Introduction

The title of this thesis is Numerical analysis of some saddle point formulation with X-FEM type approximation on cracked or ctitious domains. It concerns the mathematical and numerical analysis of convergence and stability of mixed or hybrid formulation of constrained optimization problem with Lagrange multiplier method in the framework of the eXtended Finite Element Method (X-FEM). We begin by introducing the incompressible and compressible elastostatic problems. Then we present the unilateral contact condition in the elastostatic cracked domains.

After that we give some general aspects of the eXtended Finite Element Method (X-FEM).

Finally we present the outline of this thesis. The linearized strain tensor is dened by

ε ij = 1 2
∂u i ∂x j + ∂u j ∂x i in Ω with i, j ∈ {1, 2}.

The stress tensor σ is given by the anisotropic material behavior law

σ(u) = C : ε(u), in Ω,
with C a fourth order elastic tensor characterizing the material rigidity.

In the case of an isotropic material (i.e., which behaves in the same way in all directions) the law of material behavior is reduced to the Hooke's law 

-div σ(u) = f , in Ω, (1.2) 
σ(u) = C : ε(u), in Ω,

(1.3) u = 0, on Γ D , (1.4) 
σ(u)

• n = t, on Γ N , (1.5) 
σ(u) • n = 0, on Γ c .

(1.6)

with n is the outside normal to the domain Ω.

Let us dene the space H 1 (Ω) = H 1 (Ω, R 2 ) = [H 1 (Ω)] 2 where H 1 (Ω) denotes the classical Sobolev space. Let V be the space of admissible displacements given by

V = u ∈ H 1 (Ω) ; u = 0 on Γ D .
Taking the inner product of the equilibrium equation (1.2) with v ∈ V , and integrating over Ω leads to

- Ω div σ(u) • v dΩ = Ω f • v dΩ.
Using Green's formula for elasticity, we obtain

Ω σ(u) : ε(v) dΩ = Ω f • v dΩ + ∂Ω σ(u) n • v dΩ.
Taking into account the boundary conditions, the previous equation reads

Ω σ(u) : ε(v) dΩ = Ω f • v dΩ + ∂Ω t • v dΩ ∀v ∈ V.
By using equation (1.3), the weak formulation can be written

Find u ∈ V such that a(u, v) = L(v) ∀v ∈ V, with a(u, v) = Ω ε(v) : C : ε(u) dΩ, L(v) = Ω v T f dΩ + ∂Ω v T t dΩ.
Given f ∈ L 2 (Ω) and t ∈ L 2 (Γ N ), thanks to Korn's inequality which implies the coercivity of a(u, v), the existence and uniqueness of the solution to the weak formulation are garanteed by Lax-Milgram's Lemma [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF] 1

.1.3 Incompressible formulation

For incompressible elasticity problems, the classical formulation is unsatisfactory. Indeed, the discretized problem leads to locking solution. To solve this problem, Hermann proposed a particular form of the principle of Hellinger-Reisner [START_REF] Zienkiewicz | The Finite Element Method[END_REF]. He reformulated this principle by decoupling the volume and deviatoric contributions of stress and strain. If we assume that the deviatoric part is calculated from the displacement and the hydrostatic pressure is an independent variable, we nd the mixed formulation in u and p.

The problem of linear elasticity is given by the system:

-

div σ = f , in Ω, σ = C : ε, in Ω, u = 0, on Γ D , σ • n = t, on Γ N , σ • n = 0, on Γ c .
Let p be the hydrostatic pressure dened in two dimensions by: p = -tr(σ) 2 .

Now we decompose the stress tensor σ in two parts: the spherical part and the deviatoric part σ d given by: σ d (u) = σ(u)

+ p I = 2µε d (u),
where

ε d (u) = ε(u) - div(u) 2 I.
For a linear isotropic materials we have: σ = λ(div u)I + 2µε(u),

where λ and µ are the two Lamé coecients which are assumed to be positive.

Let k be a bulk modulus given by: k = E 3(1 -2ν) Then tr(σ) = tr(λ(div u)I + 2µε(u)) = λ(div u) tr(I) + 2µ tr(ε(u)) = (3λ + 2µ)(div u) = 3k(div u).

Therefore (1.7) p = -k div u.

When the material is incompressible (ν = 0.5), the bulk modulus tends to innity. This means that the displacement eld must be divergence free when the behavior tends to be incompressible (1.9)

Incompressible and compressible elasticity problem

When k goes to innity, the problem (1.8) and (1.9) becomes the incompressible problem

-div[σ d -p I] = f in Ω (1.10) div u = 0 in Ω (1.11) Let V = v ∈ H 1 (Ω) with u = 0 on Γ D and Q = L 2 (Ω).
Multiplying the rst equation (resp. the second equation) of the strong formulation by a test function v ∈ V (resp. q ∈ Q). On applying Green's formula for elasticity, we nd the weak mixed formulation    Find (u, p) ∈ (V, Q) such that:

Ω σ d (u) : ε(v) dΩ -Ω p div v dΩ = Ω f • v dΩ + Γ N t • v dΓ, ∀v ∈ V,
Ω q div u dΩ = 0, ∀q ∈ Q.

Subsequently, the weak mixed formulation of the isotropic incompressible linear elastic problem is written as:

   Find (u, p) ∈ (V, Q) such that: a(u, v) -b(v, p) = L(v), ∀v ∈ V, b(u, q) = 0, ∀q ∈ Q, (1.12) 
with:

a(u, v) = Ω σ d (u) : ε(v) dΩ, b(v, p) = Ω p div v dΩ, L(v) = Ω f • v dΩ + Γ N t • v dΓ.
Proposition 1 ([1]). Let a : V ⊗ V -→ R and b : V ⊗ Q -→ R be two continuous bilinear forms that satisfy:

• The bilinear form a(•, •) is coercive on ker B,i.e.,

∃α > 0 ; a(v, v) ≥ α v 2 1,Ω ∀v ∈ ker B.
• There exists a constant β > 0 such that the following inf-sup condition holds:

inf q∈Q sup v∈V b(v, q) q 0,Ω v 1,Ω ≥ β.
Then there exists a unique solution (u, p) of the weak formulation (1.12).

Remark: The coercivity condition follows from the Korn's inequality. To show the inf sup condition it suces to show that Im B is closed. We approximate (u, p) by (u h , p h ) ∈ V h ⊗ Q h . The subspaces V h and Q h are nite dimensional that will be dened later.

The discretized problem is then:

   Find (u h , p h ) ∈ (V h , Q h ) such that a(u h , v h ) -b(v h , p h ) = L(v h ), ∀v h ∈ V h , b(u h , q h ) = 0, ∀q h ∈ Q h .
(1.13)

Proposition 2 (Existence and uniqueness of the discrete problem [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF]). Under the following conditions:

• The bilinear form a(•, •) is coercive on ker B h i.e.;

∃α > 0 ; a(v h , v h ) ≥ α v h 2 1,Ω ∀v h ∈ ker B h .
• There exists a constant β h > 0 such that the following inf-sup condition holds:

inf q∈Q h sup v∈V h b(v h , q h ) q h 0,Ω v h 1,Ω ≥ β h
There exists a unique solution (u h , p h ) of the discrete weak formulation (1.13).

Remark: The constant β h appears in the error bound so that we can loose the convergence of the discrete solution to the continuous solution. To avoid this problem we must show that:

inf q∈Q h sup v∈V h b(v h , q h ) q h 0,Ω v h 1,Ω ≥ β 0 > 0,
with β 0 independent of h. This condition it is the Ladyzhenskaya-Brezzi-Babuska condition (LBB) sometimes called ins-sup condition [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF].

Stability of the mixed formulation Proposition 3 ([1]

). Under the assumptions of existence and uniqueness of solutions (u, p)

and (u h , p h ) of continuous and discrete problems (1.12) and (1.13) and if the LBB condition is satised then:

u -u h 1,Ω + p -p h 0,Ω ≤ c inf v h ∈V h u -v h 1,Ω + inf q h ∈Q h p -q h 0,Ω .
The constant c appearing in the preceding proposition depends, among other things, on 1 α and 1 β 0 hence the importance that the latter constant does not depend on h. Therefore, despite the inf-sup condition is satised, we do not have always converge towards the exact solution. The preceding proposition is valid only if the LBB condition is veried. However, the verication of 1.2. Contact condition this condition for a couple (V h , Q h ) is very dicult to prove in practical situations. Therefore, the numerical evaluation of the inf-sup has been widely studied (see Chapelle and Bathe [START_REF] Chapelle | The inf-sup test[END_REF]).

The numerical evaluation gives an indication of the verication of the LBB condition for a given nite element discretization. The numerical inf-sup test is based on the following proposition.

Proposition 4 ([3]). Let [B], [M ] uu and [M ] pp be the matrices associated with the bilinear form b(•, •), the H 1 -inner product in V h and the L 2 -inner product in Q h and Let µ min the smallest nonzero eigenvalue of the eigenvalue problem :

[B] T [M ] -1 uu [B] V = µ 2 [M ] pp V.
Then the value of β 0 in the LBB condition is simply µ min .

The numerical test proposed in [START_REF] Chapelle | The inf-sup test[END_REF] is to check the stability of the mixed formulation by calculating β h with increasingly rened meshes. Indeed, if log(β h ) continuously decreases as h tends to 0, Chapelle and Bathe [START_REF] Chapelle | The inf-sup test[END_REF] predicted that the nite element violates the LBB condition. Otherwise, if β h stabilizes when the number of elements increases, then the numerical inf-sup test is veried. The contact phenomenon was introduced by Léonard de Vinci in the fteenth century. However, the mathematical study of the contact phenomenon is quite recent. In 1882, Hertz [START_REF] Hertz | Über die berührung fester elastischer korper[END_REF] solved the contact problem of two elastic bodies with curved surfaces. In 1933 Signorini formulate the general problem of the equilibrium of a linearly elastic body in contact with a rigid frictionless foundation. The unilateral contact condition was formulated by Signorini in 1959 [START_REF] Signorini | Questioni de elasticita non linearizzata e semi linearizzata[END_REF]. The rst rigorous analysis of a class of Signorini problems was done in the work of Fichira [START_REF] Fichera | Existence theorems in elasticity-boundary value problem of elasticity with unilateral constraints[END_REF] where the Signorini problem was solved by using variational inequality. In this work, we are mainly interested in the elastostatic unilateral contact problem in cracked domain: frictionless or frictional unilateral contact.

Contact condition

Frictionless unilateral contact condition in cracked domain

The frictionless unilateral contact condition is expressed by the following complementarity relation:

u n ≤ 0, σ n (u) ≤ 0, σ n (u) u n = 0, σ t (u) = 0, (1.14) where u n is the jump of the normal displacement across the crack Γ C (see Fig 1 .2).

The inequality u n ≤ 0 shows that there is no penetration between the crack lips. The rest of this condition shows that if there is no contact (i.e., u n < 0), then there is no reaction between the crack lips of the crack, i.e. σ n (u) = 0; if there is contact (i.e., u n = 0), then there is a normal compression force (σ n (u) < 0) between the crack lips. The absence of the tangential forces of friction is expressed by σ t (u) = 0.

Frictional unilateral contact condition in cracked domain

The simplest friction law is the Tresca friction. It allows to write the unilateral contact problem as a constrained optimization problem. It reads as follows:

(1.15)

       |σ t (u)| ≤ s, a.e. on Γ C , if u t = 0, then |σ t (u)| < s, if u t = 0 then σ t (u) = -s ut | ut | ,
where s ∈ L 2 (Γ C ), s ≥ 0 denotes the given slip threshold supposed independent of the normal stress. This condition expresses two physical situation: slip when u t = 0 and stick when u t = 0. Often, especially in engineering literature, the slip threshold s is chosen as:

s = F|σ n (u)|
where F is the coecient of friction. This choice leads to the classical version of Coulomb's law:

(1.16)

       |σ t (u)| ≤ -Fσ n (u), a.e. on Γ C , if u t = 0, then |σ t (u)| < -Fσ n (u), if u t = 0 then σ t (u) = Fσ n (u) ut | ut | .
1.3 X-FEM: General aspects

Example introducing the concept of enrichment

To introduce the concept of discontinuous enrichment, we present an academic example [START_REF] Moës | A nite element method for cracked growth without remeshing[END_REF]. Let Ω be the cracked domain. This domain is meshed by the classical nite-element method as indicated in Fig. 1.3.

A classical nite-element approximation associated with the duplicated mesh nodes is:

u h (x) = 10 i=1 u i N i (x)
1.3. X-FEM: General aspects (1.17)

u h (x) = 8 i=1 u i N i (x) + a (N 9 (x) + N 10 (x)) + b (N 9 (x) + N 10 (x))H
where H is the jump function dened by:

H x y = 1 if y > 0 -1 if y < 0
In the enriched nite-element method the nodes 9 and 10 shown in 

u h (x) = 8 i=1 u i N i (x) + a N 11 (x) + b N 11 (x)H(x),
where the two terms on the left represent the classical nite-element approximation, and the third term represents the enrichment at the discontinuity. Hence, the notion of enrichment of the classical discretization space is introduced to enable the decoupling between the mesh and the domain discontinuities. We note that the X-FEM mesh (see Fig. To represent these two types of discontinuities, the space of classical nite element discretization is enriched by two types of enhancements:

• Heaviside enrichment.

• Westergaard enrichment.

This enrichment procedure was introduced for the rst time in 1999 by Möes et al. [START_REF] Moës | A nite element method for cracked growth without remeshing[END_REF][START_REF] Moës | Nouvelle frontiére pour les eléments nis[END_REF].

Heaviside enrichment

To represent the jump of displacement across the crack Γ c , Moës et al. used the Heaviside-like function:

H(x) = 1 if (x -x * ) • n > 0 -1 elsewhere
where x * denotes the crack tip position vector and n is the outward unit normal to the crack.

Indeed, all the nodes for which the support of their shape functions are completely cut by the crack (nodes represented by a circle in Fig. 1.6) are enriched by the Heaviside-like function. 

X-FEM: General aspects

Enrichment with singular functions

To represent the singularity at the crack tip, the approximation of the displacement eld is enriched with Westergaard functions based on asymptotic expansion of the displacement eld of linear fracture mechanics [START_REF] Béchet | Improved implementation and robustness study of the X-FEM for stress analysis around cracks[END_REF] . For an isotropic homogeneous material, these functions have the following form [START_REF] Béchet | Improved implementation and robustness study of the X-FEM for stress analysis around cracks[END_REF]:

           u x = 1 2µ r 2π K I cos( θ 2 ) δ -cos(θ) + K II sin( θ 2 ) δ + 2 + cos θ , u y = 1 2µ r 2π K I sin( θ 2 ) δ -cos(θ) + K II cos( θ 2 ) δ -2 + cos θ .
with:

K I and K II are the stress intensity factors, r and θ are the polar coordinates with respect to the crack tip,

δ =    3 -4ν for plane strain, 3 -ν 1 + ν for plane stress.
These functions can be generated by the basis given by the four elementary functions:

F = √ r sin θ 2 , √ r cos θ 2 , √ r sin θ 2 sin θ, √ r cos θ 2 sin θ .
We note that only the rst function of this basis is discontinuous across the crack. The other functions of the basis are added to improve accuracy.

For this type of enrichment, the set of nodes whose support of the shape function is partially cut by the crack (nodes represented by a square in the Fig. 1.6), are enriched by the Westergard functions.

Space discretization

The strategy for enrichment in classical X-FEM has two main steps:

• The nodes for which the support of their shape function is completely cut by the crack are enriched by the Heaviside-like function.

• The nodes for which the support of their shape function contains the crack tip are enriched with the singular functions of Westergaard.

Thereafter, the space discretization of X-FEM is the direct sum of a classical nite element method V h and the enrichment space associated to X-FEM such as:

V h = w h ; w h (x) = i∈I u i ϕ i (x) with u i ∈ R 2 , E h =    e h ; e h (x) = i∈I H a i H(x)ϕ i (x) + i∈I F 4 α=1 b α i F α (r, θ)N i (x) with a i , b α i ∈ R 2    ,
where I H and I F are the sets of node indices enriched by the function H and the functions F α , respectively. N i (x) and ϕ i (x)) are the scalar shape functions associated with the classical nite-element method of order 1 and order k, respectively.

Consequently, the X-FEM enriched space can be written as:

V h = E h ⊕ V h .
Hence the displacement eld is written as follows:

u h (x) = i∈I u i ϕ i (x) + i∈I H a i H(x)ϕ i (x) + i∈I F 4 α=1 b α i F α (r, θ)N i (x).

Fixed enrichment area and convergence rate

The classical X-FEM, while reducing the error level, does not improve the convergence rate compared to a classical nite element method (see [START_REF] Béchet | Improved implementation and robustness study of the X-FEM for stress analysis around cracks[END_REF] and [START_REF] Stazi | An extended nite element method with high-order elements for curved cracks[END_REF]). This can be explained by the fact that the topological enrichment only aects one layer of elements in the crack tip. So, when h goes to 0, the size of the zone of inuence of the enrichment also tends to 0. To remedy this problem a geometrical enrichment is introduced. The idea is to enrich by the singular functions all the degrees of freedom contained in a whole xed area around the crack tip (see Fig. 1.7).

This variant of X-FEM reduces the errors with respect to the classical X-FEM and improves the convergence rate. In fact, one gains an optimal convergence (of order h for the H 1 -norm with a P 1 nite element). However the conditioning of the associated linear system becomes higher when the number of degrees of freedom increases (see [START_REF] Laborde | High order extended nite element method for cracked domains[END_REF]). The X-FEM with xed enrichment area is an expensive strategy since a large number of degrees of freedom is enriched by the singular functions. (see [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-o function[END_REF]). This method gives optimal convergence results without increasing signicantly the computational cost and without degrading the condition number of the linear system. This is done by using a cut-o function to localize the singular enrichment area. This means that with this function we enrich the entire area of crack tip, see Fig. 1.8.

X-FEM cut-o enriched space

As for the classical X-FEM, the X-FEM cut-o enriched space can be written as: 

Ṽh = Ẽh ⊕ V h . with Ẽh =    e h ; e h (x) = i∈I H a i H(x)ϕ i (x) + 4 α=1 c α F α (r, θ)χ(r) with a i , c α ∈ R 2    ,
χ(r) = 1 if r < r 0 χ(r) = 0 if r > r 1 (1.18)
Then, the displacement eld takes the following form:

u h (x) = i∈I u i ϕ i (x) + i∈I H a i H(x)ϕ i (x) + 4 α=1 c α F α (r, θ)χ(r).

Convergence of X-FEM cut-o

Chahine et al. [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-o function[END_REF] have proved analytically that for shape functions of order 1, the rate of convergence is of order h. They also proved this result numerically for shape functions of order 1 and 2. In addition, this enrichment strategy keeps the optimal convergence without increasing the computational cost and without degraded the conditioning of the associated linear system.

Outline of the thesis

We consider saddle-point systems of equations resulting from the approximate numerical solution of PDEs (incompressible elastostatic problem, unilateral contact problem and elliptic boundary value problem) with Lagrange multiplier in the framework of the eXtended Finite Element Method X-FEM. Independently of the physical problem to be solved, the approximation spaces of the primal variable and the Lagrange multiplier can not be chosen independently from each other. Indeed, compatibility conditions (the onerous Inf-sup (or LBB) condition) must be satised to have convenient approximation. This condition ensures that discrete solutions converge to the exact solution as the mesh size h goes to zero. The purpose of this thesis is to nd a way to prove or to overcome the onerous Inf-sup condition for such problem coming from the resolution This thesis is organized as follows. In Chapter 2, we present a mathematical and numerical analysis of convergence and stability of the mixed formulation for incompressible elasticity in cracked domains. The goal is to extend the analysis of the X-FEM cut-o, done in the case of compressible elasticity, to the incompressible one. A mathematical proof of the inf-sup condition of the discrete mixed formulation with X-FEM is established for some enriched elds. We also give a mathematical result of quasi-optimal error estimate. Finally, we validate these results with numerical tests. In Chapter 3, we present a priori error estimates on the approximation of contact conditions in the framework of the eXtended Finite-Element Method (X-FEM) for two dimensional elastic bodies. This method allows to perform nite-element computations on cracked domains by using meshes of the uncracked domain. We consider a stabilized Lagrange multiplier method whose particularity is that no discrete inf-sup condition is needed in the convergence analysis. The contact condition is prescribed on the crack with a discrete multiplier which is the trace on the crack of a nite-element method on the uncracked domain, avoiding the denition of a specic mesh of the crack. Additionally, we present numerical experiments which conrm the eciency of the proposed method. In chapter 4 a new consistent method based on local projections for the stabilization of a Dirichlet condition is presented in the framework of nite-element method with a ctitious domain approach. The presentation is made on the Poisson problem but the theoretical and numerical results can be extended straightforwardly to any elliptic boundary value problem. A numerical comparison is performed with the Barbosa-Hughes stabilization technique. The advantage of the new stabilization technique is to aect only the equation on multipliers and thus to be equation independent. In chapter 5, we propose a local projection stabilized Lagrange multiplier method to approximate the two-dimensional linear elastostatics unilateral contact problem with Tresca friction in the framework of the eXtended Finite Element Method (X-FEM). This last method allows to perform nite-element computations on cracked domains by using meshes of the uncracked domain. We study the existence, uniqueness and a priori error estimate of several hybrid discrete formulations.

Introduction

The presence of a crack in a structure reveals two types of discontinuities: a strong discontinuity that requires an adapted mesh to the shape of the crack, hence the domain is meshed at each time step; and a weak discontinuity that requires renement at the crack tip. These two operations lead to a huge computational cost. In order to overcome these diculties we use the eXtended Finite Element Method (X-FEM). This method allows to model cracks, material inclusions and holes on nonconforming meshes. It was introduced by Moës et al. [START_REF] Moës | A nite element method for cracked growth without remeshing[END_REF]. It consists in enriching the basis of the classical nite element method by a step function along the crack line and by some non-smooth functions representing the asymptotic displacement around the crack tip. To obtain an optimal accuracy, Chahine et al. introduced a new enrichment strategy [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-o function[END_REF]: the so called X-FEM cut-o. This enrichment strategy uses a cut-o function to locate the crack tip surface.

In their work, Chahine et al. have shown that the X-FEM cut-o has an optimal convergence rate of order h and that the conditioning of the stiness matrix does not deteriorate. In this work, we extend the numerical results given by Chahine et al. [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-o function[END_REF] to an incompressible isotropic linear plane elasticity problem in fracture mechanics. In particular, this formulation must satisfy the so-called inf-sup or Ladyzhenskaya-Brezzi-Babu²ka condition (LBB) condition. Let Ω be a two-dimensional cracked domain, Γ c denotes the crack and Γ the boundary of Ω. We assume that Γ \ Γ c is partitioned into two parts: Γ N where a Neumann surface force t is applied and Γ D where a Dirichlet condition u = 0 is prescribed (see Fig. 2.2). We assume that we have a traction-free condition on Γ c . Let f be the body force applied on Ω. The equilibrium equation, constitutive law and boundary conditions are given by

Model problem and discretization

-div σ(u) = f , in Ω, (2.1) 
σ(u) = λ tr ε(u) I + 2µ ε(u), in Ω, (2.2) u = 0, on Γ D , (2.3) 
σ(u) • n = t, on Γ N , (2.4) 
σ(u) • n = 0, on Γ c . (2.5) 
with ε(u) = 1 2 (∇u + ∇u T ) and n is the outside normal to the domain Ω. 

Let V = v ∈ H 1 (Ω) with u = 0 on Γ D , Q = L 2 (Ω) , σ
       Find (u, p) ∈ (V, Q) such that: a(u, v) -b(v, p) = L(v), ∀v ∈ V, b(u, q) = 0, ∀q ∈ Q, (2.6) with a(u, v) = Ω σ d (u) : ε(v) dΩ, b(v, p) = Ω p div v dΩ, L(v) = Ω f • v dΩ + Γ N t • v dΓ.
Discretization of the elasticity problem follows the usual steps. Let τ h an ane mesh of the non cracked domain Ω. We approximate (u, p) by (u h , p h ) ∈ V h × Q h . The subspaces V h and Q h are nite dimensional spaces that will be dened later. The discretized problem is then:

X-FEM cut o approximation spaces

       Find (u h , p h ) ∈ (V h , Q h ) such that a(u h , v h ) -b(v h , p h ) = L(v h ), ∀v h ∈ V h , b(u h , q h ) = 0, ∀q h ∈ Q h . (2.7)
The existence of a stable nite element approximate solution (u h , p h ) depends on choosing a pair of spaces V h and Q h such that the following LBB condition holds:

inf q h ∈Q h sup v h ∈V h b(v h , q h ) q h 0,Ω v h 1,Ω ≥ β 0 ,
where β 0 > 0 is independent of h [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF]. The satisfaction of this condition for a couple (V h , Q h ) is very dicult to prove in practical situations. Therefore, the numerical evaluation of the inf-sup has been widely used [START_REF] Chapelle | The inf-sup test[END_REF]. It gives an indication of the verication of the LBB condition for a given nite element discretization.

X-FEM cut o approximation spaces

The idea of X-FEM is to use a classical nite element space enriched by some additional functions.

These functions result from the product of global enrichment functions and some classical nite element functions. we consider the variant of X-FEM which uses a cut-o function to dene the singular enrichment surface. The classical enrichment strategy for this problem is to use the asymptotic expansion of the displacement and pressure elds at the crack tip area. Indeed, the displacement is enriched by the Westergaard functions:

where (r, θ) are polar coordinates around the crack's tip. These functions allow to generate the asymptotic non-smooth function at the crack's tip [START_REF] Laborde | High order extended nite element method for cracked domains[END_REF]. For the pressure, the asymptotic expansion at the crack tip is given by p(r, θ)

= 2K I 3 √ 2πr cos θ 2 + 2K II 3 √
2πr sin θ 2 where K I and K II are the stress intensity factors. This expression is used to obtain the basis of enrichment of the pressure in the area of the crack's tip [START_REF] Legrain | Stability of incompressible formulations enriched with X-FEM[END_REF]:

F p = F p j (x), 1 ≤ j ≤ 2 = 1 √ r cos θ 2 ; 1 √ r sin θ 2 .
The displacement and pressure are also enriched with a Heaviside-like function at the nodes for which the support of the corresponding shape functions is totally cut by the crack. Using this enrichment strategy, the discretization spaces V h and Q h take the following forms: 

V h =    v h = i∈I α k ψ u,k + i∈I H β k Hψ u,k + 4 j=1 γ j F u j χ; α k , β k , γ j ∈ R    , Q h =    p h = i∈I p i ϕ p,i + i∈I H b p i Hϕ p,i + 2 j=1 c p j F p j χ; p i , b p i , c p j ∈ R    ,
u,k =              ϕ u,i 0 if i = k + 1 2 , 0 ϕ u,i if i = k 2 ,
, H(•) is the Heaviside-like function used to represent the discontinuity across the straight crack and dened by H

(x) = +1 if (x -x * ) • n + ≥ 0, -1 otherwise,
and χ being a C 1 -piecewise function which is polynomial of degree 3 in the annular region r 0 ≤ r ≤ r 1 , and satises χ(r) = 1 if r < r 0 and χ(r) = 0 if r > r 1 . In our case we take χ(r) = 2r 3 -3(r 0 + r 1 )r 2 + 6r 1 r 0 r + (r 0 -3r 1 )r 2 0 (r 0r 1 ) 3 if r 0 ≤ r ≤ r 1 with r 0 = 0.01 and r 1 = 0.49.

