
HAL Id: tel-01230939
https://theses.hal.science/tel-01230939

Submitted on 19 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nitrogen use efficiency inwheat in bread wheat (T.
aestivum L.) : breeding & gene discovery

Fabien Cormier

To cite this version:
Fabien Cormier. Nitrogen use efficiency inwheat in bread wheat (T. aestivum L.) : breeding & gene
discovery. Agricultural sciences. Université Blaise Pascal - Clermont-Ferrand II, 2015. English. �NNT :
2015CLF22574�. �tel-01230939�

https://theses.hal.science/tel-01230939
https://hal.archives-ouvertes.fr


 

 

Université Blaise Pascal 

N° D.U. : 2574 

Université d’Auvergne 

Années  2012-2015 

 

 

Ecole Doctorale Sciences de la Vie, Santé, Agronomie, Environnement  

N° d’ordre : 667 

 

THESE DE DOCTORAT 

Présentée à l’Université Blaise Pascal pour l’obtention du grade de 

DOCTEUR D’UNIVERSITE 

Spécialité : Physiologie et génétique moléculaires 

 

 

 

NITROGEN USE EFFICIENCY IN BREAD  

WHEAT (T. AESTIVUM L.): 

BREEDING & GENE DISCOVERY 

 

Soutenue le 27 mai 2015 par 

Fabien CORMIER 

 

 

Directeur de thèse : Sébastien PRAUD 

Co-encadrant de thèse : Jacques LE GOUIS 

 

 

Composition du jury 

Mathilde CAUSSE Rapporteur 

Philippe BRABANT Rapporteur 

Brigitte MANGIN Examinateur 

Jean-François RAMI Examinateur 

Christophe TATOUT Président 

Jacques LE GOUIS Co-encadrant 

Sébastien PRAUD Directeur de thèse 

 

 

Travaux réalisés dans le cadre d’une convention CIFRE, avec l’aide de l’ANRT 



 

 



 

 

BIOGEMMA 

Centre de recherche de Chappes, Route d’Ennezat, Chappes, France 

 

UMR 1095 INRA / UBP GDEC 

5 chemin de Beaulieu, Clermont‐Ferrand, France 

Université Blaise Pascal, Aubière, France 

 

 

  



 

 

  



 

 

This PhD thesis (129/2012) was funded by the ANRT (Association Nationale de la Recherche et de la 

Technologie) and Biogemma. Phenotypic data were obtained thanks to the support of the ANR (Agence 

National de la Recherche) from the ProtNblé project (06 GPLA016). INRA (Institut National de la 

Recherche Agronomique) participated to travel expenses. CIMMYT (International Maize and Wheat 

Improvement Center) provided visiting student facilities. 

 



 

 

  



 

 

PUBLICATIONS  

 Cormier
 
F, Lafarge

 
S, Praud

 
S, Le Gouis

 
J. A genome-wide identification of epistatic 

interactions to reconstruct nitrogen use efficiency pathways in wheat (Triticum aestivum 

L.). In prep 

 Cormier F, Foulkes J, Hirel B, Moenne-Loccoz Y, Gouache D, Allard V, Le Gouis J. 

Breeding for increased Nitrogen Use Efficiency : a review for wheat. Plant Breeding. 

Expected submission: April 2015 

 Cormier F, Ly D, Praud S, Le Gouis J, Crossa J. Improving genomic prediction using a 

GWAS-based method to pre-select marker in multi-environment data. Expected 

submission: April 2015 

 Ly D, Huet S, Gauffreteau A, Cormier F, Rincent R, Jannink JL, Charmet G (2015) 

Genomic selection for adaptation breeding: Whole-genome prediction of the response to 

environmental stress in bread wheat. Submitted to Genetics Selection Evolution 

 Cormier
 
F, Throude

 
M, Ravel C, Lafarge

 
S, Praud

 
S, Le Gouis

 
J (2015) Detection of 

natural variants of NAM-A1 in bread wheat. Submitted to Agronomy 

Cormier F, Le Gouis J, Dubreuil P, Lafarge S, Praud S (2014) A genome-wide 

identification of chromosomal regions determining nitrogen use efficiency components in 

wheat (Triticum aestivum L.).  Theor Appl Genet 127:2679-2693 

Cormier F, Faure S, Dubreuil P, Heumez E, Beauchêne K, et al. (2013) A multi-

environmental study of recent breeding progress on nitrogen use efficiency in wheat 

(Triticum eastivum L.). Theor Appl Genet 126:3035–3048 

 

PRESENTATION 

*speaker Cormier F*, Le Gouis J, Lafarge S, Praud S (2015) Defining QTL boundaries from 

GWAS results. Plant and Animal Genome - session: QTL cloning. San Diego, USA, 

January 11 

 Le Gouis J*, Cormier F, Faure S, Dubreuil P, Heumez E, et al. (2014) Nitrogen use 

efficiency in bread wheat: breeding tools and recent genetic progress. Wheat Breeding 

2014: Tools, targets and progress. Rothamsted Research, Harpenden, UK, January 30 

 Cormier F*, Le Gouis J, Lafarge S, Praud S (2014) Nitrogen Use Efficiency: From Field 

Trial to Gene Discovery. Plant and Animal Genome - session: Engineering NUE. San 

Diego, USA, January 11 

 

  



 

 

 



 

 

CASTING 

 

 

DIRECTORS 
 

Sebastien Praud 

Jacques Le Gouis 

Jeune Maître Yoda  

Dalaï-lama hyper-réactif 

 

 

ACTRESSES / ACTORS 
 

Madame Hebert 

Mickael Throude 

Agathe Mini 

Gaetan Touzy 
 

Stéphane Lafarge 

Pierre Dubreuil 
 

Lénaïck Jehannin 

Océane De Dios 
 

Hien Le 
 

Delphine Ly 
 

José Crossa 
 

Nadine Duranton 

Ariane Colin 
 

Magalie Leveugle 
 

Groupe méthodo 

Membres des comités de thèse 
 

Adeptes du 10h30 

Adeptes du 16h30 

Adeptes de l’abri-bus 

Gens du lino 

Gens de la moquette 
 

CE biogemma 

Convention collective 
 

Membres des apéros de la Victoire 

Membres des barbecs en hauteur 
 

6.1.Y 

Agros M 

Noyau dur 

Colocdelille63 1.0 

Colocdelille63 2.0 
 

Cormier Moisan 

Ma mère, mon père 

Anti-oxydant mentolés 

Valery Damidot no limit 

Artiste performeuse 

Chasseur alpin cantalien 
 

Flamant rose discovery 

Coach sportif  
 

Maman 

Voyagiste 
 

Orthophoniste  
 

Experte Bui-buiteuse  
 

Papi Crossa 
 

Reine des chambres froides 

Break danseuse 
 

Metaleuse blonde 
 

Fabricants de casse-têtes 

Aiguilleurs du ciel 
 

Amateurs de bon café 

Politologues sexologues 

Cheminots 

Chefs de cuisine moléculaire 

Torréfacteurs moulineurs 
 

Centre de loisirs 

Robert Badinter 
 

Expert en architecture gothique 

Bronzés mono-face  
 

Danseurs contemporains 

Décontractants  

Qui dure 

Infirmiers  

Cuisiniers psychanalistes 
 

Petite sœur et al. 

Sans qui je ne serais pas là 

 

 

 



 

 



 

 

SUMMARY 

GENERAL INTRODUCTION .................................................................................................... 17 

CONTEXT OF THE STUDY ................................................................................................................19 

RESEARCH STRATEGY .....................................................................................................................20 

PART I: THE REVIEW ............................................................................................................... 23 

BREEDING FOR INCREASED NITROGEN USE EFFICIENCY: A REVIEW FOR WHEAT ..25 

DEFINITION OF NUE AND RATIONALE FOR ITS IMPROVEMENT ..........................................27 

TRAITS INFLUENCING N-UPTAKE EFFICIENCY .........................................................................30 
Root size and morphology ................................................................................................................................ 30 
Root N transporter systems ............................................................................................................................... 31 
Interaction with micro-organisms ..................................................................................................................... 34 

TRAITS INFLUENCING N-UTILIZATION EFFICIENCY ...............................................................37 
Nitrate assimilation ........................................................................................................................................... 37 
Leaf and canopy photosynthesis per unit N ...................................................................................................... 39 
Post-anthesis N remobilisation and senescence dynamics ................................................................................ 41 
Optimizing grain protein concentration and composition ................................................................................. 43 

BREEDING FOR NUE .........................................................................................................................44 
Estimation of genetic progresses ...................................................................................................................... 44 
Impact of G × N interactions on direct/indirect selection efficiency ................................................................ 45 
Molecular breeding ........................................................................................................................................... 47 
Prospect on new strategy: heterosis .................................................................................................................. 51 

EXTENT AND LIMITATION OF THE DATASET ...........................................................................67 

Field trials ..............................................................................................................................................67 

Tested genotypes ....................................................................................................................................68 

PART II: ONCE UPON A TIME ................................................................................................ 71 

A MULTI-ENVIRONMENTAL STUDY OF RECENT BREEDING PROGRESS ON 

NITROGEN USE EFFICIENCY IN WHEAT .....................................................................................73 

INTRODUCTION .................................................................................................................................75 

MATERIALS AND METHODS ...........................................................................................................77 
Plant materials and field experiments ............................................................................................................... 77 
Phenotypic data ................................................................................................................................................. 78 
Mixed-model and variance decomposition ....................................................................................................... 78 
Heritability ........................................................................................................................................................ 79 
Effect of the year of registration ....................................................................................................................... 79 
Software ............................................................................................................................................................ 80 

RESULTS ..............................................................................................................................................80 
Grain yield and N efficiencies .......................................................................................................................... 80 
Variance components and heritability .............................................................................................................. 80 
Year of registration effect on genetic additive effect ........................................................................................ 82 
YR effect on G × N interaction ......................................................................................................................... 84 

DISCUSSION ........................................................................................................................................85 
Genetic progress assessment method ................................................................................................................ 86 
Genetic progress between 1985 and 2010......................................................................................................... 87 
Breeding efficiencies for different N levels ...................................................................................................... 89 

CONCLUSIONS....................................................................................................................................90 

A GWAS-BASED METHOD TO SPEED UP QTL CLONING .........................................................95 

Speeding QTL cloning ...........................................................................................................................95 

Defining QTL boundaries ......................................................................................................................96 

What are false positives? .......................................................................................................................96 



 

 

A method to define QTL ........................................................................................................................97 

Gene discovery strategy .........................................................................................................................98 

PART III: LOOKIN’ FOR HOT GENES ................................................................................. 101 

A GENOME-WIDE IDENTIFICATION OF CHROMOSOMAL REGIONS DETERMINING 

NITROGEN USE EFFICIENCY COMPONENTS IN WHEAT (T. AESTIVUM L.) .....................103 

ABBREVIATIONS .............................................................................................................................105 

INTRODUCTION ...............................................................................................................................105 

MATERIALS AND METHODS .........................................................................................................107 
Phenotypic data ............................................................................................................................................... 107 
Linkage disequilibrium ................................................................................................................................... 108 
Association mapping study ............................................................................................................................. 108 
Phenotype simulation and power .................................................................................................................... 109 
Prediction ........................................................................................................................................................ 110 
Colocalisation and network approach ............................................................................................................. 110 

RESULTS ............................................................................................................................................111 
Genetic map and linkage disequilibrium ........................................................................................................ 111 
Power assessment ........................................................................................................................................... 111 
GWAS results ................................................................................................................................................. 113 
Predictions ...................................................................................................................................................... 113 
Colocalisation network ................................................................................................................................... 114 

DISCUSSION ......................................................................................................................................116 
QTL definition and power .............................................................................................................................. 116 
Power, locus heritability, and genetic determinism ........................................................................................ 117 
Candidate genes and comparison with previously published QTL ................................................................. 118 
Breeding strategies .......................................................................................................................................... 119 

CONCLUSIONS..................................................................................................................................120 

AN EXAMPLE OF CANDIDATE GENE DISCOVERY: NAM-A1 ................................................125 

NAM-A1 a good candidate gene ...........................................................................................................125 

SNP detection.......................................................................................................................................126 

Effect of NAM-A1 haplotypes ..............................................................................................................127 

Prediction of 3D structure ....................................................................................................................128 

Conclusion on NAM-A1 .......................................................................................................................130 

PART IV: ALL TOGETHER NOW ......................................................................................... 133 

IMPROVING GENOMIC PREDICTION USING A GWAS-BASED METHOD TO PRE-

SELECT MARKERS IN MULTI-ENVIRONMENT TRIALS ........................................................135 

INTRODUCTION ...............................................................................................................................137 

RESULTS ............................................................................................................................................138 
Variance analysis ............................................................................................................................................ 138 
Effect of SNP number and rank on prediction of additive genetic values ...................................................... 138 
Effect of the number of SNPs and section rank on G × E interactions prediction .......................................... 139 

DISCUSSION ......................................................................................................................................142 

MATERIALS AND METHODS .........................................................................................................144 
Experimental datasets ..................................................................................................................................... 144 
Multi-environment genome-wide association study (MET-GWAS)  ............................................................. 145 
Estimation of genetic values and genotype-by-environment interactions ....................................................... 145 
Genomic predictions of environmental values ................................................................................................ 146 
SNP pre-selection ........................................................................................................................................... 146 
Cross-validation design and accuracy ............................................................................................................. 147 

AND EPISTASIS IN ALL OF THAT? ................................................................................................149 

Is it important? .....................................................................................................................................149 



 

 

Genome-wide detection of epistatic interaction ...................................................................................151 

Adding epistatic interaction in GS model ............................................................................................153 

GENERAL DISCUSSION .......................................................................................................... 157 

APPLICATIONS IN BREEDING .......................................................................................................159 
Impact of past selection .................................................................................................................................. 159 
Phenotypic selection ....................................................................................................................................... 160 
Changing NUE genetic architecture ............................................................................................................... 161 

IMPROVING METHODOLOGY .......................................................................................................163 

Statistical models ............................................................................................................................................ 163 
Gene discovery strategy .................................................................................................................................. 164 
Complementarity, redundancy, and choice ..................................................................................................... 167 

GENERAL CONCLUSION ................................................................................................................168 

ANNEXES .................................................................................................................................... 171 

SUPPORTING INFORMATION ON PART II ....................................................................... 173 

SUPPORTING INFORMATION ON PART III ...................................................................... 183 

SUPPORTING INFORMATION ON PART IV ...................................................................... 203 

 

  



 

 

FIGURES 

GENERAL INTRODUCTION .................................................................................................... 17 

Figure 1: Cost of production in wheat. ..................................................................................................19 

PART I: THE REVIEW ............................................................................................................... 23 

Figure 1: Summary of microbial effects. ...............................................................................................35 

Figure 2: Main N assimilation pathways in wheat. ................................................................................37 

Figure 3: (A) Trial locations and (B) dendrogram of environmental covariates ...................................67 

Figure 4: (A) Dendrogram of individuals and (B) percentage of variance explained by axis in the (C) 

principal component analysis. ................................................................................................................69 

PART II: ONCE UPON A TIME ................................................................................................ 71 

Figure 1: Boxplot of GY for 225 wheat cultivars ..................................................................................80 

Figure 2: Grain yield best linear unbiased estimators (BLUEs) at low N level (LN) ............................80 

Figure 3: Boxplot of (A) NUE genetic value and (B) NUE genetic values corrected for quality and 

precocity effects .....................................................................................................................................82 

Figure 4: Boxplot of GY genetic values by year of release and by N treatment ...................................85 

Figure 5: Boxplot of NUE genetic values by year of release and by N treatment .................................85 

Figure 6: Flow-chart of quantitative traits dissection. ...........................................................................95 

Figure 7: Meiotic recombination rate on wheat chromosome 3B ..........................................................96 

Figure 8: Method used to define QTL from GWAS result. ...................................................................97 

Figure 9: Summary of simulation study results. ....................................................................................98 

PART III: LOOKIN’ FOR HOT GENES ................................................................................. 101 

Figure 1: Influence of trait heritability and -log10(P-value) threshold on the relation between locus 

heritability and power of detection ......................................................................................................113 

Figure 2: Prediction of NUE values as a function of overall adjusted mean for 214 wheat lines. .......115 

Figure 3: Prediction similarity (r²env / r²adj) .......................................................................................115 

Figure 4: Network of QTL colocalisations ..........................................................................................116 

Figure 5: GNY5 and Gpc-B1 are homeologous. ..................................................................................125 

Figure 6: Predicted 3D structure of NAM-A1 NAC domain ...............................................................129 

PART IV: ALL TOGETHER NOW ......................................................................................... 133 

Figure 1: Evolution of genetic value prediction accuracy of (A) NUE and (B) NHI. .........................139 

Figure 2: Evolution of G × E interaction prediction accuracy of (A) NUE and (B) NHI in (1) CV1, (2) 

CV2, and (3) CV3. ...............................................................................................................................140 

Figure 3: 3D plot of r²adj in function of Sum of r²snp and QTN number for 28 traits. ...........................150 

Figure 4: Diagram of epistatic interactions analyses. ..........................................................................152 

GENERAL DISCUSSION .......................................................................................................... 157 

Figure 1: Summary of past genetic progresses assessed in Part II. ......................................................159 

Figure 2: Method that should be tested to define QTL from GWAS result. ........................................166 

ANNEXES .................................................................................................................................... 171 

 

  



 

 

TABLES 

GENERAL INTRODUCTION .................................................................................................... 17 

Table 1: Objectives of research and part of the manuscript concerned. ................................................21 

PART I: THE REVIEW ............................................................................................................... 23 

Table 1: Assessment of yearly percent genetic gain in nitrogen use efficiency (NUE) .........................44 

Table 2: Efficiency of selection in high N environment for low N environment ..................................46 

Table 3: List of ‘omics studies related to nitrogen use efficiency in wheat. ..........................................49 

Table 4: List of association mapping studies related to nitrogen use efficiency in wheat. ....................50 

PART II: ONCE UPON A TIME ................................................................................................ 71 

Table 1: Description of the experimental design where wheat genotypes were evaluated at high ........77 

Table 2: Mean, standard deviation (sd), heritability (h²g) and genetic variance decomposition ...........81 

Table 3: Year of registration (YR) effects on agronomic traits .............................................................83 

Table 4: Decomposition of G × N interaction variance (%) for NUE and GY ......................................84 

PART III: LOOKIN’ FOR HOT GENES ................................................................................. 101 

Table 1: Description of measured and calculated traits assessed .........................................................106 

Table 2: SNP used in association .........................................................................................................111 

Table 3: QTL detected on a wheat association panel for 28 traits. ......................................................112 

Table 4: Summary of GWAS results predictions .................................................................................114 

Table 5: NAM-A1 haplotype frequencies on two collections of bread wheat genotypes. ...................127 

Table 6: Mean agronomic values for the two NAM-A1 SNP ...............................................................128 

PART IV: ALL TOGETHER NOW ......................................................................................... 133 

Table 1: Estimation of variance components. ......................................................................................138 

Table 2: Effect on accuracy of adding G × E prediction and SNP pre-selection. ................................141 

Table 3: Effect on accuracy of adding epistasis predictor selecting SNP × SNP ................................155 

GENERAL DISCUSSION .......................................................................................................... 157 

Table 2: Summary of methods and results. ..........................................................................................168 

Table 3: Summary of improvements and further investigations ..........................................................169 

ANNEXES .................................................................................................................................... 171 

 

 

 

  



 

 

 

  



 

 

 

 

GENERAL 

INTRODUCTION 

  



 

 

 



19 

 

CONTEXT OF THE STUDY 

 

Our work was motivated by a global will to increase knowledge on nitrogen (N) use efficiency (NUE) in 

wheat as N is the most used fertiliser (e.g. in Europe; Fertilizer Europe 2012) and wheat a major crop (FAO 

2012). Indeed, since the Green Revolution, yields have increased simultaneously with fertiliser application. 

Due to environmental damages (Goulding 2004; Pathak et al. 2011) and the link between the cost of energy 

and the cost of N fertiliser (Rothstein 2007), it clearly appears that this agronomic model is not sustainable. 

However, demand for grain is still increasing (FAO 2011). Thus, we need to increase the production per 

area and per quantity of N applied, making research on NUE essential. In this sense, internationnal policies 

set fertiliser reduction as a priority, implying for example in France, discussions about new modalities of 

wheat varieties registration. In fact, varieties would be tested at both high N and low N, and a maintained 

yield at low N could give a bonus in the registration score. Thus, NUE could also become a major breeding 

issue and seed companies would have to adapt their breeding strategies. Biogemma is a private 

biotechnology company funded by French seed companies (mainly Limagrain) and a technical agricultural 

institute (Arvalis). Biogemma is therefore deeply concerned. Regarding French farmers, N fertilisers are 

the second main expenditure (14 %) in the total cost of production behind amortisation (17 % included in 

mechanization, Fig. 1). Moreover, this cost of production is very close to the market price (around 200€ kg 

ha
-1

; Arvalis institut du végétal). Thus, wheat production is mainly profitable due to agricultural subsidies. 

In a context of decreasing subsidies, the reduction of N supply could be a solution to increase and/or 

maintain farmers’ benefits.     

 

 
 

Figure 1: Cost of production in wheat. Arvalis institut du végétal-Unigrain, Cerfrance, 2011. 

 

In 2012, this PhD thesis also started in the context of an important increase in tools and resources dedicated 

to the research in wheat genetics while the bread wheat genome remains unsequenced due to is complexity 

(hexaploid, 7 × 3 chromosomes and a size of 17 Gb with 85 % repeated elements). However, from 

February 2012 to July 2013, the still on-going International Wheat Genome Sequencing Consortium 

(IWGSC) released high quality genomic sequences for all chromosomes (Eversole et al. 2014), and the 
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largest chromosome (3B) was the first one for which a reference sequence was produced in 2014 (Choulet 

et al. 2014). Moreover, using the methodology of Mayer et al. (2011), Biogemma developed a wheat 

genome zipper which mimics the wheat genome sequence. Its first version was released internally just 

before the beginning of our work. At the same time, as high-throughput genotyping methods became 

accessible for most of the members of the wheat community, the amount of available SNP was drastically 

increased creating the hope that QTL detection, fine mapping and gene cloning would be more easily done 

in wheat. In this sense, a 90K Illumina SNP chip became available in 2012 (Wang et al. 2014).  

All these newly available resources permitted a fresh look on the phenotypic dataset which arose from the 

ProtNBlé project (2006-2009). This project aimed to characterize the behaviour of wheat elite germplasm 

at different N regimes. Added to that, our study took place when the BreedWheat project (2011-2019) was 

testing a similar panel in similar environmental conditions. Thus, results would be easily tested on an 

independent dataset. 

Finally, NUE became an economic, political, and research issue and genetic and genomic resources 

experienced a burst in bread wheat. This favourable context led to a PhD proposal. Discussions were first 

engaged between Biogemma and me, after I finished my Master internship in a Limagrain wheat breeding 

station (Verneuil l’Etang, France). Biogemma was interested in the genetic of NUE in wheat, while I was 

mainly interested in quantitative genetic methods. The GDEC (Genetic, Diversity, and Ecophysiology of 

Cereals) was also associated to this project. Indeed, the GDEC is a department of INRA-UBP (French 

National Institute for Agricultural Research, University Blaise Pascal) which is a major pole of research on 

cereals. Moreover, its close location facilitates interactions. The Head of the “genetic and genomic of 

cereals” research group at Biogemma Sébastien Praud, directed this PhD thesis. It was also necessary to 

have aboard a wheat agronomist specialized in N. Jacques Thus, Le Gouis (GDEC) co-supervised this 

work. This particular situation of a private/public PhD thesis is governed by a CIFRE contract (industrial 

contract of formation through research) signed with the ANRT (French National Institut of Research and 

Technology) which subsidizes private companies hosting PhD students. A collaboration was also set with 

José Crossa and the CIMMYT (International Maize and Wheat Improvement Center) which provided 

visiting student with facilities for six months.  

 

 

RESEARCH STRATEGY 

 

NUE needs to be improved in wheat. This major topic can be addressed from different angles: research on 

agronomic practices, fertiliser chemistries or genetic improvements. In agreement with Biogemma and 

GDEC expertises and motivations, we focused on the genetic improvement aspect. The main problematic 

was: “How can we achieve an efficient breeding for enhanced NUE?”  

Breeding is historically achieved through phenotypic selection. Basically, the studied trait is assessed in 

field trials representing the target environments and on a wide range of progenies from bi-parental crosses 
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or multi-crosses. Selected lines are self-pollinated and transferred to the next year of trial. After 7-8 cycles 

of this selection and genetic fixation, a few “fixed” lines are sent to the national registration trials. 

Nowadays, fixation cycles tend to be shortened by the use of doubled haploids. This selection can also be 

combined with a selection based on specific genotypic information. This is classically named “marker-

assisted selection” (MAS). Genomic selection (GS) is an extension of MAS in which all the genotypic 

information is used at the same time. Therefore, we will include GS in MAS methods. 

Before defining the breeding strategy, for both phenotypic selection and MAS, we need to answer several 

questions (Table 1) addressing these three inseparable topics: (i) the environments in which lines will be 

selected and in which varieties will be cultivated, (ii) the germplasm used in breeding and (iii) the targeted 

traits. Thus, the questions we adressed during this PhD thesis (Table 1) were mostly discussed regarding 

these three topics. For example, after a review of NUE in wheat, we were interested in analysing the 

variance of NUE-related traits, keeping in mind that these results depend on the tested environments, 

germplasm, and traits.  

 

Table 1: Objectives of research and part of the manuscript concerned. 
 

Questions Part 

What is the state of the art of NUE in wheat? I 

What is the variance of NUE-related traits? 

II 
 Is phenotypic selection possible? 

 In which environment? 

 Is it linked to the past breeding efforts? 

 Does it allow us powerful association mapping studies?  
II, III 

 How can we find genes involved in NUE-related traits genetic determinisms? 

 In varieties breeding values (additive or epistatic effects)? III, IV 

 In varieties responses to environmental stresses? 
IV 

 Which genotypic information should we use in MAS? 

 

We started our work by an analysis of phenotypic variance as the exploitation of this variance is the basis 

of all our approaches. Indeed, it influences efficiency of phenotypic selection. It also influences efficiency 

of linkage disequilibrium mapping methods which addresses the specific question of phenotype/genotype 

associations in MAS. We worked on an historical panel. Thus, we also assessed past breeding progresses. 

Then, we tried to relate phenotypic and genotypic variance in order to dissect the genetic determinisms of 

NUE-related traits and to improve MAS methods. Added to that, our work was an opportunity to develop 

or improve such methods. Thus, across the different questions listed in Table 1, methodological aspects 

took a significant part of my research.  
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Two papers were already published and three are ready to be submitted or under reviewing process. 

Regarding the number of these publications and their complementarity, we found it appropriate to present 

to the Jury a thesis under the form of articles. Consequently, this manuscript is presented as a compilation 

of these papers linked by more general discussions and/or further investigations. In each sections, authors’ 

contributions are explicitly described. I hope that you will appreciate what you read. Fabien 
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ABSTRACT: Nitrogen fertiliser is the most use nutrient in modern agriculture and represents significant 

environmental and production costs. In the meantime, the demand for grain increase and production per 

area has to increase. In this context, breeding for an efficient use of nitrogen became a major breeding 

objective. In wheat, nitrogen is required to maintain a photosynthetically active canopy ensuring grain yield 

and to produce storage protein in the grain hence end-use quality. In different situations of nitrogen 

management, genetic, metabolic and physiological factor influencing nitrogen uptake and utilization are 

reviewed. Their implications in breeding are discussed.  
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DEFINITION OF NUE AND RATIONALE 

FOR ITS IMPROVEMENT 

 

The concept of nitrogen use efficiency (NUE) has 

been widely used to characterize plant behaviour 

regarding different levels of nitrogen (N) 

availability. It is important to distinguish the 

concept of NUE and the NUE as a phenotypic trait.  

Several definition and evaluation methods have 

been suggested of which some of them are actually 

named “nitrogen use efficiency” (reviews in Good 

et al. 2004, Fageria et al. 2008). Moll et al. (1982) 

defined the most widespread NUE trait definition, 

at least among breeders, computed as the grain 

weight divided by the total N available to plant, and 

separated it into two components: 

 

NUEMoll = NUpE × NUtE 

 

with NUpE the N uptake efficiency calculated as 

the N in plant at harvest divided by the available N 

in soil, and NUtE the utilization efficiency 

calculated as the grain dry mass divided by the total 

amount of N in plant at harvest. Then, to compute 

these values when comparing different genotypes, 

there are two main issues: (i) the complex 

estimation of N available to crop, and (ii) the 

estimation of the total amount of N in the plant.  

N available to crop results from residual N before 

sowing, aerial N deposition, mineralization, and the 

actual availability of applied N. Estimation of these 

components is complex and an often used proxy has 

been the amount of applied mineral N fertiliser 

summed to an estimation of residual N in soil.  

Bingham et al. (2012) on 15 barley genotypes 

compared different methods to estimate available 

N. The first one was independent to the genotype 

and used only residual soil N after winter and 

applied N fertiliser. The two others were dependent 

to the genotype and required a control without N 

fertilisation (N
0
). Available N for the fertilized 

treatment (N
T
) is then estimated either (i) by adding 

the total plant N at harvest for N
0
 to the applied N 

fertiliser or (ii) by adding soil N at harvest to (i). 

Bingham et al. (2012) showed that genotype 

rankings are very similar between the three methods 

and that the simplest method can be used to start 

with.  

Although, as discussed in Cormier et al. (2013), 

these can lead to overestimation of NUE in low N 

situations and underestimation in high N situations 

making comparison and/or joint analyses of 

different studies difficult. Within a large collection 

of genotypes, Cormier et al. (2013) suggested 

estimating available N from the distribution of the 

total plant N at harvest. They proposed to use N 

absorbed by the top 5% genotypes as an estimation 

of N that was available to the whole series.  

To estimate the total amount of N in the plant, 

usually only the aerial parts are sampled. Not taking 

into account N in the roots would increase NutE 

and decrease NupE. However, measuring the 

quantity of roots N (in the first 30 cm of soil layer) 

of a set of cultivars grown at two N levels, Allard et 

al. (2013) showed that only a small fraction of total 

N is partitioned to the roots (about 4 % or 10 kg ha
-1

 

at harvest). Here again the genotype rankings were 

very similar with or without root N.  

Looking at the successes and debates that agitated 

other scientific community may help to improve the 

approaches on NUE. Ecologists developed another 

decomposition of NUE. Originally called “nitrogen 

utility”, Hirose (1971) defined it as the flux ratio of 

dry mass productivity for a unit of N taken up from 
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the soil. Berendse and Aerts (1987) suggested 

dividing it into two components to make it 

biologically meaningful in a context of perennial 

species in a steady-state system (i.e. annual biomass 

production = annual biomass loss; annual N uptake 

= annual N loss). Thus, NUE was defined as the 

product of the nitrogen productivity rate (NP; dry 

mass growth per unit plant N) and the mean time 

residence of N (MRT). Later, Hirose (2011) 

revisited this definition and specified how it should 

be calculated to make it also suitable for non-steady 

state system such as annual crops.  

Compare to Moll et al. (1982), this definition has 

the interest to deliver a dynamic vision of NUE 

directly related to photosynthetic activity along the 

plant cycle. Nevertheless, it only focuses on 

utilization and plant efficiency to extract N from the 

soil is not taken into account. However, in annual 

crops, this is an important parameter to consider as 

substantial amounts of N fertiliser are applied, 

implying environment and economic issues. 

In a similar way, in the water use efficiency (WUE) 

community, it has been explicitly decided not to 

account for plant available water, and the focus has 

been on viewing yield as the final objective through 

Passioura’s (1977) seminal equation:  

 

GY = WU × WUE × HI 

 

with WU the water use (mm transpired), WUE the 

water use efficiency (kg aboveground DM / mm 

transpired) and HI the harvest index (kg grain / kg 

above-ground dry matter).  

Paralleling to NUEMoll formalization, NUtE would 

then be equivalent to WUE × HI. NUpE would be 

an equivalent to WU divided by plant available 

water. The approach could be taken further by 

simply targeting nitrogen use (NU) as kg N 

absorbed by the plant instead of NUpE; in much the 

same way that WU is seen as (arguably) the most 

important target in improving water response 

(Blum, 2009). This would also avoid dividing an 

already rather imprecise variable (NU) by an even 

more imprecise one (available N).  

Yet, environmental and economic issues are 

different in NUE where minimizing the loss of 

fertiliser applied (i.e. by leaching) and maximizing 

N uptake for increasing grain protein concentration 

lead to focus also on NUpE. Moreover, not to 

account for N available to crop imply to use 

genotypes dependent methods (i.e. repeated 

controls) to compare varieties behaviour between 

different stress intensities or to characterize 

genotypes × stress interaction, leading to 

confounding effects.  

Critiques of the initial WUE equation have heavily 

contributed to identify and prioritize approaches 

and traits. The first has been to recognize that the 

three terms of the equation are clearly not 

independent (Blum, 2009; Tardieu, 2013). 

Typically, as WU increases, WUE decreases 

because WU scales to biomass (Blum, 2009), as 

does N absorption (Sadras and Lemaire, 2014; 

Lemaire et al. 2007). Consequently, an excessively 

narrow focus on WUE may prove 

counterproductive (Blum, 2009). Although, the 

underlying physiological reasons for this are very 

different between nitrogen and water, framing the 

nitrogen community in much the same way as the 

water community would help in placing the focus 

NU and on systematically accounting for total 

biomass when evaluating NU, as advocated for by 

Sadras and Lemaire (2014). As in water and 

ecologist communities, research on NUE can also 
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be disconnected of the Moll et al. (1982) NUE 

definition and focus on a dynamic approach. 

Indeed, NUpE and NUtE are calculated at the end 

of the crop cycle. Although total N in plant varies 

during the cropping season and have a critical 

interaction with HI: once grains are growing, they 

become a N sink, and growers, breeders, and the 

wheat industry as a whole must manage the 

contradictory objective of high yields and high 

protein contents (Feil, 1997; Jeuffroy et al. 2002; 

Oury & Godin, 2007).  

First of all, pre-anthesis and post-anthesis phases 

should be clearly separated. Regarding the post-

anthesis phase, the grain protein deviation (GPD; 

deviation from the yield-protein regression) 

criterion suggested by Monaghan et al. (2001) and 

Oury & Godin (2007) allows to specifically breed 

for high protein without the associated yield 

penalty. Bogard et al.’s (2010) analysis of GPD 

showed that this metric was tightly related to 

another deviation: that between pre-anthesis N 

uptake and post-anthesis N uptake meaning the 

obvious: crops that are both high yielding and high 

in protein content absorb large quantities of 

nitrogen. In other words, Bogard et al.’s (2010) 

analysis places NU as a key factor without focusing 

on NUpE. Looking now to the pre-anthesis phase 

has the advantage of not having to deal with the 

yield-protein trade-off. Studying N impacts on 

yield, grain number per area can become the 

criterion to target instead of yield. Indeed, it allows 

to get rid of kernel weight elaboration, which 

occurs post-anthesis and as suggested by Meynard 

(1987), at least in western European situations, N 

will essentially have an impact on grain number per 

area, and kernel weight will often add noise due to 

other stresses. This would mean that HI would 

essentially be replaced by an FI (fertility index). 

This implies complex phenotyping although it may 

allow a better characterization of N response 

regarding the phenologic stage.  

NUE has been the subject of a wealth of literature 

and underpinning projects for its improvement. 

However, there seems to be consensus on the need 

to increase progresses on NUE in breeding. To the 

best of our knowledge, NUE has not been the target 

of dedicated breeding improvement. Rather, it has 

been improved through indirect selection for yield, 

in those environments targeted by breeding 

programs. Sadras and Richards (2014) have 

suggested that indirect selection for yield serve as a 

benchmark for any alternative approach. Several 

studies have evaluated a posteriori breeding 

improvement in NUE (Ortiz-Monasterio et al. 

1997a; Guarda et al. 2004; Muurinen et al. 2006; 

Cormier et al. 2013). Taking the case of France as 

an example, Cormier et al. (2013) quantified 

NUEMoll improvement at 0.13 kg DM kg
-1

 N year
-1

. 

Supposing an average French yield of 7 t / ha, and 

assuming a reference NUE value between 37.8 kg 

DM kg
-1

 N (Cormier et al. 2013) and 33.3 kg DM 

kg
-1

 N (average value for wheat used in French 

balance sheet N recommendation methods; 

Meynard, 1987), this equates to a saving of around 

6-8 kg N ha
-1

 after 10 years of genetic 

improvement. From this economic standpoint, the 

variations in (fertiliser N / grain price) ratios 

essentially determine the quantity of N applied. The 

impacts of this volatility on on-farm NUE and 

required N savings can be translated into two 

examples. Sylvester-Bradley and Kindred (2009) 

showed that this price ratio in the past 10 years has 

varied from 3 to 9 (Sylvester-Bradley and Kindred, 

2009) leading to a necessity to increase NUE from 
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23.8 to 28.6 kg DM kg
-1

 N. Thus, it would require 

almost 40 years of breeding progress to compensate 

the variations generated by volatile N : grain price 

ratios. Over the same period, 16% of the total 

observed volatility was a variation of N : grain price 

ratio from 5 to 6 (Cohan, 2009) leading to a 

necessity to economize 6-7 kg N ha
-1

 corresponding 

as previously mentioned to 10 years of 

improvement.  

Overall, this leads us to conclude that breeding 

needs to tackle NUE more efficiently than it has 

been doing at the current rate. 

 

 

TRAITS INFLUENCING N-UPTAKE 

EFFICIENCY 

  

Root size and morphology 

 

Nitrate is readily leached down the soil profile and 

consequently the primary root traits to improve for 

enhanced N capture include rooting depth and 

rooting density, especially for post-anthesis N 

uptake (Foulkes et al. 2009). A deeper relative 

distribution of roots could comprise part of an 

ideotype to maximize N capture and further 

improvements in root architecture could focus on 

root proliferation at depth in wheat (Carvalho and 

Foulkes, 2011). Indeed, root length density (root 

length per unit volume of soil) is often below a 

critical threshold for potential nitrate capture of 

around 1 cm cm
-3

 (Barraclough et al. 1989; Gregory 

and Brown, 1989) at lower depths in the rooting 

profile (Ford et al. 2006; Reynolds et al. 2007).  

Genetic variation in root system size has been 

widely reported in wheat (e.g. O'Toole and Bland, 

1987; Hoad et al. 2001; Ehdaie and Waines, 2003; 

Ford et al. 2006), but root distribution varies 

strongly with soil characteristics, nutrient 

availability and mechanical impedance. In wheat, 

the use of synthetic wheat derivatives, incorporating 

genes from the diploid wild species Triticum 

tauschii (D genome) with roots distributed 

relatively deeper (Reynolds et al. 2007) may help in 

the development of cultivars with relatively deeper 

rooting systems. In addition, the wheat-rye 

translocation in ‘Kavkaz’ for the short arm of 

chromosome 1 (1RS) has been observed to have 

increased root biomass at depth (Ehdaie et al. 2003) 

and tall landraces from China and Iran had larger 

root biomass than semi-dwarf cultivars descended 

from CIMMYT breeding material (Ehdaie et al. 

1991; Ehdaie and Waines, 1993, 1997; Ehdaie, 

1995). It may also be possible to increase root 

length density at depth without extra carbon input 

by modifying specific root length (root length per 

root biomass; Carvalho et al. 2014).  Although it is 

well established that plants respond to N deficiency 

by increasing the ratio of root biomass on total plant 

biomass (root dry weight ratio; RDWR) due to the 

functional equilibrium between the growth of the 

root and shoot (Barraclough et al. 1989; Dreccer et 

al. 2000; Robinson et al. 2001), there are to date no 

reports of genetic variation in the dynamic 

responses of RDWR to N supply. 

Direct selection for root system architecture traits 

(length, biomass, density, lateral root dispersion) 

has been associated with improved water and/or 

nutrient uptake in wheat (Hurd, 1964), upland rice 

(Price et al. 2002) and maize (Lynch, 2007). 

Indirect selection for lower canopy temperatures 

might also be taken as an indication of a greater 

root uptake capacity, but higher stomatal 

conductance would produce a similar signal 
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(Reynolds et al. 2009).  Root hairs provide another 

potential mechanism to maximize N capture and 

two genes for root hair elongation, RTH1 and 

RTH3, have been identified in maize 

(Hochholdinger and Tuberosa, 2009). Root 

architecture and root function are likely to be 

multigenic and hence much more difficult to select 

for (Hall and Richards, 2013). Therefore, breeding 

for root characteristics has seldom been 

implemented to date, principally because of the 

difficulties of scoring root phenotypes directly and 

the absence of suitable proxy measurements. 

Nevertheless, marker-assisted selection may be 

especially useful to pyramid multiple traits, such as 

root angle, root length, root weight and root to 

shoot ratio, which are associated with main effect 

quantitative trait locus (QTL) in wheat (Hamada et 

al. 2012; Sharma et al. 2011; Bai et al. 2013), even 

if a better understanding of the biology of these 

traits and the potential synergies and trade-offs 

between traits is required (Lynch et al. 2007). For 

example, the expression of length and density of 

root hairs may be synergistic (Ma et al. 2001) and 

there may be antagonistic interactions between 

biomass allocation to different root classes due to 

assimilate competition (Walk et al. 2006). 

 

Root N transporter systems 

 

In most countries, the commercial mineral forms of 

N commonly applied to crops growing on cultivated 

soils, are anhydrous ammonia, urea, ammonium 

sulphate and ammonium nitrate (Robertson and 

Vitousek, 2009; Andrews et al. 2013).  In addition, 

farmyard manure is also able to supply a 

considerable amount of N fertilisation (Hooda et al. 

2000; Körschens et al. 2013). Mineral N fertilisers 

are particularly soluble for easy assimilation by 

crops. Both urea and ammonia are converted to 

nitrate (NO3
-
) at different rates depending on the 

nature of the soil and of the climatic conditions 

(Jarvis et al. 2011). Thus, NO3
-
 is the main source 

of N for most crop species, whether inorganic or 

organic N is provided to the plant (Nasholm et al. 

2009; Gioseffi et al. 2012).  

Ammonium (NH4
+
) is the ultimate form of 

inorganic N available to the plant. Most of the NH4
+
 

incorporated by the plant into organic molecules 

originates from NO3
-
 reduction, although metabolic 

pathways such as photorespiration, 

phenylpropanoid metabolism, utilization of N 

transport compounds and amino acids catabolism 

can generated NH4
+
 (Lea and Miflin, 2011). 

Nevertheless, despite active nitrification 

mechanisms by soil microorganisms, substantial 

amounts of ammonium (NH4
+
) can remain, but the 

NH4
+
 concentration is generally ten times lower 

compared to that of NO3
-
 in cultivated soil (Nieder 

et al. 2011). Both NO3
-
 and NH4

+
 enter the root 

apoplast by diffusion or mass flow (Crawford and 

Glass, 1998). Then, there are taken up via an active 

transport system by means of proteins termed high 

and low affinity transporters located in the root cell 

plasma membrane (Loqué and von Wirén, 2004; 

Glass 2009; Dechorgnat et al. 2011).  

In higher plants, there are basically three different 

NO3
-
 transport systems that operate depending on 

the NO3
-
 concentration in the surrounding root 

environment. The first is an inducible high affinity 

transport system (iHATS) that is induced in the 

presence of low concentration of NO3
-
 in the range 

of 1 to 200 µM depending on the plant species 

examined (Pace and McClure, 1986; Sidiqui et al. 

1990). In wheat it was reported that the iHATS has 
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a Km value of approximately 27 µM and requires 10 

hours for full induction by NO3
-
 (Goyal and 

Huffaker, 1986). The second is a constitutively 

expressed high affinity transport system (cHATS) 

that is present even in the absence of NO3
-
. Both 

systems exhibit a typical Michaelis-Menten 

saturation profile when the external NO3
-
 

concentration reaches a certain threshold. The third 

is represented by a non-saturable low affinity 

transport system (LATS) that dominates when NO3
-
 

in the external medium exceeds 250 µM operating 

in the concentration range of 0.5-1 mM (Sidiqui et 

al. 1990; von Wirén et al. 1997). Recent studies of 

NO3
-
 channels of transporters showed that they can 

also play versatile roles in sensing NO3
-
, in plant 

development, in pathogen defence and in stress 

response (Wang et al. 2012). Although NH4
+
 ions 

can be passively taken up by plant roots, different 

transport root NH4
+
 transporters system (Ludewig et 

al. 2007) allow the direct uptake of NH4
+
 ions and 

operate in a wide range of NH4
+
 concentrations 

(Loqué and von Wirén N. 2004). However, it is 

likely that in agricultural soils NH4
+
 uptake operates 

mainly through the low affinity transport system 

(LATS), which is part of the NH4
+
 permeases in the 

Ammonium Transporter / Methylammonium 

Permeases / Rhesus (AMT / MEP / Rh) family (von 

Wirén and Merrick, 2004). The Km values for NH4
+
 

influx in different species ranges between 1 to 200 

µM (Bradley and Morris, 1991; Wang et al. 1993), 

fitting with the average NH4
+
 soil concentration 

which rarely rises beyond 50 µM (Marshner, 1995). 

In wheat, it was reported that the iHATS has a Km 

value of approximately 50 µM and requires six 

hours for full induction by NH4
+
 (Goyal and 

Huffaker, 1986).  

Nitrate (NO3
-
)

 
transporters in higher plants are 

represented by two main families of genes namely 

the NRT1 PTR (Nitrate Transporter, Peptide 

Transporter) Family (NPF), which now regroups 

the previous NRT1 / PTR genes, and NRT2 family 

also called the Major Facilitator Superfamily (MFS; 

Léran et al. 2014). An excellent review describing 

the different members of the NO3
-
 and NH4

+
 

transporters and the regulatory mechanisms 

affecting root N uptake systems, especially on the 

model species Arabidopsis, has recently been 

published by Nacry et al. (2013). This review 

emphasizes that expression and activity of most N 

uptake systems are regulated both by the 

concentration of their substrate and by a systemic 

feedback control of metabolites representative of 

the whole plant N status. In cereals in general and 

wheat in particular, there is far less information on 

the root NO3
-
 and NH4

+
 transport systems and their 

regulation. This is mainly because most of the 

pioneer work was conducted using the model plant 

Arabidopsis, due to the ease of obtaining mutants 

and transgenic plants altered in the expression of 

the different NO3
-
 and NH4

+
 transporters (Miller 

and Smith, 1996; von Wirén and Merrick, 2004; 

Miller et al. 2007; Garnett et al. 2009; Xu et al. 

2012). Gene structure and phylogeny of high or low 

affinity transport systems have been studied in a 

number of grasses including rice, maize, sorghum, 

Brachypodium and wheat (Plett et al. 2010; Yin et 

al. 2007; Girin et al. 2014).  

Very recently, a comprehensive overview of the 

complex phylogeny and gene expression patterns of 

16 members of the NPF family in wheat has been 

published (Buchner and Hawkesford, 2014). This 

study highlighted the complex pattern of expression 

of the nitrate transporters, mainly due to the 
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presence of multiple co-orthologous genes that are 

differentially expressed according to the plant 

tissue, NO3
-
 availability and to leaf senescence 

during the N assimilation and N remobilisation 

processes. Earlier studies have also demonstrated 

that in the wheat NO3
-
 HATS system, five genes are 

induced by abscisic acid when NO3
-
 is not present. 

In contrast to the inhibitory effect of glutamine 

generally observed in other species, glutamine was 

able to induce the expression of NRT2 genes in the 

absence of NO3
-
 (Cai et al. 2006). In addition, it 

also has to be considered that under agronomic 

conditions, both efficiency and the regulation of 

NO3
-
 uptake systems may be enhanced by the 

presence of mycorrhizal associations (Hawkins et 

al. 2001), humic substances (Cacco et al. 2000), 

allelopathic compounds such as coumarin 

(Abenavoli et al. 2001) and root growth promoting 

bacteria (Mantelin and Touraine, 2004) or inhibited 

when the CO2 concentration is rising in the 

atmosphere (Bloom et al. 2014). Therefore such 

environmental interactions, together with the 

capacity of the plant to capture and transport NO3
-
 

or NH4
+
 must be taken into account, particularly 

when studying the genetic basic of inorganic N 

uptake during the pre- and post-anthesis period.  

This implies that, in combination with modelling 

approaches (Bertheloot et al. 2011), further research 

is required to obtain an understanding of the 

regulation of the NO3
-
 and NH4

+
, HATS and LATS 

throughout the entire plant developmental process 

(Kong et al. 2013). It will also be necessary to 

evaluate the contribution of direct NH4
+
 uptake to 

the wheat N economy, as in wheat (Causin and 

Barneix, 1993; SØgaard et al. 2009) and other 

cereals such as maize (Gu et al. 2013) and rice 

(Gaur et al. 2012), the available information on the 

NH4
+
 transport systems both at the molecular and 

physiological levels, remains fragmentary. 

However, for wheat that preferentially uses NO3
-
 

instead of NH4
+
 as the main N source, an increase in 

NH4
+
 uptake may not be beneficial to the plant 

when the ion is applied to the soil (Angus et al. 

2014).  

Another field of investigation is the use of urea as a 

synthetic fertiliser in conventional agriculture 

(Andrews et al. 2013; Karamos et al. 2014). Indeed, 

to date, urea is mainly used as a source of N 

fertiliser (through soil mineralization after 

application) and the contribution of plant urea 

uptake and metabolism in a physiological and 

agricultural context has not been thoroughly 

investigated. Nevertheless, it is well known that 

plants possess leaf and root transporters to absorb 

urea as an intact molecule, and can hydrolyse and 

use it very efficiently (Witte 2011). Two distinct 

transport processes for urea have been identified in 

rice exhibiting a linear and a Michaelis-Menten 

kinetics with an affinity for NH4
+
 ranging from 40 

to 1000 µM (Wang et al. 2012). Moreover, 

encouragingly, when a rice urea transporter was 

overexpressed in Arabidopsis a positive effect was 

observed both on urea uptake at low concentration 

and on plant growth (Wang et al. 2012). In wheat, 

compared to other inorganic N sources, urea uptake 

was very low. Moreover, its kinetics of uptake was 

difficult to measure (Criddle et al. 1988). However, 

in some cases when applied at an optimum timing 

after anthesis, an increase in grain protein content 

or yield has been observed (Gooding and Davies, 

1992; Rawluk et al. 2000). More recently, it has 

been shown that in spring wheat seed yield and N 

uptake were generally greater with polymer coated 

urea than urea alone (Malhi and Lemke, 2013). 
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Even if the efficiency of foliar application of urea in 

wheat and other cereals remains questionable, it is 

attractive in terms of environmental benefit. More 

research is thus required both at physiological and 

molecular levels. 

