
HAL Id: tel-01235329
https://theses.hal.science/tel-01235329

Submitted on 30 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed methods for resource allocation : a passivity
based approach

German Dario Obando Bravo

To cite this version:
German Dario Obando Bravo. Distributed methods for resource allocation : a passivity based ap-
proach. Automatic Control Engineering. Ecole des Mines de Nantes; Universidad de los Andes
(Bogotá), 2015. English. �NNT : 2015EMNA0174�. �tel-01235329�

https://theses.hal.science/tel-01235329
https://hal.archives-ouvertes.fr


   

  

JURY 

Président :      Alexandre DOLGUI, Professeur, École des Mines de Nantes 

Rapporteurs :      Carlos OCAMPO-MARTINEZ, Assistant Professor, UPC Barcelona   

  Hervé GUEGUEN, Professeur, Supelec Rennes 

Directeur de Thèse Colombie :    Nicanor QUIJANO, Professor, Universidad de Los Andes, Bogota 

Directeur de Thèse France :    Jean-Jacques LOISEAU, Directeur de Recherche, IRCCyN    

Co-encadrant Colombie :   Alain GAUTHIER, Professor, Universidad de Los Andes, Bogota   

Co-encadrant  France :    Naly RAKOTO-RAVALONTSALAMA, Maitre Assistant, IRCCyN/EMN 

 

 

 

 

 

 

 

 

Distributed Methods for Resource Allocation: 

A Passivity-Based Approach 

 

 

Mémoire présenté en vue de l’obtention du 

grade de Docteur de l’École des Mines de Nantes 

    Docteur de l’Universidad de los Andes, Bogota, Colombie 

sous le label de L’Université Nantes Angers Le Mans 

 

École doctorale : STIM 

Discipline : Automatique, Productique 

Spécialité : Automatique et Informatique Appliquée 

Unité de recherche : IRCCyN et Universidad de los Andes, Bogota, Colombia 

 

Soutenue le 23 octobre 2015 

Thèse N° : 2015 EMNA 0174 

 

 

 

 

 

Germán Darío OBANDO BRAVO    

 

 

 

 

 

 

 

 

 



Distributed Methods for

Resource Allocation: A

Passivity–Based Approach
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Abstract

Since the complexity and scale of systems have been growing in the last years,

distributed approaches for control and decision making are becoming more

prevalent. This dissertation focuses on an important problem involving dis-

tributed control and decision making, the dynamic resource allocation in a

network. To address this problem, we explore a consensus–based algorithm

that does not require any centralized computation, and that is capable to

deal with applications modeled either by dynamical systems or by memory-

less functions. The main contribution of our research is to prove, by means

of graph theoretical tools and passivity analysis, that the proposed controller

asymptotically reaches an optimal solution without the need of full informa-

tion.

In order to illustrate the relevance of our main result, we address several

engineering applications including: distributed control for energy saving in

smart buildings, management of the customers of an aggregating entity in

a smart grid environment, and development of an exact distributed opti-

mization method that deals with resource allocation problems subject to

lower–bound constraints.

Finally, we explore resource allocation techniques based on classic population

dynamics models. In order to make them distributed, we introduce the con-

cept of non–well–mixed population dynamics. We show that these dynamics

are capable to deal with constrained information structures that are char-

acterized by non–complete graphs. Although the proposed non–well–mixed

population dynamics use partial information, they preserve similar proper-

ties of their classic counterpart, which uses full information. Specifically, we

prove mass conservation and convergence to Nash equilibrium.
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1

Introduction

Control and decision making are required in many engineering problems, especially in

those that seek to optimize certain criteria, such as increasing economic benefits, im-

proving the quality of service, or reducing energy consumption. In several applications,

traditional centralized approaches for control and decision making are no longer ap-

propriate since the complexity and scale of systems have increased in the last years.

Therefore, distributed schemes are becoming more prevalent [4]. The growing interest

in these techniques has led to the development of a large number of distributed methods

(e.g., see [5, 6, 7, 8, 9, 10] and the references therein), among which we find the algo-

rithms based on multi–agent systems, where the agents1 make decisions based on local

information and coordinate with each other to obtain a desirable global behavior; for

instance, the optimization of an overall objective function. An important issue within

this field is the dynamic resource allocation over networks of agents. This problem arises

when we have a limited amount of a certain resource (electric power, computing capacity,

execution time), and it is necessary to establish an optimal distribution policy between

some entities (e.g., loads, processors, controllers) that are managed by a set of agents

connected by a communication network. Resource allocation is widely used (a compre-

hensive survey on this topic can be found in [11]), and it has been applied in several

fields, such as economics [12], smart energy systems [13], distributed computation [14],

communication systems [15], and virus spread mitigation [16].

An extensive literature describes distributed methods for resource allocation based

on multi-agent systems: more traditional approaches use decomposition techniques [17],

1Entities or elements that are capable to make decisions.
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1. INTRODUCTION

where the basic idea is to exploit the structure of the overall problem in order to divide

it into subproblems that are then assigned to each agent in the network. Other classical

techniques are the so–called incremental gradient schemes [18], where the solution moves

following the direction of one component of the objective function’s gradient by iteration,

and this search direction is alternate by using a token ring scheme. We can also find

some methodologies based on heuristics, such as those inspired by market mechanisms

[19], [20], which use concepts from economic theory to model the interactions between

the participants of the resource allocation process. More recently, there has been a

widespread interest in game theoretical approaches to solve this kind of problems. Cur-

rent developments on this field can be found in [21], [22] for the non–cooperative case,

and in [23] for the cooperative one. Among all these methods, the appropriate coordi-

nation of agents is a crucial issue because it avoids converging to suboptimal solutions.

To ensure this coordination, some methods require the inclusion of a centralized agent;

for instance, in classical decomposition techniques, the Lagrange multiplier related to

the “price” of the resource is centrally adjusted to get the optimum. Nonetheless, in

some real situations, especially when we have a large number of agents and the amount

of communications allowed between them is strongly limited, the implementation of a

centralized coordinator is impractical, too expensive, or even infeasible [7]. By contrast,

other methods are fully decentralized (e.g., [24], [25]). These decentralized methods ex-

ploit the communication capabilities of each agent to coordinate its decisions based on

the information received from its neighbors. Moreover, decentralized methodologies have

important advantages, among which we highlight the increased autonomy and resilience

of the whole system in the face of possible failures.

This research focuses on distributed resource allocation methods among networks

of agents that do not require a central coordinator. Specifically, we are interested in

consensus–based approaches since their low computational requirements and appealing

results on robustness, convergence rate, and flexibility (see, e.g., [26, 27, 28, 29, 30]).

