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Abstract 

 

The Hindu-Kush Karakoram Himalaya (HKH) region is the largest snow and ice reservoir on the 

planet outside the Polar Regions. In the HKH region the mass balance and meteorological 

observations are sparse and the historical knowledge is mainly concentrated on snout fluctuation 

records. Hitherto, the understanding of glacier-climate relationship is poor in the HKH region. 

Therefore, the goal of the present work is to improve the understanding of glacier-climate 

relationship on a representative glacier Chhota Shigri’ in the western Himalaya.  
 A number of in-situ measurements concerning mass balances, surface velocity, ice 

thickness and meteorology have been collected during and before the present PhD work since 

2002. These data sets were first analyzed to understand the glacier behaviour and then used in 

the models to understand the glacier relationship with climatic variables. Between 2002 and 2013, 

glacier showed a mass wastage/unsteady-state conditions with a cumulative mass loss of –6.45 m 

w.e. Further, the ice flux analysis over 2002-2010 suggested that the glacier has experienced a 

period of steady-state or slightly positive mass balance during the 1990s. 

We first reconstructed the annual and seasonal mass balances using a degree day model 

from simple meteorological variables, precipitation and temperature. This reconstruction 

allowed us to examine the mass balances between 1969 and 2012. Since 1969, Chhota Shigri 

showed a moderate mean mass wastage at a rate of − .3  m w.e. a-1. A period of steady-state 

between 1986 and 2000, already suggested by ice flux analysis and geodetic measurements, was 

confirmed. The mass balance evolution of this glacier revealed that the mass wastage is recent 

and provide a very different pattern than that of usually found in the literature on western 

Himalayan glaciers. The analysis of decadal time scale mass balances with meteorological 

variables suggested that winter precipitation and summer temperature are almost equally 

important drivers controlling the mass balance pattern of this glacier. Second, in order to 

understand the detailed physical basis of climatic drivers, a surface energy balance study was 

also performed using the in-situ meteorological data from the ablation area of Chhota Shigri 

Glacier. Net all-wave radiation was the main heat flux towards surface with 80% contribution 

while sensible, latent heat and conductive heat fluxes shared 13%, 5% and 2% of total heat flux, 

respectively. Our study showed that the intensity of snowfall events during the summer-

monsoon is among the most important drivers responsible for glacier-wide mass balance 

evolution of Chhota Shigri Glacier. However, due to the lack of precipitation measurements and 

the strong precipitation gradient in this region, the distribution of precipitation on the glacier 

remains unknown and needs further detailed investigations.  

Keywords: Himalaya, Glacier, Mass Balance, Steady-State, Energy Balance, Summer-Monsoon, Albedo.
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Résumé 

 

La région de l’Hindu-Kush Karakoram Himalaya (HKH) est la plus grande région englacée de la 

planète, exceptée les calottes polaires. Dans cette région, les mesures météorologiques et de bilans 

de masse sont sporadiques et les observations glaciologiques concernent essentiellement les 

mesures de fluctuations des fronts des glaciers. Ainsi, la réponse de ces glaciers aux changements 

climatiques est très mal connue. Le but de ce travail de thèse est d’améliorer la connaissance de 
des relations entre les variables météorologiques et les bilans de masse glaciaires à partir de 

l’étude du glacier Chhota Shigri situé dans l’Ouest de l’Himalaya.  
De nombreuses mesures in-situ de bilans de masse, de vitesses d’écoulement, d’épaisseurs 

et de météorologie ont été réalisées  depuis  et au cours de ce PhD. L’analyse de ces 
observations permet de comprendre le comportement du glacier au regard des fluctuations 

climatiques. Entre 2002 et 2013, nos observations indiquent une perte de masse cumulée 

équivalente à une lame d’eau de - . 5 m. Par ailleurs, l’analyse des observations des flux de glace 

suggèrent que le glacier a connu un état proche d’un état d’équilibre avec des bilans nuls ou 
légèrement positifs au cours des années 1990.  

Nous avons reconstitués les bilans de masse annuels et saisonniers depuis 1969 en 

utilisant des variables météorologiques. Depuis 1969, les bilans de masse sont faiblement négatifs, 

équivalents à - .3  m d’eau par an. Cette reconstitution montre que le glacier était proche de l’état 
d’équilibre entre 1  et , ce qui confirme les résultats obtenus à partir de l’analyse des flux 
de glace et des mesures géodésiques. Cette étude montre également que la perte de masse 

glaciaire est récente et révèle des fluctuations de bilans de masse avant l’année  très 
différentes de ce que l’on trouve dans la littérature. L’analyse des bilans de masse à l’échelle 
décennale révèle que les précipitations hivernales et les températures estivales jouent un rôle 

sensiblement équivalent. Afin de comprendre plus en détail les variables climatiques qui 

contrôlent le bilan de masse, une étude a été conduite à partir des flux d’énergie en surface à 
l’aide de stations météorologiques sur le glacier et à proximité du glacier. Le bilan net de toutes 
les longueurs d’onde contrôlent  % des flux d’énergie entrant en surface alors que les flux de 

chaleur sensible, latente et conductif contribue pour 13, 5 et 2 % respectivement du flux entrant 

total. Par ailleurs, notre étude montre que les événements de fortes précipitations au cours de la 

période de mousson jouent un rôle important sur l’évolution des bilans de masse. Néanmoins, à 
cause du manque de données de précipitation dans cette région et le fort gradient régional, la 

répartition des précipitations sur le glacier reste mal connue. 

 

   

Keywords: Himalaya, Glacier, Bilan de masse, Etat d’équilibre, Bilan d’énergie, Mousson, Albedo.
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CHAPTER 1 

Current knowledge of glaciers in the region of 

Hindu-Kush, Karakoram and Himalaya 
 

 

 

The Hindu-Kush Karakoram Himalaya (HKH) region comprises the biggest mountain range on 

the Earth and is home to the highest peaks of the world. This mountain range, stretching east to 

west over 2,500 km, covers a glacierized area of almost 40,800 km2 (Bolch et al., 2012). The HKH 

region, with the largest snow and ice cover in the world outside the Polar Regions and being the 

birthplace of some of the largest rivers in Asia, is aptly called as the Third Pole  or fiater Tower 
of Asia . Glacierized basins form the headwaters of almost all the major rivers in the HKH 

mainland (Armstrong, 2010). The glaciers of the HKH region contain some of the longest and 

largest mid-latitude/sub-tropical glaciers of the world (Sarikaya et al., 2012) such as Siachen, 

Baltoro, Gangotri glaciers. The important snow and ice reserves of the HKH influence the flow of 

several rivers and streams that converge into the three foremost river systems of the region: the 

Brahmaputra in eastern, the Ganges in central and the Indus in western part of the HKH region 

(Fig. 1.1).  

1.1 Controversy about the future of the Himalayan glaciers 

The contradictory statement about the Himalayan glaciers that the likelihood of them disappearing 

by the year 2035 or perhaps sooner is very high if the Earth keeps warming at the current rate  in the 

Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (Parry et al., 2007) 

provoked interests in scientific community and highlighted important research gaps and areas 

where scientific investigation is critically important. However, emerging evidence advocates that 

such statements were, at best, exaggerated. At least part of the problem is lack of the data that 

fostered the controversies. The contradictory statement of disappearing Himalayan glaciers  by 
2035 was found to be wrong of course, since it requires 25 times greater loss of mass over the 

period 1999 to 2035 compared to the estimated rate over 1960 to 1999 and error was originated 

from a typing mistake of 35  Cogley et al., 2010). Nevertheless some studies reported high 

rates of retreat of the Himalayan glaciers over the last decades (Bolch et al., 2012). Such trends are 

commonly based on a few sporadic and short periods, and they might not capture the complex 

behavior of glacier-climate relationship. 
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Figure 1.1. Map of the Hindu-Kush Karakoram Himalayan region showing the location of three major 

river basins. The base map comes from Google Earth, the basin boundaries are provided by International 

Centre for Integrated Mountain Development (ICIMOD) and the boundary shape is provided by Dr. Tobias 

Bolch (University of Zurich). The balloons A-V show the location of the glaciers surveyed by glaciological 

method in the whole HKH region. 

 

1.2 Importance of glaciers in the HKH region 

The demand for global fresh water is continuously increasing due to the growing population and 

industrialization. The role of snow and ice in high mountain areas of the world as an important 

source of freshwater has been highlighted by several studies (e.g., Kaser et al., 2010; Immerzeel 

et al., 2010). Rivers originating in the HKH region are among the most melt-water dependent 

river systems on the Earth, yet large human populations depend on their resources downstream 

(Schaner et al., 2012). Nevertheless the contribution of melt-water to measured discharge 

decreased substantially towards lowland locations (Racoviteanu et al., 2013). The HKH glaciers 

play a crucial but irregular role with varying contribution of glacier and snow melt to the total 

runoff in the water supply of Asia's main river basins (Immerzeel et al., 2012a). Lutz et al. (2014), 

covering whole of the HKH region (based on 1x1 km grid, daily time step model), showed that 

in the upper Indus Basin (mean of all 1x1 km grids), stream flow is dominated by glacier melt 

water, contributing almost 40.6% of the total runoff while in upper Ganges and upper 

Brahmaputra basins contribution is much lower with values of 11.5 and 15.9%, respectively. The 

relative percentage of glacier melt water to the total runoff is an indicator of vulnerability of the 

river systems to the future climate changes. Thus the future evolution of the glacier melt water is 
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more crucial in the upper Indus Basin than Ganga and Brahmaputra basins. Furthermore, the 

increasing amount of total runoff is directly linked with the natural hazards such as flood, Glacial 

Lake Outburst Flood (GLOF) down to the river basins; therefore, monitoring of the HKH glaciers 

is a key issue of the present day.  

1.3 Climate dynamics and glacier regimes 

The HKH region experiences diverse climate and hydrology from east to west that are controlled 

by the Indian Summer Monsoon (ISM) and Mid-Latitude Westerlies (MLW) circulation systems, 

which transport precipitations to this region in the summer (May to October) and winter 

(November to April) periods, respectively. These circulation systems are controlled by the Inter-

Tropical Convergence Zone (ITCZ) (Bookhagen and Burbank, 2010). The high Sun inclination 

during the summer heats up the Indian subcontinent considerably, generating low pressure area 

over the northern and central Indian subcontinent. Consequently, to fill this void, the ISM arises 

and brings moisture from the Indian Ocean towards the HKH range in the north. The HKH range 

acts as a barrier to the monsoon winds, causing maximum precipitation on the South slopes of 

the Himalaya from June to September (Shrestha et al., 1999; Gautam et al., 2009) with an east-west 

gradient in monsoon intensity, providing higher summer precipitation amounts in the eastern 

and central Himalaya (eastern Tibetan plateau, Nepal and Garhwal Himalaya) than in the 

western Himalaya, Hindu-Kush and Karakoram ranges. In contrast, during the winter, the ITCZ 

moves southwards due to the changing insolation and westerly winds, out-blowing from dry 

source areas with moisture from the Mediterranean, Black, and Caspian seas. Therefore, 

depending on their geographical situation and regional orography, the glaciers in the HKH 

region are subjected to different climatic regimes.  

Three climatic zones can be distinguished based on the relative amount of precipitation: 

(1) the monsoon influenced  zone in the eastern and central Himalaya, with maximum 

precipitation amounts in the summer, characterized by "summer-accumulation" type glaciers 

(Ageta and Higuchi, 1984). These glaciers experience maximum accumulation and ablation in the 

summer due to high monsoonal precipitation and temperature (Wagnon et al., 2013); (2) the 

monsoon-arid transition zone  (western Himalaya, Lahaul-Spiti and Ladakh), receiving 

precipitation from monsoon in the summer and MLW in winters (Bookhagen and Burbank, 2010) 

and (3) the snow dominant alpine region  Hindu-Kush and Karakoram), with maximum 

precipitation during the winter (Thayyen and Gergan, 2010), characterized by winter-

accumulation-type  glaciers Benn and Owen, 1998). Because of the strong topography of the 

HKH region, local climate might influence the atmospheric circulations. Through orographic and 

leeward effects, extremely dry inner valleys can co-exist to adjacent mountain slopes receiving 

much more precipitation (Eriksson et al., 2009). 
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1.4 Evolution of climate in the HKH region 

1.4.1 Temperature changes 

Given the dependency of a large population of the world on the HKH river systems, there is a big 

concern about the impact of climate change on regional cryosphere. Over the last century, 

Bhutiyani et al. (2007) and Dash et al. (2007) found a warming of 1.60 oC in the northwest and 0.98 

oC in western Himalayan regions, respectively. Dash et al. (2007) also indicated an accelerated 

warming after 1972 in the northwest and western Himalayan regions. On a long‐term climate 

scale, microwave satellite measurements of tropospheric temperature from 1979 to 2007 also 

indicated an accelerated annual mean warming over the whole Hindu-Kush Himalayan region 

(0.21±0.08 °C/decade) with the maximum warming localized over the western Himalaya 

(0.26±0.09 °C/decade) (Gautam et al., 2010). This enhanced tropospheric warming has been 

observed mainly in the pre-monsoon (April- June) and was associated with radiative heating 

from increased absorbing (coarse) dust aerosols in the atmosphere over the Indo-Gangetic Plain 

(Gautam et al., 2010). In the upper Indus Basin, Fowler and Archer (2006) reported increasing 

trends in winter temperature between 1961 and 2000 with varying warming rates of 0.07-0.51 

oC/decade in annual mean temperature. In the Karakoram region, Dimri and Dash (2010) found 

a decrease in winter temperatures in the accumulation zone and an increase in winter 

temperatures in the ablation zone of the Siachen Glacier between 1984 and 2006. This contrast 

over the same glacier gives rise to the hypothesis that, in sensitive ecoregions such as glacial 

regions, changes in temperature are more likely to be governed by local dynamics than by 

regional or global trends (Singh et al., 2011). In conclusion, temperature trends over the HKH 

region consistently show a warming trend in agreement with Fourth Assessment Report of the 

IPCC (IPCC, 2007) which stated that the global mean surface air temperature is increased by 

0.74°C over the last century. Nevertheless, the rate of temperature change in the HKH region 

varies in different periods depending on the climatic regions and seasons.  

1.4.2 Precipitation changes 

It is expected that changes in temperature due to climate change in the atmosphere might lead to 

changes in the pattern of precipitation. However, physical processes influencing precipitation are 

much more complex and give rise to large variability in precipitation trends in different regions. 

For example, Bhutiyani et al. (2010) reported a decreasing trend in average annual and monsoon 

rainfall in the northwest Indian Himalaya from 1866 to 2006. Similarly, Dimri and Dash (2012) 

reported decreasing trends in winter precipitation (December-February) in the western Himalaya 

for 1975-2006; however the trends were not consistent. This inconsistency is due to the highly 

variable precipitation events, which are difficult to detect in such terrain or due to sparse network 

of observing stations in the western Himalaya. In contrast to the Himalayan range, increasing 

trends in winter precipitation were reported from 1961 to 1999 in the upper Indus Basin 

(Karakoram) at Skardu and Dir stations, with increase of 18 and 16% per decade, respectively 
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(Fowler and Archer, 2005). The contrasting behaviour of precipitation trends over Karakoram can 

be explained by the steep regional orography that plays dominant role in precipitation forming 

process than the large scale circulation (Dimri, 2004). 

1.5 Glacier surface mass balance processes  

1.5.1 Mass balance of a glacier 

Changes in glacier mass are a key subject of glacier monitoring, providing important information 

for assessing climatic changes, water resources and sea level rise (Zemp et al., 2013). Mass gain 

(accumulation) or loss (ablation) can take place on the glacier surface, within the body of the 

glacier, or at the glacier-bedrock interface (Kaser et al., 2003). A glacier accumulates mass from 

different sources: snowfall, redistribution of snow by wind, avalanches, re-sublimation, 

condensation or freezing of rain/melt water percolating inside the glacier. With the passage of 

time, the accumulated snow transformed first to firn (density between 400 and 830 kg m-3) and 

then ice (density between 830 and 910 kg m-3) (Cuffey and Paterson, 2010). A glacier also loses 

mass through different processes called ablation that includes melting, snow drift, calving and 

sublimation. Mass changes on the glacier surface dominate the mass balance (MB) and the en-

glacial and sub-glacial processes are, in most cases, ignored (Cuffey and Paterson, 2010). On the 

upper reaches of the glacier, the accumulation processes dominate while on the lower part, the 

ablation processes take over. These two zones are separated by a boundary where the annual 

balance is zero and is defined as the equilibrium line. The altitude of the equilibrium line (ELA, 

Equilibrium Line Altitude) can vary from one year to another. ELA can be measured directly or 

estimated from remote sensing as the altitude of the snowline at the end of the ablation period 

(Rabatel et al., 2005). 

 Glacier-wide annual mass balance (Ba) can be defined as the difference between the 

accumulation and ablation (Cuffey and Paterson, 2010). If the sum of ablation is equal to that of 

accumulation, the glacier is in balance state. The mass changes are converted in water equivalent 

meters (m w.e.) to make an easy comparison amid glaciers. The surface Ba of a glacier directly 

reflects signal of all meteorological processes affecting the glacier’s health. The range of physical 
processes involved is complex and can only be described by the surface energy balance studies. 

1.5.2 Hydrological year and seasonal mass changes 

The hydrological/MB year is defined as the time between one minimum of glacier mass to the 

next, which, in mid-latitudes, occurs in autumn. Ideally, Ba of a glacier should be monitored at 

the beginning of each hydrological year but this is almost impossible in the HKH region because 

of harsh conditions that make the access difficult. Practically, Ba is calculated over a period 

slightly differing from the hydrological year. In the HKH region, a seasonal time resolution 

corresponding to winter and summer seasons is also used to determine the important climatic 

factors driving the annual Ba (Wagnon et al., 2013; Azam et al., 2014a).  
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1.5.3 Surface energy balance of a glacier  

The energy balance study over a glacier surface concerns the interaction between atmosphere and 

the surface (Garratt, 1999). Figure 1.2 is the pictorial representation of different processes over a 

glacier surface. Assuming a lack of horizontal energy flux transfers, for a unit of volume of a 

glacier (a depth from the surface where no significant heat fluxes are found) and for a unit of time, 

the surface energy balance can be expressed by Eq. 1.1 (Oke, 1987, p. 90):  

 SWI − SWO + LWI − LWO+ + LE + + � − surface = 0               (1.1) 

 

Where SWI, SWO, LWI and LWO are the short-wave incoming, short-wave outgoing, 

long-wave incoming and long-wave outgoing radiation fluxes, respectively. H and LE are the 

sensible and latent turbulent heat fluxes, respectively. G is the conductive heat flux in the 

snow/ice and P is the heat supplied by precipitation. Fsurface is the net heat flux available at glacier 

surface. By convention all the fluxes (W m-2) towards the surface are taken as positive and vice-

versa, except for the outgoing radiation terms that are kept positive, but assigned a minus sign, 

because they are always directed away from the surface. The details about surface energy balance 

can be found in Wagnon et al. (1999) and Favier et al. (2011). 

 

 

Figure 1.2. The processes determining the energy flux at the glacier-atmosphere interface. 
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1.6 Methods for estimating the mass balance  

There are several methods to determine the mass changes of a glacier or glacierized area over a 

specific period. All the methods provide uncertain results; therefore, the best approach is to use 

more than one method (Cuffey and Paterson, 2010). Generally the four following types of 

methods have been used worldwide:   

1.6.1 Glaciological method 

The glaciological or direct method is the conventional way of measuring Ba of a glacier, and it 

involves using stakes in the ablation zone and coring or snow pits in the accumulation zone 

(Østrem and Brugman, 1991). In ablation zone, the stake emergence is measured whereas in 

accumulation zone, both the density and thickness of the annual accumulation layer are 

measured. On temperate glaciers, the bottom of the annual accumulation layer can be located 

either by visual inspection of the dirt layer that corresponds to last summer surface or by locating 

the artificially colored layer of the preceding year. The latter method provides a better accuracy 

in the measurements (Wagnon et al., 2013). In the ablation zone, a network of stakes drilled in the 

ice is used. The distance between the top of the stake and the glacier surface is measured at the 

beginning and end of the hydrological year. The surface height difference at each stake provides 

the thickness added or removed that is converted into point mass change (m w.e.) by multiplying 

the density of snow/ice. Extrapolation of these accumulation and ablation point measurements 

over the entire glacier area gives rise to the glacier-wide mass balance, Ba according to Eq. 1.2:  

 

                           � = 1� ∫ � . ��          1. ) 

 

where bi (kg m-2) and si (m2) are the altitudinal MB and altitudinal surface area at different 

elevation of the glacier, respectively. Since the glaciological method needs an enormous amount 

of man power and is quite challenging specially in the harsh terrain of the HKH region, the chosen 

glaciers are, generally, small in size that raises the question of their regional representativeness 

(Vincent et al., 2013).  However, it still provides valuable information on the temporal variability 

of Ba if the monitoring is continuous over several years (Vincent et al., 2004). The error attributed 

to Ba measured by the glaciological method can be estimated following Thibert et al. (2008), who 

conducted a variance analysis on all potential sources of errors related to either the measurements 

themselves (ice/snow density, core length, stake height determination, liquid-water content of the 

snow, snow height) or the sampling network (i.e. density and representativeness of the stake 

network). The resulting error is therefore specific for each glacier and is for instance equal to ±0.28 

w.e. a-1 on Mera Glacier (Wagnon et al., 2013) or ±0.40 m w.e. a-1 on Chhota Shigri Glacier (Azam 

et al., 2012). 
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1.6.2 Geodetic Method 

The geodetic method, also called photogrammetric or volumetric method, involves comparing 

two glacier surface elevation datasets from topographic maps or digital elevation models to 

determine the volume change over the considered time interval (generally 5-10 years) for a single 

glacier or a large glacierized area. By applying the density of snow/ice at different parts of the 

glacier, the volume change can be converted into mass change. Geodetic method is now 

frequently used to calculate the elevation changes and regional MBs of the glaciers world-wide 

(e.g., Berthier et al., 2007; Bolch et al., 2011; Kääb et al., 2012; Gardelle et al., 2013). The main 

drawback of the geodetic method is that it doesn’t provide the annual or seasonal glacier surface 

mass balances, which are necessary to understand the glacier-climate relationship. However, this 

method is adequate at regional scales, and it overcomes the problem of representativeness of a 

single glacier for large regions. The geodetic method is a useful complementary method to the 

glaciological method since it covers a larger time span (e.g., 10 years) and in turn can be used to 

cross check or correct the traditional glaciological results (Thibert et al., 2008; Zemp et al., 2013). 

1.6.3 Hydrological method 

By neglecting the amount of ice or snow lost by sublimation and evaporation, the glacier mass 

balance Bn,H can be calculated from the difference between precipitation and discharge at the 

outlet of basin (Sicart et al., 2007) according to Eq. 1.3: 

 �n,H = − 1� [� − − e ]                        (1.3) 

 

where S is the glacier surface area (m2), Sb is the total surface area of the basin (m2) and ce 

is the runoff coefficient of the surface not covered by the glacier. R (m a-1) is the average of the 

storage rain gauges in the basin while D (m3 a-1) is the discharge monitored at the basin outlet. 

Estimation of MB of a glacier by this method is quite challenging, as the adequate sampling of 

precipitation and discharge are difficult to record throughout the year (Cuffey and Paterson, 

2010). Indeed, precipitation in high-elevation catchments is one of the largest unknown of 

mountain hydrology because it is highly variable and observations are lacking (Immerzeel et al., 

2012b). The spatial variability of precipitation is even harder to assess at large basin scale. 

1.6.4 Gravitational method  

This method has recently been developed with the introduction of the Gravity Recovery and 

Climate Experiment (GRACE) program in 2002. GRACE satellite mission has provided monthly, 

global gravity field solutions since its launch allowing users to calculate mass variations at the 

Earth’s surface. GRACE has been used to monitor the MB of glaciers and ice caps, as well as of 

Antarctica and Greenland (Luthcke et al., 2008; Riva et al., 2010; Jacob et al., 2012; Gardner et al., 

2013). Nevertheless GRACE provides the mass changes over large areas, it has large uncertainties 
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(Jacob et al., 2012; Gardner et al., 2013), and therefore, this method cannot be used for individual 

glacier.  

1.7 Glacier changes in the HKH region 

The observed worldwide glacier retreat over the 20th century is a strong indication of global 

warming (Dyurgerov and Meier, 2000). Existing knowledge of the glacier changes in the HKH 

region is limited by the fact that most of the reports are of fluctuations in snout position and the 

Ba observations are scarce. The main reason of insufficiency of Ba data is the data collection that 

is often challenging because of vast glacierized area, high altitude, rugged terrain, extreme 

climatic conditions, political issues of boundaries, etc. Fluctuations of a glacier are not only a 

reaction to climatic forcing (e.g., Leysinger et al., 2004; Oerlemans, 2005; Lüthi and Bouder, 2010; 

Leclercq and Oerlemans, 2012), but also to specific topographical features such as the length, area, 

glacier slope, glacier bedrock slope, surroundings, and the type of glacier (debris-covered or 

clean). Consequently, extracting the climate signal from glacier fluctuations is not straight-

forward and the glacier length change (i.e. the advance or retreat) is an indirect, delayed and 

filtered signal to a change in climate. On the contrary the glacier Ba (i.e. the change in 

thickness/volume) is the direct and un-delayed response to the annual atmospheric conditions 

(Haeberli and Hoelzle, 1995). Glacier length change records have been used to infer Ba variations 

in several studies (e.g., Klok and Oerlemans, 2003; Steiner et al., 2008). Recently Lüthi et al. (2010) 

introduced a novel method to infer the glacier volume changes from glacier length records 

applying their method on 13 selected glaciers in the Swiss Alps.   

1.7.1 Glacier fluctuations over the last 170 years 

Purdon (1861) and Godwin-Austen (1864) started surveying and mapping the Himalayan glaciers 

in the early nineteenth century using the plane-table survey and heavy theodolites. Since the 

beginning of the 20th century, Survey of India (SOI) together with Geological Survey of India (GSI) 

produced topographical maps at different scales for several glaciers using plane table, terrestrial 

photogrammetry and aerial photographs combined with field work (e.g., Longstaff, 1910; Auden, 

1937; Chaujar, 1989; Survey of India, 2005). However these maps are not in the public domain 

and some contain errors due to the time of the year when the survey had been conducted leading 

to some erroneous glacier delineations in case of snow cover (Bhambri et al., 2009). Glacier maps 

constitute valuable records of glacio-geomorphic features (Ashwell, 1982). Moreover, in second 

half the 20th century the revolutionized introduction of satellites provided images of glacierized 

areas around the globe. Comparison of these latest satellite images with old maps allows to 

quantify the glacier snout fluctuations, area, volume or mass changes (e.g., Berthier et al., 2007; 

Bolch et al., 2008; Kääb et al., 2012; Bahmbri et al., 2013; Gardelle et al., 2013; Racoviteanu et al., 

2014).  
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Table 1.1. Snout fluctuation records for some selected glaciers from the HKH region. See Fig. 1.3 for 

recession evolution.  

Glacier 

 

Basin 

 

Period 

 

No. of 

observations 

Recession 

rate (m a-1) 

References 

 

Eastern Himalaya 

Rathong Sikkim  1976-2005 4 -18.2 Raina (2009) 

S.Lohank Sikkim  1962-2008 5 -42.2 Govindha Raj et al. (2013) 

Zemu Sikkim  1909-2005 5 -9.0 Raina (2009) 

Central Himalaya 

Khumbu Dudh Koshi Basin  1960-2006 5 -18.3 Bajracharya and Mool (2009) 

Imja Dudh Koshi Basin 1960-2006 5 -60.5 Bajracharya and Mool (2009) 

Rongbuk Qomolangma 1966-2004 5 -8.8 Jiawen et al. (2006) 

East Rongbuk Qomolangma  1966-2004 5 -6.0 Jiawen et al. (2006) 

AX010 

 

Shorong Himal  

 

1978-2004 

 

9 

 

-6.7 

 

Fujita et al. (2001a);  

Shrestha and Shrestha (2004) 

Rikha Samba Hidden Valley   1974-1999 4 -12.0 Fujita et al. (2001b) 

Shunkalpa  

 

Garhwal Himalaya 

 

1886-1957 

 

4 

 

-7.3 

 

Cotter and Brown (1907);  

Jangpangi (1958) 

Pindari Garhwal Himalaya 1845-2010 8 -18.7 Tewari (1973); Bali et al. (2013)  

Gangotri 

 

 

Garhwal Himalaya 

 

 

1842-2010 

 

 

10 

 

 

-11.0 

 

 

Auden (1937); Naithani et al.  

(2001); Kargel et al. (2011);  

Bhambri et al. (2012)  

Chaurabari Garhwal Himalaya 1962-2010 10 -6.8 Dobhal et al. (2013) 

Milam 

 

Garhwal Himalaya 

 

1849-2006 

 

9 

 

-17.0 

 

Cotter and Brown (1907); Mason 

(1938); Govindha Raj (2011) 

Tipra  Garhwal Himalaya  1962-2008 4 -14.4 Mehta et al. (2011) 

Western Himalaya 

Bara Shigri Lahaul-Spiti  1906-1995 4 -29.8 GSI (1999) 

Chhota Shigri Lahaul-Spiti  1962-2010 3 -7.0 GSI (1999); Azam et al. (2012) 

Gangstang Lahaul-Spiti  1963-2008 3 -29.7 Sangewar (2011) 

Kolahoi Jhelum Basin  1857-1961 3 -15.7 Odell (1963) 

Gepang Gath Lahaul-Spiti  1965-2012 6 -19.7 Mukhtar and Prakash (2013) 

Hamtah Lahaul-Spiti  1980-2010 5 -16.8 Pandey et al. (2011) 

Raikot Nanga Parbat  1934-2007 10 -2.8 Schmidt and Nusser (2009) 

Karakoram 

Siachen Karakoram 1862-2005 7 1.5 Ganjoo (2009) 

Biofo Karakoram 1850-2020 13 -8.6 Hewitt (2011) 

Minapin Karakoram 1887-2002 16 8.6 Hewitt (2011) 

Central Rimo Karakoram 1930-2011 6 -21.0 Bhambri et al. (2013) 

Hispar Karakoram 1892-2004 7 -39.0 Hewitt (2011) 

Aktash Karakoram 1974-2011 9 17.0 Bhambri et al. (2013) 

Panmah Karakoram 1855-2010 5 0.1 Hewitt (2011) 

Baltoro Karakoram 1855-2010 13 -2.4 Hewitt (2011) 
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Historical records of glacier fluctuations in the HKH region dates back to last 170 years. 

The main longest records concerning the glacier fluctuation come from mid-nineteen century for 

Milam (Cotter and Brown, 1907), Gangotri (Auden, 1937), Pindari (Cotter and Brown, 1907), 

Siachen (Ganjoo, 2010) and Baltoro (Hewitt, 2011) glaciers. Here, an up-to-date compilation of 

glacier fluctuations in the HKH region is made. Table 1.1 and Fig. 1.3 show some of the longest 

studies for snout fluctuation in the whole HKH region.  

 

 
Figure 1.3. The recession evolution for some selected glaciers in the HKH region over the last 170 years.  
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Several studies involving field based and satellite imagery reported that a majority of 

glaciers in the Himalayan range are retreating (e.g., Kulkarni et al., 2007; Bajracharya and Mool, 

2009; Raina, 2009; Sangewar, 2011; Panday et al., 2011; Kamp et al., 2011). Glacier retreat (Fig. 1.3) 

seems to be consistent with increasing temperature trends reported in other studies (e.g., Shrestha 

et al., 1999; Yang et al., 2006; Dash et al., 2007; Bhutiyani et al., 2007; Immerzeel, 2008; Singh et al., 

2008; Dimri and Dash, 2012) and decreasing precipitation trends (e.g., Bhutiyani et al., 2010; Dimri 

and Dash, 2012) over the Himalayan range. In contrast to the Himalayan glaciers, a complicated 

picture emerges from the Karakoram (west to the Himalaya) glaciers (Fig. 1.3) where large, often 

rapid, advances and retreats occurred, more or less out of phase with one another (Hewitt, 2011; 

Bhambri et al., 2013). The climatic conditions which make Karakoram glaciers different from the 

Himalayan glaciers could be attributed firstly to extreme vertical topography (300 m/km), that is 

exceptional even in comparison to the Himalaya (Mayewski and Jeschke, 1979), that enhances 

precipitation in the source area, and secondly to the extensive/thick debris cover of most of the 

glaciers (Hewitt, 2005; Scherler et al., 2011) that reduces the ablation. Several studies also reported 

cooler summers, greater summer cloudiness, snow covers and decreasing trends in maximum 

and minimum temperatures (Fowler and Archer, 2005; Shekhar et al., 2010; Scherler et al., 2011). 

These conditions can also reduce the average ablation rates or the duration of the ablation season 

(Hewitt, 2011). 

1.7.2 Mass Balance changes 

1.7.2.1 Mass Balance changes at glacier scale  

Table 1.2 and Fig. 1.4 present an up-to-date compilation of all the published annual Ba data to 

overview glacier changes in the HKH region. Most of the work has been done using glaciological 

method with the exception of Langtang (Tangborn and Rana, 2000) and Siachen (Bhutiyani, 1999) 

glaciers where MBs were calculated by temperature index and hydrological methods, 

respectively. Chhota Shigri Glacier Ba has been observed using both the glaciological and 

temperature index methods since 2002 and 1969, respectively (Wagnon et al., 2007; Azam et al., 

2012 & 2014a). In the HKH region, Ba data series are mainly reported from Indian (covering 

western as well as parts of central and eastern Himalaya) and Nepalese Himalaya. To date, no 

documentation about surface Ba is available from the Hindu-Kush and Karakoram regions. 

However, in the Himalaya, several Ba studies were started during the seventies but were 

discontinued after some years. The field based Ba data from the HKH is greatly underrepresented 

considering the relative large glacierized area in this mountain range in comparison to other 

regions. Only 22 glaciers, covering an area of ~110 km2 out of 40,800 km2 of the total glacierized 

area of the HKH region, have been surveyed. Most of the glaciers in the HKH region are in 

recession.  
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Table 1.2. Glacier-wide mass balance observations from the HKH region. 