Proof of inf-sup condition and error analysis

In this section we prove that the LBB condition holds for the P 2 /P 0 element without the singular enrichment of the pressure. In order to simplify the presentation we assume that the crack cuts the mesh far enough from the vertices. We use a general technique introduced by Brezzi and

Fortin [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF].

Construction of a H 1 -stable interpolation operator

The proof of the LBB condition requires the denition of an interpolation operator adapted to the proposed method. Since the displacement eld is discontinuous across the crack on Ω, we divide Ω into Ω 1 and Ω 2 according to the crack (Γ c ) and a straight extension ( Γc ) of it (Fig. 2.2). Let u k be the restriction of u to Ω k , k ∈ {1, 2}. As u ∈ H 1 (Ω) then there exists an extension ũk in H 1 (Ω) of u k to Ω such that:

(2.8)

ũk 1,Ω ≤ C k u k 1,Ω k ,
where C k is independent of u [START_REF] Adams | Sobolev spaces[END_REF].

Denition 1. Given a displacement eld u ∈ H 1 (Ω) and two extensions ũ1 and ũ2 of u 1 and u 2 in H 1 (Ω), respectively, we dene Π 1 u as the element of V h such that:

(2.9)

Π 1 u = j∈I\I H α j ϕ j + j∈I H β j ϕ j H 1 + γ i ϕ j H 2 ,
with

H 1 (x) = 1 if x ∈ Ω 1 , 0 if x ∈ Ω 2 , H 2 (x) = 1 -H 1 (x), α i = 1 | ∆ i | ∆ i ũk dx if x i ∈ Ω k , β i = 1 | ∆ i | ∆ i ũ1 dx, γ i = 1 | ∆ i | ∆ i ũ2 dx, S j := {S ∈ τ h : supp(ϕ j ) ∩ S = ∅},
where ∆ j is the maximal ball centered at x j such that ∆ j ⊂ S j and {x j } J j=1 are the interior nodes of mesh τ h . This denition is inspired by the work of Chen and Nochetto [START_REF] Chen | Residual-type a posteriori error estimates for elliptic obstacle problems[END_REF].

Lemma 1. The interpolation operator dened by [2.9] Proof: In the proof we take i ∈ {1, 2}, k = 3i and s the union of all elements surrounding the elment s of τ h .

satises ∀u ∈ H 1 0 (Ω) Π 1 u 1,Ω C u 1,Ω , (2.10) u -Π 1 u r,Ω Ch 1-r u 1,Ω , r = {0, 1}.
In order to prove this Lemma, we calculate the above estimates locally on every dierent type of triangles: non-enriched triangles, triangles cut by the straight extension of the crack, triangles partially enriched by the discontinuous functions, triangles containing the crack tip and triangles totally enriched by the discontinuous functions. Before, let us establish the following intermediary result: Lemma 2. Let δ be a cracked square of size h centered at the crack tip (see Fig. 2.3) and f ∈ H 1 (δ) with f (x) = 0, ∀x ∈ Γc δ (where Γc is the extension of the crack Γ c ). Then, there exists c > 0, independent of h such that:

(2.12) f 0,δ ≤ ch ∇f 0,δ .

Proof: Dividing the square into two parts δ + (above the crack) and δ -(below the crack).

Let f + = f • T k dened on the reference rectangle δ+ (assumed of size 1) obtained by an ane 

Γ c Γc δ + δ -
f + 0, δ+ ≤ c ∇ f + 0, δ+ .
Using inequality [2.13] and the fact that the mesh is ane we obtain:

f 0,δ + ≤ c | det(J K ) | 1/2 f + 0, δ+ ≤ c | det(J K ) | 1/2 ∇ f + 0, δ+ ≤ c | det(J K ) | -1/2 J K 2 | det(J K ) | 1/2 | f | 1,δ + ≤ c h | f | 1,δ + where | • | 1,δ + the H 1 semi-norm on δ + . Thus (2.14) f 0,δ + ≤ c h | f | 1,δ + ,
Similarly we prove the same result for δ -which nish the proof of Lemma 2.

Non-enriched triangles:

Let s be a non-enriched triangle in Ω i . In this case we have Π 1 u = Π 1 ũi on Ω i . Because ũi is continuous over Ω this operator is equivalent to the classical operator of Chen and Nochetto [START_REF] Chen | Residual-type a posteriori error estimates for elliptic obstacle problems[END_REF]. Then we have

Π 1 u 1,s = Π 1 ũi 1,s c ũi 1,s (2.15) 
and

u -Π 1 u r,s = u i -Π 1 ũi r,s = ũi -Π 1 ũi r,s ch 1-r ũi 1,s , (2.16) 
Triangles cut by the straight extension of the crack or containing the crack tip:

Let s be a triangle cut by the straight extension of the crack or containing the crack tip (see

Fig. 2.4(c)). Then Π 1 u = α 1 ϕ 1 + α 2 ϕ 2 + α 3 ϕ 3 on s, with: α 1 = 1 | ∆ 1 | ∆ 1 ũ1 dx , α 2 = 1 | ∆ 2 | ∆ 2 ũ2 dx and α 3 = 1 | ∆ 3 | ∆ 3 ũ2 dx.
We remark that:

Π 1 u = α1 ϕ 1 + α 2 ϕ 2 + α 3 ϕ 3 + (α 1 -α1 )ϕ 1 = Π 1 ũ2 + (α 1 -α1 )ϕ 1 , Ω 1 Ω 2 H(x) = +1 H(x) = -1 x 1 x 2
x 3 (a) A triangle partially enriched by the discontinuous functions

Ω 1 Ω 2 H(x) = +1 H(x) = -1
x 1

x 2 x 3 (b) A triangle totally enriched by the discontinuous functions ũ2 dx. By the triangle inequality, we may write

Ω 1 Ω 2 H(x) = +1 H(x) = -1 x 1 x 2 x 3 (c) A
Π 1 u 1,s Π 1 ũ2 1,s + | α 1 -α1 | ϕ 1 1,s , u -Π 1 u r,s u -Π 1 ũ2 r,s + | α 1 -α1 | ϕ 1 r,s u -ũ2 r,s + ũ2 -Π 1 ũ2 r,s + | α 1 -α1 | ϕ 1 r,s ,
where

ϕ 1 r,s ch 1-r because ϕ 1 is the piecewise P 1 basis function, Π 1 ũ2 r,s ch 1-r ũ2 1,s because ũk is continuous over Ω , u -ũ2 0,s c h u -ũ2 1,δ ,
and if we use Cauchy-Schwartz inequality and Lemma 2 we obtain

| α 1 -α1 | | ∆ 1 | | ∆ 1 | ũ1 -ũ2 0,∆ 1 c h | ∆ 1 | ∇(ũ 1 -ũ2 ) 0,δ . Therefore Π 1 u 1,s c ũ2 1,s + ũ1 -ũ2 1,δ (2.17) u -Π 1 u r,s ch 1-r u -ũ2 1,s + ũ2 1,s + ũ1 -ũ2 1,δ , (2.18) 
Triangles partially enriched by the discontinuous functions:

Let s be a triangle partially enriched by the discontinuous functions (see Fig. 2.4(a)). In this case we have

Π 1 u = Π 1 ũ1 + (α 2 -α2 )ϕ 2 on s ∩ Ω 1 and Π 1 u = Π 1 ũ2 + (α 1 -α1 )ϕ 1 on s ∩ Ω 2 with α1 = 1 | ∆ 1 | ∆ 1 ũ2 dx and α2 = 1 | ∆ 2 | ∆ 2 ũ1 dx.
In the same manner we prove that

Π 1 u 1,s∩Ω i c ũi 1,s + ũk -ũi 1,δ , (2.19) 
u -Π 1 u r,s∩Ω i ch 1-r ũi 1,s + ũkũi 1,δ .

(2.20)

Triangles totally enriched by the discontinuous functions

Let s be the triangle totally enriched by the discontinuous functions (see Fig. 2.4(b)). In this case we have: 

Π 1 u = Π 1 ũi on s ∩ Ω i . Then we have Π 1 u 1,s∩Ω i Π 1 ũi 1,s , (2.21) 
u -Π 1 u r,s∩Ω i ũi -Πũ i 1,s c h 1-r ũi r,s (2 

Construction of a local interpolation operator

In this subsection we prove the discrete inf-sup condition for the P 2 /P 0 element with the additional assumption, that the crack cuts the mesh far enough from the nodes.

Denition 2. Let u ∈ H 1 (Ω). We dene Π 2 u as the element of V h such that (2.23)

Π 2 u = k∈τ h /τ H 3 i=1 α i ϕ i + k∈τ H 3 i=1 β i ϕ i H 1 + γ i ϕ i H 2 ,
where τ H is the set of triangle totally cut by the crack, ϕ i is the classical nite element shape function of order 2 associated to node i being the center of the edge e i of the element K and with

α i = e i u e i ϕ i , β i = e i ∩Ω 1 u e i ∩Ω 1 ϕ i , γ i = e i ∩Ω 2 u e i ∩Ω 2 ϕ i .
Lemma 3. Suppose that the crack cuts the mesh far enough from the nodes then the interpolation operator dened by [2.23] 

satises ∀u ∈ V h s\Γc div(u -Π 2 u) = 0 ∀s ∈ τ h , Π 2 u 1,s∩Ω i ≤ c h -1 ũi 0,s + | ũi | 1,s ∀s ∈ τ h .
Therefore, the discrete inf-sup condition for the P 2 /P 0 element holds.

Proof: The rst equation is obvious. Now let s be a triangle totaly cut by the crack. Then by using triangle inequality, the hypothesis crack far enough from nodes and Cauchy-Schwarz 2.5. Numerical study inequality we have:

| Π 2 u | 1, s∩Ω i ≤ c | Π 2 u | 1, s∩Ω i ≤ c 3 j=1 | e j ∩Ω i û | | φj | 1, s∩Ω i | e j ∩Ω i φj | ≤ c 3 j=1 e j ∩Ω i | û |≤ c 3 j=1 êj | ûi |≤ c ûi 1,ŝ
and by a scaling argument we have:

(2.24)

Π 2 u 1,s∩Ω i ≤ c (h -1 ũi 0,s + | ũi | 1,s ).
Now for non-enriched triangle we use the same argument to prove:

(2.25)

Π 2 u 1,s ≤ c (h -1 u 0,s + | u | 1,s ),
which nishes the proof of Lemma 3.

Error analysis

We suppose in this section that the non-cracked domain Ω has a regular boundary, and that f , t are smooth enough, for the solution (u, p) of the mixed elasticity problem to be written as a sum of a singular part (u s , p s ) and a regular part (uu s , pp s ) in Ω satisfying uu s ∈ H 2 and pp s ∈ H 1 .

Proposition 5. Under the assumption of existence and uniqueness of solutions (u, p) and

(u h , p h ) of the continuous [2.6] and discrete [2.7] mixed elasticity problems, and if the LBB condition is satised, then:

u -u h 1,Ω + p -p h 0,Ω ≤ c h u -χu s 2,Ω + p -χp s 1,Ω ,
where χ is the cut-o function.

Proof. By using the equivalent Céa lemma (see [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF]) we have ∀v h ∈ V h and q h ∈ Q h :

(2.26)

u -u h 1,Ω + p -p h 0,Ω ≤ c u -v h 1,Ω + p -q h 0,Ω .
Now let Π h u be the classical interpolation operator introduced by [START_REF] Nicaise | Optimal convergence analysis for the extended nite element method[END_REF] then we have:

(2.27) 

u -Π h u 1,Ω ≤ c h u -χu s 2,Ω . Let Π h p = Π 1 p + 2 i=1 c i F ip χ = Π 1 p + χ p s ,
p -Π h p 0,Ω = p r -Π 1 p r 0,Ω ≤ c h p r 1,Ω .
Finally, the result of Proposition 5 can be obtained by choosing v h = Π h u and q h = Π h p in [2.26] and by using equations [2.27] and [2.28]. i ) means that we use an extended nite-element method of order i (resp. with an additional cubic buble function) and P j disc means that we use a discontinuous extended nite-element method. The reference solution is obtained with a structured P 2 /P 1 method and h = 1/160.

Numerical inf-sup test

In this section we numerically study the inf-sup condition and its dependence on the position of the crack. First, the inf-sup condition is evaluated using gradually rened structured triangulation meshes. The evolution of the numerical inf-sup value is plotted in Fig. 2.6(a) with respect to the element size. From this gure we can conclude that the numerical inf-sup value is stable that the convergence rate for the energy norm is of order h for both variants of the X-FEM: with xed area and cut-o. Figure 2.8(a) shows that the convergence rates for the L 2 -norm in displacement is of order h 2 for both variants. Figure 2.8(c) shows that the convergence rates for the L 2 -norm in pressure is h for both variants. Compared to the X-FEM method with a xed enrichment area, the convergence rate for X-FEM cut-o is very close but the error values are a bit larger. In order to test the computational cost of X-FEM cut-o, Table (2.1) shows a comparison between the number of degrees of freedom for dierent renements of the classical method X-FEM with xed enrichment area and the cut-o method. This latter enrichment leads to a signicant decrease in the number of degrees of freedom. The condition number of the linear system associated to the cut-o enrichment is much better than the one associated with the X-FEM with a xed enrichment area (see Fig. 2.9). We can conclude that, similarly to the X-FEM with xed enrichment area, the X-FEM cut-o leads to an optimal convergence rate and also reduces the approximation errors but without signicant additional costs.

The numerical tests of the higher order X-FEM method (P + 2 /P 1 disc, P + 2 /P 1 , P 2 /P 1 and P 2 /P 0 ) do not give an optimal order of convergence (see Figs. 2.10(a), 2.10(b), 2.10(c) and 2.10(d)). This means that the enrichment function does not capture the behavior of the solution at the crack's tip. This result was expected as the asymptotic displacement at the crack tip belongs to H 3/2-η (Ω) for all η > 0. Then, for the X-FEM cut-o, the convergence rate remains limited to h 3/2 with high order polynomials. To have an optimal convergence rate, one must make an asymptotic expansion of order 2 to nd the correct expression of the enrichment basis for the displacement and pressure.

Conclusion

From this study we can conclude that the X-FEM cut-o mixed formulation is stable, regardless of the position of the crack. Similarly to the X-FEM with xed enrichment area, the X-FEM cut-o gives an optimal convergence rate but without signicant additional costs. For shape functions of higher order, the convergence rate is limited to h 3/2 . This result was expected as the main singularity belongs to H 5/2-η (Ω) for all η > 0.

Chapter 3

A stabilized Lagrange multiplier method for the enriched nite-element approximation of contact problems of cracked elastic bodies 

Introduction

With the aim of gaining exibility in the nite-element method, Moës, Dolbow and Belytschko [START_REF] Moës | A nite element method for cracked growth without remeshing[END_REF] introduced in 1999 the XFEM (eXtended Finite-Element Method) which allows to perform nite-element computations on cracked domains by using meshes of the non-cracked domain.

The main feature of this method is the ability to take into account the discontinuity across the crack and the asymptotic displacement at the crack tip by addition of special functions into the nite-element space. These special functions include both non-smooth functions representing the singularities at the reentrant corners (as in the singular enrichment method introduced in [START_REF] Strang | An analysis of the nite element method[END_REF]) and also step functions (of Heaviside type) along the crack.

In the original method, the asymptotic displacement is incorporated into the nite-element space multiplied by the shape function of a background Lagrange nite-element method. In this paper, we deal with a variant, introduced in [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-o function[END_REF], where the asymptotic displacement is Chapter 3. A stabilized L.M.M. for E.F.E of contact problems of C.E.B multiplied by a cut-o function. After numerous numerical works developed in various contexts of mechanics, the rst a priori error estimate results for XFEM (in linear elasticity) were recently obtained in [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-o function[END_REF] and [START_REF] Nicaise | Optimal convergence analysis for the extended nite element method[END_REF]: in the convergence analysis, a diculty consists in evaluating the local error in the elements cut by the crack by using appropriate extension operators and specic estimates. In the latter references, the authors obtained an optimal error estimate of order h (h being the discretization parameter) for an ane nite-element method under H 2 regularity of the regular part of the solution (keeping in mind that the solution is expected to be at most in

H 3 2 -ε for all ε > 0).
Let us remark that some convergence analysis results have been performed on a posteriori error estimation for XFEM. A simple derivative recovery technique and its associated a posteriori error estimator have been proposed in [START_REF] Bordas | Derivative recovery and a posteriori error estimate for extended nite elements[END_REF][START_REF] Duot | A posteriori error estimation for extended nite elements by an extended global recovery[END_REF][START_REF] Bordas | A simple error estimator for extended nite elements[END_REF][START_REF] Ródenas | A recoverytype error estimator for the extended nite element method based on singular+smooth stress eld splitting[END_REF]. These recovery based a posteriori error estimations outperform the super-convergent patch recovery technique (SPR) introduced by Zienkiewicz and Zhu. In [START_REF] V. Lleras | A residual error estimator for the XFEM approximation of the elasticity problem[END_REF], an error estimator of residual type for the elasticity system in two space dimensions is proposed.

Concerning a priori error estimates for the contact problem of linearly elastic bodies approximated by a standard ane nite-element method, a rate of convergence of order h 3/4 can be obtained for most methods (see [START_REF] Belgacem | Hybrid nite element methods for the Signorini problem[END_REF][START_REF] Hild | Numerical implementation of two nonconforming nite element methods for unilateral contact[END_REF][START_REF] Laborde | Fixed point strategies for elastostatic frictional contact problems[END_REF] for instance). An optimal order of h (resp. [START_REF] Hüeber | An optimal error estimate for nonlinear contact problems[END_REF] (resp. [START_REF] Belgacem | Hybrid nite element methods for the Signorini problem[END_REF] and [START_REF] Belgacem | Numerical simulation of some variational inequalities arisen from unilateral contact problems by the nite element method[END_REF]) for the direct approximation of the variational inequality and with the additional assumption that the number of transition between contact and non contact is nite on the contact boundary. However, for stabilized Lagrange multiplier methods and with the only assumption that the solution is in H 2 (Ω), the best a priori error estimates proven is of order h 3/4 (see [START_REF] Hild | A stabilized Lagrange multiplier method for the nite element approximation of contact problems in elastostatics[END_REF]). This limitation may be only due to technical reasons since it has never been found on the numerical experiments. It aects the a priori error estimates we present in this paper.

h 4 | log(h) | and h | log(h) |) has been obtained in
Only a few works have been devoted to contact and XFEM, and they mainly use two methods to formulate contact problems: penalty method and Lagrange multiplier method. In penalty method, the penetration between two contacting boundaries is introduced and the normal contact force is related to the penetration by a penalty parameter [START_REF] Kikuchi | Contact problems in elasticity[END_REF]. Khoei et al. [START_REF] Khoei | Contact friction modeling with the extended nite element method (XFEM)[END_REF][START_REF] Khoei | An enriched nite element algorithm for numerical computation of contact friction problems[END_REF] give the formulation with the penalization for plasticity problems. Contrary to penalization techniques, in the method of Lagrangian multipliers, the stability is improved without compromising the consistency of the method. Dolbow et al. [START_REF] Dolbow | An extended nite element method for modeling crack growth with frictional contact[END_REF] propose a formulation of the problem of a crack with frictional contact in 2D with an augmented Lagrangian method. Géniaut et al. [START_REF] Geniaut | Approche XFEM pour la ssuration sous contact des structures industrielles[END_REF][START_REF] Geniaut | A stable 3d contact formulation for cracks using XFEM[END_REF] choose an XFEM approach with frictional contact in the three dimensional case. They use a hybrid and continuous formulation close to the augmented Lagrangian method introduced by

Ben Dhia [START_REF] Dhia | Hybrid frictional contact particles in elements[END_REF]. Pierres et al. in [START_REF] Baietto | A two-scale extended nite element method for modeling 3d crack growth with interfacial contact[END_REF] introduced a method with a three-elds description of the contact problem, the interface being seen as an autonomous entity with its own discretization.

In all the works cited above, a uniform discrete inf-sup condition is theoretically required between the nite-element space for the displacement and the one for the multiplier in order to obtain a good approximation of the solution. However, a uniform inf-sup condition seems to be very dicult to establish on the crack since it does not coincide with element edges and since it is even impossible to establish with some pairs of nite element spaces when the crack coincides with element edges. Consequently, we consider a stabilization method which avoids the need of such an inf-sup condition. This method, which provides stability of the multiplier

Formulation of the continuous problem

by adding supplementary terms in the weak formulation, has been originally introduced and analyzed by Barbosa and Hughes in [START_REF] Barbosa | The nite element method with Lagrange multipliers on the boundary: circumventing the Babuvska-Brezzi condition[END_REF][START_REF] Barbosa | Boundary Lagrange multipliers in nite element methods: error analysis in natural norms[END_REF]. The great advantage is that the nite-element spaces on the primal and dual variables can be chosen independently. Note that, in [START_REF] Stenberg | On some techniques for approximating boundary conditions in the nite element method[END_REF], the connection was made between this method and the former one of Nitsche [START_REF] Stenberg | On some techniques for approximating boundary conditions in the nite element method[END_REF]. The studies in [START_REF] Barbosa | The nite element method with Lagrange multipliers on the boundary: circumventing the Babuvska-Brezzi condition[END_REF][START_REF] Barbosa | Boundary Lagrange multipliers in nite element methods: error analysis in natural norms[END_REF] were generalized to a variational inequality framework in [START_REF] Barbosa | Circumventing the Babuvska-Brezzi condition in mixed nite element approximations of elliptic variational inequalities[END_REF] (Signorini-type problems among others). This method has also been extended to interface problems on non-matching meshes in [START_REF] Becker | A nite element method for domain decomposition with non-matching grids[END_REF][START_REF] Hansbo | A Lagrange multiplier method for the nite element solution of elliptic interface problems using nonmatching meshes[END_REF] and more recently for bilateral (linear) contact problems in [START_REF] Heintz | Stabilized Lagrange multiplier methods for bilateral elastic contact with friction[END_REF] and for contact problems in elastostatics [START_REF] Hild | A stabilized Lagrange multiplier method for the nite element approximation of contact problems in elastostatics[END_REF].

None of the previous works treats the error estimates for contact problems approximated by the XFEM method. The rapid uptake of the XFEM method by industry requires adequate error estimation tools to be available to the analysts. Our purpose in this paper is to extend the work done in [START_REF] Hild | A stabilized Lagrange multiplier method for the nite element approximation of contact problems in elastostatics[END_REF] to the enriched nite-element approximation of contact problems of cracked elastic bodies.

The paper is organized as follows. In Section 2, we introduce the formulation of the contact problem on a crack of an elastic structure. In Section 3, we present the elasticity problem approximated by both the enrichment strategy introduced in [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-o function[END_REF] and the stabilized Lagrange multiplier method of Barbosa-Hughes. A subsection is devoted to a priori error estimates following three dierent discrete contact conditions (the study is restricted to piecewise ane and constant nite element methods) . Finally, in Section 4, we present some numerical experiments on a very simple situation. We compare the stabilized and the non-stabilized cases for dierent nite-element approximations. Optimal rates of convergence are observed for the stabilized case.

The inuence of the stabilization parameter is also investigated.

Formulation of the continuous problem

We introduce some useful notations and several functional spaces. In what follows, bold letters like u, v, indicate vector-valued quantities, while the capital ones (e.g., V, K, . . .) represent functional sets involving vector elds.

As usual, we denote by (L 2 (.)) d and by (H s (.)) d , s ≥ 0, d = 1, 2 the Lebesgue and Sobolev spaces in d-dimensional space (see [START_REF] Adams | Sobolev spaces[END_REF]). The usual norm of (H s (D)) d is denoted by • s,D and we keep the same notation when d = 1 or d = 2. For shortness, the (L 2 (D)) d -norm will be denoted by • D when d = 1 or d = 2. In the sequel the symbol | • | will denote either the Euclidean norm in R 2 , or the length of a line segment, or the area of a planar domain.

We consider a cracked elastic body occupying a domain Ω in R 2 . The boundary ∂Ω of Ω, which is assumed to be polygonal for simplicity, is composed of three non-overlapping parts Γ D , Γ N and Γ C with meas(Γ D ) > 0 and meas(Γ C ) > 0. A Dirichlet and a Neumann conditions are prescribed on Γ D and Γ N , respectively. The boundary part Γ C represents also the crack location which, for the sake of simplicity, is assumed to be a straight line segment. In order to deal with the contact between the two sides of the crack as a contact between two elastic bodies, we denote by Γ C+ and Γ C-each of the two sides of the crack (see Fig. 

Ω Γ

+ C Γ - C n + Γ D Γ N Figure 3.1: A cracked domain.
We assume that the body is subjected to volume forces f = (f 1 , f 2 ) ∈ (L 2 (Ω)) 2 and to surface loads g = (g 1 , g 2 ) ∈ (L 2 (Γ N )) 2 . Then, under planar small strain assumptions, the problem of homogeneous isotropic linear elasticity consists in nding the displacement eld u :

Ω → R 2 satisfying div σ(u) + f = 0 in Ω, (3.1) 
σ(u) = λ L tr ε(u) I + 2µ L ε(u), in Ω, (3.2) 
u = 0 on Γ D , (3.3) 
σ(u)n = g on Γ N , (3.4) 
where σ = (σ ij ), 1 ≤ i, j ≤ 2, stands for the stress tensor eld, ε(v) = (∇v +∇v T )/2 represents the linearized strain tensor eld, λ L ≥ 0, µ L > 0 are the Lamé coecients, and I denotes the identity tensor. For a displacement eld v and a density of surface forces σ(v)n dened on ∂Ω, we adopt the following notations:

v + = v + n n + + v + t t, v -= v - n n -+ v - t t and σ(v)n = σ n (v)n + σ t (v)t,
where t is a unit tangent vector on

Γ C , v + (resp. v -) is the trace of displacement on Γ C on the Γ + C side (resp. on the Γ - C side).
The conditions describing the frictionless unilateral contact on Γ C are:

u n = u + n + u - n ≤ 0, σ n (u) ≤ 0, σ n (u) • u n = 0, σ t (u) = 0, (3.5) 
where u n is the jump of the normal displacement across the crack Γ C .

