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Résumé vulgarisé

Nous nous sommes intéressés à la possible fonction de la structure temporelle

de l'activité neuronale pendant l'évolution dynamique de réseaux de neurones qui

peuvent sous-tendre des processus cognitifs.

Tout d'abord, nous avons caractérisé le code qui permet de lire l'information

contenue dans des signaux neuronaux enregistrés dans le cortex cingulaire

antérieur dorsal (CCAd). Le signal émis par les cellules neurales (les neurones)

comporte une série de perturbations stéréotypiques du potentiel électrique,

appelées potentiels d'action. Ce signal neuronal peut donc être caractérisé par le

nombre et le temps des potentiels d'action émis durant une certaine situation

comportementale.

Les données actuelles ont mis en évidence que le CCAd est impliqué dans les

processus d'adaptation comportementale à de nouveaux contextes. Cependant,

les mécanismes biologiques qui sous-tendent ces processus d'adaptation

comportementale sont encore mal compris. Nos analyses suggèrent que la

variabilité importante du nombre de potentiels d'action émis par les neurones,

ainsi que la �abilité temporelle conséquente de ces potentiels d'action (qui est

améliorée par la présence de corrélations entre les temps d'émission des

potentiels d'action), avantagent les réseaux neuronaux qui sont

considérablement sensibles à la structure temporelle des signaux qu'ils reçoivent.

Cet avantage se traduit par une augmentation de l'e�cacité du décodage de

signaux émis par des neurones du CCAd lorsque les singes changent de stratégie

comportementale. Nous avons aussi cherché à déterminer les caractéristiques de

la variabilité neuronale qui peuvent prédire la variabilité comportementale de

l'animal. Quand nous avons séparé les données entre un groupe avec un grand

nombre de potentiels d'action, et un groupe avec un faible nombre de potentiels

d'action, nous n'avons pas trouvé pas de di�érence robuste et cohérente du

comportement des animaux entre ces deux groupes. Par contre, nous avons

trouvé que lorsque l'activité d'un neurone devient moins semblable à la réponse

typique de ce neurone, les singes semblent répondre plus lentement pendant la

tâche comportementale. Plus précisément, nous avons observé que l'activité

d'un neurone semble pouvoir se di�érencier de sa réponse typique tantôt par une

augmentation du nombre de potentiels d'actions émis, tantôt par une réduction

de ce nombre. De plus, des imprécisions sur le temps d'émission des potentiels



d'action peuvent mener à une déviation du signal neuronal par rapport à la

réponse typique.

Nos résultats suggèrent que le réseau, ou les réseaux de neurones qui

reçoivent et décodent les signaux d'adaptation comportementale émis par le

CCAd pourraient être adaptés à la détection de motifs dé�nis à la fois dans

l'espace (par l'identité du neurone ayant émis un potentiel d'action) et dans le

temps (par le moment précis d'émission d'un potentiel d'action). Par

conséquent, ces réseaux de neurones ne se comportent probablement pas comme

des intégrateurs, qui sont des circuits dont le niveau d'activité re�ète

approximativement la somme des potentiels d'actions reçus pendant une

certaine période de temps.

Dans un second temps, nous avons travaillé à mieux comprendre les

méchanismes par lesquels le réseau de neurones décodant les signaux du CCAd

pourait détecter un motif spatiotemporel. Pour cela, nous avons développé des

équations qui réduisent la complexité du réseau en représentant l'ensemble des

neurones par quelques statistiques représentatives. Nous avons choisi un modèle

de neurone qui est capable de reproduire l'activité de neurones corticaux en

réponse à des injections dynamiques de courant. Nous avons pu approximer la

réponse de populations de neurones connectées de manière récurrente, lorsque

les neurones émettent des potentiels d'action de façon assez irrégulière et

asynchrone (ces caractéristiques sont communes dans les réseaux biologiques).

Ce travail constitue une avancée méthodologique qui pourrait être le point de

départ d'une étude des mécanismes par lesquels les reseaux de neurones

récurrents, qui semblent être à l'origine des processus cognitifs, peuvent être

in�uencés par la dynamique temporelle de leurs signaux d'entrée.
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Abstract

We investigated the putative function of the �ne temporal dynamics of

neuronal networks for implementing cognitive processes.

First, we characterized the coding properties of spike trains recorded from

the dorsal Anterior Cingulate Cortex (dACC) of monkeys. dACC is thought to

trigger behavioral adaptation. We found evidence for (i) high spike count

variability and (ii) temporal reliability (favored by temporal correlations) which

respectively hindered and favored information transmission when monkeys were

cued to switch the behavioral strategy. Also, we investigated the nature of the

neuronal variability that was predictive of behavioral variability. High vs. low

�ring rates were not robustly associated with di�erent behavioral responses,

while deviations from a neuron-speci�c prototypical spike train predicted slower

responses of the monkeys. These deviations could be due to increased or

decreased spike count, as well as to jitters in spike times. Our results support

the hypothesis of a complex spatiotemporal coding of behavioral adaptation by

dACC, and suggest that dACC signals are unlikely to be decoded by a neural

integrator.

Second, we further investigated the impact of dACC temporal signals on the

downstream decoder by developing mean-�eld equations to analyze network

dynamics. We used an adapting single neuron model that mimics the response

of cortical neurons to realistic dynamic synaptic-like currents. We approximated

the time-dependent population rate for recurrent networks in an asynchronous

irregular state. This constitutes an important step towards a theoretical study

of the e�ect of temporal drives on networks which could mediate cognitive

functions.





Acknowledgements

This dissertation re�ects in �rst place the in�uence of the many people who,

throughout my life, have shaped and nurtured my mind. Among them were �rst

my parents and my grand-parents, but also the many teachers who have been

giving me the tools to think, and to express my thoughts. I would like to take

the chance to thank them all, and to acknowledge the whole system by which my

education could take place.

I would also like to thank the people who have encouraged me to work in

research. In particular, I acknowledge the researchers who hosted a very young,

very inexperienced and very useless �rst-year high school student in the

Laboratoire de Bioénergétique Fondamentale et Appliquée of Joseph Fourier

University. Their sincere interest in their work really motivated me during my

studies, and they made me choose this very intriguing and weird job that

research was for me at that time. In addition, I also want to stress that the

internships tightly supervised by Pedro Gonçalves, Christian Machens and

Sophie Denève have deeply shaped my path in research. The atmosphere and

the extreme diversity and open-mindedness of the Group for Neural Theory at

Ecole Normale Supérieure really de�ned the type of research that I aim to

develop. I also have a thought for the people who helped me during my other

internships, and more particularly for Ed Smith and Scott Livingston who made

a lot of e�orts to understand me, and to exchange thoughts my �rst study of

neuronal data and animal behavior. Finally, I would like to thank Angelo Arleo

for supervising me during the internship of my second year of master, which

shaped the path of the doctoral work.

Concerning the doctoral studies, I would �rst like to thank my advisors for

hosting me in their laboratories, and Emmanuel Procyk for providing me with an

amazing data set that nurtured my whole doctoral studies. For the data analysis

project, I have received invaluable help from Luca Leonardo Bologna (the master

of computers), Jérémie Pinoteau, Eléonore Duvelle (who, in particular, reviewed

a large part of this manuscript), Marie Rothé, Sergio Solinas, Dane Corneil, Felipe

Gerhard, Tim Vogels, David Karstner and Christian Pozzorini. For the theoretical

part, I got inspired and wisely advised by Moritz Deger and Tilo Schwalger, who

left happy memories of black board brainstorming. I am also very grateful to

have received advice from Carl Van Vreeswijk; without him, I would still be



erring among in�nitely recurrent integral equations. I should also thank Skander

Mensi and Christian Pozzorini; they were my �rst instructors for the Generalized

Linear Model approach, they kindly shared their data with me, and were very

patient in answering my many questions. Finally, I am very grateful to Aditya

Gilra, Dane Corneil and Alex Seeholzer, for reviewing this dissertation. More

generally, I would like to thank all the members and interns of the Aging in

Vision and Action (previously Adaptive Neurocomputation) Laboratory, and of

the Laboratory of Computational Neuroscience, for helping me at various points,

and more particularly for correcting my overall bad skills for presenting my results.

Also, I would like to acknowledge my father, who was eager to discuss my work,

and Ritwik Niyogi, who o�ered me my �rst occasion to give a talk (and a nice

stay in London!).

I also have a particular thought for Claudia Clopath, who gave me hope at a

moment when I felt that nothing would ever work. Without her, I would never

have dared to apply for a post-doctoral position while I had no paper.

Finally, and very importantly, I am very indebted to my family and friends

(many of those being also colleagues!). I am most often limited by my negative

emotions. Without receiving kind attention, I would simply wither away. I will

cite an � incomplete � list of people. First, my parents and my grandparents, who

have always been on my side during the hardest events of my life. In particular, I

often took solace through the numerous messages sent by my mother, and through

singing with my father. I also want to thank my brother, with whom I have been

sharing the same roof for a quarter of a century. I like to think (but he may

not agree) that him and I have to face very similar issues: we must �rst invent

something that we like within our perception of the current framework, and then

hope that other people will share our excitement. Therefore, sharing thoughts and

music with him has always been reassuring. I would also like to thank my very

old friends, including Laura Blondé, Violaine Mazas, Pauline Bertholio, Gabriel

Besson and Anne Perez, for their priceless continuous kindness and support. I

have a particular thought for Luca Leonardo Bologna, Jérémie Pinoteau, Dane

Corneil, Olivia Gozel, Friedemann Zenke, Alexander Seeholzer, Vasiliki Liakoni,

Thomas Van Pottelberg, Aditya Gilra, Marco Lehmann and his wife, and Eléonore

Duvelle for their emotional support at and outside work. Finally, I will thank the

many musicians who continuously help me to get through my life by expressing

and sharing so well their inner worlds.

x







Contents

Résumé vulgarisé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

I Introduction 1

1 An invitation to study the sensitivity of recurrent neuronal networks

implementing cognitive computations to temporal signals 3

1.1 Background: neurons, networks, brain areas and brain processing . 3

1.1.1 Neurons as basic units for brain processing: facts and

experimental techniques . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Neuronal processing through connected populations of

neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.3 The relevance of temporal structure for driving networks

with cognitive function: an unanswered but nevertheless

relevant question . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Objectives of the doctoral study . . . . . . . . . . . . . . . . . . . . 14

1.3 Road map of the dissertation . . . . . . . . . . . . . . . . . . . . . 15

II Evidence for a spike-timing-sensitive and non-linear decoder of

cognitive control signals 17

2 Introduction: signals for behavioral strategy adaptation in the dorsal

Anterior Cingulate Cortex 19

2.1 Cognitive control is most often thought to be supported by long

time-scales of neuronal processing . . . . . . . . . . . . . . . . . . . 19

2.2 A gap in the literature concerning the processing time-scale during

cognitive control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Investigation of the nature of the decoder for behavioral adaptation

signals in dorsal Anterior Cingulate Cortex . . . . . . . . . . . . . 22



3 Methods for analyzing dorsal Anterior Cingulate Cortex activity and

monkeys' behavior 27

3.1 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Electrophysiological recordings . . . . . . . . . . . . . . . . 27

3.1.2 Problem solving task and trial selection . . . . . . . . . . . 28

3.1.3 Analyzed units . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Methods for investigating the coding properties of spike trains . . . 29

3.2.1 Decoding dACC activity with a spike train metrics . . . . . 30

3.2.2 Characterizing the nature of the informative spiking statistics 41

3.3 Methodology for testing the negligibility of spike-sorting artifacts

for the conclusions of the study . . . . . . . . . . . . . . . . . . . . 42

3.4 Methods for analyzing eye movements . . . . . . . . . . . . . . . . 46

3.5 Methods for investigating the relation between neuronal activity

and future behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 Quantifying how much a spike train deviates from a prototype 49

3.5.2 Testing whether deviation from prototype is predictive of

response time . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.3 Testing whether the prediction of behavior from neuronal

activity is di�erent between q = 0 and q ≈ qopt . . . . . . . 52

3.6 General statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Testing decoders of the behavioral adaptation signals emitted by dorsal

Anterior Cingulate Cortex neurons 57

4.1 Optimal temporal sensitivity improves decoding of single units'

behavioral adaptation signals . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Optimal temporal sensitivity mediates information

improvement in a majority of single neurons . . . . . . . . . 59

4.1.2 Temporal coding supplements, rather than competes with,

spike count coding . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.3 Sensorimotor di�erences between task epochs are not likely

to determine the advantage of temporal decoding . . . . . . 76

4.2 Temporal decoding of 1st reward vs. repetition spiking does not

only rely on di�erences in time-varying �ring rate between task

epochs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.1 Assuming a time-dependent �ring rate implies a spike count

variability incompatible with the data . . . . . . . . . . . . 80

xiv



4.2.2 Temporal correlations considerably impact information

transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Temporal patterns often di�er between neurons, implying a

spatiotemporal code . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.1 Paired decoding bene�ts from an optimal distinction

between the spikes from the two neurons . . . . . . . . . . . 87

4.3.2 Jointly recorded neurons can share similar temporal �ring

patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 The temporal structure of single unit spike trains predicts

behavioral response times . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.1 Deviations from prototypical temporal �ring patterns

predict response times . . . . . . . . . . . . . . . . . . . . . 97

4.4.2 Firing rate increase does not robustly relate to a behavioral

response time change . . . . . . . . . . . . . . . . . . . . . . 104

5 Discussion: evidence for a temporally sensitive, non-linear decoder of

dorsal Anterior Cingulate Cortex signals 107

5.1 Evidence for internally generated reliable temporal structure and

spike count variability in dACC . . . . . . . . . . . . . . . . . . . . 107

5.2 A biological architecture could decode dACC temporal signals . . . 109

5.3 Evidence for a relation between future behavior and the result of

a non-linear, spike timing sensitive decoding of dACC signals . . . 111

5.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

III Advances for a theoretical investigation of the function of temporal

dynamics in recurrent networks 115

6 Preamble: from spike train data analysis to the development of mean �eld

methods 117

6.1 Neuronal architectures that could plausibly support dACC activity

decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Experimental evidence suggesting a causal relation between delay

activity and short-term memory . . . . . . . . . . . . . . . . . . . . 120

6.3 A hypothesis for the decoder of dACC that is compatible with the

current literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4 How to study the hypothesized network for dACC decoding? . . . 126

xv



7 Introduction: how to analyze the dynamical response of recurrent adapting

networks of neurons? 129

8 Derivation of approximate expressions for the dynamics of recurrent

adapting networks of neurons 135

8.1 Single neuron model . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.1.1 Spiking probability of the GLM . . . . . . . . . . . . . . . . 135

8.1.2 Interpretation of the �lters of the GLM in a current-based

approximation of the single-neuron somatic dynamics . . . . 136

8.1.3 Validity domain of the GLM for describing single neuron's

response to somatic current injections . . . . . . . . . . . . 139

8.1.4 Modeling the synaptic input and its transmission to the

soma through passive dendrites . . . . . . . . . . . . . . . . 141

8.2 Dynamical computation of the �ring rate distribution in a recurrent

network of GLM neurons . . . . . . . . . . . . . . . . . . . . . . . . 142

8.2.1 Separation of the network in subpopulations . . . . . . . . . 143

8.2.2 Assumptions about spatio-temporal correlations and their

consequences . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.2.3 Characteristics of the distribution of �ltered synaptic input

in a neuronal subpopulation . . . . . . . . . . . . . . . . . . 150

8.2.4 Expression of the subpopulation rate through a separation

of the stochasticities due to intrinsic noise and due to

synaptic input . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.2.5 Explicit expression of the subpopulation rate through a

linearization of the expected adaptation variable . . . . . . 159

8.3 Comparison between analytics and network simulations . . . . . . . 173

8.3.1 Internal dynamics' parameters for the single neuron . . . . 174

8.3.2 Network connectivity and number of neurons . . . . . . . . 177

8.3.3 Design of external �ring rate simulations . . . . . . . . . . . 178

8.3.4 Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9 Tests and applications of the new analysis tools for adapting neuronal

network dynamics 181

9.1 Distribution of the sum of �ltered inputs . . . . . . . . . . . . . . . 185

9.1.1 Distribution of the sum of �ltered inputs in a stationary

regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

9.1.2 Distribution of the sum of �ltered inputs in a non-stationary

regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

xvi



9.2 Analytical estimation of the mean �ring rate within the recurrent

population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

9.2.1 Estimation of the steady-state �ring rate . . . . . . . . . . . 195

9.2.2 Estimation of the �ring rate in a dynamical regime . . . . . 199

9.3 Some concrete insights reached, or probably reachable, by applying

our new analytical expressions . . . . . . . . . . . . . . . . . . . . . 207

9.3.1 Log-normal distribution of the instantaneous �ring rates

within the population . . . . . . . . . . . . . . . . . . . . . 207

9.3.2 Speed of the population response to a change in the mean

or the variance of the �ltered input . . . . . . . . . . . . . . 209

9.3.3 Multiplicity of the steady-state solutions for one recurrently

connected population . . . . . . . . . . . . . . . . . . . . . . 211

9.3.4 Modulation of the resonant frequencies for the �ring rate

response by adaptation . . . . . . . . . . . . . . . . . . . . . 214

10 Discussion: a new tool to analyze the dynamics of recurrent adapting

networks 217

IV Conclusions 221

11 Modulating the dynamics of recurrent neuronal networks by temporal

signals during cognition: experimental evidence and theoretical analysis 223

11.1 Experimental evidence for the relevance of temporal structure of

cognitive signals from the dorsal Anterior Cingulate Cortex . . . . 224

11.1.1 Limitations of, and questions left unanswered by, the data

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

11.2 Theoretical analysis of the dynamic response of recurrent neuronal

networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

11.2.1 Future possible applications of our analytical expressions . . 228

Appendices 251

List of scienti�c communications . . . . . . . . . . . . . . . . . . . . . . 252

Curriculum vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

xvii





List of Figures

2.1 Task and proposed neural mechanisms . . . . . . . . . . . . . . . . . . 23

3.1 Decoding method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Proof of principle for the non-triviality of the decoding improvement with

temporal sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Examples of single-unit dACC activities decoded with di�erent temporal

sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Optimal temporal sensitivity improves decoding of single unit behavioral

adaptation signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Information gain through temporal sensitivity using a classi�cation

biased toward closer neighbors instead of the unbiased classi�cation . . . 64

4.4 Robustness of spike-timing information in both monkeys . . . . . . . . . 66

4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Using a small temporal sensitivity (compatible with decoding by an

imperfect integrator) leads to identical conclusions to using q=0/s

(perfect integration) in single units . . . . . . . . . . . . . . . . . . . . 69

4.6 Decoding the identity of the adapted behavioral strategy (exploration or

switch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 Advantage of spike-timing-sensitive decoding over spike-count decoding

for very informative neurons . . . . . . . . . . . . . . . . . . . . . . . 73

4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.8 The optimal decoding temporal sensitivity appeared higher for neurons

�ring more during behavioral adaptation . . . . . . . . . . . . . . . . . 76

4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9 Decoding trials without eye-movements (monkey M) . . . . . . . . . . . 79

4.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.10 Temporal decoding does not only rely on di�erences in time-varying �ring

rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.11 Robustness of the link between spiking statistics and information

transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.12 E�cient paired decoding often required to distinguish between the

activities of the two neurons . . . . . . . . . . . . . . . . . . . . . . . 88

4.13 Gains of information among pairs of neurons with signi�cant information. 90



4.14 Consistence of the modulation of information in neuron pairs by the

temporal sensitivity (q) and the between-unit distinction degree (k) in

the two monkeys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.15 Coding properties of neuron pairs for which kopt = 0 . . . . . . . . . . . 93

4.16 Modulation of behavioral response times following 1st reward trials . . . 96

4.17 The temporal structure of single unit spike trains predicts behavioral

response times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.18 Consistency of the relation between neural activity and behavior in

di�erent subgroups of neurons . . . . . . . . . . . . . . . . . . . . . . 100

4.19 The relation between neural activity and behavior was still present when

excluding trials with interruptions . . . . . . . . . . . . . . . . . . . . 103

6.1 A hypothesis for the functioning of lPFC and its modulation by dACC

during the problem solving task . . . . . . . . . . . . . . . . . . . . . 125

8.1 Performance of the approximation of adaptation through the 1st moment

with a deterministic current . . . . . . . . . . . . . . . . . . . . . . . 157

8.2 Comparison of the spike history kernel used in the simulations . . . . . 175

9.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.1 An example simulation of a network of Generalized Linear Model neurons

with adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

9.2 Investigation of the shape of the distribution of �ltered input in a steady-

state regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.3 Investigation of the shape of the distribution of �ltered input in a non-

stationary regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

9.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

9.4 Comparison between approximate analytical expressions and simulation

results for the steady-state mean �ring rate within the recurrent population198

9.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

9.5 Comparison between approximate analytical expressions and simulation

results for a dynamical regime with covariations of the mean and variance

input changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

9.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

9.6 Comparison between approximate analytical expressions and simulation

results for a regime where only the variability of the �ltered input is

dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

9.7 Log-normal distribution of the instantaneous �ring rate . . . . . . . . . 208

xx



9.8 Visualization of the steady-state solutions for one recurrently connected

population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

xxi





List of Tables

3.1 Number of trials available in di�erent task-epochs for the analyzed single

neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Comparison between pairs recorded on di�erent electrodes vs. the same

electrode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 De�nition of statistical measures . . . . . . . . . . . . . . . . . . . . . 54

4.1 Probabilities of trial interruption or of mistake in the high and low

response time groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 97





Part I

Introduction





Chapter 1

An invitation to study the

sensitivity of recurrent neuronal

networks implementing cognitive

computations to temporal signals

In this dissertation, we examine the characteristics and the functional

relevance of the temporal structure of neuronal signals, in the context of

cognitive processing and of recurrent neuronal networks. In order to explain the

interest of this work, we will start by giving a very brief general introduction

about the biological implementation of brain computations in general, and of

cognitive processes in particular. We then introduce some classical models which

are used to help explaining cognitive processes (such as memory or

decision-making). Finally, we motivate the topic of the doctoral work, and we

give a road map for the dissertation.

1.1 Background: neurons, networks, brain areas

and brain processing

The computations performed by the brain are thought to occur through the

dynamics of connected populations of neurons [Gerstner et al. (2014)]. The

neurons are indeed often considered as the basic units of neuronal processing.

They are connected together over di�erent spatial scales, ranging from

connections within a layer of a small patch of cortex [Avermann et al. (2012)] to

connections between brain areas that implement di�erent types of brain

processing [Medalla and Barbas (2009); Boucsein et al. (2011)]. We �rst review

basic single neuron properties, before sketching examples of how connected
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ensembles of neurons are thought to implement brain processing.

1.1.1 Neurons as basic units for brain processing: facts

and experimental techniques

Here, we describe how the neurons, which are the basic cellular units which

compose the brain, can emit, transmit and receive signals. We then brie�y expose

the experimental techniques permitting to study neuronal activity, which we will

refer to later in the dissertation. We �rst explain how neuronal activity can be

recorded. We �nally describe the techniques by which neurons may be arti�cially

stimulated, and the limits of these techniques.

Basic mechanisms of single neuron function

Throughout this section, we will summarize basic facts about single-neuron

dynamics. As a reference, we rely on [Gerstner et al. (2014)]. Neurons are cells

possessing an excitable membrane. A su�ciently strong increase of the electric

potential of this membrane, which can be induced by an injection of electrical

charges inside the neurons, can trigger a positive feedback mechanism which

actively ampli�es the membrane potential increase. This leads to a prototypical

excursion of the membrane potential followed by a reset of this potential to a

baseline value. This prototypical time-course of the membrane potential is

commonly referred to as a spike (or, equivalently, an action potential).

Each spike �red by a neuron is a signal which can trigger the release of a

chemical, called a neurotransmitter, at specialized sites called synapses. Synapses

are the connection points through which neurons can interact. More precisely, a

neuron possesses a long tubular membrane extension from the cell body, which is

called an axon. This axon then typically forms several branches, that terminate

at di�erent synaptic sites which are situated close to the membrane of receiving

neurons. The receiving contact sites are usually situated rather close to the main

body of the neuronal cell. These post-synaptic input sites may be regrouped on

specialized neuronal extensions called dendrites [Llinas (2008)].

When a �rst (so-called �pre-synaptic�) neuron emits a spike, the

depolarization of the membrane potential is transmitted along the axon. This

causes the release of neurotransmitter molecules at the synaptic sites. These
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neurotransmitter molecules can then di�use to the membrane of the target

(so-called �post-synaptic�) neurons. Finally, the neurotransmitter molecules bind

to post-synaptic membrane receptors. This triggers the transient entry of

electric charges in the post-synaptic neuron. More speci�cally, the binding of the

neurotransmitter molecules cause the direct or indirect opening of

transmembrane proteins which then act as channels that speci�cally allow some

types of ions to travel across the membrane.

Some neurons, called excitatory neurons, send excitatory neurotransmitters.

These neurotransmitters trigger an increase in the membrane potential � referred

to as a depolarization � of the post-synaptic neuron. The most prominent types

of excitatory neurons are the pyramidal neurons, which are named after their

shape [Spruston (2009)].

Other neurons are inhibitory: they send neurotransmitters which trigger a

decrease in the membrane potential � referred to as a hyperpolarization � of the

post-synaptic neuron. Most of the interneurons, which are small neurons primarily

sending local connections, are inhibitory [Freund and Kali (2008)].

Depending on the nature of the receptor, the duration of the episode of charge

entry after a pre-synaptic spike may vary. For instance, excitatory receptors such

as those of the AMPA type (named after a molecule, the α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid, that can bind to them) possess a fast time scale

of one or two milliseconds. Other excitatory receptors, named NMDA receptors

(for N-Methyl-D-aspartate, a molecule that can bind to them) have a longer time-

scale of about a hundred milliseconds. Several time-scales also exist for inhibitory

receptors. Finally, the electric charges coming from many synapses are summed in

the post-synaptic neuron and they trigger changes of its membrane potential. This

phenomenon generally involves a low-pass �ltering due to the neuronal membrane

properties, and a non-linearity. Finally, if the membrane potential of the post-

synaptic neuron is su�ciently depolarized, a post-synaptic spike may be triggered

in response to the input electrical charges received at the synapses.

Note that these points will be expounded more formally and quantitatively in

the theoretical part of the dissertation.

We will now explain how neuronal activity may be studied through neuronal

recordings.
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Recording neuronal activity

The activity of neurons may be recorded through electrodes. Electrodes are

devices that measure a di�erence of electrical potential, which relates to the

di�erence in the density of electrical charges between two recording areas. In our

case, one of these recording areas is a reference point (the ground) whose

potential does not vary, and the other will be either the intracellular area of one

neuron, or the extracellular area surrounding one neuron.

Intracellular recordings. A technique named �patch clamp� allows

experimentalists to seal an electrode tip around a small hole in the membrane of

a neuron [Moore (2007)]. Hence, the electrode can sense the intracellular

potential of the neuron, which permits to record both the time-course of the

potential below the threshold for spiking, and the spikes. This technique hence

yields very precise data. However, one of its disadvantages is the requirement to

form a stable seal with the neuron. Therefore, this technique is mostly employed

in brain slices (i.e., �in vitro�) and much less often in alive animals (i.e., �in

vivo�).

Extracellular recordings. It is also possible to insert electrodes in the

extracellular medium surrounding the neurons. This confers the considerable

advantage to permit recordings in awake, behaving animals. However, in this

case, the recorded potential is only an indirect measure of the intracellular

potential of the neuron. Hence, the signal-to-noise ratio is smaller, and it is only

possible to reliably detect the changes of potential occurring during spikes.

Further, given that di�erent neurons are at di�erent distances from the

electrode, and given that di�erent neurons can emit spikes of di�erent shapes,

di�erent neurons are likely to yield signals of separable shapes and amplitudes.

Hence, it is possible to classify the detected spikes in di�erent clusters which

putatively correspond to di�erent neurons [Harris et al. (2000)]. This technique

is referred to as spike sorting. Despite the obvious limitations of the approach,

its reliability has been shown to be rather reasonable: between 70 and almost

100% depending on the the speci�c algorithm (or person...) used to classify

spike shapes ([Harris et al. (2000)]). For instance, re�nements of this technique

involve the insertion of several electrodes, and the detection of a single neuron

on several of these.



1.1. BACKGROUND: NEURONS, NETWORKS, BRAIN AREAS AND BRAIN PROCESSING 7

Until recently, technical limitations imposed to insert only a few such

electrodes. Hence, typically, only a few neurons could be simultaneously

recorded. Today, however, it is possible to insert a large number of �ne

electrodes and to record a hundred neurons simultaneously [Stevenson and

Kording (2011)]. This is of importance to improve the understanding of

neuronal computations, as they are thought to emerge from connected

populations of neurons (as we will soon explain in more details).

We will now show how the characteristics and the function of the neuronal

response to input currents can be investigated through arti�cial stimulations of

the neurons.

Artificial stimulation of neurons

Several techniques can be used to stimulate neurons arti�cially.

Experimentalist-controlled stimulations can indeed precisely inform about the

dynamical response of single neuron to stimulation, and about the function of

the neuronal activity in behaving animals.

Stimulation through intracellular current injections. When using the above-

mentioned patch-clamp technique, it is possible to simultaneously inject charges

into the neuron, and record the intracellular membrane potential. This permits

to study in great details the input-output function of the neuron. In particular,

this technique can be used to quantitatively �t a model for the dynamic neuronal

response to rich non-stationary input currents [Mensi et al. (2012); Pozzorini et al.

(2013)].

Extracellular stimulation. When using extracellular electrodes, it is also

possible to inject electrical current. This will excite a small population of

neurons situated close to the electrode tip. This type of stimulation is often

used in awake, behaving animals. Indeed, the causal relation between an

increased activity in the population of neurons situated close to the electrode tip

and the animal's behavior can then be assessed (see [Hanks et al. (2006)] for an

example). Note that the success of this approach relies on the fact that in some

areas of the brain, neighboring neurons often share similar properties [Schall

et al. (1995); Hanks et al. (2006)].
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Optogenetic stimulation. Optogenetics is a new technique that was developed

recently, and which permits to modulate the activity of populations of neurons

in behaving animals [Fenno et al. (2011)]. This technique relies on making

neurons arti�cially express some transmembrane ions channel proteins. This

protein expression is controlled through genetic manipulation. The technique

can be used with channels that are speci�c to either positively or negatively

charged ions, and which can respectively induce an excitation or an inhibition of

the targeted neurons. Importantly, the experimentalist can control the opening

of a speci�c channel type by shining light at a speci�c wavelength. There are

di�erent techniques which permit to shine lights on the neurons of interest,

which range from the insertion of optical �bers in the brain (to target deep

brain structures) to the removal of the skull (to target upper cortical layers).

This technique has the considerable advantage to be able to target the

stimulated neurons through both the restriction of the area receiving the light,

and the expression of the above-mentioned channels. This expression can be

controlled by injecting pieces of DNA composed of a part coding for the channel,

and of a regulating element which conditions the expression of the DNA to the

presence of a particular cell protein (called a transcription factor). Di�erent

neuron types (such as pyramidal neurons vs. interneurons, or neurons in some

speci�c brain areas) express di�erent types of transcription factors. Hence, the

stimulation can be speci�c to such a genetically de�ned population of neurons.

In addition, the DNA can also be engineered such that it is not expressed in the

presence of a drug that can be fed or injected to the animal. As a consequence,

it is possible to restrict the temporal window when channel expression can occur

to a few hours. Finally, increased neuronal activity triggers the expression of a

transcription factor (c-Fos), on which the expression of the light-activated

channels can be conditioned [Liu et al. (2012)]. This can be used to speci�cally

target a population of neurons which shows sustained increased activity during a

certain behavior of the animal, or when the animal is placed in a given context.

Hence, optogenetic tools can be used to control increased or decreased activity

to populations of neurons that either possess a speci�c transcription factor, or

that are speci�cally and strongly activated in a given situation. There are however

limitations [Ohayon et al. (2013)]. First, it may not be possible to target a desired

population of neurons, because these neurons may neither di�er genetically from

the others, nor show sustained activity during a speci�c context that can be

imposed on the animal to enforce channel expression through c-Fos. Second, in
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general, the technique cannot be used to enforce a very precise intensity for the

stimulation in all targeted neurons, as the intensity depends on both channel

expression and light reception. Third, for large animals, there may be a di�culty

to shine light on a su�ciently large number of neurons.

Optogenetics is nevertheless an important advance to study populations of

neurons, which are thought to shape neuronal computations, as we will now brie�y

review.

1.1.2 Neuronal processing through connected populations

of neurons

Di�erent neurons may be connected in a feedforward fashion, hence forming a

unidirectional chain of elements. An example of such a connectivity layout is the

connection from the mammalian touch cutaneous receptors to the second-order

touch neurons [Moayedi et al. (2015)].

Alternatively, the connections between neurons may be recurrent (i.e., with

direct or indirect reciprocal connections), as for instance observed in the

mammalian prefrontal cortex [Wang et al. (2006)].

We now exemplify how these connection schemes relate to di�erent types of

brain processing.

Sensory processing

The sensory areas of the nervous system, such as the primary visual cortex

or the cuneate nucleus of the mammalian brain, receive and process information

coming from biosensors, such as the retina or the skin touch receptors [Carandini

(2012); Moayedi et al. (2015)].

The sensorial stages of neuronal processing are often a series of feedforwardly

connected layers of neurons. We already mentioned the touch system [Moayedi

et al. (2015)]. Another example, for which the feedforward property is

approximately realized at a larger spatial scale, is the mammalian visual system.

Indeed, the output neurons of the retina project to the thalamus, which in turn

project the the primary visual cortex [Carandini (2012)].
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The peripheral biological sensors often send complex spatiotemporal signals

to the primary sensory areas (e.g. [Bialek et al. (1991); Johansson and Birznieks

(2004)]). Hence, in this context, it is well accepted that the timing of the emitted

spikes is crucial for successful signal transmission. This type of signaling is referred

to as temporal coding [Panzeri et al. (2010)].

Cognitive processing: basic facts and classical modeling frameworks

Cognition involves the selection (or the selective combination and processing)

of some relevant information among the diversity of external and internal signals

received by the brain. This process allows animals to use external cues and

internal representations to ful�ll internal goals, such as survival [Koechlin et al.

(2003); Donoso et al. (2014)]. Hence, the maintenance of a relevant item in

working memory, or the monitoring of some dynamical properties of a stimulus

that are relevant for an upcoming decision, are both cognitive processes. In the

mammalian brain, the frontal cortical areas are generally thought to be the main

drivers of cognitive computations [Koechlin et al. (2003)].

Experimental characterization of neuronal cognitive computations.

Experimental recordings in awake, behaving animals have yielded hypotheses for

the neuronal correlates of cognitive processes.

For instance, the accumulation of evidence during sensory-based

decision-making have been linked to ramping, �integration-like� �ring rate

increases in some populations of neurons of the lateral intraparietal cortex [Huk

and Shadlen (2005); Hanks et al. (2006); Churchland et al. (2011)].

In addition, the maintenance of memory items during a delay period have been

correlated to a sustained, quasi-steady activity in some neurons of the frontal

cortex [Funahashi et al. (1989, 1993); Procyk and Goldman-Rakic (2006)].

Successful theoretical modeling of neuronal cognitive computations through

recurrent networks. Compared to other neuroscience �elds, cognitive

neurocience has been linked to modeling and theory rather early on (e.g.,

[Hop�eld (1982)]). This may be explained by the fact that cognitive

computations are complex processes whose macroscopic properties were

naturally seen as emerging from the combination of the activity of a large
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number of individual components. These components could not all be monitored

simultaneously. Indeed, during decades, it has been impossible to record many

individual neurons simultaneously, which limited the understanding of the

trial-speci�c mechanisms leading to a behavioral output. Even though these

recording limitations are now being overcome, the issue is only partially solved.

Indeed, the challenge is now to make sense of the available complex,

high-dimensional data sets. Hence, the need for a simpli�cation through theory

was rather obvious from the start and remains valid today.

In consequence, several popular models were proposed to account for the

observed neuronal correlates of cognition. Interestingly, in these models, the

recurrent properties critically shape the dynamics [Compte et al. (2000); Brunel

and Wang (2001); Wang (2002); Machens et al. (2005); Wong and Wang (2006);

Hop�eld (2007); Cain and Shea-Brown (2012); Deco et al. (2013); Lim and

Goldman (2013)]. Through these recurrent connections, these models are indeed

able to reproduce critical features of the experimental cognitive-related neuronal

responses. Hence, persistent activity [Compte et al. (2000); Brunel and Wang

(2001)], as well as integration-like ramping activity [Wang (2002); Machens

et al. (2005)], can both be explained by those models.

Networks for cognitive processing are classically thought of reading information

through a spatial rate code, rather than a temporal code. In these simple models

for cognitive processing, the �nal output of the network which will ultimately

trigger behavioral changes is classically characterized by a (quasi)-stable state of

activity. This �nal activity state is usually assumed to depend on the identity

of the stimulated neurons, and/or on the number of input spikes received by the

network. For instance, the identity of an item held in memory, or the identity of

a chosen alternative, could be encoded through a high-activity state sustained by

recurrent excitation in a population of neurons [Brunel and Wang (2001); Deco

et al. (2013)]. Hence, this type of network is characterized by multistability.

The state of elevated activity of one recurrent population can be triggered by a

transient episode of increased �ring in the excitatory inputs it receives. Hence, in

this type of models, the putative impact of a temporal structure in the synaptic

input is typically not investigated.

Furthermore, other popular models for memory and decision-making are the

above-mentioned approximate integrator networks [Cain and Shea-Brown (2012);

Lim and Goldman (2013)]. They can accumulate evidence, and hold items in
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memory, by �ring with a rate that is approximately proportional to the number

of spikes received from their external input. Hence, by the intended design of

these networks, they should have little sensitivity to the temporal structure of the

received external synaptic input.

To summarize, for these cognitive models, the relevant signal is almost always

assumed to be contained in the identity of the neurons which �re, and in the

intensity of their �ring. This instantiates a so-called spatial rate coding paradigm.

Therefore, the dynamics of the models that we described above has proven to

be powerful to give insights about key aspects of cognitive processing, without

the need to account for the role of temporal structure. In addition, the

recurrence and the non-linearity of these types of network actually make it

di�cult to analyze how the temporal structure of the synaptic input could shape

their dynamics [Gerstner et al. (2014)]. This helps explaining why the question

of a possible function of the input's spike timings had been mostly overlooked in

this context. Furthermore, the ampli�cation of spike time noise during the

steady-state activity of cortical networks has been used as an argument against

the possibility of precisely timed patterns of spikes during cognitive

computations [London et al. (2010)]. The authors concluded that a temporal

coding paradigm, in which the temporal structure of the input is crucial for

shaping the dynamics and the �nal state of the network, was therefore unlikely

to underlie cognitive computations.

Finally, another factor which may have discouraged further investigations

about this issue may be linked to the di�culty of de�ning temporal coding in a

meaningful and non-trivial way [Panzeri et al. (2010)]. Indeed, even in the

simple networks mentioned above, which can work without a crucial function of

the input's temporal structure, the �ring rates are dynamic. Therefore, a

temporal modulation of the neuronal activity does occur in these models of

cognitive processing. In this context, temporal structure can be seen as an

epiphenomenon, and focusing on it could be considered as detrimental for

reaching an understanding of the circuit's function. In addition, the real

circuitry can obviously only be an approximation of the simple rate network

models that were proposed for cognitive function. Therefore, some deviations

from the simple framework sketched by the models could be seen as �bugs�

rather than features, and focusing on them could again be considered as

prejudicial for getting the big picture. For instance, concerning the neural

integrator models, biologically plausible implementations [Wang (2002); Wong
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and Wang (2006); Wong and Huk (2008); Lim and Goldman (2013)] possess a

slow leak and a small non-linearity. Notably, the leak term, which implements a

low-pass �lter [Naud and Gerstner (2012b)], will lead to a modulation of the

response of the network depending on slow temporal variations of its synaptic

input. More precisely, this modulation occurs when the input's temporal

variations are about as slow as or slower than the leak time-scale. However, this

small leakiness is not assumed to play an important role in neuronal processing

in the context of an approximate integrator network. Rather, the leakiness is a

consequence of biological limitations. Hence, even though a purely theoretical,

perfect integrator would be completely insensitive to its input's temporal

structure, a sensitivity to the slow temporal variations of the input cannot be

taken as an evidence against the integrator model. Rather, what matters is

whether the major properties of the real network are consistent with an

approximate integration.

In other words, a naive analysis which would merely report the presence of some

temporal structure in the neuronal response is likely to not be very informative

about the essence of the neuronal computation at stake.

1.1.3 The relevance of temporal structure for driving

networks with cognitive function: an unanswered

but nevertheless relevant question

In this context, why would one ask the question of the function of temporal

structure during cognitive processing? The answer is simple: the above

arguments do not exclude the possibility that a carefully designed study

focusing on temporal structure could be insightful for understanding the

computations at stake. First, while a network which implements an approximate

integration should not � by de�nition � be sensitive to the �ne temporal

structure of its input, there is no reason to believe that the multistable networks

are not sensitive to their inputs' spike times. On the contrary, the non-linearity

of these multistable networks is actually likely to make them sensitive to their

input's temporal structure, even though in general they are only fed simple

step-like �ring rate inputs. Interestingly, a recent study indeed showed that the

input's temporal structure can robustly modulate the dynamics of such networks

and could be used to control the probability that the network switches to a
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di�erent stable state [Dipoppa and Gutkin (2013b)].

Hence, evidence for a functional relevance of the input's �ne temporal

structure could be seen as arguing against the processing of this input by an

integrator network. In addition, such evidence would be compatible with a

functional relevance of the non-linear behavior of the decoding network (which

processes the temporally structured input).

Despite the numerous possible pitfalls, we therefore feel that it is worth

investigating whether or not the input's temporal structure could sizably shape

the output of a network implementing cognitive computations. This could

indeed be extremely insightful about the basic biological mechanism

implementing the computation. Finally, this may in turn have a large impact on

our understanding of the function played by this network for shaping the

adaptation of the animal's behavior.

1.2 Objectives of the doctoral study

During the doctoral study, we �rst aimed at investigating to what extent the

temporal characteristics of a neuronal signal fed to a network with cognitive

function could be consistent with the hypothesis that this network behaves as an

integrator (whose sensitivity to temporal structure is weak). To this end, we

analyzed data from an area involved in cognition: the dorsal anterior cingulate

cortex (dACC). This area is activated in a variety of contexts which require

animals to adapt their behavior to dynamic environmental cues [Procyk et al.

(2000); Procyk and Goldman-Rakic (2006); Quilodran et al. (2008); Hayden

et al. (2011a,b); Sheth et al. (2012); Blanchard and Hayden (2014)]. A recent

theory uni�ed these �ndings by suggesting that dACC could transmit a signal

which would specify an adapted behavioral strategy, and/or which would

quantify to what extent it is worth allocating cognitive resources to update the

behavioral strategy [Shenhav et al. (2013)]. Interestingly, the latter signal

(referred to as �expected value of control�) is a scalar, one-dimensional quantity

which could naturally be encoded through di�erent intensities of �ring. This

signal could in turn be easily decoded and maintained in memory by a

downstream neural integrator network. In addition, the literature suggests that

dACC activity is read out by the dorsolateral prefrontal cortex during cognitive

processing [Procyk and Goldman-Rakic (2006); Rothé et al. (2011); Shenhav
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et al. (2013). Interestingly, the dorsolateral prefrontal cortex is an area which

has been shown to behave similarly to an integrator in some contexts ([Kim and

Shadlen (1999), but see [Rigotti et al. (2013); Hanks et al. (2015)]).

Hence, it was relevant to consider and probe the possibility that dACC activity

could be decoded by an approximate neural integrator, which would have a very

weak sensitivity to dACC spike timing.

We therefore wished to test the presence of a temporal structure in dACC

activity that would be functionally relevant. More precisely, we intended to assess

this functional relevance in terms of improvement of the decoding of dACC activity

during cognitive control, as well as in terms of correlation between dACC activity

and future behavior of the animal.

A second important objective of the doctoral project was to propose a plausible

neuronal network which could process dACC activity in a way that would be

consistent with the conclusions of our data analysis. More precisely, the aim

was to deepen the understanding of the mechanisms by which temporal structure

could participate to shaping the dynamics of the network decoding dACC spike

trains.

1.3 Road map of the dissertation

This introduction, which sketches the general approach taken during the doctoral

work, constitutes Part I of the dissertation.

Part II reports data analysis results which show evidence in favor of a spike-

timing sensitive, non-linear decoder of cognitive-control related discharges.

This part of the dissertation corresponds to a rearrangement of a recently

published article [Logiaco et al. (2015)]. In order to show the entirety of

the results, we present this part of our research through a seamless and

slightly enriched text, in which the relation of the results to modeling has

been extended. This presentation of our data analysis incorporates the

supplementary information of the published article. We note that we used

the �gures as they were made for this article. Many were supplementary

�gures, which were often made a posteriori to answer reviewer's comments.

This implies that these �gures often relate to di�erent subsections of the new

layout. We apologize for the inconvenience that this may cause during the
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reading of the manuscript. In this part of the dissertation, we �rst introduce

in more details the state-of-the-art knowledge about dACC signaling during

cognitive control, as well as the de�nition of temporal coding (in chapter 2).

We then describe our analysis methods in chapter 3. After this, we present

our results in chapter 4. Finally, we discuss the implications for the function

of the neuronal network(s) which process dACC signals in chapter 5.

Part III describes a simple analytical tool permitting to investigate the impact

of the input's temporal structure on the dynamics and function of

recurrent neuronal networks. This part starts with a preamble explaining

our working hypothesis for the dynamics of the network processing dACC

activity (in chapter 6). We also explain why the previously existing

theoretical tools revealed insu�cient to permit a satisfying analysis of such

a network. This preamble is followed by an an introduction (chapter 7),

which expounds the unful�lled need for mathematical expressions

describing the dynamics of networks of recurrently connected single-neuron

models which can be �tted to neuronal recordings. These expressions have

to account for the high variability of neuronal spiking during functional

cortical activity, as well as for the strong adaptation properties of

excitatory neurons. We then describe in chapter 8 the mathematical

analysis we developed to �ll this gap in the theoretical literature. After

this, we present some tests for the accuracy of our analytical results, as

well as some applications, in chapter 9. We mention how our new

theoretical tool could be used to tackle in more details the question of the

processing of dACC activity by a recurrent neuronal network. Finally, we

discuss the novelty of our theoretical results in chapter 10.

Part IV concludes the dissertation. It summarizes how the doctoral work

contributed to deepen the understanding of how the temporal structure of

neuronal activity could be functionally relevant during cognitive

computations implemented by recurrent neuronal networks.



Part II

Evidence for a

spike-timing-sensitive and

non-linear decoder of cognitive

control signals





Chapter 2

Introduction: signals for

behavioral strategy adaptation in

the dorsal Anterior Cingulate

Cortex

Cognitive control is the management of cognitive processes. It involves the

selection, treatment and combination of relevant information by the brain, and it

allows animals to extract the rules of their environment and to learn to respond to

cues to increase their chances of survival [Koechlin et al. (2003); Ridderinkhof et al.

(2004)]. Evidence strongly suggests that frontal areas of the brain, including the

dorsal anterior cingulate cortex (dACC), are involved in driving this behavioral

adaptation process. However, the underlying neuronal mechanisms are not well

understood [Shenhav et al. (2013)].

2.1 Cognitive control is most often thought to

be supported by long time-scales of

neuronal processing

Most studies have focused on the number of spikes discharged by single

dACC units after informative events occur. Other potentially informative

features of the neural response, such as reproducibility of spike timing across

trials, have typically been ignored. The reason for that may be the apparent

unreliability of spike timing when observing frontal activity, which seems to be

in agreement with theoretical analyses of the steady-state activity in recurrent

networks [London et al. (2010)]. Also, cognitive processes often involve to hold
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information in working memory, a process that can naturally be implemented

through networks possessing a long time-scale (on the order of seconds, [Lim

and Goldman (2013); Cain and Shea-Brown (2012); Wong and Wang (2006)]).

Accordingly, most models of cognitive processing [Brunel and Wang (2001);

Mongillo et al. (2008); Rolls et al. (2010); Cain and Shea-Brown (2012)] rely on

stepwise �ring rate inputs, therefore disregarding the potential impact of the

�ner temporal structure of the driving signals. In the speci�c case of dACC, a

recent theory [Shenhav et al. (2013)] suggests that this area transmits a graded

signal: the expected value of engaging cognitive resources to adapt the behavior.

This signal has to be remembered from the moment when the current behavioral

policy appears to be improper until the moment when a more appropriate

strategy can be implemented. Hence, a simple neural integrator [Churchland

et al. (2011); Cain and Shea-Brown (2012); Lim and Goldman (2013); Bekolay

et al. (2014)], which by construction is insensitive to spike timing, would be well

suited to decode and memorize this signal. This neural integrator could be

implemented by the lateral prefrontal cortex ([Kim and Shadlen (1999), but

see [Rigotti et al. (2013); Hanks et al. (2015)]), which is a plausible dACC target

during behavioral adaptation [Procyk and Goldman-Rakic (2006); Rothé et al.

(2011); Shenhav et al. (2013)].

2.2 A gap in the literature concerning the

processing time-scale during cognitive

control

Some other brain regions that are not primarily involved in cognitive control

are however known to be sensitive to both the timing [Bialek et al. (1991)] and

the spatial distribution [Aronov et al. (2003)] of spikes within their inputs. These

features may improve information transfer between neurons through, for instance,

coincidence detection [Rudolph and Destexhe (2003)].