Glacier name 

 

Location 

 

Area 

(km2) 

Period 

 

Mean Ba 

(m w. e. a-1) 

References 

 

Eastern Himalaya 

1. Changmekhangpu °5 ’N 4.5 1979-1986 -0.38 Raina (2009) 

Sikkim, India ° 1’E     

Central Himalaya 

2. AX010  ° ’N 0 .6 1995-1999 -0.60 Ageta et al. (2001) 

Shorang Himal, Nepal °3 ’E     

3. Yala  °1 ’N 1.6 2011-2012 -0.89 Baral et al. (2014) 

Langtang Valley, Nepal 5°3 ’E     

4. Mera ° ’N 5.1 2007-2012 -0.08 Wagnon et al. (2013) 

Dudh Koshi Basin, Nepal ° ’E     

5.Pokalde ° ’N 0.1 2009-2012 -0.72 Wagnon et al. (2013) 

Khumbu Valley, Nepal ° ’E     

6. Rikha Samba ° ’N 4.6 1998-1999 -0.75 Fujita et al. (2001b) 

Hidden Valley, Nepal 3° ’E     

7. Kangwure ° ’N 1.9 1991-1993 -0.45 Liu et al. (1996) 

Xixiabangma Region, China 5° 5’E  2009-2011 -0.16 TPE (2012) 

8. Chorabari 3 ° ’N 6.7 2003-2010 -0.73 Dobhal et al. (2013) 

Garhwal Himalaya, India ° ’E     

9. Dokriani 3 °5 ’N 7.0 1992-1995, -0.32 Dobhal et al. (2008) 

Garhwal Himalaya, India °5 ’E  1997-2000   

10. Dunagiri 3 °33’N 2.6 1984-1990 -1.04 GSI (1992)  

Garhwal Himalaya, India °5 ’E     

11. Tipra Bank 3 ° ’N 7.0 1981-1988 -0.25 Gautam and Mukherjee (1989) 

Garhwal Himalaya, India ° 1’E     

Western Himalaya 

12. Chhota Shigri 3 ° ’N 15.7 2002-2013 -0.67 Wagnon et al. (2007); 

Lahaul-Spiti, India °5 ’E    Azam et al. (2012) 

13. Hamtah 3 ° ’N 3.2 2000-2009 -1.46 GSI (2011) 

Lahaul-Spiti, India °3 ’E     

14. Gara 31° ’N 5.2 1974-1983 -0.33 Sangewar and Siddiqui (2007) 

Baspa Basin, India ° 5’E     

15. Gor-Garang 31°3 ’N 2.0 1976-1985 -0.38 Sangewar and Siddiqui (2007) 

Baspa Basin, India ° ’E     

16. Kolahoi 3 ° ’N 11.9 1983-1984 -0.27 Dyurgerov and Meier (2005) 

Jhelum Basin, India 5° ’E     

17. Naradu, 31° ’N 4.6 2000-2003 -0.40 Koul and Ganjoo (2010) 

Baspa Basin, India ° ’E     

18. Neh Nar 3 °1 ’N 1.7 1975-1984 -0.53 Raina and Srivastava (2008) 

Jhelum Basin, India 5°5 ’E     

19. Naimona'nyi 3 ° ’N 7.8 2004-2006, -0.56 TPE (2012) 

West Himalaya, China  1° ’E  2007-2010    

20. Rulung 31°11’N 1.1 1980-1981 -0.11 Srivastava et al. (2001) 

Zanskar Range, India ° ’E     

21. Shaune Garang 31°1 ’N 4.9 1981-1991 -0.42 GSI (1992) 

Baspa basin, India ° ’E     

22. Shishram 3 ° ’N 9.9 1983-1984 -0.29 Dyurgerov and Meier (2005) 

Jhelum Basin, India 5° 3’E     
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The glaciological MB observations, available from the HKH glaciers, are mostly limited to 

the period 1975–1990 (Table 1.2), when glaciers often experienced negative Ba (Fig. 1.4). During 

the nineties, the glaciological MBs are available only for the AX010, Rikha Samba, Kangwure and 

Dokriani glaciers but, unfortunately, these measurements are either short (<5 years) or 

discontinuous (Dokriani Glacier) and provide an incomplete picture of glacier change. Currently 

Chhota Shigri, Chorabari, Dokriani, Hamtah, Mera, Pokalde, Yala, and Rikha Samba glaciers are 

the glaciers where continuous Ba observations are being conducted in the HKH region. 

 

 
Figure 1.4. Glacier annual glacier-wide mass balances in the Hindu-Kush Karakoram Himalayan region. 

(a) Annual MB of glaciers with more than one year of observations. The dark brown and blue thick lines 

correspond to the pentadal Himalaya–Karakoram averages from Cogley (2011) and decadal MBs of Chhota 

Shigri Glacier from Vincent et al. (2013), respectively (b) cumulative MBs. 
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Figure 4a also includes the pentadal average MBs for the HKH region (Cogley, 2011). The 

scarcity of Ba observations (Table 1.2) available to compute the pentadal average gives a large 

weight to individual Ba measurements, some of them being questionable (Vincent et al., 2013). 

Due to a difficult access to the accumulation areas, it seems that some glaciers are probably 

surveyed only in their lower part (which is not always clearly mentioned in the sources), making 

Ba biased negatively. This could be the case for Hamtah Glacier that shows the strong negative 

field Ba (Fig. 1.4) which are not consistent with space-borne measurements. For this glacier, 

Vincent et al. (2013) measured a geodetic MB of –0.45±0.16 m w. e. a−1 during 1999–2011, whereas 

the mean glaciological Ba was –1.46 m w. e. a−1 during 2000–2009 (Table 1.2). Consequently, some 

of the ground-based observational data and thus the average MBs in the HKH region are probably 

biased negatively (Vincent et al., 2013). Gardner et al. (2013) also suggested that most of the 

assessments have overestimated global mass losses because of the interpolation of sparse 

glaciological measurements that are not representative for the largest glacierized regions and 

tend to be located in the sub-regions where mass loss is greater than in their region as a whole.  

1.7.2.2 Mass Balance changes at regional scale  

Recently, with the evolution of satellite imageries, several studies have been conducted to 

calculate the mass changes of glacierized regions worldwide. Covering a glacierized area of ~62 

km2, Bolch et al. (2011) calculated a MB of −0.32±0.08 m w.e. a−1 over 1970-2002 and −0.79±0.52 m 

w.e. a−1 over 2002-2007 period for Khumbu region. Nuimura et al. (2012) covering the same 

glacierized area of Khumbu region reported a mean MB of −0.45±0.60 m w.e. a−1 over 2000–2008 

period. Over 6 glacierized areas (Bhutan, Everest, West Nepal, Lahaul & Spiti, Karakoram west 

and Hindu-Kush) of the HKH region, Kääb et al. (2012) computed the mean mass wastage of 

−0.21 ± 0.05 m w.e. between 2003 and 2008. Gardelle et al. (2013) provided the most exhaustive 

region-wide MBs for 9 sub-regions in the HKH and Pamir (west to the HKH region) mountain 

ranges between 2000 and 2008/2011. The area weighted mean MB showed a mass wastage of 

−0.14±0.08 m w.e. a−1 for all 9 sub-regions (glacierized area of 72251 km2). The region-wide glacier 

MBs were contrasted with the largest wastage in the western Himalaya (−0.45±0.13 m w.e. a−1), 

moderate mass losses in the eastern and central Himalaya (−0.22±0.12 m w.e. a−1 to −0.33±0.14 m 

w.e. a−1), least mass losses in Hindu-Kush region (−0.12±0.16 m w.e. a−1) and mass gain in the 

Karakoram east, Karakoram west and Pamir sub-regions (+0.11±0.14, +0.09±0.18, +0.14±0.14 m w.e. 

a−1, respectively). Although the region-wide MBs show the contrasting pattern over the HKH 

region during the first decade of the present century, these region-wide MBs are two to three 

times less negative than the estimated global average for glaciers and ice caps (Kääb et al., 2012; 

Gardelle et al., 2013).  

 

 

 



Chapter 1 : Current knowledge of glaciers in the region of HKH 

16 

 

1.8 Summary 

This chapter can be summarized as follows: (1) the historical knowledge of the HKH glaciers 

mainly comes from the snout fluctuations but, unfortunately, it is a poor indicator of climate 

change given that the snout fluctuations also depend on several variables which are not related 

to climate such as the length, area, glacier slope, glacier bedrock slope, surroundings, and the 

type of glacier (debris-covered or clean), (2) the in-situ surface Ba measurements have been started 

on some selected glaciers in the western Himalaya during the 1970s but discontinued after some 

years. Very limited Ba studies are available over the 1990s from the central Himalaya and with 

the beginning of 21st century some new studies have started in different parts of the Himalaya. 

Besides, these limited measurements mostly come from small glaciers and are expected to be 

biased negatively. Till date no Ba study is reported from the Hindu-Kush and Karakoram parts. 

In addition,  (3) our knowledge of region-wide glacier mass changes in the HKH region has been 

improved significantly over the last years mainly because of geodetic measurements from 

satellite images. A contrasting pattern of glacier mass loss over the entire HKH region, depending 

on the climatic settings of the different parts of the range, is revealed from the remote sensing 

studies. Unfortunately these geodetic mass budgets do not allow us to analyze the climatic 

variables such as temperature and precipitation responsible for the glacier MB evolution. 

Consequently, the best way to understand the climatic drivers responsible for glacier MB 

evolution is to measure the surface Ba (accumulation and ablation) and to analyze this with the 

meteorological data. Certainly understanding the present and past behaviour of these glaciers 

towards climatic conditions is the key foundation to predict the future of glacierized areas in the 

HKH region. Therefore, the present situation demands to understand the behaviour of some 

selected glaciers over the entire HKH range, with different climatic regimes, towards the present 

and past climatic conditions in order to get an overview about the whole HKH mountain range.  

1.9 Objectives and organization of the thesis  

Keeping the main knowledge gaps about the HKH glaciers in mind, a representative glacier 

Chhota Shigri’ in the western Himalaya, India, has been selected for the present research work. 

The annual surface Ba of this glacier has been measured since 2002 using glaciological method. 

Moreover ice thickness, ice flow velocities, seasonal MB measurements and meteorological data 

have been collected before and during this PhD work.  

The main motive of this thesis is to analyze the sensitivity of Chhota Shigri Glacier Ba to 

climate change and to understand which meteorological variables drive Ba of the glaciers in the 

western Himalayan region. In order to achieve this motive, the following objectives are set for 

this research work: 
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 to understand the local meteorological conditions at glacier scale using in-situ meteorological 

data from an Automatic Weather Station (AWS-M) located on the western moraine on Chhota 

Shigri Glacier 

 to study the annual and the seasonal mass balances for understanding the seasonal characteristics 

of Chhota Shigri Glacier  

 to analyze the present imbalance state of Chhota Shigri Glacier from ice thickness changes and 

ice flow velocity measurements performed over the last decade and at the end of the 1980s  

 to reconstruct the long term time series of mass balance for understanding the past behaviour of 

Chhota Shigri Glacier towards climatic variables  

 to analyze the relationship between the meteorological variables and the surface mass balance in 

order to understand which meteorological variables drive the surface mass balance of Chhota 

Shigri Glacier. For this purpose, the processes controlling the surface mass balance are analyzed 

using detailed surface energy balance approach 

 

In order to address all the objectives listed above, the present manuscript is organized as 

follow. After this first Chapter, giving an overview of the status of the HKH glaciers and 

highlighting the main knowledge gaps in the glaciological research of the HKH region, Chapter 

2 provides the details of the meteorological conditions and in-situ annual and seasonal MBs on 

Chhota Shigri Glacier. Chapter 3 discusses the dynamic conditions of Chhota Shigri Glacier by 

analyzing the ice fluxes calculated from the surface MB and ice thickness-velocity methods. 

Chapter 4 presents the reconstruction of long-term time series of annual and seasonal glacier-

wide MBs for Chhota Shigri Glacier using a temperature index model with an accumulation 

model. The reconstructed series provides a basis to study the climate-glacier interaction over last 

four decades as well as some principle processes governing Ba of Chhota Shigri Glacier. Chapter 

5 focuses on further understanding of the melt processes with a detailed physical basis at point 

scale using a surface energy balance model with in-situ Automatic Weather Station (AWS-G) data 

from the ablation area of Chhota Shigri Glacier. Chapter 6 presents the overall conclusion and 

perspectives of this thesis. 

Three of the chapters presented in this PhD thesis are already published articles and one 

is under process.
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CHAPTER 2 

Meteorological conditions and mass balances of 

Chhota Shigri Glacier 
 

 

 

Executive summary 

Chapter 1 highlighted the main knowledge and data gaps in our present understanding of the 

glaciers in the Hindu-Kush Karakoram Himalayan region. Chapter 2 aims at characterizing the 

different climatic and seasonal regimes in the region of Chhota Shigri Glacier and analyzes the 

annual and seasonal mass balances of this glacier. On Chhota Shigri Glacier, the characterization 

of seasons was done using the data from the automatic weather station operating on the western 

moraine at 4863 m a.s.l. since 18 August 2009. The annual mass balances have been measured 

continuously since 2002 using the glaciological method. In May 2009, the mass balance 

observations were also started at seasonal scale. The annual and seasonal mass balances were 

then analyzed with meteorological conditions in order to understand the role of winter and 

summer glacier-wide mass balances for annual glacier-wide mass balance of Chhota Shigri 

Glacier. This glacier is a representative glacier for Lahaul and Spiti Valley (Berthier et al., 2007; 

Vincent et al., 2013). Therefore the characterization of seasons as well as the control of 

meteorological conditions on seasonal and thus annual mass balances can be generalized over 

the whole Lahaul and Spiti Valley.  
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2.1 Background and Introduction 

After some preliminary work conducted during the latter part of the 1980s (Ramanathan et al., 

2011), glaciological research has been started again on Chhota Shigri Glacier under an Indo-

French collaboration in 2002. As a master student, I joined the glaciological research team of 

Jawaharlal Nehru University, New Delhi, India in 2008 and visited Chhota Shigri Glacier for the 

first time in October 2008. Since then, I have been involved in most of the expeditions to this 

glacier with Indian as well as French collaborators. In 2011, I enrolled in PhD in France and started 

organizing and leading several expeditions in order to collect the required data for this present 

thesis. The expeditions on Chhota Shigri Glacier were mainly related to annual and seasonal mass 

balance observations, surface ice velocity from stake displacement measurements, glacier ice 

thickness from ground penetrating Radar measurements, annual thickness fluctuations of cross 

sectional surface profiles with differential global positioning system, installation of hydrological 

station, installation and maintenance of automatic weather stations and installation of automatic 

precipitation gauge. With these measurements, Chhota Shigri Glacier is the only tier-  type 
glacier (Paul et al., 2007) in the Lahaul and Spiti Valley (western Himalaya).  

Contrary to the Alps, the expeditions in the Himalayas are greatly challenging. The 

interiority of the glaciers makes the access difficult. The expeditions for Chhota Shigri Glacier are 

prepared at the town of Manali, which is 100 km far by road from the glacier base camp. The only 

access road to Chhota Shigri Glacier is through Rohtang Pass (3978 m a.s.l.; literally pile of corpses) 

and often closed because of landslides from steep mountain slopes. In such situation, sometimes, 

the expeditions are continued on foot with heavy loads carried as back pack to reach the glacier 

base camp. Besides, weather forecast is not available for this region making the expedition even 

more challenging. Moreover, expeditions can only be carried out between May and October 

because the Rohtang pass is completely covered by snow beyond this time window.       

This chapter presents the meteorological and glaciological data collected during and 

before the present PhD. The main goals are (1) to characterize the seasons and local meteorology 

on Chhota Shigri Glacier using the glacier-side Automatic Weather Station (AWS-M) data since 

18 August 2009 (2) to discuss the eleven years (2002-2013) of specific annual glacier-wide mass 

balance (Ba) and 4 years (2009-2013) of seasonal (winter and summer) glacier-wide mass balances 

(Bw and Bs), and (3) to analyze the meteorological control on seasonal and annual mass balances. 

2.2 Study site and AWS-M description  

Chhota Shigri Glacier (32.28 N, 77.58 E) is a valley-type, non-surging glacier located in the 

Chandra-Bhaga river basin of Lahaul and Spiti Valley, Pir Panjal range, western Himalaya (Fig. 

2.1). This glacier extends from 6263 to 4050 m a.s.l. with a total length of 9 km and area of 15.7 

km2 (Wagnon et al., 2007). Its snout is well defined, lying in a narrow valley and giving birth to a 

single pro-glacial stream feeding Chandra River, one of the tributaries of Indus river system. 
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Chhota Shigri Glacier is mainly oriented north-south in its ablation area but its tributaries and 

accumulation area have a variety of orientations (Fig. 2.1). The ablation area is made up of two 

main flows, one coming from the eastern side of the accumulation area and flowing on the right 

bank of the glacier (eastern flank) and the second coming from the western side and flowing on 

the left bank (western flank). The lower ablation area (<4500 m a.s.l.) is covered by debris 

representing 3.4% of the total surface area (Vincent et al., 2013). The debris layer is highly 

heterogeneous, from a few millimeter sized sand particles to big boulders exceeding sometimes 

several meters.  

AWS-M is located off-glacier on a western lateral moraine (4863 m a.s.l.) on a flat rocky 

surface and has been functioning continuously since 18 August 2009. The meteorological 

variables were measured at 30-sec time step, except for wind direction (instantaneous values 

every 30-min) and the data was stored in a Campbell CR1000 data logger as hourly means for 18 

August 2009-22 May 2010 period and 30-min means after 22 May 2010. AWS-M was checked and 

maintained regularly during the summer field expeditions. At the glacier base camp (3850 m a.s.l., 

2 km north of the glacier snout), an all-weather precipitation gauge with a hanging weighing 

transducer (Geonor T-200B) has been operating continuously since 12 July 2012 (Fig. 2.1). The 

Geonor T-200B sensor is suitable for both solid and liquid precipitation measurements. Table 2.1 

gives the list of meteorological variables with the sensor specifications.   

  

Table 2.1. Measurement specifications for AWS-M located at 4863 m a.s.l. on the western lateral moraine 

of Chhota Shigri Glacier and precipitation gauge installed at base camp (3850 m a.s.l.). Variable symbols 

are also given.  

Variable symbol (unit) sensor stated accuracy 

air temperature  Tair (oC) Campbell HC-S3-XT ±0.1 at 0 oC  

relative humidity RH (%) Campbell HC-S3-XT ±1.5% at 23 oC 

wind speed u (m s-1) 05103-10-L ±0.3 m s-1  

wind direction WD (degree) 05103-10-L ±3 degree 

short wave incoming and outgoing SWI, SWO (W m-2) Kipp & Zonen CNR-1 ±10% daily total 

long wave incoming and outgoing LWI, LWO (W m-2) Kipp & Zonen CNR-1 ±10% daily total 

surface temperature  Tsurf (oC) IRR-P ±0.5 °C  

Precipitation P (mm) Geonor T-200B ±0.6 mm 

 

The AWS-M meteorological records have very small data gaps (generally <1%) suggesting 

good data continuity. Tair, u and WD showed 0.003%, 0.29%, and 0.07% data gaps, respectively. 

These gaps were filled by linear interpolation using the adjacent data. Only one long gap exists 

in LWI and LWO radiation data between 18 August 2009 and 22 May 2010. Moreover internal 

temperature sensor of CNR-1 did not work during the four-year period of observation. Thanks 

to the surface temperature (Tsurf) data from IRR-P sensor, the LWO could be assessed using the 
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Stefan-Boltzmann equation assuming the emissivity of the surface as unity (LWO = σTsurf4 with σ 

= 5.67 10−8 W m−2 K−4), and comparing this LWO with the uncorrected value of LWO recorded by 

AWS-M, we could retrieve CNR-1 internal temperature.  

 

 
 

Figure 2.1. Map of Chhota Shigri Glacier showing the ablation stakes in debris cover area (black dots), in 

eastern flank (blue dots), in western flank (green dots), accumulation sites (red squares), AWS-M (black 

star) and precipitation gauge (black cross). The map coordinates are in the UTM43 (north) World Geodetic 

System 1984 (WGS84) reference system.  
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2.3 Hydrological year and field measurements to assess the mass balances  

2.3.1 Delineation of the hydrological year 

Kaser et al. (2003) defined the hydrological balance year as the time between one minimum of 

glacier mass to the next, which, in mid-latitudes, generally occurs in autumn. The glaciers in the 

Lahaul and Spiti Valley (western Himalaya) are influenced by Mid-Latitude Westerlies (MLW) 

during winter and by Indian Summer Monsoon (ISM) during summer (section 1.3). The 

precipitation data at high altitudes in the Himalayas is extremely rare. The automatic 

precipitation gauge installed on 12 July 2012 at Chhota Shigri Glacier base camp (3850 m a.s.l., 

Fig. 2.1) provides the only recorded local precipitation data for this glacier (Fig. 2.2, Table 2.2). In 

order to analyze the contribution of MLW and ISM circulations to the annual precipitation sum 

at glacier base camp, the year is divided into summer (May to October) and winter (November to 

April) months. MLW (November to April) provided 79% while ISM (May to October) contributed 

only 21% to the annual precipitation (976 mm) at Chhota Shigri Glacier base camp between 

October 2012 and September 2013. Therefore, unlike the summer-accumulation type glaciers 

(Ageta and Higuchi, 1984) in central Himalaya, Chhota Shigri Glacier receives most of its 

precipitation during winter months. Given that October and November are the driest months in 

this region (Prasad and Roy, 2005; Datt et al., 2008) and the access is restricted after 15 October, 

the hydrological year can be defined from 1st October to 30th September of the following year on 

this glacier. Nevertheless one year precipitation record is quite short and the relative contribution 

of precipitation, which is likely to change from one year to another, should be considered 

cautiously. The issue of hydrological/mass balance (MB) year is dealt thoroughly in Chapter 4 

(appendix) using the long term reconstructed daily MB series.  

2.3.2 Measurement network to measure the glacier-wide mass balances with the 

glaciological method 

Annual glacier-wide surface MB measurements have been carried out on Chhota Shigri Glacier 

since 2002 at the end of September or beginning of October using the direct glaciological method 

(Peterson, 1994). Ablation is measured through a stake farm distributed between 4300 and 5000 

m a.s.l. (Fig. 2.1) whereas in the accumulation area, the net annual accumulation is obtained by 

drilling cores or pits between 5160 and 5550 m a.s.l. The total number of stakes was changed from 

year to year but every year a minimum of 22 stakes was maintained to get enough ablation 

measurements for MB calculations. Eco-friendly bamboo pieces of 2-m length linked with 

metallic wire were used and inserted vertically downward up to 8-10 m deep in the glacier. In 

the accumulation area, the number of sampled sites is limited due to the difficult access and high 

elevation; still five-six sites were measured every year to have enough accumulation 

measurements (Fig. 2.1). A blue powder mixed with saw dust was spread over the glacier surface 

(2-m radius) to mark the annual horizon in accumulation area besides a Recco avalanche reflector 
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put at accumulation sites in order to locate the marked points using Recco detector in the 

following year. The details of mass balance methodology can be found in Wagnon et al. (2007). 

In October 2013, the electronic balance failed; consequently, the core densities could not be 

calculated. It is known that from one year to another, at specific location, accumulation thickness 

varies but the density along the depth remains almost the same. Therefore at each accumulation 

site, the mean vertical density along every pit was assumed equal to the mean depth-averaged 

density of every corresponding accumulation site from the years before. These resulting mean 

densities together with corresponding accumulation thicknesses were used to obtain the annual 

accumulation at each site for October 2013. 

The overall error in Ba, calucated following Thibert et al. (2008), comes from a variance 

analysis applied to all types of errors (ice/snow density, core length, stake height determination, 

liquid-water content of the snow, snow height). Applying these errors at different altitudinal 

ranges using Eq (1.2), the uncertainty on Ba is ±0.40 m w.e. a-1. The details of error estimation are 

provided in Chapter 3 (section 3.3.1). The uncertainties in the seasonal glacier-wide mass balances 

are likely to be different. Given the limited time frame of this PhD, these uncertianities could not 

be assessd yet.   

2.4 Meteorological conditions and characterization of the seasons on 

Chhota Shigri Glacier 

2.4.1 Air temperature and relative humidity 

Figure 2.2 displays the daily temporal variation in Tair, RH, u, SWI and LWI during the measuring 

period from 18 August 2009 to 30 September 2013 recorded by the AWS-M and daily precipitation 

sums at glacier base camp recorded by the precipitation gauge between 12 July 2012 and 30 

September 2013. The meteorological data available for more than 4 years have been used to assess 

local meteorological conditions and to characterize the seasons on Chhota Shigri Glacier. Four 

hydrological years (1 October 2009 to 30 September 2013) for AWS-M variables and one 

hydrological year (1 October 2012 to 30 September 2013) for precipitation were selected to analyze 

the meteorological conditions at seasonal and annual scale (Table 2.2). 

Daily means of Tair ranged between –22.0 and +7.3 oC with a mean value of −5.  oC while 

RH ranged between 4 and 96% with a mean value of 51% for the studied period (1 October 2009 

to 30 September 2013). The mean Tair (−5.8 oC) reflects the high altitude of the AWS-M location. 

The daily mean u varied from 0.7 to 15.9 m s-1 with an annual mean of 4.1 m s-1, over the four 

hydrological year observation period. A decrease in u during the first half of May and a rapid 

increase of RH from the last week of May or the first week of June was revealed from daily mean 

records (Fig. 2.2). These abrupt changes can be considered as the onset of the monsoon. RH 

continuously increases and achieves the maximum values in August. Furthermore, a sudden 
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drop in RH and an increase in u, noticed around 20 September, show the sharp decay of the 

monsoon on Chhota Shigri Glacier.  

Tair and RH variations are large enough to characterize pronounced seasonal regimes. A 

warm summer-monsoon with high RH from June to September and a cold winter season, 

relatively less humid, from December to March were identified (Fig. 2.2). In addition a pre-

monsoon from April to May and a post-monsoon from October to November can also be defined. 

Table 2.2 demonstrates the mean annual and seasonal values of all studied variables for each 

hydrological year as well as for the whole period (1 October 2009-30 September 2013).  

  The coldest month was January with a mean Tair of −15.8 oC and the hottest month was 

August with a mean Tair of 4.3 oC. The monthly mean Tair during winter season was −13.4 oC and 

that for the summer-monsoon was 2.5 oC, while during pre-monsoon and post-monsoon it was 

−5.3 and −7.8 oC, respectively (Table 2.2). However the monthly average Tair is >0 oC in at least 

three months (July to September), Tair can drop below the freezing point even in the hottest 

months of the year (21% days in June, 5% in July, 3% in August and 15% in September). The 

monthly mean is higher than the annual mean Tair (−5.8 oC) between May and October whereas 

the October mean temperature (−4.9 oC) was closest to the annual mean Tair. A sudden change in 

mean monthly Tair characterizes the onset of a new season; and the most evident inter-seasonal 

change was found between the summer-monsoon and post-monsoon with a difference of 10.3 oC 

while the minimum difference (5.6 oC) was found between post-monsoon and winter season 

showing that winter and the summer-monsoon are thermally well distinguished. Compared to 

2009/10, 2010/11 and 2011/12, the summer-monsoon of 2012/13 year was relatively warm (0.7 oC 

higher than the mean of the four hydrological years) while the 2009/10 winter season was warmer 

(0.9 oC higher than the mean of the four hydrological years).  

A sudden increase (decrease) in mean monthly RH in June (October) shows the onset (end) 

of monsoon on Chhota Shigri Glacier. The highest peak in mean monthly humidity was observed 

in August (74%) while another peak was observed in February (51%) suggesting that Chhota 

Shigri Glacier is alternately influenced by ISM during the summer-monsoon (mean monsoon RH 

= 68%) and MLW during winter season (mean winter RH = 42%). Post-monsoon showed the 

lowest (39%) RH while pre-monsoon showed the RH (52%) closest to the annual mean.  

2.4.2 Precipitation  

Table 2.2 also shows the seasonal precipitation sums for a complete hydrological year between 1 

October 2012 and 30 September 2013 at Chhota Shigri Glacier base camp (3850 m a.s.l.). The 

observed precipitation during winter season was maximum with a contribution of 71% to the 

total annual precipitation whereas post-monsoon received minimum precipitation (3% of the 

annual amount). The contributions of pre-monsoon and summer-monsoon to annual 

precipitation were only 15% and 12%, respectively. The monthly precipitation sums (not shown 

in Table 2.2.) were the highest in January and February (183 and 238 mm, respectively) whereas 
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the lowest were for October and November (14 and 18 mm, respectively). The least precipitation 

amounts during October and November, in agreement with the regional studies (e.g., Prasad and 

Roy, 2005; Datt et al., 2008), support the choice of the hydrological year starting from 1st October.   

 

 

Figure 2.2. Daily means of (a) Tair (oC), (b) RH (%), (c) u (m s-1), (d) SWI (W m-2) and (e) LWI (W m-2) at 

AWS-M. Tair, RH, u and SWI are the daily means for the full observation period between 18 August 2009 

and 30 September 2013 while LWI are the daily means between 23 May 2010 and 30 September 2013. The 

lowest panel (f) shows the daily precipitation (mm w.e.) between 12 July 2012 and 30 September 2013 at 

glacier base camp collected by the precipitation gauge. The thick lines in panels a-e are the 15 day running 

means.    
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Table 2.2. Mean seasonal values of Tair, RH, u, SWI and LWI at AWS-M. Tair, RH, u and SWI are the mean 

seasonal values of four hydrological years between 1 October 2009 and 30 September 2013 while LWI are 

the mean seasonal values between 1 June 2010 and 30 September 2013. P is the seasonal precipitation for 

one hydrological year between 1 October 2012 and 30 September 2013 at glacier base camp collected by the 

precipitation gauge.   

Season Variable 

Year  Mean 

2009-10 2010-11 2011-12 2012-13 2009-13 

P
o

st
-m

o
n

so
o

n
  

  

(O
N

) 

 

Tair (oC) -8.8 -7.3 -6.1 -9.1 -7.8 

RH (%) 48 35 33 40 39 

u (m s-1) 5.1 4.2 4.1 4.2 4.4 

SWI (W m-2) 150 191 186 178 176 

LWI (W m-2) - 178 192 192 187 

P (mm w.e.) - - - 32 - 

W
in

te
r 

(D
JF

M
) 

 

Tair (oC) -12.4 -13.6 -14.5 -13.1 -13.4 

RH (%) 43 41 43 38 42 

u (m s-1) 5.1 5.5 6.3 5.0 5.5 

SWI (W m-2) 144 168 163 168 161 

LWI (W m-2) - 190 195 190 192 

P (mm w.e.) - - - 679 - 

P
re

-m
o

n
so

o
n

   

  
 (

A
M

) 
 

 

Tair (oC) -4.6 -4.9 -6.1 -5.5 -5.3 

RH (%) 52 50 54 51 52 

u (m s-1) 3.9 3.4 3.4 3.5 3.5 

SWI (W m-2) 249 323 311 316 299 

LWI (W m-2) - 230 233 231 231 

P (mm w.e.) - - - 148 - 

S
u

m
m

e
r-

m
o

n
so

o
n

   
  

(J
JA

S
) 

Tair (oC) 1.9 2.8 2.4 3.3 2.6 

RH (%) 69 67 69 68 68 

u (m s-1) 2.9 2.7 2.9 2.7 2.8 

SWI (W m-2) 260 277 263 265 266 

LWI (W m-2) 280 276 283 308 289 

P (mm w.e.) - - - 117 - 

A
n

n
u

a
l 

   
  

(m
e

an
) 

 

Tair (oC) -5.7 -5.6 -6.1 -5.7 -5.8 

RH (%) 54 50 52 50 51 

u (m s-1) 4.1 4.0 4.3 3.8 4.1 

SWI (W m-2) 201 234 225 227 222 

LWI (W m-2) - 224 230 237 230 

P (mm w.e.) - - - 976 - 

 

2.4.3 Incoming short and long wave radiations 

The characterization of the seasons on Chhota Shigri Glacier can also be explained by the 

variation of SWI and LWI. The highest SWI was found during pre-monsoon with a mean annual 

value of 299 W m-2. As soon as the summer-monsoon starts, Tair increases but SWI is reduced by 

33 W m-2 (summer-monsoonal mean = 266 W m-2) in agreement with high RH (summer-

monsoonal mean = 68%) (Fig. 2.2 and Table 2.2). The low values of SWI, during the summer-

monsoon, are largely compensated by high values of LWI (summer-monsoonal mean = 289 W m-

2) emitted from the summer-monsoonal clouds. Post-monsoon and winter season exhibited more 
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or less similar conditions, receiving low and almost same SWI (176 and 161 W m-2, respectively) 

and LWI (187 and 192 W m-2, respectively). The low SWI and LWI values over these seasons are 

mainly related to decreasing solar angle (for SWI), and the low values of Tair, RH and cloudiness 

(for LWI), respectively. 

2.4.4 Wind regimes 

On average u was the highest during the winter season with a mean value of 5.5 m s-1 and reached 

up to its maximum value of 6.2 m s-1 in the month of February. u was also strong in pre-monsoon 

(mean = 3.5 m s-1), especially in the month of March (monthly mean = 5.1 m s-1). u over the summer-

monsoon was found quite weak (mean = 2.8 m s-1) and breezed at its minimum strength 

particularly in August (monthly mean = 2.4 m s-1). During post-monsoon, wind gusted at 

moderate speeds (mean = 4.4 m s-1) and approached the high speed of wintertime value. The 

summer-monsoon winds were almost the same for the four hydrological years while the winter 

wind was the highest in 2011/12 hydrological year.    

 

 

Figure 2.3. Wind rose (direction and intensity of half-hourly average data) at AWS-M for post-monsoon, 

winter, pre-monsoon and the summer-monsoon over the four hydrological years of observation. The data 

is hourly average between 1 September 2009 and 22 May 2010. The frequency of wind direction is expressed 

as percentage for each season (indicated on the radial axes). 

 
Below 4800 m a.s.l., Chhota Shigri Glacier is situated in an almost north-south oriented 

valley and the AWS-M is located on a west lateral moraine on a rocky surface around 100 m above 

the main glacier trunk at 4863 m a.s.l. A small and steep cirque tributary glacier is located in the 
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south-west of AWS-M and the Sara-umga pass is located toward the south (Fig. 2.1). Wind 

direction measured at AWS-M indicated that there was a persistent down-glacier wind coming 

from the west in all the seasons (Fig. 2.3), and opposite to it, less strong winds were also observed 

from south-east direction during all the seasons. The west winds may be because of the steep 

cirque glacier just above the AWS-M in south-west that can generate katabatic forcing at AWS-M 

site. 

In order to analyze the impact of synoptic scale circulation at AWS-M site, the wind 

directions at AWS-M were compared with those of 450 hPa pressure level obtained from High 

Asia Refined Analysis data (HAR, Maussion et al., 2014) at hourly scale. HAR wind data is 

available at 10 km resolution for different pressure levels for 2001-2012 period. The pressure level 

of 450 hPa (equivalent to ~6350 m a.s.l.) has been chosen as representative of the synoptic 

circulation above the glacier (whose highest elevation is 6263 m a.s.l.). Synoptic (HAR, 450 hPa) 

wind comes mainly from west or south-west directions, depending on the season (not shown in 

Fig. 2.3). Given that the AWS-M is located on a western moraine at 4863 m a.s.l., the site is likely 

to be affected by synoptic scale winds. Therefore at AWS-M the persistent west winds are 

probably the collective impact of katabatic and synoptic scale winds. During all the seasons, the 

south-east or south-west winds at AWS-M are probably the impact of synoptic winds. The 

synoptic winds coming from west are channeled by north-south oriented valley and come from 

south-east or south-west directions at AWS-M. The south-east winds are more frequent and 

stronger (up to 15 m s-1) in winter season than during the other seasons. In winter season the 

AWS-M site as well as south-eastern upper reaches are completely covered by snow that may 

give rise to cooling to the near-surface air, generating katabatic flow (Grisogono and Oerlemans, 

2002) parallel to the channeled synoptic scale winds thus the strong winds from south-west 

direction. In conclusion the wind regime at AWS-M site is a combined effect of local katabatic 

and synoptic scale winds during all the seasons. Upcoming valley wind at AWS-M is absent in 

all seasons. This is probably because of the long distance (7 km) between snout and AWS-M 

location that prevents the upcoming valley wind reaching to the AWS-M site.  

