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Délestage de Données en D2D : De la Modélisation à la Mise en
Œuvre

R

La disponibilitè de connectivitè omniprèsente et l’explosion dumarchè des appareils mobiles
ont entraînè une croissance fulgurante de l’utilisation de donnèes en mobilitè en 2014. Le
tracmobile global atteindra 24,3 exa-octets en 2019. Aujourd’hui, les rèseaux cellulaires sont
sous pression, essayant de faire face à cette surcharge de donnèes sans prècèdent. Accueillir
cette croissance de façon traditionnelle exigerait des investissements importants dans le rèseau
d’accès radio. Des approches alternatives, et plus èconomiques, ont èmergè pour faire face à ce
problème. Dans cette thèse, nous tournons notre attention vers l’une de ces solutions, pour
laquelle la communautè de recherche porte un intèrêt croissant : le dèlestage (couramment
appelèe ooading) grâce à des communications de dispositif à dispositif (D2D). Cette ap-
proche non conventionnelle exploite la bande passante inutilisèe dans des technologies sans
l difèrentes. Il difère sensiblement du dèlestage à travers des points d’accès Wi-Fi et small-
cells, car les utilisateurs font partie du rèseau et sont capables de transmettre des donnèes pour
le compte de l’infrastructure. En efet, en dèplaçant la partie du trac tolèrant aux dèlais sur
des connexions directes entre terminaux, on peut apporter un grand bènèce aux opèrateurs.

Dans cette thèse, nous nous sommes intèressès à l’ooading D2D sous des angles dif-
fèrents. Initialement, nous avons ètudiè des propositions existantes dans la littèrature an
d’identier les fonctionnalitès communes nècessaires pour le dèlestage dans une architecture
rèseau mobile. De cette analyse, nous avons obtenu un signe tangible de la nècessitè pour
les opèrateurs de mettre en œuvre des stratègies d’ooading ecaces. Cependant, de nom-
breuses ètudes proposent de prè-calculer un sous-ensemble optimal de nœuds initiaux à qui
transmettre les donnèes au dèpart. Ce choix est fait en utilisant la structure du rèseau op-
portuniste sous-jacent, ainsi que les motifs de contact entre les utilisateurs. Bien que cette
approche soit sans doute èlègante, gènèralement elle ne rèagit pas bien à la variabilitè des
conditions, soufrant ègalement d’une application limitèe en raison de la spècicitè et des hy-
pothèses sous-jacentes parfois irrèalistes. Notre première contribution est doncDROiD, une
stratègie de dèlestage D2D qui exploite la disponibilitè de l’infrastructure cellulaire comme
un canal de retour an de suivre l’èvolution de la difusion. DROiD adapte la stratègie
d’injection au rythme de la difusion, à la fois de manière rèactive et simple, et permettant
d’èconomiser une quantitè èlevèe de donnèes cellulaires, même dans le cas de contraintes de
rèception très serrèes.

Ensuite, nous mettons l’accent sur les gains que les communications D2D pourraient ap-
porter si elles ètaient couplèes avec les transmissions multicast. Le multicast reprèsente, en
principe, un moyen très ecace de distribution de contenu à une multitude d’utilisateurs.
Nous èvaluons d’abord les lacunes de la mise en œuvre du multicast dans la dernière tech-
nologie de rèseau cellulaire (par exemple, dans l’LTE), où l’ecacitè globale est dictèe par le
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nœud avec la pire qualitè de canal parmi tous les rècepteurs de la transmission. Nous dèmon-
trons que par l’utilisation èquilibrèe d’un mix de multicast et communications D2D nous
pouvons amèliorer à la fois l’ecacitè spectrale mais aussi la charge des rèseaux cellulaires.
An de permettre l’adaptation aux conditions actuelles (ex., le nombre de requêtes, la den-
sitè et la structure de lamobilitè des utilisateurs), nous èlaborons une stratègie d’apprentissage
basèe sur l’algorithme de “banditmanchot” pour identier la meilleure combinaison de com-
munications multicast et D2D.

Enn, nous ètudions des modèles de coûts pour les opèrateurs dèsireux de rècompenser
et de stimuler les utilisateurs qui coopèrent dans la difusion D2D, les reconnaissant pour
la transmission de contenu au nom de l’infrastructure. Ces hypothèses dèterminent donc
que, la difusion opportuniste non contrlèe est coûteuse pour les opèrateurs, car elle gènère
des coûts supplèmentaires en raison de chaque transmission D2D. Dans ce cas, nous pro-
posons de sèparer la notion de seeders (utilisateurs qui transportent le contenu, mais ne le
distribuent pas) et les forwarders (utilisateurs qui sont chargès de distribuer le contenu). En
faisant cela, les opèrateurs bènècient d’unemeilleure souplesse dans la gestion des opèrations
de dèlestage. Avec l’aide d’un outil analytique basè sur le principe maximal de Pontryagin,
nous dèveloppons une stratègie optimale de dèlestage. L’analyse des rèsultats nous fournit
un aperçu sur les interactions entre les seeders, les forwarders, et l’èvolution de la difusion
des donnèes, rèvèlant que la dècision de renvoi pourrait être tout aussi critique que le choix
des nœuds.
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Device-to-Device Data Ooading: FromModel to
Implementation

A

The combined availability of pervasive connectivity and the explosion in the smart mobile
devices market resulted is a stunning 69 growth in global mobile data usage in 2014. Over-
all mobile trac is expected to reach 24.3 exabytes by 2019. As today’s most common data
accessmethod for users on themove, cellular networks are under pressure trying to copewith
this unprecedented data overload. Accommodating this growth in a traditional way would
require major investments in the radio access network.

Alternative approaches emerged to deal with this problem. In this thesis, we turn our at-
tention to one of these solutions, recently attracting increasing interest by the research com-
munity: mobile data offloading through device-to-device (D2D) communications. This uncon-
ventional approach leverages the unused bandwidth across diferent wireless technologies. It
difers substantially from regular ooading over Wi-Fi and small-cell networks. Users be-
come part of the network and are capable of transmitting data on behalf of the cellular in-
frastructure. Indeed, shifing away the delay-tolerant part of the trac can bring great benet
to operators, provided that the choice of seeder nodes is correct.

In this thesis, we tackle data ooading under diferent angles. Initially, we study existing
propositions in the literature in order to identify the common functionalities needed in an
ooading architecture. From this analysis, we get a tangible sign of the need for operators
to implement ecient ooading strategies. However, many studies pre-compute a set of
optimal seeders using the structure of the underlying opportunistic network, as well as the
contact patterns among users. Although this approach is undoubtedly elegant, it typically
does not react well to changing conditions, sufering also from a limited applicability due
to the specic and sometimes unrealistic underlying assumptions. Our rst contribution is
DROiD, an ooading strategy that exploits the availability of the cellular infrastructure as a
feedback channel in order to track the dissemination evolution. DROiD adapts the injection
strategy to the pace of the dissemination, resulting at the same time reactive and relatively
simple, allowing to save a relevant amount of data trac even in the case of tight delivery
delay constraints.

Then, we shif the focus to the gains that D2D communications could bring if coupled
with multicast wireless networks. Multicast represents, in line of principle, a very ecient
way of distributing content to a multitude of users. We rst assess the shortcomings of the
implementation ofmulticast in the latest cellular network technology (e.g., eMBMS in LTE),
where the global eciency is dictated by the node with the worst channel quality among all
the multicast receivers. We demonstrate that by employing a wise balance of multicast and
D2D communications we can improve both the spectral eciency and the network load in
cellular networks. In order to let the network adapt to current conditions (number of re-
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quests, density and mobility pattern of users), we devise a learning strategy based on the
multi-armed bandit algorithm to identify the best mix of multicast and D2D communica-
tions.

Finally, we investigate the costmodels for operators wanting to reward and stimulate users
who cooperate in D2D difusion, acknowledging them for transmitting content on behalf
of the infrastructure. Under these assumptions, uncontrolled opportunistic difusion is ex-
pensive for operators because it generates additional costs owing to D2D transmissions. In
this case, we propose separating the notion of seeders (users that carry content but do not dis-
tribute it) and forwarders (users that are tasked to distribute content). By doing so, operators
benet from a better exibility in the management of ooading operations. With the aid of
the analytic framework based on Pontryagin’s Maximum Principle, we develop an optimal
ooading strategy. Results provide us with an insight on the interactions between seeders,
forwarders, and the evolution of data dissemination, revealing that the forwarding decision
could be just as critical as the choice of seeders.
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1
Introduction

1.1 C  M

M         . Their capabilities
allow experiencing pervasive high data rates everywhere, enabling applications that would
have been inconceivable only 10 years ago. Driven by the increasing popularity of smart mo-
bile devices and the introduction of afordable data plans by cellular operators, global mobile
trac is booming. Data-hungry mobile applications, such as audio and video streaming, so-
cial sharing, or cloud-based services, are more and more popular among users. In the time
lapse of this thesis (2012 – 2015), data trac grew nearly three times, being expected to grow
additionally 10-fold between 2014 and 2019, three times faster than the overall xed trac
in the same period [1]. It is also anticipated that two-thirds of this trac will be video re-
lated (with or without real-time requirements) by 2017. As today’s most common data access
method fornodes on themove, cellular networks are under heavypressure trying to copewith
this unprecedented data overload. Accommodating this growth requires major investments
both in the radio access network (RAN) and the core infrastructures. Upgrading the RAN is
very expensive, since it requires more infrastructure equipment and thus more investment.

Scarce licensed spectrumhinders theRANenhancements. Regulations allowmobile oper-
ators to use only a small portion of the overall radio spectrum, which is also extremely expen-
sive. Users must share the same limited wireless resources, which poses a capacity problem.
Considerable progress is constantly made at the physical layer to increase raw bit rates, but
this is neither sucient nor cost-ecient to accommodate all the increase in data service de-
mand [1]. Adding trac beyond a certain limit mines the performance and the quality of
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service (QoS) perceived by the users. During peak times in crowded metropolitan environ-
ments, users experience long latencies, low throughput, and outages due to congestion and
overload at RAN level [2]. Unfortunately, this trend can only exacerbate in the future due
to the predicted mobile data explosion. The problem concerns primarily network operators
because they have to trade-off customer satisfaction with business profitability, given the trend
toward nearly at rate business models. In other words, the exponential increase in trac
owing in their RAN does not generate enough additional revenues to be allocated into fur-
ther RAN upgrades. This creates what Mölleryd et al. call the revenue gap [3].

1.2 D O:  S   B C

The aforementioned circumstances fostered the interest in alternative methods to mitigate
the pressure on the cellular network. As a rst option, mobile operators solved this contin-
gency by throttling connection speed and capping data usage [4]. However, these practices
negatively afect the customer satisfaction. Alternative and more disruptive innovations in
the architecture of cellular networks have to be explored to help carriers meet the exponen-
tial growth in mobile data trac demand. In this dissertation, we turn our attention to one
of these solutions, recently attracting increasing interest by the research community: mobile
data offloading. An intuitive approach is to leverage the unused bandwidth across diferent
wireless technologies. We considermobile data ooading as the use of a complementary wire-
less technolo to transfer data originally targeted to flow through the cellular network, in order
to improve some key performance indicators.

Although the concept of ooading may apply to any network, current academic and in-
dustrial research mostly concerns with ooading data from cellular networks. Those are the
type of networks that would benet most from this technique. Besides the obvious ben-
et of relieving the infrastructure network load, shifing data to a complementary wireless
technology leads to a number of other improvements, including: the increase of the over-
all throughput, the reduction of content delivery time, the extension of network coverage,
the increase of network availability, and better energy eciency. These improvements hit
both cellular operators and users; therefore, ooading is ofen described in the literature as a
win-win strategy [5]. Unfortunately, this does not come for free, and a number of challenges
need to be addressed, mainly related to infrastructure coordination, mobility of users, service
continuity, pricing, business models, and lack of standards.

For the reader’s convenience, we depict in Fig. 1.1 the two main approaches to ooading
in cellular networks when comparedwith the traditional infrastructure-onlymode (Fig. 1.1a).
Diverting trac through xed WiFi Access Points (AP), as in Fig. 1.1b, represents a conven-
tional solution to reduce trac on cellular networks. End-users located inside a hot-spot
coverage area (typically much smaller than the one of a cellular macrocell) might use it as a

Please note that despite being highly benecial, implementing ooading capabilities is not a requirement
for operators. Ooading rather represents extra available capacity, which can be used whenever appropriate.
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Figure 1.1: The twomajor approaches to cellular data offloading compared to a) the baseline traditional infrastructure-

only system. b) Offloading through awireless Access Point. c) Offloading through terminal-to-terminal transmissions

.

worthwhile alternative to the cellular network when they need to exchange data. Hot-spots
generally provide better connection speed and throughput than cellular networks [6]. How-
ever, coverage is limited andmobility is in general constrainedwithin the cell. Since themon-
etary cost of deploying an array of xed APs is far lower than deploying a single cellular base
station, the major worldwide cellular providers have started integrating an increasing num-
ber of wireless APs in their cellular networks to encourage data ooading [7]. Meanwhile,
a growing number of applications that automatize the ooading process are proposed for
popular mobile devices (mainly iPhone and Android based) [8, 9].

The increasing popularity of smart mobile devices proposing several alternative commu-
nication options makes it possible to deploy a device-to-device (D2D) network that relies
on direct short-range communication between mobile users, without any need for an infras-
tructure backbone (Fig. 1.1c). This innovative approach has intrinsic properties that can be
employed to ooad trac. D2D ooading represents a vibrant research topic at the core of
this dissertation. Beneting from shared interests among co-located users, a cellular provider
may decide to send popular content only to a small subset of users via the cellular network,
and let them spread the information through D2D communications and opportunistic con-
tacts. This new paradigm is applicable in dense areas (urban and large event scenarios) where
moving people always carrying connected devices. When two ormore of these users are close
enough, they have the potential to exchange data. Moving information hop-by-hop between
users can provide an alternative means of distributing the information, which could relieve

The ability to switch seamlessly between heterogeneous networks is referred to as vertical handover [10].
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the load on the infrastructure. Note also that these two forms of ooading (AP and D2D
based) may be employed concurrently, enabling users to retrieve data in a hybrid mode.

1.3 N  C

The dissertation explores the combination between opportunistic and cellular (infrastruc-
ture) networks. We propose a synergic use of a diverse set of complementary ooading tech-
niques, by adding direct hop-by-hop communications between terminals. Such an approach
is enabled by the fact that currentmobile terminals are equippedwith a range of complemen-
tary wireless communication technologies, allowing them not only to easily and dynamically
connect to diferentwireless infrastructures, but also to establish direct connectionswith each
other.

We adopt anovel approach,whereby the cellular infrastructures implements a control loop
on the status of the dissemination process. Our approach difers with respect to conventional
opportunistic data dissemination schemes. In particular, opportunistic networking, while
highly regarded in the last few decades as a promising alternative to standard infrastructure-
based networks, betrayed expectations to emerge as an autonomous networking paradigm.
This is primarily due to its truly distributed nature that makes it extremely hard to ofer any
performance guarantees on the available bandwidth and data dissemination delay. However,
its synergy with an infrastructure network could prove extremely advantageous to lower the
load and increase performance of this latter. In this case, the cellular network canbe employed
to monitor the status of the dissemination process (e.g., in terms of the fraction of users that
have received contents by a certain time). The cellular network can intervenewhen necessary,
assuring data reception within guaranteed delays. This centralized ooading strategy has
two benecial efects: 1) mobile operators are actively involved in the ooading process and
everything is under their control, and 2) it is possible to ofer a QoS guarantee to users at any
time.

We devote a large part of this thesis in designing and realizing the interplay between D2D
and cellular network, evaluating also the case of cellular multicast. The resulting architecture
requires reconsidering existing several wireless network paradigms. Future cellular architec-
tures should intelligently support the distribution of heterogeneous classes of services, in-
cluding the requirement of the application in terms of delivery guarantees, to face an overall
trac increase of several orders of magnitude. In this context, user mobility results partic-
ularly challenging as it can prove at the same time favorable and catastrophic for data for-
warding. Finally, without users’ cooperation opportunistic ooading strategies are doomed
to failure. It is essential to consider an incentive scheme to promote content sharing among
neighbor peers in opportunistic fashion. Additional fundamental questions in mobile data
ooading concern the role of the network operator and the degree of freedom to let to users.
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1.4 C  T O

This focus of this thesis is on evaluating opportunistic ooading strategies under multiple
angles. The large part of the results of this work has been developed in the framework of
the European Project FP7-MOTO [11]. The architecture and protocols developed along this
dissertation have been evaluated analytically, or by simulations using diferent tools. More-
over, a small-scale prototype was built to validate experimentally the ndings of simulation.
We provide below an outline of the dissertation, summarizing also the contributions for each
chapter.

C 1 – A S DO T  CN-
 (C 2)

We begin the dissertation by ofering in Chapter 2 an exhaustive survey of the literature in the
broad area of data ooading. We categorize existing techniques based on their requirements
in terms of content delivery guarantee. Despite the positioning with respect to the state of
the art is necessary, this is not the sole purpose of the chapter. By analyzing the literature we
come out with a functional architecture to enable mobile data ooading with tight or loose
delay guarantees. This architecture will be the base of the following chapters. Finally, we
discuss open research and implementation issues. The work related to this chapter is:

• F. Rebecchi, MDi de Amorim, V. Conan, A. Passarella, R. Bruno, M. Conti, ”Data
Offloading Techniqu in Cellular Networks: A Survey”, in IEEE Communications
Surveys & Tutorials, 2015.

C 2 – DROD: A  I M P O  M-
 D O (C 3)

Based on the previously dened architecture, we propose exploiting the availability of the
cellular infrastructure as a feedback channel to track the dissemination evolution. In Chap-
ter 3, we develop DROiD, a low-complexity ooading strategy that relies both on D2D and
AP-based communications. The observation that content dissemination in opportunistic
networks follows a stepwise pattern is at the base of our strategy. Our proposal better adapts
to the contact patterns between nodes to ofer enhanced ooading eciency. We also built
a demonstrator that showcases DROiD, integrating D2D data ooading capabilities into a
cellular infrastructure. Published and submitted works related to this chapter are:

• F. Rebecchi, M Di de Amorim, V. Conan, ”Circumventing Plateaux in Cellular
Data Offloading using Adaptive Content Reinjection”, under major revision, submitted
to IEEE Transactions on Network and Service Management, 2015.
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• F. Rebecchi, M Di de Amorim, V. Conan, ”DROiD: Adapting to Individual Mo-
bility Pays Off inMobile Data Offloading”, in IFIPNetworking, Trondheim, Norway,
2014.

• F. Rebecchi, M Di de Amorim, V. Conan, ”Adaptive Mobile Data Offloading”, in
Algotel, Le-Bo-Plage-en-Ré, France, 2014.

• F. Benbad, F. Rebecchi, F. Cosnier, M. Sammarco M Di de Amorim, V. Conan,
”Demo: opportunistic communications to alleviate cellular infrastructur: the FP7-
moto approach”, in ACM CHANTS, Maui, HI, 2014.

• F. Benbad, F. Rebecchi, F. Cosnier, M. Sammarco M Di de Amorim, V. Conan,
”Demo: D2D Rescue of Overloaded Cellular Channels”, in ACMMobiSys, Florence,
Italy, 2015.

C 3 – O LTE M D D
D2D  (C 4)

Multicast represents, in line of principle, a very ecient way of distributing content to amul-
titude of users. Chapter 4 shifs the focus to the gains thatD2D communications could bring
if coupled with multicast wireless networks. We rst assess the shortcomings of the imple-
mentation of multicast in the latest cellular network technology (e.g., eMBMS in LTE). A
wise balance ofmulticast andD2D communications can improve both the spectral eciency
and the network load in cellular networks. In order to let the network adapt to current con-
ditions (number of requests, density and mobility pattern of users), we devise a learning al-
gorithm to identify the proper mix of multicast and D2D communications. Published and
submitted works related to this chapter are:

• F. Rebecchi, M Di de Amorim, V. Conan, ”Flooding Data in a Cell: Is Cellu-
lar Multicast Better than Device-to-Device Communications?”, in ACM CHANTS,
Maui, HI, 2014.

• F. Rebecchi, L. Valerio, R. Bruno, V. Conan, M Di de Amorim, V. Conan, A. Pas-
sarella ”A Multi-Armed Bandit Resource Allocation Scheme for D2D-aided Cellular
Multicast”, submitted to Elsevier Computer Communications, 2015.

C 4 – I  D2D O: D  M
(C 5)

In D2D ooading it is impossible to consider data dissemination and collaboration without
addressing incentives. Chapter 5 investigates a cost model for operators wanting to reward
users who cooperate in D2D difusion. Under these assumptions, uncontrolled opportunis-
tic difusion is expensive for operators because it generates additional costs owing to D2D
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transmissions. We propose separating the notion of seeders (users that carry content but do
not distribute it) and forwarders (users that are tasked to distribute content). By doing so,
operators benet from a better exibility in the management of ooading operations. Pub-
lished and submitted works related to this chapter are:

• F. Rebecchi,MDi deAmorim, V. Conan, ”Seeders vs. Forwarders: Optimal Control
of D2D Offloading under Rewarding Conditions”, submitted to IEEEMASS, Dall,
TX, 2015.

• F. Rebecchi, M Di de Amorim, V. Conan, ”The Cost of Being Altruistic: Optimal
D2D Offloading under Rewarding Conditions”, in Algotel, Beaune, France, 2015.

1.5 I E

The contributions in this thesis perfectly t in the scope of a branch of applied research car-
ried out at Thales. While not directly targeting the market of commercial cellular networks,
Thales is particularly active in the eld of public safety communications (PSC). Although
public safety users are an important community both economically and socially, the PSC
market is much smaller than the commercial cellular one. Therefore, specialized public safety
technologies cannot attract the level of investment and global R&D that goes in to commer-
cial cellular networks. A strong standards-based approach will ensure interoperability be-
tween diferent vendors leading to a competitive equipment market. Thales vision is that
common technical standards for commercial cellular (4G) and public safety networks ofers
advantages to both communities:

• The public safety community gets access to the economic and technical advantages
generated by the scale of commercial cellular networks.

• The commercial cellular community gets the opportunity to address parts of thepublic
safety market as well as gaining enhancements to their systems that have interesting
applications to consumers and businesses.

Thales is making a signicant efort to develop solutions for mobile broadband in PSC
sector, currently building new communication infrastructures and dedicated mobile termi-
nals towards the procurement of national security police, reghters, and emergency orga-
nizations. This new infrastructure will rely on both Professional Mobile Radio (PMR) and
emerging 4G technologies: Long Term Evolution (LTE) andWiMax, both of them support-
ing TETRA (Terrestrial Trunked Radio), the European Standard for public safety. This fu-
ture solution intends to improve existing public communication services, enriching them
with additional capabilities (e.g., video, multimedia, and data services), while maintaining
compatibility with existing PMR networks.
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Interestingly, several Public Safety agencies are already experimenting with mobile broad-
band (LTE) technologies for certain use-cases and scenarios. For example, ad-hoc mesh net-
works, direct communications (D2D), and LTE are being considered and evaluated world-
wide. The high exibility and performance of these technologies enable the deployment of
new services and applications. Namely, LTE enables public safety agencies to be more re-
sponsive, to increase situational awareness and to coordinate with other agencies by provid-
ing faster data sharing, through new applications, real-time video, as well as D2D and group-
based communications. In short, LTE is the enabler of next generation communications for
public safety. Services to be ofered for Public Safety that can be impacted by the outcomes
of this thesis, and by data ooading techniques in general, include:

• Support of Push-to-X (PTX) services for eets of machines and PMR (PrivateMobile
Radio) users. While LTE systems ofer high capacity links, they should also support
eciently the typical group communications required in PMR deployments. PTX
services call for voice and data-centric group communications. Currently, push-to-
talk allows a PMR user to reach an active talk group with a single button press. This
voice service can benet fromPush-over-Cellular services and should be extendedwith
publish-subscribe data-centric communications over amultitude of transmission tech-
niques to support additional usages and leverage network capacity.

• D2D services, a.k.a. DMO (Direct Mode Operations) of legacy TETRA-like systems.
In DMO mode the Land Mobile Radio (LMR) terminals communicate directly with
each other without using the existing infrastructure. For instance, DMO is ofen used
in situationswhere thedevices lie outside the coverage area ofTETRAnetworks. While
DMO currently supports only voice communications, it is widely agreed that data ser-
vices must be also included in the next LTE-based version. D2D services are one of the
areawhere 3GPPhas agreed to enhance LTE, permitting to identifymobiles in physical
proximity and optimizing direct communication links.

In efect, a considerable part of this thesis targets one of the typical scenario of utilization
of public safety networks, where massive data distribution is required in order to support
Push-to-X application ofering optimal situation awareness for rst responders in a eld of
operation. This massive data distribution application scenario has its origin from new and,
somehow, visionary data collection services that could be enabled by exploiting the increasing
ability of current personal mobile devices to monitor the physical world. Indeed, the more
sophisticated the smartphone, the longer its list of embedded information sinks is. For exam-
ple, a standard rugged secure rst responder smart-handled device now ships with a compass,
a gyroscope, an accelerometer, a GPS, two microphones, various cameras, and others users
generated data applications. First responders will have access to high-speed connectivity and
the ability to receive large amounts of data and video to and from the command center, from
patrol car to patrol car, and from smart handheld device to smart handheld device in the eld.

10



Those who don’t know history are destined to repeat it.

Edmund Burke

2
Data Ooading Techniques in Cellular

Networks

I  ,      providing a compre-
hensive categorization of existing solutions. The purpose of this chapter goes beyond the
simple positioning of our work with respect to the state of the art. The ultimate goal is to
detail a set of features necessary for the functioning of an ooading architecture. The above
network architecture will be reused many times over the course of the dissertation and will
serve as the basis for our subsequent contributions.

2.1 C

Mobile data ooading can be – at a very high level – categorized according to the presence
or not of the infrastructure (as we showed in the introduction). However, a more rened
classication is required to provide a comprehensive picture. It is important to pinpoint
that mobile data ooading techniques can be classed depending on the assumptions one
canmake on the level of synergy between cellular and unlicensed wireless networks, as well as
the involvement of user terminals in the ooading process. Beyond the obvious distinction
between AP-based andD2D approaches alreadymentioned in the previous chapter, another
aspect plays a major role in the categorization. In particular, we take into consideration the
requirements of the applications generating the trac in terms of delivery guarantees. For
this reason, we also consider a temporal dimension in our classication, depending on the
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Figure 2.1: Offloading directions in the literature.

delay that the data we want to ooad may tolerate upon delivery. This translates into two
additional categories: (i) non-delayed ooading and (ii) delayed ooading.

We consider these two orthogonal dimensions (delivery delay guarantees and ooading
approach), which correspond to four possible combinations as shown in Fig. 2.1. The biggest
diference between non-delayed and delayed ooading mechanisms lies in the way the time-
liness of content reception is handled. In fact, in non-delayed ooading we do not have any
extra delay on the “secondary” interface (considering cellular the “primary”), while in delayed
ooading the network adds some delay (either associated to the fact that the user has to wait
until it gets close enough to a WiFi AP, or to get messages through opportunistic contacts).

2.2 T: N-

Non-delayed ooading is the most straightforward and experimented class of ooading.
Data may be real-time and interactive, thereby enabling the fruition of services such as video
streaming and VoIP. So far, WiFi hot-spots have represented the most logical solution due
to their widespread difusion, acceptable performance, and low cost. Nevertheless, we can
nd in the literature many approaches that exploit D2D content sharing between neighbor-
ing nodes. In non-delayed ooading, each packet presents a hard delivery delay constraint
dened by the application, which in general is independent of the network. No extra delay is
added to data reception in order to preserve QoS requirements (other than the delay due to
packet processing, physical transmission, and radio access).

This requirement puts a strain on the network that shouldmeet this deadline to ensure the
proper functioning of the application. It turns out that non-delayed ooading is essentially
unfeasible in opportunistic networks, since the accumulated end-to-end delay over the trans-
mission pathmay be too highwith respect to the strict delivery requirements. However, if we
restrict the analysis to lowmobility scenarios, it is still possible to deliver data with strict delay
guarantees using D2D transmissions or with the aid of a xed infrastructure. Non-delayed
ooading in most cases may be dicult to implement if one considers that users are mobile
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and able to switch between various access technologies. If operators want to allow users to
be truly mobile and not only nomadic inside the coverage area, they should focus on issues
such as transparent handover and interoperability between the alternative access technologies
and the existing cellular infrastructure. For instance, this aspect is not granted when one con-
siders a basic ooading implementation through IEEE 802.11 APs. On the other hand, this
commitment allows ooading data such as voice over IP (VoIP) or interactive applications,
obtaining a nearly transparent ooading process.

2.2.1 AP-

The prevailing AP-based ooading model today is user-driven, meaning that users must ex-
plicitly enable the alternative access network in order to benet from an enhanced experi-
ence. This approach is appealing at rst, as it requires no modications in the network in-
frastructure; however, common limitations such as constrained mobility and lack of session
continuity hinder itsmass adoption. To pave theway for better cross-resource utilization and
improved customer experience, the current trend is to let operators have a deeper control of
the ooading process. This eventually raises the question of how a cellular operator can run
a protable business by shifing of-network large parts of its trac.

Providers aremore andmore looking toward a tighter integration of alternative access net-
works and their cellular infrastructure, as depicted in Fig. 2.2. The integration process con-
cerns partnerships between cellular and wireless providers, common billing and accounting
policies, shared subscriber databases for authentication, authorization, accounting (AAA),
and security provisioning. Two possible network architectures to date are envisioned to in-
tegrate cellular and WiFi access: loose coupling and tight coupling. In loose coupling, the two
networks are independent and are interconnected indirectly through an external IP network.
Service continuity is provided by roaming between the two networks. In tight coupling in-
stead, the two networks share a common core and many functions, such as vertical and hori-
zontal handover, integrated management of resources, and common AAA.

Smart mobile devices already give priority by default toWiFi when a wireless network results available and
WiFi interface is enabled.
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Optimal Deployment

Several trace-based analyses demonstrate that the deployment of xed APs is a viablemethod
to reduce congestion in cellular networks [12, 13, 14, 15]. These studiesmotivate the increasing
interest in data ooading, providing an experimental upper bound on how much data it is
possible to ooad given an existing AP deployment. However, measurements based only on
signal strength do not consider the issues related to higher-layer protocols, which may inu-
ence the theoretical possibility of ooading as perceived from a pure signal strength analysis.

An interesting strategy to boost ooading performance is to place optimally the APs in
order to maximize the trac that ows through the alternative channel [15, 16, 17, 18]. Since
the optimal positioning problem becomes quickly intractable (NP-hard) as the amount of
APs increase, a number of sub-optimal algorithms have been developed to this extent. The
basic idea is to place the APs close to the locations with the highest density of mobile data
requests (or the number of users). Simulation results show that it is possible to shrink cellu-
lar trac by 20 − 70, depending on the AP density. Besides simulation results, analytical
models help to derive theoretical bounds on performance, based on queuing theory [19, 20].

Optimal deployment might be a short-term solution for improving performance of real-
time data ooading. Ideally, up to 70 of trac could be ooaded through a carefully
planned deployment. Indeed, if the pattern of requests changes, the selected deployment
might not be optimal anymore. Furthermore, all reviewedworks assume perfect vertical han-
dover mechanisms, which is an over simplication. Counter-intuitively, adding too many
APs could worsen the situation due to mutual interference. An interesting future research
area concerns the selection of the optimal AP when multiple APs are simultaneously avail-
able. This shares some similarities with the problem of deciding which terminal and which
trac ow to move to a diferent communication channel [21]. Furthermore, it is related
to the Access Network Discovery and Selection Function (ANDSF) mechanism introduced
later. On the other hand, analytical models help understand the optimal fraction of data to
shif on the alternate channel to maximize the overall data rate and the amount of cellular
savings.

