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Chapter 1

Introduction

The title of this thesis is �Numerical analysis of some saddle point formulation with X-FEM type
approximation on cracked or �ctitious domains�. It concerns the mathematical and numerical
analysis of convergence and stability of mixed or hybrid formulation of constrained optimization
problem with Lagrange multiplier method in the framework of the eXtended Finite Element
Method (X-FEM). We begin by introducing the incompressible and compressible elastostatic
problems. Then we present the unilateral contact condition in the elastostatic cracked domains.
After that we give some general aspects of the eXtended Finite Element Method (X-FEM).
Finally we present the outline of this thesis.

Contents
1.1 Incompressible and compressible elasticity problem . . . . . . . . . . . . 1

1.1.1 Basic concept for the linear elasticity . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Compressible strong and weak formulations . . . . . . . . . . . . . . . . . . 2

1.1.3 Incompressible formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contact condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Frictionless unilateral contact condition in cracked domain . . . . . . . . . . 8

1.2.2 Frictional unilateral contact condition in cracked domain . . . . . . . . . . 8

1.3 X-FEM: General aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Example introducing the concept of enrichment . . . . . . . . . . . . . . . . 8

1.3.2 Classical X-FEM enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 Fixed enrichment area and convergence rate . . . . . . . . . . . . . . . . . . 12

1.3.4 X-FEM with a cut-o� function . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1 Incompressible and compressible elasticity problem

1.1.1 Basic concept for the linear elasticity

Let us consider the deformation of an elastic body occupying, in the initial con�guration, a
domain Ω ∈ R2 where plane strain assumption are assumed. Let u be the displacement �eld
that satis�es the assumption of small perturbations : small displacements and transformations,
respectively

u = (u1, u2) with | u |� L and | ∂ui
∂xj
|� 1 in Ω with i, j ∈ {1, 2}
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Chapter 1. Introduction

with L is a characteristic length of the solid.
The linearized strain tensor is de�ned by

εij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
in Ω with i, j ∈ {1, 2}.

The stress tensor σ is given by the anisotropic material behavior law

σ(u) = C : ε(u), in Ω,

with C a fourth order elastic tensor characterizing the material rigidity.
In the case of an isotropic material (i.e., which behaves in the same way in all directions) the
law of material behavior is reduced to the Hooke's law

(1.1) σ(u) = λ tr ε(u) I + 2µ ε(u),

with λ and µ are the Lamé coe�cients, which are positives and de�ned by

µ =
E

2(1 + ν)
and λ =

Eν

(1 + ν)(1− 2ν)
,

E is the Young modulus and ν the Poisson's ratio.

1.1.2 Compressible strong and weak formulations

Figure 1.1: Domain

In this section, the equations of the general problem of a cracked solid are recalled. Let
Ω ⊂ R2 be the cracked domain, Γc denotes the crack and Γ the boundary of Ω. We assume
that Γ \ Γc is partitioned in two parts: ΓN where a Neumann surface force t is applied and
ΓD where a Dirichlet condition u = 0 is imposed (see �gure 1.1). We assume that we have a
traction free-condition on Γc. Let f be the body force applied on Ω. The equilibrium equation,

2
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1.1. Incompressible and compressible elasticity problem

constitutive law and boundary conditions are given by

−div σ(u) = f , in Ω,(1.2)

σ(u) = C : ε(u), in Ω,(1.3)

u = 0, on ΓD,(1.4)

σ(u) · n = t, on ΓN ,(1.5)

σ(u) · n = 0, on Γc.(1.6)

with n is the outside normal to the domain Ω.
Let us de�ne the space H1(Ω) = H1(Ω,R2) = [H1(Ω)]2 where H1(Ω) denotes the classical
Sobolev space. Let V be the space of admissible displacements given by

V =
{
u ∈ H1(Ω) ; u = 0 on ΓD

}
.

Taking the inner product of the equilibrium equation (1.2) with v ∈ V , and integrating over Ω

leads to

−
∫

Ω
div σ(u) · v dΩ =

∫
Ω
f · v dΩ.

Using Green's formula for elasticity, we obtain∫
Ω
σ(u) : ε(v) dΩ =

∫
Ω
f · v dΩ +

∫
∂Ω
σ(u)n · v dΩ.

Taking into account the boundary conditions, the previous equation reads∫
Ω
σ(u) : ε(v) dΩ =

∫
Ω
f · v dΩ +

∫
∂Ω

t · v dΩ ∀v ∈ V.

By using equation (1.3), the weak formulation can be written

Find u ∈ V such that a(u,v) = L(v) ∀v ∈ V,

with

a(u,v) =

∫
Ω
ε(v) : C : ε(u) dΩ,

L(v) =

∫
Ω
vT f dΩ +

∫
∂Ω

vT t dΩ.

Given f ∈ L2(Ω) and t ∈ L2(ΓN ), thanks to Korn's inequality which implies the coercivity of
a(u,v), the existence and uniqueness of the solution to the weak formulation are garanteed by
Lax-Milgram's Lemma [1]

1.1.3 Incompressible formulation

For incompressible elasticity problems, the classical formulation is unsatisfactory. Indeed, the
discretized problem leads to locking solution. To solve this problem, Hermann proposed a partic-
ular form of the principle of Hellinger-Reisner [2]. He reformulated this principle by decoupling
the volume and deviatoric contributions of stress and strain. If we assume that the deviatoric

3
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Chapter 1. Introduction

part is calculated from the displacement and the hydrostatic pressure is an independent variable,
we �nd the mixed formulation in u and p.

The problem of linear elasticity is given by the system:

−div σ = f , in Ω,

σ = C : ε, in Ω,

u = 0, on ΓD,

σ · n = t, on ΓN ,

σ · n = 0, on Γc.

Let p be the hydrostatic pressure de�ned in two dimensions by:

p = −tr(σ)

2
.

Now we decompose the stress tensor σ in two parts: the spherical part and the deviatoric part
σd given by:

σd(u) = σ(u) + p I = 2µεd(u),

where

εd(u) = ε(u)− div(u)

2
I.

For a linear isotropic materials we have:

σ = λ(divu)I + 2µε(u),

where λ and µ are the two Lamé coe�cients which are assumed to be positive.

Let k be a bulk modulus given by: k =
E

3(1− 2ν)
Then

tr(σ) = tr(λ(divu)I + 2µε(u)) = λ(divu) tr(I) + 2µ tr(ε(u))

= (3λ+ 2µ)(divu) = 3k(divu).

Therefore

(1.7) p = −k divu.

When the material is incompressible (ν = 0.5), the bulk modulus tends to in�nity. This means
that the displacement �eld must be divergence free when the behavior tends to be incompressible
and

σ(u) = σd(u) + p I

Then the strong mixed formulation is written as follows

−div[σd − p I] = f in Ω,(1.8)

divu +
1

k
p = 0 in Ω.(1.9)

4
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1.1. Incompressible and compressible elasticity problem

When k goes to in�nity, the problem (1.8) and (1.9) becomes the incompressible problem

−div[σd − p I] = f in Ω(1.10)

divu = 0 in Ω(1.11)

Let V =
{
v ∈ H1(Ω) with u = 0 on ΓD

}
and Q = L2(Ω).

Multiplying the �rst equation (resp. the second equation) of the strong formulation by a test
function v ∈ V (resp. q ∈ Q). On applying Green's formula for elasticity, we �nd the weak
mixed formulation


Find (u, p) ∈ (V,Q) such that:∫
Ω σ

d(u) : ε(v) dΩ−
∫

Ω p divv dΩ =
∫

Ω f · v dΩ +
∫

ΓN
t · v dΓ, ∀v ∈ V,∫

Ω q divu dΩ = 0, ∀q ∈ Q.

Subsequently, the weak mixed formulation of the isotropic incompressible linear elastic problem
is written as:


Find (u, p) ∈ (V,Q) such that:
a(u,v)− b(v, p) = L(v), ∀v ∈ V,
b(u, q) = 0, ∀q ∈ Q,

(1.12)

with:
a(u,v) =

∫
Ω σ

d(u) : ε(v) dΩ,

b(v, p) =
∫

Ω p divv dΩ,

L(v) =
∫

Ω f · v dΩ +
∫

ΓN
t · v dΓ.

Proposition 1 ([1]). Let a : V ⊗ V −→ R and b : V ⊗ Q −→ R be two continuous bilinear
forms that satisfy:

• The bilinear form a(·, ·) is coercive on kerB,i.e.,

∃α > 0 ; a(v,v) ≥ α ‖ v ‖21,Ω ∀v ∈ kerB.

• There exists a constant β > 0 such that the following inf-sup condition holds:

inf
q∈Q

sup
v∈V

b(v, q)

‖ q ‖0,Ω ‖ v ‖1,Ω
≥ β.

Then there exists a unique solution (u, p) of the weak formulation (1.12).

Remark: The coercivity condition follows from the Korn's inequality. To show the inf sup
condition it su�ces to show that ImB is closed.

5
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Chapter 1. Introduction

1.1.3.1 Discrete problem

Discretization of the elasticity problem follows the usual steps. We approximate (u, p) by
(uh, ph) ∈ Vh ⊗Qh. The subspaces Vh and Qh are �nite dimensional that will be de�ned later.
The discretized problem is then:


Find (uh, ph) ∈ (Vh, Qh) such that

a(uh, vh)− b(vh, ph) = L(vh), ∀vh ∈ Vh,
b(uh, qh) = 0, ∀qh ∈ Qh.

(1.13)

Proposition 2 (Existence and uniqueness of the discrete problem [1]). Under the following
conditions:

• The bilinear form a(·, ·) is coercive on kerBh i.e.;

∃α > 0 ; a(vh,vh) ≥ α ‖ vh ‖21,Ω ∀vh ∈ kerBh.

• There exists a constant βh > 0 such that the following inf-sup condition holds:

inf
q∈Qh

sup
v∈Vh

b(vh, qh)

‖ qh ‖0,Ω ‖ vh ‖1,Ω
≥ βh

There exists a unique solution (uh, ph) of the discrete weak formulation (1.13).

Remark: The constant βh appears in the error bound so that we can loose the convergence of
the discrete solution to the continuous solution. To avoid this problem we must show that:

inf
q∈Qh

sup
v∈Vh

b(vh, qh)

‖ qh ‖0,Ω ‖ vh ‖1,Ω
≥ β0 > 0,

with β0 independent of h. This condition it is the Ladyzhenskaya-Brezzi-Babuska condition
(LBB) sometimes called ins-sup condition [1].

1.1.3.2 Stability of the mixed formulation

Proposition 3 ([1]). Under the assumptions of existence and uniqueness of solutions (u, p)

and (uh, ph) of continuous and discrete problems (1.12) and (1.13) and if the LBB condition is
satis�ed then:

‖ u− uh ‖1,Ω + ‖ p− ph ‖0,Ω≤ c
[

inf
vh∈Vh

‖ u− vh ‖1,Ω + inf
qh∈Qh

‖ p− qh ‖0,Ω
]
.

The constant c appearing in the preceding proposition depends, among other things, on
1

α

and
1

β0
hence the importance that the latter constant does not depend on h. Therefore, despite

the inf-sup condition is satis�ed, we do not have always converge towards the exact solution. The
preceding proposition is valid only if the LBB condition is veri�ed. However, the veri�cation of

6
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1.2. Contact condition

this condition for a couple (Vh, Qh) is very di�cult to prove in practical situations. Therefore,
the numerical evaluation of the inf-sup has been widely studied (see Chapelle and Bathe [3]).
The numerical evaluation gives an indication of the veri�cation of the LBB condition for a given
�nite element discretization. The numerical inf-sup test is based on the following proposition.

Proposition 4 ([3]). Let [B], [M ]uu and [M ]pp be the matrices associated with the bilinear form
b(·, ·), the H1-inner product in Vh and the L2-inner product in Qh and Let µmin the smallest
nonzero eigenvalue of the eigenvalue problem :

[B]T [M ]−1
uu [B]V = µ2 [M ]ppV.

Then the value of β0 in the LBB condition is simply µmin.

The numerical test proposed in [3] is to check the stability of the mixed formulation by
calculating βh with increasingly re�ned meshes. Indeed, if log(βh) continuously decreases as h
tends to 0, Chapelle and Bathe [3] predicted that the �nite element violates the LBB condition.
Otherwise, if βh stabilizes when the number of elements increases, then the numerical inf-sup
test is veri�ed.

1.2 Contact condition

Figure 1.2: Cracked domain

The contact phenomenon was introduced by Léonard de Vinci in the �fteenth century. How-
ever, the mathematical study of the contact phenomenon is quite recent. In 1882, Hertz [4] solved
the contact problem of two elastic bodies with curved surfaces. In 1933 Signorini formulate the
general problem of the equilibrium of a linearly elastic body in contact with a rigid frictionless
foundation. The unilateral contact condition was formulated by Signorini in 1959 [5]. The �rst
rigorous analysis of a class of Signorini problems was done in the work of Fichira [6] where the
Signorini problem was solved by using variational inequality. In this work, we are mainly inter-
ested in the elastostatic unilateral contact problem in cracked domain: frictionless or frictional
unilateral contact.

7
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Chapter 1. Introduction

1.2.1 Frictionless unilateral contact condition in cracked domain

The frictionless unilateral contact condition is expressed by the following complementarity rela-
tion:

JunK ≤ 0, σn(u) ≤ 0, σn(u)JunK = 0, σt(u) = 0,(1.14)

where JunK is the jump of the normal displacement across the crack ΓC (see Fig 1.2).
The inequality JunK ≤ 0 shows that there is no penetration between the crack lips. The rest of
this condition shows that if there is no contact (i.e., JunK < 0), then there is no reaction between
the crack lips of the crack, i.e. σn(u) = 0; if there is contact (i.e., JunK = 0), then there is a
normal compression force (σn(u) < 0) between the crack lips. The absence of the tangential
forces of friction is expressed by σt(u) = 0.

1.2.2 Frictional unilateral contact condition in cracked domain

The simplest friction law is the Tresca friction. It allows to write the unilateral contact problem
as a constrained optimization problem. It reads as follows:

(1.15)


|σt(u)| ≤ s, a.e. on ΓC ,

if JutK = 0, then |σt(u)| < s,

if JutK 6= 0 then σt(u) = −s JutK
|JutK| ,

where s ∈ L2(ΓC), s ≥ 0 denotes the given slip threshold supposed independent of the normal
stress. This condition expresses two physical situation: slip when JutK 6= 0 and stick when
JutK = 0.
Often, especially in engineering literature, the slip threshold s is chosen as:

s = F|σn(u)|

where F is the coe�cient of friction. This choice leads to the classical version of Coulomb's law:

(1.16)


|σt(u)| ≤ −Fσn(u), a.e. on ΓC ,

if JutK = 0, then |σt(u)| < −Fσn(u),

if JutK 6= 0 then σt(u) = Fσn(u) JutK
|JutK| .

1.3 X-FEM: General aspects

1.3.1 Example introducing the concept of enrichment

To introduce the concept of discontinuous enrichment, we present an academic example [7]. Let
Ω be the cracked domain. This domain is meshed by the classical �nite-element method as
indicated in Fig. 1.3.

A classical �nite-element approximation associated with the duplicated mesh nodes is:

uh(x) =

10∑
i=1

uiNi(x)

8
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1.3. X-FEM: General aspects

Figure 1.3: Finite element mesh near a crack tip, the circled numbers are element numbers

Figure 1.4: Regular mesh without a crack

with ui is the displacement at node i and Ni is the scalar shape function associated with this
node.
Set a =

u9 + u10

2
, and b =

u9 − u10

2
then : u9 = a + b and u10 = a− b and we can express uh

in terms of a and b by:

(1.17) uh(x) =
8∑
i=1

uiNi(x) + a (N9(x) +N10(x)) + b (N9(x) +N10(x))H

where H is the jump function de�ned by:

H

(
x

y

)
=

{
1 if y > 0

−1 if y < 0

In the enriched �nite-element method the nodes 9 and 10 shown in Fig. 1.3 are replaced by
the single node 11 as shown in Fig. 1.4. By setting N11 = (N9 + N10), the �nite element
approximation (1.17) has the following form:

uh(x) =

8∑
i=1

uiNi(x) + aN11(x) + bN11(x)H(x),

9
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Chapter 1. Introduction

where the two terms on the left represent the classical �nite-element approximation, and the
third term represents the enrichment at the discontinuity. Hence, the notion of enrichment of
the classical discretization space is introduced to enable the decoupling between the mesh and
the domain discontinuities. We note that the X-FEM mesh (see Fig. 1.4) is performed without
the geometrical discontinuity of the crack.

1.3.2 Classical X-FEM enrichment

Figure 1.5: Cracked domain with FEM mesh

In the presence of a crack, there are two types of discontinuities: a strong discontinuity that
results from a geometrical discontinuity of the studied domain and is re�ected by a discontinuity
in the displacement �eld; and a weak discontinuity at the crack tip which is manifested by the
presence of a singularity in the stress �eld at the crack tip (see Fig. 1.5).
To represent these two types of discontinuities, the space of classical �nite element discretization
is enriched by two types of enhancements:

• Heaviside enrichment.

• Westergaard enrichment.

This enrichment procedure was introduced for the �rst time in 1999 by Möes et al. [7, 8].

1.3.2.1 Heaviside enrichment

To represent the jump of displacement across the crack Γc, Moës et al. used the Heaviside-like
function:

H(x) =

{
1 if (x− x∗) · n > 0

−1 elsewhere

where x∗ denotes the crack tip position vector and n is the outward unit normal to the crack.
Indeed, all the nodes for which the support of their shape functions are completely cut by the
crack (nodes represented by a circle in Fig. 1.6) are enriched by the Heaviside-like function.

10
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1.3. X-FEM: General aspects

Figure 1.6: X-FEM enrichment

1.3.2.2 Enrichment with singular functions

To represent the singularity at the crack tip, the approximation of the displacement �eld is
enriched with Westergaard functions based on asymptotic expansion of the displacement �eld of
linear fracture mechanics [9] . For an isotropic homogeneous material, these functions have the
following form [9]:

ux =
1

2µ

√
r

2π

[
KI cos( θ2)

(
δ − cos(θ)

)
+KII sin( θ2)

(
δ + 2 + cos θ

)]
,

uy =
1

2µ

√
r

2π

[
KI sin( θ2)

(
δ − cos(θ)

)
+KII cos( θ2)

(
δ − 2 + cos θ

)]
.

with:
KI and KII are the stress intensity factors,
r and θ are the polar coordinates with respect to the crack tip,

δ =

 3− 4ν for plane strain,
3− ν
1 + ν

for plane stress.

These functions can be generated by the basis given by the four elementary functions:

F =

{√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

}
.

We note that only the �rst function of this basis is discontinuous across the crack. The other
functions of the basis are added to improve accuracy.
For this type of enrichment, the set of nodes whose support of the shape function is partially
cut by the crack (nodes represented by a square in the Fig. 1.6), are enriched by the Westergard
functions.

1.3.2.3 Space discretization

The strategy for enrichment in classical X-FEM has two main steps:

11
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Chapter 1. Introduction

• The nodes for which the support of their shape function is completely cut by the crack are
enriched by the Heaviside-like function.

• The nodes for which the support of their shape function contains the crack tip are enriched
with the singular functions of Westergaard.

Thereafter, the space discretization of X-FEM is the direct sum of a classical �nite element
method Vh and the enrichment space associated to X-FEM such as:

Vh =

{
wh ; wh(x) =

∑
i∈I

uiϕi(x) with ui ∈ R2

}
,

Eh =

eh ; eh(x) =
∑
i∈IH

aiH(x)ϕi(x) +
∑
i∈IF

4∑
α=1

bαi Fα(r, θ)Ni(x) with ai,b
α
i ∈ R2

 ,

where IH and IF are the sets of node indices enriched by the function H and the functions
Fα, respectively. Ni(x) and ϕi(x)) are the scalar shape functions associated with the classical
�nite-element method of order 1 and order k, respectively.
Consequently, the X-FEM enriched space can be written as:

Vh = Eh ⊕ Vh.

Hence the displacement �eld is written as follows:

uh(x) =
∑
i∈I

uiϕi(x) +
∑
i∈IH

aiH(x)ϕi(x) +
∑
i∈IF

4∑
α=1

bαi Fα(r, θ)Ni(x).

1.3.3 Fixed enrichment area and convergence rate

The classical X-FEM, while reducing the error level, does not improve the convergence rate
compared to a classical �nite element method (see [9] and [10]). This can be explained by the
fact that the topological enrichment only a�ects one layer of elements in the crack tip. So, when
h goes to 0, the size of the zone of in�uence of the enrichment also tends to 0. To remedy this
problem a geometrical enrichment is introduced. The idea is to enrich by the singular functions
all the degrees of freedom contained in a whole �xed area around the crack tip (see Fig. 1.7).
This variant of X-FEM reduces the errors with respect to the classical X-FEM and improves the
convergence rate. In fact, one gains an optimal convergence (of order h for theH1-norm with a P1

�nite element). However the conditioning of the associated linear system becomes higher when
the number of degrees of freedom increases (see [11]). The X-FEM with �xed enrichment area
is an expensive strategy since a large number of degrees of freedom is enriched by the singular
functions.

12
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1.3. X-FEM: General aspects

Figure 1.7: Geometrical enrichment

Figure 1.8: Enrichment strategy

1.3.4 X-FEM with a cut-o� function

This enrichment was �rst introduced in 2006 by Chahine et al. (see [12]). This method gives
optimal convergence results without increasing signi�cantly the computational cost and without
degrading the condition number of the linear system. This is done by using a cut-o� function to
localize the singular enrichment area. This means that with this function we enrich the entire
area of crack tip, see Fig. 1.8.

1.3.4.1 X-FEM cut-o� enriched space

As for the classical X-FEM, the X-FEM cut-o� enriched space can be written as:

Ṽh = Ẽh ⊕ Vh.

with

Ẽh =

eh ; eh(x) =
∑
i∈IH

aiH(x)ϕi(x) +

4∑
α=1

cα Fα(r, θ)χ(r) with ai, cα ∈ R2

 ,

13
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Chapter 1. Introduction

Figure 1.9: Cut-o� function example

and χ is a cut-o� function (see Fig. 1.9). The cut-o� function is identical to a polynomial of
order 5 between r0 and R1 such that:{

χ(r) = 1 if r < r0

χ(r) = 0 if r > r1
(1.18)

Then, the displacement �eld takes the following form:

uh(x) =
∑
i∈I

uiϕi(x) +
∑
i∈IH

aiH(x)ϕi(x) +

4∑
α=1

cα Fα(r, θ)χ(r).

1.3.4.2 Convergence of X-FEM cut-o�

Chahine et al. [12] have proved analytically that for shape functions of order 1, the rate of
convergence is of order h. They also proved this result numerically for shape functions of order
1 and 2. In addition, this enrichment strategy keeps the optimal convergence without increasing
the computational cost and without degraded the conditioning of the associated linear system.

1.4 Outline of the thesis

We consider saddle-point systems of equations resulting from the approximate numerical solution
of PDEs (incompressible elastostatic problem, unilateral contact problem and elliptic bound-
ary value problem) with Lagrange multiplier in the framework of the eXtended Finite Element
Method X-FEM. Independently of the physical problem to be solved, the approximation spaces
of the primal variable and the Lagrange multiplier can not be chosen independently from each
other. Indeed, compatibility conditions (the onerous Inf-sup (or LBB) condition) must be satis-
�ed to have convenient approximation. This condition ensures that discrete solutions converge
to the exact solution as the mesh size h goes to zero. The purpose of this thesis is to �nd a way to
prove or to overcome the onerous Inf-sup condition for such problem coming from the resolution

14
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1.4. Outline of the thesis

of constrained optimization problem with Lagrange multiplier. Except the �rst chapter, each
chapter of this thesis corresponds to a published or submitted paper.

This thesis is organized as follows. In Chapter 2, we present a mathematical and numerical
analysis of convergence and stability of the mixed formulation for incompressible elasticity in
cracked domains. The goal is to extend the analysis of the X-FEM cut-o�, done in the case of
compressible elasticity, to the incompressible one. A mathematical proof of the inf-sup condition
of the discrete mixed formulation with X-FEM is established for some enriched �elds. We also
give a mathematical result of quasi-optimal error estimate. Finally, we validate these results
with numerical tests. In Chapter 3, we present a priori error estimates on the approximation
of contact conditions in the framework of the eXtended Finite-Element Method (X-FEM) for
two dimensional elastic bodies. This method allows to perform �nite-element computations on
cracked domains by using meshes of the uncracked domain. We consider a stabilized Lagrange
multiplier method whose particularity is that no discrete inf-sup condition is needed in the con-
vergence analysis. The contact condition is prescribed on the crack with a discrete multiplier
which is the trace on the crack of a �nite-element method on the uncracked domain, avoiding the
de�nition of a speci�c mesh of the crack. Additionally, we present numerical experiments which
con�rm the e�ciency of the proposed method. In chapter 4 a new consistent method based on
local projections for the stabilization of a Dirichlet condition is presented in the framework of
�nite-element method with a �ctitious domain approach. The presentation is made on the Pois-
son problem but the theoretical and numerical results can be extended straightforwardly to any
elliptic boundary value problem. A numerical comparison is performed with the Barbosa-Hughes
stabilization technique. The advantage of the new stabilization technique is to a�ect only the
equation on multipliers and thus to be equation independent. In chapter 5, we propose a local
projection stabilized Lagrange multiplier method to approximate the two-dimensional linear elas-
tostatics unilateral contact problem with Tresca friction in the framework of the eXtended Finite
Element Method (X-FEM). This last method allows to perform �nite-element computations on
cracked domains by using meshes of the uncracked domain. We study the existence, uniqueness
and a priori error estimate of several hybrid discrete formulations.

15
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Chapter 2

Numerical convergence and stability of

mixed formulation with X-FEM cut-o�

This chapter has been published in The European Journal of Computational Mechanics [13].
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2.1 Introduction

The presence of a crack in a structure reveals two types of discontinuities: a strong discontinuity
that requires an adapted mesh to the shape of the crack, hence the domain is meshed at each time
step; and a weak discontinuity that requires re�nement at the crack tip. These two operations
lead to a huge computational cost. In order to overcome these di�culties we use the eXtended
Finite Element Method (X-FEM). This method allows to model cracks, material inclusions and
holes on nonconforming meshes. It was introduced by Moës et al. [7]. It consists in enriching the
basis of the classical �nite element method by a step function along the crack line and by some
non-smooth functions representing the asymptotic displacement around the crack tip. To obtain
an optimal accuracy, Chahine et al. introduced a new enrichment strategy [12]: the so called
X-FEM cut-o�. This enrichment strategy uses a cut-o� function to locate the crack tip surface.
In their work, Chahine et al. have shown that the X-FEM cut-o� has an optimal convergence
rate of order h and that the conditioning of the sti�ness matrix does not deteriorate. In this
work, we extend the numerical results given by Chahine et al. [12] to an incompressible isotropic
linear plane elasticity problem in fracture mechanics. In particular, this formulation must satisfy
the so-called inf-sup or �Ladyzhenskaya-Brezzi-Babu²ka condition� (LBB) condition.
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Chapter 2. Mixed formulation with X-FEM cut-o�

2.2 Model problem and discretization

Figure 2.1: Cracked domain

Let Ω be a two-dimensional cracked domain, Γc denotes the crack and Γ the boundary of Ω.
We assume that Γ \ Γc is partitioned into two parts: ΓN where a Neumann surface force t is
applied and ΓD where a Dirichlet condition u = 0 is prescribed (see Fig. 2.2). We assume that
we have a traction-free condition on Γc. Let f be the body force applied on Ω. The equilibrium
equation, constitutive law and boundary conditions are given by

−div σ(u) = f , in Ω,(2.1)

σ(u) = λ tr ε(u) I + 2µ ε(u), in Ω,(2.2)

u = 0, on ΓD,(2.3)

σ(u) · n = t, on ΓN ,(2.4)

σ(u) · n = 0, on Γc.(2.5)

with ε(u) =
1

2
(∇u +∇uT ) and n is the outside normal to the domain Ω.

Let V =
{
v ∈ H1(Ω) with u = 0 on ΓD

}
, Q = L2(Ω) , σd the deviatoric part of σ and p the

hydrostatic pressure. By a classical way we �nd the weak mixed formulation [1]
Find (u, p) ∈ (V,Q) such that:

a(u,v)− b(v, p) = L(v), ∀v ∈ V,

b(u, q) = 0, ∀q ∈ Q,
(2.6)

with a(u,v) =
∫

Ω σ
d(u) : ε(v) dΩ, b(v, p) =

∫
Ω p divv dΩ, L(v) =

∫
Ω f · v dΩ +

∫
ΓN

t · v dΓ.
Discretization of the elasticity problem follows the usual steps. Let τh an a�ne mesh of the non
cracked domain Ω. We approximate (u, p) by (uh, ph) ∈ Vh ×Qh. The subspaces Vh and Qh are
�nite dimensional spaces that will be de�ned later. The discretized problem is then:

18
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2.3. X-FEM cut o� approximation spaces


Find (uh, ph) ∈ (Vh, Qh) such that

a(uh, vh)− b(vh, ph) = L(vh), ∀vh ∈ Vh,
b(uh, qh) = 0, ∀qh ∈ Qh.

(2.7)

The existence of a stable �nite element approximate solution (uh, ph) depends on choosing a pair
of spaces Vh and Qh such that the following LBB condition holds:

inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)

‖ qh ‖0,Ω ‖ vh ‖1,Ω
≥ β0,

where β0 > 0 is independent of h [1]. The satisfaction of this condition for a couple (Vh, Qh) is
very di�cult to prove in practical situations. Therefore, the numerical evaluation of the inf-sup
has been widely used [3]. It gives an indication of the veri�cation of the LBB condition for a
given �nite element discretization.