 

Interaction with micro-organisms 

 

Plant roots, including those of wheat, release a 

variety of organic substrates (e.g. organic acids, and 

sugars), exudates and other rhizodeposits (Nguyen 

2003). This creates a particular fraction of soil in 

contact with roots named rhizosphere and 

favourable to microorganisms development. Plant 

rhizosphere is largely colonized by soil 

microorganisms, at levels of typically 10
8
 to 10

9
 

bacteria per gram of rhizosphere soil and 1 to 1.5 m 

of fungal filaments per cm
2
 of root surface 

(Moënne-Loccoz et al. 2014). This microbial 

community contains a broad range of taxa differing 

from bulk soil community due to the selective 

effects of roots (Buée et al. 2009). Some of them, 

including pathogens as well as non-pathogenic 

microorganisms, may enter roots and reside within 

intercellular space or even within plant cells (Behl 

et al. 2012, Moënne-Loccoz et al. 2014). This also 

occurs in wheat (Germida and Siciliano 2001).  

The composition and physiological activities of 

root-associated microbial communities is 

influenced by many factors, such as soil 

characteristics, farming practices, climatic 

conditions, and wheat genotypes (Mazzola et al. 

2004). Indeed, rhizodeposition can differ between 

wheat cultivars (Wu et al. 2001), which can lead to 

differences in various aspects of the rhizosphere 

microbial ecology (Germida and Siciliano 2001). 

Therefore, it would be of prime interest to develop 

breeding strategies tailored both to suppress root 

pathogens and promote root colonization by plant-

beneficial microbial partners (Lammerts van 

Bueren et al. 2011), especially those with the 

potential to enhance (i) N availability in the 

rhizosphere, (ii) root system and architecture, (iii) 

systemic plant metabolism and (iv) microbial 

phytoprotection (Fig. 1). This is all the more 

relevant since breeding is typically carried out 

under optimal conditions, thus plant traits involved 

in plant growth-promoting rhizobacteria interaction 

may have been neglected (den Herder et al. 2010). 

Soil microorganisms in the rhizosphere are major 

players in the availability of N for plant roots 

(Richardson et al. 2009). On one hand, N 

availability for roots may be reduced by microbial 

competition. Indeed, various soil bacteria and fungi 

use ammonium and nitrate as N sources (Nelson 

and Mele 2006) and/or transform nitrate to gaseous 

N by denitrification (Herold et al. 2012). 

Nevertheless, plants can limit denitrification by 

releasing inhibitory secondary metabolites (Bardon 

et al. 2014), but so far this property is not 

documented in cultivated cereals. However, 

attempts are currently made to introduce into wheat 

a chromosome of Leymus racemosus, a wild 

relative of wheat, containing the ability for 

biological nitrification inhibition (Subbarao et al. 

2007; Ortiz et al. 2008). 

On the other hand, N availability for roots is 

enhanced by microbial mineralisation of organic N 

yielding ammonium in the rhizosphere. This entails 

proliferation of bacterial and fungal decomposers, 

as well as protozoan predators (Bonkowski 2004) 

and mycorrhizal fungi (Atul-Nayyar et al. 2009). In 

wheat, this priming effect reaches higher levels at 

the flowering stage (Cheng et al. 2003) and root 
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colonization by mycorrhizal fungi as well as 

positive mycorrhizal effects on plant nutrition and 

yield is genotype-dependent (reviewed in Behl et al. 

2012). 

N availability for roots is also improved by N 

fixation. Thus, the community of N fixers 

(functional group) plays a key role for plant N 

nutrition (Hsu and Buckley 2009). Unlike in 

legumes, conversion of N2 into NH3 in wheat and 

other cereals does not entail root-nodulating 

rhizobia but it can be perfomed by other non-

nodulating N-fixing bacteria, and part of the N 

fixed may be acquired by the plant (Behl et al. 

2012). N-fixing bacteria occur naturally in soils 

including in the wheat rhizosphere (Nelson and 

Mele 2006; Venieraki et al. 2011), and inoculation 

with N fixers may enhance wheat yield (Kapulnik 

et al. 1987, Hungria et al. 2010, Behl et al. 2012, 

Neiverth et al. 2014). Their diversity and activity 

fluctuate with both plant species (Perin et al. 2006, 

Reardon et al. 2014) and cultivar (Coelho et al. 

2009) including in wheat (Christiansen-Weniger et 

al. 1992, Manske et al. 2000; Venieraki et al. 2011). 

For example, N-fixing bacteria e.g. Azospirillum 

brasilense Sp245 have limited potential to improve 

wheat nutrition (Baldani and Baldani 2005), 

whereas others e.g. Klebsiella pneumoniae 342 can 

relieve N deficiency and enhance N levels (Iniguez 

et al. 2004) depending on cultivar (Manske et al. 

2000).  

 

 
 

Figure 1: Summary of microbial effects.  

 

Enhanced acquisition of water and mineral nutrients 

can be expected if the root system colonizes soil 

more extensively. Under in vitro conditions, wheat 

inoculation with rhizosphere bacteria may enhance 

root number and/or length, as well as root hair 

elongation (Dobbelaere et al. 1999, Combes-

Meynet et al. 2011). These inoculation effects on 

root system architecture and biomass have been 
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also evidenced in soil-grown wheat (Baldani and 

Baldani 2005, Veresoglou and Menexes 2010). 

Indeed, many bacteria and fungi modify root 

system architecture by manipulating plant hormonal 

balance, in particular by producing phytohormones 

such as auxins (Ortíz-Castro et al. 2009), cytokinins 

(Cassán et al. 2009, Moubayidin et al. 2009), or 

gibberellins which are produced by several 

rhizosphere bacteria and fungi (Bottini et al. 2004) 

including wheat strains (Upadhyay et al. 2009) 

promoting primary root elongation and lateral root 

extension. The wheat bacterium Azospirillum 

brasilense Sp245 synthesizes abscisic acid, which 

modifies lateral root development, and inoculation 

resulted in higher abscissic acid concentration in 

Arabidopsis (Cohen et al. 2008). Other root-

branching signals especially 2,4-

diacetylphloroglucinol (Brazelton et al. 2008) and 

nitric oxide (Creus et al. 2005) may also be 

implicated, including in wheat (Pothier et al. 2008, 

Couillerot et al. 2011). Their effects appear to take 

place via an auxin signal transduction pathway 

(Brazelton et al. 2008, Molina-Favero et al. 2008). 

Microbial interference with ethylene metabolism in 

roots may also be responsible for modifying wheat 

root system architecture (Upadhyay et al. 2009) by 

a direct microbial production of ethylene (Graham 

and Linderman 1980), or a reduction of ethylene 

concentration in plant roots by the deamination of 

ethylene precursor 1-aminocyclopropane carboxylic 

acid (Prigent-Combaret et al. 2008), thereby 

diminishing ethylene-mediated root growth 

repression (Glick 2005).  

Microorganisms can induce systemic changes in 

plant physiology. For instance, a wide range of 

Arabidopsis genes displayed different expression 

levels upon inoculation with a plant-beneficial 

Pseudomonas putida bacterium (Srivastava et al. 

2012). Microbial inoculation may also modify plant 

proteomic profiles (Mathesius 2009) and 

metabolomics profiles, both for primary metabolites 

(including rice shoot contents in amino acids; Curzi 

et al. 2008) and secondary metabolites in maize 

(Walker et al. 2012) and wheat (Fester et al. 1999). 

There are also indications that certain rhizosphere 

bacteria may directly affect N metabolism in plants. 

Oil seed rape (Brassica napus L.) roots inoculated 

with Achromobacter strain U80417 displayed 

enhanced net influx rates of NO3
-
 (Bertrand et al. 

2000), and genes coding for two nitrate transporters 

(NRT2.5 and NRT2.6) were expressed at higher 

levels in Arabidopsis upon inoculation with 

Phyllobacterium brassicacearum STM196 

(Mantelin et al. 2006). Exposure of tomato to the 

bacterial metabolite 2,4-diacetylphloroglucinol 

increased the net root efflux of amino acids 

(Phillips et al. 2004). In addition, nitrate reductase 

activity of Azospirillum brasilense Sp245 inside 

roots is thought to contribute to N assimilation of 

wheat (Baldani and Baldani 2005). However, 

information is scarce and relevance for wheat 

remains to be investigated.  

A range of root-associated microorganisms promote 

plant health, by inhibiting root pathogens and/or 

systemic induction of plant defence mechanisms 

(Couillerot et al. 2011, Almario et al. 2013). For 

instance, wheat inoculation with the bacterium 

Pseudomonas fluorescens Q8r1-96 resulted in 

cultivar-dependent, defence-related transcript 

accumulation in roots (Maketon et al. 2012). Thus, 

microbial phytoprotection effects are also important 

to consider and investigate. 
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TRAITS INFLUENCING N-UTILIZATION 

EFFICIENCY 

 

Nitrate assimilation 

 

After being taken up by the roots, nitrate (NO3
-
) is 

then reduced to nitrite (NO2
-
) in the cytosol through 

the reaction catalysed by the enzyme nitrate 

reductase (NR; EC 1.7.1.1) using NADH / 

NAD(P)H / NADPH as electron donors. The NR 

enzyme represents the first step in the pathway of 

NO3
-
 assimilation. They are positively regulated by 

NO3
-
 and light at the transcriptional level; and is 

down regulated at the post-transcriptional level by 

reversible phosphorylation during the dark period 

(Kaiser et al. 2011). In hexaploid wheat, two genes 

encoding NADH-NR have been identified (Boisson 

et al. 2005). NO3
-
 reduction is followed by the 

reduction of NO2
-
 to NH4

+
 catalysed by the enzyme 

nitrite reductase located in the plastids (NiR; EC 

1.7.7.1; Sétif et al. 2009). NiR forms a complex 

with Ferredoxin that provides electrons for the 

reduction of NO3
-
 to NH4

+
 (Sakakibara et al. 2012). 

Ammonia (NH4
+
) is then incorporated into the 

amino acid glutamate through the action of two 

enzymes.  The first reaction catalyzed by enzyme 

glutamine synthetase (GS; EC 6.3.1.2; Lea and 

Miflin, 2011) is considered to be the major route 

facilitating the incorporation of inorganic N into 

organic molecules in conjunction with the second 

enzyme glutamate synthase (GOGAT; EC 1.4.7.1; 

Suzuki and Knaff, 2005), which recycles glutamate 

and incorporates C skeletons in the form of 2-

oxoglutarate into the cycle. The amino acids 

glutamine and glutamate are then further used as 

amino group donors to all the other N-containing 

molecules, notably other amino acids used for 

storage, transport and protein synthesis and to 

nucleotides used as basic molecules for RNA and 

DNA synthesis (Lea and Miflin, 2011; Fig. 2). 

 

 
 

Figure 2: Main N assimilation pathways in wheat.  

 

In higher plants, including wheat, the two enzymes 

GS and GOGAT are present in the plant in several 

isoenzymic forms located in different cellular 

compartments and differentially expressed in a 

particular organ or cell type according to the 

developmental stage. The GS enzyme exists as a 

cytosolic form (GS1) present in a variety of organ 

and tissues such as roots, leaves, phloem cells and a 

plastidic form (GS2) localized in the chloroplasts of 

photosynthetic tissues and the plastids of roots and 

etiolated tissues. The relative proportions of GS1 

and GS2 vary within the organs of the same plant 

and between plant species, each GS isoform playing 

a specific role in a given metabolic process, such as 
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photorespiratory ammonia assimilation, nitrate 

reduction, N translocation and recycling (Lea and 

Milfin, 2010). In wheat and other C3 cereals, both 

at the transcriptional and at enzyme activity levels 

GS2 predominates throughout the entire plant 

developmental cycle, although its activity can 

decrease by half after the flowering period. One 

GS1 isoenzyme is constitutively expressed in the 

phloem while the other is generally induced in the 

cytosol of senescing leaves (Kichey et al. 2005; 

Christiansen and Gregersen, 2014; Yamaya and 

Kusano, 2014.). Detailed analyses of gene 

expression and cellular localization of the different 

wheat GS isoenzymes were performed in 

developing and senescing leaves as well as in a 

number of reproductive tissues (Kichey et al. 2005; 

Bernard et al. 2008). These studies have highlighted 

the complex GS isoenzyme pattern of expression 

not only due to the hexaploid nature of the wheat 

genome, but also due to the morphological 

complexity of the leaves. In order to clarify the 

function of the different GS isoenzymes, a 

phylogenetic approach was taken, due to the lack of 

mutants or transgenic plants. This allowed the 

division of the different genes encoding GS into 

different classes of biological functions, which were 

not necessarily conserved between C3 and C4 

cereals (Thomsen et al. 2014).  

The enzyme GOGAT also exists in two forms that 

have specific roles during primary N assimilation or 

N recycling. A ferredoxin-dependent isoenzyme 

(Fd-GOGAT) is mainly involved, in conjunction 

with GS2, in the reassimilation of photorespiratory 

ammonia and a pyridine nucleotide-dependent 

isoenzyme (NADH-GOGAT; EC 1.4.1.14) is 

involved in the synthesis of glutamate both in 

photosynthetic and non-photosynthetic organs or 

tissues, to sustain plant growth and development 

(Lea and Miflin, 2011).  

Glutamate can also be generated by the incorporate 

of ammonia into 2-oxoglutarate by the enzyme 

glutamate dehydrogenase (GDH; EC 1.4.1.2; Lea 

and Miflin, 2011). However, a number of 

experiments using 
15

N-labelling techniques and 

mutants deficient in GS and GOGAT have 

demonstrated that over 95 % of the ammonia made 

available to the plant is assimilated via the GS / 

GOGAT pathway (Lea and Miflin, 2011). Later on, 

it was clearly demonstrated that GDH operates in 

the direction of glutamate deamination to provide 

organic acids, notably when the root and leaf cells 

are carbon-limited (Labboun et al. 2009; Fontaine 

et al. 2012). Recently, the hypothesis that GDH 

plays an important role in controlling not only 

glutamate homeostasis (Forde and Lea, 2007; 

Labboun et al. 2009), but also the level of 

downstream and upstream carbon and N 

metabolites through the changes in the hetero-

hexameric structure of the enzyme, has been put 

forward (Tercé-Laforgue et al. 2013). This function, 

which may also have a signalling role at the 

interface of C and N metabolism, may be of 

importance when there is a shortage of C under 

stress conditions or during certain phases of plant 

growth and development. Moreover, both 

transgenic studies performed on a number of model 

and crop species (Tercé-Laforgue et al. 2013) and 

quantitative genetic approaches performed on maize 

(Dubois et al. 2003) and wheat (Fontaine et al. 

2009), strongly suggest that the reaction catalysed 

by NAD(H)-GDH is of major importance in the 

control of plant growth and productivity. Further 

research is thus required to validate the function of 

GDH in crops such as wheat.  
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Over the last two decades, our knowledge of the 

various pathways involved in the synthesis of the 

amino acids, particularly those derived from 

glutamate and glutamine, has been increased 

through the use of mutant and transgenic plants in 

which amino acid biosynthesis has been altered. 

Amino acid biosynthesis is of major importance for 

cereal growth and productivity (Howarth et al. 

2008). There are excellent reviews describing 

extensively the current knowledge on this complex 

pathways and its regulation (Lea and Azevedo, 

2007), therefore we will not cover it in this review. 

  

Leaf and canopy photosynthesis per unit N 

 

Up to 75% of N in wheat leaves is located in 

mesophyll cells, mainly as the chloroplastidic 

enzyme Rubisco, and is involved in photosynthetic 

processes (Evans, 1983). Thus, responses in N-

limited crops often include reductions in total leaf 

area, leaf expansion and duration, leaf N and 

chlorophyll content, leaf stomatal conductance, and 

photosynthesis per unit leaf area (Sylvester-Bradley 

et al. 1990; Monneveux et al. 2005). These 

responses reduce radiation interception and 

radiation-use efficiency (above-ground biomass per 

unit radiation interception; RUE) and hence 

biomass (Foulkes et al. 2009b) and yield. Canopy 

and leaf processes affecting photosynthesis per unit 

N uptake include: (i) radiation interception per unit 

N uptake, (ii) optimizing vertical N distribution in 

relation to light in the canopy and (iii) leaf 

photosynthesis per unit leaf N. 

For 95 % radiation interception assuming a light 

extinction coefficient (K) value of 0.5, a green area 

index (green canopy area per unit ground area; 

GAI) of 6 is required. Indeed,  

K = - ln (I / Io) / L 

 

where Io is the incident radiation and I is the 

amount of radiation not intercepted by a canopy 

having a GAI = L. 

At anthesis, modern wheat cultivars produce 

canopies with GAI values in the region of 6 hence 

achieve full interception at this stage (e.g. Moreau 

et al. 2012; Gaju et al. 2014). The only realistic way 

to increase fractional interception in the pre-

anthesis phase is by increasing fractional 

interception at the start of the stem-elongation 

phase. However, it is in the region of 60-70 % in 

wheat (Shearman et al. 2005; Moreau et al. 2012). 

Thus, only marginal improvement seems possible. 

Physiological avenues for increasing fractional 

interception specifically under low N supply may 

include: increased specific leaf N area (leaf area per 

unit leaf N; SLN) or/and higher light extinction 

coefficient. Genetic variation in SLN has been 

associated with embryo size (Lopez-Castaneda et 

al. 1996) and earlier canopy closure (Rebetzke & 

Richards, 1999). The light extinction coefficient is 

mainly influenced by leaf angle. For modern wheat 

cultivars is approximately 0.55 for 

photosynthetically active radiation (Thorne et al. 

1988; Abbate et al. 1998; Moreau et al. 2012). 

These values are associated with semi-erect to erect 

leaf angles which help to reduce light saturation in 

the upper canopy leaves boosting RUE. A higher 

value of K seems unlikely to be desirable due to the 

trade-off with RUE. Although desirable, more 

prostrate leaves during early vegetative growth and 

more upright leaves during later vegetative growth 

may be difficult to achieve in practice. In summary, 

although genetic gains in radiation interception per 
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unit N uptake may be possible during stem 

elongation they seem likely to be small.  

N distribution in canopies in relation to light 

attenuation also affects photosynthesis per unit N 

uptake. Considering that the leaf N gradient is 

“optimal” in accordance with the “optimization 

theory” (Field, 1983; Hirose and Werger, 1987; 

Anten et al. 1995; Moreau et al. 2012), theoretical 

studies indicated that leaf N maximizes canopy 

photosynthesis when it parallels the light gradient, 

i.e. when the light (KL) and N (KN) extinction 

coefficients are equal. In wheat, observed N 

gradients are generally less steep than predicted 

with the optimization theory, however do 

demonstrate that SLN follows an exponential 

gradient with vertical depth in the canopy 

(Critchley, 2001; Pask, 2009; Moreau et al. 2012). 

Possible reasons for this discrepancy have been 

discussed in detail by Kull (2002). There is 

relatively little information on genetic diversity in 

the vertical distribution of N in relation to light in 

the canopy. Nevertheless, Berteloot et al. (2008) 

demonstrated with two French winter wheat 

cultivars (Apache and Isengrain) that the vertical 

distribution of N at anthesis was close to the 

optimum, as defined in the optimization theory, and 

only differed significantly at the end of grain filling. 

Similarly, genetic differences were not found for 

five spring wheat genotypes grown in the 

Netherlands (Bindraban, 1999). Moreau et al. 

(2012) analysed the vertical distribution of leaf N 

and light at anthesis for 16 wheat cultivars 

experimented in field trials in France and the UK in 

two seasons under two N levels. The N extinction 

coefficient with respect to light (KN/KL) varied with 

N supply and cultivar. A scaling relationship was 

observed between KN:KL and the size of the canopy 

for all the cultivars in the different environmental 

conditions. Interestingly, the scaling coefficient of 

the KN:KL - green area index relationship differed 

among cultivars, suggesting that cultivars could be 

more or less adapted to low N environments.  

Photosynthesis rate per unit N affects NUtE. In C3 

cereals such as wheat, the net light-saturated rate of 

leaf photosynthesis (Amax) typically increases to 

20-30 μmol CO2 m
-2

 s
-1

 at leaf N concentrations of 

2 g N m
-2

. Assuming an asymptotic relationship 

between Amax and leaf N concentration (Evans, 

1983; Sinclair & Horie, 1989), there may be scope 

to decrease SLN whilst maintaining Amax. Indeed, 

since leaves of modern wheat genotypes typically 

accumulate more N than 2.0 g N m
-2

 under 

favourable conditions (Critchley, 2001; Pask et al. 

2012), NUtE could be increased by selecting for 

lower SLN to decrease the transient ‘storage’ N 

components of leaves. A sensitivity analysis using 

the wheat Sirius model predicted that decreasing 

SLN in the range 1-2 g m
-2

 increased NUE by 10-

15% when N was limiting (Semenov et al. 2007). 

However under well fertilized conditions 

decreasing SLN below 2 g m
-2

 may not be 

beneficial since the SLN required for maximal RUE 

in field-grown winter wheat in the UK and New 

Zealand was estimated to be 2.1 g m
-2

 (Pask et al. 

2012). Alternatively, increasing SLN above current 

values of 2-3 g m
-2

 seems unlikely to be 

advantageous overall for NUtE since leaves may 

operate well below light saturation in the canopy 

(Reynolds et al. 2000), mesophyll cell size, leaf size 

and light interception may be reduced (Austin et al. 

1982) and many chloroplasts may end up in a light-

limited state due to intra-leaf shading in thick 

leaves. Genetic variability in SLN is reported from 

1.4-2.6 g m
-2

 for 144 durum wheat genotypes 
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(Araus et al. 1997), from 2.1-2.4 g m
-2

 for 17 durum 

wheat cultivars (Giunta et al. 2002) and from 1.4-

2.2 g m
-2

 for 16 bread wheat cultivars (mean over a 

high and low N treatment, Moreau et al. 2012). 

SLN heritability in wheat is largely unknown. 

However, it is encouraging that the heritability for 

straw (leaf lamina, leaf sheath and stem) N at 

anthesis for winter wheat was > 0.60 under low N 

(Laperche et al. 2006) indicating that breeding to 

manipulate the amount of global canopy N should 

be possible.  

Rubisco catalyses a wasteful reaction with oxygen 

that leads to the release of previously fixed CO2 and 

NH3 and the consumption of energy during 

photorespiration as mentioned above. 

Consequently, at the metabolic level, there are 

several avenues to increase photosynthetic 

efficiency. These include: (i) relaxing the photo-

protected state more rapidly, (ii) reducing 

photorespiration through ribulose-1,5-bisphosphate 

carboxylase/oxygenase (Rubisco) with decreased 

oxygenase activity, (iii) the improving Rubisco 

activity, (iv) faster regeneration of ribulose-1,5-

bisphosphate (RuBP) and (iv) introducing carbon-

concentrating mechanisms associated with C4 

photochemistry into C3 plants (see recent reviews 

by Reynolds et al. 2000; Parry et al. 2003; Long et 

al. 2006, Murchie et al. 2009; Zhu et al. 2010; Parry 

et al. 2011). These strategies all require 

modification of the photosynthetic components, 

which can only be achieved through genetic 

manipulation. Potential improvements in C3 cereals 

available from reduced photorespiration were 

estimated around 30 % and those from other 

mechanisms in the range 15-22 % (Long et al. 

2006). 

Alternatively, it may be possible to increase Amax 

by decreasing respiration in crops, although this has 

received less attention than photosynthesis partly 

due to difficulties in measurement. Respiration may 

consume 30% to 80% of the carbon fixed (Atkin et 

al. 2005) and is commonly divided into growth and 

maintenance components, with each exerting 

differing effects. Respiration, increasing with 

temperature and depending on phenological stage 

(McCullough and Hunt, 1993; Foulkes and 

Murchie, 2011) may be positively but non-linearly 

related to photosynthesis. High respiration rates 

(especially at night) can increase reactive oxygen 

species, leading to cell damage and affecting pollen 

viability (Prasad et al. 1999). Recent work 

highlighting the importance of increased night time 

temperature with climate change on productivity in 

wheat (Tester & Langridge, 2010; Lizana & 

Calderini, 2013) and the high sensitivity of 

respiration to temperature in general, suggests that 

the environmental responses of crop respiration to 

temperature is an important area on which to focus. 

 

Post-anthesis N remobilisation and senescence 

dynamics 

 

In wheat, of the N in the above-ground crop at 

anthesis 35-42 % is in the leaf lamina, 14-20 % in 

the leaf sheath, 20-31 % in the true stem and 16-23 

% in the ear under optimal N supply (Pask et al. 

2012; Barraclough et al. 2014; Gaju et al. 2014). 

Under low N conditions, the proportion of the N in 

the ear increases relative to that in the other plant 

components (Barraclough et al. 2014; Gaju et al. 

2014). In field experiments in the UK and New 

Zealand, on winter wheat, the accumulation and 

remobilisation of structural, photosynthetic and 
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reserve N was estimated in crop components under 

high N and low N conditions (Pask et al. 2012). At 

anthesis, reserve N accounted for 44 % of above-

ground N in optimally fertilised crops, and was 

principally located in the true stem, but was 

observed in all crop components at non-limiting 

fertiliser N treatments. The efficiency of post-

anthesis N remobilisation of true stem reserve N in 

the true stem was low (48 %) compared to the leaf 

sheath (61 %) and leaf lamina (76 %), and in well 

fertilised crops significant quantities of non-

remobilized reserve N remained in true stem at 

harvest.  

A high capacity to absorb N in the true stem before 

flowering could theoretically favour a higher NUpE 

(Foulkes et al. 2009). In addition, favouring a 

greater capacity to store N in non-photosynthetic 

organs (i.e. stem internodes) may enable the 

translocation of a larger amount of N to grains 

without reducing plant photosynthetic capacity 

(Bertheloot et al. 2008), although the respiratory 

cost of maintaining a large non photosynthetic pool 

of storage N is unclear. In wheat, genetic variation 

in stem N content at anthesis is reported (Triboï  

and Ollier, 1991; Critchley, 2001; Pask et al. 2009; 

Barraclough et al. 2014; Gaju et al. 2014), as well 

as in post-anthesis N remobilisation efficiency from 

the stem (Kichey et al. 2007; Pask et al. 2009; Gaju 

et al. 2014). Studies in maize report early 

remobilisation of N from the stem before the leaf 

lamina (Beauchamp et al. 1976; Friedrich and 

Schrader, 1979). Thus high stem N remobilisation 

efficiency would potentially favour high NUtE 

through delayed senescence of the leaf lamina.  

‘Stay-green’ phenotype refers to the capacity of a 

genotype to retain green leaf area for longer than a 

standard genotype during grain-filling (Thomas & 

Smart, 1993). Although under optimal conditions 

wheat crops are in general little limited by the 

assimilate supply during grain filling (Dreccer et al. 

1997; Borrás et al. 2004; Calderini et al. 2006), 

under low to moderate N fertiliser levels there is 

evidence that yields can be limited by post-anthesis 

assimilate supply (Bogard et al. 2011; Gaju et al, 

2011). Stay-green phenotypes and broader genetic 

variation in senescence have been reported in 

hexaploid wheat (Silva et al. 2000; Verma et al. 

2004; Joshi et al. 2007; Christopher et al. 2008; 

Chen et al. 2010; Bogard et al. 2011; Chen et al. 

2011; Gaju et al. 2011; Naruoka et al. 2012; Derkx 

et al. 2012).  

Physiological mechanisms underlying these traits 

have not been studied extensively. Christopher et al. 

(2008) found that the stay-green phenotype in the 

spring wheat, SeriM82, was associated with 

extraction of deep soil water in Australia. N 

dynamics are an important factor in the 

maintenance of green leaf area in sorghum, with 

stay-green in sorghum hybrids linked to changes in 

the balance between N demand and supply during 

grain filling resulting in a slower rate of N 

translocation from the leaves to the grain (Borrell 

and Hammer, 2000; van Oosterom et al. 2010a, b). 

The latter study showed that the onset and rate of 

leaf senescence were explained by a supply–

demand framework for N dynamics, in which  

individual grain N demand was sink determined and 

was initially met through N translocation from the 

stem and rachis, and then if these N pools were 

insufficient, from leaf N translocation. A 

correlation between post-anthesis N remobilisation 

efficiency and the onset of the rapid phase of 

canopy senescence was reported under low N 

conditions amongst 16 wheat varieties grown at 
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sites in the UK and France (Gaju et al. 2014). A 

transcription factor (NAM-B1) accelerates 

senescence and increases N remobilisation from 

leaves to grains in wheat (Uauy et al. 2006). 

Candidate regulatory genes which were members of 

the WRKY and NAC transcription factor families 

were related to senescence in controlled 

environment conditions (Derkx et al, 2012). In a 

winter wheat doubled-haploid mapping population 

QTLs affecting leaf senescence and grain yield 

and/or grain protein concentration were identified 

associated with QTLs for anthesis date, showing 

that the phenotypic correlations with leaf 

senescence were mainly explained by flowering 

time influencing post-anthesis N availability  

(Bogard et al. 2011).   

These results suggested that a better understanding 

of the mechanisms determining post-anthesis N 

remobilisation and senescence associated with 

environmental characterization, particularly on their 

N availability during the post-anthesis period, 

would offer scope to raise grain yield and/or grain 

protein content in wheat cultivars.   

 

Optimizing grain protein concentration and 

composition 

 

Structural and metabolic proteins are present in the 

starchy endosperm cells of the grain, and the 

predominant protein fraction in this tissue is the 

gluten storage proteins, comprising a mixture of 

monomeric gliadins and polymeric glutenins. These 

groups of proteins are present in approximately 

equal amounts and together account for about 60-70 

% of the total N in the endosperm tissue. The gluten 

proteins confer viscoelastic properties to dough 

crucial for processing wheat into baked food such 

as bread, pasta and noodles. A precise balance of 

gliadin and glutenin proteins is also required, as 

glutenins are predominantly responsible for dough 

elasticity (strength) required for bread-making and 

gliadins for dough viscosity and extensibility 

required for making biscuits and cakes. The 

qualitative composition of the grain protein is a 

genetic characteristic, caused in part by differences 

in protein synthetic capacity (Shewry and Halford, 

2002; Ravel et al. 2009), whilst the rate, duration 

and grain protein quantitative composition (i.e. the 

ratio between the different protein fractions; Martre 

et al. 2003) can be modified by environmental 

conditions.  

An inverse relationship exists between the grain 

protein concentration and grain yield (Kibite and 

Evans 1984; Simmonds, 1995, Oury et al. 2003; 

Oury et Godin, 2007; Bogard et al. 2010), making 

the simultaneous genetic improvement of yield 

quantity and bread-making quality a difficult task. 

The physiological basis of this inverse relationship 

relates to competition between carbon and N for 

energy (Munier-Jolain and Salon, 2005) and an N 

dilution effect by carbon based compounds 

(Acreche and Slafer, 2009). The grain protein 

deviation (GPD) is the deviation from the 

regression line between grain yield and grain 

protein concentration (GPC). GPD can be used to 

identify genotypes having higher GPC than 

expected from their GY (Monaghan et al. (2001), 

and it is possible to identify wheat lines that have a 

positive GPD amongst groups of wheat lines (Oury 

et al. 2003; Bogard et al. 2010; 2011). Genetic 

variability in GPD has been related to post-anthesis 

N uptake (Kichey et al. 2007; Bogard et al. 2010, 

2011), and post-anthesis N uptake, in turn, is in part 

associated with anthesis date (Bogard et al. 2011). 
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Since the majority of grain N originates from 

remobilisation from the canopy (Pask et al. 2012; 

Gaju et al. 2014), rather than from post-anthesis 

uptake, mechanisms to enhance reserve N 

accumulation in the canopy and efficiency of N 

remobilisation should also be addressed in the 

genetic improvement of GPD (Hawkesford, 2014). 

This may be the case using the already mentioned 

NAM-B1 allele (Uauy et al. 2006) that increases N 

remobilisation efficiency. An alternative to 

developing high quality and NUE wheat is to 

modify grain protein composition to increase dough 

strength and elasticity allowing for a lower GPC. In 

this sense, Guarda et al. (2004) observed that a 

decrease in GPC with year of release for cultivars 

introduced in Italy from 1900 to 1994 was 

associated with an increase in grain quality.  

For wheat grown for the feed, distilling and biofuel 

markets (high ratio of starch to protein required), a 

higher NUtE will be associated with a lower GPC. 

The minimum GPC reported  is in the range 6.8-7.2 

% (Martre et al. 2006; Kindred et al. 2008; Bogard 

et al. 2011), equivalent (assuming a conversion 

ratio of 5.7 between GPC and grain N%) to 1.2-1.3 

% grain N%. It is not certain whether it is possible 

to decrease the N % below this as for each cell in 

the grain there appears to be a minimum obligatory, 

quantitative requirement for N for the synthesis of 

essential amino acids and structural and metabolic 

proteins. This gives grain a minimum N 

concentration of approximately 1.5 % (Sinclair and 

Amir, 1992), after which, the synthesis of grain 

storage proteins typically increases the grain N 

concentration to 2.1-2.3 % (about 12-13 % protein, 

typical of milling wheat). 

 

 

 BREEDING FOR NUE 

 

Estimation of genetic progresses 

 

Grain yield and the N demand to maximize yield 

evolved simultaneously (Guarda et al. 2004; 

Sylvester-Bradley and Kindred 2009), leading to an 

equal NUE of old and recent cultivars at their 

respective N optimum (Sylvester-Bradley and 

Kindred 2009). But when old and recent varieties 

are compared in the same N conditions, a 

significant genetic improvement of NUE was 

measured in various studies at different N levels 

(Table 1).    

 

Table 1: Assessment of yearly percent genetic gain in nitrogen use efficiency (NUE) from direct comparison of 

old and modern cultivars. 

 

Period Genotypes 
N level 

(kg N ha
-1

) 

NUE  

(% yr
-1

) 
Reference 

1962-1985 8 

0 1.2 

Ortiz-Monasterio et al. 1997 
75 0.4 

150 0.6 

300 0.9 

1977-2007 24 
0 0.35 

Sylvester-Bradley and Kindred 2009 
200 0.58 

1985-2010 195 
150 0.37 

Cormier et al. 2013 
250 0.30 

 



45 

 

Ortiz-Monasterio et al. (1997) reported an NUE 

genetic progress of +0.4-1.1 % year
-1

 depending on 

the N levels in spring CIMMYT varieties cultivated 

between 1962 and 1985. Sylvester-Bradley and 

Kindred (2009) also reported a significant trend 

between +0.35-0.58 % year
-1

 comparing an old 

group of varieties (1977-1987) to a recent one 

(2001-2007) at two N levels (without N applied and 

with 200 kg ha-1 N applied). In the same way, 

Cormier et al. (2013) estimated genetic progress at 

+0.30-0.37 % year
-1

 between 1985 and 2010 using 

195 European elite winter varieties at optimal and 

sub-optimal N levels. Only Muurinen et al. (2006) 

studying 17 spring wheat cultivar released between 

1901 and 2000 observed a poorly significant 

genetic improvement of NUE (P = 0.055). 

NUE is an integrative trait, thus its improvement 

could be the result of modification on several 

components. An increase in N harvest index (NHI) 

was assessed at +0.15 % year
-1

 by Brancourt-

Hulmel et al. (2003) and at +0.12 % year
-1

 by 

Cormier et al. (2013). This improvement is 

independent of the semi-dwarf alleles introgressions 

(Gooding et al. 2012) and is associated with a 

decrease of N content in straw at maturity (Cormier 

et al. 2013). It may result from a better translocation 

(portion of N absorbed after anthesis and allocated 

to the grain) and/or a better N remobilisation. Thus, 

these results highlighted a breeding impact on N 

utilisation. An increase in N uptake was also 

assessed (Ortiz-Monasterio et al. 1997; Guarda et 

al. 2004; Sylvester-Bradley and Kindred 2009). But 

this conclusion has to be balanced as Foulkes et al. 

(1998) who studied 27 cultivars released from 1969 

to 1988 and concluded that at zero N input, N 

offtake in grain decreased. Moreover Cormier et al. 

(2013) who studied a recent 214-variety panel of 

European elites and could not conclude on this 

point due to a too low genetic variance for N 

uptake.  

To conclude, both N uptake and N utilisation may 

have been increased by breeding with a relative 

efficiency affected by the N levels (Ortiz-

Monasterio et al. 1997; Le Gouis et al. 2000). We 

should point out that this improvement is an 

indirect effect of breeding for grain yield at a 

constant N level as no targeted selection for NUE 

has been conducted. 

 

Impact of G × N interactions on direct/indirect 

selection efficiency 

 

In wheat, varieties are commonly selected and 

registered in HN conditions. Thus, genetic 

progresses in LN condition results from an indirect 

selection. Numerous studies detected significant G 

× N interactions for agronomic traits (e.g. Ortiz-

Monasterio et al. 1997a,b; Le Gouis et al. 2000; 

Laperche et al. 2006a; Barracough et al. 2010; 

Cormier et al. 2013) meaning that varieties genetic 

values differ between different N levels. 

Significance of G×N interactions directly affects 

the correlations of genetic values between different 

N levels, and so the best varieties at HN may not be 

the best at LN. Thus, when G × N interactions are 

significant, indirect selection efficiency (ISE) is 

reduced. Nevertheless, selecting at HN for LN can 

be efficient when heritabilities in HN are higher 

than in LN. Indeed, a balance between the capacity 

to select (heritabilities) and the genetic correlation 

between the environment used to select and the one 

where varieties will be tested is required. This 

balance is easy to understand when we have a look 

at the ISE formula (Falconer and Mackay, 1996): 
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ISE = rG12 × h2 / h1 

 

where varieties are tested in condition 1 but 

selected in condition 2, h1 and h2 are  the respective 

heritabilities square roots in the two conditions and 

rG12 the genetic correlation between conditions, 

considering an equal selection intensity in both 

condition.  

In wheat, studies reported both genetic variance 

decrease and environmental variance increase at LN 

compare to HN. Thus, heritabilities are usually 

lower under LN conditions (Brancourt-Hulmel et al. 

2005, Laperche et al. 2006a), and indirect selection 

at high N can be an effective strategy to breed for 

low N conditions. But, few studies directly 

quantified this indirect selection efficiency 

(Brancourt-Hulmel et al. 2005; Przystalski et al. 

2008; Annicchiarico et al. 2010; Cormier et al. 

2013, Sarcevic et al. 2014). These studies have to 

be compared regarding N stresses and the number 

of genotypes used.  

 

Table 2: Efficiency of selection in high N environment for low N environment (Indirect Selection Efficiency-

ISE) regarding yield reduction between high and low N trials. 

 

Genotypes Yield reduction (%) ISE Reference 

270 35 0.65-0.99 Brancourt-Hulmel et al. 2005 

12-188 27 0.86-1.02 Przystalski et al. 2008 

225 20 0.78 Cormier et al. 2013 

19 10 1.04 Sarcevic et al. 2014 

 

Using 270 breeding lines tested during two years in 

the same environment (northern France), 

Brancourt-Hulmel et al. (2005) assessed an ISE of 

0.65-0.99 for grain yield with an N stress which 

implied a mean yield reduction of 35 % and genetic 

correlations between 0.83 and 0.89.  Cormier et al. 

(2013) tested 225 commercial varieties. Comparing 

HN and LN, mean yield reduction was 20 % and 

traits heritabilities were stable. Thus, ISE was 

mainly dependent on genetic correlation. For grain 

yield it was assessed at 0.78. For the other 

investigated agronomic traits, ISE were between 

0.25 and 0.99. The other studies used less 

genotypes. In Sarcevic et al. (2014), 19 varieties 

were tested and yield reduction was only 10 % 

promoting high genetic correlations. Moreover, 

genetic correlations were allowed to exceed 1. As 

results, ISE for grain yield was high (1.04) as for 

grain N yield (1.34) and for most of the rheological 

parameters (0.81-1.00) of grain quality. Analysing a 

dataset from seven European country comparing 

organic and non-organic cropping system were 

analyzed, Przystalski et al. (2008) assessed an ISE 

ranging from 0.86 to 1.02 for grain yield (calculated 

from the paper) under a N stress inducing a mean 

yield reduction of 27 %. This result seems however 

overestimated regarding the unbalanced dataset and 

the method used. Annichiario et al. (2010) studied 

three datasets respectively containing 7, 11, and 13 

genotypes under two production systems (organic 

and conventional). Yield reduction ranged from 14 

% to 28 % and ISE ranged from 0.89 to 1.20 for 

grain yield, but there were no consistent genotype 

by production system interactions and/or 
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heritabilities in organic system were lower than in 

conventional system mostly due to higher 

experimental error. 

When dataset size is sufficient to properly estimate 

genetic correlation and an N stress is substantial, 

ISE for grain yield may not exceed one. Thus, 

regarding breeder financial issues, indirect selection 

is efficient in moderate N stresses however it does 

not overpass direct selection in LN conditions. This 

was already observed for maize (Zea Mays), for 

which selection under high N for performance 

under low N was predicted significantly less 

efficient than selection under low when relative 

yield reduction due to N stress exceeded 43 % 

(Bänziger et al. 1997). Concerning, varieties 

recommendation, the approach is different as the 

goal is not to increase a trait mean value but to 

advise wheat grower, and thus to predict which 

ones will be the best. In this case, we should also 

focus on varieties ranking between HN and LN 

conditions. And even when genetic correlation 

between HN and LN conditions are high, the 

probability to predict the top varieties in LN from 

HN ranking is low (probability of 0.55 for a genetic 

correlation of 0.8 in Przystalski et al. (2008) 

simulation study). 

 

Molecular breeding 

 

Molecular breeding can be defined as the use of 

molecular information to develop new genotypes. 

This molecular information can arise at different 

levels of the metabolic process: from gene through 

proteins to metabolites. In complex traits such as 

NUE, a lot of regulation pathways at different 

levels occur (e.g. transcription factor, post-

transcriptional modification, allosteric regulation). 

These pathways depend on N levels (Howarth et al. 

2008; Ruuska et al. 2008; Wan et al. 2013), organs 

(Ruuska et al. 2008), genotypes (McIntyre et al. 

2011; Tenea et al. 2012), and stage (Ruuska et al. 

2008; Wan et al. 2013).  

In the approach to create genetically modified (GM) 

crop, this complexity make critical the promoter 

choice. Reviews of transgenic effort to improve 

NUE in plant were published by Pathak et al. 

(2011) and McAllister et al. (2012). Using the 

example of research on alanine aminotransferase 

(AlaAT), a successful transgenic approach to 

increase NUE in oil seed rape (Good et al. 2007) 

and rice (Shrawat et al. 2008) actually tested in 

wheat, they concluded that enzymes and proteins 

other than those involved in primary N uptake and 

assimilation may be good target potentially due to 

less post-transcriptional controls. 

Indeed, it has been believed for a long time that due 

to their strategic position along the N assimilatory 

pathway, NR, NiR, GS, and GOGAT enzymes were 

major checkpoints controlling plant NUE. But, the 

first results of modifications of these genes had not 

produced completely relevant NUE phenotypes. 

Nevertheless, there is some evidence that increasing 

NR activity improves NO2
-
 assimilation in 

Arabidopsis (Takahashi et al. 2001). Moreover, it 

seems that wheat genotypes exhibiting a higher NR 

activity have a greater potential for N utilization 

under non-limiting N supply with a well-

coordinated system of N uptake and assimilation 

(Vouillot et al. 1996; Anjana et al, 2011). And 

recently, it was reported that overexpression of a 

tobacco NR gene in wheat increased the seed 

protein content, without the need for increased N 

fertilisation (Zhao et al. 2013). Such an interesting 

finding could rekindle the possibility of using NR 



48 

 

as a breeding target to improve wheat NUE, yield 

and grain quality. Far fewer studies have concerned 

the enzyme NiR in wheat.   

Indirect evidence of the role of the GS enzyme in 

the control of NUE in wheat was also provided 

through correlation studies that suggested that the 

leaf enzyme activity could be used as a marker to 

monitor plant N status (Kichey et al. 2007). In 

addition, a number of QTLs related to grain yield 

and grain protein content co-localizing with 

structural genes encoding either cytosolic GS1 

(Habash et al. 2007; Fontaine et al. 2009; Gadaleta 

et al. 2014) or plastidic GS2 (Gadaleta et al. 2011; 

Bordes et al. 2013) were identified. However, 

functional validation of these candidate genes will 

be necessary to demonstrate their impact on wheat 

productivity (Swarbeck et al. 2011). A recent 

association analysis of one of the gene encoding 

cytosolic GS (TaGS1a) suggest that the enzyme had 

an important function in the control of a number of 

yield-related traits (Guo et al. 2013) like its 

plastidic counterpart (Gadaleta et al. 2011). 

Following the discovery that in rice mutants 

deficient in one of the two forms of NADH-

GOGAT, there was a considerable reduction in 

spikelet number (see Yamaya and Kusano, 2014 for 

a review), studies on the wheat enzyme were also 

undertaken. Based on a quantitative genetic study in 

which colocalization between QTLs for NUE and 

the structural gene for NADH-GOGAT was 

observed (Quraishi et al. 2011), it was proposed 

that in wheat and other cereals the gene could be 

used to improve grain filling either using genetic 

manipulation, or by selecting the best alleles (Salse 

et al. 2013). In durum wheat, it was also found that 

there is a strong correlation between NADH-

GOGAT gene expression and grain protein content 

(Nigro et al, 2013), thus indicating that unlike in a 

C4 plant such as maize (Martin et al. 2006), it is not 

cytosolic GS1 but NADH-GOGAT that is one of 

the major checkpoints controlling NUE in C3 

cereals. Such a finding reinforces the current 

concept that NUE may be unique, depending not 

only on the species examined but also on the 

genetic variability within the species (Hirel et al. 

2007; Simons et al. 2014). 

Regarding marker assisted selection, to deal with N 

pathway complexity of regulation, we may think 

that the easiest screening would be based on protein 

or metabolite. Kusano et al. (2011) wrote a good 

review on metabolic approaches focusing on N 

metabolism. In wheat, only Howarth et al. (2008) 

assessed the impact of N supply on amino acid 

content during senescence. However, various 

proteomic studies were performed at different 

growing stages and organs (Bahrman et al. 2004a, 

2004b, 2005; Altenbach et al. 2011; Tétard-Jones et 

al. 2013). But, these approaches are limited to the 

exploration of a narrow genetic diversity (Table 3). 

In fact, due to affordable cost (time and price) most 

of molecular information available is at the genome 

level as genetic molecular markers. This 

information was used in association mapping 

studies NUE related traits (Table 4) mostly using 

biparental design such as doubled haploids (DH) 

populations (An et al. 2006; Laperche et al. 2006; 

Habash et al. 2007; Laperche et al. 2007; Laperche 

et al. 2008; Fontaine et al. 2009; Li et al. 2010; 

Zheng et al. 2010; Bogard et al. 2011; Bogard et al. 

2013) or recombinant inbred line (RIL) populations 

(Garcia-Suarez et al. 2010; Li et al. 2010; Guo et al. 

2012; Sun et al. 2013; Xu et al. 2013). 
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Table 3: List of ‘omics studies related to nitrogen use efficiency in wheat.  

 

 
Reference Genotypes N levels Organs Stage Methods data points 

Proteomic 

Bahrman et al. 2004a 
2 (Arche, 

Récital) 

0, 2, 8, and 20 mg N/ 

plant/day 
leaf 60 days 

2D gel 

electrophoresis 

 

524 spots 

Bahrman et al. 2004b 
2 (Arche, 

Récital) 

0, 2, 8, and 20 mg N/ 

plant/day 
leaf 60 days 541 spots 

Bahrman et al. 2005 
2 (Arche, 

Récital) 
0.5 and 3.0 mM NO3

-
 root 2nd node 860 spots 

Altenbach et al. 2011 1 (Butte 86) 0, and 30 mg N/plant/DAP grain maturity 54N 

Tétard-Jones et al. 2013 1 (Malacca) organic, conventional flag leaf 

ear emergence, 

anthesis, kernel 

milk stage  

111N 

Transcriptomic 

Ruuska et al. 2008 1 (Janz)  

1 mM KNO3  

and 2 mM KNO3  

+ 3 mM Ca(NO3)2 

lower leaves 

and stem, flag 

leaf, penult 

internode 

anthesis, 9 DPA cDNA microarray 
36,000 

sequences 

Howarth et al. 2008 1 (Hereward) 48 and 192 kg N ha-1 leaf 2 and 3 senescence 

GeneChip  

Affymetrix 

 

55,052  

transcripts 

 

McIntyre et al. 2011 
8 (Seri × Babax 

pop) 

0, 44, 60 and 

172 kg N ha-1 
stem  anthesis 

Tenea et al. 2012 

3 (Tommi, 

Centenaire, 

Cubus) 

organic, conventional flag leaf kernel milk stage  

Wan et al. 2013 

6 (Cordiale, 

Hereward, 

Istabraq, 

Malacca, 

Marksman and 

Xi 19) 

100, 200  

and 350 kg N ha
-1

 
caryopse 

14, 21, 28 and 35 

DPA 

Metabolomic Howarth et al. 2008 1 (Hereward) 48 and 192 kg N ha
-1

 leaf 2 and 3 senescence 
Gas chromatography- 

mass spectrometry 



50 

 

Table 4: List of association mapping studies related to nitrogen use efficiency in wheat. 

 

 

Reference Pop. Genotypes Origin Marker 
Map 

(cM) 
Env Year Site Treatment Traits QTL 

An et al. 2006 DH 120 Hanxuan 10 × Lumai 14 395 (AFLP, SSR, EST) 3904 
 

2 1 2 LN=HN-150 kg N ha 5 34 

Li et al. 2010 

Panel 

+DH 

+RIL 

260 

+120 

+142 

Core collection 

Hanxuan 10 × Lumai 14 

Xiaoyan 54 × Jing 411 

3 TaGS2 
 

1 1 1 2 LN HN 5 
 

Guo et al. 2012 

RIL 131 Chuan 35050 × Shannong 483 719 (DArT, SSR, EST) 4008 

12 1 1 12 N,P,K 24 380 

Sun et al. 2013 3 1 1 3 NO3
-
/NH4

+
 ratio 8 147 

Xu et al. 2013 RIL 182 Xiaoyan 54 × Jing 411 555 (SRR, EST, Glu loci) 
 

4 2 1 2 LN HN 14 126 

Laperche et al. 2007 DH 222 

Arche × Recital 

 

190 (SSR, GLU-1A/1D, 

Rht-B1, SPA, Fd-gogat-D1, 

VRN-A1, B1) 

2164 14 2 4 2 LN=HN-100kg N ha 
 

233 

Laperche et al. 2006a DH 120 2164 1 1 1 
  

18 32 

Laperche et al. 2008 DH 222 2164 14 2 4 2 LN=HN-100kg N ha 6 45 

Zheng et al. 2010 DH 222 182 SSR 2164 12 2 3 2 LN HN 4 131 

Fontaine et al. 2009 DH 137-221 197 (SSR) 3285 3 3 1 1  16 148 

Habash et al. 2007 DH 91 CS × SQ1 449 (SSR + GS loci) 3522 1 1 1 1 
 

21 145 

Garcia-Suarez et al. 2010 RIL 114 W7984 × Opata85 
  

4 2 1 2 LN=0 ; HN=120kg N ha 10 138 

Bogard et al. 2011 DH 140 Toisondor × 3CF9107 475 (DArT, SSR, SNP) 2344 10 2 5 2 LN=(25-50)%HN 7 140 

Bogard et al. 2013 3 DH 

80 

+80 

+140 

Toisondor × Quebon 

CF9107 × Quebon 

Toisondor × CF9107 

741 ( DArT, SSR, SNP) 2510 7 2 3 2 LN=25%HN 2 89 

Bordes et al. 2013 Panel 196 Core collection 899 (DArT, SSR, SNP) 
 

12 2 3 2 LN=HN-(35–120) kg N 8 54 

Cormier et al. 2014 Panel 214 Commercial varieties 23,603 SNP 3,167 8 2 3 2 LN=HN-100 kg N 28 333 
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Three studies covered a broader genetic diversity 

(Li et al. 2010; Bordes et al. 2013; Cormier et al. 