We present now some classical weak formulation of Problem (3.1)-(3.5). We introduce the following Hilbert spaces:

V = v ∈ H 1 (Ω) 2 : v = 0 on Γ D , W = v n |Γ C : v ∈ V ,
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and their topological dual spaces V , W , endowed with their usual norms. We also introduce the following convex cone of multipliers on Γ C :

M -= µ ∈ W : µ, ψ W ,W ≥ 0 for all ψ ∈ W, ψ ≤ 0 a.e. on Γ C ,
where the notation •, • W ,W stands for the duality pairing between W and W . Finally, for u and v in V and µ in W we dene the following forms

a(u, v) = Ω σ(u) : ε(v) dΩ, b(µ, v) = µ, v n W ,W L(v) = Ω f • v dΩ + Γ N g • v dΓ.
The mixed formulation of the unilateral contact problem (3.1)-(3.5) consists then in nding

u ∈ V and λ ∈ M -such that (3.6)    a(u, v) -b(λ, v) = L(v), ∀ v ∈ V, b(µ -λ, u) ≥ 0, ∀ µ ∈ M -. An equivalent formulation of (3.6) consists in nding (u, λ) ∈ V × M -satisfying L (u, µ) ≤ L (u, λ) ≤ L (v, λ), ∀v ∈ V, ∀µ ∈ M -,
where L (•, •) is the classical Lagrangian of the system dened as

L (v, µ) = 1 2 a(v, v) -L(v) -b(µ, v).
Another classical weak formulation of problem (3.1)-(3.5) is given by the following variational inequality: nd u ∈ K such that

(3.7) a(u, v -u) ≥ L(v -u), ∀v ∈ K,
where K denotes the closed convex cone of admissible displacement elds satisfying the non-

interpenetration condition K = v ∈ V : v n ≤ 0 on Γ C .
The existence and uniqueness of (u, λ) solution to (3.6) has been established in [START_REF] Haslinger | Numerical methods for unilateral problems in solid mechanics[END_REF]. Moreover, the rst argument u solution to (3.6) is also the unique solution of problem (3.7) and one has λ = σ n (u) is in W .

Discretization with the stabilized Lagrange multiplier method 3.3.1 The discrete problem

We will denote by V h ⊂ V a family of enriched nite-dimensional vector spaces indexed by h coming from a family T h of triangulations of the uncracked domain Ω (here h = max T ∈T h h T where h T is the diameter of the triangle T ). The family of triangulations is assumed to be regular, i.e., there exists β > 0 such that ∀T ∈ T h , h T /ρ T ≤ β where ρ T denotes the radius of the inscribed circle in T (see [START_REF] Ciarlet | The nite element method for elliptic problems[END_REF]). We consider the variant, called the cut-o XFEM, introduced in [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-o function[END_REF] in which the whole area around the crack tip is enriched by using a cut-o function denoted by χ(•). In this variant, the enriched nite-element space V h is dened as

V h = v h ∈ (C ( Ω)) 2 : v h = i∈N h a i ϕ i + i∈N H h b i Hϕ i + χ 4 j=1 c j F j , a i , b i , c j ∈ R 2 ⊂ V.
Here (C ( Ω)) 2 is the space of continuous vector elds over Ω, H(•) is the Heaviside-like function used to represent the discontinuity across the straight crack and dened by

H(x) = +1 if (x -x * ) • n + ≥ 0, -1 otherwise,
where x * denotes the position of the crack tip. The notation ϕ i represents the scalar-valued shape functions associated with the classical degree one nite-element method at the node of index i, N h denotes the set of all node indices, and N H h denotes the set of nodes indices enriched by the function H(•), i.e., nodes indices for which the support of the corresponding shape function is completely cut by the crack (see Fig. 3.2). The cut-o function is a C 1 piecewise third order polynomial on [r 0 , r 1 ] such that:

   χ(r) = 1 if r < r 0 , χ(r) ∈ (0, 1) if r 0 < r < r 1 , χ(r) = 0 if r > r 1 .
The functions {F j (x)} 1≤j≤4 are dened in polar coordinates located at the crack tip by

(3.8) {F j (x), 1 ≤ j ≤ 4} = √ r sin θ 2 , √ r cos θ 2 , √ r sin θ 2 sin θ, √ r cos θ 2 sin θ .
These functions allows to generate the asymptotic non-smooth displacement at the crack tip (see [START_REF] Moussaoui | Regularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan[END_REF] and Lemma A.1).

An important point of the approximation is whether the contact pressure σ n is regular or not at the crack tip. If it were singular, it should be taken into account by the discretization of the multiplier. Nevertheless, it seems that this is not the case in homogeneous isotropic linear elasticity. This results has not been proved yet, and seems to be a dicult issue. However, if we consider the formulation (3.6) and if we assume that there is a nite number of transition points between contact and non contact zones near the crack tip, then we are able to prove (see Lemma A.1 in Appendix A) that the contact stress σ n is in H 1/2 (Γ C ). Now, concerning the discretization of the multiplier, let x 0 , ..., x N be given distinct points lying in Γ C (note that we can choose these nodes to coincide with the intersection between T h and Γ C ). These nodes form a one-dimensional family of meshes of Γ C denoted by T H . We set H = max 0≤i≤N -1 |x i+1x i |. The mesh T H allows us to dene a nite-dimensional space W H approximating W and a nonempty closed convex set M H-⊂ W H approximating M -: Following [START_REF] Hild | A stabilized Lagrange multiplier method for the nite element approximation of contact problems in elastostatics[END_REF], we consider two possible elementary choices of W H :

M H-= µ H ∈ W H : µ H satisfy a nonpositivity condition" on Γ C .
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W H 0 = µ H ∈ L 2 (Γ C ) : µ H |(x i ,x i+1 ) ∈ P 0 (x i , x i+1 ), ∀ 0 ≤ i ≤ N -1 , W H 1 = µ H ∈ C (Γ C ) : µ H |(x i ,x i+1 ) ∈ P 1 (x i , x i+1 ), ∀ 0 ≤ i ≤ N -1 ,
where P k (E) denotes the space of polynomials of degree less or equal to k on E. This allows to provide the following three elementary denitions of M H-:

M H- 0 = µ H ∈ W H 0 : µ H ≤ 0 on Γ C , (3.9) 
M H-

1 = µ H ∈ W H 1 : µ H ≤ 0 on Γ C , (3.10) 
M H- 1, * = µ H ∈ W H 1 : Γ C µ H ψ H dΓ ≥ 0, ∀ ψ H ∈ M H- 1 . (3.11) 
Now we divide the domain Ω into Ω 1 and Ω 2 according to the crack and a straight extension of the crack (see Fig. 3.

3) such that the value of H(•) is (-1) k on Ω k , k = 1, 2. Now, let R h be an operator from V h onto L 2 (Γ C ) which approaches the normal component of the stress vector on Γ C dened for all T ∈ T h with T ∩ Γ C = ∅ as R h (v h ) |T ∩Γ C =          σ n (v h 1 ), if | T ∩ Ω 1 | ≥ | T | 2 , σ n (v h 2 ), if | T ∩ Ω 2 | > | T | 2 , where v h 1 = v h |Ω 1 and v h 2 = v h |Ω 2 .
Chapter 

u h ∈ V h and λ H ∈ M H-such that (3.12)          a(u h , v h ) -b(λ H , v h ) + Γ C γ(λ H -R h (u h ))R h (v h )dΓ = L(v h ), ∀ v h ∈ V h , b(µ H -λ H , u h ) + Γ C γ(µ H -λ H )(λ H -R h (u h ))dΓ ≥ 0, ∀ µ H ∈ M H-,
where γ is dened to be constant on each element T as γ = γ 0 h T where γ 0 > 0 is a given constant independent of h and H. Problem (3.12) represents the optimality conditions for the Lagrangian

L γ (v h , µ H ) = 1 2 a(v h , v h ) -L(v h ) -b(µ H , v h ) - 1 2 Γ C γ(µ H -R h (v h )) 2 dΓ.
We note that, without loss of generality, we can assume that Γ C is a straight line segment parallel to the x-axis. Let T ∈ T h and E = T ∩ Γ C . Then, for any v h ∈ V h and since σ n (v h i )

is a constant over each element, we have

R h (v h ) 0,E = σ n (v h i ) 0,E , with i such that |T ∩ Ω i | ≥ |T | 2 , = σ yy (v h i ) 0,E , = |E| 1/2 |T ∩ Ω i | 1/2 σ yy (v h i ) 0,T ∩Ω i , h -1 2 T σ yy (v h i ) 0,T ∩Ω i , = γ γ 0 -1 2 σ yy (v h i ) 0,T ∩Ω i .
Here and throughout the paper, we use the notation a b to signify that there exists a constant C > 0, independent of the mesh parameters (h, H), the solution and the position of the crack-tip, such that a ≤ Cb.

By summation over all the edges E ⊂ Γ C we get

γ 1 2 R h (v h ) 2 0,Γ C γ 0 σ yy (v h ) 2 0,Ω γ 0 v h 2 1,Ω . (3.13) 
Hence, when γ 0 is small enough, it follows from Korn's inequality and (3.13), that there exists

C > 0 such that for any v h ∈ V h a(v h , v h ) - Γ C γ(R h (v h )) 2 dΓ ≥ C v h 2 1,Ω .
The existence of a unique solution to Problem (3.12) when γ 0 is small enough follows from the fact that V h and M H-are two nonempty closed convex sets, [46, pp. 338339].

L γ (•, •) is continuous on V h × W H , L γ (v h , .) (resp. L γ (•, µ H )) is concave (resp. strictly convex) for any v h ∈ V h (resp. for any µ H ∈ M H-) and lim v h ∈V h , v h V h →∞ L γ (v h , 0) = +∞ (resp. lim µ H ∈M H-, µ H W H →∞ L γ (0, µ H ) = -∞), see

Convergence analysis

First, let us dene for any v ∈ V and any µ ∈ L 2 (Γ C ) the following norms:

v = a(v, v) 1/2 , | (v, µ) | = v 2 + γ 1/2 µ 2 0,Γ C 1/2 .
In order to study the convergence error, we recall the denition of the XFEM interpolation operator Π h introduced in [START_REF] Nicaise | Optimal convergence analysis for the extended nite element method[END_REF]. We assume that the displacement has the regularity (H 2 (Ω)) 2 except in the vicinity of the crack-tip where the singular part of the displacement is a linear combination of the functions {F j (x)} 1≤j≤4 given by (3.8) (see [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] for a justication). Let us denote by u s the singular part of u, u r = uχu s the regular part of u, and u k r the restriction of u r to Ω k , k ∈ {1, 2}. Then, for k ∈ {1, 2}, there exists an extension u k r ∈ (H 2 (Ω)) 2 of u k r to Ω such that (see [START_REF] Adams | Sobolev spaces[END_REF])

u 1 r 2,Ω u 1 r 2,Ω 1 , u 2 r 2,Ω u 2 r 2,Ω 2 .
Denition 1 ([17]). Given a displacement eld u satisfying uu s ∈ H 2 (Ω), and two extensions

u 1
r and u 2 r in H 2 (Ω) of u 1 r and u 2 r , respectively, we dene Π h u as the element of V h such that

Π h u = i∈N h a i ϕ i + i∈N H h b i Hϕ i + χu s ,
where a i , b i are given as follows for y i the nite-element node associated to ϕ i : From this denition, we can distinguish three dierent kinds of triangle enriched with the Heaviside-like function H. This is illustrated in Fig. 3.2 and in Fig. 3.4. A totally enriched triangle is a triangle whose nite-element shape functions have their supports completely cut by the crack. A partially enriched triangle is a triangle having one or two shape functions whose supports are completely cut by the crack. Finally, the triangle containing the crack tip is a special triangle which is in fact not enriched by the Heaviside-like function. In [START_REF] Nicaise | Optimal convergence analysis for the extended nite element method[END_REF], the following lemma is proved: Lemma 3.3.1. The function Π h u satises (i) Π h u = I h u r + χu s over a triangle non-enriched by H, (ii) Π h u| T ∩Ω k = I h u k r + χu s over a triangle T totally enriched by H, where I h denotes the classical Lagrange interpolation operator for the associated nite-element method.

if i ∈ {N h \ N H h } then a i = u r (y i ), if i ∈ N H h and y i ∈ Ω k for k ∈ {1, 2} then for l = 3 -k :      a i = 1 2 u k r (y i ) + u l r (y i ) , b i = (-1) k 2 u k r (y i ) -u l r (y i ) . Ω 1 Ω 2 H(x) = +1 H(x) = -1 x 1 x 2 x 3 (a) A totally enriched triangle Ω 1 Ω 2 H(x) = +1 H(x) = -1 x 1 x 2 x 3 (b) A partially enriched triangle Ω 1 Ω 2 H(x) = +1 H(x) = -1 x 1 x 2 x 3 (c)
It is also proved in [START_REF] Nicaise | Optimal convergence analysis for the extended nite element method[END_REF] that this XFEM interpolation operator satises the following interpolation error estimate:

(3.14) u -Π h u h u -χu s 2,Ω ,
For a triangle T cut by the crack, we denote by E i T u r the polynomial extension of Π h u r | T ∩Ω i on T (i.e. the polynomial Π h u r | T ∩Ω i extended to T ). We will need the following result which gives an interpolation error estimate on the enriched triangles: Lemma 3.3.2. Let T an element such that T ∩Γ C = 0, then for i ∈ {1, 2} the following estimates hold:

u i r -E i T u r 0,T h 2 T u i r 2,T + | u 1 r -u 2 r | 2,B(x * ,h T ) , u i r -E i T u r 1,T h T u i r 2,T + | u 1 r -u 2 r | 2,B(x * ,h T ) ,
where h T is the size of triangle T and B(x * , h T ) is the ball centered at the crack tip x * and with radius h T .
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The proof of this lemma can be found in Appendix B. Let us now give an abstract error estimate for the discrete contact problem (3.12).

Proposition 3.3.3. Assume that the solution

(u, λ) to Problem (3.6) is such that λ ∈ L 2 (Γ C ).
Let γ 0 be small enough. Then, the solution (u h , λ H ) to Problem (3.12) satises the following estimate

u -u h , λ -λ H 2 inf v h ∈V h u -v h , σ n (u) -R h (v h ) 2 + γ -1/2 ( u n -v h n ) 2 0,Γ C + inf µ∈M -Γ C (µ -λ H ) u n dΓ + inf µ H ∈M H-Γ C (µ H -λ)( u h n + γ(λ H -R h (u h )))dΓ .
Proof. (This proof is a straightforward adaptation of the proof in [START_REF] Hild | A stabilized Lagrange multiplier method for the nite element approximation of contact problems in elastostatics[END_REF]) We have

γ 1/2 (λ -λ H ) 2 0,Γ C = Γ C γλ 2 dΓ -2 Γ C γλλ H dΓ + Γ C γ(λ H ) 2 dΓ.
From (3.6) and (3.12) we obtain

Γ C γλ 2 dΓ ≤ Γ C γλµdΓ + Γ C (µ -λ) u n dΓ - Γ C γ(µ -λ)σ n (u)dΓ, ∀ µ ∈ M -, Γ C γ(λ H ) 2 dΓ ≤ Γ C γλ H µ H dΓ + Γ C (µ H -λ H ) u h n dΓ - Γ C γ(µ H -λ H )R h (u h )dΓ, ∀ µ H ∈ M H-, which gives γ 1/2 (λ -λ H ) 2 0,Γ C ≤ Γ C γ(µ -λ H )λdΓ + Γ C γ(µ H -λ)λ H dΓ + Γ C (µ -λ) u n dΓ - Γ C γ(µ -λ)σ n (u)dΓ + Γ C (µ H -λ H ) u h n dΓ - Γ C γ(µ H -λ H )R h (u h )dΓ = Γ C (µ -λ H ) u n dΓ + Γ C (µ H -λ)( u h n + γ(λ H -R h (u h )))dΓ - Γ C γ(λ H -λ)(σ n (u) -R h (u h ))dΓ + Γ C (λ H -λ)( u n -u h n )dΓ, ∀µ ∈ M -, ∀µ H ∈ M H-. (3.15)
According to (3.12) for any v h ∈ V h we have

u -u h 2 = a(u -u h , u -u h ) = a(u -u h , u -v h ) + a(u -u h , v h -u h ) = a(u -u h , u -v h ) + Γ C (λ -λ H )( v h n -u h n )dΓ + Γ C γ(λ H -R h (u h ))R h (v h -u h )dΓ. (3.16)
From the addition of (3.15) and (3.16), we deduce

u -u h , λ -λ H 2 ≤ a(u -u h , u -v h ) + Γ C (λ -λ H )( v h n -u n )dΓ + Γ C (µ -λ H ) u n dΓ + Γ C (µ H -λ)( u h n + γ(λ H -R h (u h )))dΓ + Γ C γ(λ -λ H )(σ n (u) -R h (v h ))dΓ + Γ C γ(λ -R h (u h ))R h (v h -u h )dΓ, (3.17) 
for all v h ∈ V h , µ ∈ M -and µ H ∈ M H-. The last term in the previous inequality is estimated by using (3.13) and recalling that λ = σ n (u) as follows

Γ C γ(λ -R h (u h ))R h (v h -u h )dΓ ≤ γ 1/2 (σ n (u) -R h (u h )) 0,Γ C γ 1/2 0 h 1/2 (R h (v h -u h )) 0,Γ C γ 1/2 0 v h -u h γ 1/2 (σ n (u) -R h (v h )) 0,Γ C + γ 1/2 0 h 1/2 (R h (v h -u h )) 0,Γ C γ 0 v h -u h 2 + γ 1/2 (σ n (u) -R h (v h )) 2 0,Γ C γ 0 u -u h 2 + γ 0 u -v h 2 + γ 1/2 (σ n (u) -R h (v h )) 2 0,Γ C . (3.18) 
By combining (3.17) and (3.18), and using Young's inequality we come to the conclusion that if

γ 0 is suciently small then u -u h , λ -λ H 2 inf v h ∈V h u -v h 2 + γ 1/2 (σ n (u) -R h (v h )) 2 0,Γ C + γ -1/2 ( u n -v h n ) 2 0,Γ C + inf µ∈M -Γ C (µ -λ H ) u n dΓ + inf µ H ∈M H-Γ C (µ H -λ)( u h n + γ(λ H -R h (u h )))dΓ ,
and hence the result follows.

In order to estimate the rst inmum of the latter proposition, we rst recall the following Lemma of scaled trace inequality: the following scaled trace inequality (see [START_REF] Haslinger | A new ctitious domain approach inspired by the extended nite element method[END_REF]) for T ∈ T h and [START_REF] Haslinger | A new ctitious domain approach inspired by the extended nite element method[END_REF]). For any T ∈ T h and T the reference element let τ T the ane and invertible mapping in R 2 such that T = τ T ( T ). Suppose that we have:

E = T ∩ Γ C : Lemma 3.3.4 ([
• Γ C is a lipschitz continuous crack, • ∇τ T ∞,T h T and τ -1 T ∞,T h -1
T , then the following scaled trace inequality holds:

v 0,Γ C ∩T h -1/2 T v 0,T + h 1/2 T ∇v 0,T , ∀v ∈ H 1 (T ). (3.19)
These two hypotheses of Lemma 3.3.4 are satised for regular families of meshes provided that Γ C is Lipschitz-continuous.

We can deduce the following estimate :

γ -1/2 ( u n -(Π h u) • n ) 0,E ≤ γ -1/2 ( u -Π h u ) 0,E , ≤ γ -1/2 (u 1 -Π h u |Ω 1 ) 0,E + γ -1/2 (u 2 -Π h u |Ω 2 ) 0,E , ≤ γ -1/2 ( u 1 r -Π h u |Ω 1 ) 0,E + γ -1/2 ( u 2 r -Π h u |Ω 2 ) 0,E , h -1/2 T h -1/2 T u 1 r -E 1 T u r 0,T + h -1/2 T h 1/2 T ∇ u 1 r -∇E 1 T u r 0,T , +h -1/2 T h -1/2 T u 2 r -E 2 T u r 0,T + h -1/2 T h 1/2 T ∇ u 2 r -∇E 2 T u r 0,T ,
and by using Lemma 3.3.2 (see Appendix B) we have:

γ -1/2 ( u n -(Π h u) • n ) 0,E h T u 1 r 2,T + u 2 r 2,T + | u 1 r -u 2 r | 2,B(0,h K ) .
By summation over all the edges we obtain 

(3.20) γ -1/2 ( u n -(Π h u) • n ) 0,Γ C h u -χu s 2,Ω . It remains then to estimate γ 1/2 (σ n (u) -R h (Π h u)) 0,Γ C . Still for T ∈ T h and E = T ∩ Γ C ,
σ n (u) -R h (Π h u) 0,E = σ n (u r ) -σ n (Π h u r | T ∩Ω i ) 0,E , with i such that |T ∩ Ω i | ≥ |T | 2 , = σ n ( u i r -Π h u r | T ∩Ω i ) 0,E , h -1 2 T σ yy ( u i r -E i T u r ) 0,T + h 1 2 T ∇σ yy ( u i r -E i T u r ) 0,T , = h -1 2 T σ yy ( u i r -E i T u r ) 0,T + h 1 2 T ∇σ yy ( u i r ) 0,T , h -1 2 T u i r -E i T u r 1,T + h 1 2
T u i r 2,T .

Then, by summation over all the edges and using again Lemma 3.3.2 the following estimate holds 

γ 1/2 (σ n (u) -R h (Π h u)) 0,Γ C h u -χu s 2,Ω .
inf v h ∈V h u -v h , σ n (u) -R h (v h ) 2 + γ -1/2 ( u n -v h n ) 2 0,Γ C h 2 u -χu s 2 2,Ω . (3.22)
Finally, we have to estimate the error terms in Proposition 3.3.3 coming from the contact approximation:

inf µ H ∈M H-Γ C (µ H -λ)( u h n + γ(λ H -R h (u h )))dΓ (3.23) and inf µ∈M -Γ C (µ -λ H ) u n dΓ. (3.24)
In order to estimate these terms, we need to distinguish the dierent contact conditions (i.e., we must specify the denition of M H-). We consider hereafter three dierent standard discrete contact conditions.

First contact condition:

M H-= M H- 0
We rst consider the case of nonpositive discontinuous piecewise constant multipliers where M H- is dened by (3.9). The error estimate is given next.

Theorem 3.3.5. Let (u, λ) be the solution to Problem (3.6). Assume that u r ∈ (H 2 (Ω)) 2 .

Let γ 0 be small enough and let (u h , λ H ) be the solution to the discrete problem (3.12) where

M H-= M H- 0 .
Then, for any η > 0 we have

u -u h , λ -λ H h u-χu s 2,Ω +h 1/2 H 1/2 λ 1/2,Γ C +H 3/4-η/2 ( u 3/2-η,Ω + λ 1/2,Γ C ) . Proof. Choosing µ = 0 in (3.24) yields inf µ∈M -Γ C (µ -λ H ) u n dΓ ≤ - Γ C λ H u n dΓ ≤ 0. In (3.23) we choose µ H = π H 0 λ where π H 0 denotes the L 2 (Γ C )-projection onto W H 0 . We recall that the operator π H 0 is dened for any v ∈ L 2 (Γ C ) by π H 0 v ∈ W H 0 , Γ C (v -π H 0 v)µ dΓ = 0, ∀µ ∈ W H 0 ,
and satises the following error estimates for any 0 ≤ r ≤ 1 (see [START_REF] Belgacem | Hybrid nite element methods for the Signorini problem[END_REF])

H -1/2 v -π H 0 v -1/2,Γ C + v -π H 0 v 0,Γ C H r v r,Γ C . (3.25) Clearly, π H 0 λ ∈ M H- 0 and inf µ H ∈M H- 0 Γ C (µ H -λ)( u h n + γ(λ H -R h (u h )))dΓ ≤ Γ C (π H 0 λ -λ) u h n dΓ + Γ C γ(π H 0 λ -λ)(λ H -R h (u h ))dΓ. (3.26)
The rst integral term in (3.26) is estimated using (3.25) as follows

Γ C (π H 0 λ -λ) u h n dΓ = Γ C (π H 0 λ -λ)( u h n -u n )dΓ + Γ C (π H 0 λ -λ) u n dΓ = Γ C (π H 0 λ -λ)( u h n -u n )dΓ + Γ C (π H 0 λ -λ)( u n -π H 0 u n )dΓ ≤ π H 0 λ -λ -1/2,Γ C u h n -u n 1/2,Γ C + π H 0 λ -λ 0,Γ C u n -π H 0 u n 0,Γ C H λ 1/2,Γ C u -u h + H 3/2-η λ 1/2,Γ C u n 1-η,Γ C
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Therefore, for any α > 0 we have

Γ C (π H 0 λ -λ) u h n dΓ α u -u h 2 + α -1 H 2 λ 2 1/2,Γ C + α -1 H 3/2-η λ 2 1/2,Γ C + αH 3/2-η u 2 3/2-η,Ω . (3.27) 
For the second integral term in (3.26), by using the estimates (3.25), (3.13), (3.21), we have

Γ C γ(π H 0 λ -λ)(λ H -R h (u h ))dΓ = Γ C γ(π H 0 λ -λ)(λ H -λ)dΓ + Γ C γ(π H 0 λ -λ)(σ n (u) -R h (Π h u))dΓ + Γ C γ(π H 0 λ -λ)(R h (Π h u) -R h (u h ))dΓ γ 1/2 0 h 1/2 π H 0 λ -λ 0,Γ C γ 1/2 (λ H -λ) 0,Γ C +γ 1/2 0 h 1/2 π H 0 λ -λ 0,Γ C γ 1/2 (σ n (u) -R h (Π h u)) 0,Γ C +γ 1/2 0 h 1/2 π H 0 λ -λ 0,Γ C γ 1/2 R h (Π h u -u h ) 0,Γ C γ 1/2 0 h 1/2 H 1/2 λ 1/2,Γ C γ 1/2 (λ H -λ) 0,Γ C +γ 1/2 0 h 1/2 H 1/2 λ 1/2,Γ C h u -χu s 2,Ω +γ 0 h 1/2 H 1/2 λ 1/2,Γ C u h -Π h u . Since u h -Π h u u -u h + h u -χu s 2
,Ω , for any α > 0 suciently small, we deduce Remark: Note that if we take h = H the rate of convergence proved in Theorem 3.3.5 is h 3/4-η/2

Γ C γ(π H 0 λ -λ)(λ H -R h (u h ))dΓ α u -u h 2 + α γ 1/2 (λ H -λ) 2 0,Γ C + αh 2 u -χu s 2 2,Ω + α -1 hH λ 2 1/2,Γ C . ( 3 

Second contact condition: M

H-= M H- 1 
Now, we focus on the case of nonpositive continuous piecewise ane multipliers where M H-is given by (3.10).

Theorem 3.3.6. Let (u, λ) be the solution to Problem (3.6). Assume that u r ∈ (H 2 (Ω)) 2 .

