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Résumé
Cette thèse étudie des propriétés limites de problèmes de contrôle optimal (un joueur,

en temps continu) et de jeux répétés à somme nulle (à deux joueurs, en temps discret) avec
horizon tendant vers l’infini. Plus précisément, nous étudions la convergence de la fonction
valeur lorsque la durée du problème de contrôle ou la répétition du jeu tend vers l’infini
(analyse asymptotique), et l’existence de stratégies robustes, i.e. des stratégies ε-optimales
pour guarantir la valeur limite dans tous les problèmes de contrôle de durée suffisamment
longue ou dans tous les jeux répétés de répétition suffisamment large (analyse uniforme).

La partie sur le contrôle optimal est composée de trois chapitres.
Le chapitre 2 est un article de présentation de la littérature récente sur les propriétés

à long terme dans divers modèles d’optimisation dynamique. Dans les deux chapitres
suivants, nous nous concentrons sur les problèmes de contrôle optimal où le coût de la
trajectoire est évalué par une mesure de probabilité générale sur R+, au lieu de la moyenne
de T -horizon (moyenne de Cesàro) ou de la λ-escompté (moyenne d’Abel).

Dans le chapitre 3, nous introduisons une condition de régularité asymptotique pour
une suite de mesures de probabilité sur R+ induisant un horizon tendant vers l’infini (en
particulier, T tendant vers l’infini ou λ tendant vers zéro). Nous montrons que pour toute
suite d’évaluations satisfaisant cette condition, la suite associée des valeurs du problème de
contrôle converge uniformément si et seulement si cette suite est totalement bornée pour
la norme uniforme. On en déduit que pour des problèmes de contrôle définis sur un do-
maine invariant compact et vérifiant une certaine condition de non-expansivité, la fonction
valeur définie par une mesure de probabilité générale converge quand l’évaluation devient
suffisamment régulière. En outre, nous prouvons dans le chapitre 4 que sous les mêmes
conditions de compacité et de non-expansivité, il existe des contrôles ε-optimaux pour
tous les problèmes où le coût de la trajectoire est évalués par une mesure de probbailité
suffisamment régulières.

La partie sur les jeux répétés se compose de deux chapitres.
Le chapitre 5 est consacré à l’étude d’une sous-classe de jeux absorbants à information

incomplète d’un côté. Le modèle que nous considérons est une généralisation du Big match
à information incomplète d’un côté introduit par Sorin (1984). Nous démontrons l’existence
de la valeur limite, duMaxmin, duMinmax, et l’égalité duMaxmin et de la valeur limite.

Dans le chapitre 6, nous établissons plusieurs résultats concernant des jeux récursifs.
Nous considérons d’abord les jeux récursifs avec un espace dénombrable d’états et prou-
vons que si la famille des fonctions valeur des jeux à n étapes est totalement bornée pour
la norme uniforme, alors la valeur uniforme existe. En particulier, la convergence uni-
forme des valeurs des jeux à n étapes implique la convergence uniforme des valeurs des
jeux escomptés. À l’aide d’un résultat dans Rosenberg et Vieille (2000), on en déduit un
théorème taubérien uniforme pour les jeux récursifs. Deuxièmement, nous appliquons le
résultat d’existence de la valeur uniforme à une classe des modèles général de jeux répé-
tés et nous prouvons que la valeur limite et le Maxmin existent et sont égaux. Ces jeux
répétés sont des jeux récursifs avec signaux où le joueur 1 peut toujours déduire le signal
du joueur 2 de son propre signal.

Mots-clefs

Optimisation dynamique ; contrôle optimal ; évaluation générale ; jeux répétés à somme
nulle ; jeux stochastiques ; analyse asymptotique ; analyse uniforme ; jeux stochastiques à
information incomplète d’un côté ; valeur limite ; valeur uniforme ; théorème taubérien.
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Contributions to the analysis of asymptotic properties in
optimal control and repeated games

Abstract
This dissertation studies limit properties in optimal control problems (one-player, in

continuous time) and in zero-sum repeated games (two-player, in discrete time) with large
horizons. More precisely, we investigate the convergence of the value function when the
duration of the control problem or the repetition of the game tends to infinity (the asymp-
totic analysis), and the existence of robust strategies, i.e. ε-optimal strategies to guarantee
the limit value in all control problems with sufficiently long durations or in all repeated
games with sufficiently large repetitions (the uniform analysis).

The part on optimal control is composed of three chapters.
Chapter 2 is a survey article on recent literature of long-term properties in various

models of dynamic optimization. In the following two chapters, we focus on optimal
control problems where the running cost is evaluated by a general probability measure,
instead of the usual T -horizon average (Cesàro mean) or the λ-discount (Abel mean).

In Chapter 3, we introduce an asymptotic regularity condition for a sequence of prob-
ability measures on positive real numbers which induces a horizon tending to infinity (in
particular T tending to infinity or λ tending to zero) for the control problem. We prove
that for any sequence of evaluations satisfying this condition, the associated sequence of
value functions of the control problem converges uniformly if and only if this sequence is
totally bounded for the uniform norm. We deduce that for control problems defined on a
compact invarant domain and satisfying some nonexpansive condition, the value function
defined by a general probability measure converges as the evaluation becomes sufficiently
regular. Further, we prove in Chapter 4 that under the same compact and nonexpan-
sive conditions, there exist ε-optimal controls for all problems where the running cost is
evaluated by a sufficiently regular probability measure.

The part on repeated games consists of two chapters.
Chapter 5 is devoted to the study of a subclass of absorbing games with one-sided

incomplete information. The model we consider is a generalization of Big match with
one-sided incomplete information introduced by Sorin (1984). We prove the existence of
the limit value, Maxmin, Minmax, and that Maxmin is equal to the limit value.

In Chapter 6, we establish several results for recursive games. We first consider re-
cursive games with a countable state space and prove that if the family of n-stage value
functions is totally bounded for the uniform norm, the uniform value exists. In particular,
the uniform convergence of n-stage values implies the uniform convergence of λ-discounted
values. Combined with a result in Rosenberg and Vieille (2000), we deduce a uniform
Tauberian theorem for recursive games. Second, we use the existence result of uniform
value to a class of the generalized models of repeated games and prove that the limit value
and Maxmin both exist and are equal. This class of repeated games are recursive games
with signals where player 1 can always deduce the signal of player 2 from his own along
the play.

Keywords

Dynamic optimization; optimal control; general evaluation; zero-sum repeated games;
stochastic games; asymptotic analysis; uniform analysis; stochastic games with incomplete
information on one side; limit value; uniform value; Tauberian theorem.
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Chapter 1

Introduction

Introduction (version française)
1. Les modèles

Nous étudions dans cette thèse plusieurs modèles d’optimisation dynamique, dont les
problèmes de contrôle optimal (à un joueur et en temps continu) et jeux répétés à somme
nulle (à deux joueurs et en temps discret).

Modèles d’interaction stratégique: différentes sous-classes de jeux répétés

Quand un seul jeu (à somme nulle) est répété, il n’y a pas d’autres considérations
stratégiques entre les joueurs 1. Dans la littérature de jeux répétés, il y a deux thèmes
principaux concernant la variable d’état: l’aspect dynamique (jeux stochastiques, Shap-
ley [53]) et l’aspect informationnel (jeux répétés à information incomplètes, Aumann et
Maschler [5]).

Dans un jeu stochastique, après avoir observé les dernières actions et l’état actuel
(l’état stochastique), les joueurs choisissent leurs actions simultanément. Leurs actions
conjointes, ainsi que l’état actuel, induisent un paiement courrant et une probabilité de
transition pour l’état de l’étape suivante. Un jeu absorbant est un jeu stochastique où tous
les états sauf un sont absorbants 2. Un jeu récursif est un jeu stochastique où le paiement
est toujours zéro avant l’absorption.

Dans le modèle de jeux répétés à information incomplète d’un côté, le jeu matrice
(l’état de la nature) est choisi (et fixé) selon une loi de probabilité. La réalisation de
l’état est communiquée à un seul joueur. Pendant le jeu, les joueurs n’observent pas les
paiements mais seulement les actions.

Pour combiner à la fois l’aspect dynamique et l’aspect informationnel, on définit le
modèle des jeux stochastiques à information incomplète d’un côté: un jeu stochastique est
choisi selon une loi de probabilité, et est communiqué à un seul joueur. Les actions des
joueurs et l’état stochastique sont publics, mais les paiements ne le sont pas.

Un modèle général de jeux répétés est proposé par Mertens [33] (cf. Mertens et al.
[35]): à chaque étape, les joueurs choisissent leurs actions en fonction de leur informa-

1. Cela ne veut pas le cas si le jeu à jouer est à somme non nulle car répétitions permettent coopération
potentielle (voir par exemple le jeu "dilemme du prisonnier").

2. Un état est absorbant dans un jeu stochastique s’il ne change plus dès lors qu’il est atteint.
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tion privée, qui génèrent un paiement courant et une probabilité de transition pour l’état.
Pendant le jeu, les joueurs reçoivent des signaux privés concernant les actions jouées et
l’états, qui sont pas publics en général. Dans un jeu répété avec un joueur plus informé
que l’autre, il y a un joueur (plus informé) qui peut, à chaque étape, déduire le signal de
son adversaire (moins informé) de son propre signal. "Un contrôleur informé" se réfère au
cas où le joueur moins informé n’a aucune influence sur la transition de l’état.

Modèles à un seul joueur: programmation dynamique et contrôle optimal

Quand il y a un seul joueur dans le problème d’optimisation dynamique, un jeu stochas-
tique se révèle être un processus de décision markovien (ou une chaîne de Markov con-
trôlée). Un problème de programmation dynamique est un modèle d’optimisation dy-
namique à un joueur avec transitions déterministes et en temps discret. Dans un problème
de contrôle optimal, il y a un seul joueur (le contrôleur) qui choisit ses actions en temps
continu, et l’état évolue selon un système différentiel contrôlé.

2. Le centre d’intérêt de la thèse

Nous sommes intéressés par les propriétés à long terme de problèmes d’optimisation
dynamiques en temps discret et en temps continu, i.e. l’existence et la caractérisation de la
valeur limite lorsque l’horizon tend vers l’infini, ou lorsque le facteur escompté tend vers
zéro (analyse asymptotique), et en outre, l’existence de stratégies/contrôles ε-optimaux
pour les joueurs à garantir la valeur limite dans tous les problèmes avec suffisamment
grands horizons (analyse uniforme).

1) Traditionnellement, le flux du paiement dans un jeu répété et le coût de la tra-
jectoire d’un problème de contrôle optimal sont évalués par des moyennes de Cesàro ou
des moyennes d’Abel. Comme une approche générale, le paiement ou le coût peuvent
être évalué par une mesure de probabilité (une évaluation) au fil du temps (sur N∗ les
nombres entiers positifs en temps discret et R+ les nombres réels positifs en temps con-
tinu). La valeur limite et la valeur uniforme sont définies de la même façon pour une suite
d’évaluations qui induisent une durée moyenne du problème tendant vers l’infini.

En temps discret, la notion suivante est utilisée pour définir la régularité d’une mesure
de probabilité (évaluation) (cf. Sorin [59]):

Definition La variation totale d’une mesure de probabilité θ = (θt)t≥1 sur N∗ est:
TV (θ) =

∑
t≥1 |θt − θt+1|.

Renault [46] a fourni des conditions suffisantes pour l’existence d’une valeur limite
dans les problèmes de programmation dynamique avec évaluations générales dans le sens
suivant: soit vθ la valeur du problème associée à une évaluation θ, alors vθ converge
uniformément (vers certaine fonction) losque TV (θ) tend vers zéro. Renault et Venel
[47] ont étudié l’existence d’une valeur uniforme dans des problèmes de programmation
dynamique avec des évaluations générales tel qu’il existe des contrôles ε-optimaux pour le
joueur à garantir la valeur limite dans tous les problèmes définis par une certaine évaluation
θ avec TV (θ) suffisamment petite.

Un objectif de cette thèse est d’introduire une condition de régularité analogue pour les
évaluations en temps continu, et l’utiliser enusuite pour l’analyse asymptotique et l’analyse
uniforme dans les problèmes de contrôle optimal avec évaluations générales.

2) Quand il n’y a pas de valeur pour l’analyse uniforme (la valeur uniforme), on définit
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et étudie l’existence du Maxmin du jeu infinitement répété, qui est le montant maximal
qui pouvent être uniformément garanti par le joueur 1 et est, en même temps, le montant
minimal qui pouvent être uniformément défendu par le joueur 2. Le Minmax est définie
de façon duale.

Mertens ([33]) a conjecturé que dans un modéle général de jeux répétés avec un joueur
(joueur 1 le maximiseur) plus informé que l’autre, Maxmin = limn→∞ vn = limλ→0 vλ,
i.e. la valeur limite et le Maxmin existent et sont égaux. Ce résultat a été établi pour
– certaines classes de jeux absorbants à information incomplète d’un côté: Sorin [55],
Sorin [56], Sorin and Zamir [61];
– les jeux récursifs à information incomplète d’un côté: Rosenberg and Vieille [52];
– les jeux répétés avec un contrôleur informé: Rosenberg et al. [50], Renault [45], Gens-
bittel et al. [21].

Récemment, Ziliotto [68] a construit un contre-exemple (un jeu répété des signaux
symétriques), ce qui prouve que la conjecture est fausse en général. Il est maintenant une
tâche difficile, celle d’identifier les sous-classes de jeux répétés pour lesquels la conjecture
de Mertens est vraie. Le deuxième objectif de cette thèse vise à étendre les résultats posi-
tifs existants à plusieurs sous-classes.

3. La littérature liée à cette problèmatique

Programmation dynamique et contrôle optimal: le cas à un joueur

Motivé par l’étude de jeux répétés avec un contrôleur informé (Renault [45]), Renault
[44] a fourni des conditions suffisantes pour l’existence de la valeur limite et la valeur
uniforme dans les problèmes de programmation dynamique avec un espace de l’états ar-
bitraire. En corollaire, on obtient que dans un problème de programmation dynamique
défini sur un espace d’état compact et dont la correspondance de transition satisfait une
certaine condition de non-expansivité, la valeur uniforme existe.

Quincampoix et Renault [42] ont obtenu des résultats analogues à Renault [44] en
temps continu: la valeur uniforme existe dans tout problème de contrôle optimal défini
sur un domaine invariant compact et dont la dynamique contrôlée satisfait une certaine
condition de non-expansivité.

Renault [46] a généralisé l’analyse asymptotique de Renault [44] aux problèmes avec
évaluations générales. L’analyse uniforme pour plusieurs modèles d’optimisations dy-
namiques avec des évaluations générales et en temps discret sont obtenus dans Renault et
Venel [47]. Pour les problèmes de programmation dynamiques définis sur un espace d’état
compact et satisfaisant une certaine condition de non-expansivité, Renault et Venel [47]
ont prouvé que: le joueur a des stratégies ε-optimales (éventuellement aléatoires) pour le
joueur à garantir la valeur limite dans tous les problèmes où le flux du paiment est évalué
par une évaluation θ avec TV (θ) assez petit.

Jeux absorbants à information incomplète d’un côté

Le Big match (désormais BM) est le premier exemple non trivial (à la Blackwell et
Ferguson [13]) de jeux absorbants pour lesquels la valeur uniforme existe. Sorin [55] a
étudié le BM à information incomplète d’un côté (type I), où le joueur 1 est le joueur
informé et a une action en renforçant l’absorption et l’autre en conservant l’état non-
absorbant. Pour cette classe de jeux, Maxmin = limn→∞ vn = limλ→0 vλ, et le Minmax
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existe, mais la valeur uniforme ne existe pas 3.
Pour les jeux absorbants à information incomplète d’un côté, Rosenberg [48] a utilisé

l’approche d’opérateur (cf. Rosenberg et Sorin [51]) pour prouver l’existence de la valeur
limite, i.e. pour en déduire l’unicité du point d’accumulation de (vλ) ou (vn) défini par
l’opérateur de Shapley. Aucun résultat général est encore établi pour l’analyse uniforme
de cette classe de jeux.

Jeux récursifs à information incomplète d’un côté

Pour les jeux récursifs à information incomplète d’un côté, Rosenberg et Vieille [52] ont
prouvé que Maxmin = limn→∞ vn = limλ→0 vλ. Pour obtenir ce résultat, ils ont montré
que le joueur 1 garantit tout point d’accumulation w de (vλ) et que, sachant la stratégie
du joueur 1, joueur 2 peut calculer l’état auxiliaire (sa croyance sur l’état de la nature)
pour défendre w.

Jeux répétés avec un joueur plus informé que l’autre

Dans un modèle général de jeux répétés, il est possible de définir un jeu stochastique
auxiliaire avec les croyances des joueurs (ses types dans "l’espace universel des croyances",
cf. Coulomb [17]) comme variable d’état. Mertens [33] a conjecturé que dans un jeu
répété où le maximiseur est toujours plus informé que le minimiseur, si ce jeu stochastique
auxiliaire associé a une valeur uniforme, alors le Maxmin existe dans le jeu original et est
égal à cette valeur.

Renault [45] a considéré une sous-classe de ce modèle général, les jeux répétés avec un
contrôleur plus informé, i.e. le joueur 1 est toujours informé l’état et du signal du joueur
2 (y compris en particulier les coups du joueur 2) et l’évolution de l’état ne dépend pas de
l’action du joueur 2. Pour ce modèle, Renault [45] a prouvé que la valeur uniforme existe,
un résultat plus fort que la conjecture de Mertens.

Gensbittel et al. [21] ont étendu Renault [45] pour une configuration plus générale
telle que la valeur uniforme existe si les information du joueur 1 est plus précis (mais
peut contenir ni l’état ni les coups du joueur 2) que celui du joueur 2 et l’évolution de la
croyance du joueur 2 est contrôlée uniquement par le joueur 1.

4. Plan et résultats principaux de cette thèse

Ce manuscrit est divisé en deux parties principales.
La première partie (contrôle optimal) contient trois chapitres:
– Le chapitre 2 est un chapitre de l’enquête sur l’optimisation dynamique;
– Le chapitre 3 étudie l’analyse asymptotique en contrôle optimal avec des évaluations
générales;
– Le chapitre 4 concerne l’analyse uniforme en contrôle optimal avec des évaluations
générales.

La deuxième partie (jeux répétés) contient deux chapitres:
– Le chapitre 5 est consacré à l’étude du Big match généralisé à information incomplète
d’un côté;
– Le chapiter 6 contient plusieurs résultats sur les jeux récursifs.

3. Même si pour les deux classes, jeux stochastiques (Mertens et Neyman [34]) et jeux répétés à infor-
mation incomplète d’un côté (Aumann et Mascheler [5]), la valeur uniforme existe.
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Part I: Contrôle optimal

Le chapitre 2: Propriétés à long terme en optimisation dynamique

Ceci est une présentation (le chapitre 2) de la littérature récente sur les propriétés à long
terme des problèmes d’optimisation dynamique. Nous nous concentrons sur les problèmes
de programmation dynamique, le modèle d’un joueur avec transitions déterministes et en
temps discret. Des commentaires détaillés sont effectués pour des extensions en temps
continu (contrôle optimal) par une comparaison des techniques et des résultats dans le
cadre en temps discret. Nous insistons sur l’approche générale, i.e. l’analyse asympto-
tique et l’analyse uniforme pour le probléme d’optimisation dynamique où les paiements
sont évalués par des mesures de probabilité générales. Certaines applications aux proces-
sus de décision markovien (avec observation standard ou avec des observations partielles
sur l’état), les jeux répétés avec un contrôleur informé sont également discutés.

Les chapitres 3-4: Contrôle optimal avec des évaluations générales

Dans les deux chapitres suivants, nous considérons le problème de contrôle optimal où
le coût de la trajectoire est évalué par une mesure générale de probabilité sur R+. Pour
étudier les propriétés de contrôle optimal à long terme, nous introduisons la condition
de régularité asymptotique suivante pour une suite d’évaluations qui induisent une durée
moyenne du problème tendant vers l’infini.

Definition Soit θ ∈ ∆(R+) une mesure de probabilité sur R+. Pour tout s ≥ 0, sa
s-variation totale est: TVs(θ) = maxQ∈B(R+) |θ(Q)−θ(Q+s)|. Une suite d’évaluations
(θk)k≥1 satisfait la condition à long terme si: sup0≤s≤1 TVs(θk) −→k→∞ 0.

Le résultat principal du chapitre 3 est le suivant. Pour toute suite (θk)k≥1 satisfaisant
la condition à long terme, soit {Vθk : k ≥ 1} la famille associée des fonctions valeur pour le
problème de contrôle. (Vθk)k≥1 converge alors uniformément si et seulement si la famille
{Vθk : k ≥ 1} est totalement bornée pour la norme uniforme. En outre, il y a une unique
fonction limite V ∗ en cas de convergence des différentes suites satisfaisant la condition à
long terme; une caractérisation de la fonction valeur V ∗ est également fournie, qui dépend
en général de l’état initial (contrairement à la plupart des résultats dans la littérature
qui supposent conditions ergodiques, cf. Alvarez and Bardi [1], Arisawa [2], Arisawa and
Lions [3], Bensoussan [9], Gaitsgory [20], etc.).

En corollaire, on en déduit que: dans un problème de contrôle optimal qui est "compact
non expansif", i.e. le problème 1) est définie sur un domaine invariant compact; 2) a une
fonction de coût qui est continu en la variable d’état et ne dépend pas de la variable de
contrôle; 3) satisfait une certaine condition non expansif, ||Vθ−V ∗||∞ tend vers zéro losque
sup0≤s≤1 TVs(θ) tend vers zéro. Cela généralise l’analyse asymptotique de Quincampoix
et Renault [42] qui traite des moyennes de Cesàro.

Dans le chapitre 4, nous continuons avec l’analyse uniforme pour des problèmes de
contrôle optimal "compact non expansif" où le coût de la trajectoire est évalué par des
mesures de probabilité générales. On obtient l’existence de la valeur uniforme dans cette
classe de problèmes, i.e. le contrôleur a des contrôles ε-optimaux (éventuellement aléa-
toires) pour le joueur à garantir V ∗ dans tous les problèmes de contrôle où le coût de
la trajectoire est évalué par une mesure θ ∈ ∆(R+) avec sup0≤s≤1 TVs(θ) suffisamment
petite. Cela généralise l’analyse uniforme dans Quincampoix et Renault [42] qui traite des
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Chapter 1. Introduction

moyennes de Cesàro.

Partie II: Jeux répétés

Le chapitre 5: Big match généralisé à information incomplète d’un côté

Dans le chapitre 5, nous étudions une sous-classe de jeux absorbants, nommé Big
match généralisé" (désormais GBM), qui prend la même forme que le Big match (type
I), sauf que lorsque le joueur 1 joue l’action en renforçant l’absorption, la probabilité
d’absorption est strictement positif, mais peut ne pas nécessairement être 1. Pour GBM
à information incomplète d’un côté (type I), nous généralisons résultats de Sorin [55]. Le
résultat Maxmin = limn→∞ vn = limλ→0 vλ est obtenu et la valeur limite est caractérisée
par la valeur d’un "jeu limite" auxiliaire. Nous obtenons aussi l’existence du Minmax
caractérisé par un second jeu auxiliaire.

Notre résultat dans l’analyse asymptotique n’est pas une conséquence de Rosenberg
[48] pour deux raisons: nous considérons une probabilité de transition dépendant de l’état
, ce qui n’est pas le cas dans le modèle étudié par Rosenberg [48]; nous considérons le
flux du paiement du jeu répété évalué par des mesures de probabilité générales, et nous
prouvons que la fonction valeur converge lorsque le poids maximal d’évaluation sur chaque
étape tend vers zéro.

Le chapitre 6: Jeux récursifs

Ce chapitre contient plusieurs résultats concernant les jeux récursifs et est divisé en
deux parties.

Le résultat principal dans la première partie est que pour un jeu récursif avec espace
infini d’état, à condition que la famille des valeurs de jeux à n étapes soit totalement
bornée pour la norme uniforme, la valeur uniforme existe. En particulier, la convergence
uniforme de (vn) implique la convergence uniforme de (vλ). À d’aide d’un résultat inversé
dans Rosenberg et Vieille [52], on en déduit un théorème taubérien pour les jeux récursifs.

Dans la deuxième partie, nous utilisons le résultat d’existence de la valeur uniforme
pour le modèle général de jeux récursifs avec un joueur plus informé que l’autre.
– Pour ce faire, nous définissons d’abord un jeu récursif auxiliaire avec la croyance de
second ordre (sur la croyance du joueur 1 sur l’état) du joueur 2 comme variable d’état.
– Ensuite, nous utilisons les résultats généraux établis dans Gensbittel et al. [21] pour
déduire que la famille des fonctions valeur de jeux auxiliaires à n étapes est totalement
bornée, elle a donc une valeur uniforme.
– Enfin, nous montrons que le joueur 1 peut garantir la valeur uniforme en imitant des
stratégies ε-optimales dans le jeu auxiliaire; pour le joueur 2 à défendre la valeur uniforme,
nous construisons un deuxième jeu auxiliaire qui a une même valeur uniforme que la pre-
mière, et des stratégies ε-optimales dans ce jeu fournissant le joueur 2 réponses optimales
uniformes dans le jeu répété original.
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1.1. The models

Introduction (English version)
1.1 The models

We study in this dissertation several models of dynamic optimization, including op-
timal control problems (one-player and in continuous time) and zero-sum repeated games
(two-player and in discrete time).

Models of strategic interactions: different subclasses of repeated games

When a single stage game (zero-sum) is repeated, there are no further strategic con-
siderations among players 4. In the literature of repeated games, there are two main
topics concerning the state variable: dynamical aspect (stochastic games, Shapley [53])
and the informational aspect (repeated games with incomplete information, Aumann and
Mascheler [5]).

In a stochastic game, after observing the past actions and the current state (the stochas-
tic state), players choose their actions simultaneously. Their joint actions, together with
the current state, induce a current stage payoff and also a probability transition for the
state in the next stage. An absorbing game is a stochastic game where all states but one
are absorbing 5. A recursive game is a stochastic game where the stage payoff is always
zero before absorption.

In the model of repeated games with incomplete information on one side, the stage
game (the state of the nature) is chosen (and kept fixed) according to some probability
distribution. The realization of the state is communicated to one player only. During the
play, players do not observe the stage payoffs but only the actions.

To combine both the dynamical aspect and the informational aspect, one defines the
model of stochastic games with incomplete information on one side: one stochastic game
among a family is chosen to be played according to some probability distribution, and
is communicated to one player only. Both the stochastic state and players’ actions are
public, but not the stage payoffs.

A general model of repeated games is proposed by Mertens [33] (cf. Mertens et al. [35]):
at each stage, players take actions according to their private information, which generate
a stage payoff and also a probability transition for the state in the next stage. Along the
play, players receive private signals concerning the actions and states, which are in general
not public. In a repeated game with one player more informed than the other, there is one
player (more informed) who can always deduce the opponent’s (less informed) signal from
his own at each stage. "An informed controller" refers to the case when the less informed
player has no influence on the transition of the state.

Models with only one player: dynamic programming and optimal control

When there is a single player in the dynamic optimization problem, a stochastic game
turns out to be a Markovian decision process (or controlled Markovian chain). Dynamic
programming is a one-player dynamic optimization model with deterministic transition and

4. This is not the case if the stage game being played is non-zero sum since repetition enables potential
cooperation (see for example the game of "Prisoner’s Dilemma").

5. A state in a stochastic game is absorbing if it does not change any more once it is reached.
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in discrete time. In an optimal control problem, there is a single player (the controller)
who takes actions in continuous time, and the state evolves along a controlled differential
system.

1.2 Main research interests
We are interested in the long-term properties in dynamic optimization problems both

in discrete time and in continuous time, i.e. the existence and the characterization of
the limit value when the horizon tends to infinity or the discount factor tends to zero
(the asymptotic analysis), and further, the existence of approximately optimal strate-
gies/controls for players to guarantee the limit value for all problems with sufficiently
large horizon (the uniform analysis).

1) Traditionally, the payoff stream in a repeated game or the running cost in an optimal
control problem is evaluated by Cesàro means or Abel means. As a general approach, the
payoff stream or the running cost can be evaluated by any probability measure (evaluation)
over time (on N∗ the positive integers in discrete time and on R+ the positive real numbers
in continuous time). The asymptotic value and the uniform value are defined in a similar
way for a sequence of evaluations whose expected duration tends to infinity.

In the discrete time framework, the following notion is used to define the regularity of
a probability measure (cf. Sorin [59]):

Definition 1.2.1. The total variation of a probability measure θ = (θt)t≥1 over N∗ is:
TV (θ) =

∑
t≥1 |θt − θt+1|.

Renault [46] provided sufficient conditions for the existence of a limit value in dynamic
progmming problems with general evaluations in the following sense: let vθ be the value
of the problem associated with any evaluation θ, then vθ converges uniformly (to some
value function) as TV (θ) tends to zero. Renault and Venel [47] studied the existence of a
uniform value in dynamic progmming problems with general evaluations such that there
exists approximately optimal controls to guarantee the limit value in all problems defined
by some evaluation θ with TV (θ) sufficiently small.

One objective of this dissertation is to introduce an analogous regularity condition for
evaluations in the continuous time framework, and then use it for the asymptotic analysis
and the uniform analysis for optimal control problems with general evaluations.

2) When there is no value for the uniform analysis (the uniform value), one defines, and
studies the existence 6 of, Maxmin of the inifnitely repeated game, which is the maximal
amount that can be uniformly guaranteed by player 1 and is at the same time the minimal
amount that can be uniformly defended by player 2. Minmax is defined in a dual way.

Mertens [33] conjectured that in a general model of repeated games with one player
(player 1 the maximizer) more informed than the other,Maxmin = limn→∞ vn = limλ→0 vλ,
i.e. both the limit value and Maxmin exist and they are equal. This result has been es-
tablished for
– some classes of absorbing games with one-sided incomplete information: Sorin [55],
Sorin [56], Sorin and Zamir [61];
– recursive games with one-sided incomplete information: Rosenberg and Vieille [52];
– repeated games with an informed controller: Rosenberg et al. [50], Renault [45], Gens-
bittel et al. [21].

6. The existence of Maxmin is not trival even though, to the best knowledge of the author, there has
been no example yet explicitely proving that Maxmin does not exist. The counterexample in Ziliotto [68]
disproves Mertens’ conjecture by a non existence of the limit value.
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Recently, Ziliotto [68] constructed a conterexample (a repeated game with symmetric
signals), proving that the conjecture is false in general. It is now a challenging task to
identify the subclasses of repeated games for which Mertens’s conjecture is true. The
second object of this dissertation aims at extending the existing positive results to several
larger subclasses.

1.3 Related literature

1.3.1 One-player case: dynamic programming and optimal control

Lehrer and Sorin [28] proved a Tauberian theorem in dynamic programming: (vn)
converges uniformly as n tends to infinity if and only if (vλ) converges uniformly as λ
tends to zero, and in case of convergence, both limits are the same. The analogous result
in continuous time framework is obtaind in Oliu-Barton and Vigeral [40] for optimal control
problems.

Motivated from the study of repeated games with an informed controller (Renault
[45]), Renault [44] provided sufficient conditions for the existence of limit value and of
uniform value in dynamic programming problems with an arbitrary state space. The
main conditions are expressed as compactness of a family of value functions for some
auxiliary problems. One corollary states that in a dynamic programming problem defined
on a compact state space whose transition correspondence satisfies some nonexpansive
condition, the uniform value exists.

Quincampoix and Renault [42] obtained the result analogue to Renault [44] in con-
tinuous time framework: the uniform value exists in any optimal control problem defined
on a compact invariant domain whose controlled dynamic satisfies some nonexpansive
condition. Being different from most results in the literature of optimal control which
assume certain ergodic condition (cf. Alvarez and Bardi [1], Arisawa [2], Arisawa and
Lions [3], Bensoussan [9], Gaitsgory [20], etc.), Quincampoix and Renault [42] provided a
characterization for the limit value function which may depend on the initial state.

Renault [46] generalized the asymptotic analysis in Renaul [44] to problems with gen-
eral evaluations. The uniform analysis for several models of dynamic optimizations with
general evaluations and in discrete time framework are obtained in Renault and Venel [47].
For dynamic programming problems defined on a compact state space and satisfying some
nonexpansive condition, Renault and Venel[47] proved that: the decision-maker (player)
has ε-optimal play (may be random) to guarantee the limit value in all problems in which
the payoff stream is evaluated by some θ with TV (θ) small enough.

1.3.2 Absorbing games with one-sided incomplete information

Big match (henceforth BM) is the first non-trivial example (due to Blackwell and
Ferguson [13]) of absorbing games for which the uniform value is proven to exist. Sorin
[55] studied BM with one-sided incomplete information (type I), where player 1 is the
informed player and has one action enforcing the absorption and the other one keeping
the state non-absorbing. For this class of games, Maxmin = limn→∞ vn = limλ→0 vλ is
true and Minmax exists, but the uniform value does not exist 7.

To prove the result Maxmin = limn→∞ vn = limλ→0 vλ, Sorin [55] introduced an aux-
iliary "limit game" played on [0, 1], where player 1 (the informed player) chooses a family

7. Even though for both stochastic games (Mertens and Neyman [34]) and repeated games of incomplete
information on one side (Aumann and Mascheler [5]), uniform value is proven to exist.
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of stopping times to hit the enforcing action (of absorption) and player 2 plays a history
independent strategy in continuous time, such that the value of the "limit game" charac-
terizes both Maxmin and the limit value of the repeated game. The idea of introducing
an auxiliary game with reduced but "statistically sufficient" strategy sets for players to
mimic the (optimal) plays in the repeated game appeared as early as Mertens and Zamir
[37], which deals with "repeated games without a recursive structure" (see also Waternaux
[67], Sorin [58]).

The difficulty in the proof of Sorin [55] is the existence of a pair of "equalizing" strategies
in the "limit game" such that the payoff is constant on [0, 1] which is equal to its value;
moreover, player 1 can adapt this pair to the empirical frequence of player 2’s actions such
that the average payoff in the repeated game is equal to the value of the "limit game" if
player 2 follows his strategy in the pair and is less otherwise.

In another paper, Sorin [56] studied BM with one-sided incomplete information (type
II), where the informed player is still player 1 while the absorption is enforced by (one of
the two actions of) player 2. For these games, the difficulty is the existence of Minmax,
which is related to the approachability (cf. Blackwell [11]) in stochastic games with vector
payoffs. Techniques in Sorin [55] and Sorin [56] are used in Sorin [57] to solve a class of
repeated games with state-dependent signalling functions.

For absorbing games with one-sided incomplete information, Rosenberg [48] used the
operator approach (cf. Rosenberg and Sorin [51]) to prove the existence of limit value, i.e.
to deduce the uniqueness of the accumulation point of (vλ) or (vn) defined by Shapley
operator. No general result is available yet for the uniform analysis of this class of games.

1.3.3 Recursive games with one-sided incomplete information

For recursive games with one-sided incomplete information, Rosenberg and Vieille [52]
proved that Maxmin = limn→∞ vn = limλ→0 vλ. To obtain the result, they showed
that player 1 guarantees any accumulation point w of (vλ), and more, knowing player 1’s
strategy, player 2 can compute the auxiliary state (his belief over the state of the nature)
so as to defend w.

The ε-optimal strategy in Rosenberg and Vieille [52] is constructed as an alternation
between two types of strategies (similar construction appeared also in Solan and Vieille
[54]): one is optimal in the "projective game" (λ = 0 in the Shapley equation which defines
vλ as its unique fixed point) for w; the other one is optimal in some λ-discounted game
with ||w − vλ||∞ small.

Moreover, they showed in one example that Maxmin 6= Minmax. The existence of
Minmax is in general unknown.

1.3.4 Repeated games with one player more informed than the other

Merten’s conjecture (programme) In a general model of repeated games, it is possible
to define an auxiliary stochastic game with player’s beliefs (their types in the "universal
belief space", cf. Coulomb [17]) as the state variable. Mertens [33] conjectured that in a
repeated game with the maximizer more informed than the minimizer, if the associated
auxiliary stochastic game has a uniform value, then Maxmin in the original game exists
and is equal to this value. Briefly, Mertens’ programme (conjecture) for this class of
repeated games consists of the following three steps:

1) Define an auxiliary stochastic game where players’ beliefs are the state variables;
2) Prove that this auxiliary stochastic game with infinite state space has a uniform

value;
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3) Show that both players can mimic ε-optimal strategies in the auxiliary game so as
to guarantee or to defend the value of the auxiliary game in the original repeated game.

Repeated games with an informed controller Renault [45] considered a subclass of
this general model, repeated games with an informed controller, that is, player 1 is always
informed the state and player 2’s signal (including in particular player 2’s action) and the
evolution of the state does not depend on the action of player 2. For this model, Renault
[45] proved that the uniform value exists, a result stronger than Mertens’ conjecture.

The proof of Renault [45] can be seen as an implementation of Mertens’ programme:
first, a reduction of the repeated game to a one-player dynamic programming problem (as
if player 2 is playing a best resply at each stage) is made; second, the result in Renault
[44] was used to obtain the existence of uniform value for the reduced problem; finally,
it is possible for player 1 to transform any ε-optimal play in the dynamic programming
problem to an ε-optimal strategy in the original repeated game. As for player 2, using the
fact that the transition is independent of his action, one deduces that the uniform value
of the reduced problem can be guaranteed by him by splitting the play into blocks.

Gensbittel et al. [21] extended Renault [45] to a more general setup such that the
uniform value exists if player 1’s information is more accurate (but may contain neither
the state nor the actions of player 2) than player 2’s and the evolution of player 2’s belief
is uniquely controlled by player 1.

1.4 Organization and main results of this dissertation

This manuscript is divided into two main parts.
The first part (optimal control) contains three chapters:
– Chapter 2 is a survey chapter on one-player dynamic optimization;
– Chapter 3 studies the asymptotic analysis in optimal control with general evaluations;
– Chapter 4 concerns the uniform analysis in optimal control with general evaluations.
The second part (repeated games) contains two chapters:
– Chapter 5 is devoted to the study of generalized Big match with one-sided incomplete
information;
– Chpater 6 contains several results on recursive games.

1.4.1 Part I: optimal control

Chapter 2: A survey article on long-term properties in dynamic optimization

This chapter contains a survey article of recent literature on the long-term properties
in one-player dynamic optimization problems. We focus on the deterministic dynamic
programming in discrete time. Extensive comments are also made on extensions to con-
tinuous time framework (optimal control) by a comparison of the techniques and results
in discrete time framework. We emphasize the approach for the asymptotic analysis and
for the uniform analysis defined by general probability measures. Some applications to
Markovian decision process (with standard observation or with partial observations of the
state), repeated games with an informed controller are also discussed.

Chapter 3-4: Optimal control with general evaluations

We consider in the following two chapters optimal control problems where the running
cost is evaluated by a general probability measure over R+. To study the associated long-
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term properties of the control problem, we introduce the following asymptotic regularity
condition for a sequence of evaluations whose expected duration tends to infinity.

Definition 1.4.1. Let θ ∈ ∆(R+) be a probability measure over R+. For any s ≥ 0, its
s-total variation is: TVs(θ) = maxQ∈B(R+) |θ(Q)−θ(Q+s)|. A sequence of evaluations
(θk)k≥1 satisfies the long-term condition if: sup

0≤s≤1
TVs(θk) −→k→∞ 0.

Our main result in Chapter 3 is as follows. For any sequence (θk)k≥1 satisfying the
long-term condition, let {Vθk : k ≥ 1} be the associated family of value functions for the
control problem. Then (Vθk)k≥1 converges uniformly if and only if the family {Vθk : k ≥ 1}
is totally bounded for the uniform norm. Moreover, there is a unique limit function
V ∗ in case of convergence for different sequences satisfying the long-term condition; a
characterization of the value function V ∗ is also provided which in general depends on the
initial state (being different from most results in the literature assuming ergodic condition).

As a corollary, we deduce that: in a compact nonexpansive optimal control problem, i.e.
the problem 1) is defined on a compact invariant domain; 2) has a running cost function
that is continuous in the state variable and does not dependent on the control variable;
3) satisfies certain nonexpansive condition, ||Vθ − V ∗||∞ tends to zero as sup0≤s≤1 TVs(θ)
vanishes. This generalizes the asymptotic analysis in Quincampoix and Renault [42] which
deals with Cesàro means.

In Chapter 4, we continue with the uniform analysis for compact nonexpansive optimal
control problems associated to general evaluations. We obtain the existence of uniform
value in this class of problems, that is, the controller has ε-optimal controls (may be
random) to guatantee V ∗ for all control problems in which the running cost is evaluated
by some θ ∈ ∆(R+) with sup0≤s≤1 TVs(θ) sufficiently small. This generalizes the uniform
analysis in Quincampoix and Renault [42] which deals with Cesàro means.

1.4.2 Part II: Repeated games

Chapter 5: Generalized Big match with one-sided incomplete information

In Chapter 5, we study a subclass of absorbing games, named "generalized Big match"
(hence forth GBM), which takes the same form of Big match (type I) except that when
player 1 plays the enforcing action (of absorption), the absorbing probability is strictly
positive but may not necessarily be one. For GBM with one-sided incomplete information
(type I), we generalize results in Sorin [55]. The resultMaxmin = limn→∞ vn = limλ→0 vλ
is obtained and the limit value is characterized by the value of an auxiliary "limit game".
We obtain also the existence of Minmax characterized by a second auxiliary game.

Even though the enforcing action does not induce a probability one of absorption as in
BM , by playing a bounded number (denoted by M) of times this action, the absorption
will occur with a probability close to one. In the asymptotic analysis, we define a sequence
of auxiliary games (discretization of some "limit game") with reduced strategies such that
this number M is a state variable in the auxiliary game. To obtain the result, we show
that the optimal strategies in the auxiliary games give asymptotic optimal strategies for
both players in the original repeated game.

In the uniform analysis of Maxmin, we first establish properties in the "limit game"
played on [0, 1] associated with some BM with one-sided incomplete information, and
derive the corresponding ε-optimal strategies (in a generic form) in the repeated game.
This is similar to Sorin [55], while the difference is that the BM used to define the "limit
game" in our case takes a generalized form such that an absorption leads to some absorbing
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state rather than some absorbing payoff. Next, we iterateM times the auxiliary ε-optimal
strategies that are in generic form to define a behavior strategy in the repeated game.

To show that the iterated strategy is ε-optimal, we make an inductive analysis on
the number M . Indeed, at the last time of playing the enforcing action, the expected
probability of absorption is almost one, thus it corresponds to BM with absorbing payoffs;
at each other time of playing the enforcing action, we are in the situation of BM with
absorbing states.

Our result in the asymptotic analysis is not implied by Rosenberg [48] for two reasons:
we consider the transition probability to be state-dependent, which is not the case in
Rosenberg [48]; we consider the payoff stream of the repeated game evaluated by a general
probability measure, and prove that the value function converges as the weight of the
measure on each stage tends to zero.

Chapter 6: Recursive games

This chapter contains several results on recursive games and is divided into two parts.
The main result in the first part is that for a recursive game with infinite state space,

provided that the family of the n-stage values is totally bounded for the uniform norm, the
uniform value exists. In particular, the uniform convergence of (vn) implies the uniform
convergence of (vλ). Together with a reversed result in Rosenberg and Vieille [52], we
deduce a Tauberian theorem for recursive games.

To prove the existence of uniform value, we use v the point-wise limit superior function
of (vn) as the target function for player 1 (dual for player 2).
– We first prove that in a positive-valued recursive game (for some M > 0: at any non-
absorbing state x, there is a uniformly bounded stage number n(x) such that vn(x)(x) ≥
M), player 1 has strategies σε to guarantee the value x 7→ vn(x)(x) and to enforce an
absorption in finite time (uniformly terminating).
– Next we make a reduction of any recursive game to an auxiliary positive-valued one by
turning any non-absorbing state x to an absorbing one for which v(x) < ε.
– Then the ε-optimal strategy is constructed as the alternation between two types: to play
σε as long as v(xn) ≥ 2ε; and shift to play an optimal strategy in the "projective game"
defined by v as long as v(xn) drops down to 0.
We use the uniformly terminating property of σε and the fact that the stage payoff is zero
on non-absorbing states to derive the result.

In the second part, we use the existence result of uniform value to implement Mertens’
programme for a general model of recursive games with one player more informed than
the other.
– For this aim, we first define an auxiliary recursive game with player 2’s second order
belief (over player 1’s belief over the true state) as the state variable.
– Next, we use the general results established in Gensbittel et al. [21] to deduce that the
n-stage values in the auxiliary game is totally bounded, thus it has a uniform value.
– Finally we show that player 1 can guarantee the uniform value by mimicking ε-optimal
strategies in the auxiliary game; for player 2 to defend the uniform value, we construct a
second auxiliary game which has a same uniform value as the first one, and the ε-optimal
strategies in it provides player 2 uniform optimal replies in the original repeated game.
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Chapter 2. Propriétés à long terme en optimisation dynamique

Long-term properties in dynamic
optimization

2.1 Introduction

Dynamic optimization models decision making in a dynamic environment: a decision-
maker takes action time after time, which induces a current reward/payoff and also a
transition for the next state. Depending on the dynamic system being discrete or con-
tinuous, and being deterministic or stochastic, different optimization models have been
developped for study (Bellman [7], Bellman [8], Blackwell [12], Pontryagin et al. [41],
etc.), including for example (deterministic) dynamic programming, Markovian decision
process, optimal control, stochastic optimal control.

This chapter studies the long-term properties of dynamic optimization. We are inter-
ested in the asymptotic behavior of the values (the asymptotic analysis) or the existence of
robust (approximately) optimal strategies (the uniform analysis) in different optimization
models where the expected duration of the problem is large. Traditionally 1, we consider
the optimization problem associated with an average payoff (Cesàro mean) for a fixed
horizon and then let the horizon tend to infinity, or the optimization problem associated
with a discounted payoff (Abel mean) for a fixed discount factor and then let the discount
factor tend to zero. We also study the model where the payoff stream is evaluated by a
family of probability measures on the positive integers such that the weight of the measure
on each stage becomes negligible.

We focus on the model of deterministic dynamic programming in discrete time. We
comment also extensively on extensions of the results to models with stochastic transi-
tion (Markovian decision process, gambling house) and models in continuous time (opti-
mal control). Some applications to Markovian decision process with partial observations
(POMDP) and zero-sum repeated games with an informed controller will also be discussed.

The organization of this chapter is as follows. Section 2 describes the model of dynamic
programming, and introduces the value notions we are going to study. Section 3 compares
different notions of asymptotic analysis (Tauberian theorem) or uniform analysis (uniform
value and Blackwell optimality). Section 4 concerns the asymptotic analysis, and Section
5 contains sufficient conditions for the existence of uniform values. In the last section we
focus on a specific model, the "compact nonexpansive" case, for which a very strong notion
of uniform value is studied (associated with general probability measures). At the end,
we look at the applications to POMDP and to repeated games. Extensions to continuous
time framewrok (optimal control) will be also discussed in each section.

1. There are also other ways to evaluate the infinite flow payoff, for example, the limit inferior or the
limit superior of the Cesàro means. These approaches are not discussed here.
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2.2 Model
We consider dynamic programming (henceforth DP) problems with arbitrary state

space and bounded rewards.
The formal description of the model is as follows. Let Z be a non empty set of states,

F : Z ⇒ Z is a non empty valued transition correspondence, and r : Z → [0, 1] is the
reward function. Starting at the initial state z0 in Z, the decision-maker chooses some
new state z1 ∈ F (z0), realizing a stage payoff r(z1). Then he chooses again some new
state z2 ∈ F (z1), realizing a stage payoff r(z2), etc ... The DP problem is summarized as
Γ = 〈Z,F, r〉. We write Γ(z0) for a DP problem with an initial state z0.

Definition 2.2.1. A play at z0 is a sequence s = (z1, ..., zt, ...) in Z∞ such that zt+1 ∈
F (zt) for each t ≥ 0. Denote by S(z0) the set of plays at z0.

A play s = (zt)t≥1 ∈ S(z0) is stationary if there is a function f : Z → Z (a selection
of F ) such that zt+1 = f(zt) for all t ≥ 0.

Let ∆(N∗) be the set of probability distributions over N∗ = {1, ..., t, ...} the set of
positive integers. Any θ = (θt)t≥1 ∈ ∆(N∗) is an evaluation (for the payoff stream), where
θt is the weight of stage t.

Definition 2.2.2. Given any θ = (θt)t≥1 ∈ ∆(N∗), the θ-value at z0 is

vθ(z0) = sup
s=(zt)∈S(z0)

γθ(s), where γθ(s) =
∑
t≥1

θtr(zt).

Particular cases of evaluations and their corresponding value functions include:
n-stage average evaluation (Cesàro mean): ∀n ∈ N∗, θ̄n = ( 1

n , ...,
1
n , 0, ...), and the

n-stage value at z0 is:

vn(z0) = sup
s∈S(z0)

γn(s), where γn(s) = 1
n

n∑
t=1

r(zt);

λ-discounted evaluation (Abel mean): ∀λ ∈ (0, 1], θ̄λ =
(
λ(1− λ)t−1)

t≥1 , and the
λ-discounted value at z0 is:

vλ(z0) = sup
s∈S(z0)

γλ(s), where γλ(s) =
∑
t≥1

λ(1− λ)t−1r(zt).

The asymptotic analysis (the value approach) concerns the asymptotic behavior of vθ
as the weight of each stage under θ becomes negligible. When (θt)t≥1 is non-increasing in
t, it is natural to take θ1 tending to zero. In particular, we study the convergence of (vn)
as n tends to infinity or the convergence of (vλ) as λ tends to zero.

For evaluations not necessarily decreasing, the following example shows that the asymp-
totic analysis under the convergence condition "supt≥1 θt −→ 0" is in general too weak to
have the convergence of vθ.

Example 1. Consider an un-controlled deterministic process alternating beween two states,
0 and 1, with a payoff stream (0, 1, 0, 1, ...). Let (µk) and (ηk) be two sequence of evalu-
ations with µk = 1

k

∑2k
t=1 1t∈2N and ηk = 1

k

∑2k
t=1 1t∈2N+1, ∀k ≥ 1. We have vµk = 1 and

vηk = 0 for all k ≥ 1, even though both sequences of evaluations have vanishing stage
weights.

For the asymptotic analysis under general evaluations, the following notion is intro-
duced in the literature (cf. Sorin [59] p.105).
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Definition 2.2.3. The total variation of any evaluation θ ∈ ∆(N∗) is

TV (θ) =
∑
t≥1
|θt+1 − θt|.

Definition 2.2.4. Γ has a limit value v if for all z0 ∈ Z, limn→∞ vn(z0) = limλ→0 vλ(z0) =
v(z0), and both convergences are uniform in z0.

Γ has a TV-limit value v if for any sequence of evaluations (θk) with TV (θk) −→k→∞
0, (vθk) converges uniformly (on Z) to v as k tends to infinity.

More generally, let Θ ⊆ ∆(N∗) be a subset of evaluations and ϕ : Θ :→ R, Γ has a
(Θ, ϕ)-limit value v if for any sequence (θk) in Θ with ϕ(θk) −→k→∞ 0, (vθk) converges
uniformly (on Z) to v as k tends to infinity.

Below is an equivalent description of the (Θ, ϕ)-limit value.

Lemma 2.2.5. For any (Θ, ϕ) be given. Γ has a (Θ, ϕ)-limit value v if and only if there
is (Θ, ϕ)-uniform convergence of {vθ} to v, i.e,

∀ε > 0,∃α > 0,∀θ ∈ Θ, s.t. ϕ(θ) ≤ α, |vθ(z0)− v(z0)| ≤ ε, ∀z0 ∈ Z.

Proof. One direction is evident. Suppose now that Γ has a (Θ, ϕ)-limit value v but there
is no (Θ, ϕ)-uniform convergence of {vθ} to v, i.e. ∃ε0 > 0,∀α > 0,∃θ ∈ ∆(Θ), s.t. ϕ(θ) ≤
α and supz0∈Z |vθ(z0) − v(z0)| > ε0. Fixing ε0 > 0 as above, we consider a vanishing
positive sequence (αk). Then there exists a sequence of evaluations (θk) such that ϕ(θk) ≤
αk −→k→∞ 0 while supz0∈Z |vθk(z0) − v(z0)| ≥ ε0 > 0, ∀k ≥ 1. This contradicts the fact
that v is the (Θ, ϕ)-limit value of Γ.

The uniform analysis (the strategy approach) studies a stronger notion of values (than
the asymptotic analysis). It asks for the existence of approximately optimal play for all
n-stage problems with n large enough (or, for all θ-evaluated problems with TV (θ) small
enough).

Definition 2.2.6. Let v be the limit value of Γ. Then Γ has a uniform value if the
decision-maker uniformly guarantees v, i.e.,

∀ε > 0,∃n0 > 0,∀z0 ∈ Z, ∃σε ∈ S(z0), s.t. γn(σε) ≥ v(z0)− ε,∀n ≥ n0.

Let v be the TV -limit value of Γ. Then Γ has a TV-uniform value v if the decision-
maker uniformly guarantees the TV -limit value v, i.e.,

∀ε > 0,∃α > 0,∀z0 ∈ Z,∃σε ∈ S(z0), s.t. γθ(σε) ≥ v(z0)−ε, ∀θ ∈ ∆(N∗) with TV (θ) ≤ α.

More generally, let v be some (Θ, ϕ)-limit value. Then Γ has a (Θ, ϕ)-uniform value
v if the decision-maker uniformly guarantees the (Θ, ϕ)–limit value v, i.e.,

∀ε > 0,∃α > 0,∀z0 ∈ Z,∃σε ∈ S(z0), s.t. γθ(σε) ≥ v(z0)− ε,∀θ ∈ Θ with ϕ(θ) ≤ α.

The play σε appearing in the above definition is called ε-optimal.

Particular examples of (Θ, ϕ) include:
1. Θ = {θ̄n : n ∈ N} and ϕ(θ̄n) = 1

n .
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2. Θ = {θ̄λ : 0 < λ ≤ 1} and ϕ(θ̄λ) = λ.
3. Θ = ∆(N) and ϕ(θ) = supt≥1 θt.
4. Θ = ∆(N) and ϕ(θ) = TV (θ).
We name Abel-limit value (resp. Cesàro-limit value) for the family of evaluations being

the λ-discounting (resp. the n-stage averages). Samely we name Abel-uniform value and
Cesàro-uniform value. The Cesàro-uniform value is by definition the uniform value.

For different models to be later studied, the notions of limit values and uniform values
will be defined in a similar way.

2.3 Between Abel mean and Cesàro mean
The study of Abel-limit (uniform) value corresponds to discounted dynamic program-

ming in the literature. The equivalence between the Abel-limit value and the Cesàro-limit
value refers to Tauberian type results (Lehrer and Sorin [28]), which we discuss in the
first and second subsections. The relation between the (Cesàro-)uniform value and the
Abel-uniform value is also mentioned. In the last subsection, we present a counterexample
(due to Lehrer and Monderer [27] and Monderer and Sorin [38]) showing that the existence
of limit value does not imply the existence of uniform value.

2.3.1 A Tauberian theorem

When there is no decision-maker, the limits of Cesàro means and Abel means of a
positive sequence (at)t≥1 satisfy the following Abelian theorem (cf. Lippman [32]):

lim sup
n→∞

ān ≥ lim sup
λ→0

āλ ≥ lim inf
λ→0

āλ ≥ lim inf
n→∞

ān.

Moreover, Hardy and Littlewood (cf. Lippman [32]) proved that the the convergence of
āλ as λ tends to zero implies the convergence of ān as n tends to infinity (together with
Abelian theorem to have obtained the so-called Tauberian theorem).

This result is generalized by Lehrer and Sorin [28] to the framework of dynamic pro-
gramming.

Theorem 2.3.1 (Lehrer and Sorin 1992). In a dynamic programming problem Γ, the
uniform convergence of vλ as λ tends to zero is equivalent to the uniform convergence of
vn as n tends to infinity. Moreover, in case of convergence, both limits are the same.

The following example underlines the fact that uniform convergence (rather than point-
wise convergence) is essential for the result.

Example 2 ( Lehrer and Sorin 1992). Z = N × N. F (x, 0) = {(x, 1), (x + 1, 0)} and
F (x, y) = {(x, y + 1)},∀x ≥ 0, y ≥ 1. ∀x ≥ 0: r(x, y) = 0 for y = 0 or y ≥ x; r(x, y) = 1
otherwise. limn→∞ vn(0, 0) = 1

2 6=
1
4 = limλ→0 vλ(0, 0). Moreover, vn does not converge

uniformly: limn→∞ vn(x, 0) = 1
2 while vx(x, 0) = 1 for all x ≥ 1.

The proof of Theorem 2.3.1 relies on the the following preliminary results (Lemma
2.3.2 to Lemma 2.3.6). The general idea is to write the λ-discounted average payoff as
the convex combination of n-stage average payoffs (cf. Lemma 2.3.3). Some of the results
are presented in a more general framework (families of decreasing evaluations) in the next
subsection.