3GPP Standardization: ANDSF, IFOM, LIPA, SIPTO

The LTE network proposes an Evolved Packet Core (EPC) at architecture, fullling the re-
quirements for an integrated hybrid network. The EPC is an access-independent all-IP based
architecture, capable of providing the handover between IP-based services across a broad
range of access technologies (e.g., cellular,WiFi, andWiMAX).Both 3rd-GenerationPartner-
ship Project (3GPP) radio access networks and non-3GPP technologies are supported. 3GPP
considers data ooading as a key option to tackle the cellular overload problem, proposing
the ANDSF mechanism to trigger the handof between diferent access technologies [22]. It
also proposes three alternative ooading mechanisms that take advantage of the hybrid ar-
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chitecture of the EPC: Local IP access (LIPA), selected IP trac ooad (SIPTO) [23], and
IP Flow Mobility (IFOM) [24].

ANDSF is a framework for communicating to the mobile devices the policies for network
selection and trac routing, assisting them in the discovery and handover process [25]. Three
diferent access selection strategies are evaluated, based on coverage, SNR, and system load.
A congestion control mechanism to assist ANDSF is also proposed. [26]. LIPA is part of
the femtocell architecture and allows a mobile terminal to transfer data directly to a local de-
vice connected to the same cell without passing through the cellular access network. SIPTO,
instead, attempts to ooad the core of the network, balancing data ows to selected IP gate-
ways at core level. Note that these solutions (e.g., LIPA/SIPTO) ooad the core cellular
network and do not relieve bandwidth crunch in the access network. Therefore, they are not
the focus of this dissertation. We suggest interested readers to refer to Samdanis et al. [27]
and Sankaran [28].

IP Flow Mobility (IFOM) implements ooading at RAN level, allowing providers to
move selected IP data-ows between diferent access technologies without disrupting ongo-
ing communications [29]. Conversely to ANDSF, which is utilized to discover, connect, and
manage handover between neighboring APs, IFOMprovides ooading capabilities in terms
of moving data-ows between access networks. IFOM allows terminals to bind multiple lo-
cal addresses (CoAs) to a single permanent home IP address (HoA), and to bind distinct IP
ows (e.g., HTTP, Video, VoIP) to diferent CoA. This feature allows diferent ows re-
lated to the same connection to be routed over diferent radio access technologies based on
operator-dened policy. Sometimes IFOM involves a total switchover of all trac from one
access technology to another. In other cases, the network allocates only “best efort” data
to the complementary access, while keeping delay-sensitive ows on the cellular network.
IFOM allows users beneting from high bandwidth connections when at least one comple-
mentary network is available. At the same time, operators are able tomanage the radio access
resources optimally, reducing the network overload and providing diferentQoS levels to dis-
tinct data-ows. Drawbacks of IFOM reside in the additional modications needed both at
terminal and network levels to manage the heterogeneity of access technologies. In addition,
in very dense wireless environments the management of user mobility should adapt to very
challenging conditions, such as interference and dynamic terminal reconguration.

3GPP standardized the ability to performooading through a variety of accessmethods in
the LTE network architecture. New protocols, such ANDSF and IFOM, transform ooad-
ing into a nearly transparent mechanism for end-users. Operators are able to shif selected
data-ows between diferent access technologies without any disruption. This concurs in
lowering the network congestion. As of today, no commercial deployments of ANDSF and
IFOM exist, though trials are undergoing to understand the feasibility of these solutions.
The widespread adoption of these techniques is one of the keys to enable efective operator-
driven ooading strategies. Themechanisms presented in this section are, as today, the stan-
dard frameworks in which forthcomingAP-based ooading strategies need to be integrated.
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Figure 2.3:Multiple interfaces can be exploited simultaneously by users to increase the throughput, and improve data

coverage. Transmission protocols should be capable of handling efficiently such situations.

On the other hand, these solutions could be signicantly improved by considering delayed
reception and opportunistic transmissions.

Transport Protocols

The development of a novel IP-based transport protocol is an essential prerequisite to enable
future ooading capabilities tomobile smart devices. This new transport protocol should be
able to cope with seamless switch overs, diferent simultaneous connections and aggregation
betweenmultiple access technologies, as explained in Fig. 2.3. These functionalities cannot be
implemented on top of current standard Internet protocols, so we must consider extensions
to existing ones.

Possible transport protocols are developed on top of SCTP (Stream Control Transmis-
sion Protocol) [30] by striping and transmitting data across multiple network interfaces at
the same time [31], or MPTCP (MultiPath Transmission Control Protocol) to use simulta-
neously several networks to transmit [32]. An advantage of MPTCP is that it does not need
any additional requirements on the network side, being entirely implemented at end-hosts.
MPTCP has also several working implementations, notably on Android smartphones [33],
and a large scale commercial deployment inside Apple iOS 7 operating system [34].

The transition toward the simultaneous use of multiple access technologies brings a num-
ber of issues. In order to benet the most from non-delayed ooading, it becomes manda-
tory to develop innovative communication stacks beyond classic IP-protocol, capable of sup-
porting advanced features (e.g., multiple instantaneous connections, data aggregation, and
inter-technology switchovers). Extensions to standard protocols started to appear to cope
with these issues (e.g., SCTP, MPTCP), enabling to aggregate together the bandwidth of-
fered by diferent technologies, and allowing seamless handover between distinct access tech-
nologies. Nevertheless, a widely accepted transport protocol to handle transparently several
ows in parallel on separate interfaces has not yet been standardized.
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2.2.2 D2D

Real-time D2D ooading is ofen associated with cooperative strategies to exploit concur-
rently the availability of multiple interfaces. Thus, the network should be capable of co-
ordinating data retrieval in a distributed fashion. Initially, only out-of-band transmissions
were considered. However, the latest developments in the 3GPP LTE Standard (Rel-12) pro-
pose integrating direct in-band communication capabilities into the future cellular architec-
ture [35]. This provides additional exibility to the network but raises issues such as mutual
interference and resource allocation, since D2D transmissions take place in the same band as
the cellular transmissions. Cooperative data retrieval is shown to improve the spectral e-
ciency of the network [36]. While classical studies show that the theoretical transport capac-
ity of multi-hop ad hoc networks scales sub-linearly asΘ(

√
n) [37, 38] with the number n of

users, cooperation among nodes brings linear scaling law ofΘ(n) [39].
If peers are not stationary, link quality may suddenly change, making it dicult to guar-

antee QoS. If data delivery can be deferred, a better candidate for data distribution is delayed
ooading (see Section 2.3.2). To guarantee real-time requirements, most architectures as-
sume low mobility and co-located peers interested in receiving a common content [40].

Cooperation

The basic idea of cooperative downloading, is to retrieve each data chunk only once through
the cellular channel, and to share it through short-range links [41]. Cellular accesses have to
be coordinated among willing nodes in order to relieve the cellular infrastructure. One node
can act as the central controller, estimating the available throughput on the cellular link for
each other node, so to coordinate content retrieval among peers. Data can be sent using the
cellular infrastructure only to those users with the best channel quality, and subsequently
relayed to all other nodes by means of D2D transmissions [42]

Cooperative downloading of real-time data can also be achieved through turn-based strate-
gies and successive broadcasts on the WiFi interface to other interested nodes [43, 44, 45].
Like a peer-to-peer network, these strategies are fair and resilient to node failures. The suc-
cessive broadcasters follow the density of nodes involved in data distribution, to trade of
collisions on the wireless medium and data redundancy.

Additional works propose a scalable video multicast solution that jointly exploits cellu-
lar broadcast, network coding and D2D transmissions [46]. The base video layer is broad-
casted to all the users within the cell. The enhancement layers, instead, are transmitted only
to a subset of users. Modulation and coding schemes employed for transmission are the
outcome of a joint optimization problem involving D2D transmissions and cellular cover-
age. The enhancement layers are then forwarded to remaining users through D2D transmis-
sions. Testbeds for cooperative real-time video streaming among mobile nodes are proposed
in [47, 48, 49].
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Finally, the classical problems of cooperative ooading (i.e., neighbor discovery, connec-
tion establishment, and service continuity) can be resolved by adopting a network driven ap-
proach with a cellular architecture intelligent enough to assist connected users in the content
discovery and connection establishment phases [50].

The complexity of cooperative content distribution is high, involving the joint optimiza-
tion of diferent access technologies, interference, transmission rates, scheduling and energy
eciency. Centralized or distributed solutions have been developed and tested through sim-
ulation, theoretical analysis and real test beds. Optimal solutions are NP-hard, so heuristics
need to be adopted. Most of the papers focus onhow to achieve enhanced data rates, saving at
the same time battery. In this context, an energy consumptionmodel is provided in [40]. Se-
curity and trust considerations concur in making the problem even more complex. A novel
approach, involving a continuous control wielded by the network, could possibly simplify
the problem.

3GPP D2D

Recent developments in the 3GPP LTE Standard (Rel-12) propose integrating direct in-band
communication capabilities into future cellular architectures [35], ofen also referred to as
cellular network underlay [51] or device-to-device (D2D), rather than using traditional tech-
nologies working on unlicensed bands (mainly IEEE 802.11 and Bluetooth). This paves the
way for a combined use of cellular and short-range transmissions, ofering users various de-
grees of freedom for transmission and a network-assisted environment. End-users discover
each other in proximity through explicit probing [51] or via the access network guidance [52].
Upon discovery, nodes can communicate using either dedicated resources or a shared uplink
cellular channel [53]. D2D communications are then triggered by the cellular network, and
fall under continuous network management and control. For these reasons, they can also be
employed for load balancing purposes [54]. Hence, D2D could become the ideal platform
to develop data ooading in the future, because it may achieve higher resource utilization
by reusing the spectrum of physically neighboring devices, while reliability may signicantly
increase thanks to a shorter link distance. Furthermore, D2D capabilities enable LTE to be-
come a very interesting technology for public safety communications (PSC) [55]. Anyway,
critical issues such as neighbor discovery, transmission scheduling, resource allocation and in-
terferencemanagement, in particular in the case of multiple cell deployments, still need to be
addressed in order to proceed to the efective integration in future cellular architectures. Re-
lated tutorials provide the reader with a broader overview on the existing research challenges
and applications of D2D [56, 57].

Interference management and transmission coordination represent thorny problems that
must not jeopardize the QoS of cellular users in the primary network. When two or more
pairs of neighboring nodes are willing to communicate, they may use the same resources. In
this case, interference is a major issue. The network could limit the maximum transmission
power of D2D peers [51]. The optimization of radio resource allocation help decrease the
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mutual interference between D2D communications and the primary cellular network [58].
Similarly, joint resource allocation and power control schemes can also be adopted [59]. Note
that, for the intrinsic real time requirements of cellular networks, the computational com-
plexity of resource allocation algorithm represents a tangible issue [60]. Resource allocation
are treated extensively in [61, 62].

D2D communications as an underlay of cellular networks represent a signicant leap for-
ward towards the deployment of heterogeneous networks. D2D communications in this case
share resources with cellular transmissions, therefore generatingmutual interference. Conse-
quently, resource allocation optimization, power control, and device discovery are key topics
for the research community. However, the underlay approach does not exploit surplus band-
width available through complementary technologies, but rather aims at taking advantage of
parts of the LTE spectrum that may be under-utilized. Still, this could be the ideal technol-
ogy to support the predicted data growth. Cellular operators can make prots on network-
assisted D2D communications, supervising at the same time the resource consumption and
the QoS of the network, which is dicult in out-of-band ooading techniques.

2.3 T: D

In delayed ooading, content reception may be intentionally deferred up to a certain point
in time, in order to reach more favorable delivery conditions. We include in this category the
following types of trac: (i) trac with loose QoS guarantees on a per-content basis (mean-
ing that individual packets can be delayed, but the entire content must reach the user within
a given deadline) and (ii) truly delay-tolerant trac (possibly without any delay guarantees).
The relaxation in the delivery constraint allows also moving trac opportunistically, which,
by denition, can only guarantee a probabilistic delivery time. If data transfer does not end
by the expected deadline, the cellular channel is employed as a fall-back means to complete
the transfer, guaranteeing a minimal QoS. Despite the loss of the real-time support due to
the added transmission delay, note that many mobile applications generate content intrin-
sically delay-tolerant. Enabling an alternate distribution method during peak-times (when
the cellular network is overloaded or even in outage) becomes an interesting extension and
represents a fundamental challenge for ooading solutions.

Most of the time, the ooading strategy relies on the cellular network to bootstrap the dis-
tribution process (to infect seed users in D2D-based ooading) or to ensure minimal QoE
guarantees (fall-back transmissions when the deadline approaches). Before the deadline, the
content is preferably delivered through the alternative technology. Unlike the approaches
set forth in Section 2.2, delayed ooading directly exploits the mobility of nodes to create
communication opportunities. As a side efect, performance heavily hinges upon the mobil-
ity pattern of users. A short digression on mobility characteristics is thus necessary to better
catch the fundamental properties and inherent limits of delayed ooading.
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Figure 2.4: AP-based offloading. Mobility allows to receive delay-tolerant data from different APs at different times.

Sincemessages are forwarded only during contactswith users orAPs, the statistical analysis
of such encounters becomes particularly meaningful. First, the time until a new encounter
occurs (the inter-contact time) gives an efective indication of the delivery capacity inside the
opportunistic network. In addition, when contacts occur, knowing for how long they last
(their contact time) would help us to foresee howmany pending messages can be forwarded.
The distribution of contact times also afects the total delivery capacity when multiple users
compete for the samewireless channel, because contacts can bewasted due to contention and
scheduling. These properties have been deeply investigated in trace-based studies [63, 64].
Common understanding is that inter-contact and contact times between mobile users ofen
display a power law distribution with an exponential heavy tail. Analogous results hold also
for contacts between users and xed APs [12]. However, as pointed [65, 66], these results
focus on aggregate inter-contact distributions, and are not representative of the network be-
havior, which instead depends on the properties of individual pairs. An interesting addition
to the standard contact and inter-contact analysis considers an extended notion of contact
relationships [67].

2.3.1 AP-

AP-based strategies take advantage of a complementary networking backbone, ofen formed
by xed WiFi APs, to deliver data bypassing the cellular network. The complementary ac-
cess networkmay be part of the cellular operator network, or may be completely separate. In
the latter case, an agreement between operators should be envisioned. At rst, this approach
looks similar to the non-delayed case. The delay-tolerance of content is exploited here, with
data exchange happening upon subsequent contacts between the user and diferent APs ex-
ploiting a sort of space-time diversity, as illustrated in Fig. 2.4. The movement of end-users
creates contact opportunities with xed APs dening the ooading capacity of the network.

Current research eforts aim at predicting the future ooading potential through past be-
haviors of users such as mobility, contacts with APs, and throughput. Using this prediction,
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Figure 2.5:MADNet system architecture: when amobile nodewants to communicate, it makes a request to the cellular

BS, whichmay replies directly forwarding the content through the cellular network or sending the content to a neigh-

boring AP. The BS predicts the route of the nodes using the status information sent by themobile node.

the ooading coordinatormay decidewhich fraction of data to ooad, when, and towhom.
Possibly, downstream content is split in several pieces, which are then pro-actively sent to
APs that nodes will (probably) encounter in the future. An alternative research area aims at
identifying the optimal number of xed APs and their geographical location, starting from
a known user’s mobility pattern. In the following sections, we present in detail these two
approaches.

Prediction-Based Ooading

The prediction of node mobility combined with the knowledge of the geo-localization of
xed APs concur to enhance performance [68]. The predictor can inform the ooading
coordinator of how many APs a mobile node will encounter during its route, when they
will be encountered, and for how long the user will be in AP’s range. The algorithm seeks
to maximize the amount of delay-tolerant data to be ooaded to WiFi, ensuring also that
data is transferred within its deadline. Similarly, the MobTorrent architecture exploits the
hybrid infrastructure, data pre-fetching, and cache replication at xed APs [69]. Download
requests are issued through the cellular channel. Requested data is cached in advance to APs
using location information and the mobility history of users.

Anetwork-centered architecturenamedMADNet integrates cellular,WiFiAPs, andmobile-
to-mobile communications [5, 70]. MADNet employs the cellular network as a control chan-
nel. The system is explained in Fig. 2.5. When a mobile user asks for some content, the of-
loading coordinator replies with the list of the surrounding APs where it may pick up the
requested data. The ooading coordinator predicts the neighboring APs by exploiting po-
sitioning information. Simulation results show that a few hundreds APs deployed citywide
could ooad half of the cellular trac. Tradeof between delay, QoS and energy eciency,
is discussed in [71]. The main contribution of the work is to explore the energy eciency
of delayed transmissions, because WiFi has, in general, better eciency than cellular trans-
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channel.

missions, as depicted in Fig. 2.6. The transmission decision relies on the prediction of the
future available bandwidth for each possible access network, estimated as the average rate
achieved over past transmissions, or as a function of the received RSSI. Go et al. suggest a
heterogeneous city-scale mobile network that opportunistically ooads some cellular trac
to existing WiFi APs [72]. The core of the system relies on DTP (Delay Tolerant Protocol)
to mask network disruptions from the application layer [73]. DTP binds the connection to
a unique flow ID rather than to a tuple of physical IP addresses and ports, providing to ap-
plications the illusion of a continuous connection. The proposed system employs dedicated
proxies located at the edge of the access network that hide user disconnections to application
servers. Finally, Malandrino et al. relax the assumptions of an accurate prediction scheme
by proposing a model that considers the uncertainty of mobility through a Gaussian noise
process [74]. Each AP performs a joint pre-fetching and scheduling optimization through a
linear programming problem, aimed at maximizing the aggregate data downloaded by users.

Focusing on user-centered policies instead, Wier is capable of exploiting the delay toler-
ance of content and the contacts with xedAPs [75]. Wier predicts future encounters with
APs based onpast contacts, deferring transmission only if this saves cellular trac, employing
an heuristic. By means of trace-based simulations, the authors show that with a prediction
based only on the last four encounters, Similarly, Yetim et al. consider the decision of waiting
forWiFi encounters rather than using the cellular connectivity as a scheduling problem [76].
Diferent sizes and deadlines are considered for content. Presuming that each content may
be divisible in smaller scheduling units of MTU size, the scheduler exploits short windows
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creased delay-tolerance values result in an increased fraction of data offloaded.

of WiFi coverage to shif up to 23 of the total trac away from the cellular network. Al-
though delayed transfers may substantially improve the ooading performance of cellular
networks, delaying all transfers up to their maximum delay tolerance is ofen an inefective
strategy. In case of absence of WiFi, each delayed transmission frustrates user experience.
An ideal solution is to identify the optimal instant of time afer which a user should stop
deferring transmissions and start transferring data using the cellular interface, trading-of of-
loading eciency and user satisfaction [77].

A key requirement to drive efective AP-based ooading is the ability to predict future
capacity. The decision to wait for a possible upcoming ooading opportunity or to trans-
mit data through the cellular channel (considered as a scarce and costly resource) is of utmost
importance when dealing with delay-tolerant data. Distributed and centralized prediction
methods have been developed based on the knowledge of prior encounters, mobility pat-
terns, AP locations, and bandwidth availability. Future researches in this sense should also
take into account the obvious trade-of between the overhead brought by context-awareness
and the accuracy of prediction. Furthermore, most existing solutions for AP-based ooad-
ing rely on optimization frameworks, which are complex to solve and need heuristics. As a
result, an interesting research topic might be to explore alternative self-adaptive approaches
(e.g., based on machine learning techniques).

Optimal Deployment

Similarly to Section 2.2.1, we address here the feasibility and capacity of AP-based ooad-
ing, this time considering delay-tolerant content. Lee et al. demonstrate that increasing the
delay-tolerance of content substantially improves the ratio of ooaded trac, as depicted
in Fig. 2.7 [12]. Additional ndings suggest that the average completion time for delayed of-
loading is alwaysmuch lower than themaximumdeadline. Surprisingly, the authors discover
that, with large content, delaying the transmissionmay result in faster completion times than
not delaying it at all. This is motivated by the fact that WiFi usually ofers higher data rates
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than cellular networks, which translate into shorter aggregate completion times. Theoretical
bounds for delayed data ooading with WiFi AP can be derived analytically as a function
of the number of users and the availability of APs using queuing theory concepts [78]. Op-
timal placement of APs is discussed in [5, 79, 80]. Citywide coverage can be guaranteed by
the integration of only a few hundreds of APs, ooading half of the cellular trac. Sim-
ple heuristics for deployment suggest upgrading the network capacity in a limited number
of locations. The underlying intuition is that most users pass by a limited number of hub
locations during daily commutes. Thus, by upgrading only a tiny fraction of the network,
providers may strategically support growing trac with minimum investments.

In the context of vehicular networks, Abdrabou andZhuang study theminimumnumber
ofAPs to cover a road segment in order to guarantee a probabilistic connection time [81]. The
maximum distance allowed between two neighboring APs is estimated analytically in [82].
Malandrino et al. model data downloading in a vehicular environment as an optimization
problem, considering also the presence of xed APs [83]. To counter the scarce availability
of APs due to placement and maintenance costs, they take also into account parked vehicles,
acting as additional APs, to assist in data distribution [84]. Astudillo et al. study the perfor-
mance of broadcasting in a vehicular network using xed APs to download data [85].

Similarly to the non-delayed ooading case, performance is tied to AP density. Neverthe-
less, the time dimensionmatters here, as increased delay-tolerance translates into an extended
fraction of ooaded data. We may nd a number of placement algorithms that exploit the
delay tolerance of content by adding APs where people are most likely to transit. The prob-
lem has similarities with the optimal road-side unit placement strategies for ITS (Intelligent
Transportation Systems) applications [86]. Cost based analysis proposed in the literature,
help better understand the existing trade of between the cost of deploying more APs and
the ooading benet [5, 79, 83]; unfortunately, many solutions are not directly comparable
due to diferences in reference scenarios, use cases, and simulation parameters.

2.3.2 D2D

In delayed D2D ooading, content distribution is delegated to end users: in a broad sense,
users are the network. They actively participate in the dissemination process by exploiting
D2D communications. Mobility is an additional transport mechanism, creating opportu-
nities for infected users to transfer data employing a delay-tolerant (DTN) approach [87].
DTNs allow content forwarding through store-carry-forward routing regardless of the ex-
istence of a connected path between senders and receivers, at the cost of additional recep-
tion delays. Golrezaei et al. analyze the theoretical performance bound for throughput [88].
Store-carry-forward routing coupled with simple caching policies at nodes could bring a lin-
ear throughput increase in the number of nodes. Apart from providing communication op-

Delay-tolerant, disruption-tolerant, opportunistic, challenged, and intermittently-connected networks are
used in the literaturemost of the time as synonyms, although sometimes they denote slightly diferent concepts.
With respect to the ooading solutions, they can be considered as synonyms.
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portunities when a xed infrastructure is missing – such as in the case of tactical networks,
or in least developed countries [89] – DTNs can be also coupled with a xed infrastructure.
Delayed D2D-based ooading is ofen seen as a quick and inexpensive way to increase mo-
bile network capacity and to handle the predicted data tsunami [90]. Unlike AP-based ap-
proaches, the gain of this schema relies entirely on redundant trac. However, this proves
to be relevant for content access, as popularity follows Zipf-like distributions [91] – a small
subset of content results extremely popular and is requested by a large number of co-located
users, causing severe congestion and bandwidth shortage at RAN level. Moreover, the DTN
approach supports conditions where standard multicast and broadcast approaches (also in-
cluded in LTE [92]) cannot be used. For example, it supports all cases where popular content
is requested by users during a given time window (short enough to guarantee that users are
still physically co-located in the same region), but not necessarily at the exact same time. Note
however, that D2D ooading is also benecial whenmulticast in the cellular network can be
used [93].

From its characteristics, it follows that the DTN approach can only address the difusion
of data with loose delivery constraints. Content is ideally supplied only to a small fraction
of selected users among those who requested it. These seeds bootstrap the propagation by
transferring content to users within their transmission range, as in Fig. 2.8. In this category,
we also include strategies where the communication opportunities between nodes arise as a
side efect of duty cycling of ad hoc interfaces. D2D interfaces are typically energy-hungry,
and it is possible to apply energy saving policies to them, dynamically toggling between on
and of states [94, 95].

A number of strategies can be used to disseminate the content among mobile nodes. In
principle, any forwardingor data dissemination schemeproposed for opportunistic networks
can be used. Hereafer, we just give a few examples. Interested readers can refer to [96, 97, 98]
for dedicated surveys. From the seminal work of Vahdat and Becker that rstly proposed
mobility-assisted epidemic forwarding [99], many routing protocols in the context of DTNs
have been proposed. Notable works on forwarding strategies from Spyropoulos et al. [100],
Lindgren et al. [101], andBurgess et al. [102] gobeyond simple epidemics by tackling statistical
and mobility characteristics of nodes, and targeting the case of separate subsets of users with
diferent interests. Mathematical frameworksbasedonODEs andMarkovianmodels provide
theoretical bounds on the performance of dissemination delay and the number of copies of
the message in the network [103, 104]. Similarly, analytical bounds on dissemination delays
are derived from the speed and density of nodes in [105, 106].

Most of the research eforts in this eld focus on the design of ecient algorithms for the
optimal selection of seed users, in order tominimize the number of users that receive the con-
tent through the cellular interface. On the other hand, a number of works deal with network
architecture and protocol design. The former approach relies on social networking analysis
or machine learning techniques to predictwhich users are the best gateways for content. The
latter tackles the choice of what type of trac to ooad and how, dening communication
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Figure 2.8: Data offloading through delay-tolerant networks. Seed users initially receive the content through the cellular

network. Direct ad hoc transmissions are used to propagate the content in the network

protocols and network architectures. In the following paragraphs, we will detail better the
two approaches.

Subset Selection

Ioannidis et al. propose pushing updates of dynamic content from the infrastructure to end-
users [107]. They assume that the cellular infrastructure has a xed aggregate bandwidth that
needs to be allocated between end-users. Peers exchange opportunistically any stored content
between them. A rate allocation optimization is proposed to maximize the average freshness
of content among all end-users. Two centralized and distributed algorithms are presented.
Similarly, Han et al. and Li et al. tackle the ooading problem employing a subset selection
mechanism based on the user contact pattern [108, 90]. While in the rst work Han et al.
studyhowto choose a subset of dimensionk tobe initially infected [108], Li et al. consider the
optimal subset selection as an utilitymaximization problemundermultiple linear constraints
such as trac heterogeneity, user mobility, and available storage [90]. The subset selection
problem isNP-hard, similarly to the case of theminimumAPset-selectionproblempresented
in [79] and discussed in Section 2.3.1. Both works propose greedy selection algorithms to
identify a sub-optimal target set. A point in common for all the subset selection strategies is
that the network provider should be able to collect information about node contact rates in
order to compute the best subset.

Using social networking arguments, Barbera et al. analyze the contact pattern between
end-users, in order to select a subset of central VIP users that are important for the network
in terms of centrality and page-rank [109]. The key idea is to transform these few central VIP
users into data forwarders between standard nodes and the Internet. The authors exploit
the repetitive and periodic mobility of humans to train the selection algorithm to build the
networks’ social graph over which the VIPs selection is made. An analogous approach is ex-
ploited byChuang et al., whichmerge the subset selection problemwith the concept of social
relationship between end-users [110]. They propose a community-based algorithm that se-
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Figure 2.9: Coveragemetrics in the TOMP framework: (a) the Static Coverage does not take into account any future

movement, so nodes are considered in contact or not based on their present position; (b) the Free Space Coverage con-

siders the possible movement of nodes in free space: the futuremeeting probability is the area of intersection of the

two circles that represent the possible movements of the two nodes; (c) theGraph-based Coverage takes into account the

underlying structure of road graph to limit the prediction to the road graph.

lects users belonging to disjoint social communities as initial seeds, in order to maximize the
ooading eciency. In efect, the selection of initial seeds based only on encounter proba-
bility proves to be insucient, as users with high encounter probability might belong to the
same community. The goal is to select the set of initial sources so that both cellular trac
load and delivery time are minimized. Also in this schema, mobile end-users are required to
upload periodic information on the most frequent contacts, in order to let the centralized
algorithm to choose the best subset of seed users.

Baier et al. approach the subset selection problem by predicting the movement of end-
users in order to estimate future inter-device connectivity [111]. The system, named TOMP
(Traffic Offloading with Movement Predictions), retrieves information about actual position-
ing and speed of mobile devices rather than connectivity patterns. The framework selects as
seed users the nodes that have the best future connectivity likelihood with other nodes based
onmovement prediction. As explained in Fig. 2.9, TOMPproposes three coveragemetrics to
predict the futuremovements of nodes: static coverage, free-space coverage, and graph-based
coverage.

Selecting high potential nodes as seeds of the dissemination process inuences the perfor-
mance of the ooading strategy. Wisely chosen seed users may infect a larger number of
nodes, resulting in lesser late retransmissions. Subset selection algorithms commonly em-
ploy information on social interactions among users and their mobility patterns to gure out
which nodes have the best features. Note that a control channel, binding the end-nodes to a
central entity, is usually required in order to transfer context information. The performance
of the ooading algorithm relies heavily on the understanding of the system dynamics. For
this reason, it is essential to analyze how nodes meet creating communication opportunities
in a ne-grained fashion, and characterize mobility at the microscopic level. Ooaded data
vary from 30 to 50 for all the surveyed papers depending on the delay-tolerance and the
dataset considered. However, apart one notable exception [110], only small scale and very
specic datasets have been evaluated (typically around 100 users), providing a limited con-
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Figure 2.10: Network extension: destination client experiences bad cellular connectivity . After the discovery of a neigh-

bor nodewith better channel conditions, data is routed through this “proxy client” in the cellular network.

dence in the generality of results.

Strategies

Luo et al. designed a new unied architecture for cellular and ad hoc networks, to leverage
the advantages of each technology [112]. In this case, the goal is to increase the throughput
experienced by mobile users by taking advantage of neighbors with better cellular connec-
tivity, employed as a proxy. The working schema, as shown in Fig. 2.10, allows mobile users
experiencing a low cellular downlink channel rate, to connect via ad hoc links to a neighbor
with better cellular channel conditions. The proxy node then acts as a gateway for data trac
of its peers. Data is further relayed through IP tunneling via intermediate relay clients to the
destination, using the ad hoc link. The paper proposes also two proxy discovery protocols
(namely on demand and greedy), and analyzes the impact of the proxy relaying schema on
the cellular scheduling.

Mayer et al. propose a routing scheme for the ooading of unicast message exchange be-
tween end-users [113]. The ooading schema is based on a simple assumption: the higher
the probability that a message can be delivered through the infrastructure in case of failing
opportunistic delivery, the longer DTN routing takes to deliver the message. In efect, the
protocol initially attempts to deliver messages through opportunistic communications and
switches to the infrastructure network only when the probability of delivering the message
within the deadline becomes unlikely. This opportunistic/infrastructure routing decision is
taken locally exploiting information exchangedwith other nodes upon encounters. Key con-
textual information includes awareness for destination node and infrastructure capabilities.
In this way, the system tries to ofer a reliable message delivery, while saving cellular trac at
the same time.

