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Abstract

Until very recently, topological data analysis and topological inference methods mostly
relied on deterministic approaches. The major part of this habilitation thesis presents a
statistical approach to such topological methods. We first develop model selection tools
for selecting simplicial complexes in a given filtration. Next, we study the estimation
of persistent homology on metric spaces. We also study a robust version of topological
data analysis. Related to this last topic, we also investigate the problem of Wasserstein
deconvolution. The second part of the habilitation thesis gathers our contributions in
other fields of statistics, including a model selection method for Gaussian mixtures, an
implementation of the slope heuristic for calibrating penalties, and a study of Breiman’s
permutation importance measure in the context of random forests.

Keys words: topological data analysis, topological inference, persistent homology, non
parametric statistics, model selection, bootstrap, deconvolution, Wasserstein metrics, mix-
ture models, slope heuristics, random forests, permutation importance measure.

Résumé

Jusqu’à très récemment, l’analyse topologique des données ainsi que les méthodes d’inférence
topologique ont principalement été développées dans une perspective déterministe. La par-
tie principale de cette thèse d’habilitation traite d’une approche statistique de ces méthodes
topologiques. Nous proposons tout d’abord des outils de sélection de modèle pour choisir
un complexe simplicial dans une filtration donnée. Nous étudions ensuite le problème de
l’estimation de l’homologie persistante. Nous considérons aussi une version robuste de
l’analyse topologique des données ainsi que le problème de la déconvolution Wasserstein,
ces deux questions étant en fait reliées. La seconde partie de cette thèse d’habilitation
rassemble nos contributions dans d’autres domaines de la statistique. Nous y présentons
des résultats de sélection de modèle pour des modèles de mélange Gaussien, une implémen-
tation efficace de l’heuristique de pente ainsi qu’une étude de la mesure d’importance de
Breiman.

Mots clés : analyse topologique des données, inférence topologique, homologie per-
sistante, statistique non paramétrique, sélection de modèles, bootstrap, déconvolution,
métriques Wasserstein, modèles de mélange, heuristique de pente, forêts aléatoires, mesure
d’importance par permutation.

5



6



Foreword

With the emergence of distance-based approaches and persistent topology, geometric inference and
computational topology have recently undergone significant developments. New mathematically well-
founded theories have given birth to the field of topological data analysis. Our research mainly involves
the statistical analysis of these methods but also includes development of statistical tools and methods
in this field. The first and main part of this document presents our contributions to this topic.

The first chapter is an introductory one about topological data analysis and topological inference. It
ends by explaining the reasons for a statistical approach to these problems. Chapter 2 is about a model
selection method for selecting a simplicial complex in a filtration. Chapter 3 presents our statistical
results about persistent homology inference. Chapter 4 looks at a robust version of topological data
analysis based on a notion of distance to measure. We also present in Chapter 4 our results about the
Wasserstein deconvolution problem, which is related to the problem of robust topological inference.

The second part of the habilitation thesis gathers our contributions on other topics in statistics.
Chapter 5 presents our contributions in model selection in the context of clustering with Gaussian
mixture models. Chapter 6 details the implementation of the slope heuristic method. Lastly, in
Chapter 7 examines feature selection in the context of random forests.

The organization of this document into two parts might lead one to believe that these two parts are
totally independent, but this not the case. Indeed, Chapter 5 is about clustering, but topological data
analysis is also concerned with this problem of "connectivity" in data. Moreover, Chapter 2 (selection
of simplicial complexes) and Chapter 5 (selection of Gaussian mixture models) both relie on model
selection methods via penalization. In both cases, the slope heuristic method of Chapter 6 is applied.

Each section of this document ends with a discussion and directions for future research. A complete
list of our papers can be found at the end of the document, and all our papers can be downloaded here.
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Chapter 1

Introduction

This chapter is an introduction to topological data analysis (TDA) and topological inference methods.
The necessary background in topology, geometry and computational geometry is briefly recalled. A
nonexhaustive presentation of classical results about topological reconstruction and topological infer-
ence is presented. The last section of the chapter gives the motivations behind a statistical approach
to this subject, as developed in the following chapters.

In a given metric space pM, ρq, the closed ball centered at x PM with radius r is denoted by Bpx, rq.
The Hausdorff distance between compact sets is denoted dH. In Euclidean spaces the metric is defined
by the Euclidean norm } ¨ }. The transpose of a matrix A is denoted At. This notation is used in all
this first part of the habilitation thesis.

1.1 Topological data analysis

During the previous decades, wide availability of measurement devices and simulation tools has led
to an explosion in the amount of available data in almost all domains of science, industry, economy
and even everyday life. Often these data come as point clouds sampled in possibly high (or infinite)
dimensional spaces. They are usually not uniformly distributed in the embedding space but carry some
geometric structure which reflects important properties of the "systems" from which they have been
generated.

There exist various statistical and machine learning methods that aim to uncover the geometric
structure of data, including clustering, manifold learning and nonlinear dimensionality reduction, prin-
cipal curves and sets estimation, to name a few. Most of them assume the underlying structure to have
a very simple geometry — homeomorphic to a disc or isometric to an open set of a Euclidean space.
Furthermore the only topological information they look for is connectivity.

With the emergence of new geometric inference and algebraic topology tools, computational topol-
ogy (Edelsbrunner and Harer, 2010) has recently witnessed important developments with regards to
data analysis, giving birth to the field of topological data analysis (TDA), whose aim is to infer relevant,
qualitative and quantitative topological structures directly from the data (Carlsson, 2009).

The field of topological data analysis actually refers to various approaches and methods for exploring
data. The two most popular approaches in TDA are probably the Mapper algorithm (Singh et al.,
2007) and persistent homology (Edelsbrunner et al., 2002). The Mapper algorithm is a visualization
method that preserves topological structure, whereas persistent homology provides a framework and
efficient algorithms to encode the evolution of the topology of shape from small to large scale. We do
not study the Mapper algorithm in this habilitation thesis, but persistent homology is the main subject
of Chapter 3, and to a lesser extent Chapter 4. One fundamental question underlying TDA is what
kind of topological information can be extracted in practice from data. This problem corresponds to
the field of topological inference.

Topological inference methods aim to infer topological properties of an unknown topological space.
Typically, a point cloud Xn is observed and the data is supposed to have be sampled in a neighborhood
of the unknown shape X, as illustrated by Figure 1.1. For Xn "close" enough to X, it is expected that
the topology of X can be inferred from Xn. In Euclidean spaces and more generally metric spaces,
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Figure 1.1: Point cloud sampled on the tangle cube in R3.

closeness between (compact) sets can described using various metrics. The traditional approach in
topological inference requires closeness between compact sets for the Hausdorff distance between X
and its approximation.

Generally speaking, point clouds in themselves do not carry any non-trivial topological or geometric
structure. It is thus necessary to consider geometric structures on top of such point clouds in order
to recover information about the shapes they approximate. In the most favorable situations, it is
possible to define such an approximation X̃n of the underlying object X that is homeomorphic to
X. In this case the topology of X can be described by the values of topological invariants on X̃n, as
for instance the number of components, the homotopy type, its Betti numbers (see below), etc. A
weaker relation between topological spaces which however preserves many topological invariants is the
homotopy equivalence1.

The next section introduces the approximating models used for topological inference and more
generally for TDA.

1.2 Approximating models for TDA: offsets and simplicial complexes

One natural strategy to infer topological information for an unknown shape from a point cloud is to
consider the offsets of the point cloud. For a point cloud Xn in Rd (or in a metric space), the r-offset
of Xn is defined by

Xrn “
ď

xPXn

Bpx, rq.

More generally, for any set X in a metric space pM, ρq, the r-offset Xr of X is defined by

Xr “
ď

xPX
Bpx, rq.

However, non-discrete sets such as offsets, and also continuous mathematical shapes like curves, sur-
faces and more generally manifolds, cannot easily be encoded as finite discrete structures. Simplicial
complexes are therefore used in computational geometry to approximate such shapes. These can be
seen as generalizations of neighborhood graphs.

The definition of geometric simplicial complexes in Rd is now recalled, see also Figure 1.2(a). A
n-dimensional simplex s is the set of convex combinations of n+1 affinely independent points Xn “

1Given two topological spaces X and Y, two maps f0, f1 : X Ñ Y are homotopic if there exists a continuous map
H : r0, 1s ˆ XÑ Y such that for all x P X, Hp0, xq “ f0pxq and Hp1, xq “ f1pxq. The two spaces X and Y are homotopy
equivalent if there exist two continuous maps f : XÑ Y and g : Y Ñ X such that g ˝ f is homotopic to the identity map
in X and f ˝ g is homotopic to the identity map in Y.

13



(a) The left set of simplices is a simplicial complexe
whereas the right set of simplices is not.

(b) Delaunay complex in the
plane and its empty ball charac-
terization.

(c) one α-complex on the same
set of points as for the Delaunay
Complex.

Figure 1.2: Some geometric simplices in R2.

tx0, . . . , xnu. The points xi are called vertices. The simplices spanned by non-empty subsets of Xn are
called faces of s. Note that a point is a 0-simplex, a segment is a 1-simplex and triangle is a 2-simplex.

Definition 1. A geometric simplicial complex C is a set of simplices such that:

• Any face of a simplex from C is also in C.

• The intersection of any two simplices s1, s2 P C is either a face of both s1 and s2, or empty.

A simplicial complex can also be seen as a combinatorial object consisting of subsets of the full vertex
set of the complex. This remark motivates the following definition of abstract simplicial complexes.

Definition 2. Let Xn “ tx0, . . . , xnu be a finite set of elements. An abstract simplicial complex C with
vertex set Xn is a set of subsets of Xn such that:

• The elements of Xn belong to C;

• If s P C and H ‰ s̃ Ă s, then s̃ P C.

One important large family of constructions of simplicial complexes relies on the Delaunay com-
plex. An exhaustive presentation of the Delaunay complex and its variants can be found for instance
in Boissonnat et al. (2015). In this habilitation thesis, we only present the Delaunay complex and the
α-shape complex, see also Figures 1.2(b) and 1.2(c). Let Xn “ tx1, . . . , xnu be a point cloud of Rd
which is in general position2.

• A simplex rxi0 , xi1 , ¨ ¨ ¨ , xiks is in the Delaunay complex of Xn if and only if it has a circumscribing
ball empty of points of Xn.

• A simplex rxi0 , xi1 , ¨ ¨ ¨ , xiks is in the α-complex of Xn if and only if rxi0 , xi1 , ¨ ¨ ¨ , xiks is in the
Delaunay complex and the square radius of its circumscribing ball is at most α. The α-shape of
Xn for scale parameter α is the set defined as the union of the simplices in the α-complex of Xn.

The Delaunay complex and the α-complex are both embedded in Rd and they can be used for approxi-
mating an unknown shape in low dimension, typically for the Hausdorff metric. The α-complex can be
also used for topological inference because it is homotopy equivalent to the union of the balls (Edels-
brunner, 1993). However, as computation of the Delaunay complex is limited for practical reasons to
very low dimensions, alternative constructions need to be considered for topological inference, like for
instance the Čech and Vietoris-Rips (or Rips) complexes. For a point cloud Xn “ tx0, x1, ¨ ¨ ¨ , xnu in
Rd and α ą 0, let CechαpXnq and RipsαpXnq be the Čech and Rips complexes of scale parameter α
built on Xn (see also Figure 1.3):

• A simplex rxi0 , xi1 , ¨ ¨ ¨ , xiks is in the Čech complex CechαpXnq if and only if
Şk
j“0Bpxij , αq ‰ H.

2namely, no subset of d` 2 points of Xn lies on the same hypersphere.
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Figure 1.3: Left : Čech complex built on five points with a given scale parameter. Right: Rips complex
built on the same points and with the same scale parameter α. The 2-simplices (or triangles) which
lie in the complex are filled in blue. The offset Xαn is represented in pink.

• A simplex rxi0 , xi1 , ¨ ¨ ¨ , xiks is in the Rips complex RipsαpXnq if and only if }xij ´ xij1 } ď
α for all j, j1 P t1, . . . , ku.

The definition of Čech and Vietoris-Rips complexes is not limited to the case of Euclidean spaces; they
can be defined for a set of points in any metric space. In fact, the definition can be extended to any
compact metric space (Chazal et al., 2014d).

The Nerve Theorem is a classical result in algebraic topology, see for instance Hatcher (2002).
It says that the offsets Xαn of a point cloud Xn in Rd are homotopy equivalent to the Čech complex
CechαpXnq. This result opens the door to computational topology: the topology of the offsets can be
inferred from the topology of Čech complexes. For instance, Betti numbers on simplicial complexes
(defined in the next section) can be computed with efficient algorithms. However, computation of Čech
complexes quickly becomes difficult when the dimension increases. In practice, Rips complexes can
also be used for encoding the topology of the offsets because of the following property:

Proposition 1. Let Xn be a set of points in Rn. Then, for any α ą 0:

RipsαpXnq Ă CechαpXnq Ă Rips2αpXnq.

Simplicial complexes are usually parametrized by a scale parameter and the complete collection of
simplicial complexes is called a filtration. More formally:

Definition 3. A filtration pCkqk“0,...,m of a finite simplicial complex C is an increasing sequence of
sub-complexes such that

• H “ C0 Ă C1 Ă ¨ ¨ ¨ Ă Cm “ C,

• Ck`1 “ Ck Y sk`1 where sk`1 is a simplex of Ck`1.

For instance, the family of α-complexes is a filtration of the Delaunay complex. When simplicial
complexes depend on a scale parameter α, by abuse of definition the filtration can also be indexed by
the scale parameter α: the filtration pCαqαPr0,ᾱs is a filtration of the complex Cᾱ.

1.3 Simplicial homology

Homology is a mathematical formalism used to summarize connected components, holes, tunnels and
voids in general in a topological space. The definition of homology on simplicial complexes, that
is simplicial homology, is now briefly recalled. A complete presentation of simplicial homology and
singular homology can be found for instance in Munkres (1984) or in Hatcher (2001).

In this habilitation thesis, we only consider simplicial homology on Z{2Z. In this framework,
simplicial homology has an obvious topological and geometric interpretation. Let C “ ts1, . . . , sku be
a simplicial complex and k a dimension. A k-chain c is a formal sum of k-simplicial complexes in
C: c “ ř

aisi, where coefficients ai are taken from Z{2Z, and where the chain can be though of as
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Figure 1.4: Simplicial homology example: for this simplicial complex, β0 “ 2 and β1 “ 1.

composed of the simplices whose coefficients are equal to one. A sum of two k chains c “
ř

aisi and
c1 “

ř

bisi is defined by c ` c1 “
ř

pai ` biqsi, where the sum between ai and bi is the sum in Z{2Z.
This can be seen as the symmetric difference of the two chains. With this addition operation, the set
of k chains on C, denoted by CkpCq, is an abelian group.

The boundary Bks of a k-simplex s is defined as the sum of its k ´ 1 faces and the boundary Bkc
of a k-chain c “

ř

aisi is defined as the sum of the boundaries of its simplexes. The elements of the
subgroup Zp :“ KerBk are called cycles: a k-cycle c is a k-chain with empty boundary. The elements
of the subgroup Bp :“ ImBk`1 are the k-boundaries: a k-boundary c is the boundary of a pk ` 1q-
chain. The main property of this construction is that the boundary of a boundary is necessarily zero.
Intuitively, the homology groups of C correspond to the voids of dimension k of the simplicial complex
(see Figure 1.4 for an illustration).

Definition 4. The k-th homology group of C is the k-th cycle group modulo the k-th boundary group:
Hp “ Zp{Bp. The k-th Betti number is the rank of this group: βk “ rank Hp.

In practice, one build a simplicial complex on a point cloud and Betti numbers appear as simple
and interpretable topological signatures of the underlying shape on which the point cloud has been
sampled. The notion of homology can be extended to general topological spaces by considering singular
homology. This notion is beyond the scope of the thesis. We only mention here the key fact that singular
homology is a topological invariant. This last property is, in some sense, the justification for using
homology and Betti numbers computed on simplicial complexes for describing an unknown shape.

1.4 Topological inference and reconstruction procedures

This section gives a short presentation of topological inference results, see Boissonnat et al. (2015)
for more details. There are two main facts relevant to topological inference results. The first is that,
unsurprisingly, the difficulty in inferring the topology of a shape directly depends on its "regularity".
There are several ways to quantify the regularity of a geometric shape. The second is that a complete
theory of topological inference can be derived from the study of distance functions to compact sets.

For a compact set X in Rd, the distance function dX to X is the non-negative function defined by

dXpyq “ inf
xPX
}x´ y}.

