
HAL Id: tel-01230869
https://theses.hal.science/tel-01230869

Submitted on 19 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessment of reliability indicators from automatically
generated partial Markov chains

Pierre-Antoine Brameret

To cite this version:
Pierre-Antoine Brameret. Assessment of reliability indicators from automatically generated partial
Markov chains. Other. École normale supérieure de Cachan - ENS Cachan, 2015. English. �NNT :
2015DENS0032�. �tel-01230869�

https://theses.hal.science/tel-01230869
https://hal.archives-ouvertes.fr

ENSC-2015-N°591
ENSC-(n° d’ordr

PhD Thesis
of the ECOLE NORMALE SUPERIEURE DE CACHAN (FRANCE)

Presented by
Mr. Pierre-Antoine BRAMERET

to obtain the degree of

DOCTEUR DE L’ECOLE NORMALE SUPERIEURE DE CACHAN
Domaine : Electronique, Electrotechnique, Automatique

Assessment of Reliability Indicators from
Automatically Generated Partial Markov Chains

Calcul des Indicateurs de Sûreté par la Génération Automatique
de Chaînes de Markov Partielles

PhD Thesis defended on 09.07.2015 in Cachan in front of the following committee:

Andrea Bobbio Professor, Università del Piemonte Orientale, Italy President
Christophe Berenguer Professor, Grenoble-INP, France Reviewer
Pierre-Etienne Labeau Professor, Université Libre de Bruxelles, Belgique Reviewer
Ana Bušić Research Assistant, INRIA Ecole Normale Supérieure, France Examiner
Antoine Rauzy Professor, Ecole Centrale de Paris, France Advisor
Jean-Marc Roussel Associate Prof., Ecole Normale Supérieure de Cachan, France Advisor

Laboratoire de Recherche en Production Automatisée (LURPA)
ENS Cachan
61, avenue du Président Wilson,
94235 Cachan CEDEX, France

Acknowledgments

A Ph.D. thesis is a personal work, in which advisors have a whole role to play. I thank

Professor Antoine Rauzy and Associate Professor HDR Jean-Marc Roussel for all their

work with me, their trust in my choices, their guidance, and their advices. I also want to

thank Professor Jean-Jacques Lesage, who accepted to supervise me at the beginning of

my Ph.D.

I would like to thank my reviewers Professor Christophe Berenguer and Professor

Pierre-Etienne Labeau, as they accepted to review my thesis, in such short notice. Also, I

would like to thank them for the useful content of their reviews. Thank you both Researcher

Ana Bušić and Professor Andrea Bobbio for being part of my doctoral committee, as well

as for your precious feedback on the thesis.

Here are special thanks to very helpful friends and colleagues, who helped me during the

writing of the thesis. Jeremie Saives read my whole thesis and helped me fix erroneous

spellings, grammar issues, and unclear developments. Cyril Lacroix, with who I shared

the pressure and the difficulty of the writing. Their help was very important to my thesis.

Now I am asking for cheerfulness from all my colleagues, as it builds a solid and efficient

background for work. I would like to thank the whole Lurpa and the AltaRica team,

because we gave it a successful try together. Some special thanks for all the extra activities

than we shared together, in the Civil, or in NoL@g. Thank you all, previous and current

colleagues, and keep it that way.

Finally, I want to express the deepest thanks to Ophélie and to my parents and family,

for their support and comfort, day after day, in this long adventure.

Cachan, July 2015

Pierre-Antoine

Contents

Contents i

List of Figures iii

List of Tables vii

List of Algorithms ix

Introduction 1

1. Context and Related Work 3

1.1. Context . 3

The AltaRica 3.0 project . 5

1.2. Related Work . 7

1.2.1. Calculation and Reduction Techniques of Large Markov Chains 7

1.2.2. Path-based Approaches . 9

1.2.3. Aggregation Techniques . 12

1.3. Contributions to the Quantitative Safety Analyses of Large and Complex Sys-

tems with Markov Chains . 13

2. Core Algorithm, Generation of the Most Useful Part of a Markov Chain 15

2.1. Markov Chains: Definitions, and Calculation 15

2.1.1. Introduction . 15

2.1.2. Definitions . 16

2.1.3. Illustration, the Case of a Repairable System 18

2.1.4. Transient Solutions of Markov Chains 20

2.2. Understanding Markov Chains of Large and Safe Systems 22

2.2.1. Physical Interpretations of a Markov Chain 22

2.2.2. Probability Distributions in Large Systems 23

2.3. Partial Generation: the Method . 26

2.3.1. Dijkstra’s algorithm . 27

2.3.2. The Relevance Factor . 29

2.3.3. From Guarded Transition Systems to Markov chains and Safety Indicators 30

2.4. Quality of the Exploration, Bounds on the Reliability Indicators 32

2.4.1. The Sink . 32

i

Contents

2.4.2. Using the Sink . 34

2.4.3. Towards a Better Sink . 35

Summary . 37

3. Experiments 39

3.1. Targeting the Examples . 40

3.2. Studied Systems . 43

3.2.1. Fault Tolerant Database . 43

3.2.2. Computing Modules . 49

3.2.3. Oil Production System . 55

3.2.4. Emergency Nuclear Power Plant Power Supply 69

3.2.5. Distributed Database . 81

3.3. Teachings of the Examples . 90

4. Prototype and Tools 93

4.1. Overview of the Tool-chain . 93

4.2. GTSLimMark: Partial Generation of the Reachability Graph 94

4.2.1. Data Structures . 96

4.2.2. Initial State(s) . 97

4.2.3. Using Synchronizations of AltaRica 3.0 Models 98

4.2.4. Limiting the Exploration . 99

4.2.5. Remaining Candidates . 100

4.3. PyGTS: Project and Result Management . 100

4.3.1. The PyGTS Package . 100

4.3.2. Database . 102

4.3.3. Multitasking . 103

4.3.4. Handling Results . 103

4.3.5. Evaluation of the Run-time Complexity 103

4.4. Bottlenecks . 106

Conclusions and Outlooks 109

Summary . 109

Towards a better relevance factor . 110

Towards an adaptive calculation method . 111

Bibliography 113

Appendix A. Guarded Transition Systems 119

ii

List of Figures

1.1. Pareto front representing the tradeoff between the ease of modeling and the

efficiency of the calculations. 5

1.2. The AltaRica 3.0 project. 6

2.1. A small Markov chain, the corresponding set of ordinary differential equations,

and the initial distribution. 18

2.2. The transient solution of the Markov chain given in Figure 2.1. 20

2.3. The transient solution of the simple Markov chain from Figure 2.1 for a safe

system (µ = 1000λ). 23

2.4. A Markov chain with 3 states, its set of ordinary differential equations, and its

initial distribution. 24

2.5. Strategy used to select states in a Markov chain. States are indexed according

to their relevance factor. 27

2.6. A small Markov chain with transition rates labeling the transitions. 29

2.7. The sink is the aggregation of the remaining candidates. 33

2.8. Aggregation as seen in [Muntz et al. 1989], with duplication of part of the state

space. 35

2.9. Analysis of the accuracy loss alongside the toolchain. 38

3.1. The fault tolerant database. 44

3.2. Visual comparison of the relevance factor (left) and the probability at mission

time (right), for the 419 states of the fault tolerant database. 47

3.3. Correlation between the relevance factor computed during the generation of the

chain and the probability calculated with the Markov chain for each state of

the complete chain for the fault tolerant database, with mission time T = 100

hours. 48

3.4. Correlation between the probability of each state of the partial model (threshold

ξ = 1, 000 transitions) whether they are in the partial chain or in the full chain,

for the fault tolerant database, with mission time T = 100 hours. 48

3.5. A multiprocessor computing system. 49

3.6. Correlation between the relevance factor computed during the generation of

the chain and the probability calculated with the Markov chain for each state

of the full chain for the computing modules, with mission time T = 5, 000 hours. 52

iii

List of Figures

3.7. Correlation between the relevance factor computed during the generation of

the chain and the probability calculated with the Markov chain for each state

of the full chain for the computing modules, with mission time T = 50, 000 hours. 53

3.8. Correlation between the probability of each state of the partial model (threshold

ξ = 857 transitions) whether they are in the partial chain or in the full chain,

for the computing modules, with mission time T = 5, 000 hours. 54

3.9. Correlation between the probability of each state of the partial model (threshold

ξ = 857 transitions) whether they are in the partial chain or in the full chain,

for the computing modules, with mission time T = 50, 000 hours. 54

3.10. The oil production system, with production rates of the components (in barrels

per unit of time). 56

3.11. The evolution of the relative error for the production rate of the oil production

system at time T with respect to the threshold on the number of transitions. . 62

3.12. Comparison of the evolution of the relative error for the production rate of the

oil production system with respect to the threshold, for different mission times. 63

3.13. The evolution of the relative error for the unavailability with respect to the

threshold on the number of transitions, for the safer version of the system. . . . 64

3.14. The evolution of the relative error for the production rate with respect to the

threshold on the number of transitions, for both versions of the system. 64

3.15. Correlation between the relevance factor computed during the generation of

the chain and the probability calculated with the Markov chain for each state

of the full chain for the oil production system at mission time T = 130, 000 hours. 65

3.16. Correlation between the relevance factor computed during the generation of

the chain and the probability calculated with the Markov chain for each state

of the full chain for the “safer” oil production system, mission time T = 10, 000

hours. 66

3.17. Correlation between the probability of each state of the partial model (threshold

ξ = 1M transitions) whether they are in the partial chain or in the full chain,

for the oil production system, with mission time T = 130, 000 hours. 67

3.18. Correlation between the probability of each state of the partial model (threshold

ξ = 1M transitions) whether they are in the partial chain or in the full chain,

for the “safer” oil production system, with mission time T = 10, 000 hours. . . 67

3.19. Correlation between the probability of the most probable states in the partial

chain and the most probable states in the full chain, for the oil production

system, with mission time T = 130, 000 hours. 68

3.20. Correlation between the probability of the most probable states in the par-

tial chain and the most probable states in the full chain, for the “safer” oil

production system, with mission time T = 10, 000 hours. 69

3.21. An electric power supply system. 70

iv

List of Figures

3.22. The evolution of the relative error for the unavailability compared between the

versions of the power supply at time T with respect to the threshold on the

number of transitions. 74

3.23. Correlation between the relevance factor computed with the partial generation

method and the probability with the Markov chain for each state of the par-

tial chain for the power supply, with threshold ξ = 1, 000, 000 transitions and

mission time T = 10, 000 hours. 75

3.24. Correlation between the relevance factor computed with the partial generation

method and the probability with the Markov chain for each state of the partial

chain for the stiff power supply, with threshold ξ = 1, 000, 000 transitions and

mission time T = 10, 000 hours. 76

3.25. Correlation between the probability of each state of the small chain (ξ = 100k

transitions) whether they are in the chain with or without sink, for the power

supply, with mission time T = 10, 000 hours. 77

3.26. Correlation between the probability of each state of the small chain (ξ = 100k

transitions) whether they are in the chain with or without sink, for the stiff

power supply, with mission time T = 10, 000 hours. 78

3.27. Correlation between the probability of each state of the small chain whether

they are in the small chain (ξ = 100k transitions) or in the large chain (ξ = 5M

transitions), for the power supply, with mission time T = 10, 000 hours. 78

3.28. Correlation between the probability of each state of the small chain whether

they are in the small chain (ξ = 100k transitions) or in the large chain (ξ = 5M

transitions), for the stiff power supply, with mission time T = 10, 000 hours. . . 79

3.29. Correlation between the probability of the most probable states of the small

chain (ξ = 100k transitions) and those of the large chain (ξ = 5M transitions),

for the power supply, with mission time T = 10, 000 hours. 80

3.30. Correlation between the probability of the most probable states of the small

chain (ξ = 100k transitions) and those of the large chain (ξ = 5M transitions),

for the stiff power supply, with mission time T = 10, 000 hours. 81

3.31. A distributed architecture for a database system, as shown in [Muntz et al. 1989]. 82

3.32. The evolution of the relative error for the unavailability of the distributed

database at time T = 100 hours with respect to the threshold on the number

of transitions. 85

3.33. Correlation between the relevance factor computed with the partial generation

method and the probability with the Markov chain for each state of the partial

chain for the distributed database, with threshold ξ = 10M transitions and

mission time T = 100 hours. 86

3.34. Correlation between the probability of each state of the small chain (ξ = 1M

transitions) whether they are in the chain with or without sink, for the dis-

tributed database, with mission time T = 100 hours. 87

v

List of Figures

3.35. Correlation between the probability of each state of the small chain whether

they are in the small chain (ξ = 1M transitions) or in the large chain (ξ = 10M

transitions), for the distributed database, with mission time T = 100 hours. . . 88

3.36. Correlation between the probability of the most probable states of the small

chain (ξ = 1M transitions) and those of the large chain (ξ = 10M transitions),

for the distributed database, with mission time T = 100 hours. 89

3.37. Comparison of the evolutions of the relative error for the unavailability of two

versions of the distributed database at time T = 100 hours with respect to the

threshold on the number of transitions.. 90

4.1. The different operations needed to process a model 94

4.2. Removing instantaneous states from Markov models. 98

4.3. Working on PyGTS classes. 101

4.4. Typical workflow with PyGTS. 102

4.5. Working with PyGTS. Fields prefixed with # are forming a primary key. 102

4.6. A Screenshot of the Qt interface provided by PyGTS and presenting the results

for the oil production system. 104

4.7. Execution times measured when exploring and solving the distributed database

example. 105

4.8. Execution times measured when exploring and solving the stiff emergency

power supply example. 105

vi

List of Tables

3.1. The different examples and their characteristics. 42

3.2. Failure and repair rates for the fault-tolerant database, taken from [Muntz et al.

1989]. 44

3.3. Measures of the unavailability Q of the fault tolerant database for several

thresholds on the size of the model, with given mission time of T = 100h. . . . 45

3.4. Sizes of the models and computation times for several thresholds on the size of

the model of the fault tolerant database, with given mission time of T = 100kh. 46

3.5. Failures Rates and Dormancy Factors for the Computing System 50

3.6. Unreliability of the computing system, assessed with different tools. 50

3.7. Measures of the unreliability Q of the computing modules for several thresholds

on the size of the model, with given mission time of T = 50kh. 51

3.8. Sizes of the models of the computing modules and computation times for several

thresholds on the size of the model, with given mission time of T = 50kh. . . . 52

3.9. Reliability data for the components of the oil production system. 57

3.10. Flow rates (in barrels per time unit) of the components of the oil production

system. 57

3.11. Reliability data for the components of the “safer” oil production system. 58

3.12. Measures of the production rate Q for several thresholds on the size of the

model, with given mission time of T = 130kh, for the oil production system. . . 59

3.13. Sizes of the models and computation times for several thresholds on the size of

the model, with given mission time of T = 130kh, for the oil production system. 59

3.14. Comparison of the indicators for both versions of the oil production system at

their respective mission time. 60

3.15. Measures of the unavailability Q for several thresholds on the size of the model,

with given mission time of T = 10, 000 hours, for the “safe” version of the oil

production system. 61

3.16. Sizes of the models and computation times for several thresholds on the size of

the model, with given mission time of T = 10, 000 hours, for the “safe” version

of the oil production system. 61

3.17. Reliability data for the Electric Power Supply System. 71

3.18. Measures of the unavailability Q of the power supply for several thresholds on

the size of the model, with given mission time of T = 10, 000 hours. 72

vii

List of Tables

3.19. Sizes of the models of the power supply and computation times for several

thresholds on the size of the model, with given mission time of T = 10, 000 hours. 72

3.20. Measures of the unavailability Q of the stiff power supply for several thresholds

on the size of the model, with given mission time of T = 10, 000 hours. 73

3.21. Sizes of the models of the stiff power supply and computation times for several

thresholds on the size of the model, with given mission time of T = 10, 000 hours. 73

3.22. Failure and repair rates for the distributed database, taken from [Muntz et al.

1989]. 82

3.23. Measures of the unavailability Q of the distributed database for several thresh-

olds on the size of the model, with given mission time of T = 100 hours. 83

3.24. Sizes of the models of the distributed database and computation times for

several thresholds on the size of the model, with given mission time of T = 10

hours. 84

viii

List of Algorithms

2.1. Dijkstra’s algorithm . 28

2.2. Algorithm for the construction of a partial reachability graph of size at most S. . 31

2.3. Algorithm for the construction of a partial reachability graph of size at most S,

where candidates are discarded. 31

2.4. Algorithm for the construction of a partial reachability graph of size at most S,

where candidates are gathered into the sink. 33

4.1. Dijkstra’s algorithm, reminder of Algorithm 2.1 95

ix

Introduction

Trustworthiness in systems is of paramount importance. Many safety analysis methods have

been developed to analyze and calculate the risks associated to a system. Evaluation of the

risks has two dimensions, which are the severity and the frequency. The severity is analyzed

with qualitative methods, such as the Failure Mode and Effects Analysis, whereas quantitative

methods are used to analyze the frequency.

The most efficient quantitative method, the Fault Tree Analysis, is usually too low-level:

the gap between the specifications of the system under study and the fault tree of the system

distorts the results. Therefore, Model-Based Safety Assessment (MBSA) are developed to offer

higher-level languages. Such techniques enable more systematical approaches, re-usability of

the models, and hierarchical structures of the models. Different formalisms embody different

tradeoffs between the computability of the models and the gap between the model and the

system under study. The most accurate models require stochastic simulations, and are, as a

consequence, costly to calculate.

Markov chains offer a reasonable tradeoff between computability and modeling concepts.

With Markov chains, it is possible to model reconfigurations, repairs, failures on demand,

common cause failures, etc., but it is difficult to model the aging of components, and prob-

ability distributions are usually exponential to make the calculations efficient (homogeneous

Markov chains). Markov chains are usually used to model the different states, or configu-

rations, of a system, and transitions between these states model events, such as failures or

repairs. However, they suffer from a major drawback: the state space explosion that is the

consequence of the numerous combinations of the states of each component.

The objective of this thesis is to propose a method to tackle the state space explosion of the

Markov chains while calculating accurately the safety indicators of the system under study.

This idea is based on the observation that a repairable system is, most of the time, in its

nominal state. From the nominal state, only states with few failed components are reachable

before the system is repaired. Hence, only a small proportion of the states of the Markov

chain will gather most of the probability, and these states are close to the nominal state.

To tackle the state space explosion, a Markov chain of the system under study is partially

generated from a higher-level model. A variation of Dijkstra’s algorithm is used to select the

most probable states of the chain during its generation. The selection is based on a so-called

relevance factor, which gives a heuristic estimation of the weight of the states in the Markov

chain. Bounds on the safety indicators can be obtained with the partial chain.

1

Introduction

The partial generation of Markov chains gives very good results. The reliability indicators

can be obtained with satisfactory accuracy with only a tiny fraction of the complete chain.

The generation of the Markov chain is very efficient and almost linear in time regarding the

number of transitions. In our case, the chosen modeling language from which Markov chains

are generated is AltaRica 3.0. The proposed method can also be used with other high-level

modeling languages, such as Boolean logic Driven Markov Process (BDMP) or Petri nets.

The manuscript is organized as follows. Chapter 1 introduces an overview of the AltaRica

3.0 project in the scope of the safety assessment, followed by a review of the available methods

to compute safety indicators with very large Markov chains. The main contributions of this

thesis are presented at the end of the chapter.

In Chapter 2, the partial generation method is presented. First, the soundness of the

partial generation method is developed through the analysis of Markov chains, their transient

solutions, and the interpretations of Markov chains for large systems. Then, the core of the

partial generation method is presented. The partial generation relies on Dijkstra’s algorithm

combined with a relevance factor to estimate which states of the Markov chain will be relevant

to the assessment of the safety indicators of the system under study. Finally, an alternative

algorithm is developed, which calculates the bounds on the safety indicators of the system.

Chapter 3 focuses on the strengths and weaknesses of the partial generation. To do so,

case studies of different sizes and taken from the literature are used to analyze the method

on practical experiments.

In Chapter 4, the implementation of the partial generation method is discussed. In par-

ticular, the computational complexity of the method can only be calculated according to the

chosen implementation.

2

1. Context and Related Work

In this chapter, the context of the thesis is presented. First, an overview of safety engineering

and of probabilistic safety assessments is given. This part focuses on some of the available

modeling languages to assess safety models, namely Markov chains. Then, the related work

analysis focuses on the approximated methods to calculate transient solutions of large Markov

chains. Finally, the main contributions of this thesis are presented.

1.1. Context

Confidence in systems is of paramount importance. Hazards in the environment of the sys-

tem may lead to catastrophic consequences for the system or its users. The risks of such

consequences must be analyzed.

This activity is today an engineering discipline named Safety engineering. The role of safety

engineers is to assure that a safety-critical system behaves as specified, even when some of its

components fail. As soon as possible, potential risks must be analyzed, to predict both their

frequency, and severity. In other words, safety engineers answer the three questions:

• What can go wrong?

• How frequently is it? What is the likelihood of it going wrong?

• What are the consequences?

Failure Mode and Effects Analysis (FMEA) [Stamatis 2003] is a methodology to analyze

the risks. To do so, components, assemblies, and subsystems are reviewed to identify failure

modes, their causes (hazards) and effects (risks). FMEA are mostly used to identify all the

initiating faults of a system.

HAZard and OPerability study (HAZOP) is another analysis of the risks initiated by haz-

ards. HAZOP focuses on confidence intervals in the system, and analyze the subsequent risks.

Actions may be taken to reduce the severity of the risks.

Both these qualitative methodologies aim to reduce the severity of the risks. However, the

frequency of the risks must be analyzed. For instance, a terrible risk, such as the fusion of

the nuclear core of a nuclear power plant, is very severe but its very low frequency, such as

“once every ten thousand years”, makes it acceptable.

Probabilistic Safety Analysis (PSA) determines the frequency, or probability, of the risks.

This probability is very difficult to estimate due to numerous factors and their complex inter-

3

1 Context and Related Work

connections. Safety engineers have developed specific quantitative analysis methods to solve

these problems. Both qualitative and quantitative approaches share the goal of analyzing the

risks.

Fault Tree Analysis (FTA) [Dugan et al. 1992] [Vesely et al. 2002] is a top-down, deductive

analytical method. In FTA, initiating primary events, such as component failures, human

errors, and external events, are traced through Boolean logic gates to an undesired risk (top

event). FTA may be qualitative or quantitative. When failure and event probabilities are

unknown, qualitative FTA may be used to compute minimal cut sets, which are the minimal

sequences of events leading to the unwanted event. Quantitative FTA is used to compute top

event probability, and is based on Boolean interpretations of the fault tree (see [Valiant 1979]

for instance).

FTA is very efficient (see [Rauzy 1993]) and different industrial tools were developed for the

safety analysis of industrial case studies. Qualitative and quantitative analyses are usually

used as complementary approaches (e.g. in the standard for civil airborne systems ARP 4761

[SAE 1996]).

However, due to the mathematical theory used for FTA models, the dynamic behaviors in

these models are not representative of the dynamic behaviors of real systems. This limitation

is well-known to safety engineers. The choice of the modeling language is a tradeoff between

the complexity of the calculations and the concepts that can be modeled. Figure 1.1 shows

some modeling languages and the tradeoff they embody. Currently, the ideal tool does not

exists, i.e. a tool which would compute fine-grained model with no more computations than

those a fault tree of the same size would require.

Several approaches have been developed to provide different tradeoffs. Some authors pro-

posed an extension of Fault Trees to take into account temporal aspects [Walker and Pa-

padopoulos 2009] [Merle et al. 2011]. Other authors used higher-level modeling languages in

which sequential aspects are included. Such languages are:

• Stochastic Automata Networks (SAN) [Fernandes et al. 1998]

• Boolean logic Driven Markov Processes (BDMP) [Bouissou 2002; Bouissou and Bon

2003]

• AltaRica 3.0 [Rauzy 2008] [Prosvirnova 2014]

These models are directly or indirectly based on state machines. Qualitative analysis is

based on the search of specific paths in this state machine. Some quantitative methods

are also based on the evaluation of these paths. Other methods are based on Markov chains

generated from these state machines. The major drawback of methods based on Markov chains

is the state space explosion. For instance, the oil production system detailed in Section 3.2.3

has only 15 basic components, and its state machine has nearly 47, 000 states and 5, 210, 000

transitions.

Because of the size of the Markov chains, safety indicators cannot always be calculated with

4

1.1 Context

Expressivity

E
as
e
of
co
m
pu
ta
tio
n

Stochastic
Simulations

Fault
Tree

Analysis

Markov
chains

Figure 1.1.: Pareto front representing the tradeoff between the ease of modeling and the effi-

ciency of the calculations.

this modeling language. In this thesis, we studied the possibility to obtain the probabilistic

indicators of a safety system, such as its availability, from high-level modeling languages,

without completely generating the Markov chain describing its dynamic behavior.

Usually, system designers and stakeholders specify bounds of the error made on the prob-

abilistic evaluations of the safety indicators. For instance, for the unavailability, it is rarely

below 10% (as seen in [Bon and Collet 1994; Collet and Renault 1997]), given that it is difficult

to obtain accurate reliability data of basic components. It is not always possible to achieve less

than 10% error, as seen in the PSA of the Paluel nuclear power plant, where the probability

of the fusion of the core is evaluated with an error factor about 3.5 (see [Dubreuil Chambardel

et al. 1991] [Brisbois et al. 1990]).

The error made by the partial generation is analyzed in Figure 2.9, in Section 2.3. The idea

is that the error made with the partial generation of Markov chains stays below the error of

the input data.

In this thesis, we focused on AltaRica models to benefit from tools developed in our team.

However, it is important to note that the proposed method can be used with other high-level

modeling languages such as BDMP, or Petri nets.

The AltaRica 3.0 project

AltaRica 3.0 is a high-level formalism dedicated to safety analyses. The idea is to write safety

models in high-level description language to keep them close to the functional and physical

5

1 Context and Related Work

architecture of the system at hand. Such a high-level description formalism reduces the gap

between the specifications of the system under study and the associated safety model.

The semantics of AltaRica 3.0 is defined in terms of Guarded Transition Systems, as detailed

in [Rauzy 2008]. Prior to most assessments, AltaRica 3.0 models are flattened into Guarded

Transition Systems (GTS). GTS acts as a pivot language, for which assessment tools are

developed. As illustrated Figure 1.2, which gives an overview of the AltaRica 3.0 project (see

[Prosvirnova et al. 2013]), GTS can be calculated with different low-level languages.

Figure 1.2.: The AltaRica 3.0 project.

The AltaRica project provides different tools to the safety engineers which embody different

tradeoffs between the size of the models and the expressiveness of the models. The main low-

level languages used for quantitative analyses are:

• Static fault trees (see [Rauzy 2002]) are very efficient, but are limited to static approx-

imations of the systems.

• Stochastic simulations are very accurate and can, by definition, simulate any behavior.

However, safety properties are difficult to assess, because of the high number of sequences

that must be calculated.

• Markov chains are limited to models where failures and repairs are exponentially dis-

tributed, but it can model higher-level concepts than fault trees (such as reconfigura-

tions). The main drawback of Markov chains is the number of states of the chain, which

is prone to the combinatorial explosion. Markov chains embody a good tradeoff between

computation costs and expressiveness.

All the results presented in this thesis were obtained with the help of tools that were

developed within the AltaRica 3.0 project. The “Markov chain generator” is my personal

contribution to the project. It is mostly used with two other tools:

6

1.2 Related Work

• The tool developed by Tatiana Prosvirnova to compile AltaRica models to Guarded

Transition Systems [Prosvirnova 2014],

• A tool developed by Antoine Rauzy to calculate transient solutions of Markov chains.

1.2. Related Work

The objective of this section is to provide insight related to the calculation of safety indicators

of systems modeled with large Markov chains. The main problem of such Markov chains

is the state space explosion, which makes the calculation impossible for complex systems.

Establishing a full review of the literature on this topic is quite difficult, because Markov

chains are widespread in many areas of science. We review here a few ideas that are related

to the calculation of large Markov chains.

Markov chains is a very good modeling language, which is based on the modeling of the

states of a system. Further definitions and calculation methods are presented in Section 2.1.