The first result shows that the limit value is decreasing on any play.
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Lemma 2.3.2. For any play s = (zm) ∈ S(z0), we have: for all m ≥ 1,

lim sup
n→∞

vn(zm) ≤ lim sup
n→∞

vn(z0) and lim sup
λ→0

vλ(zm) ≤ lim sup
λ→0

vλ(z0).

The following result states that the λ-discounted payoff can be written as a convex
combination of n-stage payoffs.

Lemma 2.3.3. For any λ ∈ (0, 1] and any play s ∈ S(z0),

n∑
t=1

λ(1− λ)t−1r(zt) = λ2
n−1∑
t=1

t(1− λ)t−1γt(s) + λ(1− λ)n−1nγn(s), ∀n ≥ 1

and ∑
t≥1

λ(1− λ)t−1r(zt) = λ2∑
t≥1

t(1− λ)t−1γt(s).

The following result (compare with the Abel theorem in the uncontrolled problem) is
deduced from above.

Proposition 2.3.4. For all ε > 0 and all N > 1, there exists λ0 > 0 such that: for all
λ ∈ (0, λ0] and for all z0 ∈ Z, there is n ≥ N satisfying

vn(z0) ≥ vλ(z0)− ε.

This implies that lim supn→∞ vn ≥ lim supλ→0 vλ.

Amore precise formulation of equations in Lemma 2.3.3 is as follows. DefineM [α, β;λ] =
λ2∑β

t=1α t(1− λ)t−1.

Lemma 2.3.5. There exists N0 and ε0 such that for any n ≥ N0 and any ε ≤ ε0 one has:

M
[
(1− ε)n, n; 1/n

]
≥ ε/2e.

For any δ > 0, there exists ε0 > 0 such that for any ε ≤ ε0 there is some N0 such that
n ≥ N0 implies:

M
[
εn, (1− ε)n; 1/n

√
ε
]
≥ 1− δ.

Another general property is:

Lemma 2.3.6. For any ε > 0, any z0 ∈ Z, and any n ≥ 1, there exists a play s = (zt) ∈
S(z0) and a stage L such that

1
T

T∑
`=1

r(zL+`) ≥ vn(z0), for all 1 ≤ T ≤ nε

2 .

Remark 2.3.7. Ziliotto [70] generalizes Theorem 2.3.1 to two-player stochastic games.
The approach of Ziliotto [70] is different, which is through the study of the Shapley operator.
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2.3.2 Extensions

Stochastic dynamic programming (MDP)

The Tauberian theorem extends easily to the case with stochastic transitions. Consider
for example the following model of Markovian decision process (MDP).

A standard model of MDP The MDP Ψ = 〈K,A, q, g〉 is defined by the following
elements: a state space K, a nonempty set A of actions, a transition function q from
K × A to ∆f (K), the set of probability distributions over K with finite support, and a
payoff function g from K × A to [0, 1]. The MDP with an initial probability distribution
p0 ∈ ∆f (K), denoted by Ψ(p0), is played as follows: an initial state k1 is chosen according
to p0, and k1 is communicated to the decision-maker. Then he takes an action a1 in
A, which induces, together with k1, a stage payoff g(k1, a1) and a transition probability
q(·|k1, a1) for the new state k2. The play moves then to the next stage: the decision-maker
observes k2 and then takes again an action a2 in A, etc.

A behavior strategy for the decision-maker is a sequence σ = (σt)t≥1, where for each
t, σt : K × (A ×K)t−1 → ∆f (A) specifies the mixed action to be played at stage t. The
set of strategies is denoted by Σ. Any σ ∈ Σ defines, together with p0 and q, a unique
probability distribution Pp0

σ over (S × A)∞ (for the product sigma-algebra). σ is a pure
strategy if each σt takes value in Dirac measures.

For any θ ∈ ∆(N∗), vθ(p0) = supσ∈Σ Ep0
σ [γθ(h)], where γθ(h) =

∑
t≥1 θtg(kt, at) for any

deterministic play h = (kt, at)t≥1 ∈ (K ×A)∞ and Ep0
σ is the expectation w.r.t. Pp0

σ . The
notions of limit value, TV -limit value, uniform value and TV -uniform value for Ψ(p0) are
defined accordingly as in the DP. For a fixed evaluation θ, vθ can be realized with pure
strategies.

We define from Ψ(p0) an equivalent auxiliary dynamic programming problem Γ(z0),
where
– the set of space is Z = ∆f (K)× [0, 1];
– the initial state is z0 = (p0, 0);
– the reward function is r : Z → [0, 1] with r(p, x) = x for all (p, x) in Z;
– the transition correspondence is F : Z ⇒ Z such that: for every z = (p, x) in Z,

F (z) =
{(∑

k

pkq(k, ak),
∑
k

pkg(k, ak)
) ∣∣ ak ∈ A, ∀k ∈ K}.

Let ṽθ be the θ-value function of Γ. Since the transition mapping F (·) depends on z only
through its first component, then for any z = (p, x) and z′ = (p, x′), ṽθ(p, x) = ṽθ(p, x′) :=
ṽθ(p). Moreover, anything that can be guaranteed by the decision-maker in Γ

(
p, 0) can

be guaranteed in Ψ(p). Thus ṽθ(p) = vθ(p) for any θ ∈ ∆(N∗), and in particular, we have
the same n-stage values and λ-discounted values in both models. A uniform Tauberian
theorem for MDP then follows from Theorem 2.3.1.

Continuous time framework

Oliu-Barton and Vigeral [40] extended the uniform Tauberian theorem to (determin-
istic) continuous time framework. See also Buckdahn et al.[14] for the generalization to
stochastic control systems.

A model of optimal control Consider an optimal control problem J = 〈U, f, g〉 which
is defined by the following elements: U is a metric space, f : Rd × U → Rd is a Borel
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measurable function describing the dynamic, g : Rd × U → [0; 1] is Borel measurable
function which defines the running cost. A control u is a measurable function from R+ to
U , and the set of controls is denoted by U . The controlled dynamic is:

y′(s) = f
(
y(s),u(s)

)
, y(0) = y0 ∈ Rd. (2.3.1)

We assume suitable regularity conditions on f (i.e., uniformly Lipschitz in y ∈ Rd and
bounded by a linear functional for all u ∈ U) such that given an initial state y0 ∈ Rd,
any control u ∈ U defines a unique absolutely continuous solution from R+ to Rd for the
controlled dynamic (2.3.1). Denote this solution (the trajectory) associated with (u, y0)
by: s 7→ y(s,u, y0).

Let θ ∈ ∆(R+) be a Borel probability measure over R+ (call θ an evaluation). The
θ-value of the optimal control problem J is

Vθ(y0) = inf
u∈U

∫
[0,+∞)

g
(
y(s,u, y0),u(s)

)
dθ(s).

Specific evaluations and their associated value functions are
Cesàro mean: ∀t > 0, θt has a density s 7→ fθt(s) = 1

t1[0,t](s), and the t-horizon value is

Vt(y0) = inf
u∈U

1
t

∫ t

0
g
(
y(s,u, y0),u(s)

)
ds

Abel mean: ∀λ ∈ (0, 1], θλ has a density s 7→ fθλ(s) = λe−λs, and the λ-discounted value
is

Vλ(y0) = inf
u∈U

∫ +∞

0
λe−λsg

(
y(s,u, y0),u(s)

)
ds

Theorem 2.3.8 (Oliu-Barton and Vigeral 2013). Let V be a function defined on Rd. In
an optimal control problem J ,

Vt −→t→∞ V ⇐⇒ Vλ −→λ→0 V (convergence uniform on Rd).

To apply 2 Theorem 2.3.1 for the above result, we follow here Oliu-Barton and Vigeral
[40] to associate the equivalent dynamic programming problem Γ = 〈Z,F, r〉 (with an
initial state z0 = (y0, 0)) with an optimal control problem J (with an initial state y0):
– the state space is Z = Rd × [0, 1];
– the transition correspondence is F : Z ⇒ Z such that: ∀(ω, x), (ω′, x′) ∈ Rd × [0, 1] ,

(ω′, x′) ∈ F (ω, x)⇐⇒ ∃u ∈ U s.t. y(1,u, ω) = ω′, and
∫ 1

0
g
(
y(s,u, ω),u(s)

)
ds = x′.

– the reward function r : Z → [0, 1] is: ∀(ω, x) ∈ Rd × [0, 1], r(ω, x) = x.

Define the following value functions in Γ, ∀ (y0, x) ∈ Rd × [0, 1]: for any n ∈ N∗,

νn(y0, x) = inf
(zi)i∈S(z0)

1
n

n∑
i=1

r(zi) = inf
u∈U

1
n

n∑
i=1

[ ∫ i

i−1
g
(
y(s,u, y0),u(s)

)
ds
]
;

and for any λ ∈ (0, 1],

νλ(y0, x) = inf
(zi)i∈S(z0)

∑
i≥1

λ(1−λ)i−1r(zi) = inf
u∈U

∑
i≥1

λ(1−λ)i−1
[ ∫ i

i−1
g
(
y(s,u, y0),u(s)

)
ds
]
.

2. Oliu-Barton and Vigeral [40] provided also a direct proof for the result, which takes the analogue
form of Theorem 2.3.1.
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Since the transition correspondence F depends on z = (y0, x) only through its first com-
ponent, we obtain that νn(y0, x) = νn(y0, 0) := νn(y0) and νλ(y0, x) = νλ(y0, 0) := νλ(y0)
for all x.

Finally, to obtain a uniform Tauberian theorem for J , it remains to verify that for any
y0:

|νbtc(y0)− Vt(y0)| ≤
btc∑
i=1

∫ i

i−1

∣∣∣1/btc − 1/t
∣∣∣ds+

∫ t

btc

∣∣∣1/t∣∣∣ds ≤ 2
t
−→t→∞ 0

and
|νλ(y0)− Vλ(y0)| ≤ λ

∫ +∞

0

∣∣∣(1− λ)btc − e−λt
∣∣∣ds ≤ 2(eλ − 1) −→λ→0 0.

See Section 4 for the analogue reduction of asymptotic analysis in continuous time to
discrete time associated with general evaluations.

General evalutaions

Consider (θk) and (µk) any two sequences of evaluations satisfying certain regularity
condition (ex. with vanishing stage weights, or with vanishing total variations), one may
study the equivalence between the uniform convergence of (vθk) and of (vµk), and in par-
ticular, the equivalence to the uniform convergence of (vn).

Decreasing evaluations The uniform Tauberian theorem is generalized by Monderer
and Sorin [38] to families of decreasing evaluations satisfying some extra conditions. The
main argument is the fact that for any decreasing evaluation, its average payoff can be
written as a convex combination of the n-stage average payoffs, thus the approach in
Lehrer and Sorin [28] may extend. Here the extra conditions refer to 1) certain regularity
condition to define a convergence, and 2) properties analogue to Lemma 2.3.5.

The proof uses generalized versions of Lemma 2.3.2, Lemma 2.3.3, Proposition 2.3.4.
Denote ‖θ‖ := supt≥1 θt for any θ ∈ ∆(N∗).

Lemma 2.3.2’ For any play s = (zm) ∈ S(z0), one has: for any m ≥ 1,

lim sup
‖θ‖→0

vθ(zm) ≤ lim sup
‖θ‖→0

vθ(z0).

Proof. For any ε > 0, let µ ∈ ∆(N∗) with ‖µ‖ ≤ ε and vµ(z1) ≥ lim sup‖θ‖→0 vθ(z1)−ε/4.
Take s′ ∈ S(z1) with γµ(s′) ≥ vµ(z1) − ε/4. Define now θ ∈ ∆(N∗) to be (satisfying
‖θ‖ ≤ ε):

θ1 = ε/2 and θt = (1− ε/2)µt−1, for any t ≥ 2.

By construction, s′′ = (z1, s
′) is a play in S(z0), and the associated θ-evaluated payoff is

γθ(s′′) = ε/2r(z1) + (1− ε/2)γµ(s′) ≥ lim sup
‖θ‖→0

vθ(z1)− ε.

This proves lim sup‖θ‖→0 vθ(z0) ≥ lim sup‖θ‖→0 vθ(z1), and the result is obtained by itera-
tion.

Lemme 2.3.3’ For any evaluation θ ∈ D and a play s ∈ S(z0),

n∑
t=1

θtr(zt) =
n−1∑
t=1

t(θt − θt+1)γt(s) + nθnγn(s), ∀n ≥ 1
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and ∑
t≥1

θtr(zt) =
∑
t≥1

t(θt − θt+1)γt(s).

Proposition 2.3.4’ For all ε > 0 and all N > 1, there exists η0 > 0 such that: for all
θ ∈ D with θ1 ≤ η0, for all z0 ∈ Z, there is n ≥ N satisfying

vn(z0) ≥ vθ(z0)− ε.

This implies that
lim sup
n→∞

vn ≥ lim sup
θ∈D: θ1→0

vθ

Proof. Given ε > 0 and N > 1, let η0 = ε/2N . Then
∑N−1
t=1 t(θt − θt+1) ≤ Nθ1 < ε/2 for

any θ ∈ D with θ1 ≤ η0. For any z0 ∈ Z and θ ∈ D with θ1 ≤ η, let s = (zt) ∈ S(z0) an
ε/2-optimal play for the θ-evaluated DP at z0: γθ(s) ≥ vθ(z0)− ε/2. By Lemma 2.3.3, we
deduce

∑
t≥N t(θt − θt+1)r(zt) ≥ vθ(z0) − ε. As

∑
t≥N t(θt − θt+1) ≤ 1 and the reward is

between [0, 1], there is some n ≥ N such that γn(s) ≥ max{0, vθ(z0)− ε} ≥ vθ(z0)− ε.

Families with vanishing total variations Consider (θk) and (µk) any two families
that are not necessarily decreasing but with vanishing total varations. One may ask
(extra conditions for) the equivalence between the uniform convergence of (vθk) and of
(vµk), and in particular, the equivalence to the uniform convergence of the n-stage values.

The following example (simplified from Renault [46], Example 3.2) shows that for
one direction, this is not true: for a particular family of evaluations with vanishing total
variation, the associated value functions converge uniformly; while the n-stage values do
not have uniform convergence (an analogous example in continuous time can be found in
Li et al. [30]).

Example 3. The state space is Z = N × {0, 1}. For any x ∈ N: F (x, 0) = {(x +
1, 0), (x, 1)}; F (x, 1) = {(x, 0), (x − 1, 1)} for x ≥ 1 and F (0, 1) = {(0, 0)}. The reward
function is: r(x, 0) = 0 and r(x, 1) = 1 for any x. Consider the family of evaluations: for
any k ≥ 1, θk =

∑
t≥1

1
k1{k+1≤t≤2k}(t). We have:

– vθk converges uniformly to 1:
– vθk(x, 0) = 1 for k ≥ 1;
– vθk(x, 1) = 1 for k ≤ x or x ≥ 2;
– vθk(0, 1) = vθk(1, 1) = 1− 1/k, for any k ≥ 1.

– vn(z) converges to 1/2 for any z ∈ N × {0, 1}. However, the convegence is not
uniform as vx(x, 0) = 1 for any x ∈ N.

For the other direction, it is true for uncontrolled problems (zero-player), as shown by
the following

Proposition 2.3.9 (Renault 2014 ). Let (θk) be a sequence of evaluations with TV (θk) −→k→∞
0 and γ a function defined from Z to [0, 1]. For any z0 ∈ Z, let s ∈ S(z0) be the unique
play at z0. Then:

γn(s) −→n→∞ γ(s), uniformly w.r.t. z0 =⇒ γθk(s) −→k→∞ γ(s), uniformly w.r.t. z0.

It is unknown for one-player problems:
Question: In a dynamic programming problem, does the existence of limit value imply

the existence of TV -limit value?
See Proposition 6.1 in Li et al. [30] for the analogous result and related discussion in

continuous time.
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2.3. Between Abel mean and Cesàro mean

2.3.3 Blackwell optimality

When Abel-limit value exists, i.e. (vλ) converges uniformly, the existence of Abel-
uniform value is weaker than the so-called Blackwell optimality condition in the literature,
which is defined as:

∃λ0 > 0,∀z0 ∈ Z,∃σ ∈ Σ(z0), s.t. γλ(σ) ≥ vλ(z0),∀λ ∈ (0, λ0].

The play σ appearing in the above definition for Blackwell optimality is called 0-optimal.

Theorem 2.3.10 (Blackwell 1962). Let Z be a finite state space. Then Blackwell opti-
mality exists in Γ with pure stationary plays 3. The uniform value exists in pure stationary
plays.

Remark 2.3.11. The proof relies on the fact that in any λ-discounted problem a pure
stationary optimal strategy exists. One deduces that the value function vλ can be expressed
as a rational fraction of λ for λ close to zero.

The existence of uniform value implies the existence of Abel-uniform value. On the
other hand, the existence of Abel-uniform value does not imply 4 the existence of uniform
value (cf. Renault [44], Lemma 5.4).

2.3.4 Limit value does not imply uniform value

By the uniform Tauberian theorem (Theorem 2.3.1), the existence of limit value is
equivalent to the uniform convergence of the n-stage values. Monderer and Sorin [38]
(see also Lehrer and Monderer [27]) provided a conterexample for which (vn) converges
uniformly, however the uniform value does not exist.

Example 4 (Monderer and Sorin 1993). Start introducing an infinite tree T (x) with x
its root for any x ∈ [0, 1]. At x, T [x] has a countable number of branches indexed by
x(n) ∈ N∗, and any node on each such branch has an outgoing degree one. Let x(n;m)
be the m-th node of the branch x(n). Consider now two positive sequences (δn) and (εn)
decreasing to zero. We define the directed graph by attaching any x(n;m) with the root of
the tree T

[
max{x− δm, 0}

]
for any n.

To finish defining a DP on this directed graph, we set
– F (z) to be the set of successors of z for any node z;
– the reward function to be: for any x, n, r

(
x(n;m)

)
= x − δn for εnn ≤ m ≤ n and

r
(
x(n;m)

)
= 0 for 1 ≤ m ≤ εnn.

By a specific choice of the sequences (δn) and (εn), one can prove that 1). vn(z) converges
to r(z) for any node z and the convergence is uniform in z; 2). sups∈S(z) lim inf

n→∞
γn(s) = 0

for each z. Thus the uniform value does not exist.
Consider for example the root of T [1] the starting point. First, one observes that

during any branch x(n), it is always optimal to stay until the node x(n;n) and then to
leave from it. The decision turns to be a sequence of integers (mk)∞k=1 inducing the play:
to stay in the m1-th branch of T [1] until the node m1; then to stay in the m2-th branch
of T

[
1 − δm1

]
until the node m2,..., to stay in the mk+1-th branch of T

[
1 −

∑
k′≤k δmk′

]
3. In two-player zero sum stochastic games, there is in general no stationary ε-optimal strategies for

players to guarantee the limit value. See for example the Big match (Blackwell and Ferguson [13]).
4. The notion of uniform value (or Abel-uniform value) in Renault [44] is defined pointwise. Renault

[44] presented an example such that at one initial state there is Abel-uniform value (Blackwell optimality)
but no uniform value.
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until the node mk,.... In the induced reward sequence, at each "round" (corresponding to a
different branch in one tree): a stream of (positive) rewards (1−

∑
k′≤k δmk′ ) has a length

(1− εmk+1)mk+1 and it is after a stream of zeros of length εmk+1mk+1.
The balance of the decision is as follows. On one hand, mk needs to be taken large so

the decrease by δmk is small, and the positive reward in the next "round" is close to 1; on
the other hand, this might induce an increasing in εmkmk the length of the waiting time
for the positive rewards in the next "round". In general, the construction is to take (δn)
converging to zero very slowly thus the sequence (mk) goes to infinity very fast; and to
take for example εn = 1/

√
n, thus εmkmk tends to infinity and overweights

∑
k′<kmk′.

For the asymptotic analysis: for any given large n and node z, an optimal play is to
approximately go through zero for εnn stages, and through a reward close to r(z)− δn for
(1− εn)n stages.

For the uniform analysis: there is no ending stage, thus, to obtain any positive rewards,
the play has to go through a large number of zeros which will overweight all positive rewards
of previous stages.

2.4 Asymptotic analysis
In dynamic programming with finite state space, the existence of limit value follows

from the algebraicity of the function λ 7→ vλ (valid also for two-player zero-sum stochastic
games with finite state space and finite action spaces, cf. Bewley and Kohlberg [10]). With-
out the assumption of finite state space, further conditions are needed for the asymptotic
analysis. Renault [44] provided conditions (compactness property of the family {vn}) for
the existence of limit value in DP with arbitrary state space. In Renault [46], this approach
has been generalized to study the limit value associated with any family of evaluations
with vanishing total variation. The result in Renault [46] implies the existence of TV -limit
value in compact nonexpansive DP, and is extended to continuous time framework by Li
et al.[30] (see Chapter 3).

Introduce the auxiliary value function vm,θ as:

Definition 2.4.1. For any m ≥ 0, θ ∈ ∆(N∗) and a play s = (zt)t≥1 ∈ S(z0), denote

γm,θ(s) =
∞∑
t=1

θtr(zm+t) and vm,θ(z0) = sup
s∈S(z0)

γm,θ(s).

The explanation of vm,θ(z0) is as follows. Consider the auxiliary problem where start-
ing from z0, the decision-maker takes m steps to reach a "good" state , and the payoff
stream from stage m+ 1 on is evalueted by θ, and vm,θ(z0) is the value of this problem.

The following function v∗ characterizes the limit value in case of convergence:

Definition 2.4.2. For any z0 ∈ Z,

v∗(z0) = inf
θ∈∆(N∗)

sup
m≥0

vm,θk(z0). (2.4.1)

The main result of Renault [46] is the following:

Theorem 2.4.3 (Renault 2014). Let (θk)k≥1 be a sequence of evaluations with TV (θk) −−−→
k→∞

0. Then the "inf" in Eq. (2.4.1) over ∆(N∗) can be taken over {θk}, i.e.,

v∗(z0) = inf
k≥1

sup
m≥0

vm,θk(z0), ∀z0 ∈ Z.
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Moreover, any accumulation point of the sequence (vθk)k for the uniform norm is v∗.

This implies that for any sequence (θk)k≥1 with TV (θk) −−−→
k→∞

0, (Vθk) uniformly con-
verges if and only if it is totally bounded for the uniform norm. And in case of convergence,
the limit value is v∗.

A sketch of proof

Fix a sequence (θk)k with vanishing total variation, and denote:

v−(z0) = lim inf
k→∞

vθk(z0) and v+(z0) = lim sup
k→∞

vθk(z0), ∀z0 ∈ Z.

A first step is to bound v− and v+ in terms of the auxiliary value functions {vm,θk}:

Proposition 2.4.4. For every state z0 ∈ Z and any m0 ≥ 0,

inf
k≥1

sup
0≤m≤m0

vm,θk(z0) ≤ v−(z0) ≤ v+(z0) ≤ inf
k≥1

sup
m≥0

vm,θk(z0) = v∗(z0).

Then the uniform convergence of (vθk) to v∗ can be deduced from the uniform con-
vergence of infk≥1 sup0≤m≤m0 vm,θk to infk≥1 supm≥0 vm,θk as m0 tends to infinity. This is
the second step of the proof.

Using the reachable set of the transition correspondence F , the inequalities in Propo-
sition 2.4.4 can be re-writen in an equivalent form.

Definition 2.4.5. F 0(z) = {z} for every state, and Fn+1 = Fn ◦ F for every n ≥ 0,
where the composition is defined by G ◦H(z) = {z′′ ∈ Z : z′′ ∈ G(z′) for some z′ ∈ H(z)}.
Let m0 ≥ 0, write Gm0(z0) = ∪m0

n=0F
n(z0), which is the set of states that the decision-

maker can reach by at most m0 steps starting from the initial state z0 ∈ Z, and G∞(z0) =
∪∞n=0F

n(z0), which is the set of the states that the decision-maker can reach by finite steps
starting from z0.

Proposition 2.4.6. For every state z0 ∈ Z and any m0 ≥ 0,

inf
k≥1

sup
z′∈Gm0 (z0)

vθk(z′) ≤ v−(z0) ≤ v+(z0) ≤ inf
k≥1

sup
z′∈G∞(z0)

vθk(z′).

Finally, the proof is achieved by the following arguments:
– Step 1: Viewing Z as a totally bounded pseudometric space. Define d̃(z, z′) = supk |vθk(z)−
vθk(z′)| for all z, z′ in Z. Then (Z, d̃) is a pseudometric space (and may not be Hausdorff).
– Step 2: Convergence of reachable sets. Fix z0 ∈ Z. Use the fact that (Z, d̃) is totally
bounded pseudometric to obtain the convergence of (Gm(z0))m≥1 to G∞(z0) in the sense
that:

∀ε > 0,∃m0 ≥ 0, s.t. ∀z′ ∈ G∞(z0),∃z′′ ∈ Gm0(z), d̃(z, z′) ≤ ε.

– Step 3: Convergence of (vθk)k. Deduce from the convergence condition in Step 2 that

inf
k≥1

sup
z′∈Gm0 (z0)

vθk(z′) ≥ inf
k≥1

sup
z′∈G∞(z0)

vθk(z′)− 2ε,

thus the point-wise convergence of (vθk) to v∗. The uniform convergence follows from the
fact that each vθk is 1-Lipschitz for d̃ and (Z, d̃) is totally bounded. �
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Chapter 2. Propriétés à long terme en optimisation dynamique

Remark 2.4.7. Renault [44] proved that (vn)n≥1 converges uniformly if and only if the
space ({vn : n ≥ 1}, ‖ · ‖∞) is totally bounded. This corresponds to the particular case of
Theorem 2.4.3 if one takes the family (θk) to be (θ̄n) the n-stage averages.

The following corollary gives sufficient conditions relying on hypothesis directly expressed
in terms of the basic data of the problem.

Definition 2.4.8. The dynamic programming problem Γ = 〈Z, r, F 〉 is called compact
nonexpansive if the following conditions are satisfied:
A.1) the space (Z, d) is metric precompact;
A.2) r is uniformly continuous on Z;
A.3) F is nonexpansive for d, i.e.,

∀z, z′ ∈ Z, ∀y ∈ F (z),∃y′ ∈ F (z′), s.t. d(y, y′) ≤ d(z, z′).

Corollary 2.4.9. Let Γ = 〈Z,F, r〉 be a compact nonexpansive dynamic programming
problem. Then there is TV - uniform convergence of the value functions {vθ} to v∗, i.e.,

∀ε > 0,∃α > 0,∀θ ∈ ∆(N∗), s.t. TV (θ) ≤ α, ||vθ − v∗|| ≤ ε.

In fact, when Γ is compact nonexpansive, the family {vθ} is uniformly (in z0 ∈ Z)
equicontinuous, and according to Ascoli’s theorem, the space ({vθ}, ‖ · ‖∞) is totally
bounded.

Extension to continuous time framework
Results in continuous time framework analogue to Theorem 2.4.3 are obtained in Li et

al. [30] (see Chapter 3). Consider the optimal control problem J = 〈U, f, g〉 described in
Subsection 3.2.2.

The analogous notion of total variation for a probability measure and the analogous
convergence condition as "vanishing total variation" are defined in the following way.

Definition 2.4.10. A sequence of evaluations (θk)k≥1 in ∆(R+) satisfies the long-term
condition (LTC) if

TV S(θk) −−−→
k→∞

0, for all S > 0 (or equivalently, for some S > 0),

where for any θ ∈ ∆(R+) and S > 0:

TV S(θ) = sup
0≤s≤S

TVs(θ), and TVs(θ) = sup
Q∈B(R+)

|θ(Q)− θ(Q+ s)|.

Remark 2.4.11. 1) Let θ ∈ ∆(R+) be absolutely continuous with fθ its density function,
then:

TVs(θ) = 1
2

∫
[0,+∞)

∣∣fθ(s)− fθ(s+ t)
∣∣dt, ∀s ≥ 0.

2) If t 7→ fθk(t) is decreasing ,∀k ≥ 1, then (θk) satisfies the LTC iff θk([0,M ]) −→k→∞
0, ∀M > 0.

Define : V ∗(y0) = sup
θ∈∆(R+)

inf
s∈R+

inf
u∈U

∫
[0,+∞)

g
(
y(t+ s,u, y0),u(t+ s)

)
dθ(t), ∀y0 ∈ Rd.

The following results are analogue to Theorem 2.4.3 in discrete time:
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Theorem 2.4.12 (Li et al. 2015). Let (θk)k≥1 be a sequence of evaluations satisfying the
long-term condition. Then:

V ∗(y0) = sup
k≥1

inf
s∈R+

inf
u∈U

∫
[0,+∞)

g
(
y(t+ s,u, y0),u(t+ s)

)
dθk(t), ∀y0 ∈ Rd.

Any accumulation point of the sequence (Vθk) for the uniform norm is V ∗.

In particular, for any (θk) satisfying the LTC, (Vθk) uniformly converges if and only if
the space ({Vθk , k ≥ 1}, ‖ · ‖∞) is totally bounded. And in case of convergence, the limit
value is V ∗.

Remark 2.4.13. A different approach can be followed through a direct reduction of the
problem in continuous time to a problem in discrete time. As in Subsection 2.3.2, let
Γ = 〈Z,F, r〉 be the DP problem associated with the optimal control problem J = 〈U, f, g〉.

Fix θ ∈ ∆(R+) and denote by µ := µ(θ) ∈ ∆(N∗) the measure: µi = θ
(
[i− 1, i)

)
, ∀i ∈

N∗. Assume that θ is absolutely continuous w.r.t. the Lebesgue measure on R+, and let
fθ be its density function. Define T̂ V (θ) =

∑
i≥1

∫ i
i−1

∣∣∣fθ(s) − µi
∣∣∣ds + TV

(
µ(θ)

)
. The

µ(θ)-value of the DP Γ(z0) for z0 = (y0, 0) is:

νµ(y0) = inf
(zi)i∈S(z0)

∑
i≥1

µir(zi) = inf
u∈U

∑
i≥1

µi

[ ∫ i

i−1
g
(
y(s,u, y0),u(s)

)
ds
]

We write Vθ(y0) = infu∈U
∑
i≥1

∫ i
i−1 g

(
y(s,u, y0),u(s)

)
fθ(s)ds and obtain :

∣∣∣νµ(y0)− Vθ(y0)
∣∣∣ ≤∑

i≥1

∫ i

i−1

∣∣∣fθ(s)− µi∣∣∣ds ≤ T̂ V (θ). (2.4.2)

Consider a sequence of evaluations (θk) in ∆(R+), and denote by
(
µk) := (µ(θk)

)
for its

corresponding sequence in ∆(N∗). Then we have

Theorem 2.4.14. Let J be an optimal control problem. (θk) is a sequence of eval-
uations with T̂ V (θk) −→k→0 0. Then Vθk converges uniformly iff νµk converges uni-
formly. In case of convergence, the limit is ν∗(y0) = supµ∈∆(N∗) inft≥0 νt,µ(y0), where
νt,µ(y0) = infs∈S(y0,0) γt,µ(s), ∀y0.

Question: 1) What is the relation between two limit functions ν∗ and V ∗? 2) One can
prove that "(θk) satisfies the LTC =⇒ T̂ V (θk) −→k→∞ 0 =⇒ (θk) satisfies the LTC’",
where the LTC’ is defined as TVs(θk) −→k→∞ 0,∀s ≥ 0. It is unknown whether the LTC
is strictly stronger than the LTC’.

2.5 Uniform analysis
For dynamic programming problems having an infinite state space, the arguments for

the existence of Blackwell optimality in finite case does not apply. In the context of two
player zero-sum stochastic games, Mertens and Neyman [34] provided sufficient conditions
for the existence of uniform value: the function λ→ vλ satisfies certain "bounded variation"
property 5. Renault [44] proved other conditions for the existence of uniform value in DP.
The main condition is expressed as compactness of the family of a family of auxiliary value
functions {wm,n} defined as follows.

5. This property is established in Bewley and Kohlberg [10] for stochastic games with a finite state
space and finite action sets
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Chapter 2. Propriétés à long terme en optimisation dynamique

Definition 2.5.1. For any m ≥ 0, n ≥ 1 and z0 ∈ Z,

wm,n(z0) = sup
s∈S(z0)

min
1≤t≤n

γm,t(s), where γm,t(s) = 1
n

t∑
s=1

r(zm+s).

Notice that γm,t(s) is short for γm,θ̄t(s) where θ̄t = 1
t1[1,t] is the average of the first t

stages. So we write vm,n(z0) = sups∈S(z0) γm,n(s) for vm,θ̄n(z0) (cf. Def. 2.4.1).

Remark 2.5.2. The interpretation of the value function wm,n is that: the decision-maker
takes m steps to reach a "good" initial state, but then his payoff is the minimum among
the next following n average rewards (as if some adversary trying to mimimize the average
rewards by choosing the length of the remaining game). This is related to the notion of
uniform value, which requires the play to be approximately optimal for any problem with
sufficiently large horizon.

Preliminary results concerning wm,n are :

Proposition 2.5.3. For all state z0 ∈ Z,

sup
m≥0

inf
n≥1

wm,n(z0) ≤ sup
m≥0

inf
n≥1

vm,n(z0) =v−(z0)

≤v+(z0) ≤ v∗(z0) = inf
n≥1

sup
m≥0

vm,n(z0) = inf
n≥1

sup
m≥0

wm,n(z0).

The main result of Renault [44] is

Theorem 2.5.4 (Renault 2011). Assume that the space
(
{wm,n : m ≥ 0, n ≥ 1}, ‖ · ‖∞)

is totally bounded. Then the dynamic programming problem Γ has a uniform value v∗,
where

v∗(z0) = v+(z0) = v−(z0) = sup
m≥0

inf
n≥1

vm,n(z0) = sup
m≥0

inf
n≥1

wm,n(z0),∀z0 ∈ Z.

A sketch of proof of Theorem 2.5.4
The first part of the proof is to show that the operators "sup" and "inf" in supm infnwm,n

commute under the assumptions. This helps to establish the convergence of (vn)n to v∗.
The proof is similar to Theorem 2.4.3. One defines d̃(z, z′) = supm,n |wm,n(z)− wm,n(z′)|
for all z, z′ ∈ Z such that (Z, d̃) is a pseudometric space and is totally bounded, then the
convergence results are obtained, first for reachable sets, and second for value functions.

The second part is to show that uniform ε-optimal plays exist for all problems with
sufficient large horizons. When "sup" and "inf" commute, one deduces the following: within
some finite steps (for some m), the decision-maker arrives at a "good" state zm such that
for all (large) n, there is a play s ∈ S(zm) such that γt(s) is above v∗(z0) for any t ≤ n.

The ε-optimal play is then constructed by blocks, and on each of them: first a finite m
steps to reach a "good" position, and then a large n steps for an average payoff above v∗.
The optimality is obtained if m can be taken uniformly bounded (such that the duration
used to reach a good position is negligible) and the limit value v∗(zm+n) after each block
is nondecreasing. A precise result is as follows:

Lemma 2.5.5. ∀ε > 0,∃M ≥ 0,∃K ≥ 1,∀z0 ∈ Z, ∃m ≤M,∀n ≥ K,∃s = (zt)t≥1 ∈ S(z0)
such that

min
1≤t≤n

γm,t(s) ≥ v∗(z0)− ε/2 and v∗(zm+n) ≥ v∗(z0)− ε.

�
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2.5. Uniform analysis

Remark 2.5.6. 1) The first inequality "min1≤t≤n γm,t(s) ≥ v∗(z0)− ε/2" takes a similar
form as Lemma 2.3.6 (Lehrer and Sorin 1992) and also as Proposition 2 in Rosenberg et
al. 2002 for MDP with imperfect observations on the state.
2) The proof for "v∗(zm+n) ≥ v∗(z0)−ε", i.e. the target function v∗ is nondecreasing after
each block, relies on the first inequality, where the definition of wm,n comes into play.

Comments [Comparison with Mertens and Neyman [34]]
Mertens and Neyman proved the existence of uniform value for stochastic games with

infinite state space provided that λ 7→ vλ has bounded variation. Here, the function wm,n
(whose family is totally bounded) plays the role of vλ in constructing the ε-optimal strate-
gies σε.
– On each block, σε follows an optimal strategy in some λ-discounted game in Mertens
and Neymen [34]; and here, σε follows an optimal play for wm,n with some m,n.
– The discount factor λ for each block is updated using the payoff stream during the past
block so as to control the average payoff nearly above the limit value. At the same time, the
total variation property of vλ helps to establish an approximate submartingale inequality
(nondecreasing) for vλ (hence the limit value for λ small). These correspond to the two
inequalities established in Lemma 2.5.5.

In the compact nonexpansive case, the condition in Theorem 2.5.4 is satisfied, thus

Corollary 2.5.7. Let Γ be a compact nonexpansive DP problem, then uniform value exists
in Γ, and it is equal to v∗.

Extension to optimal control problems

Consider the optimal control problem J = 〈U, g, f〉 described in Subsection 2.3.2.

Definition 2.5.8. J is a compact nonexpansive if it satisfies the following three con-
ditions:
A.1) the control dynamic has a compact invariant set Y : y(t,u, y0) ∈ Y, ∀t ≥ 0,∀u ∈
U ,∀y0 ∈ Y .
A.2) the running cost function g does not depend on u and is continuous in y.
A.3) the control dynamic is nonexpansive, i.e.,

∀y1, y2 ∈ Rd, sup
a∈U

inf
b∈U

〈
y1 − y2, f(y1, a)− f(y2, b)

〉
≤ 0.

The nonexpansive condition is used to obtain the following useful result.

Lemma 2.5.9. [Quincampoix and Renault 2011] Let the control dynamic be nonexpan-
sive, then:

∀y1, y2 ∈ Rd, ∀u ∈ U , ∃v ∈ U s.t. ‖y(t,u, y1)− y(t,v, y2)‖ ≤ ‖y1 − y2‖, ∀t ≥ 0.

An analogous result to Theorem 2.5.4 in continuous time is obtain:

Theorem 2.5.10 (Quincampoix and Renault 2011). Let J be a compact nonexpansive
optimal control problem, then uniform value exists, i.e.,

∀ε,∃T0 > 0, s.t. ∀y0 ∈ Y, ∃u ∈ U : 1
t

∫ t

0
g(t,u, y0)dt ≤ V ∗(y0) + ε,∀t ≥ T0.

The proof of Quincampoix and Renault [42] uses the assumptions (compact and non-
expansive) to obtain the result in continuous time similar to Lemma 2.5.5.
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2.6 TV -uniform value in compact nonexpansive case

When the dynamic programming problem is compact nonexpansive, Renault and Venel
[47] proved the existence of TV -uniform value when the decision-maker uses mixed strate-
gies. Their results are applied to models of standard Markovian decision process with finite
states (MDP), Markovian decision process with finite states and imperfect observations
(POMDP) and zero-sum repeated games with an informed controller. They introduced a
new distance d∗ for the probability spaces (decision-maker or player’s beliefs) such that
the auxiliary problems are compact nonexpansive. Moreover, a new characterization for
the limit value is provided via invariant measures.

2.6.1 Compact nonexpansive gambling house

A basic model in consideration is a (compact) stochastic dynamic programming prob-
lem named gambling house. Γ = 〈Z,F, r〉 is defined by: (Z, d) is a compact metric
space, r : Z → [0, 1] is a continuous reward function, and the transition correspondence
F : Z ⇒ ∆f (Z) is stochastic. Starting at z0 ∈ Z, the decision-maker chooses some
u1 ∈ F (z0), then z1 ∈ Z is realized by the probability law u1, and the stage reward is
r(z1). At each stage t ≥ 1, the decision-maker chooses ut ∈ F (zt−1), zt is realized by ut,
and the stage reward is r(zt).

Definition 2.6.1. The Kantorovich-Rubinstein distance dKR on ∆(Z) is:

∀u, v ∈ ∆(Z), dKR(u, v) = sup
f∈E1

∣∣∣ ∫
Z
f(p)du(p)−

∫
Z
f(p)dv(p)

∣∣∣,
where E1 is the set of 1-Lipschitz functions for (Z, d).

The gambling house Γ is nonexpansive if

∀z, z′ ∈ Z, ∀u ∈ F (z),∃u′ ∈ F (z′), s.t. dKR(u, u′) ≤ d(z, z′).

Conisider now the gambling house Γ = 〈Z, r, F 〉 that is compact nonexpansive. The first
main result of Renault and Venel [47] consists of two parts: first introduce some function
w∗ via invariant measures and prove that it is the TV - limit value; second prove the
existence of TV -uniform value.

The mixed extension of F is the correspondence F̂ from ∆f (Z) to itself, defined as:

F̂ (u) =
{ ∑
x∈X

u(x)f(x) : s.t. f : Z → ∆f (Z) and f(x) ∈ ∆f

(
F (x)

)
,∀x ∈ Z

}
, ∀u ∈ ∆f (Z).

Extend r to ∆(Z) linearly by r(u) =
∫
Z r(z)du(z),∀u ∈ ∆(Z). Define the function w∗ to

be:

∀z ∈ Z, w∗(z) = inf
{
w(z)|w : ∆(Z)→ [0, 1] affine continuous s.t.
(1)∀z′ ∈ Z,w(z′) ≥ sup

u∈F (z′)
w(u) and (2)∀u ∈ R,w(u) ≥ r(u)

}
,

where R =
{
u ∈ ∆(Z) : (u, u) ∈ cl(GraphF̂ )

}
is the set of invariant measures of Γ.

Theorem 2.6.2 (Renault and Venel 2013). Γ has a TV -limit value which is w∗.
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A sketch of proof
The proof of Theorem 2.6.2 employs some "comparison principle". Take v any accumu-

lation point of the family {vθ} with ‖vθk − v‖∞ →k→∞ 0 and TV (θk) →k→∞ 0 for some
(θk), then:
A) v satisfies conditions (1) and (2), thus v ≥ w∗. To prove that v satisfies condition
(2), the nonexpansive property is used to construct for any u ∈ R a play (for F̂ ) staying
around u;
B) any w satisfying conditions (1) and (2) is larger than v, thus w∗ ≥ v. For p ∈ Z,
let σk = (ukt )t≥1 be an ε-optimal play for vθk(p), ∀k. Define u(k) =

∑
t≥1 θtu

k
t and use

"TV (θk) →k→∞ 0" to obtain a limit point u of
(
u(k)

)
which is an invariant measure. w

satisfies conditions (1) and (2) thus w(p) ≥ w(u) ≥ r(u) ≥ v(p)− ε. �

Comments
1) The existence of TV -limit value for Γ (and its equality to v∗(z0) = infθ supm vm,θ(z0),∀z0)

can be deduced from Corollary 2.4.9 of Theorem 2.4.3. Indeed, consider the determinis-
tic gambling house (dynamic programming) Γ̂ = 〈∆(Z), r, F̂ 〉: it is "equivalent" to Γ =
〈Z, r, F 〉 and is compact nonexpansive for dKR. This theorem provides a second charac-
terzation of the TV -limit value.

2) The characterization of the limit value as a unique solution to certain functional
(in)equalities is close to the so-called MZ operator (Mertens and Zamir [36]), which is
used to study the limit value in repeated games with incomplete information on both sides.
See Cardaliaguet et al.[16] for the use of "comparison principle" in the asymptotic analysis
of other classes of repeated games.

Definition 2.6.3. A mixed play at z0 is a sequence σ = (u1, ..., ut, ...) in ∆f (Z) such
that u1 ∈ ∆f (F (z0)) and ut+1 ∈ F̂ (ut) for each t ≥ 1. Denote by Σ(z0) the set of mixed
plays at z0.

Theorem 2.6.4 (Renault and Venel 2013). Γ has a TV -uniform value w∗ in mixed plays,
i.e.,

∀ε > 0,∃α > 0,∀z0 ∈ Z,∃σ ∈ Σ(z0), s.t. γθ(σ) ≥ v∗(z0)− ε, ∀θ ∈ ∆(N∗) with TV (θ) ≤ α.

A sketch of proof
It is equivalent to work on the deterministic problem Γ̂ = 〈Ẑ, r, F̂ 〉 with Ẑ := ∆(Z).

1) A first step is to establish the following result: ∀ε > 0,∃n0, s.t.

∀u0 ∈ Ẑ,∀T ≥ 0,∃σT = (uTt )t≥1 ∈ Σ(u0), γt,n0(σT ) ≥ v∗(u0)− ε, ∀t ∈ {1, ..., T}.
(2.6.1)

To obtain 2.6.1, one can
– define and prove by minmax theorem the following (for some β(µ, n) ∈ ∆(N∗)):

hT,n(u0) =def sup
σ∈Σ(u0)

inf
0≤t≤T

γt,n(σ) = inf
µ∈∆

(
[0,T ]

) sup
σ∈Σ(u0)

∑
0≤t≤T

µtγt,n(σ) = inf
µ∈∆

(
[0,T ]

) vβ(µ,n)(u0),

– show that TV
(
β(µ, n)

)
→n→∞ 0 uniformly in T and µ, thus infT≥0 hT,n →n→∞ v∗

uniformly.
2) The object is to obtain a play such that the average payoff on each (consecutive)

block of length n0 is above the limit value v∗. That is,

∀ε > 0,∃n0, s.t. : ∀u0 ∈ Ẑ,∃σ′ = (u′t)t≥1 ∈ Σ(u0), γt,n0(σ′) ≥ v∗(u0)− 2ε, ∀ t ≥ 0.
(2.6.2)
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Let (uTk)k≥1 be a sequence of "optimal" plays defined as in (2.6.1). Consider its limit u =
(ut)t≥1: for each t ≥ 1, ūt is an accumulation point of (uTkt )k. Moreover, the nonexpansive
property helps to construct a play σ′ = (u′t) that is ε-close to u along the play, which
implies (2.6.2).

3) The last point is to show that σ′ is 3ε-optimal. Here the same argument as in
Proposition 2.3.9 is employed. The idea is that: on each block (consecutive) of length
n0, one compares the θ-valued payoff (normalized) with the Cesàro mean (which is above
v∗(u0) by 2.6.2), and finds out that the total difference of the infinite blocks is controlled
by TV (θ).

More precisely, we fix u0 and σ′, and consider the uncontrolled problem Γ′ defined on
the play. By (2.6.1), one obtains that the n-stage value (payoff) of Γ′ converges (consider
lim inf) uniformly (on the trajectory {u′t}) to some ϕ which is above v∗(u0)−2ε everythere,
thus by Proposition 2.3.9, the θ-value (payoff) of Γ′ at u0 is above v∗(u0) − 3ε for all θ
with TV (θ) sufficiently small (≤ ε). �

Comments
The approach here for the uniform analysis is quite different from Theorem 2.5.4.
1) First, note that the auxiliary value function hT,n is defined differently from wm,n:

hT,n is defined as if an adversary chooses a bad starting stage t ≤ T , while wm,n is defined
as if the adversary chooses a bad averaging length t ≤ n. Nevertheless, both quantities are
linked with the uniform optimal play.

2) The construction of the ε-optimal play is not by blocks (even though a comparison
of the average payoff is by blocks, to the Cesàro mean). Rather, the play is obtained as the
"limit" of a sequence of optimal plays uT in finite horizons, where each uT is optimal for
hT,n0 for a sufficiently large n0.

3) The use of mixed plays is to obtain some convexity such that minmax theorem
applies for hT,n. Indeed, the proof replies on the fact that the mixed extension F̂ of F
is affine, i.e. F̂ (αu + (1 − α)u′) = F̂ (u) + (1 − α)F̂ (u′), ∀u, u′ ∈ Z,∀α ∈ [0, 1], thus
Σ(u0) ⊆ Ẑ∞ is convex.

Extension to continuous time framework
Consider an optimal control problem J = 〈U, f, g〉 defined in Subsection 3.2.2, which

is compact nonexpansive (cf. Def. 2.5.8). Li [29] (Chapter 4) proves that the TV -uniform
value exists in J , using a similar approach as Theorem 2.6.2, which is defferent from
Theorem 2.5.10.

Definition 2.6.5. A random control is a pair
(
(Ω,B(Ω), λ),u

)
, where

(
Ω,B(Ω), λ

)
is

some standard Borel probability space and u : Ω × [0,∞) → U is a Borel measurable
mapping.

Theorem 2.6.6 (Li 2015). A compact nonexpansive optimal control problem J has a
TV - uniform value V ∗, i.e. for each ε > 0 there is some η > 0, S > 0 and a random
control

(
(Ω,B(Ω), λ),u

)
such that:

∀θ ∈ ∆(R+),
(

sup
0≤s≤S

TVs(θ) ≤ η =⇒
(
∀y0 ∈ Y,

∫
Ω
γθ
(
y0,u(ω, ·)

)
dλ(ω) ≤ V (y0) + ε

))
.

Applications to MDP with a finite set of states
Consider the standard model of Markovian decision process (MDP) Ψ = 〈K,A, p0, q, g〉

defined in Subsection 3.2.1 with the state space K being finite. Let Γ = 〈Z, r, F 〉 be the
auxiliary (deterministic) dynamic programming problem that is defined equivalent to Ψ.
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Set d
(
(p, x), (p′, x′)

)
= max{‖p−p′‖1, |x−x′|} for any (p, x), (p, x′) ∈ Z = ∆(K)×[0, 1].

Then the DP problem Γ is compact nonexpansive: (Z, d) is compact, r is continuous, and
moreover F is nonexpansive for d. Previous results for compact nonexpansive DP’s are
applied for Γ to obtain (Theorem 2.6.4 and Corollary 2.5.7):

Theorem 2.6.7 (Renault 2011, Renault and Venel 2013). MDP with a finite set of states,
played with behavior strategies, has a TV - uniform value. MDP with a finite set of states,
played with pure strategies, has a uniform value.

2.6.2 A distance on probability spaces and its applications to POMDP
and repeated games with an informed controller

We consider some applications of the results of compact nonexpansive gambling house
to POMDP and repeated games with an informed controller. In order to apply Theo-
rem 2.6.4, one may define an associated auxiliary dynamic programming (a deterministic
gambling house) for the problem with player’s belief as the state variable. However, the
auxiliary transition correspondence might not be nonexpansive for dKR. For this aim,
Renault and Venel [47] introduced a new distance d∗ on the probability spaces such that
the auxiliary problem is compact nonexpansive.

Let (X, ‖ · ‖
)
be a compact set of some normed vector space.

Definition 2.6.8. Define the distance d∗ on ∆(X) to be: for any u, v ∈ ∆(X),

d∗(u, v) = sup
f∈D1

∣∣∣ ∫
Z
f(p)du(p)−

∫
Z
f(p)dv(p)

∣∣∣,
where

(
C(X) denotes the set of countinuous functions on X

)
D1 =

{
f ∈ C(X)

∣∣ ∀x, y,∈ X,∀α,∀β ≥ 0, αf(x)− βf(y) ≤ ‖αx− βy‖
}
.

The distance d∗ is of particular interest when K is a finite set and X = ∆(K) is
the simplex. The following mapping appears in optimization problems with incomplete
information on the state.

Definition 2.6.9. For each finite S, define the posterior mapping (disintegration)
ψS : ∆(K × S)→ ∆f (X) by:

ψS(π) =
∑
s∈S

π(s)δp̄(s),

where for all s, π(s) =
∑
k π(k, s) and p̄(s) is the posterior on K given s.

Theorem 2.6.10 (Renault and Venel 2013). The mapping ψS :
(
∆(K × S), ‖ · ‖1

)
→

(∆(X), d∗) is 1-Lipschitz (nonexpansive). d∗ metrizes the weak-∗ topology on ∆(X).

Comments
1) By definition D1 ⊆ E1, thus d∗ ≤ dKR.
2) When X = ∆(K), the set D1 in defining d∗ can be replaced by

D0 =
{
u : X → R|∀p ∈ X,u(p) = Val(

∑
k

pkGk), for some matrices (Gk) with values in [−1,+1]
}
,
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where Val is the value operator for a matrix game, and p 7→ u(p) = Val(
∑
k p

kGk) defines
the value of the "non revealing game" of the incomplete information game

(
p, {Gk}

)
, i.e.

p ∈ ∆(K) and k is chosen according to p; the realization of k is communicated to player
1 only and the matrice game Gk is then repeated.

The model of MDP’s with partial observations (POMDP)
In a POMDP, the decision-maker does not perfectly observe the state, rather he receives

a (random) signal at each stage, which depends on the current state and the action.
The set of finite stateK, the set of actions A, and the reward function g : K×A→ [0, 1]

are given as before. Let S be a nonempty set of signals, and q be a transition function
from K×A to ∆f (S×K). This POMDP Ψ(p0) is played as follows: k1 is chosen according
to the initial distribution p0 ∈ ∆(K) but is not told to the decision-maker. At every stage
t ≥ 1, the decision-maker takes an action at ∈ A which (together with the current state kt),
induces a (unobserved) stage payoff g(kt, at). Then the pair (st, kt+1) is chosen according
to the distribution q(·|kt, at), and the signal st is communicated to the decision-maker.
The new state is kt+1 and the play proceeds to the next stage.

A behavior strategy is a sequence σ = (σt)t≥1 where for each t, σt : (A × S)t−1 →
∆f (A). Any σ defines, together with p0 and q, a unique probability distribution over
(K ×A× S)∞. Let vθ(p0) be the θ-value of Ψ(p0) for any evaluation θ.

As in the standard MDP, we define a dynamic programming problem equivalent to Ψ
with the decision-maker’s beliefs as the auxiliary state space. We write X = ∆(K). To
introduce a deterministic DP, we need a larger state space than X. Indeed, consider the
current state k following a distribution p ∈ X, and the decision-maker takes an action a ∈
A. Since q has finite support, this defines a vector of distributions

(
q̂s(p, a)

)
s
in X, where

q̂s(p, a)
)
s
denotes the decision-maker’s posterior belief of p over the new state k′ ∈ K after

receiving the signal s. We write this probability as 6 (Pp,a(s) :=
∑
k,k′∈K p

kq(k′, s|k, a)
)

q̂(p, a) =
∑
s∈S

Pp,a(s)δq̂(p,a) ∈ ∆f (X).

Define from Ψ(p0) the auxiliary DP Γ(z0) by:
– the set of space is Z = ∆f (X)× [0, 1];
– the initial state is z0 = (δp0 , 0);
– the reward function is r : Z → [0, 1] with r(u, x) = x for all (u, x) in Z;
– the transition correspondence F : Z ⇒ Z is: for every z = (u, x) in Z,

F (z) =
{(
H(u, f), R(u, f)

) ∣∣ f : X → ∆f (A)
}
,

where

H(u, f) =
∑
p∈X

u(p)
(∑
a∈A

f(p)(a)q̂(p, a)
)
∈ ∆f (X),

and R(u, f) =
∑
p∈X

u(p)
( ∑
k∈K,a∈A

pkf(p)(a)g(k, a)
)
.

Let ṽθ be the θ-value function of Γ. Since the transition mapping F (·) depends on z
only through its first component, then for any z = (u, x), ṽθ(z) = vθ(u)

(
which is affine

6. q̂(p, a) can be written as ψS(πp,a) for some πp,a ∈ ∆(K × S) defined as the joint proba-
bility distribution over K × S that is induced by p and a, i.e. ∀(k, s) ∈ K × S, πp,a(k, s) =∫
X

((
p(u)

)k∑
k′ q(s, k′|k, a)

)
du.
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on ∆f (X)
)
. Moreover, anything that can be guaranteed by the decision-maker in Γ

(
u, 0)

can be guaranteed in Ψ(u).
In order to deduce the existence of TV - uniform value for Γ, thus for Ψ, the metric d

on Z = ∆f (X)× [0, 1] is introduced: d
(
(u, x), (u′, x′)

)
= max{d∗(u, u′), |x−x′|} where the

distance d∗ on ∆f (X) is defined as in Definition 2.6.8. Then applying 7 Theorem 2.6.10
(plus a duality formula for d∗), one obtains that F is affine (as a mixed extension) and
nonexpansive for d.

Theorem 2.6.11 (Renault and Venel 2013). POMDP with a finite state of space, played
with behavior strategies, have a TV - uniform value.

Comment
1) The existence of uniform value for POMDP with a finite state space was established

by Rosenberg et al. [49] for a finite action set (or a compact action set and with some
continuity of g and q) and any signal set. An application of Theorem 2.5.4 proves the
existence of uniform value for POMDP with a finite state space and any action set (Renaut
[44]). This result generalizes both results to TV -uniform value.

2) The three proofs use ∆
(
∆(K)

)
as the auxiliary space and all of them employ

randomization in the construction of ε-optimal strategies. The use of lotteries are different.
In both Renault [44] and the proof here, the convexity is needed to have the auxiliary
correspondence F affine, thus a minmax theorem applies. In Rosenberg et al.[49], the use
of lotteries is partially due to the difficulty to find a distance on ∆

(
∆(K)

)
such that the

transition correspondence in the auxiliary DP problem is 1-Lipschitz (non-expansive).
3) Now with d∗, the auxiliary DP problem satisfies the nonexpansive property, one

may wonder whether the randomness is still needed for an ε-optimal play in POMPD with
a finite state space. The recent article by Venel and Zillioto [62] solved this problem by
constructing pure ones.

The model of repeated games with an informed controller
A general model G = 〈K, I, J, C,D, q, g〉 of zero-sum repeated games (cf. Mertens et

al. [35]) consists of 8:
– a finite set of states K;
– two finite set of actions I and J , and two finite set of signals C and D;
– a transition function q : K × I × J → ∆(K × C ×D);
– a payoff function g : K × I × J → [0, 1].

