
HAL Id: tel-01232613
https://theses.hal.science/tel-01232613v1

Submitted on 23 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extraction and traceability of annotations for WCET
estimation

Hanbing Li

To cite this version:
Hanbing Li. Extraction and traceability of annotations for WCET estimation. Other [cs.OH]. Uni-
versité de Rennes, 2015. English. �NNT : 2015REN1S040�. �tel-01232613�

https://theses.hal.science/tel-01232613v1
https://hal.archives-ouvertes.fr

N

o
d’ordre : 00000 ANNÉE 2015

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

École doctorale Matisse

présentée par

Hanbing LI
préparée à l’unité de recherche IRISA – UMR6074

Institut de Recherche en Informatique et Système Aléatoires

Composante Universitaire (Université Rennes 1)

Extraction and
Traceability of
Annotations for
WCET Estimation

Thèse soutenue à Rennes
le 9 Octobre 2015
devant le jury composé de :

CHRISTINE ROCHANGE
Professeur à l’Université Toulouse 3 Paul Sabatier /
Rapporteur

PHILIPPE CLAUSS
Professeur à l’Université de Strasbourg / Rapporteur

FLORIAN BRANDNER
Maître de conférence à ENSTA ParisTech / Examinateur

STEVEN DERRIEN
Professeur à l’Université de Rennes 1 / Examinateur

ISABELLE PUAUT
Professeur à l’Université de Rennes 1 /
Co-Directeur de thèse

ERVEN ROHOU
Directeur de Recherche INRIA / Co-directeur de thèse

To see a world in a grain of sand
And heaven in a wild flower

Hold infinity in the palms of your hand
And eternity in an hour.

—William Blake

RESUMÉ EN FRANÇAIS
Extraction et traçabilité d’annotations pour l’estimation de

WCET

Motivation et techniques d’estimation de WCET

Dans les systèmes temps-réel dur, il est nécessaire de connaître le pire temps d’exécution (en
anglais Worst Case Execution Time [WCET]), de portions de code, pour démontrer que le
système respecte ses contraintes de temps, dans toutes les situations, y compris la pire. Les
estimations du WCET doivent être sûres et le plus précises possibles. La sûreté signifie que
l’estimation doit être supérieure ou égale à toute durée réelle d’exécution. La précision rend
l’estimation utile, elle permet d’éviter de surestimer le besoin en ressource processeur : le
WCET estimé doit être le plus proche possible du WCET réel.

Les techniques d’estimation de WCET peuvent être classées en deux catégories : les
méthodes statiques et celles basées sur des mesures. Les méthodes statiques assurent la
sûreté, car elles surestiment le WCET. L’estimation du WCET avec ces méthodes est calculée
au niveau du code machine, parce que la durée des opérations élémentaires (instructions) ne
peut pas être obtenue à un niveau plus élevé.

La méthode d’estimation statique de WCET utilisée dans cette thèse est la méthode
IPET (énumération implicite des chemins ou Implicit Path Enumeration Technique). Cette
méthode opère sur le graphe de flot de contrôle (CFG pour Control Flow Graph), extrait à
partir du code binaire. IPET modèle le problème de calcul de WCET comme un problème
de programmation linéaire en nombres entiers (PLNE).

Les information de flot sur les programme (bornes de boucles, chemins infaisables etc.)
sont nécessaires pour calculer des WCET précis. Les information de flot peuvent être
obtenues en utilisant des techniques d’analyse statique, ou ajoutées manuellement par par le
développeur d’applications par le biais d’annotations. Dans les deux situations, il est pratique
d’extraire ou d’exprimer des informations de flot au niveau du code source.

Les compilateurs modernes appliquent des centaines d’optimisations pour améliorer les
performances des programmes. Certaines d’entre elles modifient radicalement le flot de con-
trôle du programme, rendant difficile la correspondance entre la structure du code binaire et
le code source original. Ainsi, les annotations au niveau du code source ne peuvent pas être
utilisées directement.

Pour résoudre ce problème, nous proposons une infrastructure logicielle de transformation
des annotations, du code source au code binaire.

L’infrastructure de transformation

Notre infrastructure de transformation transmet les informations de flot à partir du code
source dans notre cas, C ou tout autre langage compile vers le code machine. Les trans-
formations sont exprimées de manière d’abstraite, indépendamment de l’infrastructure de

compilation dans lequel elles seront intégrées.
L’infrastructure de transformation, pour chaque optimisation du compilateur, définit un

ensemble de formules, qui réécrivent les contraintes de flot disponibles en de nouvelles con-
traintes. Elle supporte n’importe quelle contrainte linéaire sur les nombres d’exécutions des
blocs de base. Les bornes de boucle et les chemins infaisables, ainsi que toutes les autres
informations de flot seront toutes exprimées au final comme des contraintes linéaires.

Il existe trois règles de réécriture de base pour transformer les informations de flot : la

règle de changement , la règle de suppression et la règle d’addition.

La règle de changement

Cette règle est utilisée pour exprimer les changements de nombres d’exécutions des blocs
de base, ainsi que les changements des bornes de boucles, résultant d’optimisations de com-
pilation. Elle est exprimée par ↵ ! �, ce qui signifie que ↵ est substitué par � dans les
contraintes.

Cette règle contient deux cas :
Le premier cas est le changement dans le nombre d’exécutions d’un bloc de base. Dans

ce cas, ↵ est f

i

, où i est un des blocs de base dans le CFG avant optimisation. � est
une expression {C

j

+
P

j2new_CFG

M

j

⇥ f

j

}, où C est une constante et M est un coefficient

multiplicatif, qui peut être soit une constante entière non-négative, soit un intervalle [a,b],
soit un intervalle [a,+1) où a et b sont des constantes non-négatives.

Le second cas est le changement dans les bornes d’une boucle. ↵ est alors une contrainte
de la borne de boucle L

x

hl
bound

, u

bound

i, où L

x

⇢ CFG_original, et � est L
y

hl
bound

0
, u

bound

0i.
Les nouvelles bornes inférieures et supérieures de boucle l

bound

0 and u

bound

0 peuvent être des
constantes entières non négatives ou toute expression impliquant uniquement des constantes
(e.g., valeur plafond ou plancher d’une fraction) dont le résultat est un nombre entier non-
négatif.

La règle de suppression

Cette règle est utilisée à chaque fois qu’un bloc de base ou une boucle est supprimée du
CFG en raison d’une optimisation. Nous l’exprimons comme ↵ ! ;. ↵ peut être f

i

(i 2
CFG_original) ou L

x

hl
bound

, u

bound

i (L
x

⇢ CFG_original) en fonction de l’objet (bloc de
base, boucle) qui est supprimé. Grâce à cette transformation, ↵ est supprimé des contraintes.

La règle d’addition

Cette dernière règle est destinée à être utilisée par des optimisations qui ajoutent des nou-
veaux objets (bloc de base/boucle) dans le CFG. Quand un nouveau terme est introduit dans
le CFG, la nouvelle contrainte est ajoutée directement. La contrainte doit être linéaire, et
seulement impliquer des objets (blocs de base, boucles) du nouveau CFG.

Après l’application des règles de transformation, nous devons normaliser les nouvelles
contraintes, et introduisons pour ce faire des règles de normalisation.

Notre infrastructure de transformation prend en charge les optimisations du compilateur
les plus courantes. Pour la grande majorité des optimisations, le nouveau WCET estimé est

meilleur (plus faible) que l’original.

Mise en œuvre dans l’infrastructure de compilateur LLVM

Nous avons intégré les règles de transformation dans l’infrastructure de compilation LLVM,
version 3.4. LLVM comporte trois phases. La première phase est le frontal du compilateur,
nommé clang, qui analyse, valide et diagnostique les erreurs dans le code C/C++. Il traduit
ensuite le code vers la Representation Intermédiaire (IR) de LLVM. Dans la seconde phase,
nommée opt (l’optimiseur de LLVM), une série d’analyses et optimisations est effectuée, avec
comme objectif l’amélioration de la qualité du code. Enfin, la dernière étape du compilateur,
nommé codegen produit du code machine natif à partir de la représentation intermédiaire.

Figure 1 – La mise en œuvre de la traçabilité dans LLVM

Nous avons ajouté un nouveau type d’information à LLVM, nommé WCETInfo, que
nous attachons au programme. Son objectif est d’associer à chaque boucle (objet “loop” dans
LLVM) l’estimation correspondante de ses bornes inférieures et supérieures. Les optimisa-
tions disponibles dans LLVM peuvent préserver, mettre à jour ou supprimer les informations
WCETInfo.

Comme le montre la figure 1, l’information sur les bornes de boucles est tout d’abord
extraite par un outil d’estimation de borne de boucle et est stockée dans un fichier conforme
au format FFX (format d’annotation basé sur XML). Notre version modifiée de LLVM lit
les informations de flot à partir du fichier FFX et de les stocke dans WCETInfo. Lors de la
compilation, les informations WCETInfo sont prises en compte au sein de nos optimisations
LLVM modifiées. Enfin, la générateur de code modifié ajoute les bornes de boucles finales
dans le code binaire (dans une section spécifique du fichier binaire), pour une utilisation
ultérieure dans le calcul du WCET.

Résultats expérimentaux

Pour les optimisations sans vectorisation, nous examinons d’abord l’impact sur le WCET
estimé de toutes les optimisations du niveau -O3 avec l’outil d’analyse statique de WCET
Heptane1. Ensuite, nous évaluons l’impact de chaque optimisation en la désactivant, et
comparont son effet négatif (nous avons d’abord désactivé une optimisation sur n, puis deux
sur n).

1
https://team.inria.fr/alf/software/heptane

0,00%$
10,00%$
20,00%$
30,00%$
40,00%$
50,00%$
60,00%$
70,00%$
80,00%$
90,00%$
100,00%$

bs
$

cn
t$

fdc
t$

fib
ca
ll$

ins
ert
so
rt$

jfd
c=
nt$

lud
cm
p$

ma
tm
ult
$

nd
es$ ns

$

ns
ich
ne
u$ ud

$

av
era
ge
$

Figure 2 – Impact des optimisations (-O3) sur WCET. L’axe du Y représente le WCET avec des optimisa-

tions, normalisée par rapport à WCET sans optimisation (-O0)

La figure 2 montre l’impact des optimisations du compilateur sur le WCET estimé par
Heptane. La figure montre que nous pouvons obtenir cette estimation grâce à notre infras-
tructure logicielle de transformation. Nous sommes par conséquent capables de transformer
toutes les informations de flot à partir du code C vers le code binaire sans perte d’information.
Nous observons également que l’option -O3 permet une réduction importante du WCET es-
timé.

Pour les optimisations de vectorisation, parce que les outils d’estimation de WCET
auxquels nous avons accès ne supportent actuellement pas les instructions SIMD (Single
Instruction Multiple Data), nous effectuons des mesures sur du matériel réel pour collecter
les temps d’exécution réel pour des codes à chemin unique. Grâce aux expériences sur les
architectures Intel x86 et ARMv7 avec les ensembles de benchmarks TSVC et gcc-loops, nous
pouvons faire des observations similaires et concluons que la vectorisation réduit les WCETs,
et qu’elle est plus efficace sur l’architecture Intel étudiée.

Conclusion

Les concepteurs de systèmes temps-réel ont besoin de calculer les WCET des composants de
leurs systèmes. Ceci est accompli en combinant des annotations prévues au niveau du code
source par le programmeur (par exemple les bornes de boucle) et générées au niveau du code
machine par le compilateur. Cette combinaison est possible si une équivalence est maintenue
entre les deux représentations. Les optimisations du compilateur brisent généralement cette
équivalence. Nous proposons par conséquent une infrastructure logicielle, construite dans le
compilateur LLVM, qui propage les informations pour toutes les optimisations du compila-
teur. Nous illustrons notre mécanisme sur les bornes de boucles, et nous montrons que de
nombreuses optimisations peuvent être activées.

Notre travail en cours concernant la traçabilité de C à binaire vise à étendre la traçabilité
des informations au delà bornes de boucles (par exemple en considérant les branchements
mutuellement exclusifs). Les autres travaux comprennent l’introduction d’informations con-
textuelles, des bornes globales de boucles, le format de sortie et un support supplémentaire
pour les jeux d’instructions vertoriels.

Remerciements

Je tiens tout d’abord à remercier mes directeurs de thèse, Erven Rohou et Isabelle Puaut
pour l’aide compétente qu’ils m’ont apportée, pour leur patience et leur encouragement
à finir mon travail.

J’exprime tous mes remerciements à l’ensemble des membres de mon jury de thèse:
Mesdames Christine Rochange et Isabelle Puaut et Messieurs Philippe Clauss, Florian
Brandner, Steven Derrien et Erven Rohou.

Je remercie mes parents Tianlin LI et Shubo LENG et ma femme Kun He qui me
soutiennent dans ma thèse et ma vie. Je vous aime.

Je remercie tous les membres et ex-membres de l’équipe ALF pour le climat sym-
pathique dans lequel ils m’ont permis de travailler.

J’adresse toute ma gratitude à tous les membres du projet W-SEPT.
Je remercie tous mes ami(e)s avec lesquels j’ai partagé tous ces moments de doute

et de plaisir.

1

Publications

• Traceability of Flow Information: Reconciling Compiler Optimizations and WCET
Estimation [LPR14]. Hanbing Li, Isabelle Puaut, Erven Rohou - 22nd Interna-
tional Conference on Real-Time Networks and Systems RTNS 2014, October 8-10,
2014, Versailles, France.

• Tracing Flow Information for Tighter WCET Estimation: Application to Vec-
torization [LPR15]. Hanbing Li, Isabelle Puaut, Erven Rohou - 21st IEEE In-
ternational Conference on Embedded and Real-Time Computing Systems and
Applications RTCSA 2015, August 19-21, 2015, Hong Kong, China.

1

2 Contents

Contents

Remerciements 1

Publications 1

Contents 2

Introduction 7

1 WCET Estimation Techniques 13
1.1 Worst-Case Execution Time Analysis . 13

1.1.1 Worst-Case Execution Time and WCET estimation 13
1.1.2 WCET analysis tools and prototypes 16

1.2 Static WCET Calculation Using IPET 17
1.2.1 Integer Linear Programming (ILP) 17
1.2.2 Timing analysis with IPET . 18

1.3 Flow Information and Annotation . 19
1.3.1 The need for annotations . 20
1.3.2 The form of annotations . 20
1.3.3 The content of annotations . 20
1.3.4 The supported language . 20
1.3.5 The placement of annotations . 20
1.3.6 The level of annotations . 20
1.3.7 The method of annotations addition 21
1.3.8 Summary of annotation languages 22

1.4 Summary . 23

2 Transformation Framework 25
2.1 Flow Information . 25

2.1.1 The program representation . 26
2.1.2 Loop description . 27
2.1.3 Infeasible paths . 31
2.1.4 Contextual information . 32

2.2 Contents of the Transformation Framework 32
2.2.1 Representation of flow information 32

3

4 CONTENTS

2.2.2 Encoding . 33
2.3 Constraint Transformation Rules . 35

2.3.1 Change rule . 37
2.3.2 Removal rule . 37
2.3.3 Addition rule . 39
2.3.4 Rules manipulation . 39
2.3.5 Operations after transformation 40
2.3.6 The influence of transformation framework on estimated WCET 41

2.4 Overview of Transformation Framework 42
2.5 Compiler Optimizations and Their Concrete Transformation Rules . . . 42

2.5.1 Redundancy elimination, procedure, control-flow and low-level
optimizations . 43
2.5.1.1 Unreachable code elimination 44
2.5.1.2 Dead code elimination 45
2.5.1.3 If simplification . 46
2.5.1.4 Branch optimization . 47
2.5.1.5 Tail merging (cross jumping) 48
2.5.1.6 Inlining . 50

2.5.2 Loop optimizations . 50
2.5.2.1 Loop unrolling . 50
2.5.2.2 Loop inversion (loop rotation) 52
2.5.2.3 Loop unswitch . 53
2.5.2.4 Loop deletion . 54
2.5.2.5 Loop interchange . 54
2.5.2.6 Loop distribution . 55
2.5.2.7 Loop fusion . 57
2.5.2.8 Loop coalescing . 58
2.5.2.9 Loop collapsing . 58
2.5.2.10 Loop peeling . 59
2.5.2.11 Loop spreading . 59
2.5.2.12 Loop tiling (loop blocking) 62

2.5.3 Vectorization optimizations . 62
2.5.3.1 Loop-level vectorization 63
2.5.3.2 Superword level parallelism 64
2.5.3.3 Rule set . 64

2.6 Related Work . 66
2.6.1 WCET estimation without or with “weak” optimizations 66
2.6.2 WCET estimation with compiler optimizations 67
2.6.3 WCET estimation without traceability 68
2.6.4 Optimizations for WCET . 68
2.6.5 Vectorization research . 69

2.7 Summary . 70

CONTENTS 5

3 Implementation of Traceability in the LLVM Compiler Infrastructure 71
3.1 Required Tools . 71

3.1.1 WCET analysis tools . 71
3.1.1.1 Heptane . 72
3.1.1.2 OTAWA . 72

3.1.2 Flow information extraction and formulation 72
3.1.2.1 oRange . 73
3.1.2.2 FFX . 73

3.2 The LLVM Compiler Infrastructure . 73
3.2.1 LLVM components . 73
3.2.2 Passes . 74
3.2.3 Supported optimizations . 75

3.3 Implementation within the LLVM Compiler Infrastructure 75
3.3.1 External components . 75
3.3.2 Representation of flow information (WCETInfo) 76
3.3.3 Input of flow information . 76
3.3.4 Transfer of flow information . 77
3.3.5 Output of flow information . 78
3.3.6 The comparison with original Heptane estimation process 78
3.3.7 Specific features of optimizations in LLVM 80

3.3.7.1 Loop unrolling . 80
3.3.7.2 Vectorization optimization 81

3.4 Summary . 82

4 Experimental Evaluation of Traceability 85
4.1 Experiments for Traceability without Vectorization 85

4.1.1 Benchmarks . 85
4.1.2 Target hardware . 86
4.1.3 Impact of optimizations on estimated WCET 87

4.1.3.1 Individual impact of optimizations (1-off) 88
4.1.3.2 Combined impact of optimizations (2-off) 91

4.2 Experiments for Traceability with Vectorization 91
4.2.1 Benchmarks for vectorization . 92
4.2.2 Environment . 92
4.2.3 Impact of vectorization on WCET 93

4.2.3.1 TSVC and ARM Architecture 94
4.2.3.2 TSVC and Intel Architecture 94
4.2.3.3 Gcc-loops . 95

4.3 Summary . 96

Conclusion 99

Bibliography 111

6 CONTENTS

Table of figures 113

Table of tables 115

Introduction

Motivation of the thesis

As a thesis of computer science, let us start it from “computer”. A computer is a
general-purpose device that can be programmed to carry out a set of arithmetic or
logical operations automatically. In 1941, Z3, the world’s first working electromechan-
ical programmable, fully automatic digital computer was built by Zuse. Then ABC
(Atanasoff-Berry Computer), the first “automatic electronic digital computer” was de-
veloped by John Vincent Atanasoff and Clifford E. Berry of Iowa State University
in 1942. In 1946, ENIAC (Electronic Numerical Integrator and Computer), the first
electronic programmable computer and the first Turing-complete device was built and
announced in the US. Then the computer technologies began to develop and expand
rapidly, and thanks to all the computer scientists and their works, computer systems
become an essential part of human life and make our lives convenient, wonderful and
magnificent.

At the beginning, personal computers, servers and supercomputers were the focus
for concern. However, with the continued miniaturization of computing resources, and
advancements in portable battery life, portable computer systems grew in popularity.
The remarkable example is mobile phone or smartphone. These computer systems
belong to embedded systems.

In contrast with personal computers, embedded systems are systems with a ded-
icated function within a larger mechanical or electrical system. The processor and
software in an embedded system is usually unnoticed by the users.

Nowadays, embedded systems control many devices in our daily life. Besides, the
usage and complexity varies wildly, e.g. microwave oven, digital watch, MP3 player, etc.
A complex example is modern cars, which contain many embedded systems: anti-lock
braking system (ABS), vehicle monitoring system, car entertainment system and so on.

An embedded system is called “real-time” when it is designed in order to guarantee
that real-time application requests will be served within prespecified timing constraints.
ABS in the cars is a remarkable example of real-time system.

In real-time systems, knowing the Worst-Case Execution Time (WCET) of pieces
of software is required to demonstrate that the system meets its timing constraints for
a given hardware platform (with different inputs, in a given hardware and operating
system), including the worst case. If several platforms might be used, WCET will be
estimated for each of them separately. For some real-time systems, WCET calculation

7

8 Introduction

methods have to be safe and as tight as possible. Safety means that the WCET esti-
mate must be higher than or equal to the actual worst-case execution time. Tightness
makes the estimate useful: to avoid over-provisioning processor resources, the estimated
WCET has to be as close as possible to the actual WCET.

WCET calculation techniques can be classified into two categories: static and
measurement-based methods. Measurement-based methods can miss the worst-case,
and static methods overestimate the WCET result and emphasize safety. Static meth-
ods analyze the program and possible execution paths to derive WCET results. So in
this thesis, we focus on static methods. Static WCET estimation has to be computed at
the machine code level, because the timing of processor operations can only be obtained
at this level. Moreover, in processors with cache memories, the addresses of memory
locations – necessary to analyze the contents of caches – are only known at binary code
level.

Information on program control flow is required to calculate tight WCETs. The most
basic flow information consists in loop bound information (the maximum number of
times a loop iterates, regardless of the program input). More elaborate flow information
help tighten WCETs, for example by expressing that a given path is infeasible, or that
some program points are mutually exclusive during the same run.

Flow information may be obtained by using static analysis techniques or added
manually by the application developer through annotations. In both situations, it is
convenient to extract or express flow information at the source code level. When using
manual annotations, the application developer can focus on the application semantics
and behavior, ignoring the compiler and the binary code. When extracted automatically,
more flow information can be gathered at source code level than at binary code level
because of the higher level of the analyzed language.

Compilers translate high level languages written by programmers into binary code fit
for microprocessors. Modern compilers also typically apply hundreds of optimizations
to deliver more performance. Some of them are local (i.e. at the granularity of the
basic block), they usually do not challenge the consistency of flow information. Other
optimizations radically modify the program control flow. As a result, it is usually very
difficult to match the structure of the binary code with the original source code, and
hence to port flow information from high-level to low-level representations. Even when
the structure of the binary and source code seem to match, there may be important
changes of loop bound information, through optimizations such as loop unrolling or loop
re-rolling. Figure 1 (shown in C language for readability, although it will be expressed
in compiler Intermediate Representation (IR), or binary code) shows the application of
loop unrolling. Loop unrolling in this example replicates the loop body twice in one
iteration (body(i);! body(i); body(i + 1);). The structure of the code does not change
after the optimization. But the loop bounds are not the same (100 ! 50).

Using optimizing compilers is key to deliver performance. From the point of view
of the programmer, compilers are black boxes that take source code as input, and
produce binary code. Some compilers can produce dumps of the transformations they
applied, but these dumps are very limited. Yet, modern compilers apply hundreds
of transformations, some very aggressive, that radically modify the structure of loops

Introduction 9

for (i =0; i <2∗n ; i++)
// MAXITER(100)

{
body (i) ;

}

(a) Original source code

for (i =0; i <2∗n ; i+=2)
// MAXITER?

{
body (i) ;
body (i +1);

}

(b) Optimized (unrolled)

(c) The structure of original code and un-
rolled code

Figure 1 – CFG matching and WCET overestimation

(consider unrolling, software pipelining, fusion, tiling, polyhedral transformations...)
and functions (inlining, specialization, processing OpenMP directives).

Using the flow information obtained at the source code level, or using best-effort
methods for matching source code and binary code may be misleading. In the favorable
case, the WCET is “simply” overestimated. Consider the example of Figure 1. The loop
on the left has been annotated by the programmer. After optimization, in particular
loop unrolling, the code will be similar to the right part of the figure. Both contain a
single loop, and a tool could be tempted to match the CFGs and port the flow infor-
mation to the binary representation. In this particular case, the result remains safe,
but precision is lost since the new loop obviously iterates only 50 times at the maxi-
mum, whereas the original loop iterates 100 times. On the other hand, loop rerolling
(implemented in some compilers – including LLVM [LA04, LLVb] – to reduce code size)
results in a increase of the number of loop iterations. Using graph matching for such
loops would result in underestimated WCETs, that jeopardize the system safety.

So now we are facing the following issues:

• In order to derive better performance, modern compilers usually include opti-
mizations. The quantity and type of the optimizations vary depending on the
compilers.

• If the compiler optimizations are applied, the flow information may be modified.

• When the flow information is modified, if we do nothing, better case is that the
WCET is overestimated but safe; worse case is that the result is unsafe (e.g. loop

10 Introduction

rerolling increases the number of loop iterations), or even cannot be got (e.g.
loop unswitch and loop tiling add new loops whose loop bounds are unknown for
WCET estimation).

• We have mentioned that graph matching may be unsafe as well.

• So a big problem comes: we cannot estimate a safe and as precise as possible
WCET result with modern optimizing compilers.

The solution we proposed is to trace flow information in the optimizing compilers.
Annotations are essential flow information to make WCET analysis more precise. So
the traceability of annotations is the objective of our thesis.

The thesis is funded by the project W-SEPT1 which is a collaborative research
project focusing on the precise estimation of the worst-case execution time and the
identification and traceability of semantics information through the compilation flow
from high-level language to C level and finally to binary level. The project is funded by
ANR2 under grant ANR-12-INSE-0001, and supported by the competitiveness clusters
Aerospace Valley3 and Minalogic4. Our work is also partially funded by COST Action
IC1202: Timing Analysis On Code-Level (TACLe)5.