Markov chains are constrained by the Markov hypothesis, which states that the future of the

system only depends on the current situation of the system. However, even with the Markov

hypothesis, the very nature of the exponential distributions associated to transitions between

states (in the case of homogeneous Markov chains) makes their strength, as it makes their

mathematical analysis possible and efficient. Consequently, they have been thoroughly used

and studied since their creation in [Markov 1906], in various scientific fields.

Our review is based on three families of approaches. The first approaches, shown in Sec-

tion 1.2.1, deal with various calculation techniques, using approximate calculation or reduction

of the state space. These methods generally uses the full Markov chain, which is then reduced.

The second family of approaches overcome the inherent state space explosion by avoiding

the construction of the chain. These approaches, shown in Section 1.2.2, use the calculation

of sequences of events to evaluate the safety indicators of a system. Path-based approaches

are close to the minimal cutsets approach for FTA. Paths can be generated from a higher-

level language, which may avoid the generation of the complete Markov chain. However, the

number of paths is prone to the combinatorial explosion.

The third family of approaches overcome the inherent state space explosion by aggregating

numerous states into very little states. These aggregation techniques are presented in Sec-

tion 1.2.3. The full chain may not be required to build aggregates, as some of these methods

can be applied during the generation of the chain from a higher level language. This makes

these approaches particularly interesting.

1.2.1. Calculation and Reduction Techniques of Large Markov Chains

Approximate calculation techniques and reduction techniques are tightly linked to the nu-

merical calculation techniques introduced in Section 2.1.4. This is due to the solution of the

7

1 Context and Related Work

Markov chain (see Section 2.1.2, Equation (2.2)), which is a series involving the powers of

the transition matrix. Hence, approximate calculation techniques that also take into account

the large size of the Markov chains are developed. Some authors developed exact methods

which produce a smaller Markov chain that is equivalent to the complete chain, and others,

approximate methods.

Lal et al. considered the inversion of transition matrices and optimized calculations of steady

state probabilities by partitioning the transition matrix (see [Lal and Bhat 1988]). It is not

strictly speaking a reduction of the model to a smaller model, but it is yet a reduction of the

complexity toward the calculation of the Markov chain.

Pribadi et al. introduced a method in [Pribadi et al. 2001] to reduce Markov chains in size

while guaranteeing the exact probabilistic assessment of the performance indicators. It is

efficient to reduce the chain toward its calculation but this relies on ergodicity of the chain to

be reduced, which is not always verified, in particular for non-repairable systems.

The following methods are based on the concept of reward. A reward is an arbitrary

quantity that is associated to the system in each state of the Markov chain. The expected

value of the reward is computed knowing the expected probabilities of the states of the Markov

chain. The reward can be the production rate of the system, its availability, and so on. Zhao

et al. proposed a theoretical framework to study state-space truncation, by censoring the

Markov chain to keep only the states which give non-null reward. As shown in [Zhao and

Liu 1996], the equivalence between the censored Markov chain and the initial Markov chain is

computationally expensive to calculate. Fourneau et al. proposed a method to approximate

the censored Markov chain, which gives bounds on the error made by applying such censoring

(see e.g. [Fourneau et al. 2007]).

Other approaches with the censored Markov chains aimed at approximating the censored

chain without knowledge of the full Markov chain. Dayar et al. introduced the DPY algorithm

to calculate such approximation (see [Dayar et al. 2006]). Bušić et al. further studied the

approximations of censored Markov chains, and improved the bounds proposed by Dayar et

al. using more knowledge on the full Markov chain (see [Bušić et al. 2012]).

Another way to evaluate large Markov chains is to calculate them approximately. Mercier

developed in [Mercier 2007, 2008] approximate bounds to quickly calculate transient and

steady-state probabilities. Unfortunately, the method uses the inversion of a matrix which is

similar to the transition matrix, so the method is not scalable.

Carrasco proposed in [Carrasco 2003] approximate bounds with error control to calculate

transient rewards of a Markov chain. This method is interesting because it uses a smaller

Markov chain to approximate the bigger one, and is based on sequences to determine the

size of the small chain. It is an optimized algorithm to calculate rewarded Markov chains.

However, the algorithm which generates the smaller chain uses matrix product involving the

generator matrix of the full chain, so the method does not avoid the combinatorial explosion

8

1.2 Related Work

of full the Markov chain.

Another approach has been proposed by Plateau et al. for the assessment of Stochastic

Automata Network (SAN). SAN are a high level formalism to describe finite state automata

(see e.g. [Fourneau and Plateau 1991] [Fernandes et al. 1998]). The idea is to express the

Markov chain in terms of a generalized tensor product, using the modularity of SAN models.

This approach makes it possible to reduce the size of the chain, but it does not reduce its

number of states.

For all these efficient methods (with the exception of the DPY algorithm), the input data

is only a Markov chain without complementary information about the represented system. In

this thesis, the method uses a higher-level formalism to partially construct the state space of

the failure/repair behavior of the system. We directly obtain a partial Markov chain, which

does not need to be reduced.

1.2.2. Path-based Approaches

Path-based approaches calculate the availability of a system through the calculation of the

probabilities of paths in the Markov chain. These methods avoid the evaluation of the whole

Markov chain and propose an evaluation of the error introduced by such approximation.

Path-based approaches have been developed by Electricité de France (EDF) for the risk

assessment of nuclear power plants. The idea is close to what is done in Fault Tree Analyses.

Sequences of failures and repairs are considered from the initial state to the failure states of

the system. A probability is calculated for these sequences, and their contribution is added to

the unreliability of the system. When the probability of a sequence is below a given threshold,

the sequence – and the possible sub-sequences – is discarded, and the error is augmented with

this probability. At the end of the process, the error is used to assert the confidence in the

results.

To obtain representative results, it is necessary to address the following difficulties: the

computation of the probability of a sequence with respect to the events in the sequence, and

the loops introduced by repairs. Three methods were developed to tackle these difficulties in

different situations:

• Bon and Collet proposed in [Bon and Collet 1994] a first method to compute the relia-

bility of completely repairable systems.

• Collet and Renault proposed in [Collet and Renault 1997] a specific method to compute

the reliability of unrepairable systems.

• Bouissou and Lefebvre described in [Bouissou and Lefebvre 2002] an extension of [Bon

and Collet 1994] to compute the asymptotic availability of completely repairable systems.

9

1 Context and Related Work

Reliability of completely repairable systems [Bon and Collet 1994]

The method called SRI is developed to compute a lower bound of the reliability of a system

through the exploration of sequences of events. The idea is to calculate an exponential distri-

bution which would approximate the whole system. The reliability R(t) is approximated as

follows:

R(t) ≥ e−Λeqt

The algorithm focuses on the probability α of arriving in a failure state before returning in

the perfect state.

Λeq = λ× α

where λ is the exit rate from the initial state. To do so, the algorithm calculates the sequences

which starts from the initial state E0 and goes to failure states E1 without transiting through

another element of E1. This gives the probability P (E0, E1) to go from E0 to the set E1.

Finally, α is a quantity that satisfies α ≥ P (E0, E1).

To compute those quantities, an algorithm is proposed to explore the sequences, in depth-

first order. The state space of the system is only partially explored, and the Markov chain is

only used as a support of the exploration. Hence, loops in the sequences are handled.

The algorithm needs the complete repairability of the system to work correctly, in order

to ensure the regeneration of the Markov process. This method gives closer approximations

when the system is highly available.

With this algorithm, it is also possible to compute other quantities of interest for completely

repairable systems, as the set E1 can be changed to a set of objectives. However, there are

strong requirements on the indicators that can be calculated.

Reliability of unrepairable systems [Collet and Renault 1997]

This method is based on Laplace-transform inverses. They are used to calculate the probability

of sequences of failures. This requires the traversal of all the paths from the initial state to

failed states. The unreliability of the system is obtained by summing the probabilities of the

paths.

To avoid the complete exploration, sequences may be truncated if their probability is below

a threshold (which avoids the calculation of the sub-sequences). However, the calculation

of the probability of a sequence is computationally expensive (non linear with respect to

the number of events along the path). Moreover, if the truncation is needed to reduce the

number of sequences, this calculation must be done after each newly discovered event. The

unreliability of repairable systems cannot be obtained without truncation of the sequences,

because of the inherent loops induced by the failures and repairs.

10

1.2 Related Work

This method does not require the full Markov chain to be generated, but must keep track

of the already explored sequences. As a consequence, it can be used directly with higher-

level language and tools. Even if this method does not require Markov chains, it is based on

exponential distributions of the events, which is typical of Markov chains.

Asymptotic availability of quickly repairable systems [Bouissou and Lefebvre 2002]

In [Bouissou and Lefebvre 2002], an extension of [Bon and Collet 1994] is developed. The

development of this method is tightly related to the publication of the Boolean logic Driven

Markov Processes (BDMP) [Bouissou 2002; Bouissou and Bon 2003]. The method is imple-

mented in the software FIGSEQ (for FIGaro SEQuences), which enables efficient calculation

of the BDMPs.

The idea of the method is that, for highly repairable systems, after a failure of the system,

all the repairs on components are made before another failure of the system. Hence, the

asymptotic availability of a system Ā(∞) is expressed as a ratio of the expected time to

recover from failure ER and the total length of a cycle of failure-repair EC :

Ā(∞) ≈ ER
EC

, EC = MTTF + ER

where MTTF is the Mean Time To Failure of the system.

The MTTF of the system is approximated with the SRI method, and MTTF ≥ 1
Λeq

.

The calculation of ER is done in two stages. Each stage uses the principle of the SRI

method. First, in the failure analysis stage, the sequences S leading to failure states are

calculated. Besides, the MTTF is also calculated. Second, in the repair analysis stage, the

failure sequences are extended. For each sequence s ∈ S, SRI is used again to explore the

sequences of events S(s) that recover the system from failure.

As in SRI, sequences can be truncated, in both stages of the method, which leads to intricate

calculations of bounds on ER. These bounds are used to calculate the approximate value of

Ā(∞). To calculate the higher bound of ER, the system engineer must provide an upper

bound of the mean time to repair the system. The obtained approximation of Ā(∞) cannot

be bounded.

The Markov chain is only generated to trace the state space visited by the sequences. This

technique avoids the interpretation of the complete Markov chain. The sequences can be

calculated from a higher-level language.

The truncation provides satisfactory results on highly available systems. Inaccurate results

are obtained when the system is not available enough. This is due to the high number of

looped sequences compared to the number of direct sequences. These looped sequences are

not negligible for system with low availability, and they must be truncated because there are

too many of them.

11

1 Context and Related Work

Conclusions on path-based techniques

Path-based methods proved to be very efficient in the calculation of the safety indicators for

unrepairable or highly repairable systems. They are, however, limited by the huge number of

sequences that must be considered, because of the very nature of failure-and-repair cycles.

In this thesis, as loops are inherently part of repairable systems, our first idea was to select

some states of a Markov chain that would be able to represent the most probable evolutions of

the system. Instead of calculating the sequences that could lead to undesired states, the partial

Markov chain is used to calculate the probability of each of these undesired states. Looped

sequences are naturally handled by the calculation of the Markov chain. The truncation of

the Markov chain would be done in an analogous way: an indicator is associated to each

state, representing its relevance in the final Markov chain, and the exploration is stopped if

this indicator is below a given threshold.

1.2.3. Aggregation Techniques

Aggregation techniques focus on the reduction of the size of the Markov chain by aggregating

multiple states into fewer states. States are grouped by their level of interaction. When

some states are strongly connected together, but are less connected to the others, they are

aggregated into a single group, without changing the overall dynamic of the Markov chain.

However, transitions to groups and from groups must be calculated, in order to respect the

overall dynamic of the chain.

Regarding aggregation techniques, we chose to focus on the work of two teams: on the one

hand, Courtois and Semal, on the other hand, Muntz, de Souza e Silva and Goyal.

Courtois and Semal developed important theorems to calculate the equivalent transitions

in aggregated Markov chains (see e.g. [Courtois 1977; Courtois and Semal 1984]). However,

these results imply once again the inversion of a matrix which size is prohibitive.

Muntz, de Souza e Silva and Goyal proposed in [Muntz et al. 1989] a method to compute

the steady-state unavailability of a repairable system through an approximate aggregation of

the Markov chain. Bounds on the error are also provided. The main benefit of the method is

that it does not require the complete Markov chain to produce the approximate chain. The

method is based on the fact that the probability of a safe repairable system is concentrated

in the states where there are at most a few failed components, and that there are numerous

improbable states where a high number of components are failed. Consequently, the states

where the probability is concentrated are kept, and the improbable states are aggregated into

fewer states.

The method works as follows. States where few components are failed are kept detailed,

to keep a good accuracy for the most probable states. The other states are aggregated, by

12

1.3 Contributions to the Quantitative Safety Analyses of Large and Complex Systems with
Markov Chains

grouping states that have the same number of failed components. For instance, only states

where more than five components are failed are aggregated.

However, the method relies on the ergodicity of the chain, and makes hypotheses on the

model: the number of failed components must be known in each state of the system, and

repairs of each component must be done one after another. Further considerations on the

complexity of the method are presented in Section 2.4.3, when concepts about computational

complexity of calculation of Markov chains have been presented.

This method, with more knowledge on the initial model (which must be a safety model with

the known number of failures in each state), gives a good tradeoff between the computational

cost and the obtained bounds.

Courtois and Semal developed in [Courtois and Semal 1995] another method which com-

putes steady state probabilities of repairable system by aggregating states according to the

number of failed components of the system. In this method, all the states are aggregated

according to the number of failed components they yield. Under these conditions, the steady

state probabilities can be calculated piecewise, one aggregate state at a time. This leads to ac-

ceptable computation costs (inversion of small matrices), but the computation of the bounds

may require a high number of iterations to converge. In this thesis, this fact is illustrated on

a modified example taken from [Muntz et al. 1989], where bounds on the steady state prob-

ability of aggregates are calculated. The bounds are far from one another for the aggregates

representing the highest numbers of failures, on this example. It is not always possible to

deduce the unavailability from the number of failed components. This is especially true for

the taken example, as it is an extension of the fault tolerant database that is presented in

Section 3.2.1. Hence, the probability of the aggregates should not be used to approximate the

unavailability of the system.

1.3. Contributions to the Quantitative Safety Analyses of Large

and Complex Systems with Markov Chains

The partial generation of Markov chains is aimed at fighting the inherent combinatorial explo-

sion of Markov chains. The path-based calculation approaches and the partial generation of

Markov chains share a common objective. This objective is to compute the safety indicators

of repairable Markovian systems whose Markov chain would be too large to be generated and

calculated.

The partial generation method is based on the observation that a repairable system is, most

of the time, in its nominal state. This leads to the idea of the selection of the most probable

states of a system. This selection should be done during the generation of the Markov chain,

to avoid the construction of a very large chain that would be reduced afterward.

The main contributions of this thesis are to provide partial generation of Markov chains from

13

1 Context and Related Work

AltaRica models, using a variation of the very efficient Dijkstra’s algorithm. The selection of

the most probable states is based on a relevance factor associated to each state of the system.

These concepts were introduced in [Brameret et al. 2012, 2013]. The generation of the partial

chain is very efficient, as the cost of the partial generation is comparable to the cost of the

calculation of the partial Markov chain.

The error introduced by the partial generation cannot be calculated with the partial chain.

Bounds on the indicators of the system are introduced in [Brameret et al. 2015]. The bounds

are obtained by introducing a new state in the Markov chain, at the end of the exploration

of the chain. This state is called the sink and is, by definition, an absorbing state. The sink

gathers all the states that are not explored at the end of the exploration. Bounds on the

indicators are computed knowing the probability to be in the sink. Such bounds provide a

measure of the error caused by the partial generation. Hence, the error introduced by the

partial generation is known only after the Markov chain is calculated.

Although the sink is very simple and provides very conservative bounds, it is not compu-

tationally efficient to improve it. The sink can be seen as a tradeoff between more knowledge

on the obtained indicators of the system and the accuracy of the partial generation.

Software tools are developed in the context of the AltaRica 3.0 project. The partial gen-

eration method is tested on several examples with these tools. They also provide means to

analyze the strengths and weaknesses of the partial generation with respect to the experimen-

tal conditions: parameters of the system under study, chosen mission time, size of the partial

chain, and so on.

14

2. Core Algorithm, Generation of the Most Useful Part

of a Markov Chain

In this chapter are introduced the fundamentals about the partial generation method. As

the partial generation methods takes root in the Markov chains calculation, it is natural to

introduce Markov chains first. The core idea behind the method is that, in a safe system,

the probability is concentrated in the nominal state, and in a few of the states reachable

from the nominal state. The goal of the partial exploration is to predict which states will be

useful in the assessment of the probabilistic indicators of a system, and which ones will not.

Obviously, this should be done without calculation nor construction of the whole state space

of the system.

This chapter is organized as follows. Section 2.1 introduces Markov chains and their calcu-

lation. Section 2.2 shows an alternative interpretation of the Markov chains, which provides

another perspective on the Markov chains. Section 2.3 presents the core of the method, the

generation of a partial Markov chain based on Dijkstra’s algorithm and on a relevance factor.

In Section 2.4, a variation of the method is introduced to calculate an upper bound on the

error caused by the partial generation of the Markov chain.

2.1. Markov Chains: Definitions, and Calculation

Markov chains were introduced by Andrey Markov in [Markov 1906]. Since then, they are

used in many fields to model and calculate systems of various nature. His work was translated

and republished in [Markov 1971].

2.1.1. Introduction

To avoid confusing definitions taken from different publications, we chose to work only with

definitions taken from William J. Stewart, Introduction to the numerical solution of Markov

chains [Stewart 1994]. Numerous elements from this section are taken from this reference

book.

It is often possible to represent the behavior of a system by describing all the different

states that the system can occupy and by indicating how it moves from one state to another

in time. If the transition rates between states are constant and if the time spent in any state

15

2 Core Algorithm, Generation of the Most Useful Part of a Markov Chain

is exponentially distributed, the system may be represented by a Markov process. The system

being modeled by the process is assumed to occupy one and only one of these states at any

moment in time. The evolution of the system is represented by the transitions of the Markov

process from one state to another. These transitions are assumed to occur instantaneously.

The fundamental property of a Markovian system, referred to as the Markov property, is

that the future evolution of the system depends only on the current state of the system and

not on its past history. This is often seen as the memoryless property.

The term Markov chain is employed when the state space is discrete. The information that

is most often sought from such a model is the probability of being in a given state or subset of

states at a certain time after the system becomes operational. Often this time is taken to be

sufficiently long that all influence of the initial starting state has been erased. The probabilities

thus obtained are referred to as the stationary, or steady-state probabilities. Probabilities at a

particular time t are called transient probabilities. The transient or steady-state probabilities

are used to predict the behavior of the system.

For these reasons, Markov chains are a common approach to System Safety Assessment.

They are one of the possible tools that are proposed in the ARP 4761 standard [SAE 1996].

This standard gives guidelines and methods for conducting the safety assessment process on

civil airborne systems and equipment.

Markov chains are a versatile tool, and can model a wide variety of behaviors. However, in

an industrial context, Markov chains are not written by hand, because their large size makes

this task prohibitive and error-prone. This is why Markov chains are usually obtained from

higher level modeling languages. In this document, we use AltaRica 3.0.

When the number of states is small, it is relatively easy to obtain transient and stationary

solutions quickly and accurately. From these, the behavior of the system is accurately pre-

dicted. When the models become more detailed, the calculation of these solutions becomes

much more difficult.

2.1.2. Definitions

In this section, only definitions required for the good understanding of this thesis are given.

For a discrete-time Markov chain (DTMC), we observe the state of a system at a discrete set

of times. If the Markov chain may change state at any point of time, we say that the chain is

a continuous-time Markov chain (CTMC).

Discrete-Time Markov Chain

In an homogeneous DTMC, the transition probabilities are constant, and the time spent in

each state is geometrically distributed. In the remainder of the thesis, DTMC denotes an

homogeneous DTMC.

16

2.1 Markov Chains: Definitions, and Calculation

Let pij be the transition probability from State i to State j, which is the probability to go

from State i to State j after each time step. The square matrix P , formed by placing pij in

row i and column j for all states i and j, is called the transition matrix or chain matrix.

P = [pij]∀i,j

All the elements of the matrix P satisfy the following two properties.
∀i, j 0 ≤ pij ≤ 1

∀i
∑
∀j
pij = 1

Let n be a given time step. Let x
(n)
i be the probability to be in State i at time step n,

and X(n) be the row vector formed by all the x
(n)
i . From the Chapman-Kolmogorov equation,

X(n) and X(0) satisfy:

X(n) = X(0) · Pn

As X(n) is the vector of state probabilities:

∀n,
∑
∀i
x

(n)
i = 1

Continuous-Time Markov Chain

In a CTMC, the Markov chain can change state at any point in time. The time spent in each

state is exponentially distributed if the CTMC is homogeneous.

Because of their continuous-time characteristics, the probabilities of changing state depend

on the time. Let pij(s, t) the probability of being in State j at time t, given that the state is

i at time s (with t ≥ s). If the CTMC is homogeneous, pij(s, t) does not depend on s nor on

t, but only on the length of the time interval τ = t− s. Hence,

∀s ∀τ, pij(s, s+ τ) = pij(τ)

In the remainder of this thesis, a “Markov chain” denotes an homogeneous continuous-time

Markov chain.

To work more easily with homogeneous CTMC, the notion of transition rate is introduced.

Let qij be the transition rate from State i to State j. By definition,

qij =
dpij(τ)

dτ
= lim

τ→0

pij(τ)

τ

The matrix Q, formed by the qij , is called the transition rate matrix. Because of the

conservation of the probabilities, the elements of Q satisfy the following property:

qii(t) = −
∑
j 6=i

qij(t)

17

2 Core Algorithm, Generation of the Most Useful Part of a Markov Chain

Let πi(t) be the probability that the system is in state i at time t, and π(t) the row vector

formed by all the πi(t). The Chapman-Kolmogorov equation for CTMC is used to obtain the

following set of ordinary differential equations:

∀j, dπj(t)

dt
=
∑
∀k

πk(t) · qkj

which can be more simply written as:

dπ(t)

dt
= π(t) ·Q (2.1)

To solve such system, it is important to recall that:

∀t,
∑
∀i
πi(t) = 1 ; π(t = 0) is known

It follows that the solution π(t) is given by:

π(t) = π(0) · eQt def
= π(0) ·

I +
∞∑
n=1

Qntn

n!

 (2.2)

The challenge of the numerical solution of Markov chains is to calculate such series. This

challenge is further addressed in Section 2.1.4.

2.1.3. Illustration, the Case of a Repairable System

Consider a simple repairable system, whose availability is to be determined, and which can

be in two states: the working state and the failure state. When the system is working, it

can fail, and when the system is failed, it can be repaired. The failure rate λ is the expected

number of failures per time interval (say an hour). The repair rate µ is the expected number

of repairs per time interval. To model this system with a Markov chain, we suppose that the

system is memoryless. In other words, the probability of a failure (or repair) only depends

on the current state of the system, and does not depend on the time that the system spent

in the current state (these rates do not depend on the overall age of the system).

0 1

λ

μ

dP0(t)

dt
= −λ · P0(t) + µ · P1(t)

dP1(t)

dt
= λ · P0(t)− µ · P1(t)

P0(t) + P1(t) = 1

 P0(0) = 1

P1(0) = 0

Figure 2.1.: A small Markov chain, the corresponding set of ordinary differential equations,

and the initial distribution.

18

2.1 Markov Chains: Definitions, and Calculation

The homogeneous CTMC for this elementary system has two states and two transitions

(see Figure 2.1). State 0 is the working state, and State 1 is the failure state. The probability

P0(t) is the probability to be in State 0 over time (P1(t) for State 1). As State 0 is the working

state, the availability of the system is P0(t), and its unavailability is P1(t). This system is

supposed to be initially working, that is to say P0(0) = 1 and P1(0) = 0. For this simple

system, the transient solution is:
P0(t) =

µ

λ+ µ
+

λ

λ+ µ
e−(λ+µ)·t

P1(t) =
λ

λ+ µ
− λ

λ+ µ
e−(λ+µ)·t

(2.3)

The asymptotic probabilities are easily computed:
P0(∞) =

µ

λ+ µ

P1(∞) =
λ

λ+ µ

Hence, the steady state unavailability of the system is λ
λ+µ , and the steady state availability

is µ
λ+µ .

A numerical representation of the functions from Equation (2.3) is given in Figure 2.2. For

practical reasons, λ and µ were chosen as follows:

λ = 1.0× 10−3 hours−1 µ = 1.0× 10−2 h−1

Figure 2.2 shows the basic equilibrium between the availability and the unavailability of a

system, and their overall evolution with time.

Let us focus on the transient evolution of the solution. The solution of the homogeneous

ordinary first order differential equation dP (t)
dt + P (t)

τ = 0 is known to be P (t) = C ·exp (−t/τ),

where C is a constant determined by the value of P at time 0. The constant τ is the time

constant for the evolution of solution, and characterizes the time taken by the function P to

stabilize. Consider now the expressions of P0(t) and P1(t) in the set of equations (2.3):

τ =
1

λ+ µ
(2.4)

The exponential decay leads to the stabilization of the solutions:

t = τ, P0(τ) =
µ

λ+ µ
+ 0.37 · λ

λ+ µ
P1(τ) =

λ

λ+ µ
− 0.37 · λ

λ+ µ

t = 3 · τ, P0(3 · τ) =
µ

λ+ µ
+ 0.050 · λ

λ+ µ
P1(3 · τ) =

λ

λ+ µ
− 0.050 · λ

λ+ µ

t = 5 · τ, P0(5 · τ) =
µ

λ+ µ
+ 0.0067 · λ

λ+ µ
P1(5 · τ) =

λ

λ+ µ
− 0.0067 · λ

λ+ µ

t = 7 · τ, P0(7 · τ) ≈ µ

λ+ µ
P1(7 · τ) ≈ λ

λ+ µ

19

2 Core Algorithm, Generation of the Most Useful Part of a Markov Chain

0 100 200 300 400 500 600
Time (h)

0.0

0.2

0.4

0.6

0.8

1.0
P
ro

b
a
b
ili

ty

µ

λ+µ

λ
λ+µ

Values of the parameters :

λ=1.0×10−3 h−1 µ=1.0×10−2 h−1

Transient solution of the Markov chain of the repairable system

P0 (t)

P1 (t)

Figure 2.2.: The transient solution of the Markov chain given in Figure 2.1.

τ is an important constant that represents the evolutions of the system over time. The

system is transient while t is below 5 · τ . For t� τ , the numerical solutions of the system are

stable.

2.1.4. Transient Solutions of Markov Chains

The most intuitive way to calculate the transient probabilities of the states of a Markov chain

is to solve the set of differential equations (see Equation (2.1)). Several methods have been

developed, which can be sorted in two families: the analytical or the numerical approaches.

However, for Markov chains with hundreds of states, the analytic approach is not practical,

as it involves the search of the eigenvalues and vectors of the transition rate matrix.

Numerous methods exist to numerically calculate the transient solution of a Markov chain

(see [Stewart 1994]). Only three strategies are presented here.

Some methods are based on the solution of the set of linear ordinary differential equations

expressed as a series (see Equation (2.2)). This method computes the approximate value of

the series for the given time t, so it is not suitable to compute the transient probabilities.

Moreover, this direct solution is rather hard to compute, due to the rounding errors when

computing the series (see [Moler and Van Loan 1978, 2003]).

Uniformization techniques introduced by [Grassmann 1977] use a DTMC as a support for

the calculations. The transition matrix of the DTMC has the same size as the generator

matrix of the CTMC. The formula to compute the solution is a very similar series involving

20

2.1 Markov Chains: Definitions, and Calculation

the newly constructed transition matrix, which computes the solution at a given time t.

However, the number of useful terms is usually less than a dozen in order to obtain accurate

results. If the time t is too long, it may be required to divide the time in smaller time-steps,

which increases the computation time. According to [Reibman and Trivedi 1988] and [Stewart

1994], uniformization may be irrelevant for stiff chains (chains where there are very low and

very high transitions rates). It is, however, algorithmically efficient and parallelizable (see

[Dingle et al. 2004]).