2014) using large association panels. Thus, 

discovering interesting quantitative trait loci these 

studies provided new insights on NUE genetic 

determinism. Indeed, QTL colocalisations with 

known N uptake or assimilation enzymes were 

assessed, but a quantity of new QTL were also 

discovered.  

Nevertheless, several difficulties persist to 

implement this knowledge in breeding. Indeed, 

NUE and its related traits appeared highly 

polygenic and genetic background specific. Thus, 

several small loci effect should be pyramided. 

Moreover, information quantity will raise with the 

recent development of several wheat SNP arrays 

(90K, Wang et al. 2014; 420K, E. Paux person. 

comm., 670K, and 820K). Genomic prediction 

methods may overpass these limitations and 

facilitate breeding but to now these methods are 

still at a development stage. Added to that, G×N 

and more generally of G×E remain a major trade-

off in marker assisted selection leading to 

difficulties to develop new genotypes adapted to a 

broad range of environments and N levels. 

 

Prospect on new strategy: heterosis 

 

F1 hybrid wheat cultivars have been regularly 

registered in Central Europe that represents more 

than half of the world’s hybrid wheat production 

(Longin et al. 2012). Commercial hybrids may be 

produced with chemical hybridizing agents, which 

induce male sterility when applied at the right stage, 

but also based on photoperiodic sensitivity or on 

cytoplasmic male sterility. Limits to the use of F1 

hybrids are the cost of the seed related to the 

difficulty to produce them on a regular basis 

coupled with the absence of high heterosis for yield. 

However hybrids may show particular 

characteristics for abiotic stress tolerance and NUE. 

Limited but consistent best-parent heterosis have 

been reported for grain yield under high yielding 

conditions, e.g. +4.3 % for 10 hybrids (Borghi et al. 

1988), +7.3 % for 17 hybrids (Brears et al. 1988), 

+3.6 % for 430 hybrids (Morgan et al. 1989) in 

experiments conducted in field plots. On average in 

Europe on five studies, Longin et al. (2012) 

reported mid-parent heterosis around 10 %, ranging 

from 3.5% to 15%. It was also reported that the 

hybrids are more stable than pure lines (Mühleisen 

et al. 2014) indicating a higher tolerance to abiotic 

stresses.  

Perezin et al. (1992) and Oury et al. (1994, 1995) 

reported either a higher grain protein content of the 

hybrids for the same yield or the same protein 

content despite a higher grain yield. These results 

tend to indicate a higher NUE and N uptake for 

hybrids compared to pure lines. Some studies also 

showed that best parent heterosis was higher at low 

N level than at high N level (Le Gouis and Pluchard 

1996, Le Gouis et al. 2002). This was however not 

confirmed by Kindred and Gooding (2005) using 

four commercial hybrids that observed a significant 

heterosis only at high N level. Le Gouis et al. 

(2002) observed a best-parent heterosis for total N 

at anthesis and harvest meaning a better N uptake 

while Kindred and Gooding (2004) reported only 

little heterosis for total above-ground N but an 

increased N utilization efficiency. N uptake mid-

parent heterosis at flowering and maturity could be 

related to a more efficient root system. Indeed, 

heterosis was shown for different root 

characteristics such as root length, root dry matter, 
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and root area (Kraljevic-Babalic et al. 1988, Wang 

et al. 2006, Li et al. 2013). 

 

 

CONCLUSION 

 

NUE is complex and determined by a wide 

diversity of physiological traits. Consequently, 

breeding for enhanced NUE can be achieved 

through selection on several components. However, 

compensation and regulation are numerous and 

dependent of the N regimes, genotypes and stage 

leading to difficulties to create efficient NUE 

phenotypes. Nevertheless, ‘omics and association 

studies provided interesting results allowing to 

prioritize route of improvement. Moreover, the 

development of high-throughput genotyping and 

phenotyping methods may accelerate research on a 

wide diversity. 
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EXTENT AND LIMITATION OF 

THE DATASET  
 

 

During this PhD thesis, we used a dataset composed of eight experiments defined as a combination of 

locations, years, and nitrogen regimes. And a total of 225 varieties were evaluated in a well balanced 

design. In each experiment, 18 environmental covariates were computed and 28 NUE-related traits were 

measured or calculated. A more exhaustive description is provided in the following parts of the manuscript 

and in annexes. Here, we will mainly describe the environmental variability (combination of year and 

location) and discuss about its consequences. 

 

 

Field trials 

All experiments were conducted in the North of France, which is the main wheat producing region of the 

country (Fig. 3A). Thus, we have to keep in mind that varieties coming from breeding stations located in 

this area may be favoured. In fact, this can create a confounding effect of genes determining regional 

adaptation which may be assessed as having additive effects. However, tested in a wider range of 

environments, they would have been assessed as interacting with the environments and/or not having any 

additive effects.  

 

 
Figure 3: (A) Trial locations and (B) dendrogram of environmental covariates (from PCA analyses). The table 

used to perform the PCA is provided in Annexes (Annexes of Part IV). Clustering using PCA coordinates (hclust, 

method = ward). 
 

Experiments were conducted during the 2007/2008 and 2008/2009 growing seasons. Looking at the 

specificity of these two growing seasons (Météo France information), we can estimate the range of 
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environmental stresses and thus, discuss the portability of our results. The winter of 2007/2008 had a high 

mean temperature and was the 10
th
 warmest since the beginning of the XX

th
 century. In contrast, the winter 

of 2008/2009 was the third coldest winter between 1990 and 2009. Spring 2008 was characterized by 

strong moisture, weak radiation, and warm temperatures particularly in May. Spring 2009 was dry, very 

sunny and even warmer making it the seventh warmest spring since 1900. Summer 2008 was 

unexceptional, while summer 2009 was dry and hot.  

To conclude, these two growing seasons were really contrasted and embodied the main climatic variation 

occurring in the tested area. Thus, our dataset allowed for the study of a good variability of frost, spring 

drought and radiation stresses added to the on purpose applied N stresses. Our environmental covariates 

took into account these variations. Indeed, using principal component analysis, experiments first clustered 

by year and then by location with enhanced hydric and heat stresses for EM09 and VR09, respectively. 

Regarding the diversity of occurring stresses, the main limitation of our dataset is its size. In fact, due to the 

reduced number of environments, stresses are not independent and effects can be confounded. For example, 

radiation and drought stresses are linked together as frost and heat stresses are (Fig. 3B). Applied N stresses 

are also linked to other environmental covariates. For exmaple, soil residual N is linked to the winter 

hardness (Sum_Tmin) and quantity of N applied at Z30 (1cm spike; N_Z30) is linked to the sum of rain 

(Sum_rain). Thus, frost stress may have enhanced mineralisation. Differences in N applied between 

experiments may be enhanced by precipitation which influences the availability of N to plant. But, it also 

means that varieties responses to N stresses could be in part confounded with varieties responses to frost 

and drought stresses.   

 

Tested genotypes 

Following the initiative of Arvalis institut du végétal, Biogemma decided in 2007 to focus on the elite 

registered variability and initiated physiological, agronomical and molecular characterization of this 

material through the building of a panel. Each year this panel was enriched by 20-30 new varieties. 

Meanwhile, the oldest varieties or the worst ones (commercially speaking) were removed. In this thesis, we 

worked on the 2007/2008 and 2008/2009 versions of this panel.  

Our panel is composed of European elites released from 1969 to 2010 and selected in different European 

breeding programs. Thus, we are studying certain among of physiological and genetic diversity. 

Nevertheless, some of these varieties were selected to perform well where we tested them and others were 

selected for other environments. The main criterion for adaptation in wheat is earliness that can be 

approximated by flowering date. In our panel, the standard deviation in flowering date was seven days, 

which is significant. Consequently, we have to be aware of the previously mentioned confounding effect on 

adaptation genes and may use flowering date as a covariate in some analyses to take into account regional 

adaptation.  

In our panel, physiological diversity can arise from selection effect as we used a historical panel. 

Consequently, we will have to check if the associated chromosomal regions are not fixed in the more recent 



69 

 

varieties. Otherwise, these results may not be useful in selection, which mostly uses elite × elite crosses. 

For traits that were not under selection pressure, it remains to be seen whether the diversity is sufficient in 

elite germplasm to actually start to select for them.  

Regarding genetic diversity, using elite varieties instead of exotic ones may reduce the frequency of 

unusable loci due to a low minor allele frequency. This also means that numerous loci will not be 

polymorphic at all and their effects will not be assessed whether they are positive or negative. We can 

illustrate that with the use of the 90K gene-associated SNP chip developed using transcriptome sequencing 

of a broader genetic diversity (Wang et al. 2014).  On the total number of SNP that were properly scored 

(36K on 90K), around 28% were monomorphic. Added to the 90K chip, we used SNP developed by 

Biogemma (30% of the total genotyping dataset). This dataset is not publically available to give a 

competitive advantage to Biogemma and contains SNP mainly located in candidate regions or genes. Thus, 

we may be more focused on particular regions. More generally, we mostly focused on genic variability. To 

conclude, we screened a genetic diversity which is reduced by our panel and partially biased by our 

selection of SNP. 

 

 

 

Figure 4: (A) Dendrogram of individuals and (B) percentage of variance explained by axis in the (C) principal 

component analysis. In the dendrogram, varieties are clustered using the kinship matrix (method Ward). PCA 

analysis was performed on the genotyping matrix (genotypes × SNP). 
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First, we should be aware of physiological and genetic variances as they are impacting statistical power in 

the linkage disequilibrium mapping methods that we used. Panel structure also impacts statistical power. In 

fact, phenotypic variance is only useful if it is not linked to the panel structure. In Europe, commercial lines 

can be re-used in concurrent breeding programs. Thus, European elite lines are not well structured even if 

varieties have a tendency to cluster by breeding companies and geographical origin (Fig. 4). In agreement 

to this, following Patterson et al. (2006) who developed a statistical method to test the significance of 

structure, we concluded that we did not have any significant structure in our panel. This absence of a strong 

structure is good news and may compensate a reduced phenotypic variance. However, structure studies are 

performed at the panel scale. At a smaller scale, varieties kinship is not uniform and should be taken into 

account. Moreover, wheat market is segmented in different classes of quality under the genetic determinism 

of a reduced number of genes having a huge influence on agronomic performances. And, this information 

may be “diluted” in the kinship matrix. Thus, quality classes may have to be used as a covariate in some 

analyses as flowering date.  

 

 

Our dataset is obviously limited but allows for the study of varieties’ responses to a wide range of 

environmental stresses.  Moreover, using elite varieties, our results will completely be (i) in the scope of 

breeders working on winter wheat adapted to North West Europe and (ii) in the scope of Arvalis institut du 

vegetal, which mission is to advice farmers on cultural practice maximizing yield potential for a given 

variety. As previously mentioned, before looking at the genetic determinism of NUE related traits, the first 

question to answer is whether phenotypic diversity is sufficient in our panel. Moreover, past breeding effort 

can be analysed and discussed in order to better design the future one.  
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ABSTRACT: In a context where European agriculture practices have to deal with environmental concerns 

and nitrogen (N) fertiliser cost, nitrogen use efficiency (NUE) has to be improved. This study assessed 

genetic progress in winter wheat (Triticum aestivum L.) NUE. Two hundred and twenty-five European elite 

varieties were tested in four environments under two levels of N. Global genetic progress was assessed on 

additive genetic values and on genotype × N interaction, covering 25 years of European breeding. To avoid 

sampling bias, quality, precocity and plant height were added as covariates in the analyses when needed. 

Genotype × environment interactions were highly significant for all the traits studied to such an extent that 

no additive genetic effect was detected on N uptake. Genotype × N interactions were significant for yield, 

grain protein content (GPC), N concentration in straw, N utilisation, and NUE. Grain yield improvement 

(+0.45 % year
-1

) was independent of the N treatment. GPC was stable, thus grain nitrogen yield was 

improved (+0.39 % year
-1

). Genetic progress on N harvest index (+0.12 % year
-1

) and on N concentration 

in straw (-0.52 % year
-1

) possibly revealed improvement in N remobilisation. There has been an 

improvement of NUE additive genetic value (+0.33 % year
-1

) linked to better N utilisation (+0.20 % year
-1

). 

Improved yield stability was detected as a significant improvement of NUE in low compared to high N 

conditions. The application of these results to breeding programs is discussed. 
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ABBREVIATIONS 

ADM_S, straw dry matter at maturity; BLUE, best linear 

unbiased estimator; BLUP, best linear unbiased 

predictor; E, environment; FLO, flowering date; G, 

genotype; GNY, grain nitrogen yield; GPC, grain protein 

content; GPD, grain protein deviation; GY, grain dry 

matter yield; HI, harvest index; HN, high nitrogen input; 

KS, kernel per spike; LN, low nitrogen input; LRT, 

likelihood ratio test; LSD; Fisher’s least significant 

difference test; N, nitrogen; %N_S, straw nitrogen 

content at maturity; NHI, nitrogen harvest index;  NSA, 

straw nitrogen per area; NTA, total nitrogen in plant at 

maturity; NUE, nitrogen use efficiency; NUE_Prot, 

nitrogen use to protein efficiency; NupE, nitrogen 

uptake; NutE, nitrogen utilisation efficiency; NutE_Prot; 

nitrogen utilisation to protein efficiency; P; P-value; PH, 

plant height; SA, spike per area; TKW, thousand kernel 

weight; YR, year of release 

 
 
INTRODUCTION 

 

Nitrogen (N) fertiliser accounted for the majority 

(77.4 %) of nutrients consumed in Europe on all 

crops in 2011 (ec.europa.eu/eurostat). Its increasing 

application has largely contributed to bread wheat 

(Triticum aestivum L.) yield rise during the second 

half of the twentieth century (Erisman et al. 2008). 

But the cost of N fertiliser production and 

application is increasing (Rothstein, 2007) and 

environmental concerns (Goulding, 2004) make it 

necessary to enhance crop nitrogen use efficiency 

(NUE). 

Two strategies may be devised for NUE 

improvement: maintaining high yield when 

reducing N supply, and/or increasing yield at a 

constant N supply. The cost of N production, 

environmental pollution due to nitrate leaching 

(Pathak et al. 2011), and volatilisation of 

greenhouse gases require that wheat NUE should be 

improved at a lower N supply. But the situation is 

more complex since increasing world demand for 

grain (Bruinsma, 2009) means that increased 

production per unit area is the priority. Thus, the 

minimum N rate to maximise yield should be 

considered. End-use is also an important factor as 

breadmaking, feed, or biofuel wheat varieties have 

different protein content requirements (Bushuk, 

1998; Shewry and Halford 2002). Moreover, for a 

given cultivar, the maximal grain protein 

concentration and the maximal yield are generally 

not obtained with the same fertilisation strategy, i.e. 

amount and application dates (Lopez-Bellido et al. 

2006). We should also notice that both lodging 

(Ortiz-Monasterio et al. 1997a) and foliar disease 

(Olesen et al. 2003) risks increase with N 

fertilisation. 

Moll et al. (1982) defined NUE as grain dry matter 

(GY) divided by available N from the soil and 

fertiliser. Improving NUE is a relevant challenge 

for winter wheat for which N recovery and NUE are 

estimated to be respectively around 65 % and 25 kg 

DM kg
-1

 N at high N input in Northern Europe 

(Sylvester-Bradley and Kindred 2009; Gaju et al. 

2011). As an integrative trait, NUE is usually 

decomposed into two components: the uptake and 

utilisation efficiencies. Uptake efficiency 

characterizes the capacity to capture N from the 

soil: it is often computed as total nitrogen in the 

plant at harvest (NTA) divided by available N in the 

soil. Utilisation efficiency characterises the capacity 

to convert total plant nitrogen to grain dry matter 

(GY / NTA). 

The identification of traits to improve NUE in 

wheat and the characterisation of their variability 

provide useful directions to breeders (e.g. 

Barraclough et al. 2010; Foulkes et al. 2009; Gaju 

et al. 2011). The first decision that breeders have to 

take is to choose the N level for which they want to 

breed. Indeed, in numerous studies which analysed 
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agronomic traits, significant genotype × N (G × N) 

interactions were detected (e.g. Le Gouis et al. 

2000; Laperche et al. 2006a; Barraclough et al. 

2010), meaning that variety behaviour differentially 

depends on N treatment. Quantifying G × N 

interactions is therefore crucial for efficient 

selection. Recent selection in Europe has been 

conducted mostly at high or optimum N levels so 

genetic progress achieved at lower N levels results 

from indirect selection. As G × N interactions have 

been shown to increase with N stress (Bänziger et 

al. 1997; Laperche et al. 2006a) the efficiency of 

indirect selection for a low N input (LN) 

environment resulting from direct selection in a 

higher N input (HN) environment can be highly 

variable (Atlin and Frey 1989; Ceccarelli et al. 

1992; Sinebo et al. 2002; Brancourt-Hulmel et al. 

2005). 

Characterizing and quantifying recent genetic 

progress can also bring meaningful information to 

breeders. Many studies have been conducted on 

wheat yield genetic progress (e.g. for recent studies 

Brisson et al. 2010; Fischer et al. 2010; Oury et al. 

2012; Graybosch and Peterson, 2012; Lopez et al. 

2012; Green et al. 2012). The main conclusion from 

studies conducted at different N levels is that 

genetic progress occurred in both HN and LN 

conditions, but was higher at HN (Ortiz-Monasterio 

et al. 1997a; Brancourt-Hulmel et al. 2003; Guarda 

et al. 2004). Fewer studies have been published on 

the genetic progress for NUE and its components 

(Ortiz-Monasterio et al. 1997a; Guarda et al. 2004; 

Muurinen et al. 2006). Moreover, it is well known 

that a negative correlation between yield and 

protein content exists in wheat (Kibite and Evans 

1984; Simmonds, 1995, Oury et al. 2003; Oury and 

Godin, 2007, Bogard et al. 2010). A yield increase 

may therefore lead to a decrease in protein content 

which could cause lower end-use quality (Ortiz-

Monasterio et al., 1997b; Shewry, 2004). Thus the 

question of the genetic improvement in yield or 

NUE cannot be assessed independently of quality. 

Two major approaches are used to assess genetic 

progress: (i) historical trial analyses and (ii) direct 

comparisons of old and modern varieties in the 

same environment. But these two approaches suffer 

from some limitations. (i) When historical trials are 

analysed, as genotypes are tested in different year × 

environment combinations, there is a need to take 

into account agroclimatic variation. This may 

induce bias as elimination of “year” effects is often 

based on variation from year to year of common 

controls leading to inadequate consideration of 

genotype × “year” interactions (e.g. Brisson et al. 

2010; Oury et al. 2012; Graybosch and Peterson 

2012). (ii) Direct comparisons of old and modern 

varieties are often limited by the experiment size 

(e.g. Brancourt-Hulmel et al. 2003; Guarda et al. 

2004; Muurinen et al. 2006; Green et al. 2012) with 

few genotypes studied in few environments. This 

can cause sampling errors. Lopez et al. (2012) 

proposed to base genetic progress assessment only 

on the highest yielding variety per date of release 

but still with a quite low number of cultivars. 

Moreover, the period under study is usually spread 

out and includes major changes in plant height due 

to introduction of dwarfing alleles. Indeed, height 

decrease is one of the major sign of winter wheat 

genetic improvement between 1946 and 1992 in 

France (Brancourt-Hulmel et al. 2003) as well as 

other countries (eg Ortiz-Monasterio et al. 1997a; 

Austin, 1999). It is directly linked to NUE through 

an increase of lodging resistance and nitrogen 

partitioning (Hedden, 2003). Plant height is now 
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stabilised, therefore the question of recent genetic 

gain can be asked independently of this major 

physiological change using a large panel of recent 

cultivars grown in the same environments. 

Our work aims to assess recent genetic progress in 

NUE and NUE-related traits in HN and LN 

environments. For this purpose, (i) we assessed the 

additive genetic and interactive variances for NUE 

and its components, and (ii) we estimated genetic 

progress made during the last 25 years for both 

additive genetic effects and for G × N interactions. 

For this, we analysed a multi-environment dataset 

of eight independent trials (four HN input and four 

LN input) where 225 registered winter wheat 

varieties were directly compared. 

 

Table 1: Description of the experimental design where wheat genotypes were evaluated at high N level 

(HN) and low N level (LN). NTAmax corresponds to the 95
th

 percentile of total nitrogen per area at maturity for 

all the genotypes present in the trial and is an estimate of N available (soil + fertiliser N). 
 

 
a Nsupply: fertiliser supply at end of winter + at Z30 + at Z32. 

     b controls: Apache, Orvantis, Caphorn, and Soissons (2007/08) or Premio (2008/09)  

 

 

MATERIALS AND METHODS 

 

Plant materials and field experiments 

 

Two hundred and twenty five European elite 

varieties released from 1969 to 2010 were evaluated 

in four environments (Table 1) as a combination of 

two sites and two seasons (Suppl. data 1 and Suppl. 

data 2). VB08 and VR09 were conducted by 

Arvalis experimental units in Villier-le-Bâcle and 

Vraux. EM08 and EM09 were conducted by the 

INRA experimental unit in Estrées-Mons. 

Genotypes were ranked by heading date to limit 

competition, effects and distributed in eight blocks. 

At EM08 and EM09, an augmented design was 

used where four controls were repeated in each of  

 

 

the eight blocks. At VB08 and VR09 all varieties 

were repeated twice in a complete block design. 

Two nitrogen supply modalities were tested in each 

environment (Table 1). The high N (HN) treatment 

corresponds to common agricultural practice in the 

tested environments. The low N (LN) treatment 

corresponds to HN reduced by around 100 kg N ha
-

1
. Other crop inputs including weed, disease and 

pest control, and potassium, phosphate and sulphur 

fertilisers, were applied at sufficient levels to 

prevent them from limiting yield. Plant growth 

regulator was applied to limit lodging on all trials. 

A trial is defined as a combination of environment 

× N treatment (e.g. EM08_LN).  

Site x 

Season 
Season Location 

Soil 

type 

Genotypes 

tested 

Residual 

soil N 

(kg N ha-1) 

N supply a 

(kg N ha-1) 

NTAmax 

(kg N ha-1) 

HN LN HN LN 

EM08 07/08 
Estrées-Mons 

(49.8N,3.03E) 

Clay 

loam 

206b 67 50+70+50 0+70+0 206 144 

EM09 08/09 208b 30 50+50+50 0+50+0 241 111 

VB08 07/08 

Villiers le 

Bacle 

(48.7N,2.1E) 

Clay 

loam 
197 106 0+66.5+60 0+44+0 242 157 

VR09 08/09 
Vraux 

(49.0N,4.2E) 

White 

Chalk 
196 30 60+100+60 60+60+0 236 173 
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Phenotypic data 

 

Plant height (PH) and the number of spikes per unit 

area (SA) were assessed on each plot except for 

VB08_LN where measurements were taken on only 

one replicate. Flowering date (FLO), thousand 

kernel weight (TKW), straw dry matter at maturity 

(ADM_S), straw nitrogen content at maturity 

(%N_S), grain dry matter (GY), and grain protein 

concentration (GPC) were measured on each plot in 

all trials. The number of kernel per spike (KS) was 

calculated as GY / (TKW × SA). Total nitrogen per 

unit area at maturity (NTA) was calculated as grain 

nitrogen yield [GNY = (GPC / 5.7) × GY] added to 

straw nitrogen per unit area (NSA = ADM_S × 

%N_S). 

NUE was not calculated as proposed by Moll et al. 

(1982). Rather, considering that mineralisation, 

leaching and rain all impact on the estimation of 

available soil N (Hirel et al. 2007; Gaju et al. 2011; 

Bingham et al. 2012), in each trial total N available 

to plants was estimated as the 95
th
 percentile of the 

NTA (NTAmax) (Table 1). Nitrogen use efficiency 

(NUE) was then estimated as GY divided by 

NTAmax. N uptake efficiency at maturity (NupE) 

was calculated as NTA divided by NTAmax. N 

utilisation efficiency (NutE) was calculated as GY 

divided by NTA. To illustrate the capacity of 

varieties to convert N into protein, N use efficiency 

for protein production (NUE_Prot = GPC / NTAmax) 

and N utilisation efficiency for protein production 

(NutE_Prot = GPC / NTA) were also computed. 

Harvest index (HI) was defined as the grain dry 

matter divided by the total dry matter [GY / (GY + 

ADM_S)]. N harvest index (NHI) at maturity was 

the amount of N in the grain compared to the total 

nitrogen in the plant (GNY / NTA). Grain protein 

deviation  (GPD) was the deviation from the linear 

regression of GPC by GY in each trial (Monaghan 

et al. 2001).  

 

In all trials, adjusted means were calculated using a 

linear model with varieties and blocks as fixed 

factors. This resulted in eight different datasets with 

182 varieties in common. The other varieties were 

at least present in four trials. Adjusted means were 

then used in all the following analyses. 

 

Mixed-model and variance decomposition 

 

To Pijk, the phenotype of genotype i (i=1… 225) in 

environment j (VB08, VR09, EM08, and EM09) 

with N treatment k (HN and LN), the following 

mixed-model was used: 

 

Pijk = µ + Nk + Ej + Ej × Nk + Gi + Gi × Ej + Gi × Nk 

+ εijk (1) 

 

and in the single N treatment analyses, the 

following reduced mixed-model was used: 

 

Pij = µ + Ej + Gi + εij (2) 

 

In both equations (1) and (2) µ is the general mean, 

Nk the fixed effect of N, Ej the random effect of the 

environment, Ej × Nk the environment × N level 

interaction, Gi the random additive effect of the 

variety. Gi × Ej and Gi × Nk are respectively effects 

for the variety x environment (G × E) interaction, 

and variety × N modality interaction (G × N). εijk ~ 

N(0, σ²) and εij ~ N(0, σ²) are  residual error terms. 

 

Fixed effects were tested using Wald tests. 

Variance components of random factors were tested 
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one by one using the likelihood ratio test (LRT) 

(Kendall and Stuart 1979), based on log-likelihood 

(Lmax) differences between the complete (1) and 

reduced models (1) without the tested factor.  

 

LRT = - 2 × [log(Lmax full model) - log(Lmax 

reduced model)]. 

 

LRT is expected to be distributed as a χ² with 

degrees of freedom (df) as: 

 

df = nPAR full model – nPAR reduced model 

where nPAR is the number of parameters. 

 

The null hypothesis (no significant effect of the 

tested component) was rejected when LRT > χ² (df). 

In our case, df was 1 as it was assumed no genetic 

covariance among varieties nor covariance among 

the trials.  

 

Heritability 

 

Generalised heritability (h²g) was calculated using 

the following formula developed by Cullis et al. 

(2006). 

 

h²g = 1 – PEV / (2 × σ²g) 

where σ²g is the genetic variance and PEV is the 

average pairwise prediction error variance of the 

genetic effects best linear predictions (BLUPs). 

 

Effect of the year of registration 

 

To test for genetic progress, Gi and Gi × Nk were 

calculated from equation (1) modified with Gi and 

Gi × Nk as fixed effects to avoid shrinkage issues. 

Effect of the year of release (YR) was assessed on 

additive genetic effect (Gi) and on the genotype × N 

level interaction term (Gi × Nk) by variance analyses 

(ANOVA) in a linear model. These tests were also 

conducted with the quality classes, precocity, and 

plant height as covariates (Suppl. data 2). A 

complete model including all covariates was first 

computed but only significant covariates were kept 

in the final analyses. Quality and plant phenology 

(height and precocity) are correlated to the studied 

traits so using them as covariates to estimate 

genetic progress corrects for two potential errors. 

The first is an artificial evolution of the studied trait 

due to the non-homogeneous allocation of quality, 

precocity, or height among years, assuming that 

they would not have evolved during the period 

under study. Secondly, it also compensates the 

possible non-adaptation of varieties to the tested 

environments as in our panel varieties were selected 

for different European target environments. 

The five quality classes used correspond to those of 

the National Association of French Millers: very 

high quality, high quality, good quality, biscuit 

quality, and other use. YR were found in the French 

(http://cat.geves.info/Page/ListeNationale) and the 

European catalogue of crop species 

(http://ec.europa.eu/food/plant/propagation/catalogu

es). Anthesis date and plant height best linear 

unbiased estimators (BLUEs) from the reviewed 

equation (1) were used as precocity and height 

covariates. 

Only three varieties were released between 1969 

and 1985. To avoid sampling bias these varieties 

were not included in the genetic progress analyses. 

In total, 195 European elite varieties for which 

quality and YR information were available were 

used to assess the genetic progress.  
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Software 

 

Statistical analyses were performed using R.2.13.2 

(The R development core-team 2012) and the 

ASReml-R package v3.0.1 (Butler et al. 2009; 

http://www.vsni.co.uk). 

 

 

RESULTS 

 

Grain yield and N efficiencies 

 

 

Figure 1: Boxplot of GY for 225 wheat cultivars 

grown over two years (2008 and 2009) at two N levels 

[Low N (LN) and High N (HN) and in three sites, 

Estrées-Mons (EM), Villiers-le-Bâcle (VB) and Vraux 

(VR)]. Quartiles and median are used to construct the 

box.  The whiskers extend to 1.5 times the interquartile 

range from the box. 

 

Mean grain yield ranged from 5.8 in EM09_LN to 

9.0 t ha
-1

 in EM09_HN (Fig. 1). In all 

environments, the N effect was always significant 

with large differences between sites and seasons. 

Extreme reductions of 11% in VR09 and 35% in 

EM09 were observed on yield when plants were 

grown under LN compare to HN conditions. A high 

correlation between GY measured at HN and LN 

exists (r=0.86, P<0.001). Older varieties yielded 

less than the most recent (Fig. 2) suggesting genetic 

improvement at both HN and LN. NUE was greater 

at LN (42.7 kg DM kg
-1

 N) than at HN (32.9 kg DM 

kg
-1

 N). 

 

 

Figure 2: Grain yield best linear unbiased estimators 

(BLUEs) at low N level (LN) as a function of BLUEs 

at high N level (HN) for 225 wheat cultivars grown in 

four environments. Dot colours are function of the year 

of release from the older (black) to the younger (light 

grey). Average pairwise prediction standard error (avsed) 

and least significant difference (LSD) at both HN and 

LN treatments are plotted as the following regression 

function: y = 0.69x + 458.5 (r² = 0.74, P < 0.001). 

 
NutE was higher at LN (55.6 kg DM kg

-1
 N) than at 

HN (41.9 kg DM kg
-1

 N), while NupE remained 

stable (79 % at HN and 78 % at LN). Phenotypic 

correlations revealed that the contribution to NUE 

of N utilisation increased with N supply, from r = 

0.53 (P < 0.001) at LN to r = 0.60 (P < 0.001) at 

HN. The contribution of N uptake to NUE is also 

significant (r = 0.44, P < 0.001) but did not vary 

between LN and HN. 

 

Variance components and heritability 

 

Significant genotypic effects were observed for all 

traits except NTA and NupE (Table 2). Trait 

heritabilities were highly variable ranging from 0 

for NupE to 0.97 for flowering date. The high 
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contribution of the G × E interaction to the genetic 

variance of N uptake (77 % of the total variance) is 

consistent with a weak genetic additive effect. HI, 

NutE, GPD, NutE_Prot, NUE, and NUE_Prot, are 

all derived traits which nevertheless exhibited high 

heritabilities. 

The variance decomposition revealed significant G 

× N interactions for GY, GPC, NUE, NUE_Prot, 

and %N_S. G × N interaction was the most 

important for NutE representing 7 % of its genetic 

variance. We should stress that genotype × 

environment × N interaction was included in the 

model residual, resulting in an underestimation of 

the specific influence of N treatment on genotypes. 

Heritabilities at HN and LN were really similar 

(Suppl. data 4). The highest difference was 

observed for GNY with heritability 0.31 at HN and 

0.19 at LN. Nevertheless, differences in variance 

components should be noticed. For DMGY, GPC, 

GPD, SA, TKW, NHI, %N_S, and ADM_S genetic 

and error variances decreased from HN to LN. On 

the contrary, traits associated with NUE (NutE, 

NutE_Prot, NUE, and NUE_Prot) have genetic and 

error variances increasing from HN to LN. 

 

Table 2: Mean, standard deviation (sd), heritability (h²g) and genetic variance decomposition for agronomic 

traits measured on 225 wheat cultivars in eight trials (see text for traits description). Genetic variances are 

decomposed into three components, G the additive genetic effect, the G × E and the G × N interactions. 

 

Trait Mean sd Units h²g G G × E G × N 

FLO 149.25 7.12 days 0.97 92% *** 8% *** 0% ns. 

PH 76.60 8.43 cm 0.89 80% *** 19% *** 0% ns. 

SA 411.97 78.8 nb spike m-2 0.75 69% *** 23% *** 8% ** 

TKW 42.45 4.11 g 0.91 83% *** 16% *** 1% ns. 

KS 42.78 8.88 nb kernel per spike 0.77 68% *** 30% *** 2% ns. 

GPC 9.93 2.05 % prot 0.85 71% *** 27% *** 2% * 

GY 7400 1258 kg DM ha-1 0.79 60% *** 36% *** 5% *** 

GNY 127.94 35.44 kg N ha-1 0.18 18% ** 74% *** 8% ns. 

GPD 0.00 0.78 % prot 0.71 61% *** 36% *** 3% ns. 

%N_S 0.42 0.13 % N 0.66 56% *** 35% *** 9% * 

ADM_S 7288 1861 kg DM ha-1  0.79 81% *** 18% *** 1% ns. 

HI 50.42 5.67 % DM 0.79 67% *** 32% *** 1% ns. 

NHI 81.15 5.71 % N 0.45 38% *** 55% *** 7% ns. 

NTA 158.46 45.03 kg N ha-1 0.04 16% ns. 75% *** 9% ns. 

NupE 0.78 0.08 % N 0.00 10% ns. 77% *** 13% ns. 

NutE 48.80 11.19 kg DM kg-1 N 0.79 63% *** 30% *** 7% *** 

NutE_Prot 0.07 0.01 % prot kg-1N ha-1 0.83 74% *** 23% *** 3% ns. 

NUE_Prot 0.05 0.0083 % prot kg-1N ha-1 0.83 69% *** 27% *** 4% *** 

NUE 37.8 7.69 kg DM kg-1 N 0.80 69% *** 26% *** 5% * 

 

LTR tests : *** , P-value  <0.001 ;  **,  P-value  <0.01; * , P-value  <0.05;  and ns., non-significant P-value>0.05 
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Year of registration effect on genetic additive 

effect 

 

The effect of year of registration (YR) was tested 

on the different traits. Additive genetic effects were 

estimated at both HN and LN. YR effect was either 

tested alone or taking into account precocity and/or 

plant height and/or quality classes as covariates. 

These covariates were themselves first tested for 

association with YR. Quality classes were not 

totally homogeneously allocated among years (LSD 

test P = 0.05, Suppl. data 5).  “Very high quality” 

varieties which have higher GPC (LSD test P = 

0.05, Suppl. data 5) were on average significantly 

older (1999) than “high” and “good quality” 

varieties (2003). Flowering date was correlated to 

YR with new cultivars later flowering (+0.18 day 

year
-1

). YR had no significant effect on plant height 

but variation in plant size exists (coefficient of 

variation = 11 %). The addition of covariates 

enhanced the accuracy of the genetic progress 

estimation (Fig. 3). Indeed, sampling bias and miss-

adaptation of phenology to the tested environments 

were corrected. 

 

  

 

Figure 3: Boxplot of (A) NUE genetic value and (B) NUE genetic values corrected for quality and precocity 

effects as a function of registration year of 195 wheat cultivars grown in four environments and two N 

treatments. Medians (dash), means (solid diamond). (A) NUE = 37.8 + (YR - 2002)  0.198 (r² = 12.6 %; P < 0.001). 

NUE additive genetic values are BLUEs from the multi-environment mixed model. (B) NUE = 37.8 + (YR - 2002)  

0.126; NUE additive genetic values are BLUEs from multi environment mixed model which were corrected for 

quality and precocity effects. The complete model (with quality, precocity and YR) adjusted r-squared is 64.6 %.  

 

The most significant effect of YR was detected on 

GY (+0.45 % year
-1

). GY can be divided into three 

components: the weight of grains (TKW), the 

number of grains per spike (KS), and the number of 

spike per area (SA). TKW and SA remained stable. 

KS increase was not significant when quality and 

precocity were added to the model. We can 

conclude that there is no clear trend about how GY 

genetic gain was achieved. Probably different 

strategies have been used simultaneously. 

Apart from the variability of quality classes among 

years, GPC did not decrease since 1985. This 

stability, coupled with the GY increase, led to GNY 

improvement (+0.35 % year
-1

). GNY improvement 
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can be the result of two physiological changes: 

partitioning and/or uptake. The YR effect on uptake 

was not tested as no additive genetic effect was 

detected for NTA (Table 2). Regarding dry matter 

partitioning, HI increased (+0.13 % year
-1

) as 

ADM_S remained the same and GY increased. 

Regarding N partitioning, NHI (+0.12 % year
-1

) 

increased, ADM_S remained the same and %N_S 

decreased.The additive genetic effect of NUE 

increased (+0.33 % year
-1

) (Fig. 3) thanks to an 

improvement of NutE (+0.20 % year
-1

). NutE 

improvement and NutE_Prot decrease (-0.27 % 

year
-1

) revealed that selection has favoured varieties 

which preferentially convert remobilised nitrogen 

into grain dry matter rather than into protein. As 

GPC was stable, the decrease in NutE_Prot (GPC / 

NTA) could be the result of either NTA 

improvement or/and an uptake increase. These 

hypotheses could not be distinguished as no 

significant additive genetic effect was detected for 

NupE (Table 2). 

 

 

Table 3: Year of registration (YR) effects on agronomic traits measured on 195 wheat cultivars grown in eight 

trials (see text for traits description). YR effect was tested with and without covariates (quality class, precocity, and 

plant height): contribution to the variance (R²), factor effect significance (P), and slope of the YR regression (% of the 

trait mean). 

 

Trait 
Only YR 

 With cofactor and covariates 

 Quality Precocity Height Year of Registration 

R² P Slope  R² P R² P R² P R² P  Slope  

PH 1 ns.   16 *** 7 ***   0 ns.    

FLO 0 ns.   9 ***   7 *** 3 **  0.18 day +0.12% 

SA 0 ns.   NT  NT  NT  0 ns.    

TKW 0 ns.   NT  NT  3 ** 1 ns.    

KS 2 * +0.41%  13 *** 5 ** NT  0 ns.    

GPC 5 ** -0.46%  52 *** 16 *** NT  0 ns.    

GY 17 *** +0.70%  54 *** 11 *** NT  6 ***  33.2kg DM ha-1 +0.45% 

GNY 8 *** +0.38%  5 * NT  NT  6 ***  0.442kg N ha-1 +0.35% 

GPD 0 ns.   29 *** 5 *** NT  1 ns.    

%N_S 2 * -0.41%  NT  19 *** 12 *** 3 **  -2.17×10-3 % N -0.52% 

ADM_S 0 ns.   6 *** 32 *** 16 *** 1 ns.    

HI 9 *** +0.29%  41 *** 1 * 14 *** 2 **  6.71×10-2 % DM +0.13% 

NHI 7 *** +0.12%  NT  NT  NT  7 ***  9.72×10-2 % N +0.12% 

NutE 8 *** +0.39%  40 *** 16 *** NT  2 **  9.67×10-2 kg DM kg-1 N +0.20% 

NutE_Prot 9 *** -0.49%  59 *** 10 *** NT  2 ***  -1.73×10-4 % prot kg-1N ha-1 -0.27% 

NUE_Prot 6 *** -0.38%  52 *** 12 *** NT  1 ns.    

NUE 13 *** +0.52%  48 *** 13 *** NT  5 ***  0.13kg DM kg-1 N +0.33% 

 

Fischer tests : *** , P-value  < 0.001 ;  **,  P-value  < 0.01; * , P-value  < 0.05;  and ns., non-significant P-value > 0.05 

NT = not tested because not significant  
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YR effect on G × N interaction 

 

After being tested on additive genetic effect, YR 

effect was tested on significant G×N interactions. A 

change in G×N interactions was significant only for 

GY and NUE (Table 4). For GY, the YR effect was 

significant when no covariates were used. Modern 

varieties had G×N interaction which increased yield 

(+0.12 % year
-1

) in HN environments, with a 

corresponding decrease in LN environments. 

However, G×N interactions for GY were explained 

by variation in quality classes (r² = 13.1 %, P < 

0.001) and precocity (r² = 9.8 %, P < 0.001). The 

most important effect was due to the highly 

negative interactions of “very high quality” 

varieties at HN (-188 kg ha
-1

). The effect of 

precocity was the result of the positive correlation 

between date of flowering and G × N interactions at 

HN (+10 kg ha
-1

 per day of delay). So, once quality 

and precocity effects were removed, there was no 

significant difference in GY genetic progress 

between HN and LN environments (Table 4). The 

slopes of regression are different but confidence 

intervals overlap (Fig 4). This also means that 

recent and old varieties have the same yield loss 

between HN and LN. However, as recent varieties  

 

have a higher GY (+0.35 % year
-1

, Table 3) their 

relative GY losses are lower than for older varieties 

and, therefore, recent varieties are more stable. 

Concerning NUE, the YR effect on G × N 

interaction stayed significant when quality was 

introduced into the model (Table 4). Recent 

varieties had higher G × N interactions on NUE 

than older varieties at LN (+2.98 × 10
-2 

kg DM kg
-1

 

N year
-1

 ; +0.08 % year 
-1

), and so lower at HN (-

2.98 × 10
-2  

kg DM kg
-1 

N year
-1

 ; -0.08 % year 
-1

). 

The complete genetic progress at LN is calculated 

as the genetic progress on additive values added to 

the ones on the G×N interactions. Then, the global 

genetic progress on NUE was +0.155 kg DM kg
-1 

N 

year
-1

 at LN and +0.096 kg DM kg
-1 

N year
-1

 at HN 

(respectively +0.37 % year 
-1

 and +0.30 % year 
-1

 

referring to the mean NUE at LN and at HN) (Fig. 

5). This conclusion is consistent with the previous 

one on GY. Indeed, GY progress was the same at 

LN and HN; however, N available at LN (mean 

NTAmax = 146.25 kg N ha
-1

) was lower than at HN 

(mean NTAmax = 231.25 kg N ha
-1

). So, the way in 

which NUE is calculated (GY / NTAmax) leads to a 

higher estimate of genetic progress at low N than at 

high N. 

 

Table 4: Decomposition of G × N interaction variance (%) for NUE and GY of 195 wheat cultivars grown in 

four environments. The registration year (YR) effect was tested with and without covariates (quality class, precocity, 

and plant height). 

 

Trait Only YR 
With cofactor and covariates 

Quality Precocity Height YR 

GY 4.6 ** 13.09 *** 9.84 *** NT 1.09 ns. 

NUE 3.25 * 5.27* NT NT 1.97* 

 

Fischer tests: ***, P-value < 0.001; **, P-value < 0.01; *, P-value < 0.05 and ns., non-significant P-value > 0.05 

NT = not tested because not significant  
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Figure 4: Boxplot of GY genetic values by year of 

release and by N treatment (LN = low N level; HN = 

high N level) for 195 wheat cultivars grown in four 

environments. Values are the best linear unbiased 

estimators of NUE corrected of quality and precocity 

effects. (A) at HN treatment, and (B) at LN treatment. 

(A) At HN, regression function is NUE = - 69690 + YR 

× (34.8 +/- 4.42), the complete model (with quality and 

precocity) adjusted r-squared is 66 % and YR effect 

P<0.001. (B) At LN, regression function is NUE = -

51302 + YR × (25.64 +/- 6.22), the complete model 

(with quality and precocity) adjusted r-squared is 70 % 

and YR effect P < 0.001. G × N on NUE are significant 

but YR effect on this interaction is not significant (P > 

0.05). 

 

Figure 5: Boxplot of NUE genetic values by year of 

release and by N treatment (LN = low N level; HN = 

high N level) for 195 wheat cultivars grown in four 

environments. Values are the best linear unbiased 

estimators of NUE corrected of quality and precocity 

effects. (A) at HN treatment, and (B) at LN treatment. 

(A) At HN, regression function is NUE = -141.80 + YR 

× (0.09 +/- 0.03), the complete model (with quality and 

precocity) adjusted r-squared is 48.8 % and YR effect P 

< 0.001. (B) At LN, regression function is NUE = -

240.84 + YR × (0.14 +/- 0.02), the complete model (with 

quality and precocity) adjusted r-squared is 66.2 % and 

YR effect P < 0.001. G × N on NUE are significant and 

YR effect on this interaction is significant (P < 0.05). 

 

 

DISCUSSION 

 

We studied the variance components of NUE 

among 225 European winter wheat varieties 

evaluated in 8 independent trials containing two N 

treatments. These varieties were mostly released 

between 1985 and 2010. Thus, a study of the 

genetic improvement of NUE over the past 25 years 

was possible. We found that using quality, 

precocity, and plant height,   more accurate 

estimations of genetic gains were possible. The 

effect of selection was assessed on the additive 

genetic value and on the G × N interaction term. No 

additive genetic effect was found on NupE. The  

 

 

high heritability of complex traits such as NutE, 

NHI, NUE, NutE_Prot, and NUE_Prot revealed 

their potential for breeding. Regarding additive 

genetic value, NUE has increased thanks to a rise in 

NutE. Protein concentration did not decrease since 

1985. The main factor in this progress was better 

partitioning as revealed by an increase in NHI 

linked to a decrease in straw N concentration at 

maturity. G × N interactions were significant on 

GY, NUE, NutE, GPC, and NUE_Prot. Significant 

changes for G × N interactions were only detected 

for NUE, attesting to the higher yield stability of 

recently released compared to older varieties. 
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Genetic progress assessment method 

 

This work has been carried out with a large 

collection of European elite winter varieties, which 

have been bred for different target environments. 

They were mainly varieties designed for the French 

market and also for neighbouring countries (e.g. 

Germany, Great Britain, and Italy). In contrast to 

previous studies on NUE the period under study 

was smaller and encompasses the last 25 years of 

breeding, compared to 82 years (Uzik and Zofajova 

2012) and 94 years (Guarda et al. 2004) for winter 

wheat, 35 years (Ortiz-Monasterio et al. 1997a) and 

99 years (Muurinen et al. 2006) for spring wheat, 

and 75 years for barley (Bingham et al. 2012). 

Therefore, the period under study did not include 

major selection events that took place for plant 

height and precocity in the previous periods. It turns 

out that, in our panel, mean height was 78.9 +/- 8 

cm at HN and was stable over years (Table 3). This 

value is very similar to the 80 cm reported by 

Gooding et al. (2012) as being optimum for NUE 

using near isogenic lines for different Rht-1 alleles. 

Nevertheless, variability existed in our panel (Table 

2), and had to be controlled to avoid interference in 

breeding effect estimation.  

Precocity was also controlled by flowering date 

assessment. In our panel, the delay in flowering 

date is explained by the non-homogenous 

distribution of the varieties’ origins (Suppl. data 6). 

Varieties bred to European northern countries are 

generally late (Worland 1996) and are more 

frequent among the recent varieties of our panel. 

After 2005, four varieties came from the south of 

Europe (Italy, Spain) and 10 from the north (e.g. 

Germany, Great-Britain, Denmark).  

 

In the same way, we chose to control for quality 

class. Two points have to be addressed. First, “very 

high quality” varieties are often high GPC varieties. 

A negative correlation between GY and GPC exists 

(e.g. Simmonds 1995; Oury and Godin 2007; 

Bogard et al. 2010), and so NUE and GPC are 

negatively correlated (Barraclough et al. 2010; Gaju 

et al. 2011). These low-yielding genotypes can bias 

the analyses if they are not evenly distributed over 

time. Secondly, Ortiz-Monasterio et al. (1997b) 

studied genetic progress for grain quality from 1950 

to 1985, and found no link between quality 

(alveograph’s parameters) and YR. Guarda et al. 

(2004) also studied wheat quality evolution 

between 1900 and 1994. They concluded that lower 

protein concentration was associated with an 

improvement in protein composition, resulting in an 

increase of bread-making quality. Moreover, “very 

high quality” varieties frequency does not 

drastically vary among years, according to the 

French official catalogue of registered bread wheat 

varieties. So, in our case having older “very high 

quality” varieties was a sampling bias (Suppl. data 

5) that had to be controlled.  

As with other field studies on NUE genetic 

progress, we did not take into account below-

ground dry matter. However, not taking into 

account roots in the determination of N related 

traits such as NupE appears of little influence 

(Allard et al. 2013). Significant genotypic 

differences for root N exist but the amount of N 

present is low compared to total plant N. And so, 

genotype ranking is not affected. 

  



87 

 

Genetic progress between 1985 and 2010 

 

This study concludes that significant grain yield 

(GY) improvement is observed at both HN and LN. 

The genetic gain on GY is estimated to be +0.45 % 

year
-1

 (+33.2 kg DM ha
-1

 year
-1

) with no significant 

difference between HN and LN. This linear trend is 

in agreement with the requirement that a variety has 

to yield in excess of control varieties in official 

trials to be registered in France. The control variety 

list evolves to be representative of their market 

shares and agricultural practices. Progress on GY 

was not related to progress on TKW, SA, or KS. 

This is in contrast with Brancourt-Hulmel et al. 

(2003) who studied GY evolution by comparing 14 

winter wheat cultivars registered between 1946 and 

1992 in France at two levels of fungicide and N 

treatments and concluded that GY improvement 

was made by an increase in kernel number. Our 

study suggests a diversification of strategies in a 

more recent period.  

Concerning differences between HN and LN 

treatment, Ortiz-Monasterio et al. (1997a), 

Brancourt-Hulmel et al. (2003), Guarda et al. 

(2004) concluded that GY progress was higher at 

HN than at LN. But these studies were based on 

mean differences in N treatment and not on G × N 

coefficients. Also, according to Ortiz-Monasterio et 

al. (1997a), this difference was not significant for 

the period 1962 to 1985. Moreover, in Brancourt-

Hulmel et al. (2003) and Guarda et al. (2004), no 

fertilisers were added in the very low N treatment. 

In contrast, in this study, varieties’ behaviours were 

assessed in a context of fertiliser reduction.   

We also showed that grain protein concentration 

(GPC) did not significantly change in the last 25 

years. At HN, the mean GPC of bread-making 

wheat (“very high quality”, “high quality”, and 

“good quality”) was 11.4 +/- 1.6 %. This content is 

sufficient to fulfil French milling demands and 

exportation requirements to North Africa, the main 

exportation area for French production. Selection 

on GPC may only result in the elimination of low 

GPC lines and not in increasing GPC. Breeding 

program objectives were clearly to increase GY and 

maintain quality. But, in this study, mean GPC at 

LN is 8.66 +/- 1.62 % which is largely below bread-

making and exportation requirements. If suboptimal 

conditions are targeted, one of the main challenges 

for breeders will be to considerably increase GPC. 

