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Résumé vulgarisé

Nous nous sommes intéressés à la possible fonction de la structure temporelle de l'activité neuronale pendant l'évolution dynamique de réseaux de neurones qui peuvent sous-tendre des processus cognitifs.

Tout d'abord, nous avons caractérisé le code qui permet de lire l'information contenue dans des signaux neuronaux enregistrés dans le cortex cingulaire antérieur dorsal (CCAd). Le signal émis par les cellules neurales (les neurones) comporte une série de perturbations stéréotypiques du potentiel électrique, appelées potentiels d'action. Ce signal neuronal peut donc être caractérisé par le nombre et le temps des potentiels d'action émis durant une certaine situation comportementale.

Les données actuelles ont mis en évidence que le CCAd est impliqué dans les processus d'adaptation comportementale à de nouveaux contextes. Cependant, les mécanismes biologiques qui sous-tendent ces processus d'adaptation comportementale sont encore mal compris. Nos analyses suggèrent que la variabilité importante du nombre de potentiels d'action émis par les neurones, ainsi que la abilité temporelle conséquente de ces potentiels d'action (qui est améliorée par la présence de corrélations entre les temps d'émission des potentiels d'action), avantagent les réseaux neuronaux qui sont considérablement sensibles à la structure temporelle des signaux qu'ils reçoivent. Cet avantage se traduit par une augmentation de l'ecacité du décodage de signaux émis par des neurones du CCAd lorsque les singes changent de stratégie comportementale. Nous avons aussi cherché à déterminer les caractéristiques de la variabilité neuronale qui peuvent prédire la variabilité comportementale de l'animal. Quand nous avons séparé les données entre un groupe avec un grand nombre de potentiels d'action, et un groupe avec un faible nombre de potentiels d'action, nous n'avons pas trouvé pas de diérence robuste et cohérente du comportement des animaux entre ces deux groupes. Par contre, nous avons trouvé que lorsque l'activité d'un neurone devient moins semblable à la réponse typique de ce neurone, les singes semblent répondre plus lentement pendant la tâche comportementale. Plus précisément, nous avons observé que l'activité d'un neurone semble pouvoir se diérencier de sa réponse typique tantôt par une augmentation du nombre de potentiels d'actions émis, tantôt par une réduction de ce nombre. De plus, des imprécisions sur le temps d'émission des potentiels d'action peuvent mener à une déviation du signal neuronal par rapport à la réponse typique.

Nos résultats suggèrent que le réseau, ou les réseaux de neurones qui reçoivent et décodent les signaux d'adaptation comportementale émis par le CCAd pourraient être adaptés à la détection de motifs dénis à la fois dans l'espace (par l'identité du neurone ayant émis un potentiel d'action) et dans le temps (par le moment précis d'émission d'un potentiel d'action).

Par conséquent, ces réseaux de neurones ne se comportent probablement pas comme des intégrateurs, qui sont des circuits dont le niveau d'activité reète approximativement la somme des potentiels d'actions reçus pendant une certaine période de temps.

Dans un second temps, nous avons travaillé à mieux comprendre les méchanismes par lesquels le réseau de neurones décodant les signaux du CCAd pourait détecter un motif spatiotemporel. Pour cela, nous avons développé des équations qui réduisent la complexité du réseau en représentant l'ensemble des neurones par quelques statistiques représentatives. Nous avons choisi un modèle de neurone qui est capable de reproduire l'activité de neurones corticaux en réponse à des injections dynamiques de courant. Nous avons pu approximer la réponse de populations de neurones connectées de manière récurrente, lorsque les neurones émettent des potentiels d'action de façon assez irrégulière et asynchrone (ces caractéristiques sont communes dans les réseaux biologiques). Ce travail constitue une avancée méthodologique qui pourrait être le point de départ d'une étude des mécanismes par lesquels les reseaux de neurones récurrents, qui semblent être à l'origine des processus cognitifs, peuvent être inuencés par la dynamique temporelle de leurs signaux d'entrée.

vi

Abstract

We investigated the putative function of the ne temporal dynamics of neuronal networks for implementing cognitive processes.

First, we characterized the coding properties of spike trains recorded from the dorsal Anterior Cingulate Cortex (dACC) of monkeys. dACC is thought to trigger behavioral adaptation. We found evidence for (i) high spike count variability and (ii) temporal reliability (favored by temporal correlations) which respectively hindered and favored information transmission when monkeys were cued to switch the behavioral strategy. Also, we investigated the nature of the neuronal variability that was predictive of behavioral variability. High vs. low ring rates were not robustly associated with dierent behavioral responses, while deviations from a neuron-specic prototypical spike train predicted slower responses of the monkeys. These deviations could be due to increased or decreased spike count, as well as to jitters in spike times. Our results support the hypothesis of a complex spatiotemporal coding of behavioral adaptation by dACC, and suggest that dACC signals are unlikely to be decoded by a neural integrator.

Second, we further investigated the impact of dACC temporal signals on the downstream decoder by developing mean-eld equations to analyze network dynamics. We used an adapting single neuron model that mimics the response of cortical neurons to realistic dynamic synaptic-like currents. We approximated the time-dependent population rate for recurrent networks in an asynchronous irregular state. This constitutes an important step towards a theoretical study of the eect of temporal drives on networks which could mediate cognitive functions.
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An invitation to study the sensitivity of recurrent neuronal networks implementing cognitive computations to temporal signals

In this dissertation, we examine the characteristics and the functional relevance of the temporal structure of neuronal signals, in the context of cognitive processing and of recurrent neuronal networks. In order to explain the interest of this work, we will start by giving a very brief general introduction about the biological implementation of brain computations in general, and of cognitive processes in particular. We then introduce some classical models which are used to help explaining cognitive processes (such as memory or decision-making). Finally, we motivate the topic of the doctoral work, and we give a road map for the dissertation.

Background: neurons, networks, brain areas and brain processing

The computations performed by the brain are thought to occur through the dynamics of connected populations of neurons [START_REF] Gerstner | Neuronal Dynamics[END_REF]]. The neurons are indeed often considered as the basic units of neuronal processing. They are connected together over dierent spatial scales, ranging from connections within a layer of a small patch of cortex [START_REF] Avermann | Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex[END_REF]] to connections between brain areas that implement dierent types of brain processing [START_REF] Medalla | Synapses with inhibitory neurons dierentiate anterior cingulate from dorsolateral prefrontal pathways associated with cognitive control[END_REF]; [START_REF] Boucsein | Beyond the cortical column: abundance and physiology of horizontal connections imply a strong role for inputs from the surround[END_REF]]. We rst review basic single neuron properties, before sketching examples of how connected 

Neurons as basic units for brain processing: facts and experimental techniques

Here, we describe how the neurons, which are the basic cellular units which compose the brain, can emit, transmit and receive signals. We then briey expose the experimental techniques permitting to study neuronal activity, which we will refer to later in the dissertation. We rst explain how neuronal activity can be recorded. We nally describe the techniques by which neurons may be articially stimulated, and the limits of these techniques.

Basic mechanisms of single neuron function

Throughout this section, we will summarize basic facts about single-neuron dynamics. As a reference, we rely on [START_REF] Gerstner | Neuronal Dynamics[END_REF]]. Neurons are cells possessing an excitable membrane. A suciently strong increase of the electric potential of this membrane, which can be induced by an injection of electrical charges inside the neurons, can trigger a positive feedback mechanism which actively amplies the membrane potential increase. This leads to a prototypical excursion of the membrane potential followed by a reset of this potential to a baseline value.

This prototypical time-course of the membrane potential is commonly referred to as a spike (or, equivalently, an action potential).

Each spike red by a neuron is a signal which can trigger the release of a chemical, called a neurotransmitter, at specialized sites called synapses. Synapses are the connection points through which neurons can interact. More precisely, a neuron possesses a long tubular membrane extension from the cell body, which is called an axon. This axon then typically forms several branches, that terminate at dierent synaptic sites which are situated close to the membrane of receiving neurons. The receiving contact sites are usually situated rather close to the main body of the neuronal cell. These post-synaptic input sites may be regrouped on specialized neuronal extensions called dendrites [Llinas (2008)].

When a rst (so-called pre-synaptic) neuron emits a spike, the depolarization of the membrane potential is transmitted along the axon. This causes the release of neurotransmitter molecules at the synaptic sites. These transmembrane proteins which then act as channels that specically allow some types of ions to travel across the membrane.

Some neurons, called excitatory neurons, send excitatory neurotransmitters.

These neurotransmitters trigger an increase in the membrane potential referred to as a depolarization of the post-synaptic neuron. The most prominent types of excitatory neurons are the pyramidal neurons, which are named after their shape [START_REF] Spruston | Pyramidal neuron[END_REF]].

Other neurons are inhibitory: they send neurotransmitters which trigger a decrease in the membrane potential referred to as a hyperpolarization of the post-synaptic neuron. Most of the interneurons, which are small neurons primarily sending local connections, are inhibitory [START_REF] Freund | Interneurons[END_REF]].

Depending on the nature of the receptor, the duration of the episode of charge entry after a pre-synaptic spike may vary. For instance, excitatory receptors such as those of the AMPA type (named after a molecule, the α-amino-3-hydroxy-5methyl-4-isoxazolepropionic acid, that can bind to them) possess a fast time scale of one or two milliseconds. Other excitatory receptors, named NMDA receptors (for N-Methyl-D-aspartate, a molecule that can bind to them) have a longer timescale of about a hundred milliseconds. Several time-scales also exist for inhibitory receptors. Finally, the electric charges coming from many synapses are summed in the post-synaptic neuron and they trigger changes of its membrane potential. This phenomenon generally involves a low-pass ltering due to the neuronal membrane properties, and a non-linearity. Finally, if the membrane potential of the postsynaptic neuron is suciently depolarized, a post-synaptic spike may be triggered in response to the input electrical charges received at the synapses.

Note that these points will be expounded more formally and quantitatively in the theoretical part of the dissertation.

We will now explain how neuronal activity may be studied through neuronal recordings.

CHAPTER 1. AN INVITATION TO STUDY THE SENSITIVITY OF RECURRENT NEURONAL NETWORKS IMPLEMENTING COGNITIVE COMPUTATIONS TO TEMPORAL SIGNALS

Recording neuronal activity

The activity of neurons may be recorded through electrodes. Electrodes are devices that measure a dierence of electrical potential, which relates to the dierence in the density of electrical charges between two recording areas. In our case, one of these recording areas is a reference point (the ground) whose potential does not vary, and the other will be either the intracellular area of one neuron, or the extracellular area surrounding one neuron.

Intracellular recordings.

A technique named patch clamp allows experimentalists to seal an electrode tip around a small hole in the membrane of a neuron [START_REF] Moore | Voltage clamp[END_REF]].

Hence, the electrode can sense the intracellular potential of the neuron, which permits to record both the time-course of the potential below the threshold for spiking, and the spikes. This technique hence yields very precise data. However, one of its disadvantages is the requirement to form a stable seal with the neuron. Therefore, this technique is mostly employed in brain slices (i.e., in vitro) and much less often in alive animals (i.e., in vivo).

Extracellular recordings. It is also possible to insert electrodes in the extracellular medium surrounding the neurons. This confers the considerable advantage to permit recordings in awake, behaving animals. However, in this case, the recorded potential is only an indirect measure of the intracellular potential of the neuron. Hence, the signal-to-noise ratio is smaller, and it is only possible to reliably detect the changes of potential occurring during spikes.

Further, given that dierent neurons are at dierent distances from the electrode, and given that dierent neurons can emit spikes of dierent shapes, dierent neurons are likely to yield signals of separable shapes and amplitudes.

Hence, it is possible to classify the detected spikes in dierent clusters which putatively correspond to dierent neurons [START_REF] Harris | Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements[END_REF]]. This technique is referred to as spike sorting. Despite the obvious limitations of the approach, its reliability has been shown to be rather reasonable: between 70 and almost 100% depending on the the specic algorithm (or person...) used to classify spike shapes [START_REF] Harris | Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements[END_REF]]). For instance, renements of this technique involve the insertion of several electrodes, and the detection of a single neuron on several of these.

BACKGROUND: NEURONS, NETWORKS, BRAIN AREAS AND BRAIN PROCESSING

Until recently, technical limitations imposed to insert only a few such electrodes. Hence, typically, only a few neurons could be simultaneously recorded. Today, however, it is possible to insert a large number of ne electrodes and to record a hundred neurons simultaneously [START_REF] Stevenson | How advances in neural recording aect data analysis[END_REF]]. This is of importance to improve the understanding of neuronal computations, as they are thought to emerge from connected populations of neurons (as we will soon explain in more details).

We will now show how the characteristics and the function of the neuronal response to input currents can be investigated through articial stimulations of the neurons.

Artificial stimulation of neurons

Several techniques can be used to stimulate neurons articially. Experimentalist-controlled stimulations can indeed precisely inform about the dynamical response of single neuron to stimulation, and about the function of the neuronal activity in behaving animals.

Stimulation through intracellular current injections. When using the abovementioned patch-clamp technique, it is possible to simultaneously inject charges into the neuron, and record the intracellular membrane potential. This permits to study in great details the input-output function of the neuron. In particular, this technique can be used to quantitatively t a model for the dynamic neuronal response to rich non-stationary input currents [START_REF] Mensi | Parameter extraction and classication of three cortical neuron types reveals two distinct adaptation mechanisms[END_REF]; [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]].

Extracellular stimulation. When using extracellular electrodes, it is also possible to inject electrical current. This will excite a small population of neurons situated close to the electrode tip. This type of stimulation is often used in awake, behaving animals. Indeed, the causal relation between an increased activity in the population of neurons situated close to the electrode tip and the animal's behavior can then be assessed (see [START_REF] Hanks | Microstimulation of macaque area lip aects decision-making in a motion discrimination task[END_REF]] for an example). Note that the success of this approach relies on the fact that in some areas of the brain, neighboring neurons often share similar properties [START_REF] Schall | Topography of visual cortex connections with frontal eye eld in macaque: convergence and segregation of processing streams[END_REF]; [START_REF] Hanks | Microstimulation of macaque area lip aects decision-making in a motion discrimination task[END_REF]].

Optogenetic stimulation. Optogenetics is a new technique that was developed recently, and which permits to modulate the activity of populations of neurons in behaving animals [START_REF] Fenno | The development and application of optogenetics[END_REF]]. This technique relies on making neurons articially express some transmembrane ions channel proteins. This protein expression is controlled through genetic manipulation. The technique can be used with channels that are specic to either positively or negatively charged ions, and which can respectively induce an excitation or an inhibition of the targeted neurons. Importantly, the experimentalist can control the opening of a specic channel type by shining light at a specic wavelength. There are dierent techniques which permit to shine lights on the neurons of interest, which range from the insertion of optical bers in the brain (to target deep brain structures) to the removal of the skull (to target upper cortical layers).

This technique has the considerable advantage to be able to target the stimulated neurons through both the restriction of the area receiving the light, and the expression of the above-mentioned channels. This expression can be controlled by injecting pieces of DNA composed of a part coding for the channel, and of a regulating element which conditions the expression of the DNA to the presence of a particular cell protein (called a transcription factor). Dierent neuron types (such as pyramidal neurons vs. interneurons, or neurons in some specic brain areas) express dierent types of transcription factors. Hence, the stimulation can be specic to such a genetically dened population of neurons. In addition, the DNA can also be engineered such that it is not expressed in the presence of a drug that can be fed or injected to the animal. As a consequence, it is possible to restrict the temporal window when channel expression can occur to a few hours. Finally, increased neuronal activity triggers the expression of a transcription factor (c-Fos), on which the expression of the light-activated channels can be conditioned [START_REF] Liu | Optogenetic stimulation of a hippocampal engram activates fear memory recall[END_REF]]. This can be used to specically target a population of neurons which shows sustained increased activity during a certain behavior of the animal, or when the animal is placed in a given context.

Hence, optogenetic tools can be used to control increased or decreased activity to populations of neurons that either possess a specic transcription factor, or that are specically and strongly activated in a given situation. There are however limitations [START_REF] Ohayon | Saccade modulation by optical and electrical stimulation in the macaque frontal eye eld[END_REF]]. First, it may not be possible to target a desired population of neurons, because these neurons may neither dier genetically from the others, nor show sustained activity during a specic context that can be imposed on the animal to enforce channel expression through c-Fos. Second, in general, the technique cannot be used to enforce a very precise intensity for the stimulation in all targeted neurons, as the intensity depends on both channel expression and light reception. Third, for large animals, there may be a diculty to shine light on a suciently large number of neurons.

Optogenetics is nevertheless an important advance to study populations of neurons, which are thought to shape neuronal computations, as we will now briey review.

Neuronal processing through connected populations of neurons

Dierent neurons may be connected in a feedforward fashion, hence forming a unidirectional chain of elements. An example of such a connectivity layout is the connection from the mammalian touch cutaneous receptors to the second-order touch neurons [START_REF] Moayedi | Mammalian mechanoreception[END_REF]].

Alternatively, the connections between neurons may be recurrent (i.e., with direct or indirect reciprocal connections), as for instance observed in the mammalian prefrontal cortex [START_REF] Wang | Heterogeneity in the pyramidal network of the medial prefrontal cortex[END_REF]].

We now exemplify how these connection schemes relate to dierent types of brain processing.

Sensory processing

The sensory areas of the nervous system, such as the primary visual cortex or the cuneate nucleus of the mammalian brain, receive and process information coming from biosensors, such as the retina or the skin touch receptors [START_REF] Carandini | Area v1[END_REF]; [START_REF] Moayedi | Mammalian mechanoreception[END_REF]].

The sensorial stages of neuronal processing are often a series of feedforwardly connected layers of neurons. We already mentioned the touch system [START_REF] Moayedi | Mammalian mechanoreception[END_REF]]. Another example, for which the feedforward property is approximately realized at a larger spatial scale, is the mammalian visual system. Indeed, the output neurons of the retina project to the thalamus, which in turn project the the primary visual cortex [START_REF] Carandini | Area v1[END_REF]].

CHAPTER 1. AN INVITATION TO STUDY THE SENSITIVITY OF RECURRENT NEURONAL NETWORKS IMPLEMENTING COGNITIVE COMPUTATIONS TO TEMPORAL SIGNALS

The peripheral biological sensors often send complex spatiotemporal signals to the primary sensory areas (e.g. [START_REF] Bialek | Reading a neural code[END_REF]; [START_REF] Johansson | First spikes in ensembles of human tactile aerents code complex spatial ngertip events[END_REF]]). Hence, in this context, it is well accepted that the timing of the emitted spikes is crucial for successful signal transmission. This type of signaling is referred to as temporal coding [START_REF] Panzeri | Sensory neural codes using multiplexed temporal scales[END_REF]].

Cognitive processing: basic facts and classical modeling frameworks

Cognition involves the selection (or the selective combination and processing)

of some relevant information among the diversity of external and internal signals received by the brain. This process allows animals to use external cues and internal representations to fulll internal goals, such as survival [START_REF] Koechlin | The architecture of cognitive control in the human prefrontal cortex[END_REF]; [START_REF] Donoso | Human cognition. foundations of human reasoning in the prefrontal cortex[END_REF]]. Hence, the maintenance of a relevant item in working memory, or the monitoring of some dynamical properties of a stimulus that are relevant for an upcoming decision, are both cognitive processes. In the mammalian brain, the frontal cortical areas are generally thought to be the main drivers of cognitive computations [START_REF] Koechlin | The architecture of cognitive control in the human prefrontal cortex[END_REF]].

Experimental characterization of neuronal cognitive computations.

Experimental recordings in awake, behaving animals have yielded hypotheses for the neuronal correlates of cognitive processes.

For instance, the accumulation of evidence during sensory-based decision-making have been linked to ramping, integration-like ring rate increases in some populations of neurons of the lateral intraparietal cortex [START_REF] Huk | Neural activity in macaque parietal cortex reects temporal integration of visual motion signals during perceptual decision making[END_REF]; [START_REF] Hanks | Microstimulation of macaque area lip aects decision-making in a motion discrimination task[END_REF]; [START_REF] Churchland | Variance as a signature of neural computations during decision making[END_REF]].

In addition, the maintenance of memory items during a delay period have been correlated to a sustained, quasi-steady activity in some neurons of the frontal cortex [START_REF] Funahashi | Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex[END_REF][START_REF] Funahashi | Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic "scotomas[END_REF]; Procyk and Goldman-Rakic (2006)].

Successful theoretical modeling of neuronal cognitive computations through recurrent networks. Compared to other neuroscience elds, cognitive neurocience has been linked to modeling and theory rather early on (e.g., [START_REF] Hopeld | Neural networks and physical systems with emergent collective computational abilities[END_REF]]). This may be explained by the fact that cognitive computations are complex processes whose macroscopic properties were naturally seen as emerging from the combination of the activity of a large 1.1. BACKGROUND: NEURONS, NETWORKS, BRAIN AREAS AND BRAIN PROCESSING 11 number of individual components. These components could not all be monitored simultaneously. Indeed, during decades, it has been impossible to record many individual neurons simultaneously, which limited the understanding of the trial-specic mechanisms leading to a behavioral output. Even though these recording limitations are now being overcome, the issue is only partially solved. Indeed, the challenge is now to make sense of the available complex, high-dimensional data sets. Hence, the need for a simplication through theory was rather obvious from the start and remains valid today.

In consequence, several popular models were proposed to account for the observed neuronal correlates of cognition. Interestingly, in these models, the recurrent properties critically shape the dynamics [START_REF] Compte | Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model[END_REF]; [START_REF] Brunel | Eects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition[END_REF]; [START_REF] Wang | Probabilistic decision making by slow reverberation in cortical circuits[END_REF]; [START_REF] Machens | Flexible control of mutual inhibition: a neural model of two-interval discrimination[END_REF]; [START_REF] Wong | A recurrent network mechanism of time integration in perceptual decisions[END_REF]; [START_REF] Hopeld | Hopeld network[END_REF]; [START_REF] Cain | Computational models of decision making: integration, stability, and noise[END_REF]; [START_REF] Deco | Brain mechanisms for perceptual and reward-related decision-making[END_REF]; [START_REF] Lim | Balanced cortical microcircuitry for maintaining information in working memory[END_REF]]. Through these recurrent connections, these models are indeed able to reproduce critical features of the experimental cognitive-related neuronal responses. Hence, persistent activity [START_REF] Compte | Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model[END_REF]; [START_REF] Brunel | Eects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition[END_REF]], as well as integration-like ramping activity [START_REF] Wang | Probabilistic decision making by slow reverberation in cortical circuits[END_REF]; [START_REF] Machens | Flexible control of mutual inhibition: a neural model of two-interval discrimination[END_REF]], can both be explained by those models.

Networks for cognitive processing are classically thought of reading information through a spatial rate code, rather than a temporal code. In these simple models for cognitive processing, the nal output of the network which will ultimately trigger behavioral changes is classically characterized by a (quasi)-stable state of activity. This nal activity state is usually assumed to depend on the identity of the stimulated neurons, and/or on the number of input spikes received by the network. For instance, the identity of an item held in memory, or the identity of a chosen alternative, could be encoded through a high-activity state sustained by recurrent excitation in a population of neurons [START_REF] Brunel | Eects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition[END_REF]; [START_REF] Deco | Brain mechanisms for perceptual and reward-related decision-making[END_REF]]. Hence, this type of network is characterized by multistability. The state of elevated activity of one recurrent population can be triggered by a transient episode of increased ring in the excitatory inputs it receives. Hence, in this type of models, the putative impact of a temporal structure in the synaptic input is typically not investigated. Furthermore, other popular models for memory and decision-making are the above-mentioned approximate integrator networks [START_REF] Cain | Computational models of decision making: integration, stability, and noise[END_REF]; [START_REF] Lim | Balanced cortical microcircuitry for maintaining information in working memory[END_REF]]. They can accumulate evidence, and hold items in NETWORKS IMPLEMENTING COGNITIVE COMPUTATIONS TO TEMPORAL SIGNALS memory, by ring with a rate that is approximately proportional to the number of spikes received from their external input. Hence, by the intended design of these networks, they should have little sensitivity to the temporal structure of the received external synaptic input.

To summarize, for these cognitive models, the relevant signal is almost always assumed to be contained in the identity of the neurons which re, and in the intensity of their ring. This instantiates a so-called spatial rate coding paradigm. Therefore, the dynamics of the models that we described above has proven to be powerful to give insights about key aspects of cognitive processing, without the need to account for the role of temporal structure.

In addition, the recurrence and the non-linearity of these types of network actually make it dicult to analyze how the temporal structure of the synaptic input could shape their dynamics [START_REF] Gerstner | Neuronal Dynamics[END_REF]]. This helps explaining why the question of a possible function of the input's spike timings had been mostly overlooked in this context. Furthermore, the amplication of spike time noise during the steady-state activity of cortical networks has been used as an argument against the possibility of precisely timed patterns of spikes during cognitive computations [START_REF] London | Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex[END_REF]]. The authors concluded that a temporal coding paradigm, in which the temporal structure of the input is crucial for shaping the dynamics and the nal state of the network, was therefore unlikely to underlie cognitive computations.

Finally, another factor which may have discouraged further investigations about this issue may be linked to the diculty of dening temporal coding in a meaningful and non-trivial way [START_REF] Panzeri | Sensory neural codes using multiplexed temporal scales[END_REF]]. Indeed, even in the simple networks mentioned above, which can work without a crucial function of the input's temporal structure, the ring rates are dynamic. Therefore, a temporal modulation of the neuronal activity does occur in these models of cognitive processing. In this context, temporal structure can be seen as an epiphenomenon, and focusing on it could be considered as detrimental for reaching an understanding of the circuit's function.

In addition, the real circuitry can obviously only be an approximation of the simple rate network models that were proposed for cognitive function. Therefore, some deviations from the simple framework sketched by the models could be seen as bugs rather than features, and focusing on them could again be considered as prejudicial for getting the big picture. For instance, concerning the neural integrator models, biologically plausible implementations [START_REF] Wang | Probabilistic decision making by slow reverberation in cortical circuits[END_REF]; Wong and Wang (2006); [START_REF] Wong | Temporal dynamics underlying perceptual decision making: Insights from the interplay between an attractor model and parietal neurophysiology[END_REF]; [START_REF] Lim | Balanced cortical microcircuitry for maintaining information in working memory[END_REF]] possess a slow leak and a small non-linearity. Notably, the leak term, which implements a low-pass lter [START_REF] Naud | The performance (and limits) of simple neuron models: Generalizations of the leaky integrate-and-re model[END_REF]], will lead to a modulation of the response of the network depending on slow temporal variations of its synaptic input. More precisely, this modulation occurs when the input's temporal variations are about as slow as or slower than the leak time-scale. However, this small leakiness is not assumed to play an important role in neuronal processing in the context of an approximate integrator network. Rather, the leakiness is a consequence of biological limitations. Hence, even though a purely theoretical, perfect integrator would be completely insensitive to its input's temporal structure, a sensitivity to the slow temporal variations of the input cannot be taken as an evidence against the integrator model. Rather, what matters is whether the major properties of the real network are consistent with an approximate integration.

In other words, a naive analysis which would merely report the presence of some temporal structure in the neuronal response is likely to not be very informative about the essence of the neuronal computation at stake.

The relevance of temporal structure for driving networks with cognitive function: an unanswered but nevertheless relevant question

In this context, why would one ask the question of the function of temporal structure during cognitive processing? The answer is simple: the above arguments do not exclude the possibility that a carefully designed study focusing on temporal structure could be insightful for understanding the computations at stake. First, while a network which implements an approximate integration should not by denition be sensitive to the ne temporal structure of its input, there is no reason to believe that the multistable networks are not sensitive to their inputs' spike times. On the contrary, the non-linearity of these multistable networks is actually likely to make them sensitive to their input's temporal structure, even though in general they are only fed simple step-like ring rate inputs. Interestingly, a recent study indeed showed that the input's temporal structure can robustly modulate the dynamics of such networks and could be used to control the probability that the network switches to a [Dipoppa and Gutkin (2013b)].

Hence, evidence for a functional relevance of the input's ne temporal structure could be seen as arguing against the processing of this input by an integrator network.

In addition, such evidence would be compatible with a functional relevance of the non-linear behavior of the decoding network (which processes the temporally structured input).

Despite the numerous possible pitfalls, we therefore feel that it is worth investigating whether or not the input's temporal structure could sizably shape the output of a network implementing cognitive computations. This could indeed be extremely insightful about the basic biological mechanism implementing the computation. Finally, this may in turn have a large impact on our understanding of the function played by this network for shaping the adaptation of the animal's behavior.

Objectives of the doctoral study

During the doctoral study, we rst aimed at investigating to what extent the temporal characteristics of a neuronal signal fed to a network with cognitive function could be consistent with the hypothesis that this network behaves as an integrator (whose sensitivity to temporal structure is weak). To this end, we analyzed data from an area involved in cognition: the dorsal anterior cingulate cortex (dACC). This area is activated in a variety of contexts which require animals to adapt their behavior to dynamic environmental cues [START_REF] Procyk | Anterior cingulate activity during routine and non-routine sequential behaviors in macaques[END_REF]; [START_REF] Procyk | Modulation of dorsolateral prefrontal delay activity during self-organized behavior[END_REF]; [START_REF] Quilodran | Behavioral shifts and action valuation in the anterior cingulate cortex[END_REF]Hayden et al. (2011a,b); [START_REF] Sheth | Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation[END_REF]; [START_REF] Blanchard | Neurons in dorsal anterior cingulate cortex signal postdecisional variables in a foraging task[END_REF]]. A recent theory unied these ndings by suggesting that dACC could transmit a signal which would specify an adapted behavioral strategy, and/or which would quantify to what extent it is worth allocating cognitive resources to update the behavioral strategy [START_REF] Shenhav | The expected value of control: an integrative theory of anterior cingulate cortex function[END_REF]].

Interestingly, the latter signal (referred to as expected value of control) is a scalar, one-dimensional quantity which could naturally be encoded through dierent intensities of ring. This signal could in turn be easily decoded and maintained in memory by a downstream neural integrator network. In addition, the literature suggests that dACC activity is read out by the dorsolateral prefrontal cortex during cognitive processing [START_REF] Procyk | Modulation of dorsolateral prefrontal delay activity during self-organized behavior[END_REF]; [START_REF] Rothé | Coordination of high gamma activity in anterior cingulate and lateral prefrontal cortical areas during adaptation[END_REF]; Shenhav et al. (2013). Interestingly, the dorsolateral prefrontal cortex is an area which has been shown to behave similarly to an integrator in some contexts ( [START_REF] Kim | Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque[END_REF], but see [START_REF] Rigotti | The importance of mixed selectivity in complex cognitive tasks[END_REF]; [START_REF] Hanks | Distinct relationships of parietal and prefrontal cortices to evidence accumulation[END_REF]]).

Hence, it was relevant to consider and probe the possibility that dACC activity could be decoded by an approximate neural integrator, which would have a very weak sensitivity to dACC spike timing.

We therefore wished to test the presence of a temporal structure in dACC activity that would be functionally relevant. More precisely, we intended to assess this functional relevance in terms of improvement of the decoding of dACC activity during cognitive control, as well as in terms of correlation between dACC activity and future behavior of the animal.

A second important objective of the doctoral project was to propose a plausible neuronal network which could process dACC activity in a way that would be consistent with the conclusions of our data analysis. More precisely, the aim was to deepen the understanding of the mechanisms by which temporal structure could participate to shaping the dynamics of the network decoding dACC spike trains.

Road map of the dissertation

This introduction, which sketches the general approach taken during the doctoral work, constitutes Part I of the dissertation.

Part II reports data analysis results which show evidence in favor of a spiketiming sensitive, non-linear decoder of cognitive-control related discharges. This part of the dissertation corresponds to a rearrangement of a recently published article [Logiaco et al. (2015)]. In order to show the entirety of the results, we present this part of our research through a seamless and slightly enriched text, in which the relation of the results to modeling has been extended. This presentation of our data analysis incorporates the supplementary information of the published article. We note that we used the gures as they were made for this article. Many were supplementary gures, which were often made a posteriori to answer reviewer's comments. This implies that these gures often relate to dierent subsections of the new layout. We apologize for the inconvenience that this may cause during the reading of the manuscript. In this part of the dissertation, we rst introduce in more details the state-of-the-art knowledge about dACC signaling during cognitive control, as well as the denition of temporal coding (in chapter 2).

We then describe our analysis methods in chapter 3. After this, we present our results in chapter 4. Finally, we discuss the implications for the function of the neuronal network(s) which process dACC signals in chapter 5.

Part III describes a simple analytical tool permitting to investigate the impact of the input's temporal structure on the dynamics and function of recurrent neuronal networks. This part starts with a preamble explaining our working hypothesis for the dynamics of the network processing dACC activity (in chapter 6). We also explain why the previously existing theoretical tools revealed insucient to permit a satisfying analysis of such a network. This preamble is followed by an an introduction (chapter 7), which expounds the unfullled need for mathematical expressions describing the dynamics of networks of recurrently connected single-neuron models which can be tted to neuronal recordings. These expressions have to account for the high variability of neuronal spiking during functional cortical activity, as well as for the strong adaptation properties of excitatory neurons. We then describe in chapter 8 the mathematical analysis we developed to ll this gap in the theoretical literature. After this, we present some tests for the accuracy of our analytical results, as well as some applications, in chapter 9. We mention how our new theoretical tool could be used to tackle in more details the question of the processing of dACC activity by a recurrent neuronal network. Finally, we discuss the novelty of our theoretical results in chapter 10.

Part IV concludes the dissertation. It summarizes how the doctoral work contributed to deepen the understanding of how the temporal structure of neuronal activity could be functionally relevant during cognitive computations implemented by recurrent neuronal networks.

Part II

Evidence for a spike-timing-sensitive and non-linear decoder of cognitive control signals

Chapter 2

Introduction: signals for behavioral strategy adaptation in the dorsal Anterior Cingulate Cortex

Cognitive control is the management of cognitive processes. It involves the selection, treatment and combination of relevant information by the brain, and it allows animals to extract the rules of their environment and to learn to respond to cues to increase their chances of survival [START_REF] Koechlin | The architecture of cognitive control in the human prefrontal cortex[END_REF]; [START_REF] Ridderinkhof | The role of the medial frontal cortex in cognitive control[END_REF]]. Evidence strongly suggests that frontal areas of the brain, including the dorsal anterior cingulate cortex (dACC), are involved in driving this behavioral adaptation process. However, the underlying neuronal mechanisms are not well understood [START_REF] Shenhav | The expected value of control: an integrative theory of anterior cingulate cortex function[END_REF]].

Cognitive control is most often thought to be supported by long time-scales of neuronal processing

Most studies have focused on the number of spikes discharged by single dACC units after informative events occur.

Other potentially informative features of the neural response, such as reproducibility of spike timing across trials, have typically been ignored. The reason for that may be the apparent unreliability of spike timing when observing frontal activity, which seems to be in agreement with theoretical analyses of the steady-state activity in recurrent networks [START_REF] London | Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex[END_REF]]. Also, cognitive processes often involve to hold information in working memory, a process that can naturally be implemented through networks possessing a long time-scale (on the order of seconds, [START_REF] Lim | Balanced cortical microcircuitry for maintaining information in working memory[END_REF]; [START_REF] Cain | Computational models of decision making: integration, stability, and noise[END_REF]; [START_REF] Wong | A recurrent network mechanism of time integration in perceptual decisions[END_REF]). Accordingly, most models of cognitive processing [START_REF] Brunel | Eects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition[END_REF]; [START_REF] Mongillo | Synaptic theory of working memory[END_REF]; [START_REF] Rolls | Decision-making, errors, and condence in the brain[END_REF]; [START_REF] Cain | Computational models of decision making: integration, stability, and noise[END_REF]] rely on stepwise ring rate inputs, therefore disregarding the potential impact of the ner temporal structure of the driving signals. In the specic case of dACC, a recent theory [START_REF] Shenhav | The expected value of control: an integrative theory of anterior cingulate cortex function[END_REF]] suggests that this area transmits a graded signal: the expected value of engaging cognitive resources to adapt the behavior. This signal has to be remembered from the moment when the current behavioral policy appears to be improper until the moment when a more appropriate strategy can be implemented. Hence, a simple neural integrator [START_REF] Churchland | Variance as a signature of neural computations during decision making[END_REF][START_REF] Cain | Computational models of decision making: integration, stability, and noise[END_REF]; [START_REF] Lim | Balanced cortical microcircuitry for maintaining information in working memory[END_REF]; [START_REF] Bekolay | A spiking neural integrator model of the adaptive control of action by the medial prefrontal cortex[END_REF]], which by construction is insensitive to spike timing, would be well suited to decode and memorize this signal. This neural integrator could be implemented by the lateral prefrontal cortex ( [START_REF] Kim | Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque[END_REF], but see [START_REF] Rigotti | The importance of mixed selectivity in complex cognitive tasks[END_REF]; [START_REF] Hanks | Distinct relationships of parietal and prefrontal cortices to evidence accumulation[END_REF]]), which is a plausible dACC target during behavioral adaptation [START_REF] Procyk | Modulation of dorsolateral prefrontal delay activity during self-organized behavior[END_REF]; [START_REF] Rothé | Coordination of high gamma activity in anterior cingulate and lateral prefrontal cortical areas during adaptation[END_REF]; [START_REF] Shenhav | The expected value of control: an integrative theory of anterior cingulate cortex function[END_REF]].

A gap in the literature concerning the processing time-scale during cognitive control

Some other brain regions that are not primarily involved in cognitive control are however known to be sensitive to both the timing [START_REF] Bialek | Reading a neural code[END_REF]] and the spatial distribution [START_REF] Aronov | Neural coding of spatial phase in V1 of the macaque monkey[END_REF]] of spikes within their inputs. These features may improve information transfer between neurons through, for instance, coincidence detection [START_REF] Rudolph | Tuning neocortical pyramidal neurons between integrators and coincidence detectors[END_REF]].

It is worth noting that, in frontal areas (including dACC) involved in behavioral adaptation, several studies reported the presence of a temporal structure in neuronal activity [START_REF] Shmiel | Neurons of the cerebral cortex exhibit precise interspike timing in correspondence to behavior[END_REF][START_REF] Sakamoto | Discharge synchrony during the transition of behavioral goal representations encoded by discharge rates of prefrontal neurons[END_REF]; [START_REF] Benchenane | Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning[END_REF][START_REF] Van Wingerden | Learning-associated gamma-band phase-locking of action-outcome selective neurons in orbitofrontal cortex[END_REF]; [START_REF] Buschman | Synchronous oscillatory neural ensembles for rules in the prefrontal cortex[END_REF]; [START_REF] Narayanan | Common medial frontal mechanisms of adaptive control in humans and rodents[END_REF]; [START_REF] Totah | Preparatory attention relies on dynamic interactions between prelimbic cortex and anterior cingulate cortex[END_REF]; [START_REF] Stokes | Dynamic coding for cognitive control in prefrontal cortex[END_REF][START_REF] Womelsdorf | Burst ring synchronizes prefrontal and anterior cingulate cortex during attentional control[END_REF]]. This opens the question of whether ne spike temporal patterns could be relevant for cognitive control. However, the current observations are not sucient to conclude about the relevance of this temporal structure for downstream stages of neuronal processing, and for the decision about future behavior. Indeed, to the best of our knowledge, there exists no study comparing the reliability and correlation with behavior of spike count and spike timing in individual frontal neurons during a cognitive task. Comparing spike count vs. spike timing sensitive decoders is central to the general view of temporal coding [START_REF] Panzeri | Sensory neural codes using multiplexed temporal scales[END_REF]]. In this framework, temporal coding can be dened as the improvement of information transmission based on sensitivity to spike timing within an encoding time window [START_REF] Panzeri | Sensory neural codes using multiplexed temporal scales[END_REF]]. In the case of discharges related to behavioral adaptation, which do not in general transmit information about the dynamics of an external stimulus, this encoding time window can be taken as the time-interval of response of the relevant population of neurons [START_REF] Panzeri | Sensory neural codes using multiplexed temporal scales[END_REF]].

In fact, some temporal structure can be present within this encoding window while still not improving decoding, because spike timing and spike count can carry redundant information [START_REF] Oram | Excess synchrony in motor cortical neurons provides redundant direction information with that from coarse temporal measures[END_REF]; [START_REF] Chicharro | What can spike train distances tell us about the neural code?[END_REF]]. In addition, realistic neuronal decoders are likely to be unable to be optimally sensitive to all statistics of their inputs. In particular, neurons and networks are likely to trade o temporal integration with sensitivity to spike timing [START_REF] Rudolph | Tuning neocortical pyramidal neurons between integrators and coincidence detectors[END_REF]]. This also participates to explaining why, even in the presence of temporal structure, the decoding strategy leading to highest information (among those that can plausibly be implemented during neuronal processing) may be temporal integration [START_REF] Chicharro | What can spike train distances tell us about the neural code?[END_REF]].

Further, the temporal structure can be informative but still fail to correlate with behavior, suggesting that downstream processes disregard it and, instead, rely solely on neural integration (as reported in [START_REF] Luna | Neural codes for perceptual discrimination in primary somatosensory cortex[END_REF]; [START_REF] Carney | Suboptimal use of neural information in a mammalian auditory system[END_REF]). This may reect that the constraints on decoding strategy of downstream areas are mainly not on the maximization of the discriminability of the studied responses (usually, single-unit response to a limited stimulus set). Information might not be a limiting factor as downstream areas have access to many presynaptic neurons with either quite uncorrelated noise that can cancel when their responses are pooled, or with correlations that do not impair information transmission [START_REF] Moreno-Bote | Information-limiting correlations[END_REF] [START_REF] Quilodran | Behavioral shifts and action valuation in the anterior cingulate cortex[END_REF]; [START_REF] Shenhav | The expected value of control: an integrative theory of anterior cingulate cortex function[END_REF]; [START_REF] Khamassi | Medial prefrontal cortex and the adaptive regulation of reinforcement learning parameters[END_REF]; [START_REF] Ullsperger | Neurophysiology of performance monitoring and adaptive behavior[END_REF]]: it processes feedback information (error or reward) to signal a behavioral strategy (either exploration, or switch toward repetition, or repetitive behavior). It would also signal the adaptive value of updating the behavioral strategy ("level of control"). A downstream area would combine dACC signals with a memory of previous choices to decide which target to choose next. (c) Spike count vs. timing sensitive decoding of dACC signals. Middle: a neural integrator decoder [START_REF] Kim | Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque[END_REF]; [START_REF] Cain | Computational models of decision making: integration, stability, and noise[END_REF]; [START_REF] Lim | Balanced cortical microcircuitry for maintaining information in working memory[END_REF]] responding with a firing rate proportional to the sum of input dACC spikes. The decoder maintains a memory of past inputs and can store a continuum of level of control values. dACC neurons firing preferentially during either errors, or 1 st rewards, or both [START_REF] Quilodran | Behavioral shifts and action valuation in the anterior cingulate cortex[END_REF]] could project to different neural integrators. Bottom: an example of spatiotemporal decoder that is sensitive to the temporal structure of dACC spike trains and implements a memory. The connections between neurons create two stable states, with high and low firing [START_REF] Brunel | Eects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition[END_REF]; Dipoppa and Gutkin (2013b)]. The high activity state sustained through recurrent connections signals the need to adapt behavior. This decoder would be sensitive to its input's temporal structure, with some patterns favoring the transition to, and/or stability of, the high activity state [Dipoppa and Gutkin (2013b)]. This simplified scheme illustrates how temporal coincidences in the input may favor the discharge of downstream neurons.

CHAPTER 2. INTRODUCTION: SIGNALS FOR BEHAVIORAL STRATEGY ADAPTATION IN THE DORSAL ANTERIOR CINGULATE CORTEX

Here, we address the issue of temporal coding of behavioral adaptation signals emitted by dACC neurons. We use recordings from monkeys engaged in a trialand-error learning task [START_REF] Quilodran | Behavioral shifts and action valuation in the anterior cingulate cortex[END_REF]], in which performance relied on reward-based decision making and behavioral adaptation (Figure 2.1 (a)).

The task consisted in nding by trial and error which one of 4 targets was rewarded. Each trial led to the touch of a target and a feedback: a reward if the touch was correct, nothing otherwise. In each block of trials (i.e. a problem), monkeys rst explored the dierent targets in successive trials. The rst reward indicated discovery of the correct response. Then, a period occurred when the monkeys could repeatedly touch the correct target in 3 successive trials to exploit and receive additional rewards. The ring rate of single dACC units was previously shown to increase at feedback time during either exploration, or repetition, or when switching between those two states [START_REF] Quilodran | Behavioral shifts and action valuation in the anterior cingulate cortex[END_REF]]. Hence, dACC neurons may signal whether and/or how behavior should be adapted. In this context, we probe the putative structure and function of a downstream neuronal network decoding dACC feedback-driven signals. To do so, we investigate to what extent the temporal structure of dACC spike trains, during post-feedback ring, could improve information transmission and predict behavior (Figure 2.1 (b)). Assuming a neural integrator decoding scheme, the downstream network would compute and maintain the memory of the need for behavioral adaptation on the basis of the number of spikes emitted by dACC (Figure 2.1 (c), middle). This decoding network is therefore insensitive to its input's temporal structure at a ner time scale than the approximate integration (i.e., memory) time scale.

Alternatively, the downstream network could be sensitive to the spatiotemporal structure of dACC activity (Figure 2.1 (c), bottom). For instance, temporal coincidences in the aerent dACC signals could favor the switch to, and maintenance of, a high-activity state in the downstream network to encode behavioral adaptation [Dipoppa and Gutkin (2013b), see also [START_REF] Gutkin | Turning on and o with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity[END_REF]; Dipoppa and Gutkin (2013a)]. Note that other mechanisms could also explain the sensitivity of the downstream memory/decision network to temporal structure (for another example, see [START_REF] Szatmáry | Spike-timing theory of working memory[END_REF]]). Notably, any network for which some non-linearity in the neuronal combination of synaptic inputs sizably shapes the output signal would be expected to have some sensitivity to the timing of input spikes. In the theoretical part of this dissertation (Part III), we will tackle in more details the question of the nature of a decoding network that could hold items in memory, be sensitive to its input's temporal structure and be consistent with the experimental literature. Here, we focus on determining to what extent the characteristics of dACC feedback-related discharges could be consistent with a decoding by a network behaving as an approximate integrator.

We will actually show evidence suggesting that this is not the case. Instead, our analyses appear consistent with a non-linear spatiotemporal decoding of dACC activity.

First, we show that there are informative temporal patterns in single units that can support a larger reliability of a plausible spike-timing sensitive decoder, compared to a neural integrator. We found an optimal decoding time scale in the range of 70-200 ms, which is much shorter than the memory time-scale required by the task. The larger reliability of spike-timing sensitive decoding appeared to be supported by the combination of a large spike count variability, and a presence of informative temporal correlations between spike times.

Second, we show that some spike coincidences across jointly recorded neurons are advantageous for decoding. However, the informative spike times appear heterogeneous and distributed over the neuronal population, suggesting that downstream neurons could benet from a non-linear spatiotemporal integration of inputs.

Finally, we describe a new method to evaluate to what extent dACC temporal patterns can predict the behavior of monkeys comparatively to spike count. Importantly, using this new method, we nd that deviations from a prototypical temporal pattern sizably predict an increased response time of the monkeys.

Chapter 3

Methods for analyzing dorsal Anterior Cingulate Cortex activity and monkeys' behavior

In this chapter, we describe:

X the methods concerning the collection of the data (which was made in E.

Procyk's laboratory, by R. Quilodran and M. Rothé), as well as the selection of the analyzed data, in section 3.1

X the methods (taken from the literature) used to investigate the coding properties of dACC spike trains, in section 3.2

X the methodology we used to verify that spike-sorting artifacts were unlikely to aect our results, in section 3.3

X a simple method we developed to analyze the monkey's eye movements from the X-Y position of one eye, in section 3.4

X a methodology we developed to investigate the relation between temporal patterns of spikes and the monkey's behavior, in section 3.5

X the classical statistical tests we used during the analysis, in section 3.6

Experimental methods

Electrophysiological recordings

Two male rhesus monkeys were implanted with a head-restraining device, and neuronal activity was recorded by 1 to 4 epoxy-coated tungsten electrodes (horizontal separation: 150 µm) placed in guide tubes and independently Recording sites were conrmed through anatomical MRI and histology [START_REF] Quilodran | Behavioral shifts and action valuation in the anterior cingulate cortex[END_REF]; [START_REF] Rothé | Coordination of high gamma activity in anterior cingulate and lateral prefrontal cortical areas during adaptation[END_REF]]. Extracellular activity was sampled at 13 kHz and unitary discharges were identied using online spike sorting based on template matching (MSD, AlphaOmega). All experimental procedures were in agreement with European, national, and local directives on animal research.