Iterative methods uses a discrete time approximation to calculate the exponentiation of the

transition rate matrix Q. Time is sampled, using a small enough time-step dt, which leads

to the computation of the transient probabilities. Some of these methods are introduced in

[Stewart 1994] and tested on different examples that are related to safety assessment in [Rauzy

2004]. We will focus on the full exponentiation matrix (EXP) and the Forward Euler Method

(FEM) inspired from [Euler 1768]. The discrete time approximation is based on the solution

seen in Equation (2.2), by introducing the time-step dt:

π(t+ dt) = π(0) · e(t+dt)·Q = π(0) · et·Q · edt·Q = π(t) · edt·Q

With t = n · dt:
π(t) = π(0) ·

(
edt·Q

)n
Both EXP and FEM rely on the definition of the matrix exponential of the transition rate

matrix Q times the time-step dt:

edt·Q =
+∞∑
k=0

(dt ·Q)k

k!
(2.5)

The EXP method calculates edt·Q until (dt·Q)k

k! is low enough. The FEM method keeps only

the first two terms of the series: edt·Q ≈ I + dt ·Q. The time step dt must be low enough so

that the probabilities calculated in one step stay below 1: dt < 1
maxi (−qii) (as qii are negative).

It can be noted that edt·Q is calculated only once in order to obtain the values of the transient

probabilities from time 0 to time t with time-step dt.

It has been shown in [Rauzy 2004] that FEM gives good results with respect to the accuracy

of the transient solution. The accuracy can be adjusted through dt = ρ
maxi (−qii) where ρ ∈

]0..1]. The quantity ρ is a tradeoff between the quality of the computations (when ρ → 0)

and the speed (when ρ = 1).

Let |E| be the number of non-null transitions in the transition rate matrix, |V | the number

of states, T the time at which the Markov chain is solved, and dt the chosen time-step.

FEM runs in worst-case O(|E| × T
dt) time because it does at most T

dt iterations involving

the multiplication of the sparse transition rate matrix containing only |E| elements. Data

structures in FEM use O(|E|+ |V |) space, as it only stores the sparse matrix I+dt ·Q ≈ edt·Q

and two distribution vectors.

21

2 Core Algorithm, Generation of the Most Useful Part of a Markov Chain

2.2. Understanding Markov Chains of Large and Safe Systems

2.2.1. Physical Interpretations of a Markov Chain

From a physical point of view, a Markov chain is similar to a network of water tanks connected

with pipes which have different diameters. Indeed, the quantity of water that flows from Tank

i to Tank j is proportional to the diameter of the pipe and to the pressure in the upstream

tank. This pressure is proportional to the height of the water in the tank.

The level of water in a tank is analogous to the probability of a state of a Markov chain, and

the diameters of the pipes is analogous to the transition rates of the transitions. Of course,

the analogy is incomplete as water flows are driven by gravity, while probability flows are

driven by the following ordinary equation:

dPi(t)

dt
= −(outgoing rate)× Pi(t) +

∑
j∈parents

(ingoing rate)× Pj(t)

where Pi(t) is the probability to be in State i at time t.

However, because this point of view illustrates how the probability evolves between states,

it is very useful to understand one of the core principles of the method. The selection of the

states is based on the flow of the probability from the initial state to all the other states (see

Section 2.3.2). This selection uses the competition between outgoing states of a given state.

With water tanks, the problem is formulated as follows. Knowing that the initial tank is

full and not replenished, the goal is to estimate the level of the water in all the other tanks,

without calculation of the Markov chain, in order to keep only the fullest tanks.

The idea is to focus on one full Tank i until it is empty, and see where the water goes. Let

αij be the quantity of water that goes to Tank j. It is easy to see that αij is proportional

to the diameter of the pipe qij between i and j. However, the outgoing pipes are concurrent,

as they all empty the same water tank. So the part that goes to j is a ratio between the

diameter of the pipe divided by the sum of the diameters of the pipes that goes out of Tank

i:

∀j, αij =
qij∑

k 6=i
qik

(2.6)

This idea gives the same result with the probabilities. Considering that the Markov chain

is currently in State i, let t be the time at which a transition will occur, and αij be the

probability that the State j is reached at time t. Because of the set of Equation (2.1), αij is

proportional to qij . Moreover, as a transition occurs at time t,
∑

j 6=i αij = 1. Then, the same

equation is obtained.

Equation (2.6) is important, as it shows the competition between states. The probability

to go from State i to State j is driven by qij with respect to the other outgoing transitions

qik,∀k 6= i. Consequently, if a repair and a failure may happen in the same state, as the repair

rate is usually very high compared to the failure rate, the repair is very more likely taken.

22

2.2 Understanding Markov Chains of Large and Safe Systems

2.2.2. Probability Distributions in Large Systems

For safe systems, repairs are far quicker than failures. Under these conditions, we suppose

that λ � µ (that is to say λ
µ < 1

100). The transient solution of a modified version of the

2-state Markov chain from Figure 2.1 is plotted in Figure 2.3. The chosen parameters give
λ
µ = 1

1000 . Only P1(t), the unavailability, is plotted.

0 100 200 300 400 500 600
Time (h)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

P
ro

b
a
b
ili

ty

λ
λ+µ

P
=
t/
τ

t
=
τ

Values of the parameters :

λ=1.0×10−5 h−1 µ=1.0×10−2 h−1

Expected unavailability over time when λ¿µ

Figure 2.3.: The transient solution of the simple Markov chain from Figure 2.1 for a safe

system (µ = 1000λ).

Since λ� µ, the asymptotic unavailability λ
λ+µ is roughly λ

µ , and the time constant τ = 1
λ+µ

becomes τ ≈ 1
µ . These constants are very important as they give rough estimates about a

system, and can be extended to larger systems as follows.

Figure 2.4 shows a Markov chain which extends the previous one. Here, a system with two

identical and independent components is modeled. State 0 is the initial state, where both

components are working. State 1 is a state where one of the two components is failed, and

the other one is working. In state 2, both components are failed.

This system can be solved analytically, and the following expressions are obtained:

P0(t) =
µ2

(λ+ µ)2
+

2µλ

(λ+ µ)2
e−(λ+µ)t +

λ2

(λ+ µ)2
e−2(λ+µ)t

P1(t) =
2µλ

(λ+ µ)2
+

2λ(λ− µ)

(λ+ µ)2
e−(λ+µ)t +

−2λ2

(λ+ µ)2
e−2(λ+µ)t

P2(t) =
λ2

(λ+ µ)2
+

−2λ2

(λ+ µ)2
e−(λ+µ)t +

λ2

(λ+ µ)2
e−2(λ+µ)t

(2.7)

23

2 Core Algorithm, Generation of the Most Useful Part of a Markov Chain

0 1

2λ

μ

2

λ

2μ

dP0(t)

dt
= −2 · λ · P0(t) + µ · P1(t)

dP1(t)

dt
= 2 · λ · P0(t)− (λ+ µ) · P1(t) + 2 · µ · P2(t)

dP2(t)

dt
= λ · P1(t)− 2 · µ · P2(t)

P0(t) + P1(t) + P2(t) = 1

P0(0) = 1

P1(0) = 0

P2(0) = 0

Figure 2.4.: A Markov chain with 3 states, its set of ordinary differential equations, and its

initial distribution.

The asymptotic probabilities are immediately calculated, and can be expressed in another

form to show that the solutions for the system with two components can be deduced from the

solutions from the simpler system shown in Figure 2.1:

P0(∞) =
µ2

(λ+ µ)2
=

(
µ

λ+ µ

)(
µ

λ+ µ

)
P1(∞) =

2µλ

(λ+ µ)2
= 2

(
λ

λ+ µ

)(
µ

λ+ µ

)
P2(∞) =

λ2

(λ+ µ)2
=

(
λ

λ+ µ

)(
λ

λ+ µ

) (2.8)

From this, it is possible to give a rough estimate of the asymptotic probabilities of each

state of the Markov chain for a system including more components:

k ·
(

µ

λ+ µ

)a
·
(

λ

λ+ µ

)b
where a is the number of working components, b the number of failed component, and k

the number of possible combinations of a working components in (a + b) components. This

equation is of course only valid for a system with (a + b) identical and independent binary

components.

In the case of the system with two components, where λ� µ, 1
λ+µ ≈

1
µ and these expressions

become:

P0(∞) ≈ 1− ε

P1(∞) ≈ 2 · λ
µ

P2(∞) ≈
(
λ

µ

)2

(2.9)

24

2.2 Understanding Markov Chains of Large and Safe Systems

where ε is positive and small. ε can be expressed either to verify
∑
Pi(t) = 1, which gives

ε = 2λµ +
(
λ
µ

)2
, or as the series expansion of 1

1+λ
µ

= 1− λ
µ +

(
λ
µ

)2
+ o

((
λ
µ

)2
)

with the small

o notation, which gives ε = 2λµ − 3
(
λ
µ

)2
.

The set of approximate asymptotic solutions (2.9) is very important, as it shows the rough

approximation of the probability distributions in a system with redundant components. The

probability to be in a state where n components are failed in the same time is in
(
λ
µ

)n
, which

is . 0.001n for safe systems. In this respect, a notion of distance from the nominal state

is emerging. The nominal state has roughly the probability 1 (minus a little something),

and the states that are distant from the nominal states through n stages of failures are very

improbable. This explains why the probability is mostly concentrated around the nominal

state for safety systems.

Now consider the possible evolutions from State 1. The probability to be in State 1 can

flow in the two other states. The probability rate to go back in state 0 is µ (through a repair),

and the flow to go in 2 is λ (through a failure). When µ � λ, most of the probability flows

to 0, and very little probability flows to 2 (see Equation (2.6)). In this sense, 0 and 2 are

competing to obtain probability from 1. There will be µ
λ+µ ≈ 1 of the probability in 0, and

λ
λ+µ ≈

λ
µ of the probability in 2.

An interesting aspect of the numerical transient solutions of the Markov chains is related

to the time constant of the system τ . The time constant for each component is around 1
µ .

The time at which each component is in its steady state is roughly 5 · 1
µ . When the system

is built upon different components, the transient probability of each state is influenced by

the evolution of each component. As a consequence, the fastest evolution of each transient

probability is comparable to 1
maxµ . However, the steady state of the system is reached when

all the components are stabilized. This happens when all the components reach their steady

state. As a consequence, the system is steady state when the time is comparable to 1
minµ (see

Equation (2.4)). This may lead to a stiff Markov chain if the system is composed of both

quickly and slowly repairable components.

When a Markov chain models a repairable and safe system, the most probable states will

be the states close to the nominal state. This is because the probability from the nominal

states flows slowly out of it due to low failure rates, and goes back rapidly to the nominal state

through repairs with high repair rates. The states close to the nominal state will gather all

the probability, while remote states will have very low probabilities. Hence, the performance

indicators of the system are mainly influenced by the states close to the nominal state. The

goal of the method is to select only those states.

25

2 Core Algorithm, Generation of the Most Useful Part of a Markov Chain

2.3. Partial Generation: the Method

Modeling a system with Markov chains consists in enumerating the different states in which

the system can be, and calculating the transition rates between these states. Writing a Markov

chain by hand quickly becomes unmanageable due to the number of states and transitions (the

oil production system detailed in Section 3.2.3 has 15 basic components, but nearly 47, 000

states and 5, 210, 000 transitions). The goal of the partial generation method is to generate

the Markov chain from a higher modeling language, and keep only the most probable states

of the chain before the chain is completely generated. This is possible as the Markov chains

are obtained from a higher level modeling language.

In practice, an AltaRica 3.0 model is used to generate a Guarded Transition System

(GTS), which holds the semantics of the model. GTS are detailed in Appendix A. A GTS

〈V,E, T,A, ι〉 is animated to partially generate the states and transitions of the system as a

reachability graph Γ = 〈Σ,Θ〉, where Σ is the set of nodes of the system, and Θ the set of

edges. The reachability graph is finally transformed into a Markov chain. This final transfor-

mation is straightforward, as nodes of the reachability graph are states of the Markov chain,

and the edges are the transitions.

The exploration and partial generation must be efficient enough. If the partial generation

is not efficient enough, the calculation of the transient solution of the whole chain may be

faster than the partial generation and the partial generation would be useless.

In order to keep the most probable states, a sort among states has to be done. This sort

must be done before the chain is fully generated, and must be done efficiently.

How to Sort States?

The idea is to keep the states that are the closest to the nominal state1, as shown in Figure 2.5.

To do so, a relevance factor is associated to the nominal state. The algorithm computes the

relevance factor of the other states from the nominal state. The relevance factor is then used

to sort the states.

As seen in Section 2.2, the relevance factor of a state must take into account the “depth”

from the nominal state (in terms of the number of consecutive failures), and the competition

between states (and avoid branches of the Markov chain which only have improbable states).

The calculation of the relevance factor for the states is based on a specific use of Dijkstra’s

algorithm developed in [Dijkstra 1959]. The main benefits of Dijkstra’s algorithm are the

efficiency of the algorithm (states and transitions are only visited once) and the fact that

it can be interrupted. Both aspects are important, because the computation of the partial

Markov chain must not cost more than the calculation of the full chain.

1The “nominal state” is an expert knowledge and is given as ι, the initial state of the GTS 〈V,E, T,A, ι〉.

26

2.3 Partial Generation: the Method

0

1
2

3

4

5

6

7

Probable
states

Improbable
statesNominal

state

Figure 2.5.: Strategy used to select states in a Markov chain. States are indexed according to

their relevance factor.

In the remainder of this section, first we present Dijkstra’s algorithm, then we detail the

relevance factor. Finally, the main steps from the Guarded Transition System to the indicators

of the safety assessment are presented.

2.3.1. Dijkstra’s algorithm

Dijkstra’s algorithm finds the shortest paths in a graph, i.e. it minimizes the distance d(σ) of

each node σ ∈ Σ of the graph from a chosen source node σ0 ∈ Σ. This distance is the sum of

the length of the transitions l over the shortest possible path. The length l must always be

positive.

Dijkstra’s algorithm organizes nodes of the graph being explored in two sets: the set Σ of

states which are already explored (i.e. nodes whose distance is minimized), and the set C of

candidates (i.e. nodes which are candidates for the next exploration round).

The core idea of Dijkstra’s algorithm is to pursue the exploration of the graph with the

candidate σmin that has the smallest distance from the source node. As l is always positive,

it is not possible to find any shorter path to σmin in the future rounds of exploration. Hence,

σmin can be added to Σ. Then, the successors of σmin are examined. Let τ be such a successor.

If τ ∈ Σ, d(τ) is already minimized, and τ is skipped. If τ ∈ C, d(τ) is set to the minimum

of the current value d(τ) or d(σ) + l(σ → τ), where l(σ → τ) is the length l associated to the

edge σ → τ . Otherwise, τ is added to C and d(τ) is set to d(σ) + l(σ → τ). Algorithm 2.1

shows these operations. Initially, there is only the source node in the set C, and d(σ0) = 0.

Dijkstra’s algorithm visits only once every edge of the graph and finds the minimum distance

between the source node to all the other nodes. The worst-case run-time of the algorithm

heavily relies on the data structures used to implement the sets Σ and C. Theoretical minimum

complexity is achieved with Fibonacci heaps [Fredman and Tarjan 1984] [Brodal et al. 2012],

which gives worst-case O(|Θ| + |Σ| log |Σ|) time, where Θ is the set of edges, and Σ the set

of explored states. Dijkstra’s algorithm is a good candidate for the partial exploration, as

27

2 Core Algorithm, Generation of the Most Useful Part of a Markov Chain

Algorithm 2.1: Dijkstra’s algorithm

1 while C 6= ∅ do
2 let σ be the candidate with the smallest d in C

3 remove σ from C, add it to Σ

4 foreach successor τ of σ do

5 if τ ∈ C and d(τ) > d(σ) + l(σ → τ) then

6 d(τ) is set to d(σ) + l(σ → τ)

7 else if τ /∈ C and τ /∈ Σ then

8 τ is added to C

9 d(τ) is set to d(σ) + l(σ → τ)

10 transition σ → τ is recorded

it does not cost more than the calculation of the transient solution of the resulting Markov

chain. Details of the chosen implementation are given in Section 4.2.1.

Dijkstra’s algorithm can be interrupted before the complete exploration of the graph, and

the resulting Σ will contain all the closest nodes to the initial node. Moreover, the distance is

minimized for nodes in Σ. The distances of the remaining nodes in C are not minimized yet,

as there might be undiscovered shorter path leading to them.

Adapting Dijkstra’s algorithm

Dijkstra’s algorithm finds the minimized distance for all the nodes in the graph, summing

the lengths of the edges along the shortest paths. These concepts can be abstracted, and

the fundamental idea of Dijkstra’s is to know the order in which the exploration is done, to

optimize a quantity q(σ) associated to each node σ of a graph. This quantity is calculated

through a cost function cost(σ, ε) associated to the edges ε of the graph. The cost function

must be monotonic, i.e. there must exist a partial order � between the quantities q(σ) and

q(τ) for all nodes τ that are reachable from node σ:

∀σ ∀(ε : σ → τ), q(τ) � q(σ)

The classical Dijkstra’s algorithm is based on the following cost function:

q(τ) = cost(σ, ε) = q(σ) + c, 0 ≤ c

Now, consider the following cost function:

q(τ) = cost(σ, ε) = q(σ)× c, 0 ≤ c ≤ 1

If q is positive for the initial state, q is also positive for the other nodes, as k ≥ 0. The cost

function is monotonic, as q is positive and q(τ) = cost(σ, ε) ≤ q(σ). The quantity associated

to the nodes will be maximized by Dijkstra’s algorithm.

28

2.3 Partial Generation: the Method

The relevance factor we propose is similar to the latter quantity.

2.3.2. The Relevance Factor

As the relevance factor is used to select the states that are kept in the final Markov chain, it

is a key concept of the method. Here we develop the chosen relevance factor.

The relevance factor is based on access probabilities of remote states from the initial state.

It uses the concepts shown in Section 2.2, and uses the Equation (2.6), which takes into

account the competition between outgoing transitions of a given state:

λσ→τ∑
k λσ→k

Figure 2.6 shows a small Markov chain with transition rates. The relevance factor R should

take into account the competing transitions, so R(D) should be R(A)× 4
5 ×

1
5 . The relevance

factor should be maximized for the nodes, so that the most influential nodes are kept.

1

4 1

4

A

B

C

D

E

Figure 2.6.: A small Markov chain with transition rates labeling the transitions.

The relevance factor R(τ) of state j is defined as follows:

R(τ)
def
= max

parents σ

(
R(σ)× λσ→τ∑

k λσ→k

)
(2.10)

where σ are states from which state τ is reachable (with rate λσ→τ), and transitions σ → k

are the other transitions going out of each the state σ.

Dijkstra’s algorithm maximizes the relevance factor R(τ) of the state τ for each node:

R(τ) = max
paths

∏
path

(
λσ→τ∑
k λσ→k

)×R(ι)

where R(ι) is the relevance factor of the initial node ι, R(ι)
def
= 1.0.

The chosen relevance factor can be analyzed as the factor which favors the most influential

parents through the most influential paths. This is in accordance with the interpretations of

the Markov chains for safety systems (see Section 2.2). This formula leads to the selection of

most of the most probable states of the Markov chain. Correlations between the value of the

relevance factor of the nodes and the probability of the corresponding states are done in the

experiments (e.g. for the oil production system in Section 3.2.3).

29

2 Core Algorithm, Generation of the Most Useful Part of a Markov Chain

2.3.3. From Guarded Transition Systems to Markov chains and Safety Indicators

The exploration and construction of the final Markov chain is done from a model specified in a

higher level modeling language, namely the Guarded Transition Systems (GTS), as explained

Section 1.1. It is done in three steps:

• First, the Reachability Graph (RG) Γ = 〈Σ,Θ〉 of the GTS is partially computed using

Dijkstra’s algorithm and the relevance factor defined in Equation 2.10, where Σ is the

set of nodes (i.e. states of the system) and Θ is the set of edges between nodes (i.e.

the transitions between states). The reachability graph is the minimal Kripke structure

representing the behavior of the GTS.

• Second, the RG is translated into a Markov chain.

• Finally, the performance indicators are calculated from the Markov chain.

Partial Construction of the Reachability Graph

Let 〈V,E, T,A, ι〉 be a GTS and Γ = 〈Σ,Θ〉 be its RG. A transition rate is associated with

each transition of Θ using the corresponding event e ∈ E of the GTS.

Algorithm 2.2 shows the partial generation of the reachability graph. The initial node

ι is the initial assignment of variables of the given GTS 〈V,E, T,A, ι〉. The GTS model is

animated to calculate the fireable transitions from ι. For each of these transitions (e : G→ P),

where e is the event associated to the transition, G is the guard of the transition, and P is its

action, the reachable nodes are calculated. This process is repeated with the candidate that

as the highest relevance factor, until the end of the exploration. The end of the exploration

is either when the candidate set C is empty (i.e. there are no more nodes to explore) or when

a threshold S on the size of the model |ΓS | is reached.

The usual thresholds are: the number of states |Σ|, the number of transitions |Θ|, or the

size of the data structure holding Γ. As the worst-case time of the calculation of the transient

solution of the Markov chain is in O(|Θ|), and because of the chosen implementation (see

Section 4.2.4), the threshold on the number of transitions is used. This threshold is denoted

ξ.

The complexity of the algorithm is detailed in Section 4.2. Our data structures achieve

worst-case O(|Θ| × log2 |Σ|) time and O(|Θ| + |Σ| × |V |) memory, where V is the set of

variables of the GTS. The relevance factor is calculated in line (9) of Algorithm 2.2. According

to its definition in Equation (2.10), R(τ) = R(σ) ×
(

λσ→τ∑
k λσ→k

)
, the sum

∑
k λσ→k should be

recalculated for each transition, which would alter the time complexity of the algorithm. In

practice, this is avoided (see Section 4.2.1 for more details on the implementation).

Algorithm 2.3 shows what happens after the exploration is finished: the remaining can-

didates are discarded, and transitions from states σ ∈ Σ to states τ ∈ C are deleted. The

partial reachability graph is (Σ,Θ).

30

2.3 Partial Generation: the Method

Algorithm 2.2: Algorithm for the construction of a partial reachability graph of size

at most S.
Input: A GTS 〈V,E, T,A, ι〉
Input: A function l(e : σ → τ) that calculates the length of a transition

Input: A threshold S on the size of the reachability graph

Output: ΓS = (Σ,Θ) the partial reachability graph

Local: C the set of candidate states

Local: R(σ) the relevance factor of each state σ from the initial state ι

1 begin

// Initialization

2 C ← {ι}, Σ← ∅, Θ← ∅, R(ι)← 1.0

// Construction of the state space

3 while C 6= ∅ and |ΓS | ≤ S do

// Selection of the best candidate

4 let σ be the candidate with the minimum value R(σ)

5 C ← C \ {σ}
6 Σ← Σ ∪ {σ}

// Calculation of its successors

7 foreach fireable transition (e : G→ P) of T do

8 let τ = A(P (σ))

9 let R = R(σ)×
(

λσ→τ∑
k λσ→k

)
10 if τ ∈ C and R(τ) > d then

11 R(τ)← R

12 else if τ /∈ C and τ /∈ Σ then

13 R(τ)← R

14 C ← C ∪ {τ}

15 Θ← Θ ∪ {(e : σ → τ)}

Algorithm 2.3: Algorithm for the construction of a partial reachability graph of size

at most S, where candidates are discarded.

1 begin

[contents of Algorithm 2.2]

// Removal of discarded candidates

16 foreach transition (e : σ → τ) in Θ such that τ ∈ C do

17 remove (e : σ → τ) from Θ

31

2 Core Algorithm, Generation of the Most Useful Part of a Markov Chain

From the Reachability Graph to a Markov chain

This translation is straightforward. The nodes of Σ of the RG are directly translated into

states of the Markov chain. The edges of Θ are translated into transitions. In practice, the

edges are labeled with an event e in the GTS, and the transition rates are retrieved from the

GTS model.

From the Markov Chain to the Safety Indicators

The values of the desired indicators (unavailability, production rate, . . .) are associated to

each state of the Markov chain. This follows the concept of rewarded Markov chain. The

transient solution of the Markov chain is computed over time and the values of the desired

indicators are computed by summing for each state their value multiplied by their probability:

ri, R(t) =
∑
i

ri × πi(t)

The obtained quantity is the mean value at a given time of the safety indicators of interest.

2.4. Quality of the Exploration, Bounds on the Reliability Indicators

When the full generation is possible, the quality of the partial generation is easily analyzed.

Experiments were done and results are presented in Chapter 3 (e.g. with the computing

modules in Section 3.2.2).

However, when the full generation is not possible (|Θ| > 100 million transitions for the

complete chain), it is not possible to measure or predict the accuracy of the method. A

measure can be introduced before the calculation of the Markov chain. It uses a special

state, the sink state, which is added to the partial Markov chain. Its efficiency is discussed

here, and is illustrated on examples in Chapter 3 (e.g. with the emergency power supply in

Section 3.2.4).

2.4.1. The Sink

As discussed in Section 2.2, Markov chains can be interpreted as a graph of probability

buckets. In Algorithm 2.3, when partially exploring the state space, the remaining candidates

are simply discarded, as well as the transitions leading to them. This means that the pipes

leading to these states are deleted, and the probability reflows in the partial chain.

Instead of cutting these transitions, they can be redirected to a single state. This special

state is, by definition, an absorbing state, and is called the sink. This process is illustrated in

Figure 2.7. When the exploration is stopped, the sink ω is added to Σ and transitions leading

32

2.4 Quality of the Exploration, Bounds on the Reliability Indicators

Limited state space when
the exploration is stopped

Explored (Σ) Candidates (C)

Sink

Concentrate
candidates
into a single
new state

Figure 2.7.: The sink is the aggregation of the remaining candidates.

Algorithm 2.4: Algorithm for the construction of a partial reachability graph of size

at most S, where candidates are gathered into the sink.

1 begin

[contents of Algorithm 2.2]

// Redirections of the transitions toward the sink

16 create a sink state ω and add it to Σ if C is not empty

17 foreach transition (e : σ → τ) in Θ such that τ ∈ C do

18 remove (e : σ → τ) from Θ

19 add (e : σ → ω) to Θ

33

2 Core Algorithm, Generation of the Most Useful Part of a Markov Chain

to the remaining candidates are redirected to ω. Algorithm 2.4, which provides another ending

to Algorithm 2.2, is used to obtain the Markov chain with sink.

Formally, the sink is the aggregation of all the remaining candidates at the end of the

exploration. Consequently, it accumulates all the states that could not be reached, and all

the probability that is not taken into account because of the partial exploration. Because of

the sink, the calculated probability of being in any state of the explored chain is lower than

the probability of being in the same state in the complete chain. Consequently, the partial

exploration with a sink provides a conservative Markov chain representing the system.

Moreover, the probability to be in the sink ω is the absolute error made because of the

partial exploration. The probability to be in the sink obviously depends on the mission time

and on the system under study.

2.4.2. Using the Sink

In practice, the absolute error ε(t), which is the probability to be in the sink over time Pω(t),

must be compared to the indicator of interest Q(t). Usual indicators are the unavailability, the

unreliability, or the production rate of the system. Let Qmin be the absolute minimum value

of Q in the unexplored part of the state space (respectively Qmax the maximum value). These

quantities are expert knowledge on the system. For instance, when Q is the unavailability

of the system, Qmin is 0 and Qmax is 1. Bounds on the measured indicators are defined as

follows:
Qlb(t) = Q(t) +Qmin × ε(t)
Qub(t) = Q(t) +Qmax × ε(t)

These bounds are useful in the following situations:

• When Q(t) must be lower (or higher) than a specified value: ∀t Qub(t) < Qtarget.

• When the confidence in the value of Q(t) must be known.

The relative error η(t) is defined as follows:

η(t) =
Qub(t)−Qlb(t)

Qlb(t)
= ε(t)× Qmax −Qmin

Qlb(t)
(2.11)

Choosing Qlb as the divisor in the previous formula makes η easier to use. When η(t) is

lower than 1, the bounds have the same order of magnitude, and (− log (η)) gives roughly the

number of expected correct significant figures. When η(t) is higher than 1, the bounds are

not close enough, and the approximate value for Q could vary from more than one order of

magnitude if the full chain was calculated.