Contribution of the thesis

In this thesis, we propose a framework to systematically transform flow information
from source code level down to binary code level. The framework defines a set of
formulas to transform flow information for standard compiler optimizations. What is
crucial is that transforming the flow information is done within the compiler, in parallel
with transforming the code. There is no guessing what flow information have become,
it is transformed along with the code they describe. In case the transformation is too
complex to update the information, we may have the option to drop the information if
the information is not necessary. In this way, we can guarantee that the result is safe,
even though it will probably result in a loss of precision.

Our transformation framework is designed to transform flow information as ex-
pressed by the most prevalent WCET calculation technique: Implicit Path Enumera-
tion Technique (IPET) [LM95]. More precisely, flow constraints are expressed as linear
relations between execution counts of basic blocks in the program control flow graph.
As shown later in the thesis, the framework is general enough to cover all typical opti-
mizations implemented in modern compilers.

The proposed framework was integrated into the LLVM compiler infrastructure. For
the scope of this thesis, although formulas are more general, our experiments in LLVM
will concentrate on loop bounds as sources of flow information.

1http://wsept.inria.fr
2http://www.agence-nationale-recherche.fr
3http://www.aerospace-valley.com
4http://www.minalogic.org
5http://www.cost.eu/COST_Actions/ict/Actions/IC1202

Introduction 11

Usually, programs spend most of the execution time in loops and in (recursive) func-
tions. So determining loop bounds and function depths is an essential task for WCET
estimation. Loop optimizations and function inlining in modern compilers make this
task a challenge. Fortunately, in our implementation, loop bounds are traced carefully
and all loop optimizations in LLVM are supported. Besides, inlining optimization is
also included. Therefore, our framework and implementation accomplish this essen-
tial and important task, and obtain the safe and tight WCET even with the compiler
optimizations.

Our experimental results show that LLVM optimizations significantly reduce esti-
mated WCETs.

Structure of the thesis

The contents of this thesis is organized as follows:
Chapter 1 gives an introduction to WCET, WCET estimation methods, WCET esti-

mation tools and prototypes. Then, the most common WCET static analysis technique,
IPET is described. At the end of this chapter, annotation languages are presented.

Chapter 2 describes the theoretical foundations required by our work. Then the main
contribution of this thesis, a transformation framework, is proposed. Our transformation
framework can trace flow information with compiler optimizations independently of the
compiler framework. A summary of our supported compiler optimizations and their
corresponding rule sets is presented in this chapter. At the end, we introduce and
compare the research works related to our transformation framework.

An implementation of the proposed transformation framework within the LLVM
compiler infrastructure is presented in Chapter 3. We present the overview of LLVM
and then our traceability method and the corresponding modification of LLVM.

We provide experimental setup, results and their analysis in Chapter 4. Through
the results and analysis, we can derive that:

• Flow information can be traced by our transformation framework during the com-
piler optimizations.

• With our framework and implementation, we can estimate safe WCET.

• Estimated WCET can benefit from compiler optimizations.

Finally, we conclude with a summary of the thesis contributions and plans for future
work.

12 Introduction

Chapter 1

WCET Estimation Techniques

This chapter gives an overview of Worst-Case Execution Time (WCET) estimation
techniques and flow information transformation. After a generic introduction about
WCET calculation techniques and tools in Section 1.1, the static WCET estimation
method – Implicit Path Enumeration Technique (IPET) is described in Section 1.2.
Afterwards, the different existing annotations forms and the corresponding extraction
methods are presented in Section 1.3.

1.1 Worst-Case Execution Time Analysis

“Deadlines” are the specified response time constraints which should be guaranteed by
real-time systems. By the consequence of missing a deadline, real-time systems can be
classified into the following three categories:

Hard Ensure that all deadlines are met. Missing a deadline is a total system failure.

Firm Infrequent deadline misses are tolerable, but may affect the quality of service.
The computation after its deadline is obsolete.

Soft Deadline misses are tolerable, but not desired.

Hard real-time systems have to fulfill strict timing guarantees, otherwise catastrophic
consequences may be caused. So to avoid this happening, the worst-case execution time
(WCET) of the program needs to be known.

1.1.1 Worst-Case Execution Time and WCET estimation

WCET is an essential element for hard real-time systems. However computing the
execution time of a program in the worst case is challenging. If the worst-case input for
the program were known, we could derive a reliable guarantee based on the worst-case
execution time. Unfortunately, in general this worst-case input is unknown and hard to
derive.

13

14 WCET Estimation Techniques

Figure 1.1 – Distribution of execution time and basic notions of timing analysis systems

The relevant typical terms used to describe the execution time of a program are
depicted in Figure 1.1. The curve represents the probability of different execution
times of a program with different input data and initial processor states. Usually, the
curve applies to a given hardware/OS pair, and the execution times usually vary widely
depending on the different program inputs. The best-case execution time (BCET) is the
shortest execution time of the program. And worst-case execution time (WCET) is the
longest execution time. Average-case execution time (ACET) lies between the BCET
and WCET. ACET depends on the distribution of the execution time of a program. The
average of the execution time observed for one input data set is called ACET. Average
performance and worst-case performance are the most used.

Since worst-case performance is so important to hard real-time systems, how can we
get WCET? WCET calculation techniques can be classified into two categories: static
and measurement-based methods [WEE+08].

Static methods abstract the program first, and then analyze the abstraction of the
program and find all possible paths. Then the methods analyze the set of possible
execution paths, and do not rely on execution of the program on real hardware or
simulator which often needs complex equipment for the target system. They derive
upper bounds of the WCET from the program structure and a model of the hardware
architecture, and maybe together with some annotations. Annotations are the external
information that are given explicitly by static analysis tools or program developers or
users. More details about this category of methods are presented in [WEE+08].

The estimated WCET in Figure 1.1 is derived by static methods. The estimated
WCET is overestimated, because during the abstraction, the behavior of the processor
cannot be predicted accurately, and a pessimistic result is usually used.

On the other hand, measurement-based methods use end-to-end measurements on
the given processor or a cycle-accurate simulator, with a set of possible inputs data, in
search for the input that exercises the longest execution path. The advantages for these
methods are that they do not need to model hardware architecture and thus can be easy

Worst-Case Execution Time Analysis 15

to be applied to other new target systems. Besides, for complex programs and complex
target systems, they are simpler to be applied. The measured WCET in Figure 1.1 is
derived by these methods. In general, the WCET is underestimated, unless the worst
case input is exercised by the measurements.

In Figure 1.1, ↵ is the difference between actual WCET and estimated WCET
(↵ = estimated_WCET � actual_WCET). It can be used to explain the two main
criteria of WCET estimation: safety and precision. Safety means that the estimated
WCET must be higher than or equal to the actual WCET, i.e. ↵ should always be
positive. This is essential for hard real-time programs to avoid severe damages. Precision
means that the estimated WCET has to be as close as possible to the actual WCET.
i.e. ↵ should be as small as possible. Actually, ↵ can be considered as explicit precision.
A lack of precision may lead to a waste of hardware resources.

Static methods emphasize safety. These methods are based on the target hardware
model that can capture the behavior of the processor. By design, static methods are
guaranteed to identify the longest feasible execution path. And by using this longest
feasible path it can produce the bound which can guarantee that the actual execution
time will not exceed the bound, and therefore, are safe. However, the necessity for
the specific model of hardware architecture and the possibly overestimated WCET esti-
mate are the price paid for the safety. Nowadays, modeling hardware architecture and
processor behavior is still a main technical problem.

The disadvantage of measurement-based methods is distinct: these methods may
miss the actual worst case and may underestimate WCET, unless the target systems or
test programs are simple enough, or all possible execution paths can be measured. So
the underestimated WCET is impossible to be used in hard real-time systems. So we
do not consider measurement-based techniques in this thesis.

Besides, there are some other timing analysis techniques, e.g. hybrid measurement-
based analysis and probabilistic timing analysis.

Hybrid measurement-based analysis is similar to static methods. The differences are
that hybrid timing analysis does not need to model hardware architecture, it derives
execution times of small program segments by using measurement [KPW04, GBEL10,
BMB10]. Then it combines them with static methods. The WCET estimated by this
method is generally more accurate compared with static methods. However, there are
kinds of drawbacks. For example, there is a possibility of underestimation; it adds an
overhead which may disturb the accuracy and slow the program. The WCET analysis
tool RapiTime [Rapb, Rapa] is an example.

Probabilistic WCET analysis [BCP02, BCP03] is a method combining static and
measurement analysis in a probabilistic framework. The probability distribution of the
WCET of a code fragment can be determined by this method. It extracts the program
into a syntax tree in which the leafs are basic blocks and the inner nodes are the
sequential, conditional and iterative parts. Then it uses a timing schema to represent
the different types of nodes in the syntax tree. A measurement approach can be used
to record the actual execution time of each nodes. With these information, a WCET
result can be derived.

16 WCET Estimation Techniques

1.1.2 WCET analysis tools and prototypes

In this subsection, we summarize the main WCET analysis tools and prototypes for the
moment.

aiT aiT WCET Analyzer is the WCET analysis tool of AbsInt which is a software-
development tools vendor based in Saarbrücken, Germany. The purpose of aiT [Abs,
FH04, FHF07] is to obtain tight bounds for the WCET of tasks in real-time systems.
It directly analyzes binary executables and statically analyzes a task’s intrinsic cache
and pipeline behavior to compute correct and tight upper bounds for the WCET.

Bound-T The Bound-T timing analysis tool [Tid, HS02] provided by Tidorum Ltd
computes an upper bound for the execution times fo programs by using static analysis
of the machine code. Optionally, the tool can also get bounds on the stack usage of the
subroutine, including called functions.

Chronos Chronos [oS, LLMR07] is an open-source static WCET analysis tool devel-
oped at National University of Singapore (NUS). Chronos models various architectural
features and their interactions for WCET analysis. By analyzing binary code, it con-
structs control flow graph and extracts flow constraints. With these flow constraints,
processor model, user configuration, additional flow information, Chronos determines
an upper bound on the execution time of a program.

Heptane Hades Embedded Processor Timing ANalyzEr (Heptane) [CP00, IRI] is an
open-source static WCET analysis tool designed by IRISA, Rennes (part of W-SEPT).
Through statically analyzing source and/or binary code1, Heptane extracts control flow
graph, loops, basic blocks and so on. With these information and loop annotations, it
analyzes cache and computes the upper bounds on the execution time for many cache
architectures.

OTAWA Open Tool for Adaptive WCET Analyses (OTAWA) [BCRS10, TRA] is a
static WCET analysis tool developed by the TRACES team at IRIT labs, University
of Toulouse, France (part of W-SEPT). OTAWA proposes abstract layers to make the
analyses independently from the hardware and from the instruction set. By analyzing
binary programs, the extracted flow information combining the information of the target
hardware and annotations are used for the final WCET static analysis.

RapiTime RapiTime [Rapb, Rapa] is an automated measurement-based WCET anal-
ysis tool developed by Rapita Systems Ltd. RapiTime measures the WCET result by
running the real-time programs with a suite of tests. The users need to provide test

1Source code needs to be compiled into binary code and Heptane analyzes the binary code finally.

Static WCET Calculation Using IPET 17

suite to and can provide annotations in the code to guide the measurement. Benefit-
ing from the measurement-based method, RapiTime does not rely on a model of the
processor, and it can handle complex advanced architecture.

SymTA/P The purpose of SYMbolic Timing Analysis for Processes (SymTA/P)
[oCNE] from IDA, TU Braunschweig is to obtain upper and lower execution time bounds
of C programs by modeling and analyzing process behavior using execution cost inter-
vals. The program structure and the execution context is considered in this tool.

SWEET SWEdish Execution Time tool (SWEET) [RtiV, Lis14] is a research proto-
type provided by Mälardalen Real-Time Research Center (MRTC). It can translate dif-
ferent code formats into their intermediate format ALF [GEL+09]. With ALF, SWEET
analyzes and derives flow information automatically. At the end, it calculates safe
bounds on the possible executions of a program.

T-CREST Time-predictable Multi-Core Architecture for Embedded Systems (T-
CREST) [tcr, PPH+13] is a time-predictable system built collaboratively by indus-
trial organisations and research and development organisations. It aims at the deriva-
tion of the WCET of the hard real-time space applications with multi-core technol-
ogy. For this purpose, T-CREST proposes solutions on both the hardware (e.g. time-
predictable caching) and the compiler infrastructure (e.g. LLVM compiler infrastructure
and WCET aware optimizations). At the end, T-CREST provides a WCET analyzable
multi-core system with high performance.

1.2 Static WCET Calculation Using IPET

The WCET calculation method used in the thesis is the most common technique, named
IPET for Implicit Path Enumeration Technique [LM95, PS97]. This method operates
on control flow graphs (CFG), extracted from binary code. IPET models the WCET
calculation problem as an Integer Linear Programming (ILP) [GN72] formulation.

1.2.1 Integer Linear Programming (ILP)

At first, Linear Programming (LP) should be introduced. LP, also called linear opti-
mization, is a method to process various linear inequalities relating to the requirements
and find the best outcome of this mathematical model under these conditions. In a lin-
ear program, there are variables, constraints, and an objective function. The variables
stand for numerical values. Constraints are linear expressions and used to limit the
values to a feasible region. The objective function should also be linear in the variables.
Its declaration consists of one of the keywords minimize or maximize. It defines the
quantity to be maximized or minimized subject to the constraints.

For ILP, it adds the requirements that some or all of the variables are restricted to
be integers. ILP can be expressed in the following canonical form:

18 WCET Estimation Techniques

Objective function

Maximize
X

i2CFG

fi ⇥ Ti

Structural constraints

f1 =1

f1_2 + f5_2 =f2_3 + f2_4 = f2

f2_3 =f3_5 = f3

f2_4 =f4_5 = f4

f3_5 + f4_5 =f5_2 + f5_6 = f5

f5_6 =f6

Additional constraints

f2 Xmax

f2 � Xmin

f3 2⇥ f4

Figure 1.2 – CFG and WCET calculation using IPET

Variable xi 2 int (i = 1, 2, . . . , n)

Constraint
nP

i=1
aij ⇥ xi bj (j = 1, 2, . . . ,m)

xi � 0 (i = 1, 2, . . . , n)

Objective function Maximize/Minimize
nP

i=1
ci ⇥ xi

aij and bj are the parameters of the constraints, and ci are the parameters of the
objective function. All of them are integer constants.

1.2.2 Timing analysis with IPET

An example CFG is depicted in the left part of Figure 1.2. The example program
includes one loop, depicted by a rectangular box. Notations Xmin and Xmax state
that the loop iterates at least Xmin times, and at most Xmax times. They are used in
additional constraints. (More information in Section 2.1.2)

The right part of Figure 1.2 depicts the ILP system used to calculate the WCET.
Every basic block i has a worst-case execution time, denoted as Ti, and considered
constant in the ILP system. Calculating the WCET is done by maximizing the objective
function, in which fi is variable and represents the execution count of basic block i.
The control flow is subject to structural flow constraints, that come directly from the

Flow Information and Annotation 19

structure of the CFG and are generated automatically. From top to bottom, the first
one states that the entry point to be analyzed is executed exactly once. The next
constraints state that the execution count of a basic block is equal to the sum of the
execution counts of its incoming edges, as well as outgoing edges, where fi_j represents
the execution count of the edge from node i to j.

Finally, additional constraints specify flow information that cannot be obtained
directly from the control flow graph. The first kind of additional information is loop
information (f2 Xmax and f2 � Xmin in the example). It gives the maximum
number of iterations for loops, and is mandatory for WCET estimation. Some other
linear constraints such as f3 2 ⇥ f4 may also be specified to constrain the relative
numbers of executions of basic blocks in the CFG. Additional constraints come from
the semantics of the programs and cannot be derived easily, so they may be inserted
manually by the programmer, through annotations, or be obtained automatically using
static analysis tools.

1.3 Flow Information and Annotation

Previous section mentioned that static analysis methods may need some annotations
(e.g., loop bounds, infeasible paths and so on) to derive upper bounds for the execu-
tion times of programs on a given platform. In fact, WCET estimation usually needs
manual annotations or assertions to define essential information. Information on the
flow of control of applications improves the tightness of WCET estimates. Beyond
loop bounds, which are mandatory for WCET calculation, examples of flow informa-
tion include infeasible paths, contextual information, or other properties constraining
the relative execution counts of program points. An annotation language is used to
annotate the flow information and make the information available to the subsequent
WCET analysis. The following seven pivotal points decide the design of an annotation
language and have an impact on its usability. They are related to both the WCET
analysis tools and the target programs.

• The need for annotations

• The form of annotations

• The content of annotations

• The supported language

• The placement of annotations

• The level of annotation

• The method of annotations addition

20 WCET Estimation Techniques

1.3.1 The need for annotations

The WCET analysis methods and tools vary widely. But many of them need annotations
for precise WCET estimation. Sometimes, the annotations improve even the efficiency
of the estimation.

1.3.2 The form of annotations

Normally, the form of annotations is special to its own WCET analysis tool. It relates
to the placement, the level, even the method of addition. For example, for external
separate annotations, Extensible Markup Language (XML) [BPSM+98], as a simple
and universal format, is used widely to represent annotations.

One example is an XML-based representation [PM14] proposed by Parsa et al. They
use this XML-based annotation to store the information from the analysis of program
and to provide to other WCET analysis tools for precise WCET estimation.

FFX [BCdM+12] is another XML-based annotation format. Benefiting from the
XML standard, it is easy to create, understand and use among different WCET tools.

1.3.3 The content of annotations

Theoretically and ideally, the annotations should contain all flow information (loop
information, infeasible paths, contextual information and so on). However, considering
the limitation of annotation format, the need of WCET analysis tools, and difficulty of
flow information acquisition, annotations should choose the appropriate content. But
for almost every annotation, loop bound is the essential part.

1.3.4 The supported language

Most annotations support a single programming language (based on WCET analysis
tools, and for now C language is supported most widely). There are a few annotations
that can support multiple languages.

1.3.5 The placement of annotations

There are two primary ways to keep annotations: inside the source code or in a separate
file. None of them is consistently superior to the other. Normally, the annotations are
usually added inside the source code when the annotations must be added manually.
Because in this way, it is much easier and less error-prone. On the contrary, when the
annotations are derived by the static analysis tools, writing into a separate file is more
convenient for both the analysis tools and WCET estimation tools.

1.3.6 The level of annotations

Annotations can be added at high-level source code or low-level machine code.
The advantage of addition at machine code level is the convenience of usage. Because

the WCET estimation is also at machine code level, the annotations can be used directly.

Flow Information and Annotation 21

The addition of annotations at this level is usually through two methods. One is to
read and analyze machine code. This is difficult for the programmers, users and the
analysis tools. Another is to map with source code. This is typically non-trivial. When
the optimizations are applied, this becomes difficult and error prone. One method
to maintain the mapping between source code and machine code is to define a set of
language constructs: anchors [KKP+07]. which can be recognized after compilation.

Compared with machine code level, adding annotations at source code level is easier
for both programmers and analysis tools. And these annotations are easier to under-
stand and verify. So, normally, source code level annotations are chosen in most cases.

1.3.7 The method of annotations addition

Annotations can be obtained via two basic methods: static analysis or annotations
added by the application developers or users.

Manual annotations are an easy and convenient way to assist non-perfect analyses.
Usually, they are added by the users who know the code well, e.g. the program develop-
ers. However, manual annotations are potentially error-prone and may yield incorrect
WCET estimates.

In order to get the annotations automatically, the static analysis tools are required.
With the development of the techniques of flow information extraction, more and more
annotation languages use the automatic additional methods.

At the same time, more and more methods of flow information extraction are pro-
posed. Here are several examples:

Gustafsson et al. [GESL06] propose a method called abstract execution. This
method can automatically calculate loop bounds and infeasible paths. Their method
can calculate nested loop bounds. They verify their method by using Mälardalen bench-
mark suite.

Blackham et al. [BLH14] propose an infeasible paths detection method called Trickle.
This method analyzes the binary programs and detects infeasible paths within the CFG
to refine WCET estimations.

Holsti et al. [HGKL14] use the program-representation language ALF to combine
two analysis tools: Bound-T and SWEET. The combination can resolve the analysis of
dynamic branches at binary code level. They can generate an annotation file containing
the analyzed control flow information. This annotation file is used to guide the further
WCET estimation.

Bonenfant et al. [BdMS08, dMBBC10] develop a static loop bound analysis tool
called oRange. The tool is based on flow analysis and abstract interpretation, and can
extract and provide loop bound values or equations, non-recursive function calls and
other flow information. The provided flow information can be used in static WCET
analysis.

There are still many automatic methods concentrating different kinds of flow in-
formation: branch constraints detection and exploitation [HW02], loop bounds extrac-
tion [LCFM09] and so on.

22 WCET Estimation Techniques

Nowadays, the hybrid methods are used by some WCET tools. They base on au-
tomatic extraction, and use manual addition to fix the unobtainable part, e.g. aiS and
Bound-T annotation language (introduced in the next subsection).

1.3.8 Summary of annotation languages

Here, we give a summary of WCET annotation languages. More detailed WCET an-
notation languages description and systematic comparison are presented in [KKP+07,
KKP+08, KKP+11].

Real-Time Euclid [KS86] is one of the first language designed specifically to feature
annotations for timing analysis in real-time systems. Only the specification of loop
bounds in for loops are supported.

Another early annotation is proposed by Park et al. in [PS90, Par93, Cha94]. They
define the information description language (IDL) as an interface language for users to
provide and express flow information. This approach uses IDL to perform the mapping
from the object code to the source code. Path patterns of explicit execution order can
be expressed by this annotation, and this is also its advantage.

WCETC [Kir02] is designed as a new programming language. It is based on ANSI C
and extends it with new grammar. Benefiting from the new grammar, additional flow
information including loop bounds or infeasible/feasible paths can be specified directly
in the source code. With the additional flow information is used to estimate the WCET.
The advantage of this annotation is that it can annotate flow information exactly at
the location where the program should be described.

The annotation language of Heptane [IRI] is designed to provide loop bounds. Its
difference is that these annotations can be provided in two ways: add loop bounds inside
each loop in the C source code; provide an external XML-based annotation file in which
the loop bounds are given and the order of loops should be the same as in the compiled
binary code.

Mok et al. [Che87, MACT89] propose the Timing Analysis Language (TAL). TAL
is an integral part of the timing analysis system. It consists of multiple tools. The
annotation tool can analyze C source code and automatically generate the annotations
of the C code with default assumptions about the program’s behavior. Then a mod-
ified C compiler translates annotated C programs to annotated assembly programs,
because timetool which calculates the execution time works only on assembly code. The
advantage of this annotation is that it may contain arbitrary calculations.

The Bound-T applies a data-flow analysis to automatically compute loop bounds.
When the loop bounds could not automatically be bounded, it involves user-assistance.
These automatic and manual information are stored in a separate file. Then all these
information are used for the WCET estimation.

aiS is the annotation language of aiT. aiT applies an analysis to automatically
calculate flow information. It also needs additional annotations provided by users in
the aiS format called AIS file. The AIS file needs to provide not only loop bounds, but
also recursion bounds, even the targets of calls and branches.

Summary 23

Both of these two annotation language are the language of commercial WCET anal-
ysis tools, and they use hybrid WCET annotation addition method.

1.4 Summary

This chapter describes the notion of WCET and WCET analysis methods, then lists the
WCET analysis tools and prototypes. Then we introduces the most common WCET
static analysis technique: IPET. At the end of this chapter, another important notion
in this thesis is presented: annotations. Through this chapter, we know that WCET is
essential for hard real-time systems. However, the optimizations in modern compilers
make the WCET estimation complex. Because, the optimizations break the link be-
tween the annotations and the code, the annotations cannot be used directly. Our thesis
focuses on this issue, and fortunately, we propose a solution: transformation framework
of flow information. In the next chapter, we will present our transformation framework.

24 WCET Estimation Techniques

Chapter 2

Transformation Framework

In this chapter, the theoretical foundations required by our transformation framework
are introduced firstly in Section 2.1. We need flow information to calculate the WCET
bound. The flow information is translated into linear constraints (shown in Section 2.2).
However, some optimizations may have an effect on these constraints, furthermore affect
the calculation of WCET. So in order to get more precise estimated WCET bound after
the optimizations, we need a method which can declare the flow information transfor-
mation and update the constraints.

So in Section 2.3, the main contribution of the thesis is introduced. we propose
a transformation framework that conveys flow information from source code level to
machine code level with the compiler optimizations. The transformations are expressed
in an abstract way, independently of the compiler infrastructure in which they will be
integrated. In this part, we introduce the transformation framework with the following
aspects: transformation rules, the manipulation and its influence on WCET estimation.
Afterwards, an overview of the transformation framework is provided in Section 2.4.

Then in Section 2.5, the code optimizations performed by the compiler and the
advantages of these optimizations are described according to their impact on the con-
trol flow and WCET analysis. For each compiler optimization, our transformation
framework, defines a set of formulas, that rewrite available flow constraints into new
constraints according to the code transformation. Then these new constraints can be
used for the WCET estimation.

At the end, in Section 2.6, the related work to the traceability of flow information
and WCET estimation with compiler optimizations are described.

2.1 Flow Information

Flow information is the information of the control flow of a program. Flow informa-
tion can be expressed explicitly by the control flow graph (CFG), also by additional
information provided externally.

Through analyzing the CFG, we can get structurally feasible paths. When the
compiler optimizations are applied, the CFG is usually modified. These flow information

25

26 Transformation Framework

for (int i =0; i<n ; i++)
{

i f (a [i]>0)
b [i]=b [i]+ i ;

else
b [i]=a [i]+n ;

}

Figure 2.1 – Example of control flow graph (CFG)

can be updated automatically according to the new CFG. Unfortunately, the relation
between the external information and the CFG of the source code is broken by the
optimizations.