Problem solving task and trial selection

Monkeys had to nd, by trial-and-error, the rewarded target among 4 targets presented on a touch screen (Figure 2.1 (a)). To begin a trial, the animal had to touch a central item (lever), which triggered the appearance of a xation point. After 2 s of gaze xation, the 4 targets appeared simultaneously. At xation point oset, the animal had to select a target by making a saccade toward it, xate it for 0.5 s, and touch it following a GO signal (i.e. all targets bright). All targets dimmed at the touch, and switched o after 0.6 s. Reward (fruit juice) was delivered if the correct target was selected, otherwise no reward occurred. Throughout this dissertation, we dene a trial as the period of time between the touch of the lever and 1 s after the reception of a feedback (either error, or 1 st reward, or repetition reward). In addition, we call task epoch the time interval between 1 ms and 1 s after the reception of a given feedback. After a feedback, a time break of 2 s was imposed before starting a new trial. Any break in gaze xation or touch within a trial led to resuming the sequence at the lever touch. Note that we did not consider that this started a new trial. In case of an incorrect choice, the animal could select another target in the following trial, and so on until the discovery of the rewarded target (hence, ending an exploration period). The correct target remained the same in the following trials, allowing the animal to exploit the rewarded action (during a repetition period). We dene a problem as the block of trials associated with one rewarded target location. A ashing signal indicated the end of repetition and the beginning of a new problem (the new rewarded target had a 90% probability to be dierent from the target rewarded in the preceding problem). In a given problem, the reward size was constant; and within a session, up to two dierent reward sizes could be given. In 90% of problems the repetition period lasted 3 trials after the 1 st reward, whereas in 10% of problems 7-11 repetitions could occur. Repetition trials beyond the 3rd one were excluded from the analysis to avoid possible surprise eects. At the time of recordings, the task was well known: monkeys only failed to repeat the correct touch in one of the trials following the discovery of the rewarded target in around 1% of problems. Then, both the incorrect touch and the following trials were discarded from analysis, but previous trials were kept. As previously reported [41], monkeys might be able to infer the rewarded target after 3 non-redundant errors, i.e. the 3rd error would systematically trigger a switch to repetition. Therefore, only 1 st and 2nd erroneous touches as well as 1 st rewards preceded by less than 3 errors were included in the analysis. For the repetition period, we selected all correct trials that followed a search with up to 3 preceding search errors.

Analyzed units

For monkey P, all recorded units were used. For monkey M, only units showing a signicant response to at least one event (either error, or 1 st reward, or repetition reward, or xation breaks) were used (TEST 1 in [START_REF] Quilodran | Behavioral shifts and action valuation in the anterior cingulate cortex[END_REF]). The mean and standard deviations of the baseline ring rate (taken from -600 to -200 ms before feedback onset) were computed. Units with a change of ring rate of magnitude higher than 5 standard deviations of the baseline within more than six 10 ms bins between +60 and +800 ms of at least one event were selected. Note that this test cannot favor temporal coding in any way. This selection allowed us to focus on a reasonable number of neurons to analyze (in terms of computing time and statistical power, as there was a much larger number of recorded units in monkey M).

Methods for investigating the coding properties of spike trains

We will rst present the methods for decoding dACC spike trains which inform about which (plausible) decoding network would be better suited to extract information from dACC spike trains. These methods can be found in subsection 3.2.1.

Then, we will present the methods for characterizing more in details the statistics of dACC temporal structure that are useful for the (optimized) decoder. This method permits to distinguish between the contribution of a time-dependent ring rate, and the contribution of temporal correlations. These statistics can be linked to the biological mechanisms within dACC which are shaping the neuronal signal. These methods can be found in subsection 3.2.2.

Decoding dACC activity with a spike train metrics

Neuronal circuits can either detect coincident depolarizations due to spatiotemporally structured inputs, or loosely integrate all incoming inputs during a given task epoch (see Figure 2.1 (a,b), [START_REF] Rudolph | Tuning neocortical pyramidal neurons between integrators and coincidence detectors[END_REF]; [START_REF] Cain | Computational models of decision making: integration, stability, and noise[END_REF]]). Our analysis of dACC activity sought an unambiguous post-synaptic signaling of the task epoch during which dACC spike trains were emitted. This decoding approach is functionally relevant because dierent task epochs must result in dierent adaptations of the behavioral strategy in order to optimize performance.

When functioning in a coincidence detection mode, a post-synaptic neural decoder might discharge specically to a given task epoch if its input spike trains would have a spatiotemporal structure more dierent between task epochs than within this epoch. Alternatively, a downstream neural integrator might become selective for task epochs by receiving inputs from neurons that re more in one task epoch (see spike times and cancelling the spike count difference [START_REF] Victor | Nature and precision of temporal coding in visual cortex: a metric-space analysis[END_REF]]. The cost of matching spike times depends on the parameter q (temporal sensitivity). When q = 0 s -1 (black curve), the dissimilarity only reflects the difference in spike count. For q > 0 s -1 , the dissimilarity increases as q times the interspike interval dt before saturating at 2. Right: Each value of q > 0 can be related to a given time scale of Excitatory Post Synaptic Potentials (EPSPs, here taken as simple exponential traces: up). Indeed, decoding with this q value and decoding by summation of these EPSPs both lead to a similar sensitivity to spike timing. For instance, q = 10 s -1 corresponds to a 0-200 ms range of dt for which the dissimilarities are smaller than 2 (the maximum). This can be matched to the range of dt with efficient summation of 2 EPSPs decaying with 100 ms time scale (see section 3.2.1). The 0-200 ms range of dt therefore gives rise to temporal coincidences. (b) Dissimilarity of multi-unit spike trains. Left: computation of the dissimilarity between two spike trains, each of which contains spikes from 2 neurons [START_REF] Aronov | Neural coding of spatial phase in V1 of the macaque monkey[END_REF]]. The dissimilarity depends on the parameter k, which determines the degree of distinction between the 2 neurons. The cost of matching 2 spikes is increased by an amount k if the 2 spikes were emitted by 2 different neurons. As k increases the matching of spikes emitted by the same neuron is favored. For higher values of k, there is a smaller range of between-neuron interspike intervals leading to dissimilarities smaller than 2 (i.e. leading to a temporal coincidence).

Right: higher values of k can be related to larger non-linearities in dendrites (here taken as thresholds and symbolized by a step within a circle). In the left dendrite, there are no non-linearities: the synapses are close and the depolarizations due to synaptic inputs can be directly summed and trigger firing (by crossing the threshold of the soma twice). This can mirror a maximal between-neuron summation, i.e. k=0. Conversely, in the right dendrite, the two synapses are on different sub-branches which both possess a threshold non-linearity.

These thresholds (below which the synaptic currents are not transmitted to the soma) can prevent effective summation for large interspike intervals (second spike pair). This can mirror decoding with intermediate k values, causing only smaller interspike intervals to be associated with small dissimilarities between neurons (i.e. temporal coincidences).

The eciency of a decoding strategy can be assessed by quantifying how dissimilar spike trains are, within and between categories, in terms of either (spatio)temporal structure or spike count. Within the theoretical framework named spike train metrics, the distance or dissimilarity between two spike trains is measured as a function of both the importance of spike timing [START_REF] Victor | Nature and precision of temporal coding in visual cortex: a metric-space analysis[END_REF]] and the spatial distinction between the activity from dierent input neurons [START_REF] Aronov | Neural coding of spatial phase in V1 of the macaque monkey[END_REF]].

Single-unit spike train metrics

The distance d(s, s ′ ) between two spike trains s, s ′ is dened as the minimal cost to transform s into s ′ [START_REF] Victor | Nature and precision of temporal coding in visual cortex: a metric-space analysis[END_REF]]. This transformation consists in using one of the three following steps sequentially: X adding a spike, for a cost of 1; X deleting a spike, for a cost of 1;

X changing the time of a spike by an amount dt, for a cost q • dt, where q is a free parameter that determines the importance of spike timing (also named timing sensitivity throughout the paper).

When q = 0 s -1 , there is no cost for changing the timing. Consequently, the distance d(s, s ′ ) corresponds to the absolute spike count dierence between the two spike trains. As q increases, changing the timing of spikes becomes more and more costly. Thus, a small distance d(s, s ′ ) implies that s and s ′ have spikes that match in time, i.e. the temporal structure must be conserved. Two spikes from s and s ′ may be moved to be matched if they are separated by at most 2/q second. Otherwise, it is less costly to delete the rst spike and reintroduce a new matching spike, for a total cost of 2. Therefore, 2/q gives the maximal between-trial interspike interval for which timing is accounted for.

Multi-unit spike train metrics

A multi-unit spike train is dened as the pattern of discharges from dierent neurons observed in a given trial, each spike being labeled by the identity of the neuron that emitted it. To compute the distance d(s, s ′ ) between two multi-unit spike trains s, s ′ , two parameters can be considered: the timing sensitivity q, and the degree of distinction k between spikes from dierent neurons [START_REF] Aronov | Neural coding of spatial phase in V1 of the macaque monkey[END_REF]]. For example, if two neurons emit spike trains with statistically identical temporal structures and re with uncorrelated noise, then pooling their responses can be better for decoding. Conversely, if two neurons emit opposed signals (for instance an increase vs. a decrease of spiking in a given task epoch), then it is important to distinguish between them to maximize information. The distance d(s, s ′ ) between two multi-unit spike trains is dened as the minimum cost to transform s into s ′ , by using the steps previously described, with the additional possibility to change the identity of the neuron that red a given spike, for a cost k. If k = 0, the identity of neurons does not matter at all. If k ≥ k max = 2, the responses are never matched between neurons, because removing a spike from a given neuron and replacing it by a spike from another neuron at the correct time is less costly. In general, two spikes from two dierent neurons may be matched if they are separated by less than (2-k) q second so only very coincident spikes are matched for intermediate k values.

Classification

A leave-one-out process was used to classify a given spike train s into the task epoch E producing the most similar responses to s. The distance between s and the activity produced during E was dened as the median of the pairwise distances between s and any (other) spike train s ′ ∈ E. Therefore, one spike train s was predicted to belong to the task epoch E that minimized median (d q,k (s, s ′ )) s ′ ∈E, s ′ ̸ =s .

Note that we also ran a decoding analysis of dACC activity by using a small-distance biased classication algorithm orginally proposed by [START_REF] Victor | Nature and precision of temporal coding in visual cortex: a metric-space analysis[END_REF]] (z = -2 in their eq. 5, i.e. the distance between s and the activity produced during E is

( ⟨(d q (s, s ′ )) -2 ⟩ s ′ ∈E, s ′ ̸ =s ) 1
-2 ). We did not retain this method because (i) it hinders classication based on spike count decoding, and (ii) it leads to an overall decrease of the number of signicant units and of the information (all analyzed single units, signed-rank test on max q (< I > t ), all p s < 10 -5 ). These eects are likely to be related to the frequent occurrence of zero pairwise distances in our dACC data set (due, for instance, to two empty spike trains or, for q = 0 s -1 , to two spike trains with the same spike count). Although the occurrence of zero pairwise distances was more frequent within task epochs, given the high variability of our data (which we will show in Figure 4.10), it was also possible between task epochs. With the small-distance biased classication, the presence of at least one zero pairwise distance in both epochs triggered a chance-based clustering of spike trains, irrespective of the 0-distance frequency in the two task epochs. Despite the lower classication power of this method, it leads to identical modulation of the classication performance by (q, k) as the median-based classication (results for the single-units classication will be shown in Figure 4.3). In general, for our very variable data, it is likely that any classication relying on outliers would be less ecient than a classication relying on a robust central value such as the median.

A confusion matrix was built, in which the entry N ij on line i and column j was the number of spike trains coming from task epoch i and predicted to belong to task epoch j. If a trial was equally distant to several epochs, the fraction 1 N closest epochs was added to all these epochs. The information I raw in the confusion matrix was:

I raw = 1 N ∑ i,j N ij • ln ( N ij • N ∑ k N ik • ∑ l N lj ) (3.1) with N = ∑ i,j N ij .
This corresponds to the mutual information between the actual classication of trials and the classication that one would get if the prediction were perfect. Hence, I raw is always maximal for perfect prediction, though the absolute maximum value depends on the balance of number of trials between the two task epochs. We nally computed a normalized information I norm by dividing I raw by its maximal (perfect prediction) value:

I norm = I raw -1 N ∑ i ( ( ∑ j N ij ) • ln ( ∑ j N ij N ) ) (3.2)
Note that this measure has the advantage of intrinsically accounting for the distribution of the number of data points in dierent categories to be classied, which is not the case of some other measures of classication performance, such as percentage of correct [START_REF] Sindhwani | Feature selection in MLps and SVMs based on maximum output information[END_REF]]. This was important in our case because there were much less 1 st reward or errors trials compared to repetition trials (see Table 3.1).

To test whether classication was above chance, trials were randomly permuted between task epochs, and two groups were recreated (with the same number of trials as the original task epoch clusters). The information content associated to the shued groups was then computed. The process was repeated 1000 times, leading for each q or [q,k], to 1000 values of information under the null hypothesis that the discrimination between groups is due to random similarities between any two spike trains. The information analysis was done on increasing time windows, starting 1 ms after the onset of the feedback (to avoid pump-driven artifacts). The rst window lasted until 50 ms post-feedback, and was incrementally increased to 600 ms by 50 ms steps, and then up to 1 s by 100 ms steps. The higher resolution for smaller windows allowed the time course of fast initial transient to be evaluated. We computed the maximum (over q or [q,k]) number N w of consecutive windows for which the information was strictly larger than the 95 th percentile of the 1000 sets of permuted data. The same process was repeated for each set of permuted data, relative to the remaining 999 permuted sets. A neuron (or a pair) was considered as signicant if N w was strictly larger in the actual data than in 95% of permuted data. This process did not favor a given value of q or k, and could select neurons/pairs of neurons with dierent information time course. Also, it allowed us to exclude neurons with very unreliable activity, which would act as noise during the subsequent analyses.

The information estimate is, in general, biased when only nite data is available. However, because the spike train metrics method makes the assumption that spike trains within one task-epoch appear more similar to one another than spike trains taken from two dierent task-epochs, it is globally less likely to generate the huge nite sample positive bias observed with the raw binning method [START_REF] Victor | Spike train metrics[END_REF]]. Because classical analytical formulae for bias estimation cannot be applied to the case of the confusion matrix [START_REF] Victor | Nature and precision of temporal coding in visual cortex: a metric-space analysis[END_REF]], the bias was estimated empirically as the mean information computed in 1000 data sets created by randomly permuting the trials between task-epochs (as in [START_REF] Saal | Information about complex ngertip parameters in individual human tactile aerent neurons[END_REF]). This bias estimate, which was usually very small, was subtracted from the information estimate in the original data.

In rare cases when slightly negative values were reached after bias-sustraction, the nal information value was set to 0. Note that we veried that the q opt found for the 1 st reward vs. repetition classication was identical with or without bias correction, even though this classication had the smallest number of trials and could therefore be more sensitive to nite-sample eects. More generally, we assessed the possible remaining presence of a bias by computing for each neuron (or pair of neuron) the minimum trial number over task-epochs N trial min . We then compared dierent statistics related to information (e.g. increase in information thanks to temporal sensitivity, gain in information during paired decoding, ...) between neurons (resp. pairs) with N trial min that was higher vs. lower than the median. While several factors may cause a dierence between the group of high and low trial number (such as behavioral dierences between sessions of dierent durations, ...), a nite-sample bias would be expected to have a very specic impact on the statisitical measurements. Indeed, a given eect may result from a bias if, consistenly in the two monkeys, the eect would decrease in the high trial number group and if this eect would be smallest in monkey M (which had the highest trial number, see Table 3.1). This pattern was never observed, arguing that our results are very unlikely to reect a nite-sample bias.

The dierent parameter values were compared after bias correction. For each q or [q,k] and for each signicant neuron, the temporal evolution of information values was summarized by taking the mean information over 10 analysis windows of increasing durations (ending from 100 ms to 1 s post-feedback onset, by steps of 100 ms, favoring neither early nor late information). We refer to this quantity as time-averaged information (⟨I⟩ t , see Table 3.3 for a denition) in the dissertation.

Computing the time-averaged information is equivalent to averaging over delays before a decision is made by the animal. Finally, a non-parametric Friedman ANOVA was used to compare the time-averaged bias-corrected normalized information as a function of dierent q or [q,k], with Tukey's honestly signicant dierence criterion correction for multiple comparisons. Note that there can be slight dierences in the rankings of (q,k)-values between the mean-information time-course and the Friedman anova test. Indeed, the mean is more sensitive to outliers with large values, while the average rank used during the Friedman test is determined by the consistency (over neurons) of the within-neuron rankings of ⟨I⟩ t between dierent (q,k)-values.

Interpretation of the classification as a downstream decoding network and non-triviality of the timing-related information improvement

The classication algorithm described in the previous section can be related to the performance of dierent dowstream neuronal circuits (see Figure 3.1). Indeed, the channels and membrane properties of single neurons can be approximately described by decaying lters (on the order of ms to hundreds of ms) of input spike trains [START_REF] Gerstner | Spiking Neuron Models[END_REF]]. In addition, the neuronal network's architecture can create decays on much longer timescales, or even quasi-perfect integration, which may implement short-term memory [START_REF] Seung | Stability of the memory of eye position in a recurrent network of conductance-based model neurons[END_REF]; [START_REF] Lim | Balanced cortical microcircuitry for maintaining information in working memory[END_REF]].

When the downstream neuronal network acts as an integrator, it eectively 'sees' input spike trains through their spike-count, and would perform a classication tantamount to the metrics with q = 0 s -1 .

For q > 0s -1 , the metrics is better interpreted through the equivalent similarity between spike trains. For any pair of spikes separated by an interval δ ≥ 0 and associated with a Victor and Purpura cost (or dissimilarity) d(δ), we can dene the similarity S = D max -d(δ). D max = 2 is both the maximum dissimilarity between two spikes and the sum of the costs of removing a spike and of reinserting a new spike at the right time (see Figure 3.1 (a)). Hence, for δ ≤ 2 q , S(δ) = 2 -q δ, and else S = 0. This similarity can be related to the maximal depolarization reached through the summation of two excitatory post-synaptic potential (EPSPs) that would be caused by the two compared spikes. Indeed, if we take the (plausible) choice of an exponential synaptic trace A exp(-t τ ) (for a post-spike delay t > 0), we can notice that the maximal depolarization reached after summation of the two ltered synaptic traces is A + A exp(-δ τ ). We can nally dene an 'excess depolarization' E above a baseline (here, the depolarization reached with a single spike):

E(δ) = A exp(-δ τ ).
The functions S(δ) and E(δ) have similar shapes and may be matched; in particular, we can equate: X the maximal amplitudes of S and E: A = D max = 2 X the integrals of S and E:

∫ f (δ)dδ = Aτ = ∫ S(δ)dδ = 2 q
In other words, the (synaptic) decaying time-scale τ can be matched to 1 q [START_REF] Victor | Metric-space analysis of spike trains: theory, algorithms and application[END_REF]; see also [START_REF] Van Rossum | A novel spike distance[END_REF]; [START_REF] Paiva | A comparison of binless spike train measures[END_REF] for related ideas]. For paired spikes, the more similar the two spikes are according to the Victor and Pupura distance, the more excited would a dowstream decoder (reacting with a time-scale ≈ 1 q ) be through summation of the depolarizations induced by the two spike trains. Finally, when additional spikes are present in one spike train, each spurious spike induces an increase in the total dissimilarity equal to half the maximal dissimilarity that a spike pair can reach. Similarly, an isolated spike induces a spurious depolarization of amplitude ≈ A once, while a maximally dissimilar spike pair reaches this depolarization twice (once for each spike of the pair).

Concerning the multi-unit spike train metrics, the dierent values of the between-neuron distinction degree k may be interpreted as dierent degrees of spatial separation (through reception by dierent neurons or by dierent parts of a dendritic tree) during the downstream combination of dACC signals (see Figure 3.1 (b)). Indeed, a maximal distinction degree can be implemented trough decoding by two dierent, unconnected neurons. Further, intermediate distinction degrees could (for instance) be implemented through dierent degrees of dendritic separation leading to tighter or looser requirements on the interspike interval to allow summation.

In particular, threshold-like non-linearities in dendrites can prevent the summation of jittered EPSPs occuring in dierent dendrites (see Figure 3.1 (b, right)).

The metrics therefore accounts for plausible constraints of the downstream circuits in terms of signal processing, assuming the presence of one main decaying timescale for input ltering. Analysis techniques explicitly using exponential ltering for spike train classication were indeed found to behave almost identically to the Victor and Purpura distance [van Rossum (2001); [START_REF] Paiva | A comparison of binless spike train measures[END_REF]; [START_REF] Chicharro | What can spike train distances tell us about the neural code?[END_REF]]. This is why the performance of the classication procedure is tantamount to the performance of these dierent decoding downstream circuits (rather than to the maximum amount of information that a perfect decoder, without any constraint, could reach).

Importantly, the presence of (task-epoch-specic) temporal structure does not necessarily cause an improvement of the decoding performance with an optimal value q opt > 0 compared to q = 0. Indeed, temporal modulations may covary with spike-count dierences, implying a redundancy between the spike-count based and spike-timing-based information. Further, the temporal information accessible to a biologically plausible decoder might reveal less robust than a time-integrated spike count. This is particularly likely to happen in cases when the spike rate is consistently higher in one task-epoch compared to the other, leading to a between-task-epoch spike count dierence that is consistent over time. This dierence could be detected with more and more accuracy when evidence is accumulated over time through integration. This conguration (ring rate consistently higher in one task-epoch) seems to often qualitatively occur for dACC ring rates (see Figure 2.1 (c), Figure 4.1).

More precisely, this can correspond to cases when the downstream network needs to distinguish between two time-dependent (i.e., inhomogeneous) Poisson processes with ring intensities λ 1 (t) and λ 2 (t), such that for any time within the encoding window, λ 1 (t) > λ 2 (t). The decoding of these two Poisson processes with the spike train metrics can be related to the estimation (from sample spike trains) of the dissimilarity between the two vectors of values of ring intensity ⃗ λ 1 and ⃗ λ 2 (i.e., the dissimilarity between two Post-Event Time Histograms PETHs, [START_REF] Naud | Improved similarity measures for small sets of spike trains[END_REF]). We note that even though the spike train metrics decoding and the estimation of the dissimilarity between two PETHs are not exactly equivalent, both of them seek a processing mechanism permitting to distinguish well two dierent spiking processes. Hence, we will just use the estimation of the dissimilarity between PETHs in order to more formally illustrate the non-triviality of the improvement of such a distinction between spiking processes through temporal sensitivity of the processing mechanism. We will use the L1 norm of the dierence between ⃗ λ 1 and ⃗ λ 2 as a measure of how much these vectors are dissimilar. Then, the decoding can be seen as an estimation of

∑ t |λ 1 (t) -λ 2 (t)| = ∑ t (λ 1 (t) -λ 2 (t)) = ( ∑ t λ 1 (t)) -( ∑ t λ 2 (t)).
As the sum of independent Poisson variables is also Poisson distributed, the decoding process is equivalent to the estimation of the dierence of ring intensity of two Poisson variables, each of them being the temporal integration of one vector ⃗ λ i . The minimum variance unbiased estimator of this dierence actually is the dierence of the means of two samples from the two variables [START_REF] Bergamaschi | The detection of signals hidden in noise[END_REF]], i.e. this type of optimized estimator disregards spike timing. Hence, in this situation, temporal integration over the encoding window can permit maximal signal extraction despite ignoring temporal structure. This occurs through an averaging of samples which permit, in our case study, to average out the estimation errors over time. In contrast, a process which would compute absolute dierences of spike count in small time bins would in this situation accumulate errors over dierent time bins, and would therefore be less ecient. Adapted from Fig. 2 of [START_REF] Chicharro | What can spike train distances tell us about the neural code?[END_REF]]. The labeling of the lower graph was adapted to match our notation. Top: Rate profile of the two types of time-dependent Poisson processes producing the spike trains to be classified (each of the process is in a different color). Bottom: normalized information as a function of 1/q (in ms), for classifying data sets with 20 trials per stimulus. The data is the mean over 20 classifications, and the error bar is the standard deviation, shown for the red curve only. The different colors stand for different classification algorithms (all taking as a basis the VP distance; the red curve is exactly the algorithm that we used in Figure 4.3). Spike count classification (corresponding to q=0) does as well as, or better than, any temporal sensitivity, because the information in the temporal structure is redundant with the spike-count information.

Along those lines, previous articles reported an absence of timing-sensitivity-related information improvement even in the presence of category-specic temporal modulations in the spiking response [START_REF] Oram | Excess synchrony in motor cortical neurons provides redundant direction information with that from coarse temporal measures[END_REF]; [START_REF] Chicharro | What can spike train distances tell us about the neural code?[END_REF]]. To illustrate, we reproduce here a gure from [START_REF] Chicharro | What can spike train distances tell us about the neural code?[END_REF]] where this was the case (see Figure 3.2).

In conclusion, as pointed out in [START_REF] Chicharro | What can spike train distances tell us about the neural code?[END_REF]], the spike-train-based classication does not detect all the existing timescales of the analyzed neuronal activity. Instead, the spike-train-based classication aims at testing whether the reliability of temporal structure could allow a plausible downstream decoder to take advantage of it, which relates to the biological plausibility of temporal information transmission [START_REF] London | Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex[END_REF]].

Algorithms and numerical methods

We ran all calculations on a cluster of 320 nodes (Consorzio Interuniversitario per le Applicazioni di Supercalcolo Per Università e Ricerca CASPUR), on a private cluster (courtesy of S. Solinas) and on a PC laptop, using MATLAB (we adapted Victor's code, freely available at http://www-users.med.cornell.edu/∼jdvicto/metricdf.html). For the single-unit decoding and response time analysis, we used Reich's c/MEX code and a modied MATLAB non-vectorized algorithm, respectively. For the multi-unit decoding analysis, we adapted Kreuz's vectorized algorithm in MATLAB code (to handle the case of empty spike trains). q was varied within [0,5,10,15,20,25,30,35,40,60,80] decoding [START_REF] Victor | Nature and precision of temporal coding in visual cortex: a metric-space analysis[END_REF]]. We will refer to this trial-averaged rate density as a Peri-Event-Time Histogram (PETH). For each cell and each task epoch separately, we grouped all spikes emitted in the interval [0.001, 1]s post-feedback and randomly assigned each of them to a trial (repeated 1000 times, see Figure 4.10 (a) for a schematic explanation of the method). As a consequence, the number of spikes in each trial was actually drawn from a Binomial distribution with parameters n = N spikes and p = 1 N trials , which following a common approximation is close to a Poisson variable. Indeed, p was rather small (the trial number was usually large: 25 th quantiles were 14.25 and 51.25 for 1 st reward and repetition respectively); and the total number of spikes n was large (25 th quantiles were 53.75 and 175 for 1 st reward and repetition respectively).

Under the Poisson approximation, spike counts restricted to sub-analysis windows are also Poisson (Raikov's theorem). This allowed us to build the spike-shued data for smaller analysis windows by simple pruning of the 1000 shued data of the largest window.

We used a second shuing procedure to test to what extent information transmission could be determined by time-varying ring rates and spike-count variability as in the original data (see Figure 4.10 (d) for a schematic explanation of the method). In contrast to the previous shuing method, this procedure considered that time-varying ring rate was modulated by a multiplicative factor. This factor constrained the spike-count variability to t the original data, and it was specic to each trial and time independent. Hence, this shuing procedure not only conserved the PETH, but also the number of spikes present in each trial. To do so, for each cell, each task epoch, and each analysis window, we formed an ordered pool of all emitted spikes. Independently for each of these groups of spikes, we created 1000 shued data sets by randomly permuting the order of the spikes before reassigning to each trial the exact same number of spikes as in original data (without replacement).

Because both shuing methods produced spike-shued data with the same number of trials as in the original data, the nite-sample information bias should be similar in both cases and should cancel when looking at the information dierence, which was the relevant quantity. The bias was therefore not re-evaluated for this analysis.

Methodology for testing the negligibility of spike-sorting artifacts for the conclusions of the study

Spike-sorting relying on waveform shape (template) is reliable but does classify erroneously a small proportion of spikes. We explain below how we determined that these artifacts were unlikely to signicantly aect our results.

• First, coincident spikes from dierent neurons will create 'mixture waveforms' that will be rejected by the algorithm (i.e. the spikes will not be assigned to putative neurons). Given that this phenomenon was very uncommon in our recordings, and and given that synchronized-spikes removal should decrease the reliability of both spike count and temporal coincidence decoding schemes, we do not expect this artifact to have a sizable impact on our analyses.

• Second, a small proportion of spikes accepted in a template are 'false positives' and belong to neurons dierent from the majority neuron. However, this is unlikely to favor spike-timing sensitive decoding over spike count decoding. Indeed, there was a bias toward having more cells ring prefentially during behavioral adaptation [START_REF] Quilodran | Behavioral shifts and action valuation in the anterior cingulate cortex[END_REF]. In consequence, it was more likely that two randomly chosen neurons would show the same ring preference over task-epochs (i.e. either they would both re more on average during the task-epoch requiring behavioral adaptation, or both re more on average during the repetition task-epoch).

In this case, one could expect that the inclusion of the erroneously classied spikes would cause an increase in the reliability of both spike count and spike timing sensitive decoding (in the latter case, provided that the erroneously classied spikes are not damaging the reliability of the temporal pattern of activity of the majority neuron). We investigated this by comparing the decoding performance (⟨I⟩ t , see Table 3.3) between dierent types of pairs of neurons when the decoder either ignored, or accounted for, the label of the spikes. More specically, we used either spatially insensitive decoding (i.e. k = 0, a decoding which is insensitive to the neurons' identities), or spatially separate decoding (k = 2, a decoding which fully separates the activity of the two units). We contrasted the results between pairs of neurons for which both units re preferentially in the same task-epoch, and for pairs with the two neurons ring preferentially in dierent task-epochs. A given neuron was said to re preferentially in a given task epoch when its mean ring rate (in a [0.001,1]s window) was larger in this task epoch than in the other decoded task-epoch. We found that, when using spatially insensitive decoding (i.e. k = 0), pairs of neurons with the same ring preference performed better compared to pairs with dierent spiking preferences (pairs with signicant coding, rank-sum test comparing: (i) spatially insensitive spike-count-based decoding ⟨I (q = 0, k = 0)⟩ t : p s < 10 -4 ; (ii) spatially insensitive decoding with spike-timing sensitivity ⟨I (q opt , k = 0)⟩ t : p s < 10 -2 ). Note that we took q opt ≈ 10s -1 , as we will see later in the manuscript that this value of q appeared to maximize the mean information over neurons (see Figure 4.2). We also veried that the above-described dierence between the pairs with same vs. dierent ring preference was not likely to reect dierent intrinsic properties of the neurons between the two groups. Indeed, spatially separated decoding performed equivalently in the two groups (⟨I (q = 0, k = 2)⟩ t or ⟨I (q opt , k = 2)⟩ t , all p s > 0.19).

We now consider the (less probable) case when a spike-sorting error leads to the inclusion of erroneously classied spikes coming from a cell with a dierent ring preference over task-epochs compared to the majority cell. Then, both spike count and timing-sensitive decoding are likely to be negatively impacted, given the small probability that the erroneously classied spikes can coincide with the precisely timed spikes of the majority neuron. Indeed, as we will see in Figure 4.12 (b-c), the temporal patterns of neuronal activity often diered between dierent neurons. Accordingly, when looking at pairs composed of two units with opposite ring preference, the information loss in spatially-insensitive (k = 0) decoding compared to spatially-separated (k = 2) decoding was not signicantly distinct between timing sensitive and spike count codes (signed-rank test on (⟨I (q = 0, k = 2)⟩t -⟨I (q = 0, k = 0)⟩t) -(⟨I (qopt, k = 2)⟩t -⟨I (qopt, k = 0)⟩t) , all p s > 0.1). This suggests that optimal timing-sensitive codes (i.e. q = q opt ) that are spatially-insensitive (i.e. the identity of the neuron which res is unknown or ignored using k = 0) were not overall robustly better than spike-count at de-mixing two activities with opposite ring preference. Overall, it is very unlikely that the 'false positive' spikes in a template, which are a minority and which do not appear to robustly favor spike-timing sensitive decoding, could sizably aect our results.

• Third, spikes of one neuron might pass from one template to another template (if the recording drifts), which could only potentially bias our pair of neurons analysis. The inter-electrode distance (150 µm of horizontal separation and, usually, dierent depths) made this phenomenon extremely unlikely between two dierent electrodes; this eect could only possibly aect pairs which templates were sorted on the same electrode. Such `template exchange' might articially produce low k opt values in pairs recorded on the same electrode as compared to pairs recorded from dierent electrodes, and might articially create the presence of pairs with k opt = 0 (i.e. with the properties described in Figure 4.15). We tested this hypothesis by researching whether there was a consistent dierence between pairs of neurons recorded from same vs. dierent electrodes. Note that such a dierence may also arise if the inputs driving dACC are spatially segregated, making two closeby neurons more likely to receive similar inputs as commonly observed, including in frontal areas [START_REF] Schall | Topography of visual cortex connections with frontal eye eld in macaque: convergence and segregation of processing streams[END_REF]]. In this case, the dierences between pairs recorded on the same vs. dierent electrodes could be specic to, say, errors discrimination, because the inputs driving the neurons at dierent moments of the task may have dierent spatial organization. In contrast, a generalized and consistent dierence between these two groups may reveal either a bias due to spike-sorting or a generalized spatial structure of inputs. for signicantly informative pairs recorded from the same vs. dierent electrodes.

For 1 st reward discrimination, the distributions of k opt values and the proportion of pairs with k opt = 0 were statistically identical among the pairs recorded from the same vs. dierent electrodes. By contrast, for errors discrimination the k opt values were higher (and the proportion of k opt = 0 smaller) for the group of pairs recorded from dierent electrodes. This result appears consistent with the existence of a spatial organization of inputs driving discharges during errors, and inconsistent with a (general) inuence of spike sorting artifacts.

Methods for analyzing eye movements

We veried that purely motor dierences between 1 st reward and repetition feedbacks were unlikely to produce the advantage of timing sensitivity for decoding. Here, we describe the methodology we used to perform this control analysis.

After target touch, arm-movements were largely a return from the target to the central 'lever' button occuring after gaze-shift. We therefore focused the analysis on eye movements, which were monitored with an infrared system (Iscan Inc., USA). We aimed at nding a threshold on the derivative of the recorded eye position which could dene an eye movement. We ltered the signal with a gaussian of standard deviation 9 ms (changing this value by a few ms was not critical, see [START_REF] Martinez-Conde | Microsaccadic eye movements and ring of single cells in the striate cortex of macaque monkeys[END_REF]] for a similar approach). We then built a distribution of ltered eye-position derivatives, using peri-choice-saccade (0.1 s before to 0.5 s after targets onset) and post-reward (until +1 s) data, separately in X and Y. Distributions were gaussian-like supplemented with outliers (long tails). We used the threshold at which the data signicantly diered from a gaussian determined using the Grubbs Test implemented in the matlab le exchange function deleteoutliers [START_REF] Shoelson | Deleteoutliers[END_REF]] to detect a movement in either X or Y. These X and Y thresholds matched well 'intuitive' saccade detection when we examined a large subset of traces. We actually chose the standard deviation of the lter for the position signal in order to maximize the gaussianity of the remaining distribution (after excluding outliers with the Grubbs Test).

Note that we did not dierentiate between saccades and blinks (which both result in large derivative values of the recorded eye position), because they can trigger spiking in the same area [START_REF] Bodis-Wollner | Cortical activation patterns during voluntary blinks and voluntary saccades[END_REF]]. For simplicity, we use the expression 'eye movement' to refer to any threshold crossing for recorded eye speed.

We characterized the eye motor activity between the go signal for target touch (occuring after target xation) and 1s post-reward. Monkey P was very often breaking xation before reward time (not shown), while monkey M was often maintaining xation after reward time (as we will show in Figure 4.9 (a)). In both monkeys, dierences could be seen between 1 st reward and repetition (e.g. in the number of saccades, latency of rst saccade following the reward, as we will show in Figure 4.9 (a) for monkey M). Hence, there were dierences in motor activity between 1 st reward and repetition task epoch. However, we note that these motor dierences may actually not be reected in the neuronal activity, or they may only impact neuronal activity indirectly, through a covariation with cognitive computations. Indeed, eye-movements may be correlated to attention and cognitive processing [START_REF] Katnani | Time course of motor preparation during visual search with exible stimulus-response association[END_REF]]. This phenomenon seemed to occur at least for late eye-shifts in monkey M, as trials with late post-rstreward 1 st eye movement often led to a shorter response time of the monkey at the following trial (as we will show in Figure 4.9 (c)). Therefore, a correlation between these late saccades and neural activity would still be compatible with a cognitive correlate of the discharge.

In conclusion, we had to test whether purely motor dierences between 1 st reward and repetition task epoch could participate to the advantage of temporal sensitivity for decoding. We will now describe how we determined that this was unlikely.

We focused on monkey M whose behavior allowed us to decode trials without any saccade or blink detected between the xation period and the end of the analysis window (in Figure 4.9 (d,e,i)), or between the xation period and 300 ms after the end of the analysis window (in Figure 4.9 (f,g,j)). This delay of 300 ms was chosen because it is likely to eliminate preparation activity directly triggering saccades (as the activity occuring, e.g., in the Frontal Eye Field [START_REF] Hanes | Relationship of presaccadic activity in frontal eye eld and supplementary eye eld to saccade initiation in macaque: Poisson spike train analysis[END_REF]). We also excluded rare trials when, between saccade and reward time, the gaze had slowly drifted by more than one third of the inter-target dierence. Because hand movements were almost always occuring after gaze shift, this process also minimized them. Beside, we stress that even though removing trials according to eye movements detection could induce some more pronounced dierences in the proportion of the dierent targets between 1 st reward and repetition, this was very unlikely to favor purely motor-based classication, as target reach probably happened too early (600 ms before the start of the analysis window) to still inuence spiking. Therefore, our trial-removal process would strongly reduce the advantage of temporal sensitivity for decoding if this advantage was reecting motor activity (or premotor activity when the rst movement occurs later than 300ms after the end of the analysis window). To test whether this was the case, we compared the improvement of information through temporal sensitivity (I (q ≈ q opt ) -I (q = 0)) between the original data and data downsampled to remove putative motor or premotor activity.

We also compared data downsampled to remove putative motor or premotor activity, to randomly downsampled data with identical trial number. Hence, the nite-sample bias should be similar between these two groups. Therefore, this bias should not impact the comparison between these two types of information values, and we indeed compared them directly without trying to evaluate the bias (in Figure 4.9 (e,g)). In addition, in order to consistently display bias-subtracted information in Figure 4.9 (d,f) as in all gures, the nite-sample information bias was evaluated as the mean information in 1000 shue data sets for which eye-movement free trials were randomly permuted between task-epochs.

Note that eye-movement data were only available in 38 signicant neurons among the 61 from monkey M whose activity signicantly distinguished between 1 st reward and repetition (i.e. those neurons used in Figure 4.2 (a, left)).

Methods for investigating the relation between neuronal activity and future behavior

For this analysis, only neurons with signicant 1 st reward classication and with at least 5 available trials were used. Some additional analyses also tested dierent subgroups of this ensemble of neurons (in Figure 4.18 and Figure 4.19).

At the behavioral level, we focused on the response time which was dened as the time between the GO signal (for hand movement) following the 1 st reward, and the subsequent target touch. At the neuronal level, we aimed at quantifying how much a given spike train deviated from a (neuron-specic) prototypical 1 st reward spike train.

Quantifying how much a spike train deviates from a prototype

For any given neuron, we wanted to quantify to what extent a spike train s was an outlier within the entire set of spike trains produced at 1 st reward, i.e. how much it deviated from the discharge `typically' emitted during that epoch.

To quantify this, it is possible to take the median of all pairwise dissimilarities between each spike train s and any other spike train s ′ emitted during the 1 st reward epoch. Indeed, in the space of neuronal responses, an outlier will be more dissimilar to the data set as a whole when compared to a data point that is close to the central point of the data set.

We now tackle the question of the choice of an appropriate dissimilarity measure.

The original Victor & Purpura distance d(s, s ′ ) appears to not be optimal for this particular application. Indeed, it sums the costs to match any spike of train s to a spike of train s ′ (see subsection 3.2.1, [START_REF] Victor | Nature and precision of temporal coding in visual cortex: a metric-space analysis[END_REF]]). Thus, all pairwise distances involving a train with many spikes tend to be larger than those involving a train with little spikes. For instance, let s = {0.1, 0.5} (i.e. it contains one spike at time t = 0.1 s and a second spike at t = 0.5 s) and s ′ = {0.11, 0.51}. Their distance is then d 1 (s, s ′ ) = 2 • 0.01 q. Now, if s = {0.1} and s ′ = {0.11, 0.51}, then d 2 (s, s ′ ) = 1 + 0.01 q. Therefore, if we take q to roughly match the temporal jitter of ±0.01 s (i.e. q = 100 s -1 ), then d 1 = d 2 , though during the rst distance computation the spike matching was both as temporally precise as, and more reliable than, during the second distance computation. In order to avoid this scaling with spike number, we divided the Victor & Purpura distance by the number of times when two spikes (from the two trials) were 'coincident' (i.e., 'matched' during dissimilarity computation). Two spikes were considered 'coincident' when they were associated with a distance d < (D max = 2). There was no coincidence both in cases when a spike was deleted and then reinserted at the right time (for q > 0), and in cases when a spike was simply removed or added. Note that for q = 0, the number of 'coincidences' (i.e., 'spike matchings') is the spike count of the trial with less spikes. Therefore, the normalized distance can be expressed as:

d * (s, s ′ ) = q N c • Nc ∑ i t i s -t i s ′ + C N c = q • ⟨dt⟩ + C N c (3.3)
where N c denotes the number of coincident spike pairs, t i s the time of the i th coincident spike in train s, ⟨dt⟩ the mean jitter among coincident spikes, and C the total cost for inserting and/or deleting spikes. The rst term quanties the dissimilarity due to coincident (i.e., 'matched') spikes, whereas the second one is the dissimilarity due to unmatched spikes. For q > 0, this measure quanties the reliability of temporal coincidence detection between two spike trains. For q = 0s -1 , it quanties the absolute spike count dierence relative to the shared spike count. In both cases, the normalized distance behaves similarly to an inverted signal-to-noise ratio. In this interpretation, the signal is taken as the coincident spikes. The noise is the unmatched spikes, and the temporal jitter of coincident spikes relative to the considered 'coincidence window' for q > 0.

In the absence of coincident spikes, we simply used the original Victor & Purpura distance. For q = 0 s -1 , the absence of coincident spikes only happens when one spike train is empty. In this case, some intuitive order relations are conserved. Let s x denote a spike train containing x spikes. Then: d(s 0 , s x ) > d(s 0 , s y ) i x > y, and d(s 0 , s x ) > d(s 1 , s x ) if x > 1. For q > 0, the absence of matching spike could also happen when the distance between two spike trains s x , s y is maximum and equal to x + y, because no spikes are close enough in time to be advantageously matched. In this case, the distance grows with the number of spikes that are unmatchable, i.e. very dissimilar, which appears sound. We note that our results show (as will be visible soon) an increase of information driven by temporal spike matching, which implies that this 'no coincident spikes' situation was likely to be unfrequent.

Note that the new distance we designed has a dierent purpose and eect from the previously proposed division by the sum of spike count in the two spike trains and, more generally, from other re-scaled spike train dissimilarity measures [START_REF] Naud | Improved similarity measures for small sets of spike trains[END_REF]]. Indeed, rather than bounding the measure, or merely averaging some jitter statistics, we tried to build a measure that would evaluate dissimilarities between spike trains as perceived by dierent plausible decoders which are more or less sensitive to spike timing and spike count, without being biased by the number of spikes. Notably, we did not want the spikes that could not be matched to enter in the normalization factor for the dissimilarity measure (which would happen with a simple division by spike count).

Finally, we stress that as expected, the normalized distance d * (s, s ′ ) showed similar classication ability as compared to the classical Victor & Purpura distance d. Indeed, for any spike train s, since both the intra-and inter-task epoch distances d to s will increase with the spike count of s, a smaller d for a given task epoch still indicates a greater similarity relative to the other task epoch(s). To corroborate this hypothesis, we tested the 1 st reward classication with the normalized metrics. To do so, we used the very same trials that have been extracted for the response time analysis. Both the number and the identity of the signicant neurons were consistent with those found with the classical metrics (Monkey M: 65 signicant neurons vs. 61, of which 57 are shared; monkey P: 50 signicant neurons in both cases, 44 shared). The classication results were also equivalent, as conrmed by a rank sum test comparing the maximum (over timing sensitivity values) time-averaged information among signicant neurons (all p s > 0.74). In addition, the normalized metrics uncovered an increase of time-averaged information with timing sensitivity adaptation, independently in both monkeys (Friedman ANOVA on time-averaged information < I > t , all p < 10 -8 ; q opt = 15s -1 and 10s -1 for monkey M and P respectively showed higher rank than q = 0 after post-hoc comparisons with Tukey's honestly signicant criterion).

Testing whether deviation from prototype is predictive of response time

Let r denote the median value of observed response times, T + be the set of 1 st reward trials followed by a response time larger than r, and T -the set of trials followed by a response time lower than r. For each spike train s, we calculated the dissimilarity between s and prototypical 1 st reward activity (i.e.

median ( d * q (s, s ′ ) ) s ′ ∈ 1 st reward, s ′ ̸ =s
, similar to the spike train classication analysis). We then dened D T + (D T -) as the mean over all s ∈ T + (T -) of the dissimilarity between s and prototypical 1 st reward activity. We nally computed the overall dierence of deviation from the prototypical discharge at 1 st reward as D = D T + -D T -. D was computed for multiple time window lengths: from 100 ms to 1 s post-feedback time, by increments of 100 ms. values (for all analysis windows) had a 0.5 probability to be changed. The p-value was computed as the proportion of surrogate data sets leading to higher or equal abs (b) as the real data.

A similar analysis was done to test whether ring rates could also relate to response time. To do so, D was replaced by the dierence in mean ring rate between high and low response time trials, D rate .

Testing whether the prediction of behavior from

neuronal activity is different between q = 0 and q ≈ q opt

The temporal sensitivity q leading to best 1 st reward discrimination in the population (q ≈ q opt ) and q=0 were compared (signed-rank test). To do so, we computed the mean values of D over analysis windows from 100 ms to 1 s postfeedback time, by increments of 100 ms. Similar results were found when assessing the optimal q value by using either the original Victor & Purpura distance d q (in Figure 4.17), or the normalized distance d * q (in Figure 4.18).

For one monkey (monkey P), we will see later in the manuscript that this test was not signicant. This could reect either a negligible impact of spike timing sensitivity on the D measure, or the fact that d * (q opt ) and d * (q = 0) were yielding equally strong, but still rather dierent neuronal-behavior correlations.