It is important to remark that, as the sink state does not have any outgoing transition:

ε(t) −−−−→
t→+∞

1

which means that the partial generation with sink will become irrelevant if the chosen mission

time is too long.

34

2.4 Quality of the Exploration, Bounds on the Reliability Indicators

The efficiency of the sink and the value of the relative error depends on the mission time

and on the system that is modeled. In Chapter 3, the sink and the relative error are analyzed

on several examples (e.g. the oil production system in Section 3.2.3).

2.4.3. Towards a Better Sink

The proposed sink can be more formally proven by seeing it as an aggregate using arguments

taken from [Courtois 1977] [Muntz et al. 1989]. It is tempting to modify and improve the

sink.

A better sink would give a less crude approximation of the bounds on the error while not

being computationally expensive to compute.

The first idea is to provide some outgoing transitions from the sink. However, which states

would be the output of such transitions, and what would be the transition rates? To be

efficient, the calculation of the back transitions should not take more than O(|Θ|) time (see

Section 2.3.1 and 4.2.1). Otherwise, it would be simpler to reduce the error by exploring

further the state space.

Aggregation techniques, as seen in Section 1.2.3, are not good candidates. It has been

shown in [Muntz et al. 1989] that an aggregation would be possible. However, the strategy

to calculate the backward transitions from the aggregates to the detailed part of the chain is

not well proved nor efficient.

FD

FK-1 FK FN

...

FR

F0 F1

... SK SN

FK-1

...

FF-1

...

FF

SF SF

si

FF

Figure 2.8.: Aggregation as seen in [Muntz et al. 1989], with duplication of part of the state

space.

Figure 2.8 illustrates the aggregation as seen in [Muntz et al. 1989]. It separates the chain

in two sets: FD and FR. The detailed part of the chain FD is very similar to the one proposed

in this thesis. FR is the reduced part, where states are aggregated according to the number

of failed components. The aggregated part FR differs from the sink in that it is split in

35

2 Core Algorithm, Generation of the Most Useful Part of a Markov Chain

different aggregates instead of only one. An aggregate state SJ regroups the states of FJ .

The aggregation is done for states that have more than K failed component (K is arbitrary).

The transitions from the detailed part to the aggregates are the transitions that would have

gone to the state which has been aggregated. This is similar. However, transitions between the

aggregates and returning transitions from the aggregates to the detailed part are a problem.

To bound the indicator of interest, the potential transitions going from the closer aggre-

gate FK to the detailed part are all tested one by one. This leads to the upper and lower

bounds of the indicator of interest. This is not computationally efficient, as it is not possible

to predict the number of potential transitions going from the aggregates to the detailed part

of the chain. To reduce the number of returning transitions, part of the state space is du-

plicated and aggregated (states FF to FK−1). Of course, lower F give shorter run-times but

worse approximations. Still, the number of returning transition is not bound, neither is the

complexity of the method.

To improve our partial exploration method, one would expect that the maximum error

could be set before the exploration is done. This would guarantee the error a priori. In the

next subsection, it is shown that an approximation with predictable error cannot be obtained

within reasonable time. Better bounds can be obtained by going further in the exploration.

There is no predictable error

Using Algorithm 2.4 with the sink, the absolute error ε(t) can be measured at any time, after

the partial Markov chain has been calculated. If the error goes above a target error εmax,

the whole exploration must be done again with a larger threshold S, starting from the GTS

model. This process is iterative and finishes either when ∀t ∈ [0..T], ε(t) < εmax or when the

computer cannot calculate the model anymore. There is no mean to predict the optimal value

of S.

It would be desirable to obtain a predictable degree of approximation that will be induced

by the method. In other words, it would be desirable to obtain a mean to calculate a threshold

S on the size of the RG |ΓS | such that the absolute error is below a target εmax. Moreover,

it would be interesting for the calculation of this threshold to be less expensive and more

predictable. In other words, obtaining S should be done in polynomial time with respect to

the size of the input GTS model. Here is shown a counterexample underlining that it is not

possible.

Let FT be a Fault Tree whose top event is to be calculated and approximated. On the

one hand, the top event of FT can be reduced to a Boolean expression over the variables of

the model. Calculating the probability of the top event is a Boolean satisfiability problem

(SAT-problem), which worst-case time is not polynomial with respect to the number of basic

events of the tree, and is known to be #P-hard (see [Valiant 1979]). Even the approximation

36

2.4 Quality of the Exploration, Bounds on the Reliability Indicators

of a #P-hard problem is hard (see [Papadimitriou 1994]). This means that no bounds of the

probability of the top event can be obtained in polynomial time.

On the other hand, a fault tree can be easily encoded as a GTS:

• Each basic event is encoded by means of a Boolean state variable and a transition that

changes the state variable from false to true,

• Each gate is encoded by a flow variable which is updated in the assertion according to

the value of its fan-ins.

If it was possible to predict the threshold S in polynomial time over the variables of the GTS

(which are the basic events of FT), such that the absolute error is below the target εmax, it

would be possible to obtain a predictable degree of approximation on the probability of the

top event of the fault tree in polynomial time. �

There is only one way to reduce the absolute error: going further in the exploration by

raising S. The problem should be seen differently: S can be raised until the models cannot

fit in memory anymore. So S should depend on the memory resources at hand. When trying

to obtain an accurate Q(t), calculation should be done with the highest possible S, and η(t)

should be used to determine if the model was correctly approximated or not.

Summary

Algorithm 2.3 is used to generate a RG from a given GTS without sink. It gives, in practice,

the best results, as shown in Chapter 3. However, it can only be used as a heuristic method,

because it gives an approximation that cannot be measured.

Algorithm 2.4 is used to generate a RG from a given GTS with a sink. The sink is used

to measure the absolute error, after the final Markov chain is calculated. Bounds from the

absolute error can be obtained, but they may not be very close to each other. It is not possible

to obtain better bounds while keeping all the calculations in polynomial time.

Probabilistic Safety Assessments (PSA) and Reliability Availability Maintainability and

Safety assessments (RAMS) usually targets 10% error (see for instance [Bon and Collet 1994]

[Collet and Renault 1997]). Actual PSA for nuclear power plants may be less accurate, as in

[Dubreuil Chambardel et al. 1991], where the core damage risk for the French nuclear power

plant of Paluel was evaluated in 1989 to 10−5 per reactor per year, with an error factor of 3.5

(this error factor means that the probability is between 3 × 10−6 and 3 × 10−5). This raises

the question of the sources of inaccuracy in the PSA.

Figure 2.9 analyzes the different tools, from the model to the indicators of interest. It is

important to note that the input data are rarely known correctly for components that fail

once in a million hours. The partial generation induces more error, but that error may be

measured. Because the input data is so little known, it is important to keep in mind that

37

2 Core Algorithm, Generation of the Most Useful Part of a Markov Chain

the method consists in heuristics that can be used as decision aids. The partial generation

method for Markov chain is similar to minimal cutsets with cutoffs for fault tree analyses.

Model,
Reliability data

Partial
exploration

Markov chain
calculation

Expected values
of observers
over time

Input data

Bounds: measured error

Calculation

Storage

No Bounds: unknown error

± 10% ?

EXP ≈ 10-9

FEM ≈ 10-3 ?

≈ 10-15

Values
of the observers

in each state

≈ 10-15

Textual export
of the observers = 10-5

Figure 2.9.: Analysis of the accuracy loss alongside the toolchain.

38

3. Experiments

The intent of this chapter is to illustrate and analyze the partial generation method. The

analysis is twofold. First, the presented examples illustrate the practicability of the method

on some realistic examples. Second, the examples are used to analyze the partial generation

method in several different cases.

Besides the presentation of each example, the following studies are performed:

• Numerical values for the performance indicators of interest are given for several sizes of

the partial models, with or without sink. Such data are the basis of the studies, and

shows the results obtained with the partial generation.

• The evolution of the relative error made on the quantity of interest, with respect to the

number of transitions of the partial model, is shown.

• One or more of the following correlations are analyzed:

– The correlation between the relevance factor calculated during the exploration and

the actual probability calculated with the Markov chain, to compare the selection

criterion to the reality of the chain.

– The correlation between the probabilities calculated for each state, with the small

partial model and with a larger model, to compare the behavior of the states

whether they are in the small model or in the large model.

– The correlation between the probabilities of the most probable states of the limited

model and of the full model. This correlation shows how the limited model globally

behave compared to the full model, and how many more probable states could have

been missed.

– The correlation between the probabilities of states in a partial chain without and

with sink. The influence of the sink on the overall behavior of the chain is observed

with this correlation.

These correlations are given as plots, and support a visual analyze, but should not be

quantified, as they only give a partial view on the method.

The tool-chain used to do these computations is detailed in Section 4.1. The algorithm

used to compute the probabilities of states of the Markov chains is FEM, with the accuracy

parameter ρ set to 0.25 (see Section 2.1.4).

The main strength of the method is to provide an efficient and accurate approximation

for the performance indicators of a system. However, the accuracy of the partial generation

heavily depends on the system.

39

3 Experiments

The most influential characteristic of a system which determines the accuracy of the partial

generation is the concentration of the probability near the nominal state of the system. There

are experimental conditions that may degrade the accuracy of the method:

• The bad choice of the nominal state.

• The time at which the relative error is to be evaluated (mission time).

• The proneness of a system to have its probability scattered through numerous states.

• The need for a bounded evaluation of the performance indicators. The relative error is

calculated with the sink state ω, which drains the probability from the rest of the chain.

The partial method generates a chain without sink that can be used as decision aids. It

is used to model safe systems, from which high productivity or high availability is expected.

Such systems are expected to be most of the time in their nominal state.

The remainder of this chapter is organized as follows. First, we discuss how to choose an

example. Second, the examples are presented and analyzed. Finally, the examples are taken

as a whole to provide feedback on the partial generation method.

3.1. Targeting the Examples

The objective of this section is to target which examples are useful to analyze the method.

The idea is to determine what a useful example would be, by choosing some criteria.

The criteria are summarized as follows:

• Balanced examples. The example should not have obvious state space reductions,

such as symmetries. Design flaws should be avoided, such as weak component choices,

weak redundancy strategies, wide common cause failures, . . .

• Modeling features from high level language. The examples should show the use

of interesting modeling features. The solving method should be adapted to the problem.

For instance, it would be useless to use Markov chains to model a non-repairable system

made of binary and independent components, as a fault tree would give results more

efficiently. Such interesting features are: warm redundancies, repairs, common cause

failures, failures on demand, limited number of repairers, modularity, . . .

• Realism. The examples should not be artificial. The idea is too choose real systems

that could be subject to real safety engineering problems. The performances of the

method are illustrated on actual use-case. The goal is to avoid tailor-made examples

which would be successful with the partial generation.

• Model size. The examples must be large enough to illustrate the method in realistic

conditions, and its scalability.

Some examples are taken from the literature, which inspires trustworthiness in the tests. It

enforces the consistency of our results when the results are the same with both methods, and

may enable further comparison.

40

3.1 Targeting the Examples

A single example cannot meet all the criteria. For instance, it is hard to find an example

which is small enough so that the accuracy of the method can be shown (with help of the

full Markov chain), but large enough so that the self estimated accuracy with the bounds is

possible and realistic.

Table 3.1 shows the different examples that were chosen and their main characteristics.

The computing modules is the only non-repairable system. The “nominal state” column tells

whether the system has a state in which the system is most of the time, i.e. a state which

probability is very close to 1. Non-repairable systems do not have a nominal state.

The oil production system is used to study both the unavailability and the production rate.

This example is singular in the sense that the production rate is an indicator which has a

very high order of magnitude compared to the unavailability of the other systems. Both the

emergency power supply and distributed database are very large systems.

41

3 Experiments

T
ab

le
3.1.:

T
h

e
d

iff
eren

t
ex

am
p

les
an

d
th

eir
ch

aracteristics.

C
om

p
u

ted
in

d
icator

E
x
p

erim
en

t
R

ep
airab

le
C

om
p

lete
ch

ain
N

am
e

E
x
p

ected
valu

e
N

om
in

al
state

E
1
:

F
au

lt
T

oleran
t

D
atab

ase
X

X
U

n
availab

ility
10
−

3
X

E
2
:

C
o
m

p
u

tin
g

M
o
d

u
les

X
U

n
reliab

ility
1

E
3:

O
il

P
ro

d
u

ction
S

y
stem

X
X

P

ro
d

u
ction

rate

U
n

availab
ility

200

10
−

1
X

E
4
:

E
m

erg
en

cy
P

ow
er

S
u

p
p

ly
X

U
n

availab
ility

10
−

7
X

E
5
:

D
istrib

u
ted

D
atab

ase
X

U
n

availab
ility

10
−

5
X

42

3.2 Studied Systems

3.2. Studied Systems

The different examples are developed and studied in this section. The method is analyzed

based on these individual examples. Smaller examples are introduced first.

Section 3.2.1 shows a fault tolerant database. Section 3.2.2 shows two redundant computing

modules. Section 3.2.3 shows an oil production system, which production rate is calculated.

Section 3.2.4 shows an emergency power supply. Section 3.2.5 shows a redundant database

system which is distributed over several clusters of hard drive disks.

3.2.1. Fault Tolerant Database

The fault tolerant database system models a database which can be accessed by a user through

two redundant paths. It is taken from [Muntz et al. 1989] and was inspired by [Goyal et al.

1987]. It was used by Muntz et al. to illustrate the creation and aggregation of a Markov

chain from a higher-level modeling language. Numerical parameters are taken from [Muntz

et al. 1989] for comparison purposes.

The state space of the system has few states and few transitions, can be fully generated,

and used as a reference.

Description of the System

The fault tolerant database is depicted in Figure 3.1. The role of the system is to provide

an access to the database DB from a Front End. The system is composed of two processing

subsystems. Each processing subsystem has switch a SWx, a memory Mx and two processors

PxA and PxB. Components may fail and are repaired according to the rates given in Table 3.2.

The system is available when the front end and the database are working, and when there is at

least one working processing subsystem. A subsystem is working when one of the processors

is working, as well as the memory and the switch. If a processor fails it may contaminate the

database with probability 0.01.

Repairs are prioritized. If all components had failed, the front-end and the database would

be repaired first, followed by the switches and memory units, followed by the processors. To

simplify the model, multiple components with the same priority are being repaired simulta-

neously.

Components cannot fail when the system is down.

The mission time was chosen to 100 hours. This might appear a very short mission time,

but, as explained in Section 2.2.2, the time constant for this system is roughly 1
µ ≈ 1 hour.

At mission time, the system reached its steady-state.

43

3 Experiments

M1 M2 SW2

DB

Front
End

P2A

P2BP1B

P1A

SW1

Figure 3.1.: The fault tolerant database.

Table 3.2.: Failure and repair rates for the fault-tolerant database, taken from [Muntz et al.

1989].

Component Failure rates Repair rates

Database 1/2400 h−1 1 h−1

Front End 1/2400 h−1 1 h−1

Switches 1/2400 h−1 1 h−1

Memories 1/2400 h−1 1 h−1

Processors 1/120 h−1 1 h−1

44

3.2 Studied Systems

This rather small system is interesting as it involves several modeling concepts: the common

cause failure, the deactivation of the components once the system is down, and the prioritized

repairs. Moreover, values of the unavailability can be compared between the two approaches.

Results and Analysis

The complete Markov chain for this system has 419 states and 1, 449 transitions. In [Muntz

et al. 1989], the Markov chain that was obtained for this model has 226 states. The steady-

state unavailability was calculated to 0.0011647 with such Markov chain. The difference in the

number of states probably comes from the different input modeling languages, which handles

the repairs differently.

The results obtained with the partial generation method are shown in Table 3.3. Table 3.4

gives the size of the partial Markov chains and the calculation times. For this system, the

Markov chain without sink is accurate, even with very few states, as ξ = 250 (84 transitions

and 31 states) is sufficient to obtain less than 2% error (η(t) is calculated with respect to the

value of the unavailability obtained with the complete Markov chain). The Markov chain with

sink needs more states to be accurate, but gives bounds on the unavailability. The Markov

chain with sink with ξ = 500 (506 transitions and 82 states) gives satisfactory results.

In the case where ξ = 100 transitions, the large difference between the bounds for this

particular example can be explained by the “long” mission time compared to the time constant

of the system. The time constant of the system is about 1 hour, which means that the system

reaches its steady-state in less than 5 hours.

Table 3.3.: Measures of the unavailability Q of the fault tolerant database for several thresh-

olds on the size of the model, with given mission time of T = 100h.

Partial chain without sink Partial chain with sink

Threshold ξ Q η(T)a Qlb Qub η(T)

1, 449 0.0011638 - - - -

1, 000 0.0011638 8.5925× 10−6 0.0011638 0.0011642 0.00034001

500 0.0011629 0.00079051 0.0011624 0.001552 0.33512

250 0.0011455 0.015707 0.0011367 0.0089996 6.9174

100 0.00080476 0.30851 0.00071357 0.1159 161.42

a without sink, Q for the highest threshold is used as reference.

The unavailability obtained with the complete Markov chain (1.1638× 10−3) can be com-

pared to the unavailability obtained in [Muntz et al. 1989] (1.1647× 10−3). The two numbers

are very close (0.077%). The difference can be explained by several factors, but the most

probable source of difference is the number of significant figures taken for the failure rates.

45

3 Experiments

Table 3.4.: Sizes of the models and computation times for several thresholds on the size of the

model of the fault tolerant database, with given mission time of T = 100kh.

Partial chain without sink Partial chain with sink

Threshold ξ Fraction States Transitions Timesa (s) Transitions Timesa (s)

1, 449 - 419 1, 449 < 1 - -

1, 000 2/3 228 794 < 1 1, 059 < 1

500 1/3 81 248 < 1 506 < 1

250 1/6 31 84 < 1 298 < 1

100 1/14 11 20 < 1 124 < 1

a (generation of the chain) + (calculation of the chain).

With 1
2400 ≈ 4.17 × 10−3, the unavailability is calculated to 1.1647 × 10−3. This highlights

the danger of giving two many significant figures in the results.

In this thesis, we chose to display only 5 significant figures, which is probably already too

much (see Figure 2.9). However, numbers of states and transitions are written with what

appears more than 5 significant figures, because these numbers are integers. As integers are

accurate up to 1, all digits are shown.

The calculation of each model took less than 1 second. As computation times may be very

inaccurate due to the experimental conditions (see Section 4.3.5), the computation times can

be displayed with 2 significant figures. Times that are below 10 seconds cannot be considered

accurate.

As the relevance factor is used to select the states, it is interesting to compare its value to

the actual probability of the states.

Figure 3.2 shows the complete Markov chain of the system, with the 419 states and 1, 449

transitions. On the left, the Markov chain is colored according to the relevance factor calcu-

lated by Algorithm 2.2. On the right, the Markov chain is colored according to the probability

calculated with the Markov chain at mission time T = 100 hours. Color scales are logarith-

mic. Darker states have the highest relevance factor (or the highest probability), and whiter

states have the lowest. The whiter states are the least reachable, according to the relevance

factor. In these Markov chains, failure states are represented by diamond and working states

by circles. For practical reasons, transitions representing the failure and repair of the same

component are grouped together and are represented by a single non oriented line. Transitions

that represent a failure are plain arrow, whereas transitions that represent a repair are dashed

arrows.

It is interesting to see that the two chains look alike, which means that the relevance factor

is able to capture the overall behavior of the Markov chain.

Consider the chain on the right. As the scale is logarithmic, the blue states are already

46

3.2 Studied Systems

100

10-16

10-8

100

10-15

10-7.5

Figure 3.2.: Visual comparison of the relevance factor (left) and the probability at mission

time (right), for the 419 states of the fault tolerant database.

improbable, as their probability is around 10−7. The view of the chain highlights that the

probability is concentrated only in a few states for a repairable system, as there are few dark

states.

The chain on the left shows the same few dark states, and the same repartition of the colors,

even if the scales are not exactly the same. The view of the relevance factor for this system

shows that the relevance factor may be used to select the most probable states of the system.

In Figure 3.3, the numerical correlation between the relevance factor and the probability

in the complete chain is shown. Each mark corresponds to a state of the Markov chain. The

x-coordinate of the mark is the relevance factor and the y-coordinate is the probability. A

linear fit is plotted in the logarithmic space to show that the probability is not exactly related

to the relevance factor, but the overall correlation is good. This shows that the relevance

factor is a good indicator of the probability of the states in the complete Markov chain, for

the fault tolerant database system.

Figure 3.4 shows the effects of the partial generation without sink on the probability of the

states of the Markov chain. On this plot, each mark is a state of the partial Markov chain

constructed up to ξ = 1, 000 transitions. The x-coordinate of the marks is the probability

of the state in the partial chain, while the y-coordinate is the probability of the same state

in the complete Markov chain. This shows that the probability of most states is unchanged

when being part of the smaller Markov chain. Hence, their local behavior is not altered. The

relative error on the unavailability calculated with this chain is roughly 10−6.

However, some states have their probability lowered, and some other states have their

probability raised. These states are on the border, because their probability is very low

(around 10−10), so there are only reachable through a long sequence of failures. This shows

that the selection of some states have border effects which leads to unpredictable variations

of the probabilities of the states.

47

3 Experiments

10-1610-1410-1210-1010-810-610-410-2100

Relevance factor computed with the method

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 M

a
rk

o
v
 c

h
a
in

Correlation between the relevance factor computed with the partial generation method
and the probability of the state in the Markov chain at mission time,

for each state of the complete chain (419 states)

Linear fit, residual-squared 0.958

Figure 3.3.: Correlation between the relevance factor computed during the generation of the

chain and the probability calculated with the Markov chain for each state of the

complete chain for the fault tolerant database, with mission time T = 100 hours.

10-1110-1010-910-810-710-610-510-410-310-210-1100101

Probability computed with the smaller chain

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 l
a
rg

e
r

ch
a
in

Correlation between the probability of the states computed with the smaller chain
and the probability of the same states in the larger Markov chain

at mission time, for each state of the smaller chain (228 states against 419 states)

Linear fit, residual-squared 0.986

Figure 3.4.: Correlation between the probability of each state of the partial model (threshold

ξ = 1, 000 transitions) whether they are in the partial chain or in the full chain,

for the fault tolerant database, with mission time T = 100 hours.

48

3.2 Studied Systems

3.2.2. Computing Modules

The computing modules is a non-repairable redundant computing architecture. This example

comes from Malhorta et al. [Malhotra and Trivedi 1995]. It was used in [Montani et al. 2006]

to compare three safety tools which assess the unreliability of a system, based on different

approaches: DBNet [Montani et al. 2006], DRPFTproc [Bobbio and Raiteri 2004] and Galileo

[Dugan et al. 2000]. The safety model, technical data, and mission times we use here were

described in [Montani et al. 2006]. This example was also shown in [Brameret et al. 2013,

2015] to illustrate the efficiency of the partial Markov chain generation without sink.

The system is small enough to obtain the complete Markov chain, which can be used as a

reference.

Description of the System

The system pictured Figure 3.5 is a non-repairable multiprocessor computing system made

of two computing modules CMx. Each module consists in a process Px, a memory Mx, a

primary hard drive Dx1, and a secondary hard drive Dx2. A spare memory M3 can be used

as a replacement of M1 or M2, but it cannot replace both. A bus connects the modules and

the spare memory. The power supply PS is used by both processors.

P1 M1 D11 D12

CM1

B

U

S
P2 M2

CM2

PS

M3

D21 D22

Figure 3.5.: A multiprocessor computing system.

The system is available if one of the two modules is available. Each module is available if

the processor, a memory and one of the disks are available. If both modules are available,

both modules do the requested computations.

Table 3.5 gives reliability data of the components. The disks and the memory are warm

spares, which deteriorate at a slower rate when unused. Such “dormant” failure rate is cal-

culated by multiplying the failure rate by the dormancy factor. The components that have

no dormancy factor are components which are never dormant. The power supply provides

obviously a cut set of length 1, which drains the availability of the whole system, but its

reliability data are kept as is for comparison purposes.

This system is interesting as it is non-repairable, unbalanced by the power supply which is

frequently failed, and it provides a shared spare memory, and warm spare components. The

49

3 Experiments

Table 3.5.: Failures Rates and Dormancy Factors for the Computing System

Component Failure rates (h−1) Dormancy factors

BUS 2.0× 10−9 -

P1, P2 5.0× 10−7 -

PS 6.0× 10−6 -

Disks 8.0× 10−5 0.5

M1, M2, M3 3.0× 10−8 0.5

values of the unreliability can be compared with several methods. The high failure rate of the

power supply should ease the partial generation, as it drives the overall failure of the system.

Results and Analysis

The Markov chain of this rather small system can be completely generated and calculated. It

is composed of 17, 152 transitions and 3, 328 states.

Table 3.6 shows the transient unreliability of the system for several mission times up to 5, 000

hours, calculated with different methods. The results are presented as they are presented in

[Montani et al. 2006], with 5 to 6 significant figures. The numbers are identical up to 6 figures

for three methods, which inspires confidence in the complete generation method.

Table 3.6.: Unreliability of the computing system, assessed with different tools.

Time (hours) DBNet DRPFTproc Galileo Complete Markov chain

1,000 0.0060086 0.0060088 0.0060088 0.00600877

2,000 0.0122452 0.0122455 0.0122455 0.0122456

3,000 0.0191820 0.0191832 0.0191832 0.0191833

4,000 0.0273523 0.0273548 0.0273548 0.0273548

5,000 0.0372379 0.0372413 0.0372413 0.0372413

Table 3.7 shows the calculation of the unreliability with mission time T = 50, 000 hours,

for different sizes of partial chains. At this time, the system is close to complete failure. For

the chains without sink, the relative error is very low, even with small Markov chains. A

chain which is fifty times smaller than the complete chain is large enough to approximate

the unreliability of the system with 2 significant figures. The chains with sink give a worse

approximation, but they do give bounds on the unreliability. Moreover, these bounds are

acceptable even if the mission time is long and the system almost always broken at this time.

For this particular system, these good results might be explained by the predominant failure

of the power supply, and by the non-repairability of the system.

50

3.2 Studied Systems

Table 3.7.: Measures of the unreliability Q of the computing modules for several thresholds

on the size of the model, with given mission time of T = 50kh.

Partial chain without sink Partial chain with sink

Threshold ξ Q η(T)a Qlb Qub η(T)

17, 152 0.93497 - - - -

8, 576 0.93497 0 0.93497 0.93497 5.2271× 10−9

3, 430 0.93497 0 0.93497 0.93497 7.9438× 10−6

1, 715 0.93496 1.7113× 10−5 0.9347 0.93498 0.00029888

857 0.93458 0.00041819 0.93034 0.93513 0.0051461

343 0.92935 0.0060087 0.90059 0.93693 0.040347

a without sink, Q for the highest threshold is used as reference.

To compute the relative error η, the quantities that are compared are usually subtracted

one from another, which may lead to the numerical problem of cancellation. Cancellation is

the consequence of numerically subtracting two very close numbers, and is due to the finite

accuracy of the numerical representation of numbers. Let a and b be two close numbers written

up to 6 significant figures, a−bb gives either 0 when the numbers are equals or a number greater

than 10−5. When looking at Figure 2.9, which shows the different sources of approximation

from the AltaRica model to the storage of the performance indicators, the results of the

evaluation of the Markov chain are written in a textual format with 6 significant figures.

The relative error η calculated for the Markov chains without sink uses the subtraction of

previously calculated unreliabilities. This explains why 0 is obtained for the relative errors

of some partial chains without sink. However, η for the Markov chains with sink uses the

probability to be in the sink (see Section 2.4.2, Equation (2.11)). This explains why relative

error lower than 10−5 can be obtained.

Table 3.8 shows the sizes of the partial Markov chains without or with sink, as well as the

computation times. The calculation times are below one second for this small system.

