximum Entropy problem

2.1 Notations

Consider the following node set X:

X ={z4a=1,..,n} CR?
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The smallest convex space containing X is given by [Rockafellar, 1997]:
convX ={x eRYFPeR? : d-1=1landz=o X}
where:
— R? is the positive orthant
— 1 € R" is a vector full of 1

— X is a matrix of d lines and N columns in which the columns are the coordi-
nates of nodes of X

Since X is finite, convX is convex and compact. Let u : convX — R. Assume
that {u, = u(z,)la = 1,...,n} is known on X. An approximation of u is built as
following:

u'(x) =Y pa(@)u, (3.10)

where p, : convX — R are called the shape or interpolation functions. Those
functions must verify the following conditions:

ipa(zc) =1 (3.11a)

Zpa(:c)a:a =z (3.11Db)

2.2 Maximum Entropy basis functions

This section is based on the paper [Arroyo and Ortiz, 2006]. Most of the content
can be found in this article.

A link has been established between the Shannon entropy and the building of shape
functions for a given node set [Arroyo and Ortiz, 2006]. First of all, one does
want to use the least-biased probability distribution according to Jaynes’ princi-
ple [Jaynes, 1957]. Therefore, for a given node set, the solution p = [py, ...p,] of the
problem must be found:

(ME) Maximize — H(p) =—_ palogpa

(3.12)
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The problem 3.12 has a solution if, and only if, ® € convX. Then, this so-
lution is unique. The existence and unicity of the solution are proven using
the convexity properties of convX and the strict convexity of the function —H
[Arroyo and Ortiz, 2006].

These functions, even if they are optimal in an information-theoretical sense, are
non-local and not very efficient as shape functions in mechanical modeling. To
increase their efficiency, it is necessary to add a notion of locality: concretely, what
happens near the considered point x is the most interesting. This notion of locality
can be linked to the width of the functions p, [Arroyo and Ortiz, 2006]:

(RAJ) Minimize  U(x,p) = Zpa\a: — 4|
a=1

(3.13)
such as Vo € convX  p,x) >20,a=1,..,N

> ba(x) =1
Zpa<w)ma =T

As for problem 3.12, the existence of solutions for the problem 3.13 can be proved.
The difference is that U(x,.) is linear, i.e.not strictly convex, so in general, there is
no unicity of the solution. Nevertheless, there is unicity of the solution if the nodes
are in general position [Rajan, 1994] and this solution is the Delaunay approximation
scheme.

Thus far, two criteria for selecting a convex approximation scheme have been defined:
the maximum entropy and the maximum locality. In general, it is not possible to
find convex approximations schemes which are solution of the both problems. The
classical way to harmonize such competitive objectives is to find a Pareto optima,
i.e. the best compromise solution.

Definition 3.1. A convex approximation scheme q is better than, or dominates,
p if, and only if, —H(q) > —H(p), U(z,q) > U(x,p) and at least one of the
inequalities is strict.

A way to find the Pareto set is to scalarize the problem. Thus, the following Local
Maximum Entropy problem [Arroyo and Ortiz, 2006] must be solved:

(LME)/B Minimize fs(x,p) = pU(x,p) — H(p)

such that V& € convX — p(x) 2 0,a=1,..,N (3.14)
> pa(x) =1
Zpa(m)wa =
For 8 €]0;4o00], the solution of the problem (LME)s 3.14 is Pareto optimal. For

S = 0, the solution is the unique solution of the problem (ME) 3.12. For § = 400,
solutions are the solutions of the problem (RAJ) 3.13.
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Proposition 3.1 ([Arroyo and Ortiz, 2006]). Consider a known node set X.
Let « € int(convX ) and (3 € [0; +00].
The unique solution of the problem (LME)s 3.14 is

Poal@) = mexp (Bl — @l + A" (@ — 2,)] (3.15)

where:
A (x) = arg }1‘n€%R1£ log Z(x, A) (3.16)
Z(x,A) = Zexp [—Blz — x> + Az — x,)] (3.17)

Furthermore, the minimizer A*(x) is unique.

The whole proof is available in [Arroyo and Ortiz, 2006]. In practice, dimensionless
parameter v is used. It is related to 8 by

v = h*p (3.18)

where h is a local characteristic length of the considered node set X. Hence, the
shape functions become

1 7y 5 AT
o) = 55— ——|r —x, —(x —x, 3.19
pl@) = S |l el e m)] )
where
A*(x) = arg min log iexp —l|a: —x,|* + é(a: —x,) (3.20)
AER4 —1 h? h
The apparition of the term AT instead of A* is used to scale relatively to h and to

help the convergence for the computation of A*. Moreover, the obtained values of
Pga(x) are more accurate when this term is added.

Figure 3.2 represents the shape function for an initial node set in 1D for different
values of .

3 Some characteristics of the maximum entropy in-
terpolation

3.1 Dirichlet boundary condition

As announced in the introduction, one of the major advantages of the maximum
entropy interpolation is that it allows Dirichlet boundary conditions, which is abso-
lutely necessary for the RFW modeling.
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Figure 3.2: 1D MaxEnt shape functions depending on ~.

Property 3.1 ([Arroyo and Ortiz, 2006]). Consider p = py,...,p, a convex
approximation scheme, X = x1,...,x,, a known node set and dconvX the bound-
ary of convX.

Let o € dconvX \ X. Then,

Va € [1,n], z, € convX \ dconvX = p,(z) = 0.

Proof. Ad absurdum, suppose that Ja € [1,n| such as x, € convX \ dconvX
and p,(x) # 0. Therefore,

T = Zpb(:v)xb + pa() g
b#a
pa(z) # 0 implies that >, ,, pp(x) # 0 because v ¢ X. Now consider f : [0,1] —

convX such as

Vi € [0,1], f(t) = tzb;ﬁa po(x)zp

R ST BRI
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Then, f(1 — pa(x)) = x because of equation 3.11a. It follows that x is in the
)T

segment %,xa . As x € dconvX, either % or x, must be in
2 bta P (T)Th
dconvX. 2 bsta Pb(T)

hypothesis.

¢ 06X so x, € §X, which is a contradiction with the first

U

As the functions are exponential, it is important to note that they are never equal
to zero on convX. However, they are small enough on dconvX to be considered null
(between 1077 and the machine precision in the example of figure 3.2).

3.2 Positivity of the Jacobian in \* computation

Let z € int(convX) and A € R". The Jacobian in A* computation is the Hessian of
the function log Z(x, ).

J(x,A) = 0\OrlogZ(x, A) Zpa x, ) (x— wa)®(m—wa)—r(w,)\)®r(:c,}\)

with
r(x,A) = 0xlog Z(x,A) = Zpam)\ (x —x4)

Let w € R*" and u, = u(x — x,). Hence, by convexity of the square function:

w.J(x,\).u= Zpa(w, A)u,® — (Zpa(zc, )\)ua> >0

a=1

It results that the Jacobian is symmetric positive definite.

3.3 Link with numerical modeling

As presented in the introduction of this thesis, a particularity of our maximum
entropy approach is that we introduce material points in addition to nodes. Here
are the necessary components for the thermo-mechanical modeling.

The nodes are as necessary as in any other method. The information is stored
at the nodes: displacements in mechanics, temperature in thermics and both in
thermo-mechanics.

The material points are used for integration (see chapter 2), just like the Gauss
points do in classical FEM. Inner variables such as plastic strains, or temperature
in adiabatic computation, and material data such as Young modulus or Poisson
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coefficient are stored at the material points. The position of the material point will
be discussed on the following section.

A notion of neighborhood has also been added. Even if the shape functions are
defined over convX, and if 8 is large enough, the locality term imply that if x €
convX and z, € X are far enough from each other, then p,(x) < € where € is small
(typically e < 107'?). Without neighborhoods, all convX is considered for each
shape function and the result is full matrices with a certain number of small terms.
To avoid this, convX is cut and a neighborhood, i.e. a set of nodes close enough of
the considered material point, is considered instead.

4 Implementation choices

A few choices have been made concerning the implementation of the maximum
entropy method. This section will describe the main features.

4.1 Regularized Newton method

In order to reduce the number of iteration in the Newton-Raphson algorithm
to determine A*(x) = arg min log Z(x,A), the algorithm has been modified
AR

[Polyak, 2009]. Let define:
1
F(z, A y) =log Z(m,y) + 5[ Vlog Z(z, N[y — Al (3.21)

It follows that A*(x) = arg mier(w, A, y) with A = y. Indeed:
AER

B F(il?, Au y)\y:A = 1Og Z(ZL', A)
— VyF(x, A\, y)jy=r = Viog Z(x, )

— Vi F(2, X, Y)jy=r = V1og Z(x, X) + ||V log Z(a, X)||I where [ is the identity
matrix of R%™m,

In the algorithm, we set y = A® to find A**D. The additional term in the Hessian
solves the issues of singular matrices and allows faster convergence. Simple tests in
cases where v and the density of node are large have proved the efficiency of this
regularization: the classical Newton-Raphson algorithm needed more than forty
iterations while the regularized one only needed less than ten.

4.2 Mesh use

In order to position the material points, it is assumed that their distribution over
convX 1is similar to the nodes distribution. An idea is to use a mesh generated
by a third software (Gmsh, Abaqus, etc.). Having a list of simplices (elements)
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facilitates the creation of the material points in the program. By doing a loop over
the simplices, the material points are created and distributed relatively to the nodes
at positions of Gauss points for example.

It is important to note that the mesh and the simplices are only used to create the
material points. Once it is done, they are no longer needed nor used.

4.3 Choice of the characteristic length A

As indicated previously, the dimensionless parameter v = h?3 is used to adjust the
shape functions. The manipulation of a dimensionless parameter is more convenient
but it implies the determination of the parameter h, which dimension is a length. h
is chosen to be proper to each material point and their associated simplex. Hence A
is arbitrary defined:

— h is defined for each material point;

— h is calculated only for simplices containing material points and is depending
on the dimension:
- In one dimension, a simplex is a segment of length [: h = [.
. In two dimensions, a simplex is a triangle of area A: h = /A.

. In three dimensions, a simplex is a tetrahedron of volume V: h = V/V

This choice of h is relevant in case of traction. Indeed, choosing h as a constant
may lead to non physical rupture of the material in traction tests. On the contrary
for compressive tests, a constant h parameter should work with updates of h.

This choice of h is also used in the way the neighborhoods of each material point
are chosen. Indeed, a node z, is in the neighborhood of material point x,,p; if, and

only if:
| TOL
||I'mpt — l’a” < h T (322)

where TOL= 10716 by default. This condition allows to have not completely full
matrices.

5 Material points

Now that the expression of the shape functions has been established, it must be used

to model the thermo-mechanical problems presented in the previous chapter. The
material points are used for integration over their neighborhood. The question is:
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where must they be put? In theory, they can be put everywhere. But there might
be some positions better than others.

Basically, the material points are the only positions where the shape functions are
computed. It means that for each material point and each shape function, the
corresponding A* must be computed. An idea is to find, for a given node set X, the
location where A* = 0. The motivation is that the constraints of problem 3.14 are
naturally verified at A* = 0. The objective is to find a set M defined by

M = {x € convX \ dconvX|A(x) = 0} (3.23)

5.1 Optimized position for material points
5.1.1 Mathematical problem

The Lagrangian multiplier A is used to insert the conditions of problems (LME)g
3.14 in the shape functions. Therefore, if at some point the Lagragian multipliers are
equal to zero, it means that the conditions of (LM FE)s 3.14 are naturally satisfied.
The idea is to put the integration points at those positions in order to simplify the
shape functions expression. Moreover in a full Lagrangian point of view, if the whole
set M is found, A* no more have to be computed since it will always be equal to zero
during the computation as the shape functions are only computed on the material
point.

The determination of the set M is based on the expression of X*(x). A point x € M
if

A*(x) = arg min log Z(2,0) =0 (3.24)
A€R4

M is exactly the solution of 3.24. Since the minimizer A*(x) is unique, M is also
the exact solution of system 3.25.

ag’f\z (2,0) =0 (3.25a)
2
0 ;i%z(a:,()) >0 (3.25b)

Let the functions ¢, ¥ and 15 defined by
~ OdlogZ

v = N (3.26)
dlog Z

=28 (3.27)
_ OdlogZ

=238 (3.23)
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In 1D, equations 3.25 become:

N
T — x,)ePlEma)* — 3.29
> (@ =)

a=1

In 2D, equations 3.25 become:

N
Z(x _ xa)e—ﬁ((iv—xa)2+(y—ya)2) -0 (3.30a)
a=1

N

Z(y _ ya)e—ﬁ((x—xa)2+(y—ya)2) =0 (330b)
a=1

An important point to notice is that material points have to be put where A = 0 but
not everywhere A = 0. Indeed, so many material points are not needed to integrate
the shape functions all over the domain correctly so all the solutions of 3.24 are not
necessarily needed.