The game G(π) with an initial state π ∈ ∆(K ×C ×D) is played as follows. Initially,
the triple (k1, c1, d1) is drawn according to π. At stage 1: player 1 learns c1 and player
2 learns d1. Then simultaneously player 1 chooses an action i1 ∈ I and player 2 chooses
an action j1 ∈ J . The stage payoff is g(k1, i1, j1), and the new triple (k2, c2, d2) is drawn
according to q(k1, i1, j1). The game proceeds to stage 2: player 1 observes c2, and player
2 observes d2 etc...

A behavior strategy for player 1 is a sequence σ = (σt)t≥1 where for each t, σt :
(I × C)t−1 × C → ∆(I). Similary for a behavior strategy τ for player 2. Let Σ be the
set of behavior stratagies for player 1, and T for player 2. Given π, any strategy profile

7. The proof in Renault and Venel [47] for this result is not explicitly a direct application of Theorem
2.6.4. They transformed a POMDP Ψ into a standard MDP Ψ̂ with K = ∆(X) the state space, and then
proved the existence of TV - uniform value for Ψ̂ using the distance d∗. In the proof of the later result for
Ψ̂, an equivalent deterministic dynamic programming Γ is constructed and then similar proof as Theorem
2.6.4 follows. Our same comment applies for the next application to repeated games.

8. The finiteness assumption on the data K, I, J, C,D is not necessary: indeed the result extends to a
measurable setting as long as the value vθ(π) exists for a fixed evaluation θ.
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(σ, τ) defines a unique probability distribution Pπσ,τ over (K ×C ×D × I × J)∞. For any
θ ∈ ∆(N∗), the θ-evaluated payoff of (σ, τ) is γθ(π, σ, τ) = Eπσ,τ

[∑
t≥1 θtg(kt, it, jt)

]
. Let

vθ(π) be the θ-value of G(π) for any evaluation θ:

vθ(π) = inf
τ∈T

sup
σ∈Σ

γθ(π, σ, τ) = sup
σ∈Σ

inf
τ∈T

γθ(π, σ, τ),

which exists by Sion’s minmax theorem. The limit value and TV -limit value are defined
as in previous cases.

Definition 2.6.12. The repeated game Γ(π) has a TV -limit value if:

∀ε > 0,∃α > 0, s.t.∀θ ∈ ∆(N∗), TV (θ) ≤ α, |vθ(π)− vθ(π)| ≤ ε.

Definition 2.6.13. The repeated game Γ(π) has a TV -uniform value if it has a TV -
limit value v∗ and each player guarantees it, that is, for all ε > 0, there is some α > 0
and (σ∗, τ∗) ∈ Σ× T , s.t.: for all θ ∈ ∆(N∗) with TV (θ) ≤ α,

γθ(π, σ∗, τ∗) + ε ≥ v∗(π) ≥ γθ(π, σ, τ∗)− ε, ∀(σ, τ) ∈ Σ× T .

Γ(π) is called a repeated game with an informed controller if the following two condi-
tions are satisfied:

H.1 Player 1 is informed, in the sense that he can always deduce the state and player
2’s signal from his own signal.

H.2 Player 1 controls the transition, in the sense that the marginal on K ×D of the
transition q does not depend on player 2’s action.

The second assumption implies that player 2’s action has no influence on his own
information, thus he has no influence on his belief about the state or about player 1’s
belief about his belief.

Theorem 2.6.14 (Renault and Venel 2013). Let G be a zero-sum repeated game satisfying
H.1 and H.2, then G has a TV -uniform value.

A sketch of proof
The main idea of the proof is to find an "equivalent" dynamic programming prob-

lem that has a TV -uniform value, and the ε-optimal plays are transformed to ε-optimal
strategies for player 1 in the repeated game. Moreover, using the fact that player 2 has
no influence on the transition, he can play by independent blocks of equal length, on each
of them the average payoff is above the limit value.

Let πK×D be the marginal of π on K×D, and we write π̂ = ψS(πK×D) ∈ ∆f (X) with
X = ∆(K). π̂ is thus the initial distribution of player 2’s beliefs over K.

1) Define from G(π) a standard Markovian decision process (MDP) Ψ(π̂) where the
state space is X = ∆(K), player 2’s beliefs overK, and the reward is the minimal expected
payoff given player 1’s actions (player 2 is playing a best response).

2) Prove by recursive formula that the θ-values are equal in both probems: vθ(π) =
v̂θ(π̂).

3) Show that the MDP Ψ has a TV -uniform value. For this, one can define from Ψ
an equivalent deterministic DP problem Γ (with a state space Z = ∆f (X)× [0, 1]) which
is compact nonexpansive

(
using the distance d∗ defined on ∆(X)

)
. Then the proof as in

Theorem 2.6.4 applies for Γ (thus Ψ) to have a TV -uniform value v̂∗. This implies that
G(π) has a TV -limit value v∗(π) = v̂∗(π̂).

4) Player 1 guarantees v∗(π) in G(π) by mimicing ε-optimal plays in Γ(δπ̂).
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5) Player 2 guarantees v∗(π) in G(π):
– First, v∗(π) satisfies the equation (use Prop. 2.4.6) : v∗(π) = infn supm vm,n(π):
– Next, take n0 with vm,n(π) ≤ v∗(π) + ε for all m ≥ 0. Consider player 2 playing by
blocks of length n0. The fact that his action has no infuence on the transition implies that
there is a strategy guaranteeing him the n0-stage average payoff on each block at most
v∗(π)− ε.
– Finally, same argument as Point 3) in "Sketch of Proof of Theorem 2.6.4" applies. �

Comments
1) The model of repeated games with an informed controller is introduced in

Renault [45]. He proved the existence of uniform value by an application of Theorem
2.5.4, as the same approach here.

2) Renault [45] unifies two models studied in the literature: Renault [43] for Markov
chain games with lack of information on one side and Rosenberg et al. [50] for
stochastic games with incomplete information and an informed controller :
– in the first model, the initial state is chosen according to a probability distribution and
then the sequence of states follow a (uncontrolled) Markov chain. At each stage the current
state is learned by player 1, and player 2 knows only the initial distribution;
– in the second model 9, the state k is decomposed into two components (`, ω): ` is the
state of the nature, which is chosen (kept fixed) by some probability distribution and is
communicated to player 1 only; ω is the public stochastic state, which follows a Markov
process controlled by player 1.

3) Being different from the approach in Renault [45] and Renault and Venel [47],
neither Rosenberg et al. [50] nor Renault [43] employed a reduction of the repeated games
to DP problems, rather, their proofs use basic tools in repeated games with incomplete
information on one side à la Aumann and Maschler [5]: non-revealing games and
concavification operator, approachability, etc. The proof for player 2 to guarantee the
limit value by blocks appeared already in Aumann and Maschler [5], and also in Renault
[43].

4) The approach is generalized by Gensbittel et al. [21] to a more general setup:
player 1’s first-order belief is more accurate than player 2’s second-order belief, and player
1 controls the evolution of player 2’s second-order beliefs.

9. Rosenberg et al. [50] considered also the other model where player 2–the uninformed player– controls
the transition of the process. The uniform value does not exist and they characterized Maxmin and
Minmax of the infinite game.
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Chapter 3

Valeur limite pour le problème de
contrôle optimal avec évaluations
générales

Résumé Nous considérons le problème de contrôle optimal où le coût de la trajectoire
est évalué par une mesure de probabilité sur R+. En cas particulier, on prend la moyenne
de Cesàro du coût sur un horizon fix. La limite de la fonction valeur avec la moyenne de
Cesàro lorsque l’horizon tend vers l’infini est largement étudié dans la littérature. Nous
abordons la question plus générale de l’existence d’une limite pour les fonctions valeur
définies par des évaluations générales qui satisfont certaines conditions à long terme.

Pour ce faire, nous introduisons une condition de régularité asymptotique pour une
suite de mesures de probabilité sur R+. Notre résultat principal est que, pour toute suite
de mesures de probabilité sur R+ vérifiant cette condition, les fonctions valeur associées
convergent uniformément si et seulement si cette famille est totalement bornée pour la
norme uniforme.

En corollaire, on obtient l’existence d’une valeur limite (pour les évaluations générales)
pour les systèmes de contrôle définis sur un domaine invariant compact et satisfaisant une
certaine condition de non-expansivité.

Mots-clés Contrôle optimal, valeur limite, la valeur moyenne à long temps, évaluation
générale

Ce chapitre est issu de l’article Limit value for optimal control with general evalua-
tions en collaboration avec Marc Quincampoix et Jérôme Renault, et il est accepté pour
publication dans la revue Discrete and Continuous Dynamical System - Series A.



Chapter 3. Valeur limite pour le problème de contrôle optimal avec
évaluations générales

Limit value for optimal control with
general evaluations

joint with Marc Quincampoix (Brest) and Jérôme Renault (Toulouse)

To appear in Discrete and Continuous Dynamical System - Series A

Abstract. We consider optimal control problems where the running cost of the trajectory
is evaluated by a probability measure on R+. As a particular case, we take the Cesàro
average of the running cost over a fixed horizon. The limit of the value with Cesàro average
when the horizon tends to infinity is widely studied in the literature. We address the
more general question of the existence of a limit for values defined by general evaluations
satisfying certain long-term condition.

For this aim, we introduce an asymptotic regularity condition for a sequence of proba-
bility measures on R+. Our main result is that, for any sequence of probability measures
on R+ satisfying this condition, the associated value functions converge uniformly if and
only if this family is totally bounded for the uniform norm.

As a byproduct, we obtain the existence of a limit value (for general evaluations) for
control systems defined on a compact invariant domain and satisfying suitable nonexpan-
sive property.

Keywords Optimal control, limit value, long time average value, general means

3.1 Introduction

Let U be a metric space. We consider a control system defined on Rd whose dynamic
is given by

y′(t) = f
(
y(t),u(t)

)
(3.1.1)

where f : Rd × U → Rd and u is a measurable function – called the control – from R+ to
U . We will make later on assumptions on (3.1.1) ensuring that for any initial condition
y(0) = y0, and any control u, the equation (3.1.1) has a unique solution t 7→ y(t,u, y0)
defined on R+.

Let θ ∈ ∆(R+) be a Borel probability measure on R+. To any pair
(
y0,u

)
, we associate

a θ-evaluated cost

γθ(y0,u) =
∫

[0,+∞)
g
(
y(t,u, y0),u(t)

)
dθ(t),
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where g : Rd × U → R is Borel measurable bounded. We call θ an evaluation throughout
the article.

We will refer to the previously described optimal control problem by the short notation
J = 〈U, g, f〉. Denote by U the set of controls. Given θ ∈ ∆(R+), the θ-value function of
J is:

Vθ(y0) = inf
u∈U

γθ(y0,u) (3.1.2)

Specific evaluations include
Cesàro mean: ∀t > 0, θt has a density s 7→ fθt(s) = 1

t1[0,t](s), and the t-horizon value is

Vθt(y0) = inf
u∈U

1
t

∫ t

0
g
(
y(s,u, y0),u(s)

)
ds

Abel mean: ∀λ ∈ (0, 1], θλ has a density s 7→ fθλ(s) = λe−λs, and the λ-discounted value
is

Vθλ(y0) = inf
u∈U

∫ +∞

0
λe−λsg

(
y(s,u, y0),u(s)

)
ds

The limit of the above value functions as t tends to infinity or as λ tends to zero are
well investigated in the control literature (cf. Alvarez and Bardi [1], Arisawa and Lions [2],
Arisawa [3], Bensoussan [9], Gaitsgory [20], Khasminskii [24] and the references therein),
which are often called ergodic control.

The study of the relation between the two limits (Cesàro and Abel) refers to Tauberian-
type results. Oliu-Barton and Vigeral [40] proved a uniform Tauberian theorem for optimal
control problems (without ergodic condition, as opposed to Arisawa [2]), i.e. Vθt(y0) con-
verges uniformly (in y0) as t tends to infinity if and only if Vθλ(y0) converges uniformly
(in y0) as λ tends to zero, and in case of uniform convergence, both limit functions are the
same 1. The establishment of Tauberian theorem ensures that the limit value (whenever it
exists) does not depend on the particular chosen evaluations (to be Cesàro or Abel mean).
One motivation of our research is to investigate a more general family of evaluations for
which a possible unique “general" limit value is defined.

Given θ ∈ ∆(R+), the contribution of the interval [T,+∞) in the θ-evaluated cost
vanishes as T becomes large. Thus the control problem is essentially interesting only on
[0, T0] for certain T0, which we roughly name the “duration" for the problem. In this
article, we are interested in the long-term property of J , i.e. the asymptotic behavior of
the function θ 7→ Vθ when the “duration" of θ tends to infinity. In the particular examples
of Cesàro mean and Abel mean, this corresponds to the convergence of Vθt as t tends to
infinity and of Vθλ as λ tends to zero. It is a priori unclear how to define the “duration"
of a general evaluation θ over R+. If one simply assumes the expectation of θ to be large,
we can obtain very different value functions, as is shown by the following

Example 5. Consider the uncontrolled dynamic y(t) = t, the running cost t 7→ g(t) =
1∪∞m=1[2m−1,2m](t), and two sequences of evaluations (µk)k≥1 and (νk)k≥1 with densities:
fµk = 1

k1∪km=1[2m−1,2m] and fνk = 1
k1∪km=1[2m−2,2m−1]. Clearly, Vµk = 1 and Vνk = 0,

∀k ≥ 1.

For this reason, we introduce an asymptotic regularity condition on evaluations, to
express the "large duration" and the "asymptotic uniformity of distributions over R+", and
we study the convergence of the value functions along a sequence of evaluations satisfying
this condition.

1. See Buckdahn et al. [14] for a uniform Tauberian theorem in stochastic optimal control problems
and Khlopin [25] for a uniform Tauberian theorem in differential games.
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Definition 3.1.1. For any θ ∈ ∆(R+) and s ≥ 0, we denote

TVs(θ) = sup
Q∈B(R+)

∣∣θ(Q)− θ(Q+ s)
∣∣,

where B(R+) is the set of Borel subsets of R+. A sequence of evaluations (θk)k satisfies
the long-term condition (LTC) if:

∀S > 0, TV S(θk) −−−→
k→∞

0, where TV S(θk) = sup
0≤s≤S

TVs(θk).

Our main result (Theorem 3.4.1) states that for any (θk)k satisfying the LTC, (Vθk)k
converges uniformly if and only if the family {Vθk} is totally bounded with respect to the
uniform norm. Moreover, in this case, the limit is characterized by:

V ∗(y0) = sup
θ∈∆(R+)

inf
s∈R+

inf
u∈U

∫
[0,+∞)

g
(
y(t+ s,u, y0),u(t+ s)

)
dθ(t), ∀y0 ∈ Rd. (3.1.3)

The above function V ∗ appears to be the unique possible long-term value function of the
control problem.

The optimal control problem J = 〈U, g, f〉 has a general limit value V ∗ if for any
sequence (θk)k satisfying the LTC, (Vθk)k converges uniformly to V ∗ as k tends to infinity.

As a byproduct of our main result, we obtain the existence of the general limit value
for any control problem J = 〈U, g, f〉 with a continuous running cost function g which
does not depend on u and with a control dynamic (3.1.1) which is non-expansive and has
a compact invariant set. This generalizes the already obtained result in Quincampoix and
Renault [42] for optimal control with Cesàro mean.

Existing results in the literature are concerned mainly with the convergence of the
t-horizon Cesàro mean values or the convergence of the λ-discounted Abel mean values.
To the best of the authors’ knowledge, this paper is the first to consider general long-term
evaluations for optimal control problems 2.

Also it is worth pointing out that while many works (including cf. Alvarez and Bardi
[1], Arisawa and Lions [2], Arisawa [3], Bensoussan [9], Gaitsgory [20], Khasminskii [24])
assume controllability or ergodicity conditions, the present approach does not reply on
such conditions. This could be underlined by the fact that the limit value V ∗ may depend
on the initial state y0 (which does not occur under ergodic or controllability assumptions).

We also make here a link with the discrete time framework, in which an evaluation
θ = (θm)m≥1 is a probability measure over positive integers N∗ = N\{0}, and θt is the
weight for the stage-t payoff. The analogous notion of total variation is defined for any
θ ∈ ∆(N∗): TV (θ) =

∑∞
m=1 |θm+1 − θm| (cf. Sorin [59] and Renault [46]). Recently, the

existence of the general limit value of dynamic optimization problems in several discrete
time frameworks has been obtained in Renault [46], Renault and Venel [47] and Ziliotto
[69]. Our work is partially inspired by Renault [46]. Similar tool within the proof appeared
in Renault [44].

The article is organized as follows. Section 3.2 contains some preliminary notations and
basic examples. The long-term condition is studied in Section 3.3. Section 3.4 contains our
main result and its consequences. Two (counter)examples are also discussed. Section 3.5
is devoted to the proof of the main result. Some further discussions are given in Section
3.6.

2. In the context of stochastic optimal control, Goreac [23] obtained some Tauberian-type results for
a family of evaluations satisfying some technical assumptions. In particular, only absolutely continuous
evaluations w.r.t. the Lebesgue measures are considered. Bardi and Priuli [6] considered mean-fined games
with the running cost evaluated by general probability distributions. However, their concern is not the
asymptotic analysis.
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3.2 Preliminaries
Consider the optimal control problem J = 〈U, g, f〉. We make the following assump-

tions on g and f throughout the article:
the function g : Rd × U → R is Borel measurable and bounded;
the function f : Rd × U → Rd is Borel measurable, and satisfies:

(∗). ∃L ≥ 0,∀(y, y) ∈ R2d,∀u ∈ U, ‖f(y, u)− f(y, u)‖ ≤ L‖y − y‖,
(∗∗). ∃a > 0,∀(y, u) ∈ Rd × U, ‖f(y, u)‖ ≤ a(1 + ‖y‖).

(3.2.1)

Under (3.2.1), given any control u in U and any initial state y0 ∈ Rd, (3.1.1) has a unique
absolutely continuous solution t 7→ y(t,u, y0) defined on [0,+∞). As the running cost
function g : Rd × U → R is bounded, we can always assume that g : Rd × U → [0, 1] after
some affine transformation.

Below we introduce several notations.

Reachable map Rt For any y0 ∈ Rd, the reachable map on R+, t 7→ Rt(y0), is defined
as:

Rt(y0) =
{
y ∈ Rd

∣∣∃ u ∈ U : y(t,u, y0) = y
}
. (3.2.2)

Rt(y0) represents the set of states that the dynamic can reach via certain control at
time t, starting from the initial state y0 at time 0. We write Rt(y0) = ∪ts=0Rs(y0) and
R(y0) = ∪∞s=0Rs(y0). R(y0) is the set of states that can be reached at any finite time
starting from y0.

Image measure Tt]θ and the auxiliary value function VTt]θ Given t ∈ R and θ
in ∆(R+), we use Tt]θ to denote the image (push-forward) measure of θ by the function
Tt : s 7→ s+ t, i.e.,

Tt]θ(Q) = θ
(
T −1
t (Q)

)
= θ

(
(Q− t) ∩ R+

)
, ∀Q ∈ B(R+).

This leads us to write the t-shift θ-evaluated cost induced by a control u as follow:

γTt]θ(y0,u) =
∫

[0,+∞)
g
(
y(s+ t,u, y0),u(s+ t)

)
dθ(s), ∀t ≥ 0. (3.2.3)

Taking on both sides of (3.2.3) the infimum over u ∈ U and using the notation of reachable
map Rt, we obtain the t-shift θ-value function

VTt]θ(y0) = inf
u∈U−

γTt]θ(y0,u) = inf
y∈Rt(y0)

Vθ(y). (3.2.4)

In this article, we are concerned with the following notion of limit value for optimal control
problems with general means.

Definition 3.2.1. Let V be a function defined on Rd. The optimal control problem J
admits V as the general limit value if: for any sequence of evaluations (θk)k≥1 satisfying
the LTC, (Vθk)k converges uniformly to V as k tends to infinity.

There is general uniform convergence of the value functions {Vθ} to V if:

∀ε > 0,∃S > 0,∃η > 0 s.t. ∀θ ∈ ∆(R+),with TV S(θ) ≤ η, ‖Vθ − V ‖∞ ≤ ε.
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The two notions are indeed equivalent, as will be proven in Lemme 3.3.2.

Below are some basic examples of optimal control problems in which the general limit
value exists.

Example 6. y lies in C = {z ∈ R2 : ‖z‖ ≤ 1} seen as the unit disk on the complex plane,
there is no control, and the dynamic is given by f(y) = i y, where i2 = −1. We have

Vθk(y0) −−−→
k→∞

ϕ(y0) =def
1

2π

∫ 2π

0
g
(
|y0|erit

)
dt, ∀y0 ∈ C

for any sequence of evaluations (θk)k satisfying the LTC.
To deduce the result, we employ two arguments. First, it is clear that the t-horizon

value function Vt converges uniformly to the function ϕ as t tends to infinity. Second, for
an uncontrolled problem, the uniform convergence of Vt to ϕ implies that ϕ is the general
limit value. We leave the proof (cf. Proposition 3.6.1) and related discussions to Section
3.6.

Example 7. y lies in the complex plane again, with f(y, u) = i y u, where u ∈ U is a
given bounded subset of R, and g is any continuous function in y (which thus does not
depend on u).

Example 8. f(y, u) = −y + u, where u ∈ U a given bounded subset of Rd, and g is any
continuous function in y (which thus does not depend on u).

We will show later (using Corollary 3.4.5) that the general limit value exists in both
Example 7 and Example 8.

3.3 On the long-term condition (LTC)
In this section, we discuss the LTC. First, we give the following remarks.

Remark 3.3.1. (a). By definition, one has

∀s ≥ 0,∀t ≥ 0,∀θ ∈ ∆(R+), TVs+t(θ) ≤ TVs(θ) + TVt(θ).

This implies that (θk)k≥1 satisfies the LTC if and only if TV 1(θk) −−−→
k→∞

0.
(b). If one takes Q = R+ in definition of TVs(θk) for each s ≥ 0 and each k ≥ 1, we
deduce that if (θk)k≥1 satisfies the LTC, then θk([0, s]) −−−→

k→∞
0 for any s ≥ 0.

Lemma 3.3.2. Let V be a function defined on Rd. The optimal control problem J admits
V as the general limit value if and only if there is general uniform convergence of the value
functions {Vθ} to V .

Proof. One direction is clear. Assume that V is the general limit value of J , and we will
prove general uniform convergence of {Vθ} to V . Suppose by contradiction that this is not
true, i.e., ∃ε0 > 0,∀S > 0,∀ηk > 0,∃θk ∈ ∆(R+) with

TV S(θk) ≤ ηk and ‖Vθk − V ‖∞ > ε0, ∀k ≥ 1.

Let ε0 > 0 be fixed as above. Take (ηk)k a vanishing positive sequence, then there is a
sequence of evaluations (θk)k with TV S0(θk) ≤ ηk −−−→

k→∞
0, and lim infk ‖Vθk − V ‖∞ ≥

ε0. According to Remark 3.3.1 (a), such (θk)k satisfies the LTC, while (Vθk)k does not
converges uniformly to V ∗. This leads to a contradiction.
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Lemma 3.3.3. Let θ be an evaluation absolutely continuous w.r.t. the Lebesgue measure
on R+, and fθ be its density. For all s ≥ 0, we write:

Is(θ) =
∫
R+

∣∣fθ(t+ s)− fθ(t)
∣∣dt.

Then we obtain that:
TVs(θ) ≤ Is(θ) ≤ 2TVs(θ).

Proof. First consider any Q in B(R+). θ(Q) − θ(Q + s) =
∫
R+

(fθ(t) − fθ(t + s))1t∈Qdt.
So TVs(θ) ≤ Is(θ). Define now Q =

{
t ∈ R+

∣∣fθ(t + s) ≤ fθ(t)
}
, and Qc = R+\Q. We

have Is(θ) =
(
θ(Q)− θ(Q+ s)

)
+
(
θ(Qc + s)− θ(Qc)

)
≤ 2TVs(θ).

Remark 3.3.4. Let (θk)k≥1 be a sequence of evaluations with densities (fθk)k≥1, then:
(a). following Lemma 3.3.3, (θk) satisfies the LTC if and only if sup0≤s≤1 Is(θk) −−−→

k→∞
0.

If moreover, ∀k ≥ 1, t 7→ fθk(t) is non increasing on R+, then (θk)k≥1 satisfies the LTC
if and only if ∀s ≥ 0, θk([0, s]) =

∫
R+
fθ(t)dt−

∫
R+
fθ(t+ s)dt −−−→

k→∞
0.

(b). if (θk) satisfies the LTC, then
∫
R+
tfθk(t)dt −−−→

k→∞
∞. Indeed, Chebychev’s inequality

gives that
∫
R+
tfθk(t)dt ≥M

(
1− θk([0,M ])

)
for all M > 0.

Here we discuss several families of evaluations where the LTC condition is satisfied.

Example 9. (Uniform distributions) Assume that for each k, θk is the uniform law over
the interval [ak, bk], with 0 ≤ ak ≤ bk. For each k,

– s ≥ bk − ak: Is(θk) =


2

bk−ak if 0 < s < ak
1+(bk−s)
bk−ak if ak < s < bk

1
bk−ak if bk < s

,

– s < bk − ak: Is(θk) =
{ 2s

bk−ak if 0 < s < ak
s+ak
bk−ak if ak < s < bk

.

One can check easily that (θk)k satisfies the LTC if and only if bk − ak −−−→
k→∞

∞. Indeed,
by Remark 3.3.4 (a), it is sufficient to look at Is(θk) for s ∈ [0, 1].

Example 10. (Abel average) Assume that for each k, θk has density s 7→ fθk(s) =
λke
−λks1R+(s), with λk > 0. Since ∀k ≥ 1, s 7→ fθk(s) is non increasing, Remark 3.3.4 (a)

implies that (θk)k satisfies the LTC if and only if: ∀T > 0, θk([0, T ]) =
∫ T
s=0 λke

−λksds =
1− e−Tλk −−−→

k→∞
0, which is again equivalent to λk −−−→

k→∞
0.

Example 11. (Folded normal distributions) Assume that for each k, θk is the distribution
of a random variable |Xk|, where Xk follows a normal law N (mk, σ

2
k). The density of θk

is given by:

∀t ≥ 0, fθk(t) = 1
σk
√

2π

[
exp

(
−1

2

(
t−mk

σk

)2
)

+ exp
(
−1

2

(
t+mk

σk

)2
)]

.

Claim 3.3.5. (θk)k satisfies the LTC if and only if σk −−−→
k→∞

∞.

Our argument relies on the following lemma, whose proof is put in the Appendix.
Without loss of generality, we may assume that mk is non-negative for each k.
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Lemma 3.3.6. Let θ be the distribution of X where |X| follows the normal law N(m,σ)
with m,σ > 0. There exists some t∗ ∈ [0,m) such that f ′θ(t) > 0 for any t ∈ (0, t∗) and
f ′θ(t) < 0 for any t ∈ (t∗,+∞). Moreover, such t∗ satisfies that: (t∗)2 ≥ m2 − σ2.

Proof of Claim 3.3.5 We apply Lemma 3.3.6 to each evaluation θk to obtain some
t∗k ∈ [0,mk) such that: fθk(·) is increasing on [0, t∗k) and decreasing on [t∗k,∞). This
enables us to write:

∀s ≤ t∗k, Is(θk) =
∫ t∗k

t∗
k
−s
fθk(t)dt+

∫ t∗k

t∗
k
−s
|fθk(t+ s)− fθk(t)|dt+

∫ t∗k+s

t∗
k

fθk(t)dt.

We deduce then sfθk(t∗k − s) ≤ Iθk(s) ≤ 4sfθk(tk∗) for s ≤ t∗k. Assume below t̂∗ =def

lim infk→∞ t∗k > 0, and the analysis is analogue for t̂∗ = 0, which we omit here.
(*). Suppose that σk →∞, then

fθk(t∗k) = 1
σk
√

2π

[
exp

(
−1

2

(
t∗k −mk

σk

)2)
+ exp

(
−1

2

(
t∗k +mk

σk

)2)]
≤ 2
σk
√

2π
−−−→
k→∞

0.

This implies that for S = t̂∗ ∧ 1, sup0≤s≤S Is(θk) −−−→
k→∞

0.
(**). Conversely, suppose that (θk)k satisfies the LTC. Then for any s < t̂∗, Is(θk) thus
fθk(t∗k − s) vanishes as k tends to infinity. This implies that either σk → ∞ or (σk)k is
bounded and

(
mk − (t∗k − s)

)
k
→ ∞. Lemma 3.3.6 shows that the specified point t∗k for

the evaluation θk satisfies (t∗k)2 ≥ m2
k − σ2

k, thus mk − (t∗k + s) ≤ mk − t∗k ≤
σ2
k

mk+t∗
k
≤ σ2

k
mk

.
If (σk)k is bounded, (mk − t∗k)k thus (mk)k should tend to infinity, but this leads to a
contradiction with mk − t∗k ≤

σ2
k

mk
. �

Now we link the LTC condition to the discrete time framework. In a discrete time
dynamic optimization problem, a general evaluation on the payoff stream is a probability
distribution over N∗ = N/{0} the set of postive integers. For any ξ = (ξ1, ..., ξt, ...) in
∆(N∗), its "total variation" TV (ξ) =

∑∞
m=1 |ξm+1 − ξm| is the stage by stage absolute

difference between the measure ξ and its one-stage "shift" measure ξ′ = (ξ2, ..., ξt+1, ...).
(cf. Sorin [59] or Renault [46]).

When the sequence of evaluations in continuous time admits step functions as densities,
this link to discrete time framework is much clearer as seen by the following

Proposition 3.3.7. Let (θk)k be a sequence of absolutely continuous evaluations in ∆(R+),
and their densities are given as: ∀k ≥ 1, fθk =

∑∞
m=1 ξ

k
m1[m−1,m), where ξk = (ξk1 , ..., ξkm, ..., ) ∈

∆(N∗). Then (θk)k satisfies the LTC if and only if
∑∞
m=1 |ξkm+1 − ξkm| −−−→

k→∞
0.

Proof : Fix s ∈ [0, 1]. We shall write for each k,

Is(θk) =
∞∑
m=1

∫
[m−1,m)

∣∣∣fθk(t+ s)− fθk(t)
∣∣∣dt.

For each m = 1, 2, ..., we have∫
[m−1,m)

∣∣∣fθk(t+ s)− fθk(t)
∣∣∣dt

=
∫

[m−1,m−s)

∣∣∣fθk(t+ s)− fθk(t)
∣∣∣dt+

∫
[m−s,m)

(
fθk(t+ s)− fθk(t)

)
dt

=s
∣∣ξkm+1 − ξkm

∣∣.
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As a consequence,

Is(θk) = s
∞∑
m=1

∣∣ξkm+1 − ξkm
∣∣ ≤ ∞∑

m=1

∣∣ξkm+1 − ξkm
∣∣, ∀s ∈ [0, 1].

In view of Remark 3.3.4, (θk)k satisfies the LTC if and only if
∑∞
m=1 |ξkm+1 − ξkm| −−−→

k→∞
0.

�
We end this section by a preliminary lemma, which will be useful for later results.

Lemma 3.3.8. Fix any θ ∈ ∆(R+) and any t ∈ R+, we have∣∣∣∣∣
∫

[0,+∞)
h(s)dθ(s)−

∫
[0,+∞)

h(s− t)dθ(s)
∣∣∣∣∣ ≤ TVt(θ)

and ∣∣∣∣∣
∫

[0,+∞)
h(s)dθ(s)−

∫
[0,+∞)

h(s+ t)dθ(s)
∣∣∣∣∣ ≤ 2TVt(θ)

for any h(·) ∈ M(R+, [0, 1]),where M(R+, [0, 1]) is the set of Borel measurable functions
defined from R+ to [0, 1].

Proof : We fix any θ ∈ ∆(R+) and t ∈ R+. By definition of Ts]θ, we have that for any
h(·) ∈M(R+, [0, 1]):∫

[0,+∞)
h(s)dθ(s)−

∫
[t,+∞)

h(s− t)dθ(s) =
∫

[0,+∞)
h(s)dθ(s)−

∫
[0,+∞)

h(s)dT−t]θ(s)

(3.3.1)

and∫
[0,+∞)

h(s)dθ(s)−
∫

[0,+∞)
h(s+ t)dθ(s) =

∫
[0,+∞)

h(s)dθ(s)−
∫

[0,+∞)
h(s)dTt]θ(s).

(3.3.2)

Since T−t]θ and Tt]θ are both Borel measures on R+, "θ − T−t]θ" and "θ − Tt]θ" are both
signed measures. Hahn’s decomposition theorem 3 implies that:

sup
h∈M(R+,[0,1])

∣∣∣∣∣
∫

[0,+∞)
h(s)dθ(s)−

∫
[0,+∞)

h(s)dT−t]θ(s)
∣∣∣∣∣ = sup

Q∈B(R+)

∣∣∣θ(Q)− T−t]θ(Q)
∣∣∣.

and

sup
h∈M(R+,[0,1])

∣∣∣∣∣
∫

[0,+∞)
h(s)dθ(s)−

∫
[0,+∞)

h(s)dTt]θ(s)
∣∣∣∣∣ = sup

Q∈B(R+)

∣∣∣θ(Q)− Tt]θ(Q)
∣∣∣.

Combining with (3.3.1)-(3.3.2), we obtain:∣∣∣∣∣
∫

[0,+∞)
h(s)dθ(s)−

∫
[t,+∞)

h(s− t)dθ(s)
∣∣∣∣∣ ≤ sup

Q∈B(R+)

∣∣∣θ(Q)− θ(Q+ t)
∣∣∣ = TVt(θ)

and ∣∣∣∣∣
∫

[0,+∞)
h(s)dθ(s)−

∫
[0,+∞)

h(s+ t)dθ(s)
∣∣∣∣∣ ≤ sup

Q∈B(R+)

∣∣∣θ(Q)− θ(Q− t)
∣∣∣

≤θ
(
[0, t)

)
+ TVt(θ) ≤ 2TVt(θ).

The proof of the lemma is complete. �

3. The first author acknowledges Eilon Solan for the discussion on using Hahn’s decomposition theorem.
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3.4 Main Result
As will be shown in our main result, the function V ∗(y0) defined in (3.1.3) characterizes

the general limit value of the optimal control problem in case of convergence. We first
rewrite it as

V ∗(y0) = sup
µ∈∆(R+)

inf
t∈R+

VTt ] µ(y0) = sup
µ∈∆(R+)

inf
y∈R(y0)

Vµ(y).

We give the following interpretation: consider the auxiliary optimal control problem
(game) where an adversary of the controller chooses an evaluation µ, and then know-
ing µ, the controller chooses some ȳ in the reachable set R(y0) as the initial state. V ∗(y0)
is the maxmin of this problem.
Recall that a metric space X is totally bounded if for each ε > 0, X can be covered by
finitely many balls of radius ε.

Theorem 3.4.1. Let (θk)k≥1 be a sequence of evaluations satisfying the LTC. Then,
(i). V ∗ = supk∈N inft∈R+ VTt ] θk .
(ii). The sequence (Vθk)k converges uniformly if and only if the space ({Vθk}, ‖ · ‖∞) is
totally bounded, and the limit is equal to V ∗ in case of convergence.

Remark 3.4.2. Let (θk)k be a sequence of evaluations which contains a subsequence (θϕk)k
satisfying the LTC. Then Part (i) of Theorem 3.4.1 still holds true for (θk)k.

A more precise convergence result is obtained if we suppose that there exists a compact
set Y ⊆ Rd which is invariant for the dynamic (3.1.1), i.e. such that y(t,u, y0) ∈ Y for
all u ∈ U , t ≥ 0 and y0 in Y .

Corollary 3.4.3. Suppose that there is a compact set Y ⊆ Rd which is invariant for the
dynamic (3.1.1), and that the family {Vθ : θ ∈ ∆(R+)} is uniformly equicontinuous on
Y . Then there is general uniform convergence of the value functions {Vθ} to V ∗ on Y .

Proof : By assumption, the family of value functions {Vθ : θ ∈ ∆(R+)} is both uniformly
bounded and uniformly equicontinuous on the compact invariant set Y , so we can use
Ascoli’s theorem to deduce the total boundedness of the space ({Vθ}, ‖ · ‖∞). Theorem
3.4.1 implies that: for any (θk)k satisfying the LTC, the corresponding sequence of value
functions (Vθk) converges uniformly to V ∗ as k tends to infinity. Thus J has a general
limit value given as V ∗, and according to Lemma 3.3.2, there is uniform convergence of
value functions {Vθ} to V ∗ on Y . �

We shall give an existence result of the general limit value under sufficient conditions
expressed directly in terms of properties of the control dynamic (3.1.1) and of the running
cost g.

Let us introduce the following nonexpansive condition (cf. Quincampoix and Renault
[42]). The control dynamic (3.1.1) is non expansive if

∀y1, y2 ∈ Rd, sup
a∈U

inf
b∈U

〈
y1 − y2, f(y1, a)− f(y2, b)

〉
≤ 0.

Definition 3.4.4. The optimal control problem J = 〈U, g, f〉 is called compact non
expansive if it satisfies the following three conditions:
(A.1) there is a compact set Y ⊆ Rd which is the invariant for the dynamic (3.1.1);
(A.2) the running cost function g does not depend on u ∈ U , and is continuous in y ∈ Rd;
(A.3) the control dynamic (3.1.1) is nonexpansive on Y .
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3.4. Main Result

Corollary 3.4.5. Assume (3.2.1) for the optimal control problem J = 〈U, g, f〉. Suppose
that that J is compact nonexpansive, then the general limit value exists in J and is given
by V ∗ on Y .

Proof : Under (A.1) and (A.3), Proposition 3.7 in Quincampoix and Renault [42] implies
that:

∀(y1, y2) ∈ Y 2,∀u ∈ U ,∃v ∈ U , s.t. ∀t ≥ 0,
∥∥y(t,u, y1)− y(t,u, y2)

∥∥ ≤ ∥∥y1 − y2
∥∥.
(3.4.1)

We claim that the family (Vθ)θ∈∆(R+) is uniformly equicontinuous on Y , thus Corollary
3.4.3 and Lemma 3.3.2 apply. Fix any (y1, y2) ∈ Y 2, θ ∈ ∆(R+), and ε > 0. Let u be
ε-optimal for Vθ(y1):

Vθ(y1) ≥
∫

[0,+∞)
g
(
y(s,u, y1)

)
dθ(s)− ε.

According to the nonexpansive property, there exists v(·) in U as in (3.4.1) such that∥∥y(s,u, y1)− y(s,v, y2)
∥∥ ≤ ∥∥y1 − y2

∥∥, ∀s ≥ 0. (3.4.2)

By definition, Vθ(y2) ≤
∫
[0,+∞) g

(
y(s,v, y2)

)
dθ(s), hence

Vθ(y2)− Vθ(y1) ≤
∫

[0,+∞)

[
g
(
y(s,v, y2))− g(y(s,u, y1)

)]
dθ(s) + ε.

Denoting ωg the modulus of continuity of g, we obtain in view of (3.4.2):

Vθ(y2)− Vθ(y1) ≤
∫

[0,+∞)

[
g
(
y(s,v, y2)

)
− g

(
y(s,u, y1)

)]
dθ(s) + ε ≤ ωg(

∥∥y1 − y2
∥∥) + ε.

Interchanging y1 and y2 and taking into account of ε > 0 being arbitrary, we deduce that
(Vθ)θ∈∆(R+) is uniformly equicontinuous on the invariant set Y . This finishes the proof. �

Remark 3.4.6. Both Example 7 and Example 8 satisfy conditions of Corollary 3.4.5,
so there is general uniform convergence of the value functions {Vθ} (the existence of the
general limit value).

Remark 3.4.7. Our result generalizes Proposition 3.3 in Quincampoix and Renault [42]
which proved the uniform convergence of the t-horizon values in compact nonexpansive
optimal control problems.

We end this section by presenting two (counter)examples, showing that the results in
Theorem 3.4.1 do not hold if some of their conditions is not satisfied.

The first example is an uncontrolled dynamic. We show that if (θk)k contains no subse-
quence satisfying the LTC, then the result in Part (i) of Theorem 3.4.1 does not hold, i.e.
supk∈N∗ inft∈R+ VTt]θk(y0) < supθ∈∆(R+) inft∈R+ VTt]θ(y0) for some y0 (cf. Remark 3.4.2).

Counter-example 1. Consider the uncontrolled dynamic on R: y(0) = y0 and y′(t) =
− (y(t)− 1) ,∀t ≥ 0. The trajectory is then y(t) = 1 + (y0 − 1)e−t. The running cost
function g : R→ [0, 1] is given by:

g(y) =


0 if y < 0
y if 0 ≤ y ≤ 1
1 if y > 1
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We have that V ∗(y0) = supθ∈∆(R+) inft∈R+ VTt]θ(y0) = 1, ∀y0 ∈ R. Indeed, let y0 be given
and fix any ε > 0, there is some Tε > 0 such that |y(T )− 1| ≤ ε for all T ≥ Tε. Take an
evaluation θ in ∆(R+) with θ([0, Tε]) = 0. This enables us to deduce that: for all t ≥ 0,

VTt]θ(y0) =
∫

[Tε,+∞)
g
(
y(s+t)

)
dθ(s) ≥

∫
[Tε,+∞)

g
(
y(Tε)

)
dθ(s) ≥

(
1−y(Tε)

)
θ([Tε,+∞]) ≥ 1−ε.

time t

distance of y(t) from 1

|y0 − 1|

0
ε

Tε

Figure 1: The solution y(t) = 1 + (y0 − 1)e−t to the dynamic is represented by the thick
curve. For given ε > 0, Tε > 0 is chosen such that |y(Tε)− 1| = ε.

Consider now any sequence of evaluations (θk)k which does not contain any subsequence
satisfying the LTC. Under the assumption that the density fθk for each evaluation θk is non
increasing, we show that Part (i) of Theorem 3.4.1 is not valid: V ∗ 6= supk∈N inft∈R+ VTt]θk .

Indeed, let us take any y0 < 1 and suppose that supk∈N inft∈R+ VTt]θk(y0) = V ∗(y0), which
is equal to 1 as was proved. Let ϕ(k) be a subsequence such that limk→∞ inft∈R+ VTt]θϕ(k)(y0) =
1. (θϕ(k))k does not satisfy the LTC by assumption, so Remark 3.3.4 (a) implies that there
exists some T > 0 with θϕ(k)([0, T ]) 9 0. Let ϕm be the subsequence of ϕ and η > 0 such
that θϕm(k)([0, T ]) −−−→

k→∞
η. We obtain for any k ≥ 1,

inf
t∈R+

VTt]θϕm(k)(y0) ≤ Vθϕm(k)(y0) =
∫

[0,T ]
g (y(t)) dθϕm(k)(t) +

∫
[T,+∞]

g (y(t)) dθϕm(k)(t)

≤ y(T )θϕk(m)([0, T ]) + θϕk(m)([T,+∞]).

This implies that for such fixed y0 < 1 ,

lim
k

inf
t∈R+

VTt]θϕm(k)(y0) ≤ y(T )η + (1− η) < 1.

This contradicts the assumption that supk∈N inft∈R+ VTt]θk(y0) = 1, and our claim is
proved.

In the second example, we study the convergence of the value functions of a control
problem along two different sequences of evaluations satisfying the LTC. Along the first
sequence, the value functions converge uniformly to V ∗; while along the second, the value
functions point-wisely converge, but not uniformly (thus the family of value functions is
not totally bounded for the uniform norm), to a limit function which is different from V ∗.

Counter-example 2. Consider the control problem on the state space R = (−∞,+∞),
where the control set is U = {+1,−1}; the dynamic is 4:

f(y, u) = u for all (y, u) ∈ R+ × U and f(y, u) = −1 for all (y, u) ∈ R∗− × U,

4. Notice that the dynamic is discontinuous at y = 0 when u = +1. To get the desired asymptotic
result under the Liptchitz regularity, one can slightly modify dynamic to set f(y,+1) = y for y ∈ [0, 1] and
others unchanged.
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where R∗− = R−/{0}; and the running cost function is:

g(y, u) =


+1 if u = +1, y ≥ 0
0 if u = −1, y ≥ 0

+K if y < 0

Suppose that K > 1 large enough, so the cost on R− is positive and high. Whenever the
state reaches y = 0, it is optimal to choose control u = +1 and this drives the state back
to R+; on R∗−, the dynamic is f = −1, independent of control and state. Vθ(y0) = K for
all y0 in R∗− and θ in ∆(R+), so the reduced state space is R+, and we consider value
functions defined on it.

V ∗(y0) = supθ inft≥0 VTt]θ(y0) = 0 for any y0 ≥ 0. Fix any y0 ≥ 0. For any θ ∈ ∆(R+) and
ε > 0, let tε ≥ 0 such that θ([0, tε]) ≥ 1− ε. Define now the control uε to be: uε(t) = +1,
if t ∈ [0, tε] and uε(t) = −1 if t ∈ (tε,∞), which gives: γTtε ]θ(y0,uε) ≤ εK.

Consider (θk)k the sequence of evaluations with density fθk(s) = 1
k1[k,2k](s) for each k,

and (θ̄k)k the sequence of k-horizon evaluations with density fθ̄k(s) = 1
k1[0,k](s) for each

k. We show that:
({Vθk}, ‖ · ‖∞) is totally bounded and (Vθk) converges uniformly to V ∗; while ({V

θ
k}, ‖ ·

‖∞) is not totally bounded and (V
θ
k) does not converge to V ∗.

Let y0 ≥ 0, we have that:
1. Vθk(y0) = 0, for all k ≥ 1. Indeed, one optimal control for Vθk(y0) can be taken as:

u∗(t) = +1, t ∈ [0, k] and u∗(t) = −1, t ∈ (k, 2k];
2. V

θ
k(y0) = 0 if k ≤ y0 and V

θ
k(y0) = 1

2 −
y0
2k if k > y0. Indeed, for k ≤ y0, one

optimal control for V
θ
k(y0) can be taken as: u∗(t) = −1, t ∈ [0, k]; for k > y0,

one optimal control for V
θ
k(y0) can be taken as: u∗(t) = +1, t ∈ [0, k−y0

2 ] and
u∗(t) = −1, t ∈ (k−y0

2 , k], so γ
θ
k(y0,u∗) = (k−y0)/2

k = 1
2 −

y0
2k .

See the following two pictures for illustration.

0

y0

k

π
4

time

distance from 0

0

y0

k

k−y0
2

time

distance from 0

one optimal control for θk one optimal control for θ
k, k > y0

u = +1 and g = 1 u = −1 and g = 0

π
4

Figure 2: The left figure describes the dynamic of one optimal control for the evaluation
θk, which is u∗ = +1 on [0, k] and u∗ = −1 on (k, 2k]; the right figure describes the
dynamic of one optimal control for the evaluation θ̄k with k > y0, which is u∗ = +1 on
[0, k−y0

2 ] and u∗ = −1 on (k−y0
2 , k]. Here, the vertical axis represents the distance of y(t)
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from zero and the thick trajectory (resp. thin trajectory) corresponds to state on which
u = +1 and g = 1 (resp. u = −1 and g = 0).

We deduce that (Vθk(y0))k converges uniformly to V ∗(y0) = 0 on R+; and that Vθk(y0) −−−→
k→∞

1
2 , while the convergence is not uniform in y0 ∈ R+: indeed, for all k ≥ 1, V

θ
k(k) = 0.

3.5 Proof of main result: Theorem 3.4.1
Consider in this section a sequence of evaluations (θk)k that satisfies the LTC. As the

proof is long, we divide it into two main parts:
– in Subsection 3.5.1, we present the first preliminary result, Proposition 3.5.1. It is
used in two ways: first, we obtain an immediate consequence for later use, which
bounds lim infk Vθk from below in terms of the auxiliary value functions {VTt]θk : k ∈
N∗, t ∈ R+}; second, we deduce from it in Corollary 3.5.2 the proof for Part (i) of
Theorem 3.4.1.

– In Subsection 3.5.2, we prove Part (ii) of Theorem 3.4.1. Lemma 3.5.3 gives an
upper bound of lim supk Vθk in terms of the auxiliary value functions {VTt]θk : k ∈
N∗, t ∈ R+}, which is used, together with the result from Proposition 3.5.1, to prove
the convergence of (Vθk).

3.5.1 A first preliminary result and proof for Part (i)

Proposition 3.5.1. For any µ in ∆(R+), and any initial state y0 in Rd,

inf
t∈R+

VTt]µ(y0) ≤ lim inf
k

Vθk(y0).

In particular, we have for all y0 in Rd,

sup
k∈N∗

inf
t∈R+

VTt]θk(y0) ≤ lim inf
k

Vθk(y0).

Proof: Fixing y0 and µ, we set β =def inft∈R+ VTt]µ(y0). For any ε > 0 fixed, there
exists some T0 > 0 such that µ([T0,+∞)) < ε. Take any control u in U . By definition of
β, we have that

∀T ≥ 0,
∫

[0,+∞)
g
(
y(t+ T,u, y0),u(t+ T )

)
dµ(t) ≥ β,

thus

∀T ≥ 0,
∫

[0,T0]
g
(
y(t+ T,u, y0),u(t+ T )

)
dµ(t) ≥ β − ε. (3.5.1)

For each k ≥ 1, integrating both sides of (3.5.1) over T ∈ [0,+∞) w.r.t. the evaluation
θk, we obtain ∫

[0,+∞)

∫
[0,T0]

g
(
y(t+ T,u, y0),u(t+ T )

)
dµ(t)dθk(T ) ≥ β − ε. (3.5.2)

Applying Fubini’s Theorem to (3.5.2) yields

β − ε ≤
∫

[0,T0]

[∫
[0,+∞)

g
(
y(t+ T,u, y0),u(t+ T )

)
dθk(T )

]
dµ(t) =

∫
[0,T0]

[
γTt]θk(y0,u)

]
dµ(t),

(3.5.3)
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where γTt]θk(y0,u) =
∫
[0,+∞) g

(
y(t+T,u, y0),u(t+T )

)
dθk(T ). According to Lemma 3.3.8,

we have |γθk(y0,u)− γTt]θk(y0,u)| ≤ 2TVt(θk). This enables us to rewrite (3.5.3) as:

β − ε ≤
∫

[0,T0]

(
γθk(y0,u) + 2TVt(θk)

)
dµ(t)

≤
(
γθk(y0,u) + 2TV T0(θk)

)
µ([0, T0])

≤ γθk(y0,u) + 2TV T0(θk).

The control u ∈ U being taken arbitrarily, we deduce that

β − ε ≤ Vθk(y0) + 2TV T0(θk).

Since (θk)k satisfies the LTC, TV T0(θk) vanishes as k tends to infinity. The proof is
achieved. �
We end the proof for Part (i) of Theorem 3.4.1 by the following corollary of Proposition
3.5.1.

Corollary 3.5.2. [Proof for Part (i) of Theorem 3.4.1]

V ∗(y0) = sup
k≥1

inf
t∈R+

VTt]θk(y0), ∀y0 ∈ Rd.

Proof: Fix y0 ∈ Rd, and denote % = supk≥1 inft≥0 VTt]θk(y0).We prove that % ≥ V ∗(y0).
For each k ≥ 1, there exists m(k) in R+ such that VTm(k)]θk

(y0) ≤ % + 1/k. Since πk :=
Tm(k)]θ

k is also an evaluation on R+, we have: for any s ≥ 0,

TVs(πk) = sup
Q∈B(R+)

∣∣∣θk((Q−m(k))∩R+
)
−θk

(
(Q−m(k)+s)∩R+

)∣∣∣ ≤ TVs(θk)+θk([0, s]).

We deduce that (πk)k satisfies the LTC whenever (θk)k does so. According to Proposition
3.5.1,

∀µ ∈ ∆(R+), inf
t∈R+

VTt]µ(y0) ≤ lim inf
k

VTm(k)]θk
(y0) ≤ %,

thus V ∗(y0) ≤ %. The proof is complete. �

3.5.2 Proof for Part (ii)

We first give an upper bound on "lim supk Vθk" in terms of the auxiliary value functions
{VTt]θk : k ∈ N∗, t ∈ R+}.

Lemma 3.5.3. For all T0 ≥ 0 and any y0 in Rd,

lim sup
k

Vθk(y0) = lim sup
k

inf
t≤T0

VTt]θk(y0).

In particular, for all T0 ≥ 0 and any y0 in Rd,

lim sup
k

Vθk(y0) ≤ sup
k≥1

inf
t≤T0

VTt]θk(y0).
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Proof: Fix T0 ≥ 0 and y0 ∈ Rd. For all k ≥ 1 and t ≤ T0, we obtain as a direct
consequence of Lemma 3.3.8 that

γθk(y0) ≤ γTt]θk(y0) + 2TVt(µ),

thus
Vθk(y0) ≤ VTt]θk(y0) + 2TVt(θk) ≤ inf

0≤t≤T0
VTt]θk(y0) + 2TV T0(θk).

Since (θk)k satisfies the LTC, TV T0(θk) vanishes as k tends to infinity. By taking "lim supk"
on both sides of above inequality, the proof of the lemma is achieved. �

We summarize results from Proposition 3.5.1, Corollary 3.5.2 and Lemma 3.5.3 in the fol-
lowing chain form, which implies that the uniform convergence of (Vθk)k to V ∗ is obtained
once we prove the uniform convergence of "supk≥1 inf ȳ∈RT0 (y0) Vθk(ȳ)" to
"supk≥1 inf ȳ∈R(y0) Vθk(ȳ) = V ∗(y0)" as T0 tends to infinity.

Corollary 3.5.4. For all T0 ≥ 0 and y0 in Rd,

sup
k≥1

inf
ȳ∈RT0 (y0)

Vθk(ȳ) ≥ lim sup
k

Vθk(y0) ≥ lim inf
k

Vθk(y0) ≥ sup
k≥1

inf
ȳ∈R(y0)

Vθk(ȳ) = V ∗(y0).

For any states y and y in Rd, let us define d̃(y, y) = supk≥1 |Vθk(y) − Vθk(y)|. The space
(Rd, d̃) is now a pseudometric space (may not be Hausdorff).

The following is similar to the proof of Theorem 2.5 in Renault [46], and is also similar
to the proof of Theorem 3.10 in Renault [44]. We rewrite it here for sake of complete-
ness. Roughly speaking, we shall use the total boundedness of the space

(
{Vθk}, ‖ · ‖∞

)
so as to deduce that the state space (Rd, d̃) is totally bounded for the pseudometric d̃.
This allows us to prove the convergence for d̃ of the reachable set RT to R in bounded
time. We are then able to prove the uniform convergence of "supk≥1 inf ȳ∈RT0 (y0) Vθk(ȳ)"
to "supk≥1 inf ȳ∈R(y0) Vθk(ȳ) = V ∗(y0)" as T0 tends to infinity.

Proof for Part (ii) of Theorem 3.4.1. One direction is clear: the uniform convergence
of (Vθk) implies the total boundedness of the space ({Vθk}, ‖ ·‖∞). Suppose that ({Vθk}, ‖ ·
‖∞) is totally bounded, we are going to show that (Vθk) converges uniformly to V ∗.

Fix any ε > 0. By assumption, there exists a finite set of indices I such that for all
k ≥ 1, there exists i ∈ I satisfying

‖Vθk − Vθi‖∞ ≤ ε/3.

{
(
Vθi(y)

)
, y ∈ Rd} is a subset of the compact metric space

(
[0, 1]I , ‖ · ‖∞

)
, thus it is itself

totally bounded, so there exists a finite subset X of Rd such that

∀y ∈ Rd, ∃x ∈ X,∀i ∈ I, |Vθi(y)− Vθi(x)| ≤ ε/3.

We have obtained that for each ε > 0, there exists a finite subset X of Rd such that for
every y ∈ Rd, there is x ∈ X satisfying: for any k ≥ 1 there is some i ∈ I with∣∣Vθk(y)− Vθk(x)

∣∣ ≤ ∣∣Vθk(y)− Vθi(y)
∣∣+ ∣∣Vθi(y)− Vθi(x)

∣∣+ ∣∣Vθi(x)− Vθk(x)
∣∣ ≤ ε,

thus d̃(y, x) ≤ ε. This implies that the pseudometric space (Rd, d̃) is itself totally bounded.
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Fix now y0 in Rd. It is by definition that

∀T, S ∈ R+, S ≥ T, RT (y0) ⊂ RS(y0) ⊂ R(y0),

and
∀ȳ ∈ R(y0), ∃T̄ > 0 s.t. ȳ ∈ RT̄ (y0).

From the total boundedness of (Rd, d̃), we show that RT converges to R in the following
sense

∀ε > 0, ∃T ≥ 0 : ∀y ∈ R(y0), ∃ỹ ∈ RT (y0), d̃(y, ỹ) ≤ ε. (3.5.4)

Indeed, let us first take {y`} a finite ε-cover of R(y0) for d̃. For each y`, let T` > 0 with
y` ∈ RT`(y0). We then take T = max T`. Now for any ȳ ∈ R(y0), there is some y` with
d̃(ȳ, y`) ≤ ε. Moreover, y` ∈ RT`(y0) ⊂ RT (y0). This proves (3.5.4).