For instance, d * (q opt ) and d * (q = 0) could lead to large D values in dierent neurons and/or for dierent analysis window durations. Hence, we designed a 3.6. GENERAL STATISTICS 53 method to investigate this question. We noticed that if temporal sensitivity had a negligible impact on the D measure, then the dierence Dif f D = D(q opt ) -D(q = 0/s) should be negligible noise. Under this (null) hypothesis, adding to

D(q = 0/s) a surrogate noise Dif f surr D
with statistics that are similar to those of Dif f D should lead to a surrogate of D(q opt ): Dif f surr D + D(q = 0/s) = D(q opt ) surr . This D(q opt ) surr should then have a similar bias score b to the bias score of the original D(q opt ). We tested this hypothesis, creating 1000 surrogates Dif f surr D from Dif f D by randomly shuing the values of Dif f D between neurons (identical conclusions were also reached when shuing between analysis windows or between both neurons and analysis windows). Importantly, only 2 % of these surrogates had bias scores b superior or equal to the one of the original D(q opt ) (using analysis windows ending between 0.1 and 1s by steps of 0.1 s for bias score computation). In other words, the null hypothesis (stating that temporal sensitivity at q opt = 10/s was only producing spurious negligible changes in d * relative to q = 0) could be rejected with a p-value of 0.02. Additionally, we would like to briey mention that we also implemented a similar test while computing the bias score using only analysis windows during which q = 0 was leading to a substantial value of D (see Figure 4.17, analysis windows between 250 and 450 ms, increasing in steps of 50 ms). This gave a similar result (p=0.011), strengthening our conclusion that the eects seen when using d * (q opt ) vs. d * (q = 0) were at least partially separate. Optimal timing sensitivity

General statistics

Time-averaged information

( ) ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ≡ t q opt I mean q argmax
Optimal distinction degree between units

( ) ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ≡ t k opt I mean k argmax
Temporal structure related gain of information ( )

t q t q t q I I I 0 0 max = = - ≡ Fano factor estimate ∑
, where is the random variable counting the number of spikes fired by a neuron in a given analysis windows during one task-epoch, and is its realization in a given trial among the available trials.

Gain in the pair relative to the best single unit with P denoting the proportion of trials for which between-neuron spike-matching(s) did impact the Victor & Purpura distance , for the analysis window that maximizes . d pair q opt , k opt I Table 1 Table 3.3: The angle brackets denote averaging; t denotes time average over the ensemble of analysis windows beginning 1 ms after the feedback and ending from 100 ms to 1 s (by steps of 100 ms). Information values I were always normalized and bias corrected unless mentioned. We therefore simply refer to them as "information" throughout the text. ''adapt" stands for behavioral adaptation task epochs (either errors or 1 st reward); ''repet" stands for repetition task epochs. N is the spike count in a window between 1 and 1000 ms after feedback onset. argmaxy (f (y)) is the point yo of the argument y for which the function f attains its maximum value.

( ) ( ) ( ) ( ) ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - ≡ t q cells t pair k q t q cells t pair k q I I I I single single , , , , max , max max max max Information imbalance between two units ( ) ( ) ( ) ( ) ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - ≡ t cell q t cell q t cell q t cell q I I I I 2 1 2 1 max , max max max max
Table 3.3 summarizes an additional set of employed statistical measures. The latter were often non-normal, therefore non-parametric tests were considered (p ≤ 0.05 was considered as statistically signicant):

X correlations were assessed using Spearman coecient with a permutation test (or a large sample approximation)

X distributions were compared with the 2-sided Kolmogorov-Smirnov test X central tendencies were compared between 2 unpaired (resp. paired) distributions with the 2-sided ranked-sum (signed-rank) test X deviation of distributions from 0-centered-symmetry was also tested with the 2-sided signed-rank test

When testing pairs of units, one limitation was that some pairs happened to share a neuron, and hence were correlated (in particular if non-shared neurons were discharging signicantly less than the shared one). This was problematic for analyzing the optimal temporal sensitivity, which is not a parameter accounting for the interaction between neurons, and which can be impacted more by the neuron which res the most. We therefore veried that the signicance of the advantage of the temporal sensitivity during paired decoding could be reached without overlapping pairs (positivity of

max k ( ⟨I ( q = 10s -1 ) ⟩ t ) -max k ( ⟨I ( q = 10s -1 ) ⟩ t
) , signed-rank test, p ≤ 0.05 in 1000/1000 random down-samplings to non-overlapping pairs). Note that, in contrast, interaction parameters such as the information gain or k opt are truly pair specic, implying that it was reasonable to keep overlapping pairs for the analysis. Note that although most statistical tests we present were carried out by pooling data from both monkeys, consistent trends were observed for both individuals.

The standard error of the mean for the variable X was taken as

√ ∑ N i=1 (X i -⟨X⟩) 2 N -1 √ N
. Error bars for the median were taken as ± interquartile range

1.075 √ n
, as scaling the median with this standard-error-like value approximately gives a t distribution with (n-1) degrees of freedom [START_REF] Hoaglin | Understanding robust and exploratory data analysis[END_REF]]. This therefore is approximately a 70% two-sided condence interval (t 0.7,(n-1) ≈ 1 for a large range of n values, and the condence interval is t 0.7,(n-1) times the standard error).

Unless mentioned otherwise, the boxplots represent the median at the notch, the 25 th and 75 th quantiles as horizontal lines, and the whiskers extend until at most 1.5 times the interquartile range beyond the closest quartile. Finally, beyond these whiskers, outliers are indicated as red crosses (unless mentioned otherwise).

Chapter 4

Testing decoders of the behavioral adaptation signals emitted by dorsal Anterior Cingulate Cortex neurons

To investigate temporal coding in dACC, we analyzed the activity of 145 and 189 individual neurons from monkey M and P, respectively.

Optimal temporal sensitivity improves decoding of single units' behavioral adaptation signals

We rst tested how single-trial single-unit dACC activity could send signals that could drive behavioral adaptation after feedback. Behavioral adaptation occurred either after the 1 st reward (thus switching from exploration to repetition) or after any error during exploration (see Figure 2.1 a). Signaling the need for adaptation requires that spike trains emitted during either 1 st reward or errors can be discriminated from those emitted during repetitions (referred to as 1 st reward and error discrimination analyses, respectively). Neurons in dACC showed early post-feedback responses specic to behavioral adaptation [START_REF] Quilodran | Behavioral shifts and action valuation in the anterior cingulate cortex[END_REF]]. Therefore, we analyzed spike trains starting at the onset of the feedback delivered 600 ms after target touch. We will refer to any post-feedback time interval (i.e. following either an error, or 1 st reward, or repetition) as a task epoch. We quantied to what extent spike trains emitted during dierent task epochs were discriminable by a downstream decoder by classifying them based on a spike train dissimilarity measure [START_REF] Victor | Nature and precision of temporal coding in visual cortex: a metric-space analysis[END_REF]]. We briey remind the reader that this dissimilarity measure computed the minimal cost to transform the rst spike train into the second one through two possible recursive operations: (i) adding or removing a spike, for a cost of 1; and (ii) changing the timing of a spike by dt, for a cost of q dt ≤ 2. Note that the maximum cost allowing two spikes to be temporally matched (coincidence detection) is 2 because it corresponds to the total cost of removing one spike and adding another spike at any desired time (see Figure 3.1 a and section 3.2). This measure allows dierent temporal sensitivities of a downstream decoder to be evaluated by varying the parameter q. A value of q = 0s -1 describes a decoder sensitive to pure spike count. On the other hand, a larger q value corresponds to a decoder sensitive to precise spike times. The larger the q value, the smaller the maximum interspike interval leading to coincidence detection, and the more the decoder disregards spike count. We stress again that even when the neural activity is temporally structured, sensitivity to spike timing does not necessarily improve decoding. For instance, spike timing and spike count might provide redundant information and then a neural integrator could be more robust (see section 3.2.1).

We quantied the classication performance (i.e. how well, on average, a spike train was correctly associated to the task epoch with the most similar activity) by computing the mutual information between the predicted distribution of spike trains across task epochs and the true distribution (see section 3.2.1). Throughout this thesis, mutual information values are expressed as percentage of the maximum value corresponding to perfect discrimination. Information values were computed for dierent analysis windows, all starting 1 ms after feedback time and with increasing duration. In this way, the state of a putative decoder of dACC feedbackrelated discharges could be evaluated at dierent delays after the start of the decoding process.

Finally, we stress that unless mentioned otherwise, we display results among all signicant neurons. We remind the reader that these neurons emitted spike trains that could be classied between task epochs with a higher accuracy than chance level (permutation test, p < 0.05; see section 3.2.1). 
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We tested whether temporal sensitivity would consistently tend to improve information transmission among all these signicant neurons, compared to spike count. Importantly, for most neurons, timing-sensitive decoding of spike trains (q>0) conveyed more information than spike count (q=0; 3.3) for different temporal sensitivities (q). The ordinate axis is the normalized mean rank of ⟨I⟩t. After a Friedman test, post-hoc comparisons with Tukey's honestly significant difference correction were used for the 95% confidence intervals. Temporal sensitivities q>0 that were performing significantly better compared to q = 0 are indicated by a star. (c) Distribution of the difference of information between optimal temporal decoding (qopt ≈ 10s -1 ) and spike-count decoding (q = 0s -1 ). Stars indicate the significance of signed-rank tests (the null hypothesis is the symmetric distribution around zero): *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001.
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We characterized this eect by looking at the time course of information (averaged across neurons with signicant decoding), for dierent q s (see Figure 4.2 (a)). For each value of q, the information increased as post-feedback spiking accumulated with time. Temporal sensitivity inuenced both the maximum amount of information and the speed at which it increased. Importantly, adapted temporal sensitivity provided a sizable gain (15-40%) in mean information compared to spike count. Values of q within [5,10,15]s -1 led to a signicant increase in time-averaged information ⟨I⟩ t (dened in the caption of Table 3.3; Figure 4.2 (b); Friedman ANOVA, global eect on all considered q values: p<0.001). This eect was robust early after the feedback and for all subsequent times (Figure 4.2 (c)).

The same phenomena were observed when using a classier that was biased towards nearest neighbors, instead of the unbiased classication that we use for all other gures of the dissertation (see section 3.2.1, Figure 4.3). The nearest-neighbors biased classication was actually less robust (leading to less signicant neurons), and that is why we display results using the unbiased classication. However, we veried that the main results would hold for both classication techniques. Actually, we will show (in subsection 4.2.1) that the spike count variability was large in our data. This suggests that any classier biased towards some type of outliers would probably perform worse than the classier we used, and would impact spike-count decoding more negatively compared to temporally sensitive decoding. Information gain through temporal sensitivity was also observed when the classification of spike trains was biased toward smaller dissimilarities rather than determined by the median dissimilarity to spike trains of a task-epoch (see section 3.2.1). Results in this figure are for the neurons with significant discrimination ability (permutation test, see section 3.2.1); note that the number of significant units is smaller than with the classification method using the median (see Figure 4.2). (a,b) show the time course of the mean information (over neurons) for 1 st reward (left) and errors (right) discrimination, as a function of timing sensitivity q, separately for the two monkeys.

(c) Results of the post-hoc comparisons (with Tukey's honestly significant criterion correction for multiple comparison) of a Friedman ANOVA comparing the time-averaged information ⟨I⟩t between temporal sensitivities. Note that the slight differences in the rankings of q-values between (a,b) and (c) are due to the fact that the mean over neurons is more sensitive to outliers with high values, while the average rank is determined by the consistency (over the population of single units) of the within-neuron rankings of ⟨I⟩t between different q-values. ⟨I⟩t between temporal decoding (qopt ≈ 10s -1 ) and spike-count decoding (q = 0s -1 ). The p-value of a signed-rank test indicates that in both monkeys individually, temporal sensitivity induced a robust increase of information (all ps ≤ 0.018). The horizontal green line marks the 0 value.
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In addition, we veried that very small temporal sensitivities (compatible with an imperfect integrator implementing a slowly decaying memory: τ ≥ 1s), were leading to signicantly less information than optimal temporal decoding (Figure 4.5 (a,b)). Given that the behavioral task required to maintain the memory of the adapted behavioral strategy over several seconds, this suggests that a slow enough leaky integrator would indeed read out a less robust signal from dACC spike trains than a timing-sensitive decoder (Figure 2.1). imperfect integrator) leads to identical conclusions to using q=0/s (perfect integration) in single units.

We test: (i) q = 0.5s -1 , approximately equivalent to an exponential leak time-scale τ = 1 q = 2s (see Figure 2.1 andFigure 3.1 (a), andsection 3.2.1). This is the minimal time-scale for a downstream leaky neuronal integrator which has to hold in memory the behavioral adaptation signals (and/or the behavioral strategy signals) for up to 3-6 s as required during the task (in case of fixation break). (ii) q = 1s -1 , approximately equivalent to an exponentially decaying time-scale τ = 1s, as a more stringent test. (a,b,c) Classifying spike trains: 1 st reward vs. repetition (a), errors vs. repetition (b), errors vs. 1 st reward (c). We used neurons reaching significant classification with any q-value (including q = 0.5 and 1s -1 , permutation test, Methods), leading to only one more significant neuron compared to Figure 4.2 (for errors vs. repetition classification, monkey P). Left: timecourse of the mean information over neurons. Right: results of post-hoc comparisons of the time-averaged information ⟨I⟩t after a Friedman anova, using the Tukey's honestly significant criterion correction. Q-values with significantly smaller performance than qopt are marked by a star. In all considered cases, both q = 0.5s -1 and q = 1s -1 were leading to significantly smaller ⟨I⟩t than qopt. In both monkeys individually, q = 0.5s -1 and q = 1s -1 had (at least qualitatively) lower average rank than q = 10s -1 and q = 5s -1 . The Friedman test was restricted to q ≤ 40s -1 , focusing on q-values for which classification was not too noisy. (d) Related to section 4.4, a part of our results that is described later in this chapter. We compare ⟨ D⟩t: the time-averaged index of behavioral prediction through deviation from prototypical 1 st reward spike train, between qopt = 10/s and several lower temporal sensitivities. The average was taken over analysis windows ending between 0.1s and 1s with steps of 0.1s. The data shown is the difference between ⟨ D(qopt)⟩t and ⟨ D(q < qopt)⟩t. Note that for monkey M, q = 0s -1 , q = 0.5s -1 and q = 1s -1 lead to significantly smaller ⟨ D⟩t compared to qopt, while a statistical equivalence was seen in monkey P (signed-rank test). The neurons used are the same as for Figure 4.17.

Finally, we also found similar results when decoding 1 st reward vs. errors (Figure 4.6 ; Figure 4.5 (c)). It is noteworthy that the improvement of decoding through temporal sensivity was also present for neurons with signicant discrimination for both errors vs. 1 st reward, and 1 st reward vs. repetition (Figure 4.6 (d,e,f)). This suggests a temporal decoding advantage for a signal related to the specication of a precise behavioral strategy (exploration, switch or repetition), rather than related to the presence of reward per se. (e) Mean rank (±95% confidence interval) of post hoc comparisons (using Tukey's honestly significant criterion correction for multiple comparison) of a Friedman ANOVA comparing the time-averaged information ⟨I⟩t. Note that the differences in the rankings of q-values between the mean information and the Friedman graphs are due to the fact that the mean is more sensitive to outliers with large values, while the Friedman rank is determined by the consistency (over neurons) of the within-neuron rankings of ⟨I⟩t between different q-values. These outliers are for instance visible in monkey P in (f). Some of these outliers might be due to noise (e.g. the lower outlier in monkey P in (f) had the smallest number of trials, and less trials were available in monkey P, see Table 3.1). (f) Boxplots showing the distribution of the difference ⟨I(qopt = 10/s)⟩t -⟨I(q = 0/s)⟩t for the two monkeys separately. A signed rank test was significant in both monkeys individually.
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Hence, decoding of both the appropriate behavioral strategy and of the degree of necessity to update the behavior (i.e., the level of cognitive control required) could benet from temporal sensitivity.

The curve of the amount of information vs.

q was bell-shaped (Figure 4.2 (a,b), Figure 4.5). This suggests an optimal range of temporal sensitivity for decoding. If q increases further, the decoder emphasizes too much small uninformative spike time uctuations relative to the appropriate timescale(s) of spike-timing reliability, thereby deteriorating the decoding. We were interested in comparing the range of interspike intervals occuring in the data (these intervals being computed within [0.001, 1] s post-feedback separately for all trials), and the range of interspike intervals at which temporal coincidences could occur during optimal decoding. Among signicant neurons, the interquartile ranges of the median interspike interval were 54-143 and 49-110 ms for 1 st reward and error discrimination, respectively. Consequently, several spikes often occurred within the range of spike timing reproducibility accounted for when decoding with q opt ≈ 10s -1 (i.e. a range of 200 ms, Figure 3.1 (a right)). We stress that this temporal decoder was therefore more spike-timing sensitive than a mere 200 ms binning procedure, because for q = 10s -1 , the whole range of interspike intervals between 0 and 200 ms corresponds to dierent values of dissimilarity. This range of interspike intervals can be interpreted as the range of presynaptic spike time jitters at which coincidences happen, i.e. leading to an eective summation of EPSPs decaying at a time scale τ ≈ 100ms (Figure 3.1 (a)).

Temporal coding supplements, rather than competes with, spike count coding

We investigated the relation between the ring rate properties of the neurons and temporal coding. The absolute value of the dierence in mean spike count between task epochs (see the denition in Table 3.3) correlated positively with the maximum time-averaged information (Spearman correlation coecient: c 1 st reward = 0.57, c errors = 0.71, p < 0.001 for all). However, large spike-count dierences in highly informative neurons did not imply the absence of information related to spike timing. Indeed, among the group of neurons selected for being highly informative (through the separation of max q (⟨I (q)⟩ t ) in two clusters using a k-means algorithm), we observed an improvement of decoding with q ≈ q opt compared to q = 0 (see Figure 4.7). Also, the normalized dierence in mean spike count and the gain of information related to timing sensitivity (see Table 3.3 for the denition) were negatively correlated (c 1 st reward = -0.52, c errors = -0.6, p < 0.001 for all). Therefore, temporal sensitivity could uncover a relatively high amount of information in neurons with small dierences in spike rate between task epochs (such as the neuron on the left of sensitive decoding was also beneficial for very informative single neurons. We computed the maximum time-averaged information Imax for significant units (over q). Then, we used a k-means algorithm (with two groups) to separate populations with high vs. low Imax. Results in this figure are for the high Imax neurons. (a,b) show the time course of the mean information (over neurons) for 1 st reward (left) and errors (right) discrimination, as a function of timing sensitivity q, separately for the two monkeys. The inset in (b, right) shows the difference of time-averaged information ⟨I⟩t between q = 5 s -1 (found optimal for monkey P over all significant units, for errors discrimination) and q = 0 s -1 . The p-value of a signed-rank test is indicated. (c) boxplots of the corresponding distributions of difference in ⟨I⟩t between q = 10 and q = 0 s -1 . P-values of signed rank tests are indicated. Note that the notches indicate a confidence interval on the median, which may extend further away than the 25 th or 75 th quantiles, resulting in an inversion of the boxplot.

We also wondered whether the spiking activity was more reliable during some task-epochs. In order to investigate this, we took advantage of the fact that the Victor and Purpura metrics scales with the number of spikes (see section 3.2 and subsection 3.5.1). Hence, for a given neuron, the q opt computed with this metric is expected to mostly reect the spike-timing reliability of the task-epoch with more spikes, whose spike trains are harder to classify. Indeed, within spike trains of this task-epoch, a small dissimilarity d can only be reached (and therefore correct classication can only happen) if the decoder detects a very small dissimilarity per spike and therefore a suciently small summed dissimilarity over all spikes. Hence, we compared groups of neurons ring preferentially in dierent task-epochs, and found that the q opt values were higher for neurons discharging more during the task-epochs requiring behavioral adaptation (see Figure 4.8 (b, left)). This dierence was likely to reect an increased reliability of spike timing during the behavioral adaptation epochs, rather than a decrease in spike count reliability, as the timing-insensitive information values (q = 0) were statistically indistinguishable between the groups of neurons with dierent ring preference (see Figure 4.8 (b, right)). For neurons ring more during repetition, optimal temporal sensitivities were distributed around q = 5s -1 . In contrast, for neurons ring more during behavioral adaptation, which were the majority, the median optimal sensitivity was 10s -1 and 7.5s -1 for 1 st reward and error discrimination, respectively (with a signicant improvement compared to q = 5s -1 for 1 st reward, see Figure 4.8 (c)). These results may reect a higher temporal reliability of spiking during behavioral adaptation. Alternatively, our observations could also be compatible with a less reliable time reference for neural activity during repetition epochs. Indeed, the feedback could be anticipated during repetition, which may lead to a trial-specic advance of neuronal activity compared to the actual reward time. reflects a difference in spike-timing reliability rather than a difference in spike-count reliability between the groups. (c) Detailed analysis about the optimal temporal sensitivity qopt for decoding cognitive-control signals during feedbacks of the task which should trigger behavioral adaptation (1 st reward or errors). We focus on neurons discharging more during 1 st reward for 1 st reward vs. repetition discrimination and on neurons discharging more during errors for errors vs. repetition discrimination. In addition, for errors vs. repetition discrimination, we focus on cognitive control coding and exclude putative 'physical reward' coding by only selecting neurons that were significant for both errors vs. repetition and 1 st reward vs. repetition (n=32 from monkey M, n=27 from monkey P). (c, Left) Difference of time-averaged information ⟨I⟩t between q = 10/s and q = 5/s, and between q = 5/s and q = 1/s; the p-value of a signed-rank test for the distribution of the difference values around 0 is shown. (c, Right) Distribution of optimal temporal sensitivities (here, including data at q = 0.5/s and q = 1/s) showing that for both discriminations and for both monkeys independently, the median qopt was 10/s. For errors vs. repetition, the pooled distribution over monkeys (concerning a subset of neurons compared to (b)) is also shown.

Sensorimotor differences between task epochs are not likely to determine the advantage of temporal decoding

Sensory or motor dierences between task epochs were unlikely to determine the advantage of temporal decoding. In fact, external events (e.g., feedback, stimuli) were identical during 1 st reward and repetition epochs. As we will now explain, the motor inuence on neural activity was also unlikely to cause temporal decoding advantage through a dierent timing of eye-movements in the two task epochs (detailed methods are in section 3.4, analysis possible in monkey M). This is in agreement with the current views of dACC function [START_REF] Shenhav | The expected value of control: an integrative theory of anterior cingulate cortex function[END_REF]].

A control for motor correlates was still necessary in our task, as the monkeys were not forced to maintain xation after target touch, and they often broke xation before one second post-reward. Further, there were consistent dierences in the timing of eye movements between task-epochs (see Figure 4.9 (a-b) for monkey M).

If the temporal structure of dACC activity were merely motor related, all eye movements timed dierently between task epochs would favor temporal coding. To test this hypothesis, we removed all trials with an eye movement occurring before 0.65-0.85 s post-feedback, and kept the remaining trials. More precisely, we removed the trials either if an eye-movement was detected before the end of the neuronal analysis window (hence removing putative motor-feedback activity), or if an eye movement was detected before a time corresponding to the end of the analysis window plus 300 ms (hence removing also putative premotor activity). This manipulation did not decrease the advantage of temporal decoding of 1 st reward vs. repetition (Figure 4.9 (d-e).: removing putative motor-feedback activity; Figure 4.9 (f-g): removing also putative premotor activity). Following target xation, late 1 st eye movements (≈ 850 ms after 1 st reward delivery) also predicted that monkeys would be quicker to respond in the following trial (see Figure 4.9 (c)). Therefore, dACC neural activity occurring either before or during these late eye movements may not reect motor planning but rather cognitive correlates (e.g., attentional modulation). These trials with late 1 st eye movements indeed appeared to contribute to the temporal advantage for decoding (see analysis windows ≥650 ms in Figure 4.9 (d-j)). In other words, while there was an interaction between eye movement and temporal coding in dACC activity, the relation was unlikely to reect the presence of a pattern of activity in dACC triggering eye movements; rather, dACC activity and eye movements appeared to be both modulated by cognitive control.

In consequence, we note that the dierent temporal patterns between 1 st reward and repetition task epochs probably originated from dierent internally generated neuronal dynamics. to the putative influence of premotor activity. 38 neurons were available for analysis windows ≤425 ms at least; for longer windows some neurons were excluded because no trials free of saccades were available. (a)

Cumulative distribution function of 1 st eye-movement latency following the fixation period. 95% confidence interval use Greenwood's formula. (b) As (a) but restricted to post-reward 1 st eye-movement latency. (c)

Distributions (over different behavioral sessions) of median response times at the trial following 1 st reward depending on the 1 st eye-movement latency after the fixation period leading to 1 st reward. (d) Left: Neuronaveraged information, including only trials with no eye-movements detected before the end of each analysis window. P-values compare between q = 10 s -1 and q = 0 s -1 . Right: Neuron-averaged information for random downsamples (from all data) to the trial numbers of (d Left). The downsampling aims at excluding a possible effect of trial number when comparing data without (left) and with (right) saccades. For each neuron, the mean information among 1000 downsamples was taken (taking the median gives similar results). P-values compare between q = 10 s -1 and q = 0 s -1 . Note that the smoother aspect of the curves compared to the left graph likely results from the presence of an additional downsampling-averaging in the right graph. Note also that, here, until plateau is reached (≈ 600 ms post-feedback), there were no robust differences in spikecount based information between eye-movement free and resampled data (signed-rank test on time-averaged information between 0 and 600ms, or 300 and 600 ms, all ps > 0.16). (e) Median difference of information increase thanks to temporal structure: [I(q = 10 s -1 ) -I(q = 0 s -1 )], between eye-movement-removed (d available neurons, all trials included. (i) Difference of information increase thanks to temporal structure:

[I(q = 10 s -1 ) -I(q = 0 s -1 )], between eye-movement-removed as in (d Left), and total data. (j) Difference of information increase thanks to temporal structure: [I(q = 10 s -1 ) -I(q = 0 s -1 )], between eye-movementremoved as in (f Left), and total data.

Temporal decoding of 1 st reward vs. repetition spiking does not only rely on differences in time-varying firing rate between task epochs

We investigated the nature of dACC ring statistics determining the advantage of temporal decoding. Spike-timing reliability might mainly reect dierences in the temporal variations of ring rates between task epochs. Alternatively, beyond this time-dependent ring rate, temporal correlations between spikes within one EMITTED BY DORSAL ANTERIOR CINGULATE CORTEX NEURONS trial may impact the spike time reproducibility. Indeed, cellular processes (such as spike-triggered hyperpolarizing currents or short-term plasticity) may lead to a dependence of future spiking probability on past spike times [START_REF] Arsiero | The impact of input uctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex[END_REF]; [START_REF] Mongillo | Synaptic theory of working memory[END_REF]; [START_REF] Schwalger | Patterns of interval correlations in neural oscillators with adaptation[END_REF]], in particular if the synaptic current received by the neuron is not very variable. Similarly, recurrent neural network dynamics within dACC or upstream may create correlations in spike times [START_REF] Brunel | Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons[END_REF]; [START_REF] Ostojic | Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons[END_REF]]. Here, we tested whether or not, beyond their existence, spike-timing correlations sizably and consistently (over neurons) impacted information transmission.

Assuming a time-dependent firing rate implies a spike count variability incompatible with the data

We randomly shued spike times within each task epoch while preserving the peri-event time histograms (PETH) for each neuron (see Stars indicate the significance of a signed-rank test: 1 to 3 stars, p ≤ 0.05, p ≤ 0.1, p ≤ 0.001, respectively.

Top: spike-count decoding (q = 0s -1 ). Bottom: optimal temporal decoding at qopt ≈ 10s -1 (this q value maximized information averaged over neurons). (c) Difference of Fano factor estimate (F, defined in Table 3.3) between original data and the median of 1000 shuffled data sets for 1 st reward (green) and repetition (red). If information transmission were shaped by time-dependent ring rates, original and spike-shued data should convey similar information. In contrast, we found that both spike-count and timing-sensitive decoding at q opt ≈ 10s -1 were more reliable for short analysis windows, and less reliable for long analysis windows, in the original compared to shued data (Figure 4.10 (b)). These results were consistent and robust in both monkeys (Figure 4.11 (a)). )> t -median (<I

S2 (q=10s -1 )> t )
signi cant . For long analyses windows, original data were less reliable than their spike-shuffled counterparts, while this effect was inverted for short analysis windows. The curves are the mean +/-standard error (ste, among all significant neurons for 1 st reward vs. repetition classification) of the difference between the information in the original data and the median information of the corresponding shuffled data sets.

<I(q=10s -1 )> t > <I S2 (q=10s -1 )> t signi cant <I(q=10s -1 )> t < <I S2 (q=10s -1 )> t
We show q = 0 (spike-count decoding, black) and q = 10s -1 ≈ qopt (blue). (b) Same conventions as in (a). The change in information induced by shuffling spikes according to shuffle 2 (preserving both timedependent rate and spike count variability, see Figure 4.10 (d)) were consistent over monkeys. Original data had higher information than their spike-shuffled counterparts. (c) The distribution of difference of time-averaged information (< I(q = 10s -1 ≈ qopt) >t) between original data and the median for the corresponding data sets created by shuffle 2 was significantly positively biased for both monkeys (left) and for both the neurons firing more during 1 st reward and the neurons firing more during repetition (signed-rank tests, all ps < 0.036).

Note that qopt is unambiguously 10s -1 for neurons firing more during 1 st reward (for these neurons q = 5s -1 and q = 15s -1 perform very similarly for original data decoding, see also show the means (over neurons) of (i) the information in original data, and of (ii) the median information of the corresponding shuffled data sets. For all q values, we observed higher information for the original data as compared to their shuffle 2 counterparts. The size of the effect increased for higher q values. (e) The proportion of neurons for which shuffle 2 led to a significant decrease in < I(q = 10s -1 ) >t (more than 95 % of shuffled data sets with smaller < I(q = 10s -1 ) >t than original, left), was higher than the proportion of neurons with a significant increase (more than 95 % of shuffled data sets with larger < I(q = 10s -1 ) >t than original, right).

Proportions were compared using the Fisher's Exact Probability Test with mid-p correction (p = 4.0 10 -5 ).

Both of these proportions were larger than chance (5%): binomial test, all ps < 10 -3 .

Timing-sensitive and spike-count decoders were both impacted by changes in spike count variability.

For short analysis windows, the improved reliability of spike count in the original data could be linked to spike-triggered hyperpolarizing currents which can counterbalance random deviations of neuronal excitability in single neurons [START_REF] Arsiero | The impact of input uctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex[END_REF]; [START_REF] Farkhooi | Adaptation reduces variability BIBLIOGRAPHY 233 of the neuronal population code[END_REF]; [START_REF] Schwalger | Patterns of interval correlations in neural oscillators with adaptation[END_REF]]. This increased spike count reliability compared to Poisson ring is actually more likely to happen if the neurons receive an input current which uctuates little (even in neurons for which spikes only trigger a simple reset of the voltage and an absolute refractory period, see [START_REF] Litwin-Kumar | Slow dynamics and high variability in balanced cortical networks with clustered connections[END_REF]] for instance).

For long analysis windows, the spike count appeared more variable in the original data (as measured by the Fano factor; Figure 4.10 (c)), causing a smaller decoding reliability. This means that spike count variability in the original data cannot be explained by random samples taken from a single ring probability. More precisely, for post-feedback times longer than 500 ms, the spiking probability was actually stronger in some trials than in other trials. This suggests a hidden source of spike count variability across trials which is not constant during one task epoch and which has a major inuence on information transmission [Litwin-Kumar and Doiron (2012); [START_REF] Ostojic | Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons[END_REF]]. This large spike count variability may reect the integrative properties of dACC. Indeed, beyond signaling the need for behavioral adaptation, dACC ring may also be inuenced by factors such as attention [START_REF] Totah | Preparatory attention relies on dynamic interactions between prelimbic cortex and anterior cingulate cortex[END_REF]] and/or target identity [START_REF] Procyk | Anterior cingulate activity during routine and non-routine sequential behaviors in macaques[END_REF]]. Interestingly, this large spike count variability appeared to hinder more spike count decoding (Figure 4.10 (b)). Hence, this may have participated to shaping the larger dierence of information between q opt ≈ 10s -1 and q = 0s -1 decoders which occurred for long analysis windows (≥ 500ms) compared to short windows (Figure 4.2 (a-c)).

Temporal correlations considerably impact information transmission

We tested whether the information transmission could be mainly shaped by the combination of the PETH time-courses and of the spike-count variability of the data. To do so, we shued spike times while preserving both PETHs and spike counts in all trials (Figure 4.10 (d)). Through this operation, spike-count information was conserved in the shued data. If temporal correlations had negligible impact on information transmission, then temporal decoding should also remain unchanged. In contrast, we found that for q opt ≈ 10s -1 , information decreased in the shued data as compared to original ones (Figure 4.10 (e-f)). These results were robust and consistent across monkeys ). The temporal correlations of the original data increased information by about 10-15%, on average, compared to shued data (Figure 4.10 (e), information at plateau). In addition, the increase of information with optimal temporal sensitivity q opt (compared to spike count) was signicantly correlated to the information increase with temporal correlations (Figure 4.10 (f)). This further suggests that temporal correlations tended to support temporal coding. Finally, information loss after spike shuing was larger for larger temporal sensitivities q (Figure 4.11 (d)), suggesting that spike correlations were stronger at shorter time-scales.

Altogether, our results suggest that, beyond the time-dependent ring rates, temporal correlations led to spike timing reliability that favored task-epoch discrimination in most neurons. The neurons for which correlations appeared to make the neural activity more similar between task-epoch, and therefore to impair the classication of neuronal responses in dierent task epochs, were therefore the minority (Figure 4.11 (e)).

These results could reect either the single neurons dynamics [START_REF] Arsiero | The impact of input uctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex[END_REF]; [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]; [START_REF] Park | Encoding and decoding in parietal cortex during sensorimotor decision-making[END_REF]], or network dynamics mediating the behavioral strategy signal, that would make future spike times dependent on spiking history [START_REF] Brunel | Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons[END_REF]; [START_REF] Ostojic | Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons[END_REF]].

Temporal patterns often differ between neurons, implying a spatiotemporal code

Multiple neurons were often simultaneously recorded (median=2). Thus, we also decoded the activity of pairs of neurons (Monkey M, n=122 pairs; Monkey P, n=271) while varying both the temporal sensitivity q and the degree of distinction between neurons k (see Figure 3.1 (b), subsection 3.2.1). For the computation of the dissimilarity measure, the parameter k represents the cost of transforming a spike from neuron 1 into a spike from neuron 2. Therefore, during classication of spike trains from pairs of units, the dissimilarity between spikes from dierent neurons increases with k. The parameter k permits to test whether the informative spikes are neuron specic, or if they are emitted synchronously by two neurons. In the former case, the amount of information would increase if the decoder were accounting for neural identity (k > 0), as compared to a decoder blind to neural identity and sensitive to interferences between neurons (k = 0). In the latter case, k = 0 could be optimal for decoding because it makes the discharge of either one of the neurons sucient to have reliable joint spiking. Note that for this situation to occur, the discharge of informative spikes should not be strongly positively correlated between the two neurons (else, the signals emitted by the two neurons are redundant and cannot complement one another).

Paired decoding benefits from an optimal distinction between the spikes from the two neurons

We rst tested whether decoding with optimal (q, k) values advantageously combined the activity of any two analyzed neurons (regardless of their individual coding properties). This was not trivial because of the imbalance in information between neurons (Figure 4.12 (a)). Also, in our data, when some noise (relative to the mean task-epoch spike-count signal) caused one neuron to re more, it was not in general causing the other neuron to re less. Indeed, the spike counts emitted during a task-epoch were not negatively correlated in our data. Thus, summing the activity of two neurons would not cancel the eect of noise on spike counts. Hence, the (wide) distribution of spike-count correlations between two neurons was slightly positively biased during 1 st reward or repetition (signedrank test on time-averaged correlation coecients: p = 1.6 10 -3 with median 0.043 for 1 st reward; p = 1.4 10 -5 with median 0.036 for repetition). During errors, the distribution of correlation coecients was centered on zero.

In general, a simple sum of two independent or positively correlated neural activities which are associated with largely dierent standard deviations is likely to decrease the signal-to-noise ratio, compared to the more reliable single activity. In contrast, the decoding relying on the multi-unit dissimilarity measure most often uncovered more information in a pair compared to the most informative neuron of the pair (gain in the pair relative to the best single unit, as dened in Table 3.3 ; Figure 4.12 (a), signed-rank test, all p s < 0.001). As expected, information gains were negatively correlated with the information imbalance between paired neurons (Figure 4.12 (a), Spearman correlation with permutation test, all p s < 0.001; more pronounced for pairs with signicant coding: Figure 4.13). Friedman ANOVA) of the time-averaged information ⟨I⟩t as a function of (q,k). Data were pooled from both monkeys and were restricted to pairs with significant information. (c) Maximum mean (over neurons with significant information) information as a function of (q,k).

Information was maximized over analysis windows ending in [0.05, 0.6] s, steps of 50 ms, and in [0.7, 1] s, steps of 100 ms.

We then investigated which (q, k) values yielded better dACC decoding. For any k value, the time-averaged information ⟨I⟩ t signicantly increased with temporal sensitivity up to q opt ≈ 10s -1 and decreased for larger q values (Figure 4.12 (b-c)). Hence, for any value of k, spike-count decoding (q = 0s -1 ) led to a signicantly lower ⟨I⟩ t than optimal temporal sensitive decoding (q opt ≈ 10s -1 ). ⟨I⟩ t also increased with k and plateaued at about 1. Therefore, intermediate to high levels of distinction between spikes from paired neurons often improved the decoding of behavioral adaptation signals, suggesting that some reliable spikes were neuron specic. Dierences in information average (over signicant pairs) across (q, k) values were consistent over time and between monkeys ( but for the discrimination between error and repetition task-epochs.

Jointly recorded neurons can share similar temporal firing patterns

Decoding with intermediate k values may imply temporal coincidence between spikes from two dierent neurons as opposed to between spikes from the same neuron. We found that spike coincidence between two neurons occurred, on average, in 34% (1 st reward) and 41% (errors) of all pairwise comparisons between spike trains (quantied as during the computation of the between-neuron spike coincidence index in Table 3.3). In addition, we computed an index quantifying the spike coincidence between neurons within a task epoch (dened in Table 3.3). This index negatively correlated with optimal k values, k opts , (c 1 st reward = -0.71, c errors = -0.54, p < 0.001). k opt values were pair specic rather than shared among most pairs as for q opt . For instance, k opt values were much smaller for pairs of units that red preferentially in the same task epoch relative to pairs of units with opposite ring preferences (ranked-sum test, all p s < 0.01; median k opt values were 0.75 vs. 1.25-1.5 for pairs with the same vs. dierent ring preference). These results suggest that two neurons with similar ring preferences across task epochs were likely to have similar ring temporal patterns. Some pairs of neurons had maximal ⟨I⟩ t when the decoder did not distinguish between the two single units (k opt = 0 ; 15% of signicantly informative pairs, corresponding to 7% and 10% of all analyzed pairs for 1 st reward and error discrimination, respectively). These pairs transmitted more information with q opt ≈ 10s -1 compared to spike count, q = 0s -1 , (Figure 4.15 (a); signed-rank test on ⟨I⟩ t : 1 st reward discrimination, p = 0.029; error discrimination, p < 10 -5 ). They had an index of spike coincidence between neurons larger than in other pairs (Figure 4.15 (b), ranked-sum test: all p < 10 -9 ). In these pairs, the information gains relative to the most discriminative unit of the pair were relatively high (Figure 4.15 (c)). This suggested that these pairs were decoded eciently. We tested whether these information gains were related to the gain of information when not distinguishing between neurons (i.e. k max = 2 vs. k opt = 0; see denition in Table 3.3). We found a positive correlation (Figure 4.15 (c)), suggesting that spike coincidence between neurons could mediate an ecient combination of their activities. The index of spike coincidence between neurons was higher for pairs with kopt = 0 compared to other significant pairs (ranked-sum test, p < 10 -9 ). Note that the median indexes were larger than 0 for pairs with kopt = 0. This means that when comparing spike trains within one task epoch, coincidences between neurons occurred more often than when comparing spike trains between task epochs (see the definition of this index in Table 3.3). (c) The information gain relative to the most informative single unit was positively correlated with the information gain induced by the absence of neuron distinction. C: Spearman correlation coefficient, red line: and linear fit, blue line: median of the distribution of information gains.

Hence, on the one hand the information generally increased when the identity of the neurons was accounted for (intermediate-to-high k opt values), which indicates that reliable spike times were variable and distributed across the neuronal population. On the other hand, some pairs of neurons with similar temporal ring patterns could be eciently decoded through between-neuron temporal coincidences (Figure 2.1 (c), Figure 3.1 (b)).

The temporal structure of single unit spike trains predicts behavioral response times

The presence of information in single-unit spike timing does not necessarily imply that the downstream networks do actually use it [START_REF] Luna | Neural codes for perceptual discrimination in primary somatosensory cortex[END_REF]; [START_REF] Carney | Suboptimal use of neural information in a mammalian auditory system[END_REF]]. In particular, if dACC spike timing were not used, then dierent temporal patterns would be rather unlikely to reliably correlate with dierent behavioral outputs. Here we examined whether 1 st reward single-unit activity could predict upcoming behavior. We focused on the behavioral response time, i.e. the time between the GO signal (for hand touch) and the following touch on target (section 3.5). The response time was measured during the trial following the 1 st reward, i.e. several seconds after the analyzed neural activity. This behavioral response time was quantifying how long it took to the monkey to conrm its choice (after saccading), during what should be the beginning of the repetition period (unless a mistake was made, which happened in less than 2% of the trials).

The modulation of the response times of the monkeys was rather consistent with a relation to cognitive control, rather than with a purely motor eect. Indeed:

1. The time taken by the monkey to release the central lever (which was an identical movement for all targets) and the response time were similarly modulated (see Figure 4.16 (a-b)).

2. While the two monkeys were in the same apparatus, the modulation of the response time by the target was monkey-specic (see Figure 4.16 (ab)). This rather points towards a spatial attention eect, which would be consistent with the fact that monkeys were more likely to begin a problem by touching a specic target [START_REF] Khamassi | Behavioral regulation and the modulation of information coding in the lateral prefrontal and cingulate cortex[END_REF]].

3. The response times of both monkeys consistently increased on the touch following the 1 st reward compared to the touch leading to 1 st reward 1 st reward by the identity of the target and by the number of errors, conventions as in a). The response time was defined as the time between the post-1 st -reward go signal for target touch and the following target touch. The modulation of the response time was strikingly similar to the modulation of the release time (which, as argued above, is very unlikely to reflect motor constraints). In addition, note that while the two monkeys were in the same apparatus, they modulated their response time differently for the different targets. Finally, the target modulation of response time could interact with the modulation by the number of preceding errors. Altogether, the results argue against a purely motor cause for response time modulation, and rather point toward a spatial bias of cognitive processes. (c) Boxplots for the difference of response time between the trial following 1 st reward (the 1 st repetition, or, in rare cases, a mistake) and the trial that ended with the 1 st reward, i.e. last exploration. The p-value of a signed rank test for a bias of the distribution toward either positive or negative values is indicated. The green line indicates a 0 difference. For clarity, outliers are omitted. The response time increased on the trial following 1 st reward when the preceding exploration period was longer than one attempt. between problems with response time larger than median and problems with response time lower than median (response time measured between the first post-1 st -reward go signal and the post-1 st -reward touch). These interruptions can be due to break of fixation or break in screen touch requirements, after which monkeys were forced to resume the trial (see section 3.1). The medians (and means for differences in mistake probability) of these differences are shown together with a signed rank test measuring how significantly the median deviates from 0. Note that the overall percentage of mistakes was very small (0.81% and 1.0% in monkey M and monkey P, respectively, of considered trials).

We separated trials into two groups: one group with response times larger than the median, and the other with response times below the median. The probability of switching to repetition was very high in both groups and statistically equivalent between them (Table 4.1). We tested the hypothesis that longer response times may reect a longer decision-making process, when monkeys might act more carefully to avoid mistakes.

Deviations from prototypical temporal firing patterns predict response times

Under the temporal decoder hypothesis that we suggested (Figure 2.1 (c)), the success of information transmission relies on matching the discharge received during a particular trial with a prototypical activity pattern specic to a given task epoch.

The robust classication of single-unit spike trains (Figure 4.2, Figure 4.8) indeed implies that during many 1 st reward trials, the activity resembled a prototypical ring pattern specic to a feedback triggering behavioral adaptation. However, the classication was not perfect, which suggests that there were also trials during which the activity deviated from the prototypical temporal ring pattern. This could lead to inecient information transmission, and then slower processing.

To test this, we developed a new method to estimate how much each EMITTED BY DORSAL ANTERIOR CINGULATE CORTEX NEURONS single-trial spike train emitted by each neuron at 1 st reward deviated from its prototypical discharge (i.e. its more common ring pattern during 1 st reward; see section 3.5). According to our method, for each neuron, a large positive deviation from prototype can occur when the spike count is either higher or lower than the average rate of the neuron, or when the spike times are jittered compared to the neuron's usual temporal pattern. Hence, when computing the deviation based on q = 0, high values of deviation will in general be attributed to trials with both large and small spike count relative to average (as long as the spike count distribution is not overly skewed, with outliers lying on one side only). We compared the two groups of trials: associated with slow vs. fast response times. For each neuron, we computed the dierence in mean deviation from prototypical activity (D) between these two groups.

Notably, the distribution of D values was positively skewed (Figure 4.17 Temporal sensitivity q (s -1 ) M, the lowest p-value was for q = 20s -1 (p = 0.003); for Monkey P, the lowest p-value was for q = 5s -1 (p = 0.029). Finally, the result of the comparison of D, averaged over different analysis windows, between qopt ≈ 10s -1 and q = 0s -1 is shown (signed-rank test).

q (s ¹) q = 0. Here, qopt was the temporal sensitivity that maximized discrimination between 1 st reward and repetition using the normalized distance d * in each neuronal group (see section 3.5). Note that similar results were found when using qopt = 10s -1 instead, i.e. the temporal sensitivity that maximized 1 st reward discrimination when using the original Victor and Purpura distance (as in Figure 4.17 (c)).

D was time-averaged (over analysis windows ending in [0.1, 1] s, steps of 100 ms), separately for qopt and q = 0. These time-averages were compared with a signed rank test (p-value indicated). The boxplots represent the distribution of the difference of time-averaged D between qopt and q = 0.
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For monkey P, statistical robustness was reached when neurons with very little 1 st reward vs. repetition information ⟨I⟩ t were removed (Figure 4.18 (c)). Temporal sensitivity values leading to best task-epochs decoding (Figure 4.2) were also relevant for predicting behavioral response times. More precisely, q values of 5 and 10 s -1 led to a robust and signicant bias of the distribution of D values in both monkeys (Figure 4.17 (c); and Figure 4.18). This result suggests that in both monkeys the temporal patterns of spikes could be relevant to downstream decoding areas ultimately adapting behavioral responses. We note that the deviation from prototype based on spike count (D(q = 0)) was also signicantly biased in both monkeys. Importantly, we conrmed that this eect was not likely to be merely caused by a dierence in ring rate between trials with slow and fast response times with dierent signs in dierent neurons. Indeed, if the latter hypothesis were true, then the neurons with a large D(q = 0) would also be those with large absolute value of the dierence of mean ring rate D rate between slow and fast response time trials. This would lead to a strong correlation between D(q = 0) and D rate . Instead, we found that this correlation was small (Spearman correlation between time-averaged D(q = 0) and D rate , monkey M: c = 0.31, monkey P: c = 0.06). This suggests that, for any single unit showing a large D(q = 0) and a small D rate , the trials followed by long response times were likely to be associated with both increased (during some trials) and decreased (during other trials) spike count compared to prototype.

We then compared the deviations from prototype between the method based on spike count (q = 0), and the method using the temporal sensitivity q opt ≈ 10s -1 (optimal to discriminate 1 st reward vs. repetitions). For monkey P, we found that spike count and temporal decoding performed equally well (signed-rank test on average D over analysis windows ending from 0.1 to 1s by increments of 0.1 s). However, the two decoding strategies probably relied on dierent neurons as D values were considerably dierent between q opt and q=0. Indeed, we tested whether the dierence Dif f D = D(q = 10) -D(q = 0) was likely to act as a negligible noise (that was thus exchangeable between neurons) for the bias score of D(q = 10) = Dif f D + D(q = 0). However, this had a very small probability to happen: 2% (this gure is the p-value of a permutation test, see subsection 3.5.3 for the method). In monkey M, optimal temporal sensitivity signicantly improved the relation between single-unit spike trains and upcoming response times compared to spike count (p = 0.028; Figure 4.17 (c); see also Figure 4.5 (d)). Altogether, these results further argue in favor of the relevance of temporal spiking patterns for behavioral adaptation.

