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Résumé étendu

1 Contexte et état de ’'art

Contexte

[’anticipation des ressources en eau futures est un enjeu de société important car
elles concernent des besoins humains en termes d’eau potable, de production agri-
cole et d’énergie. Anticiper la production hydroélectrique potentielle est notam-
ment un enjeu économique pour les producteurs d’électricité comme la Compagnie
Nationale du Rhone (CNR). Aux échéances courtes, I'enjeu porte sur la prévision
de la production tandis qu’aux échéances longues c’est I'anticipation du rende-
ment des investissements. Par ailleurs, étudier les débits passés sur de longues
périodes permet d’améliorer notre connaissance des régimes et des extrémes, ce
qui est essentiel par exemple pour le dimensionnement d’ouvrages hydrauliques.
Cependant, la longueur limitée des séries de débits mesurées implique parfois le
besoin de reconstruire les événements passés anciens.

Les modeles de simulation du climat et du systeme terrestre permettent d’étu-
dier ce type de probleme, en fournissant par exemple des projections climatiques
futures. Des réanalyses atmosphériques globales d’un siecle ou plus ont par ailleurs
été récemment mises a disposition de la communauté et peuvent étre utilisées pour
des reconstructions historiques (Compo et al., 2011; Dee et al., 2014). Dans les deux
cas, les processus météorologiques locaux ne sont pas bien représentés et rendent
nécessaire une étape de régionalisation — ou descente d’échelle — a 'amont de toute
étude d’impact.

Si la descente d’échelle dynamique utilise des modeles climatiques régionaux a
résolution plus fine, la descente d’échelle statistique exploite les liens statistiques
entre des variables de large échelle comme la circulation atmosphérique (les pré-
dicteurs) et les variables locales comme les précipitations (les prédictants).

Il existe une grande diversité des méthodes de descente d’échelle statistique
(Maraun et al., 2010; Fowler et al., 2007) : méthodes de régression linéaire ou
non-linéaire, générateurs de temps, méthodes de correction de biais, ou encore
méthodes basées sur des types de temps. La méthode utilisée ici est une méthode
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par analogie, qui est un cas particulier des méthodes par types de temps. Les
méthodes par analogie sont également utilisées en prévision opérationnelle, par
example par la CNR pour la prévision des précipitations sur le bassin versant du
Rhone (Bompart et al., 2009). Les méthodes par analogie parviennent en général a
reproduire de maniere satisfaisante la variance observée du prédictant peu importe
la distribution de celui-ci. Une limitation intrinseque est leur incapacité a produire
des événements extrémes qui n’ont pas été observés, quand elles reposent sur un
simple ré-échantillonnage du passé.

L’utilisation de méthodes de descente d’échelle statistiques pour des appli-
cations hydrologiques entraine d’importantes contraintes. Tout d’abord, et par
opposition aux méthodes déterministes, les méthodes probabilistes peuvent ap-
porter des informations sur leurs incertitudes dans une situation donnée. De plus,
dans le contexte des simulations pluie-débit, la structure spatiale des précipita-
tions est aussi importante que les quantités locales. En effet, notamment dans le
contexte de la prévision opérationnelle, il est important de savoir dans quel affluent
une augmentation de débit est générée. Les caractéristiques spatiales des sorties
de méthodes de descente d’échelle statistiques sont cependant rarement étudiées.
Un défi supplémentaire est la cohérence inter-variables indispensable pour toute
modélisation hydrologique. Parmi les méthodes capable de répondre a ces exi-
gences, les méthodes statistiques basées sur du rééchantillonnage — comme 1’ap-
proche par analogie — cotoient les méthodes dynamiques bien plus cotteuses en
termes de temps de calcul.

Objectifs

Les objectifs de cette these sont donc :

e de mettre en place une méthode de descente d’échelle probabiliste de type
analogue sur I’ensemble de la France métropolitaine ;

e de mesurer et améliorer la cohérence spatiale des précipitations régionalisées
par cette méthode;

e de développer un outil de descente d’échelle applicable dans des contextes
variés, de la reconstitution de précipitations passées au changement clima-
tique en passant par la prévision a court terme, pour des applications sur les
ressources en eau et la production hydroélectrique.

Les données et scores utilisés sont présentés dans la partie I. La partie II re-
groupe une présentation de la méthode SANDHY (Stepwise ANalogue Downscaling
method for HYdrology) (Chapitre 4), son optimisation sur la France entiere dans
le Chapitre 5, et sa validation dans le Chapitre 6. Dans la partie III, trois pistes
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sont explorées pour réduire ’espace des parametres : utiliser ceux optimisés pour
d’autres zones (Chapitre 7), regrouper les zones utilisant les mémes parametres
(Chapitre 8), et utiliser un prédictant moins asymétrique pendant I’optimisation
(Chapitre 9). Dans la partie IV, le Chapitre 10 s’intéresse a mesurer la cohérence
spatiale en utilisant une méthode de vérification spatiale (SAL) sur les bassins
du Rhone et de la Durance. La méthode SAL est ici adaptée a des simulations
probabilistes et des stratégies diverses concernant la cohérence spatiale et la per-
formance locale sont évaluées. Enfin, 'impact des différentes stratégies de descente
d’échelle sur la performance des simulations des débits de la Durance est discutée
dans le Chapitre 11.

Données

Les prédicteurs utilisés dans cette étude proviennent de la réanalyse ERA40 (Up-
pala et al., 2005) mise a disposition par le Centre Européen de Prévision Météo-
rologique a Moyen Terme. Les prédictants utilisés sont les précipitations issues de
la réanalyse Safran (Vidal et al., 2010), basée sur un découpage de la France en
608 zones climatiquement homogenes d’une taille moyenne de 900km?. L’optimisa-
tion et la validation de la méthode utilisent les précipitations moyennes par zones,
alors que la partie IV tire profit des sorties de la réanalyse Safran sur une grille de
résolution 8km. La période commune aux deux réanalyses court du ler aott 1958
au 31 juillet 2002.

Criteres de performance

Le principal critere de performance utilisé ici est le CRPS (Continous Ranked
Probability Score) (Brown, 1974), un critére de vérification pour des prévisions
probabilistes d'une variable continue, largement adopté pour la vérification des
prévisions d’ensemble. Le CRPS mesure la différence entre 1'observation et une
fonction de répartition simulée, sans nécessiter le recours a une répartition des
simulations en différentes classes. Dans le cas d’une simulation déterministe, il est
égal a l'erreur absolue moyenne. Le CRPSS (Continous Ranked Probability Skill
Score) est de plus utilisé pour comparer la performance des simulations par rapport
a une simulation de référence. Celle-ci correspond tout au long du document a la
distribution climatique de la saison — 121 jours autour de la date cible extraits de
I’archive des dates analogues.

Par ailleurs, des méthodes de vérification spatiale ont été développées pour
la vérification des champs de précipitations déterministes issues des modeles at-
mosphérique de haute résolution et non-hydrostatiques qui permettent de simuler
explicitement la convection profonde. La méthode SAL (Structure, Amplitude, Lo-
cation) (Wernli et al., 2008) regroupe trois caractéristiques : I'amplitude (A) —
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la quantité totale de précipitation tombée sur le domaine, la localisation (L) — le
centre de masse des précipitations et la distance entre les objets de précipitation
et leur centre de masse, et la structure spatiale (S) — la taille et la forme des objets
de précipitation. Cette méthode est ici adaptée pour des simulations probabilistes.

2 Descente d’échelle sur la France

SANDHY

La méthode de descente d’échelle SANDHY (Ben Daoud et al., 2011a) utilisée ici
est une méthode de sélection par analogie a 4 niveaux successifs. Le premier niveau
est une sélection sur la température a 600 hPa et 925 hPa, basé sur une distance
euclidienne. Le deuxieme niveau est une sélection sur le géopotentiel a 500 hPa
et 1000 hPa avec le critere de Teweles-Wobus (TWS) (Teweles and Wobus, 1954).
Le TWS mesure la similarité des gradients des champs et est donc un critere de
forme. Le troisieme niveau est une sélection sur la vitesse verticale a 850 hPa et
le quatrieme niveau est une sélection sur ’humidité relative a 850 hPa multiplié
par 'eau précipitable. Ces deux niveaux utilisent la distance euclidienne comme
critere de similarité. 25 dates analogues sont retenues a la fin du processus.

Le logiciel implémentant la méthode SANDHY rassemble des fonctionnalités
pour l'optimisation, la simulation et la validation dans un seul programme. Il est
écrit en Fortran 2003, parallélisé avec OpenMP, et utilise un fichier de configuration
sous forme de namelist. Les entrées et sorties sont au format NetCDF. Les taches
implémentées sont :

e [’optimisation des domaines du prédicteur géopotentiel avec un algorithme
de domaines rectangulaires croissants multiples, qui utilise le CRPS comme
fonction objectif. Le nombre de domaines a agrandir et retenir peut étre
choisi par l'utilisateur (Chapitre 5);

e Le calcul de cartes de pertinence (Chapitre 5);
e La validation avec un calcul du CRPS et du biais (Chapitre 6);

e [’agrégation des zones utilisant les mémes domaines de prédicteur avec trois
méthodes différentes (Chapitre 8);

e Le calcul du CRPS climatologique;

e Le calcul du pourcentage de dates analogues communes entre deux zones ou
stations.
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Optimisation locale des domaines de prédicteur

Une optimisation des domaines spatiaux du prédicteur géopotentiel est ici réalisée.
Les domaines pour les autres prédicteurs correspondent au point de grille ERA-40
le plus proche de la zone cible.

Les cartes de pertinence représentent la performance en termes de CRPSS pour
des domaines élémentaires a quatre points de grille pour le prédicteur géopotentiel.
Celles-ci sont établies pour quelques zones d’étude et montrent que la région de
pertinence maximale est en général au sud-ouest de la zone d’étude pour les zones
sous influence Atlantique, et au sud-est de la zone d’étude pour les zones sous
influence Méditerranéenne. La région de forte pertinence forme un cercle relié a
la région présentant les plus forts gradients des anomalies de géopoteniel sur les
jours pluvieux. La région de pertinence maximale est au sud de ce cercle pour les
zones sous influence Atlantique et a I'est du cercle pour les zones sous influence
Méditerranéenne.

L’optimisation des domaines est réalisée avec un algorithme de domaines rec-
tangulaires croissants qui est ici adapté pour faire croitre plusieurs domaines en
parallele afin de tester plus de domaines et de proposer un ensemble de domaines
optimisés a la sortie du processus. L’optimisation est réalisée individuellement
pour chaque zone Safran en partant des points de grilles autour de la zone cible
et 5 domaines sont finalement retenus pour chaque zone. On constate une grande
diversité de domaines pour le prédicteur géopotentiel sur I’ensemble de la France.
Les centres des domaines sont distribués suivant ’emplacement géographique des
zones, mais avec des différences marquées entre les versants au vent et sous le vent
du Massif Central. La variabilité du centre entre les cinq domaines pour chaque
zone est en général faible, sauf pour quelques zones montagneuses dans la partie
sud-est de la France. La taille des domaines trouvés est elle plus variable : de petits
domaines sont trouvés a l'ouest et au nord du pays, et de grands domaines sont
trouvés dans les régions montagneuses du sud-est. Dans les régions de plaine du
sud-est les domaines sont allongés en direction nord-sud et dans une bande orientée
est-ouest au nord du Massif Central — juste sous le parallele situé a 47,5° nord —
les domaines sont allongés en direction est-ouest. La variabilité des tailles entre les
cing domaines pour chaque zone est tres grande pour certaines zones.

Des tests complémentaires montrent une sensibilité au point du départ de ’op-
timisation pour une zone située au nord de la bande identifiée ci-dessus, et qui pour
un point de départ au sud de celle-ci, trouve des domaines allongés en direction
est-ouest qui remportent une meilleur performance. Une sensibilité a la longueur
de ’archive est trouvée pour une zone en Ardeche avec une forte saisonnalité. Pour
cette derniere zone, une expérience ot 99 domaines sont retenus lors de l'optimi-
sation est menée dans l'idée de mieux explorer l'espace des domaines possibles.
Parmi les 5 meilleurs domaines, deux sont communs aux expériences avec 99 et 5
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domaines. Ceux de I'expérience a 99 domaines sont en moyenne plus grands.

Validation de SANDHY

Une étape de validation est nécessaire pour vérifier le comportement de la méthode
dans des conditions d’expérience diverses, qui ont en commun d’utiliser la période
Aott 1982 — Juillet 2002 (nommée late) pour optimiser les domaines pour le pré-
dicteur géopotentiel :

La simulation de référence Elle simule les précipitations de la période late en
utilisant cette méme période comme archive pour chercher des dates ana-
logues ;

La validation hors échantillon Elle simule la période Aotut 1958 — Juillet 1978
(nommée early) — période indépendante de la période d’optimisation — en
utilisant la période late comme archive ;

L’expérience d’archive alternative Elle simule la période late en utilisant la
période early comme archive;

L’expérience de domaines de prédicteurs suboptimaux Cette derniere ex-
périence simule la période early en utilisant cette méme période comme ar-
chive. Elle utilise de fait la meilleure archive possible et teste I'influence de
domaines de prédicteurs optimisés sur une autre période.

La distribution spatiale des valeurs de CRPSS pour la simulation de référence
est directement liée a celles des précipitations moyennes. Les plus fortes valeurs cor-
respondent aux régions les plus arrosées, comme les Alpes, les Cévennes, la facade
ouest du Massif Central, les Vosges, ainsi que la cote Atlantique. Les performances
les plus basses se situent sur la cote méditerranéenne, la cote est de la Corse ainsi
que l'est du Massif Central. Une diminution du CRPSS de l'ordre de 0,03 est ob-
servée pour la plupart des zones dans I’expérience de validation hors échantillon.
On constate de plus une légere augmentation de la performance pour quelques
zones dans le sud-est du pays, ainsi qu’'une tres forte diminution (-0,17) pour une
zone située dans le Massif Central. Cette zone présentait une large différence de
précipitation moyenne identifiée entre les périodes late et early, en raison de I’ajout
d’une station d’altitude entre ces deux périodes. Cette inhomogénéité dans la chro-
nique de précipitations sur la zone conduit a une non-stationnarité de la relation
prédicteur-prédictant puisque une situation atmosphérique donnée ne se traduit
plus par les mémes cumuls de précipitations. C’est une hypothese centrale de la
descente d’échelle statistique qui n’est pas respectée ici. Dans l'expérience d’ar-
chive alternative, la perte de performance est faible et tres uniforme spatialement.
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Enfin, dans I'expérience de domaines de prédicteurs suboptimaux, les pertes de
performance sont similaires a celles de I'expérience de validation hors échantillon.

Un critere de biais est de plus calculé entre les valeurs observées et la moyenne
des 25 valeurs issues des dates analogues. Cette moyenne est en général biaisée
positivement pour la simulation de référence. Les régions les plus arrosées, notam-
ment les facades au vent des chaines de montagnes, tendent a présenter de plus
forts biais positifs que les régions plus seches. La distribution spatiale des biais
dans I'expérience des domaines de prédicteurs suboptimaux est similaire a celle de
la simulation de référence, avec une tendance a de plus forts biais positifs dans
le sud du pays. Pour 'expérience de validation hors échantillon, les changements
ne sont pas homogenes spatialement. Pour I'expérience d’archive alternative, les
biais changent substantiellement par rapport a la simulation de référence. Ces
différences semblent étre reliées a la différence de précipitation moyenne entre les
deux périodes.

Les pertes de performance de la méthode apparaissent lorsque la période si-
mulée est différente de la période d’optimisation, tandis que les changements sur
le biais sont plus marqués lorsqu’elle est différente de la période d’archive. Ces
changements sur le biais, qui dépendent de la différence de climatologie entre les
périodes de simulation et d’archive, ont de sérieuses implications sur ’application
de la méthode. En effet, toute correction de biais simple basée sur I'hypothese
d’une homogénéité temporelle pour un endroit donné ne serait pas valide.

3 Réduction de ’espace de parametres

Exploitation des domaines des zones voisines

Chacun des 847 domaines de prédicteurs trouvés localement sur la France est
appliqué a ’ensemble des 608 zones pour la période late. Cela permet de rechercher
quel domaine donne la meilleure performance pour chacune des zones. Idéalement,
celui-ci devrait avoir été trouvé localement par ’algorithme d’optimisation, mais
ce n’est en fait pas le cas pour la majorité des zones.

Il y a deux raisons possibles a cela. La premiere concerne le choix du domaine
élémentaire de départ de I’algorithme. Ce domaine élémentaire a été choisi comme
le plus pres de la zone cible, mais ce n’est pas toujours le meilleur choix. Au nord
d'un parallele situé a 47,5° de latitude nord se trouve une région présentant de
larges différences en termes de CRPSS qui semble lié a cette limitation de ’algo-
rithme. Une seconde raison concerne le choix de la maille ERA-40 la plus proche
prise comme domaine d’analogie pour les prédicteurs locaux. Ce choix apparait
comme non optimal pour un nombre important de zones situées principalement
sur la cote méditerranéenne.
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Les meilleurs domaines pour les prédicteurs issus de cette analyse (appelés
best) peuvent étre comparés a ceux optimisés localement (appelés optim). Les
centres des domaines pour le prédicteur géopotentiel sont modifiés pour les zones
situées au nord du parallele a 47,5° de latitude nord et sont moins variables dans
I’espace sur les massifs montagneux. La variabilité au sein des 5 domaines est plus
forte dans certaines régions et moins importantes dans d’autres. La taille moyenne
des domaines varie généralement de maniere plus lisse sur le territoire et leur
variabilité au sein des 5 domaines apparait plus petit. En résumé, les limitations
de l'algorithme imposées par les choix évoqués ci-dessus peuvent étre nettement
atténuées en considérant des domaines optimisés pour d’autres zones.

Agrégation des zones de prédictants

Les différentes configurations de parametres obtenues sur la France peuvent étre
réduites en regroupant les zones partageant les mémes parametres. Ceci devrait
permettre de renforcer la cohérence spatiale a I'intérieur de chaque groupe et aider
a définir une échelle spatiale type en dessous de laquelle des parametres identiques
ne conduisent qu’a une perte de performance limitée.

Les zones sont tout d’abord regroupées selon la corrélation des rangs des préci-
pitations journaliéres observées, en utilisant I’algorithme affinity propagation (Frey
and Dueck, 2007), qui sélectionne un nombre de groupes optimal ainsi qu’un
membre représentatif de chaque groupe. Cet algorithme conduit a 52 groupes de
taille similaire. Cette approche qui agrege les zones selon le comportement de
leurs prédictants n’est toutefois pas nécessairement la plus adaptée dans le cadre
de 'approche par analogie, et il est plus pertinent de réaliser I'agrégation selon le
comportement des prédicteurs associés a ces zones.

La similarité entre zones est alors exprimée en termes de fraction de dates
analogues communes afin d’inclure des informations sur les domaines des prédic-
teurs et de bénéficier de distances continues. Des groupes plus petits sont trouvés
ainsi, notamment dans la partie sud du pays, avec un nombre total de 87.

La fraction de dates analogues communes contient de l'information sur la
similarité des prédicteurs, mais elle n’assure pas que la performance locale est
entierement maintenue. Les zones sont finalement regroupées selon la définition
meéme des domaines des prédicteurs. L’inconvénient est que la distance associée
— le nombre de domaines optim ou best communs entre deux zones — peut seule-
ment prendre des valeurs discretes (0 a 5), ce qui pose probleme aux algorithmes
d’agrégation. En effet, des égalités de distance apparaissent tres souvent et con-
duisent a des solutions de regroupement non-uniques.

Trois méthodes d’agrégation — simple, maximum d’occurrence, et variable group
agglomerative hierarchical clustering (Fernandez and Goémez, 2008) — sont ap-
pliquées pour constituer des groupes utilisant les mémes domaines de prédicteurs.
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Le plus petit nombre de groupes est obtenu par ’algorithme le plus simple, méme
si ce nombre exact dépend de 'ordre dans lequel les zones sont traitées. Regrouper
les domaines best permet de réduire fortement le nombre de groupes par rapport
aux domaines optim, et les barrieres d’agrégabilité ont un sens physique beaucoup
plus marqué que pour optim ou elle sont plus ou moins imposées par la grille des
prédicteurs. Dans tous les cas, la réduction du nombre de groupes total sur la
France provient des zones de plaine du pays. Le sud-est montagneux du pays ne
voit pas la taille de ses regroupements évoluer considérablement.

Les bassins versants de la Durance et du Rhone, utilisés plus tard comme
bassins d’étude, présentent une faible agrégabilité par domaines de prédicteurs
communs ou dates analogues communes. Assurer une cohérence spatiale au sens
de ces agrégations implique de fait une perte de performance sur ces bassins.

Utilisation de précipitations transformées comme prédictant

Jusqu’ici les données de précipitation ont été considérées telles quelles comme
prédictant, au contraire des études précédentes (Bontron, 2004; Ben Daoud, 2010)
utilisant des versions antérieures de SANDHY. L’effet d'une transformation des
précipitations sur la performance de la méthode et sur I’aggrégabilité est ici étudiée.

Les précipitations transformées sont obtenues en les divisant par le quantile
de pluie journaliere maximal annuel de période de retour 10 ans, et en prenant
la racine carrée de ce rapport. Cette transformation est ainsi censée éliminer les
écarts systématiques entre différentes zones et réduire 'asymétrie de la variable.

L’optimisation des domaines du prédicteur géopotentiel est effectuée a nouveau
en utilisant les précipitations transformées comme prédictants. Le centre des do-
maines trouvés dans cette expérience — appelée transformed — est tres similaire a
celui de l'expérience optim. En revanche, la variabilité au sein des 5 meilleurs do-
maines est plus restreinte et aussi plus homogene dans I'espace. La taille moyenne
tend elle a augmenter et a s’homogénéiser spatialement. La variabilité de cette
taille au sein des 5 meilleurs domaines tend elle aussi a devenir plus homogene sur
la France.

La performance des simulations de la variable de précipitations transformées
est généralement plus élevée que celle des simulations de pluies brutes, quelle que
soit l'expérience. En revanche, la différence de performance entre les expériences
optim et transformed est en faveur des domaines de I'expérience optim lorsqu’elle
est calculée sur les précipitations brutes. La structure spatiale du CRPSS reste
similaire quelle que soit I’expérience ou le prédictant considéré. Les faibles perfor-
mances rencontrées dans les vallées soumises a 'effet de foehn peuvent ainsi étre
reliées aux erreurs déja faibles de la simulation de référence (climatologique) sur
ces zones.
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En résumé, utiliser des précipitations transformées pour I'optimisation des do-
maines de prédicteurs ne conduit pas a de meilleures performances, mais a une
meilleure aggrégabilité selon les domaines de prédicteurs communs.

4 Vérification spatiale a I’échelle du bassin ver-
sant

Cohérence spatiale — Cas d’étude sur la Durance et le Rhone

Simuler des champs de précipitations aux propriétés spatiales réalistes est crucial
pour la modélisation hydrologique distribuée. La méthode de vérification spatiale
SAL (Wernli et al., 2008), qui identifie des propriétés spatiales des champs perti-
nentes pour I'hydrologie, est ici adaptée pour ’évaluation de champs de précipi-
tations régionalisés probabilistes. Cette adaptation se base ainsi sur des champs
de probabilité de dépassement d’un seuil de précipitations. L’utilisation de seuils
différents pour les observations et les simulations permet d’évaluer les caractéri-
stiques spatiales des événements pluvieux intenses. Des scores de performance sont
construits a partir des composantes structure et localisation de la version proba-
biliste du SAL afin d’évaluer la cohérence spatiale des simulations probabilistes.

Un ensemble d’expériences est mené pour identifier la meilleure stratégie en
termes de configuration de domaines de prédicteur pour garantir a la fois une
performance locale élevée et une cohérence spatiale sur le bassin considéré. Ces
expériences vont ainsi d’'une configuration uniforme des domaines sur le bassin
a une configuration hétérogene utilisant des domaines spécifiques pour chaque
zone du bassin. La configuration uniforme conduit a des champs de précipitations
réguliers et une structure des objets de précipitations plus réaliste. En revanche,
la localisation est moins précise que pour la configuration hétérogene pour les
deux bassins d’étude. Les expériences mettant en occuvre 5 domaines de prédicteurs
plutot qu'un seul conduisent a une meilleure performance locale et une meilleure
représentation de la structure des objets de précipitation.

[’augmentation de la performance locale due a 1'utilisation de domaines de
prédicteurs multiples s’avere étre une propriété générale pour toutes les zones en
France, et trouve sa source dans une meilleure résolution des distributions simulées.

Sur le bassin de la Durance, la médiane des simulations sous-estime les précipi-
tations pour toutes les expériences, alors que la moyenne présente un biais positif
dans le nord du bassin et négatif dans le sud, avec une zone de transition variable
selon 'expérience. Les histogrammes des rangs montrent que les simulations sont
trop dispersives pour toutes les expériences.
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Impacts hydrologiques de la cohérence spatiale dans la des-
cente d’échelle

Les scores de performance pour la structure et la localisation des objets de précipi-
tation montrent des résultats différents selon les expériences et le bassin considéré.
On essaye ici d’identifier quelle expérience conduit aux meilleures simulations hy-
drologiques sur le bassin de la Durance et si les scores en précipitation peuvent
étre reliés aux scores sur les débits.

Les simulations hydrologiques et le calcul des performances associées ont été
réalisés dans le cadre du stage de Master de Judith Eeckman (Eeckman, 2014) su-
pervisé par J.-P. Vidal, F. Tilmant et moi-méme. Le modele distribué a base phy-
sique J2000 (Krause, 2002) est utilisé pour simuler les débits a partir de données
météorologiques issues des expériences décrites ci-dessus. Les températures mini-
mum et maximum ainsi que I’évapotranspiration potentielle sont échantillonnées
depuis le jeu de données DuO (Magand et al., 2014) aux mémes dates analogues que
les précipitations échantillonnées dans la réanalyse Safran. Le modele hydrologique
ne peut pas étre forcé directement avec des entrées probabilistes a chaque point de
grille telles que produites par SANDHY. Un ensemble de scénarios déterministes
et équiprobables est construit pour chaque expérience en utilisant des permuta-
tions aléatoires des dates analogues pour chaque jour et chaque zone. Les mémes
permutations sont utilisées pour les zones utilisant les mémes domaines de prédic-
teur pour conserver cette élément de cohérence spatiale. Cet ensemble de scénarios
permet ainsi de produire un ensemble probabiliste de simulations de débit.

La performance des simulations a la station de Cadarache (aval du bassin) est
étudiée sur la période late. Les simulations utilisant une configuration uniforme
des domaines présentent une plus large dispersion que celles utilisant une configu-
ration hétérogene. Les efficiences de Nash-Sutcliffe probabiliste (Bulygina et al.,
2009) et de Kling-Gupta (Kling et al., 2012) montrent des résultats similaires avec
de meilleurs scores pour les expériences utilisant une configuration hétérogene. Les
expériences mettant en ceuvre des domaines de prédicteurs multiples conduisent a
des résultats tres proches de celles utilisant un seul domaine, malgré leur meilleure
performance sur les précipitations. Parmi les trois scores de précipitation, celui
sur la localisation des objets de précipitation présente la plus grande corrélation
avec les performances sur les débits. En conclusion, il apparait intéressant d’opti-
miser localement les domaines de prédicteurs, puisque cela conduit a de meilleures
simulations de débit, notamment en termes de corrélation temporelle.
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5 Conclusions et perspectives

Conclusions

La méthode de descente d’échelle SANDHY (Stepwise ANalog Downscaling me-
thod for HYdrology) a été étendue a 'ensemble de la France continentale et & la
Corse en optimisant les domaines spatiaux du prédicteur géopotentiel localement
pour chacune des 608 zones climatiquement homogenes couvrant le territoire. Une
variabilité spatiale importante de ces domaines de prédicteurs a ainsi été trouvée.
La non-optimisation des domaines pour les trois autres prédicteurs (température,
humidité et vitesse verticale) s’est révélée étre une faiblesse de la stratégie d’opti-
misation. Celle-ci a pu en revanche étre surmontée en considérant localement des
domaines de prédicteurs identifiées pour d’autres zones en France.

La performance de la méthode sur les précipitations apparait plus importante
pour les climats humides. Les expériences de validation ont montré une perte
de performance non uniforme lorsque la période de simulation est différente de
la période d’optimisation, et un changement non-uniforme sur le biais lorsque la
période de simulation est différente de la période d’archive. L’optimisation de la
méthode sur une variable de précipitation transformée n’induit pas de changements
majeurs sur ces résultats.

Deux grandes approches peuvent étre identifiées pour assurer la cohérence spa-
tiale dans une descente d’échelle par analogie. La premiere consiste a sélectionner
les mémes dates analogues pour une région la plus grande possible, a priori au
détriment de la performance locale. L’alternative consiste a utiliser les dates ana-
logues de domaines de prédicteurs optimisés localement, mais sous I’hypothese que
des zones proches présentent des parametres suffisamment similaires pour assurer
des transitions spatiales douces. Pour la premiere approche, il est possible de définir
un seuil de perte de performance pour définir les limites de la région ol une confi-
guration uniforme est pertinente. L’étude d’aggrégabilité des zones de prédictants
selon les domaines de prédicteurs associés et une étude récente sur la transférabilité
spatiale des dates analogues (Chardon et al., 2014) montrent que la transférabilité
spatiale de SANDHY est peu importante et que la premiere approche n’est pas
tres adaptée pour une méthode d’analogie a plusieurs niveaux.

Dans le cadre de la premiere approche, d’'importantes discontinuités des champs
de précipitation régionalisés peuvent apparaitre a la frontiere de deux régions
considérées comme homogenes, surtout quand les régions sont grandes et le seuil
de perte de performance lache. Lors de I'application de la méthode de descente
d’échelle sur des bassins versants emboités ces frontieres devraient ainsi étre redéfinies
quand un bassin est ajouté. La deuxieme approche évite cet écueil en rendant la
région cible indépendante de ’application et plus aisément extensible spatialement.
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L’optimisation locale sur des petites unités spatiales favorise des transitions
lisses entre des zones voisines dans le cadre de la deuxieme approche. Elle évite des
discontinuités non-physiques importantes, néanmoins des discontinuités mineures
un peu partout doivent étre acceptées. Pour obtenir un résultat encore plus lisse,
des précipitations aux dates analogues trouvées chez les voisins pourraient étre
intégrées dans 'estimation locale probabiliste des précipitations. L’utilisation des
précipitations analogues issues de domaines de prédicteurs multiples augmente la
performance locale des précipitations régionalisées.

Une méthode de vérification spatiale a été adaptée pour des simulations pro-
babilistes et a été mise en ceuvre pour évaluer les propriétés spatiales des champs
de précipitations régionalisés par SANDHY. Un ensemble d’expériences a été mis
en place pour comparer les deux grandes approches pour la cohérence spatiale,
en termes de performance locale des précipitation simulées, et du réalisme de la
structure spatiale et de la localisation des objets de précipitation simulés. Une
configuration homogene des domaines de prédicteurs conduit a une structure plus
réaliste des objets de précipitation, alors qu’une configuration hétérogene capture
mieux la localisation de ces objets.

Des simulations hydrologiques avec un modele distribué sur le bassin de la Du-
rance réalisées durant un stage ont montré que les différentes approches pour la
cohérence spatiale induisent des différences sur la performance des débits simulés
associés. En revanche, l'utilisation de domaines de prédicteurs multiples locale-
ment a comparativement peu d’influence. Une configuration hétérogene avec des
domaines de prédicteurs variables spatialement conduit a une meilleure perfor-
mance des simulations de débit.

Le logiciel SANDHY developpé durant cette these a été mise en ceuvre avec
succes par plusieurs collegues. L. Caillouet I'utilise pour reconstruire des sécheresses
historiques sur la France et J.-P. Vidal I'a appliqué pour faire de la descente
d’échelle de précipitations sur 81 stations en Argentine dans le cadre du deuxieme
atelier CORDEX-ESD. Ces deux applications ont nécessité 1'utilisation de pré-
dicteurs et prédictants différents du contexte de la these (réanalyses différentes,
données station ponctuelles).

Perspectives

Plusieurs questions restent ouvertes a l'issue de cette these, par exemple comment
les domaines best ou ceux optimisés sur la précipitation de bassin se comportent
en validation hors échantillon, quelle est la significativité statistique des différences
de CRPSS, ou encore quelle est la sensibilité de la version probabiliste de SAL a
certains choix effectués durant son développement.

Des développements additionnels sur SANDHY pourraient porter sur 1'utilisa-
tion de la température de surface de la mer comme prédicteur additionnel, du flux
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d’humidité comme prédicteur alternatif a la variable composite d’humidité utilisée
actuellement, des prédicteurs spécifiques a certaines régions comme les Tropiques,
ou encore sur la prise en compte de données manquantes, essentielle lorsque la
méthode utilise des données stations comme prédictants.

Pour une application a la descente d’échelle de projections climatiques futures,
plusieurs questions supplémentaires se posent. Le développement de méthodes de
sous-échantillonage des projections désagrégées qui puissent concilier d’une part
I'intégration des différentes types d’incertitudes liées a la chaine de modélisation
hydroclimatique et d’autre part les contraintes des modeles d’impact, s’avere par
exemple indispensable pour fournir une estimation plausible des incertitudes sur
les impacts locaux, notamment hydrologiques.

La descente d’échelle par analogie et les questions afférentes liées a la cohérence
spatiale connaissent un réel intérét en France. Mis a part les présents travaux, deux
autres theses par J. Chardon et G. Dayon portent actuellement sur des themes
similaires avec des questions complémentaires. Les producteurs d’électricité comme
la CNR utilisent depuis plusieurs années la descente d’échelle par analogie pour la
prévision opérationnelle, et le Service Central d’Hydrométéorologie et d’Appui a la
Prévision des Inondations (SCHAPI) cherche a présent a implémenter un modele
d’analogues sur la France pour la prévision opérationnelle de crues.
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1 Context and objectives

1.1 Context

Anticipating future freshwater ressources on short and long timescales is an im-
portant societal issue, because human needs in terms of drinking water-, food-
and energy supply depend on it. Specifically the availability of freshwater for hu-
man consumption, irrigation and hydropower production are concerned. Future
drought characteristics are for example studied to potentially develop adaptation
strategies, for example planting crops that need less irrigation. Anticipating the
potential hydropower production is an economic matter for hydropower compa-
nies on the short timescale to forecast the production and get the best possible
price and on the long timescales to calculate the profitability of investments. Fur-
thermore, studying past and present day streamflow regimes, droughts and floods
helps to increase our understanding of their characteristics. However, the directly
measured records are still of very limited length in most places. To extend the
record backwards in time, reconstructions are needed.

Global climate models or earth system models (GCMs) are valuable tools
to study global climate change and processes. 110 to 150 years long reanalysis
datasets have recently become available (Compo et al., 2011; Dee et al., 2014)
and can be used for reconstructions of the less recent past. Both the GCMs and
the extended reanalyses have a rather coarse skillful resolution and use parametri-
sations of subgridscale processes. This leads to strongly smoothed local surface
variables like precipitation which is why they are not directly suited for studying
local impacts. A possible solution to this is downscaling.

1.2 Statistical downscaling methods
Downscaling seeks to deduce local scale climate elements over a limited area from

larger scale information at coarser resolution. There are two main types of down-
scaling: dynamical downscaling using regional models (e.g. Philandras et al., 2011;
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Christensen and Christensen, 2003, 2007; Hohenegger et al., 2008; Pfeiffer and
Zangl, 2011) and statistical downscaling. In the case of dynamical downscaling
regional models are provided with boundary values from GCMs and perform sim-
ulations of the atmospheric state over their limited domain with higher resolution.
This allows for more processes being explicitly simulated than in the GCMs, but
subgridscale processes like for example cloud microphysics are still parametrised
and the model topography is smoothed compared to the real world one. The idea
of statistical downscaling is to use observed relationships between large scale pre-
dictors and local climate variables to build statistical models that can translate
variations of large scale variables to variations of local scale ones. Downscaling
models should be able to reproduce the historical evolution of local variables when
they are driven with observed large scale predictors (Zorita and von Storch, 1999).

There is a large variety of statistical downscaling methods. Following Schoof
(2013) they evolved from synoptic climatology, a discipline that describes surface
climate as a function of large scale atmospheric circulation and local conditions. In
review papers downscaling methods have been classified into families by type of sta-
tistical technique used like regression methods, weather pattern based approaches
and stochastic weather generators (Wilby and Wigley, 1997; Fowler et al., 2007)
or by the way predictors are considered (Maraun et al., 2010). In a perfect prog-
nosis (PP) setting predictors and predictands are related event by event and the
predictor-predictand relationship is established using observed predictors and pre-
dictand. Model output statistic (MOS) relates simulated predictors and observed
predictands during the calibration period and weather generators generate time-
series with prescribed statistical properties. MOS corrections are specific to the
numerical model used, while PP relationships are independent of the model, but
assume that the models correctly simulate the predictors (Maraun et al., 2010).
Nowadays most downscaling methods are “hybrid” methods, that is methods that
combine techniques from different families to benefit from the advantages of differ-
ent methods and to capture deterministic variance, that can be explained by large
scale variations and stochastic variance due to local phenomena and conditions.
This makes them more difficult to classify. The following overview of statistical
downscaling methods describes the main ingredients used in precipitation down-
scaling. The techniques are grouped into regression methods, weather generators,
bias correction methods (MOS), weather pattern based approaches and examples
of hybrid applications. The overview focus on daily precipitation, probabilistic
methods and multisite applications since these aspects are relevant for this study.

1.2.1 Regression methods

Linear regression or mulitple linear regression is one of the most widely used down-
scaling methods (e.g. Nicholas and Battisti, 2012; Ning et al., 2012; Hanssen-Bauer
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et al., 2003; Wilby et al., 1998a), but it assumes a gaussian distribution of the pre-
dictand (Maraun et al., 2010; Zorita and von Storch, 1999), or at least predictors
and predictand having similar shaped cumulative distribution functions (CDFs)
(Ribalaygua et al., 2013). This works well for predictands like temperature, but is
not suited for precipitation or wind speed for example. Themefl et al. (2010) found
multiple linear regression to be defective in estimating non-normally distributed
daily precipitation and concluded that this technique can not be recommended for
regional climate model (RCM) precipitation correction.

Generalised linear models (e.g. Chandler and Weather, 2002; Chandler, 2005;
Frost et al., 2011) are better suited for precipitation downscaling since they al-
low for non-gaussian predictands (Maraun et al., 2010). Constructed analogues
(Hidalgo et al., 2008) search linear combinations of past large scale variables that
match the target situation and use the same linear combination for obtaining the
local scale counter part. It has already been mentioned in Van den Dool (1994)
as an idea to overcome the problem of too short archives for finding good ana-
logues for the analogue method. Canonical correlation analysis (CCA) is a linear
method that identifies pairs of patterns whose time evolution is optimally corre-
lated (Zorita and von Storch, 1999) (e.g. Fernandez and Saenz, 2003; Hertig et al.,
2012). Typically CCA performs comparatively well when correlation between ob-
served and downscaled variables is measured, which is not very surprising given
that it is optimised to reproduce correlations. Other linear regression methods are
censored quantile regression (Friederichs and Hense, 2007) and vector generalised
linear models (Maraun et al., 2011). Regression models allow to extrapolate out of
the observed range of variability and are therefore used as components to account
for trends and long term deterministic variance. Care has to be taken that the
relationships established are actually valid within and out of the observed range.
It is therefore important to not solely rely on statistical correlations but to keep
in mind the physical relationships that may have led to the observed correlations.
This kind of considerations are important as well to increase the confidence that
the predictor-predictand relationship will be stationary.

Since simple linear methods are not that successful for precipitation down-
scaling and arguing that the processes leading to precipitation are non-linear,
artificial neural networks (ANN) were developed for downscaling (e.g. Fernandez-
Ferrero et al., 2009; Trigo and Palutikof, 2001; Haylock et al., 2006). ANNs tend to
overestimate trace precipitation and thus wet-day occurrence (Wilby and Wigley,
1997; Wilby et al., 1998b; Fowler et al., 2007), but this problem can be overcome
by ANNs that treat the occurrence and the amount of precipitation separately
(Harpham and Wilby, 2005). Non-linear censored quantile regression or quantile
regression neural network (QRNN) is proposed by Cannon (2011). A major issue
with ANNs and other regression methods is that they tend to underestimate the



30 CHAPTER 1. CONTEXT AND OBJECTIVES

variance of precipitation and the frequency of heavy rainfall because they are fitted
to give the best estimation of the mean of the observed distribution (Zorita and
von Storch, 1999).

1.2.2 Weather- or rainfall generators

Weather generators generate random sequences of weather variables, that is syn-
thetic time series, with statistical properties resembling those of observed weather
(Maraun et al., 2010).

Rainfall occurrence is often modelled using a first-order Markov chain (e.g.
Cordano and Eccel, 2012), but this leads to an underestimation of the interannual
variability (Maraun et al., 2010). Chen et al. (2010) solved this problem by mod-
elling the low frequency variability using observed power spectra. An alternative
to Markov chains are Nyman-Scott rectangular pulses (Kilsby et al., 2007; Burton
et al., 2008, 2010; Blenkinsop et al., 2010; van Vliet et al., 2012).

Several choices are possible to model the skewed distribution of rainfall inten-
sities: the gamma distribution (e.g. Bellone et al., 2000; Hingray and Mezghani,
2007), mixtures of exponential distributions (Wilks, 1998), mixtures of gamma-,
normal- or log-normal distributions with extreme value distributions (Carreau and
Vrac, 2011) or distributions from the Tweedie family (Dunn, 2004). To model ex-
treme precipitation the Generalized Pareto Distribution (e.g. Cooley et al., 2007)
or the Generalized Extreme Value distribution (e.g. Maraun et al., 2011) can be
used. There are fewer models for multisite precipitation simulations, most of them
using a transformed Gaussian distribution (e.g. Leblois and Creutin, 2012; Kiout-
sioukis et al., 2008; Brussolo et al., 2008; Rebora et al., 2006).