Another solution, named RocNet, exploits the diference of trac load among diferent
locations [114]. Consider the distinct instantaneous trac volume in a business district and a
residential district during daytime. In case of localized RAN congestion, each delay-tolerant
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Figure 2.11: High level overview of RocNet. UA 1 is in a congested area. Upon discovering, UA 1 forwards data to UA 2 if

it is more likely tomove to a non congested area than UA 1.

data request originated in that area, instead of being transmitted to the overloaded cellular
BS, is forwarded to a neighbor that is likely to head toward a less congested area, as shown in
Fig. 2.11. A particle lter is employed to predict future movement pattern of neighbor users,
starting from its movement history. When a terminal is in a congested area, a coecient of
variation is exchanged upon opportunistic meeting with neighbors, to decide which user is
more likely to move to a low-congested area.

Finally, some architectures exploit the availability of hybriddelivery options (Cellular, APs,
and opportunistic). Pitkanen et al. describe a system to extend the range of xed WiFi APs
through the DTN approach [115]. Delay-tolerant data is shifed from the cellular network
to the closestWiFi AP, contributing to preserve cellular bandwidth for real-time and interac-
tive applications. Similarly, Petz et al. introduceMADServer, an ooading-aware server that
enables the distribution of web-based content through a multitude of access networks [116].
Both systems use contextual information from users, to predict where to cache data in ad-
vance, and are able to split the content into multiple pieces, independently delivered on dif-
ferent access networks. Small and time critical content is always transmitted over the cellular
infrastructure, while large data, such as videos and pictures are ooaded only when it is ben-
ecial and within deadline.

The denition of network architectures capable of exploiting diferent technologies to de-
liver content is a key milestone for the research community. The current trend is toward
network-aided ooading schemes, where the cellular network guides its connected peers in
the neighbor discovery and connectivity management phase. The routing scheme takes ad-
vantage of well-placed neighbors used as preferred gateways for data forwarding. The sub-
stantial use of context information harvested from end-users, or exchanged locally, is ex-
ploited to drive the routing decision through the optimal interface. Future challenges in-
clude the development of novel coordination mechanisms and inter-technology scheduling
policies to control content retrieval between multiple access technologies and opportunistic
networks. Cellular operators are particularly interested in the development of innovative ca-
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Figure 2.12: Offloading coordinator functional building blocks.

pacity models able to predict the additional gains provided by the activation of ooading,
and to plan how much trac they can divert from their core network.

2.4 T  A

The analysis conducted so far reveals that the various forms of ooading are quite diferent,
in terms of both network infrastructures and delivery delay requirements. Despite this, it
is still possible to identify from the specic solutions a number of common functionalities
making up an advanced ooading scheme. The challenge is to go beyondwhat is done today,
which is mainly a user-initiated ooading process. The opportunity for operators to drive
the ooading process will provide them with better network management options.

In order to make this vision possible, we need to extract a number of generic high-level
functionalities that make up the ooading system. This analysis is signicant in view of
the integration of ooading capabilities into future mobile networks architecture. Fig. 2.12
provides a high-level scheme to help us drive the discussion. Most of the works we surveyed
consider an offloading coordinator, an entity specically dedicated to the implementation of
the actual ooading strategy. Its main task is to pilot the ooading operation depending on
network conditions, users’ requests, and operator ooading policy. While conceptually rep-
resented by a single entity, its physical location in the network may vary, and sometimes its
implementation could be totally distributed. However, it is possible to identify, among all,
three main interdependent functional blocks for the ooading coordinator: (i) monitoring,
(ii) prediction, and (iii) cross-network interface management.

• Monitoring providesmethods to track the actual data propagation spreading, user’s re-
quests, and to retrieve contextual information fromnodes and the network. Retrieved
information is necessary to evaluate and execute the ooading strategy. The monitor-
ing block ofen requires the presence of a persistent control channel that allows end-
users to interact with the ooading coordinator (e.g., the cellular channel is explicitly
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employed with this purpose in [5, 117]). Harvested information is then passed to the
prediction block to be processed.

• Prediction relates to the ability of the ooading coordinator to forecast how the net-
work will evolve based on past observations. Typical prediction deals with mobil-
ity [68, 111], contact patterns of users [5], or expected throughput [41, 75]. Such pre-
dictions are then used to pilot the entire ooading process more eciently. This is the
block where typically the ooading intelligence resides. The complexity of the predic-
tion should trade of its applicability, in order to guarantee the real-time operation of
the ooading process. Predicted values are transmitted to the interface management
block in order to drive the ooading process.

• Traditional approaches manage each interface independently. However, integrated
management allows exploiting in parallel the benet of each available interface. Cross-
network interface management deals with deciding on which network the required
content (or parts of it) will ow. Concepts such as load balancing, throughput max-
imization, congestion control, and user QoE (Quality of Experience) relates to this
functional block. By exploiting this information, the network itself will be able to
identify the current situation and optimize its performance. For instance, ANDSF
and IFOM already use this capability [26, 29]. They are able to shif selected data on a
given network interface, in order to obtain a benet.

Additional transversal subjects emerge from the analysis of the literature. For instance,mo-
bility management, accounting, and aspects related to trust and security are essential to sup-
port ooading strategies in mobile network architectures. Mobility management involves
the seamless handover between diferent base stations due to themobility of users. Account-
ing functionalities enable proper accounting and charging information for the ooaded traf-
c and users. This is a key component in order to design incentive mechanisms to stimulate
the participation of mobile users in the ooading process. Finally, trust and security mech-
anisms guarantee the privacy and the integrity of both infrastructure and D2D communica-
tions. This block is essential since most ooading strategies transform the user into an active
network element.

These can be regarded as the basic functional building blocks thatmobile networks should
provide to ensure ooading capabilities. Anyway, we stress that, depending on the specic
implementation, the proposed functionalities may be present or not. For instance, mobility
management modules are elemental in non-delayed ooading, in order to handle the han-
dover between diferent APs, and to secure continuity of ongoing data session. On the other
hand, the same block could be disregarded when dealing with delayed D2D transmissions.
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2.5 AM D O

It is quite challenging to compare the performance of diferent ooading strategies only on
the basis of the results reported in the literature, because the evaluatedmetrics ofen difer. In
addition, we can assess the performance of ooading from the perspectives of both network
operators and users, which have essentially divergent needs [118]. In this section, we will give
hints on the metrics that we believe important for the evaluation of ooading strategies. In
addition, we discuss simulators, mobility models, and testbeds, which play a signicant role
in performance evaluation.

M

From a cellular operator’s point of view, ooading should serve as a reserve of capacity, which
may be added to the network in case of heavy congestion. For this reason, a signicant chal-
lenge is to quantify the additional capacity brought by the use of ooading strategies. The
most notable efect of ooading should be the reduction of trac load and congestion in
the primary network. Nevertheless, capacity improvements depend, among other things, on
the number of mobile devices or wireless APs involved in the process, on the mobility of
nodes, on the size and the delay-tolerance of the ooaded content. On the other hand, user
satisfaction is ofen associated withQuality of Experience (QoE), so the received throughput
and timely reception parameters are regarded as the most important parameters. Commonly
employed metrics of interest today in the literature are the following:

• Ooading Ratio or Ooading Eciency. It is the fundamental parameter to eval-
uate the efectiveness of any ooading strategy from an operator point of view. It
is measured as the ratio of the total trac ooaded (transferred through alternative
channels) to the total trac generated [12], or as the ratio of the total load of trac
that ows on the cellular channel afer the ooading process to the trac on the in-
frastructure in the absence of any ooading strategy [117].

• Ooading Overhead. The ooading overhead metric evaluates, in a broad sense,
the amount of additional control data required by the ooading mechanism. For
instance, as explained by Sankaran [28], in the IFOM scenario, the overhead is rep-
resented by the messages needed to exchange and discover IFOM capabilities between
involved nodes. In the Push-and-Track scenario, the ooading overhead depends on
the control trac that ows into the infrastructure channel, intended to pilot the of-
loading process [117].

• Quality of Experience (QoE). From a user perspective, the most critical metric is the
Quality of Experience (QoE), which is linked to its satisfaction. For any ooading
class, the total achievable throughput is a common but important metric. The QoE
indicator is thenmadeupof several sub-metrics that dependon the application and the

32



type of ooading. For instance, video streaming QoE-metrics are the Peak Signal-to-
NoiseRatio (PSNR) and the amount of packet loss. In delayed ooading, the delivery
time is the most meaningful metric, representing the amount of time before content
reception.

• Power Savings. In some works, the concept of ooading is associated with the power
savings that may be attained by the nodes. This is possible because the WiFi interface
is more ecient in terms of energy per bit than the cellular interface. Trac ooading
algorithms are interesting to achieve energy savings.

• Fairness. Fairness in terms of resource usage (in particular energy consumption) can
be an important evaluation parameter. Fairer systems tend to distribute resources uni-
formly without relying too much on the same users. This aspect is critical in D2D
ooading, where an unbalanced use of resources could lead to premature battery de-
pletion. For instance, seed-based ooading strategies risk being unfair, because data is
transmitted to a limited number of users that retransmit it on the secondary channel.
Even if this strategy could reduce the overall energy consumption, it is unfair in terms
of user’s individual energy consumption.

It is important to note that evaluated metrics ofen depends on how performance is assessed.
In particular, power saving is commonly evaluated in experimental works, while ooading
eciency is typically estimated through simulation. In general, simulation-based evaluations
are likely to propose a system-wide approach, i.e., they consider the whole network, even
with some approximation. On the other hand, evaluation based on real experiments, due
to the inherent complexity of assembling large-scale scenarios, focus more on terminal-level
parameters and small-scale experiments.

2.6 CNBC: AS

As already mentioned, the intricate problem of mobile data explosion can be addressed in
several ways. Hence, we briey review alternative solutions to the capacity problem in cel-
lular networks linked to data ooading. We identied ve main categories related to data
ooading, each one bringing advantages and disadvantages:

• Addition of small-size base station and/or femtocells.

• Multicasting/broadcasting data inside the cell.

• Integration of cognitive radio mechanisms.

• Proactive pushing of popular content on devices.

It is worth to note that many of these possibilities are orthogonal to each other, and can
be deployed at the same time. In addition, the methods outlined in this section may also
complement the strategies presented along the chapter.
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The rst solution adopted by the majority of cellular providers to face data growth is to scale
theRANbybuildingmore base stationswith smaller cell size. Reducing the size ofmacro-cell
increases the available bandwidth and cuts down the transmission power [119]. An obvious
drawback is that operators have tobuild additional base stations. Equipment costs, site rental,
backhaul, and power consumption, make this strategy very expensive in terms of CAPEX
and OPEX. In addition, according to [120], only a small fraction of mobile users (around
3) consume more than 40 of all mobile trac. Consequently, the majority of users gets
only a minimal benet from this strategy, as heavy consumers will continue to grasp the bulk
of the bandwidth.

Another possibility is to push the adoption of femtocells. The approach is analogous to
AP-based ooading but makes use of the same access technology of the macro-cell. How-
ever, since femtocellsworkon the same frequency as themacronetwork, interferencemanage-
ment becomes challenging [121]. Performance of femtocell-oriented ooading is investigated
in [122, 123]; other works compare the gains brought by femtocells against AP-based ooad-
ing [15, 124]. Energy-related topics are presented in [125]. Interested readers should also refer
to existing surveys on femtocells in the literature [126, 127]. The trend toward smaller cells
is part of the so-calledHetNet paradigm, in which cellular macro-cells coexist and overlay a
myriad of smaller cells. This afects the design of the resource allocation scheme, and ongoing
researches focus on the decision if a user should be served by the macro or by a closer small-
cell. A exible small-cell deployment helps in eliminating coverage holes, and increasing the
network capacity in some regions inside a macro-cell [128].

M/B

Whenmany users in spatial proximity ask for the same data, multicast could emerge as a good
alternative to data ooading for comparable use cases. Multicast employs a single radio link,
shared among several users within the same radio cell. Logically there is no interaction, and
users can only receive content. Multicast is a clever strategy to provide content to multiple
users exploiting redundancy of requests, allowing in principle great resources saving.

Besides requiringmodications in the cellular architecture, multicast has intrinsic and still
unresolved ineciencies that limit its exploitation. Each user experiences diferent radio link
conditions. This variability heavily reduces the efectiveness of multicast, since the base sta-
tion must use a conservative modulation to ensure a successful to each user. Nodes that are
closer to the base station are able to decode data at a higher rate, while others located near
the edge of the cell have to reduce their data rate. Thus, the worst channel user dictates the
performance, lowering the overall multicast throughput. This is themain reasonwhy oppor-
tunistic ooading can be benecial also in case of multicast, as we demonstrate in Chapter 4.

LTE proposes an optimized broadcast/multicast service through enhanced Multimedia Broad-
cast/Multimedia Service (eMBMS) [92].
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The spectrum of frequencies available to mobile operators is already overcrowded, while
other portions of the spectrum are relatively unused. The limited available bandwidth and
the ineciency in its use call for an opportunistic use of unoccupied frequencies [129]. Cog-
nitive radios could dynamically detect unused spectrum and share it without harmful in-
terference to other users, to shif data on it, enhancing the overall network capacity [130].
Cognitive radio can be employed to ooad cellular networks [131], in cohabitation with the
HetNet paradigm [132]. Cognitive technologies are thus capable of increasing spectrum e-
ciency and network capacity signicantly.

P C

Caching is a popular technique, commonly employed inweb-based services in order to reduce
trac volume, the perceived delay, and the load on servers. Caching techniques work by
storingpopular data in a cache located at the edge of network. Someof these classical concepts
can be re-utilized in mobile networks to tackle congestion at RAN. In order to avoid peak
trac load and limit congestion in mobile networks, techniques for predicting users’ next
requests and pre-fetching the corresponding content are available [133, 134, 135]. Data may be
pro-actively cached directly at the user device, at cellular base station, or at IEEE 802.11 APs
to improve the ooading process. The prediction is performed using statistical methods or
machine learning techniques, and its accuracy is a key factor in performance. Note that some
of these techniques may be (or are already) used in the delayed AP-based ooading schemes
considered in Section 2.3.1.

2.7 S  R   T

Mobile data ooading is a new and very hot topic, frequently identied as one of the enablers
of next-generation mobile networks. In this chapter, we uncovered its key benets, techno-
logical challenges, and current research directions. Ooading systems require a tighter in-
tegration within the cellular broadband infrastructures. Future cellular architectures should
intelligently support an overall trac increase of several orders of magnitude. Additional
features still need to be developed to handle mobility of users, distributed trust, session con-
tinuity, and optimized scheduling policies. A very interesting research area concerns how to
merge, in a fully integrated architecture, the diferent and ofen stand-alone ooading pos-
sibilities presented along this chapter. The contributions in this thesis try to answer to some
of the questions raised here. In particular, afer presenting a broad classication of current
ooading strategies based on their requirements in terms of delivery guarantee, we presented
the technical aspects and the state of the art for two main approaches. The former is more
mature and proposes a tight integration between the cellular RAN and a complementary ac-
cess network, allowing for real-time data ooading. The latter, still experimental, exploits
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the delay tolerance of some types of data to optimize their delivery, and constitutes the core
of this dissertation.

We identied some common functional blocks, proposing a high-level architecture valid
for any mobile data ooading system. This architecture will serve as a reference point in
the following chapter where we will deal with innovative ooading strategies. We further
investigated open research and implementation challenges and alternatives to mitigate the
cellular overload problem. User collaboration, especially in the opportunistic approach, is
essential for any ooading strategy. In order to make ooading feasible, end-users must ac-
cept to share some resources (battery, storage space, etc.), and their wireless interface should
be turned on. The central question here is how to motivate user participation. Mobile op-
erators should propose a business concept for rewarding their customers, to make ooading
attractive and fully functional at the same time with user participation. We attempt to clar-
ify the relationship between the proposed incentives and the expected ooading benet in
chapter 5. Additional issues lie on the security and privacy plan of users employing mobile-
to-mobile transmissions. Users rarely accept anyone stranger to access data stored on their de-
vices. Further challenges include the development of an infrastructure to ensure distributed
trust and security to terminals involved in the ooading process.
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We all need people who will give  feedback. That’s how
we improve.

Bill Gates

3
DROiD: Adapting to Individual Mobility

Pays Of in Mobile Data Ooading

D     over cellular networks remains a challenge because
of the possible bottlenecks caused by the access to the radio channel. Moreover, this problem
will be further exacerbated by the so called “data tsunami” foreseen for the coming years [1].
Such a complex scenario will load dramatically the existing cellular infrastructure; therefore,
it is of paramount importance to nd an alternative solution to cope with this problem, in
order to save, whenever possible, cellular resources. While opportunistic networks ofer ad-
ditional capacity that can be leveraged to reduce congestion on the cellular network, timely
delivery of content is an issue, due to the variability of human mobility and the resulting
stochastic nature of forwarding events. When ooaded content must be delivered within
given deadlines, we need ooading solutions that both meet these deadlines and reduce as
much as possible the trac carried by the cellular network.

Many seminal works on delayed ooading propose to pre-compute a set of optimal seeder
nodes using the structure of the underlying opportunistic network or the contact patterns
among users [90, 108]. Although this approach is undoubtedly elegant, it typically does not
react well to changing conditions. The quest for optimality sufers also from two problems:
(1) a limited scalability, due to the high complexity of nding the optimal solution (NP-hard
problems), and (2) a strong dependence on the underlying mobility assumptions that are
ofen unrealistic.

In order to better evaluate data ooading, we need to consider a more realistic scenario
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Figure 3.1: DROiDmodel: The dissemination process is kick started through cellular and/or AP transfers. Content is

diffused amongmobile devices through subsequent opportunistic contacts. Upon reception, users acknowledge the

offloading agent using the feedback cellular channel. As acknowledgmentmessages are in general much smaller than

datamessages, we obtain at the end significant reduction of cellular traffic. The central systemmay decide at any time to

re-inject copies through the cellular channel to boost the propagation. 100% delivery ratio is reached through fall-back

re-injections.

with a large number of nodes and accurate mobility. We remove the optimality requirement,
looking for a practical way of dealing with the problem. The availability of a cellular channel
can be used to get feedback from users. The infrastructure can monitor and react to the
evolution of data dissemination. In this chapter, we propose a novel ooading scheme to
distribute popular data to amultitude ofmobile users among diferent technologies (cellular,
D2D, and AP-based).

3.1 B

Our system, called DROiD (Derivative Re-injection to Ooad Data), helps mobile opera-
tors relieve their access network by exploiting both the presence of WiFi access points and
alternative transmission opportunities between users. The key feature of DROiD is to adapt
to the heterogeneity of individual user mobility patterns. As a matter of fact, afer running
epidemic difusions onmobility traces, we observed that the progression of the difusion fol-
lows a characteristic stepwise evolution. Periods of fast progression alternate with periods
where the dissemination stalls. We found the heterogeneity in user mobility to be the main
responsible for this phenomenon (we detail this in Section 3.2).

We illustrate DROiD’s operation in Fig. 3.1. The difusion process is monitored through a
persistent feedback channel that connects mobile users with an ooading coordinator. This
monitoring control loop allows anticipate the correct re-injection decision. The system de-
tects the formationof plateaux in the evolutionof content difusion. If needed, it also triggers
adaptive re-injection of additional copi in the system to finely control the pace at which the
content  disseminated. Because it makes no assumption on user mobility, DROiD leads
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to better performance than previous strategies that are bounded to empirical functions that
remains xed for the entire dissemination process [117].

We evaluate the performance ofDROiD through extensive simulations of a location-based
service in a vehicular context using realistic mobility traces. In this service, content with traf-
c information or some infotainment announcement must be distributed to a multitude of
users within a given maximum reception delay (in order to guarantee a minimal QoS on a
per-content basis). We employ two realistic large-scale vehicular traces derived frommultiple
ne-grained trac measurements in the city of Bologna and Koln (respectively 10,000 and
15,000 vehicles). We compare DROiD’s performance under tight delays with other oppor-
tunistic and AP-based ooading solutions proposed in the literature, and with an oracle,
taken as benchmarks. Our results highlight that DROiD substantially outperforms other
ooading strategies that use an objective function for any considered delay tolerance value,
reducing by more than half the infrastructure load.

As a summary, the contributions of this chapter are threefold:

• We turn the attention to the heterogeneity of contact patterns in opportunistic net-
works. We reveal that this heterogeneity is at the origin of the dynamic creation and
dissolution of clusters. We harness this property to explain why epidemic difusion
presents a stepwise behavior.

• WeproposeDROiD, a low-complexity ooading framework that, thanks to aderivative-
based re-injection strategy, better adapts to the contact patterns between nodes to ofer
enhanced ooading eciency.

• We compare DROiD with other objective function-based strategies and show that it
outperforms them even under tight delivery delay constraints. We evaluate our ap-
proach against commonAP-based ooading strategies, considering also energy-saving
schemes.

3.1.1 P  DROD

The systemworksby adopting aPub-Subparadigm,withusers sendingsubscribe (unsubscribe)
messages upon entering (leaving) the simulation area, in order to acknowledge their interest
in a certain type of content. A central offloading manager represents the control plane of
DROiD, and is dedicated to supervise data dissemination. The ooading manager decides
when and to whom data is delivered on the cellular channel. This entity is conceptually rep-
resented by a single block, however, its physical mapping in the core/access network may be
distributed (e.g., at E-UTRAN and EPC level in 3GPP LTE). We also considered the oppor-
tunity of having a citywide AP deployment that assists data distribution. FixedWiFi APs are
a conventional solution to ofer high-speed Internet, reducing at the same time the network
load, that can be deployed by operators or by municipalities [7].
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Figure 3.2: Flowchart of the high-level operation of the offloadingmanager in DROiD.

Fig. 3.2 provides a simplied scheme to illustrate the ooading manager operations. De-
pending on the considered scenario, a subset of subscribed users initially receives the content
through the cellular or the AP infrastructure, and propagates it opportunistically employing
D2D transmissions. Whenever a vehicle receives data from a neighboring user or AP, it ac-
knowledges its reception to the manager using the cellular network, forming a feedback loop
in the system. This simple mechanism allows DROiD to monitor in real time the evolution
of the content dissemination process, and possibly to account for data usage. The manager
continually estimates the infection ratio and may decide to re-inject additional copies of the
content in order to boost the difusion. The proposed system trades-of downlink data trac
for uplink control trac, and since acknowledgments sent bymobile nodes on the infrastruc-
ture channel are relatively lightweight (compared to the size of the disseminated content), the
system is expected to guarantee considerable reduction in the infrastructure load.

D2D and AP transmissions are truly opportunistic because they depend on the particu-
lar mobility of nodes. Transmission opportunities appear and disappear dynamically and
abruptly. For these reasons, only probabilistic guarantees of successful content delivery and
reception times can be given. To solve this issue, when the maximum delivery delay D ap-
proaches (i.e., the validity of content), and the time lef is equal to the time required to send
the message through the cellular infrastructure, denoted as P , the ooading manager enters
a panic zone and pushes the content to all uninfected nodes through the infrastructure, guar-
anteeing full dissemination. Note that the feedback loop guarantees also a fall-back method
to overcome various issues that may appear in the network, such as node failures or mobile
users behaving selshly – the occurrence of these events could heavily afect the opportunistic
difusion [136].
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Figure 3.3: Epidemic diffusion of the content. The diffusion behavior alternates steep zones and flat zones that are the

result of changing encounter probability amongmobile nodes.

3.2 S       

At the heart of DROiD is the idea of allowing the difusion process to adapt to the idiosyn-
crasies of individual mobility patterns. To see what happens, let us take two examples using
very diferent datasets: the small-scale Rollernet dataset, composed of only 62 nodes [137],
and the Bologna dataset, composed of more than 10, 000 nodes. We plot in Fig. 3.3 the evo-
lution of the content difusion in the network. We start the difusion by injecting a small
number of initial copies (6, 5 and 10 respectively) to randomnodes at t0, and let the epidemic
difusion of the message progress with subsequent direct contacts. A node that has received
the message is said infected, while a node that has not yet received the content is sane. The
instantaneous infection ratio I(t) ∈ [0, 1] follows a stepwise pattern, alternating plateaux
(at areas) to periods of heavy infection (steep areas) before reaching complete difusion. We
may nd a similar dissemination evolution pattern for very diferent datasets such as the ones
considered. This is a typical example of the way any given difusion process progresses due
to the randomness of contact patterns in opportunistic networks. In particular, the plateaux
correspond to periods during which the dissemination does not make any progress, because
no sane nodes come into range of the already infected nodes.

Let us now dig into the relationship between mobility patterns and progress of the epi-
demic difusion. The rst obvious point is that this phenomenon is intrinsically related to
the heterogeneity of contact patterns, i.e., the fact that two diferent nodes do not meet on
average the same number of other nodes. If the contact process of nodes is Poisson homoge-
neous and stationary, each pair of nodes meets with intensity λ. Assuming that each contact
means an opportunity to transfer the content, neglecting the contact duration, the result-
ing epidemic difusion follows the logistics equation [104] - the curve does not exhibit any
plateau, which is in contrast to our observation. Since for homogeneous contact process each
pair of nodes meet with the same probability, the longer the time that a copy has to propa-
gate and the greatest benet that copy brings. This would lead us to wrongly believe that the
best ooading strategy is to inject the right amount of copies at t0, forget about the infection
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evolution, and let the opportunistic dissemination do the work for us.
To capture the heterogeneity of patterns, we adopt a Marked Poisson Process model of

node contacts [138, 139]. In this model, the meeting times of any two nodes (i, j) follow a
PoissonProcesswith rateλij = λpij . The inter-contact timesTij are thus independent expo-
nentials with parameter λij , and the matrix C = (pij) captures the patterns of interactions
between nodes. In the homogeneous case,C is the identity matrix, i.e., all nodes can see each
other with the same probability. At any given time instant of the dissemination process, a set
S of nodes is infected. We are interested in the random plateau duration T pS during which
the dissemination does not progress. This corresponds to the random time duringwhich this
set of nodes does not meet any other nodes. Looking at the set of links between nodes in S
and its complement, one can see that T pS = infi∈S,j /∈S Tij . By Poisson calculus, and not-
ing the cut value ∂S =

∑

i∈S,j /∈S pij , T
p
S is an exponential random variable with parameter

λ∂S [140]. The expected plateauing duration, once set S has been reached, is thus 1/λ∂S.
This simple argument shows that T pS is directly related to the structural properties of the

contact matrix C , providing a natural connection between the community structure of the
contact graph and the progression (or lack of progression) of the opportunistic dissemination
process. In general, identifying structure in graphs consists in nding groups of nodes (called
clusters) based on some similarity measure dened for the data elements [141]. Nodes in a
community have high conductance (they are well knit to one another), and the ratio of the
weight of inter-cluster edges to the total weight of all edges is low [142]. Applying these ideas
toC (which represents the probability of two nodes to meet) means that a community S of
users will spread the message quickly within the cluster (high conductance), but will reach a
plateau once the nodes in the group all have the message, because the weight of inter-cluster
edges and thus its cut value ∂S is low.

In practice, we observe strong dynamic clustering for the considered datasets. This obser-
vation provides the motivation of our further investigation of adaptive ooading strategies
that are able to chase the individual mobility of nodes, re-injecting copies when the difusion
evolution runs into a plateau.

3.3 S  

Following the observations discussed in Section 3.2, we design an ooading solution capable
of adapting to the varying content difusion evolution.

The core of our approach resides on the intelligence of the ooading coordination. This
latter is in charge of deciding when to re-inject additional copies depending on the evolution
of the opportunistic dissemination process. Every re-injection decision is expected to bring
benet to the system; nevertheless, the gain depends on the re-injection time and the tar-
geted node (to which copies are sent through the infrastructure). In this work, we do not
focus on the choice of the nodes to be targeted, supported by the fact that previous work
proved that a random node selection works better than many other more complicate selec-
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tion schemes [117]. In fact, there is still a dicult trade-of to consider. On the one hand, if
toomany copies are injected in the beginning (in general, earlier injections havemore time to
difuse), the systemmay be overestimated (as we do not know in advance how nodes will en-
counter). On the other hand, if the system injects too few copies in the beginning and waits
for the panic zone to compensate for lags, many opportunistic encounters might be wasted
because of the lack of enough copies in the network.

Re-injection is benecialwhen the subsequent opportunistic transmissions save additional
infrastructure pushes. Of course, the benet can be null if the ooading coordination agent
selects a node that would have received the message later from another node. Finding the
good trade-of is dicult, as the ooading agent is essentially blind and the only information
available is the list of currently subscribed users and the list of those who already received the
content (inferred from acknowledgments).

The logic of our system is inspired by Push-and-Track [117]. However, DROiD achieves
higher ooading eciency by considering for the re-injection decision not only the actual
dissemination level, but also the past infection trend. By noting that content difusion has
a stepwise pattern, DROiD anticipates and avoids the insurgence of long-lasting plateaux
through its adaptive strategy. This is not the case for the static strategies proposed in Push-
and-Track, in which the central coordinator consider only the distance between the instan-
taneous infection ratio and a xed a priori target objective function [117]. Re-injection deci-
sions, in this case, do not take into account the general evolution of the infection, but only
the instantaneous value. Static strategies tend to react too late when the infection ratio is
above the objective function but still not evolving, or to overreact when the infection evolves
well but its instantaneous value still lies under the objective function. Late or too brutal re-
injections result in a waste of messages pushed through the infrastructure. Another limita-
tion of Push-and-Track is that it does not propose a single solution, but instead a multitude
of objective functions; the problem is that diferent objective functions behave diferently
depending on the content lifetime and network status.

3.3.1 D -

We propose a low-complexity re-injection strategy, based only on the knowledge of the in-
fection ratio evolution in the recent past. DROiD keeps in memory a short snippet of past
infection ratio values. Each content has an associated tracker that stores the evolution of the
infection ratio for a temporal sliding window of sizeW (i.e., at time t the values that will be
considered are the ones between [t−W, t]).W is a design parameter that must be amultiple
of the time step used for the evaluation of the infection ratio, τ , and smaller thanD (recall,
the validity of the content). The size of the slidingwindow trades of how far in timeDROiD
looks back, and dictates the reactivity to sudden changes in the infection ratio. It follows that
the total memory footprint required by our system is xed atW/τ for each content. In our
experiments, we found that reasonable values ofW fall in the range [2τ, 10τ ]. In addition,
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the coordinator should maintain the lists of subscribed and infected users, which are both
linear in the numberN of subscribed users.

As illustrated in Fig. 3.4, at evaluation time step t, the ooading coordinator performs a
forward diference quotient on the instantaneous infection ratio I(t) that approximates to a
discrete derivative:

ΔI(t) =

{
I(t)−I(t−W )

W
, t− t0 ≥ W,

I(t)
t−t0
, t− t0 < W.

(3.1)

Note that I(t) is not monotonically increasing, since nodes may exit the simulation area
at any time. ΔI(·) approximates the slope of the infection ratio and is one of the parameters
that inuence the re-injection decision. DROiD re-injects additional copies of the content
whenever the discrete derivative ΔI(·) is below a Δlim threshold computed on line as the
ratio between the fraction of sane nodes and the time remaining before the panic zone. This
because a steeper slope is neededwhen time gets closer to panic zone or the infection ratio lags
(diferent from when we are at the beginning of the infection process). Formally speaking,
we have:

Δlim(t) =
1− I(t)

(D − P )− (t− t0)
· (3.2)

As a nal step, the injection rate rinj(t) is computed as a piecewise function, depending on
the ratio of the currentΔI(t) value and theΔlim threshold:

rinj(t) =







c, ΔI(t) ≤ 0,

c
[

1− ΔI(t)
Δlim(t)

]

, 0 < ΔI(t) ≤ Δlim(t),

0, ΔI(t) > Δlim(t),

(3.3)

where c ∈ [0, 1] is a clipping value used to limit the overall amount of re-injected copies in the
case of negative values ofΔI . Finally, rinj(t), which represents the percentage of uninfected
nodes that need to be targeted, is multiplied to the number of uninfected nodes to nd the
numberR(t) of copies to re-inject at t:

R(t) = �(1− I(t))× |N(t)| × rinj(t)�, (3.4)

where |N(t)| is the instantaneous number of nodes subscribed to the content update.