Note that even though a longer response time was associated with a higher probability of interruptions in the task (e.g., breaks in xation) during the trial ending with this response (Table 4.1), the correlation between response time and neural activity was not entirely caused by a dierence between interrupted vs. uninterrupted trials. Indeed, when we removed interrupted trials we still observed a signicant positively skewed D distribution (Figure 4.19). 

Firing rate increase does not robustly relate to a behavioral response time change

In the context of a neural integrator decoder maintaining a memory of the necessity to adapt the behavioral strategy, one could expect that the spike count would be directly predictive of the behavioral response time. Indeed, in this scenario, the downstream decoder would receive an overall excitatory input from the population of dACC neurons whose activity distinguishes between 1 st reward and repetition task epochs, as this population res more on average during 1 st rewards (Figure 4.8). As a consequence, any decrease in the number of spikes received by the decoder would hinder reaching the decision-making threshold (see adapt behavioral strategy threshold in Figure 2.1 (c)). Conversely, any increase in spike input would accelerate threshold crossing. Hence, given the two groups of trials (slow vs. fast response times), we tested whether dACC neurons red more in one of these two groups. We computed the dierence in mean ring rate between spike trains that preceded trials with slow vs. fast response times (D rate , see section 3.5). We found that the distribution of D rate was not signicantly skewed either positively or negatively, indicating that large ring rates in dACC neurons were not predictive of future monkey's response times (Figure 4.17 (b,c), see also Figure 4.18).

In addition, under the neural integrator decoding hypothesis, the dACC neurons ring more during 1 st reward ( 70% of signicant neurons) are expected to be the main drivers of ring rate increase in the decoder. To examine this, we restricted the analysis to neurons ring more during 1 s after the 1 st reward (compared to repetitions). We found that this restriction did not lead to a more Finally, we also examined a scenario in which the downstream integrator decoder would receive excitatory inputs from neurons discharging more during 1 st reward, and inhibitory inputs from neurons discharging more during repetition. We simply reversed the sign of D rate for those neurons discharging more during repetition. However, using the same neurons as for Figure 4.17, we did not nd a robust bias of the overall resulting distribution (2-sided permutation test: monkey M, n = 61, bias score = -4.14, p = 0.37; monkey P, n = 24, bias score = -3.0, p = 0.48). The same test was made on dierent subgroups of neurons (the groups in Figure 4.18). The absolute value of the rate bias score reached by using this methodology was never higher than the corresponding bias score reached by using the best-scoring measure of deviation from prototypical spike train. Furthermore, this rate bias score reached p < 0.1 only once, for the smallest group of neurons of monkey M (bias score -11.8, p = 0.037). We note that this smallest group of neurons was not the one associated with the largest eect size for behavioral prediction through deviation from prototypical pattern at q opt (the median time-averaged D(q = 10s -1 ) was of 0.11 in this smallest group of neurons, while it was of 0.19 in the group of neurons with information larger than the median in this monkey). Note also that this eect in the smallest group of monkey M neurons was not statistically very robust (compare to the much smaller p-values reached when using D in Figure 4.18 (a)); it relied on few neurons, with less than 15 trials available for one third of them. We stress that if one undersamples the spike count variability, there is some non-negligible probability that, by chance, one mostly samples outliers on one side of the distribution. This could lead to a situation where a measure of absolute deviation from prototype and a measure of spike count dierence can covary, hence being dicult to distinguish (as it seems to happen here). Furthermore, when using this methodology for computing D rate , we found rate bias scores that could appear inconsistent between monkeys.

Indeed, in contrast to the negative rate bias scores of monkey M, for monkey P this rate bias score was non-signicantly positive for the smallest group of neurons (when computed with or without the trials with interruptions). Finally, the rate bias scores computed by using this methodology never reached signicance when considering only trials without interruption (as in Figure 4.19, all p s > 0.05).

Overall, the results suggest that there was no robust monotonous relation between the ring rates of dACC feedback-related neurons, and the behavioral response time changes.

These observations therefore appear hard to reconcile with the hypothesis of a decoding by a simple downstream integrator.

In contrast, the robust relation between deviations from a neuron-specic prototypical 1 st reward spike train and slower upcoming response times could be consistent with a non-linear downstream network able to process and separate dierent spatiotemporal spiking patterns.

Chapter 5

Discussion: evidence for a temporally sensitive, non-linear decoder of dorsal Anterior Cingulate Cortex signals

Post-feedback spike counts in dACC neurons were shown to depend on whether behavioral adaptation was required [START_REF] Quilodran | Behavioral shifts and action valuation in the anterior cingulate cortex[END_REF]]. Given the absence of external-stimulus-driven temporal uctuations in the synaptic input and high noise in spike timing, a plausible hypothesis would be that only spike count is relevant to the transmission of the need to adapt behavior by dACC ring [START_REF] London | Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex[END_REF]].

Evidence for internally generated reliable temporal structure and spike count variability in dACC

By contrast, we provide evidence for an ecient spatiotemporal spike coding of behavioral adaptation signals. Our analysis accounts for the temporal sensitivity of a biologically plausible neural decoder which would receive post-feedback dACC discharges. Adjusting the temporal sensitivity of the decoder can enhance the readout of single-unit spike trains relevant to behavioral adaptation. Beyond the existence of a temporal patterning of dACC activity, these results indicate that spike-timing reliability supplements spike-count reliability. Interestingly, in frontal areas, single-unit spike generation mechanisms or network dynamics, rather than external stimuli or motor feedback, are probably responsible for spike timing reliability and spike-count variability [Litwin-Kumar and Doiron (2012); [START_REF] Mongillo | Bistability and spatiotemporal irregularity in neuronal networks with nonlinear synaptic transmission[END_REF]; [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]; [START_REF] Ostojic | Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons[END_REF]].

We found strong temporal correlations, stronger-than-Poisson spike count variability, and heterogeneous spike times across the dACC population. The feedback-type-specic spiking dynamics of dACC is thus unlikely to arise from neuronal populations connected by balanced excitatory and inhibitory inputs with uniform wiring probability and with stationary weak-to-moderate strengths [Litwin-Kumar and Doiron (2012); [START_REF] Ostojic | Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons[END_REF]], as these features would tend to create Poisson-like spike trains. Besides the eect of the network's connectivity pattern, spike-triggered hyperpolarizing currents or short-term plasticity could also plausibly favor the presence of informative temporal correlations in dACC activity [START_REF] Arsiero | The impact of input uctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex[END_REF]; [START_REF] Mongillo | Bistability and spatiotemporal irregularity in neuronal networks with nonlinear synaptic transmission[END_REF]; [START_REF] Farkhooi | Cellular adaptation facilitates sparse and reliable coding in sensory pathways[END_REF]].

In addition, spike-triggered hyperpolarizing currents (i.e., single-neuron adaptation) may participate to shaping the lower-than-Poisson spike count variability occurring shortly after the feedback [START_REF] Farkhooi | Adaptation reduces variability BIBLIOGRAPHY 233 of the neuronal population code[END_REF]]. This initial small spike-count variability also suggests that the synaptic current received by the neurons just after the feedback could be characterized by relatively small uctuations [Litwin-Kumar and Doiron (2012); [START_REF] Schwalger | Patterns of interval correlations in neural oscillators with adaptation[END_REF]].

Note that the optimal range of decoding time scale that we found (τ ≈ 70 -200ms) is larger than those found when decoding responses to stimuli with relevant temporal patterning or contrast at onset time (e.g., auditory stimuli, τ ≈ 5ms [START_REF] Machens | Single auditory neurons rapidly discriminate conspecic communication signals[END_REF]]; visual stimuli, τ ≈ 10 -100ms [START_REF] Victor | Nature and precision of temporal coding in visual cortex: a metric-space analysis[END_REF]; [START_REF] Aronov | Neural coding of spatial phase in V1 of the macaque monkey[END_REF]]). This is consistent with the idea of a hierarchy of increasing time scales from sensory to higher-order areas [START_REF] Murray | A hierarchy of intrinsic timescales across primate cortex[END_REF]]. However, there are also exceptions to this rule, for instance in the gustatory modality (for which the timing of the stimulus is less relevant). Indeed, the optimal time scales were found to be close to the one we found in dACC (50-500 ms [START_REF] Roussin | Taste coding in the nucleus of the solitary tract of the awake, freely licking rat[END_REF]). Given that during a gustatory stimulation, the motor behavior of the animals and/or some sensorial input transients were probably participating to shaping the temporal code [START_REF] Roussin | Taste coding in the nucleus of the solitary tract of the awake, freely licking rat[END_REF]], it is quite remarkable that we found equivalent time scales in our data for which internal neuronal dynamics was probably the major contributor to spike timing reliability. From a functional view-point, in our context, a time-scale of ≈ 70 -200ms may be considered as short for two reasons. First, it is shorter that the time-interval during which subpopulations of dACC neurons, or even single dACC units, appear to increase their ring rate during the feedback. Second, and perhaps more importantly, such a time-scale would not permit to maintain the memory of the behavioral adaptation signal through leaky integration. Indeed, this suggests a weakness of a downstream network that would implement, as a decoding and memory mechanism, a computation tantamount to an approximate integration. Such a network would probably be less robust than a spike-timing sensitive downstream decoder.

We note that the optimal spike coincidence timescale loosely matches the period of local eld potential (LFP) oscillations in the delta and theta range, on which frontal neurons can phase lock during cognitive tasks [START_REF] Benchenane | Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning[END_REF]; [START_REF] Womelsdorf | Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors[END_REF]; [START_REF] Totah | Preparatory attention relies on dynamic interactions between prelimbic cortex and anterior cingulate cortex[END_REF]; [START_REF] Womelsdorf | Burst ring synchronizes prefrontal and anterior cingulate cortex during attentional control[END_REF]]. LFPs partially reect the synaptic input of the local population [START_REF] Reimann | A biophysically detailed model of neocortical local eld potentials predicts the critical role of active membrane currents[END_REF]], which could both shape and be inuenced by the temporal spiking patterns of dACC. The optimal temporal sensitivity range for decoding identied in this study remains an approximation. First, dierent methods or dierent analysis windows might give slightly dierent optimal values (Figure 4.2, Figure 4.3). Yet, although it is not feasible to extensively test all possible decoders, our analysis accounts for biophysically reasonable assumptions on the downstream decoder. In this framework, we provide strong evidence for the plausibility of decoding through spike coincidences (up to a few hundred ms), compared to a neural integrator decoder. Second, spike trains were referenced to feedback time, but the internal reference of the brain could be dierent and more or less accurate [START_REF] Chase | First-spike latency information in single neurons increases when referenced to population onset[END_REF]] (e.g., coincidence detection during a population onset [START_REF] Panzeri | Sensory neural codes using multiplexed temporal scales[END_REF]], or precise spike timing relations in a neuronal population [START_REF] Shmiel | Temporally precise cortical ring patterns are associated with distinct action segments[END_REF]). Aligning to feedback times was very relevant for behavioral-adaptation task epochs where monkeys could not predict the outcome and were thus reacting to feedback. However, anticipation of rewards during repetition periods may have promoted internal references dissociated or jittered from actual juice delivery, decreasing the apparent temporal reliability (as suggested by the data, Figure 4.8).

A biological architecture could decode dACC temporal signals

The spike-time sensitive decoder can be understood as a downstream network that, through synaptic plasticity [START_REF] Gjorgjieva | A triplet spiketiming-dependent plasticity model generalizes the bienenstock-cooper-munro rule to higher-order spatiotemporal correlations[END_REF]], becomes dierentially selective to coincident spiking patterns that are specic to task epochs. The optimal temporal sensitivity range is compatible with the time constant of NMDAmediated currents. Indeed, the eciency of the spike coincidence mechanism decreased with interspike intervals up to 200 ms, which relates to an exponential decay time-constant of 100 ms.

Within this framework, decoding thus relies on the convergence of excitatory neurons that transmit similar temporal patterns to a post-synaptic compartment (triggering summation of depolarizations). Yet, informative neurons with distinct and potentially antagonistic temporal patterns may improve information transfer, for instance if they were decoded by dierent specialized post-synaptic neurons. We showed that paired decoding generally enhanced information transmission relative to the pair's most discriminative unit. This suggests that highly informative activity can be advantageously combined (the less informative inputs do not merely act as contaminating noise on average). The information increase was achieved by varying the degree of distinction between the two units (parameter k). This mechanism may be implemented by dierent spatial organizations of synapses, which could modulate, through non-linear summation, the temporal precision of spike coincidence detection. Other mechanisms such as dierent synaptic weights or synaptic timescales (i.e. two weak/shorter depolarizations that require more precise coincidence to eciently sum), or targeted inhibition, may also induce a similar eect. In addition, we showed that in a smaller proportion of pairs the activity of both units did not need to be distinguished to achieve optimal discrimination. Thus, if these two units were excitatory, direct summation of their post-synaptic potentials would be advantageous. The partial spatial specicity of reliable spikes may be advantageous during realistic decision-making when quick choices should be made between many strategies. Indeed, the combination of spatial and temporal information can increase the number of possible specic activity patterns compared to simultaneous ring of all neurons. behavior. We found a signicant correlation between neural activity at feedback time and the monkeys response time during the following trial. This nding is functionally dierent from the correlation previously reported between pre-movement dACC activity (which often resembles an integration to threshold [Hayden et al. (2011b); [START_REF] Michelet | Electrophysiological correlates of a versatile executive control system in the monkey anterior cingulate cortex[END_REF]], in contrast to feedback-driven dACC responses) and immediate motor response [Hayden et al. (2011b); [START_REF] Sheth | Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation[END_REF]; [START_REF] Michelet | Electrophysiological correlates of a versatile executive control system in the monkey anterior cingulate cortex[END_REF]]. This motor correlation could become apparent through the comparison between trials with high vs. low ring rates (or, equivalently, spike-counts in a given window). In particular, Michelet et al. showed that the quicker the increase of ring rate to threshold, the quicker the movement [START_REF] Michelet | Electrophysiological correlates of a versatile executive control system in the monkey anterior cingulate cortex[END_REF]]. This implied high vs. low spike-count correlation when aligning spike trains with respect to movement. In contrast, we observed a correlation between dACC activity and behavior in terms of deviation from prototypical activity patterns, while we did not observe a robust link between large vs. small number of spikes emitted during 1 st -reward-triggered discharges, and dierent behaviors. This result can be well understood when considering that dACC can signal a given behavioral strategy when its activity lies close to a given prototypical state. Hence, this interpretation can be consistent with reports of increased spike count variability (and hence, of absence of dened state of activity) in dACC during periods of behavioral uncertainty [START_REF] Karlsson | Network resets in medial prefrontal cortex mark the onset of behavioral uncertainty[END_REF]]. It can also be related to nding about a sudden reorganization of dACC activity in a new rule encoding network state when animals switch to a new rule [START_REF] Durstewitz | Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning[END_REF]].

EVIDENCE FOR A RELATION BETWEEN FUTURE BEHAVIOR AND THE RESULT OF

Within this framework, 1 st reward feedback triggers specic dACC activity patterns [START_REF] Balaguer-Ballester | Attracting dynamics of frontal cortex ensembles during memory-guided decision-making[END_REF]] that shape the response of downstream areas such that the appropriate decision (here, switching to repetition) is taken. Deviation from these prototypical patterns would lead to a slower behavioral response. In addition, if the deviation of dACC discharges from their usual pattern were triggered by increased uncertainty or diculty, slowing the behavioral response may prevent incorrect choices (as suggested by the similar error rates between trials with fast vs. slow responses).

Interestingly, these results also suggest that the information transmitted to downstream areas cannot be mapped onto an intensity value (i.e. a single dimension), such as the magnitude of the required cognitive control, as in the case of the integrator model. Rather, the deviation from a prototypical pattern, which relates to behavioral modulation, appeared to occur in many dierent ways (through either an increase or a decrease of spike count, or through spike timing deviations within the heterogeneous temporal patterns of dACC neurons). This hints to the transmission of a high-dimensional representation by dACC, possibly linked to the embedding of the cognitive control signal into a specic context, or behavioral strategy [START_REF] Quilodran | Behavioral shifts and action valuation in the anterior cingulate cortex[END_REF]; [START_REF] Shenhav | The expected value of control: an integrative theory of anterior cingulate cortex function[END_REF]; [START_REF] Ullsperger | Neurophysiology of performance monitoring and adaptive behavior[END_REF]]. Furthermore, these results also suggest a non-linear behavior for the downstream decoder.

Taken together, our observations could therefore be consistent with a recent study reporting evidence for a high-dimensional, non-linear processing in lateral prefrontal cortex (lPFC, [START_REF] Rigotti | The importance of mixed selectivity in complex cognitive tasks[END_REF]]), an area which is likely to process dACC signals [START_REF] Procyk | Modulation of dorsolateral prefrontal delay activity during self-organized behavior[END_REF]; [START_REF] Rothé | Coordination of high gamma activity in anterior cingulate and lateral prefrontal cortical areas during adaptation[END_REF]; [START_REF] Shenhav | The expected value of control: an integrative theory of anterior cingulate cortex function[END_REF]]. One limitation of our study is that we only characterized the dimensionality of the representation transmitted by dACC through the large dierentiation, at the population level, between measures based on ring rate and measures based on (absolute) deviation from prototype. A full evaluation of this dimensionality will need future studies to evaluate the space of neuronal variability and its relation to behavioral variability in each single neuron.

Importantly, beyond the deviations of dACC spike trains from prototypical spike count, our ndings indicate that deviations from prototypical temporal patterns were predictive of the monkeys' upcoming response time. This was consistent and signicant in both monkeys. Furthermore, compared to the prediction based on spike count deviations, the prediction power of adapted temporal sensitivity was either equivalent (monkey P) or signicantly stronger (for monkey M, which showed the most reliable relation between neural activity and behavior). This strongly suggests that the temporal patterning of single unit activity is not an epiphenomenon irrelevant to downstream network dynamics.

We note that dACC diers from other decision-making related areas such as middle temporal (MT) or orbitofrontal cortex (OFC) regarding the nature of the relation between neuronal variability and future response time variability. Indeed, in MT and OFC, the ring rate of specic neuronal populations predicts behavioral modulation [START_REF] Britten | A relationship between behavioral choice and the visual responses of neurons in macaque mt[END_REF]; [START_REF] Kepecs | Neural correlates, computation and behavioural impact of decision condence[END_REF]]. In addition, evidence suggests that neurons in MT are decoded through integration, a process that could be reected in LIP (lateral intraparietal cortex) activity [START_REF] Huk | Neural activity in macaque parietal cortex reects temporal integration of visual motion signals during perceptual decision making[END_REF]], and which appears to have one-dimensional dynamics ( [START_REF] Ganguli | One-dimensional dynamics of attention and decision making in lip[END_REF]], see also [START_REF] Latimer | Neuronal modeling. single-trial spike trains in parietal cortex reveal discrete steps during decision-making[END_REF]]).

Outlook

Altogether, our results appear hard to reconcile with the hypothesis of a decoding of post-feedback dACC activity by a neural integrator. Other types of decoders could be compatible with both an increase in information through spatiotemporal coincidences and a correlation of deviation from prototypical temporal patterns to behavior. For instance, as we illustrate in Figure 2.1 c, a recurrently connected neuronal population, which maintains memory through a high-activity state, can be modulated by the temporal structure of its input [Dipoppa and Gutkin (2013b)]. Alternatively, a downstream network maintaining a memory through repetitions of sequential activations of NMDA-connected neurons, would also be sensitive to spatiotemporal patterns [START_REF] Szatmáry | Spike-timing theory of working memory[END_REF]]. Our ndings therefore call for a better understanding of how models of short-term memory and decision-making could reliably be modulated by a temporal input at the timescale of hundred of ms.

Also, beyond the necessity to further verify our conclusions in new data sets, future research should better investigate the cognitive factors that modulate dACC discharges. This will require a careful design of new experiments where these factors can be distinguished and measured. Indeed, the current study reports a correlation between dACC activity and the response time, but it does not give much insight about whether and how the response time modulation may favor an ecient behavioral adaptation process. One of the possible explanation for our results could for instance be a relation between dACC discharges and the motivation of the monkey. Alternatively (or in addition to the previous point), they may indicate a relation between dACC discharges and the condence of the monkey in the appropriateness of the chosen target. Yet, another possibility could be that dACC discharges directly reect the attention of the monkey to the task stimuli that permit the implementation of the appropriate behavioral strategy. Note that the attentional eect can dier from a condence eect, as one can be condently wrong. Hence, an attentional eect would occur before the nal choice is made, while a condence eect would rather be post-decisional. In the context of our task, analyses of activation latencies, and of the strength of target-choice-related activity, suggest that dACC modulates lPFC, which in turn implements the decision about which target to touch [START_REF] Procyk | Anterior cingulate activity during routine and non-routine sequential behaviors in macaques[END_REF]; [START_REF] Rothé | Coordination of high gamma activity in anterior cingulate and lateral prefrontal cortical areas during adaptation[END_REF]; [START_REF] Khamassi | Behavioral regulation and the modulation of information coding in the lateral prefrontal and cingulate cortex[END_REF]]. This would be more consistent with a pre-decisional involvement of dACC. However, another study reported the presence of post-decisional correlates in dACC [START_REF] Blanchard | Neurons in dorsal anterior cingulate cortex signal postdecisional variables in a foraging task[END_REF]]. Hence, this issue will need to be investigated further in the future.

Relatedly, it is also currently dicult to determine whether dACC feedback discharges are signaling the new adapted behavioral strategy to downstream decision-and-memory areas (hence specifying this behavioral strategy [START_REF] Shenhav | The expected value of control: an integrative theory of anterior cingulate cortex function[END_REF]]), or whether these discharges reect the monitoring of the extent to which a particular behavioral strategy is specied. In the rst case, the modulation of the behavioral response time would be entirely dependent on the reaction of downstream areas to dACC discharges, whereas in the second case, dACC might modulate directly the speed of the decision and of the behavioral response, potentially to avoid mistakes.

Finally, it will be a dicult but extremely important goal to design a test of the causal impact of spatiotemporal structure of dACC activity on behavior. This would require to stimulate in a spatiotemporally precise fashion populations of neurons in behaving animals. While optogenetics might be a promising technique, for now it cannot be used to impose a neuron-specic temporal stimulation. This is problematic, because dierent neurons with the same genetic marker can show dierent ring patterns [START_REF] Kvitsiani | Distinct behavioural and network correlates of two interneuron types in prefrontal cortex[END_REF]]. Also, a simple optogenetic tagging of all strongly activated neurons (similar to techniques used in the hippocampus, for instance [START_REF] Liu | Optogenetic stimulation of a hippocampal engram activates fear memory recall[END_REF]]) would not work in our case. Indeed, dierent dACC populations are transiently active during a behavioral task. Hence, a satisfying and successful design of a causal experiment for investigating the function of spatiotemporal patterns of activity remains a technical challenge today.

Part III

Advances for a theoretical investigation of the function of temporal dynamics in recurrent networks

Chapter 6

Preamble: from spike train data analysis to the development of mean field methods

In the rst part of this dissertation, we described how we tested the plausibility of dierent network architectures that could process dACC activity, by probing the informative features of spike trains (Figure 2.1). More precisely, we tested dierent types of decoding networks for feedback-related discharges, which seem to transmit information related to the appropriate behavioral strategy to be implemented in the near future. The analysis provided considerable evidence against the decoding of dACC feedback-related discharges by a simple integrator network, which would maintain the memory of dACC stimulation through a slow enough decay.

However, several alternatives [START_REF] Mongillo | Synaptic theory of working memory[END_REF]; [START_REF] Martínez-García | Neural and computational mechanisms of postponed decisions[END_REF]; [START_REF] Mongillo | Bistability and spatiotemporal irregularity in neuronal networks with nonlinear synaptic transmission[END_REF]; Dipoppa and Gutkin (2013b); [START_REF] Szatmáry | Spike-timing theory of working memory[END_REF]] may be consistent with the necessity to hold the received signals in memory, as well as with our observations:

1. The presence of a prototypical temporal pattern in dACC discharges that informs about the appropriate future behavioral strategy.

2. A slowing down for the future behavioral response when the spike trains deviate from the prototypical discharge (apparently, by either increasing or decreasing the spike count relative to the prototypical value, and/or by changing spike times relative to the prototypical spike train).

Further investigation of how a spatiotemporal decoder may make use of the information in dACC feedback-related discharges required to make some assumptions on the global structure of the decoding network. Further, it was desirable to analyze and understand the fundamental consequences of these assumptions.

Indeed, this would lead to predictions that could be cross-validated in the data.

Neuronal architectures that could plausibly support dACC activity decoding

Hence, we rst needed to choose a plausible neuronal architecture, and to investigate how it could make use of the spike timing information in its input.

For this, we took advantage of existing data concerning an area which could plausibly process dACC signals: the lateral prefrontal cortex (lPFC, [START_REF] Shenhav | The expected value of control: an integrative theory of anterior cingulate cortex function[END_REF]]). Indeed, the Local Field Potentials (LFP) recorded simultaneously in dACC and lPFC were analyzed in the same monkeys and the same behavioral task as those of our article. This analysis revealed that during the feedbacks leading to behavioral adaptation (errors or 1 st reward), there was a high-gamma power increase that occurred earlier in dACC compared to lPFC [START_REF] Rothé | Coordination of high gamma activity in anterior cingulate and lateral prefrontal cortical areas during adaptation[END_REF]]. In addition, high gamma power correlations were found between the two areas during post-feedback epochs, with dACC leading dlPFC by 100-200 ms during the search period (for the 60-100Hz band, [START_REF] Rothé | Coordination of high gamma activity in anterior cingulate and lateral prefrontal cortical areas during adaptation[END_REF]).

Furthermore, recordings of neuronal activity in lPFC while monkeys performed the same task as for our analysis also revealed the presence of activity specic to the chosen target [START_REF] Procyk | Modulation of dorsolateral prefrontal delay activity during self-organized behavior[END_REF]; [START_REF] Khamassi | Behavioral regulation and the modulation of information coding in the lateral prefrontal and cingulate cortex[END_REF]]. More precisely, Procyk and colleagues reported the presence of choice-specic sustained activity during the delay period of the task. Hence, there were neurons whose ring rate increased more after the feedback if their preferred target was being chosen, and whose activity stayed elevated until the monkey made a saccade towards the chosen target. These neurons hence appeared to reect the decision of the monkey and the memory maintenance of this decision. From a theoretical point of view, such a sustained activity could be compatible with a multistable attractor network able to maintain constant sustained activity through recurrent connections. Indeed, such a network has proven to be sensitive to its input's temporal structure [Dipoppa and Gutkin (2013b) 2011) showed that the trajectory followed by neuronal activity (in a neuronal space) often becomes slower close to relevant behavioral events (and therefore, when information probably had to be transmitted from and to dierent neuronal populations). [START_REF] Rigotti | The importance of mixed selectivity in complex cognitive tasks[END_REF] showed that some important characteristics of multistable attractor networks designed to be able to implement complex cognitive tasks, such as a non-linear combination of the response to dierent cues (leading to mixed selectivity, [START_REF] Rigotti | Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses[END_REF]]), are associated with a good performance of the animals during a memory task. Finally, [START_REF] Wimmer | Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory[END_REF] showed in a saccadic memory task that correlations between neurons with sustained activity during the delay were compatible with a ring-like attractor network. In addition, [START_REF] Wimmer | Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory[END_REF] found that the ne variability in the stimulus feature decoded from persistent activity at the end of the delay correlates with the memory of the animals. This strongly suggests a relation between delay activity and memory.

However, while the sustained activity during the delay has long been speculated to be inuential for this memory and decision-making function [START_REF] Fuster | Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory[END_REF]], there is controversy regarding whether there is really a causal (rather than purely correlational) link between the two [START_REF] Martínez-García | Neural and computational mechanisms of postponed decisions[END_REF]]. Indeed, only ≈ 40% of neurons show sustained activity [START_REF] Procyk | Modulation of dorsolateral prefrontal delay activity during self-organized behavior[END_REF]], and among those only 65% are spatially tuned.

Further, the ring rate of these neurons may increase or decrease over time during the delay. An alternative model proposes that the memory would rely in the loading of presynaptic calcium buer, therefore leading to a short-term (≈ 1s) potentiation of synapses, and allowing memory maintenance with or without the presence of sustained activity [START_REF] Mongillo | Synaptic theory of working memory[END_REF][START_REF] Mongillo | Bistability and spatiotemporal irregularity in neuronal networks with nonlinear synaptic transmission[END_REF]]. Yet, other possible models can rely on a feedforwardly activated chain of network states (e.g. [START_REF] Goldman | Memory without feedback in a neural network[END_REF]]). One implementation of such a feedforward chain in a spiking neuron network relied on repetitions of the sequential transient activations of NMDA-connected neurons (creating so-called polychronous patterns, [START_REF] Szatmáry | Spike-timing theory of working memory[END_REF]]).

Below, we review the experimental evidence which may be used to try to determine whether one model may represent the data more accurately.

Experimental evidence suggesting a causal relation between delay activity and shortterm memory

Current evidence based on extracellular recordings in the frontal cortex of animals instructed to hold some items in memory often appears to be Indeed, all models could be compatible with the presence of neurons which, specically when a given set of circumstances have to be remembered, increase their ring rate during the delay and may show a temporally structured sustained discharge. However, the current implementation of the model based on polychronous patterns does not seem to yield sustained increased ring rate with an intensity that is comparable to the data (see [START_REF] Szatmáry | Spike-timing theory of working memory[END_REF]]; the diculty could be the occurence of too many patterns by chance for large ring rates). In addition, the decoding time-scale permitting robust decoding in our data appears larger than the precision at which polychronous patterns were activated in the simulation relying on a synaptic calcium buer only, we note that the robustness is directly determined by the short-term plasticity time-scale, which may extend until minutes [START_REF] Zucker | Spatiotemporal spike coding of behavioral adaptation in the dorsal anterior cingulate cortex[END_REF]; [START_REF] Tsodyks | Short-term synaptic plasticity[END_REF]].

Finally, the models that do not rely on a precise sequence of single neuron activations can probably accommodate a less constrained range of time scales for the spike timing sensitivity (e.g. see [Dipoppa and Gutkin (2013b)]). Indeed, in this case,
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the spike-timing sensitivity can emerge from the non-linearity of the sustained population response, which can be shaped by many single-neuron and network connectivity characteristics.

We now turn to discussing experiments that may help determining whether a sustained ring during the delay could support short-term memory.

Three very recent optogenetic manipulation experiments actually hint towards a putative importance of such neuronal ring specically during the delay period [START_REF] Rossi | Prefrontal cortical mechanisms underlying delayed alternation in mice[END_REF]; [START_REF] Gilmartin | Prefrontal activity links nonoverlapping events in memory[END_REF]; [START_REF] Liu | Medial prefrontal activity during delay period contributes to learning of a working memory task[END_REF]]. This therefore appears to argue against a purely short-term facilitation-based theory, which would a priori predict that a sustained ring of excitatory neurons during the delay period would be unnecessary for successful memory maintenance.

1. [START_REF] Gilmartin | Prefrontal activity links nonoverlapping events in memory[END_REF] investigated the issue during trace fear conditioning which requires to hold a memory of the punishmentpredictive conditioned stimulus (CS, here, a sound) during a delay (20 seconds) before a punishment is given. They used a light-activated inhibitory channel which caused an inhibition of a majority of neurons in an area (the prelimbic medial prefrontal cortex) where sustained ring had been shown during the delay between CS and punishment.

While the rats underwent conditioning, using this type of inhibition specically during the delay period but not during the CS period seemed to prevent the association between CS and punishment. This decit was equivalent to the impairment observed when inhibiting the area during the whole trial (from CS to the end of the punishment period). Hence, these results are globally more consistent with the necessity of sustained ring during the delay in order to learn the association CSUS, which requires (among other things) the short-term memory maintenance of the CS. These studies emphasized the role of any type of item-specic frontal ring during the delay for short-term memory (including complex trajectories implying both an increase and a decrease of ring rate). However, these studies do not specically argue for a function of sustained, stable ring rates during the delay.

To the best of our knowledge, a study which would specically manipulate the activity of the neurons which preferentially re while a given item is being remembered (similar to what was done for context-specic activity in hippocampus [START_REF] Liu | Optogenetic stimulation of a hippocampal engram activates fear memory recall[END_REF]]) is still missing. However, there exist again an imperfect and indirect evidence for some relevance of an increased ring rate in item-specic neurons for the memory of this item. Indeed, the neurons in one hemisphere are more likely to have their preferred item (i.e. the item leading to higher sustained activity during memory) contralaterally. Remarkably, unilateral lesions [START_REF] Funahashi | Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic "scotomas[END_REF], in monkey lPFC] or inactivations [START_REF] Hanks | Distinct relationships of parietal and prefrontal cortices to evidence accumulation[END_REF], in rat frontal cortex] lead to a contralateral decit, i.e. a bias of the memory and/or the decision towards the ipsilateral item wich is preferred by the neurons of the other hemisphere. This appears consistent with an encoding of the memory for one item by a larger ring rate in the delay activity of one subpopulation of lPFC neurons, which would compete with other subpopulations whose sustained ring encodes the memory of other items. In contrast, such ndings are harder to explain when assuming that the memory is encoded in lPFC through a complex ring rate trajectory involving both an increase of ring rate at some times, and a decrease of ring rate at other times.

A hypothesis for the decoder of dACC that is compatible with the current literature

Based on this (incomplete) evidence, we therefore decided to explore further the assumption that lPFC was indeed maintaining the memory of the decision through sustained ring, until the animal can express its choice by making a

A HYPOTHESIS FOR THE DECODER OF DACC THAT IS COMPATIBLE WITH THE CURRENT LITERATURE

123

saccade. In addition, we assumed that lPFC participates in making the decision about which target to touch next after the monkey receives a feedback. More specically, we reasoned that this could occur through competitions between dierent pools of neurons which code for dierent decisions.

Hence, the network would be composed of four populations of recurrently connected neurons, with inhibitory connections between these populations. Each of these populations would possess two stable states of sustained activity during which either the low or the large ring rate would be maintained through recurrent connections. This architecture could therefore produce ring rate proles that would be compatible with the observations in lPFC [START_REF] Brunel | Eects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition[END_REF]; [START_REF] Martínez-García | Neural and computational mechanisms of postponed decisions[END_REF]; Dipoppa and Gutkin (2013b)]. As we mentioned previously, this type of attractor network can be sensitive to the temporal structure of its input [Dipoppa and Gutkin (2013b)]. Also, the state of sustained activity of such a network may be destabilized if the neuronal population receives an input that is too strong, which may help explaining our observations of increased behavioral response time if dACC spike trains have either too many or too little spikes. For instance, sustained activity in a bistable network can be destabilized if the external input synchronizes all the neurons of the active population [START_REF] Gutkin | Turning on and o with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity[END_REF]; Dipoppa and Gutkin (2013a)]. We note that given the non-linearity of the dynamics of such networks, several mechanisms could explain this phenomenon (e.g. relying on shunting through increased conductance, or on rebound inhibition [START_REF] Gutkin | Turning on and o with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity[END_REF]).

We hypothesized a role for dACC in sending a signal specifying the behavioral strategy, which in our case is equivalent to a signal specifying whether to avoid or to touch again one of the targets that was chosen in the past. However, the identities of the previously touched targets were rather weakly encoded in the ring rates of lPFC neurons, which delay activity is largely related to the chosen target to which the monkey will saccade in the future [START_REF] Procyk | Modulation of dorsolateral prefrontal delay activity during self-organized behavior[END_REF]]. Previously touched targets also appeared to not be very strongly encoded in dACC signals, which rather reect the need for cognitive control and dierent internal states corresponding to dierent behavioral strategies [START_REF] Procyk | Anterior cingulate activity during routine and non-routine sequential behaviors in macaques[END_REF]; [START_REF] Shenhav | The expected value of control: an integrative theory of anterior cingulate cortex function[END_REF]].

Still, we reasoned that the adaptation properties of single lPFC neurons may create temporal patterns of activity, or hidden excitability states that are not obviously apparent in the spiking activity. These adaptation states may identify whether the neurons have been activated in the past. Note that adaptation was OF MEAN FIELD METHODS indeed shown (through simulations) to be compatible with bistable dynamics for a recurrent neuronal population [START_REF] Theodoni | Neuronal adaptation eects in decision making[END_REF]].

Hence, a hidden memory of which targets were touched, and of when they were touched, may actually be present in a network of adapting neurons in which a sustained ring rate indicates the future touched target. Note that conceptually similar ideas had been suggested in the past and studied through simulations of recurrent networks with short-term plasticity [START_REF] Buonomano | Temporal information transformed into a spatial code by a neural network with realistic properties[END_REF]].

The adaptation properties of the neurons can occur at the level of both the membrane properties (on time scales extending from milliseconds to 20 seconds [La [START_REF] Camera | Multiple time scales of temporal response in pyramidal and fast spiking cortical neurons[END_REF]; [START_REF] Lundstrom | Fractional dierentiation by neocortical pyramidal neurons[END_REF]; [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]]), and at the level of synaptic release probability (generally on time scales extending up to ≈ 1 second [START_REF] Mongillo | Synaptic theory of working memory[END_REF]; [START_REF] Wang | Heterogeneity in the pyramidal network of the medial prefrontal cortex[END_REF]). Interestingly, concerning the time scales of membrane properties adaptation, the power law decrease of the amplitudes of the dierent time-scales of adaptation [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]] could be compatible with a decay of the performance with the duration of the memory. This is a hallmark of working memory [START_REF] Liu | Medial prefrontal activity during delay period contributes to learning of a working memory task[END_REF]]. Also, making this hypothesis of a memory of previously touched targets within the adaptation state of the choice-related neuronal population may be compatible with a function of the temporal structure of the behavioral-strategy input received from dACC.

Indeed, it appears conceivable that a given temporal input could be particularly well suited to excite a population undergoing a specic adaptation state. This adaptation state could be specic to a given delay since the population had been last activated (and thus to a given delay since the associated target had been last chosen).

For instance, the prototypical 1 st reward temporal pattern emitted by some dACC neurons might be wellsuited to excite a population of neurons that had been activated relatively recently in the past (≈ 1.5s ago, which is the delay between saccade and reward), and less wellsuited to activate a population of neurons that had been activated much before (during previous trials, more than 4s ago). The hypothesized functioning of such a circuit is depicted in Figure 6.1.

Note that during repetition, there was no correlations between dACC post-feedback gamma power and lPFC post-feedback gamma power [START_REF] Rothé | Coordination of high gamma activity in anterior cingulate and lateral prefrontal cortical areas during adaptation[END_REF]], which may indicate that another implementation mechanism takes over during this period where the required cognitive control is low. would produce firing rate profiles similar to those observed in lPFC [START_REF] Procyk | Modulation of dorsolateral prefrontal delay activity during self-organized behavior[END_REF]]. Four groups ("populations") of neurons were observed, corresponding to the four targets. Note that these populations could be competing through mutual inhibition (which we did not illustrate for simplicity). When the monkey starts making a decision (at the beginning of a problem, or after a feedback), the firing rate begins to rise and becomes sustained and higher in the neuronal population corresponding to the chosen target, and the firing rate of this population drops once the monkey expresses its choice by making a saccade to the corresponding target. This neuronal population is therefore in an adapted state when the corresponding feedback is given.

We hypothesize that the error signal provided by dACC might be better suited to excite neuronal population that are not in an adapted state, while the 1 st reward signal might be better-suited to excite the population that is in the more adapted state.

How to study the hypothesized network for dACC decoding?

It is a scientic question by itself to determine whether and how a network such as the one sketched in Figure 6.1 can be built, and another question to determine whether it is in agreement with the data beyond the qualitative arguments detailed above, that led us to imagine such a circuit (which is, of course, only one possibility among others).

We have been trying to work on the rst of these two questions. Understanding how temporal structure in the input dynamically modulates the response of (non-linear) recurrent neuronal networks with adapting neurons is actually still challenging from a theoretical point of view, as we will discuss and review in the next chapters.

Before this, we would like to elaborate a little bit on the fact that, as often in research, the real challenge was going well beyond technical diculties and was mostly about determining the right approach and orientation to advance in the resolution of the problem. Indeed, it would have been possible to take, since the beginning, a simulation-oriented approach. Simulations relating to similar problems have indeed been successfully implemented in the past [START_REF] Buonomano | Temporal information transformed into a spatial code by a neural network with realistic properties[END_REF]; Dipoppa and Gutkin (2013b)], and they provide a necessary proof of principle. However, one might feel that the understanding of the mechanism at stake stays obscured by the complexity of the simulated system [Dipoppa and Gutkin (2013b)]. In addition, it can become dicult to compare the simulation and data (beyond the features that the simulation was built for reproducing), as it can be hard to isolate a strong (i.e., probably robust to the relaxation of the simplications made in the model) constraint of the modeled mechanism that could be taken as a prediction. For these reasons, and also probably because the relative appeal of pure simulations vs. analytics is a matter of one's personal way to reach a satisfying feeling of intuitive understanding, the analytical approach was pursued.

However, there are also numerous pitfalls when trying to phrase the problem in an analytically tractable form. Indeed, even when starting with the minimal model required to approximately reproduce neuronal dynamics under relatively mild assumptions, the complexity of the equations can prevent any intuitive analysis of the mechanisms at stake. And indeed, we initially stated the problem 6.4. HOW TO STUDY THE HYPOTHESIZED NETWORK FOR DACC DECODING? 127 in such a complex way. We attempted to exactly account for temporal correlations beyond the trial-averaged ring rate. Several self-consistent nested integral equations were written. They turned out to be much more complicated to solve numerically than the simulation that they were describing, and they were not (in our view) bringing any intuition for how the network's dynamics was arising. This approach was therefore abandoned, because it seemed to be irrelevant to our initial question. Rather, such an approach is relevant to the question of the probabilistic mathematical reformulation of a given network model.

We then considered the other extreme: taking an arbitrary phenomenological ring rate model, and investigating its dynamics and its computation abilities. While this led to valuable insights on the computational potential of the particular model chosen, we found it dicult again to isolate a good prediction of the model. Indeed, it was unclear how to determine whether and how the results depended on the simplications of the model.

We nally decided to use a simplied and approximate mean-eld model, while retaining an analytical derivation of the model's dynamics. This allowed us to clarify the assumptions made in order to derive the nal formula from the equations for a single-neuron model that can be tted to recorded neurons [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]]. Hence, this approach permits to have a good idea of how the simplications made aect the results. Ultimately, such a method should be amenable to providing an intuitive comprehension of how an external temporal input may interact with the internal adaptation properties of a recurrently connected bistable population, to favor its switch to a high-activity state (Figure 6.1).

The following chapters describe how we derived and tested this approximate mean-eld method.

Introduction: how to analyze the dynamical response of recurrent adapting networks of neurons?

Over the last decades, the study of the dynamics of coupled population of neurons has attracted a lot of attention from the scientic community as both a theoretical challenge [START_REF] Sompolinsky | Chaos in random neural networks[END_REF]; Abbott and van [START_REF] Pinoteau | Asynchronous states in networks of pulsecoupled oscillators[END_REF]; [START_REF] Van Vreeswijk | When inhibition not excitation synchronizes neural ring[END_REF]; van Vreeswijk and [START_REF] Van Vreeswijk | Chaos in neuronal networks with balanced excitatory and inhibitory activity[END_REF][START_REF] Van Vreeswijk | Chaotic balanced state in a model of cortical circuits[END_REF]; [START_REF] Brunel | Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons[END_REF]; [START_REF] Gerstner | Population dynamics of spiking neurons: fast transients, asynchronous states, and locking[END_REF]; [START_REF] Renart | Meandriven and uctuation-driven persistent activity in recurrent networks[END_REF][START_REF] Renart | The asynchronous state in cortical circuits[END_REF]; [START_REF] Mongillo | Bistability and spatiotemporal irregularity in neuronal networks with nonlinear synaptic transmission[END_REF]; [START_REF] Sussillo | Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks[END_REF]; [START_REF] Wainrib | Topological and dynamical complexity of random neural networks[END_REF]], and as a successful tool to approach the question of the generation of internal representations and behavioral outputs by the brain [START_REF] Seung | How the brain keeps the eyes still[END_REF]; [START_REF] Seung | Stability of the memory of eye position in a recurrent network of conductance-based model neurons[END_REF]; [START_REF] Compte | Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model[END_REF]; [START_REF] Brunel | Eects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition[END_REF]; [START_REF] Wong | A recurrent network mechanism of time integration in perceptual decisions[END_REF]; [START_REF] Balaguer-Ballester | Attracting dynamics of frontal cortex ensembles during memory-guided decision-making[END_REF]; [START_REF] Rigotti | The importance of mixed selectivity in complex cognitive tasks[END_REF]; [START_REF] Haefner | Inferring decoding strategies from choice probabilities in the presence of correlated variability[END_REF]; [START_REF] Wimmer | Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory[END_REF][START_REF] Wimmer | Sensory integration dynamics in a hierarchical network explains choice probabilities in cortical area mt[END_REF]]. More generally, theoretical studies have been extremely insightful for integrative neuroscience, as qualitative reasoning or approaches purely based on simulations soon lead us to face the diculty of grasping how a global behavior can emerge from a complex set of many interacting elements.

Hence, many theoretical approaches reduced the complexity by self-consistently computing some moments, or even the whole distribution, of relevant variables among a population of neurons that are similar in their dynamical properties and their connectivities. These approaches typically require a simple enough model for the single neuron, such as a binary units [START_REF] Van Vreeswijk | Chaos in neuronal networks with balanced excitatory and inhibitory activity[END_REF]; [START_REF] Renart | The asynchronous state in cortical circuits[END_REF]] or integrate-and-re models [START_REF] Brunel | Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons[END_REF]; [START_REF] Renart | Meandriven and uctuation-driven persistent activity in recurrent networks[END_REF]]. These models do share important features with real neuronal networks, with spike-based interactions between neurons and integration-like dynamics, and can allow a quantitative match to the steady-state ring rate [START_REF] Arsiero | The impact of input uctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex[END_REF]]. Hence, successful and discerning comparisons between neuronal population analyses for these types of models, and data, could typically be made for correlations between neurons [START_REF] Van Vreeswijk | Chaos in neuronal networks with balanced excitatory and inhibitory activity[END_REF]; [START_REF] Renart | The asynchronous state in cortical circuits[END_REF]], for fast and strong interplay between excitatory and inhibitory populations [START_REF] Brunel | Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons[END_REF]; [START_REF] Brunel | What determines the frequency of fast network oscillations with irregular neural discharges? i. synaptic dynamics and excitation-inhibition balance[END_REF]], and for the characteristics of the stationary (or quasi-stationary) response patterns [START_REF] Compte | Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model[END_REF]; [START_REF] Brunel | Eects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition[END_REF]; [START_REF] Renart | Meandriven and uctuation-driven persistent activity in recurrent networks[END_REF]; [START_REF] Mongillo | Bistability and spatiotemporal irregularity in neuronal networks with nonlinear synaptic transmission[END_REF]; [START_REF] Wimmer | Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory[END_REF]].