The rest of this section explains the notions and definitions about flow information.

2.1.1 The program representation

Our transformation of flow information operates on the program control flow graph
(CFG) [All70]. For presentation clarity, we will concentrate in this thesis on a single
CFG, although our transformation framework supports multiple functions and function
calls. The CFG is important, because it is used in most compilers, and is essential to
many compiler optimizations and static analysis tools.

At first, the definition of basic block is given because it is used in the definition of
CFG.

Definition 1 A basic block is a straight-line piece of the code within a program with
only one entry point and only one exit point, i.e. without any jumps except the last
instruction or jump targets except the first instruction.

Here, the code can be assembly code, intermediate representation or some other
sequence of instructions.

Definition 2 A CFG is a representation using graph notation. A CFG is a (possibly
cyclic) directed graph made of a set of nodes N representing basic blocks, and a set of
edges E representing possible control flows between basic blocks.

In the example program of Figure 2.11, we have:
1The CFG is correct only if n > 0.

Flow Information 27

CFG = {N , E}
N = {B1, B2, B3, B3, B4, B5, B6}
E = {B1 ! B2, B2 ! B3, B2 ! B4, B3 ! B5,

B4 ! B5, B5 ! B2, B5 ! B6}

2.1.2 Loop description

During the flow information, loop bound is the most important notion. Because loop
bound information is the necessary information to derive WCET estimate.

Firstly, we need to define strongly connected component which is the most general
looping structure.

Definition 3 A strongly connected component of a flow graph G = (N,E) is a
subgraph Gs = (Ns, Es), in which there is a path that includes only edges in Es from
every node in Ns to every other node in Ns.

Definition 4 A loop is a strongly connected component of the CFG.

(a) Single loop (b) Multiple loop

Figure 2.2 – Loops

Then, we introduce the following properties of loops:

Entry nodes/Loop headers are the nodes into the loop from outside. They domi-
nate all nodes in the loop2. In this thesis, we only consider the loops with unique
loop header (as shown in Figure 2.2).

2Node A dominates node B if every path from the entry node to B must go through A.

28 Transformation Framework

Exit nodes are nodes with edges going to the nodes outside of the loop. There can be
several exit nodes, e.g. in the example of Figure 2.2b, there are two exit nodes:
the exit node similar to the one of the single exit node loop and the exit node
Exit0 which can be brought by instruction break.

A backedge is a part of the loop. It is an edge from node A to node B if B dominates
A (A,B 2loop). A loop can have more than one backedge. For example, in
the example of Figure 2.2b, besides the backedge similar to the one of the single
backedge loop in Figure 2.2a, edge A ! Header is another backedge which can be
created by instruction continue. Optimization Loop Simplify

3 can turn the loop
into single backedge loop. For single backedge loop, backedges can be used to
represent the iteration count of the loop.

Figure 2.2 shows two typical loop examples. The left one is a typical loop with
single entry node and single exit node. The right one is a loop with multiple exit
nodes and multiple backedges. In fact, a loop can have multiple entry nodes, exit
nodes or multiple backedges, while in this thesis, we consider only reducible loops:
single entry node, one or multiple backedge and one or multiple exit nodes.

i =0;
while (i<X){

a [i]=a [i]+b ;
i++;

}

(a) Source code of top tested

i =0;
i f (X>0){

do{
a [i]=a [i]+b ;
i++;

}while{ i<X}
}

(b) Source code of bottom tested

(c) CFG of top tested loop (d) CFG of bottom tested loop

Figure 2.3 – Different location of test nodes.

3Loop simplify optimization transforms natural loops into simpler ones. For example, it guarantees
the loop with a single edge from outside of the loop to the loop header; with a single backedge and so
on. In this way, further optimizations are simpler and more effective to apply.

Flow Information 29

Figure 2.3c and Figure 2.3d show two different CFG of loops. Actually, these two
loops do the same function (refer to the source code Figure 2.3a and Figure 2.3b).
Node B in both loops is executed X times. But for node A in Figure 2.3c, it is
executed X + 1 times. The loop bounds of both loops are X. So for the bottom
tested loop, the execution count of each node in the loop body equals to loop
bounds. The test node in top tested loop is executed one more time than loop
bound. So for uniformity, we define loop bounds as:

Loop bounds are the maximum number of executions of the nodes in the loop body
except the node(s) testing the loop exit4.

A Local loop bound represents the maximum number of iterations of a loop
for each entry.

A Global loop bound is an upper bound on the execution count of a loop in a
whole program. It is considered in nested loops.

for (i =0; i <10; i++)
a [i]=a [i]+1;

for (i =0; i<n ; i++)
a [i]=a [i]+1;

(a) Loop A (b) Loop B

Figure 2.4 – Example of Loop Bounds

Sometimes, the loop bounds are not fixed, they can be intervals. For example,
in Figure 2.4, the loop A has a fixed loop bound 10. For loop B, its loop bound
depends on the value of n. When 10 n 20, the loop bounds of loop B range
from 10 to 20. We call the endpoints of the loop bound interval (a, b for interval
[a,b]) the lower loop bound (for a) and the upper loop bound (for b). So for loop
B, its lower loop bound is 10 and upper loop bound is 20. In this thesis, the lower
loop bound is expressed as LBmin and the upper loop bound LBmax.

When we mention global loop bound, we refer to nested loop. Now we give the
definition of this notion.

Definition 5 Nested Loops are a set of loops in which each loop except the outermost
one is within the body of another.

Definition 6 Perfect loop nest5 means that except the innermost loop, each loop
contains only another loop in the nest.

The proposed framework for traceability of flow information in the next chapter
assumes reducible nested loops. Information on loop nesting is captured through the
Loop Scope data structure.

4If the test node is the only node in the loop, the loop bound is its maximum execution number.
5Perfect loop nest is used in some loop optimizations, e.g. loop interchange.

30 Transformation Framework

Definition 7 Loop Scopes are the code boundaries of loops.

The information is made of a set of pairs hLo, Lii with Lo and Li as loops. Li is the
inner loop and is completely nested in the outer loop Lo. This data structure is useful
because some compiler optimizations involve multiple loops (e.g. loop interchange),
their maximum number of iterations have to be modified jointly.

Figure 2.5 – Running example with nested loops

The Loop Scope data structure for our running example depicted in Figure 2.5
contains:

LoopScope = {h_, Lxi , hLx, Lyi}

with “_” denoting the absence of enclosing loop for the outermost loop.

for (i =0; i <10; i++)
for (j =0; j <10; j++)

a [j , i]=a [j , i]+1;

for (i =0; i <10; i++)
for (j =0; j<i ; j++)

a [j , i]=a [j , i]+1;
(a) Loop Nest A (b) Loop Nest B

Figure 2.6 – Local/Global Loop Bound

When the loop is nested, the local bounds of all the loop bounds involved in the nest
are estimated separately as if there was no nesting, but the global loop bounds of the
innermost loop need a summation of the maximum iteration number in each iteration of
the outer loop. Using local loop bound and global loop bound has no difference except
several special cases e.g. triangular loops. For example, considering the loop nest A
in Figure 2.6, the local loop bounds of the outermost and innermost loop are both 10,
and the global loop bound of the innermost loop body a[j, i] = a[j, i] + 1 is 100 which
is equal to the product of local outermost loop bound and local innermost loop bound.
However, for the loop nest B, the situation is different. The local loop bound is the
same as nested loop A. The global execution count of the innermost loop body is 45,
not 100.

Flow Information 31

i f (x>5){
y=2;
a=3;
z=a+y ;

}
else

y=�2;
i f (x>0)

z++;
else {

z��;
b=4;

}

Figure 2.7 – Example of infeasible paths

Knowledge of global loop bounds can tighten WCET estimates. However, the obten-
tion of global loop bound is a challenge, and most WCET analysis tools do not support
it. Our transformation framework and our implementation support local loop bound.
And in the rest of the thesis, when we mention loop bounds, it should be considered as
local loop bound by default.

2.1.3 Infeasible paths

Definition 8 Infeasible Paths [Kou96, APT00, GEL06] are the paths which are
executable according to the CFG, but not feasible when considering the semantics of
the program, the context and possible inputs.

Dependencies are the primary reason for infeasible paths. The classical example of an
infeasible path is two consecutive if-then-else structures with interdependent conditions.
The example in Figure 2.7 illustrates a very simple example with an infeasible path.
The true branch B of the first conditional statement and the false branch F of the
second conditional statement are in conflict. Because when the true branch B is taken,
i.e. x is larger than 5 and also larger than 0, the false branch F is never taken in this
situation. So the path A�B �D � F is never taken and it is an infeasible path.

Another case is that when the variable x is an input, and if its input value is 2,
the path A � B is infeasible. This kind of infeasible path belongs to input-sensitive
infeasible paths.

Information on infeasible paths is not a mandatory information for WCET estima-
tion, just can make WCET estimates tighter. For example, in Figure 2.7, without the
information of infeasible paths, the WCET analysis tools should use A�B �D�F to

32 Transformation Framework

estimate WCET, because basic blocks B and F have the longer execution time. With
infeasible paths, we take A�B �D �E instead of A�B �D � F , and derive tighter
WCET result.

2.1.4 Contextual information

Normally, a function is designed to be called in different contexts. So the flow infor-
mation in the function may be different for different calls. For example, a loop in a
function can have different bounds for different calls; conditional statements in a func-
tion can have different infeasible paths with different input for different calls. This kind
of information is called contextual information [BCRS10, CMPVR14].

Similarly to infeasible paths, contextual information is of help to tighten WCET
estimation, not indispensable.

2.2 Contents of the Transformation Framework

2.2.1 Representation of flow information

In the first place, we introduce the flow information which the transformation framework
operates on. Flow information is available in the following forms:

• Loop bounds, for every program loop:

Loopbounds = {hLx, hLBmin, LBmaxii}

with Lx the loop identifier and LBmin and LBmax denoting respectively the min-
imum and maximum number of iterations for loop Lx, and this for each entry in
Lx.

• Infeasible paths, for each infeasible path in the program:

Infeasiblepaths = {i� j � · · ·� k}

with i, j, k the basic blocks consisting of the infeasible paths.
For the representation of infeasible paths, we should express the infeasible path
as short as possible. For example, as shown in Figure 2.8, there are more than
two consecutive conditional tests. When only A � B �D � F is infeasible path,
path A � B � D � F � G � H and A � B � D � F � G � I are infeasible. We
should express them as A � B �D � F , because A � B �D � F is the shortest
infeasible path.

• Additional flow constraints that are linear relations on execution counts of basic
blocks (fi):

Constraints = {Cl +
X

i2CFG

Ci ⇥ fi op Cr +
X

j2CFG

Cj ⇥ fj}

Contents of the Transformation Framework 33

Figure 2.8 – Infeasible paths examples.

with Cl/i/r/j non-negative integer constants and op an operator in set {=, >,�
, <,}.

2.2.2 Encoding

Note that loop bounds and infeasible paths, when finally used to calculate WCET
using IPET, will eventually be encoded as linear constraints. For the translation of
infeasibility into ILP constraints, there is a theoretical method proposed by Raymond
in [Ray14].

For loop bounds, the steps of the encoding are:

• If the loop is a non nested loop, for each basic block i in the loop except the
conditional test basic block, with the loop bounds LBmin and LBmax, we can
derive the constraints: fi � LBmin and fi LBmax. For the test basic block, in
the bottom tested loop, its constraint is the same as the other basic blocks. And
in the top tested loop, its constraint is: fi � LBmin + 1 and fi LBmax + 1.

• In the case of nested loops, the basic blocks in the outer loop body without inner
loop are the same as no nested loop. The basic blocks in the inner loop body can
be handled with the same method as no nested loop, only with the loop bounds
LB_innermin ⇥LB_outermin and LB_innermax ⇥LB_outermax. However, as
illustrated later in the thesis, keeping the notion of loops is a richer information,
and it integrates more naturally in a compiler.

And for infeasible paths, the encoding is a bit complex. It can be classified into the
following two categories shown in Figure 2.9. The red paths in the two sugfigures are
their corresponding infeasible paths.

34 Transformation Framework

(a) Case One (b) Case Two

Figure 2.9 – The CFG of infeasible paths examples.

• Case one shown in Figure 2.9a: The basic and general case. For this kind of
infeasible path, the derived formal constraint is:

X
fi m⇥ n (i 2 infeasible_path)

m is the number of the basic blocks in the infeasible path minus one. n is a
parameter. When this infeasible path is not in a loop or not in a function called
multiple times, n = 1, otherwise, n should be the loop bound or the number of
function called.

The constraint of case one is:

fA + fB + fD + fF + fG 4⇥ n

In this case: m = 4 = 5� 1).

• Case two shown in Figure 2.9b: In this case, there is a loop in the branch.

X
fi +

X fj
Xmax

 m⇥ n

(i 2 infeasible_path & i 62 loop_in_infeasible_path)

(j 2 loop_in_infeasible_path)

m is the number of the basic blocks in the infeasible path minus one. n is a
parameter as the same as the previous case.

Considering that f
j

X
max

is not integral, the constraint should be transformed to:

X
fi ⇥Xmax +

X
fj m⇥ n⇥Xmax

Constraint Transformation Rules 35

So the constraint of case two is:

fA + fB + fD +
fF

Xmax
+

fG
Xmax

+ fH 5⇥ n

In this case: m = 5 = 6� 1.
In this constraint, f

F

X
max

and f
G

X
max

is not integral, we transform it to:

(fA + fB + fD + fH)⇥Xmax + fF + fG 5⇥ n⇥Xmax

In both categories, when n is not 1, there is loss of information. However the
constraints are still safe and can tighten WCET estimates. For example, the case
shown in Figure 2.9a, the infeasible path is A � B � D � F � G. When n = 1, we
can derive that the execution count of basic block B and F can be 1 at the same time.
However, when n is not 1, e.g. n = 10, let us consider the following situation: the path
A�B�D�F �G is executed twice; the path A�B�D�E�G is executed 6 times;
the path A�C �D�E �G is executed twice. This situation cannot happen, because
the path A�B�D�F �G is infeasible and should not be executed. But this situation
can match our constraint. So information is lost when n is not 1.

2.3 Constraint Transformation Rules

The linear constraints represent the flow information in the original CFG correspond-
ing to the source code. And they should be used with IPET technique to calculate
the WCET result. However, the mapping between these constraints and the CFG/-
code is broken by compiler optimizations. So, for optimizing compilation, these linear
constraints are useless, even unsafe for the optimized binary code.

Our transformation framework is proposed to handle this problem. We analyze the
most common compiler optimizations, According to their modification to the CFG, we
can summarize a set of rules to rewrite the linear constraints. After modified with the
transformation rules, the new linear constraints can match the CFG of the optimized
binary code.

There are three basic rewriting rules for transforming flow information: change rule,
removal rule and addition rule.

For each compiler optimization, a set of associated transformation rules (change,
removal, addition) are defined in agreement to the CFG modifications. When the op-
timization is called, the corresponding rules are applied to transform flow information
accordingly. Figure 2.10 shows an example: loop unrolling. The loop body is replicated
twice. IR (Intermediate Representation) is a representation of the program used in
compilers. When the IR is sent to the compiler, the corresponding CFG is modified by
compiler optimizations. Our transformation framework defines transformation rule sets
for these optimizations. In this way, the original flow information can be updated into
the new one. In the figure, the loop bounds and the inequality of the relation of basic
blocks are updated with the transformation rule set. After the optimization, a modified
IR, a modified CFG and its corresponding new flow information are derived.

36 Transformation Framework

Figure 2.10 – Example of input and output of compiler optimization and transformation rule set

Constraint Transformation Rules 37

2.3.1 Change rule

This class of rule is used when the compiler optimization changes the execution count
of basic blocks, or changes loop bounds. When the optimizations substitute � for ↵, we
express it as ↵ ! �.

This rule contains two cases:
One case is the change of the execution count of a basic block. In this case, ↵ is

fi, with i one of the basic blocks in the original CFG. � is then an expression {Cj +P
j2newCFG

Mj ⇥ fj}. In this expression, Cj is a constant and Mj is a multiplicative

coefficient, that can be either a non-negative integer constant, an interval [a,b] or an
interval [a,+1) with both a and b non-negative constants.

Here, we use the CFG of two loops after the application of loop spreading as an
example to demonstrate this class of rule. Loop spreading minimizes the parallel execu-
tion time by moving some computations from one loop to another. The modifications of
source code and the CFG are shown in Figure 2.11. Figure 2.11a and Figure 2.11b give
the source code before and after loop spreading, whereas Figure 2.11c and Figure 2.11d
show their corresponding CFG. In Figure 2.11c, basic blocks C and D are the branches
in the loop. Assuming that more than two-thirds of the elements in array c are greater
than zero, then an additional constraint is needed to be added: fC � 2 ⇥ fD, which
means that the execution count of C is always no less than twice the execution count
of D. This additional constraint is decided by the content of array c which is known
by the programmers or through static analysis tools, but difficult to be derived by the
compiler. The two loops have different loop bounds and have a dependence (array a
is written by the first loop and read by the second loop), so they cannot be fused di-
rectly. Loop spreading is needed to move some iterations of loop body of Ly to Lx. The
optimization divides node C into C 0 and C 00, and same to D. So the rules should be
fC ! fC0 + fC00 and fD ! fD0 + fD00 . With the original constraint and rules, we can
derive the new constraint fC0 + fC00 � 2⇥ (fD0 + fD00).

Another case is the change of a loop bound caused by a compiler optimization.
↵ is a loop bound constraint Lx hlbound, uboundi, with Lx ⇢ original_CFG. � is
Lx0 hlbound0 , ubound0i with Lx0 ⇢ new_CFG and lbound0 and ubound0 new loop bounds
which should be non-negative integer constants or any expression resulting a non-
negative integer.

We still take the loop spreading as the example. In Figure 2.11, the loop bound of
Ly is reduced from X + Y to Y , so the transformation rule for loop bound should be
Ly hXmin + Ymin, Xmax + Ymaxi ! Ly hYmin, Ymaxi. With this updated loop bound, we
can derive that the execution count of all new basic blocks in this new loop should be
no greater than Ymax.

2.3.2 Removal rule

This class of rule is used whenever a basic block or a loop is removed from the CFG due
to some compiler optimizations. We express it as ↵ ! ;. ↵ can be fi (i 2 original_CFG)
or Lx hlbound, uboundi (Lx ⇢ original_CFG) depending on the object (basic block, loop)

38 Transformation Framework

for (i =0; i<X; i++)
{

a [i]=a [i]+d ;
}
for (i =0; i<X+Y; i++)
{

i f (c [i]>0)
b [i]=a [i]+e ;

else
b [i]=a [i]�e ;

}

(a) Source code

for (i =0; i<X; i++)
{

a [i]=a [i]+d ;
i f (c [i]>0)

b [i]=a [i]+e ;
else

b [i]=a [i]�e ;
}
for (i=X; i<X+Y; i++)
{

i f (c [i]>0)
b [i]=a [i]+e ;

else
b [i]=a [i]�e ;

}

(b) Code after loop spreading

(c) Original CFG (d) CFG after spreading

Figure 2.11 – The CFG of loop spreading example.

Constraint Transformation Rules 39

that is removed. Through this transformation, ↵ is deleted from the constraints.
This rule is usually used when the elimination optimizations are applied, e.g. un-

reachable code elimination, dead code elimination and so on. These optimizations
remove some unreachable or dead basic blocks or loops from the CFG.

Figure 2.12 – The CFG of combination of unreachable-code elimination and tail merging example.

We can use the example in Figure 2.12 to illustrate this rule. The modifications of
the CFG are shown in this figure. In this case, basic block D is an unreachable basic
block. So the optimization unreachable-code elimination removes it from the CFG,
and a removal rule is needed: fD ! ;. Assuming the initial additional constraint is
fB � 3 ⇥ fD, which means that the execution count of B is always no less than three
times the one of D, this constraint should be deleted because of the remove of basic
block D.

2.3.3 Addition rule

This class of rule is used when any new objects (basic block or loop) are added to
the CFG by an optimization. When a new term is introduced into the CFG, the new
constraint is added directly. The constraint should be linear, and should only involve
objects (basic blocks, loops) from the new CFG.

For example, in Figure 2.12, after the removal of basic block D, because the instruc-
tions at the end of basic blocks B and C are the same and target same destination,
these instructions are merged into a new basic block F which is introduced into the new
CFG, so if there is any new constraint which involves the execution count of this new
basic block with other basic blocks, we need to add it.

2.3.4 Rules manipulation

The parameter of the change rule has two forms: single value and interval. For the
single value, e.g. fA ! fB, it is easy to apply by directly changing the value of the
constraint term. While for the interval, e.g. fA ! [n1 . . . n2]fB, we need consider the
relation used by the constraints where the replacement is made:

40 Transformation Framework

Relation “>” or “�” If the term which needs to be replaced occurs on the left of the
relation, the upper bound of the interval is used in the new term. For the one on
the right of the relation, we use the lower bound correspondingly. For example, we
have an update rule fA ! [3 . . . 5]fC . So we need transform constraint 2fA > 3fB
into 10fC > 3fB, while in contrast, transform the constraint 3fB > 2fA into
3fB > 6fC . And there is a special case: the interval is [a,+1), i.e. the rule
is ↵ ! [a,+1). In this case, if ↵ occurs on the left of the relation, we should
eliminate this constraint, e.g. for fA ! [2,+1)fC and 2fA > 3fB, 2fA > 3fB
will be eliminated.

Relation “<” or “” Converse of relation “>” or “�”. For example, we have an up-
date rule fA ! [3 . . . 5]fC . So we need transform the constraint 2fA < 3fB
into 6fC < 3fB, while in contrast, transform the constraint 3fB < 2fA into
3fB < 10fC . There is also a special case: if the rule is ↵ ! [a,+1), when ↵
occurs on the right of the relation, we should eliminate this constraint.

Relation “=” When the term is in the “=” relation, it can’t be updated with the
interval transformation. We need apply a normalization before the transformation.
For example, turn a constraint fA = fB into fA fB and fA � fB. Then the
two inequality relations semantics can be applied.

2.3.5 Operations after transformation

After the transformation rules are applied, the new constraints might not satisfy the
standards setted in Section 2.2 (constants as multiple factors). For example, a main
problem is that there are fractions in the constraints after the transformation. So we
still need the following operations to standardize the new set of constraints. These
operations should be executed in the following order:

Integralization Because some transformation rules contain fractions, the new ob-
tained constraints may contain fractions. But fractions are not allowed in ILP. So
we need the integralization for the conversion from fraction to integer by multiply-
ing the denominator on both sides of the constraints. For example, with constraint
2fA 3fB and rule fA ! 4

3fC , we can get the new constraint 2⇥ 4
3fC 3fB. The

integralization is needed because of the left side of the relation. The constraint
becomes 2⇥ 4fC 3⇥ 3fB.

Simplification The transformation and integralization both bring two kinds of con-
straints which need to be simplified:

• The coefficients can be algebraic simplified. For example, constraint 2 ⇥
4fC 3⇥ 3fB is simplified to 8fC 9fB.

• The coefficients and constants on both sides have greatest common divisor,
e.g. the constraint 9fA + 6fC 12fB + 3 can be simplified to 3fA + 2fC
4fB + 1.

Constraint Transformation Rules 41

Redundancy elimination This is the final operation of this framework. After the
simplification, we traverse all constraints, and eliminate the redundancy. The
redundancy includes the same constraints, also the constraints like: 2fA 3 and
2fA 5.

After applying the transformation rule set of each optimization, the new constraints
are created. Then we do the integralization to these new constraints. Afterwards, we
need simplify these constraints. At the end, combining with structural constraints, we
check the redundancy and eliminate them.

For the implementation in the next chapter, we trace only loop bounds, and new loop
bounds are stored as integers. So these operations are not needed in our implementation.

2.3.6 The influence of transformation framework on estimated WCET

Figure 2.13 – Distribution of execution time before and after compiler optimizations

These transformation semantics keep the WCET calculation safe if transformation
rules are expressed correctly, while information may be lost during the transformation.
We use an example to demonstrate our viewpoint.

Let us assume that there is a constraint 2fA > 3fB and an update rule fA !
[3 . . . 5]fC , we can get a new constraint 10fC > 3fB. However now we can only promise
that the transformation is safe, but maybe not precise. Because if the fact is n⇥ fC >
3fB where 6 n < 10, with the new constraint, the information may be lost. When
there is an interval in the transformation rule, our new constraint expresses the worst
but safe case, but may be not the precise representation of new situation.

The curves in Figure 2.13 represent the probability of different execution times of
a program with different input data and initial processor states. The black and right
one depicts the execution time without optimizations, and the orange and left one

42 Transformation Framework

describes the optimized execution time. In general, after the optimizations, as the
figure shows that the ACET is reduced because the compiler optimizations mostly aim
at minimizing ACET. Many researches [DAfESG, FLT06, FS06] prove that WCET can
also benefit from compiler optimizations. So in the figure, WCET also decreases after
the optimizations. The new estimated WCET is the WCET result produced with our
transformation framework. The experimental result in Chapter 4 demonstrates that the
new estimated WCET is reduced compared with the original one. However, when we
consider ↵ (the difference between the original actual WCET and estimated WCET,
considered as precision) and � (the difference between the optimized actual WCET and
estimated WCET), we cannot compare them, because the actual WCET is in general
unknown. So we cannot verify that our transformation framework can improve the
precision, i.e. we cannot prove that � is smaller than ↵.

Through inducing the transformation rule sets of different compiler optimizations
and analyzing their effect on the flow information, we can draw the following three
conclusions:

• Our transformation framework is safe, i.e. � > 0 which is important for hard
real-time systems.