2.5 Annual and Seasonal mass balance 

2.5.1 Annual point mass balances as a function of altitude 

Figure 2.4 (panels a–g) shows the point mass balances as a function of altitude for 2006–2013 

hydrological years (the details of point mass balances between 2002 and 2006 are given in 

Wagnon et al., 2007). Measurements were performed on 30 September 2006, 1 October 2007, 6 

October 2008, 9 October 2009, 10 October 2010, 9 October 2011, 10 October 2012 and 6 October 

2013, ±4 days. The black, blue and green dots represent measurements over the debris cover area 

(<4400 m a.s.l.), eastern flank (the main glacier body) and western flank of the glacier, respectively 

whereas red dots are the field MBs at 5500/5550 m a.s.l. The elevation of the limit between the 

debris-covered and the clean-ice area is lower on the eastern flank (4400 m a.s.l.) than on the 
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western flank (4500 to 4600 m a.s.l.). Panel h (Fig. 2.4) shows the mean altitudinal MBs for each 

50-m altitudinal range. From Fig. 2.4 (panels a–h) it is revealed that ablation at the stakes (black 

dots) in the lowest part of the ablation area is subdued by 2–3 m w.e. a-1 irrespective to their 

altitude. This is due to the debris cover that has an insulating effect and the deep-narrow valley 

over this area that in turn induces a reduced incoming short-wave radiation (Wagnon et al., 2007). 

However, the annual point mass balances are still very negative on the debris covered area with 

annual values varying between –2 and –5 m w.e. At similar altitudes (generally, >5000 m a.s.l.), 

the point mass balances in western flank were found lower than those observed in the eastern 

flank of the glacier (panels a–g, Fig. 2.4). These differences can be explained by the east orientated 

slopes of western parts that receive more solar radiation and thus likely to have more ablation 

(Wagnon et al., 2007).  

Given the harsh conditions and rugged terrain, the point accumulation measurements at 

5500/5550 m a.s.l. could only be measured in 2003, 2004, 2005, 2009 and 2011 years between 2002 

and 2013. For the years without accumulation measurements at 5500/5550 m a.s.l., an 

extrapolation of 5200 m a.s.l. mean MB (3 measurements in eastern part) to the 5500/5550 m a.s.l. 

was done applying the MB gradient calculated between 5200 and 5500/5550 m a.s.l. from similar 

MB years. Accumulation measurements, in eastern flank (main glacier) varied between a 

minimum annual value of 1.0 m w.e. in 2006/07 (extrapolated) and a maximum value of 2.3 m 

w.e. in 2008/09 (measured) hydrological year.  

2.5.2 Annual vertical mass balance gradients 

The blue lines in Fig. 2.4 (panels a–g) are the regression lines plotted over annual point MBs 

measured in the main glacier body (eastern flank) between 4400 and 5200 m a.s.l. (clean-ice area). 

These regression lines were used to derive the vertical MB gradients for each hydrological year. 

The annual vertical MB gradients are reported in Table 2.3. Over the 2002–2013 observation 

period, the annual MB gradient between 4400 and 5200 m a.s.l. showed a standard deviation of 

0.09 m w.e. (100m)-1 with a minimum value of 0.52 m w.e. (100m)-1 for 2008/09 and a maximum 

value of 0.81 m w.e. (100m)-1 for 2011/12 year. The mean vertical MB gradient between 2002 and 

2013 was 0.66 m w.e. (100m)-1. Though calculated over 4400 to 4900 m a.s.l. altitudinal range, the 

mean annual MB gradient of 0.69 m w.e. (100m)-1 between 2002 and 2006 (Wagnon et al., 2007) 

for Chhota Shigri Glacier is in good agreement with the mean gradient over 2002-2013 period 

(0.66 m w.e. (100m)-1).  
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Figure 2.4. Panels a–g show the annual point MB (dots) as a function of altitude derived from field 

measurements (stakes, drillings or pits) on Chhota Shigri Glacier for seven hydrological years between 2006 

and 2013. The black, blue and green dots are the annual point MBs over debris cover area (<4400 m a.s.l.), 

eastern flank and western flank of glacier, respectively whereas red dots are the MBs at 5500/5550 m a.s.l. 

Ba and ELA for every year are also displayed on the corresponding panel. Panel h shows the hypsometry 

(50-m altitudinal ranges) and mean altitudinal MBs (brown dots) of Chhota Shigri Glacier. The mean 

altitudinal MBs are mean MBs for each 50-m range (e.g., 4400 MB represents the mean MB for 4400–4450 

range), except for at 4250 and 5400 where the mean MB are for 4050–4300 and 5400–6250 range, respectively.  
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The vertical annual MB gradients are also calculated for debris cover (between 4300 and 

4400 m a.s.l., (regression lines are not shown in Fig. 2.4) and accumulation area (red regression 

lines between 5200 and 5500/5550 m a.s.l. in Fig. 2.4) when the MB measurements are available at 

5500/5550 m a.s.l. Over the debris cover area, the MB gradients are highly variable (standard 

deviation = 0.80 m w.e. (100m)-1) with a negative mean value of –2.15 m w.e. (100m)-1 over 2002-

2013 observation period. The negative MB gradients can be explained by the thickness of the 

debris cover that increases with decrease in altitude, therefore, protecting glacier more efficiently 

at lower altitudes. The high year-to-year variability in MB gradients over debris cover part 

compared to the main glacier gradients is due to the stake positions and, thus, the debris thickness 

that can be different from one year to another. The annual vertical MB gradient in accumulation 

area showed rather less annual variability (standard deviation = 0.08 m w.e. (100m)-1) with a quite 

low mean value of 0.22 m w.e. (100m)-1 between 2002 and 2013. The mean accumulation MB 

gradient is calculated using only field observed MB gradients available for 5 years only (Table 

2.3).  

The MB gradients (Table 2.3) calculated over Chhota Shigri Glacier (main ablation body) 

are comparable to those observed in the Alps, Nepalese Himalaya or mid-latitude glaciers (e.g., 

Rabatel et al., 2005; Zemp et al., 2009; Shea et al., 2013; Wagnon et al., 2013). Recently some studies 

(e.g., Racoviteanu et al., 2013) developed glacier melt models at watershed scale in the Himalayan 

region based on a single ablation gradient value for MB gradient. Such models can therefore be 

improved in the future using different MB gradients at different altitudes.   

2.5.3 Annual and cumulative glacier-wide mass balances  

The annual glacier-wide MBs of Chhota Shigri Glacier between 2002 and 2013 are given in Table 

2.3 whereas Fig. 2.5 displays the Ba as well as the cumulative Ba. Ba was often negative except for 

four years (2004/05, 2008/09, 2009/10 and 2010/11) when it was generally close to balance 

conditions. Ba varied, with a large inter-annual variability (standard deviation = 0.67 m w.e. a–1), 

from a minimum value of –1.42±0.40 m w.e. in 2002/03 to a maximum value of +0.33±0.40 m w.e. 

in 2009/10. The cumulative Ba of Chhota Shigri was –6.45 m w.e. between 2002 and 2013 while the 

Ba averaged over the same period was –0.59±0.40 m w.e. a–1. With eleven years of Ba measurements, 

Chhota Shigri Glacier Ba series is the longest continuous Ba series in the HKH region.  

Chhota Shigri Glacier has also been studied using remote sensing techniques as it is 

recognized to be a representative glacier in the Lahaul and Spiti region (Vincent et al., 2013). 

Gardelle et al. (2013) calculated a mass wastage of − .3 ± .1  m w.e. a-1 for Chhota Shigri Glacier 

over 1999–2011 period in agreement with field observations (Ba = −0.58±0.40 m w.e. a–1 between 

2002 and 2011). For the whole Lahaul and Spiti region the mass wastage was − . 5± .13 m w.e. a-

1 over 1999–2011 period (Gardelle et al., 2013). Nevertheless Ba behavior of this glacier is in 

contrast to that of neighboring Hamtah Glacier (~13 km west to Chhota Shigri) where a highly 

negative mean Ba of –1.46 m w.e. a–1 was observed between 2000 and 2009 (Table 1.2; GSI, 2011). 
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Vincent et al. (2013) calculated a geodetic Ba of –0.45 m w.e. a–1 for 1999-2011 period for Hamtah 

Glacier and suggested that the field Ba series of this glacier is most probably negatively biased 

because the access to the accumulation area is quite difficult and the field measurements mainly 

come from ablation area. 

 

 

Figure 2.5. Cumulative (blue line) and annual glacier-wide mass balances (red (-) and green (+) 

histograms) of Chhota Shigri Glacier between 2002 and 2013. Black error bars represent the uncertainty in 

annual glacier-wide mass balance calculated in Azam et al. (2012). 

 

It is highly recommended to detect potential systematic biases in Ba series obtained from 

the glaciological method by using satellite derived geodetic Ba (e.g., Thibert et al., 2008; Huss et 

al., 2009; Zemp et al., 2013). Unfortunately this kind of bias correction in Ba series has never been 

applied yet on the HKH glaciers. Chhota Shigri Glacier Ba series since 2002 is long enough to 

apply this correction; therefore, in the future, we will validate Ba derived from field observations 

with decadal volume changes assessed from geodetic method. Despite the relatively large error 

bars, year-to-year relative differences are instructive for climatic purposes because annual values 

refer to the same map, to the same area-elevation distribution function and to the same 

measurement network (Wagnon et al., 2013).  

2.5.4 ELA and AAR 

Table 2.3 shows the Equilibrium Line Altitude (ELA) and Accumulation Area Ratio (AAR) for 

each hydrological year between 2002 and 2013. ELA was calculated using the regression line (blue 

lines in Fig. 2.4) plotted on annual point MBs in the main glacier body (eastern flank) between 

4400 and 5200 m a.s.l. AAR, each year, is then calculated using the ELA of the corresponding year. 

Over the observation period since 2002, on Chhota Shigri Glacier, ELA varied from a maximum 
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value of 5235 m a.s.l. in 2002/03 (Ba = -1.42±0.40 m w.e. and AAR = 25%) to a minimum value of 

4905 m a.s.l. in 2004/05 (Ba = +0.14±0.40 m w.e. and AAR = 69%) hydrological year. ELA and AAR 

are well correlated with glacier MB and hence proved to be good indicators of MB change (e.g, 

Benn and Lehmkuhl, 2000; Cuffey and Paterson, 2010). On Chhota Shigri Glacier, the annual ELA 

and AAR showed a good agreement with Ba (r2 = 0.95 and 0.94, respectively) between 2002 and 

2013 (Fig. 2.6). The ELA for a zero Ba (ELA0) was also derived from regression between Ba and 

ELA over 2002-2013 period and calculated as ~4950 m a.s.l. Similarly AAR0 was calculated as ~62% 

for steady state Ba (Fig. 2.6). 

 

 

Figure 2.6. The equilibrium line altitude (m a.s.l.) and accumulation area ratio (%) as a function 

of annual glacier-wide mass balance. 

 

Rabatel et al. (2005) developed a method to calculate Ba using remotely sensed ELA on 

three glaciers in the French Alps and validated their results with the field based Ba and ELA data. 

Therefore, the remote sensing method can be applied to the glaciers where no ground data exist, 

on the scale of a mountain range, if the method is reasonably validated with field observations. 

Some studies (e.g., Chaturvedi et al., 2014) used ELA-, AAR-MB relationships to infer the mass 

changes in the Himalayas. The extensive field data about Ba, ELA and AAR on Chhota Shigri 

Glacier definitely provide a good opportunity to validate the results of these remote sensing 

based studies. Berthier et al. (2007), Gardelle et al. (2013) and Vincent et al. (2013) have already 

used the Chhota Shigri Ba to validate their results of geodetic mass changes for the Lahaul and 

Spiti region. Recently Brun et al. (2014) reconstructed the annual mass balances of Chhota Shigri 

and Mera (Everest region, Nepal) glaciers using a relationship between annual minimum albedo 

averaged over the glacier (retrieved from MODerate Imaging Spectroradiometer, MODIS images) 

and Ba. Their method worked successfully for Chhota Shigri Glacier because this glacier received 

maximum precipitation during the winter season, consequently finding the annual minimum 
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albedo from MODIS images during the summer season was possible as the sky was often clear 

during the summer season whereas on Mera Glacier the dominant cloudy conditions during the 

summer season made the retrieval process of annual minimum albedo complex and often 

inaccurate. Brun et al. (2014) concluded that their method can be applied on the glaciers in the 

western Himalaya where some years of field based Ba observations are available to calibrate the 

relationship between Ba and annual minimum albedo. Using this method, they reconstructed 

Chhota Shigri Ba since 2000, the year from when MODIS images are available.  

2.5.5 Seasonal glacier-wide mass balances 

On Chhota Shigri Glacier seasonal MB measurements were started in May 2010 to assess the 

winter (Bw) and summer glacier-wide MBs (Bs) separately. The access to the glacier after winter 

season depends on the road clearance; therefore, Bw observations could not be carried out on fixed 

dates. The measurements were carried out on 21 May 2010, 24 June 2011, 20 June 2012 and 6 July 

2013, ± 3 days. Azam et al. (2014a) suggested that the average summer ablation period lasts from 

mid-June to the end of September with 96±18 days and neither ablation nor accumulation is 

dominant during May-June months therefore no correction was applied to the field Bw for varying 

measurement dates. However it is considered that varying dates cannot be ignored and their 

impact is inherited in the overall uncertainty of seasonal MBs especially for the Bw of 2012/13 

when the measurements were carried out quite late on 6 July 2013.       

Table 2.3 and Fig. 2.7 show the seasonal MBs. Bw ranged from a maximum value of 1.38 

m w.e. in 2009/10 to a minimum value of 0.89 in 2012/13 year whereas Bs varied from the highest 

value of -0.95 m w.e. in 2010/11 to the lowest value of -1.72 m w.e. in 2011/12 year. Between 2009 

and 2013, the observed Ba on Chhota Shigri Glacier were slightly positive for 2009/10 (0.33 m w.e.) 

and 2010/11 (0.11 m w.e.) and negative for 2011/12 (-0.45 m w.e.) and 2012/13 (-0.74 m w.e.) years. 

Although the seasonal MBs are available only since 2009, this series still provides a good 

opportunity to analyze the control of the seasonal MBs on Ba. In order to understand the influence 

of the meteorological conditions on seasonal MBs and in turn on Ba, the annual and seasonal MBs 

were compared with the meteorological data (Table 2.3 and Fig. 2.7). In-situ temperature (Tair) 

records were available from the AWS-M, operating on the lateral moraine (Fig. 2.1; 4863 m a.s.l.) 

since 18 August 2009, while precipitation (P) data were taken from the long term time series 

precipitation record at Bhuntar meteorological station (~50 km south-west of Chhota Shigri 

Glacier) in this analysis. For a justified comparison, Ba, Bw and Bs were compared with annual, 

winter and summer Tair and P over the exact dates of field measurements. 

The relationships between Ba and annual P or Tair were quite consistent. The positive Ba 

years (2009/10 and 2010/11) were associated with higher annual P (167 and 110 mm, respectively) 

and slightly lower annual mean Tair (0.1 and 0.2 oC) than the mean annual averages (1020 mm and 

-5.8 oC) between 2009 and 2013 whereas negative Ba years (2011/12 and 2012/13) were 

characterized by lower annual P (195 and 81 mm, respectively) and slightly higher annual mean 
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Tair (0.4°C in 2011/13) or similar Tair in 2012/13 than the mean annual averages over the 2009-2013 

period. At seasonal scale, Bw did not show any relation with winter P although Bw were consistent 

with winter Tair. (Fig. 2.7). During the high Bw years (2009/10 = 1.38 m w.e. and 2011/12 = 1.27 m 

w.e.) the mean winter Tair were more negative (0.7 oC and 0.5 oC, respectively) while during the 

low Bw years (2010/11 = 1.06 and 2012/13 = 0.89 m w.e.) the mean winter Tair were less negative 

(0.4 oC and 0.9 oC, respectively) than the mean winter Tair of -9.4 oC between 2009 and 2013. 

Contrary to Bw, Bs showed a good agreement with summer P: in 2009/10 and 2010/11 years the Bs 

were less negative (-1.05 m w.e. and -0.95 m w.e., respectively) with higher summer P (294 mm 

and 21 mm, respectively) whereas in 2011/12 and 2012/13 the Bs were highly negative (-1.72 and 

-1.63 m w.e.) with lower summer P (70 mm and 244 mm, respectively) than the mean annual 

summer precipitation of 472 mm between 2009 and 2013. Bs also showed quite consistent 

relationship with summer mean Tair except for the 2010/11 year when summer Tair was slightly 

higher (0.3 oC) than the mean summer Tair (2.4 oC) between 2009 and 2013 but Bs was least negative 

(-0.95 m w.e.).  

 

 
 

Figure 2.7. Annual, winter and summer mass balances are shown by light black, light blue and light 

orange histograms. The annual, winter and summer precipitations (temperatures) are shown by black, blue 

and orange histograms (dots). The mean temperatures are from AWS-M while the precipitations sums are 

from Bhuntar meteorological station. 
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Table 2.3. Annual and seasonal MBs, ELA, AAR and MB gradients db/dz (m w.e. (100m)-1) for Chhota Shigri Glacier. The mean and standard 

deviation (STD) are also displayed for every variable. The uncertainty range for Ba is ±0.40 m w.e.  

 

 2002/03 2003/04 2004/05 2005/06 2006/07 2007/08 2008/09 2009/10 2010/11 2011/12 2012/13 mean STD 

Ba (m w.e.) -1.42 -1.23 0.14 -1.41 -0.98 -0.93 0.13 0.33 0.11 -0.45 -0.74 -0.59 0.67 

ELA (m a.s.l.) 5235 5105 4905 5230 5125 5110 4920 4925 4940 5025 5090 5055 121 

AAR (%) 25 39 69 23 37 39 67 66 65 51 35 47 17 

db/dzabl (m w.e. (100m)-1)  0.62 0.74 0.62 0.61 0.68 0.68 0.52 0.54 0.73 0.81 0.76 0.66 0.09 

db/dzdebris (m w.e. (100m)-1) -3.3 -2.45 -1.66 -1.97 -2.49 -2.81 -0.28 -2.18 -2.68 -1.58 -2.3 -2.15 0.80 

db/dzacc (m w.e. (100m)-1) 0.29 0.18 0.25 - - - 0.3 - 0.1 - - 0.22 0.08 

Bw (m w.e.) - - - - - - - 1.38 1.06 1.27 0.89 1.15 0.22 

Bs (m w.e.) - - - - - - - -1.05 -0.95 -1.72 -1.63 -1.34 0.40 

Meteorological conditionsa  

Annual temperature (oC) - - - - - - - -5.7 -5.6 -6.2 -5.8 -5.8 0.3 

Summer temperature (oC) - - - - - - - 1.3 2.7 2.5 3.2 2.4 0.8 

Winter temperature (oC) - - - - - - - -10.1 -9.0 -9.9 -8.5 -9.4 0.8 

Annual precipitation (mm) - - - - - - - 1187 1130 825 939 1020 168 

Summer precipitation (mm) - - - - - - - 766 493 402 228 472 225 

Winter precipitation (mm) - - - - - - - 421 637 423 711 548 149 

a = temperature at AWS-M (4863 m a.s.l.) and precipitation at Bhuntar meteorological station (1092 m a.s.l.); for the summer or winter means, the 

starting and ending dates have been chosen to match the field measurements of Bs and Bw, respectively 
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Even though the mean summer Tair at AWS-M (4863 m a.s.l.) was positive during all the 

years, daily mean Tair occasionally dropped below the freezing point (Fig. 2.2) during summer 

months, inducing a  precipitation phase change from rain to snow. This was probably the case in 

2009/10 and 2010/11 positive Ba years, the higher values of summer P than the mean summer P 

between 2009 and 2013 often provided snow falls on the glacier. These snowfalls changed the 

surface albedo of the glacier during the high melting period of summer season and consequently 

the melting was reduced leading to less negative Bs for these years. Given that in 2011/12 and 

2012/13 negative Ba years, summer Tair were slightly higher and P were lower than the mean 

annual summer Tair and P between 2009 and 2013, the snowfalls were probably sporadic and not 

big enough to protect the glacier from higher melting. These years were thus characterized by 

highly negative Bs. 

Certainly Chhota Shigri Glacier received maximum precipitation during the winter 

season (section 2.3), the present analysis suggests that the summer is the key season for this glacier. 

During summer months the ablation and accumulation coincide and the intensity of summer 

accumulation controls the Ba evolution through Bs. However we believe that the unclear link 

between Bw and winter P needs to be clarified and this analysis should be developed with long 

term comparison of seasonal MB with meteorological variables for a concrete conclusion.    

2.6 Conclusion 
A 4-year meteorological dataset (since 2009), one of the longest high altitude (4863 m a.s.l.) data 

sets in this part of the HKH, was used to describe the micrometeorology and to characterize the 

seasons on Chhota Shigri Glacier. A decrease in wind speed and a rapid increase of RH and LWI 

from the last week of May or the first week of June suggested the onset of the monsoon, whereas 

a sudden drop in RH and LWI and an increase in wind speed around 20 September, showed the 

sharp decay of the monsoon on Chhota Shigri Glacier. A warm summer-monsoon with high RH 

from June to September and a cold winter season, relatively less humid, from December to March 

were identified. Additionally a pre-monsoon from April to May and a post-monsoon from 

October to November were also demarcated. 

The annual point MBs at the stakes just above the snout were reduced by 2–3 m w.e. a-1 

despite their low altitude because of the thick debris cover and deep-narrow valley over this area. 

Yet the annual point mass balances were still very negative on the debris cover area with annual 

values varying between –2 and –5 m w.e. The mean vertical annual MB gradient between 4300 

and 4400 were negative showing the increasing effect of thick debris with decrease in altitude. In 

the main ablation part of the glacier (between 4400 and 5200 m a.s.l.), the mean vertical annual 

MB gradient of 0.66 m w.e. (100m)-1 over 2002-2013 period was found similar to those observed 

in the Alps, Nepalese Himalaya or mid-latitude glaciers. The mean annual vertical MB gradient 

in accumulation area (between 5200 and 5500/5550 m a.s.l.) was 0.22 m w.e. (100m)-1. Chhota 

Shigri Glacier experienced mass wastage between 2002 and 2013 with a cumulative Ba of –6.45 m 

w.e. and a mean Ba of –0.59±0.40 m w.e. a–1. This mass wastage was in good agreement with 
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satellite derived geodetic Ba of −0.39±0.18 m w.e. a-1 calculated by Gardelle et al. (2013) for this 

glacier between 1999 and 2011. ELA0 for a zero Ba was calculated as 4950 m a.s.l. corresponding 

to an AAR0 of 62% using the Ba, ELA and AAR data between 2002 and 2013 period.  

The precipitation data at Chhota Shigri Glacier base camp suggested that this glacier 

received maximum accumulation during the winter months. Nevertheless one year precipitation 

record is quite short and the relative contribution of precipitation, which is likely to change from 

one year to another, should be considered cautiously. Besides, the analysis of Ba, Bw and Bs with 

meteorological variables suggested that during the summer months the ablation and 

accumulation coincided and the intensity of summer accumulation controls the Ba evolution 

through controlling the Bs. However we believe that the present analysis, conducted over 4 years 

only, needs to be supported with long term analyses between seasonal MBs and meteorological 

variables. The Ba series of Chhota Shigri Glacier since 2002 is one of the longest continuous Ba 

series in the HKH region. Like each glaciological Ba series, this series may also has some 

systematic biases; therefore, in the future, we will validate Ba derived from field observations with 

the decadal volume changes assessed by geodetic method.
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CHAPTER 3 

Dynamic behaviour of Chhota Shigri Glacier 
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A., Pottakkal, J. G., Chevallier, P., Singh, V. B., and Berthier, E.: From balance to 

imbalance: a shift in the dynamic behaviour of Chhota Shigri Glacier (western Himalaya, 

India), J. Glaciol., 58, 315–324, doi:10.3189/2012JoG11J123, 2012. 

 

Executive summary 

In Chapter 2 glacier-wide mass balances (Ba) of Chhota Shigri Glacier between 2002 and 2013 were 

discussed. Since 2002 this glacier showed a mean Ba of –0.59 m w.e. a-1. In addition, Berthier et al. 

(2007) observed a geodetic Ba of –1.02 m w.e. a-1, similarly in a revised study (Vincent et al., 2013) 

almost same geodetic Ba of –1.03 m w.e. a-1 was observed for this glacier during the period 1999 

to 2004; therefore, the mass wastage period can be extended back to 1999. Auspiciously in October 

2009, Chhota Shigri Glacier was surveyed for its ice thickness using Ground Penetrating Radar 

(GPR) at five different cross sections. The GPR measurements confirmed that the thicknesses 

obtained by gravimetric methods in 1989 (Dobhal et al., 1995) were almost two fold 

underestimated as already suspected by Wagnon et al. (2007). Moreover ice thicknesses together 

with surface ice velocity measurements of 2003/04 allowed assessing the kinematic ice flux at each 

cross section. On one hand, these kinematic fluxes corresponding to 2003/04 year were much 

larger than the average fluxes calculated from 2002-2010 surface mass balances (MB); on the other 

hand, they were close to the theoretical ice fluxes calculated from the surface MB assuming 

steady-state conditions of the glacier. The latter suggested that the dynamic behaviour of the 

glacier in 2003/04 was representative for steady-state conditions. Since the dynamic behaviour of 

the glacier is the result of its mean MB state over the last one or two preceding decades, this 

glacier has probably been close to equilibrium during the one or two decades before 2003/2004, 

and at that time, the ice fluxes had not adjusted to the previous year negative MBs. The almost 

similar ice velocities measured in 1987/88 (Dobhal et al., 1995) and in 2003/04 as well as the slow 

terminus retreat of 7 m a-1 between 1988 and 2010 also supported this conclusion suggesting that 

the dynamic behaviour did not change much between 1988 and 2010. Given that Berthier et al. 

(2007) and Vincent et al. (2013) observed a geodetic Ba of Chhota Shigri Glacier of approximately 

–1.02 and –1.03 m w.e. a-1, respectively during the period 1999 to 2004, the glacier probably 

experienced zero to slightly positive Ba conditions between 1988 and the end of the 20th century. 

However a recent decreasing trend of surface velocities as well as a thinning between 2003/04 and 

2009/10 showed that Chhota Shigri Glacier was progressively adjusting to the recent negative Ba 

but its dynamic behaviour was still far from Ba and climatic conditions between 2002 and 2010.    
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Abstract  

Mass balance and dynamic behaviour of Chhota Shigri Glacier, western Himalaya, India, has 

been investigated between 2002 and 2010 and compared to data collected in 1987–1989. During 

the period 2002–2010, the glacier experienced a negative glacier-wide mass balance (Ba) of –
0.67±0.40 m w.e. a–1. Between 2003 and 2010, elevation and ice-flow velocities slowly decreased 

in the ablation area, leading to a 24–37% reduction in ice fluxes, an expected response of the 

glacier dynamics to its recent negative Ba. The reduced ice fluxes are still far larger than the 

balance fluxes calculated from the 2002–2010 average surface MBs. Therefore, further slowdown, 

thinning and terminus retreat of Chhota Shigri Glacier are expected over the next few years. 

Conversely, the 2003/04 ice fluxes are in good agreement with ice fluxes calculated assuming that 

Ba is zero. Given the limited velocity change between 1987–1989 and 2003/04 and the small 

terminus change between 1988 and 2010, we suggest that the glacier has experienced a period of 

near-zero or slightly positive MB in the 1990s, before shifting to a strong imbalance in the 21st 

century. This result challenges the generally accepted idea that glaciers in the western Himalaya 

have been shrinking rapidly for the last few decades.  
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3.1 Introduction 

Although Himalayan glaciers have important social and economic impacts (Barnett et al., 2005), 

they have not been monitored on a long-term basis and little is known about recent glacier trends 

or their contribution to local and regional water supplies. Because of this poor knowledge, the 

controversial statement that the likelihood of them disappearing by the year 2035 or perhaps sooner is 

very high if the Earth keeps warming at the current rate  came into existence in the Intergovernmental 

Panel on Climate Change (IPCC) Fourth Assessment Report (Parry et al., 2007; Cogley et al., 2010). 

A generally negative Ba of mountain glaciers on a global level is clearly revealed by recent 

research (Cogley, 2009; Zemp et al., 2009), but the effect of global warming in the Himalaya is still 

under debate (Yadav et al., 2004; Roy and Balling, 2005). Though temperate glacial MB change is 

one of the best indicators of climate change (Oerlemans, 2001; Vincent et al., 2004; Ohmura et al., 

2007), the paucity of Ba data in the Himalaya makes it difficult to obtain a coherent picture of 

regional climate-change impacts in this region. In the Indian Himalaya the first MB study started 

on Gara Glacier, Himachal Pradesh, in September 1974 (Raina et al., 1977) and ended in 1983 

(Dobhal et al., 2008). According to Dyurgerov and Meier (2005), eight glaciers in the Indian 

Himalaya were surveyed for Ba for at least 1 year during the 1980s. Unfortunately each study was 

restricted to short periods, not more than one decade (Dobhal et al., 2008). Remote-sensing studies 

were also attempted in this part of the Himalaya, but these either deal with only surface area 

changes (e.g., Kulkarni et al., 2007; Bhambri et al., 2011) or cover short periods (Kulkarni, 1992; 

Berthier et al., 2007). 

The present study is based on Ba and surface ice flow velocity measurements conducted 

on Chhota Shigri Glacier, Himachal Pradesh, between 2002 and 2010, and on a comparison with 

data collected in 1987–1989. In the Hindu-Kush Karakoram Himalayan range, this is one of the 

longest continuous field MB datasets. In October 2009, a ground-penetrating radar (GPR) survey 

was also conducted to measure ice thickness. Eight years of Ba measurements, surface ice 

velocities and ice thickness data provide an opportunity to study the behaviour of this glacier. 

The main objectives of this paper are (1) to present the recent Ba of Chhota Shigri Glacier, (2) to 

determine the ice fluxes at five cross sections from thickness and ice velocities and (3) to compare 

these data with the ice fluxes inferred from cumulative surface MB upstream of the same cross 

sections. These results give insights into the Ba trend of the glacier over the last two to three 

decades, and allow us to assess whether it is in equilibrium with the climate of the 21st century. 
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Figure 3.1. Map of Chhota Shigri Glacier with the measured transverse cross-sections (lines 1-5), the 

ablation stakes (dots) and the accumulation sites (squares). Also shown are longitudinal sections (lines A-

E) used to calculate thickness and ice velocity variations (see section 3.4.2). The map (contour lines, glacier 

delineation) was constructed using a stereoscopic pair of SPOT5 (Système Pour l’Observation de la Terre) 
images acquired 12 and 13 November 2004 and 21 September 2005 (Wagnon et al., 2007). The map 

coordinates are in the UTM43 (north) World Geodetic System 1984 (WGS84) reference system. 
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3.2 Site description and methodology 

3.2.1 Site description 

Chhota Shigri Glacier (32.2o N and 77.5o E) is a valley-type glacier located in the Chandra-Bhaga 

River basin of Lahaul and Spiti Valley, Pir Panjal Range, western Himalaya. This glacier extends 

from 6263 m to ~4050 m a.s.l., is ~9 km long and covers 15.7 km2 of area. Its snout is easy to locate 

from one year to the next because it is well defined, lying in a narrow valley and giving birth to 

a single proglacial stream. The main orientation of this glacier is north but its tributaries which 

have a variety of orientations (Fig. 3.1). The lower ablation area (<4500 m a.s.l.) is partly covered 

by debris representing ~3.4% of the total surface area. This glacier is located in the monsoon-arid 

transition zone and is influenced by two atmospheric circulation systems: the Indian summer 

monsoon during summer (July–September) and the northern-hemisphere mid-latitude westerlies 

during winter (January–April) (Singh et al., 1997; Bookhagen and Burbank, 2006; Gardelle et al., 

2011). 

3.2.2 Mass balance 

The first series of MB measurements on Chhota Shigri Glacier was performed between 1987 and 

1989 (Nijampurkar and Rao, 1992; Dobhal et al., 1995; Kumar, 1999). The bedrock topography and 

surface ice velocity were also surveyed over the same period by gravimetric and stake 

displacement methods, respectively (Dobhal et al., 1995; Kumar, 1999). The MB observations were 

reinitiated in 2002. Since that year, Ba measurements have been carried out continuously on 

Chhota Shigri Glacier at the end of September or the beginning of October using the direct 

glaciological method (Paterson, 1994). Ablation was measured through a network of ~22 stakes 

distributed between 4300 and 5000 m a.s.l. (Fig. 3.1), whereas in the accumulation area the net 

annual accumulation was obtained at six sites (by drilling cores or pits) between 5100 and 5550 

m a.s.l. (Wagnon et al., 2007). In the accumulation area, the number of sampled sites is limited 

due to difficulty of access and the high elevation. Ba is calculated according to: 

 

                                                   ”a = ∑ bi si /S      3.1) 

 

where bi is the MB of the altitudinal range i (m w.e. a–1), of map area si, and S is the total 

glacier area. For each altitudinal range, bi is obtained from the corresponding stake readings or 

net accumulation measurements. 

3.2.3 Surface velocity 

Annual surface ice velocities were measured at the end of each ablation season (September–
October) by determining the annual stake displacements (~22 stakes) using a differential GPS 

(DGPS). These geodetic measurements were performed in kinematic mode relative to two fixed 
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reference points outside the glacier on firm rocks. The accuracy of x (easting), y (northing) and z 

(elevation) at each stake position is estimated at ±0.2 m depending mainly on the size of the hole 

in which the stake was set up. Thus the surface ice velocities measured from stake displacements 

have an accuracy of ±0.3 m a–1. 

3.2.4 Ice thickness 

GPR measurements were conducted in October 2009 to determine ice thickness on five transverse 

cross sections (Fig. 3.1) between 4400 and 4900 m a.s.l. A pulse radar system (Icefield Instruments, 

Canada) based on the Narod transmitter (Narod and Clarke, 1994) with separate transmitter and 

receiver, was used in this study with a frequency centred near 4.2 MHz and an antenna length of 

10 m. Transmitter and receiver were towed in snow sledges along the transverse profile, 

separated by a fixed distance of 20 m, and used to record measurements every 10 m. The positions 

of the receiver and the transmitter are known through DGPS measurements, within an accuracy 

of ±0.1 m. The speed of electromagnetic wave propagation in ice has been assumed to be 167 m 

µs-1 (Hubbard and Glasser, 2005). The field measurements were performed in such a way as to 

obtain reflections from the glacier bed located more or less in the vertical plane with the 

measurement points at the glacier surface, allowing the glacier bed to be determined in two 

dimensions. The bedrock surface was constructed as an envelope of all ellipse functions, which 

give all the possible reflection positions between sending and receiving antennas. Ice thickness 

was measured along four transverse profiles (profiles 1–4) on the main glacier trunk and one 

(profile 5) on a western tributary (Fig. 3.1).  

3.3 Data analysis and results 

3.3.1 Glacier-wide mass balance and mass balance profile   

 

Figure 3.2. Cumulative (blue line) and annual glacier-wide mass balances (red (-) and green (+) 

histograms) of Chhota Shigri Glacier between 2002 and 2010.  
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Ba and cumulative Ba of Chhota Shigri Glacier between 2002 and 2010 are plotted in Fig. 