An alternative would be to modify protein 

composition to increase dough strength and 

viscoelasticity, allowing for lower protein grain to 

be suitable for bread-making. 

Brancourt-Hulmel et al. (2003) assessed a genetic 

gain of +0.15 % year
-1

 for NHI between 1946 and 

1992, which includes semi-dwarf allele integration 

in breeding programs, compared to +0.12 % year
-1 

in our study.
 
These two estimates are very similar. 

An explanation is that there is no statistically 

significant increase in NHI from adding single 

semi-dwarf alleles to a tall background (Gooding et 

al. 2012). Besides, the absence of a link between 

quality and NHI is confirmed by Barraclough et al. 

(2010) who compared 39 elite commercial cultivars 

during four years at five N rates. This suggests an 

equivalent N partitioning between varieties from 

different quality classes. N absorbed before 

flowering, stored in vegetative parts and then 

remobilised to the grain accounts for around 70 % 

of total grain N (Van Sanford and MacKown 1986; 

Kichey et al. 2007). We found that the NHI increase 

was associated with a %N_S decrease (and ADM_S 

stability). This better N partitioning may either 
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come from a more efficient N remobilisation and/or 

a more efficient translocation efficiency (N 

absorbed after anthesis and translocated to the 

grain, Kichey et al. 2007).  

Nitrogen use efficiency improvement was mainly 

due to better N utilisation efficiency. Our 

estimations of genetic progress were in the range of 

previously published results, even if the N available 

was estimated differently. This study assessed NUE 

genetic progress of +0.37 % year
-1

 at LN and +0.30 

% year
-1

 at HN. Ortiz-Monasterio et al. (1997a) 

reported that NUE genetic progress was 0.4-1.1 % 

year
-1 

depending of N applied for spring CIMMYT 

cultivars released between 1950 and 1985. 

Sylvester-Bradley and Kindred (2009) also reported 

a significant trend between old and new cultivars 

grown at 0 and 200 kg N ha
-1

. In contrast, Muurinen 

(2006) concluded a lack of genetic gain on NUE for 

18 spring wheat varieties bred between 1901 and 

2000. As in our study, various reports have shown a 

major effect of N utilisation compared to N uptake 

on NUE at high N input (Ortiz-Monasterio et al. 

1997a; Brancourt-Hulmel et al. 2003; Uzik and 

Zofajova, 2012). In contrast, at low N input, N 

uptake seems to be the component which has more 

effect on NUE (Ortiz-Monasterio et al. 1997a; Le 

Gouis et al. 2000; Muurinen et al. 2006). In our 

study, NupE contribution to NUE was the same at 

LN and HN treatments, and the additive genetic 

effect on NupE was not significant. So, detection of 

change on NupE was impossible.  

To better compare the different studies, a finer 

characterisation of the N status at different N levels 

is probably necessary. In their low N input level, 

Ortiz-Monasterio (1997a), Le Gouis (2000), and 

Muurinen (2006) added no N fertiliser. Only 

mineral N already present in the soil and N coming 

from the mineralisation of organic matter were 

available to the plants. Our LN input modality was 

less stressful with a mean of 130 kg ha
-1

 (fertiliser + 

soil N) available to crop.  

Three hypotheses can account for the absence of an 

additive genetic effect of NupE in this study. (i) 

Genetic variation on uptake may only appear in 

highly N deficient environments. Indeed, NupE 

genetic variances are very similar between HN and 

LN (Suppl. data 4). But this hypothesis contradicts 

the single trial analysis (data not shown) where 

NTA genetic additive effect was significant only in 

two HN trials (VR09_HN and EM08_HN). (ii) The 

common method of using pre-sowing or post-winter 

early measurements of soil mineral N clearly 

underestimates NupE, as N losses (e.g. leaching, 

volatilisation) are not taken into account and so 

available N is overestimated. At the opposite 

extreme, the risk of overestimating NupE is real at 

LN as mineralization can provide N in large 

quantities and leaching is limited so that available 

N is underestimated. For example, Ortiz-

Monasterio (1997a), Le Gouis (2000), and 

Muurinen (2006) used this method and reported 

NupE superior to 1 in their low N input trials. 

Bingham et al. (2012) showed that the method of 

calculation had little effect on relative differences 

between varieties in single N treatment analysis as 

NTA between methods are only divided by 

different coefficients to obtain NupE. But when 

different N levels are used in common analysis, if 

overestimation bias at LN is not compensated by 

the underestimation bias at HN, this can lead to 

misinterpretation. To avoid this, we chose here (and 

advocate) to use the maximal uptake measured at 

each N level. To take into account possible 

measurements errors we used the 95
th
 percentile. 
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(iii) The genetic variation of uptake is not sufficient 

in our panel in comparison to the precision of 

measurements included in the computation of NTA 

/ NupE. Measurement errors could be controlled 

using more replicates or larger sampling size but 

with an additional cost. In addition, variability may 

have to be researched in a more diverse panel using 

for example genetic resources or breeding 

materials. 

 

Breeding efficiencies for different N levels 

 

Falconer and Mackay (1996) formulated that the 

relative efficiency under direct selection in 

condition 1 versus indirect selection in condition 2 

is rG12 × h2 / h1, where h1 and h2 are heritabilities in 

the two conditions respectively and rG12 the genetic 

correlation between conditions. Heritability is 

usually lower under LN conditions (Brancourt-

Hulmel et al. 2005, Laperche et al. 2006a), 

suggesting that indirect selection at high N can be 

an effective strategy to breed for low N conditions. 

In maize, Presterl et al. (2003) advocated direct 

selection at LN when yield reduction is > 21 % 

based on the evolution of the genetic correlation as 

a function of yield reduction. For Anbessa et al. 

(2010) indirect selection was efficient in barley, but 

the estimation was made on data where yield 

reduction was only 7 %. In a study where yield was 

reduced on average by 35 %, Brancourt-Hulmel 

(2005) advised to directly select wheat in LN 

environments to maximise gains. In this study, the 

mean yield in LN trials was reduced by around 20% 

compared to the mean yield in HN trials.  

Genetic progress on NUE and NUE-related traits 

was assessed from the additive genetic effect 

estimated using both HN and LN levels together 

with the G × N interaction. Our work shows that 

recent varieties have enhanced NUE-associated 

traits at both LN and HN treatments (except in N 

utilisation for protein, NutE_Prot). The only 

significant genetic progress difference occurred for 

NUE; +0.37 % year
-1 

and
 

+0.30 % year
-1

 

respectively at LN and HN. The varieties we used 

were probably mostly selected in HN environments 

as usually done in private breeding programs. Using 

the formula cited above, we calculated that the 

relative efficiency for indirect selection at HN for 

LN conditions was 78.1 % for NUE. This was 

mostly due to the fact that heritabilities were similar 

in our conditions at LN and HN. We advise to 

directly select in N suboptimal conditions when 

moderate N stressful environments are targeted.  

Around 10 years are needed for making crosses 

giving thousands of progenies to register a new 

variety. As the number of selected lines is reduced, 

the range of environments in which they are tested 

is wider. Among all these trials, moderate N 

stresses surely occur. So the selection process may 

already mixes HN and moderate LN environments 

explaining in part the similar genetic progress at 

HN and at LN. Nevertheless, this selection regime 

has to be consciously designed to make it more 

efficient. We can imagine characterizing the N 

constraint using control varieties repeated in each 

trial for which NTA will be calculated, measuring 

%N_S and ADM_S. Selection will then be made 

only using trials where the chosen stress effectively 

occurred.   

NUE enhancement actually arises from selection on 

yield. Indeed, screening for NUE components is 

time consuming and may not be implemented in 

breeding programs soon. High-throughput methods 

are currently being developed (Tester and 
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Langridge 2010) but are not yet adapted to the 

thousands of lines that are tested in a breeding 

program. Therefore, improvement focused on NutE 

or NupE will be conditioned by the possibility to 

perform molecular selection on QTLs or genes. A 

few studies have already identified chromosomal 

regions associated with these traits using wheat 

plants grown in the field or in controlled conditions 

(e.g. Laperche et al. 2006b; Bordes et al. 2012; Guo 

et al. 2012, Liu et al. 2013). Understanding root 

architecture and its interaction with N supply is also 

one promising way to improve NUE in plants (Hirel 

et al. 2007; Foulkes et al. 2009; Kant et al. 2011). 

But phenotyping of wheat roots in the field is 

complex (for a review see Manske et al. 2001). As 

high throughput screens in the field are not 

available yet, genetic progress will also depend on 

the development and the use of molecular markers 

for enhanced root systems.  

Root architecture is also affected by the Rht 

dwarfing genes (Laperche et al. 2006b; 

Wojciechowski et al. 2009) which were the main 

factors of wheat improvement in the world. 

Dwarfing alleles are widely spread and used to 

control response to high N supply by reducing 

response to gibberellin acid (GA) and thus plant 

height (Peng et al. 1999) and  lodging (Ortiz-

Monasterio et al. 1997a). Laperche et al. (2006b) 

reported a negative effect of dwarfing alleles on 

both root and aerial biomass of young plants grown 

at low N in controlled conditions. In this study, 

varieties have different dwarfing genes to achieve 

short height. Moreover, frequencies of the 

combination of the GA-insensitive dwarfing alleles 

(Rht-B1 and Rht-D1) changed as a function of the 

year of registration (HSD test P = 0.05; Suppl. data 

7A). When dwarfing allele combinations were used 

in the model of genetic progress assessment, it 

appeared that they explained more of the G × N 

variance to NUE than YR. But they had no effect 

on NUE additive genetic values (Suppl. Table 7B). 

Recent varieties have G × N interactions which 

enhanced their NUE at LN, and so may have a more 

stable yield also because of the introduction of Rht-

D1b. In contrast, this stability in yield also means 

that recent varieties are capitalised less on N input 

increase than older ones. This may be a 

consequence of GA-insensitivity as GA has a major 

role in regulating developmental processes 

(Hedden, 2003). So, the use of alternate GA-

sensitive dwarfing alleles such as Rht8c needs to be 

tested. Indeed Gooding et al. (2012) studied near 

isogenic lines and concluded that at anthesis the 

Rht8c + Ppd-D1a (dwarf and photo-insensitive) line 

accumulated similar quantities of nitrogen to Rht-

D1b despite its earliness (due to its photoperiod-

insensitivity).  

 

 

CONCLUSIONS 

 

In a global context of fertiliser reduction, we 

investigated nitrogen use efficiency improvement 

using a European panel of elite winter wheat 

cultivars. This study is one of the first to use so 

many varieties in a multi-environment direct 

comparison between old and recent varieties. 

Quality, precocity, and height were used to control 

panel heterogeneity. Variance decompositions were 

used to describe the genetic determinism of NUE-

related traits and to identify significant G × N 

interactions. We report equal genetic progress at 

both HN and LN treatments for all traits except for 

NUE, which were significantly enhanced at both N 
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levels but more efficiently at LN. This demonstrates 

the higher yield stability of recent varieties. We 

conclude that direct selection in HN conditions for 

LN conditions is efficient, but advise to directly 

select at LN if this is the targeted treatment. Two 

major challenges now appear. The first challenge 

will be to increase GPC at LN; and the second will 

be to increase uptake efficiency while maintaining 

utilisation efficiency improvement.  
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A GWAS-BASED METHOD TO 

SPEED UP QTL CLONING  
 

 

Past nitrogen use efficiency (NUE) improvement was mainly driven by selection on grain yield while 

maintaining grain protein content. Nevertheless, to deal with the fertiliser reduction advocated by political, 

economic, and environmental concerns, genetic progresses should be accelerated. Due to the difficulties 

linked to NUE phenotyping methods (partially destructive and laborious); we suggest the use of genetic 

markers as a promising way to achieve future genetic progresses. In this sense, here, we will discuss about 

gene discovery using genome-wide association studies (GWAS). This was also the topic of a talk made at 

the Plant and Animal Genome conference (January 2015, San Diego). 

      

 

Speeding QTL cloning 

The most performant way to screen for varieties based on quantitative trait loci (QTL) is to use genetic 

markers tagging causal mutations in genes significantly involved in the studied trait. For this purpose, these 

genes and their polymorphisms should be known. Seeking for locus involved in a trait and refining the 

genetic/physical distance to be able to identify candidate genes is classically named “QTL cloning”.  

 

 
 

Figure 6: Flow-chart of quantitative traits dissection.  (From Salvi and Tuberosa, 2005) 

 

Looking at the flow chart of a classical QTL cloning approach (Fig. 6), we understand that for winter 

hexaploid wheat this process can be long and fastidious due to the genome complexity and the life cycle 
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length (1-3 generations per year). In addition, it requires developing a sufficient number of genotypes 

accumulating a sufficient number of recombination to actually end with a few candidate genes. Moreover, 

the studied diversity is directly linked to the diversity of the parents used to build the mapping population. 

These three limitations (development of population, mapping resolution and allelic diversity) can be 

overcome by GWAS approaches at the cost of the statistical power of detection. Indeed, although smaller 

linkage disequilibrium (LD) increases mapping resolution, it decreases linkage disequilibrium between 

causal mutations and genetic markers. Thus, a question arises: “In wheat, could we speed up QTL cloning 

using GWAS?” 

 

Defining QTL boundaries 

The concept of QTL only makes sense if we are able to define locus boundaries. In multiparental design, 

methods to define boundaries from QTL mapping results are commonly used (e.g. LOD support interval, 

bootstrapping). In GWAS, results are mostly published only as Manhattan plots [-log(P-value) as a function 

of genomic coordinates] focusing on significant spots (quantitative trait nucleotide, QTN) and not on 

regions (QTL). Nevertheless, in the few studies aiming to define QTL from QTN information, the use of 

the mean LD decay appeared to be a consensus method (Tian et al. 2011; Zhao et al. 2011; Le Gouis et al. 

2012). But, using the mean LD decay may not be sufficient as LD is highly variable. For example, meiotic 

recombination rate (a component of LD) fluctuates significantly (Fig. 7). Thus, a more accurate method 

should be developed.  

 

 

             

Figure 7: Meiotic recombination rate on wheat chromosome 3B (cM/Mb). Sliding window of 10 Mb in black and 

1 Mb in red (Choulet et al. 2014). 
 

 

What are false positives? 

“In GWAS, false positive are a major issue.” In fact, this common statement always refers to false positive 

SNP-trait associations (rejection of the H0 hypothesis of no marker-trait association while it is true) which 

can arise from population structure (long distance LD) and multiple testing. To deal with population 

structure, several models (e.g. model Q: groups of structure as a covariate or model K: kinship matrix to 

modelized varieties variance/covariance) have been proposed and/or combined. And, methods to correct for 

multiple testing are also commonly used (e.g. false discovery rate).  But, if we are no more focusing on 

spot (QTN) but on region (QTL), we need to extend our false positive approach to take into account the 

method used to define QTL from QTN results. Indeed, the fact that a SNP-trait association is true or false is 
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not the only fact that matters. What also matters is having the causal gene within the QTL boundaries when 

QTL cloning is at stake. Consequently, a new kind of false positive appears: “false positive QTL” defined 

as a QTL which do not contain any causal mutation; no matter if the SNP-trait associations (used to build 

the QTL) were false or true positives. False positive QTL are the real issue in QTL cloning based on 

GWAS results. Their proportion among positive QTL (all QTL computed from GWAS results) is the main 

indicator of the efficiency of GWAS-based QTL cloning methods. Thus, power of QTL cloning GWAS-

based methods should be studied regarding the entire process: from QTN detection to QTL definition. 

 

A method to define QTL 

We developed an empiric method to define QTL from GWAS results based on local LD (Fig. 8) and 

assessed its power using simulation study. Details will be provided in the next Part of this manuscript. 

Here, we wanted to focus on the results that contributed to build our gene discovery strategy.  

 

 

Figure 8: Method used to define QTL from GWAS result. Step 1: QTN clustering in function of LD (r²) (method 

average, cut-off = 1- critical LD) to define LD block. Then, QTL first boundaries are defined as the maximum and 

minimum map positions of QTN belonging to a same LD block. Step 2: Estimation of LD decay in the associated 

region (0.23 = critical LD). Step 3: Extension of the first boundaries using the local LD decay. 

 

The simulation study showed that for small effect loci (5-10 % of the total variance with a trait narrow-

sense heritability of 0.6), the proportion of false positive QTL on overall QTL increased by around 40% 

when the -log(P-value) threshold used to declare a SNP-trait association positive was increased from 3 to 6 

(Fig. 9). It can appear counter-intuitive as increasing the -log(P-value) threshold decreases the rate of false 
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positive SNP-trait associations. In fact, increasing the -log(P-value) threshold decreased false positive QTL 

from 7.6 to 4.4 % of the total number of tests, but drastically decreased the power of detection (proportion 

of true positive QTL among the total number of tests) from 71.3 to 28.6 %. Thus, it led to a higher 

proportion of false positive QTL among all QTL mainly due to a reduction of QTL size (from 7.8 to 4.8 

cM) when we increased the -log(P-value) threshold. In continuity, for 32 % of true positive QTL the most 

significant QTN was not the one closest to the causal mutation. This means that causal mutations are not 

necessary under significance peak. 

 

 

Figure 9: Summary of simulation study results.  

 

Of course, increasing the -log(P-value) threshold decreases SNP-trait false positive rate. Nevertheless, at 

the end of the QTL definition process, increasing the -log(P-value) threshold does not make our method 

more efficient.  

 

Gene discovery strategy 

In this framework, our gene discovery strategy was not only driven by SNP significance in GWAS. In any 

case we expected small effect loci and mathematically weak SNP-trait association [small -log(P-value)] as 

we worked on complex traits. Thus, we choose (i) not to be too stringent on SNP-trait associations even if 

it may increase mean QTL size and (ii) to prioritize QTL on other criteria (e.g. QTL size, location, and 

previous knowledge on region effects). Indeed, defining QTL boundaries allows for more efficient 

comparative studies. For example, due to differences of LD structure between panels, LD between genetic 

markers and causal mutations may vary leading to different QTN between GWAS studies. However, at a 

larger scale, QTL may be less variable. Synteny approaches will also be more efficient.  
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As wheat has not been yet completely sequenced, the main issue is to be able to project QTL from a genetic 

map on a genome sequence. To deal with this issue, Biogemma developed a wheat genome zipper that 

mimics the wheat genome sequence following Mayer et al. (2011). Thanks to this tool that has repeatedly 

proven its efficiency; we can readily access to genes under a QTL. With our QTL cloning method, we do 

not have to create genotypes as we used varieties already available. However, at a given panel, it makes 

fine mapping of a precise chromosomal region impossible (heterozygotes under QTL are not available). 

Thus, we may be stuck with “long” QTL containing many genes. Nevertheless, an increase of panel size 

may decrease QTL length by decreasing LD. Moreover, the quantity of information available (e.g. gene 

annotation, validation in model species, transcriptomic, proteomic and metabolomics datasets) to look for 

candidate genes is enormous and constantly increasing. Therefore, efforts can be transferred from 

genotypes creation to data mining.   

 

 

GWAS combined with a method to define QTL has the potential to speed up QTL cloning process. 

However, the efficiency of the whole process has to be tested to assess risks and correctly choose the 

parameters of the method. We decided to apply our strategy to our NUE dataset and published both method 

and results. The published work is presented in the following part. 
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ABSTRACT: Improving nitrogen use efficiency is a key factor to sustainably ensure global production 

increase. However, while high-throughput screening methods remain at a developmental stage, genetic 

progress may be mainly driven by marker-assisted selection. The objective of this study was to identify 

chromosomal regions associated with nitrogen use efficiency related traits in bread wheat (Triticum 

aestivum L.) using a genome-wide association approach. Two hundred and fourteen European elite 

varieties were characterised for 28 traits related to nitrogen use efficiency in eight environments in which 

two different nitrogen fertilisation levels were tested. The genome-wide association study was carried out 

using 23,603 SNP with a mixed model for taking into account parentage relationships among varieties. We 

identified 1,010 significantly associated SNP which defined 333 chromosomal regions associated with at 

least one trait and found colocalisations for 39 % of these chromosomal regions. A method based on 

linkage disequilibrium to define the associated region was suggested and discussed with reference to false 

positive rate. Through a network approach, colocalisations were analysed and we highlighted the impact of 

genomic regions controlling nitrogen status at flowering, precocity, and nitrogen utilisation on global 

agronomic performance. We were able to explain 40 +/- 10 % of the total genetic variation. Numerous 

colocalisations with previously published genomic regions were observed with such candidate genes as 

Ppd-D1, Rht-D1, NADH-Gogat, and GSe. We highlighted selection pressure on yield and nitrogen 

utilisation discussing allele frequencies in associated regions. 
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ABBREVIATIONS 

ADM_S, straw dry matter at maturity; DArT, diversity 

array technology; LD, linkage disequilibrium; FLO, 

flowering date; G, genotype; G × E, genotype × 

environment; G × N, genotype × nitrogen; GNY, grain 

nitrogen yield; GPC, grain protein content; GPD, grain 

protein deviation; GY, grain dry matter yield; HI, harvest 

index; KS, kernel per spike; N, nitrogen; %N_S, straw 

nitrogen content at maturity; NHI, nitrogen harvest 

index;  NSA, straw nitrogen per area; NTA, total 

nitrogen in plant at maturity; NUE, nitrogen use 

efficiency; NUE_Prot, nitrogen use to protein efficiency; 

NupE, nitrogen uptake; NutE, nitrogen utilisation 

efficiency; NutE_Prot; nitrogen utilisation to protein 

efficiency; P; P-value; PH, plant height; QTL, 

quantitative trait locus; QTN, quantitative trait 

nucleotide; SA, spike per area; SNP, small nucleotide 

polymorphism; SSR, single sequence repeat; TKW, 

thousand kernel weight 

 

 
INTRODUCTION 

 

Global production of cereals has increased by 

around threefold since 1960 (FAO 2012) and is 

correlated with increased application of nitrogen 

(N) fertiliser. To date, the global growth in fertiliser 

demand is still positive as the demand for grain 

increases (FAO 2011). Thus, to sustainably enhance 

worldwide cereal production, it is necessary to 

increase production per N fertiliser unit.  

Nitrogen use efficiency (NUE) is defined as grain 

yield divided by the available nitrogen. In bread 

wheat (Triticum aestivum L.) genetic progress on 

NUE related traits has been assessed in various 

studies (Ortiz-Monasterio et al.1997; Guarda et al. 

2004; Muurinen et al. 2006; Cormier et al. 2013) 

and was mainly driven by selection on yield at a 

constant and high N level. This genetic progress 

should be at least maintained and preferably 

accelerated to deal with political, economic, and 

environmental concerns (Rothstein 2007; Pathak et 

al. 2011). Several promising ways to improve NUE 

have been proposed such as focusing on root 

architecture (Hirel et al. 2007; Foulkes et al. 2009; 

Kant et al. 2011) or on senescence and 

remobilisation (Gaju et al. 2011; Distelfed et al. 

2014). Although encouraging results have been 

obtained (Knyazikhin et al. 2013), phenotyping for 

NUE is still tedious as there are actually no high 

throughput methods available (Manske et al. 2001; 

Tester and Langridge 2010). Moreover, G × N 

interactions have been observed on various 

agronomic traits (e.g. Le Gouis et al. 2000; 

Barraclough et al. 2010; Cormier et al. 2013) 

meaning that varieties may have to be tested in 

several N regimes. Thus, in a global context of 

fertiliser reduction, the ability to identify stable 

quantitative trait loci (QTL) controlling NUE 

related traits and to implement this knowledge in 

breeding programs may condition a part of the 

future genetic gain. Various studies have already 

identified interesting quantitative trait loci (QTL) 

linked to N metabolism and response to N using 

biparental populations (e.g. An et al. 2006; 

Laperche et al. 2007; Habash et al. 2007; Guo et al. 

2012; Xu et al. 2013). Originally developed in 

animal and human genetics, genome wide-

association study (GWAS) is now used in numerous 

studies in crop species. Although  GWAS has 

provided useful results in dissecting complex traits 

in wheat such as yield and its components (e.g. 

Crossa et al. 2007; Neumann et al. 2011),  and yield 

response to nitrogen (Bordes et al. 2013),  to our 

knowledge, this study is the first GWAS on NUE 

and NUE related traits in small grain cereals. 

GWAS overcomes the two main limitations 

suffered by biparental design of limited allelic 

diversity and poor mapping resolution due to 

limited recombination events during the creation of 

the population (Korte and Farlow, 2013). 
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Table 1: Description of measured and calculated traits assessed in all environments for which adjusted means 

by varieties where calculated on a 214 lines wheat association panel. 

 

*NTAmax and NFAmax are defined as the respective 95th percentile of NTA and NFA (see Cormier et al. 2013) 

  

However, the use of linkage disequilibrium (LD) to 

identify marker-trait association at the whole-

genome level has also some specific limitations. 

False positive association (Type I error) can easily 

arise from population structure. In addition, though 

the accumulation of recombination allows for a 

high-resolution mapping, it also decreases LD 

between causal mutation and markers, which in turn 

decreases the power of detection for a given number 

of markers. To deal with these major trade-offs, 

independent markers can be used to assess the 

relative kinship in the panel. This information is 

then used to control Type I error. The power issue 

can be solved by increasing the number of markers 

which is now possible with the use of wheat single 

nucleotide polymorphism (SNP) chips at relatively 

low cost (Wang et al. 2014).  

In GWAS, results are mostly shown using simple 

Manhattan plots and there is no widespread method 

to well define associated chromosomal regions. 

Trait Description Formula Units H²G Mean SD 

ABSN post-anthesis absorption NTA – NFA kg ha-1 0.25 22.7 26.43 

ADM_FLO above-ground dry matter at anthesis 
 

kg ha-1 0.69 10618 2222.50 

ADM_S straw dry matter at maturity 
 

kg ha-1 0.84 7288 1861.32 

DMGY dry matter grain yield 
 

kg ha-1 0.89 7400 1257.49 

EFFG genetic efficiency REMN / GNY % 0.18 82.3 19.85 

EFFREMN remobilisation efficiency REMN / NFA 
 

0.27 77.3 7.56 

FLO anthesis date 
 

days (after 1st January) 0.99 149.2 7.12 

GNY grain N yield GPC / 5.7 × GY kg ha-1 0.50 127.9 35.44 

GPC grain protein concentration 
 

% 0.92 9.93 2.05 

GPD grain protein deviation GPC - a × GY - b % of protein 0.80 0 0.78 

HI harvest index GY / (GY+ADM_S) % 0.88 50.4 5.67 

INN_FLO N nutrition index %N_FLO/(5.35×ADM_FLO/1000)^ (-0.442)  0.63 0.69 0.19 

NFA N at anthesis ADM_FLO ×%N_FLO kg ha-1 0.16 138 48.82 

NHI N harvest index GNY / NTA % 0.63 81.1 5.71 

NSA straw N per area ADM_S × %N_S kg ha-1 0.50 30.4 14.17 

NTA total N per area NSA + GNY kg ha-1 0.41 158 45.03 

NUE N use efficiency GY / NTAmax* kg DM kg-1 N 0.87 37.8 7.69 

NUE_Prot N use efficiency to protein GPC / NTAmax* % protein kg-1 N ha-1 0.90 0.05 0.01 

NupEFlo N uptake at anthesis NFA/NFAmax* % 0.15 0.76 0.12 

NupEMat N uptake efficiency at maturity NTA / NTAmax* % 0.37 0.78 0.08 

NutE N utilisation efficiency GY / NTA kg DM kg-1 N 0.87 48.8 11.19 

NutE_Prot N utilisation efficiency to protein GPC / NTA % protein kg-1 N ha-1 0.89 0.07 0.01 

PH plant height 
 

cm 0.95 76.6 8.43 

REMN N remobilisation NFA – NSA kg ha-1 0.25 109 39.21 

SA spikes per area 
 

nb spike m-2 0.85 412 78.83 

TKW 1000-kernel weigth 
 

g 0.96 42.4 4.11 

%N_FLO N concentration at anthesis  
% 0.80 1.29 0.34 

%N_S straw N concentration at maturity 
 

% 0.77 0.42 0.13 
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Indeed, in a panel, the link between linkage 

disequilibrium and genetic or physical distance is 

much more complex than in a biparental population, 

where methods such as one LOD support interval or 

bootstrapping are commonly used to assess QTL 

confidence interval (e.g. Lander and Botstein 1989; 

Mangin et al. 1994; Visscher et al. 1996). 

Moreover, in strong LD regions, pairwise 

correlation between significant markers can 

approach genotyping accuracy rate. Thus, even with 

methods such as stepwise logistic regression to test 

whether a marker in a given set is necessary or 

sufficient to explain the association signals, finding 

the one likely to be closest to the causal mutation is 

nearly impossible (McCarthy and Hirschhorn 

2008). Added to that, in high LD regions, the tested 

marker is correlated to many other SNPs that can 

contribute to the estimation of the kinship reducing 

the power of detection (Rincent et al. 2014). Thus, 

the most significant quantitative trait nucleotide 

(QTN) may not be the closest to the causal 

mutation. In low LD regions, it is possible that only 

one SNP is significant, and there is no simple way 

to define a region from the relationship of P-value 

(P) with genetic/physical distance. In any case, P-

value depends on the QTL effect. This biases the P-

value support method of constructing “confidence 

interval” (Mangin et al. 1994). Thus, authors often 

fix a more or less arbitrary window around QTN 

peaks based on mean LD decay, for example 1 Mb 

in maize for Tian et al. (2011), 200 kb in rice for 

Zhao et al. (2011), or 5 cM in wheat for Le Gouis et 

al. (2012). The method chosen to define an 

associated chromosomal region influences GWAS 

reliability and this issue remains under investigated. 

Using 214 European elite varieties, 28 NUE-related 

traits, and 23,603 SNP, this study aimed to (i) 

estimate the power of such an elite panel to perform 

GWAS with respect to the method used to define 

associated chromosomal regions and false positive 

rate, (ii) identify stable chromosomal regions 

involved in NUE related-traits and assess their 

transferability to the field, and (iii) analyse 

colocalisations for NUE components and NUE 

related traits to estimate pleiotropic effects 

associated with QTL-based selection.  

 

 

MATERIALS AND METHODS 

 

Phenotypic data 

 

Phenotypic data are described in Cormier et al. 

(2013). Briefly 225 European elite varieties were 

evaluated in eight environments defined as a 

combination of year, site, and nitrogen supply (two 

seasons, three sites, and two nitrogen supplies). The 

high N treatment corresponded to common 

agricultural practices. The low N treatment 

corresponded to a mean yield reduction of 20% 

(Suppl. data 1). Other crop inputs including weed, 

disease and pest control, potassium, phosphate and 

sulphur fertilisers, were applied at sufficient levels 

to prevent them from limiting yield. Plant growth 

regulators were applied to limit lodging in all 

environments. In each environment, 28 traits were 

measured or calculated (Table 1). From adjusted 

means by trial, overall adjusted means by varieties 

were computed using a simple linear model with 

environment and genotype as fixed effects. These 

values were used in the GWAS. Generalized broad-

sense heritabilities (HG
2) were calculated using the 

formula proposed by Cullis et al. (2006) from the 
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previous linear model with genotype as a random 

effect. 

 

Genotyping and consensus map 

 

Of the 225 varieties present in field trials, 214 were 

genotyped. SNP data consisted of a subset of SNP 

from an Illumina 90K chip (Wang et al. 2014) 

together with SNP developed by Biogemma. 

Heterozygous loci were considered as missing data. 

Loci with a minor allele frequency inferior to 0.05 

or loci which had available data for less than 150 

varieties were not used. In total, we used 23,603 

mapped SNP in this study.  

We built a consensus map with the Biomercator 

software (Arcade et al. 2004). We used the map 

published by Le Gouis et al. (2012), based on 

Somers et al. (2004), as a reference. This map 

contains SSR and DArT markers, and the location 

of several major genes (Vrn, Ppd, Rht). SNP were 

projected on it, from non-published maps 

containing 535 markers in common with this 

reference map. The Strudel software was used to 

check map alignments (Bayer et al. 2011) and 

mapping errors were corrected.  

 

Linkage disequilibrium 

 

We used the r² estimator (Hill and Robertson, 1968) 

to assess linkage disequilibrium (LD). LD was 

calculated for every pair of markers mapped on the 

same chromosome, and then r² was plotted against 

map distance. For every chromosome, LD decay 

(cM) is estimated at the point where a curvilinear 

function proposed by Hill and Weir (1988) 

intersects the threshold of the critical LD. Critical 

LD was the 95
th
 percentile of the unlinked-r² 

assessed on 100,000 randomly chosen pairs of 

unlinked loci (mapped on different chromosomes) 

which were square root transformed to approximate 

a normally distributed random variable 

(Breseghello and Sorrells 2006). 

 

Association mapping study 

 

Following Patterson et al. (2006), we did not find 

any structure in this 214-varieties panel. Indeed, the 

largest eigenvalue was not significant (P=0.043). 

Thus, we tested SNP-trait association using a mixed 

model K (Yu et al. 2006) written in R using the 

ASReml-R package (Butler et al. 2007) and 

expressed as: 

y = 1μ + 𝐒α + 𝐙𝑢 +  𝜀 

where y is a vector of estimated genetic values, 1 is 

a vector of 1’s, μ is the intercept, α is the additive 

effect of the tested SNP, u is a vector of random 

polygenic effects assumed to be normally 

distributed N(0, σy
2𝐊) with K a matrix of relative 

kinship, S and Z are incidence matrices, ε is a 

vector of residual effects. 

K was estimated as 1(n × n) - Rdist where Rdist is 

the modified Rogers’ distance (Rogers 1972) matrix 

based on 3 461 SNP spread over the genome and 

with less than 0.1 missing data and 1(n × n) is a 

matrix of 1’s of the same size as the Rdist matrix (n 

= 214). 

To summarise, we tested 23,603 SNP on 28 traits 

using the adjusted means of 214 European elite 

varieties.  There is no widespread method to define 

QTL boundaries from GWAS results. So, we 

proceeded as follows. First, for each trait, we 

computed LD between every significantly 

associated SNP (quantitative trait nucleotide - 

QTN). LD blocks were defined as a group of QTN 
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belonging to the same LD cluster (clustering by 

average distance) using a cutoff of (1-“critical 

LD”). We define the initial QTL boundaries as the 

minimum and maximum map position of QTN 

belonging to the same LD block. Then, as 

previously described, we assessed LD between 

every mapped SNP within a window covering 10% 

of the chromosome length and centred on each 

QTL. We used the LD decay to extend the previous 

boundaries. This second step aimed to take into 

account possible LD with the causal mutation at the 

first QTL boundaries (for detail Suppl. data 2). We 

only defined QTL for LD blocks containing SNP 

mapped on the same chromosome. For each trait, 

QTL with overlapping boundaries were considered 

the same if the alleles increasing the trait value at 

each were themselves correlated positively.   

 

Phenotype simulation and power  

 

The statistical power provided by the panel was 

evaluated through simulation studies where -

log10(P) thresholds, narrow-sense heritability and 

variance explained by a SNP were the three 

modulated parameters. We set -log10(P) threshold at 

3, 4, 5, 6; narrow-sense heritability (h²) at 0.3, 0.6, 

and 0.9; and variance explained by the SNP (π) at 

0.010, 0.030, 0.050, 0.075, 0.100, 0.150, and 0.200.  

Phenotypes were simulated as follows:  

 
yi = gi + aij + εi  (1) 

 

where yi is the simulated phenotype of the variety i, 

gi is the genetic additive background effect of 

variety i, aij the additive effect at the quantitative 

trait nucleotide (QTN) j of variety i allele, and εi a 

residual error term sampled from a normal 

distribution N(0, σε²).  

First, k=100 SNP were chosen to simulate the 

genetic background effect. This selection is made 

by forming k-means cluster based on the 

genotyping incidence matrix and selecting the SNP 

nearest the centroid of each cluster (Lorenz et al. 

2010). Thus, if gi is the genetic background effect 

of variety i: 

 

gi = ∑ a′ik
k=100
k=1  , a′ik =  {

1
0

   (2) 

 

with a’ik the effect of the variety i allele at the locus 

k. 

Narrow-sense heritability (h²) is defined by:  

 

h² =
σg²+ σj²

σT²
   (3) 

 

where σj² the genetic variance related to QTN j 

different from k, σg² the variance related to the 

genetic background, and σT² the total variance.  

The variance explained by QTN j (π) is defined by: 

 

π =
σj²

σT²
   (4) 

 

Total variance (σT²) is deduced from equation (3) 

and equation (4) as h² and π are fixed in each 

simulation study: 

 

σT² =
σg²

h²− π
  (5) 

 

Given the percentage of variance explained by QTN 

j (π), its additive effect (aj) is calculated by 

Falconer and Mackay (1996) as: 
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aj = √
π×σT²

pj(1−pj)
    (6) 

 

with pj the allele frequency of the reference allele at 

locus j. Thus, if variety i allele at QTN j was the 

reference allele, aij from equation (1) was equal to 

aj, else aij was equal to -aj. 

Finally, the variance of the residual error term (σε²) 

was computed as: 

 

σε² = (1 − h2) × σT²  (7) 

 

In total 400 SNP were randomly chosen to play in 

turn the role of the QTN j with j ≠ k (QTN ≠ 

genetic background effect) for each pair of h² and π 

parameter values. The statistical model used to 

detect associations between SNP and simulated 

phenotypes was the previously described model K. 

In the same way, QTL were defined following the 

two steps already described. Detection power was 

estimated by the ratio of the number of times a true 

QTN was located in the computed QTL to the total 

number of tests. The SNP selected as being the true 

QTN j was not tested per se. 

 

Prediction  

 

The percentage of total variance explained by each 

significant SNP was first assessed for each trait 

using a simple regression of overall adjusted mean 

on the SNP (r²snp). Then, for each trait, the predicted 

values of varieties were estimated by summing the 

allele effects assessed in GWAS at associated loci. 

To avoid redundancy, only one SNP per LD block 

was kept; that which explained the most variance.  

This model was first used to predict overall adjusted 

means. It was then used to predict adjusted means 

in each of the eight individual environments. 

Consequentially, we computed two types of 

correlations (r²): the correlation between predicted 

values and overall adjusted means (r²adj), and the 

correlation between predicted values and each of 

the eight individual environments (r²env).  

To assess transferability of GWAS results to field 

trials, we calculated a prediction similarity 

[mean(r²env)/r²adj] that we plotted as a function of 

trait heritability.  

 

Colocalisation and network approach 

 

To assess the impact of genetic correlation and 

pleiotropy, we analysed colocalisations through a 

network approach. QTL colocalisation between two 

traits were statistically tested using the probability 

of an hypergeometric law (“sampling without 

replacement”; Larsen and Marx, 1985) with the 

total cumulative length of QTL for trait i and trait j 

and the total map length as parameters of the 

hypergeometric distribution. The cumulative length 

of QTL shared by trait i and j was the parameter of 

the probability. A fairly stringent threshold of P = 

0.001 was set as the criteria of significance.  

On the basis of significant colocalisations, inter-

trait relationships were then studied through a 

network approach using traits as nodes and the 

percentage of one trait QTL overlapping another 

trait QTL as edges. Betweenness centrality was 

computed on each node following Opsahl et al. 

(2010) method with α = 0.5 to equally take into 

account the number of edges and edges’ weights in 

the calculation. To statistically test trait 

betweenness centralities values, this network was 

then permuted 500 times to assess the empirical 

distribution of betweenness centrality, and thus 
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determine the statistical law underlying this 

distribution.  

 

RESULTS 

 

Genetic map and linkage disequilibrium 

 

Table 2: SNP used in association: number of mapped 

SNP, coverage on the consensus map, SNP density 

and LD decay at a critical LD r² = 0.23. Critical LD 

was assessed as in Breseghello and Sorrells (2006). 

Chr SNP 
Coverage  

(cM) 

SNP density 

(cM-1) 

LD decay  

(cM) 

1A 1246 110.4 11.3 0.49 

1B 2,055 128.5 16 0.19 

1D 430 121.7 3.5 2.71 

2A 1,454 262.7 5.5 1.39 

2B ,2362 205.8 11.5 0.70 

2D 402 130.9 3.1 0.80 

3A 1,151 155.1 7.4 0.68 

3B 1,972 147.8 13.3 0.05 

3D 253 104.7 2.4 1.07 

4A 786 123.4 6.4 0.21 

4B 849 143.3 5.9 0.70 

4D 97 139.7 0.7 2.43 

5A 1,604 186.1 8.6 0.32 

5B 2,243 262.4 8.5 2.19 

5D 327 115.6 2.8 0.94 

6A 1,588 122.0 13 0.19 

6B 1,603 115.0 13.9 0.05 

6D 254 136.8 1.9 1.02 

7A 1,782 122.2 14.6 0.38 

7B 1,034 198.5 5.2 1.06 

7D 246 134.9 1.8 6.00 

Total 23,603 3,167.5 7.5 1.12 

 

The consensus genetic map obtained had a total 

length of 3,167 cM. To finely map QTL, LD has to 

decay rapidly and SNP density has to be high to 

ensure that at least one SNP is linked to the causal 

mutation. While diversity level is similar in the A 

and B genomes, it is greatly reduced in the D 

genome (Cadalen et al. 1997), contributing to its 

higher levels of LD.  

Indeed, mean LD decay on genome A, B, and D 

was respectively 0.52, 0.70, and 2.14 cM. LD decay 

is the estimated distance from which two SNP are 

not genetically linked, meaning that their LD (r²) is 

inferior to the critical LD. Critical LD was 

estimated from a sample of 100,000 pairs of 

unlinked SNP which revealed a mean unlinked-r² of 

0.016 and a critical LD (95
th
 percentile) of 0.23.  

A rapid LD decay predicts a good mapping 

resolution in GWAS. Though as previously 

mentioned, it can decrease power if SNP density is 

not sufficient. SNP density ranged from 0.7 cM
-1

 

for chromosome 4D to 14.6 cM
-1

 for chromosome 

7A (Table 2). On genomes A and B, SNP density 

seemed sufficient with respect to LD decay. On 

genome D, the lower SNP density may be 

compensated for by the higher LD, but QTL will be 

less precisely defined. 

 

Power assessment 

 

Choosing a P-value threshold has to balance the 

control of Type I error (false positive) with Type II 

error (false negative). Considering power 

simulation and the expectation of small effect QTN, 

a -log10(P) threshold of 3 was adopted as a criterion 

for significant marker-trait associations. Indeed, a 

more stringent threshold inflated Type II error and 

thus reduced extremely the power of detection, 

notably on QTN explaining less than 10% of the 

variance (Fig. 1).  

At a QTN heritability of 5 % and a narrow-sense 

heritability of 0.6, power was dramatically reduced 

from 55 % to 7 % when -log10(P) threshold 

increased from 3 to 6 (Fig. 1).  
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Table 3: QTL detected on a wheat association panel for 28 traits. QTL boundaries were defined as the minimum and maximum genetic position of QTN belonging to the 

same LD block (for LD blocks containing SNP mapped on the same chromosome) extended by the LD decay assessed on a window covering 10 % of the chromosome length 

centered on the mean genetic position. See Table 1 for trait abbreviations. 

Trait 
QTL  Effect (%)b MAFc Size (cM) Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 

Total Positif QTLa (%) mean SD mean SD mean SD A B D A B D A B D A B D A B A B D A B D 

ABSN 13 69 12.9 2.2 0.20 0.12 5.95 11.50  
2 

 
1 1 

  
1 

 
1 1 

 
1 1 1 1 

  
2 

 
ADM_FLO 12 50 2.1 0.5 0.23 0.12 2.14 2.71 1 

 
1 

 
2 1 1 1 

 
1 

     
1 

 
2 1 

 
ADM_S 16 50 2.7 0.5 0.26 0.13 4.12 7.67  

2 
  

1 2 1 1 
  

1 1 2 1 1 
  

1 1 1 

DMGY 10 70 2.3 0.7 0.19 0.13 0.79 0.82  
1 

  
2 

 
2 

     
1 

 
2 

   
1 1 

EFFG 19 32 2.4 0.5 0.24 0.11 3.27 8.27 2 1 
 

2 3 
  

1 
 

2 
  

1 1 1 1 
 

1 2 1 

EFFREMN 12 67 1.2 0.3 0.18 0.12 2.33 3.00 1 2 
  

1 
   

2 1 
  

1 
 

1 
   

3 
 

FLO 18 78 0.8 0.2 0.28 0.13 1.64 1.66 1 
  

1 4 3 1 1 
    

4 
 

1 
 

1 1 
  

GNY 11 36 1.5 0.3 0.28 0.12 6.96 9.07  
3 1 1 

  
1 

   
1 

 
1 

 
1 

  
1 1 

 
GPC 8 13 3.0 1.2 0.19 0.14 4.34 8.43     

1 
 

1 1 
 

1 
  

1 1 
  

1 
 

1 
 

GPD 8 38 0.16 0.04 0.31 0.15 1.63 1.16 
   

2 2 
         

2 
 

1 1 
  

HI 18 72 1.6 0.6 0.25 0.16 1.73 2.20 1 1 
 

2 2 1 1 3 
 

1 1 
 

1 1 1 
  

1 1 
 

INN_FLO 7 14 2.1 0.2 0.27 0.09 4.86 6.40  
1 

  
2 1 

       
2 1 

     
NFA 10 10 2.1 0.6 0.21 0.08 1.93 3.56     

2 
 

1 1 
 

2 
  

1 1 
 

1 
   

1 

NHI 10 80 0.6 0.1 0.29 0.14 2.52 3.97 1 2 
 

1 
      

1 
 

2 1 
   

2 
  

NSA 14 43 3.4 1.4 0.24 0.16 1.62 2.81  
1 

 
1 3 1 

 
2 1 1 

  
1 1 

   
1 1 

 
NTA 8 13 1.5 0.3 0.25 0.16 5.66 8.56  

1 1 1 1 
       

1 
 

2 
  

1 
  

NUE 14 57 2.3 0.6 0.22 0.12 3.00 6.61 1 
   

1 1 2 2 1 1 
  

1 
   

1 2 
 

1 

NUE_Prot 11 18 2.9 1.1 0.22 0.15 4.30 7.13     
2 1 1 1 

 
1 

  
1 2 

  
1 

 
1 

 
NupEFlo 7 0 2.2 0.4 0.22 0.11 2.36 4.23    

1 1 
 

1 
  

1 
   

1 
 

1 
 

1 
  

NupEMat 10 30 1.5 0.3 0.27 0.15 5.38 7.80  
2 1 1 

     
1 

  
2 1 1 

  
1 

  
NutE 6 67 2.6 0.6 0.22 0.13 1.22 1.73     

1 1 1 
  

1 
   

1 
  

1 
   

NutE_Prot 16 25 2.5 0.9 0.23 0.13 2.47 6.20 1 
   

2 
 

2 1 1 1 
  

3 
 

1 
 

1 1 1 1 

PH 14 14 2.9 0.5 0.20 0.11 7.67 14.97  
1 

  
2 

  
1 

 
1 

 
1 2 1 2 

  
2 1 

 
REMN 12 42 2.7 0.4 0.20 0.11 1.80 4.06  

3 
  

1 
    

1 
   

1 1 
  

2 2 1 

SA 11 45 4.3 1.2 0.15 0.12 1.44 1.61     
1 

 
2 2 

 
1 

    
2 1 1 

 
1 

 
TKW 9 44 2.4 1.0 0.25 0.13 3.40 3.37  

2 
   

1 
 

1 
 

1 
   

1 2 
   

1 
 

%N_FLO 8 25 2.6 0.5 0.31 0.13 2.24 2.40     
2 1 

       
1 3 1 

    
%N_S 21 33 4.0 1.0 0.19 0.10 2.97 4.58  

3 
 

3 1 1 1 2 
 

1 1 1 
 

3 2 
   

2 
 

Total         9 28 4 17 41 15 19 22 5 21 6 3 27 22 28 7 8 21 23 7 

 
a Percentage of QTL for which the most frequent allele had a positive effect on trait 
b Effect expressed in percentage of trait mean (except for GPD) 
c MAF = minor allele frequency  
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At a -log10(P) score threshold of 3, when the genetic 

variance explained by the locus was greater than 10 

%, trait heritability did not affect power and Type II 

error was reduced. In general, the variance 

explained by the QTN was the main factor that 

influences the power of the study as compared to 

trait narrow-sense heritability. It should be noted 

that with a weakly stringent threshold of 3 the 

power to detect an association for a QTN, which 

explained 5 % of the total genetic variance was 48, 

55, and 60 %, for a trait narrow-sense heritability of 

0.3, 0.6, and 0.9, respectively.  

 

Figure 1: Influence of trait heritability and -log10(P-

value) threshold on the relation between locus 

heritability and power of detection in a 214-lines 

wheat association panel. In red, green, blue, violet, 

respective LOD score thresholds are 3, 4, 5, and 6. 

Square, triangle, and circle represent a respective 

narrow-sense heritability of 0.9, 0.6, 0.3. 

 

GWAS results 

 

Overall, 1,010 SNP were significantly associated 

(QTN) to at least one of the 28 studied traits. 

Considering QTN LD blocks and LD around 

associated regions, 333 QTL were mapped with a 

mean size of 3.2 cM. Ninety percent (between the 

5
th
 and 95

th
 percentile) of QTL had a range within 

0.1-14 cM indicating that the method used to define 

QTL is mostly efficient. In few cases, the 

assessments of LD decay in the chromosomal 

region containing QTN may not correctly fit and 

QTL boundaries must be used with caution.  

In agreement with SNP density and the genetic 

diversity, the number of QTL on genome D (42) 

was smaller than on genome A (142) and B (149). 

Homeologous group 2 maximised the number of 

QTL with 73 QTL. The number of QTL by trait 

ranged from 6 for NutE to 21 for %N_S (Table 3). 

 

Predictions 

 

First, we assessed the variance explained by each 

significant SNP (QTN). Then, we predicted overall 

adjusted means and each of the eight environments’ 

adjusted means. On average, QTN explained 8.81 

+/- 4.79 % of the overall adjusted means (r²snp). On 

overall adjusted means, the best prediction (r²adj) 

was made on HI (Table 4). Using 20 SNP, we were 

able to explain 61.4 % of the genetic variation. 

Using 15 SNP on NUE, we were able to explain 

55.7 % of the overall adjusted mean variation (Fig. 

2) and 29.7 +/- 4.9 % of the individual 

environment’s variation (Table 4). On the 

environments’ data (r²env), flowering date was the 

best predicted trait with 55.3 % of the variation 

explained on average.  

Differences between predictions made on overall 

adjusted means (r²adj) and predictions on individual 

environment values (r²env) resulted from genotype × 

environment interactions. Thus, it was linked to 

trait broad-sense heritability. In fact, the 

transferability of our GWAS results to 

environmental values was exponentially 

proportional to trait broad-sense heritability (Fig. 
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3). This means that GWAS results became rapidly 

powerless to predict phenotypic values as broad-

sense heritability decreased. 