Clipping value c represents themaximumfractionof content that canbepushed through the infrastructure
at evaluation time. Negative values ofΔI(·)may happen in the case of infected nodes leaving the system. We
address this issue in Section 3.5.
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Figure 3.4: Discrete time slope detection performed byDROiD. For clarity we consider the content creation time t0 =
0.

3.4 D, ,  

We evaluateDROiD considering the problemof distributing popular content to amultitude
of mobile nodes. We assume that nodes are equipped with two wireless interfaces (e.g., most
smartphones or infotainment systems), so that they are able to communicate through two
interfaces simultaneously. Possible combinations involve 3G and 4G to communicate with
the cellular infrastructure and Bluetooth or WiFi ad hoc to communicate with neighboring
devices.

3.4.1 E

Mobility traces. We employ two large-scale vehicular mobility traces representing the city of
Bologna (Italy) and Koln (Germany). The Bologna dataset consists of 10, 333 nodes, cover-
ing a total of20.6km2 and191kmof roads, andwas initially exploited to evaluate cooperative
road trac management strategies within the FP7 iTetris project [143]. The dataset is drawn
from real trac measurements acquired by 636 induction loops deployed citywide. The
dataset captures real city trac conditions, with speed of vehicles varying from 0 to around
50 km/h, depending on road congestion. We also consider the synthetic car trac dataset
of the metropolitan area of Koln, made public by the TAPASCologne project [144]. The
dataset is larger than Bologna, simulating more than 15, 000 moving vehicles on an area of
around 400 km2.

The construction’smethodology for both datasets is similar, based on statistical properties
extracted from real world experiments and inserted into the SUMO mobility simulator to
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Figure 3.5: Bolognamapwith fixed APs positions. Note the concentration of APs in the city center.

extract a microscopic-mobility model [145]. The simulated trac mimics the everyday road
activity in the twometropolitan area. From eachmobility trace, we derive a contact trace that
features contacts between nodes when the distance between them is below a given threshold
(we consider in our analyses a range of 100meters, in line with IEEE 802.11p specications).
The resulting trace for Bologna has a duration of about one hour; in average, 3, 500nodes are
present at the same time (because some nodes leave while others join during the observation
period). For the Koln dataset, the trace lasts around two hours, from 6:00 am to 8:00 am; in
average, more than 10, 000 nodes are present at the same time. The advantage of using these
two large-scale traces is that, diferently from other available datasets, we have a clear high
turnover rate, due to vehicles entering and exiting the interest area, and no apparent social
links. The distribution of contact durations is exponential for both traces. Most contacts are
very short, conrming the highly dynamic nature of the two traces. Only few contacts last
for more than a few minutes [117, 146].

For the evaluation section, we do not consider other existing datasets widely used by the
research community, such as [137, 147, 148, 149, 150, 151]. Although extremely handy for the
evaluation of opportunistic network strategies (as we did in Section 3.2 to illustrate the epi-
demic difusion evolution), their limited sizes (below 100 nodes) and the particular settings
where they have been collected (conferences, campus, etc.) make themunrealistic to properly
evaluate ooading strategies.

AP spatial distribution. For the Bologna dataset, we extracted the location of existing WiFi
Hotspot public deployment from [152]. The position of APs is shown in Fig. 3.5 along with
a map of the city. We merged the location of APs with the vehicular mobility trace to extract
a completely new dataset that includes vehicles mobility and AP positions. Employing the
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same strategy as before, from the merged trace we derived the connectivity traces between
vehicles and xed APs. The outcome is a completely new time-variant graph with unidirec-
tional edges connecting vehicles with APs and other vehicles.

To characterize this new dataset, we study the pairwise interactions among mobile nodes
(vehicles) and xed APs. Fig. 3.6 presents the distributions of contact and inter-contact times
between vehicles and APs. Contact time represents the dwell time of a user inside the cov-
erage of an AP. Inter-contact time accounts for the time duration between two subsequent
contacts with any other AP.We observe that contact times are larger than inter-contact times.
Unlike the vehicular-only trace, which is exponentially distributed [117], here the contact and
inter-contact times are found to follow a log-normal distribution using MLE (Maximum
Likelihood Estimation). This is not surprising, since log-normal distribution ofers a more
versatilemodel to catch the variability of contact/inter-contact times [65]. This hinges on the
heterogeneity of the contact distributions among diferent AP-vehicle pairs.

Two anomaliesmake the study of the dataset interesting. First, a relevant number (around
20) of inter-contact times are 0 s (not plotted in the gure), meaning that when a vehicle
exits from the coverage area of anAP, it is already under the range of another. Wemay explain
this aspect by noting from the map that in the central zone several APs are located very close
together. Nevertheless, the sole contact distribution does not tell us the whole story, as very
fewAPs are deployed in southern andwestern towndistricts, andmany vehicles passing there
enter and exit the systemwithout falling into the coverage zone of any APs. We note that the
observation that AP meetings occur in bursts, initially proposed in [75], proves to be true
also for our dataset. We infer a strong correlation between the geographic position and the
expected duration of contact and inter-contact times with APs. In addition, we note that
around 80 of the contacts with APs last for more than 10 seconds. While this may be an
acceptable duration for data transfers, short-lived contacts lasting less than that value could
sufer from the duration of authentication and address granting procedures with an AP.

Fig 3.7 depicts the evolution of the number of vehicles in contact with at least an APs dur-
ing a given time window (equivalent to the delay-tolerance of content reception in this case).
The gure indicates the amount of vehicles that enter in the transmission range of least one
AP during the considered distribution period. It results pretty intuitive that augmenting
the delay tolerance increases the chance that a vehicle enters in the range of at least one AP.
Still, the number of nodes beneting from this transfer opportunity is limited, if measured
against their total number in the system, lying always between 5 and 25 of present users.
We extract this value even before considering if contact durations are large enough to transfer
data, or if congestion permits communications. As we will show later, ooading strategies
based exclusively on APs will have a very limited impact on the amount of saved data in this
scenario.
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3.4.2 S

Without loss of generality, we consider a location-based trac information service, where
a centralized server issues a new content update every tP seconds. DROiD must guarantee
the delivery of each of the updates to all nodes interested in the content within a maximum
delayD. Contents are issued periodically, with the previous one expiring when a new one is
created (so tP = D, and a single content is active in the system at a time). Possible contents
of interest include popular geo-relevant data, such as localized trac and roadwork alerts,
generalized public utility information or geographic advertising; nevertheless, the proposed
system also supports the ecient distribution of sofware updates for connected vehicles and
mobile devices. The choice of which content to ooad is made in advance, according to
its delay-tolerant characteristics. Depending on the employed distribution strategy, contents
may be delivered directly through the pervasive cellular network, through nearby xed APs,
or retrieved from a neighboring node in opportunistic fashion. Despite this work considers
all users as interested in the content, the combined use of the Pub-Sub paradigm and ack
messages makes the system easily extensible in the case of multiple contents and non uni-
form nodes’ interest. Users may enter and leave the target area during the content lifetime,
impacting the results, as we will see later.

3.4.3 S

No network simulators among those publicly available today perform well in scenarios with
several thousand nodes at the same time [153, 154]. Therefore, we built a streamlined event
based simulator heavily inspired by the ONE simulator [153]. In our implementation, we
consider a simple contact-based ad hoc MAC model, where a node may transmit only to a
single neighbor at a time. Transmission times are deterministic since we do not take into ac-
count complex phenomena that occur in the wireless channel such as fading and shadowing.
(we are not really interested here on the exact physical evolution of communications tak-
ing place during the ooading process). Communications consist of two diferent classes of
messages (content and control). All transfers, including ackmessages, may fail due to nodes
moving out of each other’s transmission range or exiting the simulation area. In addition, it
is possible that the samemessage be concurrently received through the two interfaces. In that
case, we consider the one that is processed rst. The ad hoc routing protocol employed by
nodes to disseminate the content is the epidemic forwarding.

Parameters in simulation are set to mimic the functioning of communication technolo-
gies currently available to consumers. In each simulation run, the downlink bit-rate for the
infrastructure network is set to 100 KB/s, while uplink is xed at 10 KB/s. These values are
in line with the average bit-rate experienced by users of a typicalHSPAnetwork. The bit-rate
for the ad hoc link is set to 1MB/s, also in line with the advertised bit-rate of the IEEE 802.11p
standard. The size of each content update is set at 100KB. The size of the acknowledgement
messages is 256 bytes, as it carries very little information (content and node identiers). For
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the other parameters, we use τ = 1 seconds, c = 0.05, and W = 5τ . The panic time
duration P is xed at 1 second.

3.4.4 A  

Security and privacy of data distribution is out of the technical scope of this work; neverthe-
less we are aware that this remains a relevant issue for disseminating content directly among
end-users. For instance, in case such as sofware updates or road trac information, extra se-
curity mechanismsmust be in place to prevent malicious users to compromise trust or unau-
thorized settings to be installed in vehicular nodes. There is a large body of research work
related to the security and privacy in VANET and DTNs, relying on public keys infrastruc-
tures (PKI) and digital certicates [155, 156]. The presence of a central coordinator and the
existence of a persistent channel connecting each user to the coordinator, may simplify the
adoption of these security mechanisms.

3.5 R

3.5.1 E

We investigate how our system performs under tight delivery constraints, when the maxi-
mum reception delayD lies in the range [30, 180] seconds. This contrasts with what is done
in the literature that consider long time scales for content reception (up to some hours). In-
stead, we are interested in very short maximum reception delays, in the order of minutes, as
otherwise users would not realistically accept to trade-of reception delays for cellular capac-
ity. State-of-the-art solutions, beneting from more relaxed reception constraints, can take
advantage of a sort of stochastic regularity in contact patterns of users [108, 157, 90]. Central-
ized optimization frameworks based onMonteCarlo sampling [108] or temporal reachability
graphs [158] require the complete contact graph among users, and are known to have high
computational complexity. Therefore, they are unable to evaluate the ooading strategy on
large-scale datasets in real-time, as our framework does. Indeed, if the mobility patterns of
subscribers change, the selected strategymight not be optimal anymore. In addition, none of
the proposed strategies deal with nodes entering or leaving the system. These considerations
make it dicult to compare existing approaches with our low-complexity approach, which
targets the microscopic mobility of users and the unpredictable contact dynamics on small
time intervals.

3.5.2 R  

We employ two reference strategies for evaluation purposes: “infrastructure only” (Infra),
and “con-nectivity-aware oracle” ( Oracle). Infra represents the basic strategy, where there is
no ooading at all, and the cellular infrastructure is the only means of distributing content.
In the Oracle strategy, the coordinator has a real-time picture of the ad hoc connectivity of
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the entire network (this is an unrealistic but useful assumption). The coordinator pushes
the content to a random node within each existing connected component. The underlying
idea is to push only one copy per connected component in order to get close to the minimal
number of infrastructure copies. The coordinator has a perfect instantaneous view of the
system; however, it does not account for transmission times and futuremovements of nodes.
This strategy shows its limits in the Koln dataset, where the oracle tends to over-estimate the
number of initial copies to push in the system, achieving less than optimal performance.

In addition to these baseline cases, we compare DROiDwith Push-and-Track, which rep-
resents nowadays the ooading alternative that ofers 100-delivery ratio guarantees with
tight delivery times. Since it ofers primarily a methodology rather than a specic ooad-
ing strategy, it is dicult to state a priori which target objective function gives the best re-
sults [117]. To be as fair as possible, we compare DROiD with the objective function that
gives, for each scenario, the best results, namely the linear and the slow start objective func-
tions for the Bologna trace, and the linear and the square root strategies for the Koln trace.

We also compare DROiD with other commonly employed ooading methods that takes
advantage of the presence of xed APs. To evaluate these strategies, we employ the new
Bologna contact trace that includes the locations of APs and the mobility of vehicles (de-
rived and analyzed in Section 3.4.1). In AP-based ooading, the coordinator pre-fetch each
AP with the content to be distributed at time t0. AP-based strategies do not make use of in-
termediate re-injections, whilst maintaining panic zone to guarantee aminimalQoS-level. In
the rstAP-based strategy, labeledAP-only, content distribution is only achieved upondirect
contacts between vehicles and the designated AP. The other evaluated strategy,AP + oppor-
tunistic, builds on the latter, butproposes also thepossibility of direct exchanges amongnodes
through ad hoc transmissions. We also propose and asses the performance of an extended ver-
sion of DROiD that makes use of the presence of xed APs. Finally, we evaluate the imple-
mentation of energy-saving strategies aimed at preserving the battery of mobile nodes. Each
mobile node is allowed to opportunistically forward a given message only a limited number
of times.

Methodology. All the results presented are averages over 10 simulation runs. Random seed
is re-initialized at the beginning of each simulation run, and the starting time is shifed by
D/10. We focus primarily on the aggregate load that ows through the cellular, wireless
AP, and the ad hoc links. Load measurements take also into account ack messages as well
as failed and aborted terminal-to-terminal transfers. Ack, subscribe, and unsubscribe
messages constitute the infrastructure overhead. The ooading eciencymetric depends on
the amount of trac owing on the cellular linkwhenwe use the ooading process, denoted
with L, and the cellular trac in the absence of any ooading strategy (i.e., Infra strategy),
denoted withLref . Formally, the ooading eciency is computed as 1−L/Lref . We target
the distribution of updates to any node that are part of the network for any period of time
within [t0, t0+D]. We denote withN(t) the set of subscribed users at time t ∈ [t0, t0+D].
Consequently, We dene the set of all target nodes for the content asK =

∪

tN(t), ∀t ∈
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Figure 3.8: Infrastructure vs. ad hoc load permessage sent using the Infra, theOracle, and the DROiD strategies. Differ-
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Figure 3.9: Offloading efficiency. Different maximum reception delays for messages are considered. 95 confidence

intervals are plotted.

[t0, t0 +D].

3.5.3 C 

Cellular load. DROiD performs very well in terms of reduced infrastructure load, by deliver-
ing the majority of trac through device-to-device communications even in the case of tight
delays. Recall that all nodes entering the target area are expected to receive the content, re-
gardless of their dwell time in the system. Therefore, the load in the Infra strategy increases
with the message lifetime. Simulation results, plotted in Fig. 3.8 displays the average amount
of trac per message that ows through the infrastructure and ad hoc interfaces. In this
picture, we compare DROiD to reference strategies only, to illustrate how DROiD consis-
tently ooad a relevant amount of data. We observe that DROiD approaches Oracle in the
Bologna scenario, outperforming it in the Koln trace.
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Table 3.1: Cellular overhead (%) for different strategies and reception delays.

Bologna 30s 60s 90s 120s 150s 180s

Oracle 0.31 0.36 0.39 0.43 0.45 0.49
DROiD 0.30 0.34 0.37 0.39 0.42 0.44
Linear 0.29 0.29 0.30 0.31 0.32 0.34
Slow Start 0.24 0.29 0.30 0.32 0.33 0.34

Koln

Oracle 1.14 1.17 1.24 1.26 1.32 1.40
DROiD 2.47 3.62 4.5 4.87 5.29 5.71
Linear 1.89 2.23 3.08 3.97 5.01 6.32
Square root 1.70 2.57 3.30 3.87 4.45 5.10

Sudden variations in the infection ratio, due to nodes that dynamically enter and leave
the simulation area, are well handled by the feedback mechanism of DROiD.While the load
in the Infra strategy increases linearly in both scenarios (as a longer content lifetime implies a
major number of nodes entering the system), the cellular load forOracle andDROiD remain
always nearly the same, translating in increased eciency. If compared to Infra, the aggregate
cellular and ad hoc load shows a limited overhead. This ad hoc overuse is not particularly
worrisome, since direct transmissions have no monetary costs associated. The ad hoc over-
head is dominated by failed and aborted transfers due to nodes moving out of each other’s
transmission range, ormessages concurrently received on both interfaces. On the other hand,
Table 3.1 compares the infrastructure overhead due to control messages. Note that ourmech-
anism trade-of downlink trac for uplink control trac. Thanks to the small size of the ack
messages, the feedback mechanism is never responsible for more than 6.4 of total cellular
trac. As expected, there is a linear relationship between the overhead and the number of
contents received through ad hoc links (and the resulting ackmessages). Note also that the
ratio of control trac increase for high eciency. Figure 3.8 shows also a well-known phe-
nomenon: an increase in the reception delay corresponds to an improved ooad ratio. The
ratio increase with larger delay-tolerance because the opportunistic dissemination has more
time to propagate the content to the entire network and thus less copies need to be re-injected
during the panic zone.

Ooading eciency. Compared to static strategies, DROiD always leads to better results, as
shown in Fig. 3.9. In the Bologna scenario, DROiD saves between 55 and 63 of trac
for diferent message delays. DROiD in this case always outperforms the static strategies in
terms of ooading eciency. Note that the results would have been even better if we had
picked another objective function. In the Koln dataset, DROiD is upper bounded afer only
90s by the 95 of eciency.

Although DROiD and Oracle show more or less the same trend on the Bologna dataset,
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Figure 3.10: Aggregate required throughput on the cellular channel for acks. 95% confidence intervals are plotted.

this result is achieved through two completely diferent strategies. On the one hand, Oracle,
exploits additional knowledge on the connectivity status in the network, pushing the con-
tent to specic high potential nodes. On the other hand, DROiD has a much less complete,
and slightly out of sync, view of the system, and employs its advanced derivative-based re-
injection algorithm to guess when additional copies of the content are required. In the Koln
scenario this additional knowledge does not help Oracle to obtain optimal ooading per-
formance. Note that in this scenario, any feedback-based strategy does better than Oracle,
which tends to overestimate the number of copies to inject in the beginning, being unaware
of future movements of nodes. On the other hand, feedback-based strategies benet from
their infection-level awareness to decide when it is better to intervene with re-injections.

As a nal remark, Oracle presents always larger condence interval than DROiD (and
static strategies in general). This is related to the mobility and turnover of nodes: the result-
ing connectivity changes in time inuencing the Oracle prediction performance. A mobility
and connectivity agnostic framework such as ours is less sensitive to this issue.

3.5.4 T  

DROiD needs a centralized ooading manager that takes the transmission decision and su-
pervises data dissemination. Whenever a vehicle receives data from a nearby user, an ack
message is sent on the cellular channel. This indicates that the system may overload the up-
link cellular channel with too many simultaneous control messages. The occurrence of this
situation is clearly unacceptable, as it is orthogonal to our goals.

In Table 3.1, we show the aggregate overhead due to acks. In the rst place, thanks to the
small size of ackmessages, the feedback mechanism is never responsible for more than 6.4
of total cellular trac (Koln scenario, 180s). As expected, there is a linear relationship be-
tween the overhead and the number of contents received through ad hoc links (and the re-
sulting ackmessages). As the number of acknowledgments increases, the cellular downlink
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data decreases bringing up the overhead. This mechanism is at the base of the idea of trading
of large downlink data content for uplink control trac.

Fig. 3.10 presents the aggregate required uplink throughput to route acks. The total uplink
trac depends on the extension of the scenario and the number of involved nodes, explain-
ing why the Koln scenario requires around 10 times more uplink bandwidth than Bologna.
Both traces show the same decreasing trend. For shorter deadlines, the injection algorithm
tends stimulate epidemic difusion by injecting more content. The outcome is an increase in
the number of simultaneous acknowledgments and in the requireduplink bandwidth. How-
ever, using a random node selection helps distribute geographically the content, limiting the
impact of acks on the same cellular base station.

3.5.5 O  AP- ?

How DROiD behaves when compared to most traditional AP-based ooading strategies?
To answer this question, we run additional simulations to benchmark DROiD against other
more conventional strategies based on the direct ooading from xed hot-spots. AP-based
ooading takes advantage of the presence of xed infrastructure that can serve to ooad the
cellular network. Nevertheless relying on xed deployment typically lacks of the exibility
of pervasive cellular networks, since transmission range and spatial density are limited for a
physical reason.

We exploit the Bologna dataset, considering also the AP deployment, and maintaining
the same simulation parameters as before. In Fig. 3.11 we may appreciate the eciency of
three alternative approaches to data ooading making use of xed APs, simulated on the
Bologna dataset and compared with DROiD. First of all, we note thatAP only strategy gives
extremely poor results. Even with larger tolerance to delays, this strategy is never capable of
saving more than 20 of trac. Thus, this strategy turns out to be unable to substantially
relieve a large fraction of the cellular load. As already hinted in the dataset analysis phase,
the main problem in this case is that APs are not ubiquitously available in each town district.
Vehicles traveling in areas without WiFi coverage cannot download data from nearby APs,
andwill likely reach the panic zonewithout the content. This efect is only partiallymitigated
by an increase in delay-tolerance of the content. The analysis, carried out employing the real-
world deployment in the city of Bologna, suggests that in order to ooad a substantial part of
trac through xed hot-spots, their deployment should be carefully planned, without black
holes in spatial coverage.

As a second option, we consider our nodes to be able to communicate both with APs
and other vehicles through direct ad hoc links, without considering any centralized coordi-
nator to re-injects copies (theAP + Opportunistic strategy). This proves to be very benecial
for the overall ooading performance, increasing eciency up to 50 with respect to AP
only. The possibility to exchange data directly among users, together with mobility, allows
to spread the infection in many areas that are not covered by xed APs through store-carry-
forward routing. Gains, as expected, rapidly improve as the reception delay increases. Fixed
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APs, in this case, act as xed (and free) infection source. Still, benets of feedbacks and subse-
quent re-injections through the cellular link emerge for shorter reception delays (up to 120 s).
DROiD here results always preferable than AP-based strategies. Once again, re-injections
proves essential in the case of lagging infection evolution, and this is particularly true for
short distribution intervals, where opportunistic contacts among vehicles may be scarce. For
short distribution intervals, infected nodes hardly can carry the content far fromAP location
before its expiration. On the other hand, for longer delay tolerance values, the continuous
use of the APs to infect neighbor nodes gives the AP + opportunistic strategy an edge. In
order to take advantage of the xed hot-spot infrastructure along with the feedback-based
re-injection through derivative strategy, we evaluate DROiD coupled with APs. In this case,
APs are pre-fetched with the content and initial distribution at t0 is handed over to them.
The re-injection algorithm intervenes only when the difusion lags, so to overcome the di-
culties encountered by users located away fromAPs range. This strategy emerges to be always
the best, guaranteeingmore than 65of ooaded content. APs guarantee a steady infection
rate to vehicles passing in their transmission range, letting the cellular infrastructure to target
users in more isolated areas.

Further analysis of the average load owing on each interface reveal interesting and unex-
pected information. In fact, from simulation logs it turns out that in the ooading strategies
employing jointly opportunistic andAP-based communications (theAP + opportunistic and
DROiD + APs), the xed hot-spots are mainly used to bootstrap the dissemination, which
is then carried over with subsequent direct communications between mobile nodes. The ag-
gregate amount of data owing through APs in these cases is roughly 10 times less than the
case when hot-spots are the sole ooading options. Remarkably this little amount of data
transferred through APs is very important to kick-start dissemination, ofering an advantage
compared to the non-AP based solutions (around 10 if we compare the two versions of
DROiD).
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Confidence intervals omitted for clarity.

3.5.6 E

A critical challenge to make mobile data ooading potentially attractive to end-users is to
attenuate the impact of opportunistic communications on the battery of devices, concurring
thus to increase their lifetime. For this reason, we analyze the impact that simple energy-
saving methods have on ooading performance.

In our analysis, we compareDROiDwith the AP + opportunistic strategy, xing themax-
imum number of possible opportunistic transmission that a node can do for each message.
To put energy saving strategies in practice, we ofer to users only a xed amount of tokens
for each content, which is decreased each time the content is forwarded. When the token
count is equal to 0, the node stops forwarding, and waits for the next content to appear.
As we see from simulation results presented in Fig. 3.12, lowering the number of possible
ad hoc transmissions has an impact on ooading performance, wasting possible contacts,
lowering the network capacity. The impact of energy saving schemes is more pronounced
for theAP+opportunistic schema, which sees performance highly lowered. The performance
gap stretches as the delay-tolerance increases because nodes are more likely to run out of to-
kens. From the gure, we may appreciate that restricting the number of tokens to 20 does
not bring a substantial performance hit for DROiD, while its inuence is more pronounced
inAP+opportunistic.

An energy saving scheme should trade of ooading eciency for battery life, while en-
suring that the overall energy cost is split equally between all the actor nodes. However, in
opportunistic networks, contacts are typically imbalanced between nodes, and it is not un-
common to nd nodes that during themessage lifetime sustain an important number of data
forwarding (these are typically highly central nodes that are targeted as preferred data carriers
in other ooading strategies [157, 108]). To evaluate this aspect, we compare the fairness in
the number of opportunistic transmission for the two schemes under evaluation with dif-
ferent token values and content reception delay. The traditional Jain’s fairness index [159]
is used to assess the number of transmissions made by a node for each content. We can see
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Figure 3.13: Jain’s fairness index for different combinations of number of tokens and delay tolerance.

from Fig. 3.13 that DROiD always presents a better fairness than AP-based strategy. Analysis
of nodes forwarding behaviors reveals that in the former strategy the number of users partic-
ipating in content forwarding is sensibly lower than in DROiD. This depends on a mix of
two factors: the eciency is lower in general, so a greater number of nodes do not physically
store the content to forward. Nevertheless, the efect relies also on the fact that AP-based
strategies tend to concentrate data forwarders among those nodes that receive the content
rst. This is the reason why in the 180 s scenario with innite tokens, DROiD shows better
fairness but lower eciency. Expectedly, fairness increases with an increasing delay-tolerance
because nodes have more time to balance their number of transmissions. The advantage of a
limited number of opportunistic transmissions is that it is a fair strategy for mobile users, at
the cost of a lowered ooading eciency. DROiD represents a good trade-of resulting in
good transmission fairness, while ooading the most part of trac.

3.6 DROD   : 

Starting from the denition of the ooading system and protocols described in this chap-
ter, we turned the proposed architecture into a real testbed by implementing DROiD. This
testbed has been built in collaborationwith the partners of the project FP7-MOTO [11]. No-
tably, a mobile operator (AVEA, the second largest cellular operator in Turkey) and a wireless
hot-spots provider (FON,holder of one of the largestWiFi network in theworld, with over 14
million hot-spots deployed worldwide) are involved in testbed development and testing. Be-
low, we provide in detail the required components that allow data ooading in the testbed.
The building blocks composing the architecture (illustrated in Fig. 3.14) interact with the in-
frastructure networkof operators. Theproposedooadingplatformcanbe integrated either
inside or outside the infrastructure.

To allow operators relieve the load on their network, the ooading architecture includes
additional functionalities implemented by building blocks providing the Core MOTO Ser-
vices. The testbed platform implements DROiD, and coordinates data dissemination. Any
application can require the ooading platform to deliver a content while ooading the in-
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Figure 3.14: Offloading architecture built on top of DROiD in the context of the project FP7-MOTO.

frastructure network(s), using theApplicationAPI.Through thisAPI, an application solicits
the platform by giving the following inputs: the content to disseminate, the list of clients in-
terested in this content (subscribers), and the service constraints to be met (SLA, e.g. the
delay tolerance of the content). The testbed implements the following functional blocks:

• Client list, contract, content: to perform ooading, DROiD manages the content
delivery to many clients according to the contract dening conditions for content de-
livery (e.g. maximum delivery delay). The list of customers, the SLA (Service Level
Agreement), and the content to disseminate are given by any application that solicits
the MOTO Services through the Application API. The content itself, or a link to the
content hosted at the application level can be provided to MOTO.

• Localization: DROiD may need information on the localization of mobile clients to
trigger ooading. Such knowledge can be gathered using the cell information pro-
vided either by operator networks (e.g., cell information in LTE, topological informa-
tion on WiFi access points), or directly by the users (e.g., their GPS position if avail-
able).

• Content Difusion Manager: this functional block implements DROiD strategy, and
includes two sub-elements:

– Dissemination strategy: this function is responsible for piloting the ooading
process. It determines, from the list of clients that require the content and from
localization and topological information gathered, the dissemination strategy to
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be applied (e.g., deliver the content to clients A, B and C through the LTE net-
work and ask them to relay the content in their neighborhood using D2D trans-
missions with specic routing policies). The dissemination process is monitored
(cf. Content tracker) and the dissemination strategy can be updated during the
dissemination process. Afer a given amount of time (panic zone), the traditional
difusion through the cellular network might be used to serve the content to all
clients that did not receive it by other means.

– Content tracker: this component receives acknowledgments sent by users when
they receive the content. This element thus plays the role ofmonitoring the con-
tent dissemination process.

• Auth & Accounting: this module includes authentication, trust and credit manage-
ment functionalities, as well as a database in which specic information on clients is
maintained (trust and reputation indicators, credentials status).

• Network Status: this module allows maintaining information on the status of the
available network infrastructures (e.g. remaining capacity for each network) that can
be used to elaborate a dissemination scheme. Network status information can be re-
quested by this component through the Infrastructure API, either on a regular basis
or only when required.

The ooading architecture described above puts into practice the contributions in this
chapter, demonstrating the ecient ooading of a primary network (e.g. cellular) by ex-
ploiting the direct ad hoc connectivity between clients or an alternative infrastructure (e.g.
WiFi). The testbed has also been presented in two prominent conferences onmobile systems
in the last year. [160, 161].

3.7 C

In this chapter, we rst brought evidence of the stepwise behavior of the epidemic difu-
sion in opportunistic network, demonstrating that it depends on the dynamic clustering of
nodes. We ofered an analytical explanation of this behavior. To obtain ecient ooading
in such a context, we proposed and evaluated DROiD, a low-complexity ooading strategy
that adapts to the varying opportunistic dissemination evolution to improve the distribu-
tion of popular contents throughout a mobile hybrid network. Unlike most approaches in
the literature, which seek to pre-compute the optimal subset of users to be reached through
cellular communications, our system leverages on the availability of a control channel to track
the evolution of content difusion through user-sent acknowledgments. Thanks to a smart
re-injection algorithm, DROiD guarantees better ooading performance than other state-
of-the-art strategies. DROiDperceiveswhen the evolutionof the content difusion stagnates,
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and reacts in advance with respect to traditional strategies that considers only the actual in-
fection rate.

Re-injection proves to be a successful strategy in the case of heavy mobility. As proved
throughout past sections, even the Oracle, which is capable of knowing in advance the con-
nectivity graph of nodes, struggles to ooad an important amount of data, due to the in-
herent mobility of nodes that reduces the eciency of predictions. The continuous analysis
of the difusion evolution proves to be a straightforward, but at the same time very efective
method to react to the variability of contact patterns among nodes. The use of xed WiFi
APs could bring a further improvement, namely to kick start the distribution process and to
deliver free copies of the content to users located inside their coverage range. Nevertheless, if
we consider tight delivery times, the use of the pervasive cellular infrastructure is still required
to target isolated node. Future work in this direction is manifold. First, we want to push the
characterization of the epidemic difusion further, especially in real scenarios. We also plan
to investigate an analyticalmodel that predicts the impact of intermittent connectivity on the
dynamic formation and dissolution of clusters.