Note that X is completely characterized by dX since X “ d´1
X p0q. Moreover the r-offset Xr can be

defined by Xr “ d´1
X pr0, rsq. For some point y in the complement Xc of X, let Γpyq be the set of

points in X closest to y: ΓXpyq “ tx P X | }x ´ y} “ dXpyqu. The medial axis of Xc is defined by
MpXcq “ ty P Xc, |ΓXpyq| ě 2u. Several regularity properties of geometric shapes can be expressed as
a function of the medial axis of its complement.
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X

Figure 1.5: This manifold is close to being self-intersecting and has a small reach.

Local feature size and reach

A local notion of regularity of a compact set X can be measured by the so-called local feature size. For
x P X, it is defined by lfsXpxq :“ d px,MpXcqq . The global version of the local feature size is the reach3

introduced by Federer (1959): κpXq “ infxPXc lfsXpxq. The reach is small if either X is not smooth
or if X is close to being self-intersecting (see Figure 1.5) and the same remark is of course also true
locally for the local feature size. Amenta et al. (2000) show that a topologically correct reconstruction
of a surface smoothly embedded in R3 is possible from a point cloud, as soon as every point x P X
has a sample point at distance at most 0.06 lfsXpxq. However, this result cannot be applied when the
geometric shape has sharp edges because the local feature size vanishes on such edges.

Weak feature size and its extensions

The weak feature size is a more flexible notion of regularity then the reach. It relies on the notion
of critical points for dX. The function dX is not differentiable everywhere but a generalized gradient
vector field ∇dX for dX can be defined as follows:

∇dXpxq “
#

x´θ
dXpxq

if x R X
0 if x P X,

where θ is the center of the smallest closed ball enclosing Γpxq, see Figure 1.6.

Definition 5. A point x is a critical point of dX if ∇dXpxq “ 0. A real c ě 0 is a critical value of dX
if there exists a critical point x P Rd such that dXpxq “ c. A regular value of dX is a value which is not
critical.

The weak feature size of a geometric shape was introduced in Chazal and Lieutier (2007):

Definition 6. The weak feature size wfspXq of X is the infimum of the positive critical values of dX.
If dX does not have critical values then wfspXq “ `8.

Using the notion of critical point, Grove (1993) has shown that the sublevel sets of dX are topological
submanifolds of Rd and that their topology can change only at critical points. Moreover, for 0 ă α ă
β ă wfspXq, the offsets Xα and Xβ are isotopic4.

The following theorem is a typical example in the literature about topological inference of stability
result. It shows that for some range of values of the scale parameter, two close compact sets have the
same offset topology.

Theorem 1. [Chazal and Lieutier 2007] Let X and Y be two compact sets in Rd and let ε ą 0 be such
that dHpX,Yq ă ε, wfspXq ą 2ε and wfspYq ą 2ε. Then for any 0 ă α ă 2ε, Xα and Yβ are homotopy
equivalent.

3also called condition number
4The notion of isotopy is stronger than homeomorphy to distinguish between spaces in Rd. An isotopy between X

and Y is a continuous application F : X ˆ r0, 1s Ñ Rd such that F p., 0q is the identity map on X, F pX, 1q “ Y and for
any t P r0, 1s, F is an homeomorphism between X and F pX, tq.
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Figure 1.6: Definition a generalized gradient for the distance function to a compact set.

However, the assumptions of Theorem 1 are not satisfied in the realistic case where an unknown
shape X is approximated by a point cloud Xn. Indeed, the weak feature size of a finite point cloud Xn
is equal to half of the distance between the two closest points of Xn. In most cases, the two conditions
dHpX,Xnq ă ε and wfspXnq ą 2ε are not simultaneously satisfied.

To deal with this drawback, improvements to Theorem 1 have been proposed in particular in
Chazal et al. (2009c). In short, a more general notion of regularity is introduced: the µ-reach, which
interpolates between the minimum of the local feature (the reach) and the weak feature size. By
considering this quantity as a measure of the regularity of the shape, it is shown in Chazal et al.
(2009c) that the homotopy type5 of X or at least that of its small offsets can be inferred from the
homotopy types of the offsets of an approximation of X. Here, the proximity required between X and
its approximation is in terms of the Hausdorff distance and also depends on the µ-reach of X.

A first probabilistic statement of topological reconstruction

In the paper Niyogi et al. (2008), it is shown that the homotopy type of Riemannian manifolds with
reach larger than a given constant can be recovered with high probability from offsets of a sample on
(or close to) the manifold. This paper is very important in the computational geometry literature since
it was the first paper to consider the topological inference problem in terms of probability. The result
of Niyogi et al. (2008) is derived from a retract contraction argument and on tight bounds over the
packing number of the manifold in order to control the Hausdorff distance between the manifold and
the observed point cloud. The assumption that the geometric object is a smooth Riemannian manifold
is only used in the paper to control in probability the Hausdorff distance between the sample and the
manifold, and not actually necessary for the "topological part" of the result. Regarding the topological
results, these are similar to those of Chazal et al. (2009c) in the particular framework of Riemannian
manifolds. Starting from the result of Niyogi et al. (2008), the minimax rates of convergence of the
homology type have been studied by Balakrishnan et al. (2012) under various models, for Riemannian
manifolds with reach larger than a constant. In contrast, a statistical version of Chazal et al. (2009c)
has not yet been proposed.

1.5 Statistical approaches to TDA and topological inference

Until very recently, the theory on TDA and topological inference mostly relied on deterministic ap-
proaches, as presented above. These deterministic approaches do not take into account the random
nature of data and the intrinsic variability of the topological quantity they infer. Consequently, most

5actually it is also true for the isotopy type, see Chazal et al. (2009b).
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of the corresponding methods remain exploratory, without being able to efficiently distinguish between
information and what is sometimes called the "topological noise".

A statistical approach to TDA means that we consider data as generated from an unknown dis-
tribution, but also that the inferred topological features by TDA methods are seen as estimators of
topological quantities describing an underlying object. Under this approach, the unknown object cor-
responds to the support of the data distribution (or at least is close to this support). However, this
support does not always have a physical existence; for instance, galaxies in the universe are organized
along filaments but these filaments do not physically exist. A statistical approach to TDA is thus
strongly related to the problem of distribution support estimation and level sets estimation6 under the
Hausdorff metric, as suggested by the stability results presented in the previous section.

A large number of methods and results are available for estimating the support of a distribution
in statistics. For instance, the Devroye and Wise estimator (Devroye and Wise, 1980) defined on a
sample Xn is also a particular offset of Xn. The convergence rates of both Xn and the Devroye and
Wise estimator to the support of the distribution for the Hausdorff distance is studied in Cuevas and
Rodríguez-Casal (2004) in Rd. More recently, the minimax rates of convergence of manifold estimation
for the Hausdorff metric, which is particularly relevant for topological inference, has been studied in
Genovese et al. (2012). There is also a large literature about level sets estimation in various metrics
(see for instance Polonik, 1995; Tsybakov et al., 1997; Cadre, 2006) and more particularly for the
Hausdorff metric in Chen et al. (2015). All these works about support and level sets estimation shine
light on the statistical analysis of topological inference procedures.

The main goals of a statistical approach to topological data analysis can be summarized as the
following list of problems:

Topic 1: proving consistency and studying the convergence rates of TDA methods.

Topic 2: providing confidence regions for topological features and discussing the significance of the
estimated topological quantities.

Topic 3: selecting relevant scales at which the topological phenomenon should be considered, as a
function of observed data.

Topic 4: dealing with outliers and providing robust methods for TDA.

The following chapters in this part of the thesis present our contributions to this statistical approach
to TDA. The immediately following chapter gives a model selection method for automatically selecting
a simplicial complex in a given filtration; this corresponds to Topic 3. Chapter 3 is about statistical
methods for the estimation of persistence diagrams; the contributions of this chapter provide some
answers to Topics 1 and 2. Chapter 4 is on the statistical analysis of a robust method for TDA based
on the distance to measure. The contributions of this chapter correspond to Topics 1, 2 and 4.

6In particular for persistent homology, see for instance Fasy et al. (2014)
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Chapter 2

Model selection for simplicial
approximation

Given a point cloud Xn and a filtration of simplicial complexes pCαqαPA, choosing a convenient scale
parameter for topological inference or for reconstruction is not obvious. In this chapter, we address
the problem of selecting a "convenient" simplicial complex as a model selection problem, as proposed
in our paper Caillerie and Michel (2011). Our method relies on the theory of non-asymptotic model
selection by penalization.

In this chapter, for q P N˚, the space Rq is equipped with the following normalized scalar product :

@u, v P Rq, xu, vyrqs :“
1

q

q
ÿ

i“1

uivi , (2.1)

and the associated norm is denoted } ¨ }rqs.

2.1 Geometric models

In the standard setting of topological inference in Rd, an unknown geometric object X embedded in
Rd is approximated from a point cloud Xn which points are observed in the neighborhood of X. We
then assume that the observed points X1, . . . , Xn satisfy

@i “ 1, . . . , n, Xi “ x̄i ` σξi with x̄i P X, (2.2)

where the original points x̄i are unknown and the random variables ξi are independent standard
Gaussian vectors of Rd and σ is the noise level. Let X “ pXt

1, . . . , X
t
nq
t be the vector of length q “ nd

containing all the observations Xi of the point cloud Xn. We also define x̄ and ξ in the same way. We
consider the next equivalent statement of (2.2) in the space Rnd:

X “ x̄` σξ with x̄ P Xnd, (2.3)

where ξ is a standard Gaussian vector of Rnd.
In this work, we consider the geometric realization of a simplicial complex: by simplicial complexes

we actually mean the support of the complexes by abuse of definition. For a given simplicial complex
C, the best approximating point of x̄ belonging to C minimizes the quantity t ÞÑ }t´ x̄}rnds. The least
square estimator (LSE) of x̄ associated to the complex C is then defined by

x̂ :“ argmintPCn}X´ t}2rnds, (2.4)

where Cn denotes the Cartesian product of C. For each i “ 1, . . . , n, let x̂i be the closest point of Xi

belonging to C; then x̂ “ px̂t1, . . . , x̂
t
nq
t.
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2.2 Selection of a simplicial complex in the filtration

Roughly speaking, a basic complex with only a few simplices will badly approximate X and the same
is true for x̄, whereas a complex composed of too many simplices will tend to overfit the data. This
fact corresponds in statistics to the well known bias-variance trade off and it can be figured out by
model selection methods.

Let Px̄ be the distribution of X in (2.3) and let pCαqαPA be a filtration of simplicial complexes. We
denote by pCα :“ CnαqαPA the countable collection of Cartesian products of simplicial complexes and
by x̂α the LSE estimator corresponding to Cα, as defined in (2.4). The l2-risk of x̂α is defined by

Rpx̄, αq “ Ex̄

´

}x̄´ x̂α}|
2
rnds

¯

,

where Ex̄ is the expectation relative to Px̄. Ideally, we would like to choose the model αpx̄q minimizing
the risk: αpx̄q “ argminαPARpx̄, αq. The model αpx̄q and the quantity x̂αpx̄q, which is called oracle, are
both unknown in practice but it is considered as a benchmark for theory. One popular method to select
an estimator in a given family is penalization. In our context, this procedure consists of considering
some proper penalty function pen : α P A ÞÑ penpαq P R` and of selecting α̂ minimizing the associated
l2 penalized criterion

critpαq “ }X´ x̂α}
2
rnds ` penpαq. (2.5)

The resulting selected estimator is denoted x̂α̂. Obviously, the main difficulty of this approach is to
choose a convenient penalty in order to select an estimator close to the oracle. For instance, the well
known AIC penalty is 2dασ̂

2{n where σ̂2 is an estimator of the noise variance and dα the "number of
parameters" estimated by x̂α̂. There is no obvious "number of parameters" associated to an estimator
x̂C . The classical methods of penalization cannot be easily applied in our context.

A exhaustive theory of penalization with a non-asymptotic approach has been developed in the
nineties, with the works of Birgé and Massart among others. This approach to model selection provides
a penalty function leading to a oracle inequality for the penalized estimator. In Birgé and Massart
(2001), such a non-asymptotic model selection result is obtained for collections of linear Gaussian
models, namely if the Cα’s were linear subspaces. For the case of nonlinear Gaussian models, Massart
(2007) shows that efficient penalties can still be defined by using the metric entropy (Section 4.4 in in
this book). We follow this approach for selecting simplicial complexes.

For a k-simplex s in Rd, let ∆s be the diameter of the smallest enclosing ball of s for the normalized
norm (2.1) in Rd. A simplicial complex is said to be k-homogeneous if each one of its simplices is either
a k-simplex, or the face of a k-simplex of C. Then, for a k-homogeneous simplicial complex C in Rd,
let |C|k :“ p

ř

sPC` ∆k
sq

1{k and δC :“ infsPC` ∆s where C` is the subset of simplices of C of maximal
dimension k.

Let X be the observation vector with the distribution defined by (2.3). Let pCαqαPA be a given
collection of k-homogeneous simplicial complexes in Rd and for each α P A let x̂α be the LSE corre-
sponding to Cα “ Cnα. Assume that there exist some weights wα such that

ř

αPA e
´wα “ Σ ă 8.

Theorem 2. [Caillerie and Michel 2011] Under the previous hypotheses, also suppose that for all α P A,

σ ď δCα

c

d

k

«

4κ

˜

d

ln
4|Cα|k
δCα

`
?
π

¸ff´1

. (2.6)

There exist some absolute constants c1 and c2 such that for all η ą 1, if

penpαq ě η σ2

˜

c1
k

d

«

ln
|Cα|k

?
d

σ
?
k

` c2

ff

` 4
wα
nd

¸

, (2.7)

then, almost surely, there exists a minimizer α̂ of the penalized criterion (2.5) and the penalized esti-
mator x̂α̂ satisfies the following risk bound

Ex̄}x̂α̂ ´ x̄}2rnds ď cη

„

inf
αPA

 

dpx̄, Cnαq2 ` penpαq
(

`
σ2

nd
pΣ` 1q



(2.8)

where cη depends only on η and dpx̄, Cnαq :“ infyPCnα }x̄´ y}rnds.
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Figure 2.1: Landmarks in red and observed points in blue (top left) and selected α-complex (bottom
left) for the seismic data. Selected α-complex for the Tangle Cube from noisy observations (right).

Condition (2.6) means that the complexes in the collection should not contain any k-simplexes with
a diameter of the order of the noise level σ. This is natural since it would not be relevant to fit some
simplices of this small scale on the observed data. This also means that the landmarks used to define
the complexes should not be chosen too close to each other. The constant κ in the upper bound is an
absolute constant which comes from Theorem 3.18 in Massart (2007).

The shape of the penalty function given by (2.7) is quite different than penalty shapes used in
previous model selection works in the spirit of the results initiated by Birgé and Massart. The relevant
term in the penalty bound (2.7) is the "size measurement" ln |Cα|k of the complex. The penalty also
depends on the weights wα. By analogy with the case of linear models (see Massart, 2007, p.91), we
can choose weights such that wα “ L ln |Cα|k with

ř

αPA
1

|Cα|Lk
“ Σ ă 8, where L ą 0. The lower

bound (2.7) is then proportional to ln |Cα|k.
Note that bounds have no interest for the practice since they are surely far from being optimal. This

theorem has to be considered from a qualitative point of view: the main contribution here is giving the
penalty shape. This penalty shape does not directly depend on the geometric and topological properties
of the complexes, but it is actually natural since the penalty is defined via the metric complexity of
the simplicial complexes. However the method provides a "convenient scale" at which the geometric
features have to be studied.

2.3 Applications

In practice, we consider α-complexes filtrations and we use the slope heuristics method presented in
Chapter 6 to calibrate the penalty given in Theorem 2. In the particular case of graphs (k “ 1),
the term ln |Cα|k exactly corresponds to the logarithm of the graph length, which is easy to compute.
Various applications are proposed in Caillerie and Michel (2011). Figure 2.1 illustrates two applications
of the method: one on a seismic dataset and one for the reconstruction on the Tangle Cube.

We also apply the method for spectral clustering, a popular clustering method based on the spectral
decomposition of a matrix associated to a similarity graph (see for instance von Luxburg, 2007). The
algorithm requires the choice of a similarity function, and a type of graph to define a similarity graph.
A reasonable candidate for the similarity function is spx, yq “ expp´}x´ y}2{p2σ2q. As to the graph,
the k-nearest neighbor graph and the ε-neighborhood graph are mostly used in practice. However, as
explained in von Luxburg (2007), choosing ε or k is a difficult question. As far as we known, there
is no completely data-driven method to do this choice and no theoretical results is available to help
the user. Furthermore, this choice has a deep impact on the clustering, as illustrated by the example
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Figure 2.2: Data set (left) and 200 landmarks points (right).
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Figure 2.3: Classical spectral clustering based on a k-nearest neighbor with k “ 25 (left) and k “ 30
(right) : the clustering depends on k.