Consider k ≥ 1 and T ≥ 0 given by assertion (3.5.4) for the fixed ε > 0. Let y ∈
R(y0) be such that Vθk(y0) ≤ infy∈R(y) Vθk(y) + ε, and then ỹ in RT (y0) be such that
d̃(y, ỹ) ≤ ε. Since Vθk is clearly 1-Lipschitz for d̃, we obtain Vθk(ỹ) ≤ infy∈R(y0) Vθk(y)+2ε.
Consequently, infy∈RT (y0) Vθk(y) ≤ infy∈R(y0) Vθk(y) + 2ε for all k, so

sup
k≥1

inf
y∈RT (y0)

Vθk(y) ≤ sup
k≥1

inf
y∈R(y0)

Vθk(y) + 2ε = V ∗(y0) + 2ε.

One obtains that lim supk Vθk(y0) ≤ lim infk Vθk(y0) + 2ε, and so
(
Vθk(y0)

)
k
converges

to V ∗. Since (Rd, d̃) is totally bounded and all Vθk are 1-Liptschitz, the convergence is
uniform. �

3.6 Concluding discussions
We comment on two unknown questions.
The first question concerns a weaker form of the long-term condition (LTC) defined

as:

Long-term condition’ (LTC’) A sequence of evaluations (θk)k≥1 satisfies the LTC’ if:

∀s > 0, TVs(θk) −−−→
k→∞

0.

Question 1. Is the LTC’ strictly weaker than the LTC ?

One might want to construct an example of (θk)k such that TVs(θk) −−−→
k→∞

0 for all
s > 0 while TV s0(θk) −−−→

k→∞
α > 0 for some s0 > 0 and α > 0. The following example

shows that this is possible if we consider only s being rational numbers. In general, the
question is still open.

Example 12. Given a positive integer k, consider the density θk with support included in
[0, k] by dividing [0, k] into k2 consecutive small intervals of length 1/k, and θk is uniform
over the union of all small odd intervals and puts no weight on small even intervals. Define
the support

Sk =
⋃

l∈N,l≤ k2−1
2 ,

[2l
k
,
2l + 1
k

)
.

67



Chapter 3. Valeur limite pour le problème de contrôle optimal avec
évaluations générales

θk has density:
fk(x) = 2

k
1x∈Sk = 2

k
1x∈[0,k],E(kx)∈2N

(where 2N is the set of even numbers in N, E(x) is the integer part of x).
For each k, we have (consider s = 1/k):

sup
0≤s≤1

∫
x≥0

∣∣fk(x+ s)− fk(x)
∣∣dx ≥ 2− 1/k

Consider now only k of the form n!, and we define the density gn = fn! for each n in N.
For all x ≥ 0,

gn(x+ s)− gn(x) = 2
n!
(
1E(n!(x+s))∈2N,x+s≤n! − 1E(n!x)∈2N,x≤n!

)
.

Assume s is a rational number. Then for n large enough, n!s is an even integer, so for all
x such that 0 ≤ x ≤ n!− s, we have gn(x+ s)− gn(x) = 0. Consequently,∫

x≥0

∣∣gn(x+ s)− gn(x)
∣∣dx −−−→

n→∞
0.

The second question asks whether the existence of general limit value is strictly stronger
than the uniform convergence of t-horizon values.

From Oliu-Barton and Vigeral [40], we know that a uniform Tauberian theorem holds
in optimal control problems: the uniform convergence of Vt as t tends to infinity is equiva-
lent to the uniform convergence of Vλ as λ tends to zero, and in case of convergence, both
limits are the same. In Example 2, there is no uniform convergence of Vt (or equivalently
of the Vλ) but uniform convergence of value functions for a particular sequence of evalua-
tions satisfying the LTC. This leads us to ask the following

Question 2. Does the uniform convergence of Vt as t tends to infinity imply the exis-
tence of general limit value ?

We show that this is at least the case for uncontrolled problems (compare with Propo-
sition 5.1 in Renault [46]). This provides also explanation for Example 6.

Proposition 3.6.1. For an uncontrolled problem, the uniform convergence of Vt to some
function ϕ as t tends to infinity implies general uniform convergence of the value functions
{Vθ} to ϕ.

Proof. Fix ε > 0. By the uniform convergence of Vt to ϕ, there is S > 0 such that

|VS(y0)− ϕ(y0)| ≤ ε/3, ∀y0 ∈ Rd.

Consider any θ ∈ ∆(R+) and y0 ∈ Rd. Denote by yt the state reached by the uncontrolled
dynamic at time t and starting from y0. We have:

Vθ(y0) =
∫

[0,+∞)
g
(
ys
)
dθ(s) and ϕ(ys) = ϕ(y0), ∀s ≥ 0.

We write Vt,S(y0) = 1
S

∫
[t,t+S) g(ys)ds for each t ≥ 0. Indeed, we have Vt,S(y0) = VS(ys),

thus

|Vt,S(y0)− ϕ(yt)| = |Vt,S(y0)− ϕ(y0)| ≤ ε/3 for all t ≥ 0. (3.6.1)

68



3.7. Appendix

Integrating Vt,S(y0) over t ≥ 0 w.r.t. θ, we obtain (using Fubini’s theorem):∫
[0,+∞)

Vt,S(y0)dθ(t) =
∫

[0,+∞)

(
1
S

∫
[t,t+S)

g(ys)ds
)

dθ(t) =
∫

[0,+∞)
βs(θ, S)g(ys)ds = Vς(θ,S)(y0),

where βs(θ, S) = 1
S

∫
[max{0,s−S},s) dθ(t), ∀s ≥ 0, and ς(θ, S) is an evaluation with s 7→

βs(θ, S) its density. This, together with (3.6.1), implies that
∣∣Vς(θ,S)(y0) − ϕ(y0)

∣∣ ≤ ε/3.
Next, we prove∣∣Vθ(y0)− Vς(θ,S)(y0)

∣∣ ≤ sup
Q∈B(R+)

|θ(Q)− ς(θ, S)(Q)| ≤ 2TVS(θ). (3.6.2)

The first inequality follows from Hahn’s decomposition theorem applied to the sign mea-
sure "θ − ς(θ, S)" (cf. Lemma 3.3.8). For the second one, we consider Q ∈ R+. Write
βs(θ, S) = 1

S

∫
[s−S,s) dθ(t) for all s ≥ 0 by extending θ to [−S, 0)∪R+ with null on [−S, 0).

This gives us:

ς(θ, S)(Q) =
∫
Q
βs(θ, S)ds = 1

S

∫
Q

(∫
[s−S,s)

dθ(t)
)

ds

=
∫
Q−S

(
1
S

∫
[t,t+S)

ds
)

dθ(t)

=θ(Q− S).

We deduce then |θ(Q)− ς(θ, S)(Q)| ≤ θ
(
[0, S)

)
+ TVS(θ) ≤ 2TVS(θ). This proves (3.6.2),

thus∣∣Vθ(y0)− ϕ(y0)
∣∣ ≤ ∣∣Vθ(y0)− Vς(θ,S)(y0)

∣∣+ ∣∣Vς(θ,S)(y0)− ϕ(y0)
∣∣ ≤ 2TVS(θ) + ε/3, ∀y0.

This implies general uniform convergence of {Vθ} to ϕ by considering all θ with TV S(θ) ≤
ε/3.

3.7 Appendix
Proof for Lemma 3.3.6: The following computation of f ′θ(t) is straightforward:

∀t > 0, f ′θ(t) = 1
σ
√

2π

[
exp

(
−1

2
( t−m

σ

)2) m− t
σ2 − exp

(
−1

2
( t+m

σ

)2) m+ t

σ2

]
,

thus

f ′θ(t) > 0 (resp. < 0)

⇐⇒ (m− t) exp
(
−1

2
( t−m

σ

)2)
− (m+ t) exp

(
−1

2
( t+m

σ

)2)
> 0 (resp. < 0).

As a consequence, one obtains that f ′θ(t) < 0, ∀t ≥ m. Now we look at t ∈ (0,m).
Denote H(t) =def exp

(
2mt
σ2

)
− m+t

m−t , which enables us to write:

f ′θ(t) > 0 (resp. < 0)⇐⇒ H(t) > 0 (resp. < 0), ∀t ∈ (0,m).

From the above analysis, we deduce that the proof of the lemma is reduced to the proof for

Claim There is some t∗ ∈ [0,m) such that H(t) < 0 for t ∈ (0, t∗) and H(t) > 0 for
t ∈ (t∗,m). Moreover, such t∗ satisfies (t∗)2 ≥ m2 − σ2.

In order to prove the claim, we compute
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– the values at the end point: H(0) = 0 and limt→m− H(t) = −∞;
– the first-order derivative at any t ∈ [0,m):

H ′(t) = exp
(2mt
σ2

) 2m
σ2 −

2m
(m− t)2 (3.7.1)

– at any rest point te ∈ [0,m) (i.e., H(te) = 0):

exp
(2mte

σ2

)
= m+ te

m− te
,

which is substituted back into (3.7.1), to yield

H ′(te) > 0
(
resp. H ′(te) < 0

)
⇐⇒ (te)2 < m2 − σ2 ( resp. (te)2 > m2 − σ2 ).

(3.7.2)

Next, it is easy for us to prove the following result:
Let te1 ∈ [0,m) be a rest point for H(·), and suppose that te2 ∈ (te1,m) is the smallest

rest point after te1. Then H ′(te1)H ′(te2) ≤ 0 and if H ′(te1) ≤ 0, such te2 does not exist.
Indeed, H ′(te1)H ′(te2) ≤ 0 can be derived from the continuity of H(·); suppose that

H ′(te1) ≤ 0, we have from (3.7.2) that (te1)2 ≥ m2−σ2 and H ′(te2) ≥ 0, thus (te2)2 ≤ m2−σ2.
However, this leads to a controdiction to te2 > te1, so te2 does not exist whenever H ′(te1) ≤ 0.

Finally, remark that H(0) = 0, thus t = 0 is a rest point. We discuss the following two
cases:

Case 1. m2 − σ2 ≤ 0, thus H ′(0) ≤ 0.
This implies that no rest point exists after 0. Since limt→m− H(t) = −∞, we deduce

that H(t) < 0, ∀t ∈ (0,m). The claim is proved for t∗ = 0.
Case 2. m2 − σ2 > 0, thus H ′(0) > 0.
limt→m− H(t) = −∞ implies that some rest point exists in (0,m). Take te the closest

to 0, implying that H(t) > 0, ∀t ∈ (0, te). Further, we obtain that H ′(te) ≤ 0 by the
continuity of H(·). Again, there exists no other rest point after te. Since limt→m− H(t) =
−∞, we deduce that H(t) < 0, ∀t ∈ (te,m). The claim is proved for t∗ = te.

To conclude, we see that in both cases such t∗ exists and satisfies (t∗)2 ≥ m2 − σ2,
thus the claim is proved. This finishes our proof for the lemma. �
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Chapter 4

Valeur uniforme pour le probème
de contrôle optimal dans le cadre
"compact non expansif" avec
évaluations générales

Résumé Nous considérons le problème de contrôle optimal avec le coût de la trajectoire
évalué par une mesure de probabilité sur R+. Nous utilisons la notion de s- variation
totale introduite dans Li et al. [30] pour définir une condition de régularité asympto-
tique pour une suite des mesures de probabilité. Dans des cas particuliers des moyennes
de Cesàro ou des moyennes d’Abel, cette condition exige que l’horizon tende vers l’infini
ou que le facteur d’escompté tende vers zéro. Pour le système de contrôle satisfaisant
une certaine condition de non-expansivité et définie sur un domaine invariant compact,
nous prouvons l’existence des contrôles ε-optimaux dans tous les problèmes où le coût
est évalué par des mesures de probabilité suffisamment régulières. Ce résultat généralise
celui de Quincampoix et Renault [42], qui ont établi l’existence de la valeur uniforme pour
les problèmes de contrôle où le coût de la trajectoire est évalué par les moyennes de Cesàro.

Keywords Contrôle optimal, valeur uniforme, la valeur moyenne à long temps, évaluation
générale

Ce chapitre est issu de l’article Uniform value for some nonexpansive optimal control
problems with general evaluations.



Chapter 4. Valeur uniforme pour le probème de contrôle optimal dans le
cadre "compact non expansif" avec évaluations générales

Uniform value for some nonexpansive
optimal control problems with general

evaluations
Abstract We consider optimal control problems with the running cost evaluated by a
probability measure over R+. To study limit properties with respect to the evaluation,
we use the notion of s-total variation introduced in Li et al. Li et al. [30] to define an
asymptotic regularity condition for a sequence of probability measures. In particular case
of Cesàro means or Abel means, this condition asks for the horizon T , on which the cost
is averaged, to tend to infinity or for the discount factor λ to tend to zero. For the con-
trol system defined on a compact domain and satisfying some nonexpansive condition, we
prove the existence of ε-optimal control for all control problems where the cost is evaluated
by sufficiently regular probability measures. This generalizes result in Quincampoix and
Renault [42], which proved the existence of uniform value for the running cost evaluated
by Cesàro means.

Keywords Optimal control, uniform value, long time average value, general evaluation

4.1 Introduction
Let U be a compact subset of a separable metric space. A control u is a measurable

function from R+ to U . Denote by U the set of all controls. We consider the following
control system:

y′(t) = f
(
y(t),u(t)

)
, y(0) = y0. (4.1.1)

where f : Rd × U → Rd, and y0 ∈ Rd is the initial state. Let g : Rd × U → R be the
running cost function. We make the following assumptions on f and g:

the function g : Rd × U → R is Borel measurable and bounded;
the function f : Rd × U → Rd is Borel measurable, and satisfies:

(∗). ∃L ≥ 0,∀(y, y) ∈ R2d,∀u ∈ U, ||f(y, u)− f(y, u)|| ≤ L||y − y||,
(∗∗). ∃a > 0,∀(y, u) ∈ Rd × U, ||f(y, u)|| ≤ a(1 + ||y||).

(4.1.2)

Then, given y0 ∈ Rd, any u ∈ U defines a unique absolutely continuous solution to (4.1.1)
on R+, denoted y(t, u, y0).

Denote by J = 〈U, g, f〉 the optimal control problem described above. ∆(R+) is the
set of probability measures on R+ and any θ ∈ ∆(R+) is called an evaluation. The θ-value
of the control problem is defined as:

Vθ(y0) = inf
u∈U

γθ(y0,u), with γθ(y0,u) =
∫ +∞

0
g
(
y(t,u, y0),u(t)

)
dθ(t). (4.1.3)

The following notion is introduced in Li et al. [30] to define a regularity of any evalu-
ation θ, and is used to study the asymptotic behavior of Vθ as θ becomes more and more
regular.

72



4.1. Introduction

Definition 4.1.1. For any s ≥ 0, the s-total variation of an evaluation θ is:

TVs(θ) = max
Q∈B(R+)

|θ(Q)− θ(Q+ s)|.

Definition 4.1.2. The optimal control problem J = 〈U, g, f〉 has a general limit value
given by some function V defined on Rd if: for each ε > 0 there is some η > 0 and S > 0
such that:

∀θ ∈ ∆(R+),
(

sup
0≤s≤S

TVs(θ) ≤ η =⇒
(
∀y0 ∈ Rd, |Vθ(y0)− V (y0)| ≤ ε

))
.

When we consider the usual Cesàro mean (T -horizon average) or Abel mean (λ-
discounted) of the running cost, the condition "vanishing s-total variation" corresponds
to that "the horizon T increasing to infinity" or that "the discount factor λ decreasing to
zero" (cf. Li et al. [30]).

We restrict ourselves to the study of the following class of control problems.

Definition 4.1.3. The optimal control problem J = 〈U, f, g〉 is compact nonexpansive
if:
A.1) the control dynamic (4.1.1) has a compact invariant set Y ⊆ Rd, i.e. y(t,u, y0) ∈ Y ,
∀t ≥ 0 for all u ∈ U and y0 ∈ Y ;
A.2) the running cost g does not depend on u and is continuous in y ∈ Y ;
A.3) the control dynamic (4.1.1) is nonexpansive, i.e.,

∀y1, y2 ∈ Rd, sup
a∈U

inf
b∈U

〈
y1 − y2, f(y1, a)− f(y2, b)

〉
≤ 0. (4.1.4)

Consider a control problem J = 〈U, g, f〉 compact nonexpansive with invariant set Y .
Li et al. [30] (see Corollary 4.5) proved that J has a general limit value characterized by
the following function:

V ∗(y0) = sup
θ∈∆(R+)

inf
s∈R+

inf
u∈U

∫ ∞
0

g
(
y(t+ s,u, y0)

)
dθ(t), ∀y0 ∈ Y. (4.1.5)

Proposition 4.1.4. [Li et al. 2015] Let J = 〈U, f, g〉 be compact nonexpansive with
invariant set Y . Then V ∗ is the general limit value of J .

We study here a notion of value which is stronger than the general limit value, namely the
general uniform value, which asks for the existence of approximately optimal control in
all control problems where the running cost is evaluated by any θ with sup0≤s≤S TVs(θ)
sufficiently small for some fixed S > 0. In order to give a formal definition, we first
introduce the notion of random control.

Definition 4.1.5. A random control is a pair
(
(Ω,B(Ω), λ),u

)
, where (Ω,B(Ω), λ) is

some standard Borel probability space and u : Y ×Ω× [0,+∞)→ U is a Borel measurable
mapping 1.

Denote by Ũ the set of all random controls, which is convex in the following sense.
For any u1,u2 ∈ Ũ and α ∈ [0, 1], define u = αu1 + (1 − α)u2 to take the value of u1
with probability α and of u2 with probability (1 − α). It is easy to construct a product
probability space such that u is in Ũ .

1. We have extended the definition of a random control to dependent on the initial state for later use.
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We might shortly write Ω for the triple (Ω,B(Ω), λ). Let (Ω,u) be a random control,
then for any initial point y0 ∈ Y and any ω ∈ Ω, uω(y0, ·) := u(y0, ω, ·) defined from
[0,+∞) to U is a (pure) control in U , which we denote by uω(y0). The Borel probability
space Ω serves as a random device for the controller to choose a pure control in U .

The expected θ-evaluated payoff induced by any random control (Ω,u) and initial
point y0 is denoted by

γθ(y0,u) =
∫

Ω
γθ
(
y0,uω(y0)

)
dλ(ω) =

∫
Ω

∫
[0,+∞)

g
(
y(t,uω(y0), y0)

)
dθ(t)dλ(ω),

and the expected θ-value in random controls is Ṽθ(y0) = infu∈Ũ γθ(y0,u). The payoff
function γθ(y0, ·) is affine 2 in u, thus the value function in random controls is the same as
that in pure controls, that is, Ṽθ(y0) = Vθ(y0) for all y0 ∈ Y and θ ∈ ∆(R+).

Definition 4.1.6. The optimal control problem J = 〈U, f, g〉 has a general uniform
value if for each ε > 0 there is some η > 0, S > 0 and a random control u ∈ Ũ such that:

∀θ ∈ ∆(R+),
(

sup
0≤s≤S

TVs(θ) ≤ η =⇒
(
∀y0 ∈ Y, γθ(y0,u) ≤ V ∗(y0) + ε

))
,

where V ∗ is defined as in (4.1.5).

The random control u appearing in the above definition is called an ε-optimal control
for the control problem J .

Our main result is the following:

Theorem 4.1.7. Assume that the optimal control problem J = 〈U, f, g〉 is compact
nonexpansive. Then it has a general uniform value.

Quincampoix and Renault [42] proved the existence of (pure) ε-optimal control for
the compact nonexpansive control problems when the running cost is evaluated by Cesàro
means. Our result generalizes it. However, it is unknown whether pure ε-optimal control
exists with general evaluations. Our proof is partially inspired by Renault [47], which
established analogous results in discrete time framework.

4.2 Preliminaries
We introduce several further notations concerning random controls.
Our use of random strategies/control in continuous time game/control problem follows

Cardaliaguet [15] (cf. Aumann [4] for the introduction of randomized strategies for infinite
games). We are going to work on a set S of probability spaces, which is stable by countable
product. To fix the ideas, choose

S = {([0, 1]n,B([0, 1]n), λn) , for some n ∈ N∗ ∪ {∞}},

where B([0, 1]n) is the class of Borel sets of [0, 1]n, λn is the Lebesgue measure on Rn for
n <∞ and B([0, 1]∞) is the product Borel-field, λ∞ is the product measure for n =∞.

2. To see this point, consider for example the Borel probability space to be
(
[0, 1],B([0, 1]), λ

)
where λ

is the Lebesgue measure. We take any u1,u2 : Y ×[0, 1]×[0,+∞)→ U two random controls, any α ∈ [0, 1],
and let u3 : Y × [0, 1] × [0,+∞) → U be the random control as a convex combination of u1 and u2 with
coefficient α: for any y0 ∈ Y , u3(y0, ω, t) = u1(y0,

ω
α
, t) for ω ∈ [0, α] and u3(y0, ω, t) = u2(y0,

ω−α
1−α , t) for

ω ∈ (α, 1]. Using the change of variables, we obtain γθ(y0,u3) = α · γθ(y0,u1) + (1− α) · γθ(y0,u2).
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We might write simply u ∈ Ũ without explicitly mentioning the underlying probability
space.

For any (y0,u) ∈ Y ×Ũ and t ≥ 0, we denote ỹ(t,u, y0) =
∫

Ω δy(t,uω(y0),y0)dλ(ω) for the
distribution of the state at time t. Any z ∈ ∆(Y ) is a probability distribution over Y . Let z
be the distribution of the initial state, then t 7→ ỹ(t,u, z) =

∫
Y

∫
Ω δy(t,uω(y0),y0)dλ(ω)dz(y0)

is the expected trajectory in ∆(Y ) w.r.t. z. The above notations are consistent when a
point y0 ∈ Y is identified with the Dirac measure δy0 ∈ ∆(Y ).

For any ỹ ∈ ∆(Y ), let g(ỹ) =
∫
p∈Y g(p)dỹ(p) be the affine extension of g. Using

Fubini’s theorem, we have: for any y0 ∈ Y and u ∈ Ũ ,

γθ(y0,u) =
∫

[0,+∞)

∫
Ω
g
(
y(t,uω(y0), y0)

)
dλ(ω)dθ(t) =

∫
[0,+∞)

g
(
ỹ(t,u, y0)

)
dθ(t).

Before proceeding to the proof of Theorem 4.1.7, we establish in this subsection several
preliminary results concerning the nonexpansive property of the dynamic in ∆(Y ).

Let dKR be the Kantorovich-Rubinstein distance on ∆(Y ):

∀z, z′ ∈ ∆(Y ), dKR(z, z′) = sup
h∈Lip(1)

∣∣∣∣∫
Y
hdz −

∫
Y
hdz′

∣∣∣∣ ,
where Lip(1) denotes the set of bounded 1-Lipschitz functions defined on Y .

Lemma 4.2.1. For any z1, z2 in ∆(Y ) and u : Y × Ω× [0,+∞)→ U a random control,
there exists some random control v : Y × Ω̂× Ω× [0,+∞)→ U such that

dKR
(
ỹ(t,u, z1), ỹ(t,v, z2)

)
≤ dKR(z1, z2), ∀t ≥ 0.

Proof: We fix u : Y ×Ω× [0,+∞)→ U a random control defined on the probability space(
Ω,B(Ω), λ

)
. We first show the result for z1 and z2 being Dirac measures. Let p, q in Y .

uω(p) : [0,+∞) → U is a pure control for any ω ∈ Ω. By the nonexpansive assumption,
Proposition 3.6 in Quincampoix and Renault [42] implies that: for given ω ∈ Ω, there is
some pure control up(q, ω, ·) : [0,+∞)→ U , which we denote by upω(q) := up(q, ω, ·), such
that ∥∥∥y(t,uω(p), p

)
− y

(
t,upω(q), q

)∥∥∥ ≤ ∥∥p− q∥∥, ∀t ≥ 0. (4.2.1)

Moreover, one can take the mapping (q, t) 7→ upω(q, t) := up(q, ω, t) jointly measurable 3.
Letting up(q, t) =

(
upω(q, t)

)
ω∈Ω for all t ≥ 0, this defines a random control:

up : Y × Ω× [0,+∞) 7→ U

(q, ω, t) 7→ upω(q, t).

Moreover, we deduce from (4.2.1) that: for any t ≥ 0,

dKR
(
ỹ(t,u, p), ỹ(t,up, q)

)
= dKR

( ∫
Ω
δy(t,uω(p),p)dλ(ω),

∫
Ω
δy(t,upω(q),q)dλ(ω)

)
≤
∫

Ω

∥∥∥y(t,uω(p), p
)
− y

(
t,upω(q), q

)∥∥∥dλ(ω)

≤ ||p− q||.

(4.2.2)

3. Indeed, consider for (4.1.4): we fix any y2 ∈ Y and a· : x 7→ ax ∈ U measurable. Then we can
apply the measurable selection theorem (cf. Theorem 9.1 in Wagner [66]) for the optimization problem
infb∈U

〈
y1 − y2, f(y1, a

y1 ) − f(y2, b)
〉
to obtain the existence of a measurable mapping b· : x 7→ bx ∈ U

satisfying
〈
y1− y2, f(y1, a

y1 )− f(y2, b
y1 )
〉
≤ 0, ∀y1 ∈ Y . The same augument as in the proof of Prop. 3.6

in Quincampoix and Renault [42] implies the result.
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Consider now z1, z2 in ∆(Y ). By the Kantorovich-Rubinstein duality formula (cf. Theorem
5.10 in Villani [64]), there is a coupling ξ(·, ·) ∈ ∆(Y ×Y ) with first marginal z1 and second
marginal z2, satisfying:

dKR(z1, z2) =
∫
Y×Y

∥∥p− q∥∥dξ(p, q). (4.2.3)

Let q 7→ ξ(·|q) ∈ ∆(Y ) be the conditional distribution of ξ on its first marginal. Consider
now the Borel isomorphic mapping (between two standard Borel spaces)

hq : Ω̂ =
(
[0, 1],B

(
[0, 1]

)
, λ
)
7→
(
Y,B(Y ), ξ(·|q)

)
where

∀B ∈ B(Y ), ξ(B|q) = λ
(
h−1
q (B)

)
.

Define now

v : Y × Ω̂× Ω× [0,+∞) 7→ U

(q, ω̂, ω, t) 7→ v(ω̂,ω)(q, t) = uhq(ω̂)
ω (q, t),

which is jointly measurable as the composition function of u·ω(q, t) and hq(ω̂). (Ωv,v) is
then a random control defined on the product Borel probability space

(
Ω̂⊗Ω,B(Ω̂⊗Ω), λ2).

The interpretation of the random control v is that: at each initial point q ∈ Y , v(q, ·)
randomly takes the value up(q, ·) according to the probability law dξ(p|q).

Next, we check that v satisfies the nonexpansive condition. For any t ≥ 0 and q ∈
supp(z2), we use Fubini’s theorem (first on Ω̂× Ω and then on Y × Y ) and the change of
variable "p = hq(ω̂)" to obtain:

ỹ(t,v, z2) =
∫
Y
ỹ
(
t,v, q

)
dz2(q) =

∫
Y

∫
Ω̂×Ω

δ
y
(
t,uhq(ω̂)

ω (q),q
)dλ2(ω̂, ω)dz2(q)

=
∫
Y

∫
Ω̂

[ ∫
Ω
δ

y
(
t,uhq(ω̂)

ω (q),q
)dλ(ω̂)

]
dλ(ω)dz2(q)

=
∫
Y

∫
Y

[ ∫
Ω
δy(t,upω(q),q)dλ(ω)

]
)dξ(p|q)dz2(q)

=
∫
Y×Y

ỹ
(
t,up, q

)
dξ(p, q).

We then deduce that:

dKR
(
ỹ(t,u, z1), ỹ(t,v, z2)

)
= dKR

( ∫
Y
ỹ
(
t,u, p

)
dz1(p),

∫
Y×Y

ỹ
(
t,up, q

)
dξ(p, q)

)
= dKR

( ∫
Y×Y

ỹ(t,u, p)dξ(p, q),
∫
Y×Y

ỹ
(
t,up, q

)
dξ(p, q)

)
≤
∫
Y×Y

dKR
(
ỹ
(
t,u, p

)
, ỹ
(
t,up, q

))
dξ(p, q)(

by (4.2.2)
)
≤
∫
Y×Y

||p− q||dξ(p, q)(
by (4.2.3)

)
= dKR(z1, z2).

This completes our proof for the lemma. �

76



4.2. Preliminaries

The proof of the theorem involves some compact property of the set of random controls
for compact non-expansive control problem, as we will show in Lemma 4.2.7: the "limit
trajectory" in ∆(Y ) (cf. Definition 4.2.6) of a sequence of random controls can be arbi-
trarily approximated by the trajectory induced by one random control. Here the random
control that we are going to construct is defined as concatenations of certain sequence of
random controls, namely behavior control. Formal definitions are as follows.

Definition 4.2.2. For any two random controls (Ωu,u) and (Ωv,v) and a time T > 0.
The concatenation of u and v at time T is defined as the random control (Ωu×Ωv,u⊕Tv)
with: ∀

(
y0, (ω1, ω2), t

)
∈ Y × (Ωu × Ωv)× [0,+∞),

[u⊕T v](ω1,ω2)(y0, t) = 1{t<T}uω1(y0, t) + 1{t≥T}vω2

(
y
(
y0,uω1(y0), T

)
, t− T

)
.

Definition 4.2.3. Fix 0 = t0 < t1 ··· < tm < ··· a partition of [0,+∞), and (Ωm,um)m≥1 a
sequence of random controls. Let

(
⊗mm′=1 Ωm′ ,u[m])

m≥1 be a sequence of random controls
defined inductively as: u[1] = u1 and u[m+1] = u[m] ⊕tm um+1 for any m ≥ 1. The
behavior control (

Ω[∞],u[∞]) :=
(
⊗m≥1 Ωm,u1 ⊕t1 · · ·ut ⊕tm · · ·

)
is defined as the concatenations of (um) sequentially at points (tm):

∀
(
y0, (ωm)m≥1, t

)
∈ Y × Ω[∞] × [0,+∞), u[∞]

(ωm)m≥1
(y0, t) =

∑
m≥1

1{tm−1≤t<tm}u
[m]
ωm(y0, t),

where ωm := (ω1, ..., ωm).

Remark 4.2.4. The behavior control (Ω[∞],u[∞]) is also a random control with the product
Borel space Ω[∞] = ⊗m≥1Ωm, which, as a countable union, is still in S.

Remark 4.2.5. On the other hand, from Kuhn’s theorem (cf. Aumann [4], Sec. 5):
for any random control, one can construct a behavior control such that the trajectories
in ∆(Y ) induced by them are the same. More precisely, we fix (tm)m≥0 a partition of
[0,+∞),

(
Ωu,u

)
a random control and y0 ∈ Y an initial state. Then, there exists some

behavior control
(
⊗m≥1 Ωm,u

)
as concatenations of some sequence of random controls(

Ωm,um
)
m≥1 at points (tm) such that starting from y0, the trajectories in ∆(Y ) generated

by both u and u are the same, i.e. ỹ(t,u, y0) = ỹ(t,u, y0), ∀t ≥ 0, a.e.

Fix any y0 in Y .
(
ỹ(·,uk, y0)

)
k≥1 is the sequence of trajectories in ∆(Y ) generated by

a sequence of random controls (uk)k≥1 with the same initial point y0.

Definition 4.2.6. A measurable mapping t 7→ y(t) defined from R+ to
(
∆(Y ), dKR

)
is a

limit trajectory of the sequence
(
ỹ(·,uk, y0)

)
k≥1 if there is a subsequence

(
ỹ(·,uψ(k), y0)

)
k≥1

such that for any m ≥ 1, ỹ(·,uψ(k), y0) converges (for dKR) to y(·) uniformly on [0,m] as
k tends to infinity.

We first show that the limit trajectory exists for any sequence.

Lemma 4.2.7.
(
ỹ(·,uk, y0)

)
k≥1 has a limit trajectory in ∆(Y ).
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Proof. Fix an m ≥ 0, we look at the restriction of each ỹ(·,uk, y0) on the compact interval
[m,m+1]. Then the family {ỹ(·,uk, y0) : k ≥ 1} are continuous mappings from [m,m+1]
to the compact domain

(
∆(Y ), dKR

)
. One can use Ascoli’s theorem to deduce the existence

of a uniform convergent subsequence
(
ỹ(·,uψ(k), y0)

)
k≥1 on [m,m+ 1]. To obtain this, it

is sufficient for us to prove that the family
{
ỹ(·,uk, y0) : k ≥ 1

} (
restricted on [m,m+ 1]

)
is equicontinuous.

We fix any k ≥ 1 and s, t ∈ [m,m+ 1]. Then by the definition of dKR, we deduce that

dKR
(
ỹ(t,uk, y0), ỹ(s,uk, y0)

)
≤
∫

Ω

∥∥∥y(t,ukω(y0), y0
)
− y

(
s,ukω(y0), y0

)∥∥∥dλ(ω)

≤ a
(
1 + sup

y∈Y
‖y‖

)
|t− s|,

(4.2.4)

where we have used in the last inequality the fact that the trajectory t 7→ y
(
t,ukω(y0), y0

)
is absolutely continuous

(
cf. assumptions in (4.1.2)

)
. As Y ⊆ Rd is compact, (4.2.4)

proves that the family
{
ỹ(·,uk, y0) : k ≥ 1

} (
restricted on [m,m + 1]

)
is equicontinuous.

By extracting subsequences for each m, we obtain the existence of a limit trajectory of(
ỹ(·,uk, y0)

)
k≥1.

Lemma 4.2.8. Let y(·) : t 7→ y(t) be a limit trajectory of
(
ỹ(·,uk, y0)

)
k
. Then for any

ε > 0, there is some behavior control u∗ whose trajectory in ∆(Y ) is ε-close to y(·) along
time, i.e.,

∀ε > 0, ∃u∗ ∈ Ũ , s.t. dKR
(
ỹ(t,u∗, y0),y(t)

)
≤ ε, ∀t ≥ 0.

Proof : The idea is to construct a behavior control u∗ by consecutive intervals, such that
on each of them, u∗ follows one random control in the family {uk} whose trajectory is
close to the limit y. The proof relies on the nonexpansive property established in Lemma
4.2.1, which ensures that by iteration, the trajectory generated by u∗ is close to y on the
whole R+.

Let ε > 0 be fixed. The behavior control u∗ will be constructed as concatenations of
a sequence of random controls (ûKm) (to be specified later on) at points {1, 2, 3, ...}.

By definition, t 7→ y(t) is a limit trajectory of
(
ỹ(·,uk, y0)

)
k
in ∆(Y ) for dKR, so for

each m ≥ 0, there exists some Km+1 > 0 such that:

dKR
(
ỹ(t,uKm+1 , y0),y(t)

)
≤ εm+1, ∀t ∈ [m,m+ 1]. (4.2.5)

Following Remark 4.2.5, we could have assumed that each uKm+1 is a behavior control,
and let uKm+1 : Y ×Ω× [0,+∞)→ U be the component of uKm+1 on interval [m,m+ 1].

In order to define the behavior control u∗ , it is sufficient to construct by induction a
sequence of random controls (ûKm)m≥1 such that for all m ≥ 1,

dKR
(
ỹ(t,u[m], y0),y(t)

)
≤ 2

m∑
`=1

ε`, ∀t ∈ [0,m],

where
u[1] = ûK1 and u[m] = ûK1 ⊕1 · · · ⊕m−1 ûKm , m ≥ 2.

For m = 1, let ûK1 = uK1 , then from (4.2.5), dKR
(
ỹ(t1,u[1], y0),y(t)

)
≤ ε, ∀t ∈ [0, 1].

This initializes our induction.
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Assume that ûK1 , ..., ûKm are defined and let u[m] = ûK1 ⊕1 · · ·⊕m−1 ûKm (u[1] = ûK1

for m = 1) satisfy:

dKR
(
ỹ(t,u[m], y0),y(t)

)
≤ 2

m∑
l=1

εl, ∀t ∈ [0,m]. (4.2.6)

Next we construct the control ûKm+1 thus complete the definition of u[m+1] on [m,m+1).
To do this, we consider the two distributions ỹ(m,u[m], y0) and ỹ(m,uKm+1 , y0). Take
t = m in (4.2.5) and in (4.2.6), we use the triangle inequality obtain a bound on the
distance between them:

dKR
(
ỹ(m,u[m], y0), ỹ(m,uKm+1 , y0)

)
≤ 2

m∑
l=1

εl + εm+1. (4.2.7)

We consider then the random control uKm+1 on the starting distribution ỹ(m,uKm+1 , y0),
and apply Lemma 4.2.1 to deduce the existence of some random control ûKm+1 on the
starting distribution ỹ(m,u[m], y0) such that:

dKR
(
ỹ
(
∆, ûKm+1 , ỹ(m,u[m], y0)

)
, ỹ(∆, ūKm+1 , ỹ(m,uKm+1 , y0)

)
≤ dKR

(
ỹ(m,u[m], y0), ỹ(m,uKm+1 , y0)

)
≤ 2

m∑
l=1

εl + εm+1, ∀∆ ∈ [0, 1].

(4.2.8)

By definition of uKm+1 , we have that for all ∆ ∈ [0, 1],

ỹ
(
∆,uKm+1 , ỹ(m,uKm+1 , y0)

)
= ỹ

(
∆ +m,uKm+1 , y0

)
. (4.2.9)

Define now û[m+1] = û[m] ⊕m ûKm+1. This gives us:

ỹ
(
∆, ûKm+1 , ỹ(m,u[m], y0)

)
= ỹ

(
∆ +m,u[m+1], y0

)
. (4.2.10)

We substitute (4.2.9) and (4.2.10) back into (4.2.8) and use the change the variable to
obtain that:

∀t ∈ [m,m+ 1], dKR
(
ỹ(t,u[m+1], y0), ỹ(t,uKm+1 , y0)

)
≤ 2

m∑
l=1

εl + εm+1.

Finally, with the help of definition of Km+1 in (4.2.5), we obtain that: for any t ∈
[m,m+ 1],

dKR
(
ỹ(t,u[m+1], y0), ȳ(t)

)
≤ 2

m∑
l=1

εl + εm+1 + εm+1 = 2
m+1∑
l=1

εl.

This finishes the inductive definition of the sequence
(
ûKm

)
m≥1.

To conclude, we set the behavior control

u∗ = ûK1 ⊕1 · · ·ûKm ⊕m · · ·,

as concatenations of
(
ûKm

)
m≥1 at points {m ≥ 1}, and by our inductive construction:

∀t ≥ 0, dKR
(
ỹ(t,u∗, y0), ȳ(t)

)
≤ 2

∞∑
`=1

ε` = 2ε
1− ε ≤ 3ε,

as long as ε ∈ (0, 1
3 ]. This completes our proof for the lemma by considering ε′ = ε/3. �
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4.3 Proof of Theorem 4.1.7

This section is devoted for the proof of Theorem 4.1.7, which is divided into three parts.

Part A aims at establishing certain optimality properties for a sequence of controls
(Lemma 4.3.1); In Part B, we use the compact nonexpansive property (Lemma 4.2.8)
to obtain a "limit" control of the above sequence ensuring that the average cost on each
(consecutive) block of fixed length is no more than V ∗

(
Eq. (4.3.8)

)
; Part C concludes

the proof through a comparison of the (normalized) θ-evaluated payoff to the average cost
by blocks.

Part A. For any t ≥ 0 , S > 0, y0 ∈ Y and u ∈ Ũ , denote

γt,S(y0,u) = 1
S

∫
[t,t+S]

g
(
ỹ(s,u, y0)

)
ds, ∀y0 ∈ Y.

For T ≥ 0, we put

ϕT,S(y0) = inf
u∈Ũ

sup
µ∈∆([0,T ])

∫
[0,T ]

γt,S(y0,u)dµ(t).

Fix any T, S, y0. We first prove a minmax result for ϕT,S(y0). We denote for each
s ≥ 0:

βs(µ, S) = 1
S

∫ min{T,s}

max{0, s−S}
dµ(t) = 1

S
µ
(
[0, T ] ∩ [s− S, s]

)
.

Then from the definition of γt,S(y0,u), we obtain that

∫
[0,T ]

γt,S(y0,u)dµ(t) =
∫

[0,T ]

(
1
S

∫
[t,t+S]

g
(
ỹ(s,u, y0)

)
ds

)
dµ(t)

(′′Fubini’s theorem′′) =
∫

[0,T+S]
βs(µ, S)g (ỹ(s,u, y0)) ds.

Note that for each fixed S > 0 and µ ∈ ∆([0, T ]), the mapping t 7→ βt(µ, S) defines a
density function of some evaluation over R+, which we denote by ς(µ, S). This enables us
to write

ϕT,S(y0) = inf
u∈Ũ

sup
µ∈∆([0,T ])

γς(µ,S)(y0,u).

Next, we use Sion’s minmax theorem (cf. Appendix A.3 in Sorin [59]) to show that the
operators "inf" and "sup" of the above equation commute. Indeed, Ũ is convex; ∆([0, T ]) is
convex and weak-* compact and the payoff function (µ,u) 7→ γς(µ,S)(y0,u) is affine in both
µ and u; moreover the function γt,S(y0,u) is continuous in t for given u (g is continuous
in y and each trajectory is absolutely continuous), and so is u 7→ γς(µ,S)(y0,u). Then we
obtain:

ϕT,S(y0) = sup
µ∈∆([0,T ])

inf
u∈Ũ

γς(µ,S)(y0,u) = sup
µ∈∆([0,T ])

Vς(µ,S)(y0). (4.3.1)

Lemma 4.3.1. For any ε > 0, there is some S0 > 0 such that

∀T ≥ 0,∃uT ∈ Ũ : ∀y0 ∈ Y, γt,S0(y0,uT ) ≤ V ∗(y0) + ε, ∀t ≤ T.
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Proof for Lemma 4.3.1: For any θ ∈ ∆(R+) and s ≥ 0, denote Is(θ) =
∫

[0,+∞)
∣∣fθ(t+s)−

fθ(t)
∣∣dt. Following Li et al. [30] (cf. Lemma 3.3), for any evaluation θ that is absolutely

continuous w.r.t. the Lebesgue measure thus admitting a density function t 7→ fθ(t), we
have that:

Is(θ)
2 ≤ TVs(θ) ≤ Is(θ), ∀s ≥ 0.

For any S > 0, T ≥ 0 and µ ∈
(
[0, T ]

)
, we apply the above expression for ς(µ, S) so as to

obtain the following bound: ∀s ∈ [0, S],

Is
(
ς(µ, S)

)
= 1
S

∫
[0,T+S]

[
µ
(
[t− S, t− S + s] ∩ [0, T ]

)
+ µ

(
[t, t+ s] ∩ [0, T ]

)]
dt

=
∫

[0,T+S]

∫
[t−S,t−S+s]∩[0,T ]

dµ(s′)dt+
∫

[0,T+S]

∫
[t,t+s]∩[0,T ]

dµ(s′)dt

(′′ Fubini’s theorem′′) = s

S
·
(
µ
(
[−S, T + s] ∩ [0, T ]

)
+ µ

(
[0, s+ T + S] ∩ [0, T ]

))
≤2s
S
.

(4.3.2)
According to Proposition 4.1.4, the general limit value exists and is equal to V ∗, i.e. for
any ε > 0, we take η > 0 and S′ > 0 such that:

∀θ ∈ ∆(R+),
(

sup
0≤s≤S′

TV (θ) ≤ η′ =⇒ (∀y0 ∈ Y, |Vθ(y0)− V ∗(y0)| ≤ ε/2)
)
. (4.3.3)

Take S0 = max{2S′
η′ , S

′}. From (4.3.2), we obtain that: ∀s ∈ [0, S′], S ≥ S0, T > 0, µ ∈
∆
(
[0, T ]

)
,

TVs (ς(µ, S)) ≤ 2s
S
≤ 2S′

S0
≤ η′, thus by (4.3.3) : ∀y0 ∈ Y, |Vς(µ,S)(y0)− V ∗(y0)| ≤ ε/2.

Next, from Eq. (4.3.1), ϕT,S(y0) = supµ∈∆([0,T ]) Vς(µ,S)(y0), we deduce that

∀ε > 0,∃S0 > 0 : ∀S ≥ S0, ∀T ≥ 0,∀y0 ∈ Y, |ϕT,S(y0)− V ∗(y0)| ≤ ε/2. (4.3.4)

Finally, according to the definition ϕT,S(y0) = infu supµ γς(µ,S)(y0,u), we have

∀T > 0,∃uT ∈ Ũ : ∀y0 ∈ Y, γt,S0(y0,uT ) ≤ ϕT,S0(y0) + ε/2, ∀t ∈ [0, T ].

Together with (4.3.4), one obtains

∀ε > 0,∃S0 > 0 : ∀T ≥ 0,∃uT ∈ Ũ : ∀y0 ∈ Y, γt,S0(y0,uT ) ≤ V ∗(y0) + ε,∀t ≤ T. (4.3.5)

The proof of the lemma is then complete. �

Part B. Fix now any ε > 0, and consider S0 > 0 and the random control uT ∈ Ũ for
any T > 0 given as in Lemma 4.3.1. We take an increasing sequence (Tk)k≥1 in R+ and
fix any y0 ∈ Y . For each k ≥ 1, t 7→ ỹ(t,uTk , y0) is the trajectory of uTk in ∆(Y ). Thus
from (4.3.5), we obtain:

γt,S0(y0,uTk) = 1
S0

∫
[t,t+S0]

g
(
ỹ(t,uTk , y0)

)
ds ≤ V ∗(y0) + ε for all t ≤ Tk. (4.3.6)
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Let ȳ(·) : t 7→ ȳ(t) be a limit trajectory of the sequence
(
ỹ(·,uTk , y0)

)
k≥1 i.e. there is a

subsequence ψ(k) such that ỹ(·,uTψ(k) , y0) converges uniformly to ȳ(·) on each [m,m+ 1].
Since g is continuous on the compact invariant set Y , and ∆(Y ) is weak-* compact for
the topology induced by the distance dKR (cf. Theorem 6.9 in Villani [64]), we let k tend
to infinity

(
along the subsequence ψ(k)

)
in (4.3.6) to get

1
S0

∫
[t,t+S0]

g
(
ȳ(s)

)
ds ≤ V ∗(y0) + ε, ∀t ≥ 0. (4.3.7)

Now we apply Lemma 4.2.8 for the sequence
(
ỹ(·,uTk , y0)

)
k≥1 and its limit trajectory ȳ(·)

to obtain the existence of some behavior control u∗ such that:

dKR
(
ỹ(t,u∗, y0), ȳ(t)

)
≤ ε, ∀t ≥ 0.

Together with (4.3.7), we obtain:

γt,S0(y0,u∗) = 1
S0

∫
[t,t+S0]

g
(
ỹ(s,u∗, y0)

)
ds ≤ V ∗(y0) + 2ε, ∀t ≥ 0. (4.3.8)

Part C. The computation below is analog to the proof of Proposition 6.1 in Li et al. [30].
Let θ ∈ ∆(R+) be any evaluation. We integrate (4.3.8) over t ≥ 0 w.r.t. θ, to obtain:

V ∗(y0) + 2ε ≥
∫

[0,+∞)
γt,S0(y0,u∗)dθ(t) =

∫
[0,+∞)

(
1
S0

∫
[t,t+S0]

g (ỹ(s,u∗, y0)) ds
)

dθ(t)

(′′Fubini’s theorem′′) =
∫

[0,+∞)
βs(θ, S0)g (ỹ(s,u∗, y0)) ds

=γς(θ,S0)(y0,u∗),
(4.3.9)

where βs(θ, S0) = 1
S0

∫ s
max{0,s−S0} dθ(t), ∀s ≥ 0, and ς(θ, S0) is the evaluation with s 7→

βs(θ, S0) its density function.
Next, we show that

|γθ(y0,u∗)− γς(θ,S0)(y0,u∗)| ≤ sup
Q∈B(R+)

|θ(Q)− ς(θ, S0)(Q)| ≤ 2TVS0(θ). (4.3.10)

Indeed, the first inequality follows from Hahn’s decomposition theorem applied to the sign
measure "θ − ς(θ, S0)" (cf. Lemma 3.7 in Li et al. [30]). Let Q be any Borel set on R+.
We write βs(θ, S0) = 1

S0

∫ s
s−S0

dθ(t) for all s ≥ 0 by considering θ as a probability measure
over [−S0, 0) ∪ R+ null on [−S0, 0). We have

ς(θ, S0)(Q) =
∫
s∈Q

βs(θ, S0)ds = 1
S0

∫
s∈Q

(∫
t∈[s−S0,s]

dθ(t)
)

ds

(′′Fubini’s theorem′′) =
∫
t∈Q−S0

(
1
S0

∫
s∈[t,t+S0]

ds
)

dθ(t)

= θ(Q− S0).

Thus we have |θ(Q)− ς(θ, S0)(Q)| = |θ(Q)−θ(Q−S0)| ≤ θ([0, S0))+TVS0(θ) ≤ 2TVS0(θ).
This proves (4.3.10) by taking the supremum over Q ∈ B(R+).

Finally, we substitute (4.3.9) into (4.3.10), to obtain:

γθ(y0,u∗) ≤ V ∗(y0) + 2TVS0(θ) ≤ V ∗(y0) + 3ε,
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for all θ ∈ ∆(R+) with sup0≤s≤S0 TVs(θ) ≤ ε.
To conclude, we have obtained that: ∀ε,∃S0 > 0,∃u∗ ∈ Ũ ,

∀θ ∈ ∆(R+),
(

sup
0≤s≤S0

TVs(θ) ≤ ε =⇒ γθ(y0,u∗) ≤ V ∗(y0) + 3ε, ∀y0 ∈ Y
)
.

As ε > 0 is arbitrary, this proves Theorem 4.1.7 by taking "η = ε" and "S = S0".
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Chapter 5

Big match généralisé à
information incompète d’un côté

Résumé Nous étudions une sous-classe de jeux absorbants comme une généralisation du
Big match à la Blackwell et Ferguson [13]. Pour le Big match généralisé à information
incomplète d’un côté, nous prouvons l’existence de la valeur asymptotique, du Maxmin
et du Minmax, et que la valeur asymptotique est égale au Maxmin.

Nos résultats généralisent ceux de Sorin [55]. Le résultat de l’existence de la valeur
asymptotique n’est pas une conséquence de Rosenberg [48] pour deux raisons: d’abord,
nous considérons le flux du paiement évalué par des mesures de probabilité générales sur
des nombres entiers positifs et nous prouvons que la fonction valeur associée converge
quand le poids maximal de la mesure sur chaque étape tend vers zéro; deuxièmement,
nous ne supposons pas que la probabilité d’absorption soit indépendante de l’état comme
dans Rosenberg [48].

Mots-clés Jeux stochastiques, jeux absorbants à information incomplète d’un côté, Big
match, valeur asymptotique, valeur uniforme, Maxmin, Minmax

Ce chapitre est issu de l’article Generalized Big match with one-sided incomplete in-
formation.



Chapter 5. Big match généralisé à information incompète d’un côté

Generalized Big match with one-sided
incomplete information

Abstract We study one subclass of absorbing games as a generalization of Big match due
to Blackwell and Ferguson [13]. For "generalized Big match" with one-sided incomplete
information, we prove the existence of the asymptotic value, Maxmin and Minmax, and
that the asymptotic value is equal to Maxmin.

Our results generalize that of Sorin [55]. The existence result of the asymptotic value
is not a consequence of Rosenberg [48] for two reasons: first, we consider the payoff stream
evaluated by general probability measures on the positive integers and prove that the as-
sociated value function converges as the maximal weight of the measure on stages tends
to zero; second, we do not assume the absorbing probability to be state-independent as in
Rosenberg [48].

Keywords Stochastic games, absorbing games with incomplete information on one side,
Big match, asymptotic value, uniform value, Maxmin, Minmax

5.1 Introduction
Absorbing games are stochastic games where all states but one are absorbing. One

example is the Big match (henceforth BM) introduced by Gillette [22], represented by the
following 2× 2 matrix:

L R

T 1∗ 0∗
B 0 1

.

At each stage, player 1 chooses an action in {Top,Bottom} and player 2 chooses an action
in {Left,Right}. The state remains non-absorbing as long as player 1 chooses Bottom;
playing the action Top induces an absorption, which is either on 1∗ with an absorbing
payoff 1 or on 0∗ with an absorbing payoff 0.

Blackwell and Ferguson [13] solved BM by proving the existence of the uniform value
(cf. Def. 5.2.2). This result is extended by Kohlberg [26] to absorbing games. For stochas-
tic games, Bewley and Kohlberg [10] proved the existence of the asymptotic value (the
convergence of the n-stage value vn and of the λ-discounted value vλ, and both to the
same limit, cf. Def. 5.2.1), and later on, Mertens and Neyman [34] proved the existence
of the uniform value.

In a model of stochastic games with one-sided incomplete information, one game among
a family is chosen according to a given probability distribution, and the selected game is
communicated to player 1 only. For these games, vn or vλ satisfies the Shapley equation
(cf. Eq. 5.3.1), which defines an auxiliary stochastic game with player 2’s posterior belief
entering the state variable. This reduction involves an infinite auxiliary state space, hence
arguments in [10] or [34] for finite stochastic games do not apply.
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Sorin [55] studied BM with one-sided incomplete information (type I), and proved the
existence of the asymptotic value, Maxmin and Minmax. Moreover Maxmin 6= Minmax
thus uniform value does not exist, and Maxmin = limn→∞ vn = limλ→0 vλ.

It has been conjectured by Mertens [33] (cf. Coulomb [17]) that in a general model of
repeated games where player 1 is always more informed than player 2, both Maxmin and
the asymptotic value exist and Maxmin = limn→∞ vn = limλ→0 vλ. Since Sorin [55], sev-
eral positive results of type "Maxmin = limn→∞ vn = limλ→∞ vλ" have been established:
Sorin [56] for "BM" with one-sided incomplete information (type II), Rosenberg et al. [50],
Renault [45] and Gensbittel et al. [21] for an informed controller, Rosenberg and Vieille
[52] and Li and Venel [31] for recursive games with one-sided information information.

Recently, a counterexample is constructed by Ziliotto [68] to disprove this conjecture
for a general model. It becomes now a challenging problem to identify the subclass of
repeated games for this result to hold true.

We aim at extending the results in Sorin [55] into the model of generalized Big match
(henceforth GBM) with one-sided incomplete information. GBM is a generalized model
of BM in the sense that, whenever Top is played, the absorbing probability is strictly
positive yet not necessarily one. Nevertheless, after playing the "exceptional" move Top
(which enforces the absorption whatever is played by player 2) for a bounded number of
times, the state is absorbed with a probability almost one. We then introduce a counting
number for these moves, which either is defined as an auxiliary state variable in the
asymptotic analysis, or helps establish an induction in uniform analysis.

Our main idea of the proof, analog to Sorin [55], is to construct an auxiliary "limit
game" played [0, 1], which has a value and it characterizes both the asymptotic value and
Maxmin of the original repeated game.

In the asymptotic analysis, we approximate the repeated game by the "limit game" on
[0, 1] such that players can mimic the optimal plays in the auxiliary game, which will give
them asymptotic optimal strategies in the original game.

– Being different from Sorin [55], we are not defining the "limit game" directly on [0, 1],
rather, we consider a sequence of its discretizations with vanishing mesh.

– Our method is similar to Sorin [58], which studies the asymptotic value of repeated
games with symmetric incomplete information where at at each stage the signal
is either non-revealing or completely revealing (repeated games without a recursive
structure). There, the completely revealing of the state corresponds to an absorp-
tion and the "exceptional" moves are those action pairs inducing a strictly positive
probability of revealing.

Our study of Maxmin relies on three aspects: first, the results in Sorin [55] for BM
with incomplete information (where an absorption leads to an absorbing payoff); second,
the generalization of the results in Sorin [55] to BM with incomplete information and with
"absorbing state", i.e. playing the action Top may not lead to an absorbing payoff but will
lead to a different state (i.e., revealing the information and increasing the probability of
absorption); third, induction analysis on the finite number of playing Top.

For each play of the move Top, we specify some auxiliary absorbing payoff for an
"absorbing state" (which contains the posterior belief on the state of the uninformed player
and a number of times for Top to be played in the remaining game), to be the amount
that can be guaranteed by player 1 or be defended by player 2 in the remaining infinitely
repeated game in the new auxiliary "absorbing state". Our induction analysis starts from
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the last move of Top, which, with an expected probability almost one, corresponds to a
BM with incomplete information. So the results in Sorin [55] apply.

The inductive analysis is similar to Neyman and Sorin [39], which studies the equilib-
rium in repeated games with symmetric incomplete information and with random sym-
metric signals. There, the auxiliary state variable is players’ common posterior belief on
the state, and the induction is on the number of significant "jumps" of the posterior mar-
tingale. Such number is bounded due to the martingale convergence theorem, and the
initialization of their induction relies on the existence result of equilibrium in absorbing
games established in Vrieze and Thuijsman [65].