In a downscaling context modern weather generators are often conditioned
on the daily evolution of large-scale weather states and thus coupling a weather
pattern based component with the random sampling (Ailliot et al., 2014). The
nonhomogeneous hidden Markov models (NHMM) belong to this category (Hughes
and Guttorp, 1999; Bellone et al., 2000; Charles et al., 2004; Greene et al., 2011).
Mehrotra and Sharma (2005) extended the usual NHMM using continuous weather
states instead of a few discrete ones.

[ssues with weather generators are for example underestimated spell lengths
(e.g. Vrac et al., 2007) and how to adjust the parameters for future projections
in a physically realistic and consistent way (Wilby, 1997). The conditional ran-
dom sampling techniques are used in downscaling as components representing the
stochastic variance.
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1.2.3 MOS - Bias correction methods

While it is debateable if bias correction alone is already downscaling, many down-
scaling methods include a bias correction component, either for the predictand vari-
able in case of MOS approaches or for the predictor variables for PP approaches.
Therefore bias correction methods are presented here.

The simplest bias correction approaches correct only the bias of the mean
(e.g. Gutmann et al., 2012), but there are more sophisticated approaches. Quan-
tile mapping (e.g. Amengual et al., 2012; Piazza et al., 2011; Vidal and Wade,
2009; Quintana Segui et al., 2011) considers different intensities individually and
cumulative distribution function transform (CDF-t) (Michelangeli et al., 2009; Pi-
ani et al., 2010; Vrac et al., 2012; Lavaysse et al., 2012) seeks at finding a transfer
function for the whole distribution. XCDF-t (Kallache et al., 2011) takes extremes
into account when fitting the transfer function and is therefore better suited when
studying extremes.

Bias correction and spatial disaggregation (BCSD) (Wood et al., 2004) consists
of two steps: first a CDF transform type bias correction and then an interpolation
to finer scales. BCSD is frequently used in the United States (e.g. Voisin et al.,
2010). A similar method is applied by Friih et al. (2006) in the Alps with the dif-
ference that only the bias in the mean is corrected in the bias correction step and
errors in the variability are accounted for in the disaggregation procedure. Joint
variable spatial downscaling (Zhang and Georgakakos, 2012) maps multiple vari-
able CDF's and uses analogues instead of interpolation in the spatial disaggregation
step along with a technique to expand the range of historical analogues.

Maraun (2013) warns that quantile mapping should not be used to change
scales because this introduces artefacts in the spatial structure of precipitation.
Similarly Vrac et al. (2012) notes that CDF-t is not designed to correct the spatial
correlation of the simulations. A further challenge is to bias correct the rain day
frequency that is scale-dependent as well.

Bias correction methods assume that the (distributional) bias is stationary.
This assumption is not valid where model biases are related to physical processes
for example the parametrisation of melting. Such a bias will always occur around
0° C, but the quantile of 0° C in the temperature distribution changes under global
warming (Formayer et al., 2008).

1.2.4 Weather pattern based approaches

Weather pattern based approaches aim at classifying days into weather patterns,
states or classes and then resample the local variables from the days belonging to
the same weather state as the target day. Weather pattern based approaches and
specifically analogue resampling methods are discussed in a bit more detail below
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since the downscaling method used in this work (presented in chapter 4) belongs
to this group of methods.

Wilby and Wigley (1997) states that weather pattern approaches are appealing,
because they are based on sensible physical linkages between the scales. On the
downside they noted, that the relationships between weather patterns and precip-
itation might not be stable enough, such that the precipitation characteristics of a
specific weather type may vary from year to year. Another drawback could be that
GCMs are not able to resolve the circulation patterns that lead to hydrological
extreme events (Maraun et al., 2010) or have biases concerning the position of the
storm tracks that can impact the detection of weather patterns depending on the
way they are defined. An advantage is that weather pattern techniques allow for
nonlinear relationships in a straightforward way (Maraun et al., 2010).

Weather pattern components are used in hybrid approaches either to describe
deterministic or stochastic variance. In the first case they are used in a first step
to define to which circulation type a day belongs and then using for example
a separate model or different model parameters for each circulation type. In the
second case a resampling from similar past situations (analogues) is used to account
for the stochastic variance.

1.2.4.1 Weather typing schemes

There are different ways to define weather patterns or weather classes. Empirical
orthogonal functions (EOFs) from pressure data (Goodess and Palutikof, 1998),
indices from sea level pressure (SLP) data (Conway et al., 1996; Goodess and Jones,
2002), cluster analysis (Fowler et al., 2005; Gutiérrez et al., 2004; Rust et al., 2010;
Boé et al., 2006; Plaut et al., 2001), classification and regression trees (CART)
analysis (Zorita and von Storch, 1999; Zorita et al., 1995), self organising maps
(Hewitson and Crane, 2006; Ning et al., 2012), correlation clustering (Vrac and
Yiou, 2010) or fuzzy rules (Béardossy et al., 2002) are applied. Philipp et al. (2010)
provides a collection of 17 automated and 5 subjective weather- and circulation
type classifications for Europe.

Vrac and Naveau (2007) integrates extreme value models within a weather typ-
ing approach in order to improve the simulation of extremes that are in general
not well simulated using weather type or analogue approaches. Weather pattern
based approaches reproduce well observed means and variability, but underesti-
mate persistence (Zorita and von Storch, 1999). Weather type approaches can
account for changes in precipitation due to changes in the occurrence of certain
weather types, but have difficulties to account for changes of the precipitation
characteristics inside a given weather type (Boé and Terray, 2008).
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1.2.4.2 Analogue methods

The analogue method can be seen as a limit case of weather typing where each day
defines a weather type (Boé et al., 2006). Benestad (2007) described the analogue
method as a search in a historical archive describing all large scale weather events
in the past together with the local measurements of the quantity of interest. Before
its use in downscaling since the 1990s (e.g. Zorita et al., 1995; Timbal et al., 2003),
the analogue method has been used in forecasting (e.g. Lorenz, 1969; Gutiérrez
et al., 2004; Bannayan and Hoogenboom, 2008a,b; Guilbaud and Obled, 1998b) or
to predict short term climate fluctuations (e.g. Barnett and Preisendorfer, 1978) —
nowadays it would be rather called seasonal forecasting. An example of an analogue
method used in operational precipitation forecasting for the Rhone catchment in
France is OPALE developed at Compagnie Nationale du Rhone (CNR) (Bompart
et al., 2009). Most often analogue methods are employed in a perfect prognosis
setting, but model output statistics (e.g. Turco et al., 2011) and weather generator
applications (e.g. Yiou, 2014) exist as well.

Important choices in the application of the analogue method include the choice
of the distance measure to define similarities (Martin et al., 1997; Matulla et al.,
2008) and the choice of the predictor domains (Gutiérrez et al., 2004; Wetterhall
et al., 2005). Euclidean distance is probably the most common distance measure.
Hamill and Whitaker (2006) found that for a skewed predictor measuring the dis-
tance in terms of ranks rather than absolute values leads to less biased results.
Matulla et al. (2008) tested different distance measures, Euclidean distance, abso-
lute distance, cosine distance and Mahalanobis distance to measure distances in
the EOF space and found that the Euclidean distance performs well in most cases
while the Mahalanobis distance is less advisable. Ribalaygua et al. (2013) found
Euclidean distance to perform better than correlation. Toth (1991) compared sim-
ilarity measures to define the most similar days for an analogue method, however
the purpose was not downscaling but forecasting geopotential fields of the follow-
ing days in this case. Gradients were the best measure for 1 day leadtime, while
for longer leadtimes Euclidean distance was better. This is in line with the better
performance of the Teweles and Wobus score (TWS) that is based on gradients in
a PP setting (Guilbaud and Obled, 1998b).

A drawback of the standard analogue method is that it can not produce precip-
itation amounts that were not observed in the past (Maraun et al., 2010; Benestad,
2007). This makes it not suited for studying extremes, however it is not the only
method that tend to produce too moderate extremes (Fowler et al., 2007). Van den
Dool (1994) states that it is easier to find good analogues closer to the mean, be-
cause the probability density is higher there compared to the extremes. Imbert and
Benestad (2005) suggested an extension of the analogue method to allow extrap-
olation outside the range of the observed values. The linear trend of the analogue
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simulation is subtracted and the linear trend simulated using a linear regression
method is added instead. Benestad (2010) used quantile mapping in addition to
the imposed linear trend to correct the extremes, however the high percentiles and
their trend turned out to be difficult to estimate from the data record.

The analogue method is often used in the form of a k-nearest neighbour ap-
proach (knn) where not the most similar historical situation is selected but it is
randomly chosen between the k most similar situations as proposed by Lall and
Sharma (1996) and Gangopadhyay et al. (2005). Boé et al. (2006) found that
averaging several nearest neighbours doubles the correlation for daily precipita-
tion but the variance becomes greatly underestimated. Buishand and Brandsma
(2001) found a tendency to underestimate the autocorrelation and the variance
when averaging.

The analogue method is generally good at reproducing the observed variance
of precipitation which is in general not the case for pure regression methods (Ben-
estad, 2007). Zorita and von Storch (1999) pointed out that the analogue method
can be used for normally and nonnormally distributed local variables, produces
the right level of variability and preserves the spatial covariance of local variables.

The standard procedure for multisite simulations with the analogue method
is that the same analogues are used for the whole area and thus maintaining
the spatial covariance structure, but this is not always the case. Themefl et al.
(2010) for example uses individual analogue models for each station with separately
selected predictors. To apply the analogue method to larger areas, Hamill and
Whitaker (2006) used a moving spatial window, tiling together local analogues.

Hwang and Graham (2013) combines bias correction and analogues in a MOS
setting and concludes that this method is superior to BCSD in reproducing the
observed spatial correlation and variance and performs equally well for other statis-
tics. This highlights the capacity of analogue methods to reproduce spatial char-
acteristics. Similarly Voisin et al. (2010) uses analogues to calibrate and downscale
medium range ensemble weather forecasts and found that analogue methods im-
prove the reliability of the forecast while BCSD does not. This is at the cost of
lower temporal correlation.

1.2.5 Hybrid methods

In this section some examples are presented that combine at least two of the
techniques described in the previous sections.

Hybrids of weather generators and analogues provide an easy way to multisite
downscaling (Mehrotra and Sharma, 2005). For example Buishand and Brandsma
(2001) proposes a nearest neighbour resampling scheme conditioned on summary
statistics of the weather variables and large scale circulation. Orlowsky et al. (2008,
2010) resample time blocks instead of single events, respecting a trend derived
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using linear regression to improve the temporal consistency of the simulated time
series and this method indeed improves the dry- and wet spell statistics.

The widely used Statistical DownScaling Model (SDSM) (Wilby et al., 2002;
Souvignet and Heinrich, 2011; Wetterhall et al., 2006, 2007; Wilby and Dawson,
2013) is a hybrid of a weather generator and a regression method. SDSM un-
derestimates precipitation and its variance (Souvignet and Heinrich, 2011). Zorita
and von Storch (1999) used a simple version of the analogue method as benchmark
and found that more complicated methods not necessarily outperform the analogue
method. However, Wetterhall et al. (2007, 2006) found that SDSM outperforms
the analogue benchmark method.

Yang et al. (2010) proposed a method that combines three techniques, re-
gression, circulation type classification and stochastic rainfall generation. The
drawback of this method is the high number of parameters to estimate and a
possible lack of data for these estimates especially in the case of less frequent cir-
culation types. Hybrids of weather pattern or analogues and regression methods
following a similar principle are widely used (Boé et al., 2006, 2007, 2009; Cannon,
2007; Hingray and Mezghani, 2007; Vrac et al., 2007; Mezghani and Hingray, 2009;
Fernandez-Ferrero et al., 2009, 2010; Piazza et al., 2011).

1.2.6 General remarks

Common to all statistical downscaling methods is that they assume stationarity
of the predictor-predictand relationships (Schmith, 2008). Fowler et al. (2007)
concludes that in general, temperature can be downscaled with more skill than
precipitation, winter climate can be downscaled with more skill than summer due
to stronger relationships with large-scale circulation, and wetter climates can be
downscaled with more skill than drier climates. Regression methods perform best
in terms of correlation, but analogue methods and weather generators better re-
produce observed distributions (Gutiérrez et al., 2013). In a deterministic setting
most downscaling methods underestimate the spatial variability, while adding un-
correlated noise risks to destroy the spatial structure (Maraun et al., 2010).

1.3 Issues relevant for hydrology

Torres et al. (2008) suggests that downscaling methods should provide probabilistic
output reflecting their uncertainty for a given situation and Krzysztofowicz (1983,
1998) notes that probabilistic forecasts are beneficial in decision making. While
Maraun et al. (2014) states that stochastic methods allow for random sampling
of time series that can be treated as an ensemble of deterministic simulations, it
could be argued that this approach is likely to underestimate the value of prob-
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abilistic simulations and that probabilistic measures are preferable for assessing
probabilistically downscaled fields.

Maraun et al. (2010) notes that in the context of rainfall-runoff modeling there
is evidence that spatial structure is important for small, rapidly responding catch-
ments and for catchments that are larger than the scale of typical precipitation
events. Given the importance of the spatial structure of precipitation, an ideal
downscaling method for hydrological modelling delivers probabilistic results with
realistic spatial patterns. The spatial properties of statistically downscaled precip-
itation are rarely studied. To diagnose if a (downscaling) model simulates precip-
itation fields with a realistic spatial structure, measures for the spatial properties
are needed. One possibility is to use spatial correlation (Voisin et al., 2010; Moron
et al., 2006) or anomaly correlation (Jolliffe et al., 2012, section 6.3.2 pp.98). An-
other possibility is to employ spatial verification methods (Gilleland et al., 2009).
Neither of them have been applied to probabilistically downscaled fields yet.

In addition inter-variable coherence of the downscaled fields is important for
hydrological modelling, because streamflow depends not only on precipitation but
also on other atmospheric variables like temperature and evapotranspiration as well
as vegetation and soil properties. Storage of water in solid state and releases from
this storage through melting depend on temperature and atmospheric humidity.
The evapotranspiration depends on temperature, humidity, wind, radiation and
the vegetation.

Among the downscaling methods that are in principle capable to respond to
these requirements are dynamical downscaling using regional high resolution mod-
els and resampling methods like analogues. Dynamical high resolution modelling
is rather costly, especially if ensemble simulations are run in order to provide prob-
abilistic output and they are often subject to large biases. Resampling methods
can provide probabilistic output in a straightforward way, but are limited by the
observed record and tend to underestimate extremes.

1.4 Objectives

The objectives of this thesis are (1) to extend the stepwise analogue downscal-
ing method for hydrology, SANDHY hereafter, optimised for the Seine and the
Saone catchment by Ben Daoud (2010), to the whole of France and to analyse its
performance on precipitation, (2) to study and improve the spatial coherence of
the downscaled precipitation preserving the local performance and (3) to build a
downscaling tool (software) that can be used in future research projects.

After the presentation of the data and diagnostics used (part I), the ap-
proach pursued is to first build and validate local downscaling relationships over
France(part II), then explore ways to reduce the parameter space maintaining the
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local downscaling skill (part III) and finally to define measures and experiments
for assessing the spatial coherence of downscaled precipitation at the catchment
scale and its hydrological consequences (part IV).

More specifically, the SANDHY method is presented in chapter 4 and the pre-
dictor domains for the geopotential predictor are optimised locally over France in
chapter 5. The the SANDHY method and its local downscaling relationships are
validated on an independent period in chapter 6. Three ways are explored to re-
duce the parameter space maintaining the local downscaling skill: (1) Considering
the relationships found for zones elsewhere in France (Chapter 7), (2) building
groups of zones that are supposed to use the same relationships using cluster al-
gorithms (Chapter 8) and (3) considering a less skewed predictand variable in the
optimisation procedure (Chapter 9). Measures for spatial coherence based on the
spatial verification method SAL are developed and applied to several downscaling
experiments over the Durance and the Rhone catchments (Chapter 10). Finally
the impact of these experiment designs on the performance of streamflow simula-
tions with a distributed hydrological model for the Durance catchment is discussed
(Chapter 11).



2 Data, study area and precipita-
tion characteristics

In this chapter the study region and the datasets for the predictors and the predic-
tands for SANDHY, that aims at downscaling precipitation are introduced. Some
characteristics of the precipitation in the study region are presented below.

2.1 Study area and predictand data set — Safran

The study area, that is the target area of the downscaling, comprises the mainland
of France and Corsica. Figure 2.1 shows an annotated map of France with the
mountain ranges, catchments and regions that are mentioned later in the text.
The predictand dataset is the precipitation from the Safran reanalysis. Safran
is a meteorological analysis system that performs an optimum interpolation of sta-
tion measurements using vertical gradients from a background forecast taken from
the ERA-40 reanalysis until the year 2002 and the operational analysis from the
European Center of Medium-range Weather Forecast (ECMWF) weather forecast
model for the later years (Quintana-Segui et al., 2008; Vidal et al., 2010). The
analysis is performed for 608 climatologically homogeneous zones covering France,
that are shown in Figure 2.2. The size of the zones varies, but is about 1000 km? on
average. The Safran near surface reanalysis starts in August 1958 and is continued
in near-realtime. The data are available as gridded data on an 8km grid, that is
used in part IV. For the development of the downscaling relationships (part II)
zone average time series are used. Vidal et al. (2010) and Quintana-Segui et al.
(2008) found the precipitation analysis to be robust and not biased but with an
average root-mean-square error (RMSE) of 2.4mm day™' . Quintana-Segui et al.
(2008) attributes this to the spatial heterogeneity within the zones. The Safran
analysis assumes that differences inside a zone depend only on elevation while the
occurrence of small storms contributes to the spatial heterogeneity of precipitation
as well. The RMSE is proportional to the precipitation. There are not enough dry
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Figure 2.1: Map of France with the contours of the Rhone catchment between
Pougny and Beaucaire in purple and the Durance catchment at Cadarache in red.

days, too much trace precipitation and underestimated strong precipitation due to
the aggregation on zone level (Quintana-Segui et al., 2008). Safran is more precise
over France than other gridded observation datasets like E-OBS (Haylock et al.,
2008) or the global scale precipitation datasets GPCC or GPCP (Szczypta et al.,
2011). Safran data are available at an hourly time step, but the hourly values of
precipitation are interpolated from a daily analysis. Daily data are used in this
work.

2.2 Predictor data set — ERA40

ERA-40 (Uppala et al., 2005) is a 44-year long (1958 — 2002) global reanalysis
dataset from the ECMWEF. The three dimensional variational data assimilation
method (3DVAR) was used to create the dataset. A characteristic of global re-
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Figure 2.2: Climatologically homogeneous zones.

analyses in general is that the model used is the same for the whole time period
to maximise the temporal consistency. The model used for ERA-40 is the forecast
model that was in use at the ECMWF when the reanalysis project started in the
late 1990s but with a lower horizontal spectral resolution of T159. Here ERA-40
data are used on a 2.5° grid. Ben Daoud (2010) tested ERA-40 data on a 1.25°
grid but didn’t find any improvement of the downscaled precipitation using the
higher resolution predictor dataset.

ERA-40 incorporates many different data sources including weather stations,
radiosoundings, drifting buoys and radiance measurements from satellites. The
changes in the observing system over time, especially the beginning of the satellite
era (1979) and the assimilation of data from infrared sounders in the 1990s, affect
the temporal consistency of the reanalysis but improves the quality. This is the
case for any reanalysis that seeks to incorporate as many data as possible. In the
more recent ERA-Interim reanalysis homogenised radiosonde data and adaptive
bias correction of satellite data is used to mitigate this issue (Dee et al., 2011).
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ERA-40 is however used (1) to ensure consistency with Safran where ERA-40 has
been used as a first guess for computing vertical profiles of near-surface variables,
(2) to ensure consistency with previous development work by Ben Daoud et al.
(2011a) and exclude that differences in the results are due to the use of a different
predictor dataset and (3) to have a long archive that allows for validation with a
rigorous split-sample approach (see also section 2.1.1 in section 5.1).

2.3 Precipitation characteristics

In this section some characteristics of the zone average Safran precipitation are
shown. The graphical representation shows 8-km gridded data, but with identical
values for all grid cells belonging to a given zone.

Figure 2.3 shows the average daily precipitation over the 1 Aug. 1958 — 31
July 2002 common archive period between ERA-40 and Safran. Unsurprisingly the
highest precipitation amounts are found at the windward side of the mountains.
It is quite wet along the Atlantic coast and rather dry along the Mediterranean
coast, the flat areas in the northern part of the country and in the foehn-prone
valleys of the Allier and the Loire in the Massif Central and the Rhine valley in
the Northeast.

Apart from the daily average sums of precipitation it is also interesting to
know if the precipitation is distributed over a large number of days or if it falls on
a few days per year only. Therefore figure 2.4 shows the percentage of dry days
for each zone. A dry day is defined as a day with less than 0.1mm day~! of zone
average precipitation. The zones with a high percentage of dry days are mainly
located in the southeastern part of the country between the Massif Central and
the southern Alps and along the Mediterranean coast. The Mediterranean climate
in the southeastern part of France is characterised by dry summers. The lowest
percentage of dry days are found in Brittany.

High precipitation percentiles are of interest because they are related to the
precipitation distributions studied later in this section and they show what high
daily precipitation amounts that occur a few times per year mean in different
places. The 99th percentile of precipitation at each zone is shown in figure 2.5.
The values of the 99th percentile range from 16mm day ! to nearly 90mm day !
in the Cévennes. In general the 99th percentile of precipitation has high values in
the mountains and the south-eastern part of the country and lower values around
20-30mm day~! elsewhere.

Another way to characterise the precipitation is by its distribution. If extremes
are not of interest, wet day precipitation amounts can be approximated using
gamma distributions (e.g. Yang et al., 2010; Bellone et al., 2000; Hingray and
Mezghani, 2007). Since at this stage the interest is rather to explore the main
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Figure 2.3: Mean precipitation over the 1 Aug. 1958 — 31 July 2002 period.

characteristics of the dataset than finding the best possible fit, this approximation
is considered to be sufficient.

The probability density function of the gamma distribution can be written as

1 1 v
flx; k,0) = %mxk_le_ﬁ (2.1)
for x, k and # > 0. k is the shape parameter, 6 the scale parameter and I' the
Gamma function. If k is a positive integer I'(k) = (k — 1)!.

Gamma distributions are here fit to the wet day precipitation amounts for
the 608 zones using maximum likelihood fitting. Figures 2.6 and 2.7 show the
spatial distribution of the scale and the shape parameters. The scale parameter
is large in the Southeast and at the windward side of the mountain ranges and
shows a very similar spatial pattern as the 99th percentile daily amounts in figure



2.3. PRECIPITATION CHARACTERISTICS 43

2600 -

2400 -
— Dry days [%)]
IS
=, o 70
+ 2200 -
@ 60
.g o
< 50
|
> 40

2000 -

1800 -

1600 -

I I I I I I
0 200 400 600 800 1000 1200

X Lambert [km]

Figure 2.4: Percentage of dry days.

2.5. The shape parameter is small in the Southeast, medium-sized in the Alps,
the Pyrenees and Brittany and large elsewhere. Figure 2.8 shows the observed
frequency distributions of wet day amounts for three selected zones and the fitted
gamma distributions. The three selected zones will be used as case study zones
later on in the chapters 5, 7 and 9. The zone named Saone is located in the
eastern part of the Burgundy region and is an example for a zone where the fitted
gamma distribution has a comparatively small scale- and a large shape parameter.
The second zone Arve is located in the Alps and has medium values of the two
parameters. The last zone Ardéche is located in the Cévennes and has large
scale and small shape parameter. The parameters values for these three zones are
tabulated in table 2.1. The fitted distributions appear to fit well for the Saodne,
quite well for the Arve and less well for the Ardeche.



44 CHAPTER 2. DATA

2600 -
2400 -
prec p99
E‘ [mm/day]
é o
+ 2200 - 70
[}
_g o
50
S
> 30
2000 -
1800 -
1600 -
I I I I I I
0 200 400 600 800 1000 1200

X Lambert [km]

Figure 2.5: 99th percentile of precipitation in the 1 Aug. 1958 — 31 July 2002
period.

zone Sadone Arve Ardeéche
shape  0.80 0.57 0.42
scale 6.07 15.13 19.89

Table 2.1: Scale- and shape parameters of gamma distributions fitted to wet day
precipitation amounts of selected zones.



2.3. PRECIPITATION CHARACTERISTICS

2600 -

2400 -

scale

o
2200 -
20
o

10

Y Lambert [km]

2000 -

1800 -

1600 -

I I I I I I
0 200 400 600 800 1000 1200
X Lambert [km]

45

Figure 2.6: Scale parameter of gamma distributions fitted to wet day amounts.
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Figure 2.8: Observed frequency distribution of wet day amounts at three selected
zones (black) and fitted gamma distributions (red).

2.4 Temporal differences

In chapter 5 predictor domains will be optimised using the last 20 years of the
common archive period between ERA-40 and Safran from August 1982 to July
2002 called late in the following. Then validation will be carried out on the first
20 years of the common dataset from August 1958 to July 1978 called early in
the following. In this section the differences in the precipitation characteristics
between these two periods are presented.

Figure 2.9 that shows the difference between the average precipitation in the
late period and the early period. During the early period there was more precip-
itation in the southern part of the country and less in the northern part. This
is in line with Vidal et al. (2010) who found non-significant positive linear pre-
cipitation trends in the North and negative ones in the South over the 1958-2008
period. Zone 367 in the Massif Central, or more precisely the Sancy Massif, stands
out with a high positive difference, while the zones around show rather small and
mostly negative differences. During most of the early period there was only one
station reporting in this zone, while later on a second station at higher altitude has
been added, such that the mean altitude of the precipitation records in this zone
increased by 150m from 1050m to 1200m. Since in general higher precipitation
amounts are observed at higher altitudes this leads to higher average precipitation
in the late period and to an inhomogeneity in the zone average precipitation.

Figure 2.10 shows the difference in the number of dry days between the late
and the early period. In the northern part of the country there are less dry days
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Figure 2.9: Difference in mean precipitation late minus early.

in the late period than in the early period. Especially Brittany is affected by more
rainy days in the late period. In the Pyrenees and the Massif Central there are
more dry days in the late period than in the early period. In the southeastern
part of the country the difference between the two periods is small.

Figure 2.11 shows the difference between the 99th percentiles of the late and the
early period precipitation. In the northern part of the country most of the zones
have higher values in the [ate period than in the early period. In the southern
part of the country the picture is more patchy. Along the Mediterranean coast and
the southern Cévennes the 99th percentiles are higher in the early period. The
largest absolute difference can be found for a zone at Corsica where the picture is
extremely patchy.

The precipitation characteristics presented in this chapter, notably their spatial
distributions, are compared to the spatial distribution of performance measures in



2.4. TEMPORAL DIFFERENCES

2600 -

2400 -

2200 -

Y Lambert [km]

2000 -

1800 -

1600 -

X Lambert [km]

T T T T T T
0 200 400 600 800 1000 1200

Difference
Dry days [%)]

-5

v

Figure 2.10: Difference in the percentage of dry days late minus early.

49

the chapters 3 and 9. Now that we are familiar with the data we proceed to the

main diagnostics for simulated precipitation used in this study.
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3 Performance diagnostics

To diagnose the performance of SANDHY in simulating precipitation, measures
for the performance are needed. Verification indices developed to diagnose the per-
formance of weather- or streamflow forecasts are used to measures some kind of
error or performance over a given time period. For different kinds of forecasts like
binary events (e.g., rain or no rain, exceedance of a threshold...), multi-category
events, continuous variables or spatial fields, deterministic or probabilistic fore-
casts, different verification methods or scores are available.

For deterministic forecasts of categoric events the most common methods are
based on contingency tables, for example hit rate, false alarm ratio, probability
of detection, critical success index, equitable thread score or the relative operat-
ing characteristic (ROC) (Mason, 1982). Well known measures for determinis-
tic forecasts of continuous variables are bias, mean absolute error (MAE), root
mean squared error (RMSE) and correlation. The Taylor diagram (Taylor, 2001)
summarises correlation, variance ratio and RMSE. For probabilistic forecasts of
categoric events, that is the probability that a given threshold will be exceeded,
the probability score or brier score (Brier, 1950) is commonly used in the case of
binary events and the ranked probability score (RPS) (Epstein, 1969) in the multi-
threshold case. Alternatively the Ignorance score (IGN) and its generalisations for
the multi-threshold (ranked IGN) and continuous case (continuous ranked IGN)
(Todter and Ahrens, 2012) are sometimes used. Jolliffe et al. (2012) provides a
detailed guide for verification in atmospheric science.

In the following selected methods for probabilistic forecasts of continuous vari-
ables and spatial verification methods are presented as these are the ones that are
relevant for our purpose.

o1
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3.1 Continuous Ranked Probability Score (CRPS)

3.1.1 The CRPS as an error measure

The continuous ranked probability score (Brown, 1974) is a score for probabilistic
forecasts of continuous variables. Unlike most of the other scores it does not
require discrete probability categories which makes it particularly useful for this
study where meaningful categories are not at hand. The CRPS measures the area
between a simulated cumulative distribution function (cdf) and an observed one.
Note that for a typical observation without uncertainty assigned the observed cdf
has the form of a unit step function. The CRPS for a given timestep t is thus:

o0 2

CRPS, = / [F(x)—HJCo (2)| " dz (3.1)

obs
with F(x) being the simulated cdf and H,o () the Heaviside function with its step
at the observed value 2% . Matheson and Winkler (1976) proposed a discretised
version of the CRPS for cases where the cdf is defined by discrete values as it is
the case for ensemble predictions and for simulations from SANDHY.
As the quality of a probabilistic forecast can not be judged on a single event,
the CRPS is the time average of the C' RPS;s over a number of time steps N:

N
1
CRPS = ; CRPS, (3.2)

The CRPS of a perfect forecast is 0. The units of the CRPS are the same as the
ones of the predicted variable, in the case of precipitation for example [mm day ! ].
The CRPS can be interpreted as an integral over all possible Brier score values. It
is identical to the mean absolue error (MAE) in the case of a deterministic forecast
and thus has a clear interpretation in the deterministic case. Gneiting and Raftery
(2007) proved that the CRPS is a proper score and a special case of the energy
score, a very general type of scoring rule. A proper score is one that encourages
the forecaster to issue forecasts corresponding to his best judgement, because the
score take its ideal value only for ideal forecasts (Murphy, 1969).

3.1.2 Continuous Ranked Probability Skill Score (CRPSS)

To test the performance of a method compared to the performance of a reference
method, skill scores are commonly used. Skill scores report the performance of a
simulation with respect to a reference simulation thus answering the question if
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and how much the simulation is better than the reference. The skill score of the
CRPS is the continuous ranked probability skill score (CRPSS) and is defined as

CRPS

PSS=1——122_
CRPSS GRS

(3.3)

CRPS,¢; being the CRPS of a reference forecast. The CRPSS is 1 for a perfect
forecast, 0 for a forecast that is equally skillful as the reference forecast and negative
for a forecast less skillful than the reference.

The CRPSS depends on the predictive capability of the reference forecast. One
can choose a simple (low effort) reference forecast like random forecast, persistence
forecast or climatological forecast. The climatological forecast is an estimate of
the marginal distribution of the predictand (Gneiting and Raftery, 2007). Alter-
natively a concurrent method may be used if one wants to stress the improvement
over a particular concurrent method as has been done by Ben Daoud (2010) to
measure the improvement achieved over the reference method from Bontron (2004).
For this study the climatological forecast is used as reference forecast.

Gnueiting and Raftery (2007) claims that skill scores of the type of the CRPSS
are generally improper even if the underlying score is proper, but might be as-
symptotically proper for a high number of independent forecasts.

To rate the utility of a simulation, user specific costs and potential benefits from
the forecasts have to be known. Assumptions about these highly user dependent
numbers are often necessary, since they are frequently not even known by the
user himself. Murphy (1966) proposed a simple cost-loss model based on cost/loss
ratios and Murphy (1977) showed that the brier skill score is related to the utility
of a simulation under the assumption that the cost/loss ratios of the users are
uniformly distributed over the interval [0,1]. Since the CRPS can be interpreted as
an integral over the brier scores for all possible thresholds Epstein (1969), Bontron
(2004) and Laio and Tamea (2007) showed that the CRPSS can be interpreted as
a measure of utility under the assumption of uniformly distributed cost/loss ratios
as well.

3.1.3 CRPS of the climatological reference forecast

A climatological forecast means that on each day the predicted cdf is the cdf defined
by the observations in the observation data base. The CRPS of the climatological
forecast, called C RPS.;,, in the following, is equal to the uncertainty component
in the decomposition of the CRPS by Hersbach (2000) in reliability, resolution and
uncertainty. The decomposition will be explained and used in section 10.4.

Since there might be some sensitivity of the CRPS on the discretisation of the
cdf, the climatological cdf is approximated with the same number of values as
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provided by the simulation. Here, it is considered that if the simulation consists

of N values the climatological cdf is approximated using N values as well.

There are different ways to define which observations to take into account when
defining the climatological cdf. Essentially it comes down to the question of how
to take seasonality into account. £60 days around the target day are chosen as
season for our CRPSS calculations in line with Bontron (2004) and Ben Daoud
(2010) to render the CRPSS values comparable with theirs. Here it is explored
what differences arise in the CRPS,;,,, if a shorter season (£15 days) or the whole

year is used instead.
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Figure 3.1: CRPS.;,, calculated with top left: + 60 days around the target day,
top right: £ 15 days around the target day and bottom: + 182 days around the

target day.
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the target day (from different years), + 15 days or 4 182 days over the late period.
The results are very similar. The difference is not visible here. The spatial pattern
is very similar to what we saw in terms of mean precipitation in figure 2.3. Since we
are not able to distinguish differences from the maps with absolute CRPS values,
difference maps are shown in the following.

+/- 60 days — +/- 15 days +/- 60 days - +/- 182 days
2600 -
crps clim

— difference
£ 2400 - [mm/day]
X
.:. 0.00
5 2200
Q -0.02
&
—12000 -0.04
>_

l -0.06

1800 - Q Q
1600 -

I I I I I I I I I I I I
0 200 400 600 800 1000 120® 200 400 600 800 1000 1200
X Lambert [km]

Figure 3.2: Difference between the C' RPS.;,, calculated for left: + 60 minus + 15
days around the target day, right: 4+ 60 days around the target day minus + 182
days around the target day.

Figure 3.2 shows the difference between the C' RP S, calculated using different
lengths of season. The left map shows the difference between the + 60 and the
=+ 15 days version. Here regional differences can be seen. The highest differences
are found where the highest precipitation and climatological CRPS values can be
found. The longer season (4 60 days) leads to smaller errors of the climatological
forecast in the North and the shorter £ 15 day season is better in the southeastern
part of the country. The right map shows the difference of the climatological
CRPS calculated with 4+ 60 days around the target day and + 182 days around
the target day (corresponding to the whole year). The values obtained with 4+
60 days around the target day are smaller than the ones for the whole year, the
absolute values of the differences correspond to around 1% of the CRPS;,,. The
highest differences are found in Brittany and Corsica.

Overall the £+ 60 days around the target day lead to the smallest CRPS;,, of
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the three tested versions and therefore represents the strongest reference forecast,
that is the one that is the hardest to beat. In the southeastern part of the country

the 4 15 days version would be even more challenging.
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Figure 3.3: Mean daily precipitation [mm day~' ] vs. climatological CRPS [mm
day~! ] calculated over the late period with 60 days around the target day for each
symposium zone. Colours correspond to the percentage of dry days.

In figure 3.1 we saw that the spatial pattern of the CRPS_;,, is similar to the
one of average precipitation. Figure 3.3 shows a scatter plot between these two
variables and there is indeed a strong linear relationship between the mean daily
precipitation and the climatological CRPS. In regions with large mean precipita-
tion amounts the climatological CRPS is higher then for the others. Where the
climatological CRPS is high there is more “room for improvement” which in gen-
eral leads to higher CRPSS. Furthermore figure 3.3 shows that for zones with a
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high percentage of dry days the climatological CRPS is higher than for zones with
a low percentage of dry days. In particular for low precipitation amounts the dots
representing zones with a large number of dry days cluster around a different line
than the ones with a smaller number of dry days. The zones with a high percent-
age of dry days can be found in the Southeast of the country (see figure 2.4) and
have a Mediterranean climate.

3.2 Rank histograms

The rank histogram or Talagrand diagram (Talagrand et al., 1997) tests the reli-
ability of an ensemble-type forecast. It counts where the observation ranks with
respect to the ensemble members. For a perfectly reliable ensemble each of the
m+1 ranks, m being the number of ensemble members, has the same frequency
of occurrence and thus the resulting histogram is flat. Biased forecasts lead to
overpopulation of either low ranks for a high bias or high ranks for a low bias.
Underdispersive ensembles, that is forecasts with too low spread, lead to over-
population of the extreme ranks while overdispersive ones lead to peaked rank
histograms. In the case of precipitation, ties often occur for the ranks of zero pre-
cipitation. Hamill and Colucci (1998) uses small random perturbations of the zero
precipitation forecasts and observation to determine the ranks. This is necessary
to have equal probability of the observation falling in each of the tied ranks. This
correction is implemented in the R package ensembleBMA (Fraley et al., 2013) that
will be used for obtaining the rank histograms in chapter 10.

3.3 Spatial verification methods

Precipitation behaves quite differently on different spatial and temporal scales and
the smaller the scales the more complicated it is to predict. Numerical models typ-
ically parametrise subgridscale processes, among them convective processes that
are important for local scale precipitation. With grid scales of a few kilometers
and non-hydrostatic models with more explicit treatment of deep convection that
became available during the last decade it became possible to explicitly simulate
storms (Nuissier et al., 2008). These more realistic precipitation fields produced
by the new generation of forecast models presented a challenge for verification, be-
cause they are less smooth than before and a gridpointwise verification thus leads
to poorer scores for small displacement errors due to the double penalty problem.
To make results from models with different resolutions more comparable, a num-
ber of spatial verification techniques have been developed. Gilleland et al. (2009)
performed a comparison of spatial verification techniques using synthetic and real
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cases to evaluate which kind of errors are detected by the different methods. Most
of the tested methods are for example sensitive to displacement errors but not every
method actually quantifies them. There are not so many methods that account for
structure errors. Apart from intensity errors that nearly all methods including tra-
ditional ones can measure, displacement- and structure errors in precipitation are
relevant for hydrological modelling. In chapter 10 a spatial verification technique
will be used to assess displacement and structure errors in downscaled precipita-
tion data. In the following an overview of spatial verification methods is given,
looking for methods that (1) can be applied to downscaled precipitation, (2) can
be adapted for probabilistic simulations and (3) quantify types of errors that are
of interest for hydrological modelling.

3.3.1 Scale decomposition, neighbourhood and fuzzy meth-
ods

Scale decomposition methods aim at separating different spatial scales of the fore-
cast and its errors and thus determine the skillful scales of the forecast. Examples
are the intensity-scale verification approach (Casati et al., 2004), wavelet decom-
position (Briggs and Levine, 1997) and discrete cosine transform (Denis et al.,
2002).

Neighbourhood or fuzzy methods allow for some uncertainty of the forecast in
space and time by evaluating the forecasts within a spatial (or temporal) window
around the observation. Similar to scale decomposition methods a skillful scale
can be determined by using several window sizes. Forecasts for grid points inside
the window may be interpreted as a probabilistic forecast for an observation point.
In contrast to scale decomposition methods neighbourhood methods successively
smooth the fields. Examples for neighbourhood or fuzzy methods are multi-scale
statistical organization (Zepeda-Arce et al., 2000) and fraction skill score (Roberts
and Lean, 2008; Duc et al., 2011). An overview of fuzzy methods can be found in
Ebert (2008).

Scale decomposition methods and neighbourhood methods are powerful in de-
termining skillful scales for example, but they do not treat displacement and struc-
ture errors explicitly. In a downscaling study where we already know the scale at
which we want to assess the skill and the spatial features of the downscaled fields,
these methods will not tell us what we want to know.

3.3.2 Object based methods

The second group of spatial verification methods are object based methods. Com-
mon to these methods is that precipitation objects are defined in the observed- and
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the simulated precipitation fields typically using a threshold, and then properties
of these objects are compared. Some, but not all methods try to match objects,
that is they explicitly try to find corresponding objects in the observation and the
simulation. This is definitly useful for verifying high resolution numerical weather
predictions but may complicate the adaptation to probabilistic simulations.

The oldest object based method is the continous rain areas (CRA) method
(Ebert and McBride, 2000). CRA decomposes the mean squared error (MSE) into
a displacement, a volume and a pattern error while the pattern error is the residual
of the other two. The method is based on the total MSE over the verification do-
main, that is the area average of the MSE values at each grid point. CRA could be
adapted for probabilistic forecasts by replacing the MSE with a probabilistic score,
for example the CRPS or the Brier score. A drawback of CRA in the downscaling
context is the requirement of matching individual precipitation objects.

MODE (Davis et al., 2006, 2009) describes intensity, area, centroid, axis angle,
aspect ratio and curvature of precipitation objects. With MODE one can chose to
match objects or to compare the climatologies of their attributes. The calculation
of the attributes could be adapted for probabilistic forecasts. The large number of
attributes that can — but not have to — be calculated and that are combined in a to-
tal interest value makes the method very flexible. However, the final score strongly
depends on the weighting of the components which complicates its interpretation.

Morphing methods measure the modification that are needed to match the
observation with the forecast or the forecast with the observation. Examples are
the procrust shape analysis method (Micheas et al., 2007), and the optical flow
method used for the displacement and amplitude score DAS (Keil and Craig, 2007,
2009). Morphing methods seem tricky to adapt for probabilistic simulations.

3.3.3 Structure, Amplitude, Location (SAL)

SAL is an object based spatial verification technique and will be described in more
detail because it is used in this study and adapted for probabilistic simulations in
chapter 10.

Wernli et al. (2008, 2009) introduced SAL (Structure, Amplitude, Location)
that is designed to evaluate these three properties of the precipitation forecast over
a given domain, for example a specific catchment. SAL is implemented in the R
package spatialVx (Gilleland, 2013). SAL has been used since in high resolution
numerical weather forecast model development (e.g. Termonia et al., 2011; Haiden
et al., 2011; Zappa et al., 2010).
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3.3.3.1 The SAL components

The amplitude component is the normalised difference of the domain averaged
precipitation values:

—

A= e Hobs
O.5[Rfc + Robs]

(3.4)

where R denotes the precipitation value and R the spatial average of precipitation
over the verification domain. A ranges from -2 to +2, taking negative values for too
little precipitation in the forecast and positive values for too much precipitation
in the forecast. The perfect forecast has an amplitude error of 0.