-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15

Figure 2.4: Spectral clustering based on the graph selection for the initial data points (left) and the
landmark points (right). The labels exactly corresponds to the expected clustering.
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below (see Fig. 2.2 and 2.3). To answer this problem, we select a graph on the data according to our
method and next we proceed the spectral clustering method with the selected graph, see Fig. 2.4.

2.4 Discussion and directions for future research

Selection of heterogeneous simplicial complexes.

This model selection method does not prevent us to deal with heterogeneous simplicial complexes. The
problem is that no explicit shape for the penalty can be proposed in the heterogeneous case because
the equation involved in the penalty definition is much more complicated than in the homogeneous
case. This difficult and interesting question should be tackled in future works.

About the landmarks.

In practice, the hypotheses of Theorem 2 are not completely satisfied since the computed complexes
necessary depend on the observed data and thus are "not fixed" as in the theorem statement. Our
theoretical result can be considered as conditional to the landmark choice. Giving some mathematical
results for the "random models" we use would be much more difficult among other things because the
distribution of the landmarks cannot be easily specified.

Data driven topological inference.

Our method is a completely data driven model selection method for approximating a shape for the
`2 norm. By contrast, it does not directly answer to the problem of selecting a convenient scale in a
filtration for topological inference. One first direction of research would be to study the performance of
our method on topological inference problems. It was noticed in Chapter 1 that topological inference
can be derived from proximity for the sup norm metric. We intend to adapt Lepski’s methods for
selecting a convenient scale in the filtration for the sup-nom metric.

Regarding the problem of estimating the homology of an underlying object, it must be noted that
it is still not known how to build a reconstruction having the correct homology groups, in a data driven
way. Consistency results have been proved by Niyogi et al. (2008) and more recently by Bobrowski
et al. (2014), but these results are asymptotical. Consequently, the tuning of the scale parameters (or
the bandwidth of the kernel estimators) proposed in these methods have no reason to be optimal in
a non asymptotical point of view. Moreover they depend on geometric quantities which are unknown
in practice. Finally, it is still unknown how to choose efficiently the scale parameters for a given
point cloud of finite size. We would like to revisit the works of Niyogi et al. (2008) and Bobrowski
et al. (2014) with model selection approaches in order to obtain a more data driven estimation method
of the topology. The reach being a keystone quantity for all these methods, we currently study the
estimation of this quantity from a statistical point, in a joint work in progress with F. Chazal, J. Kim,
L. Wasserman and A. Rinaldo.

An alternative line of research about data driven topological inference would be to revisit the
reconstructions results of Chazal et al. (2009c) with a statistical point of view. In this paper, a critical
function is introduced which describes the regularity of the distance function dX and some insights
are also proposed on how to select the scale parameter in function of the critical function of the
sample. Some stability results are also proven for the critical function. It would be interesting to
study the convergence of the "empirical critical function", that is the critical function for Xn and to
provide confidence regions for this last. This would open the door to a more "data driven" topological
inference method, with statistical guarantees.

In the next chapter, we study the statistical aspects of persistent homology, an alternative approach
to topological inference which consists in considering the complete filtration of simplicial complexes
instead of considering only one particular scale.
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Chapter 3

A statistical approach to persistent
homology on metric spaces

In this chapter, we study the statistical aspects of persistent homology, one of the most popular approach
in topological data analysis. We saw in the previous chapters that inferring the exact topology of an
unknown shape, or at least of its small of sets, require some geometric regularity assumptions on the
shape which can be hardly checked in practice. We also noticed in the discussion section at the end
of the previous chapter that, even if the shape is smooth, selecting a convenient scale (in the filtration
of simplicial complexes) for inferring the homology from a given point cloud, is a tricky problem. On
the contrary, persistent homology provides multiscale topological information and it is not restricted
to particular smooth geometric objects ; it can be actually used for any compact metric space.

Generally speaking, persistent homology comes with a theory (Edelsbrunner et al., 2002; Zomoro-
dian and Carlsson, 2005; Edelsbrunner and Harer, 2010; Chazal et al., 2012) and efficient algorithms
to encode the evolution of the homology of families of nested topological spaces indexed by a set of real
numbers. In most cases it is computed for a filtered simplicial complex built on top of the available
data, see Fig. 3.1 for an illustration. The obtained multiscale topological information is then repre-
sented in a simple way as a barcode, a persistence diagram (see Fig. 3.2) or a persistence landscape
(see Fig. 3.3). These "topological signatures" are then used to exhibit and compare the topological
structure underlying the data. Persistent homology has found applications in many fields, including
neuroscience (Singh et al., 2008), bioinformatics (Kasson et al., 2007), shape classification (Chazal
et al., 2009a), clustering (Chazal et al., 2013) and sensor networks (De Silva and Ghrist, 2007).

Several recent attempts have been made, with completely different approaches, to study persistence
diagrams from a statistical point of view. One of the first statistical results about persistent homology
has been given in a parametric setting in Bubenik and Kim (2007). They show that for data sam-
pled on an hypersphere according to a von-Mises Fisher distribution (among other distributions), the
persistence diagrams of the density can be estimated with the parametric rate n´1{2. The approach
of Mileyko et al. (2011) is completely different, it consists in studying probability measures on the
space of persistence diagrams. Bubenik (2015) introduces a functional representation of persistence
diagrams, the so-called persistence landscapes, allowing means and variance of persistence diagrams

Figure 3.1: A classical pipeline for persistence in TDA.
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connected component
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birth

death

Figure 3.2: Left: an α-complex filtration, the sublevelset filtration of the distance function, and their
common persistence barcode. Right: the corresponding persistence diagram.

to be defined, we will follow this approach in Section 3.3.
After recalling the main concepts about persistent homology, we present in this chapter the results

of our papers Chazal et al. (2014b) and Chazal et al. (2014c) about rates of convergence of persistence
diagram estimation. The third section is about the subsampling methods for persistent homology
inference of our paper Chazal et al. (2015a).

3.1 Persistence diagrams and persistence landscapes

Filtrations on metric spaces. The simplicial complexes we consider in this chapter are built on top
of metric spaces. As noticed previously in the section 1.2, Čech filtrations and Vietoris-Rips filtrations
can be defined in metric spaces. Those filtrations provide a convenient way to study the evolution of
the topology of the union of growing balls or the sublevel sets of the distance to a compact, see Fig. 3.2.
In the following, the notation FiltpXq :“ pFiltαpXqqαPA denotes one of these filtrations on a compact
set X.

Persistent homology. An extensive presentation of persistence diagrams is available in Chazal
et al. (2012). We recall a few definitions and results needed for this chapter and we give the intuition
behind persistence. Given a filtration, the topology of FiltαpXq changes as α increases: new connected
components can appear, existing connected components can merge, cycles and cavities can appear or
be filled, etc. Persistent homology tracks these changes, identifies features and associates an interval
or lifetime (from αbirth to αdeath) to them. For instance, a connected component is a feature that
is born at the smallest α such that the component is present in FiltαpXq, and dies when it merges
with an older connected component. Intuitively, the longer a feature persists, the more relevant it
is. Given a filtration as above, we can compute the Z2-homology and we obtain the homology groups
HpFiltαpXq at each scale. These groups are also vector spaces pHpFiltαpXqqqαPA and the inclusions
FiltαpXq Ď FiltβpXq induce linear maps HpFiltαpXqq Ñ HpFiltβpXqq. In many cases, this sequence can
be decomposed as a direct sum of intervals, where an interval is a sequence of the form

0 Ñ . . .Ñ 0 Ñ Z2 Ñ . . .Ñ Z2 Ñ 0 Ñ . . .Ñ 0

(the linear maps Z2 Ñ Z2 are all the identity). These intervals can be interpreted as features of
the (filtered) complex, such as a connected component or a loop, that appear at parameter αbirth
in the filtration and disappear at parameter αdeath. An interval is determined uniquely by these two
parameters. A feature, or more precisely its lifetime, can be represented as a segment whose extremities
have abscissae αbirth and αdeath; the set of these segments is called the barcode of FiltpXq. An interval
can also be represented as a point in the plane with coordinates pαbirth, αdeathq, where the x-coordinate
indicates the birth time and the y-coordinate the death time (see Fig. 3.2).
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Figure 3.3: We use the rotated axes to represent a persistence diagram Dgm. A feature pαbirth, αdeathq P

Dgm is represented by the point pαbirth`αdeath
2 , αdeath´αbirth

2 q (pink). In words, the x-coordinate is the
average parameter value over which the feature exists, and the y-coordinate is the half-life of the
feature. The cyan curve is the landscape λp1, ¨q.

Persistence diagrams. The set of points pαbirth, αdeathq representing the intervals is called the
persistence diagram and is denoted DgmpFiltpXqq in the following, see the right picture of Figure 3.2.
Note that the diagram is entirely contained in the half-plane above the diagonal ∆ defined by y “ x,
since death always occurs after birth. Chazal et al. (2012) shows that this diagram is still well-defined
under very weak hypotheses, and in particular DgmpFiltpXqq is well-defined for any compact metric
space X (Chazal et al., 2014d). For technical reasons, the points of the diagonal ∆ are considered as
part of every persistence diagram, with infinite multiplicity. The most persistent features (supposedly
the most important) are those represented by the points furthest from the diagonal in the diagram,
whereas points close to the diagonal can be interpreted as (topological) noise.

Bottleneck distance. The space of persistence diagrams is endowed with a metric called the bot-
tleneck distance db. Given two persistence diagrams, it is defined as the infimum, over all perfect
matchings of their points, of the largest L8-distance between two matched points, see Fig. 3.4. The
presence of the diagonal in all diagrams means we can consider partial matchings of the off-diagonal
points, and the remaining points are matched to the diagonal. With more details, given two diagrams
Dgm1 and Dgm2, we can define a matching m as a subset of Dgm1ˆDgm2 such that every point of
Dgm1 z∆ and Dgm2 z∆ appears exactly once in m. The bottleneck distance is then:

dbpDgm1,Dgm2q “ inf
matching m

max
pp,qqPm

||q ´ p||8.

Note that points close to the diagonal ∆ are easily matched to the diagonal, which fits with their
interpretation as irrelevant noise.

Persistence landscapes. The persistence landscape, introduced in Bubenik (2015), is a collection
of continuous, piecewise linear functions λ : Z` ˆ RÑ R that summarizes a persistence diagram Dgm,
see Fig. 3.3. To define the landscape, consider the set of functions created by tenting each point
p “ px, yq “

`

αbirth`αdeath
2 , αdeath´αbirth

2

˘

representing a birth-death pair pαbirth, αdeathq P Dgm as
follows:

Λpptq “

$

’

&

’

%

t´ x` y t P rx´ y, xs

x` y ´ t t P px, x` ys

0 otherwise
“

$

’

&

’

%

t´ αbirth t P rαbirth,
αbirth`αdeath

2 s

αdeath ´ t t P pαbirth`αdeath
2 , αdeaths

0 otherwise.

We obtain an arrangement of piecewise linear curves by overlaying the graphs of the functions tΛpup.
The persistence landscape of Dgm is a summary of this arrangement. To avoid minor technical difficul-
ties, we restrict our attention to persistence landscapes for metric spaces X such that pαbirth, αdeathq P

r0, T s ˆ r0, T s for all pαbirth, αdeathq P DgmpFiltpXqq, for some fixed T ą 01. Formally, the persistence
landscape of DgmpFiltpXqq is the collection of functions

λDgmpFiltpXqqpk, tq “ kmax
p

Λpptq, t P r0, T s, k P N, (3.1)

1The point p0,8q, from zero persistence, is also removed.
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Figure 3.4: Two diagrams at bottleneck distance ε.

where kmax is the kth largest value in the set; in particular, 1max is the usual maximum function. We
set λDgmpFiltpXqqpk, tq “ 0 if the set tΛpptqup contains less than k points. For simplicity of exposition,
we use the notation λX to denote the landscape of DgmpFiltpXqq, although the construction depends
on the chosen filtration.

Stability. Two compact metric spaces pX, ρq and pX̃, ρ̃q are isometric if there exists a bijection Φ :
XÑ X̃ that preserves distances. One way to compare two metric spaces is to measure how far these two
metric spaces are from being isometric. The corresponding distance is called the Gromov-Hausdorff
distance dGH (Burago et al., 2001). Intuitively, it is the infimum of their Hausdorff distance over
all possible isometric embeddings of these two spaces into a common metric space. A fundamental
property of persistence diagrams, proven in Chazal et al. (2012), is their stability with respect to the
Gromov-Hausdorff distance, one has

db

´

DgmpFiltpXqq,DgmpFiltpX̃qq
¯

ď 2 dGH

´

X, X̃
¯

. (3.2)

Moreover, if X and X̃ are embedded in the same space pM, ρq then (3.2) holds for the Hausdorff distance
dH in place of dGH. From the definition of persistence landscape, we immediately observe that λpk, ¨q
is one-Lipschitz and thus a similar stability is satisfied for the landscapes.

Lemma 1. [Bubenik 2015] Let X and X̃ be two compact sets. For any t P R and any k P N, we have:
(i) λXpk, tq ě λXpk ` 1, tq ě 0.
(ii) |λXpk, tq ´ λX̃pk, tq| ď dbpDgmpFiltpXqq,DgmpFiltpX̃qqq.

3.2 Estimation of persistent diagrams on metric spaces

Assume that we observe n points X1 . . . , Xn in a metric space pM, ρq drawn i.i.d. from some unknown
measure µ whose support is a compact set denoted Xµ. The Gromov-Hausdorff distance allows us to
compare Xµ with compact metric spaces not necessarily embedded in M. In the following, an estimator
pX of Xµ is a function of X1 . . . , Xn that takes values in the set of compact metric spaces and which is
measurable for the Borel algebra induced by dGH.

Let FiltpXµq and FiltppXq be two filtrations defined on Xµ and pX. Starting from (3.2) our strategy
consists in estimating the support Xµ with respect to the dGH distance. Note that this general strategy
of estimating Xµ in K is not only of theoretical interest. Indeed, in some cases the space M is unknown
and the observations X1 . . . , Xn are just known through their pairwise distances ρpXi, Xjq, i, j “
1, ¨ ¨ ¨ , n. The use of the Gromov-Hausdorff distance then allows us to consider this set of observations
as an abstract metric space of cardinality n, independently of the way it is embedded in M. This
general framework includes the more standard approach consisting in estimating the support with
respect to the Hausdorff distance by restraining the values of pX to the compact sets included in M.
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Let Xn :“ tX1, . . . , Xnu be a set of independent observations endowed with the restriction of the
distance ρ to this set. This finite metric space is a natural estimator of the support Xµ. In several
contexts discussed in the following, Xn shows optimal rates of convergence to Xµ with respect to the
Hausdorff distance.

The rate of convergence of Xn in Gromov-Hausdorff distance is obtained under the pa, bq-standard
assumption: for some constants a, b ą 0: for any x P Xµ and any r ą 0,

µpBpx, rqq ě minparb, 1q. (3.3)

This assumption has been widely used in the literature of set estimation under Hausdorff distance
(Cuevas and Rodríguez-Casal, 2004; Singh et al., 2009).

Theorem 3. [Chazal et al. 2014b] Assume that the probability measure µ on M satisfies the pa, bq-
standard assumption, then for any ε ą 0:

P pdb pDgmpFiltpXµqq,DgmpFiltpXnqqq ą εq ď min

ˆ

2b

aεb
expp´naεbq, 1

˙

. (3.4)

Moreover,

lim sup
nÑ8

ˆ

n

log n

˙1{b

dbpDgmpFiltpXµqq,DgmpFiltpXnqqq ď C1

almost surely, and

P

˜

db pDgmpFiltpXµqq,DgmpFiltpXnqqqďC2

ˆ

log n

n

˙1{b
¸

converges to 1 when nÑ8, where C1 and C2 only depend on a and b.

Let P “ Ppa, b,Mq be the set of all the probability measures on the metric space pM, ρq satisfying
the pa, bq-standard assumption on M:

P :“
!

µ on M | Xµ is compact and @x P Xµ,@r ą 0, µ pBpx, rqq ě min
´

1, arb
¯)

. (3.5)

The next theorem gives upper and lower bounds for the rate of convergence of persistence diagrams.
The upper bound is a consequence of Theorem 3, while the lower bound is established using Le Cam’s
lemma.

Theorem 4. [Chazal et al. 2014b] For some positive constants a and b,

sup
µPP

E rdbpDgmpFiltpXµqq,DgmpFiltpXnqqqs ď C

ˆ

log n

n

˙1{b

where the constant C only depends on a and b (not on M). Assume moreover that there exists a non
isolated point x in M and consider any sequence pxnq P pMztxuqN such that ρpx, xnq ď panq´1{b. Then
for any estimator zDgmn of DgmpFiltpXµqq:

lim inf
nÑ8

ρpx, xnq
´1 sup

µPP
E
”

dbpDgmpFiltpXµqq,zDgmnq

ı

ě C 1

where C 1 is an absolute constant.