5.1.2 Study in one dimension

M is highly dependent of the initial node-set X and . Figures 3.3 and 3.4 show the
influence of the position of one single node for a given node set over the function
A(z) in one dimension. In the first case, we consider five nodes regularly disposed.
In the second case, one node has been moved.

041
0.31

0.2r

o

0.1+

W = o

R R R

N\

7 =10

Nodes

o o5 1 15 2 25 8 35 4
Figure 3.3: Example 1: ¢(z) in a 1D model with regularly spaced nodes.

The number of solutions x such that ¢ (z) = 0 depends on the value of  but also on
the nodes positions and it seems that there is no obvious rule. Because the number
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0.6

0.5 1 15 25 3 3.5 4

EENES

Figure 3.4: Example 2: ¢(x) in a 1D model with an irregularity.

Example ~  Number of solutions

1 1.0 1
2 1.0 3
1 1.8 5
2 1.8 3
1 3.0 9
2 3.0 7
1 2.0 9
2 2.0 7

Table 3.1: Comparison of the number of solution in 1D depending on the node-set
and the value of ~.

of solution is unknown a priori, looking for every solutions by a Newton-Raphson
algorithm is in general ineffective since it is impossible to know if every solutions
have been found.

However, since the function 3.29 is very smooth, all the solutions can be found
by starting a Newton-Raphson algorithm from different initial values (typically a
hundred starting values all over the convX).

An other problematic aspect is that the behavior of ¢/ highly depends on the reg-
ularity of the node-set over the considered neighborhood. The figure 3.5 shows
for a dense node-set with only one irregularity. In this case, Ax = h = 0.2 and the
coordinate of the tenth node is 1.95 instead of 2.

It appears that ¢ has a regular behavior as soon as the node-set is regular all over
the domain. For this reason, a node-set as regular as possible is used.
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Figure 3.5: Example 3: ¢(z) in a 1D model for a dense node-set with a small
irregularity.

5.1.3 Study in two dimension

At first, a simple geometry and a node-set, as regular as possible in order to avoid
the irregularity problems, are used. Figure 3.6 shows the initial mesh generated by
Gmsh. In general, v is locally adapted to the node-set by the creation of neighbor-
hood where the node-set is reqular.

From this node-set, ¢); and 1 can be evaluated at different coordinates and then a
Delaunay interpolation can be used to find out the iso-0 of the two functions.
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Figure 3.6: Initial grid for the determination of the material points.
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Figure 3.7: Iso-0 of ¥, and vs.
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The solutions of the system 3.30 is the set formed by ¢ = {is00(1;)} N {iso0(17)}.
Figure 3.7 shows that both of the iso-0 are quite regular where the mesh is regular
(mostly at the center of the domain convX). On the contrary, there are some
irregularities around the corners. It appears that ¢ is mainly composed of middle
points of every single edge of the mesh. The strategy is to begin a Newton-Raphson
algorithm at those coordinates in order to find the nearest solution. Thus figure 3.8
is obtained.
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Figure 3.8: Optimization of the position of the material points: initial position X
and optimized position [J.

It appears that the optimization step is necessary as the optimal position highly
depends on the initial node-set. However, for some initial position, the Newton-
Raphson algorithm gets out of the domain. In such case, it has arbitrary been
decided to let the material point at its original position and calculate the value of
A"

Then, a convergence study was made in order to compare the results for this opti-
mized configuration and a calculation made with only one single material point at
the center of each simplex. The results are shown on figure 3.9.

There is a significant difference of the convergence order: 0.88 for the optimized
configuration against 0.65 for the classical one. However, the precision is better for
a reasonable number of node. Since a Newton-Raphson algorithm has to be used in
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Number of node n Strain Energy S(n) (J) Relative Error

44 2.82001e9 4.0986e-2
142 2.90296€9 1.2777e-2
925 2.91371e9 9.1214e-3
973 2.92942¢9 3.7788e-3
2017 2.93785€9 9.1196e-4

Table 3.2: Strain energy for different initial node-sets with optimization. Sref =
2.94053e9 J.

Number of node n Strain Energy S(n) (J) Relative Error

44 2.98334e9 9.1034e-3
142 2.97704€9 2.3891e-3
525 2.9744e9 9.7987e-4
973 2.97411e9 7.0407e-4
2017 2.97372e9 4.28276e-4

Table 3.3: Strain energy for different initial node-set: one material point per
simplex. Sref = 2.97317¢9 J.
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Figure 3.9: Comparison of convergence order with two different material point
configurations v = 7.2.

both cases, the CPU time is basically the same. Therefore, this optimized method
will not be used further.
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5.2 Test of different quadrature rules

Two usual quadrature rules are compared: Gauss-Hermite and Gauss-Legendre
quadrature rules. In this section, 1D problem with an irregular node-set of three
nodes is considered:

® ® ®
Zo T2 T

Let xg =0, 9 = 1.3 and x; = 2. D refers the elasticity matrix.

5.2.1 Gauss-Hermite quadrature rule

The Gauss-Hermite quadrature rule is tested since it is usually suggested for inte-
grating exponential functions.
The MaxEnt shape functions can be written as following:

Ps. () = fa(x) exp[Pa(z)] (3.31)
where fg,(z) = m and P(x) is an order 2 polynomial of x.
Therefore,
¥(a,b) € [1, N], Vpg, (2)Vps, (2) = gs.0(x) exp[—fa’] (3.32)

By the variable change X = /Bx in the calculation of the stiffness matrix:

z1 VBzx1
V(a,b) € [1, N], Kop = D/ Vs, ()Vpg, (z)dr = D/ Gs,, (X) exp[—X?)dX

VBzo
(3.33)
The shape functions can also be extended such as :
P if © € |z,
Va € [1, N, ps, (x) = 4 /2@ xPLR@)] i 2 € [0, 2] (3.34)
0 otherwise

Then:

V(a,b) € [1, N], Kup = D / G (X) xp[=X2JdX = DS wigls, (X)) (3.35)

=1

according to the Gauss-Hermite quadrature rule and where n is the total number of
material points used. The X; are the roots of the physicists’ version of the Hermite
polynomial H,(x)(i = 1,2,...,n), and the associated weights w; are given by:

2ty (3.36)

Y R ()P
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Since the original function is only defined over [z, 2], a bijective application must be
used to work in the proper domain. The variable change y = 5% tanh(X) 4 #1120
is arbitrary chosen.

Y(a,b) € [1,N], Ko =D _ Jawig ., (i) (3.37)
=1

where J; = £22%0(1 — tanh®(y,)) if © € [zg,22) and J; = Z522(1 — tanh®(y;)) if
T € [x2, 1] is the corresponding Jacobian.

5.2.2 Gauss-Legendre quadrature rule

According to the Gauss-Legendre quadrature rule:

¥(a,b) € [1,N], Ko = D / Vs, (2)Vpgs, (x)de = DY Jaw;Vpg, (2:) Vg, (2:)
zo i=1

(3.38)
where n is the total number of material points used. The z; are the roots of the
Legendre polynomial P,(x)(i = 1,2,...,n), and the associated weights w; are given
by:

2
(1 —a3) [P (x:)]?

(3.39)

w; =

and J; = 2550 if ¥ € [w0,22] and J; = 52 if x € [wy,71] is the corresponding
Jacobian.

5.2.3 By subdivision

In order to compare the previous results with a naive way to put the material points,
a distribution of regularly spaced material points over each simplex is tested.

V(a,b) € [1, N], Kap = D / Vs, (€)Vpg, (x)de = DY " JuwiVpg, (2:)Vpg, (x;)
o i=1
(3.40)
where n is the total number of material point used. The z; are regularly spaced,
and the associated weights w; are given by:

2
;== 3.41
w - ( )

and J; = #2550 if x € [xg,29] and J; = 522 if x € [12,21] is the corresponding
Jacobian.
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Figure 3.10: Material points position, their respective weights for different quadra-
ture rules.
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5.2.4 Comparison of those three quadrature rules

Figure 3.10 shows the position of the material points for each quadrature for a
certain number of material points per simplex.

A first verification to check the accuracy of a quadrature is to verify that
Va, fgi}l Vs, = pg.(r1) — pa, (x0). Figure 3.11 represents the Lo-norm of the com-
puted error.

Now, a deformation of 100% is imposed on the extreme nodes and the relative error
in the L, norm on the computed strain at the central node is computed: a strain of
100% at node x5 is expected. Figure 3.12 shows the strain relative error.

Those results show that the Gauss-Legendre quadrature is the most effective, even
with a low number of material points. Therefore, the material points are put at the
Gauss point location with the associated weight. In 2D, three material points per
simplex are used.
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Figure 3.11: Gradient integration error. Figure 3.12: Strain relative error.

5.3 Conclusions on the quadrature rules

In this section, we looked for a possible optimized position for the material points
since they can theoretically be put everywhere. A first idea was to put them where
A" = 0. As the interpolation functions are only computed at the material points
location, knowing that A* = 0 would have allowed us to not calculate it, which
could have represent a significant amount of time. However, it appeared that these
particular positions defined by equation 3.23 are not easy to find since it heavily
depend of the considered node set.

As shown on figure 3.8, when the node set is regular, the elements of M seem to be
the middle of the grid edges and the center of the simpleces. But it is no longer the
case as soon as we are looking at the borders of the convex domain convX where
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the optimized position is not exactly on the external edge but a little inside the
considered simplex. Finally, an irregular node set seem to present some difficulties
since the optimized position are no longer on the edges.

Because of this, if we want to find the optimized coordinates, a Newton-Raphson
algorithm has to be used and therefore, we no longer gain the time we would have
earn by not computing A*. Moreover, figure 3.9 shows that the optimization does
not give better results in term of convergence and accuracy.

Then, the classical quadrature rules have been compared in order to find out which
one is the more suitable for our implementation. It turns out that the very classical
Gauss-Legendre quadrature, which is used in FEM to obtain the Gauss points,
gives the better results for a low number of material points per simplex.

For all these reasons, the Gauss-Legendre quadrature has been selected to put the
material points in our implementation.

6 Conclusion

In this chapter, the Local Maximum Entropy (LME) approach has been presented.
This approach allows to build a meshless method by using material points (see
chapter 1). This approach comes with very interesting features such as the possi-
bility to put precise boundary condition (contrary to the most common meshless
methods, see chapter 1) and therefore to manage contact. Theoretically, it should
also be possible to handle auto-contact simply by updating the neighborhoods as
explained in Appendix A.

The main point of interest of this chapter is the discussion about the position of
the material points. The conclusion of the study is that it does not seem to be
an easy way to choose the coordinates of the material points smartly by saving
computational time. Also, a comparison between standard quadrature rules has
been done and the Gauss-Legendre quadrature has been selected as the rule to put
the material points in our implementation.

Finally, this implementation seems to be highly dependent on the choice of the pa-

rameter h (and consequently on «y) since it has a high impact on the shape functions
(see figure 3.2). This dependence will be studied in the next chapter.
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Chapter 4

Validation

In this chapter, the implementation of the MaxzEnt interpolation is
verified through some test cases. First, we test it with a simple
conduction problem. Then a patch test used in the literature will
allow us to discuss about the convergence depending on the node set
and the number of material points. Finally, the classic Taylor bar
case will allow us to discuss about the numerical locking phenomena
depending on the B parameter, the initial node set and the number
of material points.
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(a) (b)

Figure 4.1: Patch-test cases.

Regular node-set (a) Irregular node-set (b)
mPt |y =944 ~=18 |7=944 =802 7=18 7=08
1 6.50e-10  1.29e-5 7.5le-2  T7.22e-2  4.16e-2  5.30e-2
3 4.18e-11  2.86e-4 2.37e-3  1.54e-3  3.0le-2 5.88e-2

Table 4.1: Relative errors in the Lo-norm for the deformation gradient at mPts.

1 Patch test

Our implementation of the MaxEnt interpolation is submitted to the same patch test
as in [Arroyo and Ortiz, 2006]. In the displacement patch test, the boundary of the
computational domain is subjected to an affine transformation. For the numerical
method to pass the test, the numerical solution in the interior of the domain must
reproduce this affine transformation exactly. Consider the square [0,1] x [0, 1] of
a linear isotropic elastic material characterized by Young modulus £ = 1Pa and
the Poisson’s ratio v = 0.3. The boundary of the square is subjected to a linear
transformation characterized by the matrix

(s A7)

The two considered node-sets are described in 4.1. In both cases, simplices are
obtained by using a Delaunay triangulation on the node-set. The material points
are given by the Gauss-Legendre quadrature and there are three material points
per simplex.