S=0A=0667L=0

obs fc

16

12 preci

Figure 3.4: Synthetic example of a pure amplitude error. Left: observation, right:
simulation.

Figure 3.4 shows a synthetic example of a pure amplitude error. The precip-
itation values in the forecast (fc) (right hand side) are twice as high as the ones
observed (obs) (left hand side). This leads to a positive amplitude error of 0.667
and no error in the structure and location components.

For the S and the L. components precipitation objects have to be defined in the
domain. Objects are defined as areas where a given threshold is exceeded. Wernli
et al. (2009) defined this threshold as:

1
f= BR% (3.5)
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R being the 95th percentile value of all nonzero rainfall in the domain. With this
threshold it is attempted to approximate what a human forecaster would define
as precipitation object. A limitation of the SAL method is that S and L can be
calculated only if there is at least 1 object in the observation and in the simulated

field.
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Figure 3.5: Synthetic example of a pure location error.

The location component L consists of two parts: L = L; + Lo. L; is the
normalised distance between the centers of mass of obs and fc.
@ (fe) = T (obs)]

d

Ly (3.6)
where 7 is the location vector of the center of mass of the objects and d is the
largest distance between two boundary points of the domain. L, measures the
weighted average distance of the precipitation objects to the center of mass and
gives the difference of this distance between observation and forecast. Lo can only
differ from 0 if there are at least two precipitation objects in one of the fields (obs
or fe).

3.7
- (3.7
where 1 is the weigthed average distance of the precipitation objects to the center
of mass. The perfect value for L, and L, is zero, the maximum value is 1 for each of
the components adding up to a maximum of 2 for the entire location component L.

Ly =2 [Ir(fc) —~ T(obs)q
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In figure 3.5 the forecasted precipitation object is shifted compared to the observed
one. This leads to a location error, more precisely an error of type L;. The other
two components are zero.
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Figure 3.6: Synthetic example of a pure structure error.

The structure component S compares the volume of normalised precipitation
objects. It contains information about the size and the shape of precipitation
objects. S is the normalised difference between the mean scaled volumes of the
precipitation objects in the forecast and the observation:

V(fe) — V(obs)

S = 0BV (fo) + V (obs)] (3.8)
where
M
> RV,
V= (3.9)
> R
n=1
and R
— Y 1
V., > T (3.10)

where n is an individual precipitation object, R, its precipitation, V,, its scaled
volume and M the total number of objects. S ranges between -2 and 2 where too
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small or too peaked objects in the forecast lead to negative structure errors and
too large or too flat objects to positive structure error. Forecasts with a perfect
structure have a structure error of 0. In figure 3.6 the forecasted object is less
peaked than the observed one, thus leading to a posititive structure error. The
other two components are zero in this example.

S=-0497A=0L=0.711

obs fc

16

124 precip
3

8 -
. . 1
0

Figure 3.7: Synthetic example with two small objects instead of one larger object
observed.

Figure 3.7 shows a synthetic example of a combined structure and location
error. The forecast shows two smaller objects compared to one larger object ob-
served. This leads to a negative structure error of -0.497 and even if one of the two
forecasted objects being located very close to the observed one there is a location
error of 0.711 stemming from a L; and a Ly error. The amplitude error A is 0
because the domain average precipitation is identical.

3.3.3.2 Limitations of SAL

SAL is insensitive to rotation errors as shown in figure 3.8. All SAL components are
0 in the case of a simulated precipitation object that is rotated with respect to the
observed object. Furthermore SAL does not assess missed events and false alarms,
they have to be considered separately when comparing model performances.
Concerning the relevance of the SAL for hydrological modelling which is the
purpose of the precipitation downscaling conducted in this study, Wernli et al.
(2008) notes that errors in the A component describe the overall bias of the precip-
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Figure 3.8: Synthetic example with a rotated precipitation object.

itation input and therefore can result in runoff biases. The L. component describes
how accurately the precipitation is distributed over subcatchments, so errors in
the L component are supposed to lead to random errors in the runoff simulation.
Errors in the spatial structure of precipitation as expressed through the S compo-
nent are supposed to affect the repartition between surface runoff and infiltration
and therefore affect the soil water balance. This together with the explicit cal-
culation of structure and location errors makes SAL interesting in the context of
downscaling for hydrological modelling.

3.3.3.3 SAL diagram

Wernli et al. (2008) proposes a SAL diagram for a climatological analysis and
comparison of different models. For every wet day that is not a missed event,
a point is drawn in the SAL diagram where the S component is mapped on the
x-axis, the A component on the y-axis and the L component is represented by the
colour of the dots. So a good model will have many light colored points near the
center of the diagram. An example of a SAL diagram is shown in figure 3.9. A
potential weakness of this diagram is that it does not distinguish between very light
precipitation events and intense precipitation events. For very light precipitation
events points are likely to appear near the upper right corner of the diagram,
in the case somewhat more precipitation has been forecasted. Due to the small
observed value the relative difference becomes large and the forecasted objects are
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Figure 3.9: SAL diagram example

larger leading to large S components. Cases where light precipitation events are
underestimated typically don’t appear on the diagram because this often means
that no rain has been forecasted and no dot is drawn on the diagram. Points in
the lower left corner are typically events where an important precipitation event is
underestimated. This means that “good” models don’t produce SAL diagrams that
appear symetric around the center point while random forecasts and persistence
forecasts do, as shown in Wernli et al. (2008). Wernli et al. (2008) noted further
that it seems intrinsic to the SAL method that points tend to appear in the first
and third quadrants of the SAL diagram, since it is difficult to overestimate the
precipitation amount with too small objects and underestimate it with too large
ones.

To compare models Wernli et al. (2008) suggested to calculate the radius r of
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a sphere in the three dimensional SAL space that contains a fixed percentage of

best forecasts:
r=vS?+ A2+ L? (3.11)

3.4 Performance criteria for streamflow

Two widely used citeria are employed to assess the performance of streamflow
simulations in Chapter 11.

Probabilistic Nash

A probabilistic version of the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970)
has been proposed by Bulygina et al. (2009). It is defined as:

S Varlg] - (Bl&)] — ¢0)?
Nash”® =1 - =— (3.12)
t:ZO(E[CL?J —¢P)?

where ¢ is the observed streamflow at time t, & the modelled streamflow at time
t, T the number of timesteps, F[e] the expectation and Var|e] the variance of the
modelled streamflow ensemble.

Kling-Gupta Efficiency (KGE)

The Kling-Gupta Efficiency (Gupta et al., 2009) with corrected standard devi-
ation ratio (Kling et al., 2012) is used. It is defined as:

KGE=1—/(r—1)24(y =12+ (8 — 1) (3.13)

Where 1 is the correlation coefficient between the simulation and the reference,
is the bias corrected standard deviation ratio

sim

’y - oobs (314)
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where p is the mean and o the standard deviation, and 3 the ratio of the means.
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Critically, the components of the KGE, 3, v and r can be used separately to
diagnose different model behaviours.

With the diagnostic tools discussed in this chapter at hand we start downscaling
over France in the next part.



Part 11

Downscaling over France
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4 Stepwise Analogue Downscaling
method for Hydrology (SANDHY)

In this chapter the downscaling method used throughout this work, SANDHY,
is presented. First we will have a look at the development history of SANDHY,
then the chosen predictors and possible treatment of predictors are discussed and
finally the implementation and the technical details are presented.

4.1 History

Analogue methods were originally developed for short term weather forecasting and
so was SANDHY. Guilbaud and Obled (1998a,b) described an analogue method for
daily quantitative precipitation forecast and tested principal components from the
gridded 700 hPa geopotential field, raw radiosonde data and gridded radiosonde
data at two pressure levels as predictors. Euclidean distance is used as similarity
criterion in the first two cases and the Teweles and Wobus shape criteria (TWS)
(Teweles and Wobus, 1954), which measures the similarities between the zonal-
and the meridional gradients, in the third case. It was found that gridded data
with the TWS criterion perform best. Temperature and humidity fields did not
lead to improvements at this stage but later Gibergans-Baguena and Llasat (2007)
found improvements adding predictors related to thermodynamics.

Obled et al. (2002) tested different numbers of analogues retained and found
a flat optimum around the value of 50. Bontron (2004) and Ben Daoud (2010)
studied how many analogue dates should be retained in the end as well and found
that 25-35 analogues lead to the best results. For low precipitation values a larger
number of analogues leads to better defined distributions but for high precipita-
tion events taking less analogue dates should be preferred, because for more rare
events not enough good analogues are available (Hamill and Whitaker, 2006). Fur-
thermore Obled et al. (2002) noted that a single predictor domain for all French
catchments is probably not optimal and some splitting should be considered.
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Bontron et al. (2002) introduced the use of reanalysis data (NCEP/NCAR
reanalysis (Kalnay et al., 1996)) instead of interpolated radiosonde data. This

version has since been used in various studies (e.g. Auffray et al., 2011; Obled
et al., 2009).

Bontron (2004) and Bontron and Obled (2005) used geopotential heights at
two pressure levels, 1000 hPa and 500 hPa, and introduced an additional humid-
ity predictor. This is in line with Martin et al. (1997) who found humidity and
variables related to the general circulation dynamics to perform best as predictors.
Fowler et al. (2007) adds that circulation predictors alone are unlikely to be suffi-
cient, because they fail to capture important processes related to thermodynamics
and moisture content and recommends geopotential heights and specific humidity
as predictors. The version from Bontron and Obled (2005) is used for example in
Horton et al. (2012); Marty et al. (2012, 2013); Chardon et al. (2014).

Ben Daoud et al. (2009a,b) compared the use of ERA-40 and NCEP/NCAR
reanalysis data in the analogue downscaling and found slightly better results with
ERA-40.

Ben Daoud (2010) and Ben Daoud et al. (2011a,b) replaced the restriction of
the analogue search to the current four month moving season with a selection on
temperature. The four month season is a rather large window compared to for
example Martin et al. (1997) who used only one month, but has the advantage
of providing a larger pool of potential analogues. In addition vertical velocity is
added as an additional predictor that leads to lower false alarm rates for the first

forecast days. This method with its four predictor variables is used in this work
and is called SANDHY since 2013.

SANDHY performs a four step analogue selection using temperature, geopo-
tential heights, vertical velocity and humidity as predictor variables to identify
analogue dates in the archive as illustrated in Figure 4.1. The predictor variables,
levels, times and similarity criterion for each step are as identified by Ben Daoud
(2010) for the Seine and Sadne river basins and are summarised in Table 4.1. The
precipitation value for day D corresponds to the precipitation accumulated be-
tween 06:00 UTC day D and 06:00 UTC day D+1. The first step is a selection
on temperature at 925 hPa at 12:00 UTC day D+1 and 600 hPa at 12:00 day D.
The similarity criterion is the Euclidean distance with equal weights for the two
pressure levels.

The second step is a selection on geopotential at 1000 hPa at 12:00 UTC day
D and 500 hPa at 00:00 UTC day D+1. The similarity criterion used is the TWS.
Again equal weights are given for the two pressure levels. The same predictor
domain is used for the two pressure levels and is optimised in Chapter 5.

The third step is a selection on vertical velocity at 850 hPa at 06:00, 12:00 and
18:00 day D and 00:00 day D+1. The similarity criterion is the Euclidean distance
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Figure 4.1: Analogue selection steps.

and equal weights are given to the different times.

The fourth step is a selection on humidity, more precisely the product of the
total column water (TCW) and relative humidity at 850 hPa (RH) at 12:00 day D
and 00:00 day D+1. The similarity criterion is the Euclidean distance.

Identical combinations of variables, pressure levels and hours in steps 2 and
4 are already used in Bontron and Obled (2005) for an application at various
locations in south-eastern France.

4.2 Predictors and Predictands

Predictors should be informative, that is having predictive power, physically mean-
ingful, reasonably well simulated by the climate models and capture the large scale
climate change signal and climatic variability on a range of timescales (Maraun
et al., 2010; Fowler et al., 2007; Schoof, 2013). The requirement that predictor
variables should be well simulated by the GCMs is especially important for per-
fect prognosis (PP) approaches because well simulated predictors is one of their
assumptions. Common to most, if not all, downscaling methods is the assumption
that the predictor-predictand relationship is stationary (Zorita and von Storch,
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Predictor Pressure level [hPa] and Time Similarity
[UTC] citerion
Temperature 925 at 12:00 D+1, 600 at 12:00 D E.d.
Geopotential 1000 at 12:00 D, 500 at 00:00 D+1 TWS
Vertical velocity 850 at 06:00, 12:00, 18:00 D and 00:00 E.d.
D+1
Humidity 850 at 12:00 D and 00:00 D+1 E.d.
(TCW xrh)

Table 4.1: Predictors and their corresponding pressure levels, times and similarity
criterion for each of the four steps of SANDHY. E.d.: Euclidean distance, TWS:
The Teweles and Wobus shape criteria (Teweles and Wobus, 1954) (Radanovics
et al., 2013a)

1999), which is not guaranteed but more likely for physically meaningful predic-
tors (Ribalaygua et al., 2013). Fowler et al. (2007) notes that the choice of the
predictor variables for precipitation is as important as the choice of the downscal-
ing method.

4.2.1 Predictor selection

The choice of the predictor variables should therefore be given high consideration
(Fowler et al., 2007). Wilby and Wigley (2000) examined predictors and predictor
domains for precipitation downscaling analysing correlations and concluded that
the choice of the predictor and the predictor domain are critical factors affecting
the realism and stability of downscaled precipitation scenarios. Bontron (2004)
and Ferndndez-Ferrero et al. (2009) found that taking dynamical predictors over
a wide region around the studied area but thermal and moisture variables only in
a small neighbourhood gives the best result.

The most common methods for selecting predictor variables are correlation
analysis (e.g. Frost et al., 2011), expert judgement or a combination of both (e.g.
Khan et al., 2006). Ribalaygua et al. (2013) recommends to select the predic-
tors based on theoretical considerations rather than emprirical analysis to avoid
non-physical relationships that may not be stationary. Khan et al. (2006) use a
sensitivity analysis to select the predictors for an ANN downscaling model. A
less common selection method are relevance maps (e.g. Bontron, 2004), that are
described in Section 5.1.
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4.2.2 Predictors of the SANDHY method

As we have seen in section 4.1, SANDHY predictors are the result of a long devel-
opment history. The predictor variables and their particular sequence have been
selected in Ben Daoud (2010) and Bontron (2004) who tested many different vari-
ables, different similarity measures and predictor domains sizes. The following
paragraphs highlight some reasons for using temperature, geopotential, vertical
velocity and humidity as predictor variables as well as alternative possible predic-
tors.

Using a temperature predictor rather than a restriction to seasons has the ad-
vantage that a situation that is extreme in one season may be rather common
in another season and therefore it is possible to find better analogues in such
situations. Furthermore, if we think of applications in a climate change context
predictors representing the climate change signal are needed (Schoof, 2013). A
method that uses a temperature predictor may account for a shift in seasons (ex-
cept for extreme seasons) which is not possible using fixed seasons (Ribalaygua
et al., 2013). The drawback of not using seasons is that it can not be distin-
guished between spring and autumn precipitation events that occur at the same
air temperature but do not at all lead to similar amounts of precipitation in certain
regions. Large climatological differences between spring and autumn precipitation
are due to differences in sea-surface temperature that play a key role for moisture
supply in these regions. An alternative would be to use sea surface temperature
as an additional predictor.

Circulation related predictors are commonly used in statistical downscaling of
precipitation but various ones may be used. Mean sea level pressure (mslp) (e.g.
Wetterhall et al., 2005; Timbal, 2004), geopotential heights, geostrophic wind and
vorticity are the most common ones. Ribalaygua et al. (2013) recommends to
use upper air fields rather than boundary layer variables and point values arguing
that they are more reliably simulated by GCMs. Lavers et al. (2013) argues that
mslp is related to the vertical velocity in the mid-troposphere and therefore related
to cyclonic development and precipitation and should therefore be preferred. In
SANDHY geopotential height fields are used, but with a similarity criterion that
is sensitive to gradients of these fields. The gradients of the geopotential fields are
related to the geostrophic wind (compare Section 5.3).

Though closely related to precipitation generation, vertical velocity is not a
very common predictor in precipitation downscaling. Perhaps because it is not
as reliably simulated by GCMs as geopotential fields for example. Nevertheless
it proved to be useful in a forecasting context (Ben Daoud et al., 2011a) and is
therefore included in SANDHY.

It is common sense that circulation and temperature predictors alone are not
enough to capture future precipitation changes and that a humidity predictor
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should be included (Wilby and Wigley, 1997; Nicholas and Battisti, 2012). How-
ever, there is some debate about which humidity predictor this should be. Some
argue that relative humidity is not suited, because it does not carry the climate
change signal and specific humidity should be used, while others say that specific
humidity is likely to exaggerate the climate signal due to the non-linear relation
to temperature in the clausius-clapeyron equation and relative humidity should be
used (Timbal et al., 2008; Ning et al., 2012). It can be argued that if a temper-
ature predictor is already present, the humidity predictor does not need to carry
a climate change signal. Relative humidity better describes the occurrence of pre-
cipitation, while amounts are more related to specific humidity (Yang et al., 2010).
Some go even further, saying the moisture flux or moisture flux convergence should
be used as predictor (Schoof, 2013; Teutschbein et al., 2011). Yang et al. (2010) for
example uses specific humidity and moisture flux. Hamill and Whitaker (2006);
Timbal (2004) use column precipitable water for downscaling with analogues. In
SANDHY the product of relative humidity at 850 hPa and the total column water
is used, which has been found to be the best performing humidity variable by
Bontron (2004) and combines a relative and an absolute measure of humidity.

The chosen predictor variables are similar to the ones a human forecaster tends
to look at to forecast non-convective precipitation in the mid-latitudes. The pre-
dictor variables are therefore considered to be quite robust for the mid-latitudes
and the winter season and less adapted for the summer season and tropical and
sub-tropical climates (Vidal and Radanovics, 2014).

4.2.3 Treatment of Predictor data

In SANDHY the predictor fields are taken as they are, but this is not always the
case in statistical downscaling. Some use principal component analysis (PCA) of
single predictors, for atmospheric fields usually termed empirical orthogonal func-
tions (EOF) (e.g. Zorita and von Storch, 1999; Timbal and McAvaney, 2001; Trigo
and Palutikof, 2001; Benestad, 2004; Matulla et al., 2008; Themefll et al., 2010;
Nicholas and Battisti, 2012; Schmith, 2008; Friederichs and Hense, 2007), or all
predictor variables together (e.g. Gangopadhyay et al., 2005; Rust et al., 2010) to
reduce the number of dimensions and/or potential redundancy between predictor
variables. Timbal and McAvaney (2001) found principal components to be useful
when large predictor domains are used, but for smaller predictor domains raw fields
lead to better results. Van den Dool (1994) argued that the restriction to smaller
spatial domains or a few principal components allow to find reasonably similar
analogues within a historical record of limited length. Ribalaygua et al. (2013)
advised against the use of principal components in order to make use of the full
range of data variability. Cannon (2007) criticises that principal components are
calculated without reference to the predictands. Fernandez and Séenz (2003) uses
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canonical correlation analysis (CCA) to reduce the dimensionality of the predictor
space.

Sometimes predictors are standardised (e.g. Martin et al., 1997; Teng et al.,
2012) in order to give the same weight to predictor variables with different mag-
nitudes and variations. For example Carreau and Vrac (2011) performs a PCA
on all predictor variables together and then standardises the retained principal
components. Gutiérrez et al. (2004) does it the other way round: the predictor
variables are standardised prior to the PCA.

Biases of the GCM with respect to the reanalysis the PP downscaling relation-
ships have been built on are an issue when GCMs are downscaled. One option is to
bias-correct the GCM simulated predictors prior to downscaling (e.g. Timbal and
McAvaney, 2001; Chiew et al., 2010; Frost et al., 2011). Martin et al. (1997) found
that bias correcting the predictor dataset prior to downscaling with the analogue
method improved the results. A second issue is that GCM fields are available on
different grids than the reanalysis and thus are often regridded (e.g. Frost et al.,
2011).

4.3 Implementation

This section concerns the third objective of this thesis which is to build a downscal-
ing software that can be used in future research projects. The aim was to integrate
functionalities for predictor domain optimisation, simulation and validation in a
single program.

The SANDHY software is written in Fortran 2003 and the main loops are
parallelised using openMP. Input and output files are in NetCDF format except
the configuration file which is a namelist file. SANDHY works for a spatial set of
predictand series.

The main implemented tasks are:

e Optimisation of geopotential predictor domains with the multiple growing
rectangular domains algorithm and the CRPS as objective function. The
number of domains can be selected by the user. Results are presented in
Chapter 5.

e Calculation of relevance maps (Chapter 5).
e Analogue downscaling simulation.
e Validation calculating CRPS and Bias (Chapter 6).

e Aggregation of predictand areas that can use the same predictor domains
with three different methods that will be detailed in Chapter 8.



76 CHAPTER 4. SANDHY

e Calculation of the CRPS;,, for given observations.

e (Calculation of the percentage of common analogue dates between zones or
stations.

The configuration file allows to select which tasks should be performed and to
adjust some parameters related to these tasks. Information on the spatial- and
temporal dimensions of the predictor- and predictand input files, their names and
paths to read and write files have to be specified as well. The time periods to be
actually used as archive or for simulation can be selected.

To extend the SANDHY method to the entire mainland of France, predictor
domains are optimised in the next chapter for each of the 608 climatologically
homogeneous target zones in the Safran dataset (Vidal et al., 2010).



5 Local optimisation of spatial pre-
dictor domains

In this chapter we will have a look at the predictor domains and their spatial op-
timisation, especially the ones for the geopotential shape predictor. We want to
optimise them locally, that is for a high number of locations. Which algorithm is
fast enough to allow an optimisation for over 600 locations in reasonable compu-
tation time? And how can equifinality, that is the fact that different parameter
combinations may lead to very similar performance — which is likely to occur if
the performance is summarised over a long period — be taken into account? The
first section of this chapter consists of an article published in Hydrology and Earth
System Sciences (Radanovics et al., 2013a). As a reader of this thesis you may
want to skip the sections 1.1, 2.1.1, 2.2 and 2.3 of the article since they mainly con-
tain information already presented in the previous chapters. The predictor domain
optimisation was subject of a presentation at the EGU General Assembly 2012 in
Vienna (Radanovics et al., 2012) and a poster at the next generation climate data
workshop 2013 at National Center for Atmospheric Research (NCAR) in Boulder,
Colorado (Radanovics et al., 2013d). Equifinality is explored in more detail in the
second section and possible reasons for the shape of the relevance maps in section
one are explored in the third section.

5.1 Optimising predictor domains for spatially
coherent precipitation downscaling (Article

HESS)

Radanovics, S., Vidal, J.-P., Sauquet, E., Ben Daoud, A., and Bontron, G. (2013).
Optimising predictor domains for spatially coherent precipitation downscaling.
Hydrology and Earth System Sciences, 17(10):4189-4208.

7



Hydrol. EarthSyst.Sci., 17,418-4208 2013
www.hydrol-earth-syst-sci.n&t7/4189/2013/
doi:10.5194/hess-17-4189-2013

© Author(s)2013.CC Attribution 3.0 License.

Hydrology and
Earth System
Sciences

$$900y uadQ

Optimising predictor domainsfor spatially coherent precipitation

downscaling

S.Radanovics!, J.-P. Vidall, E. Sauquet, A. Ben Daoud?, and G. Bontron?

Lirstea,UR HHLY, 5 ruedeLa Doua,69100Villeurbanne France
2CompagniéNationaledu Rhére (CNR), 2 rue André Bonin, 69316Lyon Cede 04, France

Correspondenct: S. Radanwics (sabine.radaovics@irstea.fr)

Receved: 18 March2013 —Publishedin Hydrol. EarthSyst.Sci. Discuss.2 April 2013
Revised:29 August2013 —Accepted:9 SeptembeR013 —Published28 October2013

Abstract. Statisticaldownscalingis widely usedto over

come the scale gap between predictors from numerical
weathemredidion modelsor global circulationmodelsand
predictanddik e local precipitdion, requiredfor examplefor

medium-ternoperationaforecast®or climatechangempact
studies.The predictorsare corsideredover a given spatial
domainwhich is rarely optimisedwith respecto the tamget
predictandocation.In this study anextendedversionof the
growing rectanguladomainalgorithmis proposedo provide

anensemblef nearoptimumpredictordomainsfor a statis-
tical downscalingmethod.This algorithmis appliedto find

five-memberensemblef nearoptimum geopotentialpre-
dictor domainsfor ananaloguedownscalingmethodfor 608
individual tamget zonescovering France.Resultsfirst shov

that very similar downscaling performancesasedon the
continuousankedprobabilityscore(CRPS)canbeachieved
by different predictordomainsfor ary specifictarget zone,
demonstratinghe needfor consideringalternative domains
in this context of high equifinality A secondresultis the
largediversityof optimisedpredictordomainsoverthecoun-
try that questionghe commonlymadehypothesisof a com-
monpredictordomainfor largeareasThedomaincentresare
mainly distributedfollowing the geographicalocationof the
targetlocation,butthereareapparentifferencedbetweerthe
windwardandtheleesideof mountainridges.Moreover, do-
mainsfor targetzonedocatedin southeasterRrancearecen-
tredmoreeastandsouththanthe onesfor targetlocationson

thesameongitude.The size of the optimiseddomainstends
to belargerin the southeasterpartof the country while do-
mainswith avery smallmeridionalextentcanbefoundin an
east—wedbard around4d 7° N. Sensitvity experimentdinally

shaw that resultsare ratherinsensitive to the startingpoint

of the optimisationalgorithmexceptfor zonedocatedin the
transitionareanorth of this east—wesband.Resultsalsoap-
peargenerallyrobustwith respecto the archive lengthcon-
sideredfor the analoguemethod,exceptfor zoneswith high
interannuabariability like in the Cévennesarea.This study
pavesthewayfor definingregionswith honmogeneougeopo-
tential predictordomainsfor precipitationdownscalingover
Franceandthereforedefactoensuringhe spatialcoherence
requiredfor hydrologicalapplications.

1 Intr oduction

For both, climate changempact studiesandoperationahy-
drologicalforecastsprecipitationinformationonthe scaleof
small subcatchmentss needed Numericalweatherpredic-
tion (NWP) modelsandgenerakirculationmodels(GCMs)
provide relevant information about the atmospheridarge-
scalecirculation but have too coarsea resoluion to be di-
rectly usedin impact modds like hydrological modelsor
for precipitation forecastson the sale of small subcatch-
ments.A downscalingstepis thereforerequired,and this
canbe donedynamicallyusingregional climatemodelsand
limited-areamodelsor using statistcal methodsthat make
useof statisticalrelationshps betweenarge-scalgredictors
andlocal-scalepredictanis.

Requirementgor hydrologicaluseof predictandspecif-
ically include the spatial coherenceof preciptation fields
— i.e. a redistic spatal distribution of precipitationat arny
time step — ower potentially large basins.Indeed,the gen-
eration of floods is, for exanple, particularly sensitve to
the spatial distribution of precipitation over the catchment
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consideredWhile dynamicaldownscalingmethodsnaturally
provide sucha sought-aftespatialcoherencethisis notnec-
essarilythe casefor statistcal methods.

This paper proposessome developmenton hav to en-
suresucha spatid coherencen precipitationby optimising
the predictordomainsof an analoguedownscalingmethod
for different individual tamget locations over France and
analysingthe spatial variability of results. This work will
help in idertifying regionswith homogeneougeopotential
predictordomainsfor precipitation,over which the spatial
coherencevould be defactoensuwedby theselectiorof com-
monanalogualates.

1.1 Statistical downscalingmethods

In statisticaldownscaling,arelationshipbetweerlarge-scale
predictorsprovided by GCMs andlocal-scalepredictandss
establishedTherearethreemajorgroupsof statisticaldovn-
scalingmethodsusedn aclimatechangecontext: modelout-
put statistics(MOS) (e.g. Chandley 2002 Friederichsand
Hense 2007 Vidal andWade 2008 Lavaysseetal., 2012,
perfectprognosis(PP) (e.g. Timbal etal., 2003 Boéetal.,
20086 Hertig etal., 2012 andweathergeneratorge.g.Vrac
etal.,, 2007, Chenetal., 2010 Belloneetal., 2000. A review
of methodsand their strengthsand weakness® to produce
relevant input for impact modelscan be found in Maraun
et al. (2010. Both PP and MOS methodsare also applied
for operatonal precipitationforecast(e.g.Marty et al., 2008
2012 2013 Voisin et al, 201Q Nam et al., 2017, Liu and
Coulibaly, 2011, Muluye, 2011).

A numberof statistcal downscaling studieswith vari-
ous methodshave been perfomed over Franceover the
last few years, but mainly for specific regions like the
French Mediterranean(e.g. Quintana Segui et a., 201Q
2011, Lavaysseet al., 2012 Kallacheet al,, 2011, Carreau
andVrac, 2011 Nuissieretal.,, 2011, Beaulantetal., 2011),
westernFrance(e.g. Timbal etal., 2003, the FrenchAlps
(e.g.Martin etal., 1997 or the SeineBasin(e.g.Boéetal.,
2006. Until the presentstudy only a few of themhadbeen
performedat the country scale(Boé and Terray, 2008 Boé
etal.,, 2009.

Thedownscalingmethodusedin thiswork followsanana-
logueapproadb. It belongsto the PP methodsandis based
ontheideaintroduceddy Lorenz(1969 in weatherforecast-
ing that similar causeshave similar effects; that is, similar
predictorfieldsleadto similar predictandvalues.Nowadays
numerousvariantsusing different types of predictorfields
anddistancemeasuresirein use.They rangefrom weather
typing-basedmethodsbasedon principal componentsof
meansealevel pressurdields (Boéetal., 2006 to MOS-like
techniquesbhasedon precipitaton field analoguegHamill
and Whitaker, 2006 Turco et al.,, 2011). A descriptionof
the theory of probabilisticforecastswith analoguesanbe
found in Hamill and Whitaker (2006. Analogue methods
have beenappliedin different regions of the world with
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very diverseclimates,e.g.Switzerland(Hortonetal., 2012,

Australia (Timbal and McAvaney, 2001, central Sweden
(Wetterhalletal., 2005, Punjab(India) (RajeandMujumdar,

2011, southeastUSA (Zhangand Geogakalos 2012, the
Alpine region (ThemeRlet al., 2011, and northeastSpain
(Ibarra-Berastgi etal., 2011).

1.2 Predictor domains: optimisation

The predictorvariablesusedfor statisticaldowvnscalingand
the predictordomainshave to be chosencarefully. The pre-
dictor variablesshould have predictive skill for the quan-
tity to predict— in this case precipitation.Thesepredictors
shouldbequantitieghatarereliably simulatedoy NWPsand
GCMs, andideally they shoud be relatedto the processes
leadingto precipitation,andfor climatechangeapplications
this relationshipshouldpersistin a changingclimate (Wilby
etal, 1998.

In mostdownscaing studies,no optimisationof the pre-
dictor domainshasbeenperformed.andonly a few of them
have testedevena handfulof differentdomains(Timbal and
McAvangy, 2002, Timbal etal., 2003 Gutiérrezetal., 2013.
TimbalandMcAvaney (2001) especiallyffoundthatchoosing
aninformative predictordomainis an importantissuefor the
analogueselectionBen Daoud(2010 foundthatsomepre-
dictorsliketemperaturer moisturevariableshave theirmain
influencecloseto the targetlocation,and thereforea small
predictordomaincloseto the targetlocaion is likely to be
sufficient. The predictordomainsfor the shapeof the geopo-
tential field are usually larger, and their optimum location
depend®n the meteoological situationsthatleadto precip-
itation atthetametlocaion.

Variousalgorithmsmay be usedto optimisepredictordo-
mains.ldedly all predictorvariablespredictordomainsand
other parametershouldbe optimised togetherand predic-
tor domainsof ary size and shapeshouldbe possible.This
wasdoneby SauterandVenem&2011) for anartificial neu-
ral network downscalingmethodand onetarget locationin
the Rhineland(Germary). Large computerresourcesvere
neededo do so becauseahe searchspaceis huge.A global
optimisationof the analoguemethodwas done by Horton
(2012 for somestationsin the SwissAlps usinggenetical-
gorithms,with substantibcomputationatostsaswell.

This work focuses on optimisingthe predictordomainof
onevariable:ithegeopotentiaheight.Restrictingtheparame-
tersto beoptimisedallowsfor optimisingdomaingor alarge
number of tamget zonessegarately and for exploration of
the nearoptimum domainsfor eachtamget zoneratherthan
searchingfor a unique optimum following the equifinality
thesis(Beven, 2006).

1.3 Predictor domains: spatial variability

When analoguemethodsare applied, only one predictor
domainfor all target locationsis generallyused(see,e.g.
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Timbal etal., 2003, becausghis ensureghatthe sameana-
loguedatewill beselectedor thewholeregion, andthis nat-
urally leadsto spatialcoherencef the precipitationfield as
long asindividual fieldsandno summarymeasureareused.
But for large target regionslike Franceor large catchments
with diverse precipitation climateslike the Rhdne Basin,
this will likely resultin a lower skill for smallersubcatch-
ments.Bontron (2004 optimisedthe geopotentiapredictor
domainsfor individual groupsof precipitationstationslo-
catedin Franceandnorthernltaly andcompaedthe perfor
mancewith thoseoptimisedfor all groupstogether For the
groupsnearthe barycentreof all groups,the differencein
skill was small, but for groupsfar from the barycentrethe
skill wasclearly betterusingthe individually optimisedpre-
dictor domains.Furthermorehe suggestedo usethe same
predictordomainfor groupssituatednot more than 250km
apartfrom eachotherandnot separatethy a major“climato-
logical barrier”.

This work considersa large numberof individual target
locationsover Francein orderto assess thepatiad variability
in locally optimiseddomains,in termsof both locationand
shapeTheuseof severalnearoptimumdomaindurthermore
allows for assessmermf the diversity of domainsassociated
with very similar performane for singletargetlocations.

1.4 Objectivesand outline of the paper

Thefirst objective of this paperis to presenanextendedver-
sion of the growing rectangulardomainalgorithmfor opti-
misingthe predictordomainsusedby a statisticaldownscal-
ing method.Suchan algoithm may be usedto find an en-
sembleof nearoptimumpredictordomainsfor ary statistical
downscalingmethodandconsequentlyo addressheissueof
equifinality raisedwhentrying to performa numericalopti-
misationbasedn somesummary skill score.

Thesecondobjective of the paperis to answerthe follow-
ing questionis theassumptiommadefor exampleby Timbal
etal. (2003 andBoéandTerray(2008 of acommonpredic-
tor domainfor largeregionsin Franceactuallyvalid?To this
aim,theextendedversionof the growing rectanguladomain
algorithmis appliedto derive an ensembleof nearoptimum
geopotentiapredictordomaingor 608tarmgetzonescovering
thewholeof France Thedownscding methodconsideredor
thisapplicationis ananaloguanethodthathasalong history
of development with variousapplicationsJike hydrological
forecast§BenDaoudetal., 2011H or historicalflood recon-
struction(Auffray et al., 2011). However, it is appliedhere
for thefirst time to thewhole of France.

The methodsusedfor downscalingand optimisation are
describedin Sect.2, and resultsare describedin Sect. 3.
Section4 presentsomesensitvity teststhathave beenper
formedto checkthe robustnessof findings with respectto
(1) the archive length, (2) the version of the optimisation
algorithm and (3) the optimisatbn starting point. Critical
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methodologicathoicesarediscussedh Sect.5, andconclu-
sionsaregivenin Sect.6.

2 Data and methods
2.1 Data
2.1.1 Reanalyses

The predidor domain optimisaton is done using two
archives of reanalysisdata. ERA-40 data (Uppala et al.,
2005 at 2.5° resolutionwere selectedas the large-scale
archive againg otherglobalreanalysedecaus®f thetrade-
off betweenarchve lengthanddataassimilationtechnique,
following Ben Daou et al. (2011h a). The archve length
is critical (1) for including as mary diverseanaloguesit-
uationsas possible,(2) for studying the sensitvity on the
archive length(seeSect.4.3) and(3) for having acompletely
independenti.e. not usedeitherfor optimisng domainsor
as an archie) time period left for validation using a rig-
orous split-sampleapproachas definedby Kleme$(1986.
The NCEP/NCAR reanalysis(Kalnay et al.,, 1996 hasa
longerarchive, but ERA-40 madeuseof the more advanced
three-dimensionaVariational dataassimilation.Ben Daoud
et al. (2009 comparedERA-40 and NCEP/NCAR reanal-
ysis as sourcedor large-scée predictorsfor the downscal-
ing methodusedhereandfound a slightly higherskill using
ERA-40.ERA-Interim (Deeetal., 2011) usesaneven more
adwanceddataassimilation techniqueandhasa higherspa-
tial resolution Jeadingto a bettertemporalconsisteng anda
betterrepresatationof thehydrologcal cycle (seeDeeetal.,
2011), but hasstill a shorterarchive than ERA-40. Prelim-
inary testsby Ben Daoud (2010 with a 1.125 version of
ERA-40 and a simpler variant of the downscalingmethod
(seeBontronand Obled 2005 shaved only very smallim-
provementsn skill andquitesimilar optimiseddomainswith
the higherresolutionarchive. Moreover, a highe resolution
large-scale archie would increaséboth the equifinalityissue
and the computationtime. Furthermore,somehypotheses,
notably on the predictor domainsfor temperatureyertical
velocity andhumidity (seeSect.2.2), may not be appropri-
atearnymore.Lastly, usingERA-40dataensureonsisteng
with thelocal-scalearchive asthis globalreanalysidiasheen
usedasafirst guesdy the Safransystemfor computingver
tical profilesof nearsurfacevariables.
Safran(Frenchnearsurfacereanalysisyata(Vidal et al.,
2010 are usedas predictanddor the local daily precipita-
tion, whichis the targetvariableaddressethy the downscal-
ing. The Safranreanalysiddataare definedon 608 climato-
logically homogeneougones covering France.Insidethese
zonesthe meteorologicalariablesare supposedo depend
only onaltitude.Thesezonesareusedaselementaryunitsin
thiswork andareshavn in Fig. 1. Thealgorithmusedfor the
Safrananalyss aswell asits validationandapplicationover
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Fig. 1. The 608climatologicallyhomogeneougonesdefinedin the
Safrandata.The casestudy zonesusedin this studyare coloured.
The threezonessituatedin the Rhénecatchmeh are Sabne(212,
darkgreen) Arve (317,light red)andArdeche(442,darkred). The
seven zoneslocatel at the geographicalimits of the country are
shavn with othercolours.

Francearedescribedy Quintana-Sgui et al. (2008. A de-
tailed validation of this 50yr atmasphericreanalysisover
Francehasbeencarriedout by Vidal et al. (2010. Of par
ticular interestto this study they found that the reanalysis
uncertaintyon precipitationis both very low andrelatively
constantover the 1958-2008eriodwhen consideringboth
dependenandindepeneént validationdata.The biascalcu-
latedwith 83 high-qualityindepemlentvalidationstationsis
smallerthan0.1mmday 1, andthe root-mean-squarerror
is around2.5mmday ! (Vidal etal., 2010).

The commonarchie period for the two reanalysisdata
archivesis from 1 August1958to 31 July 2002. The pe-
riod 1 August1982-31July 2002 is used to optimisethe
geopotentiapredictordomainsexceptfor in the sensitvity
teston arcive length,wherethe whole commonarchve is
used.Thisis discussedaterin Sect.5.

2.1.2 Casestudy zones

The domainoptimisationwas performedfor all 608 zones
in the Safrandataset, but detailedsensitvity testsfocused
on threecasestudyzones.All threeselectedzonesarepart
of the Rhénecatdiment,but have differentprecipitationcli-

matesasshavn in Fig. 2. This hasimplicationsonthespatial
coherencesincedifferentpartsof the catchmenhreceve pre-
cipitationin differentmeteorologicasituationsandthis may
lead to differentinformative spatial predictordomainsand
thereforedifferentanaloguedates Furthermorejn Sect.3.1
resultsareshovn for zoneslocatedat the geographicalim-

its of the country Maps showing the skill of the downscal-
ing methodusinga unitary-sizeddomainatall possibt loca-
tions,so-calledrelevancemaps for thesezoneswereusedin
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Fig. 2. Monthly meanprecipitation,1 August1958-31Juy 2002,

from the Safrandatafor thethreecasestudyzonesSadre, Arve and
Ardéche.

a preliminary analysisto definethe edgesof the searchdo-
main. Thesezonesat the geogaphicallimits of the country
aswell asthe casestudyzonesarecolouredin Fig. 1.

The casestudy zonecalled Sadne(212) is locatedin the
Burgundy region, in the Sabre River valley. The terrainis
ratherflat andthe zoneis mainly influencedby the wester
lies. Theprecipitationis uniformly distributedoverthewhole
year The secondzone,namedArve (317),is locatedin the
upperArve catchmat nearMont Blanc. The precipitation
hasa yearly cycle with a maximumin winter and a mini-
mumin summeandearlyauumn.Thethird casestudy zone,
namedArdede (442),is locatedin the upperArdechecatch-
mentin the Cévennesareaandhasa precipitationmaximum
in Octoberwith a high interannualvariability (seeFig. 4 in
Vidal etal., 2010. Theprecipitationmaximumin autumnre-
sultsfrom heavy precipitationeventsthat arefrequentlyob-
sened in the Céwennesregion during this seasor(see,e.g.
Ricardetal., 2012.

2.2 Downscalingmethod

Thedownscalingmethodusel hereis ananalogueapproach
that hasalreadya long history of developmentin weather
forecastingcontext, andsone developmentsareundervay to
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Table 1. Predictorsandtheir correspondingressurdevels, times, similarity criterion and numberof situationsselectedn the given step

usedby thedownscalingmethod.