Consequently, the estimator DgmpFiltpXnqq is minimax optimal on the space Ppa, b,Mq up to a
logarithmic term as soon as we can find a non-isolated point in M and a sequence pxnq in M such
that ρpxn, xq „ panq´1{b. This is obviously the case for the Euclidean space Rd. One classical method
to obtain tight lower bounds with sup norm metrics is applying a Fano’s strategy based on several
hypotheses (see for instance Tsybakov, 2009, Chapter 2). Applying this method is more difficult than
it seems in our context. Indeed, the bottleneck distance makes tricky the construction of multiple
hypotheses. However, in specific cases, we can obtain the matching lower bound with a more direct
proof.
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Theorem 5. [Chazal et al. 2014b] Consider p1
2 , 1q-standard measures on the unit segment r0, 1s. For

any estimator zDgmn of DgmpFiltpXµqq:

lim inf
nÑ8

sup
µPPp 1

2
,1,r0,1sq

n

log n
E
”

dbpDgmpFiltpXµqq,zDgmnq

ı

ě C.

where C is an absolute constant.

It should be straightforward to extend this to measures on the cube r0, 1sb, as long as b is an integer,
with a lower-bound of Cbp logn

n q1{b. Note that this bound applies to the homology of dimension b. It is
possible that lower-dimensional homology may be easier to estimate.

Confidence regions. Theorem 3 can also be used to find confidence sets for persistence diagrams.
Such confidence sets depend on a and b which may be unknown and whose estimation is a difficult
problem. Alternative solutions have been proposed in Fasy et al. (2014) using subsampling methods and
kernel estimators among other approaches, in the specific context of smooth manifolds of an Euclidean
space. Note that both Fasy et al. (2014) and our work start from the observation that persistence
diagram inference is strongly connected to the better known problem of support estimation.

Persistence diagram estimation for nonsingular measures in Rk. Assume that µ is a mea-
sure on Rk with density f with respect to Lebesgue. Following Singh et al. (2009), assume (among
other assumptions) that in the neighborhood of the boundary BXµ of Xµ, fpxq ě C dpx, BXµqα. We
prove that DgmpFiltpXnqq converges in expectation to DgmpFiltpXµqq with a rate upper bounded by
plog n{nq1{pk`αq. Moreover, it can be shown that this rate is minimax over a convenient family of
densities with respect to the Lebesgue measure on Rk.

Persistence diagram estimation for singular measures in RD. Let µ be a measure supported
on a smooth submanifold of RD with positive reach. Assume that µ has a density with respect to the
k-dimensional volume measure on Xµ, which is lower and upper bounded on Xµ. From Genovese et al.
(2012), we obtain that DgmpFiltpXnqq converges in expectation to DgmpFiltpXµqq with a rate upper
bounded by p logn

n q1{k both for support and persistence diagram estimation. Nevertheless, this rate is
not minimax optimal for support estimation, as shown by Theorem 2 in Genovese et al. (2012). The
correct minimax rate is actually n´2{k for both estimation problems.

Additive noise. Consider the convolution model where the observations satisfy Yi “ Xi ` εi where
X1, . . . Xn are sampled according to a measure µ as in the previous paragraph and where ε1, . . . , εn
are i.i.d. standard Gaussian random variables. We deduce from the results of Genovese et al. (2012)
that the minimax convergence rates for the persistence diagram estimation in this context is upper
bounded by some rate of the order of plog nq´1{2. However, giving a tight lower bound for this problem
appears to be more difficult than for the support estimation problem.

Persistence landscapes. According to the stability results given in Lemma 1, upper bounds on
the rates of convergence of the persistence landscapes directly derive from our results. A complete
minimax description of the problem would also require to prove the corresponding lower bounds.

3.3 Subsampling methods for persistent homology

The time and space complexity of persistent homology algorithms is one of the main obstacles in
applying TDA techniques to high-dimensional problems. To overcome the problem of computational
costs, we propose in Chazal et al. (2015a) the following strategy: given a large point cloud, take several
subsamples, compute the landscape for each subsample, and then combine the information. Indeed,
contrary to persistence diagrams, persistence landscape can be averaged in a straightforward way.

As in the previous section, a probability measure µ is defined on a metric space pM, ρq and the
support of µ is a compact set Xµ. In all the section it is assumed that the diameter of M is finite and
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upper bounded by T
2 , where T is the same constant as in the definition of persistence landscapes in

Section 3.1. For ease of exposition, we focus on the case k “ 1, and set λptq “ λp1, tq. However, the
results we present in this section hold for k ą 1.

3.3.1 The multiple samples approach

For any positive integer m, let X “ tx1, ¨ ¨ ¨ , xmu Ă Xµ be a sample of m points from µ. The
corresponding persistence landscape is λX and we denote by Ψm

µ the measure induced by µbm on the
space of persistence landscapes. Note that the persistence landscape λX can be seen as a single draw
from the measure Ψm

µ . We consider the point-wise expectations of the (random) persistence landscape
under this measure: EΨmµ rλXptqs, t P r0, T s. The average landscape EΨmµ rλXs has a natural empirical
counterpart, which can be used as its unbiased estimator. Let Sm1 , . . . , Sm` be ` independent samples
of size m from µbm. We define the empirical average landscape as

λm` ptq “
1

b

b
ÿ

i“1

λSmi ptq, for all t P r0, T s, (3.6)

and propose to use λm` to estimate λXµ .
In addition to the average, we also consider using the closest sample to Xµ in Hausdorff distance.

The closest sample method consists in choosing a sample of m points of Xµ, as close as possible to Xµ,
and then use this sample to build a landscape that approximates λXµ . Let Sm1 , . . . , Sm` be ` independent
samples of size m from µbm. The closest sample is

pCm` “ arg min
SPtSm1 ,...,S

m
` u

dHpS,Xµq (3.7)

and the corresponding landscape function is λ̂m` “ λ
pCm`
. Of course, the method requires the support of

µ to be a known quantity.
Computing the persistent homology of Xn is Opexppnqq, whereas computing the average landscape

is Opb exppmqq and the persistent homology of the closest sample is Opbmn` exppmqq.

Remark 1. The general framework described above is valid for the case in which µ is a discrete
measure with support XN “ tx1, . . . , xNu Ă RD. This framework can be very common in practice,
when a continuous (but unknown measure) is approximated by a discrete uniform measure µN on XN .

3.3.2 Stability of the average landscape

We show below that the average landscape EΨmµ rλXs is an interesting quantity on its own, since it
carries some stable topological information about the underlying measure µ, from which the data
are generated. In particular, we will compare the average landscapes corresponding to two measures
that are close to each other in the Wasserstein metric (see for instance Rachev and Rüschendorf, 1998;
Villani, 2008).

Definition 7. The pth Wasserstein distance between two measures µ, ν defined on pM, ρq is

Wρ,ppµ, νq “

ˆ

inf
Π

ż

MˆM
rρpx, yqspdΠpx, yq

˙
1
p

,

where the infimum is taken over all measures on MˆM with marginals µ and ν.

First, we show that the average behavior of the landscapes of sets of m points sampled according
to any measure µ is stable with respect to the Wasserstein distance.

Theorem 6. [Chazal et al. 2015a] Let X „ µbm and Y „ νbm, where µ and ν are two probability
measures on M. For any p ě 1 we have

›

›

›
EΨmµ rλXs ´ EΨmν rλY s

›

›

›

8
ď 2m

1
pWρ,ppµ, νq.
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Remark 2. For measures that are not defined on the same metric space, the inequality of Theorem 6
can be extended to Gromov-Wasserstein metric:

›

›

›
EΨmµ rλXs ´ EΨmν rλY s

›

›

›

8
ď 2m

1
pGWρ,ppµ, νq.

The result of Theorem 6 is useful for two reasons. First, it tells us that for a fixed m, the expected
"topological behavior" of a set of m points carries some stable information about the underlying
measure from which the data are generated. Second, it provides a lower bound for the Wasserstein
distance between two measures, based on the topological signature of samples of m points.

The dependence on m of the upper bound of Theorem 6 seems to be necessary in this setting:
intuitively, when m grows, the samples of m points converge to the support of µ and ν w.r.t. the
Hausdorff distance. Therefore the expected landscapes should converge to the landscapes of the support
of the measures. But, in general, two measures that are close in the Wasserstein metric can have support
that have very different and unrelated topologies. Indeed, a similar dependence was also obtained in
Blumberg et al. (2014) when considering the Gromov-Prohorov metric.

Note that in Theorem 6 we do not make any assumption on the measures µ and ν. If we assume
that they both µ and ν satisfy the pa, b, r0q-standard assumption (defined below) we can provide a
different bound on the difference of the expected landscapes, based on the Hausdorff distance between
the support of the two measures. We say that µ satisfies the pa, b, r0q-standard assumption if there
exist positive constants a, b and r0 ě 0 such that

@r ą r0, @x P Xµ , µpBpx, rqq ě 1^ arb. (3.8)

The case r0 “ 0 corresponds to the pa, bq-standard assumption (3.3). We use the generalized version
with r0 ą 0 to take into account the case in which µ is a discrete measure, see Remark 1, in which
case r0 depends on N .

Theorem 7. [Chazal et al. 2015a] Let X „ µbm and Y „ νbm, where µ and ν are two probability
measures on M which both satisfy the pa, b, r0q-standard assumption on their support. Define rm “

2
´

logm
am

¯1{b
. Then

}EΨmµ pλXq ´ EΨmν pλY q}8 ď 2 dHpXµ,Xνq ` 4r0 ` 4rm1pr0,8qprmq ` 4C1pa, bq rm
1

plogmq2
,

where C1pa, bq is a constant depending on a and b.

3.3.3 Risk analysis

We now study the performances of λm` and λ̂m` , as estimators of λXµ . We start by decomposing the
`8-risk of the average landscape as follows. Set λ1 “ λSm1 , with Sm1 a sample of size m from µ. Then,

E
›

›λXµ ´ λ
m
`

›

›

8
ď

›

›λXµ ´ Eλ1

›

›

8
` E

›

›λm` ´ Eλ1

›

›

8
, (3.9)

where the expectation of λm` is w.r.t. pΨm
µ q
bb and the expectation of λ1 is w.r.t. Ψm

µ . For the bias term
›

›λXµ ´ Eλ1

›

›

8
we use the stability property to go back into Rd :

›

›λXµ ´ Eλ1

›

›

8
ď EΨmµ

›

›λXµ ´ λ1

›

›

8
ď 2Eµbm dHpXµ, Xq, (3.10)

where X is a sample of size m from µ. Note that, if calculating dHpXµ, Xq is computationally feasible,
then, in practice, Eµbm dHpXµ, Xq can be approximated by the average of a large number B of values
of dHpXµ, Xq, for B different draws of subsamples X „ µbm. To give an explicit bound on the bias,
we assume that µ satisfies the pa, b, r0q-standard assumption.

Theorem 8. [Chazal et al. 2015a] Let rm “ 2
´

logm
am

¯1{b
. If µ satisfies the pa, b, r0q-standard assump-

tion, then
›

›λXµ ´ Eλ1

›

›

8
ď 2r0 ` 2rm 1pr0,8qprmq ` 2C1pa, bq rm

1

plogmq2
,

where C1pa, bq is a constant that depends on a and b.
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Figure 3.5: Subsampling methods applied to magnetometer data. For ` “ 80 subsamples of size
m “ 200, for each activity, we constructed the landscapes of the closest subsample (left), the average
landscape with 95% confidence band (middle) and the dissimilarity matrix of the pairwise `8 distance
between average landscapes.

The analysis of the variance term can be found in Chazal et al. (2014e), it is of the order of 1{
?
`.

Therefore, if r0 is negligible, we see that ` should be taken of the order of pm{logmq2{b.
We now turn to the closest sample estimator λ̂` and investigate its `8 risk E

”

}λXµ ´ λ̂
m
` }8

ı

, where

the expectation is with respect to pΨm
µ q
b`. As before, our analysis relies on the stability property

E
”

}λXµ ´ λ̂
m
` }8

ı

ď 2E
”

dHpXµ,yCm` q
ı

,

where the second expectation is with respect to pµbmqb`.

Theorem 9. [Chazal et al. 2015a] Let rm “ 2
´

logp2bmq
am

¯
1
b . If µ P PpXq satisfies the pa, b, r0q-standard

assumption, then

E
”

}λXµ ´ λ̂
m
` }8

ı

ď 2r0 ` 2rm1pr0,8qprmq ` 2C2pa, bq rm
1

` r logp2bmqs``1
,

where C2pa, bq is a constant that depends on a and b.

The risk of the closest subsample method can in principle be smaller than the average landscape
method. In particular, if µ is the discrete uniform measure on a point cloud of size N , sampled from
a measure satisfying the pa, b, 0q-standard assumption, then it can be shown that r0 is of the order of
p

logN
N q1{b. When r0 is negligible, the rates of theorems 8 and 9 are comparable, both of the order of

Op logm
m q1{b.

3.4 Experiments

In Chazal et al. (2015a), we apply the method to the problem of distinguishing human activities
performed while wearing inertial and magnetic sensor units. The dataset is publicly available at the
UCI Machine Learning Repository2 and is described in Barshan and Yüksek (2013), where it is used
to classify 19 activities performed by eight people wearing sensor units on the chest, arms, and legs.
For ease of illustration, we report here the results on four activities (walking, stepper, cross trainer,
jumping) performed by a single person. We use the data from the magnetometer of a single sensor
(left leg), which measures the direction of the magnetic field in the space at a frequency of 25Hz.
For each activity there are 7,500 consecutive measurements that we treat as a 3D point cloud in the
Euclidean space. For ` “ 80 times, we subsample m “ 200 points from the point cloud of each activity,
then construct the landscapes of the closest subsamples, the average landscapes (dimension one), and
the dissimilarity matrix based on the `8 distances of the average landscapes, see Fig. 3.5. To the

2 http://archive.ics.uci.edu/ml/datasets/Daily+and+ Sports+Activities
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best of our knowledge, persistent homology has never been used to study data from accelerometers
or magnetometers before. A remarkable advantage is that the methods of persistent homology are
insensitive to the orientation of the input data, as opposed to other methods that require the exact
calibration of the sensor units; see, for example, Altun et al. (2010) and Barshan and Yüksek (2013).

3.5 Discussion and directions for future research

Persistent homology for supervised problems. Persistent homology has been successfully ap-
plied for many real-life problems but as far as we know, it has been essentially used with for exploring
data (Carlsson et al., 2012). In many situations as for the Magnetometer Data of last section, we be-
lieve that the topological information that can be extracted from the point clouds may help to predict
an outcome variable. We are currently working on (large) real life datasets in order to demonstrate
the interest of persistent homology methods for supervised problems.

Persistent homology of the kernel estimator of the density. Persistent homology can be used
to study the homology of the level sets of a given function. For instance, Fasy et al. (2014) study the
super-level sets of a kernel density estimator. This approach is motivated by the fact that, in favorable
cases, some level sets of the density are homotopy equivalent to the support X of the distribution
(without any noise). This implies that we could estimate the homology of X from density estimators.
But as far as we know, the complete risk analysis of the kernel density estimator, when this last is used
to estimate the persistence homology of the support of the distribution, has not been proposed so far.

Tuning parameters for persistent homology. As already noticed in the previous chapter, an un-
solved problem in topological inference is tuning parameters. In the context of the previous paragraph
for instance, choosing the bandwidth is a tricky question. We know from Fasy et al. (2014) that this
choice depends on the geometry (the reach) of the support but of course these quantity are unknown in
practice. Guibas et al. (2013) has suggested tracking the evolution of the persistence of the homological
features as the tuning parameter varies. This idea has been formalized into the the so-called Maximum
Significant Topological Signal Strength in Wasserman (2014) and Chazal et al. (2014a). We intend to
prove that this criterion leads to efficient choice, at least in simple frameworks. We also would like to
apply this idea for the subsampling methods of Section 3.3 in order to select m in an efficient way.
Indeed, we have illustrated with some examples in Chazal et al. (2015a) that the average method is
robust to outliers as long as m is not too large.

Robustness to noise is indeed a serious problem for topological inference. In the next chapter, we
present our contributions on this topic using the distance to measure function, an alternative distance
function having the great advantage of being robust to noise.
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Chapter 4

Robust topological data analysis with the
distance to measure

.

It is well known that TDA methods may fail completely in the presence of outliers. Indeed, adding
even a single outlier to the point cloud can change the distance function dramatically, see Fig. 4.1
for an illustration. To answer this drawback, Chazal et al. (2011b) have introduced an alternative
distance function which is robust to noise, the distance-to-a-measure (DTM). This chapter presents
our contributions on the statistical analysis of the DTM.