2.3 X-FEM cut o� approximation spaces

The idea of X-FEM is to use a classical �nite element space enriched by some additional functions.
These functions result from the product of global enrichment functions and some classical �nite
element functions. we consider the variant of X-FEM which uses a cut-o� function to de�ne
the singular enrichment surface. The classical enrichment strategy for this problem is to use the
asymptotic expansion of the displacement and pressure �elds at the crack tip area. Indeed, the
displacement is enriched by the Westergaard functions:

F u =
{
F uj (x), 1 ≤ j ≤ 4

}
=

{√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

}
,

where (r, θ) are polar coordinates around the crack's tip. These functions allow to generate
the asymptotic non-smooth function at the crack's tip [11]. For the pressure, the asymptotic
expansion at the crack tip is given by p(r, θ) = 2KI

3
√

2πr
cos θ2 + 2KII

3
√

2πr
sin θ

2 where KI and KII are
the stress intensity factors. This expression is used to obtain the basis of enrichment of the
pressure in the area of the crack's tip [14]:

F p =
{
F pj (x), 1 ≤ j ≤ 2

}
=

{
1√
r

cos
θ

2
;

1√
r

sin
θ

2

}
.

The displacement and pressure are also enriched with a Heaviside-like function at the nodes for
which the support of the corresponding shape functions is totally cut by the crack. Using this
enrichment strategy, the discretization spaces Vh and Qh take the following forms:

Vh =

vh =
∑
i∈I

αkψu,k +
∑
i∈IH

βkHψu,k +

4∑
j=1

γjF
u
j χ; αk, βk, γj ∈ R

 ,

Qh =

ph =
∑
i∈I

pi ϕp,i +
∑
i∈IH

bpiHϕp,i +
2∑
j=1

cpjF
p
j χ; pi, b

p
i , c

p
j ∈ R

 ,

19

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0007/these.pdf 
© [S. Amdouni], [2013], INSA de Lyon, tous droits réservés



Chapter 2. Mixed formulation with X-FEM cut-o�

Figure 2.2: Domain decomposition

with I the set of node indices of τh, IH the set of node indices of τh for which the supports
of the shape functions are totally cut by the crack, ϕu,i (resp. ϕp,i) being the scalar shape
functions for displacement (resp. for pressure), ψu,k being the vector shape functions de�ned

by ψu,k =



(
ϕu,i
0

)
if i =

k + 1

2
,

(
0

ϕu,i

)
if i =

k

2
,

, H(·) is the Heaviside-like function used to represent

the discontinuity across the straight crack and de�ned by H(x) =

{
+1 if (x− x∗) · n+ ≥ 0,

−1 otherwise,

and χ being a C 1-piecewise function which is polynomial of degree 3 in the annular region
r0 ≤ r ≤ r1, and satis�es χ(r) = 1 if r < r0 and χ(r) = 0 if r > r1. In our case we take

χ(r) =
2r3 − 3(r0 + r1)r2 + 6r1r0r + (r0 − 3r1)r2

0

(r0 − r1)3
if r0 ≤ r ≤ r1 with r0 = 0.01 and r1 = 0.49.

2.4 Proof of inf-sup condition and error analysis

In this section we prove that the LBB condition holds for the P2/P0 element without the singular
enrichment of the pressure. In order to simplify the presentation we assume that the crack cuts
the mesh far enough from the vertices. We use a general technique introduced by Brezzi and
Fortin [1].

2.4.1 Construction of a H1-stable interpolation operator

The proof of the LBB condition requires the de�nition of an interpolation operator adapted to
the proposed method. Since the displacement �eld is discontinuous across the crack on Ω, we
divide Ω into Ω1 and Ω2 according to the crack (Γc) and a straight extension (Γ̃c) of it (Fig. 2.2).
Let uk be the restriction of u to Ωk, k ∈ {1, 2}. As u ∈ H1(Ω) then there exists an extension
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2.4. Proof of inf-sup condition and error analysis

ũk in H1(Ω) of uk to Ω such that:

(2.8) ‖ ũk ‖1,Ω≤ Ck ‖ uk ‖1,Ωk ,

where Ck is independent of u [15].

De�nition 1. Given a displacement �eld u ∈ H1(Ω) and two extensions ũ1 and ũ2 of u1 and
u2 in H1(Ω), respectively, we de�ne Π1u as the element of Vh such that:

(2.9) Π1u =
∑

j∈I\IH

αjϕj +
∑
j∈IH

[
βjϕjH1 + γiϕjH2

]
,

with

H1(x) =

{
1 if x ∈ Ω1,

0 if x ∈ Ω2,
H2(x) = 1−H1(x),

αi =
1

| ∆i |

∫
∆i

ũkdx if xi ∈ Ωk, βi =
1

| ∆i |

∫
∆i

ũ1dx,

γi =
1

| ∆i |

∫
∆i

ũ2dx, Sj :=
⋃
{S ∈ τh : supp(ϕj) ∩ S 6= ∅},

where ∆j is the maximal ball centered at xj such that ∆j ⊂ Sj and {xj}Jj=1 are the interior nodes
of mesh τh.

This de�nition is inspired by the work of Chen and Nochetto [16].

Lemma 1. The interpolation operator de�ned by [2.9] satis�es ∀u ∈ H1
0(Ω)

‖ Π1u ‖1,Ω 6 C ‖ u ‖1,Ω,(2.10)

‖ u−Π1u ‖r,Ω 6 Ch1−r ‖ u ‖1,Ω, r = {0, 1}.(2.11)

Proof: In the proof we take i ∈ {1, 2}, k = 3− i and s̃ the union of all elements surrounding
the elment s of τh.

In order to prove this Lemma, we calculate the above estimates locally on every di�erent
type of triangles: non-enriched triangles, triangles cut by the straight extension of the crack,
triangles partially enriched by the discontinuous functions, triangles containing the crack tip and
triangles totally enriched by the discontinuous functions. Before, let us establish the following
intermediary result:

Lemma 2. Let δ be a cracked square of size h centered at the crack tip (see Fig. 2.3) and
f ∈ H1(δ) with f(x) = 0, ∀x ∈ Γ̃c

⋂
δ (where Γ̃c is the extension of the crack Γc). Then, there

exists c > 0, independent of h such that:

(2.12) ‖ f ‖0,δ≤ ch ‖ ∇f ‖0,δ .

Proof: Dividing the square into two parts δ+ (above the crack) and δ− (below the crack).
Let f̂+ = f ◦ Tk de�ned on the reference rectangle δ̂+ (assumed of size 1) obtained by an a�ne

21

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0007/these.pdf 
© [S. Amdouni], [2013], INSA de Lyon, tous droits réservés



Chapter 2. Mixed formulation with X-FEM cut-o�

Γc Γ̃c

δ+

δ−

Figure 2.3: Centered domain on the crack tip

transformation TK of the rectangle δ+. Then, by construction, f̂+(x) = 0 ∀x ∈
{
x1 ≥ 0

}
×
{
x2 =

0
}
which implies the following Poincaré inequality:

(2.13) ‖ f̂+ ‖
0,δ̂+≤ c ‖ ∇f̂+ ‖

0,δ̂+ .

Using inequality [2.13] and the fact that the mesh is a�ne we obtain:

‖ f ‖0,δ+ ≤ c | det(JK) |1/2‖ f̂+ ‖
0,δ̂+≤ c | det(JK) |1/2 ‖ ∇f̂+ ‖

0,δ̂+

≤ c | det(JK) |−1/2 ‖ JK ‖2 | det(JK) |1/2 | f |1,δ+≤ c h | f |1,δ+

where | · |1,δ+ the H1 semi-norm on δ+. Thus

(2.14) ‖ f ‖0,δ+≤ c h | f |1,δ+ ,

Similarly we prove the same result for δ− which �nish the proof of Lemma 2.
Non-enriched triangles:

Let s be a non-enriched triangle in Ωi. In this case we have Π1u = Π1ũ
i on Ωi. Because ũi

is continuous over Ω this operator is equivalent to the classical operator of Chen and Nochetto
[16]. Then we have

‖ Π1u ‖1,s=‖ Π1ũ
i ‖1,s6 c ‖ ũi ‖1,s̃(2.15)

and

‖ u−Π1u ‖r,s=‖ ui −Π1ũ
i ‖r,s=‖ ũi −Π1ũ

i ‖r,s6 ch1−r ‖ ũi ‖1,s̃,(2.16)

Triangles cut by the straight extension of the crack or containing the crack tip:

Let s be a triangle cut by the straight extension of the crack or containing the crack tip (see

Fig. 2.4(c)). Then Π1u = α1ϕ1 + α2ϕ2 + α3ϕ3 on s, with: α1 =
1

| ∆1 |
∫

∆1
ũ1 dx , α2 =

1

| ∆2 |
∫

∆2
ũ2 dx and α3 =

1

| ∆3 |
∫

∆3
ũ2 dx.

We remark that:

Π1u = α̃1ϕ1 +α2ϕ2 +α3ϕ3 + (α1 − α̃1)ϕ1 = Π1ũ
2 + (α1 − α̃1)ϕ1,
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b

Ω1

Ω2

H(x) = +1

H(x) = −1

x1

x2

x3

(a) A triangle partially enriched by

the discontinuous functions

b

b b

Ω1

Ω2

H(x) = +1

H(x) = −1

x1

x2
x3

(b) A triangle totally enriched by

the discontinuous functions

Ω1

Ω2

H(x) = +1

H(x) = −1

x1

x2
x3

(c) A triangle containing the crack

tip

Figure 2.4: The di�erent types of enriched triangles. The enrichment with the Heaviside-like
function are marked with a bullet.

with α̃1 =
1

| ∆1 |
∫

∆1
ũ2 dx. By the triangle inequality, we may write

‖ Π1u ‖1,s 6‖ Π1ũ
2 ‖1,s + | α1 − α̃1 | ‖ ϕ1 ‖1,s,

‖ u−Π1u ‖r,s 6 ‖ u−Π1ũ
2 ‖r,s + | α1 − α̃1 | ‖ ϕ1 ‖r,s

6‖ u− ũ2 ‖r,s + ‖ ũ2 −Π1ũ
2 ‖r,s + | α1 − α̃1 | ‖ ϕ1 ‖r,s,

where

‖ ϕ1 ‖r,s 6 ch1−r because ϕ1 is the piecewise P1 basis function,

‖ Π1ũ
2 ‖r,s 6 ch1−r ‖ ũ2 ‖1,s̃ because ũk is continuous over Ω ,

‖ u− ũ2 ‖0,s 6 c h ‖ u− ũ2 ‖1,δ,

and if we use Cauchy-Schwartz inequality and Lemma 2 we obtain

| α1 − α̃1 | 6
√
| ∆1 |
| ∆1 |

‖ ũ1 − ũ2 ‖0,∆16 c
h√
| ∆1 |

‖ ∇(ũ1 − ũ2) ‖0,δ .

Therefore

‖ Π1u ‖1,s 6 c
(
‖ ũ2 ‖1,s̃ + ‖ ũ1 − ũ2 ‖1,δ

)
(2.17)

‖ u−Π1u ‖r,s 6 ch1−r ( ‖ u− ũ2 ‖1,s + ‖ ũ2 ‖1,s̃ + ‖ ũ1 − ũ2 ‖1,δ
)
,(2.18)

Triangles partially enriched by the discontinuous functions:

Let s be a triangle partially enriched by the discontinuous functions (see Fig. 2.4(a)). In this
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Chapter 2. Mixed formulation with X-FEM cut-o�

case we have Π1u = Π1ũ1 + (α2 − α̃2)ϕ2 on s ∩ Ω1 and Π1u = Π1ũ2 + (α1 − α̃1)ϕ1 on s ∩ Ω2

with α̃1 =
1

| ∆1 |
∫

∆1
ũ2 dx and α̃2 =

1

| ∆2 |
∫

∆2
ũ1 dx.

In the same manner we prove that

‖ Π1u ‖1,s∩Ωi 6 c
(
‖ ũi ‖1,s̃ + ‖ ũk − ũi ‖1,δ

)
,(2.19)

‖ u−Π1u ‖r,s∩Ωi 6 ch
1−r ( ‖ ũi ‖1,s̃ + ‖ ũk − ũi ‖1,δ

)
.(2.20)

Triangles totally enriched by the discontinuous functions

Let s be the triangle totally enriched by the discontinuous functions (see Fig. 2.4(b)). In this
case we have: Π1u = Π1ũ

i on s ∩ Ωi. Then we have

‖ Π1u ‖1,s∩Ωi 6‖ Π1ũ
i ‖1,s,(2.21)

‖ u−Π1u ‖r,s∩Ωi 6‖ ũi −Πũi ‖1,s6 c h1−r ‖ ũi ‖r,s̃(2.22)

Inequalities [2.15], [2.17], [2.19], [2.21] imply the �rst inequality of Lemma 1. Inequalities [2.16],
[2.18], [2.20], [2.22], imply the second and third inequalities of Lemma 1.

2.4.2 Construction of a local interpolation operator

In this subsection we prove the discrete inf-sup condition for the P2/P0 element with the addi-
tional assumption, that the crack cuts the mesh far enough from the nodes.

De�nition 2. Let u ∈ H1(Ω). We de�ne Π2u as the element of Vh such that

(2.23) Π2u =
∑

k∈τh/τH

3∑
i=1

αiϕi +
∑
k∈τH

3∑
i=1

(
βiϕiH1 + γiϕiH2

)
,

where τH is the set of triangle totally cut by the crack, ϕi is the classical �nite element shape
function of order 2 associated to node i being the center of the edge ei of the element K and with

αi =

∫
ei
u∫

ei
ϕi
, βi =

∫
ei∩Ω1

u∫
ei∩Ω1

ϕi
, γi =

∫
ei∩Ω2

u∫
ei∩Ω2

ϕi
.

Lemma 3. Suppose that the crack cuts the mesh far enough from the nodes then the interpolation
operator de�ned by [2.23] satis�es ∀u ∈ Vh∫

s\Γc
div(u−Π2u) = 0 ∀s ∈ τh,

‖ Π2u ‖1,s∩Ωi ≤ c
(
h−1 ‖ ũi ‖0,s + | ũi |1,s

)
∀s ∈ τh.

Therefore, the discrete inf-sup condition for the P2/P0 element holds.

Proof: The �rst equation is obvious. Now let s be a triangle totaly cut by the crack. Then
by using triangle inequality, the hypothesis �crack far enough from nodes� and Cauchy-Schwarz
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inequality we have:

| Π2u |1,ŝ∩Ωi
≤ c | Π̂2u |1,ŝ∩Ωi

≤ c
3∑
j=1

|
∫
êj∩Ωi

û |
| ϕ̂j |1,ŝ∩Ωi

|
∫
êj∩Ωi

ϕ̂j |

≤ c
3∑
j=1

∫
êj∩Ωi

| û |≤ c
3∑
j=1

∫
êj

| ˆ̃ui |≤ c ‖ ˆ̃ui ‖1,ŝ

and by a scaling argument we have:

(2.24) ‖ Π2u ‖1,s∩Ωi≤ c (h−1 ‖ ũi ‖0,s + | ũi |1,s).

Now for non-enriched triangle we use the same argument to prove:

(2.25) ‖ Π2u ‖1,s≤ c (h−1 ‖ u ‖0,s + | u |1,s),

which �nishes the proof of Lemma 3.

2.4.3 Error analysis

We suppose in this section that the non-cracked domain Ω̄ has a regular boundary, and that f ,
t are smooth enough, for the solution (u, p) of the mixed elasticity problem to be written as a
sum of a singular part (us, ps) and a regular part (u− us , p− ps) in Ω satisfying u− us ∈ H2

and p− ps ∈ H1.

Proposition 5. Under the assumption of existence and uniqueness of solutions (u, p) and
(uh, ph) of the continuous [2.6] and discrete [2.7] mixed elasticity problems, and if the LBB
condition is satis�ed, then:

‖ u− uh ‖1,Ω + ‖ p− ph ‖0,Ω≤ c h
[
‖ u− χus ‖2,Ω + ‖ p− χps ‖1,Ω

]
,

where χ is the cut-o� function.

Proof. By using the equivalent Céa lemma (see [1]) we have ∀vh ∈ V h and qh ∈ Qh:

(2.26) ‖ u− uh ‖1,Ω + ‖ p− ph ‖0,Ω≤ c
[
‖ u− vh ‖1,Ω + ‖ p− qh ‖0,Ω

]
.

Now let Πhu be the classical interpolation operator introduced by [17] then we have:

(2.27) ‖ u−Πhu ‖1,Ω≤ c h ‖ u− χus ‖2,Ω .

Let Πhp = Π1p +
∑2

i=1 ciFip χ = Π1p + χps, where Π1 is the interpolation operator de�ned in
Section 2.4.1. Then:

(2.28) ‖ p−Πhp ‖0,Ω=‖ pr −Π1pr ‖0,Ω≤ c h ‖ pr ‖1,Ω .

Finally, the result of Proposition 5 can be obtained by choosing vh = Πhu and qh = Πhp in
[2.26] and by using equations [2.27] and [2.28].

25

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0007/these.pdf 
© [S. Amdouni], [2013], INSA de Lyon, tous droits réservés



Chapter 2. Mixed formulation with X-FEM cut-o�

Γc

Ω

(a) Cracked specimen (b) Position of the crack.

Figure 2.5: Cracked specimen and position of the crack

2.5 Numerical study

The numerical tests are made on a non-cracked domain de�ned by Ω̄ =]− 0.5, 0.5[×]− 0.5, 0.5[,

and the considered crack is the line segment Γc =] − 0.5; 0[×{0} (see Fig. 2.5(a)). To remove
rigid body motions, we eliminate three degrees of freedom (see Fig. 2.5(a)). In this numerical
test, we impose only a boundary condition of Neumann type (see Fig. 2.5(a)), in order to avoid
possibility of singular stress for mixed Dirichlet-Neumann condition at transition points. The
�nite element method is de�ned on a structured triangulation of Ω̄. The von Mises stress for this
test is presented in Fig. 2.6(b). As expected the von Mises stress is concentrated at the crack
tip. The notation Pi (resp. P

+
i ) means that we use an extended �nite-element method of order

i (resp. with an additional cubic buble function) and Pj disc means that we use a discontinuous
extended �nite-element method. The reference solution is obtained with a structured P2/P1

method and h = 1/160.

2.5.1 Numerical inf-sup test

In this section we numerically study the inf-sup condition and its dependence on the position of
the crack. First, the inf-sup condition is evaluated using gradually re�ned structured triangula-
tion meshes. The evolution of the numerical inf-sup value is plotted in Fig. 2.6(a) with respect
to the element size. From this �gure we can conclude that the numerical inf-sup value is stable

(a) Evaluation of the inf-sup condition (b) von Mises stress

Figure 2.6: Evolution of the inf-sup condition for mixed problem and von Mises stress (δ = 0)
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(a) h = 1/10

0 0.1 0.2 0.3 0.4 0.5 0.6

delta/h

0.2
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0.3

0.35

0.4

L
B
B

(b) h = 1/100

Figure 2.7: Evolution of the inf-sup condition as a function of the position of the crack

for all studied formulations. Let δ be the crack position as shown in Fig. 2.5(b). To test the
in�uence of the position of the crack on the inf-sup condition, we check the LBB condition by
decreasing δ. The tests are made, on a P+

1 /P1 formulation, with h = 1/100 (see Fig. 2.7(a)) and
h = 1/10 (see Fig. 2.7(b)). The results presented in Figs. 2.7(a) and 2.7(b) show that the inf-sup
condition remains bounded regardless of the position of the crack. Hence, one can conclude that
the formulation is stable independently of the position of the crack.

2.5.2 Convergence rate and the computational cost

(a) L2-displacement error (b) H1-displacement error

(c) L2-pressure error

Figure 2.8: Errors for the mixed problem with enriched P+
1 /P1 elements.

Figures 2.8(a), 2.8(b) and 2.8(c) show a comparison between the convergence rates of the X-FEM
�xed area and X-FEM cut o� for the L2-norm and H1-norm (P1+/P1 element are used). These
errors were obtained by running the test problem for some values of the parameter ns, where ns
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Number of cells in each
direction

Number of degrees of freedom
X-FEM �xed enrichment area X-FEM Cut O�

40 13456 11516
60 30046 25666
80 53376 45416

Table 2.1: Number of degrees of freedom for enriched P2/P1 element

Figure 2.9: Conditioning number of the sti�ness matrix for enriched P2/P1 element

is the number of subdivision (number of cells) in each direction h =
1

ns
. Figure 2.8(b) con�rms

that the convergence rate for the energy norm is of order h for both variants of the X-FEM:
with �xed area and cut-o�. Figure 2.8(a) shows that the convergence rates for the L2-norm in
displacement is of order h2 for both variants. Figure 2.8(c) shows that the convergence rates
for the L2-norm in pressure is h for both variants. Compared to the X-FEM method with a
�xed enrichment area, the convergence rate for X-FEM cut-o� is very close but the error values
are a bit larger. In order to test the computational cost of X-FEM cut-o�, Table (2.1) shows a
comparison between the number of degrees of freedom for di�erent re�nements of the classical
method X-FEM with �xed enrichment area and the cut-o� method. This latter enrichment
leads to a signi�cant decrease in the number of degrees of freedom. The condition number of the
linear system associated to the cut-o� enrichment is much better than the one associated with
the X-FEM with a �xed enrichment area (see Fig. 2.9). We can conclude that, similarly to the
X-FEM with �xed enrichment area, the X-FEM cut-o� leads to an optimal convergence rate and
also reduces the approximation errors but without signi�cant additional costs.

The numerical tests of the higher order X-FEM method (P+
2 /P1 disc, P

+
2 /P1, P2/P1 and

P2/P0) do not give an optimal order of convergence (see Figs. 2.10(a), 2.10(b), 2.10(c) and
2.10(d)). This means that the enrichment function does not capture the behavior of the solution
at the crack's tip. This result was expected as the asymptotic displacement at the crack tip
belongs to H3/2−η(Ω) for all η > 0. Then, for the X-FEM cut-o�, the convergence rate remains
limited to h3/2 with high order polynomials. To have an optimal convergence rate, one must
make an asymptotic expansion of order 2 to �nd the correct expression of the enrichment basis
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(a) Enriched P+
2 /P1 disc element (b) Enriched P+

2 /P1 element

(c) Enriched P2/P1 element (d) Enriched P2/P0 element

Figure 2.10: Convergence rate for the high-order elements (logarithmic scales)

for the displacement and pressure.

2.6 Conclusion

From this study we can conclude that the X-FEM cut-o� mixed formulation is stable, regardless
of the position of the crack. Similarly to the X-FEM with �xed enrichment area, the X-FEM
cut-o� gives an optimal convergence rate but without signi�cant additional costs. For shape
functions of higher order, the convergence rate is limited to h3/2. This result was expected as
the main singularity belongs to H5/2−η(Ω) for all η > 0.
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Chapter 3

A stabilized Lagrange multiplier

method for the enriched �nite-element

approximation of contact problems of

cracked elastic bodies

This chapter has been published in ESAIM:Mathematical Modelling and Numerical Analysis
[18]
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3.1 Introduction

With the aim of gaining �exibility in the �nite-element method, Moës, Dolbow and Belytschko
[7] introduced in 1999 the XFEM (eXtended Finite-Element Method) which allows to perform
�nite-element computations on cracked domains by using meshes of the non-cracked domain.
The main feature of this method is the ability to take into account the discontinuity across the
crack and the asymptotic displacement at the crack tip by addition of special functions into the
�nite-element space. These special functions include both non-smooth functions representing the
singularities at the reentrant corners (as in the singular enrichment method introduced in [19])
and also step functions (of Heaviside type) along the crack.

In the original method, the asymptotic displacement is incorporated into the �nite-element
space multiplied by the shape function of a background Lagrange �nite-element method. In
this paper, we deal with a variant, introduced in [12], where the asymptotic displacement is
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Chapter 3. A stabilized L.M.M. for E.F.E of contact problems of C.E.B

multiplied by a cut-o� function. After numerous numerical works developed in various contexts
of mechanics, the �rst a priori error estimate results for XFEM (in linear elasticity) were recently
obtained in [12] and [17]: in the convergence analysis, a di�culty consists in evaluating the local
error in the elements cut by the crack by using appropriate extension operators and speci�c
estimates. In the latter references, the authors obtained an optimal error estimate of order h (h
being the discretization parameter) for an a�ne �nite-element method under H2 regularity of
the regular part of the solution (keeping in mind that the solution is expected to be at most in
H

3
2
−ε for all ε > 0).
Let us remark that some convergence analysis results have been performed on a posteriori

error estimation for XFEM. A simple derivative recovery technique and its associated a poste-
riori error estimator have been proposed in [20, 21, 22, 23]. These recovery based a posteriori
error estimations outperform the super-convergent patch recovery technique (SPR) introduced
by Zienkiewicz and Zhu. In [24], an error estimator of residual type for the elasticity system in
two space dimensions is proposed.

Concerning a priori error estimates for the contact problem of linearly elastic bodies
approximated by a standard a�ne �nite-element method, a rate of convergence of order h3/4

can be obtained for most methods (see [25, 26, 27] for instance). An optimal order of h (resp.
h 4
√
| log(h) | and h

√
| log(h) |) has been obtained in [28] (resp. [25] and [29]) for the direct

approximation of the variational inequality and with the additional assumption that the number
of transition between contact and non contact is �nite on the contact boundary. However, for
stabilized Lagrange multiplier methods and with the only assumption that the solution is in
H2(Ω), the best a priori error estimates proven is of order h3/4 (see [30]). This limitation may
be only due to technical reasons since it has never been found on the numerical experiments. It
a�ects the a priori error estimates we present in this paper.

Only a few works have been devoted to contact and XFEM, and they mainly use two methods
to formulate contact problems: penalty method and Lagrange multiplier method. In penalty
method, the penetration between two contacting boundaries is introduced and the normal contact
force is related to the penetration by a penalty parameter [31]. Khoei et al. [32, 33] give the
formulation with the penalization for plasticity problems. Contrary to penalization techniques,
in the method of Lagrangian multipliers, the stability is improved without compromising the
consistency of the method. Dolbow et al. [34] propose a formulation of the problem of a crack
with frictional contact in 2D with an augmented Lagrangian method. Géniaut et al. [35, 36]
choose an XFEM approach with frictional contact in the three dimensional case. They use a
hybrid and continuous formulation close to the augmented Lagrangian method introduced by
Ben Dhia [37]. Pierres et al. in [38] introduced a method with a three-�elds description of the
contact problem, the interface being seen as an autonomous entity with its own discretization.

In all the works cited above, a uniform discrete inf-sup condition is theoretically required
between the �nite-element space for the displacement and the one for the multiplier in order
to obtain a good approximation of the solution. However, a uniform inf-sup condition seems
to be very di�cult to establish on the crack since it does not coincide with element edges and
since it is even impossible to establish with some pairs of �nite element spaces when the crack
coincides with element edges. Consequently, we consider a stabilization method which avoids
the need of such an inf-sup condition. This method, which provides stability of the multiplier
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3.2. Formulation of the continuous problem

by adding supplementary terms in the weak formulation, has been originally introduced and
analyzed by Barbosa and Hughes in [39, 40]. The great advantage is that the �nite-element
spaces on the primal and dual variables can be chosen independently. Note that, in [41], the
connection was made between this method and the former one of Nitsche [41]. The studies in
[39, 40] were generalized to a variational inequality framework in [42] (Signorini-type problems
among others). This method has also been extended to interface problems on non-matching
meshes in [43, 44] and more recently for bilateral (linear) contact problems in [45] and for
contact problems in elastostatics [30].

None of the previous works treats the error estimates for contact problems approximated by
the XFEM method. The rapid uptake of the XFEM method by industry requires adequate error
estimation tools to be available to the analysts. Our purpose in this paper is to extend the work
done in [30] to the enriched �nite-element approximation of contact problems of cracked elastic
bodies.
The paper is organized as follows. In Section 2, we introduce the formulation of the contact
problem on a crack of an elastic structure. In Section 3, we present the elasticity problem
approximated by both the enrichment strategy introduced in [12] and the stabilized Lagrange
multiplier method of Barbosa-Hughes. A subsection is devoted to a priori error estimates fol-
lowing three di�erent discrete contact conditions (the study is restricted to piecewise a�ne and
constant �nite element methods) . Finally, in Section 4, we present some numerical experiments
on a very simple situation. We compare the stabilized and the non-stabilized cases for di�erent
�nite-element approximations. Optimal rates of convergence are observed for the stabilized case.
The in�uence of the stabilization parameter is also investigated.

3.2 Formulation of the continuous problem

We introduce some useful notations and several functional spaces. In what follows, bold letters
like u,v, indicate vector-valued quantities, while the capital ones (e.g., V,K, . . .) represent
functional sets involving vector �elds. As usual, we denote by (L2(.))d and by (Hs(.))d,
s ≥ 0, d = 1, 2 the Lebesgue and Sobolev spaces in d-dimensional space (see [15]). The usual
norm of (Hs(D))d is denoted by ‖ · ‖s,D and we keep the same notation when d = 1 or d = 2.
For shortness, the (L2(D))d-norm will be denoted by ‖ · ‖D when d = 1 or d = 2. In the sequel
the symbol | · | will denote either the Euclidean norm in R2, or the length of a line segment, or
the area of a planar domain.

We consider a cracked elastic body occupying a domain Ω in R2. The boundary ∂Ω of Ω,
which is assumed to be polygonal for simplicity, is composed of three non-overlapping parts ΓD,
ΓN and ΓC with meas(ΓD) > 0 and meas(ΓC) > 0. A Dirichlet and a Neumann conditions
are prescribed on ΓD and ΓN , respectively. The boundary part ΓC represents also the crack
location which, for the sake of simplicity, is assumed to be a straight line segment. In order to
deal with the contact between the two sides of the crack as a contact between two elastic bodies,
we denote by ΓC+ and ΓC− each of the two sides of the crack (see Fig. 3.1). Of course, in the
initial con�guration, both ΓC+ and ΓC− coincide. Let n = n+ = −n− denote the normal unit
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Chapter 3. A stabilized L.M.M. for E.F.E of contact problems of C.E.B

outward vector on ΓC+.

Ω

Γ+
C

Γ−
C n+ ΓD

ΓN

Figure 3.1: A cracked domain.