• If the execution count of nodes and loop bounds can be derived, with our trans-
formation framework, no flow information is lost for almost all optimizations, and
the new estimated WCET is better (i.e. smaller) than the original one.

• Flow information can be transformed correctly with our transformation frame-
work, and the experimental results in Chapter 4 prove this.

2.4 Overview of Transformation Framework

Figure 2.14 illustrates the overview of our transformation framework within the compi-
lation and WCET estimation. The right column is the flow of standard code compilation
and WCET estimation. Without optimizations, the source level flow information can
be used directly at binary level. When the optimizations are applied, we need a trans-
formation framework to transform source-level annotations to binary-level annotations.
Our transformation framework is at the same level as compilers. What is crucial is
that transforming the flow information is done within the compiler, in parallel with
transforming the code. With these binary-level annotations, WCET analysis tools can
calculate estimated WCET result.

2.5 Compiler Optimizations and Their Concrete Transfor-
mation Rules

Modern compilers can have a huge effect on code performance. This benefits from the
optimizations included in the compilers. These optimizations improve the generated

Compiler Optimizations and Their Concrete Transformation Rules 43

Figure 2.14 – Overall flow

code in different ways while ensuring the result of the code is identical. In general,
optimizations application is decided by the following two fundamental criteria:

Speed: improving the runtime performance of the generated code

Space: reducing the size of the generated code

In most cases, maximizing speed is more important than minimizing space. Ideally,
we expect that the optimizations can achieve both criteria. Unfortunately, many “speed”
optimizations make the code larger, and many “space” optimizations increase execution
time – this is known as the space-time tradeoff.

In this section, we begin the presentation of a series of optimizations6 which focus
on different phases, different types of code. Then according to the transformation
framework, we analyze these optimizations and describe their transformation rule sets.
Here, we just list the optimizations analyzed in our transformation framework.

2.5.1 Redundancy elimination, procedure, control-flow and low-level
optimizations

This part contains the most general optimizations except loop optimizations and vec-
torization optimizations. For example, redundancy elimination optimizations deal with

6The optimizations in this section are the ones we support.

44 Transformation Framework

the identification and elimination of redundant computations; procedure optimizations
are the compiler techniques which improve performance in programs containing many
frequently used functions of small or medium size. It differs from other compiler opti-
mizations because it analyzes the entire program instead of only a single function, or
even a single block of code. Besides, this subsection introduces some control-flow and
low-level optimizations.

2.5.1.1 Unreachable code elimination

Unreachable code is part of the source code of a program which can never be executed,
regardless of the input data. There never exists control flow path to this code from the
rest of the program.

This elimination has no direct effect on the execution speed, but decreases unnec-
essary memory the program occupies. Thus may have secondary effects on the speed.
Also, the elimination may enable other further optimizations. Figure 2.15 shows a
simple example.

int f oo (int a , int b){
c = a � b ;
goto r e t ;
while (1){

c++;
}

r e t :
return c ;

}

int f oo (int a , int b){
c = a � b ;
return c ;

}

(a) Original source code (b) Optimized code

(c) CFG of unreachable code elimination

Figure 2.15 – Unreachable code elimination example

The transformation rule set7 for unreachable code elimination is:

fBB_unreachable ! ; (2.1)

For the example of CFG in Figure 2.15c, the transformation rules for unreachable
basic block can be described:

7The BB in the transformation rule represents Basic Block, and is used in the rest of this section.

Compiler Optimizations and Their Concrete Transformation Rules 45

fA ! ; (2.2)

For the rule set of this optimization, no flow information is lost.

2.5.1.2 Dead code elimination

int f oo (void){
int a = 16 ;
int b = 18 ;
int c = a << 2 ;
int d = b << 3 ;
return c ;

}

int f oo (void){
int a = 16 ;
int c = a << 2 ;
return c ;

}

(a) Original source code (b) Optimized code

(c) Elimination of dead code in Basic Block (d) Elimination of entire Basic Block

Figure 2.16 – Dead code elimination example

Dead code elimination is similar to unreachable code elimination, the difference is
the dead code is executed but has no effect on the result. Dead code elimination removes
this dead code. Dead code may already exist in source code, but it is more likely arisen
from optimizations. By removing dead code, Dead code elimination can reduce code
size and improve performance. A simple example is shown in Figure 2.16.

The transformation rule set for dead code elimination should consider two cases:
For the case in Figure 2.16c, we just update the node:

fBB_withdeadcode ! fBB_withoutdeadcode (2.3)

For the case in Figure 2.16d, we need the removal rule:

fBB_deadcode ! ; (2.4)

So for the example of CFG in Figure 2.16, the corresponding transformation rules
for deleting dead code are:

46 Transformation Framework

Case of elimination of dead code in Basic Block:

fAB ! fA (2.5)

Case of elimination of entire Basic Block:

fB ! ; (2.6)

For the rule set of this optimization, no flow information is lost.

2.5.1.3 If simplification

i f (a>0){
b=a ;
c=b∗b ;
i f (b>0)

d=2;
else

d=0;
}

i f (a>0){
b=a ;
c=b∗b ;
d=2;

}

(a) Original source code (b) Optimized code

(c) CFG of if simplification

Figure 2.17 – If simplification example

If simplification is applied to a conditional construct in which there are branches
never taken. This optimization removes the empty or the not taken branch, and it can
reduce the overhead of conditional branching. An example is shown in Figure 2.17.
This optimization can remove part of the CFG and simplify the flow information.

The transformation rule set for if simplification is:

fBB_branchnotaken !; (2.7)

By using the general rule set, we can get the following set of transformation rules
from the CFG in Figure 2.17c:

Compiler Optimizations and Their Concrete Transformation Rules 47

fP !fPAE

fA !fPAE

fE !fPAE

fB !;

(2.8)

The first three rules are created because of the removal of node B.
Although these update rules change the CFG, no flow information is lost.

2.5.1.4 Branch optimization

i f (a=0)
goto L1 ;

. . .
L1 : i f (a<5)

goto L2 ;
. . .

L2 : . . .

i f (a=0)
goto L2 ;

. . .
L1 : i f (a<5)

goto L2 ;
. . .

L2 : . . .
(a) Original source code (b) Optimized code

(c) CFG of branch optimization

Figure 2.18 – Branch optimization example

If there are more than one successive branches, we need branch optimization. The
general principle of this optimization is to eliminate the unconditional branches. If there
are two successive conditional branches and the two conditions have relation, they can
be rewritten with the test of the first branch to the target of the second branch (example
in Figure 2.18).

Branch optimization can reduce the number of conditional or unconditional branches.
A sample example of branch optimization is shown in Figure 2.18.

48 Transformation Framework

In general, this optimization just modifies the control flow, for unconditional branches,
no node is modified. And for the two successive conditional branches, the execution
count of the second branch test node is changed.

When the compiler knows the execution count of the nodes of first branch test ft
and branch fb:

fsecond_test !
fft
ffb

fsecond_test0 (2.9)

Else:
fsecond_test ! [1 . . .1]fsecond_test0 (2.10)

As the example shown in Figure 2.18, branch optimization skips the jump to B and
directly goes to B’ successor E. With these information, we can describe the following
rule:

When the compiler knows the execution count of node P and A:

fB ! fP
fA

fAB (2.11)

Else:
fB ! [1 . . .1]fAB (2.12)

In the first case, no flow information is lost. While in the second case, the new
execution count of node AB cannot be calculated precisely, because of the interval in
the rule.

2.5.1.5 Tail merging (cross jumping)

Tail merging, also known as cross jumping, is an optimization eliminating duplicates
in the code. It is identifying sequences of identical instructions at the end of different
basic blocks targeting same destination and transforms these instructions into a new
basic block. This new basic block is shared by those different basic blocks. This opti-
mization always saves code space and may also save time. A sample example is shown
in Figure 2.19.

The general transformation rule set of tail merging is (A represents the different
basic blocks that targets the same destination, and the codes in A change after the
optimizations. These code changes are denoted by a prime following the basic blocks
names, and this is used in the rest of thesis.):

fBB_A !fBB_A0

fBB_target !fBB_target0
(2.13)

The code transformation of Tail Merging is given by Figure 2.19c. With this infor-
mation, the following update rules are induced:

fB !fB0

fC !fC0

fE !fDE

(2.14)

For the rule set of this optimization, no flow information is lost.

Compiler Optimizations and Their Concrete Transformation Rules 49

i f (a<0){
codeA ;
codeC ;

}
else {

codeB ;
codeC ;

}

i f (a<0){
codeA ;

}
else {

codeB ;
}
codeC ;

(a) Original source code (b) Optimized code

(c) CFG of tail merging

Figure 2.19 – Tail merging example

50 Transformation Framework

2.5.1.6 Inlining

Inlining is an optimization that replaces a function call site with the body of the called
function. It moves the code from the called functions to local code, which not only
improves its effects, but that can be optimized as part of calling code, as shown in Fig-
ure 2.20 constant propagation can be applied to improve the code. But the disadvantage
is obvious: the code size is increased when the function is called many times.

inl ine int f (int n){
n = n � 5 ;
return n ;

}

int x=3;
int y=f (x) ;
p r i n t f ("%d" , y) ;

int x=3;
x=x�5;
int y=x ;
p r i n t f ("%d" , y) ;

(a) Original source code (b) Optimized code

Figure 2.20 – Inline

For inlining, we need to move the flow information constraints from functions to the
called function.

2.5.2 Loop optimizations

Optimizations that apply to loops are essential to achieving high performance. The
optimizations covered in this subsection operate on loops, and they are described in the
following.

2.5.2.1 Loop unrolling

Loop unrolling reschedules the loop and replicates the body of the loop in one iteration
according to the unrolling factor. It can reduce loop overhead and increase instruction-
level parallelism. Loop unrolling replicates the loop body UF times (UF stands for
unrolling factor). There are two basic types of loop unrolling optimizations: lucky case:
loop count is constant and a multiple of unrolling factor (see Figure 2.21); and general
case: loop count is not a multiple of unrolling count (shown in Figure 2.22).

The modifications of the CFG are shown in Figure 2.23, in the general case where
the loop bound is not known to be a multiple of the unrolling factor. In the figure, the
loop body A is replicated UF times and the structure of the CFG is changed; a new
loop is created to cope with number of iterations not multiple of UF . The loop bound
of these two loops are also different from the original one.

The transformation of flow information for loop unrolling requires the application
of the change rule and the addition rule because of the addition of the new loop. The
set of rules describing the flow transformation is given below (new_A represents the
node containing A1 . . . AUF).

Compiler Optimizations and Their Concrete Transformation Rules 51

for (i =0; i <10; i++)
a [i]=a [i]+b [i] ;

(u n r o l l i n g f a c t o r =2)
for (i =0; i <10; i +=2){

a [i]=a [i]+b [i] ;
a [i +1]=a [i +1]+b [i +1] ;

}
(a) Original source code (b) Optimized code

Figure 2.21 – Loop unrolling example (loop_count%UF = 0)

for (i =0; i <10; i++)
a [i]=a [i]+b [i] ;

(u n r o l l i n g count=3)
for (i =0; i<f l o o r (10/3)∗3 ; i +=3){

a [i]=a [i]+b [i] ;
a [i +1]=a [i +1]+b [i +1] ;
a [i +2]=a [i +2]+b [i +2] ;

}
a [i]=a [i]+b [i] ;

(a) Original source code (b) Optimized code

Figure 2.22 – Loop unrolling example (loop_count%UF != 0)

Figure 2.23 – CFG of loop unrolling example. The left part of the figure shows the original CFG,
whereas the right part shows the optimized one.

52 Transformation Framework

while (i<n){
a [i]= i ;
i++;

}

i f (i<n){
do{

a [i]= i ;
i++;

}while (i<n) ;
}

(a) Original source code (b) Optimized code

(c) CFG of loop rotation

Figure 2.24 – Loop rotation example

LX
⌦
Xmin, Xmax

↵
!LX

⌧
b
Xmin
UF

c, bXmax
UF

c
�

LY h1, UF � 1i
fA !UF ⇥ fnew_A + fA0

(2.15)

The first line (change rule) expresses that the loop bound of the first loop is derived
from the loop bound of the original loop by dividing it by the unrolling factor UF . The
second line (addition rule) expresses the loop bound of the new loop. The following line
(change rule) updates the constraints on the basic block to reflect the alteration of its
execution count.

Although the basic blocks and loops are modified, for the rule set of this optimiza-
tion, no flow information is lost.

2.5.2.2 Loop inversion (loop rotation)

Loop inversion, also known as loop rotation is an optimization in which the loop with
the test at the start of the loop is replaced with the test at the end of the loop. A
simple example is shown in Figure 2.24.

As shown in the Figure 2.24c, the transformation rules of loop rotation are described:

Compiler Optimizations and Their Concrete Transformation Rules 53

for (i =0; i<n ; i++){
a [i]=b [i] ;
i f (x>0)

a [i]=a [i]+1;
else

a [i]=a [i] ∗ 2 ;
}

i f (x>0)
for (i =0; i<n ; i++){

a [i]=b [i] ;
a [i]=a [i]+1;

}
else

for (i =0; i<n ; i++){
a [i]=b [i] ;
a [i]=a [i] ∗ 2 ;

}
(a) Original source code (b) Optimized code

(c) CFG of loop unswitch

Figure 2.25 – Loop unswitch example

fA !fA0B0 + fD

fB !fA0B0

fD =1

(2.16)

For the rule set of this optimization, no flow information is lost.

2.5.2.3 Loop unswitch

Loop unswitch moves a loop invariant test condition outside of the loop and duplicates
the loop body inside each conditional branch. In this way, it can save the overhead of
conditional branching inside the loop, reduce the loop code size and improve locality.
An example of this optimization is shown in Figure 2.25.

The Figure 2.25c is the transformation of loop unswitch, the following set of rules
can be described:

54 Transformation Framework

LX
⌦
Xmin, Xmax

↵
!LX

⌦
Xmin, Xmax

↵
, LY

⌦
Xmin, Xmax

↵

fB !fB0D0

fC !fC0D00

fD !fB0D0 + fC0D00

(2.17)

For this transformation rule set, no flow information is lost.

2.5.2.4 Loop deletion

Loop deletion is applied when the loop is demonstrated to never execute or the result
of the loop has no effect on the computation of the function’s final return value. Loop

deletion can reduce code size and improve performance.
The transformation rule set is:

LX
⌦
Xmin, Xmax

↵
!;

fBB_inloop !;
(2.18)

2.5.2.5 Loop interchange

Loop interchange exchanges the order of two loops in a perfect loop nest. In general,
it switches the outer loop to the inner position and vice versa. This optimization can
improve vectorization and parallel performance, and reduce stride. In Figure 2.26, the
original inner loop accesses the array a with stride m, after the optimization, it becomes
stride 1 access and this is good for locality.

Loop interchange is typically applied to ensure that elements of a multi-dimensional
array are accessed in the order in which they are represented in memory, improving
locality of reference and thus performance in architectures with data caches.

The modifications of the CFG due to loop interchange are shown in Figure 2.26c. In
the figure, it is assumed that the structure of the CFG (structure of loops, basic blocks)
is not altered, although the contents of individual basic blocks due to loop interchange
may change.

The transformation of flow information for the loop interchange optimization only
requires the application of the change rule since there is no addition or removal of nodes
and basic blocks. The set of rules describing the flow transformation is given below.

LX
⌦
Xmin, Xmax

↵
!LX

⌦
Ymin, Ymax

↵

LY
⌦
Ymin, Ymax

↵
!LY

⌦
Xmin, Xmax

↵

fA ![
1

Ymax
. . .

1

Ymin
]fA0

fB ![Xmin . . . Xmax]fB0

fC !fC0

(2.19)

The first two lines show that the respective loop bounds of the two loops have been
swapped. The following three lines update the constraints of the basic blocks to reflect

Compiler Optimizations and Their Concrete Transformation Rules 55

for (i =0; i<m; i++)
for (j =0; j<n ; j++)

a [j , i]=a [j , i]+1;

for (j =0; j<n ; j++)
for (i =0; i<m; i++)

a [j , i]=a [j , i]+1;
(a) Original source code (b) Optimized code

(c) CFG of loop interchange

Figure 2.26 – Loop interchange example

the alteration of their execution count. For example, the execution count fB of node
B changes from [Xmin . . . Xmax]⇥ [Ymin . . . Ymax] to [Ymin . . . Ymax], so the original
fB is replaced by the [Xmin . . . Xmax]fB. If Ymin is 0, we should use +1 instead of

1
Ymin

.

Considering the general situation, the rule set is safe but flow information is lost.
However, when the exact loop bounds are known, no flow information is lost.

2.5.2.6 Loop distribution

Loop distribution also known as loop fission or loop splitting breaks a loop into multiple
loops with the same iteration space as the original and a subset of the original loop body.
It can be used to create perfect loop nest or loops with fewer dependences, and improve
locality and register reuse. The Figure 2.27 shows an example of loop distribution. In
this example, through loop distribution, a perfect loop nest is created, and then we can
apply loop interchange to reduce the stride.

The code transformation of loop distribution is given by Figure 2.27c. The two new
loops have the same loop bound with the original one. With this information, the
following update rules are described:

56 Transformation Framework

for (i =0; i<n ; i++){
a [i]=b [i] ;
for (j =0; j<m; j++){

c [j , i]=d [j , i]+1;
}

}

for (i =0; i<n ; i++){
a [i]=b [i] ;

}
for (i =0; i<n ; i++){

for (j =0; j<m; j++){
c [j , i]=d [j , i]+1;

}
}

(a) Original source code (b) Optimized code

(c) CFG of loop distribution

Figure 2.27 – Loop distribution example

Compiler Optimizations and Their Concrete Transformation Rules 57

for (i =0; i<n ; i++){
b [i]=a [i]+3;

}
for (i =0; i<n ; i++){

c [i +1]=c [i]∗2+b [i] ;
}

for (i =0; i<n ; i++){
b [i]=a [i]+3;
c [i +1]=c [i]∗2+b [i] ;

}

(a) Original source code (b) Optimized code

(c) CFG of loop fusion

Figure 2.28 – Loop fusion example

LX
⌦
Xmin, Xmax

↵
!LX

⌦
Xmin, Xmax

↵
, LY

⌦
Xmin, Xmax

↵

fAB !1

2
fA0 +

1

2
fB0

fA0 =fB0

(2.20)

For the rule set of this optimization, no flow information is lost.

2.5.2.7 Loop fusion

Loop fusion rewrites multiple loops with the same loop bound into a single one. It is an
inverse optimization of loop distribution. An example is shown in Figure 2.28. After
the fusion, b[i] just needs to be loaded once in each iteration, thus improves register and
cache locality.

The code transformation of loop fusion is given by Figure 2.28c. The two original
loops must have the same loop bound, and the loop bound of the new loop is same with
them. With this information, the following update rules are described:

LY
⌦
Xmin, Xmax

↵
!LX

⌦
Xmin, Xmax

↵

fA !fA0B0

fB !fA0B0

(2.21)

58 Transformation Framework

for (i =0; i<n ; i++)
for (j =0; j<m; j++)

a [i , j]=a [i , j]+c ;

for (p=0; p<n∗m; p++){
i =(p/m)∗m;
j=p mod m;
a [i , j]=a [i , j]+c ;

}
(a) Original source code (b) Optimized code

(c) CFG of loop coalescing

Figure 2.29 – Loop coalescing example

For the rules of this optimization, no flow information is lost.

2.5.2.8 Loop coalescing

Loop coalescing turns a loop nest into a single loop. This optimization performs better
on a parallel machine. It can improve the scheduling of the loop and reduce loop
overhead. An example is shown in Figure 2.29. For a parallel machine, if the number
of the processors P is slightly smaller than n and m, the first P iterations and the
rest m � P iterations take the same time. After the optimization, in addition to the
last n ⇥m mod P iterations, the first several P iterations can make full use of the P
processors.

The code transformation of loop coalescing is given by Figure 2.29c. With this
information, the following update rules are described:

LX
⌦
Xmin, Xmax

↵
!LY

⌦
Xmin ⇥ Ymin, Xmax ⇥ Ymax

↵

LY
⌦
Xmin, Xmax

↵
!LY

⌦
Xmin ⇥ Ymin, Xmax ⇥ Ymax

↵

fA !fA0

(2.22)

The rule set does not lose flow information.

2.5.2.9 Loop collapsing

Loop collapsing is similar to loop coalescing, while it is a less general version, because

Compiler Optimizations and Their Concrete Transformation Rules 59

for (i =0; i<n ; i++)
for (j =0; j<m; j++)

a [i , j]=a [i , j]+c ;

f loat ∗ pa=a ;
for (p=0; p<n∗m; p++)

pa [p]=pa [p]+c ;
(a) Original source code (b) Optimized code

Figure 2.30 – Loop collapsing example

it reduces the number of dimensions of the array. A simple example is shown in Fig-
ure 2.30. The advantage of this optimization is the overhead elimination of multi-
dimensional array indexing.

The transformation of CFG due to this optimization is similar to loop coalescing.
And the transformation rule set is also analogous.

2.5.2.10 Loop peeling

Loop peeling removes a small number of iterations from the start or end of the loop and
lets these code be executed separately outside of the loop. It can enable parallelization
and fusion. For the example in Figure 2.31, after this transformation, loop fusion can
be applied.

The code transformation of loop peeling is given by Figure 2.31. With this informa-
tion, the following update rules are described:

LX
⌦
Xmin, Xmax

↵
!LX

⌦
Xmin � k,Xmax � k

↵

fA !k ⇥ fA1...A
k

+ fA0
(2.23)

For the rule set of this optimization, no flow information is lost.

2.5.2.11 Loop spreading

Loop spreading is designed to minimize the parallel execution time of a loop by moving
some computation from one loop to another. In the example of Figure 2.32, the two
loops have different loop bounds and have a dependence (array a is written by the first
loop and read by the second loop), so they cannot be fused directly. In this case, we
need the loop spreading to move some computation together.

The code transformation of loop spreading is given by Figure 2.32c. With this
information, the following update rules are induced:

LY
⌦
Ymin, Ymax

↵
!LY

⌦
Ymin �Xmin, Ymax �Xmax

↵

fA !fA0B0

fB !fA0B0 + fB00

(2.24)

The rule set of this optimization does not lose flow information.

60 Transformation Framework

for (i =0; i<n ; i++)
a [i]=a [i]+c ;

for (i =1; i<n ; i++)
b [i]=b [i] ∗ 2 ;

i f (n>0)
a [0]= a [0]+ c ;

for (i =1; i<n ; i++)
a [i]=a [i]+c ;

for (i =1; i<n ; i++)
b [i]=b [i] ∗ 2 ;

(a) Original source code (b) Optimized code

(c) CFG of loop peeling

Figure 2.31 – Loop peeling example

Compiler Optimizations and Their Concrete Transformation Rules 61

for (i =0; i<n�m; i++)
a [i]= i +2;

for (i =0; i<n ; i++)
b [i]=b [i]+a [i] ;

for (i =0; i<n�m; i++){
a [i]= i +2;
b [i]=b [i]+a [i] ;

}
for (i=n�m; i<n ; i++)

b [i]=b [i]+a [i] ;
(a) Original source code (b) Optimized code

(c) CFG of loop spreading

Figure 2.32 – Loop spreading example

62 Transformation Framework

for (i =0; i<n ; i++)
a [i]=a [i]+c ;

for (TI=0; TI<n ; TI+=N)
for (i=TI ; i<min (TI+N, n) ; i++)

a [i]=a [i]+c ;
(a) Original source code (b) Optimized code

(c) CFG of loop tiling

Figure 2.33 – Loop tiling example

2.5.2.12 Loop tiling (loop blocking)

Loop blocking, also known as loop tiling divides the iteration space of a loop into tiles
or blocks, in this way it can enhance cache reuse. An example is shown in Figure 2.33.

The code transformation of loop tiling is given by Figure 2.33c. With this informa-
tion, the following update rules are described:

LX
⌦
Xmin, Xmax

↵
!LX

⌧
b
Xmin
N

c, bXmax
N

c
�

LY h1, Ni
fA !fA0

(2.25)

The transformation rule set does not lose flow information.

2.5.3 Vectorization optimizations

Vectorization is a compiler optimization that transforms a scalar implementation of a
computation into a vector implementation [Nai04, RWY13]. It consists in processing
multiple data at once, instead of processing a single data at a time. All silicon ven-
dors now provide instruction set extensions for this purpose, and usually referred to as
single instruction, multiple data (SIMD). Examples of SIMD instruction sets include
Intel’s MMX and iwMMXt, SSE (Streaming SIMD Extensions), SSE2, SSE3, SSSE3,

Compiler Optimizations and Their Concrete Transformation Rules 63

SSE4.x [INT] and AVX (Advanced Vector Extensions) [AVX], ARM’s NEON technol-
ogy [NEO], MIPS’ MDMX (aka MaDMaX, MIPS Digital Media eXtension) [Gwe96]
and MIPS-3D. The vectorization factor (VF) defines the number of operations that are
processed in parallel, and is related to the size of the vector registers supported by the
target architecture and the type of data elements. For 128-bit vectors (as in SSE and
NEON), and the common types defined by the C language, VF ranges from 2 to 16.

Except our transformation framework, to our best knowledge there is no work study-
ing the traceability of flow information and the impact of vectorization optimizations
on WCET. So we introduce vectorization optimizations in detail.

Vectorization is a complex optimization that reorders computations. Certain condi-
tions must be met to guarantee the legality of the transformation. Parallel loops, where
all iterations are independent, can be obviously vectorized. More generally, a loop is
vectorizable when the dependence analysis proves that the dependence distance is larger
than the vectorization factor.

for (i =0; i<n ; i++)
{

A[i]=B[i]+2;
}

for (i =1; i<n ; i++)
{

A[i]=A[i �1]+2;
}

(a) loop-independent (b) loop-carried

Figure 2.34 – No dependence & loop-carried dependence

As an example, consider the loops of Figure 2.34.