Section 4.1 introduces the DTM. Sections 4.2 and 4.3 are about the convergence of the DTM and
also about the bootstrap for the DTM. These results come from our papers Chazal et al. (2014a)
and Chazal et al. (2015b). Section 4.4 is about deconvolution methods under Wasserstein metrics,
a problem which is related to the estimation of the DTM in convolution models. This last section
presents the results of our papers Caillerie et al. (2011); Dedecker and Michel (2013); Dedecker et al.
(2015).

4.1 The distance to measure

Given a probability distribution P in Rd and a real parameter 0 ď u ď 1, Chazal et al. (2011b) have
generalized the notion of distance to the support of P by the function

δP,u : x P Rd ÞÑ inftt ą 0 ; P pBpx, tqq ě uu,

where Bpx, tq is the closed Euclidean ball of center x and radius t. To avoid issues due to discontinuities
of the map P Ñ δP,u, the distance to measure function with parameter m P r0, 1s and power r ě 1 is
defined by

dP,m,rpxq : x P Rd ÞÑ
ˆ

1

m

ż m

0
δrP,upxqdu

˙1{r

. (4.1)

A nice property of the DTM proved in Chazal et al. (2011b) is its stability with respect to pertur-
bations of P in the Wasserstein metric. More precisely, the map P Ñ dP,m,r is m´

1
r -Lipschitz, i.e. if

P and P̃ are two probability distributions on Rd, then

}dP,m,r ´ dP̃ ,m,r}8 ď m´
1
rWrpP, P̃ q (4.2)

where Wr is the Wasserstein distance for the Euclidean metric on Rd, with power r (see Definition 7
in the previous chapter). This property implies that the DTM associated to close distributions in the
Wasserstein metric have close sublevel sets. Moreover, when r “ 2, the function d2

P,m,2 is semiconcave
ensuring strong regularity properties on the geometry of its sublevel sets. Using these properties,
Chazal et al. (2011b) (Section 4) show that, under general assumptions, if P̃ is a probability distribution
approximating P , then the sublevel sets of dP̃ ,m,2 provide a topologically correct approximation of the
support of P .
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Figure 4.1: Top: Cassini curve X, the distance function dX, a typical sublevel set tx : dXpxq ď tu and
the resulting persistence diagram. Bottom: the effect of adding a few outliers. The distance function
and persistence diagram are dramatically different.

The introduction of DTM has motivated further works and applications in various directions such
as topological data analysis (Buchet et al., 2015a), GPS traces analysis (Chazal et al., 2011a), density
estimation (Biau et al., 2011), or clustering (Chazal et al., 2013) just to name a few. Approximations,
generalizations and variants of the DTM have also been considered in (Guibas et al., 2013; Phillips
et al., 2014; Buchet et al., 2015b).

In practice, the measure P is usually only known through a finite set of observations Xn “

tX1, . . . , Xnu sampled from P , raising the question of the approximation of the DTM. A natural
idea to estimate the DTM from Xn is to plug the empirical measure Pn instead of P in the definition
of the DTM. This "plug-in strategy" corresponds to computing the distance to the empirical measure
(DTEM). For m “ k

n , the DTEM satisfies

drPn,k{n,rpxq :“
1

k

k
ÿ

j“1

}x´ Xn}rpjq ,

where }x´Xn}pjq denotes the distance between x and its j-th neighbor in tX1, . . . , Xnu. This quantity
can be easily computed in practice since it only requires the distances between x and the sample points.

Let F´1
x,r be the distribution function of the push forward probability measure of P by the function

}x ´ ¨}r and let Fx,n,r be the empirical distribution function of the observed distances (to the power
r): }x´X1}

r, . . . , }x´Xn}
r. The corresponding quantile functions are denoted F´1

x,r and F´1
x,n,r.

Sections 4.2 and 4.3 study the quantity

∆n,m,rpxq :“ drPn,m,rpxq ´ d
r
P,m,rpxq (4.3)

“
1

m

ż m

0

 

F´1
x,n,rpuq ´ F

´1
x,r puq

(

du. (4.4)

We fix r ě 1 and we henceforth write Fx for Fx,r to facilitate the reading. In the same way we will
use the notation F´1

x , Fx,n, F´1
x,n and ∆P,m since there is no ambiguity on the power term r.
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4.2 Rates of convergence of the DTEM

Upper bounds on the rate of convergence of the DTEM can be deduced from the Wasserstein stability
(4.2) of the DTM together with known results about the convergence of the empirical measure under
Wasserstein metrics: using recent results of Fournier and Guillin (2013) or from Dereich et al. (2013),
we find that E}∆n, k

n
,r}8 À n´1{d. However the Wasserstein stability results are not tight enough to

provide the correct rates of convergence of the DTM. To obtain better upper bounds on the rate of
convergence of the DTEM, we directly control the fluctuations of ∆n, k

n
,r by considering a supremum

over the underlying empirical process.

4.2.1 Local analysis of the DTEM in the bounded case

We first consider the behavior of the distance to the empirical measure when the observationsX1, . . . , Xn

are sampled from a distribution P with compact support in Rd. Let F´1
x be the quantile function of

}x ´ X1}
r for some observation point x P Rd. We introduce the modulus of continuity ω̃x of F´1

x

(possibly infinite) which is defined for any v P p0, 1s by

ω̃xpvq :“ sup
pu,u1qPr0,1s2, u‰u1, }u´u1}ďv

|F´1
x puq ´ F´1

x pu1q|.

In the following we consider a (continuous) upper bounds on the modulus of continuity, that is a non
negative function ωx on p0, 1s such that ωxpvq ě ω̃pvq for any v P p0, 1s. A modulus of continuity being
a non decreasing function, we will assume that such an upper bound ωx is non decreasing on p0, 1s.

Theorem 10. [Chazal et al. 2015b] Let x be a fixed observation point in Rd. Assume that ωx :
p0, 1s Ñ R` is an upper bound on the modulus of continuity of F´1

x . Assume moreover that ωx is an
increasing and continuous function on p0, 1s such that ωxpuq{u is a non increasing function. Then for
any k P t1, . . . , nu:

E
´

|∆n, k
n
pxq|

¯

ď
C
?
k

#

„

F´1
x

ˆ

k

n

˙

´ F´1
x p0q



` ωx

˜?
k

n

¸+

(4.5)

ď
2C
?
k
ωx

ˆ

k

n

˙

, (4.6)

where C is an absolute constant.

This result is derived from deviation bounds we prove in Chazal et al. (2015b). The rate (4.6) can
be rewritten as follows:

E
ˇ

ˇ

ˇ
∆n, k

n
pxq

ˇ

ˇ

ˇ
À
n

k

1
?
n

c

k

n
ωx

ˆ

k

n

˙

, (4.7)

where the term n
k is the renormalization by the mass proportion k

n in the definition of the DTM, the

term 1?
n
corresponds to a classical parametric rate of convergence and the term

b

k
n is obtained thanks

to a local analysis of the empirical process. More precisely, this last term derives from a sharp control
of the variance of a supremum over the uniform empirical process. The term ωx

`

k
n

˘

corresponds to
the statistical complexity of the problem, expressed in term of the regularity of the quantile function
F´1
x .
Theorem 10 can be interpreted with either an asymptotic or a non asymptotic point of view. Taking

a non asymptotic approach, we consider n as fixed. In the most favorable case where ω̃xpuq „ u, we
see in (4.6) that an upper bound of the order of 1

n is reached. This is direct consequence of the local
analysis we use to control the empirical process in the neighborhood of the origin. Assuming that k

n
is very small corresponds to the realistic situation where we use the DTM to clean the support from a
small proportion of outliers.

Now, taking an asymptotic approach, Theorem 10 allows us to consider the asymptotic behavior
of ∆n, k

n
pxq under all possible regimes, that is for all sequences pknqnPN. For instance, with the classical
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approach where kn is such that kn{n “ m for some fixed valuem P p0, 1q, we then obtain the parametric
rate of convergence 1{

?
n. This regime is studied with more details in the following of the chapter.

Another key fact about Theorem 10 is that the upper bound (4.5) depends on the regularity of
F´1
x through the function

Ψx : mÑ
ωxpmq
?
m

.

Moreover, if ωp0`q “ 0, we see that the upper bound (4.5) depends on the regularity of F´1
x only at 0

for n large enough. For instance, if kn is such that kn{n “ m for some fixed value m P p0, 1q such that
F´1
x pmq ą F´1

x p0q, coming back to (4.5), we find that for n large enough:

ωx

ˆ
?
kn
n

˙

“ ωx

ˆ

1
?
n
m

˙

ă F´1
x pmq ´ F´1

x p0q.

In this context, the right hand term of Inequality (4.5) is of the order of
rΨxp

kn
n
q

?
kn

where

rΨxpmq :“
F´1
x pmq ´ F´1

x p0q
?
m

for any m P p0, 1q.

This remark is confirmed by several numeral experiments we propose in Chazal et al. (2015b).

To complete the results of Theorem 10, we give below a partial lower bound. Let ω be a continuous
and increasing function on r0, 1s and let x P Rd. We introduce that class of probability measures:

Pω :“
!

P is a probability measure on Rd such that ωpuq ě ω̃xpuq for any u P p0, 1s
)

.

In the previous definition, the function ω̃ is as before the modulus of continuity of the quantile function
of the distribution of the push-forward measure of P by the function y ÞÑ }y ´ x}r.

Proposition 2. [Chazal et al. 2015b] Assume that there exists P P Pω, c ą 0 and ū P p0, 1q, such that

c
“

F´1
x puq ´ F´1

x p0q
‰

ě ωpuq for any u P p0, ūs. (4.8)

Then, there exits a constant C which only depends on c, such that for any k ď ūn.

sup
PPPω

E
´

|∆n, k
n
,rpxq|

¯

ě inf
d̂npxq

sup
PPPω

E
´ˇ

ˇ

ˇ
d̂rnpxq ´ d

r
P,m,rpxq

ˇ

ˇ

ˇ

¯

ě C
n

k

1

n
ω

ˆ

k ´ 1

n

˙

,

where the infimum is than over all the estimator d̂npxq of dP,m,rpxq defined from a sample X1, . . . , Xn

of distribution P .

This lower bound matches with the upper bound of Theorem 10 when k is very small since it is of
the order of ω

`

k
n

˘

.

To finish this section, we note that the pointwise convergence rates of Theorem 10 can be easily
extended to the sup norm metric over a compact domain D of Rd: in Chazal et al. (2015b) we obtain
for this problem the same rate of convergence up to a log n factor.

4.2.2 Local analysis of the DTEM in the unbounded case

When the support of P is not bounded, the quantile function F´1
x tends to infinity at 1, the modulus

of continuity of F´1
x is not finite and Theorem 10 can not be applied. We now propose a second result

under weaker assumptions on the regularity of F´1
x . It shows that under a weak moment assumption,

the rate of convergence is the same as for the bounded case, up to a term decreasing exponentially fast
to zero.
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Figure 4.2: Left: one situation where the support of P is not a connected set whereas the support of
dFx is (for r “ 1). The quantile function F´1

x is continuous. Right: one situation where the support
of dFx is is not a connected set. The quantile function F´1

x is not continuous.

Theorem 11. [Chazal et al. 2015b] Assume that P has a moment of order r. Let m̄ P p0, 1q and some
observation point x P Rd. Assume that ωx,m̄ is an upper bound of the modulus of continuity of F´1

x on
p0, m̄s: for any u ă u1 in r0, m̄s,

|F´1
x puq ´ F´1

x pu1q| ď ωx,m̄p|u´ u
1|q. (4.9)

Assume that ωx,m̄ is an increasing and continuous function on r0, m̄s such that ωx,m̄puq{u is a non
increasing function. Then

E
ˇ

ˇ

ˇ
∆n, k

n
pxq

ˇ

ˇ

ˇ
ď

C
?
n

„

k

n

´1{2
#

„

F´1
x

ˆ

k

n

˙

´ F´1
x p0q



` ωx,m̄

˜?
k

n

¸+

`Cx,r,m̄
?
k exp

«

´
n2

4k

ˆ

m̄´
k

n

˙2
ff

where C is an absolute constant and Cx,r,m̄ only depends on the quantity E}X ´ x}r and on m̄.

As for the bounded case, if ωp0`q “ 0 and if F´1
x pmq ą F´1

x p0q, then the rate of convergence is
still of the order of

rΨxpmq?
n

. Note that this result is interesting even when the measure P is supported
on a compact set. Indeed, assume that the quantile function F´1

x is not continuous, then ω̃´1
x p0q ą 0.

However, if F´1
x is smooth in the neighborhood of zero, for m̄ small enough the assumption (4.9) may

be satisfied with a function ωx,m̄ which can be very small in the neighborhood of zero. Theorem 11
may provide better bounds in this context than those given by Theorem 10.

4.2.3 About the geometric information carried by the quantile function F´1
x

The upper bounds we obtain directly depend on the regularity of F´1
x . We now give some insights

about how the geometry of the support of the sampling measure in Rd impacts the quantile function
F´1
x . These remarks are adapted from Appendix 7 in Bobkov and Ledoux (2014).
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First, it can be checked that, given the sampling measure P in Rd and an observation point x P Rd,
the modulus of continuity of the quantile function F´1

x satisfies ω̃xpuq ă 8 for any u ď 1 if and only
if P is compactly supported.

Next, the fact that ω̃xp0`q “ 0 is directly related to the connexity of the support of the distribution
dFx. While discontinuity of the distribution function corresponds to atoms, discontinuity points of the
quantile function corresponds to area with empty mass in Rd (see the right picture of Figure 4.2).
Indeed, the fact that ω̃xp0`q “ 0 is equivalent to assuming that the support of dFx is a closed interval
in R` in (see for instance Proposition A.7 in Bobkov and Ledoux, 2014).

In the most favorable situations where the support of P is a connected set, then ω̃xp0`q “ 0 and
the faster ω̃x tends to 0 at 0, the better the rate we obtain. However, for some point x P Rd, it is also
possible for the support of dFx to be an interval even when the support of P is not a connected set of
Rd (see the left picture of Figure 4.2). In the other case, when the support of dFx is not a connected
set, the term ω̃xp0q roughly corresponds to the maximum distance between two consecutive intervals
of the support of dFx (see the right picture of Figure 4.2). Our results can still be applied in these
situations but the upper bounds we obtain in this case are larger because ωxp knq can not be smaller
than ω̃xp0q.

Finally, if P be a probability measure on Rd which is pa, bq standard on its support X (see Sec-
tion 3.2), and if X is a connected set of Rd, then, for any h P p0, 1q we have ω̃xphq ď r

`

h
a

˘1{b
dH ptxu,Xqr´1 .

4.3 Limiting distribution and bootstrap for the DTM

In this section, we continue the study of the convergence of the DTEM by considering the limiting
distribution of the DTM and we show that several bootstrap methods can be applied about the DTM.
We start with the pointwise limit in distribution of the DTEM.

Theorem 12. [Chazal et al. 2014a] Let P be some distribution in Rd. For some fixed x, assume that
Fx is differentiable at F´1

x pmq, for m P p0, 1q, with positive derivative F 1xpF´1
x pmqq. Then

?
n∆n,m

converges in distribution to Np0, σ2
xq, where

σ2
x “

1

m2

ż F´1
x pmq

0

ż F´1
x pmq

0
rFxps^ tq ´ FxpsqFxptqs ds dt.

We also give the functional limit of the DTEM, on a compact domain D Ă Rd. We say that
ωD : p0, 1q Ñ R` is an uniform modulus of continuity for the family of quantiles functions pF´1

x qD if,
for any u P p0, 1q and any x P D,

sup
pm,m1qPp0,1q2 , |m1´m|ău

|F´1
x pm1q ´ F´1

x pmq| ď ωDpuq,

Here we also assume that
lim
uÑ0

ωDpuq “ ωDp0q “ 0. (4.10)

Theorem 13. [Chazal et al. 2014a] Let P be a measure on Rd with compact support. Let D be a
compact domain on Rd and m P p0, 1q. Assume that there exists a uniform modulus of continuity ωD
for the family pF´1

x qD satisfying (4.10). Then
?
n∆n,mconverges in distribution to B on D, where B is

a centered Gaussian process with covariance kernel

κpx, yq “
1

m2

ż F´1
x pmq

0

ż F´1
y pmq

0

˜

P
”

Bpx,
?
tq XBpy,

?
sq
ı

´ FxptqFypsq

¸

ds dt.

4.3.1 Hadamard differentiability and bootstrap for the DTM

In this section, we use the bootstrap to get a confidence band for the DTM. For some fixed m P p0, 1q,
define cα by

P
`?
n||∆n,m||8 ą cα

˘

“ α.
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Figure 4.3: The left plot shows a sample from the Cassini curve together with a few outliers. The
second plot is the empirical DTM. The third plot is one sub-level set of the DTM. The last plot is the
persistence diagram. Points not in the shaded band are significant features. Thus, this method detects
one significant connected component and two significant loops.