3.2. Ba was negative except for three years (2004/05, 2008/09 and 2009/10). It varies from a 

minimum value of –1.42 m w.e. in 2002/03 to a maximum of +0.33 m w.e. in 2009/10. The 

cumulative Ba of Chhota Shigri is –5.37 m w.e. between 2002 and 2010, while the Ba averaged over 

the same period is –0.67 m w.e. a–1. 

The quantitative uncertainty associated with the glaciological Ba requires a distinction 

between the accumulation zone and the ablation zone. In the accumulation zone, the surface MB 

measurements were obtained from shallow boreholes (auger). Therefore, they are based on core 

length and density determination. In the ablation zone, the measurements have been carried out 

from ablation stakes. The overall error (standard deviation) on point measurements are estimated 

at 0.30 m w.e. and 0.15 m w.e. in the accumulation zone and in the ablation zone, respectively. 

The overall error comes from a variance analysis (Thibert et al., 2008) applied to all types of errors 

(ice/snow density, core length, stake height determination, liquid-water content of the snow, 

snow height). Although conducted on a glacier in the Alps, the analysis of Thibert et al. (2008) 

can be generalized to other glaciers because it is based on measurement errors which are similar 

on every glacier when using the glaciological method. However, only 6 sites are sampled in the 

accumulation zone (11.6 km²), and 22 sites in the ablation zone (4.1 km²). The uncaptured spatial 

variability of surface MB may cause systematic errors on Ba. In the accumulation zone, the spatial 

variability remains unknown and is probably very high as observed for other glaciers (e.g., 

Machguth et al., 2006). In the ablation zone, stakes set up at the same altitude show similar values 

except on the terminal tongue which is debris covered. Consequently, the overall uncertainties 

on MB profile have been assessed at 0.5 m w.e. in the accumulation zone, 0.25 m w.e. in the white 

ablation zone and 0.5 m w.e. in the debris covered area of the glacier. Moreover, the surface area 

estimation also causes systematic error. The uncertainty on the surface area calculated for each 

altitudinal range is estimated at 5%. Combining these errors at different altitudinal ranges using 

Eq. 1, the uncertainty on the Ba is ±0.40 m w.e. a-1. As revealed by other studies (e.g., Vincent, 2002; 

Thibert et al., 2008; Huss et al., 2009), this estimation confirms that the glaciological method needs 

to be calibrated by a volumetric method over a long period of monitoring (i.e. >5 years) in order 

to limit the systematic errors and to improve the accuracy of absolute values of Ba. Note that the 

uncertainty of relative changes in Ba from year to year is smaller than those inherent in Ba, given 

that the influence of systematic errors can be reduced.  

We also calculated the MB profile between 2002 and 2010 (Fig. 3.3). For each altitudinal 

range, we computed the average of all available measurements. Figure 3.3 shows that melting in 

the lowest part of the ablation area (<4400 m a.s.l.) is reduced by –1 m w.e. a–1 irrespective of its 

altitude. This is due to the debris cover (approximately 5–10 cm thick debris mixed with isolated 

rocks) which reduces the melting in this region (Mattson et al., 1993; Wagnon et al., 2007). 

Moreover the lower part of Chhota Shigri Glacier flows in a north–south oriented deep and 
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narrow valley (Fig. 3.1), causing the glacier tongue to receive less solar radiation due to the 

shading effect of the steep valley slopes.  

 

 

Figure 3.3. The 2002–10 average MB profile and hypsometry of Chhota Shigri Glacier. Altitudinal ranges 

are of 50m (e.g., 4400 stands for the range 4400–4450 m), except for 4250 and 5400 which stand for 4050–
4300 and 5400–6250m respectively. 
 

3.3.2 Ice thicknesses and cross-sectional areas  

Thanks to clear reflections, the ice/bedrock interface was generally easy to determine in all 

profiles. Figure 3.4 provides an example of the radargram obtained at cross section 2. A radar 

wave velocity of 167 m µs-1 was used to calculate ice thickness at all the profiles. The cross sections 

obtained from GPR measurements reveal a valley shape with maximum ice thickness greater than 

250 m (Fig. 3.5). The centre line ice thickness increases from 124 m at 4400 m a.s.l. (cross section 1 

in Fig. 3.1) to 270 m at 4900 m a.s.l. (cross section 4). This confirms that the thicknesses obtained 

by gravimetric methods in 1989 (Dobhal et al., 1995), twice as low as the present results, were 

underestimated as proposed by Wagnon et al. (2007). The cross-sectional areas are given in Table 

3.1. The accuracy of the calculated ice thickness is determined, in part, by the accuracy of the 

measurement of the time delays and the antenna spacing. Additional errors may arise because 

the smooth envelope of the reflection ellipses is only a minimal profile for a deep valley-shape 

bed topography, with the result that the ellipse equation will be governed by arrivals from 

reflectors located toward the side and thus not directly beneath the points of observation. Further 

errors may be introduced by assuming that all reflection points lie in the plane of the profile rather 

than on an ellipsoid. No errors associated with radar wave velocity variations between snow and 
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ice have been accounted for because all cross sections were surveyed in the ablation zone or 

slightly above (with the firn/ice transition depth at the surface or <2 m deep). Hence, the radar 

wave velocity for ice (167 m µs-1) was used to calculate all ice depths. The estimated overall 

uncertainty in ice thickness is ±15 m. Given that the uncertainty in ice surface coordinates is low 

(±0.1 m), the uncertainty in cross-sectional areas mainly arises from the uncertainty in ice 

thickness. The uncertainties in cross-sectional areas are 16%, 9%, 10%, 10% and 15% for cross 

sections 1, 2, 3, 4 and 5 respectively. 

 

 

Figure 3.4. Radargram of cross section 2: radar signals plotted side by side from west to east in their true 

spatial relationship to each other (interval between each signal of 10 m). The x-axis gives the amplitude of 

each signal (50 mV per graduation); the y-axis is the double-time interval (µs). 

 

Table 3.1. Calculated ice flux, mean surface ice velocity and maximum ice depth at each cross section. The 

mean surface horizontal ice velocities are from DGPS measurements performed in 2003/04. The satellite-

derived mean ice velocities are from the correlation of satellite images acquired on 13 November 2004 and 

21 September 2005 (NA: Not available). 

Cross 

section 

Altitude  

 

m a.s.l. 

Cross-sectional  

area 

104 m2 

Mean surface ice 

velocity from field data*  

m a-1 

Satellite-derived 

mean surface velocity 

m a-1 

Ice flux 

 

106 m3 a-1 

Max. depth at centre  

of cross section  

m 

1 4400 4.230.68 20.3 NA 0.78 0.21 124 

2 4650 12.141.09 31.2 30.7 3.41 0.69 240 

3 4750 16.491.65 29.2 29.2 4.35 0.92 245 

4 4900 15.531.55 30.1 NA 4.20 0.89 270  

5 4850 6.010.90 27.1 25.5 1.47 0.38 175 

*Centre line velocity X 0.79 
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Figure 3.5. Ice depth and surface topography of cross-sections 1-5. The horizontal and vertical scales are 

the same for all cross-sections. All cross sections are oriented from west to east except cross section 5 which 

is north-south oriented. 

 

3.3.3 Ice velocity 

Annual surface ice velocities were also measured between 2002 and 2010. However, some data 

gaps exist due to discontinuous DGPS signal, or loss of stakes. The 2003/04 ice velocities were 

used in this study because they provided the most complete dataset (Fig. 3.6). The centre line 

horizontal ice velocities at each cross section were calculated by linear interpolation along the 

centre line between the velocities measured immediately up- and downstream of the cross section 

(ablation stakes visible in Fig. 3.1). Mean cross-sectional velocities are required to compute the ice 

fluxes (see section 3.3.4). A map of the surface ice velocity field was derived by correlating SPOT5 

images acquired on 13 November 2004 and 21 September 2005 (Berthier et al., 2005). Comparison 

of the satellite-derived velocities with 16 nearly simultaneous DGPS velocity measurements 
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shows a mean difference of 0.2 m a–1 and a standard deviation of 1.6 m a–1. The ratio between the 

centre-line horizontal velocity and the mean surface velocity (all extracted from the satellite-

derived 2004/05 velocity field) was found to be 0.80 and 0.78 for cross sections 2 and 3 

respectively. Reliable velocity measurements could not be made with SPOT5 imagery for other 

cross sections. Using the mean value of 0.79, the mean horizontal velocity was calculated from 

the centre-line velocity for each gate cross section (Table 3.1). 

 

 
 

Figure 3.6. Measured ice velocities plotted as a function of the distance from the 2010 terminus position. 

Measurements were collected along the central flow line. 

 

3.3.4 Ice fluxes from kinematic method 

The ice flux Q (m3 ice a–1) through each cross section was calculated using the cross-sectional area 

Sc (m2) and depth-averaged horizontal ice velocity U (m a–1). 

 

Q = U Sc         (3.2) 

 

The depth-averaged horizontal ice velocity was derived from the mean surface ice 

velocity calculated in section 3.3.3. Nye (1965) gives ratios of depth-averaged horizontal ice 

velocity to mean surface ice velocity varying from 0.8 (no sliding) to 1 (maximum sliding). Here 

we assume a mean basal sliding, with a constant ratio of 0.9. The calculated ice fluxes and 

maximum depth at each cross section are given in Table 3.1. The flux through cross section 3 at 

4750 m a.s.l. is higher than the flux through cross section 4 at 4900 m a.s.l. This is due to the ice 

influx from the western part of the glacier (flux through cross section 5) which contributes to cross 

section 3 and not to cross section 4 (Fig. 3.1).  
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The largest uncertainty in the depth-averaged horizontal ice velocity results from the ratio 

between the depth velocity and the surface flow velocity. The estimated factor 0.9 and unknown 

variations in the basal sliding lead to an uncertainty of roughly ±10% in the calculated flux, which 

lies within the range of uncertainty of the other variables as discussed by Huss et al. (2007). 

Consequently, we can infer that depth-averaged horizontal ice velocity at each cross section is 

known with an accuracy of 1.0–3.0 m a–1 depending on the cross sections. Combining these errors 

in the cross-sectional area and mean velocity, the uncertainties in the ice fluxes are 0.21, 0.69, 0.92, 

0.89 and 0.38 x 106 m3 a–1 for cross sections 1, 2, 3, 4 and 5 respectively. We have considered the 

errors to be systematic, so these uncertainties are probably overestimated. 

3.3.5 Ice fluxes obtained from surface mass balance  

We also calculated ice fluxes using annual surface MB measured during 2002–10. Although 

dynamic changes are neglected here, this method allows us to estimate the ice fluxes for each 

section from MB data according to:  

 

i

z

z

isbQ 
max

9.0

1
      (3.3) 

   

where Q is the ice flux (converted into m3 ice a–1 using an ice density of 900 kg m–3, hence 

the factor 1/0.9) at a given elevation, z, and bi is the annual MB of the altitudinal range i of map 

area si. The altitudinal ranges taken into account in the calculation are located between z and the 

highest range of the glacier zmax (highest altitude of the glacier area contributing ice to the cross 

section). We assume that at each point of the glacier above z the surface elevation has remained 

unchanged from one year to the next. 

The ice fluxes calculated from annual MB data at the five cross sections each year are given 

in Table 3.2, while the average ice fluxes for the 8 years are given in Fig. 3.7. The uncertainties in 

ice fluxes resulting from surface MB are directly derived from the MB uncertainties (see section 

3.3.1) applied to areas contributing to each cross section. 

3.4 Discussion 

The first and main objective of this section is to discuss the MB change of Chhota Shigri Glacier 

over the last two to three decades using not only direct Ba observations (over the last 8 years) but 

also ice-flux analysis. The second goal is to give insights into the specific dynamics and the future 

retreat of this glacier that can be expected in relation to its recent Ba. 
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Table 3.2. Ice fluxes (in 106 m3 ice a-1), inferred at each cross section from annual MB data. 

Cross 

section Altitude 

Hydrological year (Oct–Sep) 

 

Mean  

(2002-2010) 

  2002/03 2003/04 2004/05 2005/06 2006/07 2007/08 2008/09 2009/10  

 m a.s.l.          

Snout 4050 -22.26 -19.28 2.27 -22.21 -15.59 -14.65 2.06 5.24 -10.55 

1 4400 -22.83 -19.55 3.78 -22.65 -15.43 -14.82 3.19 6.84 -10.18 

2 4670 -14.31 -11.49 6.57 -14.35 -8.63 -8.21 6.03 8.70 -4.46 

3 4735 -9.88 -7.68 6.89 -10.04 -5.45 -5.46 6.16 8.43 -2.13 

4 4900 -1.41 -1.36 4.84 -2.30 0.05 -0.16 4.14 5.72 1.19 

5 4870 -1.61 -1.30 2.08 -2.19 -0.57 -0.82 1.86 2.80 0.03 

 

 

 

Table 3.3. Ice fluxes (in 106 m3 ice a-1), obtained at every cross section, using steady-state MB assumption for every surveyed year. 

Cross 

section Altitude Hydrological year (Oct–Sep) 

Mean  

(2002-2010) 

Standard 

deviation 

  2002/03 2003/04 2004/05 2005/06 2006/07 2007/08 2008/09 2009/10 
  

 m a.s.l.           

Snout 4050 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 

1 4400 1.25 1.32 1.33 1.38 1.43 1.03 0.96 1.17 1.23 0.17 

2 4670 5.07 5.30 4.59 4.99 4.94 4.55 4.24 4.14 4.73 0.41 

3 4735 6.04 6.11 5.27 5.85 5.70 5.02 4.69 4.68 5.42 0.58 

4 4900 5.78 4.87 4.11 4.88 5.09 4.58 3.48 4.02 4.60 0.72 

5 4870 2.76 2.48 1.63 2.17 2.49 2.06 1.46 1.77 2.10 0.46 
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Figure 3.7. Ice fluxes at every cross section derived (i) from 2003/04 ice velocities and section areas (red 

open squares) and (ii) from MB method for a glacier-wide MB = 0 m w.e. (black squares) or a glacier-wide 

MB = -0.67 m w.e. (blue triangles).   

 

3.4.1 Null to slightly positive mass balance during the 1990s inferred from ice fluxes 

The ice fluxes obtained from the kinematic method using ice thickness and 2003/04 ice velocities 

are much higher than the average fluxes derived from the 2002-2010 surface MBs, the latter being 

often negative (Table 3.2). Thus in this section, to assess the mean state of the glacier 

corresponding to the ice fluxes obtained by the kinematic method, we compare these measured 

ice fluxes to theoretical ice fluxes calculated from surface MB assuming the glacier to be in steady-

state. The Ba obtained by the glaciological method is –0.67 m w.e. a-1 over the 2002-2010 period. 

Consequently, the MB needs to be increased by 0.67 m w.e. a-1, for the glacier to be in steady-state. 

For each year (over 2002-2010 period), we calculated the theoretical ice flux from MB at each cross 

section assuming the glacier was in steady-state. For this purpose, every year, a theoretical MB at 

each elevation has been calculated by subtracting the overall Ba of the same year. For instance, 

year 2002/03 was characterized by a negative Ba of –1.40 m w.e. so we calculated a new MB profile 

by adding +1.40 m w.e. to the MB at each elevation. In contrast, year 2009/10 was characterized 

by a positive Ba of +0.33 m w.e. so we calculated a new MB profile by subtracting 0.33 m w.e. from 

the MB at each elevation. The resulting ice fluxes are reported in Table 3.3, together with the mean 

ice flux at each cross section over the 8 years and the corresponding standard deviations.
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These ice fluxes are close to the 2003/04 ice fluxes obtained by the kinematic method 

(Fig. 3.7) indicating that the dynamic behaviour of the glacier in 2003/04 is representative for 

steady-state conditions. This suggests that in the years preceding 2003/04, Ba of this glacier has 

probably been close to zero and that, in 2003/2004, the ice fluxes had not adjusted to previous 

year negative Ba. 

This result is also supported by other observations. First, the ice velocities measured in 

1987/88 (Dobhal et al., 1995) are very close to the 2003/04 values (Fig. 3.6) suggesting that the 

dynamic behaviour of this glacier did not change a lot between 1988 and 2004. Second, the 

terminus fluctuation measured between 1988 and 2010 show a moderate retreat equal to 155 m, 

equivalent to only 7 m a-1, in agreement with conditions not far from steady-state. Given that 

Berthier et al. (2007) observed a geodetic Ba of Chhota Shigri Glacier of approximately –1 m w.e. 

a-1 during the period 1999 to 2004, the glacier is likely to have experienced a null to slightly 

positive Ba between 1988 and the end of the 20th century.  

3.4.2 Glacier dynamics starting to adjust to 21st century negative Ba 

In theory, the response of ice fluxes to surface Ba is immediate (Cuffey and Paterson, 2010, p. 468) 

but observations show a 1-5 year delay (Vincent et al., 2000; Span and Kuhn, 2003; Vincent et al., 

2009). For instance, Span and Kuhn (2003) found synchronous decrease in ice velocity between 

eight glaciers in the Alps, which are driven by the same MB changes (Vincent et al., 2005). 

Consequently, the recent dynamic behaviour of Chhota Shigri Glacier should be affected by the 

negative Ba since 1999. However, the stake network on Chhota Shigri Glacier, originally designed 

for Ba measurements, is not best suited to accurately compare either the ice velocities or the 

thickness variations because the measurements have not been performed exactly at the same 

location every year and they are mainly restricted to the ablation area.   

In spite of the above limitation, an attempt has been made to compare ice velocities and 

elevations from the available stake network. For this purpose, stakes measured at the beginning 

and at the end of the series have been selected on five short longitudinal cross sections (A, B, C, 

D and E in Fig. 3.1) along the centre line of the glacier where the network is most dense. The 

elevations in 2003 and 2010 and the ice velocities in 2003/04 and 2009/10 have been reported on 

these longitudinal cross sections to deduce thickness and velocity changes in the ablation area 

(Fig. 3.8, Table 3.4). Although the accuracy of the results is affected by the distance between the 

point measurements, we can conclude that the part of the glacier below 4750 m a.s.l. is in strong 

recession. First, the thickness has decreased annually by 0.7 to 1.1 m a-1 over the last seven years. 

Second, the ice velocities have been reduced by 7 m a-1 between 2003 and 2010 resulting in a 24 

to 37% decrease in the ice fluxes since 2003.
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Figure 3.8. Elevation (dots) and surface ice velocity (triangles) between 2003 (continuous lines) and 2010 

(dashed lines) along the longitudinal sections A, B, C, D and E shown in Fig. 3.1. 

 

Table 3.4. Thickness and surface velocity changes between 2003 and 2010 on 5 longitudinal cross 

sections (NA: Not available).

  

 

Long. section Elevation change 

m 

Velocity change 

m a-1 

A -5.3 -6.6 

B -8.6 -8.8 

C -7.5 -7.4 

D -2.8 NA 

E -5.6 +4.8 
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Despite an improvable monitoring network, it may be surmised that the ice fluxes have 

been affected by the negative Ba during (at least) between 2002 and 2010, and the dynamics of this 

glacier are progressively adjusting to the negative Ba. Consequently, we expect an accelerated 

terminus retreat in the coming years. If the Ba remained equal to its 2002-2010 average value in 

the future, the terminus would retreat by 5.6 km to reach an altitude of 4870 m a.s.l. (altitude 

where the ice flux is equal to zero) (Table 3.2).  

3.5 Conclusion 

Chhota Shigri Glacier experienced negative Ba over the 2002-2010 period. Ba of the glacier is 

estimated at –0.67 m w.e. a-1 between 2002 and 2010, revealing strong unsteady-state conditions 

over this period. Conversely, ice fluxes calculated through 5 transverse cross sections by the 

kinematic method correspond to near steady-state conditions before 2004. Given that ice 

velocities measured in 2003/04 are close to those measured in 1988, and that terminus has 

retreated only 155 m between 1988 and 2010, it seems that the dynamic change was moderate 

between 1988 and 2004. Therefore, considering that Berthier et al. (2007) observed a negative 

geodetic Ba of about –1 m w.e. a-1 between 1999 and 2004 using satellite images, our analysis 

suggests that the glacier experienced a period of slightly positive or close to zero Ba at the end of 

the 20th century, before starting to shrink. As Chhota Shigri Glacier seems to be representative of 

other glaciers in the Pir Panjal Range (Berthier et al., 2007), it is possible that many western 

Himalayan glaciers of northern India experienced growth during the last 10-12 years of the 20th 

century, before starting to shrink at the beginning of the 21st century. 

Since 2003, ice velocities and elevation are decreasing in the ablation area. Our data 

suggest that the ice fluxes have diminished by 24 to 37% below 4750 m a.s.l. between 2003 and 

2010. Even if we account for a 37% decrease in ice fluxes calculated from 2003/04 ice velocities to 

obtain present ice fluxes values, it remains a very large imbalance with ice fluxes coming from Ba 

between 2002 and 2010. Thus the present dynamics (thickness and ice velocities) of this glacier 

are far from Ba and climate conditions between 2002 and 2010, even if it is progressively adjusting. 

Therefore the glacier is likely to undergo accelerated retreat in the near future. 

This glacier is almost free of debris and thus its Ba variations are closely related to climate 

changes. This glacier has the longest running series of Ba measurements in the Hindu-Kush 

Karakoram Himalayan range. In the future, the dynamic behaviour and Ba need more detailed 

investigations, although such field measurements are demanding due to the very high altitude. 

In order to investigate the annual thickness and the ice velocity changes, we recommend 

performing elevation and ice velocity measurements on ~12 cross sections including some in the 

accumulation zone. We also recommend measuring the ice velocities from a dense network of 

stakes to be set up on longitudinal center lines in order to compare the annual velocity changes 

at the same points. Finally, we recommend calibrating and checking the Ba field measurements 

from a volumetric method (from photogrammetry or remote sensing techniques).
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CHAPTER 4 

Mass balance reconstruction of Chhota Shigri 

Glacier since 1969  
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Executive summary 

Ice flux analysis in chapter 3 suggested that Chhota Shigri Glacier has experienced a period of 

steady-state or slightly positive mass balance in the 1990s, before shifting to a strong imbalance 

in the 21st century. Vincent et al. (2013) calculated the volumetric change of this glacier between 

1988 and 2010 using in-situ geodetic measurements. Their results revealed a moderate mass loss 

over this 2-decade period (–3.8±2.0 m w.e. corresponding to –0.17±0.09 m w.e. a−1). Combining 

the latter result with field measurements and digital elevation models differencing from satellite 

images, they deduced a slightly positive or steady-state mass balance between 1988 and 1999 

(+1.0±2.7 m w.e. corresponding to +0.09±0.24 m w.e. a-1) and confirmed the chapter 2 results. 

Given that Vincent et al. (2013) used field geodetic measurements conducted in 1988 and 2010, 

they could not determine the exact starting and ending years of steady-state or slightly positive 

mass balance conditions on Chhota Shigri Glacier. Besides, the climatic drivers responsible for 

the steady-state or slightly positive mass balance conditions between 1988 and 1999 and for the 

strong imbalance after 1999 were unknown.  

In order to answer these questions, in the present chapter the annual mass balances of 

Chhota Shigri Glacier are reconstructed between 1969 and 2012 applying a degree-day model 

together with an accumulation model fed by long-term meteorological data recorded at Bhuntar 

meteorological station (~50 km south of the glacier, 1092 m a.s.l.). This reconstruction allowed 

us to examine the mass balances since 1969. A period of steady-state between 1986 and 2000 

sandwiched between a moderate mass loss period (between 1969 and 1985) and an accelerated 

mass wastage period (between 2001 and 2012) was defined. The respective mean mass balances 

for these 3 periods were −0.36±0.36 m w.e. a-1 (1969-85), −0.01±0.36 m w.e. a-1 (1986-2000) and 

−0.57±0.36 m w.e. a-1 (2001-12) corresponding to a mean mass balance of −0.30±0.36 m w.e. a-1 for 

this 43-year period. An analysis of these decadal scale mass balances with meteorological 

variables suggested that winter precipitation and summer temperature are almost equally 

important drivers controlling the mass balance pattern of this glacier.   
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Abstract 

This study presents a reconstruction of the mass balances (MBs) of Chhota Shigri Glacier, 

Western Himalaya, India, and discusses the regional climatic drivers responsible for its 

evolution since 1969. The MBs are reconstructed by a temperature-index and an accumulation 

model using daily air-temperature and precipitation records from the nearest meteorological 

station, at Bhuntar meteorological station. The only adjusted parameter is the altitudinal 

precipitation gradient. The model is calibrated against 10 years of annual altitudinal MB 

measurements between 2002 and 2012 and decadal cumulative MBs between 1988 and 2010. 

Three periods were distinguished in the annual glacier-wide mass balance (Ba) series. Periods I 

1 − 5) and III 1−1 ) show significant mass loss at Ba rates of − .3 ± .3  and − .5 ± .3  m 
w.e. a-1, respectively whereas period II 1 − ) exhibits steady-state conditions with average 

Ba of − . 1± .3  m w.e. a−1. The comparison among these three periods suggests that winter 

precipitation and summer temperature are almost equally important drivers controlling the Ba 

pattern of Chhota Shigri Glacier at decadal scale. The sensitivity of the modeled Ba to 

temperature is − .5  m w.e. a−1 oC−1 whereas sensitivity to precipitation is calculated as 0.16 m 

w.e. a−1 for a 10% change. 
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4.1 Introduction 

Glacier surface MB reflects climatic fluctuations and is important for the assessment of water 

resources (e.g., Ohmura et al., 2007). The Himalaya is one of the largest glacierized areas outside 

the polar regions, with a total glacier coverage of 22,800 km2 (Bolch et al., 2012). Therefore, 

understanding the evolution of Himalayan glaciers is of great interest in diagnosing the future 

water availability in these highly populated watersheds (e.g., Kaser et al., 2010; Thayyen and 

Gergan, 2010; Prasch et al., 2013). A reliable prediction of glacier behaviour in the future 

demands an assessment of their response to climate in the past.   

Since Intergovernmental Panel on Climate Change (IPCC) dispute (Parry et al., 2007), 

the Himalaya have become a focus of research interest, and subsequent ground-based MB (e.g., 

Cogley, 2009; Azam et al., 2012; Vincent et al., 2013) as well as remote-sensing studies (e.g., 

Bolch et al., 2011, 2012; Gardelle et al., 2012, 2013; Kääb et al., 2012) have been conducted over 

recent years. Unfortunately, data on recent glacier changes over the Himalaya are sparse, and 

even sparser as we go back in time (e.g., Cogley, 2011; Bolch et al., 2012), so the rate at which 

these glaciers have been changing is still not well assessed. Direct measurements of Ba over the 

Indian Himalaya are available on a limited number of glaciers (13 glaciers covering ~100 km2) 

and mostly come from the period 1975-90 (Vincent et al., 2013). Chhota Shigri Glacier is one of 

the best observed glaciers in this region for its Ba, surface velocity and geodetic MB. Although Ba 

since 2002 (Wagnon et al., 2007; Azam et al., 2012) and geodetic MB since 1988 (Vincent et al., 

2013) are available, it is desirable to have longer series in order to extend our knowledge of the 

glacier-climate relationship. There is therefore a necessity to reconstruct the Ba of Himalayan 

glaciers in the past and to assess the impacts of climatic variables on Ba. 

Melt models are customary approaches to reconstruct MBs. These models generally fall 

into two categories: temperature-index models (e.g., Jóhannesson et al., 1995; Braithwaite and 

Zhang, 2000; Vincent, 2002; Hock, 2003; Pellicciotti et al., 2005; Zhang et al., 2006; Huss et al., 

2008) and energy-balance models (e.g., Fujita and Ageta, 2000; Hock and Holmgren, 2005; 

Nemec et al., 2009; Paul, 2010; Mölg et al., 2012). Temperature-index models are based on a 

statistical relationship, between melting and near-surface air temperatures, using restricted 

number of input data (generally air temperature), hence do not possess extensive physical 

resolution. This approach was firstly used for an Alpine glacier by Finsterwalder and Schunk 

(1887). Air temperature data are usually the most widely available data; thus, temperature-

index melt models have been applied in a variety of studies. Conversely, energy-balance models 

estimate melt based on sophisticated energy-balance equations (Hock et al., 2007) and in turn 

provide a detailed physical resolution but demand an extensive input dataset. It is still unclear 

how the empirical relationship between air temperature and melt holds under different climate 

conditions (Hock, 2003), but good performance of temperature-index models is generally 

attributed to the fact that many components of energy balance are strongly correlated with 
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temperature (Ohmura, 2001). Temperature-index models are known to perform better on mid-

latitude glaciers than on low-latitude glaciers (Sicart et al., 2008). However, Chhota Shigri 

Glacier is similar to mid-latitude glaciers with an ablation season limited to the summer months 

and a mean vertical gradient of mass balance in the ablation zone similar to those reported in 

the Alps (Wagnon et al., 2007).    

Consequently, in this study, a temperature-index model (e.g., Hock, 2003) together with 

an accumulation model is used to reconstruct Ba of Chhota Shigri Glacier since 1969 using 

meteorological data from Bhuntar meteorological station. The goals of this study are (1) to 

determine long-term time series of Ba and (2) to resolve them into winter (Bw) and summer (Bs) 

glacier-wide mass balances. This provides a basis for the study of climate-glacier interaction as 

well as some principles of Ba governing processes in the western Himalaya.    

4.2 Study site 

Chhota Shigri Glacier (32.28o N, 77.58o E) is a valley-type, non-surging glacier located in the 

Chandra-Bhaga river basin of Lahaul and Spiti valley, Pir Panjal range, western Himalaya (Fig. 

4.1). It lies ~25 km (aerial distance) from the city of Manali. This glacier is located in the 

monsoon–arid transition zone and is influenced by two different atmospheric circulation 

systems: the Indian summer monsoon during summer and the Northern Hemisphere mid-

latitude westerlies during winter (Bookhagen and Burbank, 2010). Chhota Shigri Glacier feeds 

Chandra River, one of the tributaries of Indus river system. This glacier is likely to be temperate 

and extends from 6263 to 4050 m a.s.l. with a total length of 9 km and area of 15.7 km2 (Wagnon 

et al., 2007). Chhota Shigri Glacier is mainly oriented north-south in its ablation area but its 

tributaries and accumulation area have a variety of orientations (lower right inset in Fig. 4.1). Its 

snout is well defined, lying in a narrow valley and producing a single proglacial stream. The 

lower ablation area (<4500 m a.s.l.) is covered by debris representing 3.4% of the total surface 

area (Vincent et al., 2013). The debris layer is highly heterogeneous, ranging from few 

millimeter sand particles to big boulders sometimes exceeding several meters. The equilibrium- 

line altitude (ELA) for a zero net balance is close to 4900 m a.s.l. (Wagnon et al., 2007).  

4.3 Data and climatic settings 

4.3.1 Mass-balance data 

Jawaharlal Nehru University, India, and Institut de Recherche pour le Développement (IRD), France, 

have been collaborating closely on Chhota Shigri Glacier since 2002, with Ba measurements 

being conducted by the direct glaciological method at the end of September or the beginning of 

October. Details of Ba measurements are provided by Wagnon et al. (2007) and Azam et al. 

(2012). Between  and 1 , the glacier lost mass at a rate of − .5 ± .  m w.e. a-1. Its volume 

change was also measured between 1988 and 2010 using in-situ geodetic measurements. 

Topographic measurements conducted in 1988 (Dobhal, 1992) were resurveyed in October 2010 
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using the carrier-phase GPS to determine the thickness variations of the glacier over 22 years. 

These thickness variations were converted to cumulative MB between 1988 and 2010 (–3.8±2.0 m 

w.e. corresponding to –0.17±0.09 m w.e. a−1) (Vincent et al., 2013). Using satellite digital 

elevation models differencing and field measurements, a negative MB between 1999 and 2010 (–
4.8±1.8 m w.e., corresponding to –0.44±0.16 m w.e. a−1) was observed. Thus, a slightly positive or 

steady-state MB between 1988 and 1999 (+1.0±2.7 m w.e., corresponding to +0.09±0.24 m w.e. a−1) 

was deduced. 

 

 

Figure 4.1. Location map of Chhota Shigri Glacier and its surroundings. Roads are shown in green, 

river in blue and Chhota Shigri Glacier as a star. The upper left inset shows a map of Himachal Pradesh, 

India, with the location of the Bhuntar meteorological station and glacier (star) indicated in the box. The 

lower right inset is a map of Chhota Shigri Glacier with the location of the AWS-M (red diamond). The 

map coordinates are in the UTM 43 (north) World Geodetic System 1984 (WGS84) reference system. 
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4.3.2 Meteorological data 

At Chhota Shigri Glacier, in-situ meteorological data since 18 August 2009 are available from an 

Automatic Weather Station (AWS-M) located on a lateral moraine at 4863 m a.s.l. (lower right 

inset in Fig. 4.1). The nearest long-term meteorological record comes from Bhuntar 

meteorological station, Kullu Airport (31.5o N, 77.9o E, 1092 m a.s.l.). This meteorological station 

is located ~50 km (aerial distance) southwest of Chhota Shigri Glacier and belongs to the Indian 

Meteorological Department (IMD). The daily maximum, minimum temperature and 

precipitation data are available since January 1969.   

4.3.2.1 Air temperature  

Air temperatures (minimum and maximum) are recorded daily by traditional maximum-

minimum thermometers at Bhuntar meteorological station. Daily mean temperature is 

calculated as a mean of daily maximum and minimum temperatures. This averaged 

temperature may differ slightly from a daily temperature derived from continuous 

measurements recorded at hourly or infra-hourly time-scale, but since this mean temperature is 

used to assess degree-day factors (see section 4.4.2.2), this difference does not impact MB 

results. The temperature series from Bhuntar meteorological station has some data gaps usually 

of some days to a couple of months. Out of 16010 days, a total of 1182 days are missing (7.3% 

data gaps). Short gaps of one or two days were filled by a linear interpolation method between 

data from the days immediate preceding and following the missing day. In the case of longer 

gaps (more than two days) a correlation is calculated between daily mean temperatures from 

Bhuntar meteorological station and daily re-analysis temperatures from the US National 

Centers for Environmental Prediction/US National Center for Atmospheric Research 

(NCEP/NCAR) (Kalnay et al., 1996). Given that the correlation is influenced by temperature 

seasonality, both temperature series were de-seasoned using a multiplicative decomposition 

model to remove the seasonality of the data. To achieve this task, before performing any 

correlation, any daily temperature value was divided by a mean daily index of the 

corresponding day. This index was computed 1. by dividing the daily temperature value by the 

365 day moving average of the same date and 2. by averaging all resulting day-of-year index 

values over the whole studied period (e.g., averaging all values for 1 January over the 43 years 

to compute the mean index of 1 January). The NCEP/NCAR re-analysis data for temperature 

are available since 1948 for the grid point 32.5o N, 77.5o E (nearest grid point to Bhuntar 

meteorological station) at 925 hPa. The correlation coefficient is fairly low (r=0.49) and a t-test is 

done for the slope coefficient of the regression. The t-test suggests that relationship is 

statistically significant at a confidence level of 95%. The correlation is used to fill the gaps in 

Bhuntar temperature series and the seasonality was then added back to yield a continuous 

temperature series. Figure 4.2 shows the mean annual temperature since 1969.  
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4.3.2.2 Precipitation  

The daily precipitation record since 1969 is available from Bhuntar meteorological station. At 

this meteorological station the precipitation measurements were collected by tipping-bucket 

rain gauges. The gaps (352 daily data are missing over 16010 days; 2.1% data gaps) are filled 

using the average value of the daily amount of rain of the same dates in the other years. Figure 

4.2 shows the annual precipitation sums at Bhuntar meteorological station since 1969.   