We assume that the body is subjected to volume forces f = (f1, f2) ∈ (L2(Ω))2 and to surface
loads g = (g1, g2) ∈ (L2(ΓN ))2. Then, under planar small strain assumptions, the problem of
homogeneous isotropic linear elasticity consists in �nding the displacement �eld u : Ω → R2

satisfying

divσ(u) + f = 0 in Ω,(3.1)

σ(u) = λL tr ε(u) I + 2µL ε(u), in Ω,(3.2)

u = 0 on ΓD,(3.3)

σ(u)n = g on ΓN ,(3.4)

where σ = (σij), 1 ≤ i, j ≤ 2, stands for the stress tensor �eld, ε(v) = (∇v+∇v
T

)/2 represents
the linearized strain tensor �eld, λL ≥ 0, µL > 0 are the Lamé coe�cients, and I denotes the
identity tensor. For a displacement �eld v and a density of surface forces σ(v)n de�ned on ∂Ω,
we adopt the following notations:

v+ = v+
n n

+ + v+
t t, v− = v−n n

− + v−t t and σ(v)n = σn(v)n + σt(v)t,

where t is a unit tangent vector on ΓC , v+ (resp. v−) is the trace of displacement on ΓC on the
Γ+
C side (resp. on the Γ−C side). The conditions describing the frictionless unilateral contact on

ΓC are:

JunK = u+
n + u−n ≤ 0, σn(u) ≤ 0, σn(u) · JunK = 0, σt(u) = 0,(3.5)

where JunK is the jump of the normal displacement across the crack ΓC .

We present now some classical weak formulation of Problem (3.1)−(3.5). We introduce the
following Hilbert spaces:

V =
{
v ∈

(
H1(Ω)

)2
: v = 0 on ΓD

}
, W =

{
vn|ΓC : v ∈ V

}
,
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3.3. Discretization with the stabilized Lagrange multiplier method

and their topological dual spaces V′, W ′, endowed with their usual norms. We also introduce
the following convex cone of multipliers on ΓC :

M− =
{
µ ∈W ′ :

〈
µ, ψ

〉
W ′,W

≥ 0 for all ψ ∈W,ψ ≤ 0 a.e. on ΓC

}
,

where the notation 〈·, ·〉W ′,W stands for the duality pairing between W ′ and W . Finally, for u
and v in V and µ in W ′ we de�ne the following forms

a(u,v) =

∫
Ω
σ(u) : ε(v) dΩ, b(µ,v) =

〈
µ, JvnK

〉
W ′,W

L(v) =

∫
Ω
f · v dΩ +

∫
ΓN

g · v dΓ.

The mixed formulation of the unilateral contact problem (3.1)−(3.5) consists then in �nding
u ∈ V and λ ∈M− such that

(3.6)

a(u,v)− b(λ,v) = L(v), ∀v ∈ V,

b(µ− λ,u) ≥ 0, ∀µ ∈M−.

An equivalent formulation of (3.6) consists in �nding (u, λ) ∈ V ×M− satisfying

L (u, µ) ≤ L (u, λ) ≤ L (v, λ), ∀v ∈ V, ∀µ ∈M−,

where L (·, ·) is the classical Lagrangian of the system de�ned as

L (v, µ) =
1

2
a(v,v)− L(v)− b(µ,v).

Another classical weak formulation of problem (3.1)−(3.5) is given by the following variational
inequality: �nd u ∈ K such that

(3.7) a(u,v − u) ≥ L(v − u), ∀v ∈ K,

where K denotes the closed convex cone of admissible displacement �elds satisfying the non-
interpenetration condition

K =
{
v ∈ V : JvnK ≤ 0 on ΓC

}
.

The existence and uniqueness of (u, λ) solution to (3.6) has been established in [46]. Moreover,
the �rst argument u solution to (3.6) is also the unique solution of problem (3.7) and one has
λ = σn(u) is in W ′.

3.3 Discretization with the stabilized Lagrange multiplier

method

3.3.1 The discrete problem

We will denote by Vh ⊂ V a family of enriched �nite-dimensional vector spaces indexed by h
coming from a family T h of triangulations of the uncracked domain Ω (here h = maxT∈T h hT
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Chapter 3. A stabilized L.M.M. for E.F.E of contact problems of C.E.B

where hT is the diameter of the triangle T ). The family of triangulations is assumed to be
regular, i.e., there exists β > 0 such that ∀T ∈ T h, hT /ρT ≤ β where ρT denotes the radius of
the inscribed circle in T (see [47]). We consider the variant, called the cut-o� XFEM, introduced
in [12] in which the whole area around the crack tip is enriched by using a cut-o� function
denoted by χ(·). In this variant, the enriched �nite-element space Vh is de�ned as

Vh =
{
vh ∈ (C (Ω̄))2 : vh =

∑
i∈Nh

aiϕi +
∑
i∈NHh

biHϕi + χ
4∑
j=1

cjFj , ai,bi, cj ∈ R2
}
⊂ V.

Here (C (Ω̄))2 is the space of continuous vector �elds over Ω̄, H(·) is the Heaviside-like function
used to represent the discontinuity across the straight crack and de�ned by

H(x) =

{
+1 if (x− x∗) · n+ ≥ 0,

−1 otherwise,

where x∗ denotes the position of the crack tip. The notation ϕi represents the scalar-valued shape
functions associated with the classical degree one �nite-element method at the node of index i,
Nh denotes the set of all node indices, and NH

h denotes the set of nodes indices enriched by the
function H(·), i.e., nodes indices for which the support of the corresponding shape function is
completely cut by the crack (see Fig. 3.2). The cut-o� function is a C 1 piecewise third order
polynomial on [r0, r1] such that:

χ(r) = 1 if r < r0,

χ(r) ∈ (0, 1) if r0 < r < r1,

χ(r) = 0 if r > r1.

The functions {Fj(x)}1≤j≤4 are de�ned in polar coordinates located at the crack tip by

(3.8) {Fj(x), 1 ≤ j ≤ 4} =

{√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

}
.

These functions allows to generate the asymptotic non-smooth displacement at the crack tip (see
[48] and Lemma A.1).

An important point of the approximation is whether the contact pressure σn is regular or
not at the crack tip. If it were singular, it should be taken into account by the discretization of
the multiplier. Nevertheless, it seems that this is not the case in homogeneous isotropic linear
elasticity. This results has not been proved yet, and seems to be a di�cult issue. However, if we
consider the formulation (3.6) and if we assume that there is a �nite number of transition points
between contact and non contact zones near the crack tip, then we are able to prove (see Lemma
A.1 in Appendix A) that the contact stress σn is in H1/2(ΓC).

Now, concerning the discretization of the multiplier, let x0, ...,xN be given distinct points
lying in ΓC (note that we can choose these nodes to coincide with the intersection between T h
and ΓC). These nodes form a one-dimensional family of meshes of ΓC denoted by TH . We set
H = max0≤i≤N−1 |xi+1 − xi|. The mesh TH allows us to de�ne a �nite-dimensional space WH

approximating W ′ and a nonempty closed convex set MH− ⊂WH approximating M−:

MH− =
{
µH ∈WH : µH satisfy a �nonpositivity condition" on ΓC

}
.
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3.3. Discretization with the stabilized Lagrange multiplier method

Figure 3.2: A cracked domain.

Following [30], we consider two possible elementary choices of WH :

WH
0 =

{
µH ∈ L2(ΓC) : µH|(xi,xi+1)

∈ P0(xi,xi+1),∀ 0 ≤ i ≤ N − 1
}
,

WH
1 =

{
µH ∈ C (ΓC) : µH|(xi,xi+1)

∈ P1(xi,xi+1),∀ 0 ≤ i ≤ N − 1
}
,

where Pk(E) denotes the space of polynomials of degree less or equal to k on E. This allows to
provide the following three elementary de�nitions of MH−:

MH−
0 =

{
µH ∈WH

0 : µH ≤ 0 on ΓC
}
,(3.9)

MH−
1 =

{
µH ∈WH

1 : µH ≤ 0 on ΓC
}
,(3.10)

MH−
1,∗ =

{
µH ∈WH

1 :

∫
ΓC

µHψHdΓ ≥ 0,∀ ψH ∈MH−
1

}
.(3.11)

Now we divide the domain Ω into Ω1 and Ω2 according to the crack and a straight extension of
the crack (see Fig. 3.3) such that the value of H(·) is (−1)k on Ωk, k = 1, 2. Now, let Rh be an
operator from Vh onto L2(ΓC) which approaches the normal component of the stress vector on
ΓC de�ned for all T ∈ T h with T ∩ ΓC 6= ∅ as

Rh(vh)|T∩ΓC
=


σn(vh1 ), if | T ∩ Ω1 | ≥

| T |
2
,

σn(vh2 ), if | T ∩ Ω2 | >
| T |

2
,

where vh1 = vh|Ω1
and vh2 = vh|Ω2

.
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Chapter 3. A stabilized L.M.M. for E.F.E of contact problems of C.E.B

This allow us to de�ne the following stabilized discrete approximation of Problem (3.6): �nd
uh ∈ Vh and λH ∈MH− such that

(3.12)


a(uh,vh)− b(λH ,vh) +

∫
ΓC

γ(λH −Rh(uh))Rh(vh)dΓ = L(vh), ∀vh ∈ Vh,

b(µH − λH ,uh) +

∫
ΓC

γ(µH − λH)(λH −Rh(uh))dΓ ≥ 0, ∀µH ∈MH−,

where γ is de�ned to be constant on each element T as γ = γ0hT where γ0 > 0 is a given constant
independent of h and H. Problem (3.12) represents the optimality conditions for the Lagrangian

Lγ(vh, µH) =
1

2
a(vh,vh)− L(vh)− b(µH ,vh)− 1

2

∫
ΓC

γ(µH −Rh(vh))2dΓ.

We note that, without loss of generality, we can assume that ΓC is a straight line segment
parallel to the x−axis. Let T ∈ T h and E = T ∩ ΓC . Then, for any vh ∈ Vh and since σn(vhi )

is a constant over each element, we have

‖Rh(vh)‖0,E = ‖σn(vhi )‖0,E , with i such that |T ∩ Ωi| ≥
|T |
2
,

= ‖σyy(vhi )‖0,E ,

=
|E|1/2

|T ∩ Ωi|1/2
‖σyy(vhi )‖0,T∩Ωi ,

. h
− 1

2
T ‖σyy(vhi )‖0,T∩Ωi ,

=

(
γ

γ0

)− 1
2

‖σyy(vhi )‖0,T∩Ωi .

Here and throughout the paper, we use the notation a . b to signify that there exists a constant
C > 0, independent of the mesh parameters (h,H), the solution and the position of the crack-tip,
such that a ≤ Cb.

By summation over all the edges E ⊂ ΓC we get

‖γ 1
2Rh(vh)‖20,ΓC . γ0‖σyy(vh)‖20,Ω . γ0‖vh‖21,Ω.(3.13)

Hence, when γ0 is small enough, it follows from Korn's inequality and (3.13), that there exists
C > 0 such that for any vh ∈ Vh

a(vh,vh)−
∫

ΓC

γ(Rh(vh))2dΓ ≥ C‖vh‖21,Ω.

The existence of a unique solution to Problem (3.12) when γ0 is small enough follows from the
fact that Vh andMH− are two nonempty closed convex sets, Lγ(·, ·) is continuous on Vh×WH ,
Lγ(vh, .) (resp. Lγ(·, µH)) is concave (resp. strictly convex) for any vh ∈ Vh (resp. for any µH ∈
MH−) and limvh∈Vh,‖vh‖

Vh
→∞ Lγ(vh, 0) = +∞ (resp. limµH∈MH−,‖µH‖

WH→∞ Lγ(0, µH) =

−∞), see [46, pp. 338�339].
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3.3. Discretization with the stabilized Lagrange multiplier method

3.3.2 Convergence analysis

First, let us de�ne for any v ∈ V and any µ ∈ L2(ΓC) the following norms:

‖v‖ = a(v,v)1/2,

|‖(v, µ)‖| =
(
‖v‖2 + ‖γ1/2µ‖20,ΓC

)1/2
.

In order to study the convergence error, we recall the de�nition of the XFEM interpolation
operator Πh introduced in [17].

Figure 3.3: Decomposition of Ω into Ω1 and Ω2.

We assume that the displacement has the regularity (H2(Ω))2 except in the vicinity of the
crack-tip where the singular part of the displacement is a linear combination of the functions
{Fj(x)}1≤j≤4 given by (3.8) (see [49] for a justi�cation). Let us denote by us the singular part
of u, ur = u − χus the regular part of u, and ukr the restriction of ur to Ωk, k ∈ {1, 2}. Then,
for k ∈ {1, 2}, there exists an extension ũkr ∈ (H2(Ω))2 of ukr to Ω such that (see [15])

‖ũ1
r‖2,Ω . ‖u1

r‖2,Ω1 ,

‖ũ2
r‖2,Ω . ‖u2

r‖2,Ω2 .

De�nition 1 ([17]). Given a displacement �eld u satisfying u−us ∈ H2(Ω), and two extensions
ũ1
r and ũ2

r in H
2(Ω) of u1

r and u2
r, respectively, we de�ne Πhu as the element of Vh such that

Πhu =
∑
i∈Nh

aiϕi +
∑
i∈NHh

biHϕi + χus,

where ai, bi are given as follows for yi the �nite-element node associated to ϕi:

if i ∈ {Nh \ NH
h } then ai = ur(yi),

if i ∈ NH
h and yi ∈ Ωk for k ∈ {1, 2} then for l = 3− k :

ai =
1

2

(
ukr (yi) + ũlr(yi)

)
,

bi =
(−1)k

2

(
ukr (yi)− ũlr(yi)

)
.
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b

b b

Ω1

Ω2

H(x) = +1

H(x) = −1

x1

x2
x3

(a) A totally enriched triangle

b

Ω1

Ω2

H(x) = +1

H(x) = −1

x1

x2

x3

(b) A partially enriched triangle

Ω1

Ω2

H(x) = +1

H(x) = −1

x1

x2
x3

(c) The triangle containing the

crack tip

Figure 3.4: The di�erent types of enriched triangles. The enrichment with the heaviside function
are marked with a bullet.

From this de�nition, we can distinguish three di�erent kinds of triangle enriched with the
Heaviside-like function H. This is illustrated in Fig. 3.2 and in Fig. 3.4. A totally enriched
triangle is a triangle whose �nite-element shape functions have their supports completely cut by
the crack. A partially enriched triangle is a triangle having one or two shape functions whose
supports are completely cut by the crack. Finally, the triangle containing the crack tip is a
special triangle which is in fact not enriched by the Heaviside-like function. In [17], the following
lemma is proved:

Lemma 3.3.1. The function Πhu satis�es

(i) Πhu = Ihur + χus over a triangle non-enriched by H,

(ii) Πhu|T∩Ωk = Ihũkr + χus over a triangle T totally enriched by H,

where Ih denotes the classical Lagrange interpolation operator for the associated �nite-element
method.

It is also proved in [17] that this XFEM interpolation operator satis�es the following inter-
polation error estimate:

(3.14) ‖u−Πhu‖ . h‖u− χus‖2,Ω,
For a triangle T cut by the crack, we denote by EiTur the polynomial extension of Πhur|T∩Ωi

on T (i.e. the polynomial Πhur|T∩Ωi extended to T ). We will need the following result which
gives an interpolation error estimate on the enriched triangles:

Lemma 3.3.2. Let T an element such that T∩ΓC 6= 0, then for i ∈ {1, 2} the following estimates
hold:

‖ũir − EiTur‖0,T . h2
T

(
‖ũir‖2,T+ | ũ1

r − ũ2
r |2,B(x∗,hT )

)
,

‖ũir − EiTur‖1,T . hT

(
‖ũir‖2,T+ | ũ1

r − ũ2
r |2,B(x∗,hT )

)
,

where hT is the size of triangle T and B(x∗, hT ) is the ball centered at the crack tip x∗ and with
radius hT .
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3.3. Discretization with the stabilized Lagrange multiplier method

The proof of this lemma can be found in Appendix B. Let us now give an abstract error
estimate for the discrete contact problem (3.12).

Proposition 3.3.3. Assume that the solution (u, λ) to Problem (3.6) is such that λ ∈ L2(ΓC).
Let γ0 be small enough. Then, the solution (uh, λH) to Problem (3.12) satis�es the following
estimate∣∣∣∥∥∥(u− uh, λ− λH

)∥∥∥∣∣∣2 .

[
inf

vh∈Vh

(∣∣∣∥∥∥(u− vh, σn(u)−Rh(vh)
)∥∥∥∣∣∣2 + ‖γ−1/2(JunK− JvhnK)‖20,ΓC

)
+ inf
µ∈M−

∫
ΓC

(µ− λH)JunKdΓ

+ inf
µH∈MH−

∫
ΓC

(µH − λ)(JuhnK + γ(λH −Rh(uh)))dΓ

]
.

Proof. (This proof is a straightforward adaptation of the proof in [30]) We have

‖γ1/2(λ− λH)‖20,ΓC =

∫
ΓC

γλ2dΓ− 2

∫
ΓC

γλλHdΓ +

∫
ΓC

γ(λH)2dΓ.

From (3.6) and (3.12) we obtain∫
ΓC

γλ2dΓ ≤
∫

ΓC

γλµdΓ +

∫
ΓC

(µ− λ)JunKdΓ−
∫

ΓC

γ(µ− λ)σn(u)dΓ, ∀ µ ∈M−,
∫

ΓC

γ(λH)2dΓ ≤
∫

ΓC

γλHµHdΓ +

∫
ΓC

(µH − λH)JuhnKdΓ−
∫

ΓC

γ(µH − λH)Rh(uh)dΓ, ∀ µH ∈MH−,

which gives

‖γ1/2(λ− λH)‖20,ΓC ≤
∫

ΓC

γ(µ− λH)λdΓ +

∫
ΓC

γ(µH − λ)λHdΓ +

∫
ΓC

(µ− λ)JunKdΓ

−
∫

ΓC

γ(µ− λ)σn(u)dΓ +

∫
ΓC

(µH − λH)JuhnKdΓ−
∫

ΓC

γ(µH − λH)Rh(uh)dΓ

=

∫
ΓC

(µ− λH)JunKdΓ +

∫
ΓC

(µH − λ)(JuhnK + γ(λH −Rh(uh)))dΓ

−
∫

ΓC

γ(λH − λ)(σn(u)−Rh(uh))dΓ

+

∫
ΓC

(λH − λ)(JunK− JuhnK)dΓ, ∀µ ∈M−, ∀µH ∈MH−.(3.15)

According to (3.12) for any vh ∈ Vh we have

‖u− uh‖2 = a(u− uh,u− uh)

= a(u− uh,u− vh) + a(u− uh,vh − uh)

= a(u− uh,u− vh) +

∫
ΓC

(λ− λH)(JvhnK− JuhnK)dΓ

+

∫
ΓC

γ(λH −Rh(uh))Rh(vh − uh)dΓ.(3.16)
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Chapter 3. A stabilized L.M.M. for E.F.E of contact problems of C.E.B

From the addition of (3.15) and (3.16), we deduce∣∣∣∥∥∥(u− uh, λ− λH
)∥∥∥∣∣∣2 ≤ a(u− uh,u− vh) +

∫
ΓC

(λ− λH)(JvhnK− JunK)dΓ +

∫
ΓC

(µ− λH)JunKdΓ

+

∫
ΓC

(µH − λ)(JuhnK + γ(λH −Rh(uh)))dΓ

+

∫
ΓC

γ(λ− λH)(σn(u)−Rh(vh))dΓ +

∫
ΓC

γ(λ−Rh(uh))Rh(vh − uh)dΓ,(3.17)

for all vh ∈ Vh, µ ∈M− and µH ∈MH−. The last term in the previous inequality is estimated
by using (3.13) and recalling that λ = σn(u) as follows∫

ΓC

γ(λ−Rh(uh))Rh(vh − uh)dΓ

≤ ‖γ1/2(σn(u)−Rh(uh))‖0,ΓCγ
1/2
0 ‖h1/2(Rh(vh − uh))‖0,ΓC

. γ
1/2
0 ‖vh − uh‖

(
‖γ1/2(σn(u)−Rh(vh))‖0,ΓC + γ

1/2
0 ‖h1/2(Rh(vh − uh))‖0,ΓC

)
.

(
γ0‖vh − uh‖2 + ‖γ1/2(σn(u)−Rh(vh))‖20,ΓC

)
.

(
γ0‖u− uh‖2 + γ0‖u− vh‖2 + ‖γ1/2(σn(u)−Rh(vh))‖20,ΓC

)
.(3.18)

By combining (3.17) and (3.18), and using Young's inequality we come to the conclusion that if
γ0 is su�ciently small then∣∣∣∥∥∥(u− uh, λ− λH

)∥∥∥∣∣∣2
.

[
inf

vh∈Vh

(
‖u− vh‖2 + ‖γ1/2(σn(u)−Rh(vh))‖20,ΓC + ‖γ−1/2(JunK− JvhnK)‖20,ΓC

)
+ inf
µ∈M−

∫
ΓC

(µ− λH)JunKdΓ + inf
µH∈MH−

∫
ΓC

(µH − λ)(JuhnK + γ(λH −Rh(uh)))dΓ

]
,

and hence the result follows. �

In order to estimate the �rst in�mum of the latter proposition, we �rst recall the following
Lemma of scaled trace inequality: the following scaled trace inequality (see [50]) for T ∈ T h and
E = T ∩ ΓC :

Lemma 3.3.4 ([50]). For any T ∈ T h and T̂ the reference element let τT the a�ne and invertible
mapping in R2 such that T = τT (T̂ ). Suppose that we have:

• ΓC is a lipschitz continuous crack,

• ‖∇τT ‖∞,T . hT and ‖Oτ−1
T̂
‖∞,T . h−1

T ,

then the following scaled trace inequality holds:

‖v‖0,ΓC∩T .
(
h
−1/2
T ‖v‖0,T + h

1/2
T ‖∇v‖0,T

)
, ∀v ∈ H1(T ).(3.19)
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3.3. Discretization with the stabilized Lagrange multiplier method

These two hypotheses of Lemma 3.3.4 are satis�ed for regular families of meshes provided
that ΓC is Lipschitz-continuous.
We can deduce the following estimate :

‖γ−1/2(JunK− J(Πhu) · nK)‖0,E ≤ ‖γ−1/2(JuK− JΠhuK)‖0,E ,
≤ ‖γ−1/2(u1 −Πhu|Ω1

)‖0,E + ‖γ−1/2(u2 −Πhu|Ω2
)‖0,E ,

≤ ‖γ−1/2(ũ1
r −Πhu|Ω1

)‖0,E + ‖γ−1/2(ũ2
r −Πhu|Ω2

)‖0,E ,

. h
−1/2
T h

−1/2
T ‖ũ1

r − E1
Tur‖0,T + h

−1/2
T h

1/2
T ‖∇ũ1

r −∇E1
Tur‖0,T ,

+h
−1/2
T h

−1/2
T ‖ũ2

r − E2
Tur‖0,T + h

−1/2
T h

1/2
T ‖∇ũ2

r −∇E2
Tur‖0,T ,

and by using Lemma 3.3.2 (see Appendix B) we have:

‖γ−1/2(JunK− J(Πhu) · nK)‖0,E . hT
(
‖ũ1

r‖2,T + ‖ũ2
r‖2,T+ | ũ1

r − ũ2
r |2,B(0,hK)

)
.

By summation over all the edges we obtain

(3.20) ‖γ−1/2(JunK− J(Πhu) · nK)‖0,ΓC . h‖u− χus‖2,Ω.

It remains then to estimate ‖γ1/2(σn(u) − Rh(Πhu))‖0,ΓC . Still for T ∈ T h and E = T ∩ ΓC ,
assuming, without loss of generality, that ΓC is parallel to the x−axis and by using the trace
inequality (3.19) we have

‖σn(u)−Rh(Πhu)‖0,E = ‖σn(ur)− σn(Πhur|T∩Ωi)‖0,E , with i such that |T ∩ Ωi| ≥
|T |
2
,

= ‖σn(ũir −Πhur|T∩Ωi)‖0,E ,

.

(
h
− 1

2
T ‖σyy(ũir − EiTur)‖0,T + h

1
2
T ‖∇σyy(ũir − EiTur)‖0,T

)
,

=

(
h
− 1

2
T ‖σyy(ũir − EiTur)‖0,T + h

1
2
T ‖∇σyy(ũir)‖0,T

)
,

.

(
h
− 1

2
T ‖ũir − EiTur‖1,T + h

1
2
T ‖ũir‖2,T

)
.

Then, by summation over all the edges and using again Lemma 3.3.2 the following estimate holds

‖γ1/2(σn(u)−Rh(Πhu))‖0,ΓC . h‖u− χus‖2,Ω.(3.21)

Putting together the previous bounds (3.14), (3.20) and (3.21) we deduce that

inf
vh∈Vh

(∣∣∣∥∥∥(u− vh, σn(u)−Rh(vh)
)∥∥∥∣∣∣2 + ‖γ−1/2(JunK− JvhnK)‖20,ΓC

)
. h2‖u− χus‖22,Ω.(3.22)

Finally, we have to estimate the error terms in Proposition 3.3.3 coming from the contact ap-
proximation:

inf
µH∈MH−

∫
ΓC

(µH − λ)(JuhnK + γ(λH −Rh(uh)))dΓ(3.23)
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Chapter 3. A stabilized L.M.M. for E.F.E of contact problems of C.E.B

and

inf
µ∈M−

∫
ΓC

(µ− λH)JunKdΓ.(3.24)

In order to estimate these terms, we need to distinguish the di�erent contact conditions (i.e.,
we must specify the de�nition of MH−). We consider hereafter three di�erent standard discrete
contact conditions.

3.3.2.1 First contact condition: MH− = MH−
0

We �rst consider the case of nonpositive discontinuous piecewise constant multipliers whereMH−

is de�ned by (3.9). The error estimate is given next.

Theorem 3.3.5. Let (u, λ) be the solution to Problem (3.6). Assume that ur ∈ (H2(Ω))2.
Let γ0 be small enough and let (uh, λH) be the solution to the discrete problem (3.12) where
MH− = MH−

0 . Then, for any η > 0 we have∣∣∣∥∥∥(u− uh, λ− λH
)∥∥∥∣∣∣ . (h‖u−χus‖2,Ω+h1/2H1/2‖λ‖1/2,ΓC+H3/4−η/2(‖u‖3/2−η,Ω+‖λ‖1/2,ΓC )

)
.

Proof. Choosing µ = 0 in (3.24) yields

inf
µ∈M−

∫
ΓC

(µ− λH)JunKdΓ ≤ −
∫

ΓC

λHJunKdΓ ≤ 0.

In (3.23) we choose µH = πH0 λ where πH0 denotes the L2(ΓC)-projection onto WH
0 . We recall

that the operator πH0 is de�ned for any v ∈ L2(ΓC) by

πH0 v ∈WH
0 ,

∫
ΓC

(v − πH0 v)µdΓ = 0, ∀µ ∈WH
0 ,

and satis�es the following error estimates for any 0 ≤ r ≤ 1 (see [25])

H−1/2‖v − πH0 v‖−1/2,ΓC + ‖v − πH0 v‖0,ΓC . Hr‖v‖r,ΓC .(3.25)

Clearly, πH0 λ ∈MH−
0 and

inf
µH∈MH−

0

∫
ΓC

(µH − λ)(JuhnK + γ(λH −Rh(uh)))dΓ ≤
∫

ΓC

(πH0 λ− λ)JuhnKdΓ

+

∫
ΓC

γ(πH0 λ− λ)(λH −Rh(uh))dΓ.(3.26)

The �rst integral term in (3.26) is estimated using (3.25) as follows∫
ΓC

(πH0 λ− λ)JuhnKdΓ =

∫
ΓC

(πH0 λ− λ)(JuhnK− JunK)dΓ +

∫
ΓC

(πH0 λ− λ)JunKdΓ

=

∫
ΓC

(πH0 λ− λ)(JuhnK− JunK)dΓ +

∫
ΓC

(πH0 λ− λ)(JunK− πH0 JunK)dΓ

≤ ‖πH0 λ− λ‖−1/2,ΓC‖JuhnK− JunK‖1/2,ΓC + ‖πH0 λ− λ‖0,ΓC‖JunK− πH0 JunK‖0,ΓC
. H‖λ‖1/2,ΓC‖u− uh‖+H3/2−η‖λ‖1/2,ΓC‖JunK‖1−η,ΓC
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3.3. Discretization with the stabilized Lagrange multiplier method

Therefore, for any α > 0 we have∫
ΓC

(πH0 λ− λ)JuhnKdΓ

. α‖u− uh‖2 + α−1H2‖λ‖21/2,ΓC + α−1H3/2−η‖λ‖21/2,ΓC + αH3/2−η‖u‖23/2−η,Ω.(3.27)

For the second integral term in (3.26), by using the estimates (3.25), (3.13), (3.21), we have∫
ΓC

γ(πH0 λ− λ)(λH −Rh(uh))dΓ =

∫
ΓC

γ(πH0 λ− λ)(λH − λ)dΓ

+

∫
ΓC

γ(πH0 λ− λ)(σn(u)−Rh(Πhu))dΓ

+

∫
ΓC

γ(πH0 λ− λ)(Rh(Πhu)−Rh(uh))dΓ

. γ
1/2
0 h1/2‖πH0 λ− λ‖0,ΓC‖γ1/2(λH − λ)‖0,ΓC

+γ
1/2
0 h1/2‖πH0 λ− λ‖0,ΓC‖γ1/2(σn(u)−Rh(Πhu))‖0,ΓC

+γ
1/2
0 h1/2‖πH0 λ− λ‖0,ΓC‖γ1/2Rh(Πhu− uh)‖0,ΓC

. γ
1/2
0 h1/2H1/2‖λ‖1/2,ΓC‖γ1/2(λH − λ)‖0,ΓC

+γ
1/2
0 h1/2H1/2‖λ‖1/2,ΓCh‖u− χus‖2,Ω

+γ0h
1/2H1/2‖λ‖1/2,ΓC‖uh −Πhu‖.

