
HAL Id: tel-01231838
https://theses.hal.science/tel-01231838v1
Submitted on 20 Nov 2015 (v1), last revised 4 Dec 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On numerical resilience in linear algebra
Mawussi Zounon

To cite this version:
Mawussi Zounon. On numerical resilience in linear algebra. Distributed, Parallel, and Cluster Com-
puting [cs.DC]. Université de Bordeaux, 2015. English. �NNT : �. �tel-01231838v1�

https://theses.hal.science/tel-01231838v1
https://hal.archives-ouvertes.fr

THÈSE
PRÉSENTÉE À

L’UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET D’INFORMATIQUE

Par Mawussi Zounon

POUR OBTENIR LE GRADE DE

DOCTEUR
SPÉCIALITÉ : INFORMATIQUE

On numerical resilience in linear algebra

Soutenue le : 1er avril 2015

Membres du jury :

Frédéric Vivien . Président

Mike Heroux . . Rapporteur

Peter Arbenz . . Rapporteur

Karl Meerbergen Examinateur

Emmanuel Agullo Directeur de Thèse

Luc Giraud . . . Directeur de Thèse

ii

Acknowledgments

My advisor Luc Giraud and my co-advisor Emmanuel Agullo deserve thanks for many
things. Notably, for their confidence, all their support and the nice research environment
during my graduate studies. They have provided guidance at key moments in my work while
also allowing me to work independently the majority of the time. I would like to express
my thanks to Professor Jean Roman and Abdou Guermouche. Your suggestions have been
precious for the development of this thesis content. I would like to extend my sincerest
thanks and appreciation to Professors Peter Arbenz and Mike Heroux, Karl Meerbergen,
Frédéric Vivien for having accepted to act as referee or as regular committee member for
my defense, and for their precious suggestions.

Because of the HiePACS research team environment, I have crossed paths with many
graduate students and postdocs who have influenced and enhanced my research. I take this
opportunity to thank all graduate students and postdocs of the HiePACS research team,
without forgetting our kind team assistant, Chrystel Plumejeau.

Last but not least, my deepest thanks goes to my sweet wife, Anna, who has consistently
supported and encouraged me through the ups and downs, all these years.

iii

iv

Conception d’algorithmes numériques pour la résilience

en algèbre linéaire

Résumé

Comme la puissance de calcul des systèmes de calcul haute performance continue de crôıtre,
en utilisant un grand nombre de cœurs CPU ou d’unités de calcul spécialisées, les appli-
cations hautes performances destinées à la résolution des problèmes de très grande échelle
sont de plus en plus sujettes à des pannes. En conséquence, la communauté de calcul
haute performance a proposé de nombreuses contributions pour concevoir des applications
tolérantes aux pannes. Cette étude porte sur une nouvelle classe d’algorithmes numériques
de tolérance aux pannes au niveau de l’application qui ne nécessite pas de ressources supplé-
mentaires, à savoir, des unités de calcul ou du temps de calcul additionnel, en l’absence de
pannes. En supposant qu’un mécanisme distinct assure la détection des pannes, nous pro-
posons des algorithmes numériques pour extraire des informations pertinentes à partir des
données disponibles après une pannes. Après l’extraction de données, les données critiques
manquantes sont régénérées grâce à des stratégies d’interpolation pour constituer des infor-
mations pertinentes pour redémarrer numériquement l’algorithme. Nous avons conçu ces
méthodes appelées techniques d’Interpolation-restart pour des problèmes d’algèbre linéaire
numérique tels que la résolution de systèmes linéaires ou des problèmes aux valeurs propres
qui sont indispensables dans de nombreux noyaux scientifiques et applications d’ingénierie.
La résolution de ces problèmes est souvent la partie dominante; en termes de temps de
calcul, des applications scientifiques. Dans le cadre solveurs linéaires du sous-espace de
Krylov, les entrées perdues de l’itération sont interpolées en utilisant les entrées disponibles
sur les nœuds encore disponibles pour définir une nouvelle estimation de la solution initiale
avant de redémarrer la méthode de Krylov. En particulier, nous considérons deux politiques
d’interpolation qui préservent les propriétés numériques clés de solveurs linéaires bien con-
nus, à savoir la décroissance monotone de la norme-A de l’erreur du gradient conjugué ou
la décroissance monotone de la norme résiduelle de GMRES. Nous avons évalué l’impact du
taux de pannes et l’impact de la quantité de données perdues sur la robustesse des straté-
gies de résilience conçues. Les expériences ont montré que nos stratégies numériques sont
robustes même en présence de grandes fréquences de pannes, et de perte de grand volume
de données. Dans le but de concevoir des solveurs résilients de résolution de problèmes aux
valeurs propres, nous avons modifié les stratégies d’interpolation conçues pour les systèmes
linéaires. Nous avons revisité les méthodes itératives de l’état de l’art pour la résolution des
problèmes de valeurs propres creux à la lumière des stratégies d’Interpolation-restart. Pour
chaque méthode considérée, nous avons adapté les stratégies d’Interpolation-restart pour
régénérer autant d’informations spectrale que possible. Afin d’évaluer la performance de
nos stratégies numériques, nous avons considéré un solveur parallèle hybride (direct/itéra-
tive) pleinement fonctionnel nommé MaPHyS pour la résolution des systèmes linéaires
creux, et nous proposons des solutions numériques pour concevoir une version tolérante
aux pannes du solveur. Le solveur étant hybride, nous nous concentrons dans cette étude
sur l’étape de résolution itérative, qui est souvent l’étape dominante dans la pratique. Les

v

solutions numériques proposées comportent deux volets. A chaque fois que cela est possible,
nous exploitons la redondance de données entre les processus du solveur pour effectuer une
régénération exacte des données en faisant des copies astucieuses dans les processus. D’autre
part, les données perdues qui ne sont plus disponibles sur aucun processus sont régénérées
grâce à un mécanisme d’interpolation. Pour évaluer l’efficacité des solutions numériques
proposées, elles ont été mises en œuvre dans le solveur parallèle MaPHyS pour résoudre
des problèmes de grande échelle sur un grand nombre de ressources de calcul (allant jusqu’à
12288 coeurs CPU).

Mots-clés

Tolerance aux pannes, résilience, interpolation, restauration de donnée, robustesse, méth-
odes itératives, méthodes de type Krylov, sous espaces de Krylov, problèmes de valeurs
propres, systèmes linéaires, GMRES, CG, PCG, Bicgstab, preconditionnement, méth-
ode de puissance, itération de sous espace, Arnoldi, IRAM, Jacobi-Davidson, Simulation
numérique, parallélisme, calcul scientifique.

vi

On numerical resilience in linear algebra

Abstract

As the computational power of high performance computing (HPC) systems continues to
increase by using huge number of cores or specialized processing units, HPC applications
are increasingly prone to faults. This study covers a new class of numerical fault tolerance
algorithms at application level that does not require extra resources, i.e., computational unit
or computing time, when no fault occurs. Assuming that a separate mechanism ensures fault
detection, we propose numerical algorithms to extract relevant information from available
data after a fault. After data extraction, well chosen part of missing data is regenerated
through interpolation strategies to constitute meaningful inputs to numerically restart the
algorithm. We have designed these methods called Interpolation-restart techniques for
numerical linear algebra problems such as the solution of linear systems or eigen-problems
that are the inner most numerical kernels in many scientific and engineering applications
and also often ones of the most time consuming parts. In the framework of Krylov subspace
linear solvers the lost entries of the iterate are interpolated using the available entries on
the still alive nodes to define a new initial guess before restarting the Krylov method. In
particular, we consider two interpolation policies that preserve key numerical properties of
well-known linear solvers, namely the monotony decrease of the A-norm of the error of the
conjugate gradient or the residual norm decrease of GMRES. We assess the impact of the
fault rate and the amount of lost data on the robustness of the resulting linear solvers.
For eigensolvers, we revisited state-of-the-art methods for solving large sparse eigenvalue
problems namely the Arnoldi methods, subspace iteration methods and the Jacobi-Davidson
method, in the light of Interpolation-restart strategies. For each considered eigensolver, we
adapted the Interpolation-restart strategies to regenerate as much spectral information as
possible. Through intensive experiments, we illustrate the qualitative numerical behavior
of the resulting schemes when the number of faults and the amount of lost data are varied;
and we demonstrate that they exhibit a numerical robustness close to that of fault-free
calculations. In order to assess the efficiency of our numerical strategies, we have considered
an actual fully-featured parallel sparse hybrid (direct/iterative) linear solver, MaPHyS,
and we proposed numerical remedies to design a resilient version of the solver. The solver
being hybrid, we focus in this study on the iterative solution step, which is often the
dominant step in practice. The numerical remedies we propose are twofold. Whenever
possible, we exploit the natural data redundancy between processes from the solver to
perform an exact recovery through clever copies over processes. Otherwise, data that has
been lost and is not available anymore on any process is recovered through Interpolation-
restart strategies. These numerical remedies have been implemented in the MaPHyS
parallel solver so that we can assess their efficiency on a large number of processing units
(up to 12, 288 CPU cores) for solving large-scale real-life problems.

vii

Keywords

Fault tolerance, resilience, interpolation, recovery, robustness, iterative methods, Krylov
methods, Krylov subspaces, eigenvalue problems, linear systems, GMRES, flexible GMRES,
CG, power method, subspace iteration, Arnoldi, IRAM, Jacobi-Davidson, HPC, large scale
numerical simulations.

viii

Contents

Résumé en Français 3

Introduction 7

1 General Introduction 9

1.1 Introduction . 10

1.2 Brief introduction to numerical linear algebra 10

1.2.1 Sparse matrices . 11

1.2.2 Solutions for large sparse linear algebra problems 13

1.2.3 Iterative methods for linear systems of equations 14

1.2.4 Iterative methods for eigenvalue problems 17

1.2.5 Parallel implementation of large sparse linear algebra solvers 18

1.3 Quick introduction to faults in HPC systems 19

1.3.1 Understanding faults in HPC systems 19

1.3.2 Fault distribution models . 21

1.3.3 Fault injection models . 22

1.4 Overview of fault detection and correction models 24

1.4.1 Fault tolerance and resilience . 24

1.4.2 Replication and redundancy . 24

1.4.3 Checkpoint/restart techniques . 25

1.4.4 Diskless checkpoint techniques . 28

1.4.5 Limitation of checkpoint/restart techniques 29

1.4.6 Checksum-based ABFT techniques for fault detection and correction 29

1.4.7 ABFT techniques without checksums for fault recovery 31

ix

1.4.8 Fault tolerance in message passing systems 31

1.5 Faults addressed in this work . 33

I Interpolation-restart Strategies 35

2 Interpolation-restart strategies for resilient parallel linear Krylov solvers 41

2.1 Introduction . 42

2.2 Strategies for resilient solvers . 42

2.2.1 Linear interpolation . 43

2.2.2 Least squares interpolation . 44

2.2.3 Multiple faults . 45

2.2.4 Numerical properties of the Interpolation-Restart Krylov solvers . . . 47

2.3 Numerical experiments . 49

2.3.1 Experimental framework . 50

2.3.2 Numerical behavior in single fault cases 51

2.3.3 Numerical behavior in multiple fault cases 52

2.3.4 Penalty of the Interpolation-Restart strategy on convergence 55

2.3.5 Cost of interpolation strategies . 56

2.4 Concluding remarks . 58

3 Interpolation-restart strategies for resilient eigensolvers 59

3.1 Introduction . 59

3.2 Interpolation-restart principles . 60

3.2.1 Interpolation methods . 60

3.2.2 Reference policies . 61

3.3 Interpolation-Restart strategies for well-known eigensolvers 61

3.3.1 Some background on basic methods for computing eigenvectors . . . 62

3.3.2 Subspace iterations to compute nev eigenpairs 63

3.3.3 Arnoldi method to compute one eigenpair 67

3.3.4 Implicitly restarted Arnoldi method to compute nev eigenpairs 68

3.3.5 The Jacobi-Davidson method to compute nev eigenpairs 70

3.4 Numerical experiments . 73

3.4.1 Experimental framework . 74

3.4.2 Resilient subspace iteration methods to compute nev eigenpairs . . . 74

x

Contents

3.4.3 Arnoldi method to compute one eigenpair 75

3.4.4 Implicitly restarted Arnoldi method to compute nev eigenpairs 76

3.4.5 Jacobi-Davidson method to compute nev eigenpairs 78

3.5 Concluding remarks . 86

II Application of Interpolation-restart Strategies to a Parallel
Linear Solver 91

4 Resilient MaPHyS 93

4.1 Introduction . 93

4.2 Sparse hybrid linear solvers . 95

4.2.1 Domain decomposition Schur complement method 95

4.2.2 Additive Schwarz preconditioning of the Schur Complement 98

4.2.3 Parallel implementation . 98

4.3 Resilient sparse hybrid linear solver . 99

4.3.1 Single fault cases . 101

4.3.2 Interpolation-restart strategy for the neighbor processes fault cases . 102

4.4 Experimental results . 103

4.4.1 Results on the Plafrim platform . 104

4.4.2 Performance analysis on the Hopper platform 108

4.5 Concluding remarks . 111

5 Conclusion and perspectives 113

Bibliography 115

xi

xii

Nomenclature

` Index to enumerate eigenpairs ` ∈ [1, nev]

ε Threshold

λ Eigenvalue

I Identity matrix

U Subspace

X Eigenspace

C Rayleigh quotient

N Number of nodes involved in a simulation

τ Target value for convergence of eigenvalues

m̃ Size of a restarted basis (in IRAM and Jacobi-Davidson

A General square matrix

D Diagonal matrix which diagonal entries are eigenvalues of a given square matrix

e Column of identity matrix

ER Enforced recovery

G Matrix of eigenvectors g1, g2, . . .

g Eigenvector of C, or H or any factorized form of A

H Hessenberg matrix

i First inner loop iteration counter

Ip Set of rows mapped to node p

IR Interpolation-restart

1

j Second inner loop iteration counter

k Outer loop iteration counter

m Restart parameter related to variants of Arnoldi algorithm

n Number of rows in a given matrix

nconv Number of converged Schur vectors (in J-D)

nev Number of eigenvector to converge

p Faulty node index

q Non faulty node index

s Number of additional recovered Ritz vectors

T Triangular matrix from partial Schur decomposition A

U Subspace basis

u Eigenvector

UH Transpose conjugate of U

V Subspace basis

v Vector of basis V

Z Matrix of Schur vectors

z Schur vector

B-CGSTAB Biconjugate gradient stablized

CG Conjugate gradient

GMRES Generalized minimal residual

PCG Preconditioned conjugate gradient

2

Résumé en Français

Introduction

Il est admis aujourd’hui que la simulation numérique est le troisième pilier pour le développe-
ment de la découverte scientifique au même niveau que la théorie et l’expérimentation. Au
cours de ces dernières décennies, il y a eu dans d’innombrables domaines scientifiques, in-
génierie et sociétaux des avancées des simulations à grande échelle grâce à l’élaboration
des calculs haute performance(HPC), des algorithmes et des architectures. Ces outils
de simulation puissants ont fourni aux chercheurs la capacité de trouver des solutions
efficaces pour certaines des questions scientifiques plus difficiles et des problèmes de la
médecine de l’ingénierie et de la biologie, la climatologie, des nanotechnologies, l’énergie et
l’environnement. Ces simulations numériques nécessitent des machines à grande puissance
de calcul. Comme la puissance de calcul des systèmes de calcul haute performance continue
de crôıtre, en utilisant un grand nombre de cœurs CPU ou d’unités de calcul spécialisées,
les applications hautes performances destinées à la résolution des problèmes de très grande
échelle sont de plus en plus sujettes à des pannes. En conséquence, la communauté de
calcul haute performance a proposé de nombreuses contributions pour concevoir des appli-
cations tolérantes aux pannes. Ces contributions peuvent être orientées système, théorique
ou numérique.

Problème de pannes dans les solveurs numériques

d’algèbre linéaire

L’algèbre linéaire numérique joue un rôle central dans la résolution de nombreux prob-
lèmes de nos jours. Afin de comprendre les phénomènes ou pour résoudre les problèmes,
les scientifiques utilisent des modèles mathématiques. Les solutions obtenues à partir de
modèles mathématiques sont souvent des solutions satisfaisantes aux problèmes complexes
dans des domaines tels que la prévision météorologique, la trajectoire d’un engin spatial,
la simulation de crash de voiture, etc. Dans de nombreux domaines scientifiques tels que
l’électrostatique, l’électrodynamique, l’écoulement du fluide, l’élasticité, ou la mécanique
quantique, les problèmes sont largement modélisés par des équations aux dérivées partielles

3

(EDP). Le moyen commun pour résoudre les EDP est d’approcher la solution qui est con-
tinue par des équations discrètes qui impliquent un nombre fini d’inconnus mais souvent
très grand [136, Chapitre 2]. Cette stratégie est appelée discrétisation. Les stratégies de
discrétisation conduisent à de grandes matrices creuses. Ainsi les problèmes du monde
réel deviennent des problèmes numériques d’algèbre linéaire. Il y a beaucoup de problèmes
d’algèbre linéaire, mais ce travail se concentre sur la résolution de systèmes d’équations
linéaires Ax = b et des problèmes aux valeurs propres Ax = λx. Les solveurs parallèles
d’algèbre linéaire sont souvent les noyaux numériques indispensables dans de nombreuses
applications scientifiques; par conséquent, l’une des parties dominantes en terme de temps
de calcul. En outre, dans les systèmes à grande échelle, le temps entre deux pannes conséc-
utives peut être inférieur au temps requis par les solveurs pour finir les calculs. Par con-
séquent, il devient critique de concevoir des solveurs parallèles d’algèbre linéaire qui peuvent
survivre aux pannes. De nombreuses études se concentrent sur la conception de systèmes
HPC fiables, mais avec le nombre croissant de composants impliqués dans ces systèmes,
les pannes deviennent de plus en plus fréquentes. Les études [33, 41] tendent à démontrer
qu’avec l’augmentation permanente des pannes, les stratégies de sauvegardes classiques
peuvent être insuffisantes pour pallier les problèmes de pannes des systèmes HPC. Nous
proposons d’étudier certains solveurs linéaires afin d’exploiter leur propriétés numériques
pour la conception des algorithmes numériques de résilience. Dans cette thèse, nous étu-
dions une nouvelle classe d’algorithmes numériques de résilience au niveau de l’application
qui ne nécessitent pas de ressources supplémentaires, à savoir des unités de calcul ou de
temps de calcul, en l’absence de pannes. En supposant qu’un mécanisme distinct dans la
pile logiciel assure la détection des pannes, et nous proposons des algorithmes numériques
appelés des techniques d’interpolation-Restart, pour survivre aux pannes.

Première contribution: Stratégies d’Interpolation-

Restart pour les solveurs linéaires de Krylov

Dans la première (Part I), nous avons conçu les techniques d’interpolation-Restart pour
des solveurs linéaires de sous-espace de Krylov et des solveurs de problèmes aux valeurs
propres bien connus. Dans le cadre des solveurs linéaires de sous-espace de Krylov, dans le
chapitre 2, les données perdues sont interpolées en utilisant les données disponibles sur les
nœuds de calcul restants pour définir une nouvelle estimation de la solution initiale avant
de redémarrer la méthode de Krylov. En particulier, nous avons considéré deux methodes
d’interpolation qui préservent les propriétés numériques clés de solveurs linéaires bien con-
nus, à savoir la décroissance monotone de la norme-A de l’erreur du gradient conjugué ou
la décroissance monotone de la norme résiduelle de GMRES. Nous avons évalué l’impact du
taux de pannes et l’impact de la quantité de données perdues sur la robustesse des straté-
gies de résilience conçues. Les expériences ont montré que nos stratégies numériques sont
robustes même en présence de grandes fréquences de pannes, et de perte de grand volume
de données.

4

Contents

Deuxième contribution: Stratégies d’Interpolation-

Restart pour les solveurs de problèmes aux valeurs pro-

pres

Le calcul des paires propres (valeurs propres et vecteurs propres) des matrices creuses
de grande taille est requis dans de nombreuses applications scientifiques et d’ingénierie,
par exemple dans les problèmes d’analyse de stabilité. Cependant, dans les systèmes de
calcul haute performance à grande échelle à venir, il est prévu que l’intervalle de temps
entre deux pannes consécutives soit plus petit que le temps requis par les solveurs pour
finir les calculs. Il est donc nécessaire de concevoir des solveurs parallèles de problèmes
aux valeurs propres qui peuvent survivre aux pannes. Dans le but de concevoir des solveurs
résilients pour la résolution de problèmes aux valeurs propres, nous avons modifié les straté-
gies d’interpolation conçues pour les systèmes linéaires. Le Chapitre 3 est donc dédié à
des stratégies d’interpolation-Restart pour des méthodes itératives de résolution de prob-
lèmes aux valeurs propres où il y a plus de flexibilités pour adapter les idées Interpolation-
Restart. Par exemple, pour le solveur Jacobi-Davidson, les interpolations sont appliquées
aux vecteurs de Schur qui ont convergé ainsi que les meilleurs vecteurs propres de l’espace
de recherche. Après une panne, ce nouvel ensemble de vecteurs est utilisé comme estimation
initiale pour redémarrer les itérations de Jacobi-Davidson. La plupart des méthodes itéra-
tives de résolution de problèmes aux valeurs propres couramment utilisés tels que Arnoldi,
IRAM ou l’algorithme d’itération de sous-espaces ont été revisités à la lumière des stratégies
numériques de tolérance aux pannes. Nous illustrons la robustesse des stratégies proposées
par de nombreuses expériences numériques.

Troisième contribution: Implémentation parallèle des

stratégies résilience numérique dans un solveur hybride

(direct/itératif)

Dans la deuxième partie II de cet travail, nous avons considéré un solveur parallèle hybride
(direct/itérative) pleinement fonctionnel nommé MaPHyS pour la résolution des systèmes
linéaires creux, et nous avons proposé des solutions numériques pour concevoir une ver-
sion tolérante aux pannes du solveur. Le solveur étant hybride, nous nous concentrons dans
cette étude sur l’étape de résolution itérative, qui est souvent l’étape dominante dans la pra-
tique. Nous supposons en outre qu’un mécanisme distinct assure la détection des pannes et
qu’une couche système fournit un support qui remet l’environnement (processus, . . .) dans
un état fonctionnel. Ce manuscrit se focalise donc sur (et seulement sur) des stratégies
pour la régénération des données perdues après que la panne ait été détectée (la détection
de panne est un autre problème non traité dans cette étude) et que le système soit à nou-
veau fonctionnel (un autre problème orthogonal non étudié ici). Les solutions numériques
proposées comportent deux volets. A chaque fois que cela est possible, nous exploitons la
redondance de données entre les processus du solveur pour effectuer une régénération exacte
des données en faisant des copies astucieuses dans les processus. D’autre part, les données

5

perdues qui ne sont plus disponibles sur aucun processus sont régénérées grâce à un mé-
canisme d’interpolation. Ce mécanisme est dérivé des stratégies d’interpolation en prenant
en compte les propriétés spécifiques au solveur hybride cible. Pour évaluer l’efficacité des
solutions numériques proposées, elles ont été mises en œuvre dans le solveur parallèle Ma-
PHyS pour résoudre des problèmes de grande échelle sur un grand nombre de ressources
de calcul (allant jusqu’à 12288 coeurs CPU).

Conclusion et perspectives

L’objectif principal de cette thèse était d’explorer les schémas numériques pour la conception
de stratégies de résilience qui permettent aux solveurs numériques parallèles algèbre linéaire
de survivre aux pannes. Dans le contexte des solveurs d’algèbre linéaire, nous avons étudié
des approches numériques pour régénérer des données dynamiques significatives afin de
redémarrer numériquement le solveur. Nous avons présenté de nouveaux algorithmes de
résilience numérique appelés des stratégies d’Interpolation-Restart pour la résolution de
systèmes d’équations linéaires au chapitre 2. En particulier, nous avons examiné deux
méthodes pertinentes qui préservent les propriétés numériques clés des solveurs linéaires
bien connus. Nous avons démontré que nos stratégies sont très robustes indépendamment
du taux de pannes et du volume de données perdues. Dans le chapitre 3, nous avons adapté
les stratégies d’Interpolation-Restart pour concevoir des techniques numériques de résilience
pour des solveurs de résolution de problèmes aux valeurs propres. Les caractéristiques
numériques de ces derniers offrent la flexibilité de concevoir des méthodes de résilience
assez efficaces et robustes.

Après avoir évalué la robustesse de nos stratégies numériques dans des conditions stres-
santes simulées par des taux de pannes élevés et la perte de grand volume de données,
nous nous sommes concentrés sur leur extension à un solveur hybride parallèle d’algèbre
linéaire existant, MaPHyS. Avons avons exploité les propriétés d’implémentation parallèle
de MaPHyS à savoir la redondance de données aussi bien que les propriétés numériques du
préconditionneur, pour concevoir une version résiliente du solveur. Toutes les expériences
ont montré que la stratégie conçue a un comportement numérique extrêmement robuste
avec un très faible surcoût en terme de temps de calcul.

Enfin, nos stratégies de résilience numériques peuvent être efficacement combinées
avec des mécanismes de tolérance aux pannes existants tels que les techniques de check-
point/restart pour concevoir une boite à outils de tolérance aux pannes pour les simulations
à grande échelle.

6

Introduction

It is admitted today that numerical simulation is the third pillar for the development of
scientific discovery at the same level as theory and experimentation. Over the last few
decades, there have been innumerable science, engineering and societal breakthroughs en-
abled by large-scale simulations thanks to the development of high performance computing
(HPC) applications, algorithms and architectures. These powerful simulation tools have
provided researchers with the ability to computationally find efficient solutions for some of
the most challenging scientific questions and problems in engineering medicine and biology,
climatology, nanotechnology, energy and environment.

In this landscape, parallel sparse linear algebra solvers are often the innermost numer-
ical kernels in many scientific and engineering applications; consequently, one of the most
time consuming parts. Furthermore in today’s large-scale systems, the time between two
consecutive faults may be smaller than the time required by linear algebra solvers to com-
plete. Consequently, it becomes critical to design parallel linear algebra solvers which can
survive to faults. Many studies focus on designing reliable HPC systems, but with the
increasing number of components involved in these systems, faults become more frequent.
Studies [33, 41] tend to demonstrate that with the permanent increase of faults, classical
checkpoint strategies may be insufficient to recover from HPC system faults. We pro-
pose to revisit some linear solvers to exploit their numerical properties and design scalable
numerical resilience algorithms. In this dissertation, we study a new class of numerical
resilience algorithms at application level that do not require extra resources, i.e., compu-
tational units or computational time, when no fault occurs. Assuming that a separate
mechanism in the software stack ensures fault detection, we propose numerical algorithms
called Interpolation-Restart (IR) techniques, to survive to faults.

In Part I, we design IR techniques for Krylov subspace linear solvers and well-known
eigensolvers. In the framework of Krylov subspace linear solvers in Chapter 2, the lost
entries of the iterate are interpolated using the available entries on the still alive nodes to
define a new initial guess before restarting the Krylov method. In particular, we consider
two rational policies that preserve key numerical properties of well-known linear solvers,
namely the monotony decrease of the A-norm of the error of the conjugate gradient or
the residual norm decrease of GMRES. We assess the impact of the interpolation-restart
techniques, the fault rate and the amount of lost data on the robustness of the resulting
resilient Krylov subspace solvers.

7

Chapter 3 is dedicated to IR techniques for iterative eigensolvers where there are more
freedom to adapt Interpolation-Restart ideas. For instance, for the Jacobi-Davidson solver,
the interpolations are applied to the converged Schur vectors as well as to the best direction
candidates of the current search space. After a fault, this new set of vectors are used
as initial guess to restart the Jacobi-Davidson iterations. Most of the commonly used
eigensolvers such as Arnoldi, Implicitly restarted Arnoldi or subspace iteration algorithm
have been revisited in the light on faults. We illustrate the robustness of the proposed
schemes through extensive numerical experiments.

In Part II we consider an actual fully-featured sparse hybrid (direct/iterative), namely
the Massively Parallel Hybrid Solver (MaPHyS1) [4, 75, 83]. This solver is based on non-
overlapping domain decomposition techniques applied in a fully algebraic framework. Such
a technique leads to the iterative solution of a considered linear system defined on the
interface between the algebraic subdomains (subset of equations). We derive this parallel
solver for making it resilient, focusing on the iterative solve step, objective of this thesis.
The derivation is twofold and aims at exploiting the properties of the particular hybrid
method considered. First, we show that data redundancy can be efficiently used to recover
single fault cases. Second, we propose a variant of the IR strategies proposed in Part I
and tuned according to the properties of the preconditioner onto which the hybrid solver
relies. We show that this IR strategy is efficient to survive neighbor processes fault cases.
To illustrate our discussion, we have modified the fully-featured MaPHyS solver. We
focused on the cost induced at algorithm level (extra computation and communication)
and neglected the cost due to the necessary system software stack required for supporting
it.

Finally we conclude this manuscript with some perspectives for future research in the
field of resilient numerical schemes.

1https://project.inria.fr/maphys/

8

Chapter 1
General Introduction

Contents
1.1 Introduction . 10

1.2 Brief introduction to numerical linear algebra 10

1.2.1 Sparse matrices . 11

1.2.2 Solutions for large sparse linear algebra problems 13

1.2.3 Iterative methods for linear systems of equations 14

1.2.4 Iterative methods for eigenvalue problems 17

1.2.5 Parallel implementation of large sparse linear algebra solvers . . 18

1.3 Quick introduction to faults in HPC systems 19

1.3.1 Understanding faults in HPC systems 19

1.3.2 Fault distribution models . 21

1.3.3 Fault injection models . 22

1.4 Overview of fault detection and correction models 24

1.4.1 Fault tolerance and resilience . 24

1.4.2 Replication and redundancy . 24

1.4.3 Checkpoint/restart techniques 25

1.4.4 Diskless checkpoint techniques 28

1.4.5 Limitation of checkpoint/restart techniques 29

1.4.6 Checksum-based ABFT techniques for fault detection and correction 29

1.4.7 ABFT techniques without checksums for fault recovery 31

1.4.8 Fault tolerance in message passing systems 31

1.5 Faults addressed in this work . 33

9

Resilience is accepting your new
reality, even if it’s less good
than the one you had before.
You can fight it, you can do
nothing but scream about what
you’ve lost, or you can accept
that and try to put together
something that’s good

Elizabeth Edwards

1.1 Introduction

The main objective of this chapter is to introduce numerical linear algebra problems and
review a large spectrum of known fault tolerance researches in the HPC community. Con-
sequently, this chapter does not focus on numerical fault tolerance approaches which are
the target of this thesis and introduced further in Chapter 2. It presents a more general
framework which explores most of fault researches in HPC community but is not exhaustive.

The remainder of the chapter is structured as follows: Section 1.2 is a brief introduction
to numerical linear algebra problems. It explains the limitation of direct methods for the
solution of large sparse linear algebra problems namely linear systems problems and eigen-
value problems. Alternatively, it introduces iterative numerical methods, more precisely,
Krylov subspace methods which have attractive properties for fault tolerance. Section 1.3
aims at presenting fault issues in the HPC systems. It mainly present fault nomenclature
in the HPC community, and emphasizes on the origin of the permanent increase of fault
rate in HPC systems before presenting fault injection protocols commonly used in fault
tolerance researches. In Section 1.4, we present different fault tolerant approaches before
giving a short summary of concepts covered in this chapter in Section 1.5.

1.2 Brief introduction to numerical linear algebra

Numerical linear algebra plays a central role in solving many real-world problems. To
understand phenomena or to solve problems, scientists use mathematical models. Solutions
obtained from mathematical models are often satisfactory solutions to complex problems
in field such as weather prediction, trajectory of a spacecraft, car crashes simulation, etc.
In many scientific fields such as electrostatics, electrodynamics, fluid flow, elasticity, or
quantum mechanics, problems are broadly modeled by partial differential equations (PDEs).
The common way to solve PDEs is to approximate the solution which is continuous by
discrete equations that involve a finite but often large number of unknowns [136, Chapter 2].
This strategy is called discretization. There are many ways to discretize a PDE, the three
most widely used being the finite element method (FEM), finite volume methods (FVM)
and finite difference methods (FDM). These discretization strategies lead to large and sparse
matrices. Thus real-word problems become numerical linear algebra problems. There are

10

1.2. Brief introduction to numerical linear algebra

many linear algebra problems, but this work focuses on the resolution of linear systems of
equations Ax = b and on eigenvalue problems Ax = λx.

Figure 1.1 – Sparse matrix OP from modelization of thermoacoustic problems.

For example, the sparse matrix OP (Figure 1.1) from the PhD of P. Salas [142] is obtained
by modeling combustion instabilities in complex combustion chambers. More precisely, the
matrix is obtained by discretizing the Helmholtz equation using a finite volume formulation.
The computation of eigenvalues and eigenvectors of the sparse matrix OP, which is a pure
numerical linear algebra problem, allows one to study combustion instabilities problems.

1.2.1 Sparse matrices

As reported for example by Yousef Saad [136, Chapter 2], partial differential equations
are among the most important sources of sparse matrices. A matrix is said to be sparse
if it contains only very few nonzero elements, as depicted in Figure 1.2b, where nonzero
elements are represented in blue color. There is no accurate definition of the proportion of
nonzero elements in sparse matrices. However, a matrix can be considered as sparse when
one can take advantage computationally of taking into account its nonzero elements. Even
if the matrix presented in Figure 1.2a contains 54% of nonzero elements it cannot be termed
sparse. Matrices from numerical simulations are not only sparse, but they may also be very
large, which leads to a storage problem. For example, a matrix A ∈ Cn×n, of order n = 106,
contains n×n = 1012 elements (zero and nonzero elements). In double precision arithmetic,
16 terabytes1 are necessary to store all its entries. There are special data structures to store
sparse matrices and the basic idea is to store only nonzero elements.

The main goal of these data structures is to store only nonzero elements and at the same
time facilitate sparse matrix operations. The most general sparse matrix storage is called

11012× 2× 8 bytes = 16× 1012 bytes. Each complex element requires 2× 8 bytes, 8 bytes for imaginary
part and 8 for real part, in double precision

11

(a) This matrix contains 54% of
nonzero elements

(b) This matrix contains 3% of
nonzero elements

Figure 1.2 – Sparse matrices contains only a very few percentage of nonzero elements.
With 54% of nonzero elements the matrix in (a) cannot be referred as sparse whereas,

with only 3% of non zero elements, the matrix in (b) satisfies a sparsity criterion.

coordinate (COO) format and consists of three arrays of size nnz, where nnz is the number
of nonzero elements. As illustrated in Fig 1.3, the first array (AA) contains the nonzero
elements of the sparse matrix, the second array (JR) contains the corresponding row indices
and the third array (JC) contains the corresponding column indices.

Figure 1.3 – Coordinate (COO) format for sparse matrix representation.

The COO format is very flexible but possibly not optimized since row indices and column
indices may be stored redundantly. In the example depicted in Fig 1.3, the row index “3”,
is stored 4 times in JR, and the column index “4” is also stored 4 times. It is possible to
compress row indices, which leads to compressed sparse row (CSR) format. Alternatively
the column indices can also be compressed, this format is called compressed sparse column
(CSC). Other sparse data structures exist to further exploit particular situations. We refer
to [136, Chapter 2] for a detailed description of possible data structures for sparse matrices.