Figure 3.6 shows the correlation between the relevance factor of the states and their prob-

ability in the complete Markov chain, with mission time T = 5, 000 hours. Each mark corre-

sponds to a state of the Markov chain. The x-coordinate of the mark is the relevance factor

and the y-coordinate is the probability at time T . According to the plot, some of the states

that the relevance factor indicated as relevant are not probable. This is the case for states

with relevance factor around 10−5 which have their probability from 10−5 to 10−18.

There are at least two possible explanations for that, considering the fact that the system

did not reach a steady state at T = 5, 000. First, as the evolution of the system is not finished,

states with low probability and high relevance factor may be states that are not probable yet,

but that may become more probable. Second, as the system is not repairable, the relevance

51

3 Experiments

Table 3.8.: Sizes of the models of the computing modules and computation times for several

thresholds on the size of the model, with given mission time of T = 50kh.

Partial chain without sink Partial chain with sink

Threshold ξ Fraction States Transitions Timesa (s) Transitions Timesa (s)

17, 152 - 3, 328 17, 152 1 + 1 - -

8, 576 1/2 1, 425 5, 819 1 + 0 8, 589 1 + 0

3, 430 1/5 550 1, 858 < 1 3, 437 < 1

1, 715 1/10 274 797 < 1 1, 719 < 1

857 1/20 145 345 < 1 876 < 1

343 1/50 55 105 < 1 344 < 1

a (generation of the chain) + (calculation of the chain).

10-2510-2310-2110-1910-1710-1510-1310-1110-910-710-510-310-1101

Relevance factor computed with the method

10-27

10-25

10-23

10-21

10-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 M

a
rk

o
v
 c

h
a
in

Correlation between the relevance factor computed with the partial generation method
and the probability of the state in the Markov chain at mission time,

for each state of the complete chain (3,328 states)

Linear fit, residual-squared 0.833

Figure 3.6.: Correlation between the relevance factor computed during the generation of the

chain and the probability calculated with the Markov chain for each state of the

full chain for the computing modules, with mission time T = 5, 000 hours.

52

3.2 Studied Systems

factor did not correctly take into account the behavior of those states.

Figure 3.7 shows the same correlation, but with a longer mission time T = 50, 000 hours.

With time, the probability of some states decreases, while the probability of some other

states increases. This leads to the stretch of the plot. Some of the states which probability

increased are most likely natural absorbing states of the system. If the time was infinite, all

the probability would be in these natural absorbing states.

10-2510-2310-2110-1910-1710-1510-1310-1110-910-710-510-310-1101

Relevance factor computed with the method

10-23

10-21

10-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 M

a
rk

o
v
 c

h
a
in

Correlation between the relevance factor computed with the partial generation method
and the probability of the state in the Markov chain at mission time,

for each state of the complete chain (3,328 states)

Linear fit, residual-squared 0.847

Figure 3.7.: Correlation between the relevance factor computed during the generation of the

chain and the probability calculated with the Markov chain for each state of the

full chain for the computing modules, with mission time T = 50, 000 hours.

Figure 3.8 compares the probabilities of the states, whether they are part of the smaller

or the complete chain. The small chain was generated with the threshold set to 1
20 of the

total number of transitions, ξ = 857. The chains are calculated with mission time T = 5, 000

hours. Each mark on the plot is a state of the system that is part of the small chain. The

x-coordinate is the probability that is computed with the small chain, and the y-coordinate

is the probability computed with the complete chain for the same state. This shows that

the small chain does not approximate the complete chain accurately, as the probability of

the states in the complete chain cannot be deduced from the probability in the small chain.

However, the relative error on the unreliability η(5, 000) is computed to 0, 00142 with the small

chain, which is very low. This is the expected behavior for such a non-repairable system. The

absorbing states in the larger chain are the states in which all the components of the system

are failed.

On this particular example, which is not repairable, the partial generation method works

53

3 Experiments

10-3010-2710-2410-2110-1810-1510-1210-910-610-3100

Probability computed with the smaller chain

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 l
a
rg

e
r

ch
a
in

Correlation between the probability of the states computed with the smaller chain
and the probability of the same states in the larger Markov chain

at mission time, for each state of the smaller chain (145 states against 3,328 states)

Figure 3.8.: Correlation between the probability of each state of the partial model (threshold

ξ = 857 transitions) whether they are in the partial chain or in the full chain, for

the computing modules, with mission time T = 5, 000 hours.

10-3010-2710-2410-2110-1810-1510-1210-910-610-3100

Probability computed with the smaller chain

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 l
a
rg

e
r

ch
a
in

Correlation between the probability of the states computed with the smaller chain
and the probability of the same states in the larger Markov chain

at mission time, for each state of the smaller chain (145 states against 3,328 states)

Figure 3.9.: Correlation between the probability of each state of the partial model (threshold

ξ = 857 transitions) whether they are in the partial chain or in the full chain, for

the computing modules, with mission time T = 50, 000 hours.

54

3.2 Studied Systems

well, but the probabilities of the individual states of the small chain are not related to the

probabilities of the same states in the complete chain. However, the overall behavior of the

system is well approximated, even if there is no nominal state in this system, i.e. even if there

is no state which probability is close to 1. This is due to the high number of failure states in

the complete chain, because they are successfully reduced to fewer failure states in the small

chain. In other words, the partial generation reduced branches of states to a few states, which

gives good results because all the states in the branches are failure states. The relevance factor

proved efficient to analyze the depth of the branches and the competition between branches.

This result can be generalized to other non-repairable systems, and to other reliability or

performance indicators. However, the indicator must be monotonous with respect to the

failures of the system. For instance, when calculating the reliability of the system, there must

not be a failure from a failure state leading to a working state (coherent systems).

Figure 3.9 shows the same comparison, but mission time is increased to 50, 000 hours.

This plot shows that there are less extreme marks, but no correlation can be done between

the small and the complete chain. According to Table 3.7, the small chain is very accurate

(η(50, 000) ≈ 0.00042).

3.2.3. Oil Production System

The oil production system is a repairable system dedicated to the treatment of petroleum oil

directly from wells and stores the output in tanks. The goal of the model is to calculate the

production rate of the system.

Production systems are slightly different from safety systems. Typical production systems

are repairable, with rather high failure and repair rates. Their components are frequently

broken and rapidly repaired, but have a rather “low” availability.

The parameters of the production systems (architecture, maintenance policy, failure and

repair rates, . . .) are optimized with respect to some quantities, which are usually the costs

and the productivity. Optimization methods, such as genetic algorithms, usually require a

high number of tests. The partial generation method enables engineers to quickly calculate

an approximate result for the productivity, so that multiple tests can be done. It is possible

to calculate the performance indicators more accurately in the following parts of the design.

Description of the System

The system depicted in Figure 3.10 is a part of an oil extraction installation taken from

[Rauzy 2004]. This system was designed to concentrate most of the modeling difficulties for

the assessment of production availability. The system extracts oil from wells W1 and W2,

refines it, and stores it finally in tanks T1 and T2. The system has the following components:

• W1 and W2 are the source wells. When they are failed, the production is stopped.

55

3 Experiments

A

B

T1

C1 C2

D1 D2

E1

E2

E3

Repair_team

W2

W1

C

D

T2

E

70

160
170;100

120

80

110

100
120;70

50

50

50

Figure 3.10.: The oil production system, with production rates of the components (in barrels

per unit of time).

• T1 and T2 are the destination tanks. They cannot fail, but their flow rate limits the

production of the whole system.

• A and B are treatment units. They have two failure modes: a degraded mode in which

their production is reduced, and a severe failure mode in which their production is

stopped. A severe failure can happen when the units are working correctly or when

they are in degraded mode.

• Treatment unit A splits its production: the flow goes mainly to tank T1 through lines

C and D, and the remainder goes to B, if needed.

• Treatment unit B has two possible inputs: mainly from W2, and possibly from A, if

needed. It outputs to T2 through line E.

• Components Ci, Di, and Ei are treatment units. Failure of these components stop their

production. They cannot fail when unused.

• Ci are in series, Di are in series, and line D is in cold redundancy with line C. As soon

as line C is available, line D is stopped.

• Ei are in hot redundancy. As their production rate is low, they are used whenever it is

necessary.

• There are two repairers. A component is not productive during a repair. A repairer is

immediately allocated to a failed component. If more than two components are failed

when a repairer is freed, he chooses a component at random.

The goal of the model is to predict the average flow rate in the tanks, and the average

flow output from the wells, for a long mission time (15 years ≈ 130, 000 hours). For practical

reasons, only the production rate for the whole system is presented. The production rate is

actually calculated in the model as the sum of the production rates of the two tanks (which

equals the production rates of the two wells). Reliability data and flow rates are given in

Table 3.9 and in Table 3.10.

56

3.2 Studied Systems

Table 3.9.: Reliability data for the components of the oil production system.

Component λ (h−1) µ (h−1) γ λd (h−1) µd (h−1)

W1, W2 2.0× 10−5 5.0× 10−3

A, B 3.0× 10−5 4.0× 10−3 9.0× 10−3 2.0× 10−2

C1, C2 3.0× 10−3 4.0× 10−2 2.0× 10−2

D1, D2 8.0× 10−3 4.0× 10−2 2.0× 10−2

E1, E2, E3 4.0× 10−3 5.0× 10−2

Repair team 2 members

Table 3.10.: Flow rates (in barrels per time unit) of the components of the oil production

system.

Flow rates

Component normal mode degraded mode

W1, W2 160, 70

T1, T2 110, 100

A, B 170, 120 100, 70

C1, C2 120

D1, D2 80

E1, E2, E3 50

57

3 Experiments

Optimizations can be made on several parameters, such as the number of repairers, the

flow rates of some key elements (A, B, . . .) or the failure rates of the components. As the

goal of this example is to study the partial generation method on a production system, such

optimizations are not studied.

A “safer” version of this system is also studied, as the availability of the components proved

to have an important impact on the accuracy of the partial generation method. Flow rates

are the same. Table 3.11 gives the modified reliability data.

Table 3.11.: Reliability data for the components of the “safer” oil production system.

Component λ (h−1) µ (h−1) γ λd (h−1) µd (h−1)

W1, W2 6.0× 10−6 8.0× 10−3

A, B 2.0× 10−5 4.0× 10−2 9.0× 10−3 2.0× 10−2

C1, C2 2.0× 10−4 7.0× 10−1 1.0× 10−2

D1, D2 5.0× 10−4 7.0× 10−1 2.0× 10−2

E1, E2, E3 4.0× 10−3 5.0× 10−1

Repair team 2 members

Results and Analysis

The Markov chain for the oil production system can be completely generated and calculated,

so it can be used as a reference. The complete Markov chain has 46, 958 states and 5, 209, 692

transitions.

Tables 3.12 and 3.13 show the evaluation of the production rate, with mission time T =

130, 000 hours, for several sizes of partial model, without sink, or with sink. The production

rate is evaluated, as well as the relative error.

Table 3.12 shows that the production rate is well approximated without sink, even if the

relative error does not always decreases when the number of transitions rises. This table also

shows that the production rate is poorly approximated using the sink, and the results are

worthless as the bounds are too far from each other.

Table 3.13 shows the number of transitions and the number of states of the partial models

and the calculation times. The number of transitions is always higher than the threshold in

the model with sink. This is due to remaining candidates that shares the same distance once

the threshold has been reached (see Section 4.2.5), as they are explored too. The number

of transitions for the model without sink is lower than the threshold, as there are many

transitions leading from the explored part of the reachability graph to candidates. These

transitions are removed (see Algorithm 2.3).

58

3.2 Studied Systems

Table 3.12.: Measures of the production rate Q for several thresholds on the size of the model,

with given mission time of T = 130kh, for the oil production system.

Partial chain without sink Partial chain with sink

Threshold ξ Q η(T)a Qlb Qub η(T)

5, 209, 692 130.97 - - - -

1, 736, 564 130.97 7.6355× 10−6 74.976 164.82 1.1983

520, 969 116.42 0.11104 9.543× 10−5 210 2.2006e+ 06

173, 656 131.39 0.0032146 1.3095× 10−25 210 1.6036e+ 27

a without sink, Q for the highest threshold is used as reference.

Table 3.13.: Sizes of the models and computation times for several thresholds on the size of

the model, with given mission time of T = 130kh, for the oil production system.

Partial chain without sink Partial chain with sink

Threshold ξ Fraction States Transitions Timesa (s) Transitions Timesa (s)

5, 209, 692 - 46, 958 5, 209, 692 1, 600 + 220 - -

1, 736, 564 1/3 14, 554 1, 465, 230 830 + 67 1, 747, 958 830 + 1, 300

520, 969 1/10 4, 405 390, 350 290 + 360 532, 137 290 + 470

173, 656 1/30 1, 297 98, 750 89 + 9 177, 565 89 + 170

a (generation of the chain) + (calculation of the chain).

59

3 Experiments

The number of removed transition compared to the threshold is an indicator of the progress

of the exploration. If there are lots of removed transitions (such as ≈ 75, 000 against ≈
170, 000, which is ≈ 45%), the exploration is stopped but the model was blooming. Indeed,

there are lots of transitions leading to unknown candidates, which means that the edge of

the known model is fully connected to new candidates. If there are fewer removed transitions

(such as ≈ 250, 000 against ≈ 1, 700, 000, which is ≈ 15%), the model tends to be more

completely explored, as there are less connections to the unexplored part of the state space.

The calculation time for the Markov chain without sink obtain with ξ = 520, 969 transitions

is 360 seconds, which is unexpected. The expected time is around 25 seconds. As detailed in

Section 4.3.5, the computation times can fluctuate due to the conditions in which calculations

are done. The experiments are done only once and should be repeated multiple times to

obtain more accurate computation times.

Tables 3.15 and 3.16 show the evaluation of the production rate for the safer version of

the system, with mission time T = 10, 000 hours. For this variation of the oil production

system, the evaluated performance indicator is the unavailability of the system (the system

is unavailable when the production is completely stopped). To be able to compare the two

versions of the model, the unavailability and the production rate of the two version of the

system are given in Table 3.14.

Table 3.14.: Comparison of the indicators for both versions of the oil production system at

their respective mission time.

Version

Indicator Normal Safer

Production rate 130.97 206.18

Unavailability 9.9216× 10−2 2.5641× 10−4

Table 3.15 shows that the unavailability is well approximated without sink. These results

illustrate the sensitivity of the partial generation method to the quality of the components.

This can be explained by the fact that the probability is more concentrated around the nominal

state for the safer version of the system. Hence, fewer states are necessary to obtain the same

accuracy. Moreover, as the transitions leading to the sink have lower rates and because the

mission time is reduced, the results given by the partial chain with sink are good.

Table 3.16 shows that the times to generate the chains are the same, with the normal

or with the safer version. However, the calculation times of the Markov chains of the safer

version are higher than the calculation times of the normal version, even if the mission time

was reduced. This is due to the time-step of the calculation method which depends on the

highest transition rates of the chain (see Section 2.1.4). Indeed, the highest transition rates

are the repair rates, which have been raised for the safer version.

60

3.2 Studied Systems

Table 3.15.: Measures of the unavailability Q for several thresholds on the size of the model,

with given mission time of T = 10, 000 hours, for the “safe” version of the oil

production system.

Partial chain without sink Partial chain with sink

Threshold ξ Q η(T)a Qlb Qub η(T)

5, 209, 692 0.00025641 - - - -

1, 736, 564 0.00025641 0 0.00025641 0.00025641 3.2724× 10−5

520, 969 0.00025641 3.5101× 10−5 0.0002564 0.00025926 0.011174

173, 656 0.00026603 0.037538 0.00025629 0.00032801 0.27985

a without sink, Q for the highest threshold is used as reference.

Table 3.16.: Sizes of the models and computation times for several thresholds on the size of

the model, with given mission time of T = 10, 000 hours, for the “safe” version

of the oil production system.

Partial chain without sink Partial chain with sink

Threshold ξ Fraction States Transitions Timesa (s) Transitions Timesa (s)

5, 209, 692 - 46, 958 5, 209, 692 1, 600 + 770 - -

1, 736, 564 1/3 15, 333 1, 438, 588 810 + 580 1, 778, 133 810 + 1, 100

520, 969 1/10 4, 757 346, 316 280 + 76 541, 723 280 + 380

173, 656 1/30 1, 829 99, 090 93 + 76 173, 763 93 + 160

a (generation of the chain) + (calculation of the chain).

61

3 Experiments

Figure 3.11 shows the evolution of the relative error η of the production rate of the oil

production system obtained with Markov chains with sink, as defined in Section 2.4.2, Equa-

tion (2.11), with respect to the threshold used for the number of transitions ξ. The maximum

production rate Qmax is 210. For each mark on the plot, a model was partially generated up

to ξ transitions and the production rate was calculated at the given mission time T = 130, 000

hours. The dashed line η = 1.0 indicates that the partial model is trustworthy when there

are more than 2, 000, 000 transitions in the Markov chain. It is interesting and comforting to

note that the error is always decreasing when the threshold is raised.

105 106 107

Threshold for the number of transitions ξ

10-9

10-4

101

106

1011

1016

1021

1026

1031

1036

1041

1046

1051

R
e
la

ti
v
e
 e

rr
o
r
η(
T
)

Relative error η(T) =ε(T)
Qmax−Qmin

Qlb(T)
 given at time T=130.0 kh.

Figure 3.11.: The evolution of the relative error for the production rate of the oil production

system at time T with respect to the threshold on the number of transitions.

Figure 3.12 shows the evolution of the relative error η of the production rate with respect

to the threshold used for the number of transitions ξ, for the normal oil production system,

for two mission times: T = 10, 000, and T = 130, 000 hours. For a mission time of 10, 000

hours, the model is trustworthy when there are more than 800, 000 transitions in the Markov

chain. For a mission time of 130, 000 hours, the model is trustworthy when there are more

than 2, 000, 000 transitions. This result was predictable, as the error is calculated with the

probability to be in the sink, which is an absorbing state. Mission times that are too long

will lead to bad results with the sink. This shows the heavy influence of the sink state in the

Markov chain, as it drains the probability from the rest of the chain. It is interesting to note

that the mission time has more influence when the partial Markov chain is small.

Figure 3.13 and Figure 3.14 show results for the safer version of the system, at mission time

T = 10, 000 hours. Figure 3.13 shows the evolution of the relative error η of the unavailability

62

3.2 Studied Systems

105 106 107

Threshold for the number of transitions ξ

10-10

10-8

10-6

10-4

10-2

100

102

104

106

108

1010

R
e
la

ti
v
e
 e

rr
o
r
η(
T
)

Relative error η(T) =ε(T)
Qmax−Qmin

Qlb(T)
 given at time T.

T=130.0 kh
T=10.0 kh

Figure 3.12.: Comparison of the evolution of the relative error for the production rate of the

oil production system with respect to the threshold, for different mission times.

of the system with respect to the threshold used for the number of transitions ξ. Figure 3.14

shows the evolution of the relative error η of the production rate of the system with respect

to the threshold used for the number of transitions ξ, for both versions of the system.

In Figure 3.13, it is shown that the unavailability is very well approximated for the safer

system. In Figure 3.14, it is shown that the production rate is approximated with much more

accuracy with the safer system. The safety parameters of the system have heavy influence on

the quality of the partial generation. For safer systems, the probability is more concentrated

around the nominal state and the partial generation keeps more of the states where the

probability is scattered. This leads to a better evaluation of the performance indicators.

To further analyze the method, the relevance factor R() used during the generation of the

Markov chain (see Equation (2.10) and Algorithm 2.2) is compared, for each state of the

Markov chain, to the probability that is calculated with the full Markov chain. Figure 3.15

shows this correlation for the oil production system at mission time T = 130, 000 hours. Each

mark is a state of the chain for which the x-coordinate is the relevance factor and the y-

coordinate is the probability computed with the Markov chain. Note the log scales. Overall,

the plot shows that a correlation exists between the relevance factor and the probability,

because when the relevance factor is low, the probability is also low. This comforts the ability

of the partial generation to “estimate” where the probability will be in the final Markov chain.

However, this prediction is not very accurate, because some states with the same probability

(e.g. 10−12) may have very different relevance factor (10−21 to 10−13). When the probability

63

3 Experiments

105 106 107

Threshold for the number of transitions ξ

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
la

ti
v
e
 e

rr
o
r
η(
T
)

Relative error η(T) =ε(T)
Qmax−Qmin

Qlb(T)
 given at time T=10.0 kh.

Figure 3.13.: The evolution of the relative error for the unavailability with respect to the

threshold on the number of transitions, for the safer version of the system.

105 106 107

Threshold for the number of transitions ξ

10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

R
e
la

ti
v
e
 e

rr
o
r
η(
T
)

Relative error η(T) =ε(T)
Qmax−Qmin

Qlb(T)
 given at time T=10.0 kh.

Normal version
Safer version

Figure 3.14.: The evolution of the relative error for the production rate with respect to the

threshold on the number of transitions, for both versions of the system.

64

3.2 Studied Systems

is scattered over a lot of states, this may lead to inaccurate results, because the most probable

states may not be selected.

10-2610-2410-2210-2010-1810-1610-1410-1210-1010-810-610-410-2100

Relevance factor computed with the method

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 M

a
rk

o
v
 c

h
a
in

Correlation between the relevance factor computed with the partial generation method
and the probability of the state in the Markov chain at mission time,

for each state of the complete chain (46,958 states)

Figure 3.15.: Correlation between the relevance factor computed during the generation of the

chain and the probability calculated with the Markov chain for each state of the

full chain for the oil production system at mission time T = 130, 000 hours.

Figure 3.16 shows the same correlation for the “safer” oil production system, at mission

time 10, 000 hours. In this case, the distance and the probability are much more correlated.

It is interesting to note that the probabilities of the states are much lower for the safer version

of the system. The safer system, for which the probability is more concentrated around the

nominal state, will give more accurate results with the partial chain than the normal system.

Another type of interesting correlation is to compare the probabilities of the states, whether

there are part of the partial chain without sink (threshold ξ = 1, 000, 000 transitions) or of

the full chain (5, 209, 692 transitions). This is shown Figure 3.17. Each mark is a state of the

partial chain. The x-coordinate is the probability computed with the partial chain and the

y-coordinate is the probability computed in the complete chain, at mission time T = 130, 000

hours. The scales are logarithmic. States that are on the line “y = x” are the states which

have exactly the same probability in the partial chain or in the full chain. These states have

the same behavior in both chains. This means that the partial generation did not alter their

local behavior. These states are in the core of the Markov chain, and are not affected by the

partial generation. The states for which x 6= y are states which are not correctly approximated

(there are both underestimate and overestimate states). These states are on the border of

the small chain, in that some of their neighbors have not been selected. It is impossible to

65

3 Experiments

10-3610-3310-3010-2710-2410-2110-1810-1510-1210-910-610-3100

Relevance factor computed with the method

10-30

10-27

10-24

10-21

10-18

10-15

10-12

10-9

10-6

10-3

100

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 M

a
rk

o
v
 c

h
a
in

Correlation between the relevance factor computed with the partial generation method
and the probability of the state in the Markov chain at mission time,

for each state of the complete chain (46,958 states)

Figure 3.16.: Correlation between the relevance factor computed during the generation of the

chain and the probability calculated with the Markov chain for each state of the

full chain for the “safer” oil production system, mission time T = 10, 000 hours.

predict or to calculate, which states will be affected by the partial generation. Because the

probabilities of the “affected” states are low (below 10−4) and because some of them are

under-probable while others are over-probable, the overall production is evaluated with good

accuracy in the partial chain without sink. This is why the reduced chain without sink is

accurate, while it is not possible to calculate the error made with this chain without the full

chain.

Figure 3.18 shows the same correlation for the “safe” oil production system. The proba-

bilities of the badly approximated states are lower (< 10−8), so the production rate is more

accurately computed for this version of the system. The states that are wrongly approximated

are states in which multiple components have failed. This is why their probability is lower for

the safer system.

Figure 3.19 shows the correlation between the probabilities of the most probable states of

the partial chain and the probabilities of the most probable states of the full chain. A mark

may represent different states in the two chains. The probabilities are sorted, so that the

most probable states of the partial chain can be compared to the most probable states of the

full chain. The x-coordinate of a mark represent the probability of a state in the partial chain

and the y-coordinate represent the probability of a state in the full chain. This shows how

the partial generation did not alter the overall behavior of the chain, even if it may alter the

evaluation of the performance indicators. The marks on the right of the plot (which have

66

3.2 Studied Systems

10-1010-910-810-710-610-510-410-310-210-1100

Probability computed with the smaller chain

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 l
a
rg

e
r

ch
a
in

Correlation between the probability of the states computed with the smaller chain
and the probability of the same states in the larger Markov chain

at mission time, for each state of the smaller chain (8,735 states against 46,958 states)

Figure 3.17.: Correlation between the probability of each state of the partial model (threshold

ξ = 1M transitions) whether they are in the partial chain or in the full chain,

for the oil production system, with mission time T = 130, 000 hours.

10-1610-1410-1210-1010-810-610-410-2100

Probability computed with the smaller chain

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 l
a
rg

e
r

ch
a
in

Correlation between the probability of the states computed with the smaller chain
and the probability of the same states in the larger Markov chain

at mission time, for each state of the smaller chain (8,856 states against 46,958 states)

Figure 3.18.: Correlation between the probability of each state of the partial model (threshold

ξ = 1M transitions) whether they are in the partial chain or in the full chain,

for the “safer” oil production system, with mission time T = 10, 000 hours.

67

3 Experiments

lower probability in the small chain than in the full chain) are states that are on the edge of

the partial chain. These states have very low probability in the partial chain, and there are

still some more probable states in the full chain.

10-1010-910-810-710-610-510-410-310-210-1100

Probability computed with the smaller chain

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 l
a
rg

e
r

ch
a
in

Correlation between the probabilities of the states of the smaller chain
and the probabilities of the most probable states of the larger Markov chain

at mission time, for the states of the smaller chain (8,735 states against 46,958 states)

Figure 3.19.: Correlation between the probability of the most probable states in the partial

chain and the most probable states in the full chain, for the oil production

system, with mission time T = 130, 000 hours.

First, this may highlight that the selection of the most probable states failed. Second, this

may show that the local changes in the behavior of the states in the partial chain induce a

more global change on the border of the chain.

Figure 3.20 shows the same correlation, but for the “safer” oil production system. The

border effects are less influential, which leads to more accurate results.

68

3.2 Studied Systems

10-1610-1410-1210-1010-810-610-410-2100

Probability computed with the smaller chain

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 l
a
rg

e
r

ch
a
in

Correlation between the probabilities of the states of the smaller chain
and the probabilities of the most probable states of the larger Markov chain

at mission time, for the states of the smaller chain (8,856 states against 46,958 states)

Figure 3.20.: Correlation between the probability of the most probable states in the partial

chain and the most probable states in the full chain, for the “safer” oil production

system, with mission time T = 10, 000 hours.

3.2.4. Emergency Nuclear Power Plant Power Supply

The emergency power supply is a critical system whose goal is to provide energy to manage

a nuclear power plant. It is an electric power system with repairable components, failures on

demand, cold redundancies, and common cause failures.

Description of the System

The system is pictured Figure 3.21. It is used in various articles [Pagès and Gondran 1980]

[Bouissou and Bon 2003] [Rauzy 2004]. We shall use here an augmented version of the model

given in [Rauzy 2004].

The role of the system is to supply electricity out of the boards LHA or LHB. The regular

power supply of boards LHA and LHB comes from the transformer TS. TS is supplied by

the NET and by the plant PLT. When the NET is available, PLT works in regular mode.

Otherwise the PLT works in standalone mode, which is rather unstable. LHA and LHB can

also be powered by the NET alone through transformer TA. Diesels generators DA and DB

supply respectively LHA and LHB when these boards are not powered by LGD and LGF.

Boards LGD, LGF, LHA and LHB may fail.

To obtain a model which Markov chain cannot be completely generated, the original system

is extended with circuit breakers CBx whose role is to protect the boards. They were chosen

69

3 Experiments

Line0GEV

NET

Line0LGR

Plant0PLT
Diesel0DA Diesel0DB

Circuit0Breaker
CBD

CBA CBB

CBF
CBD_R

CBA_R CBB_R

CBF_R

Transformer0TS

Transformer0TP
Transformer0TA

4000kV

6.60kV
200kV

LGF
LGD

LHA LHB

Figure 3.21.: An electric power supply system.

to have an influence on the overall availability, while not being the prevailing components.