Regarding consensus–based algorithms for solving resource allocation problems, several

works have been conducted. Most of them deals with static optimization, where the

objective is to minimize a global cost function that depends directly on the resource

allocated to the entities that comprise the whole system. Results on optimality and

convergence of these resource allocation methods are not new. Indeed, the first reported

algorithm, due to Ho et al., dates back to 1980 [24]. Since then, a large number of

2



1.1 Resource Allocation among Networks of Dynamical Systems

variations of the cited algorithm and contributions for analyzing the proposed methods

have been introduced in the literature. Most of these results are largely influenced by

the progress of consensus theory [28, 31, 32, 33, 34]. We highlight the work in [35],

where the authors use linear matrix inequalities in order to derive sufficient conditions

that guarantee the convergence of the algorithm proposed in [24] to the optimal solution

of a given problem. These conditions have been recently relaxed in [36] by means of

convex optimization theory. Other related results can be found in [37] for non–smooth

objective functions, and in [38] for non–convex objective functions. Although resource

allocation for static problems is a well studied area, there still exists a research gap when

dealing with dynamic problems, especially if the dynamics are modeled by non–linear

differential equations.

1.1 Resource Allocation among Networks of Dynamical

Systems

For the static case, a resource allocation process is equivalent to an equalization mech-

anism among the marginal costs associated with each entity that conforms the entire

system (this equivalence follows from the application of the Karush–Kuhn–Tucker first

order necessary conditions). Therefore, if we model each entity as a memoryless system

whose input is the resource allocated in the entity, and whose output is equal to the

associated marginal cost, a resource allocation algorithm can be viewed as an output–

consensus protocol. Following the same ideas, if we replace the memoryless model by

a dynamical model, it is possible to extend the resource allocation concept to dynamic

problems, i.e., problems in which the desired objective depends on the outputs of a col-

lection of dynamical systems that are influenced by the resource allocated to the entities.

We can find a large number of applications that fits into this framework. For instance,

building temperature regulation [39], control of water distribution systems [40], band-

width allocation [41] and access control [42, 43] in communication networks, dispatch

of distributed generators for frequency regulation [44], energy saving in lighting systems

[22], control for urban drainage systems [45], and so forth.

From the above description, we formulate the resource allocation problem addressed

in this dissertation as follows: given a set of dynamical systems, design a distributed

3



1. INTRODUCTION

resource allocation policy that drives the systems’ outputs to consensus. Thus, our prob-

lem is twofold. On the one hand, we require an output–consensus algorithm. On the

other hand, this algorithm must satisfy a given resource constraint (i.e., the constraint

associated with the limited resource that has to be allocated). Although the literature on

output–consensus algorithms is rich (see, e.g., [46, 47, 48, 49, 50, 51, 52, 53], and the refer-

ences therein), few of these algorithms address the required resource constraint. Among

those that take into account the considered constraint, we highlight the methods based

on population dynamics [54, 55, 56, 57], where the resource is related to an invariant

population mass. Nevertheless, these methods require a specific communication archi-

tecture (either the inclusion of a centralized coordinator, or the existence of non–trivial

cliques (i.e., complete sub–graphs)). Other algorithms are based on distributed receding

horizon techniques [58, 59, 60], where the treatment of the problem dynamics is made by

taking a finite sequence of static problems. Even though this formulation is very flexible

(e.g., it allows us to include transient performance criteria and other constraints different

from the resource limitation), receding horizon algorithms impose a high computational

burden since an optimization problem is solved at each algorithm’s step. Finally, we find

heuristic methods. For instance, market–based control [19, 61, 62, 63]. These heuristic

methods generally lack a theoretical support that guarantees the proper achievement of

the required goals.

To tackle the resource allocation problem among networks of dynamical systems, we

use a continuous–time version of the center–free algorithm first introduced in [24] and

extended in [35]. This technique belongs to the class of fully–distributed algorithms

studied in the seminal work of Tsitsiklis [64]. In the framework proposed by Tsitsiklis,

each system of the network is associated with an agent that manages the allocated re-

source taking into account a given objective. Starting with a feasible allocation, each

agent updates the corresponding resource by following a given function that depends on

the decisions of neighboring agents. The simple idea behind the method makes it ap-

propriate for applications where the agents have elementary computational capabilities.

Moreover, the use of a continuous–time approach leads to a natural interaction of the

considered method with dynamical systems modeled by differential equations.

The main contribution of this dissertation is to obtain sufficient conditions that

guarantee asymptotical convergence of the distributed resource allocation algorithm to

a desired solution, even if the decisions of each agent influence the behavior of a nonlinear

4



1.2 Resource Allocation Problems with Lower–Bound Constraints

dynamical system. Our results are inspired by the ideas developed in [32], due to the

close relationship between the center-free algorithm and the continuous–time consensus

protocols analyzed in [32]. We notice that convergence conditions can be directly derived

from [46, 48] for systems with linear dynamics. Nonetheless, the nonlinear case is more

challenging. In order to address the nonlinear case, we use passivity theory [65, 66].

Specifically, we prove that it is possible to drive a passive system (conceptually, a passive

system is a multi–port system that can store but cannot generate energy) to a desired

state by using a resource–allocation–based controller. Similar results are derived in

[49, 67, 68, 69]. However, in these works, resource limitation is not taken into account

(a more comprehensive discussion regarding the differences of our contributions and the

results given in the cited works is developed in Section 3.2.5).

To illustrate the applicability of our results, we present two engineering problems

related to the management of smart energy systems. The first application deals with the

control of heating, cooling, and air conditioning (HVAC) systems of large buildings that

are not over–designed. In this case, there exists a trade–off between the comfort of the

building’s occupants and the available heating/cooling power at critical load hours. We

propose a distributed approach that maximizes the comfort of the building’s occupants

under several power constraints. The second application is related to load aggregation for

demand response [70]. This problem is motivated by the fact that active participation

of demand is a central issue in the smart grid concept. In the proposed approach,

participants are encouraged to stay involved in demand response programs, by reducing

the impact that they perceive when it is necessary to curtail their electric load. In all the

cases, we provide simulation results that illustrate the efficiency of the proposed method.

1.2 Resource Allocation Problems with Lower–Bound Con-

straints

Once the key contribution on the convergence of the distributed resource allocation al-

gorithm is set, we propose a novel technique based on a passive dynamical system, that

optimally allocates a certain resource among a subset of nodes in a connected graph.