The Lo-norm of the error on the deformation gradient at material points is com-
puted. Table 4.1 shows the obtained results for cases a and b for different values of ~.

It appears that the precision is depending on the initial node-set but also on the
~ parameter. The figure 4.2 shows the L2-norm relative error as a function of
but also of the boundary conditions. The case with the four unconstrained nodes
is the previously described case (b). For one unconstrained node, the case (b) of an
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Figure 4.2: L2-norm error for the patchtest depending on v and the boundary
conditions.

B
~ B

Figure 4.3: Taylor bar - boundary conditions

irregular node-set is also considered but the transformation is applied to every node
except the upper right inner node. It appears that the minimum in terms of relative
error on the deformation gradient is depending on 7 but also on the boundary
conditions. In this last case, the minimum is obtained for v = 7.71 whereas it is
obtained for v = 8.02 in the four unconstrained nodes case. Even if the problem is
not exactly the same, 7 is only a function of h, which only depend on the node set
so this different may be a little surprising, even if the difference is not so big.

The conclusion of this patchtest analysis is that in our implementation, the optimal
v is very dependent on the node set.

2 Taylor bar

This section will present the classical Taylor bar compressive impact test. We
consider an axi-symmetric cylinder of copper with a high initial velocity in the
y-direction. The material model is linear isotropic elastic and large deformations
are considered. Nodes such as y=0 are fixed in y-direction. A classical discussion
about this test is the presence of the plastic volumetric locking.
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(a) Low order (b) Mixed formulation (c) High order

Figure 4.4: Options to avoid locking with standard FEM

Equivalent plastic strain (8e-05) X

0 153 306 Y |z

Equivalent plastic strain (8e-05)
0 0436

(a) Standard (Galerkin) formulation (b) Mixed (Q4/P0) formulation

Figure 4.5: Locking on quad elements

2.1 Locking with FEM

The impact test is done with three different meshes shown on figure 4.4. We use low
order elements such as T3 or Q4, a mixed formulation and finally the use of higher
order elements, typically quadratic triangles with 6 nodes (T6) with more nodes.

For quadrangles, a mixed formulation Q4/P0 is necessary to avoid locking as shown
on figure 4.5. On the contrary, the figure 4.6 use of simplicial elements seems to
reduce the impact of the locking phenomena. In every case, the locking leads to
checkerboard pressure modes as shown on figure 4.7.
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Figure 4.6: Locking on simplicial elements
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Figure 4.7: Locking on simplicial elements
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(c) case 3

Figure 4.8: Locking with MaxEnt: three studied cases

2.2 Locking with MaxEnt

Now, the MaxEnt interpolation is used. We choose to use a total Lagrangian ap-
proach. The interpolation functions are computed once and for all in the reference
configuration, they are not updated. Finally, as explained in the previous chapter,
the integration is performed at material points. The objective is to find out the in-
fluence on the locking phenomena of the thermalization parameter v and the density
of material points, especially with respect to volumetric locking.

In the first case, we consider a simple initial node set with a density of material points
of one per simplex. In the second case, we use a more dense initial node set and
keep one single material point per simplex. In the last case, we use the first node set
but have four material points per simplex. The three cases are shown on figure 4.8
where the blue squares are the material points and the small red one are the nodes.
With those three cases, we successively set the v parameter equal to 0.5, 1.0 and 1.8.

It appears that the case 3 (high density of node and four material points per
simplex) is the most likely to provoke locking. As soon as 7 > 1.0, the locking
is very visible. On the other hand, it seems that with only one material point
per simplex, the density of node do not have an influence on the apparition of locking.

Concerning the pressure field, it appears that the case 3 leads to a checkerboard
pressure field, which is shown on figure 4.11-f. The two other cases have a regular
pressure field and it is similar to each other. In the three cases, the pressure fields

are very similar to the one obtained by using finite element method.

We compare in table 4.2 the final length of the rod, the final mushroom radius, the
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Figure 4.9: Locking with MaxEnt: v = 0.5
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Figure 4.10: Locking with MaxEnt: v = 1.0, appearance of locking
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Figure 4.11: Locking with MaxEnt: v = 1.8, appearance of locking

maximum effective strain and von Mises stress obtained by different methods. All
the results are obtained in an axi-symmetric context. Our implementation obtains
excellent agreements with the other results.

The conclusion is that depending on the  parameter, the node density and the
number of material points, it is possible to avoid the locking phenomena, which
is a very important feature for the modeling of many manufacturing processes, an
in particular the RFW process. Moreover, the results are reliable and agree with
results obtained with other methods.

3 Unilateral contact

A penalty method has been implemented to manage the contact between a de-
formable body modeled using a LME formulation and a rigid body. In this classical
method, the gap between the considered node and the rigid body is computed:

g = (Ty — XTpigia) - M (4.1)

where n is normal to the rigid surface.

The penalty algorithm is the following. At current time step for each node, the gap
g is computed. If g > 0, there is no contact. On the contrary, if g < 0, there is a
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. Final Max. Max von
Final . .
mushroom effective Mises
length . .
(mm) radius plastic stress
(mm) strain (MPa)
[Kamoulakos, 1990] 2;1426_ 7.02—-712 247 —324 472 — 476
21.26 —
|Zhu and Cescotto, 1995] 91.49 6.80 —7.18 2.75—3.03 419 — 477
[Camacho and Ortiz, 1997] 2;i4i4_ 721 —-7.24 297—3.25 /
OTM |[Li, 2009] 21.43 6.8 3.0 474
LME 21.50 6.81 2.69 516

Table 4.2: Taylor anvil impact test: comparison of results.

small penetration and a penalty force has to be applied. The first thing done is the
computation of the penalty force:

F,=C.Eyg (4.2)

where C' is the penalty coefficient and F the Young modulus of the mate-
rial. This force is applied to the considered node and the penalty coefficient times
E is added to the tangent matrix. The influence of the penalty coefficient is studied.

In this study, the geometry, material and initial boundary conditions are the
same as in the study of the Taylor’s bar and we use the case 1 configuration (one
material point per simplex and small density of node) with v = 1.8. The boundary
conditions are presented on figure 4.3. The considered material is copper and
the initial high velocity is —227 m.s~! on the y-direction. We consider a contact
between the bar and a rigid body surface defined by y = 0. Therefore, an unilateral
condition has been added for the five nodes of coordinate susceptible to penetrate
the rigid body. Finally, the simulations are run in implicit (statics or dynamics).

In a first case, we chose C' = 1 m. Figures 4.12 and 4.13 represent the evolution
of the gap during the first 20 us for the five nodes at the contact interface. Their
initial y-coordinates are given in the following table:

UN1 YNs5 YNe6 YNT YN2
0. 0.0081 0.0162 0.0243 0.0324

The figure 4.12 reveals three distinct time intervals in the evolution of the gap.
At the first time step, there is a penetration g < 0. The penalty force is applied
to prevent this. Due to this force, the gap becomes positive ¢ > 0 and there is
a rebound. After this rebound, a small penetration remains (around 2.5 - 107> m)
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Time x107° Time x107°

Figure 4.12: Evolution of the gap function and penalty force for a penalty coeffi-
cient C =1m (CE =117-10° N.om™).

(a) t =510 s (b) t=5.-10"% s
.
() t=810"%s (d)t=2.-10""s

Figure 4.13: Node evolution with a penalty coefficient C' =1 m.
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Figure 4.14: Evolution of the gap function and penalty force for a penalty coeffi-
cient C'=10m (CE = 117.- 10" N.m™1).

which tends to prove that the penalty force may not be large enough.

The figure 4.14 shows the results of this same simulation with a penalty coefficient
C = 10 m. The same three time intervals are observable. At first there is a
penetration g < 0 that causes a penalty force. Again, it leads to a positive gap
g > 0 and there is a rebound. The first remark is that the rebound characteristics
have changed:

— the size of the rebound is smaller than previously: g%, ~ 1.5-10~* m whereas
gEer ~3.25-107* m

— the penalty force is smaller than previously: FZ%, ~ 1.3 -10° N whereas
Frew ~1..107 N.

— the duration of the rebound is smaller than previously: ¢, c—10 ~ 0.6 - 1075 s
whereas t,c-1 ~0.8-107° s.

Concerning the period of time after the end of the rebound, we can see on the
penalty force graph that a small penetration still remains (around 1.4 - 1077 m).
This lingering penetration is small enough to be considered as acceptable.

4 Heat conduction

The first test case implying temperature is a pure conduction problem. Consider
a plate of 30cm over 10cm. The considered material has the following properties:
density p = 7850 kg.m ™3, conduction coefficient A = 46 W.m 1. K~! and specific
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To = 500K

Figure 4.15: Initial conditions for conduction problem.

Figure 4.16: Mesh used for Abaqus FEM simulation of the conduction test.
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Figure 4.17: Refined mesh for conduc- Figure 4.18: Coarse mesh for conduction

tion problem. problem.
N61
¢ ° « . ° . S . N7
. . ° ° . °
4 . d . . . . . .
Ty = 500K

Figure 4.19: Irregular mesh for conduction problem.
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heat capacity ¢, = 500 J.K~!. The initial node-set and related convX are shown
on figure 4.15.
The initial and boundary conditions are:

T(x,y,0) =0 (4.3a)
T(z,y,0) =0 (4.3b)
T(0,y,t) = T (4.3¢)

The objective here is to compare the temperature evolution obtained using the
LME interpolation with the results obtained with Abaqus using a FE approach.
The influence of the density of node and their position will also be studied.

The temperature evolution over time is displayed at the positions of nodes 61 and
7 on the initial configuration as shown on figure 4.15. For the other configurations,
the temperature will be measured at this same location. The analytic solution is
only known for a semi-infinite system, therefore the results cannot be compared
to any analytic solution. In order to have a reliable solution, the mesh for the FE
computation is chosen twice as thin.

Figure 4.20 shows the temperature evolution at the two chosen positions for a vari-
ation of node set and number of material points:

a : Comparison of conduction results obtained using LME and FEM (figures
4.15 and 4.16).

b : Comparison of conduction results for different number of material points per
simplex (figure 4.15).

¢ : Comparison of conduction results for the initial mesh and a refined mesh
(figures 4.15 and 4.17).

d : Comparison of conduction results for the initial mesh and a coarser mesh
(figures 4.15 and 4.18).

e : Comparison of the conduction test a regular and an irregular (figures 4.18
and 4.19).

It appears for a node set dense enough, the results are exactly the one obtained
using Abaqus, and this independently of the number of material point. On the
other hand, if the node set is not dense enough, we can see a small difference in the
temperature evolution at position N61. This difference is considered small enough
to be acceptable. Therefore, LME and our implementation succeeded this test.
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Figure 4.20: Comparison of the conduction test for different configurations
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5 Convection

A coupled thermo-mechanical problem is now considered. In this test, a thermo-
plastic model including large deformations and non-linear hardening is used. The
material is a mild-steel with the properties described in table 4.3. The boundary
conditions are shown on picture 4.21. The problem is axi-symmetric. A displacement
is applied on each side of the mild-steel cylinder. The initial temperature of the
cylinder is Ty = 20°C' and the outside gas (air) is at a constant temperature also
equal to 20°C'. The convective heat flux is computed as:

Geconv = Ci(Lsurf — Tair) (4.4)
where:
— Ci_y =15 W.m 2. K~ on the free side.
— Ci—g = 52 W.m=2.K~! on the pulled sides.

The thermal loading applied to a node z, submitted to a convection boundary
condition is:

77/} _ C'Tsurf - Tair
conv,a i TO

where S, is the equivalent surface represented by node z, which is described in
chapter 5 on figure 5.3.

Sdt (4.5)

The simulation is during 50s. The initial state is given by figure 4.22 for two
different refining level of the node-set. During this phase, displacements w(t) and
—u(t) are respectively imposed on the left and right sides of the cylinder. At
t = 50s, |u(t = 508)| = |Umaez| = 3.85 em. During this phase, there are plastic
deformation inside the cylinder, which imply a rise of the inner temperature. On
the other hand, there is convection with the outside air. Therefore, the edges are
cooler than the center. At t = 50s, figure 4.23 is obtained.

With a refined node-set, a necking appears at the center of the cylinder, just as it is
expected to. The convection boundary condition on the faces of the cylinder brings
a heterogeneity in the temperature field: the center of the part is hotter so the
material is softer and deforms more. Since the high deformation is very localized at
the center of the cylinder, a refined node-set is necessary to observe the necking.

For comparison, figure 4.24 shows the results obtained with a FE modeling using
Abaqus at the end of the first step (t = 50 s).