 

Table 4: Summary of GWAS results predictions 

made by SNP (r²snp) and using the sum of SNP effect 

on both overall adjusted mean (r²adj) and on eight 

individual environments (r²env). To avoid redundancy, 

for each LD block, the SNP which maximized the 

genetic variance explained was selected. 

 

Trait SNPa 

Prediction on adjusted 

means 

Prediction on 

 individual  

environments  

r²snp (%) 
r²adj (%) 

r²env (%) 

mean sd mean sd 

ABSN 14 6.0 0.9 37.7 6.9 3.3 

ADM_FLO 13 6.9 4.4 40.9 18.5 13.1 

ADM_S 17 6.5 3.8 52.8 27.7 4.2 

DMGY 12 11.5 9.0 53.6 30.8 6.2 

EFFG 20 6.1 1.0 42.3 7.0 3.6 

EFFREMN 13 7.5 1.7 40.4 8.4 4.4 

FLO 20 8.6 6.5 58.5 55.3 2.6 

GNY 11 7.3 2.9 40.0 9.9 5.7 

GPC 10 14.0 8.7 57.5 37.9 10.8 

GPD 8 7.8 3.9 33.7 15.6 5.1 

HI 20 8.6 6.4 61.4 32.4 4.3 

INN_FLO 8 11.5 4.3 40.0 12.8 10.5 

NFA 13 6.3 2.3 34.2 5.7 5.2 

NHI 11 5.3 2.9 37.2 10.9 5.8 

NSA 15 6.3 3.4 38.2 9.7 5.2 

NTA 9 8.1 3.0 32.0 7.0 6.1 

NUE 15 8.7 7.2 55.7 29.7 4.9 

NUE_Prot 11 12.4 8.8 59.7 35.5 11.5 

NupEFlo 9 7.4 3.0 27.7 5.2 5.6 

NupEMat 11 6.4 2.9 31.4 6.9 4.3 

NutE 6 8.7 6.4 38.3 23.2 9.1 

NutE_Prot 18 10.1 8.7 59.8 34.4 7.4 

PH 17 10.5 4.9 48.6 37.0 16.0 

REMN 12 6.3 1.4 28.3 4.8 3.5 

SA 12 7.4 3.8 41.0 22.1 8.1 

TKW 10 8.1 2.9 39.0 32.3 3.6 

%N_FLO 10 11.4 6.9 45.5 20.3 8.6 

%N_S 21 8.3 4.4 57.8 25.8 13.5 

 
 
a SNP number can differ from QTL number in Table 3 when LD blocks 
contained SNP mapped on different chromosomes (as no QTL was 

defined but one SNP was used in prediction). 

 

Colocalisation network 

 

Altogether, the QTL covered 20 % (646 / 3,167) of 

the genetic map. There were colocalisations for 39 

% of the QTL identified. Major regions of 

colocalisation were on chromosomes 1B, 2B, and 

7A (Suppl. data 3). Considering NUE and its two 

components, N uptake and N utilisation, there was 

no common QTL between NupEMat and NUE, but 

two NutE QTL (out of six) colocalised with NUE 

QTL and acted in the same way on both traits. NUE 

QTL (9/14) which colocalised with NutE_Prot QTL 

had opposite effect on these traits. By comparing 

QTL for the N uptake efficiency at flowering time 

(NupEFlo) and at maturity (NupEMat), we found 

that only one QTL was in common between these 

two traits.  

Figure 4 provides a visual representation of the 

frequencies of QTL colocalisations. Using a 

bootstrap procedure with 500 permutations, it was 

assessed that the empiric betweenness centrality 

followed a gamma distribution (shape = 2.169, rate 

= 0.079; Suppl. data 6). This distribution was used 

to test trait betweenness centrality. Four traits had a 

significant (P < 0.05) high betweenness centrality: 

INN_FLO, FLO, NutE, %N_Flo were ordered from 

the most significant to the less significant. We 

should notice that INN_FLO, %N_S, and FLO were 

not independent as we detected four chromosomal 

regions of colocalisations between these three traits. 

Two of them affected the three traits in the same 

ways. Two of them acted oppositely between FLO 

and the two other traits. All common QTL between 

%N_Flo and INN_FLO affected both traits in the 

same way.  
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Figure 2: Prediction of NUE values as a function of overall adjusted mean for 214 wheat lines. Predictions were 

made summing the effects of 15 significantly associated SNP. The following regression function is also plotted:  

y = 0.86x +2.66 (r² = 0.56; P < 0.001).  
   

 

 

Figure 3: Prediction similarity (r²env / 

r²adj) between predictions made on 

overall adjusted means (r²adj) and the 

ones made on individual environments 

values (r²env) as a function of 

generalized heritability (H²G) of 28 

traits. Means (diamond), standard 

deviations (whisker). Mean (r²env/r²adj) = - 

0.39eH²G  (r² = 0.88; P < 0.001). 
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Figure 4: Network of QTL colocalisations for 28 traits measured on a 214 line wheat association panel. This 

network is based on the percentage of common QTL between traits after correction using a hypergeometric law to 

determine significant colocalisations (P < 0.001). Link thickness is function of the percentage of common QTL, from 

5 % for the thinnest to 100 % for the thickest (values in Suppl. data 5). 

 

DISCUSSION 

 

QTL definition and power 

 

In most studies, authors fixed a window around 

QTN peaks often based on linkage disequilibrium 

to define associated chromosomal regions in 

GWAS. However massive variation of LD exists 

along the chromosomes in wheat (Würschum et al. 

2013). In this study, we suggested a method based 

on LD between QTN and LD within the 

chromosomal region of interest and assessed its 

power of detection. This method had the advantage 

of being based on LD decay in the chromosomal 

region of interest. Moreover, authors focus on P-

value methods (ad hoc and post hoc) to control 

false positive rate, although the way they design 

their associated region influences it. Indeed, linkage 

disequilibrium between causal mutations and 

associated SNP or mapping error can lead to the 

construction of a chromosomal region which does 

not contain the causal mutation even though the 

SNP-trait association was real. 

Regarding power simulation and error type II, we 

chose a -log10(P) threshold of 3 to validate SNP-

trait associations. Our real false positive rate (error 
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type I) was not only influenced by this -log10(P) 

threshold. Indeed, in our real error Type I, we 

should consider all QTL which did not contain the 

causal mutation whether the SNP-trait association 

was real or not. Using the results of the power 

simulation studies we estimated our real false 

positive rate at 7 % (for a QTN heritability between 

5 and 10 %; Suppl. data 2). If we had chosen a -

log10(P) threshold of 6, it would have been 3 %. 

Thus, increasing P-value threshold reduced real 

error Type I for small effect QTN yet drastically 

decreased power (Fig. 1). Moreover, for QTN with 

a heritability > 10 %, a P-value threshold superior 

to 3 slightly increased the real error Type I due to 

smaller QTL (Suppl. data 2).  

In GWAS, the real issue to control error Type I is 

not in the definition of a stringent P-value 

threshold. It is in the development of a powerful 

method to define QTL boundaries, particularly in 

the case of GWAS oriented to gene discovery. This 

field has practically never been investigated and 

publications mainly focus on P-value. We advocate 

balancing QTL coverage, real error Type I, and 

power altogether. An improvement of our methods 

could be to adapt the construction of the associated 

region to QTN heritability. 

 

Power, locus heritability, and genetic 

determinism 

 

The fraction of total genetic variance explained by a 

single significantly associated SNP (QTN) averaged 

8.81 +/- 4.79 %, which is coherent regarding the 

simulation study. Indeed, the power started to be 

maximised from a locus heritability of 10 % (at a    

-log10(P) threshold = 3, Fig. 1). Yet variability 

existed and fraction of total genetic variance ranged 

from GPC (14.0 +/- 8.7 %) to NHI (5.3 +/- 2.9 %).  

When numerous QTN explained a small fraction of 

genetic variance, we can presume that the GWAS 

study was powerful and that the genetic 

determinism underlying this trait is highly 

polygenic. When QTN have larger locus 

heritability, the cause can be a less polygenic 

genetic determinism and/or a lack of power due to 

low narrow-sense heritability. Narrow-sense 

heritability estimates the proportion of additive 

variance on total variance (Falconer and Mackay 

1996). Thus, narrow-sense heritability is also linked 

to the importance of epistasis in the trait genetic 

architecture. In this study we have not searched for 

epistasis. However, several studies have highlighted 

its impact. For example, GPC is controlled by 

major protein concentration genes (Payne 1987; 

Uauy et al. 2006; Avni et al. 2013) and significant 

interactions between them (Dumur et al. 2004; 

Conti et al. 2011; Plessis et al. 2013). Another 

example is epistatic contribution in the genetic 

control of PH is important and revealed by 

Novoselovic et al. (2004), Zhang et al. (2008), and 

Wu et al. (2010).  Using a doubled haploid wheat 

population, Zhang et al. (2008) estimated firstorder 

epistatic contribution up to 19.9 % of the PH 

phenotypic variation.  

Authors have often focused on epistatic interactions 

between SNP having a significant additive effect. 

However epistatic interactions between SNP 

without additive effect can also explain genetic 

variability (Huang et al. 2014) as detected for 

heading date (Le Gouis et al. 2012). Nonetheless 

whole genome scan for epistasis is a real 

computational and analytic challenge, which will 
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surely help pathways mining (Philipps 2008; 

Mackay 2014). 

 

Candidate genes and comparison with 

previously published QTL 

 

Altogether, we detected 333 QTL on 28 traits. 

Significant colocalisations (QTL boundaries 

overlapping) between some of them and candidate 

genes or previously published QTL deserve to be 

pointed out. Regarding major genes for precocity, 

only the photoperiod sensitivity gene Ppd-D1 on 

chromosome 2D colocalised with QTL of FLO, HI, 

INN_FLO, %N_FLO, %N_S, affecting all these 

traits in the same way (late genotype have higher 

HI, INN_FLO, %N_FLO, and %N_S). Ppd-D1 also 

colocalised with an ADM_S QTL, with an opposite 

effect. Two factors can explain that Vrn genes were 

not associated to precocity: (i) this panel contains 

only winter wheat varieties and (ii) only autumn 

trials were sown with vernalization requirements 

fulfilled. 

On chromosome 4D, the dwarfing gene Rht-D1 

(Rht2) was tested and had an expected significant 

effect on PH and ADM_S.  

Similarly, the three closely mapped genes coding 

the glutenins and gliadins (Glu3A, Glu3B, and Gli) 

not surprisingly colocalised with QTL of NUE and 

NutE_Prot located on chromosome 1A. Moreover, 

the structural gene for high molecular weight 

glutenins GluD1 located on chromosome 1D lay 

within the boundaries of QTL affecting GNY, 

NTA, and NupEMat.  

Several genes from the N assimilation pathway 

have already been associated to NUE QTL 

including the genes coding for glutamate synthase 

(NADH-Gogat) located in QTL on chromosome 

3A, and 3B (Quraishi et al. 2011). On chromosome 

3A, this colocalised with QTL of NFA, NupEFlo, 

and %N_S. On chromosome 3B, the NADH-Gogat 

gene colocalised with QTL of NUE_Prot, GPC, and 

ABSN. The gene for glutamine synthetase GS1 on 

6A (Habash et al. 2007) colocalised with a cluster 

of QTL for EFFREMN, GPD, NutE_Prot, DMGY, 

and %N_S. Several publications already mentioned 

this region as affecting grain number per ear 

(Habash et al. 2007; Quarrie et al. 2005), NupEMat 

(An et al. 2006; Xu et al. 2013), root dry weight 

(An et al. 2006), %N_S and DMGY (Xu et al. 

2013).  

On chromosome 4B, a QTL of %N_S colocalised 

with numerous previously published QTL of 

nitrogen efficiency related trait (An et al. 2006; Guo 

et al. 2012), glutamate dehydrogenase and 

glutamine synthase activity (Fontaine et al. 2009), 

harvest index (Xu et al. 2013), ears, spike, and grain 

related trait (Quarrie et al. 2005; Habash et al. 2007; 

Laperche et al. 2007; Fontaine et al. 2009), and root 

morphology (Laperche et al. 2006). Previously 

published results were in part due to the presence of 

Rht-B1 (Rht1) in this chromosomal region. In our 

case, a diagnostic marker for Rht-B1 was tested and 

no significant effect was detected for any trait most 

probably because of the unbalanced allele 

frequencies of the combination of Rht-B1 and Rht-

D1 (0.05, 0.65, 0.18, and 0.12 for the four allelic 

classes Rht-B1b/Rht-D1b, Rht-B1b/Rht-D1a, Rht-

B1a/Rht-D1b, and Rht-B1a/Rht-D1a). The 

glutamine synthetase gene GSe (Habash et al. 2007) 

mapped using the SSR gpw7026 (Sourdille et al. 

2004; Fontaine et al. 2009) was also within this 

QTL confidence interval and may be a good 

candidate gene to investigate.  
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On chromosome 2A, the Rbcs (Xpsr109) gene for 

the small subunit of the chloroplast photosynthetic 

enzyme ribulose-1,5-bisphosphate carboxylase / 

oxygenase (Rubisco) was located in a %N_S QTL, 

and has already been shown to colocalise with a 

QTL for N grain concentration (Laperche et al. 

2006), and from a meta-QTL analysis on yield and 

yield-related traits (Zhang et al. 2010). Considering 

the small size of this QTL in this study (1.6 cM), 

and the link between N remobilisation and Rubisco 

subunit expression and degradation (Hörtensteiner 

and Feller 2002; Gregersen et al. 2008), Rbcs has to 

be considered as a good candidate gene.  

Further investigations are needed on two promising 

regions where no obvious candidate genes were 

found within QTL boundaries. On chromosome 5B 

(gwm67-BCD351), a region linked to the 

INN_FLO colocalised with QTL previously 

published by Fontaine et al. (2009) on carbon 

percentage in flag leaf, and Habash et al. (2007) on 

nitrogen percentage in peduncle. As the nitrogen 

nutrition index (INN) refers to the minimum N 

concentration enabling maximum biomass growth 

(Justes et al. 1994) this confirms the effect of this 

region on nitrogen/carbon balance before 

remobilisation. On chromosome 7B (wPt-3530- 

wPt-7113), Laperche et al. (2007) published a QTL 

of %N_S which colocalised with one of this study 

affecting the same trait. This region also appeared 

in Laperche et al. (2006) as being linked to the 

lateral root number and the primary root length, and 

in Habash et al. (2007) for GNC.  

 

Breeding strategies 

 

As we worked on a panel composed of commercial 

varieties mostly registered between 1985 and 2010, 

results of this study have to be discussed in light of 

selection pressures.  Although QTL have been 

detected, if favourable alleles are already fixed in 

the more recent varieties, those QTL are not so 

useful in future breeding.  

As expected, favourable alleles are more frequent in 

recent varieties for QTL affecting traits under a 

high selection pressure than on QTL affecting 

untargeted traits. We estimated a positive 

correlation (P < 0.001; r² = 0.48) between the 

frequencies of alleles having a positive effect (in 

varieties released from 2005) and genetic 

progresses assessed by Cormier et al. (2013). 

Cormier et al. (2013) showed that in this panel of 

European elite varieties, NUE was increased by 

improving N utilisation (NutE: +0.20 % year
-1

) and 

remobilisation (NHI: +0.12 % year
-1

; %N_S: -0.52 

% year
-1

) through a major positive selection 

pressure on grain yield (DMGY: +0.45 % year
-1

), 

while maintaining constant N uptake. In agreement, 

we found that for DMGY QTL, NutE QTL, and 

%N_S QTL the median frequency of favourable 

alleles (in varieties released from 2005) were 

respectively 88, 68, and 79 % (Suppl. data 7). 

Moreover, for a given trait, the frequency of alleles 

having a positive effect in recent varieties is directly 

linked to the genetic correlation between this trait 

and DMGY (P < 0.001; r² = 0.49; Suppl. data 7). 

Thus, favourable alleles are already well 

represented in new varieties at QTL associated to 

traits directly (e.g. DMGY) or indirectly (e.g. NutE) 

targeted by breeding. This study has provided 

information to facilitate their monitoring.  

Studying correlations between traits using QTL 

colocalisations rather than genetic correlations has 

the advantage of taking into account trait genetic 

architecture and the power with which we can 
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dissect them. Moreover, it gives a better estimation 

of the pleiotropic effect of QTL-based selection on 

a trait. Indeed, the genetic correlation is symmetric 

(ra/b = rb/a), contrary to the percentage of QTL 

colocalising between two traits. For example, based 

on our detection, selection on GPC QTL will surely 

affect NUE_Prot as all GPC QTL are also 

NUE_Prot QTL. However, only 73 % of QTL for 

GPC would be affected by selection on NUE_Prot 

QTL.  

Results of colocalisation analyses revealed that we 

should select on INN_FLO, FLO, NutE, and 

%N_Flo QTL to maximise the number of affected 

traits. As 57 % (4/7) of INN_FLO QTL, and 50 % 

(4/8) of %N_Flo QTL were also FLO QTL, effect 

of phenology and pre-anthesis uptake are mixed. 

Thus, QTL controlling flowering time should be our 

first concern. Anthesis corresponds to a 

physiological transition and consequently, the date 

of this transition has a major impact on genotype × 

environment (G × E) interaction (Kamran et al. 

2014). In this study, we observed an average 

genotypic flowering time standard deviation of 7 

days. As varieties were tested in a small range of 

slightly contrasted environments, anthesis date 

directly affected G × E interaction and above all 

varieties’ genetic values, favouring genotypes 

adapted to these environments. This created a 

confounding effect of major phenology genes 

(Reynolds et al. 2009) which are more likely to be 

associated to agronomic traits.  

None of the central traits (INN_FLO, FLO, NutE, 

and %N_Flo; Fig 4) was linked to final N uptake. 

As mentioned before, recent breeding efforts 

improved N remobilisation and N utilisation, and 

not N uptake (Cormier et al. 2013). Thus, selection 

pressure enhanced N utilisation centrality in our 

network (Fig. 4). In this panel, the low genetic 

variance of the N uptake was not sufficient to reveal 

meaningful correlations with other agronomic traits 

and thus significant QTL colocalisations. 

Nevertheless, as a component of NUE, N uptake is 

a promising lever of action (Hirel et al. 2007; 

Foulkes et al. 2009). This study has provided tools 

to start selecting for N uptake in elite varieties 

without fastidious phenotyping or can be used as an 

entry point in investigating genes and pathways 

controlling this trait (Korte and Farlow, 2013) with 

further investigations in a more diverse panel.  

Results on QTL colocalisations highlighted the 

importance of focusing on pre-anthesis nitrogen 

status, especially on INN_FLO which had a good 

heritability (0.63) and for which QTL have also the 

same effect on TKW and NUE_Prot. 

 

CONCLUSIONS 

 

Identification of chromosomal regions associated 

with nitrogen use efficiency-related traits at both 

high N levels and moderate N will help breeding for 

better adapted varieties. To our knowledge, this 

work is the first published study that reports GWAS 

results on N use efficiency in small grain cereals 

using a high marker density for precise mapping of 

genomic regions. Using an LD-based method to 

define QTL boundaries, 333 QTL were identified 

on 28 traits. Several colocalisations between our 

QTL and previously published QTL were pointed 

out. Using a network approach on colocalisation 

frequencies between traits, this study highlighted 

the interest of working on N status at flowering, and 

underscores the effect of recent breeding on N 

utilisation efficiency.  
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AN EXAMPLE OF CANDIDATE 

GENE DISCOVERY: NAM-A1 
 

 

Applying an empiric method to define quantitative trait locus (QTL) from results of genome-wide 

association study (GWAS), we found 333 QTL for 28 traits. QTL mean size was relatively small (3.2 cM). 

Thus, we concluded that GWAS-based QTL cloning can be a good alternative and speed up the classical 

QTL cloning approach. Nevertheless, we should keep in mind that QTL size variability was high. Indeed, 

90% of our QTL had a size between 0.1 cM and 14 cM (5
th
 and 95

th
 percentiles). Using the recent 

estimation of gene density in wheat [1] we estimated that these QTLs contain between 1 and 2,000 genes. 

Therefore, QTL selection and data mining to screen candidate genes are essential. To illustrate this, here, 

we will detail the work based on a QTL that actually appeared in the previous paper as GNY5 (see 

Annexes of Part III) and where we highlighted the importance of the most interesting candidate gene 

named NAM-A1. Characterization of NAM-A1 natural variants was submitted for publication to Agronomy.    

 

 

NAM-A1 a good candidate gene 

GNY5 is a small QTL (0.64 cM) of grain nitrogen yield located on chromosome 6A around 56.5 cM in 

Biogemma genetic map. Previously to this PhD thesis, GWAS conducted in Biogemma identified this 

region as associated with yield related traits. Multi-environmental GWAS performed during this PhD thesis 

(not presented in this manuscript) also revealed that this region had an effect on nitrogen use efficiency 

(NUE) that significantly interacted with the level of applied nitrogen (N). Added to that, this region is 

homeologous of the Gpc-B1 locus (Fig. 5). 

 

 

Figure 5: GNY5 and Gpc-B1 are homeologous. The MET-GWAS model was a mixed model K including quality 

and precocity as covariates, a SNP main effect and an SNP × NTAmax interaction. 
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In hexaploid bread wheat (Triticum aestivum L.) and tetraploid durum wheat (Triticum turgidum L. ssp 

durum) the No Apical Meristem (NAM) gene at the Gpc-B1 locus (NAM-B1) on chromosome arm 6BS 

encodes a NAC transcriptional factor known to accelerate senescence and to increase nutrient 

remobilisation [2-4] hence grain protein concentration. Different effects of NAM-B1 were assessed 

depending on genotypes × environment combinations [2]. Moreover, optimal senescence kinetic can differ 

depending on N levels [5] leading to the hypothesis that NAM-B1 effects can also depend on the 

fertilisation regimes. 

Most bread wheats have a non-functional allele of NAM-B1 [6]. Consequently, its physiological 

characterization began after a chromosome segment introgression from wild emmer wheat (Triticum 

turgidum L. subsp. dicoccoides) [7]. Nevertheless, hexaploid wheats have five other NAM genes, two 

homoeologous (on chromosomes 6A and 6D) and three paralogous (on chromosomes 2A, 2B and 2D) of 

which NAM-A1 (6A) has the same role as NAM-B1 [4,8]. Consequently, NAM-A1 was a good candidate for 

the GNY5 QTL. Most studies on NAM wheat genes used mutants [4, 8], near isogenic lines [9-12] or 

RNAi lines [3,4] and few studies focused on the cultivated diversity [6,13]. Thus, we aimed to characterize 

natural variants of NAM-A1 in hexaploid bread wheat and to hypothesize biological mechanism involved in 

their putative effects to validate this gene as a good candidate. 

 

SNP detection 

We screened the IWGSC (International Wheat Genome Sequencing Consortium) bank of genomic 

sequences and identified NAM-A1 in the sequence 6AS:4397602. In this 29,595 pb sequence composed of 

several transposable elements, the coding sequence of NAM-A1 was localized between 15,502 bp and 

17,060 pb and is composed of three exons for a total length cDNA length of 1,235 pb.  

SNP (single nucleotide polymorphism) identification was performed on 12 varieties and two high quality 

SNP were detected in NAM-A1 genomic region (Suppl. data 8). The first SNP (SNP1) was located in NAM-

A1 NAC domain (exon 2, 6AS:4397602_16233) and tagged a C/T polymorphism. This SNP caused an 

alanine to valine substitution in the protein sequence. The second SNP (SNP2) was located at the end of the 

coding sequence (exon 3, 6AS:4397602_17020) tagged an A/deletion polymorphism and caused a reading 

frame shift leading to a truncated protein (Suppl. data 9).  

Using the KASPar technology, these two SNP were genotyped on a total of 795 wheat cultivars composed 

of the 367 worldwide core collection accessions [14] and 334 elite varieties with six varieties in common. 

Computing linkage disequilibrium between SNP located in NAM-A1 and SNP from the iSelect 90K wheat 

SNP chip [15], we confirmed that our SNP tagging NAM-A1 were located on chromosome 6A in GNY5. 

SNP frequencies were not balanced (Table 5). For SNP1, the T allele was the most frequent in the core and 

elite collections (0.747 and 0.915 respectively). For SNP2, the A allele was more frequent in the core 

collection (0.765) and the Del allele in the elite collection (0.724). When considering haplotypes, NAM-A1c 

(T-A) was the most frequent haplotype in the core collection and NAM-A1d (T-Del) in the elite panel. In 

the core collection, accessions carrying the haplotype NAM-A1d were then mainly Western European 
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modern cultivars released intentionally added in the core collection. In both panels, haplotype NAM-A1b 

was the less frequent with no accession carrying it in the elite panel and only one landrace from Georgia in 

the core collection. A Khi² test shows that the observed haplotypes frequencies are not as expected from the 

SNP frequencies (Khi² = 120, P < 0.001, both collections together, Suppl. data 10). Although NAM-A1d is 

not the major haplotype in the core collection, it is over-represented in the two collections together. The 

NAM-A1a haplotype is also over-represented while the NAM-A1b is largely under-represented. 

 

Table 5: NAM-A1 haplotype frequencies on two collections of bread wheat genotypes. Frequency followed by 

the number of lines (in parenthesis). 

 

Genotype Frequency 

SNP1 SNP2 Haplotype Core Collection Elite 

C A NAM-A1a 0.232 (85) 0.083 (28) 

C Del NAM-A1b 0.003 (1) 0.000 (0) 

T A NAM-A1c 0.477 (175) 0.189 (63) 

T Del NAM-A1d 0.215 (79) 0.716 (239) 

  Undefined 0.074 (27) 0.012 (4) 

   

In the worldwide core collection, NAM-A1a is mainly found in accessions from Nepal (23 of 21), China 

(16 of 8) and Japan (12 of 7). Moreover, accessions carrying the haplotype NAM-A1a are mostly spring 

wheat. In the elite collection, NAM-A1a is over-represented in varieties with a high bread-making quality. 

Brevis et al. [10] showed that Gpc-B1 introgression was associated with a positive effect on several bread-

making and pasta-making quality parameters. We can expect the same effect for NAM-A1. Thus, NAM-A1a 

may have been maintained in elite germplasm through selection for high baking quality. Added to that, 

SNP1 is linked to the core collection genetic structure as SNP1_C is over-represented in far Eastern 

countries that form a cluster of diversity in the core collection [14]. Consequently, NAM-A1b under-

representation could probably be explained by a Del mutation (SNP2) occurring only in the SNP1_T allelic 

lineage [16]. Then, over-representation of NAM-A1d in modern European elites suggests that the haplotype 

may have been selected. NAM-A1b could be the results of a recent recombination between NAM-A1a and 

NAM-A1d. 

 

Effect of NAM-A1 haplotypes 

Focusing on the 196 European elite varieties genotyped in this study and belonging to the phenotyping 

dataset used in this PhD thesis [17], effects of NAM-A1 haplotypes were the most significant effects 

detected in the NAM-A1 chromosomal region (Suppl. data 11). The highest grain protein concentration 

(GPC) and lowest grain yield (GY) were reached in varieties carrying the haplotype NAM-A1a (Table 2). 

This is caused by the well-known negative correlation between GY and GPC (i.e. [18]). The lower grain 

yield was linked with a reduced grain weight (TKW) not compensated by the number of grain [spike per 
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area (SA) × kernel per spike (KS) in Table 6]. Nevertheless, varieties with NAM-A1a showed also the 

highest grain protein deviation (GPD, [19]) and a high N harvest index associated with a low straw N 

content at maturity (%N_S). Varieties carrying the haplotype NAM-A1c were intermediate between those 

carrying NAM-A1a and NAM-A1d. This can be explained by differences in haplotype effects. However, 

varieties genetic background effect is also a possible explanation. In general, due to the highly unbalanced 

frequencies and a distribution linked to the panels structure as previously mentioned, we lacked power to 

be able to distinguish the effect of genotypes genetic background and the actual effect of NAM-A1.  

 

Table 6: Mean agronomic values for the two NAM-A1 SNP genotyped on 196 (16 NAM-A1a; 37 NAM-A1c; 143 

NAM-A1d) European elite varieties.  

 

SNP1 SNP2 Haplotype GY TKW SA KS GPC GPD NHI %N_S 

C A NAM-A1a 6,976c 41.3b 421a 40.4b 10.46a 0.20a 81.17ab 0.41a 

T A NAM-A1c 7,241b 41.6b 413a 42.5a 10.15b 0.04ab 81.47a 0.41a 

T Del NAM-A1d 7,799a 42.7a 411a 43.0a 9.79c -0.09b 80.98b 0.42b 

 
GY, dry matter grain yield (kg/ha); TKW, thousand kernel weight (g); SA, spike per area (spike/m²); KS, kernel per spike; GPC, Grain Protein 

Concentration (%) ; GPD, Grain Protein Deviation [19]; NHI, nitrogen harvest index (%N); %N_S, straw N content at maturity (%N). 

Letters indicate significance group by LSD test (P<0.05). 

 

Nevertheless, in agreement with the described mean values, several studies analyzing the introgression of 

the functional allele of Gpc-B1 in different spring hexaploid wheat [9, 11, 12] concluded that NAM-A1 

homoeolog increased GPC and decreased TKW. An improved N remobilisation (%N_S and NHI) was also 

assessed [9]. However, the effect of Gpc-B1 on grain yield across genotypes and environments was not 

significant [9, 11, 12] even if it was strongly affected by the genetic background [9]. In the same way, 

study of mutants concluded that functional NAM-A1 (6A) and NAM-B2 (2B) genes accelerate senescence 

and increase GPC with a larger phenotypic effect for NAM-A1 than NAM-B2 [4, 8]. 

To conclude, we hypothesized that NAM-A1a could be a functional variant of NAM-A1 gene. Accelerated 

senescence could have improved N remobilisation and GPC but decreased TKW leading to a GY decrease 

as in our elite panel where varieties carrying NAM-A1a had also a lower number of grains and/or are more 

likely to benefit from a stay-green phenotype in the tested environment. This is in accordance with the low 

frequency of NAM-A1a in elite germplasm mainly selected on GY, and its high frequency in spring 

Nepalese accessions cultivated within a short growing season. 

 

Prediction of 3D structure 

Prediction of the NAM-A1 NAC domain 3D structure was based on the crystal structure of the rice stress 

responsive NAC1 (SNAC1) NAC domain [20]. Crystallographic analysis of the NAC domain of the 

ANAC protein [21, 22] encoded by the abscisic acid-responsive NAC gene from Arabidopsis thaliana and 

mutants study [23] were also used.  
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According to their high amino acid similarity (69.7%), the topology of SNAC1 NAC domain and the 

predicted topology of NAM-A1 NAC domain were similar. The NAM-A1 NAC domain prediction resulted 

in seven twisted β-strands forming a semi-β-barrel with four α-helices (Fig. 6). Although, the residues of 

the loop region between β6–β7 in both SNAC1 and ANAC NAC domains were unobserved due to its non-

participation in crystal packing [20], in NAM-A1 NAC domain an α-helix is predicted. This α4-helix is 

truncated in the protein encoded by the haplotypes NAM-A1c and NAM-A1d, due to SNP1 alanine to valine 

substitution (Fig. 6). Indeed, alanine is one of the best α-helix-forming residues due to aliphatic sidechains 

regions. At the opposite, with short sidechains that can form hydrogen bonds, valine is a poor α-helix 

former. 

 

 

Figure 6: Predicted 3D structure of NAM-A1 NAC domain for (A) the valine variant (SNP1_T) and (B) the 

alanine variant (SNP1_C). Blue arrows: Arg107 and Arg110; red arrows: variant amino acid; red circle: affected α4-

helix. 

 

Dimerization of DNA binding domains is common and can modulate the DNA-binding specificity [24]. 

Gel filtration studies on ANAC NAC domain [21] and SNAC1 NAC domain [20] have shown that in 

solution they exist as dimers that form the functional unit necessary for stable DNA binding [23]. We can 

reasonably presume it is also the case for NAM-A1. The interface between the two monomers of SNAC1 

consists of residues in the N-terminal loop region and two residues in the α1-helix [20]. In NAM-A1, this 

domain is not predicted to be affected by SNP1 variation. 

Olsen et al. [23] showed that K79A/R85A/R88A and R85A/R88A were ANAC mutants that impaired 

DNA binding. Using these results, Chen et al. [20] hypothesized that Arg85 and Arg88 were responsible of 

DNA binding in SNAC1 (residues Arg107 and Arg110 in NAM-A1). 

Using yeast one hybrid assay, Duval et al. [25] identified the DNA binding domain of AtNAM between 

Val119 and Ser183 (AtNAM numbering) and hypothesized that the region folds in a helix-turn-helix 

structure. In contrast, in ANAC and SNAC1, this region consists of β-sheet [20, 22], but as previously 

mentioned the conformation of part of residues in the loop region between β6–β7 was unobserved. This 

unobserved loop region poorly conserved between NAC domains and maybe related to their biologic 
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function [20] was predicted as the region affected by the alanine to valine substitution discovered in NAM-

A1. 

Thus, in accordance with the lowest GPC and GPD observed (Table 2) for the NAM-A1d (SNP1_T, 

SNP2_del) haplotype compared to the NAM-A1a haplotype (SNP1_C, SNP2_A), we hypothesize that the 

valine variant of NAM-A1 NAC domain (SNP1_T) may form dimers, bind to DNA, but its biological 

function is affected. A second hypothesis could be that the more recent mutation (SNP2) leading to a 

slightly truncated protein may affect the transcriptional activation by the C-terminus and difference 

between NAM-A1a and NAM-A1c could be due to genetic background effect. Sequence alignment of 

closest NAC proteins from wheat, barley, rice and A. thaliana did not allow comparing the two hypothesis 

as these NAC proteins mostly carry the alanine variant and none of them seems truncated (Suppl. data 12). 

 

Conclusion on NAM-A1  

Grain protein concentration was maximized in varieties carrying the NAM-A1a haplotype coding for the 

alanine variant of NAM-A1 NAC domain and a non-truncated protein confirming the hypothesis that it may 

be a functional haplotype conserved in high-baking quality germplasm used in modern selection. 

Understanding the difference between both haplotypes coding a valine variant of NAM-A1 NAC domain 

(NAM-A1c and NAM-A1d) remained unclear. Thus, further investigation at low N regime after flowering 

may be required to maximize the impact of remobilisation on agronomic performance. In the context of 

fertiliser reduction, increasing the frequency of the NAM-A1a haplotype in elite germplasm may help to 

breed for an increased remobilisation. Effect of NAM-A1 on yield seemed to depend on genotypes and 

environments. This study provided the tools for further investigations. 

 

 

The example of NAM-A1 illustrates the interest in confronting different sources of information to finally 

end with a candidate gene. Moreover, using multi-environmental data helps (i) to build a hypothesis on the 

biological mechanisms involved and (ii) to design future experiments. Nevertheless, for quantitative traits, 

implementation of the knowledge resulting from this approach can be limited in breeding programs. 

Indeed, even if QTL cloning is sped up, we work on small effect loci hoping that their combine responses 

will be additive. However, the demand of varieties with an enhanced NUE is urging and genomic selection 

approaches may appear more attractive to breeders. Nevertheless, could we use MET-GWAS results to 

increase GS efficiency?  
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Contribution 

Mickael Throude: reconstruction of GNY5 chromosomal region, SNP detection, coordination of genotyping, 

interpretation. Nadine Duranton and Florence Exbrayat: collection genotyping. Catherine Ravel: SNP development, 

core collection genotyping, interpretation.  Magalie Leveugle: sequencing, bioinformatics. Fabien Cormier: elite 

collection genotyping, SNP detection, 3D conformation, interpretation. Jacques Le Gouis, Stéphane Lafarge and 

Sébastien Praud: supervision and interpretation. 

 

Materials and methods 

Results of the MET-GWAS plotted in Fig. 1 were obtained with the following mixed model: 

ij i maxi j iy α += μ+e +q +bf + i i ijβ NTA +u +ε  

where yij is the phenotypic value of genotype i environment j, µ is the trait general mean, ej the effect of j, qi the effect 

of the quality class of i, b the general sensitivity to flowering time, fi the mean flowering date of i, αi the allele of 

genotype i at marker α, βi the sensitivity of allele αi to the NTAmax, 𝑢𝑖 ~N(0, σu
2𝐊) a genetic background effect with K 

a matrix of relative kinship, and 𝜀𝑖𝑗  ~N(0, σε
2) a residual error term. 

The IWGSC (International Wheat Genome Sequencing Consortium) bank of genomic sequences was screened by 

Basic Local Alignment Search Tool (BLAST) using the sequence DQ869672.1 (Triticum turgidum subsp. durum 

NAM-A1 complete coding DNA sequence).  

SNP detection was performed following sequencing of NAM-A1 in 12 varieties: Alcedo, Brigadier, Cassius, Premio, 

Récital, Renan, Rialto, Robigus, Sarina, Soissons, Tremie and Xi19. Genomic sequences were aligned using Chinese 

Spring as a reference.  

The KASPar SNP Genotyping System (KBiociences, Herts,UK) was used to validate SNPs. KASPar Primers were 

designed with Primer picker (KBioscience) and PCR amplifications were performed on hydrocycler (LGC genomics), 

for 50 cycles at 57°C and then run onto a Genotyper (Applied Biosystem). 

Linkage disequilibrium between the discovered SNP on NAM-A1 and the iSelect 90K SNP was computed using 

genotyping data of 281 varieties from the European elite collection. 

Mean agronomic values were calculated from 196 European elite varieties (16 CA; 37 TA; 143 TDel) experimented in 

eight combinations of year, site, and N regime [17]. Mean values were calculated using a linear model with the 

experiment (year_site_N) and SNP or haplotype as fixed factors. 

Prediction of 3D structure was carried out using SWISS-MODEL SERVER [26] and based on the 3ulx.1.A template 

(X-ray, 2.60 Å) of SNAC1 [20]. Visualization was made using Chimera [27]. 
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ABSTRACT: Recently, the development of genome-wide prediction methods has experienced a burst 

exploring a broad diversity of approaches. Nevertheless, the widespread assumption that no specific 

knowledge of causal loci is required may have to be reconsidered. Moreover, prediction of genotype-by-

environment interaction remains a major issue. We performed a multi-environment genome-wide 

association study (MET-GWAS) including marker-by-environmental covariate interactions to rank markers 

by significance of their main effect and significance of their interaction with environmental covariates. We 

used these rankings and the number of markers as two independent parameters and assessed genomic 

prediction accuracies in three cross-validation designs. In this study, we concluded that genomic prediction 

efficiency can be easily increased using marker pre-selection based on MET-GWAS results. Depending on 

the studied trait, we reduced the number of markers used from 25,368 to 1,275 and 700, and we increased 

the prediction accuracy of new genotypes from 0.52 and 0.25 to 0.61 and 0.44, respectively. For prediction 

in incomplete designs or for new environments, we drastically reduced the number of markers and 

maintained high prediction accuracy. We showed that reducing the number of markers for genetic value 

prediction increased accuracy stability. Depending on the cross-validation design, genotype-by-

environment variance from 17.6 % to 30.2 % was predicted using markers and simple environmental 

characterization. This study is a first step toward using preliminary knowledge of genetic architecture in 

multi-environment genomic prediction.  
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INTRODUCTION 

 

Genome-wide association studies (GWAS) and 

genomic predictions are often considered as two 

different approaches used to achieve different 

objectives. GWAS which assesses loci effects 

independently from each other is mainly used to 

discover genes or in genetic architecture studies 

assuming that traits are controlled by a relatively 

small number of quantitative trait loci (QTLs). 

Genomic prediction hypothesizes that a large 

number of loci in the genome have an effect on 

complex traits, and takes into account even the 

smallest effects that dominate complex traits to 

predict genotypes’ performance.  

The increased number of markers available thanks 

to the development of high-throughput genotyping 

methods has made GWAS results more and more 

difficult to implement in routine marker-assisted 

selection [1]. Moreover, loci effects are clearly 

misestimated in GWAS, and confounding due to 

genetic relatedness remains a major trade-off [2]. In 

the meantime, genomic prediction methods 

experienced a burst and appear promising in 

breeding strategies [3-5]. 

Several studies have highlighted the impact of the 

number of causal loci on the accuracy of genomic 

prediction (for example [6]). Similarly, various 

studies have assessed the effect on accuracy of the 

number of markers used in genomic prediction of 

various traits in animal or plant species [7-11]. 

Their results have led to the conclusion that the 

common assumption that no specific knowledge of 

causal loci location is required for genomic 

prediction might have to be re-considered. Thus, 

when marker pre-selection is needed, two problems 

arise: (i) the number of markers pre-selected and (ii) 

the criteria used to select them. Different methods 

that reduce the number of markers have been tested 

such as pre-selection based on a previous step of 

marker effect estimation [7-9] or the use of GWAS 

results [10, 12]. Nevertheless, the number of 

markers used was always increased by adding 

marker from the first to the last, making it 

impossible to independently assess the effect of the 

number of markers and marker rank. Moreover, 

these studies focused on genetic value and did not 

address the issue of genotype-by-environment (G × 

E) interaction prediction. 

More generally, to date, genomic prediction 

methods focus mostly on predicting genetic values 

of complex traits. However, in plant breeding, G × 

E interactions remain a major limitation, as they can 

contribute significantly to genetic variance that 

leads to changes in ranking between environments 

[13]. This complicates selection for broad 

adaptation, especially in the context of climate 

change and inputs reductions which inflate G × E 

contributions. Genotype-by-environment interaction 

was first introduced in genomic prediction models 

using structured covariance between environments 

[14]. Then, to be able to predict genotypes response 

to new environments, environmental covariates 

(ECs) were introduced using factorial regression 

[15] or a reaction norm framework model [16]. 

Numerous ECs can be derived from environmental 

factors such as temperature or rainfall [16] or crop 

model [15] leading to variable selection issues. 

This study aims to suggest a method for increasing 

genomic prediction efficiency using GWAS results 

for both genetic values and G × E interactions. The 

strategy described here is based on single-

nucleotide polymorphism (SNP) pre-selection and 

was designed to be easy to implement. In view of 
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future agriculture challenges, and societal and 

environmental concerns, we chose to work on 

complex traits related to nitrogen use (N): nitrogen 

use efficiency (NUE) and nitrogen harvest index 

(NHI). Traditional phenotyping methods for NUE 

and NHI are labor intensive and partially 

destructive. Thus, they cannot be easily 

implemented in breeding programs and require 

marker-assisted selection. Regarding their 

polygenic genetic determinism, genomic selection 

is one of the best options. 

 

 

RESULTS 

 

Variance analysis 

 

We studied two traits related to nitrogen use (NUE 

and NHI) in wheat using a 214-variety panel 

evaluated in eight environments that are defined as 

a year × location × N combination. For both traits G 

× E interactions were significant (P < 0.001) and 

explained 23 % of the within environment variance 

for NUE and 16 % for NHI (Table 1).  Residuals 

were high and accounted for 29 % of the variance 

for NUE and 69 % for NHI. Nevertheless, the 

generalized heritabilities of NUE and NHI were 

0.88 and 0.62, respectively, given that we worked 

on data resulting from precise phenotyping assessed 

in several within environment replications. 

Regarding variance decomposition, if we had 

succeeded in predicting all genetic (G + G × E) 

variance, the maximum accuracy for prediction of 

phenotypic values would have been about 0.84 for 

NUE and 0.56 for NHI. 

 

Effect of SNP number and rank on prediction of 

additive genetic values 

 

To evaluate the effect of the number of markers and 

marker significance in MET-GWAS on genomic 

prediction of both NUE and NHI traits, SNP were 

ranked according to their significance in multi-

environment genome-wide association studies 

(MET-GWAS). In these rankings, we defined 

different SNP sections of significance. The number 

of SNPs (section size) and the section rank used in 

our genomic prediction model (an extension of G-

BLUP) were two independent parameters. To avoid 

redundancy, we used a total of 2,101 SNPs that we 

pre-selected based on linkage disequilibrium (LD).  

First, we studied the correlation (r(Gi/gi)) between 

genetic value (Gi) and its predictor (gi). The major 

prediction issue for genetic value occurred in cross-

validation 1 (CV1) as one-third of the varieties had 

never been evaluated in any environment.

 

Table 1: Estimation of variance components. Percentage relative to the total within environment variance. 

Estimated values are in brackets. 

 

Trait H²g Model 𝛔𝐆
𝟐  𝛔𝐆𝐄

𝟐  𝛔𝛆
𝟐 rmax 

NUE 
0.88 Gi + εik 51 (8.14)  49 (7.84)  

0.88 Gi + GEij + εijk 48 (7.74) 23 (3.71) 29 (4.72) 0.84 

NHI 
0.62 Gi + εik 17 (1.76)  83 (8.64)  

0.62 Gi + GEij + εijk 15 (1.52) 16 (1.71) 69 (7.17) 0.56 

 2 2 2

max G GE εr σ +σ / σ=
 is the theoretical maximum accuracy for phenotypic value prediction.  

G: genotype; GE: genotype × environment; ε: model residual. 
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Figure 1: Evolution of genetic value prediction accuracy of (A) NUE and (B) NHI. Predictions were assessed 

using a three-fold design repeated 50 times for each combination of SNP number and SNP section rank in GWAS-

based SNP ranking. 

 

In CV1, prediction accuracy of NUE genetic values 

was highest when the 1,250 most significant SNPs 

were used (r = 0.78 +/- 0.21; Fig. 1A). For NHI, 

prediction accuracy was highest (r = 0.70 +/- 0.20) 

when the 500 SNPs of the third section were used 

(Fig. 1B). For each trait, this optimal combination 

of section size and section rank also minimized the 

accuracy variance (Fig. S1). Around this optimum 

(set of SNPs which maximized accuracy and 

minimized SNP number), prediction accuracy 

significantly decreased (Fig. S2). The decrease in 

accuracy induced by using the last SNP sections 

(least significant SNPs) was accentuated when the 

number of SNPs was reduced. This confirmed the 

hypothesis that using the least associated SNPs 

added noise and spoiled the predictive ability of our 

genomic prediction model. Indeed, when the 

number of SNPs increased, the difference in SNP 

content between the first and last section was 

reduced. For example, the first and last sections of 

2,000 SNPs (on 2,101 SNPs) only differed by 101 

SNPs.  

In CV2 (incomplete designs) and CV3 (new 

environments), the training dataset contained all the 

genetic values, since it included at least one record 

per variety. The only issue was how to fit the 

genomic prediction model; there was no new 

genetic value to predict. We achieved a perfect fit 

of the model using at least 250 SNPs, whatever the 

section rank. Since SNPs were first pre-selected 

based on linkage disequilibrium, the fact that 250 

SNPs were sufficient to distinguish 214 varieties 

appeared logical.  

 

Effect of the number of SNPs and section rank 

on G × E interactions prediction 

 

In the three cross-validation (CV) designs, G×E 

interactions (GEij) were compared to their 

predictors (gwij) estimated using only SNPs and 

environmental covariates (ECs). In all cases, 

highest accuracies (r(GEij/gwij)) were reached using the 

most significant SNPs (section 1) with a section 

size of 500 SNPs for NUE and 250 SNPs for NHI 
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(Fig. 2). Maximum accuracies in CV1, CV2, and 

CV3 were 0.42 +/- 0.19, 0.53 +/- 0.15, 0.55 +/- 0.30 

for NUE and 0.40 +/- 0.20, 0.42 +/- 0.18, 0.38 +/- 

0.37 for NHI, respectively. We detected a 

significant decrease around these optimums in CV1 

and CV2 for NUE and especially for NHI (Fig. S3). 

No accuracy variance patterns were observed. 

 

 

 

 

Figure 2: Evolution of G × E interaction prediction accuracy of (A) NUE and (B) NHI in (1) CV1, (2) CV2, and 

(3) CV3. In CV1 and CV2, predictions were assessed using a three-fold design repeated 50 times. In CV3, a four-fold 

design was repeated 28 times.  
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Prediction of environmental values with 

different sets of SNPs 

 

To predict varieties environmental values, we used 

two kinship matrices in our G-BLUP-like genomic 

prediction model: K1 for genetic values and K2 for 

G×E interactions. K1 and K2 may share common 

SNPs. We compared the accuracy of environmental 

value prediction with and without the G×E 

predictor (gwij) (models (6) and (7) in Materials and 

Methods). We also compared the accuracy between 

predictions made using all available SNPs (K1 = 

K2: 25,368 SNPs) and using the optimum.  

 

 

 

As previously mentioned, we defined the optimum 

as the set of SNPs (section size and section rank) 

which maximized accuracy and minimized SNP 

number for each matrix. Then, following the 

previous results, at optimum for NUE, we used 

1,275 different SNPs (K1:1,250 SNPs; K2:500 

SNPs) in CV1, and 523 SNPs (K1:250 SNPs; 

K2:500 SNPs) in CV2 and CV3. For NHI, we used 

700 different SNPs (K1:500 SNPs; K2:250 SNPs) 

in CV1, and 322 SNPs (K1:250 SNPs; K2:250 

SNPs) in CV2 and CV3. 

 

Table 2: Effect on accuracy of adding G × E prediction and SNP pre-selection. The number of SNPs used to 

compute matrices K1 and K2 [models (5) and (6); see Materials and Methods] is indicated in columns K1 and K2. 

When all available SNPs were used, K1=K2. r(yijk-Ej/gi) and r(yijk-Ej/gi+gwij) are the prediction accuracies of models (5) and 

(6), respectively.  

 

Trait CV 
Optimum Using all SNPs 

K1 K2 r(yijk-Ej/gi) r(yijk-Ej/gi+gwij)
a
 K1= K2 r(yijk-Ej/gi+gwij)

b
 

NUE 

1 1,250 500 0.53+/-0.07 0.61+/-0.05*** 25,368 0.52+/-0.06*** 

2 250 500 0.63+/-0.03 0.72+/-0.02*** 25,368 0.71+/-0.02 ns. 

3 250 500 0.61+/-0.07 0.66+/-0.14* 25,368 0.67+/-0.10 ns. 

NHI 

1 500 250 0.34+/-0.04 0.44+/-0.04*** 25,368 0.25+/-0.05*** 

2 250 250 0.35+/-0.02 0.46+/-0.03*** 25,368 0.41+/-0.03*** 

3 250 250 0.31+/-0.06 0.36+/-0.12* 25,368 0.34+/-0.12 ns. 

 
a Result of the Wilcoxon test between r(yijk-Ej/gi) and r(yijk-Ej /gi+gwij) at optimum 
bResult of the Wilcoxon test between the optimum and the use of all SNPs for the complete model 

***: P-value < 0.001; **: P-value < 0.01; *: P-value < 0.05; and ns.: non-significant P-value > 0.05 

 

At optimum, we always achieved a significant 

improvement in accuracy by adding G × E 

interaction prediction (Table 2). For NUE, the 

increase in accuracy ranged from 9 % in CV3 to 15 

% in CV1. For NHI, this increase ranged from 16 % 

in CV3 to 35 % in CV2. 

Upon comparing the use of all available SNPs 

(25,368) and the optimum, we concluded that SNP 

pre-selection efficiency depended on the cross-

validation design and the trait (Table 2). We 

achieved a significant improvement by pre-

selecting SNPs on both traits only in CV1; 

however, the number of SNPs decreased drastically. 