It is worth noting that, in frontal areas (including dACC) involved in

behavioral adaptation, several studies reported the presence of a temporal

structure in neuronal activity [Shmiel et al. (2005); Sakamoto et al. (2008);

Benchenane et al. (2010); van Wingerden et al. (2010); Buschman et al. (2012);

Narayanan et al. (2013); Totah et al. (2013); Stokes et al. (2013); Womelsdorf
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et al. (2014)]. This opens the question of whether �ne spike temporal patterns

could be relevant for cognitive control. However, the current observations are

not su�cient to conclude about the relevance of this temporal structure for

downstream stages of neuronal processing, and for the decision about future

behavior. Indeed, to the best of our knowledge, there exists no study comparing

the reliability and correlation with behavior of spike count and spike timing in

individual frontal neurons during a cognitive task. Comparing spike count vs.

spike timing sensitive decoders is central to the general view of temporal

coding [Panzeri et al. (2010)]. In this framework, temporal coding can be

de�ned as the improvement of information transmission based on sensitivity to

spike timing within an encoding time window [Panzeri et al. (2010)]. In the case

of discharges related to behavioral adaptation, which do not in general transmit

information about the dynamics of an external stimulus, this encoding time

window can be taken as the time-interval of response of the relevant population

of neurons [Panzeri et al. (2010)].

In fact, some temporal structure can be present within this encoding window

while still not improving decoding, because spike timing and spike count can carry

redundant information [Oram et al. (2001); Chicharro et al. (2011)]. In addition,

realistic neuronal decoders are likely to be unable to be optimally sensitive to all

statistics of their inputs. In particular, neurons and networks are likely to trade

o� temporal integration with sensitivity to spike timing [Rudolph and Destexhe

(2003)]. This also participates to explaining why, even in the presence of temporal

structure, the decoding strategy leading to highest information (among those

that can plausibly be implemented during neuronal processing) may be temporal

integration [Chicharro et al. (2011)].

Further, the temporal structure can be informative but still fail to correlate

with behavior, suggesting that downstream processes disregard it and, instead,

rely solely on neural integration (as reported in [Luna et al. (2005); Carney

et al. (2014)]). This may re�ect that the constraints on decoding strategy of

downstream areas are mainly not on the maximization of the discriminability of

the studied responses (usually, single-unit response to a limited stimulus set).

Information might not be a limiting factor as downstream areas have access to

many presynaptic neurons with either quite uncorrelated noise that can cancel

when their responses are pooled, or with correlations that do not impair

information transmission [Moreno-Bote et al. (2014)]. Instead, the constraints
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could be the generalization of the computation to di�erent types of stimuli, or

the di�culty of learning the decoding network's connectivity.

Hence, it is not trivial to determine whether the temporal patterning of spike

trains in frontal areas is actually relevant for the neuronal processes mediating

behavioral adaptation.

2.3 Investigation of the nature of the decoder

for behavioral adaptation signals in dorsal

Anterior Cingulate Cortex
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Figure 2.1: Task and proposed neural mechanisms. (a) During exploration, monkeys had to find, by trial-and-error, which

of 4 targets resulted in a reward. After receiving the 1st reward, monkeys entered a repetition period and received additional

rewards by touching the same target. (b) Plausible dACC role in the task [Quilodran et al. (2008); Shenhav et al. (2013); Khamassi

et al. (2013); Ullsperger et al. (2014)]: it processes feedback information (error or reward) to signal a behavioral strategy (either

exploration, or switch toward repetition, or repetitive behavior). It would also signal the adaptive value of updating the behavioral

strategy (“level of control”). A downstream area would combine dACC signals with a memory of previous choices to decide which

target to choose next. (c) Spike count vs. timing sensitive decoding of dACC signals. Middle: a neural integrator decoder [Kim

and Shadlen (1999); Cain and Shea-Brown (2012); Lim and Goldman (2013)] responding with a firing rate proportional to the

sum of input dACC spikes. The decoder maintains a memory of past inputs and can store a continuum of level of control values.

dACC neurons firing preferentially during either errors, or 1st rewards, or both [Quilodran et al. (2008)] could project to different

neural integrators. Bottom: an example of spatiotemporal decoder that is sensitive to the temporal structure of dACC spike trains

and implements a memory. The connections between neurons create two stable states, with high and low firing [Brunel and Wang

(2001); Dipoppa and Gutkin (2013b)]. The high activity state sustained through recurrent connections signals the need to adapt

behavior. This decoder would be sensitive to its input’s temporal structure, with some patterns favoring the transition to, and/or

stability of, the high activity state [Dipoppa and Gutkin (2013b)]. This simplified scheme illustrates how temporal coincidences in

the input may favor the discharge of downstream neurons.
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Here, we address the issue of temporal coding of behavioral adaptation signals

emitted by dACC neurons. We use recordings from monkeys engaged in a trial-

and-error learning task [Quilodran et al. (2008)], in which performance relied on

reward-based decision making and behavioral adaptation (Figure 2.1 (a)).

The task consisted in �nding by trial and error which one of 4 targets was

rewarded. Each trial led to the touch of a target and a feedback: a reward if the

touch was correct, nothing otherwise. In each block of trials (i.e. a problem),

monkeys �rst explored the di�erent targets in successive trials. The �rst reward

indicated discovery of the correct response. Then, a period occurred when the

monkeys could repeatedly touch the correct target in 3 successive trials to

exploit and receive additional rewards. The �ring rate of single dACC units was

previously shown to increase at feedback time during either exploration, or

repetition, or when switching between those two states [Quilodran et al. (2008)].

Hence, dACC neurons may signal whether and/or how behavior should be

adapted. In this context, we probe the putative structure and function of a

downstream neuronal network decoding dACC feedback-driven signals. To do

so, we investigate to what extent the temporal structure of dACC spike trains,

during post-feedback �ring, could improve information transmission and predict

behavior (Figure 2.1 (b)). Assuming a neural integrator decoding scheme, the

downstream network would compute and maintain the memory of the need for

behavioral adaptation on the basis of the number of spikes emitted by dACC

(Figure 2.1 (c), middle). This decoding network is therefore insensitive to its

input's temporal structure at a �ner time scale than the approximate integration

(i.e., memory) time scale.

Alternatively, the downstream network could be sensitive to the

spatiotemporal structure of dACC activity (Figure 2.1 (c), bottom). For

instance, temporal coincidences in the a�erent dACC signals could favor the

switch to, and maintenance of, a high-activity state in the downstream network

to encode behavioral adaptation [Dipoppa and Gutkin (2013b), see also Gutkin

et al. (2001); Dipoppa and Gutkin (2013a)]. Note that other mechanisms could

also explain the sensitivity of the downstream memory/decision network to

temporal structure (for another example, see [Szatmáry and Izhikevich (2010)]).

Notably, any network for which some non-linearity in the neuronal combination

of synaptic inputs sizably shapes the output signal would be expected to have

some sensitivity to the timing of input spikes. In the theoretical part of this

dissertation (Part III), we will tackle in more details the question of the nature
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of a decoding network that could hold items in memory, be sensitive to its

input's temporal structure and be consistent with the experimental literature.

Here, we focus on determining to what extent the characteristics of dACC

feedback-related discharges could be consistent with a decoding by a network

behaving as an approximate integrator.

We will actually show evidence suggesting that this is not the case. Instead, our

analyses appear consistent with a non-linear spatiotemporal decoding of dACC

activity.

First, we show that there are informative temporal patterns in single units

that can support a larger reliability of a plausible spike-timing sensitive decoder,

compared to a neural integrator. We found an optimal decoding time scale in the

range of 70-200 ms, which is much shorter than the memory time-scale required

by the task. The larger reliability of spike-timing sensitive decoding appeared to

be supported by the combination of a large spike count variability, and a presence

of informative temporal correlations between spike times.

Second, we show that some spike coincidences across jointly recorded neurons

are advantageous for decoding. However, the informative spike times appear

heterogeneous and distributed over the neuronal population, suggesting that

downstream neurons could bene�t from a non-linear spatiotemporal integration

of inputs.

Finally, we describe a new method to evaluate to what extent dACC

temporal patterns can predict the behavior of monkeys comparatively to spike

count. Importantly, using this new method, we �nd that deviations from a

prototypical temporal pattern sizably predict an increased response time of the

monkeys.





Chapter 3

Methods for analyzing dorsal

Anterior Cingulate Cortex activity

and monkeys’ behavior

In this chapter, we describe:

� the methods concerning the collection of the data (which was made in E.

Procyk's laboratory, by R. Quilodran and M. Rothé), as well as the selection

of the analyzed data, in section 3.1

� the methods (taken from the literature) used to investigate the coding

properties of dACC spike trains, in section 3.2

� the methodology we used to verify that spike-sorting artifacts were unlikely

to a�ect our results, in section 3.3

� a simple method we developed to analyze the monkey's eye movements from

the X-Y position of one eye, in section 3.4

� a methodology we developed to investigate the relation between temporal

patterns of spikes and the monkey's behavior, in section 3.5

� the classical statistical tests we used during the analysis, in section 3.6

3.1 Experimental methods

3.1.1 Electrophysiological recordings

Two male rhesus monkeys were implanted with a head-restraining device,

and neuronal activity was recorded by 1 to 4 epoxy-coated tungsten electrodes

(horizontal separation: 150 µm) placed in guide tubes and independently
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advanced in the dorsal bank of the rostral region of the cingulate sulcus.

Recording sites were con�rmed through anatomical MRI and

histology [Quilodran et al. (2008); Rothé et al. (2011)]. Extracellular activity

was sampled at 13 kHz and unitary discharges were identi�ed using online spike

sorting based on template matching (MSD, AlphaOmega). All experimental

procedures were in agreement with European, national, and local directives on

animal research.

3.1.2 Problem solving task and trial selection

Monkeys had to �nd, by trial-and-error, the rewarded target among 4 targets

presented on a touch screen (Figure 2.1 (a)). To begin a trial, the animal had to

touch a central item (lever), which triggered the appearance of a �xation point.

After 2 s of gaze �xation, the 4 targets appeared simultaneously. At �xation

point o�set, the animal had to select a target by making a saccade toward it,

�xate it for 0.5 s, and touch it following a GO signal (i.e. all targets bright). All

targets dimmed at the touch, and switched o� after 0.6 s. Reward (fruit juice)

was delivered if the correct target was selected, otherwise no reward occurred.

Throughout this dissertation, we de�ne a trial as the period of time between the

touch of the lever and 1 s after the reception of a feedback (either error, or 1st

reward, or repetition reward). In addition, we call task epoch the time interval

between 1 ms and 1 s after the reception of a given feedback. After a feedback,

a time break of 2 s was imposed before starting a new trial. Any break in gaze

�xation or touch within a trial led to resuming the sequence at the lever touch.

Note that we did not consider that this started a new trial. In case of an incorrect

choice, the animal could select another target in the following trial, and so on until

the discovery of the rewarded target (hence, ending an exploration period). The

correct target remained the same in the following trials, allowing the animal to

exploit the rewarded action (during a repetition period). We de�ne a problem as

the block of trials associated with one rewarded target location. A �ashing signal

indicated the end of repetition and the beginning of a new problem (the new

rewarded target had a 90% probability to be di�erent from the target rewarded

in the preceding problem). In a given problem, the reward size was constant;

and within a session, up to two di�erent reward sizes could be given. In 90% of

problems the repetition period lasted 3 trials after the 1st reward, whereas in 10%

of problems 7-11 repetitions could occur. Repetition trials beyond the 3rd one
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were excluded from the analysis to avoid possible surprise e�ects. At the time of

recordings, the task was well known: monkeys only failed to repeat the correct

touch in one of the trials following the discovery of the rewarded target in around

1% of problems. Then, both the incorrect touch and the following trials were

discarded from analysis, but previous trials were kept. As previously reported

[41], monkeys might be able to infer the rewarded target after 3 non-redundant

errors, i.e. the 3rd error would systematically trigger a switch to repetition.

Therefore, only 1st and 2nd erroneous touches as well as 1st rewards preceded

by less than 3 errors were included in the analysis. For the repetition period,

we selected all correct trials that followed a search with up to 3 preceding search

errors.

3.1.3 Analyzed units

For monkey P, all recorded units were used. For monkey M, only units showing

a signi�cant response to at least one event (either error, or 1st reward, or repetition

reward, or �xation breaks) were used (TEST 1 in [Quilodran et al. (2008)]). The

mean and standard deviations of the baseline �ring rate (taken from -600 to -200

ms before feedback onset) were computed. Units with a change of �ring rate of

magnitude higher than 5 standard deviations of the baseline within more than six

10 ms bins between +60 and +800 ms of at least one event were selected. Note

that this test cannot favor temporal coding in any way. This selection allowed us

to focus on a reasonable number of neurons to analyze (in terms of computing

time and statistical power, as there was a much larger number of recorded units

in monkey M).

3.2 Methods for investigating the coding

properties of spike trains

We will �rst present the methods for decoding dACC spike trains which

inform about which (plausible) decoding network would be better suited to

extract information from dACC spike trains. These methods can be found

in subsection 3.2.1.

Then, we will present the methods for characterizing more in details the
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statistics of dACC temporal structure that are useful for the (optimized)

decoder. This method permits to distinguish between the contribution of a

time-dependent �ring rate, and the contribution of temporal correlations. These

statistics can be linked to the biological mechanisms within dACC which are

shaping the neuronal signal. These methods can be found in subsection 3.2.2.

3.2.1 Decoding dACC activity with a spike train metrics

Neuronal circuits can either detect coincident depolarizations due to

spatiotemporally structured inputs, or loosely integrate all incoming inputs

during a given task epoch (see Figure 2.1 (a,b), [Rudolph and Destexhe (2003);

Cain and Shea-Brown (2012)]). Our analysis of dACC activity sought an

unambiguous post-synaptic signaling of the task epoch during which dACC

spike trains were emitted. This decoding approach is functionally relevant

because di�erent task epochs must result in di�erent adaptations of the

behavioral strategy in order to optimize performance.

When functioning in a coincidence detection mode, a post-synaptic neural

decoder might discharge speci�cally to a given task epoch if its input spike trains

would have a spatiotemporal structure more di�erent between task epochs than

within this epoch. Alternatively, a downstream neural integrator might become

selective for task epochs by receiving inputs from neurons that �re more in one

task epoch (see Figure 2.1, Figure 3.1).
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Figure 3.1: Decoding method. (a) Dissimilarity of single neuron spike trains. Left: the dissimilarity is the sum of the costs of matching

spike times and cancelling the spike count difference [Victor and Purpura (1996)]. The cost of matching spike times depends on the

parameter q (temporal sensitivity). When q = 0 s−1 (black curve), the dissimilarity only reflects the difference in spike count. For

q > 0 s−1, the dissimilarity increases as q times the interspike interval dt before saturating at 2. Right: Each value of q > 0 can be

related to a given time scale of Excitatory Post Synaptic Potentials (EPSPs, here taken as simple exponential traces: up). Indeed, decoding

with this q value and decoding by summation of these EPSPs both lead to a similar sensitivity to spike timing. For instance, q = 10 s−1

corresponds to a 0-200 ms range of dt for which the dissimilarities are smaller than 2 (the maximum). This can be matched to the range

of dt with efficient summation of 2 EPSPs decaying with 100 ms time scale (see section 3.2.1). The 0-200 ms range of dt therefore gives

rise to temporal coincidences. (b) Dissimilarity of multi-unit spike trains. Left: computation of the dissimilarity between two spike trains,

each of which contains spikes from 2 neurons [Aronov et al. (2003)]. The dissimilarity depends on the parameter k, which determines

the degree of distinction between the 2 neurons. The cost of matching 2 spikes is increased by an amount k if the 2 spikes were emitted

by 2 different neurons. As k increases the matching of spikes emitted by the same neuron is favored. For higher values of k, there is

a smaller range of between-neuron interspike intervals leading to dissimilarities smaller than 2 (i.e. leading to a temporal coincidence).

Right: higher values of k can be related to larger non-linearities in dendrites (here taken as thresholds and symbolized by a step within

a circle). In the left dendrite, there are no non-linearities: the synapses are close and the depolarizations due to synaptic inputs can be

directly summed and trigger firing (by crossing the threshold of the soma twice). This can mirror a maximal between-neuron summation,

i.e. k=0. Conversely, in the right dendrite, the two synapses are on different sub-branches which both possess a threshold non-linearity.

These thresholds (below which the synaptic currents are not transmitted to the soma) can prevent effective summation for large interspike

intervals (second spike pair). This can mirror decoding with intermediate k values, causing only smaller interspike intervals to be associated

with small dissimilarities between neurons (i.e. temporal coincidences).
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The e�ciency of a decoding strategy can be assessed by quantifying how

dissimilar spike trains are, within and between categories, in terms of either

(spatio)temporal structure or spike count. Within the theoretical framework

named spike train metrics, the distance or dissimilarity between two spike trains

is measured as a function of both the importance of spike timing [Victor and

Purpura (1996)] and the spatial distinction between the activity from di�erent

input neurons [Aronov et al. (2003)].

Single-unit spike train metrics

The distance d(s, s′) between two spike trains s, s′ is de�ned as the minimal

cost to transform s into s′ [Victor and Purpura (1996)]. This transformation

consists in using one of the three following steps sequentially:

� adding a spike, for a cost of 1;

� deleting a spike, for a cost of 1;

� changing the time of a spike by an amount dt, for a cost q · dt, where q is a

free parameter that determines the importance of spike timing (also named

timing sensitivity throughout the paper).

When q = 0 s−1, there is no cost for changing the timing. Consequently, the

distance d(s, s′) corresponds to the absolute spike count di�erence between the

two spike trains. As q increases, changing the timing of spikes becomes more

and more costly. Thus, a small distance d(s, s′) implies that s and s′ have spikes

that match in time, i.e. the temporal structure must be conserved. Two spikes

from s and s′ may be moved to be matched if they are separated by at most

2/q second. Otherwise, it is less costly to delete the �rst spike and reintroduce

a new matching spike, for a total cost of 2. Therefore, 2/q gives the maximal

between-trial interspike interval for which timing is accounted for.

Multi-unit spike train metrics

A multi-unit spike train is de�ned as the pattern of discharges from di�erent

neurons observed in a given trial, each spike being labeled by the identity of the

neuron that emitted it. To compute the distance d(s, s′) between two multi-unit

spike trains s, s′, two parameters can be considered: the timing sensitivity q, and

the degree of distinction k between spikes from di�erent neurons [Aronov et al.
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(2003)]. For example, if two neurons emit spike trains with statistically identical

temporal structures and �re with uncorrelated noise, then pooling their responses

can be better for decoding. Conversely, if two neurons emit opposed signals (for

instance an increase vs. a decrease of spiking in a given task epoch), then it is

important to distinguish between them to maximize information. The distance

d(s, s′) between two multi-unit spike trains is de�ned as the minimum cost to

transform s into s′, by using the steps previously described, with the additional

possibility to change the identity of the neuron that �red a given spike, for a cost

k. If k = 0, the identity of neurons does not matter at all. If k ≥ kmax = 2, the

responses are never matched between neurons, because removing a spike from a

given neuron and replacing it by a spike from another neuron at the correct time

is less costly. In general, two spikes from two di�erent neurons may be matched

if they are separated by less than (2−k)
q

second �so only very coincident spikes

are matched for intermediate k values.

Classification

A leave-one-out process was used to classify a given spike train s into the

task epoch E producing the most similar responses to s. The distance between s

and the activity produced during E was de�ned as the median of the pairwise

distances between s and any (other) spike train s′ ∈ E. Therefore, one spike

train s was predicted to belong to the task epoch E that minimized

median (dq,k(s, s′))
s′∈E, s′ ̸=s

.

Note that we also ran a decoding analysis of dACC activity by using a

small-distance biased classi�cation algorithm orginally proposed by [Victor and

Purpura (1996)] (z = −2 in their eq. 5, i.e. the distance between s and the

activity produced during E is
(
⟨(dq(s, s′))−2⟩s′∈E, s′ ̸=s

) 1
−2 ). We did not retain

this method because (i) it hinders classi�cation based on spike count decoding,

and (ii) it leads to an overall decrease of the number of signi�cant units and of

the information (all analyzed single units, signed-rank test on maxq(< I >t), all

ps < 10−5). These e�ects are likely to be related to the frequent occurrence of

zero pairwise distances in our dACC data set (due, for instance, to two empty

spike trains or, for q = 0 s−1, to two spike trains with the same spike count).

Although the occurrence of zero pairwise distances was more frequent within

task epochs, given the high variability of our data (which we will show

in Figure 4.10), it was also possible between task epochs. With the
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small-distance biased classi�cation, the presence of at least one zero pairwise

distance in both epochs triggered a chance-based clustering of spike trains,

irrespective of the 0-distance frequency in the two task epochs. Despite the

lower classi�cation power of this method, it leads to identical modulation of the

classi�cation performance by (q, k) as the median-based classi�cation (results for

the single-units classi�cation will be shown in Figure 4.3). In general, for our

very variable data, it is likely that any classi�cation relying on outliers would be

less e�cient than a classi�cation relying on a robust central value such as the

median.

A confusion matrix was built, in which the entry Nij on line i and column j

was the number of spike trains coming from task epoch i and predicted to belong

to task epoch j. If a trial was equally distant to several epochs, the fraction
1

Nclosest epochs
was added to all these epochs. The information Iraw in the confusion

matrix was:

Iraw =
1

N

∑

i,j

Nij · ln
( Nij · N∑

k Nik ·
∑

l Nlj

)
(3.1)

with N =
∑

i,j Nij . This corresponds to the mutual information between the

actual classi�cation of trials and the classi�cation that one would get if the

prediction were perfect. Hence, Iraw is always maximal for perfect prediction,

though the absolute maximum value depends on the balance of number of trials

between the two task epochs. We �nally computed a normalized information

Inorm by dividing Iraw by its maximal (perfect prediction) value:

Inorm =
Iraw

− 1
N

∑
i

((∑
j Nij

)
· ln
(∑

j
Nij

N

)) (3.2)

Note that this measure has the advantage of intrinsically accounting for the

distribution of the number of data points in di�erent categories to be classi�ed,

which is not the case of some other measures of classi�cation performance, such

as percentage of correct [Sindhwani et al. (2004)]. This was important in our

case because there were much less 1st reward or errors trials compared to

repetition trials (see Table 3.1).

To test whether classi�cation was above chance, trials were randomly permuted

between task epochs, and two groups were recreated (with the same number of

trials as the original task epoch clusters). The information content associated to

the shu�ed groups was then computed. The process was repeated 1000 times,

leading for each q or [q,k], to 1000 values of information under the null hypothesis
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! ! Behavioral!adaptation! Repetition!

Monkey!M! 1
st
!reward!discrimination! 30!(16<40)! 97!(62<130.25)!

Error!discrimination! 38!(27<47)! 88.5!(68<120)!

Monkey!P! 1
st
!reward!discrimination! 17!(14<21)! 60.5!(50<69)!

Error!discrimination! 27!(21<32)! 59!(47.5<71)!

!

!

Table 3.1: Median (and 25th and 75th percentile) number of trials for single-units that were selected as

significant. For the paired analysis, trial numbers were similar, with exceptions when the two waveforms were

jointly reliable only during a subpart of the recording (leading to slightly less trials).

that the discrimination between groups is due to random similarities between any

two spike trains. The information analysis was done on increasing time windows,

starting 1 ms after the onset of the feedback (to avoid pump-driven artifacts). The

�rst window lasted until 50 ms post-feedback, and was incrementally increased

to 600 ms by 50 ms steps, and then up to 1 s by 100 ms steps. The higher

resolution for smaller windows allowed the time course of fast initial transient

to be evaluated. We computed the maximum (over q or [q,k]) number Nw of

consecutive windows for which the information was strictly larger than the 95th

percentile of the 1000 sets of permuted data. The same process was repeated for

each set of permuted data, relative to the remaining 999 permuted sets. A neuron

(or a pair) was considered as signi�cant if Nw was strictly larger in the actual

data than in 95% of permuted data. This process did not favor a given value of

q or k, and could select neurons/pairs of neurons with di�erent information time

course. Also, it allowed us to exclude neurons with very unreliable activity, which

would act as �noise� during the subsequent analyses.

The information estimate is, in general, biased when only �nite data is

available. However, because the spike train metrics method makes the

assumption that spike trains within one task-epoch appear more similar to one

another than spike trains taken from two di�erent task-epochs, it is globally less

likely to generate the huge �nite sample positive bias observed with the �raw�

binning method [Victor (2005)]. Because classical analytical formulae for bias

estimation cannot be applied to the case of the confusion matrix [Victor and

Purpura (1996)], the bias was estimated empirically as the mean information

computed in 1000 data sets created by randomly permuting the trials between

task-epochs (as in [Saal et al. (2009)]). This bias estimate, which was usually

very small, was subtracted from the information estimate in the original data.
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In rare cases when slightly negative values were reached after bias-sustraction,

the �nal information value was set to 0. Note that we veri�ed that the qopt

found for the 1st reward vs. repetition classi�cation was identical with or

without bias correction, even though this classi�cation had the smallest number

of trials and could therefore be more sensitive to �nite-sample e�ects. More

generally, we assessed the possible remaining presence of a bias by computing for

each neuron (or pair of neuron) the minimum trial number over task-epochs

Ntrial min. We then compared di�erent statistics related to information (e.g.

increase in information thanks to temporal sensitivity, gain in information

during paired decoding, ...) between neurons (resp. pairs) with Ntrial min that

was higher vs. lower than the median. While several factors may cause a

di�erence between the group of high and low trial number (such as behavioral

di�erences between sessions of di�erent durations, ...), a �nite-sample bias would

be expected to have a very speci�c impact on the statisitical measurements.

Indeed, a given e�ect may result from a bias if, consistenly in the two monkeys,

the e�ect would decrease in the high trial number group and if this e�ect would

be smallest in monkey M (which had the highest trial number, see Table 3.1).

This pattern was never observed, arguing that our results are very unlikely to

re�ect a �nite-sample bias.

The di�erent parameter values were compared after bias correction. For each

q or [q,k] and for each signi�cant neuron, the temporal evolution of information

values was summarized by taking the mean information over 10 analysis

windows of increasing durations (ending from 100 ms to 1 s post-feedback onset,

by steps of 100 ms, favoring neither early nor late information). We refer to this

quantity as time-averaged information (⟨I⟩t, see Table 3.3 for a de�nition) in the

dissertation. Computing the time-averaged information is equivalent to

averaging over delays before a decision is made by the animal. Finally, a

non-parametric Friedman ANOVA was used to compare the time-averaged

bias-corrected normalized information as a function of di�erent q or [q,k], with

Tukey's honestly signi�cant di�erence criterion correction for multiple

comparisons. Note that there can be slight di�erences in the rankings of

(q,k)-values between the mean-information time-course and the Friedman anova

test. Indeed, the mean is more sensitive to outliers with large values, while the

average rank used during the Friedman test is determined by the consistency

(over neurons) of the within-neuron rankings of ⟨I⟩t between di�erent

(q,k)-values.
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Interpretation of the classification as a downstream decoding network and

non-triviality of the timing-related information improvement

The classi�cation algorithm described in the previous section can be related to

the performance of di�erent dowstream neuronal circuits (see Figure 3.1). Indeed,

the channels and membrane properties of single neurons can be approximately

described by decaying �lters (on the order of ms to hundreds of ms) of input

spike trains [Gerstner and Kistler (2002)]. In addition, the neuronal network's

architecture can create decays on much longer timescales, or even quasi-perfect

integration, which may implement short-term memory [Seung et al. (2000); Lim

and Goldman (2013)].

When the downstream neuronal network acts as an integrator, it e�ectively

'sees' input spike trains through their spike-count, and would perform a

classi�cation tantamount to the metrics with q = 0 s−1.

For q > 0s−1, the metrics is better interpreted through the equivalent similarity

between spike trains. For any pair of spikes separated by an interval δ ≥ 0 and

associated with a Victor and Purpura cost (or dissimilarity) d(δ), we can de�ne the

similarity S = Dmax−d(δ). Dmax = 2 is both the maximum dissimilarity between

two spikes and the sum of the costs of removing a spike and of reinserting a new

spike at the right time (see Figure 3.1 (a)). Hence, for δ ≤ 2
q
, S(δ) = 2 − q δ, and

else S = 0. This similarity can be related to the maximal depolarization reached

through the summation of two excitatory post-synaptic potential (EPSPs) that

would be caused by the two compared spikes. Indeed, if we take the (plausible)

choice of an exponential synaptic trace A exp(− t
τ
) (for a post-spike delay t > 0),

we can notice that the maximal depolarization reached after summation of the

two �ltered synaptic traces is A + A exp(− δ
τ
). We can �nally de�ne an 'excess

depolarization' E above a baseline (here, the depolarization reached with a single

spike): E(δ) = A exp(− δ
τ
). The functions S(δ) and E(δ) have similar shapes and

may be matched; in particular, we can equate:

� the maximal amplitudes of S and E: A = Dmax = 2

� the integrals of S and E:
∫

f(δ)dδ = Aτ =
∫

S(δ)dδ = 2
q

In other words, the (synaptic) decaying time-scale τ can be matched to
1
q
[Victor and Purpura (1997); see also van Rossum (2001); Paiva et al. (2010)

for related ideas]. For paired spikes, the more similar the two spikes are
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according to the Victor and Pupura distance, the more excited would a

dowstream decoder (reacting with a time-scale ≈ 1
q
) be through summation of

the depolarizations induced by the two spike trains. Finally, when additional

spikes are present in one spike train, each spurious spike induces an increase in

the total dissimilarity equal to half the maximal dissimilarity that a spike pair

can reach. Similarly, an isolated spike induces a spurious depolarization of

amplitude ≈ A once, while a maximally dissimilar spike pair reaches this

depolarization twice (once for each spike of the pair).

Concerning the multi-unit spike train metrics, the di�erent values of the

between-neuron distinction degree k may be interpreted as di�erent degrees of

spatial separation (through reception by di�erent neurons or by di�erent parts

of a dendritic tree) during the downstream combination of dACC signals

(see Figure 3.1 (b)). Indeed, a maximal distinction degree can be implemented

trough decoding by two di�erent, unconnected neurons. Further, intermediate

distinction degrees could (for instance) be implemented through di�erent

degrees of dendritic separation leading to tighter or looser requirements on the

interspike interval to allow summation. In particular, threshold-like

non-linearities in dendrites can prevent the summation of jittered EPSPs

occuring in di�erent dendrites (see Figure 3.1 (b, right)).

The metrics therefore accounts for plausible constraints of the downstream

circuits in terms of signal processing, assuming the presence of one main

decaying timescale for input �ltering. Analysis techniques explicitly using

exponential �ltering for spike train classi�cation were indeed found to behave

almost identically to the Victor and Purpura distance [van Rossum (2001);

Paiva et al. (2010); Chicharro et al. (2011)]. This is why the performance of the

classi�cation procedure is tantamount to the performance of these di�erent

decoding downstream circuits (rather than to the maximum amount of

information that a perfect decoder, without any constraint, could reach).

Importantly, the presence of (task-epoch-speci�c) temporal structure does

not necessarily cause an improvement of the decoding performance with an

optimal value qopt > 0 compared to q = 0. Indeed, temporal modulations may

covary with spike-count di�erences, implying a redundancy between the

spike-count based and spike-timing-based information. Further, the temporal

information accessible to a biologically plausible decoder might reveal less

robust than a time-integrated spike count. This is particularly likely to happen
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in cases when the spike rate is consistently higher in one task-epoch compared

to the other, leading to a between-task-epoch spike count di�erence that is

consistent over time. This di�erence could be detected with more and more

accuracy when evidence is accumulated over time through integration. This

con�guration (�ring rate consistently higher in one task-epoch) seems to often

qualitatively occur for dACC �ring rates (see Figure 2.1 (c), Figure 4.1).

More precisely, this can correspond to cases when the downstream network

needs to distinguish between two time-dependent (i.e., inhomogeneous) Poisson

processes with �ring intensities λ1(t) and λ2(t), such that for any time within

the encoding window, λ1(t) > λ2(t). The decoding of these two Poisson

processes with the spike train metrics can be related to the estimation (from

sample spike trains) of the dissimilarity between the two vectors of values of

�ring intensity λ⃗1 and λ⃗2 (i.e., the dissimilarity between two Post-Event Time

Histograms PETHs, [Naud et al. (2011)]). We note that even though the spike

train metrics decoding and the estimation of the dissimilarity between two

PETHs are not exactly equivalent, both of them seek a processing mechanism

permitting to distinguish well two di�erent spiking processes. Hence, we will

just use the estimation of the dissimilarity between PETHs in order to more

formally illustrate the non-triviality of the improvement of such a distinction

between spiking processes through temporal sensitivity of the processing

mechanism. We will use the L1 norm of the di�erence between λ⃗1 and λ⃗2 as a

measure of how much these vectors are dissimilar. Then, the decoding can be

seen as an estimation of
∑

t|λ1(t) − λ2(t)| =
∑

t (λ1(t) − λ2(t)) = (
∑

t λ1(t)) − (
∑

t λ2(t)). As the sum of

independent Poisson variables is also Poisson distributed, the decoding process

is equivalent to the estimation of the di�erence of �ring intensity of two Poisson

variables, each of them being the temporal integration of one vector λ⃗i. The

minimum variance unbiased estimator of this di�erence actually is the di�erence

of the means of two samples from the two variables [Bergamaschi et al. (2013)],

i.e. this type of optimized estimator disregards spike timing. Hence, in this

situation, temporal integration over the encoding window can permit maximal

signal extraction despite ignoring temporal structure. This occurs through an

averaging of samples which permit, in our case study, to average out the

estimation errors over time. In contrast, a process which would compute

absolute di�erences of spike count in small time bins would in this situation

accumulate errors over di�erent time bins, and would therefore be less e�cient.
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Figure 3.2: Proof of principle for the non-triviality of the decoding improvement with temporal sensitivity.

Adapted from Fig. 2 of [Chicharro et al. (2011)]. The labeling of the lower graph was adapted to match our

notation. Top: Rate profile of the two types of time-dependent Poisson processes producing the spike trains to

be classified (each of the process is in a different color). Bottom: normalized information as a function of 1/q

(in ms), for classifying data sets with 20 trials per stimulus. The data is the mean over 20 classifications, and

the error bar is the standard deviation, shown for the red curve only. The different colors stand for different

classification algorithms (all taking as a basis the VP distance; the red curve is exactly the algorithm that

we used in Figure 4.3). Spike count classification (corresponding to q=0) does as well as, or better than,

any temporal sensitivity, because the information in the temporal structure is redundant with the spike-count

information.

Along those lines, previous articles reported an absence of

timing-sensitivity-related information improvement even in the presence of

category-speci�c temporal modulations in the spiking response [Oram et al.

(2001); Chicharro et al. (2011)]. To illustrate, we reproduce here a �gure

from [Chicharro et al. (2011)] where this was the case (see Figure 3.2).

In conclusion, as pointed out in [Chicharro et al. (2011)], the

spike-train-based classi�cation does not detect all the existing timescales of the

analyzed neuronal activity. Instead, the spike-train-based classi�cation aims at

testing whether the reliability of temporal structure could allow a plausible

downstream decoder to take advantage of it, which relates to the biological

plausibility of temporal information transmission [London et al. (2010)].

Algorithms and numerical methods

We ran all calculations on a cluster of 320 nodes (Consorzio

Interuniversitario per le Applicazioni di Supercalcolo Per Università e Ricerca
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CASPUR), on a private cluster (courtesy of S. Solinas) and on a PC laptop,

using MATLAB (we adapted Victor's code, freely available at

http://www-users.med.cornell.edu/∼jdvicto/metricdf.html). For the single-unit

decoding and response time analysis, we used Reich's c/MEX code and a

modi�ed MATLAB non-vectorized algorithm, respectively. For the multi-unit

decoding analysis, we adapted Kreuz's vectorized algorithm in MATLAB code

(to handle the case of empty spike trains). q was varied within

[0, 5, 10, 15, 20, 25, 30, 35, 40, 60, 80]s−1, whereas k was varied within

[0,0.25,0.5,0.75,1,1.25,1.5,1.75,2].

3.2.2 Characterizing the nature of the informative spiking

statistics

We used spike-time shu�ing to investigate to what extent random samples

from a time-varying trial-averaged rate density (as in Poisson neurons with

time-varying rate) could underlie the advantage of the temporal structure for

decoding [Victor and Purpura (1996)]. We will refer to this trial-averaged rate

density as a Peri-Event-Time Histogram (PETH). For each cell and each task

epoch separately, we grouped all spikes emitted in the interval [0.001, 1]s

post-feedback and randomly assigned each of them to a trial (repeated 1000

times, see Figure 4.10 (a) for a schematic explanation of the method). As a

consequence, the number of spikes in each trial was actually drawn from a

Binomial distribution with parameters n = Nspikes and p = 1
Ntrials

, which �

following a common approximation � is close to a Poisson variable. Indeed, p

was rather small (the trial number was usually large: 25th quantiles were 14.25

and 51.25 for 1st reward and repetition respectively); and the total number of

spikes n was large (25th quantiles were 53.75 and 175 for 1st reward and

repetition respectively). Under the Poisson approximation, spike counts

restricted to sub-analysis windows are also Poisson (Raikov's theorem). This

allowed us to build the spike-shu�ed data for smaller analysis windows by

simple pruning of the 1000 shu�ed data of the largest window.

We used a second shu�ing procedure to test to what extent information

transmission could be determined by time-varying �ring rates and spike-count

variability as in the original data (see Figure 4.10 (d) for a schematic

explanation of the method). In contrast to the previous shu�ing method, this

procedure considered that time-varying �ring rate was modulated by a
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multiplicative factor. This factor constrained the spike-count variability to �t

the original data, and it was speci�c to each trial and time independent. Hence,

this shu�ing procedure not only conserved the PETH, but also the number of

spikes present in each trial. To do so, for each cell, each task epoch, and each

analysis window, we formed an ordered pool of all emitted spikes. Independently

for each of these groups of spikes, we created 1000 shu�ed data sets by

randomly permuting the order of the spikes before reassigning to each trial the

exact same number of spikes as in original data (without replacement).

Because both shu�ing methods produced spike-shu�ed data with the same

number of trials as in the original data, the �nite-sample information bias

should be similar in both cases and should cancel when looking at the

information di�erence, which was the relevant quantity. The bias was therefore

not re-evaluated for this analysis.

3.3 Methodology for testing the negligibility of

spike-sorting artifacts for the conclusions of

the study

Spike-sorting relying on waveform shape (template) is reliable but does classify

erroneously a small proportion of spikes. We explain below how we determined

that these artifacts were unlikely to signi�cantly a�ect our results.

• First, coincident spikes from di�erent neurons will create 'mixture waveforms'

that will be rejected by the algorithm (i.e. the spikes will not be assigned

to putative neurons). Given that this phenomenon was very uncommon in

our recordings, and and given that synchronized-spikes removal should

decrease the reliability of both spike count and temporal coincidence

decoding schemes, we do not expect this artifact to have a sizable impact

on our analyses.

• Second, a small proportion of spikes accepted in a template are 'false

positives' and belong to neurons di�erent from the majority neuron.

However, this is unlikely to favor spike-timing sensitive decoding over spike

count decoding. Indeed, there was a bias toward having more cells �ring

prefentially during behavioral adaptation Quilodran et al. (2008). In
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consequence, it was more likely that two randomly chosen neurons would

show the same �ring preference over task-epochs (i.e. either they would

both �re more on average during the task-epoch requiring behavioral

adaptation, or both �re more on average during the repetition task-epoch).

In this case, one could expect that the inclusion of the erroneously

classi�ed spikes would cause an increase in the reliability of both spike

count and spike timing sensitive decoding (in the latter case, provided that

the erroneously classi�ed spikes are not damaging the reliability of the

temporal pattern of activity of the majority neuron). We investigated this

by comparing the decoding performance (⟨I⟩t, see Table 3.3) between

di�erent types of pairs of neurons when the decoder either ignored, or

accounted for, the label of the spikes. More speci�cally, we used either

spatially insensitive decoding (i.e. k = 0, a decoding which is insensitive to

the neurons' identities), or spatially separate decoding (k = 2, a decoding

which fully separates the activity of the two units). We contrasted the

results between pairs of neurons for which both units �re preferentially in

the same task-epoch, and for pairs with the two neurons �ring

preferentially in di�erent task-epochs. A given neuron was said to �re

preferentially in a given task epoch when its mean �ring rate (in a

[0.001,1]s window) was larger in this task epoch than in the other decoded

task-epoch. We found that, when using spatially insensitive decoding (i.e.

k = 0), pairs of neurons with the same �ring preference performed better

compared to pairs with di�erent spiking preferences (pairs with signi�cant

coding, rank-sum test comparing: (i) spatially insensitive

spike-count-based decoding ⟨I (q = 0, k = 0)⟩t : ps < 10−4; (ii) spatially

insensitive decoding with spike-timing sensitivity ⟨I (qopt, k = 0)⟩t :

ps < 10−2). Note that we took qopt ≈ 10s−1, as we will see later in the

manuscript that this value of q appeared to maximize the mean

information over neurons (see Figure 4.2). We also veri�ed that the

above-described di�erence between the pairs with same vs. di�erent �ring

preference was not likely to re�ect di�erent intrinsic properties of the

neurons between the two groups. Indeed, spatially separated decoding

performed equivalently in the two groups (⟨I (q = 0, k = 2)⟩t or

⟨I (qopt, k = 2)⟩t, all ps > 0.19).

We now consider the (less probable) case when a spike-sorting error leads

to the inclusion of erroneously classi�ed spikes coming from a cell with a
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di�erent �ring preference over task-epochs compared to the majority cell.

Then, both spike count and timing-sensitive decoding are likely to be

negatively impacted, given the small probability that the erroneously

classi�ed spikes can coincide with the precisely timed spikes of the

majority neuron. Indeed, as we will see in Figure 4.12 (b-c), the temporal

patterns of neuronal activity often di�ered between di�erent neurons.

Accordingly, when looking at pairs composed of two units with opposite

�ring preference, the information loss in spatially-insensitive (k = 0)

decoding compared to spatially-separated (k = 2) decoding was not

signi�cantly distinct between timing sensitive and spike count codes

(signed-rank test on

(⟨I (q = 0, k = 2)⟩t − ⟨I (q = 0, k = 0)⟩t) − (⟨I (qopt, k = 2)⟩t − ⟨I (qopt, k = 0)⟩t) , all ps > 0.1).

This suggests that optimal timing-sensitive codes (i.e. q = qopt) that are

spatially-insensitive (i.e. the identity of the neuron which �res is unknown

or ignored using k = 0) were not overall robustly better than spike-count

at de-mixing two activities with opposite �ring preference.

Overall, it is very unlikely that the 'false positive' spikes in a template,

which are a minority and which do not appear to robustly favor spike-timing

sensitive decoding, could sizably a�ect our results.

• Third, spikes of one neuron might pass from one template to another template

(if the recording drifts), which could only potentially bias our pair of neurons

analysis. The inter-electrode distance (150 µm of horizontal separation and,

usually, di�erent depths) made this phenomenon extremely unlikely between

two di�erent electrodes; this e�ect could only possibly a�ect pairs which

templates were sorted on the same electrode. Such `template exchange'

might arti�cially produce low kopt values in pairs recorded on the same

electrode as compared to pairs recorded from di�erent electrodes, and might

arti�cially create the presence of pairs with kopt = 0 (i.e. with the properties

described in Figure 4.15).

We tested this hypothesis by researching whether there was a consistent

di�erence between pairs of neurons recorded from same vs. di�erent

electrodes. Note that such a di�erence may also arise if the inputs driving

dACC are spatially segregated, making two closeby neurons more likely to

receive similar inputs �as commonly observed, including in frontal

areas [Schall et al. (1995)]. In this case, the di�erences between pairs

recorded on the same vs. di�erent electrodes could be speci�c to, say,
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! 1
st
$reward$discrimination$ Errors$discrimination$

Monkey$M$ Monkey$P$ Both$monkeys$ Monkey$M$ Monkey$P$ Both$monkeys$

Distribution$ of$

kopt$

Diff.!electrodes!

!

mean=1.19!

median=1.5!

Diff.!electrodes!

!

mean=1.13!

median=1.25!

Diff.!electrodes!

!

mean=1.15!

median=1.25!

Diff.!electrodes!

!

mean=1.48!

median=1.75!

Diff.!electrodes!

!

mean=1.17!

median=1.25!

Diff.!electrodes!

!

mean=1.26!

median=1.5!

Same!electrode!

!

mean=1.21!

median=1.375!

Same!electrode!

!

mean=1.16!

median=1.25!

Same!electrode!

!

mean=1.18!

median=1.25!

Same!electrode!

!

mean=1.08!

median=1.125!

Same!electrode!

!

mean=0.87!

median=1!

Same!electrode!

!

mean=0.96!

median=1!

pranksum=0.95! pranksum=0.81! pranksum=0.83! pranksum=0.020! pranksum=0.012! pranksum=2.0!10
@3
!

Proportion$ of$$

pairs$ for$which$

kopt=0$$

Diff.!electrodes!

4/43=0.093!

Diff.!electrodes!

15/82=0.18!

Diff.!electrodes!

19/125=0.15!

Diff.!electrodes!

3/51=0.059!

Diff.!electrodes!

16/128=0.125!

Diff.!electrodes!

19/179=0.11!

Same!electrode!

4/20=0.20!

Same!electrode!

4/32=0.125!

Same!electrode!

8/52=0.15!

Same!electrode!

7/34=0.21!

Same!electrode!

13/48=0.27!

Same!electrode!

20/82=0.24!

pfisher=0.17! pfisher=0.49! pfisher=0.91! pfisher=0.063! pfisher=0.031! pfisher=0.0037!

!

Table 3.2: Comparison of the distribution of kopt values, and of the proportion of pairs with kopt = 0,

between pairs recorded on different electrodes vs. the same electrode. Note that kopt is the value of the

parameter k that maximized time-averaged information (see [Table 3.3]). There were no significant differences

for 1st-reward discrimination, contrary to a consistent bias towards lower k values in the same electrode

group expected if waveforms from different neurons were not well separated between different templates. The

difference observed exclusively during errors classification most likely results from a spatial organization of the

inputs responsible for the firing of dACC neurons during the error task-epoch. This can lead to more similar

neural responses for closeby neurons as compared to more distant neurons.

errors discrimination, because the inputs driving the neurons at di�erent

moments of the task may have di�erent spatial organization. In contrast, a

generalized and consistent di�erence between these two groups may reveal

either a bias due to spike-sorting or a generalized spatial structure of

inputs.

Table 3.2 describes the results of:

� a rank sum test comparing distributions of kopt values, where kopt is

the value of the parameter k that maximized time-averaged information

(see [Table 3.3]).

� a Fisher test comparing the proportion of pairs with kopt = 0

for signi�cantly informative pairs recorded from the same vs. di�erent

electrodes.
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For 1st reward discrimination, the distributions of kopt values and the

proportion of pairs with kopt = 0 were statistically identical among the

pairs recorded from the same vs. di�erent electrodes. By contrast, for

errors discrimination the kopt values were higher (and the proportion of

kopt = 0 smaller) for the group of pairs recorded from di�erent electrodes.

This result appears consistent with the existence of a spatial organization

of inputs driving discharges during errors, and inconsistent with a

(general) in�uence of spike sorting artifacts.

3.4 Methods for analyzing eye movements

We veri�ed that purely motor di�erences between 1st reward and repetition

feedbacks were unlikely to produce the advantage of timing sensitivity for

decoding. Here, we describe the methodology we used to perform this control

analysis.

After target touch, arm-movements were largely a return from the target to

the central 'lever' button occuring after gaze-shift. We therefore focused the

analysis on eye movements, which were monitored with an infrared system (Iscan

Inc., USA). We aimed at �nding a threshold on the derivative of the recorded

eye position which could de�ne an eye movement. We �ltered the signal with a

gaussian of standard deviation 9 ms (changing this value by a few ms was not

critical, see [Martinez-Conde et al. (2000)] for a similar approach). We then built

a distribution of �ltered eye-position derivatives, using peri-choice-saccade (0.1 s

before to 0.5 s after targets onset) and post-reward (until +1 s) data, separately in

X and Y. Distributions were gaussian-like supplemented with outliers (long tails).

We used the threshold at which the data signi�cantly di�ered from a gaussian

� determined using the Grubbs Test implemented in the matlab �le exchange

function deleteoutliers [Shoelson (2003)] � to detect a movement in either X or

Y. These X and Y thresholds matched well 'intuitive' saccade detection when we

examined a large subset of traces. We actually chose the standard deviation of the

�lter for the position signal in order to maximize the gaussianity of the remaining

distribution (after excluding outliers with the Grubbs Test).

Note that we did not di�erentiate between saccades and blinks (which both

result in large derivative values of the recorded eye position), because they can

trigger spiking in the same area [Bodis-Wollner et al. (1999)]. For simplicity, we
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use the expression 'eye movement' to refer to any threshold crossing for recorded

eye speed.

We characterized the eye motor activity between the go signal for target touch

(occuring after target �xation) and 1s post-reward. Monkey P was very often

breaking �xation before reward time (not shown), while monkey M was often

maintaining �xation after reward time (as we will show in Figure 4.9 (a)). In

both monkeys, di�erences could be seen between 1st reward and repetition (e.g.

in the number of saccades, latency of �rst saccade following the reward, as we

will show in Figure 4.9 (a) for monkey M). Hence, there were di�erences in motor

activity between 1st reward and repetition task epoch. However, we note that

these motor di�erences may actually not be re�ected in the neuronal activity,

or they may only impact neuronal activity indirectly, through a covariation with

cognitive computations. Indeed, eye-movements may be correlated to attention

and cognitive processing [Katnani and Gandhi (2013)]. This phenomenon seemed

to occur at least for late eye-shifts in monkey M, as trials with late post-�rst-

reward 1st eye movement often led to a shorter response time of the monkey at

the following trial (as we will show in Figure 4.9 (c)). Therefore, a correlation

between these late saccades and neural activity would still be compatible with a

cognitive correlate of the discharge.