However, it should be noticed that the results given by Abaqus may not be
reliable for this test case. Indeed, the dependence of the elastic deformation on
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Parameter Value
Young modulus 200 GPa
Poisson coefficient 0.29
Plastic properties
Initial Yield stress 360 M Pa
Hardening coefficient 280. M Pa
Reference stress 0 MPa
Reference strain rate 0.05 MPa.s*
Rate dependency coefficient 0.05
Thermal properties
Conductivity coefficient 52 Wom L K1
Specific heat capacity 470 J K1
Thermo-elastic properties
Thermal dilatation coefficient | 10° K
Thermo-plastic properties
Ratio Dissipated energy / Total plastic energy ‘ 1.

Table 4.3: P265GH - Johnson-Cook model

NS 5

DS o

Figure 4.21: Convection problem - boundary conditions
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Figure 4.22: Convection problem - Initial state for two different node-set.
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Figure 4.23: Convection problem - temperature - end of the traction phase with
the two different node-set.
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Figure 4.24: Convection test case using Abaqus (FE).
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Figure 4.25: Abaqus results for a different imposed maximum time step (respec-
tively 0.1 s and 50 s).

the temperature is not implemented in (version 6.13 was used) and it appears that
imposing a small maximal time step leads to aberrant results as shown on figure
4.25 as an implicit scheme is used. The result given by figure 4.24 is obtained by
changing only an imposed maximal time step of 0.5 s.

The results are reasonable compared to what is obtained with Abaqus: LME suc-
ceeded this test.

6 Conclusion

In this chapter, the implementation of the LME interpolation approach has been
submitted to a few test cases. These tests were including some thermal, mechanical
and coupled thermo-mechanical problems.
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The LME interpolation approach and the variational framework have been correctly
implemented since the results obtained for each test are pretty good. Yet, some
dependencies of the accuracy of the solution have been observed. It appears that
the implementation is particularly dependent on the regularity of the node set as
shown by the patch test example. The choice of v is not easy and the tuning of this
parameter can highly improve the quality of the results. Moreover, tuning v allows
to avoid the locking phenomena, as is the density of the node set and the density
of material points.

Then, we have verified the possibility to put contact boundary condition using a
LME approach. At the moment, only the penalty method has been implemented
and tested but a good perspective is to try to use a Lagrangian multiplier method
or even an augmented Lagrangian method.

Our implementation is also able to solve purely thermal problems as shown with the
conduction test case. The results are excellent and do not seem to be dependent on
the node set and the material point density. The convection test case proved that it
is possible to handle coupled thermo-mechanical problems with large deformation.
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Chapter 5

Rotary Frictional Welding modeling

The modeling of the RFW process requires a few features such as
the computation of the heat flux related to the penalty force due
to contact. The computation of this flux implies the existence of
some other features such as the definition of an equivalent surface
represented by a node. The frictional contact also has to be ad-
gusted in order to be compatible with the wvariational framework,
which requires a symmetric formulation. Finally, a simulation of a
particular welding is presented and the results are discussed.
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1 Hypothesis
A few hypotheses are made in order to model the RFW process.

The computation is not performed in three dimensions but in an axis-symmetrical
context, assuming that the different parameters, such as strain, stress, tempera-
tures, etc., do not depend on the angular position. This assumption is quite well
verified in reality.

A quasi-static analysis is used, assuming that the inertia effects are negligible.

An other hypothesis is that the surface of contact is a plane defined by y = 0.
Therefore the contact is modeled between a deformable part and a rigid body. This
hypothesis implies that the material is homogeneous and that there is no local
penetration from one welded part into the other one, which is automatically verified
as long as the two parts are made of the same material. If the two parts are made
of two dissimilar materials, this hypothesis may be verified if both materials are
homogeneous.

The used friction law is a classical Coulomb friction law with a friction coefficient
depending on the temperature. The tangent forces at the interface are neglected.

The power of friction is considered to be entirely transformed into heat. This heat
is assumed to be equally divided between the two parts.

The convection between the parts and the ambient air is not taken into account.

Figure 5.1 is a scheme of the initial configuration.

2 Implementation of the frictional heat flux

This section deals with the most critical part in the modeling of the REFW process.
The modeling of the friction heat is indeed determinant in the modeling of the
process. The temperature is close to the melting point in the welded area. Since the
material has very different behaviors depending on the temperature, it is important
to have an as accurate as possible temperature field.

In this section, the considered configuration is described in its initial state on figure
5.1. This case represents a hollow cylinder. The axi-symmetric axis is defined by
x = 0, a contact plane is defined by y = 0.
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axi-symmetry axis

plane of contact

Figure 5.1: Initial configuration for the RFW modeling

2.1 Contact using penalty method

The classical penalty method is used to manage the contact. The gap ¢ for a node
T, 1s defined:

Go = dist(xq — Psym) (5.1)

where the operator dist(x,, Psym) computes the distance between the node x, and
the plane of symmetry Psyy. In this case, the plane of symmetry is defined by the
equation y = 0. Therefore, the gap g, is simply defined by:

Ya = Ya (52)
with the convention that g, < 0 means that there is a penetration as shown on figure
5.2.

According to the penalty method, a force is applied on each considered node de-
pending on the gap:

_J 0 ifga <0
Fopon— {_kga £ (5.3)

where £k = C'E is the penalty coefficient and F' the force applied on the considered
node which is orthogonal to the plane of symmetric; here the force is over ?y. The
potential energy related to the penalty force is

1
P.,= —§k:y§ (5.4)
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gap > 0

k>0

gap <0

Figure 5.2: Gap and penalty coefficient.

P Fap

The term 752

(diagonal term associated to the gradient force of node a).
As a reminder, the tangent matrix in a variational framework must be symmetric

and is defined by

2.2 Equivalent surface represented by a node

= —k must be added to the tangent matrix at the proper place

(5.5)

In order to apply a heat flux to a node, an equivalent surface has to be defined for
each node. In classical finite element method, this surface directly comes with the

element structure whereas in a meshfree method, there is no such equivalent.

This equivalent surface has been chosen in the most natural way.

In an axi-

symmetric context, there are three main cases which are presented on figure 5.3:

axis-symmetry axis

2,

] »

- $1

plane of contact

Figure 5.3: Equivalent surface represented by a node
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In the following, we are assuming that the initial node set is regular (as on figure
5.3 for example). Let us define the characteristic length h, associated to a node x,

he = min{||x, — x,||2 | n € [1; N]} (5.6)

with NV the total number of node. Since the node set is assumed to be regular, h,
is representing the length draw in red at nodes 1 and 2 on the figure 5.3.

As an axi-symmetric context is considered, the equivalent surface S, must be
calculated for an angle of 1 radian. The three cases described previously must
be distinguished from each other in the calculation of the equivalent surface S,
represented by the node x,,.

In the case n°1, the equivalent surface S, is basically the external surface of a cylinder
of height h, and of radius r, (with r, = z, the distance between the node x, and
the axi-symmetric axis). Therefore:

Sy = 1rahg (5.7)
In the case n°2, S, is the difference between the surface of a disc of radius r, + %
and a disc of radius r, — %“ Therefore:
1 ha\? ha\?
a — —II a — - a —
S, 51T ((r+2) <r+2)>
= 1l (5.8)
In the case n°3, S, should be divided in two parts: S, pottom and Se e
Sa - Sa,bottom + Sa,left
YA
T\l Ty ) ey
h2
=roh, + =2 (5.9)

8

In order to take this surface into account for the penalty force, it has been decided to
replace the original penalty coefficient k& (see equation 5.3) of dimension a stiffness
(m™') by a coefficient kg, of dimension a stiffness per surface unit (m=3). Thus,
equation 5.3 becomes:

0 if g, <0

—ks,.Su-ga il go >0 (5.10)

Fa,P'n:{

Therefore, equation 5.4 about the potential energy becomes:
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1
P _-

a,p = 2

ks, Sag> (5.11)

Writing equation 5.11 assuming that the equivalent surface S, represented by the
node x, is constant over time is not physical. In reality, this assumption is false,
especially in large deformation. However, in order to preserve the symmetry of the
tangent matrix in the variational framework, this type of hypothesis is necessary
but a compromised solution using the position of x, at the previous time step will
be discussed in the next sections.

An other option is to not consider this surface at all but doing so amounts to ignore
the node density in the surface area, which could lead to some errors.

2.3 Interdependence between friction and heating

The heat flux at the welding interface is directly related to the friction and contact.
Indeed, the heat flux is proportional to the friction coefficient v and the gap g,. We
consider that the friction power P, p is completely transformed into heat power:

Pa,F = F;Ua (512)

where v, is the velocity of the node z, and T, is the tangent effort due to the
Coulomb friction law given by:

F£:V||Fa,P||2:VF£P (513)

The velocity of the node z, is:

Vg = W.Ty = W.Tq (5.14)

where w is the rotation speed. The same way a penalty force is applied on the
considered node if the gap is negative, a heat flux is applied and is given by

11
b=——1. ) .d 1
T, v.ks,Saga-wrq.dt (5.15)

where v is the friction coefficient, r, = z, the radius of the considered node, kg,
is the penalty stiffness per area unit,S, is the equivalent surface represented by the
node x, and dt is the current time step.

In this expression of ®, it is interesting to note that the factor vkg,S,g, is the
tangent frictional force since a Coulomb frictional law is assumed and wr, is the
speed of the considered node. The factor % is due to the fact that the material
is assumed to be the same in both parts. In the case of dissimilar materials with

different effusivities b; and by, this factor must be replaced by bll‘)ﬁb2 |D’Alvise, 2002].
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The heat flux can also be written

1
o = —é.u.ksa.w.h.dt. (Sa(Ta)-Ya-Ta) (5.16)

Some terms have to be added to the tangent matrix. However,

P Ft
(9_ # 0 whereas %T 0 (5.17a)
8(19 oF™

~0 (5.17b)

— h
7é 0 whereas 5T

which is an issue in regard of the symmetry of the tangent matrix in the variational
framework.

2.4 A symmetric formulation of frictional contact
taé?éaF* ot 00 6F”

The equation 5. 17 shows tha . 'The trick we opt for is to use

the position "1 of the node x, at the pre\}ious tlme step n — 1. The algorithm is
presented considering for one given node and a particular scenario:

1. time step n-2: g > 0, no penetration.

2. time step n-1: g < 0, penetration detected:

1

a) Save of the current coordinates &'~

(
(b
(c

(d) Add o P " to the stiffness matrix.

Computation of the penalty force F"~! = —kg y" 1S, (z"72).
Apply the penalty force F" 1.

)
)
)
)

3. time step n: g < 0, penetration detected:
(a) Computation of the heat flux due to previous time step:
o = —Lvkwhdt. .Sy yr et
b
(c

(b) Apply the heat flux due to previous time step ®".
)

(d) Computation of the penalty force F™ = —kg, y"S, (x"1).
)
)

Save of the current coordinates x

Apply the penalty force F™.

(e

(f) Add PPE to the stiffness matrix.

82

4. time step n+1: g > 0, no penetration.
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(a) Computation of the heat flux due to previous time step:
Ot = —2 vk, w.h.dt.SIyral

(b) Apply the heat flux due to previous time step ®"1.

5. etc.

Thanks to this trick, ® is now independent of x, such that

ole i
ST = T 0 (5.18)

Similarly, the potential energy due to the penalty force P, p is now independent of
re = T, (see equation 5.11 ).
The symmetry of the tangent matrix is now respected. The price to pay for using
this algorithm is that the heat flux is applied one time step too late. However, if the
time step is small enough (which will typically be the case for this type of problem),
this error seems reasonable.

3 Identification of the flow stress models

Series of experiments have been lead by ACB, a partner of the consortium. These
experiments had three objectives: to characterize a weld made with the RFW
process, propose industrial tests and to be a support for the validation of our LME
interpolation approach implementation.

A total of twenty-six welds have been done using a p265gh steel, which is a material
mainly used to build pressure vessels. This series of tests was made by tuning the
different welding parameters which are the expected total upset, the rotation speed,
the welding force and the forging force.

The LAMPA institute identified two flow stress models for the p265gh steel: the
Norton-Hoff model and the Johnson-Cook model.