Then, this technique is applied to solve static resource allocation problems with lower

bound–constraints. The inclusion of lower–bound constraints is crucial in a large num-

ber of practical applications, e.g., in [12, 15, 22], where it is required to capture the

5



1. INTRODUCTION

non–negativity of the resource allocated to the different entities that are involved in the

problem formulation. We use a passivity–based analysis that relies on the tools previ-

ously developed in order to prove that the proposed algorithm asymptotically converges

to the optimal solution under some mild assumptions related to the convexity of the cost

function, and the connectivity of the graph that represents the communication topology.

In order to illustrate our theoretical results, we perform some simulations and compare

our method with other techniques reported in the literature.

Although there exists an extensive literature regarding distributed methods for solv-

ing static resource allocation problems, this field still attracts considerable research at-

tention [16, 36, 54, 71, 72]. A large number of solution methods belong to the general

class of NUM algorithms (a survey can be found in [17]). However, most of these meth-

ods require either the inclusion of a centralized agent or the use of restrictive information

structures (as it is pointed out in [73]). Other approaches that solve the static resource

allocation problem are inspired on the algorithm presented in [35]. The key difference

of the approaches based on [35] compared to our technique is that they do not allow the

explicit inclusion of lower bounds on the decision variables, unless these lower bounds

are added by means of barrier functions (either logarithmic or exact [36]). The problem

of using barrier functions is that they can adversely affect the convergence time (in the

case of using exact barrier functions) and the accuracy of the solution (in the case of us-

ing classic logarithmic barrier functions), especially for large–scale problems [74]. There

are other methods that consider lower bound constraints in the problem formulation.

For instance, the authors in [72, 75], have developed a decentralized technique based

on broadcasting and consensus to optimally distribute a resource considering capacity

constraints on each entity in the network. Nonetheless, compared to our algorithm,

the approach in [72, 75] is only applicable to quadratic cost functions. On the other

hand, authors in [22] propose a novel methodology based on population dynamics. The

main drawback of this technique is that its performance is seriously degraded when the

number of communication links decreases. We point out the fact that other distributed

optimization algorithms can be applied to solve static resource allocation problems, as

those presented in [76], [77], and [37]. Nevertheless, the underlying idea in these methods

is different from the one used in our work, i.e., the authors in [76], [77], and [37] use

consensus steps to refine an estimation of the system state, while in our approach, con-

sensus is used to equalize a quantity that depends on both the marginal cost perceived
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by each agent in the network, and the Karush–Kuhn–Tucker (KKT) multiplier related

to the corresponding resource’s lower bound. In this regard, it is worth noting that

the method studied in this paper requires less computational effort than the methods

mentioned above. Finally, there are other techniques based on game theory and mecha-

nism design [78, 79] that decompose and solve the original problem. Nonetheless, they

need that each agent broadcasts a variable to all the other agents, i.e., a communication

topology given by a complete graph is required. In contrast, the method developed in

our dissertation only uses a communication topology given by a connected graph, which

generally requires lower infrastructure.

Newly, in order to illustrate the performance of the proposed technique, we present

an application that focuses on energy efficiency in smart buildings. More precisely, we

present a distributed solution to the optimal chiller loading problem in multiple chiller

systems [80], which are widely used in large air–conditioning systems. The goal is to

distribute the cooling load among the chillers that comprise the plant to minimize the

total amount of power used by them.

1.3 Distributed Population Dynamics

Finally, this dissertation explores resource allocation methods based on population dy-

namics. Population dynamics have been widely used in the design of learning and con-

trol systems for networked engineering applications, where the information dependency

among elements of the network has become a relevant issue. Classic population dynam-

ics (e.g., replicator, logit choice, Smith, and projection) require full information to evolve

to the solution (Nash equilibrium). The main reason is that classic population dynamics

are deduced by assuming well–mixed populations, which limits the applications where

this theory can be implemented. In this research, we extend the concept of population

dynamics for non–well–mixed populations in order to deal with distributed information

structures that are characterized by non–complete graphs. Although the distributed

population dynamics proposed in this document use partial information, they preserve

similar characteristics and properties of their classic counterpart. Specifically, we prove

mass conservation and convergence to Nash equilibrium. To illustrate the performance

of the proposed dynamics, we show some applications in the solution of optimization

problems, classic games, and the design of distributed controllers.

7
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1.4 Research Questions and Outline of the Contributions

The purpose of this doctoral thesis can be summarized by the following research ques-

tions:

Q1. Can consensus-based resource allocation algorithms be extended to networks of

nonlinear dynamical systems? Under what conditions, classic results on distributed

resource allocation hold for this kind of networks?

Q2. How to address lower–bound constraints in static resource allocation problems by

using distributed exact algorithms?

Q2. Is it possible to modify classic resource allocation methods based on population

dynamics in order to avoid the need of full information? What conditions must be

satisfied to guarantee that modified population dynamics that use local information

preserve the optimality characteristics exhibited by their classic counterpart?

The above questions are tackled in this document as follows.

1.4.1 Chapter 2

In this chapter, we present some basic definitions and preliminary results on algebraic

graph theory and passivity theory. We also introduce an original lemma, related to some

properties of Laplacian matrices of connected graphs (Lemma 2.1.1), that is a key tool

in subsequent analyses.

1.4.2 Chapter 3

Q1 is addressed in Chapter 3. First, we propose a generalization of the static resource

allocation problem for networks of dynamical systems that are modeled by nonlinear

differential equations. Then, we show the design process of resource allocation rules

based on consensus for this kind of networks. Our main contribution, which is stated in

Theorems 3.2.1, 3.2.2, and 3.2.3, is to provide sufficient conditions that guarantee that

the set of systems attain a desired global behavior using only local information. These

conditions are related to the passivity of the considered systems (either dynamical or

memoryless), and the connectivity of the graph that describes the local information

structure. Finally, in this chapter, we present some applications of our main result in

engineering problems.
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Related Publications:

• G. Obando, N. Quijano, and N. Rakoto–Ravalontsalama, “Distributed Resource

Allocation among Dynamical Networks: An Application in Energy Efficient Build-

ings,” In preparation to be submitted to IET Control Theory and Applications,

2015.

• G. Obando, A. Pantoja, and N. Quijano, “Building Temperature Control based on

Population Dynamics,” IEEE Transactions on Control Systems Technology, vol.

22, no. 1, pp. 404–412, 2014.

• G. Obando, N. Quijano, and N. Rakoto–Ravalontsalama, “Distributed building

temperature control with power constraints,” In Proceedings of the 13th European

Control Conference, pp. 2857–2862, 2014.
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in Proceedings of the 2nd Colombian Conference on Automatic Control, 2015.

• G. Obando, N. Quijano, and A. Pantoja, “Population dynamics applied to building

energy efficiency,” In Proceedings of the 50th IEEE Conference on Decision and

Control, pp. 4777–4782, 2011.