Let γ 0 be small enough and let (u h , λ H ) be the solution to the discrete problem (3.12) where

M H-= M H- 1 .
Then, we have for any η > 0

u -u h , λ -λ H h u -χu s 2,Ω + (H 1-η 2 + h 1/2 ) λ 1/2,Γ C + H 1-η 2 u 3/2-η,Ω .
Proof. We choose µ = 0 in (3.24) which implies 

inf µ∈M -Γ C (µ -λ H ) u n dΓ ≤ - Γ C λ H u n dΓ ≤ 0.
= 0. So inf µ H ∈M H- 1 Γ C (µ H -λ)( u h n + γ(λ H -R h (u h )))dΓ ≤ - Γ C λ( u h n + γ(λ H -R h (u h )))dΓ = - Γ C λ r H ( u h n + γ(λ H -R h (u h )))dΓ - Γ C λ( u h n + γ(λ H -R h (u h )) -r H ( u h n + γ(λ H -R h (u h ))))dΓ ≤ - Γ C λ( u h n + γ(λ H -R h (u h )) -r H ( u h n + γ(λ H -R h (u h ))))dΓ = Γ C λ(r H u h n -u h n )dΓ + Γ C λ(r H (γ(λ H -R h (u h ))) -γ(λ H -R h (u h )))dΓ, (3.29) 
where r H :

L 1 (Γ C ) → W H
1 is a quasi-interpolation operator which preserves the nonpositivity dened for any function

v in L 1 (Γ C ) by r H v = x∈N H α x (v)ψ x ,
where N H represents the set of nodes x 0 , ...,

x N in Γ C , ψ x is the scalar basis function of W H 1 (dened on Γ C ) at node x satisfying ψ x (x ) = δ x,x for all x ∈ N H and α x (v) = Γ C vψ x dΓ Γ C ψ x dΓ -1
.

The approximation properties of r H are proved in [START_REF] Hild | An error estimate for the Signorini problem with Coulomb friction approximated by nite elements[END_REF]. We simply recall hereafter the two main results. The rst result is concerned with L 2 -stability property of r H . Lemma 3.3.7. For any v ∈ L 2 (Γ C ) and any E ∈ T H we have

r H v 0,E v 0,γ E ,
where

γ E = ∪ {F ∈T H : F ∩ Ē =∅} F .
Proof. Let E ∈ T H and ψ 1 , ψ 1 the clasical scalar basic functions related to E. Using the denition of α x (v) and the Cauchy-Schwarz inequality we get:

r H v 0,E ≤ α 1 ψ 1 0,Γ C + α 2 ψ 2 0,Γ C ≤ v 0,γ E ψ 1 2 0,Γ C Γ C ψ 1 dΓ + v 0,γ E ψ 2 2 0,Γ C Γ C ψ 2 dΓ v 0,γ E ,
Note that the proof of this lemma is also given in [START_REF] Hild | An error estimate for the Signorini problem with Coulomb friction approximated by nite elements[END_REF] using the additional assumption that the mesh T H is quasi-uniform. The second result is concerned with the L 2 -approximation properties of r H .

Discretization with the stabilized Lagrange multiplier method

Lemma 3.3.8. For any v ∈ H η (Γ C ), 0 ≤ η ≤ 1, and any E ∈ T H we have

v -r H v 0,E H η v η,γ E , (3.30) 
where

γ E = ∪ {F ∈E H C : F ∩ Ē =∅} F .
Consequently, the rst integral term in (3.29) is estimated using (3.30) as follows

Γ C λ(r H u h n -u h n )dΓ ≤ Γ C λ(r H ( u h n -u n ) -( u h n -u n ))dΓ + Γ C λ(r H u n -u n )dΓ, λ 0,Γ C H 1/2 u -u h + λ 0,Γ C H 1-η u n 1-η,Γ C , λ 1/2,Γ C H 1/2 u -u h + λ 1/2,Γ C H 1-η u n 1-η,Γ C , H 1/2 λ 1/2,Γ C u -u h + H 1- η 2 λ 1/2,Γ C H 1-η 2 u n 1-η,Γ C .
Therefore, for any α > 0 we write

Γ C λ(r H u h n -u h n )dΓ α u -u h 2 + αH 1-η u 2 3/2-η,Ω + α -1 (H 1-η + H) λ 2 1/2,Γ C . (3.31) 
Now, we consider the second integral term in (3.29):

Γ C λ(r H (γ(λ H -R h (u h ))) -γ(λ H -R h (u h )))dΓ ≤ λ 0,Γ C r H (γ(λ H -R h (u h ))) -γ(λ H -R h (u h )) 0,Γ C λ 0,Γ C γ(λ H -R h (u h )) 0,Γ C γ 1/2 0 h 1/2 λ 0,Γ C γ 1/2 (λ H -λ) + σ n (u) -R h (Π h u) + R h (Π h u -u h ) 0,Γ C γ 1/2 0 h 1/2 λ 1/2,Γ C γ 1/2 (λ H -λ) 0,Γ C + h u -χu s 2,Ω + γ 1/2 0 u -u h .
As a consequence, for any α > 0 we have

Γ C λ(r H (γ(λ H -R h (u h ))) -γ(λ H -R h (u h )))dΓ α( u -u h 2 + γ 1/2 (λ H -λ) 2 0,Γ C ) + αh 2 u -χu s 2 2,Ω + α -1 h λ 2 1/2,Γ C . (3.32)
The proof of the theorem then follows by using the inequalities (3. Let γ 0 be small enough and let (u h , λ H ) be the solution to the discrete problem (3.12) where

M H-= M H- 1, * .
Then, for any η > 0 we have

u -u h , λ -λ H h u -χu s 2,Ω + (h 1/2 + H 3/2-η ) λ 1/2,Γ C + h -1/2 H 1-η u 3/2-η,Ω .
Proof. By setting µ = 0 in (3.24) we obtain inf

µ∈M -Γ C (µ -λ H ) u n dΓ ≤ - Γ C λ H u n dΓ, = Γ C λ H (I H u n -u n )dΓ - Γ C λ H I H u n dΓ, ≤ Γ C λ H (I H u n -u n )dΓ, = Γ C (λ H -λ)(I H u n -u n )dΓ + Γ C λ(I H u n -u n )dΓ, ≤ γ 1/2 (λ H -λ) 0,Γ C γ -1/2 (I H u n -u n ) 0,Γ C , + λ 0,Γ C I H u n -u n 0,Γ C , H 1-η h -1/2 u 3/2-η,Ω γ 1/2 (λ H -λ) 0,Γ C + λ 1/2,Γ C H 1-η u 3/2-η,Ω ,
where I H is the Lagrange interpolation operator onto W H 1 . The operator I H is dened for any v ∈ C (Γ C ) and satises the following error estimates for any 1/2 < r ≤ 2:

v -I H v 0,Γ C H r v r,Γ C .
Therefore, for any α > 0 we have

inf µ∈M -Γ C (µ -λ H ) u n dΓ αh -1 H 2(1-η) u 2 3/2-η,Ω + α -1 γ 1/2 (λ H -λ) 2 0,Γ C + h λ 2 1/2,Γ C (3.33) 
In the inmum (3.23) we choose µ

H = π H 1 λ where π H 1 denotes the L 2 (Γ C )-projection onto W H 1 . The operator π H 1 is dened for any v ∈ L 2 (Γ C ) by π H 1 v ∈ W H 1 , Γ C (v -π H 1 v)µ dΓ = 0, ∀µ ∈ W H 1 ,
and satises, for any 0 ≤ r ≤ 2, the following error estimates

H -1/2 v -π H 1 v -1/2,Γ C + v -π H 1 v 0,Γ C ≤ CH r v r,Γ C . (3.34) Clearly π H 1 λ ∈ M H- 1, * , so that inf µ H ∈M H- 1, * Γ C (µ H -λ)( u h n + γ(λ H -R h (u h )))dΓ ≤ Γ C (π H 1 λ -λ) u h n dΓ + Γ C γ(π H 1 λ -λ)(λ H -R h (u h ))dΓ.
(3.35)

Discretization with the stabilized Lagrange multiplier method

The rst integral term in (3.35) is estimated using (3.34) as follows

Γ C (π H 1 λ -λ) u h n dΓ = Γ C (π H 1 λ -λ)( u h n -u n )dΓ + Γ C (π H 1 λ -λ) u n dΓ, = Γ C (π H 1 λ -λ)( u h n -u n )dΓ + Γ C (π H 1 λ -λ)( u n -π H 1 u n )dΓ, ≤ π H 1 λ -λ -1/2,Γ C u h n -u n 1/2,Γ C + π H 1 λ -λ 0,Γ C u n -π H 1 u n 0,Γ C , H λ 1/2,Γ C u -u h + H 1/2 λ 1/2,Γ C H 1-η u 3/2-η,Ω .
Therefore, for any α > 0, we have

Γ C (π H 1 λ -λ) u h n dΓ α u -u h 2 + H 3/2-η u 2 3/2-η,Ω + α -1 (H 2 + H 3/2-η ) λ 2 1/2,Γ C . (3.36)
For the second integral term in (3.35) by using the bounds given in (3.34), (3.13), (3.21) we get Remark: Note that if we take h = H the rate of convergence proved in Theorem 3.3.9 is h 1/2-η .

Γ C γ(π H 1 λ -λ)(λ H -R h (u h ))dΓ = Γ C γ(π H 1 λ -λ)(λ H -λ)dΓ + Γ C γ(π H 1 λ -λ)(σ n (u) -R h (Π h u))dΓ + Γ C γ(π H 1 λ -λ)(R h (Π h u) -R h (u h ))dΓ γ 1/2 0 h 1/2 π H 1 λ -λ 0,Γ C γ 1/2 (λ H -λ) 0,Γ C +γ 1/2 0 h 1/2 π H 1 λ -λ 0,Γ C γ 1/2 (σ n (u) -R h (Π h u)) 0,Γ C +γ 1/2 0 h 1/2 π H 1 λ -λ 0,Γ C γ 1/2 R h (Π h u -u h ) 0,Γc γ 1/2 0 h 1/2 H 1/2 λ 1/2,Γ C γ 1/2 (λ H -λ) 0,Γ C +γ 1/2 0 h 1/2 H 1/2 λ 1/2,Γ C h u -χu s 2,Ω +γ 0 h 1/2 H 1/2 λ 1/2,Γ C u h -Π h u . Since u h -Π h u ≤ u -u h + Ch u -χu s 2,Ω , for any small α > 0 we get Γ C γ(π H 1 λ -λ)(λ H -R h (u h ))dΓ α u -u h 2 + α γ 1/2 (λ H -λ) 2 0,Γ C + αh 2 u -χu s 2 2,Ω + α -1 hH λ 2 1/2,Γ C .
Neumann boundary conditions are prescribed as follows:

g(0, y) = g(1, y) = 0 4 • 10 -2 sin(2πy) -0.5 ≤ y ≤ 0.5,

g(x, -0.5) = g(x, 0.5) = 0 0 0 ≤ x ≤ 1.
An example of a non structured mesh used is presented in Fig. 3.6. The numerical tests are performed with GETFEM++, the C++ nite-element library developed by our team (see [START_REF] Pommier | Getfem++, an open source generic C++ library for nite element methods[END_REF]).

Numerical solving

The algebraic formulation of Problem (3.12) is given as follows

(3.38)      Find U ∈ R N and L ∈ M H- such that (K -K γ )U -(B -C γ ) T L = F, (L -L) T ((B -C γ )U + D γ L) ≥ 0, ∀L ∈ M H-,
where U is the vector of degrees of freedom (d.o.f.) for u h , L is the vector of d.o.f. for the multiplier λ H , M His the set of vectors L such that the corresponding multiplier lies in M H-, K is the classical stiness matrix coming from the term a(u h , v h ), F is the right-hand side corresponding to the Neumann boundary condition and the volume forces, and B, K γ , C γ , D γ are 

(λ H , v h ), Γ C γR h (u h )R h (v h ) dΓ, Γ C γλ H R h (v h ) dΓ, Γ C γλ H µ H dΓ, respectively.
The inequality in (3.38) can be expressed as an equivalent projection (3.39)

L = P M H-(L -r((B -C γ )U + D γ L)),
where r is a positive augmentation parameter. This last step transforms the contact condition into a nonlinear equation and we have to solve the following system:

(3.40)        Find U ∈ R N and L ∈ M H- such that (K -K γ )U -(B -C γ ) T L -F = 0, - 1 r L -P M H-(L -r((B -C γ )U + D γ L)) = 0.
This allows us to use the semi-smooth Newton method (introduced for contact and friction problems in [START_REF] Alart | A mixed formulation for frictional contact problems prone to Newton like solution methods[END_REF]) to solve Problem (3.40). The term `semi-smooth' comes from the fact that projections are only piecewise dierentiable. Practically, it is one of the most robust algorithms to solve contact problems with or without friction. In order to write a Newton step, one has to compute the derivative of the projection (3.39). An analytical expression can only be obtained when the projection itself is simple to express. This is the case for instance when the set M H- is chosen to be the set of multipliers having non-positive values on each nite-element node of the contact boundary (such as M H-

0 or M H- 1 
). In this case, the projection can be expressed component-wise (see [START_REF] Khenous | Hybrid discretization of the Signorini problem with Coulomb friction. Theoretical aspects and comparison of some numerical solvers[END_REF]).

In order to keep the independence between the mesh and the crack, the approximation space W H for the multiplier is chosen to be the trace on Γ C of a Lagrange nite-element method dened on the same mesh as V h (in that sense H = h) and its degree will be specied in the following.

Chapter 3. A stabilized L.M.M. for E.F.E of contact problems of C.E.B

Let us denote X h the space corresponding to the Lagrange nite-element method. The choice of a basis of the trace space W H = X h |Γ C

is not completely straightforward. Indeed, the traces on Γ C of the shape functions of X h may be linearly dependent. A way to overcome this diculty is to eliminate the redundant functions. Our approach in the presented numerical experiments is as follows. In a rst time, we eliminate locally dependent columns of the mass matrix Γ C ψ i ψ j dΓ, where ψ i is the nite-element shape functions of X h , with a block-wise Gram-Schmidt algorithm.

In a second time, we detect the potential remaining kernel of the mass matrix with a Lanczos algorithm.

Numerical tests

In this section, we present numerical tests of the stabilized and non stabilized unilateral contact problem for the following, dierently enriched, nite-element methods: P 2 /P 1 , P 2 /P 0 , P 1 + /P 1 , P 1 /P 1 , P 1 /P 0 . The notation P i /P j (resp. P 1 +/P 1 ) means that the displacement is approximated with a P i extended nite-element method (resp. a P 1 extended nite-element method with an additional cubic bubble function) and the multiplier with a continuous P j nite-element method for j > 0 (resp. continuous P 1 nite-element method). stress. The P 1 /P 1 method is not plotted because it does not work without stabilization. The P 2 /P 1 and P 1 /P 0 versions generally work without stabilization even though a uniform inf-sup condition cannot be proven. Fig. 3.8(a) shows that the rate of convergence in the error L 2 (Ω)norm is of order 2.4 for the P 2 /P j methods and of order 2 for the P 1 /P j methods. This rate of convergence is close to optimality because the singularity due to the transition between contact and non contact is expected to be in H 5/2-η (Ω) for any η > 0 (under the assumptions of lemma A.1). Theoretically, this limits the convergence rate to 3/2η in the H 1 (Ω)-norm. shows that the rate of convergence in energy norm is optimal for all pairs of elements considered.

Fig. 3.8(c) shows that, except the P 1 /P 0 method, the rate of convergence in the L 2 (Γ C )-norm is optimal but there are very large oscillations. For the P 1 /P 0 method the rate of convergence in the L 2 (Γ C )-norm is not optimal (of order 0.42). It seems that the presence of some spurious modes aects this rate of convergence. Stabilized method: The curves in the stabilized case are given in Fig. 3.9(a) for the error in the L 2 (Ω)-norm on the displacement, in Fig. 3.9(b) for the error in the H 1 (Ω)-norm on the displacement and in Fig. 3.9(c) for the error in the L 2 (Γ C )-norm of the contact stress. Similarly to the non stabilized method, Fig. 3.9(b) shows that we have an optimal rate of convergence, with a slight dierence, for the error in the H 1 (Ω)-norm on the displacement. Concerning the error in the L 2 (Ω)-norm the rate of convergence is aected by the stabilization for the quadratic elements P 2 /P 1 and P 2 /P 0 . For the error in the L 2 (Γ C )-norm of the contact stress, Fig. 3.9(c) shows that the Barbosa-Hughes stabilization eliminates the spurious modes for the P 1 /P 1 and P 1 /P 0 methods. For the remaining pairs of elements, the stabilization also allows to reduce the oscillations in the convergence of the contact stress.

The stabilization parameter is chosen in such a way that it is as large as possible but keeps the coercivity of the stiness matrix. To check the coercivity, we calculate the smallest eigenvalue of the stiness matrix. For the L 2 (Γ C )-norm on the contact stress, the value of the stabilization parameter can be divided into two zones. A coercive area where the error decreases when increasing the stabilization parameter γ 0 and a non-coercive zone where the error evolves randomly according to the stabilization parameter (see Fig. 3.10(a) and 3.10(b)). Fig. 3.11 shows that the stabilization parameter has no inuence on the error in L 2 (Ω) and H 1 (Ω)-norms of the displacement.

Conclusion

Concerning the three contact conditions we considered theoretically, the given a priori error estimates are obviously sub-optimal. This limitation of the mathematical analysis is not specic to the approximation of contact problems in the framework of XFEM. It is in fact particularly true for the approximation of the contact condition with Lagrange multiplier. This is probably Figure 3.11: Inuence of the stabilization parameter for P 1 /P 0 method due to technical reasons. The approximation with Lagrange multiplier is made necessary here to apply the Barbosa-Hughes stabilization technique (see [START_REF] Hild | A stabilized Lagrange multiplier method for the nite element approximation of contact problems in elastostatics[END_REF]).

In the numerical tests we considered, the stabilized methods have indeed an optimal rate of convergence. More surprisingly, the unstabilized methods have also an optimal rate of convergence concerning the displacement (except the P 1 /P 1 method whose linear system was not invertible). This may lead to the conclusion that no locking phenomenon were present in the numerical situation we studied despite the non-satisfaction of the discrete inf-sup condition. The fact that such a locking situation may exist or not in the studied framework (contact problem on crack lips for a linear elastic body) is an open question.

Introduction

The ctitious domain method is a technique allowing the use of regular structured meshes on a simple shaped ctitious domain containing the real domain. Generally, this technique is used for solving elliptic problems in domains with unknown or moving boundary without having to build a body tted mesh. There exist two main approaches of ctitious domain method. The thin interface approach where the approached interface has the same dimension as the original interface. This approach was initiated by V.K. Saul'ev in [START_REF] Saul'ev | On the solution of some boundary value problems on high performance computers by ctitious domain method[END_REF]. In this context, there exist dierent techniques to take account of the boundary condition: the technique where the ctitious domain mesh is modied locally to take account of the boundary condition (see for instance reference [START_REF] Saul'ev | On the solution of some boundary value problems on high performance computers by ctitious domain method[END_REF][START_REF] Marchuk | Methods of numerical mathematics[END_REF]); The technique of penalization which allows to conserve the Cartesian mesh of the ctitious domain (see for instance reference [START_REF] Angot | A penalization method to take into account obstacles in incompressible viscous ows[END_REF][START_REF] Glowinski | Wavelet and nite element solutions for the Neumann problem using ctitious domains[END_REF]) and the technique of Lagrange multiplier introduced by R. Glowinski et al. [START_REF] Glowinski | Wavelet and nite element solutions for the Neumann problem using ctitious domains[END_REF][START_REF] Dean | Least squares/domain imbedding methods for Neumann problems: applications to uid dynamics[END_REF][START_REF] Girault | Error analysis of a ctitious domain method applied to a Dirichlet problem[END_REF][START_REF] Glowinski | On the solution of the Dirichlet problem for linear elliptic operators by a distributed Lagrange multiplier method[END_REF] where a second mesh is considered to conserve the Cartesian mesh of the ctitious domain and to take account of the boundary condition. The second approach of ctitious domain method is the Spread interface approach where the approximate interface is larger than the physical interface. The approximate interface has one dimension more than the original one. It was introduced by Rukhovets [START_REF] Rukhovets | A remark on the method of ctive domains[END_REF]. For example, the following methods can be found in this group: Immersed boundary method [START_REF] Peskin | Flow patterns around heart valves: A numerical method[END_REF][START_REF] Peskin | The immersed boundary method[END_REF] and Fat boundary method [START_REF] Maury | A fat boundary method for the Poisson problem in a domain with holes[END_REF][START_REF] Bertoluzza | The fat boundary method: Semi-discrete scheme and some numerical experiments[END_REF].

Recently, ctitious domain methods with a thin interface have been proposed in the context of the extended nite element method (X-FEM) introduced by Moes, Dolbow and Belytscko [START_REF] Moës | A nite element method for cracked growth without remeshing[END_REF]. Dierent approaches are proposed in [START_REF] Moës | Imposing Dirichlet boundary conditions in the extended nite element method[END_REF][START_REF] Sukumar | Modeling holes and inclusions by level sets in the extended nite-element method[END_REF][START_REF] Béchet | A stable Lagrange multiplier space for sti interface conditions within the extended nite element method[END_REF] to directly enforce an inf-sup condition on a multiplier to prescribe a Dirichlet boundary condition. Another possibility is the use of the stabilized Nitsche's method [START_REF] Nitsche | über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind[END_REF] which is close to a penalization technique but preserving the consisting and avoiding large penalty terms that would otherwise deteriorate the conditioning of the matrix system [START_REF] Burman | Fictitious domain nite element methods using cut elements: II. A stabilized Nitsche method[END_REF]. We can cite also the method introduced in [START_REF] Burman | Fictitious domain nite element methods using cut elements: I. A stabilized Lagrange multiplier method[END_REF] which uses a stabilized Lagrange multipliers method using piecewise constant multipliers and an additional stabilization term employing the inter-element jumps of the multipliers. Finally, let us mention [START_REF] Haslinger | A new ctitious domain approach inspired by the extended nite element method[END_REF] where an a priori error estimate for non-stabilized Dirichlet problem is given and an optimal method is developed using a Barbosa-Hughes stabilization (see [START_REF] Barbosa | The nite element method with Lagrange multipliers on the boundary: circumventing the Babuvska-Brezzi condition[END_REF][START_REF] Barbosa | Boundary Lagrange multipliers in nite element methods: error analysis in natural norms[END_REF]).

In this paper, we perform a study similar to [START_REF] Haslinger | A new ctitious domain approach inspired by the extended nite element method[END_REF] for a local projection stabilization applied to the ctitious domain method inspired by the X-FEM. To our knowledge, this technique was used for the rst time by Dohrmann et al. [START_REF] Dohrmann | A stabilized nite element method for the stokes problem based on polynomial pressure projections[END_REF]. Recently, this new technique was proposed and analyzed by Burman [START_REF] Burman | Projection stabilisation of lagrange multipliers for the imposition of constraints on interfaces and boundaries[END_REF] in the context of the Lagrange nite element method and by Barrenechea et al. [START_REF] Barrenechea | A local projection stabilized method for ctitious domains[END_REF] in the context of a more classical ctitious domain approch (uncut mesh). The principle of the used local projection stabilization is to penalize the dierence of the multiplier with its projection on some pre-dened patches. The advantage of this technique is of at least threefold: the method is asymptotic consistent, there is no use of mesh other than the (possibly Cartesian) one of the ctitious domain and the additional term concerns only the multiplier and is not model dependent such as the Barbosa-Hughes stabilization technique.

The paper is organized as follows. In Section 1 we introduce the Poisson model problem and in Section 2, the non-stabilized ctitious domain method. We present our new stabilization technique in Section 3 together with the theoretical convergence analysis. Finally, Section 4 is devoted to two and three-dimensional numerical experiments and the comparison with the use of Barbosa-Hughes stabilization technique.

The model problem

For the sake of simplicity, the presentation and the theoretical analysis is made for a twodimensional regular domain Ω, although the method extends naturally to higher dimensions.

Let Ω ⊂ R 2 be a ctitious domain containing Ω in its interior (and generally assumed to have a simple shape). We consider that the boundary Γ of Ω is split into two parts Γ N and Γ D (see Fig. the following elliptic problem in Ω:

(4.1)            Find u : Ω → R such that: -∆u = f in Ω, u = 0 on Γ D , ∂ n u = g on Γ N ,
where f ∈ L 2 (Ω) and g ∈ L 2 (Γ N ) are given data. Concidering a Lagrange multiplier multiplier to prescribe the Dirichlet boundary condition, a classical weak formulation of this problem reads as follows:

(4.2)    Find u ∈ V and λ ∈ W such that a(u, v) + λ, v W,X = l(v) ∀v ∈ V, µ, u W,X = 0 ∀µ ∈ W, where V = H 1 (Ω), X = w ∈ L 2 (Γ D ) : ∃v ∈ V, w = v |Γ D , W = X , a(u, v) = Ω ∇u.∇vdΩ, l(v) = Ω f v dΩ + Γ N g v dΓ,
and µ, v W,X denotes the duality pairing between W and X.

Let V 0 = v ∈ V : Γ D v dΓ = 0 .
Then, a direct consequence of Peetre-Tartar lemma (see [START_REF] Ern | Theory and Practice of Finite Elements[END_REF]) is that a(., .) is coercive on V 0 i.e.

there exists α > 0 such that

(4.3) a(v, v) ≥ α v 2 V ∀v ∈ V 0 .
From this, the existence and uniqueness of a solution to Problem (4.2) follows. Classically, Problem (4.2) is also equivalent to the problem of nding the saddle point of the Lagrangian (4.4) 

L(v, µ) = 1 2 a(v, v) + µ, v W,X -l(v), dened on V × X.

The ctitious domain method

The ctitious domain approach requires the introduction of two nite-element spaces on the ctitious domain Ω. Namely V h ⊂ H 1 ( Ω) and W h ⊂ L 2 ( Ω). Note that Ω may always be chosen as a suciently large rectangle (a, b) × (c, d) such that Ω ⊂ (a, b) × (c, d) which allows V h and W h to be dened on the same structured mesh T h (see Fig. 

V h = {v h ∈ C( Ω) : v h |T ∈ P (T ) ∀T ∈ T h },
where P (T ) is a nite-dimensional space of regular functions satisfying P (T ) ⊇ P k (T ) for some integer k ≥ 1. For the approximation on the real domain Ω, we consider the following restriction of V h and W h on Ω and Γ D , respectively:

V h = V h |Ω , and W h = W h |Γ D ,
which are natural discretization of V and W . An approximation of Problem (4.2) is then dened as follows:

(4.6)            Find u h ∈ V h and λ h ∈ W h such that a(u h , v h ) + Γ D λ h v h dΓ = l(v h ) ∀v h ∈ V h , Γ D µ h u h dΓ = 0 ∀µ h ∈ W h .