3.1 Norton-Hoff model

The Norton-Hoff flow stress model has been identified for two temperature domains:
T < 600 °C and T" > 600 °C (a solid-solid ohase transformation occurs around
600°C). Let us remind that the Norton-Hoff law is defined by

- (BT

where A, B, m and n are material constants. For each domain, the parameters have
been respectively identified at 7" = 300 °C and T" = 600 °C. The results are shown
in table 5.1.
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N\ 1/m 1/n
o5, T) = Aexp (2) (£) 7 (2)
Parameters
T < 600 °C T > 600 °C
A (MPa) 401 3.2
B (K) 242 4430
m 0.02 0.14
n 0.10 0.09
po (s 0.001 0.001
Do 0.0002 0.0002

Table 5.1: Identification of the Norton-Hoff law parameters for p265gh steel.

oiro) = [+ 55] e ()] [~ ()]
Parameters
T < 600 °C T > 600 °C
Po 0.05 305
Ty (°C) 300 600
T (°C) 1500 1500
A (MPa) 330 o
B 280 500
n 2.632 10
¢ g 0.18
m 0.714 2.778
Table 5.2: Identification of the Johnson-Cook law parameters for p265gh steel.

3.2 Johnson-Cook model

The Johnson-Cook flow stress model has been identified for two temperature do-
mains: 1T < 600 °C and T > 600 °C. Let us remind that the Johnson-Cook law is
defined by

i -] n-cn ()] - (223)°

where p, is the equivalent plastic strain, p, is the plastic strain rate and A,B,C',n and
m are material constants. For each domain, the parameters have been respectively
identified at T"= 300 °C and T = 600 °C. The results are shown in table 5.2.

(5.20)
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4 RFW process modeling

4.1 Boundary conditions and loading

The simulation parameters are the one described previously: axi-symmetric
context, quasi-static computation, the contact surface is assumed to be a plane
and a Coulomb friction law in considered. The flow stress model is Johnson-Cook
model as identified on table 5.2.

In this section a hollow cylinder is considered. The global geometry of the part is
described on figure 5.4. A bore is made at the bottom of the part such that the
cylinder is not totally hollow. The real loading is applied on the top of the part
(black arrows). In this simulation, only the reduced thickness portion is considered
(blue part). Therefore, additional hypothesis are made, assuming the hypotheses
made at the beginning of the chapter:

— The loading is half the real loading (blue arrows).

— The degree of freedom related to the vertical displacement of the node on the
top is the same for each node (red nodes).

The boundary conditions are presented on figure 5.1. The initial node-set is given
on figure 5.5. The loading given on figure 5.6 is applied on the nodes on the top
of the node-set. A delay between the experimental and the numerical loading is
applied in order to facilitate the convergence.

4.2 Results of the modeling.

Figures 5.7 shows the state of the welding at successive time steps. The first thing
to note is that the simulation currently stops converging after 10.6 s so it is only
possible at the moment to study the results with this first half of the process.

At t = 0.2 s (see figure 5.7-a and 5.8), the temperature field has a cone shape as the
radius r, = x, increases. This result is physical since the outer nodes have a higher
velocity than the inner ones. Therefore, the heat flux is larger for outer nodes (see
equation 5.16).

As the time passes, nodes at the center of the modeled part progressively become
the warmer nodes as shown by figures 5.7-b and 5.7-c . Indeed, because of the
loading, nodes at the bottom corners are no more in contact with the contact
surface so no heat flux is applied whereas it is still the case at the center.

From this moment, the flash starts to appear on each side and the temperature
at the center of the part is quickly increasing. The early flash formation is in
agreement (at least geometrically) with other numerical result from the literature
using the FEM [D’Alvise, 2002]: figure 5.7 shows that the largely deformed area is
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only at the bottom of the part while the upper part remains undeformed.
Because of the hypothesis presented on figure 5.4 to just model a part of the hollow
cilinder, a global average displacement of 0.8 mm is observed on the x-direction.

Figure 5.10 shows the final configuration at the end of the welding. The asymmetry
between the inner and outer sides of the part is also visible with the simulation on
figure 5.11. The Heat Affected Zone (HAZ) on figure 5.10 is located in the largely
deformed area. Numerically, this same area is also the hottest so the prediction of
the HAZ seems to be in agreement with the experimental data.

The figure 5.12 shows the evolution of the temperature for four selected nodes
depicted on figure 5.5: the outer node N3 of the top of the modeled area, the end
nodes N1 and N2 of the flash and the mid node of the contact area N15. The
melting temperature used for the Johnson-Cook model is also represented. At the
beginning, the outer node heats up faster because of the rotary speed. At ¢t ~ 3 s,
the end node N2 of the flash separates from the contact plane and N15 becomes
the hottest node. At t ~ 8.5 s, the temperature of node N15 becomes greater
than the melting temperature of the material. In reality, this phenomena should
not happen: the temperature is supposed to be very close but still lesser than
the melting temperature. This may be a first cause of the non-convergence of the
calculation.

An other cause for the non convergence may be the flow stress model used. Even if
Johnson-Cook is one of the most used model, it may be not sophisticated enough
for the simulation of a very numerical demanding problem.

Finally, the reason most likely to cause the non-convergence may be the contact
friction law. The penalty method is very simple and since the modeling of the heat
flux is critical for the modeling of the process, it may be not accurate enough.
Taking the convection phenomena may also solve the issue of temperature greater
than the melting temperature: it may be used the whole hollow cylinder and the
cooling to the ambient air.

Different penalty coefficient (see equation 4.2) have been tested for the simulation
of the process. A comparison of the results is available in table 5.3. The results
presented previously are the one obtained with C' = 10 m since it is considered as
a good compromise between accuracy and calculation time. However, the results
between the three cases are very close from each other.

Different node-sets have also been tested: the represented one, a twice as dense
node set and a final one with more nodes at the bottom. The very dense node set
was unusable because of the computation time. The locally refined node set gave
bad results especially because of lack of regularity of the node-set dependency of our
implementation (see the patch test in the previous chapter). A compromise between
node density and computation time lead to the node-set presented on figure 5.5.
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Figure 5.7: Evolution of the welding modeling.
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Figure 5.9: Displacement and temperature field at ¢t = 10.6 s.
C (m) 1 10 100
Max. penetration (um) 58.8 5.633 5.240
Max. temperature (K) 1516.37 1517.37 1517.47
Total width (mm) 7.858 7.532 7.530
Computation duration ~ 1h40min ~ Th20min ~ 10h10min

Time modeled before

. 11.004 10.63 10.51
divergence (s)

Table 5.3: Influence of the penalty coefficient on the REW modeling
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Figure 5.10: Experimental Heat Af- Figure 5.11: Continuous view of the
fected Zone (HAZ). last time step simulated (¢ = 10.6 s).
Color map represents the temperature.
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Figure 5.12: Evolution of the temperature for different nodes.
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5 Conclusion

Our LME implementation seems to be able to simulate the RFW process. The
LME approach presents the necessary features such as the possibility to put contact
conditions and thermal fluxes related to these conditions. A notion of equivalent
surface represented by a node but also a symmetric formulation of frictional contact
have been added.

The first results of the modeling of the REFW process are promising. Even if
currently, the implementation may not be robust enough to simulate the whole
process, the first results are close to the experimental data on the first half of the
process and the evolution of the flash shape is in agreement with literature and
experimental observations.

Different way are possible to improve the convergence. The contact modeling
may be improve, by using an augmented Lagrangian model for instance. A more
accurate flow stress model could be use to improve the behavior of the mate-
rial. The convection phenomena should also be taken into account. This should
solve the fact that for some nodes, the temperature reaches the melting temperature.

Finally, it is important to note that phase cange has not been taken into account.
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Conclusion

In this work, a meshless method based on the Local Maximum Entropy (LME)
principle and using material point integrations is proposed.

Our work is mainly focused on simulations of general solid flows involving coupled
thermo-mechanics, large deformations and transient loading. For this purpose, the
meshless methods are an excellent alternative to conventional grid-based methods.
Our implementation is a Lagrangian particle method, which preserves all the ad-
vantages of absence of a mesh. Furthermore, by employing the LME approximation
scheme, it overcomes the difficulty for imposition of essential boundary conditions
encountered in most of the meshless methods.

This work is also using an incremental variational approach. This variational
framework allows the description of the state and the evolution of a boundary
values problem. It includes inelasticity, equation of state, and general geometries
in R? and boundary conditions. The incremental aspect leads to a temporal
discretization of the governing equation to reduce time-dependent problems to a
sequence of incremental problems each characterized by a minimum principle. Then,
a spatial discretization is applied to describe locally the state of the material via a
Rayleigh-Ritz approach. The material points are a support of this discretization
since they are tracking the material and are carrying all the material information,
including the inner variables. Then a fully discrete formulation is obtained. From
this, the evolution of the solid flows can be solved forward explicitly or implicitly.

The possibilities of this implementation have been described and verified through
some test cases in chapter 4 by being compared to equivalent simulations using
finite elements method. In particular, conduction and purely mechanical problems
can be treated with a high accuracy. Moreover, the possibility to apply a contact
condition allows to model more complex problems.

An other drawback of the current implementation is the computation time required
when the number of node is rising. An improvement would be to use a skyline matrix
storage (SKS) to ease the inversion of matrices when using an implicit scheme.
An other way would be to use an explicit scheme "a la" OTM but implementing
conduction and thermo-mechanical coupling are real issues.
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However, the implementation seems to have a high dependency on the node-set
in the computation of the shape functions, mostly because of the very local h
parameter we chose. In the patch test, the differences on the accuracy between a
very regular node set and an irregular one are very important. This fact does not
allow us to perform an efficient updated Lagrangian approach.

The first results obtained with the simulation process are very encouraging but
are not satisfying enough to be industrially used. The heat flux at the interface
represents a very critical part of the process and is highly depending on the contact
modeling. Since only a very basic penalty contact model has been implemented,
the heat flux may not be very accurate. An improvement of the contact model,
such as augmented Lagrangian contact, may improve drastically the accuracy of
the temperature field and therefore the global result of the simulation. As shown
in chapter 5, the formation of the flash in the simulation is only starting to appear.
Using an updated Lagrangian approach by updating the neighborhoods of the
material points may improve the formation of the flash. In the same way, the use
of more complex flow stress models may improve the results of the REFW modeling.

The positive aspects of the current results are that the formation of the flash
is in agreement with what can be found in literature and that the temperature
at the interface is very close to the melting temperature of the material. A
solution to avoid that the temperature becomes greater than the melting tem-
perature for some nodes would be to consider some convection condition at the
boundary of the domain, which could represent the thermal exchanges with the am-
bient air and the thermal conduction with a non modeled part of the hollow cylinder.
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Update of the neighborhoods

The update of neighborhoods enables a very interesting aspect of the maximum en-
tropy interpolation: the ability to automatically manage self-contact by considering
it as a sticking contact.

Figure A.1 represents a case of self contact with the red-colored part coming from
the right. Assuming that the red-colored part is the neighborhood of the material
point represented here by a blue circle, consider two cases: the first one without
update of neighborhood and a second one with it.

In the first case, the shape functions are computed in the initial configuration so
the nodes of the main part are not in the neighborhood of the considered material
point. Therefore, the red part will just go through the main one.

In the second case, as the material point is coming closer to the main part, the closest
node of the main part will be added to the material point neighborhood. Therefore,
all global and internal variables will homogenize in this neighborhood and it will
numerically be impossible to dissociate those two parts during the remainder of the
simulation.

Independently of the MaxEnt interpolation, there are three ways of performing a
simulation: with a total Lagrangian approach, an updated Lagrangian approach and
the Eulerian approach. Here, a (total or updated) Lagrangian approach is used.
First of all, given an initial node-set, every single material point is created. Then
every shape function is evaluated at every material points. Depending on those
values, the original neighborhood of each material point is built: for instance, a
node z, is in the neighborhood of a material point x if, and only if, shape function
evaluation pg, () is greater than a tolerance parameter which depends on h and 7.
With a total Lagrangian approach, everything is computed in this initial setup.
On the contrary, in an updated Lagrangian approach, the shape functions and the
neighborhood are computed at each time step; or at least when the deformation
gets too large. But in this case, the h parameter should be updated, which implies
either to define a metric of the deformation or to rebuild a connectivity table in
order to find the A in the shape functions computations. The first case scenario may
be inaccurate and the second one consists in re-meshing the whole node-set, which
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Figure A.1: Self contact between two initially distant part of a same mechanical
part.

is basically what is tried to be avoided. An original solution consists in bringing
back the deformed system in a pseudo-initial state.

At each time step n+ 1, the following procedure is used: first the updated positions
X,p of each node are computed. Then the updated positions of each material point
are also computed from the new position of each node in his former neighborhood.
In the same way, a strain gradient F),p; is interpolated for each material point:

Fopt = Z Vpa(x)x, + I (A.1)
a=1

where n is the size of the material point neighborhood ,, . The strategy to compute
the shape function is to use the pseudo-initial coordinates of each nodes and material
points defined by:

X(/J = Fn;]l%X“P (A~2)

In this case, the h parameter is still adapted and updated neighborhoods and shape
functions can be computed.