In conclusion, we had to test whether purely motor di�erences between 1st

reward and repetition task epoch could participate to the advantage of temporal

sensitivity for decoding. We will now describe how we determined that this was

unlikely.

We focused on monkey M whose behavior allowed us to decode trials without

any saccade or blink detected between the �xation period and the end of the

analysis window (in Figure 4.9 (d,e,i)), or between the �xation period and 300 ms

after the end of the analysis window (in Figure 4.9 (f,g,j)). This delay of 300 ms

was chosen because it is likely to eliminate preparation activity directly triggering

saccades (as the activity occuring, e.g., in the Frontal Eye Field [Hanes et al.

(1995)]). We also excluded rare trials when, between saccade and reward time,

the gaze had slowly drifted by more than one third of the inter-target di�erence.

Because hand movements were almost always occuring after gaze shift, this process

also minimized them. Beside, we stress that even though removing trials according

to eye movements detection could induce some more pronounced di�erences in

the proportion of the di�erent targets between 1st reward and repetition, this was

very unlikely to favor purely motor-based classi�cation, as target reach probably
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happened too early (600 ms before the start of the analysis window) to still

in�uence spiking.

Therefore, our trial-removal process would strongly reduce the advantage of

temporal sensitivity for decoding if this advantage was re�ecting motor activity

(or premotor activity when the �rst movement occurs later than 300ms after the

end of the analysis window). To test whether this was the case, we compared

the improvement of information through temporal sensitivity

(I (q ≈ qopt) − I (q = 0)) between the original data and data downsampled to

remove putative motor or premotor activity. We also compared data

downsampled to remove putative motor or premotor activity, to randomly

downsampled data with identical trial number. Hence, the �nite-sample bias

should be similar between these two groups. Therefore, this bias should not

impact the comparison between these two types of information values, and we

indeed compared them directly without trying to evaluate the bias

(in Figure 4.9 (e,g)). In addition, in order to consistently display bias-subtracted

information in Figure 4.9 (d,f) as in all �gures, the �nite-sample information

bias was evaluated as the mean information in 1000 shu�e data sets for which

eye-movement free trials were randomly permuted between task-epochs.

Note that eye-movement data were only available in 38 signi�cant neurons

among the 61 from monkey M whose activity signi�cantly distinguished between

1st reward and repetition (i.e. those neurons used in Figure 4.2 (a, left)).

3.5 Methods for investigating the relation

between neuronal activity and future

behavior

For this analysis, only neurons with signi�cant 1st reward classi�cation and

with at least 5 available trials were used. Some additional analyses also tested

di�erent subgroups of this ensemble of neurons (in Figure 4.18 and Figure 4.19).

At the behavioral level, we focused on the response time which was de�ned as

the time between the GO signal (for hand movement) following the 1st reward,

and the subsequent target touch. At the neuronal level, we aimed at quantifying

how much a given spike train deviated from a (neuron-speci�c) prototypical 1st
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reward spike train.

3.5.1 Quantifying how much a spike train deviates from

a prototype

For any given neuron, we wanted to quantify to what extent a spike train s

was an outlier within the entire set of spike trains produced at 1st reward, i.e.

how much it deviated from the discharge `typically' emitted during that epoch.

To quantify this, it is possible to take the median of all pairwise dissimilarities

between each spike train s and any other spike train s′ emitted during the 1st

reward epoch. Indeed, in the space of neuronal responses, an outlier will be more

dissimilar to the data set as a whole when compared to a data point that is close

to the central point of the data set.

We now tackle the question of the choice of an appropriate dissimilarity

measure.

The original Victor & Purpura distance d(s, s′) appears to not be optimal

for this particular application. Indeed, it sums the costs to match any spike of

train s to a spike of train s′ (see subsection 3.2.1, [Victor and Purpura (1996)]).

Thus, all pairwise distances involving a train with many spikes tend to be larger

than those involving a train with little spikes. For instance, let s = {0.1, 0.5}

(i.e. it contains one spike at time t = 0.1 s and a second spike at t = 0.5

s) and s′ = {0.11, 0.51}. Their distance is then d1(s, s′) = 2 · 0.01 q. Now, if

s = {0.1} and s′ = {0.11, 0.51}, then d2(s, s′) = 1 + 0.01 q. Therefore, if we

take q to roughly match the temporal jitter of ±0.01 s (i.e. q = 100 s−1), then

d1 = d2, though during the �rst distance computation the spike matching was

both as temporally precise as, and more reliable than, during the second distance

computation. In order to avoid this scaling with spike number, we divided the

Victor & Purpura distance by the number of times when two spikes (from the two

trials) were 'coincident' (i.e., 'matched' during dissimilarity computation). Two

spikes were considered 'coincident' when they were associated with a distance

d < (Dmax = 2). There was no coincidence both in cases when a spike was deleted

and then reinserted at the right time (for q > 0), and in cases when a spike was

simply removed or added. Note that for q = 0, the number of 'coincidences' (i.e.,

'spike matchings') is the spike count of the trial with less spikes. Therefore, the

normalized distance can be expressed as:
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d∗(s, s′) =
q

Nc
·

Nc∑

i

∣∣∣ti
s − ti

s′

∣∣∣+
C

Nc
= q · ⟨dt⟩ +

C

Nc
(3.3)

where Nc denotes the number of coincident spike pairs, ti
s the time of the ith

coincident spike in train s, ⟨dt⟩ the mean jitter among coincident spikes, and C

the total cost for inserting and/or deleting spikes. The �rst term quanti�es the

dissimilarity due to coincident (i.e., 'matched') spikes, whereas the second one is

the dissimilarity due to unmatched spikes. For q > 0, this measure quanti�es the

reliability of temporal coincidence detection between two spike trains. For q =

0s−1, it quanti�es the absolute spike count di�erence relative to the shared spike

count. In both cases, the normalized distance behaves similarly to an inverted

signal-to-noise ratio. In this interpretation, the signal is taken as the coincident

spikes. The noise is the unmatched spikes, and the temporal jitter of coincident

spikes relative to the considered 'coincidence window' for q > 0.

In the absence of coincident spikes, we simply used the original Victor &

Purpura distance. For q = 0 s−1, the absence of coincident spikes only happens

when one spike train is empty. In this case, some intuitive order relations are

conserved. Let sx denote a spike train containing x spikes. Then: d(s0, sx) >

d(s0, sy) i� x > y, and d(s0, sx) > d(s1, sx) if x > 1. For q > 0, the absence

of matching spike could also happen when the distance between two spike trains

sx, sy is maximum and equal to x + y, because no spikes are close enough in time

to be advantageously matched. In this case, the distance grows with the number

of spikes that are unmatchable, i.e. very dissimilar, which appears sound. We

note that our results show (as will be visible soon) an increase of information

driven by temporal spike matching, which implies that this 'no coincident spikes'

situation was likely to be unfrequent.

Note that the new distance we designed has a di�erent purpose and e�ect

from the previously proposed division by the sum of spike count in the two spike

trains and, more generally, from other re-scaled spike train dissimilarity

measures [Naud et al. (2011)]. Indeed, rather than bounding the measure, or

merely averaging some jitter statistics, we tried to build a measure that would

evaluate dissimilarities between spike trains as perceived by di�erent plausible

decoders which are more or less sensitive to spike timing and spike count,

without being biased by the number of spikes. Notably, we did not want the

spikes that could not be matched to enter in the normalization factor for the

dissimilarity measure (which would happen with a simple division by spike
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count).

Finally, we stress that as expected, the normalized distance d∗(s, s′) showed

similar classi�cation ability as compared to the classical Victor & Purpura

distance d. Indeed, for any spike train s, since both the intra- and inter-task

epoch distances d to s will increase with the spike count of s, a smaller d for a

given task epoch still indicates a greater similarity relative to the other task

epoch(s). To corroborate this hypothesis, we tested the 1st reward classi�cation

with the normalized metrics. To do so, we used the very same trials that have

been extracted for the response time analysis. Both the number and the identity

of the signi�cant neurons were consistent with those found with the classical

metrics (Monkey M: 65 signi�cant neurons vs. 61, of which 57 are shared;

monkey P: 50 signi�cant neurons in both cases, 44 shared). The classi�cation

results were also equivalent, as con�rmed by a rank sum test comparing the

maximum (over timing sensitivity values) time-averaged information among

signi�cant neurons (all ps > 0.74). In addition, the normalized metrics

uncovered an increase of time-averaged information with timing sensitivity

adaptation, independently in both monkeys (Friedman ANOVA on

time-averaged information < I >t, all p < 10−8; qopt = 15s−1 and 10s−1 for

monkey M and P respectively showed higher rank than q = 0 after post-hoc

comparisons with Tukey's honestly signi�cant criterion).

3.5.2 Testing whether deviation from prototype is

predictive of response time

Let r̃ denote the median value of observed response times, T+ be the set of

1st reward trials followed by a response time larger than r̃, and T− the set of

trials followed by a response time lower than r̃. For each spike train s, we

calculated the dissimilarity between s and prototypical 1st reward activity (i.e.

median
(
d∗

q (s, s′)
)

s′∈ 1st reward, s′ ̸=s
, similar to the spike train classi�cation

analysis). We then de�ned DT+ (DT−) as the mean over all s ∈ T+ (T−) of the

dissimilarity between s and prototypical 1st reward activity. We �nally

computed the overall di�erence of deviation from the prototypical discharge at

1st reward as D = DT+ − DT− . D was computed for multiple time window

lengths: from 100 ms to 1 s post-feedback time, by increments of 100 ms.

Finally, a bias score

b =
∑

− bias win log
(
psigned rank

(
D
))

−
∑

+ bias win log
(
psigned rank

(
D
))

was
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computed. To determine which analysis windows were positively or negatively

biased, we used the signed-rank statistics, which relies on the ranking of the

abs
(
D
)
values (where abs (·) is the absolute value). Therefore, + bias win is

the set of �positive bias windows� which contains those analysis windows for

which the sum of these ranks for positive values of D was larger than the sum of

these ranks for negative values of D. Similarly, − bias win is the set of �negative

bias windows� for which the sum of ranks for negative values was larger than the

sum of ranks for positive values. A positive (negative) bias in a given window

would cause a corresponding increase (decrease) in b. To assess the signi�cance

of the bias score b, 1000 surrogate data sets, in which the di�erence between

high and low response time groups was eliminated, were compared to the real

data. For each surrogate, and independently for each neuron, the sign of all D

values (for all analysis windows) had a 0.5 probability to be changed. The

p-value was computed as the proportion of surrogate data sets leading to higher

or equal abs (b) as the real data.

A similar analysis was done to test whether �ring rates could also relate to

response time. To do so, D was replaced by the di�erence in mean �ring rate

between high and low response time trials, Drate .

3.5.3 Testing whether the prediction of behavior from

neuronal activity is different between q = 0 and

q ≈ qopt

The temporal sensitivity q leading to best 1st reward discrimination in the

population (q ≈ qopt) and q=0 were compared (signed-rank test). To do so, we

computed the mean values of D over analysis windows from 100 ms to 1 s post-

feedback time, by increments of 100 ms. Similar results were found when assessing

the optimal q value by using either the original Victor & Purpura distance dq

(in Figure 4.17), or the normalized distance d∗
q (in Figure 4.18).

For one monkey (monkey P), we will see later in the manuscript that this

test was not signi�cant. This could re�ect either a negligible impact of spike

timing sensitivity on the D̄ measure, or the fact that d∗(qopt) and d∗(q = 0) were

yielding equally strong, but still rather di�erent neuronal-behavior correlations.

For instance, d∗(qopt) and d∗(q = 0) could lead to large D̄ values in di�erent

neurons and/or for di�erent analysis window durations. Hence, we designed a
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method to investigate this question. We noticed that if temporal sensitivity had

a negligible impact on the D̄ measure, then the di�erence DiffD̄ = D̄(qopt) −

D̄(q = 0/s) should be negligible noise. Under this (null) hypothesis, adding to

D̄(q = 0/s) a surrogate noise Diffsurr
D̄

� with statistics that are similar to those

of DiffD̄ � should lead to a surrogate of D̄(qopt): Diffsurr
D̄

+ D̄(q = 0/s) =

D̄(qopt)
surr. This D̄(qopt)

surr should then have a similar bias score b to the bias

score of the original D̄(qopt). We tested this hypothesis, creating 1000 surrogates

Diffsurr
D̄

from DiffD̄ by randomly shu�ing the values of DiffD̄ between neurons

(identical conclusions were also reached when shu�ing between analysis windows

or between both neurons and analysis windows). Importantly, only 2 % of these

surrogates had bias scores b superior or equal to the one of the original D̄(qopt)

(using analysis windows ending between 0.1 and 1s by steps of 0.1 s for bias

score computation). In other words, the null hypothesis (stating that temporal

sensitivity at qopt = 10/s was only producing spurious negligible changes in d∗

relative to q = 0) could be rejected with a p-value of 0.02. Additionally, we would

like to brie�y mention that we also implemented a similar test while computing

the bias score using only analysis windows during which q = 0 was leading to a

substantial value of D̄ (see Figure 4.17, analysis windows between 250 and 450 ms,

increasing in steps of 50 ms). This gave a similar result (p=0.011), strengthening

our conclusion that the e�ects seen when using d∗(qopt) vs. d∗(q = 0) were at

least partially separate.

3.6 General statistics
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Time‐averaged information
t

I≡  

Difference in mean spike count between task epochs≡ Nadapt trials
− Nrepet trials

 

Normalized absolute difference in mean spike count between task epochs≡ Nadapt trials
− Nrepet trials

Nadapt trials
+ Nrepet trials

 

Optimal timing sensitivity ( )⎟⎠⎞⎜⎝
⎛≡

t
q

opt Imeanq argmax  

Optimal distinction degree between units ( )⎟⎠⎞⎜⎝
⎛≡

t
k

opt Imeank argmax  

Temporal structure related gain of information

( )
tq

tqtq

I

II

0

0max

=

=−≡  

Fano factor estimate 

∑
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( )
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pair

t
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Between‐neuron spike coincidence index ( ) interintraintra
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withP denoting the proportion of trials for which between‐neuron spike‐matching(s) did impact the Victor & Purpura distance  , for 

the analysis window that maximizes  . 

d

pair

qopt , kopt

I

Table 1 

Table 3.3: The angle brackets denote averaging; t denotes time average over the ensemble of analysis windows beginning 1 ms after

the feedback and ending from 100 ms to 1 s (by steps of 100 ms). Information values I were always normalized and bias corrected unless

mentioned. We therefore simply refer to them as “information” throughout the text. ‘‘adapt” stands for behavioral adaptation task epochs

(either errors or 1st reward); ‘‘repet” stands for repetition task epochs. N is the spike count in a window between 1 and 1000 ms after

feedback onset. argmaxy (f(y)) is the point yo of the argument y for which the function f attains its maximum value.
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Table 3.3 summarizes an additional set of employed statistical measures. The

latter were often non-normal, therefore non-parametric tests were considered (p ≤

0.05 was considered as statistically signi�cant):

� correlations were assessed using Spearman coe�cient with a permutation

test (or a large sample approximation)

� distributions were compared with the 2-sided Kolmogorov-Smirnov test

� central tendencies were compared between 2 unpaired (resp. paired)

distributions with the 2-sided ranked-sum (signed-rank) test

� deviation of distributions from 0-centered-symmetry was also tested with

the 2-sided signed-rank test

When testing pairs of units, one limitation was that some pairs happened to

share a neuron, and hence were correlated (in particular if non-shared neurons

were discharging signi�cantly less than the shared one). This was problematic

for analyzing the optimal temporal sensitivity, which is not a parameter

accounting for the interaction between neurons, and which can be impacted

more by the neuron which �res the most. We therefore veri�ed that the

signi�cance of the advantage of the temporal sensitivity during paired decoding

could be reached without overlapping pairs (positivity of

maxk

(
⟨I
(
q = 10s−1

)
⟩t

)
− maxk

(
⟨I
(
q = 10s−1

)
⟩t

)
, signed-rank test, p ≤ 0.05 in

1000/1000 random down-samplings to non-overlapping pairs). Note that, in

contrast, interaction parameters such as the information gain or kopt are truly

pair speci�c, implying that it was reasonable to keep overlapping pairs for the

analysis. Note that although most statistical tests we present were carried out

by pooling data from both monkeys, consistent trends were observed for both

individuals.

The standard error of the mean for the variable X was taken as√∑N

i=1
(Xi−⟨X⟩)2

N−1√
N

. Error bars for the median were taken as ± interquartile range
1.075

√
n

, as

scaling the median with this standard-error-like value approximately gives a t

distribution with (n-1) degrees of freedom [Hoaglin et al. (1983)]. This therefore

is approximately a 70% two-sided con�dence interval (t0.7,(n−1) ≈ 1 for a large

range of n values, and the con�dence interval is t0.7,(n−1) times the standard

error).

Unless mentioned otherwise, the boxplots represent the median at the notch,
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the 25th and 75th quantiles as horizontal lines, and the whiskers extend until at

most 1.5 times the interquartile range beyond the closest quartile. Finally, beyond

these whiskers, outliers are indicated as red crosses (unless mentioned otherwise).



Chapter 4

Testing decoders of the

behavioral adaptation signals

emitted by dorsal Anterior

Cingulate Cortex neurons

To investigate temporal coding in dACC, we analyzed the activity of 145 and

189 individual neurons from monkey M and P, respectively.

4.1 Optimal temporal sensitivity improves

decoding of single units’ behavioral

adaptation signals

We �rst tested how single-trial single-unit dACC activity could send signals

that could drive behavioral adaptation after feedback. Behavioral adaptation

occurred either after the 1st reward (thus switching from exploration to repetition)

or after any error during exploration (see Figure 2.1 a). Signaling the need for

adaptation requires that spike trains emitted during either 1st reward or errors

can be discriminated from those emitted during repetitions (referred to as 1st

reward and error discrimination analyses, respectively). Neurons in dACC showed

early post-feedback responses speci�c to behavioral adaptation [Quilodran et al.

(2008)]. Therefore, we analyzed spike trains starting at the onset of the feedback

delivered 600 ms after target touch. We will refer to any post-feedback time

interval (i.e. following either an error, or 1st reward, or repetition) as a task

epoch. We quanti�ed to what extent spike trains emitted during di�erent task

epochs were discriminable by a downstream decoder by classifying them based
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on a spike train dissimilarity measure [Victor and Purpura (1996)]. We brie�y

remind the reader that this dissimilarity measure computed the minimal cost to

transform the �rst spike train into the second one through two possible recursive

operations: (i) adding or removing a spike, for a cost of 1; and (ii) changing

the timing of a spike by dt, for a cost of q dt ≤ 2. Note that the maximum cost

allowing two spikes to be temporally matched (coincidence detection) is 2 because

it corresponds to the total cost of removing one spike and adding another spike at

any desired time (see Figure 3.1 a and section 3.2). This measure allows di�erent

temporal sensitivities of a downstream decoder to be evaluated by varying the

parameter q. A value of q = 0s−1 describes a decoder sensitive to pure spike

count. On the other hand, a larger q value corresponds to a decoder sensitive to

precise spike times. The larger the q value, the smaller the maximum interspike

interval leading to coincidence detection, and the more the decoder disregards

spike count. We stress again that even when the neural activity is temporally

structured, sensitivity to spike timing does not necessarily improve decoding. For

instance, spike timing and spike count might provide redundant information and

then a neural integrator could be more robust (see section 3.2.1).

We quanti�ed the classi�cation performance (i.e. how well, on average, a spike

train was correctly associated to the task epoch with the most similar activity)

by computing the mutual information between the predicted distribution of spike

trains across task epochs and the true distribution (see section 3.2.1). Throughout

this thesis, mutual information values are expressed as percentage of the maximum

value corresponding to perfect discrimination. Information values were computed

for di�erent analysis windows, all starting 1 ms after feedback time and with

increasing duration. In this way, the state of a putative decoder of dACC feedback-

related discharges could be evaluated at di�erent delays after the start of the

decoding process.

Finally, we stress that unless mentioned otherwise, we display results among

all �signi�cant� neurons. We remind the reader that these neurons emitted spike

trains that could be classi�ed between task epochs with a higher accuracy than

chance level (permutation test, p < 0.05; see section 3.2.1).
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4.1.1 Optimal temporal sensitivity mediates information

improvement in a majority of single neurons

Consistent with previous results focusing on spike count only [Quilodran

et al. (2008)], we found that most dACC neurons with signi�cantly selective

task-epoch activity �red more during behavioral adaptation periods (i.e. post

1st reward and/or error feedbacks) compared to reward in repetition

(see Figure 4.1, and Figure 4.8 (a)).
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Figure 4.1: Examples of single-unit dACC activities decoded with different temporal sensitivities. (a) Spike densities (top) and raster

plots (middle) during 1st reward (black curve) and repetition (grey curve) task epochs. The classification performance between 1st reward

and repetition spike trains (i.e. information) is shown in the bottom graphs, the time in the abscissa being the time at which the analysis

window (and thus, the decoding process) ends. Two neurons, from the two monkeys, are shown. These samples show that temporal

sensitivity can improve classification performance. (b) Same as (a) but for errors and repetition in two other neurons from the two monkeys.
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We tested whether temporal sensitivity would consistently tend to improve

information transmission among all these signi�cant neurons, compared to spike

count. Importantly, for most neurons, timing-sensitive decoding of spike trains

(q>0) conveyed more information than spike count (q=0; Figure 4.2).
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Figure 4.2: Optimal temporal sensitivity improves decoding of single unit behavioral adaptation signals. (a) Time course of the mean

information (averaged among significant cells) as a function of the decoding temporal sensitivity (q). Information values were computed

over increasing post-feedback time windows (ending at the time indicated by the x-axis). Left: Discrimination between 1st reward and

repetition task epochs. Right: Discrimination between error and repetition task epochs. (b) Time-averaged information ⟨I⟩t (see definition

in Table 3.3) for different temporal sensitivities (q). The ordinate axis is the normalized mean rank of ⟨I⟩t. After a Friedman test, post-hoc

comparisons with Tukey's honestly significant difference correction were used for the 95% confidence intervals. Temporal sensitivities q>0

that were performing significantly better compared to q = 0 are indicated by a star. (c) Distribution of the difference of information between

optimal temporal decoding (qopt ≈ 10s−1) and spike-count decoding (q = 0s−1). Stars indicate the significance of signed-rank tests (the

null hypothesis is the symmetric distribution around zero): *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001.
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We characterized this e�ect by looking at the time course of information

(averaged across neurons with signi�cant decoding), for di�erent qs

(see Figure 4.2 (a)). For each value of q, the information increased as

post-feedback spiking accumulated with time. Temporal sensitivity in�uenced

both the maximum amount of information and the speed at which it increased.

Importantly, adapted temporal sensitivity provided a sizable gain (15-40%) in

mean information compared to spike count. Values of q within [5,10,15]s−1 led

to a signi�cant increase in time-averaged information ⟨I⟩t (de�ned in the

caption of Table 3.3; Figure 4.2 (b); Friedman ANOVA, global e�ect on all

considered q values: p<0.001). This e�ect was robust early after the feedback

and for all subsequent times (Figure 4.2 (c)).

The same phenomena were observed when using a classi�er that was biased

towards nearest neighbors, instead of the unbiased classi�cation that we use for

all other �gures of the dissertation (see section 3.2.1, Figure 4.3). The

nearest-neighbors biased classi�cation was actually less robust (leading to less

signi�cant neurons), and that is why we display results using the unbiased

classi�cation. However, we veri�ed that the main results would hold for both

classi�cation techniques. Actually, we will show (in subsection 4.2.1) that the

spike count variability was large in our data. This suggests that any classi�er

biased towards some type of outliers would probably perform worse than the

classi�er we used, and would impact spike-count decoding more negatively

compared to temporally sensitive decoding.
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Figure 4.3: Information gain through temporal sensitivity using a classification biased toward closer neighbors instead of the unbiased

classification. Information gain through temporal sensitivity was also observed when the classification of spike trains was biased toward

smaller dissimilarities rather than determined by the median dissimilarity to spike trains of a task-epoch (see section 3.2.1). Results in this

figure are for the neurons with significant discrimination ability (permutation test, see section 3.2.1); note that the number of significant

units is smaller than with the classification method using the median (see Figure 4.2). (a,b) show the time course of the mean information

(over neurons) for 1st reward (left) and errors (right) discrimination, as a function of timing sensitivity q, separately for the two monkeys.

(c) Results of the post-hoc comparisons (with Tukey's honestly significant criterion correction for multiple comparison) of a Friedman

ANOVA comparing the time-averaged information ⟨I⟩t between temporal sensitivities. Note that the slight differences in the rankings of

q-values between (a,b) and (c) are due to the fact that the mean over neurons is more sensitive to outliers with high values, while the average

rank is determined by the consistency (over the population of single units) of the within-neuron rankings of ⟨I⟩t between different q-values.
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Also, the advantage of temporal decoding over spike count decoding was robust

in both monkeys individually (Figure 4.4).
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Figure 4.4: Robustness of spike-timing information in both monkeys. The improvement of decoding trough spike-timing sensitivity

was robust in both monkeys. The left part of the figure describes the result of the discrimination between 1st reward and repetition, and

the right part describes errors vs. repetition discrimination. (a,b) Time-course of the mean information over neurons, for different temporal

sensitivities of the decoder q as indicated on the color scale, for monkey M and P respectively. (c) Difference of time-averaged information

⟨I⟩t between temporal decoding (qopt ≈ 10s−1) and spike-count decoding (q = 0s−1). The p-value of a signed-rank test indicates that in

both monkeys individually, temporal sensitivity induced a robust increase of information (all ps ≤ 0.018). The horizontal green line marks

the 0 value.
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In addition, we veri�ed that very small temporal sensitivities (compatible

with an imperfect integrator implementing a slowly decaying memory: τ ≥ 1s),

were leading to signi�cantly less information than optimal temporal decoding

(Figure 4.5 (a,b)). Given that the behavioral task required to maintain the

memory of the adapted behavioral strategy over several seconds, this suggests

that a slow enough leaky integrator would indeed read out a less robust signal

from dACC spike trains than a timing-sensitive decoder (Figure 2.1).
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Figure 4.5 (previous page): Using a small temporal sensitivity (compatible with decoding by an

imperfect integrator) leads to identical conclusions to using q=0/s (perfect integration) in single units.

We test: (i) q = 0.5s−1, approximately equivalent to an exponential leak time-scale τ = 1

q
= 2s (see Figure 2.1

and Figure 3.1 (a), and section 3.2.1). This is the minimal time-scale for a downstream leaky neuronal integrator

which has to hold in memory the behavioral adaptation signals (and/or the behavioral strategy signals) for up

to 3-6 s as required during the task (in case of fixation break). (ii) q = 1s−1, approximately equivalent to an

exponentially decaying time-scale τ = 1s, as a more stringent test. (a,b,c) Classifying spike trains: 1st reward

vs. repetition (a), errors vs. repetition (b), errors vs. 1st reward (c). We used neurons reaching significant

classification with any q-value (including q = 0.5 and 1s−1, permutation test, Methods), leading to only one

more significant neuron compared to Figure 4.2 (for errors vs. repetition classification, monkey P). Left: time-

course of the mean information over neurons. Right: results of post-hoc comparisons of the time-averaged

information ⟨I⟩t after a Friedman anova, using the Tukey's honestly significant criterion correction. Q-values

with significantly smaller performance than qopt are marked by a star. In all considered cases, both q = 0.5s−1

and q = 1s−1 were leading to significantly smaller ⟨I⟩t than qopt. In both monkeys individually, q = 0.5s−1

and q = 1s−1 had (at least qualitatively) lower average rank than q = 10s−1 and q = 5s−1. The Friedman

test was restricted to q ≤ 40s−1, focusing on q-values for which classification was not too noisy. (d) Related

to section 4.4, a part of our results that is described later in this chapter. We compare ⟨D̄⟩t: the time-averaged

index of behavioral prediction through deviation from prototypical 1st reward spike train, between qopt = 10/s

and several lower temporal sensitivities. The average was taken over analysis windows ending between 0.1s

and 1s with steps of 0.1s. The data shown is the difference between ⟨D̄(qopt)⟩t and ⟨D̄(q < qopt)⟩t. Note

that for monkey M, q = 0s−1, q = 0.5s−1 and q = 1s−1 lead to significantly smaller ⟨D̄⟩t compared to qopt,

while a statistical equivalence was seen in monkey P (signed-rank test). The neurons used are the same as

for Figure 4.17.

Finally, we also found similar results when decoding 1st reward vs. errors

(Figure 4.6 ; Figure 4.5 (c)). It is noteworthy that the improvement of decoding

through temporal sensivity was also present for neurons with signi�cant

discrimination for both errors vs. 1st reward, and 1st reward vs. repetition

(Figure 4.6 (d,e,f)). This suggests a temporal decoding advantage for a signal

related to the speci�cation of a precise behavioral strategy (exploration, switch

or repetition), rather than related to the presence of reward per se.
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Figure 4.6: Decoding the identity of the adapted behavioral strategy (exploration or switch). The data suggest an advantage of spike-

timing sensitivity for decoding the identity of the adapted behavioral strategy (exploration or switch). (a,b,c) Single unit decoding between

errors and 1st reward spike trains, for all neurons with significant errors vs. 1st reward classification. (a,b) Time course of the mean

information for different temporal sensitivities as indicated in the colorbar, for monkey M (a) and monkey P (b). (c) Mean rank (±95%

confidence interval) of post hoc comparisons (using Tukey's honestly significant criterion correction for multiple comparison) of a Friedman

test comparing the time-averaged information ⟨I⟩t. The average was taken over analysis windows ending between 0.1s and 1s with steps of

0.1 s. Data from both monkeys were pooled. (d,e,f) Decoding performance for errors vs. 1st reward classification, restricted to neurons that

were significant for both errors vs. 1st reward classification and 1st reward vs. repetition classification. The discharge of these neurons

cannot therefore be merely related to the reward quantity received by the monkey, instead they appear correlated with the nature of the

adapted behavioral strategy. (d) Time-course of mean information for different temporal sensitivities as indicated in the colorbar (data

from both monkeys pooled). (e) Mean rank (±95% confidence interval) of post hoc comparisons (using Tukey's honestly significant criterion

correction for multiple comparison) of a Friedman ANOVA comparing the time-averaged information ⟨I⟩t. Note that the differences in the

rankings of q-values between the mean information and the Friedman graphs are due to the fact that the mean is more sensitive to outliers

with large values, while the Friedman rank is determined by the consistency (over neurons) of the within-neuron rankings of ⟨I⟩t between

different q-values. These outliers are for instance visible in monkey P in (f). Some of these outliers might be due to noise (e.g. the lower

outlier in monkey P in (f) had the smallest number of trials, and less trials were available in monkey P, see Table 3.1). (f) Boxplots showing

the distribution of the difference ⟨I(qopt = 10/s)⟩t − ⟨I(q = 0/s)⟩t for the two monkeys separately. A signed rank test was significant in

both monkeys individually.
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Hence, decoding of both the appropriate behavioral strategy and of the degree

of necessity to update the behavior (i.e., the level of cognitive control required)

could bene�t from temporal sensitivity.

The curve of the amount of information vs. q was

bell-shaped (Figure 4.2 (a,b), Figure 4.5). This suggests an optimal range of

temporal sensitivity for decoding. If q increases further, the decoder emphasizes

too much small uninformative spike time �uctuations relative to the appropriate

timescale(s) of spike-timing reliability, thereby deteriorating the decoding. We

were interested in comparing the range of interspike intervals occuring in the

data (these intervals being computed within [0.001, 1] s post-feedback separately

for all trials), and the range of interspike intervals at which temporal

coincidences could occur during optimal decoding. Among signi�cant neurons,

the interquartile ranges of the median interspike interval were 54-143 and 49-110

ms for 1st reward and error discrimination, respectively. Consequently, several

spikes often occurred within the range of spike timing reproducibility accounted

for when decoding with qopt ≈ 10s−1 (i.e. a range of 200 ms, Figure 3.1 (a

right)). We stress that this temporal decoder was therefore more spike-timing

sensitive than a mere 200 ms binning procedure, because for q = 10s−1, the

whole range of interspike intervals between 0 and 200 ms corresponds to

di�erent values of dissimilarity. This range of interspike intervals can be

interpreted as the range of presynaptic spike time jitters at which coincidences

happen, i.e. leading to an e�ective summation of EPSPs decaying at a time

scale τ ≈ 100ms (Figure 3.1 (a)).

4.1.2 Temporal coding supplements, rather than

competes with, spike count coding

We investigated the relation between the �ring rate properties of the neurons

and temporal coding. The absolute value of the di�erence in mean spike count

between task epochs (see the de�nition in Table 3.3) correlated positively with

the maximum time-averaged information (Spearman correlation coe�cient:

c1st reward = 0.57, cerrors = 0.71, p < 0.001 for all). However, large spike-count

di�erences in highly informative neurons did not imply the absence of

information related to spike timing. Indeed, among the group of neurons

selected for being highly informative (through the separation of maxq (⟨I (q)⟩t)

in two clusters using a k-means algorithm), we observed an improvement of
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decoding with q ≈ qopt compared to q = 0 (see Figure 4.7). Also, the normalized

di�erence in mean spike count and the gain of information related to timing

sensitivity (see Table 3.3 for the de�nition) were negatively correlated

(c1st reward = −0.52, cerrors = −0.6, p < 0.001 for all). Therefore, temporal

sensitivity could uncover a relatively high amount of information in neurons

with small di�erences in spike rate between task epochs (such as the neuron on

the left of Figure 4.1 (b)).
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Figure 4.7: Advantage of spike-timing-sensitive decoding over spike-count decoding for very informative neurons. Spike-timing-

sensitive decoding was also beneficial for very informative single neurons. We computed the maximum time-averaged information Imax for

significant units (over q). Then, we used a k-means algorithm (with two groups) to separate populations with high vs. low Imax. Results in

this figure are for the high Imax neurons. (a,b) show the time course of the mean information (over neurons) for 1st reward (left) and errors

(right) discrimination, as a function of timing sensitivity q, separately for the two monkeys. The inset in (b, right) shows the difference of

time-averaged information ⟨I⟩t between q = 5 s−1 (found optimal for monkey P over all significant units, for errors discrimination) and

q = 0 s−1. The p-value of a signed-rank test is indicated. (c) boxplots of the corresponding distributions of difference in ⟨I⟩t between

q = 10 and q = 0 s−1. P-values of signed rank tests are indicated. Note that the notches indicate a confidence interval on the median,

which may extend further away than the 25th or 75th quantiles, resulting in an inversion of the boxplot.
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We also wondered whether the spiking activity was more reliable during some

task-epochs. In order to investigate this, we took advantage of the fact that the

Victor and Purpura metrics scales with the number of spikes (see section 3.2

and subsection 3.5.1). Hence, for a given neuron, the qopt computed with this

metric is expected to mostly re�ect the spike-timing reliability of the task-epoch

with more spikes, whose spike trains are harder to classify. Indeed, within spike

trains of this task-epoch, a small dissimilarity d can only be reached (and

therefore correct classi�cation can only happen) if the decoder detects a very

small dissimilarity per spike and therefore a su�ciently small summed

dissimilarity over all spikes. Hence, we compared groups of neurons �ring

preferentially in di�erent task-epochs, and found that the qopt values were higher

for neurons discharging more during the task-epochs requiring behavioral

adaptation (see Figure 4.8 (b, left)). This di�erence was likely to re�ect an

increased reliability of spike timing during the behavioral adaptation epochs,

rather than a decrease in spike count reliability, as the timing-insensitive

information values (q = 0) were statistically indistinguishable between the

groups of neurons with di�erent �ring preference (see Figure 4.8 (b, right)). For

neurons �ring more during repetition, optimal temporal sensitivities were

distributed around q = 5s−1. In contrast, for neurons �ring more during

behavioral adaptation, which were the majority, the median optimal sensitivity

was 10s−1 and 7.5s−1 for 1st reward and error discrimination, respectively (with

a signi�cant improvement compared to q = 5s−1 for 1st reward,

see Figure 4.8 (c)). These results may re�ect a higher temporal reliability of

spiking during behavioral adaptation. Alternatively, our observations could also

be compatible with a less reliable time reference for neural activity during

repetition epochs. Indeed, the feedback could be anticipated during repetition,

which may lead to a trial-speci�c advance of neuronal activity compared to the

actual reward time.
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Figure 4.8 (previous page): The optimal decoding temporal sensitivity appeared higher for neurons

firing more during behavioral adaptation. Left: 1st reward vs. repetition discrimination; right: errors vs.

repetition discrimination. (a) Difference of mean spike count in a [0.001, 1] s post-feedback window between

behavioral adaptation and repetition epochs, across neurons with significant discrimination between task-

epochs. The vertical red line marks the median of the distribution. (b, Left) Boxplots of the distributions of

qopt values for cells discharging preferentially during behavioral adaptation vs. repetition (the notches indicate

an approximate confidence interval on the median, which may extend beyond the quartiles). P-values of ranked

sum tests comparing medians are shown. qopts values were larger for neurons firing more during behavioral

adaptation. (b, Right) Boxplots of the distributions of time-averaged information ⟨I⟩t for q = 0 s−1. P-values

of ranked sum tests are shown. The absence of significant difference suggests that the difference in qopt (left)

reflects a difference in spike-timing reliability rather than a difference in spike-count reliability between the

groups. (c) Detailed analysis about the optimal temporal sensitivity qopt for decoding cognitive-control signals

during feedbacks of the task which should trigger behavioral adaptation (1st reward or errors). We focus

on neurons discharging more during 1st reward for 1st reward vs. repetition discrimination and on neurons

discharging more during errors for errors vs. repetition discrimination. In addition, for errors vs. repetition

discrimination, we focus on cognitive control coding and exclude putative ’physical reward’ coding by only

selecting neurons that were significant for both errors vs. repetition and 1st reward vs. repetition (n=32 from

monkey M, n=27 from monkey P). (c, Left) Difference of time-averaged information ⟨I⟩t between q = 10/s

and q = 5/s, and between q = 5/s and q = 1/s; the p-value of a signed-rank test for the distribution of the

difference values around 0 is shown. (c, Right) Distribution of optimal temporal sensitivities (here, including

data at q = 0.5/s and q = 1/s) showing that for both discriminations and for both monkeys independently, the

median qopt was 10/s. For errors vs. repetition, the pooled distribution over monkeys (concerning a subset of

neurons compared to (b)) is also shown.

4.1.3 Sensorimotor differences between task epochs are

not likely to determine the advantage of temporal

decoding

Sensory or motor di�erences between task epochs were unlikely to determine

the advantage of temporal decoding. In fact, external events (e.g., feedback,

stimuli) were identical during 1st reward and repetition epochs. As we will now

explain, the motor in�uence on neural activity was also unlikely to cause temporal

decoding advantage through a di�erent timing of eye-movements in the two task

epochs (detailed methods are in section 3.4, analysis possible in monkey M). This

is in agreement with the current views of dACC function [Shenhav et al. (2013)].

A control for motor correlates was still necessary in our task, as the monkeys

were not forced to maintain �xation after target touch, and they often broke

�xation before one second post-reward. Further, there were consistent di�erences

in the timing of eye movements between task-epochs (see Figure 4.9 (a-b) for

monkey M).

If the temporal structure of dACC activity were merely motor related, all eye



4.1. OPTIMAL TEMPORAL SENSITIVITY IMPROVES DECODING OF SINGLE UNITS’

BEHAVIORAL ADAPTATION SIGNALS 77

movements timed di�erently between task epochs would favor temporal coding.

To test this hypothesis, we removed all trials with an eye movement occurring

before 0.65-0.85 s post-feedback, and kept the remaining trials. More precisely,

we removed the trials either if an eye-movement was detected before the end of

the neuronal analysis window (hence removing putative motor-feedback

activity), or if an eye movement was detected before a time corresponding to the

end of the analysis window plus 300 ms (hence removing also putative premotor

activity). This manipulation did not decrease the advantage of temporal

decoding of 1st reward vs. repetition (Figure 4.9 (d-e).: removing putative

motor-feedback activity; Figure 4.9 (f-g): removing also putative premotor

activity). Following target �xation, late 1st eye movements (≈ 850 ms after 1st

reward delivery) also predicted that monkeys would be quicker to respond in the

following trial (see Figure 4.9 (c)). Therefore, dACC neural activity occurring

either before or during these late eye movements may not re�ect motor planning

but rather cognitive correlates (e.g., attentional modulation). These trials with

late 1st eye movements indeed appeared to contribute to the temporal advantage

for decoding (see analysis windows ≥650 ms in Figure 4.9 (d-j)). In other words,

while there was an interaction between eye movement and temporal coding in

dACC activity, the relation was unlikely to re�ect the presence of a pattern of

activity in dACC triggering eye movements; rather, dACC activity and eye

movements appeared to be both modulated by cognitive control.

In consequence, we note that the di�erent temporal patterns between 1st

reward and repetition task epochs probably originated from di�erent internally

generated neuronal dynamics.
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Figure 4.9 (previous page): Decoding trials without eye-movements (monkey M). In this figure, small

dot indicates p < 0.1, one star: p < 0.05, two stars: p < 0.01 for signed-rank tests. Error bars are standard

error of the mean/median. (a,b,c) Behavior for 28 sessions (during which we recorded significant 1st reward

vs. repetition). (d,e,f,g,h,i,j) Decoding; (d,e,i) are related to the putative influence of motor activity and (f,g,j)

to the putative influence of premotor activity. 38 neurons were available for analysis windows ≤425 ms at

least; for longer windows some neurons were excluded because no trials free of saccades were available. (a)

Cumulative distribution function of 1st eye-movement latency following the fixation period. 95% confidence

interval use Greenwood's formula. (b) As (a) but restricted to post-reward 1st eye-movement latency. (c)

Distributions (over different behavioral sessions) of median response times at the trial following 1st reward

depending on the 1st eye-movement latency after the fixation period leading to 1st reward. (d) Left: Neuron-

averaged information, including only trials with no eye-movements detected before the end of each analysis

window. P-values compare between q = 10 s−1 and q = 0 s−1. Right: Neuron-averaged information for

random downsamples (from all data) to the trial numbers of (d Left). The downsampling aims at excluding a

possible effect of trial number when comparing data without (left) and with (right) saccades. For each neuron,

the mean information among 1000 downsamples was taken (taking the median gives similar results). P-values

compare between q = 10 s−1 and q = 0 s−1. Note that the smoother aspect of the curves compared to the

left graph likely results from the presence of an additional downsampling-averaging in the right graph. Note

also that, here, until plateau is reached (≈ 600 ms post-feedback), there were no robust differences in spike-

count based information between eye-movement free and resampled data (signed-rank test on time-averaged

information between 0 and 600ms, or 300 and 600 ms, all ps > 0.16). (e) Median difference of information

increase thanks to temporal structure: [I(q = 10 s−1) − I(q = 0 s−1)], between eye-movement-removed (d

Left) and randomly downsampled data (d Right). Negative values indicate a smaller timing-sensitivity-related

improvement in decoding for eye-movement-free data. (f) Conventions as in (d). Left: Only trials for which

1st eye-movement occured later than ((analysis window end)+300ms) were included. Due to limitations in

trial number, for analyses windows longer than 700 ms, all trials with 1st eye-movement latency ≥1 s post-

reward were included. Right: data randomly downsampled to the trial number of (f Left). (g) Difference of

information increase thanks to temporal structure: [I(q = 10 s−1) − I(q = 0 s−1)], between eye-movement-

removed (f Left) and randomly downsampled data (f Right). (h) Neuron-averaged information among all 38

available neurons, all trials included. (i) Difference of information increase thanks to temporal structure:

[I(q = 10 s−1) − I(q = 0 s−1)], between eye-movement-removed as in (d Left), and total data. (j) Difference

of information increase thanks to temporal structure: [I(q = 10 s−1) − I(q = 0 s−1)], between eye-movement-

removed as in (f Left), and total data.

4.2 Temporal decoding of 1st reward vs.

repetition spiking does not only rely on

differences in time-varying firing rate

between task epochs

We investigated the nature of dACC �ring statistics determining the advantage

of temporal decoding. Spike-timing reliability might mainly re�ect di�erences in

the temporal variations of �ring rates between task epochs. Alternatively, beyond

this time-dependent �ring rate, temporal correlations between spikes within one
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trial may impact the spike time reproducibility. Indeed, cellular processes (such

as spike-triggered hyperpolarizing currents or short-term plasticity) may lead to a

dependence of future spiking probability on past spike times [Arsiero et al. (2007);

Mongillo et al. (2008); Schwalger and Lindner (2013)], in particular if the synaptic

current received by the neuron is not very variable. Similarly, recurrent neural

network dynamics � within dACC or upstream � may create correlations in spike

times [Brunel (2000); Ostojic (2014)]. Here, we tested whether or not, beyond

their existence, spike-timing correlations sizably and consistently (over neurons)

impacted information transmission.

4.2.1 Assuming a time-dependent firing rate implies a

spike count variability incompatible with the data

We randomly shu�ed spike times within each task epoch while preserving

the peri-event time histograms (PETH) for each neuron (see Figure 4.10 (a)).

This transformation preserved the time-dependent �ring rate, while destroying

temporal correlations. It also created an approximate �Poisson� spike count

variability, i.e. a variability that was purely determined by random samples from

a unique time-dependent �ring probability (see subsection 3.2.2).
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Figure 4.10 (previous page): Temporal decoding does not only rely on differences in time-varying firing

rate. This analysis was restricted to neurons significantly discriminating between 1st reward and repetition task

epochs. (a) Shuffling of spikes between trials while preserving PETHs (i.e. time-dependent firing rates). This

procedure was repeated 1000 times within each task epoch and independently for each neuron. If information

transmission in the data relies on PETHs, spike shuffling should not impact decoding. (b) Distribution of

the difference between information I in original data and the median information in shuffled data (as in a).

Stars indicate the significance of a signed-rank test: 1 to 3 stars, p ≤ 0.05, p ≤ 0.1, p ≤ 0.001, respectively.

Top: spike-count decoding (q = 0s−1). Bottom: optimal temporal decoding at qopt ≈ 10s−1 (this q value

maximized information averaged over neurons). (c) Difference of Fano factor estimate (F, defined in Table 3.3)

between original data and the median of 1000 shuffled data sets for 1st reward (green) and repetition (red).

(d) Shuffling of spikes between trials while preserving both PETHs and spike count variability. The shuffling is

done 1000 times, independently for all analysis windows, task-epochs and neurons. All spikes emitted during

different trials of a task epoch are grouped and their order shuffled. Each pseudo-trial (right) is created by

taking from the shuffled spike pool (middle) the same number of spikes as in the corresponding original trial

(left). If information transmission in the data were shaped by a PETH time-course whose total integral could

change across trials, spike shuffling would not impact decoding. (e) Top: Distribution of the difference between

information in original data and the median information in shuffled data (as in d). Note that for q = 0s−1 the

curves of median, 25th and 75th percentiles are overlapped. Bottom: mean information in the original data

decoded with qopt ≈ 10s−1 and with q=0 s−1, and in spike trains shuffled (as in d) decoded using qopt ≈ 10s−1.

(f) Left boxplot: difference between time-averaged information ⟨I⟩t in original data and the median of ⟨I⟩t in

shuffled data (as in d) at qopt ≈ 10s−1, with signed-rank p-value. Right boxplot: for comparison, the difference

in time-averaged information between qopt and q = 0s−1 in original data. Box plots show 25th, 50th and 75th

percentiles. The two quantities (left and right boxplots) were correlated (with coefficient C).

If information transmission were shaped by time-dependent �ring rates,

original and spike-shu�ed data should convey similar information. In contrast,

we found that both spike-count and timing-sensitive decoding at qopt ≈ 10s−1

were more reliable for short analysis windows, and less reliable for long analysis

windows, in the original compared to shu�ed data (Figure 4.10 (b)). These

results were consistent and robust in both monkeys (Figure 4.11 (a)).
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Figure 4.11 (previous page): Robustness of the link between spiking statistics and information

transmission. (a) The changes in information induced by performing shuffle 1 (preserving the time-dependent

rate,see Figure 4.10 (a)) were consistent over monkeys and were following the time-course of the fano factors

(see Figure 4.10 (c)). For long analyses windows, original data were less reliable than their spike-shuffled

counterparts, while this effect was inverted for short analysis windows. The curves are the mean +/- standard

error (ste, among all significant neurons for 1st reward vs. repetition classification) of the difference between

the information in the original data and the median information of the corresponding shuffled data sets.

We show q = 0 (spike-count decoding, black) and q = 10s−1 ≈ qopt (blue). (b) Same conventions as in

(a). The change in information induced by shuffling spikes according to shuffle 2 (preserving both time-

dependent rate and spike count variability, see Figure 4.10 (d)) were consistent over monkeys. Original data had

higher information than their spike-shuffled counterparts. (c) The distribution of difference of time-averaged

information (< I(q = 10s−1 ≈ qopt) >t) between original data and the median for the corresponding data

sets created by shuffle 2 was significantly positively biased for both monkeys (left) and for both the neurons

firing more during 1st reward and the neurons firing more during repetition (signed-rank tests, all ps < 0.036).