Predictor Pressurdevel [hPa] andtime [UTC] Similarity Numberof
criterion  amalogues
Temperature 925at12:00D + 1, 600at 12:00D E.dl 2000¢
Geopotential 1000at12:00D, 500at00:00D + 1 TWS? 170
Verticalvelocity 850at06:00, 12:0018:00D and00:00D + 1 E.dl 70
Humidity (TCW x Rh)  850at 12:00D and00:00D + 1 E.dl 25

* dependingn thelengthof thearchive: 100x numberof yearsin thearchive (44yr — 4400,20yr — 2000,... .). 1 E.d.,Euclidean
distanceZ TWS, the TewelesandWobus shapecriteria (TewelesandWobus, 1954).

applyit in aclimatechangecontext. Duband(1981) wasthe
first who appliedthe analoguemethodin France.Guilbaud
andObled(1998 introducedthe analogueselectionon grid-

ded geopotentiafields with the Tewelesand Wobus shape
criteria(TewelesandWobus, 1954). Obledet al. (2002 cal-

ibratedthe methal for 50 French,Spanishanditalian catch-
ments.Bontronand Obled (2005 introducedthe useof re-

analysisdata asa historicalarchive — the NCEP/NCARre-

analysis(Kalnay et al., 1996 — insteadof interpolatedra-

diosondedat, andaddedocalhumidityto thepredicor vari-

ables.BenDaoudet al. (2011a b) thenintroducedthe tem-
peratureandtheverticalvelodty predictorvariables.

This downscaling algorithm developed by Ben Daoud
et al. (20113 and applied here performs a four-step se-
lection on temperaturegeopotetial heights,vertical veloc-
ity and humidity, respectiely, to identify analgue datesin
the archive. The predicta variables similarity criterionand
the numberof analoguesituationsselectedafter eachstep
aresummarisedn Table 1. The main characteristic®f the
methodare summarisedelow; for deils, seeBen Dacud
(2010, who identified the optimum combinationsof vari-
ablesandtimes for the Seineand Sabneriver basins.The
numberof anal@uedatesretainedafterstep2, 3 and4 were
again talenfrom BenDaoud(2010. Theprecipitationvalue
for day D correspondso the predpitation accumulatede-
tween06:00UTC day D and06:00UTC day D + 1.

The first stepis a selectionon temperatureat 925hPa at
12:00UTCday D + 1 and600hPaat12:00UTC dayD. The
pressurdevels and correspondingimeswere optimisedby
BenDaoudetal. (20113. Thepredictordomainis the ERA-
40 grid point closestto the tarmgetlocation,which is reason-
able astemperaturecanbe seenasa proxy for the thermo-
dynamicalpropertiesof the air on thelocal scale.A similar
choicewasmadeby Hanssen-Bauegt al. (2003. The sim-
ilarity criteriais the Euclideandistancewith equalweights
for thetwo pressurdevels.As shavn by Timbal etal. (2008
and Hanssen-Baueet al. (2003, including a temperature
variableas a predictoris especiallyimportantin a climate
changecontet since different temperaturesnay occurin
a given seasonand the amountof water the atmosphere
canhold dependson temperatureThe numberof analogue
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situationsselectedin step 1 dependson the length of the
archive; it is 100x numberof yearsin the archive — for ex-
ample2000analogussituationsor a20yr archive, asis used
for the optimisationof the predictordomainsfor geopoten-
tial. This approximateghe 4-monthseasoriength usedby
Bontron (2004 and the 2900daysBen Daoud(2010 used
with a 30yr archive. The four daysbeforeandafter the tar-
get dateare excludedto avoid the selectionof dayswithin
possiblythe sameow-pressuresystem.

Thesecondstepis a selectionon geopotentiaht 1000hPa
at 12:00UTC day D and500hPa at 00:00UTC day D + 1.
The similarity criteriausel is the Tewelesand Wobus crite-
ria S1 (Tewelesand Wohus, 1954, called TWS in the fol-
lowing, which measiresthe similarity betweenthe zonal-
andmeridionalgradientsxpressedsthedifferencebetween
eachpoint of the predictordomain andall otherpointswith
thesameongitude or latitude. Thereforethe TWS measures
the similarity of the shapeof thefields. GuilbaudandObled
(1998 foundthatthe TWS leadsto betterdownscalingper
formancethan the Euclideandistancefor the geopotential
predictor This criterion hasbeenwidely usedin variousana-
loguemethodge.g.Wetterhalletal., 2005 Wetterhalletal.,
2007 Teutschbeiretal., 2011 Hortonetal., 2012 Brigode
etal., 2012 andweathestype classification(e.g. Garavaglia
etal., 2010. Again equalweightsaregiven for thetwo pres-
surelevels. The samepredictordomainis usedfor the two
pressurdevels. For this step the predictordomainsare op-
timised using the methoddescribedater in Sect.2.5. The
170 most similar daysregarding geopotentiakshapeout of
the 2000 with the most similar temperatureare selected.
Geopotential-or pressurdields are often usedas predictors
becaus¢hey arewell simulatedby the GCMsandcontainin-
formationabouttheatmospheridynamicdik e flow strength
anddirectionor divergence(Wilby andWigley, 2000.

Thethird stepis a selectionon vertical velocity at 850hPa
at 06:00,12:00and 18:00UTC day D and 00:00UTC day
D + 1. The similarity criterion is Euclideandistance and
the predctor domainis the nearesERA-40grid cell. Equal
weightsare given to the differenttimes. Upward motion is
necessaryor theformationof cloudsandprecipitaton. With
a modelresolutionof 2.5° this predictorcan only account
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for large-scalaipwardmotiondue to dynamicalreasonsand
not for upward motiondueto local corvectionor orograply.

BenDaoudeta. (20113 found someadditionalskill for the
first two forecastdaysandfewer falsealarmswith the verti-

cal velocity addedasa predictor The mostsimilar 70 days
out of the 170daysremainingafter step2 areselected.

Thefourth stepis a selectionon humidity, moreprecisely
theproductof thetotal columnwater (TCW) andrelative hu-
midity at850hPa (RH) at 12:00UTC day D and00:00UTC
day D + 1. This compoundvariablewas found to be more
informative thanothersimpleindicatorsby Bontron(2004).
The similarity criteria is Euclideandistanceand the predic-
tor domainis the nearesERA-40 grid cell. The mostsimi-
lar 25 daysout of the 70 daysremainingafter stepthreeare
selected.

The predictor variables,their pressurdevels and hours,
andthe numberof analoguegso selectafter eachstepwere
takenfrom BenDaoud(2010, wherethey were selectefbr
the SeineandSabnebasinslt hasalsoto be notedthatiden-
tical combinationsf variables pressurdevels andhoursin
steps2 and4 hadalsobeenselectedby BontronandObled
(2005 for applicationat variouslocationsin southeastern
France.

2.3 Performancecriterion

The skill of the downscalingmethodis assessedavith the
continuousranked probability scae (CRPS)(Brown, 1974
MathesorandWinkler, 1976. The CRPSis widely used for
the verificationof probabilisticatmospherior hydrological
forecastysee,e.g. Hagedornet al., 2008 Demagneet al.,
201Q Aspelienetal., 2011). It is definedasfollows:

CRPS= / [F(x)—HfobS(x)]zdx, (1)

whereF (x) istheforecastedumulatve distributionfunction
of the variablex, xJ,, the obsened valueand H?, (x) the
Heaviside function of x — xgbs The propertiesof the CRPS
areasdegribedin Hersbacl{2000. TheCRPSis sensitveto
the entirerangeof the parameterandno predefinedclasses
arerequired;it is equalto the meanabsoluteerror (MAE)
in the caseof a determinstic forecast, andit canbe inter-
pretedasan integral overall possibleBrier scoresin orderto
compareresultsfrom differentzonesthe continuousanked
probabilityskill score(CRPSSwith theclimatologyasaref-
erencdorecasis used:

(CRPS

CRPSS=1-— ——,
(CRPSiim)

2
where( ) denoteghetime avergge andthe CRP Sy is cal-
culatedoverthel August1982-31 July 2002period—except
for the44yr experimentswherethewhole archive periodis
considered- using precipitationdatafrom +60 daysaround
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thetamgetdayfrom differentyearsin orderto take seasonality
into account.

2.4 Relevancemaps

A relevancemap representshe forecastskill for eachgrid
cell of the predictordataset.Relevancemapswereused for
example,by Bontron (2004 andHortonet al. (2012 to se-
lect the mostpredictive pressurdevel andtime step for the
geopotentiapredictor Relevancemapsare obtainedby fix-
ing every paraneter exceptthe location of a unitary-sized
spatialdomain(2 x 2 ERA-40 grid points, 2.5 resolution)
thatmovesacrossthe whole map (Hortonet al., 2012. Us-
ing the TWS 2 x 2 grid pointsis the smallestpossibledo-
mainsincethe TWS is basedn the calcultionof gradients,
i.e. differencesetweentwo grid points.By iteratingthe po-
sition of this smalldomain,the CRPSscorecorrespondingo
everylocationis obtainedRelevancemapsthusallow for one
to seewherethe synopticcirculationinformation is relevant
to explain obsenedor analysedrecipitationtime serieslt is
expectedthatthe bestpredictorlocationsareconsisentwith
themeteordogical characteristicthatareresponsibldor the
region’sweaher. The predictors bestlocationsaretherefore
expectedto bedifferent forsub-catchmentsr stationsinflu-
encedvy differentmeteorologicaphenomengHortonetal.,
2012.

Relevancemapsareusedin this study(1) to illustratethe
differentatmospherignfluencesfor zonesin differentparts
of the country (Sect.3.1), (2) to comparethe optimised do-
mainswith the regions of high skill in the relevancemaps
(Sect.3.2.2 and(3) to have an additionalstartingpoint for
experimentson the sensitvity of the optimisationalgorithm
(Sect4.1).

2.5 Optimisation method

Geopotentialwas chosenfor optimisationbecauset is the
mostimportantpredictor in the downscalingmethodused,
andthesizeandlocationof the predictordomainis supposed
to dependmorestronglyon thetypical weatheipatterncaus-
ing precipitationin the targetareathanfor theotherpredictor
variables.The predictordomain optimisedhereis a domain
commonto bothgeopotentl levelsdescribedn Tablel.
The selectedbptimisationmethodis basedon theidea of
growing rectanguladomainsas appliedby Bontron (2004
andBenDaoud(2010. Thebasc versionstartsfrom a given
2 x 2 grid point domain(here the nearestoneto the target
zone),calculaesa score(herethe CRPS)andthenexpands
thedoman in four directionsby addingonegrid point east,
west, north or south. For thesefour resultingdomainsthe
CRPSis calculatedandthe domainwith the smallestCRPS
is selectedThis selecteddomainis thenusedas a starting
domainin thenext step.Thisis doneuntil thescoreis notim-
provedduringfour consecutie stepsor theedgeof thesearch
domainis reached.This methodis very fast, but explores
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only a very small subsebf the spaceof predictordomains,
andthereforeit is likely thatsomerelevantdomainsare not
tested.

For this work an extendedversionof this methodwasde-
veloped:five domains,insteadof a single one,areretained
andexpandedn eachstep.With this methodalargernumber
of domainsareexplored,andthefive bestdomainsfoundin
this proeedureareretumed, thus providing an indication of
variability aroundoptimal domans. The equifinality thesis
(Beven, 2006 postulateghatvery similar skill scorevalues
canbe obtainedwith differentparametersets,andthatit is
thereforebeneficialto searchfor anumberof very goodper
forming parametesetsrathe thanfor thebestone.

Likein thebasicversion thesearchs startedrom agiven
2 x 2 grid point domain, herethe nearestboneto the target
zone where not indicatad differently, After calculatingthe
CRPSthis domainis expandel in four directionsby adding
onegrid point eastwest,north or south,andcalculatingthe
CRPSfor eachof them.For the secondstepall four domains
from the previous stepareexpandedThis gives 16 domains,
but only 10 actually differentones,so 10 new domainsare
explored. From these10 domainsin the secondstep, the
5 bestare selectedto be expandedin the next step.Theo-
retically thereareup to 20 domains(5 x 4) to explore from
step 3 on, but thereis someredundang or somedomains
have alreadybeenexploredin a previous step,andassuch
betweernl3 and18 adually new oneswerefound.In theend
the five bestdomainsfound during the whole procedurejn
generaktemmingfrom differentstepsarereturned.

Brigodeetal. (2012 optimisedthe predictordomainsfor
a rainfall-basedweatherpatternclassificationand therefore
testeddomainsof three different sizesfor every possible
location similar to the relevance map calculaion. This is
acomplementargapproacho the oneusedin thiswork since
they assume@d domainsizeandshapeandthentestedwhere
to centreit. In the presentwork, a starting point is fixed,
which definesa locationthat has to be includedin the final
domain,andthendomainsof differentsize and shapeshut
all containingthe startingpoint aretested An approactsim-
ilar to the oneadoped by Brigodeet al. (2012 waschosen
by Obledetal. (2002 for a previousversionof theanaloge
methodusedhere. They first testeddomainsof six differ-
entsizescentredover thetargetlocationandthenshiftedthe
bestoneto find the bestlocation. SauterandVenema(2011)
optimisedthe predictordomainsfor an artificial neuralnet-
work for all predictorvariablestogetherallowing for three-
dimensionabnd disjointedpredictordomains.in contrastto
our study, they did the optimisaton for only onetargetloca-
tion, andevenfor this onelocationthey statedthatthe com-
putational costsverevery high. It needgo be notedthatthe
approactselectedheredoesnotallow for explorationof non-
rectangulardomainssuggestedy the examinationof rele-
vancemaps(seeSect.3.1) andthat may leadto betterskill
values.Allowing for this type of domainswould, however,
involve muchhighercomputatimal costs.
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3 Results

In the following sections,resultsare shavn on the differ-
entregions of influenceas mappedwith relevancemapsin
Sect.3.], thesizeandlocation of the optimisedpredictordo-
mains (Sect.3.2) andthe downscalingskill of the method
usingthe optimiseddomainsduring the optimisationperiod
(Sect.3.2.]). In Sect.4 sensitvity experimentonthechoice
of the startingpoint of the optimisation the choiceof theba-
sic or extendedoptimisation methodandthe archive length
areshown.

The downscaling and optimisaton methodsare imple-
mentedin Fortran 2003 using the NetCDF Fortran90 li-
brary (Pincusand Rew, 2011) for datainputandoutput.The
subsequenanalysisand figuresare doneusing the R soft-
ware ervironment(R DevelopmentCore Team 2012 with
packagescdf (Pierce 2011), ggplot2(Wickham 2009, re-
shape2(Wickham 2007, RColorBrewver (Neuwirth, 2011
HarroverandBrewer, 2003, sp (PebesmandBivand 2005
Bivandet al., 2008, zoo (Zeileis and Grothendieck2005
andgridExtra(Auguie, 2012).

3.1 Differentregionsof influence

The relevance mapsfor different Safranzoneslocated at
the geographicalimits of Franceandin the RhéneBasin
(cf. Fig. 1) and calculatedfrom the 20yr archive are com-
paredin Fig. 3. This figure also containsthe corresponding
optimiseddomainghatwil | be discussediaterin Sect.3.2.2
Firstthe magnitudeof the skill differsbetweertherelevance
mapsfor differentzores.Thehighestskill is foundfor zones
that are mairly exposedto the westerlies(127, 557, 317).
Furthermore thereis a clear differencein the spatial pat-
tern betweendifferent zones.The zonesin western,north-
ernandnortheasterirrane (001,074, 127, 557317) have
their region of maximumskill locatedwestor southwes of
thezone.Theirregionsof high skill arelargerin zonaldirec-
tion thanin meridionaldirectionandarecyclonically curved.
They are exposedto the westerliesandreceve precipitation
mainly from frontal systemsA similar shapewasfound by
Horton et al. (2012 for the Marécottesstationin Switzer-
land, locatedclose to the Arve zone (317). The zonesin
southeasterfrancehave their region of maximumskill lo-
catedsouthor southeasbf the zone (493, 596, 442,615).
Indeedtheheavy precipitationeventsin thisregion areasso-
ciatedwith southerlyor southeasterl§low (e.g.Ricardetal.,
2012. Their regions of highestskill are more north—south
oriented,with high-skill regions extendingwestward at the
southernend andeastvard ard northwestvard at the north-
ernend.Whatall relevancemapshave in commonis alocal
minimum of skill surroundedby regions with higher skill.
This is dueto the useof the TWS criterion thatis sensitve
to the gradiens of the geopotentiafields and their anoma-
lies ondayswith precipitation.Theregion of low skill corre-
sponddo thelocationof aminimumin themeangeopotential

Hydrol. Earth Syst.Sci.,17,4189-4208 2013



4196

S.Radanovics et al.: Optimising predictor domainsfor precipitation downscaling

domain
—1
2
3

— 4

= 5

T 1
-20 -10

Fig. 3. Relevancemapstruncatecat CRPSS= 0 (areaswith higherskill thantheclimatology)andoptimiseddomainsfor ninezonesdentified
in Fig. 1 usingthe 20yr archive. Thebestdomainfoundis drawvn in red,followedthenby thosein orangeyellow, greenandblue.Thezone

locationis indicatedby areddot.

anomalyfieldsfor rainy days(notshavn). Thelargestgradi-
entsare situatedaroundthis minimum, which makesthese
regions more relevant using a similarity measurebasedon
gradients.

Given the high seasonalitywith the precipitation max-
imum in autumnfor the Ardeche casestudy zone (442)
(cf. Fig. 2) dueto specificatmospheridlow conditions,we
investigatedthe scorevariationsfor different seasonsSea-
sonalrelevancemapswereobtainecby averagingthe CRPSS
over differentseasonénsteadof the whole year In orderto
have enoughdatafor eachseasonthe scorewas calculated
for thewhole44yr archive. Relevancemapsfor the Ardéche
casestudyzonefor different seasonareshavnin Fig. 4. The
highestskill canbefoundfor thewinter seasn, followed by
autumn.The locationof the maximumof skill southeasto
south-southeastom the Ardéchetarget zone corresponds
well with the south-southeasterlffow found by Duffourg
and Ducrocq (2011) for heary precipitationevents in the
Céwennegegion. In springandsummettheskill is lower due
to convective precipitationwhich is moredifficult to predict
basedonly on large-scalefields. This is a commonfeature

Hydrol. Earth Syst.Sci.,17,4189-4208 2013

for thethreecasestudy zones(not shawn). Interestinglythe
shapeof theregion with highskill is very similar betveenthe
seasonsyhichwasnotexpectedor the Ardéche zonedueto
thespecificflow conditionthatleadsto theautumnprecipita-
tion maximumin this zone(cf. Fig. 2). Furtherinvestgation
couldlook at relevancemapsfor dayswith differentprecipi-
tationthresholdsbhut this is beyondthe scopeof this paper

3.2 Optimised predictor domains

In this sectionwe will shawv resultson the optimiseddo-
mains.The downscalingskill measuredvith the CRPSSfor
all 608zonesn Frances shown first. The nearoptimum do-
mainsfoundfor the casestudy zonesarethenpresentedbe-
fore looking at summarycharacteristicéor all 608 zonesin
France.

3.2.1 Downscalingskill
Figure 5 (left panel)shavs the CRPSScalculatedover the

20yr optimisationperiod (1 August1982—31July 2002)for
the bestdomainfound for eachof the 608 climatologically

www.hydrol-earth-syst-sci.net/17/489/2013/
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Fig. 4. Seasonalelevancemapsfor the Ardechecasestudy zone.
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Fig. 5. Left panel: CRPSSobtainedwith the bestdomainfound during optimisation Right panel: CRPSSobtainedwith adomainoptimised
for average precipitationover France Dark purplecorrespondso a higher(thatis, better)skill scorewhile light blue correspondso lower

skill.

homogeneousonesin France. The zones are coloured
accordingto the CRPSSvalueobtained.Unsurprisingly the
CRPSSshaws a spatialdistribution similar to the oneof the
meanprecipitdion (Vidal et al., 2010. The more precipi-
tation a region receves, the higherthe CRPSS.The high-
estskill, betwea 0.30and0.35, is found on the windward
side (westsidein this case)of the Alps, the Massif Central
and the Vosges,and along the Atlantic coast.Poorerskill,

around0.2, canbe found onthe lee side of mountainsand
aroundthe Mediterranan coast.Quite interestingly the dif-

ferencein skill measuredvith the CRPSShetweerthe best
andthefifth-bestdomainfoundis never largerthan0.01.So
the differencein skill betweendifferentoptimisad domains
for the samezoneareaboutoneorderof magritude smaller

www.hydrol-earth-syst-sci.n¢/17/4189/2013/

thanthe differencedn skill betweendifferentzones,which
malkes all five domainsequally plausble. Additionally, the
skill differencedoesnotshow ary apparenspatialstructure.
In orderto comparetheseCRPSSvalueswith sone ref-
erencevalues,a setof commongeopotentialpredictor do-
mainswere optimisedusing the averageprecipitationtime
serieover Frane. Thestartingpointaswell asthe predictor
domainsfor the otherpredictorvariableswere chosernto be
closeto the centroidof the country The right-handside of
Fig. 5 shavsthe CRPSSobtainedor eachzonewith thebest
of the commonpredictor domainsfound. The meanCRPSS
overthewholecountry is 0.24,comparedo 0.26for theindi-
vidually optimiseddomains Optimisingthe domaindocally
corresponds$o improvementsangingfrom 0.45to 77% for
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specificlocations.The lagestdifferencescanbe seen close

to thecountrybordersjn southeasterfRranceandespecially
on Corsica,i.e. in areaswith very specificregions of influ-
ence(seeFig. 3).

3.2.2 Casestudy zones

As shavn in Fig. 3, the optimiseddomans tendto include
the most relevant areadepictedby the relevancemapsfor
the casestudy zones.They differ reasonablybetweendif-
ferentlocaions and inside the ensembléefor a given zone.
For the majority of thezones(074,127, 493557, 615,317)
the aspectratio of the optimiseddomainsvarieslittle inside
the five-domainensemblewhile thereare larger variations
of this propertyfor thezones001,596 and442. Theselarge
differencesin aspectratio do not leadto larger differences
in skill asmentionedabore. This exemplifiesthe equifinality
issuementionedn Sect.2.5.

3.2.3 Domain characteristics at the scaleof France

Figure 6a shavs the meanlocation of the centreof the op-
timised domainsfor each of the 608 zonesusing a 2-D
colourschemdor bivariatemapsintroducedoy Teulinget al
(2011). Herethetwo variableghatare combinedarethelon-
gitudeandthelatitudeof thedomain centre Thusthecolours
correspondo themeanlocationof thedomaincentresof the
five bestdomainsfor eachtamget zone.The domaincentres
for the bestdomainsaremainly distributedfollowing thelo-
cation of the target zone, but in generalthe meandomain
centreis situatedsouthof thetargetzone.Neverthelesghere
aresomedeviationsfrom this generalpattern.For zoneson
the eastside of the Massif Cental, the centresof the opti-
miseddomainsarelocatedclearlymoreeasthantheonesfor
zoneonthewestsideof themassif.Thesaméefeatue canbe
seeratothermountainridges for examplethe Vosgesnoun-
tain range.Furthermorehe domain centresfor the zonesin
southeasterkrarce arelocatedmore eastthannorth of this
area.In someregionssuchas, for example,Champagnen
the northeastof the country (approxima¢ Lambertcoordi-
natesX =700, Y =2400),we canseethat mary zoneshave
their averageoptimiseddomaincentreat approximatelythe
sameocation.In contrastfor the Céwennesandthesouthern
Alps regions, the averagedomaincentresdiffer more often
betweemeighbouringzones.

Figure6b shawvs the maximumdifferene in domaincen
tre locationbetwea two domaingn thefive bestdomainen-
semblein degreedongitudeandlatitude.For the majority of
the zonesthe domaincentrelocationis a very stable prop-
erty (greencolour), especiallyin latitude direction, where
differencesf morethan?2° arerare.So,in generalthe cen-
tre points of the five nearoptimum domainsfor a zoneare
closeto eachother Zoneswith largerdifferencesupto 8° in
longitude,arelocaedin the southeasterpartof the country
attheslopesof the Alpesandthe MassifCentral.

Hydrol. Earth Syst.Sci.,17,4189-4208 2013

S.Radanovics et al.: Optimising predictor domainsfor precipitation downscaling

Figure 7a shows the meansize in degreeslongitudeand
latitude of the optimiseddomainsfor eachzone.Again the
2-D colour schemss used,with the meandomainlengthin
zonal direction and the meandomah lengthin meridional
directionbeingthe two variables.Small optimiseddomains
(green)can be found in Brittany (150, 2400), Champagne
(750, 2500), Lorraine (850, 2450), Poitou—Charente€300,
2200) and in somepartsof Normandy (300, 2500). Opti-
miseddomainswith small extentin longitudedirection but
someavhat larger extent in latitude direction (blue) can be
foundalongthe Mediterraneamoastandin thenorthernmost
part of the country Domainswith small extent in the lat-
itude direcion and larger extent in the longitude direction
(yellow) form an east—west-orientedandin the middle of
thecountry(around2250km ¥ Lambert).Medium-sizeddo-
mains(grey, browvn) arefound north of this band(500-900,
2350),in thesouthwesbf the countryandonthewestsideof
Corsica(1150, 1700)Thelargestdomaingpurple,red,dark
blue) tendto be situatedin the southeasterpart of France,
exceptnearthecoastThemog prominentfeaturein thismap
is the areain the middle, wherethe optimiseddomainsare
very smallin the meridionaldirection,while beingreason-
ably stretchedzonally

The doman sizesusedin otherdownscalingstudieswere
comparedo the domainsizesfound in this study Bontron
(2009, Ben Daoud (2010, Timbal and McAvang (2001),
Boé et al. (200§ and Guilbaud and Obled (1998 used
predictordomainswith sizesof 20-2% longitudeand 10—
15° latitude,which corresponds$o uppermedium-sizd do-
mainsfoundin this study TimbalandMcAvaney (2001) (for
daily minimum and maximum temperaturesjestedsome-
what smallerand much larger domainsas well, but found
theoneof 20 x 12° to performbest.The domainstestedby
Brigodeet al. (2012 correspondo small-to medium-sized
onesfoundin this study Timbal etal. (2003 (for daily mini-
mum andmaximumtemperatures)seda domainsomavhat
largerin north—soutldirection.Largerdomanswereusedby
Boéand Terray(2008, Hanssen-Bauegtal. (2003, Matulla
etal. (2008 andObledetal. (2002.

Figure7b shawvstheratio of domain sizerangein thefive-
domainensembledefinedas follows:

max(X) — min(X)
mear(X)

whereX is the extentof thedomainsin degreedongitudeor

latitude. A sizeratio of 0 meansthatall five domainshave
equalextent A sizeratio of 1 means that the differencein

extent betweenthe largestandthe smallestdomainis equal
to the meanextent. On averagethe sizeratio is largerin the
longitudedirectionthanin the latitudedirection. The figure
is quite patcly, with individud zonesshawing largeratiosin

oneor bothdimensionslin thenorthof thecountryandalong
the Mediterranearcoast,theseindividual zoneshave large
ratiosin longitudeor both dimensionsThe zones001 and
596 shawn in Fig. 3 areexamplesof suchzones.The zones

ratio =

: ®3)
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Fig. 6. () Meandomaincentreof thefive bestdomainsfoundduringthe domainoptimisation.The colourscorrespondo the meanlocation
of thedomaincentresf thefive bestdomaingor eachtargetzone.(b) Maximumdifferencein domaincentrelocationbetweertwo domains
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Fig. 8. Optimisedpredictordomainsfor threecasestudy zonesand different startingdomainsfor the optimisation.First row, startat the
neareselementarydomain;secondrow, startfrom the mostrelevantelementarydomainfrom the relevancemap. The relevancemapsfor
eachzoneareshowvn with acolourscaleunderneattihe predictordomains.

with the largestdomainsize rangein the latitude direction
aresituatedin the southernhalf of the country exceptnear
the Mediterranearoast.

4 Sensitvity experiments

For the optimisationstudy optionswere selectedtoncern-
ing the choice of the algorithm, the starting point and the
archie length.In this sectionwe take adetailedlook at the
impact of thesechoiceson the optimiseddomainsfor the
three casestudy zonesby comparingwith resultsfor alter

native choices.

4.1 Starting domain for optimisation

Thegrowing redangulardomainalgorithmrequiresthe def-
inition of a startingdomainfor the optimisation.This is true
for otheralgorithmsaswell, but sincethe growing rectangu-
lar domain algorithmonly addsgrid cell rows or columnsin
eachstepand never subtrats any, the startingdomainwill
automaticallybeincludedin thefinal domain(seeSect.2.5).
Thereforethe choiceof the startingdomaincaninfluencethe
predictordomainsfound anda poorly chosenstartingpoint
mayleadto lessskillful predictordomains.
Onereasonablessumptions that the bestpredictordo-
mainwill comprisethelarge-scalayrid cell closesto thetar
getlocation, asis donehereorin Obledetal. (2009. Another
possibilityis to startatthe mostrelevantelementarygdomain,
as obtainal through a relevancemap as done by Bontron
(2004 and Ben Daoud (2010, to make surethat the most
relevant locationis includedin the final predictordomain.

www.hydrol-earth-syst-sci.n¢/17/4189/2013/

The dravback of the secondapproachis that the computa-
tional costsfor therelevancemapsarehigh if performedfor
over600targetlocations Roughly2.8million CRPScalcula-
tionsperzoneare,for example,neededor a40° x 60° sized
relevancemapwith a 20yr archive. Thereforethe relevance
mapswere computedonly for the casestudy zones,andfor
thesezonegheoptimiseddomainsobtainedwith thetwo dif-
ferentstartingdomainsare compared.

Thefirst line of Fig. 8 shaws thefive best domainsfound
with the optimisation procedurestarting at the nearestel-
ementarydomain,with a 20yr archie. In the secondline
the sameprocedurds used,but the optimisationwasstarted
from the mostrelevantelementarydomainasfoundwith the
relevancemap. Comparingthem we can seefor the Arve
zone and the Ardechezonethat exactly the samefive do-
mainsarefound evenif thetwo startingdomainsarediffer-
ent. For the Sadnezone,five different domainsare found,
with lower meridionalextentandsystematicallyhigherzonal
extentwhenstartingfrom the mostrelevant elementarydo-
main. The domans found startingfrom the mostrelevantel-
ementarydomainhave higha CRPSS.

4.2 Optimisation method

Resultsobtainedwith the basicgrowing rectanguladomain
algorithmandtheextendedone developedherearecompared
for the casestudy zones.Figure 9 shawvs the optimiseddo-
main found with the extendedalgorithm (first row) andthe
onesfound with the basicalgorithm.For the Arve zonethe
bestdomainis thesaméor thetwo algorithms For theSaéne
zoneandthe Ardéchezonethe domainfound with the basic
algorithmis thesecond-bedbundwith theextendedversion.
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Fig. 9. Optimisedpredictordomainsfor threecasestudyzonesusingthe extendedoptimisationmethodwith five domains(first row) or the
basicoptimisationmethodwith onedomain(secondow). Therelevancemapsfor eachzoneareshovn with a colourscde underneatthe
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Fig. 10. Optimisedpredictordomaingfor threecasestudyzonesusing20yr (first row) and44yr (secondow) archivesfor optimisation.The
relevancemapsfor eachzoneandeacharchive lengthareshavn with a colourscaleunderneatlthe predictordomains.

This shavs thatfor somezonesthe extendedalgorithmfinds
domainswith slightly betterCRPSS,togetherwith anindi-
cationof variability betweemearoptimumones.

4.3 Archivelength
Figure10 shavs the optimiseddomainsfoundwith the 20yr
archive (1 August1982-31July 2002, first row) and 44yr

archive (1 August1958—-31July 2002,secondrow). For the
Sabnezone(first column)the domainsfound with different

Hydrol. Earth Syst.Sci.,17,4189-4208 2013

archie lengthsdiffer, but thesecond-besiomainsfoundare
the same,andthe bestdomainfound with the 44yr archive
is the sameasthefifth bestfoundwith the 20yr archive. For
the Arve zone(secondcolumn)the differenesbetweenthe
bestdomainsfound with the two archive lengthsare small.
Thebestdomainfoundwith the20yr archive is onegrid cell
largerin the westthanthe onefound with the 44yr archive,
and was found to be fifth bestwith the 44yr archie. All

top-five domainsfound have the sameextentin meridional
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direction. For the Ardéchezone, five completelydifferent
domainsare foundwith the differentarchive lengths.Thisis
probablyrelatedto thehighinterannuabariability in thetar
getregion(seeFig. 4in Vidal etal., 2010. A slightreduction
of skill overthese20yr (0.282to 0.275)canbe obsevedfor
the Ardéchezonewhen consideringthe domainsoptimised
over 44yr. Additionally, the skill computedover the 44yr
is slightly lower (0.305to 0.310)for the domairs optimised
over 20yr comparedto the onesoptimisedover 44yr.

Additionally, the relevance maps obtainedwith differ-
ent archve lengthsshowv the samestructureand the same
location of maximum values, but the absolutevalues are
slightly higherwith the longerarchive. On relevancemaps
obtainedwith a 10yr archive (not shavn) the sameoverall
structureis still visible, but with a decreasin CRPSSof ap-
proximatelyone-third.

5 Discussion
5.1 Choiceof the archive period

For successfustatisticaldowvnscalingit is necessaryo have
long datasetsof predictorsandpredictandgor building and
validating the model (Timbal and McAvanegy, 2001). The
archie lengthandoptimisationperiodchosnfor statistical
downscalingdevelopmentdependstrongly on the datathat
areavailableandthevalidation strateyy. Bontron(2004 and
BenDaoud(2010 left only five yearsof theirarchive for val-

idation. Ben Daoud (2010 for exampleexcludedthe years
1978, 1983, 19881993 and 1998from the 1972-20020p-
timisation period. The specificyearswerechosento resem-
ble the1972-200Zlimateasclosely aspossiblein orderto

validatethe methodfor forecasipurposesi.e.in thesamecli-

mate.Timbal etal. (2003 foundthatusingmorethan20yr of

thereanalysisarchive doesnotfurtherreducetheerrorin the
reconstructedime seriesof minimum and maximumtem-
peratureaslong as the morerecentpart of the datais used,
indicating that the quality of the obsenation datain terms
of homogeneityandthereliability of thereanalysiplaysan
importantrole too. A 20yr recentperiod hasbeenconsid-
ered herefor optimising the predictor domainsin orderto

(1) leave out enoughdatafor future validationand(2) retain
aperiodwith thehighesthumberof obsenratiors enteringthe
ERA-40reanalysissystem(Uppalaetal., 2005. Secton 4.3
above provides somepreliminary analysisof the sensitvity

to thearchive length.

5.2 Optimisation starting point

Thestartingpointfor optimisatiorwaschosnto bethenear
estelementarydomainto the tamget zone.The optimisation
methodusedrequireghatthis elementarydomainisincluded
in thefinal domainsAs seerabove, usinganalternatve start-
ing point at the mostrelevant elenentarydomaininsteadof
the nearesbneresultsin the samedomans for two of the

www.hydrol-earth-syst-sci.n¢/17/4189/2013/
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casestudyzoneshut in differentonesfor thethird one,where
moreskillful domains,3% higherCRPSSwerefoundstart-
ing atthemostrelevantelemenary domain.In Fig. 7a asud
denchangen domainsizecanbe seenaround47.5 N, with
thedomainsnorthof this line having slightly largerdomains
in meridionaldirection. The Sabnecasestudyzonehappens
to be situatednorth of this line, andthe experimentwith the
mostrelevant elementarydomainas a starting point, more
southwestn this case,shaved that the optimiseddomains
differ for this casestudy zone.The domainsfound starting
the optimisationfrom the mostrelevant elementarydomain
areindeedvery similar to thosefoundfor zonessouthof the
Sabnecasestudyzone(not shavn). Thusthe sudderchange
in the domainsizesin Fig. 7a s likely to be a resultof the
startingpoint choice.

6 Conclusions

6.1 An algorithm to provide near-optimum predictor
domains

An extendedversion of the growing rectanglar domainal-
gorithmhasbeendescribedandappliedfor deriving ensem-
blesof five nearoptimumgeopaential predictordomaingor
608 individual target zonescovering France.This algorithm
allowed for usto find that different predictordomainsmay
leadto very similar performancesfor theanalogualownscal-
ing methodconsiderechere. It exemplifiesthe equifinality
issuein statisticaldownsaling that hasbeenrecognisedn
mary otherresearctiomaingBeven, 2006. The equifinality
is aconsequencef asingle-objectie optimisationapproach;
thatis, the useof a single-\aluedobjective function.Indeed,
the CRPSSusedin this studyasthe objective functiongives
only anoverall skill of themethod Consequentlyfor agiven
target location, somenearoptimum domainsmay perform
betterthan others— for example,for dayswith specificcir-
culationpatternsThis algorithmis potentially applicablein
othercontexts. This study hasalreadyshawn thatit couldbe
appliedat differenttarget locations,but one may alsothink
of consideringanothempredictandsuchasminimumor max-
imum temperaturéGutiérrezetal., 2013, or optimisingthe
spatialdomainof otherpredictors As aresult,this algorithm
couldbeperfectlyappliedto anothertypeof statisticaldovn-
scalingmethod.

This first appication of the downscaling procedureby
Ben Daoud (2010 to the whole of Francetogetherwith
the useof the optimisationalgorithm led hereto a country-
wide assessmertf predictordomains.The domainsresult-
ing from an optimisation with the presentedhlgorithmin-
cludethe mostrelevantareadepictedby the relevancemaps
for all three casestudy zones.The domainsdiffer moder
ately betweendifferent locationsand inside the ensemble
for a given zone. In someregions, such as Brittany, we
foundalargerregion with the sameoptimiseddomain,while
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especiallyin the Rhénecatchmentwe found high variabil-

ity in the location and even more in the size of the opti-

misedpredictordomains.For the majority of the zonesthe

aspectratio of their five domainsis rathersimilar, but for

somezones.equallyskillful domainswith very different as-
pectratiosarefound. The centresof the optimiseddomains
aremainly distributedfollowing thegeographicalocationof

thetarmgetzonebut with cleardifferencesetweereasterrand
westernslopesof moungin ridges. The domaincentres for

zonedn southeasterRrancearelocatedmoreeasthannorth

of this area.The domaincentrelocationis a stableproperty
in the five-domain ensemblexceptfor isolatedzonesat the

slopesof the Alps andthe Massif Central. The domainsizes
vary considerablybetweenthe zoneswith ensemblemean
zonalextentsbetween6.5 and28.5° andmeridionalextents
betweerb and15.5.

6.2 On the assumptionof a common predictor domain

This work addressedthe hypothesisof a commonpredic-
tor domain for different regions of Francefor statistical
downscalingof precipitation.This assumptiorhas beenin-
deedmadeimplicitly by all previous studiesover France,
e.g.Timbal etal. (2003 for westerrandsoutherrFrane sep-
arately andBoé and Terray (2008 for thewhole of France.
Resultsfrom the optimisationof geopotentiapredictordo-
mains shaved a large diversity of nearoptimum domains
for the setof 608 climatically homogeneougonescovering
France,and therdore suggesthat this assumgbn is ques-
tionable,at leastwhenone seeksto obtan the mostskillful
methodfor eachindividual zone.However, relatively large
zoneshave beenfound to sharesimilar nearoptimum pre-
dictor domains,and makingthis assumptiorwithin eachof
themmay leadto limited lossof skill comparedo domains
optimisedfor individuallocations Thisis seemigly thecase
for the SeineBasin,whereonly minor variationsin the opti-
miseddomainscan be found (see Figs.6 and7), supporting
thehypothesisnadeby Boéetal. (2006 2007) for acommon
predictordomainover this bash.
CorverselylargeriverbasindiketheRhéneBasininclude
zoneswith very diverseinfluenceasexemplifiedby thethree
casestudy zonedocatedn the Sadneuppe Arve andupper
ArdéchecatchmentgseeFig. 3). The presentvork suggests
that the performanceof ary perfectprognosisdowvnscaling
methodusinga commonpredictordomain is far from opti-
mal for individual locationsin Franceasa consequencef
the assumptionof a common predictordomahn, as shavn
in Fig. 5 for the analoguedownscalingmethodusedhere.
This may be specificallythe casefor the methoddeveloped
by Boéetal. (2006, which waslater extendedto the whole
of Franceby Boé and Terray (2008, Pagéetal. (2008 and
PagéandTerray(2010. This methodhasbeenusedin mary
subsequenmnational-scalelimate changeimpact studieson
hydrology (see,e.g. Boé et al,, 2009 Vidal et al., 2012,
and downscaledproductsare now disseminatedhrougha
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nationalclimateserviceplatform built in the DRIAS project
(Lémondetal., 2017). Thisissueof acommonpredictordo-

mainthusprovidessomne explanationfor theidentified biases
(Boé 2007 andweak correlations(Boé and Terray, 2008

in downscaledprecipitationoutputsfor regions aroundthe
Mediterraneartoast.Indeed,asshavn in Figs.6 and7, the
optimum geopotentialpredictor domainsfor theseregions
arequitedifferentfrom the restof the country

6.3 Towards predictand areaswith homogeneous
predictors

The spatialcoherenceof the dowvnscaledpredpitation is of-
ten talen asa given when using the analoguemethod,but
thisis only trueif the sameanaloguadatesarefoundfor the
wholetargetregion, whichis notguaranteed differentsub-
targetregionsare using different predictordomains.On the
otherhand,if thetargetregionislarge,like alargeriverbasin,
acommonpredictordomainis likely to besuboptimabnthe
local scaleasthe bestdomainsdiffer for the subcatchments,
asshavnin this study for example for theRhdnecatchment.
Despitethesimplicity of theconcepttheanaloguenethod
hasalargenumberof parametergshe predictorvariablesand
their spatialand temporaldomainsthe similarity criteriaand
the numter of analoguesA global optimisationof all these
parametersogetheris desirablebut involveshigh computa-
tional costs.In this work the optimisationwas restrictedto
the horizontaldomainsof the geopotentiapredictorbut was
performedfor alarge numbe of predictandzones.
Usingindividual predictordomainsfor eachzonewill in
generalesultin differentanaloguelatestherebynot ensur
ing systematicallythe spatialcoherencét hasif a common
domainis usedfor all predictandocations.Thereforeit will
be beneficialto group zonestogetherthat canusethe same
parameters,e. the samegeopotentiapredictordomain.The
presentedanalysiswill hep to this end by building on the
idea ofgroupingzonesby equaldomainsin thefive-domain
ensembleasequaloptimisedpredictordomaingeflectprox-
imity andsimilar flow exposure.To this end,for eachzone,
onepredictordomainfrom the five-domain ensembleasto
be selectecsud thatcontiguousareaswith the samepredic-
tor domainare formed. The smoothdistribution of the do-
main centrelocationstogetherwith their rather smallrange
should facilitate this. The domain size has a higher spa-
tial variability that could hamperthe attemptof aggreat-
ing zonesby samedomain,but this goesalongwith alarger
rangethatmay compensaté to a certaindegree.
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5.2 A closer look at equifinality or the 99 do-
mains experiment

In the last section the geopotential predictor domains have been optimised using
five growing rectangular domains. But the number five is an arbitrary choice. So
what happens if we choose a much higher number instead? With this experiment
we want to assess how the relation between CRPS, domain size and aspect ratio
behaves for many different domains for a zone where the near optimum domains
show considerable differences in size and aspect ratio. Furthermore we want to see
if the error for using too small domains and the one for too large domains behaves
similarly or not.