The update of the neighborhood is very interesting to use when the convex domain
convX becomes non convex during the simulation: it basically consists in cutting
the whole domain in smaller convex domains. In case of very large deformation
in traction for instance, the update of the neighborhood also allows for a material
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point to catch only the most relevant information.

Let us consider a current time step n where the position of the nodes x;, the position
of the material points ], p, and the gradient of deformation Fj_,, are assumed to
be known. The objective is to determine Fy 1, a:;”rl and :13’”rl by introducing the
pseudo-initial state. Let us consider one material point.

F0~>n+1 = Fn~>n+1 : F0~>n (A3)

The objective is reduced to the computation of F,,_,,.1. By definition:

Oy sy,
Fn—>n+1 = a%“ + 1

=3 (A
where:

Opa _ Opa O,
ox, ox! oz,
OPa o\
= 5o Forn (A.5)
~ Opa
Oz

0—n

QS

Then, equation A.3 becomes:

aa — n—mn
Fospi1 = ( ap,FO—m a_) +1+I) - Fon

apa n—n
- Z ox!, w7+ Fo, (A-6)

where p, are computed in the pseudo-initial configuration. The update of the ma-
terial point coordinates is given by:

mﬁl_}t = Z:pa(ma)uz_mJrl + T py (A7)

In the cases where the neighborhoods are updated at each time step, the algorithm
is the following:

1. Beginning of time step n + 1.

LME interpolation approach for coupled thermo-mechanical problems



110

Update of the neighborhoods

2.
6.

Update of the nodes coordinates: "' = & + 27"+

Update of the neighborhoods in the pseudo-initial configuration.

Computation of the shape functions and its derivatives in the pseudo-initial
configuration.

Computation of the deformation gradient.

Update of the material point coordinates.

In the current implementation, the calculation of A* becomes very difficult as soon as
the node-set is highly irregular (i.e. two nodes become very close from each other).
Because of that, no practical case is presented in this document.
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Résumé du chapitre 1

Introduction

1 Procédé de soudage par friction rotative a en-
trainement direct (RFW)

Cette thése s’inscrit dans un projet industriel dont 1'objectif est le développement
d’une machine de soudage par friction rotative capable de souder des piéces de
grande taille. Ce projet implique deux entreprises, ACB [http://www.acb-ps.com]
et Jeumont Electric [http://www.jeumontelectric.com|, ainsi que trois laboratoires,
le GeM (Institut de recherche en Génie civil et Mécanique), 'IMN (Institut des
matériaux de Nantes) et le LAMPA (Laboratoire des Arts et Métiers ParisTech
d’Angers).

Dans ce contexte, une méthode sans maillage basée sur une interpolation de type
Local Maximum Entropy (LME) est proposée pour modéliser des phénoménes de
fort couplage thermomécanique mettant en jeu de grandes déformations et des
conditions limites de contact. Ce type d’approche évite les problémes inhérents aux
étapes de remaillage indispensables en grandes déformations avec une approche
de type Méthode des Eléments Finis (MEF) qui découle inévitablement a une
dégradation des différents champs tels que le champ de température par exemple.
Ce dernier point est crucial dans le cas de la modélisation du procédé RFW.

Le procédé RFW est maintenant utilisé industriellement depuis plusieurs décennies
et permet le soudage de deux piéces n’étant pas nécessairement faites du méme
matériau. Les différentes étapes de soudage sont la mise en mouvement, la phase
d’approche, le soudage et la forge.

La modélisation du procédé RFW par la MEF est maintenant relativement

maitrisée. Les codes commerciaux, comme Abaqus [Simulia Abaqus, 2010] par
exemple, proposent les scripts nécessaires pour simuler "facilement" le procédé.
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Les résultats obtenus avec la MEF sont suffisamment proches des résultats expéri-
mentaux pour étre considérés comme fiables. Cependant la MEF n’est peut-étre
pas la méthode la plus adaptée a la modélisation du procédé. En effet, le couple
thermo-mécanique joue un role trés important et requiert une grande précision sur
les différents champs. Pour prendre en charge des grandes déformations, les modéli-
sations par éléments finis procédent a des étapes de remaillage Des études montrent
que généralement, des maillages adaptatifs donnent des prédictions raisonnables
du résultat mais peuvent manquer totalement des phénomeénes physiques tels
que les bandes de cisaillement adiabatique |[Lee and Bathe, 1994|. Une précision
insuffisante du champ de température peut poser des problémes pour d’éventuelles
études métallurgiques par la suite.

2 Objectifs

Le procédé RFW est controlé en manipulant trois parameétres: la vitesse de rotation,
le couple et la pression appliquée sur la piéce en rotation. Effectuer des campagnes
d’essais visant a déterminer les paramétres de soudage optimaux est efficace mais
requiert énormément de temps et d’investissement.

Les modélisations de type MEF sont efficaces mais la nécessité de procéder a de
nombreuses phases de remaillage représente a la fois une perte de temps et de
précision due au transfert des différents champs de ’ancien maillage vers le nouveau.

Quant a elles, les approches de type sans maillage présentent de nombreux avantages
vis-a-vis des méthodes basées sur une grille telle que la MEF. L’argument le plus
pertinent dans le contexte considéré est certainement que ce type de méthode ne
souffre pas des grandes déformations. Les autres grands avantages sont la grande
régularité des fonctions d’interpolation, une convergence généralement meilleure
et la possibilité d’éviter le verrouillage volumétrique en réglant le paramétre de
dilatation de la fonction noyau.

Le but de cette étude est de développer et de proposer une méthode sans maillage
basée sur une approche de type Local Maximum Entropy (LME). Les objectifs sont
d’étre capable de prédire le champ de température, la zone affectée thermiquement
ainsi que le champs de déformation.

Les approches LME ne sont utilisées que depuis quelques années dans l'industrie et
fournissent déja des résultats trés impressionnants, notamment dans la modélisation
d’impacts & grande vitesse via la Optimal Transportation Method de Li. et al
[Li et al., 2010]. Une approche LME devrait donc étre capable de fournir de bons
résultats pour la modélisation du procédé REFW.

3 Meéthodes d’approximation sans maillage

Au cours des derniéres décennies, une multitude de méthodes sans maillages a été
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publiée. Cependant, toutes présentent un grand nombre de similarités entre elles
et la principale différence réside dans la fagon de construire I'approximation u”(x)
d’une fonction u(x dont le domaine de définition est fixé par un nuage de nceuds
pré-défini. Une telle approximation peut toujours s’écrire sous la forme continue

M (y) = / C(y)uly) dy

ou sous la forme discréte

u'(x) = Na(@)u(w,)

ot ® est la fonction noyau, C' un coefficient (de normalisation par exemple) et N,
la fonction d’interpolation associée au nceud a.

Cependant, le principal défaut des méthodes sans maillages les plus connues
telles que Smooth Particule Hydrodynamics (SPH) [Lucy, 1977], Moving Least
Squares (MLS) [Lancaster and Salkauskas, 1981] [Nayroles et al., 1992] ou encore
Reproducing Kernel Particule Method (RKPM) [Liu et al., 1995] est 'impossibilité
de définir des conditions limites précises simplement. Dans cette optique, la
Natural Element Method (NEM) [Sukumar, 1998| [Sukumar and Moran, 1999]
[Sukumar et al., 2001] est le premier véritable succés. La NEM est méme utilisable
pour la modélisation des procédés [Chinesta et al., 2013].

La Material Points Method (MPM) [Sulsky et al., 1993| [Sulsky et al., 1995] est
une des bases de notre travail. La particularité de cette méthode est d’étre capable
de prendre en compte la dépendance historique des lois constitutives dans une
large gamme de problémes d’ingénierie tels que les problémes de pénétration ou
d’'impact. Elle consiste en une procédure de discrétisation généralisée en utilisant
une approche variationnelle et un schéma de discrétisation de type Petrov-Galerkin,
Iidée principale étant de pouvoir profiter a4 la fois des avantages des méthodes
eulériennes et lagrangiennes.

L’objectif de ce travail de thése consiste donc & construire une méthode sans maillage
basée sur une approche Local Maximum Entropy (LME) combinée & une formula-
tion variationnelle prenant en compte un fort couplage thermo-mécanique. Ceci
passera donc par la modélisation variationnelle basée sur une approche énergétique
incrémentale puis par la construction des fonctions d’interpolations LME. Cette im-
plémentation sera ensuite testée sur des cas tests classiques pour finalement étre
utilisée pour modéliser le procédé de soudage par friction rotative.
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Formulation du probléme
thermo-mécanique

1 Meéthodes variationnelles basées sur une approche
énergétique et principes variationnels

Les principes variationnels jouent un réle important en mécanique depuis plusieurs
décennies [Lanczos, 1970] et ont principalement été développés pour des sys-
témes conservatifs. Les plus connus sont certainement les principes de Hamilton
[Hamilton, 1834] en dynamique et de minimisation de I’énergie potentielle en
statique. D’un point de vue mathématique mais aussi mécanique, les approches
variationnelles présentent de nombreux avantages tels que l'unicité, la convergence
et la stabilité des formulations. Fondamentalement, un principe variationnel se
résume & une approche optimisation utilisée pour décrire ’état et ’évolution d’un
probléme aux conditions limites.

Soit ¢(t) I’état du systéme au temps ¢t. On cherche a définir un principe variation-
nel déterminant I’évolution du systéme considéré, dans un cadre dynamique ou
quasi-statique.

Le principe de Hu-Washizu-Fraeijs de Veubeke [Washizu, 1955] [de Veubeke, 1972]
[Hu, 1984] est le principe canonique de ’élasticité en statique. Il met en jeu trois
champs indépendants que sont: la configuration ¢, le gradient de déformation F' et
le tenseur des contrainte de Piola P. La fonctionnelle associée est définie par:

H(¢,F,P):/B (W(F'F)+P- (V¢ — F)] dV—/B pog-d)dV—/aB t-¢dA

ot W est I'énergie de déformation élastique propre dépendant du tenseur de Cauchy
C = FTF, b est la résultante des forces volumiques e t les efforts appliqués a la
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surface 0,By. Les trois dérivées de Gateaux ménent respectivement a I’équation
d’équilibre, I’équation constitutive et I’équation de compatibilité:

V-P' 4+ pgb=0

_ o pdWI(C)
P=2F~— "
F=V¢

Considérons maintenant le principe de minimum d’énergie potentielle et construisons
une modélisation variationnelle. Si les équations de compatibilité et constitutives
sont vérifiées, alors la fonctionnelle devient

H(p) = [ W(Vod" - Vo) dV — p05~¢dV—/ £ ¢ dA
By Bo 0o Bo

=U(p) - W(9)

avec U(¢p) I'énergie potentielle et W(¢) 'énergie des forces extérieures et ot py est
la masse volumique et nablay le gradient matériel. Le probléme aux conditions
limites peut donc étre décrit par le principe variationnel suivant:

Dans ce contexte, les équations d’équilibre sont données par:
e Conservation de la masse
pdet F' = pg

ol p est la masse volumique dans la configuration déformée.

e Counservation du moment linéaire
pod = Vo - P+ pb

e Conservation du moment angulaire

PF" = FPT

Le couplage thermo-mécanique impliquent deux lois de conservation supplémentaire
représentant les lois de la thermo-dynamique:
e Conservation de ’énergie (premier principe de la thermo-dynamique)

poTT]:PdF+YdZ—VOH+,00Q

ou H est le vecteur flux de chaleur nominal, () le flux de chaleur massique
appliqué et n 'entropie massique.
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e Inégalité de Clausius-Duhem (second principe de la thermo-dynamique)
: 1
TF:’Dmt_THVOTZO

ol T est la température absolue et I' le taux de production d’entropie.

2 Cadre général en thermo-mécanique

Considérons un probléme aux conditions limites avec un fort couplage thermo-
mécanique. Les équations constitutives en grandes déformations sont données lo-
calement par [Yang et al., 2006]

V-P+poB =pV
FPT = PFT
E=P-F+p,Q—V -H

H
Y =p——+V-— >0
Y = po? T + T2

On peut définir un pseudo-potetiel de dissipation A défini par

A=V"Z,Z,T)+ ¢*(F,F,T)) — x(H,T)
avec U* ¢* et x les potentiels cinétiques, visqueux et de conduction et Z représente
les variables internes. On peut également définir Y la force conjuguée a la déforma-
tion plastique cumulée:
ow  our
0Z oz
avec U* le pseudo-potentiel dual obtenue par la transformation de Legendre-Fenchel
a partir de ¢ défini par:

. ov
T = su {YZ—\II}:su Yo — v
W Yp{ oY }
A partir de cela, on peut en déduire une formulation variationnelle proposée par
Yang et al. [Yang et al., 2006]. Le potentiel d’un matériaux dissipatif standard est
donné par:

. ) ) T. T. 1
) Tn Z)= E—pIn+A|=F —Z —=VT
<¢7 » 1, ) /‘;|: Po 77+ ((_) 7@ ) Tv ):| dv
—/pOB-¢'>dV— T ¢dS
B orB
T — T
+ log — dV — Hlog — dS
/BpoQ e » & T
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Deux températures, © et T sont introduites, correspondant respectivement a une
température interne ou d’équilibre et une température externe nécessaires pour
retrouver les équations d’équilibre.