However, the classical single-neuron models amenable to mean-eld analysis do not in general allow a quantitative match of precise spike times when tted against recorded pyramidal neurons receiving complex non-stationary input current. Indeed, successful tting of the time-dependent response of pyramidal neurons to non-stationary synaptic-like input at the soma often requires to account for neuronal adaptation on multiple time scales [START_REF] Camera | Multiple time scales of temporal response in pyramidal and fast spiking cortical neurons[END_REF]; [START_REF] Lundstrom | Fractional dierentiation by neocortical pyramidal neurons[END_REF]; [START_REF] Kobayashi | Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold[END_REF]; [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]], with eects that cumulate over spikes and that cannot typically be considered as stationary. This adaptation incorporates the eect of both hyperpolarizing currents triggered by spikes, and increases of the voltage threshold at which spikes are being generated [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]]. These characteristics signicantly complicate the derivation of population-wide statistics [START_REF] Gerstner | Population dynamics of spiking neurons: fast transients, asynchronous states, and locking[END_REF]; [START_REF] Gerstner | Spiking Neuron Models[END_REF]; [START_REF] Gerstner | Neuronal Dynamics[END_REF]]. Indeed, the mathematical treatment generally requires to approximate the adaptation either by considering a dependence on the last spike time only (so-called renewal theory [START_REF] Wilson | Excitatory and inhibitory interactions in localized populations of model neurons[END_REF][START_REF] Gerstner | Population dynamics of spiking neurons: fast transients, asynchronous states, and locking[END_REF]; [START_REF] Toyoizumi | Mean-eld approximations for coupled populations of generalized linear model spiking neurons with markov refractoriness[END_REF]]), or by averaging adaptation variables while assuming that they are slow relative to the neuronal dynamics (interspike interval or membrane voltage dynamics [START_REF] Camera | Minimal models of adapted neuronal response to in vivo-like input currents[END_REF]; [START_REF] Gigante | Diverse population-bursting modes of adapting spiking neurons[END_REF]; [START_REF] Muller | Spike-frequency adapting neural ensembles: beyond mean adaptation and renewal theories[END_REF][START_REF] Farkhooi | Adaptation reduces variability BIBLIOGRAPHY 233 of the neuronal population code[END_REF][START_REF] Hertäg | Analytical approximations of the ring rate of an adaptive exponential integrate-and-re neuron in the presence of synaptic noise[END_REF]). Given that in pyramidal neurons, the amplitude of adaptation eects appear to follow a power law on time-scales ranging from milliseconds to seconds [START_REF] Lundstrom | Fractional dierentiation by neocortical pyramidal neurons[END_REF]; [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]], these assumptions are expected to be violated for these excitatory neurons.

Recently, a new mean-eld approach was developed based on a non-linear single neuron model with stochastic threshold that can be tted to a time-varying input current. This model, which belongs to the class of Generalized Linear Models (GLM) for single neurons, incorporates both voltage and threshold adaptation on multiple time scales [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]]. The mathematical analysis allowed to compute the average response of a neuron to dierent repetitions of a non-stationary stimulating current with frozen noise [Naud and Gerstner (2012a)]. In addition, recent developments allowed to compute the ring rate of a connected populations of a nite number of neurons, where all neurons receive the same current [START_REF] Deger | Fluctuations and information ltering in coupled populations of spiking neurons with adaptation[END_REF]]. Hence, in this framework, it is not possible to analyze the impact of the within-population, between-neuron dierences in the received uctuating synaptic input.

However, there is evidence that the ring of neuronal populations in the neocortex is signicantly driven by the presence of uctuations in the synaptic current that are mostly unshared from one neuron to the next (leading to irregular and nearly uncorrelated neuronal ring [START_REF] Van Vreeswijk | Chaos in neuronal networks with balanced excitatory and inhibitory activity[END_REF]; Shadlen and Newsome (1998); [START_REF] Holmgren | Pyramidal cell communication within local networks in layer 2/3 of rat neocortex[END_REF]; [START_REF] Rudolph | Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex[END_REF]; [START_REF] Renart | The asynchronous state in cortical circuits[END_REF]]). Further, several studies suggest that changes in the amplitude of these uctuations could be relevant for driving the response of biological neuronal networks in behaving animals. For instance, modeling studies suggested that the increased irregularity of interspike intervals during sustained activity in frontal cortex (i.e. while the animal holds an item in memory, compared to baseline [START_REF] Compte | Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task[END_REF]]) could be explained if the sustained activity was caused by an increased amplitude of the current uctuations [START_REF] Renart | Meandriven and uctuation-driven persistent activity in recurrent networks[END_REF]; [START_REF] Mongillo | Bistability and spatiotemporal irregularity in neuronal networks with nonlinear synaptic transmission[END_REF]]. Indeed, if instead the increased activity would be caused by an increase in the mean current received by the neuron, an increase in the regularity of the discharge would be expected: after each spike, the time of the next spike would principally depend on how fast the voltage increases from reset to threshold [START_REF] Schwalger | Patterns of interval correlations in neural oscillators with adaptation[END_REF]; [START_REF] Gerstner | Neuronal Dynamics[END_REF]]. Furthermore, pyramidal neurons in prefrontal cortex were found to reliably respond to changes in the variability of their input current [START_REF] Arsiero | The impact of input uctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex[END_REF]].

Finally, recently, the relevance of uctuation-driven dynamics was further strengthened by a recent theoretical study [START_REF] Lim | Balanced cortical microcircuitry for maintaining information in working memory[END_REF]], where such dynamics were proposed as a robust mechanism which could plausibly permit to implement an approximate integration of the synaptic input received by a recurrent network.

Treating analytically these dynamical changes in the amplitude of the uctuations is still rather challenging, even for networks of simple neurons without adaptation. Hence, many studies assume that the level of uctuations does not vary over time [START_REF] Brunel | Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons[END_REF]; [START_REF] Gerstner | Population dynamics of spiking neurons: fast transients, asynchronous states, and locking[END_REF]; [START_REF] Ostojic | From spiking neuron models to linear-nonlinear models[END_REF]], or only focus on how a discrete change of the level of uctuations impacts the steady-state response [START_REF] Renart | Meandriven and uctuation-driven persistent activity in recurrent networks[END_REF]; [START_REF] Mongillo | Bistability and spatiotemporal irregularity in neuronal networks with nonlinear synaptic transmission[END_REF]].

In addition, for dierent types of integrate-and-re neurons with reset but without adaptation, some analytical formulas for the time-dependent response to changes in the amplitude of uctuations do exist, but they appear to be restricted to a linear, or weakly non-linear, response in the presence of white noise [START_REF] Amit | Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex[END_REF]; [START_REF] Brunel | Fast global oscillations in networks of integrateand-re neurons with low ring rates[END_REF]; [START_REF] Lindner | Transmission of noise coded versus additive signals through a neuronal ensemble[END_REF][START_REF] Fourcaud-Trocmé | Dynamics of the instantaneous ring rate in response to changes in input statistics[END_REF]; [START_REF] Tetzla | Decorrelation of neural-network activity by inhibitory feedback[END_REF]; [START_REF] Helias | Echoes in correlated neural systems[END_REF]; [START_REF] Kriener | How pattern formation in ring networks of excitatory and inhibitory spiking neurons depends on the input current regime[END_REF]]. Also, a phenomenological model was recently derived to handle the non-linear response to both mean and uctuation-driven inputs analytically [Tchumatchenko and Wolf (2011)]. However this model had no reset and no spike frequency adaptation, suggesting that it may have a limited explanatory power of the dynamical response of pyramidal neurons to non-stationary input [START_REF] Camera | Multiple time scales of temporal response in pyramidal and fast spiking cortical neurons[END_REF]; [START_REF] Lundstrom | Fractional dierentiation by neocortical pyramidal neurons[END_REF]; [START_REF] Kobayashi | Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold[END_REF]; [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]].

Extending the above-mentioned approaches to adapting neurons with dynamical modulation of the amplitude of the uctuations is rather challenging, because the diverse adaptation variables indirectly follow these uctuations at dierent time scales [START_REF] Hertäg | Analytical approximations of the ring rate of an adaptive exponential integrate-and-re neuron in the presence of synaptic noise[END_REF]]. In addition, in a recurrent network, adaptation introduces temporal correlations in the input current which are also hard to treat, but that can have large eects on the dynamical response of neurons ([Brunel et al. (2001);[START_REF] Fourcaud-Trocmé | How spike generation mechanisms determine the neuronal response to uctuating inputs[END_REF]; [START_REF] Brunel | Firing rate of the noisy quadratic integrateand-re neuron[END_REF]; [START_REF] Köndgen | The dynamical response properties of neocortical neurons to temporally modulated noisy inputs in vitro[END_REF]; Moreno-Bote and Parga (2010); Tchumatchenko and Wolf (2011)], but see [START_REF] Alijani | Rate response of neurons subject to fast or frozen noise: from stochastic and homogeneous to deterministic and heterogeneous populations[END_REF]).

Hence, there are several technical diculties for deriving analytical formulas accounting for adaptation within a mean-eld analysis of a recurrent spiking population undergoing changes of both the neuron-averaged input, and the neuron-independent variability of the input. In addition, beyond deriving mathematical expressions, the aim of the analysis should be to bring an intuition on how the single neuron properties can shape the network's response and play a role in brain processing. This requirement for an explanatory power of the analysis calls for the use of clever approximations, that would considerably reduce the complexity of the formulas while preserving important features of the neuronal response.

Here, we tackle these issues using a generalized integrate and re single neuron model with adaptation, that can capture the dynamical response of cortical neurons [START_REF] Mensi | Parameter extraction and classication of three cortical neuron types reveals two distinct adaptation mechanisms[END_REF]; [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]]. We propose an approach which takes root on an approximate expression derived for the average ring rate of this neuron in response to repetitions of a non-stationary stimulating current with frozen noise [Naud and Gerstner (2012a)]. This expression accounts for the adaptation eects that can be estimated through the history of past average ring rate. We extend this formula by making an average over the dierent inputs received by dierent neurons, while still making the assumption that time-dependent ring rates can account for spatiotemporal correlations [START_REF] Brunel | Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons[END_REF]]. We show why, in most cases, the distribution of input values (and therefore, the distribution of subthreshold voltage values) over the dierent neurons can be taken as Gaussian [START_REF] Destexhe | The high-conductance state of neocortical neurons in vivo[END_REF]]. We derive how the parameters of this Gaussian vary over time as the input evolves, and we make use of this result to compute the average non-linear neuronal response. Our approximations are valid when neurons re asynchronously and irregularly, as often observed in the neocortex [START_REF] Shadlen | The variable discharge of cortical neurons: implications for connectivity, computation, and information coding[END_REF]; [START_REF] Compte | Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task[END_REF]; [START_REF] Renart | The asynchronous state in cortical circuits[END_REF]]. Our analysis also takes into consideration the correlations between the uctuations of the membrane potential due to synaptic input, and the uctuations of the adaptation variables, for each single neuron. To do this, we linearize the adaptation variables (after averaging over the dierent responses reached for dierent repetitions of a deterministic stimulation). We stress that we still treat the spiking non-linearity analytically, hence preserving many relevant non-linear features of the population response. At the end, we reach rather simple mathematical expressions that can be written in the form of non-linear dierential equations. Furthermore, the formulas for the steady-state response can be written as simple coupled transcendental equations. Finally, for a single recurrent population, the steady-state response boils down to the Lambert-W function, which has well-dened solutions.

Chapter 8

Derivation of approximate expressions for the dynamics of recurrent adapting networks of neurons

In this chapter, we will start by describing the model of single neuron dynamics that we use, and by explaining to which extent and in which conditions it is found to be an accurate description for the dynamical response of cortical neurons (in section 8.1). We then explain how to derive an approximate analytical formula for the expected activity among a subpopulation of neurons with similar parameters, in a regime where they re asynchronously and irregularly (in section 8.2). Finally, we explain the characteristics of the network that we used to compare the analytical formulas to simulations (in section 8.3).

Single neuron model

We used a model belonging to the class of Generalized Linear Model (GLM), in which a (ltered) input and a ltered spiking history combine to dene a spiking probability at each time.

Spiking probability of the GLM

The adapting GLM model states that for any small interval dt around the time t, the probability that the neuron model number i emits a spike is λ i (t) dt, where the ring rate λ i (t) is dened in the following way: 

λ i (t) = λ 0 exp (h i (t) + η * S i (t)) S i = ∑ {t k i }≤t δ ( t -t k i ) (8.1)
Here, λ 0 is a baseline ring rate; h i is a (ltered) driving input; δ is the dirac distribution, and * is the convolution operator. Finally,

{ t k i } = { t 1 i , t 2 i , ...
} is the ensemble of spike times emitted by the considered neuron (number i), and η is a so-called spike history lter which accounts for refractory and adaptation eects that modulate the spiking probability depending on the spiking history [START_REF] Gerstner | Coherence and incoherence in a globally coupled ensemble of pulse-emitting units[END_REF]; [START_REF] Gerstner | Time structure of the activity in neural network models[END_REF]; [START_REF] Truccolo | A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate eects[END_REF]; [START_REF] Pillow | Spatio-temporal correlations and visual signalling in a complete neuronal population[END_REF]].

We would like to stress several important features of this model. First, the spiking mechanism has an exponential non-linearity, much alike the exponential rise of voltage close to the spiking threshold in recorded neurons [START_REF] Jolivet | Predicting spike timing of neocortical pyramidal neurons by simple threshold models[END_REF]; [START_REF] Badel | Extracting non-linear integrate-and-re models from experimental data using dynamic i-v curves[END_REF]]. Second, the denition of the spike-history lter allows for both very strong refractoriness and adaptation. Indeed, this lter can take very negative values at short time-lags (hence eectively preventing any spiking just after a spike was emitted), and can also incorporate longer time-scales (hence leading to a modulation of the ring probability depending on the more ancient spiking history).

Interpretation of the filters of the GLM in a currentbased approximation of the single-neuron somatic dynamics

The above-mentioned model may be used as a purely phenomenological description of spiking (as in e.g. [START_REF] Pillow | Spatio-temporal correlations and visual signalling in a complete neuronal population[END_REF]; [START_REF] Park | Encoding and decoding in parietal cortex during sensorimotor decision-making[END_REF]]), or may be matched to some biophysically dened neuronal characteristics [START_REF] Mensi | From stochastic nonlinear integrate-and-re to generalized linear models[END_REF][START_REF] Mensi | Parameter extraction and classication of three cortical neuron types reveals two distinct adaptation mechanisms[END_REF]; [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]].

Indeed, the mathematical denition of the ring probability (λ dt, see Equation 8.1) can be reinterpreted as an exponential function of the distance between the somatic subthreshold voltage V subthld , and a (dynamic) voltage threshold for ring T volt . More precisely, the ring probability depends on the magnitude of this distance compared to the intrinsic noise of the neuron ∆V (in voltage units).

Hence, for a single unit i:

λ i (t) = λ biophys exp ( V subthld,i (t) -T volt,i (t) ∆V ) (8.2)
∆V approximately accounts for the intrinsic stochasticity of single neurons, which is due to various factors such as the nite number of channels, the stochastic nature of the opening of these channels, and the nite number of ions in a neuron [START_REF] Diba | Intrinsic noise in cultured hippocampal neurons: experiment and modeling[END_REF]). Because of this intrinsic noise, neurons re slightly dierently in response to dierent repetitions of the same current stimulus [START_REF] Mensi | Parameter extraction and classication of three cortical neuron types reveals two distinct adaptation mechanisms[END_REF]; [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]], with a discharge that is more stochastic when the neuron is not strongly driven by the stimulus. In contrast, when the ratio V subthld -T volt ∆V becomes close to zero or even positive, the ring probability should increase exponentially [START_REF] Jolivet | Predicting spike timing of neocortical pyramidal neurons by simple threshold models[END_REF]; [START_REF] Badel | Extracting non-linear integrate-and-re models from experimental data using dynamic i-v curves[END_REF]; [START_REF] Mensi | From stochastic nonlinear integrate-and-re to generalized linear models[END_REF]], leading to an almost deterministic spike emission.

In order to give a biophysical interpretation of Equation 8.1, we need to decompose the adaptation eects into changes in the voltage threshold for ring, and changes detectable at the level of the membrane potential [START_REF] Mensi | Parameter extraction and classication of three cortical neuron types reveals two distinct adaptation mechanisms[END_REF]]. Hence, adaptation eects are split between (i) a spike-triggered increase (relative to a baseline T 0 ) of the voltage that needs to be approached in order for the neuron to re: T volt,i (t) = η T * S i (t) + T 0 ; and (ii) a hyperpolarizing current that is generated intrinsically each time a spike is triggered: η curr * S i (t). Note that this hyperpolarizing current implements both a reset, and adaptation eects. Then, we can rewrite the dynamic ring probability in response to an input current I (t), by the mean of a membrane lter κ representing the low-pass properties of leak currents:

T volt,i = -η T * S i (t) + T 0 V subthld,i = κ * (I i (t) + η curr * S i (t)) (8.3)
Hence, we can equate, between Equation 8.1, Equation 8.2 and Equation 8.3:

h i (t) := κ ∆V * I i (t) η := η T ∆V + κ ∆V * η curr λ 0 = λ biophys exp ( -T 0 ∆V ) (8.4)
Note that the intrinsic unreliability is rather small (at least when estimated from in vitro recordings). Quantitatively, the tting gives ∆V ≈ 0.5 -1mV while the range of the voltage uctuations (i.e., the range of the uctuations of V subthld or of V subthld -T volt ) can be on the order of 10-20mV (see [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]], their Fig. 3b Table S1 and Fig. S6d). Hence, the dynamics are truly driven by the changes in external input and the membrane response to these changes.

The previously described biophysically interpretable model of neuronal dynamics denes the dynamics in terms of changes in current or voltage thresholds. However, the dynamics actually result from opening or closing of channels, which change the conductance of the neuron. This change of conductance indirectly leads to a change of current after multiplication of the conductance by the dierence between the membrane potential and the reversal potential of the considered ion. Though in principle a change of conductance is not exactly equivalent to a change of current as the current change is independent of the change of membrane potential, current and conductance changes can be approximately related as long as the reversal potential of the ion is far away from the values of voltage reached by the membrane [START_REF] Richardson | Synaptic shot noise and conductance uctuations aect the membrane voltage with equal signicance[END_REF]; [START_REF] Gerstner | Neuronal Dynamics[END_REF]]. We summarize here the argument, based on the negligibility of the product of two deviation terms (one for the conductance, and the other for the voltage). Let us consider two dierent time-dependent conductances g 1 (t) and g 2 (t), as well as a (constant) leak conductance g L . Their respective reversal potential are E 1 , E 2 and E L . The dynamics of the voltage V at the soma reads: 

C dV dt = -g L (V -E L ) -g 1 (t) (V -E 1 ) -g 2 (t) (V -E 2 ) ⇐⇒ C dV dt = -g L (V -E L ) + ⟨g 1 ⟩ (V -E 1 ) + ⟨g 2 ⟩ (V -E 2 ) -(g 1 (t) -⟨g 1 ⟩) (V -E 1 ) -(g 2 (t) -⟨g 2 ⟩) (V -E 2 ) ⇐⇒ C dV dt = -(g L + ⟨g 1 ⟩ + ⟨g 2 ⟩) ( V - g L E L + g 1 E 1 + g 2 E 2 (g L + ⟨g 1 ⟩ + ⟨g 2 ⟩) ) -(g 1 (t) -⟨g 1 ⟩) (V -E 1 ) -(g 2 (t) -⟨g 2 ⟩) (V -E 2 ) ⇐⇒ C dV dt = -g 0 (V -E 0 ) -(g 1 (t) -⟨g 1 ⟩) (V -E 1 ) -(g 2 (t) -⟨g 2 ⟩) (V -E 2 ) (8.5)
:= g L E L +g 1 E 1 +g 2 E 2 g 0
is an eective input-regime-dependent equilibrium potential. More specically, if one would x g 1 (t) to ⟨g 1 ⟩ and g 2 (t) to ⟨g 2 ⟩, then the voltage V would converge to E 0 .

Finally one can write:

C dV dt = -g 0 (V -E 0 ) -(g 1 (t) -⟨g 1 ⟩) (E 0 -E 1 ) -(g 2 (t) -⟨g 2 ⟩) (E 0 -E 2 ) -(g 1 (t) -⟨g 1 ⟩) (V -E 0 ) -(g 2 (t) -⟨g 2 ⟩) (V -E 0 ) (8.6)
In the sum that constitutes the right hand side of Equation 8.6, the two last terms can be considered as small as long as ∀i ∈ {1, 2} , (V

-E 0 ) << (E 0 -E i ).
This is often the case as the membrane potential often oscillates between -40/ -60 mV (E 0 being situated in between), while many common ions such as K + or N a + have reversal potential that are very away from these voltages (≈ -77 mV for K + and ≈ +55 mV for N a + [Gerstner et al. (2014)]).

Under this approximation, we can write:

C dV dt ≈ -g 0 (V -E 0 )-(g 1 (t) -⟨g 1 ⟩) (E 0 -E 1 )-(g 2 (t) -⟨g 2 ⟩) (E 0 -E 2 ) (8.7)
In this last expression, one can see that there is no multiplication between the voltage and a time-dependent factor: in other words, the neuron behaves as if it were current-driven. Note that the neuron now possesses an eective leak current and reversal potential, which depend on the total conductance of the neuron when it is in a given input regime.

Validity domain of the GLM for describing single neuron's response to somatic current injections

For in-vitro current-clamp recordings of layer 5 pyramidal neurons and interneurons in the somatosensory cortex, the current-based description of neuronal dynamics of Equation 8.3 actually permitted a quantitative t of both the subthreshold voltage V subthld and of the spike times (within a precision of a few ms) [START_REF] Mensi | Parameter extraction and classication of three cortical neuron types reveals two distinct adaptation mechanisms[END_REF]; [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]]. This t is signicantly better than the t allowed by simpler leaky integrate-and-re models, which can only capture the long term ring rates between 0-10Hz, without reproducing precise spike times in pyramidal neurons [START_REF] Kobayashi | Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold[END_REF]]. This occurs because pyramidal neurons possess strong adaptation properties extending from short to long time-scales. A similar result was found in pyramidal neurons of frontal cortex in vitro (i.e., Equation 8.3 could be successfully tted to data from [START_REF] Thurley | Dopamine increases the gain of the input-output response of rat prefrontal pyramidal neurons[END_REF]] when including adaptation on multiple time scales, personnal communication from C. Pozzorini).

The above-mentioned ts were realized with realistic and rich synaptic-like stimulating currents which could produce very large fast modulations of the ring rates. For instance, two spikes could occur within a few ms and then be followed by a silence period of several hundreds of ms [START_REF] Mensi | Parameter extraction and classication of three cortical neuron types reveals two distinct adaptation mechanisms[END_REF]; [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]]. However, these stimulating currents were driving the neurons over a more limited range of long term ring rate regimes (e.g., 10-second average rates were mostly constrained between 2 and 10 Hz, see [START_REF] Mensi | Parameter extraction and classication of three cortical neuron types reveals two distinct adaptation mechanisms[END_REF]]). This does not cover the whole range of stationary ring rates that can be sustained by pyramidal neurons (which spans values from 0 to ≈ 25 Hz [START_REF] Arsiero | The impact of input uctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex[END_REF]). Fitting the pyramidal neuron's response over their whole range of steadystate ring rates actually necessitates to enrich Equation 8.3 with a non-linear modulation of the spiking threshold by the voltage [START_REF] Pozzorini | Enhanced sensitivity to rapid input uctuations by nonlinear threshold dynamics[END_REF]; paper under review at PLOS computational biology]. However, it is possible to locally (over an ensemble of input regimes which drive the neurons at steady state ring rates spanning a range of about 8 Hz) remap this more complicated model on the simpler model described by Equation 8.3 [START_REF] Pozzorini | Enhanced sensitivity to rapid input uctuations by nonlinear threshold dynamics[END_REF]; paper under review at PLOS computational biology]. Hence, dierent input regimes leading to drastically dierent steady-state ring rates can then be separately handled by an equation of the type of Equation 8.3, each of them necessitating to use a particular set of parameters and lter shapes [START_REF] Mease | Context-dependent coding in single neurons[END_REF]].

As a conclusion, the model proposed in Equation 8.3 can to some extent capture the dynamical response of both pyramidal neurons and interneurons with a xed parameter set. For pyramidal neurons, the t is restricted to a moderate (≈ 8Hz) range of steady-state ring rates (while still permitting a very large range of fast ring rate modulations) . Note that, in vivo, the precise amplitude of the adaptation eects may be modied by the presence of neuromodulators [START_REF] Satake | Individual and additive eects of neuromodulators on the slow components of afterhyperpolarization currents in layer v pyramidal cells of the rat medial prefrontal cortex[END_REF]; [START_REF] Thurley | Dopamine increases the gain of the input-output response of rat prefrontal pyramidal neurons[END_REF]]. However, adaptation has still been observed during in vivo recordings (as shown in anesthetized animals [START_REF] Degenetais | Electrophysiological properties of pyramidal neurons in the rat prefrontal cortex: An in vivo intracellular recording study[END_REF]]). Also, as argued in the previous section, the high-conductance state of neurons in vivo [START_REF] Destexhe | The high-conductance state of neocortical neurons in vivo[END_REF]] should still be well-modeled by a current-based description such as the one proposed in Equation 8.3. This should at least work well when trying to t the response of neurons during a given regime of synaptic bombardment. However, a study performing a quantitative t in vivo is still lacking. Indeed, such a t would also require to estimate the synaptic input received by the neuron under study (while, in vitro, the stimulation can be carefully controlled through the electrode in the absence of synaptic input).

Modeling the synaptic input and its transmission to the soma through passive dendrites

For the synaptic input, we work at the same level of approximation as for the soma model (Equation 8.3) and we therefore adopt a linear current-based description [START_REF] Richardson | Synaptic shot noise and conductance uctuations aect the membrane voltage with equal signicance[END_REF]; [START_REF] Gerstner | Neuronal Dynamics[END_REF]]. Note that while some non-linear synapses such as those of the NMDA type do exist, it is in principle possible to linearize their response around a given synaptic input regime [START_REF] Brunel | Eects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition[END_REF]]. Given the original non-linear synaptic equations, it can even be possible to compute analytically a best-approximating linear lter analytically [START_REF] Thomas | Calculation of volterra kernels for solutions of nonlinear dierential equations[END_REF]]; hence, this approach may permit a possible extension of our framework to non-linear synapses if needed. Note that this approach might also permit some extension to synapses undergoing non-linear short-term plasticity, provided this short-term enhancement or depression dynamics could be approximated by a linear lter within some restricted regime of synaptic input [START_REF] Thomas | Calculation of volterra kernels for solutions of nonlinear dierential equations[END_REF]; [START_REF] Mongillo | Bistability and spatiotemporal irregularity in neuronal networks with nonlinear synaptic transmission[END_REF]].

We also assume that the dendritic processing can be approximated as a passive conduction of the current, leading to the transmission at the soma of the sum of the dierent (ltered) inputs. While this may be a crude approximation whose impact is currently hard to measure, we note that some studies suggest that it might be a good approximation in the high conductance state that neurons typically experience in vivo. Indeed, the conduction of synaptic input was found to be more synapse-location-independent in the high-conductance state [START_REF] Destexhe | The high-conductance state of neocortical neurons in vivo[END_REF]].

Hence, the synaptic current received at the soma I syn, i by the neuron i will be taken as a sum over all synapses s associated with a spike train S s, i and responding to each presynaptic spike by the current time course (i.e., the impulse response) F s :

I syn, i = N s, i ∑ s=1 (F s, i * S s, i ) (t) (8.8)
Hence, we can express the voltage uctuations

h i (t)
(see Equation 8.1, Equation 8.3 and Equation 8.4) that are generated in neuron i by this synaptic input at the soma:

h i (t) = κ ∆V * I syn, i (t) = κ ∆V *   N s, i ∑ s=1 (F s, i * S s, i ) (t)   = N s, i ∑ s=1 ( κ ∆V * F s, i ) * S s, i (t) = N s, i ∑ s=1 F tot s, i * S s, i (t) (8.9)
where we dened a combined leak-and-synapse lter F tot s, i := κ ∆V * F s, i .

Dynamical computation of the firing rate distribution in a recurrent network of GLM neurons

In this section, we rst describe the approximations we are making during the analysis for the connectivity of the network, and for the spatiotemporal correlations.

After this, we show how the distribution of ltered synaptic input h(t) in one subpopulation can be approximated as a Gaussian with known time-dependent parameters.

We then explain how to treat the presence of a diversity of synaptic input in one subpopulation by separating two dierent stochasticities: rst, the intrinsic noise that makes single neurons re stochastically in response to a given deterministic stimulating current, and second, the presence of a stochastic input with a Gaussian distribution over a subpopulation of neurons. After averaging over the rst stochasticity, we treat the correlations over the subpopulation of neurons between the values of the ltered synaptic input h i , and the values of the adaptation variable. More specically, we develop a simple linearization of the intrinsic-noise averaged adaptation induced by a given synaptic input.

We then show how to compute the non-linear average over the dierent synaptic inputs present in the network, by making use of known analytical results for the moments of the exponential of a normal variable.

The nal (approximate) analytical formulas for the average rate within a subpopulation are reducible to simple non-linear dierential equations.

Separation of the network in subpopulations

We considered cases when the neuronal network can be separated into dierent subpopulations, each subpopulation consisting of neurons which can be modeled by the same parameters, and which receive (resp. send), when averaged over repetitions of the same protocol, the same synaptic inputs (resp. outputs). In a realistic setting, of course, there has to be some heterogeneity between dierent neurons of a group, but we assume that one can nd a subpopulation of neurons for which this variability can be neglected. We stress that, concerning the intrinsic dynamical properties of the neurons, a study has shown that the adaptation properties of pyramidal neurons from layer 5 of somatosensory cortex were well conserved. Indeed, a very good t could be reached when imposing for all neurons a low-dimensional mathematical expression (a power-law) for the adaptation kernel. Further, there was only a minor variability of the three parameters of this power law between neurons [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]]. Note that this result is not necessarily inconsistent with a large variability in the ion channel composition between neurons, because the absence of one ion channel may be compensated by other channels [START_REF] Marder | Robust circuit rhythms in small circuits arise from variable circuit components and mechanisms[END_REF]]. This could in particular occur if there is some global homeostatic mechanism on the dynamical properties of the neuron.

Note that while we assume a negligibly small variance for the combined leakand-synapse lters (and, therefore, for the synaptic weights) and for the number of connections within a subpopulation, we will briey clarify later that the formulas appear to be generalizable to account for more synaptic-input variability if needed.

In the following, we will use the index p to indicate one of the N pop subpopulations of neurons, and the index i p for the n p dierent neurons of a given subpopulation p. We stress that some subpopulations of neurons will be recurrently connected, while some other subpopulations just provide feedforward, external stimulation to the recurrent network. The aim of the analysis is to determine the mean ring rate of recurrent populations in response to a (known) time-dependent external input coming from the external populations.

Finally, we will assume that the number of inputs from each subpopulation received by one neuron in the circuit is rather large, i.e. large enough to allow the convergence of the central limit theorem, as we will discuss later. Given that neurons in the neocortex typically receive several thousands of connections in total [START_REF] Megías | Total number and distribution of inhibitory and excitatory synapses on hippocampal ca1 pyramidal cells[END_REF]], we are assuming that these thousands of inputs could be split in a few groups, such that the inputs within each group have similar synaptic parameters and similar ring rate modulations.

Assumptions about spatio-temporal correlations and their consequences

For the recurrent neurons, we assume that the spike trains are approximately emitted according to an inhomogeneous Poisson process which depends on the (dynamic) input and which is uncorrelated between units.

For the sake of clarity, we would like to take advantage of the space allowed in a Ph.D. dissertation in order to make this statement mathematically explicit with simple binary variables. Let us call X i (t o ) a variable that takes the value 1 if a neuron i from a given subpopulation red during a time-step dt taken around time t o , and 0 else. Note that we impose that dt is small enough such that the neuron res at most one spike within this interval. By construction, X i (t o ) is a Bernoulli variable which expectation is dt times the rate of neuron i at time t 0 . In other words,

prob (X i (t o ) = 1) = [dt R i (t o )] = 1 -prob (X i (t o ) = 0) (8.10)
Note that X i (t o ) corresponds to the convolution of S i (t o ) with a rectangular 

(s) = 1 dt ( Θ ( s + dt 2 ) -Θ ( s -dt 2 ))
, where Θ is the Heaviside step function. Formally, we can write:

X i (t o ) = (Rect dt * S i ) (t o ).
Concerning correlations within the network for the variables X, we assume the following:

1. For any neuron i from the recurrent subpopulation, and ∀ t 1 ̸ = t 2 :

E rep det [X i (t 1 ) X i (t 2 )] = E rep det [X i (t 1 )] E rep det [X i (t 2 )] + Cov rep det (X i (t 1 ) , X i (t 2 )) ≈ E rep det [X i (t 1 )] E rep det [X i (t 2 )] (8.11)
where E rep det is an expectation over dierent repetitions of the same deterministic stimulation of one neuron (i.e. the neuron is stimulated dierent times with the same deterministic current).

In addition,

Cov rep det is the covariance over these repetitions, which we assume to be small.

Hence, we neglect the presence of co-occurrences between spike times that go beyond those that can be captured through a time-dependent ring rate (which is an average over dierent repetitions of the same deterministic current). Note, however, that the ring rate at time t 2 can still be computed as a function of the past history of ring rates at all times t < t 2 .

To illustrate, let us take the example of a neuron with classical hyperpolarizing adaptation. Qualitatively speaking, a large previous ring rate of this neuron predicts a reduced future excitability. However, this prediction is imperfect for a given trial because the specic realisation of spiking history, that directly shapes the future excitability, is only approximately matched to the past ring rates (see the EME1 approximation in [START_REF] Naud | Improved similarity measures for small sets of spike trains[END_REF]], and subsection 8.2.4). This approximation is expected to be rather good if the neuron is driven by a very uctuating current which triggers almost deterministic ring at some precise times. In contrast, the very regular spike trains emitted in response to a supra-threshold constant input are much more shaped by spike time correlations.

2. For any two neurons i ̸ = j, and for all (possibly equal) times {t 1 , t 2 }:

146 CHAPTER 8. DERIVATION OF APPROXIMATE EXPRESSIONS FOR THE DYNAMICS OF RECURRENT ADAPTING NETWORKS OF NEURONS E rep stoch [X i (t 1 ) X j (t 2 )] = E rep stoch [X i (t 1 )] E rep stoch [X j (t 2 )] + Cov rep stoch [X i (t 1 ) , X j (t 2 )] ≈ E rep stoch [X i (t 1 )] E rep stoch [X j (t 2 )] ⇐⇒ E pop nrn [X i (t 1 ) X j (t 2 )] = E pop nrn [X i (t 1 )] E pop nrn [X j (t 2 )] + Cov pop nrn [X i (t 1 ) , X j (t 2 )] ≈ E pop nrn [X i (t 1 )] E pop nrn [X j (t 2 )] (8.12)
where:

X E rep stoch is an expectation over dierent repetitions of the stimulation of a network, such that in each repetition the stochastic external stimulation is redrawn. Hence, here, the expectation has to account for both the intrinsic stochasticity internal to each neuron, and for the variability in the synaptic input received by dierent neurons. Concretely, for each repetition, the spike trains coming from the external subpopulations are redrawn from a xed random vector of time-dependent rates. Cov rep stoch is the covariance over these repetitions, which we assume to have a negligible eect compared to the eect of the time-dependent ring rates for determining the co-occurrence of spike patterns from two neurons.

X E pop nrn is the average over dierent neurons of the subpopulation(s)

to which the neurons i and j belong. Note that they may actually belong to the same subpopulation. Cov pop nrn is the covariance over pairs of neurons taken from the respective subpopulation(s) to which neurons i and j belong. We assume that this covariance has a negligible eect compared to the eect of the time-dependent ring rates for determining the co-occurrence of spike patterns from two neurons.

We actually assume in the rst part of Equation 8.12 that dierent neurons of a network emit spikes, and therefore receive currents, whose
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joint probability is completely determined by the time-dependent stochastic-repetition-averaged ring rates, hence neglecting any correlation present in recurrent (internal) currents that would be specic to a given stimulation. This therefore implies that E rep stoch is equivalent to the average over dierent neurons of the concerned subpopulations (i.e., E pop nrn ). This equivalence holds exactly in our case where all neurons receive the same number of inputs. In a more general case, the formulas and their implications are unchanged; one would just need to account for the additional variability in synaptic input in E rep stoch .

In conclusion, we neglect the eects of the correlations which arise (directly and through indirect recurrent loops) because of shared inputs between two neurons. We also neglect correlations that would arise through correlated activity between some external synapses. Finally, we neglect co-occurrences of spikes from the neurons of the recurrent population which arise through the dynamics, and which cannot be explained by two samples taken from the ring rates in the populations at the relevant times. Note that, under some biologically plausible conditions (i.e. in case of detailed balance between excitatory and inhibitory current), a recent study showed that even when these correlations were present and rather strong, their eects could eectively cancel in the total synaptic current that drives the dynamics of the neurons [START_REF] Renart | Meandriven and uctuation-driven persistent activity in recurrent networks[END_REF]].

We stress that the approximations in Equation 8.11 and in Equation 8.12 do not concern averages of the ring rate that would be taken over time. Hence, there can be temporal covariations of the neurons relative to their time-averaged rate [START_REF] Brunel | Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons[END_REF]; [START_REF] Renart | Meandriven and uctuation-driven persistent activity in recurrent networks[END_REF]]. Also, we note that the expected ring rate may not only depend on the current synaptic input, but also on the previous expected ring rate history. Hence, there can be temporal correlations in the ring probability of one population, relative to its time-averaged ring rate, beyond those imposed by the synaptic input.

We now outline a few useful consequences of our assumptions about the spatiotemporal correlations. The expert reader may choose to skip those, which relate to the computation of the time-dependent expectation and variance of the sum of ltered spike trains.

Let us dene, for any neuron

i in subpopulation p i , Y i (t) = ∑ ∞ s=0 α p i (s) X i (t -s)
, where ∀s, α p i (s) ∈ R are xed (i.e., stationary and non-random) numbers that are the same for all neurons within a subpopulation. As a rst direct consequence of Equation 8.12 and of the linearity of the expectation, the variables Y are also uncorrelated between dierent neurons. Note that Y i can be written as a convolution between some kernel and the spike train S i (written as a sum of dirac deltas) that is associated with X i . Indeed, using the previously dened rectangular lter Rect dt , we can write:

Y i (t) := ∞ ∑ s=0 α p i (s) [∫ Rect dt ( (t -s) -s ′ ) S ( s ′ ) ds ′ ] = ∫ [ ∞ ∑ s=0 α p i (s) Rect dt (( t -s ′ ) -s ) ] S ( s ′ ) ds ′ = ∫ F ( t -s ′ ) S ( s ′ ) ds ′ := F * S (t) (8.13)
where F is a lter that is dened in continuous time.

Hence, for all (possibly equal) times t 1 and t 2 , and for all neurons i ̸ = j (but which may belong to the same subpopulation, i.e. p i may be the same as p j ):

E pop nrn [Y i (t 1 ) Y j (t 2 )] := E pop nrn [ ∞ ∑ s=0 α p i (s) X i (t 1 -s) ∞ ∑ s ′ =0 α p j ( s ′ ) X j ( t 2 -s ′ ) ] ⇐⇒ E pop nrn [Y i (t 1 ) Y j (t 2 )] = ∞ ∑ s=0 ∞ ∑ s ′ =0 α p i (s) α p j ( s ′ ) E pop nrn [ X i (t 1 -s) X j ( t 2 -s ′ )] ⇐⇒ E pop nrn [Y i (t 1 ) Y j (t 2 )] ≈ ∞ ∑ s=0 ∞ ∑ s ′ =0 α p i (s) α p j ( s ′ ) E pop nrn [X i (t 1 -s)] E pop nrn [ X j ( t 2 -s ′ )] ⇐⇒ E pop nrn [Y i (t 1 ) Y j (t 2 )] ≈ E pop nrn [ ∞ ∑ s=0 α p i (s) X i (t 1 -s) ] E pop nrn [ ∞ ∑ s ′ =0 α p j ( s ′ ) X j ( t 2 -s ′ ) ] ⇐⇒ E pop nrn [Y i (t 1 ) Y j (t 2 )] ≈ E pop nrn [Y i (t 1 )] E pop nrn [Y j (t 2 )] (8.14)
2. A similar argument (relying on the linearity of the expectation) can be made for the variables

SY p 1 = ∑ np 1 i=1 Y i∈p1 (t) (resp. SY p 2 = ∑ np 2 i=1 Y i∈p2 (t))
associated with two dierent subpopulations of neurons p 1 and p 2 which send n p 1 (resp. n p 2 ) connections on a given post-synaptic target. Hence, SY p 1 and SY p 2 are uncorrelated.

3. Finally, a consequence of Equation 8.11 is an explicit expression for the variance of

Y ip o (t) = ∑ ∞ s=0 α po (s) X ip o (t -s)
over dierent neurons of one subpopulation p o . Under our assumptions, this is equivalent to looking at the variability of a function of the response of one neuron of p o (Y ip o (t)), over dierent realisation of the stochastic time-dependent input. We recall that Y ip o (t) is a function that makes a weighted time-average of the variables X ip o (t). These variables spanning the dierent time steps are by construction Bernoulli variables with an expectation (R po (t) dt), where R po (t) is the average rate at time t over the subpopulation p o .

We start by noting that the variance of the sum of uncorrelated variables (in a pairwise fashion) is the sum of the variances, as well as reminding that ∀α ∈ R, var [α X] = α 2 var [X]. Hence, we can write:

var pop nrn po [ Y ip o (t) ] := var [ ∞ ∑ s=0 α po (s) X ip o (t -s) ] ⇔ var pop nrn po [ Y ip o (t) ] ≈ ∞ ∑ s=0 var [ α po (s) X ip o (t -s) ] ⇔ var pop nrn po [ Y ip o (t) ] ≈ ∞ ∑ s=0 (α po (s)) 2 var [ X ip o (t -s) ] ⇔ var pop nrn po [ Y ip o (t) ] ≈ ∞ ∑ s=0 (α po (s)) 2 [ (dt R po (t -s)) -(dt R po (t -s)) 2 ] ⇔ var pop nrn po [ Y ip o (t) ] ≈ ∞ ∑ s=0 (α po (s)) 2 [(dt R po (t -s))] (8.15)
where the last line holds because X i (t -s) is a Bernoulli variable with a small probability of being 1 if neurons re irregularly and asynchronously within a subpopulation. Hence, in these conditions, for all times and for a small enough time step dt, (R po (t) dt) is very small, and therefore, (R po (t) dt) 2 is negligible.

Characteristics of the distribution of filtered synaptic input in a neuronal subpopulation

The synaptic-input-induced voltage uctuations experienced by neuron i po of a subpopulation p o can be written as:

h ip o (t) = Npop ∑ p=1 np, po ∑ j=1 F tot p, po * S p, ip o j (8.16)
where n p, po is the number of neurons in subpopulation p that send projections to one neuron of subpopulation p o , F tot p, po is the combined leak-and-synapse lter for this specic type of synapse (see the previous subsection, and Equation 8.9), and S p, ip o j is the spike train of the j th neuron of subpopulation p sending a connection to the neuron i po of population p o . Note also that the subpopulation p o is included within the external sum over subpopulations.

For any subpopulation p, I ip

o ,p = ∑ np, po j=1 F tot p, po * S p, ip o j
is a sum of many identically distributed and almost uncorrelated variables (see Equation 8.14). Through the central limit theorem and its generalizations (i.e. assuming that n p, po is large enough, and assuming that the weak correlations do not break the convergence of the sum), I ip o ,p is expected to approximatively follow a Gaussian distribution across dierent neurons i po in population p o .

In addition, for any two dierent subpopulations p 1 and p 2 , I ip o ,p 1 and I ip o ,p 2 are almost uncorrelated Gaussians (see the previous subsection, item 2). We will assume a regular form for the (weak) covariations between subpopulations, hence ensuring that the dierent I ip o ,p are jointly normally distributed. Under these assumptions, h ip o (t) is also expected to approximatively follow a Gaussian distribution among dierent neurons i po belonging to the subpopulation p o . Note that it is also possible that for a given population p, the values of I ip o ,p are correlated between neurons, while still having h ip o (t) uncorrelated between neurons through cancellations between positive and negative correlations [START_REF] Renart | The asynchronous state in cortical circuits[END_REF]. In this case, our formulas are still valid.

Note that, for a steady-state stimulation with a short and small temporal autocorrelation of the membrane-ltered synaptic input, the same argument would predict a Gaussian distribution for the values of the subthreshold potential taken at dierent times by the membrane of a single neuron. This has indeed been observed during in vivo patch clamp recordings, and in detailed models of pyramidal neurons [START_REF] Destexhe | The high-conductance state of neocortical neurons in vivo[END_REF]].

Finally, we can compute the time-dependent moments of h ip o (t) as a function of the ring rates of neurons averaged over subpopulations.

First, we can compute

E pop nrn∈po [ h ip o (t)
] using the linearity of the expectation:

E pop nrn po [ h ip o (t) ] := E pop nrn po   Npop ∑ p=1 np, po ∑ j=1 F tot p, po * S p, ip o j   = Npop ∑ p=1 np, po ∑ j=1 F tot p, po * E pop nrn∈po [ S p, ip o j ] = Npop ∑ p=1 np, po ∑ j=1 F tot p, po * R p = Npop ∑ p=1 n p, po F tot p, po * R p (8.17) where R p (t) := E pop nrn p [ S ip ] , i.e. R p (t)
is the expected ring rate within the dierent neurons i p of subpopulation p at time t. . First, we use the approximation of uncorrelated ring, and the fact that the variance of the sum of uncorrelated variables is the sum of their variances, Second, we use the assumption about the asynchrony and irregularity of the spiking process. The computation follows the same steps as Equation 8.15 in the previous subsection.

In addition, we can approximate var pop nrn

var pop nrn po [ h ip o (t) ] := var pop nrn po   Npop ∑ p=1 np, po ∑ j=1 F tot p, po * S p, ip o j   ≈ Npop ∑ p=1 np, po ∑ j=1 var pop nrn po [ F tot p, po * S p, ip o j ] ≈ Npop ∑ p=1 np, po ∑ j=1 F F tot p, po * var pop nrn po [ S p, ip o j ] ,
where ∀s, F F tot p, po (s) :=

( F tot p, po (s) ) 2 ⇐⇒ var pop nrn po [ h ip o (t) ] ≈ Npop ∑ p=1 n p, po F F tot p, po * R p (8.18)
Hence, this variance computation would be exact for inhomogeneous and uncorrelated Poisson ring with expected rates R p (t) within a subpopulation (which are our basic assumptions, see subsection 8.2.2).

We note that the central limit theorem is often quite robust to violations of its assumptions. Hence, the convergence to a normal variable may be ensured even when summing over variables that are not identically distributed (as shown through the extensions of Lyapunov and Lindeberg). In this limit, our framework may be extended to networks where the synaptic weights are drawn from a distribution that is specic to each subpopulation (while still assuming the same shape for the synaptic-and-membrane lter within a subpopulation). In addition, it may also be possible to account for stochastic synaptic transmission [START_REF] Pala | In vivo measurement of cell-typespecic synaptic connectivity and synaptic transmission in layer 2/3 mouse barrel cortex[END_REF]]. These extensions would simply require to adjust the computation of the variance to account for the stochasticity of the synaptic weights.

Hence, one would need to evaluate

var pop nrn po [ w j,ip o S p, ip o j (t) ]
, where w j,ip o is a random variable. This could be done by using the law of total variance, for instance. Also, we stress that we could extend our approach to account for known spatiotemporal correlations within the external spike trains received by a recurrent neuron, which would only require to account for the (given) spatiotemporal covariances in Equation 8.18. Indeed, our framework only requires that dierent recurrent neurons can be well-enough approximated by uncorrelated inhomogeneous poisson processes. Hence, the assumptions about correlations described in subsection 8.2.2 are more crucial for the recurrent populations of neurons, because evaluating further the correlations between recurrent spike trains would require to solve (non-linear) self-consistent equations at each time-point. This would not be an easy numerical task, and this would annihilate the eorts to reach simple equations suitable for intuitive mathematical analysis.

In conclusion, one can compute the mean and variance of the eective input h ip o (t) as a function of the subpopulation rates, under the assumptions made in subsection 8.2.2. We now turn to the computation of the (self-consistent) relation between this input to one neuron of the p o subpopulation, to the expected subpopulation rate R po (t).

Expression of the subpopulation rate through a separation of the stochasticities due to intrinsic noise and due to synaptic input

We aim at computing (self-consistently) the expected subpopulation rate among dierent neurons i po of a given (recurrently connected) subpopulation p o : R po (t) := E pop nrn po

[ S ip o (t) ] .
We rst notice that the expectation is aected by two types of variability: X the variability in the ltered synaptic input received by dierent neurons.

As we showed above using our assumptions, the ltered input is approximately distributed according to a Gaussian within a subpopulation of neurons, with time-dependent means and variances that depend on the subpopulations' ring rates.