For one zone, the Ardeche case study zone, the optimisation with the multiple
growing rectangular domain algorithm is repeated with 99 domains instead of five.
The number of 99 domains has been chosen because this is the maximum number
that is possible in the current implementation of SANDHY. (This limitation is
related to output filename format rather than calculation.) The Ardeche case study
zone has been chosen, because it is a zone that is subject to high seasonality of
precipitation and its near optimum domains show comparatively large differences
in size and aspect ratio (see Section 5.1).

The resulting domains are characterised by their diagonal length and aspect
ratio in the following. Both characteristics are defined in degrees longitude and
latitude.

diagonal = \/(lonmam —lonmin)? + (latyee — lat,mm)? (5.1)

lonmax - lonmzn) (52)

log(aspectratio) = log < Tl e
Almaz — LQlmin

The logarithm is taken in order to have equal distances between the ratios 1:2 -
1:1 and 1:1 - 2:1 on the plots.

Figure 5.1 shows the length of the diagonal, as an indication of domain size,
in degrees on the x-axis and the CRPS on the y-axis. The smaller the CRPS
the better, so the points corresponding to the best domains can be found near
the bottom of the diagram. The best domain has a length of diagonal of about
25 degrees and the other points are rather symmetrically distributed around this
value. The differences in the CRPS values are often very small with the total
range of CRPS values smaller than 0.05mm day~' . From this figure it does not
seem that a larger than optimal domain leads to less increase of the CRPS than a
smaller than optimal one. The five domains found using five growing rectangular
domains are marked in red. The best two domains are the same as with the 99
domains but for the domains 3, 4 and 5 better ones have been found using 99
domains and they are all larger than the ones found using five growing domains.
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Figure 5.1: The length of the diagonal vs. the CRPS for the 99 best domains
found in the optimisation procedure for the Ardeche zone. The archive length is
20 years and the starting point the nearest grid cell. In red the points found with
N=5.

Figure 5.2 shows the logarithm of the aspect ratio of the 99 domains on the
x-axis and the CRPS on the y-axis. The domains that had been found using five
growing domains are marked in red while the others are shown in black. The
point size corresponds to the length of the diagonal of the domain. For the aspect
ratio a clear optimum and a symmetric distribution around this optimum can be
observed. The two best domains have been found using five growing domains as
well, but for the domains 3-5 smaller domains with smaller aspect ratios have been
found. There is a gap in aspect ratio between the third best domain found with
five growing domains and the one found with 99 growing domains. Obviously a
precursor domain of the third best in the 99 domains experiment was not under
the five best of the corresponding step in the five domains optimisation experiment
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Figure 5.2: The logarithm of the aspect ratio vs. the CRPS for the 99 best domains
found in the optimisation procedure for the Ardeche zone. The archive length is
20 years and the starting point the nearest grid cell. In red the points found with
N=5. The size of the points corresponds to the length of the diagonal.

and has therefore been abandoned. Since the optimisation method can only add
rows or columns of grid cells and not subtract some, these domain could not be
found in the five domains experiment.

Figures 5.3, 5.4 and 5.5 show the location of the domain centers for the 99
domains for the Ardeche zone. The majority of the domain centers are located
south-east of the zone. Domains further away from the target zone tend to have
longer diagonals, specifically they are larger in east-west direction. Since the opti-
misation is started from the nearest 2x2 grid point domain from the target zone,
a domain has to grow for example at least 10 degrees in one direction to move its
center 5 degrees away from the target zone. The domain centers are situated on a
1.25 degree grid because the domain size is discrete with 2.5 degree steps due to
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the resolution of the reanalysis data. On the scatter plots (figures 5.4 and 5.5) the
points for the different domains are dispersed a bit to reduce overplotting. The
centers of the five domains found in the original optimisation are marked in red.
The location of their centers are quite representative but they have below average
diagonal length.

In the case of the Ardeche case study zone the growing rectangular domain
algorithm missed out some near optimum domains that are not explored using 5
domains but are found using a much higher number of domains that explores a
larger part of the search space. This is related to the fact that the algorithm always
adds rows or columns of grid points but can not subtract some. The hypothesis
that taking too large domains has less effect on the skill than taking too small
ones has not been confirmed.
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5.3 Analysis of geopotential predictor fields or
can we reconstruct a relevance map?

Looking at the relevance maps in Figures 3, 4, 8, 9 and 10 of the article in section
5.1, the question arises where their shape comes from. Some features like the
region of highest skill that can be found a bit upstream with respect to the main
flow direction in situations that lead to high precipitation at the zone in question
seem rather natural, but why does the most relevant region tend to form a circle
with lower skill in the center? Why is this lower skill region found in the middle
of a higher skill region and does this shape correspond to something? Is there a
way to obtain a relevance map in a “cheap” way?

5.3.1 Average geopotential fields

Let us have a look at average geopotential fields from ERA40 over the same time
period (1 August 1982 — 31 July 2002) and the same time steps that were used to
create the relevance maps. The first row of Figure 5.6 shows the mean geopotential
height at 500 hPa for the 20-year period 1 August 1982 - 31 July 2002 at 00:00
UTC day D+1 (=+24h). Since there is no threshold that depends on the zone, the
picture is the same for all three zones. The geopotential is higher in the south and
lower in the north. The gradients in zonal direction are small. The average only
over the days with precipitation at a given zone (second row, threshold 0.1mm
day~! ) shows a very weak trough over western europe. For the average over days
with high precipitation, that is above the 80% percentile, this trough becomes a
little bit more intense. The orientation of the trough axis is slightly different for
the Ardeche zone than for the other two where the pictures are very similar. There
is nothing that corresponds to the circle or the center of the circle on the relevance
maps.

Figure 5.7 shows the mean geopotential height at 1000 hPa over 20 years (1
August 1982 — 31 July 2002) at 12:00 UTC day D (=+12h). The first row is again
the average over all days. Again the higher geopotential is in the south with the
maximum in the south-west of the domain the lower geopotential is in the north
with a minimum over Iceland. Here the geopotential gradient is stronger in the
west of the domain than in the east. For the rainy days (second row) we can see a
low over Italy for the Saone and the Arve zone and west of Italy for the Ardeche
zone and maybe a second low over the north-sea. Again the structure gets more
intense for the higher precipitation threshold (third row). Again there is nothing
corresponding to the center of the cercle on the relevance maps.
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Figure 5.6: Mean geopotential height at 500 hPa over 20 years (1 August 1982 — 31
July 2002) at 00:00 UTC day D+1 (=+24h) for three zones and for all days (first
row), for rainy days, threshold is 0.1mm day ' (second row) and high precipitation
days, threshold is the 80% percentile (third row).

5.3.2 Geopotential anomalies

The mean field over all days is subtracted from the fields with thresholds to look at
the anomalies. Figures 5.8 and 5.9 show the mean geopotential height anomalies
for rainy days and high precipitation days (same thresholds as above) for the 500
hPa and the 1000 hPa pressure level respectively. For example the first row in
figure 5.8 is the difference between the second and the first row in Figure 5.6, that
is the mean over all days is subtracted from the mean over the rainy days. Here
more (500 hPa) or less (1000 hPa) circular shaped negative geopotential height
anomalies can be seen, that are more intense for the higher precipitation threshold.
Sanchez-Gomez and Terray (2005) found similar geopotential anomalies for days
with intense precipitation events in western France. The centers, the place with
the most negative anomaly, is more south-west for the Ardeche zone than for the
two others and is not exactly at the same place for the two pressure levels. The
center of the circle on the relevance maps is actually situated between the two,
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Figure 5.7: Mean geopotential height at 1000 hPa over 20 years (1 August 1982 —
31 July 2002) at 12:00 UTC day D (=+12h) for three zones and for all days (first
row), for rainy days, threshold is 0.1mm day ' (second row) and high precipitation
days, threshold is the 80% percentile (third row).

which corresponds well to the fact that the relevance maps include both fields with
equal weight.

So the center corresponds to the strongest negative geopotential anomaly, but
why do the relevance maps show a local minimum of skill there?

5.3.3 Geopotential gradients

The TWS (Teweles and Wobus, 1954) that is used as distance measure for the
geopotential predictor fields measures the gradients of the geopotential fields.
From a meteorological point of view these gradients are strongly related to the
geostrophic wind. The geopotential field is considered as a field of the stream
function ¥ and the gradients of this stream function correspond to the geostrophic

wind.
ow

_g_g (5.3)
oz

Vg

’Uy =
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Figure 5.8: Mean geopotential height anomalies at 500 hPa over 20 years (1 August
1982 - 31 July 2002) at 00:00 UTC day D+1 (=+24h) for three zones at rainy days,
threshold is 0.1mm day ! (first row) and high precipitation days, threshold is the

80% percentile (second row).
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Figure 5.9: Mean geopotential height anomalies at 1000 hPa over 20 years (1
August 1982 - 31 July 2002) at 12:00 UTC day D (=+12h) for three zones at rainy
days, threshold is 0.1mm day~! (first row) and high precipitation days, threshold

is the 80% percentile (second row).
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where v, and v, are the components of the geostrophic wind field. To compute
this from a gridded field a simple discretisation is applied:

AP
Uz = Ay
_ Y(@iyi+1)—Y(ziyi-1)
2A
o _ A y (5.4)
y Ax
_ V(i)=Y (@io1,5)
2Ax

The gradients can be calculated for the mean field or for the anomaly field.
Figure 5.10 shows the magnitude (M) of the gradient of the geopotential height
anomalies at 500 hPa for rainy days and high precipitation days.

_ 2 2
Manomaly - \/Um,anomaly + Uy,anomaly (55)

4

The arrows correspond to v, and v, interpreted as “wind components”. The
magnitude of the gradient shows a circle that is similar to the circular shape in
the relevance maps but with higher values in the north compared to the relevance
maps. This indicates that the circular shape of the high relevance region in the
relevance maps is related to the gradients of the geopotential anomalies on rainy
days, which is reasonable given the use of the TWS criteria. The relevance maps
show a minimum of skill in the center of the cercle, because the gradients are less
strong there.

We have found the reason for the circular shape, but can we find the maxima
of the relevance maps by analysing the geopotential fields as well? The magnitude
of the gradient M derived from the anomalies as shown before is multiplied with
the sum of v, and v, derived from the mean geopotential field at rainy days and
high precipitation days.

A = Munomaly * (Vz + vy) (5.6)

Figure 5.11 shows this quantity A for the 500 hPa level and it can be seen that
the shape for the high precipitation days resembles the one on the relevance maps.
Compared to the real relevance maps there is a minor shift in the location of the
maxima and too high values in the west while the eastward extension of the high
skill region for the Ardeche zone is missing.

5.3.4 Vorticity

To find the missing east branch of the high skill region for the Ardeche zone
the relative vorticity ¢, another quantity that is of interest in meteorology, is
calculated.

_ Ovy, Oug

= oy

(5.7)
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Figure 5.10: Gradient of mean geopotential height anomalies at 500 hPa over 20
years (1 August 1982 — 31 July 2002) at 00:00 UTC day D+1 (=+24h) for three
zones at rainy days, threshold is 0.1mm day~' (first row) and high precipitation
days, theshold is the 80% percentile (second row). The colour correspond to the
magnitude, the arrows the resulting anomaly of the geostrophic wind.
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Figure 5.11: Magnitude of the gradient from the geopotential anomalies multiplied
with the sum of the “wind components” derived from the mean fields on rainy days
and high precipitation days at 500 hPa. (Times and thresholds are the same as
for the previous figures.)
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With discretisation we obtain:

C o Avy _ A'Uz
T Az Ay
Oy (@it1,Y5) vy (Ti—1,Y5) Ve (TiYi4+1) = Ve (Tiyi—1) (5.8)
o 2Azx 2Ay :

Figure 5.12 shows the relative vorticity calculated from the anomalies at 1000 hPa
for rainy days and high precipitation days. An interesting detail on the map for
high precipitation and the Ardeche zone is the large negative vorticity anomaly
north of the Alps that corresponds to the “high skill” region on the relevance map
that is missing in Figure 5.11.
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Figure 5.12: Vorticity ¢ of the geopotential anomalies at 1000 hPa for rainy days
and high precipitation days. (Times and thresholds like in figure 5.9.)

5.4 Conclusions

The domains resulting from the optimisation with an extended version of the
growing rectangular algorithm differ moderately between neighbouring locations
and inside the ensemble for a given zone. In some regions like Brittany larger
regions were found with the same optimised domains while especially the Rhone
catchment is characterised by high variability in the location and even more in the
size of the optimised predictor domains. This high variability suggests that the
assumption of a unique predictor domain for large parts of France is questionable,
at least when one seeks to obtain the most skillful method for each individual zone.
The optimum geopotential predictor domains for regions around the Mediterranean
coast are for example quite different from the rest of the country.
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The differences in skill measured with the CRPSS between the best and the
fiftth best domain found is one order of magnitude smaller than the differences in
skill between different zones which makes all five domains equally plausible.

Even using multiple growing rectangular domains instead of a single one for
the optimisation of the predictor domains of the geopotential shape predictor,
the growing rectangular domain algorithm rests a simple and therefore rather
fast optimisation algorithm. This allows the optimisation to be performed for a
high number of different locations, but it comes at the cost of some limitations.
One limitation is related to the insufficient exploration of the search space as
has been demonstrated in the 99 domain experiment in Section 5.2. A second
limitation is the choice of the starting point for the optimisation as has been
mentioned for the Saone case study zone. Better downscaling skill in terms of
CRPSS would be possible for this zone with domains similar to those found for
the zones further south. This would require to use a different starting domain
or to be able to subtract rows of grid points of the predictor domain during the
optimisation process instead of always adding some. The larger than optimal
domains found for a couple of zones concerned with this issue lead to a break-line
in the mean domain size graph (Figure 7a of the article in Section 5.1). A third
limitation arises from the decision not to optimise the predictor domains for the
other three predictor variables at all. The last two limitations are further discussed
in Chapter 7.

The center of the circle shape on the relevance maps corresponds to the center
of the negative mean geopotential anomaly on rainy days or heavy precipitation
days. The circular shape can be recovered by the magnitude of the gradient of
the mean geopotential anomaly field. There are apparent similarities between the
magnitude of the gradient of geopotential anomalies multiplied with the sum of the
geostrophic wind components from the mean geopotential on high precipitation
days at 500 hPa and the relevance maps. This is due to the use of the TWS,
that uses essentially the same information: the magnitude and the direction of the
geopotential gradients. The north-eastward extension of the high skill region on the
relevance map for the Ardeche zone is not recovered by this gradient and wind map
at 500 hPa. This seems to be rather due to features in the 1000 hPa field. Notably
this region is characterised by a strong negative anomaly of relative vorticity at
1000 hPa. If only the maximum value is of interest, the map of the product of
the gradients of the anomaly field for high precipitation days with the geostrophic
wind sum from the mean field can serve as an approximation of a relevance map.
The actual relevance maps combine information from both pressure levels and
from all days without a precipitation threshold. It is therefore probably possible
to get something even closer to a relevance map by combining quantities from
both pressure levels and maybe different precipitation thresholds. In practice this
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is not that easy, because for example the different quantities have very different
magnitudes and even the same quantity can have different magnitudes on different
pressure levels. Therefore some scaling would be required.



6 Validation of SANDHY

Having optimised the predictor domains of our downscaling method, it is important
to see how the method with its parameters — the domain definition — behaves for
independent data, that is data that has not been used during the optimisation
process. The question is: are the parameters that work well during optimisation
actually valid? Do they represent the general characteristics we want them to
represent or are they too strongly fitted to the optimisation period? We can think
of validation as a kind of crash test for models: we take a model (SANDHY),
put it in some situations it was not constructed for (independent data), note
its degradation (in terms of performance) and report the related implications for
applications. This gives valuable information to later users of the model about
what they can expect it to do well or not so well. Parts of this chapter have
been presented as a poster at the EGU General Assembly 2014 (Radanovics et al.,
2014).

6.1 Validation periods

Out of sample validation tests the stationarity assumption inherent to all down-
scaling methods (Frost et al., 2011) and is needed to ensure robust results as
pointed out by Maraun et al. (2010). The choice of the length of calibration and
validation periods is often restricted by the length of the available datasets. For
example Hughes and Guttorp (1999); Bellone et al. (2000); Timbal and McAvaney
(2001); Piani et al. (2010); Lavaysse et al. (2012); Souvignet and Heinrich (2011)
use periods of not more than 12 years.

The division of the available data into calibration and validation periods can
be a difficult task because on one hand sufficient data for calibration is needed
to get adequate parameters and robust results. Specific to the analogue method
the calibration period has to provide a reasonably large pool of analogue dates.
On the other hand the validation period has to be long enough to ensure a stable
calculation of the validation scores. If authors do not choose periods of equal
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length, usually the calibration period is chosen to be longer than the validation
period, for example Vrac and Yiou (2010) and Khan et al. (2006) use a 30-year
learning period and a 15-year and 10-year validation period respectively, Bontron
(2004) 44 years for calibration and 5 years for validation, Kallache et al. (2011)
35 years of calibration and 14 years for validation, Carreau and Vrac (2011) 25
years for training and 21 years for validation. An exception is Hanssen-Bauer et al.
(2003) who used 61 years for training and 38 years for validation of precipitation
downscaling models but 30 years calibration and 61 years validation periods for
temperature downscaling, and Frost et al. (2011) who used 20 years for calibration
and 25 years for validation.

Finally one has to decide if one wants to validate the performance in a similar
climate or in a slightly different climate. For example Ben Daoud (2010) chose
to calibrate on the period 1972-2002 excluding the years 1978, 1983, 1988, 1993,
1998 for validation, where the excluded years are chosen to represent as well as
possible the 1972-2002 climate. Haylock et al. (2006) and Yang et al. (2010)
placed their 15-year validation period in the middle of a 28 years or 26 years
calibration period respectively. If one wants to test the ability of the method to
adapt at a climate that is slightly different from the calibration climate the more
common separated periods set-up is used. This is especially important when the
downscaling method is to be applied in a climate change context. The SANDHY
method is here validated on a completely independent period, that is a time period
that has neither been used for optimising the predictor domains nor as an archive.

Here it is important to have two periods of the same length, because the skill
of the analogue method strongly depends on the archive length (Radanovics et al.,
2013a) and we want to test the influence of an alternative archive as compared to
suboptimal predictor domains separately as will be described in more detail later
in section 6.2. Periods of the same length are used for example in Vrac et al. (2007)
and Orlowsky et al. (2010) and in Beuchat et al. (2012). The predictor domain
optimisation has been performed for the 1 Aug. 1982 — 31 July 2002 period that
is called late period in the following, the independent period from 1 Aug. 1958 —
31 July 1978 is referred to as early. These are the same periods as used for the
difference maps in section 2.4 where it has been shown that there are indeed some
slight differences between the two periods in terms of mean daily precipitation,
high percentiles and percentage of dry days.

6.2 Validation experiments

A specificity of the analogue method is that it has an archive period, that is the pool
from which analogue days can be selected. During the optimisation the archive
period is equal to the simulation period with some days around the currently
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Figure 6.1: Time periods used in the validation experiments. 1 is the reference
experiment, 2 the out of sample validation, 3 the alternative archive experiment
and 4 the suboptimal predictor domains experiment.

simulated day excluded. It should be noted that for the validation experiments
only the first of the optimised domains for each zone is used. Four experiments
are conducted:

Reference experiment (simulation 1) against which the performance of the
downscaling in the validation experiments is compared is a simulation under
optimisation conditions. This means that the archive period and the simu-
lation period are equal to the optimisation period, that is the late period.

Out of sample validation (simulation 2) is a simulation of the early period
with the late period as archive. This set-up simulates realistic circumstances
in reconstruction applications.

Alternative archive experiment (simulation 3) is a simulation of the late
period but with the early period as archive, thus testing the influence of an
alternative archive.

Suboptimal predictor domain experiment (simulation 4) is a simulation
of the early period with the early period as archive, thus using the perfect
archive for the simulation and testing the influence of suboptimal predictor
domains that were optimised for the late period.

Figure 6.1 summarises the validation setup. The experiments 2, 3 and 4 are
compared below to the reference simulation 1 in terms of CRPSS and bias. The
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CRPS i, for each of the experiments is calculated using the climatology from the
archive period to predict the simulation period. The CRPSS always express the
skill with respect to the climatological “model” reference.

6.3 Validation Results

6.3.1 CRPS and CRPSS

6.3.1.1 Reference simulation

First we are interested in the spatial distribution of the CRPS and the CRPSS
for the reference simulation shown in Figures 6.2 and 6.3. The CRPS and CRPSS
show a distribution related to the precipitation regime. The spatial distribution of
the CRPS is very similar to the one of the climatological CRPS (compare Figure
3.1) with larger errors where the precipitation amounts are higher (compare Figure
2.3). At the same time these are the regions where we find the largest improvement
over the climatological CRPS as can be seen on the map for the CRPSS (Figure
6.3 and Figure 5 in the article of Section 5.1). As has already been discussed in
the article, the highest skill in terms of CRPSS can be found in regions with high
mean precipitation for example in the Alps, the Cévennes, the western side of the
Massif Central and the Vosges as well as at the Atlantic coast. The lowest skill is
found along the Mediterranean coast, the eastern side of Corsica and the eastern
side of the Massif Central.

6.3.1.2 Validation experiments

Next we want to know how much skill is lost if an independent period is simulated.
Therefore the differences in CRPSS between the experiments described in Section
6.2 are shown. Figure 6.4 shows the CRPSS of the reference experiment on the
x-axis and the CRPSS of the other experiments on the y-axis for all 608 zones. The
upper left subfigure with the red dots correspond to the out-of-sample validation
experiment. For most of the zones some skill loss is observed compared to the
reference simulation (points below the first diagonal), about 0.03 on average. This
skill loss is of the same order of magnitude as the difference between using (1)
locally optimised domains or (2) one domain optimised for the France average
precipitation, as shown in Section 3.2.1 of the article in Section 5.1. For a few zones
we see a very small increase of skill in the out-of-sample validation experiment
compared to the reference experiment (points above the first diagonal) and for
one zone a dramatic skill loss of 0.17 can be seen. The zone in question is zone
367 with a large difference in average daily precipitation between the late and the
early period as shown in Figure 2.9. The zone is under the most skillful ones in
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Figure 6.2: CRPS for the reference simulation.

the reference experiment and among the ones with the poorest skill in the out of
sample validation experiment. This is further examined later in Section 6.4.

The upper right figure with the blue dots in Figure 6.4 corresponds to the
alternative archive experiment. All the dots are below the first diagonal, but in
general rather close to it, which means that we observe a rather small skill loss
everywhere.

For the suboptimal predictor domains experiment in the bottom subfigure with
the green dots in Figure 6.4 a similar behaviour as for the out of sample validation
can be seen. Note that for zone 367 the skill loss in the suboptimal predictor
domains experiment is about half the one observed in the out of sample validation.
If the suboptimal predictor domain explains only half of the skill loss for zone 367,
what is responsible for the other half? If it is the archive, why don’t we see anything
extreme in the blue dots? In fact our four experiments are only one half of the
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Figure 6.3: CRPSS for the reference simulation.

experiments one could do, because the optimisation period is here never changed.
The experiment that is supposed to explain the other half of the skill loss would
be a simulation of the early period with domains optimised for the early period
and the [ate period as archive. Such an experiment has not been done, because
it implies to redo the optimisation of predictor domains for the early period and
the optimisation is comparatively costly in terms of computer resources. It was
hoped that the two periods would be more or less interchangeable in terms of
behaviour in the validation set-up, but obviously it can not be concluded from the
early period being a suitable archive for a simulation of the late period that the
late period is a suitable archive for the simulation of the early period.

Figure 6.5 shows maps of the difference in CRPSS between each of the four
experiments and the reference experiment. Obviously for the reference experiment
the difference is zero everywhere. Purple colour indicates skill loss and green colour
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Figure 6.4: CRPSS of the reference experiment vs. CRPSS of the other experi-
ments for all 608 zones.

skill gain with respect to the reference simulation. For the out of sample validation
(upper right panel in Figure 6.5) it can be seen that the zones exhibiting a skill gain
are situated in the south-eastern part of the country. Zone 367 is even off the scale
and therefore in grey colour and can be found in the Massif Central, more precisely
in the Sancy Massif that is the highest peak in the Massif Central. The spatial
structure of the skill differences of the suboptimal predictor domain experiment
(bottom right panel) is similar to the one of the out of sample validation except that
there are less zones with a skill gain. For the alternative archive a nearly spatially
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Figure 6.5: CRPSS difference between the validation experiments and the reference
experiment.

uniform skill loss can be seen with somewhat more skill loss in the Normandy, the
Paris region and the Cévennes and less in Aquitaine and Burgundy. Note that
the spatial structure of the CRPSS differences are similar between experiments
simulating the same period.

The predictor domains for SANDHY have been optimised using the CRPSS as
an objective function, that means that SANDHY is supposed to do rather well in
terms of CRPSS since it has been optimised for it. In the next subsection a second
verification measure that is widely used to rate and compare models, the bias, is
employed.
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6.3.2 Bias

The bias is a basic deterministic verification measure. In contrast to the CRPSS
it has not been used during optimisation and is thus an independent criterion.
Since the bias is a deterministic criterion it has to be decided with respect to
which deterministic quantity that can be derived from the probabilistic simulations
it should be calculated. It is chosen to calculate the bias with respect to the
mean of the 25 analogue precipitation values following Chardon et al. (2014).
Other reasonable choices would be the median or an other fixed quantile of the
empirical distribution. For asymmetric distributions like the ones typical for daily
precipitation, the resulting biases will strongly depend on this choice.

In Figure 6.6 the spatial distribution of the bias with respect to the mean of
the 25 analogue precipitation values is shown for the four experiments. For the
reference simulation, upper left panel, the mean is generally positively biased. The
strongest positive biases are found in the Alps, in the Cévennes mountains and
along the western slopes of the Massif Central. Negative biases can be found in the
eastern Pyrenees, along the Mediterranean coast, in northern Corsica and some
zones in northern France. In general wet areas, for example at the windward side
of mountain ridges, tend to have stronger positive biases than drier areas that have
rather small biases. This shows that the bias is location specific and it can not
be concluded from seeing a positive bias in one region that the method leads to a
positive bias everywhere.

The spatial distribution of the biases in the suboptimal predictor domain exper-
iment, lower right panel, is rather similar to the one for the reference experiment,
with some tendency to stronger positive biases in the southern part of the country
for example in the southern Alps, the Cévennes and the western Pyrenees.

For the out of sample validation, upper right panel, the changes in bias differ
from zone to zone. The positive bias in the Alps and the northern part of the
country increases, while it stays about the same in the northern Cévennes. There
are more zones with positive bias in the southern Cévennes, where the sign of
the bias changes, and along the Mediterranean coast. The zone 367, that suffers
from substantial skill loss in this experiment, has a strong positive bias, while in
the reference simulation the positive bias for this zone is much smaller and quite
similar to the one for the zones around.

For the alternative archive simulation, lower left panel, the biases change sub-
stantially compared to the reference simulation. There are many zones in the
northern part of the country, that have a negative bias in the alternative archive
simulation and a positive one in the reference simulation. In the southern part of
the country the positive biases tend to be more intense in the Cévennes and less in-
tense in the Alps compared to the reference simulation. Along the Mediterranean
coast the sign of the bias changes: there are positive biases in the alternative
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Figure 6.6: The spatial distribution of the bias for the four simulations.

archive simulation and negative ones in the reference simulation. The negative
biases in the eastern Pyrenees are still present. The zone 367 has a strong neg-
ative bias in this experiment. The difference in bias for the alternative archive
simulation seems to be related to the difference in mean precipitation during the
two different periods, since the pattern shows some similarity to the mean precip-
itation difference between the two periods as shown in Figure 2.9. The analogue
dates are sampled from a period with more precipitation in the southern part and
less precipitation in the northern part compared to the reference, which explains
stronger positive biases in the south and negative biases in the north. In summary
changes in the bias that are spatially non-uniform occur if the archive period is
different from the simulation period.

The odd behaviour of zone 367 leads to the question why this zone behaves
differently from the others. What causes the downscaling to fail the validation in
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this case?

6.4 Some details about zone 367

The most important reason is probably the difference in the average precipitation
between the early and the late period seen in Figure 2.9 that stems from additional
measurements at higher altitude that are included in the late period but not in
the early one. This leads to an inhomogeneity in the precipitation time series and
therefore an instationarity of the predictor-predictand relationship since the same
large scale situation does not lead to the same precipitation any more. In this case
a key assumption of the statistical downscaling is violated.

Nevertheless there might be other influences which is why the time series of
zone 367 is inspected in a bit more detail.

6.4.1 Precipitation time series

Figure 6.7 shows the precipitation time series of zone 367. Due to the large vari-
ance of daily precipitation the difference in the mean is hardly visible. The most
noticable feature is that in the late period two events with very high precipitation
amounts occur that are higher than anything observed during the early period.
Notably on the 13 February 1990 190 mm of precipitation in one day is given
for zone 367. Regarding the station records used in Safran, there is actually the
station Besse — Saint Anastasie at 1340 m, where 216 mm of precipitation were
observed on the day in question so this is not an error in the Safran reanalysis.
The zone contains a second station at 1000 m where 86 mm were observed. So
the values in the Safran data are not inconsistent with the observations used and
it can be concluded that these high precipitation values are not due to an error in
the reanalysis.

6.4.2 Case study day 13 February 1990

So if it was not a reanalysis error, what was the large-scale situation leading to
the very high precipitation amount?  Figures 6.8, 6.9 and 6.10 show maps of
the predictor variables used in SANDHY for every 12 hours from 13 February
1990 00:00 UTC to 14 February 1990 12:00 UTC. On the 13 February at 00:00
UTC there was a trough over central Europe and a ridge over the Atlantic Ocean
moving towards Europe during the two days. At the 1000 hPa level there is a low
pressure center over the Adriatic Sea on the 13 Feb. at 00:00 moving eastward. A
second one is located over the North Sea, that belongs to a low pressure system
whose center becomes visible at 12:00 UTC the same day north-west of the British
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Figure 6.7: Precipitation time series of zone 367 for the period 1 Aug. 1958 - 31
July 2002. The purple lines represent the mean over the early and the late period.

[slands. This low pressure system is moving south-eastward such that it is over the
North sea the 14 Feb. at 00:00 UTC and over central Europe twelve hours later.
If we compare the low-level geopotential maps with the (low level) temperature
maps and the humidity maps we can see that this low-pressure system is associated
with a frontal system. On the 13 Feb. 12:00 the warm front is located over the
British Islands and continues over France until the Mediterranean Sea. The cold
front is north of Ireland. On the 14 Feb. at 00:00 UTC the fronts have already
started to occlude over northwestern Germany and the Benelux, the warm front
passes over eastern France, along the Alps to the Mediterranean and the cold front
from Belgium westward. During the next twelve hours the occlusion gets deformed
along the Alps and the cold front passes over northern France. At 12:00 UTC we
can already see the next low pressure center with a new frontal system approaching
from the north-west. The precipitation observed over France on the 13 Feb. stems
mainly from the warm front and probably the point of occlusion passing over on
the 14 Feb. in the early morning.

Figure 6.11 shows the corresponding precipitation over France accumulated
from the 13 Feb. 1990 6:00 UTC to the 14 Feb. 1990 6:00 UTC. Heavy precipitation
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Figure 6.11: Precipitation from zone averaged Safran data on the 13 February
1990.

has been observed over most of northern and eastern France with orographically
enhancement due to the Alps, the Jura, the Massif Central, the Vosges, the Morvan
and the Ardennes. The highest precipitation values are observed in the Alps and
at the zone 367 in the Massif Central.

6.4.3 SANDHY predictor fields for the 13 February 1990

Now that we have an overview of the situation on the day in question we can look
more specifically at the predictor fields at the times actually used in SANDHY.
Figure 6.12 shows these predictor fields. The top right panel shows the isohypses
of the 500 hPa pressure level on the 14 Feb. 00:00 UTC and the top left panel
the temperature at the 600 hPa pressure level on the 13 Feb. at 12:00 UTC.
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Figure 6.12: Predictor fields for the 13 February 1990. Top left: temperature at
600 hPa 13 Feb. 12h, top right: geopotential at 500 hPa 14 Feb. Oh, second row
left: temperature at 925 hPa 14 Feb. 12h, second row right: geopotential at 1000
hPa 13 Feb. 12h third row and bottom row left: vertical velocity at 850 hPa at
two of the four timesteps used 13 Feb 12h and 14 Feb Oh, middle and bottom right:
relative humidity at 850 hPa times total column water at same timesteps as vertical
velocity. Predictor domains for zone 367 are depicted in green for geopotential and
black for the other variables.
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We can see a trough over the North sea and northwesterly upper-air flow over
France with slightly anticyclonically curved isohypses in the predictor domain for
the geopotential predictor (green rectangle). Warm air masses are situated over
southwestern Europe and colder ones over central Europe. Note that the isohypses
in the predictor domain are rather anticyclonic, which is not a typical situation
for heavy precipitation.

In the second row the left panel shows the isohypses of the 1000 hPa pressure
level on the 13 Feb. 12:00 and the right panel the temperature at the 925 hPa
pressure level on the 14 Feb. 12:00. We see a low pressure center north-west of
the British Islands and a short wave trough over the British Islands and northern
France in about the same place were the warm front is located the 13th at 12:00.
These cyclonically curved isohypses together with the north-westerly flow lead to
positive vorticity advection and to upward motion as can be seen in the vertical
velocity field at the same time (third row left panel in Figure 6.12). This upward
motion together with the available humidity are the ingredients for precipitation.
The low level temperature is taken the day after where not only the warm front
has already passed but the cold front as well and thus the temperature in the
predictor domain (small black rectangle) is not as high as the one that was actually
associated with the warm front. There is more or less strong upward motion at all
four time steps considered for vertical velocity in the predictor domain (only two
timesteps are shown) and high humidity values at both time steps.

So we can say that the event is well captured by the humidity and vertical
velocity predictors, but the low level temperature has been taken too late to cap-
ture the event and the predictor domain for the geopotential predictors is more
south than a human forecaster would tend to look. As a consequence SANDHY
considers the situation to be more anticyclonic than it actually is.

6.4.4 Influence of an heavy precipitation event

What are the consequences of having an event like that in the archive? Does it
influence the predictor domain optimisation such that it leads to unreasonable
predictor domains? How often is the 13. Feb. 1990 selected as an analogue date
when simulating the early period?

To answer the first question the predictor domain optimisation for zone 367
has been repeated using a data set where the precipitation on the 13 Feb. 1990
has been replaced by a value linearly interpolated between the precipitation values
of the 12 Feb. 1990 and the 14 Feb. 1990. The resulting predictor domains, shown
in Figure 6.13, are identical to the ones found for the original data, so it can be
concluded that the predictor domain optimisation does not depend on one extreme
event.

To answer the second question it is counted how often each day in the archive
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Figure 6.13: Optimised predictor domains for zone 367.

has been selected as an analogue date for the simulation period. Figure 6.14 shows
the distribution of the selection frequencies for all archive days in the late period
when simulating the early period for zone 367. The average selection frequency
is 25 times because 25 analogue days are chosen for each simulated day and the
archive and the simulation periods are of the same length. The distribution of the
selection frequencies is skewed with a median selection frequency of 22, a minimum
of 0 and a maximum of 132. The 13 February 1990 has been selected 52 times and
is therefore under the 8% of most selected days.

6.5 Conclusions

The skill loss in the out of sample validation is reasonable in most cases, but we
have to be aware that substantial skill loss may occur for some zones. Skill loss
mainly occurs when the simulation period is different from the optimisation pe-
riod which questions the robustness of the predictor domain optimisation. In the
presented validation setting it can not be determined weather the skill loss occurs
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Figure 6.14: Distribution of selection frequency for the days in the archive (late pe-
riod) for the simulation of the early period for zone 367. The dashed line indicates
the selection frequency of the 13 February 1990.

because the early period is more difficult to simulate or because the optimisation
is not robust. To conclude on this point experiments with predictor domains op-
timised for the early period would be required which implies important additional
optimisation costs. Changes in the bias occur mainly when the simulation period
is different from the archive period. These changes in bias, that depend on the dif-
ference in climatology between the archive and the simulation period, have serious
implications for the application of the method: we can not assume that the bias at
a given place will be constant over time and thus any attempt to do a simple bias
correction that relies on this assumption will not be valid. Furthermore it shows
that the downscaling method has difficulties to adapt to a slightly different climate
and that in the context of a changing climate biases have to be expected such that
long-term trends and variability are underestimated. More precisely, if there is for
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example a positive long-term trend the bias is expected to become more negative
than for recent climate conditions.

An extreme event that occurs in the archive period under large-scale conditions
that are not rare can affect the downscaling results, because the extreme precipi-
tation is resampled far too often. On the other hand if there aren’t any extreme
events in the archive, they can not be simulated at all with a pure resampling
method like SANDHY.
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7 Using better domains from neigh-
bouring locations

During the preparation of the validation of the downscaling method that was the
subject of Chapter 6, a CRPSS over the 20-year long optimisation period was
calculated for every zone and every predictor domain found for any zone. In total,
optimising predictor domains for 608 zones using five growing rectangular domains,
847 different domains, or more precisely combinations of geopotential predictor
domain and nearest ERA-40 grid cell, were found. 847 times 608 CRPSS values are
calculated which allows to search for every zone which of the 847 predictor domains
gives the largest, that is best, CRPSS. Ideally, if the optimisation algorithm works
well, this best predictor domain should be the same as the one that has been found
during optimisation, but looking at Figure 7.1, that shows the difference between
the largest CRPSS and the CRPSS of the first of the locally optimised domains,
it can be seen that this is actually not the case for the majority of the zones.
The largest differences are found along the Mediterranean coast and the spatial
pattern of the differences is governed rather by the ERA-40 grid cell limits than
climatologically meaningful features. The predictor domains that result directly
from the optimisation are called optim in the following and the ones with the
largest CRPSS are called best.

7.1 Why have the best domains not been found?

There are two reasons why the optimisation algorithm was not able to find the best
domains. The first one is the choice of the starting domain. The nearest 2x2 grid
point domain from the target zone has been chosen, but this may not always be
the best choice as has been already shown in section 4.1 of the article in Section
5.1. The red grid in Figure 7.1 indicates where the starting domain changes.
North of the 47.5 deg. line we can actually see a zone with considerable differences
in CRPSS that seems to be related to this limitation. The other regions with
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Figure 7.1: Difference between the CRPSS for the best domain found and the
one for the first optimised domain. The black grid indicates where the nearest
ERA-40 grid cell changes, the red grid indicates where the starting domain of the
optimisation changes.

comparatively large differences align rather along the black grid which indicates
where the nearest ERA-40 grid cell — and therefore the predictor domain of the
temperature, vertical velocity and humidity predictors — changes. This brings us
to the second important choice, which is the fact that the predictor domains for the
other three predictor variables were not optimised. The nearest ERA-40 grid cell
to the target location has been used. This seems not the best choice for many zones
and especially for the zones along the Mediterranean coast. But where exactly has
been found the best domain of a given zone?



7.2. WHERE HAVE THE BEST DOMAINS BEEN FOUND ORIGINALLY?137

7.2 Where have the best domains been found
originally?

In Figure 7.2 some arrows have been added that start from the zones for whom
the difference in CRPSS between the first optim domain and the first best domain
is larger than 0.01. The arrows point to the zones where the first best domain in
question has been found as one of the five optimised domains. If this best domain
for zone A has been among the five optim ones for several zones (let’s say B, C and
D), there are several arrows starting from the zone A and pointing to the zones B,
C and D respectively. Where arrows cross the black grid, the nearest ERA-40 grid
cell and therefore the predictor domain for the temperature, vertical velocity and
humidity predictors changes. We can not tell from this graph if the geopotential
predictor domain changes as well or not, but what we can say, is that if only the
black grid is crossed and not the red one, the search space for the geopotential
predictor domains has had the same a priori restrictions during the optimisation.
Where arrows cross the red grid only, only the geopotential predictor domain has
changed, but this does not occur for the largest differences.

To see arrows that cross red lines, we have to look at Figure 7.3. Here there
is an arrow for every zone where the first best predictor domain is not equal to
the first optim predictor domain, but it points only to one of the zones for whom
their best domain has been found during optimisation. To keep the example from
above, the arrow from zone A points to zone B only now if B is the first encountered
zone. Many arrows point towards the same zones, which is related to the fact that
they always point towards the first encountered zone for whom the best domain
has been found during the optimisation. Therefore this does not mean that these
zones are more representative than others.