Since ‖uh −Πhu‖ . ‖u− uh‖+ h‖u− χus‖2,Ω, for any α > 0 su�ciently small, we deduce∫
ΓC

γ(πH0 λ− λ)(λH −Rh(uh))dΓ

. α‖u− uh‖2 + α‖γ1/2(λH − λ)‖20,ΓC + αh2‖u− χus‖22,Ω + α−1hH‖λ‖21/2,ΓC .(3.28)

Then, by using the inequalities (3.22), (3.26), (3.27), (3.28) and Proposition 3.3.3 the proof of
the theorem follows. �
Remark: Note that if we take h = H the rate of convergence proved in Theorem 3.3.5 is h3/4−η/2

3.3.2.2 Second contact condition: MH− = MH−
1

Now, we focus on the case of nonpositive continuous piecewise a�ne multipliers where MH− is
given by (3.10).

Theorem 3.3.6. Let (u, λ) be the solution to Problem (3.6). Assume that ur ∈ (H2(Ω))2.
Let γ0 be small enough and let (uh, λH) be the solution to the discrete problem (3.12) where
MH− = MH−

1 . Then, we have for any η > 0∣∣∣∥∥∥(u− uh, λ− λH
)∥∥∥∣∣∣ . h‖u− χus‖2,Ω + (H1− η

2 + h1/2)‖λ‖1/2,ΓC +H1− η
2 ‖u‖3/2−η,Ω.

Proof. We choose µ = 0 in (3.24) which implies

inf
µ∈M−

∫
ΓC

(µ− λH)JunKdΓ ≤ −
∫

ΓC

λHJunKdΓ ≤ 0.
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Chapter 3. A stabilized L.M.M. for E.F.E of contact problems of C.E.B

In the in�mum (3.23) we choose µH = 0. So

inf
µH∈MH−

1

∫
ΓC

(µH − λ)(JuhnK + γ(λH −Rh(uh)))dΓ

≤ −
∫

ΓC

λ(JuhnK + γ(λH −Rh(uh)))dΓ

= −
∫

ΓC

λ rH(JuhnK + γ(λH −Rh(uh)))dΓ

−
∫

ΓC

λ(JuhnK + γ(λH −Rh(uh))− rH(JuhnK + γ(λH −Rh(uh))))dΓ

≤ −
∫

ΓC

λ(JuhnK + γ(λH −Rh(uh))− rH(JuhnK + γ(λH −Rh(uh))))dΓ

=

∫
ΓC

λ(rHJuhnK− JuhnK)dΓ +

∫
ΓC

λ(rH(γ(λH −Rh(uh)))− γ(λH −Rh(uh)))dΓ,(3.29)

where rH : L1(ΓC) 7→ WH
1 is a quasi-interpolation operator which preserves the nonpositivity

de�ned for any function v in L1(ΓC) by

rHv =
∑

x∈NH

αx(v)ψx,

where NH represents the set of nodes x0, ...,xN in ΓC , ψx is the scalar basis function of WH
1

(de�ned on ΓC) at node x satisfying ψx(x′) = δx,x′ for all x′ ∈ NH and

αx(v) =

( ∫
ΓC

vψx dΓ

)( ∫
ΓC

ψx dΓ

)−1

.

The approximation properties of rH are proved in [51]. We simply recall hereafter the two
main results. The �rst result is concerned with L2-stability property of rH .

Lemma 3.3.7. For any v ∈ L2(ΓC) and any E ∈ TH we have

‖rHv‖0,E . ‖v‖0,γE ,

where γE = ∪{F∈TH : F̄∩Ē 6=∅}F̄ .

Proof. Let E ∈ TH and ψ1, ψ1 the clasical scalar basic functions related to E. Using the
de�nition of αx(v) and the Cauchy-Schwarz inequality we get:

‖rHv‖0,E ≤ α1‖ψ1‖0,ΓC + α2‖ψ2‖0,ΓC

≤ ‖v‖0,γE
‖ψ1‖20,ΓC∫
ΓC
ψ1 dΓ

+ ‖v‖0,γE
‖ψ2‖20,ΓC∫
ΓC
ψ2 dΓ

. ‖v‖0,γE ,

�
Note that the proof of this lemma is also given in [51] using the additional assumption that the
mesh TH is quasi-uniform. The second result is concerned with the L2-approximation properties
of rH .
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3.3. Discretization with the stabilized Lagrange multiplier method

Lemma 3.3.8. For any v ∈ Hη(ΓC), 0 ≤ η ≤ 1, and any E ∈ TH we have

‖v − rHv‖0,E . Hη‖v‖η,γE ,(3.30)

where γE = ∪{F∈EH
C

: F̄∩Ē 6=∅}F̄ .

Consequently, the �rst integral term in (3.29) is estimated using (3.30) as follows∫
ΓC

λ(rHJuhnK− JuhnK)dΓ ≤
∫

ΓC

λ(rH(JuhnK− JunK)− (JuhnK− JunK))dΓ +

∫
ΓC

λ(rHJunK− JunK)dΓ,

. ‖λ‖0,ΓCH1/2‖u− uh‖+ ‖λ‖0,ΓCH1−η‖JunK‖1−η,ΓC ,

. ‖λ‖1/2,ΓCH1/2‖u− uh‖+ ‖λ‖1/2,ΓCH1−η‖JunK‖1−η,ΓC ,

. H1/2‖λ‖1/2,ΓC‖u− uh‖+H
1−
η

2 ‖λ‖1/2,ΓCH1− η
2 ‖JunK‖1−η,ΓC .

Therefore, for any α > 0 we write∫
ΓC

λ(rHJuhnK− JuhnK)dΓ

. α‖u− uh‖2 + αH1−η‖u‖23/2−η,Ω + α−1(H1−η +H)‖λ‖21/2,ΓC .(3.31)

Now, we consider the second integral term in (3.29):∫
ΓC

λ(rH(γ(λH −Rh(uh)))− γ(λH −Rh(uh)))dΓ

≤ ‖λ‖0,ΓC‖rH(γ(λH −Rh(uh)))− γ(λH −Rh(uh))‖0,ΓC
. ‖λ‖0,ΓC‖γ(λH −Rh(uh))‖0,ΓC
. γ

1/2
0 h1/2‖λ‖0,ΓC

∥∥∥γ1/2
(

(λH − λ) + σn(u)−Rh(Πhu) +Rh(Πhu− uh)
)∥∥∥

0,ΓC

. γ
1/2
0 h1/2‖λ‖1/2,ΓC

(
‖γ1/2(λH − λ)‖0,ΓC + h‖u− χus‖2,Ω + γ

1/2
0 ‖u− uh‖

)
.

As a consequence, for any α > 0 we have∫
ΓC

λ(rH(γ(λH −Rh(uh)))− γ(λH −Rh(uh)))dΓ

. α(‖u− uh‖2 + ‖γ1/2(λH − λ)‖20,ΓC ) + αh2‖u− χus‖22,Ω + α−1h‖λ‖21/2,ΓC .(3.32)

The proof of the theorem then follows by using the inequalities (3.22), (3.29), (3.31), (3.32)
and Proposition 3.3.3. �
Remark: Note that if we take h = H the rate of convergence proved in Theorem 3.3.6 is h1− η

2

3.3.2.3 Third contact condition: MH− = MH−
1,∗

This choice corresponds to �weakly nonpositive" continuous piecewise a�ne multipliers where
MH− is given by (3.11).
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Chapter 3. A stabilized L.M.M. for E.F.E of contact problems of C.E.B

Theorem 3.3.9. Let (u, λ) be the solution to Problem (3.6). Assume that ur ∈ (H2(Ω))2.
Let γ0 be small enough and let (uh, λH) be the solution to the discrete problem (3.12) where
MH− = MH−

1,∗ . Then, for any η > 0 we have∣∣∣∥∥∥(u− uh, λ− λH
)∥∥∥∣∣∣ . h‖u− χus‖2,Ω + (h1/2 +H3/2−η)‖λ‖1/2,ΓC + h−1/2H1−η‖u‖3/2−η,Ω.

Proof. By setting µ = 0 in (3.24) we obtain

inf
µ∈M−

∫
ΓC

(µ− λH)JunKdΓ ≤ −
∫

ΓC

λHJunKdΓ,

=

∫
ΓC

λH(IHJunK− JunK)dΓ−
∫

ΓC

λHIHJunKdΓ,

≤
∫

ΓC

λH(IHJunK− JunK)dΓ,

=

∫
ΓC

(λH − λ)(IHJunK− JunK)dΓ +

∫
ΓC

λ(IHJunK− JunK)dΓ,

≤ ‖γ1/2(λH − λ)‖0,ΓC‖γ−1/2(IHJunK− JunK)‖0,ΓC ,
+‖λ‖0,ΓC‖IHJunK− JunK‖0,ΓC ,

. H1−ηh−1/2‖u‖3/2−η,Ω‖γ1/2(λH − λ)‖0,ΓC + ‖λ‖1/2,ΓCH1−η‖u‖3/2−η,Ω,

where IH is the Lagrange interpolation operator onto WH
1 . The operator IH is de�ned for any

v ∈ C (ΓC) and satis�es the following error estimates for any 1/2 < r ≤ 2:

‖v − IHv‖0,ΓC . Hr‖v‖r,ΓC .

Therefore, for any α > 0 we have

inf
µ∈M−

∫
ΓC

(µ− λH)JunKdΓ

. αh−1H2(1−η)‖u‖23/2−η,Ω + α−1
(
‖γ1/2(λH − λ)‖20,ΓC + h‖λ‖21/2,ΓC

)
(3.33)

In the in�mum (3.23) we choose µH = πH1 λ where πH1 denotes the L2(ΓC)-projection onto WH
1 .

The operator πH1 is de�ned for any v ∈ L2(ΓC) by

πH1 v ∈WH
1 ,

∫
ΓC

(v − πH1 v)µdΓ = 0, ∀µ ∈WH
1 ,

and satis�es, for any 0 ≤ r ≤ 2, the following error estimates

H−1/2‖v − πH1 v‖−1/2,ΓC + ‖v − πH1 v‖0,ΓC ≤ CHr‖v‖r,ΓC .(3.34)

Clearly πH1 λ ∈MH−
1,∗ , so that

inf
µH∈MH−

1,∗

∫
ΓC

(µH − λ)(JuhnK + γ(λH −Rh(uh)))dΓ

≤
∫

ΓC

(πH1 λ− λ)JuhnKdΓ +

∫
ΓC

γ(πH1 λ− λ)(λH −Rh(uh))dΓ.(3.35)
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3.3. Discretization with the stabilized Lagrange multiplier method

The �rst integral term in (3.35) is estimated using (3.34) as follows∫
ΓC

(πH1 λ− λ)JuhnKdΓ =

∫
ΓC

(πH1 λ− λ)(JuhnK− JunK)dΓ +

∫
ΓC

(πH1 λ− λ)JunKdΓ,

=

∫
ΓC

(πH1 λ− λ)(JuhnK− JunK)dΓ +

∫
ΓC

(πH1 λ− λ)(JunK− πH1 JunK)dΓ,

≤ ‖πH1 λ− λ‖−1/2,ΓC‖JuhnK− JunK‖1/2,ΓC + ‖πH1 λ− λ‖0,ΓC‖JunK− πH1 JunK‖0,ΓC ,
. H‖λ‖1/2,ΓC‖u− uh‖+H1/2‖λ‖1/2,ΓCH1−η‖u‖3/2−η,Ω.

Therefore, for any α > 0, we have∫
ΓC

(πH1 λ− λ)JuhnKdΓ

. α
(
‖u− uh‖2 +H3/2−η‖u‖23/2−η,Ω

)
+ α−1(H2 +H3/2−η)‖λ‖21/2,ΓC .(3.36)

For the second integral term in (3.35) by using the bounds given in (3.34), (3.13), (3.21) we get∫
ΓC

γ(πH1 λ− λ)(λH −Rh(uh))dΓ =

∫
ΓC

γ(πH1 λ− λ)(λH − λ)dΓ

+

∫
ΓC

γ(πH1 λ− λ)(σn(u)−Rh(Πhu))dΓ

+

∫
ΓC

γ(πH1 λ− λ)(Rh(Πhu)−Rh(uh))dΓ

. γ
1/2
0 h1/2‖πH1 λ− λ‖0,ΓC‖γ1/2(λH − λ)‖0,ΓC

+γ
1/2
0 h1/2‖πH1 λ− λ‖0,ΓC‖γ1/2(σn(u)−Rh(Πhu))‖0,ΓC

+γ
1/2
0 h1/2‖πH1 λ− λ‖0,ΓC‖γ1/2Rh(Πhu− uh)‖0,Γc

. γ
1/2
0 h1/2H1/2‖λ‖1/2,ΓC‖γ1/2(λH − λ)‖0,ΓC

+γ
1/2
0 h1/2H1/2‖λ‖1/2,ΓCh‖u− χus‖2,Ω

+γ0h
1/2H1/2‖λ‖1/2,ΓC‖uh −Πhu‖.

Since ‖uh −Πhu‖ ≤ ‖u− uh‖+ Ch‖u− χus‖2,Ω, for any small α > 0 we get∫
ΓC

γ(πH1 λ− λ)(λH −Rh(uh))dΓ

. α‖u− uh‖2 + α‖γ1/2(λH − λ)‖20,ΓC + αh2‖u− χus‖22,Ω + α−1hH‖λ‖21/2,ΓC .(3.37)

Finally, the theorem is established by combining Proposition 3.3.3 and the inequalities (3.33),
(3.35), (3.36), (3.37) and (3.22). �
Remark: Note that if we take h = H the rate of convergence proved in Theorem 3.3.9 is h1/2−η
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Chapter 3. A stabilized L.M.M. for E.F.E of contact problems of C.E.B

3.4 Numerical experiments

The numerical tests are performed on a non-cracked square de�ned by

Ω̄ = [0, 1] × [−0.5, 0.5],

and the considered crack is the line segment ΓC = ]0, 0.5[ × {0} (see Fig. 3.5). Three degrees

Figure 3.5: Cracked specimen.

of freedom are blocked in order to eliminate the rigid body motions (Fig. 3.5). In order to have
both a contact zone and a non contact zone between the crack lips, we impose the following body
force vector �eld

f(x, y) =

(
0

3.5x(1− x)y cos(2πx)

)
.

Neumann boundary conditions are prescribed as follows:

g(0, y) = g(1, y) =

(
0

4 · 10−2 sin(2πy)

)
−0.5 ≤ y ≤ 0.5,

g(x,−0.5) = g(x, 0.5) =

(
0

0

)
0 ≤ x ≤ 1.

An example of a non structured mesh used is presented in Fig. 3.6. The numerical tests are
performed with GETFEM++, the C++ �nite-element library developed by our team (see [52]).

3.4.1 Numerical solving

The algebraic formulation of Problem (3.12) is given as follows

(3.38)


Find U ∈ RN and L ∈MH−

such that
(K −Kγ)U − (B − Cγ)TL = F,

(L− L)T ((B − Cγ)U +DγL) ≥ 0, ∀L ∈MH−
,

where U is the vector of degrees of freedom (d.o.f.) for uh, L is the vector of d.o.f. for the

multiplier λH , M
H−

is the set of vectors L such that the corresponding multiplier lies in MH−,
K is the classical sti�ness matrix coming from the term a(uh,vh), F is the right-hand side
corresponding to the Neumann boundary condition and the volume forces, and B, Kγ , Cγ , Dγ are
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3.4. Numerical experiments

Figure 3.6: Non-structured mesh.

the matrices corresponding to the terms b(λH ,vh),
∫

ΓC
γRh(uh)Rh(vh) dΓ,

∫
ΓC
γλHRh(vh) dΓ,∫

ΓC
γλHµH dΓ, respectively.
The inequality in (3.38) can be expressed as an equivalent projection

(3.39) L = P
M
H− (L− r((B − Cγ)U +DγL)),

where r is a positive augmentation parameter. This last step transforms the contact condition
into a nonlinear equation and we have to solve the following system:

(3.40)


Find U ∈ RN and L ∈MH−

such that
(K −Kγ)U − (B − Cγ)TL− F = 0,

−1

r

[
L− P

M
H− (L− r((B − Cγ)U +DγL))

]
= 0.

This allows us to use the semi-smooth Newton method (introduced for contact and friction
problems in [53]) to solve Problem (3.40). The term `semi-smooth' comes from the fact that
projections are only piecewise di�erentiable. Practically, it is one of the most robust algorithms
to solve contact problems with or without friction. In order to write a Newton step, one has to
compute the derivative of the projection (3.39). An analytical expression can only be obtained
when the projection itself is simple to express. This is the case for instance when the set MH−

is chosen to be the set of multipliers having non-positive values on each �nite-element node of
the contact boundary (such as MH−

0 or MH−
1 ). In this case, the projection can be expressed

component-wise (see [54]).
In order to keep the independence between the mesh and the crack, the approximation space

WH for the multiplier is chosen to be the trace on ΓC of a Lagrange �nite-element method de�ned
on the same mesh as Vh (in that sense H = h) and its degree will be speci�ed in the following.
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Chapter 3. A stabilized L.M.M. for E.F.E of contact problems of C.E.B

Let us denote Xh the space corresponding to the Lagrange �nite-element method. The choice of
a basis of the trace space WH = Xh|ΓC is not completely straightforward. Indeed, the traces on

ΓC of the shape functions of Xh may be linearly dependent. A way to overcome this di�culty is
to eliminate the redundant functions. Our approach in the presented numerical experiments is as
follows. In a �rst time, we eliminate locally dependent columns of the mass matrix

∫
ΓC
ψiψjdΓ,

where ψi is the �nite-element shape functions of Xh, with a block-wise Gram-Schmidt algorithm.
In a second time, we detect the potential remaining kernel of the mass matrix with a Lanczos
algorithm.

3.4.2 Numerical tests

In this section, we present numerical tests of the stabilized and non stabilized unilateral contact
problem for the following, di�erently enriched, �nite-element methods: P2/P1, P2/P0, P1 + /P1,
P1/P1, P1/P0. The notation Pi/Pj (resp. P1+/P1) means that the displacement is approximated
with a Pi extended �nite-element method (resp. a P1 extended �nite-element method with an
additional cubic bubble function) and the multiplier with a continuous Pj �nite-element method
for j > 0 (resp. continuous P1 �nite-element method).

(a) Von Mises stress for the reference solution (b) Normal contact stress for the reference solution

Figure 3.7: Von Mises stress and normal contact stress for the reference solution

The numerical tests are performed on non-structured meshes with h = 0.088, 0.057, 0.03, 0.016,

0.008 respectively. The reference solution is obtained with a structured P2/P1 method and
h = 0.0027. The Von Mises stress of the reference solution is presented in Fig. 3.7(a). Its
distribution shows that the Von Mises stress is not singular at the crack lips. The normal
contact stress of the reference solution is presented in Fig. 3.7(b). The normal contact stress is
not singular at the crack lips which con�rms the theoretical result presented in Lemma A.1.

Without stabilization: The curves in the non stabilized case are given in Fig. 3.8(a) for
the error in the L2(Ω)-norm on the displacement, in Fig. 3.8(b) for the error in the H1(Ω)-
norm on the displacement and in Fig. 3.8(c) for the error in the L2(ΓC)-norm on the contact
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3.4. Numerical experiments

(a) Error in L2(Ω)-norm of the displacement (b) Error in H1(Ω)-norm of the displacement

(c) Error in L2(ΓC)-norm of the contact stress

Figure 3.8: Convergence curves in the non stabilized case
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Chapter 3. A stabilized L.M.M. for E.F.E of contact problems of C.E.B

stress. The P1/P1 method is not plotted because it does not work without stabilization. The
P2/P1 and P1/P0 versions generally work without stabilization even though a uniform inf-sup
condition cannot be proven. Fig. 3.8(a) shows that the rate of convergence in the error L2(Ω)-
norm is of order 2.4 for the P2/Pj methods and of order 2 for the P1/Pj methods. This rate of
convergence is close to optimality because the singularity due to the transition between contact
and non contact is expected to be in H5/2−η(Ω) for any η > 0 (under the assumptions of lemma
A.1). Theoretically, this limits the convergence rate to 3/2− η in the H1(Ω)-norm. Fig. 3.8(b)
shows that the rate of convergence in energy norm is optimal for all pairs of elements considered.
Fig. 3.8(c) shows that, except the P1/P0 method, the rate of convergence in the L2(ΓC)-norm
is optimal but there are very large oscillations. For the P1/P0 method the rate of convergence
in the L2(ΓC)-norm is not optimal (of order 0.42). It seems that the presence of some spurious
modes a�ects this rate of convergence.

(a) Error in L2(Ω)-norm of the displacement (b) Error in H1(Ω)-norm of the displacement

(c) Error in L2(ΓC)-norm of the contact stress

Figure 3.9: Convergence curves in the stabilized case
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3.5. Conclusion

(a) P1/P0-elements (b) P2/P1-elements

Figure 3.10: In�uence of the stabilization parameter in L2(ΓC)-norm of the contact stress

Stabilized method: The curves in the stabilized case are given in Fig. 3.9(a) for the error
in the L2(Ω)-norm on the displacement, in Fig. 3.9(b) for the error in the H1(Ω)-norm on the
displacement and in Fig. 3.9(c) for the error in the L2(ΓC)-norm of the contact stress. Similarly
to the non stabilized method, Fig. 3.9(b) shows that we have an optimal rate of convergence,
with a slight di�erence, for the error in the H1(Ω)-norm on the displacement. Concerning the
error in the L2(Ω)-norm the rate of convergence is a�ected by the stabilization for the quadratic
elements P2/P1 and P2/P0. For the error in the L2(ΓC)-norm of the contact stress, Fig. 3.9(c)
shows that the Barbosa-Hughes stabilization eliminates the spurious modes for the P1/P1 and
P1/P0 methods. For the remaining pairs of elements, the stabilization also allows to reduce the
oscillations in the convergence of the contact stress.

The stabilization parameter is chosen in such a way that it is as large as possible but keeps
the coercivity of the sti�ness matrix. To check the coercivity, we calculate the smallest eigenvalue
of the sti�ness matrix. For the L2(ΓC)-norm on the contact stress, the value of the stabiliza-
tion parameter can be divided into two zones. A coercive area where the error decreases when
increasing the stabilization parameter γ0 and a non-coercive zone where the error evolves ran-
domly according to the stabilization parameter (see Fig. 3.10(a) and 3.10(b)). Fig. 3.11 shows
that the stabilization parameter has no in�uence on the error in L2(Ω) and H1(Ω)-norms of the
displacement.

3.5 Conclusion

Concerning the three contact conditions we considered theoretically, the given a priori error
estimates are obviously sub-optimal. This limitation of the mathematical analysis is not speci�c
to the approximation of contact problems in the framework of XFEM. It is in fact particularly
true for the approximation of the contact condition with Lagrange multiplier. This is probably
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Chapter 3. A stabilized L.M.M. for E.F.E of contact problems of C.E.B

Figure 3.11: In�uence of the stabilization parameter for P1/P0 method

due to technical reasons. The approximation with Lagrange multiplier is made necessary here
to apply the Barbosa-Hughes stabilization technique (see [30]).

In the numerical tests we considered, the stabilized methods have indeed an optimal rate
of convergence. More surprisingly, the unstabilized methods have also an optimal rate of con-
vergence concerning the displacement (except the P1/P1 method whose linear system was not
invertible). This may lead to the conclusion that no locking phenomenon were present in the
numerical situation we studied despite the non-satisfaction of the discrete inf-sup condition. The
fact that such a locking situation may exist or not in the studied framework (contact problem
on crack lips for a linear elastic body) is an open question.
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Chapter 4

A local projection stabilization of

�ctitious domain method for elliptic

boundary value problems

This chapter is submitted for publication [55]
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Introduction

The �ctitious domain method is a technique allowing the use of regular structured meshes on
a simple shaped �ctitious domain containing the real domain. Generally, this technique is used
for solving elliptic problems in domains with unknown or moving boundary without having to
build a body �tted mesh. There exist two main approaches of �ctitious domain method. The
�thin� interface approach where the approached interface has the same dimension as the original
interface. This approach was initiated by V.K. Saul'ev in [56]. In this context, there exist di�erent
techniques to take account of the boundary condition: the technique where the �ctitious domain
mesh is modi�ed locally to take account of the boundary condition (see for instance reference
[56, 57]); The technique of penalization which allows to conserve the Cartesian mesh of the
�ctitious domain (see for instance reference [58, 59]) and the technique of Lagrange multiplier
introduced by R. Glowinski et al. [59, 60, 61, 62] where a second mesh is considered to conserve
the Cartesian mesh of the �ctitious domain and to take account of the boundary condition.
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Chapter 4. A local projection stabilization of F.D.M for E.B.V.P

The second approach of �ctitious domain method is the �Spread� interface approach where
the approximate interface is larger than the physical interface. The approximate interface has
one dimension more than the original one. It was introduced by Rukhovets [63]. For example,
the following methods can be found in this group: Immersed boundary method [64, 65] and Fat
boundary method [66, 67].

Recently, �ctitious domain methods with a thin interface have been proposed in the context
of the extended �nite element method (X-FEM) introduced by Moes, Dolbow and Belytscko
[7]. Di�erent approaches are proposed in [68, 69, 70] to directly enforce an inf-sup condition on
a multiplier to prescribe a Dirichlet boundary condition. Another possibility is the use of the
stabilized Nitsche's method [71] which is close to a penalization technique but preserving the
consisting and avoiding large penalty terms that would otherwise deteriorate the conditioning of
the matrix system [72]. We can cite also the method introduced in [73] which uses a stabilized
Lagrange multipliers method using piecewise constant multipliers and an additional stabilization
term employing the inter-element jumps of the multipliers. Finally, let us mention [74] where an
a priori error estimate for non-stabilized Dirichlet problem is given and an optimal method is
developed using a Barbosa-Hughes stabilization (see [39, 40]).

In this paper, we perform a study similar to [74] for a local projection stabilization applied
to the �ctitious domain method inspired by the X-FEM. To our knowledge, this technique was
used for the �rst time by Dohrmann et al. [75]. Recently, this new technique was proposed
and analyzed by Burman [76] in the context of the Lagrange �nite element method and by
Barrenechea et al. [77] in the context of a more classical �ctitious domain approch (uncut
mesh). The principle of the used local projection stabilization is to penalize the di�erence of the
multiplier with its projection on some pre-de�ned patches. The advantage of this technique is
of at least threefold: the method is asymptotic consistent, there is no use of mesh other than
the (possibly Cartesian) one of the �ctitious domain and the additional term concerns only the
multiplier and is not model dependent such as the Barbosa-Hughes stabilization technique.

The paper is organized as follows. In Section 1 we introduce the Poisson model problem
and in Section 2, the non-stabilized �ctitious domain method. We present our new stabilization
technique in Section 3 together with the theoretical convergence analysis. Finally, Section 4 is
devoted to two and three-dimensional numerical experiments and the comparison with the use
of Barbosa-Hughes stabilization technique.

4.1 The model problem

For the sake of simplicity, the presentation and the theoretical analysis is made for a two-
dimensional regular domain Ω, although the method extends naturally to higher dimensions.
Let Ω̃ ⊂ R2 be a �ctitious domain containing Ω in its interior (and generally assumed to have a
simple shape). We consider that the boundary Γ of Ω is split into two parts ΓN and ΓD (see Fig.
4.1). It is assumed that ΓD has a nonzero one-dimensional Lebesgue measure. Let us consider
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4.1. The model problem

Figure 4.1: Fictitious Ω̃ and real Ω domains.

the following elliptic problem in Ω:

(4.1)


Find u : Ω 7→ R such that:

−∆u = f in Ω,

u = 0 on ΓD ,

∂nu = g on ΓN ,

where f ∈ L2(Ω) and g ∈ L2(ΓN ) are given data. Concidering a Lagrange multiplier multiplier
to prescribe the Dirichlet boundary condition, a classical weak formulation of this problem reads
as follows:

(4.2)


Find u ∈ V and λ ∈W such that
a(u, v) + 〈λ, v〉W,X = l(v) ∀v ∈ V,
〈µ, u〉W,X = 0 ∀µ ∈W,

where
V = H1(Ω), X =

{
w ∈ L2(ΓD) : ∃v ∈ V,w = v|Γ

D

}
, W = X ′,

a(u, v) =

∫
Ω
∇u.∇vdΩ, l(v) =

∫
Ω
f v dΩ +

∫
Γ
N

g v dΓ,

and 〈µ, v〉W,X denotes the duality pairing between W and X. Let V0 =
{
v ∈ V :

∫
Γ
D
v dΓ = 0

}
.

Then, a direct consequence of Peetre-Tartar lemma (see [78]) is that a(., .) is coercive on V0 i.e.
there exists α > 0 such that

(4.3) a(v, v) ≥ α‖v‖2V ∀v ∈ V0.

From this, the existence and uniqueness of a solution to Problem (4.2) follows. Classically,
Problem (4.2) is also equivalent to the problem of �nding the saddle point of the Lagrangian

(4.4) L(v, µ) =
1

2
a(v, v) + 〈µ, v〉W,X − l(v),

de�ned on V ×X. The existence and uniqueness of a solution to Problem (4.2) is obtained by
standard techniques.
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Chapter 4. A local projection stabilization of F.D.M for E.B.V.P

4.2 The �ctitious domain method

The �ctitious domain approach requires the introduction of two �nite-element spaces on the
�ctitious domain Ω̃. Namely Ṽ h ⊂ H1(Ω̃) and W̃ h ⊂ L2(Ω̃). Note that Ω̃ may always be chosen
as a su�ciently large rectangle (a, b) × (c, d) such that Ω ⊂ (a, b) × (c, d) which allows Ṽ h and
W̃ h to be de�ned on the same structured mesh T h (see Fig. 4.2). In what follows, we shall
assume that

(4.5) Ṽ h = {vh ∈ C(Ω̃) : vh|T ∈ P (T ) ∀T ∈ T h},

where P (T ) is a �nite-dimensional space of regular functions satisfying P (T ) ⊇ Pk(T ) for some
integer k ≥ 1.

Figure 4.2: Example of a real domain and a structured mesh of the �ctitious domain.