Mathematically, this variability can be summarized by the distribution of the (innite) random vector ⃗ h po = {h po (t ′ )} ∀t ′ ≤t . This random vector concatenates the dierent random variables assigned to dierent times (each random variable is assigned to a given time). Each of these random variables describes a distribution across dierent neurons of the subpopulation of interest p o . In the following, we will use a (slightly shorter) notation to note a particular realization of ⃗ h po for a specic neuron i po . Rigorously, for a neuron i po , a particular xed realization of the input (frozen noise) should be written:

∀t ′ ≤ t, h po (t ′ ) = h ip o (t ′ )
, where for each t ′ the left-hand side is a random variable over the subpopulation, and the right-hand side is a particular xed realization experienced by the neuron i po . We will use the notation

{ h ip o (t ′ ) } ∀t ′ ≤t
for this particular realization of the input vector ⃗ h po received by neuron i po during one run of the network.

X the variability of the response of one neuron subsisting even when it receives dierent repetitions of an identical, deterministic current

{ h ip o (t ′ ) } ∀t ′ ≤t
. This variability is due to the intrinsic stochasticity of the neuron.

As we wrote previously, we can note the average over this variability E rep det (for the average over deterministic repetitions). For clarity, we now use a more explicit notation for this average over the dierent spike trains S i emitted by a neuron i in response to a xed, deterministic input history [Naud and Gerstner (2012a)].

Hence, for a

given neuron i po :

E rep det [•] := E S ip o | {hi po (t ′ )} ∀t ′ ≤t [•].
We will use the law of total expectation in order to account for these two types of variability. We now use the denition of the ring probability given by our single neuron model (see Equation 8.1), to write:

R po (t + ) = E pop nrn po [ λ 0, po exp ( h ip o (t) + η po * S ip o (t) )]
(8.20)

Note that we used a + subscript to stress the fact that, in the last expression, the left side of the equation is caused by the right side, and hence occurs with an innitesimal delay compared to the right side. In continuous time, this + subscript can actually be dropped because this delay goes to 0 (and because of the continuity and the niteness of our expressions at all times).

To make progress, we use here the law of total expectation. We average rst over the intrinsic variability of a given single unit i po while its synaptic input history 

R po (t + ) = E {hp o (t ′ )} ∀t ′ ≤t [ E S ip o | {hi po (t ′ )} ∀t ′ ≤t [ λ 0, po exp ( h ip o (t) + η po * S ip o (t) )] ] R po (t + ) = λ 0, po E {hp o (t ′ )} ∀t ′ ≤t [ exp ( h ip o (t) ) E S ip o | {hi po (t ′ )} ∀t ′ ≤t [ exp ( η po * S ip o (t) )] ] (8.21)
where {h po (t ′ )} ∀t ′ ≤t is the distribution of synaptic input histories within the population .

In a recent paper [Naud and Gerstner (2012a)], an analytical expression was given for the inner expectation term, for any single unit i o :

E S ip o | {hi po (t ′ )} ∀t ′ ≤t [ exp ( η po * S ip o (t) )]
. Indeed, this term was recognized as a moment generating functional for the random point process S ip o representing spike trains emitted in response to a xed input

{ h ip o (t ′ ) } ∀t ′ ≤t .
Therefore, the expectation can be separated in a sum which involves dierent correlations functions g n (t 1 , ..., t n ) of order n, ∀n ≥ 1. For increasing values of n, the g n involve higher and higher moments of the point process (see [START_REF] Van Kampen | Stochastic processes in physics and chemistry[END_REF]], p. 41 and more generally p. 30-44 for the use of these functions). Note that these functions are named 'correlations' because they measure how much each moment n > 1 deviates from independent interactions at the (n -1) and lower levels.

We give here an expression of g n for n ≤ 2,

X g 1 (t 1 ) := E S ip o | {hi po (t ′ )} ∀t ′ ≤t 1 [ S ip o (t 1 ) ]
. Hence, g 1 (t 1 ) is an expectation which averages the dierent probabilities of spiking at t 1 that arise from dierent previous spiking histories occuring in response to a xed input history

{ h ip o (t ′ ) } ∀t ′ ≤t 1 .
We note that a more formal mathematical writing for this expectation can be found in the Methods section of [Naud and Gerstner (2012a)].

X ∀ t 1 ̸ = t 2 , g 2 (t 1 , t 2 ) := E S io | {hi po (t ′ )} ∀t ′ ≤t [( S ip o (t 1 ) -g 1 (t 1 ) ) ( S ip o (t 2 ) -g 1 (t 2 ) )]
Note that we must set, ∀t o , g 2 (t o , t o ) := 0 (see [START_REF] Van Kampen | Stochastic processes in physics and chemistry[END_REF]], p. 31, linking to p. 30-44).

Hence, using the correlation functions g n , one can write the following expansion:

E S ip o | {hi po (t ′ )} ∀t ′ ≤t [ exp ( η po * S ip o (t) )] = exp ( ∞ ∑ n=1 ( 1 n! ∫ t -∞ ... ∫ t -∞ ( e ηp o (t-s 1 ) -1 ) ... ( e ηp o (t-sn) -1 ) g n (t 1 , ..., t n ) ds 1 ...ds n ) ) ⇒ E S ip o | {hi po (t ′ )} ∀t ′ ≤t [ exp ( η po * S ip o (t) )] ≈ exp (∫ t -∞ ( e ηp o (t-s) -1 ) g 1 (s) ds ) (8.22)
Note that the last formula, which only accounts for the rst order (n = 1) of the expansion, would be exact if the point process was truly inhomogeneous Poisson [START_REF] Van Kampen | Stochastic processes in physics and chemistry[END_REF] p. 33, also in [START_REF] Stratanovitch | Topics in the Theory of Random Noise[END_REF]], i.e. if the spiking process could be completely described by a time-dependent, but history-of-ring independent, ring probability. Indeed, in this case, for any n > 1, all the correlation functions g n vanish. Therefore, when using the approximation of Equation 8.22, the error will grow with the amplitude of the correlations within the spike trains, and thus, for our purpose, with the strength of the adaptation.

More specically, adaptation most often creates negative correlations between spike times [START_REF] Farkhooi | Adaptation reduces variability BIBLIOGRAPHY 233 of the neuronal population code[END_REF]; [START_REF] Schwalger | Patterns of interval correlations in neural oscillators with adaptation[END_REF]], which leads to expecting negative values for g 2 .

Given that ∀s, η po (s) ≤ 0 (hence implementing a classical adaptation which drives the excitability down upon each spike [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]]), the second order term in the sum is expected to be negative, i.e. we expect

( ∫ t -∞ ∫ t -∞ ( e ηp o (t-s 1 ) -1 ) ( e ηp o (t-s 2 ) -1 ) g 2 (s 1 , s 2 ) ds 1 ds 2 ) < 0.
By neglecting this second order term, we therefore conjecture to underestimate the self-inhibition coming from the adaptation variable, and hence to overestimate the predicted ring rate. This overestimation error would also be expected to grow with the ring rate, as the spike time correlations become larger for smaller interspike intervals with a realistic power-law-like adaptation kernel.

This is indeed what was shown to happen in the original publication making use of this moment-based expansion ( [Naud and Gerstner (2012a)], see Figure 8.1).

For clarity, we reproduce here one gure adapted from this publication in order to illustrate how well the approximation in Equation 8.22 works for predicting the ring rate in response to a xed, deterministic input.

As can be seen in Figure 8.1, the approximation based on the rst moment only (g 1 , red line) indeed leads to an overestimation of the ring rates, and more-so for higher rates, with an error that is slightly decreased when also accounting for the second moment (g 1 and g 2 , green line). However, this rst moment approximation still accounts rather well for the time-dependent eect of adaptation on the ring rate, allowing to capture the initial peak of ring rate and to approximate the following decay of activity, while missing only minor oscillations of the rate. Also, the g 1 approximation does account for the summation occurring over dierent spike times (as it gives a better t for the steady-state ring rate than a theory which only accounts for the eect of the last spike, black line in Figure 8.1).

Hence, the approximation based on g 1 is very simple while still capturing major features of the adaptation eects.

Finally, we can rewrite this approximate 1 st moment formula in Equation 8.22:

E S ip o | {hi po (t ′ )} ∀t ′ ≤t [ exp ( η po * S ip o (t) )] ≈ exp (( ηpo * r ip o | {hi po (t ′ )} ∀t ′ ≤t ) (t) ) (8.23)
where ∀s > 0, ηpo (s) := ( e ηp o (s) -1 ) while ∀s ≤ 0, ηpo (s) := 0, and

r ip o | {hi po (t ′ )} ∀t ′ ≤t (t) := g 1 (t)
is the average rate of a single neuron i po over dierent repetitions of a stimulation with a xed deterministic input history

{ h ip o (t ′ ) } ∀t ′ ≤t .
Together with Equation 8.21, this leads us to a (non-explicit) equation for the expected population rate over dierent neurons receiving dierent inputs R po (t):

R po (t + ) ≈ λ 0, po E {hp o (t ′ )} ∀t ′ ≤t [ exp ( h ip o (t) ) exp (( ηpo * r ip o | {hi po (t ′ )} ∀t ′ ≤t ) (t) )] ≈ λ 0, po E {hp o (t ′ )} ∀t ′ ≤t [ exp ( h ip o (t) + ( ηpo * r ip o | {hi po (t ′ )} ∀t ′ ≤t ) (t) )] (8.24)
However, evaluating the remaining expectation is not trivial, rst because we do not know the distribution of )

( ηpo * r ip o | {hi po (t ′ )} ∀t ′ ≤t ) over
.

The following section describes the method we developped to get around these diculties.

Explicit expression of the subpopulation rate through a linearization of the expected adaptation variable

In order to make progress from Equation 8.24, we would like to determine the distribution of G i po (t) :=

( h i po (t) + ( ηp o * r ip o | {hi po (t ′ )} ∀t ′ ≤t ) (t) 
) over the neurons i po of the population p o .

One way to do this is to notice that the (deterministic-repetitions averaged) adaptation variable 

( ηpo * r ip o | {hi po (t ′ )} ∀t ′ ≤t ) (t)

Self-consistent derivation of the recurrent baseline firing rates

To nd a value for this baseline ring rate R po, bsln , we will make use of an ideal network, whose ring rates can be expected to be rather similar (but not identical) to the time-averaged ring rates which occur within our more complex network of interest.

The reason for using such an approximate baseline ring rate in this ideal network is that, under these simplied conditions, we can self-consistently express these baseline subpopulation rates R p recc, bsln for all recurrently connected subpopulations through coupled transcendental equations. In addition, in case of a single recurrent population, or when there is only one subpopulation for which the dynamics is substantially non-linear, the equations only involve the Lambert-W function which has well-dened solutions. Hence, in this framework, there is no need to use very complex numerical recipes to solve the baseline steady-state self-consistently. In addition, we stress that we will later be able to use the baseline rates as parameters for intermediate computations which will ultimately lead to approximate the time-averaged ring rate in our more complex network.

Note that a more complex numerical approach that does not make use of the ideal network (and which would therefore be expected to give more accurate results, but which has the disadvantage of diminishing the mathematical tractability of our framework) may still be used to compute a mean ring rate self-consistently. A linearization around this mean ring rate would indeed be expected to minimize the error for the predicted ring rate. This approach would just require to numerically search a self-consistent match between an (initially unknown and initiated with a guess) mean ring rate used for the linearization, and the value of the mean ring rate that our formulas provide at the end (see Equation 8.42).

Hence, we choose as a baseline the steady-state subpopulation rate in a frozen network receiving the same mean external synaptic drive as our original network.

However, in this frozen network, all uctuations are neglected (i.e. we neglect all the uctuations of the ltered synaptic input, both external and recurrent). Such an equivalent frozen network can be (theoretically) constructed by making the size N p of each subpopulation p go to innity, while rescaling the synaptic weights from population p by N p . Briey, in the original network, if we take w real p 1 ,p 2 the synaptic weight from a neuron of subpopulation 1 to neuron of subpopulation 2 and N real p 1 ,p 2 as the number of neurons from p 1 projecting to a neuron of p 2 , then the mean synaptic current from p 1 to one neuron of p 2 will scale as

( w real p 1 ,p 2 N real p 1 ,p 2 ) .
In the ideal network with a number of neurons N ideal p 1 ,p 2 → ∞ coming from p 1 and projecting to one neuron of p 2 , we can choose w ideal p 1 ,p 2 :=

w real p 1 ,p 2 N real p 1 ,p 2 N ideal p 1 ,p 2
. Hence, the mean synaptic current from p 1 to one neuron of p 2 still scales as

∑N ideal p 1 ,p 2 i=1 w ideal p 1 ,p 2 = w real p 1 ,p 2 N real p 1 ,p 2 .
However, the variance of this synaptic current will now scale as

∑N ideal p 1 ,p 2 i=1 ( w ideal p 1 ,p 2 ) 2 = (w real p 1 ,p 2 N real p 1 ,p 2 ) 2 N ideal p 1 ,p 2
, which goes to 0 as N ideal p 1 ,p 2 goes to innity. 

)]

≈ λ 0, po exp (h po bsln + (η po * R po, bsln ))

≈ λ 0, po exp   Npop ext ∑ pext=1 n pext, po R pext, bsln (∫ F tot pext, po )   exp   R po, bsln ( n po, po ∫ F tot po, po + ∫ ηpo ) + ∑ precc ̸ =po n precc, po R precc, bsln (∫ F tot precc, po )   (8.27)
This denes coupled transcendental equations for the recurrent baseline rates R precc, bsln , as announced previously. More precisely if we note ⃗ R precc, bsln a column vector of these rates, then we can compute the values of a real column vector ⃗ C and of a real matrix ⃗ M such that:

⃗ R precc, bsln = ⃗ C • exp ( ⃗ M ⃗ R precc, bsln ) (8.28)

Linearization of the exponential non-linearity around the baseline firing rates

We now turn to the linearization of r ip o | {hi po (t ′ )} ∀t ′ ≤t around h po, bsln , which will simply rely on a Taylor expansion for the exponential. We will write, ∀t, ∆h ip o (t) := h ip o (t) -h po, bsln , where h po, bsln is dened in Equation 8.26. Similarly, we will take

∆r ip o | {hi po (t ′ )} ∀t ′ ≤t (t) := r ip o | {hi po (t ′ )} ∀t ′ ≤t (t) -R po, bsln .
Starting again from the denition of r io | {h io (t ′ )} ∀t ′ ≤t (t) as an average of the dierent spiking probabilities at time t arising through dierent spiking histories in response to the input {h io (t ′ )} ∀t ′ ≤t , we can write:

r ip o | {hi po (t ′ )} ∀t ′ ≤t (t) := E S ip o | {hi po (t ′ )} ∀t ′ ≤t [ S ip o (t) ] := lim dt→0 P rob ( (i po f ires at t) | { h ip o (t ′ ) } ∀t ′ ≤t ) dt := E S ip o | {hi po (t ′ )} ∀t ′ ≤t [ λ 0, po exp ( h ip o (t) + η po * S ip o (t) )] = λ 0, po exp ( h ip o (t) ) E S ip o | {hi po (t ′ )} ∀t ′ ≤t [ exp ( η po * S ip o (t) )] ≈ λ 0, po exp ( h ip o (t) ) exp (( ηpo * r ip o | {hi po (t ′ )} ∀t ′ ≤t ) (t) ) (8.29)
where we used the result from Equation 8.23 for the last step.

From this last equation, we will now use ∆h ip o and ∆r ip o | {hi po (t ′ )} ∀t ′ ≤t to write: Where we used the second line of Equation 8.27 in the last step.

λ 0, po exp ( h ip o (t) + ( ηpo * r ip o | {hi po (t ′ )} ∀t ′ ≤t ) (t) ) = λ 0, po exp ( ∆h ip o (t) + h po, bsln + ( ηpo * ( ∆r ip o | {hi po (t ′ )} ∀t ′ ≤t + R po, bsln )) (t) 
We will now Taylor-expand the exponential for small

∆Exc ip o (t) := ( ∆h ip o + ( ηpo * ∆r ip o | {hi po (t ′ )} ∀t ′ ≤t
))

(t). Hence, we will take

exp ( ∆Exc ip o (t) ) = 1 + ∆Exc ip o (t) + ϵ ( ∆Exc ip o (t)
) . Note that the error term (ϵ) accounts for all higher-order terms. We will keep this remaining total error explicitly in the formula for now, and we will see later how to approximately account for it.

We note that ∆h ip o and

( ηpo * ∆r ip o | {hi po (t ′ )} ∀t ′ ≤t )
are negatively correlated, which is favorable for the linearization as it will tend to bring ∆Exc ip o close to 0.

To rst order, this linearization will actually lead to an underestimation of

r ip o | {hi po (t ′ )} ∀t ′ ≤t (t) as, ∀x, exp(x) ≥ (1 + x).
We can actually quantify the peformance of this linearization to rst order as a function of the ratio

F [ δ R po, bsln -ηpo ] (s) F [ ∆r ip o | {hi po (t ′ )} ∀t ′ ≤t ] (s) ≈ F [ ∆h ip o ] (s) + F [ ϵ ( ∆Exc ip o )] (s) ⇔ F [ ∆r ip o | {hi po (t ′ )} ∀t ′ ≤t ] (s) ≈ 1 F [ δ R po, bsln -ηpo ] (s) F [ ∆h ip o ] (s) + 1 F [ δ R po, bsln -ηpo ] (s) F [ ϵ ( ∆Exc ip o )]
(s)

(8.33)
Finally, taking the inverse Fourier transform F -1 and dening

Λ po := F -1   1 F [ δ R po, bsln -ηp o ]   , we nd: Equation 8.33 ⇔ ∆r ip o | {hi po (t ′ )} ∀t ′ ≤t (t) = ( Λ po * ∆h ip o ) (t) + ( Λ po * ϵ ( ∆Exc ip o )) (t) ⇔ r ip o | {hi po (t ′ )} ∀t ′ ≤t (t) ≈ ( Λ po * h ip o ) (t) + ( Λ po * ϵ ( ∆Exc ip o )) (t) + ( R po, bsln -h po, bsln ∫ Λ po ) (8.34)
Evaluating the error term

( Λ po * ϵ ( ∆Exc ip o ))
(t) is in general dicult, as it requires to compute self-consistently higher moments of the rate distribution. This error term is time-dependent, and in addition it has a bias (i.e., its average is non-zero). Indeed, we explained previously why the linearization to rst order leads to a systematic underestimation of the ring rate, and thus an error term ϵ that is always positive. In consequence,

( Λ po * ϵ ( ∆Exc ip o ))
(t) is always positive, with larger values when the time-dependent rate r ip o | {hi po (t ′ )} ∀t ′ ≤t of the neuron i po gets further away from R po, bsln . In addition, we remind that we will at the end only be interested in a linear approximation for the average adaptation This suggests that the inaccuracies of this linear prediction could be well-reduced through an approximation of the time-dependent error by a constant, hence correcting for the average bias. We will compute this constant correction term from an estimation of the average error ϵ occurring during the deviations of the ring rate from R po, bsln while the network is in a uctuating steady-state.

The uctuations during this steady-state indeed arise because dierent neurons receive dierent synaptic inputs. More precisely, in this steady-state, the external populations feed the recurrent ones with spike trains that have a rate R pext, ss := E t [R pext (t)], that is thus constant over time. This correction term will be computed self-consistently later (in Equation 8.46).

To illustrate, we would like to describe the eect of this correction term during the above-mentioned steady-state regime. In this regime, at a given time, dierent neurons of p o re at dierent rates that deviate with dierent magnitudes from R po, bsln . In this context, the correction will make the error approximately homogeneous among dierent neurons with dierent deviations from R po, bsln . More precisely, those neurons close to R po, bsln will have a slightly overestimated ring rate through the corrected linearization, while those neurons further away from R po, bsln will have a slightly underestimated ring rate through the corrected linearization. This diers from the consistent underestimation of the ring rate when using the uncorrected formula. Finally, this approximate correction will be important when we will use Equation 8.34 to estimate the adaptation term This allows us to express a linearized formula for the time-dependent rate that includes the (time-independent) correction term:

( ηpo * r ip o | {hi po (t ′ )} ∀t ′ ≤t ) (t)
r ip o | {hi po (t ′ )} ∀t ′ ≤t (t) ≈ ( Λ po * h ip o ) (t) + ( R po, bsln + A po, f luct ∫ ηpo -h po, bsln ∫ Λ po ) (8.37)
Finally, we get the desired result: a linearized equation for the intrinsic-stochasticity averaged adaptation in response to a xed input history

{ h ip o (t ′ ) } ∀t ′ ≤t : ( ηpo * r ip o | {hi po (t ′ )} ∀t ′ ≤t ) (t) ≈ ( Γ po * h ip o ) (t) + C po (8.38)
Where Γ po := ηpo * Λ po , and

C po := A po, f luct + ( ∫ ηpo ) (R po, bsln -h po, bsln ∫ Λ po ).
We will now be able to compute the ring rates of the recurrent populations in the steady-state self-consistently while accounting for the heterogeneity of input over neurons (whereas the baseline ring rates computed above neglected all uctuations and the heterogeneity of input over neurons).

Self-consistent computation of the steady-state recurrent firing rates

We can nally express the expected rate of a neuron within a subpopulation p o : R po , which is an average over the dierent synaptic inputs received by the dierent neurons of p o . Hence, from Equation 8.24, Equation 8.16 and Equation 8.38, we can write:

R po (t) ≈ λ 0, po E {hp o (t ′ )} ∀t ′ ≤t [ exp ( h ip o (t) + ( ηpo * r ip o | {hi po (t ′ )} ∀t ′ ≤t ) (t) )] ≈ λ 0, po E {hp o (t ′ )} ∀t ′ ≤t [ exp ( h ip o (t) + ( Γ po * h ip o ) (t) + C po )] ≈ λ 0, po exp (C po ) E {hp o (t ′ )} ∀t ′ ≤t   exp   Npop ∑ p=1 np, po ∑ j=1 Φ p, po * S p, ip o j     where Φ p, po := ( F tot p, po + ( Γ po * F tot p, po
))

(8.39)

Through the same argument as in subsection 8.2.3,

Z ip o = Np op ∑ p=1 np, po ∑ j=1 Φ p, po * S p, ip o j = h ip o + ( Γ po * h ip o ) (8.40)
should converge to a Gaussian variable for a large enough number of inputs. In addition, compared to the variable h io in subsection 8.2.3, we just replaced the kernels F tot by the kernels Φ. Hence, we can immediately deduce that: which is the desired result, namely the expected average ring rate in the recurrent populations of neurons. Note that here, the eects of the synaptic input variance are considered.

E pop nrn po [ Z ip o (t) ] = Npop ∑ p=1 n p,
Finally, we can express the steady-state ring rate of a recurrent population p o , and determine A po, f luct (which enters in the denition of C po , see Equation 8.38) self-consistently. For the recurrent populations, this steady-state is dierent from the baseline steady-state considered above (in section 8.2.5) as the eect of the synaptic input variance will not be neglected.

We split again the subpopulations into external and recurrent ones. Their population ring rates are constant over time, and will be written R pext, ss and R precc, ss , respectively. Hence, decorating all steady-state quantity with ss:

E pop nrn po [ Z ip o ,ss ] ≈ Npop ∑ p=1 n p, po R p, ss (∫ Φ p, po ) var pop nrn po [ Z ip o ,ss ] ≈ Npop ∑ p=1 n p, po R p, ss (∫ ΦΦ p, po ) R po, ss ≈ λ 0, po exp ( C po + ( ∑ pext n pext R pext, ss (∫ Φ pext, po + 0.5 ∫ ΦΦ pext, po ) )) exp ( ∑ precc n precc R precc, ss (∫ Φ precc, po + 0.5 ∫ ΦΦ precc, po
) ) (8.43) This again denes coupled transcendental equations between recurrent populations, which reduce to the Lambert-W function for a single recurrent population.

Note that there would be a possibility to try to Taylor-expand the exponential again, which would yield linearized rate equations with a dependence on both a mean, and a variance, synaptic drive.

Finally, one can dene the A p, f luct self-consistently by recomputing the expected ring rate over the population from the linearized formula giving the average ring rate over the intrinsic stochasticity. We consider a steady-state during which the external subpopulations re at a rate that is a time-average of the rate they have during the (possibly time-dependent) stimulation. In other words, R pext, ss := E t [R pext (t)] = R pext, bsln .

Then, we start again from the intrinsic-stochasticity-averaged ring rate of any recurrent neuron i po , in response to a xed input history

{ h ip o , ss (t ′ ) } ∀t ′ ≤t
(see Equation 8.37):

r (ip o ,ss) | {hi po , ss (t ′ )} ∀t ′ ≤t := E S ip o , ss | {hi po , ss (t ′ )} ∀t ′ ≤t [ S ip o , ss (t)
] .

We further remind the reader that:

E pop nrn po, ss := E {hp o (t ′ )} ∀t ′ ≤t , ss [ E S ip o , ss | {hi po , ss (t ′ )} ∀t ′ ≤t [•] ] (8.44)
Hence, for any recurrent population p o , we can write, using Equation 8.36 and Equation 8.37:

E pop nrn po, ss [ r (ip o ,ss) | {hi po , ss (t ′ )} ∀t ′ ≤t ] ≈ E pop nrn po, ss [ ( Λ po * h ip o , ss ) (t) + ( R po, bsln + ( Λ po * ϵ ( ∆Exc ip o , ss
))

-h po, bsln

∫ Λ po )] ≈ ( Λ po * E pop nrn po [ h ip o , ss ]) + ( R po, bsln + A po, f luct ∫ ηpo -h po, bsln ∫ Λ po ) ≈   Λ po *   Npop ∑ p=1 n p, po R p, ss (∫ F tot p, po )     + ( R po, bsln + A po, f luct ∫ ηpo -h po, bsln ∫ Λ po ) ≈   Npop ∑ p=1 n p, po R p, ss (∫ F tot p, po )   (∫ Λ po ) + ( R po, bsln + A po, f luct ∫ ηpo -h po, bsln ∫ Λ po ) ≈ R po, ss (8.45)
which approximately gives the A p, f luct as a linear function of the R p, ss . This permits a replacement within the C p in Equation 8.43. Indeed:

A po, f luct ≈ (∫ ηpo )   (R po, ss -R po, bsln ) + (∫ Λ po )   h po, bsln - Npop ∑ p=1 n p, po R p, ss (∫ F tot p, po )     (8.46)
Hence, we can compute the R p, ss through solving Equation 8.43 while the A p, f luct are replaced with the right-hand side of Equation 8.46. Finally, one can deduce back the approximate A p, f luct through Equation 8.46.

This is necessary because the

C p := A p, f luct + ( ∫ ηp ) (R p, bsln -h p, bsln ∫ Λ p )
are still undetermined, as A p, f luct depends on the amplitude of the uctuations (see Equation 8.36). Indeed, A p, f luct is an estimation of the average error for the linear estimation of the adaptation's time-course (which accounts for the rstorder of a Taylor expansion, see Equation 8.31 and above). This error is averaged over the single neuron's dynamic ring rates while the population is in a steadystate characterized by a variability of the received synaptic input between neurons and over time. In our case where all neurons are statistically identical, the time and the population variabilities should actually have the same properties. Hence, A p, f luct is an approximation for both the neuron-averaged, and the time-averaged, error for the estimated adaptation through the rst-order of a Taylor expansion.

We note that even though this self-consistent computation of A p, f luct mitigates the error made when Taylor-expanding the time-dependent adaptation variable to rst order (in Equation 8.38), an underestimation of the absolute magnitude of this adaptation variable (and therefore a probable overestimation of the ring rate) still subsists. Indeed, we use A p, f luct as a proxy for ηp *

( Λ p * ϵ ( ∆Exc ip ))
in Equation 8.38 and therefore in Equation 8.39. This is similar to enforcing, when estimating the absolute magnitude of the adaptation eect: where error (neuron) is a neuron-dependent positive error term for the absolute magnitude of adaptation which results from the systematic underestimation of the single-neuron ring rate. This underestimation comes itself from the approximation of the single-neuron ring rate by a rst-order Taylor expansion of an exponential function (see the text centered on Equation 8.31). Then, we note that the (positive) derivative of the exponential function increases for larger arguments. Hence, for any distribution (over dierent neurons of the population p) of the absolute error that does not show a very fat tail for lower values, the left-hand-side of Equation 8.47 is larger than its right-hand-side. This means that we are underestimating E pop nrn p, ss [exp (error (neuron))], which then leads to an underestimation of the magnitude of adaptation eect and an overestimation of the population ring rate.

Reduction of the mathematical expressions for the dynamic rate to differential equations

Our main nding from the previous section is that the time-dependent ring rate for the recurrent populations can be written as:

R po (t) ≈ λ 0, po exp (C po ) exp   Npop ∑ p=1 n p, po (Φ p, po * R p ) + ∑ Npop p=1 n p, po ΦΦ p, po * R p 2   ⇔ R po (t) ≈ λ Ef f, po exp   Npop ∑ p=1 n p, po ( Φ p, po + ΦΦ p, po 2 ) * R p   ⇔ R po (t) ≈ λ Ef f, po exp   I f ilt po (t) + Npop recc ∑ precc=1 n precc, po ( Φ precc, po + ΦΦ precc, po 2 ) * R precc   (8.48)
where Φ and ΦΦ are lters that account for the eect of the mean and the variance of the synaptic input in the population, respectively, and I f ilt (t) regroups the sum of the ltered contributions from the external populations.

We remark that as long as these lters Φ and ΦΦ can be approximated by sums of exponential lters, the mean and variance of each Z variable can both be expressed as a sum of the solutions of dierential equations where the R p are additive variables in the derivatives ( [START_REF] Toyoizumi | Mean-eld approximations for coupled populations of generalized linear model spiking neurons with markov refractoriness[END_REF]]). This approximation may be made numerically, but the relative simplicity of our expressions might also allow us to link the major time-scales of these kernels to the single neuron model parameters in the future. To this aim, we would need to rework our kernel λ 0, po , probably in the Fourier domain, to approximately match it to the mathematical expression of the Fourier transform of an exponential kernel.

We will actually show the shape of some kernels in the results (in Figure 9.4); qualitatively speaking, an exponential basis for these kernels appears reasonable, and a good approximation could probably be reached through a few number of exponential kernel. Indeed, to illustrate how the reduction to non-linear dierential equations arises, we take a case when, for any populations p and p o : Then, we can write, for any populations p and p o , and any k ∈ N p, po :

V p, po k := E p, po k * R p ⇒ dV p, po k dt = - V p, po k τ p, po k + C p, po k R p (t) (8.50)
which can be veried by simple dierentiation of V p, po k .

Finally, using Equation 8.48 and Equation 8.49, we can rewrite any the recurrent populations p 1 and p o the derivative of V precc, po k :

dV p 1 , po k dt ≈ - V p, 1 po k τ p 1 , po k + C p 1 , po k λ Ef f, p 1 exp   I f ilt p 1 (t) + Npop recc ∑ precc=1 V precc, p 1 k (t)   (8.51)
with, for each recurrent population p o and at each time,

R po (t) ≈ λ Ef f, po exp ( I f ilt po (t) + ∑ Npop recc precc=1 V precc, po k (t)
)

.

Hence, the dierent V variables dene a system of coupled non-linear dierential equation that may be studied with the usual stability analysis tools (linear stability, phase plane).

Finally, these equations may be linearized through a Taylor-expansion of the exponential if needed. Note that, in contrast to Equation 8.37, this linearization would retain a contribution from the variance of the synaptic input.

Comparison between analytics and network simulations

In order to test our formulas, we decided to use a rather simple network simulation paradigm, to facilitate the comparison with our equations. Hence, we used a simple recurrent network connected with inhibitory synapses, that receive Poisson spike trains from external sources connecting to both excitatory and inhibitory synapses. This type of network can easily maintain asynchronous irregular activity [START_REF] Brunel | Fast global oscillations in networks of integrateand-re neurons with low ring rates[END_REF]], which is one of the requirements for the validity of our approximations. Due to time constraints, all ranges of validity could not be extensively tested yet. We describe here the choices we made.

We will start by describing the parameters for the internal dynamics of the neuron model which was used for the recurrent population. We then turn to describe the connectivity of the network. Finally, we explain how we chose some specic types of temporal modulations for the ring rate of the external populations. neuron (see Equation 8.9). Hence, F tot p, po corresponds to the time-course of a Post Synaptic Potential (PSP) measured of the soma, and its amplitude actually corresponds to the amplitude of one PSP divided by the intrinsic noise ∆V (see Equation 8.4). Hence, F tot p, po :=

( κ ∆V * F p, po
) . Here, ∆V is the intrinsic noise, and F p, po is the time-course of the eective current received at the soma that results from synaptic channels opening. Finally, κ (s) := exp(-s τ ) C Θ (s) is the membrane lter, where C is the conductance of the neuron, τ = C g L is the membrane time-scale while g L is the leak conductance, and Θ is the Heaviside function. Indeed, one can verify that when taking V subthld = κ * I (t), where I is an input current, then

C dV subthld dt = -g L V subthld + I (t).
It is customary to take an exponential shape for both the synaptic and the membrane lters, which implies to write Then, the combined lter F tot p, po is a dierence of the two exponentials, with the nal decay occurring with the largest time-scale. Indeed, using the denition of the membrane lter and performing a convolution with the synaptic lter (for τ ̸ = τ s ), we get:

F tot p, po (t) := ∫ t 0 ( 1 C ∆V exp ( - s τ ) A syn exp ( - t -s τ s )) ds F tot p, po (t) = A syn C ∆V exp ( - t τ s ) ∫ t 0 exp ( -s ( 1 τ - 1 τ s )) ds F tot p, po (t) = A syn C ∆V exp ( - t τ s ) ( - 1 1 τ -1 τs ) ( exp ( -t ( 1 τ - 1 τ s ))
-1

)

F tot p, po (t) = A syn C ∆V τ τ s max (τ, τ s ) -min (τ, τ s ) ( exp ( - t max (τ, τ s ) ) -exp ( - t min (τ, τ s ) )) (8.53)
As long as there is a large enough dierence between max (τ, τ s ) and min (τ, τ s ), this F tot p, po will have a shape close to a single exponential (with a decay of time scale ≈ max (τ, τ s ), and an amplitude that can be adjusted so as to get the same integral as the original dierence of exponentials). This is the approximation we made. Note that this also implies that we neglected synaptic delays (which may be implemented through setting the initial bins of the synaptic lter to 0). We considered cases when synaptic transmission has a slow component [START_REF] Wang | A specialized nmda receptor function in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex[END_REF][START_REF] Wang | Nmda receptors subserve persistent neuronal ring during working memory in dorsolateral prefrontal cortex[END_REF]], which may be the major source of synaptic current even if it has a modest amplitude (as the integral of F p, po also scales with τ s , see for instance the NMDA channel in [START_REF] Brunel | Eects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition[END_REF]). Note that in our network the long time-scale recurrent connections are inhibitory (which is dierent from the phenomena described in the above-mentioned publications), but we still wanted to include a slow component of the synaptic input in order to the verify that the theory could handle it.

We therefore took two relatively long time-constant for both the recurrent connections and the external excitatory connections (with respectively 70 and 50 ms). For external inhibition, we considered a case when the slowest component of F tot p, po is dominated by the membrane time-scale, which we took to be around 20ms. In future settings, it will be necessary to test shorter time scales (for synapses without slow component, and to account for the shorter eective membrane timescale shaped by the high-conductance state in vivo [START_REF] Destexhe | The high-conductance state of neocortical neurons in vivo[END_REF]).

Finally, we took amplitudes for the F tot p, po that were close to the amplitude of unitary PSPs as measured in awake monkeys at the soma (≈ 0.1-0.3 mV). These data were obtained through simultaneous intracellular and extracellular recordings in motor cortex [START_REF] Matsumura | Synaptic interactions between primate precentral cortex neurons revealed by spike-triggered averaging of intracellular membrane potentials in vivo[END_REF]], and were therefore probably mostly reecting unitary PSPs in pyramidal neurons. In addition, the order of magnitude for the PSP amplitude is consistent with more recent data for PSPs in inhibitory neurons in the barrel cortex of anesthetized mice (≈ 0.4mV , [START_REF] Pala | In vivo measurement of cell-typespecic synaptic connectivity and synaptic transmission in layer 2/3 mouse barrel cortex[END_REF]). Note that, in real neurons, the amplitude of these PSPs depends on the regime of synaptic bombardment, which is the reason why we searched for in vivo data. where the subscripts recc, ext exc and ext inh stand for the recurrent population, the external excitatory input and the external inhibitory input, respectively; and ∆V ≈ 1mV [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]] is the intrinsic noise.

Baseline firing rate λ 0, precc On the same ensemble of neurons as those showing the kernels of Figure 8.2, the mean λ 0 was (exp(-5.2) Hz). We took (λ 0, precc = exp (-5) Hz).

Note that this parameter is equivalent to a baseline mean ltered input (that would be the same in all neurons).

Network connectivity and number of neurons

We chose to have a xed number of connections for each of the n recc = 2000 recurrent neurons. Each of those was receiving n pext exc, precc = 1000 external excitatory inputs, n p ext inh , precc = 400 external inhibitory inputs, and n precc, precc = 0.3 • 2000 = 600 recurrent inhibitory inputs. Hence, we are working with rather large numbers of inputs, which could allow a convergence of the Central Limit Theorem for the synaptic input (see subsection 8.2.3), but that still represent only a few percent of the total number of inputs received by cortical pyramidal neurons [START_REF] Megías | Total number and distribution of inhibitory and excitatory synapses on hippocampal ca1 pyramidal cells[END_REF]].

Design of external firing rate simulations

The external populations were modeled as independent inhomogeneous Poisson spike trains.

We rst used either steady-state stimulations, where the external units were all ring at constant rates R ext exc and R ext inh . We characterized such inputs by the mean and variance of the ltered external input received by each recurrent neuron I ext irecc (which is in units of the intrinsic noise ∆V , as F tot is the convolution between the membrane and synaptic lters divided by ∆V ): From this denition, we can calculate the mean and the variance of the intrinsicnoise-scaled voltage caused by external inputs: Note that, in steady-state, and only in steady-state, the means and variances over neurons are the same as the mean and variances over time in our network where all neurons are statistically identical.

I ext irecc (
We also used time-dependent stimulations, with ring rates that were modulated according to either an Ornstein-Uhlenbeck process, or a simple sine wave. Given a time-dependent excitatory rate R ext exc (t), we were particularly interested in creating a stimulus for which the dynamics would be driven by a variance of the driving current I ext irecc (t). We were then interested in nding R ext inh (t) such that E = α is a constant (i.e., it does not depend on time). We solved this problem in the Fourier space, where it becomes simpler:

E [ I ext irecc (t) ] = α ⇒ n pext exc, precc F [ F tot pext exc, precc * R ext exc ] + n p ext inh , precc F [ F tot p ext inh , precc * R ext inh ] = F [α] ⇔ n pext exc, precc F [ F tot pext exc, precc ] F [R ext exc ] + n p ext inh , precc F [ F tot p ext inh , precc ] F [R ext inh ] = F [α] ⇔ F [R ext inh ] = F [α] -n pext exc, precc F [ F tot pext exc, precc ] F [R ext exc ] n p ext inh , precc F [ F tot p ext inh , precc ] ⇔ R ext inh (t) = F -1   F [α] -n pext exc, precc F [ F tot pext exc, precc ] F [R ext exc ] n p ext inh , precc F [ F tot p ext inh , precc ]   (8.57)
Note that one has to be careful to get physically meaningful results for the inhibitory ring rate, i.e. the rates should be positive. This requires to impose a reachable value of α (which should be at any time smaller than the population-averaged excitatory ltered input).

Numerics

Neuronal network simulation

We used the Brian neural simulator, version 2 beta 2 (http://brian2.readthedocs.org/en/latest/introduction/index.html). The kernels were implemented as sums of exponentials, which hence correspond to the solutions of linear dierential equations (see section 8.3.1 for an example). These equations were integrated numerically with a time-step dt = 0.1 ms. the performance was optimized by using the scipy.weave code package to run C code instead of native python code.

approximation is likely to lead to an underestimation of the adaptation term and therefore to an overestimation of the population ring rate (e.g. see Figure 8.1).

2. We linearize the averaged adaptation (over the intrinsic stochasticity of a single neuron, see Equation 8.38, Equation 8.46 and Equation 8.47). This is likely to lead to a slight underestimation of the adaptation, which in turn should lead to an overestimation of the population ring rate. This will be the case as long as the voltage deviations relative to baseline are not overly biased towards negative values.

3. We assume that the spiking is approximately inhomogeneous Poisson (see Equation 8.11). Given that adaptation is likely to produce negative correlations between spike times, we will tend to overestimate the variance of the synaptic input. This overestimation of the variance would also tend to create an overestimation of the ring rates (see Equation 8.42).

Hence, all approximations consistently lead to an overestimation of the ring rate. This may either be seen as a curse, or as an advantage. Indeed, on one hand, the dierent deviations will sum up and cannot compensate for one another. On the other hand, the eect of these deviations is predictible: an overestimated ring rate. In addition, the amount of this overestimation is expected to grow with the strength of adaptation and with the ring rate. Interestingly, while this is likely to aect the prediction of the amplitude of the ring rate, the approximations are unlikely to aect much the time-course of the ring rate modulations. In other words, the sign of the time-derivative of the ring rates is expected to be well-preserved. In contrast, if the dierent approximations would have had antagonistic eects with dierent amplitudes at dierent times, the shape of the ring rate time-course could have been expected to be distorted. For instance, there could have been an overall overestimation of the rate at the beginning of a stimulation, later followed by underestimation of the ring rate.

We would like to mention that we used a very strong spike-history kernel η to implement the adaptation, even compared to previous publications ( ∫ η is 1.66 times the one used in Naud and Gerstner (2012a), see Figure 8.2). An example of the dynamics of such a neuron model embedded in a network with a single recurrent inhibitory population settling in an asynchronous irregular state can be found in Figure 9.1. The dierent neurons indeed appear to re at dierent times (Figure 9.1 (c)), and re irregularly (Figure 9.1 (d)). Note that, throughout the Results section, we will use the subscript recc to mark the variables of the (single) recurrent population. Hence, the more general subscript p o used in the Methods section can now be replaced by recc. In addition, the subscripts ext exc and ext inh will be used to refer to the external excitatory and inhibitory input populations. An example of interspike interval distribution from one recurrent neuron (taken in the steady-state, over the last 3.8 s of the simulation). This shows that the interspike intervals are variable, and confirms the irregular firing behavior. (e) The internal variables governing the spiking of one recurrent neuron irecc. Top: filtered synaptic input hi recc (see Equation 8.16; this includes both the external and the recurrent synaptic input).

The filtering occured through the combined leak-and-synapse filter F tot (each population is associated with a specific leak-and-synapse filter). Despite the constant external firing rate modulation, the filtered input varied a lot over time due to the presence of both excitatory and inhibitory inputs. More precisely, once the steady-state was reached, the F tot -filtered external input had a mean of 40 and a variance (over neurons) of 35; note the sizable reduction of this mean in hi recc through the addition of the recurrent filtered input. Middle: filtered spike history η * Si recc (see Equation 8.1). There is a clear cumulative effect over several spikes, which is a hallmark of adaptation. Indeed, this differs from refractoriness properties, which can be modeled as a function of the last spike time only. Bottom: sum of the top and middle signals. At the right of this plot, we illustrate that the instantaneous firing rate, in hertz, was the exponential of the sum of two components: (i) the variable displayed in the bottom graph and (ii) a constant threshold value of -5. Finally, at each time-step, the probability of firing was the instantaneous firing rate times the time-step duration in seconds (10 -4 s in our case, see Equation 8.1 and subsection 8.3.1).

Here, we test how well our equations can describe the dynamics of a recurrent inhibitory population, and we present some insights reached thanks to our analysis. Note that due to constraints on the duration of the doctoral studies, the tests and results presented here are not as complete and diverse as we initially intended. We use a simple network with only one recurrently connected population of inhibitory neurons (see section 8.3 for the details). We start by testing the convergence of the ltered synaptic input to a gaussian variable. We then look at the prediction of the steady-state population ring rate. Then, we test some dynamical stimulations. Finally, we outline a few interpretations and applications allowed by our mathematical analysis.

Distribution of the sum of filtered inputs

As discussed in subsection 8.2.3, by using the Central Limit Theorem, we concluded that the summed ltered synaptic input h ip o (t) (dened in Equation 8.16) was likely to converge to a Gaussian distribution over dierent neurons of the network. In addition, in case of a dynamic stimulation of the neuronal network, the parameters of this Gaussian were predicted to be time-dependent.

We rst investigated the convergence of the Central Limit Theorem in a stationary ring situation, by examinating the distribution of h irecc on the last time point of the stimulation shown in Figure 9.1.

Distribution of the sum of filtered inputs in a stationary regime

In Figure 9.2 (a,b,c,d), we compare the distributions (among the population of 2000 recurrent neurons) of dierent components of the ltered synaptic input h irecc to Gaussian variables. These distributions were extracted from the last time-step of the simulation shown in Figure 9.1.

We rst considered the shape of a Gaussian cumulative distribution function (cdf) which mean and variance would be identical to the mean and variance estimated from the simulation. The correspondence between this Gaussian variable and the distribution of inputs oberved in the simulation was almost perfect: their cdf curves were almost identical (see blue and green curves in Figure 9.2 (a,b,c,d)). This indicated that, in our simulation, there was an excellent convergence of the ltered inputs to a Gaussian distribution, in agreement with the asymptotic result of the Central Limit Theorem. • the total filtered synaptic input hi recc in (d) (which is the sum of the three above-mentioned variables, see Equation 8.16)

Note that F tot is a combined leak-and-synapse filter which approximates the shape of a post-synaptic potential measured at the soma as a result of the reception of a single presynaptic spike. On the cdf plot, we show both the experimental cdf (in blue), the cdf of a gaussian which mean and variance are estimated from the data (in green), and the cdf of a gaussian which mean and variance are derived from the formula for uncorrelated Poisson processes (in red, see Equation 8.17 and Equation 8.18). Note that for this computation, we used the known theoretical expected rates for the external inputs (which are those we imposed in the parameters of the simulation). In contrast, for the recurrent inputs, we used an estimation of the population-averaged rate coming from the simulation itself (we measured the recurrent population rate in the last 70 ms of the simulation of by reduced spiking at time t > t 0 , and conversely [START_REF] Farkhooi | Adaptation reduces variability BIBLIOGRAPHY 233 of the neuronal population code[END_REF]]. However, in Equation 8.18 we neglect these negative spiking covariations, and hence this leads to a slight overestimation of the variance.

In addition, in Equation 8.18, we neglect between-neuron correlations of the ltered spike trains. Because recurrent neurons share a small number of connections, some positive correlations between the ring times of dierent neurons may be expected. Also, these positive correlations could potentially, in general, further grow through the recurrent dynamics. This might create correlations between the synaptic inputs received by dierent recurrent neurons. We actually found that the distribution of the (between-neuron) correlation coecients for the time-course of the recurrent ltered synaptic input was centered close to zero (Figure 9.2 (g)). The mean correlation was actually smaller than the fraction f of shared spike trains between the recurrent ltered input of two neurons (f = 0.3 on average, as 0.3 = 600 2000 is the recurrent connection probability). This suggested that the recurrent dynamics of the network was not tending to create positive correlations between the activity of recurrent neurons. Recurrent inhibition may have, to some extent, compensated the positive correlations due to shared inputs, hence leading to relatively uncorrelated activity (a phenomenon which might be similar to the mechanisms at stake in balanced networks [START_REF] Renart | The asynchronous state in cortical circuits[END_REF]]).

Hence, the recurrent neurons received rather uncorrelated inputs in general (with little correlations on average between recurrent inputs, and no correlations by design between external input). These uncorrelated inputs are therefore expected to lead to spike trains which are themselves uncorrelated on average. This is consistent with the observation that recurrent neurons qualitatively appeared to re in a relatively uncorrelated fashion (as can be seen more qualitatively in Figure 9.1 (c)). Hence, discarding the summed covariance between ltered spike trains coming from dierent neurons (as we do in Equation 8.18) was probably reasonable.

We now generalize these results to a non-stationary regime of ring.