A local projection stabilized formulation

We choose W h and V h in such a way that the following condition is satised:

1 |Γ D ∈ W h . (4.7)
Let us dene the following space:

(4.8)

V h 0 = {v h ∈ V h : Γ D µ h v h dΓ = 0 ∀µ h ∈ W h }.
Then a(., .) is V h 0 -elliptic since V h 0 ⊂ V 0 . Without any additional treatment, the following result is proved in [START_REF] Haslinger | A new ctitious domain approach inspired by the extended nite element method[END_REF]: Proposition 6. Let V h dened by (4.5), assume (4.7) is satised and, in addition

inf µ h ∈W h λ -µ h W ≤ h β , β ≥ 1/2.
(4.9)

µ h ∈ W h : Γ D µ h v h dΓ = 0 ∀v h ∈ V h =⇒ µ h = 0. (4.10)
Then, one has the following error estimate:

u h -u V ≤ C √ h, h → 0+.
This means that, without any treatment, the guaranteed rate of convergence is limited to

O( √ h
) which is conrmed is some numerical situations. This reects a certain kind of numerical locking phenomenon.

A local projection stabilized formulation

In this section, we present a stabilization technique consisting in the addition of a supplementary term involving the local orthogonal projection of the multiplier on a patch decomposition of the mesh.

Let S h be the one-dimensional mesh resulting in the intersection of T h and Γ D . The idea is to aggregate the possibly very small elements of S h in order to obtain a set of patches having a minimal and a maximal size (for instance between 3h and 6h). In practice, this operation can be done rather easily (even for three-dimensional problems). A practical way to obtain such a patch decomposition will be described in the next section. An example of patch aggregation is presented in Fig. 4.3.

Let H be the minimum length of these patches and denote by S H the corresponding subdivision of Γ D . Let

W H = µ H ∈ L 2 (Γ D ) : µ H |S ∈ P 0 (S), ∀S ∈ S H ,
be the space of piecewise constants on this mesh. A classical result, presented in [START_REF] Girault | Error analysis of a ctitious domain method applied to a Dirichlet problem[END_REF], states that under a reasonable regularity assumption on Γ D , an inf-sup condition is satised between W H and V h for minimal size of 3h for the patches. This implies in particular that an optimal convergence can be reached if the multiplier is taken in W H . However, this assumes a relatively coarse approximation of the multiplier. Our approach is to use this result in order to stabilize the approximation obtained with the multiplier dened on the ner discretization W h .

Let us rst recall the result of Girault and Glowinski in [START_REF] Girault | Error analysis of a ctitious domain method applied to a Dirichlet problem[END_REF]. Under the assumption that Γ D is of class C 1,1 and a condition for the patches S ∈ S H to be approximated by a xed set of line segments having approximatively the same length (see [START_REF] Girault | Error analysis of a ctitious domain method applied to a Dirichlet problem[END_REF], condition (4.17)) with a length greater or equal to 3h then the following inf-sup (or LBB) condition holds for a constant β * > 0, independent of h and H:

(4.11) ∀µ H ∈ W H , sup v h ∈V h Γ D v h µ H dΓ v h V ≥ β * µ H -1/2,Γ D .
In the following, we will assume that the conditions to obtain this inf-sup condition are satised. The stabilized formulation consists in approximate the Lagrangian (4.4) by:

L h (v h , µ h ) = L(v h , µ h ) - γ 2 Γ D (µ h -P W H (µ h )) 2 dΓ,

A local projection stabilized formulation

where, for the sake of simplicity, γ is a chosen constant. The corresponding optimality system reads as follows:

(4.12) 

           Find u h ∈ V h and λ h ∈ W h such that a(u h , v h ) + Γ D λ h v h dΓ = l(v h ) ∀v h ∈ V h , Γ D µ h u h dΓ -γ Γ D (λ h -P W H (λ h ))(µ h -P W H (µ h ))dΓ = 0 ∀µ h ∈ W h . Lemma 4.
       a(ū h , ūh ) + Γ D λh ūh dΓ = 0, Γ D λh ūh dΓ -γ Γ D ( λh -λH ) 2 dΓ = 0 ∀µ h ∈ W h . Consequently, (4.14) 
a(ū h , ūh ) + γ

Γ D ( λh -λH ) 2 dΓ = 0,
which implies that ūh = 0 and λh = λH (i.e. λh ∈ W H ). Moreover, it follows from (4.11) that there exists v h ∈ V h such that (4.15)

Γ D λH v h ≥ β * λH -1/2,Γ D v h V ,
and thus

β * λH -1/2,Γ D ≤ 1 v h V Γ D λH v h dΓ = 1 v h V Γ D λh v h dΓ = 1 v h V a(ū h , v h ) = 0.
This implies the uniqueness of the solution and, since the dimension of the linear system (4.12)

is nite, the existence as well.

Convergence analysis

In this section, we establish an optimal a priori error estimate for the following standard nite element spaces:

(4.16)

V h = {v h ∈ C( Ω) : v h |T ∈ P (T ) ∀T ∈ T h }, (4.17) W h = {µ h ∈ L 2 ( Ω) : µ h |T ∈ P (T ) ∀T ∈ T h },
where P (T ) (resp. P (T )) is a nite-dimensional space of regular functions satisfying P (T ) ⊇ P k (T ) (resp. P (T ) ⊇ P k (T )) for an integer k ≥ 1 (resp. k ≥ 0). Then, the following estimate holds for C > 0 a constant independent of h:

(4.18) u -u h , λ -λ h ≤ Ch u 2,Ω + λ 1/2,Γ D ,
where

| (u, λ) | 2 = u 2 V + λ 2 -1/2,Γ D
and (u h , λ h ) is the solution to Problem (4.12).

Proof. Let λ H = P W H (λ h ). As u and u h are both in V 0 then for all v h ∈ V h and µ H ∈ W H we have: 

α u h -u 2 V ≤ a(u h -u, u h -u) = a(u h -u, v h -u) + a(u h -u, u h -v h ), ≤ M u h -u V v h -u V - Γ D (λ h -λ)(u h -v h )dΓ, = M u h -u V v h -u V - Γ D λ h u h dΓ + Γ D λu h dΓ + Γ D (λ h -λ)(v h -u)dΓ, = M u h -u V v h -u V -γ λ h -λ H 2 0,Γ D + Γ D (λ -µ H )(u h -u)dΓ + Γ D (λ h -λ)(v h -u)dΓ, because in particular Γ D (λ h -λ)u dΓ = 0.
α u h -u 2 V + γ λ h -λ H 2 -1/2,Γ D ≤ M u h -u V v h -u V + λ -µ H -1/2,Γ D u h -u V + λ h -λ -1/2,Γ D u -v h V .
Besides,

Γ D (λ -λ h )v h dΓ = a(u h -u, v h ) ∀v h ∈ V h ,
and therefore one obtains

Γ D (μ h -λ h )v h dΓ = a(u h -u, v h ) + Γ D (μ h -λ)v h dΓ ∀v h ∈ V h ; ∀μ h ∈ W h . (4.20)
Now, for µ H = λ H -μH ∈ W H with μH = P W H (μ h ), the inf-sup condition (4.11) ensures the existence of v h ∈ V h such that together with (4.20) we get

β * λ H -μH -1/2,Γ D ≤ 1 v h V Γ D (μ H -λ H )v h dΓ, ≤ 1 v h V Γ D (μ h -λ h )v h dΓ + 1 v h V Γ D (μ H -λ H -(μ h -λ h ))v h dΓ, ≤ M u h -u V + μh -λ -1/2,Γ D + μH -λ H -(μ h -λ h ) -1/2,Γ D .

A local projection stabilized formulation

As a consequence, one has

β * λ H -λ -1/2,Γ D ≤ β * λ -μH -1/2,Γ D + M u h -u V + μh -λ -1/2,Γ D + μH -μh -1/2,Γ D + λ H -λ h -1/2,Γ D ,
and 

β * 2 λ H -λ 2 -1/2,Γ D ≤ 5M 2 u -u h 2 V + 5β * 2 λ -μH 2 -1/2,Γ D + 5 λ -μh 2 -1/2,Γ D +5 μH -μh 2 -1/2,Γ D + 5 λ H -λ h 2 -1/2,Γ D ∀μ h ∈ W h . ( 4 
μh ∈ W h , µ H ∈ W H and v h ∈ V h (α -5M 2 δ) u -u h 2 V + δβ * 2 λ -λ H 2 -1/2,Γ D + (γ -5δ) λ h -λ H 2 -1/2,Γ D ≤ M u h -u V v h -u V + λ -µ H -1/2,Γ D u h -u V + λ -λ h -1/2,Γ D u -v h V +5δβ * 2 λ -μH 2 -1/2,Γ D + 5δ λ -μh 2 -1/2,Γ D + 5δ μh -μH 2 -1/2,Γ D , ≤ δ 2 M 2 u -u h 2 V + 1 2δ u -v h 2 V + δ 2 u -u h 2 V + 1 2δ λ -µ H 2 -1/2,Γ D + ξ 2 λ -λ h 2 -1/2,Γ D + 1 2ξ u -v h 2 V + 5δβ * 2 λ -μH 2 -1/2,Γ D + 5δ λ -μh 2 -1/2,Γ D + 5δ μh -μH 2 -1/2,Γ D .
Let δ and ξ be such that δ < min 2α 11M 2 + 1 ; γ 5 and ξ < min 2δβ * 2 ; 2(γ -5δ) , then, still for

all μh ∈ W h , µ H ∈ W H and v h ∈ V h , one deduces that (α -δ 11M 2 + 1 2 ) u -u h 2 V + (γ -5δ - ξ 2 ) λ h -λ H 2 -1/2,Γ D + (δβ * 2 - ξ 2 ) λ -λ H 2 -1/2,Γ D ≤ ( 1 2δ + 1 2ξ ) u -v h 2 V + 1 2δ λ -µ H 2 -1/2,Γ D + 8δβ * 2 λ -μH 2 -1/2,Γ D + 8δ λ -μh 2 -1/2,Γ D +8δ μh -μH 2 -1/2,Γ D , ∀ μh ∈ W h .
Denoting by Π h (resp. P W h ) the Lagrange interpolation operator (resp. the L 2 (Γ D )-projection) in V h (resp. in W h ), we have the following standard nite-element estimates:

u -Π h u V ≤ Ch u 2,Ω , λ -P W h (λ) -1/2,Γ D ≤ Ch λ 1/2,Γ D , λ -P W H (λ) -1/2,Γ D ≤ CH λ 1/2,Γ D .
Finally, the theorem is established by taking v h = Π h u, μh = P W h (λ) and µ H = P W H (λ). The numerical tests are performed with GETFEM++, the C++ nite-element library developed by our team (see [START_REF] Pommier | Getfem++, an open source generic C++ library for nite element methods[END_REF]).

Numerical solving

The algebraic formulation of Problem (4.12) reads

(4.22)        Find U ∈ R Nu and L ∈ R N λ such that KU + B T L = F, BU -M γ L = 0,
where U is the vector of degrees of freedom for u h , L the one for the multiplier λ h , N u and N λ the dimensions of V h and W h , respectively, K is the stiness matrix coming from the term a(u h , v h ), F is the right-hand side corresponding to the term (v h ), and B and M γ are the matrices corresponding to the terms

Γ D λ h v h dΓ and γ Γ D (λ h -P W H (λ h ))(µ h -P W H (µ h ))dΓ, respectively.
Before presenting the numerical experiments, we shall describe in details two important aspects of the implementation of the method. Namely, the extraction of a basis for W h and the repartition of the elements having an intersection with Γ D into patches. The extraction of a basis of W h could be non-trivial in some cases, except when a piecewise constants (P 0 ) nite-element method is used to approximate the multiplier or in some other cases when Γ D is curved. Indeed, if one selects all the shape functions of W h whose supports intersect Γ D , some of them can be linearly dependent, especially when Γ D is a straight line. In order to eliminate linearly dependent shape functions, the choice here is to consider the mass matrix Γ D ψ i ψ j dΓ where the ψ i are the nite-element shape functions of W h . A block-wise Gram-Schmidt algorithm is used to eliminate local dependencies and then the potential remaining kernel of the mass matrix is detected by a Lanczos algorithm. In the presented numerical tests, since curved boundaries are considered the kernel of the mass matrix is either reduced to 0 or is very small. In [START_REF] Amdouni | A stabilized Lagrange multiplier method for the enriched nite-element approximation of contact problems of cracked elastic bodies[END_REF] some numerical experiments are presented for a straight line in 2D using the same technique. The selection of a basis of W h using this technique took far less computational time than the assembly of the stiness matrix.

The decomposition into patches is made using a graph partitioner algorithm. In the presented numerical tests we use the free software METIS [START_REF] Karypis | Metis: Unstructured graph partitioning and sparse matrix ordering system[END_REF]. The nodes of the graph consist in the elements having an intersection with Γ D and the edges connect adjacent elements. Additionally, a load corresponding to the size of the intersection is considered on each elements. The partition is a very fast operation.

Comparison with the Barbosa-Hughes stabilization technique

In our numerical test, we compare the new stabilization technique to the one studied in [START_REF] Haslinger | A new ctitious domain approach inspired by the extended nite element method[END_REF] in the same framework which use the technique introduced by Barbosa and Hughes in [START_REF] Barbosa | The nite element method with Lagrange multipliers on the boundary: circumventing the Babuvska-Brezzi condition[END_REF][START_REF] Barbosa | Boundary Lagrange multipliers in nite element methods: error analysis in natural norms[END_REF]. For the self consistency of the paper, we briey recall the principle of the symmetric version of the Barbosa-Hughes stabilization technique applied to Problem (4.6) as it is presented in [START_REF] Haslinger | A new ctitious domain approach inspired by the extended nite element method[END_REF]. 

R h : V h -→ L 2 (Γ D ),
which approximates the normal derivative on Γ D (i.e. for v h ∈ V h converging to a suciently smooth function v, R h (v h ) tends to ∂ n v in an appropriate sense). Several choices of R h are proposed in [START_REF] Haslinger | A new ctitious domain approach inspired by the extended nite element method[END_REF]. To obtain the stabilized problem, the Lagrangian (4.4) is approximated by the following one

L h (v h , µ h ) = L(v h , µ h ) - γ 2 Γ D (µ h + R h (v h )) 2 dΓ, v h ∈ V h , µ h ∈ W h ,
where the stabilization parameter γ depend on the mesh parameter γ := hγ 0 , with γ 0 a positive constant over Ω. The corresponding discrete problem reads as follows:

(4.23)            Find u h ∈ V h and λ h ∈ W h such that a(u h , v h ) + Γ D λ h v h dΓ -γ Γ D (λ h + R h (u h ))R h (v h )dΓ = l(v h ) ∀v h ∈ V h , Γ D µ h u h dΓ -γ Γ D (λ h + R h (u h ))µ h dΓ = 0 ∀µ h ∈ W h .
More details and a convergence analysis can be found in [START_REF] Haslinger | A new ctitious domain approach inspired by the extended nite element method[END_REF]. Note that this is also a consistent modication of the Lagrangian and that a close relationship between Barbosa-Hughes stabilization technique and Nitsche's one [START_REF] Nitsche | über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind[END_REF] has been explained in [START_REF] Stenberg | On some techniques for approximating boundary conditions in the nite element method[END_REF].

Two-dimensional numerical tests

A comparison is done between the non-stabilized problem (4.6), the local projection stabilized problem (4.12) and the Barbosa-Hughes stabilized one (4.23) in the two-dimensional case. Additionally, we test dierent pairs of elements for the main unknown u and the multiplier. Namely, we test the following methods: P 2 /P 1 , P 1 /P 1 , P 1 /P 0 , P 1 /P 2 , Q 1 /Q 0 and Q 1 /Q 0 . The notation P i /P j (resp. Q i /Q j ) means that solution u is approximated with a P i nite-element method (resp. a Q i nite-element method) and the multiplier with a continuous P j nite-element method (resp. continuous Q j nite-element method).

Without stabilization. A solution is plotted in Fig. 4.6 for a P 1 /P 2 method. Of course, for this pair of elements, a uniform discrete inf-sup cannot be satised since the multiplier is discretized with a reacher element than the main unknown. As a consequence, a local locking phenomenon (Fig. 4.6(a)) on the Dirichlet boundary (at part of the solution) holds together with a very noisy multiplier (Fig. 4.6(b)). This indicates the presence of spurious modes. Some similar results can be observed with the P 1 /P 1 and P 1 /P 0 methods.

The convergence curves in the non-stabilized case are given in Fig. 4.7(a) for the error in the L 2 (Ω)-norm on u, in Fig. 4.7(b) for the error in the H 1 (Ω)-norm on u and in Fig. 4.7(c) for the error in the L 2 (Γ D )-norm on the multiplier. One notes that the convergence rate for the P 1 /P 2 , P 1 /P 1 and P 1 /P 0 methods in H 1 (Ω)-norm are close to 0.5 which is in good agreement with the general result of Proposition 6. In this cases, there is no convergence of the multiplier (a) Solution on Ω with no stabilization for the P 1 /P 2 method.

(b) Multiplier on Γ D with no stabilization for the P 1 /P 2 method. (still due to the presence of some spurious modes). Conversely, for the P 2 /P 1 , Q 2 /Q 1 and Q 1 /Q 0 methods, one observes a nearly optimal convergence rate. This do not imply that a mesh independent inf-sup condition is systematically satised in these cases. In [START_REF] Haslinger | A new ctitious domain approach inspired by the extended nite element method[END_REF], some numerical experiments show that the solution can be deteriorated in the vicinity of very small intersections between the mesh and Γ D (especially for the multiplier). Barbosa-Hughes stabilization. in Fig. 4.9(a) for the error in the L 2 (Ω)-norm on u, in Fig. 4.9(b) for the error in the H 1 (Ω)norm on u and in Fig. 4.9(c) for the error in the L 2 (Γ D )-norm on the multiplier. The rate of convergence for the error in L 2 (Ω)-norm (resp. H 1 (Ω)-norm) on u with Barbosa-Hughes stabilization are optimal: of order 3 (resp. of order close to 2) for both P 2 /P 1 and Q 2 /Q 1 and of order 2 (resp. order 1) for the remaining pairs of elements. Fig. 4.9(c) shows that the approximation of the multiplier is considerably improved. Concerning the error in L 2 (Γ D )-norm for the multiplier the rate of convergence is also close to optimality for all pairs of elements.

We refer to [START_REF] Amdouni | A stabilized Lagrange multiplier method for the enriched nite-element approximation of contact problems of cracked elastic bodies[END_REF] for the study of the inuence of the stabilization parameter. A rather small inuence is noted on the error in L 2 (Ω) and H 1 (Ω)-norms on u. Concerning the error in L 2 (Γ D )norm of the multiplier, the value of the stabilization parameter can be divided into two zones.

A coercive zone where the error decreases when the stabilization parameter γ 0 increases and a non-coercive zone for large values of the stabilization parameter where the error evolves randomly according to the stabilization parameter.

Local projection stabilization. Similarly to the Barbosa-Hughes stabilization, the local projection stabilization gives some optimal rates of convergence for all pairs of elements and eliminates the locking phenomena (Fig. 4.10(a)) and the spurious modes on the multiplier (Fig. P 2 /P 1 and Q 2 /Q 1 methods, the rates are close to optimality. For these methods, if one tries to extend the result of Theorem 4.3.2 to a H 3 (Ω) regular exact solution, one nd that the rate of convergence of the error estimate depends on the interpolation error of the local orthogonal projection which limits the rate of convergence to 3/2 for the H 1 (Ω)-norm and 1 for the L 2 (Γ D )norm on the multiplier (The same observation was shown in the case of Stokes and Darcy's equations by Burman [80]). This limitation is observed on Fig. 4.11(c) on the multiplier of the Q 2 /Q 1 method, but not for the P 2 /P 1 method (for an unknown reason).

Concerning the error in L 2 (Γ D )-norm the value of the stabilization parameter can also be divided into two zones (see Figs. Now, concerning the minimal patch size, the inf-sup condition is proven to be satised in [START_REF] Girault | Error analysis of a ctitious domain method applied to a Dirichlet problem[END_REF] for a size equal or greater to 3h. Numerically, the inf-sup condition seems to be satised for smaller values of the minimal patch size. In our numerical experiments we found an optimal value between h and 2h. For the P 1 /P 0 method, a minimal patch size equal to h seems to be inadequate (Fig. 4.12(a)). A value of 2h is found to be more optimal (Fig. 4.12(b)). Conversely, a value of h is slightly more optimal for the P 1/P 1 pair of elements (Fig. 4.13). 

Numerical tests

Three-dimensional numerical tests

In this section, we compare the non-stabilized three-dimensional case to the local projection stabilized three-dimensional case with the following pairs of nite-element methods: P 2 /P 1 , P 1 /P 1 , P 1 /P 0 ,

P 1 /P 2 , Q 2 /Q 1 and Q 1 /Q 0 .
Without stabilization. Convergence curves in the non-stabilized case are shown in Fig. 4.15. Perhaps due to the simple chosen geometry and exact solution, no locking phenomenon is observed for the P 1 /P 2 , P 1 /P 1 and P 1 /P 0 methods. However, in these cases, the multiplier does not converge probably due to the presence of spurious modes. The rate of convergence in the H 1 (Ω)norm on u is optimal for the P 1 /P 1 , P 1 /P 0 , P 1 /P 2 and Q 1 /Q 0 methods (see Fig. 4.15(b)). For the remaining elements (Q 2 /Q 1 and P 2 /P 1 ) the rate of convergence is limited to 3/2. of convergence for all pairs of elements and eliminates the spurious modes for the P 1 /P 1 , P 1 /P 0 and P 1 /P 2 methods. Especially, the rate of convergence in the H 1 (Ω)-norm for the Q 2 /Q 1 and P 2 /P 1 are improved compared to the non-stabilized case. Except for the Q 2 /Q 1 pair of elements, the convergence rate for the L 2 (Γ D )-norm for the multiplier are optimal (more than 1.5). For the Q 2 /Q 1 pair of elements, the convergence rate for the L 2 (Γ D )-norm is optimal but limited to 1.1 (we did not nd any interpretation for that). The rate of convergence in the L 2 (Ω)-norm is limited to 2 for all methods. For quadratic methods, the that we used level set function of order 1 to approximate the curved domain limits theoretically the rate of convergence to 3/2. 

Concluding remarks

In this paper, we presented a stabilization technique based on local projections for the ctitious domain method inspired by the X-FEM introduced in [START_REF] Burman | Fictitious domain nite element methods using cut elements: II. A stabilized Nitsche method[END_REF][START_REF] Haslinger | A new ctitious domain approach inspired by the extended nite element method[END_REF].

Concluding remarks

A main advantage compared to some other stabilization techniques like the Barbosa-Hughes one, is that it only aects the multiplier equation in a manner that is independent of the problem to be solved. This makes the extension to other linear or nonlinear problems very easy.

The two-dimensional theoretical result does not ensure an optimal rate of convergence when a quadratic nite element is used for the main unknown due to the fact that the local projection is made on piecewise constants. The method could be generalized to the projection on (discontinuous) piecewise ane or piecewise quadratic functions for high-order approximations.

The extension to the three-dimensional case of the theoretical result is of course subject to obtaining an inf-sup condition of the same kind of the one obtained in [START_REF] Girault | Error analysis of a ctitious domain method applied to a Dirichlet problem[END_REF]. 

Introduction

The modeling of contact phenomena presents a great challenge for industrial applications.

This phenomenon played an important role in the behavior of structures: deformations, movements and distribution of eorts. Taking into account this contact condition presents serious diculties: conceptual, mathematical and computational. These diculties come from the non-linearity of the contact conditions. The accuracy of the approximated method depends essentially on the manner in which it applies the contact condition. Indeed, this condition may be prescribed strongly or relaxed and expressed in the weaker sense. In the context of isotropic linear elasticity, small deformations and contact with rigid foundations (Signorini problem) dierent studies were made. Under H 2 -regularity on the displacement, we summarize these results as follows:

In the case of the frictionless contact problem, when primal formulation (displacement is the only unknown) and conforming or non conforming discretization are considered, an order of h 3/4 was obtained in the works of Haslinger et al. [START_REF] Haslinger | Finite element analysis for unilateral problems with obstacles on the boundary[END_REF][START_REF] Haslinger | Contact between elastic bodies -2. nite element analysis[END_REF][START_REF] Haslinger | Numerical methods for unilateral problems in solid mechanics[END_REF]. This result is ameliorated recently, an order of h | log(h) | was obtained in the paper of Renard [START_REF] Renard | An improved a priori error analysis for nite element approximations of Signorini's problem[END_REF] without any assumption.

Using the supplementary assumption that we have a nite number of transitions between contact and non-contact zones, an order of h | log(h) | (resp. h 4 | log(h) | for only conforming discretization) was proved in the paper of Ben Belgacem [START_REF] Belgacem | Numerical simulation of some variational inequalities arisen from unilateral contact problems by the nite element method[END_REF] (resp. Ben belgacem et al. [START_REF] Belgacem | Hybrid nite element methods for the Signorini problem[END_REF]).

An order of h was obtained in the work of Hüeber [START_REF] Hüeber | An optimal error estimate for nonlinear contact problems[END_REF] using the same supplementary assumption and an additional modied Lagrange interpolation operator. For the mixed formulation of the frictionless contact problem Lhalouani et al. [START_REF] Lhalouani | Méthode d'éléments nis hybrides en décomposition de domaines pour des problèmes de contact unilatéral[END_REF] proved that the rate of convergence is of order h 3/4 if we use piecewise constant multiplier. Coorevits et al. [START_REF] Coorevits | Mixed nite element methods for unilateral problems: convergence analysis and numerical studies[END_REF] show that the rate of convergence is of order h 3/4 if we use weakly linear multiplier (see also [START_REF] Belgacem | Hybrid nite element methods for the Signorini problem[END_REF]), of oder h 1/4 for piecewise linear multiplier with the additional assumption that there exists ε > 0 suciently small such that the multiplier is contained in the Sobolev space H ε+1/2 , of order h | log(h) | if we use weakly piecewise linear multiplier with the additional assumption that we have a nite number of transitions between contact and non-contact zones, and of order h if we use weakly piecewise linear multiplier with some additional assumptions. In 2003 Ben begacem et al. [START_REF] Belgacem | Hybrid nite element methods for the Signorini problem[END_REF],

show an order of h 1/2 with weakly piecewise linear multiplier. Also, in the same reference, an order of h 4 | log(h) | is proved for the same formulation with the additional assumption that we have a nite number of transitions between contact and non-contact zones. An optimal rate of convergence of order h is proved in [START_REF] Hild | Une méthode par éléments nis mixte préservant la positivité pour le problème de contact en élasticité[END_REF] for the piecewise linear multiplier with specic nite element approximation method and the additional assumptions that a nite number of transitions between contact and non-contact zones.