1.4.3 Chapter 4

Chapter 4 tackles Q2. The first part of this chapter is devoted to develop a distributed

protocol (cf., Equation (4.4)) to allocate a certain resource among a subset of nodes in

a connected graph. Optimality of this protocol is proven in Proposition 4.2.2 even if the

subset of nodes does not define a connected subgraph. The second part of the chapter

uses the developed protocol to propose a novel distributed algorithm that solves resource

allocation problems with lower–bound constraints (cf., Algorithm 1). Convergence of the

output of this algorithm to the optimal solution of the considered problems is guaran-

teed in Theorem 4.2.1. Finally, we perform a comparison between our algorithm and

other state–of–the–art methods. This comparison shows the advantages of using exact

approaches (as the one proposed in our algorithm) instead of solutions based on barrier

functions.
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Related Publications:

• G. Obando, N. Quijano, and N. Rakoto–Ravalontsalama, “A Center–Free Ap-

proach for Resource Allocation with Lower Bounds,” Submitted to the Interna-

tional Journal of Control, 2015.

1.4.4 Chapter 5

Q3 is answered in Chapter 5, where we extend the results in [81] in order to avoid

the need of full information of classic population dynamics. Our main contribution is

the design of a general method that allows us to deduce several distributed population

dynamics (i.e., population dynamics that evolve using only local information). To illus-

trate our methodology, we present a distributed version of the fundamental population

dynamics (those obtained by applying classic revision protocols), i.e., the distributed

replicator dynamics, the distributed Smith dynamics, the distributed logit dynamics,

and the distributed projection dynamics. Finally, we prove that, although distributed

population dynamics do not use full information, they preserve similar properties as their

classic counterpart, i.e., simplex invariance (cf., Theorem 5.4.1 and Proposition 5.4.1),

and convergence to Nash equilibria (cf., Theorems 5.4.2 and 5.4.3).

Related Publications:

• J. Barreiro–Gómez, G. Obando, N. Quijano, “Distributed Population Dynamics:
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1.4.5 Chapter 6
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1.4.6 Other Contributions
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• G. Obando, J. I. Poveda, and N. Quijano, “Replicator Dynamics Under Pertur-
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Dynamics: Bogota Case Study”. In proceedings of the 14th European Control

Conference, 2015.

11



1. INTRODUCTION

12



2

Preliminaries

First, we describe the notation used throughout the document and presents some pre-

liminary results on graph theory and passivity that are used in the proofs of our main

contributions.

2.1 Graph Theory

In the multi–agent framework considered in this dissertation, we use a graph to model

the communication network that allows the agents to coordinate their decisions. A graph

is mathematically represented by the triplet G = (V,E,A), where V = {1, . . . , n} is the

set of nodes, E ⊆ V × V is the set of edges connecting the nodes, and the adjacency

matrix A is an n× n nonnegative matrix that satisfies: aij = 1 if and only if (i, j) ∈ E,

and aij = 0 if and only if (i, j) /∈ E. Each node of the graph corresponds to an agent of

the multi–agent system, and the edges represent the available communication channels

(i.e., (i, j) ∈ E if and only if agents i and j can share information). We assume that

there is no edges connecting a node with itself, i.e., aii = 0, for all i ∈ V; and that the

communication channels are bidirectional, i.e., aij = aji. The last assumption implies

that G is undirected. Additionally, we denote by Ni = {j ∈ V : (i, j) ∈ E}, the set

of neighbors of node i, i.e., the set of nodes that are able to receive/send information

from/to node i.

Let us define the n × n matrix L(G) = [lij ], known as the graph Laplacian of G, as

13
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follows:

lij =





∑

j∈V
aij if i = j

−aij if i 6= j.

(2.1)

Properties of L(G) are related to connectivity characteristics of G as shown in the fol-

lowing theorem. We remark that a graph G is said to be connected if there exists a path

connecting any pair of nodes.

Theorem 2.1.1. (Adapted from [82]) An undirected graph G of order n is connected if

and only if rank(L(G)) = n− 1.

From Equation (2.1), it can be verified that

L(G)1 = 0, (2.2)

where 1 = [1, . . . , 1]>, 0 = [0, . . . , 0]>. A consequence of this fact is that L(G) is a

singular matrix. However, we can modify L(G) to obtain a nonsingular matrix as shown

in the following lemma, which is the first result of our dissertation.

Lemma 2.1.1. Let Lkr(G) ∈ R(n−1)×n be the submatrix obtained by removing the kth

row of the graph Laplacian L(G), and let Lk(G) ∈ R(n−1)×(n−1) be the submatrix obtained

by removing the kth column of Lkr(G). If G is connected, then Lk(G) is positive definite.

Furthermore, the inverse matrix of Lk(G) satisfies
(
Lk(G)

)−1
lkrk = −1, where lkrk is the

kth column of the matrix Lkr(G).

Proof. First, notice that L(G) is a symmetric matrix because G is an undirected graph.

Moreover, notice that according to Equation (2.1), L(G) is diagonally dominant with

non–negative diagonal entries. The same holds for Lk(G) since this is a sub–matrix

obtained by removing the kth row and column of L(G). Thus, to show that Lk(G) is

positive definite, it is sufficient to prove that Lk(G) is nonsingular.

According to Theorem 2.1.1, since G is connected, L(G) has exactly n − 1 linearly

independent columns (resp. rows). Let us show that the kth column (resp. row) of L(G)

can be obtained by a linear combination of the other columns (resp. rows), i.e., the kth

column (resp. row) is not linearly independent of the rest of the columns (resp. rows).

Since L(G)1 = 0, notice that lik = −∑j∈V,j 6=k lij , for all i ∈ V, i.e., the kth column

can be obtained by a linear combination of the rest of the columns. Furthermore, since

L(G) is a symmetric matrix, the same occurs with the kth row. Therefore, the submatrix

Lk(G) is nonsingular since its n− 1 columns (resp. rows) are linearly independent.
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Now, let us prove that
(
Lk(G)

)−1
lkrk = −1. In order to do so, we use the fact that(

Lk(G)
)−1

Lk(G) = I, where I is the identity matrix. Hence, by the definition of matrix

multiplication, we have that

n−1∑

m=1

l̄kiml
k
mj =

{
1 if i = j

0 if i 6= j
, (2.3)

where lkij and l̄kij are the elements located in the ith row and jth column of the matrices

L(G) and
(
Lk(G)

)−1
, respectively. Thus,

n−1∑

m=1

l̄kiml
k
mi = 1, for all i = 1, . . . n− 1. (2.4)

Let lkrkm be the mth entry of the vector lkrk . Notice that, according to the definition of

Lk(G) and since L(G)1 = 0, lkmi = −∑n−1
j=1,j 6=i l

k
mj− lkrkm Replacing this value in Equation

(2.4), we obtain

−
n−1∑

j=1,j 6=i

n−1∑

m=1

l̄kiml
k
mj −

n−1∑

m=1

l̄kiml
kr
km

= 1, for all i = 1, . . . n− 1.