• The loop on the left part of the figure is parallel (assuming arrays A and B do
not overlap). The data elements written by an iteration are not written or read
by any other iteration. This loop is safe to vectorize.

• Conversely, the loop shown on the right part of Figure 2.34 has a dependence of
distance 1: values written at iteration i are read at iteration i+1. Processing these
iterations in parallel would violate the dependence, and hence the loop cannot be
vectorized.

Compilers usually contain a dependence test to identify the independent operations.
For example, LoopVectorizationLegality in LLVM checks for the legality of the vector-
ization.

Modern vectorization technology includes two methods: Loop-Level Vectorization
and Superword Level Parallelism (SLP) [LA00]. They aim at different optimization
situations.

2.5.3.1 Loop-level vectorization

Loop-level vectorization operates on loops. In the presence of patterns where the same
scalar instruction is repeatedly applied to different data elements in a loop, the loop-
level vectorizer rewrites the loop with a single vector instruction applied to multiple

64 Transformation Framework

data. The number that determines the degree of parallelism of data elements is the
vectorization factor. Figure 2.35 is an example of loop vectorization. VF in this example
is 4, which means that in the vectorized version, four elements will be processed in one
instruction in parallel8. In the meantime, the number of iterations is also divided by 4.
Besides, an epilogue loop is created when the loop bound is not known at compile time
to be a multiple of VF, to handle remaining iterations.

for (i =0; i<n ; i++)
{

A[i]=A[i]+2;
}

for (i =0; i<n�3; i+=4)
{

A[i : i +3]=A[i : i +3]+2;
}
for (; i<n ; i++)
{

A[i]=A[i]+2;
}

(a) Original source code (b) Vectorized

Figure 2.35 – Loop-level vectorization example

2.5.3.2 Superword level parallelism

typedef struct { char r , g , b } p i x e l ;
void f oo (p i x e l blend , p i x e l fg , p i x e l bg ,

f loat a)
{

blend . r = a ∗ f g . r + (1�a) ∗ bg . r ;
blend . g = a ∗ f g . g + (1�a) ∗ bg . g ;
blend . b = a ∗ f g . b + (1�a) ∗ bg . b ;

}

Figure 2.36 – The original code of superword level vectorization example

Superword level parallelism (SLP) focuses on basic blocks rather than loop nests.
It combines similar independent scalar instructions into vector instructions. Consider
the example of Figure 2.36. The three instructions in the function perform similar
operations, only the operation elements are different (r, g, b). The SLP vectorizer
analyzes these three instructions and their data dependencies, and combines them into
a vector operation if possible.

2.5.3.3 Rule set

Rule set of loop-level vectorization The example of loop-level vectorization ex-
pressed at the source code level has been given in Figure 2.35. The corresponding

8Vectorization is performed at the intermediate code level. The example is given at source code
level for readability. In the example A[i : i + 3] expresses that the four array elements at indices i to
i+ 3 are processed in parallel.

Compiler Optimizations and Their Concrete Transformation Rules 65

modifications of the CFG are illustrated in Figure 2.37. In this figure, X in the left
part is the loop bound of original Lx. The vectorization factor can be given as an input
or decided by the compiler. Through vectorization, the scalar instructions within the
loop body A are replaced with the corresponding vector instructions which constitute
the new loop body A0.

Figure 2.37 – The CFG of loop-level vectorization. The left part of the figure shows the original
CFG, whereas the right part shows the vectorized one.

The example in this figure is a general case. When the loop bound is not known
to be a multiple of VF, an epilogue loop is created to process the remaining iterations.
Otherwise, the new loop is not needed, or equivalently the loop bound of the new loop
is zero. Through the figure, we can observe that the structure of CFG (structure of
loops, basic blocks) changes significantly, and the loop bounds of these two loops in the
new CFG are also totally different from the original one.

Given the categorization of the transformation rules in Section 2.3, this optimization
requires the application of both the change rule and the addition rule. The change rule
is needed because of the change of the structure and loop bound of loop X. The
addition of the new loop requires the addition rule. The set of rules describing the flow
transformation of vectorization is given below.

LX
⌦
Xmin, Xmax

↵
!LX

⌧
b
Xmin
V F

c, bXmax
V F

c
�

fA !V F ⇥ fA0 + fA00

LY h1, V F � 1i

The first line is the change rule that expresses the change of the loop bounds of loop
X. The loop bound of the original loop divided by the vectorization factor becomes the
new one. The following line is change rule. The execution count fA of node A should
be replaced by V F ⇥ fA0 + fA00 . The operations in A0 are vector operations. The final

66 Transformation Framework

line is an addition rule that expresses the addition of loop bound for the newly created
epilogue loop.

For the rule set of loop-level vectorization optimizations, no flow information is lost.

Rule set of superword level parallelism SLP transforms scalar instructions into
vector instructions. Because SLP only focuses on basic blocks, it has no effect on the
CFG. The transformation rule set for SLP is:

fBB_scalar ! fBB_vector (2.26)

2.6 Related Work

WCET estimation methods have been the subject of significant research in the last
two decades. Comparatively less research was devoted to WCET estimation with flow
information traced from source-to-binary in the presence of optimizing compilers. In
the rest of this section, we summarize the existing related research.

2.6.1 WCET estimation without or with “weak” optimizations

For the following WCET estimation methods, some of them do not support compiler
optimizations, some of them do not support complex optimizations, and some of them
support only one or a few kinds of optimizations.

An early approach is proposed by Park et al. [PS90, Par93, Cha94] (mentioned in
Section 1.3). This approach uses an information description language (IDL) to perform
the mapping from the object code to the source code, and performs timing analysis
on the source code level. However, compiler optimizations are not supported appropri-
ately by this approach. Our mechanism can handle code optimizations performed by a
compiler.

Then a novel approach is presented by Engblom et al. [EEA98] to derive WCET
when code optimizations are applied. A tool called co-transformer is designed in their
work. It can transform timing information in parallel to the transformation of source
code in the compilers. However, according to the authors, their data structures were
not powerful enough to support some complex loop optimizations such as loop unrolling
(They cannot represent the outcome which depend on the loop bounds). In contrast,
as shown later, our mechanism can handle most LLVM [LA04, LLVb] optimizations,
including loop unrolling.

Ferdinand et al. describe their WCET estimation method in [FHL+01]. Their
method includes cache, pipeline, and path analysis. The method first reconstructs con-
trol flow with binary program and their analysis is based on this control flow. The
annotations are needed for both the binary program and WCET analysis. So com-
pared with our mechanism, the traceability of flow information and support of compiler
optimizations in their method have to be done by the users.

The work of Lokuciejewski et al. [LFS+07] focuses on the effect of procedure cloning
on WCET, because procedure cloning can improve the prediction of the code. Their

Related Work 67

evaluation emphasizes the effect of procedure cloning on WCET. Our work also can
enable procedure cloning, even with other optimizations. Then based on this work,
Roeser et al. [RLF14] propose an approach optimizing for WCET, code size and energy
consumption. The approach focuses on the ILP program and the trade-off of the multi-
ple optimization criteria. On the contrary, we only focus on the WCET estimation and
traceability of flow information.

Knoop et al. [KKZ11, KKZ12a] present a method to compute tight upper bounds of
loop bounds. They refine program flows and rewrite different special loops into single-
path for loops. They implement their method in the TuBound tool [PKST09]. However,
their method just infers loop bounds for further WCET analysis, and only simple loop
rewriting techniques are allowed.

Schoeberl et al. [SPPH10] propose a solution for a WCET analyzable Java system.
Based on this WCET analysis tool, Hepp et al. [HS12] estimate WCET along with
one of the effective compiler optimizations: inlining. Inlining is especially important
for Java, where small setter and getter methods are considered good programming
style. Our mechanism focuses on C/C++ instead of Java, and supports more compiler
optimizations.

2.6.2 WCET estimation with compiler optimizations

The methods introduced in this subsection are most related to our work.
TuBound [oCEtIoCL, PSK08] is a WCET analysis tool combining the source code

level annotations and low level WCET estimation with compiler optimizations. It en-
ables the programmer to provide annotations at source code level. When the compiler
optimizations are applied, it uses the transformation framework called FLOWTRANS
to perform a source-to-source transformation. According to the different optimizations
applied, this framework can transform the flow information. Based on TuBound, a
new tool called r-TuBound [KKZ12b] is developed by Vienna University of Technol-
ogy. r-TuBound can derive symbolic loop bounds automatically. Some loop bounds can
only be analyzed by r-Tubound, not also by Tubound. TuBound and our mechanism
both focus on the traceability of annotions. The difference is that our attention is on
source-to-binary transformation instead of source-to-source transformation.

Kirner et al. [KP01, Kir02] describe a technique to provide path information inside
the program for WCET analysis. They extend the C source code with additional syntax.
With the additional syntax, scopes, loop limits and path information can be defined
and these information can be recorded by the compilers. Then compilers match the
information with the code of program. The match is traced by the compilers through
transformations and optimizations.

Raymond et al. [RMPVC13] focus on timing analysis enhancement through trace-
ability of flow information for synchronous programs. A method is introduced by them
to improve timing analysis of programs generated from high-level synchronous design.
Full traceability is guaranteed within the Lustre [CRT08] to C compiler, whereas error-
prone graph matching is used so far for C to binary compilation. Our work is intended
to complement theirs, with the overall objective of having full traceability of flow infor-

68 Transformation Framework

mation from very high level languages to binary code.
The SATIrE [SAT] system was introduced [Sch08] as a source-to-source analysis that

integrates LLNL-ROSE source-to-source compiler infrastructure [Lab] and can generate
analysis results and map them as source code annotations to the intermediate repre-
sentation. By using ROSE’s source-to-source transformation capabilities, it can add
the analysis result of the nodes and edges as comments to the original source code.
Afterwards, Barany et al. [BP10] use this system to build a WCET analysis tool which
combines source-level analysis, optimization and a back-end compiler performing WCET
analysis. The connection to several other timing analysis tools is also implemented in
project ALL-TIMES aiming at improving and integrating existing European timing
analysis tools [Bar]. Comparing with their source-to-source analysis, our method works
on source-to-binary transformation.

Huber et al. [HPP13] propose an approach to relate intermediate code and machine
code when generating machine code in compiler back-ends. The approach is based on a
novel representation, called control flow relation graph, that is constructed from partial
mapping provided by the compiler. In contrast to them, we focus in this thesis on
optimizations performed at the intermediate code level.

The most related work is from Kirner et al. [KP03, Kir03, KPP10], who present a
method to maintain correct flow information from source code level to machine code
level. It transforms both manual annotations and platform-independent flow informa-
tion in parallel to the code transformations performed by the compiler. We differ in
the following respects. Their first implementation goes back to GCC-2.7.2, a compiler
released in 1995, lacking a modern higher-level intermediate representation (GIMPLE
was introduced much later [Mer03, GIM]), and featuring only “a small number of code
transformations that change the control flow of a program significantly”. We rely on
state-of-the-art technology, and we can handle most optimizations in modern compilers.
In a more recent implementation, Kirner et al. rely on source-to-source transformations,
while we focus on traceability within the compiler, down to the code generator.

2.6.3 WCET estimation without traceability

The following mechanism can estimate WCET with compiler optimizations, but they
do not trace flow information during the compilation.

Rodrigues et al. propose a mechanism called back-annotation in [RFdS11]. It es-
tablishes a link between the source code and the binary code with annotations and
annotates the timing information on each source code line. At the end, the WCET
analysis is at source code level. The same mechanism is also implemented in a WCC
variant platform [PLM08]. But in this implementation, it links the high-level and in-
termediate representation level.

2.6.4 Optimizations for WCET

The following two methods focus on the different point of view from the above work and
our work. They pay attention the WCET-aware optimizations. They detect, develop

Related Work 69

and apply optimizations for WCET minimization.
Zhao et al. [ZKW+04, ZKW+] introduce an approach to reduce WCET by optimiz-

ing the code. The optimization starts from finding frequent paths to the worst-case
paths in an application. Then by adapting and applying optimizations designed for
these paths, the timing analyzer integrated within the compiler can calculate the tim-
ing result.

WCC [DAfESG] is a WCET-aware compiler that is different from modern compilers
including a vast variety of optimizations mostly aiming at minimizing ACET. This spe-
cific compiler integrates optimizations for WCET minimization. These WCET-aware
optimizations are applied only to minimize WCET aggressively, for example, Loop
Nest Splitting [FS06], Loop Unrolling [LM09], Function Inlining [LGMM09] and so on.
WCC is extended in [FK09] and [LF14]. The former one proposes a technique of SPM
allocation of program code in WCET-aware optimization compilers. The latter one
implements their approach in WCC and can determine the optimizations of tasks to
achieve a schedulable system in hard real-time multitasking systems. Our work takes
a different angle, by addressing general-purpose optimizations and compilers. Our ex-
perimental results show that most optimizations designed for average-case performance
are also beneficial in the worst-case.

2.6.5 Vectorization research

Vectorization in compilers is necessary. The performance of vectorization has been stud-
ied extensively. However, to our best knowledge, there is no work studying the impact
of vectorization on WCET. So in this subsection, we list the works on vectorization.

Maleki et al. [MGG+11] evaluate three main vectorizing compilers: GCC [GCC],
the Intel C compiler [ICC] and the IBM XLC compiler [XLC]. They evaluate how well
these three compilers vectorize benchmarks and applications. The experimental results
indicate the functionality and limitation of these three compilers. And they also try to
give a reason to the limitation.

The introduction and evaluation of vectorization optimization in LLVM is presented
in [AUTb]. That document introduces the two vectorizers: the Loop Vectorizer and the
SLP Vectorizer. Then it explains the usage of vectorizers in LLVM through exam-
ples, and gives performance numbers of the LLVM vectorizer on benchmark gcc-loops
(introduced in Subsection 4.2.1) as compared to GCC.

Further evaluation of vectorization is given by Finkel in [Fin]. In this document,
the benchmark TSVC (introduced in Subsection 4.2.1) is used to test the vectorization
with LLVM as compared to the GCC vectorizer.

Compared with the above documents, we focus on the WCET estimate as a per-
formance metric instead of average-case performance. Except our work, to our best
knowledge there is no work studying the impact of vectorization on WCET estimate.

70 Transformation Framework

2.7 Summary

This chapter has presented the theoretic foundations which are needed by our trans-
formation framework. Then we have described the details of our framework: the linear
constraints, the transformation rules, the manipulations of the rule set, the influence on
estimated WCET. Our transformation framework succeeds in tracing and transforming
flow information from C level to binary level with compiler optimizations. Afterwards,
the typical compiler optimizations and their corresponding rule sets were presented. At
the end, we have introduced the scientific work related to our transformation framework
and the scope of our thesis. However, for now, our work is just at theoretical level. We
need to verify our transformation framework by implementing it and using experiments
to evaluate it. So in the next two chapters, firstly, we will implement our transformation
framework in a modern compiler; then we estimate WCET with the implementation and
validate our framework by analyzing the results.

Chapter 3

Implementation of Traceability in

the LLVM Compiler Infrastructure

In this chapter, we integrate the transformation framework in the LLVM compiler in-
frastructure [LA04, LLVb]. At the beginning of this chapter, we give an overview of the
LLVM compiler infrastructure and other tools used in our implementation. Then, we
explain our integration within the LLVM compiler infrastructure in detail. At the end,
some specific features of optimizations in the LLVM are described.

Theoretically, our transformation framework transforms flow information expressed
as linear constraints. However, considering the engineering work, for the implementation
within the LLVM compiler, we focus on tracing only the local loop bounds which are
the most important information for most programs and WCET estimation. The reasons
of choosing loop bounds are:

• Loop bounds are the mandatory information for WCET estimation.

• Loop optimizations may affect loop bounds, and have an important influence on
performances.

3.1 Required Tools

In this section, we introduce all tools used in our implementation.

3.1.1 WCET analysis tools

A short summary of WCET analysis tools is in Section 1.1.2. Detailed WCET anal-
ysis tool descriptions have been given by Wilhelm et al. [WEE+08]. Furthermore, a
comparison of WCET tools with the same benchmarks and execution platforms is pro-
vided in [Gus06, HGB+08, vHHL+11]. Here, we only detail the two tools used in our
implementation:

• Heptane: for performance evaluation.

71

72 Implementation

• OTAWA: for the traceability of semantics information from high-level language to
binary level in W-SEPT project.

3.1.1.1 Heptane

HEPTANE [CP00, IRI] static WCET estimation tool is an open-source static WCET
analysis tool. The purpose of this tool is to obtain upper bounds of programs’ execution
times by analyzing code statically. It implements IPET (Implicit Path Enumeration
Technique) and includes cache analysis techniques for many cache architectures. Its
current implementation is for the C language with some restrictions. Its supported
instruction sets include MIPS and Arm. Heptane can analyze the source and/or the
binary code.

Heptane requires the user to give the maximum number of loop iterations through
annotations in the source program or an external annotation file. Besides, with the
annotations in source code, compiler optimizations are inhibited by default. Our mod-
ified LLVM toolchain can produce the optimized binary code which contains the in-
formation needed by Heptane to calculate WCET results (the binary production is in
Section 3.3.5). The final WCET bound is computed using an external evaluation tool
(lp_solve [LPS] or CPLEX [CPL]).

3.1.1.2 OTAWA

OTAWA [BCRS10, TRA] is an open-source tool from IRIT, W-SEPT partner, it is ded-
icated to binary code analysis and to WCET computation. The motivation of OTAWA
is provide an open framework that could be used by researchers to implement their
analyses and to combine them to already implemented ones. So we modify the LLVM
compiler to output the binary containing the information needed by OTAWA for the
WCET estimation.

OTAWA supports a large range of target architectures (e.g. PowerPC, ARM, Sparc
or M68HCS). It is organized in independent layers that provide an abstraction of the
target hardware and associated Instruction Set Architecture (ISA) as well as a repre-
sentation of the binary (.elf) code under analysis. The modified LLVM outputs the final
flow information into the binary code. The flow information is retrieved and analyzed
by OTAWA, and is combined to determine the final WCET. The integer linear program
defined by the IPET method is generated through the information and the target hard-
ware. Finally, OTAWA invoke the lp_solve to solve this linear program and get the
final WCET results.

3.1.2 Flow information extraction and formulation

We have mentioned different methods to extract flow information in Section 1.3. In our
implementation, flow information is extracted automatically by using the tool named
oRange which is from IRIT, W-SEPT partner. The extracted information is stored in
the FFX format files.

The LLVM Compiler Infrastructure 73

3.1.2.1 oRange

oRange [BdMS08, dMBBC10] is a static analysis tool that is used to determine flow
information including loop bounds. It works on the C source code and uses flow analysis
and abstract interpretation techniques to derive contextual loop bounds (a loop in a
function can have different bounds with each call context).

We have used oRange to extract loop bounds and send them to the modified LLVM.
The modified LLVM conveys this original information to the binary code when the
optimizations are applied.

3.1.2.2 FFX

FFX [BCdM+12] - Flow Facts in XML is a portable WCET annotation language and an
intermediate format for WCET analysis. It is an XML-based file format that is used to
represent all kinds of flow information. The FFX format allows combining flow informa-
tion from different high-level tools and decreases the implementation effort to integrate
different WCET analysis tool chains. For example, FFX is used by OTAWA/oRange
as their native annotation language, meanwhile, it is easy to combine FFX within our
modified LLVM.

FFX offers means to store flow information on both source code and binary code
levels. oRange produces FFX files as output. The modified LLVM uses it as input
and outputs a binary code version after optimizations. This output is generic enough
to be usable for a large range of WCET estimations tools, e.g. Heptane static WCET
estimation tool and OTAWA WCET analysis toolchain.

3.2 The LLVM Compiler Infrastructure

We integrated the transformation rules described in Section 2.3 in the LLVM compiler
infrastructure [LA04], version 3.4.

LLVM is a collection of modular and reusable compiler and toolchain technologies.
The name of LLVM was an acronym for Low Level Virtual Machine. Nowadays, LLVM
has developed and included a variety of subprojects, and it can handle different tasks.
LLVM is written in C++. LLVM supports C and C++ originally, nevertheless theoret-
ically it can handle programs written in arbitrary programming languages with a wide
variety of front ends.

3.2.1 LLVM components

As shown in Figure 3.1, LLVM consists in a three-phase compiler.

clang is the first phase. It is a compiler front end for the C, C++, Objective-C and
Objective-C++ programming languages. Clang parses, validates and diagnoses
errors in the C/C++ code, and then translates the code into the LLVM Interme-
diate Representation (IR).

74 Implementation

Figure 3.1 – LLVM Compiler Infrastructure

opt is the modular LLVM optimizer and analyzer. It takes LLVM intermediate rep-
resentation as input and parses LLVM IR. With the objective of improving the
code quality, it runs a series of specified analysis and optimizations on the IR.

codegen is the last phase - the compiler backend. It is a framework that provides a suite
of reusable components for translating the LLVM intermediate representation to
the machine code for a specified target. The output can be assembly form or
binary machine code format. At version 3.4 LLVM supports many instruction
sets, including ARM, MIPS, x86/x86-64, XCore and so on.

The LLVM IR [LLVa] is the core of LLVM. It is a low-level programming language
and similar to assembly. It locates between high-level program and the low-level back-
end. It is the only interface to the optimizer and different components in LLVM. For
LLVM IR, there are three isomorphic forms: an in-memory compiler IR, an on-disk
bitcode representation, and a human readable assembly format.

3.2.2 Passes

LLVM is built around the notion of pass1. A pass performs an action on the program
either to collect information or to transform the program. They consist in Analysis

passes, Transform passes and Utility passes.

Analysis passes compute various information for program visualization purposes or
that subsequent passes can use, such as dominator trees, alias analysis, or loop
forests.

For example, dot-cfg is a pass to print the control flow graph into a .dot graph [DOT];
scalar-evolution is a pass to analyze and categorize scalar expressions in loops. The
information obtained by this pass is useful for a transform pass strength reduction.

1http://llvm.org/docs/Passes.html

Implementation within the LLVM Compiler Infrastructure 75

Transform passes use or invalidate the analysis passes. They all mutate the program
more or less. Each pass can specify its impact on already available information.
It may specify that particular information is preserved (allowing further passes to
reuse it without recomputing it), while others are invalided, hence destroyed, and
must be recomputed.
For example, loop-reduce is a transform pass which uses the information provided
by scalar-evolution to perform a strength reduction on array references inside
loops.

Utility passes are the passes whose utility do not fit categorization, i.e. are neither
analysis nor transform passes.
For example, the pass verify is an utility pass. It is needed to verify an LLVM IR
code after an optimization which is undergoing testing.

3.2.3 Supported optimizations

We implemented our transformation framework into the optimizations in LLVM com-
piler infrastructure. Figure 3.1 lists the supported optimizations in LLVM. They are
almost all the transform LLVM optimizations of level (-O3). In Figure 3.2, we list the
optimizations which are supported by our transformation framework, but not imple-
mented in LLVM.

3.3 Implementation within the LLVM Compiler Infrastruc-
ture

In this section, we present all the details in the implementation within the LLVM
compiler infrastructure. Figure 3.2 shows the structure of the whole implementation.
Through observing the figure, you can find two major differences from the original
LLVM. One is the addition of several external tools for the input and usage of flow
information. Another is the modification of opt. We modified opt in four places: the
addition of a new pass to store the annotations; another new pass to read in annotations
from an external file; the individual transformations to convey annotations all the way
down; and the IR writer to dump the updated annotations to a file. In the following of
this section, we explain the details of these modifications.

3.3.1 External components

On Figure 3.2, there are two external components, depicted as yellow boxes: loop bound

estimation tool and WCET estimation tool . The former derives loop bounds from
the source code. Loop bounds are traced throughout the optimization passes. The
WCET estimation tool calculates the WCET from the binary code, in which modified
loop bounds have been generated. The corresponding tools in our implementation are
oRange and Heptane/OTAWA. The input/output format of our framework is FFX.
They were all described in the previous section.

76 Implementation

Figure 3.2 – Implementation of traceability in LLVM

3.3.2 Representation of flow information (WCETInfo)

We added to LLVM a new type of information, named WCETInfo, to be attached
to the program. Its current purpose is to map loops (Loop objects in LLVM) to the
corresponding estimate of loop bounds (both lower and upper loop bounds).

WCETInfo uses the “ImmutablePass” class for its implementation. Any new pass in
LLVM should choose a superclass to subclass. We choose “ImmutablePass” class for our
new pass because ImmutablePass is usually used for passes that only run once and are
never invalidated. This is not a normal type of LLVM pass, but can provide information
for other passes. WCETInfo needs run only once at the beginning, and avoid the loop
bounds information being destroyed by the other passes.

3.3.3 Input of flow information

In order to read loop bounds generated by the oRange, we add another new pass into
opt . Loop bounds extracted by oRange are expressed in FFX. The loop bounds in FFX
are stored in order of their position in the function based on the source code. In LLVM,
LoopInfo is a class designed to compute and store the loop information including natural
loop identification, loop header, nesting structure of loops, loop depth and so on.

So our new pass, first reads the external annotation from FFX, then gets LoopInfo.
By comparing the loop sequence in FFX and loop information in LoopInfo, we can
obtain the corresponding loop bounds for each loop in LLVM and store these matching
in WCETInfo.

As a side product of using automatically generated loop bounds, we were able to
compare the loop bounds generated by oRange with those available inside LLVM using
the scalar-evolution analysis pass. scalar-evolution implements the representation of
scalar expressions, and can compute the execution count of a loop based on the expres-
sions. All loop bounds calculated by scalar-evolution were also computed by oRange
and the bounds were identical.