In the case of Tresca contact problem with a given slip stress s ∈ L 2 (Γ C ), an order of h 3/4 is proved using continuous piecewise linear normal multiplier and weakly continuous piecewise linear tangent multiplier [START_REF] Baillet | Mixed nite element methods for the Signorini problem with friction[END_REF] and an order of h 4 | log(h) | is proved with the additional assumptions that we have a nite number of transitions between contact and non-contact zones, the jump of the displacement on Γ C is in W 1,∞ , the tangent stress λ t ∈ L ∞ (Γ C ) and the given slip s ∈ L ∞ (Γ C ). In the same context of [START_REF] Baillet | Mixed nite element methods for the Signorini problem with friction[END_REF] an order of h 1/2 is proved using piecewise constant shape function (see [START_REF] Sassi | Conconforming mixed variational formulation for the signorini problem with a given friction[END_REF] and [START_REF] Haslinger | Mixed nite element approximation of 3D contact problems with given friction: error analysis and numerical realization[END_REF]). This estimate can be improved (a convergence rate of order h 3/4 ) under the additional assumption that the slip bound s is a positive constant on Γ C (see [START_REF] Sassi | Conconforming mixed variational formulation for the signorini problem with a given friction[END_REF] and [START_REF] Haslinger | Mixed nite element approximation of 3D contact problems with given friction: error analysis and numerical realization[END_REF]).

In all the works cited above, a discrete compatibility condition between the nite-element space for the displacement and the one for the multiplier is required in order to obtain a good approximation of the solution. To overcome these diculties many method are used. We can cite the Barbosa-Hughes stabilization where the stability is assured by adding a supplementary term involving an approximation of the normal derivative of the primal variable on Γ C (see [START_REF] Haslinger | A new ctitious domain approach inspired by the extended nite element method[END_REF] and [START_REF] Amdouni | A stabilized Lagrange multiplier method for the enriched nite-element approximation of contact problems of cracked elastic bodies[END_REF]). The local projection stabilization technique introduced in [START_REF] Amdouni | A local projection stabilization of ctitious domain method for elliptic boundary value problems[END_REF] where the dierence of the multiplier with its projection on some pre-dened patches is penalized to ensure the stability of the problem. This stabilized technique is asymptotic consistent and aects only the multiplier equations in a manner that is independent of the problem to be solved. Note that in our case the presence of the crack presents a supplementary diculty.

The purpose of this contribution is to apply the local projection stabilization technique to the enriched nite-element approximation of contact problems with Tresca friction of cracked elastic bodies. In Section 5.2, we introduce the formulation of the unilateral contact problem with

Formulation of the continuous problem

Tresca friction on a crack of an elastic structure. In Section 5.3, we present the elasticity problem approximated by both the enrichment strategy introduced in [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-o function[END_REF] and the local projection stabilized Lagrange multiplier method [START_REF] Amdouni | A local projection stabilization of ctitious domain method for elliptic boundary value problems[END_REF]. We show the existence and uniqueness of the solution of the stabilized formulation. Also we prove a priori error estimates following three dierent discrete contact conditions (the study is restricted to piecewise ane and constant nite element methods). Finally, in Section 5.4, we present some numerical experiments on a very simple situation. We compare the stabilized and the non-stabilized cases for dierent nite-element approximations. The inuence of the stabilization parameters is also investigated.

Formulation of the continuous problem

We introduce some useful notations and several functional spaces. In what follows, bold letters like u, v, indicate vector-valued quantities, while the capital ones (e.g., V, K, . . .) represent functional sets involving vector elds.

As usual, we denote by (L 2 (.)) d and by (H s (.)) d , s ≥ 0, d = 1, 2 the Lebesgue and Sobolev spaces in d-dimensional space (see [START_REF] Adams | Sobolev spaces[END_REF]). The usual norm of (H s (D)) d is denoted by • s,D and we keep the same notation when d = 1 or d = 2. For shortness, the (L 2 (D)) d -norm will be denoted by • D when d = 1 or d = 2. In the sequel the symbol | • | will denote either the Euclidean norm in R 2 , the length of a line segment, or the area of a planar domain.

Let us consider the deformation of a cracked elastic body occupying, in the initial conguration, a domain Ω in R 2 where plane small strain are assumed. The boundary ∂Ω of the domain Ω is assumed to be polygonal (for simplicity) and consists of three non-overlapping parts Γ D , Γ N and Γ C with meas(Γ D ) > 0 and meas(Γ C ) > 0. The body is clamped on Γ D . It is subjected to volume forces f = (f 1 , f 2 ) ∈ (L 2 (Ω)) 2 and to surface loads g = (g 1 , g 2 ) ∈ (L 2 (Γ N )) 2 . The boundary part Γ C (or the crack location) is supposed to be a straight line segment. We denote by Γ C+ and Γ C-each of the two sides of the crack (see Fig. 5.1). We suppose that we have a frictional contact between Γ C+ and Γ C-as a contact between two elastic bodies. Of course, in the initial conguration, both Γ C+ and Γ C-coincide. Let n = n + = -n -= (n 1 , n 2 ) denote the outward normal unit vector on Γ C+ and t = (-n 2 , n 1 ) an associated unit tangent vector.

Ω Γ

+ C Γ - C n + Γ D Γ N Figure 5.1: A cracked domain. where a(u, v) = Ω σ(u) : ε(v) dΩ, b(µ, v) = µ n , v n W N ,W N + µ t , v t W T ,W T L(v) = Ω f • v dΩ + Γ N g • v dΓ.
An equivalent formulation of (5.7) consists in nding (u, λ)

∈ V × M(s) satisfying L (u, µ) ≤ L (u, λ) ≤ L (v, λ), ∀v ∈ V, ∀µ ∈ M(s),
where L (•, •) is the classical Lagrangian of the system dened as

(5.8) L (v, µ) = 1 2 a(v, v) -L(v) -b(µ, v).
Another classical weak formulation of problem (5.1)-(5.6) is given by the following variational inequality: nd u ∈ K such that (5.9)

a(u, v -u) + j(s, v) -j(s, u) ≥ L(v -u), ∀v ∈ K, where j(s, v) = s, | v t | W T ,W T
and K denotes the closed convex cone of admissible displacement elds satisfying the non-interpenetration condition

K = v ∈ V : v n ≤ 0 on Γ C .
Moreover, the rst argument u solution to (5.7) is also the unique solution of problem (5.9) and one has λ n = σ n (u) in W N and λ t = σ t (u) in W T .

5.3 Discretization with the stabilized Lagrange multiplier method

The discrete problem

We shall now describe the enriched nite elements used in the approximation of the mixed problem (5.7). For any given discretization parameter h > 0, let T h , be a partition of the untracked domain Ω with a maximal size h, Ω = T ∈T h T . Moreover, T h is assumed to be regular, i.e., there exists β > 0 such that ∀T ∈ T h , h T /ρ T ≤ β where ρ T denotes the radius of the inscribed circle in T (see [START_REF] Ciarlet | The nite element method for elliptic problems[END_REF]). We consider the variant, called the cut-o XFEM, introduced in [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-o function[END_REF] in which the whole area around the crack tip is enriched by using a cut-o function denoted by χ(•). In this variant, the enriched nite-element space V h is dened as

V h = v h ∈ (C ( Ω)) 2 : v h = i∈N h a i ϕ i + i∈N H h b i Hϕ i + χ 4 j=1 c j F j , a i , b i , c j ∈ R 2 ⊂ V.
Here (C ( Ω)) 2 is the space of continuous vector elds over Ω, H(•) is the Heaviside-like function used to represent the discontinuity across the straight crack and dened by 

H(x) = +1 if (x -x * ) • n + ≥ 0, -1 otherwise,
   χ(r) = 1 if r < r 0 , χ(r) ∈ (0, 1) if r 0 < r < r 1 , χ(r) = 0 if r > r 1 .
The functions {F j (x)} 1≤j≤4 are dened in polar coordinates located at the crack tip by (5.10)

{F j (x), 1 ≤ j ≤ 4} = √ r sin θ 2 , √ r cos θ 2 , √ r sin θ 2 sin θ, √ r cos θ 2 sin θ .
These functions allows to generate the asymptotic non-smooth displacement at the crack tip (see [START_REF] Moussaoui | Regularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan[END_REF]).

An important point of the approximation is whether the normal and tangent contact pressure (σ n and σ t ) are regular or not at the crack tip. If it were singular, it should be taken into account by the discretization of the multiplier. Nevertheless, it seems that this is not the case in homogeneous isotropic linear elasticity. This results has not been proved yet, and seems to be a dicult issue. However, if we consider the formulation (5.7) and if we assume that there is a nite number of transition points between contact and non contact zones near the crack tip, we can easily extend the proved result in the case of frictionless contact [START_REF] Amdouni | A stabilized Lagrange multiplier method for the enriched nite-element approximation of contact problems of cracked elastic bodies[END_REF], to show that the normal and tangent contact stress σ n and σ t are in H 1/2 (Γ C ). Now, concerning the discretization of the multiplier, let x 0 , ..., x N be given distinct points lying in Γ C and comming from the intersection between T h and Γ C . These nodes form a one-dimensional family of meshes of Γ C denoted by S h . The mesh S h allows us to dene a nite-dimensional space can be straightforwardly generalized to vector eld). This implies in particular that an optimal convergence can be reached if the multiplier is taken in W H . However, this suppose a relatively coarse approximation of the multiplier. Our approach is to use this result in order to stabilize the approximation obtained with the multiplier dened on the ner discretization W h . Let us rst recall the result in Appendix C. Under a condition for the patches S ∈ S H to be approximated by a xed set of line segments having approximatively the same length with a length greater or equal to 3h, the following inf-sup (or LBB) condition holds for a constant β * > 0, independent of h and H:

(5.17)

∀µ H ∈ W H , sup v h ∈V h b(µ H , v h ) v h V ≥ β * µ H W .
We will assume in the following that the conditions to obtain this inf-sup condition are satised. [46, pp. 338339]. The strict convexity of a(., .) imply the uniqueness of the rst argument u h . Now let λ h 1 and λ h 2 two solution of (5.18) then we have:

(Γ C ) × L 2 (Γ C ) onto W H which is dened by P W H (µ) = (P W H (µ n ), P W H (µ t )), ∀µ = (µ n , µ t ) ∈ L 2 (Γ C ) × L 2 (Γ C ). The L γ (•, µ h )) is concave (resp. strictly convex) for any v h ∈ V h (resp. for any µ h ∈ M h ) and lim v h ∈V h , v h V h →∞ L γ (v h , 0) = +∞ for any µ h ∈ M h (s) (resp. lim µ h ∈M h (s), µ h W h →∞ L γ (u h , µ h ) = -∞ ), see
b(λ h 2 -λ h 1 , u h ) + γ Γc (λ h 1n -P W H (λ h 1n ))((λ h 2n -λ h 1n ) -(P W H (λ h 1n ) -P W H (λ h 2n )))dΓ +γ Γc (λ h 1t -P W H (λ h 1t ))((λ h 2t -λ h 1t ) -(P W H (λ h 1t ) -P W H (λ h 2t )))dΓ ≥ 0 b(λ h 1 -λ h 2 , u h ) + γ Γc (λ h 2n -P W H (λ h 2n ))((λ h 1n -λ h 2n ) -(P W H (λ h 2n ) -P W H (λ h 1n ))) +γ Γc (λ h 2t -P W H (λ h 2t ))((λ h 1t -λ h 2t ) -(P W H (λ h 2t ) -P W H (λ h 1t )))dΓ ≥ 0
and by summation of the last two inequalities we have:

(λ h 1n -λ h 2n ) -(P W H (λ h 1n ) -P W H (λ h 2n )) 2 0,Γ C + (λ h 1t -λ h 2t ) -(P W H (λ h 1t ) -P W H (λ h 2t )) 2 0,Γ C ≤ 0 therefore λ h 1n -λ h 2n = P W H (λ h 2n ) -P W H (λ h 1n ) and λ h 1t -λ h 2t = P W H (λ h 2t ) -P W H (λ h 1t ) (i.e. λ h 1n - λ h 2n ∈ W H and λ h 1t -λ h 2t ∈ W H ). Let λh = (λ h 1n -λ h 2n , λ h 1t -λ h 2t ) and λH = (P W H (λ h 1n ) - P W H (λ h 2n ), P W H (λ h 1t ) -P W H (λ h 2t )
). From inequality (5.17) there exists v h ∈ V h such that

(5.20) b( λH , v h ) ≥ β * λH W v h V ,
and thus

β * λH W ≤ 1 v h V b( λH , v h ) = 1 v h V b( λh , v h ) = 1 v h V a(ū h , v h ) = 0.
This implies the uniqueness of the second argument λ h , therefore (5.18) has a unique solution.

Convergence analysis

In order to study the convergence error, we recall the denition of the XFEM interpolation operator Π h introduced in [START_REF] Nicaise | Optimal convergence analysis for the extended nite element method[END_REF]. We assume that the displacement has the regularity (H 2 (Ω)) 2 except in the vicinity of the crack-tip where the singular part of the displacement is a linear combination of the functions {F j (x)} 1≤j≤4 given by (5.10) (see [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] for a justication). Let us denote by u s the singular part of u, u r = uχu s the regular part of u, and u k r the restriction of u r to Ω k , k ∈ {1, 2}. Then, for k ∈ {1, 2}, there exists an extension u k r ∈ (H 2 (Ω)) 2 of u k r to Ω such that (see [START_REF] Adams | Sobolev spaces[END_REF])

u 1 r 2,Ω u 1 r 2,Ω 1 , u 2 r 2,Ω u 2 r 2,Ω 2 .
Here and throughout the paper, we use the notation a b to signify that there exists a constant C > 0, independent of the mesh parameter h, the solution and the position of the crack-tip, such that a ≤ Cb.

Denition 2 ([17]). Given a displacement eld u satisfying uu s ∈ H 2 (Ω), and two extensions

u 1
r and u 2 r in H 2 (Ω) of u 1 r and u 2 r , respectively, we dene Π h u as the element of V h such that

Π h u = i∈N h a i ϕ i + i∈N H h b i Hϕ i + χu s ,
where a i , b i are given as follows for y i the nite-element node associated to ϕ i :

if i ∈ {N h \ N H h } then a i = u r (y i ), if i ∈ N H h and y i ∈ Ω k for k ∈ {1, 2} then for l = 3 -k :      a i = 1 2 u k r (y i ) + u l r (y i ) , b i = (-1) k 2 u k r (y i ) -u l r (y i ) .
This XFEM interpolation operator satises the following interpolation error estimate [START_REF] Nicaise | Optimal convergence analysis for the extended nite element method[END_REF]:

(5.21)

u -Π h u h uχu s 2,Ω .

Lemma 5.3.2. Let (u, λ) ∈ V × M(s) be the solution of (5.7) and (u h , λ h ) ∈ V h × M h (s) be the solution of (5.18). Then we have:

α u h -u 2 ≤ M u h -u v h -u + λ h -λ -1/2,Γ C u -v h + b(µ h -λ, u h -u) +b(λ h -µ h , u h ) + b(µ h -λ, u) + b(λ -λ h , u), ∀v h ∈ V h , µ h ∈ W h , (5.22) 
β * 2 λ H -λ 2 W ≤ 8M 2 u -u h 2 + 8β * 2 λ -μH 2 W + 8 λ -μh 2 W +8 μH -μh 2 W + 8 λ H -λ h 2 W ∀ μh = (μ h n , μh t ) ∈ W h , (5.23) 
with λ H = P W H (λ h ), μH = P W H ( μh ).

Proof. For all

v h ∈ V h , µ h ∈ W h one has a(u h -u, u h -u) = a(u h -u, v h -u) + a(u h -u, u h -v h ) = a(u h -u, v h -u) + b(λ h -λ, u h -v h ) = a(u h -u, v h -u) + b(λ h -λ, u -v h ) + b(λ h -λ, u h -u) = a(u h -u, v h -u) + b(λ h -λ, u -v h ) + b(µ h -λ, u h -u) +b(λ h -µ h , u h ) + b(µ h -λ, u) + b(λ -λ h , u)
From the V-ellipticity and the continuity of the bilinear form a(., .) we prove the rst inequality of Lemma 5.3.2. Now we shall give an estimate of the second inequality of Lemma 5.3.2. Noticing that

Γ C (λ -λ h ) • v h dΓ = a(u h -u, v h ) ∀v h ∈ V h , one obtains Γ C ( μh -λ h ) • v h dΓ = a(u h -u, v h ) + Γ C ( μh -λ) • v h dΓ, ∀(v h , μh ) ∈ V h × W h .
(5.24)

Now, for µ H = λ H -μH ∈ W H with μH = P W H ( μh ) the inf-sup condition (5.17) ensure the existence of v h ∈ V h such that together with (5.24) we get

β * λ H -μH W ≤ 1 v h Γ C ( μH -λ H ) • v h dΓ, ≤ 1 v h Γ C ( μh -λ h ) • v h dΓ + 1 v h Γ C ( μH -λ H -( μh -λ h )) • v h dΓ, ≤ M u h -u + μh -λ W + μH -λ H -( μh -λ h ) W .
As a consequence, one has

β * λ H -λ W ≤ β * λ -μH W + M u h -u + μh -λ W + μH -μh W + λ H -λ h W ,
and

β * 2 λ H -λ 2 W ≤ 8M 2 u -u h 2 + 8β * 2 λ -μH 2 W + 8 λ -μh 2 W +8 μH -μh 2 W + 8 λ H -λ h 2 W ∀ μh ∈ W h .
(5.25)

In order to estimate these terms, we need to distinguish the dierent contact conditions (i.e., we must specify the denition of M h (s)). We consider hereafter three dierent standard discrete contact conditions.

Conforming piecewise discontinuous discretization for multiplier

M h N = M h N 0 and M h T (s) = M h T 0 (s)
We rst consider the case of nonpositive discontinuous piecewise constant multipliers where M h N is dened by (5.11) and M h T (s) is dened by (5.12). It is a conforming discretistion on multiplier as M h N 0 ⊂ M N and M h T 0 (s) ⊂ M T (s).

Theorem 5.3.3. Let (u, λ) be the solution to Problem (5.7). Assume that u r ∈ (H 2 (Ω)) 2 and λ ∈ (H 1/2 (Γ C )) 2 . Let (u h , λ H ) be the solution to the discrete problem (5.18) where

M h N = M h N 0 and M h T (s) = M h T 0 (s).
Then, for any η > 0 we have

u -u h + λ -λ h W h u -χu s 2,Ω + H 3 4 -η 2 u 3/2-η,Ω + λ 1/2,Γ C .

Discretization with the stabilized Lagrange multiplier method

Proof. In (5.22) we choose µ h = P W H (λ) = (P W H (λ n ), P W H (λ t )). We recall that the operator

P W H is dened for any v ∈ L 2 (Γ C ) by P W H (v) ∈ W H , Γ C (v -P W H (v))µ H dΓ = 0, ∀µ H ∈ W H ,
and satises the following error estimates for any 0 ≤ r ≤ 1 (see [START_REF] Belgacem | Hybrid nite element methods for the Signorini problem[END_REF])

H -1/2 v -P W H (v) -1/2,Γ C + v -P W H (v) 0,Γ C H r v r,Γ C .
(5.26)

Clearly, µ h ∈ M h (s) and using the inequality comming from (5.18) we have

b(λ h -µ h , u h ) ≤ -γ λ h -λ H 2 0,Γ C , (5.27) 
with λ

H = P W H (λ h ) = (P W H (λ h n ), P W H (λ h t )). Moreover b(µ h -λ, u h -u) = b(P W H (λ) -λ, u h -u) ≤ P W H (λ) -λ W u h -u (5.28) and b(µ h -λ, u) = Γ C (P W H (λ n ) -λ n ) u n dΓ + Γ C (P W H (λ t ) -λ t ) u t dΓ = Γ C (P W H (λ n ) -λ n )( u n -P W H ( u n ))dΓ + Γ C (P W H (λ t ) -λ t )( u t -P W H ( u t ))dΓ ≤ P W H (λ n ) -λ n W u n -P W H ( u n ) W + P W H (λ t ) -λ t W u t -P W H ( u t ) W ≤ P W H (λ) -λ W u -P W H ( u ) W (5.29) Noting that M h N 0 ⊂ M N and M h T 0 ⊂ M T wich implies b(λ -λ h , u) ≤ 0.
(5.30)

Using inequalities (5.22), (5.27), (5.28), (5.29) and (5.30) we have

α u h -u 2 + γ λ h -λ H 2 0,Γ C ≤ M u h -u v h -u + λ h -λ W u -v h + P W H (λ) -λ W u h -u + P W H (λ) -λ W u -P W H ( u ) W (5.31)
By combining inequalities (5.23) and (5.31) one obtains for all μh ∈ W h and

v h ∈ V h (α -8M 2 δ) u -u h 2 + δβ * 2 λ -λ H 2 W + (γ -8δ) λ h -λ H 2 W ≤ M u h -u v h -u + P W H λ -λ W u h -u + λ h -λ W u -v h + P W H (λ) -λ W u -P W H ( u ) W + 8δβ * 2 λ -μH 2 W +8δ λ -μh 2 W + 8δ μh -μH 2 W , ≤ δ 2 M 2 u -u h 2 + 1 2δ u -v h 2 + δ 2 u -u h 2 + 1 2δ λ -P W H (λ) 2 W + ξ 2 λ -λ h 2 W + 1 2ξ u -v h 2 + P W H (λ) -λ W u -P W H u W +8δβ * 2 λ -μH 2 W + 8δ λ -μh 2 W + 8δ μh -μH 2 W .
Then, for all μh ∈ W h and v h ∈ V h , we deduce

(α -δ 17M 2 + 1 2 ) u -u h 2 + (γ -8δ - ξ 2 ) λ h -λ H 2 W + (δβ * 2 - ξ 2 ) λ -λ H 2 W ≤ ( 1 2δ + 1 2ξ ) u -v h 2 + 1 2δ P W H (λ) -λ 2 W + 8δβ * 2 λ -μH 2 W + P W H (λ) -λ W u -P W H ( u ) W + 8δ λ -μh 2 W + 8δ μh -μH 2 W .
we recall the following standard nite-element estimates:

u -Π h u ≤ Ch u r 2,Ω , u -P W H (u) 1/2 ≤ CH 1 2 -η u 1-η,Γ C . λ -P W h (λ) -1/2 ≤ Ch λ 1/2,Γ C , λ -P W H (λ) -1/2 ≤ CH λ 1/2,Γ C .
Finally, the theorem is established by taking δ < min 2α 17M 2 + 1 ; γ 8 , ξ < min 2δβ * 2 ; 2(γ -8δ) , v h = Π h u and μh = P W h (λ).

Conforming piecewise continuous discretization for multiplier

M h N = M h N 1 and M h T (s) = M h T 1 (s)
Now, we focus on the case of nonpositive continuous piecewise ane multipliers where M h N is

given by (5.13) and M h T (s) is given by (5.14) Theorem 5.3.4. Let (u, λ) be the solution to Problem (5.7). Assume that u r ∈ (H 2 (Ω)) 2 and λ ∈ (H 1/2 (Γ C )) 2 . Let (u h , λ h ) be the solution to the discrete problem (5.18) where

M h N = M h N 1 and M h T = M h T 1 .
Then, for any η > 0 we have

u -u h + λ -λ h W h u -χu s 2,Ω + H 1 4 u 3/2-η,Ω + λ 1/2,Γ C .
Proof. We choose µ h = r h (λ) = (r h λ n , r h λ t ) in (5.22) where r h :

L 1 (Γ C ) → W h
1 is a quasi- interpolation operator which preserves the nonpositivity dened for any function

v in L 1 (Γ C ) by r h v = x∈N H α x (v)ψ x ,
where N h represents the set of nodes x 0 , ..., x N in Γ C , ψ x is the scalar basis function of W h 1 (dened on Γ C ) at node x satisfying ψ x (x ) = δ x,x for all x ∈ N h and

α x (v) = Γ C vψ x dΓ Γ C ψ x dΓ -1
.

The approximation properties of r h are proved in [START_REF] Hild | An error estimate for the Signorini problem with Coulomb friction approximated by nite elements[END_REF]. We simply recall hereafter the two main results. The rst result is concerned with L 2 -stability property of r h . 5.3. Discretization with the stabilized Lagrange multiplier method Lemma 5.3.5. For any v ∈ L 2 (Γ C ) and any E ∈ T h we have

r h v 0,E v 0,γ E , if |v| ≤ s then |r h v| ≤ s on Γ C ,
where

γ E = ∪ {F ∈T H : F ∩ Ē =∅} F .
Proof. Let E ∈ T H and ψ 1 , ψ 2 be the clasical scalar basic functions related to E. Using the denition of α x (v) and the Cauchy-Schwarz inequality we get:

r h v 0,E ≤ α 1 ψ 1 0,Γ C + α 2 ψ 2 0,Γ C ≤ v 0,γ E ψ 1 2 0,Γ C Γ C ψ 1 dΓ + v 0,γ E ψ 2 2 0,Γ C Γ C ψ 2 dΓ v 0,γ E .
Using the denition of α x (v) and the partition of unity we have the second inequality:

|r h v| = | x∈N H α x (v)ψ x |, ≤ x∈N H |α x (v)|ψ x , ≤ s.
Note that the proof of the rst inequality of this lemma is also given in [START_REF] Hild | An error estimate for the Signorini problem with Coulomb friction approximated by nite elements[END_REF] using the additional assumption that the mesh T h is quasi-uniform. The second result is concerned with the L 2approximation properties of r h . Lemma 5.3.6. For any v ∈ H η (Γ C ), 0 ≤ η ≤ 1, and any E ∈ T h we have

v -r h v 0,E h η v η,γ E , (5.32) 
where

γ E = ∪ {F ∈E H C : F ∩ Ē =∅} F . Noting that λ n ≤ 0 on Γ C (resp. |λ t | ≤ s on Γ C ) then r h λ n ≤ 0 on Γ C (resp. |r h λ t | ≤ s on Γ C ) which implies r h λ n ∈ M h N 1 (resp. r h λ t ∈ M h T 1 (s)).
Using the inequality coming from (5.18) 

we have b(λ h -µ h , u h ) ≤ γ Γc (λ h -λ H )((µ h -λ h ) -(µ H -λ H ))dΓ, = -γ λ h -λ H 2 0,Γ C + γ Γc (λ h -λ H )(µ h -µ H )dΓ, ≤ - γ 2 λ h -λ H 2 0,Γ C + γ 2 µ h -µ H 2 0,Γ C . (5.33) Moreover b(µ h -λ, u h -u) = b(r h (λ) -λ, u h -u) ≤ r h (λ) -λ 0,Γ C u h -u .
(µ h -λ, u) = Γ C (r h λ n -λ n ) u n dΓ + Γ C (r h λ t -λ t ) u t dΓ, ≤ r h λ n -λ n 0,Γ C u n 0,Γ C + r h λ t -λ t 0,Γ C u t 0,Γ C dΓ, ≤ r h (λ) -λ 0,Γ C u 0,Γ C . (5.35) We have M h N 1 ⊂ M N and M h T 1 ⊂ M T then b(λ -λ h , u) ≤ 0.
(5.36)

Using inequalities (5.33), (5.34), (5.35) and (5.36) we have

α u h -u 2 + γ 2 λ h -λ H 2 0,Γ C ≤ M u h -u v h -u + λ h -λ W u -v h + r h (λ) -λ 0,Γ C u h -u + r h (λ) -λ 0,Γ C u 0,Γ C + γ 2 µ h -µ H 2 0,Γ C .
(5.37)

By combining inequalities (5.23) and (5.37) one obtains for all μh ∈ W h and v

h ∈ V h (α -8M 2 δ) u -u h 2 + δβ * 2 λ -λ H 2 W + ( γ 2 -8δ) λ h -λ H 2 W ≤ M u h -u v h -u + λ h -λ W u -v h + r h (λ) -λ 0,Γ C u h -u + r h (λ) -λ 0,Γ C u 0,Γ C + 8δβ * 2 λ -μH 2 W + 8δ λ -μh 2 W +8δ μh -μH 2 W + γ 2 µ h -µ H 2 0,Γ C , ≤ δ 2 M 2 u -u h 2 + 1 2δ u -v h 2 + δ 2 u -u h 2 + 1 2δ r h (λ) -λ 2 0,Γ C + ξ 2 λ -λ h 2 W + 1 2ξ u -v h 2 + r h (λ) -λ 0,Γ C u 0,Γ C + γ 2 µ h -µ H 2 0,Γ C +8δβ * 2 λ -μH 2 W + 8δ λ -μh 2 W + 8δ μh -μH 2 W .
Then, for all μh ∈ W h and v h ∈ V h , we deduce

(α -δ 17M 2 + 1 2 ) u -u h 2 + ( γ 2 -8δ - ξ 2 ) λ h -λ H 2 W + (δβ * 2 - ξ 2 ) λ -λ H 2 W ≤ ( 1 2δ + 1 2ξ ) u -v h 2 + 1 2δ r h (λ) -λ 0,Γ C + r h (λ) -λ 0,Γ C u 0,Γ C + γ 2 µ h -µ H 2 0,Γ C +8δβ * 2 λ -μH 2 W + 8δ λ -μh 2 W + 8δ μh -μH 2 W .
Finally, the theorem is established by taking δ < min 2α 17M 2 + 1 ; γ 16 , ξ < min 2δβ * 2 ; γ -16δ , v h = Π h u and μh = P W h (λ).