Indeed, in CV1, we achieved the highest prediction 

accuracy of genetic values (r(Gi/gi)) only around the 

optimum (Fig. 1, Fig. S2). In CV2 and CV3, when 

we used more than 250 SNPs, prediction accuracy 

of genetic values stayed at the highest level, 

whatever the section rank and SNP number. 

Moreover, regarding G × E contribution to genetic 
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variance (Table 1), the decrease of accuracy around 

optimum (Fig. 2; Fig. S3) was not sufficient to 

reveal any significant difference on phenotypic 

value predictions, except for NHI in CV2. 

In conclusion, the first pre-selection that we made 

based on LD maintained accuracy, although the 

number of SNPs was reduced (Table S1). Then, 

depending on CV design, pre-selection based on 

MET-GWAS results increased accuracy or 

maintained it, although the number of SNPs was 

even more reduced. 

 

 

DISCUSSION 

 

Regarding methodology, previous studies increased 

the number of SNPs by adding SNPs ranked from 

first to last. Our study gave a second dimension to 

the SNP pre-selection issue by independently 

testing the number of SNPs and the effect of using 

different kinds of significance. NHI results 

confirmed the usefulness of this second dimension, 

given that the optimum did not contain the most 

highly associated SNPs in our MET-GWAS (Fig. 

S4). This could also mean that results from our 

MET-GWAS model may not provide the best 

overview of genetic architecture. 

In GWAS, we control the false positive rate by 

estimating genotypes’ kinship. The goal is to focus 

only on allelic variation that is linked to the trait, 

regardless of varieties’ genetic background. This 

can lead to an increase in type II errors (false 

negatives) if an important part of the genetic 

variation underlying a trait is linked to genotypes’ 

kinship. Moreover, Rincent et al. [17] recently 

showed that power of detection can also be reduced 

in GWAS if the tested SNP is in high LD with 

various SNPs used to assess the genotypes’ kinship. 

Then, highly significant SNPs result from a balance 

between SNP effects and their complementarity 

with the kinship matrix. Moreover, both phenology 

and end-use quality have a huge impact on several 

agronomic traits such as NUE [18]. Thus, in 

GWAS, major genes of phenology and quality are 

more likely to be linked to agronomic traits and 

create confounding effects that hide hiding other 

loci with smaller effect. To deal with this issue, we 

chose to develop a MET-GWAS model using both 

phenology and quality information as covariates for 

NUE. We did not use these covariates for NHI and 

hypothesized that they may, in part, explain why 

the optimum section of markers for NHI was not 

the first one.  

The overview of genetic architecture provided by 

our MET-GWAS results is partially biased. 

Nevertheless, this study demonstrated the benefit to 

use them. As an improvement of our method, the 

improved linear mixed model for GWAS (FaST-

LMM-Select [19]), which is able to deal with 

confounding effects, could be customized to multi-

environment data. 

 

The use of genetic architecture information has 

improved the prediction accuracy of genetic values 

in human [11], dairy cattle [12], maize [9], and rice 

[12]. Other studies [7, 8, 10] concluded that 

excluding least significant markers did not increase 

prediction accuracy. In these studies, SNP density 

was perhaps too low to achieve maximum accuracy 

regarding population size. This is one plausible 

explanation, although to properly compared studies 

we would need information on LD in the studied 

population. Using a training set of 3,305 genotypes 

(dairy cattle), Vazquez et al. [8] assessed prediction 
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accuracy for a maximum number of 2,000 SNPs. 

Hayes et al. [7] tested the same maximum number 

of SNPs using a training set of 756 genotypes. 

However, Hayes et al. [20] showed that more than 

50 % of adjacent SNPs (studying 38,259 SNPs) had 

a LD (measured by the usual square of the Pearson 

correlation) lower than 0.2 in the same panel of 

Australian Holstein cattle. Zhao et al. [10] tested 

between 100 and 800 SNPs for a training set of 630 

maize genotypes. In comparison, in a study by 

Schulz-Streeck et al. [9], accuracy decreased when 

the number of SNPs exceeded 1,750-4,000 

(depending on the pre-selection method) with a 

training set of 2,581 maize genotypes. In the 

present study, we used up to 2,101 SNPs which 

were pre-selected based on LD to minimize 

redundancy, and achieved the highest prediction of 

genetic values using around 60 % (1,250 / 2,101) 

for NUE and 24 % (500 / 2,101) of the genome. 

 

Schulz-Streeck et al. [21] modeled G × E 

interaction with the most consistent SNPs across 

environments and a relatively small number of 

markers. These two factors may be the reason why 

they did not observe much improvement in the 

prediction of genetic values. In constrat, Heslot et 

al. [15] selected the most variable SNPs between 

environments to predict G × E interaction values 

and achieved an improvement in prediction 

accuracy. These authors maximized the captured G 

× E variance using 250 markers. In our study, the 

best set of SNPs for predicting G × E interaction 

included 500 markers for NUE, and 250 for NHI. 

As in Heslot et al. [15], adding more markers to the 

best set reduced our prediction accuracy.  

Genomic prediction methods use a broad diversity 

of approaches including different assumptions 

about the distribution of loci effects. This may 

cause differences between studies. In our model, we 

assumed a normal distribution of SNPs effects. 

Some penalized regression approaches such as 

LASSO mimic pre-selection by leading to sparse 

solution (some markers had no effects). Thus, it 

may be reasonable to test our conclusion with a 

penalized regression approach. However, the 

number of markers that have an effect depends on 

the size of phenotypic data set, which can be 

limiting for complex traits in the context of a multi-

environment study.  

 

In this study, prediction accuracy was finally 

computed with a complete model used to predict 

environmental values (r(yijk-Ej/gi+gwij)). Thus, 

regarding traits variances decomposition, perfect 

prediction accuracies would have been 0.84 for 

NUE and 0.56 for NHI. Indeed, the part of variance 

explained by the residual error term is not really a 

genomic prediction issue. This residual variance is 

influenced by numerous factors such as trial design, 

soil heterogeneity, model adjustment and accurate 

measurements. This is mostly a supposedly 

unpredictable experimental issue that highlights the 

impact of trial reliability on varieties 

characterization. However, it can confuse 

conclusions when studies are compared. In the 

same way, studies often concluded on the efficiency 

of their genomic prediction models in accounting 

for G × E interactions by assessing the gain in 

accuracy observed when they introduced G × E 

predictors in their models. However, this gain 

depends mainly on the part of the variance 

explained by G × E interaction. Thus, the real issue 

is not only how to increase prediction accuracy, but 
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also how to explain G×E interactions as much as 

possible.  

In this study, at optimum, we predicted for NUE 

and NHI respectively, 17.6 % and 16 % in CV1, 

28.1 % and 17.6 % in CV2, and 30.2 % and 14.4 % 

in CV3 of the G×E variance using 18 ECs. Using 

139 genotypes in 340 environments with 68 ECs 

and 2,395 SNPs, Jarquin et al. [16] reported an 

increase in accuracy of 17 % and 34 % in CVs 

implemented in a 10-fold design similar to our CV1 

and CV2. G × E variance accounted for 30 % of the 

total genetic variance (Gi + GEij). Thus, using 

published accuracy values, we estimated that 

around 11.5 % and 31.3 % of the G × E variance 

were actually predicted. In a CV similar to our CV3 

(where we tested the capacity to predict new 

environments) Heslot et al. [15] used 437 genotypes 

in 44 environments described with 101 ECs and 

250 SNPs and reported an 11.1 % gain in accuracy. 

G × E variance accounted for 63 % of the total 

genetic variance. Thus, we estimated that around 

8.5 % of the G × E variance was predicted. 

Nevertheless, the cross-validation design (2-fold) 

was challenging.   

Different genomic prediction approaches can be 

compared but accuracies and accuracies gain by 

adding predictor of G × E interactions should 

always be balanced by the results of the analysis of 

variance.  

 

This study, which used 214 elite European wheat 

varieties evaluated in eight environments for NUE 

and NHI, is the first to demonstrate that SNP pre-

selection based on previous knowledge of causal 

loci can increase prediction accuracy or at least 

maintain it in a multi-environment framework. 

Moreover, this study confirmed that G × E 

interactions can be predicted using molecular 

information and simple environmental 

characterization. There are numerous public and 

private GWAS databases available for different 

plant and animal species. Their integration in 

genomic prediction methods is promising for 

increasing efficiency of genomic selection or 

personalized medicine. 

 

 

MATERIALS AND METHODS 

 

Experimental datasets 

 

This study focused on nitrogen use efficiency 

(NUE) and N harvest index (NHI). The phenotypic 

data used in this study are described in Cormier et 

al. [18]. In this study we defined an environment as 

a combination of year × location × N level. In total, 

225 elite European wheat varieties were evaluated 

in eight environments (two years, three locations, 

two N levels). In half of the environments, an 

augmented design was used with four controls. In 

the other half, all varieties were repeated twice in a 

complete block design.  

In every environment, rainfall, minimum, 

maximum and average temperature, potential 

evapotranspiration, and global radiation were 

measured daily. Eighteen environmental covariates 

(ECs) were computed based on these measurements 

(Table S2, Table S3). These ECs are related to 

nitrogen, drought, heat, and radiation stress 

throughout the entire plant life cycle or they are 

focused on specific phenologic stages.  

Among the 225 varieties included in field trials, 214 

were genotyped using a 90K Illumina chip and 

SNPs developed by Biogemma. In total, 25,368 
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SNPs were available in this panel with a minor 

allele frequency superior above 5 %, no more than 

25 % missing data, and no heterozygous loci. 

 

Multi-environment genome-wide association 

study (MET-GWAS)  

 

The MET-GWAS model was fitted using a mixed 

model written in R using the ASReml-R package 

[22]. Following Cormier et al. [18] results, 

covariates were introduced to avoid quality and 

precocity confounding effects on NUE; no 

covariates were introduced for NHI. The model also 

included an SNP main effect and SNP-by-EC 

interaction, and was expressed as: 

ijk j iiy = μ +e + x α+ +
n

i c i ijk

c=1

β ec +u +ε    (1) 

 

i i

i

q + bf
x =

0

 
 
 

 

where yijk is the phenotypic value of genotype i in 

the replicate k of environment j, µ is the trait 

general mean, ej the effect of environment j, qi the 

effect of the quality class of genotype i, b the 

general sensitivity to flowering time, fi the mean 

flowering date of genotype i, αi the  allele of 

genotype i at marker α,  βi the sensitivity of allele αi 

to the EC c, ecc the value of EC c in environment j,   

2

u~ Ν(0,σ )iu K a genetic background effect with K 

a matrix of relative kinship, and a residual error 

term
2

εΝ(0, )ijkε ~  .  

K was estimated by a Rogers’ Distance [23] matrix 

based on 3,461 SNPs selected for having less than 

0.1 missing data and different genetic map 

locations. 

For each SNP, EC were introduced into the model 

following a forward approach based on the 

likelihood ratio test (LRT) using a P-value (P) 

threshold of 0.05. Then, a Wald test was performed 

on the complete model to test SNP main effect. 

LRT and Wald test P-values were used to rank 

SNPs. We then described how we split these 

rankings to pre-select the SNPs used in genomic 

prediction.  

 

Estimation of genetic values and genotype-by-

environment interactions 

 

Genomic predictions were first made using a two-

step approach to separately assess the effect of SNP 

pre-selection on genetic value predictions and on 

G×E predictions.  

In the first step, we simply estimated genetic values 

and G×E interaction values from phenotypic 

observations. These values were estimated using a 

model for best linear unbiased estimation and 

expressed as:  

ijk j i ijy = μ +E +G +GE ijk+ε  (2) 

where yijk are phenotypic values, µ the general 

mean, Ej and Gi are environment j and genotype i 

fixed effects, respectively, GEji is the interaction 

between genotype i and environment j with a 

residual error term
2

εΝ(0, )ijkε ~  .  

 

Genomic predictions of genetic values and 

genotype-by-environment interactions 

 

In the second step of the approach, we made 

genomic predictions of the genetic values and G×E 

interaction values. We used the model developed by 

Jarquin et al. [15]: an extension of G-BLUP 
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implemented in the BGLR package for R [24] 

which fit reaction norm using reproducing kernel 

Hilbert space.  

Using estimations from equation (2) of genetic 

values Gi and genotype-by-environment interaction 

GEij, we first made independent genomic 

predictions of Gi and GEij to clearly identify the 

optimum set of SNPs (number and ranking in the 

MET-GWAS) to use in each component.  

For genetic value prediction, we computed the 

following model:  

iG = i ikg +ε    (3) 

where Gi is the genetic value of genotype i from 

equation (2),  
2

g~ Ν(0,σ )ig 1K  with K1 a genomic 

relationship matrix and εik~N(0,σε
2
) a residual error 

term corresponding to the part of genetic values that 

is not explained by the marker-based kinship. 

When we predicted G × E interactions, we used the 

model: 

ijGE = i i kj jgw +ε   (4) 

where GEij is the G × E interaction value between 

genotype i and environment j from equation (2) 

(Fig. S5), 
2

gw~ Ν(0, σ )ijgw   
'

g 2 gZ K Z Ω with 

Zg an incidence matrix for the vector of genetic 

effects, K2 a genomic relationship matrix, Ω an 

environment covariance matrix based on ECs (Fig. 

S6, Table S3), and 
2

εΝ(0, )ijkε ~   a residual error 

term corresponding to the part of genotype-by-

environment interaction that is not explained.  

 

Genomic predictions of environmental values 

 

Finally, we compared two models that make direct 

predictions of environmental values to assess the 

impact on accuracy of adding a G × E predictor 

(gwij). To this end, we corrected the observed 

phenotypic values from the main environment 

effects, and we computed complete models as:  

ijk jy - E = ii jkg +ε  (5) 

ijk jy - E = i j ijkig + εgw +  (6) 

with the previously described terms.  

 

SNP pre-selection 

 

To avoid redundancy in SNP information and 

reduce computation time, SNP number was reduced 

based linkage disequilibrium from 25,368 to 2,102 

SNPs using the critical LD as a cut-off. Critical LD 

was assessed following Breseghello and Sorrells 

[25] and estimated to be r² = 0.23 in this panel.  

In this study we wanted to independently address 

the effect of SNP number and SNP ranking on 

MET-GWAS. First, we ranked SNPs by their 

significance in MET-GWAS. Then, given a fixed 

number of SNPs, we partitioned this ranking into 

ten sections with possible overlapping between 

consecutive sections, from section “rank 1” 

corresponding to the section of the most significant 

SNPs to “rank 10” corresponding to the section of 

the least significant SNPs. To address the SNP 

number issue, we set SNP section size at 250, 500, 

750, 1000, 1250, 1500, 1750, and 2000. In total, we 

tested 80 combinations of SNP section (10) and 

SNP number (8). 

When we worked on genetic value prediction, we 

ranked SNPs according to the significance of their 

main effect and used them in the computation of 

genomic relationship matrix K1. When we worked 

on G × E predictions, we ranked SNP according to 

their most significant interaction with ECs and used 
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them in the computation of genomic relationship 

matrix K2.  

 

Cross-validation design and accuracy 

 

We considered three different cross-validation (CV) 

designs, each one addressing a different prediction 

issue. In the first design (CV1), we focused on the 

ability to predict both additive genetic values and 

G×E interactions of genotypes that had not been 

evaluated in any environment. In the second (CV2), 

we assessed the ability to predict values in an 

incomplete design. And in the third (CV3), we 

assessed the ability to predict values in new 

environments. In CV1 and CV2, we used a three-

fold cross-validation design repeated 50 times. In 

CV1 we randomly chose two-thirds of genotypes 

present in all environments to train the model and 

then predict the remaining third. In CV2, we 

randomly chose two-thirds of the complete data set 

(214 genotypes × 8 environments) to predict the 

other third. In CV3, we used a four-fold design, 

meaning that six environments were used to predict 

the other two. We tested all 28 environment 

combinations. 

We assessed prediction accuracy as Pearson’s 

product-moment correlation coefficient (r) between 

the prediction and the genetic values (model (3); 

r(Gi/gi)) or the G×E values (model (4); r(GEij/gwij)), on 

the entire vector. For the three cross-validation 

designs, the 80 section rank and SNP number 

combinations were tested. Thus, prediction 

accuracy can be visualized as a surface plot, in the 

space defined by section rank and SNP number, 

using the wireframe function (lattice package in R).  

For predicting both genetic values and G × E 

interactions, we defined the optimum as the set of 

SNPs (combination of section rank and SNP 

number) which maximized accuracy and minimized 

SNP number.  

We then assessed the accuracy of model (5) (r(yijk-

Ej/gi)) and model (6) (r(yijk-Ej/gi+gwij)) in two 

configurations: (1) K1 and K2 were computed 

using the two optimum identified using the two-step 

approach, and (2) K1 = K2  was computed using all 

25,368 available SNPs. 
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AND EPISTASIS IN ALL OF 

THAT?  
 

 

In the previous paper, we wanted to extend classical GWAS and G-BLUP models by taking into 

account SNP × environmental covariates (EC) interactions. The goal was to make models come closer 

to biology. However, in order to be as close to biology as possible, there is something that is rarely 

modelized: epistasis.  

Epistatic interactions have been recognized to be a fundamental component of the understanding of (i) 

the structure and function of genetic pathways, (ii) the evolutionary dynamics of complex genetic 

systems and (iii) the genetic variance (Cheverud and Routman 1995; Carlborg and Haley 2004; 

Mackay et al. 2014). If large scale epistasis analyses become much more systematic in yeast or animal 

species, these approaches are still under prospected in plants. The main limitation of comprehensive 

analyses is the total number of interactions that must be studied. Nevertheless, the development of new 

methods (Cordell 2009) and afforadable informatic hardware (e.g. calculator) make it possible to 

launch pioneer studies in plant too. 

Here we will discuss the preliminary work made on epistatic interactions aiming (once finished) to (i) 

identify epistatic genes, (ii) dissect epistatic networks and (iii) integrate these results in genomic 

prediction. We addressed epistatic interactions from a statistical point of view at the level of 

population (non-additivity of loci effects). 

 

 

Is it important? 

The first question we should answer is: “How much of genetic variance epistatic interactions explain?” 

Indeed, if it is a really small proportion in nitrogen use efficiency (NUE) related traits, it may not be 

worth considering the computing challenge.  

Due to its size and its composition, our dataset does not allow us to assess this proportion. 

Nevertheless, GWAS results of part IV (Cormier et al. 2014) may help to address this issue. In the 

“predictions” section of the previous paper, we assessed the adjusted mean variance explained by 

summing quantitative trait nucleotide (QTN) effects (r²adj, Table 4, part III). We can compare it to the 

sum of individual QTN prediction accuracy (sum of r²snp) (Fig. 3). This difference can be impressive. 

For example, for plant height the sum of r²snp and r²adj were equal to 177.7 and 48.6 %, respectively; in 

agreement with a high epistatic contribution in the genetic control of plant height assessed by several 

authors and already mentioned (see discussion in the paper part III). At the opposite, for straw dry 
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matter (ADM_S) the sum of r²snp and r²adj were equal to 110.8 and 52.8 %, respectively, using the same 

number of QTN as for plant height. 

This difference between the sum of r²snp and r²adj resulted from missing data, addition of misestimation 

of QTN effects, redundancy between information [i.e. linkage disequilibrium (LD) between QTN and 

number of QTN] and epistatic interactions between QTN. We did not assess any significant difference 

between traits in missing data neither in mean LD between QTN. Thus, we computed the ratio [r²adj / 

sum of r²snp] only corrected for the number of QTN and first hypothesized that it will be mainly related 

to epistatic interactions. In agreement with this hypothesis, we assessed a negative correlation (P < 

0.01, r² = 0.19) between this corrected ratio and trait mean r²snp. Indeed, when epistatic interactions are 

high the power of detection decreases (as narrow-sense heritability decreases) leading to the detection 

of only bigger QTN, and thus to an increase in the mean r²snp. But, there is a second plausible 

explanation. The proportion of shared information between QTN (r² = LD) did not vary between traits, 

but the proportion of genetic variance explained and shared by QTN increased with QTN effects. 

Thus, a trait controlled by large effect loci, will have a higher mean r²snp and a smaller (r²adj  / sum of 

r²snp) corrected ratio.  

 

 

 

Figure 3: 3D plot of r²adj in function of Sum of r²snp and QTN number for 28 traits.  

 

In our dataset, having an a priori on the contribution of epistasis in traits variance may not be possible. 

Moreover, this discussion is limited to epistatic interaction between QTN leaving aside interactions 

between SNP that do not have a significant additive effect. Nevertheless, several studies revealed that 

epistasis cannot be ignored when describing the genetic architecture of complex traits (for a review 
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Mackay 2014). Thus, given the number of genotypes in our dataset, we should first focus on two-way 

epistatic interactions (SNP × SNP) and a posteriori quantify their contributions. 

 

Genome-wide detection of epistatic interaction 

For additive loci and loci interacting with environmental covariates, we made a whole-genome 

detection and we demonstrated that this knowledge could be useful in both deciphering pathways and 

increasing the efficiency of genomic prediction models. For epistatic loci, we kept the same 

methodology and focused our work on nitrogen use efficiency (NUE; grain yield / NTAmax). Thus, we 

started by a step of whole-genome detection using an extension of the classical genome-wide 

association study (GWAS) model K (Fig. 4). The goal was to find networks of epistatic interactions 

significantly involved in NUE in our panel (Fig. 4) and to identify the involved metabolic pathways. 

We decided to use the model species A. thaliana to build our networks as information on pathways is 

reduced in wheat, while the database of protein-protein interactions, transcription factors and co-

expressions are much more developed on A. thaliana.  

First, we blasted all our markers context sequences or anchors to the A. thaliana genome and 

conserved only SNP located in putative wheat paralogs. Then, we tested the significance of SNP 

pairwise interactions. And finally, we compared these interactions to the ones registered in A. thaliana 

interactome databases using the paralogs genes on which SNP may be located (Fig. 4).  

This allowed (i) to reduce the number of tested interactions to the ones that we were able to screen in 

A. thaliana interactome database. Five hundred days of computing (10 days on 50 CPU) were already 

necessary to achieve the pairwise detection. (ii) It decreased the confounding effect of LD between 

SNP. In fact, highly interconnected sub-networks tend to be group of SNP in high linkage 

disequilibrium (e.g. left of Fig. 4). (iii) At the end, it allowed to draw a simplified network based on 

gene (instead of SNP) containing less false positive interactions. Indeed, significant interactions from 

our extended GWAS model K performed on wheat NUE are cross-validated by experimental or 

computing approaches on completely unrelated data. Once again, we chose not to be too stringent on 

significance threshold [-log(P-value) > 3] and to cross-validate using various sources of information. 

However, we should keep in mind that wheat and A. thaliana are phylogenetically distant. Thus, 

common interactions may be reduced to conserved pathways among plant species. More generally, we 

now have a dataset of significant SNP interaction that can be used in MAS models. 

We ended this work with a small interaction network (right of Fig. 4) that required further 

investigations. Indeed, this network is composed of “validated” interactions (e.g. Suppl.data 10) 

explaining a significant part of NUE variance in our panel (r² = 6.5 +/- 3.84 % of the genetic variance). 

Added to that, we also may have identified the genetic markers linked to the causal polymorphism 

involved in the interaction. A branch of this network is particularly interesting as it contains the 

Ferredoxin-Dependent Glutamine-Oxoglutarate Aminotransferase (Fd-GOGAT) gene and several 

genes involved in photorespiration, nitrogen assimilation and senescence.    
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Figure 4: Diagram of epistatic interactions analyses. The model used to test epistatic interaction was the following: 
' '

i ii k i ij j α α +y = μ + αe α+ + i ij+u +ε where yijk is the phenotypic value 

of genotype i environment j (dataset described in Cormier et al. 2014), µ is the trait general mean, ej the effect of j, αi and α
’
i the alleles of genotype i at marker α and α

’
, 𝑢𝑖 ~N(0, σu

2𝐊) a 

genetic background effect with K a matrix of relative kinship, and 𝜀𝑖𝑗  ~N(0, σε
2) a residual error term. A. thaliana interactome databases were requested through CORNET using the co-

expression (Pearson correlation coefficient > 0.8), protein-protein interaction (experimental and predicted) and transcription factor (confirmed and knock-out experiments) modules.  
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Adding epistatic interaction in GS model 

In G-BLUP, we hypothesize that the distribution of markers’ effects follows a normal distribution with 

a homogeneous variance between them. But, individual effects of markers are not directly estimated 

and used in prediction. Predictions are based on genotypes kinship assessed from genomic information 

(Meuwissen et al. 2001). In our GS model, kinship matrices (K1, K2 and K) were mainly related to the 

probability of having a common allele as we computed kinship matrices following the formula: 

 

𝐊𝐢𝐧𝐬𝐡𝐢𝐩 =
[𝐌𝐚𝐭𝐈𝐧𝐜 ×𝐌𝐚𝐭𝐈𝐧𝐜′]

nSNP
 (7) 

 

with nSNP the total number of SNP used to compute Kinship (= K1, K2 or K) and  MatInc a genotyping 

matrix converted to a centered and reduced incidence matrix (number of genotypes × nSNP).  

Therefore, there is also a part of epistasis in the information contained in our kinship matrices. Indeed, 

the number of common epistatic interaction (N) between two varieties can be described as a function 

of the probability to have a common allele between two genotypes (approximated by K): 

 

𝐍 ≈ ∑ (n
k

) 𝐊𝐢𝐧𝐬𝐡𝐢𝐩
i

n

i=2
  (8) 

 

with k the order of epistatic interaction (number of involved loci) and n the total number of SNP. 

However, this part of epistasis, which is already taken into account in our model, rapidly becomes 

null. Indeed, for two genotypes, the probability of having the same epistatic interaction is the 

probability of having a common allele to the power of the interaction order 

(𝐊𝐢𝐧𝐬𝐡𝐢𝐩 < 1 ;  lim𝑖→ 𝑛 𝐊𝐢𝐧𝐬𝐡𝐢𝐩
i = 0). We also advocate building kinship matrices not based on an 

overview of the genome, but on SNP having additive effects and SNP having additive effects 

interacting with environmental covariates (EC), which may reduce even more the part of epistasis as 

we focused on a subset of the total genotyping data.  

More generally, Gianola et al. (2006) suggested that non-parametric GS models (e.g. reproducing 

kernel Hilbert spaces) compared to parametric models (e.g. G-BLUP) would be better suited to take 

into account epistatic contribution in trait genetic architecture. Comparing 10 parametric models to 

four non-parametric models, Howard et al. (2014) confirmed that non-parametric models over 

performed when genetic architecture was based entirely on epistasis. However, this simulation study 

was only based on two-way epistatic interactions and parametric models were slightly better for 

additive genetic architecture. Added to that, this kind of study compared basic models which were not 

especially customized to integrate epistasis. 

In multi-environmental dataset, SNP additive effects and SNP × environmental covariates (EC) 

interactions need to be estimated. If we add epistatic interactions, the number of estimations increases 
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even more. Thus, we may retain our G-BLUP approach which is not limited by the number of 

estimated effects.  

To integrate epistasis, we could extend the approach that we had on genotypes-by-environment (G × 

E) interactions. Indeed, when we integrated prediction of G × E interactions we added the predictor 

gwij defined as:  

𝑔𝑤𝑖𝑗~N(0, [𝐙𝐠𝐊𝟐𝐙𝐠
′ ]°𝛀σgw

2 ) (9) 

 

with Zg an incidence matrix for the vector of genetic effects, K2 a genomic relationship matrix, Ω an 

environment covariance matrix based on EC.  

We could add a similar predictor named ggi: 

 

𝑔𝑔𝑖~N(0, [𝐙𝐠𝐊𝐞𝐙𝐠
′ ]°[𝐙𝐠𝐊𝐞𝐙𝐠

′ ]σg
2) (10) 

 

with Ke a genomic relationship matrix based on SNP involved in epistatic interactions.  

But pairwise interactions will not be conserved. In fact, with a Hadamard product, we will modelize 

all the interactions between all SNP. This was also the case of our predictor of G × E interactions 

(gwij). The fact that a SNP could interact with a particular EC was not conserved and we modelized the 

response of SNP to all EC.  

In fact, if we want to conserve the information on pairwise interactions, we may have to work directly 

on the way we assess kinship between genotypes and base this kinship on the selected interactions. 

We could define a modified kinship (Kmodif) as: 

 

𝐊𝐦𝐨𝐝𝐢𝐟 =
1

ninter
∑  [𝐌𝐚𝐭𝐈𝐧𝐜𝐢𝟏 × 𝐌𝐚𝐭𝐈𝐧𝐜𝐢𝟏

′]°[𝐌𝐚𝐭𝐈𝐧𝐜𝐢𝟐 × 𝐌𝐚𝐭𝐈𝐧𝐜𝐢𝟐
′]ninter

i=1  (11) 

 

with ninter the number of SNP × SNP interactions, MatInci1 and MatInci2 the genotyping matrices (of 

i1 and i2 the two interactors of interaction i, respectively) converted to incidence matrices (number of 

genotypes × 1). 

And finally, our predictor would become: 

 

𝑔𝑔𝑖~N(0, [𝐙𝐠𝐊𝐦𝐨𝐝𝐢𝐟𝐙𝐠
′ ]σg

2) (12) 

 

with the terms previously described. 

Preliminary results showed accuracy improvement (Table 3) for predictions of new genotypes when 

the epistasis predictor (model 10) was added to the complete model of predictions (model (6) in the 

previous paper). However, when this predictor was computed using all SNP [model (10) based on K 

instead of Ke] accuracy did not increase. Thus, here again, SNP pre-selection may be useful.  
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Table 3: Effect on accuracy of adding epistasis predictor selecting SNP × SNP interactions at a 

significance threshold = 5. Significance of SNP × SNP interactions were calculated using the model described 

in legend of Fig. 4. 

 

 Model Matrices Content Accuracy
a 

Optimum 

base 
(6) 

K1 1,250 SNPs 
0.62+/-0.04 

K2 500 SNPs 

+ 

SNP×SNP 

predictor 

(10) 
Ke 832 SNPs 0.65+/-0.04 *** 

K 25,368 SNPs 0.62+/-0.04 ns. 

(12) Kmodif 1380 Interactions 0.62+/-0.04ns. 

 
a Result of the Wilcoxon test between the accuracy at optimum and the accuracy when a SNP × SNP predictor is added 

***: P-value < 0.001; **: P-value < 0.01; *: P-value < 0.05; and ns: non-significant P-value > 0.05 

 

Computing interactions between all pairs of interactive SNP [Haddamart product; model (10)] 

appeared more effective than keeping pairwise interaction information (Kmodif) at a –log(P-value) 

threshold = 5 . When we selected SNP to build SNP and SNP × EC predictors, we saw that adding 

even SNP with low significance in MET-GWAS increased accuracies (Fig. S4). We can hypothesize 

that it may be the same for epistasis interaction and need to test really less stringent significance 

thresholds. 

 

 

In any case, more investigations are required on both genome-wide mapping of epistatic loci and 

epistasis integration in GS. Nevertheless, we have a really interesting dataset to start investigation on 

pathways and to support the development of new methods. One of the challenges in this type of work 

is to deal with huge dataset that cannot be processed using R. Thus, we should also pursue a 

development of methods using the C++ coding language. 
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APPLICATIONS IN BREEDING 

 

Impact of past selection  

 

 

Figure 1: Summary of past genetic progresses assessed in Part II. 

 

We have shown that nitrogen (N) use efficiency (NUE) genetic improvement was driven by direct selection 

on grain yield (GY) while maintaining grain protein content (GPC) quite stable. There was no consensus on 

the components of GY increased by selection (grain weight, number of grains per spike or number of 

spikes per area). We were not able to test changes in N uptake (NupE) due to the absence of a sufficient 

genetic variance for this trait with the variance decomposition model of Part II. Thus, NUE was increased 

by a better N partitioning meaning that N utilisation efficiency (NutE) was improved. During the selection 

process, genotypes were tested in numerous experiments where moderate N stresses surely occurred 

leading to improved GY stability hence NUE at low N regimes.  

The impact of this past selection was also highlighted during the genome-wide association study (GWAS). 

Indeed, focusing on varieties released from 2005, we assessed a significant correlation between frequencies 

of alleles having a positive effect on a trait and the genetic correlation between this trait and GY 

(Discussion and Suppl. data 7, Part III). This led to a high median allele frequency of favourable additive 

alleles for traits under this GY-driven selection.  

To conclude on past breeding, three challenges appear: (i) to accelerate the genetic progress by combining 

favourable additive loci regarding their putative epistatic and environmental interactions, (ii) to increase 
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uptake efficiency and (iii) increase protein concentration in low N environments. We provided variances 

decompositions in multi-environmental trials, genetic markers tagging chromosomal regions with additive 

effects and/or interacting with environmental covariates (EC) and/or with other chromosomal regions and 

models for multi-environmental genomic prediction. These are useful tools to face future challenges. 

Nevertheless, these tools should be validated on another dataset such as the dataset generated by the on-

going BreedWheat project, in which 103 varieties are common with our dataset and where similar N 

regimes have been in different site × year combinations. This will be completed in a few months. 

 

Phenotypic selection  

 

In our dataset, we detected significant genotype × environment (G × E) and genotype × N regimes (G × N) 

interactions leading to an indirect selection efficiency of 78.1 % for NUE regardless of the selection type 

(i.e. in high N for low N or in low N for high N; Part II). This confirms previously published works 

(Breeding for NUE, Part I) and leads us to conclude that indirect selection does not overpass direct 

selection. On this basis, we recommend selecting at the targeted N regimes. In a context of fertiliser 

reduction, this targeted N regime is the low N (i.e. in fact, suboptimal in our study). To develop new wheat 

varieties is a long task. Thus, breeders should ideally start to select in low N environment as soon as 

possible. Having said that, indirect selection efficiency for NUE is high. And selecting at high N, they are 

already selecting for low N environment with a relatively good efficiency. However, the reciprocal 

argument can also be used to advocate for selection in low N environment, even if varieties will be 

cultivated at high N.  

Few arguments give sense not to start selection at low N. One of them is that bread-making quality could 

be mis-estimated at low N as protein concentration is significantly decreased. This problem mainly arises 

from the fact that only few breeding programs are selecting for a higher bread-making quality and/or grain 

protein concentration and the majority are selecting for grain yield while maintaining quality.  

Increasing grain protein concentration and bread-making quality at low N is a major constraint on an 

effective N reduction. A combined approach using genetics and agronomy may help to solve this issue. For 

example, we can hypothesize that delaying the last N fertiliser supply (Bogard et al. 2010) or the 

introgression of NAM-A1a in elite germplasm could be a part of the solution.   

An affordable compromise between double trial (high N and low N) and single trial (high N) could be to 

preselect a reduced number of genotypes and to test them also in low N conditions. This type of 

segmentation is already made to assign genotypes to northern or southern France trials regarding their 

precocity. As phenotyping for NUE is more complex, we may use genotypic information. We can imagine 

building a prediction model based on effects detected in genome-wide association studies (GWAS; multi-

environmental and epistatic) to preselect these genotypes or to use genomic selection (GS) methods. Both 

approaches have to be properly compared. Indeed, our results do not permit to directly compare their 

efficiencies. Using GWAS results we explained on average 29.7 % (r = 0.54) of NUE within environment 
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variance with 15 additive SNP. With our GS model using only additive predictor (gi), for new genotypes 

(cross-validation 1), we had a prediction efficiency of r = 0.53. These results can appear similar, but 

explicative and predictive efficiencies cannot be compared. Here again further investigation on an 

independent dataset should be performed. Biogemma has all the dataset to do so.  

Until now, the first thing a breeder should implement is an efficient way to assess the level of N available 

in their trials. In this way, they could at least put their yield measurements in regards to N stresses and 

could start to classify genotypes by N regimes. As previously mentioned in Part II, using control varieties 

for which total N will be assessed could be a cost effective solution. However, a main limitation will be the 

confounding effects of others environmental stresses (e.g. heat and drought stresses).  

 

Changing NUE genetic architecture 

 

Phenotypic selection focused on the final conversion of N into grain and did not enhance all NUE 

components. Major improvement has been made on NutE. Consequently, past and new varieties have 

significantly different NutE genetic values leading to a high NutE genetic variance. In our panel, NutE was 

heritable and powerful QTL detection could be performed providing genetic markers facilitating the 

combination of favourable alleles. In contrast, NupE heritability was low meaning that phenotypic selection 

cannot be performed efficiently. Moreover, for traits with a relative low heritability, we showed that 

GWAS results are rapidly becoming useless to predict environmental values. Finally, breeding for an 

enhanced NutE is easier as it has already been improved. And to enhance NupE seems hardly possible as it 

has been neglected. We seem stuck in the past breeding framework. Something needs to be changed in 

NUE genetic architecture. It could be done by adapting (i) the way we select or (ii) the germplasm that we 

used.  

Concerning the way we select, the challenge is to better balance selection pressure among NUE-related 

traits. We need to counterbalance the impact of the GY-driven selection. Marker-assisted selection (MAS) 

on traits hardly phenotyped and/or with weak heritability may be useful. Pre-anthesis N status (INN_FLO) 

is a good example. Indeed, in Part III, we showed that INN_FLO QTL had major pleiotropic effects on 

NUE-related traits. Thus, we concluded that we should focus on this trait. However, regarding phenotyping 

difficulties and its intermediate heritability of 0.63, we can understand that INN_FLO is not used in 

breeding program. Nevertheless, INN_FLO genetic variance exits. And using the methodology of part II to 

assess past genetic progress, it appears that INN_FLO has never been improved. Among the seven QTL for 

INN_FLO discovered in part III, three were not associated with flowering date. Consequently, MAS for 

enhanced INN_FLO without affecting regional adaptation is possible and should be tested.  

For low heritability traits such as NupE, it is more complex. Indeed, low heritability could result from an 

actual low genetic variance compared to the total phenotypic variance or from weak measurement 

accuracy. Anyway, on this panel, phenotypic selection is nearly impossible with our phenotyping method. 

In contrast, marker-assisted selection can be efficient. In fact, phenotypic and marker-assisted selections act 
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at different scales. Variance on causal genes may exist but the way these causal genes may be combined in 

varieties can result in similar breeding values. First, we should focus on the genetic variance itself and 

dissect its genetic determinism. Then, we will try to combine QTL to increase the part of genetic variance 

on the total phenotypic variance. In this sense, NupE (= NupEMat in part III) additive QTL have been 

detected and tools to combine them in elite lines are available. We assessed a low median allele frequency 

of favourable alleles at these QTL (0.33 in varieties registered after 2005). And the few related varieties 

(Andino, Uski, Premio, Isengrain) with a significant number of NupE favourable alleles had an enhanced 

NUE. Thus, improvement is here again possible and necessary.  

Regarding the germplasm used in selection, the issue is to know if alleles with a major impact on NUE 

could be found in a wider diversity. Introduction of dwarfing alleles (Rht genes) is a good example of 

alleles from an exotic diversity answering to global agronomic issues (e.g. Peng et al. 1999). Indeed, in the 

context of the Green Revolution, demand for high-yielding varieties able to deal with an increased fertiliser 

application was achieved through their introduction.  Coming from a broader diversity, Pch1, an eyespot 

(P. herpotrichoides) resistance gene from Aegilops ventricosa (Mena et al. 1992) commonly used in 

American and European breeding programs, is also a good example. The work-package three of the 

BreedWheat project completely fits in this approach as one of its tasks is to explore a broad genetic 

diversity to bring new favourable alleles in elite germplasms. We could also imagine finding causal genes 

using GWAS-based QTL cloning or transcriptomic analyses. Then, we could screen different germplasms 

(e.g. exotic, mutants, related species) to look for new alleles of these specific genes that could enhance 

NUE-related traits once introgressed in elite germplasm. Transgenesis can also be a way of creating a new 

diversity with major effect adapted to elite germplasm by introgressing genes or alleles that are not present 

in the wheat genome and/or changing regulation of wheat genes.  

To conclude, the impact of the GY-driven selection can be counterbalanced using MAS based on alleles 

coming from elite or more exotic germplasms and affecting neglected NUE-related traits. One of the main 

questions is also to know which traits can be simultaneously increased. Indeed, for example, even if no 

antagonist additive QTL were detected between NutE and NupE; it does not mean that no antagonist 

mechanism exits at all as varieties genetic values for these traits were negatively correlated in our dataset (r 

= -0.32).  

In any case, if MAS has to be performed, we first need to identify causal genes. Thus, questions about 

methods used in gene discovery arise. Our work already provided new insights. Nevertheless, these 

methods can be improved starting with our statistical approaches.   
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IMPROVING METHODOLOGY 

 

Statistical models 

 

The main limitation of our statistical approach is that we did not take into account non-independence of 

factors very well. Indeed, the use of variance-covariance (VCOV) matrices in our statistical models was not 

optimized. In GWAS and MET-GWAS, the same kinship matrix was used whatever the trait studied and 

the SNP tested. Moreover, in genome-wide epistasis detection, we used the same kinship matrix but did not 

add any specific VCOV matrix for SNP × SNP effects. More generally, we did not use any VCOV matrices 

for environments (year × site × N regimes) effects in our multi-environmental models (Part II and IV), 

neither for effects of G × E interactions. 

Regarding VCOV matrix for varieties’ additive effects, recent studied showed that kinship matrices may 

have to be computed regarding causal loci for the studied trait and eliminating SNP in LD with the tested 

one (Listgarten et al. 2014; Rincent et al. 2014; Wang et al. 2014a). Thus, we should improve our GWAS 

models in this sense. In the same way, the use of the Kmodif described in Part IV could be tested to modelise 

VCOV for epistatic effects as it is computed regarding only significantly interacting pairs of SNP. We 

mostly use the ASReml-R package v3.0.1 (Butler et al. 2009) in which several models of VCOV are 

already available (Boer et al. 2007) and can fit more or less hardly. Thus, regarding VCOV matrix for 

environmental effects, these models of VCOV should be tested. We could also imagine directly setting 

VCOV values by computing a VCOV matrix based on environmental covariates. This is actually the kind 

of matrix that we used in the genomic selection models (matrix Ω). Thus, in agreement, [ZgKZg']°Ω could 

be used to modelize the VCOV of the G × E interactions. 

Although for environments, this is much more complex than for varieties. Indeed, to assess varieties 

kinship, we used SNP detected in a broad genetic diversity (90K; Wang et al. 2014b) and SNP developed 

by Biogemma. Added to that, SNP were selected for non-redundancy. Thus, even if 30% of SNP 

(Biogemma SNP) were detected in a more reduced diversity, the bias induced by SNP in the computation 

of kinship matrix may be reduced. In contrast, to quantify environmental stresses, we consciously chose the 

environmental covariates we were interested in. Moreover, the reduced number of environments created 

significant correlations between environmental covariates. Added to that, all environmental covariates were 

used. Consequently, our Ω matrix was biased by the choice we made to focus on some stresses (bias of 

selection) and the number of covariates that we calculated for each stress (bias of redundancy/weight). In 

the same way, Jarquin et al. (2013) did not select environmental covariates to compute Ω, contrary to 

Heslot et al. (2014) who performed a first step of environmental covariates pre-selection. Nevertheless, we 

used environmental covariates based on wheat physiological knowledge covering a wide range of stresses. 

Added to that, this matrix Ω allowed to increase prediction accuracy. Thus, even biased, we can reasonably 

hypothesize that Ω contains useful information that could be used to set environments VCOV values or at 

least VCOV starting values.  
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The use of optimized VCOV matrices will improve, but also complicate, our statistical approaches. In our 

case, the dataset was fixed and computation time was not an issue. Yet in breeding program, dataset are 

much bigger and computation time impacts reactivity above all when genotypes have to be selected in a 

short period [between harvest (mid-July) and sowing (mid-October)]. Our MET-GWAS model took 150 

hours to test the effects of around 25K SNP on 1 trait. The GWAS model for epistasis detection took 10 

days with 50 central processing units to test the effects of around 34K interactions on 1 trait. Thus, 

speeding up analyses may be a useful improvement. Up to now, FaST-LMM-Select (Listgarten et al. 2014) 

appears promising as (i) it solves computational issues (dataset size and computational time); (ii) it can be 

used for epistasis detection; and (iii) it adapts varieties relationship to the trait and chromosomal region 

studied. However, it is not suited for multi-environmental analyses and the way SNP are selected to derive 

a rank-reduced relationship between varieties need to be improved (Wang et al. 2014a).  

More generally, even an improved model has its limitations. A key point may be to understand them to be 

able to combine different statistical approaches and different sources of knowledge.  

 

Gene discovery strategy 

 

Usually, once we have selected an interesting QTL, we densify the chromosomal region using SNP mostly 

developed in genic regions. Then, we declare that the best candidate gene is the one carrying the most 

significant SNP in GWAS. Consequently, regarding the simulation study (Part II and III) in which causal 

SNP were randomly chosen among SNP that did not participate to the panel structuration, this approach 

may be correct in 2/3 of cases. But is this efficiency enough and close to the reality?  

Indeed, precise SNP densification can require intensive bioinformatics and lab work in a non-sequenced 

species such as wheat (e.g. reconstruction of the genomic sequence of the region, SNP detection). 

Moreover, candidate genes may be validated using a genetically modified (GM) approach or used as 

selection tools by breeders. Thus, we cannot be satisfied with a method having an efficiency of 2/3 on such 

a decisive step. Moreover, in our simulation study, we may use two false hypotheses: (i) causal mutation 

did not participate to panel structure and (ii) allelic frequencies in our genotyping dataset were 

representative to allelic frequencies of causal mutations.  

As previously discussed, our GWAS models were not perfect and the way we computed kinship matrix 

influenced SNP significance making results highly dependent of SNP allelic distribution (i.e. frequency and 

repartition among varieties). Thus, if a causal SNP has unbalanced allele frequencies and/or allelic 

distribution among varieties related to the panel structure; we can expect that other SNP (having a more 

homogeneous distribution and a sufficient LD with the causal one) will be more significant in GWAS. In 

agreement to this, preliminary results showed that a causal SNP linked to the panel structure is not the most 

significant SNP in its chromosomal region in 75% of cases. The most significant had a mean LD of r² = 0.7 

with this causal SNP. This situation may be frequent among causal mutations determining our studied 

traits. Indeed, we worked on an historical elite panel of varieties selected for different environment. 
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Consequently, alleles can be specific to a regional adaptation (linked to the panel structure) and/or newly 

introgressed in elite germplasm and/or being eliminated (unbalanced frequency). Allelic distribution of 

causal genes determining traits under selection pressure may be more frequently unbalanced (frequency 

and distribution among varieties) than expected.  

Therefore, further investigations are required, but for traits known to be under selection pressure (e.g. GY, 

NutE), causal mutations may not be randomly distributed along the genome and may be more likely located 

in chromosomal region under selection pressure and/or involved in the panel structuration. Thus, the 

proportion of causal mutations being under significance peak may be even less than the estimated and 

insufficient rate of 2/3. Significance in GWAS should be taken into account but should not be the only 

criterion to choose candidate genes. This choice has to be better thought and should take into account 

results of several GWAS (e.g. additive, interacting with EC, epistatic), linkage disequilibrium, allelic 

distribution and previous knowledge on genes located in the associated regions.  

We may also adapt our choice of candidate genes to its future utilization. Indeed, genes used in MAS and 

in GM approach may be different. In fact, in MAS, the goal is to apply an identified effect on a new 

germplasm. And in GM approach, the goal is to create a new effect in an identified germplasm. Thus, our 

results may be used differently: while the most significant QTN/QTL (additive, interacting with EC and 

other SNP) may be the one that will be used in MAS including GS; they may not be the best choices for 

GM approach. Indeed, effects that we detected directly depend on the phenotypic and genetic diversity. 

Although in GM approach, the goal is to create a new diversity. Nevertheless, knowing that a gene has 

already an effect on a trait, we can hypothesize that changing its expression/regulation will have an effect 

too. However, the detected and the created effects may be unrelated. GM approach often target hub in 

metabolic pathway. In this sense, epistasis network may be a source of information complementary to 

GWAS results. In agreement to this, analyses of SNP network based on epistatic interactions revealed that 

SNP connectivity (number of epistatic interactions) was negatively correlated to the significance of SNP 

additive effect [x = 14.5 - 0.62 × -log(P-value); P < 0.05] and/or to the significance of the SNP × 

environmental covariates interactions [x = 14.5 - 0.68 × -log(P-value) ); P < 0.001]. Thus, hubs in SNP 

epistasis networks have a central role in the traits we studied. However, these hubs would not have been 

found out if epistasis interactions had not been studied (i.e. in GWAS no effects were revealed for SNP 

tagging these hubs). 

Regarding the difficulties linked to the choice of candidate genes, an improvement of our strategy could be 

to reduce QTL size to focus on fewer genes. However, QTL mean size (3.2cM) was already smaller than 

expected from simulation (7.8cM). Increasing the threshold used to declare a SNP-trait association 

significant (QTN) is not a good idea, we showed that increasing the -log(P-value) threshold of QTN 

significance decreases QTL size. But, it also drastically reduced the power of detection, resulting in a 

higher proportion of false positive QTL among all computed QTL. Thus, we need to succeed in decreasing 

QTL size without affecting power of detection. Maybe we can focus on the position of the most significant 

SNP by chromosomal region and then, from this position, we can compute QTL using the local LD decay 
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(Fig. 2). In fact, with the method that we used (Fig. 8, Part III), if we had a long distance LD, the first 

boundaries delimited a long QTL. Then, boundaries were well extended as we took into account this long 

distance LD for a second time. We may over correct for LD. Nevertheless, we should keep in mind that at 

least for 1/3 of positive QTL, the most significant SNP was not the one closest to the causal mutation. 

Thus, we really need to first test the efficiency of this method, after fixing issues linked to our simulation 

study hypothesis.  

 
 

Figure 2: Method that should be tested to define QTL from GWAS result. Step 1: QTN clustering in function of 

LD (r²) (method average, cut-off = 1- critical LD). Step 2: Estimation of LD decay around the most significant QTN. 

Step 3: Creation of QTL boundaries. 

 

Regarding hypothesis made in our QTL definition method, improvement can also be done. Indeed, it is 

mainly based on one parameter: the critical LD that we used to cluster quantitative trait nucleotide (QTN) 

and to assess local LD decay. This parameter was set at the 95
th
 percentile of the unlinked r² (assessed 

between two SNP mapped on different chromosomes). However, selection along with other factors can 

create linkage disequilibrium (LD) between chromosomal regions located on different chromosomes. Thus, 

our estimation of the critical LD is biased. Due to selection, our panel is also not at the drift-recombination 

equilibrium required for the function used to assess LD decay [i.e. curvilinear function proposed by Hill 

and Weir (1998)]. Moreover, for this function, the effective population size was set at the panel size. 

Although, varieties were not totally independent (kinship).  

To conclude on the gene discovery strategy, our work provided new insights and tools to diagnose strategy 

weaknesses. However, improvements can be achieved. Gene discovery strategy needs to be thought in light 

of limitations of GWAS approaches. And choice of candidate genes should be done compiling GWAS 
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results, linkage disequilibrium, allelic distribution, previous knowledge on genes located in the associated 

regions and genes end-uses. However, if we have to combine so many information: which ones should we 

used? How should we prioritize them? What is redundant and what is not? 