Careful attention was given to avoid symmetries, useless components and other means to

simplify the model.

Table 3.17 gives the reliability data taken from [Rauzy 2004]. Components are repairable,

have a failure rate λ, a repair rate µ. The plant PLT may fail on demand to switch to

standalone mode with probability γ. Diesels may fail on demand with probability γ and have

a common cause failure with rate λcc and repair rate µcc. Diesels which failed on demand are

repaired with rate µd. Moreover, diesels have a 100 times higher failure rate when they are

used (warm redundancies).

The problem at hand is to assess the unavailability of the system, typically for a mission

time of 10, 000 hours, i.e. about one year.

The system is made of the following elements: 18 “binary” repairable components, the plant

which has 2 failure modes (failure and failure on demand), and the 2 diesel generators which

have 3 failure modes. The estimated number of states is then about 226 (67 millions) and the

estimated number of transitions is 26× 226 (1.7 billions). However, the most probable states

should not be too numerous, as the components are highly available.

70

3.2 Studied Systems

Table 3.17.: Reliability data for the Electric Power Supply System.

λ (h−1) µ (h−1) γ

NET 1.0× 10−6 8.0× 10−3

GEV, LGR 5.0× 10−6 1.0× 10−2

TP, TS, TA 2.0× 10−6 1.0× 10−3

LGD, LGF, LHA, LHB 2.0× 10−7 1.0× 10−1

PLT (regular mode) 1.0× 10−4 1.0× 10−1 0.5

PLT (standalone mode) 1.0× 10−1 1.0× 10−3

DA, DB 1.0× 10−4 2.0× 10−2 0.001

CBD, CBD R, CBF, CBF R
1.0× 10−4 1.0× 10−1

CBA, CBA R, CBB, CBB R

µd (h−1) λcc (h−1) µcc (h−1)

DA, DB 1.0× 10−1 1.0× 10−4 1.0× 10−2

Results and Analysis

The complete Markov chain cannot be calculated for this system. However, a Markov chain

with 1 million transitions proved sufficient for the chosen mission time of 10, 000 hours. To

test the scalability of the method, a Markov chain with 100 million transitions is evaluated.

Table 3.18 shows the evaluation of the unavailability of the power supply, and Table 3.19

shows the corresponding sizes of the chains and the calculation times. The relative error for

the Markov chain without sink is evaluated with respect to the unavailability obtained with

the chain made of 100 million transitions. Of course, it is not possible to calculate the relative

error of the unavailability obtained with this chain without sink.

Table 3.18 shows that the system is well approximated by a Markov chain without sink with

only 100, 000 transitions, but it is not possible to validate this result without sink or without

larger chains. The Markov chain with sink with 100, 000 transitions is not large enough to

obtain close bounds at the chosen mission time. However, 1 million transitions for the Markov

chain with sink gives close-enough bounds.

Note that Q = 0 when ξ = 10, 000 transitions. This is due to the lack of failure states in

such a small model.

Table 3.19 shows the number of transitions, the number of states of the partial chains, and

the computation times. At the end of the algorithm which computes the partial chain without

sink, transitions leading to candidates are removed (see Algorithm 2.3). It is interesting to

see the proportion of transitions that are kept for the Markov chain without sink. When the

threshold ξ = 100, 000 transitions, more than 70% are removed, which means that there are

71

3 Experiments

Table 3.18.: Measures of the unavailability Q of the power supply for several thresholds on

the size of the model, with given mission time of T = 10, 000 hours.

Partial chain without sink Partial chain with sink

Threshold ξ Q η(T)a Qlb Qub η(T)

100, 000, 000 5.5798× 10−7 - 5.5798× 10−7 5.5798× 10−7 1.6203× 10−22

10, 000, 000 5.5798× 10−7 0 5.5798× 10−7 5.5798× 10−7 3.331× 10−9

1, 000, 000 5.5798× 10−7 1.7922× 10−6 5.5797× 10−7 5.611× 10−7 0.005607

100, 000 5.5558× 10−7 0.0042869 5.4373× 10−7 2.6449× 10−5 47.643

10, 000 0 1 0 0.0081711 -

a without sink, Q for the highest threshold is used as reference.

numerous transitions leading to the unexplored part of the chain. In these conditions, it is

not surprising to see that the Markov chain with sink gives bad results, because 70% of the

transitions of the whole model go to the sink. When ξ = 100M, “only” 15% of the transitions

are redirected to the sink. This means that the border of the chain is cleaner, and better

results are expected.

Looking at the stabilization time of big systems given in Section 2.2.2, the time constant

for this system is roughly 1
minµ ≈ 1, 000 hours. At mission time T = 10, 000 hours, the system

is bound to have reached its steady-state, and the steady-state probability of each state is

reached.

When ξ = 100M transitions, under the steady-state condition of the chain without sink,

in the chain with sink, the 15 million transitions leading to the sink could not raise the

probability of the sink higher than 10−29 (according to the definition of η in Equation 2.11).

This means that the 4 million states filter the probability, which never flows up to the border

of the chain. It is legitimate to remove such useless states.

Table 3.19.: Sizes of the models of the power supply and computation times for several thresh-

olds on the size of the model, with given mission time of T = 10, 000 hours.

Partial chain without sink Partial chain with sink

Threshold ξ States Transitions Timesa (s) Transitions Timesa (s)

100, 000, 000 4, 415, 444 84, 655, 044 34, 000 + 52, 000 100, 003, 389 34, 000 + 58, 000

10, 000, 000 429, 917 5, 886, 890 3, 000 + 2, 200 10, 000, 130 3, 000 + 3, 400

1, 000, 000 41, 177 415, 160 500 + 290 1, 000, 162 500 + 590

100, 000 3, 988 28, 601 43 + 7 100, 223 43 + 33

10, 000 375 1, 723 3 + 0 10, 014 3 + 1

a (generation of the chain) + (calculation of the chain).

72

3.2 Studied Systems

A “stiffer” version of the system is also analyzed. The goal of such a model is to discuss the

problems with stiff Markov chains. To obtain the stiff version of the system, all the failure

rates λ were divided by ten and all the repair rates µ where multiplied by ten. The failures

on demand are not modified. As each component of the system has its availability roughly

multiplied by 100, the expected unavailability of the stiff power supply should be lower.

Tables 3.20 and 3.21 show respectively the calculated unavailability for this stiff model, and

the size and calculation times of the chains.

Table 3.20.: Measures of the unavailability Q of the stiff power supply for several thresholds

on the size of the model, with given mission time of T = 10, 000 hours.

Partial chain without sink Partial chain with sink

Threshold ξ Q η(T)a Qlb Qub η(T)

100, 000, 000 4.9333× 10−14 - 4.9333× 10−14 4.9333× 10−14 7.7064× 10−36

10, 000, 000 4.9333× 10−14 0 4.9333× 10−14 4.9333× 10−14 2.6665× 10−15

1, 000, 000 4.9333× 10−14 0 4.9333× 10−14 4.9335× 10−14 3.6685× 10−5

100, 000 4.9307× 10−14 0.00052095 4.9265× 10−14 1.5486× 10−11 313.33

10, 000 0 1 0 1.1935× 10−6 -

a without sink, Q for the highest threshold is used as reference.

Calculation times of the Markov chains are multiplied by ten for the stiffer models (580, 000

seconds is 6 days 17 hours). This is due to the repair rates that have been multiplied by ten,

as the time complexity of the Markov chain calculator is roughly proportional to 1
maxµ (see

Section 2.1.4). Further analysis of the calculation times is done in Section 4.3.5.

Table 3.21.: Sizes of the models of the stiff power supply and computation times for several

thresholds on the size of the model, with given mission time of T = 10, 000 hours.

Partial chain without sink Partial chain with sink

Threshold ξ States Transitions Timesa (s) Transitions Timesa (s)

100, 000, 000 4, 423, 430 84, 603, 586 34, 000 + 510, 000 100, 004, 689 34, 000 + 580, 000

10, 000, 000 431, 270 5, 853, 661 2, 900 + 23, 000 10, 000, 018 2, 900 + 36, 000

1, 000, 000 41, 207 404, 632 510 + 2, 300 1, 000, 052 510 + 5, 400

100, 000 3, 906 25, 928 45 + 51 100, 369 45 + 350

10, 000 388 1, 636 4 + 1 10, 425 4 + 10

a (generation of the chain) + (calculation of the chain).

In Table 3.20, it is interesting to see that the same threshold ξ = 100, 000 gives a more

accurate Markov chain without sink in the case of the stiff model, but a less accurate chain

with sink. For the higher thresholds, the accuracy is better, with or without sink.

73

3 Experiments

There are two concurrent phenomena which explain this statement. On the one hand, the

quantity of interest is the unavailability, which is lower for the stiff version of the system by

several orders of magnitude. Hence, to obtain accurate results, the exploration must go deeper

in the state space of the system, as failure states are less probable by several orders of mag-

nitude. On the other hand, as the probability of a state with k failed components is roughly(
λ
µ

)k
(see Section 2.2.2), the states become more rapidly improbable as the exploration goes

on.

104 105 106 107

Threshold for the number of transitions ξ

10-11

10-9

10-7

10-5

10-3

10-1

101

103

105

107

R
e
la

ti
v
e
 e

rr
o
r
η(
T
)

Relative error η(T) =ε(T)
Qmax−Qmin

Qlb(T)
 given at time T=10.0 kh.

Classical version
Stiffer version

Figure 3.22.: The evolution of the relative error for the unavailability compared between the

versions of the power supply at time T with respect to the threshold on the

number of transitions.

Figure 3.22 shows the comparison of the evolution of the relative error for the classical

and stiff version of the power supply, obtained with Markov chains with sinks. The relative

error decreases with the size of the partial models in both cases. However, as stated before,

the relative error decreases faster for the stiff power supply. For this mission time, Markov

chains obtained with 200, 000 transitions yield the same relative error, which is around 4. It

is coincidental that the relative error is near 100 for both set of chains at this point. On the

left of the plot, some points of the relative error are missing for the stiff version. In these

points, the unavailability is null (there are no failure states in Markov chains that small), so

η = +∞.

To further analyze the method, the relevance factor R() used during the generation of the

partial Markov chain is compared to the probability computed with the Markov chain without

sink (the relevance factor is defined in Equation (2.10)). Figure 3.23 shows this correlation for

74

3.2 Studied Systems

each state of the power supply in a Markov chain generated up to ξ = 1, 000, 000 transitions, at

mission time T = 10, 000 hours. Each mark on the graph is a state for which the x-coordinate

is the relevance factor and the y-coordinate is the probability computed with the Markov

chain. Note the logarithmic scales. The plot shows that, overall, the probability decreases

when the relevance factor decreases, but the same relevance factor can lead to several orders

of magnitude of the probability (for instance, a relevance factor of ≈ 10−8 gives probabilities

from 10−14 to 10−5). However, the relative error obtained with this Markov chain is ≈ 10−6,

which means that enough probable states are kept.

10-1610-1410-1210-1010-810-610-410-2100

Relevance factor computed with the method

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 M

a
rk

o
v
 c

h
a
in

Correlation between the relevance factor computed with the partial generation method
and the probability of the state in the Markov chain at mission time,

for each state of the partial chain (41,177 states)

Figure 3.23.: Correlation between the relevance factor computed with the partial generation

method and the probability with the Markov chain for each state of the partial

chain for the power supply, with threshold ξ = 1, 000, 000 transitions and mission

time T = 10, 000 hours.

Figure 3.24 shows the same correlation between the relevance factor and the probabilities,

but applied to the stiff version of the system. In this plot, the relevance factor is slightly more

correlated with the probabilities, and, to fewer exceptions, the probability is higher than the

relevance factor.

The effects of the sink on a Markov chain have been previously observed on the relative error.

It is also interesting to observe the effect on the sink on each state of the chain. Figure 3.25

shows the correlation between the probabilities of states of partial Markov chains obtained

with the same threshold ξ = 100, 000 transitions, at the same mission time T = 10, 000 hours.

The system is the normal power supply. The difference between the two chains is that one is

obtained with the partial generation without sink, and the other with sink. Each mark is a

75

3 Experiments

10-2310-2110-1910-1710-1510-1310-1110-910-710-510-310-1101

Relevance factor computed with the method

10-27

10-25

10-23

10-21

10-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 M

a
rk

o
v
 c

h
a
in

Correlation between the relevance factor computed with the partial generation method
and the probability of the state in the Markov chain at mission time,

for each state of the partial chain (41,207 states)

Figure 3.24.: Correlation between the relevance factor computed with the partial generation

method and the probability with the Markov chain for each state of the partial

chain for the stiff power supply, with threshold ξ = 1, 000, 000 transitions and

mission time T = 10, 000 hours.

76

3.2 Studied Systems

state of the chain without sink. The x-coordinate is the probability of the state in the chain

without sink, and the y-coordinate is kits probability in the chain with sink. The unavailability

calculated with the Markov chain with sink is evaluated to 5.44× 10−7 (Qlb from Table 3.18),

and the sink has a probability of 2.6 × 10−5 (Qub in Table 3.18), which gives a high relative

error of 47.

10-1210-1110-1010-910-810-710-610-510-410-310-210-1100

Probability computed with the chain without sink

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 c

h
a
in

 w
it

h
 s

in
k

Correlation between the probability of the states computed with the chain without sink
and the probability of the same states in the chain with sink

at mission time, for each state of the chain without sink (3,988 states against 3,989 states)

Figure 3.25.: Correlation between the probability of each state of the small chain (ξ = 100k

transitions) whether they are in the chain with or without sink, for the power

supply, with mission time T = 10, 000 hours.

On Figure 3.25, it is possible to see the states which probability is drained by the sink. The

significant changes are only on very improbable states (states with probability lower than

10−8), and affects them by dividing their probability by a factor ten. This leads to a very

pessimistic evaluation of the error, even if the Markov chain is not that much influenced by

the sink.

Figure 3.26 shows the same correlation for the stiff version of the system. As expected, the

probability drained from the states to the sink is lower, and the sink is less influential.

Another type of correlation can be drawn. This is the correlation between the probabilities

of states of Markov chains obtained with different thresholds. The probability of each state of

the small Markov chain is compared to the probability of the same state in the bigger Markov

chain.

Figure 3.27 shows this correlation. The thresholds are ξ = 100, 000 transitions for the small

chain, and ξ = 5, 000, 000 transitions for the large chain. Both Markov chains are generated

without sink, and the mission time is T = 10, 000 hours.

77

3 Experiments

10-1910-1710-1510-1310-1110-910-710-510-310-1101

Probability computed with the chain without sink

10-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 c

h
a
in

 w
it

h
 s

in
k

Correlation between the probability of the states computed with the chain without sink
and the probability of the same states in the chain with sink

at mission time, for each state of the chain without sink (3,906 states against 3,907 states)

Figure 3.26.: Correlation between the probability of each state of the small chain (ξ = 100k

transitions) whether they are in the chain with or without sink, for the stiff

power supply, with mission time T = 10, 000 hours.

10-1210-1110-1010-910-810-710-610-510-410-310-210-1100

Probability computed with the smaller chain

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 l
a
rg

e
r

ch
a
in

Correlation between the probability of the states computed with the smaller chain
and the probability of the same states in the larger Markov chain

at mission time, for each state of the smaller chain (3,988 states against 212,392 states)

Figure 3.27.: Correlation between the probability of each state of the small chain whether

they are in the small chain (ξ = 100k transitions) or in the large chain (ξ = 5M

transitions), for the power supply, with mission time T = 10, 000 hours.

78

3.2 Studied Systems

It is interesting to see that the states change behavior, whether they are part of the small

chain or not. Some probable states of the largest chain have probability around 10−2 in the

large chain and only 10−6 in the small chain. Conversely, states with probability 10−2 in the

small chain are less probable in the large chain (down to 10−9). Only part of the states have

the same probability in both chains. This shows that the exploration should use a higher

threshold than 100, 000 states, as the confidence in the probabilities of the states is low.

Figure 3.28 shows the correlation for the stiff version of the system. The thresholds and

mission time are identical to the previous case. In this case, the correlation is far better, and

more states have the same probability in both chains. For the stiff power supply, the local

behavior of the states in the small chain are correctly approximated, and the results should

be more accurate.

10-1910-1710-1510-1310-1110-910-710-510-310-1101

Probability computed with the smaller chain

10-24

10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 l
a
rg

e
r

ch
a
in

Correlation between the probability of the states computed with the smaller chain
and the probability of the same states in the larger Markov chain

at mission time, for each state of the smaller chain (3,906 states against 213,033 states)

Figure 3.28.: Correlation between the probability of each state of the small chain whether

they are in the small chain (ξ = 100k transitions) or in the large chain (ξ = 5M

transitions), for the stiff power supply, with mission time T = 10, 000 hours.

It is interesting to focus on the upper right border of the plot. Marks on the right border

of the plot are states which have the lowest probability in the small Markov chain. These

states are on the border of the chain, in the sense that they require many successive failures

to be reached. Their probability change when they are part of the full chain (from 10−18 to

between 10−23 and 10−12). This means that adding more states to the chain changes their

role, and changes their local behavior.

Figure 3.29 shows the correlation between the probabilities of the most probable states of

two Markov chains with different sizes generated for the power supply. The small chain is

79

3 Experiments

obtained with threshold ξ = 100, 000 and the large chain is obtained with ξ = 5, 000, 000. Both

are generated without sink. A mark may represent different states in the two chains. States

are sorted by their probability in both chains, so that the most probable states of the small

chain can be compared to the most probable states of the other chain. The x-coordinate of a

mark represents the probability of a state in the small chain and the y-coordinate represents

the probability of a state in the large chain. Because the probabilities in the two chains can be

correlated, this shows how a small chain is able to have, as a whole, the same behavior as the

large chain. Moreover, this shows that only a few states are more probable in the large chain

than what is selected in the small chain, even if border effects naturally lower the probability

of the states on the borders of the small chain.

10-1210-1110-1010-910-810-710-610-510-410-310-210-1100

Probability computed with the smaller chain

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 l
a
rg

e
r

ch
a
in

Correlation between the probabilities of the states of the smaller chain
and the probabilities of the most probable states of the larger Markov chain

at mission time, for the states of the smaller chain (3,988 states against 212,392 states)

Figure 3.29.: Correlation between the probability of the most probable states of the small

chain (ξ = 100k transitions) and those of the large chain (ξ = 5M transitions),

for the power supply, with mission time T = 10, 000 hours.

Figure 3.30 shows the same correlation for the stiff power supply. The results are slightly

better for the stiff version of the model, and confirm that the approximation should be easier.

80

3.2 Studied Systems

10-1910-1710-1510-1310-1110-910-710-510-310-1101

Probability computed with the smaller chain

10-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 l
a
rg

e
r

ch
a
in

Correlation between the probabilities of the states of the smaller chain
and the probabilities of the most probable states of the larger Markov chain

at mission time, for the states of the smaller chain (3,906 states against 213,033 states)

Figure 3.30.: Correlation between the probability of the most probable states of the small

chain (ξ = 100k transitions) and those of the large chain (ξ = 5M transitions),

for the stiff power supply, with mission time T = 10, 000 hours.

3.2.5. Distributed Database

The distributed database system is a system which implements a database distributed over

several disk clusters. The whole system is redundant and can be seen as two redundant

databases in hot spares. Only the hardware architecture is modeled.

Description of the System

The distributed database is depicted in Figure 3.31. It is taken from [Muntz et al. 1989] where

it was used to illustrate the aggregation technique on a system that cannot be completely

generated and calculated. Numerical values are taken from [Muntz et al. 1989] for comparison

purposes.

The role of the system is to implement a database which has redundant storage and re-

dundant access to the data. There are 2 processor types (A and B), 2 sets of disk controllers

with 2 controllers per set and 6 clusters of disks, each consisting of 4 disk units. Each set of

controllers controls half of the 6 disk clusters. In a disk cluster, data is replicated so that one

disk can fail without affecting the system. To do so, the “primary” data on a disk is replicated

such that one third is on each of the other three disks in the same cluster. Thus one disk in

each cluster can be inaccessible without losing access to the data. Each processor is linked

to both sets of controllers so that each one has access to all data stored in the system. If

81

3 Experiments

processor A fails, it has a 0.10 probability of affecting processor B. There are 3 spare units

for each processor. On occurrence of a failure of a processor, the unit is immediately replaced

by a “hot spare” of the same type.

Processors
A

Disk Cluster A1 Disk Cluster A2 Disk Cluster A3 Disk Cluster B1 Disk Cluster B2 Disk Cluster B3

Processors
B

Disk
Controllers

Figure 3.31.: A distributed architecture for a database system, as shown in [Muntz et al. 1989].

Components may fail and are repaired according to the rates given in Table 3.22. Each

unit in the system has two failure modes, which occur with equal probability. The failure

modes were used in [Muntz et al. 1989] to model hyperexponential repair distributions. The

different failure rates for the disk units can be motivated as modeling the different usage of

the units according to the type of data stored. Furthermore, different rates cut symmetries

of the model.

Table 3.22.: Failure and repair rates for the distributed database, taken from [Muntz et al.

1989].

Repair rates

Component Failure rates mode 1 mode 2

Processors 1/2000 h−1 1 h−1 1/2 h−1

Controllers 1/2000 h−1 1 h−1 1/2 h−1

Disk set 1 1/6000 h−1 1 h−1 1/2 h−1

Disk set 2 1/8000 h−1 1 h−1 1/2 h−1

Disk set 3 1/10000 h−1 1 h−1 1/2 h−1

Disk set 4 1/12000 h−1 1 h−1 1/2 h−1

Disk set 5 1/14000 h−1 1 h−1 1/2 h−1

Disk set 6 1/16000 h−1 1 h−1 1/2 h−1

Components are repaired by a single repairman which chooses components at random from

the set of failed units. The system is defined to be operational if all data is accessible to at

least one of the two processors. This means that at least one processor, one controller in each

set and 3 out of 4 disk units in each of the 6 disk clusters must be operational. We also assume

that operational components continue to fail at the given rates when the system is down.

82

3.2 Studied Systems

Results and Analysis

The complete Markov chain cannot be calculated for this system. As each component of the

36 components has two failure modes and one working mode, the number of states of the

system is estimated to 336 (1.5×1017, which might be the number of grains of sand on earth).

The results of the partial exploration are shown in Table 3.23, and Table 3.24 shows the

corresponding sizes of the chains and the calculation times. The reliability of the system is

approximated to 1.9× 10−5 at the chosen mission time T = 100 hours with a partial Markov

chain made of 100 million transitions and 890 thousand states, and calculations took 18 hours.

The partial exploration with sink barely gives the order of magnitude of the unavailability

with 100 million transitions. However, the partial exploration without sink gives acceptable

results with 1 million transitions, if the unavailability obtained with 100 million transitions

is considered accurate.

The estimated unavailability is rather high (10−5) and the state space is very large. This

may explain why the partial generation is not very accurate, as the probability is scattered

on more than 880, 000 states around the nominal states.

Table 3.23.: Measures of the unavailability Q of the distributed database for several thresholds

on the size of the model, with given mission time of T = 100 hours.

Partial chain without sink Partial chain with sink

Threshold ξ Q η(T)a Qlb Qub η(T)

100, 000, 000 1.928× 10−5 - 1.9257× 10−5 2.7986× 10−5 0.45332

10, 000, 000 1.8931× 10−5 0.018097 1.879× 10−5 0.00020572 9.9488

1, 000, 000 1.7848× 10−5 0.074244 1.7363× 10−5 0.0010596 60.027

100, 000 9.7073× 10−6 0.4965 9.2189× 10−6 0.019199 2081.5

10, 000 0 1 0 0.037886 -

a without sink, Q for the highest threshold is used as reference.

The order of magnitude of the results is different from what was given in [Muntz et al. 1989]

(3.3 × 10−6). There are many facts which might explain such difference. As stated for the

fault tolerant database (see Section 3.2.1), the approximations made on the numerical values

of the failure rates might change the value of the unavailability. Another source of difference

is the dubious modeling of the hypothesis “a single repairman”, which would need a closer

look at the model. Using an unlimited number of repairers, the obtained unavailability was

calculated around 8.2× 10−6 with approximately the same relative error.

Table 3.24 shows the number of transitions and the number of states of the partial chains,

as well as the calculation times. At the end of the algorithm which computes the partial chain

without sink, transitions leading to candidates are removed (see Algorithm 2.3). For this

system, 92% of the transitions are removed when the threshold ξ = 100, 000, 000 is reached.

83

3 Experiments

This means that most of the transitions are leading to candidates at the end of the exploration.

For the partial chain without sink, this means that most of the transitions are removed from

the chain, and the behavior of the system is being approximated by a very little part of the

whole system. For the partial chain with sink, this means that most of the transitions of the

model are directed to the sink. This shows that the model is blooming when ξ = 100, 000, 000,

as most discovered transitions are oriented towards the unexplored part of the model.

Table 3.24.: Sizes of the models of the distributed database and computation times for several

thresholds on the size of the model, with given mission time of T = 10 hours.

Partial chain without sink Partial chain with sink

Threshold ξ States Transitions Timesa (s) Transitions Timesa (s)

100, 000, 000 886, 297 7, 901, 024 64, 000 + 400 100, 282, 080 64, 000 + 1, 800

10, 000, 000 85, 353 517, 376 6, 300 + 35 10, 057, 408 6, 300 + 190

1, 000, 000 8, 169 38, 144 500 + 3 1, 001, 920 500 + 20

100, 000 857 2, 688 86 + 0 101, 984 86 + 2

10, 000 105 432 9 + 0 13, 504 9 + 0

a (generation of the chain) + (calculation of the chain).

The mission time was chosen at T = 100 hours, which may appear a very short time. As

the time constant for this system is roughly 1
minµ ≈ 2 hours (see Section 2.2.2), the system

is steady-state at the chosen mission time. Of course, choosing a more realistic mission time

of 10, 000 hours would imply worse relative errors. However, as the bounds are sufficient to

give the order of magnitude of the unavailability at T = 100 hours, the unavailability of the

system could be computed at time T = 10, 000 hours with the chain without sink.

The calculation times of the Markov chains are very low and inconsistent for this example.

The time taken by the chosen calculation algorithm is proportional to the number of transi-

tions and to the time-step of the algorithm, which is ≈ 1
maxµ (see Section 2.1.4). This time

complexity is verified either within the partial chains without sink, or within the partial chains

with sink. However, when ξ = 100, 000, 000, the size of chain with sink is 12 times larger than

the chain without sink, but the calculation time is only 4 times longer. These calculations

should be done again, in different conditions, to find the source of the inconsistency.

Figure 3.32 shows the evolution of the relative error obtained with partial Markov chains

with sink, with respect to the threshold on the number of transitions. Each relative error

was calculated at mission time of 100 hours. The relative error decreases as the size of the

model increases. The overall evolution of the plot is similar to what can be seen on the

other examples, but the relative error decreases more slowly. For this system, the number of

transitions has to be multiplied by a hundred to divide the relative error by ten; for the power

supply, the number of transitions has to be multiplied by two to divide the relative error by

84

3.2 Studied Systems

104 105 106 107

Threshold for the number of transitions ξ

100

101

102

103

104
R

e
la

ti
v
e
 e

rr
o
r
η(
T
)

Relative error η(T) =ε(T)
Qmax−Qmin

Qlb(T)
 given at time T=100.0 h.

Figure 3.32.: The evolution of the relative error for the unavailability of the distributed

database at time T = 100 hours with respect to the threshold on the number of

transitions.

ten.

To further analyze the method, the relevance factor R() used during the generation of the

partial Markov chain is compared to the probability computed with the Markov chain without

sink (the relevance factor is defined in Equation (2.10)). Figure 3.33 shows this correlation

for each state of the distributed database in a Markov chain generated up to ξ = 10, 000, 000

transitions, at mission time T = 100 hours. Each mark on the graph is a state for which the

x-coordinate is the relevance factor and the y-coordinate is the probability computed with the

Markov chain. Note the logarithmic scales. The plot shows that the relevance factor seems

to sort the states rather correctly. This corroborates the fact that the Markov chain without

sink gives accurate results with this threshold.