Distribution of the sum of filtered inputs in a nonstationary regime

In Figure 9.3, we show that for all components of the ltered synaptic input h ir ecc , the distribution over the recurrent neuronal population resembled a Gaussian with parameters that varied over time. Indeed, in a Gaussian distribution, the 16 th -84 th percentiles correspond to the mean ± standard deviation condence interval, while deviations from Gaussianity (such as asymmetry) are likely to lead to a mismatch between the two. We did observe that, at any time, the one-standard-deviation condence interval around the mean (black curves) matched almost perfectly the 16 th -84 th percentiles of the distribution (green curves), suggesting a Gaussian shape of the instantaneous distributions. 8.16 for the definitions). Note that we estimated the distribution of the variables within the network through a sample of 600 recurrent neurons (i.e., a subsample compared to the 2000 recurrent neurons). In purple, we plot the time-dependent mean filtered input as estimated from the simulation. In black, we plot two curves: one for the sum of the mean filtered input and one standard deviation of the filtered input, and another for the sum between the mean filtered input and the opposite of its standard deviation. If the distribution of filtered input were Gaussian, this +/-standard deviation confidence interval around the mean should be confounded with the 84 th and 16 th percentiles. Hence, we also plotted these 84 th and 16 th percentiles in green. Note that the black and green curves are always almost superimposed, showing that the shape of the distributions were similar to a Gaussian. Finally, we also test the time-dependent formulas for the variance that assume uncorrelated Poisson firing, and we plot in red the simulated mean filtered input +/-the square root of the variance computed through Equation 8.18. Note that for the external inputs, we use the known theoretical firing rate that we imposed as a parameter of a simulation. In contrast, for the recurrent population, we used the population-averaged firing rate recorded from the simulation (over all the 2000 recurrent neurons).

In addition, for the external ltered input, a condence interval based on the square root of the dynamic analytical formula for the variance of the ltered input (Equation 8.18, shown in red) matched almost perfectly the values of the simulation (in black). Finally, for the recurrent ltered input, we observed again that the computation of the variance through Equation 8.18 led to an overestimation. Indeed, the condence interval around the mean based on the square root of this semi-analytical estimate (which used the recurrent-population-averaged ring rate from the simulation, in red) was larger than the same condence interval directly evaluated from the simulation (in black and green, see Figure 9.3 (c)). However, as described above for a steady-state simulation (Figure 9.2 (d)), this overestimation became negligible when considering the total ltered synaptic input (Figure 9.3 (d)).

More generally, we observed that, for the network parameters of our simulations, the inaccuracy due to the inhomogeneous uncorrelated Poisson ring approximation was in general small for the total synaptic input. However, this inaccuracy could become more visible in cases when the ring was strongly driven by a large increase in mean excitatory synaptic input (not shown). This was consistent with adaptation being at the origin of the overestimation of the variance of the ltered input, as spike times tend to become more strongly negatively correlated in case of large supra-threshold driving currents [START_REF] Schwalger | Patterns of interval correlations in neural oscillators with adaptation[END_REF]].

Hence, we found that the uncorrelated Poisson ring approximation for evaluating the variance of the total ltered synaptic input, as well as the Gaussian approximation for the distribution of this variable within the recurrent population, gave a rather accurate description of the simulation results.

We now turn to use these approximations (as well as the other analytical considerations described in subsection 8.2.4 and subsection 8.2.5) in order to approximate self-consistently the expected ring rate within the recurrent population.

of the synaptic input (see section 8.2.5 for the details). Hence,

h recc, bsln = n recc, recc R recc, bsln (∫ F tot recc, recc ) + n ext exc, recc R ext exc, bsln (∫ F tot ext exc, recc ) + n ext inh, recc R ext inh, bsln (∫ F tot ext inh, recc ) (9.2)
where we take for each external population the baseline rate as a time-averaged version of the external rates fed to the recurrent network: R ext, bsln := E t [R ext (t)] (see Equation 8.26). Therefore, using this approximate formula, the steady-state value of R recc is R recc, bsln , which is itself a non-linear function of the synaptic input (see Equation 8.27).

2. An equation approximately accounting for the non-linearity of the dynamical population response, including the eects of the variability of synaptic input within the recurrent population. Indeed, due to the non-linearity of the single neuron dynamics (see Equation 8.3), the variability of synaptic input within the neuronal population impacts the expected ring probability. In order to account for this, we preserve the exponential non-linearity for the single neuron dynamics, and we only make use of the linearization to approximate the uctuations of the intrinsic-stochasticity-averaged adaptation (in Equation 8.38). Hence, we reach (in Equation 8.42):

R recc (t) ∝ exp ( E pop nrn recc [Z irecc (t)] + var pop nrn recc [Z irecc (t)] 2 ) E pop nrn recc [Z irecc (t)] ≈ n ext exc, recc (Φ ext exc, recc * R ext exc ) (t) + n ext inh, recc (Φ ext inh, recc * R ext inh ) (t) + n recc, recc (Φ recc, recc * R recc ) (t) var pop nrn recc [Z irecc (t)] ≈ n ext exc, recc (ΦΦ ext exc, recc * R ext exc ) (t) + n ext inh, recc (ΦΦ ext inh, recc * R ext inh ) (t) + n recc, recc (ΦΦ recc, recc * R recc ) (t) (9.3)
where the lters for computing the mean and variance of Z are such that, for any population p, Φ p, recc :=

( F tot p, recc + ( (exp(η recc ) -1) * Λ recc * F tot p, recc
))

and ∀s, ΦΦ p, recc (s) := (Φ p, recc (s)) 2 .

Hence, we can clearly see an inuence of both the dynamic mean and the dynamic variance of an eective driving input Z recc (which accounts for both synaptic input and spike-driven adaptation eects) on the ring rate. As mentioned in the beginnning of this Results section, this equation includes approximations for the time-course of adaptation and for the computation of the variance of the synaptic input which tend to yield an overestimation of the ring rate in general.

We rst compare our formulas with the simulation results for steady-state ring, and we then turn to non-stationary stimulation regimes.

Estimation of the steady-state firing rate

In Figure 9.4 (a), we compare the results of the two dierent levels of approximative expressions (Equation 9.1 and Equation 9.3).

Both of these expressions use an approximation on the intrinsic-stochasticityaveraged adaptation variable which is expected to underestimate its (negative) magnitude (see subsection 8.2.4). Therefore, this approximation tends to lead to an overestimation of the expected ring rate. In addition, by neglecting the eect of the variance of the synaptic input, Equation 9.1 is expected to lead to an underestimation of the drive to the network. This is due to the exponential nonlinearity of the single unit's dynamics, which gives larger values for positive than for negative deviations from baseline. The two above-mentioned approximations are therefore opposite. Hence, depending on the relative magnitudes of the mean and the variance of the input, the rate predicted by Equation 9.1 may be slightly larger or slightly lower than the observed rate (Figure 9.4 (a), left vs. middle). The underestimation of the adaptation magnitude is expected to be worse in case of an increase in the negative correlations between spike times, which should be more prominent for larger mean input (see the argument in subsection 8.2.4). Accordingly, the predicted ring rates tended to be overestimated for larger mean input (Figure 9.4 (a), left vs. middle).

We will now examine the performance of the equation which approximately accounts for the eect of the synaptic input variance on the population ring rate (Equation 9.3).

We recall that this equation cumulates the above-mentioned approximation for the intrinsic-stochasticity-averaged adaptation, with a linearization of the averaged adaptation time-course and an estimation of the input variance through inhomogeneous uncorrelated Poisson ring. These three approximations are all expected to yield an overestimation of the rate. Further, this overestimation should become worse for larger ring rates. Indeed, in our simulations, Equation 9.3 consistently overestimated the ring rate, with a larger deviation for larger ring rates (Figure 9.4 (a), left vs. right). Importantly, the dependence of the ring rate on both the mean and the variance of the ltered synaptic input were still well qualitatively captured by Equation 9.3. (c) Shape of the linear filters Λrecc * F tot describing the response of the recurrent population of neurons to changes of the input firing rates in the different subpopulations, in the frequency domain. These filters are valid when the effects of these input firing rate changes are largely mediated by a change in the mean filtered input received by the population (and not a change in the variability of this filtered input). The left graph is a linearization around a mean filtered input of 0, and the right graph is for a linearization around a mean filtered input of 60. We show separately:

• the filter for the response of the recurrent population to a change in the external excitatory firing rate Λrecc * F tot ext exc, recc , in red

• the filter for the response of the recurrent population to a change in the external inhibitory firing rate Λrecc * F tot ext inh, recc , in green

• the filter for the response of the recurrent population to a change in its own firing rate Λrecc * F tot recc, recc , in blue Finally, we examine the shape of the linear lter Λ recc describing the response of the network to a delta-pulse of mean ltered ring rate in the network, which is equivalent to the approximate response of the recurrent population when all neurons are receive simultaneously the same delta pulse of h. This is also equivalent to the linearized intrinsic-stochasticity-averaged single neuron response to a deterministic ltered input (see subsection 8.2.4 and subsection 8.2.5). This lter had a delta peak at zero lag (Figure 9.4 (b), top), which reects the fact that after the membrane and synaptic ltration, the GLM immediately responds by an increased ring rate probability to an increase in h (Equation 8.1). In addition, this initial peak was followed by a negative rebound which became more negative for the larger mean input. This reected the eect of the adaptation variable which triggered a long-lasting decreased excitability in case of increased ring. This adaptation eect translated in the frequency domain by a high-pass lter property (Figure 9.4 (b), bottom; [START_REF] Benda | A universal model for spike-frequency adaptation[END_REF]]). This indicates that adaptation can mitigate the eect of a slow oscillation. Indeed, if the oscillation is slow enough, then adaptation eects can develop during the rising phase of the ltered input, and then decrease when the input decreases. This can lead to a smoothing of the ring rate modulation in response to the input modulation. In addition, when considering oscillations of the ring rates (rather than oscillations of the ltered input), the eects of adaptation combine with the eects of the membrane and synaptic lters. ring rate, see subsection 8.2.4) and the underestimation of the excitatory drive when neglecting the variabilty of the synaptic input in the network. In addition, as Equation 9.1 is linear, it worked better in a limited regime where the ring rate was not uctuating a lot (left of Figure 9.5 (c)). Notably, it could not capture the clipping of the ring rate above 0, as well as the complex asymmetric shape of the rate time-course close to 0 Hz (right of Figure 9.5 (c)).

The mean-and-variance-driven, non-linear expression (Equation 9.3) captured rather well the time-course of the ring rate in all the tested stimulation regimes (red line in Figure 9.5 (c)). However, it yielded an overestimation of the ring rate that was worse for higher ring rates, for the reasons that we underlined above. 9.3), and the cyan line is the prediction by the mean-driven, linear dynamics equation (Equation 9.1). Bottom: three graphs showing an estimation of the distribution of dynamical parameters in a subsample of 600 recurrent neurons (for reasons of limited computer memory).

We show first the mean of the synaptic input received by each neuron (after filtering by the membrane-andsynaptic filter F tot ) from the external populations (black) and from all populations (including the recurrent inhibition, grey). Below, we also show half the variance of these filtered synaptic inputs within the population of recurrent neurons (in relation to the 0.5 factor in front of the variance term in Equation 9.3). We plotted a dashed line at the approximate time when the input (mean and variance) is maximal. We were interested in investigating how well Equation 9.3 actually captured the non-linear behavior of the ring rate response. Notably, there was an asymmetry of the response to a sinusoidal stimulation (Figure 9.5 (c)). This asymmetry probably resulted in part from the dynamics of the adaptation variable when the neurons were silent (Figure 9.5 (c), bottom). We also stress that another notable consequence of the adaptation dynamics was an apparent phase dierence between the driving total synaptic input (both mean and variance, grey in Figure 9.5 (c), and the ring rate response. Indeed, the latter peaked before the former, and again the eect appeared to be non-linear as the ring rate peak was asymmetric.

To examine how well our expressions could capture the complex non-linear ring rate response, we examined the power spectral density (which is the fourier transform of the autocorrelation) while the sytem was responding to a
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pure 5 Hz tone. Indeed, while a linear response would create a single peak at 5Hz, the response to higher harmonics is often taken as a characteristic of the non-linear response [START_REF] Vasudevan | Higher order harmonic detection for exploring nonlinear interactions with nanoscale resolution[END_REF]]. The power spectral density of the simulated average rate over the population of neurons indeed showed peaks at multiple of the driving frequency (black curve Figure 9.5 (e)). Interestingly, the mean-and-variance-driven, non-linear expression captured well the power at the higher harmonics of the response (compare red and black dots in Figure 9.5 (d); Figure 9.5 (e) left). As expected, the mean-driven, linear dynamics expression only yielded a clear peak at 5Hz (cyan items in Figure 9.5 (d-e)). Furthermore, a mere clipping of the values predicted by the linear formula above 0 (leading to a rectied linear equation, green items in Figure 9.5 (d-e)) did not t the power at higher harmonics as well as the non-linear formula (red items in Figure 9.5 (d-e)). This probably reects the fact that even when the negative values of the linear prediction were clipped and set to 0, the resulting rate time-course still missed the asymmetry of the ring rate time-course observed in the simulation (Figure 9.5 (c)).

Note that we also tested a non-linear dynamical formula that neglects the eects of uctuations (a dynamic version of the equations developped in section 8.2.5). This type of equation had been briey mentioned at the end of the discussion in Naud and Gerstner (2012a). We found that this equation could also work well for predicting the non-linear properties of the ring rate time-course in this specic type of stimulation regime, when mean and variance uctuations are correlated (not shown). This good performance probably relied on a compensation between the underestimation of adaptation and the underestimation of the synaptic drive through ignoring the input variability. However, this compensation can only work if the mean and variance changes of the synaptic input are correlated.

Hence, we will show now that neglecting the eect of the input variance can become really problematic when the changes of input variance and the changes of input mean become decorrelated.

Dynamical modulation of firing exclusively through changes of the variance of the synaptic input within the neuronal population

In Figure 9.6, we compare our analytical expressions and the simulated average ring rate within the recurrent population, in a regime which allows to disentangle the mean and variance eects of the synaptic input. Indeed, we tuned the inhibitory rates in order to maintain the average ltered synaptic input constant over time subsection 8.3.3). Note that even though such a nely-tuned stimulation is unrealistic, a balance of excitation and inhibition in biological recurrent network may be achieved by inhibitory synaptic plasticity [START_REF] Vogels | Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks[END_REF]], and could greatly moderate the changes of mean input in the network [START_REF] Renart | The asynchronous state in cortical circuits[END_REF]; [START_REF] Lim | Balanced cortical microcircuitry for maintaining information in working memory[END_REF]]. This type of dynamical regime therefore leads to input statistics that could be close to those occurring during the stimulation regime we suggest.

By design, the mean-driven expression predicted constant ring rates over time (cyan items in Figure 9.6 (c-e)). In contrast, because of the exponential non-linearity of the single neuron input-output function Equation 8.1, when the variability of input increases within the neuronal population, the population-averaged ring rate increases (black dotted lines in Figure 9.6 (c)). In addition, even though the amplitude of the ring rate modulation that we imposed here was much more modest than in Figure 9.5, a dynamic modulation of the adaptation variable was still visible, and the population ring rate appeared to plateau before the input variance would peak. Interestingly, the mean-and-variance driven, non-linear dynamics expression appeared to capture qualitatively these features, despite the (expected) overestimation of the predicted ring rate (red curve in Figure 9.6 (c)). Finally, the power spectral density of the simulated population ring rate showed two peaks above noise level (Figure 9.6 (e)). Interestingly, the mean-and-variance driven, non-linear dynamics expression appeared to show a similar behavior (above the power of the noise that was in the simulated data, see red items in Figure 9.6 (e)). population of neurons, the red line is the prediction by the mean-and-variance-driven, non-linear dynamics equation (Equation 9.3), and the cyan line is the prediction by the mean-driven, linear dynamics equation (Equation 9.1). Bottom: three graphs showing an estimation of the distribution of dynamical parameters in a subsample of 600 recurrent neurons (for reasons of limited computer memory). We show first the mean of the synaptic input received by each neuron (after filtering by the membrane-and-synaptic filter F tot ) from the external populations (black) and from all populations (including the recurrent inhibition, grey). Below, we also show half the variance of these filtered synaptic inputs within the population of recurrent neurons (in relation to the 0.5 factor in front of the variance term in Equation 9.3). We plotted a dashed line at the approximate time when the input (mean and variance) is maximal. Finally, the third graph is the mean adaptation variable In conclusion, while the mean-and-variance driven, non-linear dynamics expression (Equation 9.3) led to an overestimation of the ring rate, it could still capture rather well the non-linear time-course of the population-averaged ring rate in all the situations we tested.

We now turn to show how this new analytical expression can (or may be able to) clarify the neuronal mechanisms at stake during the dynamical processing implemented by the brain. 
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(much shorter than the averaged inter-spike interval) was observed in the auditory cortex of awake rats [START_REF] Hromádka | Sparse representation of sounds in the unanesthetized auditory cortex[END_REF]], for both spontaneous and evoked activity. This could be consistent with the idea that the approximations that we made are indeed reasonable in vivo.

Our analytical expressions may actually also yield insights into the mechanism at the origin of the changes in ring rate induced by a stimulus in vivo.

Indeed, by measuring the characteristics of the distribution of instantaneous ring rate among neurons with similar response (e.g. all neurons with a similar increase of ring rate), one could deduce the mean and variance of the eective drive Z in Equation 9.3. Indeed, there is a simple relation between the mean and variance of the log-normal distribution, and the mean and variance of the underlying normal variable (that can be found back by taking the logarithm of the log-normal values). More specically, if X = exp(Z) and Z is gaussian, then ln(E[X]) = E(Z) + var [Z] 2 , and ln

( 1 + var(X) (E[X]) 2 ) = var[Z].
Hence, by comparing the mean and variance of Z between spontaneous and evoked activity, one could examine whether the change in ring rate is better thought of as the consequence of a mean-driven, or of a variance-driven change in the eective driving input at the neuronal population level. This procedure may be more easily interpreted than an argument made on the variability of the inter-spike interval distribution [START_REF] Compte | Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task[END_REF]; [START_REF] Renart | Meandriven and uctuation-driven persistent activity in recurrent networks[END_REF]; [START_REF] Mongillo | Bistability and spatiotemporal irregularity in neuronal networks with nonlinear synaptic transmission[END_REF]; [START_REF] Deco | Brain mechanisms for perceptual and reward-related decision-making[END_REF]]. Indeed, this distribution is also very much inuenced by the non-stationarity of the data, which may occur on time-scales that are faster than the typical inter-spike interval. Hence, a larger coecient of variation of the interspike interval distribution may be explained either by an increase in mean-input-driven fast modulations of the ring rate, or by an increase in the instantaneous variability of the input in the population.

We note that our result can be distinguished from previous studies focusing on a log-normal distribution for the ring rates averaged over long periods of time [START_REF] Roxin | On the distribution of ring rates in networks of cortical neurons[END_REF]], while we focused here on the instantaneous ring rate.

Speed of the population response to a change in the mean or the variance of the filtered input

Our mean-and-variance driven expression indicates that the population response to a change in the variance of the eective driving input Z occurs rst through linear lters (ΦΦ in Equation 9.3) that are the square of the corresponding lters for the mean-driven response (Φ in Equation 9.3).

When considering a regime in which the adaptation variable is very small (e.g. for small ring rates, see Figure 9.4 (b) left), the lter Φ is merely the combined leak-and-synapse lter. This can be seen in Equation 8.39 (we remind that in this equation, the adaptation variable is captured by Γ * F tot , see Equation 8.38).

Finally, in case of direct current injection at the soma of neurons during patchclamp experiments, the combined leak-and-synapse lter can be reduced to the membrane (leaky integration) lter. This membrane lter is a simple exponential whose time-scale is equal to the membrane time-scale (see section 8.3.1). Hence, in this (overly simplied) case, Φ is a simple exponential lter with the membrane time-scale, while ΦΦ is an exponential with half this time-scale. These lters describe the response of a population of neurons, or, alternatively, the average response of a single neuron to dierent stochastic current injections (as we argued in subsection 8.2.2).

As a consequence, the average time needed for a neuron to reach steady-state in response to a change in input variance would be expected to be shorter than this time in response to a deterministic step. This deterministic step in a single neuron is the equivalent to a change of population-averaged input in a neuronal population. Interestingly, several experimental studies seem to have made observations compatible with this prediction.

First, [START_REF] Silberberg | Dynamics of population rate codes in ensembles of neocortical neurons[END_REF] showed that an increase in the variance of an injected white input current leads to a trial-averaged response that reaches maximum faster than the response to an increase in mean current, in presence of a background synaptic input. Also, using a more realistic current with a larger autocorrelation time-scale, Tchumatchenko et al. (2011) show in their gure 3 that the plateau steady-state after a step input appears to be reached quicker for a variance change than for a mean change in the input current. This was however not quantitatively measured in this article. Also, [Tchumatchenko et al. (2011)] pointed out that when considering synaptic inputs compatible with a realistic excitatory post-synaptic potential amplitude, the response to the change in variance is much weaker in strength than the response to the mean. This is actually compatible with our observations (compare Figure 9.5 and Figure 9.6). Indeed, the lter Φ then takes values that are smaller than one, and therefore the values taken by ΦΦ are even smaller than their square roots ) are other constants. The constant C must be positive. Note that this would also hold in cases when there are several recurrent populations, but only one of the populations needs to the modeled non-linearly.

The Lambert-W function (which is more formally dened as a transcendental equation) is more often dened as the values y that satisfy y exp(y) = x. This is equivalent to our steady-state equation when setting Interestingly, the Lambert-W function can have zero, one or two well-dened solutions depending on the value of x, which allows us to characterize the steady-state properties of the network as a function of its parameters. This is of interest as multi-stability has been proposed as a potential mechanism for cognitive processes such as memory or decision-making [START_REF] Brunel | Eects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition[END_REF]; [START_REF] Renart | Meandriven and uctuation-driven persistent activity in recurrent networks[END_REF]; [START_REF] Mongillo | Bistability and spatiotemporal irregularity in neuronal networks with nonlinear synaptic transmission[END_REF]; [START_REF] Deco | Brain mechanisms for perceptual and reward-related decision-making[END_REF]]

The Lambert-W function has only one solution if x > 0, which translates into

( ( ∫ Φ) + ∫ (ΦΦ) 2 ) < 0.
Hence, this is a case when the total (mean and variance) feedback is negative. Consequently, this is likely to be a stable xed point, which would be consistent with our simulation results showing that the ring rate within the recurrent population appeared to be stabilized after some delay. In contrast, if -1 e < x < 0, there are two solutions. This corresponds to a moderately positive total feedback. Finally, if the total feedback is too positive (x

< ( -1 e )
), there is no steady-state solution.

In addition, this analysis can actually be better visualized through the intersections of the curves exp (s) and αs.

Here, s is a scaled rate:

s = ( ( ∫ Φ) + ∫ (ΦΦ) 2
) R recc, ss ; note that the scaling term may be negative. In addition, α is a constant: α = . When α is negative, s is a rate scaled by a negative value, and there is only one solution s < 0.

When α is positive, there may be 0 or 2 solutions depending on whether α is small or large. These situations are illustrated in Figure 9.8; the number of solutions is the number of intersection points between αs and exp (s). Note that in all conditions, we do get meaningful (positive) steady-state values for the ring rate.

Finally, it is also possible to conclude that, in the case when there are two solutions, the higher-rate xed point has an instability to slow modulations of the , where s f is the eective input received by the neurons of the network while new scaled mean ring rate of the network is R f . Finally,

s f ≈ R f α > s 1 .
Hence, the rate increase leads to a large input increase, which will make the rate increase even more. In consequence, the ring rate diverges to innity, unless another mechanism changes the steady-state single-population picture of Figure 9.8. This stabilizing mechanism could be a non-linear recurrent inhibitory current, or a non-linear adaptation threshold (which eect could be mapped onto changes of the parameters and kernels of our single-neuron model, Then, one could express the dynamics of the system as the solution of coupled non-linear dierential equations (as we show in section 8.2.5).

There are still of course some limitations of the approach. First, the framework that we presented here is not trivially extensible to a variability of the adaptation parameters within a single recurrent population. This might not be too critical, however, as the data suggest that the variability of the eective adaptation properties is small within pyramidal neurons of one layer (at least among layer 5 pyramidal neurons in vitro [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]). Also, the framework cannot be easily extended to strong non-linear dendritic integration. In vitro, the non-linearity of dendrites was shown to potentially have a considerable impact on the activity, at least in layer 5 pyramidal neurons [START_REF] Naud | Spike-timing prediction in cortical neurons with active dendrites[END_REF]]. However, in vivo, there is evidence that the constant synaptic bombardment, and the resulting high conductance state, could linearize the dendritic response [START_REF] Destexhe | The high-conductance state of neocortical neurons in vivo[END_REF]]. Such a moderate non-linearity can probably be approximated through a linear lter, at least within a some limited regime of synaptic stimulation.

Hence, we have some hope that the framework we use is relevant for describing neuronal dynamics in functional biological circuits in which neurons can be classied in groups with similar properties.

Within this framework, we contributed two novel approximate mathematical expressions.

First, we derived a simple linearized equation for mean-driven dynamics (Equation 9.1). This is, to the best of our knowledge, the rst derivation of an adapting GLM's linear response function that does not require the use of statistics from a simulation, and that can therefore be computed and analyzed a priori. Indeed, in [START_REF] Deger | Fluctuations and information ltering in coupled populations of spiking neurons with adaptation[END_REF]], the use of a more exact and complex mathematical formalism for the adaptation yielded an expression for the linear lter which needed the simulated interspike interval distribution. Within its domain of validity, our new equation for linear mean-driven dynamics appeared to capture well the time-dependent population-averaged ring rate. More precisely, the performance is good for moderate variations of the ring rate that are induced by synaptic input dynamics which are largely determined by the changes of population-averaged ltered input (Figure 9.5). In this regime, the low-pass ltering properties, as well as the phase advance of the population-averaged response were captured (Figure 9.4 (b) and Figure 9.5 (c)). As the derivation of this expression only involves a rather simple mathematical treatment (subsection 8.2.5), we hope that in the future we will be able to better analyze and link mathematically the properties of this lter to the single Part IV

Conclusions

Chapter 11

Modulating the dynamics of recurrent neuronal networks by temporal signals during cognition: experimental evidence and theoretical analysis

In this dissertation, we exposed how we worked towards deepening the understanding of whether and how the dynamics of recurrent neuronal networks dedicated to cognitive computations could be inuenced by their input's temporal structure. We argued that this question is of large interest because it relates to a basic, macroscopic property of these networks. Indeed, if these networks implement an approximate integration, they should be rather insensitive to the temporal structure of their input that is ner than their integration time-scale. In contrast, if the non-linearity of these circuits considerably shapes the result of the cognitive computation that they perform, then these networks may be considerably sensitive to their input's temporal structure.

More generally, we feel that a larger focus on the dynamics of connected neuronal populations is needed to reinforce the still very sparse links between theoretical and experimental work. Indeed, while dierent models of neuronal processing may lead to similar steady-state outcomes, their (richer) regimes of transient response are likely permit a better distinction between them. In other words, the transient response to external inputs also informs about recurrently driven dynamics, which is thought to be the basic mechanism implementing cognitive processing.

To pursue this approach, we however need in the rst place to be careful to design models which are suciently constrained to support a non-trivial, a posteriori comparison between models and data. In addition, this requires understanding well the dynamics of realistic enough neuronal models, because the comparison has to focus on dynamical features that are truly informative about the basic mechanism characterizing the phenomenon that the model aims to explain. In contrast, we should avoid being distracted by characteristics of neuronal activity that are dependent on details of the implementation, and that are distinct from the phenomenon that one is trying to understand. Thus, these details should be ignored or at least simplied in the model (which is precisely the reason why models can be so insightful), and they should not be compared between data and model.

The approach undertaken during this doctoral study thus intended to be in line with this objective of fruitful interactions between models and data. We rst evaluated the experimental evidence for a non-linear, temporally sensitive network dynamics during cognitive tasks. We then qualitatively formulated a hypothetical neuronal network mechanism that could be compatible with our observations. Finally, with the aim of progressing towards a better understanding of the network that we sketched, we worked on an approximate analytical formulation for the dynamics of recurrently connected adapting neurons. Below, we summarize the principal contributions of our work and we position them within the existing literature.

Experimental evidence for the relevance of temporal structure of cognitive signals from the dorsal Anterior Cingulate Cortex

First, we analyzed data from the dorsal Anterior Cingulate Cortex, an area which is thought to be involved in signaling the need for updating the behavioral strategy, and/or for specifying the nature of the strategy adapted to a new context [START_REF] Shenhav | The expected value of control: an integrative theory of anterior cingulate cortex function[END_REF]]. We focused on feedback-related discharges, which have been extensively characterized in terms of ring rate in dACC [START_REF] Quilodran | Behavioral shifts and action valuation in the anterior cingulate cortex[END_REF]; [START_REF] Shenhav | The expected value of control: an integrative theory of anterior cingulate cortex function[END_REF]; [START_REF] Procyk | Midcingulate motor map and feedback detection: Converging data from humans and monkeys[END_REF]]. The area which is suspected to process these discharges, the dorsal prefrontal cortex [START_REF] Procyk | Modulation of dorsolateral prefrontal delay activity during self-organized behavior[END_REF]; [START_REF] Rothé | Coordination of high gamma activity in anterior cingulate and lateral prefrontal cortical areas during adaptation[END_REF][START_REF] Shenhav | The expected value of control: an integrative theory of anterior cingulate cortex function[END_REF]], had been shown to behave similar to a integrator in some contexts ( [START_REF] Kim | Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque[END_REF]], but see [START_REF] Rigotti | The importance of mixed selectivity in complex cognitive tasks[END_REF]; [START_REF] Hanks | Distinct relationships of parietal and prefrontal cortices to evidence accumulation[END_REF]]). Hence, it was relevant to investigate whether dACC feedback-related discharges were likely to be decoded by an (approximate) neural integrator.

We found evidence for the functional relevance of the temporal structure of dACC spike trains at a ner resolution (τ ≈70-200ms). The optimal decoding time-scale for these temporally modulated signals was shorter than the time-scale of the ring rate response of neuronal populations (which was about 1s), and shorter than the memory time-scale required by the behavioral task (which was about 3-6s). Importantly, to the best of our knowledge, we report for the rst time an analysis that goes considerably beyond a simple report of the existence of temporal structure in frontal activity. Indeed, we were careful to check the functional signicance of the temporal structure. Hence, we probed whether the relative reliabilities of the spike timing and spike count signals could allow a biologically constrained and temporally sensitive decoder to extract more cognitive-control-related information than a neural integrator. We found that it was indeed the case. In addition, we reported evidence that temporal correlations and larger-than-Poisson spike count variability participated to shape the advantage of temporal structure for decoding. Furthermore, we investigated how the signals from dierent neurons may be combined when received by the downstream decoder. We found that a small proportion of neurons appeared to share similar temporal patterns that could complement one another during single-trial decoding. Our results also suggested that a spatial sensitivity of the decoder would allow an ecient decoding of neurons whose activity patterns are not (entirely) consistent. Finally, we extended the existing analysis methods in order to investigate the extent to which post-feedback spike timing could be predictive of the upcoming behavior of the monkey. We showed that deviations of single-neuron 1 st reward discharges from the prototypical, usual temporal activity pattern predicted an increased upcoming response time of the monkey. More precisely, the data suggested that for a given neuron, the deviation could occur through spike time jitters, as well as trough increased (during some trials) and decreased (during other trials) spike count. Hence, the computation of this deviation appeared to require a non-linear processing, which seems rather hard to reconcile with a decoding by a neural integrator.

Hence, altogether, our analyses bring unprecedented evidence for a temporally-sensitive, non-linear neuronal decoder of dACC feedback-related discharges.

Limitations of, and questions left unanswered by, the data analysis

We did our best to make a full and rigorous use of the available data in order to test our hypotheses as well as possible, a work that required several years. However, despite our eorts, we feel that the conclusions emerging from a single data study (in general and in our particular case) cannot be regarded as denitive evidence. Of course, there is always the human possibility of having made a mistake during the analysis. But beyond this, there are also intrinsic limitations when analyzing a single data set. For instance, we cannot currently determine whether the slight dierence between the two monkeys in the behavior-neuronal correlation merely reects the lesser statistical robustness in one monkey, or if it may reect some signicant eect that we cannot currently interpret. Part of the diculty therefore comes from the fact that, as for most studies using monkeys, the technical diculties do not allow gathering data from a large number of animals. In addition, it is impossible to do an analysis without making, at times, choices whose impact on the results cannot be fully evaluated. For instance, we had the idea of testing the correlation between the deviation from prototypical spike train and behavior, but there may be another function of the neuronal activity, which we did not think of and which we did not test, that might lead to a larger correlation. If this is so, depending on the nature of this function, our interpretation of the results in terms of the characteristics of the decoder may be compromised.

Therefore, we think that the condence level in our interpretations would be improved by a confrontation with new analyses attempting to verify the consistency of our conclusions with observations from other independent studies.

For instance, if our interpretations are correct, we would expect that similar results should be observed in any context where animals must switch between dierent behavioral strategies. This expectation should be checked.

In addition, our study did not fully address the question of the cognitive nature of the behavioral response time modulation. Novel careful behavioral designs, with a sucient number of trials, could try to distinguish whether the eect we measured reected a relation of dACC discharges with the 11.2. THEORETICAL ANALYSIS OF THE DYNAMIC RESPONSE OF RECURRENT NEURONAL NETWORKS
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(pre-decisional) attention magnitude, with the (post-decisional) condence level, or with the motivation level. This would require experiments where these three factors can be decorrelated and measured (e.g. by varying independently the diculty of the decision, and the reward received).

Moreover, our study was purely correlative. We cannot exclude that dACC activity was not causally involved in driving behavioral adaptation and response time modulations, and instead was merely reecting the activity occurring in the causally involved area. However, designing an experiment to measure causality for such a spatiotemporal code remains an open challenge today.

Finally, our analysis could only advance a little our understanding of the precise mechanisms by which the recurrent neuronal network decoder would be impacted by dACC spike timings. A theoretical approach was therefore undertaken in an attempt to make further progress in this direction.

Theoretical analysis of the dynamic response of recurrent neuronal networks

Motivated by the question of how a temporal input (such as the one that dACC appears to send) could modulate a non-linear downstream neuronal network implementing cognitive computations, we developed new mathematical expressions to characterize the dynamical response of such networks. State-of-the-art available analysis techniques proved insucient to address such a question. Indeed, they either used a single neuron model without adaptation which cannot reproduce well the spike timing of recorded pyramidal neurons in response to time modulated input (e.g. integrate and re neurons, [START_REF] Brunel | Fast global oscillations in networks of integrateand-re neurons with low ring rates[END_REF]; [START_REF] Kobayashi | Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold[END_REF]]), or simplied network interactions where uncorrelated input uctuations between neurons are ignored [Naud and Gerstner (2012a); [START_REF] Deger | Fluctuations and information ltering in coupled populations of spiking neurons with adaptation[END_REF]]. In contrast, we used a neuronal model that can t the dynamics of recorded neurons [START_REF] Mensi | Parameter extraction and classication of three cortical neuron types reveals two distinct adaptation mechanisms[END_REF]; [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]], and we derived a non-linear dynamical expression which approximately accounts self-consistently for the eects of both the mean and the variability of the synaptic input. In this way, we include in the analysis the major factors governing neuronal interactions [van Vreeswijk andSompolinsky (1996, 1998); [START_REF] Brunel | Fast global oscillations in networks of integrateand-re neurons with low ring rates[END_REF]; [START_REF] Renart | Meandriven and uctuation-driven persistent activity in recurrent networks[END_REF]Tchumatchenko and Wolf (2011); [START_REF] Mongillo | Bistability and spatiotemporal irregularity in neuronal networks with nonlinear synaptic transmission[END_REF]].

Furthermore, given the need for simple mathematical expressions in order to get intuitions in concrete applications, we undertook an eort of simplication of the existing mathematical expressions [Naud and Gerstner (2012a)]. We derived a very simple analytical linear lter for mean-input-driven adapting neuronal populations, which may be used to investigate the relation between single neuron properties and the frequency response function of the population.

We would like to reckon that, due to time limitations, the performance of our analytical expressions was not checked as extensively as we would have desired. We are aware that this will have to be done before submitting these results for publication. We are also aware that our expressions are only approximate, in particular for the amplitude of the rate response. However, we hope that, in their current state, the comparisons between simulations and our analytical expressions still show that non-trivial features of the time-course of the neuronal response are well captured in general. In addition, the simplicity of the nal formulas is promising for permitting future applications to concrete neuroscience questions.

Future possible applications of our analytical expressions

Our mathematical expressions permit more detailed comparisons between models and data. For instance, we suggested a test to determine the contribution of the mean and the variance of the input for driving a change of activity state measured in spiking data.

In addition, the new mathematical expression suggests a possible mechanism explaining the importance of the temporal structure of dACC signals, which could reect a tuning of this signal to the adaptation state of the decoding network. We hope to dig more into these questions in the future.
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CHAPTER 1 .

 1 AN INVITATION TO STUDY THE SENSITIVITY OF RECURRENT NEURONAL NETWORKS IMPLEMENTING COGNITIVE COMPUTATIONS TO TEMPORAL SIGNALSensembles of neurons are thought to implement brain processing.

1. 1 .

 1 BACKGROUND: NEURONS, NETWORKS, BRAIN AREAS AND BRAIN PROCESSING 5 neurotransmitter molecules can then diuse to the membrane of the target (so-called post-synaptic) neurons. Finally, the neurotransmitter molecules bind to post-synaptic membrane receptors. This triggers the transient entry of electric charges in the post-synaptic neuron. More specically, the binding of

Figure 2 . 1 :

 21 Figure 2.1: Task and proposed neural mechanisms. (a) During exploration, monkeys had to find, by trial-and-error, which of 4 targets resulted in a reward. After receiving the 1 st reward, monkeys entered a repetition period and received additional rewards by touching the same target. (b) Plausible dACC role in the task [Quilodran et al. (2008); Shenhav et al. (2013); Khamassi

CHAPTER 3 .

 3 METHODS FOR ANALYZING DORSAL ANTERIOR CINGULATE CORTEX ACTIVITY AND MONKEYS' BEHAVIORadvanced in the dorsal bank of the rostral region of the cingulate sulcus.

FigureFigure 3 . 1 :

 31 Figure 3.1: Decoding method. (a) Dissimilarity of single neuron spike trains. Left: the dissimilarity is the sum of the costs of matching

  Figure 3.2: Proof of principle for the non-triviality of the decoding improvement with temporal sensitivity.

  determine which analysis windows were positively or negatively biased, we used the signed-rank statistics, which relies on the ranking of the abs ( abs (•) is the absolute value). Therefore, + bias win is the set of positive bias windows which contains those analysis windows for which the sum of these ranks for positive values of D was larger than the sum of these ranks for negative values of D. Similarly, -bias win is the set of negative bias windows for which the sum of ranks for negative values was larger than the sum of ranks for positive values. A positive (negative) bias in a given window would cause a corresponding increase (decrease) in b. To assess the signicance of the bias score b, 1000 surrogate data sets, in which the dierence between high and low response time groups was eliminated, were compared to the real data. For each surrogate, and independently for each neuron, the sign of all D

  Difference in mean spike count between task epochs ≡ N adapt trials -N repet trials Normalized absolute difference in mean spike count between task epochs ≡ N adapt trials -N repet trials N adapt trials + N repet trials
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 41 Figure 4.1: Examples of single-unit dACC activities decoded with different temporal sensitivities. (a) Spike densities (top) and raster plots (middle) during 1 st reward (black curve) and repetition (grey curve) task epochs. The classification performance between 1 st reward and repetition spike trains (i.e. information) is shown in the bottom graphs, the time in the abscissa being the time at which the analysis window (and thus, the decoding process) ends. Two neurons, from the two monkeys, are shown. These samples show that temporal sensitivity can improve classification performance. (b) Same as (a) but for errors and repetition in two other neurons from the two monkeys.

FigureFigure 4 . 2 :

 42 Figure 4.2: Optimal temporal sensitivity improves decoding of single unit behavioral adaptation signals. (a) Time course of the mean information (averaged among significant cells) as a function of the decoding temporal sensitivity (q). Information values were computed over increasing post-feedback time windows (ending at the time indicated by the x-axis). Left: Discrimination between 1 st reward and repetition task epochs. Right: Discrimination between error and repetition task epochs. (b) Time-averaged information ⟨I⟩t (see definition in Table3.3) for different temporal sensitivities (q). The ordinate axis is the normalized mean rank of ⟨I⟩t. After a Friedman test, post-hoc

  time-averaged information Mean rank of time-averaged information
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 43 Figure 4.3: Information gain through temporal sensitivity using a classification biased toward closer neighbors instead of the unbiased classification. Information gain through temporal sensitivity was also observed when the classification of spike trains was biased toward

4. 1 .Figure 4 . 4 :

 144 Figure 4.4: Robustness of spike-timing information in both monkeys. The improvement of decoding trough spike-timing sensitivity was robust in both monkeys. The left part of the figure describes the result of the discrimination between 1 st reward and repetition, and the right part describes errors vs. repetition discrimination. (a,b) Time-course of the mean information over neurons, for different temporal sensitivities of the decoder q as indicated on the color scale, for monkey M and P respectively. (c) Difference of time-averaged information
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 4 Figure 4.5 (previous page): Using a small temporal sensitivity (compatible with decoding by an

Figure 4 . 6 :

 46 Figure 4.6: Decoding the identity of the adapted behavioral strategy (exploration or switch). The data suggest an advantage of spiketiming sensitivity for decoding the identity of the adapted behavioral strategy (exploration or switch). (a,b,c) Single unit decoding between errors and 1 st reward spike trains, for all neurons with significant errors vs. 1 st reward classification. (a,b) Time course of the mean information for different temporal sensitivities as indicated in the colorbar, for monkey M (a) and monkey P (b). (c) Mean rank (±95%confidence interval) of post hoc comparisons (using Tukey's honestly significant criterion correction for multiple comparison) of a Friedman test comparing the time-averaged information ⟨I⟩t. The average was taken over analysis windows ending between 0.1s and 1s with steps of 0.1 s. Data from both monkeys were pooled. (d,e,f) Decoding performance for errors vs. 1 st reward classification, restricted to neurons that were significant for both errors vs. 1 st reward classification and 1 st reward vs. repetition classification. The discharge of these neurons cannot therefore be merely related to the reward quantity received by the monkey, instead they appear correlated with the nature of the adapted behavioral strategy. (d) Time-course of mean information for different temporal sensitivities as indicated in the colorbar (data from both monkeys pooled). (e) Mean rank (±95% confidence interval) of post hoc comparisons (using Tukey's honestly significant criterion
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  Figure 4.7: Advantage of spike-timing-sensitive decoding over spike-count decoding for very informative neurons. Spike-timing-

  4.1. OPTIMAL TEMPORAL SENSITIVITY IMPROVES DECODING OF SINGLE UNITS' count err spike count rep Errors s. repeiion classificaion 1 st re ard s. repeiion classificaion Ds = spike count 1st rew spike count rep
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 4 Figure 4.8 (previous page): The optimal decoding temporal sensitivity appeared higher for neurons firing more during behavioral adaptation. Left: 1 st reward vs. repetition discrimination; right: errors vs. repetition discrimination. (a) Difference of mean spike count in a [0.001, 1] s post-feedback window between behavioral adaptation and repetition epochs, across neurons with significant discrimination between taskepochs. The vertical red line marks the median of the distribution. (b, Left) Boxplots of the distributions of qopt values for cells discharging preferentially during behavioral adaptation vs. repetition (the notches indicate an approximate confidence interval on the median, which may extend beyond the quartiles). P-values of ranked sum tests comparing medians are shown. qopts values were larger for neurons firing more during behavioral adaptation. (b, Right) Boxplots of the distributions of time-averaged information ⟨I⟩t for q = 0 s -1 . P-values of ranked sum tests are shown. The absence of significant difference suggests that the difference in qopt (left)

)

  Figure 4.9 (previous page): Decoding trials without eye-movements (monkey M). In this figure, small dot indicates p < 0.1, one star: p < 0.05, two stars: p < 0.01 for signed-rank tests. Error bars are standard error of the mean/median. (a,b,c) Behavior for 28 sessions (during which we recorded significant 1 st reward vs. repetition).(d,e,f,g,h,i,j) Decoding; (d,e,i) are related to the putative influence of motor activity and (f,g,j)

  Left) and randomly downsampled data(d Right). Negative values indicate a smaller timing-sensitivity-related improvement in decoding for eye-movement-free data. (f) Conventions as in (d). Left: Only trials for which 1 st eye-movement occured later than ((analysis window end)+300ms) were included. Due to limitations in trial number, for analyses windows longer than 700 ms, all trials with 1 st eye-movement latency ≥1 s postreward were included. Right: data randomly downsampled to the trial number of (f Left). (g) Difference of information increase thanks to temporal structure: [I(q = 10 s -1 ) -I(q = 0 s -1 )], between eye-movementremoved (f Left) and randomly downsampled data (f Right). (h) Neuron-averaged information among all 38

  Figure 4.10 (a)).This transformation preserved the time-dependent ring rate, while destroying temporal correlations.It also created an approximate Poisson spike count variability, i.e. a variability that was purely determined by random samples from a unique time-dependent ring probability (see subsection 3.2.2).

Figure 4 .

 4 Figure 4.10 (previous page): Temporal decoding does not only rely on differences in time-varying firing rate. This analysis was restricted to neurons significantly discriminating between 1 st reward and repetition task epochs. (a) Shuffling of spikes between trials while preserving PETHs (i.e. time-dependent firing rates). This procedure was repeated 1000 times within each task epoch and independently for each neuron. If information transmission in the data relies on PETHs, spike shuffling should not impact decoding. (b) Distribution of the difference between information I in original data and the median information in shuffled data (as in a).

( d )

 d Shuffling of spikes between trials while preserving both PETHs and spike count variability. The shuffling is done 1000 times, independently for all analysis windows, task-epochs and neurons. All spikes emitted during different trials of a task epoch are grouped and their order shuffled. Each pseudo-trial (right) is created by taking from the shuffled spike pool (middle) the same number of spikes as in the corresponding original trial (left). If information transmission in the data were shaped by a PETH time-course whose total integral could change across trials, spike shuffling would not impact decoding. (e) Top: Distribution of the difference between information in original data and the median information in shuffled data (as in d). Note that for q = 0s -1 the curves of median, 25 th and 75 th percentiles are overlapped. Bottom: mean information in the original data decoded with qopt ≈ 10s -1 and with q=0 s -1 , and in spike trains shuffled (as in d) decoded using qopt ≈ 10s -1 .(f) Left boxplot: difference between time-averaged information ⟨I⟩t in original data and the median of ⟨I⟩t in shuffled data (as in d) at qopt ≈ 10s -1 , with signed-rank p-value. Right boxplot: for comparison, the difference in time-averaged information between qopt and q = 0s -1 in original data. Box plots show 25 th , 50 th and 75 th percentiles. The two quantities (left and right boxplots) were correlated (with coefficient C).

  : PETH and spike counts preserved Shu e S2: PETH and spike counts preserved Shu e S2: PETH and spike counts preserved * * *

Figure 4 .