For the approximation on the real domain Ω, we consider the following restriction of Ṽ h and
W̃ h on Ω and ΓD , respectively:

V h = Ṽ h
|Ω , and W h = W̃ h

|Γ
D
,

which are natural discretization of V and W . An approximation of Problem (4.2) is then de�ned
as follows:

(4.6)


Find uh ∈ V h and λh ∈W h such that

a(uh, vh) +

∫
Γ
D

λhvhdΓ = l(vh) ∀vh ∈ V h,∫
Γ
D

µhuhdΓ = 0 ∀µh ∈W h.

60

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0007/these.pdf 
© [S. Amdouni], [2013], INSA de Lyon, tous droits réservés



4.3. A local projection stabilized formulation

We choose W̃ h and Ṽ h in such a way that the following condition is satis�ed:

1|Γ
D
∈W h.(4.7)

Let us de�ne the following space:

(4.8) V h
0 = {vh ∈ V h :

∫
Γ
D

µhvhdΓ = 0 ∀µh ∈W h}.

Then a(., .) is V h
0 -elliptic since V

h
0 ⊂ V0. Without any additional treatment, the following result

is proved in [74]:

Proposition 6. Let Ṽ h de�ned by (4.5), assume (4.7) is satis�ed and, in addition

inf
µh∈Wh

‖λ− µh‖W ≤ hβ, β ≥ 1/2.(4.9)

µh ∈W h :

∫
Γ
D

µhvhdΓ = 0 ∀vh ∈ V h =⇒ µh = 0.(4.10)

Then, one has the following error estimate:

‖uh − u‖V ≤ C
√
h, h→ 0+.

This means that, without any treatment, the guaranteed rate of convergence is limited to
O(
√
h) which is con�rmed is some numerical situations. This re�ects a certain kind of numerical

locking phenomenon.

4.3 A local projection stabilized formulation

In this section, we present a stabilization technique consisting in the addition of a supplementary
term involving the local orthogonal projection of the multiplier on a patch decomposition of the
mesh.

Let Sh be the one-dimensional mesh resulting in the intersection of T h and ΓD . The idea is
to aggregate the possibly very small elements of Sh in order to obtain a set of patches having a
minimal and a maximal size (for instance between 3h and 6h). In practice, this operation can
be done rather easily (even for three-dimensional problems). A practical way to obtain such a
patch decomposition will be described in the next section. An example of patch aggregation is
presented in Fig. 4.3.

Let H be the minimum length of these patches and denote by SH the corresponding subdi-
vision of ΓD . Let

WH =
{
µH ∈ L2(ΓD) : µH|S ∈ P0(S), ∀S ∈ SH

}
,

be the space of piecewise constants on this mesh. A classical result, presented in [61], states
that under a reasonable regularity assumption on ΓD , an inf-sup condition is satis�ed between
WH and V h for minimal size of 3h for the patches. This implies in particular that an optimal
convergence can be reached if the multiplier is taken in WH . However, this assumes a relatively
coarse approximation of the multiplier. Our approach is to use this result in order to stabilize
the approximation obtained with the multiplier de�ned on the �ner discretization W h.
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Chapter 4. A local projection stabilization of F.D.M for E.B.V.P

Let us �rst recall the result of Girault and Glowinski in [61]. Under the assumption that ΓD
is of class C 1,1 and a condition for the patches S ∈ SH to be approximated by a �xed set of
line segments having approximatively the same length (see [61], condition (4.17)) with a length
greater or equal to 3h then the following inf-sup (or LBB) condition holds for a constant β∗ > 0,
independent of h and H:

(4.11) ∀µH ∈WH , sup
vh∈V h

∫
Γ
D
vh µH dΓ

‖vh‖V
≥ β∗‖µH‖−1/2,Γ

D
.

In the following, we will assume that the conditions to obtain this inf-sup condition are satis�ed.

Figure 4.3: Example of a patch aggregation (in red and green) of size approximatively 2h of the
intersection of the boundary of the real domain and the mesh. Note the practically inevitable
presence of very small intersections.

Let PWHbe the local orthogonal projection operator from L2(ΓD) onto WH which is de�ned
by

∀µ ∈ L2(ΓD), ∀S ∈ SH PWH (µ) |S =
1

mes(S)

∫
S
µdΓ.

The stabilized formulation consists in approximate the Lagrangian (4.4) by:

Lh(vh, µh) = L(vh, µh)− γ

2

∫
Γ
D

(µh − PWH (µh))2dΓ,
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4.3. A local projection stabilized formulation

where, for the sake of simplicity, γ is a chosen constant. The corresponding optimality system
reads as follows:

(4.12)


Find uh ∈ V h and λh ∈W h such that

a(uh, vh) +

∫
Γ
D

λhvhdΓ = l(vh) ∀vh ∈ V h,∫
Γ
D

µhuhdΓ− γ
∫

Γ
D

(λh − PWH (λh))(µh − PWH (µh))dΓ = 0 ∀µh ∈W h.

Lemma 4.3.1. Assume that (4.7) and (4.11) hold, then for any γ > 0 there exists a unique
solution of the stabilized problem (4.12).

Proof. Suppose (uh1 , λ
h
1) and (uh2 , λ

h
2) are two solutions to Problem (4.12). Let us denote

ūh = uh1 − uh2 , λ̄h = λh1 − λh2 and λ̄H = PWH (λh1) − PWH (λh2). Then, from Problem (4.12) we
obtain

(4.13)


a(ūh, ūh) +

∫
Γ
D

λ̄hūhdΓ = 0,∫
Γ
D

λ̄hūhdΓ− γ
∫

Γ
D

(λ̄h − λ̄H)2dΓ = 0 ∀µh ∈W h.

Consequently,

(4.14) a(ūh, ūh) + γ

∫
Γ
D

(λ̄h − λ̄H)2dΓ = 0,

which implies that ūh = 0 and λ̄h = λ̄H (i.e. λ̄h ∈ WH). Moreover, it follows from (4.11) that
there exists vh ∈ V h such that

(4.15)
∫

Γ
D

λ̄Hvh ≥ β∗‖λ̄H‖−1/2,Γ
D
‖vh‖V ,

and thus

β∗‖λ̄H‖−1/2,Γ
D
≤ 1

‖vh‖V

∫
Γ
D

λ̄HvhdΓ =
1

‖vh‖V

∫
Γ
D

λ̄hvhdΓ =
1

‖vh‖V
a(ūh, vh) = 0.

This implies the uniqueness of the solution and, since the dimension of the linear system (4.12)
is �nite, the existence as well. �

4.3.1 Convergence analysis

In this section, we establish an optimal a priori error estimate for the following standard �nite
element spaces:

(4.16) Ṽ h = {vh ∈ C(Ω̃) : vh|T ∈ P (T ) ∀T ∈ T h},

(4.17) W̃ h = {µh ∈ L2(Ω̃) : µh|T ∈ P
′(T ) ∀T ∈ T h},

where P (T ) (resp. P ′(T )) is a �nite-dimensional space of regular functions satisfying P (T ) ⊇
Pk(T ) (resp. P (T ) ⊇ Pk′ (T )) for an integer k ≥ 1 (resp. k

′ ≥ 0).
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Chapter 4. A local projection stabilization of F.D.M for E.B.V.P

Theorem 4.3.2. Let Ṽ h and W̃ h be de�ned by (4.16) and (4.17), respectively such that (4.7)
is satis�ed. Let (u, λ) be the solution of the continuous problem (4.2) such that u ∈ H2(Ω) and
λ ∈ H1/2(ΓD). Assume that (4.11) is satis�ed and assume also the existence of a constant η > 1

with H ≤ ηh. Then, the following estimate holds for C > 0 a constant independent of h:

(4.18)
∣∣∣∥∥∥(u− uh, λ− λh)∥∥∥∣∣∣ ≤ Ch(‖u‖2,Ω + ‖λ‖1/2,Γ

D

)
,

where |‖(u, λ)‖|2 = ‖u‖2V + ‖λ‖2−1/2,Γ
D
and (uh, λh) is the solution to Problem (4.12).

Proof. Let λH = PWH (λh). As u and uh are both in V 0 then for all vh ∈ V h and µH ∈WH we
have:

α‖uh − u‖2V ≤ a(uh − u, uh − u) = a(uh − u, vh − u) + a(uh − u, uh − vh),

≤ M‖uh − u‖V ‖vh − u‖V −
∫

Γ
D

(λh − λ)(uh − vh)dΓ,

= M‖uh − u‖V ‖vh − u‖V −
∫

Γ
D

λhuhdΓ +

∫
Γ
D

λuhdΓ +

∫
Γ
D

(λh − λ)(vh − u)dΓ,

= M‖uh − u‖V ‖vh − u‖V − γ‖λh − λH‖20,Γ
D

+

∫
Γ
D

(λ− µH)(uh − u)dΓ

+

∫
Γ
D

(λh − λ)(vh − u)dΓ,

because in particular
∫

Γ
D

(λh−λ)u dΓ = 0. Then, still for all vh ∈ V h and µH ∈WH , we deduce

that

(4.19)
α‖uh − u‖2V + γ‖λh − λH‖2−1/2,Γ

D
≤M‖uh − u‖V ‖vh − u‖V

+‖λ− µH‖−1/2,Γ
D
‖uh − u‖V + ‖λh − λ‖−1/2,Γ

D
‖u− vh‖V .

Besides, ∫
Γ
D

(λ− λh)vhdΓ = a(uh − u, vh) ∀vh ∈ V h,

and therefore one obtains∫
Γ
D

(µ̄h − λh)vhdΓ = a(uh − u, vh) +

∫
Γ
D

(µ̄h − λ)vhdΓ ∀vh ∈ V h; ∀µ̄h ∈W h.(4.20)

Now, for µH = λH − µ̄H ∈ WH with µ̄H = PWH (µ̄h), the inf-sup condition (4.11) ensures the
existence of vh ∈ V h such that together with (4.20) we get

β∗‖λH − µ̄H‖−1/2,Γ
D
≤ 1

‖vh‖V

∫
Γ
D

(µ̄H − λH)vhdΓ,

≤ 1

‖vh‖V

∫
Γ
D

(µ̄h − λh)vhdΓ +
1

‖vh‖V

∫
Γ
D

(µ̄H − λH − (µ̄h − λh))vhdΓ,

≤ M‖uh − u‖V + ‖µ̄h − λ‖−1/2,Γ
D

+ ‖µ̄H − λH − (µ̄h − λh)‖−1/2,Γ
D
.
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4.3. A local projection stabilized formulation

As a consequence, one has

β∗‖λH − λ‖−1/2,Γ
D
≤ β∗‖λ− µ̄H‖−1/2,Γ

D
+M‖uh − u‖V + ‖µ̄h − λ‖−1/2,Γ

D

+‖µ̄H − µ̄h‖−1/2,Γ
D

+ ‖λH − λh‖−1/2,Γ
D
,

and

β∗2‖λH − λ‖2−1/2,Γ
D
≤ 5M2‖u− uh‖2V + 5β∗2‖λ− µ̄H‖2−1/2,Γ

D
+ 5‖λ− µ̄h‖2−1/2,Γ

D

+5‖µ̄H − µ̄h‖2−1/2,Γ
D

+ 5‖λH − λh‖2−1/2,Γ
D
∀µ̄h ∈W h.(4.21)

By combining inequalities (4.19) and (4.21) one obtains for all µ̄h ∈W h, µH ∈WH and vh ∈ V h

(α− 5M2δ)‖u− uh‖2V + δβ∗2‖λ− λH‖2−1/2,Γ
D

+ (γ − 5δ)‖λh − λH‖2−1/2,Γ
D

≤ M‖uh − u‖V ‖vh − u‖V + ‖λ− µH‖−1/2,Γ
D
‖uh − u‖V + ‖λ− λh‖−1/2,Γ

D
‖u− vh‖V

+5δβ∗2‖λ− µ̄H‖2−1/2,Γ
D

+ 5δ‖λ− µ̄h‖2−1/2,Γ
D

+ 5δ‖µ̄h − µ̄H‖2−1/2,Γ
D
,

≤ δ

2
M2‖u− uh‖2V +

1

2δ
‖u− vh‖2V +

δ

2
‖u− uh‖2V +

1

2δ
‖λ− µH‖2−1/2,Γ

D
+
ξ

2
‖λ− λh‖2−1/2,Γ

D

+
1

2ξ
‖u− vh‖2V + 5δβ∗2‖λ− µ̄H‖2−1/2,Γ

D
+ 5δ‖λ− µ̄h‖2−1/2,Γ

D
+ 5δ‖µ̄h − µ̄H‖2−1/2,Γ

D
.

Let δ and ξ be such that δ < min
( 2α

11M2 + 1
;
γ

5

)
and ξ < min

(
2δβ∗2; 2(γ − 5δ)

)
, then, still for

all µ̄h ∈W h, µH ∈WH and vh ∈ V h, one deduces that

(α− δ11M2 + 1

2
)‖u− uh‖2V + (γ − 5δ − ξ

2
)‖λh − λH‖2−1/2,Γ

D
+ (δβ∗2 − ξ

2
)‖λ− λH‖2−1/2,Γ

D

≤ (
1

2δ
+

1

2ξ
)‖u− vh‖2V +

1

2δ
‖λ− µH‖2−1/2,Γ

D
+ 8δβ∗2‖λ− µ̄H‖2−1/2,Γ

D
+ 8δ‖λ− µ̄h‖2−1/2,Γ

D

+8δ‖µ̄h − µ̄H‖2−1/2,Γ
D
, ∀ µ̄h ∈W h.

Denoting by Πh (resp. PWh) the Lagrange interpolation operator (resp. the L2(ΓD)-projection)
in V h (resp. in W h), we have the following standard �nite-element estimates:

‖u−Πhu‖V ≤ Ch‖u‖2,Ω,
‖λ− PWh(λ)‖−1/2,Γ

D
≤ Ch‖λ‖1/2,Γ

D
,

‖λ− PWH (λ)‖−1/2,Γ
D
≤ CH‖λ‖1/2,Γ

D
.

Finally, the theorem is established by taking vh = Πhu, µ̄h = PWh(λ) and µH = PWH (λ). �
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Chapter 4. A local projection stabilization of F.D.M for E.B.V.P

Figure 4.4: Example of a two-dimensional triangular structured mesh used for the numerical test
and partition of the boundary for Neumann and Dirichlet conditions.

4.4 Numerical tests

In this section, we present 2D and 3D-numerical tests for a �ctitious domain being Ω̃ = ] −
1/2, 1/2[d for d = 2 and d = 3, respectively. The two-dimensional exact solution is chosen to

be u(x) = −5(R4 − r4(2.5 + 1.5 sin(8θ +
2π

9
))) where r =

√
x2

1 + x2
2, R = 0.47 and the three-

dimensional one is u(x) = 5(ρ3 − R3) with ρ =
√
x2

1 + x2
2 + x3

3. In both cases, the real domain
is Ω = {x ∈ Rd : u(x) < 0} and the Dirichlet and Neumann boundary conditions are de�ned
on ΓD = Γ ∩ {x ∈ Rd : xd < 0} and ΓN = Γ ∩ {x ∈ Rd : xd > 0}, respectively. The
two-dimensional domain is represented in Fig. 4.4 with an example of a triangular structured
mesh. The exact solutions are shown in Fig. 4.5.

(a) Two-dimensional exact solution (b) Three-dimensional exact solution

Figure 4.5: Exact solutions
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4.4. Numerical tests

The numerical tests are performed with GETFEM++, the C++ �nite-element library devel-
oped by our team (see [52]).

4.4.1 Numerical solving

The algebraic formulation of Problem (4.12) reads

(4.22)


Find U ∈ RNu and L ∈ RNλ such that

KU +BTL = F,

BU −MγL = 0,

where U is the vector of degrees of freedom for uh, L the one for the multiplier λh, Nu and
Nλ the dimensions of V h and W h, respectively, K is the sti�ness matrix coming from the term
a(uh, vh), F is the right-hand side corresponding to the term `(vh), and B and Mγ are the
matrices corresponding to the terms

∫
Γ
D
λhvhdΓ and γ

∫
Γ
D

(λh − PWH (λh))(µh − PWH (µh))dΓ,

respectively.
Before presenting the numerical experiments, we shall describe in details two important

aspects of the implementation of the method. Namely, the extraction of a basis for W h and the
repartition of the elements having an intersection with ΓD into patches.

The extraction of a basis of W h could be non-trivial in some cases, except when a piecewise
constants (P0) �nite-element method is used to approximate the multiplier or in some other cases
when ΓD is curved. Indeed, if one selects all the shape functions of W̃ h whose supports intersect
ΓD , some of them can be linearly dependent, especially when ΓD is a straight line. In order
to eliminate linearly dependent shape functions, the choice here is to consider the mass matrix∫

Γ
D
ψiψjdΓ where the ψi are the �nite-element shape functions of W̃ h. A block-wise Gram-

Schmidt algorithm is used to eliminate local dependencies and then the potential remaining
kernel of the mass matrix is detected by a Lanczos algorithm. In the presented numerical tests,
since curved boundaries are considered the kernel of the mass matrix is either reduced to 0 or is
very small. In [18] some numerical experiments are presented for a straight line in 2D using the
same technique. The selection of a basis of W h using this technique took far less computational
time than the assembly of the sti�ness matrix.

The decomposition into patches is made using a graph partitioner algorithm. In the presented
numerical tests we use the free software METIS [79]. The nodes of the graph consist in the
elements having an intersection with ΓD and the edges connect adjacent elements. Additionally,
a load corresponding to the size of the intersection is considered on each elements. The partition
is a very fast operation.

4.4.2 Comparison with the Barbosa-Hughes stabilization technique

In our numerical test, we compare the new stabilization technique to the one studied in [74] in
the same framework which use the technique introduced by Barbosa and Hughes in [39, 40]. For
the self consistency of the paper, we brie�y recall the principle of the symmetric version of the
Barbosa-Hughes stabilization technique applied to Problem (4.6) as it is presented in [74].
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Chapter 4. A local projection stabilization of F.D.M for E.B.V.P

This technique is based on the addition of a supplementary term involving an approximation
of the normal derivative on ΓD . Let us assume that we have at our disposal an operator

Rh : V h −→ L2(ΓD),

which approximates the normal derivative on ΓD (i.e. for vh ∈ V h converging to a su�ciently
smooth function v, Rh(vh) tends to ∂nv in an appropriate sense). Several choices of Rh are
proposed in [74]. To obtain the stabilized problem, the Lagrangian (4.4) is approximated by the
following one

Lh(vh, µh) = L(vh, µh)− γ

2

∫
Γ
D

(µh +Rh(vh))2dΓ, vh ∈ V h, µh ∈W h,

where the stabilization parameter γ depend on the mesh parameter γ := hγ0, with γ0 a positive
constant over Ω. The corresponding discrete problem reads as follows:

(4.23)


Find uh ∈ V h and λh ∈W h such that

a(uh, vh) +

∫
Γ
D

λhvhdΓ− γ
∫

Γ
D

(λh +Rh(uh))Rh(vh)dΓ = l(vh) ∀vh ∈ V h,∫
Γ
D

µhuhdΓ− γ
∫

Γ
D

(λh +Rh(uh))µhdΓ = 0 ∀µh ∈W h.

More details and a convergence analysis can be found in [74]. Note that this is also a
consistent modi�cation of the Lagrangian and that a close relationship between Barbosa-Hughes
stabilization technique and Nitsche's one [71] has been explained in [41].

4.4.3 Two-dimensional numerical tests

A comparison is done between the non-stabilized problem (4.6), the local projection stabilized
problem (4.12) and the Barbosa-Hughes stabilized one (4.23) in the two-dimensional case. Addi-
tionally, we test di�erent pairs of elements for the main unknown u and the multiplier. Namely,
we test the following methods: P2/P1, P1/P1, P1/P0, P1/P2, Q1/Q0 and Q1/Q0. The nota-
tion Pi/Pj (resp. Qi/Qj) means that solution u is approximated with a Pi �nite-element method
(resp. a Qi �nite-element method) and the multiplier with a continuous Pj �nite-element method
(resp. continuous Qj �nite-element method).

Without stabilization. A solution is plotted in Fig. 4.6 for a P1/P2 method. Of course,
for this pair of elements, a uniform discrete inf-sup cannot be satis�ed since the multiplier is
discretized with a reacher element than the main unknown. As a consequence, a local locking
phenomenon (Fig. 4.6(a)) on the Dirichlet boundary (�at part of the solution) holds together
with a very noisy multiplier (Fig. 4.6(b)). This indicates the presence of spurious modes. Some
similar results can be observed with the P1/P1 and P1/P0 methods.

The convergence curves in the non-stabilized case are given in Fig. 4.7(a) for the error in
the L2(Ω)-norm on u, in Fig. 4.7(b) for the error in the H1(Ω)-norm on u and in Fig. 4.7(c) for
the error in the L2(ΓD)-norm on the multiplier. One notes that the convergence rate for the
P1/P2, P1/P1 and P1/P0 methods in H1(Ω)-norm are close to 0.5 which is in good agreement
with the general result of Proposition 6. In this cases, there is no convergence of the multiplier
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4.4. Numerical tests

(a) Solution on Ω with no stabi-
lization for the P1/P2 method.

(b) Multiplier on ΓD with no sta-
bilization for the P1/P2 method.

Figure 4.6: Non-stabilized case with the P1/P2 method.

(a) Convergence of ‖u− uh‖0,Ω (b) Convergence of ‖u− uh‖1,Ω

(c) Convergence of ‖λh − λ‖0,Γ
D

Figure 4.7: Convergence curves in the non-stabilized case.
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Chapter 4. A local projection stabilization of F.D.M for E.B.V.P

(still due to the presence of some spurious modes). Conversely, for the P2/P1, Q2/Q1 and
Q1/Q0 methods, one observes a nearly optimal convergence rate. This do not imply that a mesh
independent inf-sup condition is systematically satis�ed in these cases. In [74], some numerical
experiments show that the solution can be deteriorated in the vicinity of very small intersections
between the mesh and ΓD (especially for the multiplier).

(a) Solution on Ω with Barbosa-
Hughes stabilization for the
P1/P1 method.

(b) Multiplier on ΓD with
Barbosa-Hughes stabilization for
the P1/P1 method.

Figure 4.8: Barbosa-Hughes stabilized case with the P1/P1 method.

Barbosa-Hughes stabilization. Fig. 4.8 shows that the Barbosa-Hughes stabilization
technique eliminates the locking phenomenon (Fig. 4.8(a)) and the spurious modes on the
multiplier (Fig. 4.8(b)). The convergence curves in the Barbosa-Hughes stabilized case are given
in Fig. 4.9(a) for the error in the L2(Ω)-norm on u, in Fig. 4.9(b) for the error in the H1(Ω)-
norm on u and in Fig. 4.9(c) for the error in the L2(ΓD)-norm on the multiplier. The rate
of convergence for the error in L2(Ω)-norm (resp. H1(Ω)-norm) on u with Barbosa-Hughes
stabilization are optimal: of order 3 (resp. of order close to 2) for both P2/P1 and Q2/Q1

and of order 2 (resp. order 1) for the remaining pairs of elements. Fig. 4.9(c) shows that the
approximation of the multiplier is considerably improved. Concerning the error in L2(ΓD)-norm
for the multiplier the rate of convergence is also close to optimality for all pairs of elements.
We refer to [18] for the study of the in�uence of the stabilization parameter. A rather small
in�uence is noted on the error in L2(Ω) and H1(Ω)-norms on u. Concerning the error in L2(ΓD)-
norm of the multiplier, the value of the stabilization parameter can be divided into two zones.
A coercive zone where the error decreases when the stabilization parameter γ0 increases and a
non-coercive zone for large values of the stabilization parameter where the error evolves randomly
according to the stabilization parameter.

Local projection stabilization. Similarly to the Barbosa-Hughes stabilization, the local
projection stabilization gives some optimal rates of convergence for all pairs of elements and
eliminates the locking phenomena (Fig. 4.10(a)) and the spurious modes on the multiplier (Fig.
4.8(b)). The convergence curves are shown in Fig. 4.11(a) for the error in the L2(Ω)-norm on
u, in Fig. 4.11(b) for the error in the H1(Ω)-norm on u and in Fig. 4.11(c) for the error in
the L2(ΓD)-norm on the multiplier. The rate of convergence for the P1/P2, P1/P1, P1/P0 and
Q1/Q0 methods are in good agreement with the theoretical result of Theorem 4.3.2. For the
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4.4. Numerical tests

(a) Convergence of ‖u− uh‖0,Ω (b) Convergence of ‖u− uh‖1,Ω

(c) Convergence of ‖λh − λ‖0,Γ
D

Figure 4.9: Convergence curves in the Barbosa-Hughes stabilized case.

(a) Solution on Ω with local pro-
jection stabilization for the P1/P1

method.

(b) Multiplier on ΓD with lo-
cal projection stabilization for the
P1/P1 method.

Figure 4.10: Local projection stabilized case with the P1/P1 method.
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Chapter 4. A local projection stabilization of F.D.M for E.B.V.P

(a) Convergence of ‖u− uh‖0,Ω (b) Convergence of ‖u− uh‖1,Ω

(c) Convergence of ‖λh − λ‖0,Γ
D

Figure 4.11: Convergence curves in the local projection stabilized case.
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4.4. Numerical tests

P2/P1 and Q2/Q1 methods, the rates are close to optimality. For these methods, if one tries
to extend the result of Theorem 4.3.2 to a H3(Ω) regular exact solution, one �nd that the rate
of convergence of the error estimate depends on the interpolation error of the local orthogonal
projection which limits the rate of convergence to 3/2 for the H1(Ω)-norm and 1 for the L2(ΓD)-
norm on the multiplier (The same observation was shown in the case of Stokes and Darcy's
equations by Burman [80]). This limitation is observed on Fig. 4.11(c) on the multiplier of the
Q2/Q1 method, but not for the P2/P1 method (for an unknown reason).
Concerning the error in L2(ΓD)-norm the value of the stabilization parameter can also be divided
into two zones (see Figs. 4.12, 4.13 and 4.14). The �rst zone where the error decreases when the
stabilization parameter γ increases. The second zone, for large values of the parameter, where
the error increases (Figs. 4.13, 4.14) or remain almost constant (Fig. 4.12). Figure 4.12 for the
P1/P0 elements indicates that a large value of the stabilization parameter does not a�ect too
much the quality of the solution. This behavior has been noted whenever a piecewise constant
multiplier is considered. Conversely, for all remaining couples of elements, an excessive value of
the stabilization parameter leads to a bad quality solution (see Figs. 4.13, 4.14).
Now, concerning the minimal patch size, the inf-sup condition is proven to be satis�ed in [61]
for a size equal or greater to 3h. Numerically, the inf-sup condition seems to be satis�ed for
smaller values of the minimal patch size. In our numerical experiments we found an optimal
value between h and 2h. For the P1/P0 method, a minimal patch size equal to h seems to be
inadequate (Fig. 4.12(a)). A value of 2h is found to be more optimal (Fig. 4.12(b)). Conversely,
a value of h is slightly more optimal for the P1/P1 pair of elements (Fig. 4.13).

(a) With a minimal patch size equal to h (b) With a minimal patch size equal to 2h

Figure 4.12: In�uence of the stabilization parameter for the error in the L2(ΓD)-norm of the
multiplier for the P1/P0-element.
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Chapter 4. A local projection stabilization of F.D.M for E.B.V.P

(a) With a minimal patch size equal to h (b) With a minimal patch size equal to 2h

Figure 4.13: In�uence of the stabilization parameter for the error in the L2(ΓD)-norm of the
multiplier for the P1/P1-element.

Figure 4.14: In�uence of the stabilization parameter for the error in the L2(ΓD)-norm of the
multiplier for the P2/P1-element (with a minimal patch size equal to h).
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4.4. Numerical tests

4.4.4 Three-dimensional numerical tests

In this section, we compare the non-stabilized three-dimensional case to the local projection
stabilized three-dimensional case with the following pairs of �nite-element methods: P2/P1,
P1/P1, P1/P0, P1/P2, Q2/Q1 and Q1/Q0.

Without stabilization. Convergence curves in the non-stabilized case are shown in Fig.
4.15. Perhaps due to the simple chosen geometry and exact solution, no locking phenomenon
is observed for the P1/P2, P1/P1 and P1/P0 methods. However, in these cases, the multiplier
does not converge probably due to the presence of spurious modes. The rate of convergence
in the H1(Ω)− norm on u is optimal for the P1/P1, P1/P0, P1/P2 and Q1/Q0 methods (see
Fig. 4.15(b)). For the remaining elements (Q2/Q1 and P2/P1) the rate of convergence is limited
to 3/2.

(a) Convergence of ‖u− uh‖0,Ω (b) Convergence of ‖u− uh‖1,Ω

(c) Convergence of ‖λh − λ‖0,Γ
D

Figure 4.15: Convergence curves in the three-dimensional non-stabilized case.
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Chapter 4. A local projection stabilization of F.D.M for E.B.V.P

Local projection stabilization. The local projection stabilization gives an optimal rate
of convergence for all pairs of elements and eliminates the spurious modes for the P1/P1, P1/P0

and P1/P2 methods. Especially, the rate of convergence in the H1(Ω)-norm for the Q2/Q1 and
P2/P1 are improved compared to the non-stabilized case.

Except for the Q2/Q1 pair of elements, the convergence rate for the L2(ΓD)-norm for the
multiplier are optimal (more than 1.5). For the Q2/Q1 pair of elements, the convergence rate for
the L2(ΓD)-norm is optimal but limited to 1.1 (we did not �nd any interpretation for that). The
rate of convergence in the L2(Ω)-norm is limited to 2 for all methods. For quadratic methods, the
that we used level set function of order 1 to approximate the curved domain limits theoretically
the rate of convergence to 3/2.

(a) Convergence of ‖u− uh‖0,Ω (b) Convergence of ‖u− uh‖1,Ω

(c) Convergence of ‖λh − λ‖0,Γ
D

Figure 4.16: Convergence curves in the three-dimensional local projection stabilized case.

4.5 Concluding remarks

In this paper, we presented a stabilization technique based on local projections for the �ctitious
domain method inspired by the X-FEM introduced in [72, 74].
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4.5. Concluding remarks

A main advantage compared to some other stabilization techniques like the Barbosa-Hughes
one, is that it only a�ects the multiplier equation in a manner that is independent of the problem
to be solved. This makes the extension to other linear or nonlinear problems very easy.