Finally, we have also dened the protocols involved in DROiD’s process in order to exper-
iment it in a real testbed. A real-world demonstrator, developed in collaboration with the
partners of the FP7-MOTO project [11], has proved useful to carry on experimentations and
test real world performance.
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Remember the two benefits of failure. First, if you do fail,
you learn what doesn’t work; and second, the failure giv
you the opportunity to try a new approach.

Roger Von Oech

4
Ooading LTEMulticast Data

Dissemination through D2D
communications

T   considered along this dissertation requires the distribution of
the same piece of data to a community of interested users gatheredwithin a limited geograph-
ical area (e.g., within a metropolitan area as discussed in Chapter 3.4). This is the case, for
example, of sofware updates, on-demand videos, and road trac information. In such sit-
uations, when data requests are spatially and temporally correlated, besides data ooading,
another possible approach may address efectively the needs of operators: LTE multicast.

Traditionally, multicast helps save resources in the backbone. Multicast in the LTE stan-
dard improves the utilization of the last-hop radio link between the LTE base station (eNB)
and user equipments (UEs). By exploiting the broadcast nature of the wireless channel, mul-
ticast benets from a single unidirectional link, shared among several UEs inside the same
radio cell. This permits, in principle, a more ecient use of network resources with respect
to the case where each UE is reached through dedicated unicast transmissions. To ensure co-
existence between multicast and unicast services, operators must reserve a xed amount of
resources for multicast transmissions.

Lately, eld trials for video service during crowded sport events like the super-bowl have
tested the efectiveness of multicast [162]. However, despite its attractive features, cellular
multicast presents intrinsic and still unresolved issues that limit its exploitation: i) the rate
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adaptation to the worst channel user, and ii) the lack of reliability. The reasons behinds of
these ineciencies will be investigated in detail in Section 3.2.

4.1 B

In this chapter, we explore the combination of opportunistic communications and multicasting
in the LTE standard. As we will see later, this strategy brings in signicant reductions in the
load at the base station providing noticeable ooading gains. The user with the worst radio
conditions inherently limits the eciency of standard LTE multicast because the transmis-
sion rate should match its capabilities. Hence, performance sufers and resources are wasted
when the number of receivers increases. Moreover, users in good channel conditions unfairly
receive lower rates due to their multicast group membership. By leveraging D2D commu-
nications, instead, we may obtain additional performance gains in terms of radio resources
consumed at the eNB.Well-positioned users can participate inmitigating the ineciencies of
multicast, by handing over content to nodes with bad cellular channel signal through oppor-
tunistic communications. Despite the benets of a hybrid distribution strategy are evident,
in the design of the joint distribution strategy we face several challenges specic to the oppor-
tunistic and wireless domains:

• Performance of the opportunistic delivery hinges on the mobility pattern of users. In
addition, opportunistic networks can only guarantee a probabilistic assurance of data
reception.

• Understanding which fraction of users to reach throughmulticast andD2D transmis-
sions is vital to ofer a minimal QoS while guaranteeing resource savings.

Since a truly optimal solution is not conceivable without precise knowledge of future con-
tact patterns, we attack the problem from a more practical point of view. We apply a Re-
inforcement Learning (RL) approach to decide which fraction of UEs should be reached
through amulticast transmission andwhich should be served using opportunistic communi-
cations. A central controller installed at the eNB decides, for each packet of a content item to
be disseminated, which fraction of users to reachwith amulticast transmission. Each decision
results in a certain use of the cellular network resources, which generates a reward associated
to that choice. This reward is then used to guide (probabilistically) the future choices of the
controller. Due to the many similarities in the formulation, we adopt the well-knownmulti-
armed bandit RL technique to implement this algorithm [163].

To fully understand the performance of this joint multicast/D2D approach, it is necessary
to evaluate the amount of radio resources consumed at the base station. This motivates us to
introduce a ner model of radio resource consumption than previous works in the ooad-
ing literature. While this is well understood in the literature on physical aspects of cellular
communications, existing proposals for opportunistic ooading do not consider heteroge-
neous channel conditions, assuming that delivering a given amount of data (i.e., a xed size
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packet) to diferent users has always the same cost for the operator [108]. For instance, in
Chapter 3 we did not consider heterogeneous channel conditions, assuming that delivering a
given amount of data (i.e., a packet) to diferent users has always the same cost for the oper-
ator. Such an assumption does not hold in reality, as resource consumption varies according
to the channel condition experienced by each user. In other words, transmitting the same
piece of content to users with different channel conditions do lead to uneven costs at the base
station. To the best of our knowledge, we are the rst to evaluate this aspect in the context of
data ooading.

As a summary, the main contributions of this chapter are:

• J  . Our strategy combines multicast with D2D oppor-
tunistic communications to improve cellular trac ooading.

• RL-  . The multicast emission is driven by a RL algo-
rithm. Exploiting the knowledge of past rounds, the algorithm allocates transmission
resources to the dissemination scenario, allowing substantial savings at the cellular base
stations.

• F-. Weevaluate resource consump-
tion employing the smallest radio resource unit that can be assigned to users for data
transmission. This analysis shows that existing macroscopic techniques fail to capture
actual system behaviors.

• P . The RL strategy permits to save consistent amount of
radio resources at the eNB (up to 89with a 90 s deadline). Even in the worst case, the
RL approach approximates an unfeasible strategy that picks the best xed fraction of
multicast users afer exhaustive search.

4.1.1 B  LTE  MBMS 

LTE downlink transmission is based on OFDMA frames made of diferent frequency sub-
carriers having a spacing of 15 kHz. OFDMA frames are further divided in the time and fre-
quency domain to form the Resource Blocks (RBs), which are the smallest radio resource
unit that can be allocated by the packet scheduler. The eNB (cellular base station for LTE)
supports diferent modulation and coding schemes (MCS) to adapt transmission to the vari-
able channel characteristics of users. The MCS determines how much data is transmitted
over each RB. Channel adaptation is driven by Channel Quality Indicator (CQI) feedbacks
from the UEs. The reported CQI is a number between 0 (worst) and 15 (best) as listed in
Table 4.1. The CQI indicates the most ecient MCS giving a Block Error Rate (BLER) of
10 or less. In unicast transmission, the eNB selects the MCS and the resources to allocate
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Table 4.1: CQI /MCS Table for LTE [165].

CQI Modulation code rate Spectral Eciency Eciency increase
index schema x 1024 [bit/s/Hz] (w.r.t. CQI 1)

0 out of range - -
1 QPSK 78 0.1523 1×
2 QPSK 120 0.2344 1.54×
3 QPSK 193 0.3770 2.47×
4 QPSK 308 0.6016 3.95×
5 QPSK 449 0.8770 5.76×
6 QPSK 602 1.1758 7.72×
7 16-QAM 378 1.4766 9.69×
8 16-QAM 490 1.9141 12.57×
9 16-QAM 616 2.4063 15.80×
10 64-QAM 466 2.7305 17.93×
11 64-QAM 567 3.3223 21.81×
12 64-QAM 666 3.9023 25,62×
13 64-QAM 772 4.5234 29,70×
14 64-QAM 873 5.1152 33,59×
15 64-QAM 948 5.5547 36,47×

to each UEs, based on this feedback regarding the channel state. An analytical characteriza-
tion of the channel adaptation mechanism can be found in [164]. A higher value of CQI
allows the eNB to select anMCS such that it can transmit more information inside each RB.
The number of RBs necessary to transmit a given amount of useful bits (or, equivalently, the
amount of information transmitted per RB) is a typical measure of cost and thus eciency
of LTE transmissions.

Apart from unicast transmissions, new LTE releases propose also an optimized broad-
cast/multicast service through eMBMS (enhancedMulticast Broadcast Multimedia Service),
a point-to-multipoint specication to transmit control/data information from the cellular
base station (eNB) to a group of user entities (UEs) [92]. In eMBMS, all the users belong-
ing to the same multicast group receive the same transmission. Channel heterogeneity (time
varying and user-dependent) reduces the efectiveness of multicast because the eNB uses a
single MCS for the entire multicast group downlink data. Usually, the selected MCS should
be robust enough to ensure the successful reception and decoding of the data-frame for each
UE in the multicast group. Thus, the worst channel among all the receivers dictates perfor-
mance. It follows that an increase in the number of users in the multicast group boosts the
probability that at least one user experiences bad channel conditions, degrading the overall
throughput [166].

To exemplify the inuence of poor quality users, we simulate a 500× 500m2 single LTE
cell with an increasing number of randomly located receivers using the ns-3 simulator [154].
Fig. 4.1 presents the minimum average channel quality in terms of CQI, reported at the eNB
by users. In this conguration, users are static, and their location is uniformly distributed
inside the eNB coverage area. From Fig. 4.1, we highlight two aspects. The rst one is that,
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Figure 4.1:MinimumCQI for different multicast group sizes. 100 runs, confidence intervals are tight and not shown in

figure.

whenusers are uniformlyplaced, there is a high chance of having at least oneuser experiencing
a poor channel quality (e.g., even with only 10 users in the cell, we still have the worst CQIs
not greater than about 4). The second point is that this behavior worsens as more users are
added in the area. The result is that augmenting the number of multicast receivers clearly
afects the attainable cell throughput. Table 4.1 shows also that an UE with the best CQI
could theoretically receive 37 times the throughput of a user with the lowest index.

This greatly motivates us to investigate methods to ooad multicast data using D2D con-
nectivity to relieve the cellular infrastructure load, while reducing the inuence of users ex-
periencing poor radio conditions.

4.2 A     

4.2.1 C    

We address the dissemination of popular content to a set of N mobile users inside a single
LTE cell. Each user is a multi-homed device that embeds both a LTE interface and a short-
range technology that allowsD2D communications. In simulationwe consider IEEE 802.11g,
however, the future integration of D2D capabilities within the LTE standard could be em-
ployed as well [167]. We want to transmit data with a guaranteed maximum service delay
D, at the smallest cost for the cellular infrastructure (i.e., using the minimum number of
RBs). We exploit the possibilities ofered by D2D connectivity and store-and-carry forward-
ing. Specically, instead of addressing all interested UEs with a single multicast transmission
– that will likely result in a high cost in terms of used RBs – we address only a subset of the
UEs (those in better channel quality), and exploit opportunistic D2D communications to
reach the others. The challenging issue is that opportunistic dissemination is, by denition,
unreliable, as it depends on many factors outside of the control of the cellular infrastructure
(e.g., movement pattern of nodes, variable density of opportunistic neighbors, or interfer-
ence on the D2D channel). The ooading strategy is essentially the same as DROiD. The
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final panic retransmissions.

diference is that the initial injection is done via multicast transmissions, and no re-injections
are made until the panic zone. Similarly, when the service delay reaches its maximum value
D, the eNB pushes all the missing data to uninfected nodes using unicast transmissions. Of
course, unicast transmissions represent the last opportunity to assure data reception . In
this scheme, the cost of disseminating content to interestedUEs comes from i) the cost of the
initial multicast transmission, and ii) the cost of the unicast transmissions in the panic zone.

Fig. 4.2 ofers a representative example of the proposed dissemination strategy. To avoid
the penalty due to the presence ofUEs experiencing severe channel conditions, the eNB emits
at a modulation that leaves them in outage. This is equivalent to restrict access to the mul-
ticast group only to the UEs in “relatively” good channel conditions. In the opportunistic
dissemination phase, outaged UEs benet from nearby nodes, fetching data through out-of-
band D2D transmissions. This cooperative strategy is expected to be more ecient in terms
of cellular resource consumption than multicast alone, given that the cellular rate increases
and the D2D links typically exploit a much larger bandwidth than cellular communications.
Finally, panic injections assure data reception to all users.

It is clear that such a scheme admits an optimal operating point. Reducing the set of UEs
reached via the initial multicast transmission results in a lower cost for the multicast trans-
mission. However, this may be paid with an additional cost for unicast transmissions in the
panic zone, if the remaining UEs are not reached quickly enough through opportunistic dis-
semination. The challenge to identify this optimal operating point is that the cost of each
possible conguration depends on future mobility of nodes, which is unknown at the time
when the multicast transmission needs to be congured.

The need for a guaranteed reception method is a common issue for multicast due to its shared nature.
UEs have no assurance of reception due to the fact that the radio channel could suddenly degrade during data
reception (e.g., due to fast fading or mobility). For this reason, mechanisms similar to panic retransmission are
considered in several works in the literature [168, 169].
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More precisely, the problem we address is the following: how to select the initial set of seed
users to be reached using multicast transmissions with the objective of minimizing the total
number of physical resource blocks (RBs) needed for content dissemination.

In our scheme, we use a single parameter I0 to address this problem. Specically, I0 is the
fraction of UEs that should be reached via the initial multicast transmission. Assuming that,
when the multicast transmission is congured, UEs are ranked by decreasing value of CQI,
this means that the eNB reaches only the best I0 UEs in terms of channel quality. Optimally
conguring I0 is not trivial, because, while the cost of the multicast transmission is deter-
ministic at the time when it is congured, the cost of the needed unicast transmissions in the
panic zone is a stochastic variable, which depends on the pattern of mobility of UEs in the
next D seconds.

We model this problem as a multi-armed bandit problem and we solve it through a Re-
inforcement Learning (RL) approach. As explained in detail in the rest of the section, our
scheme is able to learn autonomously the best value of I0, by observing the efect of diferent
congurations on the resulting cost of disseminating a given content. Assuming that multi-
ple content items need to be disseminated over time to a given set ofUEs, our scheme actually
learns the best probability distribution over the possible values of I0, that results in the min-
imum cost in terms of RBs for a given stochastic mobility pattern of UEs. Without prior
knowledge on the mobility patterns, and given that mobility is stochastic, learning the best
distribution of I0 is the only practical choice for a learning framework.

4.2.2 B  - 

Let us now briey introduce the general formulation of amulti-armed bandit problem (ban-
dit for short). In the simplest case, in a bandit problem there is a set ofK unknown proba-
bility distributions �FD1

, ..., FDk
�with associated expected values �µ1, ..., µk� and variances

�σ21, ..., σ2k�.
For the sake of illustration, let us assume that FDi

describes the distribution of the out-
comes of the ith arm on a slot machine (the bandit); the player is viewed as a gambler whose
goal is to collect as much money as possible by pulling these arms over many turns. Initially,
the distributions FDi

are completely unknown to the player. At each turn, t = 1, 2, ..., the
player selects an arm, with index j(t), and obtains a reward r(t) ∼ Dj(t). Since the player
does not know in advance the distribution FDi

, it has to explicitly test the ith action with a
trial-and-error search. Therefore, the player has two conicting objectives: on the one hand,
nding out which distribution has the highest expected value (or explore the distribution
space); on the other hand, gaining as much rewards as possible while playing (or exploit its
knowledge). Reinforcement Learning algorithms specify a probabilistic strategy by which
the player should choose an arm j(t) at each turn. Clearly, the efectiveness of the solution
depends on how the gambler handles the exploration/exploitation dilemmawhen testing the
diferent arms iteratively. Exploitationmaximizes its reward at present time; at the same time,
exploration may lead to a greater total reward in the future.
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4.2.3 L

The general multi-armed bandit formulation can be specialized as follows. First of all, in
our problem each arm of the bandit corresponds to a diferent I0 threshold. Thus,K is the
number of diferent thresholds chosen for multicast emission. It follows that FDi

is the dis-
tribution of the amount of RBs that are used during the entire dissemination process when
I0 is used as threshold. More precisely, Di = mi + Xi, wheremi is the xed and known
number of RBs that are used for a multicast transmission at the MCS of needed to reach the
I0 best UEs in terms of channel quality, and Xi is the random variable that models the to-
tal number of RBs used for the unicast transmissions during the panic zone. Note thatXi

depends on many factors, including the set of seeds that are activated, the network topology
and node mobility, as well as the dissemination strategy. In our case, each turn corresponds
to the dissemination of a content composed of a multitude of packets that are transmitted
independently. Afer the content deadline the reward for each threshold is updated. Assum-
ing that I0 = iwas used for thenthmulticast transmission, the obtained reward is computed
as:

µi(n) =
1

mi + xi(n)
, (4.1)

where xi(n) is the number of RBs that are used for the unicast transmissions in the nth

panic zone. Note that the higher the number of used RBs and the lower the reward. To dy-
namically estimate the average rewardµi(n) for each value of I0 we use a classical exponential
moving average with rate α:

µi(n) = αµi(n− 1) + (1− α)µi(n). (4.2)

Now,wemust dene the policy to select at timen+1 the next I0 value given the knowledge
of the average rewards estimated at time n. Diferent learning methods have been proposed
in the literature for the armed bandit problems.

The simplest one is the �-greedy algorithm that selects with probability (1−�) the I0 value
with the maximum accumulated reward (greedy action), while it selects with probability �
one of the remaining I0 values at random (with uniform probability) independently of the
reward estimates (exploration action). More formally, letπi(n) be the probability to set I0 = i
for the transmission of thenth packet, and i∗(n) = argmax

i
µi(n−1). Then, in the �-greedy

algorithm it holds that πi∗(n) = 1− �.
Another class of learning algorithms is known as pursuit methods, in which the π proba-

bilities are selected to strengthen the last greedy selection. Specically, let i∗(n) be the greedy
value of I0 dened above. Then, just prior to selecting the CQI for the transmission of the
nth packet, the greedy probability is reinforced as follows

πi∗(n)(n) = πi∗(n)(n− 1) + β[πMAX − πi∗(n)(n− 1)], (4.3)
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while all the non-greedy probabilities are updated as follows

πi(n)(n) = πi(n)(n− 1) + β[πMIN − πi(n)(n− 1)], i �= i∗. (4.4)

Here πMAX , πMIN are respectively the upper and the lower bound that the probability
πi(n)(n) can take ∀i, n. In equations B.2 and B.3 the greedy choice is increased, but never
more than πMAX , and each non-greedy choice is reduced, but no less than πMIN . This guar-
antees that the pursuit method is able to cope with the possible non-stationarity of the prob-
lemwe are considering, i.e. the distributionof rewards can change over timedue to the under-
lying mobility. Compared to the pursuit method, the �-greedy strategy presents a threshold
efect by which the choice that has the maximum accumulated reward immediately gets the
highest probability, while in pursuit the likelihood of the same option gradually increases by
a factor β proportional to the distance to the maximum bound πMAX (similar remarks hold
for the non greedy choices). So in pursuit the evolution of the distribution over the possible
choices is less drastic and more gradual.

4.2.4 W-   

As a summary, the key principles behind the joint multicast/D2D approach are: i) at initial
time, the eNB sends data to the best I0 CQI-ranked UEs through a single multicast emis-
sion. A RL algorithm is employed to learn the experimental distribution (πi∗(n)) for the I0
parameter; ii) the UEs that have received the data through the multicast emission start dis-
seminating it in a D2D (epidemic) fashion; iii) before the maximum deadlineD, we dene a
time interval, a panic zone where all the nodes that have not yet retrieved the content (either
with the initial multicast emission or in D2D fashion) receive it through unicast cellular re-
transmissions. The proposed scheme allows all UEs to receive data by the deadline (as long
as the panic zone is suciently large). It adapts to diferent deadlin – the larger ones allow-
ing for more D2D dissemination. Its performance relies on the RL algorithm that permits
the cellular base-station to learn by experience the best transmission rate for each multicast
emission.

4.3 P E

4.3.1 M 

We consider location aware content distribution in a pedestrian scenario such as a shopping
mall or a crowded touristic landmark. Possible contents of interest include location based
broadcasting with advertisement, geo-relevant data, alerts, and public utility information;
nevertheless, the proposed system also supports the ecient distribution of over-the-air sof-
ware updates.

We simulate UDP constant bit-rate downlink ows, with packet size sk = 2, 048 bytes
and a total content size of 8 MB. Each packet is distributed independently using the multi-
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Table 4.2: ns-3 simulation parameters.

Parameter Value

Cellular layout Isolated cell, 1-sector
LTE downlink bandwidth 5 MHz (25 RBs)
Frequency band 1865 MHz (Band 3)
CQI scheme Full Bandwidth
eNb TX-power 51 dBm
Pathloss Cost 231
Fast fading Extended Pedestrian A (EPA) model

Cell dimension 200× 200m2

eNb position 100, 100 m
eNb antenna height 30 m
User antenna height 1.5 m

Multicast group sizeN 10, 25, 50 UEs
Service delayD 30, 60, 90 s

armed bandit algorithm. The considered trac has a loose QoS guarantees on a per-content
basis (meaning that individual packets can be delayed, but the entire content must reach the
user within the given deadlineD).

The synthetic mobility of UEs is implemented according to a Random-Waypoint model
on a 200× 200 sq.m. area. Nodes move in this space with a speed falling between 1 and 2.5
m/s (pedestrian speed). The syntheticmobility trace is the input of a packet-level simulator.
Indeed, we implemented the multi-armed bandit algorithm in the ns-3 network simulator,
which emulates the full LTE and Wi-Fi stack, allowing very realistic simulations [171, 172].
The network is composed of an eNB placed in the center of the interest area, a remote server
that provide the content, andmultiplemobile devices. All theUEs connects to the same eNB
during the experiments. Since ns-3 does not natively support cellular multicast, we imple-
mented an additional module that interacts with the packet scheduler to emulate single-cell
multicast. The multicast module decides, upon each transmission, the fraction of UEs to be
reached directly, i.e. the I0 parameter, based on themulti-armed bandit algorithm. It receives
the CQI from the standard LTEmodules, and sets theMCS of the multicast transmission to
reach the intended UEs. We x the bandwidth allocated for the multicast service at 5MHz.
3GPP standard recommends not to reserve more than 60 of RBs to multicast [92], so a 5
MHz value could represent respectively 50 or 25 of RBs in a typical 10 or 20 MHz de-
ployment. The other simulation parameters for the LTE cell are listed in Table 4.2.

Additionally, we implemented DTN store-carry-forward routing mechanism at UEs to
support D2D opportunistic communications. This is an implementation of the conven-
tional epidemic forwarding mechanism [99]. Regardless of its reception method, an unex-
pired packet can be forwarded on the Wi-Fi interface upon meeting with neighbors. Neigh-
bor discovery is implemented through a beaconing protocol triggered each 250ms. UEs peri-

While the realism of the randomwaypoint model is questionable in general, it has been shown that it real-
istically reproduces movement patterns of groups of users moving in a conned physical area [170]. Therefore,
we consider it appropriate for simulation in our target scenario.

72



odically broadcast beaconmessages containing their identier and the list of bufered packets.
Upon beacon reception UEs update their vicinity information and can transmit packets op-
portunistically.

All the simulation results are averages over 10 independent runs. Unless otherwise stated,
condence intervals are not shown, as they are very tight (usually in the order of 5 of the av-
erage value). We assess the performance for diferent values ofN (the number of users inside
the cell) and D (the maximum reception delay)so to evaluate performance under diferent
loads.

I : In simulation we make the following simplications:

• HARQ-level retransmissions and RLC-level feedback are disabled in multicast. This
is a reasonable assumption: otherwise the eNB should merge the ack/nack messages
received from all the UEs, and decide which is the best retransmission strategy. We
guarantee the maximum content delivery timeD with panic zone retransmissions.

• The PUCCH channel is employed to acknowledge data reception towards the eNB.
Panic zone retransmissions are then triggered looking at the list of received acknowl-
edgments.

• The multi-armed bandit algorithm acts as a packet scheduler. It employs a cross-layer
design at the eNB. By exploiting signaling from physical layer (i.e., the amount of RBs
consumed and the CQI for each UEs are used to evaluate the reward), the algorithm
decides the MCS of each multicast transmission.

We are aware that our simulation-based evaluation has some limits. First, we consider a
simplied version of the eMBMS standard. The proposed approach requires deeper integra-
tion with the eNB scheduler. For now, we leave out the discussion on incentives that are vital
to convince users to agree to spend their battery and storage resources to relay data to some-
one else. This is an orthogonal problem that is addressed in the opportunistic networking
literature through appropriate mechanisms and that we will treat in the next chapter.

4.3.2 R

We compare our proposal with four diferent strategies for content delivery. The main per-
formance indexes we consider are (i) the number of RBs used by the eNB to deliver the con-
tent by the stated deadline, and (ii) the ooading ratio, i.e. the fraction ofUEs that are served
viaD2Dopportunistic communicationswith respect to the casewhere onlymulticast is used.
The considered strategies are the following ones:

• M- is the basic strategy, where UEs have no other means than the cel-
lular network to receive data.
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Figure 4.3: Levels of cellular offloading for the considered scenarios. (a) Aggregate. (b) Steady-state. Savings are re-

ferred to themulticast-only scenario (%).

• F-minimizes the number of RBsmaintaining a static allocation ofmulticast
users (I0 is xed during all the simulation duration). Since the optimal size of themul-
ticast group is unknown, we ran extensive simulations to nd experimentally the I0
value that minimizes the aggregate RB usage. This strategy represents the experimen-
tal benchmark for all the RL-methods.

• �- estimates the reward using the exponential moving average presented in
Eq. 4.2. This simple algorithm selects the greedy value of I0 with probability 1− �. In
our implementation, we selected � = 0.05 and α = 0.5. We motivate this choice as a
trade-of between diferent requirements. We need to maintain the exploration phase
active in order to cope with the non-stationarity of the underlying process. However,
transmitting with a wrong CQI can lead to signicant eciency loss.

• P selects the I0 transmission probability following Eqs. B.2 and B.3. In this
case, the transmission probability pursues the greedy action by adapting the likelihood
of emission to the temporal evolution of the system. In simulation we xed β = 0.3,
πMIN = 0.01, πMIN = 0.95. We will give more explanations on the choice of these
parameters later on.

4.3.3 E

Fig. 4.3 provide a summary of the resource savings (aggregate over 1 hour, and afer the tran-
sient state) for the two considered algorithms (�-greedy and pursuit), related to the basic
Multicast-only approach. The RL solution to the joint multicast-D2D problem is an efec-
tivemethod to save resources at the eNB, approaching and even surpassingFixed-best inmore
than one occasion.
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Figure 4.4: RBs usage forMulticast-only (black), �-greedy (blue), Fixed-best (green), and pursuit method (red). Content is

divided into 4000 packets of 2048 bytes. Plots are averaged over 10 runs, 95% confidence intervals are not plotted but

are knit.

Focusing on Fig. 4.3(b), which depicts the RBs savings afer the training phase, our system
allows saving up to 88 of RBs for the 90s scenario if compared to Multicast-only. This
result conrms that the right synergy in the utilization ofmulticast andD2D resources allows
for signicant resource savings. Even with shorter deadlines, the pursuit method performs
very well, saving at least 54 of RBs. The main diference between RL-based methods and
the benchmark represented by Fixed-best is that in the latter the value of I0 is xed and pre-
computed in advance. Its performance is stable over all the dissemination periods, but this
optimal value is the outcome of an extensive trial and error simulation phase. Conversely, a
learning strategy is able to predict the distribution for selecting the values of I0 that results
in saving comparable with those of fixed best, without relying on any prior knowledge and
adapting to the network state.

We can observe in Fig. 4.4 this efect for the tightest deadline considered (30 s). The be-
havior of the RL methods (pursuit and �-greedy) and Fixed-best are signicantly diferent.
Pursuit and �-greedy are based on a learning algorithm; they therefore need time to learn the
most appropriate distribution for I0. Once trained, their performance is ofen on par or even
better than the best xed-value strategy represented by Fixed-best. Another advantage is that
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Figure 4.5: Pursuit method, receptionmethod. Dashed lines are the objective ratio for Fixed-best. Content is divided into

4000 packets of 2048 bytes. Plots are averaged over 10 runs, 95% confidence intervals are not plotted but are knit.

evenwhen those strategies are trained, they continue to explore the solution space, being able
to cope with the possible non-stationarity of the contact process that rules the opportunistic
difusion. Conversely, fixed-best is locked to a static value of the parameter I0 and insensi-
tive to variations in the mobility of UEs. One of the key advantages of the RL strategies are
that they can autonomously nd the trade-of between multicast and D2D transmissions in
a reasonable time - without extensively search all the entire parameter space.

4.3.4 C  �-  

Given the heavy request for mobile data today, operators are mainly concerned about radio
resource usage. To examine the impact on RB consumption, we x the deadline at 30 s and
vary the number of multicast UEs in the cell from 10 to 50. Intuitively, more UEs asking
for the same content should require more infrastructure resources. On the other hand, the
number of contact opportunities increases, oferingmore possibilities to ooad the network.

Fig. 4.4 gives hints on the actual amount of RBs devoted to distribute data in the con-
sidered scenarios. Unlike many other works in the literature, the use of the ns-3 simulator
allows us to evaluate precisely the amount of radio resources consumed at the eNB. In gen-
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eral, we note that when it converges, the �-greedy method is faster than the pursuit method
(e.g., Fig. 4.4(a)). Inmany cases, even when �-greedy fails to converge, pursuit approaches the
behavior of the fixed-best strategy. This depends on the fact that �-greedy always selects the
value of I0 that maximizes the expected rewards. Instead, pursuit has an indirect selection
method that better adapts to the temporal evolution of the system. The added complexity is
however benecial in most cases, as it results into an improved performance (Fig. 4.4(b) and
Fig. 4.4(c)). The reinforcement given by Eq. B.2, allows smoothing out the inherent varia-
tions in epidemic difusion that prevent the proper prediction in the �-greedymethod. The
efect appears when the number of targetedUEs increases while keeping a tight deadline (i.e.,
30 s). In those scenarios, the variability in performance of the opportunistic difusion pre-
vents the �-greedymethod to learn properly the best distribution for selecting I0. An example
of this efect is illustrated in Fig. 4.4(c). In that case, the pursuit method succeeds inmatching
the fixed-best strategy. The �-greedy method instead diverges nearly instantaneously, failing
to learn an appropriate policy.

We draw the lesson that the �-greedy, method owing to its simplicity, does not t well
scenarios with signicant variability. For those cases, the pursuit method is a better match.
On the other hand, in scenarios where the variability of the opportunistic process is low –
i.e., when the deadline is large – the �-greedy approach allows for a quicker convergence time.

4.3.5 D    

We plot in Fig. 4.5 the fraction of packets partitioned by their reception method. Consider-
ing the same deadline and increasing the number of UEs has the efect of reducing the share
of D2D transmissions. While a larger number of UEs should multiply the contact oppor-
tunities, many of them are not adequately exploited because UEs can transmit only to one
neighbor at a time. The result is that xing the deadline, the share of UEs addressed through
D2D transmissions is upper bounded. In this case, we analyze the detailed evolution of our
strategy considering the shorter deadline (30 s). A similar analysis can be donewith the longer
deadlines. Note, however, that for a larger number of UEs, even though the fraction of UEs
addressed through D2D transmission is limited (e.g., 20 in the case of 50 UEs), the result-
ing advantage in terms of RB saving is much higher (around 55 for that case, from results
in Figure 4). In this case, the RL algorithm understands that it is better to see the 20 of the
UEs that are experiencing bad cellular quality throughD2D. Serving them throughmulticast
is expected to result in a too high cost in terms of RBs, due to the need of reducing toomuch
the MCS. On the other hand, decreasing too much the share of UEs served by the multicast
transmission brings the opposite efect, with a considerable amount of RBs spent for unicast
transmissions in the panic zone.