Implementation within the LLVM Compiler Infrastructure 77

3.3.4 Transfer of flow information

Similarly to other information in LLVM, transformation passes may have one of the
following behaviors with respect to WCETInfo:

Preserve WCETInfo. This is when the transformation does not modify loops, or when
loops are modified, but we know that their bounds remain unchanged. Constant
propagation is an example of this case.

Update WCETInfo. This happens when loops are modified, but we are able to apply
the corresponding transformation to the loop bound information, according to one
of the rules of Section 2.3. The example of this kind of transformation passes is
loop interchange.

Add WCETInfo. This is needed when a new loop is added to the CFG by a trans-
formation pass. If the loop bound of this new loop can be derived according the
semantic of the optimization, we add the matching of the loop bound and new
loop into WCETInfo. For example, if the called function contains loops, inline will
introduce the loops into the caller function. Another example is loop distribution
which divides the original loop into two.

Delete WCETInfo. This occurs when the transformation is unknown, or is known
to be too complex to propagate loop bounds correctly. These optimizations are
WCET unfriendly, and may render the WCET impossible to compute. Thus, they
should be disabled from a compiler targeting real-time systems. An error will be
generated if these optimizations are used.

The default for every pass is to delete the WCETInfo, as this is the safe behavior. Still
use loop rerolling as the example, if we do not the tranformation of this optimization,
and we preserve the WCETInfo, the WCET result is unsafe.

Figure 3.3 – Process of WCETInfo Update

The process of updating WCETInfo in transformation passes is depicted in Fig-
ure 3.3. Firstly, we add AU.addRequired<WCETInfo>() to each transformation pass
which has an effect on WCETInfo. AU.addRequired<> means that this pass requires
a previous pass to be executed. So by adding that code, the compiler knows that

78 Implementation

this transformation pass needs WCETInfo and arranges for it to be run before this
pass. Then WCETInfo WI= getAnalysis <WCETInfo>() is required. This method
call returns a reference to WCETInfo. Then according to the transformation rules
of each optimization introduced in Section 2.5, we operate the different behaviors on
WCETInfo.

The example in Figure 3.3 is loop unrolling. The loop bound is modified in this
optimization. So when a loop is unrolled, its loop bound in WCETInfo should be
updated with the new one: d Old_loop_bound

Unrolling_Factore (refer to Section 3.3.7.1).
The addition and modification of WCETInfo are operated manually. Because for

each optimization, we need analyze the code to detect its impact on loop bounds and
to find the appropriate location to add the modification code.

We verify the new loop bounds by comparing them with those available using the
scalar-evolution analysis pass. All new loop bounds calculated by scalar-evolution are
equal to the loop bounds in WCETInfo which are transformed by our transformation
framework. So we can conclude that both our transformation framework and our im-
plementation are correct.

3.3.5 Output of flow information

Code generation was also modified after all optimization passes to output the final loop
bounds in the binary code in a specific section of the binary, for subsequent use in the
WCET calculation.

For Heptane, it can use the information in this binary directly. For OTAWA, we
provide a tool to extract the final flow information and analyze the binary code. And
the tool can combine all these information to constitute a FFX file which can provide
enough information to OTAWA for WCET estimation.

3.3.6 The comparison with original Heptane estimation process

Figure 3.4 shows two different processes of WCET estimation by using Heptane.
Figure 3.4a presents the original Heptane working process. At first, manual an-

notations giving maximum number of iterations for loops is added in source code
(ANNOT_MAXITER(N)). After compilation without optimizations, these anno-
tations are transferred into assembly code and then, the final binary files. The flow
information extraction tool of Heptane called HeptaneExtract extracts the control flow
graph including instruction addresses and loop bounds in the annotations from the bi-
nary files to an XML file. Then with this XML file, Heptane can analyze address and
cache, calculate WCET by using an ILP formulation, even print the program in text or
graphical format.

However, in our implementation (shown in Figure 3.4b), manual annotations are
inessential. oRange can analyze and extract the loop bounds and store them into FFX.
Actually, Heptane can use an external XML-based annotation file which plays a similar
role to FFX. Both of them can be used interchangeable. Considering that FFX is
generated by oRange automatically and is a part of W-SEPT project, we finally choose

Implementation within the LLVM Compiler Infrastructure 79

(a) Original WCET estimation with Hep-
tane

(b) WCET estimation in our implemen-
tation

Figure 3.4 – The WCET estimation process.

80 Implementation

FFX as the annotation format. Then LLVM reads, retains and traces the loop bounds
and also output them as the format which Heptane can analyze. The updated loop
bounds are inside the optimized binary files. So Heptane can extract and analyze the
binary files, and calculate the final WCET with the updated loop bounds.

3.3.7 Specific features of optimizations in LLVM

Some optimizations in LLVM have some specific features differing from the general
version presented in Section 2.5. When we implement the transformation rules on these
optimizations, we must rewrite them combining these specific features in LLVM.

Some examples about these difference are presented in the following:

3.3.7.1 Loop unrolling

Figure 3.5 – The CFG of loop unrolling in LLVM. The left part of the figure shows the original CFG,
whereas the right part shows the unrolled one.

Loop unrolling in LLVM is a little different from the one presented in Section 2.5.2.1.
Figure 3.5 indicates the difference. The method in LLVM uses a conditional test inside
the unrolled loop instead of the epilogue loop. This also results that the loop bound of
the unrolled loop differs from the one in Figure 2.23.

With the new loop bound and conditional test in the new loop bodies, the transfor-
mation rules corresponding to Figure 3.5 are:

LX
⌦
Xmin, Xmax

↵
!LX

⌧
d
Xmin
UF

e, dXmax
UF

e
�

fA !fA1 + . . .+ fA
UF

The first line is also a change rule that expresses the change of the loop bound of loop
X. But, here the ceil of, instead of the floor of the loop bound of the original loop divided

Implementation within the LLVM Compiler Infrastructure 81

by unrolling factor becomes the new one. Another difference is the remove of epilogue
loop. Node A are replicated by unrolling. fA should be replaced as fA1 + . . .+ fA

UF

.

3.3.7.2 Vectorization optimization

Vectorization in LLVM has some specific features that slightly differ from those pre-
sented in Section 2.5.3. Actually, LLVM combines vectorization with loop unrolling
introduced in Section 2.5.2.1 in a single pass. When transforming flow information, we
must thus consider the effect of both transformations.

Unrolling applying jointly with vectorization can also generate more independent
instructions. Vectorization as defined in LLVM is depicted in Figure 3.6.

Figure 3.6 – The CFG of loop-level vectorization in LLVM. The left part of the figure shows the
original CFG, whereas the right part shows the vectorized one.

Compared to Figure 2.37, the differences are that UF appears, because of the joint
application of unrolling and vectorization. The loop body A is replicated V F ⇥ UF
times for each loop iteration after the vectorization, and the new loop body A1. . .AUF

is the vector operations transformed from the original scalar loop body according to the
vectorization factor. The transformation rules corresponding to Figure 3.6 are:

LX
⌦
Xmin, Xmax

↵
!LX

⌧
b

Xmin
V F ⇥ UF

c, b Xmax
V F ⇥ UF

c
�

fA !V F ⇥ UF ⇥ fA1...A
UF

+ fA0

LY h1, V F ⇥ UF � 1i

82 Implementation

The first line is also a change rule that expresses the change of the loop bound
of loop X. But, here the loop bound of the original loop divided by the product of
vectorization factor and unrolling factor becomes the new one. Another difference is
about node A1. . .AUF . This node contains vector operations which are replicated by
unrolling. fA should be replaced as V F ⇥ UF ⇥ fA1...A

UF

+ fA0 .

3.4 Summary

The chapter presented the implementation of our transformation framework in LLVM
compiler infrastructure. We introduced the different tools used within the implementa-
tion. Then the details about the storage and processing of flow information are given.
And we also mentioned some specific features of optimizations in LLVM, e.g. loop
unrolling and loop-level vectorization.

The final logical lines of code of our implementation within the LLVM compiler
infrastructure is about 1500. I also developed a tool to extract flow information from
the binary code generated by modified LLVM. Its lines of code is about 300.

The main goal of W-SEPT is to trace flow information through the compilation
flow, from high-level language to C level and finally to binary level. Our transformation
framework and implementation in LLVM compiler infrastructure accomplish the part
from C level to binary level.

At this moment, we have succeeded in the implementation. So the next step should
be the experiments. The experimental result is presented in the next chapter and we
also give analyses on the result.

Summary 83

Optimization
name

Description

Redundancy elimination, procedure, control-flow and low-level optimizations of LLVM
adce Aggressive dead code elimination
argpromotion Promote “by reference” arguments to be “by value” arguments
constmerge Merge duplicate global constants
correlated-
propagation

Correlated value propagation

deadargelim Deletes dead arguments from internal functions
dse Intra basic-block elimination of redundant stores
early-cse Early common subexpression elimination
functionattrs Interprocedural deduction of function attributes
globalopt Transforms simple global variables that never have their address taken
globaldce Eliminate unreachable internal globals
inline Replace a function call site with the body of the called function
instcombine Combine instructions into less and simple instructions
ipsccp Interprocedural conditional constant propagation
sccp Sparse conditional constant propagation
jump-threading Reduction of the number of branch instructions in case of chained branching
mem2reg Promote memory reference to be register references
memcpyopt Transformations related to eliminating calls to memcpy
prune-eh Remove unused exception handling info
reassociate Reassociate expressions to promote better constant propagation
simplifycfg Dead code elimination and basic block merging
sroa Scalar replacement of aggregates
strip-dead-
prototypes

Strip unused function prototypes

tailcallelim Elimination of tail recursion
Loop Optimizations of LLVM
loop-simplify Canonicalize natural loops to make subsequent analyses and transformations

simpler and more effective
lcssa Transform loops in closed SSA form
licm Loop invariant code motion (move invariant code outside loop body)
loop-unswitch Transforms loops that contain branches on loop-invariant conditions to have

multiple loops
indvars Canonicalize induction variables: analyzes and transforms the induction vari-

ables into simpler forms suitable for subsequent analysis and transformation
loop-idiom Loop idiom recognizer: transforms simple loops into a non-loop form
loop-deletion Deletion of loops with non-infinite computable trip counts that have no side

effects and do not contribute to the computation of the function’s return value
loop rotation Replacement of a loop with the exit test at the start of a loop with an equivalent

one, with the test at the end of the loop
loop-unroll Replication of loop body by some unrolling factor to reduce branches and in-

crease instruction-level parallelism
Vectorization Optimizations of LLVM
loop-vectorize Loop vectorizer: rewrite scalar instruction loop with a single vector instruction

applied to multiple data
slp-vectorizer Superword-level parallelism vectorizer: combine similar independent instruc-

tions into vector instructions

Table 3.1 – Supported optimizations included in LLVM.

84 Implementation

Optimization
name

Description

Other supported optimizations not implemented in LLVM
if simplification Removal of empty or not taken branches in conditional constructs
branch opti-
mization

Elimination of branches

tail merging Merge the instructions in different basic block targeting same destination into
a new basic block

loop interchange Exchange the order of two loops in a perfect loop nest. In general, it switches
the outer loop to the inner position and vice versa

loop coalescing Turn a nested loop into a single loop
loop collapsing Less general version of loop coalescing
loop fission Split a loop into multiple loops with the same iteration space as the original

one and a subset of the original loop body
loop fusion Rewrite multiple loops with the same loop bound into a single one
loop peeling Move some iterations from the loop to outside of the loop
loop spreading Move some computations from one loop to another
loop tiling Divide the iteration space of a loop into tiles

Table 3.2 – Supported optimizations not implemented in LLVM.

Chapter 4

Experimental Evaluation of

Traceability

In this chapter, we evaluate our transformation framework by experiments. Our purpose
is to demonstrate that our transformation framework can trace flow information through
compiler optimizations and allow us to calculate better WCET bounds. Through the
implementation within the LLVM compiler infrastructure and the analysis results esti-
mated by WCET analysis tools, we show the feasibility of our transformation framework.

This chapter consists of two parts:

• In Chapter 3, we mention that we have supported almost all the transform LLVM
optimizations of level (-O3). However, because of lack of support of vectorization
instructions in WCET analysis tools, we evaluate our transformation framework
on the LLVM compiler optimizations of level (-O3) except for vectorization opti-
mizations in Section 4.1.

• For the verification of vectorization, we relied on measurements on actual hard-
ware. The measurements of vectorization optimizations and the analysis of mea-
surement results are described in Section 4.2.

4.1 Experiments for Traceability without Vectorization

The objectives of the experiments are:

1. To verify the implementation of our transformation framework in LLVM compiler
infrastructure;

2. To use the experimental results to find out the impact of compiler optimizations
on estimated WCET.

4.1.1 Benchmarks

The evaluation of our transformation framework on WCET estimation requires a com-
mon set of benchmarks which serve a multitude of needs. The common choice is

85

86 Experiments

Mälardalen benchmarks.
We demonstrate the impact of our mechanism on program optimization and anno-

tation transformation with the standard set of WCET benchmarks from Mälardalen
University [MBe].

Mälardalen benchmarks are collected from different research groups and tool vendors
by Mälardalen WCET research group. They are used to evaluate and compare different
WCET analysis tools and methods. The benchmarks are provided as C source files.
Their descriptions, characteristics and lines of code are listed in Figure 4.11.

Benchmark Description Comments LOC
bs Binary search for the array of

15 integer elements.
Completely structured. 114

cnt Counts non-negative numbers
in a matrix.

Nested loops, well-structured code. 267

fdct Fast Discrete Cosine Trans-
form.

A lot of calculations based on integer
array elements.

239

fibcall Simple iterative Fibonacci
calculation, used to calculate
fib(30).

Parameter-dependent function,
single-nested loop.

72

insertsort Insertion sort on a reversed
array of size 10.

Input-data dependent nested loop
with worst-case of (n2)/2 iterations
(triangular loop).

92

jfdctint Discrete-cosine transforma-
tion on a 8x8 pixel block.

Long calculation sequences (i.e.,
long basic blocks), single-nested
loops.

375

ludcmp LU decomposition algorithm. A lot of calculations based on float-
ing point arrays with the size of 50
elements.

147

matmult Matrix multiplication of two
20x20 matrices.

Multiple calls to the same function,
nested function calls, triple-nested
loops.

163

ndes Complex embedded code. A lot of bit manipulation, shifts, ar-
ray and matrix calculations.

231

ns Search in a multi-dimensional
array.

Return from the middle of a loop
nest, deep loop nesting (4 levels).

535

nsichneu Simulate an extended Petri
Net.

Automatically generated code
containing large amounts of if-
statements (more than 250).

4253

ud Calculation of matrixes. Loop nesting of 3 levels. 163

Table 4.1 – The descriptions, characteristics and lines of code of benchmarks used in our experiment

4.1.2 Target hardware

WCETs are estimated by using the Heptane timing analysis tool, implementing the
Implicit Path Enumeration Technique (IPET) for WCET calculation. The ILP solver

1Information comes from http://www.mrtc.mdh.se/projects/wcet/benchmarks.html.

Experiments for Traceability without Vectorization 87

0,00%$

10,00%$

20,00%$

30,00%$

40,00%$

50,00%$

60,00%$

70,00%$

80,00%$

90,00%$

100,00%$

bs
$

cn
t$

fdc
t$

fib
ca
ll$

ins
ert
so
rt$

jfd
c=
nt$

lud
cm
p$

ma
tm
ult
$

nd
es$ ns

$

ns
ich
ne
u$ ud

$

av
era
ge
$

Figure 4.1 – Impact of optimizations (-O3) on WCET. The y-axis represents the WCET with opti-
mizations, normalized with respect to the WCET without optimization (-O0)

is CPLEX [CPL]. For the scope of this document, to ease the understanding of results,
a very simple hardware model is used by Heptane. A 32-MIPS processor is considered,
with a 2-level hierarchy of caches and a perfect data cache. The L1 instruction cache
is a 2-way 512-byte cache with 32-byte lines, and the L2 cache is a 8-way 16-Kbyte
cache with 64-byte lines (the L1 cache size is voluntarily small to match the small size
of Mälardalen benchmarks). The cache latency is set to 1 cycle for L1, 10 cycles for L2,
and the memory latency to 50 cycles. Both cache levels implement LRU replacement.
No instruction-level parallelism (pipeline) is assumed in the architecture.

Code is compiled to assembly using LLVM, version 3.4. The GNU assembler then
compiles assembly code to binary that is used to feed Heptane. Optimized codes use the
-O3 option of LLVM (with the exception of vectorization optimizations which generate
vectorization instructions not supported by WCET analysis tools yet. The experiment
of vectorization optimizations in introduced in the Section 4.2.). Note that LLVM has
most of its optimizations in -O3.

4.1.3 Impact of optimizations on estimated WCET

Figure 4.2 shows the impact of compiler optimizations on the estimated WCET com-
puted by Heptane. Results are normalized with respect to the code compiled at -O0.

Firstly, the fact we are able to compute the WCET of all benchmarks (a single
missing loop bound would make the computation impossible) shows that we are able
to transform all flow information from C code to binary, and all loop bounds in the
optimized binary are correct. The correctness is verified in both of the following two
ways:

• Automatic way: we compare the loop bounds traced by our transformation frame-
work with those available using the scalar-evolution analysis pass.

88 Experiments

bs cnt fdct fibcall insertsort jfdctint ludcmp matmult ndes ns nsichneu ud average
WCET (cycles) 359 5790 6130 62 976 7169 6255 105474 44805 6865 96617 6307
at -O3
deadargelim - - - - - - - - - - - -2 % -0.2%
early-cse 37 % - -1% - 33% - 12 % - -5 % 0.1 % - 8 % 7 %
indvars - -10% -1 % - 7% 2% 7 % 8 % 8 % - - 11 % 3 %
inline 20 % -12% - 409 % - - 4% 1% 16 % 19% - - 38 %
jump-threading 15 % - - - - - - - - - - - 1 %
licm - - - - - - - - - - - 3% 0.3 %
loop-unroll - -32% - - - - -1 % - -5 % - - -4% -3.5%
mem2reg - - - - - - -16 % - 0.1% - - -2 % -1.5 %
reassociate - - - - - -0.4 % - - - - - - -0.03 %
simplifycfg 16 % - - - - - 0.2 % - 4% - - -1 % 1.6%
sroa - - - - - - - - 16 % - - - 1.3 %
adce - - - - - - - - - - - - -
constmerge - - - - - - - - - - - - -
correl.-prop. - - - - - - - - - - - - -
dse - - - - - - - - - - - - -
functionattrs - - - - - - - - - - - - -
globaldce - - - - - - - - - - - - -
globalopt - - - - - - - - - - - - -
ipsccp - - - - - - - - - - - - -
lcssa - - - - - - - - - - - - -
loop-deletion - - - - - - - - - - - - -
loop-idiom - - - - - - - - - - - - -
loop-simplify - - - - - - - - - - - - -
memcpyopt - - - - - - - - - - - - -
prune-eh - - - - - - - - - - - - -
sccp - - - - - - - - - - - - -
tailcallelim - - - - - - - - - - - - -

Table 4.2 – Change in estimated WCET when one optimization is disabled (1-off). Reference is -O3.
Positive numbers denote a beneficial effect of the optimization (WCET degrades when it is disabled).

• Manual way: we get the loop bounds from the LLVM IR (intermediate represen-
tation) and assembly code manually, and compare these with the ones traced by
our framework.

Secondly, we observe that option -O3 yields to an important reduction of estimated
WCETs: 55% in average, and up to 93 % (optimized WCET is 7 % of unoptimized) for
benchmark fibcall, whose main function contains only a function call, can benefit from
the inlining. The compiler can do more optimizations when inlining is applied.

4.1.3.1 Individual impact of optimizations (1-off)

We try to disable one of the optimizations to find out the impact of individual opti-
mization on estimated WCET.

Disabling instcombine and loop-rotate causes problems to the compilation flow of
LLVM. Further optimizations crash, and cause an abort of LLVM. Loop rotation trans-
forms top-tested loops into bottom-tested loops. While this transformation has a
marginal impact on performance, it is an enabler for others. We hypothesize that
further optimizations assume this transformation has been applied, hence crash when
we disable it. Instcombine also applies some normalization, such as moving constant
operand of a binary operator to the right hand side. Again, further optimizations prob-
ably assume the IR is in a normal form and fail when it is not the case. Thus, we kept
both optimizations enabled.

Experiments for Traceability without Vectorization 89

Table 4.2 reports our results. For each benchmark (horizontally), we report in
the first row the WCET (in cycles) when all optimizations are enabled. Following
rows report the estimated WCET when disabling each optimization individually. For
example, in the bottom left corner, we see that disabling simplifycfg causes an increase
of 16 % of WCET of bs. In other words, simplifycfg improves the estimate. On the
contrary, it has an adversary impact on ud (next to last column): the WCET estimate
is better by 2 % when mem2reg is not run. A dash sign means no change.

General Comments Disabling some optimizations has no impact on the estimated
WCET. Some simply do not apply to our real-time benchmarks. For example: all loops
compute useful values, hence loop deletion has nothing to do; prune-eh removes unused
exception handlers, which do not exist in C code. Others, such as tail call elimination or
memcopy optimization recognize specific patterns that do not occur in our benchmarks.
Globalopt considers global variables whose addresses are never taken, and optimizes
away constant and write-only variables.

Some optimizations, such as loop-simplify , do modify the code. It turns out that,
in our configuration and for our benchmarks, the estimated WCET remains unaltered.

Register promotion is implemented by mem2reg . This is a key optimization that
replaces costly memory accesses by much faster register uses. It is a priori surprising
that turning it off does not result in major degradation. The reason is that sroa achieves
the same effect. This is further discussed in Section 4.1.3.2.

Through the figure, we can observe that inline is an important optimization that can
affect the estimated WCET of many benchmarks (more than half in the experiments).
The reason for this is that inline replaces a function code into the body of called function.
This can save the overhead of the function call, and make the further optimizations
possible in the called function.

Common subexpression elimination (early-cse) and induction variable canonicaliza-
tion (indvars) are basic optimizations of any compiler targeting Average Case Execution
Time (ACET). Our results show that they also have a dramatic impact on estimated
WCET. These two classic optimizations alone can improve the tightness of WCET by
valuable amounts.

Code Layout and I-Cache Effects Some transformations result in a minor im-
provement or degradation (±2 % or so) of the estimated WCET. We suspected this
could be a random effect due to a slightly different code layout, resulting in marginally
different misses in the cache. To validate our hypothesis, we re-executed the entire
experiments, allowing direct memory access (i.e. assuming a perfect cache). The new
result is shown in Table 4.3. As expected we observed that these differences vanish,
e.g., early-cse on ns, mem2reg on ud and deadargelim on ud.

Scalar Replacement of Aggregates Disabling sroa only impacts ndes, but the
effect is significant: it results in more than 16% increase in estimated WCET. Visual

90 Experiments

bs cnt fdct fibcall insertsort jfdctint ludcmp matmult ndes ns nsichneu ud average
WCET (cycles) 109 2710 3010 2 656 4059 3865 104724 37420 6615 11327 3917
at -O3
deadargelim - - - - - - - - - - - - -
early-cse 14 % - -1.5% - 41 % - 10 % - 0.3 % - - 8 % 6 %
indvars - 0.6 % -1 % - 1 % 3% 9 % 8 % 8% - - 8 % 3 %
inline 2 % 20 % - 8200 % - - 2% 1% 20 % 18% - - 688 %
jump-threading -5 % - - - - - - - - - - - -0.5%
licm - - - - - - - - - - - 5 % 0.4%
loop-unroll - 26% - - - - 5 % - 1 % - - 5 % 3 %
mem2reg - - - - - - -27% - - - - - -2.2 %
reassociate - - - - - -0.4% - - - - - - -0.03%
simplifycfg - - - - - - 0.1 % - 0.3% - - 0.1 % 0.05%
sroa - - - - - - - - 17% - - - 1.4%
adce - - - - - - - - - - - - -
constmerge - - - - - - - - - - - - -
correl.-prop. - - - - - - - - - - - - -
dse - - - - - - - - - - - - -
functionattrs - - - - - - - - - - - - -
globaldce - - - - - - - - - - - - -
globalopt - - - - - - - - - - - - -
ipsccp - - - - - - - - - - - - -
lcssa - - - - - - - - - - - - -
loop-deletion - - - - - - - - - - - - -
loop-idiom - - - - - - - - - - - - -
loop-simplify - - - - - - - - - - - - -
memcpyopt - - - - - - - - - - - - -
prune-eh - - - - - - - - - - - - -
sccp - - - - - - - - - - - - -
tailcallelim - - - - - - - - - - - - -

Table 4.3 – Change in estimated WCET when one optimization is disabled (1-off). Reference is -O3.
Without cache effects.

inspection confirms that this benchmark makes intensive use of small structs (of two
and three elements) that can easily be promoted.

As mentioned, sroa also captures the register promotion, but this effect is visible
when both optimizations are turned off (see Section 4.1.3.2).

Loop Unrolling Loop unrolling degrades cnt (-32 %), ludcmp (-1 %), ndes (-5 %) and
ud (-4 %). With perfect I-cache, loop unrolling is always worthwhile, improving cnt,

ludcmp, ndes and ud respectively by 26 %, 5 %, 1 %, and 5 %.

Loop unrolling is well known to compiler developers to be a double-edged sword.
Average performance improves as long as the working set stays in the cache. The
additional misses in the instruction cache cancel the benefits of the optimization. Our
results show that the same holds for estimated WCET. In the case of cnt , the reason
is slightly different. The loop is unrolled ten times (fully unrolled). Its new size is
about 400 bytes, which fits in the L1 I-cache. However, due to the structure of the
application, there is no reuse of this code. The increased number of cycles comes from
additional cold misses. Note, though, that in case of reuse, additional capacity misses
are expected, because the unrolled loop size is close to the cache size (512 bytes), and
most of its contents is evicted.