The five best domains out of the pool of 847 domain are compared with the five
optimised ones for the three main case study zones that are described in section
2.1.2 of the article in Section 5.1. Figure 7.4 shows the five optimised domains
and the five best domains for the three case study zones. For the Saone case study
zone the five best domains are smaller in north-south direction than the optim
ones. The five best domains are similar to the domains found in the sensitivity
study using an alternative starting point, that is the most relevant elementary
domain instead of the nearest grid cell, in Figure 8 of the article in section 5.1.
As discussed in the article, the Saone case study zone is one of the zones where
the nearest elementary domain is clearly not the optimal starting point for the
predictor domain optimisation. The predictor domains for the other variables, that
is the ERA-40 grid cell used, are shown in Figure 7.5. The first, third and fourth
best domains have the same predictor domain for the local predictor variables as in
the optim experiment. Figure 7.6 shows where the best predictor domains for the
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Figure 7.2: As Figure 7.1 but with arrows from the zones where the difference is
larger than 0.01 to all the zones for whom their first best domain has been found
during optimisation.

case study zones have been found during the optimisation and indeed the arrows
corresponding to the first, third and fourth domain do not cross a black line. For
the domains 2 and 5 the local predictor domain differs. Note that the geopotential
predictor domain is three times the same for domains 2, 4 and 5, which means that
the only difference between them is the local predictor domain. This is in contrast
to the zones along the Mediterranean coast, where important skill differences arise
due to a suboptimal local predictor domain used in the optim case.

For the Arve case study zone the first best geopotential domain has been found
fourth best during optimisation, but with a different nearest grid cell further north.
The zones for whom the best and the third best domains have been found are the
same which makes the corresponding arrows in Figure 7.6 hard to see because they
are the same. The same applies to the second and the fifth domain, such that the
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Figure 7.3: As figure 7.1 but with arrows from the zones with a difference in
CRPSS to one of the zones for whom their best domain has been found during
optimisation.

blue arrows are below the orange ones. For the Arve zone it can be seen that no
arrow crosses a red line, but the ones for the first, third and fourth best domain
cross a black line, leading to a different local predictor domain as can be seen in
Figure 7.5. The second and the fifth best domains correspond to the first and the
second optim ones. The third and the fourth best domains have the same predictor
grid cell for the temperature, vertical velocity and humidity predictors as the first
best and geopotential predictor domains similar but not equal to the optimised
ones. In summary, for the Arve catchment there is a small but not crucial benefit
from using different predictor domains for the temperature, vertical velocity and
humidity predictors.

For the Ardeche zone the first, second, fourth and fifth best domains correspond
to the first four optim ones. The third best domain has been found for a zone next
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Figure 7.4: top: five optim geopotential predictor domains, bottom: five best
geopotential predictor domains for three case study zones.

to the Ardeche zone and has not been found because the search algorithm did
not search far enough to the east. This is in line with what has been found in
the 99 domains experiment in Section 5.2, where we saw a “gap” in the aspect
ratio (Figure 5.2) that the search algorithm could not overcome using the five
domain configuration. Obviously only one of the three domains, that have been
found to perform better than the third and fourth optim domain in the 99 domain
experiment has been found for other zones. There is no change in the local domains
for the Ardeche zone.

Following these details about the best domains compared to the optim domains
for the three case study zones, where we saw very little changes for the Ardeche
zone and much more important changes for the Sadne zone, we will see how the
domain characteristics at the scale of France differ between the optimised and the
best domains.
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Figure 7.5: top: predictor domain for temperature, humidity and vertical velocity
in the optim experiment, bottom: five predictor domains for temperature, humid-
ity and vertical velocity in the best experiment for three case study zones.

7.3 Characteristics of the best domains at the

scale of France

Figure 7.7 shows the mean domain center for the geopotential predictor for the
optimised and the best five domains. The overall pattern of the mean domain
center remains the same, but for individual zones changes can be noted. North of
the 47.5 deg line the domain centers tend to be more south, in the northern part
of the Massif Central and in the Alps the pattern is less patchy.

The next interesting question is how the domain center variability behaves,
because on one hand there is more variability for zones like the Ardeche case study
zone, where we saw that one of the best domains is reaching some degrees further
to the east than the optimised ones, on the other hand there is less variability
for zones like the Saone case study zone where three times the same geopotential
predictor domain with different domains for the local predictors is under the best
five. Figure 7.8 shows the domain center range for the five optimised domains and
the five best domains. With the best domains there are larger areas with small
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Figure 7.6: As figure 7.2 but with arrows from the three case study zones for all 5
best domains.

domain center ranges. However, there are some more zones in the Southeast that
have large domain center ranges. It can therefore be concluded that the case study
zones seem to be quite representative for their respective regions.

The picture for the mean domain size of the five optim domains was much
more patchy than the one for the mean domain center. In addition a sudden
change in domain size was observed along the 47.5 degree latitude line (compare
Section 5.1). In Figure 7.9 the mean domain size of the five optimised domains
and the five best domains is shown. For the best domains the domain size shows a
much smoother overall picture, especially along the Alps. The jump along the 47.5
degree latitude line is not there any more and there are less zones with extreme
domain sizes in the Massif Central. Taking the best domains reduces the number
of different domains from 847 to 456, which may explain the smoother picture of
the mean domain size. Concerning the domain size range ratio in Figure 7.10, an
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Figure 7.7: Mean domain center for left: best domains, right: optim domains.
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Figure 7.8: Domain center range for left: best domains, right: optim domains.
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2600

2400

2200

Y Lambert [km]

L
2000

1800

g

T T T i U U
0 200 400 600 800 1000 1200

1600

1 1 1 1 U 1
1400 200 400 600 800 1000 1200 1400
X Lambert [km]

Figure 7.10: Domain size range ratio for left: best domains, right: optim domains.
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overall smaller domain size range can be seen for the best domains, especially in
the northern part of the country, while there are some exceptions like the Rhone
valley where the domain size range ratio is larger for the best domains than for
the optim ones.

Figure 7.11 shows the mean domain center of the predictor domain for the
local predictor variables temperature, vertical velocity and humidity. For the optim
domains these domains were imposed to be the nearest ERA-40 grid cell while this
is not the case any more for the best domains which leads to a spatially smoother
distribution of the domain centers.
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Figure 7.11: Mean domain size for left: best domains, right: optim domains.

7.4 Conclusions

A limitation of the optimisation algorithm used in Chapter 5 is the obligation
to choose an elementary domain to start the optimisation from. This limitation
can be mitigated by looking at the skill of the domains found for other zones
but this might be less efficient for zones close to the country borders where other
zones are not available in every direction. The limiting effect of the imposed and
not optimised predictor domains for the local predictor variables temperature,
vertical velocity and humidity is mitigated as well. The limitation related to
the insufficient exploration of the search space as has been demonstrated in the
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99 domain experiment in section 5.2 has been only partially mitigated by using
domains found for other zones, but if we look at the CRPS differences this is only
a minor limitation. The number of different predictor domains is substantially
reduced from 847 to 456, suggesting an increase in the spatial coherence over the
whole country.



8 Predictand area aggregation

In this chapter groups of zones are formed that are expected to use the same
parameters for the downscaling and therefore reducing the different parameter
configurations used. This is expected to lead to stronger spatial coherence inside
the groups but introduces increased spatial decoherence at the boundaries. The
process of building groups is supposed to help defining a typical spatial scale up
to which not much skill loss is expected when taking the same parameters. This
means that in addition it has to be decided which parameters a specific group is
supposed to use. Cluster algorithms form groups of similar items. To this end
the similarity between these items, in this case the zones, has to be defined. The
similarity can be defined in terms of predictands or predictors. Results from this
chapter have been presented at the EGU General Assembly 2013 (Radanovics
et al., 2013b) and the IMSC 2013 (Radanovics et al., 2013c).

8.1 Cluster zones by correlated precipitation

This section deals with clustering in terms of predictands. This means that only
precipitation data is used and it is independent of the predictors, the predictor
domains and their optimisation. Seibert et al. (2006) uses a mixture of hierarchical
clustering and k-means clustering of backward trajectories to define regions with
similar behaviour in terms of precipitation. Matulla et al. (2003) compares three
methods to define homogeneous precipitation regions: rotated principal component
analysis, self organising networks and hierarchical clustering with correlation as
similarity measure and concludes that the differences between the methods in
terms of the resulting groups is small.

Here the zones are clustered using the affinity propagation algorithm (Frey and
Dueck, 2007). Affinity propagation builds clusters by passing messages between
data points and returns a representative cluster member for each cluster in addition
to the definition of clusters. This has the advantage that a representative zone for
each cluster is obtained that could be used to define common parameters for all
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zones in the cluster and thus reducing the parameter space. A second advantage
of the algorithm is that on the contrary to many other clustering methods it
is not necessary to specify the number of clusters beforehand. Frey and Dueck
(2007) found affinity propagation to be faster and giving more accurate results
than the widely used k-means algorithm (Diday et al., 1974). Affinity propagation
is implemented in the R package apcluster by Bodenhofer et al. (2011).

The spearman rank correlation coefficient is calculated between daily precip-
itation for each of the 608 zones over a 44 years period from 1 August 1958 to
31 July 2002 and is used as similarity matrix. Clustering the zones by correlated
precipitation results in 52 clusters that are shown in Figure 8.1. Champeaux and
Tamburini (1996) found 51 clusters using an agglomerative hierarchical classifi-
cation method with the euclidean distance between 20 years (1971-1990) of daily
precipitation at 1976 stations as distance matrix. They found larger clusters in
the north of France and smaller ones in the mountainous regions, particularly in
the Cévennes. With further aggregation they reduced the number of clusters to
12. Compared with their results the clusters obtained with affinity propagation
are rather homogeneous in size.

Aggregating zones by correlated precipitation is not necessarily the most adapted
approach if we think of the analogue method, because using the same analogue
dates does not automatically mean that the precipitation is correlated and using
different analogue dates does not automatically imply uncorrelated precipitation.
Aggregating by correlated precipitation means aggregation in terms of similar be-
haviour of the predictand, but actually we are more interested in similar behaviour
of parameters concerning the predictors.

8.2 Cluster zones in terms of common analogue
dates

To include some information on the predictor domains in the clustering but main-
taining the advantages of continuous distances the similarity between zones is
expressed in terms of the fraction of common analogue dates between two zones.
The fraction of common analogue dates is calculated over the 20-year late period
for the 5 optim domains found in Section 5.1 for each pair of zones. The analogue
dates from the five domains were pooled together. If an analogue date for a given
day has been found with several domains (out of the five) it is counted as often as
it appears for both zones that are compared. For example for zone A the day d
has been selected with 3 of its domains and for zone B the day d has been selected
with 2 domains, it is counted two times for the fraction of common dates. This
ensures that the fraction of common dates of A with B is the same as the one for
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Figure 8.1: Zones clustered to 52 clusters with the affinity propagation algorithm
by rank correlation coefficient of precipitation.

B with A, so that the resulting similarity matrix is symmetric.

The 608 zones are clustered again using the affinity propagation algorithm, but
this time with the fraction of common analogue dates as similarity matrix. The
resulting clusters can be seen in Figure 8.2. Here a much larger number of clusters,
87, is obtained but they are now smaller in the southern part of the country and
larger in the northern part, which is in line with the results of Champeaux and
Tamburini (1996) and reflects the less similar predictor domains found in the
southern part of the country in Section 5.1.

The fraction of common analogue dates contains some information about the
similarity in terms of predictors, however, it does not ensure that the local skill
is maintained. In order to aggregate zones without loosing skill they are now
aggregated by the predictor domains itself.
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Figure 8.2: Zones clustered with the affinity propagation algorithm by fraction of
common analogue dates.

8.3 Aggregate zones by same predictor domains

Aggregating zones by the same predictor domain imposes homogeneity in terms of
predictor domains inside the groups and thus ensures that using the same param-
eters for the whole group does not lead to a loss in skill. The drawback is that the
resulting distances — the number of common optim predictor domains between two
zones — take only a few discrete values (0 to 5) which is an issue for most clustering
algorithms. Therefore affinity propagation is not used here. Equal distances occur
frequently if the distances between elements comprise just a few distinct values.
Those so called ties in proximity lead to non-unique cluster solutions.
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8.3.1 Aggregation methods

For each domain that is near-optimum for at least one symposium zone, an iden-
tifier is assigned. The predictor domains for all predictor variables are considered,
which means to get the same identifier the geopotential predictor domain and the
nearest ERA40 grid cell must be equal. This ensures the same analogue dates.
Three aggregation methods are considered and are described in the following.

8.3.1.1 Simple Aggregation (SG)

This algorithm is designed to yield a small number of groups and to minimise the
number of very small groups. The algorithm works as follows:

1. Find the zones that do not share any of their near-optimum domains with
any other zone and assign them their first domain.

2. Find the zones that share one out of their five near-optimum domains with
any other zone and assign it to them. Assign this domain to all other zones
sharing this domain too.

3. Recalculate the number of shared domains for the remaining zones and repeat
steps 1 and 2.

4. If all the remaining zones share at least two of their near-optimum domains
take one of the zones that share two domains and assign the one that occurs
more often. Assign this domain to all remaining zones sharing this domain
too.

5. Repeat steps 3 and 4 until all zones have a domain assigned.

This algorithm, like most clustering algorithms in the presence of ties in proximity,
depends on the order of the zones in the input file and is run forward (SGF) and
backward (SGB) through the input file.

8.3.1.2 Maximum occurrence (MOC)

For every predictor domain the number of zones for whom they are near-optimum
is calculated. For every zone the near-optimum domain out of the five optim
domains with the highest occurrence count is chosen. This leads to some large
groups and many very small groups.

This algorithm is extremely fast and it does not depend on the order of the
zones in the input file in case of equal distances, which is the exception rather
than the rule for aggregation algorithms. However, it depends on the order of the
near-optimum domains in case of equal occurrence counts.



152 CHAPTER 8. PREDICTAND AREA AGGREGATION

8.3.1.3 Variable group agglomerative hierarchical clustering (VGH)

In agglomerative hierarchical clustering items are grouped by distances between
them, starting with the smallest distances. The result is often presented as a
dendrogram, but since a dendrogram with over 600 roots is not intuitively inter-
pretable, it will not be shown here. Ferndndez and Gémez (2008) extended the
widely used pair-group algorithm that aggregates the two closest items in each
step in order to explicitly account for ties in proximity, that is equal distances be-
tween clusters. To explicitly account for the resulting non-uniqueness Fernandez
and Goémez (2008) proposed an algorithm that merges all clusters in the same
supercluster that fall into a tie, while assigning a lower and an upper bound of the
amalgamation interval, that is the minimum and the maximum distance between
the clusters that are merged. The algorithm has been used for example in Gomez
et al. (2013); van Dijk et al. (2013); Arslan et al. (2012).

The algorithm has the following steps:

1. Initialize a single item cluster for each item and initialize the distances be-
tween them.

2. Find the shortest distance separating two clusters

3. Select all groups of clusters separated by this shortest distance and merge
them into superclusters.

4. Compute the distances between all superclusters

5. For superclusters containing more than one item calculate the common amal-
gamation interval, that is the minimum and the maximum distance between
two items in the supercluster.

6. Repeat steps 2-5.

It turned out that standard methods to calculate the distance between su-
perclusters are not restrictive enough to ensure a common predictor domain for
all supercluster elements. Therefore the distance calculation has been adapted
such that distances are calculated considering only domains that are shared by all
elements of a cluster.

For clusters having an upper bound of the amalgamation interval that corre-
sponds to zero common predictor domains, the maximum occurrence method is
used to split these clusters.
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8.3.2 Aggregateability

To aggregate zones we have two possible sets of predictor domains: the ones op-
timised locally optim and the best ones as described in Chapter 7. Both of them
are used and compared. The first question to answer when aggregating zones by
equal predictor domains is where are they actually aggregateable? That is where
neighbour zones have predictor domains in common. In the following the term
aggregateability describes the potential of two zones for being aggregated by com-
mon predictor domains. Figure 8.3 shows the aggregateability for the optim set of
domains in a graphical representation proposed by Bertin (1967, p. 339) where the
dissimilarity of predictor domains corresponds to the line width. The main feature
are the black lines along the ERA-40 grid cells, indicating that all five predictor
domains differ. Two zones with a different ERA-40 nearest grid cell have always
different predictor domains for the local predictors and can never be aggregated.
An additional black line is present around the 47.5° N line discussed in Chap-
ter 5 and 7 (compare Figure 7.9) that results from a change in the elementary
domain to start the optimisation from. Apart from that, neighbour zones have
less predictor domains in common in regions with complex terrain, notably the
Massif Central and the southern Alps, but also around Paris, and many common
predictor domains in the Aquitaine, Burgundy and Champagne regions.

Figure 8.4 shows that taking the best instead of the optim domains, the ERA-40
grid does not play its restricting role anymore. There is still low aggregateability
around the Massif Central, but high aggregateability in the northern French Alps
and the Jura, Burgundy, north of the Massif Central, the Vendée and in Brittany.
Interestingly not only the mountains of the Massif Central and the Vosges but also
minor hills in Normandy induce low aggregateability. It is expected that using the
best domains leads to a smaller number of groups, since the number of different
domains in the data set has already been reduced to 456 compared to 847 in the
optim case.

8.3.3 Aggregation results

Figure 8.5 shows the groups obtained with the different aggregation methods de-
scribed above using the optim and the best domains. Overall, the groups tend to
be smaller in complex terrain, which is in line with Champeaux and Tamburini
(1996). The number of groups obtained for each method are shown in Table 8.1.
The algorithm designed to minimise the number of groups (SGF and SGB) leads
to a smaller number of groups than the other two algorithms. Using the best do-
main set strongly reduces the number of groups for all algorithms. MOC and to
some extent VGH lead to a large number of small groups around the lines of low
aggregateability shown in Figures 8.3 and 8.4 and large groups in between.
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Figure 8.3: Aggregateability of locally optimised domains. The thicker and darker
the line between two zones the less predictor domains they have in common.

In the case of optim the differences in group size distribution between the
methods is not so easily visible on the map representation, therefore the cumulative
size distribution of the groups obtained with the different aggregation methods are
shown in Figure 8.6. Differences in the size distribution between the SG and the
MOC method are expected due to the way they are constructed. As expected, for
the MOC method there are more small groups with a size between 15 and 50 grid
cells and less between 100 and 200 grid cells. The VGH method has more small
groups than the SG method and less groups with a size between 200 and 300 grid
cells.

Figure 8.5 shows that groups tend to be larger using the best domains than
using the optim domains. Figure 8.7 shows how the choice of the domain dataset
influences the group size distribution for the different methods. The maximum
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Figure 8.4: As figure 8.3 but for the best domains.

group size increases for all methods, but there are differences between the methods
concerning the small groups. The number of groups with a size smaller than 50
grid cells is about the same for the MOC and the VGH methods, but decreases for
the SG method. The number of groups with a size between 50 and 250 grid cells
decreases more strongly for the MOC and VGH methods than for the SG method.

8.4 Conclusions

Grouping the zones by fraction of common analogue dates with the affinity propa-
tion algorithm or by common best predictor domain with the variable group hi-
erarchical clustering algorithm leads to nearly the same number of groups (87 vs.
88), but the size distribution of the groups is quite different.
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Figure 8.5: Groups obtained with different methods for left: optim and right: best
domains.



8.4. CONCLUSIONS 157

SGF SGB MOC VGH
optim 100 99 131 132
best 61 60 83 88

Table 8.1: Number of groups obtained for each method with optim and best do-
mains.

Aggregating zones by same predictor domains, the smallest number of groups is
obtained using the simple aggregation algorithm even if the exact number depends
on the order in which the zones are considered. To test all possible order of input
data is not feasible for the whole country, but could be done for some catchments
consisting of a few zones.

Aggregating by best domains rather than optim domains strongly reduces the
number of groups obtained and the barriers of aggregateability are physically more
meaningful than the ones for optim where barriers are somewhat imposed by the
predictor grid.

The reduction of the number of groups is in any case mainly due to fewer groups
in the flat areas of the country, while the number of groups in the southeastern
part of the country with its complex terrain is not substantially reduced. This
does not mean that the same groups are obtained there.

With the VGH method superclusters with an upper bound of the amalgamation
interval that corresponds to zero common domains have to be splitted. Here this is
done using the MOC method for each of the superclusters. This has the advantage
that MOC does not depend on the order of the zones and thus having a unique
solution, but one could think of other possibilities, for example SG, too.

Which method or which set of groups to prefer will depend on the application
and basin to study, but concerning the domain set, best is clearly preferred.

Using continuous distance measures like for example the fraction of common
analogue dates allows to choose an aggregation level by defining a maximum ac-
ceptable distance but the effect on the skill loss can not be controlled. Aggregating
large areas without loosing skill is not possible due to the large diversity of pa-
rameters. Especially the Durance and the Rhone catchments that are used as
case study catchments in Chapter 10 show low aggregateability by common pre-
dictor domains. Therefore spatial coherence in the sense of common predictor
domains and common analogue dates implies de facto a performance loss in these
catchments.

In Part IV a different pathway is explored. Instead of seeking to aggregate, the
spatial properties of simulated precipitation fields using common predictor domains
or locally optimised ones are measured and the effects on streamflow simulations
are explored. Before that the effect of using transformed predictand data in the
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optimisation is discussed in Chapter 9.
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9 Should we use transformed pre-
cipitation?

In previous studies on the stepwise analogue downscaling method (Bontron, 2004;
Ben Daoud, 2010) predictor domains have been optimised using transformed pre-
cipitation as the predictand variable instead of the predictand of interest, raw pre-
cipitation. So far the precipitation data has not been transformed in this study,
but when comparing the performance scores obtained with the ones from other
studies the question arises what influence this choice has on the results. Do the re-
sulting predictor domains differ, and how? How do the CRPSS values differ? Are
the validation results better? Are the predictor domains more similar between
zones, such that the zones can be more easily aggregated? To answer these ques-
tions some of the analysis presented in the previous chapters are repeated using
transformed precipitation as a predictand during optimisation and the results are
compared.

9.1 Why to transform and how?

In some studies the precipitation predictand variable is transformed, often in order
to reduce its skewness. For example Yang et al. (2010) uses the Box-Cox power
transformation to be able to take advantage of methods requiring Gaussian data.
Khan et al. (2006) and Tryhorn and DeGaetano (2011) use a fourth root transfor-
mation prior to a regression analysis and Nicholas and Battisti (2012), Boé et al.
(2006) and Rakovec et al. (2012) a square root transformation. Hwang and Gra-
ham (2013) uses the normal score transformation to calculate spatial correlations
on the normalised variable. Themefl et al. (2010) tests different predictand trans-
formations for a multiple linear regression downscaling method and found the cube
root transformation to be the best performing. The square root transformation
is used in hydrology as well to give more weight to low flows in the streamflow
simulation performance evaluation (Pushpalatha et al., 2012). On the other hand

160
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Zorita and von Storch (1999) notes that variable transformations can introduce
biases in the back-transformed means and variances.

In studies developing or using stepwise analogue downscaling (Bontron, 2004;
Ben Daoud, 2010; Horton et al., 2012) predictor domains are typically optimised
for groups of stations or catchments and their respective catchment average precip-
itation. That means that they are looking for domains that have good performance
for all the catchments in the group. Using raw precipitation in this case would
give more weight to catchments receiving larger precipitation amounts, typically
the headwater catchments in the mountains. This was not desired, therefore the
precipitation values were divided by the maximum daily precipitation within one
year that has a return period of ten years, called adxT10 here. In addition the
square root was taken, which changes the distribution of the data. It renders the
distribution less skewed and therefore downweights the heavy precipitation events
in the optimisation process. Here the same transformation is used such that the
transformed precipitation is defined as:

Prec,quw
Precyy = 4/ o710 (9.1)

The adxT10 is obtained by fitting a Gumbel distribution to the annual maximum
daily precipitation values of the 1959-2009 period. It is calculated with all avail-
able data to make its calculation more stable. The adxT10 is calculated for each
zone and the values for each zone are divided by their own adxT10. This leads to
values that lie nearly always between 0 and 1, except for extremes with a return
period of at least 10 years. This is a desirable property for analysis where equal
weight should be given to each zone regardless of mean precipitation amounts.
For the domain optimisation there is no comparison or interaction between zones,
such that this division alone should not effect the result except that the dimen-
sion (and the values) of the CRPS are changed. Note that Prec,q,, and therefore
the CRPS calculated with Precyqy, has the dimension mm day~! while Precs
is dimensionless. The square-root transformation changes the distribution of the
data, which has the potential to change the local optimisation results. Predictor
domains obtained using transformed precipitation as target variable in the opti-
misation are therefore presented in Section 9.2. The advantage may be that the
performance calculation could be more stable with less skewed data. On the other
hand optimising for a different predictand variable does not necessarily give the
best performance for the actual target variable, which is discussed in Section 9.3.



162 CHAPTER 9. SHOULD WE USE TRANSFORMED PRECIPITATION?

9.2 Effect of transformed precipitation on do-
main optimisation

The optimisation described in Section 5.1 has been repeated with transformed
precipitation as predictand variable. As for the optim experiment 5 near optimum
domains for the geopotential predictor are obtained using multiple growing rectan-
gular domain algorithm. The predictor domains for the other predictor variables
is the nearest grid cell to the target location and the starting domain for the opti-
misation is the nearest 2x2 grid point domain. The experiment using transformed
precipitation as predictand variable is named transformed in the following. The
resulting predictor domains are compared with those found using raw precipitation
as predictand variable (raw) during optimisation which corresponds to the optim
experiment.

9.2.1 Case study zones

Figure 9.1 shows the optimised domains for the same three case study zones as
in Chapter 5 when optimised for raw and transformed precipitation. In general a
substantial proportion of the domains in the five domain ensembles are the same
for the two optimisations, but they are found in a different order. For the Sadne
zone 3 of 5 domains are the same, for the Arve zone 4 of 5 and for the Ardeche zone
3 of 5. The domains that differ tend to be larger for the transformed experiment
than for the raw experiment. A possible reason is that heavy precipitation events
are related to smaller scale disturbances in the geopotential field and therefore
downweighting heavy precipitation makes smaller domains less attractive. The
domain characteristics for all zones in France are shown next to see if the tendency
to have larger domains for the transformed experiment is specific to the selected
zones or a more general feature.

9.2.2 France

The first domain characteristic is the mean domain center location of the five
optimised domains shown in Figure 9.2. No systematic difference can be seen in
the mean domain center location, which is in line with the case studies which don’t
show any systematic shift of domains. There are changes in the domain center
range shown in Figure 9.3. The domain center ranges are smaller, especially in
north-south direction, and show less spatial variability in the transformed case.
The mean domain size tends to be larger for the domains from the transformed
experiment compared to those for raw as can be seen in Figure 9.4. The overall
spatial structure is similar, but the one for the transformed experiment has larger
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Figure 9.1: Optimised domains for three case study zones from the top row: raw,
bottom row: transformed experiment.

contiguous areas with the same mean domain size than the one for raw. The
decreased patchiness tends to be in favor of the larger domains around which is in
line with what has been seen for the case study zones.

Figure 9.5 shows the domain size range ratio. Remember that the size range
ratio is the difference between the largest and the smallest domain extent devided
by the mean domain size for a given zone. A ratio of 0 means that all 5 domains
have the same length in the given direction, a ratio of 1 means that the range is
equal to the mean domain size. The domain size range ratios for the transformed
experiment are overall smaller than the ones for raw. This is partly due to their
larger mean extent. The total number of different domains found for the 608 zones
is 694 for transformed compared to 847 for raw.

The results shown in this section indicate that the five domains found for one
zone tend to be more similar to each other in the transformed case than the ones
optimised for raw precipitation. This is in line with Horton (2012) who found only
minor differences in the optimised predictor domains for 36 stations in Switzerland
using raw and transformed precipitation as predictand. The spatial variability of
the mean characteristics is only slightly reduced.
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Figure 9.2: Mean domain center location for domains optimised using left: raw,
right: transformed precipitation as predictand. The red grid corresponds to the
places where the starting domain of the optimisation changes.
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Figure 9.3: Domain center range for domains optimised using left: raw, right:
transformed precipitation as predictand.
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Let’s now look at the impact of the transformation on the skill.

9.3 Effect of transformed precipitation on CRPSS
values

9.3.1 Skill evaluated under optimisation conditions

The CRPSS is calculated for the optimisation period using the first optimised do-
main from the raw and the transformed experiment. Figure 9.6 shows the resulting
CRPSS values when evaluated for the variable the domains have been optimised
for. The CRPSS values using transformed precipitation are systematically higher
than those where raw precipitation is used, while the spatial structure does not
change substatially. This shows that the absolute values of the CRPSS depend
on the distribution of the predictand variable. The CRPSS values calculated for
transformed precipitation are of the same order of magnitude as in Bontron (2004)
and Horton (2012).

Optimised and evaluated raw Optimised and evaluated transformed
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Figure 9.6: CRPSS on the optimisation period for the best domain found. Left:
domains optimised and CRPSS calculated using raw precipitation (same as figure
6.3), right: domains optimised and CRPSS calculated using transformed precipi-
tation

But how does the skill behave if the CRPSS is calculated using raw precipi-
tation but with the domains optimised using transformed precipitation? This is
an important question because the target variable is raw precipitation so this is



9.3. PERFORMANCE IN TERMS OF CRPSS 167

where we would like to have some skill. On the other hand evaluating the skill us-
ing transformed precipitation with the domains optimised using raw precipitation
might indicate how the domains optimised for raw precipitation would behave for
a less skewed target variable. This leads to Figure 9.7 that shows the four combi-
nations described above. On the left hand side the first optimised domains from
the raw experiment are used, on the right hand side the first optimised domains
from the transformed experiment are used. In the first row the skill expressed as
the CRPSS in simulation mode is calculated using raw precipitation and in the
second row the skill is calculated using transformed precipitation. Using trans-
formed precipitation in the evaluation leads to higher CRPSS values, so the skill
is higher using a less skewed target variable regardless for which variable the pre-
dictor domains are actually optimised.

The difference in skill for different optimised domains are very small as can be
seen in Figure 9.8. The figure shows the difference between left: the upper left and
the upper right map in Figure 9.7 and right the lower left and the lower right map
in Figure 9.7. Where there are differences, they are mostly in favor of the domains
optimised for the variable that is simulated, that is domains optimised for raw
precipitation are better for simulating raw precipitation and domains optimised
for transformed precipitation are better for simulating transformed precipitation.
This means that if we seek to have the highest possible skill for raw precipitation,
the predictor domains should be optimised for raw precipitation.

9.3.2 Spatial pattern of CRPS and CRPSS

It has been shown that the spatial pattern of the CRPSS is remarkably similar
regardless of the variable it is calculated from and regardless of the variable the
predictor domains are optimised for. This leads to the question where this spatial
structure comes from.

There are two factors that play a role for the CRPSS: the simulation itself and
the reference simulation. In all this work the climatological distribution is used as
a reference simulation. Figure 9.9 shows CRPS maps for simulating in the top row
raw precipitation, and in the bottom row transformed precipitation. In the left
column the CRPS for the climatological reference simulation is shown. For raw
precipitation the spatial pattern of the CRPS is dominated by the distribution of
average precipitation (compare Figure 2.3). The CRPS is higher where there is
higher precipitation. This feature is more pronounced for the reference simulation
than for the analogue simulation, which leads to somewhat higher skill in terms of
CRPSS in the high precipitation regions where it is easier to “beat” the reference
simulation. For the transformed precipitation the effect of precipitation amount
is strongly reduced due to the division by the adxT10 and what is left is the
effect of the proportion of dry days. The CRPS values are lower where there are
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Figure 9.7: As figure 9.6 but completing the matrix. Left: Domains optimised
using raw precipitation, right: domains optimised using transformed precipitation.
Top: CRPSS calculated using raw precipitation, bottom: CRPSS calculated using
transformed precipitation.

more dry days and again the feature is more pronounced for the climatological
reference forecast (compare Figure 2.4). This leads to higher CRPSS in places
with a smaller number of dry days. Again the differences between the simulations
using the domains optimised for raw precipitation or transformed precipitation are
hardly visible.

The lower CRPSS values in figure 9.6 along the Mediterranean coast and in
foehn prone valleys are due to a high number of dry days and low average daily
precipitation, which leads to comparatively small errors of the reference. They are
not due to larger errors of the analogue simulation in these places.
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Figure 9.8: CRPSS difference when simulating left: raw precipitation, right: trans-
formed precipitation, using the predictor domains optimised for raw precipitation
minus using the domains optimised for transformed precipitation. Positive val-
ues: domains optimised for raw precipitation are better, negative values: domains
optimised for transformed precipitation are better.

9.4 Do domains optimised for transformed pre-
cipitation lead to better validation results?

In the last section it has been shown that the skill of simulating raw precipitation
during the optimisation period is slightly lower in the transformed experiment.
However, this may be compensated by a smaller skill loss in validation. Therefore
the validation exercise from Chapter 6 is repeated for the transformed experiment.
The results are shown in Figure 9.10. On average the validation performance using
the predictor domains from the transformed experiment is nearly equal to the raw
one shown in Chapter 6. The smaller skill differences between the reference and
the other validation experiments compensate the smaller skill of the reference.

Downweighting high precipitation amounts in the optimisation does not im-
prove the validation results for zone 367 that has been discussed in detail in Sec-
tion 6.4. Comparing Figures 9.10 and 6.4 it can be seen that the skill loss in the
out of sample validation is even more severe using the predictor domain from the
transformed experiment.

The spatial structure of the bias is very similar between the raw and the trans-
formed experiment as can be seen comparing Figures 6.6 and 9.11. The area
average biases are larger for the transformed experiment.



170  CHAPTER 9. SHOULD WE USE TRANSFORMED PRECIPITATION?

Climatological forecast Optimised raw precipitation Optimised transformed precipitation

2600 +
— CRPS
€ 24004
= 4
522004
8 3
§
s 2000 + 2
>

1800 -

"¢ 0 ¢

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 O 200 400 600 800 1000 1200 O 200 400 600 800 1000 1200
X Lambert [km]

1600

Climatological forecast Optimised raw precipitation Optimised transformed precipitation

2600
— CRPS
€ 2400 0.10
5 2200 0.08
€

0.06

S 2000 +
>~ 0.04

1800 ﬂ E}

1600

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 O 200 400 600 800 1000 1200 O 200 400 600 800 1000 1200
X Lambert [km]

Figure 9.9: CRPS for simulating top: raw precipitation, bottom: transformed
precipitation. Left: climatological forecast, center: using domains optimised for
raw precipitation, right: using domains optimised for transformed precipitation.

Figure 9.12 shows the biases and the CRPSS obtained in the out of sample val-
idation using predictor domains optimised for raw and transformed precipitation.
For both diagnostics the points are in general quite close to the first diagonal and
scattered to both sides which indicates equal overall performance. Three zones
stand out with larger differences in the bias between the raw and the transformed
experiment. In all three cases the biases are larger in the transformed experiment.

Overall, using transformed precipitation for the predictor domain optimisation
does not lead to better validation performance.
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Figure 9.11: The spatial distribution of the bias for the four simulations using the
predictor domains from the transformed experiment.
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Figure 9.12: Bias and CRPSS in the out of sample validation using predictor
domains optimised for raw precipitation (x-axis) and transformed precipitation
(y-axis) for the 608 zones.

9.5 Effect on aggregation of predictand areas

In this section the effects of the fewer different domains found optimising for trans-
formed precipitation on the aggregateability is examined. Figure 9.13 shows how
many predictor domains are shared between neighbour zones. The same barri-
ers of aggregateability imposed by the predictor grid as for the raw precipitation
case shown in Figure 8.3 are visible. The aggregateability inside these grid cells
is higher, that is there are more common optimised predictor domains between
neighbour zones.

SGF SGB MOC VGH

raw 100 99 131 132
transformed 85 87 113 102
best 61 60 83 88

Table 9.1: Number of groups obtained for each method with domains optimised us-
ing raw and transformed precipitation. Groups from the best experiment discussed
in Chapter 8 are added for comparison.

Figure 9.14 shows the groups found with the different aggregation methods pre-
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Figure 9.13: Aggregateability of predictand areas using predictor domains opti-
mised for transformed precipitation.
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Figure 9.14: Aggregated predictand areas using four different methods for predic-
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sented in Section 8.3.1 using the domains optimised for raw and transformed pre-
cipitation. Table 9.1 summarises the corresponding number of groups and Figure
9.15 shows the domain size distributions. Using the domains from the transformed
experiment leads to fewer groups with any of the aggregation methods, with the
most important reduction for the VGH method. The reduction of the number of
groups obtained with the transformed experiment compared to the raw one is less
than half the reduction obtained with the best experiment, except for the VGH
method. Remember that the best experiment is based on the optimisation using
raw data. This is in line with the total number of different domains in the domain
data set, that is 847 for the raw, 694 for the transformed and 456 for the best
experiment. The differences in terms of size distribution are as follows: For the
SG and the VGH algorithm large groups get larger. For the VGH algorithm very
small groups get larger as well. For the MOC method the difference in the size
distribution is very small.
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Figure 9.15: Distribution of aggregated area size for four aggregation method and
domains optimised for raw and transformed precipitation.

Using transformed precipitation for the predictor domain optimisation im-
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proves the aggregateability of predictand areas, but is, as raw, limited by the
predictor domains for the temperature, vertical velocity and humidity predictor
variables that are imposed to be the nearest predictor grid cell to the target loca-
tion. The predictor grid thus forces a change of the predictor domains where the
nearest grid cell changes.

9.6 Conclusions

Calculating the CRPSS for transformed precipitation increases the CRPSS com-
pared to raw precipitation. The spatial structure of the CRPSS does not change
regardless which domains are used or for which precipitation variable it is calcu-
lated. The low skill found in valleys subject to foehn effects is mainly due to the
small errors of the reference simulation in these places.

In the validation experiments using domains from the transformed experiment
lead to lower average skill loss, but larger biases and larger skill loss for zone 367.

Both the transformed and the best experiment decreases the number of groups
obtained when aggregating predictand areas by common predictor domains. How-
ever, best leads to stronger reduction and has the advantage to allow for an a
posteriori adaptation of the predictor domain for the predictor variables other
than geopotential, which is not the case in the transformed experiment. A best
transformed experiment would be possible, but in the light of the increased bias
for some zones in the out of sample validation for the transformed experiment the
best transformed experiment has not been conducted in this thesis.

So should the precipitation data be transformed prior to optimisation? If we
are interested in spatially smooth results and better aggregateabiliy, yes, if we
want to maximise the skill and minimise the bias for precipitation, no, but if we
do so the skill decrease will not be dramatic. What we should definitly not do, is
to confound the skill calculated for transformed precipitation with the actual skill
of precipitation downscaling.
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10 Spatial Coherence - case stud-
ies Durance and Rhone

In this chapter we will assess the spatial coherence of the downscaled precipitation
fields. In contrast to other studies, for example Vautard et al. (2013); Maraun
et al. (2010); Moron et al. (2006); Robertson et al. (2009); Hwang and Graham
(2013), where spatial coherence is used as a synoyme for “spatial smoothness” or
“spatial correlation structure”, spatial coherence is defined here as realistic spatial
properties of the simulated fields. Voisin et al. (2010) used both definitions, defin-
ing realistic as realistically looking. Simulating precipitation fields with realistic
spatial properties is important for distributed hydrological modelling. Instead of
studying spatial correlation an approach based on spatial verification is presented.
The spatial verification method SAL (Wernli et al., 2008) characterises features of
spatial fields that are relevant for hydrological modelling, but how can SAL, that
has been developed and used so far for the spatial verification of deterministic high

resolution forecasts, be used to assess probabilistically downscaled fields, here from
SANDHY?

The first section of the chapter consists of an manuscript article on the de-
velopment of a probabilistic version of SAL and its application on downscaled
precipitation over the Durance and the Rhone catchment. As a reader of this the-
sis you may want to skip sections 2.1, 3.1 and 3.2.1 of the article since they mainly
contain information already presented in the previous chapters. Furthermore a set
of experiments are presented, that aim at figuring out which strategy in terms of
predictor domain configuration gives the best local skill and spatial coherence, the
more common uniform configuration or fields that are tiled together using locally
optimised predictor domains as has been done for example in Hamill and Whitaker
(2006) and Voisin et al. (2010) who showed that spatially varying but overlapping
predictor domains maintain the spatial consistency of the downscaled fields.
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Abstract

With the increasing development of downscaling meth-
ods with both multi-site and probabilistic characteris-
tics, spatial verification methods able to handle proba-
bilistic precipitation simulations are required for inform-
ing a range of applications like distributed hydrological
modelling. Indeed, assessing the spatial coherence, in
the sense of realistic spatial properties, of an ensem-
ble of downscaled precipitation fields remains an open
question. A probabilistic version of the spatial verifi-
cation method SAL (Structure Amplitude Location) is
here proposed for assessing the spatial properties of pre-
cipitation fields, notably the structure and the position
of precipitation objects inside a given area. Skill scores
are developed based on the structure and location com-
ponents of the probabilistic SAL, allowing comparison
between different ensembles of downscaled fields. The
probabilistic SAL is then applied to compare several
20-year precipitation downscaling experiments from the
ERA-40 reanalysis to a 8 km resolution over two catch-
ments in France using the Stepwise ANalogue Downscal-
ing method for HY drology (SANDHY). The experiments
correspond to different predictor domain configurations
of the SANDHY method and are compared in terms of
local performance and proposed structure and location
skill scores. Configurations using locally optimised pre-
dictor domains lead to higher local performance, higher
location skill score but lower structure skill score than
the ones using the same predictor domains—and there-
fore the same analogue dates—over the whole catchment.
Both skill scores furthermore depend on the catchment
size, as do the standard SAL components. These scores
appear as valuable tools for assessing the spatial prop-
erties of probabilistic downscaled fields relevant for hy-
drological impacts.

1 Introduction

Climate change impact studies require precipitation in-
formation at the most relevant scale for impact mod-
els. However, general circulation models (GCMs) and
reanalyses still have a too coarse resolution to resolve
such scales, and appropriate downscaling strategies have
therefore to be devised. Empirical-statistical methods
are often developed and used for downscaling precipita-

tion for local to regional impact studies (Maraun et al.,
2010). Several large scale intercomparison experiments
involving such methods are currently under way, like
the COST Action VALUE (Maraun et al., 2014) or the
CORDEX-ESD initiative!.

Statistical downscaling is typically done pointwise to
individual stations/areas, but in order to provide useful
input to a range of applications like distributed hydro-
logical modelling, a downscaling method has to provide
spatial fields of precipitation (and other variables) that
have not only realistic local amounts but also realistic
spatial properties. To this aim, more and more methods
aim at providing spatially realistic precipitation fields,
(either multi-site or gridded, see, e.g., Jeong et al., 2013;
Radanovics et al., 2013). At the same time, methods
that can provide probabilistic information in form of an
ensemble of scenarios or samples from a probability dis-
tribution are preferred, in order to take into account the
uncertainty due to the downscaling step, identified as the
small scale component of internal variability by Hingray
and Said (2014). Once downscaling models provide local
probabilistic output over spatial fields, how can the skill
of such models or model set-ups to produce coherent—in
the sense of realistic—spatial fields be assessed?