Let X˚1 , . . . , X˚n be a sample from Pn, and let P ˚n be the corresponding (bootstrap) empirical measure.
Let us introduce the bootstrap version of ∆n,m : for any x P Rd,

∆
˚

n,mpxq “ ∆
˚

n,m,rpxq :“ drP˚n ,mpxq ´ d
r
Pn,mpxq.

The bootstrap estimate ĉα is defined by

P
´?

n||∆
˚

n,m||8 ą ĉα |X1, . . . , Xn

¯

“ α. (4.11)

As usual, ĉα can be approximated by Monte Carlo. Below we show that this bootstrap is valid.

Theorem 14. [Chazal et al. 2014a] Let P be a measure on Rd with compact support X, m P p0, 1q be
fixed and D be a compact domain in Rd. Assume that Fx is differentiable at F´1

x pmq for all x P D and
that there exist a constant C ą 0 such that for all small η P R,

sup
xPD

ˇ

ˇFx
`

F´1
x pmq

˘

´ FxpF
´1
x pmq ` ηq

ˇ

ˇ ă ε implies |η| ă Cε, (4.12)

for all x P D. Then, supxPD
?
n
ˇ

ˇ

ˇ
∆
˚

n,mpxq
ˇ

ˇ

ˇ
converges in distribution to supxPD

ˇ

ˇ

ˇ

1
m

şF´1
x pmq

0 Bxpuqdu
ˇ

ˇ

ˇ

conditionally given X1, X2, . . ., in probability.

We establish the above result in Chazal et al. (2015b) using the functional delta method, which
entails showing that the distance to measure function is Hadamard differentiable at P . In fact, the
proof further shows that the process x P D ÞÑ

?
n∆

˚

n,m converges weakly to the Gaussian process

x P D ÞÑ ´ 1
m

şF´1
x pmq

0 Bxpuqdu. This result is consistent with the result established in Theorem 13, but
in order to establish Hadamard differentiability, we use a slightly different assumption. Theorem 13
is proved by assuming an uniform modulus of continuity on the quantile functions F´1

x whereas in
Theorem 14 roughly assumes an uniform lower bound on the derivatives of Fx. These two assumptions
are consistent: they both say that F´1

x is well behaved in a neighborhood of m for all x. However,
(4.12) is stronger.

4.3.2 Bootstrap and significance of topological features

One natural application of DTM in topological data analysis is studying the persistent homology of
the sub-levels of the DTM instead of the the sub-levels of the support. Following the ideas of Fasy
et al. (2014), we can use the bootstrap to test the significance of a topological feature in the persistence
diagram of the sub levels of the DTM. We present two possible methods.
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Figure 4.4: The left plot shows a sample from the Cassini curve together with a few outliers. The sec-
ond plot shows the DTM persistence diagram with a 95% confidence band constructed using the DTM
bootstrap. The third plot shows the same persistence diagram with two 95% confidence bands con-
structed using the bottleneck bootstrap with zero-dimensional features and one-dimensional features.
The fourth plot shows the two confidence bands at the same time.

Bootstrapping the DTM. Given a feature with birth and death time pu, vq, we will say that the
feature is significant if |v ´ u| ą 2ĉα{

?
n where ĉα is defined by (4.11). We now explain why this first

method makes sense. Let Dgm be the persistence diagram of the sub-levels of dP,m and the let zDgm
be the persistence diagram of the sub-levels of dPn,m. We introduce the subset of persistence diagrams

Cn “
"

E P Diag : dbpzDgm, Eq ď
ĉα
?
n

*

,

where Diag is the set of all the persistence diagrams. Then, according to Theorem 14,

PpDgm P Cnq “ P
ˆ

dbpDgm,zDgmq ď
ĉα
?
n

˙

ě P
`?
n}∆P,m}8 ď ĉα

˘

where the inequality derives from a stability result due to Buchet et al. (2015b). Now |v´u| ą 2ĉα{
?
n

if and only if the feature cannot be matched to the diagonal for any diagram in C. We can visualize
the significant features by putting a band of size 2cα{

?
n around the diagonal of zDgm, see Fig. 4.3.

The Bottleneck Bootstrap. More precise inferences can be obtained by directly bootstrapping the
persistence diagram. Define t̂α by

P
´?

n dbpzDgm
˚
,zDgmq ą t̂α |X1, . . . , Xn

¯

“ α.

The quantile t̂α can be estimated by Monte Carlo. We then use a band of size 2t̂α on the diagram
Dgm, see Fig. 4.4. The reason why the bottleneck bootstrap can lead to more precise inferences than
the bootstrap from the previous paragrah is that this last uses the fact that dbpzDgm,Dgmq ď }∆P,m}8

and finds an upper bound for }∆P,m}8. But in many cases the inequality is not sharp so the confidence
set can be very conservative.

In Chazal et al. (2014a), we also show similar results for a distance function introduced by Phillips
et al. (2014).

4.4 Denoising the DTM via Wasserstein deconvolution

In many situations the observed data is contaminated by an additive noise. In this section it is assumed
that we observe n i.i.d. random vectors pYi “ pYi,1, . . . , Yi,dqtq1ďiďn of distribution P , in the model

Yi “ Xi ` εi, (4.13)
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Figure 4.5: Left: circle with hole in red and 10000 points sampled on it with an unidirectional Laplace
measurement error. Middle : distance to the empirical measure dPn,m with m “ 0.01. Right: distance
to the deconvolved measure. The sub-levels of the distance function which have the correct topology
are drawn in blue, the other sub-levels are the black dashed lines. A large band of sub-levels of the
distance to the denoised measure have the correct topology whereas it is not the case for the DTEM.

where Xi is random vector distributed according to an unknown distribution µ in Rd and εi is the
random vector of the noise. In this framework, we would like to infer dµ,m, the distance to the
underlying measure µ.

Ideally, we would like to "directly" deconvolve the DTM. However, the DTM being a non linear
operator, this direct strategy seems difficult to achieve. In Caillerie et al. (2011), we propose the
alternative strategy which consists in first deconvolving the measure and then plugging it in the DTM.
This approach is illustrated by Figure 4.5. According to the Wasserstein stability of the DTM, see
Inequality (4.2), the convergence of the distance to the deconvolved measure can be derived from the
convergence of deconvolved measure under Wasserstein metrics. This last problem is the main subject
of this section.

Besides the geometric applications we have in mind, studying the properties of probability estima-
tors for the Wasserstein metric is also interesting in itself. Firstly, contrary to the Lr-distances between
probability densities (except for r “ 1, which coincides with the total variation distance), the distances
Wr are true distances between probability distributions. Secondly, many natural estimators Q̂n of Q
are singular with respect to Q (think of the empirical measure in most cases), and consequently the
total variation distance between Q̂n and Q is equal to 2 for any n. This is the case of our deconvolution
estimator, if the support X is a submanifold in Rd with dimension strictly less than d. Wasserstein
metrics appear as natural distances to evaluate the performance of such estimators.

4.4.1 Deconvolution of a measure and Wasserstein metric

We first give more precisions on the framework of this work. We assume that the random vectors
Xi “ pXi,1, . . . , Xi,dq

t in the model (4.13) are i.i.d and distributed according to µ supported on an
unknown compact subset X of Rd. The random vectors εi “ pεi,1, . . . εi,dq

t’s are also i.i.d. random
and distributed according to a probability measure µε. The observations are thus drawn according to
the convolution model P “ µ ‹ µε. For the applications we have in mind, µ is typically supported
by a submanifold of Rd. Consequently, we shall not assume that µ has a density with respect to the
Lebesgue measure on Rd.

In this section, we present the case where the coordinates of the error vectors are independent. In
Caillerie et al. (2011); Dedecker and Michel (2013); Dedecker et al. (2015), we have also considered the
more general case where the noise vector is a linear transform of errors with independent coordinates.

We now introduce the deconvolution estimator. For r P r1,8r let rrs be the smallest integer greater
than r. We first define a kernel k whose Fourier transform is smooth enough and compactly supported
over r´1, 1s. Such kernels can be defined by considering powers of the sinc function. More precisely,
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let

kpxq “ cr

#

p2rr{2s` 2q sin x
2rr{2s`2

x

+2rr{2s`2

,

where cr is such that
ş

kpxqdx “ 1. For any j P t1, ¨ ¨ ¨ , du and any hj ą 0, let

k̃j,hj pxq “
1

2π

ż

eiux
k˚puq

µε,j˚pu{hjq
du (4.14)

where k˚ and µ˚ε,j are the Fourier transform of k and µε,j . A preliminary estimator f̂n is given by

f̂npx1, . . . , xdq “
1

n

n
ÿ

i“1

ź

j“1...d

1

h j
k̃j,hj

´xj ´ Yi,j
hj

¯

. (4.15)

The estimator (4.15) is the multivariate version of the standard deconvolution kernel density estimator
which was first introduced in Carroll and Hall (1988). The estimator f̂n is not necessarily a density,
since it has no reason to be non negative. Since our estimator has to be a probability measure, we
define

ĝnpxq “ αnf̂
`
n pxq, where αn “

1
ş

Rd f̂
`
n pxqdx

and f̂`n “ maxt0, f̂nu .

The estimator µ̂n of µ is then the probability measure with density ĝn.

4.4.2 Rates of convergence

Minimax rates of convergence for deconvolving an univariate density have been deeply studied, see for
instance Fan (1991); Butucea and Tsybakov (2008a,b); Meister (2009). The multivariate problem has
also been investigated by Tang (1994) and by Comte and Lacour (2011). All these contributions concern
pointwise convergences or L2 convergences whereas our contributions dealt with rates of convergence
for the Wasserstein metrics.

From a bias-variance decomposition of f̂n, we obtain a general upper bound for the estimation
of µ for the Wr risk. As usual in deconvolution problems, the rates of convergence depends on the
derivatives of the functions tj :“ 1{µ˚ε,j .

Proposition 3. [Dedecker and Michel 2013] Let ph1, . . . , hdq P r0, 1s
d. The following upper bound

holds

Epµ‹µεqbnpW
r
r pµ̂n, µqq ď p2dq

r´1

ˆ
ż

|u|rkpuqdu

˙

phr1`¨ ¨ ¨`h
r
dq`

L
?
n

¨

˝

d
ź

j“1

Ijphjq `
d
ÿ

`“1

J`ph`q
´

d
ź

j“1,j‰`

Ijphjq
¯

˛

‚

where L is some positive constant L and

Ijphq ď

d

ż 1{h

´1{h
ptjpuqq2 ` pt1jpuqq

2du ,

Jjphq ď

d

ż 1{h

´1{h

´

tjpuqq2 ` pt
prrs`1q
j puq

¯2
du`

rrs
ÿ

k“1

hrrs`1´k

d

ż 1{h

´1{h

´

t
pkq
j puq

¯2
du .

For some M ą 0 and r ě 1, we consider the deconvolution of measures µ on Rd such that

sup
1ďjďd

Eµ
´

p1` |pX1qj |
2r`2q

ź

1ď`ďd, `‰j

p1` |pX1q`|
2q

¯

ďM.

We denote by DpM, rq the set of all the measures µ satisfying this condition.
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Super smooth distributions

In the case where ε1 is a non degenerate Gaussian random vector, the minimax rate of convergence of
the sets DpM, rq is of the order of plog nqr{2:

Theorem 15. [Dedecker and Michel 2013] Assume that we observe Y1, . . . , Yn in the convolution model
(4.13), where ε1 is a non degenerate Gaussian random vector. Let M ą 0 and p ě 1. Then

sup
ně1

sup
µPDpM,rq

plog nqr{2 Epµ‹µεqbnpW
r
r pµ̂n, µqq ď K

for some positive constant K. Moreover, there exists a constant C ą 0 such that for any estimator µ̃n
of the measure µ:

lim inf
nÑ8

plog nqr{2 sup
µPDpM,rq

Epµ‹µεqbnpW
r
r pµ̃n, µqq ě C.

The upper bound derives from Proposition 3 in the particular case of Gaussian noise. The lower
bounds (in any dimension) can be deduced from lower bounds for the deconvolution of the cumulative
distribution function in dimension one. We have proved a more general result for all supersmooth
distributions in Dedecker and Michel (2013).

Ordinary smooth distributions

Contrary to the supersmooth case, for ordinary smooth distributions the rate of convergence depends
on the dimension. Proving minimax rates of convergence is much more challenging in this case. In
the multivariate convolution model (4.13) where the marginal distributions µεj ’s all have a Laplace
distribution, we deduce from Proposition 3 that

W r
r pµ̂n, µq À n´

r
2r`5d . (4.16)

Proving comparable lower bounds in this context is an open problem.
In the unidimensional case however, in our paper Dedecker et al. (2015) we obtain a better upper

bound then (4.16) for an alternative estimator based on the estimation of the cumulative distribution
function F of µ. This estimator µ̃n is built in two steps:

1. A preliminary estimator of F . We define a preliminary estimator F̂n of F :

F̂nptq “
1

nh

ż t

´8

n
ÿ

k“1

k̃h

ˆ

u´ Yk
h

˙

du

where k̃h corresponds to k̃h in (4.14) in this unidimensional framework. Note that F̂n is not a
cumulative distribution function since it is not necessarily non-decreasing.

2. Isotone approximation. We need to define an estimator F̃n of F which is a cumulative
distribution function. Let F̃n be such that, for every distribution function G,

ż

|x|r´1|F̂n ´ F̃n|pxqdx ď

ż

|x|r´1|F̂n ´G|pxqdx` n
´1{2

The estimator µ̃n is then defined as the probability measure with distribution function F̃n.

Let m0 denote the least integer strictly greater than r ` 1
2 , and m1 be the least integer strictly

greater than r ´ 1
2 . Let tε “ 1{µ˚ε .

Theorem 16. [Dedecker et al. 2015] Assume that tε is at least m1 times continuously differentiable.
Assume that

ż 8

0
|x|r´1

a

P p|Y | ě xqdx ă 8 and sup
uPr´2,2s

|tpm0q
ε puq| ă 8.

45



Also assume that there exist β ą 0 and c ą 0, such that for every ` P t0, 1, . . . ,m1u and every u P R,

|tp`qε puq| ď cp1` |u|qβ.

Then, taking h “ n
´ 1

2r`p2β´1q` , there exists a positive constant C such that

EW r
r pµ̃n, µq ď Cψn where ψn “

$

’

’

&

’

’

%

n
´ r

2r`2β´1 if β ą 1
2

b

logn
n if β “ 1

2
1?
n

if β ă 1
2

. (4.17)

Applying Proposition 3 in the same context of Theorem 16 gives an upper bound of the order of
n´r{p2r`2β`1q for the risk of the previous estimator µ̄n, which is worse than (4.17). However, contrary
to µ̂n, the estimator µ̃n is well defined for d “ 1 only.

We give below a lower bound that partially matches with the upper bounds of Theorem 16. Let
DqpMq be the set of measures µ on R such that

ş

|x|qdµpxq ďM .

Theorem 17. [Dedecker et al. 2015] Let M ą 0 and q ě 1. Assume that tε is at least two times
continuously differentiable and that there exist β ą 0 and c ą 0, such that for every ` P t0, 1, 2u and
every u P R,

|µ˚ε
p`q
puq| ď cp1` |u|q´β.

Then, there exists a constant C ą 0 such that, for any estimator µ̂,

lim inf
nÑ8

n
r

2β`1 sup
µPDqpMq

EW r
r pµ̂, µq ą C.

For W1, this lower bound matches the upper bound given in Theorem 16 for β ě 1{2. For Wr

(r ą 1), we conjecture that the upper bounds given by Theorem 16 are appropriate under the assumed
tail conditions.

4.5 Discussion and directions for future research

Statistical analysis of the DTM and its variants

Our contributions about the convergence of the DTEM is a step toward a complete statistical analysis
of robust geometric inference. One first objective for the future is to provide a better lower bound
than the one given by Proposition 2. We also would like to be able to control the convergence of the
DTEM uniformly on Rd rather than over compact sets.

One natural application of the DTM is estimating the support of a distribution, when this distri-
bution is contaminated by noise. In some situations, the distribution of the noise can be learned from
the data (see below) and then deconvolution methods can be applied. However this strategy is not
always possible. One idea in this more general setting would be to choose m in the DTEM to recover
the distance to the support, as well as possible, without using deconvolution methods. Our results on
∆n,m,r are not sufficient to answer this problem (the bias term is not considered) but some numerical
experiments presented in Chazal et al. (2015b) show that the term E∆n,m,rpxq does not have a typical
monotonic behavior with regard to m and thus classical model selection methods can be hardly applied
to this problem. We intend to study this non standard model selection problem in future works.