Note that qopt is unambiguously 10s−1 for neurons firing more during 1st reward (for these neurons q = 5s−1

and q = 15s−1 perform very similarly for original data decoding, see also Figure 4.8 (c)). The distributions

were not different between monkeys or between firing preference (ranked-sum tests, all ps > 0.38). (d) We

show the means (over neurons) of (i) the information in original data, and of (ii) the median information of

the corresponding shuffled data sets. For all q values, we observed higher information for the original data as

compared to their shuffle 2 counterparts. The size of the effect increased for higher q values. (e) The proportion

of neurons for which shuffle 2 led to a significant decrease in < I(q = 10s−1) >t (more than 95 % of shuffled

data sets with smaller < I(q = 10s−1) >t than original, left), was higher than the proportion of neurons with

a significant increase (more than 95 % of shuffled data sets with larger < I(q = 10s−1) >t than original, right).

Proportions were compared using the Fisher's Exact Probability Test with mid-p correction (p = 4.0 10−5).

Both of these proportions were larger than chance (5%): binomial test, all ps < 10−3.

Timing-sensitive and spike-count decoders were both impacted by changes in

spike count variability.

For short analysis windows, the improved reliability of spike count in the

original data could be linked to spike-triggered hyperpolarizing currents which

can counterbalance random deviations of neuronal excitability in single

neurons [Arsiero et al. (2007); Farkhooi et al. (2011); Schwalger and Lindner

(2013)]. This increased spike count reliability compared to Poisson �ring is

actually more likely to happen if the neurons receive an input current which

�uctuates little (even in neurons for which spikes only trigger a simple reset of

the voltage and an absolute refractory period, see [Litwin-Kumar and Doiron

(2012)] for instance).

For long analysis windows, the spike count appeared more variable in the

original data (as measured by the Fano factor; Figure 4.10 (c)), causing a smaller

decoding reliability. This means that spike count variability in the original data

cannot be explained by random samples taken from a single �ring probability.

More precisely, for post-feedback times longer than 500 ms, the spiking probability
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was actually stronger in some trials than in other trials. This suggests a hidden

source of spike count variability across trials which is not constant during one

task epoch and which has a major in�uence on information transmission [Litwin-

Kumar and Doiron (2012); Ostojic (2014)]. This large spike count variability may

re�ect the integrative properties of dACC. Indeed, beyond signaling the need

for behavioral adaptation, dACC �ring may also be in�uenced by factors such

as attention [Totah et al. (2013)] and/or target identity [Procyk et al. (2000)].

Interestingly, this large spike count variability appeared to hinder more spike

count decoding (Figure 4.10 (b)). Hence, this may have participated to shaping

the larger di�erence of information between qopt ≈ 10s−1 and q = 0s−1 decoders

which occurred for long analysis windows (≥ 500ms) compared to short windows

(Figure 4.2 (a-c)).

4.2.2 Temporal correlations considerably impact

information transmission

We tested whether the information transmission could be mainly shaped by

the combination of the PETH time-courses and of the spike-count variability of

the data. To do so, we shu�ed spike times while preserving both PETHs and

spike counts in all trials (Figure 4.10 (d)). Through this operation, spike-count

information was conserved in the shu�ed data. If temporal correlations had

negligible impact on information transmission, then temporal decoding should

also remain unchanged. In contrast, we found that for qopt ≈ 10s−1, information

decreased in the shu�ed data as compared to original ones (Figure 4.10 (e-f)).

These results were robust and consistent across monkeys (Figure 4.11 (b-c)). The

temporal correlations of the original data increased information by about 10-15%,

on average, compared to shu�ed data (Figure 4.10 (e), information at plateau).

In addition, the increase of information with optimal temporal sensitivity qopt

(compared to spike count) was signi�cantly correlated to the information increase

with temporal correlations (Figure 4.10 (f)). This further suggests that temporal

correlations tended to support temporal coding. Finally, information loss after

spike shu�ing was larger for larger temporal sensitivities q (Figure 4.11 (d)),

suggesting that spike correlations were stronger at shorter time-scales.

Altogether, our results suggest that, beyond the time-dependent �ring rates,

temporal correlations led to spike timing reliability that favored task-epoch

discrimination in most neurons. The neurons for which correlations appeared to
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make the neural activity more similar between task-epoch, and therefore to

impair the classi�cation of neuronal responses in di�erent task epochs, were

therefore the minority (Figure 4.11 (e)).

These results could re�ect either the single neurons dynamics [Arsiero et al.

(2007); Pozzorini et al. (2013); Park et al. (2014)], or network dynamics mediating

the behavioral strategy signal, that would make future spike times dependent on

spiking history [Brunel (2000); Ostojic (2014)].

4.3 Temporal patterns often differ between

neurons, implying a spatiotemporal code

Multiple neurons were often simultaneously recorded (median=2). Thus, we

also decoded the activity of pairs of neurons (Monkey M, n=122 pairs; Monkey P,

n=271) while varying both the temporal sensitivity q and the degree of distinction

between neurons k (see Figure 3.1 (b), subsection 3.2.1). For the computation of

the dissimilarity measure, the parameter k represents the cost of transforming a

spike from neuron 1 into a spike from neuron 2. Therefore, during classi�cation

of spike trains from pairs of units, the dissimilarity between spikes from di�erent

neurons increases with k. The parameter k permits to test whether the informative

spikes are neuron speci�c, or if they are emitted synchronously by two neurons.

In the former case, the amount of information would increase if the decoder were

accounting for neural identity (k > 0), as compared to a decoder blind to neural

identity and sensitive to interferences between neurons (k = 0). In the latter case,

k = 0 could be optimal for decoding because it makes the discharge of either one

of the neurons su�cient to have reliable joint spiking. Note that for this situation

to occur, the discharge of informative spikes should not be strongly positively

correlated between the two neurons (else, the signals emitted by the two neurons

are redundant and cannot complement one another).
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4.3.1 Paired decoding benefits from an optimal

distinction between the spikes from the two

neurons

We �rst tested whether decoding with optimal (q, k) values advantageously

combined the activity of any two analyzed neurons (regardless of their individual

coding properties). This was not trivial because of the imbalance in information

between neurons (Figure 4.12 (a)). Also, in our data, when some �noise� (relative

to the mean task-epoch �spike-count signal�) caused one neuron to �re more, it

was not in general causing the other neuron to �re less. Indeed, the spike counts

emitted during a task-epoch were not negatively correlated in our data. Thus,

summing the activity of two neurons would not cancel the e�ect of noise on spike

counts. Hence, the (wide) distribution of spike-count correlations between two

neurons was slightly positively biased during 1st reward or repetition (signed-

rank test on time-averaged correlation coe�cients: p = 1.6 10−3 with median

0.043 for 1st reward; p = 1.4 10−5 with median 0.036 for repetition). During

errors, the distribution of correlation coe�cients was centered on zero.

In general, a simple sum of two independent or positively correlated neural

activities which are associated with largely di�erent standard deviations is likely to

decrease the signal-to-noise ratio, compared to the more reliable single activity. In

contrast, the decoding relying on the multi-unit dissimilarity measure most often

uncovered more information in a pair compared to the most informative neuron of

the pair (�gain in the pair relative to the best single unit�, as de�ned in Table 3.3

; Figure 4.12 (a), signed-rank test, all ps < 0.001). As expected, information gains

were negatively correlated with the information imbalance between paired neurons

(Figure 4.12 (a), Spearman correlation with permutation test, all ps < 0.001; more

pronounced for pairs with signi�cant coding: Figure 4.13).
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Figure 4.12: Efficient paired decoding often required to distinguish between the activities of the two neurons. Left: Decoding 1st

reward vs. repetition task epochs. Right: Decoding error vs. repetition task epochs. (a) Distribution of information gain when decoding

a pair of units relative to decoding the isolated unit of the pair with the highest information, as a function of the information imbalance

between the two units of the pair (defined in Table 3.3). The red line indicates a linear regression fit. The distributions of information

gains were significantly biased toward positive values, as indicated by a signed-rank test (all ps < 10−5). (b) Mean rank comparison (with

Friedman ANOVA) of the time-averaged information ⟨I⟩t as a function of (q,k). Data were pooled from both monkeys and were restricted

to pairs with significant information. (c) Maximum mean (over neurons with significant information) information as a function of (q,k).

Information was maximized over analysis windows ending in [0.05, 0.6] s, steps of 50 ms, and in [0.7, 1] s, steps of 100 ms.
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We then investigated which (q, k) values yielded better dACC decoding. For

any k value, the time-averaged information ⟨I⟩t signi�cantly increased with

temporal sensitivity up to qopt ≈ 10s−1 and decreased for larger q values

(Figure 4.12 (b-c)). Hence, for any value of k, spike-count decoding (q = 0s−1)

led to a signi�cantly lower ⟨I⟩t than optimal temporal sensitive decoding

(qopt ≈ 10s−1). ⟨I⟩t also increased with k and plateaued at about 1. Therefore,

intermediate to high levels of distinction between spikes from paired neurons

often improved the decoding of behavioral adaptation signals, suggesting that

some reliable spikes were neuron speci�c. Di�erences in information average

(over signi�cant pairs) across (q, k) values were consistent over time and

between monkeys (Figure 4.14).
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Figure 4.13: Gains of information among pairs of neurons with significant information. Paired spatial

decoding led to increases in the amount of information despite imbalances in the discriminative power of

single units. In this figure, only pairs with significant classification (permutation test) were included. (a)

Discrimination between first reward and repetition task-epochs. The central plot shows the correlation between

the information gain (obtained when decoding a neuron pair vs. the pair’s most informative single unit,

see Table 3.3) and the degree of information imbalance between the two units of a pair. The p-value testing

whether the correlation differed from 0 is indicated (p < 0.001). The red line is a linear fit. The histograms at

the top and right show the two marginal distributions. A signed-rank test was used to measure the significance

of the bias towards an increase in the amount of information (i.e. positive gains, p < 0.001). (b) Same as (a)

but for the discrimination between error and repetition task-epochs.
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4.3.2 Jointly recorded neurons can share similar temporal

firing patterns

Decoding with intermediate k values may imply temporal coincidence

between spikes from two di�erent neurons as opposed to between spikes from

the same neuron. We found that spike coincidence between two neurons

occurred, on average, in 34% (1st reward) and 41% (errors) of all pairwise

comparisons between spike trains (quanti�ed as during the computation of the

between-neuron spike coincidence index in Table 3.3). In addition, we computed

an index quantifying the spike coincidence between neurons within a task epoch

(de�ned in Table 3.3). This index negatively correlated with optimal k values,

kopts , (c1st reward = −0.71, cerrors = −0.54, p < 0.001). kopt values were pair

speci�c rather than shared among most pairs as for qopt. For instance, kopt

values were much smaller for pairs of units that �red preferentially in the same

task epoch relative to pairs of units with opposite �ring preferences (ranked-sum

test, all ps < 0.01; median kopt values were 0.75 vs. 1.25-1.5 for pairs with the

same vs. di�erent �ring preference). These results suggest that two neurons

with similar �ring preferences across task epochs were likely to have similar

�ring temporal patterns.

Some pairs of neurons had maximal ⟨I⟩t when the decoder did not

distinguish between the two single units (kopt = 0 ; 15% of signi�cantly

informative pairs, corresponding to 7% and 10% of all analyzed pairs for 1st

reward and error discrimination, respectively). These pairs transmitted more

information with qopt ≈ 10s−1 compared to spike count, q = 0s−1,

(Figure 4.15 (a); signed-rank test on ⟨I⟩t: 1st reward discrimination, p = 0.029;

error discrimination, p < 10−5). They had an index of spike coincidence between

neurons larger than in other pairs (Figure 4.15 (b), ranked-sum test: all

p < 10−9). In these pairs, the information gains relative to the most

discriminative unit of the pair were relatively high (Figure 4.15 (c)). This

suggested that these pairs were decoded e�ciently. We tested whether these

information gains were related to the gain of information when not

distinguishing between neurons (i.e. kmax = 2 vs. kopt = 0; see de�nition

in Table 3.3). We found a positive correlation (Figure 4.15 (c)), suggesting that

spike coincidence between neurons could mediate an e�cient combination of

their activities.
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Figure 4.15: Coding properties of neuron pairs for which kopt = 0. Left: Discrimination between the 1st reward and repetition task

epochs. Right: Discrimination between error and repetition task epochs. (a) Left: Mean information among pairs with kopt = 0 (significant

encoding) as a function of the duration of the analysis window and of temporal sensitivity (q). Right: Distribution of differences in time-

averaged information ⟨I⟩t between qopt = 10 and q = 0s−1 (for kopt = 0). The distribution has a significantly positive median (signed

rank test). (b) The index of spike coincidence between neurons was higher for pairs with kopt = 0 compared to other significant pairs

(ranked-sum test, p < 10−9). Note that the median indexes were larger than 0 for pairs with kopt = 0. This means that when comparing

spike trains within one task epoch, coincidences between neurons occurred more often than when comparing spike trains between task

epochs (see the definition of this index in Table 3.3). (c) The information gain relative to the most informative single unit was positively

correlated with the information gain induced by the absence of neuron distinction. C: Spearman correlation coefficient, red line: and linear

fit, blue line: median of the distribution of information gains.
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Hence, on the one hand the information generally increased when the

identity of the neurons was accounted for (intermediate-to-high kopt values),

which indicates that reliable spike times were variable and distributed across the

neuronal population. On the other hand, some pairs of neurons with similar

temporal �ring patterns could be e�ciently decoded through between-neuron

temporal coincidences (Figure 2.1 (c), Figure 3.1 (b)).

4.4 The temporal structure of single unit spike

trains predicts behavioral response times

The presence of information in single-unit spike timing does not necessarily

imply that the downstream networks do actually use it [Luna et al. (2005); Carney

et al. (2014)]. In particular, if dACC spike timing were not used, then di�erent

temporal patterns would be rather unlikely to reliably correlate with di�erent

behavioral outputs. Here we examined whether 1st reward single-unit activity

could predict upcoming behavior. We focused on the behavioral response time,

i.e. the time between the GO signal (for hand touch) and the following touch on

target (section 3.5). The response time was measured during the trial following the

1st reward, i.e. several seconds after the analyzed neural activity. This behavioral

response time was quantifying how long it took to the monkey to con�rm its

choice (after saccading), during what should be the beginning of the repetition

period (unless a mistake was made, which happened in less than 2% of the trials).

The modulation of the response times of the monkeys was rather consistent

with a relation to cognitive control, rather than with a purely motor e�ect. Indeed:

1. The time taken by the monkey to release the central lever (which was an

identical movement for all targets) and the response time were similarly

modulated (see Figure 4.16 (a-b)).

2. While the two monkeys were in the same apparatus, the modulation of

the response time by the target was monkey-speci�c (see Figure 4.16 (a-

b)). This rather points towards a spatial attention e�ect, which would be

consistent with the fact that monkeys were more likely to begin a problem

by touching a speci�c target [Khamassi et al. (2014)].

3. The response times of both monkeys consistently increased on the touch

following the 1st reward compared to the touch leading to 1st reward
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(Figure 4.16 (c)). This was in agreement with a behavioral switch from

exploration to repetition.

4. The long response time trials were associated with a larger probability of

(preceding) interruption of the trial, due to breaks in �xation or touch

requirement (Table 4.1).
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Figure 4.16: Modulation of behavioral response times following 1st reward trials. The analysis was restricted to the trials that are

used for the analysis linking neural activity to future behavior (in Figure 4.17). (a) Modulation of the release time following 1st reward by

the identity of the rewarding target and by the number of errors made preceding the 1st reward. The release time was defined as the time

between the post-1st-reward go signal for target touch (by the hand) and the release of the central lever button. Groups were compared

with a non parametric Kruskal-Wallis test (see p-value at the top-left). Post-hoc comparisons were conducted using Tukey's honestly

significant criterion correction. Note that for all rewarding targets, the release movement occured at the same place: on the central lever

button. The release time modulation is therefore not likely to reflect motor constraints. (b) Modulation of the response time following

1st reward by the identity of the target and by the number of errors, conventions as in a). The response time was defined as the time

between the post-1st-reward go signal for target touch and the following target touch. The modulation of the response time was strikingly

similar to the modulation of the release time (which, as argued above, is very unlikely to reflect motor constraints). In addition, note that

while the two monkeys were in the same apparatus, they modulated their response time differently for the different targets. Finally, the

target modulation of response time could interact with the modulation by the number of preceding errors. Altogether, the results argue

against a purely motor cause for response time modulation, and rather point toward a spatial bias of cognitive processes. (c) Boxplots for

the difference of response time between the trial following 1st reward (the 1st repetition, or, in rare cases, a mistake) and the trial that

ended with the 1st reward, i.e. last exploration. The p-value of a signed rank test for a bias of the distribution toward either positive or

negative values is indicated. The green line indicates a 0 difference. For clarity, outliers are omitted. The response time increased on the

trial following 1st reward when the preceding exploration period was longer than one attempt.
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! Monkey!M! Monkey!P! Both!monkeys!

Difference! of! mean!

number! of! aborted!

trials!

Median=0.19!

psignrank=5.3!10
=4
!

Median=0.095!

psignrank=0.15!

Median=0.16!

psignrank=3.2!10
=4
!

Difference! of!

probability!of!errors!

Median=0,!mean==9.2!10
=3
!

psignrank=0.31!

Median=0,!mean=9.7!10
=4
!

psignrank=1!

Median=0,!mean==5.9!10
=3
!

psignrank=0.36!

!

Table 4.1: Difference of probability of mistakes or of mean number of trial interruptions after 1st reward,

between problems with response time larger than median and problems with response time lower than median

(response time measured between the first post-1st-reward go signal and the post-1st-reward touch). These

interruptions can be due to break of fixation or break in screen touch requirements, after which monkeys were

forced to resume the trial (see section 3.1). The medians (and means for differences in mistake probability) of

these differences are shown together with a signed rank test measuring how significantly the median deviates

from 0. Note that the overall percentage of mistakes was very small (0.81% and 1.0% in monkey M and monkey

P, respectively, of considered trials).

We separated trials into two groups: one group with response times larger

than the median, and the other with response times below the median. The

probability of switching to repetition was very high in both groups and

statistically equivalent between them (Table 4.1). We tested the hypothesis that

longer response times may re�ect a longer decision-making process, when

monkeys might act more carefully to avoid mistakes.

4.4.1 Deviations from prototypical temporal firing

patterns predict response times

Under the temporal decoder hypothesis that we suggested (Figure 2.1 (c)),

the success of information transmission relies on matching the discharge received

during a particular trial with a prototypical activity pattern speci�c to a given

task epoch. The robust classi�cation of single-unit spike trains

(Figure 4.2, Figure 4.8) indeed implies that during many 1st reward trials, the

activity resembled a prototypical �ring pattern speci�c to a feedback triggering

behavioral adaptation. However, the classi�cation was not perfect, which

suggests that there were also trials during which the activity deviated from the

prototypical temporal �ring pattern. This could lead to ine�cient information

transmission, and then slower processing.

To test this, we developed a new method to estimate how much each



98
CHAPTER 4. TESTING DECODERS OF THE BEHAVIORAL ADAPTATION SIGNALS

EMITTED BY DORSAL ANTERIOR CINGULATE CORTEX NEURONS

single-trial spike train emitted by each neuron at 1st reward deviated from its

�prototypical� discharge (i.e. its more common �ring pattern during 1st reward;

see section 3.5). According to our method, for each neuron, a large positive

deviation from prototype can occur when the spike count is either higher or

lower than the average rate of the neuron, or when the spike times are jittered

compared to the neuron's usual temporal pattern. Hence, when computing the

deviation based on q = 0, high values of deviation will in general be attributed

to trials with both large and small spike count relative to average (as long as the

spike count distribution is not overly skewed, with outliers lying on one side

only). We compared the two groups of trials: associated with slow vs. fast

response times. For each neuron, we computed the di�erence in mean deviation

from prototypical activity (D) between these two groups. Notably, the

distribution of D values was positively skewed (Figure 4.17 (a,c)), indicating

that a larger deviation from prototypical activity predicted a longer behavioral

response time. This e�ect was consistent in both monkeys and between di�erent

subpopulations of neurons (Figure 4.18).
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Figure 4.17: The temporal structure of single unit spike trains predicts behavioral response times. Left: Monkey M (all significantly

informative neurons for 1st reward vs. repetitions). Right: Monkey P (significant neurons with information ≥ median; neurons with very

little information did not permit robust behavioral prediction in this monkey, see Figure 4.18). Analysis windows end at the time indicated

by the x-axis. (a) Test for the spatiotemporal decoder. Time course of the median D. The value of D is positive when spike trains emitted

in 1st reward trials followed by slower response times deviate more from prototypical spike trains than those emitted in trials followed

by fast response times. The two curves correspond to q = 0 (black) and q = 10s−1 (blue). Bars represent a median confidence interval

(see section 3.6 for the definition). (b) Test for the neural integrator decoder receiving excitatory inputs from dACC feedback-related

neurons. Time course of the median Drate (difference in mean firing rate between trials with slow and fast response times). The value of

Drate is positive if trials with high rates tend to be followed by long response times. (c) Bias scores (across different analysis windows) for

D and Drate. A large positive bias score indicates that the data is very positively skewed (relative to a distribution that is symmetrically

distributed around 0). Stars indicate significance values for these biases (2-sided permutation test: *, p ≤ 0.05; **, p ≤ 0.01). For Monkey

M, the lowest p-value was for q = 20s−1 (p = 0.003); for Monkey P, the lowest p-value was for q = 5s−1 (p = 0.029). Finally, the result of

the comparison of D, averaged over different analysis windows, between qopt ≈ 10s−1 and q = 0s−1 is shown (signed-rank test).
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Figure 4.18: Consistency of the relation between neural activity and behavior in different subgroups of neurons. Longer response

times were observed in trials preceded by larger deviations from prototypical spike train (i.e. D > 0), consistently for different subgroups of

neurons with significant 1st reward vs. repetition classification. After this classification, we ranked neurons according to Imax = maxq (⟨I⟩t)

(information computed using the original Victor and Purpura metric). We formed different subgroups more and more restricted to high

information neurons, as indicated. The smallest group was formed by applying a k-means algorithm (2 clusters) and taking only the

high-information cluster. (a, b): monkey M, (c, d): monkey P. (a,c) Bias score for D and Drate as a function of the set of considered neurons.

Neurons with less than 5 available trials were discarded. The p-value (2-sided permutation test) is indicated for each data point: small

triangle for p <= 0.1; one star for p <= 0.05; two stars for p <= 0.01; three stars for p <= 0.001. Note that the values of Drate in this

figure are computed as in Figure 4.17 (they assume positive weighting of all neurons). (b,d) Comparison of D values between qopt and

q = 0. Here, qopt was the temporal sensitivity that maximized discrimination between 1st reward and repetition using the normalized

distance d∗ in each neuronal group (see section 3.5). Note that similar results were found when using qopt = 10s−1 instead, i.e. the

temporal sensitivity that maximized 1st reward discrimination when using the original Victor and Purpura distance (as in Figure 4.17 (c)).

D was time-averaged (over analysis windows ending in [0.1, 1] s, steps of 100 ms), separately for qopt and q = 0. These time-averages were

compared with a signed rank test (p-value indicated). The boxplots represent the distribution of the difference of time-averaged D between

qopt and q = 0.
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For monkey P, statistical robustness was reached when neurons with very

little 1st reward vs. repetition information ⟨I⟩t were removed (Figure 4.18 (c)).

Temporal sensitivity values leading to best task-epochs decoding (Figure 4.2)

were also relevant for predicting behavioral response times. More precisely, q

values of 5 and 10 s−1 led to a robust and signi�cant bias of the distribution of

D values in both monkeys (Figure 4.17 (c); and Figure 4.18). This result

suggests that in both monkeys the temporal patterns of spikes could be relevant

to downstream decoding areas ultimately adapting behavioral responses. We

note that the deviation from prototype based on spike count (D(q = 0)) was

also signi�cantly biased in both monkeys. Importantly, we con�rmed that this

e�ect was not likely to be merely caused by a di�erence in �ring rate between

trials with slow and fast response times with di�erent signs in di�erent neurons.

Indeed, if the latter hypothesis were true, then the neurons with a large

D(q = 0) would also be those with large absolute value of the di�erence of mean

�ring rate Drate between slow and fast response time trials. This would lead to

a strong correlation between D(q = 0) and Drate. Instead, we found that this

correlation was small (Spearman correlation between time-averaged D(q = 0)

and Drate, monkey M: c = 0.31, monkey P: c = 0.06). This suggests that, for

any single unit showing a large D(q = 0) and a small Drate, the trials followed

by long response times were likely to be associated with both increased (during

some trials) and decreased (during other trials) spike count compared to

prototype.

We then compared the deviations from prototype between the method based

on spike count (q = 0), and the method using the temporal sensitivity

qopt ≈ 10s−1 (optimal to discriminate 1st reward vs. repetitions). For monkey P,

we found that spike count and temporal decoding performed equally well

(signed-rank test on average D over analysis windows ending from 0.1 to 1s by

increments of 0.1 s). However, the two decoding strategies probably relied on

di�erent neurons as D values were considerably di�erent between qopt and q=0.

Indeed, we tested whether the di�erence DiffD = D(q = 10) − D(q = 0) was

likely to act as a negligible noise (that was thus exchangeable between neurons)

for the bias score of D(q = 10) = DiffD + D(q = 0). However, this had a very

small probability to happen: 2% (this �gure is the p-value of a permutation test,

see subsection 3.5.3 for the method). In monkey M, optimal temporal sensitivity

signi�cantly improved the relation between single-unit spike trains and

upcoming response times compared to spike count (p = 0.028; Figure 4.17 (c);

see also Figure 4.5 (d)). Altogether, these results further argue in favor of the
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relevance of temporal spiking patterns for behavioral adaptation.

Note that even though a longer response time was associated with a higher

probability of interruptions in the task (e.g., breaks in �xation) during the trial

ending with this response (Table 4.1), the correlation between response time and

neural activity was not entirely caused by a di�erence between interrupted vs.

uninterrupted trials. Indeed, when we removed interrupted trials we still observed

a signi�cant positively skewed D distribution (Figure 4.19).
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Figure 4.19: The relation between neural activity and behavior was still present when excluding trials with interruptions. Behavioral

response time analysis while excluding post-1st-reward trials that were interrupted before the monkey touches the target. These

interruptions can be due to breaks of fixation or breaks in screen touch requirements, after which monkeys were forced to resume the

sequence of actions (section 3.1). Groups of neurons are as in Figure 4.18. (a, b): monkey M, (c, d): monkey P. (a,c) Bias score for D

and Drate as a function of the set of considered neurons. Neurons with less than 5 available trials were discarded. The p-value (2-sided

permutation test) is indicated for each data point by the following symbols: small triangle for p <= 0.1; one star for p <= 0.05; two stars

for p <= 0.01; three stars for p <= 0.001. Note that the values of Drate in this figure are computed as in Figure 4.17 (they assume positive

weighting of all neurons). (b,d) Comparison of D values between qopt and q = 0. Here, qopt was the temporal sensitivity that maximized

discrimination between 1st reward and repetition using the normalized distance d∗ in each neuronal group (see section 3.5). Note that

similar results were found when using qopt = 10s−1 instead, i.e. the temporal sensitivity that maximized 1st reward discrimination when

using the original Victor and Purpura distance (as in Figure 4.17 (c)). The values of D were time-averaged (over analysis windows ending

in [0.1, 1] s, steps of 100 ms), separately for qopt and q = 0. The resulting time-averages were compared with a signed rank test (p-value

indicated). The boxplots represent the distribution of the difference of time-averaged D between qopt and q = 0.
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Note also that our results could not be explained by a segregation of 1st reward

responses into 4 equidistant clusters corresponding to the 4 targets. Indeed, under

this hypothesis, all spike trains should have had similar values of neural deviation

from prototypical activity, as the latter is averaged over all spike trains associated

to all targets. Therefore, in this case, Figure 4.17 should not show signi�cant

di�erences of deviation from prototypical activity between di�erent groups of spike

trains. This suggests that dACC activity was not merely related to movement

coding. Rather, our results indicate that the deviation of dACC activity from

prototypical temporal patterns could mediate a behavioral adaptation process

modulating the delay of upcoming decisions and actions.

4.4.2 Firing rate increase does not robustly relate to a

behavioral response time change

In the context of a neural integrator decoder maintaining a memory of the

necessity to adapt the behavioral strategy, one could expect that the spike count

would be directly predictive of the behavioral response time. Indeed, in this

scenario, the downstream decoder would receive an overall excitatory input from

the population of dACC neurons whose activity distinguishes between 1st reward

and repetition task epochs, as this population �res more on average during 1st

rewards (Figure 4.8). As a consequence, any decrease in the number of spikes

received by the decoder would hinder reaching the decision-making threshold (see

�adapt behavioral strategy threshold� in Figure 2.1 (c)). Conversely, any increase

in spike input would accelerate threshold crossing. Hence, given the two groups

of trials (slow vs. fast response times), we tested whether dACC neurons �red

more in one of these two groups. We computed the di�erence in mean �ring rate

between spike trains that preceded trials with slow vs. fast response times (Drate,

see section 3.5). We found that the distribution of Drate was not signi�cantly

skewed either positively or negatively, indicating that large �ring rates in dACC

neurons were not predictive of future monkey's response times (Figure 4.17 (b,c),

see also Figure 4.18).

In addition, under the neural integrator decoding hypothesis, the dACC

neurons �ring more during 1st reward ( 70% of signi�cant neurons) are expected

to be the main drivers of �ring rate increase in the decoder. To examine this, we

restricted the analysis to neurons �ring more during 1 s after the 1st reward

(compared to repetitions). We found that this restriction did not lead to a more
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robust bias of the of Drate distribution (2-sided permutation test: monkey M,

n = 42, bias score = −5.50, p = 0.28; monkey P, n = 18, bias score = −0.337,

p = 0.93). The same test made on di�erent subgroups of neurons (the subgroups

described in Figure 4.18) also failed to reach signi�cance (all ps > 0.05).

Finally, we also examined a scenario in which the downstream integrator

decoder would receive excitatory inputs from neurons discharging more during

1st reward, and inhibitory inputs from neurons discharging more during

repetition. We simply reversed the sign of Drate for those neurons discharging

more during repetition. However, using the same neurons as for Figure 4.17, we

did not �nd a robust bias of the overall resulting distribution (2-sided

permutation test: monkey M, n = 61, bias score = −4.14, p = 0.37; monkey P,

n = 24, bias score = −3.0, p = 0.48). The same test was made on di�erent

subgroups of neurons (the groups in Figure 4.18). The absolute value of the rate

bias score reached by using this methodology was never higher than the

corresponding bias score reached by using the best-scoring measure of deviation

from prototypical spike train. Furthermore, this rate bias score reached p < 0.1

only once, for the smallest group of neurons of monkey M (bias score -11.8,

p = 0.037). We note that this smallest group of neurons was not the one

associated with the largest e�ect size for behavioral prediction through deviation

from prototypical pattern at qopt (the median time-averaged D(q = 10s−1) was

of 0.11 in this smallest group of neurons, while it was of 0.19 in the group of

neurons with information larger than the median in this monkey). Note also

that this e�ect in the smallest group of monkey M neurons was not statistically

very robust (compare to the much smaller p-values reached when using D

in Figure 4.18 (a)); it relied on few neurons, with less than 15 trials available for

one third of them. We stress that if one undersamples the spike count

variability, there is some non-negligible probability that, by chance, one mostly

samples outliers on one side of the distribution. This could lead to a situation

where a measure of absolute deviation from prototype and a measure of spike

count di�erence can covary, hence being di�cult to distinguish (as it seems to

happen here). Furthermore, when using this methodology for computing Drate,

we found rate bias scores that could appear inconsistent between monkeys.

Indeed, in contrast to the negative rate bias scores of monkey M, for monkey P

this rate bias score was � non-signi�cantly � positive for the smallest group of

neurons (when computed with or without the trials with interruptions). Finally,

the rate bias scores computed by using this methodology never reached

signi�cance when considering only trials without interruption (as in Figure 4.19,
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all ps > 0.05).

Overall, the results suggest that there was no robust monotonous relation

between the �ring rates of dACC feedback-related neurons, and the behavioral

response time changes.

These observations therefore appear hard to reconcile with the hypothesis of

a decoding by a simple downstream integrator.

In contrast, the robust relation between deviations from a neuron-speci�c

prototypical 1st reward spike train and slower upcoming response times could be

consistent with a non-linear downstream network able to process and separate

di�erent spatiotemporal spiking patterns.



Chapter 5

Discussion: evidence for a

temporally sensitive, non-linear

decoder of dorsal Anterior

Cingulate Cortex signals

Post-feedback spike counts in dACC neurons were shown to depend on whether

behavioral adaptation was required [Quilodran et al. (2008)]. Given the absence

of external-stimulus-driven temporal �uctuations in the synaptic input and high

noise in spike timing, a plausible hypothesis would be that only spike count is

relevant to the transmission of the need to adapt behavior by dACC �ring [London

et al. (2010)].

5.1 Evidence for internally generated reliable

temporal structure and spike count

variability in dACC

By contrast, we provide evidence for an e�cient spatiotemporal spike coding

of behavioral adaptation signals. Our analysis accounts for the temporal

sensitivity of a biologically plausible neural decoder which would receive

post-feedback dACC discharges. Adjusting the temporal sensitivity of the

decoder can enhance the readout of single-unit spike trains relevant to

behavioral adaptation. Beyond the existence of a temporal patterning of dACC

activity, these results indicate that spike-timing reliability supplements

spike-count reliability. Interestingly, in frontal areas, single-unit spike generation

mechanisms or network dynamics, rather than external stimuli or motor
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feedback, are probably responsible for spike timing reliability and spike-count

variability [Litwin-Kumar and Doiron (2012); Mongillo et al. (2012); Pozzorini

et al. (2013); Ostojic (2014)]. We found strong temporal correlations,

stronger-than-Poisson spike count variability, and heterogeneous spike times

across the dACC population. The feedback-type-speci�c spiking dynamics of

dACC is thus unlikely to arise from neuronal populations connected by balanced

excitatory and inhibitory inputs with uniform wiring probability and with

stationary weak-to-moderate strengths [Litwin-Kumar and Doiron (2012);

Ostojic (2014)], as these features would tend to create Poisson-like spike trains.

Besides the e�ect of the network's connectivity pattern, spike-triggered

hyperpolarizing currents or short-term plasticity could also plausibly favor the

presence of informative temporal correlations in dACC activity [Arsiero et al.

(2007); Mongillo et al. (2012); Farkhooi et al. (2013)]. In addition,

spike-triggered hyperpolarizing currents (i.e., single-neuron adaptation) may

participate to shaping the lower-than-Poisson spike count variability occurring

shortly after the feedback [Farkhooi et al. (2011)]. This initial small spike-count

variability also suggests that the synaptic current received by the neurons just

after the feedback could be characterized by relatively small

�uctuations [Litwin-Kumar and Doiron (2012); Schwalger and Lindner (2013)].

Note that the optimal range of decoding time scale that we found

(τ ≈ 70 − 200ms) is larger than those found when decoding responses to stimuli

with relevant temporal patterning or contrast at onset time (e.g., auditory

stimuli, τ ≈ 5ms [Machens et al. (2003)]; visual stimuli, τ ≈ 10 − 100ms [Victor

and Purpura (1996); Aronov et al. (2003)]). This is consistent with the idea of a

hierarchy of increasing time scales from sensory to higher-order areas [Murray

et al. (2014)]. However, there are also exceptions to this rule, for instance in the

gustatory modality (for which the timing of the stimulus is less relevant).

Indeed, the optimal time scales were found to be close to the one we found in

dACC (50-500 ms [Roussin et al. (2012)]). Given that during a gustatory

stimulation, the motor behavior of the animals and/or some sensorial input

transients were probably participating to shaping the temporal code [Roussin

et al. (2012)], it is quite remarkable that we found equivalent time scales in our

data for which internal neuronal dynamics was probably the major contributor

to spike timing reliability. From a functional view-point, in our context, a

time-scale of ≈ 70 − 200ms may be considered as short for two reasons. First, it

is shorter that the time-interval during which subpopulations of dACC neurons,

or even single dACC units, appear to increase their �ring rate during the
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feedback. Second, and perhaps more importantly, such a time-scale would not

permit to maintain the memory of the behavioral adaptation signal through

leaky integration. Indeed, this suggests a weakness of a downstream network

that would implement, as a decoding and memory mechanism, a computation

tantamount to an approximate integration. Such a network would probably be

less robust than a spike-timing sensitive downstream decoder.

We note that the optimal spike coincidence timescale loosely matches the

period of local �eld potential (LFP) oscillations in the delta and theta range, on

which frontal neurons can phase lock during cognitive tasks [Benchenane et al.

(2010); Womelsdorf et al. (2010); Totah et al. (2013); Womelsdorf et al. (2014)].

LFPs partially re�ect the synaptic input of the local population [Reimann et al.

(2013)], which could both shape and be in�uenced by the temporal spiking

patterns of dACC. The optimal temporal sensitivity range for decoding

identi�ed in this study remains an approximation. First, di�erent methods or

di�erent analysis windows might give slightly di�erent optimal values

(Figure 4.2, Figure 4.3). Yet, although it is not feasible to extensively test all

possible decoders, our analysis accounts for biophysically reasonable

assumptions on the downstream decoder. In this framework, we provide strong

evidence for the plausibility of decoding through spike coincidences (up to a few

hundred ms), compared to a neural integrator decoder. Second, spike trains were

referenced to feedback time, but the internal reference of the brain could be

di�erent and more or less accurate [Chase and Young (2007)] (e.g., coincidence

detection during a population onset [Panzeri et al. (2010)], or precise spike

timing relations in a neuronal population [Shmiel et al. (2006)]). Aligning to

feedback times was very relevant for behavioral-adaptation task epochs where

monkeys could not predict the outcome and were thus reacting to feedback.

However, anticipation of rewards during repetition periods may have promoted

internal references dissociated or jittered from actual juice delivery, decreasing

the apparent temporal reliability (as suggested by the data, Figure 4.8).

5.2 A biological architecture could decode

dACC temporal signals

The spike-time sensitive decoder can be understood as a downstream network

that, through synaptic plasticity [Gjorgjieva et al. (2011)], becomes di�erentially
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selective to coincident spiking patterns that are speci�c to task epochs. The

optimal temporal sensitivity range is compatible with the time constant of NMDA-

mediated currents. Indeed, the e�ciency of the spike coincidence mechanism

decreased with interspike intervals up to 200 ms, which relates to an exponential

decay time-constant of 100 ms.

Within this framework, decoding thus relies on the convergence of excitatory

neurons that transmit similar temporal patterns to a post-synaptic compartment

(triggering summation of depolarizations). Yet, informative neurons with

distinct and potentially antagonistic temporal patterns may improve

information transfer, for instance if they were decoded by di�erent specialized

post-synaptic neurons. We showed that paired decoding generally enhanced

information transmission relative to the pair's most discriminative unit. This

suggests that highly informative activity can be advantageously combined (the

less informative inputs do not merely act as contaminating noise on average).

The information increase was achieved by varying the degree of distinction

between the two units (parameter k). This mechanism may be implemented by

di�erent spatial organizations of synapses, which could modulate, through

non-linear summation, the temporal precision of spike coincidence detection.

Other mechanisms such as di�erent synaptic weights or synaptic timescales (i.e.

two weak/shorter depolarizations that require more precise coincidence to

e�ciently sum), or targeted inhibition, may also induce a similar e�ect. In

addition, we showed that in a smaller proportion of pairs the activity of both

units did not need to be distinguished to achieve optimal discrimination. Thus,

if these two units were excitatory, direct summation of their post-synaptic

potentials would be advantageous. The partial spatial speci�city of reliable

spikes may be advantageous during realistic decision-making when quick choices

should be made between many strategies. Indeed, the combination of spatial

and temporal information can increase the number of possible speci�c activity

patterns compared to simultaneous �ring of all neurons.
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5.3 Evidence for a relation between future

behavior and the result of a non-linear,

spike timing sensitive decoding of dACC

signals

We further probed dACC function by testing how it could a�ect future

behavior. We found a signi�cant correlation between neural activity at feedback

time and the monkeys' response time during the following trial. This �nding is

functionally di�erent from the correlation previously reported between

pre-movement dACC activity (which often resembles an integration to

threshold [Hayden et al. (2011b); Michelet et al. (2015)], in contrast to

feedback-driven dACC responses) and immediate motor response [Hayden et al.

(2011b); Sheth et al. (2012); Michelet et al. (2015)]. This motor correlation

could become apparent through the comparison between trials with high vs. low

�ring rates (or, equivalently, spike-counts in a given window). In particular,

Michelet et al. showed that the quicker the increase of �ring rate to threshold,

the quicker the movement [Michelet et al. (2015)]. This implied high vs. low

spike-count correlation when aligning spike trains with respect to movement. In

contrast, we observed a correlation between dACC activity and behavior in

terms of deviation from prototypical activity patterns, while we did not observe

a robust link between large vs. small number of spikes emitted during

1st-reward-triggered discharges, and di�erent behaviors. This result can be well

understood when considering that dACC can signal a given behavioral strategy

when its activity lies close to a given prototypical state. Hence, this

interpretation can be consistent with reports of increased spike count variability

(and hence, of absence of de�ned state of activity) in dACC during periods of

behavioral uncertainty [Karlsson et al. (2012)]. It can also be related to �nding

about a sudden reorganization of dACC activity in a new �rule encoding

network state� when animals switch to a new rule [Durstewitz et al. (2010)].

Within this framework, 1st reward feedback triggers speci�c dACC activity

patterns [Balaguer-Ballester et al. (2011)] that shape the response of

downstream areas such that the appropriate decision (here, switching to

repetition) is taken. Deviation from these �prototypical patterns� would lead to

a slower behavioral response. In addition, if the deviation of dACC discharges

from their usual pattern were triggered by increased uncertainty or di�culty,
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slowing the behavioral response may prevent incorrect choices (as suggested by

the similar error rates between trials with fast vs. slow responses).

Interestingly, these results also suggest that the information transmitted to

downstream areas cannot be mapped onto an intensity value (i.e. a single

dimension), such as the magnitude of the required cognitive control, as in the

case of the integrator model. Rather, the deviation from a prototypical pattern,

which relates to behavioral modulation, appeared to occur in many di�erent

ways (through either an increase or a decrease of spike count, or through spike

timing deviations within the heterogeneous temporal patterns of dACC

neurons). This hints to the transmission of a high-dimensional representation by

dACC, possibly linked to the embedding of the cognitive control signal into a

speci�c context, or behavioral strategy [Quilodran et al. (2008); Shenhav et al.

(2013); Ullsperger et al. (2014)]. Furthermore, these results also suggest a

non-linear behavior for the downstream decoder. Taken together, our

observations could therefore be consistent with a recent study reporting

evidence for a high-dimensional, non-linear processing in lateral prefrontal

cortex (lPFC, [Rigotti et al. (2013)]), an area which is likely to process dACC

signals [Procyk and Goldman-Rakic (2006); Rothé et al. (2011); Shenhav et al.

(2013)]. One limitation of our study is that we only characterized the

dimensionality of the representation transmitted by dACC through the large

di�erentiation, at the population level, between measures based on �ring rate

and measures based on (absolute) deviation from prototype. A full evaluation of

this dimensionality will need future studies to evaluate the space of neuronal

variability and its relation to behavioral variability in each single neuron.

Importantly, beyond the deviations of dACC spike trains from prototypical

spike count, our �ndings indicate that deviations from prototypical temporal

patterns were predictive of the monkeys' upcoming response time. This was

consistent and signi�cant in both monkeys. Furthermore, compared to the

prediction based on spike count deviations, the prediction power of adapted

temporal sensitivity was either equivalent (monkey P) or signi�cantly stronger

(for monkey M, which showed the most reliable relation between neural activity

and behavior). This strongly suggests that the temporal patterning of single

unit activity is not an epiphenomenon irrelevant to downstream network

dynamics.

We note that dACC di�ers from other decision-making related areas such as

middle temporal (MT) or orbitofrontal cortex (OFC) regarding the nature of
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the relation between neuronal variability and future response time variability.

Indeed, in MT and OFC, the �ring rate of speci�c neuronal populations predicts

behavioral modulation [Britten et al. (1996); Kepecs et al. (2008)]. In addition,

evidence suggests that neurons in MT are decoded through integration, a process

that could be re�ected in LIP (lateral intraparietal cortex) activity [Huk and

Shadlen (2005)], and which appears to have one-dimensional dynamics ([Ganguli

et al. (2008)], see also [Latimer et al. (2015)]).

5.4 Outlook

Altogether, our results appear hard to reconcile with the hypothesis of a

decoding of post-feedback dACC activity by a neural integrator. Other types of

decoders could be compatible with both an increase in information through

spatiotemporal coincidences and a correlation of deviation from prototypical

temporal patterns to behavior. For instance, as we illustrate in Figure 2.1 c, a

recurrently connected neuronal population, which maintains memory through a

high-activity state, can be modulated by the temporal structure of its

input [Dipoppa and Gutkin (2013b)]. Alternatively, a downstream network

maintaining a memory through repetitions of sequential activations of

NMDA-connected neurons, would also be sensitive to spatiotemporal

patterns [Szatmáry and Izhikevich (2010)]. Our �ndings therefore call for a

better understanding of how models of short-term memory and decision-making

could reliably be modulated by a temporal input at the timescale of hundred of

ms.

Also, beyond the necessity to further verify our conclusions in new data sets,

future research should better investigate the cognitive factors that modulate

dACC discharges. This will require a careful design of new experiments where

these factors can be distinguished and measured. Indeed, the current study

reports a correlation between dACC activity and the response time, but it does

not give much insight about whether and how the response time modulation

may favor an e�cient behavioral adaptation process. One of the possible

explanation for our results could for instance be a relation between dACC

discharges and the motivation of the monkey. Alternatively (or in addition to

the previous point), they may indicate a relation between dACC discharges and

the con�dence of the monkey in the appropriateness of the chosen target. Yet,
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another possibility could be that dACC discharges directly re�ect the attention

of the monkey to the task stimuli that permit the implementation of the

appropriate behavioral strategy. Note that the attentional e�ect can di�er from

a con�dence e�ect, as one can be con�dently wrong. Hence, an attentional e�ect

would occur before the �nal choice is made, while a con�dence e�ect would

rather be post-decisional. In the context of our task, analyses of activation

latencies, and of the strength of target-choice-related activity, suggest that

dACC modulates lPFC, which in turn implements the decision about which

target to touch [Procyk et al. (2000); Rothé et al. (2011); Khamassi et al.

(2014)]. This would be more consistent with a pre-decisional involvement of

dACC. However, another study reported the presence of post-decisional

correlates in dACC [Blanchard and Hayden (2014)]. Hence, this issue will need

to be investigated further in the future.

Relatedly, it is also currently di�cult to determine whether dACC feedback

discharges are signaling the new adapted behavioral strategy to downstream

decision-and-memory areas (hence specifying this behavioral strategy [Shenhav

et al. (2013)]), or whether these discharges re�ect the monitoring of the extent

to which a particular behavioral strategy is speci�ed. In the �rst case, the

modulation of the behavioral response time would be entirely dependent on the

reaction of downstream areas to dACC discharges, whereas in the second case,

dACC might modulate directly the speed of the decision and of the behavioral

response, potentially to avoid mistakes.

Finally, it will be a di�cult but extremely important goal to design a test of

the causal impact of spatiotemporal structure of dACC activity on behavior. This

would require to stimulate in a spatiotemporally precise fashion populations of

neurons in behaving animals. While optogenetics might be a promising technique,

for now it cannot be used to impose a neuron-speci�c temporal stimulation. This

is problematic, because di�erent neurons with the same genetic marker can show

di�erent �ring patterns [Kvitsiani et al. (2013)]. Also, a simple optogenetic tagging

of all strongly activated neurons (similar to techniques used in the hippocampus,

for instance [Liu et al. (2012)]) would not work in our case. Indeed, di�erent dACC

populations are transiently active during a behavioral task. Hence, a satisfying

and successful design of a causal experiment for investigating the function of

spatiotemporal patterns of activity remains a technical challenge today.
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Chapter 6

Preamble: from spike train data

analysis to the development of

mean field methods

In the �rst part of this dissertation, we described how we tested the

plausibility of di�erent network architectures that could process dACC activity,

by probing the informative features of spike trains (Figure 2.1). More precisely,

we tested di�erent types of decoding networks for feedback-related discharges,

which seem to transmit information related to the appropriate behavioral

strategy to be implemented in the near future. The analysis provided

considerable evidence against the decoding of dACC feedback-related discharges

by a simple integrator network, which would maintain the memory of dACC

stimulation through a slow enough decay. However, several

alternatives [Mongillo et al. (2008); Martínez-García et al. (2011); Mongillo

et al. (2012); Dipoppa and Gutkin (2013b); Szatmáry and Izhikevich (2010)]

may be consistent with the necessity to hold the received signals in memory, as

well as with our observations:

1. The presence of a prototypical temporal pattern in dACC discharges that

informs about the appropriate future behavioral strategy.

2. A slowing down for the future behavioral response when the spike trains

deviate from the prototypical discharge (apparently, by either increasing

or decreasing the spike count relative to the prototypical value, and/or by

changing spike times relative to the prototypical spike train).

Further investigation of how a spatiotemporal decoder may make use of the

information in dACC feedback-related discharges required to make some

assumptions on the global structure of the decoding network. Further, it was

desirable to analyze and understand the fundamental consequences of these
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assumptions. Indeed, this would lead to predictions that could be

cross-validated in the data.

6.1 Neuronal architectures that could plausibly

support dACC activity decoding

Hence, we �rst needed to choose a plausible neuronal architecture, and to

investigate how it could make use of the spike timing information in its input.