12

1.2. Brief introduction to numerical linear algebra

1.2.2 Solutions for large sparse linear algebra problems

To illustrate problems related to large sparse linear algebra problems, we take the particular
case of a linear system of equations. To solve a linear system of equations of form Ax = b,
where A is a square non-singular matrix of order n, b, the right-hand side vector, and x the
unknown vector, as illustrated by Equation (1.1), Gaussian elimination is broadly used,

1. 0. 0. 2. 0.

3. 4. 0. 5. 0.

6. 0 7. 8. 9.

0. 0. 10. 11. 0.

0. 0. 0. 0. 12.

x1

x2

x3

x4

x5

 =

5

4

3

2

1

 . (1.1)

One variant decomposes the coefficient matrix of the linear system (here A) into a product
of a lower triangular matrix L (diagonal elements of L are unity) and an upper triangular
matrix U such that A=LU. This decomposition is called LU factorization.

L =

1.00 0 0 0 0

3.00 1.00 0 0 0

0 1.50 1.00 0

0 0 0.56 1.00 0

0 0 0 0.77 1.00

 U =

1.00 0 2.00 0 0

0 4.00 −6.00 5.00 0

0 0 16.00 14.21 −4.50

0 0 0 −7.50 8.00

0 0 0 0 15.48

. Once

the LU factorization is performed, the linear system solution consists of two
steps:

1: The forward substitution solves the triangular systems Ly = b.
In our example, it computes y = (5.00,−11.00, 19.50,−8.96, 7.93)T .

2: The backward substitution solve Ux = y,
which leads to the solution x = (3.51,−1.05, .074,−0.46, 0.51)T .

The advantage of this approach is that most of the work is performed in the decomposi-
tion (O(n3) for dense matrices) and very little in the forward and backward substitutions
(O(n2)). The solution of successive linear systems using the same matrix but with different
right-hand sides, often arising in practice, is then relatively cheap. Furthermore, if the
matrix is symmetric (or SPD), an LDLT (or Cholesky) factorization may be performed.
In finite arithmetics, direct methods enable one to solve linear systems in practice with a
high accuracy in terms of backward error [88]. However, this numerical robustness has a
cost. First, the number of arithmetic operations is very large. Second, in the case of a
sparse matrix A, the number of nonzeros of L and U is often much larger than the number
of nonzeros in the original matrix. This phenomenon, so-called fill-in, may be prohibitive
in terms of memory usage and computational time. Solving large sparse linear algebra
problems using direct methods is very challenging because of memory limitation.

In order to minimize computational cost and guarantee a stable decomposition and
limited fill-in, some direct sparse linear systems solvers have been implemented such as
CHOLMOD [39], MUMPS [8, 9], PARDISO [144], PaStiX [85], SuperLU [110], to name a few.
These direct sparse methods work well for 2D PDE discretizations, but they may be very
penalizing in terms of memory usage and computational time, especially for 3D test cases.

13

To solve very large sparse problems, iterative solvers are more scalable and better suited
for parallel computing. Iterative methods produce a sequence of approximates to the so-
lution. Successive iterations implemented by iterative methods require a small amount of
storage and floating point operations, but might converge slowly or not converge at all. It
is important to notice that iterative methods are generally less robust than direct solvers
for general sparse linear systems. There are many variants of iterative methods for both
linear system of equations and eigenvalues problems.

1.2.3 Iterative methods for linear systems of equations

Iterative methods for linear systems are broadly classified into two main types: stationary
and Krylov subspace methods.

1.2.3.1 Stationary methods for solving linear systems

Consider solving the linear system Ax = b, stationary methods can be expressed in the
simple form

Mx(k+1) = Nx(k) + b, (1.2)

where x(k) is the approximate solution at the kth iteration. The matrices N and M do not
depend on k, and satisfy A = M − N with M non singular. These methods are called
stationary because the solution to a linear system is expressed as finding the stationary
fixed point of Equation (1.2) when k will go to infinity. Given any initial guess x(0), the
stationary method described in Equation (1.2) converges if and only if ρ(M−1N) < 1.
Note that the spectral radius ρ(A) of a given matrix A with eigenvalues λi is defined by
ρ(A) = max(|λi|). Typical iterative methods for linear systems are Gauss-Seidel, Jacobi,

M N Method

D (L+ U) Jacobi

(D − L) U Gauss-Seidel

((1
ω

)D − L) (((1
ω

)− 1)D + U) Successive over relaxation

Table 1.1 – Stationary iterative methods for linear systems. D, −L and −U are the
diagonal, strictly lower-triangular and strictly upper-triangular parts of A, respectively.

successive over relaxation etc., as described in Table 1.1 according to the choice of M and
N .

1.2.3.2 Krylov subspaces

Another approach to solve linear systems of equations consists in extracting the approximate
solution from a subspace of dimension much smaller than the size of the coefficient matrix
A. This approach is called projection method. These methods are based on projection
processes: orthogonal and oblique projection onto Krylov subspaces, which are subspaces

14

1.2. Brief introduction to numerical linear algebra

spanned by vectors of form p(A)v, where p is a polynomial [136]. Let A ∈ Cn×n and
v ∈ Cn, let m ≤ n, the space denoted by Km(A, v) = Span{v, Av, ..., Am−1v} is referred
to as the Krylov space of dimension m associated with A and v. In order words, these
techniques approximate A−1v by p(A)v, where p is a specific polynomial. Based on a
minimal polynomial argument, it can be shown that these methods should converge in less
than n steps compared to “infinity” for stationary schemes.

In practice, minimal residual methods are based on orthogonal basis using Arnoldi pro-
cedure depicted in Algorithm 1

Algorithm 1 Arnoldi procedure to build orthogonal basis of Krylov subspace Km(A,m).

1: v1 = v
‖v‖2

2: for j = 1, . . . ,m do
3: wj = Avj
4: for i = 1 to j do
5: hi,j = vTi wj ; wj = wj − hi,jvi
6: end for
7: hj+1,j = ‖wj‖2

8: vj+1 = wj/hj+1,j

9: end for

We denote Vm ∈ Cn×m the matrix with column vectors v1, . . . , vm and Hm the m ×
m Hessenberg matrix whose nonzero entries are defined by Algorithm 1. The following
equalities are satisfied:

AVm = VmHm + hm+1,mvm+1e
T
m, (1.3)

V T
mAVm = Hm. (1.4)

The Hessenberg matrix Hm is the projection of A onto Km(A, v), with respect to the
orthogonal basis Vm [136]. If A is a symmetric matrix, then Hm is reduced to a tridiagonal
symmetric matrix and the corresponding algorithm is called Lanczos algorithm. The main
idea of Krylov subspace methods is to project the original problem onto the Krylov subspace
and then solve the problem in that Krylov subspace.

1.2.3.3 Krylov subspace methods for linear systems

Krylov subspace methods are currently widely used iterative techniques for solving large
sparse linear systems. Given an initial guess x(0), to approximate the linear systems of equa-
tions Ax = b, Krylov subspace methods approximate the solution x(m) from the subspace
x(0) + Km(A, r(0)), where r(0) = b − Ax(0). There are different variants of Krylov subspace
methods for linear systems of equations. The Ritz-Galerkin approach constructs x(m) such
that b−Ax(m) ⊥ Km(A, r(0)). The CG algorithm belongs to this class. The Petrov-Galerkin
approach constructs x(m) such that b − Ax(m) ⊥ Lm, where Lm is another subspace of di-
mension m. If Lm = AKm(A, r(0)), then x(m) minimizes the residual norm ‖b−Ax(m)‖2 over

15

all candidates from the Krylov subspace [140]. A typical example is the GMRES algorithm.
The biconjugate gradient method (BiCG) is obtained when Lm = Km(AT , r(0)).

The convergence of Krylov subspace methods depends on the numerical properties of the
coefficient matrix A. To accelerate the convergence, one may use a non-singular matrix M
such that M−1A has better convergence properties for the selected solver. The linear sys-
tems M−1Ax = M−1b, has the same solution as the original linear system. This method is
called preconditioning and the matrix M is called an implicit (i.e., M attempts to somehow
approximate A) left preconditioner. On the other hand, linear systems of equations can also
be preconditioned from the right: AM−1y = b, and x = M−1y. One can also consider split
preconditioning that is expressed as follows: M−1

1 AM−1
2 y = M−1

1 b, and x = M−1
2 y, where

the preconditioner M = M1M2. It important to notice that Krylov subspace methods do
not compute explicitly the matrices M−1A and AM−1, in order to minimize computational
cost and to preserve sparsity. Preconditioner are commonly applied by performing sparse
matrix-vector product or solving simple linear systems.

1.2.3.4 Stopping criterion for convergence detection

As mentioned above, iterative methods construct a series of approximate solutions that
converges to the exact solution of the linear system. The normwise perturbation model [163]
is an appropriated method that can be used to check if the approximation is good enough
to stop the iterations. Let x(k) be an approximate solution of the linear system Ax = b.
The quantity defined by Equation (1.5) is the backward error associated with x(k):

ηA,b(x
(k)) = min

∆A,∆b
{τ > 0 : ‖∆A‖ ≤ τ‖A‖, ‖∆b‖ ≤ τ‖b‖ and (A+ ∆A)x(k) = b+ ∆b},

=
‖Ax(k) − b‖
‖A‖‖x(k)‖+ ‖b‖

.

(1.5)

This quantity is used to define stopping criteria for iterative methods. It measures the norm
of the smallest perturbations ∆A on A and ∆b on b such that x(k) is the exact solution of
(A+∆A)x(k) = b+∆b. The lower the backward error the better, ideally the backward error is
expected to be of the order of the machine precision. In practice, computing ‖A‖ might not
be feasible or too expensive. Alternatively, one can consider another perturbation model
that only involves perturbations in the right-hand side to define the following backward
error:

ηb(x
(k)) = min

∆b
{τ > 0 : ‖∆b‖ ≤ τ‖b‖ and Ax(k) = b+ ∆b},

=
‖Ax(k) − b‖
‖b‖

.
(1.6)

The backward error defined by Equation (1.6) is the stopping criterion commonly used for
iterative methods. Given a target accuracy ε, the algorithm finishes with success if the
current approximation x(k) satisfies the criterion ηb(x

(k)) ≤ ε.

16

1.2. Brief introduction to numerical linear algebra

We notice that for GMRES, the location of the preconditioner has an impact on the
backward error that is commonly checked during the computation. This backward error
is depicted in Table 1.2. It can be seen that a right preconditioning is interesting because
for right preconditioning, the backward error is the same for both the preconditioned and
original system. Indeed, ‖AMy(k) − b‖ = ‖Ax(k) − b‖ because x(k) = My(k).

Preconditioning Left precond. Right precond. Split precond.

Backward error ‖MAx(k)−Mb‖
‖Mb‖

‖AMy(k)−b‖
‖b‖

‖M2Ay(k)M1−M2b‖
‖M2b‖

Table 1.2 – Backward errors associated with preconditioned linear systems in GMRES.

1.2.4 Iterative methods for eigenvalue problems

1.2.4.1 Basic definition of eigenvalue problems

The eigenvalue problem for a matrix A consists in the determination of nontrivial solution
(i.e., u 6= 0) of Au = λu, where λ is an eigenvalue of A, u is the corresponding eigenvec-
tor, and (λ, u) is called an eigenpair. In some way, one can say that all the algorithms
for the computation of eigenvalues of large matrices are iterative methods. We distinguish
on one hand, algorithms for the computation of few eigenvalues like power method, sub-
space iteration and its variants described in Section 3.3. On the other hand, there are
algorithms for the computation of all eigenvalues like similarity transformations. The full
set {λ1, λ2, . . . , λn} of eigenvalues of A is called the spectrum of A and denoted σ(A). It is
important to notice that the spectrum of A is invariant by similarity transformation. this
means that if B = G−1AG, then σ(A) = σ(B) [141].

The basic scheme to compute all the eigenpairs of matrices is to transform them into
matrices that have simpler forms, such as diagonal or bidiagonal, or triangular etc.

If a matrix A is similar to a diagonal matrix, then A is diagonalizable and we
have A = GDG−1, where G = [g1, g2, . . . , gn] if formed by the eigenvectors of A, and
D = diag(λ1, λ2, . . . , λn) is a diagonal matrix formed by the corresponding eigenvalues.
Alternatively, another decomposition can be considered that is the Schur form of a matrix
A = ZHTZ, where T is upper triangular and Z is unitary. The diagonal entries of T are
the eigenvalues of A. The columns of Z are called the Schur vectors. This decomposition
is often used on projected problem is attractive because it involves unitary transformations
that are stable in finite precision.

1.2.4.2 Krylov subspace methods for eigenvalue problems

Krylov subspace methods are also successful for the solution of large sparse eigen-
value problems. The basic idea is to compute eigenvalues using similarity transfor-
mation processes [138]. Given a Krylov subspace K, spanned by orthonormal vectors
Vm = [v1, v2 . . . , vm], a projection process onto K computes an approximate eigenpair
(λ̃ ∈ C, ũ ∈ K) that satisfies the Galerkin condition, (A−λ̃I)ũ ⊥ K [139]. The approximate

17

eigenvalues λ̃i are the eigenvalues of C ∈ Cm×m, where C = V T
mAVm. The corresponding

approximate eigenvectors are ũi = V yi, where yi are the eigenvectors of C. Well-known
Krylov subspace methods for eigenvalue problems are the Hermitian Lanczos method, the
Arnoldi method and the nonhermitian Lanczos method. Both Arnoldi method and Lanczos
method are based on orthogonal projection methods whereas the nonsymmetric Lanczos
algorithm is an oblique projection method [141]. Furthermore, Newton type schemes can
be considered as well. This leads to the well-known and effective Jacobi-Davidson class of
methods.

1.2.4.3 Stopping criterion for convergence detection

Following the same philosophy as for linear system solution, backward error can be consid-
ered for eigenproblems. An eigenpair (λk, u

(k)) computed by an eigensolver can be consid-
ered as the exact eigenpair of a nearby perturbed problem. For ‖u(k)‖ = 1, the backward
error reads [164]

ηA(λk, u
(k)) = min

∆A
{τ > 0 : ‖∆A‖ ≤ τ‖A‖ and (A+ ∆A)u(k) = λku

(k)},

=
‖Au(k) − λku(k)‖

‖A‖
.

(1.7)

In practice, computing ‖A‖ can be prohibitive in term of computation cost. An often
used alternative is to consider an upper bound of the backward error that is built using the
following inequalities

|λk| ≤ ρ(A) ≤ ‖A‖

where ρ(A) denotes the spectral radius of A. The corresponding stopping criterion is
‖Au(k)−λku(k)‖

|λk|
≤ ε,, if λ 6= 0, that ensures ηA(λk, u

(k)) < ε. In this dissertation, we use
this stopping criterion that is widely considered in many libraries for the solution of large
eigenproblems, such as ARPACK [104] or SLEPC2. For more details, a study on stopping
criteria for general sparse matrices is reported in [103].

1.2.5 Parallel implementation of large sparse linear algebra
solvers

Numerical algorithms for large sparse linear algebra solvers are based on few basic routines
such as sparse matrix-vector multiplications (SpMV), dot products, vector norm, vector
update functions, etc. These routines, except SpMV are part of Basic Linear Algebra Sub-
routines (BLAS) [16]. Thus, the parallelization of sparse Krylov solvers for linear systems
and solvers for eigenvalue problems can be achieved by investigating how to execute BLAS
on parallel distributed environments. Furthermore, preconditioning is often a potential
bottleneck in Krylov subspace solvers for linear systems [136]. There is a large literature
on preconditioning techniques that are very much problem dependent and their parallel

2http://www.grycap.upv.es/slepc/

18

http://www.grycap.upv.es/slepc/

1.3. Quick introduction to faults in HPC systems

implementation constrained by the targeted architecture. It is a challenge to find a precon-
ditioner with favorable numerical properties for better convergence, and a good parallelism
quality. This challenge is out of the scope of this work. In this work, we consider a block-
row partition. For the sake of illustration, we give a brief description of SpMV (y ← Ax),
vector update (y(1 : n)← a× x(1 : n)).

SpMV: Let p be the number of partitions, such that each block-row is mapped to a
computing node. For all i, i ∈ [1, p], Ii denotes the set of rows mapped to node i. With
respect to this notation, node i stores the block-row AIi,: and xIi as well as the entries of all
the vectors involved in the Krylov solver associated with the corresponding row indices of
this block-row. If the block AIi,Ij contains at least one nonzero entry, node j is referred to
as neighbor of node i as communication will occur between those two nodes to perform a
parallel matrix-vector product. As illustrated in Figure 1.4 node 1 and node 3 are neighbors
so they will exchange data during the computation, whereas node 1 and node 2 are not
neighbors.

���
���
���
���

���
���
���
���

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
�� ����

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

���
���
���
���

���
���
���
���

y A x

= *

Node1

Node2

Node3

Node4

Figure 1.4 – Block-row distribution of sparse matrix-vector multiplication on 4 nodes.

Vector update: Vector updates are straightforward because they do not require com-
munication with neighbors. Since vectors x and y are distributed in the same manner in
nodes, i.e, the indices of the components of any vector that are mapped to a given node are
the same, each node i ∈ [1, p] performs yIi = yIi + a× xIi simultaneously.

1.3 Quick introduction to faults in HPC systems

1.3.1 Understanding faults in HPC systems

In HPC systems, unexpected behaviors are often called faults, failures or errors [55]. A
fault refers to an abnormal behavior of system components whereas a failure refers to an
incorrect output of a routine [121]. However, all faults do not lead to an incorrect result,
since error detection and correcting features can eliminate the impact of a fault. Some
faults occur in a non-crucial part of the system. Some faults are not detected and repaired
and cause incorrect behavior, which is called an error. Errors are manifested in a particular
behavior called a failure. The most common way to express the difference between fault,
failure and error is as follows: a failure is the impact of a fault that caused an error. Even

19

Figure 1.5 – Root causes of faults according to [147].

though, there is a difference between fault, failure and error, in the remainder if this work,
we distinguish only between fault and failure, for the sake of simplicity.

Faults may also be classified in soft and hard faults, based on their impact on the system.
A hard fault, also called fail-stop is a fault that causes immediate routine interruption.
On the other hand, a soft fault is an inconsistency that does not lead directly to routine
interruption. Typical soft faults are: bit flip, data corruption [27]. Soft faults are likely to
induce hard faults or failures. For example, if a processor memory becomes defective due
to high temperature, it may experiment bit corruption without permanent physical defect;
it is a transient fault. If the memory continues functioning but induces bit corruption more
frequently at the slightest increase in temperature, it is an intermittent fault. In the worst
case, the memory may have physical damage which may lead to interrupt or series of data
corruption, it is a persistent fault.

One of the disturbing issues when studying faults in HPC systems is the increase of
fault frequency, because common sense expect less faults with technology advance. In HPC
systems, performance is currently improved by the use of largest number of components.
Hardware becomes more complex, heterogeneous [152], while circuit size and voltage shrink.
The reduction of circuit size and voltage increases thermal neutrons and alpha particle
emission, which perturbs the circuits [56]. However, circuit size and voltage are not the
only source of fault in devices. In [118], studies on memory chips show that cosmic rays
also represent a significant source of faults.

According to the studies reported in [147], faults may emanate from many sources such
as hardware, software, network, human and environment as depicted in Figure 1.5. Among
those faults, hardware faults are predominant and more detailed studies [72, 148] showed
that faults related to memory represent the most significant part of hardware faults in
modern HPC systems.

Even though it is commonly accepted that HPC systems face higher fault rates, HPC
system fault logs are hardly accessible while they are necessary for fault studies. To face
this issue, Bianca Schroeder and Garth Gibson, have created the computer failure data

20

1.3. Quick introduction to faults in HPC systems

repository (CFDR)3 and encourage HPC labs and end-users to report faults that occur on
their systems [146]. Nowadays, the repository contains fault data of 4750 nodes and 24101
processors, and represents an interesting database for a fault study.

The basic metric to analyze the sensitivity to system fault is the availability. The avail-
ability is the percentage of time a system is really functioning correctly. The amount of
time of malfunctioning includes also the time to repair the system. This metric gives a
general insight into the availability of the whole system, but it does not give information
on the frequency of faults. The metric commonly used is the mean time between faults
(MTBF)2 [94]. It corresponds to the average time between two consecutive detected faults
assuming that the system is repaired instantly. Generally speaking, the MTBF of a sys-
tem is the average amount of time that it can work without any fault report. Here, it is
important to note that the MTBF focuses only on detected faults. Given the MTBF θ of
a system, λ = 1

θ
, is called the fault rate. It is the frequency of faults, and it is expressed

in faults per unit of time. In [147], Schroeder and Gibson analyzed the fault rate of 22
large-scale parallel systems. Different fault rates have been observed and they range from
17 to 1159 faults per year, meaning a MTBF of 8 hours in the worst case. This result
shows that the fault rate varies largely across systems. The study has also confirmed two
interesting insights as follows. The fault rate increases linearly with the size of systems and
varies also across nodes. The results are consistent with recent forecasts that expect the
MTBF of extreme-scale systems to be less than one hour [15].

1.3.2 Fault distribution models

The fault rate and the MTBF of systems are good metrics to give insights on the frequency
of faults, but they are still a statistical average, with less information on the distribution
of faults across systems lifetime. Faults seem to occur randomly and independently, but
they may fit well known probabilistic models. If the fault rate is constant over time, it is
an exponential distribution with the following cumulative distribution function (CDF):

F (t) =

{
1− e−λt if t ≥ 0,

0 if t < 0.
(1.8)

We recall that λ is the fault rate, while t is the operating time. In the case of an exponential
distribution we have: MTBF = 1

λ
. However, fault analysis on systems shows that, the fault

rate varies over the lifetime of the same system. The lifetime of a system can be divided into
three periods as follows. The first period corresponds to the infant mortality. This period
is often chaotic, faults are more frequent and even occur randomly but things improve
progressively. The second period is the useful lifetime, faults are less frequent and the fault
rate stabilizes. At the end, the system experiments the wear out period where the fault rate
increases again. Schroeder and Gibson [147], and Raju et al. [132] showed that the Weibull
distribution [162] is the most realistic probabilistic model that characterizes the normal

3https://www.usenix.org/cfdr
2MTBF often stands for Mean Time Between Failures, but this definition would not be consistent with

our distinction between faults and failures.

21

behavior of large-scale computational platforms. The CDF of the Weibull distribution is:

F (t) =

{
1− e−(t

c
)k if t ≥ 0,

0 if t < 0.
(1.9)

Here, c is the scale parameter and k (with k > 0) is the shape parameter. In probability
theory and statistics, a scale parameter allows one to set the scale of a distribution. A large
scale parameter corresponds to a relatively spread out distribution whereas a small scale
parameter corresponds to a more condensed distribution. The shape parameter is related
to the variation of the fault rate. A value of k < 1 implies that the fault rate decreases,
it is the infant mortality period. With k = 1, we fall back to an exponential distribution,
it is the useful lifetime. Finally, a value of k > 1 means that the fault rate increases over
time, the wear out period. In this particular case of a Weibull distribution, the MTBF is
computed as follows [7]: MTBF (c, k) = cΓ(1 + 1

k
), where Γ is the gamma function:

Γ(x) =

{
(x− 1)! if x ∈ N,∫ +∞

0
tx−1e−t dt if x 6∈ N.

There are also different models that do not describe necessarily the fault distribution but
help for fault prediction. In [72, 81, 111] the authors investigate algorithms to analyze
correlations between reported faults in order to forecast future faults. These fault prediction
models, based on system log analysis, can be very useful to implement appropriate fault
tolerant mechanisms. Most of the fault prediction models help to determine fault occurrence
in the whole system, but they cannot specify the faulty component [72]. For efficient
fault management, the end-user needs insights on the fault occurrence on each component
involved in a computation. Studies reported in [77,132,147,165] conclude that faults in each
individual node fit Weibull distribution, but researchers do not agree on fault correlation
among nodes. Fault propagation between nodes is highly related to the system topology
and the robustness of the architecture. Schroeder and Gibson [147] report very strong
correlation between nodes, only in the first lifetime of systems, while no evident correlation
is observed after that period. Depending on the target system, some studies [23,77,132] use
the simple model without correlation while other design fault correlation models [72,129].

In practice, it is very difficult to design a reliable fault prediction system. However,
fault distribution models are useful to optimize fault tolerance algorithms. They may also
be useful to simulate fault injection in HPC systems in order to evaluate fault tolerance
strategies.

1.3.3 Fault injection models

Fault injection protocols are commonly designed for better understanding of fault impact
on system behaviors, to reproduce faults and validate fault tolerance strategies [10, 96].
The fault injection protocols vary according to the target component (software, network,
memory, CPU, node, etc.). Three main classes of fault injection protocol can be con-
sidered. These are: hardware fault injection, software fault injection and the simulation
approach [34].

22

1.3. Quick introduction to faults in HPC systems

Hardware fault injection protocol: This approach lies at hardware level, and consists
in physically changing the normal behavior of the hardware. Typical hardware fault injec-
tion are heavy-ion radiation injection into integrated circuits [96], voltage and temperature
manipulation [98]. Hardware fault injection is useful to test hardware resiliency, however,
its implementation may require specialized resources, without guarantee of reproducibility.

Software fault injection protocol: It consists of simulating faults using fault injec-
tion libraries. It is often achieved by changing the computational state or modifying the
computational data of applications. For example, libfiu [13] is a fault injection software
for testing the behavior of resilient applications without having to modify the application’s
source code. Linux, one of the most used operating system in HPC systems, provides also
fault injection mechanisms. The fault injection module is available in Linux kernel since
the version 2.6.20 [1]. It allows to simulate faults in memory slab, memory page and disk
I/O. The fault injection tool is very flexible allowing users to define the fault rate as well
as the maximal number of faults authorized during the simulation. This module is mainly
implemented for fault injection in kernels. However, it can be used for the simulation of
memory page corruption in distributed systems as reported by Naughton et al. [117].

Simulation-based fault injection: This approach is often used at application level,
by directly modifying the source code of applications to simulate a faulty behavior. For
example, one can overwrite computation data to simulate data corruption or reallocate
memory pages to simulate memory page corruptions. To simulate process crashes, one can
simply reduce the number of processes involved in a parallel computation. For example, in
Unix/Linux, each process has its own address space through the memory management unit
(MMU), which manages the mapping of virtual memory addresses and physical addresses.
The Linux system call mprotect() [3] allows processes to specify the desired protection for
the memory pages. The prototype of mprotect() is

int mprotect(const void *addr, size_t len, int prot);

where [addr,addr+len] is the address of the target and the values of prot are described
in Table 1.3. Fault simulation may be achieved by invalidating a given set of memory pages
with prot = PROT_NONE or just changing readable memory to unreadable with prot =

PROT_WRITE. It is important to mention that mprotect() only changes the virtual address
space. As a consequence, depending on the fault tolerance strategy, the process may recover
the invalidated data and may request the same virtual address thanks to memory allocation
mechanisms, more precisely using mmap [2]. This approach has been successfully used in [114]
to simulate memory pages corruption in iterative solvers.

The simulation approach is more flexible and the most used in the HPC community.

23

Tag Description

PROT NONE The memory cannot be accessed at all

PROT READ The memory can be read

PROT WRITE The memory can be written to

PROT EXEC The memory can contain executing code

Table 1.3 – Description of protection options of mprotect.

1.4 Overview of fault detection and correction models

1.4.1 Fault tolerance and resilience

The main two approaches to correct faults in systems are fault tolerance and resilience.
These two concepts are commonly used in the HPC community to characterize the ability
of a system or application to give a correct result despite faults. To avoid confusion we
distinguish as follows. Fault tolerance is more related to the property of anticipating faults
and providing rescue resources to deal with faulty components or data corruption. This is
commonly achieved by component redundancy and data replication. On the other hand,
resilience refers to the ability of keeping running trough a disaster to deliver a correct
result. Resilience strategies enjoy the property of computing a result that satisfies the
success criterion, but the result may differ from the fault-free one, whereas fault tolerance
techniques are more likely to give the same result. Strategies are chosen depending on
applications sensitivity. For example, transaction must be fault tolerant, whereas resilience
may be satisfactory for scientific simulation applications. In the rest of this chapter, almost
all the fault correction models from related work are fault tolerant models because they
recover from fault thanks to data redundancy. Resilience approach based on interpolation
techniques in numerical linear algebra solvers are briefly introduced in Section 1.4.7, and
further detailed in Chapter 2.

1.4.2 Replication and redundancy

Replication is the most natural alternative among all fault tolerant techniques. The basic
idea is to increase reliability by executing an entire application, or selected instructions on
independent computational resources. When a fault occurs, the surviving computational
resources will provide the correct output [23, 57]. As on HPC systems the soft faults are
sometimes silent, duplication strategy is commonly used for fault detection [90, 161] by
comparing the outputs, while triple modular redundancy (TMR) is used for fault detection
and correction [145, 157]. However, the additional computational resources required by
replication strategies may represent a severe penalty. Instead of replicating computational
resources, studies [12,156] propose a time redundancy model for fault detection. It consists
in repeating computation twice on the same resource. The time redundancy model is
more likely to detect transient faults but intermittent or persistent faults may remained
undetected. The advantage of time redundancy models is the flexibility at application

24

1.4. Overview of fault detection and correction models

level; software developers can indeed select only a set of critical instructions to protect.
Recomputing only some instruction instead of the whole application lowers time redundancy
overhead [119]. [116] proposes a selective replication strategy based on a combination of
resource replication for critical instructions and time redundancy. Experimental results have
demonstrated that the selective approach may reduce the overhead of duplication strategy
by 59%.

The redundancy strategy is not only designed for computational resources, it is also
useful to detect faults in storage units such as DRAM and cache memories or to detect
faults during data transmission. A naive idea may consist in all bits replication, but the
strategy commonly used consists in encoding redundant information in the parity bit [150]
for single bit-flip detection. The Hamming code [84] is often used for double bit-flip de-
tection and single bit-flip correction. Error correcting code (ECC) implemented in ECC
memories, increases significantly memory reliability, however additional memory bits and
memory checkers slow down the memory performance, and lead to the increase of the price
of ECC memories and power consumption compared to classical memories. In [37] an in-
teresting trade-off is proposed for the use of unreliable memories and ECC memories. They
have proposed hierarchical memories with different levels of reliability together with an
annotation-based model that allow users to store data according to the required protection.
Thus critical data is stored in high reliability memory whereas classical memory stores non
critical data.

The replication technique is very robust and most of its complexity is handled at the
operating system level, making it very convenient for application developers. However, its
extra usage of computational resources may be prohibitive in many real-life cases, especially
for large scale simulations.

1.4.3 Checkpoint/restart techniques

Checkpoint/restart is the most studied protocol of fault tolerant strategies in the context
of HPC systems. The common checkpoint/restart scheme consists in periodically saving
data onto a reliable storage device such as a remote disk. When a fault occurs, a roll back
is performed to the point of the most recent and consistent checkpoint.

Checkpoint/restart strategies can be classified into two categories: system-level check-
point/restart and user-level checkpoint/restart. The system-level checkpoint/restart is also
commonly known as kernel-level checkpoint/restart. It provides checkpoint/restart fea-
tures without any change to applications and libraries. The main advantage of system-level
checkpoint/restart strategies is that they have fine granularity access to the memories so
they can optimize the data to checkpoint with a very low overhead. System-level check-
point/restart does not take advantage of application properties because it aims at handling
all applications. To design an efficient checkpoint/restart for a given application, user-level
checkpoint/restart is commonly used. User-level checkpoint/restart consists in exploiting
knowledge of the application to identify the best checkpoint frequency, the best consistent
checkpoint state, the appropriate data to checkpoint, etc. User-level checkpoint/restart
has to be at least partially managed by application programmers, and it can be external
or internal. In an external user-level checkpoint/restart, a different process performs the

25

checkpoints, and checkpoint libraries are commonly used for that purpose. In an internal
user-level checkpoint/restart, the process itself performs the checkpoint, so that the check-
point/restart strategy becomes intrinsic to the application, it is also known as application-
level checkpoint/restart.

1.4.3.1 Coordinated versus uncoordinated checkpoint

According to the implemented checkpoint strategy, all processes may perform the periodical
record simultaneously. It is called a coordinated checkpoint. Coordinated checkpoint is
widely used for fault tolerance because it is a very simple model. However, it presents
some weaknesses. All the computation performed from the most recent checkpoint until
the fault is lost. In addition, in parallel distributed environments, synchronizations due
to coordination may significantly degrade application performance [63, 112]. Non-blocking
coordinated checkpoints have been proposed [46, 62, 63] to limit synchronizations. The
basic idea is to perform consistent checkpoint without blocking all the processes during the
checkpoint. The checkpoint can be managed by a coordinator, and the active processes
may delay the checkpoint and perform it as soon as possible without interrupting ongoing
computation.

To fully avoid synchronization, uncoordinated checkpoint may be employed combined
with message logging protocols. Message logging protocol consists in saving exchanged
messages and their corresponding chronology on external storage [78]. When a process fails,
it can be restarted from its initial state or from a recent checkpoint. The logged messages
can be replayed in the same order to guarantee identical behavior as before the fault. The
main challenge of message logging protocols is an efficient management of non-deterministic
messages and best strategy to prevent inconsistencies. Inconsistencies currently occur if a
process receives or sends a message and does not succeed to record it before it fails, creating
thus an orphan process. A typical example from [6] is the following. Suppose a process
p receives a message mq from a process q, then sends a message mp to the process q. If
the process p crashes before it logs the message mq, information about mq would be lost.
Suppose a new process pnew is spawned to replace p. While replaying the logged messages,
pnew waits for the lost message mq before sending mp. In this case, pnew will never send mp.
The process q is thus called orphan process because it would have received a message that
was not sent by the process p (pnew).

There are three classes of message logging protocols namely, optimistic, pessimistic,
and causal protocols. In optimistic message logging protocol [48, 153], processes are not
constrained to log exchanged messages before continuing communication, what may lead
to orphan processes. The optimistic approach lowers the fault-free overhead, but in the
presence of orphan processes, the overhead may be significantly high due to extra rollbacks
to reach a consistent state. On the other hand, the pessimistic message logging protocol [20,
93] never creates orphan processes because the log protocol is performed synchronously on
stable storage, and each process ensures that all received messages are logged before sending
another message. The pessimistic approach may lead to high overhead and performance
penalties due to synchronizations. A trade-off between the optimistic approach and the
pessimistic approach is called causal message logging [6]. Causal message logging protocol
prevents orphan processes and avoids some synchronizations [133].

26

1.4. Overview of fault detection and correction models

1.4.3.2 Full versus incremental checkpoint

A checkpoint of a given process consists of saving the running state of the process including
address space, register states, information on allocated resources. One well-known drawback
of this approach is the congestion on I/O resources [80]. The main solutions proposed to
decrease full checkpoint/restart overhead are compression strategies to reduce checkpoint
size [106,127], copy-on-write strategies [66,107] to perform memory-to-memory copies with
low latency, and diskless checkpoint strategies to avoid overhead of disk writing [128].