We also intend to study an approximation of the DTEM which has been proposed by Guibas et al.
(2013), the witnessed k-distance, for which level sets are easier to compute. In particular, we would
like to study the convergence of the witnessed k-distance to the DTM.

Other applications of the DTM

The potential applications of the DTM are not restricted to the fields of topological data analysis
and support estimation. The DTM is a general tool for exploring point clouds. We intend to develop
methods based on the DTM for anomaly detection, for comparison of point clouds and also for variable
selection.
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Wasserstein deconvolution

Many problems related to Wasserstein deconvolution remain unsolved. Firstly, the minimax rate of
convergence in the ordinary case for d ą 1 is still an open question. This is not an easy question,
note that lower bounds (not in the minimax sense) for the noiseless case have been proved only very
recently by Dereich et al. (2013).

Secondly, we intend to adapt the works of Delaigle et al. (2008) for tuning the bandwidth with
bootstrap methods. This requires to compute Wasserstein distances, hopefully recent advances have
been maid recently on this problem (Mérigot, 2011).

Finally, in our results the noise distribution is always assumed to be known. Of course, this is not a
realistic assumption for the applications. We would like to learn the noise distribution from the data,
as proposed in Neumann and Hössjer (1997) for the case of the L2 metric. However, it seems that
adapting the results of Neumann and Hössjer (1997) to our context is not an obvious problem.
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Part II

Other contributions in the field of
Statistics
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Chapter 5

Gaussian mixture clustering

Clustering methods consists of discovering clusters among observations. Many cluster analysis methods
have been proposed in statistics and learning theory, one of the most popular approach in this field is
model-based clustering. Model-based clustering methods define clusters as observations having most
likely the same distribution. In this framework, the distribution of each subpopulation is modeled
by a parametric density, like a Gaussian one and thus the unknown data density is estimated by a
mixture of these distributions (McLachlan and Peel, 2000). The data clustering is deduced thanks
to the maximum a posteriori (MAP) rule and the clustering problem reduces to a density estimation
problem.

Cluster analysis is more and more concerned with large datasets where observations are described
by many variables. This large number of variables could be beneficial but in many situations, the
presence of noisy variables can be harmful to detect a reasonable clustering structure. In our work, the
variables are partitioned into two categories. The subset vc contains the noisy variables, said irrelevant
in the sequel. The distribution of such a noisy variable is assumed to be homogeneous and centered
around its mean, allowing not to distinguish a possible clustering of the data. The complementary set
v is composed of the clustering variables.

Because of their wide range flexibility, Gaussian mixture densities are widely used to model the
unknown distribution of continuous data for clustering analysis (Lindsay, 1995; McLachlan and Peel,
2000). This chapter presents our contributions on the problem of selecting a convenient Gaussian
mixture model (GMM) for clustering. The first section presents our results about a non asymptotic
model selection method based on a `0 penalty, they were obtained during my Phd Thesis (Michel,
2008; Maugis and Michel, 2011b,a). In the continuity of this work, we later proved the adaptivity of
the method in the univariate case (Maugis-Rabusseau and Michel, 2013).

In all the chapter, we observe a sample pX1, . . . , Xnq of i.i.d. random vectors from a distribution
with density s in Rd.

5.1 Gaussian mixture selection through `0 penalization

Let V be the collection of nonempty subsets of t1, . . . , du. A Gaussian mixture family is characterized
by the number of components K P N˚ and the relevant variable index subset v P V whose cardinal is
denoted α. In the sequel, the set of index couples pK,vq isM “ N˚ ˆ V. Consider the decomposition
of a vector x P Rd into its restriction on relevant variables xrvs “ pxj1 , . . . , xjαq

t and its restriction
on irrelevant variables xrvcs “ pxl1 , . . . , xld´αq

t where v “ tj1, . . . , jαu and vc “ tl1, . . . , ld´αu “
t1, . . . , duzv. On clustering variables, a Gaussian mixture f is chosen among the following mixture
family

LpK,αq “
#

K
ÿ

k“1

pkΦp.|µk,Σkq;
@k, µk P r´a, as

α, pΣ1, . . . ,ΣKq P D`pK,αq
0 ă pk ă 1,

řK
k“1 pk “ 1

+

where a P R˚` and D`
pK,αq denotes a family of K-tuples of α ˆ α symmetric positive definite matrices

which corresponds to the chosen Gaussian mixture form. On irrelevant variables, the data density is
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modeled by a spherical Gaussian density g belonging to the following family

Gpαq “
 

Φp.|0, ω2Id´αq; ω
2 P rλm, λMs

(

where 0 ă λm ă λM. Finally, the family of Gaussian mixture associated to pK,vq PM is defined by

SpK,vq “
!

x P Rd ÞÑ fpxrvsq gpxrvcsq; f P LpK,αq, g P Gpαq
)

.

The dimension of the model SpK,vq is denoted DpK,vq and corresponds to the free parameter number
of Gaussian mixtures in this model. It only depends on the number K of components, the Gaussian
mixture form and the number of clustering variables α. We study various forms of Gaussian mixtures
in Maugis and Michel (2011b), based on the eigenvalue decomposition of the variance matrices as in
Banfield and Raftery (1993).

The maximum likelihood estimator of the density on SpK,vq is defined by ŝpK,vq :“ argmin
tPSpK,vq

γnptq for

the empirical contrast γnptq “ ´ 1
n

řn
i“1 ln ttpXiqu. The risk of an estimator ŝpK,vq is defined by

RpŝpK,vqq “ ErKLps, ŝpK,vqqs,

where KL is the Kullback-Leibler divergence. We also use the notation H for the Hellinger distance in
this chapter.

Starting from general results on model selection from Bigé and Massart (Massart, 2007) and by
computing the bracketing entropies of these multivariate gaussian mixture models, we prove the follow-
ing oracle inequalities for various different forms of GMM (among others shapes, we consider diagonal
and general GMM):

Theorem 18. [Maugis and Michel 2011b] For one given collection of GMM:

1. If the variables are ordered, there exists two absolute constants κ and C such that, if

penpK,vq ě κ
DpK,vq

n

«

2A` ln

˜

1

1^ DpK,vq
n A

¸

` 1

ff

(5.1)

then the model pK̂, v̂q minimizing critpK,vq “ γnpŝpK,vqq ` penpK,vq onM exists and

E
”

H 2ps, ŝ
pK̂,v̂qq

ı

ď C

"

inf
pK,vqPM

rKLps,SpK,vqq ` penpK,vqs `
1

n

*

. (5.2)

2. If the variables are not ordered, there exists two absolute constants κ and C such that, if

penpK,vq ě κ
DpK,vq

n

#

2A` ln

«

1

1^ DpK,vq
n A

ff

`
1

2
ln

„

8 expp1qd

pDpK,vq ´ 1q ^ p2d´ 1q



+

,

then the model pK̂, v̂q minimizing critpK,vq “ γnpŝpK,vqq ` penpK,vq onM exists and

E
”

H 2ps, ŝ
pK̂,v̂qq

ı

ď C

"

inf
pK,vqPM

rKLps,SpK,vqq ` penpK,vqs `
2

n

*

. (5.3)

Moroever, A “ Op
?

ln dq as d tends to infinity.

The constant A is a function of the parameters of the models (box width, lower bound on the
covariance spectrum,... depending on the shape we choose). The penalty functions take the model
complexity into account through DpK,vq as well as the richness of model family. Indeed in the non-
ordered variable case, the number of models with the same dimension is larger, and the associated
penalty functions have an additional logarithm term depending on the dimension.

Theorem 18 gives the general form of penalty functions but it does not provide explicit penalties
since (5.2) and (5.3) depend on absolute unknown constants and mixture parameters are not bounded
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in practice. In Maugis and Michel (2011a), we apply the slope heuristics method introduced by Birgé
and Massart (2007) to calibrate these penalties. The slope heuristics is presented in the next chapter.
Through this way, we obtain a completely data driven model selection method. An intensive experiment
study is proposed in Maugis and Michel (2011a) with applications to real data in genomics and curve
clustering. It confirms the efficiency of the clustering method. The slope heuristics method and its
implementation is presented in the next Chapter.

Several improvements by other authors have been proposed in the following of our works: Cohen
and Le Pennec (2013) generalize our results for all possible GMM shapes and also propose a penalized
estimator conditional density estimation. Meynet and Maugis-Rabusseau (2012) introduce a new
model selection method on GMM which first consists of using a `1-regularization method to build a
data-driven model subcollection and next select a convenient model with a `0-penalty.

5.2 Minimax adaptivity in the unidimensional case

In Maugis-Rabusseau and Michel (2013), we study the adaptivity of the penalized estimator defined
in Theorem 18 in the unidimensional case. In this context, only the number of components K in the
mixture are selected. More precisely, we consider the set of densities of the form

SK “

#

x P R ÞÑ
K
ÿ

k“1

pkψσpx´ µkq;µk P r´µ̄, µ̄s, pk P r0, 1s,
K
ÿ

k“1

pk “ 1

+

where ψσ is the univariate centered Gaussian density with variance σ2. For β ą 0 let r “ tβu be the
largest integer less than β and let k P N such that β P p2k, 2k ` 2s. We define Hpβq as the set of
densities on R whose logarithm is locally β-Hölder: for all x and y such that |y ´ x| ď γ,

ˇ

ˇ

ˇ
pln fqprqpxq ´ pln fqprqpyq

ˇ

ˇ

ˇ
ď r!Lpxq|y ´ x|β´r.

where γ is a fixed positive parameter and L is a polynomial function on R. Other tail, moments and
monotonicity conditions are also required to define Hpβq but we omit them for this presentation.

First, we prove a lower bound on the minimax risk for the estimation of density in Hpβq: we show
that the minimax risk is lower bounded by the rate n´

2β
2β`1 on the density sets Hpβq. For this task, we

combine a corollary of a Birgé’s Lemma (Birgé, 2005) and the so-called Varshamov-Gilbert’s Lemma
(see for instance Corollary 2.19 and Lemma 4.7 in Massart, 2007). Next, we prove an approximation
result between densities in Hpβq and the univariate Gaussian mixtures, in KL divergence by adapting
a result of Kruijer et al. (2010). This approximation result allows us to control the bias term in the
oracle inequality (5.2) (in the unidimensional framework). By taking σ of the order of K´1plnKq3{2

and µ̄ of the order of | lnλpKq|1{2 in the definition of the models SK , we finally obtain that the risk of
the penalized estimator is bounded by a rate of the order of plnnq

5β
2β`1 n

´2β
2β`1 . This shows the minimax

adaptivity of ŝK̂ on the sets Hpβq, up to a logarithm term.

5.3 Discussion and directions for future research

As far as we know, our paper Maugis-Rabusseau and Michel (2013) has been the first result on the
adaptivity of maximum likelihood estimators for Gaussian mixtures. However, regarding the clustering
problem, it is not completely satisfactory because it concerns the estimation of a density instead of
considering a risk for the clustering problem. Advances have been proposed more recently in this
direction in Azizyan et al. (2013) and in Arias-Castro and Verzelen (2014).

In a work in progress with S. Gaiffas, we propose an alternative method based on a PAC Bayesian
approach (Gaiffas and Michel, 2014). More precisely we use a generalized Bayesian posterior with
a sparsity inducing prior on K and v. We prove a sparsity oracle inequality which shows that this
procedure selects the optimal parameters K and v. The method is implemented using a Metropolis-
Hastings algorithm, based on a clustering-oriented greedy proposal.
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Chapter 6

Slope Heuristics and the Capushe package

Many algorithms in statistics depend on free parameters which can be difficult to tune in practice.
To answer this question, Birgé and Massart (2007) have proposed the slope heuristics method1. First
introduced in the framework of Gaussian regression with a homoscedastic fixed design, it has then
been generalized in the heteroscedastic random-design case (Arlot and Massart, 2009). It has also been
validated for least squares density estimation (Lerasle, 2012) and for maximum likelihood estimation
density estimation (Saumard, 2010) Its practical validity has been illustrated in many frameworks:
change-point detection in a Gaussian least squares framework (Lebarbier, 2005), simultaneous variable
selection and clustering in a Gaussian mixture models setting (Chapter 5), Gaussian Markov random
field framework (Verzelen, 2010) and computational geometry (Chapter 2) to cite a few.

This chapter presents our contribution to the slope heuristics problem: an efficient implementation
of this calibration method with the Matlab package CAPUSCHE (Baudry et al., 2012) and with the
R package CAPUSCHE (Brault et al., 2011). Note that another objective of our paper Baudry et al.
(2012) was to introduce the slope heuristics to a large audience of applied statisticians.

6.1 Contrast minimization and slope heuristics

Let us first briefly recall the general framework of estimation by contrast minimization. The pre-
vious chapter provides an illustration of this method is the context of Gaussian mixtures. Let
X “ pX1, . . . , Xnq, Xi P Rd, be an i.i.d sample from an unknown probability distribution. The
quantity of interest, denoted as s (for instance the density of the distribution), is related to the un-
known sample distribution and belongs to a set S. The method is based on the existence of a contrast
function γ : S ˆ Rd Ñ R fulfilling the fundamental property that

s “ argmin
tPS

EX rγpt,Xqs ,

where the expectation is taken with respect to X distributed as the sample. The associated loss
function, which enables us to evaluate each element of S, is defined by:

@t P S, lps, tq “ EX rγpt,Xqs ´ EX rγps,Xqs .

The empirical contrast is defined by @t P S, γnptq “ 1
n

řn
i“1 γpt,Xiq. Let S be a model, namely a

subset of S. A minimizer of the empirical contrast over the model S is then considered and denoted as
ŝ. It is expected that ŝ is a sensible estimator of s since, under reasonable conditions, γnptq converges
to Erγpt,Xqs. The quality of such an estimator can be measured by its risk Rpŝq “ EX rlps, ŝqs .

In practice, several estimators can be proposed to estimate s. Formally, a countable collection of
models pSmqmPM with the corresponding estimators collection pŝmqmPM of s is now considered. Let
Sm̂ be the model selected by a given model selection procedure. The selected estimator is then ŝm̂,
where both ŝm (for any m) and m̂ are built from the same sample X. From a non asymptotic point of
view, the ideal model Sm˚ for a given n and a given dataset is such that

m˚ P argmin
mPM

lps, ŝmq. (6.1)

1the slope heuristics takes its name from a slope estimation.
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The aim is to build a model selection procedure such that the selected model Sm̂ is optimal in the
sense that it fulfills an oracle inequality:

EX rlps, ŝm̂qs ď An inf
mPM

EX rlps, ŝmqs ` ηn.

with ηn a small remainder term.
Penalization consists of defining a proper penalty function pen : M ÝÑ R` and of selecting m̂

minimizing the associated penalized criterion

@m PM, critpmq “ γnpŝmq ` penpmq. (6.2)

Choosing the penalty is tricky but obviously crucial. Some well-known penalized criteria with fixed
penalties such as AIC (Akaike, 1973) or BIC (Schwarz, 1978) have been widely studied (Burnham and
Anderson, 2002). The use of these penalties is mainly motivated by asymptotic arguments that may
be wrong in a non asymptotic context. More recent works based on concentration inequalities have
led to optimal penalties which are known up to a multiplicative constant κ. In this framework, the
penalty shape is then denoted as penshapep¨q and an unknown constant κopt exists such that

penopt : m PM ÞÑ κoptpenshapepmq (6.3)

is an optimal penalty. Two different kinds of results usually lead to such a penalty shape:

• Deterministic penalty shapes. Specific deterministic functions m ÞÑ penshapepmq can be
used to define an optimal penalty (see Massart, 2007, for some examples of such penalties). For
instance, in a general maximum likelihood framework, Theorem 7.11 in Massart (2007) provides
a solution to choose a penalty shape and insures the existence of a constant κopt such that
penoptp¨q “ κopt penshapep¨q follows an oracle inequality. The value of κopt which can be derived
from the theory is much too pessimistic and a reasonable value has to be guessed from the data.

• Resampling penalty shapes. In a regression framework, Arlot (2009) uses resampling to
design the penalty corresponding to each model and derives non asymptotic results for the corre-
sponding procedures. These penalties actually have to be calibrated by a multiplicative constant.
Lerasle (2012) provides analogous results in a density estimation framework.

Birgé and Massart (2007) proposes a practical method based on theoretical results for defining
efficient penalty functions from the data. We give in Baudry et al. (2012) a non technical presentation
of the ideas behind the slope heuristics. The method relies on the two following points:

SH1: There exists a minimal penalty penminpmq such that lighter penalties give rise to a selection
of the most complex models, whereas higher penalties should select models with "reasonable"
complexity.

SH2: An ideal penalty, that is a penalty leading to an oracle inequality, is about twice the minimal
penalty.

In many contexts, a complexity measure Cm of the models is given. This complexity measure is
typically the model dimension or the number of free parameters in parametric frameworks. Generally
speaking, the penalty shape can be written as a function of Cm. When its definition is not obvious a
priori, the complexity measure can be chosen as the penalty shape itself, as in Chapter 2 for instance.
The penalty shape can also be guessed itself from the data, for example with resampling penalties.