For this, we took advantage of existing data concerning an area which could

plausibly process dACC signals: the lateral prefrontal cortex (lPFC, [Shenhav

et al. (2013)]). Indeed, the Local Field Potentials (LFP) recorded simultaneously

in dACC and lPFC were analyzed in the same monkeys and the same behavioral

task as those of our article. This analysis revealed that during the feedbacks

leading to behavioral adaptation (errors or 1st reward), there was a high-gamma

power increase that occurred earlier in dACC compared to lPFC [Rothé et al.

(2011)]. In addition, high gamma power correlations were found between the

two areas during post-feedback epochs, with dACC leading dlPFC by 100-200 ms

during the search period (for the 60-100Hz band, [Rothé et al. (2011)]).

Furthermore, recordings of neuronal activity in lPFC while monkeys

performed the same task as for our analysis also revealed the presence of activity

speci�c to the chosen target [Procyk and Goldman-Rakic (2006); Khamassi

et al. (2014)]. More precisely, Procyk and colleagues reported the presence of

choice-speci�c sustained activity during the delay period of the task. Hence,

there were neurons whose �ring rate increased more after the feedback if their

�preferred� target was being chosen, and whose activity stayed elevated until the

monkey made a saccade towards the chosen target. These neurons hence

appeared to re�ect the decision of the monkey and the memory maintenance of

this decision. From a theoretical point of view, such a sustained activity could

be compatible with a multistable attractor network able to maintain constant

sustained activity through recurrent connections. Indeed, such a network has

proven to be sensitive to its input's temporal structure [Dipoppa and Gutkin

(2013b)]. Further, recent data analysis studies have shown observations

compatible with (approximate) attractor networks at the level of both neuronal

dynamics and correlations between neuronal and behavioral variability in frontal

cortex [Balaguer-Ballester et al. (2011); Rigotti et al. (2013); Wimmer et al.
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(2014)]. Hence, Balaguer-Ballester et al. (2011) showed that the trajectory

followed by neuronal activity (in a neuronal space) often becomes slower close to

relevant behavioral events (and therefore, when information probably had to be

transmitted from and to di�erent neuronal populations). Rigotti et al. (2013)

showed that some important characteristics of multistable attractor networks

designed to be able to implement complex cognitive tasks, such as a non-linear

combination of the response to di�erent cues (leading to �mixed selectivity�,

[Rigotti et al. (2010)]), are associated with a good performance of the animals

during a memory task. Finally, Wimmer et al. (2014) showed in a saccadic

memory task that correlations between neurons with sustained activity during

the delay were compatible with a ring-like attractor network. In

addition, Wimmer et al. (2014) found that the �ne variability in the stimulus

feature decoded from persistent activity at the end of the delay correlates with

the memory of the animals. This strongly suggests a relation between delay

activity and memory.

However, while the sustained activity during the delay has long been

speculated to be in�uential for this memory and decision-making

function [Fuster (1973)], there is controversy regarding whether there is really a

causal (rather than purely correlational) link between the two [Martínez-García

et al. (2011)]. Indeed, only ≈ 40% of neurons show sustained activity [Procyk

and Goldman-Rakic (2006)], and among those only 65% are spatially tuned.

Further, the �ring rate of these neurons may increase or decrease over time

during the delay. An alternative model proposes that the memory would rely in

the loading of presynaptic calcium bu�er, therefore leading to a short-term

(≈ 1s) potentiation of synapses, and allowing memory maintenance with or

without the presence of sustained activity [Mongillo et al. (2008, 2012)]. Yet,

other possible models can rely on a feedforwardly activated chain of network

states (e.g. [Goldman (2009)]). One implementation of such a feedforward chain

in a spiking neuron network relied on repetitions of the sequential transient

activations of NMDA-connected neurons (creating so-called �polychronous

patterns�, [Szatmáry and Izhikevich (2010)]).

Below, we review the experimental evidence which may be used to try to

determine whether one model may represent the data more accurately.
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6.2 Experimental evidence suggesting a causal

relation between delay activity and short-

term memory

Current evidence based on extracellular recordings in the frontal cortex of

animals instructed to hold some items in memory often appears to be

qualitatively compatible with any of the (non-necessarily exclusive...)

models [Szatmáry and Izhikevich (2010); Martínez-García et al. (2011); Rigotti

et al. (2013)]. Indeed, all models could be compatible with the presence of

neurons which, speci�cally when a given set of circumstances have to be

remembered, increase their �ring rate during the delay and may show a

temporally structured sustained discharge. However, the current implementation

of the model based on polychronous patterns does not seem to yield sustained

increased �ring rate with an intensity that is comparable to the data

(see [Szatmáry and Izhikevich (2010)]; the di�culty could be the occurence of

too many patterns by chance for large �ring rates). In addition, the decoding

time-scale permitting robust decoding in our data appears larger than the

precision at which �polychronous patterns� were activated in the simulation

(which was of a few ms, a time-scale constrained by long-term spike-timing

dependent plasticity). More importantly, the robustness of the memory (for

longer than 2-3 s) in this �polychronous patterns� simulation required a

reactivation of the pattern. However, the saturation of the transmissible

information in our dACC data (see [Figure 4.2] for instance) seems to indicate

that such a robust reactivation is unlikely to occur after 1s post-feedback. Even

though is is unclear to what extent the above-mentioned weaknesses of the

�polychronous patterns� hypothesis are speci�c to the published implementation,

or intrinsic to the concept of the model, we feel that in the current state of

knowledge this model appears rather less plausible than the others. Indeed,

these other models have proven to be able to hold robust

memory [Martínez-García et al. (2011); Mongillo et al. (2012)]. For the model

relying on a synaptic calcium bu�er only, we note that the robustness is directly

determined by the short-term plasticity time-scale, which may extend until

minutes [Zucker and Regehr (2002); Tsodyks and Wu (2013)]. Finally, the

models that do not rely on a precise sequence of single neuron activations can

probably accommodate a less constrained range of time scales for the spike

timing sensitivity (e.g. see [Dipoppa and Gutkin (2013b)]). Indeed, in this case,
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the spike-timing sensitivity can emerge from the non-linearity of the sustained

population response, which can be shaped by many single-neuron and network

connectivity characteristics.

We now turn to discussing experiments that may help determining whether a

sustained �ring during the delay could support short-term memory.

Three very recent optogenetic manipulation experiments actually hint

towards a putative importance of such neuronal �ring speci�cally during the

delay period [Rossi et al. (2012); Gilmartin et al. (2013); Liu et al. (2014)]. This

therefore appears to argue against a purely short-term facilitation-based theory,

which would a priori predict that a sustained �ring of excitatory neurons during

the delay period would be unnecessary for successful memory maintenance.

1. Gilmartin et al. (2013) investigated the issue during trace fear conditioning

which requires to hold a memory of the punishment�predictive conditioned

stimulus (CS, here, a sound) during a delay (20 seconds) before a

punishment is given. They used a light-activated inhibitory channel which

caused an inhibition of a majority of neurons in an area (the prelimbic

medial prefrontal cortex) where sustained �ring had been shown during

the delay between CS and punishment. While the rats underwent

conditioning, using this type of inhibition speci�cally during the delay

period � but not during the CS period � seemed to prevent the association

between CS and punishment. This de�cit was equivalent to the

impairment observed when inhibiting the area during the whole trial (from

CS to the end of the punishment period). Hence, these results are globally

more consistent with the necessity of sustained �ring during the delay in

order to learn the association CS�US, which requires (among other things)

the short-term memory maintenance of the CS.

2. Rossi et al. (2012) used a task which more speci�cally involves short-term

memory, where mice had to press one lever (amongst two), wait while

remembering which lever they had pressed, and then press the other lever

to get a reward. After task acquisition, an inactivation of pyramidal

medial prefrontal neurons during the waiting period (through the

activation of PV interneurons), impaired task performance. Note that the

medial prefrontal cortex (mPFC) contains neurons with delay-related

�ring [Rossi et al. (2012)].

3. Liu et al. (2014) performed similar experiments to Rossi et al. (2012) in a
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similar delayed non-match to sample task. They found a similar e�ect of

behavioral impairment when activating GABA-ergic neurons in the mPFC

of mice during the delay. In addition, during the delay, they speci�cally

inhibited pyramidal neurons with an inhibitory light-activated channel and

found a behavioral impairment.

These studies emphasized the role of any type of item-speci�c frontal �ring

during the delay for short-term memory (including complex trajectories

implying both an increase and a decrease of �ring rate). However, these studies

do not speci�cally argue for a function of sustained, stable �ring rates during

the delay. To the best of our knowledge, a study which would speci�cally

manipulate the activity of the neurons which preferentially �re while a given

item is being remembered (similar to what was done for context-speci�c activity

in hippocampus [Liu et al. (2012)]) is still missing. However, there exist again

an imperfect and indirect evidence for some relevance of an increased �ring rate

in item-speci�c neurons for the memory of this item. Indeed, the neurons in one

hemisphere are more likely to have their �preferred item� (i.e. the item leading

to higher sustained activity during memory) contralaterally. Remarkably,

unilateral lesions [Funahashi et al. (1993), in monkey lPFC] or

inactivations [Hanks et al. (2015), in rat frontal cortex] lead to a contralateral

de�cit, i.e. a bias of the memory and/or the decision towards the ipsilateral item

wich is preferred by the neurons of the other hemisphere. This appears

consistent with an encoding of the memory for one item by a larger �ring rate in

the delay activity of one subpopulation of lPFC neurons, which would compete

with other subpopulations whose sustained �ring encodes the memory of other

items. In contrast, such �ndings are harder to explain when assuming that the

memory is encoded in lPFC through a complex �ring rate trajectory involving

both an increase of �ring rate at some times, and a decrease of �ring rate at

other times.

6.3 A hypothesis for the decoder of dACC that

is compatible with the current literature

Based on this (incomplete) evidence, we therefore decided to explore further

the assumption that lPFC was indeed maintaining the memory of the decision

through sustained �ring, until the animal can express its choice by making a



6.3. A HYPOTHESIS FOR THE DECODER OF DACC THAT IS COMPATIBLE WITH THE

CURRENT LITERATURE 123

saccade. In addition, we assumed that lPFC participates in making the decision

about which target to touch next after the monkey receives a feedback. More

speci�cally, we reasoned that this could occur through competitions between

di�erent pools of neurons which code for di�erent decisions.

Hence, the network would be composed of four populations of recurrently

connected neurons, with inhibitory connections between these populations. Each

of these populations would possess two stable states of sustained activity during

which either the low or the large �ring rate would be maintained through

recurrent connections. This architecture could therefore produce �ring rate

pro�les that would be compatible with the observations in lPFC [Brunel and

Wang (2001); Martínez-García et al. (2011); Dipoppa and Gutkin (2013b)]. As

we mentioned previously, this type of attractor network can be sensitive to the

temporal structure of its input [Dipoppa and Gutkin (2013b)]. Also, the state of

sustained activity of such a network may be destabilized if the neuronal

population receives an input that is too strong, which may help explaining our

observations of increased behavioral response time if dACC spike trains have

either too many or too little spikes. For instance, sustained activity in a bistable

network can be destabilized if the external input synchronizes all the neurons of

the active population [Gutkin et al. (2001); Dipoppa and Gutkin (2013a)]. We

note that given the non-linearity of the dynamics of such networks, several

mechanisms could explain this phenomenon (e.g. relying on shunting through

increased conductance, or on rebound inhibition [Gutkin et al. (2001)).

We hypothesized a role for dACC in sending a signal specifying the behavioral

strategy, which in our case is equivalent to a signal specifying whether to avoid

or to touch again one of the targets that was chosen in the past. However, the

identities of the previously touched targets were rather weakly encoded in the

�ring rates of lPFC neurons, which delay activity is largely related to the chosen

target to which the monkey will saccade in the future [Procyk and Goldman-

Rakic (2006)]. Previously touched targets also appeared to not be very strongly

encoded in dACC signals, which rather re�ect the need for cognitive control and

di�erent internal states corresponding to di�erent behavioral strategies [Procyk

et al. (2000); Shenhav et al. (2013)].

Still, we reasoned that the adaptation properties of single lPFC neurons may

create temporal patterns of activity, or �hidden� excitability states that are not

obviously apparent in the spiking activity. These adaptation states may identify

whether the neurons have been activated in the past. Note that adaptation was
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indeed shown (through simulations) to be compatible with bistable dynamics for

a recurrent neuronal population [Theodoni et al. (2011)].

Hence, a �hidden� memory of which targets were touched, and of when they

were touched, may actually be present in a network of adapting neurons in which

a sustained �ring rate indicates the future touched target. Note that conceptually

similar ideas had been suggested in the past and studied through simulations of

recurrent networks with short-term plasticity [Buonomano and Merzenich (1995)].

The adaptation properties of the neurons can occur at the level of both the

membrane properties (on time scales extending from milliseconds to 20 seconds [La

Camera et al. (2006); Lundstrom et al. (2008); Pozzorini et al. (2013)]), and at

the level of synaptic release probability (generally on time scales extending up to

≈ 1 second [Mongillo et al. (2008); Wang et al. (2006)]). Interestingly, concerning

the time scales of membrane properties adaptation, the power law decrease of

the amplitudes of the di�erent time-scales of adaptation [Pozzorini et al. (2013)]

could be compatible with a decay of the performance with the duration of the

memory. This is a hallmark of working memory [Liu et al. (2014)]. Also, making

this hypothesis of a memory of previously touched targets within the adaptation

state of the choice-related neuronal population may be compatible with a function

of the temporal structure of the behavioral-strategy input received from dACC.

Indeed, it appears conceivable that a given temporal input could be particularly

well suited to excite a population undergoing a speci�c adaptation state. This

adaptation state could be speci�c to a given delay since the population had been

last activated (and thus to a given delay since the associated target had been last

chosen).

For instance, the prototypical 1st reward temporal pattern emitted by some

dACC neurons might be well�suited to excite a population of neurons that had

been activated relatively recently in the past (≈ 1.5s ago, which is the delay

between saccade and reward), and less well�suited to activate a population of

neurons that had been activated much before (during previous trials, more than

4s ago). The hypothesized functioning of such a circuit is depicted in Figure 6.1.

Note that during repetition, there was no correlations between dACC

post-feedback gamma power and lPFC post-feedback gamma power [Rothé et al.

(2011)], which may indicate that another implementation mechanism takes over

during this period where the required cognitive control is low.
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Figure 6.1: A hypothesis for the functioning of lPFC and its modulation by dACC during the problem

solving task. Top: Schematic showing an example of action sequence during the solving of a problem

(see section 3.1), the rewarded target being on the bottom right. The monkey first touches the top right

target, and is therefore not rewarded. The monkey then tries the bottom right target, selects it, and gets

rewarded. Therefore, he then reselects the same target (bottom right), as the monkey knows that the same

target is rewarded several times in a row. Bottom: Schematic illustrating a putative network architecture which

would produce firing rate profiles similar to those observed in lPFC [Procyk and Goldman-Rakic (2006)]. Four

groups (“populations”) of neurons were observed, corresponding to the four targets. Note that these populations

could be competing through mutual inhibition (which we did not illustrate for simplicity). When the monkey

starts making a decision (at the beginning of a problem, or after a feedback), the firing rate begins to rise and

becomes sustained and higher in the neuronal population corresponding to the chosen target, and the firing

rate of this population drops once the monkey expresses its choice by making a saccade to the corresponding

target. This neuronal population is therefore in an adapted state when the corresponding feedback is given.

We hypothesize that the error signal provided by dACC might be better suited to excite neuronal population

that are not in an adapted state, while the 1st reward signal might be better-suited to excite the population

that is in the more adapted state.
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6.4 How to study the hypothesized network for

dACC decoding?

It is a scienti�c question by itself to determine whether and how a network such

as the one sketched in Figure 6.1 can be built, and another question to determine

whether it is in agreement with the data beyond the qualitative arguments detailed

above, that led us to imagine such a circuit (which is, of course, only one possibility

among others).

We have been trying to work on the �rst of these two questions.

Understanding how temporal structure in the input dynamically modulates the

response of (non-linear) recurrent neuronal networks with adapting neurons is

actually still challenging from a theoretical point of view, as we will discuss and

review in the next chapters.

Before this, we would like to elaborate a little bit on the fact that, as often in

research, the real challenge was going well beyond technical di�culties and was

mostly about determining the right approach and orientation to advance in the

resolution of the problem. Indeed, it would have been possible to take, since the

beginning, a simulation-oriented approach. Simulations relating to similar

problems have indeed been successfully implemented in the past [Buonomano

and Merzenich (1995); Dipoppa and Gutkin (2013b)], and they provide a

necessary proof of principle. However, one might feel that the understanding of

the mechanism at stake stays obscured by the complexity of the simulated

system [Dipoppa and Gutkin (2013b)]. In addition, it can become di�cult to

compare the simulation and data (beyond the features that the simulation was

built for reproducing), as it can be hard to isolate a strong (i.e., probably robust

to the relaxation of the simpli�cations made in the model) constraint of the

modeled mechanism that could be taken as a prediction. For these reasons, and

also probably because the relative appeal of pure simulations vs. analytics is a

matter of one's personal way to reach a satisfying feeling of intuitive

understanding, the analytical approach was pursued.

However, there are also numerous pitfalls when trying to phrase the problem

in an analytically tractable form. Indeed, even when starting with the minimal

model required to approximately reproduce neuronal dynamics under relatively

mild assumptions, the complexity of the equations can prevent any intuitive

analysis of the mechanisms at stake. And indeed, we initially stated the problem
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in such a complex way. We attempted to exactly account for temporal

correlations beyond the trial-averaged �ring rate. Several self-consistent nested

integral equations were written. They turned out to be much more complicated

to solve numerically than the simulation that they were describing, and they

were not (in our view) bringing any intuition for how the network's dynamics

was arising. This approach was therefore abandoned, because it seemed to be

irrelevant to our initial question. Rather, such an approach is relevant to the

question of the probabilistic mathematical reformulation of a given network

model.

We then considered the other extreme: taking an arbitrary phenomenological

�ring rate model, and investigating its dynamics and its computation abilities.

While this led to valuable insights on the computational potential of the particular

model chosen, we found it di�cult again to isolate a good prediction of the model.

Indeed, it was unclear how to determine whether and how the results depended

on the simpli�cations of the model.

We �nally decided to use a simpli�ed and approximate mean-�eld model,

while retaining an analytical derivation of the model's dynamics. This allowed

us to clarify the assumptions made in order to derive the �nal formula from the

equations for a single-neuron model that can be �tted to recorded

neurons [Pozzorini et al. (2013)]. Hence, this approach permits to have a good

idea of how the simpli�cations made a�ect the results. Ultimately, such a

method should be amenable to providing an intuitive comprehension of how an

external temporal input may interact with the internal adaptation properties of

a recurrently connected bistable population, to favor its switch to a high-activity

state (Figure 6.1).

The following chapters describe how we derived and tested this approximate

mean-�eld method.





Chapter 7

Introduction: how to analyze the

dynamical response of recurrent

adapting networks of neurons?

Over the last decades, the study of the dynamics of coupled population of

neurons has attracted a lot of attention from the scienti�c community as both a

theoretical challenge [Sompolinsky et al. (1988); Abbott and van Vreeswijk C

(1993); Van Vreeswijk et al. (1994); van Vreeswijk and Sompolinsky (1996,

1998); Brunel (2000); Gerstner (2000); Renart et al. (2007, 2010); Mongillo et al.

(2012); Sussillo and Barak (2013); Wainrib and Touboul (2013)], and as a

successful tool to approach the question of the generation of internal

representations and behavioral outputs by the brain [Seung (1996); Seung et al.

(2000); Compte (2000); Brunel and Wang (2001); Wong and Wang (2006);

Balaguer-Ballester et al. (2011); Rigotti et al. (2013); Haefner et al. (2013);

Wimmer et al. (2014, 2015)]. More generally, theoretical studies have been

extremely insightful for integrative neuroscience, as qualitative reasoning or

approaches purely based on simulations soon lead us to face the di�culty of

grasping how a global behavior can emerge from a complex set of many

interacting elements. Hence, many theoretical approaches reduced the

complexity by self-consistently computing some moments, or even the whole

distribution, of relevant variables among a population of neurons that are

similar in their dynamical properties and their connectivities. These approaches

typically require a simple enough model for the single neuron, such as a binary

units [van Vreeswijk and Sompolinsky (1996); Renart et al. (2010)] or

integrate-and-�re models [Brunel (2000); Renart et al. (2007)]. These models do

share important features with real neuronal networks, with spike-based

interactions between neurons and integration-like dynamics, and can allow a

quantitative match to the steady-state �ring rate [Arsiero et al. (2007)]. Hence,

successful and discerning comparisons between neuronal population analyses for
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these types of models, and data, could typically be made for correlations

between neurons [van Vreeswijk and Sompolinsky (1996); Renart et al. (2010)],

for fast and strong interplay between excitatory and inhibitory

populations [Brunel (2000); Brunel and Wang (2003)], and for the characteristics

of the stationary (or quasi-stationary) response patterns [Compte (2000); Brunel

and Wang (2001); Renart et al. (2007); Mongillo et al. (2012); Wimmer et al.

(2014)].

However, the classical single-neuron models amenable to mean-�eld analysis

do not in general allow a quantitative match of precise spike times when �tted

against recorded pyramidal neurons receiving complex non-stationary input

current. Indeed, successful �tting of the time-dependent response of pyramidal

neurons to non-stationary synaptic-like input at the soma often requires to

account for neuronal adaptation on multiple time scales [La Camera et al.

(2006); Lundstrom et al. (2008); Kobayashi et al. (2009); Pozzorini et al. (2013)],

with e�ects that cumulate over spikes and that cannot typically be considered as

stationary. This adaptation incorporates the e�ect of both hyperpolarizing

currents triggered by spikes, and increases of the voltage threshold at which

spikes are being generated [Pozzorini et al. (2013)]. These characteristics

signi�cantly complicate the derivation of population-wide statistics [Gerstner

(2000); Gerstner and Kistler (2002); Gerstner et al. (2014)]. Indeed, the

mathematical treatment generally requires to approximate the adaptation either

by considering a dependence on the last spike time only (so-called renewal

theory [Wilson and Cowan (1972); Gerstner (2000); Toyoizumi et al. (2009)]), or

by averaging adaptation variables while assuming that they are slow relative to

the neuronal dynamics (interspike interval or membrane voltage dynamics [La

Camera et al. (2004); Gigante et al. (2007); Muller et al. (2007); Farkhooi et al.

(2011); Hertäg et al. (2014)]). Given that in pyramidal neurons, the amplitude

of adaptation e�ects appear to follow a power law on time-scales ranging from

milliseconds to seconds [Lundstrom et al. (2008); Pozzorini et al. (2013)], these

assumptions are expected to be violated for these excitatory neurons.

Recently, a new mean-�eld approach was developed based on a non-linear single

neuron model with stochastic threshold that can be �tted to a time-varying input

current. This model, which belongs to the class of Generalized Linear Models

(GLM) for single neurons, incorporates both voltage and threshold adaptation on

multiple time scales [Pozzorini et al. (2013)]. The mathematical analysis allowed

to compute the average response of a neuron to di�erent repetitions of a non-
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stationary stimulating current with frozen noise [Naud and Gerstner (2012a)]. In

addition, recent developments allowed to compute the �ring rate of a connected

populations of a �nite number of neurons, where all neurons receive the same

current [Deger et al. (2014)]. Hence, in this framework, it is not possible to

analyze the impact of the within-population, between-neuron di�erences in the

received �uctuating synaptic input.

However, there is evidence that the �ring of neuronal populations in the

neocortex is signi�cantly driven by the presence of �uctuations in the synaptic

current that are mostly unshared from one neuron to the next (leading to

irregular and nearly uncorrelated neuronal �ring [van Vreeswijk and

Sompolinsky (1996); Shadlen and Newsome (1998); Holmgren et al. (2003);

Rudolph et al. (2007); Renart et al. (2010)]). Further, several studies suggest

that changes in the amplitude of these �uctuations could be relevant for driving

the response of biological neuronal networks in behaving animals. For instance,

modeling studies suggested that the increased irregularity of interspike intervals

during sustained activity in frontal cortex (i.e. while the animal holds an item in

memory, compared to baseline [Compte et al. (2003)]) could be explained if the

sustained activity was caused by an increased amplitude of the current

�uctuations [Renart et al. (2007); Mongillo et al. (2012)]. Indeed, if instead the

increased activity would be caused by an increase in the mean current received

by the neuron, an increase in the regularity of the discharge would be expected:

after each spike, the time of the next spike would principally depend on how fast

the voltage increases from reset to threshold [Schwalger and Lindner (2013);

Gerstner et al. (2014)]. Furthermore, pyramidal neurons in prefrontal cortex

were found to reliably respond to changes in the variability of their input

current [Arsiero et al. (2007)]. Finally, recently, the relevance of

�uctuation-driven dynamics was further strengthened by a recent theoretical

study [Lim and Goldman (2013)], where such dynamics were proposed as a

robust mechanism which could plausibly permit to implement an approximate

integration of the synaptic input received by a recurrent network.

Treating analytically these dynamical changes in the amplitude of the

�uctuations is still rather challenging, even for networks of simple neurons

without adaptation. Hence, many studies assume that the level of �uctuations

does not vary over time [Brunel (2000); Gerstner (2000); Ostojic and Brunel

(2011)], or only focus on how a discrete change of the level of �uctuations

impacts the steady-state response [Renart et al. (2007); Mongillo et al. (2012)].
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In addition, for di�erent types of integrate-and-�re neurons with reset but

without adaptation, some analytical formulas for the time-dependent response

to changes in the amplitude of �uctuations do exist, but they appear to be

restricted to a linear, or weakly non-linear, response in the presence of white

noise [Amit and Brunel (1997); Brunel and Hakim (1999); Lindner and

Schimansky-Geier (2001); Fourcaud-Trocmé and Brunel (2005); Tetzla� et al.

(2012); Helias et al. (2013); Kriener et al. (2013)]. Also, a phenomenological

model was recently derived to handle the non-linear response to both mean and

�uctuation-driven inputs analytically [Tchumatchenko and Wolf (2011)].

However this model had no reset and no spike frequency adaptation, suggesting

that it may have a limited explanatory power of the dynamical response of

pyramidal neurons to non-stationary input [La Camera et al. (2006); Lundstrom

et al. (2008); Kobayashi et al. (2009); Pozzorini et al. (2013)].

Extending the above-mentioned approaches to adapting neurons with

dynamical modulation of the amplitude of the �uctuations is rather challenging,

because the diverse adaptation variables indirectly follow these �uctuations at

di�erent time scales [Hertäg et al. (2014)]. In addition, in a recurrent network,

adaptation introduces temporal correlations in the input current which are also

hard to treat, but that can have large e�ects on the dynamical response of

neurons ([Brunel et al. (2001); Fourcaud-Trocmé et al. (2003); Brunel and

Latham (2003); Köndgen et al. (2008); Moreno-Bote and Parga (2010);

Tchumatchenko and Wolf (2011)], but see [Alijani and Richardson (2011)]).

Hence, there are several technical di�culties for deriving analytical formulas

accounting for adaptation within a mean-�eld analysis of a recurrent spiking

population undergoing changes of both the neuron-averaged input, and the

neuron-independent variability of the input. In addition, beyond deriving

mathematical expressions, the aim of the analysis should be to bring an

intuition on how the single neuron properties can shape the network's response

and play a role in brain processing. This requirement for an explanatory power

of the analysis calls for the use of clever approximations, that would

considerably reduce the complexity of the formulas while preserving important

features of the neuronal response.

Here, we tackle these issues using a generalized integrate and �re single

neuron model with adaptation, that can capture the dynamical response of

cortical neurons [Mensi et al. (2012); Pozzorini et al. (2013)]. We propose an

approach which takes root on an approximate expression derived for the average
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�ring rate of this neuron in response to repetitions of a non-stationary

stimulating current with frozen noise [Naud and Gerstner (2012a)]. This

expression accounts for the adaptation e�ects that can be estimated through the

history of past average �ring rate. We extend this formula by making an average

over the di�erent inputs received by di�erent neurons, while still making the

assumption that time-dependent �ring rates can account for spatiotemporal

correlations [Brunel (2000)]. We show why, in most cases, the distribution of

input values (and therefore, the distribution of subthreshold voltage values) over

the di�erent neurons can be taken as Gaussian [Destexhe et al. (2003)]. We

derive how the parameters of this Gaussian vary over time as the input evolves,

and we make use of this result to compute the average non-linear neuronal

response. Our approximations are valid when neurons �re asynchronously and

irregularly, as often observed in the neocortex [Shadlen and Newsome (1998);

Compte et al. (2003); Renart et al. (2010)]. Our analysis also takes into

consideration the correlations between the �uctuations of the membrane

potential due to synaptic input, and the �uctuations of the adaptation variables,

for each single neuron. To do this, we linearize the adaptation variables (after

averaging over the di�erent responses reached for di�erent repetitions of a

deterministic stimulation). We stress that we still treat the spiking non-linearity

analytically, hence preserving many relevant non-linear features of the

population response. At the end, we reach rather simple mathematical

expressions that can be written in the form of non-linear di�erential equations.

Furthermore, the formulas for the steady-state response can be written as simple

coupled transcendental equations. Finally, for a single recurrent population, the

steady-state response boils down to the Lambert-W function, which has

well-de�ned solutions.





Chapter 8

Derivation of approximate

expressions for the dynamics of

recurrent adapting networks of

neurons

In this chapter, we will start by describing the model of single neuron

dynamics that we use, and by explaining to which extent and in which

conditions it is found to be an accurate description for the dynamical response of

cortical neurons (in section 8.1). We then explain how to derive an approximate

analytical formula for the expected activity among a subpopulation of neurons

with similar parameters, in a regime where they �re asynchronously and

irregularly (in section 8.2). Finally, we explain the characteristics of the network

that we used to compare the analytical formulas to simulations (in section 8.3).

8.1 Single neuron model

We used a model belonging to the class of �Generalized Linear Model� (GLM),

in which a (�ltered) input and a �ltered spiking history combine to de�ne a spiking

probability at each time.

8.1.1 Spiking probability of the GLM

The adapting GLM model states that for any small interval dt around the time

t, the probability that the neuron model number i emits a spike is λi (t) dt, where

the �ring rate λi (t) is de�ned in the following way:



136
CHAPTER 8. DERIVATION OF APPROXIMATE EXPRESSIONS FOR THE DYNAMICS OF

RECURRENT ADAPTING NETWORKS OF NEURONS

λi (t) = λ0 exp (hi (t) + η ∗ Si (t))

Si =
∑

{tk
i }≤t

δ
(
t − tk

i

)
(8.1)

Here, λ0 is a baseline �ring rate; hi is a (�ltered) driving input; δ is the dirac

distribution, and ∗ is the convolution operator. Finally,
{

tk
i

}
=
{
t1
i , t2

i , ...
}
is the

ensemble of spike times emitted by the considered neuron (number i), and η is a

so-called spike history �lter which accounts for refractory and adaptation e�ects

that modulate the spiking probability depending on the spiking history [Gerstner

and van Hemmen JL (1993); Gerstner (1995); Truccolo et al. (2005); Pillow et al.

(2008)].

We would like to stress several important features of this model. First, the

spiking mechanism has an exponential non-linearity, much alike the exponential

rise of voltage close to the spiking threshold in recorded neurons [Jolivet et al.

(2006); Badel et al. (2008)]. Second, the de�nition of the spike-history �lter allows

for both very strong refractoriness and adaptation. Indeed, this �lter can take

very negative values at short time-lags (hence e�ectively preventing any spiking

just after a spike was emitted), and can also incorporate longer time-scales (hence

leading to a modulation of the �ring probability depending on the more ancient

spiking history).

8.1.2 Interpretation of the filters of the GLM in a current-

based approximation of the single-neuron somatic

dynamics

The above-mentioned model may be used as a purely phenomenological

description of spiking (as in e.g. [Pillow et al. (2008); Park et al. (2014)]), or

may be matched to some biophysically de�ned neuronal characteristics [Mensi

et al. (2011, 2012); Pozzorini et al. (2013)].

Indeed, the mathematical de�nition of the �ring probability (λ dt,

see Equation 8.1) can be reinterpreted as an exponential function of the distance

between the somatic subthreshold voltage Vsubthld, and a (dynamic) voltage

threshold for �ring Tvolt. More precisely, the �ring probability depends on the

magnitude of this distance compared to the intrinsic noise of the neuron ∆V (in
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voltage units).

Hence, for a single unit i:

λi (t) = λbiophys exp

(
Vsubthld,i (t) − Tvolt,i (t)

∆V

)
(8.2)

∆V approximately accounts for the intrinsic stochasticity of single neurons,

which is due to various factors such as the �nite number of channels, the

stochastic nature of the opening of these channels, and the �nite number of ions

in a neuron Diba et al. (2004)). Because of this intrinsic noise, neurons �re

slightly di�erently in response to di�erent repetitions of the same current

stimulus [Mensi et al. (2012); Pozzorini et al. (2013)], with a discharge that is

more stochastic when the neuron is not strongly driven by the stimulus. In

contrast, when the ratio Vsubthld−Tvolt

∆V
becomes close to zero or even positive, the

�ring probability should increase exponentially [Jolivet et al. (2006); Badel et al.

(2008); Mensi et al. (2011)], leading to an almost deterministic spike emission.

In order to give a biophysical interpretation of Equation 8.1, we need to

decompose the adaptation e�ects into changes in the voltage threshold for �ring,

and changes detectable at the level of the membrane potential [Mensi et al.

(2012)]. Hence, adaptation e�ects are split between (i) a spike-triggered increase

(relative to a baseline T0) of the voltage that needs to be approached in order

for the neuron to �re: Tvolt,i (t) = ηT ∗ Si (t) + T0; and (ii) a hyperpolarizing

current that is generated intrinsically each time a spike is triggered:

ηcurr ∗ Si (t). Note that this hyperpolarizing current implements both a reset,

and adaptation e�ects. Then, we can rewrite the dynamic �ring probability in

response to an input current I (t), by the mean of a membrane �lter κ

representing the low-pass properties of leak currents:

Tvolt,i = −ηT ∗ Si (t) + T0

Vsubthld,i = κ ∗ (Ii (t) + ηcurr ∗ Si (t))
(8.3)

Hence, we can equate, between Equation 8.1, Equation 8.2 and Equation 8.3:

hi(t) :=
κ

∆V
∗ Ii (t)

η :=
ηT

∆V
+

κ

∆V
∗ ηcurr

λ0 = λbiophys exp

(
−T0

∆V

)
(8.4)
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Note that the intrinsic unreliability is rather small (at least when estimated

from in vitro recordings). Quantitatively, the �tting gives ∆V ≈ 0.5−1mV while

the range of the voltage �uctuations (i.e., the range of the �uctuations of Vsubthld

or of Vsubthld−Tvolt) can be on the order of 10−20mV (see [Pozzorini et al. (2013)],

their Fig.3b Table S1 and Fig. S6d). Hence, the dynamics are truly driven by the

changes in external input and the membrane response to these changes.

The previously described biophysically interpretable model of neuronal

dynamics de�nes the dynamics in terms of changes in current or voltage

thresholds. However, the dynamics actually result from opening or closing of

channels, which change the conductance of the neuron. This change of

conductance indirectly leads to a change of current after multiplication of the

conductance by the di�erence between the membrane potential and the reversal

potential of the considered ion. Though in principle a change of conductance is

not exactly equivalent to a change of current as the current change is

independent of the change of membrane potential, current and conductance

changes can be approximately related as long as the reversal potential of the ion

is far away from the values of voltage reached by the membrane [Richardson and

Gerstner (2005); Gerstner et al. (2014)]. We summarize here the argument,

based on the negligibility of the product of two deviation terms (one for the

conductance, and the other for the voltage). Let us consider two di�erent

time-dependent conductances g1 (t) and g2 (t), as well as a (constant) leak

conductance gL. Their respective reversal potential are E1, E2 and EL. The

dynamics of the voltage V at the soma reads:

C
dV

dt
= −gL (V − EL) − g1 (t) (V − E1) − g2 (t) (V − E2)

⇐⇒

C
dV

dt
= −gL (V − EL) + ⟨g1⟩ (V − E1) + ⟨g2⟩ (V − E2)

− (g1 (t) − ⟨g1⟩) (V − E1) − (g2 (t) − ⟨g2⟩) (V − E2)

⇐⇒

C
dV

dt
= − (gL + ⟨g1⟩ + ⟨g2⟩)

(
V −

gLEL + g1E1 + g2E2

(gL + ⟨g1⟩ + ⟨g2⟩)

)

− (g1 (t) − ⟨g1⟩) (V − E1) − (g2 (t) − ⟨g2⟩) (V − E2)

⇐⇒

C
dV

dt
= −g0 (V − E0) − (g1 (t) − ⟨g1⟩) (V − E1) − (g2 (t) − ⟨g2⟩) (V − E2)

(8.5)
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Where the angular brackets denote averaging over time,

g0 := gL + ⟨g1⟩ + ⟨g2⟩ is an e�ective input-regime-dependent �leak� conductance,

and E0 := gLEL+g1E1+g2E2

g0
is an e�ective input-regime-dependent equilibrium

potential. More speci�cally, if one would �x g1 (t) to ⟨g1⟩ and g2 (t) to ⟨g2⟩, then

the voltage V would converge to E0.

Finally one can write:

C
dV

dt
= −g0 (V − E0) − (g1 (t) − ⟨g1⟩) (E0 − E1) − (g2 (t) − ⟨g2⟩) (E0 − E2)

− (g1 (t) − ⟨g1⟩) (V − E0) − (g2 (t) − ⟨g2⟩) (V − E0)

(8.6)

In the sum that constitutes the right hand side of Equation 8.6, the two last

terms can be considered as small as long as ∀i ∈ {1, 2} , (V − E0) << (E0 − Ei).

This is often the case as the membrane potential often oscillates between −40/ −

60 mV (E0 being situated in between), while many common ions such as K+ or

Na+ have reversal potential that are very away from these voltages (≈ −77 mV

for K+ and ≈ +55 mV for Na+ [Gerstner et al. (2014)]).

Under this approximation, we can write:

C
dV

dt
≈ −g0 (V − E0)−(g1 (t) − ⟨g1⟩) (E0 − E1)−(g2 (t) − ⟨g2⟩) (E0 − E2) (8.7)

In this last expression, one can see that there is no multiplication between the

voltage and a time-dependent factor: in other words, the neuron behaves as if it

were current-driven. Note that the neuron now possesses an e�ective leak current

and reversal potential, which depend on the total conductance of the neuron when

it is in a given input regime.

8.1.3 Validity domain of the GLM for describing single

neuron’s response to somatic current injections

For in-vitro current-clamp recordings of layer 5 pyramidal neurons and

interneurons in the somatosensory cortex, the current-based description of

neuronal dynamics of Equation 8.3 actually permitted a quantitative �t of both

the subthreshold voltage Vsubthld and of the spike times (within a precision of a

few ms) [Mensi et al. (2012); Pozzorini et al. (2013)]. This �t is signi�cantly

better than the �t allowed by simpler leaky integrate-and-�re models, which can
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only capture the long term �ring rates between 0-10Hz, without reproducing

precise spike times in pyramidal neurons [Kobayashi et al. (2009)]. This occurs

because pyramidal neurons possess strong adaptation properties extending from

short to long time-scales. A similar result was found in pyramidal neurons of

frontal cortex in vitro (i.e., Equation 8.3 could be successfully �tted to data

from [Thurley et al. (2008)] when including adaptation on multiple time scales,

personnal communication from C. Pozzorini).

The above-mentioned �ts were realized with realistic and rich synaptic-like

stimulating currents which could produce very large fast modulations of the �ring

rates. For instance, two spikes could occur within a few ms and then be followed

by a silence period of several hundreds of ms [Mensi et al. (2012); Pozzorini et al.

(2013)]. However, these stimulating currents were driving the neurons over a

more limited range of long term �ring rate regimes (e.g., 10-second average rates

were mostly constrained between 2 and 10 Hz, see [Mensi et al. (2012)]). This

does not cover the whole range of stationary �ring rates that can be sustained

by pyramidal neurons (which spans values from 0 to ≈ 25 Hz [Arsiero et al.

(2007)]). Fitting the pyramidal neuron's response over their whole range of steady-

state �ring rates actually necessitates to enrich Equation 8.3 with a non-linear

modulation of the spiking threshold by the voltage [Pozzorini et al. (2015); paper

under review at PLOS computational biology]. However, it is possible to locally

(over an ensemble of input regimes which drive the neurons at steady state �ring

rates spanning a range of about 8 Hz) remap this more complicated model on

the simpler model described by Equation 8.3 [Pozzorini et al. (2015); paper under

review at PLOS computational biology]. Hence, di�erent input regimes leading

to drastically di�erent steady-state �ring rates can then be separately handled

by an equation of the type of Equation 8.3, each of them necessitating to use a

particular set of parameters and �lter shapes [Mease et al. (2014)].

As a conclusion, the model proposed in Equation 8.3 can to some extent

capture the dynamical response of both pyramidal neurons and interneurons

with a �xed parameter set. For pyramidal neurons, the �t is restricted to a

moderate (≈ 8Hz) range of steady-state �ring rates (while still permitting a

very large range of fast �ring rate modulations) .

Note that, in vivo, the precise amplitude of the adaptation e�ects may be

modi�ed by the presence of neuromodulators [Satake et al. (2008); Thurley et al.

(2008)]. However, adaptation has still been observed during in vivo recordings

(as shown in anesthetized animals [Degenetais (2002)]). Also, as argued in the
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previous section, the high-conductance state of neurons in vivo [Destexhe et al.

(2003)] should still be well-modeled by a current-based description such as the one

proposed in Equation 8.3. This should at least work well when trying to �t the

response of neurons during a given regime of synaptic bombardment. However, a

study performing a quantitative �t in vivo is still lacking. Indeed, such a �t would

also require to estimate the synaptic input received by the neuron under study

(while, in vitro, the stimulation can be carefully controlled through the electrode

in the absence of synaptic input).

8.1.4 Modeling the synaptic input and its transmission to

the soma through passive dendrites

For the synaptic input, we work at the same level of approximation as for the

soma model (Equation 8.3) and we therefore adopt a linear current-based

description [Richardson and Gerstner (2005); Gerstner et al. (2014)]. Note that

while some non-linear synapses such as those of the NMDA type do exist, it is in

principle possible to linearize their response around a given synaptic input

regime [Brunel and Wang (2001)]. Given the original non-linear synaptic

equations, it can even be possible to compute analytically a best-approximating

linear �lter analytically [Thomas et al. (2000)]; hence, this approach may

permit a possible extension of our framework to non-linear synapses if needed.

Note that this approach might also permit some extension to synapses

undergoing non-linear short-term plasticity, provided this short-term

enhancement or depression dynamics could be approximated by a linear �lter

within some restricted regime of synaptic input [Thomas et al. (2000); Mongillo

et al. (2012)].

We also assume that the dendritic processing can be approximated as a passive

conduction of the current, leading to the transmission at the soma of the sum of

the di�erent (�ltered) inputs. While this may be a crude approximation whose

impact is currently hard to measure, we note that some studies suggest that

it might be a good approximation in the high conductance state that neurons

typically experience in vivo. Indeed, the conduction of synaptic input was found

to be more synapse-location-independent in the high-conductance state [Destexhe

et al. (2003)].

Hence, the synaptic current received at the soma Isyn, i by the neuron i will
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be taken as a sum over all synapses s associated with a spike train Ss, i and

responding to each presynaptic spike by the current time course (i.e., the impulse

response) Fs:

Isyn, i =

Ns, i∑

s=1

(Fs, i ∗ Ss, i) (t) (8.8)

Hence, we can express the voltage �uctuations hi (t)

(see Equation 8.1, Equation 8.3 and Equation 8.4) that are generated in neuron

i by this synaptic input at the soma:

hi(t) =
κ

∆V
∗ Isyn, i (t)

=
κ

∆V
∗




Ns, i∑

s=1

(Fs, i ∗ Ss, i) (t)




=

Ns, i∑

s=1

(
κ

∆V
∗ Fs, i

)
∗ Ss, i (t)

=

Ns, i∑

s=1

F tot
s, i ∗ Ss, i (t)

(8.9)

where we de�ned a combined leak-and-synapse �lter F tot
s, i := κ

∆V
∗ Fs, i.

8.2 Dynamical computation of the firing rate

distribution in a recurrent network of GLM

neurons

In this section, we �rst describe the approximations we are making during

the analysis for the connectivity of the network, and for the spatiotemporal

correlations.

After this, we show how the distribution of �ltered synaptic input h(t) in one

subpopulation can be approximated as a Gaussian with known time-dependent

parameters.

We then explain how to treat the presence of a diversity of synaptic input in

one subpopulation by separating two di�erent stochasticities: �rst, the intrinsic

noise that makes single neurons �re stochastically in response to a given
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deterministic stimulating current, and second, the presence of a stochastic input

with a Gaussian distribution over a subpopulation of neurons. After averaging

over the �rst stochasticity, we treat the correlations over the subpopulation of

neurons between the values of the �ltered synaptic input hi, and the values of

the adaptation variable. More speci�cally, we develop a simple linearization of

the intrinsic-noise averaged adaptation induced by a given synaptic input.

We then show how to compute the non-linear average over the di�erent

synaptic inputs present in the network, by making use of known analytical

results for the moments of the exponential of a normal variable.

The �nal (approximate) analytical formulas for the average rate within a

subpopulation are reducible to simple non-linear di�erential equations.

8.2.1 Separation of the network in subpopulations

We considered cases when the neuronal network can be separated into

di�erent subpopulations, each subpopulation consisting of neurons which can be

modeled by the same parameters, and which receive (resp. send), when averaged

over repetitions of the same protocol, the same synaptic inputs (resp. outputs).

In a realistic setting, of course, there has to be some heterogeneity between

di�erent neurons of a group, but we assume that one can �nd a subpopulation of

neurons for which this variability can be neglected. We stress that, concerning

the intrinsic dynamical properties of the neurons, a study has shown that the

adaptation properties of pyramidal neurons from layer 5 of somatosensory cortex

were well conserved. Indeed, a very good �t could be reached when imposing for

all neurons a low-dimensional mathematical expression (a power-law) for the

adaptation kernel. Further, there was only a minor variability of the three

parameters of this power law between neurons [Pozzorini et al. (2013)]. Note

that this result is not necessarily inconsistent with a large variability in the ion

channel composition between neurons, because the absence of one ion channel

may be compensated by other channels [Marder et al. (2015)]. This could in

particular occur if there is some global homeostatic mechanism on the

dynamical properties of the neuron.

Note that while we assume a negligibly small variance for the combined leak-

and-synapse �lters (and, therefore, for the synaptic weights) and for the number of

connections within a subpopulation, we will brie�y clarify later that the formulas



144
CHAPTER 8. DERIVATION OF APPROXIMATE EXPRESSIONS FOR THE DYNAMICS OF

RECURRENT ADAPTING NETWORKS OF NEURONS

appear to be generalizable to account for more synaptic-input variability if needed.

In the following, we will use the index p to indicate one of the Npop

subpopulations of neurons, and the index ip for the np di�erent neurons of a

given subpopulation p. We stress that some subpopulations of neurons will be

recurrently connected, while some other subpopulations just provide

feedforward, external stimulation to the recurrent network. The aim of the

analysis is to determine the mean �ring rate of recurrent populations in response

to a (known) time-dependent external input coming from the external

populations.

Finally, we will assume that the number of inputs from each subpopulation

received by one neuron in the circuit is rather large, i.e. large enough to allow

the convergence of the central limit theorem, as we will discuss later. Given that

neurons in the neocortex typically receive several thousands of connections in

total [Megías et al. (2001)], we are assuming that these thousands of inputs could

be split in a few groups, such that the inputs within each group have similar

synaptic parameters and similar �ring rate modulations.

8.2.2 Assumptions about spatio-temporal correlations

and their consequences

For the recurrent neurons, we assume that the spike trains are approximately

emitted according to an inhomogeneous Poisson process which depends on the

(dynamic) input and which is uncorrelated between units.

For the sake of clarity, we would like to take advantage of the space allowed

in a Ph.D. dissertation in order to make this statement mathematically explicit

with simple binary variables. Let us call Xi (to) a variable that takes the value 1

if a neuron i from a given subpopulation �red during a time-step dt taken around

time to, and 0 else. Note that we impose that dt is small enough such that the

neuron �res at most one spike within this interval. By construction, Xi (to) is a

Bernoulli variable which expectation is dt times the rate of neuron i at time t0.

In other words,

prob (Xi (to) = 1) = [dt Ri (to)] = 1 − prob (Xi (to) = 0) (8.10)

Note that Xi (to) corresponds to the convolution of Si (to) with a rectangular
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function Rectdt (s) = 1
dt

(
Θ
(
s + dt

2

)
− Θ

(
s − dt

2

))
, where Θ is the Heaviside step

function. Formally, we can write: Xi (to) = (Rectdt ∗ Si) (to).

Concerning correlations within the network for the variables X, we assume the

following:

1. For any neuron i from the recurrent subpopulation, and ∀ t1 ̸= t2:

Erep det [Xi (t1) Xi (t2)] = Erep det [Xi (t1)] Erep det [Xi (t2)]

+ Cov rep det (Xi (t1) , Xi (t2))

≈ Erep det [Xi (t1)] Erep det [Xi (t2)]

(8.11)

where Erep det is an expectation over di�erent repetitions of the same

deterministic stimulation of one neuron (i.e. the neuron is stimulated

di�erent times with the same deterministic current). In addition,

Cov rep det is the covariance over these repetitions, which we assume to be

small.