According to Equation (2.3),
∑n−1

j=1,j 6=i
∑n−1

m=1 l̄
k
iml

k
mj = 0. This implies that

∑n−1
m=1 l̄

k
iml

kr
km

=

−1, for all i = 1, . . . , n− 1. Therefore,
(
Lk(G)

)−1
lkrk = −1.

Theorem 2.1.1 and Lemma 2.1.1 will be used in the analysis of the methods proposed

in this dissertation, which must satisfy the information constraint imposed by the graph

G. This constraint can be formally stated by means of the concept of distributed map.

A distributed map over the graph G is defined as follows [27].

Definition 2.1.1. Given two sets R, Z, a function O : Rn → Zn is distributed over G

if there exist functions Õ1, . . . , Õn : R × B(R) → Z (B(R) denotes the collection of all

subsets of R), such that

Oi(r1, . . . , rn) = Õi (ri, {rj |j ∈ Ni}) ,

for all (r1, . . . , rn) ∈ Rn, and all i = 1, . . . , n.

Roughly speaking, we say that a map is distributed over the graph G if it can be

computed by each node using only local information.
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2.2 Passivity

Passivity theory [66] is a useful tool in the analysis of nonlinear systems. In this section

we provide some definitions regarding this field.

2.2.1 Memoryless Systems

Let us consider the following memoryless system

y = ϑ(x), (2.5)

where ϑ : Rn 7→ Rn is continuous, x ∈ Rn is the system input, and y ∈ Rn is the system

output.

Definition 2.2.1. (Adapted from [83]) We say that the memoryless system given in

Equation (2.5) is passive if x>y ≥ 0, for all x ∈ Rn.

Passivity concept can be extended to dynamical systems as follows.

2.2.2 Dynamical Systems

Let us consider a dynamical system of the form

ξ̇ = ζ(ξ, x)
y = ϑ(ξ, x),

(2.6)

where ξ ∈ Rm is the system state; x ∈ Rn is the system input; y ∈ Rn is the system

output; ζ : Rm × Rn 7→ Rm is locally Lipschitz; and ϑ : Rm × Rn 7→ Rn is continuous.

Furthermore, ζ(0, 0) = 0 and ϑ(0, 0) = 0. Notice that we assume that the number of

inputs and outputs of the system is the same.

Definition 2.2.2. (Adapted from [83]). We say that the dynamical system given in

Equation (2.6) is passive if there exists a continuously differentiable storage function

V (ξ) ≥ 0 such that

x>y ≥ V̇ (ξ), for all (ξ, x) ∈ Rm × Rn.

Additionally, we say that this system is:

• Lossless if x>y = V̇ (ξ), for all (ξ, x) ∈ Rm × Rn.

• Strictly passive if x>y ≥ V̇ (ξ) + ψ(ξ), for some positive definite function ψ, and

for all (ξ, x) ∈ Rm × Rn.
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Passivity theory and Lyapunov stability are closely related. Indeed, there are some

results that link passivity characteristics of systems connected in feedback configurations

to stability of the closed loop response. In this regard, we notice that the definitions of

storage function and Lyapunov function are similar. A key difference is that Lyapunov

functions have to be positive definite whereas storage functions only need to be positive

semidefinite. Nonetheless, there exists a result due to Krasovskii and LaSalle that relaxes

the positive definiteness requirement on Lyapunov functions. This result is described as

follows.

Consider the system

ξ̇ = %(ξ) (2.7)

where % : Rm 7→ Rm is a locally Lipschitz map.

Theorem 2.2.1. Invariance Principle (Adapted from [83]). Let Ω ⊂ Rm be a com-

pact set that is positively invariant with respect to (2.7). Let V : Rm 7→ R be a continu-

ously differentiable function such that V̇ (ξ) ≤ 0 in Ω. Let S be the set of all points in Ω

where V̇ (ξ) = 0. Let M be the largest invariant set in S. Then every solution of (2.7)

starting in Ω approaches M as t→∞.

In this document, we use passivity theory and the invariance principle of Theorem

2.2.1 to analyze the stability properties of local control laws.
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3

Distributed Resource Allocation

Among Dynamic Networks

3.1 Network Dynamics

In several engineering problems, we have to deal with large–scale systems, which are

composed by dynamical entities that interact with each other. We can find a large num-

ber of examples of this kind of systems, especially in the emergent field of smart grids

and smart energy systems. In many of those problems, the main goal is associated with

certain control criteria that depend on the state of the overall system. This overall–state

dependency is challenging since, in some real situations, the geographical distribution of

the entities, the limited power computation, or some privacy issues make the implemen-

tation of traditional centralized controllers (i.e., controllers that know the information of

the whole system) not viable. Under these scenarios, an information constraint emerges.

Hence, it is necessary to seek for distributed solutions as the one represented by the

multi–agent approach depicted in Figure 3.1.

The bottom layer of Figure 3.1 shows a plant (e.g., a smart building) comprised

by n dynamical entities or sub–systems, which can be modeled by the following set of

differential equations,

Σp
i :

{
Ṫi = gi(T, xi)
yi = hi(T, xi)

, for i = 1, . . . , n, (3.1)

where Σp
i denotes the ith sub–system; Ti ∈ Rmi is the sub–system state, which can

represent a physical quantity (e.g., the power generated by a micro-grid, or the temper-
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G

Plant

Multi–agent based controller

xi yi
Σp

i

xi{yi, yj : j ∈ Ni} Σc
i

ith entity

ith agent

Figure 3.1: A large–scale system controlled by a network of agents.

ature of a room in a building); T = [T>1 , . . . , T
>
n ]>; xi ∈ R is the sub–system input; and

y ∈ Rn is the sub–system output. Furthermore, gi : Rmi × R 7→ Rpi is locally Lipschitz,

and h : Rmi × R 7→ R is continuous. Notice that the overall system dynamics are not

necessarily decoupled since gi depends on the global state T . The set of sub–systems

(3.1) can be written in compact form as follows,

Σp :

{
Ṫ = g(T, x)
y = h(T, x)

, (3.2)

where x = [x1, . . . , xn]>, y = [y1, . . . , yn]>, g = [g>1 , . . . , g
>
n ]>, and h = [h1, . . . , hn]>.