Let us mention also Rosenberg [48] which proves the existence of asymptotic value
(limn→∞ vn = limλ→0 vλ) for absorbing games with one-sided incomplete information, un-
der the assumption that the transition probability be independent across different games.
The analysis in Rosenberg [48] is through the operator approach (see also Rosenberg and
Sorin [51]), which studies the asymptotic behavior of vn or vλ via Shapley equation. Unlike
our construction, this approach does not provide explicitly asymptotic optimal strategies.

Our asymptotic result is not implied by Rosenberg [48] in the following sense: first,
we consider the payoff streams evaluated by general probability measures and prove the
convergence of the value function as the maximal weight of the measure on each stage tends
to zero

(
the sup-asymptotic value, see Def. 5.2.1

)
; second, in our model the transition

probability is state-dependent.
The existence of sup-asymptotic value seems specific for absorbing games. On one

hand, for absorbing games with complete information, Cardaliaguet et al. [16] proved the
existence of sup-asymptotic value

(
see also Ziliotto [69] for the generalization of the result

to absorbing games with infinite actions
)
. On the other hand, this is not true for general

stochstic games. We refer to Ziliotto [69] for a systematic study.
The organization of our paper is as follows. Section 2 describes the model and our main

results. Section 3 concerns the asymptotic analysis. We prove the existence of Maxmin
and its equality to the asymptotic value in Section 4. The study of Minmax is in Section
5.

5.2 The model and the results
The game An absorbing game with one-sided incomplete information Γ∞ is described
as follows. The state of world k ∈ K is chosen by nature according to some probability
distribution p ∈ ∆(K), and is communicated to player 1 only. Ω is the set of stochas-
tic states with only one state ωo that is non-absorbing. ω1 = ωo and at each stage
t ≥ 1, after observing the previous moves of both players, simultaneously, player 1 chooses
an action it ∈ I and player 2 chooses an action jt ∈ J . gk(ωt, it, jt) is the stage pay-
off, and qk(·|ωt, it, jt) ∈ ∆(Ω) is the transition probability function for ωt+1 satisfying:
qk(ω∗|ω∗, i, j) = 1 for all (ω∗, i, j) ∈ Ω/{ωo} × I × J .

We consider the following specific model of Γ∞, namely the generalized Big match
(GBM) with one-sided incomplete information:

– I = {Top,Bottom} ({T,B} for short);
– Ω/{ωo} = {ωj∗|j ∈ J};
– Let

(
χk(j)

)
k,j

in (0, 1]K×J . qk(·) satisfies: ∀j ∈ J ,
– qk(ωo|ωo, B, j) = 1,
– qk(ωj∗|ωo, T, j) = χk(j) and qk(ωo|ωo, T, j) = 1− χk(j);
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– Let
(
ak(j)

)
k,j

and
(
ak∗(j)

)
k,j

in ∈ RK×J . gk(·) satisfies: ∀(i, j, j′) ∈ {T,B} × J2

gk(ωo, i, j) = ak(j) and gk(ωj′∗, i, j) = ak∗(j′).

Γ∞ is represented by the following matrix:

∀k ∈ K, Γk =
... j ∈ J ...

T ... χk(j), ak∗(j) ...

B ... ak(j) ...

.

When χk(j) = 1,∀(j, k) ∈ J×K, Γ∞ corresponds to the model of Big match with one-sided
incomplete information (Type I) studied in Sorin [55].

We set Ht = (Ω × I × J)t−1 for each t ≥ 1 and H∞ = (Ω × I × J)N. Any element
h = (k, ω1, i1, j1, ..., ωt, it, jt, ..., ) in K ×H∞ is called a play of the game. Each ht ∈ Ht is
identified with a cylinder set of H∞, and we denote by H2

t the σ-algebra induced by Ht

over H∞, and by H1
t the σ-algebra induced by K×Ht over K×H∞. H`t is the information

available for player ` at stage t, ` = 1, 2. We endow K × H∞ with the product σ-filed
H∞ = σ(H1

t , t ≥ 1).
We assume perfect recall for both players , therefore Kuhn’s theorem applies and it is

without loss of generality for us to consider only behavior strategies. A behavior strategy
σ = (σt)t≥1 for player 1 is a sequence of measurable mappings with σt : (K ×Ht,H1

t ) →
∆(I), ∀t ≥ 1. Similarly, a behavior strategy τ = (τt)t≥1 for player 2 is a sequence of
measurable mappings with τt : (Ht,H2

t )→ ∆(J), ∀t ≥ 1. Denote by Σ the set of behavior
strategies for player 1 and by T for player 2. By Kolmogrov’s extension theorem, together
with p and q, any strategy profile (σ, τ) ∈ Σ×T , induces a unique probability distribution
over

(
K × H∞,H∞

)
. Epσ,τ [·] denotes the expectation of this probability, and Ekσ,τ [·] its

conditional expectation for given k.

Evaluations and values A play h ∈ K × H∞ induces a stream of stage payoffs(
gk(ω1, i1, j1), ..., gk(ωt, it, jt), ...

)
. We consider general means of this stream by probability

distributions over N∗ = N/{0}. For any ξ = (ξt)t≥1 ∈ ∆(N∗), the expected ξ-evaluated
payoff associated with (σ, τ) ∈ Σ× T is

γpξ (σ, τ) = Epσ,τ

[ ∞∑
t=1

ξtg
k(ωt, it, jt)

]
=
∑
k

pkγkξ (σ, τ), where γkξ (σ, τ) = Ekσ,τ

[ ∞∑
t=1

ξtg
k(ωt, it, jt)

]
.

As particular cases, the n-stage average payoff is γpn(σ, τ) = Epσ,τ
[

1
n

∑n
t=1 g

k(ωt, it, jt)
]
and

the λ-discounted payoff is γpλ(σ, τ) = Epσ,τ
[∑∞

t=1 λ(1 − λ)t−1gk(ωt, it, jt)
]
for any n ∈ N

and λ ∈ (0, 1].
Let Γξ be the ξ-evaluated game where player 1 aims at maximizing γpξ (σ, τ) while

player 2 aims at minimizing it. By Sion’s Minmax theorem (cf. Sorin [59], A.3), Γξ has a
value, denoted by vξ(p). Let vn(p) be the value of n-stage game and vλ(p) be the value of
the λ-discounted game.

We are interested in the asymptotic behavior of vξ(p) for ξ defining a large "duration" of
the game. In the particular cases, we study the convergence of vn(p) as n tends to infinity
or of vλ(p) as λ tends to zero, and the equality of both limits in case of convergence.

Definition 5.2.1. Γ∞ has an asymptotic value v if limn→∞ vn(p) = limλ→0(p) = v.
More generally, Γ∞ has a sup-asymptotic value v if:

∀ε > 0,∃η > 0, s.t. for all ξ = (ξt) ∈ ∆(N∗) with sup
t≥1

ξt ≤ η, we have |vξ(p)− v(p)| ≤ ε.
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We denote by "lim‖ξ‖∞→0 vξ(p) = v" for the existence of the sup-asymptotic value v.
It is clear that lim‖ξ‖∞→0 vξ(p) = v implies that limn→∞ vn(p) = limλ→∞ vλ(p) = v. Even
stronger, the existence of sup-asymptotic value implies the existence of TV -asymptotic
value, which is defined for the convergence of vξ(p) as TV (ξ) =

∑
t≥1 |ξt − ξt+1| vanishes

(cf. Sorin [59], Renault [46]).

The following notions ask for uniform properties on approximately optimal strategies.

Definition 5.2.2. v
¯

(p) is the Maxmin of Γ∞ if the both hold:
– player 1 can guarantee v

¯
(p):

∀ε > 0,∃σε ∈ Σ,∃N ∈ N, such that γpn(σε, τ) ≥ v
¯

(p)− ε, ∀τ ∈ T ,∀n ≥ N ;

– player 2 can defend v
¯

(p):

∀ε > 0,∀σ ∈ Σ,∃τε ∈ T , ∃N ∈ N, such that γpn(σ, τε) ≤ v¯
(p) + ε, ∀n ≥ N.

The Minmax v̄(p) of Γ∞ is defined in a dual way. Γ∞ has a uniform value if v̄(p) =
v
¯
(p).

We study the asymptotic value as well as theMaxmin andMinmax. The main results
are:

Theorem 5.2.3. Sup-asymptotic value exists in Γ∞.

Theorem 5.2.4. v
¯

(p) exists in Γ∞, and moreover it is equal to the sup-asymptotic value.

Theorem 5.2.5. v̄(p) exists in Γ∞.

5.3 Asymptotic analysis
This section is devoted to the proof of Theorem 5.2.3. We first discuss reduced optimal

strategies for players in Γξ, which motivates us to introduce a sequence of auxiliary games.

Shapley equation and reduced optimal strategies Below is the Shapley equation
defined on ∆(K)×Ω for stochastic games with one-sided incomplete information (cf. Sorin
[60]):

vξ(p, ω) = Val(x,y)
{
ξ1
∑
k

pkgk(ω, xk, y) +
(
1− ξ1

) ∑
i,j,k,ω′

pkxk(i)y(j)qk(ω′|ω, i, j)vξ+
(
p̄x[i, j, ω′], ω′

)}
,

(5.3.1)

where (x, y) takes value in
(
∆(I)

)K ×∆(J), gk(ω, xk, y) is the corresponding linear exten-
sions, ξ+ = (ξ+

t )t≥1 ∈ ∆(N∗) is defined as: ξ+
t = ξt+1

1−ξ1
, ∀t ≥ 1, and p̄x[i, j, ω′] ∈ ∆(K) is

player 2’s posterior belief over K conditional on (i, j, ω′). From (5.3.1), player 1 has an
optimal strategy that is Markovian in player 2’s posterior beliefs.

In our model of GBM with one-sided incomplete information, for player 1 to compute
p̄x[i, j, ω′], he needs to know j only when his realized action is i = Top. On the other
hand, by restricting player 1 to take only a finite number of times the action Top, the
induced loss is small if this number is large.

We are lead to consider the following auxiliary game ΞLM where players use reduced
strategies. We show that the sup-asymptotic value of Γ∞ exists and is asymptotically
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5.3. Asymptotic analysis

equal to the value of ΞLM as L and M tends to infinity. Here, 1/L can be understood as
the mesh of the uniform discretization of a "limit game" on [0, 1], and M is a total number
of playing the action Top (to induce an absorption with a probability close to one).

Auxiliary game ΞLM (p) For any L,M ∈ N, ΞLM (p) is played as follows. k ∈ K is
chosen according to p and is communicated to player 1 only; the stochastic states are
Ω̄ = Ω× {0, ...,M}, and (ω1,m1) = (ω0, 0); at each stage ` = 1, ..., L, players take actions
(i`, j`) ∈ {T,B} × J : the induced stage payoff is ḡk(ω`,m`, i`, j`) = gk(ω`, i`, j`), the
transition probability for (ω`+1,m`+1) is q̄k(·|ω`,m`, i`, j`) ∈ ∆(Ω̄), and moreover, i` is
public while j` is public only if t` = T .

Denote by q̄kω (resp. q̄km) the marginal of q̄k on Ω (resp. on {0, ...,M}), satisfying: ∀(i, j) ∈
I × J ,

– for ω ∈ Ω∗ or m ≤M − 2:
– q̄kω(·|ω,m, i, j) = qk(·|ω, i, j)
– q̄km(·|ω,m, i, j) = 1{i=T}δm+1 + 1{i=B}δm

– for (ω,m) = (ωo,M − 1): q̄k(·|ω0,M − 1, i,j) = 1{i=T}δ(ωj∗ ,M) + 1{i=B}δ(ωo,M−1).

Let tm be the random stage of playing them-th Top, and we write tmj := (t1, jt1 ..., tm, jtm)
for some m ≤ M (set t0 = 0 and t0j = ∅). A behavior strategy for player 1 is written
as µ = (µk)k ∈ QKM [L] with µk = (µk1, ..., µkM ), where for each k and m, µkm+1(·|tmj ) is
a probability measure over the set {tm + 1, ..., L} for any tmj with tm < L. Similarly, a
behavior strategy for player 2 is written as f = (f1, ..., fM ) ∈ FM [L] where for each m,
fm+1(·|tmj ) ∈

(
∆(J)

)L−tm for any tmj with tm < L.
The payoff function associated with any pair (µ, f) ∈ QKM [L]× FM [L] is:

Lp(µ, f) = 1
L

L∑
`=1
Lp` (µ, f) := 1

L

L∑
`=1

Epµ,f
[
ḡk` (ω`,m`, i`, j`)

]
= 1
L

L∑
`=1

Epµ,f
[
gk` (ω`, i`, j`)

]
,

where Epµ,f [·] denotes for the expectation operator of the unique probability distribution
over K × (Ω̄× I × J)L induced by

(
µ, f, p, (q̄k)

)
. Since I, J,M,L are all finite, ΞLM (p) has

a value, which we denote by wLM (p).

The proof of Theorem 5.2.3 will be obtained from the dual results Proposition 5.3.1
and Proposition 5.3.4. Indeed, they together imply that

lim
‖ξ‖∞→0

vξ(p) = Λ(p) := lim
L,M→∞

wLM (p).

Proof of Theorem 5.2.3 From Proposition 5.3.1 and Proposition 5.3.4,

∀L,M ∈ N, ξ ∈ ∆(N∗), sup
t≥1

ξt ≤
1
L2 :

∣∣∣vξ(p)− wLM (p)
∣∣∣ ≤ 2C

[ 1
L

+ 2M
L

+ (1− χ−)M
]
.

For each ε > 0, we take M =
⌊

ln ε
ln(1−χ−)

⌋
+ 1 and 2M/L ≤ ε, then (1− χ−)M ≤ ε thus

∣∣∣vξ(p)− wLM (p)
∣∣∣ ≤ 6Cε. (5.3.2)

By taking M and L tend to infinity, we obtain that lim‖ξ‖∞→0 vξ(p) = Λ(p). �
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Chapter 5. Big match généralisé à information incompète d’un côté

The idea for the proof of Proposition 5.3.1 and Proposition 5.3.4 is as follows. For
each player, we mimic in Γξ some optimal strategy in ΞLM so as to link the average payoff
on a certain block N(`) in Γξ to the stage-` payoff in ΞLM . We choose the length of each
N(`) such that its total weight under ξ is approximately 1/L, then asymptotically, both
players guarantee wLM (p).

Proposition 5.3.1. For any L,M ∈ N and ξ ∈ ∆(N∗) with supt≥1 ξt ≤ 1/L2, we have

vξ(p) ≥ wLM (p)− 2C
[
(1− χ−)M + 2M

L
+ 1
L

]
.

Proof. Fix L,M and ξ with supt≥1 ξt ≤ 1/L2. We introduce the consecutive blocks
N(1), ..., N(L) in N∗ satisfying:

1/L2 ≤ ξ[`] :=
∑

t∈N(`)
ξt < 1/L+ 1/L2, ` = 1, ..., L− 1 and N(L) = N∗/ ∪L−1

`=1 N(`).

(5.3.3)

For any m ∈ N, Tm is the random stage on which player 1 plays the m-th Top in Γξ.
We denote Tm := (T1, ..., Tm) and (Tmj ) := (T1, jT1 ..., Tm, jTm) (set by convention T0 = 0
and T 0

j = ∅). For any sequence Tmj , we use tmj := (t1, jT1 ..., tm, jT1) to denote the index
of the blocks N(tm) :=

(
N(t1), ..., N(tm)

)
with Tm′ ∈ N(tm′), 1 ≤ m′ ≤ m and the

corresponding moves of player 2. Each tmj is identified with a history (t1, jt1 ..., tm, jtm) in
ΞLM with jtm′ = jTm′ , ∀m

′.

Take µ = (µ1, ..., µM ) ∈ QKM [L] an optimal strategy for player 1 in ΞLM . We define
σ := σ[µ; ξ] ∈ Σ a behavior strategy in Γξ such that: for all m = 0, ...,M − 1 and k ∈ K,

– Probkσ
(
Tm+1 ∈ N(`)

∣∣Tmj ) = µk
(
`|tmj

)
, ∀tmj , ∀k, ∀` = tm + 1, ..., L;

– Probkσ
(
Tm+1 = s

∣∣Tm+1 ∈ N(tm+1)
)

= ξs
ξ[`] , ∀tm+1, s ∈ N(tm+1).

That is, after each history Tmj , player 1 first looks at the corresponding history tmj in ΞLM ,
and use µk(·|tmj ) in game k to choose the (index of) next block of playing Top; within each
block N [`], the conditional distribution of Top on a stage s is ξs

ξ[`] .

Consider now τ ∈ T a behavior strategy of player 2 to play against σ. Since σ is
defined to depend on player 2’s past moves that appeared together with a Top, we can
assume that τ depends on histories in the same way as σ.

We represent τ by a family of mappings τ(·|Tmj ) : {Tm+1, ..., L} → ∆(J), ∀Tmj . Define
now f = (f1, ..., fM ) := f [τ ; ξ] ∈ FM [L] as: for any tmj = (t1, jt1 , ..., tm, jtm),

fm+1(`|tmj ) =
∑

s∈N(`)

ξs
ξ[`]E

k
σ,τ

[
js
∣∣H(tmj )

]
, ∀` = tm + 1, ..., L,

where H(tmj ) is the event of histories in Γξ "Tm ∈ N(tm), jTm′ = jtm′ , 1 ≤ m′ ≤ m".
Here, we use the construction of σ to write

Ekσ,τ
[
js
∣∣H(tmj )

]
=

∑
sm∈N(tm)

Prob
(
Tm = sm|H(tmj )

)
τ
(
s
∣∣sm, jsm′ = jtm′ ,∀1 ≤ m

′ ≤ m
)

=
∑

sm∈N(tm)

∏
1≤m′≤m

ξ(sm′)
ξ[tm′ ]

τ
(
s
∣∣sm, jsm′ = jtm′ ,∀1 ≤ m

′ ≤ m
)
,

which is independent of k and actually depends on τ and ξ only.
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5.3. Asymptotic analysis

Fix now some tMj = (t1, jt1 , ..., tM , jtM ), and denote for each k ∈ K:

γkN(`)
(
σ, τ |tMj ) := Ekσ,τ

[ ∑
s∈N(`)

ξs
ξ[`]g

k(ωs, is, js)
∣∣∣H(tMj )

]
and

Lk` (tMj , f) := EktM ,f
[
ḡk(ω`,m`, i`, j`)

∣∣H̄(tMj )
]
,

where H̄(tMj ) is the event in ΞLM of histories "(t1, jt1 , ..., tM , jtM )".

We compute γkN(`)
(
σ, τ |tMj

)
and link it to Lk` (tMj , f) by the following:

Claim 5.3.2. For ` /∈ {t1, ..., tM},
∣∣γkN(`)(σ, τ |t

M
j )− Lk` (tMj , f)

∣∣ ≤ 2C(1− χ−)M .

Proof for Claim 5.3.2 Let m ∈ {0, ...,M} with tm < ` < tm+1 (set tM+1 = L+ 1). We
take expectation w.r.t. the probability of the absorption on block N(m′),m′ = 1, ...,m, to
obtain:

γkN(`)
(
σ, τ |tMj

)
=

∑
1≤m′≤m

Probkσ,τ

(
θ ∈ N(tm′)|H(tMj )

)〈
ak∗,Eσ,τ

[
jTm′ |H(tMj )

]〉
χk

+ Probkσ,τ

(
θ > Tm|H(tMj )

)〈
ak,

∑
s∈N(`)

ξs
ξ[`]Eσ,τ

[
js|H(tMj )

]〉
=

∑
1≤m′≤m

∏
1≤r≤m′

(
1− χk

(
jtr
))
χk(jtm′ ) · a

k∗(jtm′ )

+
∏

1≤r≤m

(
1− χk

(
jtr
))〈

ak, fm+1(`|tmj )
〉
,

(5.3.4)

where we have denoted 〈ak∗, y〉χk =
∑

j
y(j)χk(j)ak∗(j)∑
j
y(j)χk(j) for y ∈ ∆(J).

On the other hand, we have by definition,

Lk` (tMj , f) =
∑

1≤m′≤m
Probkµ,f

(
θ̄ = tm′ |H̄(tMj )

)
· ak∗(jtm′ )

+Probkµ,f
(
θ̄ > tM |H̄(tMj )

)〈
ak, fm+1(`|tmj )

〉
,

(5.3.5)

where we denote θ̄ = inf{` ≥ 1|ω` ∈ Ω∗} for the stopping time in ΞLM .
Finally, we use the probabilities in (5.3.5) defined by (q̄k) to approximate the proba-

bilities in (5.3.4) defined by (qk)
(
denoting below Probk

tMj ,f
(·) := Probkµ,f (·|H̄(tMj ))

)
:

– for m′ < M :

ProbktMj ,f
(
θ̄ = tm′

)
=

∏
1≤r<m′

(
1−χk

(
jtr
))
χk
(
jtm′

)
and ProbktMj ,f

(
θ̄ > tm

)
=

∏
1≤r≤m

(
1−χk

(
jtr
))

– for m′ = M
(
using in ΞLM : Probk

tMj ,f
(θ̄ = tM |θ̄ > tM−1) = 1 − q̄ω(ωo|ωo,M −

1, T, jTM ) = 1
)
,

ProbktMj ,f
(
θ̄ = tM

)
=

∏
1≤r<M

(
1−χk

(
jtr
))
≤

∏
1≤r<M

(
1−χk

(
jtr
))
χk
(
jtM

)
+(1−χ−)M

and
ProbktMj ,f

(
θ̄ > TM

)
= 0 ≤

∏
1≤r≤M

(
1− χk

(
jtr
))
≤ (1− χ−)M .
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Chapter 5. Big match généralisé à information incompète d’un côté

The above approximations are substituted back into (5.3.4) and (5.3.5), to yield∣∣∣γkN(`)
(
σ, τ |tMj

)
− Lk` (tMj , f)

∣∣∣ ≤ 2C(1− χ−)M ,

which proves the claim. �

Next we show that the probability distributions of the random sequence (t1, jt1 , ..., tM , jtM )
are the same in both games. For any tMj =

(
t(1), j(1), ..., t(M), j(M)

)
,

Claim 5.3.3. Probkσ[µ;ξ],τ
(
H(tMj )

)
= Probkµ,f [τ ;ξ]

(
H̄(tMj )

)
, ∀k ∈ K.

Proof for Claim 5.3.3: We write

Probkσ[µ;ξ],τ
(
H(tMj )

)
=

M−1∏
m=0

Probkσ[µ;ξ],τ

(
Tm+1 ∈ N

(
t(m+ 1)

)
, jTm+1 = j(tm+1)

∣∣H(tmj )
)

and

Probkµ,f [τ ;ξ]
(
H̄(tMj )

)
=

M−1∏
m=0

Probkµ,f [τ ;ξ]

(
tm+1 = t(m+ 1), jtm+1 = j(m+ 1)

∣∣H̄(tmj )
)
,

then it is sufficient for us to show that for any m = 0, ...,M − 1:

Probkσ,τ

(
Tm+1 ∈ N

(
t(m+ 1)

)
, jTm+1 = j(m+ 1)

∣∣H(tmj )
)

= Probkµ,f

(
tm+1 = t

(
m+ 1

)
, jtm+1 = j(m+ 1)

∣∣H̄(tmj )
)
.

Indeed, following the definition of σ and fm+1(s|tmj ) = Eσ,τ
[
js|H(tmj )

]
, we obtain:

Probkσ[µ;ξ],τ

(
Tm+1 ∈ N

(
t(m+ 1)

)
, jTM+1 = j(m+ 1)

)
= µkm+1

(
tm+1 = t(m+ 1)

∣∣tmj ) · ∑
s∈N(tm+1)

ξs
ξ[tm+1] · Prob

k
σ,τ

[
js = j(m+ 1)|H(tmj )

]
= µkm+1

(
t(m+ 1)|tmj

)
fm+1(s|tmj )[j(m+ 1)]

= Probkµ,f [τ ;µ]

(
tm+1 = t(m+ 1), jtm+1 = j(m+ 1)

∣∣H̄(tmj )
)
,

thus the equality is obtained for any m. The proof for the claim is achieved by taking the
product of the conditional probabilities on both sides. �

Under each history, there are at most M "exceptional" blocks that contain a Top, so
their total weight under ξ is at most M · (1/L + 1/L2). For other random blocks, we
apply Claim 5.3.2 and Claim 5.3.3 together: by taking expectation over all histories and
summing over ` with the weight ξ[`], we obtain

L∑
`=1

ξ[`]
∣∣∣γkN(`)

(
σ[µ;N ], τ

)
− Lk`

(
µ, f [τ ; ξ]

)∣∣∣ ≤ 2C(1− χ−)M + 2CM(1/L+ 1/L2), ∀k

This implies that by taking expectation w.r.t. p ∈ ∆(K), we have∣∣∣γpξ (σ[µ; ξ], τ
)
− Lp

(
µ, f [τ ; ξ]

)∣∣∣
≤

L∑
`=1

ξ[`] ·
∣∣∣γpN(`)(σ, τ)− Lp` (µ, f)

∣∣∣+ 2C
L∑
`=1

∣∣∣ξ[`]− 1/L
∣∣∣

≤ 2C(1− χ−)M + 2CM(1/L+ 1/L2) + 2C(1/L2)(L− 1) + 2C/L
≤ 2C

[
(1− χ−)M + 2M/L2 + 2/L

]
,

(5.3.6)
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where we have used in the second inequality the fact that |ξ[`]− 1/L| ≤ 1/L2, ∀` < L and
|ξ[L]− 1/L| ≤ 1/L. Finally, the optimality of µ in ΞLM implies that

vξ(p) ≥ wLM (p)− 2C
[
(1− χ−)M + 2M/L2 + 2/L

]
.

The proof of the proposition is then complete.

Proposition 5.3.4. For any L,M ∈ N and ξ ∈ ∆(N∗) with supt≥1 ξt ≤ 1/L2, we have

vξ(p) ≤ wLM (p) + 2C
[
(1− χ−)M + M

L
+ 2
L

]
.

Proof. Fix L,M and ξ with supt≥1 ξt ≤ 1/L2. Take some f = (f1, ..., fM ) ∈ FM [L] which
is optimal for player 2 in ΞLM . We define a behavior strategy τ := τ [f ; ξ] ∈ T together with
a consecutive random blocks N̂(1), ..., N̂(L) by induction on m = 0, ...,M − 1 as follows.
For any Tmj = (T1, jT1 ..., Tm, jTm), denote tmj = (t1, jT1 ..., tm, jTm) with Tm′ ∈ N(tm′),
1 ≤ m′ ≤ m.

– For any ` = tm + 1, ... (until tm+1, to be specified):

τ(s|Tmj ) = fm+1(`|tmj ) for all s ∈ N̂(`) := N(`) ∩ {Tm + 1, ..., Tm+1},

where the block N(`) is defined to start after N̂(`− 1) with a length satisfying

ξ[`] :=
∑

s∈N(`)
ξs ∈

[
1/L, 1/L+ 1/L2).

Set tm+1 > tm with Tm+1 ∈ N̂(tm+1) (by convention tm+1 = L+ 1 if Tm+1 =∞)
– after TM , τ is defined to play any fixed action in ∆(J) and for the consecutive blocks
after N̂(tM ): ∀` = tM + 1, ..., L− 1, N̂(`) = N(`) is set with a length satisfying:

ξ[`] ∈
[
1/L, 1/L+ 1/L2).

– finally, the rest stages are put in the block

N̂(L) := N∗/ ∪L−1
`=1 N̂(`).

Consider now a behavior strategy σ = (σk) ∈ Σ for player 1. It is sufficient for us to
consider each σk that is pure and depends on histories only through Tmj . Thus, given any(
j(1), ..., j(M)

)
∈ JM , the sequence TM = (T1, .., TM ), thus the blocks N̂(`), ` = 1, ..., L,

is uniquely determined by σk in game k for jTm = j(m), 1 ≤ m ≤M .

We fix now
(
j(1), ..., j(M)

)
, thus in game k, TMj ,

(
N̂(`)

)
and tMj are determined. We

identify tMj with a history in ΞLM . γkN [`](σ, τ |t
M
j ) and Lk` (tMj , f) are defined as in Proposition

5.3.1. We obtain then analog results.

Claim 5.3.5. For ` /∈ {t1, ..., tM},
∣∣γkN [`](σ, τ |t

M
j )−Lk` (tMj , f)

∣∣ ≤ 2C(1−χ−)M , ∀k ∈ K.

Proof for Claim 5.3.5: Consider first ` < tM . Let m ∈ {0, ...,M − 1} with tm < ` <
tm+1. Using the definition of τ , we have the following computation analog to that in Claim
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5.3.2:

γkN(`)(σ, τ |t
M
j ) =

∑
1≤m′≤m

Probkσ,τ
(
θ = Tm′ |H(tMj )

)〈
ak∗,Eσ,τ

[
jTm′ |H(tMj )

])〉
χk

+ Probkσ,τ (θ > Tm)
〈
ak,

∑
s∈N(`)

ξs
ξ[`]E

k
σ,τ

[
js|H(tMj )

]〉
=

∑
1≤m′≤m

∏
1≤r<m′

(
1− χk(j(r))

)
χk
(
j(m′)

)
ak∗
(
j(m′)

)
+

∏
1≤r≤m

(
1− χk(j(r))

)〈
ak, fm+1(tm+1|tmj )

〉
=

∑
1≤m′≤m

ProbktMj ,f
(
θ = tm′

)
ak∗
(
j(m′)

)
+ ProbktMj ,f

(θ > tm)
〈
ak, fm+1(`|tm)

〉
= Lk` (tMj , f).

Next, for any ` > tM . The computation of γkN(`)(σ, τ |t
M
j ) is the same as above except that

one has to take into consideration of the absorption after TM . This event happens with a
probability of at most (1−χ−)M , hence by the approximation of q̄kω(·) to qk(·), we obtain

γkN(`)(σ, τ |t
M
j ) ≤ Lk` (tMj , f) + 2C(1− χ−)M .

This finishes the proof for the claim. �

We define now some µ = (µk) := µ[σ; ξ] ∈ QKM [L] as follows. By construction of
the random blocks, once we have tm =

(
t(1), ..., t(m)

)
the index of blocks with "Tm′ ∈

N̂(tm′), 1 ≤ m′ ≤ m",
(
N̂(`)

)tm
`=1 thus the random stages Tm are fixed. For each tmj =(

t(1), j(1), ..., t(m), j(m)) identified as a history in ΞLM , let for each k ∈ K:

µkm+1(·|tmj ) = δtm+1 , where tm+1 > t(m) is by definition the random stage Tm+1 ∈ N̂(tm+1).

Since σk is pure, tm+1 is deterministic thus µk is also pure. We then obtain that for
any tMj =

(
t(1), j(1), ..., t(M), j(M)

)
,

Claim 5.3.6. Probkσ,τ [f ;ξ]
(
H(tMj )

)
= Probkµ[σ;ξ],f

(
H̄(tMj )

)
.

Proof for Claim 5.3.6: It is sufficient to prove that for any m = 0, ...,M − 1:

Probkσ,τ

(
Tm+1 ∈ N̂(t(m+ 1)), jTm+1 = j(m+ 1)

∣∣H(tmj )
)

= Probkµ,f

(
tm+1 = t(m+ 1), jtm+1 = j(m+ 1)

∣∣H̄(tmj )
)
.

Indeed, by the construction "τ(s|Tmj ) = fm+1(`|tmj ),∀s ∈ N̂(`)" and the definition of µk,
we have

Probkσ,τ

(
Tm+1 ∈ N̂

(
t(m+ 1)

)
, jTm+1 = j(m+ 1)

∣∣H(tmj )
)

= Probkσ
(
tm+1 = t(m+ 1)|Tmj

)
· Probkσ

(
jTm+1 = j(m+ 1)

∣∣H(tmj ), tm+1 = t(m+ 1)
)

= µk
(
t(m+ 1)|tmj

)
· fm+1(t(m+ 1)|tmj

)[
j(m+ 1)

]
= Probkµ,f

(
tm+1 = t(m+ 1), jtm+1 = j(m+ 1)

∣∣H̄(tmj )
)
.
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The proof for the claim is achieved by taking product probabilities over histories onboth
sides. �

For any block ` < L with N̂(`) = N(`), we have ξ[`] ≥ 1/L . Under any history, there
are at most M "exceptional" blocks for which N̂(`) 6= N(`) (containing the first M Top’s),
thus their total weight under µ is bounded by:∑

`: N̂(`)6=N(`)

ξ[`] + ξ[L] ≤ 1− (L−M)/L = M/L.

On the other hand, for blocks N(`) with N̂(`) = N(`), we use together Claim 5.3.5
and Claim 5.3.6. Taking expectation over all histories and summing γkξ (σ, τ [f ; ξ]) over
` = 1, ..., L (weighted by ξ[`]), we obtain

γkξ (σ, τ [f ; ξ]) ≤
L∑
`=1

ξ[`] · Lk` (µ[σ; ξ], f) + 2CM/L+ 2C(1− χ−)M

≤ Lk
(
µ[σ; ξ], f

)
+ 4C/L+ 2CM/L+ 2C(1− χ−)M ,

where the error term 4C/L is due to the approximation
∑L
`=1

∣∣ξ[`] − 1/L
∣∣ ≤ 2/L. Next,

consider now σ being mixed, we obtain a mixed strategy µ[σ; ξ] ∈ QLM [p] following the same
probability distribution of σ over the pure ones. We take expectation w.r.t. p ∈ ∆(K), to
obtain

γpξ (σ, τ [f ; ξ]) ≤ Lp
(
µ[σ; ξ], f

)
+ 4C/L+ 2CM/L+ 2C(1− χ−)M .

Finally, since f ∈ FM [L] is optimal, we obtain that for any ξ ∈ ∆(N∗) with supt≥1 ξt ≤
1/L2:

vξ(p) ≤ Lp
(
µ[σ; ξ], f

)
+2C

[
2/L+M/L+(1−χ−)M

]
≤ wLM (p)+2C

[
2/L+M/L+(1−χ−)M

]
.

The proof for the proposition is complete.

5.4 Uniform analysis: Maxmin = Λ(p)
We study Maxmin of Γ∞ in this section, and prove Theorem 5.2.4 by showing that

v
¯
(p) = Λ(p).

In order for us to prove the result, we first give another characterization for Λ(p) by
games played on [0, 1] in Subsection 5.4.1 (cf. Proposition 5.4.4). For this characterization,
we prove in Subsection 5.4.2 that player 2 defends it (cf. Proposition 5.4.5), and in
Subsection 5.4.1 that player 1 guarantees it (cf. Proposition 5.4.9).

5.4.1 Preparation for the proof

The construction of our proof will be through the induction on the number of Top’s
being played. We introduce here a generic game whose properties are used at each step of
iteration.(

Ξ̂(p), A∗·
)
is played on [0, 1] where the auxiliary absorbing payoffs (for the auxiliary

"absorbing states") are defined by A∗· = {A∗· (j)|j ∈ J} a class of functions on ∆(K) (which
can be seen as the space of player 2’ posterior beliefs). Formally,

– player 1 takes an action in QK [0] = {Borel probability measures on [0, 1]}K and
player 2 takes an action in F [0] = {measurable functions from [0, 1] to ∆(J)};
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– the payoff is defined for each profile (µ, f) =
(
(µk)k∈K , f

)
∈ QK [0]×F [0]: ϕp(µ, f) =∫ 1

0 ϕ
p
t (µ, f)dt, where for any t ∈ [0, 1]:

ϕpt (µ, f) =
∑
k∈K

pk
(∫ t

0
µk(ds)

〈
A∗p̄µ(s), f(s)

〉
+
(
1− µk(t)

)〈
ak, f(t)

〉)

=
∫ t

0
µ(ds)

〈
A∗p̄µ(s), f(s)

〉
+
(
1− µ(t)

)〈
ap̃µ(t), f(t)

〉
.

(5.4.1)

Here, p̄µ(s) and p̃µ(s) are player 2’s posteriors over K conditional on respectively "Top
being played on [s, s + dt)" and "Top not being played yert until s". Formally, for each
k ∈ K,

s 7→ p̄kµ(s) = pkµk(ds)∑
k p

kµk(ds)

is the Radon-Nikodyn derivative of pkµk(ds) w.r.t. µ(ds) :=
∑
k p

kµk(ds), and

s 7→ p̃kµ(s) =
1− µk(s)∑

k p
k
(
1− µk(s)

) =
1− µk(s)
1− µ(s) ,

where we have denoted µk(s) = µk([0, s)) and µ(s) =
∑
k p

kµk([0, s)).

The following two propositions generalize results in Sorin [55], which corresponds to
the case A∗p = a∗p =

∑
k p

kak∗ being affine in p ∈ ∆(K).

Proposition 5.4.1. Assume that for each j ∈ J , the function A∗· (j) defined on ∆(K) is
concave and C-Lip. Then

(
Ξ̂(p), A∗·

)
has a value,

ŵ(p) := max
µ∈QK [0]

min
f∈F [0]

ϕp(µ, f) = min
f∈F [0]

max
µ∈QK [0]

ϕp(µ, f).

Proof. To show that
(
Ξ̂(p), A∗·

)
has a value by Sion’s minmax theorem, our proof relies on

the following result established in Forges [19] (cf. Mertens et al. [35], Ex.4 in p.144).

Lemma 5.4.2 (Forges 1988). 1 Let K be a finite set, U a separable metric space, and
h : U ×∆(K)→ R̄ be upper semi-continuous, and concave on ∆(K) for each u ∈ U . Let
for any P ∈ ∆(K × U):

φ(P ) =
∫
U
h
(
u, [P (k|u)]k∈K)

)
P (du).

Then φ is concave and upper semi-continuous and {(P, φ(P ))|P has finite support} is
dense in the graph of φ.

We first prove that for any f in F ′[0], the payoff function ϕp(·, f) is u.s.c. and concave
in µ ∈ QK [0] by Lemma 5.4.2. To do this, we rewrite the integral payoff ϕp(µ, f) to make
it the sum of two parts such that the second part is affine in µ and the first takes the form
of φ(·) in Lemma 5.4.2.

We apply Fubini’s theorem for ϕp(µ, f), to have

ϕp(µ, f) =
∫ 1

0

(〈
A∗p̄µ(t1), f(t1)

〉(
1− t1

))
µ(dt1) +

∫ 1

0

(∫ t1

0

〈
ap̄µ(t), f(t)

〉
dt

)
µ(dt1).

(5.4.2)

1. Fabien Gensbittel is acknowledged for pointing out this result to the author.
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The second part (non-absorbing payoff) in (5.4.2) is∫ 1

0

(∫ t1

0

〈
ap̄µ(t), f(t)

〉
dt

)
µ(dt1) =

∑
k

pk
∫ 1

0

( ∫ t1

0

〈
ak, f(t)

〉
dt
)
µk(dt1),

which is affine in µ. As for the first part (absorbing payoff), we set as in Lemma 5.4.2 the
following:

– U = [0, 1] and u = t1;
– P = p⊗ µ ∈ ∆

(
K × [0, 1]

)
;

– [P (k|t1)]k∈K = p̄µ(t1);
– [0, 1]×∆(K) 3 (t1, p̄) 7→ h(t1, p̄) = 〈A∗p̄, f(t1)〉 · (1− t1).

The above notations enable us to write

φ(p⊗ µ) =
∫
U
h
(
u, [P (k|u)]k∈K)

)
P (du) =

∫ 1

0

(〈
A∗p̄µ(t1), f(t1)

〉
·
(
1− t1

))
µ(dt1).

Next we check that the conditions in Lemma 5.4.2 are satisfied, i.e. the function

(t1, p̄) 7→ h(t1, p̄) = 〈A∗p̄, f(t1)〉 · (1− t1)

defined from [0, 1]×∆(K) to R is u.s.c in (t1, p̄), and is concave in p̄ for each t1 ∈ [0, 1].

Indeed, by assumption p̄ 7→ A∗p̄(j) is concave and Liptchitz continuous for each j ∈
J , and so is its linear extension to 〈A∗p̄, f(t1)〉; moreover, since f ∈ F ′[0], the function
(t1, p̄) 7→ h(t1, p̄) = 〈A∗p̄, f(t1)〉 · (1 − t1) is joint continuous. Lemma 5.4.2 applies for us
to obtain that φ(p⊗ µ) is concave and u.s.c. in p⊗ µ, which is thus in particular concave
and u.s.c. in µ. To sum up the two parts, we see that ϕp(µ, f) is concave and u.s.c. in µ.

Consider now the restricted game Ξ̂′(p) of Ξ̂(p) where player 2’s action set is reduced
to F ′[0]. QK [0] is convex, weakly-∗ compact and F ′[0] is convex; the payoff ϕp(·, ·) is affine
in f ∈ F ′[0], and is concave and u.s.c. (w.r.t. the weak-∗ topology) in µ ∈ QK [0]. Sion’s
minmax theorem applies to have the existence of its value ŵ′(p).

Next we have

ŵ(p) := max
µ∈QK [0]

min
f∈F [0]

∫ 1

0
ϕpt (µ, f)dt ≥ max

µ∈QK [0]
min
f∈F ′[0]

∫ 1

0
ϕpt (µ, f)dt = ŵ′(p).

Indeed, for each µ ∈ QK [0] and ε > 0, let f ∈ F [0] with
∫ 1

0 ϕ
p
t (µ, f)dt ≤ ŵ(p) + ε. There

exists, by Lusin’s Theorem, some f ′ ∈ F ′[0] such that

∣∣∣ ∫ 1

0
ϕpt (µ, f)dt−

∫ 1

0
ϕpt (µ, f ′)dt

∣∣∣ ≤ ε.
This implies that ŵ′(p) ≤ ŵ(p), thus

max
µ∈QK [0]

min
f∈F [0]

∫ 1

0
ϕpt (µ, f)dt ≥ min

f∈F ′[0]
max

µ∈QK [0]

∫ 1

0
ϕpt (µ, f)dt ≥ min

f∈F [0]
max

µ∈QK [0]

∫ 1

0
ϕpt (µ, f)dt.

This proves the existence of value ŵ(p) in Ξ̂(p).

Below we define a family of games
(
Ξ̂m(p), A∗,m·

)
with A∗,m· being set in a recursive

way:
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– for m = 1: A∗,1p (j) = a∗p(j), which is affine in p.
Ξ̂1(p) has a value, which is denoted as ŵ1(p). Moreover, ŵ1(p) is concave and C-Lip.
in p, as it is the value of an incomplete information game (cf. Sorin [59]).

– for m ≥ 2: A∗,mp (j) := χp(j)a∗p̂(j)(j) +
(
1 − χp(j)

)
ŵm−1

(
p̄(j)

)
, ∀p ∈ ∆(K), where

p̂(j) and p̄(j) are posteriors of p given by: ∀k ∈ K,

p̂k(j) := pkχk(j)∑
k p

kχk(j) and p̄k(j) :=
pk
(
1− χk(j)

)∑
k p

k
(
1− χk(j)

) .
By inductive assumption, ŵm−1(·) exists and is concave and C-Lip. Below we use

Lemma 5.4.2 to show that A∗,mp (j) is concave and C-Lip. in p. This implies that Propo-
sition 5.4.1 is applicable for Ξ̂m to have a value ŵm(·), which is moreover concave and
C-Lip. Thus our inductive definition of the recursive family

(
Ξ̂m(p), A∗,m· (j)

)
is complete.

Lemma 5.4.3. For any m = 1, ...,M and any j ∈ J , the mapping defined on ∆(K)

p 7→ A∗,mp (j) = χp(j)a∗p̂(j)(j) +
(
1− χp(j)

)
ŵm−1

(
p̄(j)

)
is concave and C-Lip.

Proof. We fix m, j and set as in Lemma 5.4.2 the following:
– U = {u∗, uo} endowed with the discrete topology, where u∗ refers to "absorbing" and
uo refers to "non-absorbing";

– P = p⊗ χ(j) ∈ ∆(K × {u∗, uo}) defined as
(
denote χ(j) :=

(
χk(j))k∈K

)
:

P (k, u∗) = pkχk(j) and P (k, uo) = pk
(
1− χk(j)

)
for all k.

– [P (k|u∗)]k∈K = p̂(j) and [P (k|uo)]k∈K = p̄(j).
– h(·, ·) on U × ∆(K) is defined as: h(u∗, q) = a∗q(j) and h(uo, q) = ŵm−1(q) for all
q ∈ ∆(K).

The above notations enable us to write

φ
(
p⊗ χ(j)

)
=
∫
U
h
(
u, [P (k|u)]k∈K

)
p⊗ χ(j)(du) = χpa∗p̂(j)(j) +

(
1− χp

)
ŵm−1

(
p̄(j)

)
.

Now it is easy to verify that the conditions in Lemma 5.4.2 are satisfied: h(·, ·) is continuous
in (u, q) ∈ U ×∆(K) since ŵm−1(q) is C-Lip. in q; for fixed u ∈ U , h(u, q) is concave in
q: either u = u∗, it is a∗q(j) thus linear in q, or u = uo it is ŵm−1(q) thus concave in q.

The following result implies that Λ(p) = limM→∞ ŵM (p), thus a second characteriza-
tion of the asymptotic value.

Proposition 5.4.4. For any M ∈ N, ŵM (p) = limL→∞w
L
M (p).

We first introduce the uniform discretization of
(
Ξ̂(p), A∗·

)
. For each L ∈ N, let(

Ξ̂L(p), A∗·
)
be the auxiliary game defined by:

– players take actions (µ, f) ∈ QK [L]× F [L] =
(
∆({1, ..., L})

)K × (∆(J)
)L;

– the payoff function is L̂p(µ, f) = 1
L

∑L
`=1 L̂

p
` (µ, f), where

L̂p` (µ, f) =
∑

1≤`′≤`
µ(`′)

〈
A∗p̄µ(`′), f(`′)

〉
+
(
1− µ(`)

)〈
ap̃µ(`), f(`)

〉
.

By exchanging the order of sum, we can also write:

L̂p(µ, f) = 1
L

L∑
`=1

µ(`)
[
(L− `)

〈
A∗p̄µ(`), f(`)

〉
+
∑̀
`′=1

〈
ap̄µ(`), f(`′)

〉]
(5.4.3)
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Suppose that for each j ∈ J , A∗(j)· is concave and C-Lip. in p̄ ∈ ∆(K), then the
same argument as in Proposition 5.4.1 applies to have the existence of its value, which we
denote by ŵL(p). Consider now the recursive family of discretization, and denote ŵLm(p)
for the value of

(
Ξ̂Lm, A

∗,m
·
)
, m = 1, ...,M .

Our proof for Proposition 5.4.4 is divided into the following two parts
(
denoting

ν̂m(p) := limL→∞ ŵ
L
m(p) whenever it exists

)
:

– Part A. ŵm(p) = ν̂m(p), ∀p ∈ ∆(K), ∀m = 1, ...,M . Eventually, we show that
the optimal strategies in continuous time game give asymptotic optimal strategies in
discretized game as the mesh of the discretization vanishes (cf. Sorin [55] or Mertens
et al. [35] for the model of BM). We prove in the Appendix the generic result
"ŵ(p) = ν̂(p) := limL→∞ ν̂

L(p)", which implies the result of Part A.
– Part B. limL→∞w

L
m(p) = ν̂m(p), ∀p ∈ ∆(K), ∀m = 1, ...,M . We compare the

recursive equations for wLm(p) and ŵLm(p), and deduce their asymptotic convergence
to the same limit as L tends to infinity. The proof is again put in the Appendix.

5.4.2 Player 2 defends Λ(p)
This whole subsection is devoted to the proof for

Proposition 5.4.5. Player 2 defends Λ(p) in Γ∞.

For fixed ε > 0, we take M =
⌊

ln ε
ln(1−χ−)

⌋
+ 1 and and set L large enough satisfying

ŵLm(p̄) ≤ ŵm(p̄) + ε, ∀m ∈ {1, ...,M},∀p̄ ∈ ∆(K).

For each m = M, ..., 1, we fix fm a family of strategies in F [L] such that fm[p̄] is ε-optimal
in
(
Ξ̂Lm, A

∗,m
· (j)

)
for each p̄ ∈ ∆(K). Denote f := (f1, ..., fM ). Consider any σ ∈ Σ a

behavior strategy in Γ∞. We are going to construct a behavior strategy τ := τ [f ;σ] ∈ T
such that:

γn(σ, τ [f ;σ]) ≤ ŵLM (p) + ε

for all n sufficiently large.

An overview of the proof of Proposition 5.4.5

To define τ , we first present in Step I a generic construction; in Step II, we iterate
this construction for M times; in Step III we compute the expected payoff to conclude.

We shortly explain here the idea of the generic construction, which is analog to Sorin
[55]. Consider the game

(
Ξ̂(p), A∗·

)
with an auxiliary absorbing payoff equal to the expected

payoff that can be defended by player 2 after a Top. Let L large with ŵL(p) ≤ ŵ(p) + ε
and consider h ∈ F [L] an ε-optimal strategy in the discretized game

(
Ξ̂L(p), A∗·

)
.

1. First, we use σ and h to compute the distribution of the stopping times for playing
Top on the path of Γ∞, if player 2 is "following" h. By "following" h, we mean that
player 2 takes the action h(`) i.i.d. until the probability of playing Top is almost
exhausted, and then to take h(` + 1) i.i.d until the probability of playing Top is
almost exhausted ... etc. This defines in each state k a sequence of probabilities to
hit Top on the consecutive L blocks, thus the measure µ = (µk) ∈ ∆({1, ..., L})K ;

2. Second, suppose that player 2 follows h until some ` and then to take the action there
h(`) i.i.d. forever. This induces in Γ∞ an expected average payoff around ϕpl (µ, h)
in any long game.
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3. Finally, as h is ε-optimal, there exists some `∗ ∈ {1, ..., L} satisfying ϕp`∗(µ, h) ≤
ŵL(p) + ε. Take the behavior strategy τ`∗ [h;σ] to follow h until `∗, then it defends
ŵL(p) ≤ ŵ(p) + ε against σ.

To iterate, we define τ(f ;σ) in Step II to play τ`∗1 [f1;σ] until stage T1,...,to play τ`∗m [fm;σ]
until stage Tm,...,where for each m, the strategy τ`∗m [fm;σ] is constructed as in Step I
for the game

〈
Ξ̂LM−m+1(p̄m−1), A∗,m·

〉
with p̄m−1 the posterior belief after Tm−1. Finally

in Step III, our computation is based on induction.

Below we formalize the above analysis of three steps.

Step I. Defining a sequence of generic behavior strategies τ = (τ`)L`=1 := τ [h;σ]
and the measures µ = (µk)k∈K := µ[h;σ] associated with any h ∈ F [L] and σ ∈ Σ.

Consider the generic auxiliary game
(
Ξ̂L(p), A∗· (j)

)
. We fix h ∈ ∆(J)L = F [L] a

strategy for player 2 with h(`) its component `. For each ` = 1, ..., L, τ` represents the
behavior strategy that follows h until `. They are used, together with σ, to compute in
Γ∞ the distribution of the stopping time T̃ for playing (the first) Top.

We define τ` := τ`[h;σ] by induction on ` = 1, ..., L as follows.
– τ1 is to: play the action h(1) i.i.d.
Let N1 ≥ 1 satisfy:

µk(1) := Probkσ,τ1(T̃ ≤ N1) ≥ Probkσ,τ1(T̃ <∞)− ε, ∀k ∈ K.

– Similarly, for ` = 2, ..., L, τ` is to: follow τ`−1 until stage N`−1, and then to play the
action h(`) i.i.d.
Let N` ≥ N`−1 + 1 satisfy:

µk(`) := Probkσ,τ1(N`−1 < T̃ ≤ N`) ≥ Probkσ,τ1(N`−1 < T̃ <∞)− ε, ∀k ∈ K.

Denote by B` := {N`−1 + 1, ..., N`}, ` = 1, ..., L the consecutive random blocks.
Take N0 = max{N`|1 ≤ ` ≤ L}, which is uniformly bounded in all histories. Fixing

now any `∗ ∈ {1, ..., L} and n ≥ N0, let us compute the expected n-stage payoff induced
by (σ, τ`∗), in the following recursive form:

Lemma 5.4.6. For all k ∈ K,

Ekσ,τ`∗
[
gn
]
≤

∑
1≤`≤`∗

µk(`)
[
χk
(
h(`)

)〈
ak∗, h(`)

〉
χk

+
(
1− χk

(
h(`)

))
Ekσ,τ`∗

[
gn
∣∣T̃ ∈ B`, θ > T̃

]]
+ (1− µk(`∗))

〈
ak, h(`∗)

〉
+ (2C + 1)ε.

Proof. Fix any n ≥ N0 ≥ N`∗ for some `∗. We write:

Ekσ,τ`∗
[
gn
]

=
∑

1≤`≤`∗
Probkσ,τ`∗ (T̃ ∈ B`)

[
χk
(
h(`)

)〈
ak∗, h(`)

〉
χk

+
(
1− χk

(
h(`)

))
Ekσ,τ`∗

[
gn
∣∣T̃ ∈ B`, θ > T̃

]]

+ Probkσ,τ`∗ (T̃ ≥ n) ·
〈
ak, h(`∗)

〉
+ Probkσ,τ`∗ (N`∗ < T̃ < n) · Ekσ,τ`∗

[
gn
∣∣N`∗ < T̃ < n

]
.
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By construction of the block B` and definition of the measure ρk(`), we have

Probkσ,τ`∗ (T̃ ∈ B`) = µk(`), ∀` = 1, ..., `∗.

Moreover, by definition of the stage N`∗ ,

Probkσ,τ`∗ (N`∗ < T̃ < n) ≤ Probkσ,τ`∗ (N`∗ < T̃ <∞) ≤ ε.

This implies that, to approximate Probkσ,τ`∗ (T̃ ≥ n) by Probkσ,τ`∗ (T̃ > N`∗) =
(
1− µk(`∗)

)
in the expression of Ekσ,τ`∗

[
gn
]
, there is an error term 2Cε. We obtain then the claim of

the lemma.

Step II. Defining the uniform best reply strategy τ∗ as an iteration of τ`∗1 , ...,
τ`∗M .

For any p̄ ∈ ∆(K), `]m ∈ {1, ..., L} and σ̄ ∈ Σ, let τ
`]m

:= τ
`]m

[fm; σ̄] ∈ T be the
behavior strategy to follow fm[p̄] until `]m, as was defined in Step I. The corresponding
blocks are

Bm
` = {Nm

`−1 + 1, ..., Nm
` }, for ` = 1, ..., `]m.

On eachBm
` , τ

`]m
is playing fm[p̄](`) i.i.d, andNm

` > Nm
`−1 is set with (denoteNm

1 = Tm−1):

ρkm(`) := Probkσ̄,τ
`
]
m

(Nm
`−1 < Tm ≤ Nm

` ) ≥ Probkσ̄,τ
`
]
m

(Nm
`−1 < Tm <∞)− ε, ∀k ∈ K.

We write ρm = (ρkm)k∈K and then ρ = (ρ1, ..., ρM ).

For any generic vector `] = (`]1, ..., `
]
M ) ∈ {1, ..., L}M , the behavior strategy τ`] :=

τ`] [f ;σ] is defined to iterate τ`1 , ..., τ`M as follows:
– for m = 1 (before T1): τ`] is to follow τ

`]1
= τ

`]1
[f1;σ] until the random stage T1.

Let us index by `1 ∈ {1, ..., `]1} the block B1
`1

on which appears T1, and denote by
p̄ρ(`1̂ ) player 2’s posterior belief over K conditional on the event

′′T1 ∈ B1
`1 , jT1 = ̂1 & θ > T ′′1 .

– for m = 2, ...,M (after Tm−1 and before Tm): τ`∗ is to follow τ`∗m−1
until the random

stage Tm−1, and then to follow τ`∗m = τ`∗m [fm, σ(hTm−1)] until the random stage Tm,
where
– σ(hTm−1) is the continuation of σ after hTm−1 ;
– p̄ρ(`m−1

̂ ) is player 2’s posterior belief over K conditional on the event

′′ Tm′ ∈ Bm′
`m′
, jTm′ = ̂m′ , ∀ m′ ∈ {1, ...,m− 1}, & θ > Tm−1

′′.

We index by `m ∈ {1, ..., `]m} the block Bm
`m

on which appears Tm, and denote by
p̄ρ(`m̂ ) player 2’s posterior belief over K conditional on the event

′′ Tm′ ∈ Bm′
`m′
, jTm′ = ̂m′ ,∀ m′ ∈ {1, ...,m}, & θ > Tm−1

′′.

Next, we fix a random vector `∗ = (`∗1, ..., `∗M ) ∈ {1, ..., L}M along the play.

Notation 5.4.7. For each m = 0, ...,M − 1, we write below qm := p̄ρ(`m̂ ) and Lqm,M−m

for the payoff function in Ξ̂LM−m(qm).
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Each fm+1[qm] is ε-optimal, thus:

Lqm,M−m(ρm+1, f
m+1) = 1

L

L∑
`=1
Lqm,M−m
` (ρm+1, f

m+1) ≤ ŵLM−m(qm)+ε ≤ ŵM−m(qm)+2ε.

This implies that there exists some `∗m+1 ∈ {1, ..., L} with

Lqm,M−m
`∗m+1

(ρm+1, f
m+1) ≤ ŵM−m(qm) + 2ε.