Hence, we neglect the presence of co-occurrences between spike times that

go beyond those that can be captured through a time-dependent �ring rate

(which is an average over di�erent repetitions of the same deterministic

current). Note, however, that the �ring rate at time t2 can still be computed

as a function of the past history of �ring rates at all times t < t2.

To illustrate, let us take the example of a neuron with �classical�

hyperpolarizing adaptation. Qualitatively speaking, a large previous �ring

rate of this neuron predicts a reduced future excitability. However, this

prediction is imperfect for a given trial because the speci�c realisation of

spiking history, that directly shapes the future excitability, is only

approximately matched to the past �ring rates (see the EME1

approximation in [Naud et al. (2011)], and subsection 8.2.4). This

approximation is expected to be rather good if the neuron is driven by a

very �uctuating current which triggers almost deterministic �ring at some

precise times. In contrast, the very regular spike trains emitted in response

to a supra-threshold constant input are much more shaped by spike time

correlations.

2. For any two neurons i ̸= j, and for all (possibly equal) times {t1, t2}:
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Erep stoch [Xi (t1) Xj (t2)] = Erep stoch [Xi (t1)] Erep stoch [Xj (t2)]

+ Cov rep stoch [Xi (t1) , Xj (t2)]

≈ Erep stoch [Xi (t1)] Erep stoch [Xj (t2)]

⇐⇒ Epop nrn [Xi (t1) Xj (t2)] = Epop nrn [Xi (t1)] Epop nrn [Xj (t2)]

+ Cov pop nrn [Xi (t1) , Xj (t2)]

≈ Epop nrn [Xi (t1)] Epop nrn [Xj (t2)]

(8.12)

where:

� Erep stoch is an expectation over di�erent repetitions of the

stimulation of a network, such that in each repetition the stochastic

external stimulation is redrawn. Hence, here, the expectation has to

account for both the intrinsic stochasticity internal to each neuron,

and for the variability in the synaptic input received by di�erent

neurons. Concretely, for each repetition, the spike trains coming from

the external subpopulations are redrawn from a �xed random vector

of time-dependent rates. Cov rep stoch is the covariance over these

repetitions, which we assume to have a negligible e�ect �compared to

the e�ect of the time-dependent �ring rates� for determining the

co-occurrence of spike patterns from two neurons.

� Epop nrn is the average over di�erent neurons of the subpopulation(s)

to which the neurons i and j belong. Note that they may actually

belong to the same subpopulation. Cov pop nrn is the covariance over

pairs of neurons taken from the respective subpopulation(s) to which

neurons i and j belong. We assume that this covariance has a negligible

e�ect �compared to the e�ect of the time-dependent �ring rates� for

determining the co-occurrence of spike patterns from two neurons.

We actually assume in the �rst part of Equation 8.12 that di�erent

neurons of a network emit spikes, and therefore receive currents, whose
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joint probability is completely determined by the time-dependent

stochastic-repetition-averaged �ring rates, hence neglecting any correlation

present in recurrent (internal) currents that would be speci�c to a given

stimulation. This therefore implies that Erep stoch is equivalent to the

average over di�erent neurons of the concerned subpopulations (i.e.,

Epop nrn). This equivalence holds exactly in our case where all neurons

receive the same number of inputs. In a more general case, the formulas

and their implications are unchanged; one would just need to account for

the additional variability in synaptic input in Erep stoch.

In conclusion, we neglect the e�ects of the correlations which arise

(directly and through indirect recurrent loops) because of shared inputs

between two neurons. We also neglect correlations that would arise

through correlated activity between some external synapses. Finally, we

neglect co-occurrences of spikes from the neurons of the recurrent

population which arise through the dynamics, and which cannot be

explained by two samples taken from the �ring rates in the populations at

the relevant times. Note that, under some biologically plausible conditions

(i.e. in case of detailed balance between excitatory and inhibitory current),

a recent study showed that even when these correlations were present and

rather strong, their e�ects could e�ectively cancel in the total synaptic

current that drives the dynamics of the neurons [Renart et al. (2007)].

We stress that the approximations in Equation 8.11 and in Equation 8.12 do

not concern averages of the �ring rate that would be taken over time. Hence,

there can be temporal covariations of the neurons relative to their time-averaged

rate [Brunel (2000); Renart et al. (2007)]. Also, we note that the expected �ring

rate may not only depend on the current synaptic input, but also on the previous

expected �ring rate history. Hence, there can be temporal correlations in the �ring

probability of one population, relative to its time-averaged �ring rate, beyond

those imposed by the synaptic input.

We now outline a few useful consequences of our assumptions about the

spatiotemporal correlations. The expert reader may choose to skip those, which

relate to the computation of the time-dependent expectation and variance of the

sum of �ltered spike trains.

1. Let us de�ne, for any neuron i in subpopulation pi,
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Yi (t) =
∑∞

s=0 αpi
(s) Xi (t − s), where ∀s, αpi

(s) ∈ R are �xed (i.e.,

stationary and non-random) numbers that are the same for all neurons

within a subpopulation. As a �rst direct consequence of Equation 8.12 and

of the linearity of the expectation, the variables Y are also uncorrelated

between di�erent neurons. Note that Yi can be written as a convolution

between some kernel and the spike train Si (written as a sum of dirac

deltas) that is associated with Xi. Indeed, using the previously de�ned

rectangular �lter Rectdt, we can write:

Yi (t) :=
∞∑

s=0

αpi
(s)

[∫
Rectdt

(
(t − s) − s′)S

(
s′) ds′

]

=

∫ [ ∞∑

s=0

αpi
(s) Rectdt

((
t − s′)− s

)
]

S
(
s′) ds′

=

∫
F
(
t − s′)S

(
s′) ds′ := F ∗ S (t)

(8.13)

where F is a �lter that is de�ned in continuous time.

Hence, for all (possibly equal) times t1 and t2, and for all neurons i ̸= j

(but which may belong to the same subpopulation, i.e. pi may be the same

as pj):

Epop nrn [Yi (t1) Yj (t2)] := Epop nrn

[ ∞∑

s=0

αpi
(s) Xi (t1 − s)

∞∑

s′=0

αpj

(
s′)Xj

(
t2 − s′)

]

⇐⇒

Epop nrn [Yi (t1) Yj (t2)] =
∞∑

s=0

∞∑

s′=0

αpi
(s) αpj

(
s′)Epop nrn

[
Xi (t1 − s) Xj

(
t2 − s′)]

⇐⇒

Epop nrn [Yi (t1) Yj (t2)] ≈
∞∑

s=0

∞∑

s′=0

αpi
(s) αpj

(
s′)Epop nrn [Xi (t1 − s)] Epop nrn

[
Xj

(
t2 − s′)]

⇐⇒

Epop nrn [Yi (t1) Yj (t2)] ≈ Epop nrn

[ ∞∑

s=0

αpi
(s) Xi (t1 − s)

]
Epop nrn

[ ∞∑

s′=0

αpj

(
s′)Xj

(
t2 − s′)

]

⇐⇒

Epop nrn [Yi (t1) Yj (t2)] ≈ Epop nrn [Yi (t1)] Epop nrn [Yj (t2)]

(8.14)



8.2. DYNAMICAL COMPUTATION OF THE FIRING RATE DISTRIBUTION IN A

RECURRENT NETWORK OF GLM NEURONS 149

2. A similar argument (relying on the linearity of the expectation) can be

made for the variables SYp1 =
∑np1

i=1 Yi∈p1 (t) (resp. SYp2 =
∑np2

i=1 Yi∈p2 (t))

associated with two di�erent subpopulations of neurons p1 and p2 which

send np1 (resp. np2) connections on a given post-synaptic target. Hence,

SYp1 and SYp2 are uncorrelated.

3. Finally, a consequence of Equation 8.11 is an explicit expression for the

variance of Yipo
(t) =

∑∞
s=0 αpo (s) Xipo

(t − s) over di�erent neurons of one

subpopulation po. Under our assumptions, this is equivalent to looking at

the variability of a function of the response of one neuron of po (Yipo
(t)),

over di�erent realisation of the stochastic time-dependent input. We recall

that Yipo
(t) is a function that makes a weighted time-average of the

variables Xipo
(t). These variables spanning the di�erent time steps are by

construction Bernoulli variables with an expectation (Rpo (t) dt), where

Rpo (t) is the average rate at time t over the subpopulation po.

We start by noting that the variance of the sum of uncorrelated variables

(in a pairwise fashion) is the sum of the variances, as well as reminding that

∀α ∈ R, var [α X] = α2 var [X]. Hence, we can write:

varpop nrn po

[
Yipo

(t)
]

:= var

[ ∞∑

s=0

αpo (s) Xipo
(t − s)

]
⇔

varpop nrn po

[
Yipo

(t)
]

≈
∞∑

s=0

var
[
αpo (s) Xipo

(t − s)
]

⇔

varpop nrn po

[
Yipo

(t)
]

≈
∞∑

s=0

(αpo (s))2 var
[
Xipo

(t − s)
]

⇔

varpop nrn po

[
Yipo

(t)
]

≈
∞∑

s=0

(αpo (s))2
[
(dt Rpo (t − s)) − (dt Rpo (t − s))2

]
⇔

varpop nrn po

[
Yipo

(t)
]

≈
∞∑

s=0

(αpo (s))2 [(dt Rpo (t − s))]

(8.15)

where the last line holds because Xi (t − s) is a Bernoulli variable with a

small probability of being 1 if neurons �re irregularly and asynchronously

within a subpopulation. Hence, in these conditions, for all times and for a

small enough time step dt, (Rpo (t) dt) is very small, and therefore,

(Rpo (t) dt)2 is negligible.
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8.2.3 Characteristics of the distribution of filtered

synaptic input in a neuronal subpopulation

The synaptic-input-induced voltage �uctuations experienced by neuron ipo of

a subpopulation po can be written as:

hipo
(t) =

Npop∑

p=1

np, po∑

j=1

F tot
p, po

∗ S
p, ipo

j (8.16)

where np, po is the number of neurons in subpopulation p that send projections

to one neuron of subpopulation po, F tot
p, po

is the combined leak-and-synapse �lter

for this speci�c type of synapse (see the previous subsection, and Equation 8.9),

and S
p, ipo

j is the spike train of the jth neuron of subpopulation p sending a

connection to the neuron ipo of population po. Note also that the subpopulation

po is included within the external sum over subpopulations.

For any subpopulation p, Iipo ,p =
∑np, po

j=1 F tot
p, po

∗ S
p, ipo

j is a sum of many

identically distributed and almost uncorrelated variables (see Equation 8.14).

Through the central limit theorem and its generalizations (i.e. assuming that

np, po is large enough, and assuming that the weak correlations do not break the

convergence of the sum), Iipo ,p is expected to approximatively follow a Gaussian

distribution across di�erent neurons ipo in population po.

In addition, for any two di�erent subpopulations p1 and p2, Iipo ,p1 and Iipo ,p2

are almost uncorrelated Gaussians (see the previous subsection, item 2). We will

assume a regular form for the (weak) covariations between subpopulations,

hence ensuring that the di�erent Iipo ,p are jointly normally distributed. Under

these assumptions, hipo
(t) is also expected to approximatively follow a Gaussian

distribution among di�erent neurons ipo belonging to the subpopulation po.

Note that it is also possible that for a given population p, the values of Iipo ,p are

correlated between neurons, while still having hipo
(t) uncorrelated between

neurons through cancellations between positive and negative correlations

Renart et al. (2010). In this case, our formulas are still valid.

Note that, for a steady-state stimulation with a short and small temporal

autocorrelation of the membrane-�ltered synaptic input, the same argument

would predict a Gaussian distribution for the values of the subthreshold

potential taken at di�erent times by the membrane of a single neuron. This has
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indeed been observed during in vivo patch clamp recordings, and in detailed

models of pyramidal neurons [Destexhe et al. (2003)].

Finally, we can compute the time-dependent moments of hipo
(t) as a function

of the �ring rates of neurons averaged over subpopulations.

First, we can compute Epop nrn∈po

[
hipo

(t)
]

using the linearity of the

expectation:

Epop nrn po

[
hipo

(t)
]

:= Epop nrn po




Npop∑

p=1

np, po∑

j=1

F tot
p, po

∗ S
p, ipo

j




=

Npop∑

p=1

np, po∑

j=1

F tot
p, po

∗ Epop nrn∈po

[
S

p, ipo

j

]

=

Npop∑

p=1

np, po∑

j=1

F tot
p, po

∗ Rp

=

Npop∑

p=1

np, po F tot
p, po

∗ Rp

(8.17)

where Rp (t) := Epop nrn p

[
Sip

]
, i.e. Rp (t) is the expected �ring rate within the

di�erent neurons ip of subpopulation p at time t.

In addition, we can approximate varpop nrn

[
hipo

(t)
]
. First, we use the

approximation of uncorrelated �ring, and the fact that the variance of the sum

of uncorrelated variables is the sum of their variances, Second, we use the

assumption about the asynchrony and irregularity of the spiking process. The
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computation follows the same steps as Equation 8.15 in the previous subsection.

varpop nrn po

[
hipo

(t)
]

:= varpop nrn po




Npop∑

p=1

np, po∑

j=1

F tot
p, po

∗ S
p, ipo

j




≈

Npop∑

p=1

np, po∑

j=1

varpop nrn po

[
F tot

p, po
∗ S

p, ipo

j

]

≈

Npop∑

p=1

np, po∑

j=1

FF tot
p, po

∗ varpop nrn po

[
S

p, ipo

j

]
,

where ∀s, FF tot
p, po

(s) :=
(
F tot

p, po
(s)
)2

⇐⇒

varpop nrn po

[
hipo

(t)
]

≈

Npop∑

p=1

np, po FF tot
p, po

∗ Rp

(8.18)

Hence, this variance computation would be exact for inhomogeneous and

uncorrelated Poisson �ring with expected rates Rp (t) within a subpopulation

(which are our basic assumptions, see subsection 8.2.2).

We note that the central limit theorem is often quite robust to violations of

its assumptions. Hence, the convergence to a normal variable may be ensured

even when summing over variables that are not identically distributed (as shown

through the extensions of Lyapunov and Lindeberg). In this limit, our

framework may be extended to networks where the synaptic weights are drawn

from a distribution that is speci�c to each subpopulation (while still assuming

the same shape for the synaptic-and-membrane �lter within a subpopulation).

In addition, it may also be possible to account for stochastic synaptic

transmission [Pala and Petersen (2015)]. These extensions would simply require

to adjust the computation of the variance to account for the stochasticity of the

synaptic weights. Hence, one would need to evaluate

varpop nrn po

[
wj,ipo

S
p, ipo

j (t)
]
, where wj,ipo

is a random variable. This could be

done by using the law of total variance, for instance.

Also, we stress that we could extend our approach to account for known

spatiotemporal correlations within the external spike trains received by a

recurrent neuron, which would only require to account for the (given)

spatiotemporal covariances in Equation 8.18. Indeed, our framework only

requires that di�erent recurrent neurons can be well-enough approximated by
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uncorrelated inhomogeneous poisson processes. Hence, the assumptions about

correlations described in subsection 8.2.2 are more crucial for the recurrent

populations of neurons, because evaluating further the correlations between

recurrent spike trains would require to solve (non-linear) self-consistent

equations at each time-point. This would not be an easy numerical task, and

this would annihilate the e�orts to reach simple equations suitable for intuitive

mathematical analysis.

In conclusion, one can compute the mean and variance of the e�ective input

hipo
(t) as a function of the subpopulation rates, under the assumptions made

in subsection 8.2.2. We now turn to the computation of the (self-consistent)

relation between this input to one neuron of the po subpopulation, to the expected

subpopulation rate Rpo (t).

8.2.4 Expression of the subpopulation rate through a

separation of the stochasticities due to intrinsic

noise and due to synaptic input

We aim at computing (self-consistently) the expected subpopulation rate

among di�erent neurons ipo of a given (recurrently connected) subpopulation po:

Rpo (t) := Epop nrn po

[
Sipo

(t)
]
.

We �rst notice that the expectation is a�ected by two types of variability:

� the variability in the �ltered synaptic input received by di�erent neurons.

As we showed above using our assumptions, the �ltered input is

approximately distributed according to a Gaussian within a subpopulation

of neurons, with time-dependent means and variances that depend on the

subpopulations' �ring rates. Mathematically, this variability can be

summarized by the distribution of the (in�nite) random vector

h⃗po = {hpo(t′)}∀t′≤t. This random vector concatenates the di�erent

random variables assigned to di�erent times (each random variable is

assigned to a given time). Each of these random variables describes a

distribution across di�erent neurons of the subpopulation of interest po. In

the following, we will use a (slightly shorter) notation to note a particular

realization of h⃗po for a speci�c neuron ipo . Rigorously, for a neuron ipo , a

particular �xed realization of the input (�frozen noise�) should be written:

∀t′ ≤ t, hpo(t′) = hipo
(t′), where for each t′ the left-hand side is a random
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variable over the subpopulation, and the right-hand side is a particular

�xed realization experienced by the neuron ipo . We will use the notation
{
hipo

(t′)
}

∀t′≤t
for this particular realization of the input vector h⃗po

received by neuron ipo during one run of the network.

� the variability of the response of one neuron subsisting even when it

receives di�erent repetitions of an identical, deterministic current
{
hipo

(t′)
}

∀t′≤t
. This variability is due to the intrinsic stochasticity of the

neuron. As we wrote previously, we can note the average over this

variability Erep det (for the average over deterministic repetitions). For

clarity, we now use a more explicit notation for this average over the

di�erent spike trains Si emitted by a neuron i in response to a �xed,

deterministic input history [Naud and Gerstner (2012a)]. Hence, for a

given neuron ipo : Erep det [·] := ESipo
| {hipo

(t′)}
∀t′≤t

[·].

We will use the law of total expectation in order to account for these two types

of variability.

Hence, by de�nition, for any recurrent population po containing the neurons

with indexes ipo , the time-dependent neuron-averaged rate Rpo is:

Rpo (t+) := Epop nrn po

[
Sipo

(t+)
]

:= lim
dt→0

Prob (ipo fires between t and (t + dt))

dt
(8.19)

We now use the de�nition of the �ring probability given by our single neuron

model (see Equation 8.1), to write:

Rpo (t+) = Epop nrn po

[
λ0, po exp

(
hipo

(t) + ηpo ∗ Sipo
(t)
)]

(8.20)

Note that we used a �+� subscript to stress the fact that, in the last expression,

the left side of the equation is caused by the right side, and hence occurs with

an in�nitesimal delay compared to the right side. In continuous time, this �+�

subscript can actually be dropped because this delay goes to 0 (and because of

the continuity and the �niteness of our expressions at all times).

To make progress, we use here the law of total expectation. We average �rst

over the intrinsic variability of a given single unit ipo while its synaptic input

history
{
hipo

(t′)
}

∀t′≤t
is �xed (and momentarily deterministic), and second over

the di�erent synaptic input histories experienced by di�erent neurons in the
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population po. Hence, we can write:

Rpo (t+) = E{hpo (t′)}∀t′≤t

[
ESipo

| {hipo
(t′)}

∀t′≤t

[
λ0, po exp

(
hipo

(t) + ηpo ∗ Sipo
(t)
)]]

Rpo (t+) = λ0, po E{hpo (t′)}∀t′≤t

[
exp

(
hipo

(t)
)

ESipo
| {hipo

(t′)}
∀t′≤t

[
exp

(
ηpo ∗ Sipo

(t)
)]]

(8.21)

where {hpo(t′)}∀t′≤t is the distribution of synaptic input histories within the

population .

In a recent paper [Naud and Gerstner (2012a)], an analytical expression was

given for the inner expectation term, for any single unit io:

ESipo
| {hipo

(t′)}
∀t′≤t

[
exp

(
ηpo ∗ Sipo

(t)
)]
. Indeed, this term was recognized as a

moment generating functional for the random point process Sipo
representing

spike trains emitted in response to a �xed input
{
hipo

(t′)
}

∀t′≤t
. Therefore, the

expectation can be separated in a sum which involves di�erent correlations

functions gn (t1, ..., tn) of order n, ∀n ≥ 1. For increasing values of n, the gn

involve higher and higher moments of the point process (see [Van Kampen

(1992)], p. 41 and more generally p. 30-44 for the use of these functions). Note

that these functions are named 'correlations' because they measure how much

each moment n > 1 deviates from independent interactions at the (n − 1) and

lower levels.

We give here an expression of gn for n ≤ 2,

� g1 (t1) := ESipo
| {hipo

(t′)}
∀t′≤t1

[
Sipo

(t1)
]
. Hence, g1 (t1) is an expectation

which averages the di�erent probabilities of spiking at t1 that arise from

di�erent previous spiking histories occuring in response to a �xed input

history
{
hipo

(t′)
}

∀t′≤t1
. We note that a more formal mathematical writing

for this expectation can be found in the Methods section of [Naud and

Gerstner (2012a)].

� ∀ t1 ̸= t2,

g2 (t1, t2) := ESio | {hipo
(t′)}

∀t′≤t

[(
Sipo

(t1) − g1 (t1)
) (

Sipo
(t2) − g1 (t2)

)]

Note that we must set, ∀to, g2 (to, to) := 0 (see [Van Kampen (1992)], p.

31, linking to p. 30-44).

Hence, using the correlation functions gn, one can write the following

expansion:
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ESipo
| {hipo

(t′)}
∀t′≤t

[
exp

(
ηpo ∗ Sipo

(t)
)]

=

exp

( ∞∑

n=1

(
1

n!

∫ t

−∞
...

∫ t

−∞

(
eηpo (t−s1) − 1

)
...
(
eηpo (t−sn) − 1

)
gn (t1, ..., tn) ds1 ...dsn

))

⇒

ESipo
| {hipo

(t′)}
∀t′≤t

[
exp

(
ηpo ∗ Sipo

(t)
)]

≈ exp

(∫ t

−∞

(
eηpo (t−s) − 1

)
g1 (s) ds

)

(8.22)

Note that the last formula, which only accounts for the �rst order (n = 1) of

the expansion, would be exact if the point process was truly inhomogeneous

Poisson [Van Kampen (1992) p. 33, also in Stratanovitch (1963)], i.e. if the

spiking process could be completely described by a time-dependent, but

history-of-�ring independent, �ring probability. Indeed, in this case, for any

n > 1, all the correlation functions gn vanish. Therefore, when using the

approximation of Equation 8.22, the error will grow with the amplitude of the

correlations within the spike trains, and thus, for our purpose, with the strength

of the adaptation. More speci�cally, adaptation most often creates negative

correlations between spike times [Farkhooi et al. (2011); Schwalger and Lindner

(2013)], which leads to expecting negative values for g2. Given that

∀s, ηpo (s) ≤ 0 (hence implementing a �classical� adaptation which drives the

excitability down upon each spike [Pozzorini et al. (2013)]), the second order

term in the sum is expected to be negative, i.e. we expect(∫ t
−∞

∫ t
−∞

(
eηpo (t−s1) − 1

) (
eηpo (t−s2) − 1

)
g2 (s1, s2) ds1ds2

)
< 0. By

neglecting this second order term, we therefore conjecture to underestimate the

self-inhibition coming from the adaptation variable, and hence to overestimate

the predicted �ring rate. This overestimation error would also be expected to

grow with the �ring rate, as the spike time correlations become larger for

smaller interspike intervals with a realistic power-law-like adaptation kernel.

This is indeed what was shown to happen in the original publication making use

of this moment-based expansion ([Naud and Gerstner (2012a)], see Figure 8.1).

For clarity, we reproduce here one �gure adapted from this publication in order

to illustrate how well the approximation in Equation 8.22 works for predicting

the �ring rate in response to a �xed, deterministic input.

As can be seen in Figure 8.1, the approximation based on the �rst moment only
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1st moment approximation

1st and second moments approximation
renewal approximation

Figure 8.1: Performance of the approximation of adaptation through the 1st moment with a deterministic

current. Adapted from [Naud and Gerstner (2012a)]. In the figure, simulations (25 000 repetitions of the same

deterministic current, blue line) are compared to theory. The single neuron model is identical to ours, and

possesses a power-law-like adaptation kernel. The red line corresponding to the 1st moment approximation (g1

only, see the bottom of Equation 8.22); while the green line takes into account two moments (g1 and g2 in the

sum in the first line of Equation 8.22). Finally, the black line approximates ηpo ∗ Sipo
(t) ≈ ηpo (t − tlast),

where tlast is the time of the last spike fired by the neuron (i.e., it makes a renewal approximation). Left: time-

course of the firing rate in the simulations, and comparison with the theories, in response to a deterministic

step current (bottom). Right: steady-state firing rate in the simulation and prediction from the theories, in

response to different values of a constant depolarizing current.
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(g1, red line) indeed leads to an overestimation of the �ring rates, and more-so for

higher rates, with an error that is slightly decreased when also accounting for the

second moment (g1 and g2 , green line). However, this �rst moment approximation

still accounts rather well for the time-dependent e�ect of adaptation on the �ring

rate, allowing to capture the initial peak of �ring rate and to approximate the

following decay of activity, while missing only minor oscillations of the rate. Also,

the g1 approximation does account for the summation occurring over di�erent

spike times (as it gives a better �t for the steady-state �ring rate than a theory

which only accounts for the e�ect of the last spike, black line in Figure 8.1).

Hence, the approximation based on g1 is very simple while still capturing major

features of the adaptation e�ects.

Finally, we can rewrite this approximate 1st moment formula in Equation 8.22:

ESipo
| {hipo

(t′)}
∀t′≤t

[
exp

(
ηpo ∗ Sipo

(t)
)]

≈ exp

((
η̆po ∗ ripo | {hipo

(t′)}
∀t′≤t

)
(t)

)

(8.23)

where ∀s > 0, η̆po (s) :=
(
eηpo (s) − 1

)
while ∀s ≤ 0, η̆po (s) := 0, and

ripo | {hipo
(t′)}

∀t′≤t

(t) := g1 (t) is the average rate of a single neuron ipo over

di�erent repetitions of a stimulation with a �xed deterministic input history
{
hipo

(t′)
}

∀t′≤t
.

Together with Equation 8.21, this leads us to a (non-explicit) equation for the

expected population rate over di�erent neurons receiving di�erent inputs Rpo (t):

Rpo (t+) ≈ λ0, po E{hpo (t′)}∀t′≤t

[
exp

(
hipo

(t)
)

exp

((
η̆po ∗ ripo | {hipo

(t′)}
∀t′≤t

)
(t)

)]

≈ λ0, po E{hpo (t′)}∀t′≤t

[
exp

(
hipo

(t) +

(
η̆po ∗ ripo | {hipo

(t′)}
∀t′≤t

)
(t)

)]

(8.24)

However, evaluating the remaining expectation is not trivial, �rst because we

do not know the distribution of
(

η̆po ∗ ripo | {hipo
(t′)}

∀t′≤t

)
over the di�erent

neurons of the subpopulation po, and second because hipo
and(

η̆po ∗ ripo | {hipo
(t′)}

∀t′≤t

)
are strongly (negatively) correlated among this

subpopulation of neurons. Indeed, the �ltered input hipo
received by a neuron

ipo is correlated over time; hence, if it takes large values at times t, it probably

also took large values in the past, leading to a stronger �ring in the past and
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therefore to a more negative expected adaptation variable(
η̆po ∗ ripo | {hipo

(t′)}
∀t′≤t

)
.

The following section describes the method we developped to get around these

di�culties.

8.2.5 Explicit expression of the subpopulation rate

through a linearization of the expected adaptation

variable

In order to make progress from Equation 8.24, we would like to determine

the distribution of Gipo
(t) :=

(
hipo

(t) +

(
η̆po ∗ ripo | {hipo

(t′)}
∀t′≤t

)
(t)

)
over the

neurons ipo of the population po.

One way to do this is to notice that the (deterministic-repetitions averaged)

adaptation variable
(

η̆po ∗ ripo | {hipo
(t′)}

∀t′≤t

)
(t) should be a function of the

history of input
{
hipo

(t′)
}

∀t′≤t
. If one could linearize this variable, i.e. if one

could �nd a kernel Γpo and a constant Cpo such that:

(
η̆po ∗ ripo | {hipo

(t′)}
∀t′≤t

)
(t) ≈

(
Γpo ∗ hipo

)
(t) + Cpo (8.25)

then, the distribution of Gipo
(t) within the subpopulation po could be

approximated from the distributions of
{
hipo

(t′)
}

∀t′≤t
(which were determined to

be Gaussian in subsection 8.2.3).

We now turn to deriving Γpo and Cpo , by using a linearization of(
η̆po ∗ ripo | {hipo

(t′)}
∀t′≤t

)
(t), which in turn requires to linearize

ripo | {hipo
(t′)}

∀t′≤t

. Hence, we need a �baseline� value Rpo, bsln for the population

rate, around which we can compute deviations of ripo | {hipo
(t′)}

∀t′≤t

.

Self-consistent derivation of the recurrent baseline firing rates

To �nd a value for this baseline �ring rate Rpo, bsln, we will make use of an

�ideal network�, whose �ring rates can be expected to be rather similar (but not

identical) to the time-averaged �ring rates which occur within our more complex

network of interest.
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The reason for using such an approximate �baseline� �ring rate in this �ideal

network� is that, under these simpli�ed conditions, we can self-consistently

express these baseline subpopulation rates Rp recc, bsln for all recurrently

connected subpopulations through coupled transcendental equations. In

addition, in case of a single recurrent population, or when there is only one

subpopulation for which the dynamics is substantially non-linear, the equations

only involve the Lambert-W function which has well-de�ned solutions. Hence, in

this framework, there is no need to use very complex numerical recipes to solve

the baseline steady-state self-consistently. In addition, we stress that we will

later be able to use the baseline rates as parameters for intermediate

computations which will ultimately lead to approximate the time-averaged �ring

rate in our more complex network.

Note that a more complex numerical approach that does not make use of the

�ideal network� (and which would therefore be expected to give more accurate

results, but which has the disadvantage of diminishing the mathematical

tractability of our framework) may still be used to compute a mean �ring rate

self-consistently. A linearization around this mean �ring rate would indeed be

expected to minimize the error for the predicted �ring rate. This approach

would just require to numerically search a self-consistent match between an

(initially unknown and initiated with a �guess�) mean �ring rate used for the

linearization, and the value of the mean �ring rate that our formulas provide at

the end (see Equation 8.42).

Hence, we choose as a baseline the steady-state subpopulation rate in a �frozen�

network receiving the same mean external synaptic drive as our original network.

However, in this �frozen� network, all �uctuations are neglected (i.e. we neglect all

the �uctuations of the �ltered synaptic input, both external and recurrent). Such

an equivalent �frozen� network can be (theoretically) constructed by making the

size Np of each subpopulation p go to in�nity, while rescaling the synaptic weights

from population p by Np. Brie�y, in the original network, if we take wreal
p1,p2

the

synaptic weight from a neuron of subpopulation 1 to neuron of subpopulation 2

and N real
p1,p2

as the number of neurons from p1 projecting to a neuron of p2, then the

mean synaptic current from p1 to one neuron of p2 will scale as
(
wreal

p1,p2
N real

p1,p2

)
.

In the �ideal network� with a number of neurons N ideal
p1,p2

→ ∞ coming from p1 and

projecting to one neuron of p2, we can choose wideal
p1,p2

:=
wreal

p1,p2
Nreal

p1,p2

N ideal
p1,p2

. Hence, the

mean synaptic current from p1 to one neuron of p2 still scales as
∑N ideal

p1,p2
i=1 wideal

p1,p2
=
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wreal
p1,p2

N real
p1,p2

. However, the variance of this synaptic current will now scale as
∑N ideal

p1,p2
i=1

(
wideal

p1,p2

)2
=

(wreal
p1,p2

Nreal
p1,p2

)
2

N ideal
p1,p2

, which goes to 0 as N ideal
p1,p2

goes to in�nity.

Hence, for any recurrent subpopulation po within this �frozen� network in

steady-state, all neurons receive the same baseline constant input ho, bsln, which

is related to the neuron-averaged ho of the original network. In addition, now,

the �ring rates of the recurrent populations Rprecc, bsln are constant and respond

to constant stimulations from external subpopulations (with rates Rpext, bsln :=

Et[Rpext (t)], i.e. we take the time-average of the external subpopulation rates

from the original network).

As a consequence, by separating the subpopulations between recurrent (whose

rates have to be determined self-consistently) and external ones, we can write:

hpo, bsln :=

Npop recc∑

precc=1

nprecc, po F tot
precc, po

∗ Rprecc, bsln+

Npop ext∑

pext=1

npext, po F tot
pext, po

∗ Rpext, bsln

=

Npop recc∑

precc=1

nprecc, po Rprecc, bsln

(∫
F tot

precc, po

)
+

Npop ext∑

pext=1

npext, po Rpext, bsln

(∫
F tot

pext, po

)

(8.26)

Given these time-independent and neuron-independent (within a

subpopulation) �ltered inputs, we can re-work Equation 8.24 for any recurrent

population po:
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Rpo, bsln ≈ λ0, po E{hpo (t′)}∀t′≤t

[
exp

(
hipo

(t) +

(
η̆po ∗ ripo | {hipo

(t′)}
∀t′≤t

)
(t)

)]

≈ λ0, po exp (hpo bsln + (η̆po ∗ Rpo, bsln))

≈ λ0, po exp




Npop ext∑

pext=1

npext, po Rpext, bsln

(∫
F tot

pext, po

)


exp


Rpo, bsln

(
npo, po

∫
F tot

po, po
+

∫
η̆po

)
+

∑

precc ̸=po

nprecc, po Rprecc, bsln

(∫
F tot

precc, po

)


(8.27)

This de�nes coupled transcendental equations for the recurrent baseline rates

Rprecc, bsln, as announced previously. More precisely if we note R⃗precc, bsln a column

vector of these rates, then we can compute the values of a real column vector C⃗

and of a real matrix M⃗ such that:

R⃗precc, bsln = C⃗ · exp
(
M⃗R⃗precc, bsln

)
(8.28)

Linearization of the exponential non-linearity around the baseline firing rates

We now turn to the linearization of ripo | {hipo
(t′)}

∀t′≤t

around hpo, bsln, which

will simply rely on a Taylor expansion for the exponential. We will write,

∀t, ∆hipo
(t) := hipo

(t) − hpo, bsln, where hpo, bsln is de�ned in Equation 8.26.

Similarly, we will take ∆ripo | {hipo
(t′)}

∀t′≤t

(t) := ripo | {hipo
(t′)}

∀t′≤t

(t) − Rpo, bsln.

Starting again from the de�nition of rio | {hio (t′)}∀t′≤t
(t) as an average of the

di�erent spiking probabilities at time t arising through di�erent spiking histories



8.2. DYNAMICAL COMPUTATION OF THE FIRING RATE DISTRIBUTION IN A

RECURRENT NETWORK OF GLM NEURONS 163

in response to the input {hio(t′)}∀t′≤t, we can write:

ripo | {hipo
(t′)}

∀t′≤t

(t) := ESipo
| {hipo

(t′)}
∀t′≤t

[
Sipo

(t)
]

:= lim
dt→0

Prob
(
(ipo fires at t) |

{
hipo

(t′)
}

∀t′≤t

)

dt

:= ESipo
| {hipo

(t′)}
∀t′≤t

[
λ0, po exp

(
hipo

(t) + ηpo ∗ Sipo
(t)
)]

= λ0, po exp
(
hipo

(t)
)

ESipo
| {hipo

(t′)}
∀t′≤t

[
exp

(
ηpo ∗ Sipo

(t)
)]

≈ λ0, po exp
(
hipo

(t)
)

exp

((
η̆po ∗ ripo | {hipo

(t′)}
∀t′≤t

)
(t)

)

(8.29)

where we used the result from Equation 8.23 for the last step.

From this last equation, we will now use ∆hipo
and ∆ripo | {hipo

(t′)}
∀t′≤t

to

write:

λ0, po exp

(
hipo

(t) +

(
η̆po ∗ ripo | {hipo

(t′)}
∀t′≤t

)
(t)

)

= λ0, po exp

(
∆hipo

(t) + hpo, bsln +

(
η̆po ∗

(
∆ripo | {hipo

(t′)}
∀t′≤t

+ Rpo, bsln

))
(t)

)

= λ0, po exp (hpo, bsln + (η̆po ∗ Rpo, bsln)) exp

(
∆hipo

(t) +

(
η̆po ∗ ∆ripo | {hipo

(t′)}
∀t′≤t

)
(t)

)

= Rpo, bsln exp

(
∆hipo

(t) +

(
η̆po ∗ ∆ripo | {hipo

(t′)}
∀t′≤t

)
(t)

)

(8.30)

Where we used the second line of Equation 8.27 in the last step.

We will now Taylor-expand the exponential for small

∆Exc ipo
(t) :=

(
∆hipo

+

(
η̆po ∗ ∆ripo | {hipo

(t′)}
∀t′≤t

))
(t). Hence, we will take

exp
(
∆Exc ipo

(t)
)

= 1 + ∆Exc ipo
(t) + ϵ

(
∆Exc ipo

(t)
)
. Note that the error

term (ϵ) accounts for all higher-order terms. We will keep this remaining total

error explicitly in the formula for now, and we will see later how to

approximately account for it.

We note that ∆hipo
and

(
η̆po ∗ ∆ripo | {hipo

(t′)}
∀t′≤t

)
are negatively correlated,

which is favorable for the linearization as it will tend to bring ∆Exc ipo
close to

0.

To �rst order, this linearization will actually lead to an underestimation of

ripo | {hipo
(t′)}

∀t′≤t

(t) as, ∀x, exp(x) ≥ (1 + x). We can actually quantify the

peformance of this linearization to �rst order as a function of the ratio
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r
ipo | {hipo

(t′)}
∀t′≤t

Rpo, bsln
. If this ratio is 2, the error ϵ is 2 − 1 − ln(2) ≈ 0.31 (i.e. we

estimate a rate ripo | {hipo
(t′)}

∀t′≤t

of ≈ 1.7 Rpo, bsln instead of the actual value of

2 Ro, bsln). Similarly, if the ratio is 0.5, ϵ ≈ 0.5 − 1 − ln(0.5) ≈ 0.19 (i.e. we

estimate a rate ripo | {hipo
(t′)}

∀t′≤t

of 0.3 Rpo, bsln instead of the true value of

0.5 Rpo, bsln).

Note that this approach is much simpler than the only other currently

available linearization procedure for this type of adapting neuron model [Deger

et al. (2014)]. This simpli�cation was permitted by the decision to start from an

expression for the intrinsic-stochasticity averaged adaptation which does not

di�erentiate the last spike from the previous ones, and treats the whole spiking

history through a �rst-moment approximation (see Equation 8.22).

Instead, Deger et al. (2014) use an additional integral over the time of the last

spike, in order to more accurately account for possibly strong refractory e�ects.

We note that actually, in Deger et al. (2014), the evaluated linear kernel was

semi-analytical as it required the steady-state interspike interval distribution,

which was taken from the simulation. In contrast, we will derive and evaluate a

fully analytical expression, as we demonstrate below.

Hence, using this approximation, we can write:

ripo | {hipo
(t′)}

∀t′≤t

≈ Rpo, bsln

(
1 +

(
∆hipo

+

(
η̆po ∗ ∆ripo | {hipo

(t′)}
∀t′≤t

))
+ ϵ

(
∆Exc ipo

))

⇔

∆ripo | {hipo
(t′)}

∀t′≤t

≈ Rpo, bsln

(
∆hipo

+

(
η̆po ∗ ∆ripo | {hipo

(t′)}
∀t′≤t

)
+ ϵ

(
∆Exc ipo

))

(8.31)

We now divide by Rpo, bsln, and collect the terms that are linear in

∆ripo | {hipo
(t′)}

∀t′≤t

:

Equation 8.31 ⇔

(
δ

Rpo, bsln

− η̆po

)
∗ ∆ripo | {hipo

(t′)}
∀t′≤t

≈
(
∆hipo

)
+ ϵ

(
∆Exc ipo

)

(8.32)

where δ denotes the Dirac δ distribution.

Taking the Fourier transform F [·]:
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Equation 8.32 ⇔

F

[
δ

Rpo, bsln

− η̆po

]
(s) F

[
∆ripo | {hipo

(t′)}
∀t′≤t

]
(s) ≈ F

[
∆hipo

]
(s) + F

[
ϵ
(
∆Exc ipo

)]
(s)

⇔

F

[
∆ripo | {hipo

(t′)}
∀t′≤t

]
(s) ≈

1

F
[

δ
Rpo, bsln

− η̆po

]
(s)

F
[
∆hipo

]
(s) +

1

F
[

δ
Rpo, bsln

− η̆po

]
(s)

F
[
ϵ
(
∆Exc ipo

)]
(s)

(8.33)

Finally, taking the inverse Fourier transform F−1 and de�ning

Λpo := F−1


 1

F

[
δ

Rpo, bsln
−η̆po

]


, we �nd:

Equation 8.33 ⇔

∆ripo | {hipo
(t′)}

∀t′≤t

(t) =
(
Λpo ∗ ∆hipo

)
(t) +

(
Λpo ∗ ϵ

(
∆Exc ipo

))
(t)

⇔

ripo | {hipo
(t′)}

∀t′≤t

(t) ≈
(
Λpo ∗ hipo

)
(t) +

(
Λpo ∗ ϵ

(
∆Exc ipo

))
(t) +

(
Rpo, bsln − hpo, bsln

∫
Λpo

)

(8.34)

Evaluating the error term
(
Λpo ∗ ϵ

(
∆Exc ipo

))
(t) is in general di�cult, as it

requires to compute self-consistently higher moments of the rate distribution.

This error term is time-dependent, and in addition it has a bias (i.e., its average

is non-zero). Indeed, we explained previously why the linearization to �rst order

leads to a systematic underestimation of the �ring rate, and thus an error term ϵ

that is always positive. In consequence,
(
Λpo ∗ ϵ

(
∆Exc ipo

))
(t) is always

positive, with larger values when the time-dependent rate ripo | {hipo
(t′)}

∀t′≤t

of

the neuron ipo gets further away from Rpo, bsln. In addition, we remind that we

will at the end only be interested in a linear approximation for the average

adaptation
(

η̆po ∗ ripo | {hipo
(t′)}

∀t′≤t

)
(t). Using Equation 8.34, this gives

(
η̆po ∗ Λpo ∗ hipo

)
+

(∫
η̆po

)(
Rpo, bsln − hpo, bsln

∫
Λpo

)
+

(
η̆po ∗ Λpo ∗ ϵ

(
∆Exc ipo

)) (8.35)
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Hence, concerning this linear approximation for the adaptation variable, for each

single neuron with a time-dependent �ring induced by a �uctuating �xed input

history
{
hipo

(t′)
}

∀t′≤t
, the (biased) error term gets low-pass �ltered and �averaged�

by the kernel η̆po .

This suggests that the inaccuracies of this linear prediction could be

well-reduced through an approximation of the time-dependent error by a

constant, hence correcting for the average bias. We will compute this constant

correction term from an estimation of the average error ϵ occurring during the

deviations of the �ring rate from Rpo, bsln while the network is in a �uctuating

steady-state. The �uctuations during this steady-state indeed arise because

di�erent neurons receive di�erent synaptic inputs. More precisely, in this

steady-state, the external populations feed the recurrent ones with spike trains

that have a rate Rpext, ss := Et[Rpext (t)], that is thus constant over time. This

correction term will be computed self-consistently later (in Equation 8.46).

To illustrate, we would like to describe the e�ect of this correction term

during the above-mentioned steady-state regime. In this regime, at a given time,

di�erent neurons of po �re at di�erent rates that deviate with di�erent

magnitudes from Rpo, bsln. In this context, the correction will make the error

approximately homogeneous among di�erent neurons with di�erent deviations

from Rpo, bsln. More precisely, those neurons close to Rpo, bsln will have a slightly

overestimated �ring rate through the corrected linearization, while those

neurons further away from Rpo, bsln will have a slightly underestimated �ring

rate through the corrected linearization. This di�ers from the consistent

underestimation of the �ring rate when using the uncorrected formula. Finally,

this approximate correction will be important when we will use Equation 8.34 to

estimate the adaptation term
(

η̆po ∗ ripo | {hipo
(t′)}

∀t′≤t

)
(t) entering in the

(non-linear) expression for the single-neuron �ring probability

(see Equation 8.24 and Equation 8.39 below).

Hence, we de�ne the following time-independent correction term for the

linearized intrinsic-stochasticity-averaged adaptation, using the above-mentioned

�uctuating steady-state regime (corresponding to the index ss):

Apo, f luct : = E{hpo (t′)}∀t′≤t during ss

[
η̆po ∗

(
Λpo ∗ ϵ

(
∆Exc ipo , ss

))]

=

(∫
η̆po

)
E{hpo (t′)}∀t′≤t during ss

[
Λpo ∗ ϵ

(
∆Exc ipo , ss

)] (8.36)
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This allows us to express a linearized formula for the time-dependent rate that

includes the (time-independent) correction term:

ripo | {hipo
(t′)}

∀t′≤t

(t) ≈
(
Λpo ∗ hipo

)
(t) +

(
Rpo, bsln +

Apo, f luct∫
η̆po

− hpo, bsln

∫
Λpo

)

(8.37)

Finally, we get the desired result: a linearized equation for the

intrinsic-stochasticity averaged adaptation in response to a �xed input history
{
hipo

(t′)
}

∀t′≤t
:

(
η̆po ∗ ripo | {hipo

(t′)}
∀t′≤t

)
(t) ≈

(
Γpo ∗ hipo

)
(t) + Cpo (8.38)

Where Γpo := η̆po ∗Λpo , and Cpo := Apo, f luct +(
∫

η̆po) (Rpo, bsln − hpo, bsln

∫
Λpo).

We will now be able to compute the �ring rates of the recurrent populations

in the steady-state self-consistently while accounting for the heterogeneity of

input over neurons (whereas the baseline �ring rates computed above neglected

all �uctuations and the heterogeneity of input over neurons).

Self-consistent computation of the steady-state recurrent firing rates

We can �nally express the expected rate of a neuron within a subpopulation po:

Rpo , which is an average over the di�erent synaptic inputs received by the di�erent

neurons of po. Hence, from Equation 8.24, Equation 8.16 and Equation 8.38, we

can write:

Rpo (t) ≈ λ0, po E{hpo (t′)}∀t′≤t

[
exp

(
hipo

(t) +

(
η̆po ∗ ripo | {hipo

(t′)}
∀t′≤t

)
(t)

)]

≈ λ0, po E{hpo (t′)}∀t′≤t

[
exp

(
hipo

(t) +
(
Γpo ∗ hipo

)
(t) + Cpo

)]

≈ λ0, po exp (Cpo) E{hpo (t′)}∀t′≤t


exp




Npop∑

p=1

np, po∑

j=1

Φp, po ∗ S
p, ipo

j






where Φp, po :=
(
F tot

p, po
+
(
Γpo ∗ F tot

p, po

))

(8.39)

Through the same argument as in subsection 8.2.3,

Zipo
=

Npop∑

p=1

np, po∑

j=1

Φp, po ∗ S
p, ipo

j = hipo
+
(
Γpo ∗ hipo

)
(8.40)
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should converge to a Gaussian variable for a large enough number of inputs. In

addition, compared to the variable hio in subsection 8.2.3, we just replaced the

kernels F tot by the kernels Φ. Hence, we can immediately deduce that:

Epop nrn po

[
Zipo

(t)
]

=

Npop∑

p=1

np, po (Φp, po ∗ Rp) (t)

varpop nrn po

[
Zipo

(t)
]

≈

Npop∑

p=1

np, poΦΦp, po ∗ Rp (t)

where ∀s, ΦΦp, po(s) := (Φp, po(s))2

(8.41)

These results imply that exp
(
Zipo

(t)
)

is a log-normal variable, whose

expectation only depends on the mean and variance of Xio . Hence, at any time:

Rpo (t) ≈ λ0, po exp (Cpo) exp

(
Epop nrn po

[
Zipo

(t)
]

+
varpop nrn po

[
Zipo

(t)
]

2

)

(8.42)

which is the desired result, namely the expected average �ring rate in the

recurrent populations of neurons. Note that here, the e�ects of the synaptic

input variance are considered.

Finally, we can express the steady-state �ring rate of a recurrent population po,

and determine Apo, f luct (which enters in the de�nition of Cpo , see Equation 8.38)

self-consistently. For the recurrent populations, this steady-state is di�erent from

the baseline steady-state considered above (in section 8.2.5) as the e�ect of the

synaptic input variance will not be neglected.

We split again the subpopulations into external and recurrent ones. Their

population �ring rates are constant over time, and will be written Rpext, ss and

Rprecc, ss, respectively. Hence, decorating all steady-state quantity with ss:
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Epop nrn po

[
Zipo ,ss

]
≈

Npop∑

p=1

np, po Rp, ss

(∫
Φp, po

)

varpop nrn po

[
Zipo ,ss

]
≈

Npop∑

p=1

np, po Rp, ss

(∫
ΦΦp, po

)

Rpo, ss ≈ λ0, po exp

(
Cpo +

(
∑

pext

npextRpext, ss

(∫
Φpext, po + 0.5

∫
ΦΦpext, po

)))

exp

(
∑

precc

npreccRprecc, ss

(∫
Φprecc, po + 0.5

∫
ΦΦprecc, po

))

(8.43)

This again de�nes coupled transcendental equations between recurrent

populations, which reduce to the Lambert-W function for a single recurrent

population.

Note that there would be a possibility to try to Taylor-expand the exponential

again, which would yield linearized rate equations with a dependence on both a

mean, and a variance, synaptic drive.

Finally, one can de�ne the Ap, fluct self-consistently by recomputing the

expected �ring rate over the population from the linearized formula giving the

average �ring rate over the intrinsic stochasticity. We consider a steady-state

during which the external subpopulations �re at a rate that is a time-average of

the rate they have during the (possibly time-dependent) stimulation. In other

words, Rpext, ss := Et[Rpext (t)] = Rpext, bsln.