On the other hand, the upper layer of Figure 3.1 shows the distributed control scheme

based on a multi–agent architecture. In this class of scheme, we have a set of agents

(i.e., entities that are capable to make decisions [84]. Physically, they can be proces-

sors, computers, or embedded systems) that are connected by a communication network

characterized by the weighted graph G = {V,E,A}. The set of nodes of G represents the

set of agents (therefore, the terms ‘agent’ and ‘node’ are used interchangeably in this

document), and the set of edges of G represents the available communication channels,

i.e., agents i and j can share information if and only if (i, j) ∈ E. Although, the positive

elements of the weighted adjacency matrix A = [aij ] are sometimes used to describe the

intensity of the communication links, we generally assume that they have a value of one,

i.e., aij = 1 if and only if (i, j) ∈ E, and aij = 0 if and only if (i, j) /∈ E. Additionally,

in this document, we consider bidirectional communications, i.e., aij = aji. This implies

that the graph G is undirected.
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The goal of the agents is to drive the plant to a desired global state. To do this,

each agent is responsible for managing one sub–system using only partial information.

Specifically, the ith agent has information on the output of its sub–system and the

outputs of its neighboring sub–systems, i.e., the ith agent knows the values YNi
:=

(
yi, {yj : j ∈ Ni}

)
, where Ni = {j ∈ V : (i, j) ∈ E}. These values can be obtained by

the ith agent by means of measurements, or by using the information received from its

neighbors via the communication network G. Available information is employed by the

agents to take decisions, which are characterized by the control outputs x1, . . . , xn. Thus,

the multi–agent network is mathematically described by the following set of differential

equations

Σc
i : ẋi = ui (YNi

) , for i = 1, . . . , n, (3.3)

where ui : R|Ni|+1 is locally Lipschitz. In compact form, (3.3) is denoted by the following

system,

Σc : ẋ = u(y), (3.4)

where u = [u1, . . . , un]> is a distributed map over the graph G (cf., Definition 2.1.1), i.e.,

ui can be computed by the ith agent employing only local information.

3.2 Control Objective and Resource Allocation Dynamics

3.2.1 Control Objective

Several applications require that the outputs of the sub–systems that comprise the whole

system reach the same value. These applications include, but are not limited to,...

Problems requiring that the sub–systems outputs reach the same value are called

output consensus problems. Formally, output consensus is defined as follows (adapted

from [67]),

Definition 3.2.1. Consider the set of sub–systems given in Equation (3.2). We say that

output consensus is reached if limt→∞ |yi(t)− yj(t)| = 0, for all i, j = 1, . . . , n, where

yi(t) is the output of the sub–system Σp
i at time t.

In this document, we study the case when output consensus has to be achieved under

a multi–variable constraint on the control inputs x1, . . . , xn. This constraint is associated
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with the preservation of a certain resource, and it is formulated as follows,

n∑

i=1

xi = X, (3.5)

where X ∈ R is the available resource. Notice that, if xi is the energy provided by the

ith controller, then (3.5) is related to a general limitation of the total energy that can be

applied to the plant. The inclusion of resource constraints is frequent in many control and

decision–making problems. For instance, building temperature regulation [39], control

of water distribution systems [40], bandwidth allocation [41] and access control [42, 43]

in communication networks, dispatch of distributed generators for frequency regulation

[44], energy saving in lighting systems [22], control for urban drainage systems [45], and

so forth.

Summarizing, the control goal of the multi–agent network (3.4) is twofold:

O1. Satisfying the constraint (3.5).

O2. Driving (3.2) to output consensus.

3.2.2 Resource Allocation Dynamics

In order to reach the objectives described above, it is necessary to design a set of local

control laws, u1, . . . , un, that can be applied by the multi–agent network (3.4). In this

regard, we propose to use the following resource allocation algorithm

ui (YNi
) =

∑

j∈Ni

aij(yj − yi), for all i = 1, . . . , n. (3.6)

We recall that Ni = {j ∈ V : (i, j) ∈ E} is the set of neighbors of node i, and aij > 0 is

the weight of the link that connects nodes i and j.

Before starting the analysis of this algorithm, it is important to notice the fact that

the right hand side of Equation (3.6) is a distributed map over the graph G since the

ith agent only requires local information to compute the quantity
∑

j∈Ni
aij(yj − yi).

We also notice the fact that the resource allocation algorithm corresponds to a classic

consensus protocol, whose effectiveness has been proven in the literature. For instance,

there exists a large number of results regarding the use of (3.6) to solve consensus

problems when yi is the output of a memoryless system that directly depends on xi (cf.,
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Equation(2.5)) [27, 28, 32, 35, 36]. However, our research deals with the dynamic case

(3.2).

We are interested in proving that our control goals O1 and O2 can be achieved by

using (3.6). First, let us focus on O1, i.e., satisfaction of the resource constraint (3.5).

Lemma 3.2.1. Assume that the multi–agent network (3.4) uses the resource allocation

algorithm (3.6). If the initial conditions of (3.4) satisfy the resource constraint (3.5),

i.e.,
∑n

i=1 xi(0) = X, then x(t) satisfies (3.5) for all t ≥ 0.

Proof. It is sufficient to prove that the quantity ρ :=
∑n

i=1 xi is positively invariant.

To do that, let us calculate the time derivative of this quantity, which is given by ρ̇ =∑n
i=1 ẋi. Replacing ẋi by the dynamics of the multi–agent network (3.4) when the

resource allocation algorithm (3.6) is used, we have that ρ̇ =
∑n

i=1

∑
j∈Ni

aij(yj − yi).
In matrix form, this expression is given by ρ̇ = −1>L(G)y, where 1 is the column vector

of ones. Notice that, since the graph Laplacian L(G) is symmetric, 1>L(G) = L(G)1 = 0

(cf., Equation (2.2)). Therefore, ρ̇ = 0. This implies that the quantity ρ =
∑n

i=1 xi is

positively invariant.

Therefore, the resource allocation algorithm attains O1 under a proper initialization.

Notice that this result holds regardless of the topology of the communication network G

and the class of sub–systems dynamics (3.2). In the next section, we provide conditions

on the graph G and on the dynamics of the sub–systems to guarantee that O2 is also

attained by applying (3.6).

3.2.3 Convergence to Output Consensus

The set of sub–systems (3.2) controlled via the multi–agent network (3.4) can be viewed

as the feedback interconnection shown in Figure 3.2. If the agents apply the resource

allocation algorithm described in Equation (3.6), any equilibrium point (T ∗, x∗) of this

feedback interconnection must satisfy the following property.