On the other hand, incremental checkpoint optimizes the size of the checkpoint by writ-
ing only modified data at page granularity to the stable storage. The first backup remains a
full checkpoint, then, successively, the next checkpoint first identify modified pages since the
previous checkpoint and only saves them [125]. For efficient reduction of checkpoint size,
incremental checkpoint is commonly performed more frequently compared to full check-
point. However, the increase of the incremental checkpoint frequency and checkpoint at
page granularity may lead to global inconsistency and the restart procedure may be more
complex than the full checkpoint. In [158], Wang et al. propose a clever balance between
full and incremental checkpoints that may significantly reduce the overhead.

1.4.3.3 Some examples of Checkpoint/restart implementations

Most of HPC platforms consist of clusters running Linux operating system. However Linux
kernels do not provide checkpoint/restart features to HPC applications. To overcome
the absence of checkpoint/restart, some user-level checkpoint/restart implementations like
Libckp [160] and Libtckpt [58] have been developed. Libckp is a Linux checkpointing
library that provides user applications with checkpoint and rollback routines (chkpnt()
and rollback(), respectively). Libckp is naturally designed for fault tolerance and uses
an appropriate coordinated checkpoint strategy based on lazy checkpoint coordination [159]
in order to perform checkpoint/restart with affordable overhead. Libtckpt is another user-
level fault tolerance checkpointing library extended to multithreaded applications.

Berkeley Lab Checkpoint/Restart (BLCR) [60], and TICK [74], provide kernel-level check-
point/restart libraries for Linux. They provide a checkpoint/restart kernel module for pro-
cesses, including multithreaded processes, and has also been extended to MPI [68] parallel
applications. BLCR uses coordinated full checkpoint mechanism, whereas TICK implements
incremental checkpoint strategy.

Furthermore, Fault Tolerance Interface (FTI) [14] implements multilevel check-
point/restart strategies at application-level. FTI consists mainly of four checkpointing in-
terfaces. The first level consists in checkpointing data on local storage and it is mainly
designed to recover from soft faults. The second level of checkpoint is called partner-
copy checkpoint [167] and it can recover from a single node fault. The third level is a
Reed-Solomon encoding checkpoint [134] for multiple node crashes while the fourth level is
dedicated to Parallel File System (PFS) checkpoint which can recover from whole system
crashes [167]. In addition, FTI allows users to specify data to protect.

OpenMP [47] is commonly used for parallel applications in shared memory environ-
ments. In [31], checkpointing techniques have been implemented for OpenMP shared-

27

memory programs based on compiler technology to instrument codes in order to design
self-checkpointing and self-restarting applications on any platform. This application-level
checkpointing proposed for OpenMP programs is twofold. On the one hand, [31] have de-
veloped a pre-compiler to instrument application source code such that checkpoints become
intrinsic to the application. On the other hand, they have developed a runtime system to
perform the checkpoint/restart procedures. The checkpoint protocol is blocking and may
induce a performance penalty. However, ongoing promising studies for non-blocking check-
point protocol shall limit the overhead. Similar approaches have been proposed for MPI
programs in [29,30].

1.4.4 Diskless checkpoint techniques

Diskless checkpointing techniques [124] are commonly used in parallel distributed environ-
ments to checkpoint applications without relying on external storage. Indeed, the most
important part of the overhead of the classical checkpoint strategy consists of writing the
checkpoint to disk. Since memory access is significantly faster than disk access, the disk-
less checkpoint technique takes advantage of available memory to store checkpoints. The
diskless approach thus aims at limiting the performance penalty of traditional disk-based
checkpoint schemes. Several variants of the diskless checkpoint technique are studied to
improve application performance. A coordinated diskless checkpoint technique based on
extra nodes for checkpointing, first presented in [128], has been implemented in [126] for
well-known linear algebra algorithms such as Cholesky factorization, LU factorization, QR
factorization, and Preconditioned Conjugate Gradient (PCG). The algorithm forces each
node to allocate a certain amount of extra memory for checkpointing. Thus each node
writes its local checkpoint in its physical memory, and a parity checkpoint is stored in ex-
tra nodes only dedicated for checkpoint using common encoding algorithms, such as RAID
algorithm [38]. In this model, failed nodes are recovered using checkpoints in both com-
puting nodes and parity nodes. However, this model can tolerate only a limited number of
faults. In addition, when a computing node and a parity node fail simultaneously, lost data
cannot be recovered. Another diskless checkpoint technique proposes a model in which,
each node stores its local checkpoint in neighbor nodes memory. This approach is called
neighbor-based checkpoint.

The neighbor-based checkpointing consists of two steps. First, for each node, a neighbor
node is defined among its peers. Then each computational node saves a full local checkpoint
in its neighbor memory. If the main advantage of this technique is that it does not require
neither additional nodes nor encoding algorithm, it may be very penalizing in terms of
memory consumption. A trade-off between the encoding and the neighbor-based approaches
is proposed in [42]. In the neighbor-based encoding model, the checkpoint encoding instead
of being stored in extra nodes, is stored in neighbor memory. This approach lowers the
checkpoint overhead, and when a fault occurs, the recovery involved only the neighbors
of the failed nodes. However this technique may exhibit higher overhead if applied to
applications that require larger sizes of checkpoints. Finally, to survive the worst case of
all node crashes, a clever combination of the traditional disk checkpoint and the diskless
approach proposed in [155] could be an affordable trade-off.

28

1.4. Overview of fault detection and correction models

1.4.5 Limitation of checkpoint/restart techniques

The traditional disk checkpoint technique is robust but requires additional usage of external
storage resources. Furthermore, it is forced to rollback all processes to recover single process
faults. On the other hand, it may not scale well in certain cases as reported in [33]. The
diskless variant is promising for applications that do not require large sizes of checkpoints,
but its real limitation is that it cannot recover from a whole system crash, and it may
require extra resources such as memory, node, and network [41].

To overcome checkpoint technique drawbacks, application designers must focus on ex-
ploiting application particularities in order to design most appropriate fault tolerance tech-
niques that fit well with each application. Another approach may consist in investigating
algorithms which have the property of natural fault tolerance. For example, [73] has pro-
posed new fault tolerant super-scalable algorithms that can complete successfully despite
node faults in parallel distributed environments. Even though all applications cannot be
re-designed to be naturally fault tolerant, some applications such as meshless finite differ-
ence algorithms have demonstrated natural fault tolerance. A possible drawbacks of this
approach is that it requires application modification and a deep involvement of application
developer for efficient fault tolerance. However to exploit extreme-scale machines, HPC ap-
plication developers cannot continue to relegate fault tolerance to second place, expecting
that general fault tolerance techniques may be used with low overhead, while applications
may exhibit nice properties to achieve efficient fault tolerance cheaply.

1.4.6 Checksum-based ABFT techniques for fault detection and
correction

Algorithm based fault tolerance (ABFT) is a class of approaches in which algorithms are
adapted to encode extra data for fault tolerance at expected low cost. The basic idea is
to maintain consistency between encoded extra data and application data. When a fault
occurs, encoded extra data are exploited to recover lost data. Checksum-based ABFT was
first proposed in 1984 by Abraham et al. [89,95] to design low cost fault tolerant algorithms
for matrix-based computations. In recent years, because of the high penalty of traditional
fault tolerance techniques, ABFT has been considerably reviewed for many linear algebra
applications. The great advantage of ABFT is that it can be easily integrated in existing
applications with affordable overhead in terms of time. The basic task of checksum-based
ABFT schemes is to encode information in checksums. For a given vector x ∈ Cn, a
checksum of x, denoted xc may be computed as xc =

∑n
1 xi, where xi = is the ith entry of

x. For a better understanding of ABFT schemes, let us consider the example of a matrix-
vector multiplication b = Ax where A ∈ Cn×n is the coefficient matrix, x ∈ Cn is a given
vector and b ∈ Cn, is the resulting vector. Their respective checksums may be encoded as
illustrated in Figure 1.6.

During the computation, bit-flips may occur in the entries of A, in the input vector x or
in the result vector b. For fault detection, extra information may be encoded in additional
checksum rows/columns. The encoded row vector Acc and column vector Arc denote the
checksum column of A and the checksum row of A respectively, with Acc(j) =

∑n
i aij and

29

Matrix Vector

Column checksumUser data

Full checksumRow checksum

Figure 1.6 – Linear checksum encoding for matrix vector multiplication.

Acr(i) =
∑n

j aij. In addition, a full checksum consisting of the summation of all the entries
of A may also be computed. To check the correctness of the matrix-vector multiplication,
the checksum of b (bc =

∑n
1 bi) is compared to b̃c = Accx. In exact arithmetic, bc is equal to

b̃c, so a difference may be reported as fault. This approach is an efficient scheme for fault
detection in matrix vector multiplication. The fault may be accurately located by using
the available checksums since each checksum must satisfy a specific property (sum of the
data encoded here). The basic checksum described here, may help to correct a single entry
corruption while weighted checksum developed in [95] is commonly used for multiple fault
detection and correction.

The checksum-based ABFT can be easily extended to recover data associated with failed
processes in a parallel distributed environment. Let us consider the example of a scientific
application executing n parallel processes (P1, P2, . . . , Pn), in which the critical data of each
process Pi necessary for the application completion is denoted Di. If all critical data satisfy
the checksum equality D1 + D2 + · · · + Dn = D, then any lost data Di can be recovered
from the checksum as follow, Di = D −

∑
j 6=iDj. This approach has been successfully

applied to the ScaLAPACK4 matrix-matrix multiplication kernel in [41], to recover multiple
simultaneous process faults with a very low performance overhead.

In floating point arithmetic, roundoff errors may be indistinguishable from soft faults of
small magnitude [19]. In these situations, ABFT techniques for fault detection may consider
roundoff errors as faults, and may waste computational time trying to locate corrupted
data. Conversely, with propagation of roundoff errors, detected fault may become difficult
to locate due to numerical inaccuracy in computation. ABFT techniques must tolerate
inaccuracies due to roundoff errors in floating-point arithmetic. [135] discusses how the
upper bound of roundoff errors can be used to provide efficient ABFT for fault detection,
and how to minimize roundoff error in checksum encoding. In practice, ABFT might

4ScaLAPACK is a library of high-performance linear algebra routines for parallel distributed mem-
ory machines. ScaLAPACK solves dense and banded linear systems, least squares problems, eigenvalue
problems, and singular value problems.

30

1.4. Overview of fault detection and correction models

turn out to be very efficient, because application numerical behavior is exploited to set an
appropriate threshold, even though distinguishing faults closed to roundoff errors may be
very challenging in general.

1.4.7 ABFT techniques without checksums for fault recovery

Even though the overhead of ABFT techniques is often presented as low, the computation
of data checksum may possibly increase the fault tolerance scheme overhead. The checksum
computation can be avoided if the application data naturally satisfy some mathematical
properties, which can be exploited for soft fault detection and/or correction. The basic idea
is to report soft fault if the routine output does not satisfy correction solution properties.
The basic approach checks the output correctness at the end of the computation. In the
particular case of iterative solvers, faults do not only lead to incorrect output, but may
also considerably slow down the convergence and increase the computation time [28, 113,
149]. To save computation time, [40] proposed online fault detection techniques for Krylov
subspace iterative methods to detect faults as soon as possible during application execution.
This approach checks application properties such as the orthogonality between vectors of
the Krylov basis or the following equality r(k) = b − Ax(k) between the iterate x(k) and
the current residual r(k), that is true in exact arithmetic but only satisfied up to a small
relative perturbation in finite precision. If checksum-less ABFT lowers the overhead of
fault detection, additional scheme is required to recover lost data. In [101], a checksum-
less ABFT technique called lossy approach is proposed for ensuring the recovery of iterative
linear methods. The idea also consists in exploiting application properties for data recovery.
One attractive feature of this approach is that it has no overhead in fault-free execution.
We further detail these mechanisms in the next chapter.

1.4.8 Fault tolerance in message passing systems

Communications between processes in a parallel distributed environment rely on mes-
sage passing libraries. The dominant message passing library used in the HPC com-
munity is the Message Passing Interface (MPI). The default error handler on the
MPI_COMM_WORLD communicator is MPI_ERRORS_ARE_FATAL and without a specific error
management policy, the failed process as well as all executing processes will exit. There
is another error handler called MPI_ERRORS_RETURN. MPI_ERRORS_RETURN prevents the
exit of all executing processes when a fault occurs. MPI_ERRORS_RETURN returns the er-
ror and let the user handle it. This can be achieved by replacing the default as fol-
lows: MPI_Errhandler_set(MPI_COMM_WORLD, MPI_ERRORS_RETURN). There is no stan-
dard specification for fault recovery in MPI applications. Although the MPI forum 5 is
actively working on that question, fault tolerance is often achieved in MPI applications by
checkpoint/restart schemes and message logging protocols.

5http://www.mpi-forum.org

31

1.4.8.1 Fault tolerance in MPICH

Research studies have led to different specifications of fault tolerant features in MPICH and
the most significant effort is MPICH-V [21], an automatic fault tolerant MPI-level mech-
anism based on an optimal combination of uncoordinated checkpoint/restart and message
logging schemes.

The fault tolerant mechanisms proposed by MPICH-V are transparent to the applica-
tions. With respect to the MPI standard, they do not require any modification in the exist-
ing MPI application codes, except re-linking them with the MPICH-V library. Furthermore,
the pessimistic message logging protocol implemented in MPICH-V has been improved in
MPICH-V2 [25] to reduce the overhead and performance penalties of the message log-
ging algorithm and the checkpoint protocol. Despite the improvement, MPICH-V2 suffers
from the synchronizations intrinsic to pessimistic message logging protocols. This penalty
is removed thanks to the causal message logging protocol implemented in the MPICH-V
project [26]. MPICH-V project studied how to combine efficiently checkpoint and message
logging approaches to design fault tolerant strategies.

In [79], researchers discuss new approaches to design fault tolerance in MPI programs.
One idea is to design transparent fault detection and recovery features. This approach
is a full MPI-level fault tolerant mechanism, because MPI must decide the best policy to
handle faults, and must provide data recovery features. Another approach is to modify
MPI semantics to allow MPI to report faults without exiting, and let the user reconfigure
the communicator and use her/his own recovery mechanism.

1.4.8.2 FT-MPI

FT-MPI [64] implements a variant of MPI semantics. FT-MPI provides fault tolerant
features at MPI level. It can survive process crashes and continue running with few or the
same number of processes. FT-MPI provides four options to handle faults. As reported in
Table 1.4 the end-user may choose to replace failed processes or continue the execution with
surviving processes only depending on the application. Furthermore, this approach is very

Mode Behavior

ABORT All processes exit (Default MPI)

BLANK Surviving processes continue with the same rank in the same communicator

SHRINK A new communicator of small size is created for surviving processes

REBUILD Failed processes are replaced in the same communicator

Table 1.4 – FT-MPI modes

flexible as the application developer may provide her/his own recovery modules, however
FT-MPI does not conform to the MPI-2 standard. As discussed in [79] an alternative
for the FT-MPI implementation is to extend the MPI semantics to add new functions
for fault management instead of modifying existing standard semantics. FT-MPI is not in
development anymore because it merged with Open MPI. However MPI-level fault tolerance

32

1.5. Faults addressed in this work

efforts from FT-MPI have led to the User-Level Failure Mitigation (ULFM) project [17]
currently proposed to be integrated in the future MPI Standard (MPI-4.0) [154].

1.4.8.3 User-Level Failure Mitigation

The ULFM project was initially proposed as a specification for fault handling in the MPI-3
Standard. The main focus of ULFM is to provide functions that allow any failed MPI
process to report faults successfully without deadlock. Application correct completion also
must be guaranteed for non failed processes [18]. ULFM typically provides three main
features to handle faults in MPI applications namely, fault detection, notification, and
recovery. Contrary to FT-MPI, there is a great standardization effort behind the ULFM
project together with a prototype6 implemented in Open MPI. Preliminary analysis of
the prototype demonstrates that it does not decrease existing application performance.
Furthermore, ULFM does not require a lot of code modifications to make MPI applications
resilient, assuming recovery policies are provided by users [17]. ULFM is a promising project
because it opens the door for the exploration of new fault tolerant algorithms to recover
fault locally as discussed in [154].

1.5 Faults addressed in this work

In this chapter, we have reviewed concepts in fault-tolerance research in the HPC commu-
nity. We have mainly emphasized on checkpoint/restart strategies, ABFT techniques and
fault tolerant MPI implementations because they represent the current trend in the HPC
community. However, the main objective of this thesis is to investigate numerical resilient
strategies that do not induce any overhead when no fault occurs.

We have presented the taxonomy of fault namely failure, hard fault and soft fault. Since
a failure is related to the final output of a program, our aim is not to correct failures but
to avoid failure by providing numerical remedies to address hard faults and soft faults. In
parallel applications, a hard fault may lead to the immediate interruption of the whole
application. This case is out of the scope of this work. On the other hand, a hard fault may
consist in the immediate interruption of a given proportion of processes. In this last case, we
investigate numerical remedies to regenerate the data loss due to the hard fault. Soft faults
are more likely to induce data corruption, and in a such situation, we focus on strategies for
the regenerate the corrupted data. To summarize, in this work, we investigate numerical
remedies for data regeneration in the case of partial data corrupted/loss regardless of the
type of the fault. Our numerical approaches are furthermore introduced in Chapter 2 and
Chapter 3. They could be combined with most of fault tolerance strategies exposed in
this chapter to provide a fault tolerance toolkit for resilient large scale simulations. In the
remainder of this work, instead of actually crashing a process, we rely on fault injection
protocols to simulate its crash.

6fault-tolerance.org

33

34

Part I

Interpolation-restart Strategies

35

General framework

In Chapter 1, we have reviewed a large spectrum of studies on fault tolerance in the HPC
community. This part focuses on our own contribution. We present new numerical resilience
approaches called interpolation-restart techniques for both large sparse linear system of
equations (Chapter 2) and large sparse eigenvalue problems (Chapter 3). In this introducing
section, we present the general framework of our approach, the fault model considered in the
context of this thesis and the main assumptions we rely on for the design of interpolation-
restart (IR) strategies.

Assumption 1. In our parallel computational context, all the vectors or matrices of di-
mension n are distributed by blocks of rows in the memory of the different computing nodes.
Scalars or low dimensional matrices are replicated.

According to Assumption 1, scalars or low dimensional matrices are replicated on all
nodes while large vectors or matrices of dimension n are distributed according to a block-
row partition. Let N be the number of partitions, such that each block-row is mapped
to a computing node. For all p, p ∈ [1, N], Ip denotes the set of row indices mapped to
node p. For the sake of illustration, we consider a linear system of equations Ax = b. With
respect to this notation, node p stores the block-row AIp,: and xIp as well as the entries of
all the vectors involved in the solver associated with the corresponding row indices of this
block-row. If the block AIp,Iq contains at least one non zero entry, node p is referred to
as neighbor of node q as communication will occur between those two nodes to perform a
parallel matrix-vector product. By Jp = {`, a`,Ip 6= 0}, we denote the set of row indices in
the block-column A:,Ip that contain non zero entries and |Jp| denotes the cardinality of this
set.

For the sake of simplicity of exposure, we describe IR strategies in the framework of
node crashes in a parallel distributed framework. We assume that when a fault occurs
on a node, all available data in its memory is lost. This situation is often referred in
the literature [27] as hard fault. We consider the formalism proposed in [101] where lost
data are classified into three categories: the computational environment, the static data
and the dynamic data. The computational environment is all the data needed to perform
the computation (code of the program, environment variables, . . .). The static data are
those that are set up during the initialization phase (symbolic step, computation of the
preconditioner when it applies, to name a few) and that remain unchanged during the
computation. For the sake of illustration, we consider a linear system of equations Ax = b.
In this particular case static data are the coefficient matrix A, the right-hand side vector
b. The Krylov basis vectors (e.g., Arnoldi basis, descent directions, residual, . . .) and the
iterate are examples of dynamic data. In Figure 1.7a, we depict a block row distribution
on four nodes. The data in blue is the static data associated with the linear system (i.e.,
matrix and right-hand side) while the data in green is the dynamic data (here only the
iterate is shown). If node P1 fails, the first block row of A as well as the first entries of
x and b are lost (in black in Figure 1.7b). We further assume that when a fault occurs,
the failed node is replaced and the associated computational environment and static data
are restored on the new node [101]. In Figure 1.7c for instance, the first matrix block row
as well as the corresponding right-hand side are restored as they are static data. However

37

the iterate, being dynamic data, is definitely lost and we discuss in Chapter 2 strategies for
regenerating it.

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

x bA

P

P

P

P

1

2

3

4

=

Static data Dynamic data

(a) Before Fault

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

x bA

P

P

P

P

1

2

3

4

=

Static data Dynamic data Lost data

(b) Faulty iteration

x bA

P

P

P

P

1

2

3

4

=

Static data Dynamic data Interpolated data

(c) Recovery

Figure 1.7 – General interpolation scheme. The matrix is initially distributed with a block
row partition, here on four nodes (a). When a fault occurs on node P1, the corresponding
data is lost (b). Whereas static is assumed to be immediately restored, dynamic data that

has been lost cannot and we investigate numerical strategies for regenerating it (c).

This approach remains valid for eigenvalues problems Au = λu. In the case of eigenvalue
problems, the eigenvalues λ being a scalar, is assumed to be replicated (on all nodes) whereas
u the eigenvector, being a vector of dimension n, is assumed to be distributed. In general,
according to Assumption 1 replicated data can be retrieved from any surviving node and
only distributed data need to be regenerated.

We consider iterative methods for the solution of large sparse linear systems and large
sparse eigenvalue problems. From a given initial guess, these numerical schemes may con-
verge through successive iterations to a satisfactory solution. Thus IR strategies do not
attempt to regenerate all the dynamic data but only the iterate. The interpolated entries
and the current values available on the other nodes define the new initial guess to restart
the iterations. More precisely we investigate resilience techniques that interpolate the lost
entries of the iterates using interpolation strategies making sense for the problem to be
solved.

Finally, we assume in the rest of this thesis that a fault occurs during iteration k+1
and the proposed interpolations are thus based on the values of the dynamic data available
at iteration k. Here, to minimize the notation, we mix k that is the outer loop in the
algorithms description with k the iteration when the fault occurs.

This part is organized as follows. In Chapter 2, we introduce interpolation strategies
that are only applied to the current iterate of the linear system solver to define a new
initial guess to restart. In Chapter 3, we extend these interpolation ideas to eigensolvers
where additional numerical features can be exploited so that more dynamic data can be
interpolated.

38

Summary of general assumptions

1. Large dimensional vectors and matrices are distributed

2. Scalars and low dimensional vectors and matrices are replicated

3. There is a system mechanism to report faults

4. Faulty process is replaced

5. Static data are restored

39

40

Chapter 2
Interpolation-restart strategies for resilient
parallel linear Krylov solvers

Contents
2.1 Introduction . 42

2.2 Strategies for resilient solvers . 42

2.2.1 Linear interpolation . 43

2.2.2 Least squares interpolation . 44

2.2.3 Multiple faults . 45

2.2.4 Numerical properties of the Interpolation-Restart Krylov solvers 47

2.3 Numerical experiments . 49

2.3.1 Experimental framework . 50

2.3.2 Numerical behavior in single fault cases 51

2.3.3 Numerical behavior in multiple fault cases 52

2.3.4 Penalty of the Interpolation-Restart strategy on convergence . . 55

2.3.5 Cost of interpolation strategies 56

2.4 Concluding remarks . 58

. . . Iterative methods are not
only great fun to play with and
interesting objects for analysis,
but they are really useful in
many situations. For truly large
problems they may sometimes
offer the only way towards a
solution, . . .

H.A. van der Vorst

41

2.1 Introduction

Solving large sparse systems of linear equations is numerically very challenging in many
scientific and engineering applications. To solve systems of linear equations, direct meth-
ods based on matrix decompositions, are commonly used because they are very robust.
However to solve large and sparse systems of linear equations, direct methods may require
a prohibitive amount of computational resources (memory and CPU). To overcome the
drawbacks of direct solvers, iterative solvers constitute an alternative widely used in many
engineering applications. The basic idea is to approximate the solution of large sparse sys-
tems of linear equations, through successive iterations that require less storage and less op-
erations. Besides having attractive computational features for solving large sparse systems
of linear equations, iterative methods are potentially more resilient. After a “perturbation”
induced by a fault, the computed iterate can still serve as an initial guess as long as the
static data that define the problem to solve, that are the matrix and the right-hand side,
are not corrupted. We exploit the natural resilience potential to design robust resilience
iterative solvers which may still converge in the presence of successive faults.

In this chapter, we focus on resilience schemes that do not induce overhead when no
fault occurs and do not assume any structure in the linear system nor data redundancy in
the parallel solver implementation. We extend and analyze the interpolation-restart (IR)
strategy introduced for GMRES in [101]. The basic idea consists in computing meaningful
values for the lost entries of the current iterate, through a small linear system solution,
to build a new initial guess for restarting GMRES. We propose an interpolation approach
based on a linear least squares solution that ensures the existence and uniqueness of the
regenerated entries without any assumption on the matrix associated with the linear system.
Furthermore we generalize the techniques to the situation of multiple concurrent faults. In
addition, using simple linear algebra arguments, we show that the proposed IR schemes
preserve key monotony properties of CG and GMRES.

The remaining of the chapter is organized as follows. In Section 2.2 we present various IR
techniques and analyze their numerical properties. Multiple fault cases are also discussed
and we describe different approaches to handle them. We briefly describe the main two
subspace Krylov solvers that we consider, namely CG and GMRES methods. For each
method, we propose the IR strategy that preserves its numerical properties. We particularly
focus on variants of preconditioned GMRES and discuss how the location (right or left) of
the preconditioner impacts the properties of our IR strategies. Section 2.3 presents a few
numerical experiments where the fault rate and the volume of damaged data are varied to
study the robustness of the IR strategies. Some conclusions and perspectives are discussed
in Section 2.4.

2.2 Strategies for resilient solvers

Relying on our fault model, we present interpolation strategies designed for Krylov subspace
solvers. We first assume that only one node can fail at a time (i.e., iteration) in Sections 2.2.1
and 2.2.2; we relax that assumption in Section 2.2.3 for studying the multiple fault case.

42

2.2. Strategies for resilient solvers

2.2.1 Linear interpolation

The linear interpolation, first introduced in [101] and denoted LI in the sequel, consists in
interpolating lost data by using data from non-failed nodes. Let x(k) be the approximate
solution when a fault occurs. After the fault, the entries of x(k) are known on all nodes
except the failed one. The LI strategy computes a new approximate solution by solving a
local linear system associated with the failed node. If node p fails, x(LI) is computed via

x
(LI)
Iq

= x
(k)
Iq

for q 6= p,

x
(LI)
Ip

= A−1
Ip,Ip

(bIp −
∑
q 6=p

AIp,Iqx
(k)
Iq

).
(2.1)

The motivation for this interpolation strategy is that, at convergence (i.e., x(k) = x),
it regenerates the exact solution (x(LI) = x) as long as AIp,Ip is nonsingular. Furthermore
we show that such an interpolation exhibits a property in term of A-norm of the error for
symmetric positive definite (SPD) matrices as expressed in the proposition below.

Proposition 1. Let A be SPD. Let k + 1 be the iteration during which the fault occurs on
node p. The regenerated entries x

(LI)
Ip

defined by Equation (2.1) are always uniquely defined.

Furthermore, let e(k) = x − x(k) denote the forward error associated with the iterate before
the fault occurs, and e(LI) = x − x(LI) be the forward error associated with the new initial
guess regenerated using the LI strategy (2.1), we have:

‖e(LI)‖A ≤ ‖e
(k)‖A.

Proof. 1. Uniquely defined x
(LI)
Ip

: because A is SPD so is AIp,Ip that is consequently non
singular.

2. Monotonic decrease of ‖e(LI)‖A: for the sake of simplicity of exposure, but without
any loss of generality, we consider a two node case and assume that the first node

fails. Let A =

(
A1,1 A1,2

A2,1 A2,2

)
be an SPD matrix, where x =

(
x1

x2

)
denotes the exact

solution of the linear equation. The equations associated with the exact solution are:

A1,1x1 + A1,2x2 = b1, (2.2a)

A2,1x1 + A2,2x2 = b2.

By linear interpolation (Equation (2.1)), we furthermore have:

A1,1x
(LI)
1 + A1,2x

(k)
2 = b1, (2.3a)

x
(LI)
2 = x

(k)
2 . (2.3b)

Given two vectors, y and z, we recall that:

yTAz = yT1 A1,1z1 + yT1 A1,2z2 + yT2 A2,1z1 + yT2 A2,2z2,

43

‖y‖2
A = yT1 A1,1y1 + yT2 A2,2y2 + 2yT1 A1,2y2,

‖y − z‖2
A = yTAy − 2yTAz + zTAz, (2.4)

(y + z)TA(y − z) = yTAy − zTAz. (2.5)

The proof consists in showing that δ = ‖x(LI) − x‖2

A − ‖x(k) − x‖2

A is non positive.

It is easy to see by (2.3b) and (2.4) that:

δ = (x
(LI)
1)T

(
A1,1x

(LI)
1 + 2A1,2x

(k)
2

)
− (x

(k)
1)T

(
A1,1x

(k)
1 + 2A1,2x

(k)
2

)
+ 2

(
(x

(k)
1)TA1,1x1 + (x

(k)
1)TA1,2x2 − (x

(LI)
1)TA1,1x1 − (x

(LI)
1)TA1,2x2

)
.

By (2.2a) and (2.5), we have:

δ =
(
x

(LI)
1 − x(k)

1

)T
A1,1

(
x

(LI)
1 + x

(k)
1

)
+ 2

(
x

(LI)
1 − x(k)

1

)T (
A1,2x

(k)
2 − b1

)
=
(
x

(LI)
1 − x(k)

1

)T (
A1,1x

(LI)
1 + A1,2x

(k)
2 − 2b1 + A1,1x

(k)
1 + A1,2x

(k)
2

)
Because A is SPD, so is A1,1 and AT1,1A

−1
1,1 = I. Then by (2.3a), we have,

δ =
(
x

(LI)
1 − x(k)

1

)T
AT1,1A

−1
1,1

(
−b1 + A1,1x

(k)
1 + A1,2x

(k)
2

)
= −

(
(A1,1x

(LI)
1)− (A1,1x

(k)
1)
)T

A−1
1,1

(
b1 − A1,1x

(k)
1 − A1,2x

(k)
2

)
,

=
(
b1 − A1,1x

(k)
1 − A1,2x

(k)
2

)T
A−1

1,1

(
b1 − A1,1x

(k)
1 − A1,2x

(k)
2

)
,

= −‖b1 − A1,1x
(k)
1 − A1,2x

(k)
2 ‖

2

A−1
1,1

≤ 0.

Note that this proof also gives us a quantitative information on the error decrease:

δ = ‖x(LI) − x‖2

A − ‖x
(k) − x‖2

A = −‖b1 − A1,1x
(k)
1 − A1,2x

(k)
2 ‖

2

A−1
1,1
.

In the general case (i.e., non SPD), it can be noticed that the LI strategy is only defined
if the diagonal block AIp,Ip has full rank. In the next section, we propose an interpolation
variant that does not make any rank assumption and will enable more flexibility in the case
of multiple faults.

2.2.2 Least squares interpolation

The LI strategy is based on the solution of a local linear system. The new variant we
propose relies on a least squares solution and is denoted LSI in the sequel. Assuming that

44

2.2. Strategies for resilient solvers

node p has failed, xIp is interpolated as follows:

x

(LSI)
Iq

= x
(k)
Iq

for q 6= p,

x
(LSI)
Ip

= argmin
xIp

‖(b−
∑
q 6=p

A:,Iqx
(k)
q)− A:,IpxIp‖.

(2.6)

We notice that the matrix involved in the least squares problem, A:,Ip , is sparse of
dimension |Jp| × |Ip| where its number of rows |Jp| depends on the sparsity structure of
A:,Ip . Consequently the LSI strategy has a higher computational cost, but it overcomes the
rank deficiency drawback of LI because the least squares matrix is always full column rank
(as A is full rank).

Proposition 2. Let k + 1 be the iteration during which the fault occurs on node p. The
regenerated entries of x

(LSI)
Ip

defined in Equation (2.6) are uniquely defined. Furthermore,

let r(k) = b − Ax(k) denote the residual associated with the iterate before the fault occurs,
and r(LSI) = b−Ax(LSI) be the residual associated with the initial guess generated with the
LSI strategy (2.6), we have:

‖r(LSI)‖2 ≤ ‖r
(k)‖2.

Proof. 1. Uniquely defined: because A is non singular, A:,Ip has full column rank.

2. Monotonic residual norm decrease: the proof is a straightforward consequence of the

definition of x
(LSI)
Ip

= argmin
xIp

‖(b−
∑
q 6=p

A:,Iqx
(k)
q)− A:,IpxIp‖

Remark 1. Note that the LSI technique is exact in the sense that if the fault occurs at
the iteration where the stopping criterion based on a scaled residual norm is detected, this
technique will regenerate an initial guess that also complies with the stopping criterion.

2.2.3 Multiple faults

In the previous section, we have introduced two policies to handle a single fault occurrence.
Although the probability of this event is very low, multiple faults may occur during the same
iteration especially when a huge number of nodes is used. At the granularity of our approach,
these faults may be considered as simultaneous. If two nodes p and q fail simultaneously
but they are not neighbors, then xIp and xIq can be regenerated independently with LI
and LSI as presented above. In this section, on the contrary, we focus more precisely on
simultaneous faults on neighbor nodes p and q as illustrated by Equation (2.7) as ‖AIp,Ip‖ 6=

45

0 or ‖AIq ,Iq‖ 6= 0.

. . . .

...
. . .

. .

...
...

. .

...
...

. .

...
...

. . . .

...
. . .

AIp,Ip−1 AIp,Ip
. .
...

...
AIp,Iq

. .

...
...

. . . .

...
. . .

. .

...
...

. .

...
...

. .

...
...

. . . .

...
. . .

AIq ,Ip−1 AIq ,Ip
. .
...

...
AIq ,Iq

. .

...
...

. . . .

...
. . .

. .

...
...

. .

...
...

. .

...
...

. . . .

...
. . .

×

.

...

xIp

...

xIq

.

...

=

.

...

bIp

...

bIq

.

...

(2.7)

We call multiple fault case this situation of simultaneous faults on neighboring nodes
and we present here two strategies to deal with such multiple faults.

2.2.3.1 Global interpolation techniques

We consider here a strategy consisting in regenerating the entries of the iterate after multiple
faults all at once. With this global recovery technique, the linear system is permuted so
that the equations relative to the failed nodes are grouped into one large block. Then by
Equation (2.7), we have Equation (2.8).

. . . .

...
. . .

. .

...
...

. .

...
...

. .

...
...

. . . .

...
. . .

AIp,Ip−1 AIp,Ip AIp,Iq
. .
...

...

. .

...
...

AIq ,Ip−1 AIq ,Ip AIq ,Iq
. .
...

...

. .

...
...

. . . .

...
. . .

. .

...
...

. .

...
...

. .

...
...

. . . .

...
. . .

. . . .

...
. . .

. .

...
...

. .

...
...

. .

...
...

. . . .

...
. . .

×

.

...

xIp

xIq

...

.

...

=

.

...

bIp

bIq

...

.

...

(2.8)

Therefore the recovery technique falls back to the single fault case. The global linear
interpolation (LI-G) solves the following linear system (similar to Equation (2.1))

(
AIp,Ip AIq ,Ip
AIq ,Ip AIq ,Iq

)(
x

(LI−G)
Ip

x
(LI−G)
Iq

)
=

bIp −

∑
`/∈{p,q}

AIp,I`x
(k)
I`

bIq −
∑
`/∈{p,q}

AIq ,I`x
(k)
I`

 .