In the context of quantitative precipitation forecasting
with high resolution numerical weather forecast models,
spatial verification techniques have been developed (see
Gilleland et al. (2009) for a comparison). Scale separa-
tion (Briggs and Levine, 1997; Denis et al., 2002; Casati
et al., 2004) and neighbourhood methods (Zepeda-Arce
et al., 2000; Roberts and Lean, 2008; Ebert, 2008) are
powerful in determining skillful scales for example. How-
ever, the target scale is already determined in the down-
scaling context, and such methods do not treat dis-
placement and structure errors explicitly. Object-based
methods (Ebert and McBride, 2000; Davis et al., 2006;
Keil and Craig, 2007; Wernli et al., 2008) can take into
account displacement and spatial structure errors at a
given scale and are therefore more suited in the con-
text of downscaled fields. One of these methods, SAL
(Structure Amplitude Location) (Wernli et al., 2008),
has been proposed as part of the verification framework
of the COST Action VALUE (ES1102) (Maraun et al.,
2014) for the evaluation of downscaling methods, but to

Lhttp://werp-cordex.ipsl.jussieu.fr/index.php/community /cordex-

esd



the authors knowledge it has not been applied to statis-
tically downscaled precipitation yet.

Additionally, whereas more and more downscaling
methods are of probabilistic nature (Maraun et al.,
2010), very few spatial verification measures have been
developed for assessing probabilistic simulations (Jolliffe
et al., 2012). Keil and Craig (2007) used for example
the Displacement and Amplitude Score (DAS) to rank
the members of a short-range ensemble forecast. Such
measures are moreover usually applied to the ensemble
forecasts regarded as a collection of deterministic fore-
casts.

The objective of this paper is twofold: first, a proba-
bilistic version of the SAL method initially proposed by
Wernli et al. (2008) is introduced along with skill scores
corresponding to the location and structure errors. The
probabilistic version of SAL is then applied to char-
acterize probabilistic outputs from the Stepwise ANa-
logue Downscaling method for HYdrology (SANDHY)
(Radanovics et al., 2013) over two catchments of dif-
ferent sizes, the Rhone and the Durance catchments in
France. Several downscaling model configurations are
compared using skill scores derived from structure and
location components of the proposed probabilistic ver-
sion of SAL.

The predictor and predictand datasets, the studied
catchments, the SANDHY method and the local perfor-
mance measure used are presented in section 2. The SAL
and the developed extensions of the method are detailed
in section 3. An application of the developed scores on
downscaling experiments over two French catchments is
presented in section 4. Choices, advantages and limita-
tions are discussed in section 5 and conclusions are given
in section 6.

2 Downscaling data and methods

2.1 Predictor and predictands

Predictor and predictands for downscaling experiments
were similar to the ones used by Radanovics et al. (2013).
ERA-40 data (Uppala et al., 2005) at 2.5 deg. resolu-
tion were used as large-scale predictors for the statis-
tical downscaling method. Daily precipitation from the
French near-surface reanalysis Safran (Vidal et al., 2010)
was used as predictand. The downscaling was performed
over a 20-year period from 1 August 1982 to 31 July
2002. This is the same time period as has been used for
the optimisation of the downscaling method (Radanovics
et al., 2013). This avoids influences from the use of dif-
ferent datasets or different time periods on the skill of
the method that are beyond the scope of this study.

2.2 Study area

The Rhone river is one of the largest European rivers.
The French part of its catchment between Pougny and
Beaucaire, as it was considered for this study, has an

area of 86000km? and is indicated by the purple contour
in figure 1. The northern part of the catchment experi-
ences oceanic conditions, with heavy rainfall events dur-
ing winter, whereas the southern part is under a Mediter-
ranean influence, characterized by high temperatures in
summer and strong rainfall events in autumn (Etchevers
et al., 2002). Orographical enhancement of precipita-
tion occurs due to the Alps and the Jura in the eastern
part of the catchment, the Vosges in the northern part
and the Massif Central in the southwestern part. Drier
regions can be found in the south-eastern and north-
western part of the catchment (Ottlé et al., 2001). The
Cévennes mountains at the south-eastern edge of the
Massif Central are particularly prone to heavy rainfall
events in autumn and resulting flash floods. These heavy
rainfall events are due to southerly flow, moisture sup-
ply from the Mediterranean sea that is relatively warm
in autumn and a conditionally unstable air mass that is
lifted due to orography (Duffourg and Ducrocq, 2011).

The Durance catchment is a subcatchment of the
Rhone catchment situated in south-eastern France in the
Southern Alps. In this study the Durance catchment
at Cadarache was considered (red contour in figure 1),
which comprises an area of 11700km?. The Durance
catchment has large altitudinal and climatic gradients
(Magand et al., 2014). Precipitation varies from less
than 600 mm year—! in the southwest to over 3800 mm
year—! in the north. The spatial variability of precipi-
tation inside the catchment is high due to the complex
topography and the different climatic influences, from
Alpine in the northern part to Mediterranean in the east-
ern and southern parts (Lafaysse et al., 2014).

2.3 Stepwise Analogue Downscaling
Method for Hydrology (SANDHY)

SANDHY is a downscaling method based on the ana-
logue principle introduced by Lorenz (1969) and per-
forms a stepwise selection of analogue dates using a dif-
ferent predictor variable at each step. The first step is a
selection on temperature at two pressure levels. The sec-
ond step is a selection on geopotential shape at two pres-
sure levels. The third step is a selection on vertical ve-
locity at one pressure level but at four different timesteps
and the last step is a selection on humidity. Details on
the method can be found elsewhere (Ben Daoud et al.,
2011a,b; Radanovics et al., 2013).

Radanovics et al. (2013) optimised the predictor do-
mains for the geopotential predictor for 608 climato-
logically homogeneous zones in France using a multiple
growing rectangular domain algorithm that takes into
account the equifinality in parameter optimisation. In
this work the resulting predictor domains were used in
different combinations as detailed in the experimental
setup described in section 4.1.
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Figure 1: Study region. purple: Rhéne catchment, red: Durance catchment

2.4 Local performance measure

The continuous ranked probability score CRPS (Brown,
1974; Matheson and Winkler, 1976) is a probabilistic
verification score that is widely used for the verification
of ensemble forecasts (see, e.g Hagedorn et al., 2008;
Demargne et al., 2010; Aspelien et al., 2011).

CRPS = /

where F(x) is the simulated cumulative distribution
function of the variable =, z, the observed value and
H the Heaviside function. The properties of the CRPS
are as described in Hersbach (2000): The CRPS is sensi-
tive to the entire range of the simulated variable, i.e. it
evaluates the entire probabilistic prediction and no pre-
defined classes are required, and it is equal to the mean
absolute error (MAE) in the case of a deterministic sim-
ulation. It can be interpreted as an integral over all pos-
sible Brier scores and it is a proper score (Gneiting and
Raftery, 2007). A proper score is one that encourages
the forecaster to issue forecasts corresponding to his best
judgement, because the score take its ideal value only for
ideal forecasts (Murphy, 1969).

The continuous ranked probability skill score
(CRPSS) is here used as a measure of the local per-
formance:

[F(z) — H (z — 2,)]* dx (1)

CRPS
e (2)
CRPSclzm
where CRPS.;,,, is the CRPS of the climatological dis-
tribution for a 121 days moving window centered on the

target day of the year in order to take seasonality into
account.

CRPSS =1 —

In the context of comparing downscaling model setups
in terms of spatial coherence and local performance, the
CRPSS was calculated for empirical precipitation distri-
butions that consisted of precipitation from 25 or 125
analogue days depending on the experiment (see sec-
tion 4.1), the same way as it is typically done for ver-
ifying ensemble simulations. A CRPSS was calculated
for each grid cell in the catchment and then averaged
over the catchment area, thus providing an integrated
measure of local performance.

3 Structure, Amplitude, Loca-

tion - SAL

3.1 Standard SAL

Structure-Amplitude-Location (SAL) is a spatial verifi-
cation method developed by Wernli et al. (2008) for the
verification of high-resolution NWP precipitation fore-
casts. The method compares three characteristics of ob-
served and simulated precipitation: (1) the amplitude
A, that is the total precipitation over the domain, (2)
the location L, that is where precipitation objects are
located and (3) the structure S, that is the size and
the shape of precipitation objects. Precipitation objects
are contiguous locations where precipitation is above a
given threshold. Unlike methods like the displacement
and amplitude score (Keil and Craig, 2009), SAL does
not attempt to match individual objects. The differ-
ence between the A component of the SAL and error
measures like the CRPS is that A is a relative measure
and the CRPS an absolute one. In practice this means



that if the simulated precipitation over the verification
domain is half the observed one, A will always have a
value of —0.66 regardless the absolute amounts, while
the CRPS will be higher for cases with higher precipita-
tion amounts because the absolute difference is higher.
A unique feature of SAL is the structure component that
rates the ability of the simulation to produce precipita-
tion objects with similar size and shape characteristics
(scaled volumes). This aims at rewarding simulations
that show for example small and peaked precipitation
objects, typical of convective precipitation, in case such
precipitation is observed.

SAL has so far mainly been used in high-resolution
NWP model development (Ahijevych et al., 2009; Zappa
et al., 2010; Termonia et al., 2011; Haiden et al., 2011)
for the verification of deterministic forecasts but has re-
cently been proposed as part of the verification frame-
work of COST Action VALUE? for the verification of
spatial properties of downscaled fields.

3.2 A proposed version of SAL for prob-
abilistic simulations

Statistical donwscaling methods designed for probabilis-
tic simulations like SANDHY require probabilistic ver-
ification measures. The SAL approach was therefore
adapted to fields reflecting the probability that a spa-
tially uniform precipitation threshold u is exceeded lo-
cally P(prec > w). For the calculation of the S and
the L component, objects need to be defined in the ob-
served and in the simulated fields. They were defined
using a threshold ¢, such that there is an object where
P(prec > u) > t. t was supposed to be uniform over
space and constant in time. If there are no objects in
the observed or simulated field, no S and L components
can be calculated, as in the standard method. The prob-
ability fields were defined independently for simulations
and observations:

Py = P (precs > us) (3)
where P; is the probability P that the simulated ensem-
ble precipitation precs exceeds the threshold u,, and:

(4)

where P, is the probability that the observed precipita-
tion prec, exceeds the threshold u,. If no uncertainty
information is available for the observation data used, as
it is the case here, the observed probability fields defined
by P, are binary fields of 0 where prec, is below u, and
1 where it is above the threshold. The following para-
graphs display the SAL equations adapted from those
provided by Wernli et al. (2008) for an application in a
probabilistic context.

When using directly probabilities into the original def-
inition of the A component, it becomes the normalised

P, = P (prec, > u,)

2http://www.value-cost.eu/reports

difference between the domain average probabilities that
u is exceeded:

D(Ps)_D(Po>

A= 5P + DBy

(5)

where D(P) is the domain average of the exceedance
probabilities. The above definition makes the interpre-
tation of A values somewhat difficult in specific contexts,
especially when different thresholds are considered for
simulations and observations (us # u,). When simu-
lations suffer from daily biases with respect to the ob-
servations, which is most often the case in practice, one
may want to remove them before doing the spatial ver-
ification, and using different thresholds precisely allows
to do that. However in this case quantifying the biases
in absolute terms rather than through A values as calcu-
lated from the above equation would be also informative.
Following this line, a novel and simpler definition of A
is therefore proposed, as the relative difference between
the thresholds for the observation and the simulation:

(6)

Us — Up

A= ————
0.5(us + o)

Although this novel definition is not based on proba-
bilistic features, it nicely matches the idea of relative
bias implemented in the original definition by Wernli
et al. (2008) and makes the link with L and S compo-
nents that rely on the two precipitation thresholds, as
described below. It has to be noted that this definition
is not informative (A = constant) when the difference
between the two thresholds does not vary with time. A
typical case is the spatial verification of high precipi-
tation objects defined by an absolute threshold of, say,
10mm. In such cases, the initial definition would be
more suitable as a indicator of the daily amplitude com-
ponent.

L is the sum of L, the normalised distance between
the centers of mass of modelled and observed proba-
bilities that are part of objects, and Lo, the difference
in the average distance between individual objects and
their common center of mass:

L=Li+ Lo (7)

with:
|x(Ps > t) ;X(PO > t)] (8)

where d is the largest distance between two boundary
points of the domain and x(P) the center of mass, and:

L, =

r(Py > t) — (P, > 1)

Lo =2 7 (9)
where: N
Doz BPilx —xi
r(P) = ==L 55—— (10)
> iz b

and r is the weighted average distance between the cen-
ters of mass of individual objects denoted x; and the



center of mass of all objects. IV is the number of objects
in a given field and P; is the sum of all probabilities
belonging to the object i. The definition of the L com-
ponent thus matches the standard one, simply replacing
precipitation objects by exceedance probability objects.
L ranges from 0 to 2, where it is 0 for a perfect location.
S is the difference of the weighted average of the scaled
volumes of the objects in the verification domain.

. V(Ps) - V<P0)
05 [V(Ps) +V(P,)

S (11)

where V(P) is the weighted average of the scaled vol-
umes of the objects

N M1 max
_ 21:1 B Zj:l Pij/Pi
- N
>z b

where P;; is the probability at grid cell j belonging to ob-
ject ¢, M; the number of grid cells in object and P/*%* is
the maximum probability value in object 7. Again, this
definition of S matches the standard one. S ranges from
—2 to 2, where negative values indicate that the simu-
lated objects are too small or too peaked, while positive
values indicate too large or too flat objects, for a perfect
structure S equals zero.

V(P)

(12)

3.3 Parameter choices

When applying the probabilistic version of SAL defined
by Equations 3 to 12, except equation 5, several choices—
further discussed in section 5.2-had to be made. First,
different thresholds for simulated and observed precip-
itation have been considered: wu, was chosen to be the
domain average observed precipitation and wus the do-
main average of local median of simulated values. This
critically allowed to evaluate the structure and location
components even in the case of biased simulations.

The threshold for defining objects had been subjec-
tively defined in the early applications of the standard
SAL method, as Ria./15 (Wernli et al., 2008) where
Rynaz is the maximum precipitation value over the do-
main, or R%/15 where R% is the “95th percentile of
all gridpoint values in the domain larger than 0.1 mm”
(Wernli et al., 2009). In the probabilistic version of SAL,
a threshold ¢ of 0.5 was chosen, corresponding to situa-
tions where the probability of being above the threshold
u should be higher than 0.5.

Additionally, in order to penalise experiments that
produce lots of missed events or false alarms, a value
of —2 was assigned to S and a value of 2 to L if objects
were found in the observation but not in the simulation.
Similarly, a value of 2 was assigned to both components
if objects were found in the simulation but in fact it was
a dry day. Otherwise S and L would not be able to dis-
tinguish between a dry day and a missed event since in
both cases they have no value.

3.4 Spatial coherence measures

This work aims at evaluating whether the spatial fea-
tures of precipitation were simulated by the downscal-
ing method used. Both the structure and the location
components of the probabilistic SAL were considered
to carry important information to this end. Therefore
scores were developed based on these two components of
the probabilistic SAL.
A location score was thus defined as:

T
LS — > k=1 WLk

(13)
2 25:1 W
and a structure score as:
T
S
Gg — 2ak=1 Wk |Sk| (14)

T
2 pm1 Wk

where T is the number of time steps in the verification
period, wj the domain average observed precipitation at
time step k, Si the structure component S for time step
k and Lj, the location component L for time step k. LS
and SS range from 0 to 1, 0 meaning perfect location
or structure respectively as measured by the proposed
scores. The weights wjy were used here with a hydrolog-
ical objective in mind. Indeed, the SAL components are
relative measures and often have large values for very
light precipitation events that are of little importance
for runoff generation. This approach thus allows to give
more weight to important precipitation events.

To assess the performance of the downscaling method
in simulating the location and structure of the observed
precipitation compared to a naive prediction derived
from climatology, a location skill score LSS and a struc-
ture skill score SSS were introduced:

LS;,

LSS =1- 15
LSclim ( )
SSfe

S585=1- 16
SSclim ( )

where LS, and SSgm, are the LS and the SS values
for a reference simulation that was constructed using at
each point the local climatological distribution for a 121
days moving temporal window centered on the target
day of year. As for the CRPSS, perfect simulations have
a LSS and SSS of 1, simulations that are just as skillful
as the climatology exhibit scores of 0 and less skillful
ones have a negative skill score.

4 Application on precipitation
downscaling

The daily ERA-40 data from 1 August 1982 to 31 July
2002 were downscaled to a 8 km resolution grid using the
SANDHY method. The predictor domains for each cli-
matologically homogeneous zone that contributes to the
studied catchments were determined as described in the



Table 1: Experiments. N = number of predictor do-
mains per zone, miss D = Percentage of missed events in
20 years for the Durance catchment, miss R = Percent-
age of missed events in 20 years for the Rhone catchment.
There are no false alarms for any of the experiments. For
the Durance catchment there are 24% dry days and for
the Rhone catchment 6%.

Experiment N miss D miss R Symbol
optim 1 14.0%  6.9% -
optim 5 5 18.8% 12.1% [ |
best 1 14.8% 7.3% .
best 5 50 197% 126% @@
catchment 1 197% 12.7% A
catchment 5 5 21.2% 14.7% A
consensus 5 22.7% - [ |

5 friends 5 17.9% -

following experimental framework in section 4.1. Pre-
cipitation at the analogue dates was sampled for each 8
km grid cell using the same analogue dates for all grid
cells in a particular zone. The probabilistic SAL was cal-
culated for each day and the location skill score (LSS)
and the structure skill score (SSS) for the whole 20yr
period. Examples of the probabilistic SAL for some se-
lected days are shown in section 4.2. The LSS, SSS and
CRPSS for the Rhone and the Durance catchment for
the experiments described in section 4.1 are compared
in section 4.3.

4.1 Precipitation downscaling experi-
ments

The downscaling experiments presented here aimed at
figuring out which strategies in terms of predictor do-
main optimisation and accounting or not for equifinality
lead to the better trade-off between local performance
and spatial coherence. The experiments are described
in the following and summarised in Table 1.

4.1.1 Optimised locally

The predictor domains for the geopotential predictor in
SANDHY had been optimised for 608 climatologically
homogeneous zones in France. Five near-optimum do-
mains showing near-optimal performance during the cal-
ibration had been retained for each zone (Radanovics
et al., 2013). Analogue dates were therefore found for
each zone, and observed gridded fields within each zone
for each analogue date were used. Locally optimised
parameters are supposed to lead to the best possible
local skill at the zone scale but with the risk to loose
spatial coherence since precipitation from different ana-
logue dates may be used for neighbouring zones. Two
experiments used the locally optimised domains:

optim one locally optimised domain was used for each
zone.

optim 5 the precipitation on all the analogue dates from
all five domains formed the empirical predictive dis-
tribution. Precipitation from a specific date might
be considered several times if it was selected with
several different predictor domains.

4.1.2 Best in region

Due to some limitations of the domain optimisation al-
gorithm, it can happen that the downscaling skill for a
given zone would be higher if domains found for other
zones during the optimisation were used. Therefore the
skill of any predictor domain found for any of the 608
zones in France had been evaluated for every zone and
the best 5 domains had been kept. Two experiments
used these best domains:

best the best domain was used for each zone.

best 5 the precipitation from the 5 best domains found
for each zone contributed to the local precipitation
estimate.

4.1.3 Optimised for catchment precipitation

The predictor optimisation procedure was repeated for
catchment average precipitation as predictand variable.
Five near-optimum domains were retained. Using the
same parameter configuration for the whole catchment
assured that precipitation from the same analogue dates
was used for the precipitation estimates in the whole
catchment. Using the same analogue dates for the whole
catchment meant that the complete precipitation fields
over the catchment were resampled in contrast to the
previously described experiments where the resampling
was done independently for the zones in the catchment
and the precipitation fields were glued together from
different analogue dates. Using the complete precipi-
tation fields was supposed to lead to the best possible
spatial coherence. Two experiments used the domains
optimised for catchment average precipitation:

catchment analogue precipitation was obtained using
one of the five near optimum domains for catchment
precipitation. Only the first one was used for the
Rone catchment due to computational constraints.

catchment 5 analogue precipitation from all five do-
mains formed the local precipitation estimate.

The catchment experiment served as a benchmark since
it corresponds to the least costly procedure in terms of
optimisation effort.

Due to the smaller size of the Durance catchment it
was computationally feasible to perform two additional
experiments for this catchment. They are described in
the following two subsections.



4.1.4 Consensus zone

The fraction of common analogue dates between each of
the 608 climatologically homogeneous zones in France
was calculated using the analogue dates from the 5 lo-
cally optimised domains for each zone. The fraction was
calculated for each day and then averaged over the 20
years simulation period. This was slightly different from
the calculation in Chardon et al. (2014), who calculated
the percentage of days on which the daily fraction ex-
ceeds 0.8.

consensus The zone in the catchment that had the high-
est fraction of common analogue dates with all the
other zones in the catchment was identified. The
five domains that had been optimised for this con-
sensus zone were used for the whole catchment in
the consensus experiment.

Asin the catchment 5 experiment, the same five domains
and therefore the same analogue dates were used for the
whole catchment.

4.1.5 5 friends

Like in the optim 5 and best 5 experiments the pre-
dictor domain configuration in the § friends experiment
was different for each zone but it was tried to intro-
duce some kind of “spatial smoothing” at the predictor
domain level by including for each zone some predictor
domains found for other zones.

5 friends The first optimised domain of the target zone
and the first optimised domains of the 4 other zones
that had the largest fraction of common analogue
dates with the target zone were taken.

This experiment was supposed to lead to a higher num-
ber of analogue dates shared by the zones in the catch-
ment but had the disadvantage that the analogue dates
from one domain might be used several times in the same
precipitation estimate, leading to overconfident precip-
itation estimates. On the other hand the high spa-
tial variability of the predictor domains in the Durance
catchment found in Radanovics et al. (2013) should limit
this risk.

4.2 Probabilistic SAL examples

Three contrasted situations in terms of probabilistic S
and L values in the catchment experiment were first se-
lected. Figure 2 shows the observed values and the mean
of the 25 simulated precipitation values at each grid cell
for the Rhone catchment for the three selected days and
the catchment, best and optim experiments. Figure 3
shows the probability objects used for the calculation of
the S and L components of the probabilistic SAL. The
S and L values for the three experiments and the three
selected dates are summarised in Table 2.

The left panel in figures 2 and 3 is for the 26 Jan-
uary 1995 where heavy precipitation was observed in

Table 2: Probabilistic S and L scores for the three ex-
ample dates.

1995-01-26  1995-06-30  1999-05-19
S catchment -0.00 -1.31 -0.04
S best -0.52 -1.32 0.02
S optim -0.33 -1.39 0.01
L catchment 0.09 0.09 0.76
L best 0.36 0.12 0.71
L optim 0.12 0.25 0.77

the northern part of the catchment and specially high
amounts in the Vosges and the Jura mountains. In fig-
ure 2, the maximum values are with 105 mm off the scale
and appear as grey pixels on the graph (figure 2). The
basin average precipitation was 7.3 mm.day~'. The sim-
ulations showed precipitation over the whole catchment
with the highest amounts in the northern and eastern
parts. Due to the averaging over the 25 analogue situa-
tions constituting the simulations, the simulated precip-
itation fields are smoother than the observed ones. The
simulations from the different experiments showed sim-
ilar mean precipitation fields but in the optim and best
experiments less precipitation than in the catchment ex-
periment was simulated in the south-western part of the
catchment.

For the 26 January 1995 the simulated probability
field from the catchment experiment in the left panel
of figure 3 shows a structure quite similar to the ob-
served precipitation in figure 2, while the observation is
essentially a large, of course flat, object in the north of
the catchment. The resulting values for S and L are
very small, that is very good, with S = —0.0001 and
L =0.09.

At the first glance the simulated probability fields
from the best and optim experiments were similar to the
catchment one except that they were more patchy. This
was expected, because their precipitation fields were
glued together spatially from different analogue dates,
while in the catchment experiment the same days were
used for the whole catchment. The S scores were much
worse than for the catchment experiment for both other
experiments and the L score was much worse for the best
and only slightly worse for the optim experiment. For
the optim experiment the probability object was more
peaked but at approximately the same place than for
the catchment experiment, which led to a negative S of
—0.33. For the best experiment the object was split up
into several objects in the south which led to too small
objects (negative S values) and large distances between
the objects and the common center of gravity that ex-
plain the L value of 0.36.

The second situation shown in the middle panels of fig-
ures 2 and 3 is the 30 June 1995. The basin average pre-
cipitation was 1.4 mm.day~'. Precipitation was mainly
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Figure 2: Precipitation over the Rhone catchment top:
observed, second row: mean over 25 analogue simula-
tions from the catchment experiment, third row: from
the best and bottom row from the optim experiment.
Left: 26 January 1995, middle: 30 June 1995, right: 19
May 1999.

observed in the south-eastern part of the catchment, but
with some precipitation in the Jura and Cévennes moun-
tains as well (see figure 2). The simulations showed rain
mainly in the south-eastern part of the catchment and
only very little in the Jura and Cévennes mountains,
such that the probability objects were situated only in
the south-eastern part and the objects were small com-
pared to the observed ones (figure 3). Due to the correct
center of mass of the simulated probability objects, the
resulting values for L were small with L = 0.09, 0.12
and 0.25 for the catchment, best and optim experiments
respectively. The too small size of the simulated pre-
cipitation objects led to a large negative error in the S
component with S = —1.31 for the catchment experi-
ment and even —1.39 for the optim experiment.

The third situation shown in the right panels of fig-
ures 2 and 3 is the 19 May 1999. On this day with a
basin average precipitation of 3.8 mm.day ! heavy pre-
cipitation was observed in the Cévennes mountains in
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Figure 3: As figure 2 but for the probability objects used
to calculate the S and L components of the probabilistic
SAL.

the south-western part of the catchment, in the north-
ern part of the catchment and in the Alps (figure 2).
In the south-eastern part of the catchment precipitation
was observed, but the amounts were below the catch-
ment average and thus no “object” was defined there as
can be seen in figure 3. Precipitation was simulated for
the whole catchment with the highest amounts in the
Cévennes mountains and in the the south-east and less
precipitation in the north. This led to simulated pre-
cipitation objects in the southern part of the catchment
and no simulated object in the northern part. The er-
ror in S was small in this case for all three experiments
with S values between —0.04 and 0.02, since the size of
the objects was similar. The location errors were large
with L between 0.71 and 0.77 for the three experiments
due to a large object simulated in the south-eastern part
while there was one observed in the northern part of the
catchment.

These three examples confirm that both the S and the
L components carry information relevant for distributed
hydrological modelling and therefore it is worth looking
at both corresponding scores.



4.3 Results from the downscaling exper-
iments for the Rhoéne and the Du-
rance catchment

The downscaling experiments optim, optim 5, best, best
b, catchment and catchment 5 described in section 4.1
were performed over a 20 yr period for the Durance
catchment and the Rhone catchment. The additional ex-
periments consensus and 5 friends were computationally
possible for the Durance catchment due to the smaller
size of the catchment.

For each experiment the catchment averaged local
CRPSS, the SSS and the LSS were calculated. What
was looked for are experiments that had a comparatively
high CRPSS and SSS or LSS respectively, showing a
good trade-off between local performance and spatial co-
herence. Higher CRPSS would be expected for the ex-
periments using location specific domains (local, local 5,
best, best 5, 5 friends) and higher SSS and LSS for
experiments using the same predictor domain configura-
tion for the whole catchment (catchment, catchment 5,
consensus). Figure 4 shows the CRPSS on the x-axis
and the SSS (left column) or LSS (right column) on
the y-axis for the different experiments. In the first row
results are shown for the Durance- and in the second row
for the Rhone catchment. The most skillful experiments
are those closest to the upper right corner of each panel.

Let’s first look at the experiments using only one pre-
dictor domain per zone (optim, best and catchment),
represented by small symbols in figure 4. The small
green squares correspond to the optim experiment and
the small red circles to the best experiment. By construc-
tion best had somewhat higher CRPSS than optim for
both catchments. The local skill for these experiments
was the same for the two catchments. This means that
the Durance catchment was representative for the Rhone
catchment in terms of possible local skill (cf. Radanovics
et al., 2013, fig. 5). On the other hand best had equal or
smaller SSS and LSS than optim, so spatial properties
for the optim experiment tended to be somewhat better.
This result may be explained by the fact that some of the
best domains were found outside the catchment, bring-
ing some more variability of domains — and therefore less
spatial coherence — in the best experiments.

The small blue symbols correspond to the catchment
experiment. Domains optimised for the Durance average
precipitation were used for the Durance catchment (blue
triangles in the first row) and domains optimised for
the Rhone catchment average precipitation were used for
the Rhéne catchment (blue triangles in the second row).
For the Durance catchment the five domains optimised
for catchment average precipitation were used individ-
ually leading to the five small blue triangles while for
the Rhone catchment only the first domain was consid-
ered due to computational constraints. As expected, the
CRPSS was smaller than for the optim experiment, the
skill difference being larger for the larger Rhone catch-
ment than for the smaller Durance catchment, because

for the larger catchment the domains optimised for the
catchment average precipitation are locally less repre-
sentative. The catchment experiment led to larger SSS
than the optim experiment, but to smaller LSS. Note
that depending on which of the catchment domains were
used for the Durance catchment, the SSS and LSS var-
ied considerably, but in the same direction for the SSS
and the LSS, that is domains that led to better SSS
led to better LSS as well.

Now let’s look at the experiments using analogue dates
from 5 predictor domains per zone (optim &5, best 5,
catchement 5, consensus and 5 friends), represented by
the large symbols in figure 4. The CRPSS and the SSS
increased for the optim 5, best 5 and catchment 5 exper-
iments compared to their single domain counterparts for
both catchments, while the LSS increased only slightly
for the Rhone catchment and decreased for the Durance
catchment. The relation between the three type of ex-
periments did not change for the LSS if five domains
were used compared to one single domain. In terms of
CRPSS they were slightly closer for the 5 domain ver-
sion than for the 1 domain version and they were much
closer in terms of S5, that is the differences between
the 5 domains and the 1 domain version of the experi-
ment was larger for the optim and best experiment than
for the catchment experiment. The consensus experi-
ment led to slightly worse results than the catchment 5
experiment for all three skill scores. The § friends exper-
iment had similar skill as the catchment 5 experiment,
but lower SSS, the S5S was only slightly higher than for
the optim 5 experiment. On the other hand 5 friends
was the experiment with the highest LSS. Note that
the differences between the experiments were smaller in
terms of LSS than in terms of SSS.

Overall, the LSS and SSS for the Durance catch-
ment were higher than for the Rhone catchment, with
the SSS for the optim and best experiments being even
negative for the Rhone catchment. This was due to the
fact that the probabilistic S and L did not measure the
same scale of phenomena because of the different catch-
ment size. The phenomena at the scale of the Rhone
catchment, notably the orographic enhancement along
the main mountain ridges, are well captured by the cli-
matology. The typical size of the objects was of the
order of a whole mountain ridge and the variations in-
side an observed object were neglected due to the way
the observed probability fields were built. For the Du-
rance catchment, which is entirely located in the Alps,
the question was not any more if it rained in the Alps,
but if it rained more on the southern-, southwestern- or
northwestern slopes or if the precipitation was rather of
convective or of stratiform nature. These details were
averaged out in the climatology and made it less skillful.

As expected the use of locally optimised domains led
to higher skill, while the use of uniform predictor do-
mains over the whole basin led to higher structure skill
scores. Interestingly location skill scores tended to be
higher for the locally optimised domains. Using ana-
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the experiment type as defined in table 1.

logue precipitation from multiple predictor domains to-
gether increased the local skill and the SSS for all exper-
iments, the LSS decreased for the Durance catchment
but increased for the Rhone catchment. An exception
was the § friends experiment, where multiple predictor
domains were used, but it had the highest LSS of all
experiments for the Durance.

The number of missed events was higher for the ex-
periments that have a high S§S.S, that is for experiments
using analogue precipitation from multiple predictor do-
mains or the same predictor domain for the whole catch-
ment. For the Durance the numbers range from 14% for
the optim experiment to 22.7% for the consensus exper-
iment. The percentages for the Rhone catchment are
smaller and range from 6.9% for the optim experiment
to 14.7% for the catchment 5 experiment. This is due to
the larger size of the catchment in the sense that there
are fewer days where no precipitation at all is observed
in the whole catchment and there are fewer days as well
where no precipitation is simulated. The percentage of
missed events is summarised for all experiments in Table
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5 Discussion

5.1 DProbabilistic versus deterministic

SAL

As most spatial verification methods, SAL has so far
been applied only for deterministic forecasts and sim-
ulations. Figure 5 illustrates the issue considering the
precipitation on the analogue dates as a collection of de-
terministic simulations or summarized as a fixed quan-
tile. It shows the S and the L values for the three case
study days for the Durance catchment calculated using
single realisations, fixed quantiles and the final proba-
bilistic version. The 25 deterministic realisations were
widely dispersed for all three days and the two compo-
nents, sometimes spanning nearly the whole range which
precluded conclusive results. Note that the S and the
L values are not necessarily similar for the Durance and
the Rhone catchment (the latter being given in Table 2,



because the SAL components depend on the verification
domain as found by Wernli et al. (2009).

In the case of the fixed quantiles both S and L values
strongly depend on the specific quantile taken, as can be
seen from the example days in figure 5. Figure 6 shows
SAL diagrams (Wernli et al., 2008) for daily simulations
over 20 years for the Durance with the best experiment
and taking the 0.5 or 0.6 quantile of the empirical dis-
tribution of the analogue precipitation respectively as
simulation. The median of A was strongly negative for
the 0.5 quantile and much less negative for the 0.6 quan-
tile. For the S component the median was slightly nega-
tive for the 0.5 quantile and slightly positive for the 0.6
quantile. The same was true for other experiments (not
shown). The choice of the quantile was an arbitrary one
and may favor some of the experiments over others.

The above attempt to consider the precipitation on
the analogue dates from the SANDHY method for the
Durance catchment as a collection of deterministic sim-
ulations did not lead to conclusive results. Furthermore
this approach rises the question of how to combine the
different realisations to form a score. Besides, transform-
ing the output from the SANDHY method into a quasi-
deterministic simulation by taking a fixed quantile from
the output distribution leads to strong smoothing and
loss of information which is not desirable either. This
led to the choice of applying SAL on exceedance proba-
bility fields rather than precipitation fields. This choice
respects the nature of SANDHY output, but adds the
question of the choice of the threshold to be exceeded.

5.2 Probabilistic SAL choices

In the case of probability fields the observation became
a binary field and thus the observed objects were com-
pletely flat. This arises questions about the S com-
ponent. It would be desirable to have some uncer-
tainty information for the observation in order to cre-
ate non-binary probability fields for the observation.
One could for example follow Theis et al. (2005), who
transformed deterministic simulations into probabilistic
ones using neighbourhood information, but this could
strongly smooth the field depending on the size of the
neighbourhood.

Some applications focusing on specific absolute precip-
itation threshold may want to use a fixed precipitation
threshold u. As the study here aimed at looking at the
overall behaviour of the downscaling method in terms
of spatial properties of downscaled fields, a time-varying
threshold depending on the catchment average precipi-
tation of the day was chosen. Using a fixed threshold
would lead to a strong dependency on the total precip-
itation of both the size of the objects and the number
of cases for which the probabilistic S and L can be cal-
culated. Using a threshold depending on precipitation
allowed here to include a higher number of cases for cal-
culating the scores.

The second threshold to be chosen was the exceedance
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probability to define the objects. Again the size and the
number of cases that can be studied depend on it. Re-
sults, and especially the S component, could strongly
depend on the choice of the two thresholds. Sensitiv-
ity tests on theses thresholds could shed light on these
dependencies, but are beyond the scope of this paper.

5.3 Time average of SAL components

For the structure score and location score developed in
this paper a weighted time average of SAL components
was used. But is this a valid approach? Wernli et al.
(2008) proposed a SAL diagram that summarises the
three SAL components (see an example in Figure 6).
The SAL diagram is a valuable tool for comparing fun-
damentally different models, but has its limits for com-
paring different configurations of the same model type
that have similarly looking SAL diagrams. Furthermore
SAL diagrams for good models are not necessarily sym-
metric, because for example light rain events that are
overestimated typically have large values of S and A,
leading to an accumulation of dots near the upper right
corner while underestimated light rain events often fall
in the missed event category and are not represented
on the graph. The time average does not entirely solve
the problem, but the introduced weights downweight the
light precipitation events. This became particularly im-
portant as missed events and false alarms were taken
into account by assigning extreme values of S and L to
them in order to penalise configurations that tend to
miss larger precipitation events.

5.4 Structure score or location score?

The structure score used in this work was based on
the structure component of SAL, thus comparing the
size and the shape of the observed and the downscaled
precipitation probability objects but not their location
which is an important information for distributed hydro-
logical modelling as well and was accounted for by the lo-
cation score. Concerning the relevance of the SAL com-
ponents for hydrological modelling, Wernli et al. (2008)
noted that the L component describes how accurately
the precipitation is distributed over the subcatchments,
so that errors in the L component are supposed to lead to
random errors in the runoff simulation while errors in the
spatial structure of precipitation, as expressed through
the S component, are supposed to affect the repartition
between surface runoff and infiltration and therefore af-
fect the soil water balance. For the experiments in this
study the SSS and the LSS showed opposed results.
Experiments using the same predictor domain configura-
tion for the whole catchment tended to have higher SS.S
and those using locally optimised domains higher LSS.
For the Rhone catchment the LSS and SSS tenden-
cies were similar to the ones for the Durance catchment,
but the differences between the experiments were about
three times larger than for the Durance catchment.
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for the best experiment.

The location skill score varied only little between the
experiments, especially for the Durance catchment. A
possible reason is the size of the catchment compared
to the spatial resolution of the precipitation data. The
analysis on the Durance catchment was done using 255
grid cells which might be not enough to distinguish dif-
ferences in location errors. On the other hand the struc-
ture skill score might be more sensitive to the choice of
the thresholds and more affected by the completely flat
observed objects of the probabilistic SAL.

5.5 Definition of the Region for the best
experiments

For the example case presented in this study we had at
hand not only predictor domains for the catchment area
itself but for 608 zones covering France, which allowed
for the best experiment described in section 4.1 that led
to a modest skill improvement compared to the locally
optimised domains. A limitation of this approach is that
the study catchments are located at the eastern border of
France, and no predictor domain information was avail-
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able from outside France. This could possibly penalise
locations close to the border. If no predictor domain
information from outside the catchment is available a
possible alternative approach is to evaluate the best do-
mains inside the catchment only. In this case locations
close to the catchment borders could be penalised. Fur-
thermore this approach will only lead to improvements
for catchments that are sufficiently large compared to
the predictor field resolution.

5.6 Range of applications

The structure- and location skill scores developed in this
work require the calculation of SAL components on a day
by day basis, which means that they can be applied to
reanalysis driven experiments, reanalysis nudged GCM
runs and pseudo-reality experiments (Maraun, 2012).
They can therefore be a valuable tool to assess the spa-
tial properties of downscaled ensemble fields, indepen-
dently of the downscaling method considered. It can be
applied for any probabilistic downscaling method that
provides spatial fields, including future large reanalysis-
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Figure 6: SAL diagrams for the Durance catchment, the best experiment and a 20 year simulation period for taking
left: the 0.5 quantile and right: the 0.6 quantile of the 25 analogue precipitations at each gridpoint as simulation.
Dashed lines: median of the S and A components, grey rectangle: inner quartile range of S and A.

driven RCM ensembles sampling RCM internal variabil-
ity (Braun et al., 2012).

6 Conclusions

This paper proposed a probabilistic version of the
Structure-Amplitude-Location (SAL) method for the
spatial verification of ensemble downscaled precipitation
fields. Two scores were derived from the structure- and
the location component of the probabilistic SAL for as-
sessing the spatial properties of probabilistic precipita-
tion simulations.

The probabilistic SAL method and the associated spa-
tial coherence scores were then applied to several statis-
tical downscaling experiments. The experiments were
performed with several configurations of the Stepwise
ANalogue method for HYdrology (SANDHY) over a 20-
year period over two nested catchments in France. The
downscaling experiments considered here aimed at fig-
uring out which strategies in terms of predictor domain
optimisation lead to the better trade-off between local
performance and spatial coherence.

The probabilistic SAL result depend on the catchment
considered, as do the one for the standard SAL. The pro-
posed structure- and location skill scores indeed depend
on the catchment size, because for larger catchments the
phenomena represented by the S and the L components
are better represented by the climatological distribution
than for smaller ones.

The experiments using analogue precipitation from

multiple predictor domains outperformed the ones us-
ing only one predictor domain in terms of local perfor-
mance. The two spatial coherence scores showed con-
trasting results over the range of downscaling experi-
ments. If a good structure skill score is most important,
a configuration using homogeneous predictor domains
over the catchment (catchment 5) is preferred. On the
other hand, configurations with predictor domains opti-
mised locally (optim 5 or 5 friends) are recommended if
location skill score is given priority. Runoff simulations
using a distributed hydrological model are currently un-
der way in order to decide which of the two skill scores
proposed (LSS and SSS) is actually more relevant for
runoff generation in a given catchment.
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10.2 Different thresholds for observation and sim-
ulation

In the final version of the SS and the LS two different thresholds are used to define
the probability fields for the observation and the simulation, but earlier in the
development phase a common threshold has been used.

Daily probabilistic SAL scores have been calculated over 20 years (1 Aug.
1982 — 31 July 2002) for the best experiment using the observed catchment aver-
age precipitation of the day as a common threshold for defining the observed and
simulated probability fields. The top left panel of Figure 10.1 shows the S com-
ponent as a function of the observed catchment average precipitation. The high
precipitation days are often missing, because no objects have been found in the
simulation, specifically all events with more than 31mm day~! observed catchment
average precipitation are missing. At least 13 out of the 25 analogue precipitation
values at a grid cell have to be above the threshold to have a simulated object
but since these events are quite rare and not always at the same place, there are
not enough such events in the archive to exceed the threshold. These misses thus
don’t mean that no precipitation is simulated. There might even be some quite
high precipitation events in the sample.