Finally, we define the behavior strategy τ`∗ = τ`∗ [f ;σ] associated with `∗ = {`∗1, ..., `∗M}.

Step III. Conclusion of the proof

Let N̄ = max{Nm
` |1 ≤ ` ≤ L, 1 ≤ m ≤M}. We prove the following

Proposition 5.4.8. For any n ≥ N̄ ,

Epσ,τ`∗
[
gn
]
≤ Λ(p) + (4C + 3)ε+ (4C + 2) ε ln ε

ln(1− χ−) .

Proof. The expectation Epσ,τ`∗
[
gn
]
is firstly taken conditional on the event "T1 ∈ B1

`1
, `1 =

1, ..., `∗1", so Lemma 5.4.6 applies for T̃ = T1 under (σ, τ`∗1), yielding:

Epσ,τ`∗
[
gn
]

=
∑
k

pkEkσ,τ`∗
[
gn
]

≤
∑
k

pk
{ `∗1∑
`1=1

ρk1(`1)
∑
̂1

f1(`1)[̂]
[
χk(̂1)ak∗(̂1) +

(
1− χk(̂1)

)
Ekσ,τ`∗ [gn|A1]

]

+
(
1− ρk1(`∗1)

)〈
ak, f1(`∗1)

〉}
+ 2Cε

=
`∗1∑
`1=1

ρ1(`1)
∑
̂1

f1(`1)[̂1]
[
χp̄ρ(`1)(̂1)a∗p̂ρ(`1̂ )

(̂1) +
(
1− χp̄ρ(`1)(̂1)

)
Eq1
σ,τ`∗

[gn|A1]
]

+
(
1− ρ1(`∗1)

)〈
ap̃ρ(`∗1), f

1(`∗1)
〉

+ 2Cε,

(5.4.4)

where p̂ρ(`1̂ ) is player 2’s posterior belief conditional on "T1 ∈ B1
`1
, jT1 = ̂1, θ = T1",

p̃ρ(`∗1) is player 2’s posterior belief conditional on "T1 > N1
`∗1
", and A1 denotes the event

′′T1 ∈ B1
`1 , jT1 = ̂1 & θ > T ′′1 .

One compares the payoff on the right hand side of (5.4.4) to L̂p,M`∗1 (ρ1, f
1), to obtain:

Epσ,τ`∗
[
gn
]
− L̂p,M`∗1 (ρ1, f

1)

=
`∗1∑
`1=1

∑
̂1∈J

ρ1(`1)f1(`1)[̂1]
(
1− χp̄ρ(`1)(̂1)

)[
Eq1
σ,τ`∗

[gn|A1]− ŵM−1(q1)
]

+ 2Cε

≤
(
1− χ−

) `∗1∑
`1=1

∑
̂1∈J

ρ1(`1)f1(`1)[̂1]
[
Eq1
σ,τ`∗

[gn|A1]− ŵM−1(q1)
]

+ 2Cε
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Moreover, as we have chosen `∗1 in Step II satisfying L̂p,M`∗1 (ρ1, f
1) ≤ ŵM (p)+2ε, we obtain

thus the following recursive inequality

Epσ,τ`∗
[
gn
]
− ŵM (p)

≤
(
1− χ−

) `∗1∑
`1=1

∑
̂1∈J

ρ1(`1)f1(`1)[̂1]
[
Eq1
σ,τ`∗

[gn|A1]− ŵM−1(q1)
]

+ 2(C + 1)ε.

Similarly, we use Lemma 5.4.6 consequentially for m = 2, ...,M the random times
T̃ = Tm under

(
σ(hTm−1), τ`∗m

)
to obtain:

Eqm−1
σ,τ`∗

[
gn|Am−1

]
− ŵM−m+1(qm−1)

≤
(
1− χ−

) `∗m∑
`m=1

∑
̂m∈J

ρm(`m)fm(`m|qm−1)[̂m]
[
Eqm
σ,τ`∗

[gn|Am]− ŵM−m(qm)
]

+ 2(C + 1)ε,

where ŵ0(qM) = a∗qM and Am is the event "Tm′ ∈ Bm′
`m′
, jTm′ = ̂m′ , ∀m′ ∈ {1, ...,m} & θ >

Tm".

Finally, we take expectation iteratively over histories to yield:

Epσ,τ`∗
[
gn
]
− ŵM (p)

≤
(
1− χ−

)M ∑
`M≤`∗

∑
̂M∈JM

ρ(`M )
M∏
m=1

fm(`m|qm−1)[̂m]
(
EqM
σ,τ`∗

[gn|AM ]− a∗qM(̂M )
)

+ 2M(C + 1)ε.

where we have denoted ′′`M ≤ `∗′′ for ′′1 ≤ `m ≤ `∗m, m = 1, ...,M ′′, ̂M = (̂1, ..., ̂M )
and ρ(`M ) =

∏
1≤m≤M ρm(`m).

By definition of M =
⌊

ln ε
ln(1−χ−)

⌋
+ 1, (1− χ−)M ≤ ε, thus

Epσ,τ`∗
[
gn
]
≤ ŵM (p) + (4C + 2)Mε ≤ ŵM (p) + (4C + 2)

[ ln ε
ln(1− χ−) + 1

]
ε.

Moreover, from the proof of Theorem 5.2.3
(
cf. (5.3.2)

)
, we have for such M :

|ŵM (p)− Λ(p)| ≤ ε.

Thus we obtain that for any n ≥ N̄ :

Epσ,τ`∗
[
gn
]
≤ Λ(p) + (4C + 3)ε+ (4C + 2) ε ln ε

ln(1− χ−) .

This completes the proof for the proposition.

Proof for Proposition 5.4.5: Take now ε′ = (4C+ 3)ε+ (4C+ 2) ε ln ε
ln(1−χ−) and consider

any n ≥ N0 := N̄/ε′, we obtain γpn(σ, τ`∗) ≤ Λ(p) + 2ε′.. Since ε > 0 is arbitrary and
ε ln ε

ln(1−χ−) vanishes as ε tends to zero, this proves that player 2 defends Λ(p). �

5.4.3 Player 1 guarantees Λ(p)
This part is devoted to the proof for

Proposition 5.4.9. Player 1 guarantees Λ(p) in Γ∞.
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We present our proof in three parts.
A) First, we establish and study the "equalizing" property (cf. Prop. 5.4.10) of the limit
game

(
Ξ̂(p), A∗·

)
. This generalizes the result in Sorin [55] (cf. Prop. VIII.4.6, Mertens et

al. [35]).
B) Next, we construct the ε-optimal strategies for player 1 in Γ∞. In Sorin [55], the ε-
optimal strategies are constructed upon a strategy pair having the "equalizing" property.
Here, we take an iteration of such construction for M times, where at each time, the
"equalizing" property in the limit game Ξ̂m is used.
C) Finally we conclude by computing the expected averaging payoff.

A) Preliminaries: the "equalizing" property and its discrete approximation

The following proposition states that in the limit game, there is a strategy pair with
its associated payoff being constant on [0, 1].

Proposition 5.4.10. Assume that for each j ∈ J , the function A∗· (j) defined on ∆(K) is
concave and C-Lip. For any µ ∈ QK [0] that is optimal for player 1 in

(
Ξ̂(p), A∗·

)
, there

exists some f ∈ F ′[0] such that

ϕpt (µ, f) = ŵ(p), ∀t ∈ [0, 1).

The proof for this proposition is close to the case of BM with one-sided incomplete
information (cf. Prop.VIII.4.6. in Mertens et al. [35]). For the sake of completeness, we
give it here and put in the Appendix.

Fix now a strategy pair (µ, f) with the "equalizing" property as in Proposition 5.4.10.
For the aim of obtaining a uniform bound on the error term, we introduce below the
discrete approximation. See also Merten et al. [35] (VIII.4, p.463) and Sorin [55] (Lemma
28) for results in BM with one-sided incomplete information.

Lemma 5.4.11. For any ε > 0, we fix an ω] < 1 with µ
(
[ω], 1)

)
≤ ε. There exists a

partition {ω`} of [0, 1] such that the following conditions are satisfied:
1. 0 = ω0 < · · · < ωL < ωL+1 = 1 with ωL = ω].
2. each interval has small length: ω` − ω`−1 ≤ ε for ` = 1, ..., L+ 1.
3. each interval has small weight: µ

(
(ω`−1, ω`)

)
≤ (1− ω])ε for ` = 1, ..., L.

4. |f(t)− f(t′)| ≤ ε(1− ω]) for all t, t′ ∈ (ω`−1, ω`] with ` = 1, ..., L.
5. atomic point is put into the set of partition points: ω ∈ {ωr} whenever µ({ω}) > ε.

Proof. f ∈ F ′[0] is continuous, so for any ε > 0, there is some δ in (0, ε] such that
|f(t) − f(t′)| ≤ (1 − ω])ε for all |t − t′| ≤ δ. We take then a sufficiently fine partition
{ω`}L`=0 of [0, ω]] such that: ω` − ω`−1 ≤ δ and µ

(
(ω`−1, ω`)

)
≤ (1− ω])ε; whenever there

is an atomic point, i.e. µ({ω}) > ε, let ω ∈ {ω`}. The partition {ω`}L+1
`=0 satisfies then all

these conditions.

We define now a pair (µ̂, f̂) ∈ QK [0]×F [0] as a discrete approximation of (µ, f) w.r.t.
the partition {ω`}:

– ∀k ∈ K, µ̂k({ω1}) = µ̂k ([0, ω1]) and µ̂k({ω`}) = µk ((ω`−1, ω`]) for ` = 2, ..., L+ 1;
– f̂(·) is piece-wise constant: f̂(t) = f(ω`) for t ∈ (ω`−1, ω`] with ` = 1, ..., L and
f̂(t) = f(ω]) for t ∈ (ωL, 1].
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We see that the "equalizing" property of (µ, f) is approximately preserved by (µ̂, f̂).

Lemma 5.4.12. For any t ∈ (0, ω]],∣∣∣ϕpt (µ̂, f̂)− ϕpt (µ, f)
∣∣∣ ≤ 3C(1− ω])ε.

This implies in particular that∣∣∣ϕp(µ̂, f̂)− ŵ(p)
∣∣∣ ≤ 5C(1− ω])ε.

Further, there exists some ω̂] ∈ (ω], 1) such that for all t ∈ (ω̂], ω]):∣∣∣ϕpt (µ̂, f̂)− ϕpt (µ, f)
∣∣∣ ≤ 3Cε.

Proof. Consider first any t ∈ (0, ω]] and let t ∈ (ω`−1, ω`] for some ` = 1, ..., L. We look
at |ϕpt (µ̂, f̂) − ϕpt (µ, f)|. Indeed, there are two differences: either the absorption appears
in (ω`−1, ω`) under µ(·), which has probability at most (1− ω])ε according to Point. 3 in
Lemma 5.4.12; otherwise, the difference is bounded by sup1≤`′≤` sups∈(ω`′−1,ω`′ ) ‖1f(s) −
f(ω`′)‖1C, which is at most by C(1−ω])ε following Point. 4 in Lemma 5.4.12. We obtain
thus ∣∣∣ϕpt (µ̂, f̂)− ϕpt (µ, f)

∣∣∣ ≤ (1− ω])ε2C + C(1− ω])ε = 3C(1− ω])ε.

Now we consider the points close to ω] from the right. Take ω̂] ∈ (ω], 1) with ‖f(t)−
f(ω])‖1 ≤ ε for all t ∈ (ω], ω̂]). By definition, f̂(t) = f(ω]) for all t ∈ (ω], 1] and
µ(ω], 1) ≤ ε, thus we apply the same argument as above (for t ≤ ω]) to any t ∈ (ω], ω̂]) to
obtain 2 ∣∣∣ϕpt (µ̂, f̂)− ϕpt (µ, f)

∣∣∣ ≤ ε2C + Cε = 3Cε.

Notation: For each k ∈ K and ` = 1, ..., L+1, we write µ̂k(`) := µ̂k({ω`}), p̄µ̂(`) := p̄µ̂(ω`)
and p̃µ̂(`) := p̃µ̂(ω`), f̂(`) := f̂(ω`).

Lemma 5.4.13. Suppose there is some ŷ = {ŷ`}L`=1 in ∆(J) such that: for all ` ∈
{1, ..., L}, if∑

k

pk
(
1− µ̂k(`′)

) 〈
ak, ŷ`′

〉
≤
∑
k

pk
(
1− µ̂k(`′)

) 〈
ak, f̂(`′)

〉
+ C(1− ω])ε (5.4.5)

for all `′ ∈ {1, ..., `}, then it implies that

∑̀
r=1

µ̂(r)
〈
A∗p̄µ̂(r), ŷr

〉
≥
∑̀
r=1

µ̂(r)
〈
A∗p̄µ̂(r), f̂(r)

〉
− 5Cε. (5.4.6)

Proof. Suppose the claim is not true, and let ŷ = {ŷ`}L`=1 such that for some ` ∈ {1, ..., L},
(5.4.5) is satisfied for every `′ ∈ {1, ..., `}, while (5.4.6) is not true. So it is possible for us
to take some subset {`1, ..., `m} of {1, ..., `} such that

µ̂(`q)
〈
A∗p̄µ̂(`q), ŷ`q − f̂(`q)

〉
< 0 for each `q, q = 1, ...,m,

2. Note that the error term is now controlled by ε instead of (1− ω])ε. This is due to the fact that ω]
is chosen after ε. Moreover, the control is only valid for points close to ω] from right but not for the whole
interval [ω], 1].
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and
m∑
q=1

µ̂(`q)
〈
A∗p̄µ̂(`q), ŷ`q

〉
<

m∑
q=1

µ̂(`q)
〈
A∗p̄µ̂(`q), f̂(ω`q)

〉
− 5Cε. (5.4.7)

Next, let us define g by modifying the value of f on the points {`1, ..., `m} to be ŷ`q
for each ω`q . This changes the payoff ϕp(µ, ·) (defined from f̂ to g) by:

ϕp(µ̂, g)− ϕp(µ̂, f̂) ≤
m∑
q=1

(
ω`q − ω`q−1

)∑
k

pk
(
1− µ̂k(`q)

) 〈
ak, ŷ`q − f̂(`q)

〉

+
m∑
q=1

(
1− ω`q

)
µ̂(`q)

〈
A∗p̄µ(`q), ŷ`q − f̂(`q)

〉
.

(5.4.8)

Let us bound the two partial sums on the right-hand-side of inequality (5.4.8) as follows
– (5.4.5) is used to bound the first part, which yields:

m∑
q=1

(
ω`q − ω`q−1

)∑
k

pk
(
1− µ̂k(`q)

) 〈
ak, ŷ`q − f̂(`q)

〉
≤ C(1− ω])ε.

– Since µ̂(`q)
〈
A∗p̄µ̂(`q), ŷ`q − f̂(`q)

〉
< 0 for each `q, thus we obtain for the first part:

m∑
q=1

(
1− ω`q

)
µ̂(`q)

〈
A∗p̄µ(`q), ŷ`q − f̂(`q)

〉
≤
(
1− ω]

) m∑
q=1

µ(`q)
〈
A∗p̄µ(`q), ŷ`q − f(`q)

〉
(
using ′′(5.4.7)′′

)
< (1− ω])(−5Cε).

We sum the above two parts to obtain in (5.4.8):

ϕp(µ̂, g)− ϕp(µ̂, f̂) ≤ C(1− ω])ε− 5C(1− ω])ε = −4C(1− ω])ε,

thus
ϕp(µ̂, g) ≤ ϕp(µ̂, f̂)− 4C(1− ω])ε ≤ ŵ(p)− C(1− ω])ε,

according to Lemma 5.4.12.
Finally, observing that g(·) is piece-wise constant on (ω`−1, ω`), we obtain

ϕp(µ, g) = ϕp(µ̂, g) ≤ ŵ(p)− C(1− ω])ε,

which leads to a contradiction to the optimality of µ in
(
Ξ̂(p), A∗· (j)

)
.

Lemma 5.4.14. For any ŷ ∈ ∆(J),∑
k

pk
(
1− µk(L+ 1)

) 〈
ak, ŷ

〉
≥
∑
k

pk
(
1− µk(L+ 1)

) 〈
ak, f̂(L+ 1)

〉
− 4Cε.

Proof. As otherwise, we define g to be f̂ on intervals (ω`−1, ω`] for ` = 1, ..., L and to be
ŷ on (ω], 1]. The induced difference in payoff is then

ϕp(µ̂, g)− ϕp(µ̂, f̂) = (1− ω])
∑
k

pk
(
1− µk(L+ 1)

) 〈
ak, ŷ − f̂(L+ 1)

〉
< −4C(1− ω])ε.

Considering |ϕp(µ̂, f̂) − ŵ(p)| ≤ 3C(1 − ω])ε and ϕp(µ̂, g) = ϕp(µ, g) as g(·) is piece-wise
constant, we obtain a contradiction to the optimality of µ in

(
Ξ̂(p), A∗· (j)

)
.
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B) ε-optimal strategies

B.1) BM associated with the payoff ψ and the level z

We first recall here the properties of some ε-optimal strategy α in BM corresponding
to a (non-absorbing) payoff ψ ∈ RJ and a level z ∈ [−C,+C].
Notation j̄n :=

∑
1≤s≤n δjs
n denotes for player 2’s average empirical frequency until stage

n.

Proposition 5.4.15. Consider the complete information BM with non-absorbing payoff
vector ψ and the level z. For any ε, η > 0, there exits some N0 ∈ N and some behavior
strategy α for player 1 such that for all n ≥ N0 and for any of player 2’s strategy τ :

〈ψ, j̄n〉 ≤ z − Cε =⇒ Pα,τ (T̃ ≤ n) ≥ 1− ε &
(
Eα,τ

[
〈ψ, jT̃ 〉|T̃ ≤ n

]
− z

)
Pα,τ (T̃ ≤ n) ≤ ηε,

where T̃ denotes the random time of playing Top.

For a reference, see Mertens et al. [35]
(
Equation (8)-(9), p.381

)
or Sorin [55] (Prop.

29).

B.2) The generic behavior strategy σ̄[µ̂; f̂ ] associated with an "equalizing" pair

Take (µ̄, f̄) an "equalizing" pair for the limit game Ξ̂(p) satisfying Proposition 5.4.10.
We fix a partition {ω`}L`=1 satisfying Lemma 5.4.12 and (µ̂, f̂) the corresponding discrete
approximation.

We are going to introduce a generic behavior strategy σ̄ := σ̄[µ̂; f̂ ] associated with
(µ̂, f̂). Indeed, when Γ∞ is the model of BM with one-sided incomplete information (i.e.,
M = 1), σ̄ guarantees Λ(p) (cf. Mertens et al. [35], sec.VIII.4). In our model, the
construction of the ε-optimal strategies will be an iteration of σ̄ for M times.

For any ` = 1..., L+ 1, let

ψ̄` :=
(
1− µ̂(`)

)
ap̃µ̂(`) ∈ RJ and z̄` := 〈ψ̄`, f(`)〉 =

(
1− µ̂(`)

)
〈ap̃µ̂(`), f̂(`)〉 ∈ [−C,+C]

For ` = 1, ..., L, we consider the complete information BM game associated with the
non-absorbing payoff vector ψ̄` and the level z̄`, and let ᾱ` := ᾱ`[ψ̄`, z̄`] be an ε-optimal
strategy (with N̄` ∈ N the corresponding uniform stage bound) satisfying Proposition
5.4.15.

For each k, σ̄(k, ·) is to: first select `∗ ∈ {1, ..., L+ 1} according to the measure µ̂k(·),
and then play Bottom until the random stage θ̄`∗ , on which to play Top with probability
1, where the stopping times {θ̄`} are defined by the following inductive procedure:

– for ` = 1, ..., L, (θ̄` − θ̄`−1) follows the law of T̃ induced by ᾱ` (set by convention
θ̄0 = 0).

– For ` = L + 1, set θ̄L+1 = ∞, that is, σ̄(k, ·) is to play Bottom i.i.d. forever if
`∗ = L+ 1.

B.3) ε-optimal strategy σ∗ taking the generic form σ̄ in sequentially M times

Let M ∈ N. We consider the recursive family {Ξ̂m|1 ≤ m ≤ M}, and for each
Ξ̂M−m+1(p̄), let

(
µm(p̄), fm(p̄)

)
be an "equalizing" pair satisfying Proposition 5.4.10. More-

over, we fix
(
µ̂m(p̄), f̂m(p̄)

)
its discrete approximation w.r.t. the partition {ωm` }

Lm
`=1 which

satisfies the conditions in Lemma 5.4.12.
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Form = 1, ...,M , define σ(m) to be: for any hTm−1 = (ω1, i1, j1, ..., ωTm−1 , iTm−1 , jTm−1),

σ(m;hTm−1)[k, ·] = σ̄
[
µ̂m(qm−1); f̂m(qm−1)

]
[k, ·], ∀k ∈ K

where qm−1 is the posterior of p conditional on the history "hTm−1 & θ > Tm−1".

Finally, we define σ∗ := σ[µ̂; f̂ ] = σ(1) �T1 σ(2) · · · �TM−1σ(M) as the concate-
nations of σ(1), ..., σ(M) at the random times T1, ..., TM−1. To precise, we introduce
the following notation. For any two histories hn′ = (ω1, i1, j1, ..., ωn′ , in′ , jn′) and hn =
(hn′ , ωn′+1, in′+1, jn′+1, ..., ωn, in, jn), we write hn/hn′ = (ωn′+1, in′+1, jn′+1, ..., ωn, in, jn).
Then for all (k, hn) ∈ K × (Ω× I × J)n:

σ(1)�T1 σ(2)[k, hn] =
{
σ(1)[k, hn] if n ≤ T1;
σ(2;hT1)[k, hn/hT1 ] if n > T1.

Below we detail a bit more the behavior strategy σ∗ and introduce some more notations
for further use.

Notation 5.4.16. For each m ∈ {1, ...,M} and ` ∈ {1, ..., Lm}, define q̃m−1(`) as:

q̃k
m−1(`) =

qk
m−1(1− µ̂k

m
(qm−1)(`)∑

k qk
m−1(1− µ̂k

m
(qm−1)(`)

, k ∈ K.

Let αm` be the ε-optimal strategy in the complete information BM associated with the
following non-absorbing payoff vector and level (Nm

r is the corresponding uniform stage
number):

ψm` =
(
1− µ̂

m
(qm−1)(`)

)
aq̃m−1(`),

zm` =
〈
ψm` , f̂

m(qm−1)(`)
〉

=
(
1− µ̂

m
(qm−1)(`)

)〈
aq̃m−1(`), f̂

m(qm−1)(`)
〉
.

Let Pm = {Tm−1 + 1, ..., Tm} (set T0 = 0) be the m-th phrase on which σ∗ follows
σ(m), that is, (αm` )Lm`=1 is sequentially played until the random stage Tm+1. We denote
(set θm0 = Tm−1)

– θm` for the stopping time of the block Bm
` = {θm`−1 + 1, ..., θm` } , that is, θm` − θm`−1

follows the law of T̃ under αm` ;
– `m ∈ {1, ..., Lm} for the index

(
following µ̂km(qm−1) in game k

)
of the block such

that Tm = θm`m ∈ B
m
`m

.

We see that q̃m−1(`) is the posterior of qm−1 conditional on "Tm > θm` ". Notice that
the posterior beliefs depend on a history hTm only through (ωT1 , T1, jT1 , ..., ωTm , Tm, jTm).

C) Conclusion of the proof: computing the expected average payoff

For each n ∈ N, m ∈ {1, ...,M} and ` ∈ {1, ..., Lm}: let θ̂m` = min{θm` , n}, B̂m
` =

{θ̂m`−1 + 1, ..., θ̂m` } = Bm
` ∩ {1, ..., n}. Put Lm(n) = max{1 ≤ ` < Lm|θm` ≤ n}, then

n ∈ B̂m
Lm(n)+1.
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Notation 5.4.17. For any `m̂ = (`1, ..., `m, ̂1, ..., ̂m) ∈ ×mm′=1{1, ..., Lm′} × Jm, let (set
A0 = ∅)

Am := A(`m̂ ) be the event ′′ Tm′ ∈ Bm′
`m′
, jTm′ = ̂m′ , ∀m′ ∈ {1, ...,m} & θ > Tm

′′.

Epσ∗,τ [jTm |Am−1] is the conditional expectation of player 2’s mixed move at the random Tm
and we use j(B) :=

∑
t∈B δjt/(]B) to denote for player 2’s empirical frequency on a block

B.

Fix now any ε > 0 and we take as in Proposition 5.4.15 the parameter η = C(1−ωm] )ε
for each ᾱm` . Let N̄m+1 = max`∈{1,...,Lm}N

m+1
` <∞.

During each phrase P̂m, player 2’s action (empirical frequency) is "blocked" by σ(m),
which is summarized in the following preliminary proposition (cf. Mertens et al. [35], sec.
VIII.4 for the model of BM with incomplete information).

Notation 5.4.18. Let q−m be the posterior of p conditional on the event "A−(`m̂ ) :=
A(`m−1

̂ ) & Tm ∈ Bm
`m
" for given `m−1

̂ = (`1, ..., `m−1, ̂1, ..., ̂m−1) ∈ ×m−1
m′=1{1, ..., Lm′} ×

Jm−1 and `m ∈ {1, ..., Lm}. We obtain

q−k
m =

qk
m−1µ̂

k
m(qk

m−1)(`m)∑
k qk

m−1µ̂
k
m(qk

m−1)(`m)
, ∀k ∈ K.

We denote throughout the rest of the proof:

A∗q−m
(j) := A∗,M−m+1

q−m
(j), ∀j ∈ J and µ̂m := µ̂m(qm−1), f̂m := f̂m(qm−1).

Proposition 5.4.19. For any n ∈ N,m ∈ {1, ..,M} and `m−1
̂ ∈ ×m−1

m′=1{1, ..., Lm′}×Jm−1,

Epσ∗,τ

[ Lm(n)∑
`=0

(
]B̂m

`+1
)( ∑̀

`m=1
µ̂m(`m)

〈
A∗q−m

(j), jTm
〉

+
(
1− µ̂m(`+ 1)

) 〈
aq̃m−1(`+1), j(B̂m

`+1)
〉)∣∣∣A(`m−1

̂ )
]

≥(n− Tm−1)
[
ŵM−m+1(qm−1)− 12Cε

]
− 2CN̄mLm.

(5.4.9)

Proof. We consider any history with n > Tm−1 as otherwise ]P̂m = 0 and the conditional
expectation on it can be defined arbitrarily. We fix any `m−1

̂ and write Am−1 for A(`m−1
̂ ).

As σ∗ is defined to depend on any hTm−1 ∈ Am−1 only through `m−1
̂ , and we con-

sider any τ to be against σ∗, it is thus with no confusion and w.o.l.g. to write directly
Epσ∗,τ [·|Am−1] instead of writing Epσ∗,τ [·|hTm−1 ] and then taking the expectation. We keep
this throughout the rest.

i). the expected non-absorbing part defined through j(B̂m
`+1).

On each block B̂m
`+1 for 1 ≤ ` + 1 ≤ Lm, the strategy αm`+1 = αm`+1[ψm`+1, z

m
`+1] is

used. Consider any ` with ]B̂m
`+1 ≥ N̄m: Proposition 5.4.15 applies so we have that with

probability at least 1− ε, player 2’s empirical frequency j(B̂m
`+1) satisfies:〈

ψm`+1, j(B̂m
`+1)

〉
≥ zm`+1 − Cε,
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thus in expectation, we obtain

Epσ∗,τ

[〈
ψm`+1, j(B̂m

`+1)
〉∣∣∣Am−1

]
≥ zm`+1 − 3Cε. (5.4.10)

For ` = L− 1, Bottom is played i.i.d. on B̂m
L . According to Lemma 5.4.14,〈

ψmL , j(B̂m
L )
〉
≥ zmL − 4Cε. (5.4.11)

ii). the expected absorbing part defined through Epσ∗,τ [jTm |A(`m−1
̂ )]

To calculate the auxiliary "absorbing" payoff on block B̂m
`+1, we look at the possible

auxiliary "absorption" at any previous block (i.e., the action Tm being played on B̂m
`m

for
`m = 1, ..., `). For this aim, let us prove that: for each ` = 1, ..., Lm(n),

Epσ∗,τ

[ ∑̀
`m=1

µ̂m(`m)
〈
A∗q−m

, jTm

〉∣∣∣Am−1

]
≥
∑̀
`m=1

µ̂m(`m)
〈
A∗q−m

, f̂m(`m)
〉
− 5Cε (5.4.12)

We use Lemma 5.4.13 to derive our result. In fact, let us set in the lemma

ŷ = {ŷ`}L`=1 with ŷ` := Epσ∗,τ [jθm
`
|Tm ≤ n & Am−1].

Notice that Epσ∗,τ [jθm
`
|Tm ≤ n & Am−1] = Epσ∗,τ [jθ̂m

`
|Am−1] for ` ≤ Lm(n).

Take any `′ ∈ {1, ..., `}. By the construction of σ∗, αm`′ is played on the block B̂`′ .
Since Probpσ∗,τ (θm`′ ≤ n|Am−1) = 1 for `′ ≤ ` ≤ Lm(n), (i.e., the block B̂m

`′ occurs with
probability 1 within the first n stages), according to Proposition 5.4.15, player 2’s expected
frequency at the stopping time θm`′ satisfies:

Epσ∗,τ
[〈
ψm`′ , jθ̂m

`′

〉∣∣Am−1
]
≤ z̄`′ + C(1− ωm] )ε,

which is written as(
1− µ̂m(`′)

)〈
aq̃m−1(`′),E

p
σ∗,τ

[
jθ̂m
`′

∣∣Am−1
]
− f̂m(`′)

〉
≤ C(1− ωm] )ε.

Condition in Lemma 5.4.13 is satisfied, so by taking `m = `′ and Tm = θ̂m`m , we obtain:

∑̀
`m=1

µ̂m(`m)
〈
A∗q−m

,Epσ∗,τ
[
jTm

∣∣Am−1
]
− f̂m(`m)

〉
≥ −5Cε,

which proves (5.4.12).

iii). the conclusion
We put together the expected non-absorbing payoff

(
computed as in (5.4.10) or (5.4.11)

)
and the expected auxiliary "absorbing" payoff

(
computed as in (5.4.12)

)
to obtain:

Epσ∗,τ

[ Lm(n)∑
`=0

(
]B̂m

`+1
)( ∑̀

`m=1
µ̂m(`m)

〈
A∗q−m

, jTm

〉
+
(
1− µ̂m(`+ 1)

) 〈
aq̃m−1(`+1), j(B̂m

`+1)
〉)∣∣∣Am−1

]

≥ Epσ∗,τ

[ Lm(n)∑
`=0

(
]B̂m

`+1
)( ∑̀

`m=1
µ̂m(`m)

〈
A∗q−m

, f̂m(`m)
〉

+
(
1− µ̂m(`+ 1)

) 〈
aq̃m−1(`+1), f̂

m(`+ 1))
〉
− 9Cε

)∣∣∣Am−1

]
− 2CN̄mLm

(5.4.13)
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where the error term N̄mLm2C is due to the payoff on blocks of small length (no larger
than N̄m), and there are at most Lm such blocks in total.

Next, we look at the following term on the right hand side of (5.4.13), each of them
corresponding to ]B̂m

`+1 for some `+ 1 ∈ {1, ..., L+ 1}:

φ(`+ 1) :=
∑̀
`m=1

µ̂m(`m)
〈
A∗q−m

, f̂m(`m)
〉

+
(
1− µ̂m(`+ 1)

) 〈
aq̃m−1(`+1), f̂

m(`+ 1))
〉
.

Below ϕqm−1 denotes the payoff function in Ξ̂M−m+1(qm−1). Then the above term is:

φ(`+ 1) = ϕ
qm−1
ωm
`+1

(
µ̂m, f̂

m
)

for `+ 1 = 1, ..., L, and φ(L+ 1) = ϕ
qm−1
ωm
]

(
µ̂m, f̂

m
)
.

The pair (µ̂m, f̂
m) approximately preserves the "equalizing" property of (µm, f

m) :=(
µ̂m(qm−1), f̂m(qm−1)

)
. According to Lemma 5.4.12 and Proposition 5.4.10, we obtain:

for `+ 1 = 1, ..., L or ],

ϕ
qm−1
ωm
`+1

(µ̂m, f̂
m) ≤ ϕqm−1

ωm
`+1

(µm, f
m)− 3C(1− ωm] )ε = ŵM−m+1

(
qm−1

)
− 3C(1− ωm] )ε.

The above inequality is put back to (5.4.13) to obtain:

Epσ∗,τ

[ Lm(n)∑
`=0

(
]B̂m

`+1
)( ∑̀

`m=1
µ̂m(`m)

〈
A∗q−m

, jTm

〉
+
(
1− µ̂m(`+ 1)

)〈
aq̃m(`+1), j(B̂m

`+1)
〉)∣∣∣Am−1

]

≥ Epσ∗,τ

[ Lm(n)∑
`=0

(
]B̂m

`+1
)∣∣∣Am−1

](
ŵM−m+1(qm−1)− 12Cε

)
− 2CN̄mLm

=
(
n− Tm−1

)[
ŵM−m+1(qm−1)− 12Cε

]
− 2CN̄mLm

This completes the proof for the proposition.

Let P̂m = ∪`m+1
`=1 B̂m

` = {Tm−1 + 1, ..., Tm} ∩ {1, ..., n}. We use the previous result to
compute the expected average payoff on each phrase so as to obtain

Proposition 5.4.20.

nγpn(σ∗, τ) ≥ nŵM (p)− 2C
M∑
m=1

(N̄mLm)− n12CεM − n2C(1− χ−)M . (5.4.14)

Proof. We can write

nγpn(σ∗, τ) = Eσ∗,τ

[
M∑
m=1

(
]P̂m

)
γpP̂m(σ∗, τ)

]
,

where γpP̂m(σ∗, τ) is the expected average payoff on phrase P̂m. We shall calculate the
average payoff by phrase from backward. Indeed, let us prove the following recursive
result, which includes the claim (5.4.14) of the proposition for m = 0:
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Lemma 5.4.21. For any `mj = (`1, ..., `m, ̂1, ..., ̂m) ∈ ×mm′=1{1, ..., Lm′} × Jm,m ∈
{0, ...,M − 1}:

Epσ∗,τ
[ M∑
~=m+1

(
]P̂~)γpP̂~(σ̄, τ)|A(`m̂ )

]

≥ (n− Tm)
[
ŵM−m(qm)− 2C

∑M
~=m+1 N̄

~L~

(n− Tm) − 12Cε(M −m)− 2Cε(1− χ−)M−m
]
.

(5.4.15)

Proof for Lemma 5.4.21:

i). To initialize our inductive proof, consider m = M − 1.
Once Top being played, there is a probability of at least χ− the state is absorbed. On

this sub-event ("θ = TM "), we use Proposition 5.4.19 to bound the conditional expected
payoff:

Epσ∗,τ
[(
]P̂M

)
γqM
P̂M (σ∗, τ)

∣∣∣AM−1 & θ = TM
]
≥ (]P̂M )

[
ŵ1(qM−1)−2CN̄MLM/(]P̂M )−12Cε

]
.

The conditional probability for its complementary event is at most (1 − χ−), thus in
expectation:

Epσ∗,τ
[(
]P̂M

)
γqM
P̂M (σ∗, τ)

∣∣∣AM−1
]
≥ (]P̂M )

[
ŵ1(qM−1)−2CN̄MLM/(]P̂M )−12Cε−2C(1−χ−)

]
.

which proves (5.4.15) for ]P̂M = n − TM−1 conditional on Am−1 and n ≥ TM−1. This
starts our inductive proof on m from backward.

ii) The inductive proof for any m = M − 2, ..., 0.
For fixed (`m−1

̂ , `m), we write for short A−m := A−(`m−1
̂ , `m), which is by definition

the event

′′ Tm′ ∈ Bm′
`m′
, jTm′ = ̂m′ ,∀m′ ∈ {1, ...,m− 1} , θ > Tm−1 & Tm ∈ Bm

`m
′′.

Suppose that (5.4.15) is proved for some m ∈ {M − 1, ...., 1}, and we prove the result
for m− 1. We write

Epσ∗,τ

[
M∑

~=m

(
]P̂~)γqm−1

P̂~ (σ∗, τ)
∣∣∣Am−1

]

=
Lm(n)+1∑
`m=1

µ̂m(`m)Epσ∗,τ

{(
]P̂m

)
γq−m
P̂m(σ∗, τ) +

[ M∑
~=m+1

(
]P̂~)γq−m

P̂~ (σ∗, τ)
]∣∣∣A−m

}
.

(5.4.16)

Let us compute the above sum in two parts separately: the payoffs on P̂m and after that.
Conditional on A−m for each `m, the payoff on a block B̂m

` , ` ≤ `m is non-absorbing,
thus the expected payoff sum on P̂m writes as

Lm(n)+1∑
`m=1

µ̂m(`m)Epσ∗,τ
[(
]P̂m

)
γq−m
P̂m(σ∗, τ)

∣∣A−m] =
Lm(n)+1∑
`m=1

µ̂m(`m)Epσ∗,τ
[ `m−1∑
`=0

(
]B̂m

`+1
)〈
aq−m , j(B̂

m
`+1)

〉∣∣A−m].
(5.4.17)
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Now we compute the expected payoff sum after P̂m. We fix any `m ∈ {`m−1 +1, ...Lm(n)+
1}, and consider the expectation conditional on A−m. For any realization of jTm , we first
take the expectation conditional on the sub-event "θ = Tm" or "θ > Tm", to yield:

Epσ∗,τ

{
M∑

~=m+1

(
]P̂~)γq−m

P̂~ (σ∗, τ)
∣∣∣A−m

}

= Epσ∗,τ

{
(n− Tm)χq−m (jTm) a∗q̂m

(
jTm

)
+
(
1− χq−m (jTm)

)
Epσ̄,τ

[ M∑
~=m+1

(
]P̂~)γqm

P̂~ (σ∗, τ)|Am
]∣∣∣A−m

}
,

(5.4.18)
where q̂m denotes the posterior of p conditional on "A(`m−1

̂ ), jTm , Tm ∈ B̂m
`m

& θ = Tm".
The inductive assumption for m applies for the part in Equation (5.4.18) conditional

on Am:

Epσ̄,τ
[ M∑
~=m+1

(
]P̂~)γqm

P̂~ (σ∗, τ)|Am
]
≥ (n− Tm)

[
ŵM−m(qm)− em

]

where the error term is denoted as

em := 2C
∑M

~=m+1 N̄
~L~

n− Tm
+ 12Cε(M −m) + 2C(1− χ−)M−m.

This implies that in Equation (5.4.18)

Epσ∗,τ
[ M∑
~=m+1

(
]P̂~)γq−m

P̂~ (σ̄, τ)
∣∣A−m]

=Epσ∗,τ
[
(n− Tm)χq−m(jTm)a∗q̂m

(
jTm

)
+ (n− Tm)

(
1− χq−m(jTm)

)[
ŵM−m(qm)− em

]∣∣∣A−m]
≥ Epσ∗,τ

[
(n− Tm)

[
A∗q−m

(jTm)− (1− χ−)em
]∣∣∣A−m],

(5.4.19)
where we have used in the last inequality the definition

A∗q−m
(jTm) = χq−m (jTm) · a∗q̂m

(
jTm

)
+
(
1− χq−m (jTm)

)
· ŵM−m(qm).

Finally, (5.4.17) and (5.4.19) are substituted back into (5.4.16) to obtain:

Epσ∗,τ

[
M∑

~=m

(
]P̂~)γqm−1

P̂~ (σ∗, τ)
∣∣∣Am−1

]

≥
Lm(n)+1∑
`m=1

µ̂m(`m)Epσ∗,τ
[ `m+1∑
`=0

(
]B̂m

`+1
)〈
aq−m , j(B

m
`+1)

〉
+ (n− Tm)

[
A∗q−m

(jTm)− (1− χ−)em
]
|A−m

]
(5.4.20)

Let us look the right hand side of (5.4.20) aside the error term (n − Tm)(1 − χ−)em.
By construction, the block B̂m

` = {θ̂m`−1 + 1, ..., θ̂m` } is computed as if Tm = ∞ thus
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∑Lm(n)
`=`m (]B̂m

`+1) = n− Tm under every history. This enables us to write

Lm(n)+1∑
`m=1

µ̂m(`m)Epσ∗,τ

{
`m−1∑
`=0

(
]B̂m

`+1
)〈
aq−m , j(B̂

m
`+1)

〉
+
(
n− Tm

)
A∗q−m

(jTm)
∣∣∣∣∣A−m

}

=
Lm(n)+1∑
`m=1

µ̂m(`m)Epσ∗,τ

{
`m−1∑
`=0

(
]B̂m

r+1
)〈
aq−m , j(B̂

m
`+1)

〉
+
Lm(n)∑
`=`m

(]B̂m
`+1)A∗q−m(jTm)

∣∣∣∣∣A−m
}

=Epσ∗,τ

[ Lm(n)∑
`=0

(]B̂m
`+1)

( ∑̀
`m=1

µ̂m(`m)A∗q−m
(
jTm

)
+
(
1− µ̂m(`+ 1)

)〈
aq̃m(`+1), j(B̂m

`+1)
〉)∣∣∣Am−1

]
,

where to obtain the last equality, we made the sum of the expected payoff by blocks,
conditional on Tm before or after each block.

We can apply now Proposition 5.4.19 to the above expression to obtain:

Lm(n)+1∑
`m=1

µ̂m(`m)Epσ∗,τ
[ `m−1∑
`=0

(
]B̂m

r+1
)〈
aq−m , j(B̂

m
r+1)

〉
+
(
n− Tm

)
A∗q−m

(jTm)
∣∣∣Am−1

]
≥ (n− Tm−1)

[
ŵM−m+1(qm−1)− 12Cε

]
− 2CN̄mLm,

which is substituted back into (5.4.20), adding the error term (n − Tm)(1 − χ−)em, to
yield:

Epσ∗,τ

{
M∑

~=m

(
]P̂~)γqm−1

P̂~ (σ∗, τ)
∣∣∣Am−1

}

≥ (n− Tm−1)
[
ŵM−m+1(qm−1)− 12Cε

]
− 2CN̄mLm

− (n− Tm)
[
2C
∑M

~=m+1 N̄
~L~

n− Tm
+ 12Cε(M −m) + 2C(1− χ−)M−m+1

]
≥ (n− Tm−1)

[
ŵM−m+1(qm−1)−

(
2C
∑M

~=m N̄
~L~

n− Tm−1
+ 12Cε(M −m+ 1) + 2C(1− χ−)M−m+1

)]
=(n− Tm−1)

[
ŵM−m+1(qm−1)− em−1

]
.

(5.4.21)
This proves (5.4.15) form−1, thus the induction procedure for Lemma 5.4.21 is finished. �

In particular, our proof for Proposition 5.4.20 is achieved for m = 0 in Lemma 5.4.21.

Proof for Proposition 5.4.9: Proposition 5.4.20 implies that for any ε > 0, there is σ∗

and N0 such that for any τ and n ≥ N0 := 2C
∑M

m=1(N̄mLm)
ε , M > 0

γpn(σ∗, τ) ≥ ŵM (p)− ε− 13CεM − 2C(1− χ−)M .

Take M =
⌊

ln ε
ln(1−χ−)

⌋
+ 1, then (1− χ−)M ≤ ε and ŵM (p) ≥ Λ(p) ≥ −ε, following the

proof for Theorem 5.2.3. Moreover, εM ≤ ε ln ε
ln(1−χ−) , which vanishes as ε tends to zero. As

ε > 0 being arbitrary, this completes the proof that player 1 guarantees Λ(p) in Γ∞. �
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5.5 Uniform analysis: Minmax
This section is devoted for the proof of Theorem 5.2.5. To do this, we first introduce

an auxiliary game ΘM (p), and then prove that for M large, its value is guaranteed by
player 2 and is defended by player 1.

Auxiliary game ΘM (p) For any M > 0 andp ∈ ∆(K), the game ΘM (p) is defined as:
– player 1 takes an action x =

(
M(k)

)
k∈K ∈ {0, 1, ...,M}

K .
– player 2 takes an action y = (j1, ..., jM+1) ∈ JM+1.
– the payoff function is φp(x, y) =

∑
k∈K p

kφk
(
M(k), y

)
, where

φk
(
M(k), y

)
=

M(k)∑
m′=0

m′−1∏
s=0

(
1− χk(js)

)
χk(jm′)ak∗(jm′) +

M(k)∏
s=0

(
1− χk(js)

)
ak
(
jM(k)+1

)
.

This is a finite game, thus it has a value, which we denote by uM (p). We show that
v̄(p) = limM→∞ uM (p). As usual, the proof is divided into two parts: player 2 guarantees
it and player 1 defends it.

Part I: player 2 guarantees lim infM→∞ uM (p)

We fix an ε > 0, and take M ∈ N large satisfying

(1− χ−)M ≤ ε and uM (p) ≤ lim inf
m→∞

um(p) + ε.

For any y = (y1, ..., yM+1) ∈
(
∆(J)

)M+1 a mixed strategy for player 2 in ΘM (p), we define
τ := τ [y] ∈ T a behavior strategy in Γ∞ to:

– start playing y1 i.i.d. until T1 the stage of the first Top;
– for m = 1, ...,M − 1: after Tm = (T1, ...Tm) the stages of the first m Top’s, play
ym+1 i.i.d. until Tm+1;

– after TM : play yM+1 i.i.d. forever.

Consider any σ ∈ Σ to play against τ . We are going to construct some µ = (µk) :=
µ[σ; y] ∈ (∆{0, ...,M})K in ΘM (p) such that for all n sufficiently large,

γpn(σ, τ [y]) ≤ φp(µ[σ; y], y) + 6Cε.

We then choose y to be optimal, and this implies that player 2 guarantee lim infM→∞ uM (p).

Fix now a σ ∈ Σ. First of all, by definition of M , it is with a loss of 2Cε to assume
that Top appears at most M times under σ. Then, under this assumption, there is some
N̄ ∈ N such that

Probkσ,τ (in = Top) ≤ ε, ∀n > N̄.

From now on, we work on the following event (M):
′′no Top after N̄ and at most M times the action Top within the first N̄ stages ′′.

For any play h = (ω1, i1, j1, ..., ωs, is, js, ..., ) ∈ H∞, let Tm[h] = (T1, ..., Tm) be the associ-
ated sequence of stages appearing Top’s, where m := m[h] = ]{s ∈ N|is(h) = Top}. We
have that: for any n > N̄ and k ∈ K,

Ekτ [y]

[
gn|Tm[h]

]
=

m∑
m′=0

m′−1∏
s=0

(
1−χk(ys)

)
χk(ym′)

〈
ak∗, ym′

〉
χk

+
m∏

m′=0

(
1−χk(ym′)

)
ak(ym+1),

119



Chapter 5. Big match généralisé à information incompète d’un côté

which is equal to φk
(
m[h], y

)
.

We take expectation over all histories, to obtain:

Ekσ,τ [y][gn] =
∫
H∞

Ekτ [y]
[
gn|Tm[h]

]
dProbkσ,τ [y](h) =

∫
H∞

φk
(
m[h], y

)
dProbkσ,τ [y](h). (5.5.1)

Define now a class of probability measures µ = (µk) := µ[σ; y] with µk ∈ ∆({0, ...,M}),∀k ∈
K:

µk(m′) =
∫
H∞

1{m[h]=m′}dProbkσ,τ [y](h), ∀m′ ∈ {0, ..,M}.

Using the deinifion of µk(·), we re-write Equation (5.5.1) as:

Ekσ,τ [y][gn] =
∑

m′∈{0,...,M}
µk(m′)φk(m′, y) = φk(µk, y)

Now we take expectation w.r.t. p ∈ ∆(K), to obtain

Epσ,τ [y][gn] =
∑
k

pkφk(µk, y) = φp
(
µ[σ; y], y

)
, ∀n ≥ N̄ .

Finally, we take y to be optimal, and consider any n ≥ N̄/ε. This gives us:

γpn
(
σ, τ [y]

)
≤ φp

(
µ[σ; y], y

)
+ 2Cε+ 4Cε ≤ uM (p) + 6Cε ≤ lim inf

m→∞
um(p) + ε(1 + 6C),

where the error term 4Cε is to bound the payoff outside the event (M). As ε is arbitrary,
this proves that player 2 guarantees lim infM→∞ uM (p).

Part II: player 1 defends lim supM→∞ uM (p)

Fix an ε > 0 and we take M > 0 sufficiently large such that

(1− χ−)M ≤ ε and uM (p) ≥ lim sup
m→∞

um(p)− ε.

Given τ ∈ T player 2’s behavior strategy in Γ∞ and x ∈ ∆
(
{0, ...,M}K

)
, we are going

to construct some mixed strategy σ := σ[x; τ ] in Γ∞ and y := y[τ ;x] ∈
(
∆(J)

)M+1 such
that: for all n sufficiently large,

γpn(σ, τ) ≥ φp(x, y)− ε.

By choosing x optimal, the result will be obtained.

Fix now a τ ∈ T and x ∈ ∆
(
{0, ...,M}K

)
. We write x =

∑R
r=1 λ

rδxr for some
(λr, xr)Rr=1 where xr =

(
M r(k)

)
∈ {0, ...,M}K is a pure action for any r and (λr)r∈R ∈

∆({1, ..., R}) is the random devise.

We define, at the same time, a sequence of random times
(
T (m)

)M+1
m=0 and a sequence

of pure behavior strategies
(
σ(m)

)M
m=0 along the play as follows:

– T (0) = 0 and σ(0) is to play Bottom forever;
– for any m = 0, ...,M :

– T (m + 1) is equal to T (m) + 1 if {(r, k)|M r(k) = m} = ∅ and is otherwise an
ε

M+1 -optimal solution to for following optimization problem:

min
n>T (m)

Mr(k)=m∑
(r,k)

pkλr
〈
ak,Eσ(m),τ

[
jn|HT (m)

]〉
; (5.5.2)
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– σ(m+ 1) is to follow σ(m) until the stage T (m+ 1)− 1, to play Top at T (m+ 1)
and then to play Bottom.

Note that the sequence
(
T (m)

)
can be taken uniformly bounded, thus we fix N̄ > 0

with TM+1 ≤ N̄ a.s. for all histories. For fixed m ∈ {0, ...,M} and n ≥ N̄ , we obtain:
∀k ∈ K,

Ekσ(m),τ [gn]

=
∑

0≤s≤m
Probkσ(m),τ

(
θ = T (s)

)〈
ak∗,Eσ(m),τ [jT (s)]〉χk + Probkσ(m),τ

(
θ > T (m)

)〈
ak,Eσ(m),τ [jn]

〉
=

∑
1≤m′≤m

∏
0≤s<m′

(
1− χk(ys)

)
χk(ym′)

〈
ak∗, ym′

〉
χk

+
∏

0≤s≤m

(
1− χk(ys)

)〈
ak, y(n)

m

〉
,

(5.5.3)
(we write throughout the rest y0 = ∅ and χk(∅) = 0)

where we have denoted ym := Eσ(M),τ [jT (m)] for each m = 1, ...,M + 1 and y
(n)
m :=

Eσ(m),τ [jn] for each m = 1, ...,M . As σ(M) is a sequence of pure moves, the expectation
Eσ(M),τ [jT (m)] is independent of k.

We set y = (y1, ..., yM+1) := y[τ ;x] ∈
(
∆(J)

)M+1. Define now the ε-uniform reply
strategy σ := σ[x; τ ] ∈ Σ to be: with probability λr to play the pure moves σ

(
M r(k)

)
in state k, that is, to play Top only on those stages T (1), ..., T

(
M r(k)

)
. We prove the

following

Claim 5.5.1. Epσ[x;τ ],τ [gn] ≥ φp
(
x, y[τ ;x]

)
− ε, ∀n ≥ N̄ .

Proof for Claim 5.5.1: We take expectation w.r.t. (λr) ∈ ∆(R) and p ∈ ∆(K), and
for each pair (r, k), we use the expression in Equation (5.5.3) for m = M r(k), to obtain:

Epσ[x;τ ],τ [gn] =
∑
r,k

pkλrEkσ(Mr(k)),τ [gn]

=
∑
r,k

pkλr
{Mr(k)∑

m′=1

∏
0≤s<m′

(
1− χk(ys)

)
χk(ym′)

〈
ak∗, ym′

〉
χk

}
+
∑
r,k

pkλr
{Mr(k)∏

s=0

(
1− χk(ys)

)〈
ak, y

(n)
Mr(k)

〉}
.

(5.5.4)
Let us look at the second part (non-absorbing) of the right hand side of Equation (5.5.4).
We re-arrange the terms indexed by (r, k) according to M r(k) = m, for m = 0, ...,M , to
obtain:

∑
r,k

pkλr
{Mr(k)∏

s=0

(
1− χk(ys)

)〈
ak, y

(n)
Mr(k)

〉}
=

∑
0≤m≤M

Mr(k)=m∑
(r,k)

pkλr
∏

0≤s≤m

(
1− χk(ys)

)〈
ak, y(n)

m

〉
.

(5.5.5)
Next for each m ∈ {0, ...,M} with

∑
(r,k): Mr(k)=m p

kλr > 0, we use the definition of
T (m+ 1) in (5.5.2) to obtain: for any hT (m) ∈ HT (m),

Mr(k)=m∑
(r,k)

pkλr
∏

0≤s≤m

(
1− χk(ys)

)〈
ak,Eσ(m),τ

[
jn|hT (m)

]〉

≥
Mr(k)=m∑

(r,k)
pkλr

∏
0≤s≤m

(
1− χk(ys)

)〈
ak,Eσ(m),τ

[
jT (m+1)|hT (m)

]〉
− ε

M + 1 ,
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thus in expectation over all histories, we have
Mr(k)=m∑

(r,k)
pkλr

∏
0≤s≤m

(
1− χk(ys)

)〈
ak,Eσ(m),τ

[
jn
]〉

≥
Mr(k)=m∑

(r,k)
pkλr

∏
0≤s≤m

(
1− χk(ys)

)〈
ak,Eσ(m),τ

[
jT (m+1)

]〉
− ε

M + 1

=
Mr(k)=m∑

(r,k)
pkλr

∏
0≤s≤m

(
1− χk(ys)

)〈
ak, ym+1

〉
− ε

M + 1 .

(5.5.6)

We substitute (5.5.6) back into the right hand side of (5.5.5), by summing over m =
0, ...,M , to obtain:

∑
r,k

pkλr
{Mr(k)∏

s=0

(
1− χk(ys)

)〈
ak, y

(n)
Mr(k)

〉}

≥
∑

0≤m≤M

{Mr(k)=m∑
(r,k)

pkλr
∏

0≤s≤m

(
1− χk(ys)

)〈
ak, ym+1

〉}
− ε

=
∑
r,k

pkλr
Mr(k)∏
s=0

(
1− χk(ys)

)〈
ak, yMr(k)+1

〉
− ε.

(5.5.7)

Finally, we put (5.5.7) into (5.5.4) and use the definition of φk(·, ·) to obtain:

Epσ[x;τ ],τ [gn] + ε

≥
∑
r,k

pkλr
{Mr(k)∑

m′=1

∏
0≤s<m′

(
1− χk(ys)

)
χk(ym′)

〈
ak∗, ym′

〉
χk

+
Mr(k)∏
s=0

(
1− χk(ys)

)〈
ak, yMr(k)+1

〉}

=
∑
r,k

pkλr
{
φk
(
M r(k), y

)}
=
∑
r

λr
{∑

k

pkφk
(
M r(k), y

)}
=
∑
r

λrφp
(
xr, y

)
= φp(x, y).

The proof of the claim is then complete. �

Take now x = (xr, λr) to be optimal, we obtain from Claim 5.5.1 that: ∀n ≥ N̄/ε,

γn
(
σ[x; τ ], τ

)
≥ uM (p)− (2C + 1)ε ≥ lim sup

m→∞
um(p)− (2C + 1)ε.

By our construction, σ is a mixed strategy. According to Kukn’s theorem, there exists
some behavior strategy which guarantees player 1 the same payoff. This proves that player
1 defends lim supM→∞ uM (p).

To conclude from the results in both Part I and Part II, we obtain that v̄(p) =
limM→∞ uM (p), thus the proof for Theorem 5.2.5 is achieved.

5.6 Appendix

5.6.1 Proof for Proposition 5.4.4

The proof for Part A of Proposition 5.4.4 is divided into two parts, Lemma 5.6.1
and Lemma 5.6.2.
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Lemma 5.6.1. lim infL→∞ ŵL(p) ≥ ŵ(p).

Proof for Lemma 5.6.1: Let µ = (µk) ∈ QK [0] be optimal to guarantee ŵ(p) in(
Ξ̂, A∗· (j)

)
. For each L ∈ N, define µ̂ := µ̂[µ;L] = (µ̂k) ∈ QK [L] as an atomic approxima-

tion of µ w.r.t. {`/L}, i.e. µ̂k(1) = µk
(
[0, 1/L]

)
and µ̂k(`) = µk

((
(` − 1)/L, `/L

])
for all

k ∈ K and ` = 2, ..., L. Consider now any of player 2’s strategy f̂ ∈ F [L]. We identified
f̂ with a function f := f [f̂ ;L] ∈ F [0] that is piece-wise constant on

(
(` − 1)/L, `/L

]
, i.e.

f(t) = f̂(`),∀t ∈
(
(`− 1)/L, `/L

]
.