Experiments for Traceability with Vectorization 91

bs cnt fdct fibcall insertsort jfdctint ludcmp matmult ndes ns nsichneu ud
WCET (cycles) 359 5790 6130 62 976 7169 6255 105474 44805 6865 96617 6307
at -O3
mem2reg + sroa 70 % 20 % 59% 848 % 187 % 47% 150 % 161% 57 % 49% 20 % 143 %
early-cse + indvars 37 % 10 % -3 % - 34 % 2% 20 % 9 % 2% 0.1 % - 21 %
simp.cfg + early-cse 37 % -12% -1 % - 34% - 13% - -5% 0.1 % - 11 %

Table 4.4 – Change in estimated WCET when two optimizations are disabled (2-off). Reference is
-O1. Positive numbers denote a beneficial effect of the optimizations (WCET degrades when they are
disabled).

4.1.3.2 Combined impact of optimizations (2-off)

As a final experiment without vectorizations, we disabled pairs of optimizations out of
-O3. We want to find out the impact of combined optimizations on estimated WCET.
We tried all pairs. Given the amount of data (more than 300 optimization combinations
on 12 benchmarks), we only report highlights in Table 4.4.

Firstly, we focus on two optimizations early-cse, indvars and their combinations,
we often observe additive effects between them, and this observation is generally true
for our set of optimizations and benchmarks. For example, for ludcmp, the estimated
WCET increases 20 % when early-cse (individual effect: 12 %) and indvars (individual
effect: 7%) are both disabled.

As for ACET, optimizations are not always additive. This is also true for WCET. It
can be illustrated by the pair simplifycfg + early-cse. We can observe from the figure:
Bs (37 % vs. 37 % & 16%), wcnt (-12 % vs. - & -), ud (11 % vs. 8 % & -1 %).

As anticipated in the previous section, sroa and mem2reg have overlapping effects.
As mentioned in the LLVM documentation, sroa also performs alloca promotion, which
serves the purpose of SSA formation and results in an effect similar to register promo-
tion. Disabling both optimizations results is a considerable degradation of the WCET
estimate.

4.2 Experiments for Traceability with Vectorization

The previous section mentions that we estimate WCET at the -O3 level of LLVM com-
piler except for vectorization optimizations. The reason is that the WCET estimation
tools we have access to (Heptane and Otawa) do not currently support SIMD instruction
sets. We thus relied on measurements on actual hardware to collect real execution times.
Note that we use measurements only due to the lack of support for SIMD instructions.
Loop bound information is correctly traced through the compiler in all cases. We have
manually verified that the loop bounds traced by our framework are the same as the
loop bounds after vectorization. Meanwhile, we have done the automatic verification
by using the scalar-evolution analysis pass.

We want to use the measurements to show that vectorization does not only reduce
average-case execution times but also reduces worst-case execution times. The exper-
imental results in this section do not directly validate our transformation framework
and implementation on vectorization optimizations, but rather motivate the need to

92 Experiments

use vectorization in hard real-time systems.

4.2.1 Benchmarks for vectorization

Vectorization optimizations do not benefit much from Mälardalen benchmarks, we intro-
duce some other special benchmarks for vectorization optimizations. For vectorization
optimization, we evaluate its impact by using the two following benchmark suites:

• TSVC. TSVC stands for Test Suite for Vectorizing Compilers, developed by
Callahan, Dongarra and Levine [CDL88]. It contains 135 loops. It has been
extended by the Polaris Research Group at the University of Illinois at Urbana-
Champaign [Pol] and contains 151 loops now. In this paper, we use the modified
version included in the LLVM distribution [TSV]. We restricted our experiments
to the 112 single-path programs of TSVC.

• Gcc-loops. Gcc distributes a set of loops collected on the GCC vectorizer ex-
ample page [Auta]. It is now also one of the LLVM test suites and we can test
it in LLVM compiler [Nuz]. We restricted our experiments to the 15 single-path
programs in this benchmark suite.

These two benchmark suites are test suites for vectorizing compilers and as such are
loop-intensive programs.

Our benchmarks were restricted to single-path programs to guarantee that we are
not impacted by path coverage issues. Despite using only single-path benchmarks, we
still cannot equal the result to WCET. Because, in some benchmarks, there is a type
of memory addressing called indirect addressing. Indirect addressing means that when
the benchmarks want to read value from memory or write result to memory, they need
through an indirection. The form is like a[b[i]]=... (this pattern is called scatter)
or ...=a[b[i]] (this pattern is called gather). In this type of memory addressing,
different data can impact the execution time. The benchmarks s491, s4112, s4113,
s4114, s4117, vag and vas include indirect addressing. So we remove these benchmarks
from our list of experimental single-path test cases. In this way, without the impact
of input data, indirect addressing and different paths, the execution time of these rest
single-path benchmarks can be considered as WCET.

4.2.2 Environment

We ran each benchmark five times, on an otherwise unloaded machine, and we report
the highest observed value. Observed execution times are very stable: the standard
deviation for most benchmarks is less than 0.3 s (for the benchmarks whose runtime
ranges from 8 s to 50 s) and 1 s (for the benchmarks whose runtime ranges from 50 s to
650 s) on ARM. It is less than 0.03 s (for the benchmarks whose runtime ranges from
1.8 s to 10 s) and 0.1 s (for the benchmarks whose runtime ranges from 10 s to 475 s) on
Intel.

We selected the following two different architectures for measuring WCETs:

Experiments for Traceability with Vectorization 93

ARM: For the first target, we choose a Panda Board2 equipped with an OMAP4
ARMv7 processor (v7l) running at 1.2 GHz. It features the advanced SIMD ISA
extension NEON. The NEON vectors used in our experiment are 128-bit vectors.
The size of L1 instruction cache and data cache are both 32 KB. The size of L2
cache per core is 1MB. The operating system is Ubuntu 12.04.5.

Intel: We also experimented with an Intel architecture: experiments were performed
on an Intel Core i7-3615QM CPU with four cores running at 2.30 GHz. The
CPU instruction set include extensions SSE4.1 and SSE4.2 (Streaming SIMD
Extensions 4), and AVX. The version used in our experiment is SSE4.2, and the
vector size is 128-bit. The size of L1 instruction cache and data cache are both
32 KB. The size of L2 cache per core is 256KB and L3 cache is 6 MB. The operating
system is Mac OS X 10.10.1. Besides, we made sure to turn off Turbo Boost to
guarantee the same execution circumstances for every measurement [ERS+14]
(Turbo Boost Technology can automatically allow processor cores to run faster
than the rated operating frequency if they are operating below power, current,
and temperature specification limits).

The Intel Architecture usually is not used in real-time systems. We use it only to
denote the effect of vectorization optimizations on different architectures and do
not claim it is predictable enough to be used in real-time systems.

Execution times in our experiments are measured using the C library function
clock(), that returns the number of clock ticks elapsed since the program was launched.

In LLVM, VF (vectorization factor) and UF (unrolling factor) can be specified by
the user or decided by the compiler. The latter is better in most situations, because
they are selected by using a cost model. So in the following experiments, we let LLVM
choose VF and UF.

4.2.3 Impact of vectorization on WCET

We first measure the WCET obtained with all LLVM optimizations at level -O3 (which
enables the vectorizer) for TSVC on ARM and Intel architectures. Then, we evalu-
ate the impact of vectorization optimization by manually disabling the vectorization
(-O3 -fno-vectorize) (in this situation loop unrolling is still enabled).

Figures 4.2 and 4.3 report on WCET improvements for respectively TSVC on ARM
and TSVC on Intel. Reported numbers are the WCET improvement ratios brought
by vectorization (WCETno�vec/WCETvec). There is one bar per TSVC benchmark;
the X-axis gives the number of the benchmark. Here, not all single-path benchmarks
are shown. Only the benchmarks which are affected by vectorization on ARM or Intel
architecture are presented. Each figure also reports the average WCET improvement
ratio for all benchmarks (including those not affected by vectorization).

It immediately appears that the WCET of many TSVC benchmarks does not im-
prove when turning on vectorization (WCET improvement ratio is 1, hence not shown

2http://pandaboard.org

94 Experiments

on figure). This comes from the nature of TSVC, whose objective is to stress vectorizing
compilers. Many kernels could simply not be vectorized by LLVM, regardless of our
addition for traceability. In those cases, the vectorizer fails, and flow information is
simply left unmodified.

4.2.3.1 TSVC and ARM Architecture

Figure 4.2 shows the impact of vectorization on WCET for the ARM architecture and
single-path benchmarks in TSVC.

0,5$

1$

1,5$

2$

2,5$

3$

3,5$

S0
00
$

S1
11
1$

S1
11
2$

S1
11
5$

S1
18
$

S1
19
$

S1
11
9$

S1
32
$

S1
52
$

S1
73
$

S1
76
$

S1
22
1$

S1
23
2$

S2
33
$

S2
23
3$

S2
51
$

S1
25
1$

S2
27
5$

S1
28
1$

S1
35
1$

S1
42
1$

S4
23
$

S4
31
$

S4
52
$

S4
71
$

S4
12
1$

vp
v$

vt
v$

vp
vt
v$

vp
vt
s$

vp
vp
v$

vt
vt
v$

vb
or
$

Av
er
ag
e$

Improvement$ra<o$

Figure 4.2 – Impact of vectorization on WCET (ARM, single-path TSVC benchmarks). The y-axis
represents the WCET improvement ratio brought by vectorization: WCET

no�vec

/WCET
vec

.

Table 4.5 shows the description of the benchmarks in Figure 4.2.
As mentioned before, not all benchmarks benefit from vectorization. Only a little

more than 1/4 of them have a significant WCET improvement ratio, averaging 1.19⇥.
Theoretically, the WCET improvement ratio could reach 4: these benchmarks ma-

nipulate arrays of type float, and the NEON instruction set can operate four elements
at the same time. However, the results show that the improvement ratio is around
2 in most cases. The main factors limiting performance are related to the memory
subsystem: cache misses and available bandwidth. Vectorized code needs to load four
times more data for a similar computational intensity, sometimes reaching the maxi-
mum physical bandwidth. And when arrays are larger than a cache level (typically L2
in our benchmarks), frequent cache misses also dominate the performance, limiting the
improvement ratio.

4.2.3.2 TSVC and Intel Architecture

We run the same experiments on the Intel architecture. As Figure 4.3 shows, the LLVM
vectorizer results in higher WCET improvement ratio on Intel; the average WCET
improvement ratio is 1.44⇥ compared with 1.19⇥ on ARM.

Overall, the WCET improvement ratio due to vectorization is larger on Intel than
on ARM. For most benchmarks, the improvement ratio is closer to 4. However, Intel

Experiments for Traceability with Vectorization 95

0,5$

1$

1,5$

2$

2,5$

3$

3,5$

4$

4,5$

S0
00
$

S1
11
1$

S1
11
2$

S1
11
5$

S1
18
$

S1
19
$

S1
11
9$

S1
32
$

S1
52
$

S1
73
$

S1
76
$

S1
22
1$

S1
23
2$

S2
33
$

S2
23
3$

S2
51
$

S1
25
1$

S2
27
5$

S1
28
1$

S1
35
1$

S1
42
1$

S4
23
$

S4
31
$

S4
52
$

S4
71
$

S4
12
1$

vp
v$

vt
v$

vp
vt
v$

vp
vt
s$

vp
vp
v$

vt
vt
v$

vb
or
$

Av
er
ag
e$

Improvement$ra<o$

Figure 4.3 – Impact of vectorization on WCET (Intel, single-path TSVC benchmarks). The y-axis
represents the WCET improvement ratio brought by vectorization: WCET

no�vec

/WCET
vec

.

is occasionally impacted by the same factors as ARM. In s251, s1251 and other similar
benchmarks, the performance increase is limited by the cache size: in these benchmarks,
the overall size of all accessed arrays is larger than the L2 cache. Finally, the improve-
ment ratio of s176 is above 4: the loop is perfectly vectorized, and LLVM also applied
loop unrolling, further increasing performance. We manually disabled loop unrolling
and observed that the ratio drops below 4, as expected.

4.2.3.3 Gcc-loops

0"

0,5"

1"

1,5"

2"

2,5"

3"

E1
"

E2
a"

E2
b" E3

"
E4
a"

E4
b" E7

"
E8
"

E9
"
E1
0a
"
E1
0b
"

E1
1"

E1
2"

E2
3"

E2
5"

Av
era
ge
"

Improvement"ra:o"

Figure 4.4 – Impact of vectorization on WCET (ARM, single-path Gcc-loops)

We measure the WCETs on the single-path codes from Gcc-loops on both Intel and
ARM architecture. Results are presented on Figure 4.4 (ARM) and Figure 4.5 (Intel).
As before there is one bar per benchmark in the benchmark suite, and the y-axis gives

96 Experiments

0"

1"

2"

3"

4"

5"

6"

7"

8"

E1
"

E2
a"

E2
b" E3

"
E4
a"

E4
b" E7

"
E8
"

E9
"
E1
0a
"
E1
0b
"

E1
1"

E1
2"

E2
3"

E2
5"

Av
era
ge
"

Improvement"ra:o"

Figure 4.5 – Impact of vectorization on WCET (Intel, single-path Gcc-loops)

the WCET improvement ratio obtained when turning on vectorization.
In Figure 4.5, we can observe that there are 7 benchmarks whose improvement

ratio is above 4. Except for E25, the reason for these benchmarks is the same as s176

in TSVC: loop unrolling is applied and increases performance. In the case of E25, the
high ratio is also due to a particularly poor sequential code which can be confirmed with
the Intel Architecture Code Analyzer [Int13]: the generated sequential code results in
many more micro-operations than the vectorized loop.

Through these figures, we can make similar observations as on TSVC. Vectorization
reduces WCETs, and does this more effectively on Intel architecture.

4.3 Summary

This chapter presents the experimental results on different benchmarks and the analysis
about them. The experimental results show that with our transformation framework,
many optimizations even including inline and vectorization can be turned on. When
the structure of CFG is modified by the optimizations, the annotation provided at
source code level can be maintained and updated. Our transformation framework can
make sure that no flow information is lost, even in the presence of CFG restructuring
transformations such as loop unrolling and vectorizations. We also provide insight
about the advantage of running particular optimization of the well accepted Mälardalen
benchmarks. At the same time, the experimental results with measured WCETs show
that vectorization is highly beneficial for real-time systems.

Summary 97

Loop name Description
s000 linear dependence testing
s1111 jump in data access
s1112 linear dependence testing, loop reversal
s1115 linear dependence testing, triangular saxpy loop
s118 linear dependence testing, potential dot product recursion
s119 linear dependence testing
s1119 linear dependence testing
s132 global data flow analysis, loop with multiple dimension ambiguous subscripts
s152 interprocedural data flow analysis, collecting information from a subroutine
s173 symbolics, expression in loop bounds and subscripts
s176 symbolics, convolution
s1221 run-time symbolic resolution
s1232 loop interchange, interchanging of triangular loops
s233 loop interchange, interchanging with one of two inner loops
s2233 loop interchange, interchanging with one of two inner loops
s251 scalar and array expansion, scalar expansion
s1251 scalar and array expansion, scalar expansion
s2275 loop distribution is needed to be able to interchange
s1281 crossing thresholds, index set splitting, reverse data access
s1351 induction pointer recognition
s1421 storage classes and equivalencing, equivalence - no overlap
s423 storage classes and equivalencing, common and equivalenced variables - with

anti-dependence
s431 parameters, parameter statement
s452 intrinsic functions, seq function
s471 call statements
s4121 statement functions, elementwise multiplication
vpv control loops, vector plus vector
vtv control loops, vector times vector
vpvtv control loops, vector plus vector times vector
vpvts control loops, vector plus vector times scalar
vpvpv control loops, vector plus vector plus vector
vtvtv control loops, vector times vector times vector
vbor control loops, basic operations rates, isolate arithmetic from memory traffic
Loops containing indirect addressing
s491 indirect addressing on lhs, store in sequence, scatter is required
s4112 indirect addressing, sparse saxpy, gather is required
s4113 indirect addressing, indirect addressing on rhs and lhs, gather and scatter is

required
s4114 indirect addressing, mix indirect addressing with variable lower and upper

bounds, gather is required
s4117 indirect addressing, seq function
vag control loops, vector assignment, gather is required
vas control loops, vector assignment, scatter is required

Table 4.5 – Loops in TSVC (only vectoried single-path)

98 Experiments

Conclusion

Designers of hard real-time systems are required to compute the WCET of the com-
ponents of their systems. This is accomplished by combining information provided at
high level by programmers (e.g. loop bound information) and generated at low level by
compilers. This combination is possible if a mapping is maintained between high- and
low-level representations. Optimizing compilers typically break this simple mapping,
and in order to keep this mapping and estimate WCET, developers usually turn all
optimizations off.

The performance brought by modern compiler optimizations is demanded by more
and more systems. Turning optimizations off is not a long-term policy. A solution is
needed to estimate WCET with compiler optimizations.

We propose a transformation framework that traces flow information through com-
piler optimizations. The transformation framework consists of basic transformation
rules which manipulate the flow information. Through these basic rules, we analyze
most general optimizations and describe their corresponding rule sets.

A simplified version of our transformation framework was integrated within the
LLVM compiler infrastructure. In this implementation, we focus on loop bounds. The
implementation and the corresponding experimental results demonstrate that our trans-
formation framework can trace and transform flow information when many compiler
optimizations are turned on. We also provide insight about the advantage of running
particular optimizations of the well accepted Mälardalen benchmarks. With our imple-
mentation, the estimated WCET can be derived in the presence of almost all general
optimizations in LLVM.

Three years of PhD study have flown by. There are still a lot of ongoing work.

• For now, our transformation framework needs to analyze each optimization, and
also needs to analyze the source code of the compiler optimizations to implement
our framework. So maybe we need to define a more general and powerful trans-
formation framework which generates transformation rule set and implement the
rule set inside the code automatically.

• In Section 2.2.2, we mentioned that there is loss of information during the encoding
of infeasible paths in a loop or in a function called multiple times. We have not
found a better solution, and this may be a direction for future studies.

• In the experimental chapter, we mentioned that vectorized code cannot be ana-

99

100 Conclusion

lyzed by WCET analysis tools because of the lack of support for vector instruction
set. A static WCET analysis of vectorization optimizations is needed to provide
a further proof for our transformation framework.

• The implementation of our transformation framework is a simplified version. Only
local loop bounds are traced within the optimizations. Global loop bounds can
provide more precise loop bounds when for instance triangular loops are analyzed.
This work needs two parts: support by WCET analysis tools and implementation
in LLVM. Both of these two parts are not trivial, so this work is challengeable but
significant.

• Considering the W-SEPT ANR project, we need to trace the flow information
in the C code which is generated by compiler from high level languages such
as Lustre. This kind of C code has a characteristic: there are many mutually
exclusive branches. So extending traceability beyond loop bound information to
mutually exclusive branches is one important future work.

• Introducing contextual information into the implementation is another important
future work. For example, the loops in different calls may have different loop
bounds. The achievement of contextual information can make the precision of
loop bounds get a further improvement.

• Now, our implementation can output flow information for different WCET analysis
tools (for now, at least for Heptane and OTAWA, and theoretically almost any
WCET tools). However, when more flow information is included, it is not a
trivial task. We should make the output of our implementation usable for different
WCET analysis tools.

Bibliography

[Abs] AbsInt. aiT Worst-Case Execution Time Analyzers. http://www.absint.
com/ait/.

[All70] Frances E Allen. Control flow analysis. In ACM Sigplan Notices, volume 5,
pages 1–19. ACM, 1970.

[APT00] Hassan A Aljifri, Alexander Pons, and Moiez A Tapia. Tighten the com-
putation of worst-case execution-time by detecting feasible paths. In Per-
formance, Computing, and Communications Conference, 2000. IPCCC’00.
Conference Proceeding of the IEEE International, pages 430–436. IEEE,
2000.

[Auta] Auto-vectorization in GCC. https://gcc.gnu.org/projects/tree-ssa/
vectorization.html.

[AUTb] Auto-vectorization in LLVM. http://llvm.org/docs/Vectorizers.
html.

[AVX] Introduction to Intel Advanced Vector Exten-
sions. https://software.intel.com/en-us/articles/
introduction-to-intel-advanced-vector-extensions.

[Bar] Gergö Barany. SATIrE within ALL-TIMES: Improving timing technol-
ogy with source code analysis. In Kolloquium Programmiersprachen und
Grundlagen der Programmierung (KPS 2009), page 230.

[BCdM+12] Armelle Bonenfant, Hugues Cassé, Marianne de Michiel, Jens Knoop,
Laura Kovács, and Jakob Zwirchmayr. FFX: a portable WCET annota-
tion language. In Proceedings of the 20th Int’l Conference on Real-Time
and Network Systems, RTNS ’12, pages 91–100, New York, NY, USA,
2012. ACM.

[BCP02] Guillem Bernat, Anotione Colin, and Stefan M Petters. WCET analysis of
probabilistic hard real-time systems. In Real-Time Systems Symposium,
2002. RTSS 2002. 23rd IEEE, pages 279–288. IEEE, 2002.

101

102 BIBLIOGRAPHY

[BCP03] Guillem Bernat, Antoine Colin, and Stefan Petters. pwcet: A tool
for probabilistic worst-case execution time analysis of real-time systems.
REPORT-UNIVERSITY OF YORK DEPARTMENT OF COMPUTER
SCIENCE YCS, 2003.

[BCRS10] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sain-
rat. OTAWA: An Open Toolbox for Adaptive WCET Analysis. In Software
Technologies for Embedded and Ubiquitous Systems, volume 6399 of Lec-
ture Notes in Computer Science, pages 35–46. Springer Berlin Heidelberg,
2010.

[BdMS08] Armelle Bonenfant, Marianne de Michiel, and Pascal Sainrat. oRange: A
tool for static loop bound analysis. In Workshop on Resource Analysis,
University of Hertfordshire, Hatfield, UK, volume 9, page 08, 2008.

[BLH14] Bernard Blackham, Mark Liffiton, and Gernot Heiser. Trickle: automated
infeasible path detection using all minimal unsatisfiable subsets. In Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2014 IEEE 20th, pages 169–178. IEEE, 2014.

[BMB10] Adam Betts, Nicholas Merriam, and Guillem Bernat. Hybrid
measurement-based WCET analysis at the source level using object-level
traces. In WCET, pages 54–63, 2010.

[BP10] G. Barany and A. Prantl. Source-level support for timing analysis. In
Conference on Leveraging Applications of Formal Methods, Verification,
and Validation, pages 434–448, 2010.

[BPSM+98] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and
François Yergeau. Extensible markup language (XML). World Wide
Web Consortium Recommendation REC-xml-19980210. http://www. w3.
org/TR/1998/REC-xml-19980210, 16, 1998.

[CDL88] David Callahan, Jack Dongarra, and David Levine. Vectorizing compilers:
A test suite and results. In Proceedings of the 1988 ACM/IEEE conference
on Supercomputing, pages 98–105. IEEE Computer Society Press, 1988.

[Cha94] Roderick Chapman. Worst-case timing analysis via finding longest paths
in SPARK Ada basic-path graphs. University of York, Department of
Computer Science, 1994.

[Che87] Moyer Chen. A Timing Analysis Language-(TAL). Department of Com-
puter Science, University of Texas, Austin, TX, USA, 1987.

[CMPVR14] Hugues Cassé, Claire Maiza, Catherine Parent-Vigouroux, and Pascal
Raymond. Schedulability and modular analysis: how to fit timing model?
In OPRTC, 2014.

BIBLIOGRAPHY 103

[CP00] A. Colin and I. Puaut. Worst case execution time analysis for a processor
with branch prediction. Real-Time Systems, 18(2-3):249–274, 2000.

[CPL] IBM ILOG CPLEX Optimization Studio–High-performance mathematical
programming engine. http://www-03.ibm.com/software/products/en/
ibmilogcpleoptistud/.

[CRT08] Paul Caspi, Pascal Raymond, and Stavros Tripakis. Synchronous pro-
gramming. Handbook of Real-Time and Embedded Systems, 2008.

[DAfESG] Technical University of Dortmund Design Automation for Embedded Sys-
tems Group. WCET-AWARE COMPILATION. http://ls12-www.cs.
tu-dortmund.de/daes/en/research/wcet-aware-compilation.html.

[dMBBC10] M. de Michiel, A. Bonenfant, C. Ballabriga, and H. Cassé. Partial Flow
Analysis with oRange (short paper). In Symposium On Leveraging Ap-
plications of Formal Methods, Verification and Validation, number 6416
in LNCS, pages 479–482, 2010.

[DOT] The dot language. http://www.graphviz.org/doc/info/lang.html.

[EEA98] J. Engblom, A. Ermedahl, and P. Altenbernd. Facilitating worst-case
execution times analysis for optimized code. In Euromicro Workshop on
Real-Time Systems, pages 146–153, 1998.

[ERS+14] Laurel Emurian, Arun Raghavan, Lei Shao, Jeffrey M. Rosen, Marios Pa-
paefthymiou, Kevin P. Pipe, Thomas F. Wenisch, and Milo M. K. Martin.
Pitfalls of accurately benchmarking thermally adaptive chips. In Workshop
on Duplicating, Deconstructing, and Debunking (WDDD), June 2014.

[FH04] Christian Ferdinand and Reinhold Heckmann. aiT: Worst-case execution
time prediction by static program analysis. In Building the Information
Society, pages 377–383. Springer, 2004.