 

Complementarity, redundancy, and choice  

 

Combining different criteria to make a choice can be tricky. Indeed, the number of situation to deal with 

rapidly increases with the number of information and their complexities. For example, if we want to base 

the choice of candidate genes on the following four criteria: additive effects, epistatic and environmental 

interactions, and previous knowledge, with only two simple modalities (significant or not) by criterion; we 

will already have to deal with 16 scenarios. And for each scenario, we will have to decide what are the 

further investigations required or the end-use of the candidate genes.  

Concerning our results, we already made some choices on some candidate genes and interesting 

chromosomal regions. However, we need to develop a less subjective approach. The idea is to list all the 

criteria used to identify the different scenarios. And then, we will properly determine the future of results 

fitting in each scenario, taking into account that all information may not carry the same weight in the 

decision.   

This also leads to the need to quantify the part of redundancy and complementarity between information. 

This dilemma can be illustrated by several examples in our work. Colocalisation between our QTL and 

published functional candidate genes can reveal that these candidate genes are also good candidate in our 

germplasm (complementarity). However, in our genotyping dataset, SNP are not homogeneously 

distributed among the genome and chromosomal regions containing published candidate genes contain 

more SNP. However, these regions were purposely densified in SNP by Biogemma. Thus, there is a higher 

probability to identify QTL in these previously published chromosomal regions (redundancy). In our GS 

models, we use SNP tested in a GWAS performed on the same dataset (redundancy). Thus, our results need 

to be validated in another dataset (complementarity). However, if the genetic, phenotypic and 

environmental diversities are completely different we may never succeed. We tested random overlaps of 

information when we tested if QTN colocalisation between traits were significant or not. In the same way, 

we need to develop methods to quantify or test complementarity/redundancy. Descriptive and analytic 

statistic can be used. But, here again, we will have to make some choices. 

We validated some of them by a step of risk assessment such as the threshold used to declare that a SNP-

trait association is significant. Or, we made some of them to simplify the analysis through the use of 

approximation or assumptions such as the use of the function proposed by Hill and Weir (1998) to assess 

the LD decay. Some of them were even less consciously made, such as the use of statistical approaches 

based on the restricted maximum likelihood (REML). In any case, researchers have always made and will 

still make choices. The main issue is to know the different options and their respective consequences.  
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GENERAL CONCLUSION 

 

Table 2: Summary of methods and results. 

 

Analyses Traits Methods Results 

 

Genetic 

progress 

 

17 traits 
 

Use of precocity, quality and height 

as covariates 

Decomposition of the genetic 

progress (G and G × N) 

 

NUE was improved at both HN and LN regimes 

through selection yield leading to an increase N 

partitioning 

GWAS 28 traits Method to define QTL from QTN  

Analyses of colocalisation  

333 QTL with additive effect 

Selection affected QTN distribution 

Pleiotropic effect of INN_FLO QTL 

MET-

GWAS 

NUE Use of precocity and quality as 

covariates 

Test of SNP × EC interactions 

1,240 QTN with additive effect 

1,122 QTN interacting with EC 

NAM-A1  Allelic distribution and 3D 

conformation 

In elite germplasm, the introgression of the 

functional allele of NAM-A1 may improve N 

remobilisation  

Epistatic 

GWAS 

NUE Whole-genome detection combine 

with interactome database  

7,206 SNP involved in  

50,748  epistatic interactions 

A « validated » gene network of epistatic interactions 

involved in wheat NUE 

GS NUE 

NHI 

Use of MET-GWAS in GS 

Effect of SNP pre-selection 

independantly of SNP number  

Using a G-BLUP approach, SNP pre-selection 

increases prediction accuracies in multi-

environments trials 

 

Past breeding effort improved NUE in wheat at both high N and low N regimes. Regarding future 

challenges, LN seems to be the new targeted regimes. However, varieties were mostly selected regarding 

yield and all NUE components were not improved in the same way. Thus, breeding method should be 

adapted to maintain the past breeding effort and re-balance selection pressure among traits. To achieve this 

purpose, the use of phenotypic selection combined with genotypic selection based on our results may be 

useful. With this work, we provided tools to facilitate the transition from a breeding in high N to low N and 

accelerate genetic progresses (Table 2). However, these tools need to be validated in another dataset and 

investigations in a wider genetic diversity must not be neglected (Table 3). 

During this PhD, new methods and new insights in gene discovery strategies were also developed. These 

methods and strategies can still be improved (Table 3) keeping in mind that changes should be tested to 

properly assess their impact along the entire pipeline of analyses: from QTN detection to candidate gene 

identification.  The main conclusion of our methodological work is that several sources of information 

should be used to choose candidate genes. QTN significance should not be the only one and a lot of 

information has to be cross-referenced. Now, the main issue is to clearly determine how these data should 

be combined.  
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Table 3: Summary of improvements and further investigations 

 

In ? What ? How ? 

Breeding  

Select in low N Increase GPC  

Assess N availability in breeders trials Assess NTAmax on control varieties 

Balance selection pressure among NUE-related 

traits 
Mix phenotypic and marker-assisted selections 

Study a wider genetic diversity BreedWheat WP2 

Statistical 

methods 

Validate GWAS results 
Use of the BreedWheat dataset 

Compare QTL and GS approaches 

Integrate VCOV matrix in statistical models Test of Kmodif , Ω and [ZgKZg']°Ω 

Speed up GWAS analyses Review of package and software available 

Gene discovery 
Decrease QTL size Test new QTL definition methods 

Rationalize candidate gene choice List criteria and establish a decision tree 
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SUPPORTING INFORMATION ON PART II 

[Supplemetary data of Cormier et al. (2013) (2013) A multi-environmental study of recent breeding 

progress on nitrogen use efficiency in wheat (Triticum eastivum L.). Theor Appl Genet 126:3035–

3048] 

 

Supplementary data 1: Trials descriptions: locations (A), treatments (B) and fertilisations (C) 

 

A) 
 VB08 VR09 EM08 EM09 

Year 2008 2009 2008 2009 

City Villiers-le- Bacle Vraux Estrées-Mons 

Latitude (°N) 48.72 49.02 49.88 
Longitude (°E) 2.17 4.23 3.04 

Elevation (m) 200 85 85 

Previous crop Rapeseed Oats 

Sowing date 17/10/2007 23/10/2008 22/10/2007 23/10/2008 

Harvest date 24/07/2008 06/08/2009 30/07/2008 03/08/2009 

Plot size (m²) 10 6.5 
Sowing density (grains m-2) 250 320 240 

Clay (%) 25 45 16.6 15.2 

Loam (%) 70 55 75.5 72.4 
Sand (%) 5 0 7.9 11.7 

Rain during crop cycle (mm) 487 525 493 390 

 

 

B) 
  VB08 VR09 EM08 EM09 

Treatment type 1 Anti-Slug Herbicide Anti-Slug Herbicide 
Treatment name 1 TDS premium first Extralugex 5R Defi 

Treatment dose 1 3.0 kg ha-1 0.8 l ha-1 4 kg ha-1 4.25 l ha-1 

Treatment date 1 31/10/2007 19/11/2008 23/10/2007 24/10/2008 
Treatment type 2 Herbicide Herbicide Herbicide Herbicide 

Treatment name 2 Quartz  GT Atlantis Defi Gratil + Allié 

Treatment dose 2 2.2 l ha-1 300 g ha-1 5 l ha-1 36 g ha-1 + 30 g ha-1 
Treatment date 2 22/01/2008 14/04/2009 25/10/2008 02/04/2009 

Treatment type 3 Fongicide Growth regulator Growth regulator Growth regulator 

Treatment name 3 Opus Stabilan Mondium Mondium 
Treatment dose 3 0.5 l ha-1 2 l ha-1 2.5 l ha-1 2.5 l ha-1 

Treatment date 3 18/03/2008 10/04/2009 31/03/2008 14/04/2008 

Treatment type 4 Fongicide Growth regulator Herbicide Fungicide 
Treatment name 4 Unix Moddus Gratil + Allié Unix + Opus 

Treatment dose 4 0.8 kg ha-1 0.2 l ha-1 22 g ha-1 + 22 g ha-1 0.8 kg ha-1 + 0.5 l ha-1 

Treatment date 4 18/03/2008 24/04/2009 03/04/2008 22/04/2009 
Treatment type 5 Herbicide Fongicide Fungicide Fungicide 

Treatment name 5 Atlantis WG Flexity Unix + Opus Joao + Twist 500sc 

Treatment dose 5 0.26 kg ha-1 0.4 l ha-1 0.8 kg ha-1 + 0.6 l ha-1 0.8 l ha-1+ 0.2 l ha-1 
Treatment date 5 04/04/2008 24/04/2009 04/04/2008 19/05/2009 

Treatment type 6 Growth regulator Fongicide Fungicide Fungicide 

Treatment name 6 Moddus Opus Joao + Twist 500sc Caramba 
Treatment dose 6 0.5 l ha-1 0.5 l ha-1 0.8 l ha-1 + 0.2 l ha-1 1.1 l ha-1 

Treatment date 6 25/04/2008 24/04/2009 05/05/2009 12/06/2009 

Treatment type 7 Fongicide Fongicide Fungicide Insecticide 
Treatment name 7 Virtuose+Joao Bravo 500 Caramba Karaté K 

Treatment dose 7 0.4 l ha-1 1 l ha-1 1.4 l ha-1 1 l ha-1 

Treatment date 7 25/04/2008 13/05/2009 30/05/2008 29/06/2009 
Treatment type 8 Fongicide Fongicide Insecticide  

Treatment name 8 Amistar Menara Karaté K  

Treatment dose 8 0.5 l ha-1 0.5 l ha-1 1 l ha-1  
Treatment date 8 30/05/2008 13/05/2009 12/06/2008  

Treatment type 9 Fongicide Fongicide      
Treatment name 9 Caramba  Star  GC Epopée      

Treatment dose 9 0.5 l ha-1 0.9 l ha-1      

Treatment date 9 30/05/2008 03/06/2009      
Treatment type 10   Insecticide      

Treatment name 10   Karaté Zéon      

Treatment dose 10   0.08 l ha-1      
Treatment date 10   28/05/2009      
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C)  
 VB08 VR09 EM08 EM09 

 HN LN HN LN HN LN HN LN 

Soil residual N date 11/02/2008 20/02/2009 15/02/2007 07/02/2008 

Soil residual N (kg N ha-1) 106 106 30 30 67 67 30 30 

N fertilisation date 1 28/03/2008 24/02/2009 06/03/2008 16/03/2009 
N fertilisation rate 1 (kg N ha-1) 66.5 44 60 60 50  50 0 

N fertilisation date 2 23/04/2008 26/03/2009 26/03/2008 21/04/2009 

N fertilisation rate 2 (kg N ha-1) 60 0 100 60 70 70 50 50 
N fertilisation date 3  18/05/2009 28/04/2008 30/04/2009 

N fertilisation rate 3 (kg N ha-1)   60 0,00 50 0 50 0 

Estimation of %N_S DUMAS DUMAS NIRS NIRS 
Estimation of GPC NIRS NIRS NIRS NIRS 
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Supplementary data 2: Year of release (YR), quality, mean height (PH) and precocity (FLO) of 

wheat varieties tested. Quality grade are the common breadmaking classes used by the National 

Association of French Millers: BAF, very high quality; BPS, high quality, BP, good quality, BA, 

biscuit quality, and BAU, other use. PH and FLO are varieties genetic BLUEs. Precocity is 

characterized by the day of flowering (GS65, anthesis half way) after the 1st January. PH are in cm. 

YR comes from the French) and the European catalogue of agriculture species.  

 

Variety YR Quality FLO PH Variety YR Quality FLO PH Variety YR Quality FLO PH 

ACCOR 2007 BPS 132 81 CRAKLIN 1998 BB 136 80 ORQUAL 1991 BPS 139 74 
ACIENDA 2004 BPS 135 73 CROUSTY 1995 BB 140 94 ORVANTIS 2000 BPS 140 80 

ACIENTO 2007 BPS 138 76 DIALOG 2008 BP 141 79 PACTOLE 1987 BPS 139 88 

ACONEL 2007  143 85 DINOSOR 2005 BPS 141 75 PAINDOR 1996 BPS 145 73 
ADEQUAT 2006 BPS 148 80 DSV_50115   148 76 PAJERO 1995 BP 142 101 

ADONIS 2007  147 80 DUXFORD 2006 BPS 147 76 PALADAIN 2006 BPS 142 77 

AGRESTIS 2002 BP 146 80 EINSTEIN 2002 BPS 144 74 PALEDOR 2005 BB 136 82 
AGUILA 2005 BP 136 73 EM07162   139 85 PARADOR 2000 BPS 146 82 

ALCAZAR 2004 BP 145 77 EMERALD 2007 BPS 145 75 PAROLI 2004 BPS 146 87 

ALDRIC 2007 BPS 137 85 ENESCO 1996 BPS 132 72 PEPIDOR 2007 BP 143 89 
ALEZAN 2007 BPS 138 74 EPHOROS 2004 BP 144 98 PERFECTOR 2004 BPS 145 79 

ALFA 2008  149 86 EPIDOC 2006 BPS 135 77 PERICLES 2005 BAU 143 78 

ALIGATOR 2010 BPS 136 77 EQUILIBRE 2003 BPS 139 83 PHARE 2008 BPS 143 74 
ALIXAN 2005 BPS 137 77 ESPERIA 2002 BAF 132 81 PIKO 1994  150 89 

ALLISTER 2003 BP 140 79 ESTICA 1991 BAU 148 87 POTENZIAL 2006 BPS 146 84 

ALTIGO 2007 BP 138 82 ETECHO 1994 BP 134 80 PR22R20 2002 BPS 146 75 
ALTRIA 1996 BAU 135 83 EUCLIDE 2007 BPS 136 81 PR22R28 2000 BP 143 78 

AMBITION 2005 BAU 149 83 EVEIL 2003 BPS 137 73 PR22R58 2002 BPS 134 73 

AMERIGO 2002 BPS 138 82 EXELCIOR 2007 BPS 136 80 PREMIO 2007 BPS 138 77 
AMUNDSEN 2008 BP 148 77 EXOTIC 2005 BP 135 78 QUALITY 2002 BAF 134 67 

ANDALOU 2002 BP 135 77 EXPERT 2007 BP 144 81 QUATUOR 2002 BPS 137 66 

ANDINO 2007 BPS 135 78 FARANDOLE 1999 BP 139 78 RAISON 2006 BP 147 78 
ANTILLE 2006  136 81 FIORENZO 2002  133 67 RASPAIL 2002 BPS 147 80 

ANTONIUS 2006 BAF 144 101 FIORETTO 2008 BPS 136 83 RECITAL 1986 BPS 133 79 

APACHE 1998 BPS 137 77 FLAIR 1996 BAU 147 93 RENAN 1989 BAF 140 88 

ARACK 2006 BPS 141 75 FORBAN 2002 BP 145 81 RESSOR 2004 BB 137 76 

ARCHE 1989 BAU 139 80 FRELON 2001 BP 139 81 RICHEPAIN 2006 BPS 140 73 
AREZZO 2008 BPS 136 81 GALACTIC 2007 BAU 137 71 RITMO 2004 BAU 148 81 

ARLEQUIN 2007 BPS 137 80 GALIBIER 1992 BAF 133 90 ROBIGUS 2002 BAU 147 76 

ASTRAKAN 2003 BPS 139 78 GARANTUS 2007 BP 147 83 RODRIGO 2006 BPS 134 73 
ASTUCE 2004 BPS 146 84 GARCIA 2006 BP 134 78 ROSARIO 2004 BP 147 78 

ATTLASS 2004 BP 142 87 GLASGOW 2003 BB 145 72 ROYSSAC 2002 BPS 135 77 

AUBUSSON 2002 BPS 136 76 GRAINDOR 2006 BPS 135 87 RUBENS 1995 BP 140 89 
AUDI 2005  148 83 GRETHEL 2008 BP 136 76 RUNAL 1998 BAF 142 85 

AURELE 2003 BPS 147 78 GUADALUPE 1997 BPS 133 80 RUSTIC 2005 BP 137 77 

AUTAN 2001 BPS 134 70 GUARNI 2004  134 79 SAMURAI 2005 BAU 147 80 
AUTENTIC 2007 BPS 145 76 GULLIVER 2005 BPS 147 77 SANKARA 2004 BPS 142 77 

AVANTAGE 2005 BP 145 93 HARDI 1969 BPS 143 93 SATURNUS 2001 BAF 143 96 

AXIMACK 2007 BPS 146 80 HATTRICK 2001 BP 146 83 SCIPION 1982 BP 137 77 
AZIMUT 2004 BPS 136 77 HAUSSMANN 2006 BPS 146 82 SEBASTO 2007  141 75 

AZTEC 1994 BPS 136 76 HYPERION 2005  149 72 SELEKT 2007 BPS 144 85 

AZZURO 2006 BPS 141 83 INCISIF 2005 BPS 145 81 SEYRAC 2006 BPS 147 80 
BAGOU 2007 BB 139 76 INOUI 2004 BP 136 71 SHANGO 1994 BPS 147 85 

BASTIDE 2003 BPS 136 78 INSPIRATION 2006 BP 147 87 SIGNAL   144 95 

BATTANT 2006 BAU 146 85 INSTINCT 2006 BPS 138 77 SIRTAKI 2007 BPS 135 74 
BERMUDE 2007 BPS 141 83 INTERET 2008 BPS 144 89 SISLEY 1998 BP 139 77 

BISCAY 2000 BAU 147 77 IRIDIUM 2007 BPS 142 82 SOCCER   145 85 

BOISSEAU 2007 BP 143 78 ISENGRAIN 1997 BPS 137 78 SOGOOD 2006 BPS 145 80 
BOKARO 2003  134 77 ISIDOR 2002 BP 134 77 SOISSONS 1988 BPS 135 79 

BOLOGNA 2002 BAF 134 76 ISTABRAQ 2003 BAU 146 82 SOLLARIO 2007 BPS 135 78 

BOREGAR 2008 BPS 139 78 JB_ASANO 2008 BPS 144 88 SOLUTION 2007 BP 143 79 
BOSTON 2001 BAU 144 78 KALANGO 2002 BPS 134 73 SOPHYTRA 2007 BP 146 87 

BOTTICELLI 2004  134 81 KORELI 2007 BPS 142 86 SPECTRO 2007  144 85 

BUENNO 2008 BP 135 82 LANCELOT 2002 BPS 147 78 SPONSOR 1995 BP 144 91 
CABELLO 2007  141 85 LEU_88-02-1   144 84 TALDOR 1997 BPS 135 80 

CALISTO 2002 BPS 139 78 LIMES 2002 BP 146 87 TAMARO 1997 BAF 145 81 

CAMP_REMY 1980 BPS 141 87 LONA 1997 BAF 137 92 TAPIDOR 2002 BAU 138 83 
CAMPARI 2003 BAU 148 79 MANAGER 2006 BP 148 92 TEXEL 1992 BP 139 83 

CAMPERO 2006 BPS 138 81 MARKSMAN 2006  143 75 TIAGO 2008 BPS 138 82 

CAPHORN 2001 BPS 140 74 MAXWELL 2007 BAU 141 77 TIFOSO 2008  136 70 
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CAPNOR 2001 BP 144 81 MELKIOR 2004 BPS 143 81 TIMBER 2005 BP 143 78 

CAPO 1997 BAF 144 110 MENDEL 2004 BPS 138 78 TOGANO 2004 BAF 144 89 

CARIBOU 2006 BPS 143 77 MENESTREL 2007 BPS 137 79 TOISONDOR 2004 BP 142 70 
CARNAVAL   136 73 MERCATO 2005 BPS 137 75 TOREADOR 2002 BPS 145 83 

CCB_INGENIO 2006 BPS 133 81 MESSAGER 1994 BAU 138 86 TREMIE 1992 BAU 136 81 

CEZANNE 1998 BPS 136 85 MESSIDOR 2007 BP 137 77 TROCADERO 2002 BP 132 84 
CHAGALL 2004 BP 144 78 MH_05-32   138 80 USKI 2009 BAU 137 80 

CHARGER 1997 BPS 142 76 MINOTOR 2007 BPS 141 75 VALODOR 2007 BPS 135 81 

CHEVALIER 2006 BPS 146 84 NIRVANA 2001 BPS 140 74 VANTORIS 2007  138 75 
CIGALO 2007  137 70 NUAGE 2006 BPS 142 78 VERLAINE 2007 BPS 144 78 

CLAIRE 1997 BAU 147 79 OAKLEY 2006 BAU 146 73 VISCOUNT 2007 BAU 147 72 

CM2713   145 80 OCTET 2007 BPS 136 76 VM9601   146 85 
COMODOR 2008 BPS 142 83 OEDIPE 2007 BP 141 83 WALDORF 2006  147 80 

COPERNICO 2004  133 73 ORATORIO 1996 BP 138 80      

CORDIALE 2005 BPS 141 72 ORNICAR 1997 BB 140 79      
CORVUS 2000 BP 146 88 ORPIC 1998 BPS 136 82      
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Supplementary data 3: Phenotypic traits descriptions  

 

Trait Description Formula Units 

FLO anthesis date  days (after 1st January) 

PH plant height  cm 

ADM_S straw dry matter at maturity  kg ha
-1

 

%N_S straw N content at maturity  % 

SA spike per area  nb spike m
-2

 

TKW 1000-kernel weigth  g 

GY dry matter grain yield  kg ha
-1

 

GPC grain protein concentration  % 

NSA straw N per area ADM_S × %N_S kg ha
-1

 

KS kernel per spike GY / (TKW × SA) nb kernel per spike 

GNY grain N yield GPC / 5,7 × GY kg ha
-1

 

NTA total N per area NSA + GNY kg ha
-1

 

HI harvest index GY / (GY+ADM_S) % 

NHI N harvest index GNY / NTA % 

NupE uptake efficiency at maturity NTA / NTAmax % 

NutE utilisation efficiency GY / NTA kg DM kg
-1

 N 

NUE N use efficiency GY / NTAmax  kg DM kg
-1

 N 

GPD grain protein deviation 

GPC - a × GY -b  

(a and b are trial properties) % of protein 

NutE_Prot N utilisation efficiency to protein GPC / NTA % protein kg
-1

 N ha
-1

 

NUE_Prot N use efficiency to protein  GPC / NTAmax % protein kg
-1

 N ha
-1
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Supplementary data 4: Heritabilities at HN and LN, genetic correlations RG(HN_LN) between HN 

and LN trials, and indirect selection efficiencies (ISE). ISE is computed as the efficiency of 

selecting in HN treatments to LN treatments (hgHN/ hgLN × RG(HN_LN)). Generalized heritabilities 

(h²g) are calculated according to Cullis et al. (2006). varG and varε are respectively genetic and 

residual components of variances. Indirect selection is only efficient if the heritability is higher in the 

selecting environment than in the targeted one and exceeds the genetic correlation between these two 

environments. In this study that is never the case, and so indirect selection is never more efficient than 

direct selection. We conclude to direct selection at LN input is more efficient to target LN 

environments. 

 

Trait 
HN LN 

RG(HN_LN) ISE 
h²g varG varε h²g varG varε 

FLO 0.96 21.21 2.41 0.96 22.10 2.97 0.99 0.99 

PH 0.88 35.05 11.21 0.86 31.06 13.60 0.93 0.94 

SA 0.70 1836.47 1961.43 0.74 1431.98 1418.04 0.71 0.69 

ADM_S 0.70 3.44×10
5
 4. 64×10

5
 0.67 2.15×10

5
 3.54×10

5
 0.76 0.78 

%N_S 0.58 1.88×10
-3

 4.65×10
-3

 0.64 1.03×10
-3

 1.94×10
-3

 0.67 0.63 

GY 0.78 3.06×10
5
 2.79×10

5
 0.74 1.85×10

5
 2.11×10

5
 0.86 0.88 

GPC 0.82 0.80 0.55 0.82 0.57 0.40 0.91 0.92 

TKW 0.89 9.79 3.87 0.91 8.63 2.54 0.95 0.94 

GNY 0.31 22.83 175.64 0.19 5.00 74.54 0.48 0.61 

HI 0.69 3.91 5.74 0.76 4.83 4.84 0.84 0.80 

NHI 0.41 1.42 6.85 0.39 1.03 5.53 0.49 0.51 

NutE 0.75 8.19 8.71 0.75 20.85 22.39 0.86 0.86 

GPD 0.62 0.23 0.46 0.63 0.19 0.37 0.73 0.72 

NutE_Prot 0.78 2.30×10
-5

 2.10×10
-5

 0.76 3.06×10
-5

 3.15×10
-5

 0.81 0.82 

NupE 0.18 3.26×10
-4

 5.23×10
-3

 0.18 3.33×10
-4

 5.24×10
-3

 0.26 0.25 

NUE 0.74 5.53 6.32 0.74 8.40 9.83 0.78 0.78 

NUE_Prot 0.76 1.18×10
-5

 1.16×10
-5

 0.81 2.42×10
-5

 1.78×10
-5

 0.88 0.86 
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Supplementary data 5: YR and Quality classes of 195 wheat varieties: Least Significant 

Difference (LSD) tests were performed to test whether the quality classes had different registration 

means using the “agricolae” package in R. Means with the same letter are not significantly different 

(P=0.05). 

 

Quality classes YR means GPC 

High quality 2003 a 9.95 b 

Good quality 2003 a 9.81 b 

Biscuit quality 2001 ab 9.79 b 

Other uses 2001 ab 9.20 c 

Very high quality 1999 b 12.11 a 

 

 

Supplementary data 6: Precocity and origin of varieties used in this study. Precocity are 

calculated and centred as the days of flowering, once quality and height effects were removed. Origins 

are not homogeneously distributed among year of registration and are linked to precocity as wheat 

precocity conditions regional adaptation.   
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Supplementary data 7: Reduced height (Rht-1) gene frequencies in combination and effect on NUE. 

Rht-B1 and Rht-D1 genotyping data were available for 170 varieties out of the 195 used in the genetic 

progress study. The only Rht-B1b/Rht-D1b (double dwarf) cultivar was Courtot, but as it was registered 

before 1985 it was not included in the analyses. It resulted that only three Rht-1 allelic combinations were 

present in our dataset. A) Rht genes combinations description. Taller varieties are older. The three 

combinations have been used in breeding at different periods. B) Effect of combinations to NUE additive 

genetic effect. These combinations had no effect on NUE additive genetic value when quality and 

precocity were already taken into account. C) Decomposition of GxN interaction to NUE by ANOVA. 

The Rht gene combination effect is confounded with the YR effect but explained more of the GxN 

interactions. Rht-D1b allele had the smallest GxN interaction to NUE at HN. D) Boxplot of GxN 

interaction to NUE at HN for varieties registered in 2007 (8 Rht-B1b and 19 Rht-D1b). Difference 

was significant between Rht-B1b and Rht-D1b. Rht-D1b allele is indeed linked with the fact that recent 

varieties have GxN interactions which decrease their NUE at HN, and so increase their yield stability. 

 

 

A) 

Rht 

combinations 

Number 

of 

varieties 

Year of 

registration
1
 

Plant 

height 

(cm)
1
 

Rht-B1a/Rht-D1a (wild type) 20 1997 a 88.75 a 

Rht-B1b/Rht-D1a (Rht1 type) 31 2001 b 79.39 b 

Rht-B1a/Rht-D1b (Rht2 type) 119 2003 c 78.71 b 

 

1. Tukey’s test (P=0.05); means followed by a different letter are significantly different.  

 

 

 

 

B) 

 

 Adjusted r² (%) Quality
1
 Precocity

1
 YR

1
 

Rht 

Combinations
1
 

With YR 62.4 45*** 13*** 5*** - 

With Rht-1 genes 57.6 45*** 13*** - 1 ns. 

 

1. Percentage of the variance explained by factors/variable (%) 

Fischer tests: ***, P-value <0.001; **, P-value <0.01; *, P-value <0.05 and ns., non-significant P-value>0.05 
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C)  

 

 
Adjusted r² (%) Quality1 YR

1
 

Rht 

Combinations
1
 

With YR 3.9 6.01* 1.97* - 

With Rht -1 genes 6.6 6.01* - 3.90* 
 

1. Percentage of the variance explained by factors/variable (%) 

Fischer tests: ***, P-value <0.001; **, P-value <0.01; *, P-value <0.05 and ns., non-significant P-value>0.05 

 

 

 

D) 
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SUPPORTING INFORMATION ON PART III 

[Supplementary data of Cormier et al. (2014) A genome-wide identification of chromosomal regions 

determining nitrogen use efficiency components in wheat (Triticum aestivum L.). Theor Appl Genet 

127:2679-2693 and Cormier et al. (2015) Detection of natural variants of NAM-A1 in bread wheat. 

Submitted to Agronomy] 

 

Supplementary data 1: Description of the experimental design where wheat genotypes were 

evaluated at high N level and low N level (from Cormier et al. 2013). NTAmax corresponds to the 95
th
 

percentile of total nitrogen per area at maturity for all the genotypes present in the trial and is an estimate of 

N available (soil + fertiliser N). 

 

Site x 

Season Season Location 

Soil 

type 

Genotypes 

tested 

Residual 

soil N 

(kg N ha-1) 

N supply
 1 

(kg N ha-1) 

NTAmax 

(kg N ha-1) 

HN LN HN LN 

EM08 07/08 Estrées-Mons 

(49.8N,3.03E) 

Clay 

loam 

206* 67 50+70+50 0+70+0 206 144 

EM09 08/09 208* 30 50+50+50 0+50+0 241 111 

VB08 

07/08 

Villiers le 

Bacle 

(48.7N,2.1E) 

Clay 

loam 
197 106 0+66.5+60 0+44+0 242 157 

VR09 
08/09 

Vraux 

(49.0N,4.2E) 

White 

Chalk 
196 30 60+100+60 60+60+0 236 173 

 

1. Nsupply: fertiliser supply at end of winter + at Z30 + at Z32. 

      *controls: Apache, Orvantis, Caphorn, and Soissons (2007/08) or Premio (2008/09)  
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Supplementary data 2: How did we define QTL from GWAS results? (A) Description of the method 

used to define QTL from GWAS results. The first step is based on LD between QTN (LD). A clustering 

by average distance between QTN was made with a cut-off = 1- “critical LD”. The second (LD2) aimed to 

extend the first boundaries to take into account a possible LD with the causal mutation at the first 

boundaries. (B) Influence of the extension of QTL boundaries (LD2) on the relation between locus 

heritability and power of detection in the association panel at a LOD score threshold of 3 (left) and 6 

(right) for three narrow-sense heritabilities. Power simulations were conducted as described in Mat & 

Meth. At a LOD score threshold of 3, the power increase average 4% when QTL were extended by using 

the LD2 steps and QTL size increase averaged 1.7 cM. (C) Evolution of the false positive rate in 

function of locus and trait heritabilities, and LOD score threshold. The false positive rate is defined as 

the proportion of chromosomal region which were defined but did not contain the causal mutation. QTL 

boundaries were computed following the two steps previously described (Supp data 1A). Power 

simulations were conducted as described in Mat & Meth section “Phenotype simulation and power”. (D) 

Influence of the extension of QTL boundaries (LD2) on false positive rate at a LOD score threshold 

of 3. The false positive rate is defined as the proportion of chromosomal regions which were defined but 

did not contain the causal mutation. Power simulations were conducted as described in Mat & Meth section 

“Phenotype simulation and power”. 

 

A)

 
                     LD2                        LD 
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B)  

 

 

 

C)  
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D) 
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Supplementary data 3: Description of QTL. Minor allele frequency (MAF) and effect are the mean of 

significant SNP (QTN) within a QTL. LOD and r² are the max on significant SNP within a QTL. QTL 

boundaries are described by the closest markers on each side with a previously published map location.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Trait QTL_name MAF Effect LOD r² ch From To Boundaries 

NUE NUE8 0.11 1.07 3.58 0.12 ch1a 0.00 25.37 GDM33-FBA393 

NutE_Prot NutE_Prot12 0.11 0.00 3.93 0.14 ch1a 0.00 25.37 GDM33-FBA393 

HI HI9 0.35 -0.65 3.26 0.02 ch1a 49.55 50.47 CFD65-GPW3083 

EFFG EFFG10 0.38 1.58 3.60 0.06 ch1a 55.79 56.25 BCD808A-WMC11 

NHI NHI11 0.20 -0.46 3.15 0.04 ch1a 55.79 56.25 BCD808A-WMC11 

EFFREMN EFFREMN8 0.10 1.06 3.44 0.06 ch1a 61.13 62.36 WPT-9757-BCD808B 

ADM_FLO ADM_FLO9 0.06 -339.27 3.17 0.07 ch1a 77.83 79.71 EDM80-GWM497 

FLO FLO16 0.09 1.77 3.48 0.10 ch1a 77.87 81.58 EDM80-WPT4658 

EFFG EFFG2 0.37 -1.53 3.04 0.06 ch1a 92.50 93.12 WPT1770-MWG632 

%N_S %N_S2 0.14 -0.02 6.35 0.21 ch1b 2.92 16.91 MGL77-WPT2230 

NHI NHI3 0.13 0.57 3.54 0.11 ch1b 3.54 16.48 KSUD14-FBA199 

EFFREMN EFFREMN4 0.11 1.00 3.39 0.07 ch1b 6.87 10.04 STM542ACAG-TPT5249 

ADM_S ADM_S5 0.21 195.66 3.95 0.11 ch1b 7.13 8.23 WPT3465-WPT1972 

GNY GNY4 0.08 2.78 3.75 0.06 ch1b 8.69 30.58 WPT1972-WMC419 

REMN REMN3 0.11 3.80 3.92 0.04 ch1b 8.69 10.04 WPT1972-TPT5249 

ABSN ABSN6 0.12 3.29 3.57 0.07 ch1b 17.90 28.88 KSUF43B-WPT0697 

ADM_S ADM_S8 0.12 -235.10 3.01 0.08 ch1b 17.90 18.58 KSUF43B-GWM264D 

EFFG EFFG9 0.11 -2.52 4.78 0.09 ch1b 17.90 28.88 KSUF43B-WPT0697 

INN_FLO INN_FLO5 0.19 -0.01 3.21 0.13 ch1b 17.90 18.58 KSUF43B-GWM264D 

NHI NHI7 0.24 0.44 3.68 0.08 ch1b 17.90 18.58 KSUF43B-GWM264D 

REMN REMN6 0.15 -3.01 3.47 0.07 ch1b 17.90 18.58 KSUF43B-GWM264D 

%N_S %N_S19 0.21 -0.01 3.97 0.11 ch1b 17.90 18.58 KSUF43B-GWM264D 

EFFREMN EFFREMN10 0.07 -1.20 3.59 0.09 ch1b 27.41 29.67 GPW4069-WMC500B 

NTA NTA3 0.07 3.18 3.18 0.04 ch1b 28.89 31.18 WPT0697-BCD1124 

NupEMat NupEMat6 0.07 0.02 3.20 0.05 ch1b 28.89 31.18 WPT0697-BCD1124 

TKW TKW4_9 0.09 -1.62 3.46 0.09 ch1b 29.42 40.06 WMC500B-CFD48 

%N_S %N_S4 0.08 0.02 4.17 0.08 ch1b 37.23 38.82 KU136-WPT5485 

NSA NSA1 0.06 1.54 3.16 0.05 ch1b 38.60 38.78 WPT1399-WPT5485 

PH PH14 0.10 2.19 3.39 0.05 ch1b 44.17 44.31 WPT0202-WPT0506 

TKW TKW5 0.41 0.28 3.50 0.09 ch1b 44.37 44.78 WPT0506-WPT0419 

NupEMat NupEMat5 0.45 -0.01 3.42 0.02 ch1b 59.79 60.71 DUPW214B-WMC430 

HI HI2 0.41 0.58 3.19 0.03 ch1b 88.55 88.74 GWM259C-WPT5164 

ABSN ABSN11 0.44 2.11 3.10 0.04 ch1b 91.67 91.85 WPT3950-CDO346 

REMN REMN12 0.44 -2.17 3.23 0.05 ch1b 91.67 91.85 WPT3950-CDO346 

DMGY DMGY9 0.05 252.67 3.14 0.07 ch1b 92.12 92.30 CDO346-CDO346 

GNY GNY8 0.32 1.55 3.28 0.07 ch1b 93.30 93.46 WPT1973-WPT1973 

GNY GNY6 0.14 -2.47 3.19 0.08 ch1b 94.28 94.43 KSUI27B-WPT3177 

ADM_FLO ADM_FLO8 0.15 -239.78 3.37 0.10 ch1d 51.24 56.66 WPT665814-WPT6316 

GNY GNY7 0.16 -2.25 4.42 0.10 ch1d 64.01 89.59 WPT8854-GPW300 

NTA NTA7 0.16 -2.61 4.32 0.11 ch1d 64.01 89.59 WPT8854-GPW300 

NupEMat NupEMat8 0.18 -0.01 3.57 0.09 ch1d 64.01 89.59 WPT8854-GPW300 

GNY GNY2 0.43 -1.78 5.29 0.14 ch2a 52.11 62.35 WMC326-GPW5257 

FLO FLO15 0.31 1.16 3.50 0.00 ch2a 54.26 57.04 CDO1090-GWM614 

NTA NTA2 0.44 -2.00 3.84 0.09 ch2a 54.68 58.95 GWM400-MRGA2 

NupEMat NupEMat3 0.44 -0.01 3.82 0.09 ch2a 54.68 58.95 GWM400-MRGA2 

GPD GPD2 0.45 -0.15 3.04 0.02 ch2a 56.17 58.95 GWM636-MRGA2 

GPD GPD6 0.33 0.12 3.06 0.06 ch2a 65.66 68.44 PSR332-WMC177 

%N_S %N_S21 0.16 0.02 3.00 0.10 ch2a 94.62 96.38 WMC522-WPT5251 

%N_S %N_S20 0.38 -0.01 3.01 0.11 ch2a 98.99 100.54 CFD55-GWM71D 

NSA NSA4 0.25 -1.19 3.73 0.02 ch2a 107.22 108.93 BQ161439-FBB353 

%N_S %N_S12 0.36 0.01 3.58 0.05 ch2a 120.19 120.82 GWM294-BCD1095 

HI HI16 0.49 0.18 3.40 0.04 ch2a 125.88 126.38 WMC261B-WPT1913 

NupEFlo NupEFlo2 0.42 -0.01 3.28 0.07 ch2a 139.35 140.35 WMC181C-WPT8326 

ABSN ABSN13 0.45 2.26 3.93 0.07 ch2a 140.05 142.22 WMC181C-WPT8326 

EFFG EFFG18 0.45 -1.62 3.62 0.07 ch2a 140.05 142.22 WMC181C-WPT8326 

HI HI17 0.29 -0.63 3.22 0.05 ch2a 174.26 176.47 CDO1410-BARC122 

EFFG EFFG8 0.08 -2.85 3.36 0.06 ch2a 203.71 204.02 WPT9302-WPT9302 

NHI NHI1 0.14 0.50 3.16 0.02 ch2a 206.68 208.11 WPT9302-WPT9302 
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Supplementary data 3 – continued 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Trait QTL_name MAF Effect LOD r² ch From To Boundaries 

NSA NSA5 0.44 -0.01 3.07 0.06 ch2b 5.16 6.13 WMC661-WMC154A 

INN_FLO INN_FLO1 0.20 0.02 3.99 0.10 ch2b 8.01 8.99 WPT9859-WPT8970 

NFA NFA1_3 0.22 -2.56 3.30 0.06 ch2b 8.01 9.71 WPT9859-WPT8970 

%N_FLO %N_FLO2 0.24 0.03 4.28 0.10 ch2b 8.01 8.99 WPT9859-WPT8970 

ABSN ABSN5 0.23 2.54 3.59 0.05 ch2b 8.81 9.62 WPT8970-WPT8970 

DMGY DMGY7 0.06 -267.93 3.34 0.01 ch2b 8.81 9.62 WPT8970-WPT8970 

EFFG EFFG6 0.23 -1.86 3.63 0.06 ch2b 8.81 9.62 WPT8970-WPT8970 

FLO FLO7 0.46 0.99 3.47 0.07 ch2b 8.81 9.62 WPT8970-WPT8970 

NupEFlo NupEFlo1 0.21 -0.01 3.22 0.06 ch2b 8.81 9.71 WPT8970-WPT8970 

REMN REMN2 0.21 -2.52 3.58 0.06 ch2b 8.81 9.71 WPT8970-WPT8970 

EFFG EFFG20 0.23 -1.75 3.00 0.05 ch2b 10.70 11.48 GPW4016-WPT3592 

PH PH9 0.07 2.91 3.30 0.04 ch2b 27.45 28.48 WMC154D-WMC154D 

%N_S %N_S9 0.37 -0.01 4.91 0.07 ch2b 38.41 39.30 WPT4301-WPT1489 

FLO FLO14 0.47 1.17 3.99 0.15 ch2b 40.16 41.66 WPT9402-WPT5707 

FLO FLO6 0.12 1.52 3.57 0.09 ch2b 43.79 46.03 WPT6932-WMC770 

NTA NTA4 0.09 -3.12 3.01 0.11 ch2b 53.14 54.40 WPT6192-CFD11 

NSA NSA13 0.43 -0.85 3.16 0.06 ch2b 54.26 55.85 WPT1127-WPT2120 

ADM_FLO ADM_FLO2 0.33 207.46 3.99 0.04 ch2b 55.63 56.65 WPT2120-SHH293 

FLO FLO3 0.34 1.01 3.06 0.03 ch2b 55.63 56.65 WPT2120-SHH293 

HI HI3 0.05 1.32 3.01 0.13 ch2b 55.63 56.65 WPT2120-SHH293 

INN_FLO INN_FLO2 0.34 -0.01 3.25 0.06 ch2b 55.63 56.65 WPT2120-SHH293 

%N_FLO %N_FLO3 0.34 -0.03 3.71 0.05 ch2b 55.63 56.65 WPT2120-SHH293 

DMGY DMGY4 0.14 182.54 3.95 0.22 ch2b 55.72 58.23 WPT2120-ABC306 

NUE NUE4 0.14 1.03 3.59 0.21 ch2b 55.72 58.23 WPT2120-ABC306 

GPC GPC10 0.14 -0.28 3.07 0.20 ch2b 56.93 57.71 SHB123-GPW4354 

NUE_Prot NUE_Prot11 0.14 0.00 3.27 0.21 ch2b 56.93 57.71 SHB123-GPW4354 

NutE NutE6 0.14 1.42 3.02 0.16 ch2b 56.93 57.71 SHB123-GPW4354 

PH PH10 0.13 -2.62 4.29 0.20 ch2b 56.93 58.40 SHB123-ABC306 

NutE_Prot NutE_Prot5 0.13 0.00 3.16 0.20 ch2b 57.36 58.07 GPW7438-GPW4354 

ADM_FLO ADM_FLO3 0.41 -180.65 3.89 0.08 ch2b 62.84 64.23 BARC1064-WPT0709 

EFFG EFFG14 0.13 -2.29 3.83 0.07 ch2b 66.10 69.55 GPW7808-MWG660 

NutE_Prot NutE_Prot10 0.05 0.00 3.23 0.20 ch2b 67.17 69.56 BCD1119-MWG660 

ADM_S ADM_S16 0.39 176.01 3.11 0.03 ch2b 67.75 70.17 GWM129-GWM388 

EFFREMN EFFREMN6 0.23 -0.78 3.45 0.05 ch2b 67.75 70.17 GWM129-GWM388 

HI HI18 0.05 1.30 3.17 0.16 ch2b 67.75 70.17 GWM129-GWM388 

NSA NSA7 0.08 1.39 3.03 0.05 ch2b 67.75 70.17 GWM129-GWM388 

GPD GPD7 0.42 0.14 3.19 0.08 ch2b 68.93 71.36 GPW3050-BM134420 

NUE_Prot NUE_Prot10 0.41 0.00 3.31 0.08 ch2b 68.93 72.35 GPW3050-CNL6A 

GPD GPD5 0.15 -0.17 3.04 0.10 ch2b 75.60 78.10 WMC441-CFE52 

SA SA1 0.12 -17.56 3.66 0.12 ch2b 85.81 88.61 WMC360-WPT9190 

NFA NFA13 0.22 -2.52 3.08 0.07 ch2b 96.43 96.72 WPT2929-WPT2929 

TKW TKW8 0.28 0.88 3.08 0.01 ch2d 26.16 28.15 WPT6657-WMC111 

ADM_S ADM_S4_14 0.19 228.53 5.35 0.11 ch2d 45.31 52.97 GPW4321-WMC470 

FLO FLO13 0.23 -1.23 4.03 0.14 ch2d 45.31 52.32 GPW4321-WMC14 

HI HI20 0.39 -0.88 5.97 0.05 ch2d 45.31 52.32 GPW4321-WMC14 

INN_FLO INN_FLO3_8 0.19 -0.02 4.37 0.13 ch2d 45.31 52.97 GPW4321-WMC470 

%N_FLO %N_FLO4_9 0.19 -0.05 5.50 0.18 ch2d 45.31 52.97 GPW4321-WMC470 

FLO FLO4 0.19 1.97 7.90 0.25 ch2d 51.55 52.97 WMC14-WMC470 

%N_S %N_S6 0.19 -0.01 3.13 0.08 ch2d 51.55 52.97 WMC14-WMC470 

ADM_S ADM_S2 0.21 181.66 3.41 0.02 ch2d 64.87 70.44 CFD255-CFA2201 

ADM_FLO ADM_FLO13 0.24 191.31 3.05 0.06 ch2d 66.17 70.84 FBB279-CFA2201 

NUE_Prot NUE_Prot1 0.39 0.00 3.28 0.07 ch2d 67.75 74.51 GWM102-STM590TCAC 

NutE NutE1 0.40 0.98 3.09 0.08 ch2d 69.94 74.53 CFA2201-STM590TCAC 

FLO FLO8 0.23 1.12 3.13 0.01 ch2d 102.48 102.51 GPW308-GPW308 

NSA NSA3 0.47 -0.78 3.16 0.10 ch2d 104.26 104.50 WPT2781-WPT2781 

NUE NUE15 0.31 -0.57 3.23 0.01 ch2d 107.76 108.10 GPW5237-TAM8 
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Supplementary data 3 – continued 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Trait QTL_name MAF Effect LOD r² ch From To Boundaries 

%N_S %N_S13 0.21 -0.02 4.40 0.05 ch3a 55.67 71.53 WMC388C-CDO281 

ADM_FLO ADM_FLO11 0.47 168.18 3.05 0.01 ch3a 57.05 57.79 WPT5766-BCD1823 
FLO FLO2 0.47 1.02 3.29 0.02 ch3a 57.05 57.79 WPT5766-BCD1823 

NFA NFA8_7 0.28 -2.51 3.56 0.08 ch3a 62.53 74.44 TPT1143-GWM638 

NupEFlo NupEFlo6_5 0.28 -0.01 3.96 0.08 ch3a 62.53 74.44 TPT1143-GWM638 
HI HI13 0.10 -0.84 3.11 0.01 ch3a 109.65 110.93 BARC51-WPT5125 

GNY GNY3 0.36 -1.69 3.74 0.07 ch3a 115.72 116.35 WPT9268-WMC169 

DMGY DMGY11 0.31 -120.40 4.09 0.01 ch3a 122.73 123.29 WPT1816-GWM666B 
NUE NUE10 0.31 -0.70 4.26 0.01 ch3a 122.73 123.29 WPT1816-GWM666B 

NutE_Prot NutE_Prot15 0.31 0.00 3.25 0.01 ch3a 122.73 123.29 WPT1816-GWM666B 

ADM_S ADM_S13 0.15 -192.35 3.46 0.06 ch3a 123.35 123.90 WPT1596-WPT2813 
DMGY DMGY6 0.44 106.76 4.15 0.02 ch3a 128.15 128.30 WPT6234-WPT6234 

NUE NUE6 0.44 0.67 4.78 0.03 ch3a 128.15 128.30 WPT6234-WPT6234 
NutE_Prot NutE_Prot8 0.44 0.00 3.75 0.02 ch3a 128.15 128.30 WPT6234-WPT6234 

GPC GPC4 0.36 0.18 3.44 -0.01 ch3a 131.80 132.01 CDO482-CDO482 

NUE_Prot NUE_Prot3 0.36 0.00 3.36 -0.01 ch3a 131.80 132.01 CDO482-CDO482 
NutE NutE2 0.36 -0.92 3.52 0.00 ch3a 131.80 132.01 CDO482-CDO482 

SA SA4 0.36 -10.83 3.16 0.10 ch3a 131.80 132.01 CDO482-CDO482 

SA SA10 0.13 15.31 3.82 0.04 ch3a 133.40 133.63 CDO482-CDO482 
ADM_S ADM_S9 0.12 -206.88 3.02 0.09 ch3b 27.84 28.31 WMM1344-WPT1336 

EFFG EFFG15 0.15 2.09 3.09 0.06 ch3b 27.84 28.31 WMM1344-WPT1336 

NSA NSA6 0.13 -1.14 3.42 0.04 ch3b 28.51 28.94 WPT1336-WPT1741 
FLO FLO20 0.43 -0.97 3.54 0.10 ch3b 36.43 36.75 CFB3023-CFB3023 

%N_S %N_S5 0.22 -0.01 3.12 0.07 ch3b 36.69 36.96 CFB3023-GPW3092 

ADM_FLO ADM_FLO5 0.27 -188.05 3.27 0.01 ch3b 37.37 37.58 WMM1441-WMM1441 
NUE NUE5 0.27 -0.71 3.33 0.01 ch3b 37.37 37.58 WMM1441-WMM1441 

NutE_Prot NutE_Prot6 0.27 0.00 3.23 0.00 ch3b 37.37 37.58 WMM1441-WMM1441 

HI HI4 0.48 0.57 3.39 0.05 ch3b 50.62 50.71 FBB24-FBB24 
NSA NSA8 0.06 1.55 3.36 0.08 ch3b 50.68 50.76 FBB24-FBB24 

%N_S %N_S11 0.06 0.02 3.27 0.04 ch3b 50.68 50.76 FBB24-FBB24 

NFA NFA10 0.21 -2.62 3.00 0.06 ch3b 50.85 50.94 FBB24-FBB24 
GPC GPC7 0.34 -0.21 3.09 0.13 ch3b 51.21 51.30 WMC540-WMC540 

NUE_Prot NUE_Prot7 0.36 0.00 3.07 0.12 ch3b 51.21 51.30 WMC540-WMC540 

ABSN ABSN8 0.09 -3.66 3.25 0.06 ch3b 51.27 51.36 WMC540-WMC540 
HI HI11 0.07 1.26 3.46 0.14 ch3b 51.98 52.06 CFP3112-CFP3112 

TKW TKW2 0.16 1.19 3.09 0.10 ch3b 52.16 52.24 CFB3260-CFB3260 

HI HI15 0.09 1.04 3.57 0.10 ch3b 88.11 88.64 CFB3440-CFB3440 
NUE NUE2 0.08 1.07 3.13 0.09 ch3b 88.11 88.64 CFB3440-CFB3440 