We also take note of a peculiarity. Looking at the receptionmethods in Fig. 4.5, the conver-
gence time looks like always less than 10 minutes. Comparing this value to Fig. 4.4, however,
we realize that the actual convergence (in terms of RBs employed at the eNB) happens much
later in time (around40min). This anomaly is justiedby the fact that even a small amountof
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Figure 4.6: Pursuit method, average reward values for I0. Content is divided into 4000 packets of 2048 bytes. Plots are

averaged over 10 runs, 95% confidence intervals are not plotted but are knit.

unicast retransmissions in the panic zone consumes many more resources than the multicast
emission. The ne-tuning required to reach an optimal RBs usage level is thus responsible
for this longer convergence time. When the number of UEs is large, the choice of the appro-
priate distribution for I0 becomes fundamental in order to avoid congesting the cell with too
many panic retransmissions.

Considering the detailedmechanisms of the pursuitmethoddescribed in Sec. 4.2.3, Fig. 4.6
and 4.7 compare the rewards and I0 probabilities respectively. In the gures, we quantized
the values of I0 to form ve levels. In two cases out of three (namely for 10 and 50 UEs),
there is a set of values for I0 that performs clearly better than the others do. In the 25 UEs
scenario instead, distribution of I0 is more spread out. There is a clear tendency to prefer
higher values of I0 though, in the range between 0.2 and 0.6. The best I0 value is the one
that is not afected too much by the loss in spectral eciency due to the reduced multicast
rate, but at the same time can guarantee a low penalty due to unicast panic re-injections. In
the 10 UEs scenario, emitting with a multicast rate that targets one or two users (I0 ≤ 0.2) is
sucient to achieve high eciency. On the other hand, we note that increasing the multicast
group size, the best distribution of I0 shifs towards higher values. Intuitively, the penalty
due to panic re-injections is extremely severe in these cases and the pursuit algorithm tends to
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Figure 4.7: Pursuit method, average emission probabilities for I0. Content is divided into 4000 packets of 2048 bytes.

Plots are averaged over 10 runs, 95% confidence intervals are not plotted but are knit.

allocate more seeders in the opportunistic domain.
Finally, the emission probability follows the pattern of the rewardswith the exception that

the greedy probability is always reinforced until the value πMAX and the non-greedy proba-
bilities are reduced until πMIN .

4.4 C

In this chapter, we have presented a hybrid distribution strategy, jointly leveraging LTEmul-
ticast and opportunistic D2D communications to distribute popular content with guaran-
teed delays. Multicast is an advantageous option to distribute popular data into a cellular
network. However, performance is determined by the UE with the worst channel quality
inside themulticast group. We proposed a framework to counter the ineciencies of cellular
multicast and ooad part of the trac using D2D communications.

The proper balance of multicast and D2D transmissions is achieved using a multi-armed
bandit learning strategy. We proposed and evaluated two diferent algorithms under variable
multicast group size and reception delays. Simulation results prove that D2D communica-
tions permit to congure multicast transmission in a more ecient way, saving resources
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and improving the overall cell throughput. On the other hand, we have also shown that
the used learning algorithms are able to obtain performance comparable (and in several cases
even superior) to the best possible strategy that uses a xed split betweenmulticast and D2D
communications, which can only be identied aer exhaustive search, and is thus practically
unfeasible. On theother hand, theproposed learning algorithms are able todynamically learn
the best balance between multicast and D2D transmissions, and, to do so, need a reasonable
learning time.
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I never guess. It  a capital mistake to theorize before one
h data. Insensibly one begins to twist facts to suit theori,
instead of theori to suit facts.

Sir Arthur Conan Doyle

5
Incentives for D2D Ooading: Discussion

and Modeling

5.1 I

T   D2D      -
     . Incentives are then needed to
stimulate participation and to reward users acting as data relays. Existing proposals assume
that all seeders are, by default, also forwarders in the D2D domain. Such an assumption
may lead to suboptimal results when forwarders must be rewarded for transmitting content
on behalf of the infrastructure. In those scenarios, uncontrolled D2D communications may
generate additional costs without necessarily bringing gains to data dissemination. we intro-
duce a clear separation between seeders and forwarders, as shown in Fig. 5.1. Seeders receive
content via the cellular infrastructure, but only nodes promoted as forwarders are allowed to
transmit content opportunistically. The separation between seeders and forwarders provides
operatorswith an additional degree of freedom. The balance between instantaneous cost and
future benets of seeding and forwarding decisions is strategic to data dissemination, given
that available resources (bandwidth and rewards) are limited.

We investigate the following problem: which fraction of seeders should be promoted  for-
warders and when should th happen? We answer this questionusing amathematical support
that leads to an optimal solution. Content difusion in opportunistic networks is compara-
ble to the spreading of a disease in a population. Wemodel the dissemination process using a
variant of the classic Susceptible-Infected-Recovered (SIR) epidemic model from Kermack-
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Figure 5.1: Offloading process: the infrastructure selects two nodes as content seeders (Fig. 5.1(a)), deciding that one of

the seeders should be promoted as forwarder (Fig. 5.1(b)). Later on, the infrastructure estimates that it is worth promot-

ing another node because the D2D transmissions are not enough to guarantee sufficient dissemination (Fig. 5.1(c)).

McKendrick [173]. Since operators strive to optimize the distribution cost, we translate the
possible decisions they can take (injection and forwarding) into a cost function. We apply
Pontryagin’sMaximumPrinciple tominimize the cost function subject to the state-equations
that govern the network. As far as we know, no existing works contemplate the diference
between seeders and forwarders, failing thus to quantify the trade-of that exists between per-
formance and cost in amore realistic system. How to select the best forwarders has been con-
sidered in the literature from the spatial re-use, throughput, and interference points of view,
rather than from an incentive/economic consideration. Performance evaluation of truly op-
portunistic forwarding has been treated extensively, for example by using ordinary diferen-
tial equations (ODEs) [104] orMarkov chains [103]. Instead, ourwork proposes an extended
model that couples opportunistic dissemination and infrastructure connectivity. Indeed, a
central ooading coordinator controls the cellular injections and the promotion of users to
the forwarding state to reach optimal data dissemination. In summary, the main contribu-
tions in this chapter are:

• S-. Wepropose amodel for opportunistic ooading,where
the network operator controls content injections and the amount of users that partic-
ipate in data forwarding.

• O . We formulate opportunistic data ooading as an optimal con-
trol problem tominimize the cost of data dissemination in a hybrid scenario. The cost
function trades of monetary and network resources consumed to reach a certain dis-
semination level and the user satisfaction.

• C . We prove how to solve the opportunistic ooading problem for
diferent classes of cost functions. We show that under plausible cost functions, the
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control of the injection is continuous, while promotions have an on-of behavior.

• E. We show the sensitivity of the optimal controls to diferent values of
the contact rate and delay tolerance. We evaluate the optimality of our strategy against
other heuristics. Finally, we conrm the benet of the proposed seeder-forwarder
model compared to the simplied two-state model currently employed in literature.

The remainder of the chapter is structured as follows. We present an overview of the
seeder-forwarder model in Section 5.2. Cost-related issues in opportunistic ooading are
discussed in Section 5.3. The optimal control problem is formulated and solved analytically
in Section 5.4. Numerical results are presented in Section 5.5. Finally, Section 5.6 draws the
conclusion and presents the future work.

5.2 SO

We formulate opportunistic ooading as an optimal control problem, modeling the evolu-
tion of the content dissemination using a variant of the classic SIRmodel. Content of interest
may include sofware updates, geo-located information, trac updates and targeted advertis-
ing. Public safety applications may also benet from D2D communications.

In this model, some users request data and are referred to as interested. We consider that,
initially, all the nodes are in the interested state. At this stage, the operator canonly use cellular
transmissions to reach a subset of the interested users. Nodes that receive the content enter the
seeder state, still not playing any active role in data distribution. At this point, the coordinator
can promote a fraction of them to the forwarder state to difuse the content.

C

Incentives to reward user participation in data dissemination can be ofered by using virtual
credit schemes or discounts. Promotion to the forwarder state does not represent a cost in
itself for operators, but enables users to be rewarded for the D2D content distribution. For
now, we do not consider any additional cost related to overhead, signalization and main-
tenance of forwarder users, which is lef as a future work. Injections performed using the
cellular infrastructure consume resources and have a direct cost that depends on the resource
availability in the network. Beside the cost for injection and rewards, the model considers in-
direct cost as well, because the fraction of uninfected (or unsatised) nodes at the end of the
content lifetime depends on the strategy that has been adopted. We strive to devise a coherent
injection/promotion strategy to minimize the aggregate cost of ooading.

We adopted here a slight variation of the traditional nomenclature in the SIR model: “interested” users in
the original SIR model are analogous to interested of our model. Similarly, “infective” and “seeder” nodes are
named forwarders and seeders, respectively. We do not use the same names, as their roles are a bit diferent.
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Table 5.1: List of parameters.

Parameter Denition
nI(t) fraction of interested nodes at t
nS(t) fraction of seeder nodes at t
nF (t) fraction of forwarder nodes at t
λ(t) contact rate at t
uI(t) direct injection rate at t
uS(t) promotion rate at t
Imax(t) maximum injection rate at t

T content lifetime
Φ(.) nal payof function for interested nodes at T
f(.) instantaneous cost function for injection
g(.) instantaneous cost function for promotion

N

The system consists ofN mobile nodes and a single content to be distributed by the mobile
infrastructure to all the nodes within the lifetime T . Intermediary nodes can be used as op-
portunistic relay. Following the notation introduced above, nodes can be in the interested,
seeder, or forwarder states. Their respective fractions during T are nI(t), nS(t), nF (t). At
steady state, we have nI(t) + nS(t) + nF (t) = 1 ∀t ∈ [0, T ], and we can always repre-
sent the system using only two of the above state. An interested node can receive the content
whenever in contact with a forwarder neighbor, but not with a seeder. Table 5.1 provides a
summary of the parameters used along the chapter (some of them are explained in the fol-
lowing sections).

E  

In the real world, the system under observation can be described with discrete values (e.g.,
the number of present users, the number of cellular transmissions performed). For ease of
modeling, we consider instead continuous values for the state and the controls. We assume
that N is large and that encounters are homogeneous, i.e., nodes are equally likely to meet
each other. Consistently with the literature, we use a mean field model that is accurate for
a large population number. Opportunistic dissemination between mobile users can be re-
garded as the spread of infective disease – not surprisingly epidemic routing is a conventional
forwarding strategy in opportunistic networks. As with a disease contagion in a population,
content spreads from forwarder to interested nodes when such a pair enters in physical prox-
imity. The evolution of the states can be described by a system of ODEs along with a set of
initial and terminal constraints. We consider the contact rate λ(t) that rules the encounter

Our system shares also similarities with peer-to-peer (P2P) networks, which features seeders forwarding
trac to client nodes.
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Figure 5.2: State transition rates for the seeder-forwarder and two-statemodel. In the latter case, all the users that

receive the content from the cellular channel are considered forwarders.

of any two nodes at time t. At each instant, we have nF (t) forwarders capable of meeting
nI(t) interested nodes. As shown in Fig. 5.2a, interested nodes become forwarders with rate
λ(t)nI(t)nF (t).

I  P

We consider a central ooading coordinator thatmanages the cellular injections and the pro-
motion of seeders to the forwarder state. In our model, cellular injections increase the rate at
which nodes leave the interested state for the seeder state. The intensity at which injections
are performed at t is denoted byuI(t), which is a boundedLebesgue integrable functionwith
0 ≤ uI(t) ≤ 1 ∀t ∈ [0, T ]. Consequently, as shown in Fig. 5.2a, uI(t)nI(t) ≤ Imax(t)
describes the rate of injected copies. The injection rate is bounded by Imax(t), which is a
measure of the instantaneous available load on the cellular network.

Seeder nodes carry the content but need to be promoted in order to contribute to data
dissemination. Operators can promote only the necessary fraction of seeders. This is done
via a control channel that binds users with the central coordinator. As a result, nodes shif
to the infective state at intensity uS(t), a bounded Lebesgue integrable function with 0 ≤
uS(t) ≤ 1 ∀t ∈ [0, T ]. This increases the fraction of nodes in the forwarder state by a rate
uS(t)nS(t).

Therefore, the following system of ODEs controls the evolution of the interested, seeders
and forwarders in the system:

dnI(t)

dt
= −λ(t)nI(t)nF (t)− uI(t)nI(t), (5.1a)

dnS(t)

dt
= uI(t)nI(t)− uS(t)nS(t), (5.1b)

dnF (t)

dt
= λ(t)nI(t)nF (t) + uS(t)nS(t), (5.1c)
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with initial states nI(0) = i0, nS(0) = s0, and nF (0) = 1 − i0 − s0. For the ooading
problem under consideration, i0 = 1, and s0 = 0, since we consider all users to be in the
interested state at the beginning of content difusion.

The set of equations above are called state dynamics. They describe how the current states
nI , nS, nF change at time t as a reaction to the control signals uI , uS . Notice that ∂nI

∂t
+

∂nS

∂t
+ ∂nF

∂t
= 0, therefore the model can always be expressed using only two of the above

equations.

5.3 T  

The optimal ooading strategy consists in minimizing the number of interested nodes at
timeT , while implementing a cost-savvy injection/promotion campaign. If operators had no
capacity or monetary limitations, then the optimal strategy would be to inject the maximum
amount of data via the cellular channel. When capacity is limited, operators must improve
their strategy fromboth the operational and budgetary points of view. In Eq. 5.2, we consider
a cost function J that is general enough to grasp various types of cost incurred by operators:

J(T ) = Φ[nI(T )]
 

payo

+

T∫

0

f [uI(t)nI(t)]
 

injection

+ g[λnI(t)nF (t)]
 

reward

dt. (5.2)

whereΦ[nI(T )] is the nal payof, representing the cost incurred by the operator for not hav-
ing satised the fractionnI(T ) of users by the deadline. This can lead to a loss of earnings due
tomissed deliveries, or to extra costs in terms of nal injections [117, 174]. f [uI(t)nI(t)] cap-
tures the instantaneous cost in terms of network resources for the injections over the cellular
channel. Finally, forwarders are rewarded with g[λnI(t)nF (t)], which represents reduc-
tions or virtual credits accorded to users each time they make an opportunistic transmission.
The integral portrays the growing cost over time of these two latter terms. Note that the
promotion control uS does not appear inside the cost function. Promoting a node to the
forwarder state does not directly generate a cost. However, the node will be able to transmit
data opportunistically, possibly increasing the rewarding cost for the operator. For physical
reasons,Φ(.), f(.), and g(.) should be any monotonically increasing and piecewise diferen-
tiable function, with Φ(0) = f(0) = g(0) = 0 (the cost for doing nothing should always
be zero).

At any time t, the ooading controller decides the value of control signals uI and uS . The
decision is taken by assessing the fraction of nodes in each compartment (nI , nS and nF ),
the remaining time before the deadline, and the contact pattern between nodes. The applied
controls lead to two consequences: (i) a direct efect, which generates the instantaneous costs
f(.) and g(.) for the operator, and (ii) an indirect efect, represented by the future change in
states formalized by Eq. 5.1. The optimal ooading strategy requires the coordinator to plan

86



its injection and promotion strategies byminimizing the cost for the operator while maximiz-
ing the rate of change of state variabl.

5.4 O 

We formulate the optimal control problem considering only two state variables nI and nS .
This is possible because nF (t) = 1 − nI(t) − nS(t). The system can be controlled by the
tuple < uI , uS > belonging to the set of all the admissible controls U = {uI , uS}, where
uI , uS areLebesgue integrablewithuI , uS ∈ [0, 1]. The idea is tominimize the cost function
J subject to the state evolution constraints in Eq. 5.1:

min
uI(t),uS(t)∈U

J, (5.3a)

subject to:
dnI

dt
= −λ(t)nI(t)(1− nI(t)− nS(t))− uI(t)nI(t), (5.3b)

dnS

dt
= uI(t)nI(t)− uS(t)nS(t), (5.3c)

nF (t) ≥ 0, nI(t) ≥ 0, nS(t) ≥ 0,

nI(t) + nF (t) + nS(t) = 1,

nI(0) = i0, nS(0) = s0, nf (0) = 1− i0 − s0. (5.3d)

5.4.1 G

The existence of an optimal solution can be proved by applying the Filippov-Cesari theo-
rems [175]. For instance, if the functions inside the integral inEq. 5.2 are continuous, bounded,
and convex in controls, with bounded derivatives, the control signals uI(t) and uS(t) take
values in a closed set. Also, Eqs. B.6b and B.6c are linear in the controls. This guarantees the
existence of an optimal solution. We apply Pontryagin’s Maximum Principle [176] to solve
the above problem and derive the optimal control (Theorem 3.4 in [177]). The conditions
of Pontryagin’s maximum principle reduce the computation of an optimal strategy to the
solution of a boundary value problem for a system of diferential equations.

Let the tuple (n∗I(.), n
∗

S(.), u
∗

I(.), u
∗

S(.)) be an optimal solution to the problem formal-
ized in Eq. 5.3. There exist continuous and piecewise continuously diferentiable adjoint
functions pi(t) and ps(t) that maximize the present-valueHamiltonian functionH .

Throughout the chapter, variables with the star superscript (e.g., u∗

I
(t)) represent the value at the opti-

mum.
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For the sake of ease of mathematical manipulation, we transform the problem into amax-
imization problem by multiplying the Hamiltonian by−1. We also remove the dependence
from time whenever possible, in order to make reading also easier:

H(nI,S, uI,S, pi,s, t) =− f [uI nI ] (5.4)

− g[λnI (1− nI − nS)]
+ pi[−λnI(1− nI − nS)− uInI ]
+ ps[uInI − uSnS].

The Hamiltonian function, in analogy with a corresponding concept occurring in tradi-
tional mechanics, balances the rate of change of states and the cost incurred by operators.
Indeed, the Hamiltonian is a generalized prot rate that includes both direct and indirect ef-
fects, and has to be maximized at each instant. Theweights for the state variables are given by
the adjoint functions pi and ps, which represent the marginal increase ofH due to an incre-
ment in the state. Consequently, the adjoint equations pi and ps evaluated at the optimum
are:

p∗i (t) = −∂H(.)

∂nI





n∗

I,S
,u∗

I,S
,p∗i,s

= (5.5a)

=
∂f(.)

∂nI
+
∂g(.)

∂nI
− pi [λ (2nI − 1 + nS)− uI ]− ps uI ,

p∗s(t) = −∂H(.)

∂nS





n∗

I,S
,u∗

I,S
,p∗i,s

= (5.5b)

=
∂g(.)

∂nS
− piλnI + psuS.

With transversality conditions

pi(T ) =
∂Φ(n∗I(T ), T )

∂nI
, (5.6a)

ps(T ) =
∂Φ(n∗I(T ), T )

∂nS
= 0. (5.6b)

According to themaximumprinciple (Theorem 3.4 in [177]), there exist optimal controls,
a tuple < u∗I , u

∗

S >∈ U of continuous and piecewise continuously diferentiable func-
tions, and their corresponding solutions n∗I , n

∗

S that maximize theHamiltonianH satisfying
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Eqs. 5.5 and 5.6:

u∗I,S(t) ∈ argmax
uI,S∈U

H(nI,S, uI,S, pi,s, t). (5.7)

This canonical system composed of four coupled ODEs and the transversality conditions
determines a boundary value problem (BVP) that can be solved numerically.

5.4.2 E 

We give an example of the benet of the seeder-forwarder model by solving the optimiza-
tion problem for a class of cost functions Φ(.), f(.), and g(.). Thanks to the exibility of
the model, the cost functions can be replaced at will, to take into account the specicities of
certain types of network and their operating costs.

We consider an exponential function for the nal payof Φ(x) = ex − 1, a power-law
function for the direct injections f(x) = bxα, with α ≥ 2, and a linear function g(x) = cx
to reward forwarders. Recall just that Φ, f and g should be monotonically increasing func-
tions that start at zero. The motivation for the choice of these functions is straightforward
and follows the discussion in Section 5.3. The nal payof function Φ(x) starts at zero and
then rapidly increases to model the cost for missing the delivery of the content by the dead-
line T . f(x) represents the cost for injecting data on the cellular channel during the content
lifetime. The power-law accounts for the fact that the more simultaneous cellular data trans-
missions, the less ecient they are in terms of radio resources at the cellular base station. The
power-law coecient α depends on the considered network and on its overall congestion
conditions. The cost function g(x) is linear, since the reward ofered to forwarders for each
opportunistic transmission they perform is xed.

By substituting the cost functionsΦ(.), f(.), and g(.) in Eqs. 5.4, 5.5, and 5.6, the Hamil-
tonian, the adjoint functions, and the transversality conditions become:

H = −b(nIuI)α − c(λnI (1− nI − nS))+
+ pi[−λnI(1− nI − nS)− uInI ]+ (5.8a)

+ ps[uInI − uSnS],
p∗i (t) = b α n

α−1
I uαI + c λ (1− 2nI − nS)

− pi [2λnI − λ+ λnS − uI ]− ps uI , (5.8b)

p∗s(t) = −c λnI − piλnI + psuS, (5.8c)

pi(T ) = e
n∗

I
(T ), (5.8d)

ps(T ) = 0. (5.8e)

89



I

Given that f(x) is strictly convex, we can extract uI(t) using theHamiltonianmaximization
condition ( ∂H

∂uI
= 0 evaluated at the optimum), along with the restriction on the maximum

injection rate (nI(t)uI(t) ≤ Imax(t)∀t):

u∗I(t) =







0, if ψ(t) < 0,
ψ(t)
nI(t)

, if 0 ≤ ψ(t) ≤ Imax(t),
Imax(t)
nI(t)

, if ψ(t) ≥ Imax(t).
(5.9)

Equivalently, we have that u∗I(t) =
min[max[ψ(t),0],Imax]

nI(t)
, where ψ(t) = α−1

√
p∗i−p

∗

s

−αb
.

P

In the case of uS(t), since the Hamiltonian is linear in the control variable uS , the maxi-
mization condition ∂H

∂uS
= 0 is trivially satised and independent of uS . The control in this

case is called singular (Denition 3.40 in [177]) with a bang-bang solution, i.e., a control that
switches discontinuously between one extreme to the other.

TheHamiltonian maximization condition cannot help us determine the optimal control.
It follows that we have to use another method to nd when the switching points happen. To
do so, we can rewrite the Hamiltonian in Eq. 5.8a as:

H =− b(nIuI)α − c(λnI (1− nI − nS))+
+ pi[−λnI(1− nI − nS)− uInI ]+ (5.10)

+ ps[uInI ]− uS[ps nS].

We dene the switching function σ = (psnS). From Eq. 5.7, it is clear that, to maximize
theHamiltonian,uS should take itsmaximumvaluewhenσ < 0 (andmaximumvaluewhen
σ > 0). Since, we have by construction uS ∈ [0, 1], it follows that:

u∗S(t) =

{
0, if σ > 0,
1, if σ < 0.

(5.11)

In order to be able to retrieve the evolution of the state and adjoint variables, we have to
solve a system of coupled diferential equations (respectively Eqs. B.6b, B.6c, 5.8b, 5.8c, 5.8d,
and 5.8e), with amixof initial and nal conditions (boundary value). We solved it numerically
by using the shooting method from the R package bvpSolve to compute the evolution of the
state and adjoint variables as well as the optimal control (see next section) [178].
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5.5 N

We cover the problem of identifying the best injection and rewarding strategy that an oper-
ator should put in place to reach the optimal ooading performance. For this purpose, we
include in this section numerical data for the simulations that we performed using R. One of
the main strengths of the proposed model is that every parameter can be easily tuned.

First, we conduct a sensitivity analysis of the value of the key parameters to understand
their implications in the ooading strategy. Wenotice that performance strongly depends on
both the contentdeadline and the contact rate ofnodes. Then,we explore the scenarioswhere
the seeder-forwardermodel brings advantages over amore classic two-statemodel. Finally, we
address some implementation issues. We compare the optimal strategy with several heuristic
strategies, investigating under which conditions and limits they can be adopted.

5.5.1 S , -

We investigate “when” the coordinator should inject copies of the content and promote seed-
ers as forwarders. The goal is to understand theoretically the implications of the various
parameters of our model. Figs. 5.3 and 5.4 display the time evolution of states and control
variables. We look at what happens for diferent deadlines and contact rates.

By comparing Figs. 5.3 and 5.4, we discover that the impact of promotion is stronger for
shorter deadlines. From this, we conclude that the deadline strongly inuences the rewarding
strategy. Short deadlines (e.g., T = 5) are not sucient to yield complete dissemination
under the provided cost-function. Instead, for T = 10 we obtain complete data delivery
(at least for the best contact rates). Intuitively, when content dissemination is incomplete
by the deadline, the nal payof Φ(nI(T )) takes a large part of the cost functional J . This
behavior conrms a well-known phenomenon in the opportunistic literature: an increased
delivery delay improves the fraction of nodes that receive the content, since opportunistic
forwarders have more time to meet and exchange data. The efect is particularly evident if
we compare the curves with the same contact rate. The added dissemination time allows less
efort to control injections and promotions, thus lower costs for cellular operators. On the
other hand, increased delivery times could negatively afect the user satisfaction.

Besides distribution delay, lower contact rates also entail stronger injection and promotion
eforts. From Figs. 5.3b and 5.4b, we observe that the injection control is stronger at the be-
ginning and at the end of the dissemination period, following a nearly symmetric path. The
symmetric pattern depends on the evolution of interested users in Eq. 5.1a, which relies on
the interactions between nI and nF . Therefore, the injection rate is higher when a few nodes
are in the forwarder or the interested states – respectively at the beginning and at the end of
the dissemination period. Injections help x the slow start and the slow convergence time of
opportunistic dissemination. Wang et al. previously pointed out the symmetric trend of the
injection control, although for a simplied model [179].
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Figure 5.3: Optimal offloading for different contact ratesλ. T = 5s. Other parameters: Imax = 0.1,α = 2,
b = 10, c = 1, i0 = 1, s0 = 0.
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Figure 5.4: Optimal offloading for different contact ratesλ. T = 10s. Other parameters: Imax = 0.1,α = 2,
b = 10, c = 1, i0 = 1, s0 = 0.

Promotions (visible in Fig. 5.3c and 5.4c) follow an interesting pattern. When T = 5,
the control is always at its maximum. In this case, the shorter deadline is the main responsi-
ble for the poor content dissemination. In efect, even with an extreme promotion strategy
(always promote), dissemination levels never reach 100 at the deadline. Longer deadlines,
instead, allow devising better promotion strategies. For instance, when T = 10, promo-
tions show three distinct patterns that depend on the contact rates. For λ = 0.1, the con-
trol is always at its maximum for all the dissemination duration to counter the low contact
rate. λ = 0.5 presents an on-of behavior, with promotions that stop when the amount
of forwarders reaches signicant levels (in order to self-sustain without costing too much to
operators). Finally, for λ = 1, the promotion control is activated only afer half of the dis-
semination period. This collides with the desire to attain the widest possible dissemination
of the content. Although at rst sight this might seem counter-intuitive, we must remember
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that, in the model, operators pay a small fee for each opportunistic transmission performed
by users. Under higher contact rates, opportunistic dissemination has to be limited in order
to save monetary resources.

As anticipated, control signaluS takes the formof a bang-bang controlwith exactly one on-
of switch. Recall that injections performedwhenuS(t) = 0 serve only to satisfy the fraction
of users that will likely not receive the content by the deadline, without further improving
the dissemination (because these nodes do not become forwarders). Moreover, we point out
that the optimal strategy does consider moments where no additional forwarders are needed
(uS(t) = 0). This strengthens the idea that separating forwarders and seeders is benecial
from a cost-benet point of view.

5.5.2 R : W   ?

We investigate in which cases it is worth separating seeders and forwarders from an operator’s
point of view. Including the seeder state in the picture is motivated by the fact that not all
users carrying the content may be required to forward data. This may depend on a mix of
factors, such as the contact pattern of users or the delay tolerance of the content. Eventu-
ally, controlling the forwarder state of nodes becomes essential when the operator wants to
reward user participation. Allowing an additional state can also be useful to understand the
implications of a particular reward strategy aimed to involve users in cooperation for data
dissemination. As many works suggest, ofering some kind of incentive, i.e., discounts or
virtual credits, motivates user participation in opportunistic ooading [180]. However, cur-
rent models in the literature consider all nodes storing the data as potential forwarders as in
the model depicted in Fig. 5.2b.

Separating seeder and forwarder nodes is advantageous for operators if compared to the
classic two-state model. We plot in Fig. 5.5 the evolution of the cost function J divided by its
three main components Φ(T ), F (T ), andG(T ) for the optimal strategy. From Eq. 5.2, we
have:

F (T ) =

T∫

0

f [uI(t)nI(t)]dt, (5.12)

G(T ) =

T∫

0

g[λnI(t)nF (t)]dt. (5.13)

Φ(T ) is the nal payof value, due to nodes that have not received the content by T ,F (T ) is
the total cost due to injection, andG(T ) is the total cost due to rewarding forwarder users.

From Fig. 5.5, we can appreciate that as the deadline increases, the seeder-forwarder model
improves its performance compared to the two-state model. In our evaluations, for T > 5,
thenumberofuninfectednodes at thedeadlinedecreases steadily, reducing the relativeweight

93



deadline T

co
st
fu
nc
ti
on

J

q

q

q
q

q

q

q
q q q q

5 6 7 8 9 10 11 12 13 14 15
0

0.25

0.5

0.75

1

1.25
q

seeder−forwarder :
J(T)
Φ(T)
F(T)
G(T)

two states :
J(T)
Φ(T)
F(T)
G(T)

Figure 5.5: Cost functionalJ and its main components for the optimal strategy using two offloadingmodels (seeder-

forwarder and two-state), varying the deadlineT . Other parameters: λ = 0.5 Imax = 0.1,α = 2, b = 10, c = 1,
i0 = 1, s0 = 0. Note that forT ≤ 5 (not plotted) the cost functional is dominated by the final payoffΦ(T ) due to
missed data deliveries.

of Φ(T ) on the overall cost. In this context, the rewarding cost G(T ) takes the larger part
of J , accounting for the cost to reward forwarders. The cost for rewarding users increases
linearly for the two-state model as the deadline stretches, making up nearly the entirety of
the cost functional. This conrms that an uncontrolled number of forwarders can interfere
with the will of operators to cut operational expenses. Instead, a separation between seeders
and forwarders offers improved flexibility in the control of the offloading evolution, bringing
clear benefits in terms of distribution costs. Note that for short deadlines (for T ≤ 5 in the
example), all connection opportunities should be used as captured by the two-state model.
Indeed, the cost-functional is dominated by the nal payof Φ(T ), whose value depends on
missed data deliveries. The seeder-forwarder model introduces an additional transition delay
from seeder to forwarding state (the ODE formulation requires a non-null time to transit
to a state) so its benets come into play in the non-trivial situations of content with larger
deadline requirements.

5.5.3 I

We rst investigate how intuitive heuristics not requiring any optimization framework per-
form compared to the optimal strategy, and what lessons can be learned having the knowl-
edge of the optimal injection and promotion controls. Finally, we consider the impact of
realistic values of the contact rate.

We compare the optimal strategy against three other heuristics. The rst heuristic, named
initial control, mimics an operator wanting to rely only on an initial subset of forwarders.
These forwarders are the only way to distribute content until the deadline is reached. This
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strategy relies on an initial injection at the rate Imax, without performing any further injec-
tions. The second strategy, named constant control, steadily injects at a xed rate of Imax

2
. These

two strategies are static and do not require any knowledge of how the dissemination evolves.
In both cases, the promotion control uR(t) is xed at 1 for all the dissemination delay. Fi-
nally, we consider a more dynamic strategy, named pursue control, where both injection and
promotion controls follow the evolution of the interested nodes nI(t). In this case, the con-
trol is strong at the beginning of the dissemination, gradually descending as the time goes by,
following nI(t). The rationale behind this choice is the fact that copies with a large dissemi-
nation time aremore efective in content dissemination. We compare these strategies in terms
of the cost function introduced in Eq. 5.2, varying the deadline T and the contact rate λ.