[FHF07] Christian Ferdinand, Reinhold Heckmann, and Bärbel Franzen. Static
memory and timing analysis of embedded systems code. In Proceedings
of VVSS2007-3rd European Symposium on Verification and Validation of
Software Systems, 23rd of March, pages 07–04, 2007.

[FHL+01] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian
Martin, Michael Schmidt, Henrik Theiling, Stephan Thesing, and Rein-
hard Wilhelm. Reliable and precise WCET determination for a real-life
processor. In Embedded Software, pages 469–485. Springer, 2001.

[Fin] Hal Finkel. Autovectorization with LLVM. http://llvm.org/devmtg/
2012-04-12/Slides/Hal_Finkel.pdf. 2012.

104 BIBLIOGRAPHY

[FK09] Heiko Falk and Jan C Kleinsorge. Optimal static wcet-aware scratchpad
allocation of program code. In Proceedings of the 46th Annual Design
Automation Conference, pages 732–737. ACM, 2009.

[FLT06] Heiko Falk, Paul Lokuciejewski, and Henrik Theiling. Design of a WCET-
aware C compiler. In Proceedings of the 2006 IEEE/ACM/IFIP Workshop
on Embedded Systems for Real Time Multimedia, pages 121–126. IEEE
Computer Society, 2006.

[FS06] Heiko Falk and Martin Schwarzer. Loop nest splitting for WCET-
optimization and predictability improvement. In Embedded Systems for
Real Time Multimedia, Proceedings of the 2006 IEEE/ACM/IFIP Work-
shop on, pages 115–120. IEEE, 2006.

[GBEL10] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The
Mälardalen WCET Benchmarks: Past, Present And Future. WCET,
15:136–146, 2010.

[GCC] GCC, the GNU Compiler Collection. https://gcc.gnu.org.

[GEL06] Jan Gustafsson, Andreas Ermedahl, and Björn Lisper. Algorithms for
infeasible path calculation. In WCET. Citeseer, 2006.

[GEL+09] J. Gustafsson, A. Ermedahl, B. Lisper, C. Sandberg, and L. Källberg.
ALF–a language for WCET flow analysis. In Proc. 9th Int’l Workshop
on Worst-Case Execution Time Analysis (WCET2009)(Dublin, Ireland,
pages 1–11, 2009.

[GESL06] Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and Björn Lisper.
Automatic derivation of loop bounds and infeasible paths for WCET anal-
ysis using abstract execution. In Real-Time Systems Symposium, 2006.
RTSS’06. 27th IEEE International, pages 57–66. IEEE, 2006.

[GIM] Gimple online docs. https://gcc.gnu.org/onlinedocs/gccint/
GIMPLE.html.

[GN72] Robert S. Garfinkel and George L. Nemhauser. Integer programming,
volume 4. Wiley New York, 1972.

[Gus06] Jan Gustafsson. The worst case execution time tool challenge 2006. In
Leveraging Applications of Formal Methods, Verification and Validation,
2006. ISoLA 2006. Second International Symposium on, pages 233–240.
IEEE, 2006.

[Gwe96] Linley Gwennap. Digital, mips add multimedia extensions. Microprocessor
Report, 10(15):24–28, 1996.

[HGB+08] Niklas Holsti, Jan Gustafsson, Guillem Bernat, et al. WCET tool challenge
2008: report. 2008.

BIBLIOGRAPHY 105

[HGKL14] Niklas Holsti, Jan Gustafsson, Linus Källberg, and Björn Lisper. Combin-
ing Bound-T and SWEET to Analyse Dynamic Control Flow in Machine-
Code Programs. 2014.

[HPP13] B. Huber, D. Prokesch, and P. Puschner. Combined WCET Analysis
of Bitcode and Machine Code Using Control-flow Relation Graphs. In
Conference on Languages, Compilers and Tools for Embedded Systems
(LCTES), pages 163–172, 2013.

[HS02] Niklas Holsti and Sami Saarinen. Status of the Bound-T WCET tool.
Space Systems Finland Ltd, 2002.

[HS12] Stefan Hepp and Martin Schoeberl. Worst-case execution time based op-
timization of real-time java programs. In Object/Component/Service-
Oriented Real-Time Distributed Computing (ISORC), 2012 IEEE 15th
International Symposium on, pages 64–70. IEEE, 2012.

[HW02] C. A. Healy and D. B. Whalley. Automatic detection and exploitation
of branch constraints for timing analysis. IEEE Trans. on Software Engi-
neering, 28(8), 2002.

[ICC] Intel Compilers. https://software.intel.com/en-us/
intel-compilers.

[INT] Using Intel Streaming SIMD Extensions and Intel In-
tegrated Performance Primitives to Accelerate Algo-
rithms. https://software.intel.com/en-us/articles/
using-intel-streaming-simd-extensions-and-intel-integrated-
performance-primitives-to-accelerate-algorithms.

[Int13] Intel Corporation. Intel Architecture Code Analyzer – User’s Guide, 2.1
edition, 2013.

[IRI] IRISA. Heptane (Hades embedded processor timing analyzer)
static WCET estimation tool. https://team.inria.fr/alf/software/
heptane.

[Kir02] R. Kirner. The programming language wcetC. Technische Universität
Wien, Institut für Technische Informatik, 2002.

[Kir03] R. Kirner. Extending optimising compilation to support worst-case exe-
cution time analysis. PhD thesis, Technische Universität Wien, 2003.

[KKP+07] R. Kirner, J. Knoop, A. Prantl, M. Schordan, and I. Wenzel. WCET anal-
ysis: The annotation language challenge. In PostWorkshop Proceedings
of the 7th Int’l Workshop on WorstCase Execution Time Analysis, pages
83–99, 2007.

106 BIBLIOGRAPHY

[KKP+08] Raimund Kirner, Albrecht Kadlec, Adrian Prantl, Markus Schordan, and
Jens Knoop. Towards a Common WCET Annotation Language: Essential
Ingredients. In Raimund Kirner, editor, 8th Intl. Workshop on Worst-Case
Execution Time (WCET) Analysis, Dagstuhl, Germany, 2008. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany. also published
in print by Austrian Computer Society (OCG) under ISBN 978-3-85403-
237-3.

[KKP+11] Raimund Kirner, Jens Knoop, Adrian Prantl, Markus Schordan, and Al-
brecht Kadlec. Beyond loop bounds: comparing annotation languages
for worst-case execution time analysis. Software & Systems Modeling,
10(3):411–437, 2011.

[KKZ11] Jens Knoop, Laura Kovács, and Jakob Zwirchmayr. An Evaluation of
WCET Analysis using Symbolic Loop Bounds. na, 2011.

[KKZ12a] J. Knoop, L. Kovács, and J. Zwirchmayr. Symbolic Loop Bound Com-
putation for WCET Analysis. Perspectives of Systems Informatics, pages
227–242, 2012.

[KKZ12b] Jens Knoop, Laura Kovács, and Jakob Zwirchmayr. r-TuBound: Loop
bounds for WCET analysis (tool paper). In Logic for Programming, Ar-
tificial Intelligence, and Reasoning, pages 435–444. Springer, 2012.

[Kou96] Apostolos A Kountouris. Safe and efficient elimination of infeasible exe-
cution paths in wcet estimation. In Real-Time Computing Systems and
Applications, 1996. Proceedings., Third International Workshop on, pages
187–194. IEEE, 1996.

[KP01] Raimund Kirner and Peter Puschner. Transformation of path informa-
tion for WCET analysis during compilation. In Real-Time Systems, 13th
Euromicro Conference on, 2001., pages 29–36. IEEE, 2001.

[KP03] Raimund Kirner and Peter Puschner. Timing analysis of optimized
code. In Object-Oriented Real-Time Dependable Systems, 2003.(WORDS
2003). Proceedings of the Eighth International Workshop on, pages 100–
105. IEEE, 2003.

[KPP10] R. Kirner, P. Puschner, and A. Prantl. Transforming flow information dur-
ing code optimization for timing analysis. Real-Time Systems, 45(1):72–
105, 2010.

[KPW04] Raimund Kirner, Peter Puschner, and Ingomar Wenzel. Measurement-
based worst-case execution time analysis using automatic test-data gener-
ation. na, 2004.

BIBLIOGRAPHY 107

[KS86] Eugene Kligerman and Alexander D. Stoyenko. Real-time Euclid: A lan-
guage for reliable real-time systems. Software Engineering, IEEE Trans-
actions on, (9):941–949, 1986.

[LA00] Samuel Larsen and Saman Amarasinghe. Exploiting superword level par-
allelism with multimedia instruction sets, volume 35. ACM, 2000.

[LA04] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis and transformation. In Int’l Symp. on Code Generation
and Optimization (CGO), pages 75–88, San Jose, CA, USA, March 2004.

[Lab] Lawrence Livermore National Laboratory. ROSE: an open source compiler
infrastructure. http://rosecompiler.org.

[LCFM09] P. Lokuciejewski, D. Cordes, H. Falk, and P. Marwedel. A fast and precise
static loop analysis based on abstract interpretation, program slicing and
polytope models. In Int’l Symp. on Code Generation and Optimization
(CGO), 2009.

[LF14] Arno Luppold and Heiko Falk. Schedulability-oriented wcet-optimization
of hard real-time multitasking systems. Proceedings of JRWRTC, pages
9–12, 2014.

[LFS+07] Paul Lokuciejewski, Heiko Falk, Martin Schwarzer, Peter Marwedel, and
Henrik Theiling. Influence of procedure cloning on WCET prediction.
In Proceedings of the 5th IEEE/ACM international conference on Hard-
ware/software codesign and system synthesis, pages 137–142. ACM, 2007.

[LGMM09] Paul Lokuciejewski, Fatih Gedikli, Peter Marwedel, and Katharina Morik.
Automatic WCET reduction by machine learning based heuristics for func-
tion inlining. In 3rd Workshop on Statistical and Machine Learning Ap-
proaches to Architectures and Compilation (SMART), pages 1–15, 2009.

[Lis14] Björn Lisper. SWEET–A tool for WCET flow analysis. In Leveraging
Applications of Formal Methods, Verification and Validation. Specialized
Techniques and Applications, pages 482–485. Springer, 2014.

[LLMR07] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudhury. Chronos:
A timing analyzer for embedded software. Science of Computer Program-
ming, 69(1):56–67, 2007.

[LLVa] LLVM Language Reference Manual. http://llvm.org/docs/LangRef.
html.

[LLVb] The LLVM Compiler Infrastructure. http://llvm.org.

[LM95] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded
software using implicit path enumeration. In ACM SIGPLAN Notices,
volume 30, pages 88–98. ACM, 1995.

108 BIBLIOGRAPHY

[LM09] Paul Lokuciejewski and Peter Marwedel. Combining worst-case timing
models, loop unrolling, and static loop analysis for WCET minimization.
In Real-Time Systems, 2009. ECRTS’09. 21st Euromicro Conference on,
pages 35–44. IEEE, 2009.

[LPR14] Hanbing Li, Isabelle Puaut, and Erven Rohou. Traceability of Flow Infor-
mation: Reconciling Compiler Optimizations and WCET Estimation. In
Proceedings of the 22nd International Conference on Real-Time Networks
and Systems, page 97. ACM, 2014.

[LPR15] Hanbing Li, Isabelle Puaut, and Erven Rohou. Tracing Flow Information
for Tighter WCET Estimation: Application to Vectorization. In 21st
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications RTCSA. IEEE, 2015.

[LPS] lpsolve: a Mixed Integer Linear Programming solver. http://lpsolve.
sourceforge.net.

[MACT89] Aloysius Mok, Prasanna Amerasinghe, Moyer Chen, and Kamtron Tan-
tisirivat. Evaluating tight execution time bounds of programs by annota-
tions. IEEE Real-Time Systems Newsletter, 5(2-3):81–86, 1989.

[MBe] Mälardalen WCET Benchmarks. http://www.mrtc.mdh.se/projects/
wcet/benchmarks.html.

[Mer03] Jason Merrill. Generic and Gimple: A new tree representation for entire
functions. In Proceedings of the 2003 GCC Developers’ Summit, pages
171–179, 2003.

[MGG+11] Saeed Maleki, Yaoqing Gao, María Jesús Garzaran, Tommy Wong, and
David A Padua. An evaluation of vectorizing compilers. In Parallel Archi-
tectures and Compilation Techniques (PACT), 2011 International Confer-
ence on, pages 372–382. IEEE, 2011.

[Nai04] Dorit Naishlos. Autovectorization in GCC. In Proceedings of the 2004
GCC Developers Summit, pages 105–118, 2004.

[NEO] The ARM NEON general-purpose SIMD engine. http://www.arm.com/
products/processors/technologies/neon.php.

[Nuz] Dorit Nuzman. GCC-loops benchmarks for LLVM. https:
//llvm.org/svn/llvm-project/test-suite/trunk/SingleSource/
UnitTests/Vectorizer/gcc-loops.cpp.

[oCEtIoCL] Institute of Computer Engineering and the Vienna University of Technol-
ogy the Institute of Computer Languages. TuBound in Compiler Support
for Timing Analysis Project. http://costa.tuwien.ac.at/tubound.
html.

BIBLIOGRAPHY 109

[oCNE] Institute of Computer and Braunschweig University of Technology Net-
work Engineering. SymTA/P Tool of TU Braunschweig. https://www.
ida.ing.tu-bs.de/research/projects/symtap/.

[oS] National University of Singapore. Chronos reserch prototype. http://
www.comp.nus.edu.sg/~rpembed/chronos/.

[Par93] Chang Yun Park. Predicting program execution times by analyzing static
and dynamic program paths. Real-Time Systems, 5(1):31–62, 1993.

[PKST09] Adrian Prantl, Jens Knoop, Markus Schordan, and Markus Triska.
Constraint solving for high-level WCET analysis. arXiv preprint
arXiv:0903.2251, 2009.

[PLM08] Sascha Plazar, Paul Lokuciejewski, and Peter Marwedel. A retargetable
framework for multi-objective WCET-aware high-level compiler optimiza-
tions. In Proceedings of The 29th IEEE Real-Time Systems Symposium
(RTSS) WiP, pages 49–52, 2008.

[PM14] Saeed Parsa and S. Mehdi. A XML-Based Representation of Timing In-
formation for WCET Analysis. Journal of mathematics and computer
science, 8:205–214, 2014.

[Pol] Polaris Research Group, University of Illinois at Urbana-Champaign. Ex-
tended test suite for vectorizing compilers. http://polaris.cs.uiuc.
edu/~maleki1/TSVC.tar.gz.

[PPH+13] Peter Puschner, Daniel Prokesch, Ben Huber, Jens Knoop, Stefan Hepp,
and Gernot Gebhard. The T-CREST approach of compiler and WCET-
analysis integration. In Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC), 2013 IEEE 16th International Sympo-
sium on, pages 1–8. IEEE, 2013.

[PS90] Chang Park and Alan C Shaw. Experiments with a program timing tool
based on source-level timing schema. In Real-Time Systems Symposium,
1990. Proceedings., 11th, pages 72–81. IEEE, 1990.

[PS97] Peter P Puschner and Anton V Schedl. Computing maximum task exe-
cution times–a graph-based approach. Real-Time Systems, 13(1):67–91,
1997.

[PSK08] Adrian Prantl, Markus Schordan, and Jens Knoop. Tubound–a concep-
tually new tool for worst-case execution time analysis. CHRISTIAN-
ALBRECHTS-UNIVERSITAT KIEL, page 117, 2008.

[Rapa] RapiTime Explained White Paper. http://www.rapitasystems.com/
system/files/RapiTime%20Explained.pdf.

110 BIBLIOGRAPHY

[Rapb] Rapita Systems Ltd. Measurement-based WCET analysis tool RapiTime.
http://www.rapitasystems.com/products/rapitime.

[Ray14] Pascal Raymond. A general approach for expressing infeasibility in implicit
path enumeration technique. In Embedded Software (EMSOFT), 2014
International Conference on, pages 1–9. IEEE, 2014.

[RFdS11] Vıtor Rodrigues, Mário Florido, and Simao Melo de Sousa. Back anno-
tation in action: from wcet analysis to source code verification. Actas of
CoRTA, 2011.

[RLF14] Nicolas Roeser, Arno Luppold, and Heiko Falk. Multi-criteria optimization
of hard real-time systems. Proceedings of the JRWRTC, 2014.

[RMPVC13] P. Raymond, C. Maiza, C. Parent-Vigouroux, and F. Carrier. Timing
analysis enhancement for synchronous program. In Int’l Conference on
Real-Time and Network Systems (RTNS), pages 141–150, 2013.

[RtiV] Sweden Research team in Vasteras. SWEET (SWEdish Execution Time
tool) . http://www.mrtc.mdh.se/projects/wcet/sweet/.

[RWY13] Erven Rohou, Kevin Williams, and David Yuste. Vectorization technology
to improve interpreter performance. ACM Trans. Archit. Code Optim.,
9(4):26:1–26:22, January 2013.

[SAT] SATIrE: Static Analysis Tool Integration Engine. http://www.complang.
tuwien.ac.at/satire/.

[Sch08] M. Schordan. Source-To-Source Analysis with SATIrE - an example re-
visited. In Scalable Program Analysis, number 08161 in Dagstuhl Sem-
inar Proceedings, Dagstuhl, Germany, 2008. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany.

[SPPH10] Martin Schoeberl, Wolfgang Puffitsch, Rasmus Ulslev Pedersen, and
Benedikt Huber. Worst-case execution time analysis for a Java proces-
sor. Software: Practice and Experience, 40(6):507–542, 2010.

[tcr] Time-predictable Multi-Core Architecture for Embedded Systems. http:
//www.t-crest.org.

[Tid] Tidorum Ltd. Bound-T time and stack analyser. http://www.bound-t.
com.

[TRA] TRACES, IRIT, Université Paul Sabatier. OTAWA: Open Tool for Adap-
tive WCET Analyses. http://www.otawa.fr.

[TSV] Test Suite for Vectorizing Compilers for LLVM. https://llvm.org/svn/
llvm-project/test-suite/trunk/MultiSource/Benchmarks/TSVC/.

BIBLIOGRAPHY 111

[vHHL+11] Reinhard von Hanxleden, Niklas Holsti, Björn Lisper, Erhard Ploedereder,
Reinhard Wilhelm, Armelle Bonenfant, Hugues Cassé, Sven Bünte, Wolf-
gang Fellger, Sebastian Gepperth, et al. Wcet tool challenge 2011: Re-
port. In Procs 11th Int Workshop on Worst-Case Execution Time (WCET)
Analysis, 2011.

[WEE+08] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The worst-case execution-
time problem–overview of methods and survey of tools. ACM Trans. Em-
bed. Comput. Syst., 7(3):36:1–36:53, 2008.

[XLC] IBM XL C and C++ Compilers family. http://www-03.ibm.com/
software/products/en/ccompfami.

[ZKW+] Wankang Zhao, William Kreahling, David Whalley, Christopher Healy,
and Frank Mueller. Improving WCET by optimizing worst-case paths.
In Real Time and Embedded Technology and Applications Symposium,
RTAS 2005. 11th IEEE, pages 138–147.

[ZKW+04] Wankang Zhao, Prasad Kulkarni, David Whalley, Christopher Healy,
Frank Mueller, and Gang-Ryung Uh. Timing the WCET of embedded
applications. In Real-Time and Embedded Technology and Applications
Symposium, 2004. Proceedings. RTAS 2004. 10th IEEE, pages 472–481.
IEEE, 2004.

112 BIBLIOGRAPHY

List of Figures

1 CFG matching and WCET overestimation . 9

1.1 Distribution of execution time and basic notions of timing analysis systems 14
1.2 CFG and WCET calculation using IPET . 18

2.1 Example of control flow graph (CFG) . 26
2.2 Loops . 27
2.3 Different location of test nodes. 28
2.4 Example of Loop Bounds . 29
2.5 Running example with nested loops . 30
2.6 Local/Global Loop Bound . 30
2.7 Example of infeasible paths . 31
2.8 Infeasible paths examples. 33
2.9 The CFG of infeasible paths examples. 34
2.10 Example of input and output of compiler optimization and transformation rule set . 36
2.11 The CFG of loop spreading example. 38
2.12 The CFG of combination of unreachable-code elimination and tail merging example. 39
2.13 Distribution of execution time before and after compiler optimizations 41
2.14 Overall flow . 43
2.15 Unreachable code elimination example . 44
2.16 Dead code elimination example . 45
2.17 If simplification example . 46
2.18 Branch optimization example . 47
2.19 Tail merging example . 49
2.20 Inline . 50
2.21 Loop unrolling example (loop_count%UF = 0) 51
2.22 Loop unrolling example (loop_count%UF != 0) 51
2.23 CFG of loop unrolling example. The left part of the figure shows the original CFG,

whereas the right part shows the optimized one. 51
2.24 Loop rotation example . 52
2.25 Loop unswitch example . 53
2.26 Loop interchange example . 55
2.27 Loop distribution example . 56
2.28 Loop fusion example . 57

113

114 LIST OF FIGURES

2.29 Loop coalescing example . 58
2.30 Loop collapsing example . 59
2.31 Loop peeling example . 60
2.32 Loop spreading example . 61
2.33 Loop tiling example . 62
2.34 No dependence & loop-carried dependence . 63
2.35 Loop-level vectorization example . 64
2.36 The original code of superword level vectorization example 64
2.37 The CFG of loop-level vectorization. The left part of the figure shows the original

CFG, whereas the right part shows the vectorized one. 65

3.1 LLVM Compiler Infrastructure . 74
3.2 Implementation of traceability in LLVM . 76
3.3 Process of WCETInfo Update . 77
3.4 The WCET estimation process. 79
3.5 The CFG of loop unrolling in LLVM. The left part of the figure shows the original

CFG, whereas the right part shows the unrolled one. 80
3.6 The CFG of loop-level vectorization in LLVM. The left part of the figure shows the

original CFG, whereas the right part shows the vectorized one. 81

4.1 Impact of optimizations (-O3) on WCET. The y-axis represents the WCET with
optimizations, normalized with respect to the WCET without optimization (-O0) . . 87

4.2 Impact of vectorization on WCET (ARM, single-path TSVC benchmarks). The y-axis
represents the WCET improvement ratio brought by vectorization: WCET

no�vec

/WCET
vec

. 94
4.3 Impact of vectorization on WCET (Intel, single-path TSVC benchmarks). The y-axis

represents the WCET improvement ratio brought by vectorization: WCET
no�vec

/WCET
vec

. 95
4.4 Impact of vectorization on WCET (ARM, single-path Gcc-loops) 95
4.5 Impact of vectorization on WCET (Intel, single-path Gcc-loops) 96

List of Tables

3.1 Supported optimizations included in LLVM. 83
3.2 Supported optimizations not implemented in LLVM. 84

4.1 The descriptions, characteristics and lines of code of benchmarks used in our experiment 86
4.2 Change in estimated WCET when one optimization is disabled (1-off). Reference is

-O3. Positive numbers denote a beneficial effect of the optimization (WCET degrades
when it is disabled). 88

4.3 Change in estimated WCET when one optimization is disabled (1-off). Reference is
-O3. Without cache effects. 90

4.4 Change in estimated WCET when two optimizations are disabled (2-off). Reference is
-O1. Positive numbers denote a beneficial effect of the optimizations (WCET degrades
when they are disabled). 91

4.5 Loops in TSVC (only vectoried single-path) 97

115

Résumé

Les systèmes temps-réel sont omniprésents, et jouent un rôle important dans notre
vie quotidienne. Pour les systèmes temps-réel dur, calculer des résultats corrects n’est
pas la seule exigence, il doivent de surcroit être produits dans un intervalle de temps
borné. Connaitre le pire cas de temps d’exécution (WCET - Worst Case Execution
Time) est nécessaire, et garantit que le système répond à ses contraintes de temps. Pour
obtenir des estimations de WCET précises, des informations de flot sont nécessaires. Ces
informations sont généralement ajoutées via des annotations au niveau du code source,
tandis que l’analyse de WCET est effectuée au niveau du code binaire. L’optimisation
du compilateur est entre ces deux niveaux et a un effet sur la structure du code et sur
les annotations.

Nous proposons dans cette thèse une infrastructure logicielle de transformation, qui
pour chaque optimisation transforme les annotations du code source vers le code binaire.
Cette infrastructure est capable de transformer les annotations sans perte d’information
de flot.

Nous avons choisi LLVM comme compilateur pour mettre en œuvre notre infras-
tructure. Et nous avons utilisé les jeux de test Mälardalen, TSVC et gcc-loop pour
démontrer l’impact de notre infrastructure sur les optimisations du compilateur et la
transformation d’annotations. Les résultats expérimentaux montrent que de nombreuses
optimisations peuvent être activées avec notre système. Le nouveau WCET estimé est
meilleur (plus faible) que l’original. Nous montrons également que les optimisations du
compilateur sont bénéfiques pour les systèmes temps-réel.

Abstract

Real-time systems have become ubiquitous, and play an important role in our everyday
life. For hard real-time systems, computing correct results is not the only requirement.
In addition, the worst-case execution times (WCET) are needed, and guarantee that
they meet the required timing constraints. For tight WCET estimation, annotations
are required. Annotations are usually added at source code level but WCET analysis is
performed at binary code level. Compiler optimization is between these two levels and
has an effect on the structure of the code and annotations.

We propose a transformation framework for each optimization to trace the anno-
tation information from source code level to binary code level. The framework can
transform the annotations without loss of flow information.

We choose LLVM as the compiler to implement our framework. And we use the
Mälardalen, TSVC and gcc-loops benchmarks to demonstrate the impact of our frame-
work on compiler optimizations and annotation transformation. The experimental re-
sults show that with our framework, many optimizations can be turned on, and we can
still estimate WCET safely. The estimated WCET is better than the original one. We
also show that compiler optimizations are beneficial for real-time systems.