PH PH11 0.12 -2.67 4.39 0.13 ch3b 88.11 88.64 CFB3440-CFB3440 

SA SA9 0.15 -13.69 3.29 0.05 ch3b 91.45 92.06 WMM1133-WMM1133 
SA SA5 0.41 11.79 3.78 0.08 ch3b 101.30 101.61 CFE365-CFE365 

EFFREMN EFFREMN13 0.32 -0.67 3.30 0.05 ch3d 0.00 11.03 GPW7053-WPT742732 

NSA NSA14 0.32 0.82 3.38 0.02 ch3d 0.00 11.03 GPW7053-WPT742732 
EFFREMN EFFREMN11 0.07 1.25 3.26 0.07 ch3d 24.50 24.54 GPW4451-GPW4451 

NUE NUE3 0.34 0.65 3.29 0.00 ch3d 26.95 26.97 GDM128-GDM128 

NutE_Prot NutE_Prot4 0.34 0.00 3.27 0.00 ch3d 26.95 26.97 GDM128-GDM128 
NFA NFA5 0.17 -2.73 3.09 0.04 ch4a 49.95 50.81 GDM141-FBA147 

NupEFlo NupEFlo3 0.17 -0.02 3.65 0.05 ch4a 49.95 50.81 GDM141-FBA147 

REMN REMN5 0.17 -2.82 3.53 0.05 ch4a 49.95 50.81 GDM141-FBA147 
SA SA2 0.08 -25.63 5.00 0.11 ch4a 54.53 57.14 WPT7558-BCD8 

HI HI7 0.16 0.78 4.16 0.11 ch4a 54.70 55.51 WMC15-GPW4182 

NUE NUE11 0.26 0.71 3.15 0.11 ch4a 55.50 56.30 GPW4182-WMC757 
NutE_Prot NutE_Prot16 0.26 0.00 3.43 0.12 ch4a 55.50 56.30 GPW4182-WMC757 

ADM_FLO ADM_FLO6 0.18 239.90 3.22 0.12 ch4a 56.01 56.83 FBA211A-GWM610 

NFA NFA12 0.05 -4.92 3.08 0.08 ch4a 56.31 57.16 WMC757-GPW1010 

PH PH5 0.23 -1.81 3.76 0.08 ch4a 66.91 67.47 WPT0162-WPT3638 

EFFG EFFG4 0.37 -1.64 3.37 0.06 ch4a 67.40 67.96 WPT3638-WPT4660 

EFFREMN EFFREMN3 0.37 -0.61 3.00 0.08 ch4a 67.40 67.96 WPT3638-WPT4660 
EFFG EFFG19 0.30 -1.56 3.13 0.05 ch4a 71.23 72.68 CDO495-CD920298 

NupEMat NupEMat4 0.22 -0.01 3.06 0.06 ch4a 73.93 74.87 GWM397-GPW7020 

TKW TKW10 0.14 -1.11 3.09 0.07 ch4a 97.22 98.88 GPW2244-WPT2006 
%N_S %N_S3 0.09 -0.02 4.17 0.04 ch4a 115.42 115.66 SHH114-WPT9901 

NSA NSA2 0.08 -1.57 3.64 0.04 ch4a 115.45 115.57 SHH114-FBB154 

GPC GPC9 0.16 -0.23 3.30 0.04 ch4a 115.91 116.09 WPT5172-WPT2780 
NUE_Prot NUE_Prot9 0.16 0.00 3.14 0.04 ch4a 115.91 116.09 WPT5172-WPT2780 

NutE NutE4 0.16 1.18 3.06 0.05 ch4a 115.91 116.09 WPT5172-WPT2780 
ABSN ABSN1 0.10 3.51 3.32 0.06 ch4a 121.59 121.79 WMC497-WMC722 
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Supplementary data 3 – continued 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Trait QTL_name MAF Effect LOD r² ch From To Boundaries 

ADM_S ADM_S11 0.45 -139.59 3.06 0.04 ch4b -1.32 0.08 BE637594-BE637594 

HI HI19 0.45 0.60 3.87 0.14 ch4b -1.32 0.08 BE637594-BE637594 

%N_S %N_S10 0.16 0.01 3.13 0.12 ch4b 33.89 44.35 PSP3163-WMC657 

NHI NHI5 0.41 0.39 3.27 0.04 ch4b 53.41 54.39 GPW4075-SHI211 

GNY GNY11 0.40 1.50 3.11 0.03 ch4b 62.62 66.38 GWM573-WPT8756 

ABSN ABSN14 0.13 3.11 3.30 0.06 ch4b 77.32 83.24 WPT3917-WPT5996 

ADM_S ADM_S17 0.46 -199.24 3.47 0.00 ch4d 21.07 25.93 CFD18-WPT0941 

PH PH17 0.46 -2.01 3.47 0.05 ch4d 21.07 25.93 CFD18-WPT0941 

%N_S %N_S7 0.07 -0.02 3.33 0.05 ch4d 31.20 35.26 GBXG102-BLT101 

ADM_S ADM_S6 0.26 -156.72 3.80 0.03 ch5a -0.18 2.62 GPW4432-WPT2768 

HI HI8 0.26 0.58 3.24 0.06 ch5a -0.18 2.33 GPW4432-GWM241 

PH PH6 0.26 -1.68 4.80 0.08 ch5a -0.18 2.62 GPW4432-WPT2768 

DMGY DMGY12 0.20 -151.19 3.82 0.02 ch5a 1.09 2.00 GWM241-GWM241 

NUE NUE14 0.20 -0.79 3.35 0.02 ch5a 1.09 2.00 GWM241-GWM241 

NutE_Prot NutE_Prot17 0.20 0.00 3.46 0.02 ch5a 1.09 2.00 GWM241-GWM241 

EFFREMN EFFREMN2 0.22 0.82 4.37 0.08 ch5a 48.83 50.57 PSY-GPW3049 

NupEMat NupEMat1 0.16 0.01 3.44 0.08 ch5a 56.13 57.16 TPT9702-WPT0605 

NHI NHI8 0.49 0.51 3.56 0.03 ch5a 59.11 59.89 DOFA-DOFA 

NutE_Prot NutE_Prot3 0.30 0.00 3.45 0.01 ch5a 61.47 62.13 BCD926-GWM186 

FLO FLO9 0.24 1.07 3.11 0.05 ch5a 64.51 66.97 WG564-GWM96 

GPC GPC6 0.05 -0.44 3.92 0.23 ch5a 64.51 64.97 WG564-PSB85 

NUE_Prot NUE_Prot5 0.05 0.00 4.22 0.23 ch5a 64.51 64.97 WG564-PSB85 

NutE_Prot NutE_Prot14 0.05 0.00 3.52 0.28 ch5a 64.51 64.97 WG564-PSB85 

FLO FLO19 0.46 0.93 3.26 0.06 ch5a 69.92 70.84 MGB174-BCD1355 

ABSN ABSN9 0.18 -2.73 3.53 0.07 ch5a 70.67 71.77 BCD1355-FBB2 

FLO FLO18 0.25 -1.10 3.23 0.06 ch5a 71.09 72.19 BCD1355-BARC330 

GNY GNY9 0.21 -1.94 3.48 0.08 ch5a 133.21 133.52 ABG366-ABG366 

NTA NTA6 0.20 -2.27 3.45 0.10 ch5a 133.21 133.52 ABG366-ABG366 

NupEMat NupEMat11 0.19 -0.01 3.01 0.08 ch5a 133.21 133.52 ABG366-ABG366 

FLO FLO11 0.06 2.19 3.08 0.11 ch5a 143.36 143.81 WPT5096-WPT5096 

ADM_S ADM_S3 0.37 -151.96 3.01 0.03 ch5a 144.22 175.98 WPT5096-B1 

NSA NSA10 0.22 -0.87 3.05 0.08 ch5a 145.21 146.85 GWM595-GWM595 

NHI NHI6 0.27 0.44 3.55 0.07 ch5a 145.24 146.68 GWM595-GWM595 

PH PH16 0.24 -1.72 3.00 0.03 ch5a 146.88 148.78 GWM595-WMC524 

NFA NFA2 0.26 2.07 3.02 0.06 ch5a 147.11 148.89 WMC524-WMC524 

EFFG EFFG7 0.30 1.65 3.00 0.04 ch5a 149.51 151.21 WMC727-WMC727 

PH PH1_13 0.19 -2.44 4.25 0.10 ch5b 98.69 153.83 GWM540-WPT4577 

NupEMat NupEMat10 0.47 0.01 3.08 0.02 ch5b 98.94 107.23 FBA342-GBXG198 

INN_FLO INN_FLO6 0.37 -0.01 3.37 0.13 ch5b 103.16 121.42 GWM67-BCD351 

GPC GPC2 0.05 -0.48 3.27 0.27 ch5b 108.04 132.41 WPT6726-DUPW395 

NUE_Prot NUE_Prot2 0.05 0.00 3.18 0.26 ch5b 108.04 132.41 WPT6726-DUPW395 

ABSN ABSN10 0.15 3.03 3.86 0.06 ch5b 141.25 155.40 WMC289-CFD156 

EFFG EFFG12 0.15 -2.26 4.49 0.08 ch5b 141.25 142.85 WMC289-WMC289 

NFA NFA11 0.16 -3.51 4.43 0.10 ch5b 154.38 154.81 WPT2707-WPT2707 

NupEFlo NupEFlo8 0.16 -0.02 5.47 0.13 ch5b 154.38 154.81 WPT2707-WPT2707 

REMN REMN10 0.16 -3.12 3.70 0.08 ch5b 154.38 154.81 WPT2707-WPT2707 

HI HI12_14 0.08 1.21 5.29 0.12 ch5b 166.09 173.87 WPT8414-GDM116 

NHI NHI9 0.39 0.44 3.48 0.07 ch5b 166.09 171.62 WPT8414-WPT0517 

INN_FLO INN_FLO7 0.40 -0.01 3.57 0.19 ch5b 166.41 170.15 WPT8414-CFA2121B 

%N_FLO %N_FLO8 0.40 -0.03 3.80 0.26 ch5b 166.41 170.15 WPT8414-CFA2121B 

TKW TKW7 0.45 -0.83 3.10 0.07 ch5b 166.92 170.63 CDO584-WPT0517 

NUE_Prot NUE_Prot6 0.08 0.00 3.05 0.04 ch5b 171.48 173.87 WPT0517-GDM116 

ADM_S ADM_S1 0.27 186.27 3.50 0.11 ch5b 173.55 175.58 GDM116-WPT6880 

%N_S %N_S1 0.27 -0.01 3.15 0.05 ch5b 173.55 175.58 GDM116-WPT6880 

NSA NSA9 0.15 1.10 3.56 0.12 ch5b 195.63 195.75 TPT3144-WMC783 

NutE NutE3 0.15 -1.34 3.61 0.08 ch5b 195.63 195.75 TPT3144-WMC783 

%N_S %N_S14 0.15 0.02 4.42 0.14 ch5b 195.63 195.75 TPT3144-WMC783 

%N_S %N_S15 0.14 -0.02 3.82 0.03 ch5b 208.41 210.32 SSIB-PSR580 
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Supplementary data 3 – continued 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Trait QTL_name MAF Effect LOD r² ch From To Boundaries 

REMN REMN9 0.31 -2.21 3.09 0.06 ch6a 3.71 4.79 WPT5395-WPT4752 

GPD GPD8 0.48 0.12 3.06 0.11 ch6a 8.02 8.90 WPT1377-WPT1377 

%N_FLO %N_FLO10 0.46 -0.03 3.00 0.09 ch6a 8.29 9.30 WPT1377-WPT730591 

DMGY DMGY3 0.09 186.21 3.03 0.17 ch6a 13.80 15.69 PTAG53-WPT0562 

SA SA3 0.13 14.76 3.09 0.04 ch6a 21.60 23.14 WPT671799-WPT3965 

%N_S %N_S18 0.06 -0.03 3.35 0.13 ch6a 25.96 26.47 WPT3091-WPT3091 

%N_FLO %N_FLO5 0.49 0.03 3.09 0.01 ch6a 27.79 28.35 PSR312-BARC118 

PH PH2 0.15 -2.33 3.86 0.08 ch6a 28.97 53.22 CFE80-GWM570 

GNY GNY5 0.27 2.04 3.93 0.07 ch6a 29.42 30.06 CFE80-GPW7455 

HI HI6 0.15 0.89 3.05 0.03 ch6a 30.45 31.09 GPW7455-BARC107 

EFFREMN EFFREMN7 0.32 0.66 3.24 0.07 ch6a 52.56 52.64 GPW3251-GPW3251 

GPD GPD1 0.17 -0.20 4.10 0.09 ch6a 52.56 52.64 GPW3251-GPW3251 

%N_S %N_S8 0.30 0.01 3.30 0.03 ch6a 52.56 52.64 GPW3251-GPW3251 

DMGY DMGY2 0.11 190.39 3.38 0.18 ch6a 52.67 52.75 GPW3251-GPW3251 

NutE_Prot NutE_Prot1 0.11 0.00 3.05 0.19 ch6a 52.67 52.75 GPW3251-GPW3251 

ABSN ABSN7 0.22 2.41 3.18 0.05 ch6a 58.11 58.19 CSB112-CSB112 

EFFG EFFG11 0.22 -1.95 3.70 0.06 ch6a 58.11 58.19 CSB112-CSB112 

INN_FLO INN_FLO4 0.23 -0.01 3.48 0.07 ch6a 85.41 87.10 GWM169-GPW5125 

%N_FLO %N_FLO6 0.23 -0.03 3.08 0.08 ch6a 85.41 87.10 GWM169-GPW5125 

SA SA8 0.12 17.91 3.96 0.07 ch6a 88.87 89.45 FBB70-GPW7388 

TKW TKW6 0.33 -0.87 4.12 0.10 ch6a 92.40 96.73 WPT0938-TPT4178 

FLO FLO12 0.20 1.21 3.06 0.08 ch6a 93.99 94.87 WPT0696-WPT9474 

NTA NTA8 0.14 -2.48 3.02 0.09 ch6a 93.99 94.87 WPT0696-WPT9474 

NupEMat NupEMat9 0.14 -0.01 3.30 0.09 ch6a 93.99 94.87 WPT0696-WPT9474 

PH PH12 0.08 -2.90 3.85 0.15 ch6a 94.85 96.34 WPT9474-WMC642 

TKW TKW3 0.29 0.99 4.12 0.12 ch6a 95.04 96.48 GWM427-TPT4178 

ADM_S ADM_S12 0.16 -204.79 3.00 0.06 ch6a 95.12 96.48 GWM427-TPT4178 

NTA NTA9 0.48 -1.82 3.19 0.05 ch6a 95.12 96.48 GWM427-TPT4178 

ABSN ABSN3 0.13 -3.26 3.59 0.07 ch6b 36.30 36.39 WPT4415-WPT4415 

EFFG EFFG5 0.13 2.30 3.30 0.06 ch6b 36.30 36.39 WPT4415-WPT4415 

SA SA11 0.06 -22.79 3.24 0.07 ch6b 36.49 36.58 WPT8721-WPT8721 

ADM_FLO ADM_FLO4 0.09 -294.15 3.51 0.04 ch6b 36.77 36.86 WPT5461-WPT5461 

NFA NFA6 0.17 -2.91 3.02 0.04 ch6b 64.22 65.54 SHI330-FBB130 

NupEFlo NupEFlo4 0.17 -0.02 3.22 0.04 ch6b 64.22 65.54 SHI330-FBB130 

%N_FLO %N_FLO7 0.13 -0.04 3.15 0.11 ch6b 64.90 66.13 SHI330-FBB130 

NutE_Prot NutE_Prot7_13 0.15 0.00 3.62 0.20 ch6d 8.39 9.95 WPT1519-WPT672044 

GPC GPC8 0.09 -0.36 4.47 0.20 ch6d 8.46 9.95 WPT1519-WPT672044 

GPD GPD4 0.09 -0.23 3.77 0.13 ch6d 8.46 9.95 WPT1519-WPT672044 

NUE NUE12 0.09 1.07 3.07 0.18 ch6d 8.46 9.95 WPT1519-WPT672044 

NUE_Prot NUE_Prot8 0.09 0.00 4.48 0.20 ch6d 8.46 9.95 WPT1519-WPT672044 

NutE NutE5 0.09 1.66 3.70 0.16 ch6d 8.46 9.95 WPT1519-WPT672044 

SA SA12 0.06 24.53 3.25 0.03 ch6d 8.46 9.95 WPT1519-WPT672044 

FLO FLO10 0.22 -1.14 3.19 0.03 ch6d 125.31 127.35 GPW5179-GPW5179 

PH PH3 0.40 -1.84 5.70 0.12 ch7a 4.87 7.55 WPT6034-WPT4835 

NutE_Prot NutE_Prot2 0.48 0.00 3.10 0.04 ch7a 9.55 10.71 WPT2903-WPT4126 

NUE NUE13 0.34 -0.64 3.03 0.13 ch7a 47.64 52.22 BARC222-WPT8897 

NUE NUE1 0.08 -1.34 4.27 0.12 ch7a 55.37 59.63 BARC174-GWM631 

EFFG EFFG17 0.10 -2.75 3.76 0.07 ch7a 65.66 65.74 WMC488-WMC488 

GNY GNY1 0.38 -1.51 3.49 0.05 ch7a 65.66 74.97 WMC488-WPT2083 

NTA NTA1 0.38 -1.74 3.33 0.03 ch7a 65.66 74.97 WMC488-WPT2083 

NupEFlo NupEFlo9 0.10 -0.02 3.08 0.05 ch7a 65.66 65.74 WMC488-WMC488 

NupEMat NupEMat2 0.38 -0.01 3.28 0.03 ch7a 65.66 74.97 WMC488-WPT2083 

REMN REMN4 0.13 3.18 3.76 0.09 ch7a 65.66 65.74 WMC488-WMC488 

NHI NHI10 0.45 0.34 3.18 0.01 ch7a 68.66 69.47 DUPW226-DUPW226 

NSA NSA15 0.45 -0.69 3.54 0.03 ch7a 68.66 69.47 DUPW226-DUPW226 

NHI NHI4 0.15 -0.54 3.17 0.05 ch7a 68.88 68.99 DUPW226-DUPW226 

ADM_FLO ADM_FLO12 0.18 216.95 3.72 0.12 ch7a 69.03 69.68 DUPW226-DUPW226 

FLO FLO5 0.30 1.11 3.82 0.02 ch7a 72.63 72.76 SALA-SALA 

GPD GPD3 0.38 -0.11 3.15 0.03 ch7a 74.87 74.97 WPT4665-WPT2083 

ADM_FLO ADM_FLO7 0.25 179.01 3.03 0.08 ch7a 75.88 75.98 TPT9518-TPT9518 

REMN REMN7 0.13 -3.24 3.60 0.06 ch7a 78.69 78.78 FBA350-FBA350 

ADM_S ADM_S7 0.44 165.27 3.55 0.04 ch7a 81.45 81.69 WMC346-WPT1424 

HI HI10 0.44 -0.56 3.00 0.00 ch7a 81.45 81.69 WMC346-WPT1424 

PH PH4 0.22 -2.09 4.45 0.17 ch7a 100.52 103.90 WMC809-WMC809 
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Supplementary data 3 – continued 

 
 

 

 

Trait QTL_name MAF Effect LOD r² ch From To Boundaries 

NutE_Prot NutE_Prot18 0.26 0.00 3.03 0.06 ch7b -1.59 2.60 WMC606-WMC323 

GPC GPC5 0.35 -0.20 3.03 0.12 ch7b 47.57 54.74 BE499017-WMC546C 

NUE_Prot NUE_Prot4 0.35 0.00 3.26 0.12 ch7b 47.57 54.74 BE499017-WMC546C 

PH PH15 0.17 -2.05 3.57 0.13 ch7b 47.57 54.74 BE499017-WMC546C 

ADM_FLO ADM_FLO10 0.17 -223.60 3.21 0.04 ch7b 51.58 60.31 WMC546C-WPT8849 

SA SA7 0.08 -21.04 3.10 0.02 ch7b 89.03 94.38 WPT8106-WPT1149 

EFFREMN EFFREMN9 0.06 1.39 3.32 0.08 ch7b 90.93 94.91 WPT8890-WPT4230 

TKW TKW1 0.09 -1.56 4.40 0.09 ch7b 95.07 101.43 WPT4230-BARC315 

NSA NSA11 0.17 1.03 3.15 0.11 ch7b 111.33 112.67 GPW4471-FBB352 

REMN REMN11 0.09 3.33 3.05 0.06 ch7b 111.33 112.67 GPW4471-FBB352 

HI HI1 0.19 0.72 3.51 0.13 ch7b 112.58 114.07 FBB352-GPW4369 

ABSN ABSN4 0.14 -2.98 3.64 0.07 ch7b 114.35 155.41 GPW4369-WPT8938 

REMN REMN8 0.16 2.83 3.26 0.08 ch7b 122.79 137.38 WPT3723-WPT5892 

EFFG EFFG3 0.15 2.13 3.60 0.07 ch7b 123.08 158.95 WPT3723-WPT5747 

GNY GNY10 0.38 -1.57 3.02 0.07 ch7b 144.16 147.99 WPT5463-STM5TCACA 

ABSN ABSN12 0.29 2.53 3.84 0.05 ch7b 151.50 152.06 DUPW398-BARC258 

EFFG EFFG16 0.29 -1.87 3.83 0.05 ch7b 151.50 152.06 DUPW398-BARC258 

EFFREMN EFFREMN5 0.26 0.76 3.89 0.09 ch7b 161.63 162.33 WPT9813-WPT1196 

%N_S %N_S16 0.20 -0.02 5.00 0.10 ch7b 162.83 166.23 WPT3530-WPT7113 

DMGY DMGY1 0.36 114.98 3.10 0.15 ch7b 166.11 166.85 WPT7113-BARC182 

%N_S %N_S17 0.22 -0.01 3.45 0.09 ch7b 166.85 167.59 BARC182-BARC97B 

EFFREMN EFFREMN12 0.08 1.21 3.00 0.06 ch7b 167.47 168.22 BARC97B-KSUE18B 

ADM_S ADM_S15 0.24 196.84 3.03 0.08 ch7b 182.26 185.22 AWM449-AWM449 

NFA NFA4 0.35 -2.30 3.37 0.05 ch7d 86.06 86.14 BARC352-BARC352 

NUE NUE7 0.15 0.91 3.58 0.06 ch7d 87.91 88.11 GPW334-GPW334 

NutE_Prot NutE_Prot11 0.15 0.00 4.49 0.09 ch7d 87.91 88.11 GPW334-GPW334 

ADM_S ADM_S10 0.06 296.19 3.34 0.07 ch7d 88.04 88.11 GPW334-GPW334 

DMGY DMGY10 0.19 160.50 3.82 0.07 ch7d 88.04 88.11 GPW334-GPW334 

EFFG EFFG1 0.34 1.63 3.17 0.05 ch7d 94.35 94.39 WPT4555-WPT4555 

REMN REMN1 0.34 2.49 4.07 0.08 ch7d 94.35 94.39 WPT4555-WPT4555 
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Supplementary data 4: Number of common QTLs between two traits. Numbers of common QTLs with opposite effects on traits are located in the inferior 

diagonal, same sign effect are in the superior diagonal, and the total number of QTL are on the diagonal. 
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Supplementary data 5: Frequencies of colocalisation between traits underlying the colocalisation network. Results are read by row (example: all GPC 

QTL are also NUE_Prot QTL, but only 73% (8/11) of NUE_Prot QTL are GPC QTL). 
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ABSN         69%     8%       15%   8%                 8% 23%         

ADM_FLO     8%       25%   8%                 17%                   8% 

ADM_S   6%     19%   13%       38% 13%   6% 13%               25%       6% 25% 

DMGY             20%       20%           50%         50%         20%   

EFFG 47%   16%         11%       11%   11%                   26%         

EFFREMN                             17%                   8%     25% 

FLO   17% 11% 11%       11%     17% 22%       17%       17%             22% 22% 

GNY 9%       18%   18%     18%       27%   45%     9% 45%     9% 18%       9% 

GPC   13%                   13%           100%     50%   25%           

GPD               25%               25%   25%   25% 13% 25%             

HI     33% 11%     17%         11%   6% 22%     11%         17%       11%   

INN_FLO 29%   29%   29%   57%   14%   29%     29%       14%   14%           14% 71%   

NFA                                     50%         30%     20% 10% 

NHI 10%   10%   20%     30%     10% 20%       10%       10%       20%       20% 

NSA     14%     14%         29%         7%                         

NTA             38% 63%   25%       13% 13%       13% 75%       13%   25%     

NUE       36%                                 14% 64%             

NUE_Prot   18%             73% 18% 18% 9%                 45%   18%           

NupEFlo               14%         71%     14%       14%       57%       14% 

NupEMat             30% 50%   20%   10%   10%   60%     10%       20% 10%         

NutE                 67% 17%             33% 83%       33%     33%       

NutE_Prot       31%           13%             56%       13%               

PH 7%   29%         7% 14%   21%             14%   14%                 

REMN 25%       42%     17%         25% 17%   8%     33% 8%               17% 

SA           9%                             18%               

TKW                       11%       22%                     11%   

%N_FLO     13% 25%     50%       25% 63% 25%                         13%     

%N_S   5% 19%     14% 19% 5%         5% 10%         5%         10%         
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Supplementary data 6: Empirical distribution of betweenness centrality based on 500 

randomizations of the complete colocalisation network. The distribution fits a gamma distribution 

(shape= 2.169, rate= 0.079). Then this distribution was used to test betweenness centrality. P-value for 

INN_FLO, FLO, NutE, and %N_Flo are respectively: 0.005, 0.028, 0.035, and 0.039.  
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Supplementary data 7: (A) Boxplot of allele frequencies of the alleles which had a positive effect on 

traits. (B) Median frequency of positive effect allele at QTN as a function of the correlation (r) 

between traits and yield (DMGY) genetic values. Only varieties registered after 2005 were used (100 

varieties). 

 

(A) 

 

   

(B) 
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Supplementary data 8: SNP detection in NAM-A1. (A) Gene model Traes_6AS_6F89CC969.1 

generated by MIPS (http://pgsb.helmholtz-muenchen.de/plant/wheat/iwgsc/index.jsp) and 

visualisation of SNP. (B) SNPs context sequences. In SNP2 the deletion has been transformed in A/G to 

facilitate scoring. (C) Linkage disequilibrium between SNPs on NAM-A1 and iSelect 90K SNPs. 

Position refers to Wang et al. 2014 genetic map.  

 

(A) 

 
 

(B) 

SNP1 (6AS:4397602_16233) 

GAGAAGCTCGGCGTCAAGAAGGCGCTCGTCTTCTACCGCGGGAAGCCGCCCAAGGGCCTCAAAACCAA

CTGGATCATGCACGAGTACCGCCTCACCGACG[C/T]GTCTGGCTCCACCACCACCAGCCGGCCGCCGCCG

CCTGTGACCGGCGGGAGCCGGGCTGCAGCCTCTCTGAGGGTACGTACACGTGTCGATCGCACGGTA 

 

SNP2 (6AS:4397602_17020) 

CATTTATGAATCCTCTCCCCGTGCAAGACGGGACGTACCATCAACACCATGTCATCCTCGGCGCCCCACT

GGCGCCAGAGGCTACCACAGGCGGCGCCACCTCTGGTTTCC[A/G]CATCCCGTCCAAGTATCCGGCGTG

AACTGGAATCCCTGAGCAAATGATATGAACACCACATACGCGCATGCACGCATGCATAACTTTTGCAAG

TGTAGCCAGTAGTTGTTGCAGTTCGTGGTAGTCGCTTTCAG 

 

(C) 

NAM-A1 SNP (90K) LD(r²) Chr  Position 

SNP1 

Ra_c28284_223 0.963 6A 74.24 

Tdurum_contig51717_1463 0.963 6A 74.24 

Tdurum_contig51717_1582 0.963 6A 74.24 

BS00010811_51 0.927 6A 74.24 

BS00010441_51 0.819 6A 74.24 

SNP2 

Kukri_c9595_242 0.781 6A 74.24 

wsnp_Ex_rep_c67878_66584488 0.768 6A 74.24 

BS00084846_51 0.764 6A 74.24 

wsnp_Ex_c35465_43610634 0.764 6A 74.24 

Kukri_c22893_1651 0.755 6A 74.24 

  

http://pgsb.helmholtz-muenchen.de/plant/wheat/iwgsc/index.jsp
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Supplementary data 9: Prediction of NAM-A1 protein sequence: (A) NAM-A1 coding DNA sequence 

(CDS), (B) NAM-A1 protein sequence. Prediction made using FGENESH 2.6 (Solovyev V, Kosarev P, 

Seledsov I, Vorobyev D. Automatic annotation of eukaryotic genes, pseudogenes and promoters, Genome 

Biol. 2006,7, Suppl. 1: P. 10.1-10.12). Highlighted, use in 3D conformation; Underlined, NAC domain; 

black and bold, putative DNA binding site; red, variation. 

 

(A) 

 

ATGAGGTCCATGGGCAGCTCCGACTCATCCTCCGGCTCGGCGCAAAAAGCAGCGCGGCAT 

CAGCATGAGCCGCCGCCTCCGCGGCAGCGGGGCTCGGCGCCGGAGCTCCCACCGGGCTTC 

CGGTTCCACCCGACGGACGAGGAGCTGGTCGTGCACTACCTCAAGAAGAAGGCCGCCAAG 

GTGCCGCTCCCCGTCACCATCATCGCCGAGGTGGATCTCTACAAGTTCGACCCATGGGAG 

CTCCCCGAGAAGGCGACCTTCGGGGAGCAGGAGTGGTACTTCTTCAGCCCGCGCGACCGC 

AAGTACCCCAACGGCGCGCGGCCGAACCGGGCGGCGACGTCGGGCTACTGGAAGGCCACC 

GGCACGGACAAACCTATCCTGGCCTCGGGGACGGGGTGCGGCCTGGTCCGGGAGAAGCTC 

GGCGTCAAGAAGGCGCTCGTCTTCTACCGCGGGAAGCCGCCCAAGGGCCTCAAAACCAAC 

TGGATCATGCACGAGTACCGCCTCACCGACG[A/C]GTCTGGCTCCACCACCACCAGCCGGCCG 

CCGCCGCCTGTGACCGGCGGGAGCCGGGCTGCAGCCTCTCTGAGGTTGGACGACTGGGTG 

CTGTGCCGCATCTACAAGAAGATCAACAAGGCCGCGGCCGGAGATCAGCAGAGGAGCACG 

GAGTGCGAGGACTCCGTGGAGGACGCGGTCACCGCGTACCCGCTCTATGCCACGGCGGGC 

ATGGCCGGTGCAGGTGCGCATGGCAGCAACTACGCTTCACCTTCACTGCTCCATCATCAG 

GACAGCCATTTCCTGGAGGGCCTGTTCACAGCAGACGACGCCGGCCTCTCGGCGGGCGCC 

ACCTCGCTGAGCCACCTGGCCGCGGCGGCGAGGGCGAGCCCGGCTCCGACCAAACAGTTT 

CTCGCCCCGTCGTCTTCAACCCCGTTCAACTGGCTCGATGCGTCACCCGCCGGCATCCTG 

CCACAGGCAAGGAATTTCCCTGGGTTTAACAGGAGCAGAAACGTCGGCAATATGTCGCTG 

TCATCGACGGCCGACATGGCTGGCGCGGCCGGCAATGCGGTGAACGCCATGTCCGCATTT 

ATGAATCCTCTCCCCGTGCAAGACGGGACGTACCATCAACACCATGTCATCCTCGGCGCC 

CCACTGGCGCCAGAGGCTACCACAGGCGGCGCCACCTCTGGTTTCC[A/-]GCATCCCGTCCAA 

GTATCCGGCGTGAACTGGAATCCCTGA 

 

(B) 

 

MRSMGSSDSSSGSAQKAARHQHEPPPPRQRGSAPELPPGFRFHPTDEELVVHYLKKKAAK 

VPLPVTIIAEVDLYKFDPWELPEKATFGEQEWYFFSPRDRKYPNGARPNRAATSGYWKAT 

GTDKPILASGTGCGLVREKLGVKKALVFYRGKPPKGLKTNWIMHEYRLTD[A/V]SGSTTTSRP 

PPPVTGGSRAAASLRLDDWVLCRIYKKINKAAAGDQQRSTECEDSVEDAVTAYPLYATAG 

MAGAGAHGSNYASPSLLHHQDSHFLEGLFTADDAGLSAGATSLSHLAAAARASPAPTKQF 

LAPSSSTPFNWLDASPAGILPQARNFPGFNRSRNVGNMSLSSTADMAGAAGNAVNAMSAF 

MNPLPVQDGTYHQHHVILGAPLAPEATTGGATSGF[QHPVQVSGVNWNP or RIPSKYPA] 
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Supplementary data 10: Khi² test for the observed haplotypes frequencies from the two SNP 

frequencies for both collections together. Frequencies of each SNP in two collections of bread wheat 

genotypes (CC = 367-core collection, elite = 334-elite collection), observed and theoretical number of lines 

for each haplotype in both collection and Khi
2
 test.  

 

 

  
Frequency 

  
CC Elite Total 

SNP1 
C 0.253 0.085 0.170 

T 0.747 0.915 0.830 

SNP2 
A 0.765 0.276 0.524 

Del 0.235 0.724 0.476 

 

 

Observed C T 

A 113 238 

Del 1 318 

 

 

Theoretical C T 

A 60 291 

Del 54 265 

 

 

Khi² C T 

A 47.5 9.7 

Del 52.3 10.7 

 

Total 120.3 

 

Proba 5.4604E-28 
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Supplementary data 11: Evolution of SNP significance in NAM-A1 chromosomal region.  Phenotyping 

values of Cormier et al. (2014) were used. 196 elite European varieties were used and SNP effects were 

tested using the following naïve model: NUE = µ + E + SNP + e. NAM-A1 chromosomal region was rebuilt 

by M. Throude.  
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Supplementary data 12: Protein sequence alignment using ClustalW.   

 

SNP1 

 NAM-A1b                          YRGKPPKGLKTNWIMHEYRLTDASG--STTTSRPPPP--VTGGSRAAASL 

 NAM-A1d                          YRGKPPKGLKTNWIMHEYRLTDVSG--STTTSRPPPP--VTGGSRAAASL 

 NAM-A1c                          YRGKPPKGLKTNWIMHEYRLTDVSG--STTTSRPPPP--VTGGSRAAASL 

 NAM-A1a                          YRGKPPKGLKTNWIMHEYRLTDASG--STTTSRPPPP--VTGGSRAAASL 

 TaNAM-D1_AIZ97667.1              YRGKPPKGLKTNWIMHEYRLTDASG--STTTSRPPPPPPVTGGSRAAASL 

 AtNAM-D1_ABI94354.1              YRGKPPKGLKTNWIMHEYRLTDASG--STTTSRPPPPPPVTGGSRAAASL 

 ttNAM-B1_A0SPJ4.1                YRGKPPKGLKTNWIMHEYRLTDASG--STTATNRPPP--VTGGSRAAASL 

 TiNAM-B1_AGH32788.1              YRGKPPKGLKTNWIMHEYRLTDASG--STTATNRPPP--VTGGSRAAASL 

 ttNAM-A2_AIW49540.1              YRGKPPKGLKTNWIMHEYRLTDASS--SATTSRPPPVT----GGSRAASL 

 TaNAM-D2_AIZ97668.1              YRGKPPKGLKTNWIMHEYRLTDASS--SATTSRPPPVT----GVSRAASL 

 ttNAM-B2_A0SPJ6.1                YRGKPPKGLKTNWIMHEYRLTDASS--SATTSRPPPVT----GGSRSASL 

 HvNAM-2_A0SPJ9.1                 YRGKPPKGLKTNWIMHEYRLTDASS--SAATSRPPPVT----GGSRAASL 

 HvNAM-B1_ACL31422.1              YRGKPPRGLKTNWIMHEYRLTGASA--GSTTTSRPPP--VTGGSRAPASL 

 HvNAM-1_A0SPJ8.1                 YRGKPPRGLKTNWIMHEYRLTGASA--GSTTTSRPPP--VTGGSRAPASL 

 Os07g37920_ONAC010_Q8H4S4.1      YRGKPPKGVKTNWIMHEYRLTDTSSSAAAVATTRRPPPPITGGSKGAVSL 

 AtNAM_ANAC018_Q9ZNU2.1           YSGKPPKGVKSDWIMHEYRLTD-NKP---THICDFGNK--------KNSL 

 ATNAC2_AEE75684.1                YSGKPPKGVKSDWIMHEYRLIE-NKPNNRPPGCDFGNK--------KNSL 

 AtNAC025_Q8GY42.1                YGGKPPKGIKTDWIMHEYRLTDGNLSTAAKPPDLTTTR--------KNSL 

 SNAC1_AIX03023.1                 YAGKAPRGVKTDWIMHEYRLADAGRAAAGAK---------------KGSL 

 ANAC_ANAC018_Q9C932.1            YIGKAPKGTKTNWIMHEYRLIEPSR--------------------RNGST 

 

SNP2 

 

 NAM-A1b                          NPLPVQDGTYHQHHVILGAPLAPEATTGGATSGFRIPSKYPA------ 

 NAM-A1d                          NPLPVQDGTYHQHHVILGAPLAPEATTGGATSGFRIPSKYPA------ 

 NAM-A1c                          NPLPVQDGTYHQHHVILGAPLAPEATTGGATSGFQHPVQVSGVNWNP- 

 NAM-A1a                          NPLPVQDGTYHQHHVILGAPLAPEATTGGATSGFQHPVQVSGVNWNP- 

 TaNAM-D1_AIZ97667.1              NPLPVQDGTYHQHHVILGAPLAPEATAGAATSGFQHHAVQISGVNWNP 

 AtNAM-D1_ABI94354.1              NPLPVQDGTYHQHHVILGAPLAPEATAGAATSGFQHHAVQISGVNWNP 

 ttNAM-B1_A0SPJ4.1                TYLPVQDGTYHQQHVILGAPLVPEAAA--ATSGFQHPVQISGVNWNP- 

 TiNAM-B1_AGH32788.1              TYLRVQDGTYHQQHVILGAPLVPEAAA--ATSGFQHPVQISGVNWNP- 

 ttNAM-A2_AIW49540.1              NHLPVQDGTYHQQHVILGTPLAPEATA-AATSAFQHPVQISGVNWNP- 

 TaNAM-D2_AIZ97668.1              SHLPVQDGTYHQQHVILGAPLAPEATA-AATSAFQHPVQISGVNWNP- 

 ttNAM-B2_A0SPJ6.1                NHLPMQDGTYHQQHVILGAPLAPEATA-AATSAFQHPVQISGVNWNP- 

 HvNAM-2_A0SPJ9.1                 NHLPVQDGTYHQQHVILGAPLAPEATG-AAASAFQHPVQISGVNWNP- 

 HvNAM-B1_ACL31422.1              MYLPVQDGTYHQHVILG-APLAPEAIAGAATSGFQHHVQISGVNWNP- 

 HvNAM-1_A0SPJ8.1                 MYLPVQDGTYHQHVILG-APLAPEAIAGAATSGFQHHVQISGVNWNP- 

 Os07g37920_ONAC010_Q8H4S4.1      NPLGVQGATYQQHQAIMGASLPSESAAAAAACNFQHPFQLSRVNWDS- 

 AtNAM_ANAC018_Q9ZNU2.1           ---------DCSTSMAATPLMQNQG----------GIYQLPGLNWYS- 

 ATNAC2_AEE75684.1                ---GDCSNMSSSMMEETPPLMQQQGGVLGDGLFRTTSYQLPGLNWYSS 

 AtNAC025_Q8GY42.1                ---PQSSGFHANGVMDTTSSLADHG-------VLRQAFQLPNMNWHS- 

 SNAC1_AIX03023.1                 --------MYSGLDMLPPGDDFYSSLFASPRVKGTTPRAGAGMGMVPF 

 ANAC_ANAC018_Q9C932.1            -YLKTEEEVESSHGFNNSGELAQKGYG---VDSFGYSGQVGGFGFM-- 
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SUPPORTING INFORMATION ON PART IV 

[Supplementary data of Cormier et al. (2015) Improving genomic prediction using a GWAS-based 

method to pre-select marker in multi-environment data. Expected submission: April 2015 and on epistatic 

interactions] 

 
 

Figure S1: Evolution of accuracy variance for predicting the genetic values of NUE and NHI. 

Predictions were assessed using a three-fold design repeated 50 times for each combination of SNP number 

and SNP section rank in MET-GWAS-based ranking. Red arrows highlight the optimum. 
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Figure S2: Significance of the difference in accuracy between the optimum and the other 

combination of section size and section rank. NUE optimum: 1250 SNPs, section rank 1; NHI optimum: 

500 SNPs section rank 3.A Wilcoxon test was performed. Plotted values are -log10(P-value). 

 

 

           NUE                 NHI 
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Figure S3: Significance of the difference in accuracy between the optimum and the other 

combination of section size and section rank for G×E interaction prediction in (1) CV1, (2) CV2, and 

(3) CV3 for (A) NUE and (B) NHI. In CV1 and CV2, predictions were assessed using a three-fold design 

repeated 50 times. In CV3, a four-fold design was repeated 28 times. NUE optimum: 500 SNPs, section 

rank 1; NHI optimum: 250 SNPs, section rank 1.A Wilcoxon test was performed. Plotted values are -

log10(P-value). 
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Figure S4: SNP rank in function of -log10(P). Graphs represent values for both NUE and NHI, for the 

SNP additive effect (αj) and for the most significant interaction between SNPs and ECs (βj). Red points 

represent SNPs that were used at optimum. For βj, -log10(P) start at -log10(0.05) =1.3 as this threshold was 

used to stop adding ECs in the MET-GWAS model (forward approach). 
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Figure S5: Correlation of G × E interactions between environments for NUE and NHI. Values are 

pairwise correlations (r).  

 

 

         

 

Figure S6: Heatmap of Ω the environment covariance matrix based on ECs used to estimated G×E 

interactions in genomic prediction models. 
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Table S1: Comparison of accuracies adding G×E predictions and pre-selecting SNPs. The number of SNPs used to compute in matrices K1 and K2 

(models (6) and (7); See Materials and Methods) are indicated in columns K1 and K2. When all available SNPs or all SNP that were pre-selected based on LD 

were used, K1=K2. r(yijk-ej/gi) and r(yijk-ej/gi+gwij) are prediction accuracies of models (6) and (7), respectively. 

 

 
CV 

 Optimum Pre-select on LD Opt/LD
2 

All SNPs Opt/All
3 

 K1 K2 r(yijk-Ej/gi) r(yijk-Ej/gi+gwij)
a 

K1= K2 r(yijk-Ej/gi) r(yijk-Ej/gi+gwij)
b 

 K1= K2 r(yijk-Ej/gi) r(yijk-Ej/gi+gwij)
c 

 

NUE 

1 1,250 
500 

 

0.53+/-0.07 0.61+/-0.05*** 

2,101 

0.50+/-0.07 0.53+/-0.06** *** 

25,368 

0.48+/-0.06 0.52+/-0.06** *** 

2 
250 

0.63+/-0.02 0.72+/-0.02*** 0.65+/-0.02 0.72+/-0.02*** ns. 0.64+/-0.02 0.71+/-0.02*** ns. 

3 0.61+/-0.07 0.66+/-0.14* 0.63+/-0.07 0.68+/-0.10* ns. 0.63+/-0.07 0.67+/-0.10* ns. 

NHI 

1 500 

250 

0.34+/-0.04 0.44+/-0.04*** 0.19+/-0.06 0.24+/-0.05*** *** 0.22+/-0.05 0.25+/-0.05*** *** 

2 
250 

0.35+/-0.02 0.46+/-0.03*** 0.34+/-0.02 0.41+/-0.03*** *** 0.35+/-0.02 0.41+/-0.03*** *** 

3 0.31+/-0.06 0.36+/-0.12* 0.32+/-0.06 0.34+/-0.12 ns. ns. 0.32+/-0.06 0.34+/-0.12 ns. ns. 

 

a
Result of the Wilcoxon test between r(yijk-Ej/gi) and r(yijk-Ej /gi+gwij)  

b
Result of the Wilcoxon test between the optimum and the use of all SNPs pre-selected based on LD for the complete model 

c
Result of the Wilcoxon test between the optimum and the use of all available SNPs for the complete model 

 
 

***: P-value <0.001 ;  **:  P-value <0.01; *: P-value <0.05;  and ns.: non-significant P-value>0.05 
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Table S2: Description of environmental covariates (ECs) used to predict G×E interactions.  

 

Stress EC Description 

Nitrogen NTA_Max Estimation of the N available as in Cormier et al. (2013) 

 NSupply Total N supply 

 NResidual Residual soil N 

 N_End_Wint N supply at the end of winter 

 N_Z30 N supply at Z30 

 N_Z32 N supply at Z32 

Frost Nbrj_Tmin<-4 Number of days with a minimal temperature < - 4°C 

 Sum_Tmin Sum of daily temperature< - 4°C 

Radiation Deficit_Rg Number of days with global radiation < 1045J/cm² during meiosis +/-5 days 

 Sum_deficit_Rg Sum of global radiation < 1045J/cm² during the all crop cycle 

 Sum_Rg Sum of global radiation during the all crop cycle 

Heat Stress_Tmax>25 Number of days with a maximal temperature > 25°C  

 Sum_Tmax>25 Sum of daily temperature > 25°C 

Drought Sum_Rain Sum of daily rainfall during the all crop cycle 

 Nbrj_P<ETP Number of days with a potential evapotranspiration > rainfall during the all crop 

cycle 

 Moy_NbrjP<ETP Mean of the number of consecutive day with a potential evapotranspiration > 

rainfall during the all crop cycle 

 Mean_DeficitH2O Mean of the cumulative hydric deficit (daily sum of potential evapotranspiration - 

rainfall) during the all crop cycle 

 Thrmq_R Mean of the  sum of temperature >0°C divided by sum of global radiation during 

the all crop cycle 
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Table S3: ECs values by environment. 

 

 
Site_Season VB08 VR09 EM08 EM09 

 
N levels X-100 X X-100 X X-100 X X-100 X 

Nitrogen 

 

NTA_Max 157.31 242.12 172.73 236.49 143.62 205.97 110.9 241.34 

NSupply 150.0 232.5 150.0 250.0 137.0 237.0 80.0 180.0 

NResidual 106 106 30 30 67 67 30 30 

N_End_Wint 0 0 60 60 0 50 0 50 

N_Z30 44.0 66.5 60.0 100.0 70.0 70.0 50.0 50.0 

N_Z32 0 60 0 60 0 50 0 50 

Frost 

 

Nbrj_Tmin<-4 7 7 17 17 7 7 14 14 

Sum_Tmin -5.2 -5.2 -50.5 -50.5 -4.6 -4.6 -59.7 -59.7 

Radiation 

 

Deficit_Rg 1 1 1 1 1 1 2 2 

Sum_deficit_Rg 89 636 89 636 90 254 90 254 89 943 89 943 96 572 96 572 

Sum_Rg 300 508 300 508 339 037 339 037 320 091 320 091 320 696 320 696 

Heat Stress_Tmax>25 15 15 31 31 20 20 23 23 

Sum_Tmax>25 24 24 102 102 39 39 58 58 

Drought 

 

Sum_Rain 487 487 525 525 493 493 390 390 

Nbrj_P<ETP 150 150 152 152 163 163 173 173 

Moy_NbrjP<ETP 2 2 2 2 3 3 3 3 

Mean_DeficitH2O -140 -140 -109 -109 -97 -97 -54 -54 

Thrmq_R 88 88 105 105 94 94 96 96 
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Supplementary data 10: Example of “validated” epistatic interaction. The case of SUF4 and LD 

 

 



 

 

 

  



 

 

 

 



 

 

 

NITROGEN USE EFFICIENCY IN BREAD WHEAT (T. AESTIVUM L.): BREEDING & GENE 

DISCOVERY - Fabien Cormier - 27 mai 2015 

 

 

 

SUMMARY: In a context of fertiliser reduction, breeding for enhanced nitrogen use efficiency in bread wheat 

is necessary. This PhD thesis resulting from private-public collaboration between the French National Institute 

for Agricultural Research and Biogemma aimed providing necessary tools. Analyses were conducted using a 

dataset of 225 commercial varieties genotyped with 24K SNP and tested in eight combinations of year, 

location, and nitrogen regimes. We showed that even if past selection increased nitrogen use efficiency at high 

and moderate nitrogen regimes, genetic progresses need to be accelerated and better balanced between traits.  

This could be achieved by mixing phenotypic and marker assisted selections. In this sense, we developed a 

method to define quantitative trait locus from genome-wide association study: 333 chromosomal regions 

involved in 28 NUE-related traits have been identified. The NAM-A1 gene was located in one of these regions 

and its natural variants were characterized. We also showed that genomic selection could be improved by pre-

selecting SNP based on their significance in a multi-environmental genome-wide association study. Networks 

of epistasis interactions were also studied and an interesting sub-network was identified. Results and methods 

are discussed regarding breeding and gene discovery strategy. Further investigations and improvements are 

suggested.   

 

Keyword: Epistasis, GWAS, Genomic selection, NAM-A1, Nitrogen, Quantitative genetics, Triticum 

aestivum (L.), Wheat 

 

 

 

RESUME: Dans un contexte de réduction des intrants agricoles, la création de variétés de blé qui utilisent 

l’azote de manière plus efficiente est aujourd’hui nécessaire. Cette thèse, issue d'un partenariat public-privée 

entre l'institut nationale de la recherche agronomique et Biogemma, avait pour but d'apporter des outils 

nécessaires à la création de variétés répondant à cette exigence. Pour ce faire, nous avons analysé 225 variétés 

commerciales génotypées avec 24K SNP et testées dans huit combinaisons d’année, lieu et régime azoté. Nous 

avons montré que même si la sélection a amélioré l’efficience d’utilisation de l’azote en condition optimale et 

sub-optimale, ce progrès génétique doit être accéléré et mieux réparti entre les différents traits. Nous 

proposons pour cela de mixer sélection phénotypique et sélection assistée par marqueurs. Dans ce sens, nous 

avons développé une méthode pour définir les régions chromosomiques associées à nos 28 traits. Parmi les 

333 régions identifiées, nous avons notamment localisé le gène NAM-A1 et avons pu caractériser ses variants 

naturels.  Nous avons aussi montré que la sélection génomique pourrait être plus efficace si les SNP étaient 

présélectionnés en fonction de leurs significativités en génétique d’association multi-environnementale. Les 

réseaux d’interactions épistatiques furent aussi étudiés, mettant en évidence un sous-réseau particulièrement 

intéressant. Nos résultats et méthodes sont discutés au regard des stratégies d’amélioration variétale et de 

découverte de gènes. Des pistes de recherche complémentaires et des améliorations ont aussi été suggérées. 

 

Mots-clés: Azote, Blé, Epistasie, Génétiques quantitative, GWAS, NAM-A1, Sélection génomique, 

Triticum aestivum (L.) 