FFig. 5.6 displays the cost functionalJ by varying the deadline. As expected, the functional
J for the optimal control is always smaller than all the other heuristic strategies. However,
for shorter deadlines (T < 6) the pursue strategy results very close to the optimal. This is
the rst lesson we can draw: with shorter deadlines, a control that follows the rate of inter-
ested nodes comes close to the optimal. As the deadline increases, the eciency of the pursue
strategy decreases. On the other hand, we note that the constant strategy approaches the op-
timum for larger deadlines. Indeed, the steady injection prole at rate Imax

2
is very similar to

the one in the optimal strategy (depicted in Fig. 5.4b). Promotions are not adapted, concur-
ring to increase the overall cost. Lastly, relying only on an initial set of forwarders, without
any additional injection during the dissemination duration (such as in the initial strategy),
brings considerable eciency drops. This happens because the set of initial seeders (which is
inherently limited by Imax) cannot cover the entire network in T . Fig. 5.7 shows the trend of
the cost functional J varying the contact rate λ. In general, the relative performance of the
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heuristics is the same as in the previous case.
Fig. 5.7 outlines the importance of the contact rate in the performance of the ooading

strategy. λ is at the base of the opportunistic difusion between mobile users. However, the
contact rate depends on themobility patternof users, and can vary in time. λmay also include
the uncertainties induced by the wireless channel and the movement of nodes. Operators
should estimate the value of λ in order to adapt the optimal solution to current network
conditions. In this context, ooading architectures that employ a feedback mechanism can
prove very useful [117, 174].

5.6 C 

In this chapter, we proposed a novel analytical framework for opportunistic ooading that
captures the diferences between seeders and forwarders. With our approach, mobile oper-
ators are able to nely control the dissemination evolution through external controls such
as infrastructure injections and promotion of seeders as forwarders. Optimal strategies trade
of the cost in terms of network and monetary resources with the total dissemination rate.
We applied then the Pontryagin’s Maximum Principle to devise an optimal ooading strat-
egy that minimizes the distribution costs for the operator. One of the main strengths of the
model is that every parameter can be easily tuned. We demonstrated its sensitivity to diferent
values of the contact rate and delay-tolerance, and evaluated the advantages of the proposed
model over the simple interested-forwarder model. In particular, we showed that when we
have enough time exibility, introducing the separation between seeders and forwarders is
strongly benecial for the cellular operator.
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Besides evaluating the optimal strategy in case of time-varying parameters, we believe fu-
ture developments can leverage the techniques presented in this chapter to handle a more
general case of stochastic difusion processes following aMarkov decisionmodel. In this case,
the evolution of the difusion evolves following stochastic values, and the applied control de-
pends on the observation of the system. The epidemic difusion model can be extended tak-
ing into account forwarders that stop sharing content due to battery or storage constraints.
Promotions to the forwarder state can bring additional costs for state overhead and mainte-
nance. Finally, a birth-death process can be included to represent the arrival and departure
of the users in the interest area.
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6
Conclusion & Perspectives

Global mobile data usage witnessed a spectacular increase in recent years driven by the boom
in the smart mobile devices market. Future forecast expects the growth to continue at the
same pace, calling for ecient strategies to cope with this surge. As of today, operators are
already under heavy pressure, attempting to accommodate such an unprecedented amount
of mobile trac on their networks. Therefore, they must intervene with major investments
to scale their access networks. Nevertheless, expenses to buy more licensed band or build
more base stations are very high. Unfortunately, the increase in network capacity brought by
these methods will hardly keep up with trac growth.

Mobile data ooading represents an attractive solution to relieve the load on the mobile
network infrastructure at small cost, beneting from the existence complementary technolo-
gies. Ooading has the potential to solve the longstanding RAN overloading problem, by
shifing data over alternative and less congested networks. The discussion provided in this
thesis strongly advocates the use of alternative mobile access networks for ooading pur-
poses. In particular, we focused on the “newest” type of data ooading, based on direct data
exchange among users using device-to-device (D2D) communications. The idea is to bene-
t from the increased density of mobile users and the delay tolerance of a number of content
types to shif a portion of the trac from the primary (cellular) channel to an alternativeD2D
channel.
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6.1 S  C

6.1.1 S  DO T  C N

The literature lacked a comprehensive survey onmobile data ooading. We classied current
ooading approaches based on their requirements in terms of delivery guarantee, presenting
the technical aspects and the state of the art for two main approaches. The former is more
mature and proposes a tight integration between the cellular RAN and a complementary
access network, allowing for real-time data ooading. The latter, still experimental, exploits
the delay tolerance of some types of data to optimize their delivery. As the outcome of this
literature survey, we identied some common functional blocks, proposing a general high-
level architecture valid for any mobile data ooading system. We investigated open research
and implementation challenges and the existing alternatives to mitigate the cellular overload
problem. We believe that our survey work highlights current research directions and trends
in the data ooading eld, and can help trigger further research activities in the area.

6.1.2 L S M O D O

We highlighted the stepwise behavior of the epidemic difusion in opportunistic network,
demonstrating that it depends on the dynamic clustering of nodes. To obtain ecient of-
loading in large scale scenarios, we proposed DROiD, a re-injection based ooading scheme
that adapts to the dissemination evolution improving the distribution of popular contents.
DROiD tracks the evolution of content difusion through user-sent acknowledgments on
the cellular channel. DROiD ofers better ooading performance than other state of the
art strategies. DROiD perceives when the evolution of the content difusion lags, reacting in
advancewith respect to traditional strategies that consider only the actual infection rate. Sim-
ulationswere carried out to conrm that the proposed strategy consistently improves existing
ooading systems, performing sometimes better than an oracle that has the real-time full pic-
ture of the ad hoc connectivity of the entire network. We also evaluated our system against
more conventional AP-based systems, in addition to the impact that the implementation of
energy-saving strategies at terminal-level has on the overall eciency and fairness. The easy-
to-implement heuristic for content re-injection proposed by DROiD helps operators save
large amount of data trac, allowing them to better manage their network resources.

6.1.3 O LTEM  D2D C

In this chapter, we rst explored the shortcomings of existing multicast implementations in
cellular networks. Multicast alone targets similar use-cases as ooading, and in line of princi-
ple is an advantageous strategy to distribute popular data into a cellular network. However,
the user with the worst channel quality inside the multicast group determines performance.
To counter the ineciencies of cellular multicast, we proposed a framework that exploits
D2D capabilities at UEs. The proper balance ofmulticast andD2D transmissions is achieved
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by using a multi-armed bandit learning strategy. We proposed and evaluated two diferent
algorithms under variable multicast group size and reception deadline. Simulation results
prove that D2D communications allow increasing the multicast transmission rate, saving re-
sources and improving the overall cell throughput. At the same time, the analysis demon-
strates that both algorithms have a reasonable convergence time. D2D communications are
an efective means of ooading multicast trac in LTE networks, improving resource uti-
lization at the eNB and increasing the available cell throughput.

6.1.4 I  D2D O

Incentives are a fundamental issue in D2D ooading. We proposed a novel analytical frame-
work for D2D ooading that captures the diferences between seeders and forwarders. This
approach allows mobile operators to nely control the dissemination evolution through ex-
ternal controls such as infrastructure injections and promotion of seeders as forwarders. Op-
timal strategies trade of the cost in terms of network and monetary resources with the to-
tal dissemination rate. Afer formalizing the difusion and the cost model, we applied the
Pontryagin’sMaximumPrinciple to devise an optimal ooading strategy that minimizes the
distribution costs for the operator. One of the main strengths of the model is that every pa-
rameter can be tuned easily. The solution is evaluated numerically for a sample cost-function.
We demonstrated its sensitivity to diferent values of the contact rate and delay-tolerance, and
evaluated the advantages of the proposedmodel over the simple interested-forwarder model.
In particular, whenwehave enough time exibility, introducing the separation between seed-
ers and forwarders help cellular operators optimize the cost related to the ooading process.

6.2 O C  P

Mobile data ooading remains a new and very hot topic, frequently identied as one of the
enablers of next-generationmobile networks. Future research directions are manifold. Efec-
tive ooading systems require a tighter integration within the 3GPP and the wireless broad-
band infrastructures. Additional features still need to be developed to handle mobility of
users, distributed trust, session continuity, and optimized scheduling policies. Ooading
strategies may take advantage both of the AP connectivity and D2D communication oppor-
tunities. An unied architecture requires reconsidering existing wireless network paradigms.
Therefore, future cellular architectures should intelligently support the distribution of het-
erogeneous classes of services, including real-time and delay-tolerant ows, to cope with an
overall trac increase of several orders of magnitude. A ne comprehension of data trac
and mobility patterns of nodes is required. It is critical to understand which types of trac
can be safely diverted on complementary data channels and which cannot, based on their de-
livery requirements. Additionally, fundamental research should focus on how nodes move
and meet, creating communication opportunities in a ne-grained fashion.
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Besides research challenges, the implementation of ooading strategies results in a vari-
ety of practical challenges. Academia and industry must tackle such challenges in order to
make ooading a viable answer to the mobile data overload problem. To date, both tech-
nical and adoption-related challenges complicate the widespread introduction of ooading.
The foremost technical challenge is related to the lack of awidely acceptedmechanism to han-
dle transparently several ows in parallel on diferent interfaces (nor protocols resilient to link
failures, communication disruptions, and capable of handling substantial reception delays).
As pointed out throughout the dissertation, various mechanisms have been proposed, but
there is not yet a consensus on a de-facto standard. From the user perspective, a major con-
cern comes from the dramatic battery drain of multiple wireless interfaces simultaneously
turned on, even in idle mode. As of today, this combined use will seriously reduce the bat-
tery life of mobile devices. Possible solutions may be the design of low-powered network
interfaces or the implementation of energy saving policies (a sort of duty cycle to switch on
and of network interfaces), although privacy concerns prevent network operators to force a
device to turn on and of a network interface.

Regarding user adoption, we should not forget that user collaboration, especially in the
opportunistic approach, is essential for any ooading strategy. In order to make ooad-
ing feasible, end-users must accept to share some resources (battery, storage space, etc.), and
their wireless interface should be turned on. The central question here is how to motivate
users to participate. Mobile operators should propose a business concept for rewarding their
customers, to make ooading attractive and fully functional at the same time with user par-
ticipation. Additional issues lie on the security and privacy plan of users employing mobile-
to-mobile transmissions. Users rarely accept anyone stranger to access data stored on their de-
vices. Further challenges include the development of an infrastructure to ensure distributed
trust and security to terminals involved in the ooading process.

A key question concerns the role of the network provider in the ooading process. In
our work, we proposed network-centered ooading strategies, where the cellular network
controls ooading. However, the debate is still open. Should the operator drive carefully the
ooadingprocess, or are end-nodes suciently autonomous todecide for themselves the best
ooading strategy? In other words, future implementations should clarify how much the
ooading process will be user-driven or operator-driven. Both strategies present advantages
and disadvantages. An operator may have a better view of the overall network, while a user
may have only a local and obviously partial view. On the other hand, an operator-driven
ooading strategy may tend to give priority to a certain type of trac or class of users, while
a distributed ooading strategy may result more fair. The debate on these issues is still very
open, and more research is needed along the lines introduced in this thesis.
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B
Résumé de la thèse en français

B.1 I

Les réseauxmobiles sont une partie intégrante de notre vie quotidienne. Leurs capacités per-
mettent des applications qui auraient été inconcevables il y a seulement dix ans. Poussé par la
popularité croissante des appareils mobiles intelligents et l’introduction de plans de données
abordables par les opérateurs cellulaires, le trac mobile mondial est en plein essor. Des ap-
plications mobiles riches en données, telles que les ux audio et vidéo, les réseaux sociaux, ou
les services basés sur le cloud, sont de plus en plus populaires parmi les utilisateurs. Durant le
laps de temps qu’aura pris la rédaction de cette thèse (2012 - 2015), le trac de données mobile
a été multiplié par trois, et devrait augmenter de près de dix fois d’ici à 2019. Il est également
prévu que les deux tiers de ce trac soient liés à la vidéo (avec ou sans exigences de temps
réel) en 2017. Les réseaux cellulaires subissent une forte pression en essayant de faire face à
cette surcharge sans précédent de données. Accueillir cette croissance nécessite d’importants
investissements à la fois dans le réseau d’accès radio (RAN) et dans le cœur du réseau. Les util-
isateurs doivent partager les mêmes ressources limitées sans l, ce qui pose des problèmes de
capacité. Des progrès considérables sont constamment faits à la couche physique pour aug-
menter le débit, mais cela n’est ni susant, ni rentable pour faire face à l’augmentation de la
demande. Ce problème concerne principalement les opérateursmobiles, car ils doivent veiller
à ce que le client soit satisfait, ainsi qu’à la rentabilité des entreprises, compte tenu de la ten-
dance vers des modèles d’afaires à forfait. En d’autres termes, l’augmentation exponentielle
du trac circulant dans leur RAN ne génère pas susamment de revenus supplémentaires
à allouer à d’autres améliorations de RAN. Cela crée ce que Molleryd et d’autres. appellent
l’écart de reven.
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Figure B.1: Les deux principales approches de délestage comparés à (i) un système d’infrastructure traditionnelle, (ii)

délestage à travers d’un point d’accès sans fil, (iii) délestage grâce aux transmissions de dispositif à dispositif (D2D).

B.1.1 L  :  

Ces circonstances ont favorisé l’intérêt des méthodes alternatives pour atténuer l’auence
sur le réseau cellulaire. Dans cette thèse, nous portons notre attention vers l’une de ces so-
lutions, qui a récemment suscité l’intérêt de la communauté de la recherche : le délestage
de données mobiles. Une approche intuitive qui consiste à tirer parti de la bande passante
inutilisée à travers diférentes technologies sans l. Dans ces conditions, nous dénirons le
délestage comme l’utilisation d’une technologie sans fil pour transférer d donné ciblé, à
l’origine, pour circuler à travers un réseau cellulaire, afin d’améliorer certains indicateurs cl
de performance. Outre l’avantage évident de soulager la charge du réseaud’infrastructures, dé-
placer les données sur une technologie sans l complémentaire conduit à un certain nombre
d’autres améliorations, y compris l’augmentation du débit, la réduction du temps de récep-
tion du contenu, l’extension de la couverture du réseau, l’augmentation de la disponibilité
du réseau et une meilleure ecacité énergétique. Ces améliorations concernent, à la fois, les
opérateursmobiles et leurs utilisateurs. Par conséquent, le délestage est souvent décrit dans la
littérature comme une stratégie gagnant-gagnant. Malheureusement, tout cela a un coût, et
un certain nombre de dés doivent être relevés, principalement ceux liés à la coordination de
l’infrastructure, à lamobilité des utilisateurs, ainsi qu’à la continuité de service, la tarication,
et les modèles d’afaires.

Pour la commodité du lecteur, nous montrons dans la Fig. B.1 les deux principales ap-
proches de délestage dans les réseaux cellulaires en comparaison avec le mode traditionnel
qu’utilise seulement l’infrastructure (Fig. B.1a). Détourner le trac via des points d’accès
Wi-Fi xes, comme dans la Fig. B.1b, représente une solution classique pour réduire le trac
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sur les réseaux cellulaires. Les destinataires situés à l’intérieur d’une zone de couverture Wi-
Fi (généralement beaucoup plus petite que celle d’une macro cellule) pourraient l’utiliser
comme une alternative intéressante au réseau cellulaire quand ils ont besoin d’échanger des
données. De plus, la popularité croissante des smartphones proposant plusieurs options de
communication permet de déployer un réseau de dispositif à dispositif (D2D) qui repose
sur la communication à courte portée directe entre les utilisateurs mobiles, sans aucune né-
cessité d’un’infrastructure de support (Fig. B.1c). Le délestage D2D représente un sujet de
recherche majeur au cœur de cette thèse. Bénéciant d’intérêts partagés entre des utilisateurs
co-localisés, un fournisseur de services cellulaires peut décider d’envoyer un contenu popu-
laire uniquement à destination d’un sous-ensemble d’utilisateurs via le réseau cellulaire, en
leur laissant la mission de propager l’information grâce à des communications D2D.

B.2 T 

Au-delà de la distinction évidente entre les approches basées sur l’utilisation de points d’accès
Wi-Fi et l’utilisation de transmissions D2D déjà mentionnées dans l’introduction, un autre
aspect joue un rôle majeur dans la catégorisation du délestage. Plus particulièrement, nous
tenons compte des exigences en termes de garanties de livraison des applications générant le
trac. Pour cette raison, nousprenons en considérationunedimension temporelle dansnotre
classement, selon le délai que les données peuvent tolérer lors de la livraison. Cela se traduit
en deux catégories supplémentaires : (i) le délestage non-retardé et (ii) le délestage retardé.

Nous considérons donc ces deux dimensions orthogonales (garanties de retard de livraison
et approche technique), qui correspondent à quatre combinaisons possibles. La plus grande
diférence entre ces deux mécanismes (retardés et non-retardés) résulte de la façon dont la
réception du contenu est manipulée.

Les diverses formes de délestage sont très diférentes, tant en termes d’infrastructure réseau,
qu’au niveau des exigences de retard de livraison. Malgré cela, il est possible identier, à partir
des solutions spéciques, un certain nombre de fonctionnalités génériques qui composent le
systèmede délestage. Le dé est d’aller au-delà de ce qui est fait aujourd’hui, qui est essentielle-
ment un processus initié par l’utilisateur. Cette analyse est importante en vue de l’intégration
des capacités de délestage pour une future architecture des réseaux mobiles. La plupart de la
littérature que nous avons analysée envisage un coordinateur de délestage, qui est une en-
tité spéciquement dédiée à la mise en œuvre de la stratégie de délestage. Sa tâche principale
est de piloter les opérations de délestage en fonction des conditions du réseau, des demandes
faites par les utilisateurs, ainsi que de la politique opérateur. Alors que le coordinateur est
conceptuellement représenté par une seule entité, son emplacement physique dans le réseau
peut varier, et parfois samise enœuvre peut être totalement distribuée. Cependant, il est pos-
sible d’identier, parmi tous, trois blocs fonctionnels interdépendants pour le coordinateur
de délestage : (i) le suivi, (ii) la prévision, et (iii) la gestion des interfaces inter-réseau.
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• Le suivi fournit des méthodes pour suivre la propagation des données en temps réel et
les demandes de l’utilisateur, et pour récupérer des informations contextuelles à partir
de nœuds et du réseau. Ces informations sont nécessaires pour évaluer et exécuter la
stratégie de délestage. Le bloc de suivi nécessite souvent la présence d’un canal de con-
trôle persistant qui permet aux utilisateurs naux d’interagir avec le coordinateur du
délestage.

• La prévision permet au coordinateur d’anticiper la façon dont le réseau évoluera sur
la base des observations passées. Les prédictions typiques traitent de la mobilité, des
modèles de contact, ou encore du débit attendu. Ces prédictions sont ensuite utilisées
pour piloter le processus de délestage plus ecacement.

• Une gestion intégrée d interfac de communications permet d’exploiter en parallèle le
bénéce de chaque interface disponible. Des concepts tels que l’équilibrage de charge,
lamaximisation du débit, le contrôle de congestion, ou bien laQoE (Quality of Experi-
ence) se rapportent à ce bloc fonctionnel. En exploitant ces informations, le réseau lui-
même sera en mesure d’identier la situation actuelle et d’optimiser ses performances.

Mais il y a bien d’autres sujets transversaux qui ressortent de l’analyse de la littérature. Par
exemple, la gestion de la mobilité, de la comptabilité, et des aspects liés à la conance, mais
aussi la sécurité, sont essentiels pour permettre le délestage dans les réseaux mobiles. Ceux-ci
peuvent être considérés comme les blocs fonctionnels de base que les réseaux mobiles de-
vraient ofrir an de pouvoir fournir une réelle capacité de délestage. Quoi qu’il en soit, nous
soulignons que, en fonction de la mise en œuvre spécique, les fonctionnalités proposées
peuvent être absentes.

B.3 L’       

Nous proposons un système, appelé DROiD (Re-injection dérivative pour le délestage de
données), qui aide les opérateurs mobiles à soulager leur réseau d’accès en exploitant à la fois
la présence de points d’accès Wi-Fi et les possibilités de transmission directe entre utilisateurs
(D2D). La caractéristique principale deDROiD est de s’adapter à l’hétérogénéité de lamobil-
ité des utilisateurs. Après avoir exécuté des difusions épidémiques sur des traces de mobilité
réelles, nous avons observé que la progression de la difusion suit une évolution caractéris-
tique par paliers, comme en Fig. B.2. Des périodes de progression rapide s’alternent avec
des périodes où la difusion stagne; en particulier, les plateaux correspondent aux périodes
pendant lesquelles la difusion ne fait pas de progrès, car aucun des nœuds sains ne rentre en
communication avec des nœuds déjà infectés. Nos recherches nous ont permis de déterminer
que le principal responsable de ce phénomène n’est autre que l’hétérogénéité de la mobilité
des utilisateurs.

Pour modéliser cette hétérogénéité, nous adoptons un modèle de processus de Poisson
marquée des contacts entre les nœuds. Dans ce modèle, les temps de contact de deux nœuds
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Figure B.2: Diffusion épidémique du contenu. La diffusion alterne des zones escarpées et des zones plates qui sont le

résultat de l’évolution des probabilités de rencontre entre les nœudsmobiles.

(i, j) suivent un processus de Poisson de taux λij = λpij . Le temps d’inter-contact Tij est
donc exponentiel indépendant avec paramètre λij , et la matrice C = (pij) capte les modes
d’interaction entre les nœuds. Dans le cas homogène,C est lamatrice d’identité, à savoir, tous
les nœuds peuvent se voir l’un l’autre avec la même probabilité. À chaque instant du proces-
sus de difusion, un ensembleS de nœuds est infecté. Nous sommes intéressés par la durée du
plateau aléatoire T ps au cours duquel la difusion ne progresse pas. Ceci correspond au temps
au cours duquel cet ensemble de nœuds infectés ne contactent aucun autre nœud. En regar-
dant les liens entre les nœuds dans l’ensemble S et son complément, nous remarquons que
T
p
S = infi∈S,j /∈S Tij . Par calcul de Poisson, et notant la valeur de seuil ∂S =

∑

i∈S,j /∈S pij ,
nous voyons que T ps est une variable aléatoire exponentielle de paramètre λ∂S. La durée de
plafonnement prévue, une fois que l’ensemble S a été atteint, est donc 1/λ∂S.

À partir de cette connaissance théorique, nous illustrons le fonctionnement de DROiD
dans la Fig. B.3. Le processus de difusion est contrôlé par un canal de retour persistant qui
relie les utilisateurs mobiles avec un coordinateur de délestage. Cette boucle de commande
permet d’anticiper la décision de réinjection. Le systèmedétecte la formation de plateaux dans
l’évolution de la difusion du contenu. Si nécessaire, il déclenche également la réinjection de
copies supplémentaires dans le systèmepour contrôler nement la vitesse à laquelle le contenu
est difusé. DROiD conduit à de meilleures performances que les stratégies précédentes dans
la littérature, qui sont bornées à des fonctions empiriques qui restent xe pour l’ensemble du
processus de difusion.

B.3.1 E

Nous étudions la façon dont notre système fonctionne sous la contrainte d’une livraison ser-
rée, lorsque le retard maximum de réception D est compris entre [30, 180] secondes. Cela
contraste avec ce qui se fait dans la littérature, qui ne tient qu’ exclusivement compte de
longues échelles de temps pour la réception du contenu (jusqu’à quelques heures).
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Figure B.3:Modèle de DROiD : Le processus de diffusion commence par des transferts depuis les station de base cel-

lulaires et/ou des points d’accèsWi-Fi. Le contenu est diffusé parmi les appareils mobiles, grâce à des contacts oppor-

tunistes. Lors de la réception du contenu, les utilisateurs informent le coordinateur en utilisant le canal cellulaire de

rétroaction. Comme les messages d’accusé de réception sont en général beaucoup plus petits que les messages de don-

nées, on obtient une réduction significative de trafic cellulaire. Le coordinateur central peut décider à tout moment de

réinjecter des copies à travers le canal cellulaire pour stimuler la propagation. Les 100% du taux de livraison dans le

délai sont atteints grâce aux réinjections finales.

Nous considérons un service d’informations de trac basé sur la localisation ; les contenus
sont publiés périodiquement, l’un perd son utilité quand un nouveau est créé (un seul con-
tenu est actif dans le système). Le contenu qu’on vise comprend des données géo-pertinents
telles que la circulation et les travaux routiers, des alertes localisées, des informations d’utilité
publique ou bien de publicité ; néanmoins, le système proposé prend également en charge
la distribution des mises à jour logicielles pour les véhicules connectés et les appareils mo-
biles. Selon la stratégie de distribution utilisée, les contenus peuvent être livrés soit directe-
ment à travers le réseau cellulaire (omniprésent), soit à travers des points d’accèsWi-Fi à prox-
imité, soit récupérés par le nœuds voisins de façon opportuniste. Malgré le fait que nous
considérons tous les utilisateurs comme intéressés par le contenu, l’utilisation combinée du
paradigme Publish-Subscribe et des messages d’accusé de réception rend le système facilement
extensible dans le cas demultiples contenus et d’intérêts non uniformes. Les utilisateurs peu-
vent aussi entrer et sortir de la zone d’intérêt à tout moment, en ayant un impact sur les ré-
sultats, comme nous le verrons plus tard.

DROiDfonctionne très bien en termes de réductionde charge sur l’infrastructure, en four-
nissant la majorité du trac grâce à des communications D2D, même dans le cas de délais de
livraison très serrés. Nous rappelons que tous les nœuds qui entrent dans la zone d’intérêt
sont ciblés pour recevoir le contenu, indépendamment de leur temps de séjour dans le sys-
tème. Par conséquent, la charge de la stratégie Infra, qui considéré seulement des transmis-
sions sur le réseau cellulaire, augmente avec la durée de vie du message. Les résultats de sim-
ulation, tracées dans la Fig. B.4 achent le trac moyen par message qui circule à travers
l’infrastructure et les interfacesD2D.Dans cette image, nous comparonsDROiDet les straté-
gies de référence pour illustrer comment DROiD décharge constamment, une quantité im-
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Figure B.4: Charge sur l’infrastructure et le D2D parmessage envoyé en fonction des strategies Infra, Oracle, et DROiD.

Différents retards de réceptionmaximale pour les messages sont considérés.

portante de données. Dans la simulation de Bologne, DROiD s’approche d’un oracle qui
connait à toutmoment la connectivité opportuniste des nœuds. Cependant, dans le scénario
de Koln, nous remarquons que DROiD surpasse l’oracle en termes de trac déplacé sur les
interfaces D2D des nœuds.

Les brusques variations du taux d’infection, dues aux nœuds entrant et quittant la zone
de simulation, sont bien gérées par le mécanisme de rétroaction de DROiD. Alors que la
charge de la stratégie Infra augmente de manière constante dans les deux scénarios (comme
une durée de vie plus longue implique un nombre plus important de nœuds qui entrent dans
le système), la charge cellulaire pour Oracle et DROiD restera toujours à peu près la même.

B.3.2 D

Dans cette contribution, nous avons, dans un premier temps, apporté la preuve que la dif-
fusion épidémique s’efectue par paliers ; cela dépend fondamentalement de la dynamique
de regroupement des nœuds. Nous avons ofert une explication analytique de ce comporte-
ment. Pour obtenir un délestage ecace dans un tel contexte, nous avons proposé et évalué
DROiD, une stratégie de déchargement à faible complexité qui s’adapte à l’évolution de la
difusion opportuniste pour améliorer la distribution du contenus populaires à travers un
réseau hybride mobile.

B.4 D       D2D

Traditionnellement, lemulticast permetd’économiser les ressources dans lebackbonedu réseau.
Lemulticast cellulaire améliore l’utilisationdu lien radio entre la stationdebase et les équipements
d’utilisateurs. En exploitant la nature broadcast du canal sans l, le multicast utilise une
seule liaison unidirectionnelle, partagée entre plusieurs utilisateurs au sein d’une même cel-
lule radio. En dehors des transmissions unicast, le LTE propose un service de difusion op-
timisée grâce à l’eMBMS (enhanced Multicast Broadcast Multimedia Service), une spécica-
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tion point-à-multipoint pour transmettre des données de la station de base cellulaire (eNB)
à un groupe d’entités utilisatrices (UEs). Dans l’eMBMS, toutes les UEs qui appartiennent
au même groupe reçoivent la même transmission. Ceci permet, en principe, une utilisation
plus ecace des ressources du réseau par rapport au cas où chaque UE est atteint à travers
des transmissions unicast dédiées. Cependant, en dépit de ses caractéristiques attrayantes, le
multicast dans le LTE présente des problèmes intrinsèques, et encore non résolus, qui lim-
itent son exploitation, notamment (i) l’adaptation à l’utilisateur avec le pire canal, et (ii) le
manque de abilité.

L’hétérogénéité du canal (variantdans le temps et dépendantde l’utilisateur) réduit l’ecacité
du multicast car l’eNB utilise une seule transmission pour l’ensemble des participants. La
modulation et le codage sélectionnés doivent être susamment robustes pour assurer la ré-
ception et le décodage des données pour chaque UE dans le groupe de multicast. Ainsi, le
pire canal parmi tous les récepteurs dicte la performance. Il en résulte que l’augmentation du
nombre d’utilisateurs dans le groupe de multicast augmente la probabilité qu’au moins un
utilisateur connaisse de mauvaises conditions de canal, dégradant le débit global. En outre,
des utilisateurs dans des bonnes conditions de canal reçoivent un débit inférieur à leurs ca-
pacités, en raison de leur appartenance au groupe de multicast. En misant sur des communi-
cations D2D, nous pouvons obtenir des gains de performance en termes de ressources radio
(blocs de ressources, RBs) consommées à l’eNB. Des utilisateurs bien positionnés peuvent at-
ténuer les inecacités du multicast, en relayant le contenu aux nœuds en mauvais condition
de canal, grâce aux communications opportunistes. Malgré le fait que les avantages d’une
stratégie de distribution hybride (multicast et D2D) soient évidents, sa conception fait face à
plusieurs dés spéciques aux domaines opportuniste et sans l :

• Le bénéce de la livraison opportuniste dépend de la conguration de la mobilité des
utilisateurs. En outre, les réseaux opportunistes ne peuvent donner qu’une assurance
partielle de réception.

• Pour ofrir le minimum de qualité de service requis quant aux utilisateurs, tout en
garantissant des économies de ressources, il est essentiel de diviser, de façon optimale,
les utilisateurs entre la réception multicast et D2D.

Étant donné qu’une solution optimale n’est pas concevable sans une connaissance pré-
cise des motifs de contacts futurs, nous nous attaquons au problème d’un point de vue pra-
tique. Nous adoptons une approche d’apprentissage par renforcement pour décider quelle
fraction d’UE devra être atteinte à travers la transmission multicast et quelle fraction devra
être attente en D2D. Un contrôleur central installé à l’eNB est en charge, pour chaque pa-
quet à difuser, de cette décision. Chaque décision se traduit par une certaine utilisation de
ressources du réseau cellulaire (RBs), ce qui génère une récompense associée à ce choix. Cette
récompense est ensuite utilisée pour guider (de façon probabiliste) les choix futurs du con-
trôleur. En raison des nombreuses similitudes dans la formulation, nous adoptons la tech-
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nique d’apprentissage par renforcement appelé bandit manchot multi br pour mettre en
œuvre cet algorithme.