46

2.2. Strategies for resilient solvers

Following the same idea, the global least squares interpolation (LSI-G) solves(
x

(LSI−G)
Ip

x
(LSI−G)
Iq

)
= argmin

xIp ,xIq

‖(b−
∑
`/∈{i,j}

A:,I`x
(k)
`)− A(:,Ip∪Iq)

(
xIp
xIq

)
‖.

2.2.3.2 Local interpolation techniques

Alternatively, if neighbor nodes p and q fail simultaneously, xIp and xIq can be interpolated
independently from each other. Using the LI strategy, the entries of xIp can be computed

using Equation (2.1) assuming that the quantity xIq is equal to its initial value x
(0)
Iq

. At

the same time, node q regenerates xIq assuming that xIp = x
(0)
Ip
. We call this approach

uncorrelated linear interpolation (LI-U). For example we regenerate xIp via

1: x
(k)
Iq

= x
(0)
Iq

,

2: x
(LI−U)
I`

= x
(k)
I`

for ` /∈ {p, q},
3: x

(LI−U)
Ip

= A−1
Ip,Ip

(bIp −
∑

p 6=q AIp,Iqx
(k)
Iq

) .

Although better suited for a parallel implementation, this approach might suffer from
a worse interpolation quality when the off-diagonal blocks AIp,Iq or AIq ,Ip define a strong
coupling. Similar ideas can be applied to LSI to implement an uncorrelated LSI (LSI-U).
However, the flexibility of LSI can be further exploited to reduce the potential penalty of
considering x

(0)
Iq

when regenerating xIp . Basically, to regenerate xIp , each equation that
involves xIq is discarded from the least squares system and we solve the following equation

x
(LSI−U)
Ip

= argmin
xIp

‖(bJp\Jq −
∑
`/∈{p,q}

AJp\Jq ,I`x
(k)
I`

)− AJp\Jq ,IixIp‖, (2.9)

where the set of row-column indices (Jp\Jq, I`) denotes the set of rows of block column I` of
A that have nonzero entries in row Jp and zero entries in row Jq (if the set (Jp \ Jq, I`) = ∅
then AJp\Jq ,I` is a zero matrix).

We denote this approach by decorrelated LSI (LSI-D). The heuristic beyond this ap-
proach is to avoid perturbing the regeneration of xIp with entries in the right-hand sides
that depend on xIq that are unknown. A possible drawback is that discarding rows in the
least squares problem might lead to an under-determined or to a rank deficient problem. In
such a situation, the minimum norm solution might be meaningless with respect to the orig-
inal linear system. Consequently the computed initial guess to restart the Krylov method
might be poor and could penalize the overall convergence.

2.2.4 Numerical properties of the Interpolation-Restart Krylov
solvers

In this section, we briefly describe the main two Krylov subspace techniques that we con-
sider. We recall their main numerical/computational properties and discuss how they are
affected by the interpolation techniques introduced in the previous sections. CG is often

47

the method of choice used for the solution of linear systems involving SPD matrices [87].
It can be expressed via short term recurrence on the iterate as depicted in Algorithm 2.

Algorithm 2 Conjugate gradient algorithm

1: Compute r0 = b− Ax(0),
2: p0 = r0

3: for k = 0, 1, . . . , until convergence, do
4: αk = rTk rk/p

T
kApk

5: x(k+1) = x(k) + αkpk
6: rk+1 = rk − αkApk
7: βk =

rTk+1rk+1

rTk rk

8: pk+1 = rk+1 + βkpk
9: end for

The CG algorithm enjoys the unique property to minimize the A-norm of the forward error
on the Krylov subspaces, i.e., ‖x(k) − x‖A is monotonically decreasing along the iterations
k (see for instance [136]). This decreasing property is still valid for the preconditioned con-
jugate gradient (PCG) method. Consequently, an immediate consequence of Proposition 1
reads:

Corollary 1. The initial guess generated by either LI or LI-G after a single or a multiple
fault does ensure that the A-norm of the forward error associated with the IR strategy is
monotonically decreasing for CG and PCG.

The GMRES method is one of the most popular solver for the solution of unsymmetric
linear systems. It belongs to the class of Krylov solvers that minimizes the 2-norm of the
residual associated with the iterates built in the sequence of Krylov subspaces (MINRES is
another example of such a solver [120]).

In contrast to many other Krylov methods, GMRES does not update the iterate at
each iteration but only either when it has converged or when it restarts every other m
steps (see Algorithm 3, lines 14-16) in the so-called restarted GMRES (usually denoted
by GMRES(m)) [137]. When a fault occurs, the approximate solution is not available.
However, in compliance with Assumption 1 (see p. 37), in most of the classical parallel
distributed GMRES implementations the Hessenberg matrix H̄m is replicated on each node
and the least squares problem is also solved redundantly. Consequently, each individual still
running node ` can compute its entries I` of the iterate when a fault occurs. The property
of residual norm monotony of full and restarted GMRES is still valid in case of fault for
the IR strategies LSI (for single fault) and LSI-G (for multiple faults).

Corollary 2. The IR strategies LSI and LSI-G ensure the monotonic decrease of the resid-
ual norm of minimal residual Krylov subspace methods such as GMRES, Flexible GM-
RES [140] and MINRES after a restart due to a single or to multiple faults.

48

2.3. Numerical experiments

Algorithm 3 GMRES

1: Set the initial guess x0;
2: for k = 0, 1, . . . , until convergence, do
3: r0 = b− Ax0; β = ‖r0‖
4: v1 = r0/‖r0‖;
5: for j = 1, . . . ,m do
6: wj = Avj
7: for i = 1 to j do
8: hi,j = vTi wj ; wj = wj − hi,jvi
9: end for

10: hj+1,j = ‖wj‖
11: If (hj+1,j) = 0; m = j; goto 14
12: vj+1 = wj/hj+1,j

13: end for
14: Define the (m+ 1)×m upper Hessenberg matrix H̄m

15: Solve the least squares problem ym = arg min ‖βe1 − H̄my‖
16: Set x0 = x0 + Vmym
17: end for

We should point out that this corollary does not translate straightforwardly to precon-
ditioned GMRES as it was the case for PCG in Corollary 1. For instance for left precon-
ditioned GMRES, the minimal residual norm decrease applies to the preconditioned linear
system MAx = Mb where M is the preconditioner. To ensure the monotonic decrease of
the preconditioned residual, the least squares problem should involve a block-column of
MA, which might be complicated to build depending on the preconditioner. In that case,
because left GMRES computes iterates x(k), one might regenerate x using only A but we
loose the monotony property. For right preconditioned GMRES, AMu = b with x = Mu,
similar comments can be made except for block diagonal preconditioners where the property
still holds. Indeed, similarly to the unpreconditioned case, if a block diagonal right precon-
ditioner is used, all the entries of u but those allocated on the failed nodes can be computed
after a fault. After the computation of u on the surviving nodes, the corresponding entries
of x can be computed locally as the preconditioner is block diagonal. Therefore, the new
initial guess constructed by LSI or LSI-G still complies with Corollary 2. Finally, the possi-
ble difficulties associated with general preconditioners for GMRES disappear when Flexible
GMRES is considered. In that latter case, the generalized Arnoldi relation AZk = Vk+1H̄k

holds (using the classical notation from [140]), so that the still alive nodes can compute
their part of xk from their piece of Zk.

2.3 Numerical experiments

In this section we investigate first the numerical behavior of the Krylov solvers restarted
after a fault when the new initial guess is computed using the strategies discussed above.
For the sake of simplicity of exposure, we organized this numerical experiment section as
follows. We first present in Section 2.3.2 numerical experiments where at most one fault oc-

49

curs during one iteration. In Section 2.3.3, we consider examples where multiple faults occur
during some iterations to illustrate the numerical robustness of the different variants we ex-
posed in Section 2.2.3. For the sake of completeness and to illustrate the possible numerical
penalty induced by the restarting procedure after the faults, we compare in Section 2.3.4
the convergence behavior of the solvers with and without fault. For the computation of
interpolation cost, we use sparse direct solvers (Cholesky or LU) for the LI variants and
QR factorization for the LSI variants. We investigate the additional computational cost
associated with this recovery in Section 2.3.5.

2.3.1 Experimental framework

We recall that the goal of this study is to access the numerical behavior of the proposed
resilient Krylov solvers. For the sake of flexibility of the experiments, we have developed
a simulator to monitor the amount of data lost at each fault as well as the rate of faults.
Given an execution with N nodes, the first task is to generate the fault dates of each
node, independently using the Weibull probability distribution that is admitted to provide
realistic distribution of faults [162]. For our simulations, we use the shape parameter k ≈
0.7 [23], the value of MTBF is a function of cost of iterations in terms of Flop. For example
MTBF = α × IterCost, where Itercost is the average time of one iteration, means that
a fault is expected to occur every α iterations. During the execution, at each iteration,
we have a mechanism to estimate the duration of the iteration (Algorithm 4, line 7). A
fault is reported if the iteration coincides with the fault date of at least one of the nodes
(Algorithm 4, line 9). The whole fault simulation algorithm is depicted in Algorithm 4.

Algorithm 4 Fault Simulation Algorithm

1: for Node = 1 : N do
2: Generation of fault dates of each node.
3: end for
4: BeginningT ime = 0
5: for Iteration = 1 : Max Iterations do
6: Fault = no
7: EndTime = BeginningT ime+Get Iteration Duration(Iteration)
8: for Node = 1 : Number Of Nodes do
9: if BeginningT ime < Next Fault Date(Node) < EndTime then

10: Fault = yes
11: Add Node to the list of failed nodes
12: Update the next fault date of Node
13: end if
14: end for
15: if Fault == yes then
16: Regenerate lost data
17: end if
18: BeginingT ime = EndTime
19: end for

50

2.3. Numerical experiments

When a node is reported as faulty during an iteration, we simulate the impact of the fault
by setting dynamic data in the memory of the corresponding node to zero before calling
the interpolation strategies for data regeneration.

We have performed extensive numerical experiments and only report on the qualitative
numerical behavior observed on a few examples that are representative of our observations
Most of the matrices come from the University of Florida (UF) test suite [52]. The right-
hand sides are computed for a given solution generated randomly.

Name Origin Properties

EDP-SPD Discretization of Equation (2.10) SPD

MathWorks/Kuu UF SPD

Averous/epb0 UF Unsymmetric

Boeing/nasa1824 UF Unsymmetric

Table 2.1 – Set of matrices considered for the experiments.

To generate test examples where we can easily vary the properties of the matrix associ-
ated with the linear systems, we also consider the following 3D Reaction-diffusion operator
defined in the unit cube discretized by a seven point finite difference stencil:

− ε∆u+ σu = f, (2.10)

with some boundary conditions. To study the numerical features of the proposed IR strate-
gies, we display the convergence history as a function of the iterations, that also coincide
with the number of preconditioned matrix-vector products. For the unsymmetric solver,
we depict the scaled residual, while for the SPD case we depict the A-norm of the error.
To distinguish between the interpolation quality effect and possible convergence introduced
by the restart, we consider a simple strategy that consists in restarting the solver using
the current iterate x(k) as the initial guess at faulty iterations (We do not inject fault, only
restart the solver at iterations corresponding to faulty iterations observed during LI/LSI
execution). We refer to this strategy as Enforced Restart and denote it ER. On the other
side of the spectrum, we also depict in red a straightforward strategy where the lost entries
of the iterate are replaced by the corresponding ones of the first initial guess. This simple
approach is denoted “Reset”. For the sake of simplicity the acronyms used to denote the
names of different curves are recalled in the Table 2.2.

2.3.2 Numerical behavior in single fault cases

In this section we first examine the situation where only one fault occurs during an iteration.
We first illustrate in Figure 2.1 the numerical behavior of the IR strategies when the amount
of lost entries at each fault varies from 3 % to 0.001 % (a single entry in that latter case).
We report on experiments with GMRES(100) for the matrix Averous and refer to Table 2.2
for a short summary of the notations used in the legend. For these experiments, in order to
enable comparison, the number of faults is identical and they occur at the same iteration

51

Acronym Definition Fault

Reset Replace lost data by its initial value Single/Multiple

LI Linear interpolation Single

LI-G Global linear interpolation Multiple

LI-U Uncorrelated linear interpolation Multiple

LSI Least square interpolation Single

LSI-G Global least square interpolation Multiple

LSI-U Uncorrelated least square interpolation Multiple

LSI-D Decorrelated least square interpolation Multiple

ER Enforced restart Single/Multiple

NF No faulty execution –

Table 2.2 – Definition of the acronyms used in the captions of forthcoming plots.

for all the runs. It can first be observed that the straightforward restarting Reset policy
does not lead to convergence. Each peak in the convergence history corresponds to a fault
showing that the solver does not succeed to converge. In contrast, all the other recovery
approaches do ensure convergence and all have very similar convergence behavior; that is,
they exhibit similar robustness capabilities. Furthermore, this convergence behavior is not
much affected by the amount of data lost.

In Figure 2.2, we investigate the robustness of the IR strategies when the fault rate is
varied while the amount of regenerated entries remains the same after each fault, that is
0.2 %. Those experiments are conduced with a GMRES(100) using the kim1 matrix. An
expected general trend that can be seen on that example is: the larger the number of faults
the slower the convergence. When only a few faults occur, the convergence penalty is not
significant compared to the non faulty case. For a large number of faults, the convergence
slows down but continues to take place; for instance for an expected accuracy of 10−7 the
number of iterations with 40 faults is twice the one without fault.

Although not illustrated in the selected numerical experiments reported in Figure 2.1
and 2.2, the LI strategy failed in many of the experiments we ran because of the singularity
of the AIp,Ip block. This constitutes a severe lack of robustness for this approach for non
SPD matrices. When LI does not fail, a general trend [5] is that none of the policies LI or
LSI appears significantly and consistently superior to the other. The IR strategies based on
either of both interpolation strategies have similar numerical behavior and are comparable
with ER. This comparison between the IR strategies and ER shows that the regenerated
data are numerically as good as lost data in term of approximation of the iterate.

2.3.3 Numerical behavior in multiple fault cases

In this section we illustrate the numerical behavior of the various IR strategies described in
Section 2.2.3. We made a selection of a few numerical experiments and reported them in
Figure 2.3. We recall that what is referred to as a multiple fault corresponds to the situation

52

2.3. Numerical experiments

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0 98 196 294 392 490 588 686 784 882 980

||
(b

-A
x
)|

|/
||
b

||

Iteration

Reset

LI

LSI

ER

(a) 3 % data lost

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0 98 196 294 392 490 588 686 784 882 980

||
(b

-A
x
)|

|/
||
b

||

Iteration

Reset

LI

LSI

ER

(b) 0.8 % data lost

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0 98 196 294 392 490 588 686 784 882 980

||
(b

-A
x
)|

|/
||
b

||

Iteration

Reset

LI

LSI

ER

(c) 0.2 % data lost

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0 98 196 294 392 490 588 686 784 882 980

||
(b

-A
x
)|

|/
||
b

||

Iteration

Reset

LI

LSI

ER

(d) 0.001 % data lost

Figure 2.1 – Numerical behavior of the IR strategies when the amount of lost data is
varied (matrix Averous/epb3 with 10 faults).

where the entries of xIp and xIq are lost at the same iteration and either the block AIp,Iq
or the block AIq ,Ip is non zero (i.e., nodes p and q are neighbor). In that respect, among
the faults that are considered as simple, some might still occur during the same iteration
but since they are uncorrelated they only account for one single fault. Furthermore, to be
able to observe a few multiple faults using our fault injection probability law, we had to
generate a very large number of faults. This situation has a very low probability to occur on
real systems but deserves some observations on the numerical behavior of the interpolation
schemes in such extreme situations.

In Figure 2.3, the multiple fault occurrences are characterized by a significant jump of
the residual norm for GMRES and of the A-norm of the error for PCG for the two IR strate-
gies LI-U and LSI-U, which are almost as poor as the straightforward Reset approach. The
underlying idea to design these heuristics was to interpolate lost entries by fully ignoring
other simultaneous faults (enabling a natural parallelism in the interpolation). Those ex-
periments show that the penalty to pay is very high and that a special treatment deserves
to be implemented. The first possibility is to consider the LI-G for SPD or the LSI-G for
general matrices, where all the lost entries are regenerated at once as if a “large” single

53

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0 140 280 420 560 700 840 980 1120 1260 1400

||
(b

-A
x
)|

|/
||
b

||

Iteration

Reset

LI

LSI

ER

(a) 4 faults

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0 140 280 420 560 700 840 980 1120 1260 1400

||
(b

-A
x
)|

|/
||
b

||

Iteration

Reset

LI

LSI

ER

(b) 8 faults

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0 140 280 420 560 700 840 980 1120 1260 1400

||
(b

-A
x
)|

|/
||
b

||

Iteration

Reset

LI

LSI

ER

(c) 17 faults

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0 140 280 420 560 700 840 980 1120 1260 1400

||
(b

-A
x
)|

|/
||
b

||

Iteration

Reset

LI

LSI

ER

(d) 40 faults

Figure 2.2 – Numerical behavior of the IR strategies when the rate of faults varies (matrix
Kim/kim1 with 0.2 % lost data at each fault)

fault occurred. It can be seen in these figures that the numerical behavior is consequently
very similar to the ones we observed in the previous section where only single fault was
considered. More interesting is the behavior of the LSI-D strategy whose behavior seems to
vary a lot from one example to the another. In Figure 2.3c and 2.3b, this policy enables a
convergence similar to the robust strategies LI-G and LSI-G, while in Figure 2.3a and 2.3d
a jump is observed with this IR strategy (the convergence curve disappears from the plot
area at iteration 530 and never shows up again because the preconditioned scaled residual
remains larger than the one in Figure 2.3a). Actually, this latter bad behavior occurs when
the least squares problem, which is solved once the correlated rows have been discarded,
becomes rank deficient. In that case, the regenerated initial guess is extremely poor. In
order to overcome this drawback, one could switch to LI-G or LSI-G when a rank deficiency
in the least squares matrix is detected. Such an hybrid scheme would conciliate robustness
and speed of the IR approach and would thus certainly represent a relevant strategy for
such extremely unstable computing environments.

Remark 2. In Figure 2.3a-2.3b, some residual norm increases can be observed for the LSI
variants with GMRES that are due to the left preconditioner location.

54

2.3. Numerical experiments

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0 179 358 537 716 895 1074 1253 1432 1611 1790

||
M

(b
-A

x
)|

|/
||
M

b
||

Iterations

Reset

LS-P

LSI-P

LSI-D

LI-G

LSI-G

ER

(a) Left preconditioned GMRES (UF
Averous/epb0 - 103 single and 3 multiple faults)

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0 182 364 546 728 910 1092 1274 1456 1638 1820

||
M

(b
-A

x
)|

|/
||
M

b
||

Iterations

Reset

LS-P

LSI-P

LSI-D

LI-G

LSI-G

ER

(b) Left preconditioned GMRES (UF
Boeing/nasa1824 - 32 single faults and 3

multiple faults)

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0 75 150 225 300 375 450 525 600 675 750

A
-n

o
rm

(e
rr

o
r)

Iteration

Reset

LI-U

LSI-U

LSI-D

LI-G

LSI-G

ER

(c) PCG on a 7-point stencil (3D Poisson
equation - 67 single and 2 multiple faults)

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0 78 156 234 312 390 468 546 624 702 780

A
-n

o
rm

(e
rr

o
r)

Iteration

Reset

LI-U

LSI-U

LSI-D

LI-G

LSI-G

ER

(d) PCG (UF MathWorks/Kuu - 70 single
faults and 1 multiple fault)

Figure 2.3 – Numerical behavior of the IR strategies with multiple faults.

2.3.4 Penalty of the Interpolation-Restart strategy on conver-
gence

One of the main feature of the resilient numerical algorithms described in this chapter is
to restart once meaningful entries have been interpolated to replace the lost ones. When
restarting, the Krylov subspace built before the fault is lost and a new sequence of Krylov
subspaces is computed. To reduce the computational resource consumption, such a restart-
ing mechanism is implemented in GMRES that it is known to be likely to delay the con-
vergence compared to full-GMRES. This delay can be observed in Figure 2.4a-2.4b, where
the convergence history of full-GMRES is also depicted. Although the convergence history
of the faulty executions are much slower than the one of full-GMRES, they are not that
far and remain close to the non faulty restarted GMRES(100). On the contrary, CG does
not need to be restarted. In order to evaluate how the restarting affects the convergence,
we display in Figure 2.4c-2.4d the convergence history of CG with and without fault. As
already mentionned in Section 2.3.2 for experiments with GMRES, the larger the number

55

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0 97 194 291 388 485 582 679 776 873 970

||
(b

-A
x
)|

|/
||
b

||

Iteration

LI

LSI

ER

NF

FULL

(a) GMRES(100) with matrix
Chevron/Chevron2 with 5 faults

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0 97 194 291 388 485 582 679 776 873 970

||
(b

-A
x
)|

|/
||
b

||

Iteration

LI

LSI

ER

NF

FULL

(b) GMRES(100) with matrix
Chevron/Chevron2 with 10 faults

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0 11 22 33 44 55 66 77 88 99 110

A
-n

o
rm

(e
rr

o
r)

Iteration

LI

LSI

ER

NF

(c) PCG with matrix Cunningham/qa8fm 2
faults

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0 11 22 33 44 55 66 77 88 99 110

A
-n

o
rm

(e
rr

o
r)

Iteration

LI

LSI

ER

NF

(d) PCG with with matrix Cunningham/qa8fm
9 faults

Figure 2.4 – Convergence penalty induced by the restart after the interpolation.

of faults, the larger the convergence penalty.

The objective of this chapter is to give some qualitative information on the numerical
behavior of IR procedures to enable the Krylov solvers surviving to faults. Nevertheless to be
of practical interest, the interpolation cost should be affordable. From a computational view
point, the interpolation cost depends on the amount of lost data and the circumstance of
the fault. For instance, in a parallel distributed framework, if a block Jacobi preconditioner
is considered, the interpolation for LI reduces to the application of the preconditioner [101].

2.3.5 Cost of interpolation strategies

The main objective of this work is to give some qualitative insights on the numerical be-
havior of IR strategies to enable the Krylov solvers surviving to faults. Nevertheless we
also roughly assess the computational cost associated with each of the interpolation alter-
natives that should remain affordable to be applicable. In that respect we measure the
computational complexity in terms of Flops for the various Krylov solvers as well as for the

56

2.3. Numerical experiments

solution of the sparse linear or least squares problems required by the interpolations. For
these latter two kernels we used the Matlab interface to the UF packages QR-Sparse [51]
and Umfpack [50] to get their computational cost. We did not account for the communica-
tion in the Krylov solver, but accounted for the possible imbalance of the work load, i.e.,
essentially the number of non zeros per block rows. When a fault occurs, we neglect the
time to start a new node and make the assumption that all the nodes are involved in the
interpolation calculation. We furthermore arbitrarily assume that the parallel sparse LU or
sparse QR is ran with a parallel efficiency of 50 %.

We report in Figure 2.5a-2.5b the convergence history of the Krylov solvers as a function
of the Flop count performed. In can be seen that the qualitative behaviors are comparable,
as the extra computational cost associated with the direct solution of the sparse linear
algebra problems only represent a few percents of the overall computational effort. On the
problems we have considered, the parallel LI (LSI) interpolation costs vary from 1 to 8 %
(respectively 12 up to 64 %) of one Krylov iteration. The higher cost of LSI with respect to
LI accounts for the higher computational complexity of QR compared to LU or Cholesky.
Finally, it is worth mentioning that the ER strategy assumes that the data associated with
the lost entries of the iterates have to be recovered from some devices where they are written
at each iteration. Depending on the storage device, the time to access the data corresponds
to a few thousands/millions of Flops so that the convergence curves in Figure 2.5a-2.5b
should have to be shifted slightly to the left to account for this penalty.

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0 2.1e+06 4.2e+06 6.3e+06 8.4e+06 1e+07 1.3e+07 1.5e+07 1.7e+07 1.9e+07 2.1e+07

||
M

(b
-A

x
)|

|/
||
M

b
||

Flop

Reset

LI

LSI

ER

(a) Left preconditioned GMRES on
Averous/epb0 with 44 single faults

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0 1.2e+08 2.4e+08 3.6e+08 4.8e+08 6e+08 7.2e+08 8.4e+08 9.6e+08 1.1e+09 1.2e+09

A
-n

o
rm

(e
rr

o
r)

Flop

Reset

LI

LSI

ER

(b) PCG on EDP-SPD with 70 single
faults

Figure 2.5 – Interpolation cost of preconditioned GMRES and PCG while a proportion of
6% of data is lost at each fault.

57

2.4 Concluding remarks

In this chapter we have investigated some IR techniques to design resilient parallel Krylov
subspace methods. The resilience techniques are based on simple interpolation approaches
that compute meaningful entries of the lost components of the iterate. Using basic linear
algebra arguments, we have shown that for SPD matrices the LI strategy does preserve the
A-norm error monotony of the iterates generated by CG and PCG. We have also shown
that the LSI strategy does guarantee the residual norm monotony decrease generated by
GMRES, Flexible GMRES and MINRES as well as for preconditioned GMRES for some
class of preconditioners. For non SPD matrices, the LI strategy lacks robustness as it might
not be defined when the diagonal block involved in its definition is singular.

Because we have considered a restarting procedure after the interpolation phase, we have
illustrated the numerical penalty induced by the restarting on short terms recurrence Krylov
approaches. For CG the convergence delay remains acceptable for a moderate number
of faults. For GMRES, where a restarting strategy is usually implemented to cope with
the computational constraints related to the computation and storage of the orthonormal
Krylov basis, the numerical penalty induced by the IR techniques is usually low. Extensive
numerical experiments have shown that these strategies do ensure convergence of the solvers
with moderate convergence and computational penalties. In addition, the proposed schemes
have no overhead when no fault occurs.

Finally, we have experimented a general procedure applicable to any linear solver. It
would be worth assessing the proposed interpolation strategies in efficient fixed point iter-
ation schemes such as multigrid, where the penalty associated with the Krylov restarting
would vanish. For Krylov solvers, the larger the number of faults, the slower the conver-
gence mainly due to the restart. It will be the focus of future research to tune the recovery
method for a specific Krylov solver in order to attempt to recover more information, in
particular on the global Krylov space to alleviate the penalty induced by the restart after
each fault.

58

Chapter 3
Interpolation-restart strategies for resilient
eigensolvers

Contents
3.1 Introduction . 59

3.2 Interpolation-restart principles 60

3.2.1 Interpolation methods . 60

3.2.2 Reference policies . 61

3.3 Interpolation-Restart strategies for well-known eigensolvers . . 61

3.3.1 Some background on basic methods for computing eigenvectors . 62

3.3.2 Subspace iterations to compute nev eigenpairs 63

3.3.3 Arnoldi method to compute one eigenpair 67

3.3.4 Implicitly restarted Arnoldi method to compute nev eigenpairs . 68

3.3.5 The Jacobi-Davidson method to compute nev eigenpairs 70

3.4 Numerical experiments . 73

3.4.1 Experimental framework . 74

3.4.2 Resilient subspace iteration methods to compute nev eigenpairs . 74

3.4.3 Arnoldi method to compute one eigenpair 75

3.4.4 Implicitly restarted Arnoldi method to compute nev eigenpairs . 76

3.4.5 Jacobi-Davidson method to compute nev eigenpairs 78

3.5 Concluding remarks . 86

3.1 Introduction

The computation of eigenpairs (eigenvalues and eigenvectors) of large sparse matrices is
involved in many scientific and engineering applications for instance when stability analysis

59

is a concern. It appears for instance in structural dynamics, thermodynamics, thermo-
acoustics, quantum chemistry, etc. In this chapter, we extend the IR strategies introduced
for linear systems in Chapter 2 to a few state-of-the-art eigensolvers. More precisely, the
Arnoldi [11], Implicitly restarted Arnoldi [105] and subspace iteration [141] algorithms have
been revisited to make them resilient in the light of faults. Contrarily to the linear system
solution, for eigensolvers we attempt to regenerate more dynamic information than just
the current eigenpair approximation. For instance, for the Jacobi-Davidson solver, the
interpolations are applied to the converged Schur vectors as well as to the best direction
candidates in the current search space. After a fault, this new set of vectors are used as
initial guess to restart the Jacobi-Davidson iterations.

The remainder of the chapter is structured as follows: in Section 3.2 we describe how the
interpolation techniques can be extended to regenerate meaningful spectral information.
We briefly present the eigensolvers that we have considered in Section 3.3 as well as how
the recovery ideas can be tuned for each of them. Section 3.4 is devoted to the numerical
experiments. We discuss the robustness of the various resilient numerical schemes and
conclude with some perspectives in Section 3.5.

3.2 Interpolation-restart principles

In this section, we describe how IR strategies can be extended to regenerate meaningful
spectral information. Contrarily to what we have proposed for the Krylov linear solvers
where only meaningful iterate are computed to serve as a new initial guess for restarting
the iterations, more flexibilities exist in the framework of eigensolution where similar ideas
can be adapted to best exploit the numerical features of the individual eigensolvers. The
main reasons are that some of the considered eigensolvers do not rely on a central equality
(as Arnoldi’s equality for GMRES) or a sophisticated short term recurrence (as for CG);
furthermore we consider also situations where a few nev eigenpairs are sought, which also
provides additional freedom. We present in details the variants for selecting and computing
the relevant subspaces to perform the restart for each particular considered eigensolver in
Section 3.3.

3.2.1 Interpolation methods

Following similar ideas as those presented in Chapter 2 for linear systems, we adapt the
IR strategies to eigensolvers. The IR strategies consist in interpolating lost data by using
noncorrupted data. Let u(k) be the approximate eigenvector when a fault occurs. After
the fault, the entries of u(k) are correct, except those in the corrupted memories. Assuming
that in parallel distributed environment, the current eigenvalue λk is naturally replicated in
the memory of the different computing nodes, we present two strategies to compute a new
approximate solution. The first strategy, referred to as linear interpolation and denoted LI
consists in solving a local linear system associated with the failed node; the second one relies
on the solution of a least squares interpolation and is denoted LSI. Those two alternatives
result from considering (λk, u

(k)) as an exact eigenpair and the equations the lost entries

60

3.3. Interpolation-Restart strategies for well-known eigensolvers

should comply with. We may alternatively have a row-block view point, which defines the
LI variant; or a column-block point of view, which leads to the LSI variant.

If node p fails, LI computes a new approximation of the eigenvector u(LI) as follows
u

(LI)
Iq

= u
(k)
Iq

for q 6= p,

u
(LI)
Ip

= (AIp,Ip − λIIp,Ip)−1(−
∑
q 6=q

AIp,Iqu
(k)
Iq

).

On the other hand, LSI computes u(LSI) via
u

(LSI)
Iq

= u
(k)
Iq

for q 6= p,

u
(LSI)
Ip

= arg min
uIp

‖(A:,Ip − λI:,Ip)uIp +
∑
q 6=p

(A:,Iq − λI:,Iq)u
(k)
Iq

)‖.

Here, I ∈ Cn×n is the identity matrix and we furthermore assume that (AIp,Ip − λIIp,Ip)
is non singular and that (A:,Ip − λI:,Ip) has full rank. The matrix involved in the least
squares problem, (A:,Ip−λI:,Ip), is sparse of dimensions |Jp|× |Ip| where its number of rows
|Jp| depends on the sparsity structure of A:,Ip . Consequently the LSI strategy may have a
higher computational cost. In the rest of this chapter, we again use IR to denote LI and/or
LSI.

3.2.2 Reference policies

To assess the numerical robustness of the IR policies we not only compare them with non
faulty (NF) executions, we also rely on Reset and ER strategies. In this context, the Reset

strategy consists of substituting lost data (u
(k)
Ip

) with random values. The benefits of the
IR strategies over Reset will thus highlight both the importance and the quality of the
interpolation. On the other hand, the ER strategy consists only in enforcing the solver
to restart using current solution as an initial guess. The comparison between NF and ER
allows one to measure the numerical impact of the restart while the convergence delay
between ER and IR illustrates the quality of the interpolated directions with respect to the
eigensolver under study.

When ambiguous, we mention explicitly which directions are affected by the Reset and
ER for particular eigensolvers in Section 3.3. In all cases, for the sake of comparison, faults
are always injected on the same nodes at the same iteration for all the IR, Reset and ER
cases.

3.3 Interpolation-Restart strategies for well-known

eigensolvers

In this section we briefly describe a few of the most popular eigensolvers for general sparse
matrices that we have considered in this thesis. For each solver we describe which data are

61

regenerated after a fault to make them resilient. For each eigensolver, we briefly present the
numerical approach and associated algorithm and then we describe how the IR strategies (as
well as Reset and ER when not straightforward) can be applied to compute key ingredients
of the solver when some data are lost.

In the sequel, we introduce eigensolvers to compute a number nev of eigenpairs which
ranges from one to five.

3.3.1 Some background on basic methods for computing eigen-
vectors

In this work, we only consider iterative schemes for the solution of eigenproblems. We
define

η̃(u(k), λk) =
‖Au(k) − λku(k)‖

|λk|
(3.1)

the scaled residual associated with the approximate eigenpair (λk, u
(k)) for nonzero eigen-

value approximation. Given a threshold ε, the widely used stopping criterion to detect
convergence is defined by

η̃(u(k), λk) ≤ ε.

We refer to Section 1.2.4.3 in Chapter 1 for the detailed motivations for this stopping
criterion.

The power method [54, Chapter 5] [82, Chapter 2] depicted in Algorithm 5 is the most
basic iterative method to compute the eigenvector associated with the eigenvalue of largest
modulus of A.

Algorithm 5 Power method

1: Start: Choose a nonzero initial vector u(0) .
2: for k = 0 . . . until convergence do

3: u(k+1) =
Au(k)

‖Au(k)‖
4: end for

The power method consists of computing the sequence of vectors u(k) with the initial guess
u(0), a nonzero vector. The power method uses only the vector of the current iteration,
throwing away the information contained in the previously computed vectors [142, Chapter
3]. In [82, Chapter 4], it is shown that the spaces spanned by the sequence u(k) of the
iterate generated by the power method contain accurate spectral information about the
eigenvectors associated with the next largest eigenvalues. The following paragraph describes
a procedure for extracting spectral information from a given subspace.

The Rayleigh-Ritz method is commonly used to compute an approximation to an
eigenspace X of a given matrix A from a subspace U containing an approximation of X .
The subspace U may be chosen as the Krylov subspace associated with the matrix A, or it
may be generated otherwise. The simplest form of the Rayleigh-Ritz procedure to compute

62

3.3. Interpolation-Restart strategies for well-known eigensolvers

an approximate eigenpair (λ, u) of A presented in [92] is depicted in Algorithm 6. For the
sake of simplicity of notation, we mix u the solution and the approximate solution.

Algorithm 6 Rayleigh-Ritz procedure
1: Start: Compute an orthonormal basis U for the k-dimensional space U .
2: Compute : C = UHAU
3: Let (λ, g) be an eigenpair of C
4: Set (λ, Ug) as candidate eigenpair of A

The matrix C is known as the Rayleigh quotient matrix associated with U . Let σ(C)
denotes the spectrum of C, that is the set of all its eigenvalues. The couple (λ, Ug) is called
a Ritz pair, where λ is the Ritz value and (Ug) the Ritz vector.