Proposition 3.2.1. Let (T ∗, x∗) be an equilibrium point of the feedback connection

shown in Figure 3.2, and let y∗ = h(T ∗, x∗) be the steady state output of Σp. If u(y)

is given by the resource allocation algorithm (3.6) and the communication graph G is

connected, then y∗i = y∗j , for all i, j = 1, . . . , n, where y∗i is the ith element of the vector

y∗.
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Σp :




Ṫ = g(T, x)
y = h(T, x)

Σc : ẋ = u(y)

x y

Figure 3.2: Feedback interconnection of systems (3.2) and (3.4).

Proof. If u(y) is given by (3.6), then the dynamics of Σc can be written in matrix form

as ẋ = −L(G)y. Besides, since (T ∗, x∗) is an equilibrium point of the closed loop system,

we have that −L(G)y∗ = 0. This implies that y∗ belongs to the null space of the graph

Laplacian L(G). On the other hand, combining the result stated in Theorem 2.1.1, the

property given in Equation (2.2), and the fact that G is connected by assumption, we

can conclude that the null space of L(G) is equal to the linear span of 1, which is given

by span(1) = {ξ ∈ Rn : ξ = κ1}, where κ ∈ R is a constant. Therefore, y∗ = κ1. Hence,

y∗i = y∗j , for all i, j = 1, . . . , n.

According to Definition 3.2.1, the statement in Proposition 3.2.1 implies that if the

equilibrium point (T ∗, x∗) is asymptotically stable, then output consensus is reached. In

order to analyze the stability of (T ∗, x∗), let us express the dynamics of Σp and Σc in

error coordinates.

The set of sub–systems Σp given in Equation (3.2) can be written in error coordinates

as follows,

ėT = ge(eT , ex)
ey = he(eT , ex),

(3.7)

where eT = T − T ∗, ex = x − x∗, and ey = y − y∗. Moreover, ge(eT , ex) = g(T, x) and

he(eT , ex) = h(T, x)− h(T ∗, x∗), for all (T, x) ∈ Rm × Rn. Notice that he(0, 0) = 0, and

ge(0, 0) = 0 since (T ∗, x∗) is an equilibrium point of (3.2). Let us make the following

assumption on (3.7).

Assumption 3.2.1. Consider the dynamical system (3.7). If ge(0, ex) = 0, then ex = 0.

This assumption prevents the original system (3.2) to have other rest points of the

form (T ∗, x̃∗), where x̃∗ 6= x∗. It is worth noting that systems satisfying Assumption 3.2.1
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are common in several applications, including mobile–sensors networks, multi–machine

power systems, and social swarms (see e.g., [68]).

On the other hand, the dynamics of the multi–agent network Σc (3.4) that applies

the resource allocation algorithm (3.6) is expressed in error coordinates as follows (using

the compact matrix form),

ėx = −L(G)ey. (3.8)

This is true given the fact that L(G)(y−y∗) = L(G)y. The next original result establishes

an important property of this system.

Proposition 3.2.2. Assume that x∗ satisfies the resource constraint (3.5), i.e.,
∑n

i=1 x
∗
i =

X. If x(0) satisfies (3.5) and G is connected, then the multi–agent systems in error co-

ordinates given in Equation (3.8) is passive and lossless from the input ey to the output

−ex.

Proof. Since G is connected, we can use the following storage function,

Vx(ex) =
1

2
ekx
> (

Lk(G)
)−1

ekx, (3.9)

where ekx is the vector obtained by removing the kth element from vector ex, and Lk(G),

is defined in Lemma 2.1.1. Although the inverse matrix of Lk(G) is positive definite

according to Lemma 2.1.1, the storage function Vx(ex) is positive semidefinite since it

does not depend on the kth element of ex. The derivative of Vx(ex) along the trajectories

of (3.8) is given by

V̇x(ex) = ekx
> (

Lk(G)
)−1

ėkx. (3.10)

Let us express ėkx in terms of the matrix Lk(G) as follows,

ėkx = −Lk(G)eky − lkrk eyk , (3.11)

where eyk is the kth element of the vector ey, e
k
y is the vector obtained by removing

the kth element from vector ey, and lkrk is defined in Lemma 2.1.1. Replacing (3.11) in

(3.10), we have that

V̇x(ex) = −ekx
>
eky − ekx

>
(L(G))−1 lkrk eyk .

Taking into account that
(
Lk(G)

)−1
lkrk = −1 (cf., Lemma 2.1.1), we obtain

V̇x(ex) = −ekx
>
eky + 1>ekxeyk . (3.12)
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Notice that 1>ekx =
∑

i∈ν,i 6=k exi , where exi is the ith element of the vector ex. On the

other hand, according to Lemma 3.2.1,

exk(t) = −
∑

i∈ν,i 6=k
exi(t), for all t ≥ 0. (3.13)

This property holds since both x∗ and x(0) satisfy (3.5) by assumption. Using (3.13),

Equation (3.12) can be expressed as follows

V̇x(ex) = −ekx
>
eky − exkeyk

= −e>x ey.
Therefore, (3.8) is lossless.

Passivity of (3.8) is important since the feedback interconnection of two passive

systems generally leads to the emergence of stable rest points. Thus, we take advantage

of this property to establish requirements on (3.7) that ensure output consensus under the

configuration shown in Figure 3.2. These requirements are summarized in the following

contribution.

Theorem 3.2.1. Let (T ∗, x∗) be an equilibrium point of the feedback interconnection of

systems (3.2) and (3.4), where u(y) is given by the resource allocation algorithm (3.6).

Assume that the following conditions hold:

A1. The communication graph G of the multi–agent system (3.4) is connected.

A2. x∗ and x(0) satisfy the resource constraint (3.5).

A3. The system (3.2) expressed in error coordinates with respect to (T ∗, x∗) satisfies

Assumption 3.2.1. Moreover it is strictly passive from the input ex to the output

ey with radially unbounded storage function.

Then (3.2) reaches output consensus.

Proof. Using the result in Proposition 3.2.1, it is sufficient to show that (T ∗, x∗) is

asymptotically stable, or equivalently that the origin of (3.7)–(3.8) is asymptotically

stable. To do this, we use the invariance principle given in Theorem 2.2.1 as follows.