 4 Figure 4.11 (previous page): Robustness of the link between spiking statistics and information transmission. (a) The changes in information induced by performing shuffle 1 (preserving the time-dependent rate,see Figure 4.10 (a)) were consistent over monkeys and were following the time-course of the fano factors (see Figure 4.10 (c)). For long analyses windows, original data were less reliable than their spike-shuffled

  Figure 4.8 (c)). The distributions were not different between monkeys or between firing preference (ranked-sum tests, all ps > 0.38). (d) We

Figure 4

 4 Figure 4.12: Efficient paired decoding often required to distinguish between the activities of the two neurons. Left: Decoding 1 st reward vs. repetition task epochs. Right: Decoding error vs. repetition task epochs. (a) Distribution of information gain when decoding a pair of units relative to decoding the isolated unit of the pair with the highest information, as a function of the information imbalance between the two units of the pair (defined in Table 3.3). The red line indicates a linear regression fit. The distributions of information gains were significantly biased toward positive values, as indicated by a signed-rank test (all ps < 10 -5 ). (b) Mean rank comparison (with

Figure

  gai i the pair relai e to est si gle u it

Figure 4 . 13 :

 413 Figure 4.13: Gains of information among pairs of neurons with significant information. Paired spatial decoding led to increases in the amount of information despite imbalances in the discriminative power of single units. In this figure, only pairs with significant classification (permutation test) were included. (a)Discrimination between first reward and repetition task-epochs. The central plot shows the correlation between the information gain (obtained when decoding a neuron pair vs. the pair's most informative single unit, see Table3.3) and the degree of information imbalance between the two units of a pair. The p-value testing whether the correlation differed from 0 is indicated (p < 0.001). The red line is a linear fit. The histograms at the top and right show the two marginal distributions. A signed-rank test was used to measure the significance of the bias towards an increase in the amount of information (i.e. positive gains, p < 0.001). (b) Same as (a)

Figure 4 . 15 :

 415 Figure 4.15: Coding properties of neuron pairs for which kopt = 0. Left: Discrimination between the 1 st reward and repetition task epochs. Right: Discrimination between error and repetition task epochs. (a) Left:Mean information among pairs with kopt = 0 (significant encoding) as a function of the duration of the analysis window and of temporal sensitivity (q). Right: Distribution of differences in timeaveraged information ⟨I⟩t between qopt = 10 and q = 0s -1 (for kopt = 0). The distribution has a significantly positive median (signed rank test). (b) The index of spike coincidence between neurons was higher for pairs with kopt = 0 compared to other significant pairs

Figure 4 . 16 :

 416 Figure4.16: Modulation of behavioral response times following 1 st reward trials. The analysis was restricted to the trials that are used for the analysis linking neural activity to future behavior (in Figure4.17). (a) Modulation of the release time following 1 st reward by the identity of the rewarding target and by the number of errors made preceding the 1 st reward. The release time was defined as the time between the post-1 st -reward go signal for target touch (by the hand) and the release of the central lever button. Groups were compared with a non parametric Kruskal-Wallis test (see p-value at the top-left). Post-hoc comparisons were conducted using Tukey's honestly significant criterion correction. Note that for all rewarding targets, the release movement occured at the same place: on the central lever button. The release time modulation is therefore not likely to reflect motor constraints. (b) Modulation of the response time following

  (a,c)), indicating that a larger deviation from prototypical activity predicted a longer behavioral response time. This eect was consistent in both monkeys and between dierent subpopulations of neurons (Figure4.18).

Figure 4 . 17 :

 417 Figure4.17: The temporal structure of single unit spike trains predicts behavioral response times. Left: Monkey M (all significantly informative neurons for 1 st reward vs. repetitions). Right: Monkey P (significant neurons with information ≥ median; neurons with very little information did not permit robust behavioral prediction in this monkey, see Figure4.18). Analysis windows end at the time indicated by the x-axis. (a) Test for the spatiotemporal decoder. Time course of the median D. The value of D is positive when spike trains emitted in 1 st reward trials followed by slower response times deviate more from prototypical spike trains than those emitted in trials followed by fast response times. The two curves correspond to q = 0 (black) and q = 10s -1 (blue). Bars represent a median confidence interval (see section 3.6 for the definition). (b) Test for the neural integrator decoder receiving excitatory inputs from dACC feedback-related neurons. Time course of the median Drate (difference in mean firing rate between trials with slow and fast response times). The value of Drate is positive if trials with high rates tend to be followed by long response times. (c) Bias scores (across different analysis windows) for D and Dr ate . A large positive bias score indicates that the data is very positively skewed (relative to a distribution that is symmetrically distributed around 0). Stars indicate significance values for these biases (2-sided permutation test: *, p ≤ 0.05; **, p ≤ 0.01). For Monkey

  Figure 4.18: Consistency of the relation between neural activity and behavior in different subgroups of neurons. Longer response times were observed in trials preceded by larger deviations from prototypical spike train (i.e. D > 0), consistently for different subgroups of neurons with significant 1 st reward vs. repetition classification. After this classification, we ranked neurons according to Imax = maxq (⟨I⟩t) (information computed using the original Victor and Purpura metric). We formed different subgroups more and more restricted to high information neurons, as indicated. The smallest group was formed by applying a k-means algorithm (2 clusters) and taking only the high-information cluster. (a, b): monkey M, (c, d): monkey P. (a,c) Bias score for D and Drate as a function of the set of considered neurons. Neurons with less than 5 available trials were discarded. The p-value (2-sided permutation test) is indicated for each data point: small triangle for p <= 0.1; one star for p <= 0.05; two stars for p <= 0.01; three stars for p <= 0.001. Note that the values of Drate in this figure are computed as in Figure 4.17 (they assume positive weighting of all neurons). (b,d) Comparison of D values between qopt and

  TESTING DECODERS OF THE BEHAVIORAL ADAPTATION SIGNALS EMITTED BY DORSAL ANTERIOR CINGULATE CORTEX NEURONSNote also that our results could not be explained by a segregation of 1 st reward responses into 4 equidistant clusters corresponding to the 4 targets. Indeed, under this hypothesis, all spike trains should have had similar values of neural deviation from prototypical activity, as the latter is averaged over all spike trains associated to all targets. Therefore, in this case, Figure4.17 should not show signicant dierences of deviation from prototypical activity between dierent groups of spike trains. This suggests that dACC activity was not merely related to movement coding. Rather, our results indicate that the deviation of dACC activity from prototypical temporal patterns could mediate a behavioral adaptation process modulating the delay of upcoming decisions and actions.

4. 4 .

 4 THE TEMPORAL STRUCTURE OF SINGLE UNIT SPIKE TRAINS PREDICTS BEHAVIORAL RESPONSE TIMES 105 robust bias of the of D rate distribution (2-sided permutation test: monkey M, n = 42, bias score = -5.50, p = 0.28; monkey P, n = 18, bias score = -0.337, p = 0.93). The same test made on dierent subgroups of neurons (the subgroups described in Figure 4.18) also failed to reach signicance (all p s > 0.05).

  dACC function by testing how it could aect future

(

  which was of a few ms, a time-scale constrained by long-term spike-timing dependent plasticity). More importantly, the robustness of the memory (for longer than 2-3 s) in this polychronous patterns simulation required a reactivation of the pattern. However, the saturation of the transmissible information in our dACC data (see [Figure 4.2] for instance) seems to indicate that such a robust reactivation is unlikely to occur after 1s post-feedback. Even though is is unclear to what extent the above-mentioned weaknesses of the polychronous patterns hypothesis are specic to the published implementation, or intrinsic to the concept of the model, we feel that in the current state of knowledge this model appears rather less plausible than the others. Indeed, -García et al. (2011); Mongillo et al. (2012)]. For the model

2.

  [START_REF] Rossi | Prefrontal cortical mechanisms underlying delayed alternation in mice[END_REF] used a task which more specically involves short-term memory, where mice had to press one lever (amongst two), wait while remembering which lever they had pressed, and then press the other lever to get a reward. After task acquisition, an inactivation of pyramidal medial prefrontal neurons during the waiting period (through the activation of PV interneurons), impaired task performance. Note that the medial prefrontal cortex (mPFC) contains neurons with delay-related ring[START_REF] Rossi | Prefrontal cortical mechanisms underlying delayed alternation in mice[END_REF]].3.[START_REF] Liu | Medial prefrontal activity during delay period contributes to learning of a working memory task[END_REF] performed similar experiments to[START_REF] Rossi | Prefrontal cortical mechanisms underlying delayed alternation in mice[END_REF] in a similar delayed non-match to sample task. They found a similar eect of behavioral impairment when activating GABA-ergic neurons in the mPFC of mice during the delay. In addition, during the delay, they specically inhibited pyramidal neurons with an inhibitory light-activated channel and found a behavioral impairment.

Figure 6

 6 Figure 6.1: A hypothesis for the functioning of lPFC and its modulation by dACC during the problem solving task. Top: Schematic showing an example of action sequence during the solving of a problem (see section 3.1), the rewarded target being on the bottom right. The monkey first touches the top right target, and is therefore not rewarded. The monkey then tries the bottom right target, selects it, and gets rewarded. Therefore, he then reselects the same target (bottom right), as the monkey knows that the same target is rewarded several times in a row. Bottom: Schematic illustrating a putative network architecture which
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 8 DERIVATION OF APPROXIMATE EXPRESSIONS FOR THE DYNAMICS OF RECURRENT ADAPTING NETWORKS OF NEURONS

[h

  ip o (t) ]

{h

  ip o (t ′ ) } ∀t ′ ≤t is xed (and momentarily deterministic), and second over the dierent synaptic input histories experienced by dierent neurons in the 8.2. DYNAMICAL COMPUTATION OF THE FIRING RATE DISTRIBUTION IN A RECURRENT NETWORK OF GLM NEURONS 155 population p o . Hence, we can write:

Figure 8 . 1 :

 81 Figure 8.1: Performance of the approximation of adaptation through the 1 st moment with a deterministic current. Adapted from [Naud and Gerstner (2012a)]. In the figure, simulations (25 000 repetitions of the same deterministic current, blue line) are compared to theory. The single neuron model is identical to ours, and possesses a power-law-like adaptation kernel. The red line corresponding to the 1 st moment approximation (g1 only, see the bottom of Equation 8.22); while the green line takes into account two moments (g1 and g2 in the sum in the first line of Equation 8.22). Finally, the black line approximates ηp o * Si po (t) ≈ ηp o (t -t last ), where t last is the time of the last spike fired by the neuron (i.e., it makes a renewal approximation). Left: timecourse of the firing rate in the simulations, and comparison with the theories, in response to a deterministic step current (bottom). Right: steady-state firing rate in the simulation and prediction from the theories, in response to different values of a constant depolarizing current.

(

  ηpo * r ip o | {hi po (t ′ )} ∀t ′ ≤t ) (t).Using Equation 8.34, this gives ( ηpo * Λ po * h ip o ) this linear approximation for the adaptation variable, for each single neuron with a time-dependent ring induced by a uctuating xed input history{ h ip o (t ′ ) } ∀t ′ ≤t, the (biased) error term gets low-pass ltered and averaged by the kernel ηpo .

E

  pop nrn p, ss [exp (error (neuron))] ≈ exp (E pop nrn p, ss [error (neuron)]) (8.47)

  where Θ is the Heaviside function, N p, po is the number of exponentials needed to t( Φ p, po + ΦΦp, po 2 ), C and τ are constant (with τ > 0), and E p, po k
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 82 Figure 8.2: Comparison of the spike history kernel used in the simulations. Here, we show in red the spike-history kernel η (see Equation8.52 and Equation8.1) that we used in the simulation. For comparison, we show the values of η fitted non-parametrically in 10 pyramidal neurons (data courtesy from S. Mensi).

  F p, po (s) := A syn exp (
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  ext inh where ∀s, F F tot (s) := (

Figure 9

 9 Figure 9.1 (previous page): An example simulation of a network of Generalized Linear Model neurons with adaptation. (a) Network architecture. 2000 GLM neurons are recurrently connected by inhibitory synapses. Each of these neurons receives 600 recurrent connections, as well as 1000 excitatory and 400 inhibitory external inputs. The external inputs are uncorrelated between neurons, and are modeled as Poisson processes (which are constant over time in this particular figure, but that can be time-dependent in general). (b) Average firing rate in the three types of neurons (external excitatory, external inhibitory and recurrent). For clarity, the recurrent rates were estimated in bins of length 5 ms. (c) Raster plot for the network activity. Each line corresponds to a recurrent neuron, a dot indicates that the neuron has fired at the time of the abscissa. (d)

FilteredFigure 9 . 2 :

 92 Figure 9.2: Investigation of the shape of the distribution of filtered input in a steady-state regime. (a,b,c,d) Histograms (left) and cumulative distribution function (cdf, right) for the filtered input on the last (5 s) time-point of Figure 9.1, among the 2000 recurrent neurons. We show separately: • the filtered external excitatory input ∑ n ext exc, recc j=1

  Figure 9.1). Hence, we are only examining here the accuracy of the convergence to a gaussian variable and of the uncorrelated Poisson firing approximation. Note that the three cdf curves are almost perfectly superimposed, with exception of the recurrent input, for which the Poisson approximation appears to lead to an overestimation of the variance. (e) Distribution of the coefficient of variation (CV) of the interspike interval distributions of single recurrent neurons (over the last 3.8 seconds of the simulation in Figure 9.1, so in steady state). The spike trains were on average more regular than a homogeneous Poisson process (which has a CV of one). (f) Distribution of the spike count for the recurrent spike trains (during the 3.8 last seconds of the simulation in Figure 9.1). The fano factor (FF) of this distribution is indicated; it is well below the value of 1 for a Poisson process. (g) Distribution of the pairwise correlation coefficients between the time-courses of the filtered recurrent synaptic input (over the last second of the simulation in Figure 9.1). All (2000 * (2000 -1)) possible pairs of neurons were considered. The distribution has only a very slight bias towards positive values.

FilteredFigure 9 . 3 :

 93 Figure 9.3: Investigation of the shape of the distribution of filtered input in a non-stationary regime. (a,b,c,d) Plot of the timedependent characteristics of the distribution of filtered synaptic inputs. Data are shown separately for the filtered external excitatory inputs (a), the filtered external inhibitory input (b), the filtered recurrent input (c) and the total input hi recc ((d), see the legend of Figure 9.2 and Equation8.16 for the definitions). Note that we estimated the distribution of the variables within the network through a sample of 600

Figure 9

 9 Figure 9.4 (previous page): Comparison between approximate analytical expressions and simulationresults for the steady-state mean firing rate within the recurrent population. (a) Comparison between simulation results (different shades of grey, left), the approximate analytical formula discarding the effect of synaptic input variability on the expected firing rate within the recurrent population (different shades of blue, middle; see Equation9.1), and the approximate analytical formula accounting for these effects (different shades of red, right; see Equation9.3). In all cases, we compare steady-state regimes, implying that the external populations of neurons fire at constant rates. We tested different values of the mean and variance for the filtered external synaptic input I ext received by a recurrent neuron irecc: I ext irecc =∑ n ext exc, recc j=1

Figure 9

 9 Figure 9.5 (previous page): Comparison between approximate analytical expressions and simulation results for a dynamical regime with covariations of the mean and variance input changes. (a) Mean simulated firing rate among the three populations of neurons during the whole simulation. The firing rate of the population of external excitatory neurons is time-dependent, while the external inhibitory neurons fire at a constant rate. During the first 5 seconds, the firing rate of each external excitatory neuron follows an Ornstein-Uhlenbeck process with an autocorrelation time of 5 ms, and a mean of 17.25Hz. During the following 10 seconds, we used a sine-wave of period 200ms. (b) Power spectral density (i.e. the Fourier transform of the autocorrelation function) for the mean and variance of the membrane-and-synapse filtered external rates during the 6.2-14.1 seconds interval. Note that we used the theoretical expected values of the rates, that we imposed, for the computation. Hence, we show the spectral content of the autocorrelation of the subthreshold membrane potential modulations induced by the external synaptic input. The top graph is for the mean E[ I ext irecc (t)] ,

  Finally, the third graph is the mean adaptation variable in the population of recurrent neurons, clearly showing a temporal modulation on the time-scale of the firing rate modulation. (d) Power spectral density of the average firing rate in the recurrent population, at multiples of the driving frequency, computed within the 6.2-14.1 seconds interval. We show separately the values from the simulation (black), the values for the prediction by the mean-and-variancedriven, non-linear dynamics equation (Equation9.3, in red), the values for the prediction by the mean-driven, linear dynamics equation (Equation9.1, in cyan), and the values for this last prediction while negative values are clipped and set to 0 (green). (e) Comparison of the full power spectral densities (at all frequencies) between the data (black), and the three above-mentioned predictions. Note that the simulation values are noisy due to the finite size of the population (2000), leading to a small additional power at all frequencies.

FrequencyFigure 9

 9 Figure 9.6 (previous page): Comparison between approximate analytical expressions and simulation results for a regime where only the variability of the filtered input is dynamic. (a) Mean simulated firing rate among the three populations of neurons during the whole simulation. The firing rates of excitatory and inhibitory neurons were adjusted to keep the neuron-averaged filtered external synaptic input constant, while the variability of the external input within the recurrent neuron population is dynamics subsection 8.3.3. During the first 5 seconds, the firing rate of each external excitatory neuron follows an Ornstein-Uhlenbeck process with an autocorrelation time of 5 ms, and a mean of 17.25Hz. During the following 10 seconds, we used a sine-wave of period 200ms. (b) Power spectral density (i.e. the Fourier transform of the autocorrelation function) for the mean and variance of the membrane-and-synapse filtered external rates during the 6.2-14.1 seconds interval.Note that we used the theoretical expected values of the rates, that we imposed, for the computation. Hence, we show the spectral content of the autocorrelation of the subthreshold membrane potential modulations induced by the external synaptic input. The top graph is for the mean E

  8.56). (c) Comparison between simulated and analytically predicted rates during a 4.6-5.8 s interval. Top: the black dotted line is the binned simulated firing rate in the whole(2000) 

  in the population of recurrent neurons, clearly showing a temporal modulation on the time-scale of the firing rate modulation. (d) Power spectral density of the average firing rate in the recurrent population, at multiples of the driving frequency, computed within the 6.2-14.1 seconds interval. We show separately the values from the simulation (black), the values for the prediction by the mean-and-variance-driven, non-linear dynamics equation (Equation9.3, in red), the values for the prediction by the mean-driven, linear dynamics equation (Equation9.1, in cyan). (e) Comparison of the full power spectral densities (at all frequencies) between the data (black), and the two above-mentioned predictions. Note that the simulation values are noisy due to the finite size of the population (2000), leading to a small additional power at all frequencies.
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 97 Figure9.7: Log-normal distribution of the instantaneous firing rate. For this figure only, in order to increase our statistical power, we multiplied the number of recurrent neurons by 4 (hence, there were 8000 neurons), while maintaining the same number of input connections for each neurons as in previous figures.We used a steady-state stimulation during which the external filtered synaptic input (by the membrane-andsynaptic filters F tot ) had a mean of 20 and a variance of 35. (a) Histogram of the firing rate in a 50 ms bin. Each data point was the mean over 40 neurons, which is similar to the method used by[START_REF] Hromádka | Sparse representation of sounds in the unanesthetized auditory cortex[END_REF] to evaluate this instantaneous firing rate distribution. (b) Blue: observed cumulative distribution function (cdf) for the mean (over 40 neurons) firing rate in a 50 ms bin. In red, we plot the theoretical cumulative distribution function of a log-normal variable which mean and variance are matched to the mean and variance of the simulation.

  f ilt,ss ).

  Figure9.8: Visualization of the steady-state solutions for one recurrently connected population. We plot the intersections between the functions exp(s) (in blue) and α s (in red). If α < 0, there is only one intersection (left), while if α > 0, there may be either 0 (middle, for small α) or 2 (right, for larger α) intersections.

  see subsection 8.1.3). An investigation of the stability of the other xed points (the single xed point at the left of Figure 9.8, or the lower xed point at the right of Figure 9.8) would require to account for the dynamics at all time scales. This could be possible by approximating the complete lter ( numerically, or, in simple cases, potentially analytically).
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 3 

	.1: Median (and 25 th and 75 th percentile) number of trials for single-units that were selected as
	significant. For the paired analysis, trial numbers were similar, with exceptions when the two waveforms were
	jointly reliable only during a subpart of the recording (leading to slightly less trials).

.2 Characterizing the nature of the informative spiking statistics

  

	s -1 ,	whereas k was varied within
	[0,0.25,0.5,0.75,1,1.25,1.5,1.75,2].	
	3.2We used spike-time shuing to investigate to what extent random samples
	from a time-varying trial-averaged rate density (as in Poisson neurons with
	time-varying rate) could underlie the advantage of the temporal structure for

1 st $reward$discrimination$ Errors$discrimination$ Monkey$M$ Monkey$P$ Both$monkeys$ Monkey$M$ Monkey$P$ Both$monkeys$ Distribution$ of$ k opt $

  

	Diff.!electrodes!	Diff.!electrodes!	Diff.!electrodes!	Diff.!electrodes!	Diff.!electrodes!	Diff.!electrodes!
	!	!	!	!	!	!	
	mean=1.19!	mean=1.13!	mean=1.15!	mean=1.48!	mean=1.17!	mean=1.26!	
	median=1.5!	median=1.25!	median=1.25!	median=1.75!	median=1.25!	median=1.5!	
	Same!electrode!	Same!electrode!	Same!electrode!	Same!electrode!	Same!electrode!	Same!electrode!
	!	!	!	!	!	!	
	mean=1.21!	mean=1.16!	mean=1.18!	mean=1.08!	mean=0.87!	mean=0.96!	
	median=1.375!	median=1.25!	median=1.25!	median=1.125!	median=1!	median=1!	
	p ranksum =0.95!	p ranksum =0.81!	p ranksum =0.83!	p ranksum =0.020!	p ranksum =0.012!	p ranksum =2.0!10	@3 !
	Proportion$						

of$$ pairs$ for$ which$ k opt =0$$

  Comparison of the distribution of kopt values, and of the proportion of pairs with kopt = 0, between pairs recorded on different electrodes vs. the same electrode. Note that kopt is the value of the

	Diff.!electrodes!	Diff.!electrodes!	Diff.!electrodes!	Diff.!electrodes!	Diff.!electrodes!	Diff.!electrodes!
	4/43=0.093!	15/82=0.18!	19/125=0.15!	3/51=0.059!	16/128=0.125!	19/179=0.11!
	Same!electrode!	Same!electrode!	Same!electrode!	Same!electrode!	Same!electrode!	Same!electrode!
	4/20=0.20!	4/32=0.125!	8/52=0.15!	7/34=0.21!	13/48=0.27!	20/82=0.24!
	p fisher =0.17!	p fisher =0.49!	p fisher =0.91!	p fisher =0.063!	p fisher =0.031!	p fisher =0.0037!
	!					
	Table 3.2: parameter k that maximized time-averaged information (see [Table 3.3]). There were no significant differences
	for 1 st -reward discrimination, contrary to a consistent bias towards lower k values in the same electrode
	group expected if waveforms from different neurons were not well separated between different templates. The
	difference observed exclusively during errors classification most likely results from a spatial organization of the
	inputs responsible for the firing of dACC neurons during the error task-epoch. This can lead to more similar
	neural responses for closeby neurons as compared to more distant neurons.		

Table 3

 3 

	.2 describes the results of:
	X a rank sum test comparing distributions of k opt values, where k opt is
	the value of the parameter k that maximized time-averaged information
	(see [Table 3.3]).
	X a Fisher test comparing the proportion of pairs with k opt = 0

Table 4 .

 4 1: Difference of probability of mistakes or of mean number of trial interruptions after 1 st reward,

	4.4. THE TEMPORAL STRUCTURE OF SINGLE UNIT SPIKE TRAINS PREDICTS BEHAVIORAL RESPONSE TIMES	97
	!		Monkey!M!		Monkey!P!		Both!monkeys!
	Difference! of! mean!	Median=0.19!			Median=0.095!		Median=0.16!
	number! of! aborted!	p signrank =5.3!10	=4 !		p signrank =0.15!		p signrank =3.2!10	=4 !
	trials!							
	Difference!	of!	Median=0,!mean==9.2!10	=3 !	Median=0,!mean=9.7!10	=4 !	Median=0,!mean==5.9!10	=3 !
	probability!of!errors!	p signrank =0.31!			p signrank =1!		p signrank =0.36!
	!							

  := g L + ⟨g 1 ⟩ + ⟨g 2 ⟩ is an eective input-regime-dependent leak conductance,
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	Where	the	angular	brackets	denote	averaging	over	time,
	g 0							

and E 0

  the dierent neurons of the subpopulation p o , and second because h ip o and ( ηpo * r ip o | {hi po (t ′ )} ∀t ′ ≤t ) are strongly (negatively) correlated among this subpopulation of neurons. Indeed, the ltered input h ip o received by a neuron i po is correlated over time; hence, if it takes large values at times t, it probably also took large values in the past, leading to a stronger ring in the past and ηpo * r ip o | {hi po (t ′ )} ∀t ′ ≤t

	therefore (	to	a	more	negative	expected	adaptation	variable

  | {hi po (t ′ )} ∀t ′ ≤t . Hence, we need a baseline value R po, bsln for the population rate, around which we can compute deviations of r ip o | {hi po (t ′ )} ∀t ′ ≤t .

								should be a function of the
	history of input could nd a kernel Γ po and a constant C po such that: { } h ip o (t ′ ) . If one could linearize this variable, i.e. if one ∀t ′ ≤t
		(	ηpo * r ip o | {hi po (t ′ )} ∀t ′ ≤t	)	(t) ≈	( Γ po * h ip o	)	(t) + C po	(8.25)
	then, the distribution of G ip o (t) within the subpopulation p o could be approximated from the distributions of { } h ip o (t ′ ) (which were determined to ∀t ′ ≤t be Gaussian in subsection 8.2.3).
	(	We now turn to deriving Γ po and C po , by using a linearization of )
	ηpo * r ip o | {hi po (t ′ )} ∀t ′ ≤t r ip o	(t),	which	in	turn	requires	to	linearize

  Hence, for any recurrent subpopulation p o within this frozen network in steady-state, all neurons receive the same baseline constant input h o, bsln , which is related to the neuron-averaged h o of the original network. In addition, now, the ring rates of the recurrent populations R precc, bsln are constant and respond to constant stimulations from external subpopulations (with rates R pext, bsln := E t [R pext (t)], i.e. we take the time-average of the external subpopulation rates from the original network). ip o | {hi po (t ′ )} ∀t ′ ≤t )

							[	(
	R po, bsln ≈ λ 0, po E {hp o (t ′ )} ∀t ′ ≤t		exp	h ip o (t) +
	As a consequence, by separating the subpopulations between recurrent (whose
	rates have to be determined self-consistently) and external ones, we can write:
		h po, bsln :=	Npop recc ∑	n precc, po F tot precc, po * R precc, bsln +
				precc=1		
			Npop ext ∑	n pext, po F tot pext, po * R pext, bsln
			pext=1			
								(8.26)
			=	Npop recc ∑	n precc, po R precc, bsln	(∫	F tot precc, po	)	+
				precc=1		
			Npop ext ∑	n pext, po R pext, bsln	(∫	pext, po F tot	)
			pext=1			
	Given	these	time-independent	and	neuron-independent	(within	a
	subpopulation) ltered inputs, we can re-work Equation 8.24 for any recurrent
	population p o :					

( ηpo * r

  ∆r ip o | {hi po (t ′ )} ∀t ′ ≤t ∆r ip o | {hi po (t ′ )} ∀t ′ ≤t

)

= λ 0, po exp (h po, bsln + (η po * R po, bsln )) exp ( ∆h ip o (t) + ( ηpo * ) (t) ) = R po, bsln exp ( ∆h ip o (t) +

( ηpo * ) (t) ) (8.30)

  po (Φ p, po * R p ) (t) is a log-normal variable, whose expectation only depends on the mean and variance of X io . Hence, at any time:

	var pop nrn po	[	Z ip o (t)	]	≈	∑ Npop	n p, po ΦΦ p, po * R p (t)	(8.41)
							p=1	
					where ∀s, ΦΦ p, po (s) := (Φ p, po (s)) 2
	These results imply that exp		
	R po (t) ≈ λ 0, po exp (C po ) exp	( E pop nrn po	[ Z ip o (t) ]	+	2 var pop nrn po	[ Z ip o (t)	]	)
									(8.42)

( Z ip o (t)

)

in the variance-driven regime.

Acknowledgements

The relation between neural activity and behavior was still present when excluding trials with interruptions. Behavioral response time analysis while excluding post-1 st -reward trials that were interrupted before the monkey touches the target. These interruptions can be due to breaks of fixation or breaks in screen touch requirements, after which monkeys were forced to resume the sequence of actions (section 3.1). Groups of neurons are as in weighting of all neurons). (b,d) Comparison of D values between qopt and q = 0. Here, qopt was the temporal sensitivity that maximized discrimination between 1 st reward and repetition using the normalized distance d * in each neuronal group (see section 3.5). Note that similar results were found when using qopt = 10s -1 instead, i.e. the temporal sensitivity that maximized 1 st reward discrimination when using the original Victor and Purpura distance (as in Figure 4.17 (c)). The values of D were time-averaged (over analysis windows ending in [0.1, 1] s, steps of 100 ms), separately for qopt and q = 0. The resulting time-averages were compared with a signed rank test (p-value indicated). The boxplots represent the distribution of the difference of time-averaged D between qopt and q = 0.

CHAPTER 8. DERIVATION OF APPROXIMATE EXPRESSIONS FOR THE DYNAMICS OF RECURRENT ADAPTING NETWORKS OF NEURONS

. If this ratio is 2, the error ϵ is Note that this approach is much simpler than the only other currently available linearization procedure for this type of adapting neuron model [START_REF] Deger | Fluctuations and information ltering in coupled populations of spiking neurons with adaptation[END_REF]]. This simplication was permitted by the decision to start from an expression for the intrinsic-stochasticity averaged adaptation which does not dierentiate the last spike from the previous ones, and treats the whole spiking history through a rst-moment approximation (see Equation 8.22). Instead, [START_REF] Deger | Fluctuations and information ltering in coupled populations of spiking neurons with adaptation[END_REF] use an additional integral over the time of the last spike, in order to more accurately account for possibly strong refractory eects. We note that actually, in [START_REF] Deger | Fluctuations and information ltering in coupled populations of spiking neurons with adaptation[END_REF], the evaluated linear kernel was semi-analytical as it required the steady-state interspike interval distribution, which was taken from the simulation. In contrast, we will derive and evaluate a fully analytical expression, as we demonstrate below.

Hence, using this approximation, we can write:

We now divide by R po, bsln , and collect the terms that are linear in

where δ denotes the Dirac δ distribution.

Taking the Fourier transform F [•]:

Internal dynamics' parameters for the single neuron

We hereby describe the parameters taken for the recurrently connected Generalized Linear Model adapting neurons (see Equation 8.1).

Shape and amplitude of the spike-history filter

We chose a power-law like spike-history lter which shape and amplitude were approximately matched to those of 10 recorded pyramidal neurons (data courtesy of S. 2012)). Note that the parameters we use are not 'round' as a result of an initial attempt to take the two rst exponentials as the best t to the kernel extracted from a recorded pyramidal neuron (we have not been trying to optimize the match with the theory...). The amplitude for the slowest exponential was chosen to be slightly larger than what is generally observed in pyramidal neurons (see Figure 8.2), in order to still keep a small negative amplitude for very long delays after a spike (which could also be implemented by adding more exponential variables to the lter). The aim was not to have a perfect quantitative match to the recorded neurons, but rather to see whether a realistic spike-history lter would still make the simplications that we used for deriving the approximate mean-eld formulas acceptable.

More precisely, the spike history lter η, drawn in Figure 8.2 was taken as (see Equation 8.1 for the denition of the model):

where Θ (s) is the Heaviside function.

Shape and amplitude of the combined leak-and-synapse filter

By denition, the combined leak-and-synapse lters F tot p, po from one neuron of population p to one neuron of a population p o are the result of a convolution between the membrane and synaptic lters scaled by the intrinsic noise of the

Convolutions, fourier transformation and power spectral density

Numerical operations were performed with python packages. We used the same dt (10 -4 s) for the numerical operations as for the network simulation. Convolutions were performed with the numpy function convolve. Fourier transformation used the numpy.t function rt (for real numbers). For the power spectral density, we used the function psd from the matplotlib.pylab library, which uses the Welchs average periodogram method. We used a block size for fast fourier transform computation that was a multiple of the stimulation period that we had imposed, and that corresponded to about 20% of the total number of data points. The overlap between blocks was 25%.

Chapter 9

Tests and applications of the new analysis tools for adapting neuronal network dynamics

We developed approximate analytical expressions for the population ring rate in recurrent networks of adapting spiking Generalized Linear Model neurons. For each neuron i recc of one recurrent population, the input spikes arriving at the synapses are ltered through a combined leak-and-synapse lter F tot , and then summed, leading to a total synaptic drive h irecc . This ltered synaptic input is added to an adaptation variable wich results from the ltering of the spike train of the neuron S irecc through a spike-history lter η recc . Finally, the probability of spiking is proportional to exp (h irecc + η recc * S irecc ) (see Equation 8.3 for details).

To sum up the mathematical methods described in chapter 8, we consider the convergence of the ltered synaptic input to a Gaussian distribution (which is valid in case of a large number of synapses, see subsection 8.2.3). In addition, we use a number of approximations for the time-course of the adaptation variable in order to reach non-linear population ring rate equations. One strength of the approach is that adaptation is not considered as stationary, and we can account for the eects of the variability of the synaptic input within the populations of neurons. In addition, we can predict and understand when and how the simulations will diverge from our mathematical expressions. We summarize here the approximations that we made. These approximations would lead to an inaccuracy of the predicted upcoming ring rate even if we were able to use an exact value of past recurrent ring rates for the computation.

1. We use the rst moment only of a moment-based expansion for the adaptation variable averaged over the intrinsic stochasticity of a single neuron (see Equation 8.22). As discussed in the Methods, given the negative spike-time correlations expected with adaptive neurons, this

We also implemented the formulas for computing the mean and variance of the distribution assuming uncorrelated Poisson spike trains (see Equation 8.17

and Equation 8.18). As the external inputs were implemented as uncorrelated

Poisson processes, these formulas should be exact in this case. Indeed, the cumulative distribution function of a Gaussian variable with these analytical parameters almost perfectly tted the data. Indeed, the red curve was almost perfectly superimposed on the blue curve in Figure 9.2 (a,b). We also investigated the accuracy of the estimation of the mean and variance of the ltered recurrent input through the uncorrelated Poisson spiking approximation.

We used Equation 8.17 and Equation 8.18 with the recurrent population ring rate taken from the 70 last ms of the simulation (70 ms is the time-scale of the lter for the recurrent input, see section 8.3.1). This led to a slight overestimation of the variance of the distribution of ltered recurrent synaptic input (as can be seen when comparing the red and the blue curves in Figure 9.2 (c)). However, this overestimation only had a negligible eect for the estimation of the variance of the total ltered synaptic input (as can be seen when comparing the red and the blue curves in Figure 9.2 (d)). Indeed, the contribution of the external excitatory and inhibitory inputs to the total input variance was large.

We further investigated the reasons why the Poisson ring approximation did not give an exact prediction of the variance of the recurrent ltered synaptic input. We plot in Figure 9.2 (e) the distribution of the coecient of variation of the interspike interval distribution over the last 3.8 s (hence, in steady state).

This amounts to computing the ratio between the standard deviation and the mean of the distribution such as the one shown in Figure 9.1 (d), for dierent neurons.

In steady-state, for Poisson processes, this distribution should be centered on one [START_REF] Gerstner | Neuronal Dynamics[END_REF]]. Instead, in our simulation, it was centered around 0.75, indicating that the spike trains of the recurrent neurons were more regular than what would be expected for Poisson processes. This was likely to be caused by adaptation, which can create correlations between spike times and a subsequent reduction of the coecient of variation of the interspike interval distribution [START_REF] Schwalger | Patterns of interval correlations in neural oscillators with adaptation[END_REF]]. In addition, we found that the spike count distribution (Figure 9.2 (f )) was also less variable than what would be expected from a Poisson process. Indeed, the Fano Factor (FF, dened as the ratio of the variance over the mean) of this distribution was ≈ 0.27, against 1 for a Poisson process [START_REF] Farkhooi | Adaptation reduces variability BIBLIOGRAPHY 233 of the neuronal population code[END_REF]]. This is again consistent with an eect of adaptation, which can correct an excess of spiking at time t 0

Analytical estimation of the mean firing rate within the recurrent population

We investigated the performance of our approximate analytical expressions for the expected ring rate of a neuron within the recurrent population. We used a rst-moment approximation for the adaptation averaged over the intrinsic neuronal stochasticity (subsection 8.2.4). In addition, we consider a linearization of the intrinsic-stochasticity-averaged ring probability (which relates to the average ring rate over dierent xed stimulations of one single neuron, subsection 8.2.5).

Using these analytical results, we reach two dierent expressions for the expected ring rate in the recurrent population, which correspond to two dierent levels of approximation:

1. An equation describing linearized, mean-input-driven, dynamics. The eects of the synaptic input variability within the population are neglected (by neglecting ϵ (∆Exc) in Equation 8.34, and taking the average over the populations of neurons). More specically, we derived an expression for a linear lter Λ recc , such that

where h

In this expression, R x is the expected population-averaged ring rate of one neuron of population x, the F tot x, y are combined leak-and-synapse lters from population x to population y, and n x,y is the number of neurons from population x projecting to population y. In addition, R recc, bsln is the expected steady-state ring rate in a theoretical population of neurons which is matched to the simulated population in terms of mean external input, but for which there is no inuence of the between-neuron variability Typically, these lters are simple exponentials which tend to smooth fast input modulations. Hence, the total lter Λ recc * F tot is a band-pass that shows a resonance (see Figure 9.4 (c)). Hence, this shows that adaptation may enhance the sensitivity of the ring rate response to the temporal structure of the input.

We now turn to the comparison between analytics and simulation during a dynamic, non-stationary regime.

Estimation of the firing rate in a dynamical regime

We rst used a stimulation where the external excitatory population changed its rate, while the external inhibitory population red at a constant rate. As we will see, this leads to a covariation between the mean and variance time-course for the ltered external drive. This regime is therefore favorable to the analytical expression that neglects the eect of the input variability in the population, as the time-course of the stimulation, at least, can be sensed through the mean drive.

We were also particularly interested in the dynamics induced by a change of the variability of the synaptic input within the recurrent population. Hence, we also designed a stimulation for which the mean ltered input was constant while only its variance was dynamic (as explained in subsection 8.3.3).

We will now describe to which extent our equations Equation 9.1 and Equation 9.3 could describe the mean ring rate within the recurrent population of neurons during these stimulation regimes.

Dynamical modulation of firing through correlated changes of both the mean and the variance of the synaptic input

We rst examined the performance of our analytical expressions in a dynamical regime where the external inhibitory drive is constant, while the external excitatory drive varies (Figure 9.5 (a)) This led to covariations of the mean and the variance of the ltered synaptic input (Figure 9.5 (b,c)). In this regime, the expression that ignores the eect of the uctuations (Equation 9.1) captured rather well the time-course of the averaged ring rate within the recurrent population (cyan line in Figure 9.5 (c)). This good performance probably relied in part on a compensation between the error due to the approximation of adaptation (which tends to lead to an overestimation of the

Some concrete insights reached, or probably reachable, by applying our new analytical expressions

While our new analytical expression has the disadvantage to only predict approximately the population-averaged ring rate, it also has the considerable advantage to be simple enough to provide an intuitive explanation in some concrete situations. We mention below a few of these applications, some of which having been more deeply investigated than others.

Log-normal distribution of the instantaneous firing rates within the population

The mean-and-variance driven, non-linear dynamics expression (Equation 9.3) is valid when three assumptions are fullled. First, the synaptic-input-induced membrane potential uctuations should be Gaussian.

Second, the spike time correlations beyond the co-occurrences expected from time-dependent ring rates should be small, or at least exert an approximately constant inuence on the eective drive of the neurons (in which case our predictions would still be qualitatively correct in terms of ring rate time-course and variability of ring intensity). Third, the intrinsic-stochasticity-averaged adaptation variable should be linearizable (see section 8.2).

If these assumptions are approximately valid, our framework predicts that the instantaneous ring probability, and therefore the spike count in very small analysis windows, should follow a log-normal distribution. We could indeed observe this type of distribution in our simulations (Figure 9.7). Note that in our simulation, the log-normal distribution arose because of the interplay between the non-linearity of the single neuron input-output function, and the instantaneous variability of the synaptic input. Notably, the asymmetric distribution could occur instantaneously even though the time-averaged statistics were identical between neurons. By adding a variability in the synaptic weights received by the neurons, one could further increase the variance of the log-normal distribution (subsection 8.2.3).

Interestingly, such a log-normal distribution for the ring rate in short bins (which are the values taken by Φ).

The same type of argument could be applied to better understand a recently suggested integrator network [START_REF] Lim | Balanced cortical microcircuitry for maintaining information in working memory[END_REF]], whose dynamics was purely variance-driven. The whole analysis of this network was made through a phenomenological ring rate model, which can be directly mapped to a spiking neuron model in case of mean synaptic input driven dynamics [Naud and Gerstner (2012a); [START_REF] Gerstner | Neuronal Dynamics[END_REF]].

Despite the fact that their phenomenological equations were valid in a very dierent regime than the variance-driven regime in which their spiking network was lying, the authors still found a qualitatively similar behavior in their phenomenological implementation, and in their spiking network. However, they had no quantitative prediction for the integration time-scale of the spiking network. Their phenomenological rate analysis, which could be linked to an analysis based on the lters Φ for the mean-driven dynamics, indicated that the network integration time-scale should to be proportional to the dierence (τ exc -τ inh ) between the excitatory and inhibitory synaptic time-scales.

In our framework, we can consider a variance-driven network with negligible adaptation and combined leak-and-synapse lters that can be approximated by a single exponential decaying as their associated synapse (for synapses slower than the membrane time-scale, see section 8.3.1). Under these assumptions, which are likely to be valid in the spiking network of [START_REF] Lim | Balanced cortical microcircuitry for maintaining information in working memory[END_REF]] for low ring rates, our analysis would predict that the eective time-scale is proportional to τexc-τ inh 2

. More generally, our analytical expressions may be used to improve the understanding of the integrator network suggested in [START_REF] Lim | Balanced cortical microcircuitry for maintaining information in working memory[END_REF]].

Multiplicity of the steady-state solutions for one recurrently connected population

As mentioned in the Methods section, for a single recurrent population, the xed-point expression for our mean-and-variance driven, non-linear dynamics framework reduces to a Lambert-W function (see Equation 8.43). Indeed, the steady-state (ss) equation reads

)

. Here, I f ilt,ss is a constant amounting to the steady-state external synaptic input ltered by the corresponding mean and variance lters (see Equation 9.3), and C and Hence, this system may be studied with the usual stability analysis tools (linear stability, phase plane). Finally, this type of analysis could be extended to several interacting recurrent populations of neurons.

Modulation of the resonant frequencies for the firing rate response by adaptation

We initially started to study mean-eld equations in an attempt to solve a concrete issue, as we mentioned in chapter 6. We were wondering whether one could design a temporally modulated input which would more strongly excite a population of neurons which would have undergone an episode of sustained ring in the past, compared to another population that would not have red as much. The hypothesis was that the population of neurons which would have undergone sustained ring in the past would retain a specic adaptation state, which may interact more strongly with some types of synaptic input First, our analysis already suggests that this type of dynamics may be possible.

Our equations indeed show that the shape of the linear lter Λ, which determines the temporal response properties of a recurrent population of neurons, can be modulated by the baseline state of the neurons (Figure 9.4 (b,c) and subsection 8.2.5). In addition, and more surprisingly, while a larger adaptation is always associated with an overall decreased excitability in a mean-driven regime, the variance-driven regime appears to be dierent. Indeed, the variance lter ΦΦ is the square of the mean-driven lter Φ (see Equation 9.3). Hence, even if the linearized adaptation create a negative contribution in Φ, it will be associated with some positive terms in ΦΦ. This reects the fact that adaptation participates to creating uctuations. This suggests that in the variance-driven regime, the presence of adaptation currents in a population may not result in a general decreased excitability of this population.

While we did not have the time to really address this question, the framework we developed may allow us to do it in the future. Indeed, as we mentioned previously, Equation 9.3 can be reduced to dierential equations of variables which may be related to the contribution of adaptation in the mean and variance lters Φ and ΦΦ. Hence, in the future, we may be able to study the inuence of baseline adaptation values on the temporal properties of the neuronal population response We developed novel mean-eld expressions for the population-averaged ring rate of recurrent neuronal networks. To the best of our knowledge, this work is the rst to account for the synaptic input variability within a population of Generalized Linear Model (GLM) neurons with adaptation. By lling this gap, we connect to the existing literature investigating the dierent dynamical regimes that can characterize networks of other neuron models [START_REF] Brunel | Fast global oscillations in networks of integrateand-re neurons with low ring rates[END_REF]; [START_REF] Lindner | Transmission of noise coded versus additive signals through a neuronal ensemble[END_REF][START_REF] Fourcaud-Trocmé | Dynamics of the instantaneous ring rate in response to changes in input statistics[END_REF]; [START_REF] Toyoizumi | Mean-eld approximations for coupled populations of generalized linear model spiking neurons with markov refractoriness[END_REF]; Tchumatchenko and Wolf (2011); [START_REF] Tetzla | Decorrelation of neural-network activity by inhibitory feedback[END_REF]; [START_REF] Helias | Echoes in correlated neural systems[END_REF]; [START_REF] Kriener | How pattern formation in ring networks of excitatory and inhibitory spiking neurons depends on the input current regime[END_REF]]. Note that the models considered so far in the literature analyzing the variance-driven response were all non-adapting. In contrast, we use a single neuron model whose dynamics is rich enough to be tted to recorded single neurons [START_REF] Mensi | Parameter extraction and classication of three cortical neuron types reveals two distinct adaptation mechanisms[END_REF]; [START_REF] Pozzorini | Temporal whitening by power-law adaptation in neocortical neurons[END_REF]] and we perform a rather detailed mathematical analysis of the population statistics in networks of interacting units, while accounting for both the response to the mean and the variance of the input in the neuronal population. Importantly, compared to most other spiking neuron models, we feel that the mathematical form of the GLM oers the advantage to allow for rather easy extensions to several important features governing the dynamics of the network. For instance, the eect of slow synaptic channels can be directly incorporated and interpreted (section 8.3.1). A linearized short-term plasticity of the synapses may also be naturally incorporated in the synaptic lters (see subsection 8.1.4 and section 8.3.1). Finally, the framework is also likely to be robust to the introduction of larger heterogeneities of the synaptic input (as argued in subsection 8.2.3). neuron parameters.

Beyond this linearized mean-driven expression, we also derive a non-linear approximate mean-and-variance driven expression for the population-averaged ring rate (Equation 9.3). This expression captured rather well the non-linear temporal response in all the various stimulation regimes we tested (see Figure 9.4, Figure 9.5 and Figure 9.6). More specically, it could capture the asymmetry and the rectication of the rate response to sinusoidal synaptic input, as well as the apparent phase advance of the rate time-course compared to the input signal. However, this expression leads to an overestimation of the ring rate, and this overestimation becomes larger for larger ring rates. While this may be seen as a failure, we believe that the disadvantage of this inaccuracy is mitigated by the fact that we can understand where it comes from, and by the fact that we can predict when and how it will arise. Also, and perhaps more importantly, the use of this approximate mathematical expression rather than more exact integral-equations [Naud and Gerstner (2012a); [START_REF] Deger | Fluctuations and information ltering in coupled populations of spiking neurons with adaptation[END_REF]] permits reaching some intuitive understanding during a few concrete situations ranging from brain recordings to complex simulations for emulating brain function. For example, the log-normal distribution of the instantaneous ring rates appears as a natural consequence of the exponential non-linearity for the single-neuron dynamics [START_REF] Badel | Extracting non-linear integrate-and-re models from experimental data using dynamic i-v curves[END_REF]; [START_REF] Mensi | From stochastic nonlinear integrate-and-re to generalized linear models[END_REF]] and of the Gaussianity of the subthreshold membrane potential distribution [START_REF] Destexhe | The high-conductance state of neocortical neurons in vivo[END_REF]]. In addition, the simple relation (a squaring) between the linear lter for the mean and the linear lter for the variance of the eective driving input yields intuitive insights in the dierences between these two dynamical regimes. More specically, for low ring rate regimes for which the eects of the spike-history kernel can be neglected, the variance-driven stimulation appears to be governed with a time-scale that is twice faster as the mean-driven stimulation.

Furthermore, the possible reduction to transcendental equations and to dierential equations potentially opens the way to using well-known tools for dynamical analysis such as visualization of the dynamics in the phase plane, and determination of the linear stability through eigenvalue decomposition. Finally, the GLM framework may also permit to interpret the neuronal dynamics in a more functional way. Indeed, thanks to the exponential non-linearity, spiking activity may be re-interpreted as a log-likelihood of, or as an information about, the stimulus dynamics that caused it [START_REF] Pillow | Spatio-temporal correlations and visual signalling in a complete neuronal population[END_REF]; Naud and Gerstner
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