B.4.1 S 

Nous nous adressons à la difusion du contenu pour un ensemble d’utilisateurs mobiles dans
une cellule LTE. Comme dans notre contribution précédente (DROiD), chaque utilisateur
intègre à la fois une interface cellulaire (LTE) et une technologie à courte portée qui permet
des communications D2D. Dans les simulations menées, nous considérons le standard IEEE
802.11g. En revanche, l’intégration future des capacités de D2D dans la norme LTE pourrait
aussi être utilisée. Nous voulons transmettre des données avecune garantie dedélaimaximum
de réceptionD, et ce au moindre coût pour l’infrastructure cellulaire.

Au lieu d’aborder toutes les UEs intéressées par une seule transmission multicast – qui se
traduirait probablement par un coût élevé en termes de RBs utilisés – nous adressons seule-
ment un sous-ensemble des UEs (ceux avec la meilleure qualité de canal), en exploitant des
communications opportunistes pour atteindre les autres. La difusion opportuniste est, par
dénition, peu able, car elle dépendde plusieurs facteurs hors du contrôle de l’infrastructure
cellulaire (par exemple, le modèle de mouvement des nœuds, la variabilité des voisins oppor-
tunistes, ou encore les interférences sur le canal D2D). La stratégie de délestage qui nous pro-
posons ici est essentiellement le même que DROiD. La diférence est que l’injection initiale
est efectuée par l’intermédiaire de transmissions multicast, et les réinjections sont réalisées
seulement dans la zone de panique. Lorsque le retard de service atteint sa valeur maximale
D, l’eNB pousse toutes les données manquantes vers les nœuds non infectés en utilisant des
transmissions unicast. Bien sûr, les transmissions unicast représentent la dernière opportu-
nité pour assurer la réception des données. Dans ce schéma, le coût de difusion aux UEs
intéressées provient de (i) le coût de la transmission initiale de multicast, et (ii) le coût des
transmissions unicast dans la zone de panique. La Fig. B.5 ofre un exemple représentatif
de la stratégie de difusion proposée. Pour éviter le nivellement vers le bas en raison de la
présence d’UEs avec des mauvaises conditions de canal, l’eNB émet à une modulation qui ne
leur permet pas de recevoir. Dans la phase de difusion opportuniste, les UEs bénécient des
noeuds à proximité an de récupérer les données par le biais de transmissions D2D.

Il est évident qu’un tel système admet un point de fonctionnement optimal. Réduire
l’ensemble desUEs atteint par lemulticast réduit le cout d’envoi. Toutefois, cela peut être payé
avec des coûts supplémentaires à cause des transmissions unicast dans la zone de panique, si
les UEs initialement non ciblées ne sont pas atteints assez rapidement par les transmissions
D2D. Identier ce point de fonctionnement optimal est compliqué, parce que le coût de
chaque conguration possible dépend de la mobilité future des nœuds (inconnue au mo-
ment de la transmission multicast). Plus précisément, le problème que nous abordons est le
suivant : comment sélectionner la configuration initiale d utilisateurs destin à être atteints
en utilisant d transmissions multicast, avec l’objectif de minimiser l ressourc nécessair
pour la diffusion du contenu.
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Figure B.5: Les utilisateurs peuvent décoder les données avec un schéma demodulation donné en fonction de leur qual-

ité de canal. L’eNB peut décider de transmettre enmulticast avec un débit plus élevé. Les utilisateurs incapables de

décoder les données sont atteints par des liens D2D et les retransmissions de panique finales.

Dans notre système, nous utilisons un seul paramètre I0 qui représente la fraction d’UEs
qui reçoivent la transmission initiale en multicast. Cela signie que l’eNB, dans un premier
temps, atteint seulement les meilleurs I0 UEs en termes de qualité de canal. Trouver la façon
optimale de congurer I0 n’est pas banal. Alors que le coût de la transmission multicast est
déterministe, le coût des transmissions unicast nécessaires dans la zone de panique est une
variable stochastique qui dépend de la mobilité des UEs pendant le cycle de vie du contenu.
Nousmodélisons ce problème à l’aide d’une approche d’apprentissage par renforcement (RL)
que nous résolvons avec la stratégie du bandit manchot multi bras. Notre système est, en
efet, capable d’apprendre demanière autonome la distributiondes valeurs de I0, en observant
l’efet des diférentes congurations sur le coût résultant de la difusion d’un contenu. Sans
connaissance préalable sur la mobilité des nœuds, trouver la meilleure répartition des valeurs
de I0 est le seul choix pratique pour une stratégie d’apprentissage.

B.4.2 A ’

La formulation de l’algorithme bandit manchot multi bras peut être spécialisée comme suit.
Tout d’abord, dans notre problème chaque bras du bandit correspond à un seuil I0 diférent.
Il en résulte que la distribution Fdi représente la quantité de RBs qui sont utilisés pendant
le processus de difusion lorsque I0 est utilisé comme seuil. Plus précisément, di = mi +
xi, où mi est le numéro xe et connu de RBs utilisés pour une transmission multicast au
MCS nécessaire pour atteindre les I0 meilleurs UEs en termes de qualité de canal, et xi est la
variable aléatoire qui modélise le nombre total de ressources utilisées pour les transmissions
unicast au cours de la zone de panique. Dans notre cas, chaque tour correspond à la difusion
d’un contenu composé d’unemultitude de paquets qui sont transmis de façon indépendante.
Après le délai maximum de réception du contenu, la récompense pour chaque seuil est mise
à jour. En supposant que I0 = i ait été utilisé pour l’énième transmission, la récompense
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obtenue est calculée comme suit :

µi(n) =
1

mi + xi(n)
· (B.1)

Pour estimer dynamiquement le récompense moyenne µi(n) nous utilisons une moyenne
mobile exponentielle classique avec taux α.

La politique pour choisir la prochaine valeur de I0 se base sur desméthodes d’apprentissage
qui ont été proposées dans la littérature pour les problèmes de bandit manchot multi bras.
La stratégie plus simple est l’algorithme �-greedy qui sélectionne la valeur de I0 avec la ré-
compense cumulée maximale avec une probabilité (1 − �). Une autre classe d’algorithmes
d’apprentissage est connue commeméthode de la poursuite (pursuit-method), dans lequel les
probabilités sont sélectionnées pour renforcer la dernière sélection gourmande. Plus précisé-
ment, si i∗(n) est la valeur de I0 avec la récompensemaximale, alors juste avant de sélectionner
le MCS pour la transmission du énième paquet, la probabilité est renforcée comme suit :

πi∗(n)(n) = πi∗(n)(n− 1) + β[πMAX − πi∗(n)(n− 1)], (B.2)

tandis que toutes les probabilités non gourmandes sont mises à jour comme suit :

πi(n)(n) = πi(n)(n− 1) + β[πMIN − πi(n)(n− 1)], i �= i∗, (B.3)

ou πMAX , πMIN sont respectivement la limite supérieure et inférieure que la probabilité
πi(n)(n) prenne ∀i, n. Dans les équations B.2 et B.3, le choix gourmand est augmentée, mais
jamais audelà deπMAX , et le non-gourmand est réduit,mais jamais en dessous deπMIN . Cela
garantit que laméthode de poursuite est enmesure de faire face à la possible non-stationnarité
du problème que nous étudions, à savoir le fait que la distribution des récompenses puisse
changer au l du temps en raison de la mobilité sous-jacente.

B.4.3 E

Nous considérons comme cas d’usage la distribution de contenus dans un scénario piéton
comme dans un centre commercial ou un point de repère touristique bondé. Nous simu-
lons des ux constant UDP, avec des paquets de taille sk = 2048 octets et une taille du
contenu total de 8 MO. Chaque paquet est distribué indépendamment des autres en util-
isant l’algorithme de bandit manchot multi bras. La mobilité synthétique des UEs est mise
en œuvre selon un modèle Random-Waypoint sur un zone de 200 × 200 m2. Les nœuds
se déplacent dans cet espace avec une vitesse se situant entre 1 et 2, 5m/s (vitesse piétonne).
Le réseau est composé d’un eNB placé au centre de la zone d’intérêt, un serveur distant qui
fournit les contenus, et des multiples dispositifs mobiles. Étant donné que ns-3 ne supporte
pas nativement le multicast LTE, nous avons mis en place un module supplémentaire qui
interagit avec l’ordonnanceur de paquets pour émuler les efets du multicast en une seule cel-

115



lule. Le module de multicast reçoit les informations sur la qualité de canal (CQIs) de chaque
UE, et décide la fraction d’UEs à atteindre directement, c’est-à-dire le paramètre I0. La bande
passante allouée pour le service de multicast est xé à 5 MHz. En outre, nous avons mis en
œuvre un mécanisme de routage DTN épidémique aux nœuds. La découverte de voisins est
mise en œuvre par le biais d’un protocole de balisage déclenché toutes les 250ms.

Nous comparons notre proposition avec quatre stratégies diférentes pour la livraison des
contenus. Les principaux indices de performance que nous considérons dans l’évaluation
sont (i) le nombre deRBs utilisés par l’eNBpour délivrer le contenu et (ii) le taux de délestage.
Les stratégies de difusion envisagées sont les suivantes :

• M- est la stratégie de base, où les UE n’ont aucun autre moyen que le
réseau cellulaire pour recevoir des données.

• F- minimise le nombre de RBs avec une allocation statique des utilisateurs
de multicast (I0 reste xe pendant toute la durée de la simulation). Étant donné que
la taille optimale du groupe demulticast est inconnue, nous avons efectué des simula-
tions pour trouver expérimentalement la valeur de I0 quiminimise l’utilisationdeRBs.
Cette stratégie représente la référence expérimentale pour lesméthodes d’apprentissage.

• �- estime la récompense en utilisant lamoyennemobile exponentielle. Ce sim-
ple algorithme sélectionne la valeur avec la meilleure récompense de I0 avec une prob-
abilité de 1 − �. Dans notre implémentation, nous avons sélectionné � = 0.05 et
α = 0.5.

• P sélectionne I0 suivant la méthode présenté dans les équations B.2 et B.3.
Dans ce cas, la probabilité d’émission poursuit l’action gourmande en s’adaptant à
l’évolution temporelle du système. Dans la simulation, nous avons xé β = 0.3,
πMIN = 0.01 et πMIN = 0.95.

Les techniques d’apprentissage permettent d’économiser jusqu’à 88deRBs pour un scé-
nario avec délai de livraison xé à 90 s par rapport à la stratégie Multicast-only. En général,
la solution proposée se rapproche et même dépasse Fixed-best en plusieurs occasions. Ces
résultats conrment qu’une synergie dans l’utilisation des transmissions multicast et D2D
permet d’importantes économies de ressources à l’eNB. Les stratégies de RL peuvent trouver
de manière autonome le meilleur compromis entre multicast et D2D en un délai raisonnable
(toujours inférieure à 1 heure) – sans chercher intensivement tout l’espace de paramètres.
Nous pouvons observer dans la Fig. B.6 le processus d’apprentissage pour le délai le plus serré
qu’on considère (30 s). Les stratégies pursuit et �-greedy ont besoin de temps pour apprendre
la distribution la plus appropriée pour I0. Une fois formés, leur performance est souvent à la
hauteur ou mêmemieux que la stratégie représentée par Fixed-best, où la valeur de I0 est xe
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Figure B.6: Utilisation de RB pour les stratégiesMulticast-only (noir), �-greedy (blue), Fixed-best (vert), et pursuit method

(rouge).

et pré-calculée. Dans cette dernière stratégie, la performance est stable sur toute la période de
difusion, mais ce chifre est le résultat d’un processus étendu de trial and error. Un autre
avantage des techniques d’apprentissage est que, bien que déjà formées, elles continuent à ex-
plorer l’espace des solutions, étant capables de faire face à la non-stationnarité du processus
de contact qui régit la difusion opportuniste.

En revanche, nous nous rendons compte que la méthode �-greedy, en raison de sa sim-
plicité, ne correspond pas bien aux scénarios qui présentent une variabilité importante de la
difusion opportuniste. Dans ces cas, la méthode pursuit est mieux adaptée. D’autre part,
dans les scénarios où la variabilité du processus opportuniste est faible – comme dans le cas
où le délai de livraison est long – l’approche �-greedy permet des temps de convergence plus
rapides. La Fig. B.6 donne des indications sur le montant réel de RBs consacrées à distribuer
des données dans les scénarios envisagés. Contrairement à beaucoup d’autre approches dans
la littérature, l’utilisation du simulateur ns-3 nous permet d’évaluer précisément la quantité
de ressources radio consommées au eNBpour la distribution de chaque paquet. La Fig. B.7 se
concentre sur la méthode de la poursuite et sépare les paquets par leur méthode de réception.
Bien que dans un scénario avec un plus grand nombre d’UEs les occasions de contact oppor-
tunistes se multiplient, beaucoup d’entre elles ne sont pas exploitées de manière adéquate,
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Figure B.7:Méthode de réception dans Pursuit. Les lignes pointillées se réfèrent à la stratégie Fixed-best. Le contenu est

divisé en 4000 paquets de 2048 octets.

puisque les UEs peuvent transmettre à un seul voisin à la fois. Le résultat est que la part des
UEs adressée par les transmissions D2D est limitée. Cependant, même si la fraction d’UEs
adressés par les transmissions D2D est limitée (par exemple, 20  dans le scénario avec 50
UEs), l’avantage résultant en termes d’économie de RBs est beaucoup plus élevé (au moins
55 ).

B.4.4 D

Nous avons présenté une stratégie de distribution hybride, en misant conjointement sur le
multicast LTE et les communications D2D opportunistes, enn de distribuer des contenus
populaires avec des retards de livraison garantis. Le multicast est une option avantageuse
pour distribuer des données dans un réseau cellulaire. Cependant, la performance dans une
cellule est déterminée par l’utilisateur avec la pire qualité de canal. Nous avons donc proposée
une solution basé sur des techniques d’apprentissage pour lutter contre les inecacités du
multicast cellulaire et distribuer une partie du trac en utilisant des communications D2D
entre les terminaux. Les résultats de simulation montrent que la stratégie proposée permet
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Figure B.8: Processus de délestage: l’infrastructure sélectionne deux nœuds comme des porteurs du contenu (fig. B.8

(a)), en décidant que l’un des porteurs devraient être promus comme relayeur (figure B.8 (b)). Plus tard, l’infrastructure

estime qu’il vaut la peine de promouvoir un autre nœud, car les transmissions D2D ne suffisent pas à garantir une diffu-

sion suffisante (Fig. B.8(c)).

de congurer la transmission multicast d’une manière plus ecace, améliorant l’économie
des ressources et le débit global de la cellule.

B.5 L   D2D     

L’ecacité des stratégies dedélestageD2D, telles que celles introduites précédemment, dépend
de la participation des utilisateurs en tant que relais opportunistes. Des récompenses sont
alors nécessaires pour stimuler la participation et motiver les utilisateurs qui agissent comme
relais de données. Les propositions existantes supposent, en efet, que tous les porteurs du
contenu (seeds en anglais) soient, par défaut, aussi des relayeurs dans le domaine D2D. Une
telle hypothèse peut conduire à des résultats non optimaux lorsque les relayeurs doivent être
récompensés pour la transmission du contenu au nom de l’infrastructure. Dans un scénario
de ce type, des communications D2D incontrôlées peuvent générer des coûts supplémen-
taires sans nécessairement apporter des gains à la difusion des données. No proposons
d’introduire une séparation claire entre l porteurs et l relayeurs, comme lemontre la Fig. B.8.
Les porteurs reçoivent du contenu à travers des injections via l’infrastructure cellulaire, mais
seulement les nœuds promus comme relayeurs sont ensuite autorisés à transmettre le con-
tenu de façon opportuniste (en D2D). Avec cette séparation entre porteurs et relayeurs, les
opérateurs disposent d’un degré de liberté supplémentaire. L’équilibre entre coût instantané
et avantages futurs portés par les décisions d’injection et promotion est stratégique pour la
difusion des données, étant donné que les ressources disponibles (bande passante et récom-
penses) sont limitées.

Nous formulons le délestage opportuniste commeunproblèmede contrôle optimal,mod-
élisant l’évolution de la difusion d’un contenu en utilisant une variante du modèle clas-
sique SIR. Le contenu d’intérêt peut inclure des mises à jour logicielles, des informations
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géo-localisées, des mises à jour sur l’état de la circulation, mais aussi de la publicité ciblée. Des
applications de sécurité publique peuvent également bénécier des communications D2D.
Dans le modèle proposé, certains utilisateurs demandent des données, c’est-à-dire qu’ils sont
intéressés par un certain contenu. Pour cette raison, nous considérons, en premier lieu, que
tous les nœuds se trouvent dans l’état intéressé. À ce stade, l’opérateur ne peut utiliser que des
transmissions cellulaires pour atteindre un sous-ensemble d’utilisateurs intéressés (qu’on ap-
pellera des injections). Les nœuds intéressés qui reçoivent le contenu passent à l’état porteurs,
toujours sans jouer aucun rôle dans la distribution des données. À ce stade, le coordinateur
peut promouvoir une fraction d’entre eux vers l’état relayeur pour difuser le contenu.

Une incitation pour récompenser la participation des utilisateurs comme relayeurs peut
être oferte en utilisant des systèmes de crédits virtuels ou de remises. La promotion vers
l’état de relayeur ne représente pas un coût en soi, mais permet aux utilisateurs d’être récom-
pensés pour la distribution du contenu en D2D. À côté des coûts pour les injections et les
récompenses, le modèle qu’on propose considère ainsi des coûts indirects, parce que la frac-
tion de nœuds non infectés (ou insatisfaits) à la n de la durée de vie du contenu dépend de la
stratégie de délestage adoptée. Le système se compose deN nœuds mobiles et d’un contenu
unique qui devra être distribué par l’infrastructure avant la n de sa durée de vie T . Suite à
la notation introduite ci-dessus, les nœuds peuvent être dans les états intéressé, porteur, ou
relayeur. Leurs fractions respective sont nI(t), nS(t), nF (t).

Dans le monde réel, le système sous observation peut être décrit avec des valeurs discrètes
(par exemple, le nombre d’utilisateurs présents, le nombre de transmissions cellulaires efec-
tuées). Au contraire, pour faciliter la modélisation, nous prenons en compte des valeurs con-
tinues pour les états et les contrôles. Nous supposons que la valeur deN soit grande, et que
les rencontres soient homogènes, c’est-à-dire, les nœuds ont lamêmeprobabilité de se rencon-
trer. Conformément à la littérature, nous utilisons un modèle qui est exact pour une grande
population. La difusion opportuniste entre utilisateurs mobiles est considérée comme la
propagation des maladies infectieuses. De la même manière qu’une infection dans une pop-
ulation, le contenu se propage à partir des relayeurs aux intéressé quand une telle paire entre
en proximité physique. L’évolution des états est donc décrite par un système d’équations
diférentielles avec un ensemble de contraintes initiales et nales.

Nous considérons un coordinateur de délestage central qui gère les injections (intéressé
→ porteur) et les promotions (porteur → relayeur). Dans le modèle proposé, les injections
cellulaires augmentent la vitesse à laquelle les nœuds quittent l’état intéressé vers l’état por-
teur. L’intensité des injections est représentée par uI(t), ce qui est une fonction délimitée
et intégrable au sens de Lebesgue avec 0 ≤ uI(t) ≤ 1 ∀t ∈ [0, T ]. Par conséquent,
uI(t)nI(t) ≤ Imax(t) décrit le taux des copies injectés. La vitesse d’injection est limitée à
tout instant par Imax(t), qui est une mesure de la charge instantanée disponible sur le réseau
cellulaire. Les nœuds porteurs stockent le contenu, mais ils doivent être promus an de con-
tribuer à la difusion des données. Cela se fait par l’intermédiaire d’un canal de contrôle qui
relie les utilisateurs et le coordinateur central. Par conséquent, les nœuds abandonnent l’état
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porteur avec intensité uS(t), qui est une fonction délimitée et intégrable au sens de Lebesgue
avec 0 ≤ uS(t) ≤ 1 ∀t ∈ [0, T ]. Cela augmente la fraction de nœuds dans l’état relayeurs
d’un taux uS(t)nS(t). Par conséquent, le système d’équations qui suit contrôle l’évolution
des états intéressés, porteurs et relayeurs dans le système est :

dnI(t)

dt
= −λ(t)nI(t)nF (t)− uI(t)nI(t), (B.4a)

dnS(t)

dt
= uI(t)nI(t)− uS(t)nS(t), (B.4b)

dnF (t)

dt
= λ(t)nI(t)nF (t) + uS(t)nS(t), (B.4c)

La stratégie de délestage optimale consiste à minimiser le nombre de nœuds encore dans
l’état intéressé au tempsT , tout enmettant enœuvre une campagne d’injection et promotion
avisée. Si les opérateurs n’avaient pas de limites de capacité ou monétaires, alors la stratégie
optimale serait d’injecter la quantité maximale de données via le canal cellulaire. Lorsque la
capacité est limitée, les opérateurs doivent améliorer leur stratégie d’un point de vue opéra-
tionnel et budgétaire. Dans l’équation B.5, nous considérons une fonction de coût J qui est
assez générale pour saisir diférents types de coûts supportés par les opérateurs:

J(T ) = Φ[nI(T )]
 

récompense nale

+

T∫

0

f [uI(t)nI(t)]
 

injection

+ g[λnI(t)nF (t)]
 

recompense D2D

dt. (B.5)

où Φ[nI(T )] est la récompense nale, représentant le coût encouru par l’opérateur pour
n’avoir pas satisfait la fraction d’utilisateurs nI(T ) avant la n de la validité du contenu.
f [uI(t)nI(t)] tient compte du coût en termes de ressources réseau pour les injections sur
le canal cellulaire. Enn, les nœuds relayeurs sont récompensés avec g[λnI(t)nF (t)] chaque
fois qu’ils font une transmission opportuniste. L’intégrale dépeint le coût croissant au l du
temps de ces deux derniers termes. Le contrôle de la promotionuS n’apparaît pas à l’intérieur
de la fonction de coût. En efet, promouvoir un nœud vers l’état relayeur ne génère pas di-
rectement un coût pour l’opérateur. Cependant, une fois dans l’état relayeur, les nœuds sont
en mesure de transmettre des données de façon opportuniste et être éventuellement récom-
pensés par l’opérateur.

Le système peut être contrôlé par le tuple < uI , uS > appartenant à l’ensemble de tous
les contrôles admissibles. L’idée est de minimiser la fonction de coût J , sous réserve des con-
traintes dans l’évolution des états identiés dans l’équation. B.4 :
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min
uI(t),uS(t)∈U

J, (B.6a)

subject to:
dnI

dt
= −λ(t)nI(t)(1− nI(t)− nS(t))− uI(t)nI(t), (B.6b)

dnS

dt
= uI(t)nI(t)− uS(t)nS(t), (B.6c)

nF (t) ≥ 0, nI(t) ≥ 0, nS(t) ≥ 0,

nI(t) + nF (t) + nS(t) = 1,

nI(0) = i0, nS(0) = s0, nf (0) = 1− i0 − s0. (B.6d)

L’existenced’une solutionoptimale est prouvéeutilisant le théorèmeFilippov-Cesari. Nous
appliquons le principe maximale de Pontryagin pour résoudre le problème ci-dessus et trou-
ver le contrôle optimal. Considérez le solutionoptimale de l’Eq.B.6< n∗I(.), n

∗

S(.), u
∗

I(.), u
∗

S(.) >.
Alors, des fonctions adjointes continues et continûment diférentiable à morceaux p∗i (t) et
p∗s(t) que maximisent la fonction hamiltonien existent :

H(nI,S, uI,S, pi,s, t) =− f [uI nI ] (B.7)

− g[λnI (1− nI − nS)]
+ pi[−λnI(1− nI − nS)− uInI ]
+ ps[uInI − uSnS].

Les équations adjointes optimales sont :

p∗i (t) = −∂H(.)

∂nI





n∗

I,S
,u∗

I,S
,p∗i,s

= (B.8a)

=
∂f(.)

∂nI
+
∂g(.)

∂nI
− pi [λ (2nI − 1 + nS)− uI ]− ps uI ,

p∗s(t) = −∂H(.)

∂nS





n∗

I,S
,u∗

I,S
,p∗i,s

= (B.8b)

=
∂g(.)

∂nS
− piλnI + psuS.

Dans la suite, nous considéronsune fonction exponentielle pour la récompense naleΦ(x) =
ex − 1, une fonction en loi de puissance pour les injections directes f(x) = bxα (α ≥ 2), et

Les variables avec l’exposant étoiles (par exemple, u∗

I
(t)) représentera la valeur à l’optimum.
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Figure B.9: Optimal offloading for different contact ratesλ. T = 10s. Other parameters: Imax = 0.1,α = 2,
b = 10, c = 1, i0 = 1, s0 = 0.

une fonction linéaire g(x) = cx pour récompenser les relayeurs. En raison de l’espace limité
disponible, nous sautons la dérivation de la solution, qui suit une tractation standard, et qui
nous fournissons directement.

Étant donné que f(x) est strictement convexe, nous pouvons extraire u∗I(t) en utilisant la
condition hamiltonien de maximisation ( ∂H

∂uI
= 0 évaluée à l’optimum), ainsi que la limita-

tion de la vitesse d’injection maximale:

u∗I(t) =
min[max[ψ(t), 0], Imax]

nI(t)
, ψ(t) =

α−1

√

pi(t)∗ − ps(t)∗
−α b . (B.9)

Comme l’équation B.7 est linéaire dans les variables de contrôle uS , la condition de max-
imisation est trivialement satisfaite et indépendante de uS . Le contrôle dans ce cas est ap-
pelé singulier avec une solution bang-bang, à savoir, une commande qui bascule de manière
discontinue entre un extrême à l’autre. Nous dénissons la fonction de commutation σ =
(psnS). Par construction uS ∈ [0, 1], donc il suit que u∗S(t) = 1(−σ).

Pour résoudre le système d’équations diférentielles couplées, nous adoptons le shooting
method à partir du package R bvpSolve pour calculer l’évolution des variables d’état ainsi que
le contrôle optimal. la Fig. B.9 propose un exemple des variables d’état et de contrôle pour
diférentes valeurs du taux de contact λ. En général, les injections sont plus fortes au début
et à la n de la période de difusion (Fig. B.9b).

Les promotions (Fig. B.9c) achent trois motifs diférents. Pour λ = 0, 1, le contrôle
est toujours à son maximum. Dans des scénarios avec un faible taux de contact, consid-
érer un état porteur additionnel n’apporte aucune amélioration. Dans les deux autres cas,
la stratégie optimale ne prévoit pas une transition indiscriminée vers l’état relayeur. Par ex-
emple, λ = 0.5 présente un comportement on-of, avec des promotions qui se terminent
lorsque le montant des relayeurs atteint des niveaux signicatifs. Enn, quand λ = 1, la
promotion est déclenchée seulement après la moitié de la période de difusion. Bien qu’à
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Figure B.10: Fonction de coûtJ pour la stratégie optimale en utilisant deuxmodèles de délestage (porteur-relayeur et

deux-état), variant le delay de délestageT ,λ = 0.5, Imax = 0.1,α = 2, b = 10, c = 1.

première vue cela peut sembler contre-intuitif, nous ne devons pas oublier que dans le mod-
èle proposé les opérateurs doivent récompenser chaque transmission de D2D efectuée par
les utilisateurs. Nous tirons la leçon que dans un régime de taux de contact élevé, la difusion
opportuniste doit être limitée an d’économiser les ressources monétaires.

Nous étudions aussi quand il est utile d’envisager une séparation entre les porteurs et les
relayeurs. Nous comparons notre modèle à unmodèle à deux états classique, où tous les por-
teurs sont également relayeurs. Fig. B.10 montre l’évolution de la fonction de coût J divisée
par ses trois composantes principales Φ(T ), F (T ) et G(T ). Avec des délais courts, lorsque
les nœuds ont peu de possibilités de contact, le modelé à deux états a un léger avantage en
terme de coût, vu que J est dominée par la récompense naleΦ(T ).

Inversement, pour des délais plus longs, le modèle à trois états améliore considérablement
la fonction de coûtJ . PourT > 5, le nombre de nœuds non infectés à la date limite diminue,
réduisant le poids de Φ(T ) sur le coût global. La plus grande partie de J est due à la ré-
compense des relayeurs opportunistes (décrit parG(T )). Le coût pour récompenser les util-
isateurs augmente linéairement pour le modèle à deux états avec le délai de délestage. Un
nombre incontrôlé des relayeurs interfère avec la volonté des opérateurs de réduire les coûts
opérationnels. Une séparation entre les porteurs et les relayeurs ofre unemeilleure exibilité
dans le contrôle de l’évolution de délestage, permettant la mise en œuvre de stratégies moins
coûteuses.

B.5.1 D

Nous avons proposé un cadre analytique pour le délestage opportuniste qui capte les dif-
férences entre les porteurs et les relayeurs. Avec notre approche, les opérateurs mobiles sont
en mesure de contrôler nement l’évolution de la difusion à l’aide des contrôles externes tels
que les injections à travers l’infrastructure et les promotions des porteurs en relayeurs. Nous
avons ensuite appliqué le principe maximal de Pontryagin pour concevoir une stratégie de
délestage optimal qui minimise les coûts de distribution pour l’opérateur. L’un des princi-
paux avantages dumodèle proposé est que chaqueparamètre peut être facilement réglé. Nous
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avons démontré sa sensibilité à des diférentes valeurs du taux de contact et de tolérance aux
délais de livraison. Nous avons également évalué les avantages du modèle proposé en le com-
parant à un modelé classique à deux états. En particulier, nous avons démontré que, lorsque
nous avons des délais de livraisons susamment longs, l’introduction d’une séparation entre
les nœuds semoirs et les nœuds relayeurs est fortement bénéque pour un opérateur cellu-
laire.

B.6 C  

L’utilisation globale des données mobiles a connu une augmentation spectaculaire au cours
des dernières années, engendrée par le boom du marché des dispositifs mobiles. Les prévi-
sions, qui atteignent une croissance égale à aujourd’hui pour les prochaines années, appel-
lent à des stratégies ecaces pour faire face à cette montée. À compter d’aujourd’hui, les
opérateurs sont déjà sous forte pression, en essayant de recevoir un quantité sans précédent
de trac mobile sur leurs réseaux. Par conséquent, ils doivent intervenir avec d’importants
investissements à l’échelle de leurs réseaux d’accès. Néanmoins, les dépenses pour acheter
plus de bandes, ou pour construire des stations de base, sont très élevées. Malheureusement,
l’augmentation de la capacité du réseau oferte par ces méthodes ne pourra pas suivre la crois-
sance du trac.

Le délestage de données mobiles représente une solution bon marché pour soulager la
charge sur l’infrastructure du réseau mobile, tout en bénéciant des technologies complé-
mentaires existantes, en déplaçant les données sur des réseaux alternatifs moins encombrés.
Le débat suscité par cette thèse préconise fortement l’utilisation de réseaux alternatifs d’accès
mobile à des ns de délestage. Plus précisément, nous nous sommes concentrés sur un type
de délestage, basé sur l’échange direct de données entre utilisateurs, utilisant des communica-
tions de dispositif à dispositif (D2D). L’idée étant de proter de l’augmentation de la densité
d’utilisateurs mobiles, ainsi que de la tolérance aux retards d’un certain nombre de types du
contenu pour déplacer une partie du trac du canal primaire (cellulaire) vers un canal deD2D
alternatif.
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