It is interesting to note that symmetries in the architecture of the system appear on this

plot, as there are many superposed marks, and blocks of slightly different marks. Most of the

states have non negligible probabilities compared to the unavailability of the system, which

may explain why the Markov chain with sink is not accurate for this threshold.

The effects of the sink on a Markov chain have been previously observed on the relative

error. It is also interesting to observe the effect on the sink on each state of the chain.

Figure 3.34 shows the correlation between the probabilities of states of partial Markov chains

obtained with the same threshold ξ = 1M transitions and at the same mission time T = 100

hours. One of the chains is obtained with the partial generation without sink, and the other

85

3 Experiments

10-1010-910-810-710-610-510-410-310-210-1100101

Relevance factor computed with the method

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 M

a
rk

o
v
 c

h
a
in

Correlation between the relevance factor computed with the partial generation method
and the probability of the state in the Markov chain at mission time,

for each state of the partial chain (85,353 states)

Figure 3.33.: Correlation between the relevance factor computed with the partial generation

method and the probability with the Markov chain for each state of the partial

chain for the distributed database, with threshold ξ = 10M transitions and

mission time T = 100 hours.

86

3.2 Studied Systems

is obtained with sink. Each mark is a state of the chain wihtout sink, which x-coordinate is

its probability in the chain without sink, and y-coordinate its probability in the chain with

sink. The sink has a probability of 1.0× 10−3, which gives a high relative error of 60.

10-910-810-710-610-510-410-310-210-1100101

Probability computed with the chain without sink

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 c

h
a
in

 w
it

h
 s

in
k

Correlation between the probability of the states computed with the chain without sink
and the probability of the same states in the chain with sink

at mission time, for each state of the chain without sink (8,169 states against 8,170 states)

Figure 3.34.: Correlation between the probability of each state of the small chain (ξ = 1M

transitions) whether they are in the chain with or without sink, for the dis-

tributed database, with mission time T = 100 hours.

On this figure, it is difficult to see where the probability in the sink comes from, as almost all

the states have an equal probability in the chain without or with sink. This can be answered

with the analysis of the model. The first transitions leading to the sink are transitions from a

states which probability is around 4× 10−4. This state is in the 100 most probable states of

the chain. All the other 8, 000 states also have transitions to the sink. The effect of the sink is

almost not visible because the sink punctures a little amount of probability from almost each

state of the chain. Hence, the living part of the chain has an accurate behavior compared to the

expected behavior of the system, and the sink does not unbalance this behavior. This inspires

confidence in the partial model without sink, which is bound to accurately approximate the

behavior of the most probable states of the system, even if this result cannot be formally

proven.

Another type of correlation can be drawn. This is the correlation between the probabilities

of states of Markov chains obtained with different thresholds. The probability of each state

of the small Markov chain is compared to the probability of the same state, in the bigger

Markov chain.

Figure 3.35 shows this correlation. The thresholds are ξ = 1, 000, 000 transitions for the

87

3 Experiments

small chain and ξ = 10, 000, 000 transitions for the large chain. Both chains are generated

without sink, and the mission time is T = 100 hours.

The probability of most states of the small chain does not change when they are part of

the larger chain, which means that their local behavior is the same, whether they are part of

the small chain or the bigger one. Both these chains without sink give accurate results, even

if the reference for the error is the probability obtained with ξ = 100, 000, 000, which is not

proved to be very accurate. Even if the two selected chains are “close” in their number of

transitions, these results also inspire trustworthiness in the partial chains.

10-910-810-710-610-510-410-310-210-1100101

Probability computed with the smaller chain

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 l
a
rg

e
r

ch
a
in

Correlation between the probability of the states computed with the smaller chain
and the probability of the same states in the larger Markov chain

at mission time, for each state of the smaller chain (8,169 states against 85,353 states)

Figure 3.35.: Correlation between the probability of each state of the small chain whether

they are in the small chain (ξ = 1M transitions) or in the large chain (ξ = 10M

transitions), for the distributed database, with mission time T = 100 hours.

Figure 3.36 shows the correlation between the probabilities of the most probable states of

two Markov chains with different sizes generated for the distributed database. The small chain

is obtained with threshold ξ = 1, 000, 000 transitions, and the large chain is obtained with

ξ = 10, 000, 000. Both chains are generated without sink. A mark may represent different

states in the two chains. States are sorted by their probability in both chains, so that the

most probable states of the small chain can be compared to the most probable states of the

large chain. The x-coordinate of a mark represents the probability of a state in the small

chain, and the y-coordinate represents the probability of a state in the large chain. Because

the probabilities in the two chains can be correlated, this shows how the small chain is able to

have, as a whole, the same behavior as the large chain. Moreover, this shows that only a few

states are more probable in the large chain than what is selected in the small chain, even if

88

3.2 Studied Systems

border effects naturally lower the probability of the states on the borders of the small chain.

10-910-810-710-610-510-410-310-210-1100101

Probability computed with the smaller chain

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

P
ro

b
a
b
ili

ty
 c

o
m

p
u
te

d
 w

it
h
 t

h
e
 l
a
rg

e
r

ch
a
in

Correlation between the probabilities of the states of the smaller chain
and the probabilities of the most probable states of the larger Markov chain

at mission time, for the states of the smaller chain (8,169 states against 85,353 states)

Figure 3.36.: Correlation between the probability of the most probable states of the small

chain (ξ = 1M transitions) and those of the large chain (ξ = 10M transitions),

for the distributed database, with mission time T = 100 hours.

Figure 3.37 plots the evolution of the relative error for the two versions of the database. The

first version is the distributed database, and the other version is the version with an unlimited

numbers of repairers, which was used at the beginning of this section. The two versions of

the system give similar values of the relative error on the unavailability. However, the latter

version gives slightly worse results for small Markov chains, and slightly better results for

large Markov chains.

89

3 Experiments

104 105 106 107

Threshold for the number of transitions ξ

100

101

102

103

104
R

e
la

ti
v
e
 e

rr
o
r
η(
T
)

Relative error η(T) =ε(T)
Qmax−Qmin

Qlb(T)
 given at time T=100.0 h.

Normal version
Version with unlimited repairers

Figure 3.37.: Comparison of the evolutions of the relative error for the unavailability of two

versions of the distributed database at time T = 100 hours with respect to the

threshold on the number of transitions..

3.3. Teachings of the Examples

The various examples were chosen to illustrate the practicability of the method and its per-

formances in many different situations. Some guidelines are drawn from these examples.

The most accurate results are always obtained with the Markov chain without sink with

the highest possible number of transitions. It is not possible to quantify the error made

in a partial Markov chain without sink. The Markov chain with sink gives bounds on the

calculated safety indicator but these bounds are sensitive to the chosen mission time of the

system under study.

The partial generation method is most efficient for highly repairable systems, because these

systems have a few states in which they live most of the time. In these systems, the high com-

petition between failure rates and repair rates ensure that the selection of the most probable

states is effective. The performance indicators of a system are more easily calculated than

the safety indicators, as their order of magnitude is usually higher, and their highest value is

reached in the state with few failed components.

The different correlation between the probabilities of the states within various Markov

chains lead to the following conclusions:

• The relevance factor can only be correlated to the probability of the states for systems

which have a single nominal state (this is not the case for non-repairable systems).

90

3.3 Teachings of the Examples

• The relevance factor cannot estimate exactly which states are the most probable, but

this has only consequences with states that are on the border after the exploration.

The core layers of the chain are correctly selected. As a consequence, the partial chains

without sink reproduce correctly the overall behavior of larger chains.

• The sink is an absorbing state which draws probability from the states of the partial

chain. The states that are most drained are the states on the border of the chain, but

the sink can also be connected to the core of the chain. In the latter case, the Markov

chain with sink will provide rough bounds on the performance indicators.

It is important to keep in mind that both the generation and calculation times are almost

linear in the number of transitions. This means that there is no overhead in using the partial

generation method instead of a simpler generation method. Moreover, this means that Markov

chains of medium sizes are not relevant and the largest chain should be computed first.

91

4. Prototype and Tools

In this chapter, the developed tools are presented. AltaRica 3.0 was chosen as the high level

language from which the Markov chain is generated (see Chapter 1). The idea behind this

chapter is to show the software choices that were made and to illustrate the practicability of

the method.

The main tool, GTSLimMark, has been developed to test the method, assert its validity and

soundness, as well as its performances, and analyze its domain of validity. It is now part of

the work of the AltaRica Association, which provides C++ tools and libraries for AltaRica 3.0.

GTSLimMark works at the Guarded Transition Systems (GTS) level, as GTS models bear the

semantics of the AltaRica 3.0 models.

Another tool was developed, PyGTS, to manage the experiments. Its goals are to use the

AltaRica 3.0 tool-chain on different models, test different versions of GTSLimMark (such as

different relevance factor), process the results, store them, and make them analyzable.

The remainder of this chapter is organized as follows. Section 4.1 gives an overview of the

steps to calculate the indicators of interest of a system from its AltaRica model. Section 4.2

presents the main tool, GTSLimMark, analyzes its time and memory complexity, and presents

different practical problems. Section 4.3 presents the project management tool, PyGTS. Sec-

tion 4.4 analyzes the performance bottlenecks of the tools.

4.1. Overview of the Tool-chain

The tool-chain is illustrated in Figure 4.1. The AltaRica model is given; its construction from

a system is out of the scope of this thesis (see e.g. [Mortada et al. 2014] [Prosvirnova 2014]).

The tool developed in this PhD is part of the tools developed in the AltaRica Association.

The whole AltaRica 3.0 project has more than 150 classes, from basic containers to the GTS

animation. The tools run on Windows and Linux, on 32 or 64 bits architectures.

First, the AltaRica model is flattened into a GTS model (see [Prosvirnova and Rauzy

2012]). Second, GTSLimMark animates the GTS model to explore the state space of the system.

GTSLimMark implements both partial exploration methods (without or with sink). Finally, the

Markov chain is calculated and reliability indicators are computed (see Section 2.1.4).

My goal is to animate the GTS and generate the reachability graph, which is then output as

a Markov chain. To output the reachability graph as a Markov chain, nodes are transformed

93

4 Prototype and Tools

Threshold

AltaRica 3.0 model

Flattening,
compilation
into GTS

Single GTS

Generation of the
reachability graph

Generation of the
Markov chain

Markov chain

Evaluation of the
Markov chain

Reliability indicators

Mission
time

GTSLimMark

Figure 4.1.: The different operations needed to process a model

into states, and events labeling the transitions are used to find the transitions rates in the

GTS model. A single call to GTSLimMark can output up to two Markov chains: without or

with the sink using respectively Algorithms 2.3 and 2.4.

The algorithms used to compute the Markov models are developed in Section 2.1.4. We

used the Fast Euler Method (FEM) and the Exponentiation method (EXP), because these are

respectively fast and reliable. As the accuracy of the results is not of paramount importance

(see Figure 2.9), FEM was used to assess the experiments. The Markov chain solver can output

transient and mean probabilities of the states, sojourn times, expected transient reward, and

expected mean rewards.

In AltaRica, there is the concept of observers, which are expressions over the variables of

the system that can be evaluated for each state of the model. They are different from flow

variables because they cannot be used in the computation of a variable of the system. Typical

observers are the unavailability of a system, or its production rate. Numeric observers are

propagated to the Markov chain and are expressed as rewards. The Markov chain calculator

outputs the transient and mean values for these observers.

4.2. GTSLimMark: Partial Generation of the Reachability Graph

GTSLimMark is written in C++, it consists in a dozen classes.

The generation of the reachability graph is the key element of the method. Its principle

is detailed in Section 2.3. Here are recalled some notations: let 〈V,E, T,A, ι〉 be a GTS and

Γ = 〈Σ,Θ〉 be its reachability graph, C be the set of candidates, Σ be the set of nodes of the

reachability graph, Θ be the set of edges of the reachability graph, ι be the source node, R(σ)

94

4.2 GTSLimMark: Partial Generation of the Reachability Graph

be the calculated relevance factor between the source node and σ ∈ Σ, and l(σ → τ) be the

length of the edge between the nodes σ and τ .

The variation of Dijkstra’s algorithm can be summarized as shown in Algorithm 4.1.

Algorithm 4.1: Dijkstra’s algorithm, reminder of Algorithm 2.1

1 while C 6= ∅ do
2 let σ be the candidate with the highest R in C

3 remove σ from C, add it to Σ

4 foreach successor τ of σ do

5 if τ ∈ C and R(τ) > R(σ) + l(σ → τ) then

6 R(τ) is raised to R(σ) + l(σ → τ)

7 else if τ /∈ C and τ /∈ Σ then

8 τ is added to candidates

9 R(τ) is set to R(σ) + l(σ → τ)

10 transition σ → τ is recorded in Θ

Denoting |Θ| the number of edges in the reachability graph (the number of transitions in

the system), and |Σ| the number of nodes (the number of states in which the system can be),

Dijkstra’s algorithm can run in O(|Θ|+|Σ|×log |Σ|) in time with optimal containers, as shown

by [Fredman and Tarjan 1984], using Strict Fibonacci Heaps for instance (see [Brodal et al.

2012]). We aim for O(|Θ| × log2 |Σ|), using less optimized but more convenient containers.

The critical operations are lines 5–10, because they are done |Θ| times. Hence, the following

properties must be verified by the data sets to achieve O(|Θ| × log2 |Σ|) time (|C| ≤ |Σfinal|
because all states from Σ were candidate first):

P.1 Retrieving an already existing candidate or explored state takes O(log2 n) time, where

n is the size of the considered set.

P.2 Raising the relevance factor of an already stored candidate is O(log2 |C|).
P.3 Adding a candidate is O(log2 |C|).
P.4 Calculating l(σ → τ) takes at most O(log2 |Σ|).
P.5 Adding an edge takes at most O(log2 |Σ|).

Least critical instructions are lines 2–4. They are executed |Σ| times.

P.6 Getting the closest candidate is O(log2 |C|).
P.7 Removing a candidate is O(log2 |C|).
P.8 Adding a state to Σ is O(log2 |Σ|).

Worst case time for the calculation of the successors of σ (line 4) is not easily predictable

and depends on the GTS model. As the size of the GTS model is always limited compared

to the size of the reachability graph, this is not a problem.

In practice, the following rule of thumb can be applied to the safety related models: in each

95

4 Prototype and Tools

state, there is a possible evolution for each variable of the GTS model. Hence |Θ| ≈ |V |× |Σ|,
where |V | is the number of variables of the GTS. When variables are Boolean, |Σ| ≈ 2|V |.

4.2.1. Data Structures

The chosen data structures are detailed here for nodes σ, transitions (e : σ → τ), and the

data sets Σ and Θ.

A node of Σ is characterized by the values of the variables of the GTS. Hence σ ∈ Σ is

represented in memory as a vector of assignments on V : a typed value is associated to each

variable of the GTS. Available types for the variables are: integer, floating-point decimal,

string literals, or enumerations (enumerations are a set of user-specified constants). These

types are easily ordered (enumerations can be translated to integer constants), so nodes of

the reachability graph can be distinguished and sorted using the values of the variables.

Properties P.1, P.3, P.7, and P.8 are easily satisfied with an AVL tree: insertions, searches,

and deletions are O(log2 n) where n is the number of elements in the tree. Note that insertions

and searches in an AVL tree are done by ordering its nodes. The order relation in the AVL

tree is based on the values of the variables in each node. It cannot be the relevance factor

of the node, as this quantity may vary for candidates (property P.2). Consequently, it is not

possible to satisfy property P.6 with this AVL tree, so the set of candidates must use another

data structure. The set of explored nodes Σ is encoded with an AVL tree.

Binary heaps are a good structure to sort the states. Insertions and deletions are O(log2 n)

where n is the number of elements in the heap and retrieving the highest priority element

is O(1), so properties P.3, P.6 and P.7 are satisfied. Binary heaps can be seen as priority

queues, with an interesting ability: the priority of an element can be raised while keeping the

heap sorted in O(log2 n) operations (property P.2). Note that searches for a specific node

in a binary heap are O(n) so a binary heap cannot be used alone for the set of candidates

(property P.1).

In the current implementation of GTSLimMark, the set of candidates C is encoded by an

AVL tree backed by a binary heap. The candidates are encoded by a list of typed values to

store σ and a real which stores R(σ). The reachability graph is encoded by an adjacency

list, as it already existed in the AltaRica project and satisfied property P.5, whose nodes are

σ ∈ Σ, and edges are the transitions labeled by the values of the transition rates.

Finally, the property P.4 is verified with the chosen relevance factor in Section 2.3.2 equa-

tion (2.10). To calculate the length of the transition σ → τ , the sum
∑

k λσ→k is computed

right after the selection of the best candidate σ line 2, and l(σ → τ) = λσ→τ∑
k λσ→k

is computed

inside the loop line 4. This provides the calculation of all the lengths of all the transitions

with only 2 traversals of all the transitions, and takes O(|Θ|) time.

The times can be measured and compared to the theoretical complexity. This is done on

some examples in Section 4.3.5.

96

4.2 GTSLimMark: Partial Generation of the Reachability Graph

Memory Optimizations

The states and the transitions may occupy a similar space in memory. For instance, with

Boolean systems: |Σ| is O(|σ| × 2|V |) where |σ| is O(|V |), so |Σ| is O(|V | × 2|V |), and |Θ| is

O(|σ → τ | × |V | × 2|V |) where |σ → τ | is O(1). They both need to be optimized, in order to

explore the largest systems. In practice, Σ is larger than Θ.

There are multiple ways to improve the efficiency of the storage of the nodes σ ∈ Σ. Two

of these solutions are: the compression of each node, or the compression of the whole set of

nodes.

The first approach consists in compressing each node so that it takes less space in memory.

We recall that a state is a vector of typed values (so-called variants), one for each variable of

the GTS. These variants take a lot of space in memory. This is because they are composed of

a type and a value. As the value can be of several basic types, it is hardcoded in an union.

Hence, the size of a variant in memory is rather large (in practice, 24 bytes). One variant is

created for each variable of each node of Σ, thus many values that are of the same type and

that have the same value are duplicated (for instance, the Boolean values True and False).

The idea is to create a factory which will create and index the different variants, as they are

needed. Thus, a node can be expressed as an array of indexes instead of an array of variants.

The size of the index is chosen before the compilation of GTSLimMark. It is currently set to

1 byte, which enables 256 different variants, which was enough for all our tests so far. The

factory uses a hash table to store the already created variants. For small binary models where

there are only two different variants, the memory used has been measured up to 18 times

lower with the factory. The overhead of the factory is largely amortized for bigger systems.

The second approach consists in compressing the whole set of nodes. This way has not been

explored yet, but one can imagine containers similar to Binary Decision Diagram (BDD) to

encode the set Σ. The difficulty is obviously to encode the nodes in a decision diagram for

variables of various types.

The transitions are currently implemented as a doubly linked list of outgoing transitions for

each node. A simpler implementation would reduce the transition to 3 pointers (the source

node, the destination node, and the event of the GTS model).

4.2.2. Initial State(s)

The GTS model provides the initial state ι (or initial assignment). In this state, the variables

usually have their default value. The initialization is not given in Algorithm 4.1 because it

only consists in putting ι in C with R(ι) = 1, before the execution of the algorithm. As

R(ι) = 1, the choice of ι is important for the exploration, and ι should be the most probable

state of the system (see Section 2.3.1).

97

4 Prototype and Tools

It could be interesting to add expert knowledge to some GTS models and begin the gen-

eration of the reachability graph with several initial states. Having one or more initial states

is not a problem: they can be added to C before the execution of the algorithm. The R(σ)

value used for these multiple initial states has to be chosen according to expert knowledge.

4.2.3. Using Synchronizations of AltaRica 3.0 Models

Synchronizations are a very useful modeling mechanism in AltaRica. They are used for

instance to model repair teams, and synchronize the beginning of a repair with the allocation

of an available repairman. However, their inherent behavior induces “immediate” events in

the GTS model.

Immediate events are represented in the Markov chain by infinite transition rates, which

leads to the concept of instantaneous states [Chung 1960] [Anderson 1991]. It is not possible

to cut the outgoing transitions of instantaneous states, because that would unbalance the

model. Moreover, the removal of all the outgoing transitions of an instantaneous state would

transform it into an absorbing state.

However, instantaneous states can easily be suppressed, as shown in Figure 4.2. Note

that concurrent instantaneous outgoing transitions must all have a probability γ, which is

the relative probability to take a transition instead of the others. The sum of the outgoing

probabilities of infinite transitions must be 1. This latter condition can be relaxed by dividing

each probability by the sum of the outgoing probabilities.

As shown in Figure 4.2, each incoming non-instantaneous transition with rate λ of a state

with at least one instantaneous outgoing transition is transformed into non-instantaneous

transitions with rate λ× γi leading to each state that are reachable through an instantaneous

transition with probability γi.

λ

γ

1− γ

λ× γ

λ× (1− γ)

Non-instantaneous state

Instantaneous state

Figure 4.2.: Removing instantaneous states from Markov models.

The choice was made to expand the instantaneous states during the exploration. Each time

an instantaneous state is encountered during the exploration (by finding an instantaneous

outgoing transition of τ , which is done after line 8 of Algorithm 2.2), it is expanded instead of

being considered as a sole candidate. Reachable states from an instantaneous states are also

expanded if necessary before being added to candidates.

98

4.2 GTSLimMark: Partial Generation of the Reachability Graph

The number of equivalent transitions for each instantaneous state is the number of paths

from the instantaneous state to all the closest non-instantaneous states. This may lead to

several cascaded expansions, as well as useless expansions of the same instantaneous state

that may be encountered several times during the exploration. This number is prone to

combinatorial explosion, and affects the worst-case time of the partial generation method

in unpredictable ways. However, in the conducted experiments, it was not significant (see

Section 4.3.5, where the computation time is measured for some models with a repair team).

More sophisticated expansions could be developed to tackle this problem.

Another side effect is the multiplication of transitions between some states, because there

may be several different paths between two non-instantaneous states reachable through in-

stantaneous states.

To avoid such useless computations, the data structures may be modified to store all the

incoming and outgoing transitions of all instantaneous states (candidates and explored). Thus,

it would be possible to expand instantaneous states, at lower cost, when the exploration is

finished, and to avoid multiple transitions between the same states. This is a tradeoff between

memory and computation time.

4.2.4. Limiting the Exploration

As discussed in Section 2.3.3, the limiting criterion for the exploration |ΓS | < S (line 3 of

Algorithm 2.2) can be of various natures. Some practical thresholds are:

• The number of transitions ξ,

• The number of states,

• The in-memory size of the reachability graph.

The real concern is the memory and time that can be allocated to the exploration. Hence,

the most convenient threshold is the number of transitions ξ, as it is correlated to both the

memory size of the reachability graph and to the time taken by the computation of the Markov

model.

It would be possible to encode other thresholds, such as the number of states (which is a

more convenient measure for safety engineers), or the actual in-memory size of the objects.

The relevance factor of the state would have been a convenient threshold, but it should

not be used as a threshold. Some tests were conducted and the relevance factor for the

last explored state does not indicate whether the evaluation will be accurate or not. For the

computing modules in Section 3.2.2, the relevance factor of the last explored state keeping 343

transitions is 1.7×10−3, which gives 0.60% error at mission time. For the oil production system

in Section 3.2.3, the relevance factor of the last explored state keeping 173, 656 transitions is

6.6× 10−8, which gives 0.32% error at mission time.

99

4 Prototype and Tools

4.2.5. Remaining Candidates

As seen in Algorithm 2.2, after the exploration is stopped, the remaining candidates must be

dealt with. The obvious and straightforward way to deal with the remaining candidates is

to ignore them. However, the relevance factor R(σ) for the remaining candidates may lead

to situations where packs of candidates CRl have the exact same relevance factor as the last

explored state Rl = R(σlast). This is because lots of the transitions in the reachability graph

have the same rates (the number of events of the GTS is very low compared to |Θ|), and

because of numerical approximations.

It is rather illegitimate to keep some candidates that have a relevance factor Rl and discard

some others that have the same relevance factor, because it implies that the algorithm chooses

some candidates in the pack CRl in a random manner. In this case, two runs of GTSLimMark

on the same model with the same threshold may lead to different results.

Thus, the exploration is continued after the limiting threshold is reached, until there are

no more candidates with the same R(σ) = Rl. This leads to slightly larger models. Both

endings (with or without keeping the candidates with the same R(σ) = Rl) were tested and

the numerical fluctuations are, in practice, negligible.

4.3. PyGTS: Project and Result Management

Here are described developments done for PyGTS, a tool which is used to animate the AltaRica

tool-chain. Its main goal is to automatize repetitive actions such as the numerous calls to

the tools in the AltaRica tool-chain, timing measurement, and extraction and storage of the

results.

4.3.1. The PyGTS Package

Python 3 was chosen for this tool, because of its flexibility. PyGTS is delivered as a pure Python

package. Figure 4.3 shows the different classes used to build PyGTS. PyGTS is organized around

4 parts which are:

• the models, which are Python representations of the AltaRica objects (GTS, RG, State),

• the Study and StudyCase, which are interfaces to the tools, and provide parsers for the

intermediate models and parsers for the output of the Markov chain calculator,

• the Data Access Objects (DAO*) which uses the SQLite module of Python to store and

access results of the various experiments in databases,

• the Queue and Task, which handles multitasking.

The Markov model parser and Python representation of the RG are mainly used for debug

purposes, as graphical representation of Markov chains quickly become unreadable with large

chains. The PyGTS can draw small Markov models (see for instance Figure 3.2, where only 419

100

4.3 PyGTS: Project and Result Management

package OverviewPyGTS[]

attributes

-name
-distance
-observersValue

State

operations

+RecordChainGeneration(times, threshold, sizeofRG)
+RecordChainCalulation(times, observerValues)
+RecordLimMarkSistances()

DAOStudyCase

operations

+RecordObserversOverTime()

DAOPlot

attributes

-observers
-variables
-parameters

GuardedTransitionSystem

attributes

-studyName

operations

+GenerateConfigForLimMark()
+CallLimMark()

Study

attributes

-caseName

operations

+ReadMarkovChain()
+CallMarkovChainCalulator()
+ReadObserverValues()

StudyCase

attributes

-pathToBins
-pathToTemp
-pathToModels

PackageConfiguration

ReachGraph

operations

+StartTableQt()

DAOResults

Task

Queue

«use»

*

«use»

1..*

«use»

«use»

-labeledOutTransitions *

*

1

«use»

1

1

Figure 4.3.: Working on PyGTS classes.

states are represented). However, it enables interesting features such as the comparison of the

probability to be in each state with the relevance factor (see for instance the oil production

system Section 3.2.3).

A Study denotes a single study of the model. The main parameters of the studies are the

threshold on the number of transitions and the parameters for the Markov chain calculator: the

mission time, the calculation algorithm, and the main parameter for the calculation algorithm

(called ρ, see Section 2.1.4). A single study may lead to multiple Markov chains, as the

generation algorithm generates both chains without or with sink in the same run. A StudyCase

bears these informations. There are 2 types of useful StudyCase: the “partial”, and the

“partial with sink”.

To compute the probability to be in the sink, a special observer must be included in the

initial AltaRica model and its value must be 0.0 in all states (there is no theoretical limitation

behind this, and this may be relaxed in future implementations of the tool-chain). The value

of this observer is adjusted to 1.0 in the sink state, so that the probability to be in the sink

is automatically output by the Markov chain evaluator.

Figure 4.4 shows the different steps that are handled by PyGTS from the AltaRica model

to the storage of the results in the database. These steps are repeated for each study, i.e. for

each threshold.

101

4 Prototype and Tools

AltaRica 3.0 model

GTS

GTSLimMark

Model without sink

Model with sink

Evaluation Performance indicators

Flattening

Evaluation Performance indicators

DB
Execution time
Distances of the states

Number of states
Number of transitions

Execution times

Values of the observers
Transient probabilities

Figure 4.4.: Typical workflow with PyGTS.