 

 

Figure 4.2. Annual mean temperature (red squares) and annual precipitation sums (green bars) 

recorded at Bhuntar meteorological station from January 1969 to October 2012.  

 

Figure 4.3. Mean monthly precipitations between 1969 and 2012 at Bhuntar meteorological station. 

Summer precipitation (red bars) predominantly derives from the Indian summer monsoon, whereas 

winter precipitation (blue bars) predominantly derives from mid-latitude westerlies. The error bars 

represent the standard deviation ±1σ) of the monthly precipitation mean.    
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4.3.3 Climatic setting 

Western Himalaya are characterized by, from west to east, the decreasing influence of the mid-

latitude westerlies (MLW) and the increasing influence of the Indian summer monsoon (ISM) 

(Bookhagen and Burbank, 2010), leading to distinct accumulation regimes on glaciers 

depending on their location. Over the whole Himalayan range, summer precipitation (May to 

October) is predominantly of monsoonal origin, whereas in winter (November to April) 

precipitation accompanies MLW (Wulf et al., 2010). Mean monthly precipitations with monthly 

standard deviation at Bhuntar meteorological station are shown in Fig. 4.3. ISM (May to 

October) accounts for 51% of the average annual rainfall (916 mm a-1) over 1969-2012, while 

MLW (November to April) contribute 49%. Almost equal precipitations from ISM and MLW, 

recorded since 1969 at Bhuntar meteorological station, suggest that Chhota Shigri Glacier is a 

good representative of a transition zone that is alternatively influenced by ISM and MLW.    

 

4.4 Methods 

4.4.1 Model description 

Ba is computed using the temperature-index model (e.g., Hock, 2003) together with an 

accumulation model. The temperature-index model relates the amount of melt/ablation with 

positive air temperature sums (cumulated positive degree-days, CPDD) with a proportionality 

factor called the degree-day factor (DDF).    

The Ablation M is computed by: 

 � = { �� / �/ � . �       ∶     � > ��                  ∶     � ≤ ��                      (4.1) 

 

where, DDF denotes the degree-day factor (mm d-1 oC-1), different for ice, snow and 

debris-cover surfaces, T is extrapolated daily mean temperature (oC) at glacier altitudes and TM  

is the threshold temperature (oC) for melt.  

The accumulation A is computed by: 

 = {�    ∶       � ≤ ��    ∶       � > ��          (4.2) 

 

where, P and T are extrapolated daily precipitation (mm) and temperature (oC) at glacier 

altitudes, respectively and TP is the threshold temperature (oC) for snow-rain. 

Computations of the DDFs were performed at various altitudes using ablation stakes 

distributed over the glacier (see section 4.4.2.2). Temperature and precipitation at daily 

resolution are the required input data for the model. The MB is calculated at every altitudinal 
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range of 50 meters using temperature and precipitation from Bhuntar meteorological station 

since 1969 extrapolated at the mean altitude (e.g., for the 4400-4450 band, 4425 m a.s.l.). The 

model starts on 1 October of a year and calculates both accumulation and ablation for each 

altitudinal range at daily time-step for a full hydrological year (until 30 September the following 

year), taking into account the surface state (snow, bare ice or debris) and using the 

corresponding DDF. There was no option but to assume that the initial conditions (surface state, 

snow depth as a function of elevation) of 1 October 1969 were similar to those observed on 1 

October 2002 in the field, but this assumption only impacted the Ba results of the first year of 

reconstruction. The sum of accumulation and ablation gives the specific Ba. Daily melt of snow-, 

ice- and debris-cover glacier was calculated when the air temperature was above the threshold 

melt temperature. Liquid precipitation is assumed not to contribute to glacier mass gain. 

Refreezing of melt water or rainfall is discounted as it is negligible for temperate glaciers 

(Braithwaite and Zhang, 2000). Given that the area loss for Chhota Shigri Glacier between 1980 

and 2010 is only 0.47% of its area in 1980 (Pandey and Venkataraman, 2013) and mass wastage 

between 1988 and 2010 is mainly limited to the last decade (Vincent et al., 2013), the glacier 

hypsometry (surface elevation distribution) is considered to be unchanged over the whole 

modeling period and equal to the 2004-2005 hypsometry given by Wagnon et al. (2007). 

4.4.2 Parameter analysis 

Table 4.1 lists all the parameters used in the model. To achieve one of the main objectives of this 

study, i.e. to assess the temporal variability of Ba since 1969, it was decided to use a simple and 

robust model with as few calibration parameters as possible. In order not to multiply 

parameters, this model includes neither any radiation component nor a grid-based approach 

which could be used to assess the spatial variability of the MB but is less relevant for studying 

its temporal variability. Moreover, as far as possible, the model parameters are derived from 

available in situ measurements (temperature gradients as a function of elevation and DDFs for 

snow-, ice- and debris-covered surfaces). Threshold temperatures for melt and snow-rain limit 

have been chosen from the literature. Indeed, those temperatures are related to DDFs or 

temperature and precipitation altitudinal gradients through Eqs. (4.1) and (4.2), so selecting 

different values for these temperatures would have resulted in different values of DDFs or 

temperature and precipitation gradients but would not have significantly changed MB results. 

The only adjusted parameter, because of a lack of data, was the altitudinal precipitation 

gradient. 

4.4.2.1 Temperature lapse rate (LR)  

Daily LRs were calculated using daily mean temperatures from Bhuntar meteorological station 

(1092 m a.s.l.) and the glacier-side AWS-M (4863 m a.s.l.) for the overlapping period between 18 

August 2009 and 31 October 2012. Although Bhuntar meteorological station is far away (~50 



Chapter 4 : Mass balance reconstruction of Chhota Shigri Glacier since 1969 

 

68 

 

km) from the glacier, air temperature is relatively well correlated over large distances (Begert et 

al., 2005) and can therefore be extrapolated with confidence. There is a pronounced seasonal 

cycle in LRs, with the highest mean monthly LR (7.03 oC km-1) in March during winter and the 

lowest (5.52 oC km-1) in August during summer. The lower LRs over summer months are 

probably due to the strong monsoonal convectional activity producing an efficient mixing of the 

lower atmosphere.  

Temperature-index models generally use a single constant value of LR for the whole 

modeling period (e.g., Jóhannesson et al., 1995; Vincent, 2002). In the present study the daily 

LRs were calculated for a full year to capture the annual temporal variability. A mean daily LR 

for every day of the year over the three hydrological years (1 October 2009 to 30 September 

2012) was first calculated to remove the interannual variability and then fitted by an order-10 

polynomial function (Fig. 4.4). This function was used to calculate the LR for every day of the 

year over the whole year. The daily air temperatures on glacier surface at each altitude range 

are computed from Bhuntar meteorological station temperatures using these LRs. The average 

LR is calculated as 6.4 oC km-1. 

 

 

Figure 4.4. Polynomial fit (black line) for the day-of-year average values of LRs (orange circles). Day-of-

year 1 corresponds to 1 October. Every dot stands for a daily value of LR for each day of the year, 

averaged over three hydrological years (1 October 2009 to 30 September 2012). Also shown is the 

correlation coefficient R2 between LR daily values and the corresponding polynomial fit (95% confidence 

level). 
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4.4.2.2 Degree-day factors 

On Chhota Shigri Glacier, the DDFs for ice-, snow-, and the debris-cover part were obtained by 

linear regression between point ablation measurements performed during the summers of 2009, 

2011 and 2012 (June to October) between 4300 and 4900 m a.s.l. and the corresponding CPDD. 

The ablation was measured for different time periods, from a few days to a couple of weeks, at 

several stakes. These periods are sometimes short because they have been carefully selected to 

exclude significant snowfall events on the glacier (no observation of snowfalls at the permanent 

base camp (~3900 m a.s.l.) and no significant fresh snow reported at stake locations during 

measurements). For each ablation stake, the CPDD is computed from Bhuntar meteorological 

station (1092 m a.s.l.) applying the daily calculated LRs between this meteorological station and 

the AWS-M (4863 m a.s.l.) close to the glacier. Around 500 measurements have been performed 

at most of the available stakes. Ablation and CPDD have always been compared over the same 

time period. Given the overall uncertainty of 140 mm w.e. in stake ablation measurements 

obtained from a variance analysis including all types of errors (ice/snow density, stake height 

determination, liquid-water content of the snow and snow height) (Thibert et al., 2008), all the 

measurements having ablation lower than 140 mm w.e. have been discarded for DDFs 

calculations of ice and debris. Given the limited number of measurements over snow surfaces 

(the glacier is inaccessible during winter), this threshold has been decreased to 100 mm w.e. to 

keep the number of measurements large enough for regression analysis. A total of 192 ablation 

measurements (13, 157 and 22 for snow, ice and debris respectively) were available for the 

analysis. Figure 4.5 provides the linear regression curves for snow, ice and debris, and the 

corresponding slopes are the respective DDFs. The y-intercept has been systematically forced to 

zero assuming the threshold temperature for ablation is always 0°C.     

Figure 4.5 shows a linear increase in ablation as a function of CPDD except for debris-

cover surfaces where dispersion is large. Over the debris-cover part, ablation strongly depends 

on the thickness of the debris, which is very variable in space, in turn, on the stake location 

which may change from one year to the next when new stakes are installed. The DDFs for 

debris- cover, snow and ice surfaces, with their respective uncertainties calculated following 

Taylor (1997, p. 188), were calculated as 3.34±0.20, 5.28±0.14 and 8.63±0.18 mm d-1 oC-1 

respectively. The DDF for snow is 61% that of ice, a significantly lower value as expected given 

that melting is more efficient over ice surfaces than over snow surfaces due to albedo difference. 

Below 4400 m a.s.l., the glacier is debris-covered, which efficiently protects the ice against 

melting, explaining why it’s DDF is lower than the others.   
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Figure 4.5. Measured ablation for debris (black squares), ice (blue dots) and snow (red stars) surfaces as 

a function of CPDD. In total 192 measurements performed between June and October 2009, 2011 and 2012 

were selected for analysis. Also shown are the respective correlation coefficients R2 (95% confidence 

level). 

 

4.4.2.3 Precipitation gradient 

The distribution of precipitation on the glacier is more complicated to handle than air 

temperature since precipitation amounts in mountainous regions are spatially non-uniform and 

have a strong vertical dependence (e.g., Immerzeel et al., 2012b). Sites only a few km away may 

receive significantly different amounts of rain or snow. Furthermore, limited information is 

available about precipitation amounts and gradients over the western Himalaya at glacier 

altitudes. Therefore, point MB measurements performed at 5550 m a.s.l. on Chhota Shigri 

Glacier seem to be the best available option to quantify the lower limit of the total annual 

accumulation and to try to derive the precipitation gradient between Bhuntar meteorological 

station and the glacier. Only the lower limit of annual accumulation is assessed because part of 

the total annual accumulated snow at 5550 m a.s.l. may have been removed by melting, 

sublimation or wind erosion. Temperature at 5550 m a.s.l. remains below the freezing point, 

suggesting that melting is insignificant. In addition, the measurement site is flat, and thus not 

submitted to over-accumulation due to avalanches. The correlation coefficient R2 between point 

MB at 5550 m a.s.l. and precipitation at Bhuntar meteorological station over 9 years from 2002 to 

2012 at annual time scale is equal to 0.57. The resulting precipitation gradient is positive with 

altitude at a rate of 0.10±0.03 m km-1, in agreement with the gradient of ~0.12 m km-1 reported by 

Wulf et al. (2010) in Baspa Valley (~100 km SE of Chhota Shigri Glacier). Considering that this 
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gradient has been derived using the lower limit of total annual accumulation at glacier 

elevation, it is probably under estimated here. Moreover, this gradient is known to be spatially 

highly variable (e.g., Immerzeel et al., 2012b). A calibration of this parameter is performed 

below to assess it better (see section 4.4.3).   

Assuming that precipitation linearly increases with altitude, the precipitation gradient 

has been applied over the whole glacier to compute precipitation at every altitudinal range from 

Bhuntar meteorological station precipitation. Precipitation on the glacier is assumed to fall in 

the form of snow if the temperature at the corresponding altitude is below a specified threshold 

(typically 1 oC) (e.g., Jóhannesson et al., 1995; Lejeune et al., 2007).   

4.4.3 Model calibration 

In section 4.4.2, model parameters (temperature LRs, DDFs and precipitation gradient) have 

been obtained from field measurements. Threshold temperatures (TP and TM) have also been 

assigned as commonly used values. Among these parameters, DDF for debris-covered surfaces 

comes from a weak correlation (R2 = 0.39) and precipitation gradient is not known with accuracy 

due the large spatial variability of these variables and paucity of field data. A calibration, 

therefore, is sought for better assessment of these parameters. As the lower part of Chhota 

Shigri Glacier is debris-covered (only 3.4% of its total area), melting from this area is 

insignificant compared to the whole glacier, suggesting that DDF for debris-covered area is not 

a sensitive parameter. Consequently, only precipitation gradient has been adjusted to match the 

modeled net MB with the observed MB data. The MB has been calculated step by step starting 

from the original measured underestimated precipitation gradient (0.10 m km-1; see section 

4.4.2.3) and implementing it at each step with an additional 0.01 m km-1 until the best agreement 

between modeled and observed MBs was achieved. Annual point MB measurements between 

2002 and 2012 and decadal geodetic MB observations over the 1988-2010 period (i.e. 1988-1999 

and 1999-2010) have been used simultaneously for calibration. The model is tuned to minimize 

at the same time (1) the resulting root-mean-square errors (RMSE) between modeled and 

measured annual point MBs (averaged every 50 m altitudinal range) from 2002 to 2012 and (2) 

the difference between modeled MB and geodetic mass changes at decadal scale. The modeled 

Ba were cumulated over the periods when decadal geodetic MBs (Vincent et al., 2013) were 

available in order to make a comparison. The annual changing surface is not accounted for in 

this study, and all cumulative MBs are related to the 2004/05 surface area.   
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Table 4.1. List of the model parameters used for MB reconstruction  

 Melt-model parameter Value 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

DDF for debris 

DDF for ice 

DDF for snow 

Precipitation gradient 

Temperature LRs 

Threshold temperature for snow/rain (TP) 

Threshold temperature for melting (TM) 

3.34 mm d-1 oC-1 

8.63 mm d-1 oC-1 

5.28 mm d-1 oC-1 

0.20 m km-1 

Mean daily LR* (oC km-1) 

1 oC 

0 oC 

* Averaged for each day of year using Bhuntar and AWS-M data between 1 October 2009  

              and 30 September 2012 

 

 

4.5. Results  

4.5.1. MB as a function of altitude 

Figure 4.6 compares the modeled annual altitudinal gradient of MB (at each altitudinal range of 

50 m from 4400 to 5400 m a.s.l.) with the observed gradient for each hydrological year between 

2002 and 2012. Modeled and observed gradients show a good agreement, with an RMSE of 0.84 

m w.e. a–1 for 10 hydrological years between 2002 and 2012. The agreement is the best in 

2009/2010 with an RMSE of 0.42 m w.e. a–1, and worst in 2008/2009, with an RMSE of 1.66 m w.e. 

a–1. The other eight years show RMSEs ranging between 0.49 and 0.95 m w.e. a–1. The largest 

differences come from the ablation zone, below 4800 m a.s.l. (~22% glacier area) where for some 

years (2002-2008) modeled ablation is underestimated.  

In fact, in the ablation area during summer, predominantly ice is exposed at the surface, 

hence the DDF for ice has probably been underestimated between 2002 and 2008 since it has 

been computed by regression analysis using data collected during the summers of 2009, 2011 

and 2012 (section 4.4.2.2). The corresponding hydrological years 2008/2009, 2010/2011 and 

2011/2012 had respective Ba of 0.13, 0.11 and -0.45±0.40 m w.e. a-1, which were above average 

compared to the prior years. In temperature-index models, DDFs are integrated factors taking 

into account all kinds of effects responsible for glacier melt. In the present study, the DDF for 

ice has perhaps been underestimated because some effects likely to enhance melting, such as 

longwave radiation emitted by the steep valley walls surrounding the glacier tongue below 

4700 m a.s.l. (Wagnon et al., 2007) or progressive dust deposition at the glacier surface that 

might reduce the surface albedo (Oerlemans et al., 2009), have been minimized. Indeed, during 

positive Ba years, glacier surroundings may remain covered by snow longer even in summer, 

limiting longwave emission, and the dust deposition effect can be decreased when there are 

more frequent snowfalls than during negative Ba years.  
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Figure 4.6. Comparison of reconstructed annual (red dots) with observed annual MBs (black triangles) 

as a function of elevation for 10 hydrological years 2002-2012. RMSE (m w.e. a-1) for each year is also 

given. 
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In 2008/2009, the opposite is true, melting being sharply overestimated at every 

elevation by the model (Fig. 4.6G). The mismatch between modeled MBs as a function of 

elevation and observations is likely to be due to the large albedo spatio-temporal variability that 

sometimes occurs in the field. Brock et al. (2000) found that the albedo variations exert a 

significant control on the surface melt rate, and summer snowfall events are particularly 

important to the summer energy balance. During the 10 years of observations on Chhota Shigri 

Glacier, local observers reported some heavy summer snow falls usually in September 

(September 2005; 3-14 September 2009; 13-23 September 2010) and even in August (13 August 

2011). These summer snow fall events sometimes deposit as much as 1 m of snow in a few days 

at the glacier snout. Consequently, melting is abruptly reduced or even stopped at the glacier 

surface for several weeks or even for the rest of the ablation season which usually ends around 

mid-October in years without such strong summer snowfalls. Such major and abrupt changes 

are probably difficult to simulate using the model, hence the mismatches between simulation 

and observation in some years. Moreover, during these specific events which are probably 

triggered by the orographic effect (Bookhagen and Burbank, 2010), precipitation amounts 

measured at Bhuntar meteorological station are not always representative of those occurring on 

the glacier. This may have been the case in 2008/2009. Nevertheless, additional measurements 

(e.g., systematic comparisons between precipitation at Bhuntar and at the glacier elevation) are 

still required to explain in details these discrepancies between modeled and observed MBs. 

4.5.2 Annual mass balance       

4.5.2.1 Cumulative mass balance since 1969 

The 1969-2012 modeled Ba are displayed in Fig. 4.7 together with observed 2002-2012 Ba and 

1988-2010 geodetic decadal MBs. Over the whole modeling period, Ba is negative 60% of the 

time and positive the rest of the time. The cumulative Ba is found to be −1 .  m w.e. − .3  m 
w.e. a−1) between 1969 and 2012, which is a moderate mass loss over these 43 years. The 

hydrological year 1975/1976 shows the maximum Ba, 0.93 m w.e., whereas 1983/1984 shows the 

most negative Ba, −1.  m w.e.  

4.5.2.2 Error analysis 

To assess the uncertainties in Ba, each sensitive parameter (precipitation gradient and DDFs for 

ice and snow) has been successively moved step by step from its initial value, the other 

parameters remaining unchanged, and the resulting cumulative Ba have been compared to 

observed geodetic MBs at decadal scale (1988-1999 and 1999-2010). Every parameter has been 

modified to allow the maximal variations of the resulting cumulative Ba within the limits 

prescribed by the uncertainty bounds of the observed geodetic MBs, i.e. ±2.7 and ±1.8 m w.e. for 

1988-1999 and 1999-2010 respectively (Table 4.2; Fig. 4.7). Consequently, each parameter, as 

modified, provides two new 43 year series of Ba, one toward negative values and one toward 



Chapter 4 : Mass balance reconstruction of Chhota Shigri Glacier since 1969 

 

75 

 

positive values. The resulting uncertainty in Ba is taken as the highest standard deviation 

calculated between these new series and the initial Ba series and is as high as ±0.36 m w.e. a-1.  

 

 

Figure 4.7. Comparison of modeled Ba (black points) with observed Ba (red squares) and decadal 

geodetic MBs (blue thick lines). The corresponding uncertainties in modeled, observed and geodetic MBs 

are also shown. Black thick line shows the 5 year running mean value since 1969.  

 

In this study, given that the area loss is small as discussed in section 4.4.1, we have not 

considered the area change of Chhota Shigri Glacier over the studied period, and Ba changes are 

related to 2004/2005 glacier area and hypsometry (Wagnon et al., 2007). However, this 

assumption induces Ba errors due to temperature changes resulting from surface elevation 

changes that are not taken into account. Indeed, between 1969 and 2005 the calculated 

cumulative MB is as high as −8.74 m w.e., corresponding to ~9.7 m surface linear glacier-wide 

lowering between 1969 and 2005 (we assume no lowering at the highest point of the glacier, a 

maximum lowering at its snout and a linear lowering between these two points, leading to a 

MB of − .  m w.e.). Given a mean annual temperature lapse rate of .  °C km-1 as obtained in 

section 4.4.2.1, we can recalculate the Ba for each year of this period, and the resulting error 

accounts for − .  m w.e. a−1 between 1969 and 2005. The same error analysis was performed 

between 2005 and 2012, where the cumulative MB is equal to −4.15 m w.e. (i.e. a rough estimate 

of 4.6 m surface glacier-wide lowering) and the MB error is +0.03 m w.e. a−1. Combining both 

periods, a MB error of − . 3 m w.e. a−1 is calculated between 1969 and 2012, still low compared 

with the uncertainties associated to the modeling i.e. ±0.36 m w.e. a-1. 
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Table 4.2 compares the modeled cumulated Ba with the observed MB for the respective 

periods where the observed MBs are available. As expected (because these data served to 

calibrate the model) modeled Ba are in good agreement with geodetic decadal MBs since 1988 

and cumulative glaciological Ba since 2002. 

 

Table 4.2. Comparison of cumulative MBs (m w.e.) 

1988-1999 1999-2010 2002-2012 Source 

Geodetic MB from field 1 ± 2.7 − .  ± 1.  Vincent et al. (2013) 

Glaciological Ba −5.  ± .  Azam et al. (2012) 

Modeled Ba − .  − .  −5.3 Present study 

 

 

 

Figure 4.8. Annual and seasonal MB series of Chhota Shigri Glacier, 1969-2012. Black, green and red 

dots represent the annual, winter and summer MBs with their corresponding error bars respectively. The 

thick lines are the 5 day running means. The horizontal dotted line represents the zero MB. 

 

4.5.3 Seasonal mass balance  

Although Ba is of broad interest and has been determined in numerous glacier-monitoring 

programs (e.g., Dyurgerov and Meier, 2005), it does not provide insights into climate-glacier 

interaction. Seasonal MB offers the best insights to assess the effects of climatic drivers on 

glaciers (e.g., Ohmura, 2006). Every year the beginning and the end of the season were 

demarcated as the day when the MB was at its annual maximum (end of winter) or minimum 
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(end of summer) to retrieve the winter (Bw) and summer (Bs) glacier-wide mass balances from 

diurnal MB series. The model suggests that the average summer ablation period lasts from mid-

June to the end of September, 96±18 days. The computed Bs, Bw and Ba are shown in Fig. 4.8. 

Modeled seasonal MBs show large annual variability, with values from − .31 to − .33 m w.e. a-1 

for Bs and 0.31 to 2.16 m w.e. a-1 for Bw. Over the whole simulation period the resulting Ba varies 

from −1.  to . 3 m w.e. a-1. An error analysis for seasonal MBs similar to that conducted for Ba 

(section 4.5.2.2.) has been performed, leading to an error range of ±0.35 m w.e. a-1 in Bs and Bw. 

The mean values for Ba, Bs and Bw for the 3 year period are − .3 ± .3 , −1.3 ± .35 and 1. ± .35 
m w.e. a-1 respectively. 

4.6 Discussion 

4.6.1 Mass balance pattern and climatic drivers 

Over the whole simulation period 1 − 1 ), the cumulative Ba of Chhota Shigri Glacier was 

−1 .  m w.e., corresponding to a moderate mass loss rate of − .3 ± .3  m w.e. a-1. Three distinct 

periods (of 1 −1  years) of this Ba series were distinguished according to the glacier mass gain 

or loss (Fig. 4. ). Student’s t-tests, at 95% confidence level, have been performed to check 

whether periods I, II and III were statistically different from each other. The p-values 

(probability-values) for periods I and II and periods II and III are respectively 0.01 and 0.03, 

suggesting that period II statistically differs from the other periods, while p-value for periods I 

and III is 0.27, suggesting that the two periods are roughly similar. During periods I 1 −1 5) 
and III 1− 1 ), Chhota Shigri Glacier lost mass at Ba rates of − .3 ± .3  and − .5 ± .3  m 
w.e. a-1 respectively, whereas during period II 1 − ) it remained close to steady-state 

conditions, with a mean Ba of − . 1± .36 m w.e. a-1. The steady-state conditions over the nineties 

were qualitatively inferred by Azam et al. (2012) using a dynamical approach and quantified by 

Vincent et al. (2013) using geodetic in-situ measurements between 1988 and 2010. In this 

context, the present study enables determination of the exact time of glacier shifting from 

balance to imbalance conditions that Vincent et al. (2013) could not achieve.  

For each period, the mean Bw, Bs and Ba are shown in Fig. 4.9 and Table 4.3, providing 

their respective values over the three periods and over a full 43-year period. In order to assess 

the climatic drivers, the average winter precipitations and summer temperatures at Bhuntar 

meteorological station are also plotted in Fig. 4.9 and reported in Table 4.3. Period I exhibits the 

largest inter-annual variability of the Ba of the 43 year reconstructed period, with the most 

positive (1975/76) and negative (1983/84) hydrological years (Fig. 4.8). This period also shows 

high mean Bs which is partially compensated by Bw, providing moderate mass loss. Period II is 

characterized by 56 mm a-1 higher precipitation and 0.2 oC lower  summer mean temperature 

than 1969-2012 averages resulting in roughly equal Bw and Bs, leading to steady-state conditions 

(Table 4.3). Conditions for period III are diametrically opposite to those of period II, with 65 mm 

a-1 lower precipitation and 0.2 oC higher mean summer temperatures than 1969-2012 averages, 
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resulting in an accelerated mass loss due to reduced Bw and enhanced Bs. This comparison 

between these three periods suggests that winter precipitation and summer temperature are 

equally important drivers controlling the Ba pattern of Chhota Shigri Glacier at decadal scale.   

 

Table 4.3. Mean annual, summer and winter MBs for periods I, II and III and for the whole 43 year 

period, with their corresponding mean summer temperatures and winter precipitations at Bhuntar 

meteorological station. 

Period 

 
Ba 

m w.e. a-1 

Bs 

m w.e. a-1 

Bw 

m w.e. a-1 

Summer 

temperature 

°C 

Winter 

precipitation 

mm 

1969-1985 -0.36 -1.38 1.02 23.4 447 

1986-2000 -0.01 -1.27 1.25 23.1 506 

2001-2012 -0.57 -1.51 0.94 23.5 385 

1969-2012 -0.30 -1.38 1.08 23.3 450 

 

 

 

 

Figure 4.9. Mean winter, summer and annual MBs for all 3 periods since 1969 (black thick lines). Red 

thick line represents the summer mean temperatures (oC), while green line represents the annual winter 

precipitation sums (mm) at Bhuntar meteorological station. The continuous thin red and green lines 

represent the average summer temperatures (oC) and winter precipitation sums (mm) between 1969 and 

2012 respectively. The black dotted line represents zero MB.   
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4.6.2 Comparison with other studies 

This 43 year Ba series, the longest ever reconstructed in the Himalaya, provides the opportunity 

to make a comparison with other studies. In agreement with our results, showing a moderate 

mass loss over the last four decades, Panday and Venkataraman (2013) also reported moderate 

glacierized area shrinkage for the Chandra-Bhaga basin and a minor area loss (0.47%) for 

Chhota Shigri Glacier between 1980 and 2010. Balance conditions of the Chhota Shigri Glacier 

between 1986 and 2000 deviate from the most recent compilation for the entire Himalaya 

Karakoram region (Bolch et al., 2012). Bolch et al. (2012) reported ice wastage for this region 

over the past five decades, with increased rate of loss roughly after 1995 but with a high spatio-

temporal variability. We would stress, as previously stated by Vincent et al. (2013), that 

Himalaya Karakoram MB averages between 1986 and 2000 should be regarded with caution, 

given the scarcity of MB data (Bolch et al., 2012) and result of this study testifying that the 

Chhota Shigri Glacier experienced a balanced mass budget between 1986 and 2000. Since 2000 

an increased rate of mass loss is observed, in agreement with Bolch et al. (2012), with a Ba rate of 

–0.57±0.36 m w.e. a-1, representing 55% of the total mass loss of the last 43 years. This 

accelerated rate of Ba is in agreement with a mass wastage at − . 5± .13 m w.e. a-1 or − .3 ± .1  
m w.e. a-1 over 1999–2011, for Lahaul and Spiti region or Chhota Shigri Glacier respectively, 

calculated by Gardelle et al. (2013).  

4.6.3 MB sensitivity to temperature and precipitation 

Glacier-wide MB is a key variable widely used as a climate proxy in many environmental and 

climate change studies (e.g., Solomon et al., 2007). Temperature-index models are used 

worldwide to assess the modeled MB sensitivity to climate (e.g., De Woul and Hock, 2005; 

Braithwaite and Raper, 2007; Shea et al., 2009; Anderson et al., 2010; Wu et al., 2011) and 

estimate the future contribution of glaciers to sea-level rise (e.g., Raper and Braithwaite, 2006; 

Radic and Hock, 2011; Gardner et al., 2013). The sensitivity of a glacier MB to climate is usually 

assessed by rerunning the models with a uniform change in a specific variable, i.e. air 

temperature or precipitation throughout the year (e.g., Oerlemans et al., 1998; Braithwaite and 

Zhang, 2000), while the other variables and model parameters kept unchanged. These 

sensitivity tests were performed for Chhota Shigri Glacier, calculating Ba averaged over the 

period 1 − 1  firstly assuming a 1°C change in air temperature and secondly a 10% change 

in precipitation. The Ba sensitivity to temperature (dMB/dT) and precipitation (dMB/dP) are 

calculated following Oerlemans et al. (1998) as:  

 ���  ≈  �� + ℃ −�� − ℃ ≈ � − �                 (4.3) 

 ��� ≈ �� �+ % −�� �− % ≈ � � + % − � �     (4.4) 
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The sensitivity of the modeled Ba to temperature is − .5  m w.e. a−1 oC−1 which 

corresponds to the highest sensitivity recently reported by Rasmussen (2013) who investigated 

the meteorological controls on glacier MB in High Asia using NCEP/NCAR reanalysis data 

since 1 . It is also in agreement with the sensitivity of Zhadang Glacier, Tibet − .  m w.e. a−1 

oC−1), calculated by Mölg et al. (2012) using an energy-balance model. The Chhota Shigri 

modeled MB sensitivity to temperature decreases with elevation from −1. 1 m w.e. a−1 oC−1 at 

4400 m a.s.l. to − . 5 m w.e. a−1 oC−1 at 6000 m a.s.l. (Fig.  4.10). It is consistent with the fact that 

ablation is mainly controlled by air temperature; in turn, in the lower part of the glacier where 

ablation is predominant, sensitivity of modeled MB to temperature is enhanced. Over the debris 

cover part (<4400 m a.s.l.) of the glacier, the sensitivity − .5  m w.e. a−1 oC−1) is lower than over 

debris-free areas at the same elevation (not shown in Fig. 4.10). This is due to the low DDF for 

debris cover (40% of DDF for ice) which efficiently protects ice from fast melting. The dispersion 

in sensitivity is quite high close to the ELA (~4900 m a.s.l.), where it sharply changes from − . 1 
m w.e. a−1 oC−1 at 4850 m a.s.l. to − .5  m w.e. a−1 oC−1 at 5150 m a.s.l. This is likely due to the 

albedo pattern which can differ markedly from year to year close to the ELA (Vincent, 2002).  

 

 

Figure 4.10. MB sensitivity of Chhota Shigri Glacier to temperature as a function of altitude (dotted 

line) compared to glaciers in the French Alps (various symbols) (Vincent, 2002). The lower and upper x-

axis are the elevations for Chhota Shigri and French glaciers respectively and have been shifted to match 

their ELAs (thin vertical line).   
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Figure 4.10 compares the Chhota Shigri Glacier modeled MB sensitivity to temperature 

with summer ablation sensitivities of some monitored French glaciers (Vincent, 2002). These 

ablation sensitivities are calculated for the whole summer period by multiplying the DDF by the 

mean number of days for which temperature is higher than 0 oC at the observation elevation. 

The glacier altitudes are different, so they have been shifted to match the ELA of Chhota Shigri 

Glacier (~4900 m a.s.l.) to the mean ELA of the French Glaciers (~2900 m a.s.l.) in order to 

compare the sensitivity profiles with respect to elevation. The average sensitivity for Chhota 

Shigri Glacier at ~ELA is calculated as − . 3 m w.e. a−1 oC−1, while it is − .5  m w.e. a−1 oC−1 for the 

French glaciers. Thibert et al. (2013) reported ablation sensitivity for another French glacier, 

Glacier de Sarennes, as −0.62 m w.e. a−1 oC−1 at 3000 m a.s.l. The sensitivity profile of Chhota 

Shigri Glacier with respect to altitude is in good agreement with those of French glaciers with 

maximum dispersion around ELAs. 

A similar sensitivity test was performed for precipitation assuming a +10% increase. Ba 

sensitivity to precipitation is calculated as 0.16 m w.e. a−1 for a 10% change, again in agreement 

with the value (0.14 m w.e. a−1 for a 10% change) reported by Mölg et al. (2012) on Zhadang 

Glacier. The model was run several times while changing successive total precipitation to 

discern the precipitation amount needed to compensate a 1 oC change in temperature. A 32% 

increase in precipitation results in the same change in Ba as a 1oC increase in temperature. Our 

results are in good agreement with Braithwaite et al. (2002) and Braithwaite and Raper (2007), 

who reported a 30–40% increase in precipitation to offset the effects of a +1 oC temperature 

change. 

To test the relative importance of summer temperature and winter precipitation as 

drivers controlling the Ba of Chhota Shigri Glacier, we compared the sensitivity of the modeled 

MB to 1 standard deviation (1σ) of both variables (0.49 °C for summer temperature and 145 mm 

for winter precipitation over the 43 year period). The respective sensitivities are − . 5 m w.e. for 
1 σ of temperature and + .3  m w.e. for 1 σ of precipitation confirming that both variables are 
almost equally important drivers controlling the Ba of Chhota Shigri Glacier at decadal scale.  