Nonconforming piecewise continuous discretization for multiplier

M h N = M h N 1, * and M h T = M h T 1, * (s) 
This choice corresponds to weakly nonpositive" continuous piecewise ane multipliers where

M h N = M h N 1 
, * is given by (5.15) and M h T = M h T 1, * (s) is given by (5.16). 

Γ C (λ n -λ h n ) u n dΓ = - Γ C λ h n u n dΓ, ≤ Γ C λ h n (I h ( u n ) -u n )dΓ, ≤ Γ C (λ h n -λ)(I h ( u n ) -u n )dΓ + Γ C λ(I h ( u n ) -u n )dΓ, ≤ λ h n -λ n W N I h ( u n ) -u n Wn + λ n 0,Γ C I h ( u n ) -u n 0,Γ C . (5.43) Γ C (λ t -λ h t ) u t dΓ = Γ C (λ t -λ h t )( u t -I h u t )dΓ + Γ C (λ t -λ h t )I h u t dΓ - Γ C λ t u t dΓ -s Γ C | u t |dΓ, ≤ Γ C (λ t -λ h t )( u t -I h ( u t ))dΓ + Γ C λ t (I h ( u t ) -u t )dΓ +s Γ C (|I h ( u t )| -| u t |)dΓ, ≤ Γ C (λ t -λ h t )( u t -I h ( u t ))dΓ + Γ C λ t (I h ( u t ) -u t )dΓ +s Γ C |I h ( u t ) -u t |dΓ, ≤ λ t -λ h t W T u t -I h ( u t ) W T + λ t 0,Γ C u t -I h ( u t ) 0,Γ C + s u t -I h ( u t ) 0,Γ C .
(λ -λ h , u) ≤ λ -λ h W u -I h u W + λ 0,Γ C u -I h ( u ) 0,Γ C +s u t -I h ( u t ) 0,Γ C .
α u h -u 2 + γ λ h -λ H 2 0,Γ C ≤ M u h -u v h -u + λ h -λ W u -v h + P W h (λ) -λ W u h -u + P W h (λ) -λ W u -P W h ( u ) W + λ -λ h W u -I h u W + λ 0,Γ C u -I h ( u ) 0,Γ C +s u t -I h ( u t ) 0,Γ C + γ 2 µ h -µ H 2 0,Γ C .
(5.46)

Numerical experiments

By combining inequalities (5.23) and (5.46) one obtain for all μh ∈ W h and v

h ∈ V h (α -8M 2 δ) u -u h 2 + δβ * 2 λ -λ H 2 W + (γ -8δ) λ h -λ H 2 W ≤ M u h -u v h -u + λ h -λ W u -v h + P W h (λ) -λ W u h -u + P W h (λ) -λ W u -P W h ( u ) W + 8δβ * 2 λ -μH 2 W + λ -λ h W u -I h u W + λ 0,Γ C u -I h ( u ) 0,Γ C +s u t -I h ( u t ) 0,Γ C + γ 2 µ h -µ H 2 0,Γ C + 8δ λ -μh 2 W + 8δ μh -μH 2 W , ≤ δ 2 M 2 u -u h 2 + 1 2δ u -v h 2 + δ 2 u -u h 2 + 1 2δ λ -P W h (λ) 2 W + 1 2ξ u -v h 2 + P W h (λ) -λ W u -P W H u W + ξ 2 λ -λ h 2 W +8δβ * 2 λ -μH 2 W + 8δ λ -μh 2 W + 8δ μh -μH 2 W . + ξ 2 λ -λ h 2 W + 1 2ξ u -I h u 2 W + λ 0,Γ C u -I h ( u ) 0,Γ C +s u t -I h ( u t ) 0,Γ C + γ 2 µ h -µ H 2 0,Γ C .
Then, for all μh ∈ W h and v h ∈ V h , we deduces

(α -δ 17M 2 + 1 2 ) u -u h 2 + ( γ 2 -8δ -ξ) λ h -λ H 2 W + (δβ * 2 -ξ) λ -λ H 2 W ≤ ( 1 2δ + 1 2ξ ) u -v h 2 + 1 2δ P W h (λ) -λ 0,Γ C + P W h (λ) -λ W u -P W H u W + γ 2 µ h -µ H 2 0,Γ C + 8δβ * 2 λ -μH 2 W + 8δ λ -μh 2 W + 8δ μh -μH 2 W + 1 2ξ u -I h u 2 W + λ 0,Γ C u -I h ( u ) 0,Γ C + s u t -I h ( u t ) 0,Γ C .
Finally, the theorem is established by taking δ < min 2α 17M Remark: Let us remark that if we suppose that u ∈ (H 2 (Ω)) 2 in Theorem 5.3.7 the proved rate of convergence becomes h 3/4 .

Numerical experiments

The numerical tests were performed on a uncracked square dened by

Ω = [0, 1] × [-0.5, 0.5],
and the considered crack is the line segment Γ C = ]0, 0.5[ × {0} (see Fig. 5.5). Three degrees of freedom are blocked in order to eliminate rigid body motions (Fig. 5.5). In order to have both a contact and non contact, slip and non slip zones between the crack lips, we impose the following body force vector eld f (x, y) = 0 3.5x(1x)y cos(2πx) . We assume that the slip bound is constant (s = 0.09). An example of a non structured mesh used is presented in Fig. 5.6. The numerical tests are performed with GETFEM++, the C++ nite-element library developed by Y. Renard's team (see [START_REF] Pommier | Getfem++, an open source generic C++ library for nite element methods[END_REF]).

Figure 5.6: Non-structured mesh.

Numerical solution

The algebraic formulation of Problem (5.18) is given as follows (5.47)

           Find U ∈ R N , L N ∈ M h N and L T ∈ M h T (s) such that KU -B T N L N -B T T L T = F, (L N -L N ) T (B N U + D N γ L N ) ≥ 0, ∀L N ∈ M h N , (L T -L T ) T (B T U + D T γ L T ) ≥ 0, ∀L T ∈ M h T (s),
where U is the vector of degrees of freedom (d.o.f.) for u h , L N (resp. L T ) is the vector of d.o.f. for the normal multiplier λ h n (resp. for the tangant multiplier λ 

h t ), M h N (resp. M h T ( 
(λ h n , v h ), b(λ h t , v h ), γ Γc (λ h n -P W H (λ h n ))(µ h n - λ h n )dΓ and γ Γc (λ h t -P W H (λ h t ))(µ h t -λ h t )dΓ, respectively.
The inequalities in (5.47) can be expressed as an equivalent projection (5.48)

L N = P M h N (L N -r(B N U + D N γ L N )), (5.49) 
L T = P M h T (s) (L T -r(B T U + D T γ L T )),
where r is a positive augmentation parameter. This last step transforms the contact conditions into nonlinear equations and we have to solve the following system:

(5.50)

                   Find U ∈ R N , L N ∈ M h N and L T ∈ M h T such that KU -B T N L N -B T T L T -F = 0, - 1 r L N -P M h N (L N -r(B N U + D N γ L N )) = 0, - 1 r L T -P M h T (s) (L T -r(B T U + D T γ L T )) = 0.
This allows us to use the semi-smooth Newton method (introduced for contact and friction problems in [START_REF] Alart | A mixed formulation for frictional contact problems prone to Newton like solution methods[END_REF]) to solve Problem (5.50). The term `semi-smooth' comes from the fact that projections are only piecewise dierentiable. Practically, it is one of the most robust algorithms to solve contact problems with or without friction. In order to write a Newton step, one has to compute the derivative of the projection (5.48) and (5.49). An analytical expression can only be obtained when the projection itself is simple to express. This is the case for instance when the set M h (s) is chosen such that the contact condition is satised on each nite-element node of the contact boundary (such as M h 0 (s) or M h 1 (s)). In this case, the projection can be expressed component-wise (see [START_REF] Khenous | Hybrid discretization of the Signorini problem with Coulomb friction. Theoretical aspects and comparison of some numerical solvers[END_REF]).

In order to keep the independence between the mesh and the crack, the approximation space W h for the multiplier is chosen to be the trace on Γ C of a Lagrange nite-element method dened on the same mesh as V h and its degree will be specied in the following. Let us denote X h the space corresponding to the Lagrange nite-element method. The choice of a basis of the trace space W h = X h |Γ C is not completely straightforward. Indeed, the traces on Γ C of the shape functions of X h may be linearly dependent. A way to overcome this diculty is to eliminate the redundant functions. Our approach in the presented numerical experiments is as follows. In a rst time, we eliminate locally dependent columns of the mass matrix Γ C ψ i ψ j dΓ, where ψ i is the nite-element shape function of X h , with a block-wise Gram-Schmidt algorithm. In a second time, we detect the potential remaining kernel of the mass matrix with a Lanczos algorithm.

The decomposition into patches is made using a graph partitioner algorithm. In the presented numerical tests we use the free software METIS [START_REF] Karypis | Metis: Unstructured graph partitioning and sparse matrix ordering system[END_REF]. The nodes of the graph consist in the elements having an intersection with Γ C and the edges connect adjacent elements. Additionally, a load corresponding to the size of the intersection is considered on each elements. The partition is a very fast operation.

Numerical tests

In this section, we present numerical tests of the stabilized and non stabilized unilateral contact problems for the following, dierently enriched, nite-element methods: P 2 /P 1 , P 2 /P 0 , P 1 + /P 1 , P 1 /P 1 , P 1 /P 0 . The notation P i /P j (resp. P 1 +/P 1 ) means that the displacement is approximated with a P i extended nite-element method (resp. a P 1 extended nite-element method with an additional cubic bubble function) and the multiplier with a continuous P j nite-element method for j > 0 (resp. continuous P 1 nite-element method). Without stabilization: The curves in the non-stabilized case are given in Fig. 5.8(a) for the error in the L 2 (Ω)-norm on the displacement, in Fig. 5.8(b) for the error in the H 1 (Ω)-norm on the displacement and in Fig. 5.8(c) for the error in the L 2 (Γ C )-norm on the contact stress. The P 1 /P 1 and P 1 /P 0 versions generally work without stabilization even though a uniform inf-sup condition cannot be proven. Fig. 5.8(a) shows that the rate of convergence in the error L 2 (Ω)norm is approximatively of order 2.2 for the P 2 /P j methods and of order 1.6 for the P 1 /P j methods. Note that the singularity due to the transition between contact and non contact is expected to be in H 5/2-η (Ω) for any η > 0. Theoretically, this limits the convergence rate to 3/2η in the H 1 (Ω)-norm. shows that the rate of convergence in energy norm is approximatively of order 2 for the P 2 /P j methods and of order 1.2 for the P 1 /P j methods. Fig. 5.8(c) shows that, the rate of convergence in the error L 2 (Γ C )-norm is optimal for the P 2 /P j methods (of order 1) and not optimal for the remaining couple of elements (approximatively of order 0.3 for the P 1 /P 1 and P 1 /P 0 methods and approximatively of order 0.7 for the P 1 + /P 1 method). It seems that the presence of some spurious modes aects these rates of convergence. Stabilized method: The curves in the stabilized case are given in Fig. 5.9(a) for the error in the L 2 (Ω)-norm on the displacement, in Fig. 5.9(b) for the error in the H 1 (Ω)-norm on the displacement and in Fig. 5.9(c) for the error in the L 2 (Γ C )-norm of the contact stress. Similarly to the non stabilized method, Fig. 5.9(b) shows that we have an optimal rate of convergence, with a slight dierence, for the error in the L 2 (Ω)-norm and the H 1 (Ω)-norm on the displacement. For the error in the L 2 (Γ C )-norm of the contact stress, Fig. 5.9(c) shows that the local projection stabilization eliminates the spurious modes for the P 1 /P 1 , P 1 /P 0 and P 1 + /P 1 methods. Concerning the error in L 2 (Γ C )-norm the value of the stabilization parameter can also be divided into two zones (see Fig. inf-sup condition is proven to be satised in [START_REF] Girault | Error analysis of a ctitious domain method applied to a Dirichlet problem[END_REF] for a size greater or equal to 3h. Numerically, the inf-sup condition seems to be satised for smaller values of the minimal patch size. In our numerical experiments, we found an optimal value between h and 2h. 

Conclusion

We adapt the local projection stabilization technique to the nonlinear small strain elastostatics problem with Tresca frictional contact. A main advantage compared to some other stabilization techniques like the Barbosa-Hughes one is that is only aects the multiplier equation in a manner that is independent of the problem to be solved.

We have obtained an existance and uniqueness results for the approximated Tresca frictional contact problem in elasticity. Concerning the three contact conditions we considered theoretically, the given a priori error estimates are obviously sub-optimal. This is probably due to technical reasons.

In the numerical tests we considered, the stabilized methods have indeed an optimal rate of convergence. Similarly to [START_REF] Amdouni | A stabilized Lagrange multiplier method for the enriched nite-element approximation of contact problems of cracked elastic bodies[END_REF], the unstabilized methods have also an optimal rate of convergence concerning the displacement. This may lead to the conclusion that no locking phenomenon was present in the numerical situation we studied despite the non-satisfaction of the discrete inf-sup condition. The fact that such a locking situation may exist or not in the studied framework (contact problem on crack lips for a linear elastic body) is an open question.

General conclusions

In this Ph.D. we gave a mathematical and numerical analysis of convergence and stability of some mixed or hybrid formulations resulting from the numerical solution of some constrained optimization problem with Lagrange multiplier method in the framework of the eXtended Finite Element Method (XFEM). Except the rst chapter, each chapter of this thesis is the subject of a published or submitted paper. In Chapter 2 we saw, by using a general technique introduced by Brezzi and Fortin, that the mixed formulation with P 2 /P 0 is stable whent the crack cuts the mesh far enough from the vertices. We have given a mathematical result of quasi-optimal error estimate. We have shown numerically that the X-FEM cut-o formulation is stable, regardless of the position of the crack. Similar to the X-FEM with xed enrichment area, the X-FEM cut-o gives an optimal convergence rate but without a signicant additional costs.

The second axis, which present the main content of the thesis, is dedicated to the use of some stabilized Lagrange multiplier methods. The particularity of these stabilized methods is that the stability of the multiplier is provided by adding supplementary terms in the weak formulation.

In chapter 3 we studied the Barbosa-Hughes stabilization of the hybrid formulation of frictionless contact problems for cracked elastic bodies in the framework of X-FEM. Theoretically, the given a priori error estimates of the three contact conditions are obviously suboptimal. This limitation of the mathematical analysis is not specic to the approximation of contact problems in the framework of XFEM. It is in fact particularly true for the approximation of the contact condition with Lagrange multiplier. This is probably due to technical reasons. In the numerical tests we considered, the stabilized methods have indeed an optimal rate of convergence and no locking phenomenon was present in the numerical situation we studied despite the non-satisfaction of the discrete inf-sup condition.

In chapter 4, we presented a new consistent method based on local projections for the stabilization of elliptic boundary value problems in the framework of extended nite element method with a ctitious domain approach. A main advantage compared to some other stabilization techniques like the Barbosa-Hughes one is that it only aects the multiplier equation in a manner that is independent of the problem to be solved. This makes the extension to other linear or nonlinear problems very easy. In the contex of this new stabilized method we proved the existence and uniqueness of the stabilised approximated problem. A priori estimates are given. This result does not ensure an optimal rate of convergence when a quadratic nite element is used for the main unknown due to the fact that the local projection is made on piecewise constants. The method could be generalized to the projection on (discontinuous) piecewise ane or piecewise quadratic functions for high order approximations. In chapter 5 we adapt the local projection stabilization technique to the nonlinear small strain elastostatics problem with Tresca frictional contact. We have obtained a result of existence and uniqueness for the approximated Tresca frictional contact problem in elasticity. Concerning the three contact conditions we considered theoretically, the given a priori error estimates are obviously sub-optimal. This is also probably due to technical reasons. In the numerical tests we considered, the stabilized methods have indeed an optimal rate of convergence. The unstabilized methods have also an optimal rate of convergence concerning the displacement. This may lead to the conclusion that no locking In two-dimensional isotropic elasticity, the Hooke's law is given by:

σ xx = (λ L + 2µ L )ε xx + λ L ε yy , σ yy = (λ L + 2µ L )ε yy + λ L ε xx , σ xy = µ L (ε xy + ε yx ) = 2µ L ε xy . So ε xy = ε yx = - 1 2µ L ∂ 2 φ ∂x∂y , ε xx = 1 4µ L (λ L + µ L ) (λ L + 2µ L ) ∂ 2 φ ∂y 2 -λ ∂ 2 φ ∂x 2 , ε yy = - 1 4µ(λ L + µ L ) λ L ∂ 2 φ ∂y 2 -(λ L + 2µ L ) ∂ 2 φ ∂x 2 .
The compatibility relations r s+1 cos(s -1)θ, r s+1 cos(s + 1)θ, r s+1 sin(s -1)θ, r s+1 sin(s + 1)θ.

Let σ rr , σ θθ and σ rθ be the polar stress components. By using e r = (cos θ, sin θ), e θ = (-sin θ, cos θ) and the fact that (e r , e θ , k) is direct and ∇φ ∧ k is independent of x, y, we obtain In [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF], Grisvard gives the corresponding displacement in polar coordinates with ρ = 1 + 2µ L λ L + µ L : u r = r s (a sin(s + 1)θ + b cos(s + 1)θ + c(ρs) sin(s -1)θd(ρs) cos(s -1)θ), u θ = r s (a cos(s + 1)θb sin(s + 1)θc(ρ + s) cos(s -1)θd(ρ + s) sin(s -1)θ),

σ
(A.1)
where a, b, c, d are generic constants. The P 1 nite-element method will not optimally approximate the terms of this form which are not in H 2 (Ω). So we have to determine the terms for which the real part of s is such that 0 < Re(s) < 1. The boundary conditions for the eective contact without friction on the crack with θ = π can be expressed as: u θ (r, π)u θ (r, -π) = 0, σ θθ (r, π)σ θθ (r, -π) = 0, σ rθ (r, π) = σ rθ (r, -π) = 0.

The rst equality expresses the contact condition: the jump of the normal displacement is equal to zero because we are not in the opening mode, the second equation represents the actionreaction law and the last equality expresses the absence of friction. By using (A.1), these conditions read as: u θ (r, π)u θ (r, -π) = 2r s (-b sin(s + 1)πd(ρ + s) sin(s -1)π) = 2r s (b sin(sπ) + d(ρ + s) sin(sπ)), σ rθ (r, π) = µ L r s-1 (2as cos(s + 1)π -2bs sin(s + 1)π -2cs 2 cos(s -1)π -2ds 2 sin(s -1)π) = 2µ L r s-1 (-as cos(sπ) + bs sin(sπ) + cs 2 cos(sπ) + ds 2 sin(sπ)), σ rθ (r, -π) = 2µ L r s-1 (-as cos(sπ)bs sin(sπ) + cs 2 cos(sπ)ds 2 sin(sπ)), σ θθ (r, π)σ θθ (r, -π) = r s-1 (λ L (2as sin(s + 1)π + 2c(ρs)s sin(s -1)π) +(λ L + 2µ L )(-2as sin(s + 1)π + 2cs(ρ + s -2) sin(s -1)π))

= r s-1 (4µ L as sin(sπ) -4csµ L (s + 1) sin(sπ)).

The determinant of the corresponding linear system can be written as: D = 32µ 3 L s 3 r 4s-3 sin 2 (sπ) 0 1 cos(sπ) cos(sπ) 1 0 sin(sπ) sin(sπ) 0 -s -1 (s -1) cos(sπ) (s -1) cos(sπ) ρ + s 0 (s -1) sin(sπ) -(s -1) sin(sπ) = 128µ 3 L s 3 r 4s-3 (ρ + 1) sin 3 (πs) cos(sπ).

So D = 0 reduces to sin 3 (πs) cos(sπ) = 0 and the only solution satisfying 0 < Re(s) < 1 is s = 1 2

.

For s = 1 2

, we obtain:

a = 3c 2 , b = 0, d = 0
which means that only one singular mode is present. For this singular mode we have also:

σ θθ (r, π) = σ θθ (r, -π) = 0. This property corresponds to the classical Neumann boundary condition on the crack lips. The consequence is there is no supplementary singular mode to the classical shear mode and the normal stress component is not singular on the crack lips.

• The end point of S do not belong to the interior of ∆ S .

• If S and S are any two segments of S H , ∆ S ∆ S is either empty or reduced to a node or a segment of T h , in the other worlds, the macro-elements related to S H do not overlap.

Let Π 1 the H 1 -stable interpolation operator of V h dened in Chapter 2. Then for any v ∈ H 1 (Ω), we propose the following restriction Π h v:

(C.5)

Π h v = Π 1 v + S∈S H C S Hϕ a S ,
where ϕ a S denotes the basis function of V h , with support ∆ S , that take the value 1 at the node a S and 0 at all other nodes of T h , H is the Heaviside function and each constant C S is chosen To derive an upper bound for the numerator of C.7, we require the next two lemmas.

Lemma A.3. [START_REF] Girault | Error analysis of a ctitious domain method applied to a Dirichlet problem[END_REF] Let T denote the reference unit triangle and let l be any straight line segment that intersects T . Then, there exist a constant C, independent of l such that (C.8)

∀ w ∈ H 1 ( T ), w 0, l ≤ C w 1, l Lemma A.4. [START_REF] Girault | Error analysis of a ctitious domain method applied to a Dirichlet problem[END_REF] Let l be a straight line segment that intersects a non degenerate triangle T and let l be its image on the reference unit triangle T by the ane transformation that maps T onto T . Let J T denote the Jacobian matrix of this transformation and let det(J T ) be its Euclidean norm. Then, we can see easy as in [START_REF] Girault | Error analysis of a ctitious domain method applied to a Dirichlet problem[END_REF] that there exist a constant C 3 independent of h and H such that (C.11) ϕ a S 1,∆ S ≤ C 3 .