3.3.2 Subspace iterations to compute nev eigenpairs

Brief description of the numerical algorithm: The subspace iteration method is a
block variant of the power method [82, Chapter 2]. It starts with an initial block of m

(with m ≥ nev) linearly independent vectors U (0) = [u
(0)
1 , . . . , u

(0)
m] ∈ Cn×m. Under certain

assumptions [141, Chapter 5], the sequence of U (k) = AkU (0) generated by the algorithm,
converges to the m eigenpairs of A associated with the eigenvalues of largest magnitude.
To guarantee the full column rank in U (k) for large values of k, the Q factor of its QR
factorization may be used at each iteration.

Algorithm 7 Basic subspace iteration

1: Choose U (0) = [u
(0)
1 , ..., u

(0)
m] ∈ Cn×m

2: for k = 0 . . . until convergence do
3: Orthonormalize U (k)

4: Compute W (k) = AU (k)

5: Form the Rayleigh quotient C(k) = W (k)HAW (k)

6: Compute the eigenvectors G(k) = [g1, . . . , gm] of C(k)

and eigenvalues σ(C(k)) = (λ1, . . . , λm)
7: Update Ritz vectors : U (k+1) = W (k)G(k)

8: end for

To compute the eigenpairs associated with the smallest eigenvalues in magnitude, or
eigenpairs associated with a given set of eigenvalues in a given region of the complex plane,
the basic subspace iteration depicted in Algorithm 7 is no longer appropriate. For example,
to compute eigenpairs associated with the eigenvalues nearest to τ ∈ C, it is possible to
combine the subspace iterations with the shift-invert technique [70]. With shift-invert spec-
tral transformation, the subspace iteration method will be applied to the matrix (A−τI)−1.
Furthermore, a polynomial acceleration [136], can be used as a preconditioning technique
to approximate eigenvalues near τ . This polynomial acceleration consists in applying a

63

given polynomial P to the matrix A. In Algorithm 7 line 4 would change and become
W (k) = P(A)U (k). The polynomial should act as a filter to damp eigencomponents in some
undesired part of the spectrum. In our numerical example, to compute the eigenpairs as-
sociated with smallest magnitude eigenvalues, we will consider a Chebyshev polynomial of
the first kind of degree ñ.

3.3.2.1 Chebyshev polynomial filter

Chebyshev polynomials are very useful to, at the same time, damp unwanted eigenvalues
and magnify the wanted ones, corresponding to the filtering criterion. They are basically
used to accelerate single vector iterations or projection processes. In real arithmetic, the
Chebyshev polynomial of the first kind of degree ñ is defined as:

Cñ(t) =

{
cos(ñ cos−1t), |t| < 1,

cosh(ñ cosh−1t), |t| > 1.
(3.2)

Given an initial vector v, the Chebyshev polynomial sequence wj = Cj(A)v can be easily
computed using the three-term recurrence:

C0(t) = 1,

C1(t) = t,

Cj+1(t) = 2tCj(t)− Cj−1(t), j = 1, 2, . . .

which leads to, wj+1 = 2Awj − wj−1, with w0 = v, and w1 = Av.

Theorem 1. Let [α, β] be a non-empty interval in R and let γ be any real scalar such that
γ ≥ β. Then the minimum

min
p∈Pñ,p(γ)=1

max
t∈[α,β]

|p(t)|

is attained by the polynomial

Ĉñ ≡
Cñ

(
1 + 2 t−β

β−α

)
Cñ

(
1 + 2 γ−β

β−α

) .
Theorem 1 from [136] (see also [43]) shows that among all the possible polynomials of

degree ñ, Ĉñ reaches the smallest possible absolute values in the interval [α, β], such that
Ĉñ(γ) = 1.

The definition of Chebyshev polynomials can be extended to complex arithmetic [136].
The Chebyshev polynomial of degree ñ can still be computed using the three-term recur-
rence:

C0(z) = 1,

C1(z) = z,

Cj+1(z) = 2zCj(z)− Cj−1(z), j = 1, 2, . . . , ñ− 1

The segment [α, β] in real arithmetic becomes an ellipse E in the complex plane which is
symmetric with respect to the real axis, i.e., its center is on the real axis and its foci are
either pure real or pure imaginary numbers (Figure 3.1).

64

3.3. Interpolation-Restart strategies for well-known eigensolvers

Figure 3.1 – Ellipses in the complex plane defined by their center c, foci c− e and c+ e
and major semi-axis a.

3.3.2.2 Subspace iteration with Chebyshev acceleration

This algorithm consists in using Chebyshev polynomials during the subspace iterations
to accelerate the convergence of the method. Yousef Saad [136] shows that, if the ellipse
E(c, a, e) (see Figure 3.1) encloses the unwanted part of the spectrum of A, then the asymp-
totically best min-max polynomial is the polynomial

pñ(λ) =
Cñ[(λ− c)/e]
Cñ[(τ − c)/e]

, (3.3)

where Cñ is the Chebyshev polynomial of degree ñ of the first kind and τ is an approximation
of the first wanted eigenvalue that is not enclosed within the ellipse E. Therefore, the
successive applications of the polynomial defined by Equation (3.3) to a set of vectors U
during the subspace iterations will make the space spanned by the columns of U converge
to an invariant subspace corresponding to the eigenvalues that lay out of the ellipse E.

The computation of wñ = Pñ(A)w0 is performed iteratively thanks to the three-term
recurrence for Chebyshev polynomials [136] as:

1. Given the initial vector w0, compute

σ1 =
e

τ − c
,

w1 =
σ1

e
(A− cI)w0.

2. Iterate for j = 1, . . . , ñ− 1:

σj+1 =
1

2/σ1 − σj
,

wj+1 = 2
σj+1

e
(A− cI)wj − σjσj+1wj−1.

65

Algorithm 8 implements the subspace iteration method with Chebyshev acceleration.
The parameters c, a and e are defined by the ellipse E that encloses the unwanted part of
the spectrum of A. It requires some primary knowledge about the spectrum of A.

Algorithm 8 Subspace Iteration with Chebyshev acceleration

1: Choose U (0) = [u
(0)
1 , ..., u

(0)
m] ∈ Cn×m

2: Orthonormalize U (0)

3: for k = 0, . . . until convergence do
4: W

(k)
0 = U (k)

5: σ1 = e
τ−c

6: W
(k)
1 = σ1

e
(A− cI)U (k)

7: for j=2,. . . ,ñ do
8: σj = 1

2/σ1−σj−1

9: W
(k)
j = 2

σj
e

(A− cI)W
(k)
j−1 − σj−1σjW

(k)
j−2

10: end for
11: Orthonormalize W

(k)
ñ

12: Form the Rayleigh quotient C(k) = W
(k)
ñ

H
AW (k)

ñ

13: Compute the eigenvectors G(k) = [g1, . . . , gm] of C(k)

and eigenvalues (λ1, . . . , λm)

14: Update Ritz vectors: U (k+1) = W
(k)
ñ G(k).

15: end for

Interpolation-restart policy: In the subspace iteration method depicted in Algo-
rithms 7 and 8, according to Assumption 1 (see p. 37), the Ritz vectors U (k) are distributed,
whereas the Rayleigh quotient C(k) and Ritz values are replicated. When a fault occurs, we
distinguish two cases. During an iteration, a fault may occur before or after the computation
of the Rayleigh quotient C(k).

1. When a fault occurs before the computation of the Rayleigh quotient C(k) (Algo-
rithm 7, lines 2 to 5 and Algorithm 8, lines 3 to 12), surviving nodes cannot compute
the Rayleigh quotient C(k) because entries of W (k) are missing. In this case, we con-
sider the available entries of the Ritz vectors U (k) and its corresponding eigenvalues
σ(C(k−1)). We interpolate the m Ritz vectors individually (u

(m)
` , 1 ≤ ` ≤ m) using LI

or LSI. In the particular case of Algorithm 8, all computation in the filtering step
(line 5 to 10) are lost.

2. When a fault occurs after the computation of the Rayleigh quotient C(k) (Algorithm 7,
line 6 to 7 and Algorithm 8, line 13 to 14), all surviving nodes can compute the entries
of U (k+1) relying on a local replicate of C(k) and the local entries of W (k). The missing
entries of each Ritz vector (u

(m)
` , 1 ≤ ` ≤ m), can be individually interpolated using

LI or LSI relying on the corresponding eigenvalues σ(C(k)).

After the interpolation, the subspace iteration algorithm is restarted with the matrix
U (IR) = [u

(IR)
1 , . . . , u

(IR)
m] ∈ Cn×m until convergence.

66

3.3. Interpolation-Restart strategies for well-known eigensolvers

Reset and ER policies: For the sake of comparison with the IR strategies, ER restarts
with U (k) when the fault occurs before the computation of the Rayleigh quotient C(k), while
it restarts with U (k+1) when the fault occurs after the computation of the Rayleigh C(k). It
is important to notice that at every iteration where the fault occurs before the computation
of C(k), ER delays by one iteration compared to NF. However at each iteration where the
fault occurs after the computation of C(k), ER behaves exactly as NF. On the other hand,
Reset restarts with U (k) or with U (k+1) when the fault occurs before the computation of
C(k), respectively, with missing entries replaced by random values.

3.3.3 Arnoldi method to compute one eigenpair

Brief description of the numerical algorithm: The Arnoldi method is an efficient
procedure for approximating eigenvalues lying at the periphery of the spectrum of A. Its
origin can be found in the work of Arnoldi, back in the 50’s [11]. It is a generalization of
the Lanczos algorithm designed for symmetric matrices [100]. After m steps, the method
produces an upper Hessenberg matrix Hm ∈ Cm×m that satisfies the Arnoldi relation:

AVm = VmHm + βmvm+1e
T
m, (3.4)

where em denotes the last column of the m ×m identity matrix. The Arnoldi method is
attractive because it approximates the eigenpairs of a large matrix A from the eigenpairs of
the small matrix Hm thanks to the Rayleigh-Ritz procedure. Due to memory limitation, the
Arnoldi factorization is not expanded until convergence, but it is restarted after a search
space of dimension m is built. When restarting, the Ritz vector u, associated with the
targeted Ritz value, computed in Vm is used as initial guess.

Algorithm 9 Arnoldi method with restart m
1: Set the initial guess u.
2: for k = 0, 1, . . . , until convergence, do
3: v1 = u/‖u‖
4: for j = 1, . . . ,m do
5: wj = Avj.
6: for i = 1 to j do
7: hi,j = vTi wj ; wj = wj − hi,jvi.
8: end for
9: hj+1,j = ‖wj‖.

10: If |hj+1,j| = 0; m = j; goto 13. // happy breakdown.
11: vj+1 = wj/hj+1,j.
12: end for
13: Define the m×m upper Hessenberg matrix Hm.
14: Solve the eigenproblem Hmg = λg.
15: Set Ritz vector u = Vmg.
16: end for

67

Interpolation-restart policy: According to Assumption 1 (see p. 37), we assume that
the low dimensional Hessenberg matrix Hk is replicated on each node. Consequently, re-
gardless of the step where the fault occurs during the iteration, each surviving node q can
solve the eigenproblem Hkg = λg redundantly, then compute its entries of the Ritz vector
uIq = Vk(Iq, :)g (line 15 of Algorithm 9). The next step is the computation of the Ritz
vector entries allocated on the failed node using LI or LSI. The resulting vector becomes
a candidate to restart the Arnoldi iterations.

Reset and ER policies: In the case of the Arnoldi algorithm ER consists in enforcing
the restart at the corresponding faulty iteration. In this particular case, the restart is
performed from a Krylov basis of size k smaller than m. Reset proceeds as IR policies
except missing entries of the current iterate are replaced by random values.

3.3.4 Implicitly restarted Arnoldi method to compute nev eigen-
pairs

Brief description of the numerical algorithm: Developed by Lehoucq and Sorensen
in [105], the implicitly restarted Arnoldi method (IRAM) depicted in Algorithm 10 is com-
monly used with success for the solution of large eigenvalue problems. IRAM is an extension
of the Arnoldi method. It starts with an Arnoldi equality expanded up to size m. After
the expansion of the Arnoldi equality, IRAM performs a contraction of the Arnoldi equality
from size m down to size m̃ (nev ≤ m̃ < m). This is achieved by applying a polynomial
filter of degree ` = m − m̃ that reduces the size of the Arnoldi equality down to a size
m̃ (see Algorithm 10, line 12). The expansion and contraction steps are repeated until
convergence. The contraction step has a key feature as it provides an efficient scheme to
extract a set of eigenvalues in a target region of the spectrum from the Krylov subspace
while maintaining the Arnoldi equality.

Interpolation-restart policy: When a fault occurs during an iteration, it may be during
the expansion of the Krylov subspace (Algorithm 10, line 13) or during the contraction step
(Algorithm 10, line 3 to 12). The contraction step is performed locally relying on the
Hessenberg matrix Hm which is replicated. When a fault occurs during the contraction
step each surviving node q can compute

Vm̃(Iq, :) = Vm(Iq, :)Q(:, 1 : m̃),

as well as the corresponding Hessenberg matrix

Hm̃ = Hm(1 : m̃, 1 : m̃).

From Vm̃(Iq, :) and Hm̃, the surviving nodes may then compute eigenvectors G =
[g1, . . . , gnev] and eigenvalues (λ1, . . . , λnev) of Hm̃. Consequently, the entries of the Ritz
vectors are computed by

U (k)(Iq, :) = Vm̃(Iq, :)G. (3.5)

68

3.3. Interpolation-Restart strategies for well-known eigensolvers

Algorithm 10 Implicitly restarted Arnoldi method with restart m

1: Compute Arnoldi equality AVm = VmHm + fme
T
m.

2: for k = 0, 1, . . . , until convergence, do
3: Compute σ(Hm) and select ` shifts µ1, . . . , µ` (` = m− m̃).
4: Q = Im
5: for i = 1, . . . , ` do
6: QR Factorize QiRi = Hm − µiI
7: Hm = Qi

HHmQi

8: Q = QQi

9: end for
10: βm̃ = Hm(m̃+ 1, m̃)
11: fm̃ = vm̃+βm̃ + fmQ(m, m̃)
12: Vm̃ = VmQ(:, 1 : m̃); Hm̃ = Hm(1 : m̃, 1 : m̃)
13: Starting with AVm̃ = Vm̃Hm̃ + fm̃e

T
m̃,

perform ` steps of Arnoldi algorithm to get AVm = VmHm + fme
T
m

14: end for

The missing entries Ip of Ritz vectors may be interpolated using either LI or LSI of the
interpolation algorithms.

Let us consider the case when the fault occurs during the expansion step. Assuming that
the fault occurs after the computation of an Arnoldi equality of size mf with m̃ < mf < m.
On the surviving nodes the contraction step is applied using the available entries of Vmf

.
Using the replicated Hessenberg matrix Hmf

, each surviving node q may perform the QR
iterations (see Algorithm 10, lines 3 to 9). The low dimensional matrix Q from the QR
iteration allows one to perform the contraction step

Vm̃(Iq, :) = Vmf
(Iq, :)Q(:, 1 : m̃),

and compute the corresponding Hessenberg matrix

Hm̃ = Hmf
(1 : m̃, 1 : m̃).

The surviving nodes compute eigenvectors G = [g1, . . . , gnev] and eigenvalues (λ1, . . . , λnev)
of Hm̃. The entries of the Ritz vectors are computed by Equation (3.5). The missing entries
Ip of Ritz vectors may be interpolated using either LI or LSI.

For both cases, the available entries of Vm̃ do not longer satisfy the Arnoldi equality. To
take into account all the available spectral information, we compute the linear combination
of the interpolated eigenvectors, u =

∑nev
j=1 u

(IR)
j , and restart with the normalized linear

combination v1 = u
‖u‖ as initial vector. In exact arithmetic, it is well known that, starting

from a vector v that is a linear combination of k eigenvectors, the Krylov sequence based
on u terminates within k steps [82]. In terms of Arnoldi iteration, it means that the k
eigenvectors would converge to the solution within the first iteration.

Reset and ER policies: The IRAM given in Algorithm 10 restarts with an Arnoldi
equality of smaller size whereas the IR policies restart with the normalized linear combi-
nation of the interpolated eigenvectors. When using the Reset strategy, surviving nodes

69

use the schemes described for IR strategies and compute U (k)(Iq, :). The missing entries of
the nev Ritz eigenvectors are replaced by random values and then the normalized linear
combination of the resulting vectors is used as an initial guess. With ER, we compute
all the entries of U (k) and we restart using the normalized linear combination of the nev
approximate eigenvectors from U (k).

3.3.5 The Jacobi-Davidson method to compute nev eigenpairs

Brief description of the numerical algorithm: The Jacobi–Davidson method is a
widely used eigensolver, especially for eigenpairs in the interior of the spectrum. It was
proposed by Sleijpen and van der Vorst in [151]. It is a combination of Davidson’s algo-
rithm for the computation of a few smallest eigenpairs of symmetric matrices [49] with the
Jacobi orthogonal component correction [91]. The basic ingredients of Jacobi-Davidson are
presented in Algorithm 11 for the computation of one eigenpair whose eigenvalue is close
to a given target τ . It starts with a given normalized vector v and constructs a basis V
extended using the Jacobi orthogonal correction method. At each iteration the algorithm
computes the Ritz pairs associated with V and selects the eigenpair whose eigenvalue is the
closest to the target τ .

Algorithm 11 [λ, u] = Basic-Jacobi-Davidson(v, τ)
Jacobi–Davidson algorithm to compute the eigenvalue of A closest to a target value τ

1: Set V1 = [v]
2: for k = 1, 2, . . . ,until convergence do
3: Compute Rayleigh quotient: Ck = V H

k AVk, and eigenpairs of Ck.
4: Select Ritz pair (λk, uk) such that λk is the closest to τ
5: rk = Auk − λkuk
6: Perform a few steps of GMRES to solve the linear system

(I − ukuHk)(A− τI)(I − ukuHk)v = −rk, so that v ⊥ uk

7: Compute w by orthonormalizing v against Vk: w = v − Vk(V H
k v)

8: Set Vk+1 = [Vk, w]
9: end for

Algorithm 11 converges to one eigenpair. If more than one eigenpair needs to be com-
puted, Algorithm 11 can be accommodated to compute a partial Schur decomposition of
A. In that respect, the next iterations are enforced to generate a search space orthogonal
to the space spanned by the nconv already converged eigenvectors. This is achieved by
representing this space using the corresponding Schur vectors. Let AZnconv = ZnconvTnconv
denote the partial Schur form where the columns of the orthonormal matrix Znconv span
the converged eigenspace and the diagonal of the upper triangular matrix Tnconv are the
associated converged eigenvalues.

Algorithm 12 corresponds to the Jacobi-Davidson style QR algorithm presented in [67].
It is conceived to be used by a higher level routine that decides on the number of wanted

70

3.3. Interpolation-Restart strategies for well-known eigensolvers

eigenpairs nev, the target point τ , the maximum and the minimum size of the basis V , etc.

The inputs for the algorithm are the existing converged Schur vectors Znconv of A, the
current size k of the basis Vk, Wk = AVk, and the Rayleigh quotient Ck. The focal point τ0,
the maximum size m affordable for V , the size of the restarted basis m̃ (1 ≤ m̃ < m) and
the maximum number of restart allowed are also provided. Outputs are µ, z and t, such
that

A(Znconv z) = (Znconv z)

(
Tnconv t

0 µ

)
is a partial Schur decomposition of one higher dimension.

The higher level routine must furnish the necessary inputs to Algorithm 12. If the
process starts from the beginning, there are then two situations. The first one corresponds
to the case when the computation starts from a single random vector. Then the higher
level routine computes an Arnoldi decomposition of size m̃

AVm̃ = Vm̃Hm̃ + βvm̃+1e
T
m̃,

and Jacobi-Davidson starts with U = [], V = Vm̃, W = AV and C = Hm̃. The second
case is when the process starts from a given number k of initial vectors. The initial block
of vectors is then orthonormalized to obtain Vk and the process can start as indicated
previously, with Z = [], V = Vk, W = AVk and C = V H

k AVk = V H
k W .

Once a partial Schur form of size nev is available, the eigenpairs (λ`, u`) (with ` =
1, . . . , nev) of A can be extracted as follows. The eigenvalue λ` is the Ritz value of Tnev
associated with the Ritz eigenvector g` so that u` = Znevg`.

Interpolation-restart policy: According to Assumption 1 (see p. 37), the Schur vectors
Znconv = [z1, . . . , znconv], and the basis Vk = [v1, . . . , vk] are distributed among the computing
units as the matrix Tnconv ∈ Cnconv×nconv and the Rayleigh quotient matrix Ck ∈ Ck×k are
replicated.

The Jacobi-Davidson algorithm enables more possibilities to regenerate a meaningful
context for the restart after a fault. They are mainly two reasons. First, the algorithm does
not rely on an equality that is incremented at each iteration such as Arnoldi; preserving
such an incremental equality after a fault is unfeasible. Second, the algorithm can start
from a set of vectors and its convergence will be fast if these vectors are rich in the sought
spectral information.

When the fault occurs on node p while nconv (nconv > 0) Schur vectors were converged,
good approximations of the associated converged eigenvectors can easily be computed as
follows. Each non-faulty node q performs

1. the spectral decomposition of the partial Schur matrix Tnconv

TnconvGnconv = GnconvD with Gnconv = [g1, . . . , gnconv],

2. the computation of its entries of the converged eigenvectors

u`(Iq) = Znconv(Ip, :)g` for ` = 1, . . . , nconv.

71

Algorithm 12 [µ, z, t]=JDQR(Z(:,1:nconv),V (:,1:k),W (:,1:k),C(1:k,1:k),
τ ,m̃,m,maxiter)
Jacobi-Davidson style QR algorithm for expansion of partial Schur decomposition

1: Set iter = 0; kinit = k; τ = τ0; tr = 0
2: while iter<maxiter do
3: iter = iter + 1
4: for k = kinit, . . . ,m do
5: % Computation of the Schur decomposition CQ = QT

% so that the eigenvalues on the diagonal of T
% are sorted by increasing distance to τ
[Q, T] = SortSchur(C(1 : k, 1 : k), τ, k),

6: Choose µ = T (1, 1) and g = Q(:, 1), the Ritz pair closest to τ
7: Approximate eigenvector of A: z = V (:, 1 : k)g, and Az: y = W (:, 1 : k)g
8: Compute the residual r = y−µz, orthogonalize it against Z(:,1:nconv) and compute

its norm: rnorm=norm(r)
9: % Convergence test:

10: if rnorm is small enough then
11: nconv = nconv + 1
12: % Prepare outputs and deflate:
13: t = ZHy; V = V (:, 1 : k)Q(:, 2 : k);

W = W (:, 1 : k)Q(:, 2 : k);C = T (2 : k, 2 : k).
14: return
15: else if k = m then
16: % Restart:

V (:, 1 : m̃) = V (:, 1 : m)Q(:, 1 : m̃);
W (:, 1 : m̃) = W (:, 1 : m)Q(:, 1 : m̃);
C(1 : m̃, 1 : m̃) = T (1 : m̃, 1 : m̃);
kinit = m̃

17: end if
18: %No convergence reached and k < m.

Solve the correction equation:

(I − zzH)(A⊥ − τI)(I − zzH)v = −r

19: Orthogonalize v against V (:, 1 : k) and Z(:, 1 : nconv)
20: % Extend the Rayleigh basis and the Rayleigh quotient:
21: V (:, k + 1) = v, W (:, k + 1) = Av, C(k + 1,1:k)=vHW (:,1:k),

C(1:k,k + 1)=V (:,1:k)HW (:,k + 1), C(k + 1,k + 1)=vHW (:,k + 1)
22: end for
23: end while

The missing entries of the eigenvectors can be computed using IR to build U
(IR)
nconv =

[u
(IR)
1 , . . . , u

(IR)
nconv].

Let us assume that the partial Schur decomposition has converged in exact arithmetic

72

3.4. Numerical experiments

(AZnconv = ZnconvTnconv), and that the nconv eigenpairs also are exact solutions (Au` =

λ`u`) in exact arithmetic. Under this assumption, the eigenvectors (u
(IR)
`) computed by IR

are the same exact eigenvectors as long as
(
A(Ip, Ip)− λ`IIp,Ip

)
is nonsingular or

(
A:,Ip −

λ`I:,Ip

)
is full column rank for LI and LSI, respectively. As a consequence, if Jacobi-

Davidson is restarted with the initial basis Vnconv obtained from the orthonormalization of
the vectors of U

(IR)
nconv then, the nconv already converged Schur vectors will be retrieved in

the initial basis Vnconv.

Remark 3. In floating point arithmetic, there is no guarantee to retrieve the already con-
verged nconv Schur vectors by restarting with Vnconv, although this is likely to happen in
practice.

In addition to U
(IR)
nconv, further information can be extracted from the search space Vk

and the Rayleigh quotient matrix Ck available when the fault occurs. Following the same
methodology, spectral information built from Ck and Vk can be computed to generate
additional directions to expand the initial search space (U

(IR)
nconv) used to restart the Jacobi-

Davidson algorithm. Each non-faulty node q computes

1. the Schur decomposition CkG̃k = G̃kDk so that the eigenvalues on the diagonal of Dk

are sorted by increasing distance to τ , (Algorithm 12, line 5),

2. the entries of the Ritz vectors ũ`(Iq) = Vk(Iq, :)g̃` for ` = 1, . . . , s, where s is the
number of Ritz vectors we want to interpolate. Because G̃k has been sorted, these
vectors may be considered as the s best candidates to expand U

(IR)
nconv. That is, ũ1 is the

Ritz vector associated with D(1, 1) which is the Ritz value the closest to the target
τ , that is improved by Jacobi-Davidson iterations.

In addition, the missing entries Ip of the Ritz vectors ũ` can be computed using LI or LSI,

U (IR) = [u
(IR)
1 , . . . , u

(IR)
nconv, ũ

(IR)
1 , . . . , ũ

(IR)
s]. Once U (IR) has been computed, the vectors

in U (IR) is then orthonormalized to obtain Vrestart. The Jacobi-Davidson algorithm can
be restarted with Z = [], V = Vrestart, Wrestart = AVrestart, C = V H

restartW. Although
in principle s has only to satisfy 0 ≤ s ≤ k, natural choices for s may be such that
nconv + s = nev (we interpolate nev vectors) or s = nev (we interpolate nconv + nev
vectors). In general, s can be chosen depending on the computational cost one wants to
invest.

Reset and ER policies: Reset and ER policies restart with the same amount of direc-
tions as IR policies. The key difference is that the lost entries are replaced with random
entries in Reset case whereas ER restarts with the vectors computed from all the information
available at iteration k.

3.4 Numerical experiments

In this section we investigate the numerical behavior of the eigensolvers in the presence of
faults when the IR policies are applied. In Section 3.4.2, we present results for subspace

73

iteration methods with interpolation of all vectors of the subspace in presence of faults. We
study the robustness of IR strategies when converging eigenvectors associated with both
smallest and largest eigenvalues. We assess the robustness of our resilient Arnoldi procedure
in Section 3.4.3, whereas Section 3.4.4 analyzes the robustness of the resilient algorithm
designed for IRAM. In Section 3.4.5, we discuss results obtained for Jacobi-Davidson and
the impact of different variants on the convergence behavior.

3.4.1 Experimental framework

We have performed extensive numerical experiments and only report here on qualitative
numerical behavior observed on a few examples that are representative of our observations
with the OP matrix described in Section 1.2.

Although many test matrices have been considered to evaluate the qualitative behav-
ior of the resilient schemes, we only kept one example in this section that comes from
thermo-acoustic instabilities calculation in combustion chambers. Indeed this test case ex-
hibits many illustrative features. The matrix is unsymmetric, its spectrum lies in the right
plane and it has small eigenvalues close to zero that can be computed using the differ-
ent eigensolvers we have considered without shift invert techniques. Although its size is
rather small, it exhibits numerical difficulties that are encountered on real life large scale
problems [142,143].

For a given figure (e.g, Figure 3.2a), faults are injected at the same iterations (e.g, 485
and 968) and during the same instructions for all cases (except NF, of course).

3.4.2 Resilient subspace iteration methods to compute nev eigen-
pairs

In this section, we analyze the robustness of the proposed resilient IR subspace iteration
methods in the presence of faults. To analyze the robustness of our strategies, we simulate
stressful conditions by increasing the fault rate and the volume of lost data. We present
results for two variants of subspace iteration methods:

1. The subspace iteration with Chebyshev polynomial acceleration is used for the com-
putation of the five eigenpairs corresponding to the smallest eigenvalues (Figure 3.2
and 3.3). In practice, a certain amount of information about the spectrum is needed
in order to build the ellipse associated with the Chebyshev filter polynomial and the
ellipse must be chosen as small as possible as long as it encloses the unwanted part
of the spectrum. We mention that for this thermo-acoustic framework [142,143] this
prerequisite information is available.

2. The classical method for the computation of the five eigenpairs corresponding to the
largest magnitude eigenvalues (Figure 3.4 and 3.5).

For both calculations (five largest and five smallest eigenvalues), we report the maximum
of the individual scaled residual norms (defined by Equation (3.1)) of the five Ritz pairs at

74

3.4. Numerical experiments

each iteration. The execution ends when the five Ritz pairs satisfy the stopping criterion,
i.e, when the maximum of the scaled residual norms is lower than or equal to the selected
threshold ε = 10−6. When converging the Ritz pair associated with the smallest Ritz value,
the scaled residual norm increases during the first iterations before starting to decrease
slowly and reaching the target threshold in 420 iterations in the NF case (Figure 3.2 and 3.3).
The Reset strategy strongly penalizes the convergence at each fault, even with a very small
fault rate (Figure 3.2a). When the fault rate is relatively large (Figure 3.2d), this strategy
is likely to stagnate completely, and does exhibit large convergence peak even when a little
amount of data is lost as it can be observed in Figure 3.3 when the amount of lost data
ranges from 0.2% to 6%.

Contrary to Reset, both LI and LSI are extremely robust and resilient. Indeed, regardless
of the number of faults and the volume of lost data, LI and LSI almost consistently overlap
with ER and NF, except in the presence of a very large fault rate (Figure 3.2d). However,
the resilience capability of LI and LSI is preserved because they overlap with ER when
varying either the fault rate (Figure 3.2) or the volume of lost data (Figure 3.3).

When converging the Ritz pair associated with the largest eigenvalues, NF converges in
485 iterations as depicted in Figure 3.4 and 3.5. The Reset strategy again exhibits large
peaks in the residual norm after each fault, but it can this time converge when only a few
faults occur (Figure 3.4a) or only a little amount of data is lost (Figure 3.5). Regarding
the robustness of both IR strategies, the convergence histories of LI and LSI again almost
consistently overlap the NF curve regardless of the fault rate (Figure 3.4) or the volume of
lost data (Figure 3.5).

3.4.3 Arnoldi method to compute one eigenpair

In this section we assess the robustness of our resilient Arnoldi for computing the eigenpair
associated with the largest eigenvalue in magnitude. We choose a restart parameter m = 7
(see Algorithm 9). One iteration consists of building a Krylov basis of size m followed by
the approximation of the desired eigenpair. When a fault occurs during the building of the
Krylov subspace, we apply the interpolation strategies to the faulty subspace (an Arnoldi
equality of size smaller than m) to regenerate the initial guess for the next iteration. Because
this computation requires only a few (outer) iterations we consider one single fault rate and
we focus on the impact of proportion of lost data. Because the fault rate is constant the
number of faults displayed in the different plots might differ depending on the convergence
penalty they induce for the different resilient strategies. We report the convergence histories
in Figure 3.6. NF converges smoothly in 9 (outer) iterations (index k in Algorithm 9)
whereas Reset strategy exhibits a large peak in the scaled residual norm after each fault.
When the amount of lost data is low (0.2% in Figure 3.6a), the Reset penalty remains
reasonable (2 extra iterations), but it becomes more significant (7 extra iterations) if that
amount increases (6% in Figure 3.6d). Because ER has to restart more often than NF, its
convergence history exibits some delay compared to the one of NF. On the other hand, both
IR strategies are again extremely robust. Indeed, LI and LSI convergence coincide with ER,
regardless the proportion of lost data (Figure 3.6). Note that if the proportion of lost data
is very large (Figure 3.6d), LI and LSI may slightly differ from ER. The fact that LI and

75

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

1e+02

 0 43 86 129 172 215 258 301 344 387 430

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

ER

NF

(a) 2 faults

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

1e+02

 0 43 86 129 172 215 258 301 344 387 430

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

ER

NF

(b) 7 faults

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

1e+02

 0 43 86 129 172 215 258 301 344 387 430

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

ER

NF

(c) 15 faults

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

1e+02

 0 43 86 129 172 215 258 301 344 387 430

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

ER

NF

(d) 39 faults

Figure 3.2 – Impact of the fault rate on the resilience of IR strategies when converging
the five eigenpairs associated with the smallest eigenvalues using subspace iteration
method accelerated with Chebyshev. A proportion of 0.8 % of data is lost at each fault.

Note that LI, LSI, ER and NF almost coincide.

LSI convergence coincide with ER, indicates that the spectral information regenerated by
the LI and LSI is as good as the one computed by the regular solver.

3.4.4 Implicitly restarted Arnoldi method to compute nev eigen-
pairs

To investigate the robustness of IR strategies designed for IRAM, we compute the five
eigenpairs (nev = 5) that correspond to the largest magnitude eigenvalues. At each itera-
tion, we report the maximum of the scaled residual norms of those five sought eigenpairs.
We consider a restart parameter m=10 (see Algorithm 10). One iteration thus consists
of building a Krylov subspace of size 10, followed by the computation of the approximate
eigenpairs. If the eigenpairs do not satisfy the stopping criterion, the next iteration starts
with a contracted Arnoldi equality of size m̃ = 5.

76

3.4. Numerical experiments

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

1e+02

 0 43 86 129 172 215 258 301 344 387 430

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

ER

NF

(a) 0.2% of lost data

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

1e+02

 0 43 86 129 172 215 258 301 344 387 430

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

ER

NF

(b) 0.8% of lost data

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

1e+02

 0 43 86 129 172 215 258 301 344 387 430

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

ER

NF

(c) 3% of lost data

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

1e+02

 0 43 86 129 172 215 258 301 344 387 430

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

ER

NF

(d) 6% of lost data

Figure 3.3 – Impact of the amount of lost data on the resilience of IR strategies when
converging the five eigenpairs associated with the smallest eigenvalues using subspace
iteration method accelerated with Chebyshev. The volume of lost data varies from 0.2%

to 6% whereas the fault rate is constant (7 faults). LI, LSI, ER and NF coincide.

The NF calculation computes the five sought eigenvectors in 11 (outer) iterations (index
k in Algorithm 10). The Reset strategy exhibits large peak in the scaled residual norm after
each fault, its scaled residual norm increases further than the initial one. As a consequence,
convergence is very much delayed. Furthermore Reset is also sensitive to the amount of lost
data. The larger the volume of lost data, the more its convergence is delayed (Figure 3.7).

On the other hand, both IR strategies are much more robust than Reset. However, they
still require a few more iterations than NF. Because they almost consistently coincide with
ER, it can be concluded that this slight penalty is not due to the quality of interpolation but
to the necessity of restarting with the information of the five dimension space compressed
in one single direction.