Notation: Denote +((`−1)/L, `/L
]
for

(
(`−1)/L, `/L

]
when ` = 2, ..., L and for [0, 1/L]

when ` = 1. Let µ(·|[`]) be the conditional probability distribution of µ given "θ ∈
+((`− 1)/L, `L

]
" for ` = 1, ..., L, that is,

∀B ∈ B
(

+(`− 1
L

,
`

L

])
, µ

(
B|[`]

)
= µ(B)
µ
(

+( `−1
L , `/L

]) = µ(B)
µ̂(`) , for ` = 1, ..., L.

We write

ϕp(µ, f) =
∫ 1

0
µ(dt)

[〈
A∗p̄µ(t), f(t)

〉(
1− t

)
+
∫ t

0

〈
ap̄µ(t), f(s)

〉
ds

]

=
L∑
`=1

µ̂(`)
∫

+
(
`−1
L
, `
L

] [〈A∗p̄µ(t), f(t)
〉(

1− t
)

+
∫ t

0

〈
ap̄µ(t), f(s)

〉
ds

]
µ
(
dt
∣∣[`])

=
L∑
`=1

µ̂(`)
∫

+
(
`−1
L
, `
L

] [〈A∗p̄µ(t), f̂(`)
〉(

1− t
)

+
∫ t

0

〈
ap̄µ(t), f(s)

〉
ds

]
µ
(
dt
∣∣[`]),
(5.6.1)

and compare it with

L̂p(µ̂, f̂) =
L∑
`=1

µ̂(`)
[〈
A∗p̄µ̂(`), f̂(`)

〉(
1− `

L

)
+ 1
L

∑̀
`′=1

〈
ap̄µ̂(`), f̂(`′)

〉]
.

Conditional on "θ ∈ +((`− 1)/L, `/L
]
" for each ` = 1, ..., L, we have:

– for the non-absorbing part:

∫
+
(
`−1
L
, `
L

] [ ∫ t

0

〈
ap̄µ(t), f(s)

〉
ds

]
µ
(
dt
∣∣[`])

≤
∫

+
(
`−1
L
, `
L

] [ ∫ `−1
L

0

〈
ap̄µ(t), f(s)

〉
ds

]
µ
(
dt
∣∣[`])+ C/L

=
∫

+
(
`−1
L
, `
L

] [ `−1∑
`′=1

〈
ap̄µ(t), f̂(`′)

〉]
µ
(
dt
∣∣[`])+ C/L

=
`−1∑
`′=1

[ ∫
+
(
`−1
L
, `
L

] 〈ap̄µ(t), f̂(`′)
〉
µ
(
dt
∣∣[`])]+ C/L

=
`−1∑
`′=1

〈∫
+
(
`−1
L
, `
L

] ap̄µ(t)µ
(
dt
∣∣[`]), f̂(`′)

〉
+ C/L = 1

L

`−1∑
`′=1

〈
ap̄µ̂(`), f̂(`′)

〉
+ C/L,

(5.6.2)
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where the second equality uses "Fubini’s theorem" and the last equality relies on the
fact that ap̄µ(t) is linear in p̄µ(t) and t 7→ p̄µ(t) defines a posterior of p̄µ̂(`) conditional
on t ∈ +( `−1

L , `L
]
, i.e.,

∀k ∈ K,
∫

+
(
`−1
L
, `
L

] p̄kµ(t)µ
(
dt
∣∣[`]) =

∫
+
(
`−1
L
, `
L

] pkµk(dt)
µ(dt) · µ(dt)

µ̂(`) = p̄µ̂(`);

– for the absorbing part: ∫
+
(
`−1
L
, `
L

]A∗p̄µ(t)µ
(
dt
∣∣[`]) ≤ A∗p̄µ̂(`)

since A∗p̄µ(t) is concave in p̄µ(t) and
∫

+
(
`−1
L
, `
L

] p̄µ(t)µ
(
dt
∣∣[`]) = p̄µ̂(`). This implies

that∫
+
(
`−1
L
, `
L

] 〈A∗p̄µ(t), f̂(`)
〉(

1− t
)
µ
(
dt
∣∣[`]) ≤ (1− `

L

)〈 ∫
+
(
`−1
L
, `
L

]A∗p̄µ(t)µ
(
dt
∣∣[`]), f̂(`)

〉
+ C/L

≤
(
1− `

L

)〈
A∗p̄µ̂(`), f̂(`)

〉
+ C/L

(5.6.3)
We substitute (5.6.2) and (5.6.3) back into (5.6.1) to obtain:

ϕp(µ, f) ≤
L∑
`=1

µ̂(`)
[〈
A∗p̄µ̂(`), f̂(`)

〉(
1− `

L

)
+ 1
L

∑̀
`′=1

〈
ap̄µ̂(`), f̂(`′)

〉]
+ 3C/L

= L̂p(µ̂, f̂) + 3C/L.

Take now L ∈ N large with L ≥ 3C/ε and ŵL(p) ≤ lim infL→∞ ŵL(p) + ε, we obtain that
against any f̂ ∈ F [L]:

L̂p(µ̂, f̂) ≥ ŵ(p)− ε,

thus
lim inf
L→∞

ŵL(p) ≥ ŵL(p)− ε ≥ ŵ(p)− 2ε.

The proof for the lemma is then complete. �

Lemma 5.6.2. lim supL→∞ ŵL(p) ≤ ŵ(p).

Proof for Lemma 5.6.2 For fixed ε > 0, let f ∈ F ′[0] be an ε-optimal strategy in(
Ξ̂(p), A∗· (j)

)
. By the (uniform) continuity of f on [0, 1], we take L ∈ N large with∣∣f(t)− f(t′)

∣∣ ≤ ε, for all t, t′ ∈ [0, 1], |t− t′| ≤ 1/L.

Define f̂ := f̂ [f ;L] ∈ F [L] with f̂(`) = f( `L) for all ` = 1, ..., L. For any µ̂ ∈ QK [L], let us
identify it with an atomic measure µ := µ[µ̂;L] ∈ QK [0] satisfying µk({ `L}) = µ̂k(`),∀` =
1, ..., L, ∀k ∈ K.

We obtain that for any ` = 1, ..., L and t ∈
(
`−1
L , `L

]
,

ϕpt (µ, f) =
∑

1≤`′≤`−1
µ
({`′
L

})〈
A∗
p̄µ( `′

L
), f
(`′
L

)〉
+
(
1− µ

(`− 1
L

))〈
ap̃µ( `

L
), f
(
t
)〉

=
∑

1≤`′≤`−1
µ̂(`′)

〈
A∗p̄µ̂(`′), f̂

(
`′
)〉

+
(
1− µ̂

(
`− 1

))〈
ap̃µ̂(`), f

(
t
)〉
,
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which implies that

ϕp`
L

(µ, f) = L̂p` (µ̂, f̂) and
∣∣ϕp`

L

(µ, f)− ϕpt (µ, f)
∣∣ ≤ C∥∥f(t)− f(`/L)

∥∥
1 ≤ Cε.

Integrating over t ∈
(
`−1
L , `L

]
and summing over ` = 1, ..., L, one obtains

∣∣∣ϕp(µ, f)− L̂p(µ̂, f̂)
∣∣∣ ≤ L∑

`=1

∣∣∣ ∫(
`−1
L
, `
L

] ϕpt (µ, f)dt− 1
L
L̂p` (µ̂, f̂)

∣∣∣ ≤ Cε.
Thus, by the ε-optimality of f ,

L̂p(µ̂, f̂) ≤ ϕp(µ, f) + Cε ≤ ŵ(p) + (C + 1)ε.

Take further L large with ŵL(p) ≥ lim sup`→∞ ŵ`(p) − ε. As µ̂ ∈ QK [L] is arbitrary, we
obtain:

lim sup
`→∞

ŵ`(p) ≤ ŵL(p) + ε ≤ ŵ(p) + (C + 2)ε.

The proof for the lemma is then complete. �

Proof for PART B of Proposition 5.4.4: Let us prove by induction on m = 1, ...,M .
First, the claim is true for m = 1 since we have ŵL1 (p) = wL1 (p) for any L ∈ N. Suppose
now that for some m and for all p̄ ∈ ∆(K), the limit limL→∞w

L
m(p̄) exists and is equal to

ν̂m(p̄). We prove below that for any p ∈ ∆(K), limL→∞w
L
m+1(p) = ν̂m+1(p).

For any fixed ε > 0, we take L0 ∈ N such that

|w`m(p̄)− ν̂m(p̄)| ≤ ε, ∀` ≥ L0, ∀p̄ ∈ ∆(K).

Notice that here the existence of such L0 uniformly in ∆(K) is due to a compactness
argument: ν̂m(p) is C-Lip. on the compact simplex ∆(K).

Consider now m + 1 and p ∈ ∆(K). Denote by w̄m+1(p) any accumulation point of
the sequence

(
wLm+1(p)

)
. We take L ≥ L0/ε realizing both limits as follows:∣∣wLm+1(p)− w̄m+1(p)

∣∣ ≤ ε and
∣∣ŵLm+1(p)− ν̂m+1(p)

∣∣ ≤ ε (5.6.4)

Below (µ, f) takes value in QK [L] × F [L]. Let T ∈ {1, ..., L} is the random stage of
playing Top. For any (`, j) ∈ {1, ..., L} × J , p̄µ(`) is the posterior belief conditional on
"T = `"; p̄µ(`, j) is the posterior belief conditional on "T = `, jT = j, θ = T "; p̄µ(`, j) is
the posterior belief conditional on "T = `, jT = j, θ > T ".

As was proved in Part A, we can replace ŵm(·) by ν̂m(·) in the definition of ŵLm+1(p),
which yields

(
cf. (5.4.3)

)
:

ŵLm+1(p) =Val(µ,f)
1
L

L∑
`=1

µ(`)
{ ∑̀
`′=1

〈
ap̄µ(`), f(`′)

〉
+ (L− `)

∑
j

f(`)[j]
[
χp̄µ(`)(j)a∗p̂µ(`,j)(j) +

(
1− χp̄µ(`)(j)

)
ν̂m(p̄µ(`, j))

]}
.

(5.6.5)
Further, the following analog recursive equation is satisfied for wLm(·):

wLm+1(p) =Val(µ,f)
1
L

L∑
`=1

µ(`)
{ ∑̀
`′=1

〈
ap̄µ(`), f(`′)

〉
+ (L− `)

∑
j

f(`)[j]
[
χp̄µ(`)(j)a∗p̂µ(`,j)(j) +

(
1− χp̄µ(`)(j)

)
wL−`m (p̄µ(`, j))

]}
.

(5.6.6)
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Denote Lε := b(1− ε)Lc and consider the reduced game where (µ̂, f) ∈ QK [Lε]× F [L]:

wLεm+1(p) =Val(µ̂,f)
1
L

Lε∑
`=1

µ̂(`)
{ ∑̀
`′=1

〈
ap̄µ̂(`), f(`′)

〉
+ (L− `)

∑
j

f(`)[j]
[
χp̄µ̂(j)a∗p̂µ̂(`,j)(j) +

(
1− χp̄µ̂(j)

)
wL−`m (p̄µ̂(`, j))

]}
.

(5.6.7)
We can exchange the order of sum to re-write the payoffs in Equation (5.6.6) and Equation
(5.6.7) in the form of a average payoff of L stages. This implies that

wLm+1(p) ≥ wLεm+1(p) ≥ wLm+1(p)− 2Cε,

where the error term 2Cε is due to the average loss of not playing Top during the last ε
duration of the game.

Moreover, for any ` ≤ Lε: one has L− ` ≥ L0, thus∣∣wL−`m

(
p̄µ(`, j)

)
− ν̂m

(
p̄µ(`, j)

)∣∣ ≤ ε, ∀j ∈ J.
We replacing in Equation (5.6.7) the variable wL−`m (·) by ν̂m(·), we obtain from Equation
(5.6.5): ∣∣wLεm+1(p)− ŵLm+1(p)

∣∣ ≤ 2Cε, thus
∣∣wLm+1(p)− ŵLm+1(p)

∣∣ ≤ 4Cε.

Finally, we combine inequalities in (5.6.4) to obtain∣∣w̄m+1(p)− ν̂m+1(p)
∣∣ ≤ (4C + 2)ε.

This finishes the inductive proof for PART B: limL→∞w
L
m(p) = ν̂m(p),∀m, p ∈ ∆(K).

�

5.6.2 Proof for Proposition 5.4.10

Proposition 5.4.10 Assume that for each j ∈ J , the function A∗· (j) defined on ∆(K) is
concave and C-Lip. Then for any µ ∈ QK [0] that is optimal for player 1 in

(
Ξ̂(p), A∗· (j)

)
,

there exists some f ∈ F ′[0] such that

ϕpt (µ, f) = ŵ(p), ∀t ∈ [0, 1).

Proof for Proposition 5.4.10: Let µε ∈ QK [0] be a non-atomic ε-optimal strategy for
player 1 in Ξ̂(p). We consider an auxiliary game G(µε) where player 1 chooses at random
a point t in [0, 1] and player chooses a function f ∈ F ′[0]. The corresponding payoff is
ϕpt (µε, f). This game has a value νε. Indeed, the strategy set of player 1 (resp. player 2)
is convex, compact (resp. convex). Moreover, the mapping f 7→ ϕt(µε, f) is affine and the
mapping t 7→ ϕt(µε, f) is continuous. Obviously one has νε(p) ≥ ŵ(p)− ε, since player 1
can use the `(·) the Lebesgue measure to choose t and then the payoff is precisely ϕp(µε, f).

Below let us prove that νε ≤ ŵ. In fact, let b(·) be an optimal (compactness) strategy
of player 1 so that

∫ 1
0 ϕ

p
t (µε, f)b(dt) ≥ νε for all f ∈ F ′[0]. Replacing νε by νε − δ, we can

assume that b(t) = b([0, t]) is a strictly increasing continuous function from [0, 1] to itself
with b(0) = 0 and b(1) = 1. We now use b to re-scale time, namely, we define µ̃ε in QK [0]
and f̃ in F ′ by µ̃ε(b(t)) = µε(t) and f̃(b(t) = f(t). That is, µ̃ε = µ

ε
◦ b−1 and f̃ = f ◦ b−1.

We prove that
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Claim 5.6.3. ∫ 1

0
ϕpt (µε, f)b(dt) =

∫ 1

0
ϕpt (µ̃ε, f̃)`(dt).

Proof for Claim 5.6.3: By definition, µε is the image measure b−1]µ̃ε as b(·) is bijective.
It is sufficient for us to show that for all t ∈ [0, 1],

ϕpt (µ̃ε, f̃) = ϕp
b−1(t)(µε, f), (5.6.8)

and then use a change of variable "t = b−1(ω)" in the integration
∫ 1
0 ϕ

p
t (µε, f)b(dt) to

obtain the claim. The expression ϕpt (µ̃ε, f̃) defined by A∗· is :

ϕpt (µ̃ε, f̃) =
∫ t

0
〈A∗p̄µ̃ε (t′), f̃(t′)〉µ̃ε(dt′) +

(
1− µ̃ε(t)

)
〈ap̃µ̃ε (t), f̃(t)〉. (5.6.9)

By definition of p̄µ(·) and p̃µ(·), we obtain by the change of variable "t′ = b(ω′)" for all
t′ ∈ [0, t] and ω′ ∈ [0, ω]:

p̄kµ̃ε(t
′) = pkµ̃kε (dt′)∑

k∈K p
kµ̃kε(dt′)

= pkµkε(dω′)∑
k∈K p

kµkε(dω′)
= p̄kµε(ω

′)

and

p̃kµ̃ε(t) =
pk
(
1− µ̃kε (b(ω))

)
∑
k∈K p

k
(
1− µ̃kε (b(ω))

) =
pk
(
1− µkε(ω)

)
∑
k∈K p

k
(
1− µkε(ω)

) = p̄kµε(ω)

for all k ∈ K. Finally, we use the change of variable "t′ = b(ω′)" for all t′ ∈ [0, t] and
ω′ ∈ [0, ω] in the integration (5.6.9) to obtain:

ϕpt (µ̃ε, f̃) =
∫ t

0
〈A∗p̄µ̃ε (t′), f̃(t′)〉µ̃ε(dt′) +

(
1− µ̃ε(t)

)
〈ap̃µ̃ε (t), f̃(t)〉

=
∫ ω

0
〈A∗p̄µε (ω′), f(ω′)〉µε(dω′) +

(
1− µ

ε
(ω)
)
〈ap̃µε (ω), f(ω)〉

= ϕpω(µε, f)
= ϕp

b−1(t)(µε, f),

which proves (5.6.8). �

Since b(·) defines a one-to-one mapping on F ′[0], following Claim 5.6.3, we have:
ϕ(µ̃ε, f̃) ≥ νε(p) − δ for all f ∈ F ′[0]. This implies that the measure µ̃ε = µ̃ε ◦ b−1

guarantees νε(p)−δ in Ξ̂(p), thus νε(p)−δ ≤ ŵ(p). Since δ > 0 is arbitrary, the inequality
νε(p) ≤ ŵ(p) is obtained and we have ŵ(p)− ε ≤ νε(p) = ŵ(p) for all ε > 0.

Consider now for each ε = 1/n, denote µn = µε, and let (µn) converges weakly to
µ: ϕpt (µn, f ′)

n→∞−−−→ ϕpt (µ, f ′) for any f ′ ∈ F ′[0] and t ∈ [0, 1]. For each n ≥ 1, let now
fn ∈ F ′[0] be the 1

n -optimal strategy of player 2 in the auxiliary game G(µn): in particular
against any of player 1’s strategy playing the Dirac mass, ϕpt (µn, fn) ≤ ν1/n + 1/n ≤
ŵ+ 1/n for all t ∈ [0, 1). Finally, let f ∈ F [0] be an accumulation point of (fn) satisfying
ϕt(µ, fn) n→∞−−−→ ϕt(µ, f) for all t ∈ [0, 1). This implies that for all t ∈ [0, 1), on can take n
large such that:

ϕt(µ, f) ≤ ϕt(µ, fn) + 1/n ≤ ϕt(µn, fn) + 2/n ≤ ŵ(p) + 2/n
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thus ϕt(µ, f) ≤ ŵ(p), ∀t ∈ [0, 1]. Since µ is optimal in Ξ̂(p), this implies that ϕt(µ, f) =
ŵ(p) for all t ∈ [0, 1]. �
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Chapter 6

Jeux récursifs: valeur uniforme,
théorème Taubérian et la
conjecture de Mertens

Résumé Nous étudions les jeux récursifs à somme nulle avec un espace d’état dénom-
brable. Lorsque la famille des fonctions valeur à n étapes {vn, n ≥ 1} est totalement bornée
pour la norme uniforme, nous prouvons l’existence de la valeur uniforme. En particulier,
la convergence uniforme de (vn) implique la convergence uniforme de la suite (vλ) des fonc-
tions valeur escompté. À l’aide d’un résultat dans Rosenberg et Vieille [52], nous obtenons
un théorème taubérien uniforme pour les jeux récursifs: (vn) converge uniformément si et
seulement si (vλ) converge uniformément.

Nous appliquons notre résultat principal à une sous-classe du modèle général des jeux
répétés avec un espace d’état fini, des ensembles d’actions finis et des ensembles de sig-
naux finis. Ce sont des jeux récursifs avec signaux (où les joueurs n’observent que les
signaux sur l’état et sur les actions jouées) et le maximiseur est toujours plus informé que
le minimiseur. Nous prouvons pour cette classe de jeux répétés la conjecture de Mertens:
"Maxmin = limn→∞ vn = limλ→0 vλ". Enfin, on en déduit l’existence de la valeur uni-
forme dans les jeux récursifs finis avec signaux symétriques.

Mots-clés Jeux stochastiques, jeux récursifs, valeur asymptotique, valeur uniforme,
théorème taubérien, Maxmin

Ce chapitre est issu de l’article Recursive games: uniform value, Tauberian theorem and
Merten’s conjecture, en collaboration avec Xavier Venel, et il est accepté pour publication
dans la revue International Journal of Game Theory (spacial issue in honor of Abraham
Neyman).



Chapter 6. Jeux récursifs: valeur uniforme, théorème Taubérian et la
conjecture de Mertens

Recursive games: Uniform value,
Tauberian theorem and Merten’s

conjecture

joint with Xavier Venel (Paris-Sorbonne)

To appear in International Journal of Game Theory

Abstract We study two-player zero-sum recursive games with a countable state space and
finite action space at each state. When the family of n-stage values {vn, n ≥ 1} is totally
bounded for the uniform norm, we prove the existence of the uniform value. Together
with a result in Rosenberg and Vieille [52], we obtain a uniform Tauberian theorem for
recursive game: (vn) converges uniformly if and only if (vλ) converges uniformly.

We apply our main result to finite recursive games with signals (where players observe
only signals on the state and on past actions). When the maximizer is more informed
than the minimizer, we prove the Mertens conjectureMaxmin = limn→∞ vn = limλ→0 vλ.
Finally, we deduce the existence of the uniform value in finite recursive game with sym-
metric information.

Keywords Stochastic games, recursive games, asymptotic value, uniform value, Taube-
rian theorem, Maxmin

6.1 Introduction
Stochastic games were introduced by Shapley [53] to model a multiplayer dynamic

interaction, where players’ collective decisions influence the current payoff and also the
future state. In this article, we focus on two-player zero-sum recursive games introduced
by Everett [18]. The specificity of a recursive game is that the state space is divided into
two sets: absorbing states and active states. On absorbing states, the process is absorbed
and the payoff is fixed. On active (non-absorbing) states, the payoff is always equal to 0.

There are several ways to evaluate the payoff stream in a zero-sum stochastic game.
Given a positive integer n, the n-stage payoff is the expected average payoff during the first
n stages. Given λ ∈ (0, 1], the λ-discounted payoff is the Abel mean of the infinite stage
payoffs with a weight λ(1−λ)t−1 for stage t. We will focus on the concept of uniform value.
A stochastic game admits a uniform value if both players can approximately guarantee
the same payoff level in all sufficiently long n-stage games without knowing a priori the
length of the game.

Mertens and Neyman [34] proved that a stochastic game with a finite state space and
finite set of actions where the players observe the current state and the stage payoffs
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admits a uniform value. Their proof uses the fact that the function λ 7→ vλ has bounded
variation, where vλ is the λ-discounted value (Bewley and Kohlberg [10]). For stochastic
games with an infinite state space, this argument in general does not apply.

Markovian decision processes (henceforth MDP) are stochastic games with only one
player. Lehrer and Sorin [28] showed that in a MDP, the uniform convergence of (vλ)
(w.r.t. the initial state) as λ tends to zero is equivalent to the uniform convergence of the
n-stage values (vn) as n tends to infinity. Nevertheless, uniform convergence of (vn) or
(vλ) is not sufficient for the existence of the uniform value (cf. Monderer and Sorin [38]
or Lehrer and Monderer [27]).

For recursive games, the situation seems to be different. There are two results giving
sufficient conditions for a recursive game with countable state space to have a uniform
value. The first one can be derived from Rosenberg and Vieille [52]: if (vλ) converges
uniformly to some function v, then the recursive game has a uniform value, which is equal
to v. The second one is due to Solan and Vieille [54]: if, except on a finite subset, the
limsup value 1 is above a strictly positive constant on the non-absorbing states, then the
recursive game has a uniform value, which is equal to the limsup value.

The main result of this paper is that the uniform convergence of the n-stage values is a
sufficient condition for the existence of the uniform value. In fact we prove a stronger
result: for any recursive game with countable state space, if the family {vn, n ≥ 1} is
totally bounded for the uniform norm, then the uniform value exists. Our proof follows
the same idea as Solan and Vieille [54] and we will use several of their results.

Our result together with the result of Rosenberg and Vieille [52] provides a uniform
Tauberian theorem for recursive games: (vn) converges uniformly if and only if (vλ) con-
verges uniformly, and in case of convergence, both limits are the same. For general stochas-
tic games, Ziliotto [70] provided recently a direct proof of this result.

Finally, we apply our main result to finite recursive games with signals. In a recursive
game with signals, players do not perfectly observe the state and actions at every stage
anymore, rather they receive a private signal. Mertens [33] conjectured that in a general
model of zero-sum repeated games, if player 1 (the maximizer) is always more informed
than player 2 (the minimizer) during the play (in the sense that player 2’s private signal
can be deduced from player 1’s private signal) then Maxmin = limn→∞ vn = limλ→0 vλ,
i.e., the uniform maxmin and the asymptotic value both exist and are equal.

Ziliotto [68] showed that the result is false in general. Nevertheless, several positive
results have been obtained for subclasses of games including Sorin [55] and Sorin [57] for
Big match with one-sided incomplete information, Rosenberg et al. [50], Renault [45] and
Gensbittel et al. [21] for a more informed controller, and Rosenberg and Vieille [52] for
recursive games with one-sided incomplete information.

We prove the Mertens conjecture in finite recursive games with signals, where player 1
is always more informed than player 2 during the play. The proof uses several results from
Gensbittel et al. [21], concerning the n-stage value functions in a repeated game where
player 1 is more informed than player 2. Our result generalizes Rosenberg and Vieille [52],
which deals with the model where player 1 is informed of a private signal on the state at
the beginning of the game. Moreover, we deduce the existence of the uniform value in
finite recursive games with symmetric information.

The organization of the article is as follows: in Section 6.2 we introduce the model of
recursive games; in Section 6.3 we present the main result and several corollaries; Section

1. The limsup value is the value of the game in which the global payoff to player 1 is the limsup of the
stage payoff stream.
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6.4 is dedicated to the proofs; finally in Section 6.5 we apply the result to finite recursive
games with signals.

6.2 Preliminaries: model and notations
Notation Given any metric space S, endowed with the Borelian σ-algebra, we denote by
∆(S) the set of probabilities on S and we denote by ∆f (S) the set of probabilities with
finite support.

6.2.1 The model

A two-player zero sum stochastic game Γ = 〈X,A,B, g, q〉 is given by
– a state space X.
– player 1’s action set A, and for any x ∈ X, A(x) is a finite subset of A.
– player 2’s action set B, and for any x ∈ X, B(x) is a finite subset of B.
– a payoff function: g : X ×A×B → [−1,+1].
– a transition probability function: q: X ×A×B → ∆f (X).

Play of the game The stochastic game with initial state x1 ∈ X is denoted by Γ(x1),
and is played as follows: at each stage t ≥ 1, after observing (x1, a1, b1, ... ..., at−1, bt−1, xt),
player 1 and player 2 choose simultaneously actions at ∈ A(xt) and bt ∈ B(xt). The stage
payoff is g(xt, at, bt) and a new state xt+1 is drawn according to the probability distri-
bution q(xt, at, bt). Both players observe the action pair (at, bt) and the state xt+1. The
game then proceeds to stage t+ 1.

Note that we did not make any measurability assumption on the model. As the transition
probability distribution is supposed to be finitely supported, given an initial state, the
set of actions and states that might appear in the infinite game are in fact countable.
Therefore probability distributions are well defined.

Recursive game Γ is a recursive game if there exist a set of active states denoted by
X0 and a set of absorbing states denoted by X∗ with X0 ∪ X∗ = X and X0 ∩ X∗ = ∅,
such that:

– the stage payoff is 0 on active states: ∀x ∈ X0, g(x, a, b) = 0,∀(a, b) ∈ A(x)×B(x);
– states in X∗ are absorbing: ∀x ∈ X∗, q(x, a, b)(x) = 1, ∀(a, b) ∈ A(x) × B(x), and
g(x, a, b) depends only on x.

6.2.2 Definition of strategies and evaluations

History At stage t, the space of finite histories is Ht = (X × A × B)t−1 × X. Set
H∞ = (X × A × B)∞ to be the space of infinite plays. We consider the discrete topol-
ogy on X, A and B. For every t ≥ 1, we identify any ht ∈ Ht with a cylinder set in
H∞ and denote by Ht the σ-field of Ht induced on H∞. The product σ-field on H∞ is
H∞ = σ(Ht, t ≥ 1).

Strategy A (behavior) strategy for player 1 is a sequence of functions σ = (σt)t≥1 with
each t ≥ 1, σt : (Ht,Ht) → ∆(A) such that for every ht ∈ Ht, σt(ht)(A(xt)) = 1. If
for every t ≥ 1 and ht ∈ Ht, there exists a ∈ A(xt) such that σt(ht)[a] = 1, then the
strategy is pure. We define similarly a behavior strategy τ for player 2. Denote by Σ and
T respectively player 1’s and player 2’s sets of behavior strategies. Denote by Σ̂ and T̂
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respectively player 1’s and player 2’s subsets of strategies that depend on the histories
only through the states but not on the actions.

Evaluations Let us describe several ways to evaluate the payoff in Γ. By Kolmogorov’s
extension theorem, any triple (x1, σ, τ) ∈ X × Σ× T induces a unique probability distri-
bution over (H∞,H∞) denoted by Px1,σ,τ . Let Ex1,σ,τ be the corresponding expectation.

n-stage average For each positive n ≥ 1, the expected average payoff up to stage n,
induced by the couple of strategies (σ, τ) and the initial state x1 is given by

γn(x1, σ, τ) = Ex1,σ,τ

(
1
n

n∑
t=1

g(xt, at, bt)
)
.

The game with expected n-stage average payoff and initial state x1 is denoted as Γn(x1).

λ-discounted average For each λ ∈ (0, 1], the expected λ-discounted average payoff, in-
duced by the couple of strategies (σ, τ) and the initial state x1 is given by

γλ(x1, σ, τ) = Ex1,σ,τ

(
λ
∞∑
t=1

(1− λ)(t−1)g(xt, at, bt)
)
.

The game with expected λ-discounted average payoff and initial state x1 is denoted as
Γλ(x1).

In either Γn(x1) or Γλ(x1), player 1 maximizes the expected average payoff and player 2
minimizes it. For a fixed x1 the game Γn(x1) is finite, so there exists a value vn(x1) by
minmax theorem. The existence of the discounted value vλ(x1) is also standard, and we
refer to Mertens et al. [35] (Section VII.1.) for a general presentation.

6.2.3 Stopping time and concatenation of strategies

A function θ : (H∞,H∞)→ N is called a stopping time if the set {h ∈ H∞|θ(h) = t} is
Ht-measurable for all t ≥ 1. Explicitly for any h, h′ ∈ H∞ and n ≥ 1: if h and h′ coincide
until stage n and θ(h) = n then θ(h′) = n. Let θ and θ′ be two stopping times, we write
θ ≤ θ′ if for every h ∈ H∞, θ(h) ≤ θ′(h).

Given a sequence of strategies (σ[`])`≥1 and a sequence of increasing stopping time
(θ`)`≥1, we define σ∗ := σ[1]θ1σ

[2]θ2 · ·· as the concatenation of (σ[`])`≥1 along (θ`)`≥1.
Given n ≥ t ≥ 1 and h ∈ H∞, let hn be the projection of h on Hn and htn be the history
of h between stage t and n. The strategy σ∗ is defined by σ∗n

(
hn
)

= σ
[1]
n (hn) if n < θ1(h);

σ∗n(hn) = σ
[m]
n−θm−1

(hθm−1
n ) if θm−1 ≤ n < θm. Informally, for every ` ≥ 1 at stage θ`, the

player forgets the past and starts to play σ`+1 at the current state.

6.2.4 Uniform value

Uniformly guarantee Player 1 uniformly guarantees w if for every ε > 0, there exists
σε in Σ and N0 ≥ 1 such that for every x1 ∈ X0,

γn(x1, σε, τ) ≥ w(x1)− ε, ∀n ≥ N0, ∀τ ∈ T .

We say that the strategy σε uniformly guarantees w − ε. Similarly, player 2 uniformly
guarantees w if for every ε > 0, there exists τε in T and N0 ≥ 1 such that for every
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x1 ∈ X0,

γn(x1, σ, τε) ≤ w(x1) + ε, ∀n ≥ N0, ∀σ ∈ Σ.

Uniform value v∞ : X → R is the uniform value of the game Γ if both players uniformly
guarantee v∞. A strategy for player 1 (resp. player 2) that uniformly guarantees v∞ − ε
(resp. v∞ + ε) is called uniform ε-optimal. If both players can uniformly guarantee v∞
with pure strategies, Γ has a uniform value in pure strategies.

Remark 6.2.1. In defining the uniform value, we ask N0 to be independent of the initial
state x1. One direct consequence of the existence of the uniform value v∞ is the uniform
convergence of (vn)n≥1 to v∞. This is stronger than the definition where the existence
of the uniform value is considered state by state (see for example Solan and Vieille [54],
Definitions 3-4)

6.3 Main results
In this section, we present the main result of the paper, namely Theorem 6.3.1, as well

as several corollaries. We also provide an example that does not satisfy the condition of
Theorem 6.3.1 and does not have a uniform value.

6.3.1 Sufficient condition for the existence of the uniform value

Denote by B(X) the set of functions from X to [−1, 1] with the uniform norm ‖ · ‖∞.
Recall that a set of functions F in (B(X), ‖.‖∞) is totally bounded if for every ε > 0, there
exists a finite subset FR = {fr : 1 ≤ r ≤ R} ⊆ F such that for any f ∈ F , there is fr ∈ FR
with ||f − fr||∞ ≤ ε.

Theorem 6.3.1. Suppose that the space {vn, n ≥ 1} is totally bounded for the uniform
norm, then the recursive game Γ has a uniform value v∞. Moreover both players can
uniformly guarantee v∞ with strategies that depend only on the history of states and not
on past actions.

We deduce from the previous result a uniform Tauberian theorem in recursive games.

Corollary 6.3.2. The sequence of n-stage values (vn)n≥1 converges uniformly as n tends
to infinity if and only if the sequence of λ-discounted values (vλ)λ∈(0,1] converges uniformly
as λ tends to zero. In case of convergence, both limits are the same.

On one hand, if (vn) converges uniformly, the family is totally bounded, thus the
uniform value exists, and this implies the uniform convergence of (vλ) (Sorin [59], Lemma
3.1). On the other hand, the converse result is established in Rosenberg and Vieille [52]
(see Remark 6, Theorem 1 and Theorem 3).

Remark 6.3.3. The equivalence of the uniform convergences of (vn)n≥1 and (vλ)λ∈(0,1]
has been proven in MDP by Lehrer and Sorin [28]. Ziliotto [70] recently showed that it is
also true for stochastic games whenever the Shapley operator is well defined.

If, in addition, for every n ≥ 1 the n-stage value vn(x) exists in pure strategies, then
Γ has a uniform value in pure strategies.

Corollary 6.3.4. Suppose that for every n ≥ 1, both players have pure optimal strategies
in the n-stage game, and {vn, n ≥ 1} is totally bounded for the uniform norm. Then Γ has
a uniform value v∞ in pure strategies. Moreover, both players can uniformly guarantee
v∞ with strategies that depend only on the history of states and not on past actions.
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Remark 6.3.5. The result in Corollary 6.3.4 extends to games with general action sets
A(x) and B(x) provided that for any n ≥ 1, the n-stage game has a value and both players
have pure optimal strategies.

The proof of Corollary 6.3.4 is similar to that of Theorem 6.3.1. The key difference
involves a technical lemma (Lemma 6.4.18) for the existence of a (pure) stopping time
which is used in the definition of players’ optimal strategies (see the proof of Proposition
6.4.3). We discuss this point and present the proof in Subsection 6.4.3.

6.3.2 A recursive game without uniform value

We present here an example of a recursive game with countable state space where
{vn, n ≥ 1} is not totally bounded and there is no uniform value (See Figure 3 below for
illustration). This is an adaptation to our framework of an example in Lehrer and Sorin
[28].

The state space is a subset of Z × Z. The set of active states is X0 = {(x, y) ∈
N× N |0 ≤ y ≤ x} and the set of absorbing states is X∗ = X∗1

⋃
X∗−2 (two types), where

X∗1 = N × {−1} and X∗−2 = {(x, x + 1)|x ≥ 0}. The payoff is 1 on X∗1 and is −2 on
X∗−2. There is only one player (maximizer), whose action set is {R(ight), J(ump)}. The
transition rule is given by:

– at (x, 0) ∈ X0: q
(
(x, 0), R

)
(x+1, 0) = 1, and q

(
(x, 0), J

)
(x,−1) = q

(
(x, 0), J

)
(x, 1) =

1
2 ;

– at (x, y) ∈ X0 with 0 < y ≤ x: q
(
(x, y), a

)
(x, y + 1) = 1, ∀a ∈ {R, J}.

Starting at (0, 0), one optimal strategy for an n-stage game is to go Right for half
of the game, and then to Jump. This gives an expected average payoff around 1

4 , thus
limn→∞ vn(0, 0) = 1

4 . In a λ-discounted game, the optimal stage to Jump is approxi-
mately ln( 2−λ

4 )
ln(1−λ) . It follows that vλ(0, 0) ≈ 2−λ

16 and thus limλ→0 vλ(0, 0) = 1
8 . This implies

that there is no uniform value. On the other hand, {vn, n ≥ 1} is not totally bounded
for the uniform norm. Indeed, the convergence of (vn) is not uniform: for any x ≥ 1,
limn→∞ vn(x, 1) = −2 while vx(x, 1) = 0.

(0, 0)

(n, n+ 1)

(n,−1)

x

y

X∗1

X∗−2

(n, 0)

(n, n)

The figure on the left illustrates
a play (R, ..., R, J) jumping after
n steps: with probability 1/2 the
state is absorbed at (n, n + 1) ∈
X∗−2; with probability 1/2 the state
is absorbed at (n,−1) ∈ X∗1 .

−→ : a deterministic transition;
− 99K: a probabilistic transition.

Figure 3
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6.4 Proofs
In the first subsection, we introduce and establish preliminary results for a subclass

of recursive game, which will be called positive-valued recursive games. In the second
subsection, we prove Theorem 6.3.1 by a reduction of any recursive game to a positive-
valued recursive game. The proof for Corollary 6.3.4 is given in the third subsection.

6.4.1 The case of positive-valued recursive game

Definition 6.4.1. A recursive game is positive-valued if there exist M > 0 and n0 ≥ 1
such that for every non-absorbing state x ∈ X0, there exists n(x) ≤ n0 such that vn(x)(x) ≥
M .

In order to state the next proposition, we first introduce the notion of uniformly
terminating strategy.

Definition 6.4.2. Denote by ρ the stopping time of absorption in X∗: ρ = inf{n ≥
1, xn ∈ X∗}. The strategy σ is said to be uniformly terminating if for any ε > 0, there
exists N ≥ 1 such that for every x1 ∈ X0 and for every τ ∈ T , Px1,σ,τ (ρ ≤ N) ≥ 1− ε.

Proposition 6.4.3. Let Γ be a positive-valued recursive game. We fix the numbers
M > 0, n0 ≥ 1 and the mapping n(·) : X0 −→ {1, ..., n0} such that vn(x)(x) ≥M, ∀x ∈ X0.
Then player 1 uniformly guarantees vn(·)(·) with uniformly terminating strategies that de-
pends only on states: for all ε > 0, there exists σ∗ in Σ̂ and N0 ≥ 1 such that for every
x1 ∈ X0 and every τ in T ,

(i) Px1,σ∗,τ (ρ ≤ N0) ≥ 1− ε and (ii) γn(x1, σ
∗, τ) ≥ vn(x1)(x1)− ε, ∀n ≥ N0.

Proof. Let σ̂ be a profile of strategies such that for every x ∈ X0, σ̂(x) is optimal in
the n(x)-stage game Γn(x)(x). Let k̃ := k̃(x) be a random stage uniformly chosen in
{1, ..., n(x)}. For any τ ∈ T and x ∈ X0, (x, σ̂, τ) and k̃ induce a probability distribu-
tion over H∞ × {1, ...n(x)}, which we denote by P̃x,σ̂,τ . Let Ẽx,σ̂,τ be the corresponding
expectation. We obtain:

Ẽx,σ̂,τ [g(xk̃)] = Ex,σ̂,τ
[ 1
n(x)

n(x)∑
l=1

g(xt)
]
≥ inf

τ ′
Ex,σ̂,τ ′

[ 1
n(x)

n(x)∑
l=1

g(xt)
]
≥ vn(x)(x) ≥M.

It follows that
Ẽx,σ̂,τ

[
g(xk̃)1ρ≤k̃ + g(xk̃)1ρ>k̃

]
≥M.

On the event {ρ > k̃}, g(xk̃) = 0, whereas on the event {ρ ≤ k̃}, we have g(xk̃) = g(xρ).
This implies that

P̃x,σ̂,τ (ρ ≤ k̃)Ẽx,σ̂,τ
[
g(xρ) | ρ ≤ k̃

]
= Ẽx,σ̂,τ

[
g
(
xk̃
)]
≥ vn(x)(x) ≥M. (6.4.1)

Using the fact that the payoff function g has maximal norm 1, we deduce from (6.4.1):

P̃x,σ̂,τ (ρ ≤ k̃) ≥M. (6.4.2)

Define the strategy 2 σ∗ as concatenations of (σ̂(xul))l≥0 at the random stages (u`)`≥0,
where u` is defined inductively along the play by u0 = 1 and u`+1 − u` = k̃(xu`) fol-
lows the uniform distribution over {1, ..., n(x`)}. Let P̃x,σ∗,τ be the (product) probability

2. The strategy σ∗ is a generalized mixed strategy, which is equivalent to a behavior strategy by Kuhn’s
theorem.
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distribution over H∞ × {1, ..., n0}N induced by (x, σ∗, τ), and Ẽx,σ∗,τ the corresponding
expectation. Let ε > 0.
(i) We show that σ∗ is uniformly terminating. By (6.4.2), the conditional probability
of absorbing on each block {ul−1, ..., ul − 1} is no smaller than M . Thus for any τ and
x1 ∈ X0,

P̃x1,σ∗,τ (ρ ≥ ul) ≤ (1−M)l, ∀l ≥ 1.

The length of each block is uniformly bounded by n0, thus if we put l∗ ≥ ln(ε)
ln(1−M) :

P̃x1,σ∗,τ (ρ ≤ n0l
∗) ≥ P̃x1,σ∗,τ (ρ ≤ ul∗) ≥ 1− (1−M)l∗ ≥ 1− ε. (6.4.3)

(ii) We now argue that σ∗ uniformly guarantees vn(x1)(x1) − 3ε. Let N0 = n0l
∗/ε. For

any τ ∈ T , x1 ∈ X0 and n ≥ n0l
∗, we have

Ex1,σ∗,τ [g (xn)] = Ẽx1,σ∗,τ

[
`∗−1∑
l=0

g(xn)1ul≤ρ<ul+1 + g(xn)1u`∗≤ρ

]

=
`∗−1∑
l=0

P̃x1,σ∗,τ (ul ≤ ρ < ul+1)Ẽx1,σ∗,τ [g(xρ)|ul ≤ ρ < ul+1]

+ P̃x1,σ∗,τ (ul∗ ≤ ρ)Ẽx1,σ∗,τ [g(xn)|ρ ≥ ul∗ ] .

According to (6.4.3), Px1,σ∗,τ (ρ ≥ ul∗) ≤ ε, thus we focus on an absorption before u`∗ :

Ex1,σ∗,τ [g(xn)] ≥
l∗−1∑
l=0

P̃x1,σ∗,τ (ul ≤ ρ < ul+1)Ẽx1,σ∗,τ [g(xρ)|ul ≤ ρ < ul+1]− ε (6.4.4)

For each l ≥ 0, σ∗ is following σ̂(xul) for ul+1 − ul = k̃(xu`) stages. Thus (6.4.1) applies,
and we obtain: for ` ≥ 1,

P̃x1,σ∗,τ (ul ≤ ρ < ul+1)Ẽx1,σ∗,τ [g(xρ)|ul ≤ ρ < ul+1] ≥ P̃x1,σ∗,τ (ρ > u`)M > 0,

and for l = 0,

P̃x1,σ∗,τ (1 ≤ ρ < u1)Ẽx1,σ∗,τ [g(xρ)|1 ≤ ρ < u1] ≥ vn(x1)(x1).

By substituting the two previous inequalities into (6.4.4), we obtain that

∀n ≥ n0l
∗, ∀x1 ∈ X0, Ex1,σ∗,τ [g(xn)] ≥ vn(x1)(x1)− ε. (6.4.5)

Now for n ≥ N0, we deduce that γn(x1, σ
∗, τ) ≥ vn(x1)(x1)− 3ε.

One can deduce from Proposition 6.4.3 a first result on recursive games with the
condition that the sequence of n-stage values converges uniformly to a function bounded
away from 0.

Corollary 6.4.4. Assume that in a recursive game Γ, the sequence of n-stage values
(vn)n≥1 converges uniformly to a function v satisfying for every x ∈ X0, v(x) ≥ M ′ > 0
for someM ′. Then Γ is positive-valued and player 1 uniformly guarantees v with uniformly
terminating strategies.
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6.4.2 Existence of the uniform value (proof of Theorem 6.3.1)

This subsection is devoted to the proof of Theorem 6.3.1: the total boundedness of
{vn, n ≥ 1} implies the existence of the uniform value v∞. We prove that player 1 guaran-
tees the point-wise limit superior value x 7→ v(x) := lim supn vn(x). By symmetry, player
2 guarantees lim infn vn(x), and the result follows.

The uniform ε-optimal strategy will use alternatively two different types of strategies.
This approach is classical for recursive games and has been used for example in Rosenberg
and Vieille [52] and in Solan and Vieille [54]. Our construction is close to Solan and
Vieille [54] in which some similar "positive-valued recursive game" is introduced to make
a reduction for the general case.

The proof is decomposed into three parts. In the first one, we introduce a family of
auxiliary positive-valued recursive games and define the first type of strategies. In the
second part, we define the second type of strategies. Finally, we construct the strategy σ∗
and prove that it is uniform ε-optimal.

Before proceeding to the proof, let us first prove a preliminary result, which shows
that due to the total boundedness of {vn}, the point-wise limit superior of (vn) can be
realized along uniform convergent subsequences. We fix a recursive game Γ for the rest of
this section.

Proposition 6.4.5. For every x ∈ X, we have

v(x) = lim sup
n

vn(x) = max
f∈F

f(x),

where F is the set of limit points of the sequence (vn)n≥1 in (B(X), ‖.‖∞).

Proof. (B(X), ‖.‖∞) is a complete metric space and ({vn}, ‖ · ‖∞) is totally bounded,
therefore F is compact and non-empty. For every x ∈ X, we denote w(x) := maxf∈F f(x).
Fix x ∈ X. Since v(x) is the largest limit point of (vn(x))n≥1, we have w(x) ≤ v(x). By
definition of the limit superior, there exists a subsequence (vnk(x))k≥1 which converges to
lim sup vn(x). There exists a subsequence of (vnk)k≥1 that converges in (B(X), ‖.‖∞) to
some f∗ ∈ F , therefore

max
f∈F

f(x) ≥ f∗(x) = v(x).

A) Reduction: auxiliary recursive games

Auxiliary recursive games Let θ : X → {0, 1}. We define the auxiliary recursive
game Γθ = 〈A,B,X = X0

θ

⋃
X∗θ , qθ, gθ〉 where any active state x ∈ X0 such that θ(x) = 1

is seen as an absorbing state: the active state space of Γθ is X0
θ = {x ∈ X0, θ(x) = 0} and

the absorbing state space is X∗θ = X∗
⋃
{x ∈ X0, θ(x) = 1}. The transition qθ is equal to

q and the payoff gθ is equal to g on all states except {x ∈ X0, θ(x) = 1}, on which the
state is absorbing and the absorbing payoff is gθ = v. For every n ≥ 1, let vθn be the value
of the n-stage auxiliary game Γθn.

Proposition 6.4.6. Let η > 0 and θ : X → {0, 1}. There exists n0 ≥ 1 such that for
every x1 ∈ X0

θ , there exists n(x1) ≤ n0 with vθn(x1)(x1) ≥ v(x1)− 4η.
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Proof. Let η > 0 be fixed and FR = {f1, ..., fR} ⊆ F be a finite cover of size η
2 of the set

F . As {vn, n ≥ 1} is totally bounded, there exists some stage n(η) ∈ N, after which any
n-stage value vn is η

2 -close to F its set of accumulation points, hence η-close to FR:

∃n(η) ∈ N, ∀n ≥ n(η), ∃fr ∈ {f1, ..., fR}, s.t. ||vn − fr||∞ ≤ η; (6.4.6)

Moreover for every r ∈ {1, .., R}, fr is an accumulation point of {vn, n ≥ 1}, therefore
there exists some nr > n(η)

η such that vnr is η-close to fr:

∀fr ∈ FR, ∃nr >
n(η)
η

, s.t. ||vnr − fr||∞ ≤ η. (6.4.7)

Finally we take n0 = max{nr : 1 ≤ r ≤ R}. The integers nr are chosen such that when
absorption in X∗θ occurs in the game of length nr the remaining number of stages is either a
fraction smaller than η of the total length of the game or greater than n(η) and Equations
(6.4.6) applies.

Let x1 ∈ X0
θ be any non-absorbing state in the auxiliary game Γθ. By compactness

of F , there exists f ∈ F such that f(x1) = v(x1) and fr ∈ FR with ||f − fr||∞ ≤ η
2 . In

particular at state x1,
fr(x1) ≥ f(x1)− η

2 = v(x1)− η

2 ,

which together with (6.4.7) implies that

vnr(x1) ≥ fr(x1)− η ≥ v(x1)− 3
2η. (6.4.8)

We now prove that
vθnr(x1) ≥ vnr(x1)− 2η. (6.4.9)

Denote by
ρθ = inf

t≥1
{xt ∈ X∗θ } = inf

t≥1
{xt ∈ X∗ or θ(xt) = 1}

the stopping time associated to absorption in Γθ, and set ρnrθ = min(ρθ, nr). An adaptation
of standard proof technique of the Shapley equation gives us:

vnr(x1) = max
σ∈Σ

min
τ∈T

Ex1,σ,τ

 1
nr

ρnrθ −1∑
t=1

g(xt)

+ nr − ρnrθ + 1
nr

vnr−ρnrθ +1(xρnr
θ

)

 .
We separate the histories into two sets depending on whether nr − ρnrθ (h) + 1 > n(η) in
which cases Equation (6.4.6) applies, or nr−ρnrθ (h)+1 ≤ n(η) in which cases nr−ρ

nr
θ

(h)+1
nr

≤
η
(
by definition nr ≥ n(η)

η

)
, and deduce that

vnr(x1) ≤ max
σ∈Σ

min
τ∈T

Ex1,σ,τ

 1
nr

ρnr
θ
−1∑

t=1
g(xt) + nr − ρnrθ + 1

nr
f ′h(xρnr

θ
)

+ 2η,

with f ′h ∈ FR depending on the history given by Equation (6.4.6) applied to vnr−ρnrθ +1
when nr − ρnrθ + 1 > n(η), and any function in Fr otherwise. Therefore, by considering v
as the supremum of f ∈ F at each point xρnr

θ
∈ X, we have f ′h(xρnr

θ
) ≤ v(xρnr

θ
), thus

vnr(x1) ≤ max
σ∈Σ

min
τ∈T

Ex1,σ,τ

 1
nr

ρnr
θ
−1∑

t=1
g(xt) + nr − ρnrθ + 1

nr
v(xρnr

θ
)

+ 2η

= vθnr(x1) + 2η.
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This proves inequality (6.4.9). We now use Equation (6.4.8) and Equation (6.4.9) to
conclude:

vθnr(x1) ≥ v(x1)− 4η.
It means that for each x1 ∈ X0

θ , there exists n(x1) := nr ≤ n0 = max{nr : 1 ≤ r ≤ R},
such that vθn(x1)(x1) ≥ v(x1)− 4η.

.

Remark 6.4.7. Proposition 6.4.6 is also true if θ is a deterministic stopping time and
not only a function on the state. The auxiliary game would be defined on a larger state
space: the set of finite histories of the original game. The proof in itself is similar.

Fix now any ε > 0 and define θε : X → {0, 1} such that {x ∈ X, θε(x) = 1} =
{x ∈ X, v(x) < ε}. We denote by Γε = 〈A,B,X = X0

ε

⋃
X∗ε , qε, gε〉 the auxiliary game

associated to Γ defined by the stopping time θε.

Corollary 6.4.8. In the game Γε, Player 1 uniformly guarantees v with uniformly termi-
nating strategies that depend only on past states.

Proof. Let η ∈ (0, ε/8], by Proposition 6.4.6 there exists n0 ≥ 1 such that for every
x1 ∈ X0

ε , there exists n(x1) ≤ n0 with

vεn(x1)(x1) ≥ v(x1)− 4η ≥ ε/2, (6.4.10)

where the second inequality comes from the definition of X0
ε . Therefore, Γε is a positive-

valued recursive game and by Proposition 6.4.3, player 1 uniformly guarantees vεn(·)(·)
with uniformly terminating strategies in Σ̂. By Equation (6.4.10), it follows that for every
η > 0, player 1 uniformly guarantees v − 4η with uniformly terminating strategies.

Fix now a strategy σ∗ε that is uniformly terminating in Γε, depends only on past states
and guarantees v(x1)− ε2 in Γε(x1) for every x1 ∈ X0

ε .

B) One-shot game

One-shot game Gf For each f : X → [−1,+1] and x1 ∈ X, we define the one-shot
game Gf as follows: player 1’s action set is A(x1), player 2’s action set is B(x1), and the
payoff is for each (s, t) ∈ ∆

(
A
)
×∆ (B),

Eq(x1,s,t)[f(x2)] =
∑

a∈A,b∈B
s(a)t(b)

 ∑
x2∈X

q(x1, a, b)(x2)f(x2)

 .
Lemma 6.4.9. For any limit point f ∈ F , the one-shot game Gf has a value equal to f .

Proof. Let n ≥ 1, it is known that (cf. Vigeral [63] p.40, Lemma 4.2.2)

‖vn − vn+1‖∞ ≤
2

n+ 1 ,

and by Shapley’s formula (see Appendix) that

vn+1(x1) = sup
s∈∆

(
A(x1)

) inf
t∈∆(B(x1))

Eq(x1,s,t)

[ 1
n+ 1g(x1) + n

n+ 1vn(x2)
]

= inf
t∈∆(B(x1))

sup
s∈∆

(
A(x1)

)Eq(x1,s,t)

[ 1
n+ 1g(x1) + n

n+ 1vn(x2)
]
.
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We obtain the result by taking the limit along a subsequence converging uniformly to
f ∈ F .

Following Proposition 6.4.5, one can take for each x ∈ X some f∗ ∈ F such that
v(x) = f∗(x) ≥ f(x),∀f ∈ F . Then the following result is a direct consequence of Lemma
6.4.9 .

Corollary 6.4.10. For every x1 ∈ X, there exists s∗(x1) ∈ ∆(A(x1)) such that

∀b ∈ B(x1), Eq(x1,s∗(x1),b) [v(x2)] ≥ v(x1).

Fix now s∗ :=
(
s∗(x1)

)
x1∈X a profile of strategies satisfying the conclusion of Corollary

6.4.10.

C) Optimal strategy

Roughly speaking, we build σ̄ a uniform ε-optimal strategy for player 1 to play σ∗ε in
Γε on the states with value v above 2ε, and to play s∗ in Gv on the states with value v
below ε. And for the states with value v between ε and 2ε, σ̄ will be either of the two
depending on the regime.

Construction of σ̄ Define a sequence of stopping times (ul)l≥1 and the concatenated
strategy σ := s∗u1σ

∗
εu2s

∗u3σ
∗
εu4 · ·· in Γ as follows:

– σ is to play s∗(xn) at each stage n up to stage (not included)

u1 = inf{n ≥ 1, v(xn) > 2ε};

and then to play σ∗ε(xu1) up to stage (not included)

u2 = inf{n ≥ u1, v(xn) < ε}.

– In general: for each r ≥ 1, σ is to play σ∗ε(xu2r−1) from stage u2r−1 (the odd phase)
up to stage (not included)

u2r = inf{n ≥ u2r−1, v(xn) < ε}.

and then to play s∗(xn) at each stage n ≥ u2r (the even phase), up to stage (not
included)

u2r+1 = inf{n ≥ u2r, v(xn) > 2ε}.

Remark 6.4.11. The idea of alternating between two types of strategies is common in
Rosenberg and Vieille [52], Solan and Vieille [54] and this article. The main difference
is the definition of the target function v used to define how to switch from one type of
strategies to the other. Rosenberg and Vieille [52] use the limit of discounted values and
σ∗ε is an optimal strategy in some λ-discounted game (for λ close to zero). Solan and
Vieille [54] use the limsup value and introduce an auxiliary positive-valued game. We
adopt a similar approach to Solan and Vieille [54] but with v the largest limit point of
(vn).

By construction, σ̄ depends on the histories only through the states and not the actions.
Let us show that σ̄ uniformly guarantees v − 25ε for player 1, which finishes the proof of
Theorem 6.3.1.