Then, we start again from the intrinsic-stochasticity-averaged �ring rate of

any recurrent neuron ipo , in response to a �xed input history
{
hipo , ss(t′)

}
∀t′≤t

(see Equation 8.37):

r(ipo ,ss) | {hipo , ss(t′)}
∀t′≤t

:= ESipo , ss | {hipo , ss(t′)}
∀t′≤t

[
Sipo , ss (t)

]
.

We further remind the reader that:

Epop nrn po, ss := E{hpo (t′)}∀t′≤t, ss

[
ESipo , ss | {hipo , ss(t′)}

∀t′≤t

[·]

]
(8.44)

Hence, for any recurrent population po, we can write, using Equation 8.36

and Equation 8.37:
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Epop nrn po, ss

[
r(ipo ,ss) | {hipo , ss(t′)}

∀t′≤t

]
≈

Epop nrn po, ss

[(
Λpo ∗ hipo , ss

)
(t) +

(
Rpo, bsln +

(
Λpo ∗ ϵ

(
∆Exc ipo , ss

))
− hpo, bsln

∫
Λpo

)]
≈

(
Λpo ∗ Epop nrn po

[
hipo , ss

])
+

(
Rpo, bsln +

Apo, f luct∫
η̆po

− hpo, bsln

∫
Λpo

)
≈


Λpo ∗




Npop∑

p=1

np, po Rp, ss

(∫
F tot

p, po

)


+

(
Rpo, bsln +

Apo, f luct∫
η̆po

− hpo, bsln

∫
Λpo

)
≈




Npop∑

p=1

np, po Rp, ss

(∫
F tot

p, po

)

(∫

Λpo

)
+

(
Rpo, bsln +

Apo, f luct∫
η̆po

− hpo, bsln

∫
Λpo

)
≈ Rpo, ss

(8.45)

which approximately gives the Ap, fluct as a linear function of the Rp, ss. This

permits a replacement within the Cp in Equation 8.43. Indeed:

Apo, f luct ≈

(∫
η̆po

)
(Rpo, ss − Rpo, bsln) +

(∫
Λpo

)
hpo, bsln −

Npop∑

p=1

np, po Rp, ss

(∫
F tot

p, po

)




(8.46)

Hence, we can compute the Rp, ss through solving Equation 8.43 while the

Ap, fluct are replaced with the right-hand side of Equation 8.46. Finally, one can

deduce back the approximate Ap, fluct through Equation 8.46.

This is necessary because the Cp := Ap, fluct + (
∫

η̆p) (Rp, bsln − hp, bsln

∫
Λp)

are still undetermined, as Ap, fluct depends on the amplitude of the �uctuations

(see Equation 8.36). Indeed, Ap, fluct is an estimation of the average error for the

linear estimation of the adaptation's time-course (which accounts for the �rst-

order of a Taylor expansion, see Equation 8.31 and above). This error is averaged

over the single neuron's dynamic �ring rates while the population is in a steady-

state characterized by a variability of the received synaptic input between neurons

and over time. In our case where all neurons are statistically identical, the time

and the population variabilities should actually have the same properties. Hence,

Ap, fluct is an approximation for both the neuron-averaged, and the time-averaged,

error for the estimated adaptation through the �rst-order of a Taylor expansion.

We note that even though this self-consistent computation of Ap, fluct mitigates

the error made when Taylor-expanding the time-dependent adaptation variable
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to �rst order (in Equation 8.38), an underestimation of the absolute magnitude

of this adaptation variable (and therefore a probable overestimation of the �ring

rate) still subsists. Indeed, we use Ap, fluct as a proxy for η̆p ∗
(
Λp ∗ ϵ

(
∆Exc ip

))

in Equation 8.38 and therefore in Equation 8.39. This is similar to enforcing,

when estimating the absolute magnitude of the adaptation e�ect:

Epop nrn p, ss [exp (error (neuron))] ≈ exp (Epop nrn p, ss [error (neuron)]) (8.47)

where error (neuron) is a neuron-dependent positive error term for the absolute

magnitude of adaptation which results from the systematic underestimation of

the single-neuron �ring rate. This underestimation comes itself from the

approximation of the single-neuron �ring rate by a �rst-order Taylor expansion

of an exponential function (see the text centered on Equation 8.31). Then, we

note that the (positive) derivative of the exponential function increases for

larger arguments. Hence, for any distribution (over di�erent neurons of the

population p) of the absolute error that does not show a very fat tail for lower

values, the left-hand-side of Equation 8.47 is larger than its right-hand-side.

This means that we are underestimating Epop nrn p, ss [exp (error (neuron))],

which then leads to an underestimation of the magnitude of adaptation e�ect

and an overestimation of the population �ring rate.

Reduction of the mathematical expressions for the dynamic rate to differential

equations

Our main �nding from the previous section is that the time-dependent �ring

rate for the recurrent populations can be written as:

Rpo (t) ≈ λ0, po exp (Cpo) exp




Npop∑

p=1

np, po (Φp, po ∗ Rp) +

∑Npop

p=1 np, poΦΦp, po ∗ Rp

2


 ⇔

Rpo (t) ≈ λEff, po
exp




Npop∑

p=1

np, po

(
Φp, po +

ΦΦp, po

2

)
∗ Rp


 ⇔

Rpo (t) ≈ λEff, po
exp


Ifilt

po
(t) +

Npop recc∑

precc=1

nprecc, po

(
Φprecc, po +

ΦΦprecc, po

2

)
∗ Rprecc




(8.48)

where Φ and ΦΦ are �lters that account for the e�ect of the mean and the variance

of the synaptic input in the population, respectively, and Ifilt(t) regroups the sum

of the �ltered contributions from the external populations.
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We remark that as long as these �lters Φ and ΦΦ can be approximated by

sums of exponential �lters, the mean and variance of each Z variable can both

be expressed as a sum of the solutions of di�erential equations where the Rp are

additive variables in the derivatives ([Toyoizumi et al. (2009)]). This

approximation may be made numerically, but the relative simplicity of our

expressions might also allow us to link the major time-scales of these kernels to

the single neuron model parameters in the future. To this aim, we would need to

rework our kernel λ0, po , probably in the Fourier domain, to approximately

match it to the mathematical expression of the Fourier transform of an

exponential kernel.

We will actually show the shape of some kernels in the results (in Figure 9.4);

qualitatively speaking, an exponential basis for these kernels appears reasonable,

and a good approximation could probably be reached through a few number of

exponential kernel.

Indeed, to illustrate how the reduction to non-linear di�erential equations

arises, we take a case when, for any populations p and po:

np, po

(
Φp, po +

ΦΦp, po

2

)
(s) ≈

∑

k∈Np, po

(
Cp, po

k exp(−
s

τp, po

k

)

)
Θ (s)

np, po

(
Φp, po +

ΦΦp, po

2

)
(s) ≈

∑

k∈Np, po

Ep, po

k (s)

(8.49)

where Θ is the Heaviside function, Np, po is the number of exponentials needed

to �t
(
Φp, po +

ΦΦp, po

2

)
, C and τ are constant (with τ > 0), and Ep, po

k (s) :=
(

Cp, po

k exp(− s
τ

p, po
k

)

)
Θ (s).

Then, we can write, for any populations p and po, and any k ∈ Np, po :

V p, po

k := Ep, po

k ∗ Rp ⇒

dV p, po

k

dt
= −

V p, po

k

τp, po

k

+ Cp, po

k Rp (t)
(8.50)

which can be veri�ed by simple di�erentiation of V p, po

k .

Finally, using Equation 8.48 and Equation 8.49, we can rewrite any the
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recurrent populations p1 and po the derivative of V precc, po

k :

dV p1, po

k

dt
≈ −

V p,1 po

k

τp1, po

k

+ Cp1, po

k λEff, p1 exp


Ifilt

p1
(t) +

Npop recc∑

precc=1

V precc, p1

k (t)




(8.51)

with, for each recurrent population po and at each time,

Rpo (t) ≈ λEff, po
exp

(
Ifilt

po
(t) +

∑Npop recc

precc=1 V precc, po

k (t)
)
.

Hence, the di�erent V variables de�ne a system of coupled non-linear

di�erential equation that may be studied with the usual stability analysis tools

(linear stability, phase plane).

Finally, these equations may be linearized through a Taylor-expansion of the

exponential if needed. Note that, in contrast to Equation 8.37, this linearization

would retain a contribution from the variance of the synaptic input.

8.3 Comparison between analytics and network

simulations

In order to test our formulas, we decided to use a rather simple network

simulation paradigm, to facilitate the comparison with our equations. Hence, we

used a simple recurrent network connected with inhibitory synapses, that receive

Poisson spike trains from external sources connecting to both excitatory and

inhibitory synapses. This type of network can easily maintain asynchronous

irregular activity [Brunel and Hakim (1999)], which is one of the requirements

for the validity of our approximations. Due to time constraints, all ranges of

validity could not be extensively tested yet. We describe here the choices we

made.

We will start by describing the parameters for the internal dynamics of the

neuron model which was used for the recurrent population. We then turn to

describe the connectivity of the network. Finally, we explain how we chose some

speci�c types of temporal modulations for the �ring rate of the external

populations.
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8.3.1 Internal dynamics’ parameters for the single neuron

We hereby describe the parameters taken for the recurrently connected

Generalized Linear Model adapting neurons (see Equation 8.1).

Shape and amplitude of the spike-history filter

We chose a �power-law like� spike-history �lter which shape and amplitude

were approximately matched to those of 10 recorded pyramidal neurons (data

courtesy of S. Mensi), but we chose to keep �only� three time-scales for this kernel

for reducing computation time. Note that the stimulations used for �tting made

the neurons �re at a relatively low steady-state �ring rate ( ≈ 10 Hz and smaller,

but the short-term modulations can be much larger, see subsection 8.1.3, Mensi

et al. (2012)). Note that the parameters we use are not 'round' as a result of

an initial attempt to take the two �rst exponentials as the best �t to the kernel

extracted from a recorded pyramidal neuron (we have not been trying to optimize

the match with the theory...). The amplitude for the slowest exponential was

chosen to be slightly larger than what is generally observed in pyramidal neurons

(see Figure 8.2), in order to still keep a small negative amplitude for very long

delays after a spike (which could also be implemented by adding more exponential

variables to the �lter). The aim was not to have a perfect quantitative match to

the recorded neurons, but rather to see whether a realistic spike-history �lter

would still make the simpli�cations that we used for deriving the approximate

mean-�eld formulas acceptable.

More precisely, the spike history �lter η, drawn in Figure 8.2 was taken as

(see Equation 8.1 for the de�nition of the model):

η (s) =

(
−33.55 exp

(
−

s

4.9 ms

)
− 5 exp

(
−

s

60 ms

)
− 2 exp

(
−

s

300 ms

))
Θ (s)

(8.52)

where Θ (s) is the Heaviside function.

Shape and amplitude of the combined leak-and-synapse filter

By de�nition, the combined leak-and-synapse �lters F tot
p, po

from one neuron of

population p to one neuron of a population po are the result of a convolution

between the membrane and synaptic �lters scaled by the intrinsic noise of the
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Figure 8.2: Comparison of the spike history kernel used in the simulations. Here, we show in red the

spike-history kernel η (see Equation 8.52 and Equation 8.1) that we used in the simulation. For comparison,

we show the values of η fitted non-parametrically in 10 pyramidal neurons (data courtesy from S. Mensi).

neuron (see Equation 8.9). Hence, F tot
p, po

corresponds to the time-course of a

Post Synaptic Potential (PSP) measured of the soma, and its amplitude actually

corresponds to the amplitude of one PSP divided by the intrinsic noise ∆V

(see Equation 8.4). Hence, F tot
p, po

:=
(

κ
∆V

∗ Fp, po

)
. Here, ∆V is the intrinsic

noise, and Fp, po is the time-course of the e�ective current received at the soma

that results from synaptic channels opening. Finally, κ (s) :=
exp(− s

τ )
C

Θ (s) is

the membrane �lter, where C is the conductance of the neuron, τ = C
gL

is the

membrane time-scale while gL is the leak conductance, and Θ is the Heaviside

function. Indeed, one can verify that when taking Vsubthld = κ ∗ I (t), where I is

an input current, then C dVsubthld

dt
= −gL Vsubthld + I (t).

It is customary to take an exponential shape for both the synaptic and the

membrane �lters, which implies to write Fp, po (s) := Asyn exp
(
− s

τs

)
Θ (s).

Then, the combined �lter F tot
p, po

is a di�erence of the two exponentials, with the

�nal decay occurring with the largest time-scale. Indeed, using the de�nition of

the membrane �lter and performing a convolution with the synaptic �lter (for

τ ̸= τs), we get:
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F tot
p, po

(t) :=

∫ t

0

(
1

C ∆V
exp

(
−

s

τ

)
Asyn exp

(
−

t − s

τs

))
ds

F tot
p, po

(t) =
Asyn

C ∆V
exp

(
−

t

τs

)∫ t

0
exp

(
−s

(
1

τ
−

1

τs

))
ds

F tot
p, po

(t) =
Asyn

C ∆V
exp

(
−

t

τs

)(
−

1
1
τ

− 1
τs

)(
exp

(
−t

(
1

τ
−

1

τs

))
− 1

)

F tot
p, po

(t) =
Asyn

C ∆V

τ τs

max (τ, τs) − min (τ, τs)

(
exp

(
−

t

max (τ, τs)

)
− exp

(
−

t

min (τ, τs)

))

(8.53)

As long as there is a large enough di�erence between max (τ, τs) and

min (τ, τs), this F tot
p, po

will have a shape close to a single exponential (with a

decay of time scale ≈ max (τ, τs), and an amplitude that can be adjusted so as

to get the same integral as the original di�erence of exponentials). This is the

approximation we made. Note that this also implies that we neglected synaptic

delays (which may be implemented through setting the initial bins of the

synaptic �lter to 0).

We considered cases when synaptic transmission has a slow component [Wang

et al. (2008, 2013)], which may be the major source of synaptic current even if it

has a modest amplitude (as the integral of Fp, po also scales with τs, see for instance

the NMDA channel in [Brunel and Wang (2001)]). Note that in our network the

long time-scale recurrent connections are inhibitory (which is di�erent from the

phenomena described in the above-mentioned publications), but we still wanted

to include a slow component of the synaptic input in order to the verify that the

theory could handle it.

We therefore took two relatively long time-constant for both the recurrent

connections and the external excitatory connections (with respectively 70 and 50

ms). For external inhibition, we considered a case when the slowest component of

F tot
p, po

is dominated by the membrane time-scale, which we took to be around 20ms.

In future settings, it will be necessary to test shorter time scales (for synapses

without slow component, and to account for the shorter e�ective membrane time-

scale shaped by the high-conductance state in vivo Destexhe et al. (2003)).

Finally, we took amplitudes for the F tot
p, po

that were close to the amplitude

of unitary PSPs as measured in awake monkeys at the soma (≈ 0.1-0.3 mV).

These data were obtained through simultaneous intracellular and extracellular

recordings in motor cortex [Matsumura et al. (1996)], and were therefore probably
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mostly re�ecting unitary PSPs in pyramidal neurons. In addition, the order of

magnitude for the PSP amplitude is consistent with more recent data for PSPs

in inhibitory neurons in the barrel cortex of anesthetized mice (≈ 0.4mV , Pala

and Petersen (2015)). Note that, in real neurons, the amplitude of these PSPs

depends on the regime of synaptic bombardment, which is the reason why we

searched for in vivo data.

(∆V )
(
F tot

precc, precc
(s)
)

= − (0.1 mV ) exp

(
−

s

70 ms

)

(∆V )
(
F tot

pext exc, precc
(s)
)

= (0.11 mV ) exp

(
−

s

50 ms

)

(∆V )
(
F tot

pext inh, precc
(s)
)

= − (0.2 mV ) exp

(
−

s

20 ms

)
(8.54)

where the subscripts recc, ext exc and ext inh stand for the recurrent population,

the external excitatory input and the external inhibitory input, respectively; and

∆V ≈ 1mV [Pozzorini et al. (2013)] is the intrinsic noise.

Baseline firing rate λ0, precc

On the same ensemble of neurons as those showing the kernels of Figure 8.2,

the mean λ0 was (exp(−5.2) Hz). We took (λ0, precc = exp (−5) Hz).

Note that this parameter is equivalent to a baseline mean �ltered input (that

would be the same in all neurons).

8.3.2 Network connectivity and number of neurons

We chose to have a �xed number of connections for each of the nrecc = 2000

recurrent neurons. Each of those was receiving npext exc, precc = 1000 external

excitatory inputs, npext inh, precc = 400 external inhibitory inputs, and

nprecc, precc = 0.3 · 2000 = 600 recurrent inhibitory inputs. Hence, we are

working with rather large numbers of inputs, which could allow a convergence of

the Central Limit Theorem for the synaptic input (see subsection 8.2.3), but

that still represent only a few percent of the total number of inputs received by

cortical pyramidal neurons [Megías et al. (2001)].
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8.3.3 Design of external firing rate simulations

The external populations were modeled as independent inhomogeneous Poisson

spike trains.

We �rst used either steady-state stimulations, where the external units were

all �ring at constant rates Rext exc and Rext inh. We characterized such inputs by

the mean and variance of the �ltered external input received by each recurrent

neuron Iext
irecc

(which is in units of the intrinsic noise ∆V , as F tot is the convolution

between the membrane and synaptic �lters divided by ∆V ):

Iext
irecc

(t) :=

npext exc , precc∑

j=1

F tot
pext exc, precc

∗ Spext exc, irecc

j +

npext inh
, precc∑

j=1

F tot
pext inh, precc

∗ Spext inh, irecc

j

(8.55)

From this de�nition, we can calculate the mean and the variance of the intrinsic-

noise-scaled voltage caused by external inputs:

E
[
Iext

irecc

]
= npext exc, precc

(∫
F tot

pext exc, precc

)
Rext exc+

npext inh, precc

(∫
F tot

pext inh, precc

)
Rext inh

var
[
Iext

irecc

]
= npext exc, precc

(∫
FF tot

pext exc, precc

)
Rext exc+

npext inh, precc

(∫
FF tot

pext inh, precc

)
Rext inh where ∀s, FF tot (s) :=

(
F tot

)2

(8.56)

Note that, in steady-state, and only in steady-state, the means and variances over

neurons are the same as the mean and variances over time in our network where

all neurons are statistically identical.

We also used time-dependent stimulations, with �ring rates that were

modulated according to either an Ornstein-Uhlenbeck process, or a simple sine

wave. Given a time-dependent excitatory rate Rext exc (t), we were particularly

interested in creating a stimulus for which the dynamics would be driven by a

variance of the driving current Iext
irecc

(t). We were then interested in �nding

Rext inh (t) such that E
[
Iext

irecc
(t)
]

= α is a constant (i.e., it does not depend on
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time). We solved this problem in the Fourier space, where it becomes simpler:

E
[
Iext

irecc
(t)
]

= α ⇒

npext exc, preccF
[
F tot

pext exc, precc
∗ Rext exc

]
+

npext inh, preccF
[
F tot

pext inh, precc
∗ Rext inh

]
= F [α] ⇔

npext exc, preccF
[
F tot

pext exc, precc

]
F [Rext exc] +

npext inh, preccF
[
F tot

pext inh, precc

]
F [Rext inh] = F [α] ⇔

F [Rext inh] =
F [α] − npext exc, preccF

[
F tot

pext exc, precc

]
F [Rext exc]

npext inh, preccF
[
F tot

pext inh, precc

] ⇔

Rext inh (t) = F−1



F [α] − npext exc, preccF

[
F tot

pext exc, precc

]
F [Rext exc]

npext inh, preccF
[
F tot

pext inh, precc

]




(8.57)

Note that one has to be careful to get physically meaningful results for the

inhibitory �ring rate, i.e. the rates should be positive. This requires to impose a

reachable value of α (which should be at any time smaller than the

population-averaged excitatory �ltered input).

8.3.4 Numerics

Neuronal network simulation

We used the Brian neural simulator, version 2 beta 2

(http://brian2.readthedocs.org/en/latest/introduction/index.html).

The kernels were implemented as sums of exponentials, which hence correspond

to the solutions of linear di�erential equations (see section 8.3.1 for an example).

These equations were integrated numerically with a time-step dt = 0.1 ms. the

performance was optimized by using the scipy.weave code package to run C code

instead of native python code.

http://brian2.readthedocs.org/en/latest/introduction/index.html
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Convolutions, fourier transformation and power spectral density

Numerical operations were performed with python packages.

We used the same dt (10−4 s) for the numerical operations as for the network

simulation. Convolutions were performed with the numpy function convolve.

Fourier transformation used the numpy.�t function r�t (for real numbers). For

the power spectral density, we used the function psd from the matplotlib.pylab

library, which uses the Welchs average periodogram method. We used a block

size for fast fourier transform computation that was a multiple of the

stimulation period that we had imposed, and that corresponded to about 20% of

the total number of data points. The overlap between blocks was 25%.



Chapter 9

Tests and applications of the new

analysis tools for adapting

neuronal network dynamics

We developed approximate analytical expressions for the population �ring rate

in recurrent networks of adapting spiking Generalized Linear Model neurons. For

each neuron irecc of one recurrent population, the input spikes arriving at the

synapses are �ltered through a combined leak-and-synapse �lter F tot, and then

summed, leading to a total synaptic drive hirecc . This �ltered synaptic input is

added to an adaptation variable wich results from the �ltering of the spike train

of the neuron Sirecc through a spike-history �lter ηrecc. Finally, the probability of

spiking is proportional to exp (hirecc + ηrecc ∗ Sirecc) (see Equation 8.3 for details).

To sum up the mathematical methods described in chapter 8, we consider the

convergence of the �ltered synaptic input to a Gaussian distribution (which is

valid in case of a large number of synapses, see subsection 8.2.3). In addition, we

use a number of approximations for the time-course of the adaptation variable in

order to reach non-linear population �ring rate equations. One strength of the

approach is that adaptation is not considered as stationary, and we can account

for the e�ects of the variability of the synaptic input within the populations of

neurons. In addition, we can predict and understand when and how the

simulations will diverge from our mathematical expressions. We summarize here

the approximations that we made. These approximations would lead to an

inaccuracy of the predicted upcoming �ring rate even if we were able to use an

exact value of past recurrent �ring rates for the computation.

1. We use the �rst moment only of a moment-based expansion for the

adaptation variable averaged over the intrinsic stochasticity of a single

neuron (see Equation 8.22). As discussed in the Methods, given the

negative spike-time correlations expected with adaptive neurons, this
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approximation is likely to lead to an underestimation of the adaptation

term and therefore to an overestimation of the population �ring rate (e.g.

see Figure 8.1).

2. We linearize the averaged adaptation (over the intrinsic stochasticity of a

single neuron, see Equation 8.38, Equation 8.46 and Equation 8.47). This

is likely to lead to a slight underestimation of the adaptation, which in turn

should lead to an overestimation of the population �ring rate. This will be

the case as long as the voltage deviations relative to baseline are not overly

biased towards negative values.

3. We assume that the spiking is approximately inhomogeneous Poisson

(see Equation 8.11). Given that adaptation is likely to produce negative

correlations between spike times, we will tend to overestimate the variance

of the synaptic input. This overestimation of the variance would also tend

to create an overestimation of the �ring rates (see Equation 8.42).

Hence, all approximations consistently lead to an overestimation of the �ring rate.

This may either be seen as a curse, or as an advantage. Indeed, on one hand, the

di�erent deviations will sum up and cannot compensate for one another. On the

other hand, the e�ect of these deviations is predictible: an overestimated �ring

rate. In addition, the amount of this overestimation is expected to grow with the

strength of adaptation and with the �ring rate. Interestingly, while this is likely

to a�ect the prediction of the amplitude of the �ring rate, the approximations

are unlikely to a�ect much the time-course of the �ring rate modulations. In

other words, the sign of the time-derivative of the �ring rates is expected to

be well-preserved. In contrast, if the di�erent approximations would have had

antagonistic e�ects with di�erent amplitudes at di�erent times, the shape of the

�ring rate time-course could have been expected to be distorted. For instance,

there could have been an overall overestimation of the rate at the beginning of a

stimulation, later followed by underestimation of the �ring rate.

We would like to mention that we used a very strong spike-history kernel η

to implement the adaptation, even compared to previous publications (
∫

η is 1.66

times the one used in Naud and Gerstner (2012a), see Figure 8.2). An example

of the dynamics of such a neuron model embedded in a network with a single

recurrent inhibitory population settling in an asynchronous irregular state can

be found in Figure 9.1. The di�erent neurons indeed appear to �re at di�erent

times (Figure 9.1 (c)), and �re irregularly (Figure 9.1 (d)). Note that, throughout
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the Results section, we will use the subscript �recc� to mark the variables of

the (single) recurrent population. Hence, the more general subscript po used in

the Methods section can now be replaced by �recc�. In addition, the subscripts

�ext exc� and �ext inh� will be used to refer to the external excitatory and

inhibitory input populations.
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Figure 9.1 (previous page): An example simulation of a network of Generalized Linear Model neurons

with adaptation. (a) Network architecture. 2000 GLM neurons are recurrently connected by inhibitory

synapses. Each of these neurons receives 600 recurrent connections, as well as 1000 excitatory and 400 inhibitory

external inputs. The external inputs are uncorrelated between neurons, and are modeled as Poisson processes

(which are constant over time in this particular figure, but that can be time-dependent in general). (b) Average

firing rate in the three types of neurons (external excitatory, external inhibitory and recurrent). For clarity,

the recurrent rates were estimated in bins of length 5 ms. (c) Raster plot for the network activity. Each line

corresponds to a recurrent neuron, a dot indicates that the neuron has fired at the time of the abscissa. (d)

An example of interspike interval distribution from one recurrent neuron (taken in the steady-state, over the

last 3.8 s of the simulation). This shows that the interspike intervals are variable, and confirms the irregular

firing behavior. (e) The internal variables governing the spiking of one recurrent neuron irecc. Top: filtered

synaptic input hirecc (see Equation 8.16; this includes both the external and the recurrent synaptic input).

The filtering occured through the combined leak-and-synapse filter F tot (each population is associated with

a specific leak-and-synapse filter). Despite the constant external firing rate modulation, the filtered input

varied a lot over time due to the presence of both excitatory and inhibitory inputs. More precisely, once the

steady-state was reached, the F tot-filtered external input had a mean of 40 and a variance (over neurons) of 35;

note the sizable reduction of this mean in hirecc through the addition of the recurrent filtered input. Middle:

filtered spike history η ∗ Sirecc (see Equation 8.1). There is a clear cumulative effect over several spikes, which

is a hallmark of adaptation. Indeed, this differs from refractoriness properties, which can be modeled as a

function of the last spike time only. Bottom: sum of the top and middle signals. At the right of this plot, we

illustrate that the instantaneous firing rate, in hertz, was the exponential of the sum of two components: (i)

the variable displayed in the bottom graph and (ii) a constant threshold value of -5. Finally, at each time-step,

the probability of firing was the instantaneous firing rate times the time-step duration in seconds (10−4s in

our case, see Equation 8.1 and subsection 8.3.1).

Here, we test how well our equations can describe the dynamics of a

recurrent inhibitory population, and we present some insights reached thanks to

our analysis. Note that due to constraints on the duration of the doctoral

studies, the tests and results presented here are not as complete and diverse as

we initially intended. We use a simple network with only one recurrently

connected population of inhibitory neurons (see section 8.3 for the details). We

start by testing the convergence of the �ltered synaptic input to a gaussian

variable. We then look at the prediction of the steady-state population �ring

rate. Then, we test some dynamical stimulations. Finally, we outline a few

interpretations and applications allowed by our mathematical analysis.

9.1 Distribution of the sum of filtered inputs

As discussed in subsection 8.2.3, by using the Central Limit Theorem, we

concluded that the summed �ltered synaptic input hipo
(t) (de�ned

in Equation 8.16) was likely to converge to a Gaussian distribution over di�erent
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neurons of the network. In addition, in case of a dynamic stimulation of the

neuronal network, the parameters of this Gaussian were predicted to be

time-dependent.

We �rst investigated the convergence of the Central Limit Theorem in a

stationary �ring situation, by examinating the distribution of hirecc on the last

time point of the stimulation shown in Figure 9.1.

9.1.1 Distribution of the sum of filtered inputs in a

stationary regime

In Figure 9.2 (a,b,c,d), we compare the distributions (among the population

of 2000 recurrent neurons) of di�erent components of the �ltered synaptic input

hirecc to Gaussian variables. These distributions were extracted from the last

time-step of the simulation shown in Figure 9.1.

We �rst considered the shape of a Gaussian cumulative distribution function

(cdf) which mean and variance would be identical to the mean and variance

estimated from the simulation. The correspondence between this Gaussian

variable and the distribution of inputs oberved in the simulation was almost

perfect: their cdf curves were almost identical (see blue and green curves

in Figure 9.2 (a,b,c,d)). This indicated that, in our simulation, there was an

excellent convergence of the �ltered inputs to a Gaussian distribution, in

agreement with the asymptotic result of the Central Limit Theorem.
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Figure 9.2: Investigation of the shape of the distribution of filtered input in a steady-state regime. (a,b,c,d) Histograms (left) and
cumulative distribution function (cdf, right) for the filtered input on the last (5 s) time-point of Figure 9.1, among the 2000 recurrent
neurons. We show separately:

• the filtered external excitatory input
∑

next exc, recc

j=1
F tot

ext exc, recc ∗ Sext exc, irecc
j

in (a)

• the filtered external inhibitory input
∑

next inh, recc

j=1
F tot

ext inh, recc ∗ Sext inh, irecc
j

in (b)

• the filtered recurrent synaptic input
∑

nrecc, recc

j=1
F tot

recc, recc ∗ Srecc, irecc
j

in (c)

• the total filtered synaptic input hirecc in (d) (which is the sum of the three above-mentioned variables, see Equation 8.16)

Note that F tot is a combined leak-and-synapse filter which approximates the shape of a post-synaptic potential measured at the soma as

a result of the reception of a single presynaptic spike. On the cdf plot, we show both the experimental cdf (in blue), the cdf of a gaussian

which mean and variance are estimated from the data (in green), and the cdf of a gaussian which mean and variance are derived from the

formula for uncorrelated Poisson processes (in red, see Equation 8.17 and Equation 8.18). Note that for this computation, we used the

known theoretical expected rates for the external inputs (which are those we imposed in the parameters of the simulation). In contrast, for

the recurrent inputs, we used an estimation of the population-averaged rate coming from the simulation itself (we measured the recurrent

population rate in the last 70 ms of the simulation of Figure 9.1). Hence, we are only examining here the accuracy of the convergence to a

gaussian variable and of the uncorrelated Poisson firing approximation. Note that the three cdf curves are almost perfectly superimposed,

with exception of the recurrent input, for which the Poisson approximation appears to lead to an overestimation of the variance. (e)

Distribution of the coefficient of variation (CV) of the interspike interval distributions of single recurrent neurons (over the last 3.8 seconds

of the simulation in Figure 9.1, so in steady state). The spike trains were on average more regular than a homogeneous Poisson process

(which has a CV of one). (f) Distribution of the spike count for the recurrent spike trains (during the 3.8 last seconds of the simulation

in Figure 9.1). The fano factor (FF) of this distribution is indicated; it is well below the value of 1 for a Poisson process. (g) Distribution of

the pairwise correlation coefficients between the time-courses of the filtered recurrent synaptic input (over the last second of the simulation

in Figure 9.1). All (2000 ∗ (2000 − 1)) possible pairs of neurons were considered. The distribution has only a very slight bias towards

positive values.
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We also implemented the formulas for computing the mean and variance of

the distribution assuming uncorrelated Poisson spike trains (see Equation 8.17

and Equation 8.18). As the external inputs were implemented as uncorrelated

Poisson processes, these formulas should be exact in this case. Indeed, the

cumulative distribution function of a Gaussian variable with these analytical

parameters almost perfectly �tted the data. Indeed, the red curve was almost

perfectly superimposed on the blue curve in Figure 9.2 (a,b). We also

investigated the accuracy of the estimation of the mean and variance of the

�ltered recurrent input through the uncorrelated Poisson spiking approximation.

We used Equation 8.17 and Equation 8.18 with the recurrent population �ring

rate taken from the 70 last ms of the simulation (70 ms is the time-scale of the

�lter for the recurrent input, see section 8.3.1). This led to a slight

overestimation of the variance of the distribution of �ltered recurrent synaptic

input (as can be seen when comparing the red and the blue curves

in Figure 9.2 (c)). However, this overestimation only had a negligible e�ect for

the estimation of the variance of the total �ltered synaptic input (as can be seen

when comparing the red and the blue curves in Figure 9.2 (d)). Indeed, the

contribution of the external excitatory and inhibitory inputs to the total input

variance was large.

We further investigated the reasons why the Poisson �ring approximation did

not give an exact prediction of the variance of the recurrent �ltered synaptic

input. We plot in Figure 9.2 (e) the distribution of the coe�cient of variation of

the interspike interval distribution over the last 3.8 s (hence, in steady state).

This amounts to computing the ratio between the standard deviation and the

mean of the distribution such as the one shown in Figure 9.1 (d), for di�erent

neurons. In steady-state, for Poisson processes, this distribution should be

centered on one [Gerstner et al. (2014)]. Instead, in our simulation, it was

centered around 0.75, indicating that the spike trains of the recurrent neurons

were more regular than what would be expected for Poisson processes. This was

likely to be caused by adaptation, which can create correlations between spike

times and a subsequent reduction of the coe�cient of variation of the interspike

interval distribution [Schwalger and Lindner (2013)]. In addition, we found that

the spike count distribution (Figure 9.2 (f)) was also less variable than what

would be expected from a Poisson process. Indeed, the Fano Factor (FF, de�ned

as the ratio of the variance over the mean) of this distribution was ≈ 0.27,

against 1 for a Poisson process [Farkhooi et al. (2011)]. This is again consistent

with an e�ect of adaptation, which can �correct� an excess of spiking at time t0
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by reduced spiking at time t > t0, and conversely [Farkhooi et al. (2011)].

However, in Equation 8.18 we neglect these negative spiking covariations, and

hence this leads to a slight overestimation of the variance.

In addition, in Equation 8.18, we neglect between-neuron correlations of the

�ltered spike trains. Because recurrent neurons share a small number of

connections, some positive correlations between the �ring times of di�erent

neurons may be expected. Also, these positive correlations could potentially, in

general, further grow through the recurrent dynamics. This might create

correlations between the synaptic inputs received by di�erent recurrent neurons.

We actually found that the distribution of the (between-neuron) correlation

coe�cients for the time-course of the recurrent �ltered synaptic input was

centered close to zero (Figure 9.2 (g)). The mean correlation was actually

smaller than the fraction f of shared spike trains between the recurrent �ltered

input of two neurons (f = 0.3 on average, as 0.3 = 600
2000 is the recurrent

connection probability). This suggested that the recurrent dynamics of the

network was not tending to create positive correlations between the activity of

recurrent neurons. Recurrent inhibition may have, to some extent, compensated

the positive correlations due to shared inputs, hence leading to relatively

uncorrelated activity (a phenomenon which might be similar to the mechanisms

at stake in balanced networks [Renart et al. (2010)]).

Hence, the recurrent neurons received rather uncorrelated inputs in general

(with little correlations on average between recurrent inputs, and no correlations

by design between external input). These uncorrelated inputs are therefore

expected to lead to spike trains which are themselves uncorrelated on average.

This is consistent with the observation that recurrent neurons qualitatively

appeared to �re in a relatively uncorrelated fashion (as can be seen more

qualitatively in Figure 9.1 (c)). Hence, discarding the summed covariance

between �ltered spike trains coming from di�erent neurons (as we do

in Equation 8.18) was probably reasonable.

We now generalize these results to a non-stationary regime of �ring.
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9.1.2 Distribution of the sum of filtered inputs in a non-

stationary regime

In Figure 9.3, we show that for all components of the �ltered synaptic input

hirecc , the distribution over the recurrent neuronal population resembled a

Gaussian with parameters that varied over time. Indeed, in a Gaussian

distribution, the 16th − 84th percentiles correspond to the mean ± standard

deviation con�dence interval, while deviations from Gaussianity (such as

asymmetry) are likely to lead to a mismatch between the two. We did observe

that, at any time, the one-standard-deviation con�dence interval around the

mean (black curves) matched almost perfectly the 16th − 84th percentiles of the

distribution (green curves), suggesting a Gaussian shape of the instantaneous

distributions.
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Figure 9.3: Investigation of the shape of the distribution of filtered input in a non-stationary regime. (a,b,c,d) Plot of the time-

dependent characteristics of the distribution of filtered synaptic inputs. Data are shown separately for the filtered external excitatory inputs

(a), the filtered external inhibitory input (b), the filtered recurrent input (c) and the total input hirecc ((d), see the legend of Figure 9.2

and Equation 8.16 for the definitions). Note that we estimated the distribution of the variables within the network through a sample of 600

recurrent neurons (i.e., a subsample compared to the 2000 recurrent neurons). In purple, we plot the time-dependent mean filtered input

as estimated from the simulation. In black, we plot two curves: one for the sum of the mean filtered input and one standard deviation of

the filtered input, and another for the sum between the mean filtered input and the opposite of its standard deviation. If the distribution

of filtered input were Gaussian, this +/- standard deviation confidence interval around the mean should be confounded with the 84th and

16th percentiles. Hence, we also plotted these 84th and 16th percentiles in green. Note that the black and green curves are always almost

superimposed, showing that the shape of the distributions were similar to a Gaussian. Finally, we also test the time-dependent formulas

for the variance that assume uncorrelated Poisson firing, and we plot in red the simulated mean filtered input +/- the square root of the

variance computed through Equation 8.18. Note that for the external inputs, we use the known theoretical firing rate that we imposed

as a parameter of a simulation. In contrast, for the recurrent population, we used the population-averaged firing rate recorded from the

simulation (over all the 2000 recurrent neurons).
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In addition, for the external �ltered input, a con�dence interval based on the

square root of the dynamic analytical formula for the variance of the �ltered

input (Equation 8.18, shown in red) matched almost perfectly the values of the

simulation (in black). Finally, for the recurrent �ltered input, we observed again

that the computation of the variance through Equation 8.18 led to an

overestimation. Indeed, the con�dence interval around the mean based on the

square root of this semi-analytical estimate (which used the

recurrent-population-averaged �ring rate from the simulation, in red) was larger

than the same con�dence interval directly evaluated from the simulation (in

black and green, see Figure 9.3 (c)). However, as described above for a

steady-state simulation (Figure 9.2 (d)), this overestimation became negligible

when considering the total �ltered synaptic input (Figure 9.3 (d)).

More generally, we observed that, for the network parameters of our

simulations, the inaccuracy due to the inhomogeneous uncorrelated Poisson

�ring approximation was in general small for the total synaptic input. However,

this inaccuracy could become more visible in cases when the �ring was strongly

driven by a large increase in mean excitatory synaptic input (not shown). This

was consistent with adaptation being at the origin of the overestimation of the

variance of the �ltered input, as spike times tend to become more strongly

negatively correlated in case of large supra-threshold driving currents [Schwalger

and Lindner (2013)].

Hence, we found that the uncorrelated Poisson �ring approximation for

evaluating the variance of the total �ltered synaptic input, as well as the

Gaussian approximation for the distribution of this variable within the recurrent

population, gave a rather accurate description of the simulation results.

We now turn to use these approximations (as well as the other analytical

considerations described in subsection 8.2.4 and subsection 8.2.5) in order to

approximate self-consistently the expected �ring rate within the recurrent

population.
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9.2 Analytical estimation of the mean firing rate

within the recurrent population

We investigated the performance of our approximate analytical expressions

for the expected �ring rate of a neuron within the recurrent population. We

used a �rst-moment approximation for the adaptation averaged over the

intrinsic neuronal stochasticity (subsection 8.2.4). In addition, we consider a

linearization of the intrinsic-stochasticity-averaged �ring probability (which

relates to the average �ring rate over di�erent �xed stimulations of one single

neuron, subsection 8.2.5).

Using these analytical results, we reach two di�erent expressions for the

expected �ring rate in the recurrent population, which correspond to two

di�erent levels of approximation:

1. An equation describing linearized, mean-input-driven, dynamics. The

e�ects of the synaptic input variability within the population are neglected

(by neglecting ϵ (∆Exc) in Equation 8.34, and taking the average over the

populations of neurons). More speci�cally, we derived an expression for a

linear �lter Λrecc, such that

Rrecc (t) ≈ Λrecc ∗ hrecc (t) +

(
Rrecc, bsln − hrecc, bsln

(∫
Λrecc

))

where hrecc (t) = next exc, recc F tot
ext exc, recc ∗ Rext exc (t) +

next inh, recc F tot
ext inh, recc ∗ Rext inh (t) + nrecc, recc F tot

recc, recc ∗ Rrecc (t)

(9.1)

In this expression, Rx is the expected population-averaged �ring rate of

one neuron of population x, the F tot
x, y are combined leak-and-synapse �lters

from population x to population y, and nx,y is the number of neurons from

population x projecting to population y. In addition, Rrecc, bsln is the

expected steady-state �ring rate in a theoretical population of neurons

which is matched to the simulated population in terms of mean external

input, but for which there is no in�uence of the between-neuron variability
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of the synaptic input (see section 8.2.5 for the details). Hence,

hrecc, bsln = nrecc, recc Rrecc, bsln

(∫
F tot

recc, recc

)
+

next exc, recc Rext exc, bsln

(∫
F tot

ext exc, recc

)
+

next inh, recc Rext inh, bsln

(∫
F tot

ext inh, recc

)
(9.2)

where we take for each external population the baseline rate as a

time-averaged version of the external rates fed to the recurrent network:

Rext, bsln := Et [Rext (t)] (see Equation 8.26). Therefore, using this

approximate formula, the steady-state value of Rrecc is Rrecc, bsln, which is

itself a non-linear function of the synaptic input (see Equation 8.27).

2. An equation approximately accounting for the non-linearity of the

dynamical population response, including the e�ects of the variability of

synaptic input within the recurrent population. Indeed, due to the

non-linearity of the single neuron dynamics (see Equation 8.3), the

variability of synaptic input within the neuronal population impacts the

expected �ring probability. In order to account for this, we preserve the

exponential non-linearity for the single neuron dynamics, and we only

make use of the linearization to approximate the �uctuations of the

intrinsic-stochasticity-averaged adaptation (in Equation 8.38). Hence, we

reach (in Equation 8.42):

Rrecc (t) ∝ exp

(
Epop nrn recc [Zirecc(t)] +

varpop nrn recc [Zirecc(t)]

2

)

Epop nrn recc [Zirecc(t)] ≈ next exc, recc (Φext exc, recc ∗ Rext exc) (t) +

next inh, recc (Φext inh, recc ∗ Rext inh) (t) + nrecc, recc (Φrecc, recc ∗ Rrecc) (t)

varpop nrn recc [Zirecc(t)] ≈ next exc, recc (ΦΦext exc, recc ∗ Rext exc) (t) +

next inh, recc (ΦΦext inh, recc ∗ Rext inh) (t) + nrecc, recc (ΦΦrecc, recc ∗ Rrecc) (t)

(9.3)

where the �lters for computing the mean and variance of Z are such that, for

any population p, Φp, recc :=
(
F tot

p, recc +
(
(exp(ηrecc) − 1) ∗ Λrecc ∗ F tot

p, recc

))

and ∀s, ΦΦp, recc(s) := (Φp, recc(s))2.

Hence, we can clearly see an in�uence of both the dynamic mean and the
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dynamic variance of an e�ective driving input Zrecc (which accounts for both

synaptic input and spike-driven adaptation e�ects) on the �ring rate. As

mentioned in the beginnning of this Results section, this equation includes

approximations for the time-course of adaptation and for the computation

of the variance of the synaptic input which tend to yield an overestimation

of the �ring rate in general.

We �rst compare our formulas with the simulation results for steady-state

�ring, and we then turn to non-stationary stimulation regimes.

9.2.1 Estimation of the steady-state firing rate

In Figure 9.4 (a), we compare the results of the two di�erent levels of

approximative expressions (Equation 9.1 and Equation 9.3).

Both of these expressions use an approximation on the intrinsic-stochasticity-

averaged adaptation variable which is expected to underestimate its (negative)

magnitude (see subsection 8.2.4). Therefore, this approximation tends to lead

to an overestimation of the expected �ring rate. In addition, by neglecting the

e�ect of the variance of the synaptic input, Equation 9.1 is expected to lead to an

underestimation of the drive to the network. This is due to the exponential non-

linearity of the single unit's dynamics, which gives larger values for positive than

for negative deviations from baseline. The two above-mentioned approximations

are therefore opposite. Hence, depending on the relative magnitudes of the mean

and the variance of the input, the rate predicted by Equation 9.1 may be slightly

larger or slightly lower than the observed rate (Figure 9.4 (a), left vs. middle).

The underestimation of the adaptation magnitude is expected to be worse in case

of an increase in the negative correlations between spike times, which should be

more prominent for larger mean input (see the argument in subsection 8.2.4).

Accordingly, the predicted �ring rates tended to be overestimated for larger mean

input (Figure 9.4 (a), left vs. middle).

We will now examine the performance of the equation which approximately

accounts for the e�ect of the synaptic input variance on the population �ring

rate (Equation 9.3). We recall that this equation cumulates the

above-mentioned approximation for the intrinsic-stochasticity-averaged

adaptation, with a linearization of the averaged adaptation time-course and an

estimation of the input variance through inhomogeneous uncorrelated Poisson
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�ring. These three approximations are all expected to yield an overestimation of

the rate. Further, this overestimation should become worse for larger �ring

rates. Indeed, in our simulations, Equation 9.3 consistently overestimated the

�ring rate, with a larger deviation for larger �ring rates (Figure 9.4 (a), left vs.

right). Importantly, the dependence of the �ring rate on both the mean and the

variance of the �ltered synaptic input were still well qualitatively captured

by Equation 9.3.



9.2. ANALYTICAL ESTIMATION OF THE MEAN FIRING RATE WITHIN THE RECURRENT

POPULATION 197

a

0

-10-5

-2.10-5

-3.10-5

0

-40

-80

-120

Time (s) Time (s)

0 0.4 0.8 1.2 1.6 0 0.4 0.8 1.2 1.6

L
in

e
a

r 
�

lt
e

r 
Г re

cc

(u
n

it
 o

f 
in

tr
in

si
c 

n
o

is
e

) 
. (

H
z)

2

L
in

e
a

r 
�

lt
e

r 
Г re

cc

(u
n

it
 o

f 
in

tr
in

si
c 

n
o

is
e

) 
. (

H
z)

2

b Linear �lters for the mean-input-driven response

to voltage changes induced by synaptic input

c

A
b

so
lu

te
 v

a
lu

e
 o

f 
th

e

fo
u

ri
e

r 
tr

a
n

fo
rm

 o
f 

Г re
cc

Frequency (Hz) Frequency (Hz)

Frequency (Hz) Frequency (Hz)

A
b

so
lu

te
 v

a
lu

e
 o

f 
th

e

fo
u

ri
e

r 
tr

a
n

fo
rm

 o
f 

Г re
cc

Linear �lters for the mean-input-driven response

to �ring rate changes in the di�erent populations

A
b

so
lu

te
 v

a
lu

e
 o

f 
th

e

fo
u

ri
e

r 
tr

a
n

fo
rm

 o
f 

   
(Г

re
cc

  *
  F

 to
t 
)

rate input from recurrent population

rate input from external excitatory population

rate input from external inhibitory population

A
b

so
lu

te
 v

a
lu

e
 o

f 
th

e

fo
u

ri
e

r 
tr

a
n

fo
rm

 o
f 

   
(Г

re
cc

  *
  F

 to
t 
)

6.234 10-3

6.230 10-3

6.226 10-3

6.222 10-3

0

10-5

2 10-5

3 10-5

4 10-5

0 20 40 60 80 1000 20 40 60 80 100

0 10 20 30 40 500 10 20 30 40 50

0

2

4

6

8

10

12

0

10-2

2 10-2

3 10-2

4 10-2



198
CHAPTER 9. TESTS AND APPLICATIONS OF THE NEW ANALYSIS TOOLS FOR ADAPTING

NEURONAL NETWORK DYNAMICS

Figure 9.4 (previous page): Comparison between approximate analytical expressions and simulation
results for the steady-state mean firing rate within the recurrent population. (a) Comparison between
simulation results (different shades of grey, left), the approximate analytical formula discarding the effect
of synaptic input variability on the expected firing rate within the recurrent population (different shades
of blue, middle; see Equation 9.1), and the approximate analytical formula accounting for these effects
(different shades of red, right; see Equation 9.3). In all cases, we compare steady-state regimes, implying
that the external populations of neurons fire at constant rates. We tested different values of the mean
and variance for the filtered external synaptic input Iext received by a recurrent neuron irecc: Iext

irecc
=∑

next exc, recc

j=1
F tot

ext exc, recc ∗ Sext exc, irecc
j

+
∑

next inh, recc

j=1
F tot

ext inh, recc ∗ Sext inh, irecc
j

. (b) Shape

of the linear filter Λrecc approximating the response of the recurrent population of neurons to changes of the
mean filtered input, with a linearization around a mean filtered input of 0 (left) and around a mean filtered
input of 60 (right). The filters are shown in the time domain (up), as well as in the frequency domain (bottom).
(c) Shape of the linear filters Λrecc ∗ F tot describing the response of the recurrent population of neurons to
changes of the input firing rates in the different subpopulations, in the frequency domain. These filters are
valid when the effects of these input firing rate changes are largely mediated by a change in the mean filtered
input received by the population (and not a change in the variability of this filtered input). The left graph
is a linearization around a mean filtered input of 0, and the right graph is for a linearization around a mean
filtered input of 60. We show separately:

• the filter for the response of the recurrent population to a change in the external excitatory firing rate
Λrecc ∗ F tot

ext exc, recc, in red

• the filter for the response of the recurrent population to a change in the external inhibitory firing rate
Λrecc ∗ F tot

ext inh, recc, in green

• the filter for the response of the recurrent population to a change in its own firing rate Λrecc∗F tot
recc, recc,

in blue

Finally, we examine the shape of the linear �lter Λrecc describing the

response of the network to a delta-pulse of mean �ltered �ring rate in the

network, which is equivalent to the approximate response of the recurrent

population when all neurons are receive simultaneously the same delta pulse of

h. This is also equivalent to the linearized intrinsic-stochasticity-averaged single

neuron response to a deterministic �ltered input (see subsection 8.2.4

and subsection 8.2.5). This �lter had a delta peak at zero lag (Figure 9.4 (b),

top), which re�ects the fact that after the membrane and synaptic �ltration, the

GLM immediately responds by an increased �ring rate probability to an increase

in h (Equation 8.1). In addition, this initial peak was followed by a negative

rebound which became more negative for the larger mean input. This re�ected

the e�ect of the adaptation variable which triggered a long-lasting decreased

excitability in case of increased �ring. This adaptation e�ect translated in the

frequency domain by a high-pass �lter property (Figure 9.4 (b), bottom; [Benda

and Herz (2003)]). This indicates that adaptation can mitigate the e�ect of a

slow oscillation. Indeed, if the oscillation is slow enough, then adaptation e�ects

can develop during the rising phase of the �ltered input, and then decrease when

the input decreases. This can lead to a smoothing of the �ring rate modulation

in response to the input modulation. In addition, when considering oscillations

of the �ring rates (rather than oscillations of the �ltered input), the e�ects of

adaptation combine with the e�ects of the membrane and synaptic �lters.
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Typically, these �lters are simple exponentials which tend to smooth fast input

modulations. Hence, the total �lter Λrecc ∗ F tot is a band-pass that shows a

resonance (see Figure 9.4 (c)). Hence, this shows that adaptation may enhance

the sensitivity of the �ring rate response to the temporal structure of the input.