To be able to evaluate the location and the structure of the simulated precip-
itation in such situations, two different thresholds are used. The top right panel
of Figure 10.1 shows the S component with the spatial mean of the local median
values of the simulation is used as threshold for the simulation while the thresh-
old for the observation is the same as before. The high precipitation events are
no missed events any more. The remaining missed events are low and very low
precipitation events and have a value of -2 assigned here.

The bottom panel of Figure 10.1 shows the difference between the thresh-
olds used for the observation and the simulation. Positive values mean that the
threshold for the simulation is larger than the one for the observation. This oc-
curs mainly for small observed precipitation. For high observed precipitation the
threshold difference is systematically negative, which means that the threshold for
the simulation is smaller than the threshold for the observation. The dotted line
marks the threshold difference that would be obtained with a threshold of 0 for
the simulation. The dots veer only slowly away from this line, which highlights
that the median of the simulations strongly underestimates the high precipitation
events even if there are some high values in the sample.
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Figure 10.1: top left: S component of probabilistic SAL using the same threshold
for observation and simulation - the catchment average observed precipitation,
top right: the S component using two thresholds - the catchment average observed
precipitation for the observation and the spatial mean of the local median of the
simulated precipitation for the simulation, bottom: the difference between the
two threshold - positive values mean that the observation threshold is higher. All
variables are shown as a function of the catchment average precipitation of the
day.
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10.3 Some performance diagnostics of the exper-
iments for the Durance

In this section some more traditional performance measures are presented for the
grid cells in the Durance catchment and the six main experiments catchment, best,
optim, catchment 5, best 5 and optim 5.

In Figure 10.2 CRPS maps for the Durance catchment and the different exper-
iments are shown for the late period. The overall spatial structure is very simi-
lar between the experiments with high CRPS values, that is large errors, at the
northwestern- and southeastern edges of the catchment and the smallest errors in
the southwestern part near the outlet of the catchment. This pattern corresponds
to the average precipitation regime as has been discussed in Section 6.3.1.
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Figure 10.2: CRPS for the grid cells in the Durance catchment at Cadarache for
the six main experiments.
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To highlight the difference between the experiments the CRPS of the catchment
experiment has been subtracted in Figure 10.3. The best experiment has slightly
smaller CRPS values than the catchment experiment, especially in the southern
part of the catchment and in areas with large CRPS. The optim experiment is
very similar to the best experiment in the northern part of the catchment, but has
higher CRPS values than the catchment experiment along the southern edge of
the catchment and smaller differences in the southeastern part. The higher CRPS
values of the optim experiment along the southern edge is due to the predictor
domains used for the local predictors (temperature, vertical velocity and humidity),
that are not ideal for these zones as has been discussed in chapter 7. They belong
to the zones with large differences in CRPSS between the optim and the best
domains as shown in Figure 7.1. The multidomain experiments (catchment 5, best
5 and optim 5) have smaller CRPS values than their single domain counterparts.
The differences are larger where the CRPS values are higher. Again, the best 5
experiment has smaller CRPS in the southern part of the catchment whereas there
is less difference for the optim 5 experiment along the southern edge.

The bias of the median calculated over the late period is negative for all grid
cells and all experiments as shown in Figure 10.4. The biases are more negative
where the average precipitation is higher and for the multi domain experiments.

The picture is quite different for the bias of the mean shown in Figure 10.5.
The bias of the mean is much smaller than the bias of the median. It is positive
in the northern and eastern part of the catchment and slightly negative in the
southwestern part, near the outlet of the catchment. The strongest positive biases
are found along the northwestern edge of the catchment. The best experiment has
smaller biases in the northeastern part than the other experiments. The optim &
experiment has the least negative biases.

Figure 10.6 shows rank histograms for the six main experiments accumulated
for all grid cells in the Durance catchment and over the late period. Ideally the
rank histograms should be flat which indicates reliable and unbiased simulations.
The shape of the rank histograms obtained with the downscaling experiments
using SANDHY is nearly the same for all experiments. It is a convex shape,
which means that the SANDHY ensemble tends to be overdispersive, and it is
asymmetric, with a maximum due to overpopulation of moderately high ranks and
underpopulation of very high ranks. At low ranks the shape of the rank histogram
depends on how zero precipitation is treated when the ranks are determined. Here
zero precipitation is ranked using random perturbations as explained in Section
3.2.
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Figure 10.4: Bias of the median at the grid cells in the Durance catchment.
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Figure 10.5: Bias of the mean at the grid cells in the Durance catchment.
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Figure 10.6: Rank histograms for all grid cells in the Durance catchment and the
SiX main experiments.

10.4 A closer look at the improvement of the
CRPSS using five domains

In Section 10.1 it was found that the local CRPSS are in general better for the
experiments using the analogue days from five domains rather than only one for
the studied catchments Rhone and Durance. But does this hold for the whole
of France? Figure 10.7 shows the CRPSS for the 608 zones over the late period
using only the first of the optimised domains on the x-axis (optim experiment) and
using analogue precipitation from 5 domains on the y-axis (optim 5 experiment).
The CRPSS values using 5 domains are about 0.02 higher than using only one
domain for all zones, so it can be concluded that the improvement of the CRPSS
is a general feature.

In Figure 10.8 it can be seen that the differences in CRPS are larger for the
zones that have large CRPS and that the CRPS for the optim 5 configuration

are systematically smaller than for the optim configuration. Note that better
simulations have larger CRPSS but smaller CRPS. Talagrand et al. (1997) and
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Figure 10.7: CRPSS using 1 optimised domain vs. using 5 optimised domains for
608 zones over the 1 Aug. 1982 - 31 July 2002 period.
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Figure 10.8: As Figure 10.7 but for the C RPS;,, on the right hand side and the
CRPS on the left hand side.

Richardson (2001) noted for the Brier score that it depends on the ensemble size
due to sampling errors in small ensembles. This is likely to be the case for the CRPS
as well, which is why the C RPS;,, is calculated here using different sampling as
well. The differences in the C RPS ., calculated from 25 and 125 values are shown
in the right panel of Figure 10.8. It can be seen that these differences are very
small compared to the ones in CRPS in the left panel of Figure 10.8. This means
that the better sampling of the distribution when 125 values are used instead of
25 can not fully explain the smaller CRPS of the optim 5 configuration.

Bontron (2004) introduced a decomposition of the CRPS in “finesse” and
“justesse”. “Finesse” corresponds to the CRPS obtained if the median of the
predicted distribution was observed and thus is smaller for narrower distributions.
“Justesse” refers to the part of the CRPS that is due to the difference between the
median of the predicted distribution and the observation and thus corresponds to
an absolute error of the median. Figure 10.9 shows the decomposition of the CRPS
for the 608 zones in “finesse” on the left hand side and “justesse” on the right hand
side. The two components have the same order of magnitude, the “finesse” being
slightly smaller. Both components are slightly smaller in the optim 5 configuration
than in the optim configuration for most of the zones which means that the change
in CRPS can be attributed to improvements of both characteristics.

A second decomposition is the one proposed by Hersbach (2000) in reliability
and potential CRPS. The reliability tests if the frequency that the observation is
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Figure 10.9: As figure 10.7 but for the “finesse” on the left hand side and the
“justesse” on the right hand side.

found in a certain bin is proportional to the bin width devided by the number
of bins. Thus it is closely related to the rank histogram with the difference that
observations falling into large bins get higher weights in the reliability calculation
while for the rank histogram it is just counted how often the observation falls into
a given bin regardless its width. The potential CRPS is the CRPS that would be
obtained for a forecast that is tuned to be perfectly reliable.

Figure 10.10 shows the decomposition of the CRPS following Hersbach (2000)
in reliability (left hand side) and potential CRPS (right hand side) for 608 zones.
In general the reliability component is rather small for all zones which means that
the distributions given by the analogue method are quite reliable. For zones with
a very low reliability component simulations with the optim 5 experiment are
more reliable than simulations from the optim experiment. For zones with slightly
higher reliability components the reliability component tends to be higher for the
optim &5 than for the optim experiment which means that using more domains
makes the estimate less reliable. The potential CRPS is much larger than the
reliability component and is consistently smaller for the optim 5 experiment than
for the optim experiment.

Hersbach (2000) decomposed the potential CRPS further into uncertainty and
resolution, uncertainty corresponding to what we call C RP.S;,, here. The resolu-
tion is related to the difference in steepness between the predicted cdf and the cdf
of climatology. Given the small contribution from the reliability component and
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Figure 10.10: As figure 10.7 but for the reliability on the left hand side and po-
tential CRPS on the right hand side.

the small decrease in C RPS.;,, compared to the total CRPS it can be concluded
that the observed improvement essentially stems from increased resolution.

10.5 Conclusions

A probabilistic version of the spatial verification method SAL has been developed
and applied on downscaled precipitation fields over the Rhone and the Durance
catchment. Using a common threshold for defining the probability fields of the
probabilistic SAL for the observation and the simulation based on observed pre-
cipitation amounts does not allow to evaluate the structure and the location char-
acteristics for high precipitation events. As a consequence two different thresholds
are used.

Probabilistic structure and location skill scores are used to compare downscaled
precipitation from a set of experiments representing different predictor domain
configurations. The selected experiments represent contrasting strategies: uniform
configuration for the whole catchment or locally optimised predictor domains. The
uniform predictor domain configurations lead to smoother simulated precipitation
fields and more realistic structure, but less precise location than the fields glued
together from spatially varying predictor domains. Many more experiments would
have been possible, for example using the groups or clusters obtained in chapter
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8, and using a set of predictor domains for each group.

The multi domain experiments lead to higher CRPSS compared to single do-
main experiments, which is not restricted to the studied catchments but true for
all 608 zones in France. The higher CRPSS are due to higher resolution of the
predictive distributions of the multi domain experiments.

The structure skill score and the location skill score show reversed results for the
studied experiments and catchments. In the following chapter it will be explored
which experiments lead to the most skillful streamflow simulations in the Durance
catchment and if the scores for precipitation are related to the performance of the
streamflow simulations.



11 Hydrological impacts of spatially
coherent downscaling

In the previous chapter measures for the spatial coherence of probabilistic precipi-
tation fields were developed. SANDHY was developed to be used for downscaling
of atmospheric fields as input for hydrological models. Therefore the sensitivity of
streamflow simulations with a distributed hydrological model on choices concern-
ing the predictor domain configuration for simulated precipitation is studied here.
The predictor domain configurations from the experimental setup described in the
article in Section 10.1 are used to this end. The question is which configuration
produces the most skillful streamflow simulations and which of the proposed skill
scores for precipitation (CRPSS, SSS and LSS) might allow to predict this. The
streamflow simulations and related performance calculations were conducted dur-
ing an internship (Eeckman, 2014) supervised by Jean-Philippe Vidal, Frangois
Tilmant and myself. In the following the hydrological model used is introduced
in Section 11.1, the treatment of the data is described in Section 11.2 and the
performance of streamflow simulations is discussed in Section 11.3.

11.1 Hydrological model - J2000

For simulating streamflow from given atmospheric fields, a hydrological model is
needed. The physically based distributed model J2000 has been developed at
the University of Jena (Krause, 2002). The hydrological processes, notably snow
accumulation and snow-melt, interception, surface runoff, infiltration, subsurface
flow and various storages, runoff concentration and routing are explicitly simulated.
J2000 is a modular system where the user can choose which modules, for example
for snow-melt, he or she wants to use depending on the focus of the study and
new modules can be added fairly easily. Labbas (2014) for example implemented
a module for peri-urban catchments to simulate the behaviour of sewer overflow
devices. J2000 has been used for streamflow simulations in various catchments, for
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example the Mulde (Krause, 2002) and the Gera catchment (Krause et al., 2006)
in Germany, the Dudh Kosi (Nepal et al., 2014) in Nepal, the Yzeron (Branger
et al., 2013), the Chézine (Gudefin, 2013) and the Ardeche (Huza, 2013) in France.
The version for the Durance catchment has been built during the Project “Risque,
Ressource en eau et gestion durable de la Durance en 2050”7 (Sauquet et al., 2014)
(R?D?-2050) and is now on the way to be extended to the Rhone catchment in
the project “Modélisation Distribuée du Rhone” (MDR) (Tilmant et al., 2013).

Related to the present study, J2000 has been used to simulate streamflow for the
Durance catchment using atmospheric forcing from the experiments described in
Section 10.1 during an internship (Eeckman, 2014). J2000 operates on hydrological
response units (HRU) (Fliigel, 1995) that are defined to be coherent areas in terms
of geology, slope, soil type and land use. The atmospheric forcing at each of the
1963 HRUs in the Durance catchment is taken from the nearest Safran grid cell.

11.2 Data preparation

So far, only precipitation has been considered in the downscaling exercise, but the
hydrological model additionally needs minimum temperature, maximum temper-
ature and potential evapotranspiration as inputs. Preferably all variables should
belong to the same weather situation, which can easily be achieved with the ana-
logue method by taking all variables from the same analogue date. Minimum
temperature, maximum temperature and potential evapotranspiration are sam-
pled from the DuO data set (Magand et al., 2014), which is a hybrid data product
of the Safran (Vidal et al., 2010) and SPAZM (Gottardi et al., 2012) datasets for
the Durance. The precipitation is taken from Safran for the sake of consistency
with the downscaling experiments. The predictor domains used in the downscal-
ing experiments were for example optimised using Safran data (Section 5.1) and
the performance of the precipitation has been evaluated using Safran data as well.
The solid precipitation from Safran is multiplied by 1.5 because snow amounts
are underestimated in the Safran data due to a sparse station network at high
altitudes and the undercatch of solid precipitation by rain gauges (Magand et al.,
2014). Sensitivity tests from Eeckman (2014) showed that the best streamflow
simulations are obtained using a factor close to 1.5.

The hydrological model can not directly deal with input that is in the form of an
empirical predictive distribution at each grid point as delivered by the SANDHY
method. Therefore an ensemble of deterministic scenarios has to be created for
each experiment.
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11.2.1 Random scenarios

For the experiments using one predictor domain per zone (optim, best and catch-
ment, compare Section 10.1), random permutations of the 25 analogue dates are
created for each zone and each day. The random permutations are necessary to cre-
ate equiprobable scenarios since the 25 analogue dates are ordered from the closest
to the least close one in terms of analogy. The same permutation is used for zones
using the same predictor domain such that they use the same analogue dates, and
different permutations are used where zones use different predictor domains.

For the experiments using five predictor domains (catchment 5, optim 5 and
best 5), the random permutations are done for the 125 analogue dates. For the
catchment 5 experiment the same permutations are used for all zones in the catch-
ment, while for the optim 5 and best 5 experiments different permutations are used
for different zones.

Later tests in the context of other works showed that in these random scenarios
the autocorrelation of precipitation is slightly underestimated and the autocorre-
lation of temperature is severely underestimated (L. Caillouet, personal commu-
nication).

11.2.2 Reshuflled domains

In the case of the five predictor domains, it can happen that zones share some of
the predictor domains, but not necessarily in the same order. Here the question is,
how can we get them to use the same analogue date wherever possible since this
is supposed to improve the spatial coherence. A recursive algorithm (J.-P. Vidal
and L. Caillouet, personal communication) is used to reshuffle the order of the five
domains for each zone, such that the number of different domains at each of the
five positions (1 to 5) is minimised. Then the procedure is as for one domain per
zone, but repeated five times (one for each position). This leads to a second set of
realisations for the best 5, optim 5 and catchment 5 experiments named shuffled
in the following.

11.3 Performance of streamflow simulations

As discussed above, several realisations of simulated atmospheric variables are
available for each experiment. This allows to run ensemble simulations of stream-
flow. The ensemble can be evaluated as a whole using probabilistic performance
measures, here the probabilistic version of the Nash-Sutcliffe criteria (Nash and
Sutcliffe, 1970; Bulygina et al., 2009) is used, or using non-probabilistic measures
applied to each ensemble member which gives a distribution of scores. Here the



11.3. PERFORMANCE OF STREAMFLOW SIMULATIONS 213

corrected Kling-Gupta Efficiency (KGE) (Kling et al., 2012) and its three compo-
nents are shown. The components of the KGE, 5, v and r can be used separately
to diagnose different model behaviours which is why it has been chosen here. For-
mulas and details on the components are given in Section 3.4.

It is intended to evaluate which of the simulated atmospheric datasets leads to
simulated streamflow closest to the one simulated using observed atmospheric data
and how the streamflow simulation reacts on the different ways the atmospheric
forcing is simulated. Therefore observed streamflow is not used as a reference
for evaluating the streamflow simulation performance. A streamflow simulation
using the reanalysis time series of the simulated period is used instead, similar to
Lafaysse et al. (2014a).

Twenty-two years of streamflow at Cadarache from 1 Aug. 1980 to 31 July
2002 have been simulated. Cadarache is the station on the Durance river which is
described in Section 2.2.2 of the article in Section 10.1. The performance of the
simulations is evaluated over the 1 Aug. 1982 - 31 July 2002 period to allow for
model spin-up. This time period corresponds to the optimisation period of the
downscaling experiments. The simulations are performed with scenarii of simu-
lated precipitation from six experiments. An example of such simulations is shown
in Figure 11.1 for the catchment, best and optim experiment and the year 1988.
The simulations using the simulated input data from the catchment experiment
labelled Durance here show a larger ensemble spread than the simulations for the
best and optim experiments.
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Figure 11.1: Ensemble of streamflow simulations with J2000 for the Durance catch-
ment at Cadarache for the year 1988 and three experiments. Black: reference
simulation. (Figure from Eeckman (2014))

Figure 11.2 shows the skill scores for precipitation (CRPSS, SSS and LSS)
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Figure 11.2: Performance scores for simulated precipitation and streamflow for
different experiments.
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versus the performance scores for streamflow at Cadarache (probabilistic Nash,
corrected KGE and its components) for six downscaling experiments and two sam-
pling methods for the multi domain experiments.

The probabilistic Nash and the KGE show qualitatively similar results with
higher, that is better, scores for the optim 5, optim, best 5 and best experiments
and lower scores for the catchment and catchment 5 experiments. The mean val-
ues, represented by the § component of the KGE, are slightly overestimated for
all experiments. The variability ratio, 7, is larger than 1 for the catchment and
catchment 5 experiments and smaller than 1 for the others. This means that the
temporal variability is overestimated for the catchment and catchment 5 experi-
ments and underestimated for the other experiments. The correlation coefficient
is highest for the optim, optim 5 and best 5 experiments and lowest for the catch-
ment and catchment 5 experiments. The correlation coefficient is the component
of the KGE that contributes the most to the total score, because it is farther to
one than the other components. In addition almost all the difference between the
experiments can be attributed to the correlation component, because for g there
is not much difference between the experiments and for v there are differences,
but the absolute difference from 1 which is considered in the calculation (compare
equation 3.13) is very similar between the experiments as well.

The differences between the two sampling methods (random and shuffled) are
negligible and where they occur they tend to be in favor of the random sampling.
As expected, the variance of the scores for different ensemble members is somewhat
larger for the ensembles containing more members, that is the ones from the multi
domain experiments. Interestingly the variance of the scores is clearly larger for
the catchment and catchment 5 experiments than for the other experiments. A
possible reason is that the fields that are composed from different analogue dates
are more similar to each other in terms of total precipitation over the catchment
than the fields from the same analogue date for the whole catchment. This may
explain the higher temporal variance as well.

The multi domain experiments lead to very similar runoff scores to those of
their single domain counterparts despite the higher CRPSS of the precipitation
simulation. In terms of the Nash criteria optim 5 and best 5 are somewhat better,
and catchment 5 somewhat worse than the respective single domain versions. For
the v component of the KGE it’s the other way round, because the multi domain
experiments have lower variability ratios and this brings the catchment 5 closer to
the ideal value of one, but moves the others further away from it.

Out of the three precipitation scores, the Location Skill Score (LSS) is the one
that has the strongest tendency to vary in the same direction as the performance
scores of the streamflow simulations Nash and KGE.
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11.4 Conclusions

The best streamflow simulations in terms of the Nash and KGE citeria are obtained
with the optim and optim 5 experiments. Contrary to precipitation the best ex-
periment does not outperform the optim experiment in the streamflow simulation
and the multi domain experiments don’t lead to systematically better streamflow
simulations. There is definitely an interest in optimising predictor domains locally,
because this leads to better streamflow simulations, notably in terms of temporal
correlation (see the correlation component of the KGE).

Experiments having a high LSS for precipitation tend to lead to better stream-
flow simulations. The localisation of precipitation in the catchment is the most
sensitive of the studied factors. The LSS seems to be the most meaningful of the
three precipitation indices for streamflow simulations with J2000 despite its small
variations. Note that this might be different for different hydrological models and
different catchments.



Conclusions and Perspectives

Conclusions

The SANDHY method has been extended to the whole mainland of France and
Corsica. The extention has been accomplished by optimising the predictor domains
for the geopotential predictor individually for 608 climatologically homogeneous
zones covering France (Chapter 5). An important spatial variability of the resulting
predictor domains has been found. The predictor domain for the other three
predictor variables has not been optimised which turned out to be a weakness
of the chosen optimisation strategy. However, it can partially be overcome by
considering predictor domains found for other locations because this can change
the large scale grid cell used as predictor domain for the local predictor variables
(Chapter 7).

The downscaling skill for precipitation depends on the precipitation climate
and is higher for wetter climates than for drier ones which is in line with Fowler
et al. (2007). The skill in terms of CRPSS is comparable to the one found in
similar studies but given the poor skill of the streamflow simulations driven with
downscaled data in chapter 11, the skill of raw output from the current method
is probably not good enough for hydrological modelling. This is likely to be due
on one hand to the downscaling method, that is optimised for precipitation but
has seasonal biases for precipitation and temperature and on the other hand the
chosen strategy for constructing scenarios that leads to less than observed temporal
autocorrelation especially for temperature.

The validation experiments showed non-uniform skill loss in terms of CRPSS
when a time period different from the optimisation period is simulated and a
non-uniform change in bias if the archive period is different from the simulation
period (Chapter 6). Skill loss in the out of sample validation and changes in the
bias are particularly severe for a zone where the predictor-predictand relationship
is not stationary over the two studied time periods due to an added station at
higher altitude observing systematically higher precipitation amounts in the second
period. Using transformed precipitation as predictand during the optimisation
does not substantially change the optimisation and validation results.
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There are two main philosophies regarding spatially coherent precipitation
downscaling with analogues. One is to select the same analogue dates for a region
as large as possible and the other one is to use analogue dates from locally op-
timised predictor domains accepting that they vary between locations but under
the hypothesis that neighbour locations will have sufficiently similar parameters
to ensure smooth transitions at least in a probabilistic setting. In the first case
one can set a threshold in terms of performance loss between the locally optimised
model and the common model to define the limits of the region that is supposed
to use a common model configuration. Chardon et al. (2014) found such a re-
gion of transferability to be larger for an analogue method with only one selection
step than for a two step method and concludes that the refined two step method
increases the local skill but decreases the transferability. Such an analysis has
not been performed with the four step SANDHY method but it is likely that the
transferability is even lower given the higher number of steps and the limited ag-
gregateability of predictand areas by equal predictor domain found in Chapter 8.
The first approach seems therefore to be more suited for a single step analogue se-
lection than for a multi step procedure. In terms of optimisation effort it has to be
noted that following the first approach does not avoid local optimisation since the
maximum local performance has to be known in order to calculate a performance
loss.

The requirement of sufficiently similar parameters for neighbour locations to
ensure smooth transitions in the case of the second approach is more easily met if
small spatial entities are used in the local optimisation. For additional smoothing
precipitation from analogue dates found for neighbour locations could be integrated
in the local probabilistic precipitation estimate. The amount of information to
integrate from specific neighbours should be spatially unisotropic and reflecting
the similarity of parameters between two locations that depends on the similarity
of the large scale ingredients that lead to precipitation at a given location. Indeed
combining analogue precipitation found with multiple predictor domains was found
to increase the local CRPSS of downscaled precipitation. The improvement is
essentially due to a better resolution of the predictive distribution (Chapter 10).

If the target region of the downscaling is larger than the region of transferability,
the first approach requires the definition of a border between two such regions. At
these borders important discontinuities in the downscaled fields are likely to occur
especially for large regions and high performance loss thresholds. The preferred
location of the borders may vary with the application. In addition the borders
may have to be redefined if the downscaling target region is enlarged. All this is
avoided using the second approach which makes it independent of the application
and more straight forward to extend spatially.

A spatial verification method has been adapted for probabilistic simulations
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and was used to assess the spatial properties of the downscaled precipitation fields
over two catchments of different sizes (Chapter 10). An experimental setup was
designed that compares the two downscaling philosophies in terms of local skill, re-
alistic spatial structure and realistic location of the downscaled precipitation. The
spatially homogeneous predictor domains lead to more realistic spatial structure
while the spatially varying ones better capture the location.

Simulations with a distributed hydrological model for the Durance catchment
conducted during an internship (Eeckman, 2014) showed that there are indeed
differences in the skill of the streamflow simulations due to the two downscaling
philosophies, while combining analogue precipitation found with multiple predic-
tor domains has a comparatively small influence (Chapter 11). Spatially varying
predictor domains lead to higher skill of the streamflow simulations measured with
the probabilistic Nash and the KGE criteria, notably the correlation component
of the KGE is higher. The spatially varying predictor domains apparently provide
enough spatial consistency of downscaled preciptation and are more precise in lo-
cating precipitation than uniform predictor domains. This leads to smaller errors
in the streamflow simulations and shows that there is some interest in the local
optimisation approach when an application in hydrology is intended.

Multiple variables are needed for streamflow simulations. Technically it is easy
to achieve this inter-variable coherence using resampling methods by assuming
realistic inter-variable relationships when all variables are taken from the same
analogue dates. In practice it is far from sure that a method optimised for pre-
cipitation correctly simulates other variables. Indeed, Caillouet (2016) found that
the seasonal cycle of simulated temperature is too flat and that the temporal au-
tocorrelation of temperature is strongly underestimated in SANDHY simulations.

Some GCMs have a good representation of the climate system’s response to
greenhouse gas forcing, but location biases of the storm tracks. These biases in
the predictor data with respect to the archive will lead to biases in the downscaled
local variables as well, if the downscaling is applied to GCM data, since the pre-
dictors are assumed to be well simulated in perfect prognosis type downscaling like
SANDHY. In this case the downscaling reveals non-trivial GCM biases and does
not correct them. This may be a valuable diagnostic for the GCMs, but is not
what most users would expect.

The SANDHY software developed during this thesis and described in Chapter
4 has already been successfully used by colleagues. Laurie Caillouet uses SANDHY
to reconstuct historical droughts over France which implies the use of long reanal-
ysis datasets as the twentieth Century Reanalysis 20CR (Compo et al., 2011) as
predictors (Caillouet, 2016). Jean-Philippe Vidal downscaled precipitation for 81
Stations in Argentina using SANDHY for the second CORDEX-ESD workshop
(Vidal and Radanovics, 2014), which implied to use ERA-Interim predictors and
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predictands from station data instead of zone averages. This helped to identify
and remove bugs that became visible due to the different set-ups in terms of data
and time periods. An unresolved issue using station data as predictand is the
treatment of missing data in the archive. The configuration file is rather long and
somewhat complicated due to the different tasks and options that can be selected
which limits the userfriendliness. On the other hand this makes it flexible enough
to cope with different datasets for predictors and predictands, different regions of
application and different simulation periods.

Perspectives

As always in research every result makes us ask at least one other question and as
always at the end of a thesis or research project in general there are some questions
that have not been answered yet.

Open questions

The validation of the SANDHY method has been carried out using the locally
optimised domains but what would be the validation results for the catchment
domains for the zones inside the respective catchment? Do they have more skill
loss or less than the locally optimised ones? Does the skill loss vary considerably
between the zones? A similar question can be asked about the best domains. They
have better skill during the optimisation period, but how do they behave in an out
of sample validation?

The fact that using the analogue dates from 5 domains instead of only one
increases the skill, leads to the following questions that would be worth exploring.
Until how many domains does the CRPSS increase? Simply retaining more ana-
logue dates does not increase the skill because this adds information from days
that are less similar. The use of analogue dates from different predictor domains
is rather similar to a weighting as it is often used in k-nn methods. Therefore it
would be interesting to look if a weighting with the rank of the analogue leads to
the same improvement of the skill. Furthermore throughout the study CRPSS dif-
ferences have been observed but which of these differences are actually significant?
The significance of the differences in CRPSS could be tested using the paired tests
proposed by Hamill (1999) but they can only be applied in cases where the same
time series is simulated, that is the same zone and the same time period. This is
the case for the question if the CRPSS increase using multiple predictor domains
is significant but not in the validation experiments and for differences between
zones.
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In the development of the probabilistic SAL some choices have been made that
would deserve to be explored in more detail. What is for example the sensitivity of
the probabilistic SAL on the choice of the thresholds to define the probability fields
and the threshold to define the probability objects? Furthermore the probability
threshold for the observation is somewhat unsatisfying because it leads to entirely
flat objects that limit the usefulness of the structure component. It would be
interesting to do sensitivity experiments on the treatment of the observation data
as well. The precipitation objects in the probabilistic SAL are completely flat due
to the deterministic nature of the observations. This is not very satisfying because
information on the observed precipitation structure is lost. One could for example
use spatial- or temporal neighbourhoods to provide probabilistic observations or
somehow take into account an amount difference between the threshold and the
local precipitation amount.

A possible application of the SAL in a climate modelling and downscaling
context would be to compare the spatial properties of observed and modelled cli-
matologies. This would answer the question if the model simulates on average
the highest precipitation in the right places, which is for example not obvious for
RCMs in mountainous regions. The drawback of SAL in a climate modelling and
downscaling context is that the SAL components are distances between two given
situations rather than characteristics of fields. This means that it can not used
to compare average spatial characteristics of simulated fields, only the character-
istic of the average spatial fields can be compared. To compare average spatial
characteristics the method of AghaKouchak et al. (2011) could be adopted.

In chapter 11 only the implication of choices in terms of predictor domains in
the downscaling procedure on streamflow at the outlet of the catchment have been
analysed. Beside that, the hydrological model simulates other variables like soil
moisture and snow cover and it would be interesting to study the effect on these
other variables as well.

Possible further developments of SANDHY

SANDHY has been optimised for precipitation, but for hydrological modelling
other variables like temperature and evapotranspiration are needed as well. What
is the performance of SANDHY for these other predictand variables? First results
from Laurie Caillouet’s thesis (Caillouet, 2016) show that the amplitude of the
yearly cycle is underestimated for temperature (and thus likely for evapotranspi-
ration as well). Furthermore biases in the seasonality of precipitation have been
detected in areas with contrasted precipitation regimes, notably in the Cévennes
where the precipitation regime is characterised by high precipitation in autumn
(Ricard et al., 2012; Godart et al., 2011; Bresson et al., 2012). This is due to
the temperature predictor that does not distinguish between spring and autumn
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situations. An a posteriori selection using sea surface temperature removed the
seasonal precipitation bias. A further development of SANDHY would be therefore
to include sea surface temperature as a predictor along with temperature directly
in the first analogue selection step. This could be helpful as well in regions with
strong influence from the ENSO phenomenon to distinguish el Nino and la Nina
years.

Lavers et al. (2013) showed that moisture flux is more correlated to precipita-
tion than moisture, so it would be interesting to test moisture flux as humidity
predictor instead of the product of relative humidity and total column water. Fur-
thermore Lafaysse et al. (2014b) claimed that one single downscaling method with
a single set of predictors even with probabilistic output will not describe the whole
range of uncertainty due to the statistical downscaling and thus versions with
different predictors should be used. Following this recommendation further devel-
opments could include to combine analogue dates obtained with different predictor
variable combinations (with sea surface temperature or without, with vertical ve-
locity or without, with geopotential fields or mean sea level pressure, with moisture
flux or relative humidity and total column water as humidity predictor) in addition
to different predictor domains as it has already been done in this study.

In the framework of the CORDEX initiative for coordinated downscaling, com-
mon predictand domains and experiments have been defined by the community
for regional climate modelling and now a similar effort for statistical downscal-
ing CORDEX-ESDM is on the way. For experiments in different climate zones
like for example in the Tropics different predictors as for mid-latitude regions will
be needed. But which predictors are the most suitable ones for different climate
zones? The same question arises in the forecast context when forecasts are deliv-
ered for a different region. For example the Compagnie National du Rhone (CNR)
wants to provide analogue precipitation forecast for the Mekong catchment. In
the Tropics it is likely that predictors related to thermodynamics are more impor-
tant and circulation related ones less important for daily precipitation than in the
mid-latitudes.

When working with observation data directly instead of near surface reanalysis
data we have to deal with missing values in the archive data. It may happen that
for an analogue date the corresponding observation values are missing. But how to
treat this case? Excluding these days from the analogue search makes the analogue
search depending on a specific predictand location and contradicts the principle
that the same configuration in terms of predictors lead to the same analogue
dates. This is a major limitation for the spatially common analogue philosophy
while for the local analogue philosophy it may be acceptable. The alternative is
to keep the missing values and to accept to have not the same number of analogue
precipitation values for each day. If there is occationally a missing value in the
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archive, this should not have a dramatic influence on the downscaling results, but
if there are longer periods missing, or the missing values are particularly frequent
in a specific season, this becomes problematic. This is one example for the very
strong dependence of the analogue method on the available data, that is even
stronger than for other methods, except maybe the delta change method. Further
developments of SANDHY should therefore include the treatment of missing data
in the observations.

For historical reasons and notably due to the attempt to reuse code from earlier
implementations the CRPS calculation as an objective function in the optimisation
and as a validation measure in SANDHY is implemented using the empirical repar-
tition function of Blom (Cunnane, 1978) for calculating the empirical probabilities
from the sample. This repartition has in fact found to be rather suited for normally
distributed data (Meylan et al., 2008) and is therefore not especially adapted for
precipitation. In addition it would be nice to have comparable CRPS values when
calculating them with R software and to be able to calculate the decomposition
after Hersbach (2000). Recently a CRPS calculation as in the CrpsDecomposition
function of the R package verification (NCAR - Research Application Program,
2012) has been implemented in SANDHY and can be used in the validation under
certain circumstances. The aim is to implement it as an option in the optimisation
as well.

Application for climate projections

Should the downscaling method be applied to projections of future climate there
are some additional questions that come into play. For example there is quite some
debate if downscaling is actually providing useful information for decision making.
The usual top-down approach consists of running a multi-model ensemble of GCMs
with possibly several runs each to account for internal variability (Allen et al.,
2000), then do some downscaling of these using different methods and again several
realisations for stochastic methods. Each of the resulting local scenarios is fed into
several impact models. This aims at sampling the known sources of uncertainty at
each step (see e.g. Lafaysse et al., 2014a) and results in huge amounts of data and
simulations to do. At the end of this uncertainty cascade the uncertainties are very
large (Mitchell and Hulme, 1999; Wilby and Dessai, 2010). Comparison studies of
downscaling methods demonstrated that the choice of the downscaling method is
a major contributor to uncertainty of downscaled climate (Schoof, 2013), at least
in summer (Schmidli et al., 2007).

The top-down approach needs methods for intelligently subsetting the multi-
tude of realisations at each step, where the most appropriate subset depends on
the subject to be studied and the added challenge that some earth system models
are systematically better than others (Brands et al., 2013). Subsetting renders
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the modelling chain more parsimonious but requires to know the aim of the study
and the sensitivity of the models at each of the steps. GCMs are typically tested
for their sensitivity to doubled CO, concentrations, and indirectly to increased
radiative forcing (Bellouin et al., 2011) in general via the representative concen-
tration pathways (van Vuuren et al., 2011). Downscaling methods are not yet
systematically tested for their sensitivity on changes in their input variables but
Maraun et al. (2014) proposes a framework to validate downscaling approaches for
climate change studies. Hwang and Graham (2013) found that results obtained
with the same GCM but different downscaling techniques are more different than
those obtained using different GCMs but the same downscaling technique. This is
in line with Lafaysse et al. (2014a) who found substantial uncertainty related to
the downscaling method.

Pielke and Wilby (2012) advocates the use of a risk oriented bottom-up ap-
proach to avoid the downscaling step (see Prudhomme et al. (2010); Ekstrom et al.
(2013) for examples), that consists essentially of a sensitivity analysis of an im-
pact model to different climate forcings. The result is a multidimensional response
surface of the modelled output variable to combinations of changes in the input
variables. The dimensionality of the response surface depends on the number of
characteristics of the input variables that are considered to be important for the
system. If thresholds can be defined for the response variable that correspond to a
certain risk, like for example the maximum streamflow a given dam is constructed
to resist to, it can be determined for which combinations of input characteris-
tics the dam risks to break. The risk due to anthropogenic climate change can
then be assessed by looking how many of the GCM runs simulate future input
variable characteristics that fall into the dangerous zone. This assumes that the
GCMs are able to realistically simulate those characteristics, which is very simi-
lar to the assumption done in downscaling that the GCM correctly simulate the
large-scale predictors for statistical- or lateral boundary conditions for dynamical
downscaling. Collins (2007) goes as far as saying that empirical approaches are
not valid for climate change prediction as they could not be reliably used to make
extrapolations outside their historical training period but on the other hand sees
more use of probabilistic methods in impacts assessment and seamless (probabilis-
tic) prediction of weather and climate from days to seasons and centuries in the
future.

Hewitson et al. (2014) argues that in principle there is nothing wrong with
research on downscaling, but we should be aware that climate change research and
the downscaling that goes along with it is still fundamental research and there-
fore not ready to be used operationally. Climate scientists are pushed to provide
information on climate change, which results in a multitude of sometimes contra-
dictory and poorly documented data. This causes confusion and skepticism. It is
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therefore important to provide the methodological limitations and the assumptions
along with the data. To be able to provide information on the methodological limi-
tations of a given method, rigorous diagnostics have to be performed under present
climate conditions where observations are available.

Related research on analogue downscaling in France

Downscaling with an analogue method and questions about spatial coherence
seems to be a topic of interest in France at the moment. Beside this thesis there are
two others by Jeremy Chardon (Chardon, 2014) and Gildas Dayon (Dayon, 2015)
who work on similar topics with complementary questions. At the same time, as
hydroelectricity producers, such as the CNR, had done long time ago, the Service
Central d’Hydrométéorologie et d’Appui a la Prévision des Inondations (SCHAPI
National center for hydrometeorology and flood forecasting support) seeks to im-
plement an analogue downscaling model for operational use in flood forecasting
(Marty and Gautheron, 2014). However the SCHAPI seeks a parsimonious im-
plementation with only a few predictor domains for the mainland of France. The
results of this thesis and the ones from Chardon et al. (2014) suggest to use several
predictor domains, at least a separate one for the southeastern part of France with
its Mediterranean climate if some skill for this region is of interest.
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Abstract

Studying past and present day precipitation and its link to large scale circulation increases our
understanding of precipitation characteristics and helps to anticipate their future behaviour.
Downscaling techniques are being developed to bridge the gap between large-scale climate
information from global reanalyses or GCM global projections and local meteorological infor-
mation relevant for hydrology.

The stepwise analogue downscaling method for hydrology (SANDHY) is extended to the
whole mainland of France by optimising the geopotential predictor domains for 608 zones
covering France using a multiple growing rectangular domain algorithm that allows to take
equifinality into account. A high diversity of predictor domains has been found. To increase the
spatial coherence three ways are explored to reduce the parameter space: assessing the skill
for predictor domains found for other zones, form groups of zones using cluster algorithms
and using a less skewed predictand variable during optimisation. Using information from
neighbouring zones allows to counterbalance in part limitations of the optimisation algorithm.

A feature based spatial verification method (SAL) is adapted for probabilistic precipitation
simulation as provided by SANDHY. Skill scores derived from the probabilistic SAL are used
to assess different strategies for spatially coherent precipitation downscaling at catchment
scale. Locally optimised predictor domains lead to a better localisation of precipitation in
the catchment and higher local skill while uniform predictor domains for the whole catchment
lead to a more realistic spatial structure of the simulated precipitation. Streamflow simulations
for the Durance catchment (Southern Alps) are most sensitive to the realistic localisation of
precipitation which highlights the interest of locally optimising predictor domains.

Résumé

Etudier les précipitations et leur lien avec la circulation atmosphérique augmente notre con-
naissance de leurs caracteristiques et aide a anticiper leur comportement futur. Des méthodes
de descente d’échelle statistiques sont développées pour fournir des informations météorologiques
locales et importantes pour ’hydrologie a partir des informations issues des réanalyses ou des
projections globales du climat.

La méthode SANDHY (Stepwise ANalogue Downscaling method for HY drology) est étendue
a I’ensemble de la France métropolitaine en optimisant les domaines pour le prédicteur géopoten-
tiel pour les 608 zones climatiquement homogenes en France en utilisant un algorithme qui per-
met de prendre en compte 1’équifinalité. Une grande diversité des domaines pour le prédicteur
géopotentiel a été trouvée. Trois voies pour augmenter la cohérence spatiale et diminuer
I’espace des parametres sont explorés : prendre en compte les domaines optimisés pour des
zones voisines, rassembler des zones en utilisant des algorithmes d’aggregation et utiliser un
predictant moins asymétrique pendant 'optimisation. Utiliser de I'information issues de zones
voisines permet de compenser certaines limitations de ’algorithme d’optimisation.

Une méthode de vérification spatiale (SAL) est ici adaptée pour les précipitations proba-
bilistes simulées par SANDHY. Des mesures de performance derivées de cette version prob-
abiliste du SAL sont ensuite utilisées pour évaluer différentes stratégies de descente d’échelle
concernant la cohérence spatiale a 1’échelle d'un bassin versant. Les domaines optimisés lo-
calement pour le prédicteur géopotentiel permettent de mieux localiser les précipitations dans
le bassin tandis que des domains uniformes sur tout le bassin apportent une structure des
précipitations plus réaliste. Les simulations de débit pour le bassin de la Durance sont le plus
sensible a la localisation des précipitations, ce qui souligne l'interét d’une optimisation locale
des domaines des prédicteurs.