Fix from now on any x1 ∈ X. Recall that ρ denotes the absorption time in the game
Γ. The next result shows that the process (v(xmin(ρ,ul)))l≥1, which is the value of v at
switching times (ul), is almost a submartingale up to an error of ε2.
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Proposition 6.4.12. For every l ≥ 1 and every τ ∈ T :

Ex1,σ,τ [v(xmin(ρ,ul+1))|Hmin(ρ,ul)] ≥ v(xmin(ρ,ul))− ε
21ρ>ul ,

on the event min(ρ, ul) < +∞.

Proof. Take any τ in T . The result is true if ρ ≤ ul. Suppose that l is even and ρ > ul:
by construction the strategy (s∗(xn)) is used during the phrase n ∈ {ul, ..., ul+1−1}, thus:

Ex1,σ,τ [v(xn+1)|Hn] ≥ v(xn), for all ul ≤ n < min(ρ, ul+1).

Therefore (v(xn)) is a bounded submartingale and by Doob’s stopping theorem,

Ex1,σ,τ [v(xmin(ρ,ul+1))|Hmin(ρ,ul)] ≥ v(xmin(ρ,ul)).

Suppose that l is odd and ρ > ul. By construction, player 1 is using σ∗ε(xul), which
uniformly guarantees v(xul)− ε2 in the auxiliary game Γε(xul):

∃N0 ≥ 1, Ex1,σ̄,τ

 1
n

ul+n∑
t=ul+1

gε(xt)|Hul

 ≥ v(xul)− ε
2 for all n ≥ N0. (6.4.11)

Denote by ρε = min{m ≥ ul + 1 : xm ∈ X∗ε } the absorption time in Γε(xul). Since in
recursive games the payoff is zero before absorption, we have

Ex1,σ̄,τ [gε(xρε)|Hul ] = Ex1,σ̄,τ

 lim
n→∞

1
n

ul+n∑
t=ul+1

gε(xt)|Hul

 . (6.4.12)

By the dominated convergence theorem,

Ex1,σ̄,τ

 lim
n→∞

1
n

ul+n∑
t=ul+1

gε(xt)|Hul

 = lim
n→∞

Ex1,σ̄,τ

 1
n

ul+n∑
t=ul+1

gε(xt)|Hul

 . (6.4.13)

We deduce from (6.4.11)-(6.4.13) that

Ex1,σ̄,τ [gε(xρε)|Hul ] ≥ v(xul)− ε
2.

Moreover, gε(xρε) = v(xρε) and conditionally on ρ > ul, ρε = min(ul+1, ρ). It follows that

Ex1,σ,τ [v(xmin(ρ,ul+1))|Hul ] ≥ v(xul)− ε
2.

Due to the possible error term ε2, the sequence (v(xmin(ρ,ul)))l≥1 is not a submartingale.
Nevertheless, one can prove a lemma similar to the usual upcrossing lemma for submartin-
gale. Indeed, the value is a martingale excepts if it crosses upwards the interval [ε, 2ε].
When this happens, the value may decreases of at most ε2. With the submartingale
property established in Proposition 6.4.12, an easy adaptation of the standard result on
upcrossing number of submartingale implies the following result, as was shown in Propo-
sition 3 of Rosenberg and Vieille [52]:
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Lemma 6.4.13. Let N = sup{p ≥ 1 : u2p−1 < +∞} be the number of times the process
(v(xul)) crosses upward the interval [ε, 2ε].For every τ ∈ T ,

Ex1,σ,τ [N ] ≤ 1
ε− ε2 .

By construction, σ∗ε is uniformly terminating within the auxiliary absorbing states X∗ε .
That is to say, any play between stages u2p−1 and u2p (on an odd phase) has bounded
length with high probability under the strategy σ∗ε(xu2p−1), uniformly over any starting
state xu2p−1 ∈ X0

ε . Since Lemma 6.4.13 implies that the number of odd phases is bounded
in expectations, the total frequency of stages on all odd phases is negligible for n large.
Let us formalize this fact.

Recall that ρε denotes the absorption time in the auxiliary game Γε. It follows that
there exists N1 > 0 such that

∀x ∈ X0
ε and τ ∈ T : Px,σ∗ε (x),τ (ρε > N1) ≤ ε3. (6.4.14)

For each n ∈ N, define An = {u2p−1 ≤ n < min(ρ, u2p), u2p−1 < ρ, for some p} ⊆ H∞.
These are all infinite plays where stage n is in an odd phrase, i.e., the stages between
u2p−1 and u2p on which σ∗ε(xu2p−1) is used. We fix for the rest of subsection the uniform
stage number N1 satisfying (6.4.14).

Lemma 6.4.14. For every τ ∈ T and every n ≥ N1
ε3 ,

1
n

n∑
k=1

Px1,σ(x1),τ (Ak) ≤ 5ε.

The proof for this lemma relies on the upcrossing property established in Lemma
6.4.13, and takes the same form as Lemma 27 in Solan and Vieille [54]. Solan and Veille
[54] make some finiteness assumption (on the set of non-absorbing states on which the
target function is not bounded away from zero) in order to obtain the existence of X1

ε a
subset of X0

ε and a uniform bound N1 ≥ 1 such that

∀x ∈ X1
ε and τ ∈ T : Px,σ∗ε (x),τ (ρε > N1) ≤ ε3.

Under the assumption that {vn, n ≥ 1} is totally bounded, we showed in Section 6.4.2
(
cf.

the condition defined in (6.4.14)
)
that we can consider X1

ε to be the whole set X0
ε .

The following result is a reformulation of the submartingale property in Lemma 6.4.12.

Lemma 6.4.15. For any m0 ≥ 1, we have

Ex1,σ,τ [v(xm0)] ≥ v(x1)− ε2 · Ex1,σ,τ [N ]− 2Px1,σ,τ (Am0)− ε.

Proof. For a proof, we refer to Proposition 28 in Solan and Vieille [54], where our lemma
is stated as Equation (4) in their proof.

Now we use Lemma 6.4.13, Lemma 6.4.14 and Lemma 6.4.15 to prove the following
proposition, which concludes the proof of Theorem 6.3.1.

Proposition 6.4.16. For any x1 ∈ X0 and for any τ ,

Ex1,σ̄,τ

[
1
n

n∑
m=1

g(xm)
]
≥ v(x1)− 25ε, ∀n ≥ N1

ε3 .
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Proof. Take x1 ∈ X0 and fix any τ . In this proof h will denote a pure play. We use
the fact that g(xm) ≥ v(xm) − 2ε if h /∈ Am: indeed, either the play has absorbed so
g(xm) = v(xm), or we have v(xm) < 2ε and g(xm) = 0. Moreover, if h ∈ Am, we use
g(xm) ≥ −1. This gives us:

Ex1,σ,τ

[
1
n

n∑
m=1

g(xm)
]
≥ 1
n
Ex1,σ,τ

[
n∑

m=1
1h/∈Am(v(xm)− 2ε) +

n∑
m=1

1h∈Am(−1)
]

≥ 1
n
Ex1,σ,τ

[
n∑

m=1
v(xm)

]
+ 1
n
Ex1,σ,τ

[
n∑

m=1
1h∈Am

(
− 1− (v(xm)− 2ε)

)]
− 2ε.

(6.4.15)
Lemma 6.4.15 (taking average sum on m0 = 1, ..., n) implies that

1
n
Ex1,σ,τ

[
n∑

m=1
v(xm)

]
≥ v(x1)− ε2 · Ex1,σ,τ [N ]− 2

n

n∑
m=1

Px1,σ,τ (Am)− ε. (6.4.16)

Moreover, the bound v(xm) ≤ 1 gives

1
n
Ex1,σ,τ

[
n∑

m=1
1h∈Am

(
− 1− v(xm) + 2ε

)]
≥ 1
n
Ex1,σ,τ

[
n∑

m=1
1h∈Am(−2 + 2ε)

]

= (−2 + 2ε) 1
n

n∑
m=1

Px1,σ,τ (Am).
(6.4.17)

We substitute (6.4.16) and (6.4.17) back into (6.4.15) to obtain

Ex1,σ,τ

[
1
n

n∑
m=1

g(xm)
]
≥ v(x1)− ε2 · Ex1,σ,τ [N ]− 3ε+ (−4 + 2ε) ·

(
1
n

n∑
m=1

Px1,σ,τ (Am)
)
.

Finally, we use Lemma 6.4.13 and Lemma 6.4.14 in the equality to have that: ∀n ≥ N1
ε3

and ∀ε ≤ 1
2 ,

Ex1,σ,τ

[
1
n

n∑
m=1

g(xm)
]
≥ v(x1)− ε2

ε− ε2 − 3ε− 20ε ≥ v(x1)− 25ε.

Note that N1 does not depend on the particular choice of x1 in X0, so the strategy σ
uniformly guarantees v − 25ε in the infinite game Γ.

6.4.3 Pure optimal strategy (proof of Corollary 6.3.4)

To prove the result, it is sufficient to show that both the strategy s∗ and the strategy
σ∗ε defined in the proof of Theorem 6.3.1 can be chosen pure and depending only on the
history of states.

By assumption, the n-stage game Γn(x) has a value in pure strategies. It follows that
Shapley’s equation for any vn is satisfied with pure strategies, and so is Lemma 6.4.9. We
deduce that there exists a pure action s∗ that satisfies the conclusion of Corollary 6.4.10.

The construction of the strategy σ∗ε appeared in the proof of Proposition 6.4.2, where
it was defined as the concatenation of a sequence of strategies

(
σ̂(xu`)

)
`≥1 at the random

stages (u`)`≥1. As each σ̂(x) is optimal in the n(x)-stage game Γn(x)(x), σ̂(xu`) can be
taken pure. The definition of the random stages u` involved a randomized stopping time
k̃ ∈ {1, ..., n(x)} satisfying:

∀τ ∈ T , Ẽx,σ̂,τ
[
g(xk̃)

]
≥ min

τ ′∈T
Ex,σ̂,τ ′

[ 1
n(x)

n(x)∑
t=1

g(xt)
]
.

144



6.4. Proofs

To obtain a pure strategy σ∗ε , we show that the random stopping time k̃ can be replaced
by a stopping time (pure one), which depends only on the history of states and not on
the actions. In order to build this stopping time, we restrict ourselves to strategies in Σ̂
, i.e., strategies which depend only on past states. Note that each σ̂(xu`), as an optimal
strategy in Γn(xu` )(xu`), can be taken in Σ̂.

Lemma 6.4.17. Fix any σ̂ ∈ Σ̂ and x1. For any τ ∈ T , there exists some τ̂ ∈ T̂ such
that Px1,σ̂,τ̂ (x1, ..., xt) = Px1,σ̂,τ (x1, ..., xt) for any (x1, ..., xt) ∈ Xt, t ≥ 1.

Proof. For all t ≥ 1, we denote by st := (x1, ..., xt) the t first states. For any τ ∈ T , define
the reduced strategy τ̂ ∈ T̂ as:

τ̂t(st) =
∑

ht∈Ht(st)
Px1,σ̂,τ (ht|st)τt(ht), ∀st, ∀t ≥ 1.

where Ht(st) denotes the histories in Ht containing st. Then we obtain by definition:

Px1,σ̂,τ̂ (st+1) =
∑

ht∈Ht(st)
Px1,σ̂,τ (ht|st)Px1,σ̂,τ (st+1|ht) = Px1,σ̂,τ (st+1).

Lemma 6.4.18. Fix any x1 ∈ X0 and σ ∈ Σ̂. For any n ≥ 1, there exists a stopping time
θ :
⋃

1≤t≤nX
t → {1, ..., n} such that for every strategy τ of player 2:

Ex1,σ,τ [g(xθ)] ≥ min
τ ′

Ex1,σ,τ ′

[
1
n

n∑
t=1

g(xt)
]
.

Proof. By Lemma 6.4.17, we can assume that τ ∈ T̂ . Let us prove the result by induction.
For every x1 ∈ X0, the result is true for n = 1. Suppose that the claim is true for n− 1.
Let x1 ∈ X0. By applying the inductive assumption to the different states possible at
stage 2, we obtain that there is some stopping time θ+ :

⋃n−1
t=1 X

t → {2, ..., n} such that

Ex1,σ,τ
[
g(xθ+)|x2

]
≥ min

τ ′
Ex1,σ,τ ′

[ 1
n− 1

n∑
t=2

g(xt)
∣∣x2
]

:= wn−1(σ, x1, x2). (6.4.18)

Denote wn−1(σ, x1) = inf
y∈∆(J)

Ex1,σ,y
[
wn−1(σ, x1, x2)

]
. We define the stopping time θ :⋃n

t=1X
t → {1, ..., n} by

∀(x1, .., xt) ∈ Xt, θ(x1, ..., xt) =
{

1 if 0 ≥ wn−1(σ, x1),
θ+(x2, ..., xt) otherwise.

According to the definition of θ and the inductive assumption (6.4.18) for θ+:

Ex1,σ,τ [g(xθ)] = g(x1)10≥wn−1(σ,x1) + Ex1,σ,τ

[
Ex1,σ,τ

[
g(xθ+)|x2

]]
10<wn−1(σ,x1)

≥ max
{
0, wn−1(σ, x1)

}
≥ n− 1

n
wn−1(σ, x1).

Finally g(x1) = 0, therefore

n− 1
n

wn−1(σ, x1) =
(
n− 1
n

)
inf
τ ′

Ex1,σ,τ ′

[
1

n− 1

n−1∑
t=2

g(xt)
]

= min
τ ′

Ex1,σ,τ ′

[
1
n

n∑
t=1

g(xt)
]
.

This concludes the inductive proof.
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Remark 6.4.19. Let Γ be a stochastic game where the payoff function depends only on
the state but not the actions, the proof for the above result follows the same way.

6.5 Application to recursive games with signals
In this last section, we apply our result to the model of finite recursive games with

signals where one player is more informed than the other player. Introducing an auxiliary
stochastic game similar to the one defined in Gensbittel et al. [21], we show that the study
of such a recursive game can be reduced to the study of recursive game with a countable
state space satisfying the assumption of Corollary 6.3.4.

6.5.1 Model

The following mode of general repeated games is introduced in Mertens et al. [35]. A
repeated game Γ = (K, I, J, C,D, g, q) is given by

– a finite state space: K.
– two finite action spaces I and J .
– two finite signal spaces C and D.
– a payoff function: g : K × I × J → [−1,+1].
– a transition probability function (on states and signals): q from K×I×J to ∆(K×
C ×D).

Denote by Γ(π) the game with an initial probability distribution π ∈ ∆(K×C×D), which
is played as follows. Initially, the triple (k1, c1, d1) is drawn according to π. At stage 1:
player 1 learns c1 and player 2 learns d1. Then simultaneously player 1 chooses an action
i1 ∈ I and player 2 chooses an action j1 ∈ J . The stage payoff is g(k1, i1, j1), and the new
triple (k2, c2, d2) is drawn according to q(k1, i1, j1). The game then proceeds to stage 2:
player 1 observes c2, and player 2 observes d2 etc...

We assume that each player’s signal contains his own action. Formally, there exists
ı̂ : C → I and ̂ : D → J such that

∀k ∈ K,
∑
k′,c,d

q
(
k, ı̂(c), ̂(d)

)
(k′, c, d) = 1.

We will focus on repeated games with the following two features: recursive and one
player is more informed than the other.

Definition 6.5.1. The repeated game Γ is recursive if there exist K0 and K∗, a partition
of K such that:

– the stage payoff is 0 on active states: ∀(k, i, j) ∈ K0 × I × J , g(k, i, j) = 0.
– states in K∗ are absorbing: ∀k ∈ K∗,

∑
c∈C,d∈D q(k, i, j)(k, c, d) = 1 for all (i, j) ∈

I × J and g(k, i, j) depends only on k.
In the rest of the paper, a recursive repeated game will be called a recursive games with
signals.

Definition 6.5.2. Player 1 is more informed than player 2 in the recursive game Γ if there
exists a mapping d̂ : C → D such that, if E denotes {(k, c, d) ∈ K × C ×D, d̂(c) = d},
then

q(k, i, j)(E) = 1, ∀(k, i, j) ∈ K × I × J.
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Notation 6.5.3. We denote by: ∆1(K × C ×D) = {π|π(E) = 1}.

We define similarly that player 2 is more informed than player 1. Whenever player 1 is
more informed than player 2 and player 2 is more informed than player 1, Γ is a repeated
game with symmetric signals. We denote by ∆∗(K × C ×D) the set of symmetric initial
distributions.

Remark 6.5.4. By assumption, if player 1 is more informed than player 2, he learns
especially the action played by player 2 since it is included in the signal of player 2. Player
2 is in general not informed of the action played by player 1.

In Gensbittel et al. [21], the authors considered a weaker notion of "a more informed
player" but they made a different assumption on the transition function, especially that
the less informed player has no influence on the evolution of beliefs of both players. It is
not clear if our result still holds under this weaker assumption.

6.5.2 Evaluation

At stage t, the space of past histories of player 1 is H1
t = (C× I)t−1×C and the space

of past histories of player 2 is H2
t = (D × J)t−1 ×D. Set H∞ = (K × C ×D × I × J)∞

to be the space of infinite plays. For any play h = (ks, cs, ds, is, js)s≥1, we denote by ht its
projection on Ht, by h1

t its projection on H1
t , and by h2

t its projection on H2
t .

A (behavior) strategy for player 1 is a sequence (σt)t≥1 of functions σt : H1
t → ∆(I).

A (behavior) strategy for player 2 is a sequence τ = (τt)t≥1 of functions τt : H2
t → ∆(J).

We denote by Σ and T player’s respective sets of strategies. An initial distribution π ∈
∆(K ×C ×D) and a couple of strategies (σ, τ) define a probability over the set of infinite
plays, which we denote by Pπσ,τ .

For any given π ∈ ∆(K × C × D), let γn(π, σ, τ)
(
resp. γλ(π, σ, τ)

)
be the expected

n-stage payoff
(
resp. λ-discounted payoff

)
associated with (σ, τ) ∈ Σ×T . We denoted by

vn(π) the n-stage value and by vλ(π) the λ-discounted value.

Definition 6.5.5. Given an initial distribution π ∈ ∆(K × C × D), the game Γ(π) has
an asymptotic value v(π) if:

v(π) = lim
n→∞

vn(π) = lim
λ→0

vλ(π).

Definition 6.5.6. Given an initial distribution π ∈ ∆(K ×C ×D), the game Γ(π) has a
uniform maxmin v∞(π) if:

– Player 1 can guarantee v∞(π), i.e. for all ε > 0 there exists a strategy σ∗ ∈ Σ of
player 1 and n0 ≥ 1 such that

∀n ≥ n0, ∀τ ∈ T , γn(π, σ∗, τ) ≥ v∞(π)− ε.

– Player 2 can defend v∞(π) i.e. for all ε > 0 and for every strategy σ ∈ Σ of player
1, there exists n0 ≥ 1 and τ∗ ∈ T such that

∀n ≥ n0, γn(π, σ, τ∗) ≤ v∞(π) + ε.

The game Γ(π) has a uniform minmax v∞(π) is define similarly if player 2 can guar-
antee it and player 1 can defend it.

Definition 6.5.7. Given an initial distribution π ∈ ∆(K ×C ×D), we say that Γ(π) has
a uniform value if both v̄∞(π) and v∞(π) exist and are equal. Whenever the uniform value
exists, we denote it by v∞(π).

147



Chapter 6. Jeux récursifs: valeur uniforme, théorème Taubérian et la
conjecture de Mertens

6.5.3 Results

Theorem 6.5.8. Let Γ be a recursive game such that player 1 is more informed than
player 2. Then for every distribution π ∈ ∆1(K × C ×D), both the asymptotic value the
uniform maxmin exist and are equal:

v∞(π) = lim vn(π) = lim vλ(π)

By symmetry, we deduce a similar result by exchanging the roles of player 1 and player
2. When the information is symmetric, both results are true and we obtain the existence
of the uniform value.

Corollary 6.5.9. Let Γ be a recursive game with symmetric signals. Then for every
π ∈ ∆∗(K × C ×D), the game Γ(π) has a uniform value.

It is known from Ziliotto [68] that stochastic games with symmetric signals may have no
uniform value. Therefore recursive games have very particular properties. It is a challeng-
ing task to identify the subclass of repeated games with v∞(π) = lim vn(π) = lim vλ(π).

Remark 6.5.10. Note that we have assumed that the stage payoff on absorbing states
does not depend on the actions played. Under this assumption, players’ strategies have only
an influence on non-absorbing plays. Therefore, without loss of generality, we assume in
the following that players observe whenever an absorption occurs and in which state it is.

If we consider that the payoff in absorbing states still depends on the actions played,
then our proof does not work. Indeed the auxiliary game introduced in Proposition 6.5.16
is not recursive anymore. The result v∞(π) = lim vn(π) = lim vλ(π) is unknown for this
general case.

Remark 6.5.11. It is not known whether recursive games with any structure of signals
have a uniform value. As highlighted in Rosenberg and Vieille [?], the equicontinuity of the
λ-discounted value functions is sufficient in order to deduce the existence of the uniform
value for recursive games (with perfect observations). For a recursive game with any
structure of signals, one can introduce the game associated with a universal belief space
but we do not know a metric on this space such that the λ-discounted values or the n-stage
values are equicontinuous/totally bounded.

6.5.4 Proof for Theorem 6.5.8

We introduce some notations concerning different belief hierarchies. Denote by B1 =
∆(K) the set of beliefs of player 1 on the state variable. Denote by B2 = ∆f (B1) =
∆f (∆(K)) the set of beliefs of player 2 on the (first-order) beliefs of player 1. Finally, we
denote by ∆f (B2) = ∆f (∆f (∆(K))) the set of probability distibutions over the second-
order beliefs of player 2.

An overview of the proof
A) We fix Γ a recursive game with signals such that player 1 is more informed than

player 2. The first subsection presents general properties for repeated games with one
player more informed than the other. Given any π ∈ ∆1(K ×C ×D), we can define from
it a distribution of the beliefs of player 2 on the beliefs of player 1 about the state. This
defines a function Φ from ∆1(K × C × D) to ∆f (B2). Applying results in Gensbittel
et al. [21], we know that vn(π) depends on π only through Φ(π). This enables us to
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show that the value function vn, defined on ∆1(K ×C ×D), induces a canonical function
v̂n defined on B2 such that vn(π) = v̂n

(
Φ(π)

)
and the family {v̂n, n ≥ 1} is totally bounded.

B) In the second subsection, we introduce an auxiliary recursive game (with perfect
observations) G which is defined on B2 and is played with pure actions. We prove in Propo-
sition 6.5.17 that its n-stage game Gn has a value wn, which coincides with v̂n on B2. A di-
rect consequence is that {wn, n ≥ 1} is totally bounded, therefore G satisfies the conditions
of Corollary 6.3.4 and it has a uniform value w∞. We deduce in Γ(π) the existene of the
asymptotic value given by w∞

(
Φ(π)

)
through the equality vn(π) = v̂n

(
Φ(π)

)
= wn

(
Φ(π)

)(
samely for vλ(π)

)
.

C) The third subsection proves that (cf. Proposition 6.5.22) player 1 can uniformly
guarantee w∞

(
Φ(π)

)
in Γ(π) by mimicking uniform ε-optimal strategies in G

(
Φ(π)

)
.

D) The last subsection proves that (cf. Proposition 6.5.25) that player 2 can uniformly
defend w∞

(
Φ(π)

)
by introducing a second auxiliary recursive game R.

A) Canonical value function v̂n

We follow in this subsection Gensbittel et al. [21] to introduce the canonical function
v̂n. Note that to obtain results in this subsection, the additional assumption that player
1 controls the transition (made later in their paper) is not used in Gensbittel et al. [21].

For convenience, we extend the definition of Γ(π) to a larger family of initial probability
distributions. Given any two finite sets C ′ and D′ and π ∈ ∆1(K × C ′ ×D′), Γ(π) is the
game where (k, c′, d′) is drawn at stage 1 according to π, player 1 observes c′, player 2
observes d′ (which is contained in c′ π−a.s.) and then from stage 2 on, the game is played
as previously described with signals in C and D.

For any random variable ξ defined on a probability space (Ω,A,P) and F a sub σ-
algebra of A, let LP(ξ | F) denote the conditional distribution of ξ given F , which is seen
as a F-measurable random variable 3 and let LP(ξ) denote the distribution of ξ.

Notation 6.5.12. For every strategy profile (σ, τ) ∈ Σ × T , we denote the first-order
belief of player 1 on K at stage n given h1

n by pn ∈ B1, the second-order belief of player
2, i.e., his belief about the belief of player 1 on K at stage n given h2

n by xn ∈ B2, and the
distribution of xn by ηn ∈ ∆f (B2), i.e.,

pn , LPπστ (kn | h1
n), xn , LPπστ (pn|h2

n), and ηn , LPπστ (xn).

Notation 6.5.13. For any π ∈ ∆1(K ×C ′×D′) where C ′ and D′ are two finite sets, the
image of π is given by the following function in ∆f (B2):

Φ(π) , Lπ (Lπ (Lπ(k1|c1)|d1)) ,
=
∑
d∈D′

π(d)δ(
∑

c∈C′ π(c|d)δπ(.|c,d)).

The interpretation of Φ(π) is as follows: with probability π(d), player 2 observes the
signal d and beieves that: player 1 received the signal c with probability π(c|d) and
therefore player 1’s belief over K is π(.|c, d).

3. All random variables appearing here take only finitely many values so that the definition of condi-
tional laws does not require any additional care about measurability.
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The assumptions imply that if π ∈ ∆1(K×C ′×D′), then π satisfies the following two
properties:

P1) π(c)π(k, c, d) = π(k, c)π(c, d), ∀(k, c, d) ∈ K × C ′ ×D′.

P2) There exists a map f1 = fπ1 : C ′ → ∆(B2) such that x1 = f1(c1), π-almost surely.

Under P1) and P2), Proposition 1 of Gensbittel et al. [21] applies and we obtain the
following result, which states that the value of any n-stage game depends on any initial
distribution π only through its image Φ(π).

Proposition 6.5.14 (Gensbittel et al. 2014). Let C ′ and D′ be two finite sets. Let
π, π′ ∈ ∆1(K × C ′ ×D′) and n ≥ 1. If Φ(π) = Φ(π′), then vn(π) = vn(π′).

Reciprocally, given η ∈ ∆f (B2), let us construct a canonical distribution π satisfying
Φ(π) = η.

The canonical game Γ̂(η). Given η ∈ ∆f (B2). Define two finite sets D′ := supp(η) ⊆
B2 and C ′ := D′×

(
∪x∈supp(η)supp(x)

)
, and a probability distribution π(η) ∈ ∆(K×C ′×

D′) by

∀(k, p) ∈ K ×∆(K), x, x′ ∈ B2, π(k, (p, x), x′) :=
{
η(x)x(p)p(k) if x = x′

0 if x 6= x′.

By construction, π(η) can be seen as an element of ∆1(K×C ′×D′), and satisfies Φ(π(η)) =
η. The canonical game of Γ(π) is denoted as Γ̂(η). Its value, denoted by v̂n(η), is equal
to vn(π(η)) the value of Γn(π(η)). If η = δx for some x ∈ B2, we denote v̂n(x) for v̂n(δx).

Informally, the game Γ̂(η) proceeds as follows: η is common knowledge, player 2 is
informed about the realization x of a random variable with law η (player 2 learns his be-
liefs). Then player 1 is informed about x (his opponent’s beliefs) and about the realization
p of a random variable with law x (his own beliefs). The state variable is finally chosen
according to p, but no player observes it.

By the above construction, one obtains that: vn(π) = v̂n
(
Φ(π)

)
for any π ∈ ∆1(K ×

C ′ ×D′).

The result below follows from Proposition 2 of Gensbittel et al. [21]. The Wasserstein
metric d on ∆

(
∆(K)

)
is defined by:

∀x, y ∈ ∆
(
∆(K)

)
, d(x, y) = sup

f∈D1

∣∣∣∣∣
∫

∆(K)
f(p)x(dp)−

∫
∆(K)

f(p)y(dp)
∣∣∣∣∣ ,

where D1 is the set of 1-Lipschitz function from (∆(K), ‖.‖1) to [−1, 1].

Proposition 6.5.15 (Gensbittel et al. 2014). Let η ∈ ∆f (B2), n ≥ 1 and x ∈ B2.
Then, v̂n(η) is linear on ∆f (B2) and, as a mapping on B2, v̂n(x) is 1-Lipschitz for the
Wasserstein metric d.

Since the state space B2 is totally bounded for the Wasserstein metric, we deduce by
Arzela-Ascoli theorem that the set of functions {v̂n, n ≥ 1} is totally bounded.
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B) Auxiliary recursive game and asymptotic value

In this subsection we define from Γ an auxiliary game G. We will prove that for every
n ≥ 1, Gn admits a value in pure strategies and that this value is equal to v̂n. Moreover
this game is also recursive. Using Corollary 6.3.4, we deduce the existence of the uniform
value in G and the existence of the asymptotic value in Γ.

Let G = (X,A,B,G, `) be the stochastic game played in pure strategies, defined by:
– the state space X = ∆f (∆(K)) (endowed with the Wasserstein metric d)
– the action space A = {f : ∆(K) → ∆(I)} and for all x ∈ X, A(x) = {supp(x) →

∆(I)} for player 1
– the action space B = ∆(J) for player 2
– the payoff functionG : X → [−1, 1], defined for any x ∈ X byG(x) :=

∑
p∈∆(X) g(p)x(p)

– the transition function ` : X×A×B → ∆f (X) defined as `(x, a, b) := Φ(Q(x, a, b)).
Here, Q(x, a, b) ∈ ∆f (K×(∆(K)×C)×D) is the joint distribution of (k2, (p, c2), d2)
in the canonical game Γ̂(δx) when the players play (σ1, τ1) = (a, b) at stage 1. The
setsK,C,D and supp(x) being finite, Q can be seen as an element in ∆1(K×C ′×D′)
with C ′ a finite subset of ∆(K)× C and D′ = D

For any x ∈ X, we denote by G(x) the game starting at x. We extend the definition
to G(z) for any z ∈ ∆f (X) such that the initial state is chosen randomly along z.

Since players observes when and where absorption occurs, players’ beliefs (first and
second-order) are either supported onK0 (therefore respectively in ∆(K0) and in ∆(∆(K0))

)
or supported on each single point k ∈ K∗ (to be δk and to be δδk).

Proposition 6.5.16. Let Xr = ∆f (∆(K0)) ∪ {δδk : k ∈ K∗}. The set Xr is a subset of
X. The game Gr = (Xr, A,B,G, `) with the state space Xr is well defined and is recursive
with the absorbing states {δδk : k ∈ K∗}.

In the following, we identify each δδk with k itself for any k ∈ K∗, and write Xr =
∆f (∆(K0)) ∪K∗. By abuse of notation, we write again X for Xr and G for Gr.

Proposition 6.5.17. For every n ≥ 1, the n-stage game Gn has a value wn in pure
strategies. Moreover, for every x ∈ X, wn(x) = v̂n(x).

Proof. We prove the result by induction on n ≥ 1. Let n = 1. Given x ∈ X, the game
G1(x) has a value w1(x) and it is equal to w1(x) = G(x) =

∑
p g(p)x(p). It is equal to

v̂1(x) by construction. This initializes our induction. Let n ≥ 1 such that wn, the value
of Gn, exists in pure strategies, and for every x ∈ X, wn(x) = v̂n(x). Gensbittel et al. [21]
showed in the proof of their Proposition 5 that the family {v̂n, n ≥ 1} satisfies the Shapley
equation: for every x ∈ X and for every n ≥ 1,

v̂n+1(x) = sup
a∈A(x)

inf
b∈B

E`(x,a,b)
[ 1
n+ 1g(x, a, b) + n

n+ 1 v̂n(x′)
]

= inf
b∈B

sup
a∈A(x)

E`(x,a,b)
[ 1
n+ 1g(x, a, b) + n

n+ 1 v̂n(x′)
]
,

where the random variable x′ ∈ X is chosen along the law `(x, a, b)(·). By the inductive
assumption, we can replace v̂n by wn on the right hand side of above equation, to obtain
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that:

∀x ∈ X, v̂n+1(x) = sup
a∈A(x)

inf
b∈B

E`(x,a,b)
[ 1
n+ 1g(x) + n

n+ 1wn(x′)
]

= inf
b∈B

sup
a∈A(x)

E`(x,a,b)
[ 1
n+ 1g(x) + n

n+ 1wn(x′)
]
.

We now use the above equation to show that both players can guarantee v̂n+1(x) in Gn+1(x)
in pure strategies. Let x ∈ X be fixed and a∗ be an action of player 1 such that

inf
b∈B

E`(x,a∗,b)
[ 1
n+ 1g(x) + n

n+ 1wn(x′)
]
≥ v̂n+1(x). (6.5.1)

Again by inductive assumption, let σ∗n(x′) be an optimal pure strategy in Gn(x′),∀x′ ∈ X.
We define the strategy σ∗n+1(x) to play a∗ at the first stage and then σ∗n(x′) where x′ is the
current state at stage 2. σ∗n+1(x) is pure and guarantees player 1 the payoff in Gn+1(x) no
smaller than the left hand side of Equation (6.5.1), hence v̂n+1(x). A similar construction
for player 2 finishes the inductive proof.

Therefore, by Proposition 6.5.15 the family of n-stage values {wn} is totally bounded
for the uniform norm, and we can apply Corollary 6.3.4 (with non finite sets of actions)
for the game G.

Proposition 6.5.18. For every z ∈ ∆f (X), the game G(z) has a uniform value denoted
by w∗∞(z). Moreover both players can uniformly guarantee the value with pure strategies
that depend on the history of states but not on the past actions.

Since vn(π) = v̂n
(
Φ(π)

)
= wn

(
Φ(π)

)
, and the same construction of the canonical

value function v̂λ implies vλ(π) = v̂λ
(
Φ(π)

)
= wλ

(
Φ(π)

)
, we deduce the existence of the

asymptotic value in the game Γ(π) for every π ∈ ∆1(K × C ×D):

Proposition 6.5.19. limn→∞ vn(π) = limλ→0 vλ(π) = w∗∞(Φ(π)).

C) Player 1 uniformly guarantees w∗∞
We first show that player 1 is able to compute in the original game (pt)t≥1 his first-

order beliefs and (xt)t≥1 the second-order beliefs of player 2 without knowing the strategy
of player 2.

Lemma 6.5.20. Let (σ, τ) be a couple of strategies in Γ(π). For every t ≥ 1, pt =
LPπσ,τ (kt|h1

t ) and xt = LPπσ,τ (pt|h2
t ) are independent of τ for all h1

t , h
2
t .

Proof. Let (σ, τ) be a pair of strategies and π ∈ ∆(K × C × D), we write P := Pπσ,τ for
short. Let h = (ks, cs, ds, is, js)s≥1 ∈ H∞. For any t ≥ 1, we define

β(ht)π(k1, c1, d1) =
t−1∏
`=1

q(k`, i`, j`)(k`+1, c`+1, d`+1)

with the convention β(k1, c1, d1) = π(k1, c1, d1). These notations help to write

P(ht) = β(ht)
t−1∏
`=1

σt(h1
` )[i`]τ`(h2

` )[j`].
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The key point is that under P(·), it−1, jt−1 and dt are ct-measurable whereas jt−1 is
dt-measurable. It follows that after observing (c1, ..., ct), player 1’s belief is:

pt(kt) = P (kt|c1, ..., ct) = P (kt|c1, d1, i1, j1, ...., ct, dt)

=
∑
k′1,...,k

′
t−1

P(k′1, c1, d1, i1, j1..., kt, ct, dt)∑
k′1,...,k

′
t−1,k

′
t
P(k′1, c1, d1, i1, ..., k′t, ct, dt)

=
∑
k′1,...,k

′
t−1

β(k′1, c1, d1, i1, j1, ..., kt, ct, dt)∑
k′1,...,k

′
t−1,kt

β(k′1, c1, d1, i1, j1, ..., k′t, ct, dt)
,

which depends on neither σ nor τ . We now consider xt = LP
(
pt|d1, ...dt

)
for a given

observed history h2
t = (d1, ..., dt) of player 2, which is decomposed as:

xt = LP
(
LP(kt+1|c1, ..., ct)|d1, .., dt

)
=

∑
c′1,...,c

′
t

P(c′1, ..., c′t|d1, ..., dt)δLP(kt+1|c′1,...,c
′
t).

By the previous result that LP(kt+1|c′1, ..., c′t) does not depend on τ , it is sufficient to
prove that P(c′1, ..., c′t|d1, ..., dt) is independent of τ . Let us consider a sequence of signals
(c′1, ..., c′t) inducing (d1, ..., dt) that we complete with (i′1, ..., i′t) the sequence of actions it
contains. This gives us

P(c′1, ..., c′t|d1, ..., dt) = P(c′1, d1, i
′
1, j1, ..., c

′
t, dt|d1, j1, ..., dt) = P(c′1, d1, i

′
1, j1, ..., c

′
t, dt)

P(d1, j1, ..., dt)

=
∑
k′1,...,k

′
t
β(h′t)

∏t−1
`=1 σ`(h

′1
` )[i′`]∑

k′1,...,k
′
t

∑
c′1,...,c

′
t
β(h′t)

∏t−1
`=1 σ`(h

′1
` )[i′`]

,

where h′` = (k′1, c′1, d1, i
′
1, j1, ..., k

′
`, c
′
`, d`) is the history of stage ` and h′1` = (c′1, i′1, ..., c′`) is

the private history of player 1 of stage `. The right hand side of the above equation does
not depend on the strategy of player 2 and the result is obtained.

Before building the strategy of player 1, we prove that the transition rule `(·) : X ×
A×B → ∆f (X) of the auxiliary game is linear with respect to B (the action of player 2).

Lemma 6.5.21. For any (x, a) ∈ X ×A and b =
∑
s∈S λsbs a convex combination in B,

we have

`(x, a, b) = `

(
x, a,

∑
s∈S

λsbs

)
=
∑
s∈S

λs` (x, a, bs) .

Proof. Let (x, a) ∈ X×A and b ∈ B. Recall that Q := Q(x, a, b) denotes a distribution in
∆f (K × (∆(K)× C)×D), which can be seen as as an element in ∆1(K × C ′ ×D′) with
C ′ = supp(x)×C a finite subset of ∆(K) and D′ = D We have by definition of the image
mapping Φ(·): `(x, a, b) = Φ(Q) =

∑
d′∈D′ Q(d′)δLQ(LQ(k|c′)|d′).

Similarly to the previous lemma, for every (c′, d′) = ((p, c), d′) ∈ C ′×D′, LQ
(
LQ
(
k|(p, c)

)
|d′
)

does not depend on b. Indeed, the signal (c′, d′) contains the action (i1, j1) = (̂ı(c′), ̂(d′))
and c′ contains d′ a.s. It follows that

PQ(k|p, c) =
a(p)[̂ı(c)]b[̂(c)]qK×C

(
p, ı̂(c), ̂(c)

)
(k, c′)

a(p)[̂ı(c)]b[̂(c)]qC
(
p, ı̂(c), ̂(c)

)
(c′)

=
qK×C

(
p, ı̂(c), ̂(c)

)
(k, c′)

qC
(
p, ı̂(c), ̂(c)

)
(c′)

and
PQ(p, c|d′) =

x(p)qC
(
p, a(p), ̂(d′)

)
(c)∑

p∈supp(x) x(p)qD
(
p, a(p), ̂(d′)

)
(d′)

.
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Since these quantities do not depend on b, we will not precise b in the following. The
application Q(x, a, b) being linear in b, we can easily deduce the announced result:

Φ
(
Q
(
x, a, b

))
=
∑
d′∈D′

Q
(
x, a, b

)
(d′)δLQ(x,a,.)(LQ(x,a,.)(k|c′)|d′)

=
∑
d′∈D′

(∑
s∈S

λsQ(x, a, bs)(d′)δLQ(x,a,.)(LQ(x,a,.)(k|c′)|d′)

)
=
∑
s∈S

λsΦ(Q(x, a, bs).

We now deduce from the two previous lemmas that player 1 uniformly guarantees
w∗∞ (Φ(π)) in the game Γ(π).

Proposition 6.5.22. Player 1 uniformly guarantees w∗∞ (Φ(π)) in Γ(π).

Proof. Fix any ε > 0. We divide the proof into three steps. First, we define the optimal
strategy σ̂ in Γ(π). Then we show how to link the distribution over the states in G to the
distribution of second-order beliefs in Γ. Finally, we deduce that the strategy σ̂ is uniform
ε-optimal.

Step I: Defining the strategy.

Consider the auxiliary game G(z) with z = Φ(π) ∈ ∆f (X). According to Proposition
6.5.18, player 1 has pure uniform ε-optimal strategies which depend on histories only
through the states but not the actions. With a slight abuse of notations, there exists
σ̂∗ :

⋃∞
t=1X

t → A = {a : ∆(K)→ ∆(I)} and N0 ≥ 1 such that

γ̂n(z, σ̂∗, τ̂) ≥ w∗∞(z)− ε for all n ≥ N0 and for all τ̂ :
∞⋃
t=1

Xt → B = ∆(J)

where γ̂n(z, σ̂∗, τ̂) is the expected n-stage average payoff in the auxiliary game G(z) induced
by (z, σ̂∗, τ̂).

We define the strategy σ∗ ∈ Σ in the game Γ(π) such that for any h1
t ,

σ∗(h1
t ) = σ̂∗(x1, ..., xt)[pt] with pt = LPπ

σ∗
(kt|h1

t ) and xt = LPπ
σ∗

(pt|h2
t ).

By Lemma 6.5.20, this is a well defined strategy of player 1 since he can compute pt and xt
at every stage t ≥ 1. We now check that the strategy σ∗ uniformly guarantees w∗∞(z)− ε
in Γ(π).

Step II: Linking the probability law of beliefs

Let τ ∈ T be a strategy in Γ(π). We define a strategy τ̂ in G (Φ(π)) such that (π, σ∗, τ)
and (Φ(π), σ̂, τ̂) generate the same probability law for (x1, ..., xt, ...). With a slight abuse
in notation, we denote by τ̂ the strategy in G such that for all (x1, ..., xt) ∈ Xt,

τ̂(x1, ..., xt) =
∑

h2
t∈H2

t (x1,...,xt)
Pπσ∗,τ (h2

t |x1, ..., xt)τ(h2
t ),

where H2
t (x1, ..., xt) = {h2

t ∈ H2
t |LPπσ∗,τ (kl|h2

` ) = x`, 1 ≤ ` ≤ t} denotes the set of player
2’s t-stage histories in Γ that induce the beliefs (x1, ..., xt).
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Lemma 6.5.23. Let σ∗ and τ̂ be constructed as above given σ̂∗ and τ , we have:

∀t ≥ 1, LPπ
σ∗,τ

(x1, ..., xt) = LPz
σ̂∗,τ̂

(x1, ..., xt).

Proof of Lemma 6.5.23: We prove the lemma by induction on t ≥ 1. For t = 1, the
law of x1 is independent of the strategy profile. By definition of the image mapping Φ(·),

LPπ
σ∗,τ

(x1) = Lπ
(
Lπ
(
Lπ(k1|c1)|d1

))
= Φ(π).

As Φ(π) = z, the probability law to choose the initial state x1 ∈ X in G(z), LPz
σ̂∗,τ̂

(x1) =
Φ(π).

Suppose now that we have proved that LPπ
σ∗,τ

(x1, ..., xt) = LPz
σ̂∗,τ̂

(x1, ..., xt) for some
t ≥ 1. It is then sufficient to prove that conditional on any realization 4 s̃t := (x̃1, ..., x̃t) ∈
(B2)t,

LPπ
σ∗,τ

(xt+1|x1 = x̃1, ..., xt = x̃t) = LPz
σ̂∗,τ̂

(xt+1|x1 = x̃1, ..., xt = x̃t).

Fix some s̃t = (x̃1, ..., x̃t) ∈ Xt. By definition of τ̂ and the linearity of ` showed in Lemma
6.5.21, we know that

LPz
σ̂∗,τ̂

(xt+1|x1 = x̃1, ..., xt = x̃t) = `(x̃t, σ̂∗(s̃t), τ̂(s̃t))

=
∑

h2
t∈H2

t (s̃t)
Pπσ∗,τ (h2

t |s̃t)`
(
x̃t, σ̂

∗(s̃t), τ(h2
t )
)
. (6.5.2)

By definition of the conditional expectation, we have in Γ,

LPπ
σ∗,τ

(xt+1|x1 = x̃1, ..., xt = x̃t) =
∑

h2
t∈H2

t (s̃t)
Pπσ∗,τ (h2

t |s̃t)LPπσ∗,τ (xt+1|h2
t ).

Thus, it is sufficient to prove that for every h2
t ∈ H2

t (s̃t), `
(
x̃t, σ̂

∗(s̃t), τ(h2
t )
)

= LPπ
σ∗,τ

(xt+1|h2
t ).

Let h2
t ∈ H2

t (x̃t) and Q[h2
t ] := Q

(
x̃t, σ̂

∗(s̃t), τ(h2
t )
)
∈ ∆f (K × (∆(K)× C)×D) the joint

distribution of (kt+1, (pt, ct+1), dt+1) in the canonical game Γ̂(δx̃t) when
(
σ̂∗(s̃t), τ(h2

t )
)
∈

A×B is played. By definition of the image mapping Φ(·) and σ∗, we obtain

LPπ
σ∗,τ

(xt+1|h2
t ) = LQ[h2

t ]

(
LQ[h2

t ](LQ[h2
t ](kt+1|ct+1)|dt+1)

)
= Φ(Q[h2

t ]) = `
(
x̃t, σ̂

∗(s̃t), τ(h2
t )
)
.

�
Step III: Conclusion of the proof

Finally, let us compare the payoffs in both games. If k∗ ∈ K∗, we have G(k∗) =
g(k∗) = Eπσ∗,τ [g(kt)|xt = k∗]. If xt ∈

(
∆f

(
∆(K0)

) )
, we have G(xt) = 0 = Eπσ∗,τ [g(kt)|xt].

It follows that for every xt ∈ X, we have G(xt) = Eπσ∗,τ [g(kt)|xt]. By taking conditional
expectation, Lemma 6.5.23 implies that Ezσ̂∗,τ̂ [G(xt)] = Eπσ∗,τ [g(kt)]. Since σ̂∗ is uniform
ε-optimal in the auxiliary game G (Φ(π)), we obtain

γn(π, σ∗, τ) = γ̂n(Φ(π), σ̂∗, τ̂) ≥ w∗∞(Φ(π))− ε for all n ≥ N0.

Therefore, the strategy σ∗ uniformly guarantees w∗∞(Φ(π))− ε in Γ(π).

4. For this part of the proof it is convenient to differentiate the random variable describing the second
order belief (or the state in G) that will be denoted by xt from its realization denoted by x̃t.
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D) Player 2 uniformly defends w∗∞
We now prove that player 2 can defend w∗∞(Φ(π)) = lim vn(π) = lim vλ(π). The situ-

ation of player 2 is different since he is allowed to know the strategy of player 1. In order
to prove this result, we introduce another auxiliary recursive game R.

For any n ≥ 1, let H ′n ⊆ Hn be the set of n-stage histories such that player 1 can
deduce player 2’s private signals, and H0

n ⊆ Hn be the set of n-stage histories containing
only non-absorbing states. We consider the following game R where the set of states is
almost the set of distribution over all finite histories. It is defined as follows:

– the state space is Z = Z0
⋃
K∗ where Z0 =

⋃
n≥1 ∆(H0

n ∩H ′n),
– the action space of player 1 is A =

⋃
n≥1{f : H1

n → ∆(I)} and for any πn ∈ ∆(Hn),
A(πn) = {f : H1

n → ∆(I)},
– the action space of player 2 is B =

⋃
n≥1{f : H2

n → ∆(J)} and for any πn ∈ ∆(Hn),
B(πn) = {f : H2

n → ∆(J)},
– the transition Q : Z ×A×B → ∆f (Z) is given by:

∀(k∗, a, b) ∈ K∗ ×A×B, Q(k∗, a, b) = δk∗ ,

and

∀(z, a, b) ∈ Z0 ×A×B, Q(z, a, b) = Q0(z, a, b)δπ0 +
∑
k∈K∗

Q(z, a, b)(k∗)δk∗ ,

where Q(z, a, b)(k∗) is the probability of absorption in state k∗ at the next stage
given by

Q(z, a, b)(k∗) =
∑

hn,i,j,c,d

z(hn)a(h1
n)[i]b(h2

n)[j]q(kn, i, j)(k∗, c, d);

Q0(z, a, b) is the probability of no absorption given by

Q0(z, a, b) =
∑

hn,i,j,c,d

∑
k∈K0

z(hn)a(h1
n)[i]b(h2

n)[j]q(kn, i, j)(k, c, d),

and π0 ∈ Z0 is the conditional probability on not having absorbed, i.e.,

∀(hn, k, i, j, c, d) ∈ Hn ×K × I × J × C ×D, π0(hn, i, j, c, d) = z(hn)a(h1
n)[i]b(h2

n)[j]q(kn, i, j)(k, c, d)
Q0(z, a, b) .

– the stage payoff function R : Z ×A×B → [−1,+1] is given by

∀(πn, a, b) ∈ Z0 ×A×B, R(πn, a, b) = 0,

and
∀(k∗, a, b) ∈ K∗ ×A×B, R(k∗, a, b) = g(k∗).

By construction, the gameR is recursive. We denote by Σ̃ (resp. T̃ ) the set of behavior
strategy for player 1 (resp. for player 2) in the game R.

Proposition 6.5.24. For every π ∈ Z0 and every n ≥ 1, the n-stage game Rn(π) has a
value in history independent pure strategies, which is denoted by ṽn(π) and

ṽn(π) = vn(π).

Moreover, if player 2 can uniformly defend some payoff level v in the game R(π) with pure
strategies then he can also uniformly defend v in the game Γ(π).
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6.5. Application to recursive games with signals

Proof. First, a strategy σ of player 1 in Γ is a sequence of applications (σn)n≥1 such that
σn is a mapping from Hn

1 to ∆(I). By definition, this is a sequence of actions in the game
R, i.e., a history independent pure strategy in R. Similarly, a strategy τ of player 2 in
Γ induces a sequence of actions in R. By definition of Q and R, it follows that for every
π ∈ Z0, σ ∈ Σ and τ ∈ T ,

γn(π, σ, τ) = γ̃n(π, σ, τ). (6.5.3)

Let σ be an optimal strategy of player 1 in the game Γn(π). Consider now a pure
strategy τ̃ ∈ T̃ . The triple (π, σ, τ̃) generates a probability distribution P on (Z×A×B)N
such that there exists at most one play (πt, at, bt)t≥1 that is non absorbing P − a.s., i.e.,
(πt, at, bt)t≥1 ∈ (Z0 × A × B)N. Define the strategy τ ∈ T of player 2 in Γ(π) by setting
τt = bt for all t ≥ 1. We obtain

γ̃n(π, σ, τ̃) = γ̃n(π, σ, τ) = γn(π, σ, τ) ≥ vn(π).

Therefore, player 1 guarantees the payoff vn(π) in R(π) with the history independent
pure strategy σ. Similarly, player 2 can guarantee vn(π) with a history independent pure
strategy and ṽn(π) = vn(π).

Finally, let us assume that player 2 can uniformly defend the payoff level v with pure
strategies in the game R(π). Let ε > 0 and σ ∈ Σ. Interpreting σ as an history-
independent strategy in R, there exist N0 ≥ 1 and a pure strategy τ̃ ∈ T̃ such that

∀n ≥ N0, γ̃n(π, σ, τ̃) ≤ v + ε. (6.5.4)

As in the previous paragraph, we can associate to the triple (π, σ, τ̃) a unique play
(πt, at, bt)t≥1 in (Z0×A×B)N and define the strategy τ ∈ T of player 2 in Γ(π) by setting
τt = bt for all t ≥ 1. We obtain

∀n ≥ N0, γn(π, σ, τ) = γ̃n(π, σ, τ) = γ̃n(π, σ, τ̃) ≤ v + ε.

This proves that player 2 can uniformly defend v in Γ(π).

We conclude by showing that the game R fulfills the conditions of Corollary 6.3.4.

Proposition 6.5.25. Player 2 uniformly defends w∗∞ (Φ(π)) in Γ(π).

Proof. We already noticed that the game R is recursive. Let π ∈ ∆(H0
n ∩H ′n) ⊆ Z0 for

some n ≥ 1. Since player 1 is more informed than player 2 (π supported on H ′n), π can
be identified as an element in ∆1(K ×C ′×D′) for some finite C ′ and D′. By Proposition
6.5.24, we obtain that for any π ∈ Z0,

ṽn(π) = vn(π) = v̂n (Φ(π)) .

According to Corollary 6.5.15, the family {v̂n, n ≥ 1} considered as functions on B2 is
totally bounded, and so is the family of their linear extensions to ∆f (B2).

By Corollary 6.3.4, R(π) has a uniform value w∗∞ (Φ(π)) in pure strategies for every
π ∈ ∆1(K×C×D). It follows from Proposition 6.5.24 that player 2 can uniformly defend
w∗∞ (Φ(π)) in Γ(π).
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Chapter 6. Jeux récursifs: valeur uniforme, théorème Taubérian et la
conjecture de Mertens

6.6 Appendix
Lemma 6.6.1. [Generalized Shapley Equation] Let n ≥ 1 and θ ≤ n be any stopping time,
we have

vn(x1) = max
σ∈Σ

min
τ∈T

Ex1,σ,τ

(
1
n

θ∑
t=1

g(xt) + n− θ
n

vn−θ(xθ+1)
)

= min
τ∈T

max
σ∈Σ

Ex1,σ,τ

(
1
n

θ∑
t=1

g(xt) + n− θ
n

vn−θ(xθ+1)
)
.

Proof. We prove that

vn(x1) ≤ max
σ∈Σ

min
τ∈T

Ex1,σ,τ

(
1
n

θ∑
t=1

g(xt) + n− θ
n

vn−θ(xθ+1)
)
. (6.6.1)

Similarly, one can prove by reversing the role of player 1 and player 2 that the min max
is smaller than vn(x1). Since the max min is always smaller than the min max, the result
follows.

Let σ in Σ be an optimal strategy of player 1 in the game of length n. Fix τ ′ a best
reply of player 2 to σ in the auxiliary game with payoff

Ex1,σ,τ

(
1
n

θ∑
t=1

g(xt) + n− θ
n

vn−θ(xθ+1)
)
.

For every history h ∈ Hu with u ≤ n, let τ∗(h) be a best response strategy to σ(h) in the
remaining game Γn−u of length n − u. For fixed σ in Σ and τ ′ in T , we shall define the
concatenated strategy τ̃ to follow τ ′ until the stopping time θ and then to play a best reply
τ∗(h(θ)) to the conditional strategy σ(h(θ)). Formally, for any h ∈ Hm,m ≤ n, define:

τ̃(h) =
{
τ ′(h), for all h ∈ Hm with m < θ(h)
τ∗[h(θ)](hθ), for all h ∈ Hm with m ≥ θ(h).

Denote by Ẽ[·] the expectation operator Ex1,σ,τ̃ [·] and by E∗[· | h(θ)] the conditional
expectation operator Ex1,σ,τ∗ [· | h(θ)]. We fix any x1 ∈ X. Since σ is optimal in Γn, we
have

vn(x1) ≤ Ẽ
(

1
n

n∑
t=1

g(xt)
)

(6.6.2)

By definition, τ̃(h(θ)) = τ∗(h(θ)). As the expected n-stage payoff sum can be decom-
posed conditional on the stopping time θ and history h(θ), we have

Ẽ
(

n∑
t=1

g(xt)
)

= Ẽ

 θ∑
t=1

g(xt) +

 n∑
t=θ+1

g(xt)

 = Ẽ

 θ∑
t=1

g(xt) + E∗
 n∑
t=θ+1

g(xt) | h(θ)

 .
(6.6.3)

Conditional on any h(θ), τ∗[h(θ)] is best response to σ[h(θ)] in the game Γn−θ, thus we
have

E∗
 n∑
t=θ+1

g(xt) | h(θ)

 ≤ (n− θ)vn−θ(xθ+1),
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6.6. Appendix

which is substituted into (6.6.3), and together with (6.6.2) to have

vn(x1) ≤ Ẽ
[

1
n

θ∑
t=1

g(xt) + n− θ
n

vn−θ(xθ+1)
]

(6.6.4)

By construction of the strategy τ̃ the law of history h(θ) is the same under (σ, τ̃) and
under (σ, τ ′). Then we have from (6.6.4):

vn(x1) ≤ Ẽ
[

1
n

θ∑
t=1

g(xt) + n− θ
n

vn−θ(xθ+1)
]

= Ex1,σ,τ ′

[
1
n

θ∑
t=1

g(xt) + n− θ
n

vn−θ(xθ+1)
]

By definition, τ ′ is best response to σ in the auxiliary game, thus we have

vn(x1) ≤Ex1,σ,τ ′

[
1
n

θ∑
t=1

g(xt) + n− θ
n

vn−θ(xθ+1)
]

≤ inf
τ∈T

Ex1,σ,τ

[
1
n

θ∑
t=1

g(xt) + n− θ
n

vn−θ(xθ+1)
]
,

which proves (6.6.1) thus the proof is finished.
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