For the two methods to apply the slope heuristics presented in further, it is required that:

(C1) The empirical contrast γnpŝmq decreases with the complexity Cm.

(C2) The penalty shape penshapep¨q increases with the complexity Cm.

The two methods differ by the way the minimal penalty involved in point [SH1] is estimated. The first
one is the so-called dimension jump method introduced in Birgé and Massart (2007). The second one
consists of directly estimating the "slope" κopt in a data-driven fashion.
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Figure 6.1: Graphical outputs provided by capushe. Representation of the nonincreasing and piece-
wise constant function κ ÞÑ Cmpκq.

6.2 Dimension jump

Principle. The so-called dimension jump is a method for penalty calibration which takes advantage
of [SH1] and [SH2] to efficiently determine the unknown penalty constant κopt in (6.3). Let mpκq be
the model selected by the penalized criterion m ÞÑ γnpŝmq ` κpenshapepmq. Under (C1) and (C2),
κ ÞÑ Cmpκq is a nonincreasing and piecewise constant function. According to the minimal penalty
definition, it is expected that the selected model mpκq has a large complexity when κpenshapep¨q ă

penminp¨q and a reasonably large complexity if κpenshapep¨q ą penminp¨q. Thus, κ ÞÑ Cmpκq should
present an abrupt jump around a value κ̂ (see Fig. 6.1). The penalty κ̂penshapep¨q is then expected to
be close to the minimal penalty and according to [SH2], the penalty 2κ̂penshapep¨q is expected to be
an optimal penalty (κopt « 2κ̂).

Dimension jump algorithm. The dimension jump algorithm proceeds in three steps:

1. Compute, for all κ ą 0, mpκq P argminmPM
 

γnpŝmq ` κpenshapepmq
(

;

2. Find κ̂ such that Cmpκq is large if κ ă κ̂ and has a "reasonable" order otherwise;

3. Select m̂ “ mp2κ̂q.

This algorithm makes this first step computationally tractable since it only requires at most cardpMq´1
steps, and actually probably much less. This provides the location of jumps, namely an increasing
sequence pκiq0ďiďimax with κ0 “ 0, κimax “ `8, the number of jumps imax P t1, . . . , cardpMq´ 1u, and
the associated selected model sequence pmiq0ďiďimax where mi “ mpκiq for all κ in rκi, κi`1q and for
all i ă imax. For the second step, two different strategies are available in capushe:

• Maximal jump. This first method is the most popular. It consists of choosing the constant κ̂dj

corresponding to the greatest jump of complexity: κ̂dj “ κidj , with idj P argmax
0ďiďimax´1

 

Cmi`1 ´ Cmi
(

.

• Threshold complexity. The second method, proposed by Arlot and Massart (2009), consists of
choosing a threshold complexity Cthresh such that complexities smaller than Cthresh are reasonable
but larger ones are not. Then the chosen constant κ̂thresh is the smallest value of κ for which the
corresponding penalty selects a complexity smaller than Cthresh: κ̂thresh “ inftκ ą 0 : Cmpκq ď
Cthreshu.
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6.3 Data-driven slope estimation method

Principle. This alternative method consists of directly estimating the constant κopt by the "slope" of
the expected linear relation of ´γnpŝmq with respect to the penalty shape values penshapepmq. Indeed,
it can be checked that ´γnpŝmq behave linearly with respect to penshapepmq with a slope around κopt

2 ,
as shown in the left graph of Figure 6.2. Finally, if κ̂ denotes an estimation of the slope of the linear
regression of ´γnpŝmq on penshapepmq, the optimal penalty is estimated by 2κ̂penshapep¨q. The package
capushe proposes solutions so as to make possible and reliable the application of the slope heuristics
thanks to a stability study of the selected model.

Practice of the data-driven slope estimation method. The main issue about this method is
how to choose a subset of points ppenshapepmq,´γnpŝmqq corresponding to large values of penshapepmq
where the slope can be estimated. In practice, it is usually chosen at sight. The method proposed
in capushe to answer this problem is based on the model selection stabilization. More precisely, the
slope is sequentially estimated from the couples ppenshapepmq,´γnpŝmqq where the couple with the
smallest penalty shape value is removed at each step. The slope estimation in this area corresponds to
an estimation of κopt{2 and thus the same model is selected. Denoting P “ tpenshapepmq, m PMu,
the corresponding algorithm consists of four consecutive steps.

• Step 1 If several models in the collection have the same penalty shape value, only the model
having the smallest contrast value γnpŝmq is kept according to (6.2). To make easier the reading
of this algorithm, the model indexation is not modified.

• Step 2 For any p P P, the slope κ̂ppq of the linear regression on the couples of points
 

ppenshapepmq,´γnpŝmqq; penshapepmq ě p
(

is computed using a robust regression method.

• Step 3 For any p P P, the model fulfilling the following condition is selected:

m̂ppq “ argmin
mPM

tγnpŝmq ` 2κ̂ppqpenshapepmqu.

We obtain an increasing sequence of change-points ppiq1ďiďI`1 such that

@1 ď i ď I ´ 1,@p P P,
#

m̂ppq “ m̂ppiq ðñ p P rpi, pi`1r

m̂ppq “ m̂ppIq ðñ p P rpI , pI`1s.

We observe a "plateau" sequence and compute the plateau sizes pNiq1ďiďI defined by

@ 1 ď i ď I ´ 1, Ni “ cardtrpi, pi`1q X Puand NI “ cardtrpI , pI`1s X Pu.

• Step 4 The model m̂ppı̂q such that ı̂ “ max
!

i P t1, . . . , Iu; Ni ą pct
řI
l“1Nl

)

is selected (see
hereafter for the choixe of the pct value). We also return the interval of slope values rpı̂, pı̂`1q and
the proportion Nı̂{

řI
l“1Nl. Graphically, this corresponds to selecting the "most to the right"

plateau whose length is greater than the threshold (see the bottom-right graph in Figure 6.2).

This algorithm requires to tune the parameter pct at Step 4 in order to determine which plateau
corresponds to a stabilization of the model selection. By default, pct is set to 15% in capushe. This
choice may be reconsidered according to the application at hand, and particularly to the size of M
and to whether it is expected that many too complex models have been involved in the study. The
experiments proposed in Baudry et al. (2012) suggest that the pct deeply impacts the model selection
only in situations for which no linear behavior can be observed and on the contrary the method is
not much sensitive to pct in favorable situations. Remark that whatever the choice at this step, the
reported actual proportion Nı̂{

řI´1
l“1 Nl measures the stability of the method: the higher this value

the more confidently the method can be applied.

For the successive slope estimations in Step 2, a robust regression with the bisquare weighting
function (Huber, 1981) is advised in order to attenuate the influence of possible estimation errors of
the sequence pŝmqmPM.
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Figure 6.2: Graphical outputs provided by capushe. The left graph represents ´γnpŝmq with re-
spect to penshapepmq to check the linear behavior assumption. The top-right (resp. bottom-right)
graph gives the estimated slope (resp. the selected model) as a function of the number of couples
ppenshapepmq,´γnpŝmqq used for the linear regression. The last plateau for which the length Nı̂ is
greater than pct

řI
l“1Nl is detected and the corresponding model m̂ppı̂q is selected. The "Correspond-

ing slope interval" given bottom right is the interval rpı̂, pı̂`1q leading to select m̂ppı̂q.

This method is based on a linear relation between ´γnpŝmq and penshapepmq for the largest values
of the penalty shape. Non evidence of such linear relation should warn the user that the slope heuristics
should probably not be applied. It should then be verified that complex enough models have been
involved in the study and the penalty shape should be questioned. To help the user to validate the
linear behavior assumption, some graphical tools are proposed in capushe.
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Chapter 7

Feature selection for Random Forests

The work presented in this chapter has been carried out in the context of the industrial thesis of B.
Gregorutti about airline safety (Gregorutti, 2015), in collaboration with the company Safety Lines1.
Starting from an industrial problem, we have studied feature selection methods based on the permuta-
tion importance measure introduced by Breiman in the context of random forest algorithms (Gregorutti
et al., 2013, 2014).

7.1 Random forests

Let us consider a variable of interest Y and a vector of random variables X “ pX1, . . . , Xpq. In the
regression setting spxq “ ErY |X “ xs, a rule ŝ for predicting Y is a measurable function taking its
values in R. The prediction error of ŝ is then defined by Rpŝq “ E

“

pŝpXq ´ Y q2
‰

.
Classification and regression trees, particularly CART algorithm due to Breiman et al. (1984), are

competitive techniques for estimating s. Nevertheless, these algorithms are known to be unstable inso-
far as a small perturbation of the training sample may change radically the predictions. For this reason,
Breiman (2001) introduced the random forests as a substantial improvement of the decision trees. It
consists in aggregating a collection of such random trees, in the same way as the bagging method
also proposed by Breiman (1996): the trees are built over ntree bootstrap samples D1

n, . . . ,Dntreen of
the training data Dn. Instead of CART algorithm, a subset of variables is randomly chosen for the
splitting rule at each node. Each tree is then fully grown or until each node is pure. The trees are not
pruned. The resulting learning rule is the aggregation of all of the tree-based estimators denoted by
ŝ1, . . . , ŝntree . The aggregation is based on the average of the predictions.

7.2 Permutation importance measure and feature selection

The identification of the most relevant variables in high dimensional setting is a central issue in various
applications. For linear regression, the Lasso method is widely used. Many variable selection procedures
have also been proposed for non linear methods. In the context of random forests, it has been shown
that the permutation importance measure introduced by Breiman, is an efficient tool for selecting
variables (Díaz-Uriarte and Alvarez de Andrés, 2006; Genuer et al., 2010). Broadly speaking, a variable
Xj can be considered as important for predicting Y if by breaking the link between Xj and Y the
prediction error increases. To break the link betweenXj and Y , Breiman proposes to randomly permute
the observations of the Xj ’s. The empirical permutation importance measure can be formalized as
follows: define a collection of out-of-bag samples tD̄tn “ DnzDtn, t “ 1, . . . , ntreeu which contains the
observations not selected in the bootstrap subsets. Let tD̄tjn , t “ 1, . . . , ntreeu denotes a permuted out-
of-bag samples by random permutations of the values of the j-th variable in each out-of-bag subsets.
The empirical permutation importance of the variable Xj is defined by

ÎpXjq “
1

ntree

ntree
ÿ

t“1

„

R̂pŝt, D̄tjn q ´ R̂pŝt, D̄tnq


. (7.1)

1http://www.safety-line.fr/en/
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where the empirical risk is defined for some D̄ by

R̂pŝ, D̄q “ 1

|D̄|
ÿ

i:pXi,YiqPD̄

pYi ´ ŝpXiqq
2.

The quantity (7.1) is the empirical counterpart of the permutation importance measure IpXjq, as
formalized recently in Zhu et al. (2012). Let Xpjq “ pX1, . . . , X

1
j , . . . , Xpq be the random vector such

that X 1j is an independent replication of Xj which is also independent of Y and of all of the others
predictors, the permutation importance measure is given by

IpXjq “ E
”

`

Y ´ spXpjqq
˘2
ı

´ E
”

pY ´ spXqq2
ı

.

The permutation importance measure can be used to rank and to select the predictors. Nevertheless
variable selection is a difficult issue especially when the predictors are highly correlated. In Gregorutti
et al. (2013) we investigate deeper how the permutation importance measure depends on the correlation
between the predictors. If pX, Y q is assumed to be a normal vector it is possible to specify the
permutation importance measure:

Proposition 4. [Gregorutti et al. 2013] Consider a Gaussian random vector

pX, Y q „ Np`1

ˆ

0,

ˆ

C τ
τ t σ2

y

˙˙

,

where τ “ pτ1, . . . , τpq
t with τj “ CpXj , Y q, σ2

y ą 0 and C “ rCpXj , Xkqs is the non degenerated
variance-covariance matrix of X. For any j P t1, . . . , pu, let αj “ rC´1τ sj, then

IpXjq “ 2α2
jVpXjq “ 2αjCpXj , Y q ´ 2αj

ÿ

k‰j

αkCpXj , Xkq.

The proposition confirms the impact of correlation on the importance measures, as noticed pre-
viously by Toloşi and Lengauer (2011) from experimental studies. More precisely, the proposition
shows, first, that the independent variables may show higher importance values even if they are less
informative than the correlated ones, and second, that the higher the number of correlated variables
is, the faster the permutation importance of the variables decreases to zero.

For backward elimination strategies, these results also suggest that the permutation importance
measure should be recomputed each time a variable is eliminated. More precisely, we follow the
approach called Recursive Feature Elimination (RFE) inspired by Guyon et al. (2002) for SVM. It
requires an updating of the permutation importance measures at each step of the algorithm. The RFE
algorithm implemented in Gregorutti et al. (2013) can be summarized as follows:

1. Train a random forests

2. Compute the permutation importance measure

3. Eliminate the less relevant variable(s)

4. Repeat steps 1 to 3 until no further variables remain

By recomputing the permutation importance measure, we make sure that the ranking of the variables is
consistent with their use in the current forest. We propose various simulation experiments in Gregorutti
et al. (2013) to illustrate the efficiency of the RFE algorithm for selecting a small number of variables
together with a good prediction error. Finally, this selection algorithm is aslo tested on the Landsat
Satellite data from the UCI Machine Learning Repository2.

2https://archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite)
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7.3 Grouped variable importance measure

In many situations, as in genetics studies, groups of variables can be clearly identified and it is of
interest to select groups of variables rather than to select variables individually. In Gregorutti et al.
(2014), we extend the variable importance measure for a group of variables XJ “ pXj1 , ..., Xjkq.

For any m P t1, . . . ,Mu, let D̄mJn be a permuted version of D̄mn obtained by randomly permuting
the group XJ in each out-of-bag sample D̄mjn . Note that the same random permutation is used for
each variable Xj of the group. By this way the (empirical) joint law of XJ is left unchanged by the
permutation whereas the link between XJ and Y and the other predictors is broken. The empirical
importance of XJ is defined by

ÎpXJq “
1

M

M
ÿ

m“1

„

R̂pf̂m, D̄mJn q ´ R̂pf̂m, D̄mn q


. (7.2)

As for the importance of individual variables, ÎpXJq is the empirical counterpart of a grouped variable
importance measure that can be defined in a straightforward way.

We show that the grouped variable importance is equal to the sum of the individual importances
when the variables of the group are independent, in the case of additive regression models. But of
course this property is lost as soon as the variables in the group are correlated.

Application to multiple functional data analysis. The grouped variable importance can be used
as a criterion for selecting features in the context of multiple functional regression. For instance, it
can be fruitfully used for comparing the importances of wavelet coefficients in the context of functional
predictors. Many groupings of wavelet coefficients can be proposed in this context. An important
grouping strategy consists in grouping the wavelet coefficient related to a variable. As each group is
associated to one variable, it is possible to obtain the importance of a given functional variable. Many
other groupings could be proposed. As the wavelets are localized both in frequency and time, a group
composed of all the wavelet coefficients of a given frequency level (for one or for all the variables)
or a group composed by the wavelet coefficients associated to a given time t (to identify relevant
time intervals) can be considered. One can also regroup two correlated variables. By computing the
importances of such groups, one directly obtain the most important groups of coefficients for predicting
the outcome. The RFE algorithm presented in the previous section is adapted for selecting groups
of coefficients in a straightforward way. This backward grouped elimination approach produces a
collection of nested subsets of groups.

7.4 A case study: variable selection for aviation safety

Airlines collect many informations during flights using flight data recorders. A large number of flight
parameters are recorded as for instance the aircraft speed, the heading, the altitude or several warnings.
In the context of the industrial thesis of B. Gregorutti about airline safety (Gregorutti, 2015), we have
applied the RFE algorithm to a dataset of 1868 flights in order to identify the relevant variables to
explain the risk of long landing. The evaluation of the risk the long landings is crucial for safety
managers to avoid runway excursions and more generally to keep a high level of safety. Several risk
factors have been identified among others the gross weight, the altitude or the angle of attack, see
Fig. 7.1. Moreover some important time intervals have been detected for each functional variables.

7.5 Discussion and directions for future research

The idea behind Breiman’s permutation importance measure is very general. It can be adapted to
many problems by changing the risk function. Moreover, it can be computed for other learning methods
than the random forests. In the context of a new Phd thesis in collaboration with the french electricity
generator EDF, we are currently working on adapting the ideas presented in this chapter for estimating
some functional of the quantile function of an outcome variable.
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Figure 7.1: Risk of long landing : (a) Boxplots of the grouped variable importance obtain for 100 runs
of the selection algorithm, (b) MSE error versus the number of groups.
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