77

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 48 96 144 192 240 288 336 384 432 480

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

NF

(a) 2 faults

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 48 96 144 192 240 288 336 384 432 480

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

NF

(b) 9 faults

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 48 96 144 192 240 288 336 384 432 480

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

NF

(c) 19 faults

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 48 96 144 192 240 288 336 384 432 480

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

NF

(d) 36 faults

Figure 3.4 – Impact of the fault rate on the resilience of IR strategies when converging
the five eigenpairs associated with the largest eigenvalues using the basic subspace
iteration method. A proportion of 0.8 % of data is lost at each fault. LI, LSI and NF

coincide in (a), (b) and (c).

3.4.5 Jacobi-Davidson method to compute nev eigenpairs

In this section, we investigate the resilience of the IR strategies designed for Jacobi-
Davidson. In all the experiments, we seek for the five (nev = 5) eigenpairs whose eigenvalues
are the closest to zero (τ = 0). To facilitate the readability and the analysis of the conver-
gence histories ploted in this section, we use vertical green lines to indicate the convergence
of new eigenpair (such as iterations 95, 130, 165, 200 and 242 in Figure 3.8a), and vertical
red lines to indicate faulty iterations (such as iterations 148 and 228 for the sixth and ninth
fault, respectively, in Figure 3.8a). According to Remark 3, although it is very likely to
happen, there is no guarantee to retrieve all the already converged Schur vectors in the
basis used to restart. As a consequence, we indicate the number of Schur vectors retrieved
in the basis used to restart in red color under the vertical red line corresponding to the
associated fault. For instance, 2 already converged Schur vectors are immediately retrieved
at restart, after the fault at iteration 148 in Figure 3.8a.

78

3.4. Numerical experiments

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 48 96 144 192 240 288 336 384 432 480

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

NF

(a) 0.2% lost data

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 48 96 144 192 240 288 336 384 432 480

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

NF

(b) 0.8% lost data

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 48 96 144 192 240 288 336 384 432 480

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

NF

(c) 3% lost data

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 48 96 144 192 240 288 336 384 432 480

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

NF

(d) 6% lost data

Figure 3.5 – Impact of the amount of lost data on the resilience of IR strategies when
converging the five eigenpairs associated with the largest eigenvalues using basic

subspace iteration method. The volume of lost data varies from 0.2% to 6% whereas
the fault rate is constant (9 faults). LI, LSI and NF coincide.

In the Jacobi-Davidson method there is some flexibility to select the number of vectors
(i.e., the dimension of the space generated for restarting) that can be interpolated after
a fault; that are the converged Schur vectors as well as a few of the best candidates for
Schur vectors extracted from the search space Vk. Because many possibilities exist, the
results of the investigations are structured as follows. In Section 3.4.5.1, we first study
the robustness of the IR approaches using a fixed dimension equal to nev for the space for
restarting the Jacobi-Davidson method after a fault. As the number of converged eigenpairs
nconv becomes close to nev we observed that the restart behaves poorly for reasons that
will be explained. Consequently in Section 3.4.5.2, we consider restarting after a fault with
a space of dimension nconv+nev vectors to account for the partial convergence. Finally, we
consider an hybrid approach in Section 3.4.5.3 where the IR approach is apply to regenerate
nev − 1 (or nev + nconv − 1) vectors while considering the best candidate for the Schur
vector that was computed in Vk before the fault occurs (in a real parallel implementation
this latter vector could be for instance checkpointed).

79

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 2 4 6 8 10 12 14 16

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

ER

NF

(a) 0.2% of lost data (4 faults)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 2 4 6 8 10 12 14 16

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

ER

NF

(b) 0.8% of lost data (5 faults)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 2 4 6 8 10 12 14 16

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

ER

NF

(c) 3% of lost data (5 faults)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 2 4 6 8 10 12 14 16

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

ER

NF

(d) 6% of lost data (5 faults)

Figure 3.6 – Impact of the amount of lost data on the resilience of IR strategies when
converging the eigenpair associated with the largest eigenvalue using Arnoldi

method. LI, LSI and NF coincide in (a) (b) and (c).

For the calculation of the five smallest eigenvalues, the NF algorithm converges in 210
iterations while faulty executions have extra iterations. For the sake of comparison, we
consider only the first 300 iterations of all the runs so that the graphs will have exactly the
same scales and range of iteration count.

3.4.5.1 Interpolation-restart strategy using nev regenerated vectors

We first consider all the different restarting strategies. We report in Figure 3.8 their conver-
gence histories in different subplots for a fixed fault rate to evaluate the quality of the basis
used for the restarts. The curves in Figure 3.8a show the impact of the enforced restarts
(35 additional iterations for ER compared to NF) and will serve as reference to evaluate
the quality and relevance of the interpolated nev directions considered for LI, LSI and Re-
set. The first comment goes to the Reset approach that completely fails and is unable to
compute any eigenpair. The LI interpolation behaves much better but only succeeds to
compute four out of the five eigenpairs in 300 iterations. For this example, LSI is slightly

80

3.4. Numerical experiments

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 2 4 6 8 10 12 14 16 18 20 22 24

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

ER

NF

(a) 0.2% of lost data (5 faults)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 2 4 6 8 10 12 14 16 18 20 22 24

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

ER

NF

(b) 0.8% of lost data (6 faults)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 2 4 6 8 10 12 14 16 18 20 22 24

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

ER

NF

(c) 3% of lost data (6 faults)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 2 4 6 8 10 12 14 16 18 20 22 24

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

Reset

LI

LSI

ER

NF

(d) 6% of lost data (6 fautls)

Figure 3.7 – Impact of the amount of lost data on the resilience of IR strategies when
converging the five eigenpairs with largest eigenvalues using IRAM. The volume of

lost data varies from 0.2% to 6% whereas the fault rate is constant. LI, LSI and ER
coincide in (a) and (b).

more robust and computes the five eigenpairs with a few extra iterations compared to ER.
For both IR approaches it can be observed that the converged Schur vectors are recomputed
by the first step of the Jacobi-Davidson method that is the Raleigh quotient procedure. As
it is for instance illustrated in Figure 3.8c and 3.8b, when a fault occurs, the nconv con-
verged Schur vectors before a fault are found immediately from the interpolated vectors at
restart (e.g, in Fig 3.8b, the value 4 under the vertical red line at the faulty iteration 275
means that all four Schur vectors converged before the fault are immediately rediscovered).
Finally we notice that even if, in Figure 3.8, experiments are performed with the same fault
rate, the number of faults varies depending on the interpolation strategy. Indeed, the less
robust the strategy, the more the convergence is delayed, which increases the probability
for additional faults to occur.

In order to reduce the number of graphs to illustrate the impact of the amount of lost
data (see Figure 3.9) then the influence of the fault rate (see Figure 3.10), we only consider
the LSI approach in the rest of this section. The influence of the volume of lost data is

81

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 1 1 2 3 4 4

ER

NF

(a) ER (9 faults)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 1 1 2 2 3 4 4 4

LSI

NF

(b) LSI (11 faults)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 1 1 1 2 3 3 3 4 4

LI

NF

(c) LI (12 faults)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 0 0 0 0 0 0 0 0 0

Reset

NF

(d) Reset (12 faults)

Figure 3.8 – Comparison of IR strategies using nev regenerated vectors when
converging the five eigenpairs associated with the smallest eigenvalues using

Jacobi-Davidson. The fault rate is the same for all strategies and a proportion of 0.8 %
data is lost at each fault.

displayed in Figure 3.9 where its proportion varies from 0.2 % to 6 % while the fault rate
is constant. As it could have been expected the general trend is: the larger the amount
of lost data, the larger the convergence penalty. A large amount of lost data at each fault
prevents LSI from converging the five eigenpairs; only four (three) are computed for 3 %
lost (6 % repectively). Allowing for more than the 300 iterations would enable the solver
to succeed the calculation of the five eigenpairs.

Finally, in Figure 3.10 we depict the convergence histories of the various restarting strate-
gies when the fault rate varies leading to a number of faults that varies from 3 to 26; as
expected the larger the number of faults, the larger the convergence delay. However, the
IR policy is rather robust and succeds to converge the five eigenpairs in less than 300 it-
erations except for the 26 faults case. On that latter example, one can observe that the
converged Schur vectors are always recovered at restart after a fault; futhermore the number
of faulty steps to converge a new eigenpair tends to increase when the number of converged
eigenpairs increases. This phenomenum is due to the fact that we always interpolate nev

82

3.4. Numerical experiments

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 1 1 2 2 3 4 4 4

LSI

NF

(a) 0.2% of lost data (11 faults)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 1 1 2 2 3 4 4 4

LSI

NF

(b) 0.8% of lost data (11 faults)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 1 1 1 2 3 3 3 4 4

LSI

NF

(c) 3% of lost data (12 faults)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 1 1 1 1 2 3 3 3 3

LSI

NF

(d) 6% of lost data (12 faults)

Figure 3.9 – Impact of the amount of lost data on the resilience of LSI using nev
regenerated vectors when converging the five eigenpairs associated with the smallest
eigenvalues using Jacobi-Davidson. The volume of lost data varies from 0.2% to 6%
whereas the fault rate is constant. All converged Schur vectors are found immediately

after interpolation followed by restart.

directions independently of the number of Schur vectors that have converged. Because the
nconv eigenpairs are immediately recovered in the space of dimension nev used to restart
after the fault, the dimension of the actual starting space used for the subsequent Jacobi-
Davidson method schrinks. Consequently this space V is less rich in spectral information
which delays the convergence of the next eigenpair.

3.4.5.2 Interpolation-restart strategy using (nev + nconv) regenerated vectors

The lack of complete convergence observed in Figure 3.9c, 3.9d and 3.10d might be due
to the smaller space dimension actually used after a fault because nconv Schur vectors
are extracted from the nev interpolated directions. We consider in this section larger
interpolated space to account for the already converged Schur vectors when the fault occurs.
More precisely, instead of using a fixed dimension space to restart after a fault, we make

83

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 2 4

LSI

NF

(a) 3 faults

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 2 3 4 4

LSI

NF

(b) 7 faults

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 1 1 2 2 3 4 4 4

LSI

NF

(c) 11 faults

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4

LSI

NF

(d) 26 faults

Figure 3.10 – Impact of the fault rate on the resilience of LSI using nev regenerated
vectors when converging the five eigenpairs associated with the smallest eigenvalues
using Jacobi-Davidson. The fault rate varies whereas a proportion of 0.2 % of data is
lost at each fault. At each fault, all the already converged Schur vectors are retrieved in

the basis of restart.

it of size nev + nconv. Similarly to the previous section, we only consider the LSI restart
strategy.

Figure 3.11 shows the convergence history when the amount of lost data varies. Com-
pared with Figure 3.9, the benefit of using larger space to restart the current Jacobi-
Davidson search is clear as the convergence is improved.

Similar observations can be made, when the fault rate is increased. Comparing results
displayed in Figure 3.12 and Figure 3.10, it can be seen that the increase of the dimension
of the space used to restart makes Jacobi-Davidson more robust.

84

3.4. Numerical experiments

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 1 1 2 2 4 4

LSI

NF

(a) 0.2% of lost data (9 faults)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 1 1 2 2 4 4 4

LSI

NF

(b) 0.8% of lost data (10 faults)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 1 1 2 2 4 4 4

LSI

NF

(c) 3% of lost data (10 faults)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 1 1 1 2 3 3 3 3 4

LSI

NF

(d) 6% of lost data (12 faults)

Figure 3.11 – Impact of the amount of lost data on the resilience of LSI using
(nev + nconv) regenerated vectors when converging the five eigenpairs associated with
the smallest eigenvalues using Jacobi-Davidson. The volume of lost data varies from

0.2% to 6% whereas the fault rate is constant. All converged Schur vectors are found
immediately after interpolation followed by restart.

3.4.5.3 Hybrid check-pointing/interpolating approach

Despite the increase of the amount of recovered data, the peak of the residual norm associ-
ated with the current Schur vector persists after each fault. A possible remedy consists in
using an hybrid approach where we interpolate the nconv Schur vectors while furthermore
reusing the best candidate Schur vector available in Vk (as if we had checkpointed this
single direction) when the fault occurs and interpolate nev − 1 directions but the first to
recover additional meaingingfull spectral information from Vk. This procedure is beneficial
to improve the convergence independently of the size of the space used for the restart. It
is best highlighted in the most difficult situations that are large amount of lost data (see
Figure 3.13) and large number of faults (see Figure 3.14). In these figures, the convergence
of the scaled residual norm does no longer exhibit peak after the faults when the best Schur
candidate vector is used in the set of directions for the restart. The most relevant infor-
mation on the next Schur vector to converge seems to be concentrated in the current best

85

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 2 4

LSI

NF

(a) 3 faults

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 2 2 4

LSI

NF

(b) 6 faults

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 1 1 2 2 4 4

LSI

NF

(c) 9 faults

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4

LSI

NF

(d) 24 faults

Figure 3.12 – Impact of the fault rate on the resilience of LSI using (nev + nconv)
regenerated vectors when converging the five eigenpairs associated with the smallest
eigenvalues using Jacobi-Davidson. The fault rate varies whereas a proportion of 0.2
% of data is lost at each fault. At each fault, all the already converged Schur vectors are

retrieved in the basis of restart.

candidate Schur vector. Intensive experiments show that the interpolation strategies do not
succeed to regenerate accurately the lost entries of this special direction of Vk.

A reasonable trade-off may consist in checkpointing the current Schur vector to increase
the robustness of the resilient Jacobi-Davidson method while keeping a low overhead when
no fault occurs.

3.5 Concluding remarks

Many scientific and engineering applications require the computation of eigenpairs of large
sparse matrices. The objective of the chapter was to study numerical schemes to design
resilient parallel eigensolvers. For that purpose, we have investigated IR approaches to
interpolate lost data relying on non corrupted data and tuned restart mechanisms to cope

86

3.5. Concluding remarks

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 1 1 1 2 3 3 3 4 4

LSI

NF

(a) 3% of lost data (12 faults)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 1 1 1 1 2 3 3 3 3

LSI

NF

(b) 6% of lost data (12 faults)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 1 1 2 2 3 4 4 4

LSI

NF

(c) 3% of lost data

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 1 1 2 2 3 3 4 4 4

LSI

NF

(d) 6% of lost data

Figure 3.13 – Impact of keeping the best Schur vector candidate in the search space
after a fault combined with nev + nconv − 1 interpolated directions. Top two plots nev
interpolated directions, bottom two plots nev − 1 interpolated directions plus the best

Schur candidate. Calculation of the five eigenpairs associated with the smallest
eigenvalues using Jacobi-Davidson. The fault rate is constant over all subfigures. The
proportion of lost data is either 3% on Figure (a) and (c) or 6% on Figure (b) and (d). All

converged Schur vectors are found immediately after interpolation followed by restart.

with numerical features of the individual eigensolvers. To evaluate the qualitative behavior
of the resilient schemes, we have simulated stressful conditions by increasing the fault rate
and the volume of lost data.

We have considered two variants of subspace iteration methods. On the one hand, we
have considered the subspace iteration with Chebyshev polynomial acceleration for the
computation of the five eigenpairs corresponding to the smallest eigenvalues. On the other
hand, we have considered the classical method for the computation of the five eigenpairs
corresponding to the largest magnitude eigenvalues. For both methods, the Reset strat-
egy strongly penalizes the convergence at each fault, while both LI and LSI are extremely
robust and resilient, regardless of the number of faults and the volume of lost data. The
same numerical behavior is observed for our resilient Arnoldi for computing the eigenpair

87

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 1 1 2 2 4 4

LSI

NF

(a) 9 faults

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4

LSI

NF

(b) 24 faults

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 1 1 2 3 4

LSI

NF

(c) 8 faults

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e+01

 0 30 60 90 120 150 180 210 240 270 300

||
(A

x
 -

 l
a

m
b

d
a

*x
)|

|/
||
la

m
b

d
a

||

Iteration

0 0 0 0 0 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4

LSI

NF

(d) 20 faults

Figure 3.14 – Impact of keeping the best Schur vector candidate in the search space
after a fault combined with nev + nconv − 1 interpolated directions. Top two plots
nev + nconv interpolated directions, bottom two plots nev + nconv − 1 interpolated

directions plus the best Schur candidate. Calculation of the five eigenpairs associated
with the smallest eigenvalues using Jacobi-Davidson with a proportion of 0.2 % of

data is lost at each fault.

associated with the largest eigenvalue in magnitude. Our resilient IRAM for the computa-
tion of the five eigenpairs that correspond to the largest magnitude eigenvalues are much
more robust than Reset. However, they exhibit a slight penalty not due to the quality of
interpolation but to the necessity of restarting with the information of the five dimension
space compressed in one single direction.

In this chapter, we have had a higher emphasis on the Jacobi-Davidson method for the
computation of the five eigenpairs corresponding to the smallest eigenvalues. The motiva-
tion is twofold: the Jacobi-Davidson method is widely used in many real-life applications,
and in addition, it offers some flexibility to select the number of vectors that can be in-
terpolated after a fault. Relying on that flexibility, we have designed IR approaches that
interpolate the nconv converged Schur vectors and a various number of the best candidates
Schur vectors extracted from the search space Vk. We have first studied the robustness of

88

3.5. Concluding remarks

the IR approaches using a fixed dimension equal to nev for the space for restarting the
Jacobi-Davidson method after a fault. With a restart based on nev vectors, the Reset ap-
proach completely fails and is unable to compute any eigenpair, while both IR approaches
are robust. In addition, when a fault occurs, the nconv converged Schur vectors before a
fault are found immediately from the interpolated vectors at restart for both IR approaches.
However when the number of converged eigenpairs nconv becomes close to nev we have ob-
served that the restart behaves poorly. We have noticed that this phenomenon is due to
the fact that we always interpolate nev directions independently of the number of Schur
vectors that have converged. Because the nconv eigenpairs are immediately recovered in the
space of dimension nev used to restart after the fault, the dimension of the actual starting
space used for the subsequent Jacobi-Davidson method shrinks. Consequently the space
used to restart is less rich in spectral information which delays the convergence of the next
eigenpair. To overcome this penalty, we have increased the number of best Schur candidate
vectors extracted from the search space Vk interpolated. The resulting numerical experi-
ments demonstrated that the convergence behavior significantly improves while increasing
the number of interpolated vectors used to restart after a fault.

Finally we have observed that despite the increase of the amount of recovered data, the
peak of the residual norm associated with the current Schur vector persists after a fault.
For a possible remedy of these effects, we have designed a hybrid approach that consists
in interpolating the nconv Schur vectors as well as reusing (as if we had checkpointed
this single direction) the best candidate Schur vector available in Vk when the fault occurs
and interpolate nev − 1 directions but the first to recover additional meaningful spectral
information from Vk. This last procedure has improved the convergence whatever the size
of the space used for the restart. This hybrid strategy based on a combination of light
checkpointing and a numerical resilience has a very low overhead when no fault occurs.

We have also investigated the potential of IR strategies to design resilient eigensolvers.
This study shows that even adapted to eigenvalue problems, IR strategies exhibit a level of
numerical robustness as high as observed in the context of linear systems. Moreover, the
interesting numerical behavior obtained for the hybrid approach suggests that a reasonable
trade-off may consist in a combination of IR strategies and light checkpointing.

89

90

Part II

Application of Interpolation-restart
Strategies to a Parallel Linear Solver

91

Chapter 4
Resilient MaPHyS

Contents
4.1 Introduction . 93

4.2 Sparse hybrid linear solvers . 95

4.2.1 Domain decomposition Schur complement method 95

4.2.2 Additive Schwarz preconditioning of the Schur Complement . . . 98

4.2.3 Parallel implementation . 98

4.3 Resilient sparse hybrid linear solver 99

4.3.1 Single fault cases . 101

4.3.2 Interpolation-restart strategy for the neighbor processes fault cases 102

4.4 Experimental results . 103

4.4.1 Results on the Plafrim platform 104

4.4.2 Performance analysis on the Hopper platform 108

4.5 Concluding remarks . 111

4.1 Introduction

In Part I, we have investigated some IR strategies to design resilient parallel sparse Krylov
subspace methods. This part aims at extending these IR approaches in the context of a par-
allel sparse linear solver designed for processing large problems at scale. For that purpose,
we use the Massively Parallel Hybrid Solver (MaPHyS1) [4,75,83], a fully-featured sparse
hybrid (direct/iterative) solver. MaPHyS is based on non-overlapping domain decomposi-
tion techniques applied in a fully algebraic framework that leads to the iterative solution of
a so-called condensed linear system defined on the interface between the algebraic subdo-
mains (subset of equations). As discussed in Section 1.2 of the general introduction, direct

1https://project.inria.fr/maphys/

93

methods present an excellent numerical robustness but their large memory footprint may
prevent them to process very large sparse linear systems. On the other hand, iterative
methods, which require a much lower memory usage may fail to converge on certain types
of linear systems. Relying on domain decomposition ideas, more precisely a Schur comple-
ment approach, hybrid methods aim at combining the robustness of direct methods and
the lower memory footprint of iterative schemes. After performing a domain partitioning,
unknown associated with the interior and with the interface of the domains are processed
with a direct and an iterative method, respectively.

MaPHyS mainly consists of four steps: (1) graph partitioning, (2) local factorization of
interiors and computation of the local Schur complement, (3) computation of the precon-
ditioner and (4) the solve step which itself consists of two sub-steps: (4a) iterative solve of
the linear system associated with the interface and (4b) back substitution on the interiors.
Assuming that there exist fault tolerant strategies for the first three steps, we focus on
designing a resilient Krylov solver for the solution of the reduced system on the interface
(step (4a)).

We consider the fault model introduced in Section 2.2 of Chapter 2 which distinguishes
three categories of data: computational environment, static data and dynamic data. In this
chapter, we assume that static data are all data available before the iterative solution step.
Furthermore, we assume that the Schur complement, the preconditioner and the right-hand
side are static, while the current iterate and any other data generated during the step
(4a) are dynamic data. We recall that a fully resilient strategy must provide mechanisms
to change any failed process, processor, core or node as well as strategies to retrieve the
computational environment and lost data. However in this thesis we focus on numerical
strategies to retrieve meaningful dynamic data. For this purpose, we assume that there is a
mechanism to replace lost computational resources, restore the computational environment
and load static data (for instance from disk). Having said that, the problem we focus on is:
How IR strategies can be adapted to make the iterative solve step of MaPHyS resilient?
In this context, we simulate fault by overwriting dynamic data because according to our
assumption, computational resources and static data are assumed to be recovered by a
separate fault tolerant mechanism.

When a single fault occurs, we exploit data redundancy intrinsic to MaPHyS to retrieve
all lost dynamic data. In the rest of this chapter, this case is termed single process fault.
When faults are simultaneously injected into two neighbor processes, the strategy based
on exploiting data redundancy cannot be applied anymore. We call this neighbor processes
fault case. We use an IR strategy to survive neighbor processes fault.

To assess the effectiveness of our schemes, we use four different matrices described in
Table 4.1. Matrix211 is a non-symmetric matrix of dimension 801, 378 from the fusion
energy study code M3D-C.2. It important to notice that with matrix Matrix211, iterative
methods may suffer from slow convergence [109]. Haltere is a symmetric complex non-
Hermitian matrix of dimension 1, 288, 825 from a 3D electromagnetism problem. On the
other hand, Tdr455k is a non-symmetric matrix of dimension 2, 738, 556 from numerical
simulation of an accelerator cavity design [102]. Tdr455k is a highly-indefinite linear system
which exhibits an effective numerical difficulty. Matrix Nachos4M is of order 4M and comes

2Center for Extended MHD Modeling (CEMM) URL: http://w3.pppl.gov/cemm/

94

4.2. Sparse hybrid linear solvers

from a numerical simulation of the exposure of a full body to electromagnetic waves with
discontinuous Galerkin method [61].

Matrix Matrix211 Haltere Tdr455k Nachos4M

N 801K 1,288K 2,738K 4M

Nnz 129,4M 10,47M 112,7M 256

Symmetry non-symmetric symmetric non-symmetric non-symmetric

Table 4.1 – Description of the matrices considered for experimentation.

The remainder of this chapter is organized as follows: Section 4.2 explains how Schur
complement methods are used to designed hybrid (direct/iterative) solutions for large sparse
linear systems. In Section 4.3 we explain the recovering techniques used to survive faults.
In Section 4.4 we present the numerical experiments, discuss the robustness and overhead
of the resilient Krylov solver designed for MaPHyS followed with some conclusions and
perspectives in Section 4.5.

4.2 Sparse hybrid linear solvers

To achieve a high scalability algebraic domain decomposition methods are commonly em-
ployed to split a large size linear system into smaller size linear systems. To achieve this
goal, the Schur complement method is often used to design sparse hybrid linear solvers
[76,131,166].

4.2.1 Domain decomposition Schur complement method

This section describes how to rely on the Schur complement method to solve linear systems.
Let us assume that the problem is subdivided in subdomains. We distinguish two types
of unknowns: the interior unknowns xI and the interface unknowns xΓ. With respect to
such a decomposition, the linear system Ax = b in the corresponding block reordered form
reads: (

AII AIΓ

AΓI AΓΓ

)(
xI

xΓ

)
=

(
bI

bΓ

)
. (4.1)

Eliminating xI from the second block row of Equation (4.1) leads to the reduced system

SxΓ = f, (4.2)

where

S = AΓΓ −AΓIA−1
IIAIΓ and f = bΓ −AΓIA−1

IIbI . (4.3)

The matrix S is referred to as the Schur complement matrix. This reformulation leads
to a general strategy for solving (4.1). A sparse direct method is used to apply A−1

II and
form (4.2). This latter system associated with the Schur complement is solved with an

95

0 cut edges

Ω

(a) Graph representation. (b) Domain decomposition. (c) Block reordered matrix.

Figure 4.1 – Domain decomposition into four subdomains Ω1, . . . , Ω4. The initial domain
Ω may be algebraically represented with the graph G associated with the sparsity pattern
of matrix A (a). The local interiors I1, . . . , IN form a partition of the interior I = tIp

(blue vertices in (b)). They interact with each others through the interface Γ (red vertices
in (b)). The block reordered matrix (c) has a block diagonal structure for the variables

associated with the interior AII .

iterative method on which we focus. Once xΓ is known, xI can be computed with one
additional direct back-solve step.

Domain decomposition methods are often referred to as substructuring schemes. This
terminology comes from structural mechanics where non-overlapping domain decomposition
were first developed. The structural analysis finite element community has been and still
is heavily involved in the design and development of these techniques. Not only is their
definition fairly natural in a finite element setting but their implementation can preserve
data structures and concepts already present in large engineering software packages. For
the sake of simplicity, we assume that A is symmetric in pattern and we denote G = {V,E}
the adjacency graph associated with A. In this graph, each vertex is associated with a row
or column of the matrix A. There exists an edge between the vertices p and q if and only
if the entry ap,q is non zero. Figure 4.1a shows such an adjacency graph.

From the finite element viewpoint, a non-overlapping decomposition of a domain Ω into
subdomains Ω1, . . . , ΩN corresponds to a vertex split of the graph G. V is decomposed into
N subsets V1, . . . , VN of interiors I1, . . . , IN and boundaries Γ1,, ΓN (algebraic view).
Figure 4.1b depicts the algebraic view of the domain decomposition into four subdomains.

Local interiors are disjoint and form a partition of the interior I = tIp (blue vertices
in Figure 4.1b). Two subdomains Ωp and Ωq may share part of their interface (Γp

⋂
Γq 6=

∅), such as Ω1 and Ω2 in Figure 4.1b which share eleven vertices. Altogether the local
boundaries form the overall interface Γ = ∪Γp (red vertices in Figure 4.1b), which is thus not
nessarily a disjoint union. One may note that the local interiors and the (global) interface
form a partition of the original graph: V = Γ

⊔
tIp (the original graph in Figure 4.1a is

exactly covered with blue and red points in Figure 4.1b).

Because interior vertices are only connected to vertices of their subset (either on the
interior or on the boundary), matrix AII associated with the interior has a block diagonal
structure, as shown in Figure 4.1c. Each diagonal blockAIpIp corresponds to a local interior.
On the other hand, to handle shared interfaces with a local approach, the coefficients on
the interface may be weigthed so that the sum of the coefficients on the local interface

96

4.2. Sparse hybrid linear solvers

submatrices are equal to one. To that end, we introduce the weighted local interface matrix
AwΓpΓp

which satisfies AΓΓ =
∑N

p=1RT
Γp
AwΓpΓp

RΓp , where RΓp : Γ → Γp is the canonical
point-wise restriction which maps full vectors defined on Γ into vectors defined on Γp. For
instance, the ten points on the red interface shared by subdomains Ω1 and Ω2 in Figure 4.1b
may get a weight 1

2
as they are shared by two subdomains. In matrix terms, a subdomain

Ωp may then be represented by the local matrix Ap defined by

Ap =

(
AIpIp AIpΓp

AΓpIp AwΓpΓp

)
. (4.4)

The global Schur complement matrix S from (4.3) can then be written as the sum of
elementary matrices

S =
N∑
p=1

RT
Γp
SpRΓp , (4.5)

where

Sp = AwΓpΓp
−AΓpIpA−1

IpIpAIpΓp (4.6)

is a local Schur complement associated with the subdomain Ωp. This local expression allows
for computing local Schur complements independently from each other.

While the Schur complement system is significantly better conditioned than the origi-
nal matrix A [115], it is important to consider further preconditioning when employing a
Krylov method as discussed in Section 1.2.3.3 of Part I. It is well-known, for example, that
κ(A) = O(h−2) when A corresponds to a standard discretization (e.g. piecewise linear finite
elements) of the Laplace operator on a mesh with spacing h between the grid points. Using
two non-overlapping subdomains effectively reduces the condition number of the Schur com-
plement matrix to κ(S) = O(h−1). While improved, preconditioning can significantly lower
this condition number further. In the literature, multiple variants for computing a precon-
ditioner for the Schur complement of such hybrid solvers have been proposed. For example
PDSLin [108], ShyLU [131] and Hips [71] first perform an exact 3 factorization of the interior
of each domain concurrently. PDSLin and ShyLU then compute the preconditioner with a
two-fold approach. First, an approximation S̃ of the (global) Schur complement S. Second,

this approximate Schur complement S̃ is factorized to form the preconditioner for the Schur
Complement system, which does not need to be formed explicitly. While PDSLin has mul-
tiple options for discarding values lower than some user-defined threshold at different steps
of the computation of S̃, ShyLU also implements a structure-based approach for discard-
ing values named probing that was first proposed to approximate interfaces in DDM [36]
inspired from coloring techniques to approximate Hessian in optimization [45]. Instead of
following such a two-fold approach, Hips [71] forms the preconditioner by computing a global
Incomplete LU (ILU) factorization based on the multi-level scheme formulation from [86].
Finally, in this study, MaPHyS [76] computes an additive Schwarz preconditioner for the
Schur complement as further described in Section 4.2.2.

3There are also options for computing Incomplete LU factorizations of the interiors but the related
descriptions are out the scope of this work.

97

4.2.2 Additive Schwarz preconditioning of the Schur Comple-
ment

For illustration, we consider the preconditioner originally proposed in [35] which aims at
being highly parallel. The most straightforward method for building a preconditioner from
the information provided by the local Schur complements would consist of performing their
respective inversion. Such a preconditioner would write MNN =

∑N
p=1RT

Γp
S−1
p RΓp and cor-

responds to a Neumann-Neumann [24,53] preconditioner applied to the Schur complement.
However, even in the SPD case, the local Schur complement can be singular and such a
preconditioner cannot be formed. Therefore, we consider the local assembled Schur comple-
ment S̄p = RΓpSRT

Γp
, which corresponds to the restriction of the global Schur complement

to the interface Γp and which cannot be singular in the SPD case (as S is SPD as well [35]).
This preconditioner reads:

MAS =
N∑
p=1

RT
Γp
S̄−1
p RΓp . (4.7)

This local assembled Schur complement can be built from the local Schur complements
Sp by assembling their diagonal blocks. If we consider a planar graph partitioned into
horizontal strips (1D decomposition), the resulting Schur complement matrix has a block
tridiagonal structure as depicted in (4.8)

S =

. . .

Si−1,i−1 Si−1,i

Si,i−1 Si,i Si,i+1

Si+1,i Si+1,i+1

. . .

. (4.8)

For that particular structure of S, the submatrices in boxes correspond to the S̄p. Such
diagonal blocks, which overlap, are similar to the classical block overlap of the Schwarz
method when written in matrix form for a 1D decomposition. Similar ideas have been
developed in a pure algebraic context in earlier papers [32, 130] for the solution of general
sparse linear systems. Because of this link, the preconditioner defined by (4.7) is referred
to as algebraic additive Schwarz preconditioner for the Schur complement. This is the
preconditioner we deal with in the rest of this Chapter.

4.2.3 Parallel implementation

Given a linear system Ax = b in a parallel distributed environment, MaPHyS proceeds as
follows. It relies on graph partitioning tools such Scotch [44] or METIS [97] to partition
the related adjacency matrix, which leads to subgraphs. These subgraphs correspond to
subdomains while shared edges correspond to interface unknowns as early depicted in Fig-
ure 4.1a. Each subgraph interior is mapped to only one process whereas each local interface
is replicated on each process connected to it.

With this data distribution, each process p concurrently eliminates the internal unknowns
using a direct method. The factorizations of the local interiors are performed by each process

98

4.3. Resilient sparse hybrid linear solver

independently from each other and require no communication. The global linear system
to solve in parallel is thus reduced to linear system associated with the interface, which
is solved with an iterative method. For example to solve the linear system involving the
matrix Haltere depicted in Table 4.1 with 128 processes, we use the graph partitioner
METIS [97] to compute 128 local matrices defined by Equation (4.4). As depicted in
Table 4.2, the mean size of the subsystems of equations mapped to each process is 10700,
which is reduced to 1178 at the interface.

L
o
cal

m
atrix

n

max 11075

avg 10700

min 10541

nnz

max 84141

avg 81850

min 79429

L
o
cal

S
ch

u
r

n

max 1612

avg 1178

min 1028

nnz

max 2598544

avg 1387684

min 1056784

Table 4.2 – Statistics on local matrices and associated Schur complements. The matrix
Haltere is partitioned into 128 subdomains thanks to METIS.

For the computation of the Schur complement, each process computes Sp defined in
Equation (4.9) in parallel using PastiX [65, 99] (or Mumps [9]) which is a direct sparse
solver:

Sp = AΓpΓp −AΓpIpA−1
IpIpAIpΓp . (4.9)

Once the local Schur complements have been computed, each process communicates
with its neighbors (in the graph) to assemble its local Schur complement S̄p and perform
its factorization using the Intel Mkl library. This step only requires a few point-to-point
communications. Finally, the last step is the iterative solution of the interface problem (4.2).
For that purpose, we use Krylov method subroutines developed in [69].

4.3 Resilient sparse hybrid linear solver

As discussed in Section 2.2.4, the location of the preconditioner has an impact on the
residual norm that is available for free during the iteration. For example GMRES as well
as right preconditioned GMRES have the property of minimizing the residual norm at each
iteration whereas this property is not guaranteed for left preconditioned GMRES.