Au dela d'une approche variationnelle, on adopte également une approche incré-
mentale. De méme que pour la Material Point Method (MPM), le systéme est
décrit en utilisant des points matériels. Ces points sont suivis tout au long de
la déformation. A un temps ¢t donné, chaque point matériel a sa propre masse,
masse volumique, vitesse, etc. nécessaire a la description du modéle constitutif.
La discrétisation du potentiel se fait en deux temps: un discrétisation temporelle
suivie d’une discrétisation spatiale.

En considérant un intervalle de temps [t,,, t,+1], on aboutit au potentiel incrémental
suivant:

®n‘0ﬁn+177%+1):: inf ¢HzOﬁn+1772+17nn+1723n+1)

77n+17Zn+1

:/ wn (Fn—i-la Tn—i-la Gn+1) dv
B

__‘/;/0013n+4.'(q6n+1 _‘qbn) av — §;n+4.'(qbn+1 _‘qbn) ds

orB

T, — T,
+ / AtpoQnstlog 22 qv — / AtH, 1 log =22 dS
B T, onB T,

n n n

avec

Un (Fog1, g1, Gnyr) = inf [(Bng1 — En) — poTns1 (Mngr — 1n) + AtA, 4]

77n+1aZn+l

=W, — Atx(Gp1)
ol X(G) est la fonction de dissipation de Biot telle que

ox -, VvT
=G\ i G="7

Y, peut étre vu comme une densité d’énergie thermo-élastique Le probléme varia-
tionnel se réduit alors a:

inf sup®,, (¢ni1, Tns1)

¢7l+1Tn+1

La discrétisation spatiale fait intervenir les n, points matériels ainsi que les fonctions
d’interpolation NN, associées aux nN,oges NoeUds .

Nnodes

o) =Y. Niw)z,
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ou x, et T, sont les températures aux nceuds. Le principe variationnel réduit devient
alors:

inf sup®,, (¢Z+1 , T,}ZH s @y T, Zn)
¢Z+1Tff+1

Par substitution dans I’expression du potentiel incrémental et en enlevant les indices
n + 1 pour plus de lisibilité, on obtient:

Vox, admissible,

TN, dS} c0x, =0

Nnodes Mnodes
EATEDS {/ [P" - VN, — pobNN,] dV—/
B

a=1 a=1 6TB

V0T, admissible,

Nnodes Nnodes

VN, G" N
h h a a
> Quili= ) {/B [—polnl N, +AtH ( = +ﬁNa) +At,00QT—} %

n

a=1 a=1

n

—N,
—/ AtH— dS} 0T, =0
on T,

ou P", Anl:, et H" sont respectivement définis par:

P = % (FhaTh;Fan;Zn)
ow,
POAUfo = - T (FhaTh;anTn7Zn>
Hh—a—X(Gh'F T, Z,)
- 8G )y ny Sny <n

On obtient ainsi les équilibres mécaniques et thermiques:

int ext
a —Ja T 0
{gint . gext =0 (CL = 17 ceey nnodes)

En considérant les fonctions de forme Local Maximum Entropy définies sur le do-
maine B (ou une restriction du domaine B), les forces et flux internes et externes
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sont donnés par:

| / P". VN, dv
B

fot = / pobN, dV + / TN, dS
B orB

. N h
Qu" = / [pOAngffNa — AtH" (VTha + %N>] v
B

H
Q= = / NI dV—/ At—N, dS
B T, Oeta B T,

n n

3 Cadre variationnel et modéles d’écoulements

Le modéle de Johnson-Cook [Johnson and Cook, 1983] est I'un des modéles les plus
utilisés pour décrire I’écoulement d’un solide comme une fonction de la vitesse de
déformation plastique p, de la température 1" et de la déformation plastique équiv-
alente p. Ce principe est défini empiriquement par:

oot = [a+ 8] [ om (F)] -

Po

o A,B,C',n et m sont des constantes du matériaux. La température normalisée T™*
est définie par

0 if T < Ty
T—-"1T

T" = ——— Ty <T<T
Tm—TO 1 0 < <1y
1 it T > T,

Dans le cadre variationnel, les énergies stockées et dissipées en chaleurs sont ex-
primées par:

B )
D — S n+1 . *\ 7
Wr(p,T) (Asp+—n+ P ) (1 (1) )

' (ip.T) = [(Ad + Bap")p+ (A + By") o (p% In (p%) -2 1)] (1= %)

OflAS+Ad:AetBS—|—Bd:B.
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Interpolation Local Maximum
Entropy

1 Théorie de I'information

La théorie de I'information |?] est une théorie probabiliste utilisée pour quantifier
I'information contenue dans une donnée. Une des caractéristiques de cette théorie
est qu’elle donne un sens physique a la notion d’information: laissée & elle-méme,
Iinformation ne peut qu’évoluer vers la désorganisation, c’est-a-dire vers un ac-
croissement d’entropie. Cette entropie est définie par Shannon par:

H(p) = —plog(p)

oll p est la probabilité associée a un événement donné. Dans le cas o on considére
un ensemble de n événements i associés aux probabilités p;, 'entropie s’écrit:

=1

Lorsqu’on souhaite représenter une connaissance imparfaite par une loi de prob-
abilité, le principe d’entropie maximale consiste a identificatier des contraintes
auxquelles cette distribution doit répondre et, parmi toutes les distributions
possibles, choisir celle qui a la plus grande entropie. De toutes ces distributions,
c’est celle d’entropie maximale qui contient le moins d’informations, et elle est donc
pour cette raison la moins arbitraire de toutes celles que 'on pourrait utiliser.

2 Probléme Local Maximum Entropy

Ce chapitre est basé sur larticle [Arroyo and Ortiz, 2006]. La construction de
I'interpolation Local Maximum Entropy peut étre retrouvée intégralement dans cet
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article.

Considérons un ensemble de noeuds X et le plus petit convexe convX contenant X.
Un lien a été établi entre I'entropie de Shannon et la construction de fonctions
d’interpolation pour un ensemble de nceuds donné. Tout d’abord, on souhaite utiliser
une distribution de probabilité la moins arbitraire possible. 1l convient donc de
considérer la solution p = [py, ..., p,] du probléme Maximum Entropy:

(ME) Maximiser  H(p) = — Zpa log pa
a=1

tel que Vo € convX pu(x) >20,a=1,....N
> Pa(w) =1
Y opa(x)X, =
Ce probléme a une solution si, et seulement si, * € convX. De plus la solution est
alors unique. Ces fonctions, bien qu’optimales au sens de la théorie de 'information,
sont non-locales et peu efficaces en tant que fonctions d’interpolation pour de la
mécanique numérique. Pour améliorer leur efficacité, il est nécessaire d’ajouter une
notion de localité: ce qui se passe prés du point @ considéré est le plus intéressant.
Cette notion de localité peut étre directement reliée & la largeur des fonctions p,:

(RAJ) Minimiser U(x,p) = Zpa|a: — x|
a=1

tel que Ve € convX  p,x) > 0,a=1,...N

> Pa() =1
Zpa(w)wa =
Une solution a ce probléme existe et est unique sauf cas dégénéré. En général, il
n’est pas possible de trouver une solution commune aux deux problémes. On cherche
donc une solution Pareto optimale, c’est-a-dire qui représente le meilleur compromis
entre les deux solutions, ce qui revient donc a résoudre le probléme Local Maximum
Entropy:

(LME); Minimiser  fs(zx, p) = SU(z, p) — H(p)

tel que VY € conv X pax) = 0,a=1,..,N
> pa(x) =1
Zpa(w)ma =
Pour  €]0;+o0], la solution du probléme (LME)s est Pareto optimale. Pour

f = 0, la solution est unique et est la solution du probléme (ME). Pour 5 = +o0,
les solutions sont les solutions du probléme (RAJ).

LME interpolation approach for coupled thermo-mechanical problems



Quelques caractéristiques 123

On montre que la solution au probléme (LME)g est donnée par:

1

Pga(x) = mexp [—B|az —xg|* + AN — ma)]

ol:

() = in log Z(z, A
() = arg min log Z(x, A)

Z(x ) =Y exp [—fl@ — x> + A(z — z,)]

De plus, le minimiseur A*(x) est unique.
En pratique, on utilisera le paramétre adimensionnel v = h2/3 ol h est une longueur
caractéristique locale de X.

3 Quelques caractéristiques

Ces fonctions d’interpolation présentent plusieurs avantages. Tout d’abord, elles
permettent I'application de conditions de Dirichlet sur les bords de convX, ce qui
est nécessaire pour la modélisation du procédé RFW. Les fonctions d’interpolation
étant des exponentielles, elles ne sont jamais rigoureusement nulles au bord.
Cependant, leur évaluation est suffisamment petite (entre 10~7 et la précision
machine) pour étre considérée nulle.

Une autre caractéristique est la positivité du jacobien, qui est ’hessien du log Z,
dans le calcul de A\*.

4 Points matériels

En théorie, les points matériels peuvent étre placés n’importe ou. Cependant,
certaines positions sont peut-étre plus intéressantes que d’autre d’un point de vue
numérique. Une premiére idée a été de chercher les positions x telles que A*(x) = 0.
En effet, les fonctions d’interpolations ne sont évaluées qu’aux points matériels
et A*(x) = 0 signifie que les conditions du probléme (LME)s; sont naturellement
vérifiées. De plus, si on sait que A*(x) = 0, il n’y a alors plus besoin de le calculer,
ce qui représente un gain en temps de calcul.

Cependant, il apparait que trouver les positions adéquates n’est pas simple parce
qu’elles dépendent du nuage de noeuds. Il est possible de les trouver mais cela cotite
aussi cher, si ce n’est plus, en temps de calcul que le calcul de A. Cette démarche a
donc été abandonnée.

LME interpolation approach for coupled thermo-mechanical problems



124 Résumé du chapitre 3

Il a été arbitrairement décidé que les points matériels devaient étre bien répartis
sur le nuage de noeuds. Une triangulation de Delaunay a été effectuée sur le nu-
age de noeuds pour obtenir une liste de simplex sur lesquels les points matériels
seront disposés. Ainsi, les quadratures usuelles ont été testées et comparées: Gauss-
Legendre (utilisé pour placer les points de Gauss dans la méthode des éléments finis),
Gauss-Hermite (recommandée pour I'intégration de fonctions du type exp(—z?) et
une quadrature par subdivision. Il apparait que la quadrature de Gauss-Legendre
donne le meilleur compromis en terme de convergence et de précision pour un faible
nombre de points matériels.
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Validation

1 Patch test

Le classique patch test est utilisé pour controéler la précision de notre implémenta-
tion. Ce patch test est présenté par la figure 4.1 a la page 69.

La transformation suivante est imposée aux nceuds sur le contour:

(s %)

En fonction de 7 et de la configuration des nceuds, on compare 'erreur faite sur le
gradient de déformation aux points matériels:

Regular node-set (a) Irregular node-set (b)
mPt | vy=944 =18 |vy=944 ~+v=802 =18 ~+=038
1 6.50e-10  1.29e-5 7.0le-2  7.22e-2  4.16e-2  5.30e-2
3 | 4.18e-11  2.86e-4 2.37e-3  1.54e-3  3.0le-2 5.88e-2
Table: Erreur relative sur le gradient de déformation aux points matériels.

Il apparait que la précision dépend énormément de la position des noeuds mais aussi
de v. Dans le cas d'un nuage de nceuds régulier, il est possible d’obtenir une trés
bonne précision sur le résultat.

2 Barre de Taylor

Notre implémentation est maintenant testé sur le trés classique cas test de la barre
de Taylor dans un contexte axy-symétrique. Les conditions limites de ce cas test
sont présenté par la figure 4.3 a la page 70.
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Une vitesse initiale est appliquée & chaque noeud égale & 227 m.s~ L.

L’apparition ou non de verrouillage numeérique (dit locking), est étudiée en fonction
de la densité des nceuds dans la barre, la densité de points matériels ainsi que de
v. 1l apparait qu’il est possible d’éviter le phénomeéne de locking en utilisant un -y
petit et une densité de points matériels suffisamment faible.