4.7 Conclusion   

Ba of Chhota Shigri Glacier has been measured annually using the glaciological method since 

2002 and the geodetic method between 1988 and 2010. In the present study, Ba series of Chhota 

Shigri Glacier has been extended back to 1969 by a temperature-index model together with an 

accumulation model using daily records of precipitation and temperature from Bhuntar 

meteorological station. Model parameters were mostly derived from field measurements, except 

the vertical precipitation gradient whose lower limit was first obtained from field data to finally 

be calibrated because of the paucity of field measurements. The modeled and observed 

altitudinal MBs show an RMSE of 0.84 m w.e. a–1 for the 10 years 2002-2012. Chhota Shigri 

Glacier experienced a moderate mass wastage at a rate of − .3 ± .3  m w.e. a-1 over 1 − 1  
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period. The reconstructed Ba time series shows two deficit periods (1969–1985 and 2000–2012) 

with moderate and accelerated mass loss respectively, and one steady-state period (1986–1999) 

when the Ba remained close to zero. The steady-state period is characterized by 56 mm a-1 higher 

precipitation and 0.2 oC lower summer mean temperature than 1 − 1  averages, resulting in 

roughly equal Bw and Bs. The sensitivity of Ba of Chhota Shigri Glacier to precipitation is 0.16 m 

w.e. a−1 for a 1 % change and to temperature is − .5  m w.e. a−1 oC−1. This sensitivity to 

temperature ranges from −1. 1 m w.e. a−1 oC−1 at 4400 m a.s.l. to − . 5 m w.e. a−1 oC−1 at 6000 m 

a.s.l., whereas it is − . 3 m w.e. a−1 oC−1 around ELA (~4900 m a.s.l.), similar to the sensitivity of 

French glaciers relative to their ELA (Vincent, 2002). A 32% increase in precipitation 

compensates the effect of +1 oC change in temperature. 

This study suggests that winter precipitation and summer temperature are almost 

equally important drivers controlling Ba pattern of Chhota Shigri Glacier at decadal scale. 

Comprehensive precipitation measurements at glacier elevation, presently in progress, will help 

us to confirm this finding as well as to understand the impact of summer sporadic heavy 

snowfalls on Ba precisely. Further investigations including energy balance studies at the glacier 

surface are also required to understand the role of different energy fluxes in Ba determination.  
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Appendix 

Hydrological year and mass balance evolution 

The hydrological balance year is defined as the time between one minimum of glacier mass to 

the next, which, in mid-latitudes, generally occurs in autumn (Kaser et al., 2003). Ideally, the MB 

of a glacier should be monitored at the beginning of each hydrological year but this is almost 

impossible in the HKH region because of the harsh conditions that make the access difficult. 

Practically, the mass balance is calculated over a period slightly differing from the hydrological 

year. The hydrological demarcation is quite easy in the case of alpine/winter accumulation type 

glaciers (with distinct ablation and accumulation periods) but problematic over summer-

accumulation type glaciers (ablation and accumulation periods coincide). Given that Chhota 

Shigri Glacier seems to be a winter accumulation type glacier, the hydrological year was 

arbitrarily defined from 1st October to 30th September of the next year (Wagnon et al., 2007). On 

Chhota Shigri Glacier, ablation season usually ends around mid-October if glacier does not 

receive any summer-monsoon snow falls in the month of August or September (section 4.5.1); 

therefore, 1st October is not the balance minimum of the hydrological year. The starting of the 

hydrological year from mid-October or 1st November would be more appropriate but the access 

to the glacier is not possible after 15th October as the road is closed by the state government. For 

similar reason winter MB measurements are taken between May and July months depending on 

the access in the corresponding year.   

 

 

Figure 4.A1. A mean annual mass balance cycle at daily (a) and monthly (b) time-steps (data from 1969 

to 2013 averaged every day (a) or month (b). Hydrological year is defined between 1st October (day 0 on 

x-axis) and 30th September. 
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The least amount of mean monthly precipitations in the months of October and 

November at Bhuntar meteorological station (Fig. 4.3, section 4.3.2.2) as well as at the glacier 

base camp (Fig. 5.5, section 5.2.4.2) suggests that October and November are the driest months 

in this area in agreement with Datt et al. (2008) and Prasad and Roy (2005). Given the least 

precipitation amounts or almost balance conditions in October and November and the restricted 

accessibility to the glacier after mid-October, selecting 1st October as the starting date of the 

hydrological year seems to be the best available option. Besides, May shows the maximum MB 

conditions after accumulation period followed by June which is almost in balance conditions 

thus, 1st June seems to be the most justified date for starting the winter MB measurements. 

Chhota Shigri Glacier is a representative glacier for whole Lahaul and Spiti Valley (Berthier et 

al., 2007; Vincent et al., 2013) in the western Himalaya; therefore, the hydrological year for 

annual and winter MBs assessed on Chhota Shigri Glacier may be adopted for other glaciers of 

the region. It is noteworthy to say that the delineation of the hydrological year for annual and 

winter MBs is assessed by a MB model output on Chhota Shigri Glacier which is calibrated 

using long term in-situ data. Consequently such delineation is likely to be relevant for Chhota 

Shigri Glacier, but it should be considered with caution when applied to other glaciers of the 

region.     
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Processes governing the mass balance of Chhota 

Shigri Glacier  
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Executive summary 

In chapter 4 the annual glacier-wide mass balance (Ba) series since 1969 was reconstructed and 

three different periods were distinguished between 1  and 1 . Periods I 1 − 5) and III 
1−1 ) showed moderate and high mass losses, respectively whereas period II 1 −2000) 

exhibited steady-state conditions of Ba. The reconstructed Ba series not only re-confirmed the 

steady Ba state of Chhota Shigri Glacier already inferred in chapter 3 (section 3.4.1) and approved 

by Vincent et al. (2013) but also defined the exact period of steady-state. Additionally the 

comparison of the mean Ba with the mean winter precipitation and summer temperature over 

each period suggested that winter precipitation and summer temperature are almost equally 

important drivers controlling Ba pattern of Chhota Shigri Glacier at decadal scale. Furthermore 

chapter 2 (section 2.5.5) and chapter 4 (section 4.5.1) qualitatively highlighted the vital role of the 

summer-monsoon snowfalls for Ba evolution by controlling the summer glacier-wide mass 

balance via surface albedo. Yet the quantitative analysis and in-depth understanding of physical 

processes behind Ba evolution remain the open questions.      

Certainly these questions can only be addressed with a detailed physical surface energy 

balance approach. Consequently on 12 August 2012 a fully equipped Automatic Weather Station 

(AWS-G) was erected on the mid-ablation zone of Chhota Shigri Glacier. The 30-min mean data 

were analyzed to understand the meteorological conditions on the glacier surface at daily scale 

and used as input data in an energy balance model. The energy balance numerical modeling 

outputs provided the quantification of the surface energy fluxes and identification of the factors 

affecting Ba. Net energy was available for melt only during the summer-monsoon period when 

net radiation was the primary component of the surface energy balance accounting for 80% of the 

total heat flux followed by turbulent sensible (13%), latent (5%) and conductive (2%) heat fluxes. 

During post-monsoon and winter periods, sublimation predominated on Chhota Shigri Glacier. 
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In summer-monsoon, similar to other glaciers in High Mountain Asia which are affected by 

Indian Summer Monsoon circulation, latent heat flux brought a significant amount of energy at 

Chhota Shigri Glacier surface in the form of condensation/re-sublimation. Using the 

meteorological data and model outputs, the impact of the summer monsoon snowfalls on Chhota 

Shigri Glacier melt was assessed. This analysis, at point scale, quantitatively validated that the 

intensity of snowfall events during the summer-monsoon controls the surface albedo, in turn 

ablation, and therefore is among the most important drivers responsible for Ba evolution of 

Chhota Shigri Glacier. The summer-monsoon air temperature controlling the precipitation phase 

(rain versus snow and thus albedo), assigned, indirectly, also among the most important drivers. 

Following the point scale quantitative impact of summer-monsoon snowfalls, this analysis was 

also extended qualitatively for the whole glacier by analyzing the biggest daily summer-monsoon 

snowfall events, extrapolated from Bhuntar meteorological station, and Ba between 2002 and 

2013. Both the quantitative point scale as well as the qualitative glacier-wide scale analysis 

suggested that the intensity of summer-monsoon snowfall events, together with winter 

precipitation and summer temperature, is one of the most important drivers controlling the Ba of 

Chhota Shigri Glacier. Given that the qualitative analysis at glacier scale, done using the 

extrapolated precipitation data from Bhuntar meteorological station which is separated by an 

orographic barrier; therefore, may not be the best representative of snowfalls on the glacier, needs 

further investigation with local precipitation data to support this analysis in the coming future.  
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Abstract 

Some recent studies revealed that Himalayan glaciers have been shrinking at an accelerated rate 

since the beginning of the 21st century. However the climatic causes for this shrinkage remain 

unclear given that surface energy balance studies are almost nonexistent in this region. In this 

study, a point-scale surface energy balance analysis was performed using in-situ meteorological 

data from the ablation zone of Chhota Shigri Glacier over two separate periods (August 2012 to 

February 2013 and July to October 2013) in order to understand the response of mass balance 

(MB) to climatic variables. Energy balance numerical modeling provides quantification of the 

surface energy fluxes and identification of the factors affecting glacier MB. The model was 

validated by comparing the computed and observed ablation and surface temperature data. 

During the summer-monsoon period, net radiation was the primary component of the surface 

energy balance accounting for 80% of the total heat flux followed by turbulent sensible (13%), 

latent (5%) and conductive (2%) heat fluxes. A striking feature of the energy balance is the positive 

turbulent latent heat flux, suggesting re-sublimation of moist air at the glacier surface, during the 

summer-monsoon characterized by relatively high air temperature, high relative humidity and a 

continual melting surface. The impact of the Indian summer monsoon on Chhota Shigri Glacier 

MB has also been assessed. This analysis demonstrates that the intensity of snowfall events 

during the summer-monsoon plays a key role on surface albedo (melting is reduced in the case 

of strong snowfalls covering the glacier area), and thus is among the most important drivers 

controlling Ba of the glacier. The summer-monsoon air temperature, controlling the precipitation 

phase (rain versus snow and thus albedo), counts, indirectly, also among the most important 

drivers.  
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5.1 Introduction 

Himalayan glaciers, located on Earth’s highest mountain range, are source to numerous rivers 

that cater to the water needs of millions of people in Asia (e.g., Kaser et al., 2010; Immerzeel et al., 

2013). Recent studies have reported negative MB over Himalayan glaciers (e.g., Bolch et al., 2012; 

Kääb et al., 2012; Gardelle et al., 2013), in line with the observation that the Himalayan glaciers 

(22,800 km2) have been shrinking at an accelerated rate since the beginning of the 21st century 

(Bolch et al., 2012). Glacial retreat and significant mass loss may not only cause natural hazards 

such as landslides and glacier lake outburst floods but also increase the specter of shrinking water 

resources in the long term (Thayyen and Gergan, 2010; Immerzeel et al., 2013).  

Unfortunately, data on recent glacier changes in the Himalayan region are sparse and 

even sparser as we go back in time (Cogley, 2011; Bolch et al., 2012) and, thus, the rate at which 

these glaciers are changing remains poorly constrained (Vincent et al., 2013). The erroneous 

statement in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report 

(Parry et al., 2007) about the future of the Himalayan glaciers dragged the attention of the 

scientific community towards the behavior of these glaciers in relation to climate. However, the 

IPCC Fifth Assessment Report (Stocker et al., 2013) stated Several studies of recent glacier velocity 
change (Azam et al., 2012; Heid and Kääb, 2012) and of the worldwide present-day sizes of accumulation 

areas (Bahr et al., 2009) indicate that the world’s glaciers are out of balance with the present climate and 
thus committed to losing considerable mass in the future, even without further changes in climate . A 

reliable prediction of the responses of Himalayan glaciers towards future climatic change and 

their potential impacts on the regional population requires a sound understanding of the existing 

physical relationship between these glaciers and climate. This relationship can be addressed in 

detail by studying the glacier surface energy balance (hereafter SEB). 

Comprehensive glacier SEB studies began in the early 1950s (e.g., Hoinkes, 1953) and since 

then our understanding of the glacier-climate relationship has substantially improved. SEB 

studies of the world’s glaciers and ice sheets have been carried out extensively in the Alps (e.g., 

Klok and Oerlemans, 2002; Oerlemans and Klok, 2002), Antarctica (e.g., Favier et al., 2011; 

Kuipers Munneke et al., 2012), Greenland (e.g., Van den Broeke et al., 2011), and the tropics (e.g., 

Wagnon et al., 1999, 2001, 2003; Favier et al., 2004; Sicart et al., 2005, 2011; Nicholson et al., 2013). 

In High Mountain Asia, only a few studies have been carried out mainly in Tian Shan (Li et al., 

2011), the Qilian mountains (Sun et al., 2014), the Tibetan Plateau (Fujita and Ageta, 2000; Yang 

et al., 2011; Mölg et al., 2012; Zhang et al., 2013) and the Nepalese Himalaya (Kayastha et al., 1999; 

Lejeune et al., 2013). Glacier SEB studies from the Indian Himalaya (covering western as well 

parts of central and eastern Himalaya) are not yet available. Such SEB studies are crucial because 

glaciers across the Himalayan range have different MB behaviors (Gardelle et al., 2013), 

depending on their different climatic setup. For example, glaciers in Nepal receive almost all their 

annual precipitation from the Indian summer monsoon (ISM), and are summer-accumulation 
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type glaciers (Ageta and Higuchi, 1984; Wagnon et al., 2013), while glaciers in western Himalaya 

receive precipitation both from the ISM in summer and from mid-latitude westerlies (MLW) in 

winter (Shekhar et al., 2010). 

In this paper, we present a SEB analysis for Chhota Shigri Glacier, western Himalaya. This 

glacier is one of the best studied glaciers in Indian Himalaya in terms of MB.  The first MB 

measurement on this glacier was performed in 1987. Unfortunately, it was abandoned in 1989 

and restarted in 2002 (Ramanathan, 2011). Between 2002 and 2013, annual field measurements 

revealed that the glacier lost mass at a rate of –0.59±0.40 m w.e. a-1 (Ramanathan, 2011; Azam et 

al., 2014a). The volume change of Chhota Shigri Glacier has also been measured between 1988 

and 2010 using in-situ geodetic measurements by Vincent et al. (2013), revealing a moderate mass 

loss over this 2 decade-period (–3.8±2.0 m w.e. corresponding to –0.17±0.09 m w.e. a−1). Combining 

the latter result with field measurements and digital elevation model differencing from satellite 

images, they deduced a slightly positive or near-zero MB between 1988 and 1999 (+1.0±2.7 m w.e. 

corresponding to +0.09±0.24 m w.e. a-1). Further, Azam et al. (2014a) reconstructed Ba of Chhota 

Shigri Glacier between 1969 and 2012 using a degree-day approach and an accumulation model 

fed by long-term meteorological data recorded at Bhuntar meteorological station (~50 km south 

of the glacier, 1092 m a.s.l.) and discussed the MB pattern at decadal scale. They also compared 

the decadal timescale MBs with meteorological variables and suggested that winter precipitation 

and summer temperature are almost equally important drivers controlling the MB pattern of this 

glacier. A period of steady state between 1986 and 2000 and an accelerated mass wastage after 

2000 were also defined.   

Present studies on the climate sensitivity of western/Indian Himalayan glaciers either 

come from empirical analysis at decadal timescales (Azam et al., 2014a) or are based on basic 

comparison between meteorological variables and the glacier MB (Koul and Ganjoo, 2010), 

emphasizing the lack of physical understanding of the glacier-climate relationship in this region. 

Therefore, a detailed analysis of the SEB yet remains underway for the western/Indian Himalayan 

glaciers. Use of Automatic Weather Stations (AWSs) provides the opportunity to obtain long and 

continuous records of meteorological data and to study the seasonal and inter-annual variations 

in SEB at point locations (e.g., Oerlemans, 2000; Reijmer and Oerlemans, 2002; Mölg and Hardy, 

2004). The present study is focused on the SEB analysis of Chhota Shigri Glacier, using in-situ 

AWS-G (located on mid-ablation area of the glacier) measurements. It involves two main 

objectives: (1) analysis of the glacier’s micrometeorology, and (2) an analysis of the SEB 

components along with the change characteristic of each component so as to give an insight into 

the processes controlling the MB at point scale as well as glacier scale. 
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Figure 5.1. Map of Chhota Shigri Glacier showing the ablation stakes (black small squares), accumulation 

sites (black big squares), AWSs (red stars) and precipitation gauge (black cross). The map coordinates are 

in the UTM43 (north) World Geodetic System 1984 (WGS84) reference system.  

 

5.2 Data and climatic settings  

5.2.1 Study site and AWSs description 

Chhota Shigri Glacier (32.28 N, 77.58 E) is a valley-type, non-surging glacier located in the 

Chandra-Bhaga river basin of Lahaul and Spiti valley, Pir Panjal range, western Himalaya (Fig. 

5.1). It lies ~25 km (aerial distance) from the nearest town of Manali. This glacier feeds Chandra 

River, one of the tributaries of the Indus River system. Chhota Shigri Glacier extends from 6263 
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to 4050 m a.s.l. with a total length of 9 km and an area of 15.7 km2 (Wagnon et al., 2007). The main 

orientation is north in its ablation area, but its tributaries and accumulation areas have a variety 

of orientations (Fig. 5.1). The lower ablation area (<4500 m a.s.l.) is covered by debris representing 

approximately 3.4% of the total surface area (Vincent et al., 2013). The debris layer is highly 

heterogeneous, from sand size to big boulders exceeding several meters. The snout is well 

defined, lying in a narrow valley and giving birth to a single pro-glacial stream. The equilibrium 

line altitude (ELA) for a zero net balance is 4960 m a.s.l. (Wagnon et al., 2007).  

This glacier is located in the monsoon–arid transition zone and influenced by two 

different atmospheric circulation systems: the ISM during summer (July–September) and the 

Northern Hemisphere MLW during winter (January–April) (e.g., Bookhagen and Burbank, 2010). 

On Chhota Shigri Glacier, the hydrological year is defined from 1 October to 30 September of the 

following year (Wagnon et al., 2007). Since, the glacier sometimes experiences some melting even 

in October, it would have been more appropriate to start the hydrological year at the beginning 

of November. Nevertheless, for practical reasons (access to the glacier is impossible after mid-

October) and in view of the fact that both October and November are usually characterized by a 

non-significant MB, starting the hydrological year at the beginning of October does not change 

the results. 

 

Table 5.1. Measurement specifications for AWS-G located at 4670 m a.s.l. on the mid ablation zone of 

Chhota Shigri Glacier, AWS-M located on a moraine at 4863 m a.s.l., and precipitation gauge installed at 

base camp (3850 m a.s.l.). Accumulation/Ablation at AWS-G was measured by SR50A sensor (section 5.2.3). 

Variable symbols are also given. Sensor heights indicate the initial distances to the surface (12 August 2012). 

Variable symbol (unit) Sensor initial height (m) stated accuracy 

AWS-G     

air temperature  Tair (oC) Campbell HMP155Aa 0.8 & 2.5 ±0.1 at 0 oC  

relative humidity RH (%) Campbell HMP155Aa 0.8 & 2.5 ±1% RH at 15 oC 

wind speed u (m s-1) A100LK, Vector Inst. 0.8 & 2.5 ±0.1 m s-1 up to 10 m s-1 

wind direction WD (degree) W200P, Vector Inst. 2.5 ±2 deg  

incoming and outgoing short 

wave radiations SWI, SWO (W m-2) Kipp & Zonen CNR-4 1.8 ±10% day total 

incoming and outgoing long 

wave radiations LWI, LWO (W m-2) Kipp & Zonen CNR-4 1.8 ±10% day total 

air pressure Pair (hPa) Young 61302V 1 ±0.3 hPa 

accumulation/ablation SR50A (m) Campbell SR50Ab 1.6c ±0.01 m or 0.4% to target 

AWS-M     

air temperature  Tair (oC) Campbell H3-S3-XT 1.5 ±0.1 at 0 oC  

relative humidity RH (%) Campbell H3-S3-XT 1.5 ±1.5% RH at 23 oC 

wind speed u (m s-1) Campbell 05103-10-L 3.0 ±0.3 m s-1  

incoming short wave radiation SWI (W m-2) Kipp & Zonen CNR-1 2.5 ±10% day total 

incoming  longwave radiation LWI (W m-2) Kipp & Zonen CNR-1 2.5 ±10% day total 

Precipitation (base camp) (mm) Geonor T-200B 1.7 (inlet height) ±0.6  mm 
a aspirated during daytime with RM Young 43502 radiation shields,  
bmounted on a separate aluminum pole drilled into the ice,  

 c1.6 m was initial height for SR50A sensor 
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Two meteorological stations (AWS-G and AWS-M) have been operated on Chhota Shigri 

Glacier (Fig. 5.1). AWS-G was operated between 12 August 2012 and 4 October 2013, in the middle 

of ablation zone (4670 m a.s.l.) on an almost horizontal and homogeneous surface while AWS-M 

is located off-glacier on a western lateral moraine (4863 m a.s.l.), functioning continuously since 

18 August 2009. At AWS-G and AWS-M, meteorological variables are recorded as half-hourly 

means with a 30 s time step, except for wind direction (half-hourly instantaneous values), and 

stored in a Campbell CR1000 data logger. AWS-G is equipped with a tripod standing freely on 

the glacier with wooden plates at the base of its legs and sinks with the melting surface. AWS-M 

provides pluri-annual meteorological data (from 2009 to 2013) allowing the characterization of 

the seasons as well as the analysis of the local climatic conditions on Chhota Shigri Glacier. Both 

AWS-G and AWS-M were checked and maintained every month during the summers 

(accessibility in winter was not possible). At the glacier base camp (3850 m a.s.l.), an all-weather 

precipitation gauge with a hanging weighing transducer (Geonor T-200B) has been operating 

continuously since 12 July 2012 (Fig. 5.1). The Geonor sensor is suitable for both solid and liquid 

precipitation measurements. Table 5.1 gives the list of meteorological variables used in this study, 

with the sensor specifications.  

5.2.2 Meteorological data and corrections 

Only AWS-G data were used for SEB calculations. During winter, the lower sensors (Tair, RH, u) 

were buried under heavy snowfalls on 18 January 2013, and AWS-G stopped operating 

completely on 11 February 2013 until 7 July 2013 when the glacier was again accessible and AWS-

G could be repaired. To ensure good data quality, the period between 4 and 11 February 2013 

was eliminated as this period was supposed to be influenced by near surface snow. Thus, 

complete data sets of 263 days in two separate periods (13 August 2012 to 3 February 2013 and 8 

July to 3 October 2013) are available for analysis, except for the sensor SR50A, for which data are 

also missing from 8 September to 9 October 2012. The records from AWS-M have very few data 

gaps (0.003%, 0.29%, and 0.07% data gaps over the 4-year period for Tair, u and WD, respectively). 

These gaps were filled by linear interpolation using the adjacent data. Only one long gap exists 

for LWI data between 18 August 2009 and 22 May 2010.   

Radiation fluxes are directly measured in the field (Table 5.1), however several corrections 

were applied to these data before using in the SEB model. Night values of SWI and SWO were 

set to zero. At high elevation sites, such as the Himalaya, measured SWO can be higher than SWI 

(2.6% of total data here) during the morning and evening time when the solar angle is low because 

of poor cosine response of the upward-looking radiation (SWI) sensor (Nicholson et al., 2013). 

Besides, as AWS-G was installed on the middle of the ablation area, the unstable glacier surface 

during the ablation season conceivably gave rise to a phase shift by mast tilt (Giesen et al., 2009). 

The SWO sensor mostly receives isotropic radiation and consequently is much less sensitive to 

measurement uncertainties of poor cosine response and mast tilt compared to the SWI sensor 
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(Van den Broeke et al., 2004). Therefore, SWI is calculated from SWO (raw) and accumulated 

albedo (αacc) to avoid the impact of the phase shift because of tilting during the daily cycle of SWI 

and poor cosine response of the SWI sensor during the low solar angles. αacc values were 

computed (Eq. 1) as the ratio of accumulated SWO (raw) and SWI (raw) over a time window of 

24 hours centered on the moment of observation using the method described in Van den Broeke 

et al. (2004). The obvious shortcoming of the accumulated albedo method is the elimination of the 

clear-sky daily cycle in αacc (Van den Broeke et al., 2004): 

∝ = ∑ ��∑ �                                                                      .  

A correction has also been applied to longwave radiations as the air particles between the 

glacier surface and CNR-4 sensor radiate and influence LWI (underestimation of LWI at the 

surface) and LWO (overestimation). This generally occurs when Tair is higher than 0 °C during 

the summer-monsoon (July to September). Figure 5.2a reveals a linear relation between LWO and 

Tair above 0 oC. Measured LWO was often found to be substantially greater than 315.6 W m-2, 

which is the maximum possible value for a melting glacier surface. Therefore, a correction can be 

done using LWO. We adopted the method described by Giesen et al. (2014) and fitted a linear 

function to the median values of the additional LWO (greater than 315.6 W m-2) for all 0.5 oC Tair 

intervals above 0 oC, assuming that the correction is zero at 0 oC. This correction was added to 

LWI and subtracted from LWO (Fig. 5.2b) when Tair was higher than 0 °C. Corrections have half-

hourly values up to 22 W m-2 for Tair of 11 oC. Over all half-hourly periods with Tair above 0 oC, the 

average correction was 6.3 W m-2.   

 

 

Figure 5.2. Half-hourly values of LWO as a function of Tair, (a) before and (b) after applying the correction 

for Tair above 0 oC. The dashed lines indicate 0 oC and 315.6 W m-2, the maximum LWO for a melting surface.  
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In snow- and ice-melt models, cloud cover is investigated by computing cloud factors’, 
defined as the ratio of measured and modeled clear-sky solar radiation (Greuell et al., 1997; Klok 

and Oerlemans, 2002; Mölg et al., 2009). In the present study cloud factor is calculated by 

comparing SWI with solar radiation at the top of atmosphere (STOA) according to the Eq.: cloud 

factor = 1.3−1. * SfiI/STOA) which represents a quantitative cloud cover estimate and ranges 

between 0 and 1. The values 1.3 (offset) and 1.4 (scale factor) were derived from a simple linear 

optimization process (Favier et al., 2004). The cloud factor is calculated between 11:00 and 15:00 

local time (LT) to avoid the shading effect of steep valley walls during morning and evening time. 

The theoretical value of STOA is calculated for a horizontal plane following Iqbal (1983) and 

considering the solar constant equal to 1368 W m-2.  

5.2.3 Accumulation and ablation data 

The SR50A sensor records the accumulation of snow (decreasing the sensor distance to the 

surface) or the melting of ice and melting or packing of snow (increasing the sensor distance from 

the surface) at 4670 m a.s.l. close to AWS-G (Fig. 5.3). This sensor does not involve an internal 

temperature sensor to correct for the variations in speed of sound as a function of Tair. Without 

this correction the measured distance may reduce during the evening, which could be 

misunderstood as a snowfall event (Maussion et al., 2011). Therefore, temperature corrections for 

the speed of sound were applied to the sensor output using Tair recorded at the higher level. Also, 

to reduce the noise, a 3-hour moving mean is applied to smooth the SR50A data. During the 

summer-monsoon on Chhota Shigri Glacier, sporadic snowfall events and follow-up melting may 

occur within hours. Therefore, the surface height variations from the 3-hour smoothed SR50A 

data should be calculated over a time interval long enough to detect the true height changes 

during the snowfalls and short enough to detect a snowfall before melting begins. Given that 

SR50A measurements have an uncertainty of ±1 cm, an agreement was achieved with a 6-hour 

time step between smoothed SR50 data to extract surface changes greater than 1 cm.  

Point MB was measured from ablation stake no VI located at the same elevation and 

around 20 m south to AWS-G. Frequent measurements, with intervals of some days to a couple 

of weeks, were made at stake no VI during summer expeditions. In summer 2012, three stake 

measurements with intervals of 10 to 15 days were performed from 8 August to 21 September 

2012, while in summer 2013, six measurements with intervals of 7 to 30 days were carried out 

from 8 July to 3 October 2013. By subtracting the snow accumulation assessed from SR50A 

measurements at AWS-G (assuming a density of 200 kg m-3 for accumulated snow), the ablation 

was derived corresponding to every period between two stake measurements. 
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Figure 5.3. Photographs of AWS-G on Chhota Shigri Glacier taken on 09 October 2012 (left panel) and on 

22 August 2013 (right panel) (copyright: Mohd. Farooq Azam). SR50A mounted on a separate pole drilled 

into the ice, is visible to the left of AWS-G. 

 

5.2.4 Climatic settings 

5.2.4.1 Characterization of the seasons 

In this section, the meteorological conditions on Chhota Shigri Glacier, as derived from the 

measurements at AWS-M, are described. The Himalayan Mountains are situated in the 

subtropical climate zone, characterized by high annual thermal amplitude, that allows a 

separation into summer and winter seasons. The general circulation regime over Himalaya is 

controlled by the Inter-Tropical Convergence Zone (ITCZ) (Bookhagen and Burbank, 2006; 2010). 

Figure 5.4 shows the mean annual cycle of monthly Tair and RH during the four hydrological 

years, from 1 October 2009 to 30 September 2013, recorded at AWS-M. The standard deviations 

(STDs) of mean monthly measurements were 7.0 oC and 13% for Tair and RH, respectively, 

indicating that on Chhota Shigri Glacier, Tair and RH variations are large enough to characterize 

pronounced seasonal regimes. A warm summer-monsoon with high relative humidity from June 

to September and a cold winter season, comparatively less humid, from December to March were 

identified. A pre-monsoon from April to May and a post-monsoon from October to November 

could also be defined.    

Daily mean Tair ranges between –22.0 and +7.3 oC with a mean Tair of − .  oC for the studied 

cycle (1 October 2009 to 30 September 2013), reflecting the high altitude of the AWS-M location 

(4863 m a.s.l.). The coldest month was January with a mean Tair of −15.8 oC and the warmest month 

was August with a mean Tair of 4.3 oC. Table 5.2 displays the mean seasonal values of all studied 

variables for the whole period (1 October 2009 to 30 September 2013). The summer-monsoon is 

warm (mean Tair = 2.5 oC) and calm (mean u = 2.8 m s-1) with high humidity (mean RH = 68%), 

whereas the winter season is characterized by cold (mean Tair = −13.  oC) and windy (mean u = 5.5 

m s-1) conditions with relatively less humidity (mean RH = 42%). The mean annual RH is 52%. An 



Chapter 5 : Processes governing the mass balance of Chhota Shigri Glacier 

96 

 

increase (decrease) in mean monthly RH in June (October) shows the onset (end) of monsoon on 

Chhota Shigri Glacier. Pre-monsoon and post-monsoon seasons showed intermediate conditions 

for air temperature, moisture and wind speed (Table 5.2). Although the solar angle is at its annual 

maximum during the summer-monsoon, SWI is the highest during the pre-monsoon with a mean 

value of 299 W m-2. The summer-monsoonal mean is 33 W m-2 lower than the pre-monsoonal 

mean because of high cloud coverage in the summer-monsoon. The comparatively low values of 

SWI, during the summer-monsoon, are compensated by high values of LWI (Fig. 5.4 and Table 

5.2) mostly emitted from warm summer-monsoonal clouds. Post-monsoon and winter seasons 

are rather similar, receiving low and almost same SWI (176 and 161 W m-2, respectively) and LWI 

(187 and 192 W m-2, respectively). The low SWI and LWI values over these seasons are mainly 

related to the decreasing solar angle (for SWI), and low values of Tair, RH and cloudiness (for 

LWI), respectively.  

 

 

Figure 5.4. Mean monthly values of Tair (black dots), RH (green crosses), u (orange squares), SWI (grey 

bars) and LWI (light blue-green bars) at AWS-M (4863 m a.sl.). Tair, RH, u and SWI are the mean monthly 

values of four hydrological years between 1 October 2009 and 30 September 2013 while LWI are the mean 

monthly values of three hydrological years between 1 October 2010 and 30 September 2013. Also shown 

are the monthly values of Tair (black circles), RH (light green crosses), u (orange hollow squares), SWI (black 

hollow triangles) and LWI (blue hollow squares) used to derive the mean monthly values. 
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Table 5.2. Seasonal means and annual mean (standard deviations) of Tair, RH, u and SWI over four 

hydrological years between 1 October 2009 and 30 September 2013 except for LWI (only three years 

between 1 October 2010 and 30 September 2013) at AWS-M (4863 m a.s.l.). P is the seasonal precipitation 

for one hydrological year between 1 October 2012 and 30 September 2013 at glacier base camp collected by 

the Geonor T-200B.  

 
 Winter  

(DJFM) 

Pre-monsoon  

(AM) 

Summer-monsoon  

(JJAS) 

Post-monsoon  

(ON) 

Annual 

mean 

Tair (oC) -13.4 (0.9) -5.3 (0.7) 2.5 (0.6) -7.8 (1.4) -5.8 (0.2) 

RH (%) 42 (2) 52 (2) 68 (1) 39 (6) 52 (2) 

u (m s-1) 5.5 (0.6) 3.5 (0.2) 2.8 (0.1) 4.4 (0.5) 4.1 (0.2) 

SWI (W m-2) 161 (12) 299 (34) 266 (7) 176 (18) 221 (14) 

LWI (W m-2) 192 (3) 231 (2) 289 (17) 187 (8) 230 (6) 

P (mm w.e.) 679 148 117 32 976 

 

5.2.4.2 Influence of ISM and MLW 

The whole Himalayan range is characterized by, from west to east, the decreasing influence of 

the MLW and the increasing influence of the ISM (Bookhagen and Burbank, 2010), leading to 

distinct precipitation regimes on glaciers depending on their location. 

 

Figure 5.5. Comparison of monthly precipitations (blue bars) at Chhota Shigri base camp for 2012/13 

hydrological year with the mean monthly precipitations (red bars) between 1969 and 2013 at Bhuntar 

meteorological station. The error bars represent the standard deviation (1σ) of the monthly precipitation 

mean.  
 

Figure 5.5 shows the monthly precipitations for a complete hydrological year between 1 

October 2012 and 30 September 2013 at Chhota Shigri Glacier base camp (3850 m a.s.l.) (Fig. 5.1). 
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Surprisingly, the months with minimum precipitation were July to November (mean value of 16 

mm) and those with maximum precipitation were January and February (183 and 238 mm, 

respectively). For ease of understanding, Wulf et al. (2010) divided the distribution of 

precipitation over the same region into two periods: from May to October with precipitation 

predominantly coming from ISM and from November to April with precipitation coming from 

MLW. ISM contributed only 21% while MLW added 79% precipitation to the annual precipitation 

(976 mm) at Chhota Shigri base camp for the 2012/13 hydrological year. In Fig. 5.5, a comparison 

of 2012/13 monthly precipitation at base camp is also done with long-term (1969-2013) mean 

monthly precipitations at Bhuntar meteorological station, Beas Basin (Fig. 5.1). Although this 

station is only about 50 km (aerial distance) from Chhota Shigri Glacier, the precipitation regime 

is noticeably different because ISM and MLW equally contribute to the average annual 

precipitation (916 mm yr-1). The different precipitation regimes in this region can be explained by 

the location of the orographic barrier which ranges between 4000 and 6600 m in elevation (Wulf 

et al., 2010). ISM, coming from Bay of Bengal in the southeast, is forced by the orographic barrier 

to ascend, enhancing the condensation and cloud formation (Bookhagen et al., 2005). Thus, it 

provides high precipitation on the windward side of the orographic barrier at Bhuntar 

meteorological station (51% of the annual precipitation) and low precipitations on its leeward 

side at Chhota Shigri Glacier (21% of annual precipitation). In contrast to the ISM, MLW moisture 

derived from the Mediterranean, Black, and Caspian seas is transported at higher tropospheric 

levels (Weiers, 1995). Therefore, the winter westerlies predominantly undergo orographic capture 

at higher elevations in the orogenic interior providing high precipitations at Chhota Shigri Glacier 

(79% of annual precipitation) compared to Bhuntar meteorological station on the windward side 

(49% of annual precipitation). Thus, Chhota Shigri Glacier seems to be a winter-accumulation 

type glacier receiving most of its annual precipitation during the winter season. This precipitation 

comparison between glacier base camp and Bhuntar meteorological station is only restricted to 

2012/13 hydrological year, when precipitation records at glacier base camp are available. Long-

term precipitation data at glacier site are still required to better understand the relationship 

between the precipitation regimes prevalent on the southern and northern slopes of Pir Panjal 

Range. 