We recall that the first step of the IR strategies is the computation of meaningful values
for the lost entries using those of the current iterate available on the surviving processes.
If right preconditioned GMRES is used, it will compute x(k) as follows u(k) = Vkyk, and
x(k) = Mu(k). When a single fault occurs, all the entries of u(k) can be computed except
on the failed process. If some entries of u(k) are missing, even surviving processes cannot
compute the entries of x(k) they are mapped on, except for a block diagonal preconditioner.
To overcome this issue, it is important to notice that x(k) reads x(k) = MVkyk. If we

99

Algorithm 13 FGMRES, given a matrix A, a preconditionerM, a right hand side b, and
an initial guess x(0)

1: Set the initial guess x0;
2: for k = 0, 1, . . . , until convergence, do
3: r0 = b−Ax0; β = ‖r0‖
4: v1 = r0/‖r0‖;
5: for j = 1, . . . ,m do
6: zj =M−1vj
7: wj = Azj
8: for i = 1 to j do
9: hi,j = vTi wj ; wj = wj − hi,jvi

10: end for
11: hj+1,j = ‖wj‖
12: If (hj+1,j) = 0; m = j; goto 15
13: vj+1 = wj/hj+1,j

14: end for
15: Define the (m+ 1)×m upper Hessenberg matrix H̄m

16: Solve the least squares problem ym = arg min ‖βe1 − H̄my‖
17: Set x0 = x0 + Zmym
18: end for

consider FGMRES presented in Algorithm 13, the entries of MVk are explicitly stored
(line 6), what is the matrix Zk = MVk. This allows each surviving process q to compute

the entries x
(k)
Iq

= Zk(Iq, :)yk (Algorithm 13, line 17). In the rest of this chapter, we use
FGMRES at the iterative solve.

For the sake of exposition, we consider the 1D domain decomposition depicted in Fig-
ure 4.2 to describe how data is allocated over processes. Without loss of generality, we will
also use this example for illustrating all the recovery mechanisms throughout this section.
In this example, the domain is decomposed in four subdomains Ω1, Ω2, Ω3 and Ω4 with the
associated interface Γ = ΓA t ΓB t ΓC . Interface ΓA is shared by subdomains Ω1 and Ω2,
ΓB by Ω2 and Ω3, ΓC by Ω3 and Ω4.

ΓA
{

ΓB
{

ΓC
{

Ω1 Ω2 Ω3 Ω4

Figure 4.2 – 1D domain decomposition. The originally rectangular domain is partitioned
into four subdomains with three interfaces.

100

4.3. Resilient sparse hybrid linear solver

With such a decomposition, the linear system associated with the Schur complement is
described by Equation (4.10), where xΓA

, xΓB
and xΓC

are the unknowns associated with
the interfaces ΓA, ΓB and ΓC , respectively.SA,A SA,B

SB,A SB,B SB,C
SC,B SC,C

xΓA

xΓB

xΓC

 =

fAfB
fC

 . (4.10)

Following a classical parallel implementation of finite element substructuring approaches
each submatrix described by Equation (4.4) associated with a given subdomain is allocated
to a process. A direct consequence is that each process can compute its local Schur com-
plement and the unknowns associated with a given interface are naturally replicated on the
processes sharing this interface. This is the choice made in MaPHyS and with respect to
this choice, processes p1, p2, p3, p4, are mapped on ΓA, ΓA t ΓB, ΓB t ΓC and ΓC , respec-
tively. Consequently, xΓA

is replicated on processes p1 and p2, xΓB
is replicated on processes

p2 and p3, and so on. During the parallel solution of the Schur complement system, the
Krylov solver computes redundantly and consistently dynamic data associated with these
replicated unknowns. In the present case, dynamic data are the basis Vk, the search space
Zk and the Hessenberg matrix Hk. According to Assumption 1 (see p. 37), the basis Vk
and Zk are distributed, whereas the Hessenberg matrix is replicated on each process. For
our 1D decomposition example, the block-row VΓA,: is replicated on processes p1 and p2, the
block-row VΓB ,: is replicated on processes p2 and p3, and the block-row VΓC ,: is replicated
on processes p3 and p4. The matrix Zk is distributed in the same way.

4.3.1 Single fault cases

In this section, we explain the strategy to survive single process faults in the iterative solve
step of MaPHyS (step (4a)). One advantage of having redundant local interfaces is that
dynamic data on each process is also computed on neighbor processes. So, when a single
process fails, we retrieve all its dynamic data from its neighbors. Once all dynamic data
are recovered, FGMRES iterations can continue with exactly the same data as before the
fault. Consequently, the numerical behavior and the solution from the faulty execution is
the same compared to the corresponding fault free execution. Indeed, the unique penalty
is the communication time to reconstitute lost data.

Let us come back to the 1D decomposition from Figure 4.2 to illustrate how to retrieve
lost data. We present two examples. First we illustrate how to retrieve data when a process
with only one neighbor fails. Second we illustrate the case of a process with two neighbors.
For the first case, we assume that process p1 fails. The Hessenberg matrix is retrieved
from any process because it is fully replicated. The block-rows VΓA,: and ZΓA,: are retrieved
from process p2. For the second case, we assume that a fault occurs on process p2. The
Hessenberg matrix is retrieved from any surviving process. The block-rows VΓA,: and ZΓA,:

are retrieved from process p1 while the block-rows VΓB ,: and ZΓB ,: are retrieved from process
p3. Once all lost data are retrieved, FGMRES iterations continue in the same state as before
the fault, exhibiting the same numerical behavior as in the non faulty case.

101

4.3.2 Interpolation-restart strategy for the neighbor processes
fault cases

When a fault occurs on neighboring processes, some data remain lost despite data redun-
dancy. We describe how IR strategies from Section 2.2 of Chapter 2 can be modified to
take advantage of the features of MaPHyS’s preconditioner in order to efficiently survive
neighbor processes fault.

To illustrate a fault on neighbor processes, we reconsider the example of a 1D decom-
position illustrated in Figure 4.2 and we assume that processes p2 and p3 have both failed.
This example, there is no way to retrieve the dynamic data associated with the interface ΓB
shared by the failed processes; an interpolation procedure must be implemented to generate
meaningful entries of the iterate on ΓB.

A first possibility is to use the LI strategy; processes p2 and/or p3 solve the local linear
system

SB,BxΓB
= fB − SB,Ax(k)

ΓA
− SB,Cx(k)

ΓC

to interpolate x
(k)
ΓB
. This direct application of the LI strategy requires the factorization of

SB,B. Similarly, a direct application of the LSI strategy requires a QR factorization. How-
ever it is possible to design an IR strategy that exploits the features of the MaPHyS
preconditioner and consequently avoids the additional factorization. As discussed in Sec-
tion 4.2.3, the factorization of the local assembled Schur complement is the main building
block of the preconditioner. In our 1D example, the local preconditioner of p2 is S̄−1

p2
with

S̄p2 =

(
SA,A SA,B
SB,A SB,B

)

and the local preconditioner of p3 is S̄−1
p3

with

S̄p3 =

(
SB,B SB,C
SC,B SC,C

)

These factorizations of local assembled Schur complements are computed before the
iterative solve step and are considered as static in our model. Consequently they are
available after a fault. Based on these matrix factorizations we design an interpolation
variant referred to as LIAS. With the LIAS approach, process p2 solves the local linear
system (

SA,A SA,B
SB,A SB,B

)(
xΓA

xΓB

)
=

(
fA

fB − SB,Cx(k)
ΓC

)
(4.11)

while p3 solves (
SB,B SB,C
SC,B SC,C

)(
xΓB

xΓC

)
=

(
fB − SB,Ax(k)

ΓA

fC

)
. (4.12)

Consequently, a different values of xΓB
are available on p2 and p3 and new entries of xΓA

and xΓC
are computed. The entries of xΓA

and xΓC
computed are not used since they are

102

4.4. Experimental results

available on p1 and p4, respectively. Finally we make the value of xΓB
consistent on p2 and

p3 by simply averaging these values,

x
(LIAS)
ΓB

=
1

2
(x

(LIAS)
ΓB2 + x

(LIAS)
ΓB3).

Finally the vector
x

(k)
ΓA

x
(LIAS)
ΓB

x
(k)
ΓC

is used as an initial guess to restart FGMRES.

The presented LIAS strategy naturally extends to general decompositions based on the
same idea and can be summarized as follows into four main steps:

1. Computation of non faulty entry : All living processes compute the entries of the
current iterate that they are mapped on.

2. Computation of right-hand side contribution: The neighbors of the failed processes
compute the contributions required to update the right-hand sides of the interpolation
linear systems. The computation of the right-hand sides associated with the linear
interpolation may require significant communication time depending on the number
of neighbors of the failed processes. Indeed, to update the right-hand side, a failed
process needs contributions from all its neighbors. On the other hand, neighbors
participate to the interpolation by computing locally matrix vector multiplications
required for right-hand side update.

3. Communication: Each failed process retrieves lost entries of the current iterate except
the entries definitively lost, which are share by failed processes. At the same time,
failed processes receive the contributions from neighbors to update the right-hand side
associated with the local interpolation.

4. Interpolation: Each failed process solves the interpolation linear system, and failed
processes communicate to maintain the same value of the interpolated entries.

At the end of the these four steps, consistent state and FGMRES can be restarted with the
interpolated iterate as a new initial guess. In contrast to the single process fault case, the
numerical behavior is not the same as the non faulty case anymore.

4.4 Experimental results

In this section, we present experimental results for the resilient sparse hybrid linear solver
described above. Instead of actually crashing a process, we simulate its crash by removing
its dynamic data. Indeed, the goal of this thesis is not to assess systems mechanisms for

103

supporting resilience. We consider this a complementary problem. Therefore the cost for
resetting the system in a coherent state (such as creating a new process and adapting
communicators) and retrieving static data are not taken into account. In the single process
fault case, we assess only the communication time required to retrieve lost dynamic data.
In the neighbor processes fault case, we present the numerical behavior of LIAS as well as
a performance analysis. The experiments are performed two platforms. On one hand the
Plafrim4 platform where each node of has two Quad-core Nehalem Intel Xeon X5550. On
the other hand, the Hopper platform5. Each node on Hopper has two twelve-core AMD
’MagnyCours’ 2.1-GHz processors. MaPHyS as well as the proposed resilient extension
have been written in Fortran 90 and support two levels of parallelism (MPI + Thread). As
discussed in Section 4.2.3, MaPHyS is modular and relies on state-of-the-art packages for
performing domain decomposition and direct factorization. For the experiments, we have
used the METIS package, the PastiX package and the Intel Mkl libraries.

We present two categories of experiments. On the one hand, we present the numerical
behavior of LIAS as well as numerical details using the resilient version of MaPHyS with
one level of parallelism (MPI only) on the Plafrim platform using 128 cores. On the other
hand, the performance analysis was achieved with multithreaded version of the designed
resilient MaPHyS on the Hopper platform up to 12,288 cores.

4.4.1 Results on the Plafrim platform

4.4.1.1 Single fault cases

In this section we present results for the single process fault case presented in Section 4.3.1.
We recall that the numerical behavior is the same as the non faulty execution and the
overhead is only due to communication. In this case, the overhead depends mainly on the
volume of data received from surviving neighbors. To illustrate this behavior, we have
considered two cases of fault injection. We inject a fault when the dimension of the search
basis is very small, that is, the fault occurs a few iteration steps after a restart. In the
second situation, we inject a fault a few iterations before the restart. In the last case, the
dimension of the search space is close to the maximum affordable.

In the results depicted in Table 4.3 for matrix Matrix211, FGMRES restarts every other
300 iterations and converges within 499 iterations. We have injected a fault at iteration
305, which means that when the fault occurs, the basis Vk and Zk are of dimension 5 and
the Hessenberg matrix Hk is small. The failed process receives the Hessenberg matrix of
size 6 × 5 from one of its neighbors and two block-rows (one from Vk and the other from
Zk) of five vectors from each of its neighbors. Without fault, FGMRES converges in 7.72
seconds while the faulty execution converges in 7.86 seconds, which leads to an overhead of
1.78% in term of extra computational cost.

If we consider the results of Haltere and Tdr455k displayed in Table 4.3, faults are
injected at iteration 3 and 5, respectively, after the restart. The overheads are very low
(0.06% and 0.16% for Haltere and Tdr455k, respectively).

4https://plafrim.bordeaux.inria.fr/
5https://www.nersc.gov/users/computational-systems/hopper/configuration/compute-nodes/

104

4.4. Experimental results

Matrix Matrix211 Haltere Tdr455k

Nb iterations 499 32 4941

Restart (m) 300 16 500

Faulty iteration 305 19 505

Time NF 7.72 0.77 292.50

Time faulty 7.86 0.77 292.90

Overhead 1.78% 0.06% 0.16%

Table 4.3 – Overhead to retrieve lost data exploiting data redundancy with 128 cores. For
each matrix, the fault is injected a few iterations after a restart.

To assess how the overhead is impacted when the dimension of the search space Zk
increases, we keep the same configuration but faults are injected a few iteration before a
restart. The results are depicted in Table 4.4. The faulty iteration of matrix Matrix211

is set to 470 while the restart is every other 300 iterations. In this configuration, the fault
occurs when matrices Vk, Zk and Hk have 170 columns, as a consequence, the overhead
significantly increases from 1.78% to 8.37%. A slight increase of the overhead is observed
for matrices Haltere and Tdr455k also.

Matrix Matrix211 Haltere Tdr455k

Nb iterations 499 32 4941

Restart parameter 300 16 500

Faulty iteration 470 27 4940

Time NF 7.72 0.77 292.50

Time faulty 8.37 0.77 293.20

Overhead 8.37% 0.54% 0.24%

Table 4.4 – Overhead to retrieve lost data exploiting data redundancy with 128 cores. For
each matrix, the fault is injected a few iterations before a restart.

It is important to notice that Tdr455k has recovered block-rows of 440 vectors, however
its overhead remains very low. Indeed, Tdr455k required many iterations to converge (4941
iterations in our example), so the time spent in the recovery step is not significant compared
to the overall time required to converge.

105

4.4.1.2 Neighbor processes fault cases

In this section, we present results for the LIAS strategy designed to handle neighbor pro-
cesses fault (see Section 4.3.2). For the sake of exposure, we keep the same configuration
as in the single process fault but, at the faulty iterations, we inject a fault in two neighbor
processes. In this section, we assess the numerical robustness of LIAS. For the sake of
comparison, we also display result for NF, ER and Reset. We recall that NF refers to the
non faulty execution. ER refers to Enforced Restart, more precisely with the ER strategy,
no dynamic data is lost, we only use the current iterate to restart FGMRES. The Reset
strategy consists in restarting with the current iterate in which corrupted entries are set to
zero.

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 50 100 150 200 250 300 350 400 450 500

||
 b

 -
 A

x
 |
|/
||
b

||

Iterations

Reset

LI_AS

ER

NF

(a) Matrix: Matrix211, Restart: 300, Faulty
iteration: 305.

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 4 8 12 16 20 24 28 32 36 40

||
 b

 -
 A

x
 |
|/
||
b

||

Iterations

Reset

LI_AS

ER

NF

(b) Matrix: Haltere, restart m=16, faulty
iteration: 19.

Figure 4.3 – Numerical robustness of Interpolation-restart strategy designed for neighbor
processes fault during the iterative solve. For both matrices, the original system is

partitioned into 128 subdomains using FGMRES as iterative solver. For both matrices,
LIAS, ER and NF almost coincide.

In Figure 4.3, we present the robustness of LIAS. The first observation is that when
a fault occurs, the Reset strategy exhibits a large peak in the residual norm, while LIAS

remains as robust as ER and NF. These results highlight the robustness of LIAS. The
overlap of LIAS, ER and NF illustrates the numerical quality of the interpolated entries.
For both Haltere and Matrix211, the fault occurs when the size of the search space was
small. Consequently, the effect of the restart was low (which is illustrated by the overlap
of ER and NF). These results show the robustness of LIAS for MaPHyS.

In this section we analyze the overhead induced by the LIAS strategy. For that, we
measure the time Tr for performing the whole recovery consisting of the four steps described
in Section 4.3.2 (see p. 103). In the cases of ER and Reset, the recovery is reduced to the
communication step (step 3, see again p. 103). The time for performing the recovery is
thus reduced to this single communication step for ER and Reset. Besides the time for
performing the recovery, there is a potential numerical penalty due to the quality of the
interpolated data (in the LI(AS) case) and of the necessity of restarting (in ER, LI(AS), and
Reset cases). For each execution (NF, ER, LI(AS) and Reset), we denote Tc the computation

106

4.4. Experimental results

time required for FGMRES convergence, and Overheadtotal the total overhead. The total
overhead includes the time spent in the recovery step and the time induced by a numerical
penalty. We also display separately the overhead related to the recovery, which is denoted
Overheadr.

In Table 4.5, we depict the overheads associated with the result presented in Figure 4.3a.
In term of number of iterations, ER and LIAS do not exhibit a convergence delay while
Reset converges after 95 additional iterations. However in term of computational time,
there is an overhead rounded to 0.96%, while these additional iterations required by Reset
increase its overhead to 21.79%. The first remark in this experiment is that LIAS is as good
as ER and both induce a similar overhead.

NF ER LIAS Reset

Nb Iterations 499 499 499 594

Tc (second) 7.72 7.80 7.80 9.41

Tr (second) - 8.27E-04 8.19E-03 8.34E-04

Overheadtotal - 0.96% 0.96% 21.79%

Overheadr - 0.01% 0.1% 0.01%

Table 4.5 – Matrix211 on 128 cores (restart m=300). Neighbor processes fault at iteration
305.

Compared to Reset and ER, LI(AS) requires more time to regenerate an initial guess
when a fault occurs. Indeed Reset and ER need only communication whereas LI(AS) has
additional computation cost due to interpolation. However the overhead induced by LIAS

to regenerate the initial guess represents only 0.1%, what is consistent with our expectation.

NF ER LIAS Reset

Nb Iterations 499 608 608 758

Tc (second) 7.72 9.96 10 12.80

Tr (second) - 8.49E-04 8.11E-03 8.29E-04

Overheadtotal - 28.88% 29.40% 65.63%

Overheadr - 0.01% 0.1% 0.01%

Table 4.6 – Matrix211 on 128 cores (restart m=300). Neighbor processes fault at iteration
470.

When the fault occurs while the Krylov basis contains many vectors, the overheads
significantly increase as depicted in Table 4.6. Reset has required much more iterations to
converge (758). Because of the large restart, LIAS and ER are similarly impacted as the
number of iterations increases from 499 to 608. This translates in high overheads 29.40%
for LIAS and 28.88% for ER. However the fact that the overheads of LIAS and ER are of
the same order magnitude indicates that these increases of the overhead are particularly
due to the restart. This is also confirmed by Tr which has barely increased.

107

For problems where the convergence can be observed with a small restart, the trends
are different. As depicted in Table 4.7, with Haltere, Reset converges in 37 iterations,
LIAS and ER in 33 iterations, while NF converges in 32 iterations. ER and LIAS have only
two iterations of delay, which indicates that the restart due to a fault has not significantly
perturbed the convergence. On the other hand, the fact that LIAS and ER finish after 34
iterations indicates that data interpolated by LIAS has a good numerical quality. The time
spent by LIAS to regenerate lost data remains very low with a total overhead of 10.40%
while ER has a total overhead of 7.41%. Reset is not penalized by restart but by the
numerical quality of data regenerated, what leads to a total overhead of 21.70%.

NF ER LIAS Reset

Nb Iterations 32 33 33 37

Tc 0.77 0.83 0.85 0.94

Tr - 1.37E-04 0.01 1.45E-04

Overheadtotal - 7.41% 10.40% 21.70%

Overheadr - 0.02% 1.71% 0.02%

Table 4.7 – Haltere on 128 cores (restart m=16). Neighbor processes fault at iteration 19.

NF ER LIAS Reset

Nb Iterations 32 34 34 39

Tc 0.77 0.86 0.87 0.96

Tr - 1.39E-04 0.01 1.40E-04

Overheadtotal - 11.44% 12.18% 24.56%

Overheadr - 0.02% 1.73% 0.02%

Table 4.8 – Haltere on 128 cores (restart m=16). Neighbor processes fault at iteration 27.

4.4.2 Performance analysis on the Hopper platform

Here, we assess the overhead induces by our strategies on a large-scale platform. Once the
problem is partitioned, each subdomain is mapped to one process. We use three threads per
process and eight processes per node, which leads to a total of 24 threads per node in order
to exploit the 24 cores on each node. For each matrix and a given number of processes, we
performed many experiments by varying the iteration when the fault is injected with only
one fault by experiment, and we report the average overhead. It is important to note that
here we do not detail the average, but we report on the whole average.

4.4.2.1 Single fault cases

In this section, we present results for single process fault cases. We recall that in this
case, the numerical behavior is the same as the non faulty execution and the overhead

108

4.4. Experimental results

is only due to communication. To solve the linear systems associated with Matrix211,
we vary the number of cores from 384 to 3,072 (Table 4.9). Regardless of the number
of cores, the overhead induced by the fault recovery strategy remains low. One can also
observe the decrease of the overhead when the number of cores varies between 348 and
1,536. Indeed, when the number of cores increases, the volume of data associated with each
process decreases. This leads to the decrease of the volume of data loss when a fault occurs.
However with 3,072 cores, the overhead increases. This is due to the limitation of the gain
associated with the increase of the number of processes. On the other hand, according to
the size of the matrix, beyond a given number of processes, the fault recovery involves many
processes. This may be penalizing because of MPI communication synchronization.

Nb of cores 384 768 1,536 3,072

Overhead 2.10% 1.18% 0.05% 0.38%

Table 4.9 – Variation of the overhead in the case of a single process fault while increasing
the number of cores using Matrix211.

If we consider the result of Nachos4M presented in Table 4.10, one can observe that
even with 12,288 cores, the overhead keeps decreasing because Nachos4M has a larger size.
Furthermore, since the size of Nachos4M allows us to exploit larger numbers of processes,
the induced overheads are very low, which demonstrate the potential of such strategies for
large-scale problems.

Nb of cores 1,536 3,072 6,144 12,288

Overhead 0.84% 0.82% 0.76% 0.02%

Table 4.10 – Variation of the overhead in the case of a single process fault while increasing
the number of cores using Nachos4M.

4.4.2.2 Neighbor processes fault cases

In this section, we present results for the LIAS strategy designed to handle neighbor pro-
cesses faults. We recall that LIAS exploits data redundancy to retrieve available entries from
surviving neighbors, before interpolating missing entries taking advantage of the additive
Schwarz preconditioner. The overhead of the LIAS strategy includes the communication
time to retrieve available entries from surviving neighbors, the computational time to in-
terpolate missing entries and the overhead induced by a possible numerical penalty. The
numerical penalty may be induced by the quality of interpolated entries and the necessity
to restart after a neighbor processes fault. The numerical penalty often leads to additional
iterations, which may increase the computational time. The results for Matrix211 is re-
ported in Table 4.11. With 384 cores, we have an overhead of 3.65%, but with the increase
of the number of cores, the overhead decreases significantly down to 0.12%.

109

Nb of cores 384 768 1,536 3,072

Overhead 3.65% 1.31% 0.12% 0.45%

Table 4.11 – Variation of the overhead in the case of neighbor processes fault while
increasing the number of cores using Matrix211.

Even in the case of neighbor processes fault, the overhead associated with Nachos4M

remains very low, from 1.70% down to 0.06%. This demonstrates again the attractive
potential of our strategies for large-scale problems.

Nb of cores 1,536 3,072 6,144 12,288

Overhead 1.70% 1.26% 0.67% 0.06%

Table 4.12 – Variation of the overhead in the case of neighbor processes fault while
increasing the number of cores using Nachos4M.

110

4.5. Concluding remarks

4.5 Concluding remarks

The main objective of this part was to design a numerically resilient solution for large sparse
linear systems on large massively parallel platforms. For that purpose, we have considered
the fully-featured sparse hybrid solver MaPHyS. We have exploited the solver properties
to design two different resilient solutions for the iterative solve step: one to recover from a
single fault and another one to survive a fault on neighbor processes.

In the case of a single fault, we have exploited data redundancy to retrieve all dynamic
data from neighbors. Once all dynamic data are recovered, the iterations continue with
exactly the same data as before the fault. This solution is simple and requires only com-
munications to reconstitute lost data. This solution has no numerical penalty so it exhibits
the same convergence behavior as a faultfree execution. In the case of a faults on neigh-
bor processes, we have designed the LI(AS) variant which takes advantage of the features
of MaPHyS’s preconditioner so that it does not require any additional factorization. We
have analyzed the numerical behavior of LI(AS) and evaluated its overhead to regenerate an
initial guess to restart the iterative solver. The results show that LI(AS) is very robust and
it computes an initial guess with a residual norm of the same order of magnitude as the one
computed before a fault. All the experiments show that the computation time required to
regenerate an initial guess after a fault is reasonable because it has a very low overhead.
However LI(AS) also suffers from the numerical penalty due to a restart, as commonly ob-
served for IR strategies. Our studies show that the numerical penalty varies according to
the size of the Krylov basis when a fault occurs. The larger the size of the Krylov basis,
the higher the numerical penalty. Consequently, problems that can converge with a small
restart parameter are less penalized.

The numerical approach used in this chapter to an algebraic domain decomposition
technique does apply to substructuring classical non-overlapping domain decomposition
approach where the redundancy is naturally implemented in a finite element framework.
Furthermore, the IR strategy can also be extended and applied to many classical domain
decomposition methods for PDE solution. As an example, we can report on an ongoing
work in collaboration with colleagues from another Inria project, namely Nachos. One
objective of that collaboration was to exploit IR strategies to design a resilient numerical
solution for the time-harmonic Maxwell equations discretized by discontinuous Galerkin
methods on unstructured meshes [22,59].

111

112

Chapter 5
Conclusion and perspectives

The main objective of this thesis was to explore numerical schemes for designing resilient
strategies that enable parallel numerical linear algebra solvers to survive faults. In the con-
text of linear algebra solvers, we investigated numerical approaches to regenerate meaningful
dynamic data before restarting the solution schemes. We have presented new numerical re-
silience algorithms called IR strategies for the solution of linear systems of equations in
Chapter 2. In particular, we have considered two rational policies that preserve key numer-
ical properties of well-known linear solvers, namely the monotony decrease of the A-norm
of the error of the conjugate gradient or the residual norm decrease of GMRES. We have
assessed the impact of the interpolation-restart techniques, the fault rate and the amount of
lost data on the robustness of the resulting linear solvers. In Chapter 3, we have tuned IR
strategies to design numerical resilient techniques for iterative eigensolvers such as Arnoldi,
Implicitly restarted Arnoldi or subspace iteration algorithm and the Jacobi-Davidson solver.
The numerical features of this latter eigensolver offer the flexibility to design fairly efficient
and robust resilient schemes for this widely used eigensolver.

Once the resilience potential of the IR strategies have been evaluated in stressful con-
ditions simulated by high fault rates and large volume of lost data, we have focused on
their extension to existing parallel linear algebra solvers. For that purpose, we have consid-
ered a fully-featured sparse hybrid (direct/iterative) solver to make its iterative solve step
resilient. In the case of a single fault, we have exploited data redundancy to retrieve all
lost dynamic data without any IR strategy. In the neighbor processes fault case, we have
designed an IR variant that takes advantage of the features of MaPHyS’s preconditioner.
We have studied this IR variant (LI(AS)) and evaluated the overhead required to regenerate
a meaningful initial guess to restart the iterative solver. The results show that LI(AS) is
very robust; that is, it computes an initial guess with a residual norm of the same order of
magnitude as one computed before a fault. All the experiments show that the computation
time required to regenerate an initial guess after a fault is reasonable because it has a very
low overhead.

In this thesis, we have studied numerical resilient schemes in the framework of node
crashes in a parallel distributed memory environment. However these numerical approaches
can be extended to data corruption at lower granularity than node crashes. The interpo-

113

lation methods can also be tuned for well-known solvers in order to attempt to regenerate
more information, in particular on the global research space to alleviate the penalty in-
duced by the restart after each fault. For example, in [114], our IR strategies have been
adapted to survive to data corruption at memory page granularity to design a resilient CG.
In such a resilient CG, all corrupted memory pages of dynamic data are regenerated and
there is no need to restart. This shows that IR strategies are very flexible and can also be
adapted to uncorrected bit-flips or more generally to memory corruption when the location
of the corrupted memory is available. Furthermore, at a low granularity, lost entries can be
regenerated with an extremely low cost.

We have used a sparse direct method to perform all interpolations. However a direct
method may be expensive when the amount of lost data is large. Alternatively, an iterative
scheme might be considered with a stopping criterion related to the accuracy level of the
iterate when the fault occurs. The LI(AS) variant designed for MaPHyS takes advantage
of the additive Schwarz preconditioner so a direct solution is the best choice regardless
of the amount of lost data. However MaPHyS gives an alternative option to the end-
user consisting in using a sparse preconditioner. This option has not been investigated in
this thesis. The sparse preconditioning technique consists in assembling the local Schur
complement, sparsifying them concurrently before factorizing them using a sparse direct
solver. In that case, the factorization of the local Schur complement would not be available
at preconditioning step anymore. Consequently LI(AS) would require an additional and
costly factorization. In that case, relying on an iterative scheme might limit the potential
overhead for recovery.

Finally, our numerical resilient strategies can be efficiently combined with existing fault
tolerance mechanisms such as checkpoint/restart techniques to design low overhead resilient
tools for extreme scale calculations.

114

Bibliography

[1] Fault injection capabilities infrastructure. http://lxr.linux.no/linux/Documentation/fault-
injection/.

[2] Linux Programmer’s Manual: MMAP. http://man7.org/linux/man-
pages/man2/mmap.2.html.

[3] Linux programmer’s manual: MPROTECT. unixhelp.ed.ac.uk/CGI/man-
cgi?mprotect.

[4] E. Agullo, L. Giraud, A. Guermouche, and J. Roman. Parallel hierarchical hybrid
linear solvers for emerging computing platforms. Compte Rendu de l’Académie des
Sciences - Mécanique, 339(2-3):96–105, 2011.

[5] Emmanuel Agullo, Luc Giraud, Abdou Guermouche, Jean Roman, and Mawussi
Zounon. Towards resilient parallel linear Krylov solvers: recover-restart strategies.
Research Report RR-8324, INRIA, July 2013.

[6] Lorenzo Alvisi and Keith Marzullo. Message logging: Pessimistic, optimistic, causal,
and optimal. IEEE Trans. Softw. Eng., 24(2):149–159, February 1998. ISSN 0098-
5589. doi:10.1109/32.666828.

[7] S. Amari. Bounds on MTBF of systems subjected to periodic maintenance. IEEE
Transactions Reliability, 55:469–474, September 2006. ISSN 0018-9529.

[8] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix
Analysis and Applications, 23(1):15–41, 2001.

[9] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling
for the parallel solution of linear systems. Parallel Computing, 32(2):136–156, 2006.

[10] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins,
and D. Powell. Fault injection for dependability validation: a methodology and some
applications. Software Engineering, IEEE Transactions on, 16(2):166–182, Feb 1990.
ISSN 0098-5589. doi:10.1109/32.44380.

[11] W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix
eigenvalue problem. Q. Appl. Math, 9(17):17–29, 1951.

115

[12] Todd M. Austin. DIVA: A Reliable Substrate for Deep Submicron Microarchitecture
Design. In Proceedings of the 32Nd Annual ACM/IEEE International Symposium on
Microarchitecture, MICRO 32, pages 196–207. IEEE Computer Society, Washington,
DC, USA, 1999. ISBN 0-7695-0437-X.

[13] J.H. Barton, E.W. Czeck, Z.Z. Segall, and D.P. Siewiorek. Fault injection experiments
using FIAT. Computers, IEEE Transactions on, 39(4):575–582, Apr 1990. ISSN 0018-
9340. doi:10.1109/12.54853.

[14] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello, Naoya
Maruyama, and Satoshi Matsuoka. FTI: high performance fault tolerance interface
for hybrid systems. In Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, page 32. ACM, 2011.

[15] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally,
Monty Denneau, Paul Franzon, William Harrod, Jon Hiller, Sherman Karp, Stephen
Keckler, Dean Klein, Robert Lucas, Mark Richards, Al Scarpelli, Steven Scott, Allan
Snavely, Thomas Sterling, R. Stanley Williams, Katherine Yelick, Keren Bergman,
Shekhar Borkar, Dan Campbell, William Carlson, William Dally, Monty Denneau,
Paul Franzon, William Harrod, Jon Hiller, Stephen Keckler, Dean Klein, Peter Kogge,
R. Stanley Williams, and Katherine Yelick. ExaScale Computing Study: Technology
Challenges in Achieving Exascale Systems Peter Kogge, Editor & Study Lead. 2008.

[16] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Her-
oux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and R. C. Wha-
ley. An updated set of basic linear algebra subprograms (BLAS). ACM Transactions
on Mathematical Software, 28:135–151, 2001.

[17] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J.J. Dongarra. An
evaluation of User-Level failure mitigation support in MPI. DOI 10.1007/s00607-013-
0331-3:1–14, May 2013.

[18] Wesley Bland, George Bosilca, Aurelien Bouteiller, Thomas Herault, and Jack Don-
garra. A proposal for User-Level Failure Mitigation in the MPI-3 Standard. Technical
report, Tech. rep., Department of Electrical Engineering and Computer Science, Uni-
versity of Tennessee, 2012.

[19] W.G. Bliss, M.R. Lightner, and B. Friedlander. Numerical properties of algorithm-
based fault-tolerance for high reliability array processors *. In Signals, Systems and
Computers, 1988. Twenty-Second Asilomar Conference on, volume 2, pages 631–635.
1988. ISSN 1058-6393. doi:10.1109/ACSSC.1988.754623.

[20] Anita Borg, Jim Baumbach, and Sam Glazer. A message system supporting fault
tolerance. SIGOPS Oper. Syst. Rev., 17(5):90–99, October 1983. ISSN 0163-5980.
doi:10.1145/773379.806617.

[21] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain, T. Herault,
P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri, and A. Selikhov. MPICH-
V: Toward a scalable fault tolerant MPI for volatile nodes. In Supercomputing,

116

ACM/IEEE 2002 Conference, pages 29–29. Nov 2002. ISSN 1063-9535. doi:
10.1109/SC.2002.10048.

[22] M. El Bouajaji, V. Dolean, M. J. Gander, and S. Lanteri. Optimized Schwarz meth-
ods for the time-harmonic Maxwell equations with damping. SIAM J. Scientific
Computing, 34(4):A2048–A2071, 2012.

[23] Marin Bougeret, Henri Casanova, Mikael Rabie, Yves Robert, and Frédéric Vivien.
Checkpointing strategies for parallel jobs. In Proceedings of 2011 International Con-
ference for High Performance Computing, Networking, Storage and Analysis, SC’11,
pages 33:1–33:11. ACM, New York, NY, USA, 2011. ISBN 978-1-4503-0771-0. doi:
10.1145/2063384.2063428.

[24] J.-F. Bourgat, R. Glowinski, P. Le Tallec, and M. Vidrascu. Variational formula-
tion and algorithm for trace operator in domain decomposition calculations. In Tony
Chan, Roland Glowinski, Jacques Périaux, and Olof Widlund, editors, Domain De-
composition Methods, pages 3–16. SIAM, Philadelphia, PA, 1989.