La table ci-dessous compare nos résultats a d’autres résultats issus de la littérature:

. Final Max. Max von
Final . .
mushroom effective Mises
length . .
(mm) radius plastic stress
(mm) strain (MPa)
[Kamoulakos, 1990] 2;14;6_ 7.02—-712 247 —3.24 472 — 476
[Zhu and Cescotto, 1995] 2;'1229_ 6.89 —7.18 2.75—3.03 419 —477
. 21.42 —
|Camacho and Ortiz, 1997] 01 44 721 —-724 297-—3.25 /
OTM |[Li, 2009] 21.43 6.8 3.0 474
LME 21.50 6.81 2.69 516

Table: Cas test de la barre de Taylor: comparaison des résultats.

Notre implémentation permet de retrouver les résultats de la littérature et d’éviter
le locking.

3 Contact unilatéral

Une modélisation du contact unilatéral entre un solide déformable et un corps rigide
a été implémenté en utilisant une méthode par pénalité. Cette implémentation a
été testée en réutilisant le cas de la barre de Taylor: axy-symétrie et méme vitesse
initiale. Les nceuds initialement bloqués sur la direction de la vitesse initiale sont
maintenant soumis a une condition de contact.

La méthode de pénalité consiste a évaluer une fonction de pénétration (gap) et
a appliquer un effort dépendant de ce gap aux noceuds qui ont pénétré le corps
rigide. L’évolution du gap et de l'effort de pénalité en fonction du choix de coef-
ficient de pénalité sont présentés par les figures 4.12 & la page 77 et 4.14 a la page 78.

Le rebond da a la pénalité est de 'ordre de 0.25 mm, ce qui est considéré comme

acceptable. De méme, la pénétration résiduelle présente aprés le rebond est
suffisamment faible pour étre considérée comme acceptable.
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4 Conduction thermique

Afin de tester la capacité de notre implémentation a gérer la conduction thermique,
un probléme de thermique pure est abordée et est présenté dans la figure 4.15 & la
page 79.

Les noeuds d’un coté de la plaque considérée sont & une température imposée Ty =
500K alors que les autres sont initialement a 7" = 0. La figure 4.20 & la page 81
compare I’évolution de la température aux noeuds indiqués avec les résultats obtenus
avec la méthode des éléments finis en utilisant le logiciel Abaqus (v.6.10).

Les résultats obtenus sont identiques: notre implémentation passe donc ce test.

5 Convection

Enfin, notre implémentation est testée sur un cas de couplage thermo-mécanique
en grande déformation impliquant un phénoméne de convection. Les conditions
limites et le chargement sont donnés sur la figure 4.21 a la page 83.

Le cylindre et I'air extérieur sont tous deux a Ty = 293 K. Une déformation totale de
50% est imposée au cylindre dans le sens de sa hauteur. A cause des déformations
plastiques, la température a tendance a augmenter de maniére homogéne dans
la piéce. Cependant, les conditions de convection apporte une hétérogénéité qui
fait que les nceuds au centre du cylindre seront les plus chauds, ce qui entraine
des déformations plus importantes au centre. En utilisant un nuage de noeuds
suffisamment dense, on obtient le résultat donné par la figure 4.23 a la page 84.

Les résultats sont conformes & ce qui est attendu et correspondent aux résultats

obtenus avec Abaqus en utilisant la MEF. Notre implémentation réussit donc ce
test.
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Modélisation du procédé de soudage
par friction rotative

1 Hypothéses

Quelques hypothéses sont faites pour modéliser le procédé de soudage par friction
rotative (REW).

La simulation est effectuée en 2D axy-symétrique. En effet, on suppose que les
différents champs et variables internes ne dépendent pas de la position angulaire,
ce qui est vérifié dans la réalité. Le calcul est effectué en quasi-statique, supposant
ainsi que les effets d’inertie sont négligeables.

On suppose que le contact entre les deux piéces a souder est un plan défini par
y = 0. On modélise alors le contact entre un solide déformable et un corps rigide.
Cette hypothése implique que le matériau soit homogéne et qu’il n’y ait pas de
pénétration locale d’une des piéces soudées dans 'autre,ce qui est automatique
vérifié si les deux piéces sont faites du méme matériaux. Si les deux matériaux sont
différents mais qu’ils sont tout deux homogénes, cette hypothése est encore valable.

La loi de friction utilisée est la classique loi de Coulomb avec un coefficient de
friction dépendant de la température. Les efforts tangents a I'interface de soudage
sont négligés au vu des efforts autres efforts modélisés.

On considére que la puissance de friction est intégralement transformée en chaleur.
On suppose que cette chaleur se répartit équitablement dans les deux piéces si
le matériau utilisé est le méme (la répartition dépend de Deffusivité des deux
matériaux).
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Enfin, la convection entre l'air et la piéce modélisée n’est pas prise en compte. La
configuration initiale est schématisée par la figure 5.1 a la page 90.

2 Surface équivalente représentée par un nocud

Afin de pouvoir prendre en compte la densité de nceud a linterface de soudage
pour le calcul des efforts de pénalité et de I'apport de chaleur en découlant, il
est nécessaire d’avoir une surface équivalente représentée par chaque nceud. En
utilisant la méthode des éléments finis, cette question ne se pose pas dans la mesure
oll la notion d’élément méme permet d’avoir cette surface mais dans le cas d’'une
méthode sans maillage, il n’y a pas d’équivalent. Pour ce faire, on définit la surface
équivalente comme montrée par la figure 5.3 a la page 91.

Dans la suite, on suppose que le nuage de nceuds est régulier. On définit alors
pour chaque nceud la longueur caractéristique h, représentant la distance locale
caractéristique entre deux nceuds:

he = min {||@e — |2 | 7 € [1; N]} (A.10)

ot N est le nombre total de noeud. Les longueurs représentées en rouge précédem-
ment sont alors égales au h, du noeud considéré. En prenant en compte que nous
travaillons en axy-symétrie, on peut alors en déduire une surface d’échange avec
Iextérieur. C’est cette surface qui est utilisée dans le calcul des effort des pénalité
(le coefficient de pénalité est alors une raideur surfacique).

3 Friction, chaleur et formulation symétrique du
frottement

On suppose que la puissance de friction est intégralement transformée en chaleur.
L’apport de chaleur (en J.K ') au noeud considéré est alors exprimé par:

11
b = —§E.V.kga5aga.wra.dt

avec le facteur 3 traduisant la répartition de chaleur entre les deux piéces (dans le

b — L avec by et by les effusivités respectives

cas de deux matériaux identiques, P = 3
des matériaux), Ty la température initiale, v le coefficient de frottement dépen-
dant de la température, kg, S,g, l'effort de pénalité ou g, est le gap calculé, w

la vitesse de rotation, r, = z, 'abscisse du nceud a et dt I'incrément de temps actuel.

Cependant, ce chargement thermique ne peut pas étre utilisé tel quel dans un envi-
ronnement variationnel. En effet, certains termes doivent étre ajoutés a la matrice
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tangente. Celle-ci est symétrique ; or il apparait que :

0d OF"
%#Oalorsquea—T—O
0o orm 0

8_y # 0 alors que 5T

Pour résoudre ce probléme, nous avons choisi de retarder le flux de chaleur. En effet,
au lieu d’utiliser la position 2z} du pas de temps n actuel, nous utilisons la position

2" ! et le gap "' du pas de temps précédent. Sile pas de temps est suffisamment

petit, ce qui est le cas dans ce genre de simulation, I’erreur commise est négligeable.
Grace a cette astuce, ® est maintenant indépendant de la position ! et on a bien:
an+1q) 8n+1q)

O+l - aynﬂ -

4 Modélisation du procédé

La piéce a souder ici est un cylindre creux. La partie modélisée de cette piéce est
représentée par la figure 5.4 a la page 98.

Puisqu’on considére le plan de contact comme étant rigide et fixe, il convient
d’appliquer un charment égal & 50% de celui utilisé lors de la campagne d’essai. On
admet aussi que les degrés de liberté correspondant au déplacement vertical des
nceuds en rouge sont liés.

Tout d’abord, il faut noter qu’actuellement, le code arréte de converger aprés 10.6 s.
De ce fait, il n’est possible d’analyser le résultat que sur cet intervalle de temps.

Au début de la simulation, le champs de température prends une forme de cone dont
I’axe est contenu dans le plan de contact et qui s’élargit quand on s’¢loigne de I'axe
d’axy-symétrie, ce qui correspond bien au résultat voulu. Au bout d’environ 3 s,
les noeuds aux extrémités commencent a s’éloigner du plan de contact, commencant
ainsi la formation du flash. A ce moment 13, le noeud o la température est la
plus élevée est au centre de la piéce, au niveau du plan de contact. A t ~ 8.5 s,
la température de ce nceud dépasse la température de fusion du matériau (ici de
l'acier P265GH), ce qui ne se produit pas dans la réalité: la température est sensée
étre proche de la température de fusion mais pas la dépasser. Ceci peut étre une
des causes de non convergence du code.

Les autres causes peuvent étre la loi d’écoulement non adaptée, la modélisation du
contact trop simpliste, la non prise en compte de la convection qui aurait tendance a
refroidir la piéce, évitant peut étre ainsi la température supérieure a celle de fusion,
la non prise en compte des changements de phase ou encore une implémentation
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pas assez robuste pour ce genre de simulation numériquement trés exigeante.

Si on compare nos résultats aux données expérimentales, on se rend compte que les
résultats obtenus sont prometteurs. En effet, la zone affectée thermiquement (ZAT)
est conforme & ce qu’elle est en réalité. De méme, la formation du flash correspond
a I’évolution constatée dans la littérature pour la méme catégorie de soudage.
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On a Local Maximum Entropy interpolation approach for simulation of
coupled thermo-mechanical problems. Application to the Rotary
Frictional Welding process.

A propos d’une approche Local Maximum Entropy pour la simulation de problémes
thermo-mécaniques. Application au procédé de soudage par friction rotative.

This work aims at developing a meshless method
based on Local Maximum Entropy interpolation and
material points integration for the simulation of cou-
pled thermo-mechanical problems. This work has
been motivated by the industrial need to develop an
innovative thermo-mechanical modeling of the Rotary
Frictional Welding process. The main advantage of
using a meshless method is that it is possible to deal
with large deformation without loss of accuracy. Using
a LME interpolation approach allows to put Dirichlet
boundary conditions at the boundary, which is generally
very difficult to do with a non-grid based method. A
special attention was paid to the position of the material
points in order to obtain the best compromise in term of
convergence rate, calculation time and accuracy of the
result. An incremental variational framework is used to
derive the state and the evolution equations of coupled
boundary-values problems. The incremental aspect
leads to a temporal discretization of the governing
equation to reduce time-dependent problems to a
sequence of incremental problems each characterized
by an optimality (saddle-point) principle. Then, a
spatial discretization is applied to describe locally the
state of the material using the material points. The
evolution of the system can be described using either an
explicit or an implicit scheme. The proposed meshless
method is tested through a series of benchmark tests
which involve coupled thermo-mechanical phenomena
considering large deformations and contact.

Keywords: Meshless method, Local Maximum En-
tropy basis function, thermo-mechanics, incremetal
variational approach.

Ce travail vise a développer une méthode meshless
basée sur une interpolation de type Local Maximum
Entropy avec intégration sur des points matériels
afin de simuler des problémes thermo-mécaniques.
La motivation de ce travail a été le besoin industriel
d’avoir une modélisation thermo-mécanique innovante
du procédé de soudage par friction rotatif. Lintérét
d’utiliser une méthode meshless est de pouvoir traiter
des problémes en grandes déformations sans perte
de précision. En outre, linterpolation LME permet
d’appliquer des conditions de Dirichlet aux bords, ce
qui est en général difficile avec les méthodes meshless.
Une attention particuliere a été portée sur la position
des points matériels afin d’obtenir un compromis
entre vitesse de convergence, temps de calcul et
précision du résultat. Les problémes considérés seront
appréhendés avec une vision lagrangienne a laide
d’'une approche énergétique variationnelle incrémentale
menant a une discrétisation temporelles afin de réduire
les problemes dépendant du temps a une succession
de probléemes incrémentaux, chacun caractérisé par un
principe d’énergie optimal (point de selle). S’ensuit une
discrétisation spatiale pour décrire localement I'état du
matériau via l'utilisation de points matériels. Lévolution
du systeme peut étre traitée de maniere explicite ou
implicite. La méthode proposée est testée sur une
série de cas test mettant en jeu des phénomeénes
de couplage thermo-mécanique en considérant des
grandes déformations et du contact.

Mots clés : Méthode sans maillage, Interpolation de
type Local Maximum Entropy, Thermo-mécanique,
Approche énergétique variationelle incrémentale.
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