5.2.4.3 Representativeness of 2012/13 hydrological year 

Given that long-term meteorological data at the glacier are unavailable, the representativeness of 

the meteorological conditions prevailing during the 2012/13 hydrological year is assessed at 

Bhuntar using Tair and precipitation data from the Bhuntar meteorological station. Figure 5.6a 

shows the comparison of 2012/13 Tair with the long-term mean between 1969 and 2013 at seasonal 

as well as annual scales. Tair in 2012/13 hydrological year was systematically higher for all seasons 

(0.5 °C, 0.5 °C and 0.6 oC in winter, pre-monsoon and summer-monsoon, respectively) except for 

post-monsoon when it was lower (0.4 oC) than the mean seasonal Tair over the 1969-2013 period. 
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At the annual scale, the 2012/13 hydrological year was 0.4 °C warmer with Tair close to the 75th 

percentile of the annual mean Tair between 1969 and 2013. Figure 5.6b compares the precipitation 

observed during the 2012/13 hydrological year with the mean over the 1969-2013 period. In the 

2012/13 hydrological year, both ISM (May to October) and MLW (November to April) circulations 

brought an almost equal amount (49 and 51%, respectively) of precipitation at Bhuntar 

meteorological station. This year the ISM precipitation was equal to the mean ISM precipitation 

over 1969-2013 whereas MLW precipitation was 5% higher than the mean MLW precipitation 

over the 1969-2013 hydrological years (Fig. 5.6b); therefore, the annual precipitation for 2012/13 

was found to be slightly higher (943 mm w.e.) than the mean annual precipitation (919 mm w.e.) 

over the 1969-2013 hydrological years. In conclusion, 2012/13 hydrological year was relatively 

warmer with slightly higher precipitation compared to the annual means over 1969-2013 period. 

Especially concerning precipitation, the 2012/13 hydrological year can be considered as an 

average year.    

 

Figure 5.6. Boxplots of seasonal and annual Tair (a) and precipitation (b) obtained from 44 hydrological 

years (1969 to 2013) from Bhuntar meteorological station. Boxes cover the 25th to the 75th percentile of each 

distribution with a central line as the median. The blue thick horizontal line is the 1969-2013 mean, red dot 

is the 2012/13 hydrological year mean.  
 

5.3 Methodology: SEB calculations 

5.3.1 SEB equation 

The meteorological data from AWS-G were used to derive the SEB at point scale. The incoming 

energy at the glacier surface (Fsurface) is computed following Favier et al. (2011): 

SWI – SWO + LWI – [(1- ε) LWI + ε σ Ts_mod 4] + H + LE = Fsurface                   (5.2) 
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where SWI, SWO and LWI are the incident shortwave, outgoing shortwave and incoming 

longwave radiations, respectively and the term in square brackets is the modeled outgoing 

longwave radiation (LWOmod hereafter) that was deduced from the Stefan-Boltzmann equation (ε 

is surface emissivity, assumed to be equal to 1 for snow and ice surfaces and σ = 5.67 10–8 W m–2 

K–4 is the Stefan-Boltzmann constant) using modeled surface temperature Ts_mod. H and LE are the 

sensible and latent turbulent heat fluxes, respectively. The heat supplied by precipitation on 

glaciers is insignificant compared to the other fluxes (Oerlemans, 2001) and is therefore neglected 

here. The fluxes are assigned a positive value if directed towards the glacier surface or vice versa, 

except the outgoing radiation terms which are kept positive but assigned a negative sign as they 

are always directed away from the surface. For model validation, Ts_mod was compared to the 

measured surface temperature (Ts_obs) which was derived from measured LWO using the Stefan–
Boltzmann equation assuming again that the surface emissivity is unity and that it cannot exceed 

273.15 K (section 5.4.3). 

Fsurface is the energy available at the surface. Part of the shortwave radiation is actually not 

available for warming/cooling or melting processes at the surface, because e shortwave flux 

partially penetrates into the snow/ice. Hence, Fsurface is separated into two terms:  

Fsurface = G0 + (1 - a) SWN = G0 + SWsub                     (5.3)  

where G0 is the energy excess or deficit at the surface, SWN (=SWI–SWO) is the net short 

wave radiation and SWsub is the shortwave radiation penetrating in the ice. In this equation, a is 

the fractional amount of shortwave radiation that is absorbed in the top layer of the model (at the 

surface). When the modeled surface temperature, Ts_mod, is 0 °C, the positive G0 values represent 

the energy available for surface melt (m w.e.). Otherwise, this amount is used to cool/warm the 

frozen surface and underlying snow/ice, depending on its sign. If the subsurface ice/snow 

temperature exceeds 0 °C, the corresponding energy excess is converted into melt to block Ts_mod 

at 0 °C, but liquid water is assumed to be retained in the ice. When a negative surface heat budget 

occurs, the subsurface temperature stays at 0 °C until this liquid water storage refreezes, and then 

temperature decreases. This is not the case for the surface layer where liquid water is assumed to 

run off and hence not be available for refreezing processes any more. Ablation is the sum of melt 

and sublimation (in m w.e.). 

5.3.2 Conduction into the ice/snow  

Considering that the energy conservation in the model is crucial, heat conduction (or conductive 

heat flux, G) into the ice/snow pack was also considered in the model. Assuming horizontal 

homogeneity, temperature distribution inside the ice is governed by the thermodynamic energy 

equation (Bintanja et al., 1997; Picard et al., 2009): 
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where t is the time, z is the coordinate normal to the surface (positive downward), ρ is the 

snow (ρsnow = 250 kg m-3) or ice density (ρice = 910 kg m-3), T(z) is the ice/snow temperature at depth 

z, Ks is thermal conductivity, Cp-is is specific heat capacity of ice/snow at constant pressure, which 

depends on temperature [Cp-is(z) = 185 + 7.037 T(z) (Dorsey, 1940)], and SWsub(z,t) = SWN(t)(1 - a) 

e-bz is penetrated shortwave flux at depth z. Bintanja et al. (1997) suggested that a is 0.8 for blue 

ice and 0.9 for snow. Below the surface, the shortwave flux decreases exponentially with a 

constant extinction coefficient b = 2.5 m-1 (Bintanja et al., 1997). Distinct thermal conductivities 

were considered for ice (Ks-ice = 2.0715 W m-1 K-1) and snow (Ks-snow). Ks-snow was computed according 

to Douville et al. (1995), as a function of snow density. Thermal diffusion was computed through 

an explicit scheme to a depth of 2 m, with a 2 cm layer resolution and a 20 s time step. Neumann 

limit condition was assumed at the surface (e.g., Picard et al., 2009). This boundary condition 

results into the following equation: 
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         (5.5) 

when G0 is not used to produce surface melt; otherwise the right side of this boundary 

condition equation is -SWsub. For initial conditions, we assumed that the ice was exposed (no snow 

at surface) and temperate (every layer was at 0°C) for both studied periods (in 2012 and in 2013).  

5.3.3 Turbulent fluxes 

5.3.3.1 Turbulent flux calculations  

The major characteristic of katabatic flow is the wind speed maximum which is dependent on 

glacier size, slope, temperature, surface roughness and other forcing mechanisms (Denby and 

Greuell, 2000). Wind speed, Tair and RH were measured at two levels (0.8 and 2.5 m) at AWS-G. 

At AWS-G site, u at the upper level (initially at 2.5m) is always higher (99.6% of all half-hourly 

data) than that at the lower level (initially at 0.8m). For the turbulent heat flux calculations, the 

bulk method was used. Denby and Greuell (2000) showed that the bulk method gives reasonable 

results in the entire layer below the wind speed maximum even in katabatic wind conditions 

whereas the profile method severely underestimates these fluxes. In turn, the bulk method is 

applied in our present study as it has already been applied in various studies where katabatic 

winds dominate (e.g. Klok et al., 2005; Geisen et al., 2014).  

The bulk method calculates the turbulent fluxes including stability correction. This 

method is usually used for practical purposes because it allows the estimation of the turbulent 

heat fluxes from one level of measurement (Arck and Scherer, 2002). In this approach, a constant 

gradient is assumed between the level of measurement and the surface; consequently, surface 
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values have to be evaluated. The stability of the surface layer is described by the bulk Richardson 

number, Rib (Eq. 5) which relates the relative effects of buoyancy to mechanical forces (e.g., 

Brutsaert, 1982; Moore, 1983; Oke, 1987): 

� = � � − _��� − �
� �� − � � = � � − _�� � − � �� � � − �                             .  

where z is the level of measurements. Tair and u are taken from the upper level (2.5 m) that 

provides a longer period for investigation. The sensor heights were extracted from SR50A records 

except during a data gap between 8 September and 9 October 2012. Over this period sensor 

heights were assumed to be constant and set as 2.5 m, this being AWS-G in free-standing position. 

g is the acceleration of gravity (g = 9.81 m s−2). z0m and z0T are the surface roughness parameters (in 

m) for momentum and temperature, respectively. Assuming that local gradients of mean 

horizontal u, mean Tair and mean specific humidity q are equal to the finite differences between 

the measurement level and the surface, it is possible to give analytical expressions for the 

turbulent fluxes (e.g., Oke, 1987): 

 = � �� �( � − _�� )� �� � � �� Ф� Фℎ −                                              .  

 �� = � � � � − �� �� � ( � �� ) Ф� Ф� −                                                     .  

 

where ρ is the air density (in kg m−3) at 4670 m a.s.l. at AWS-G and  calculated using the 

ideal gas equation (� = ����� , where Ra is the specific gas constant for dry air and Pair is given by 

the measurements and around 565 hPa). CP is the specific heat capacity for air at constant pressure 

(Cp = Cpd (1 + 0.84q) with Cpd = 1005 J kg−1 K−1, the specific heat capacity for dry air at constant 

pressure), k is the von Karman constant (k = 0.4) and Ls is the latent heat of sublimation of snow 

or ice (Ls = 2.834 106 J kg−1). Furthermore, q is the mean specific humidity (in g kg−1) of the air at 

the height z and qs is the mean specific humidity at surface. z0T and z0q are the surface roughness 

parameters for temperature and humidity, respectively. To compute turbulent fluxes (Eq. 7 and 

8), it is assumed that the temperature is equal to Ts_mod at z0T and that the air is saturated with 

respect to Ts_mod at z0q. The last assumption helps to calculate surface specific humidity qs. The 

non-dimensional stability functions for momentum Фm), for heat Фh) and moisture Фv) can be 

expressed in terms of Rib (e.g., Favier et al., 2011). 
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For Rib positive (stable):  Ф� Фℎ − =  Ф� Ф� − = − �                                           .  

For Rib negative (unstable):  Ф� Фℎ − = Ф� Ф� − = − � .7                                   .  

The lower and upper limits of Rib were fixed at − . 0 and 0.23, respectively beyond which 

all turbulence is suppressed (Denby and Greuell, 2000; Favier et al., 2011). 

5.3.3.2 Roughness parameters 

The aerodynamic (z0m) and scalar roughness lengths (z0T and z0q) play a pivotal role in bulk 

method as the turbulent fluxes are very sensitive to the choice of these surface roughness lengths 

(e.g., Hock and Holmgren, 1996; Wagnon et al., 1999). In several studies (e.g., Wagnon et al., 1999; 

Favier et al., 2004), the surface roughness lengths were all taken to be equal (z0m = z0T = z0q) and 

used as calibration parameters. In the present study, the z0m was calculated assuming a 

logarithmic profile for wind speed between both the levels of measurements in neutral conditions 

(e.g., Moore, 1983): � � = exp (� �� − � ��� − � )                                                 .  

 

where u1 and u2 are the wind velocities measured at the lower and higher levels z1 and z2, 

respectively. For − . 5 < Rib < 0.005 (11% of our total data set, at half-hourly time step), it was 

assumed that conditions are neutral, and half-hourly values for z0m were calculated using the Eq. 

(5.11). Half-hourly values of z0m were assessed separately for ice and snow surfaces, based on field 

observations (snow-covered surface between 16/09/2012 and 17/01/2013 and ice-covered surface 

the rest of the time). The z0m was calculated as 0.016 m (with STD of 0.026 m) and 0.001 m (0.003 

m) for ice and snow surfaces, respectively. During the summer-monsoon, the surface is covered 

with hummocks and gullies and z0m is large whereas in winter, snow covers all surface 

irregularities and fills up the gullies (Fig. 5.3) providing small values of z0m. The ratio between 

roughness lengths (z0m/z0q and z0m/z0T) depends on the Reynolds number of the flow according to 

Andreas (1987) polynomials. For high Reynolds numbers (aerodynamically rough flows), the 

polynomials suggested by Smeets and Van den Broeke (2008) for hummocks were used. The 

respective mean values obtained for z0T and z0q are identical and equal to 0.004 m over rough icy 

surfaces, and 0.001 m over smooth snow surfaces. These values are similar to z0m values for snow-

smooth surfaces as already observed by Bintanja and Van den Broeke (1995) and lower for icy-

rough surfaces as pointed out by many authors (e.g., Andreas, 1987; Hock and Holmgren, 1996; 

Meesters et al., 1997). 

5.4 Results 

5.4.1 Analysis of the meteorological conditions at AWS-G 

In order to understand the seasonal evolution of the physical processes controlling the MB of the 

glacier, different representative periods for various seasons of 60 days duration were selected for 
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inter-seasonal comparisons, based on the meteorological conditions observed in section 5.2.4 and 

the available data set at AWS-G. The selected representative periods are post-monsoon (1 October 

2012 to 29 November 2012), winter (1 December 2012 to 29 January 2013) and the summer-

monsoon (8 July 2013 to 5 September 2013). The same length of 60 days of each representative 

period was chosen for justified comparison among different seasons. Unfortunately, data were 

not available for pre-monsoon. Measurements (Tair, RH, u and WD) recorded at the upper-level 

sensors were used for the analysis, since the records from the lower-level sensors have longer 

data gap because of early burial of sensors. A summary of the mean variables measured in 

different representative periods at AWS-G is given in Table 5.3. 

 

 

Table 5.3. 60-day means (standard deviations) of meteorological and SEB variables measured or 

computed at AWS-G (4670 m a.s.l.) on Chhota Shigri Glacier for different representative periods. The 

symbols for variables are described either in the text or in Table 5.1. SWN, LWN, and R are net shortwave, 

longwave and all-wave radiations, respectively.  

 

Variable 

Post-monsoon 

(01/10/12-29/11/12) 

Winter 

(01/12/12-29/01/13) 

Summer-monsoon 

(08/07/13-05/09/13) 

Tair (oC) -8.6 (2.5) -14.8 (3.7) 3.6 (1.2) 

RH (%) 49 (12) 44 (17) 82 (5) 

u (m s-1) 4.7 (0.7) 4.9 (1.1) 3.6 (0.5) 

STOA (W m-2) 276 (39) 216 (11) 458 (25) 

SWI (W m-2) 175 (46) 130 (44) 248 (67) 

SWO (W m-2) 127 (31) 101 (32) 47 (15) 

αacc 0.73 (0.04) 0.79 (0.04) 0.19 (0.02) 

Cloud factor 0.28 (0.26) 0.29 (0.33) 0.36 (0.24) 

LWI (W m-2) 205 (23) 189 (36) 300 (20) 

LWOmod (W m-2) 274 (9) 243 (16) 315 (1) 

Ts_mod (oC) -9.7 (2.1) -17.8 (4.3) -0.2 (0.3) 

SWN (W m-2) 48 (17) 29 (13) 202 (53) 

LWN (W m-2) -69 (19) -54 (24) -14 (19) 

R (W m-2) -21 (19) -25 (15) 187 (44) 

H (W m-2) 10 (13) 28 (23) 31 (10) 

LE (W m-2) -45 (9) -27 (11) 11 (13) 

G (W m-2) 1 (1) 0 (1) 4 (5) 

SWsub (W m-2) -10 (3) -3 (2) -40 (11) 

H+LE (W m-2) -36 (11) 1 (11) 42 (21) 

Fsurface (W m-2) -56 (16) -24 (28) 233 (59) 

Precipitation (mm w.e. d-1) 0.6 (1.0) 5.0 (8.9) 0.5 (0.9) 

Snow (mm w.e. d-1) 5.3 (5.1) 6.3 (13.0) 1.4 (1.6) 

Total melting (mm w.e. d-1) 0.6 (1.7) 0.0 (0.0) 61.3 (14.9) 

Subl.(-)/re-subl.(+) (mm w.e. d-1)a -1.4 (0.3) -0.8 (0.3) 0.3 (0.4) 
a negative for sublimation, positive for re-sublimation 
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Figure 5.7. Daily meteorological variables recorded at AWS-G (4670 m a.s.l.) as representative of post-

monsoon (1 October to 29 November 2012), winter (1 December to 29 January 2013) and summer-monsoon 

(8 July to 5 September 2013) periods. Also shown (lower panel) are the snowfalls derived from SR50A data 

at AWS-G. 
 

Figure 5.7 shows the daily averages of Tair, u, RH, LWI, LWO, SWI, SWO, STOA, cloud 

factor, αacc and snowfalls for all three representative periods. The meteorological variables show 

strong seasonality and day-to-day variability. The last panels of Fig. 5.7 represent the daily 

snowfall amounts (with a data gap between 1 and 8 October 2012) at AWS-G site extracted from 

SR50A data (by applying a fresh snow density of 200 kg m-3). Post-monsoon and winter periods 

are cold with mean Tair and Ts_obs always far below freezing point (Fig. 5.7 and Table 5.3). During 

the post-monsoon period mean u and αacc progressively increased (mean u = 4.7 m s-1 and αacc = 

0.73) and reached their highest values in the winter period (mean u = 4.9 m s-1 and αacc = 0.79). αacc 
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remains almost constant in the winter period showing the persistent snow cover. Snowfalls in the 

post-monsoon period were frequent but generally very light (<10 mm w.e.), whereas the winter 

period received a substantial amount of snow (the heaviest snowfalls were observed on 16 

December 2012, and 17, 18 January 2013 with 32, 44 and 80 mm w.e., respectively). These snowfall 

events are associated with high RH, αacc, cloud factor and LWI values. Obviously, an abrupt 

decrease of SWI (consequently low SWO) is noticed during snowfall events. Most of the time, due 

to very cold and dry high-elevation atmosphere, LWI remains very low during both the periods, 

with mean values of 205 and 189 W m-2 in post-monsoon and, respectively (Table 5.3). An analysis 

of Fig. 5.7 showed that overcast days with high cloud winter periods factor, high RH, increased 

LWI and decreased SWI are evident during all three representative periods.  

The summer-monsoon period is warm and calm with relatively high humidity (Fig. 5.7 

and Table 5.3). SWI is high during the summer-monsoon period (however, the maximum SWI is 

expected in pre-monsoon, section 5.2.4.1) with a mean value of 248 W m-2 (Table 5.3). Most SWI 

(81%) is absorbed by the glacier because of the lowest values of αacc (mean value = 0.19) 

consequently low SWO. The low and almost constant αacc indicates that the glacier ice was 

exposed all the time. The surface remains almost continuously in melting condition, as shown by 

constantly maximal LWO values. Although the summer-monsoon period is characterized by the 

highest value of cloud factor (0.4), few snowfall events are observed from the SR50A at AWS-G 

site. Given that Tair was above freezing point, the precipitation might have occurred in the form 

of rain most of the time. Due to warm, humid and cloudy conditions, LWI is much higher in the 

summer-monsoon than during the other two studied seasons, with a mean value of 300 W m-2 

(Table 5.3). 

Post-monsoon and winter periods are characterized by high wind speeds (mean u values 

of 4.7 and 4.9 m s-1, respectively; Table 5.3). In the summer-monsoon period u is quite stable (STD 

= 0.5 m s-1) and gusts at minimum strength with a mean value of 3.6 m s-1. Chhota Shigri Glacier 

is situated in an almost north-south oriented valley and the AWS-G site is bounded by steep 

valley walls to the east and west (Fig 5.1). The scatter plots of u with Tair and WD over all of the 

observation periods at half-hourly timescale were plotted following Oerlemans (2010).  Figure 

5.8a mostly shows a linear relationship between Tair above melting point and u at AWS-G site 

showing that increasing u is associated with increasing near-surface Tair, indicative of katabatic 

forcing, whereas Fig. 5.8b reveals a mean down-glacier wind (WD of 200-210o) most of the time.   
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Figure 5.8. Scatter plots showing relations between u, Tair and WD. In both panels (a and b) all the 

available measurements are shown, and every dot represents a half-hourly mean value. The inset in (a) 

highlights the relationship between u and Tair above 0 oC. The arrow in (b) indicates the direction of the 

local flow line of the glacier.  

 

 

 

  

 

Figure 5.9. WD and u (half-hourly means) at AWS-G for post-monsoon, winter and summer-monsoon 

representative periods. The frequency of WD is expressed as percentage over the entire observational 

period (indicated on the radial axes). 
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 Wind direction, measured at AWS-G, indicates that there is a persistent down-glacier 

wind coming from south to southwest (200-210o) during the post-monsoon and winter periods 

(Fig. 5.9). In winter, the half-hourly mean u reaches up to 10 m s-1 compared to 8 m s-1 in the post-

monsoon period. During both post-monsoon and winter periods the glacier surface is snow 

covered (with high αacc, Fig. 5.7) and a down-glacier wind is maintained by the negative radiation 

budget (section 5.4.2) of the snow surface which gives rise to cooling to the near-surface air, 

generating katabatic flow (Grisogono and Oerlemans, 2002). Further, on Chhota Shigri Glacier, 

in the summer-monsoon period the wind regime is quite remarkable. During the summer-

monsoon, the down-glacier wind, coming from south to southwest (200-210o) is relatively weak 

and might be the result of katabatic forcing, which is typical for many valley glaciers (Van den 

Broeke, 1997). Occasionally, wind also tends to come from the southeast (160 o), in the direction 

of a large hanging glacier (Fig. 5.1). The upcoming valley wind coming from the northeast (50o), 

blowing against the down-glacier wind, is weak at the AWS-G site and appears only during the 

summer-monsoon periods when the down-glacier wind is comparatively weak. As a cumulative 

result of upcoming valley and down-glacier winds, a wind from 110o is also observed.  

AWS-G is surrounded by steep N-S valley walls. In order to analyze the impact of 

synoptic-scale circulation at AWS-G site, we compared the wind directions at AWS-G with those 

at 450 hPa pressure level obtained from High Asia Reanalysis data (HAR, Maussion et al., 2014) 

at hourly scale. HAR wind data are available at 10 km resolution for different pressure levels for 

the 2001-2012 period. The pressure level of 450 hPa (equivalent to ~6350 m a.s.l.) has been chosen 

as representative of the synoptic circulation above the glacier (whose highest elevation is 6263 m 

a.s.l.). Synoptic (HAR, 450 hPa) wind comes mainly from the west or southwest directions, 

depending on the season. Given that on its eastern side the glacier is bordered by a high N-S ridge 

(often above 6000 m a.s.l.), this synoptic wind may be deflected down to the valley providing 

winds parallel to the katabatic flow at AWS-G. Therefore at AWS-G site the wind coming from 

south to southwest is probably the result of both katabatic and synoptic effects. 

5.4.2 Mean values of the SEB components 

Mean SEB values for three representative periods are presented in Fig. 5.10 and are reported in 

Table 5.3. The results indicate that the mean seasonal net short wave radiation (SWN) is highly 

variable from 29 W m-2 in winter to 202 W m-2 in the summer-monsoon (Table 5.3). Besides the 

seasonal changes in sun inclination, the main reason for the seasonal variability of SWN is the 

contrast in surface albedo in different periods (Table 5.3). Seasonal variations in net longwave 

radiations (LWN=LWI–LWOmod) are rather low; post-monsoon and winter periods show 

minimum values of LWN (mean = –69 and –54 W m-2, respectively), while the maximum was 

obtained for the summer-monsoon period (mean = –14 W m-2) when Ts_mod (mean = –0.2 oC) 

remains close to the melting point and coincides with warm and humid conditions associated 

with dense cloud cover leading to high values of LWI. The net radiation heat flux R (=SWN + 
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LWN) was negative in post-monsoon and winter periods, giving rise to near-surface air cooling, 

with mean values of –21 and –25 W m-2, respectively whereas in the summer-monsoon, it was the 

main heat source with a mean value of 187 W m-2.  

 

 

Figure 5.10. Daily values of the surface energy fluxes at AWS-G (4670 m a.s.l.) as representative of post-

monsoon (1 October to 29 November 2012), winter (1 December to 29 January 2013) and summer-monsoon 

(8 July to 5 September 2013) periods. SWN, LWN, H, LE, G, SWsub and Fsurface are the net shortwave radiation, 

the net longwave radiation, the turbulent sensible and latent heat fluxes, the conductive heat flux, the 

shortwave radiation penetrating below the surface, and the amount of energy available at the 

surface, respectively. 

 

During all representative periods, the atmosphere transported heat towards the glacier 

surface in the form of H. The highest contribution of H (associated with the highest Ts_mod, Table 

5.3) was in the summer-monsoon with a mean value of 31 W m-2 (Table 5.3). LE was continuously 

negative in post-monsoon and winter periods with mean values of –45 and –27 W m-2, 

respectively. Therefore, the surface lost mass through sublimation (corresponding to respective 

mean daily rates of –1.4 and –0.8 mm w.e. d-1). However, in the summer-monsoon period, a sign 

shift in LE from negative to positive occurred. The relatively high Tair and RH (Table 5.3) led to a 

reversal of the specific humidity gradient and therefore a positive LE for a melting valley glacier 
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(Oerlemans, 2000). Because of this positive LE, the glacier gained mass through condensation or 

re-sublimation of moist air at the surface (Table 5.3). Assuming re-sublimation as the main 

process, an amount of 0.3 mm w.e. d-1 mass gain is calculated during the summer-monsoon 

period. The amount of shortwave radiation penetrating below the surface (SWsub) is slightly 

negative during post-monsoon and winter seasons while in the summer-monsoon it was highest 

in agreement with the highest values of SWN. When subsurface ice layers were at 0°C, this energy 

amount was converted into subsurface melt occurring in the first layer of the model, leading to 

runoff. At daily timescale, the conductive heat flux (G) was mostly negligible except during the 

summer-monsoon when it was slightly positive and was responsible for a small energy gain 

during the night in the upper layers of the glacier, which resulted in melt when these layers were 

at melting point soon after sunrise.  

As a result of SEB, positive melt heat flux (Fsurface), with almost the same seasonal 

oscillation as SWN (Fig. 5.10), occurred only in the summer-monsoon period when melting 

conditions were prevailing all the time, leading to a mean daily melt rate of 61.3 mm w.e. d-1. 

During the summer-monsoon period SWN accounted for 87% of the total heat flux and was the 

most important heat-flux component for surface melting. R was estimated as 80% of the total heat 

flux that was complemented with turbulent sensible, latent and conductive heat fluxes with a 

share of 13%, 5% and 2%, respectively. During post-monsoon period the glacier started cooling 

down (mean Fsurface = –56 W m-2) with a little melting (mean daily rate of 0.6 mm w.e. d-1) occurring 

during the noon hours only, when occasionally Ts_mod reached 0 °C, while in winter period the 

glacier was too cold (the highest half hourly Ts_mod was –4.23 oC) to experience any melting (mean 

Fsurface = –24 W m-2). 

5.4.3 Model validation 

The model provides a heat transfer at half-hourly time step to the glacier superficial layers that 

can be turned into melt when the modeled surface temperature, Ts_mod, is at 0 °C. When the 

computed snow or ice temperature exceeds 0°C, the corresponding energy excess is also 

converted into melt. Subsurface melt contributes to runoff when it occurs in the first layer of the 

model. Another way to lose/gain mass is from sublimation/re-sublimation. The amount of 

sublimation/re-sublimation (m w.e.) was computed from calculated LE divided by the latent heat 

of sublimation (2.834 106 J kg-1) and the density of water (1000 kg m-3) when the half-hourly mean 

LE flux was negative/positive. During the summer-monsoon, the glacier lost mass at a daily mean 

melt rate of 61.3 mm w.e. d-1, while a mass gain of 0.3 mm w.e. d-1 was observed through re-

sublimation (Table 5.3). Sublimation was negligible during the summer-monsoon.  
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Figure 5.11. Comparison between ablation computed from the SEB Eq. and measured at stake no VI (a) 

during several few-day to few-week periods of 2012 and 2013 summers where field measurements are 

available. (b) Comparison between modeled half-hourly (Ts_mod) and observed (Ts_obs) surface temperatures 

over the whole simulation period. Also shown are the 1:1 line (dashed line) and the regression line (solid 

line).  
 

To validate the SEB model, computed ablation (melt + sublimation – re-sublimation) was 

compared with the ablation measured at stake no VI in the field (section 5.2.3). The correlation 

between computed ablation from the SEB Eq. and measured ablation at stake no VI is strong (r2 = 

0.98, n = 9 periods), indicating the robustness of the model. Although the computed ablation is 

1.15 times higher than the measured one (Fig. 5.11a), this difference (15% overestimation) is 

acceptable given the overall uncertainty of 140 mm w.e. in stake ablation measurements (Thibert 

et al., 2008). Furthermore, surface temperatures at half-hourly time step (Ts_mod) were calculated 

by the model without using measured LWO (or associated surface temperatures, Ts_obs). Figure 

5.11b shows that the half-hourly Ts_obs and Ts_mod are highly correlated (r2 = 0.96), with an average 

difference of 1.2 oC. This temperature difference corresponds to a mean difference of 4.6 W m−2 

between LWOmod and observed LWO, showing that the modeled surface heat budget is 

reasonably computed. Moreover, if we run the model with an additional 2-cm snow layer at the 

surface when measured albedo values are higher than 0.7, the mean difference between Ts_mod and 

Ts_obs drops to 0.2°C, showing that this difference does not come from a bad performance of the 

model, but from a bad estimation of the surface state (snow or ice) and thus of precipitation 

during low-intensity events (explaining the bi-modal scatter observed in Fig. 5.11b i.e. surface 

state correctly reproduced or not). Thus when the surface state is appropriately assessed, the 

model provides a good estimation of Ts_mod. In conclusion, given that the model is able to properly 
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compute surface temperature or ablation at point scale, we believe that it can reasonably calculate 

all the SEB fluxes. 

5.4.4 Mean diurnal cycle of the meteorological variables and SEB components  

The mean diurnal cycles of the meteorological variables and SEB components for all three 

representative periods are shown in Fig. 5.12. Mean diurnal cycles of Ts_mod (equivalent to 

LWOmod) and Tair showed that the glacier was in freezing conditions during post-monsoon and 

winter periods all the time (Fig. 5.12) while in the summer-monsoon, Ts_mod is always at melting 

point in agreement with consistently positive Tair. Occasionally, for some days, half-hourly mean 

Tair (not shown here) may drop below freezing point during the night in the summer-monsoon 

and climb above freezing point during noon hours in the post-monsoon period. A wind speed 

maximum is observed in the afternoon hours during all the representative periods, which is 

consistent with Tair. This is a common phenomenon on valley glaciers, with u increasing in the 

afternoon (e.g., Van den Broeke, 1997; Greuell and Smeets, 2001) as a consequence of an increased 

glacier wind due to a stronger Tair deficit in the afternoon. A wind speed minimum is observed in 

the morning time of post-monsoon but no reason for this could be identified. 

For all the representative periods, R is negative at night (indicating longwave radiative 

cooling of the surface) and positive during the day time. However, during the summer-monsoon 

period the night values of R are slightly less negative as the radiative cooling is attenuated due to 

enhanced RH, Tair, cloudiness, and in turn high LWI. In daytime, R is much higher during the 

summer-monsoon than other periods, mainly because of exposed low-albedo ice at the glacier 

surface enhancing the absorption of solar radiation, which is already high due to annual 

maximum of the solar angle. 

H and LE show similar daily cycles in post-monsoon and winter periods. During the night, 

H remains permanently high (~50 W m-2) and starts decreasing in the morning as the surface is 

heated up with R (Fig. 5.12). This daily cycle of H is in agreement with the daily cycle of Rib, 

showing stable conditions almost all day long (Rib>0 except 4 hours in the middle of the afternoon 

in winter), with very stable conditions in the night, and moderately stable during the day or even 

unstable in the afternoon in winter. LE is negative in the night, decreases in the morning and 

shows the minimum values during early afternoon hours which are in agreement with increasing 

wind speed and stronger vertical gradients of specific humidity in the vicinity of the surface. 

During the summer-monsoon, both H and LE are positive (heat supplied to the surface) and 

follow a similar trend, but H attains its peak approximately 2 hours before LE. H shows a peak at 

~14:00 LT with positive Tair and wind speed maximum (Fig. 5.12) whereas LE remains close to 0 

W m-2 until noon and increases with an afternoon wind speed maximum. The stability of the 

surface boundary layer is not very different from that observed during the other periods, highly 

stable at night, but moderately stable during the day due to the occurrence of warm up-valley 
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winds blowing over a melting surface in summer-monsoon. Thus, LE is positive during the 

summer-monsoon giving rise to re-sublimation in afternoon and early night hours.  

 

 

Figure 5.12. Mean diurnal cycle of meteorological and SEB variables at AWS-G (4670 m a.s.l.) as 

representative of post-monsoon (1 October to 29 November 2012), winter (1 December to 29 January 2013) 

and summer-monsoon (8 July to 5 September 2013) periods.  
 

SWsub mirrors the daily cycle of SWN but is attenuated as part of SWN is absorbed by the 

surface, and part is transferred to the underlying layers, following an exponential extinction. 

During winter and post-monsoon, negative values of G are compensated by positive values in 

the afternoon (after 16:00 LT, when surface temperature begins to decrease) or early night hours, 

leading to insignificant values of this heat flux at daily scale. During the summer-monsoon, G is 
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equal to zero during daytime and only positive at night when internal layers of the glacier at the 

melting point try to compensate the nocturnal surface cooling and thus bring energy to the 

surface. 

During post-monsoon and winter periods, in the night, Fsurface is negative, and a cold front 

penetrates into the superficial layers of the glacier. However, Fsurface is rather low as R is mostly 

compensated by H+LE except during noon hours when Fsurface switches to slightly positive values. 

Heat is then transferred during a few hours of the day to the ice/snow pack whose temperature 

rises but not enough to reach melting conditions (Ts_mod remains below 0 °C) (Fig. 5.12). During 

the summer-monsoon period, Fsurface follows the diurnal cycle of R providing energy up to 710 W 

m-2 to the glacier surface at around 12:00 LT. This energy is consumed for melting process as the 

surface is melting continuously (Fig. 5.12). Unfortunately, the data set does not cover the pre-

monsoon. But during this season, the heat transferred to the glacier progressively increases as net 

shortwave radiation enhances in agreement with the rise in solar angle, as well as the decreasing 

surface albedo. This heat is first used to warm up the surface layers of the glacier until Ts_mod 

reaches 0 °C, then melting starts. 