The two-dimensional theoretical result does not ensure an optimal rate of convergence when
a quadratic �nite element is used for the main unknown due to the fact that the local projec-
tion is made on piecewise constants. The method could be generalized to the projection on
(discontinuous) piecewise a�ne or piecewise quadratic functions for high-order approximations.

The extension to the three-dimensional case of the theoretical result is of course subject to
obtaining an inf-sup condition of the same kind of the one obtained in [61].
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Chapter 5

A local projection stabilized extended

�nite element approximation of cracked

bodies subject to contact with Tresca

friction
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5.1 Introduction

The modeling of contact phenomena presents a great challenge for industrial applications.
This phenomenon played an important role in the behavior of structures: deformations,
movements and distribution of e�orts. Taking into account this contact condition presents
serious di�culties: conceptual, mathematical and computational. These di�culties come from
the non-linearity of the contact conditions. The accuracy of the approximated method depends
essentially on the manner in which it applies the contact condition. Indeed, this condition may
be prescribed strongly or relaxed and expressed in the weaker sense. In the context of isotropic
linear elasticity, small deformations and contact with rigid foundations (Signorini problem)
di�erent studies were made. Under H2-regularity on the displacement, we summarize these
results as follows:
In the case of the frictionless contact problem, when primal formulation (displacement is the
only unknown) and conforming or non conforming discretization are considered, an order of h3/4

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0007/these.pdf 
© [S. Amdouni], [2013], INSA de Lyon, tous droits réservés



Chapter 5. A local projection stabilized X-FEM

was obtained in the works of Haslinger et al. [81, 82, 46]. This result is ameliorated recently,
an order of h

√
| log(h) | was obtained in the paper of Renard [83] without any assumption.

Using the supplementary assumption that we have a �nite number of transitions between
contact and non-contact zones, an order of h

√
| log(h) | (resp. h 4

√
| log(h) | for only conforming

discretization) was proved in the paper of Ben Belgacem [29] (resp. Ben belgacem et al. [25]).
An order of h was obtained in the work of Hüeber [84] using the same supplementary assumption
and an additional modi�ed Lagrange interpolation operator. For the mixed formulation of the
frictionless contact problem Lhalouani et al. [85] proved that the rate of convergence is of
order h3/4 if we use piecewise constant multiplier. Coorevits et al.[86] show that the rate of
convergence is of order h3/4 if we use weakly linear multiplier (see also [25]), of oder h1/4 for
piecewise linear multiplier with the additional assumption that there exists ε > 0 su�ciently
small such that the multiplier is contained in the Sobolev space Hε+1/2, of order h

√
| log(h) | if

we use weakly piecewise linear multiplier with the additional assumption that we have a �nite
number of transitions between contact and non-contact zones, and of order h if we use weakly
piecewise linear multiplier with some additional assumptions. In 2003 Ben begacem et al. [25],
show an order of h1/2 with weakly piecewise linear multiplier. Also, in the same reference, an
order of h 4

√
| log(h) | is proved for the same formulation with the additional assumption that

we have a �nite number of transitions between contact and non-contact zones. An optimal
rate of convergence of order h is proved in [87] for the piecewise linear multiplier with speci�c
�nite element approximation method and the additional assumptions that a �nite number of
transitions between contact and non-contact zones.
In the case of Tresca contact problem with a given slip stress s ∈ L2(ΓC), an order of h3/4 is
proved using continuous piecewise linear normal multiplier and weakly continuous piecewise
linear tangent multiplier [88] and an order of h 4

√
| log(h) | is proved with the additional

assumptions that we have a �nite number of transitions between contact and non-contact zones,
the jump of the displacement on ΓC is in W 1,∞, the tangent stress λt ∈ L∞(ΓC) and the given
slip s ∈ L∞(ΓC). In the same context of [88] an order of h1/2 is proved using piecewise constant
shape function (see [89] and [90]). This estimate can be improved (a convergence rate of order
h3/4) under the additional assumption that the slip bound s is a positive constant on ΓC (see
[89] and [90]).

In all the works cited above, a discrete compatibility condition between the �nite-element
space for the displacement and the one for the multiplier is required in order to obtain a good
approximation of the solution. To overcome these di�culties many method are used. We can
cite the Barbosa-Hughes stabilization where the stability is assured by adding a supplementary
term involving an approximation of the normal derivative of the primal variable on ΓC (see [50]
and [18]). The local projection stabilization technique introduced in [55] where the di�erence of
the multiplier with its projection on some pre-de�ned patches is penalized to ensure the stability
of the problem. This stabilized technique is asymptotic consistent and a�ects only the multiplier
equations in a manner that is independent of the problem to be solved. Note that in our case
the presence of the crack presents a supplementary di�culty.
The purpose of this contribution is to apply the local projection stabilization technique to the
enriched �nite-element approximation of contact problems with Tresca friction of cracked elas-
tic bodies. In Section 5.2, we introduce the formulation of the unilateral contact problem with
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5.2. Formulation of the continuous problem

Tresca friction on a crack of an elastic structure. In Section 5.3, we present the elasticity problem
approximated by both the enrichment strategy introduced in [12] and the local projection sta-
bilized Lagrange multiplier method [55]. We show the existence and uniqueness of the solution
of the stabilized formulation. Also we prove a priori error estimates following three di�erent
discrete contact conditions (the study is restricted to piecewise a�ne and constant �nite ele-
ment methods). Finally, in Section 5.4, we present some numerical experiments on a very simple
situation. We compare the stabilized and the non-stabilized cases for di�erent �nite-element
approximations. The in�uence of the stabilization parameters is also investigated.

5.2 Formulation of the continuous problem

We introduce some useful notations and several functional spaces. In what follows, bold letters
like u,v, indicate vector-valued quantities, while the capital ones (e.g., V,K, . . .) represent
functional sets involving vector �elds. As usual, we denote by (L2(.))d and by (Hs(.))d,
s ≥ 0, d = 1, 2 the Lebesgue and Sobolev spaces in d-dimensional space (see [15]). The usual
norm of (Hs(D))d is denoted by ‖ · ‖s,D and we keep the same notation when d = 1 or d = 2.
For shortness, the (L2(D))d-norm will be denoted by ‖ · ‖D when d = 1 or d = 2. In the sequel
the symbol | · | will denote either the Euclidean norm in R2, the length of a line segment, or the
area of a planar domain.

Let us consider the deformation of a cracked elastic body occupying, in the initial con�gura-
tion, a domain Ω in R2 where plane small strain are assumed. The boundary ∂Ω of the domain
Ω is assumed to be polygonal (for simplicity) and consists of three non-overlapping parts ΓD,
ΓN and ΓC with meas(ΓD) > 0 and meas(ΓC) > 0. The body is clamped on ΓD. It is subjected
to volume forces f = (f1, f2) ∈ (L2(Ω))2 and to surface loads g = (g1, g2) ∈ (L2(ΓN ))2. The
boundary part ΓC (or the crack location) is supposed to be a straight line segment. We denote
by ΓC+ and ΓC− each of the two sides of the crack (see Fig. 5.1). We suppose that we have a
frictional contact between ΓC+ and ΓC− as a contact between two elastic bodies. Of course, in
the initial con�guration, both ΓC+ and ΓC− coincide. Let n = n+ = −n− = (n1, n2) denote the
outward normal unit vector on ΓC+ and t = (−n2, n1) an associated unit tangent vector.

Ω

Γ+
C

Γ−
C n+ ΓD

ΓN

Figure 5.1: A cracked domain.
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Chapter 5. A local projection stabilized X-FEM

Under plane small strain assumptions, the problem of homogeneous isotropic linear elasticity
consists in �nding the displacement �eld u : Ω→ R2 satisfying

div σ(u) + f = 0 in Ω,(5.1)

σ(u) = λL tr ε(u) I + 2µL ε(u), in Ω,(5.2)

u = 0 on ΓD,(5.3)

σ(u)n = g on ΓN ,(5.4)

where σ = (σij), 1 ≤ i, j ≤ 2, stands for the stress tensor �eld, ε(v) = (∇v+∇v
T

)/2 represents
the linearized strain tensor �eld, λL ≥ 0, µL > 0 are the Lamé coe�cients, and I denotes the
identity tensor. For a displacement �eld v and a density of surface forces σ(v)n de�ned on ∂Ω,
we adopt the following notations:

v+ = v+
n n

+ + v+
t t, v− = v−n n

− + v−t t and σ(v)n = σn(v)n + σt(v)t,

where v+ (resp. v−) is the trace of displacement on ΓC on the Γ+
C side (resp. on the Γ−C side).

The conditions describing the normal contact on ΓC are:

JunK = u+
n + u−n ≤ 0, σn(u) ≤ 0, σn(u) · JunK = 0,(5.5)

where JunK is the jump of the normal displacement across the crack ΓC . Denoting by s ≥ 0 the
given slip stress coe�cient on ΓC (which is assumed to be constant for the sake simplicity). The
static Tresca friction condition reads as follows:

(5.6)


|σt(u)| ≤ s, a.e. on ΓC ,

if |σt(u)| < s, then JutK = 0,

if |σt(u)| = s, then there exist ν ≥ 0 such that JutK = −νσt(u),

To give some classical weak formulation of Problem (5.1)−(5.6), we �rst introduce the fol-
lowing Hilbert spaces:

V =
{
v ∈

(
H1(Ω)

)2
: v = 0 on ΓD

}
, WN =

{
JvnK|ΓC : v ∈ V

}
, WT =

{
JvtK|ΓC : v ∈ V

}
and their topological dual spaces V′, W ′N , W

′
T , endowed with their usual norms. Next we de�ne

the convex set of Lagrange multipliers denoted:

M(s) = MN ×MT (s),

MN =
{
µn ∈W ′N :

〈
µn, vn

〉
W ′N ,WN

≥ 0 for all vn ∈WN , vn ≤ 0 a.e. on ΓC

}
,

MT (s) =
{
µt ∈W ′T :

〈
µt, vt

〉
W ′T ,WT

+
〈
s, |vt|

〉
W ′T ,WT

≥ 0 for all vt ∈WT , a.e. on ΓC

}
,

where the notation 〈·, ·〉W ′N ,WN
stands for the duality pairing between W ′N and WN . The mixed

formulation of the Tresca contact problem (5.1)−(5.6) consists then in �nding u ∈ V and λ ∈
M(s) such that

(5.7)

a(u,v)− b(λ,v) = L(v), ∀v ∈ V,

b(µ− λ,u) ≥ 0, ∀µ ∈M(s),

82

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0007/these.pdf 
© [S. Amdouni], [2013], INSA de Lyon, tous droits réservés



5.3. Discretization with the stabilized Lagrange multiplier method

where

a(u,v) =

∫
Ω
σ(u) : ε(v) dΩ, b(µ,v) =

〈
µn, JvnK

〉
W ′N ,WN

+
〈
µt, JvtK

〉
W ′T ,WT

L(v) =

∫
Ω
f · v dΩ +

∫
ΓN

g · v dΓ.

An equivalent formulation of (5.7) consists in �nding (u,λ) ∈ V ×M(s) satisfying

L (u,µ) ≤ L (u,λ) ≤ L (v,λ), ∀v ∈ V, ∀µ ∈M(s),

where L (·, ·) is the classical Lagrangian of the system de�ned as

(5.8) L (v,µ) =
1

2
a(v,v)− L(v)− b(µ,v).

Another classical weak formulation of problem (5.1)−(5.6) is given by the following variational
inequality: �nd u ∈ K such that

(5.9) a(u,v − u) + j(s,v)− j(s,u) ≥ L(v − u), ∀v ∈ K,

where j(s,v) =
〈
s, |JvtK|

〉
W ′T ,WT

andK denotes the closed convex cone of admissible displacement

�elds satisfying the non-interpenetration condition

K =
{
v ∈ V : JvnK ≤ 0 on ΓC

}
.

Moreover, the �rst argument u solution to (5.7) is also the unique solution of problem (5.9) and
one has λn = σn(u) in W ′N and λt = σt(u) in W ′T .

5.3 Discretization with the stabilized Lagrange multiplier

method

5.3.1 The discrete problem

We shall now describe the enriched �nite elements used in the approximation of the mixed
problem (5.7). For any given discretization parameter h > 0, let T h, be a partition of the
untracked domain Ω with a maximal size h, Ω =

⋃
T∈T h T . Moreover, T h is assumed to be

regular, i.e., there exists β > 0 such that ∀T ∈ T h, hT /ρT ≤ β where ρT denotes the radius of
the inscribed circle in T (see [47]). We consider the variant, called the cut-o� XFEM, introduced
in [12] in which the whole area around the crack tip is enriched by using a cut-o� function
denoted by χ(·). In this variant, the enriched �nite-element space Vh is de�ned as

Vh =
{
vh ∈ (C (Ω̄))2 : vh =

∑
i∈Nh

aiϕi +
∑
i∈NHh

biHϕi + χ

4∑
j=1

cjFj , ai,bi, cj ∈ R2
}
⊂ V.

Here (C (Ω̄))2 is the space of continuous vector �elds over Ω̄, H(·) is the Heaviside-like function
used to represent the discontinuity across the straight crack and de�ned by

H(x) =

{
+1 if (x− x∗) · n+ ≥ 0,

−1 otherwise,
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Chapter 5. A local projection stabilized X-FEM

Figure 5.2: A cracked domain.

where x∗ denotes the position of the crack tip. The notation ϕi represents the scalar-valued shape
function associated with the classical degree one �nite-element method at the node of index i,
Nh denotes the set of all node indices, and NH

h denotes the set of nodes indices enriched by the
function H(·), i.e., nodes indices for which the support of the corresponding shape function is
completely cut by the crack (see Fig. 5.2). The cut-o� function is a C 1 piecewise third order
polynomial on [r0, r1] such that:

χ(r) = 1 if r < r0,

χ(r) ∈ (0, 1) if r0 < r < r1,

χ(r) = 0 if r > r1.

The functions {Fj(x)}1≤j≤4 are de�ned in polar coordinates located at the crack tip by

(5.10) {Fj(x), 1 ≤ j ≤ 4} =

{√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

}
.

These functions allows to generate the asymptotic non-smooth displacement at the crack tip (see
[48]).

An important point of the approximation is whether the normal and tangent contact pressure
(σn and σt) are regular or not at the crack tip. If it were singular, it should be taken into
account by the discretization of the multiplier. Nevertheless, it seems that this is not the case
in homogeneous isotropic linear elasticity. This results has not been proved yet, and seems to
be a di�cult issue. However, if we consider the formulation (5.7) and if we assume that there is
a �nite number of transition points between contact and non contact zones near the crack tip,
we can easily extend the proved result in the case of frictionless contact [18], to show that the
normal and tangent contact stress σn and σt are in H1/2(ΓC).
Now, concerning the discretization of the multiplier, let x0, ...,xN be given distinct points lying in
ΓC and comming from the intersection between T h and ΓC . These nodes form a one-dimensional
family of meshes of ΓC denoted by Sh. The mesh Sh allows us to de�ne a �nite-dimensional space
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5.3. Discretization with the stabilized Lagrange multiplier method

W h approximatingWN orWT and a nonempty closed convex setMh
N ⊂W h (resp. Mh

T (s) ⊂W h)
approximating MN (resp MT (s)). We consider two possible elementary choices of W h:

W h
0 =

{
µh ∈ L2(ΓC) : µh|(xi,xi+1)

∈ P0(xi,xi+1),∀ 0 ≤ i ≤ N − 1
}
,

W h
1 =

{
µh ∈ C (ΓC) : µh|(xi,xi+1)

∈ P1(xi,xi+1),∀ 0 ≤ i ≤ N − 1
}
,

where Pk(E) denotes the space of polynomials of degree less or equal to k on E. This allows to
provide the following three elementary de�nitions of Mh

N and Mh
T (s):

Mh
N0 =

{
µh ∈W h

0 : µh ≤ 0 on ΓC

}
,(5.11)

Mh
T0(s) =

{
µh ∈W h

0 : |µh| ≤ s on ΓC

}
,(5.12)

Mh
N1 =

{
µh ∈W h

1 : µh ≤ 0 on ΓC

}
,(5.13)

Mh
T1(s) =

{
µh ∈W h

1 : |µh| ≤ s on ΓC

}
,(5.14)

Mh
N1,∗ =

{
µh ∈W h

1 :

∫
ΓC

µhψhdΓ ≥ 0,∀ ψh ∈Mh
N1

}
.(5.15)

MH
T1,∗(s) =

{
µh ∈W h

1 :

∫
ΓC

µhψhdΓ + s

∫
ΓC

|ψh| ≥ 0,∀ ψH ∈W h
1

}
.(5.16)

Let Wh = W h ×W h and W = WN ×WT . In the forthcoming convergence analysis, we
will need more information on the compatibillity between the spaces Vh and Wh. To overcom
this di�culty, we use the local projection stabilization technique introduced in [55]. This tech-
nique consists in adding a supplementary term, involving the local orthogonal projection of the
multiplier on a patch decomposition of the mesh, to the discrete mixed formulation. The set of
patches is build from Sh. Indeed we aggregate the possibly very small elements of Sh in order
to obtain a set of patches having a minimal and a maximal size (for instance between 3h and
6h). In practice, this operation can be done rather easily (even for three-dimensional problems).
A practical way to obtain such a patch decomposition will be described in the next section. An
example of patch aggregation is presented in Fig. 5.3. Let H be the maximum length of these
patches and denote by SH the corresponding subdivision of ΓC . Let

WH =
{
µH ∈ L2(ΓC) : µH|S ∈ P0(S), ∀S ∈ SH

}
,

be the space of piecewise constants on this mesh and let WH = WH ×WH . Similarly to the
classical result presented in [61], we prove that an inf-sup condition is satis�ed between Vh and
WH for minimal size of 3h for the patches (see Appendix C: This proof, done with scalar �eld,
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Chapter 5. A local projection stabilized X-FEM

can be straightforwardly generalized to vector �eld). This implies in particular that an optimal
convergence can be reached if the multiplier is taken in WH . However, this suppose a relatively
coarse approximation of the multiplier. Our approach is to use this result in order to stabilize
the approximation obtained with the multiplier de�ned on the �ner discretization Wh.

Let us �rst recall the result in Appendix C. Under a condition for the patches S ∈ SH to
be approximated by a �xed set of line segments having approximatively the same length with
a length greater or equal to 3h, the following inf-sup (or LBB) condition holds for a constant
β∗ > 0, independent of h and H:

(5.17) ∀µH ∈WH , sup
vh∈Vh

b(µH ,vh)

‖vh‖V
≥ β∗‖µH‖W′ .

We will assume in the following that the conditions to obtain this inf-sup condition are satis�ed.

Figure 5.3: Example of a patch aggregation (in red and green) of size approximatively h of the
intersection between crack and the mesh.

Let PWHbe the local orthogonal projection operator from L2(ΓC) onto WH which is de�ned
by

∀µ ∈ L2(ΓC), ∀S ∈ SH PWH (µ) |S =
1

mes(S)

∫
S
µdΓ

and PWHbe the vector local orthogonal projection operator from L2(ΓC) × L2(ΓC) onto WH

which is de�ned by PWH (µ) = (PWH (µn), PWH (µt)), ∀µ = (µn, µt) ∈ L2(ΓC) × L2(ΓC). The
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5.3. Discretization with the stabilized Lagrange multiplier method

stabilized formulation consists in replacing the Lagrangian (5.8) by the following one:

Lh(vh, µh) =
1

2
a(vh,vh)−L(vh)−b(µh,vh)−γ

2

∫
Γc

(µhn−PWH (µhn))2dΓ−γ
2

∫
Γc

(µht−PWH (µht ))2dΓ,

where, γ is a constant. Let Mh(s) = Mh
N ×Mh

T (s) then the corresponding optimality system
reads as follows:
(5.18)

Find uh ∈ V h and λh = (λhn, λ
h
t ) ∈Mh(s) such that:

a(uh,vh)− b(λh,vh) = L(vh), ∀vh ∈ Vh,

b(µh − λh,uh) + γ

∫
Γc

(λhn − PWH (λhn))((µhn − λhn)− (PWH (µhn)− PWH (λhn)))dΓ

+γ

∫
Γc

(λht − PWH (λht ))((µht − λht )− (PWH (µht )− PWH (λht )))dΓ ≥ 0, ∀µh = (µhn, µ
h
t ) ∈Mh(s),

5.3.2 Existence and uniqueness of the solution of the stabilized problem

Lemma 5.3.1. For any γ > 0 there exists a unique solution of the stabilized problem (5.18).

Proof. Let µh = (µhn, µ
h
t ) ∈Mh(s) and uh be the solution of the following problem:

a(uh,vh)− L(vh) = b(µh,vh) =
〈
µhn, Jv

h
nK
〉
Wh′ ,Wh +

〈
µht , Jv

h
t K
〉
Wh′ ,Wh ∀vh ∈ Vh

then using the fact that the inf-sup condition is satis�ed in the ortogonal of the kernel of b(., .)
(which contains Wh) we prove that there exists a constant C such that:

(5.19) C‖uh‖V + ‖L‖V ′ ≥ ‖PWH (µh)‖W′

We have

Lh(uh,µh) =
1

2
a(uh,uh)− L(uh)− b(µh,uh)− γ

2

∫
ΓC

(µhn − PWH (µhn))2dΓ

−γ
2

∫
ΓC

(µht − PWH (µht ))2dΓ,

= −1

2
a(uh,uh)− γ

2

∫
ΓC

(µhn − PWH (µhn))2dΓ− γ

2

∫
ΓC

(µht − PWH (µht ))2dΓ,

= −1

2
‖uh‖2V −

γ

2
‖µhn − PWH (µhn)‖20,ΓC −

γ

2
‖µht − PWH (µht )‖20,ΓC

When ‖µh‖W′ →∞ we have ‖PWH (µh)‖W′ →∞ (using inequality (5.19) we have ‖uh‖V →∞)
or/and ‖µh − PWH (µh)‖W′ →∞, which implies that

lim
µh∈Mh(s),‖µh‖W′→∞

Lγ(uh,µh) = −∞

Now the existence of a solution to Problem (5.18) follows from the fact that Vh and
Mh(s) are two nonempty closed convex sets, Lγ(·, ·) is continuous on Vh ×Wh, Lγ(vh, .)
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Chapter 5. A local projection stabilized X-FEM

(resp. Lγ(·,µh)) is concave (resp. strictly convex) for any vh ∈ Vh (resp. for
any µh ∈ Mh) and limvh∈Vh,‖vh‖

Vh
→∞ Lγ(vh, 0) = +∞ for any µh ∈ Mh(s) (resp.

limµh∈Mh(s),‖µh‖
Wh→∞ Lγ(uh,µh) = −∞ ), see [46, pp. 338�339]. The strict convexity of a(., .)

imply the uniqueness of the �rst argument uh. Now let λh1 and λh2 two solution of (5.18) then
we have:

b(λh2 − λh1 ,uh) + γ

∫
Γc

(λh1n − PWH (λh1n))((λh2n − λh1n)− (PWH (λh1n)− PWH (λh2n)))dΓ

+γ

∫
Γc

(λh1t − PWH (λh1t))((λ
h
2t − λh1t)− (PWH (λh1t)− PWH (λh2t)))dΓ ≥ 0

b(λh1 − λh2 ,uh) + γ

∫
Γc

(λh2n − PWH (λh2n))((λh1n − λh2n)− (PWH (λh2n)− PWH (λh1n)))

+γ

∫
Γc

(λh2t − PWH (λh2t))((λ
h
1t − λh2t)− (PWH (λh2t)− PWH (λh1t)))dΓ ≥ 0

and by summation of the last two inequalities we have:

‖(λh1n − λh2n)− (PWH (λh1n)− PWH (λh2n))‖20,ΓC + ‖(λh1t − λh2t)− (PWH (λh1t)− PWH (λh2t))‖20,ΓC ≤ 0

therefore λh1n − λh2n = PWH (λh2n)− PWH (λh1n) and λh1t − λh2t = PWH (λh2t)− PWH (λh1t) (i.e. λ
h
1n −

λh2n ∈ WH and λh1t − λh2t ∈ WH). Let λ̄h = (λh1n − λh2n, λh1t − λh2t) and λ̄H = (PWH (λh1n) −
PWH (λh2n), PWH (λh1t)− PWH (λh2t)). From inequality (5.17) there exists vh ∈ Vh such that

(5.20) b(λ̄
H
,vh) ≥ β∗‖λ̄H‖W′‖vh‖V,

and thus

β∗‖λ̄H‖W′ ≤ 1

‖vh‖V
b(λ̄

H
,vh) =

1

‖vh‖V
b(λ̄

h
,vh) =

1

‖vh‖V
a(ūh,vh) = 0.

This implies the uniqueness of the second argument λh, therefore (5.18) has a unique solution.

5.3.3 Convergence analysis

In order to study the convergence error, we recall the de�nition of the XFEM interpolation
operator Πh introduced in [17].

Figure 5.4: Decomposition of Ω into Ω1 and Ω2.

88

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0007/these.pdf 
© [S. Amdouni], [2013], INSA de Lyon, tous droits réservés



5.3. Discretization with the stabilized Lagrange multiplier method

We assume that the displacement has the regularity (H2(Ω))2 except in the vicinity of the
crack-tip where the singular part of the displacement is a linear combination of the functions
{Fj(x)}1≤j≤4 given by (5.10) (see [49] for a justi�cation). Let us denote by us the singular part
of u, ur = u − χus the regular part of u, and ukr the restriction of ur to Ωk, k ∈ {1, 2}. Then,
for k ∈ {1, 2}, there exists an extension ũkr ∈ (H2(Ω))2 of ukr to Ω such that (see [15])

‖ũ1
r‖2,Ω . ‖u1

r‖2,Ω1 ,

‖ũ2
r‖2,Ω . ‖u2

r‖2,Ω2 .

Here and throughout the paper, we use the notation a . b to signify that there exists a constant
C > 0, independent of the mesh parameter h, the solution and the position of the crack-tip, such
that a ≤ Cb.
De�nition 2 ([17]). Given a displacement �eld u satisfying u−us ∈ H2(Ω), and two extensions
ũ1
r and ũ2

r in H
2(Ω) of u1

r and u2
r, respectively, we de�ne Πhu as the element of Vh such that

Πhu =
∑
i∈Nh

aiϕi +
∑
i∈NHh

biHϕi + χus,

where ai, bi are given as follows for yi the �nite-element node associated to ϕi:

if i ∈ {Nh \ NH
h } then ai = ur(yi),

if i ∈ NH
h and yi ∈ Ωk for k ∈ {1, 2} then for l = 3− k :

ai =
1

2

(
ukr (yi) + ũlr(yi)

)
,

bi =
(−1)k

2

(
ukr (yi)− ũlr(yi)

)
.

This XFEM interpolation operator satis�es the following interpolation error estimate [17]:

(5.21) ‖u−Πhu‖ . h‖u− χus‖2,Ω.

Lemma 5.3.2. Let (u,λ) ∈ V ×M(s) be the solution of (5.7) and (uh,λh) ∈ Vh ×Mh(s) be
the solution of (5.18). Then we have:

α‖uh − u‖2 ≤ M‖uh − u‖‖vh − u‖+ ‖λh − λ‖−1/2,ΓC‖u− vh‖+ b(µh − λ,uh − u)

+b(λh − µh,uh) + b(µh − λ,u) + b(λ− λh,u), ∀vh ∈ Vh,µh ∈Wh,(5.22)

β∗2‖λH − λ‖2W′ ≤ 8M2‖u− uh‖2 + 8β∗2‖λ− µ̄H‖2W′ + 8‖λ− µ̄h‖2W′

+8‖µ̄H − µ̄h‖2W′ + 8‖λH − λh‖2W′ ∀µ̄h = (µ̄hn, µ̄
h
t ) ∈Wh,(5.23)

with λH = PWH (λh), µ̄H = PWH (µ̄h).

Proof. For all vh ∈ Vh, µh ∈Wh one has

a(uh − u,uh − u) = a(uh − u,vh − u) + a(uh − u,uh − vh)

= a(uh − u,vh − u) + b(λh − λ,uh − vh)

= a(uh − u,vh − u) + b(λh − λ,u− vh) + b(λh − λ,uh − u)

= a(uh − u,vh − u) + b(λh − λ,u− vh) + b(µh − λ,uh − u)

+b(λh − µh,uh) + b(µh − λ,u) + b(λ− λh,u)
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Chapter 5. A local projection stabilized X-FEM

From the V-ellipticity and the continuity of the bilinear form a(., .) we prove the �rst inequality
of Lemma 5.3.2. Now we shall give an estimate of the second inequality of Lemma 5.3.2. Noticing
that ∫

ΓC

(λ− λh) · JvhKdΓ = a(uh − u,vh) ∀vh ∈ Vh,

one obtains∫
ΓC

(µ̄h − λh) · JvhKdΓ = a(uh − u,vh)

+

∫
ΓC

(µ̄h − λ) · JvhKdΓ, ∀(vh, µ̄h) ∈ Vh ×Wh.(5.24)

Now, for µH = λH − µ̄H ∈WH with µ̄H = PWH (µ̄h) the inf-sup condition (5.17) ensure the
existence of vh ∈ Vh such that together with (5.24) we get

β∗‖λH − µ̄H‖W′ ≤ 1

‖vh‖

∫
ΓC

(µ̄H − λH) · JvhK dΓ,

≤ 1

‖vh‖

∫
ΓC

(µ̄h − λh) · JvhK dΓ +
1

‖vh‖

∫
ΓC

(µ̄H − λH − (µ̄h − λh)) · JvhK dΓ,

≤ M‖uh − u‖+ ‖µ̄h − λ‖W′ + ‖µ̄H − λH − (µ̄h − λh)‖W′ .