Next let us nd a bound for C S . Let l i denote the straight line segments of S and T i the element of T h intersected by l i . We denote by E 1 (resp. E 2 ) the continuous extension of Π 1 v |Ω 1 (resp. Π 1 v |Ω 2 ) dened by:

E 1 v = j∈I\I H α j ϕ j + j∈I H β j ϕ j in Ω 1 , E 2 v = j∈I\I H α j ϕ j + j∈I H γ i ϕ j H 2 in Ω 2 , with α i = 1 |∆ i | ∆ i ũk dx if x i ∈ Ω k , β i = 1 |∆ i | ∆ i ũ1 dx, γ i = 1 |∆ i | ∆ i
ũ2 dx, S j := {S ∈ τ h : supp(ϕ j ) ∩ S = ∅}, where ∆ j is the maximal ball centered at x j such that ∆ j ⊂ S j and {x j } J j=1 are the interior nodes of mesh τ h . From C.7 and C.10, we have for all S ∈ S H

|C S | ≤ 4 √ 2 h S Π 1 v -v dΓ , ≤ 4 √ 2 h S Π 1 v |Ω 1 -v 1 dΓ + S Π 1 v |Ω 2 -v 2 dΓ , ≤ 4 √ 2 h i |l i | 1/2 Π 1 v |Ω 1 -v 1 0,l i + j |l j | 1/2 Π 1 v |Ω 2 -v 2 0,l j , ≤ 4 √ 2 h i |l i | 1/2 Π 1 v |Ω 1 -v 1 0,l i + j |l j | 1/2 Π 1 v |Ω 2 -v 2 0,l j ,
Then switching to the reference element and applying Lemmas A.3 and A.4, we obtain

|C S | ≤ 4 √ 2 h C i |l i | 1/2 J T i 1/2 E 1 v -v 1 1, T + j |l j | 1/2 J T j 1/2 E 2 v -v 2 1, T ,
where C is the constant of Lemma A.3. Now, switching back to T i and T j , we have

|C S | ≤ 4 √ 2 h C i |l i | 1/2 J T i 1/2 |det J T i | -1/2 E 1 v -v 1 2 0,T i + J T i 2 E 1 v -v 1 2 1,T i 1/2 + j |l j | 1/2 J T j 1/2 |det J T j | -1/2 E 2 T j v -v 2 0,T j + J T j 2 E 2 T j v -v 2 1,T j 1/2 , (C.12)
As the triangulation T h is trivial regular, C.11 and C.12 yield

S∈S H |C S | 2 ϕ a S 2 1,∆ S 1/2 ≤ 1 h C 4 √ L 2 j=1 T Γc =0 E j T v -v j 2 0,T + h 2 E j T v -v j 2 1,T 1/2
Using the same argument of the proof of Lemma 1 of chapter 2 we show easy that 

S∈S H |C S | 2 ϕ a S 2 

Contents 1 . 1 1 1. 1 . 1 3 1. 2 7 1. 2 . 1 8 1. 3 . 1

 1111132721831 Incompressible and compressible elasticity problem . . . . . . . . . . . . Basic concept for the linear elasticity . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Compressible strong and weak formulations . . . . . . . . . . . . . . . . . . 2 1.1.3 Incompressible formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . Contact condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frictionless unilateral contact condition in cracked domain . . . . . . . . . . 8 1.2.2 Frictional unilateral contact condition in cracked domain . . . . . . . . . . 8 1.3 X-FEM: General aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example introducing the concept of enrichment . . . . . . . . . . . . . . . . 8 1.3.2 Classical X-FEM enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.3 Fixed enrichment area and convergence rate . . . . . . . . . . . . . . . . . . 12 1.3.4 X-FEM with a cut-o function . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.1 Incompressible and compressible elasticity problem 1.1.1 Basic concept for the linear elasticity Let us consider the deformation of an elastic body occupying, in the initial conguration, a domain Ω ∈ R 2 where plane strain assumption are assumed. Let u be the displacement eld that satises the assumption of small perturbations : small displacements and transformations, respectively u = (u 1 , u 2 ) with | u | L and | ∂u i ∂x j | 1 in Ω with i, j ∈ {1, 2} Chapter 1. Introduction with L is a characteristic length of the solid.
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 1 σ(u) = λ tr ε(u) I + 2µ ε(u), with λ and µ are the Lamé coecients, which are positives and dened by µ = E 2(1 + ν) and λ = Eν (1 + ν)(1 -2ν) , E is the Young modulus and ν the Poisson's ratio. 1.1.2 Compressible strong and weak formulations
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  and σ(u) = σ d (u) + p I Then the strong mixed formulation is written as follows div[σ dp I] = f
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 1 3 are replaced by the single node 11 as shown in Fig. 1.4. By setting N 11 = (N 9 + N 10 ), the nite element approximation (1.17) has the following form:
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 25 Figure 2.5: Cracked specimen and position of the crack 2.5 Numerical study The numerical tests are made on a non-cracked domain dened by Ω =] -0.5, 0.5[×] -0.5, 0.5[, and the considered crack is the line segment Γ c =] -0.5; 0[×{0} (see Fig. 2.5(a)). To remove rigid body motions, we eliminate three degrees of freedom (see Fig. 2.5(a)). In this numerical test, we impose only a boundary condition of Neumann type (see Fig. 2.5(a)), in order to avoid possibility of singular stress for mixed Dirichlet-Neumann condition at transition points. The nite element method is dened on a structured triangulation of Ω. The von Mises stress for this test is presented in Fig. 2.6(b). As expected the von Mises stress is concentrated at the crack tip. The notation P i (resp. P +
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 26 Figure 2.6: Evolution of the inf-sup condition for mixed problem and von Mises stress (δ = 0)
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 27 Figure 2.7: Evolution of the inf-sup condition as a function of the position of the crack for all studied formulations. Let δ be the crack position as shown in Fig. 2.5(b). To test the inuence of the position of the crack on the inf-sup condition, we check the LBB condition by decreasing δ. The tests are made, on a P + 1 /P 1 formulation, with h = 1/100 (see Fig. 2.7(a)) and h = 1/10 (see Fig. 2.7(b)). The results presented in Figs. 2.7(a) and 2.7(b) show that the inf-sup condition remains bounded regardless of the position of the crack. Hence, one can conclude that the formulation is stable independently of the position of the crack.
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 52 Convergence rate and the computational cost
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 28 Figure 2.8: Errors for the mixed problem with enriched P + 1 /P 1 elements.
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 2 Figures 2.8(a), 2.8(b) and 2.8(c) show a comparison between the convergence rates of the X-FEM xed area and X-FEM cut o for the L 2 -norm and H 1 -norm (P 1 + /P 1 element are used). These errors were obtained by running the test problem for some values of the parameter n s , where n s
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 6210 Figure 2.10: Convergence rate for the high-order elements (logarithmic scales)
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  3.1). Of course, in the initial conguration, both Γ C+ and Γ C-coincide. Let n = n + = -n -denote the normal unit Chapter 3. A stabilized L.M.M. for E.F.E of contact problems of C.E.B outward vector on Γ C+ .
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 3 Figure 3.2: A cracked domain.
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 33 Figure 3.3: Decomposition of Ω into Ω 1 and Ω 2 .
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 34 Figure 3.4: The dierent types of enriched triangles. The enrichment with the heaviside function are marked with a bullet.
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 21 Putting together the previous bounds (3.14), (3.20) and (3.21) we deduce that

. 28 )

 28 Then, by using the inequalities (3.22), (3.26), (3.27), (3.28) and Proposition 3.3.3 the proof of the theorem follows.
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 3 A stabilized L.M.M. for E.F.E of contact problems of C.E.B In the inmum (3.23) we choose µ H

(3. 37 )

 37 Finally, the theorem is established by combining Proposition 3.3.3 and the inequalities (3.33), (3.35), (3.36), (3.37) and (3.22).
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 3738 Figure 3.7: Von Mises stress and normal contact stress for the reference solution
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 39310 Figure 3.9: Convergence curves in the stabilized case
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 4 A local projection stabilization of F.D.M for E.B.V.P
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 4141 Figure 4.1: Fictitious Ω and real Ω domains.
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 42 Figure 4.2: Example of a real domain and a structured mesh of the ctitious domain.
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 43 Figure 4.3: Example of a patch aggregation (in red and green) of size approximatively 2h of the intersection of the boundary of the real domain and the mesh. Note the practically inevitable presence of very small intersections.
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 44 Figure 4.4: Example of a two-dimensional triangular structured mesh used for the numerical test and partition of the boundary for Neumann and Dirichlet conditions.
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 423 Figure 4.5: Exact solutions

Chapter 4 .

 4 A local projection stabilization of F.D.M for E.B.V.P This technique is based on the addition of a supplementary term involving an approximation of the normal derivative on Γ D . Let us assume that we have at our disposal an operator
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 4647 Figure 4.6: Non-stabilized case with the P 1 /P 2 method.

  (a) Solution on Ω with Barbosa-Hughes stabilization for the P 1 /P 1 method. (b) Multiplier on Γ D with Barbosa-Hughes stabilization for the P 1 /P 1 method.
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 48 Figure 4.8: Barbosa-Hughes stabilized case with the P 1 /P 1 method.

Fig. 4 .

 4 8 shows that the Barbosa-Hughes stabilization technique eliminates the locking phenomenon (Fig. 4.8(a)) and the spurious modes on the multiplier (Fig. 4.8(b)). The convergence curves in the Barbosa-Hughes stabilized case are given
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 849 Figure 4.9: Convergence curves in the Barbosa-Hughes stabilized case.
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 410411 Figure 4.10: Local projection stabilized case with the P 1 /P 1 method.

  4.12, 4.13 and 4.14). The rst zone where the error decreases when the stabilization parameter γ increases. The second zone, for large values of the parameter, where the error increases (Figs.4.13, 4.14) or remain almost constant (Fig.4.12). Figure4.12 for the P 1 /P 0 elements indicates that a large value of the stabilization parameter does not aect too much the quality of the solution. This behavior has been noted whenever a piecewise constant multiplier is considered. Conversely, for all remaining couples of elements, an excessive value of the stabilization parameter leads to a bad quality solution (see Figs.4.13, 4.14).

  (a) With a minimal patch size equal to h (b) With a minimal patch size equal to 2h
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 412413 Figure 4.12: Inuence of the stabilization parameter for the error in the L 2 (Γ D )-norm of the multiplier for the P 1 /P 0 -element.
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 414 Figure 4.14: Inuence of the stabilization parameter for the error in the L 2 (Γ D )-norm of the multiplier for the P 2 /P 1 -element (with a minimal patch size equal to h).

Figure 4 . 15 :

 415 Figure 4.15: Convergence curves in the three-dimensional non-stabilized case.

  (a) Convergence of u -u h 0,Ω (b) Convergence of u -u h 1,Ω (c) Convergence of λ h -λ 0,Γ D
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 416 Figure 4.16: Convergence curves in the three-dimensional local projection stabilized case.
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 52 Figure 5.2: A cracked domain.

Figure 5 . 3 :

 53 Figure 5.3: Example of a patch aggregation (in red and green) of size approximatively h of the intersection between crack and the mesh.Let P W H be the local orthogonal projection operator from L 2 (Γ C ) onto W H which is dened

Figure 5 . 4 :

 54 Figure 5.4: Decomposition of Ω into Ω 1 and Ω 2 .

(5. 34 )

 34 Chapter 5. A local projection stabilized X-FEM Then we have b

( 5 . 44 )

 544 Using 5.43 and 5.44 we have b

(5. 45 )

 45 Using inequalities (5.39), (5.40), (5.41) and (5.45) we have
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 55 Figure 5.5: Cracked specimen.

  s)) is the set of vectors L N (resp. L T ) such that the corresponding multiplier lies in M h N (resp. in M h T (s)), K is the classical stiness matrix coming from the term a(u h , v h ), F is the right-hand side corresponding to the Neumann boundary condition and the volume forces, and B N , B T , D N γ , D T γ are the matrices corresponding to the terms b

  , 0.057, 0.03, 0.016, 0.008 respectively. The reference solution is obtained with a structured P 2 /P 1 method and h = 0.0021. The Von Mises stress of the reference solution is presented in Fig.5.7(c). Its distribution shows that the von Mises stress is not singular at the crack lips. The normal and tangent contact stress of the reference solution are presented in Fig.5.7(a) and Fig.5.7(b) respectively. The normal and tangent contact stresses are not singular at the crack lips which conrms the theoretical result.

Fig. 5 .

 5 Fig.5.8(b) shows that the rate of convergence in energy norm is approximatively of order 2 for the P 2 /P j methods and of order 1.2 for the P 1 /P j methods. Fig.5.8(c) shows that, the rate of convergence in the error L 2 (Γ C )-norm is optimal for the P 2 /P j methods (of order 1) and not optimal for the remaining couple of elements (approximatively of order 0.3 for the P 1 /P 1 and P 1 /P 0 methods and approximatively of order 0.7 for the P 1 + /P 1 method). It seems that the
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 57 Figure 5.7: Von Mises stress and contact stress for the reference solution (Note that the presence of friction in the non-contact zone (i.e. λ n = 0) is du to the use of Tresca model).
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 5859 Figure 5.8: Convergence curves in the non stabilized case
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 510 Figure 5.10: Inuence of the stabilization parameter in L 2 (Γ C )-norm of the contact stress

  General conclusionsphenomenon was present in the numerical situation we studied despite the non-satisfaction of the discrete inf-sup condition. The fact that such a locking situation may exist or not in the studied framework (contact problem on crack lips for a linear elastic body) is an open question.σ xx = ∂ 2 φ ∂y 2 , σ yy = ∂ 2 φ ∂x 2 , σ xy = σ yx = -∂ 2 φ ∂x∂y .

∂ 2 ε xx ∂y 2 +∂ 2 ε yy ∂x 2 - 2 ∂ 2 2

 2222 ε xy ∂x∂y = 0, lead to the bi-harmonic equation:λ L + 2µ L 4µ L (λ L + µ L ) ∂y 2 = 0 ⇐⇒ ∆ 2 φ = 0,whose general solution in polar coordinates is a linear combination of the following elementary functions:

C S = - 1 S

 1 It remains to show that such constant C S exist and to establish the stability inequality C.3a. Using the denition of Π h v we haveS Π 1 vv dΓ + k∈S H C k S ϕ a k dΓ = 0.Using the properties of ∆ S we have (C.7) ϕ a S dΓ S Π 1 vv dΓ.

  Now let us show that the operator Π h v dened by C.5 satises the stability estimate C.3b with a constant C independent of h and H. For any v ∈ H 1 (Ω), we haveΠ h v 1,Ω ≤ Π 1 v 1,Ω + S∈S H C S Hϕ a S 1,Ω ,As each ϕ a S has support ∆ S and these supports are all disjoint, we haveS∈S H C S Hϕ a S 1,Ω ≤ S∈S H |C S | 2 ϕ a S

1 ,∆ S 1 / 2 ≤

 112 C 5 v 1,Ω Using this last result with Lemma 1 of chapter 2 we have inequality C.3b wich nishes the proof of Lemma A.2.Abstract: This Ph.D. thesis was done in collaboration with La Manufacture Française des Pneumatiques Michelin. It concerns the mathematical and numerical analysis of convergence and stability of mixed or hybrid formulation of constrained optimization problem with Lagrange multiplier method in the framework of the eXtended Finite Element Method (XFEM).First we try to prove the stability of the X-FEM discretization for incompressible elastostatic problem by ensured a LBB condition. The second axis, which present the main content of the thesis, is dedicated to the use of some stabilized Lagrange multiplier methods. The particularity of these stabilized methods is that the stability of the multiplier is provided by adding supplementary terms in the weak formulation. In this context, we study theBarbosa-Hughes stabilization technique applied to the frictionless unilateral contact problem with XFEM-cut-o. Then we present a new consistent method based on local projections for the stabilization of a Dirichlet condition in the framework of extended nite element method with a ctitious domain approach. Moreover we make comparative study between the local projection stabilization and the Barbosa-Hughes stabilization. Finally we use the local projection stabilization to approximate the two-dimensional linear elastostatics unilateral contact problem with Tresca frictional in the framework of the eXtended Finite Element Method X-FEM. Keywords: XFEM, Fictitious domain, Unilateral contact, mixed formulation, Stabilization.Résumé: Ce mémoire de thèse à été réalisée dans le cadre d'une collaboration scientique avec La Manufacture Française des Pneumatiques Michelin. Il porte sur l'analyse mathématique et numérique de la convergence et de la stabilité de formulations mixtes ou hybrides de problèmes d'optimisation sous contrainte avec la méthode des multiplicateurs de Lagrange et dans le cadre de la méthode éléments nis étendus (XFEM). Tout d'abord, nous essayons de démontrer la stabilité de la discrétisation X-FEM pour le problème d'élasticité linéaire incompressible en statique. Le deuxième axe, qui représente le contenu principal de la thèse est dédié à l'étude de certaines méthodes de multiplicateur de Lagrange stabilisées. La particularité de ces méthodes est que la stabilité du multiplicateur est assurée par l'ajout de termes supplémentaires dans la formulation faible. Dans ce contexte, nous commençons par l'étude de la méthode de stabilisation de Barbosa-Hughes appliquée au problème de contact unilatéral sans frottement avec XFEM cut-o. Ensuite, nous construisons une nouvelle méthode basée sur des techniques de projections locales pour stabiliser un problème de Dirichlet dans le cadre de X-FEM et une approche de type domaine ctif. Nous faisons aussi une étude comparative entre la stabilisation avec la technique de projection locale et la stabilisation de Barbosa-Hughes. Enn, nous appliquons cette nouvelle méthode de stabilisation aux problèmes de contact unilatéral en élastostatique avec frottement de Tresca dans le cadre de X-FEM.Mots clés: XFEM, Domaine ctif, Contact unilatéral, Formulation mixte, Stabilisation.

  

  1.4. Outline of the thesisof constrained optimization problem with Lagrange multiplier. Except the rst chapter, each chapter of this thesis corresponds to a published or submitted paper.
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 21 Number of degrees of freedom for enriched P 2 /P 1 element Figure 2.9: Conditioning number of the stiness matrix for enriched P 2 /P 1 element

		Chapter 2. Mixed formulation with X-FEM cut-o
	Number of cells in each	Number of degrees of freedom
	direction	X-FEM xed enrichment area	X-FEM Cut O
	40	13456	11516
	60	30046	25666
	80	53376	45416

1 

-norm (P 1 + /P 1 element are used). These errors were obtained by running the test problem for some values of the parameter n s , where n s

  3. A stabilized L.M.M. for E.F.E of contact problems of C.E.B This allow us to dene the following stabilized discrete approximation of Problem (3.6): nd

  Note that if we take h = H the rate of convergence proved in Theorem 3.3.6 is h 1-η 3. A stabilized L.M.M. for E.F.E of contact problems of C.E.B Theorem 3.3.9. Let (u, λ) be the solution to Problem(3.6). Assume that u r ∈ (H 2 (Ω)) 2 .

	22), (3.29), (3.31), (3.32)
	and Proposition 3.3.3.
	2
	3.3.2.3 Third contact condition: M H-= M H-1, *

Remark:

This choice corresponds to weakly nonpositive" continuous piecewise ane multipliers where M H-is given by

(3.11)

.

Chapter

  3.1. Assume that (4.7) and (4.11) hold, then for any γ > 0 there exists a unique solution of the stabilized problem (4.12).

	Proof. Suppose (u h 1 , λ h 1 ) and (u h 2 , λ h 2 ) are two solutions to Problem (4.12). Let us denote ūh = u h 1 -u h 2 , λh = λ h 1 -λ h 2 and λH = P W H (λ h 2 ). Then, from Problem (4.12) we 1 ) -P W H (λ h obtain
	(4.13)

  Chapter 4. A local projection stabilization of F.D.M for E.B.V.P Theorem 4.3.2. Let V h and W h be dened by(4.16) and (4.17), respectively such that (4.7) is satised. Let (u, λ) be the solution of the continuous problem (4.2) such that u ∈ H 2 (Ω) and λ ∈ H 1/2 (Γ D ). Assume that (4.11) is satised and assume also the existence of a constant η > 1 with H ≤ ηh.

  ⊗ e θ where u r and u θ are the radial and angular components of the displacement. So in polar coordinates, it becomes σ rr = (λ L + 2µ L )

			rr =	1 r 2	∂ 2 φ ∂θ 2 +	1 r	∂φ ∂r	, σ θθ =	∂ 2 φ ∂r 2 , σ rθ =	1 r 2	∂φ ∂θ	-	1 r	∂ 2 φ ∂θ∂r	.
	Besides, we have										
					σ xx = (λ L + 2µ L )	∂u x ∂x	+ λ L	∂u y ∂y	,
						σ yy = (λ L + 2µ L )	∂u y ∂y	+ λ L	∂u x ∂x	,
						σ ∂u x ∂y	+	∂u y ∂x	,
	and ∇u =	∂u r ∂r	e r +	∂u θ ∂r	e θ ⊗ e r +	1 r	∂u r ∂θ	e r + e θ ∂u r 1 r u r e θ -1 r u θ e r + 1 r ∂u θ ∂θ ∂r + λ L r u r + ∂u θ ∂θ ,
						σ θθ =		(λ L + 2µ L ) r	u r +	∂u θ ∂θ	+ λ L	∂u r ∂r	,
						σ rθ = µ L	∂u θ ∂r	+	1 r	∂u r ∂θ	-	1 r	u θ .
	Consequently,											
			1 r 2	∂ 2 φ ∂θ 2 +	1 r	∂φ ∂r	= (λ L + 2µ L )	∂u r ∂r	+	λ L r	u r +	∂u θ ∂θ	,
									∂ 2 φ ∂r 2 =	(λ L + 2µ L ) r	u r +	∂u θ ∂θ	+ λ L	∂u r ∂r	,
			1 r 2	∂φ ∂θ	-	1 r	∂ 2 φ ∂θ∂r	= µ L	∂u θ ∂r	+	1 r	∂u r ∂θ	-	1 r	u θ .

xy = µ L (ε xy + ε yx ) = µ L
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Chapter 5. A local projection stabilized X-FEM

Under plane small strain assumptions, the problem of homogeneous isotropic linear elasticity consists in nding the displacement eld u : Ω → R 2 satisfying div σ(u) + f = 0 in Ω,

(5.1)

σ(u)n = g on Γ N , (5.4) where σ = (σ ij ), 1 ≤ i, j ≤ 2, stands for the stress tensor eld, ε(v) = (∇v +∇v T )/2 represents the linearized strain tensor eld, λ L ≥ 0, µ L > 0 are the Lamé coecients, and I denotes the identity tensor. For a displacement eld v and a density of surface forces σ(v)n dened on ∂Ω,

we adopt the following notations:

where v + (resp. v -) is the trace of displacement on Γ C on the Γ + C side (resp. on the Γ - C side).

The conditions describing the normal contact on Γ C are:

where u n is the jump of the normal displacement across the crack Γ C . Denoting by s ≥ 0 the given slip stress coecient on Γ C (which is assumed to be constant for the sake simplicity). The static Tresca friction condition reads as follows:

(5.6)

To give some classical weak formulation of Problem (5.1)-(5.6), we rst introduce the following Hilbert spaces:

and their topological dual spaces V , W N , W T , endowed with their usual norms. Next we dene the convex set of Lagrange multipliers denoted:

where the notation •, • W N ,W N stands for the duality pairing between W N and W N . The mixed formulation of the Tresca contact problem (5.1)-(5.6) consists then in nding u ∈ V and λ ∈ M(s) such that

We consider two possible elementary choices of W h :

where P k (E) denotes the space of polynomials of degree less or equal to k on E. This allows to provide the following three elementary denitions of M h N and M h T (s):

(5.15)

(5.16)

In the forthcoming convergence analysis, we will need more information on the compatibillity between the spaces V h and W h . To overcom this diculty, we use the local projection stabilization technique introduced in [START_REF] Amdouni | A local projection stabilization of ctitious domain method for elliptic boundary value problems[END_REF]. This technique consists in adding a supplementary term, involving the local orthogonal projection of the multiplier on a patch decomposition of the mesh, to the discrete mixed formulation. The set of patches is build from S h . Indeed we aggregate the possibly very small elements of S h in order to obtain a set of patches having a minimal and a maximal size (for instance between 3h and 6h). In practice, this operation can be done rather easily (even for three-dimensional problems).

A practical way to obtain such a patch decomposition will be described in the next section. An example of patch aggregation is presented in Fig. 5.3. Let H be the maximum length of these patches and denote by S H the corresponding subdivision of Γ C . Let

be the space of piecewise constants on this mesh and let W H = W H × W H . Similarly to the classical result presented in [START_REF] Girault | Error analysis of a ctitious domain method applied to a Dirichlet problem[END_REF], we prove that an inf-sup condition is satised between V h and W H for minimal size of 3h for the patches (see Appendix C: This proof, done with scalar eld, stabilized formulation consists in replacing the Lagrangian (5.8) by the following one:

where, γ is a constant. Let M h (s) = M h N × M h T (s) then the corresponding optimality system reads as follows:

(5.18) Proof. Let µ h = (µ h n , µ h t ) ∈ M h (s) and u h be the solution of the following problem:

then using the fact that the inf-sup condition is satised in the ortogonal of the kernel of b(., .) (which contains W h ) we prove that there exists a constant C such that:

(5. [START_REF] Strang | An analysis of the nite element method[END_REF])

Now the existence of a solution to Problem (5.18) follows from the fact that V h and M h (s) are two nonempty closed convex sets, L γ (•,

5.3. Discretization with the stabilized Lagrange multiplier method Theorem 5.3.7. Let (u, λ) be the solution to Problem (5.7). Assume that u r ∈ (H 2 (Ω)) 2 and λ ∈ (H 1/2 (Γ C )) 2 . Let (u h , λ H ) be the solution to the discrete problem (5.18) where

Then, for any η > 0 we have

Proof. In (5.22) we choose µ h = P W h (λ) = (P W h (λ n ), P W h (λ t )) where P W h denotes the L 2 (Γ C )-projection onto W H 1 . We recall that the operator P W h is dened for any v ∈ L 2 (Γ C ) by

and satises the following error estimates for any 0 ≤ r ≤ 2 (see [START_REF] Belgacem | Hybrid nite element methods for the Signorini problem[END_REF])

(5.38)

Clearly, P W h (λ) ∈ M h (s) and using the inequality comming from (5.18) we have

(5.41)

We have

(5.42)

Appendix

Appendix A : Singularity of the contact stress Lemma A.1. Assume that we have a nite number of transition points between the contact and the non contact zones on the crack lips, then the contact stress σ n is in

Proof. Let m be a transition point which delimits two zones of nonzero length, a non contact zone (u n < 0) and a zone where the contact is eective (u n = 0). Moussaoui et al. [START_REF] Moussaoui | Regularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan[END_REF] show that the asymptotic displacement near this transition point is no more singular than r 3/2 sin 3 2 θ where (r, θ) are the polar coordinate relative to m and the transition point. Consequently, the normal contact stress is not singular near the transition points between the contact and the non contact zones. This analysis, done for the scalar Signorini problem, can be straightforwardly generalized to the Signorini problem for two dimensional elasticity. In order to shorten the proof we present only the analysis for the vicinity of the crack-tip.

We can restrict the study to the case of a contact occurring on a neighborhood of the crack-tip, since σ n = 0 if there is no contact at the crack-tip.

Using the div-rot lemma, we rewrite the stress components in terms of an Airy function φ as follows:

Appendix Appendix B : Proof of Lemma 3.3.2

In order to prove Lemma 3.3.2, we distinguish three cases: totally enriched triangles, partial enriched triangles and the triangle containing the crack tip.

First, for a totally enriched triangle (Fig. 3.4(a)) we have

Second, for a partially enriched triangle and considering the particular case shown in Fig.

we have:

we have:

Furthermore, we have from [START_REF] Nicaise | Optimal convergence analysis for the extended nite element method[END_REF]:

and since ϕ 2 0,T h we can conclude that:

Appendix B. Appendix

In the same way we have:

A similar reasoning can be applied to the other situations of partially enriched triangles to obtain the same result.

Finally, for the triangle containing the crack tip, and in the particular case described in Fig. 3.4(c)

we have:

))ϕ 1 . Note that we have (see [START_REF] Nicaise | Optimal convergence analysis for the extended nite element method[END_REF]):

with j ∈ {1, 2, 3}, i ∈ {1, 2}, l = 3i and x j a node belonging to a partially enriched triangle or triangle containing the crack tip. Then, by the same way in the case of partially enriched triangle we have the following result for i ∈ {1, 2}:

This concludes the proof, since a similar reasoning can be applied to the other situations of a triangle containing the crack tip. 

with b(v h , µ h ) = µ h , v h W ,W

Proof. In order to proof this condition we use a general technique introduced by Brezzi and Fortin in their book [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF]. This technique can be summarized in the following proposition:

Proposition 7 ( [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF]). Suppose that

and assume that there exists a family of uniformly continuous operators Π h from V into V h satisfying:

b(Π h ww, µ h ) = 0, ∀µ h ∈ (W h ) ,

with c independent of h. Then we have

.

In our case the inf-sup condition (C.2) is true. Indeed, in the rest of this chapter, we proof the LBB condition relying on Proposition 7.

We have the length of each segment of S H is not less than 4h, then similarly to [START_REF] Girault | Error analysis of a ctitious domain method applied to a Dirichlet problem[END_REF] we can nd a node a S such that the macro-element ∆ S consisting of the six triangles of T h with common vertex a S satises the following properties:

• S intersects at least one interior segment of ∆ S at a distance from a S that is no larger then half the length of this segment.