We now turn to the comparison between analytics and simulation during a

dynamic, non-stationary regime.

9.2.2 Estimation of the firing rate in a dynamical regime

We �rst used a stimulation where the external excitatory population changed

its rate, while the external inhibitory population �red at a constant rate. As we

will see, this leads to a covariation between the mean and variance time-course

for the �ltered external drive. This regime is therefore favorable to the analytical

expression that neglects the e�ect of the input variability in the population, as the

time-course of the stimulation, at least, can be sensed through the mean drive.

We were also particularly interested in the dynamics induced by a change of

the variability of the synaptic input within the recurrent population. Hence, we

also designed a stimulation for which the mean �ltered input was constant while

only its variance was dynamic (as explained in subsection 8.3.3).

We will now describe to which extent our equations Equation 9.1

and Equation 9.3 could describe the mean �ring rate within the recurrent

population of neurons during these stimulation regimes.

Dynamical modulation of firing through correlated changes of both the mean

and the variance of the synaptic input

We �rst examined the performance of our analytical expressions in a

dynamical regime where the external inhibitory drive is constant, while the

external excitatory drive varies (Figure 9.5 (a)) This led to covariations of the

mean and the variance of the �ltered synaptic input (Figure 9.5 (b,c)). In this

regime, the expression that ignores the e�ect of the �uctuations (Equation 9.1)

captured rather well the time-course of the averaged �ring rate within the

recurrent population (cyan line in Figure 9.5 (c)). This good performance

probably relied in part on a compensation between the error due to the

approximation of adaptation (which tends to lead to an overestimation of the



200
CHAPTER 9. TESTS AND APPLICATIONS OF THE NEW ANALYSIS TOOLS FOR ADAPTING

NEURONAL NETWORK DYNAMICS

�ring rate, see subsection 8.2.4) and the underestimation of the excitatory drive

when neglecting the variabilty of the synaptic input in the network. In addition,

as Equation 9.1 is linear, it worked better in a limited regime where the �ring

rate was not �uctuating a lot (left of Figure 9.5 (c)). Notably, it could not

capture the clipping of the �ring rate above 0, as well as the complex

asymmetric shape of the rate time-course close to 0 Hz (right of Figure 9.5 (c)).

The mean-and-variance-driven, non-linear expression (Equation 9.3) captured

rather well the time-course of the �ring rate in all the tested stimulation regimes

(red line in Figure 9.5 (c)). However, it yielded an overestimation of the �ring rate

that was worse for higher �ring rates, for the reasons that we underlined above.



9.2. ANALYTICAL ESTIMATION OF THE MEAN FIRING RATE WITHIN THE RECURRENT

POPULATION 201

Multiple of driving frequency (harmonic)

P
o

w
e

r 
sp

e
ct

ra
l d

e
n

si
ty

 o
f 

th
e

 p
o

p
u

la
ti

o
n

-a
ve

ra
g

e
d

�
ri

n
g

 r
a

te
 t

im
e

 c
o

u
rs

e
 (

H
z)

 

Simulation

Mean-driven, linear dynamics

Mean-and-variance driven, non-linear dynamics

Mean-driven, linear dynamics clipped if below 0

P
o

w
e

r 
sp

e
ct

ra
l d

e
n

si
ty

 o
f 

th
e

p
o

p
u

la
ti

o
n

-a
ve

ra
g

e
d

 �
ri

n
g

 r
a

te
 t

im
e

 c
o

u
rs

e
 (

H
z)

 

Time (s)

Simulation

Mean-driven, linear dynamics
Mean-and-variance driven, non-linear dynamics

M
e

a
n

 �
ri

n
g

 r
a

te
 (

H
z)

o
v

e
r 

a
ll

 r
e

cu
rr

e
n

t 
n

e
u

ro
n

s
M

e
a

n
 o

f 
�

lt
e

re
d

sy
n

a
p

ti
c 

in
p

u
t

H
a

lf
 v

a
ri

a
n

ce
 o

f

�
lt

e
re

d

sy
n

a
p

ti
c 

in
p

u
t

A
ve

ra
g

e
 �

lt
e

re
d

 s
p

ik
e

 h
is

to
ry

(a
d

a
p

ta
ti

o
n

 a
n

d
 r

e
se

t)
 

External

External + recurrent

External + recurrent

External

S
ta

ti
st

ic
s 

w
it

h
in

 t
h

e
 n

e
u

ro
n

a
l p

o
p

u
la

ti
o

n

(e
st

im
a

te
d

 f
ro

m
 a

 s
a

m
p

le
 o

f 
6

0
0

 n
e

u
ro

n
s)

P
o

w
e

r 
sp

e
ct

ra
l d

e
n

si
ty

 o
f 

th
e

 e
xp

e
ct

a
ti

o
n

o
f 

th
e

 �
lt

e
re

d
 e

x
te

rn
a

l i
n

p
u

t 
(H

z 
-1

)

P
o

w
e

r 
sp

e
ct

ra
l d

e
n

si
ty

 o
f 

th
e

 v
a

ri
a

n
ce

o
f 

th
e

 �
lt

e
re

d
 e

x
te

rn
a

l i
n

p
u

t 
(H

z 
-1

)
Frequency (Hz)

Frequency (Hz) Frequency (Hz) Frequency (Hz)

Time (s)

0 2 4 6 8 10 12 14

10

20

30

32

34

36

38

0

10

20

External excitatory population

External inhibitory population

Recurrent population

Fi
ri

n
g

 r
a

te
 (

H
z)

Fi
ri

n
g

 r
a

te
 (

H
z)

Fi
ri

n
g

 r
a

te
 (

H
z)

Simulation
Mean-and-variance driven, non-linear dynamics

Simulation
Mean-driven, linear dynamics

Simulation
Mean-driven, linear dynamics clipped above 0

a b

c d

e



202
CHAPTER 9. TESTS AND APPLICATIONS OF THE NEW ANALYSIS TOOLS FOR ADAPTING

NEURONAL NETWORK DYNAMICS

Figure 9.5 (previous page): Comparison between approximate analytical expressions and simulation

results for a dynamical regime with covariations of the mean and variance input changes. (a) Mean simulated

firing rate among the three populations of neurons during the whole simulation. The firing rate of the population

of external excitatory neurons is time-dependent, while the external inhibitory neurons fire at a constant rate.

During the first 5 seconds, the firing rate of each external excitatory neuron follows an Ornstein-Uhlenbeck

process with an autocorrelation time of 5 ms, and a mean of 17.25Hz. During the following 10 seconds, we

used a sine-wave of period 200ms. (b) Power spectral density (i.e. the Fourier transform of the autocorrelation

function) for the mean and variance of the membrane-and-synapse filtered external rates during the 6.2-14.1

seconds interval. Note that we used the theoretical expected values of the rates, that we imposed, for the

computation. Hence, we show the spectral content of the autocorrelation of the subthreshold membrane

potential modulations induced by the external synaptic input. The top graph is for the mean E
[

Iext
irecc

(t)
]

,

and the bottom graph is for the variance var
[

Iext
irecc

]
(see Equation 8.56). (c) Comparison between simulated

and analytically predicted rates during a 4.6-5.8 s interval. Top: the black dotted line is the binned simulated

firing rate in the whole (2000) population of neurons, the red line is the prediction by the mean-and-variance-

driven, non-linear dynamics equation (Equation 9.3), and the cyan line is the prediction by the mean-driven,

linear dynamics equation (Equation 9.1). Bottom: three graphs showing an estimation of the distribution

of dynamical parameters in a subsample of 600 recurrent neurons (for reasons of limited computer memory).

We show first the mean of the synaptic input received by each neuron (after filtering by the membrane-and-

synaptic filter F tot) from the external populations (black) and from all populations (including the recurrent

inhibition, grey). Below, we also show half the variance of these filtered synaptic inputs within the population

of recurrent neurons (in relation to the 0.5 factor in front of the variance term in Equation 9.3). We plotted a

dashed line at the approximate time when the input (mean and variance) is maximal. Finally, the third graph

is the mean adaptation variable in the population of recurrent neurons, clearly showing a temporal modulation

on the time-scale of the firing rate modulation. (d) Power spectral density of the average firing rate in the

recurrent population, at multiples of the driving frequency, computed within the 6.2-14.1 seconds interval. We

show separately the values from the simulation (black), the values for the prediction by the mean-and-variance-

driven, non-linear dynamics equation (Equation 9.3, in red), the values for the prediction by the mean-driven,

linear dynamics equation (Equation 9.1, in cyan), and the values for this last prediction while negative values

are clipped and set to 0 (green). (e) Comparison of the full power spectral densities (at all frequencies) between

the data (black), and the three above-mentioned predictions. Note that the simulation values are noisy due to

the finite size of the population (2000), leading to a small additional power at all frequencies.

We were interested in investigating how well Equation 9.3 actually captured the

non-linear behavior of the �ring rate response. Notably, there was an asymmetry

of the response to a sinusoidal stimulation (Figure 9.5 (c)). This asymmetry

probably resulted in part from the dynamics of the adaptation variable when the

neurons were silent (Figure 9.5 (c), bottom). We also stress that another notable

consequence of the adaptation dynamics was an apparent phase di�erence between

the driving total synaptic input (both mean and variance, grey in Figure 9.5 (c),

and the �ring rate response. Indeed, the latter peaked before the former, and

again the e�ect appeared to be non-linear as the �ring rate peak was asymmetric.

To examine how well our expressions could capture the complex non-linear

�ring rate response, we examined the power spectral density (which is the

fourier transform of the autocorrelation) while the sytem was responding to a
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pure 5 Hz tone. Indeed, while a linear response would create a single peak at

5Hz, the response to higher harmonics is often taken as a characteristic of the

non-linear response [Vasudevan et al. (2013)]. The power spectral density of the

simulated average rate over the population of neurons indeed showed peaks at

multiple of the driving frequency (black curve Figure 9.5 (e)). Interestingly, the

mean-and-variance-driven, non-linear expression captured well the power at the

higher harmonics of the response (compare red and black dots in Figure 9.5 (d);

Figure 9.5 (e) left). As expected, the mean-driven, linear dynamics expression

only yielded a clear peak at 5Hz (cyan items in Figure 9.5 (d-e)). Furthermore,

a mere clipping of the values predicted by the linear formula above 0 (leading to

a recti�ed linear equation, green items in Figure 9.5 (d-e)) did not �t the power

at higher harmonics as well as the non-linear formula (red items

in Figure 9.5 (d-e)). This probably re�ects the fact that even when the negative

values of the linear prediction were clipped and set to 0, the resulting rate

time-course still missed the asymmetry of the �ring rate time-course observed in

the simulation (Figure 9.5 (c)).

Note that we also tested a non-linear dynamical formula that neglects the

e�ects of �uctuations (a dynamic version of the equations developped

in section 8.2.5). This type of equation had been brie�y mentioned at the end of

the discussion in Naud and Gerstner (2012a). We found that this equation could

also work well for predicting the non-linear properties of the �ring rate

time-course in this speci�c type of stimulation regime, when mean and variance

�uctuations are correlated (not shown). This good performance probably relied

on a compensation between the underestimation of adaptation and the

underestimation of the synaptic drive through ignoring the input variability.

However, this compensation can only work if the mean and variance changes of

the synaptic input are correlated.

Hence, we will show now that neglecting the e�ect of the input variance can

become really problematic when the changes of input variance and the changes of

input mean become decorrelated.

Dynamical modulation of firing exclusively through changes of the variance

of the synaptic input within the neuronal population

In Figure 9.6, we compare our analytical expressions and the simulated

average �ring rate within the recurrent population, in a regime which allows to
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disentangle the mean and variance e�ects of the synaptic input. Indeed, we

tuned the inhibitory rates in order to maintain the average �ltered synaptic

input constant over time (Figure 9.6 (a-c), subsection 8.3.3). Note that even

though such a �nely-tuned stimulation is unrealistic, a balance of excitation and

inhibition in biological recurrent network may be achieved by inhibitory

synaptic plasticity [Vogels et al. (2011)], and could greatly moderate the changes

of mean input in the network [Renart et al. (2010); Lim and Goldman (2013)].

This type of dynamical regime therefore leads to input statistics that could be

close to those occurring during the stimulation regime we suggest.

By design, the mean-driven expression predicted constant �ring rates over

time (cyan items in Figure 9.6 (c-e)). In contrast, because of the exponential

non-linearity of the single neuron input-output function Equation 8.1, when the

variability of input increases within the neuronal population, the

population-averaged �ring rate increases (black dotted lines in Figure 9.6 (c)).

In addition, even though the amplitude of the �ring rate modulation that we

imposed here was much more modest than in Figure 9.5, a dynamic modulation

of the adaptation variable was still visible, and the population �ring rate

appeared to plateau before the input variance would peak. Interestingly, the

mean-and-variance driven, non-linear dynamics expression appeared to capture

qualitatively these features, despite the (expected) overestimation of the

predicted �ring rate (red curve in Figure 9.6 (c)). Finally, the power spectral

density of the simulated population �ring rate showed two peaks above noise

level (Figure 9.6 (e)). Interestingly, the mean-and-variance driven, non-linear

dynamics expression appeared to show a similar behavior (above the power of

the noise that was in the simulated data, see red items in Figure 9.6 (e)).
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Figure 9.6 (previous page): Comparison between approximate analytical expressions and simulation

results for a regime where only the variability of the filtered input is dynamic. (a) Mean simulated firing

rate among the three populations of neurons during the whole simulation. The firing rates of excitatory and

inhibitory neurons were adjusted to keep the neuron-averaged filtered external synaptic input constant, while

the variability of the external input within the recurrent neuron population is dynamics subsection 8.3.3. During

the first 5 seconds, the firing rate of each external excitatory neuron follows an Ornstein-Uhlenbeck process with

an autocorrelation time of 5 ms, and a mean of 17.25Hz. During the following 10 seconds, we used a sine-wave

of period 200ms. (b) Power spectral density (i.e. the Fourier transform of the autocorrelation function) for the

mean and variance of the membrane-and-synapse filtered external rates during the 6.2-14.1 seconds interval.

Note that we used the theoretical expected values of the rates, that we imposed, for the computation. Hence, we

show the spectral content of the autocorrelation of the subthreshold membrane potential modulations induced

by the external synaptic input. The top graph is for the mean E
[

Iext
irecc

(t)
]

, and the bottom graph is for the

variance var
[

Iext
irecc

]
(see Equation 8.56). (c) Comparison between simulated and analytically predicted rates

during a 4.6-5.8 s interval. Top: the black dotted line is the binned simulated firing rate in the whole (2000)

population of neurons, the red line is the prediction by the mean-and-variance-driven, non-linear dynamics

equation (Equation 9.3), and the cyan line is the prediction by the mean-driven, linear dynamics equation

(Equation 9.1). Bottom: three graphs showing an estimation of the distribution of dynamical parameters in

a subsample of 600 recurrent neurons (for reasons of limited computer memory). We show first the mean of

the synaptic input received by each neuron (after filtering by the membrane-and-synaptic filter F tot) from the

external populations (black) and from all populations (including the recurrent inhibition, grey). Below, we also

show half the variance of these filtered synaptic inputs within the population of recurrent neurons (in relation

to the 0.5 factor in front of the variance term in Equation 9.3). We plotted a dashed line at the approximate

time when the input (mean and variance) is maximal. Finally, the third graph is the mean adaptation variable

in the population of recurrent neurons, clearly showing a temporal modulation on the time-scale of the firing

rate modulation. (d) Power spectral density of the average firing rate in the recurrent population, at multiples

of the driving frequency, computed within the 6.2-14.1 seconds interval. We show separately the values from

the simulation (black), the values for the prediction by the mean-and-variance-driven, non-linear dynamics

equation (Equation 9.3, in red), the values for the prediction by the mean-driven, linear dynamics equation

(Equation 9.1, in cyan). (e) Comparison of the full power spectral densities (at all frequencies) between the

data (black), and the two above-mentioned predictions. Note that the simulation values are noisy due to the

finite size of the population (2000), leading to a small additional power at all frequencies.

In conclusion, while the mean-and-variance driven, non-linear dynamics

expression (Equation 9.3) led to an overestimation of the �ring rate, it could

still capture rather well the non-linear time-course of the population-averaged

�ring rate in all the situations we tested.

We now turn to show how this new analytical expression can (or may be able

to) clarify the neuronal mechanisms at stake during the dynamical processing

implemented by the brain.
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9.3 Some concrete insights reached, or probably

reachable, by applying our new analytical

expressions

While our new analytical expression has the disadvantage to only predict

approximately the population-averaged �ring rate, it also has the considerable

advantage to be simple enough to provide an intuitive explanation in some

concrete situations. We mention below a few of these applications, some of

which having been more deeply investigated than others.

9.3.1 Log-normal distribution of the instantaneous firing

rates within the population

The mean-and-variance driven, non-linear dynamics expression

(Equation 9.3) is valid when three assumptions are ful�lled. First, the

synaptic-input-induced membrane potential �uctuations should be Gaussian.

Second, the spike time correlations �beyond the co-occurrences expected from

time-dependent �ring rates� should be small, or at least exert an approximately

constant in�uence on the e�ective drive of the neurons (in which case our

predictions would still be qualitatively correct in terms of �ring rate time-course

and variability of �ring intensity). Third, the intrinsic-stochasticity-averaged

adaptation variable should be linearizable (see section 8.2).

If these assumptions are approximately valid, our framework predicts that

the instantaneous �ring probability, and therefore the spike count in very small

analysis windows, should follow a log-normal distribution. We could indeed

observe this type of distribution in our simulations (Figure 9.7). Note that in

our simulation, the log-normal distribution arose because of the interplay

between the non-linearity of the single neuron input-output function, and the

instantaneous variability of the synaptic input. Notably, the asymmetric

distribution could occur instantaneously even though the time-averaged

statistics were identical between neurons. By adding a variability in the synaptic

weights received by the neurons, one could further increase the variance of the

log-normal distribution (subsection 8.2.3).

Interestingly, such a log-normal distribution for the �ring rate in short bins
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Figure 9.7: Log-normal distribution of the instantaneous firing rate. For this figure only, in order to

increase our statistical power, we multiplied the number of recurrent neurons by 4 (hence, there were 8000

neurons), while maintaining the same number of input connections for each neurons as in previous figures.

We used a steady-state stimulation during which the external filtered synaptic input (by the membrane-and-

synaptic filters F tot) had a mean of 20 and a variance of 35. (a) Histogram of the firing rate in a 50 ms bin. Each

data point was the mean over 40 neurons, which is similar to the method used by [Hromádka et al. (2008)]

to evaluate this instantaneous firing rate distribution. (b) Blue: observed cumulative distribution function

(cdf) for the mean (over 40 neurons) firing rate in a 50 ms bin. In red, we plot the theoretical cumulative

distribution function of a log-normal variable which mean and variance are matched to the mean and variance

of the simulation.
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(much shorter than the averaged inter-spike interval) was observed in the auditory

cortex of awake rats [Hromádka et al. (2008)], for both spontaneous and evoked

activity. This could be consistent with the idea that the approximations that we

made are indeed reasonable in vivo.

Our analytical expressions may actually also yield insights into the

mechanism at the origin of the changes in �ring rate induced by a stimulus in

vivo. Indeed, by measuring the characteristics of the distribution of

instantaneous �ring rate among neurons with similar response (e.g. all neurons

with a similar increase of �ring rate), one could deduce the mean and variance of

the e�ective drive Z in Equation 9.3. Indeed, there is a simple relation between

the mean and variance of the log-normal distribution, and the mean and

variance of the underlying normal variable (that can be found back by taking

the logarithm of the log-normal values). More speci�cally, if X = exp(Z) and Z

is gaussian, then ln(E[X]) = E(Z) + var[Z]
2 , and ln

(
1 + var(X)

(E[X])2

)
= var[Z].

Hence, by comparing the mean and variance of Z between spontaneous and

evoked activity, one could examine whether the change in �ring rate is better

thought of as the consequence of a mean-driven, or of a variance-driven change

in the e�ective driving input at the neuronal population level. This procedure

may be more easily interpreted than an argument made on the variability of the

inter-spike interval distribution [Compte et al. (2003); Renart et al. (2007);

Mongillo et al. (2012); Deco et al. (2013)]. Indeed, this distribution is also very

much in�uenced by the non-stationarity of the data, which may occur on

time-scales that are faster than the typical inter-spike interval. Hence, a larger

coe�cient of variation of the interspike interval distribution may be explained

either by an increase in mean-input-driven fast modulations of the �ring rate, or

by an increase in the instantaneous variability of the input in the population.

We note that our result can be distinguished from previous studies focusing

on a log-normal distribution for the �ring rates averaged over long periods of

time [Roxin et al. (2011)], while we focused here on the instantaneous �ring rate.

9.3.2 Speed of the population response to a change in

the mean or the variance of the filtered input

Our mean-and-variance driven expression indicates that the population

response to a change in the variance of the e�ective driving input Z occurs �rst
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through linear �lters (ΦΦ in Equation 9.3) that are the square of the

corresponding �lters for the mean-driven response (Φ in Equation 9.3).

When considering a regime in which the adaptation variable is very small (e.g.

for small �ring rates, see Figure 9.4 (b) left), the �lter Φ is merely the combined

leak-and-synapse �lter. This can be seen in Equation 8.39 (we remind that in this

equation, the adaptation variable is captured by Γ ∗ F tot, see Equation 8.38).

Finally, in case of direct current injection at the soma of neurons during patch-

clamp experiments, the combined leak-and-synapse �lter can be reduced to the

membrane (leaky integration) �lter. This membrane �lter is a simple exponential

whose time-scale is equal to the membrane time-scale (see section 8.3.1). Hence, in

this (overly simpli�ed) case, Φ is a simple exponential �lter with the membrane

time-scale, while ΦΦ is an exponential with half this time-scale. These �lters

describe the response of a population of neurons, or, alternatively, the average

response of a single neuron to di�erent stochastic current injections (as we argued

in subsection 8.2.2).

As a consequence, the average time needed for a neuron to reach steady-state

in response to a change in input variance would be expected to be shorter than

this time in response to a deterministic step. This deterministic step in a single

neuron is the equivalent to a change of population-averaged input in a neuronal

population. Interestingly, several experimental studies seem to have made

observations compatible with this prediction.

First, Silberberg et al. (2004) showed that an increase in the variance of an

injected white input current leads to a trial-averaged response that reaches

maximum faster than the response to an increase in mean current, in presence of

a background synaptic input. Also, using a more realistic current with a larger

autocorrelation time-scale, Tchumatchenko et al. (2011) show in their �gure 3

that the plateau steady-state after a step input appears to be reached quicker

for a variance change than for a mean change in the input current. This was

however not quantitatively measured in this article. Also, [Tchumatchenko et al.

(2011)] pointed out that when considering synaptic inputs compatible with a

realistic excitatory post-synaptic potential amplitude, the response to the

change in variance is much weaker in strength than the response to the mean.

This is actually compatible with our observations (compare Figure 9.5

and Figure 9.6). Indeed, the �lter Φ then takes values that are smaller than one,

and therefore the values taken by ΦΦ are even smaller than their square roots
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(which are the values taken by Φ).

The same type of argument could be applied to better understand a recently

suggested integrator network [Lim and Goldman (2013)], whose dynamics was

purely variance-driven. The whole analysis of this network was made through a

phenomenological �ring rate model, which can be directly mapped to a spiking

neuron model in case of mean synaptic input driven dynamics [Naud and

Gerstner (2012a); Gerstner et al. (2014)]. Despite the fact that their

phenomenological equations were valid in a very di�erent regime than the

variance-driven regime in which their spiking network was lying, the authors still

found a qualitatively similar behavior in their phenomenological implementation,

and in their spiking network. However, they had no quantitative prediction for

the integration time-scale of the spiking network. Their phenomenological rate

analysis, which could be linked to an analysis based on the �lters Φ for the

mean-driven dynamics, indicated that the network integration time-scale should

to be proportional to the di�erence (τexc − τinh) between the excitatory and

inhibitory synaptic time-scales. In our framework, we can consider a

variance-driven network with negligible adaptation and combined

leak-and-synapse �lters that can be approximated by a single exponential

decaying as their associated synapse (for synapses slower than the membrane

time-scale, see section 8.3.1). Under these assumptions, which are likely to be

valid in the spiking network of [Lim and Goldman (2013)] for low �ring rates,

our analysis would predict that the e�ective time-scale is proportional to
τexc−τinh

2 . More generally, our analytical expressions may be used to improve the

understanding of the integrator network suggested in [Lim and Goldman (2013)].

9.3.3 Multiplicity of the steady-state solutions for one

recurrently connected population

As mentioned in the Methods section, for a single recurrent population, the

�xed-point expression for our mean-and-variance driven, non-linear dynamics

framework reduces to a Lambert-W function (see Equation 8.43). Indeed, the

steady-state (ss) equation reads

Rrecc, ss = C exp

(
Rrecc, ss

(
(
∫

Φ) +

∫
(ΦΦ)

2

)
+ Ifilt,ss

)
. Here, Ifilt,ss is a

constant amounting to the steady-state external synaptic input �ltered by the

corresponding mean and variance �lters (see Equation 9.3), and C and
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(
(
∫

Φ) +

∫
(ΦΦ)

2

)
are other constants. The constant C must be positive. Note

that this would also hold in cases when there are several recurrent populations,

but only one of the populations needs to the modeled non-linearly.

The Lambert-W function (which is more formally de�ned as a transcendental

equation) is more often de�ned as the values y that satisfy y exp(y) = x. This is

equivalent to our steady-state equation when setting

y = −Rrecc, ss

(
(
∫

Φ) +

∫
(ΦΦ)

2

)
and x = −C

(
(
∫

Φ) +

∫
(ΦΦ)

2

)
exp (Ifilt,ss).

Interestingly, the Lambert-W function can have zero, one or two well-de�ned

solutions depending on the value of x, which allows us to characterize the

steady-state properties of the network as a function of its parameters. This is of

interest as multi-stability has been proposed as a potential mechanism for

cognitive processes such as memory or decision-making [Brunel and Wang

(2001); Renart et al. (2007); Mongillo et al. (2012); Deco et al. (2013)]

The Lambert-W function has only one solution if x > 0, which translates into(
(
∫

Φ) +

∫
(ΦΦ)

2

)
< 0. Hence, this is a case when the total (mean and variance)

feedback is negative. Consequently, this is likely to be a stable �xed point, which

would be consistent with our simulation results showing that the �ring rate within

the recurrent population appeared to be stabilized after some delay. In contrast,

if −1
e

< x < 0, there are two solutions. This corresponds to a moderately positive

total feedback. Finally, if the total feedback is too positive (x <
(
−1

e

)
), there is

no steady-state solution.

In addition, this analysis can actually be better visualized through the

intersections of the curves exp (s) and αs. Here, s is a scaled rate:

s =

(
(
∫

Φ) +

∫
(ΦΦ)

2

)
Rrecc, ss; note that the scaling term may be negative. In

addition, α is a constant: α = 1

C

(
(
∫

Φ)+

∫
(ΦΦ)

2

)
exp(Ifilt,ss)

. When α is negative,

s is a rate scaled by a negative value, and there is only one solution s < 0.

When α is positive, there may be 0 or 2 solutions depending on whether α is

small or large. These situations are illustrated in Figure 9.8; the number of

solutions is the number of intersection points between αs and exp (s). Note that

in all conditions, we do get meaningful (positive) steady-state values for the

�ring rate.

Finally, it is also possible to conclude that, in the case when there are two

solutions, the higher-rate �xed point has an instability to slow modulations of the
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Figure 9.8: Visualization of the steady-state solutions for one recurrently connected population. We plot

the intersections between the functions exp(s) (in blue) and α s (in red). If α < 0, there is only one intersection

(left), while if α > 0, there may be either 0 (middle, for small α) or 2 (right, for larger α) intersections.

e�ective input (which includes the mean and the variance components). Indeed, in

this case of slow input variations, it is possible to reason iteratively by considering

that the input change leads to a �ring rate change predicted by the steady-state

response function, and conversely. A scaled version of this steady state rate

response to an e�ective input s is the exponential pictured in Figure 9.8. Above

the upper �xed point on the right of Figure 9.8, it is visible that if supper fixed point

�and therefore the e�ective input� increases to s1 > supper fixed point, then the

scaled rate increases and tends to reach a new value Rf ≈ exp(s1) > αs1. After

some dynamical regime, the steady-state relation indicates that sf would tend

to converge to Rf

α
, where sf is the e�ective input received by the neurons of

the network while new scaled mean �ring rate of the network is Rf . Finally,

sf ≈
Rf

α
> s1. Hence, the rate increase leads to a large input increase, which

will make the rate increase even more. In consequence, the �ring rate diverges

to in�nity, unless another mechanism changes the steady-state single-population

picture of Figure 9.8. This stabilizing mechanism could be a non-linear recurrent

inhibitory current, or a non-linear adaptation threshold (which e�ect could be

mapped onto changes of the parameters and kernels of our single-neuron model,

see subsection 8.1.3).

An investigation of the stability of the other �xed points (the single �xed

point at the left of Figure 9.8, or the lower �xed point at the right of Figure 9.8)

would require to account for the dynamics at all time scales. This could be

possible by approximating the complete �lter
(
Φ + ΦΦ

2

)
through a sum of

exponentials (either numerically, or, in simple cases, potentially analytically).

Then, one could express the dynamics of the system as the solution of coupled

non-linear di�erential equations (as we show in section 8.2.5).
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Hence, this system may be studied with the usual stability analysis tools (linear

stability, phase plane). Finally, this type of analysis could be extended to several

interacting recurrent populations of neurons.

9.3.4 Modulation of the resonant frequencies for the

firing rate response by adaptation

We initially started to study mean-�eld equations in an attempt to solve a

concrete issue, as we mentioned in chapter 6. We were wondering whether one

could design a temporally modulated input which would more strongly excite a

population of neurons which would have undergone an episode of sustained �ring

in the past, compared to another population that would not have �red as much.

The hypothesis was that the population of neurons which would have undergone

sustained �ring in the past would retain a speci�c adaptation state, which may

interact more strongly with some types of synaptic input

First, our analysis already suggests that this type of dynamics may be possible.

Our equations indeed show that the shape of the linear �lter Λ, which

determines the temporal response properties of a recurrent population of

neurons, can be modulated by the baseline state of the neurons (Figure 9.4 (b,c)

and subsection 8.2.5). In addition, and more surprisingly, while a larger

adaptation is always associated with an overall decreased excitability in a

mean-driven regime, the variance-driven regime appears to be di�erent. Indeed,

the variance �lter ΦΦ is the square of the mean-driven �lter Φ

(see Equation 9.3). Hence, even if the linearized adaptation create a negative

contribution in Φ, it will be associated with some positive terms in ΦΦ. This

re�ects the fact that adaptation participates to creating �uctuations. This

suggests that in the variance-driven regime, the presence of adaptation currents

in a population may not result in a general decreased excitability of this

population.

While we did not have the time to really address this question, the framework

we developed may allow us to do it in the future. Indeed, as we mentioned

previously, Equation 9.3 can be reduced to di�erential equations of variables which

may be related to the contribution of adaptation in the mean and variance �lters

Φ and ΦΦ. Hence, in the future, we may be able to study the in�uence of baseline

adaptation values on the temporal properties of the neuronal population response
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in the variance-driven regime.





Chapter 10

Discussion: a new tool to analyze

the dynamics of recurrent

adapting networks

We developed novel mean-�eld expressions for the population-averaged �ring

rate of recurrent neuronal networks. To the best of our knowledge, this work is

the �rst to account for the synaptic input variability within a population of

Generalized Linear Model (GLM) neurons with adaptation. By �lling this gap,

we connect to the existing literature investigating the di�erent dynamical

regimes that can characterize networks of other neuron models [Brunel and

Hakim (1999); Lindner and Schimansky-Geier (2001); Fourcaud-Trocmé and

Brunel (2005); Toyoizumi et al. (2009); Tchumatchenko and Wolf (2011);

Tetzla� et al. (2012); Helias et al. (2013); Kriener et al. (2013)]. Note that the

models considered so far in the literature analyzing the variance-driven response

were all non-adapting. In contrast, we use a single neuron model whose

dynamics is rich enough to be �tted to recorded single neurons [Mensi et al.

(2012); Pozzorini et al. (2013)] and we perform a rather detailed mathematical

analysis of the population statistics in networks of interacting units, while

accounting for both the response to the mean and the variance of the input in

the neuronal population. Importantly, compared to most other spiking neuron

models, we feel that the mathematical form of the GLM o�ers the advantage to

allow for rather easy extensions to several important features governing the

dynamics of the network. For instance, the e�ect of slow synaptic channels can

be directly incorporated and interpreted (section 8.3.1). A linearized short-term

plasticity of the synapses may also be naturally incorporated in the synaptic

�lters (see subsection 8.1.4 and section 8.3.1). Finally, the framework is also

likely to be robust to the introduction of larger heterogeneities of the synaptic

input (as argued in subsection 8.2.3).
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There are still of course some limitations of the approach. First, the

framework that we presented here is not trivially extensible to a variability of

the adaptation parameters within a single recurrent population. This might not

be too critical, however, as the data suggest that the variability of the e�ective

adaptation properties is small within pyramidal neurons of one layer (at least

among layer 5 pyramidal neurons in vitro [Pozzorini et al. (2013)]). Also, the

framework cannot be easily extended to strong non-linear dendritic integration.

In vitro, the non-linearity of dendrites was shown to potentially have a

considerable impact on the activity, at least in layer 5 pyramidal neurons [Naud

et al. (2014)]. However, in vivo, there is evidence that the constant synaptic

bombardment, and the resulting high conductance state, could linearize the

dendritic response [Destexhe et al. (2003)]. Such a moderate non-linearity can

probably be approximated through a linear �lter, at least within a some limited

regime of synaptic stimulation.

Hence, we have some hope that the framework we use is relevant for

describing neuronal dynamics in functional biological circuits in which neurons

can be classi�ed in groups with similar properties.

Within this framework, we contributed two novel approximate mathematical

expressions.

First, we derived a simple linearized equation for mean-driven dynamics

(Equation 9.1). This is, to the best of our knowledge, the �rst derivation of an

adapting GLM's linear response function that does not require the use of

statistics from a simulation, and that can therefore be computed and analyzed a

priori. Indeed, in [Deger et al. (2014)], the use of a more exact and complex

mathematical formalism for the adaptation yielded an expression for the linear

�lter which needed the simulated interspike interval distribution. Within its

domain of validity, our new equation for linear mean-driven dynamics appeared

to capture well the time-dependent population-averaged �ring rate. More

precisely, the performance is good for moderate variations of the �ring rate that

are induced by synaptic input dynamics which are largely determined by the

changes of population-averaged �ltered input (Figure 9.5). In this regime, the

low-pass �ltering properties, as well as the phase advance of the

population-averaged response were captured (Figure 9.4 (b) and Figure 9.5 (c)).

As the derivation of this expression only involves a rather simple mathematical

treatment (subsection 8.2.5), we hope that in the future we will be able to

better analyze and link mathematically the properties of this �lter to the single
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neuron parameters.

Beyond this linearized mean-driven expression, we also derive a non-linear

approximate mean-and-variance driven expression for the population-averaged

�ring rate (Equation 9.3). This expression captured rather well the non-linear

temporal response in all the various stimulation regimes we tested

(see Figure 9.4, Figure 9.5 and Figure 9.6). More speci�cally, it could capture

the asymmetry and the recti�cation of the rate response to sinusoidal synaptic

input, as well as the apparent phase advance of the rate time-course compared

to the input signal. However, this expression leads to an overestimation of the

�ring rate, and this overestimation becomes larger for larger �ring rates. While

this may be seen as a failure, we believe that the disadvantage of this inaccuracy

is mitigated by the fact that we can understand where it comes from, and by the

fact that we can predict when and how it will arise. Also, and perhaps more

importantly, the use of this approximate mathematical expression �rather than

more exact integral-equations [Naud and Gerstner (2012a); Deger et al. (2014)]�

permits reaching some intuitive understanding during a few concrete situations

ranging from brain recordings to complex simulations for emulating brain

function. For example, the log-normal distribution of the instantaneous �ring

rates appears as a natural consequence of the exponential non-linearity for the

single-neuron dynamics [Badel et al. (2008); Mensi et al. (2011)] and of the

Gaussianity of the subthreshold membrane potential distribution [Destexhe

et al. (2003)]. In addition, the simple relation (a squaring) between the linear

�lter for the mean and the linear �lter for the variance of the e�ective driving

input yields intuitive insights in the di�erences between these two dynamical

regimes. More speci�cally, for low �ring rate regimes for which the e�ects of the

spike-history kernel can be neglected, the variance-driven stimulation appears to

be governed with a time-scale that is twice faster as the mean-driven

stimulation.

Furthermore, the possible reduction to transcendental equations and to

di�erential equations potentially opens the way to using well-known tools for

dynamical analysis such as visualization of the dynamics in the phase plane, and

determination of the linear stability through eigenvalue decomposition. Finally,

the GLM framework may also permit to interpret the neuronal dynamics in a

more functional way. Indeed, thanks to the exponential non-linearity, spiking

activity may be re-interpreted as a log-likelihood of, or as an information about,

the stimulus dynamics that caused it [Pillow et al. (2008); Naud and Gerstner
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(2012a); Park et al. (2014)].



Part IV

Conclusions





Chapter 11

Modulating the dynamics of

recurrent neuronal networks by

temporal signals during cognition:

experimental evidence and

theoretical analysis

In this dissertation, we exposed how we worked towards deepening the

understanding of whether and how the dynamics of recurrent neuronal networks

dedicated to cognitive computations could be in�uenced by their input's

temporal structure. We argued that this question is of large interest because it

relates to a basic, macroscopic property of these networks. Indeed, if these

networks implement an approximate integration, they should be rather

insensitive to the temporal structure of their input that is �ner than their

integration time-scale. In contrast, if the non-linearity of these circuits

considerably shapes the result of the cognitive computation that they perform,

then these networks may be considerably sensitive to their input's temporal

structure.

More generally, we feel that a larger focus on the dynamics of connected

neuronal populations is needed to reinforce the � still very sparse � links

between theoretical and experimental work. Indeed, while di�erent models of

neuronal processing may lead to similar steady-state outcomes, their (richer)

regimes of transient response are likely permit a better distinction between

them. In other words, the transient response to external inputs also informs

about recurrently driven dynamics, which is thought to be the basic mechanism

implementing cognitive processing.
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To pursue this approach, we however need in the �rst place to be careful to

design models which are su�ciently constrained to support a non-trivial, a

posteriori comparison between models and data. In addition, this requires

understanding well the dynamics of realistic enough neuronal models, because

the comparison has to focus on dynamical features that are truly informative

about the basic mechanism characterizing the phenomenon that the model aims

to explain. In contrast, we should avoid being distracted by characteristics of

neuronal activity that are dependent on details of the implementation, and that

are distinct from the phenomenon that one is trying to understand. Thus, these

details should be ignored or at least simpli�ed in the model (which is precisely

the reason why models can be so insightful), and they should not be compared

between data and model.

The approach undertaken during this doctoral study thus intended to be in

line with this objective of fruitful interactions between models and data. We �rst

evaluated the experimental evidence for a non-linear, temporally sensitive network

dynamics during cognitive tasks. We then qualitatively formulated a hypothetical

neuronal network mechanism that could be compatible with our observations.

Finally, with the aim of progressing towards a better understanding of the network

that we sketched, we worked on an approximate analytical formulation for the

dynamics of recurrently connected adapting neurons. Below, we summarize the

principal contributions of our work and we position them within the existing

literature.

11.1 Experimental evidence for the relevance

of temporal structure of cognitive signals

from the dorsal Anterior Cingulate Cortex

First, we analyzed data from the dorsal Anterior Cingulate Cortex, an area

which is thought to be involved in signaling the need for updating the

behavioral strategy, and/or for specifying the nature of the strategy adapted to

a new context [Shenhav et al. (2013)]. We focused on feedback-related

discharges, which have been extensively characterized in terms of �ring rate in

dACC [Quilodran et al. (2008); Shenhav et al. (2013); Procyk et al. (2014)]. The

area which is suspected to process these discharges, the dorsal prefrontal
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cortex [Procyk and Goldman-Rakic (2006); Rothé et al. (2011); Shenhav et al.

(2013)], had been shown to behave similar to a integrator in some

contexts ([Kim and Shadlen (1999)], but see [Rigotti et al. (2013); Hanks et al.

(2015)]). Hence, it was relevant to investigate whether dACC feedback-related

discharges were likely to be decoded by an (approximate) neural integrator.

We found evidence for the functional relevance of the temporal structure of

dACC spike trains at a �ner resolution (τ ≈70-200ms). The optimal decoding

time-scale for these temporally modulated signals was shorter than the

time-scale of the �ring rate response of neuronal populations (which was about

1s), and shorter than the memory time-scale required by the behavioral task

(which was about 3-6s). Importantly, to the best of our knowledge, we report for

the �rst time an analysis that goes considerably beyond a simple report of the

existence of temporal structure in frontal activity. Indeed, we were careful to

check the functional signi�cance of the temporal structure. Hence, we probed

whether the relative reliabilities of the spike timing and spike count signals could

allow a biologically constrained and temporally sensitive decoder to extract

more cognitive-control-related information than a neural integrator. We found

that it was indeed the case. In addition, we reported evidence that temporal

correlations and larger-than-Poisson spike count variability participated to

shape the advantage of temporal structure for decoding. Furthermore, we

investigated how the signals from di�erent neurons may be combined when

received by the downstream decoder. We found that a small proportion of

neurons appeared to share similar temporal patterns that could complement one

another during single-trial decoding. Our results also suggested that a spatial

sensitivity of the decoder would allow an e�cient decoding of neurons whose

activity patterns are not (entirely) consistent. Finally, we extended the existing

analysis methods in order to investigate the extent to which post-feedback spike

timing could be predictive of the upcoming behavior of the monkey. We showed

that deviations of single-neuron 1st reward discharges from the prototypical,

usual temporal activity pattern predicted an increased upcoming response time

of the monkey. More precisely, the data suggested that for a given neuron, the

deviation could occur through spike time jitters, as well as trough increased

(during some trials) and decreased (during other trials) spike count. Hence, the

computation of this deviation appeared to require a non-linear processing, which

seems rather hard to reconcile with a decoding by a neural integrator.

Hence, altogether, our analyses bring unprecedented evidence for a temporally-
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sensitive, non-linear neuronal decoder of dACC feedback-related discharges.

11.1.1 Limitations of, and questions left unanswered by,

the data analysis

We did our best to make a full and rigorous use of the available data in order

to test our hypotheses as well as possible, a work that required several years.

However, despite our e�orts, we feel that the conclusions emerging from a single

data study (in general and in our particular case) cannot be regarded as de�nitive

evidence. Of course, there is always the �human� possibility of having made a

mistake during the analysis. But beyond this, there are also intrinsic limitations

when analyzing a single data set. For instance, we cannot currently determine

whether the slight di�erence between the two monkeys in the behavior-neuronal

correlation merely re�ects the lesser statistical robustness in one monkey, or if

it may re�ect some signi�cant e�ect that we cannot currently interpret. Part

of the di�culty therefore comes from the fact that, as for most studies using

monkeys, the technical di�culties do not allow gathering data from a large number

of animals. In addition, it is impossible to do an analysis without making, at times,

choices whose impact on the results cannot be fully evaluated. For instance, we

had the idea of testing the correlation between the deviation from prototypical

spike train and behavior, but there may be another function of the neuronal

activity, which we did not think of and which we did not test, that might lead to

a larger correlation. If this is so, depending on the nature of this function, our

interpretation of the results in terms of the characteristics of the decoder may be

compromised.

Therefore, we think that the con�dence level in our interpretations would be

improved by a confrontation with new analyses attempting to verify the

consistency of our conclusions with observations from other independent studies.

For instance, if our interpretations are correct, we would expect that similar

results should be observed in any context where animals must switch between

di�erent behavioral strategies. This expectation should be checked.

In addition, our study did not fully address the question of the cognitive

nature of the behavioral response time modulation. Novel careful behavioral

designs, with a su�cient number of trials, could try to distinguish whether the

e�ect we measured re�ected a relation of dACC discharges with the
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(pre-decisional) attention magnitude, with the (post-decisional) con�dence level,

or with the motivation level. This would require experiments where these three

factors can be decorrelated and measured (e.g. by varying independently the

di�culty of the decision, and the reward received).

Moreover, our study was purely correlative. We cannot exclude that dACC

activity was not causally involved in driving behavioral adaptation and response

time modulations, and instead was merely re�ecting the activity occurring in the

causally involved area. However, designing an experiment to measure causality

for such a spatiotemporal code remains an open challenge today.

Finally, our analysis could only advance a little our understanding of the precise

mechanisms by which the recurrent neuronal network decoder would be impacted

by dACC spike timings. A theoretical approach was therefore undertaken in an

attempt to make further progress in this direction.

11.2 Theoretical analysis of the dynamic

response of recurrent neuronal networks

Motivated by the question of how a temporal input (such as the one that

dACC appears to send) could modulate a non-linear downstream neuronal

network implementing cognitive computations, we developed new mathematical

expressions to characterize the dynamical response of such networks.

State-of-the-art available analysis techniques proved insu�cient to address such

a question. Indeed, they either used a single neuron model without adaptation

which cannot reproduce well the spike timing of recorded pyramidal neurons in

response to time modulated input (e.g. integrate and �re neurons, [Brunel and

Hakim (1999); Kobayashi et al. (2009)]), or simpli�ed network interactions

where uncorrelated input �uctuations between neurons are ignored [Naud and

Gerstner (2012a); Deger et al. (2014)]. In contrast, we used a neuronal model

that can �t the dynamics of recorded neurons [Mensi et al. (2012); Pozzorini

et al. (2013)], and we derived a non-linear dynamical expression which

approximately accounts self-consistently for the e�ects of both the mean and the

variability of the synaptic input. In this way, we include in the analysis the

major factors governing neuronal interactions [van Vreeswijk and Sompolinsky

(1996, 1998); Brunel and Hakim (1999); Renart et al. (2007); Tchumatchenko
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and Wolf (2011); Mongillo et al. (2012)].

Furthermore, given the need for simple mathematical expressions in order to

get intuitions in concrete applications, we undertook an e�ort of simpli�cation

of the existing mathematical expressions [Naud and Gerstner (2012a)]. We

derived a very simple analytical linear �lter for mean-input-driven adapting

neuronal populations, which may be used to investigate the relation between

single neuron properties and the frequency response function of the population.

We would like to reckon that, due to time limitations, the performance of our

analytical expressions was not checked as extensively as we would have desired.

We are aware that this will have to be done before submitting these results for

publication. We are also aware that our expressions are only approximate, in

particular for the amplitude of the rate response. However, we hope that, in their

current state, the comparisons between simulations and our analytical expressions

still show that non-trivial features of the time-course of the neuronal response

are well captured in general. In addition, the simplicity of the �nal formulas is

promising for permitting future applications to concrete neuroscience questions.

11.2.1 Future possible applications of our analytical

expressions

Our mathematical expressions permit more detailed comparisons between

models and data. For instance, we suggested a test to determine the

contribution of the mean and the variance of the input for driving a change of

activity state measured in spiking data.

In addition, the new mathematical expression suggests a possible mechanism

explaining the importance of the temporal structure of dACC signals, which could

re�ect a tuning of this signal to the adaptation state of the decoding network. We

hope to dig more into these questions in the future.
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