5.5 Discussion 

5.5.1 Control of the summer-monsoon snowfalls on melting 

5.5.1.1 Comparison between 2012 and 2013 melting periods 

The impact of ISM has already been analyzed on Tibetan glaciers (e.g., Fujita and Ageta, 2000; 

Yang et al., 2011; Mölg et al., 2012 & 2014) but it is still not well understood in the Himalaya. 

Previously, based on a degree-day approach, Azam et al. (2014a) suggested that winter 

precipitation and summer temperature are almost equally important drivers controlling the MB 

pattern of Chhota Shigri Glacier. Here this topic is addressed by analyzing the surface melting on 

Chhota Shigri Glacier with the summer-monsoon precipitations using a more detailed SEB 

approach. Based on the available data set, we selected the same length of the summer-monsoon 

period (15 August to 30 September) from 2012 and 2013 years to compare the evolution of the 

computed cumulative melting (Fig. 5.13). Given that the SR50A at AWS-G site has a data gap 

between 8 September and 9 October 2012 and that this sensor cannot record rain events, daily 

precipitations, collected at glacier base camp (3850 m a.s.l.), are used in this analysis. These 

precipitation values are extrapolated at AWS-G assuming a zero-precipitation gradient and are 

considered as rain (snow) at AWS-G site when Tair at AWS-G is above (below) 1 °C (e.g., Wagnon 

et al., 2009). In the summer-monsoon 2012, Chhota Shigri Glacier received one important snowfall 

of 25 mm w.e. (equivalent to 125 mm of fresh snow applying a density of 200 kg m-3) during the 

period 17-19 September. This snowfall abruptly changed the surface conditions by varying the 

surface albedo from 0.19 to 0.73 (Fig. 5.13a). Therefore, the energy Fsurface available at the glacier 

surface suddenly dropped from 123 W m-2 on 16 September to 14 W m-2 on 17 September as shown 

by the sharp change in the melting rate (slope of the melting curve on Fig. 5.13a) associated with 
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this specific snowfall event. The effect is also evident on Ts_mod evolution. The daily number of 

hours with Ts_mod > −1 oC decreased from 24 to 6 hours and remained around this value 

throughout, showing that melting, which was continuous before the snowfall event, is reduced 

to a few hours of the day. During the summer-monsoon 2013, the situation was different as the 

snowfalls were more sporadic and never big enough to efficiently slow down the melting. 

Consequently, a shift in the slope in the melting curve is not observed as was the case in mid-

September 2012. Indeed, the light snowfalls, observed from 13 to 16 September 2013 and from 24 

to 30 September 2013, were only able to protect the glacier from high melting for some days but 

could not maintain a persistent snow cover as in mid-September 2012. Ice was again exposed at 

the surface as revealed by low albedo values (~0.38) observed again a few days after the snowfalls. 

Mean Tair and the daily number of hours with Ts_mod > −1 oC again rose up, maintaining the high 

melt rates. As a consequence, at point scale, although the cumulative melting between 15 August 

and 30 September was very similar in 2012 and 2013 (2.08 and 1.96 m w.e., respectively), the main 

difference comes from the distribution of the melting along the considered period. Although the 

melt rates in 2012 were higher than 2013 during the first 31 days, an early snowfall efficiently 

slowed down the melting, however it was slightly less intense but more regular in 2013.  

In order to better quantify the albedo effect of the mid-September 2012 snowfalls on the 

glacier melting, the model was run again assuming a constant albedo (=0.19) over the entire 2012 

summer period, all other meteorological variables being unchanged meanwhile (Fig. 5.13a). As 

expected, the overall melting with constant albedo is enhanced (2.44 m w.e.) with a moderate 

difference of 0.36 m w.e. (+17% compared to a simulation with real albedo) between 15 August 

and 30 September 2012, but very significant when considering only the period when the observed 

albedo differs from 0.19 (i.e. after 17 September 2012). Certainly, between 17 and 30 September, 

the computed melting using a constant albedo (0.19) is 0.48 m w.e., 4 times higher than that with 

the observed albedo (0.12 m w.e.). Even though Chhota Shigri Glacier receives maximum 

accumulation in winter season, this analysis highlights and quantifies the role of snowfall events 

during the summer-monsoon on albedo and, in turn on melting.  
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Figure 5.13. Comparison of computed cumulative melting (black thick line) between 15 August and 30 

September from summers 2012 (a) and 2013 (b). Also shown are the mean Tair (red open dots), the number 

of hours in a day when Ts_mod is > −1 oC (black dots), daily albedo (dark green dots) and the precipitations 

as rain/snow obtained from records at base camp (blue and green bars, respectively). The grey line in panel 

(a) is the computed cumulative melting between 15 August and 30 September 2012 assuming a constant 

surface albedo of 0.19.  

 

This effect has already been described in other parts of the world. Sicart et al. (2011) 

suggested that melting on Zongo Glacier, Bolivia is reduced by wet season snowfalls via the 

albedo effect during the melt season. In the central Tibetan Plateau, Fujita and Ageta, (2000), Fujita 

(2008a & 2008b) and Zhang et al. (2013) indicated that the glacier surface MB was closely related 

to the summer-monsoon precipitation seasonality and phase (snow versus rain). Mölg et al. (2012) 

analyzed the impact of ISM on Zhadang Glacier using their fully distributed SEB/MB model 

between 2009 and 2011 and concluded that the timing of monsoon onset leaves a clear footprint 

on the glacier via the albedo effect. Recently Mölg et al. (2014) extended this analysis at the 
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decadal scale and opined that the intensity of ISM onset together with MLW dynamics are 

important in determining the annual MB of Zhadang Glacier. 

5.5.1.2 Impact of the summer-monsoon snowfalls on glacier-wide mass balance 

In order to investigate the impact of the summer-monsoon snowfalls on glacier-wide MB. Ba 

between 2002 and 2013 were compared with the largest summer-monsoon daily snowfalls of the 

corresponding season. These snowfalls have been extrapolated using daily precipitation data 

from Bhuntar meteorological station (1092 m a.s.l.), assuming no precipitation gradient and 

applying the daily lapse rate between Bhuntar and glacier calculated by Azam et al. (2014a) with 

the idea that if the precipitation is in the form of snow (threshold temperature equal to 1°C) at 

4400 m a.s.l. (below 4400 m a.s.l. the glacier is totally debris covered), the whole glacier is covered 

by summer-monsoonal snow.  

The choice of using precipitation data from Bhuntar meteorological station to assess 

precipitation on the glacier might seem unfortunate at first glance because, as already discussed 

in section 5.2.4.2., both sites are separated by an orographic barrier inducing a different 

precipitation distribution. However, these sites are only 50 km away from each other, and we 

believe that meteorological conditions are not totally decoupled between the windward and the 

leeward side of the mountain range, especially in the case of precipitation events strong enough 

to cross this orographic barrier. Fortunately, Wulf et al. (2010) conducted a thorough study using 

the precipitation data of 80 stations from the Northwest Himalaya including Chhota Shigri area 

and concluded that in Baspa Valley ~1  km southeast to Chhota Shigri Glacier) The two most 
prominent 5-day-long erosional events account for 50% of the total 5-year suspended sediment 

flux and coincide with synoptic scale monsoonal rainstorms. This emphasizes the erosional 

impact of the ISM as the main driving force for erosion processes in the orogenic interior, despite 

more precipitation falling during the winter season .   
 The best relationship is obtained when considering the sum of the three most important 

daily snowfall records of the corresponding summer-monsoon (Fig. 5.14). The correlation is 

strong (r2 = 0.88, n = 11 years) and suggests that the summer-monsoon snowfall events play a key 

role in controlling the Ba of the glacier. Such snowfalls cover the whole glacier implying that the 

albedo of the whole ablation area can suddenly switch from low to high values (ice to snow 

surfaces). Consequently, melting is abruptly reduced or even stopped at the glacier surface for 

several weeks or even for the rest of the ablation season that usually ends around mid-October in 

years without such strong summer-monsoon snowfalls. Thus, the intensity of such summer-

monsoon snowfalls is among the most important drivers controlling Ba of Chhota Shigri Glacier. 
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Figure 5.14. Annual glacier-wide mass balance as a function of the sum of the 3 largest summer-monsoon 

daily snowfalls assessed from precipitation record from Bhuntar meteorological station (see text for details) 

between 2002 and 2013.  
 

Azam et al. (2014a), using a degree-day approach, showed that winter precipitation and 

summer temperature are equally important drivers controlling Ba of Chhota Shigri Glacier. This 

present analysis extends this knowledge a step further, showing that the summer-monsoon 

snowfalls also play an important role in controlling Ba of Chhota Shigri Glacier. Indeed, the 

summer-monsoon air temperature is as crucial as summer precipitation mainly because it 

controls the amount of rain versus snow received at the glacier surface and in turn, has an 

important control on glacier albedo and thus on the amount of shortwave radiation absorbed by 

the glacier surface, which is the main heat source for Himalayan glaciers. 

5.5.2 Comparison of the SEB of Chhota Shigri Glacier with that of other glaciers in 

High Mountain Asia 

In this section some key features of the energy fluxes responsible for the ablation on glaciers in 

High Mountain Asia are discussed in the light of the SEB results obtained on Chhota Shigri 

Glacier, as well as from some previously published studies. Table 5.4 shows an up-to-date 

compilation of SEB studies from High Mountain Asia glaciers coming from ablation zones of 

different glaciers during summer ablation periods. 
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Table 5.4. Comparison of SEB components on different glaciers in High Mountain Asia. All fluxes are in W m-2, Values in brackets are the % 

contribution of each energy flux. 
 

Glacier  

  

Altitude  

(m a.s.l.) 

Region  

(ISM dominated, Y or N) 

Period of  

observation 

R  

(W m-2) 

H  

(W m-2) 

LE  

(W m-2) 

Rest  

(W m-2) 

Fsurface  

(W m-2) 

Reference 

 

Glacier AX010 4960 central Himalaya, Nepal (Y) 25 May- 25 Sep 1978 64 (85) 8 (10) 4 (5) n/a 74 (100) Kayastha et al., 1999 

Glacier AX010 5080 central Himalaya, Nepal (Y) 25 May- 25 Sep 1978 55 (83) 8(12) 3 (5) n/a 63 (100) Kayastha et al., 1999 

Xixibangma 5700 south central TPa (N) 23 Aug- 11 Sep 1991 28 (200) 5(33) ̵ 19 (133) n/a 14(100) Aizen et al., 2002 

Parlung No. 4 4800 southeast TP (Y) 21 May- 8 Sep 2009 150 (86) 28 (16) ̵ 1 (1) ̵ 1 (1) 176 (100) Yang et al., 2011 

Zhadang  5660 central TP (N) 1 May - 30 Sep 2010 62 (103) 10 (17) ̵ 8 (13) ̵ 4 (7) 61 (100) Zhang et al., 2013 

Zhadang  5660 central TP (N) 1 May - 15 Sep 2011 27 (117) 8 (35) ̵ 10 (43) ̵ 2 (9) 23 (100) Zhang et al., 2013 

Keqicar 4265 southwest Tianshan (N) 16 June-7 Sep 2005b   63 (274) 14 (61) ̵ 54 (235) n/a 23 (100) Li et al., 2011 

Laohugou No. 12 4550 western Qilian, China (N) 1 June-30 Sep 2011 81 (108) 7 (9) ̵ 13 (17) n/a 75 (100) Sun et al., 2014 

Chhota Shigri  4670 western Himalaya, India (Y) 8 July-5 Sep 2013 187 (80) 31 (13) 11 (5) 4(2) 230 (100) Present study 
aTP = Tibetan Plateau, bwith a gap of 1 July to7 Aug 2005, n/a = not available 
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As already highlighted on High Mountain Asia glaciers (Yang et al., 2011; Mölg et al., 

2012; Zhang et al., 2013; Sun et al., 2014), the present study also showed that SWN is the largest 

source of energy to the glacier surface and mainly controls the temporal variability of melting, 

whereas LWN is the greatest energy loss moderate during the summer-monsoon when LWOmod 

is almost compensated by maximum LWI due to warm, humid and cloudy atmosphere, and high 

during the rest of the year when LWI reaches minimum values (Fig. 5.10 and Table 5.3). SWN is 

inversely dependent on surface albedo. At AWS-G site on Chhota Shigri Glacier, during the 

summer-monsoon period, precipitation often occurs in liquid form and surface albedo is 

relatively constant (Fig. 5.7). During such conditions SWN is driven by cloud factor (Fig. 5.7). 

However when precipitation occurs in solid phase (Fig. 5.13), the surface albedo abruptly changes 

and controls the SWN and in turn, melting. The sum of SWN and LWN, R, provides >80% energy 

flux to the glacier surface during the summer-monsoon for all High Mountain Asia glaciers (Table 

5.4).  

All the studied sites, described in Table 5.4, are on the debris-free ablation area. A negative 

contribution (in %) is assigned to negative heat fluxes in order to have the resulting flux Fsurface 

equal to 100%. Sensible turbulent heat flux is always positive and provides energy to the glacier 

surface, complementing net radiation flux. However, its contribution to R ranges from 7% on 

Laohugou Glacier No. 12, western Qilian, China, to the maximum of 23% on Zhadang Glacier, 

central Tibetan Plateau over the corresponding observation periods (Table 5.4). During the 

summer-monsoon, LE is positive on Chhota Shigri Glacier due to warm and humid air at the 

glacier surface, giving rise to re-sublimation at the surface. This phenomenon has already been 

observed on AX010 Glacier located in an ISM-dominated region, central Himalaya, Nepal, where 

Kayastha et al. (1999) measured a positive LE between 25 May and 25 September 1978 in the 

ablation area. On Parlung Glacier No. 4, Southeast Tibetan Plateau, however, the mean LE was 

slightly negative from 21 May to 8 September 2009 (Table 5.4), while it was continuously positive 

with a mean value of 8 W m-2 during the core summer-monsoon between 25 June and 21 August 

2009 because of the considerably high temperature and relative humidity associated with the 

summer-monsoon circulation over this period (Table 2 in Yang et al., 2011). Conversely, in the 

central Tibetan Plateau, where dry conditions prevail, on Zhadang Glacier, LE is continuously 

negative at the monthly scale (Mölg et al., 2012) but at daily timescale it was slightly positive 

during the core monsoon for a few days when the air temperature and relative humidity were 

the highest (Fig. 2 and 5 in Zhang et al., 2013). Sun et al. (2014) also showed that on Laohugou 

Glacier No. 12, western Qilian Mountains, LE is negative throughout the summer season (1 June 

to 30 September 2011), and rarely becomes positive (only on 2 and 3 July). Similarly on 

Xixibangma Glacier, south central Tibetan Plateau, and Keqicar Glacier, Southwest Tianshan, LE 

was found to be negative during the observation period, indicating sublimation. From the present 

analysis (Table 5.4), it can be surmised that, on High Mountain Asia glaciers, sublimation 

predominates in the summer-monsoon over the ablation zone of the glaciers that are less affected 
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by the ISM and submitted to drier conditions than those directly affected like Chhota 

Shigri Glacier, where LE brings a significant amount of energy at the glacier surface, in the form 

of re-sublimation. The conductive heat flux is most of the time negligible compared to the other 

terms of the SEB, even during the summer-monsoon where it slightly contributed to melt. 

5.6 Conclusion  

In the Indian Himalaya where meteorological observations are short and scarce, the 

meteorological data set recorded since August 2009 at 4863 m a.s.l. on a lateral moraine of Chhota 

Shigri Glacier (AWS-M) is one of the longest ever recorded data sets at high elevation. Mean 

monthly meteorological conditions at AWS-M show large month-to-month variability. A warm 

and calm summer-monsoon with high relative humidity from June to September and a cold and 

windy winter season with comparatively less humidity from December to March were identified. 

A pre-monsoon from April to May and a post-monsoon from October to November with 

intermediate conditions were also defined. Precipitation records at glacier base camp suggest that 

Chhota Shigri Glacier receives maximum seems to be a winter accumulation type glacier 

receiving around 80% of its annual precipitation from MLW in winter and 20% from ISM; but 

longer precipitation records at glacier site are still needed to confirm this feature. 

A physically based energy balance experiment, using a model computing surface and 

subsurface heat fluxes, was carried out to understand the melting processes on Chhota Shigri 

Glacier based on the forcing data over two separate periods from 13 August 2012 to 3 February 

2013 and from 8 July to 3 October 2013 recorded at an in-situ meteorological station (AWS-G, 4670 

m a.s.l.) in the ablation zone. The roughness length for momentum was calculated separately for 

ice and snow surfaces as 0.016 m and 0.001 m, respectively whereas roughness lengths for 

temperature and humidity were derived from the Reynolds number and the roughness length 

for momentum. Net short wave radiation was highly variable with the lowest mean value (29 W 

m-2) in winter to the highest (202 W m-2) in the summer-monsoon period, while net longwave 

radiation exerted lower seasonality with minimum values in post-monsoon and winter periods 

(–69 and –54 W m-2, respectively) and maximum in the summer-monsoon period (–14 W m-2). 

During the summer-monsoon period the melting conditions with high Ts_mod (mean = –0.2 oC) 

coincides with warm and humid conditions, associated with intense cloud covers, leading to high 

values of LWI and thus high net longwave radiation is observed. Net all-wave radiation was 

negative in post-monsoon and winter periods, indicative of radiative cooling of the glacier 

surface, whereas in the summer-monsoon, it was the main heat source for melting. Through the 

entire observation period, the atmosphere transported heat towards the glacier surface in the 

form of sensible heat flux. An interesting feature observed in latent heat flux evolution was it 

being continuously negative in post-monsoon and winter periods, indicating predominantly 

sublimation; while in the summer-monsoon period, it switched to positive values indicating re-

sublimation at the glacier surface. The result from the SEB equation suggests that energy was 
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available for melting in the summer-monsoon period only. Net all-wave radiation was the main 

heat flux towards surface with 80% contribution while H, LE and G shared 13%, 5% and 2% of 

total heat flux, respectively.  

This study highlights the impact of the summer-monsoon snowfalls on glacier MB. 

Snowfall events during the summer-monsoon play an important role on melting via surface 

albedo. The intensity of these snowfalls during ablation period abruptly changes the surface 

conditions from ice to snow, slowing down the melting rates. Therefore, these snowfall events 

are among the most important drivers controlling Ba of Chhota Shigri Glacier. The summer-

monsoon air temperature, controlling the precipitation phase (rain versus snow and thus albedo), 

also counts indirectly, among the most important drivers for the glacier MB.  

A comparison of the SEB measured at the ablation zone of Chhota Shigri Glacier with 

those of other glaciers in High Mountain Asia shows that net short wave radiation flux is the 

largest energy source and mainly controls the melt energy to the glacier surface whereas net 

longwave radiation flux is the greatest energy loss. In High Mountain Asia, sublimation 

predominates in the summer-monsoon over the ablation zone of the glaciers less affected by the 

ISM and submitted to drier conditions than those directly affected like Chhota Shigri Glacier, 

where LE brings a significant amount of energy at the glacier surface in the form of re-

sublimation. 

The good validation of the present model (comparison between modeled and observed 

ablation and surface temperature data) indicates that the model is reliable enough to make robust 

calculations of surface energy balance. In the future, this study would be useful to calibrate 

spatially distributed energy- and mass-balance models at glacier as well as regional scale. These 

models can be used to predict the future of water supply using different climate change 

projections. 
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CHAPTER 6 

General conclusions and perspectives 
 

 

 

In the Hindu-Kush Karakoram Himalaya (HKH), the historical knowledge of the glaciers 

primarily comes from the snout fluctuation records. In-situ glaciological mass balance 

measurements are available for a limited number of glaciers (22 glaciers covering only ~110 km2 

out of 40,800 km2 of glacierized area of the HKH region) and generally come from the last four 

decades. The developments in remote sensing techniques significantly improved our knowledge 

of the region-wide glacier mass changes in the HKH region. These region-wide mass changes, 

generally limited to the last decade, revealed a contrasting pattern of glacier mass change over 

the entire HKH region, depending on the climatic settings of these ranges. From east to west, 

increasingly negative region-wide glacier mass changes were observed in the Himalaya, whereas 

to the west in the Karakoram a slight mass gain or balanced mass budget were reported between 

1999 and 2011. Unfortunately these geodetic mass changes do not allow us to analyze the 

accumulation and ablation terms, which are directly related to climatic variables. Besides, the 

meteorological data from glacier altitudes are scarce making it difficult to understand the glacier-

climate relationship or the physical processes governing the melting of the large glacierized areas 

of the HKH region.  

In this present study, Chhota Shigri Glacier was chosen to analyze the sensitivity of its 

mass balance to climate change and to understand which meteorological variables drive the mass 

balance of the glaciers in the western Himalayan region. The meteorological dataset recorded at 

Automatic Weather Station (AWS-M, 4863 m a.s.l. on a western moraine) since 2009 was used to 

characterize the seasons on Chhota Shigri Glacier. A warm summer-monsoon with high humidity 

from June to September and a cold winter season, relatively less humid, from December to March 

were identified. A pre-monsoon from April to May and a post-monsoon from October to 

November were also demarcated. The meteorological variables suggested a clear onset of the 

monsoon in June and the sharp decline in September on Chhota Shigri Glacier. The one year (1 

October 2012 to 30 September 2013) precipitation record at glacier base camp suggested that the 

maximum precipitation (71% of the total annual precipitation) was received during the winter 

season whereas post-monsoon received the minimum precipitation (3% of the annual amount). 

The contributions of the pre-monsoon and summer-monsoon to annual precipitation were only 

15% and 12%, respectively.  

In reality, the field observations are challenging because of remoteness and difficult access 

to the glaciers in the HKH region. Consequently, the glaciers have never been monitored on a 
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long term basis and the longest available mass balance series (eleven years) is for Chhota Shigri 

Glacier, Lahaul and Spiti Valley (western Himalaya). Chhota Shigri Glacier experienced mass 

wastage with a cumulative glacier-wide mass balance of –6.45 m w.e. and a mean annual glacier-

wide mass balance of –0.59±0.40 m w.e. a–1 between 2002 and 2013. The negative mean glacier-

wide mass balance revealed strong unsteady-state conditions since 2002. During the period 1999 

to 2004, the satellite derived geodetic glacier-wide mass balance was approximately –1.02 m w.e. 

a-1; therefore, the unsteady-state conditions can be extended back to 1999. In the present as well 

as previous studies, the annual mass balance calculations of Chhota Shigri Glacier since 2002 have 

been performed using 2004/2005 glacier area; thus some errors associated with the surface area 

change are obviously inherited in the mass balances. Besides, this series may also has some 

systematic biases similar to any other glaciological mass balance series. Thanks to latest Pléiades 

image of Chhota Shigri Glacier, one of our colleagues Etienne Berthier is going to calculate the 

geodetic mass balance between 2004 and 2014. The geodetic results will be available by the end 

of this year and will be used to reanalyze the glaciological annual mass balances. 

The lower ablation area (<4500 m a.s.l.) of Chhota Shigri Glacier is highly debris covered 

and lies in a deep-narrow valley reducing the ablation by 2–3 m w.e. a-1 despite the low altitude. 

In the main ablation zone of the glacier, between 4400 and 5200 m a.s.l., the mean vertical annual 

mass balance gradient of 0.66 m w.e. (100m)-1 over 2002-2013 period was similar to those observed 

in the Alps, Nepalese Himalaya and other mid-latitude glaciers. Equilibrium line altitude for a 

zero glacier-wide mass balance was calculated as 4950 m a.s.l. corresponding to an accumulation 

area ratio of 62% between 2002 and 2013. The analysis of the seasonal glacier-wide mass balances 

since 2009 with the air temperature collected at off-glacier AWS-M and precipitation obtained 

from Bhuntar meteorological station suggested that the intensity of summer snowfall events 

controls the annual glacier-wide mass balance evolution by controlling the summer glacier-wide 

mass balances. This analysis, conducted over 4 years only, needs to be strengthened with long 

term analyses between seasonal glacier-wide mass balances and meteorological variables. 

Besides, field measurements are very limited in the HKH region and Chhota Shigri Glacier is a 

representative glacier in the Lahaul and Spiti Valley (2110 km2), western Himalaya; therefore, the 

seasonal and annual mass balance observations on this glacier must be continued in the future in 

spite of the challenges involved. 

In October 2009, Ground Penetrating Radar (GPR) surveys at five different cross sections 

on Chhota Shigri Glacier confirmed that the ice thicknesses obtained by gravimetric method in 

1989 were almost two fold underestimated. These ice thicknesses together with surface ice 

velocity measurements of 2003/04 provided the kinematic ice flux at each cross section. In contrast 

to the unsteady-state conditions revealed from negative mass balances since 1999, the kinematic 

fluxes corresponding to 2003/04 year were close to the theoretical ice fluxes calculated from the 

mass balance method assuming the glacier to be in equilibrium. This ice flux comparison 

proposed that the dynamic behaviour of the glacier in 2003/04 was representative of steady-state 



Chapter 6 : General conclusions and perspectives 

125 

 

conditions suggesting that during one or two decades preceding 2003/04, the glacier was in 

steady-state. In 2003/2004, the ice fluxes had not adjusted yet to the negative mass balances 

observed since 1999 but in-situ observations of decreasing surface velocities or thinning of the 

glacier between 2003/04 and 2009/10 suggested that the glacier was progressively adjusting to the 

last-decade negative mass balances. This analysis was also supported by the similar ice velocities 

measured in 1987/88 and in 2003/04 as well as the limited terminus retreat of 7 m a-1 between 1988 

and 2010 suggesting that the dynamic behaviour did not change much between 1988 and 2010. 

Although some adjustments had been observed since 2004, but the dynamic behaviour of this 

glacier was far from the glacier-wide mass balance and climatic conditions between 2002 and 

2010, and hence an accelerated thinning as well as a large terminus retreat are expected in the 

coming decades.  

Since October 2009, the annual thickness measurements on ~12 cross sections, including 5 

GPR cross sections over the ablation and lower accumulation areas have been conducted. Besides, 

during 2011-2013 an additional dense network of stakes was set up on the longitudinal center line 

of the glacier in order to compare the annual velocity changes at the same points from year to 

year. Hence it is recommended to continue these measurements in the future. These GPR, 

thickness and surface velocity change data can be used either in the detailed ice flow models or 

in simplified thickness change parameterized models in order to understand the past glacier 

fluctuations and to validate the past mass balance reconstruction on Chhota Shigri Glacier. 

Moreover, with the different climatic scenarios the future thinning and snout retreat can also be 

predicted. Indeed such analysis will give an opportunity to understand how the dynamics of 

Chhota Shigri Glacier is adjusting with the cumulative mass wastage. 

 The annual and seasonal glacier-wide mass balances of Chhota Shigri Glacier were 

reconstructed between 1969 and 2012 applying a degree-day model together with an 

accumulation model fed by long-term meteorological data recorded at Bhuntar meteorological 

station (~50 km south of the glacier, 1092 m a.s.l.). This reconstruction allowed us to examine the 

mass balances since 1969. A period of steady-state between 1986 and 2000 sandwiched between 

a moderate mass loss period (between 1969 and 1985) and an accelerated mass wastage period 

(between 2001 and 2012) was defined. The respective mean mass balances for these 3 periods 

were − .3 ± .3  m w.e. a-1 (1969- 5), − . 1± .3  m w.e. a-1 (1986- ) and − .5 ± .3  m w.e. a-1 

(2001-1 ) corresponding to a moderate mean mass wastage at a rate of − .3 ± .3  m w.e. a-1 over 

the 1 − 1  period. This reconstructed mass balance series not only re-confirmed the steady-

state of Chhota Shigri Glacier already inferred by the ice flux analysis and proved by Vincent et 

al. (2013) but also defined the exact period of steady-state. The steady-state period between 1986 

and 2000 was characterized by 56 mm a-1 higher winter precipitation and 0.2 °C lower summer 

mean temperature than 1 − 1  averages, resulting in roughly equal winter and summer mass 

balances. This analysis of decadal scale mass balances with meteorological variables suggested 

that winter precipitation and summer temperature are almost equally important drivers 
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controlling the mass balance pattern of this glacier. The sensitivity of the reconstructed annual 

glacier-wide mass balance of Chhota Shigri Glacier to precipitation was 0.16 m w.e. a−1 for a 10% 

change and to temperature is − .5  m w.e. a−1 oC−1.   

In August 2012, an in-situ meteorological station (AWS-G) was installed on the ablation 

zone (4670 m a.s.l.) of Chhota Shigri Glacier. Using the data from this station, a physically-based 

energy balance experiment was carried out to understand the melting processes on this glacier. 

The model, computing surface and sub-surface heat fluxes, was run over two separate periods 

from 13 August 2012 to 3 February 2013 and from 8 July to 3 October 2013. The results from the 

surface energy balance equation suggested that energy was available for melting in the summer-

monsoon only. Net all-wave radiation was the main heat flux towards surface with 80% 

contribution while sensible, latent heat and conductive heat fluxes shared 13%, 5% and 2% of total 

heat flux, respectively. Interestingly, the latent heat flux switched from continuously negative 

values in post-monsoon and winter periods, indicating sublimation, to positive values in the 

summer-monsoon period indicating condensation/re-sublimation at the glacier surface. The 

impact of the summer-monsoon snowfalls on the glacier mass balance was studied using detailed 

surface energy balance approach. In line with the qualitative comparison of seasonal mass 

balances with meteorological variables, the point scale analysis of the modeled melting with 

meteorological data quantitatively validated that the intensity of snowfall events during the 

summer-monsoon control the surface albedo, in turn ablation. Therefore, together with winter 

precipitation and summer temperature, intensity of snowfall events during the summer-

monsoon is among the most important drivers responsible for glacier-wide mass balance 

evolution of Chhota Shigri Glacier.   

After the provoking statement of IPCC Fourth Assessment Report about the future of the 

Himalayan glaciers, several studies, generally remote sensing, were conducted in the HKH 

region. Chhota Shigri Glacier showed a negative mass budget since 1999 and a moderate mass 

loss since 1969 with an almost steady-state between 1986 and 2000. Vincent et al. (2013) proposed 

Chhota Shigri Glacier as a representative glacier for the Lahaul and Spiti region (2110 km2) with 

similar mass balances during 1999-2011; therefore, a similar behaviour may have been 

experienced by the other glaciers in the Lahaul and Spiti region during 1986 and 2000 when 

Chhota Shigri Glacier was in balanced conditions. The balanced conditions of Chhota Shigri 

Glacier between 1986 and 2000 contrasts with the most recent compilation (Bolch et al., 2012) of 

mass balance data in the Himalaya. Bolch et al. (2012) indicated ice wastage over the past five 

decades with an increased rate of loss roughly after 1995, but with a high spatiotemporal 

variability and almost no mass balance measurements between 1986 and 2000 for the western 

Himalaya. In agreement with regional (Bolch et al., 2012; Gardelle et al., 2013) and global (Zemp 

et al., 2009) mass budget estimations, the field as well as reconstructed mass balances of Chhota 

Shigri Glacier confirm more negative mass budgets since 1999. The controversial statement about 

the Himalayan glaciers to be vanished by 2035 was found to be wrong (Cogley et al., 2010). 
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Certainly the topic of future projections of the HKH glaciers needs to be addressed in detail. 

Given the contrasting pattern of mass balance behaviour in the HKH region, the best way to 

project the future of these glaciers is to select some representative glaciers from the regions and 

perform detailed studies about future mass budgets. In this context Chhota Shigri Glacier is a 

very good option to assess the future mass budgets in the Lahaul and Spiti region.  

 Chhota Shigri Glacier has been studied extensively for its mass balances and 

meteorological drivers since 1969 but the hydrological studies, which were initially part of the 

PhD project, could not be covered because of the time limitation. Thanks to the field as well as 

modelling based research conducted in this study, a strong foundation for stream flow-climate 

change assessment has been laid. A fully distributed high resolution glacio-hydrological model 

for Chhota Shigri Glacier as well as for the Lahaul-Spiti region is needed in order to understand 

the runoff evolution in the western Himalaya. In the present work melt models are used to 

understand the mass balance-climate relationship. Indeed the understanding of different energy 

fluxes on Chhota Shigri Glacier and involvement of sublimation/condensation processes will 

significantly improve the quality of the glacio-hydrological model. However working at 

catchment scale, including the nonglacierized area, needs the involvement of hydrological 

processes such as evapotranspiration, infiltration, ground-surface water interactions etc. 

Furthermore, probably the most crucial is to know the spatial distribution of precipitation over 

the basin. These parameters have to be constrained in the field. When the model outputs at 

Chhota Shigri Glacier basin scale are validated/calibrated using the in-situ data from this glacier, 

the model can be used at regional scale. With an established understanding of glacio-hydrological 

processes and the precipitation distribution I propose to use the model to simulate the future 

runoff using the forcing data from the latest climate model Coupled Model Intercomparison 
Project 5  ensemble Taylor et al., 2012). The available data can be downscaled using the statistical 

downscaling approach (Immerzeel et al., 2012). The relative percentage of the glacier melt water 

to the total river runoff is an indicator of vulnerability of the river systems to the future climate 

changes; therefore, the output from the high resolution glacio-hydrological model will help us to 

assess the water availability in the future under different future climate scenarios. The future 

glacier changes will be simulated by applying a recently developed parameterization for the 

glacier changes at the large river basin scale (Lutz et al., 2013).  

In this study the precipitation data from the nearest meteorological station at the township 

of Bhuntar was often used to understand the mass balance processes at glacier. At Bhuntar 

meteorological station, the mean contribution of Indian summer monsoon (May to October) and 

mid-latitude westerlies (November to April) to the annual precipitation was almost same with 

51% and 49%, respectively between 1969 and 2012, whereas the 2012/13 precipitation record from 

the glacier base camp showed contributions of Indian summer monsoon and mid-latitude 

westerlies as 21% and 79%, respectively. Bhuntar meteorological station and Chhota Shigri 

Glacier are separated by an orographic barrier; hence some differences in the precipitation 
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amounts are obvious. Given that the glacier base camp data was available only for 2012/13 year, 

the precipitation distribution over this region needs to be further analyzed with long term data. 

There is a network of meteorological stations running over almost last three decades across the 

orographic barrier in the Bhuntar Valley and Lahaul & Spiti Valley. These meteorological stations 

were established by Snow and Avalanche Study Establishment (SASE), Manali, which is a unit of 

Defense Research Organization (DRDO), Ministry of Defense, Government of India. Unfortunately, 

the data from these stations are not available in public domain and thus could not be used in the 

present study. In the upcoming future, it is highly recommended to analyze the spatial 

distribution of precipitation over a long time period using precipitation records from several 

gauges. Chhota Shigri Glacier is 9 km long; consequently we propose to install more precipitation 

gauges on the glacier moraines up to the AWS-M site (4863 m a.s.l.) and one gauge in the Bhuntar 

valley around 2 km south to Sara-Umga pass (Fig. 2.1) in order to understand (1) the distribution 

of precipitation over the glacier and (2) across the orographic barrier.  
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