4.3.2. Database

The tables recording the results are shown in Figure 4.5. The current implementation of

the database may be optimized and normalized. In practice, there is one database for each

example. In the current implementation, in ResultsForCaseStudy there is one entry for each

observer of the GTS whose value is to be recorded at mission time.

package DatabasePyGTS[]

attributes

#iDistanceType
#sInhibitingObserver
#nThresholdTransitions
#bExploreRemainingCandidates
#sObserver
#fMissionTime
#nPointsPlot
#sMethod
#dtRatio
 nStates
 nTransitions
 fObserverValue
 fLowestRelevanceFactor
 fHighestMeanTime
 fHighestOutTime
 fTimeLimMark
 fTimeMarkovCalc

ResultsForCaseStudy

attributes

#CaseID
 studyName
 caseName
 iDistanceType
 sInhibitingObserver
 nThresholdTransitions
 bExploreRemainingCandidates
 sObserver
 fMissionTime
 nPointsPlot
 sMethod
 dtRatio

CaseToID

attributes

#CaseID
#fTime
 fValue

PlotData

There is one such table for
each couple (study,case)

All fields but ID forges a
composite UNIQUE constraint

CaseID

*1

Figure 4.5.: Working with PyGTS. Fields prefixed with # are forming a primary key.

In some specific cases, it is interesting to plot the transient evolution of the value of the

observers of the model over time. The value of each observer at each time step is recorded in

the PlotData table.

To enable the correlations (such as Figure 3.15), the relevance factor associated to each

102

4.3 PyGTS: Project and Result Management

state is read, as well as its probability at mission time, for each case study.

For the experiments developed in this thesis, there is more than 5, 400 entries in ResultsForCaseStudy,

more than 550, 000 transient values of observers, and 4, 200, 000 state distances and probabil-

ities.

4.3.3. Multitasking

The PyGTS takes advantage of the multiprocessing module in Python and of the database to

compute multiple StudyCase at once. This is necessary, as the total cumulative computation

time taken for the examples is roughly 1, 200 hours. Queuing is done to limit the number

of parallel studies on the same computer. This is necessary to balance the memory and

computation capabilities, so that measured times are realistic (any operating system allows

100 studies to be launched at once, even if octo-core processors can only treat 8 of them

concurrently).

The main queue bears the tasks, which are unstacked and launched in separate processes.

There are atomic tasks dedicated to part the workflow in PyGTS. There are 4 kind of elementary

tasks:

1. Flatten the AltaRica model and call GTSLimMark with the correct parameters,

2. Read the Markov chain to extract its size,

3. Call MarkovChainCalc and parse its output to record the transient value of the ob-

servers and/or of the probabilities,

4. Remove the intermediate models.

4.3.4. Handling Results

Python provides programming interfaces for several interesting tools, such as matplotlib and

PyQt. matplotlib is used to programmatically plot data. PyQt is used to show an interactive

table which displays the results as soon as they are available.

Figure 4.6 shows an interface to the database, which was done with PyQt. It is useful to

have an overview over the data before extracting the interesting data. Filters are used to

select the interesting point of view through the thousands of entries of the different tables

(there are more than 3, 200 entries for the sole oil production system).

All the plots and tables shown in Chapter 3 were generated with PyGTS with the help of

matplotlib.

4.3.5. Evaluation of the Run-time Complexity

GTSLimMark and MarkovChainCalc are the two most time consuming tools. The Markov chain

solver using the FEM method runs in worst-case O(|Θ| × T
dt) time, where |Θ| is the number

103

4 Prototype and Tools

Figure 4.6.: A Screenshot of the Qt interface provided by PyGTS and presenting the results for

the oil production system.

of transitions, T is the mission time, and dt the time step (see Section 2.1.4). The theoretical

worst-case time for the current implementation of GTSLimMark is O(|Θ|× log2 |Σ|), as detailed

in Section 4.2.1, where |Σ| is the number of states.

These run-times can be verified on sufficiently large examples. Figure 4.7 and Figure 4.8

show the execution times of the tools on two examples. The partial model is generated up to

ξ transitions, and the resulting Markov chain is calculated. The overall evolution of the time

taken to partially generate the Markov chain follows the predicted complexity.

Because each mark on the plot is a single experiment, the measured times may be inaccurate

and fluctuating. There are many hardware and software considerations that might explain

the random variations of the execution times, among which the concurrent hard drive disk

accesses, and the current number of concurrent processes. The computer used to conduct the

experiments was dedicated to this task, but it is a common desktop machine. To obtain more

accurate results, the experiments should be done multiple times under the same software and

hardware conditions.

Figure 4.7 shows the execution times for the distributed database (see Section 3.2.5). For

this example, the time taken by the transient solve of the Markov model is much lower than

the time taken by the partial generation of the chain. Linear regressions are plotted to have

an overview of the time complexities. For GTSLimMark, the influence of the log2 |Σ| is not

significant and the time is almost linear with respect to the number of transitions of the

partial model.

104

4.3 PyGTS: Project and Result Management

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000
Threshold for the number of transitions ξ

0

1000

2000

3000

4000

T
im

e
 (

s)

Execution times with respect to the number of transitions of the chain.

Partial Exploration
Linear fit, residual-squared 0.991
Transient solution
Linear fit, residual-squared 0.940

Figure 4.7.: Execution times measured when exploring and solving the distributed database

example.

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000
Threshold for the number of transitions ξ

0

5000

10000

15000

20000

25000

30000

35000

40000

T
im

e
 (

s)

Execution times with respect to the number of transitions of the chain.

Partial Exploration
Linear fit, residual-squared 0.918
Transient solution
Linear fit, residual-squared 0.843

Figure 4.8.: Execution times measured when exploring and solving the stiff emergency power

supply example.

105

4 Prototype and Tools

Figure 4.8 shows the execution times for the stiff version of the emergency power supply

(see Section 3.2.4). For this example, the time taken to calculate the Markov chain is higher

than the time taken to generate it. This is due to the fact that the required time step for

the iterations of the Markov chain solver is very low, because there are very high repair rates.

The overall evolution of the time with respect to the number of transitions for the Markov

solver is roughly linear. There are some fluctuations that may be explained by the following.

The time step of the Markov chain solver is inversely proportional to the highest element of

the transition matrix. By definition, the highest rates are on the diagonal of the transition

matrix, as these elements represent the outgoing rates in each state. When ξ grows, there

are new failures and repairs in the system, so there might be higher transition rates for some

states. Consequently, the time step is reduced suddenly.

Summary

The overall usefulness of PyGTS is not obvious. However, it was really useful to manage

the experiments, and do the systematic studies of the models, for several different set of

parameters. The database is used to have robust and efficient storage of the results without the

intermediate files (the Markov chain with sink with 100, 000, 000 transitions for the emergency

power supply weights nearly 7 gigabytes) and provides the means to take a global perspective

on the results.

4.4. Bottlenecks

The size of the models that can be treated with the developed tool-chain is mostly limited by

the size of the memory of the computer on which the tools run. The compilation of AltaRica

models into GTS models is not a problem, as the number of elements of the model is low

(< 100) and the compilation is straightforward.

The calculation of the Markov chain is limited by the number of transitions of the Markov

chain. As developed in [Rauzy 2004], the algorithms to calculate a Markov chain use a vector

which size is the number of states of the chain, and a sparse matrix whose elements are the

transitions of the chain. The sparse matrix can be encoded as a linked list of linked lists

of transition rates storing outgoing transition rates for each state of the chain. Hence the

memory consumption of the tool is roughly O(|Θ|), the number of edges in the reachability

graph.

The generation of the reachability graph involves more data sets, as detailed in Section 4.2.1.

Current implementation can generate more than 100, 000, 000 transitions on a desktop com-

puter with 16 gigabytes of memory. The current implementation of Algorithm 2.2 uses several

times more memory than the tool used to compute the Markov chain. With better implemen-

tation, the size of the memory structures may be comparable, and the bottleneck may be the

106

4.4 Bottlenecks

calculation of the Markov chain.

107

Conclusions and Outlooks

Summary

The objective of this thesis is to provide a method to calculate the reliability indicators of a

system using Markov chains. The major drawback of the Markov chains is the state space

explosion. The idea is to generate partial Markov chains from higher-level descriptions (in

this thesis, AltaRica 3.0 models). The partial generation is based on the selection of the most

probable states of the Markov chain.

The selection is done by sorting the states according to a relevance factor and using the

well-known Dijkstra’s algorithm. The relevance factor is based on the probability to go from

one state to each of its outgoing states. Hence, it takes into account the overall distribution of

the probability in the chain. Thanks to Dijkstra’s algorithm, finding the most relevant states

is efficient and does not require the complete Markov chain. Furthermore, it is possible to

bound the calculated reliability indicators using the Markov chain with sink.

The partial generation was tested on several examples to identify its strengths and weak-

nesses. The systems that are the most successfully partially generated are repairable systems

that are highly available. For a given system, the most accurate reliability indicators are ob-

tained without bounds and with the highest number of transitions in the partial chain. The

bounds on the reliability indicators are useful to calculate the error made due to the partial

generation, but are usually pessimistic.

The partial generation method is implemented in a tool that is part of the AltaRica 3.0

project. The current implementation can generate Markov chains with more than 100 million

transitions.

The relevance factor is used to select the most probable states during the generation of

the Markov chain only. It has no intent to replace the calculation of the Markov chain, but

rather tries to foresee the main flows of probability through the chain. With this respect, the

correlations shown in the experiments highlight that the relevance factor successfully selects

most of the most probable states of the Markov chain.

The remainder of the conclusion focuses on two possible improvements of the partial gen-

eration of Markov chains. First, the possibility of improving the current relevance factor is

discussed. Second, the partial generation is combined with the calculation of the Markov

chain. The latter outlook is more interesting, as it suggests a fundamental improvement of

the method.

109

Conclusions and Outlooks

Towards a better relevance factor

The choice of the relevance factor is discussed in Section 2.3.2. The chosen relevance factor

mostly takes into account the competition between outgoing states.

It is adapted to unrepairable systems because it can select the most probable branches

where the most probable absorbing states are. It also suits repairable systems because the

repairs have a heavy influence on the spread of the probabilities, as the competition between

outgoing states is unbalanced by repairs. This latter point makes the relevance factor able to

consider the depth of the state space of the system in terms of number of failures with respect

to their frequency.

However, this relevance factor does not take time into account. The mission time changes

the distribution of the probabilities in the Markov chain. For instance, a non-repairable system

with low mission time is expected to be working whereas it is expected to be failed with a

high mission time. The probability will flow from the nominal state to the failed states in this

case.

In previous experiments, other relevance factors were tested. The chosen relevance factor

must satisfy the following two properties: the factor should be monotonous when exploring

the state space (see Section 2.3.2), and its calculation must be easy (see Section 4.2).

The most obvious relevance factor to test is one which only takes into account the mean

time to leave the state through transitions: R(τ) = min
parents σ

(
R(σ) +

1

λσ→τ

)
. Traversing

multiple transitions will add time, and exploration could be stopped when this time is larger

than a threshold depending on the mission time, as probability would never reach these states

within the mission time.

This factor does not yield good results for repairable systems, because the time constant of

a repairable system is 1
minµ (see Section 2.2.2). As a consequence, the depth of the Markov

chain is approximated by the mission time, when it should be approximated by the longest

repair time. Moreover, the selection of the most probable states proved wrong on very simple

examples.

Another factor was constructed using both temporal aspects of outgoing probabilities and

outgoing times. Denoting p(τ) = p(σ)× λσ→τ∑
k λσ→k

and t(τ) = t(σ)+ 1∑
k λσ→k

, the new relevance

factor is defined by R(τ) = min
parents σ

(
t(τ)/p(τ)

)
(t is always increasing, and p is always decreas-

ing, so R is always increasing). This relevance factor takes into account both the competition

between states and the average time to get out of each state, but mixed results were obtained

on simple examples.

A better relevance factor might be obtained by focusing on equilibria between failures and

repairs of single components, because this drives the probability in the depths of the state

space (see Section 2.2.2). This relevance factor would be, however, dedicated to repairable

systems.

110

Towards an adaptive calculation method

It is rational to think that the spread of the probability cannot be predicted without the

calculation of the whole Markov chain. In this perspective, the solution might not be to

enhance the relevance factor, but to compensate its flaws.

Towards an adaptive calculation method

Using Dijkstra and a relevance factor to select the most probable states of a system gives

good results but cannot be always accurate, because the behavior of a Markov chain cannot

be approximated without taking time into account.

The idea is to use Dijkstra and the relevance factor to preselect the most probable states,

and adapt this selection by calculating the actual probability of the partial chain. With

these probabilities, the values of the relevance factor can be modified to reflect the actual

probabilities of the states. This process would be iterated until the mission time is reached.

Hence, the systems for which this adaptive method will be the most efficient are the non-

repairable systems. The selection of the states would be adapted to the mission time, and this

selection would slide to keep only the most probable states at each point of time. Moreover,

the error on the calculation could be controlled with the same concept of sink. Eventually, this

adaptive selection would lead to the calculation of the reliability indicators without calculation

of the whole chain.

Doing these iterations would keep the idea of the partial construction of the Markov chain

from a higher-level modeling language, while making the relevance factor less influential.

111

Bibliography

Anderson, W. J. (1991). Continuous-Time Markov Chains: An Applications-Oriented Ap-

proach (Springer Series in Statistics). Springer.

Bobbio, A. and Raiteri, D. C. (2004). Parametric fault trees with dynamic gates and

repair boxes. In Proceedings of the Annual Reliability and Maintainability Symposium

(RAMS’2004), pages 459–465, Los Angeles, CA, USA. IEEE.

Bon, J. and Collet, J. (1994). An algorithm in order to implement reliability exponential

approximations. Reliability Engineering & System Safety, 43(3):263–268.

Bouissou, M. (2002). Boolean Logic Driven Markov Processes: a powerful new formalism for

specifying and solving very large Markov models. In Proceedings of the 6th Probabilistic

Safety Assessment and Management Conference.

Bouissou, M. and Bon, J. (2003). A new formalism that combines advantages of fault-trees

and markov models: Boolean logic driven markov processes. Reliability Engineering &

System Safety, 82(2):149–163.

Bouissou, M. and Lefebvre, Y. (2002). A path-based algorithm to evaluate asymptotic unavail-

ability for large markov models. In Proceedings of Annual Reliability and Maintainability

Symposium, RAMS’2002, pages 32–39, Seattle, USA. IEEE.

Brameret, P.-A., Rauzy, A., and Roussel, J.-M. (2012). Assessing the dependability of systems

with repairable and spare components. In Barbet, J., editor, Actes du Congrès Lambda-Mu

18.

Brameret, P.-A., Rauzy, A., and Roussel, J.-M. (2015). Automated generation of partial

markov chain from high level descriptions. Reliability Engineering and System Safety, TBA.

Accepted for Publication.

Brameret, P.-A., Roussel, J.-M., and Rauzy, A. (2013). Preliminary system safety analysis

with limited markov chain generation. In Proceedings of 4th IFAC Workshop on Dependable

Control of Discrete Systems, DCDS 2013, York (Great Britain). IFAC.

Brisbois, J., Lanore, J.-M., Villemeur, A., Berger, J.-P., and De Guio, J.-M. (1990). Les

études probabilistes de sûreté des centrales nucléaires françaises de 900 et 1 300 mw. Revue

générale nucléaire, (6):522–535.

113

Bibliography

Brodal, G. S., Lagogiannis, G., and Tarjan, R. E. (2012). Strict fibonacci heaps. In Proceedings

of the forty-fourth annual ACM symposium on Theory of computing, pages 1177–1184.

ACM.

Bušić, A., Djafri, H., and Fourneau, J.-M. (2012). Bounded state space truncation and

censored markov chains. In Proceedings of IEEE 51st Annual Conference on Decision and

Control (CDC), pages 5828–5833, Maui, HI, USA. IEEE.

Carrasco, J. A. (2003). Computation of bounds for transient measures of large rewarded

markov models using regenerative randomization. Computers & Operations Research,

30(7):1005–1035.

Chung, K. L. (1960). Markov Chains: With Stationary Transition Probabilities (Grundlehren

der mathematischen Wissenschaften). Springer.

Collet, J. and Renault, I. (1997). Path probability evaluation with repeated rates. In Pro-

ceedings of Annual Reliability and Maintainability Symposium, RAMS’97, pages 184–187,

Philadelphia, PA, USA. IEEE.

Courtois, P.-J. (1977). Decomposability: queueing and computer system applications. ACM

monograph series. Academic Press, New York, NY.

Courtois, P.-J. and Semal, P. (1984). Bounds for the positive eigenvectors of nonnegative

matrices and for their approximations by decomposition. Journal of the ACM (JACM),

31(4):804–825.

Courtois, P.-J. and Semal, P. (1995). Computable dependability bounds for large markov

chains. In Predictably Dependable Computing Systems, pages 507–518. Springer.

Dayar, T., Pekergin, N., and Younès, S. (2006). Conditional steady-state bounds for a subset

of states in markov chains. In Proceeding from the 2006 workshop on Tools for solving

structured Markov chains, page 3. ACM.

Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numerische mathe-

matik, 1(1):269–271.

Dingle, N. J., Harrison, P. G., and Knottenbelt, W. J. (2004). Uniformization and hypergraph

partitioning for the distributed computation of response time densities in very large markov

models. Journal of parallel and distributed computing, 64(8):908–920.

Dubreuil Chambardel, A., Villemeur, A., Berger, J., and Moroni, J. (1991). Living proba-

bilistic safety assessment of french 1300 mwe pwr nuclear power plant unit: methodology,

results and teaching. Technical report, Electricite de France (EDF), 92-Clamart (France).

Dugan, J., Bavuso, S., and Boyd, M. (1992). Dynamic fault-tree models for fault-tolerant

computer systems. Reliability, IEEE Transactions on, 41(3):363–377.

114

Bibliography

Dugan, J. B., Sullivan, K. J., and Coppit, D. (2000). Developing a low-cost high-quality

software tool for dynamic fault-tree analysis. Reliability, IEEE Transactions on, 49(1):49–

59.

Euler, L. (1768). Institutionum calculi integralis. Number v. 1 in Institutionum calculi inte-

gralis. imp. Acad. imp. Saènt.

Fernandes, P., Plateau, B., and Stewart, W. J. (1998). Efficient descriptor-vector multi-

plications in stochastic automata networks. Journal of the Association for Computing

Machinery, 45(3):381–414.

Fourneau, J.-M., Pekergin, N., and Younès, S. (2007). Censoring markov chains and stochastic

bounds. In Wolter, K., editor, Formal Methods and Stochastic Models for Performance

Evaluation, volume 4748 of Lecture Notes in Computer Science, pages 213–227. Springer

Berlin Heidelberg.

Fourneau, J.-M. and Plateau, B. (1991). A methodology for solving markov models of parallel

systems. Journal of Parallel and Distributed Computing, 12:370–387.

Fredman, M. L. and Tarjan, R. (1984). Fibonacci heaps and their uses in improved net-

work optimization algorithms. In Foundations of Computer Science, 1984. 25th Annual

Symposium on, pages 338–346.

Goyal, A., Lavenberg, S. S., and Trivedi, K. S. (1987). Probabilistic modeling of computer

system availability. Annals of Operations Research, 8(1):285–306.

Grassmann, W. K. (1977). Transient solutions in markovian queueing systems. Computers &

Operations Research, 4(1):47–53.

Lal, R. and Bhat, U. (1988). Reduced system algorithms for markov chains. Management

Science, 34(10):1202–1220.

Malhotra, M. and Trivedi, K. S. (1995). Dependability modeling using Petri-nets. Reliability,

IEEE Transactions on, 44(3):428–440.

Markov, A. (1971). Extension of the limit theorems of probability theory to a sum of variables

connected in a chain. In Howard, R., editor, Dynamic Probabilistic Systems (Volume I:

Markov Models), chapter Appendix B. John Wiley & Sons, Inc.

Markov, A. A. (1906). Extension of the law of large numbers to dependent quantities. Izv.

Fiz.-Matem. Obsch. Kazan Univ.(2nd Ser), 15:135–156.

Mercier, S. (2007). Discrete random bounds for general random variables and applications to

reliability. European journal of operational research, 177(1):378–405.

115

Bibliography

Mercier, S. (2008). Bounds and approximations for continuous-time markovian transition

probabilities and large systems. European Journal of Operational Research, 185(1):216–

234.

Merle, G., Roussel, J.-M., and Lesage, J.-J. (2011). Algebraic determination of the structure

function of dynamic fault trees. Reliability Engineering & System Safety, 96(2):267–277.

Moler, C. and Van Loan, C. (1978). Nineteen dubious ways to compute the exponential of a

matrix. SIAM review, 20(4):801–836.

Moler, C. and Van Loan, C. (2003). Nineteen dubious ways to compute the exponential of a

matrix, twenty-five years later. SIAM review, 45(1):3–49.

Montani, S., Portinale, L., Bobbio, A., Varesio, M., and Codetta-Raiteri, D. (2006). A tool for

automatically translating dynamic fault trees into dynamic bayesian networks. In Reliability

and Maintainability Symposium, 2006. RAMS’06. Annual, pages 434–441, Newport Beach,

CA. IEEE.

Mortada, H., Prosvirnova, T., and Rauzy, A. (2014). Safety assessment of an electrical sys-

tem with altarica 3.0. In Ortmeier, F. and Rauzy, A., editors, Model-Based Safety and

Assessment, volume 8822 of Lecture Notes in Computer Science, pages 181–194. Springer

International Publishing.

Muntz, R. R., de Souza e Silva, E., and Goyal, A. (1989). Bounding availability of repairable

computer systems. SIGMETRICS Perform. Eval. Rev., 17(1):29–38.

Pagès, A. and Gondran, M. (1980). Fiabilité des systèmes. Collection de la Direction des

Etudes et Recherche dEDF, Eyrolles, 39.

Papadimitriou, C. H. (1994). Computational Complexity. Addison Wesley, Boston, MA 02116,

USA.

Pribadi, Y., Voeten, J. P. M., and Theelen, B. D. (2001). Reducing markov chains for per-

formance evaluation. In Proceedings of PROGRESS’01, pages 173–179. STW Technology

Foundation.

Prosvirnova, T. (2014). AltaRica 3.0: a Model-Based approach for Safety Analyses. Theses,

Ecole Polytechnique.

Prosvirnova, T., Batteux, M., Brameret, P.-A., Cherfi, A., Friedlhuber, T., Roussel, J.-M.,

and Rauzy, A. (2013). The altarica 3.0 project for model-based safety assessment. In

Proceedings of 4th IFAC Workshop on Dependable Control of Discrete Systems, DCDS

2013, pages 127–132, York (Great Britain). IFAC.

Prosvirnova, T. and Rauzy, A. (2012). Système de transitions gardées : formalisme pivot de

modélisation pour la sûreté de fonctionnement. In Barbet, J., editor, Actes du Congrès

Lambda-Mu 18.

116

Bibliography

Rauzy, A. (1993). New algorithms for fault trees analysis. Reliability Engineering & System

Safety, 40(3):203–211.

Rauzy, A. (2002). Mode automata and their compilation into fault trees. Reliability Engi-

neering & System Safety, 78(1):1–12.

Rauzy, A. (2004). An experimental study on iterative methods to compute transient solutions

of large markov models. Reliability Engineering & System Safety, 86(1):105–115.

Rauzy, A. (2008). Guarded transition systems: a new states/events formalism for reliability

studies. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk

and Reliability, 222(4):495.

Reibman, A. and Trivedi, K. (1988). Numerical transient analysis of markov models. Com-

puters & Operations Research, 15(1):19 – 36.

SAE (1996). ARP 4761, guidelines and methods for conducting the safety assessment process

on civil airborne systems and equipment. SAE International, December.

Stamatis, D. H. (2003). Failure mode and effect analysis: FMEA from theory to execution.

ASQ Quality Press.

Stewart, W. (1994). Introduction to the numerical solution of Markov chains, volume 1.

Princeton University Press.

Valiant, L. G. (1979). The complexity of enumeration and reliability problems. SIAM Journal

of Computing, 8(3):410–421.

Vesely, W., Dugan, J., Fragola, J., Minarick, J., and Railsback, J. (2002). Fault tree handbook

with aerospace applications. Technical report, National Aeronautics and Space Adminis-

tration.

Walker, M. and Papadopoulos, Y. (2009). Qualitative temporal analysis: Towards a full

implementation of the fault tree handbook. Control Engineering Practice, 17(10):1115–

1125.

Zhao, Y. Q. and Liu, D. (1996). The censored markov chain and the best augmentation.

Journal of Applied Probability, 33(3):623–629.

117

A. Guarded Transition Systems

As defined in [Prosvirnova and Rauzy 2012], a Guarded Transition System (GTS) is a quin-

tuple 〈V,E, T,A, ι〉, where:

• V = S] F is a set of variables, divided into two disjoint subsets: the subset S of state

variables and the subset F of flow variables.

• E is a set of events.

• T is a set of transitions. A transition is a triple 〈e,G, P 〉, denoted as e : G→ P , where

e ∈ E is an event, G is a guard, i.e. a Boolean formula built over V , and P is an

instruction built over V , called the action of the transition. The action modifies only

state variables.

• A is an assertion, i.e. an instruction built over V . The assertion modifies only flow

variables.

• ι is the initial assignment of variables of V .

In a GTS, states of the system are represented by variable assignments. A transition

e : G → P is said fireable in a given state σ if its guard G is satisfied in this state, i.e. if

G(σ) = true. The firing of that transition transforms the state σ into the state σ′ = A(P (σ)),

i.e. σ′ is obtained from σ by applying successively the action of the transition and the assertion.

Guarded Transition Systems are implicit representations of labeled Kripke structures, i.e.

of graphs whose nodes are labeled by variable assignments and whose edges are labeled by

events. The so-called reachability graph Γ = 〈Σ,Θ〉 of a GTS 〈V,E, T,A, ι〉 is the smallest

Kripke structure such that:

• ι ∈ Σ.

• If σ ∈ Σ, e : G → P is a transition of T and G(σ) = true (the transition is fireable in

σ), then σ′ = A(P (σ)) ∈ Σ and e : σ → σ′ ∈ Θ.

If exponential distributions are associated with events of E, the Krypke structure Γ = 〈Σ,Θ〉
can be interpreted as a Continuous Time Homogeneous Markov Chain (for sake of brevity

we shall just write Markov Chain in the remainder of the article). The reliability indicators

(such as system unavailability) can be defined by associating a reward (a real number) with

each state of the chain.

119

	Cover
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Context and Related Work
	Context
	The AltaRica 3.0 project

	Related Work
	Calculation and Reduction Techniques of Large Markov Chains
	Path-based Approaches
	Aggregation Techniques

	Contributions to the Quantitative Safety Analyses of Large and Complex Systems with Markov Chains

	Core Algorithm, Generation of the Most Useful Part of a Markov Chain
	Markov Chains: Definitions, and Calculation
	Introduction
	Definitions
	Illustration, the Case of a Repairable System
	Transient Solutions of Markov Chains

	Understanding Markov Chains of Large and Safe Systems
	Physical Interpretations of a Markov Chain
	Probability Distributions in Large Systems

	Partial Generation: the Method
	Dijkstra's algorithm
	The Relevance Factor
	From Guarded Transition Systems to Markov chains and Safety Indicators

	Quality of the Exploration, Bounds on the Reliability Indicators
	The Sink
	Using the Sink
	Towards a Better Sink

	Summary

	Experiments
	Targeting the Examples
	Studied Systems
	Fault Tolerant Database
	Computing Modules
	Oil Production System
	Emergency Nuclear Power Plant Power Supply
	Distributed Database

	Teachings of the Examples

	Prototype and Tools
	Overview of the Tool-chain
	GTSLimMark: Partial Generation of the Reachability Graph
	Data Structures
	Initial State(s)
	Using Synchronizations of AltaRica 3.0 Models
	Limiting the Exploration
	Remaining Candidates

	PyGTS: Project and Result Management
	The PyGTS Package
	Database
	Multitasking
	Handling Results
	Evaluation of the Run-time Complexity

	Bottlenecks

	Conclusions and Outlooks
	Summary
	Towards a better relevance factor
	Towards an adaptive calculation method

	Bibliography
	Appendix Guarded Transition Systems