As a consequence, one has

β∗‖λH − λ‖W′ ≤ β∗‖λ− µ̄H‖W′ +M‖uh − u‖+ ‖µ̄h − λ‖W′

+‖µ̄H − µ̄h‖W′ + ‖λH − λh‖W′ ,

and

β∗2‖λH − λ‖2W′ ≤ 8M2‖u− uh‖2 + 8β∗2‖λ− µ̄H‖2W′ + 8‖λ− µ̄h‖2W′

+8‖µ̄H − µ̄h‖2W′ + 8‖λH − λh‖2W′ ∀µ̄h ∈Wh.(5.25)

�
In order to estimate these terms, we need to distinguish the di�erent contact conditions (i.e., we
must specify the de�nition of Mh(s)). We consider hereafter three di�erent standard discrete
contact conditions.

5.3.3.1 Conforming piecewise discontinuous discretization for multiplier Mh
N = Mh

N0

and Mh
T (s) = Mh

T0(s)

We �rst consider the case of nonpositive discontinuous piecewise constant multipliers where Mh
N

is de�ned by (5.11) and Mh
T (s) is de�ned by (5.12). It is a conforming discretistion on multiplier

as Mh
N0 ⊂MN and Mh

T0(s) ⊂MT (s).

Theorem 5.3.3. Let (u,λ) be the solution to Problem (5.7). Assume that ur ∈ (H2(Ω))2 and
λ ∈ (H1/2(ΓC))2. Let (uh,λH) be the solution to the discrete problem (5.18) where Mh

N = Mh
N0

and Mh
T (s) = Mh

T0(s). Then, for any η > 0 we have

‖u− uh‖+ ‖λ− λh‖W′ . h‖u− χus‖2,Ω +H
3
4
− η

2
(
‖u‖3/2−η,Ω + ‖λ‖1/2,ΓC

)
.
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5.3. Discretization with the stabilized Lagrange multiplier method

Proof. In (5.22) we choose µh = PWH (λ) = (PWH (λn), PWH (λt)). We recall that the operator
PWH is de�ned for any v ∈ L2(ΓC) by

PWH (v) ∈WH ,

∫
ΓC

(v − PWH (v))µH dΓ = 0, ∀µH ∈WH ,

and satis�es the following error estimates for any 0 ≤ r ≤ 1 (see [25])

H−1/2‖v − PWH (v)‖−1/2,ΓC + ‖v − PWH (v)‖0,ΓC . Hr‖v‖r,ΓC .(5.26)

Clearly, µh ∈Mh(s) and using the inequality comming from (5.18) we have

b(λh − µh,uh) ≤ −γ‖λh − λH‖20,ΓC ,(5.27)

with λH = PWH (λh) = (PWH (λhn), PWH (λht )). Moreover

b(µh − λ,uh − u) = b(PWH (λ)− λ,uh − u) ≤ ‖PWH (λ)− λ‖W′‖uh − u‖(5.28)

and

b(µh − λ,u) =

∫
ΓC

(PWH (λn)− λn)JunKdΓ +

∫
ΓC

(PWH (λt)− λt)JutKdΓ

=

∫
ΓC

(PWH (λn)− λn)(JunK− PWH (JunK))dΓ

+

∫
ΓC

(PWH (λt)− λt)(JutK− PWH (JutK))dΓ

≤ ‖PWH (λn)− λn‖W ′‖JunK− PWH (JunK)‖W
+‖PWH (λt)− λt‖W′‖JutK− PWH (JutK)‖W

≤ ‖PWH (λ)− λ‖W′‖JuK− PWH (JuK)‖W(5.29)

Noting that Mh
N0 ⊂MN and Mh

T0 ⊂MT wich implies

b(λ− λh,u) ≤ 0.(5.30)

Using inequalities (5.22), (5.27), (5.28), (5.29) and (5.30) we have

α‖uh − u‖2 + γ‖λh − λH‖20,ΓC ≤ M‖uh − u‖‖vh − u‖+ ‖λh − λ‖W′‖u− vh‖
+‖PWH (λ)− λ‖W′‖uh − u‖
+‖PWH (λ)− λ‖W′‖JuK− PWH (JuK)‖W(5.31)

By combining inequalities (5.23) and (5.31) one obtains for all µ̄h ∈Wh and vh ∈ Vh

(α− 8M2δ)‖u− uh‖2 + δβ∗2‖λ− λH‖2W′ + (γ − 8δ)‖λh − λH‖2W′

≤ M‖uh − u‖‖vh − u‖+ ‖PWHλ− λ‖W′‖uh − u‖+ ‖λh − λ‖W′‖u− vh‖
+‖PWH (λ)− λ‖W′‖JuK− PWH (JuK)‖W + 8δβ∗2‖λ− µ̄H‖2W′

+8δ‖λ− µ̄h‖2W′ + 8δ‖µ̄h − µ̄H‖2W′ ,

≤ δ

2
M2‖u− uh‖2 +

1

2δ
‖u− vh‖2 +

δ

2
‖u− uh‖2 +

1

2δ
‖λ− PWH (λ)‖2W′

+
ξ

2
‖λ− λh‖2W′ +

1

2ξ
‖u− vh‖2 + ‖PWH (λ)− λ‖W′‖JuK− PWH JuK‖W

+8δβ∗2‖λ− µ̄H‖2W′ + 8δ‖λ− µ̄h‖2W′ + 8δ‖µ̄h − µ̄H‖2W′ .
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Chapter 5. A local projection stabilized X-FEM

Then, for all µ̄h ∈Wh and vh ∈ Vh, we deduce

(α− δ17M2 + 1

2
)‖u− uh‖2 + (γ − 8δ − ξ

2
)‖λh − λH‖2W′ + (δβ∗2 − ξ

2
)‖λ− λH‖2W′

≤ (
1

2δ
+

1

2ξ
)‖u− vh‖2 +

1

2δ
‖PWH (λ)− λ‖2W′ + 8δβ∗2‖λ− µ̄H‖2W′

+‖PWH (λ)− λ‖W′‖JuK− PWH (JuK)‖W + 8δ‖λ− µ̄h‖2W′ + 8δ‖µ̄h − µ̄H‖2W′ .

we recall the following standard �nite-element estimates:

‖u−Πhu‖ ≤ Ch‖ur‖2,Ω,

‖u− PWH (u)‖1/2 ≤ CH
1
2
−η‖u‖1−η,ΓC .

‖λ− PWh(λ)‖−1/2 ≤ Ch‖λ‖1/2,ΓC ,

‖λ− PWH (λ)‖−1/2 ≤ CH‖λ‖1/2,ΓC .

Finally, the theorem is established by taking δ < min
( 2α

17M2 + 1
;
γ

8

)
, ξ < min

(
2δβ∗2; 2(γ−8δ)

)
,

vh = Πhu and µ̄h = PWh(λ). �

5.3.3.2 Conforming piecewise continuous discretization for multiplier Mh
N = Mh

N1

and Mh
T (s) = Mh

T1(s)

Now, we focus on the case of nonpositive continuous piecewise a�ne multipliers where Mh
N is

given by (5.13) and Mh
T (s) is given by (5.14)

Theorem 5.3.4. Let (u,λ) be the solution to Problem (5.7). Assume that ur ∈ (H2(Ω))2 and
λ ∈ (H1/2(ΓC))2. Let (uh,λh) be the solution to the discrete problem (5.18) where Mh

N = Mh
N1

and Mh
T = Mh

T1. Then, for any η > 0 we have

‖u− uh‖+ ‖λ− λh‖W′ . h‖u− χus‖2,Ω +H
1
4
(
‖u‖3/2−η,Ω + ‖λ‖1/2,ΓC

)
.

Proof. We choose µh = rh(λ) = (rhλn, r
hλt) in (5.22) where rh : L1(ΓC) 7→ W h

1 is a quasi-
interpolation operator which preserves the nonpositivity de�ned for any function v in L1(ΓC)

by
rhv =

∑
x∈NH

αx(v)ψx,

where Nh represents the set of nodes x0, ...,xN in ΓC , ψx is the scalar basis function of W h
1

(de�ned on ΓC) at node x satisfying ψx(x′) = δx,x′ for all x′ ∈ Nh and

αx(v) =

( ∫
ΓC

vψx dΓ

)( ∫
ΓC

ψx dΓ

)−1

.

The approximation properties of rh are proved in [51]. We simply recall hereafter the two
main results. The �rst result is concerned with L2-stability property of rh.
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5.3. Discretization with the stabilized Lagrange multiplier method

Lemma 5.3.5. For any v ∈ L2(ΓC) and any E ∈ T h we have

‖rhv‖0,E . ‖v‖0,γE ,
if |v| ≤ s then |rhv| ≤ s on ΓC ,

where γE = ∪{F∈TH : F̄∩Ē 6=∅}F̄ .

Proof. Let E ∈ TH and ψ1, ψ2 be the clasical scalar basic functions related to E. Using the
de�nition of αx(v) and the Cauchy-Schwarz inequality we get:

‖rhv‖0,E ≤ α1‖ψ1‖0,ΓC + α2‖ψ2‖0,ΓC

≤ ‖v‖0,γE
‖ψ1‖20,ΓC∫
ΓC
ψ1 dΓ

+ ‖v‖0,γE
‖ψ2‖20,ΓC∫
ΓC
ψ2 dΓ

. ‖v‖0,γE .

Using the de�nition of αx(v) and the partition of unity we have the second inequality:

|rhv| = |
∑

x∈NH

αx(v)ψx|,

≤
∑

x∈NH

|αx(v)|ψx,

≤ s.

�
Note that the proof of the �rst inequality of this lemma is also given in [51] using the additional
assumption that the mesh T h is quasi-uniform. The second result is concerned with the L2-
approximation properties of rh.

Lemma 5.3.6. For any v ∈ Hη(ΓC), 0 ≤ η ≤ 1, and any E ∈ T h we have

‖v − rhv‖0,E . hη‖v‖η,γE ,(5.32)

where γE = ∪{F∈EH
C

: F̄∩Ē 6=∅}F̄ .

Noting that λn ≤ 0 on ΓC (resp. |λt| ≤ s on ΓC) then rhλn ≤ 0 on ΓC (resp. |rhλt| ≤ s on
ΓC) which implies rhλn ∈Mh

N1 (resp. rhλt ∈Mh
T1(s)). Using the inequality coming from (5.18)

we have

b(λh − µh,uh) ≤ γ

∫
Γc

(λh − λH)((µh − λh)− (µH − λH))dΓ,

= −γ‖λh − λH‖20,ΓC + γ

∫
Γc

(λh − λH)(µh − µH)dΓ,

≤ −γ
2
‖λh − λH‖20,ΓC +

γ

2
‖µh − µH‖20,ΓC .(5.33)

Moreover

b(µh − λ,uh − u) = b(rh(λ)− λ,uh − u) ≤ ‖rh(λ)− λ‖0,ΓC‖uh − u‖.(5.34)
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Chapter 5. A local projection stabilized X-FEM

Then we have

b(µh − λ,u) =

∫
ΓC

(rhλn − λn)JunKdΓ +

∫
ΓC

(rhλt − λt)JutKdΓ,

≤ ‖rhλn − λn‖0,ΓC‖JunK‖0,ΓC + ‖rhλt − λt‖0,ΓC‖JutK‖0,ΓCdΓ,

≤ ‖rh(λ)− λ‖0,ΓC‖JuK‖0,ΓC .(5.35)

We have Mh
N1 ⊂MN and Mh

T1 ⊂MT then

b(λ− λh,u) ≤ 0.(5.36)

Using inequalities (5.33), (5.34), (5.35) and (5.36) we have

α‖uh − u‖2 +
γ

2
‖λh − λH‖20,ΓC ≤ M‖uh − u‖‖vh − u‖+ ‖λh − λ‖W′‖u− vh‖

+‖rh(λ)− λ‖0,ΓC‖uh − u‖+ ‖rh(λ)− λ‖0,ΓC‖JuK‖0,ΓC
+
γ

2
‖µh − µH‖20,ΓC .(5.37)

By combining inequalities (5.23) and (5.37) one obtains for all µ̄h ∈Wh and vh ∈ Vh

(α− 8M2δ)‖u− uh‖2 + δβ∗2‖λ− λH‖2W′ + (
γ

2
− 8δ)‖λh − λH‖2W′

≤ M‖uh − u‖‖vh − u‖+ ‖λh − λ‖W′‖u− vh‖+ ‖rh(λ)− λ‖0,ΓC‖uh − u‖
+‖rh(λ)− λ‖0,ΓC‖JuK‖0,ΓC + 8δβ∗2‖λ− µ̄H‖2W′ + 8δ‖λ− µ̄h‖2W′

+8δ‖µ̄h − µ̄H‖2W′ +
γ

2
‖µh − µH‖20,ΓC ,

≤ δ

2
M2‖u− uh‖2 +

1

2δ
‖u− vh‖2 +

δ

2
‖u− uh‖2 +

1

2δ
‖rh(λ)− λ‖20,ΓC +

ξ

2
‖λ− λh‖2W′

+
1

2ξ
‖u− vh‖2 + ‖rh(λ)− λ‖0,ΓC‖JuK‖0,ΓC +

γ

2
‖µh − µH‖20,ΓC

+8δβ∗2‖λ− µ̄H‖2W′ + 8δ‖λ− µ̄h‖2W′ + 8δ‖µ̄h − µ̄H‖2W′ .

Then, for all µ̄h ∈Wh and vh ∈ Vh, we deduce

(α− δ17M2 + 1

2
)‖u− uh‖2 + (

γ

2
− 8δ − ξ

2
)‖λh − λH‖2W′ + (δβ∗2 − ξ

2
)‖λ− λH‖2W′

≤ (
1

2δ
+

1

2ξ
)‖u− vh‖2 +

1

2δ
‖rh(λ)− λ‖0,ΓC + ‖rh(λ)− λ‖0,ΓC‖JuK‖0,ΓC +

γ

2
‖µh − µH‖20,ΓC

+8δβ∗2‖λ− µ̄H‖2W′ + 8δ‖λ− µ̄h‖2W′ + 8δ‖µ̄h − µ̄H‖2W′ .

Finally, the theorem is established by taking δ < min
( 2α

17M2 + 1
;
γ

16

)
, ξ < min

(
2δβ∗2; γ− 16δ

)
,

vh = Πhu and µ̄h = PWh(λ). �

5.3.3.3 Nonconforming piecewise continuous discretization for multiplier Mh
N =

Mh
N1,∗ and Mh

T = Mh
T1,∗(s)

This choice corresponds to �weakly nonpositive" continuous piecewise a�ne multipliers where
Mh
N = Mh

N1,∗ is given by (5.15) and Mh
T = Mh

T1,∗(s) is given by (5.16).
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5.3. Discretization with the stabilized Lagrange multiplier method

Theorem 5.3.7. Let (u,λ) be the solution to Problem (5.7). Assume that ur ∈ (H2(Ω))2 and
λ ∈ (H1/2(ΓC))2. Let (uh,λH) be the solution to the discrete problem (5.18) where Mh

N = Mh
N1,∗

and Mh
T = Mh

T1,∗(s). Then, for any η > 0 we have

‖u− uh‖+ ‖λ− λh‖W′ . h‖u− χus‖2,Ω +H
1
2
− η

2
(
‖u‖3/2−η,Ω + ‖λ‖1/2,ΓC

)
.

Proof. In (5.22) we choose µh = PWh(λ) = (PWh(λn), PWh(λt)) where PWh denotes the
L2(ΓC)-projection onto WH

1 . We recall that the operator PWh is de�ned for any v ∈ L2(ΓC) by

PWh(v) ∈W h
1 ,

∫
ΓC

(v − PWh(v))µdΓ = 0, ∀µ ∈W h
1 ,

and satis�es the following error estimates for any 0 ≤ r ≤ 2 (see [25])

H−1/2‖v − PWh(v)‖−1/2,ΓC + ‖v − PWh(v)‖0,ΓC ≤ Chr‖v‖r,ΓC .(5.38)

Clearly, PWh(λ) ∈Mh(s) and using the inequality comming from (5.18) we have

b(λh − µh,uh) ≤ γ

∫
Γc

(λh − λH)((µh − λh)− (µH − λH))dΓ,

= −γ‖λh − λH‖20,ΓC + γ

∫
Γc

(λh − λH)(µh − µH)dΓ,

≤ −γ
2
‖λh − λH‖20,ΓC +

γ

2
‖µh − µH‖20,ΓC .(5.39)

Moreover

b(µh − λ,uh − u) = b(PWh(λ)− λ,uh − u) ≤ ‖PWh(λ)− λ‖W′‖uh − u‖.(5.40)

and

b(µh − λ,u) =

∫
ΓC

(PWhλn − λn)JunKdΓ +

∫
ΓC

(PWhλt − λt)JutKdΓ,

=

∫
ΓC

(PWhλn − λn)(JunK− PWhJunK)dΓ

+

∫
ΓC

(PWhλt − λt)(JutK− PWhJutK)dΓ,

≤ ‖PWhλn − λn‖W ′N ‖JunK− PWhJunK‖WN

+‖PWhλt − λt‖W ′T ‖JutK− PWhJutK‖WT
,

≤ ‖PWh(λ)− λ‖W′‖JuK− PWh(JuK)‖W.(5.41)

We have

b(λ− λh,u) =

∫
ΓC

(λn − λhn)JunKdΓ +

∫
ΓC

(λt − λht )JutKdΓ.(5.42)
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Chapter 5. A local projection stabilized X-FEM

∫
ΓC

(λn − λhn)JunKdΓ = −
∫

ΓC

λhnJunKdΓ,

≤
∫

ΓC

λhn(Ih(JunK)− JunK)dΓ,

≤
∫

ΓC

(λhn − λ)(Ih(JunK)− JunK)dΓ +

∫
ΓC

λ(Ih(JunK)− JunK)dΓ,

≤ ‖λhn − λn‖W ′N ‖I
h(JunK)− JunK‖Wn

+‖λn‖0,ΓC‖Ih(JunK)− JunK‖0,ΓC .(5.43)

∫
ΓC

(λt − λht )JutKdΓ =

∫
ΓC

(λt − λht )(JutK− IhJutK)dΓ +

∫
ΓC

(λt − λht )IhJutKdΓ

−
∫

ΓC

λtJutKdΓ− s
∫

ΓC

|JutK|dΓ,

≤
∫

ΓC

(λt − λht )(JutK− Ih(JutK))dΓ +

∫
ΓC

λt(I
h(JutK)− JutK)dΓ

+s

∫
ΓC

(|Ih(JutK)| − |JutK|)dΓ,

≤
∫

ΓC

(λt − λht )(JutK− Ih(JutK))dΓ +

∫
ΓC

λt(I
h(JutK)− JutK)dΓ

+s

∫
ΓC

|Ih(JutK)− JutK|dΓ,

≤ ‖λt − λht ‖W ′T ‖JutK− I
h(JutK)‖WT

+‖λt‖0,ΓC‖JutK− Ih(JutK)‖0,ΓC + s‖JutK− Ih(JutK)‖0,ΓC .(5.44)

Using 5.43 and 5.44 we have

b(λ− λh,u) ≤ ‖λ− λh‖W′‖JuK− IhJuK‖W + ‖λ‖0,ΓC‖JuK− Ih(JuK)‖0,ΓC
+s‖JutK− Ih(JutK)‖0,ΓC .(5.45)

Using inequalities (5.39), (5.40), (5.41) and (5.45) we have

α‖uh − u‖2 + γ‖λh − λH‖20,ΓC ≤ M‖uh − u‖‖vh − u‖+ ‖λh − λ‖W′‖u− vh‖
+‖PWh(λ)− λ‖W′‖uh − u‖
+‖PWh(λ)− λ‖W′‖JuK− PWh(JuK)‖W
+‖λ− λh‖W′‖JuK− IhJuK‖W
+‖λ‖0,ΓC‖JuK− Ih(JuK)‖0,ΓC
+s‖JutK− Ih(JutK)‖0,ΓC +

γ

2
‖µh − µH‖20,ΓC .(5.46)
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5.4. Numerical experiments

By combining inequalities (5.23) and (5.46) one obtain for all µ̄h ∈Wh and vh ∈ Vh

(α− 8M2δ)‖u− uh‖2 + δβ∗2‖λ− λH‖2W′ + (γ − 8δ)‖λh − λH‖2W′

≤ M‖uh − u‖‖vh − u‖+ ‖λh − λ‖W′‖u− vh‖+ ‖PWh(λ)− λ‖W′‖uh − u‖
+‖PWh(λ)− λ‖W′‖JuK− PWh(JuK)‖W + 8δβ∗2‖λ− µ̄H‖2W′

+‖λ− λh‖W′‖JuK− IhJuK‖W + ‖λ‖0,ΓC‖JuK− Ih(JuK)‖0,ΓC
+s‖JutK− Ih(JutK)‖0,ΓC +

γ

2
‖µh − µH‖20,ΓC + 8δ‖λ− µ̄h‖2W′ + 8δ‖µ̄h − µ̄H‖2W′ ,

≤ δ

2
M2‖u− uh‖2 +

1

2δ
‖u− vh‖2 +

δ

2
‖u− uh‖2 +

1

2δ
‖λ− PWh(λ)‖2W′

+
1

2ξ
‖u− vh‖2 + ‖PWh(λ)− λ‖W′‖JuK− PWH JuK‖W +

ξ

2
‖λ− λh‖2W′

+8δβ∗2‖λ− µ̄H‖2W′ + 8δ‖λ− µ̄h‖2W′ + 8δ‖µ̄h − µ̄H‖2W′ .

+
ξ

2
‖λ− λh‖2W′ +

1

2ξ
‖JuK− IhJuK‖2W + ‖λ‖0,ΓC‖JuK− Ih(JuK)‖0,ΓC

+s‖JutK− Ih(JutK)‖0,ΓC +
γ

2
‖µh − µH‖20,ΓC .

Then, for all µ̄h ∈Wh and vh ∈ Vh, we deduces

(α− δ17M2 + 1

2
)‖u− uh‖2 + (

γ

2
− 8δ − ξ)‖λh − λH‖2W′ + (δβ∗2 − ξ)‖λ− λH‖2W′

≤ (
1

2δ
+

1

2ξ
)‖u− vh‖2 +

1

2δ
‖PWh(λ)− λ‖0,ΓC + ‖PWh(λ)− λ‖W′‖JuK− PWH JuK‖W

+
γ

2
‖µh − µH‖20,ΓC + 8δβ∗2‖λ− µ̄H‖2W′ + 8δ‖λ− µ̄h‖2W′ + 8δ‖µ̄h − µ̄H‖2W′

+
1

2ξ
‖JuK− IhJuK‖2W + ‖λ‖0,ΓC‖JuK− Ih(JuK)‖0,ΓC + s‖JutK− Ih(JutK)‖0,ΓC .

Finally, the theorem is established by taking δ < min
( 2α

17M2 + 1
;
γ

16

)
, ξ < min

(
δβ∗2;

γ

2
− 8δ

)
,

vh = Πhu and µ̄h = PWh(λ). �
Remark: Let us remark that if we suppose that u ∈ (H2(Ω))2 in Theorem 5.3.7 the proved rate
of convergence becomes h3/4.

5.4 Numerical experiments

The numerical tests were performed on a uncracked square de�ned by

Ω̄ = [0, 1] × [−0.5, 0.5],

and the considered crack is the line segment ΓC = ]0, 0.5[ × {0} (see Fig. 5.5). Three degrees of
freedom are blocked in order to eliminate rigid body motions (Fig. 5.5). In order to have both a
contact and non contact, slip and non slip zones between the crack lips, we impose the following
body force vector �eld

f(x, y) =

(
0

3.5x(1− x)y cos(2πx)

)
.
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Chapter 5. A local projection stabilized X-FEM

Figure 5.5: Cracked specimen.

Neumann boundary conditions are prescribed as follows:

g(0, y) = g(1, y) =

(
0

0.4 sin(2πy)

)
−0.5 ≤ y ≤ 0.5,

g(x,−0.5) = g(x, 0.5) =

(
0

0

)
0 ≤ x ≤ 1.

We assume that the slip bound is constant (s = 0.09). An example of a non structured mesh
used is presented in Fig. 5.6. The numerical tests are performed with GETFEM++, the C++
�nite-element library developed by Y. Renard's team (see [52]).

Figure 5.6: Non-structured mesh.
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5.4. Numerical experiments

5.4.1 Numerical solution

The algebraic formulation of Problem (5.18) is given as follows

(5.47)


Find U ∈ RN , LN ∈Mh

N and LT ∈Mh
T (s) such that

KU −BT

NLN −B
T

TLT = F,

(LN − LN )T (BNU +DNγLN ) ≥ 0, ∀LN ∈Mh
N ,

(LT − LT )T (BTU +DTγLT ) ≥ 0, ∀LT ∈Mh
T (s),

where U is the vector of degrees of freedom (d.o.f.) for uh, LN (resp. LT ) is the vector of d.o.f.

for the normal multiplier λhn (resp. for the tangant multiplier λht ), M
h
N (resp. M

h
T (s)) is the set

of vectors LN (resp. LT ) such that the corresponding multiplier lies in Mh
N (resp. in Mh

T (s)),
K is the classical sti�ness matrix coming from the term a(uh,vh), F is the right-hand side
corresponding to the Neumann boundary condition and the volume forces, and BN , BT , DNγ ,
DTγ are the matrices corresponding to the terms b(λhn,v

h), b(λht ,v
h), γ

∫
Γc

(λhn−PWH (λhn))(µhn−
λhn)dΓ and γ

∫
Γc

(λht − PWH (λht ))(µht − λht )dΓ, respectively.
The inequalities in (5.47) can be expressed as an equivalent projection

(5.48) LN = P
M
h
N

(LN − r(BNU +DNγLN )),

(5.49) LT = P
M
h
T (s)

(LT − r(BTU +DTγLT )),

where r is a positive augmentation parameter. This last step transforms the contact conditions
into nonlinear equations and we have to solve the following system:

(5.50)



Find U ∈ RN , LN ∈Mh
N and LT ∈Mh

T such that
KU −BT

NLN −B
T

TLT − F = 0,

−1

r

[
LN − P

M
h
N

(LN − r(BNU +DNγLN ))

]
= 0,

−1

r

[
LT − P

M
h
T (s)

(LT − r(BTU +DTγLT ))

]
= 0.

This allows us to use the semi-smooth Newton method (introduced for contact and friction
problems in [53]) to solve Problem (5.50). The term `semi-smooth' comes from the fact that
projections are only piecewise di�erentiable. Practically, it is one of the most robust algorithms
to solve contact problems with or without friction. In order to write a Newton step, one has to
compute the derivative of the projection (5.48) and (5.49). An analytical expression can only be
obtained when the projection itself is simple to express. This is the case for instance when the
set Mh(s) is chosen such that the contact condition is satis�ed on each �nite-element node of
the contact boundary (such as Mh

0(s) or Mh
1(s)). In this case, the projection can be expressed

component-wise (see [54]).
In order to keep the independence between the mesh and the crack, the approximation space

W h for the multiplier is chosen to be the trace on ΓC of a Lagrange �nite-element method de�ned
on the same mesh as Vh and its degree will be speci�ed in the following. Let us denote Xh the
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Chapter 5. A local projection stabilized X-FEM

space corresponding to the Lagrange �nite-element method. The choice of a basis of the trace
space W h = Xh|ΓC is not completely straightforward. Indeed, the traces on ΓC of the shape

functions of Xh may be linearly dependent. A way to overcome this di�culty is to eliminate the
redundant functions. Our approach in the presented numerical experiments is as follows. In a
�rst time, we eliminate locally dependent columns of the mass matrix

∫
ΓC
ψiψjdΓ, where ψi is

the �nite-element shape function of Xh, with a block-wise Gram-Schmidt algorithm. In a second
time, we detect the potential remaining kernel of the mass matrix with a Lanczos algorithm.

The decomposition into patches is made using a graph partitioner algorithm. In the presented
numerical tests we use the free software METIS [79]. The nodes of the graph consist in the
elements having an intersection with ΓC and the edges connect adjacent elements. Additionally,
a load corresponding to the size of the intersection is considered on each elements. The partition
is a very fast operation.

5.4.2 Numerical tests

In this section, we present numerical tests of the stabilized and non stabilized unilateral contact
problems for the following, di�erently enriched, �nite-element methods: P2/P1, P2/P0, P1 +/P1,
P1/P1, P1/P0. The notation Pi/Pj (resp. P1+/P1) means that the displacement is approximated
with a Pi extended �nite-element method (resp. a P1 extended �nite-element method with an
additional cubic bubble function) and the multiplier with a continuous Pj �nite-element method
for j > 0 (resp. continuous P1 �nite-element method).

The numerical tests were performed on non-structured meshes with h =

0.108, 0.057, 0.03, 0.016, 0.008 respectively. The reference solution is obtained with a
structured P2/P1 method and h = 0.0021. The Von Mises stress of the reference solution is
presented in Fig. 5.7(c). Its distribution shows that the von Mises stress is not singular at
the crack lips. The normal and tangent contact stress of the reference solution are presented
in Fig. 5.7(a) and Fig. 5.7(b) respectively. The normal and tangent contact stresses are not
singular at the crack lips which con�rms the theoretical result.

Without stabilization: The curves in the non-stabilized case are given in Fig. 5.8(a) for the
error in the L2(Ω)-norm on the displacement, in Fig. 5.8(b) for the error in the H1(Ω)-norm on
the displacement and in Fig. 5.8(c) for the error in the L2(ΓC)-norm on the contact stress. The
P1/P1 and P1/P0 versions generally work without stabilization even though a uniform inf-sup
condition cannot be proven. Fig. 5.8(a) shows that the rate of convergence in the error L2(Ω)-
norm is approximatively of order 2.2 for the P2/Pj methods and of order 1.6 for the P1/Pj
methods. Note that the singularity due to the transition between contact and non contact is
expected to be in H5/2−η(Ω) for any η > 0. Theoretically, this limits the convergence rate to
3/2− η in the H1(Ω)-norm.

Fig. 5.8(b) shows that the rate of convergence in energy norm is approximatively of order 2

for the P2/Pj methods and of order 1.2 for the P1/Pj methods. Fig. 5.8(c) shows that, the rate
of convergence in the error L2(ΓC)-norm is optimal for the P2/Pj methods (of order 1) and not
optimal for the remaining couple of elements (approximatively of order 0.3 for the P1/P1 and
P1/P0 methods and approximatively of order 0.7 for the P1 + /P1 method). It seems that the
presence of some spurious modes a�ects these rates of convergence.
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5.4. Numerical experiments

(a) Normal contact stress for the reference solution (b) Tangent contact stress for the reference solution

(c) Von Mises stress for the reference solution

Figure 5.7: Von Mises stress and contact stress for the reference solution (Note that the presence
of friction in the non-contact zone (i.e. λn 6= 0) is du to the use of Tresca model).