[25] Aurélien Bouteiller, Franck Cappello, Thomas Herault, Géraud Krawezik, Pierre
Lemarinier, and Frédéric Magniette. MPICH-V2: A fault tolerant MPI for volatile
nodes based on pessimistic sender based message logging. In Proceedings of the 2003
ACM/IEEE Conference on Supercomputing, SC ’03, pages 25–. ACM, New York, NY,
USA, 2003. ISBN 1-58113-695-1. doi:10.1145/1048935.1050176.

[26] Aurelien Bouteiller, Thomas Hérault, Géraud Krawezik, Pierre Lemarinier, and
Franck Cappello. MPICH-V Project: A multiprotocol automatic fault-tolerant MPI.
IJHPCA, pages 319–333, 2006.

[27] Patrick G. Bridges, Kurt B. Ferreira, Michael A. Heroux, and Mark Hoemmen. Fault-
tolerant linear solvers via selective reliability. CoRR, abs/1206.1390, 2012.

[28] Greg Bronevetsky and Bronis de Supinski. Soft error vulnerability of iterative lin-
ear algebra methods. In Proceedings of the 22nd annual international conference on
Supercomputing, ICS’08, pages 155–164. ACM, New York, NY, USA, 2008. ISBN
978-1-60558-158-3.

[29] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul Stodghill. Automated
application-level checkpointing of MPI programs. In Proceedings of the ninth ACM
SIGPLAN symposium on Principles and practice of parallel programming, PPoPP
’03, pages 84–94. ACM, New York, NY, USA, 2003. ISBN 1-58113-588-2. doi:http:
//doi.acm.org/10.1145/781498.781513.

[30] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul Stodghill. A system
for automating application-level checkpointing of MPI programs. In LCPC’03, pages
357–373. 2003.

[31] Greg Bronevetsky, Keshav Pingali, and Paul Stodghill. Experimental evaluation of
application-level checkpointing for OpenMP programs. In Proceedings of the 20th
annual international conference on Supercomputing, ICS’06, pages 2–13. ACM, New

117

York, NY, USA, 2006. ISBN 1-59593-282-8. doi:http://doi.acm.org/10.1145/1183401.
1183405.

[32] X.-C. Cai and Y. Saad. Overlapping domain decomposition algorithms for general
sparse matrices. Numerical Linear Algebra with Applications, 3:221–237, 1996.

[33] Franck Cappello, Henri Casanova, and Yves Robert. Preventive migration vs. pre-
ventive checkpointing for extreme scale supercomputers. Parallel Processing Letters,
pages 111–132, 2011.

[34] J. Carreira, D. Costa, and J.G. Silva. Fault-injection spot-checks computer system
dependability. IEEE Spectrum, 36(8):50–55, 1999.

[35] L. M. Carvalho, L. Giraud, and G. Meurant. Local preconditioners for two-level
non-overlapping domain decomposition methods. Numerical Linear Algebra with Ap-
plications, 8(4):207–227, 2001.

[36] Tony F. C. Chan and Tarek P. Mathew. The interface probing technique in domain
decomposition. SIAM J. Matrix Anal. Appl., 13(1):212–238, January 1992. ISSN
0895-4798. doi:10.1137/0613018.

[37] G. Chen, M. Kandemir, M. J. Irwin, and G. Memik. Compiler-directed selective
data protection against soft errors. In Proceedings of the 2005 Asia and South Pacific
Design Automation Conference, ASP-DAC ’05, pages 713–716. ACM, New York, NY,
USA, 2005. ISBN 0-7803-8737-6. doi:http://doi.acm.org/10.1145/1120725.1121000.

[38] Peter M Chen, Edward K Lee, Garth A Gibson, Randy H Katz, and David A Patter-
son. RAID: High-performance, reliable secondary storage. ACM Computing Surveys
(CSUR), 26(2):145–185, 1994.

[39] Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajaman-
ickam. Algorithm 887: CHOLMOD, supernodal sparse cholesky factorization and
update/downdate. ACM Trans. Math. Softw., 35(3):22:1–22:14, October 2008. ISSN
0098-3500. doi:10.1145/1391989.1391995.

[40] Zizhong Chen. Online-ABFT: an online algorithm based fault tolerance scheme for
soft error detection in iterative methods. In ACM SIGPLAN Notices, volume 48,
pages 167–176. ACM, 2013.

[41] Zizhong Chen and Jack Dongarra. Algorithm-based checkpoint-free fault tolerance
for parallel matrix computations on volatile resources. In Proceedings of the 20th
international conference on Parallel and distributed processing, IPDPS’06, pages 97–
97. IEEE Computer Society, Washington, DC, USA, 2006. ISBN 1-4244-0054-6.

[42] Zizhong Chen, Graham E Fagg, Edgar Gabriel, Julien Langou, Thara Angskun,
George Bosilca, and Jack Dongarra. Fault tolerant high performance computing
by a coding approach. In Proceedings of the tenth ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 213–223. ACM, 2005.

[43] Elliott Ward Cheney. Introduction to approximation theory, 1966.

118

[44] C. Chevalier and F. Pellegrini. PT-SCOTCH: a tool for efficient parallel graph order-
ing. Parallel Computing, 34(6-8), 2008.

[45] T.F. Coleman and J.J. Moré. Estimation of sparse Hessian matrices and graph col-
oring problems. Math. Programming, 28:243–270, 1984.

[46] Camille Coti, Thomas Herault, Pierre Lemarinier, Laurence Pilard, Ala Rezmerita,
Eric Rodriguez, and Franck Cappello. Blocking vs. non-blocking coordinated check-
pointing for large-scale fault tolerant MPI. In Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, SC ’06. ACM, New York, NY, USA, 2006. ISBN
0-7695-2700-0. doi:10.1145/1188455.1188587.

[47] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for shared-
memory programming. Computational Science & Engineering, IEEE, 5(1):46–55,
1998.

[48] Om P Damani and Vijay K Garg. How to recover efficiently and asynchronously
when optimism fails. In Distributed Computing Systems, 1996., Proceedings of the
16th International Conference on, pages 108–115. IEEE, 1996.

[49] E. R. Davidson. The iterative calculation of a few of the lowest eigenvalues and
corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys., 17:87,
1975.

[50] T. A. Davis. Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal
method. ACM Trans. Math. Softw., 30(2):196–199, 2004.

[51] Timothy A. Davis. Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-
revealing sparse QR factorization. ACM Trans. Math. Softw., 38(1):1–22, 2011.

[52] Timothy A. Davis and Yifan Hu. The University of Florida sparse matrix collection.
j-TOMS, 38(1):1:1–1:25, November 2011.

[53] Y.-H. De Roeck and P. Le Tallec. Analysis and test of a local domain decomposition
preconditioner. In Roland Glowinski, Yuri Kuznetsov, Gérard Meurant, Jacques Péri-
aux, and Olof Widlund, editors, Fourth International Symposium on Domain Decom-
position Methods for Partial Differential Equations, pages 112–128. SIAM, Philadel-
phia, PA, 1991.

[54] James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst. Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2000. ISBN 0-89871-471-0.

[55] Dhananjay M Dhamdhere. Operating Systems: A Concept-based Approach, 2E. Tata
McGraw-Hill Education, 2006.

[56] Yuvraj Singh Dhillon, Abdulkadir Utku Diril, and Abhijit Chatterjee. Soft-error
tolerance analysis and optimization of nanometer circuits. CoRR, abs/0710.4720,
2007.

119

[57] W. E. Dickinson and R. M. Walker. Reliability Improvement by the Use of Multiple-
element Switching Circuits. IBM J. Res. Dev., 2(2):142–147, April 1958. ISSN 0018-
8646. doi:10.1147/rd.22.0142.

[58] William R. Dieter and James E. Lumpp, Jr. User-level checkpointing for linuxthreads
programs. In Proceedings of the FREENIX Track: 2001 USENIX Annual Technical
Conference, pages 81–92. USENIX Association, Berkeley, CA, USA, 2001. ISBN
1-880446-10-3.

[59] Victorita Dolean, Stephane Lanteri, and Ronan Perrussel. A domain decompo-
sition method for solving the three-dimensional time-harmonic Maxwell equations
discretized by discontinuous Galerkin methods. Journal of Computational Physics,
227(3):2044–2072, 2008. doi:10.1016/j.jcp.2007.10.004. Also published in J. Comput.
Phys., Vol. 227, No. 3 pp. 2044-2072 (2007) .

[60] Jason Duell. The design and implementation of Berkeley Lab’s linux check-
point/restart. Technical report, 2003.

[61] Clément Durochat, Stéphane Lanteri, and Raphaël Léger. A non-conforming multi-
element dgtd method for the simulation of human exposure to electromagnetic waves.
International Journal of Numerical Modelling: Electronic Networks, Devices and
Fields, 27(3):614–625, 2014. ISSN 1099-1204. doi:10.1002/jnm.1943.

[62] G.A El-Sayed and K.A Hossny. A distributed counter-based non-blocking coordinated
checkpoint algorithm for grid computing applications. In Advances in Computational
Tools for Engineering Applications (ACTEA), 2012 2nd International Conference on,
pages 80–85. Dec 2012. doi:10.1109/ICTEA.2012.6462909.

[63] E.N. Elnozahy, D.B. Johnson, and W. Zwaenepoel. The performance of consistent
checkpointing. In Reliable Distributed Systems, 1992. Proceedings., 11th Symposium
on, pages 39–47. Oct 1992. doi:10.1109/RELDIS.1992.235144.

[64] Graham E Fagg, Edgar Gabriel, Zizhon Chen, Thara Angskun, George Bosilca, An-
tonin Bukovsky, and Jack J Dongarra. Fault tolerant communication library and
applications for high performance computing. In LACSI Symposium, pages 27–29.
2003.

[65] M. Faverge. Ordonnancement hybride statique-dynamique en algèbre linéaire creuse
pour de grands clusters de machines NUMA et multi-coeurs. Ph.D. thesis, LaBRI,
Université Bordeaux I, Talence, France, December 2009.

[66] Robert Fitzgerald and Richard F. Rashid. The integration of virtual memory man-
agement and interprocess communication in accent. ACM Trans. Comput. Syst.,
4(2):147–177, May 1986. ISSN 0734-2071. doi:10.1145/214419.214422.

[67] Diederik R. Fokkema, Gerard L. G. Sleijpen, and Henk A. Van der Vorst. Jacobi-
Davidson style QR and QZ algorithms for the partial reduction of matrix pencils.
SIAM J. SCI. COMPUT, 20:94–125, 1996.

120

[68] Message Passing Interface Forum. MPI: A message passing interface standard. Inter-
national Journal of Supercomputer Applications, 8(3/4):159–416, 1994.

[69] Valérie Frayssé, Luc Giraud, and Serge Gratton. Algorithm 881: A set of FGMRES
routines for real and complex arithmetics on high performance computers. ACM
Transactions on Mathematical Software, 35(2):1–12, 2008.

[70] Melina A. Freitag and Alastair Spence. Shift-invert arnoldi’s method with precon-
ditioned iterative solves. SIAM J. Matrix Anal. Appl., 31(3):942–969, August 2009.
ISSN 0895-4798. doi:10.1137/080716281.

[71] J. Gaidamour and P. Hénon. A parallel direct/iterative solver based on a schur
complement approach. 2013 IEEE 16th International Conference on Computational
Science and Engineering, 0:98–105, 2008. doi:http://doi.ieeecomputersociety.org/10.
1109/CSE.2008.36.

[72] Ana Gainaru, Franck Cappello, Marc Snir, and William Kramer. Fault prediction
under the microscope: A closer look into HPC systems. SC Conference, 0:1–11, 2012.
ISSN 2167-4329. doi:http://doi.ieeecomputersociety.org/10.1109/SC.2012.57.

[73] Al Geist and Christian Engelmann. Development of naturally fault tolerant algorithms
for computing on 100,000 processors. 2002.

[74] R. Gioiosa, J.C. Sancho, S. Jiang, and F. Petrini. Transparent, incremental check-
pointing at kernel level: a foundation for fault tolerance for parallel computers. In
Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference, pages
9–9. Nov 2005. doi:10.1109/SC.2005.76.

[75] L. Giraud, A. Haidar, and L. T. Watson. Parallel scalability study of hybrid precon-
ditioners in three dimensions. Parallel Computing, 34:363–379, 2008.

[76] Luc Giraud and A. Haidar. Parallel algebraic hybrid solvers for large 3D convection-
diffusion problems. Numerical Algorithms, 51(2):151–177, 2009.

[77] N.R. Gottumukkala, R. Nassar, M. Paun, C.B. Leangsuksun, and S.L. Scott. Re-
liability of a system of k nodes for high performance computing applications. Re-
liability, IEEE Transactions on, 59(1):162–169, March 2010. ISSN 0018-9529. doi:
10.1109/TR.2009.2034291.

[78] Jim Gray. Notes on data base operating systems. In Operating Systems, An Advanced
Course, pages 393–481. Springer-Verlag, London, UK, UK, 1978. ISBN 3-540-08755-9.

[79] William Gropp and Ewing Lusk. Fault tolerance in MPI programs. Special issue of
the Journal High Performance Computing Applications (IJHPCA), 18:363–372, 2002.

[80] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and F. Cappello. Uncoordinated
checkpointing without domino effect for send-deterministic MPI applications. In Par-
allel Distributed Processing Symposium (IPDPS), 2011 IEEE International, pages
989–1000. May 2011. ISSN 1530-2075. doi:10.1109/IPDPS.2011.95.

121

[81] Prashasta Gujrati, Yawei Li, Zhiling Lan, Rajeev Thakur, and John White. A
Meta-Learning Failure Predictor for Blue Gene/L Systems. 2013 42nd Interna-
tional Conference on Parallel Processing, 0:40, 2007. ISSN 0190-3918. doi:http:
//doi.ieeecomputersociety.org/10.1109/ICPP.2007.9.

[82] G.W. Stewart. Matrix algorithms – Volume II: Eigensystems. SIAM, 2001.

[83] A. Haidar. On the parallel scalability of hybrid solvers for large 3D problems. Ph.D.
dissertation, INPT, June 2008. TH/PA/08/57.

[84] R. W. HAMMING. Error detecting and error correcting codes. Bell System Technical
Journal, 29:147–160, 1950.

[85] P. Hénon, P. Ramet, and J. Roman. PaStiX: A High-Performance Parallel Direct
Solver for Sparse Symmetric Definite Systems. Parallel Computing, 28(2):301–321,
January 2002.

[86] Pascal Hénon and Yousef Saad. A parallel multistage ILU factorization based on a
hierarchical graph decomposition. SIAM J. Sci. Comput., 28(6):2266–2293, December
2006. ISSN 1064-8275. doi:10.1137/040608258.

[87] M. R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for Solving Linear
System. J. Res. Nat. Bur. Stds., B49:409–436, 1952.

[88] D. Higham and N. Higham. Structured backward error and condition of generalized
eigenvalue problems. SIAM Journal on Matrix Analysis and Applications, 20(2):493–
512, 1998. doi:10.1137/S0895479896313188.

[89] Kuang-Hua Huang and J. A. Abraham. Algorithm-based fault tolerance for matrix
operations. IEEE Trans. Comput., 33:518–528, June 1984. ISSN 0018-9340.

[90] R.K. Iyer, N.M. Nakka, Z.T. Kalbarczyk, and S Mitra. Recent advances and new
avenues in hardware-level reliability support. Micro, IEEE, 25(6):18–29, Nov 2005.
ISSN 0272-1732. doi:10.1109/MM.2005.119.

[91] C. G. J. Jacobi. über ein leichtes Verfahren, die in der Theorie der Säcularstörungen
vorkommenden Gleichungen numerisch aufzulösen. J. Reine Angew. Math., 30:51–94,
1846.

[92] Zhongxiao Jia and G.W. Stewart. An analysis of the Rayleigh-Ritz method for ap-
proximating eigenspaces. Math. Comp, 1999.

[93] David B Johnson and Willy Zwaenepoel. Sender-based message logging. 1987.

[94] James V. Jones. Integrated Logistics Support Handbook. TAB Books, Blue Ridge
Summit, PA, USA, 1987. ISBN 0-8306-2921-1.

[95] J.-Y. Jou and J.A. Abraham. Fault-tolerant matrix arithmetic and signal processing
on highly concurrent computing structures. Proceedings of the IEEE, 74(5):732–741,
May 1986. ISSN 0018-9219. doi:10.1109/PROC.1986.13535.

122

[96] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo. Using heavy-ion
radiation to validate fault-handling mechanisms. Micro, IEEE, 14(1):8–23, Feb 1994.
ISSN 0272-1732. doi:10.1109/40.259894.

[97] George Karypis and Vipin Kumar. Metis-unstructured graph partitioning and sparse
matrix ordering system, version 2.0. 1995.

[98] R. Kumar, P. Jovanovic, and I. Polian. Precise fault-injections using voltage and
temperature manipulation for differential cryptanalysis. In On-Line Testing Sym-
posium (IOLTS), 2014 IEEE 20th International, pages 43–48. July 2014. doi:
10.1109/IOLTS.2014.6873670.

[99] X. Lacoste. Scheduling and memory optimizations for sparse direct solver on multi-
core/multi-GPU cluster systems. Ph.D. thesis, LaBRI, Université Bordeaux, Talence,
France, February 2015.

[100] Cornelius Lanczos. An iterative method for the solution of the eigenvalue problem of
linear differential and integral, 1950.

[101] Julien Langou, Zizhong Chen, George Bosilca, and Jack Dongarra. Recovery Patterns
for Iterative Methods in a Parallel Unstable Environment. SIAM J. Sci. Comput.,
30:102–116, November 2007. ISSN 1064-8275. doi:10.1137/040620394.

[102] Lie-Quan Lee, Zenghai Li, Cho Ng, Kwok Ko, et al. Omega3P: a parallel finite-element
eigenmode analysis code for accelerator cavities. 2009.

[103] R. B. Lehoucq and J. A. Scott. An evaluation of software for computing eigenvalues
of sparse nonsymmetric matrices, 1996.

[104] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK: Solution of Large
Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. Available from
netlib@ornl.gov, 1997.

[105] R.B. Lehoucq and D. C. Sorensen. Deflation techniques for an implicitly re-started
Arnoldi iteration. SIAM J. Matrix Anal. Appl, 17:789–821, 1996.

[106] C.-C.J. Li and W.K. Fuchs. Catch-compiler-assisted techniques for checkpointing.
In Fault-Tolerant Computing, 1990. FTCS-20. Digest of Papers., 20th International
Symposium, pages 74–81. June 1990. doi:10.1109/FTCS.1990.89337.

[107] K. Li, J. F. Naughton, and J. S. Plank. Low-latency, concurrent checkpointing for
parallel programs. IEEE Trans. Parallel Distrib. Syst., 5(8):874–879, August 1994.
ISSN 1045-9219. doi:10.1109/71.298215.

[108] X S Li, M Shao, I Yamazaki, and E G Ng. Factorization-based sparse solvers and
preconditioners. Journal of Physics: Conference Series, 180(1):012015, 2009.

[109] X Sherry Li, M Shao, I Yamazaki, and EG Ng. Factorization-based sparse solvers and
preconditioners. In Journal of Physics: Conference Series, volume 180, page 012015.
IOP Publishing, 2009.

123

[110] Xiaoye S. Li and James W. Demmel. SuperLU DIST: A scalable distributed-memory
sparse direct solver for unsymmetric linear systems. ACM Trans. Math. Softw.,
29(2):110–140, June 2003. ISSN 0098-3500. doi:10.1145/779359.779361.

[111] Yinglung Liang, Yanyong Zhang, Anand Sivasubramaniam, Morris Jette, and Ramen-
dra Sahoo. BlueGene/L Failure Analysis and Prediction Models. 2013 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
0:425–434, 2006. doi:http://doi.ieeecomputersociety.org/10.1109/DSN.2006.18.

[112] Yudan Liu, R. Nassar, C.B. Leangsuksun, N. Naksinehaboon, M. Paun, and S.L.
Scott. An optimal checkpoint/restart model for a large scale high performance
computing system. In Parallel and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium on, pages 1–9. April 2008. ISSN 1530-2075. doi:
10.1109/IPDPS.2008.4536279.

[113] Konrad Malkowski, Padma Raghavan, and Mahmut T. Kandemir. Analyzing the soft
error resilience of linear solvers on multicore multiprocessors. In IPDPS’10, pages
1–12. 2010.

[114] Casas Marc, Bronevetsky Greg, Labarta Jesus, and Valero Mateo. Dealing with faults
in HPC systems. In PMAA-International Workshop on Parallel Matrix Algorithms
and Applications. Lugano, Switzerland, July 2014.

[115] Tarek Mathew. Domain Decomposition Methods for the Numerical Solution of Par-
tial Differential Equations (Lecture Notes in Computational Science and Engineer-
ing). Springer Publishing Company, Incorporated, 1 edition, 2008. ISBN 3540772057,
9783540772057.

[116] N. Nakka, K. Pattabiraman, and R. Iyer. Processor-Level Selective Replication. In
Dependable Systems and Networks, 2007. DSN ’07. 37th Annual IEEE/IFIP Inter-
national Conference on, pages 544–553. June 2007. doi:10.1109/DSN.2007.75.

[117] Thomas Naughton, Wesley Bland, Geoffroy Vallee, Christian Engelmann, and
Stephen L. Scott. Fault injection framework for system resilience evaluation: Fake
faults for finding future failures. In Proceedings of the 2009 Workshop on Resiliency
in High Performance, Resilience ’09, pages 23–28. ACM, New York, NY, USA, 2009.
ISBN 978-1-60558-593-2. doi:10.1145/1552526.1552530.

[118] T.J. O’Gorman, J. M. Ross, A H. Taber, J.F. Ziegler, H.P. Muhlfeld, C.J. Montrose,
H. W. Curtis, and J.L. Walsh. Field testing for cosmic ray soft errors in semiconductor
memories. IBM Journal of Research and Development, 40(1):41–50, Jan 1996. ISSN
0018-8646. doi:10.1147/rd.401.0041.

[119] N. Oh, P.P. Shirvani, and E.J. McCluskey. Error detection by duplicated instructions
in super-scalar processors. Reliability, IEEE Transactions on, 51(1):63–75, Mar 2002.
ISSN 0018-9529. doi:10.1109/24.994913.

[120] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear
equations. SIAM J. Numerical Analysis, 12:617 – 629, 1975.

124

[121] Behrooz Parhami. Detect, fault, error, ... , or failure. IEEE Transactions on Relia-
bility, 46, December 1997. ISSN 0018-9529.

[122] Stefan Pauli and Peter Arbenz. Determining optimal multilevel Monte Carlo pa-
rameters with application to fault tolerance. Research report, November 2014. doi:
10.3929/ethz-a-010335876.

[123] Stefan Pauli, Manuel Kohler, and Peter Arbenz. A fault tolerant implementation of
Multi-Level Monte carlo methods. In PARCO’13, pages 471–480. 2013.

[124] J. S. Plank, K. Li, and M. A. Puening. Diskless checkpointing. IEEE Transactions
on Parallel and Distributed Systems, 9(10):972–986, October 1998.

[125] J. S. Plank, J. Xu, and R. H. B. Netzer. Compressed differences: An algorithm for
fast incremental checkpointing. Technical Report CS-95-302, University of Tennessee,
August 1995.

[126] James S. Plank, Youngbae Kim, and Jack J. Dongarra. Fault-tolerant matrix oper-
ations for networks of workstations using diskless checkpointing. J. Parallel Distrib.
Comput., 43:125–138, June 1997. ISSN 0743-7315.

[127] J.S. Plank and K. Li. ICKP: a consistent checkpointer for multicomputers. Parallel
Distributed Technology: Systems Applications, IEEE, 2(2):62–67, Summer 1994. ISSN
1063-6552. doi:10.1109/88.311574.

[128] J.S. Plank and Kai Li. Faster checkpointing with N+1 parity. In Fault-Tolerant Com-
puting, 1994. FTCS-24. Digest of Papers., Twenty-Fourth International Symposium
on, pages 288–297. June 1994. doi:10.1109/FTCS.1994.315631.

[129] Katerina Goseva Popstojanova and Kishor Trivedi. Failure correlation in software
reliability models. IEEE Trans. on Reliability, 49, 2000.

[130] G. Radicati and Y. Robert. Parallel conjugate gradient-like algorithms for solving
nonsymmetric linear systems on a vector multiprocessor. Parallel Computing, 11:223–
239, 1989.

[131] S. Rajamanickam, E. G. Boman, and M. A. Heroux. ShyLU: A hybrid-hybrid solver for
multicore platforms. Parallel and Distributed Processing Symposium, International,
0:631–643, 2012. ISSN 1530-2075. doi:http://doi.ieeecomputersociety.org/10.1109/
IPDPS.2012.64.

[132] Narasimha Raju, Gottumukkala, Yudan Liu, Chokchai B. Leangsuksun, Raja Nassar,
and Stephen Scott2. Reliability Analysis in HPC clusters. Proceedings of the High
Availability and Performance Computing Workshop, 2006.

[133] S. Rao, L. Alvisi, and H.M. Vin. The cost of recovery in message logging protocols.
Knowledge and Data Engineering, IEEE Transactions on, 12(2):160–173, Mar 2000.
ISSN 1041-4347. doi:10.1109/69.842260.

[134] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields.
Journal of the Society for Industrial & Applied Mathematics, 8(2):300–304, 1960.

125

[135] J. Rexford and N.K. Jha. Algorithm-based fault tolerance for floating-point operations
in massively parallel systems. In Circuits and Systems, 1992. ISCAS ’92. Proceedings.,
1992 IEEE International Symposium on, volume 2, pages 649–652 vol.2. May 1992.
doi:10.1109/ISCAS.1992.230168.

[136] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2nd edition, 2003. ISBN 0898715342.

[137] Y. Saad and M. H. Schultz. GMRES: A Generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Scientific and Statistical Computing,
7:856–869, 1986.

[138] Youcef Saad. Projection methods for solving large sparse eigenvalue problems. In
Matrix Pencils, pages 121–144. Springer, 1983.

[139] Youcef Saad. Overview of krylov subspace methods with applications to control
problems, 1990.

[140] Youcef Saad and Martin H. Schultz. GMRES: a generalized minimal residual algo-
rithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856–
869, July 1986. ISSN 0196-5204.

[141] Yousef Saad. Numerical Methods for Large Eigenvalue Problems. Manchester Uni-
versity Press, Manchester, UK, 1992.

[142] Pablo Salas. Physical and numerical aspects of thermoacoustic instabilities in annular
combustion chambers. Ph.D. thesis, Université Bordeaux 1, November 2013.

[143] Pablo Salas, Luc Giraud, Yousef Saad, and Stéphane Moreau. Spectral recycling
strategies for the solution of nonlinear eigenproblems in thermoacoustics. Research
Report RR-8542, INRIA, May 2014.

[144] Olaf Schenk, Klaus Gärtner, Wolfgang Fichtner, and Andreas Stricker. PARDISO:
A high-performance serial and parallel sparse linear solver in semiconductor device
simulation, 2000.

[145] M. Scholzel. Reduced Triple Modular redundancy for built-in self-repair in VLIW-
processors. In Signal Processing Algorithms, Architectures, Arrangements and Appli-
cations, 2007, pages 21–26. Sept 2007. doi:10.1109/SPA.2007.5903294.

[146] Bianca Schroeder and Garth A. Gibson. Poster reception - the computer failure data
repository (CFDR): collecting, sharing and analyzing failure data. In SC, page 154.
ACM Press, 2006. ISBN 0-7695-2700-0.

[147] Bianca Schroeder and Garth A. Gibson. A Large-Scale study of failures in high-
performance computing systems. IEEE Transactions on Dependable and Secure Com-
puting, 7(4):337–351, 2010. ISSN 1545-5971. doi:http://doi.ieeecomputersociety.org/
10.1109/TDSC.2009.4.

126

[148] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM errors in the
wild: A large-scale field study. SIGMETRICS Perform. Eval. Rev., 37(1):193–204,
June 2009. ISSN 0163-5999. doi:10.1145/2492101.1555372.

[149] Manu Shantharam, Sowmyalatha Srinivasmurthy, and Padma Raghavan. Charac-
terizing the impact of soft errors on iterative methods in scientific computing. In
Proceedings of the international conference on Supercomputing, pages 152–161. ACM,
2011.

[150] H. Sharangpani and H. Arora. Itanium processor microarchitecture. Micro, IEEE,
20(5):24–43, Sep 2000. ISSN 0272-1732. doi:10.1109/40.877948.

[151] Gerard L. G. Sleijpen and Henk A. Van der. A Jacobi–Davidson iteration method for
linear eigenvalue problems. SIAM Rev., 42(2):267–293, June 2000.

[152] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi, Pavan Balaji,
J. Belak, P. Bose, F. Cappello, B. Carlson, Andrew A. Chien, P. Coteus, N. A.
Debardeleben, P. Diniz, C. Engelmann, M. Erez, S. Fazzari, A. Geist, R. Gupta,
F. Johnson, Sriram Krishnamoorthy, Sven Leyffer, D. Liberty, S. Mitra, T. S. Munson,
R. Schreiber, J. Stearley, and E. V. Hensbergen. Addressing failures in exascale
computing. 2013. ISSN ANL/MCS-TM-332.

[153] Rob Strom and Shaula Yemini. Optimistic recovery in distributed systems. ACM
Trans. Comput. Syst., 3(3):204–226, August 1985. ISSN 0734-2071. doi:10.1145/
3959.3962.

[154] Keita Teranishi and Michael A. Heroux. Toward local failure local recovery resilience
model using MPI-ULFM. In Proceedings of the 21st European MPI Users’ Group
Meeting, EuroMPI/ASIA ’14, pages 51:51–51:56. ACM, New York, NY, USA, 2014.
ISBN 978-1-4503-2875-3. doi:10.1145/2642769.2642774.

[155] N.F. Vaidya. A case for two-level recovery schemes. Computers, IEEE Transactions
on, 47(6):656–666, Jun 1998. ISSN 0018-9340. doi:10.1109/12.689645.

[156] T.N. Vijaykumar, I Pomeranz, and K. Cheng. Transient-fault recovery using si-
multaneous multithreading. In Computer Architecture, 2002. Proceedings. 29th
Annual International Symposium on, pages 87–98. 2002. ISSN 1063-6897. doi:
10.1109/ISCA.2002.1003565.

[157] John von Neumann. Probabilistic logics and the synthesis of reliable organisms from
unreliable components. Automata Studies, pages 43–98, 1956.

[158] Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L. Scott. Hybrid
full/incremental checkpoint/restart for MPI jobs in HPC environments. In Dept. of
Computer Science, North Carolina State University. 2009.

[159] Yi-Min Wang and W.K. Fuchs. Lazy checkpoint coordination for bounding rollback
propagation. In Reliable Distributed Systems, 1993. Proceedings., 12th Symposium
on, pages 78–85. Oct 1993. doi:10.1109/RELDIS.1993.393471.

127

[160] Yi-Min Wang, Yennun Huang, Kiem-Phong Vo, Pe-Yu Chung, and C. Kintala. Check-
pointing and its applications. In Fault-Tolerant Computing, 1995. FTCS-25. Digest
of Papers., Twenty-Fifth International Symposium on, pages 22–31. June 1995. doi:
10.1109/FTCS.1995.466999.

[161] Chris Weaver and Todd M. Austin. A Fault Tolerant Approach to Microprocessor
Design. In Proceedings of the 2001 International Conference on Dependable Systems
and Networks (Formerly: FTCS), DSN ’01, pages 411–420. IEEE Computer Society,
Washington, DC, USA, 2001. ISBN 0-7695-1101-5.

[162] Wallodi Weibull. A statistical distribution function of wide applicability. Journal of
Applied Mechanics, 18:293–297, 1951.

[163] James H. Wilkinson. Rounding Errors in Algebraic Processes. Dover Publications,
Incorporated, 1994. ISBN 0486679993.

[164] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Monographs on numerical anal-
ysis. Clarendon Press, 1988. ISBN 9780198534181.

[165] J. Xu, Z. Kalbarczyk, and R.K. Iyer. Networked windows nt system field failure data
analysis. In Dependable Computing, 1999. Proceedings. 1999 Pacific Rim Interna-
tional Symposium on, pages 178–185. 1999. doi:10.1109/PRDC.1999.816227.

[166] Ichitaro Yamazaki and Xiaoye S. Li. On techniques to improve robustness and scala-
bility of a parallel hybrid linear solver. In VECPAR, pages 421–434. 2010.

[167] Gengbin Zheng, Xiang Ni, and Laxmikant V Kalé. A scalable double in-memory
checkpoint and restart scheme towards exascale. In Dependable Systems and Networks
Workshops (DSN-W), 2012 IEEE/IFIP 42nd International Conference on, pages 1–6.
IEEE, 2012.

128

	Résumé en Français
	Introduction
	General Introduction
	Introduction
	Brief introduction to numerical linear algebra
	Sparse matrices
	Solutions for large sparse linear algebra problems
	Iterative methods for linear systems of equations
	Iterative methods for eigenvalue problems
	Parallel implementation of large sparse linear algebra solvers

	Quick introduction to faults in HPC systems
	Understanding faults in HPC systems
	Fault distribution models
	Fault injection models

	Overview of fault detection and correction models
	Fault tolerance and resilience
	Replication and redundancy
	Checkpoint/restart techniques
	Diskless checkpoint techniques
	Limitation of checkpoint/restart techniques
	Checksum-based ABFT techniques for fault detection and correction
	ABFT techniques without checksums for fault recovery
	Fault tolerance in message passing systems

	Faults addressed in this work

	I Interpolation-restart Strategies
	Interpolation-restart strategies for resilient parallel linear Krylov solvers
	Introduction
	Strategies for resilient solvers
	Linear interpolation
	Least squares interpolation
	Multiple faults
	Numerical properties of the Interpolation-Restart Krylov solvers

	Numerical experiments
	Experimental framework
	Numerical behavior in single fault cases
	Numerical behavior in multiple fault cases
	Penalty of the Interpolation-Restart strategy on convergence
	Cost of interpolation strategies

	Concluding remarks

	Interpolation-restart strategies for resilient eigensolvers
	Introduction
	Interpolation-restart principles
	Interpolation methods
	Reference policies

	Interpolation-Restart strategies for well-known eigensolvers
	Some background on basic methods for computing eigenvectors
	Subspace iterations to compute nev eigenpairs
	Arnoldi method to compute one eigenpair
	Implicitly restarted Arnoldi method to compute nev eigenpairs
	The Jacobi-Davidson method to compute nev eigenpairs

	Numerical experiments
	Experimental framework
	Resilient subspace iteration methods to compute nev eigenpairs
	Arnoldi method to compute one eigenpair
	Implicitly restarted Arnoldi method to compute nev eigenpairs
	Jacobi-Davidson method to compute nev eigenpairs

	Concluding remarks

	II Application of Interpolation-restart Strategies to a Parallel Linear Solver
	Resilient MaPHyS
	Introduction
	Sparse hybrid linear solvers
	Domain decomposition Schur complement method
	Additive Schwarz preconditioning of the Schur Complement
	Parallel implementation

	Resilient sparse hybrid linear solver
	Single fault cases
	Interpolation-restart strategy for the neighbor processes fault cases

	Experimental results
	Results on the Plafrim platform
	Performance analysis on the Hopper platform

	Concluding remarks

	Conclusion and perspectives
	Bibliography