Stabilized method: The curves in the stabilized case are given in Fig. 5.9(a) for the error
in the L2(Ω)-norm on the displacement, in Fig. 5.9(b) for the error in the H1(Ω)-norm on the
displacement and in Fig. 5.9(c) for the error in the L2(ΓC)-norm of the contact stress. Similarly
to the non stabilized method, Fig. 5.9(b) shows that we have an optimal rate of convergence, with
a slight di�erence, for the error in the L2(Ω)-norm and the H1(Ω)-norm on the displacement.
For the error in the L2(ΓC)-norm of the contact stress, Fig. 5.9(c) shows that the local projection
stabilization eliminates the spurious modes for the P1/P1, P1/P0 and P1 + /P1 methods.
Concerning the error in L2(ΓC)-norm the value of the stabilization parameter can also be divided
into two zones (see Fig. 5.10(a), and Fig. 5.10(b)). The �rst zone is where the error remains
almost constant when the stabilization parameter γ increases. The second zone is where the error
increases when the stabilization parameter γ increases. Note that for a relatively large mesh size,
the local projection stabilization has no in�uence. Now, concerning the minimal patch size, the
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Chapter 5. A local projection stabilized X-FEM

(a) Error in L2(Ω)-norm of the displacement (b) Error in H1(Ω)-norm of the displacement

(c) Error in L2(ΓC)-norm of the contact stress

Figure 5.8: Convergence curves in the non stabilized case
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5.4. Numerical experiments

(a) Error in L2(Ω)-norm of the displacement (b) Error in H1(Ω)-norm of the displacement

(c) Error in L2(ΓC)-norm of the contact stress

Figure 5.9: Convergence curves in the stabilized case

inf-sup condition is proven to be satis�ed in [61] for a size greater or equal to 3h. Numerically,
the inf-sup condition seems to be satis�ed for smaller values of the minimal patch size. In our
numerical experiments, we found an optimal value between h and 2h. For this interval of values
we have the same result, with a slight di�erence, as presented in Fig. 5.10(a) and Fig. 5.10(b).
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Chapter 5. A local projection stabilized X-FEM

(a) P1/P0-elements (b) P1/P1-elements

Figure 5.10: In�uence of the stabilization parameter in L2(ΓC)-norm of the contact stress

5.5 Conclusion

We adapt the local projection stabilization technique to the nonlinear small strain elastostatics
problem with Tresca frictional contact. A main advantage compared to some other stabilization
techniques like the Barbosa-Hughes one is that is only a�ects the multiplier equation in a manner
that is independent of the problem to be solved.
We have obtained an existance and uniqueness results for the approximated Tresca frictional con-
tact problem in elasticity. Concerning the three contact conditions we considered theoretically,
the given a priori error estimates are obviously sub-optimal. This is probably due to technical
reasons.
In the numerical tests we considered, the stabilized methods have indeed an optimal rate of con-
vergence. Similarly to [18], the unstabilized methods have also an optimal rate of convergence
concerning the displacement. This may lead to the conclusion that no locking phenomenon was
present in the numerical situation we studied despite the non-satisfaction of the discrete inf-sup
condition. The fact that such a locking situation may exist or not in the studied framework
(contact problem on crack lips for a linear elastic body) is an open question.
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General conclusions

In this Ph.D. we gave a mathematical and numerical analysis of convergence and stability of
some mixed or hybrid formulations resulting from the numerical solution of some constrained
optimization problem with Lagrange multiplier method in the framework of the eXtended Finite
Element Method (XFEM). Except the �rst chapter, each chapter of this thesis is the subject of
a published or submitted paper. In Chapter 2 we saw, by using a general technique introduced
by Brezzi and Fortin, that the mixed formulation with P2/P0 is stable whent the crack cuts the
mesh far enough from the vertices. We have given a mathematical result of quasi-optimal error
estimate. We have shown numerically that the X-FEM cut-o� formulation is stable, regardless of
the position of the crack. Similar to the X-FEM with �xed enrichment area, the X-FEM cut-o�
gives an optimal convergence rate but without a signi�cant additional costs.
The second axis, which present the main content of the thesis, is dedicated to the use of some
stabilized Lagrange multiplier methods. The particularity of these stabilized methods is that the
stability of the multiplier is provided by adding supplementary terms in the weak formulation.
In chapter 3 we studied the Barbosa-Hughes stabilization of the hybrid formulation of frictionless
contact problems for cracked elastic bodies in the framework of X-FEM. Theoretically, the given
a priori error estimates of the three contact conditions are obviously suboptimal. This limitation
of the mathematical analysis is not speci�c to the approximation of contact problems in the
framework of XFEM. It is in fact particularly true for the approximation of the contact condition
with Lagrange multiplier. This is probably due to technical reasons. In the numerical tests we
considered, the stabilized methods have indeed an optimal rate of convergence and no locking
phenomenon was present in the numerical situation we studied despite the non-satisfaction of
the discrete inf-sup condition.
In chapter 4, we presented a new consistent method based on local projections for the stabilization
of elliptic boundary value problems in the framework of extended �nite element method with a
�ctitious domain approach. A main advantage compared to some other stabilization techniques
like the Barbosa-Hughes one is that it only a�ects the multiplier equation in a manner that is
independent of the problem to be solved. This makes the extension to other linear or nonlinear
problems very easy. In the contex of this new stabilized method we proved the existence and
uniqueness of the stabilised approximated problem. A priori estimates are given. This result
does not ensure an optimal rate of convergence when a quadratic �nite element is used for the
main unknown due to the fact that the local projection is made on piecewise constants. The
method could be generalized to the projection on (discontinuous) piecewise a�ne or piecewise
quadratic functions for high order approximations. In chapter 5 we adapt the local projection
stabilization technique to the nonlinear small strain elastostatics problem with Tresca frictional
contact. We have obtained a result of existence and uniqueness for the approximated Tresca
frictional contact problem in elasticity. Concerning the three contact conditions we considered
theoretically, the given a priori error estimates are obviously sub-optimal. This is also probably
due to technical reasons. In the numerical tests we considered, the stabilized methods have
indeed an optimal rate of convergence. The unstabilized methods have also an optimal rate
of convergence concerning the displacement. This may lead to the conclusion that no locking
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General conclusions

phenomenon was present in the numerical situation we studied despite the non-satisfaction of
the discrete inf-sup condition. The fact that such a locking situation may exist or not in the
studied framework (contact problem on crack lips for a linear elastic body) is an open question.
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Appendix A

Appendix

Appendix A : Singularity of the contact stress

Lemma A.1. Assume that we have a �nite number of transition points between the contact and
the non contact zones on the crack lips, then the contact stress σn is in H1/2(ΓC).

Proof. Let m be a transition point which delimits two zones of nonzero length, a non contact
zone (un < 0) and a zone where the contact is e�ective (un = 0). Moussaoui et al. [48] show that

the asymptotic displacement near this transition point is no more singular than r3/2 sin

(
3

2
θ

)
where (r, θ) are the polar coordinate relative to m and the transition point. Consequently, the
normal contact stress is not singular near the transition points between the contact and the non
contact zones. This analysis, done for the scalar Signorini problem, can be straightforwardly
generalized to the Signorini problem for two dimensional elasticity. In order to shorten the proof
we present only the analysis for the vicinity of the crack-tip.
We can restrict the study to the case of a contact occurring on a neighborhood of the crack-tip,
since σn = 0 if there is no contact at the crack-tip.
Using the div-rot lemma, we rewrite the stress components in terms of an Airy function φ as
follows:

σxx =
∂2φ

∂y2
, σyy =

∂2φ

∂x2
, σxy = σyx = − ∂2φ

∂x∂y
.

In two-dimensional isotropic elasticity, the Hooke's law is given by:

σxx = (λL + 2µL)εxx + λLεyy,

σyy = (λL + 2µL)εyy + λLεxx,

σxy = µL(εxy + εyx) = 2µLεxy.

So

εxy = εyx = − 1

2µL

∂2φ

∂x∂y
,

εxx =
1

4µL(λL + µL)

(
(λL + 2µL)

∂2φ

∂y2
− λ∂

2φ

∂x2

)
,

εyy = − 1

4µ(λL + µL)

(
λL
∂2φ

∂y2
− (λL + 2µL)

∂2φ

∂x2

)
.

The compatibility relations
∂2εxx
∂y2

+
∂2εyy
∂x2

− 2
∂2εxy
∂x∂y

= 0,
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Appendix A. Appendix

lead to the bi-harmonic equation:

λL + 2µL
4µL(λL + µL)

[
∂4φ

∂x4
+
∂4φ

∂y4
+ 2

∂4φ

∂x2∂y2

]
= 0 ⇐⇒ ∆2φ = 0,

whose general solution in polar coordinates is a linear combination of the following elementary
functions:

rs+1 cos(s− 1)θ, rs+1 cos(s+ 1)θ, rs+1 sin(s− 1)θ, rs+1 sin(s+ 1)θ.

Let σrr, σθθ and σrθ be the polar stress components. By using er = (cos θ, sin θ), eθ =

(− sin θ, cos θ) and the fact that (er, eθ,k) is direct and ∇φ ∧ k is independent of x, y, we
obtain

σrr =
1

r2

∂2φ

∂θ2
+

1

r

∂φ

∂r
, σθθ =

∂2φ

∂r2
, σrθ =

1

r2

∂φ

∂θ
− 1

r

∂2φ

∂θ∂r
.

Besides, we have

σxx = (λL + 2µL)
∂ux
∂x

+ λL
∂uy
∂y

,

σyy = (λL + 2µL)
∂uy
∂y

+ λL
∂ux
∂x

,

σxy = µL(εxy + εyx) = µL

(
∂ux
∂y

+
∂uy
∂x

)
,

and ∇u =

(
∂ur
∂r

er +
∂uθ
∂r

eθ

)
⊗ er +

(
1

r

∂ur
∂θ

er +
1

r
ureθ −

1

r
uθer +

1

r

∂uθ
∂θ

eθ

)
⊗eθ where ur and

uθ are the radial and angular components of the displacement. So in polar coordinates, it becomes

σrr = (λL + 2µL)
∂ur
∂r

+
λL
r

(
ur +

∂uθ
∂θ

)
,

σθθ =
(λL + 2µL)

r

(
ur +

∂uθ
∂θ

)
+ λL

∂ur
∂r

,

σrθ = µL

(
∂uθ
∂r

+
1

r

∂ur
∂θ
− 1

r
uθ

)
.

Consequently,

1

r2

∂2φ

∂θ2
+

1

r

∂φ

∂r
= (λL + 2µL)

∂ur
∂r

+
λL
r

(
ur +

∂uθ
∂θ

)
,

∂2φ

∂r2
=

(λL + 2µL)

r

(
ur +

∂uθ
∂θ

)
+ λL

∂ur
∂r

,

1

r2

∂φ

∂θ
− 1

r

∂2φ

∂θ∂r
= µL

(
∂uθ
∂r

+
1

r

∂ur
∂θ
− 1

r
uθ

)
.

In [49], Grisvard gives the corresponding displacement in polar coordinates with

ρ = 1 +
2µL

λL + µL
:

ur = rs(a sin(s+ 1)θ + b cos(s+ 1)θ + c(ρ− s) sin(s− 1)θ − d(ρ− s) cos(s− 1)θ),

uθ = rs(a cos(s+ 1)θ − b sin(s+ 1)θ − c(ρ+ s) cos(s− 1)θ − d(ρ+ s) sin(s− 1)θ),

(A.1)
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where a, b, c, d are generic constants. The P1 �nite-element method will not optimally approx-
imate the terms of this form which are not in H2(Ω). So we have to determine the terms for
which the real part of s is such that 0 < Re(s) < 1.
The boundary conditions for the e�ective contact without friction on the crack with θ = π can
be expressed as:

uθ(r, π)− uθ(r,−π) = 0,

σθθ(r, π)− σθθ(r,−π) = 0,

σrθ(r, π) = σrθ(r,−π) = 0.

The �rst equality expresses the contact condition: the jump of the normal displacement is equal
to zero because we are not in the opening mode, the second equation represents the action-
reaction law and the last equality expresses the absence of friction.
By using (A.1), these conditions read as:

uθ(r, π)− uθ(r,−π) = 2rs(−b sin(s+ 1)π − d(ρ+ s) sin(s− 1)π)

= 2rs(b sin(sπ) + d(ρ+ s) sin(sπ)),

σrθ(r, π) = µLr
s−1(2as cos(s+ 1)π − 2bs sin(s+ 1)π − 2cs2 cos(s− 1)π

−2ds2 sin(s− 1)π)

= 2µLr
s−1(−as cos(sπ) + bs sin(sπ) + cs2 cos(sπ) + ds2 sin(sπ)),

σrθ(r,−π) = 2µLr
s−1(−as cos(sπ)− bs sin(sπ) + cs2 cos(sπ)− ds2 sin(sπ)),

σθθ(r, π)− σθθ(r,−π) = rs−1(λL(2as sin(s+ 1)π + 2c(ρ− s)s sin(s− 1)π)

+(λL + 2µL)(−2as sin(s+ 1)π + 2cs(ρ+ s− 2) sin(s− 1)π))

= rs−1(4µLas sin(sπ)− 4csµL(s+ 1) sin(sπ)).

The determinant of the corresponding linear system can be written as:

D = 32µ3
L
s3r4s−3 sin2(sπ)

∣∣∣∣∣∣∣∣
0 1 − cos(sπ) − cos(sπ)

1 0 sin(sπ) − sin(sπ)

0 −s− 1 (s− 1) cos(sπ) (s− 1) cos(sπ)

ρ+ s 0 (s− 1) sin(sπ) −(s− 1) sin(sπ)

∣∣∣∣∣∣∣∣
= 128µ3

L
s3r4s−3(ρ+ 1) sin3(πs) cos(sπ).

So D = 0 reduces to sin3(πs) cos(sπ) = 0 and the only solution satisfying 0 < Re(s) < 1 is

s =
1

2
.

For s =
1

2
, we obtain:

a =
3c

2
, b = 0, d = 0

which means that only one singular mode is present. For this singular mode we have also:
σθθ(r, π) = σθθ(r,−π) = 0. This property corresponds to the classical Neumann boundary
condition on the crack lips. The consequence is there is no supplementary singular mode to the
classical shear mode and the normal stress component is not singular on the crack lips.
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Appendix

Appendix B : Proof of Lemma 3.3.2

In order to prove Lemma 3.3.2, we distinguish three cases: totally enriched triangles, partial
enriched triangles and the triangle containing the crack tip.

First, for a totally enriched triangle (Fig. 3.4(a)) we have Πhur|T∩Ωi = Ihũir|T∩Ωi (see Lemma
3.3.1). Then, EiTur = Ihũir and we have

‖ũir − EiTur‖0,T = ‖ũir − Ihũir‖0,T ,
. h2‖ũir‖2,T ,

‖ũir − EiTur‖1,T . h‖ũir‖2,T .

Second, for a partially enriched triangle and considering the particular case shown in Fig. 3.4(b)
we have:

Πhur|T∩Ω1 = u1
r(x1)ϕ1 + u2

r(x2)ϕ2 + u1
r(x3)ϕ3,

= Πhũ1
r + (ũ1

r(x2)− u2
r(x2))ϕ2,

Πhur|T∩Ω2 = u1
r(x1)ϕ1 + u2

r(x2)ϕ2 + ũ2
r(x3)ϕ3,

= Πhũ2
r + (ũ2

r(x1)− u1
r(x1))ϕ1.

In this case E1
Tur = Πhũ1

r+(ũ1
r(x2)−u2

r(x2))ϕ2 and E2
Tur = Πhũ2

r+(ũ2
r(x1)−u1

r(x1))ϕ1. Then
we have:

‖ũ1
r − E1

Tur‖0,T = ‖ũir −Πhũ1
r − (ũ1

r(x2)− u2
r(x2))ϕ2‖0,T ,

. ‖ũ1
r −Πhũ1

r‖0,T+ | ũ1
r(x2)− u2

r(x2) | ‖ϕ2‖0,T ,
‖ũ1

r − E1
Tur‖1,T . ‖ũ1

r −Πhũ1
r‖1,T+ | ũ1

r(x2)− u2
r(x2) | .

Furthermore, we have from [17]:

| ũ1
r(x2)− u2

r(x2) | . hT | ũ1
r − ũ2

r |2,B(x∗,hT ),

and since ‖ϕ2‖0,T . h we can conclude that:

‖ũ1
r − E1

Tur‖0,T . h2
T

(
‖ũ1

r‖2,T+ | ũ1
r − ũ2

r |2,B(x∗,hT )

)
,

‖ũ1
r − E1

Tur‖1,T . hT

(
‖ũ1

r‖2,T+ | ũ1
r − ũ2

r |2,B(x∗,hT )

)
.
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In the same way we have:

‖ũ2
r − E2

Tur‖0,T . h2
T

(
‖ũ2

r‖2,T+ | ũ1
r − ũ2

r |2,B(x∗,hT )

)
,

‖ũ2
r − E2

Tur‖1,T . hT

(
‖ũ2

r‖2,T+ | ũ1
r − ũ2

r |2,B(x∗,hT )

)
.

A similar reasoning can be applied to the other situations of partially enriched triangles to obtain
the same result.
Finally, for the triangle containing the crack tip, and in the particular case described in Fig. 3.4(c)
we have:

Πhur|T∩Ω1 = u1
r(x1)ϕ1 + u2

r(x2)ϕ2 + u2
r(x3)ϕ3,

= Πhũ1
r + (u2

r(x2)− ũ1
r(x2))ϕ2 + (u2

r(x3)− ũ1
r(x3))ϕ3,

Πhur|T∩Ω2 = u1
r(x1)ϕ1 + u2

r(x2)ϕ2 + u2
r(x3)ϕ3,

= Πhũ2
r + (u1

r(x1)− ũ2
r(x1))ϕ1.

Thus, we have E1
Tur = Πhũ1

r + (u2
r(x2)− ũ1

r(x2))ϕ2 + (u2
r(x3)− ũ1

r(x3))ϕ3 and E2
Tur = Πhũ2

r +

(u1
r(x1)− ũ2

r(x1))ϕ1. Note that we have (see [17]):

| uir(xj)− ũlr(xj) | . hT | ũ1
r − ũ2

r |2,B(x∗,hT ),

with j ∈ {1, 2, 3}, i ∈ {1, 2}, l = 3 − i and xj a node belonging to a partially enriched triangle
or triangle containing the crack tip. Then, by the same way in the case of partially enriched
triangle we have the following result for i ∈ {1, 2}:

‖ũ1
r − EiTur‖0,T . h2

T

(
‖ũir‖2,T+ | ũ1

r − ũ2
r |2,B(x∗,hT )

)
,

‖ũ2
r − EiTur‖1,T . hT

(
‖ũir‖2,T+ | ũ1

r − ũ2
r |2,B(x∗,hT )

)
.

This concludes the proof, since a similar reasoning can be applied to the other situations of a
triangle containing the crack tip. �
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Appendix C

Appendix

Appendix C : Proof of the Inf-sup condition

Lemma A.2. Assume that the length of segment of SH is not less than 3h. Then, there exists
a constant β∗ > 0, independent of h and H, such that

(C.1) ∀µH ∈ (WH)′, sup
vh∈V h

b(vh, µh)

‖vh‖V
≥ β∗‖µH‖W ′ .

with b(vh, µh) =
〈
µh, JvhK

〉
W ′,W

Proof. In order to proof this condition we use a general technique introduced by Brezzi and
Fortin in their book [1]. This technique can be summarized in the following proposition:

Proposition 7 ([1]). Suppose that

(C.2) ∀ µ ∈W ′, sup
v∈V

b(v, µ)

‖ v ‖V
≥ β ‖µ‖W ′ ,

and assume that there exists a family of uniformly continuous operators Πh from V into V h

satisfying:

b(Πhw − w, µh) = 0, ∀µh ∈ (W h)′,(C.3a)

‖ Πhv ‖V6 c ‖ v ‖v,(C.3b)

with c independent of h. Then we have

(C.4) ∀ µh ∈ (W h)′, sup
vh∈V h

b(vh, µh)

‖ vh ‖V h
≥ k0 ‖µh‖W ′ ,

with k0 =
β

c
.

In our case the inf-sup condition (C.2) is true. Indeed, in the rest of this chapter, we proof
the LBB condition relying on Proposition 7.

We have the length of each segment of SH is not less than 4h, then similarly to [61] we can
�nd a node aS such that the macro-element ∆S consisting of the six triangles of T h with common
vertex aS satis�es the following properties:

• S intersects at least one interior segment of ∆S at a distance from aS that is no larger then
half the length of this segment.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0007/these.pdf 
© [S. Amdouni], [2013], INSA de Lyon, tous droits réservés



Appendix C. Appendix

• The end point of S do not belong to the interior of ∆S .

• If S and S
′
are any two segments of SH , ∆S

⋂
∆S′ is either empty or reduced to a node

or a segment of T h, in the other worlds, the macro-elements related to SH do not overlap.

Let Π1 the H1-stable interpolation operator of Vh de�ned in Chapter 2. Then for any v ∈ H1(Ω),
we propose the following restriction Πhv:

(C.5) Πhv = Π1v +
∑
S∈SH

CSHϕaS ,

where ϕaS denotes the basis function of V h, with support ∆S , that take the value 1 at the node
aS and 0 at all other nodes of T h, H is the Heaviside function and each constant CS is chosen
such that

(C.6)
∫
S
JΠhvKdΓ =

∫
S
JhvKdΓ.

It remains to show that such constant CS exist and to establish the stability inequality C.3a.
Using the de�nition of Πhv we have∫

S
JΠ1vK− JvKdΓ +

∑
k∈SH

Ck

∫
S
ϕakdΓ = 0.

Using the properties of ∆S we have

(C.7) CS = − 1∫
S ϕaSdΓ

∫
S
JΠ1vK− JvKdΓ.

To derive an upper bound for the numerator of C.7, we require the next two lemmas.

Lemma A.3. [61] Let T̂ denote the reference unit triangle and let l̂ be any straight line segment
that intersects T̂ . Then, there exist a constant Ĉ, independent of l̂ such that

(C.8) ∀ŵ ∈ H1(T̂ ), ‖ŵ‖
0,l̂
≤ Ĉ‖ŵ‖

1,l̂

Lemma A.4. [61] Let l be a straight line segment that intersects a non degenerate triangle T
and let l̂ be its image on the reference unit triangle T̂ by the a�ne transformation that maps
T̂ onto T . Let JT denote the Jacobian matrix of this transformation and let ‖ det(JT )‖ be its
Euclidean norm. Then,

(C.9)
|l|
|l̂|
≤ ‖JT ‖

Using this two last lemma we can prove

Lemma A.5. [61] We always have:

(C.10)
∫
S
ϕaSdΓ ≥ 1

4
√

2
h.
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Now let us show that the operator Πhv de�ned by C.5 satis�es the stability estimate C.3b
with a constant C independent of h and H. For any v ∈ H1(Ω), we have

‖Πhv‖1,Ω ≤ ‖Π1v‖1,Ω + ‖
∑
S∈SH

CSHϕaS‖1,Ω,

As each ϕaS has support ∆S and these supports are all disjoint, we have

‖
∑
S∈SH

CSHϕaS‖1,Ω ≤
( ∑
S∈SH

|CS |2‖ϕaS‖21,∆S

)1/2

we can see easy as in [61] that there exist a constant Ĉ3 independent of h and H such that

(C.11) ‖ϕaS‖1,∆S
≤ Ĉ3.

Next let us �nd a bound for CS . Let li denote the straight line segments of S and Ti the element
of T h intersected by li. We denote by E1 (resp. E2) the continuous extension of Π1v|Ω1

(resp.

Π1v|Ω2
) de�ned by:{

E1v =
∑

j∈I\IH αjϕj +
∑

j∈IH βjϕj in Ω1,

E2v =
∑

j∈I\IH αjϕj +
∑

j∈IH γiϕjH2 in Ω2,

with

αi = 1
|∆i|

∫
∆i

ũkdx if xi ∈ Ωk, βi = 1
|∆i|

∫
∆i

ũ1dx,

γi = 1
|∆i|

∫
∆i

ũ2dx, Sj :=
⋃{S ∈ τh : supp(ϕj) ∩ S 6= ∅},

where ∆j is the maximal ball centered at xj such that ∆j ⊂ Sj and {xj}Jj=1 are the interior
nodes of mesh τh.
From C.7 and C.10, we have for all S ∈ SH

|CS | ≤
4
√

2

h

∣∣∣∣ ∫
S
JΠ1vK− JvKdΓ

∣∣∣∣,
≤ 4

√
2

h

(∣∣∣∣ ∫
S
Π1v|Ω1

− v1dΓ

∣∣∣∣+

∣∣∣∣ ∫
S
Π1v|Ω2

− v2dΓ

∣∣∣∣),
≤ 4

√
2

h

(∑
i

|li|1/2‖Π1v|Ω1
− v1‖0,li +

∑
j

|lj |1/2‖Π1v|Ω2
− v2‖0,lj

)
,

≤ 4
√

2

h

(∑
i

|li|1/2‖Π1v|Ω1
− ṽ1‖0,li +

∑
j

|lj |1/2‖Π1v|Ω2
− ṽ2‖0,lj

)
,

Then switching to the reference element and applying Lemmas A.3 and A.4, we obtain

|CS | ≤
4
√

2

h
Ĉ

(∑
i

|li|1/2‖JTi‖1/2‖Ê1v − ̂̃v1‖1,T̂ +
∑
j

|lj |1/2‖JTj‖1/2‖Ê2v − ̂̃v2‖1,T̂
)
,
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where Ĉ is the constant of Lemma A.3. Now, switching back to Ti and Tj , we have

|CS | ≤
4
√

2

h
Ĉ

( ∑
i

|li|1/2‖JTi‖1/2|det JTi |−1/2
(
‖E1v − ṽ1‖20,Ti + ‖JTi‖2‖E1v − ṽ1‖21,Ti

)1/2
+
∑
j

|lj |1/2‖JTj‖1/2|det JTj |−1/2
(
‖E2

Tjv − ṽ2‖0,Tj + ‖JTj‖2‖E2
Tjv − ṽ2‖1,Tj

)1/2)
,(C.12)

As the triangulation T h is trivial regular, C.11 and C.12 yield( ∑
S∈SH

|CS |2‖ϕaS‖21,∆S

)1/2

≤ 1

h
Ĉ4

√
L

( 2∑
j=1

( ∑
T
⋂

Γc 6=0

‖EjT v − ṽj‖20,T + h2‖EjT v − ṽj‖21,T
)1/2)

Using the same argument of the proof of Lemma 1 of chapter 2 we show easy that( ∑
S∈SH

|CS |2‖ϕaS‖21,∆S

)1/2

≤ Ĉ5‖v‖1,Ω

Using this last result with Lemma 1 of chapter 2 we have inequality C.3b wich �nishes the proof
of Lemma A.2.
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Abstract: This Ph.D. thesis was done in collaboration with �La Manufacture Française

des Pneumatiques Michelin�. It concerns the mathematical and numerical analysis of con-
vergence and stability of mixed or hybrid formulation of constrained optimization problem with
Lagrange multiplier method in the framework of the eXtended Finite Element Method (XFEM).
First we try to prove the stability of the X-FEM discretization for incompressible elastostatic
problem by ensured a LBB condition. The second axis, which present the main content of the
thesis, is dedicated to the use of some stabilized Lagrange multiplier methods. The particu-
larity of these stabilized methods is that the stability of the multiplier is provided by adding
supplementary terms in the weak formulation. In this context, we study the Barbosa-Hughes
stabilization technique applied to the frictionless unilateral contact problem with XFEM-cut-o�.
Then we present a new consistent method based on local projections for the stabilization of a
Dirichlet condition in the framework of extended �nite element method with a �ctitious domain
approach. Moreover we make comparative study between the local projection stabilization and
the Barbosa-Hughes stabilization. Finally we use the local projection stabilization to approxi-
mate the two-dimensional linear elastostatics unilateral contact problem with Tresca frictional
in the framework of the eXtended Finite Element Method X-FEM.
Keywords: XFEM, Fictitious domain, Unilateral contact, mixed formulation, Stabilization.

Résumé: Ce mémoire de thèse à été réalisée dans le cadre d'une collaboration scienti�que avec
�La Manufacture Française des Pneumatiques Michelin�. Il porte sur l'analyse mathé-
matique et numérique de la convergence et de la stabilité de formulations mixtes ou hybrides
de problèmes d'optimisation sous contrainte avec la méthode des multiplicateurs de Lagrange
et dans le cadre de la méthode éléments �nis étendus (XFEM). Tout d'abord, nous essayons de
démontrer la stabilité de la discrétisation X-FEM pour le problème d'élasticité linéaire incom-
pressible en statique. Le deuxième axe, qui représente le contenu principal de la thèse est dédié à
l'étude de certaines méthodes de multiplicateur de Lagrange stabilisées. La particularité de ces
méthodes est que la stabilité du multiplicateur est assurée par l'ajout de termes supplémentaires
dans la formulation faible. Dans ce contexte, nous commençons par l'étude de la méthode de
stabilisation de Barbosa-Hughes appliquée au problème de contact unilatéral sans frottement
avec XFEM cut-o�. Ensuite, nous construisons une nouvelle méthode basée sur des techniques
de projections locales pour stabiliser un problème de Dirichlet dans le cadre de X-FEM et une
approche de type domaine �ctif. Nous faisons aussi une étude comparative entre la stabilisa-
tion avec la technique de projection locale et la stabilisation de Barbosa-Hughes. En�n, nous
appliquons cette nouvelle méthode de stabilisation aux problèmes de contact unilatéral en élasto-
statique avec frottement de Tresca dans le cadre de X-FEM.
Mots clés: XFEM, Domaine �ctif, Contact unilatéral, Formulation mixte, Stabilisation.
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