Let us take V (ex, eT ) = Vx(ex)+VT (eT ), where Vx(ex) is the storage function of (3.8)

that is given in Equation (3.9), and VT (eT ) is the storage function of (3.7). Notice that,

since conditions of Proposition 3.2.2 hold and (3.7) is strictly passive, we have that

V̇ (ex, eT ) = V̇x(ex) + V̇T (eT )

≤ −e>x ey + e>x ey − ψ(eT )

= −ψ(eT ),
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where ψ(eT ) is a positive definite function. Furthermore, let us consider the compact

set Ωc = {(ex, eT ) : exk = −∑i∈ν,i 6=k exi , Vx(ex) + VT (eT ) ≤ c}, where c is any positive

real number. Notice that Ωc is bounded since VT (eT ) is positive definite (this is true

since (3.7) is strictly passive) and radially unbounded, and Vx(ex) is positive definite

with respect to {exi : i ∈ V, i 6= k} and radially unbounded. The set Ωc is also positively

invariant with respect to (3.7)–(3.8) since V̇x(ex) + V̇T (eT ) ≤ 0 and
∑

i∈V exi(t) = 0,

for all t ≥ 0 (cf., Lemma 3.2.1). Additionally, we define the set S as the set where

V̇ (ex, eT ) = 0, i.e., S = {(ex, eT ) : eT = 0}. Let M be an invariant set of S. Notice that

if (eT , ex) ∈ M, then ėT = 0. This implies that ge(0, ex) = 0. Hence, ex = 0 (given the

fact that Assumption 3.2.1 holds). Thus, the only invariant set of S is M = {(0, 0)}.
Since Theorem 2.2.1 states that every solution of (3.7)–(3.8) starting in Ωc approaches

M as t→∞, we can conclude that the origin of (3.7)–(3.8) is asymptotically stable.

The result in Theorem 3.2.1 establishes sufficient conditions on the communication

graph (A1), initialization of the local control laws (A2), and characteristics of the

controlled plant (A3) that guarantee that the control objective O2 is reached by using

the resource allocation algorithm (3.6). We notice the fact that, if the controlled plant

does not satisfy the requirement given in A3, then it is possible to implement a first–level

controller that makes the plant passive.

Summarizing, we have designed a set of local control laws (3.6) that allows passive

systems to attain the control goals O1 and O2.

3.2.4 Extension to Memoryless Systems

We can extend the result in Theorem 3.2.1 to deal with passive memoryless systems. To

this end, we consider that, in the resource allocation algorithm (3.6), y = [y1, . . . , yn]>

is the output of the following memoryless system

y = ϑ(x). (3.14)

where ϑ : Rn 7→ Rn is a continuous function. In order to simplify the analysis, let us

write the above system in error coordinates as follows,

ey = ϑe(ex). (3.15)

where ex = x− x∗, ϑe(ex) = ϑ(x)− ϑ(x∗), and x∗ is an equilibrium point of the closed

loop system given by Equations (3.4) and (3.14). Similarly to the dynamic case, we

make the following assumption on (3.15).
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Assumption 3.2.2. Consider the memoryless system (3.15). If e>x ϑ
e(ex) = 0, then

ex = 0.

This requirement is satisfied if, for instance, the vector ϑ is comprised of monotonic

functions.

The following theorem states that the results obtained for the dynamic case also hold

for the memoryless case.

Theorem 3.2.2. Let x∗ be an equilibrium point of the system given by (3.4) and (3.14).

Assume that the following conditions hold:

A1. The communication graph G of the multi–agent system (3.4) is connected.

A2. x∗ and x(0) satisfy the resource constraint (3.5).

A3. The memoryless system (3.14) expressed in error coordinates with respect to x∗

satisfies Assumption 3.2.2. Moreover it is passive from the input ex to the output

ey.

Then O1 is attained, and the output y of the memoryless system (3.14) reaches consen-

sus.

Proof. We proceed as follows,

• O1: The proof of the resource constraint satisfaction
(
i.e.,

∑n
i=1 xi(t) = X, for all

t ≥ 0
)

follows from Lemma 3.2.1.

• Output consensus: To prove that the system output y reaches consensus, it is suf-

ficient to show that x∗ is asymptotically stable under the system given by (3.4)

and (3.14) (this equivalence follows from the fact that any equilibrium point of(
(3.4),(3.14)

)
must satisfy output consensus (cf., Proposition 3.2.1)), or equiva-

lently that the origin of
(
(3.8),(3.15)

)
is asymptotically stable.

Let us take Vx(ex) equal to the storage function given in Equation (3.9). Since (3.8)

is lossless from ey to −ex (cf., Proposition 3.2.2), we have that V̇x(ex) = −e>x ey.
Replacing ey by the output of the memoryless system (3.15), we obtain V̇x(ex) =

−e>x ϑe(ex). Since (3.15) is passive and satisfies Assumption 3.2.2, we conclude

that V̇x(ex) is negative definite. Finally, we define the positively invariant compact

set Ωc = {ex : exk = −∑i∈ν,i 6=k exi , Vx(ex) ≤ c}, where c is any positive real

number, and employ the invariance principle given in Theorem 2.2.1 to prove that

any solution of
(
(3.8),(3.15)

)
starting in Ωc asymptotically converges to the origin.
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The statement in Theorem 3.2.2 is not surprising since the steady state behavior of

passive dynamical systems is similar to the behavior of passive memoryless functions.

In fact, we can take advantage of this similarity to derive a general case that merges the

results obtained in Theorems 3.2.1 and 3.2.2. This general case is formulated as follows.

Consider the function f : Rm × Rn 7→ Rn defined by

f(T, x) = h(T, x) + ϑ(x), (3.16)

where h(T, x) is the output of the dynamical system (3.2), and ϑ(x) is the output of the

memoryless system (3.14). Assume that our problem is to attain the objective O1 and

reach consensus on f(T, x). To address this problem, we propose to use the multi–agent

based controller (3.4) with the following resource allocation algorithm.

ui =
∑

j∈Ni

(
fj − fi

)
, for all i = 1, . . . , n. (3.17)

To analyze the performance of the proposed controller, we use a similar procedure to

the one developed in Section 3.2.3. Thus, we begin by expressing the closed loop system
(
(3.2),(3.4)

)
, with u defined in (3.17), in error coordinates with respect to the equilibrium

point (T ∗, x∗) as follows.

ėT = ge(eT , ex)

ėx = −L(G)
(
he(eT , ex) + ϑe(ex)

)
.

(3.18)

Let us make the following assumption on this system.

Assumption 3.2.3. Consider the error dynamics (3.18). If ge(0, ex) = 0 and ϑe(ex) =

0, then ex = 0.

Different from Assumption 3.2.1, Assumption 3.2.3 allows the system (3.2) to has

other equilibrium points of the form (T ∗, x̃∗), where x̃∗ 6= x∗, as long as these points do

not satisfy the equation (x̃∗ − x∗)> (ϑ(x̃∗)− ϑ(x∗)) = 0.

If (3.18) satisfies some conditions, then we can guarantee an appropriate performance

of the proposed control scheme. This set of conditions is specified in the following result.

Theorem 3.2.3. Let (T ∗, x∗) be an equilibrium point of the feedback interconnection of

systems (3.2) and (3.4), where u is given by the resource allocation algorithm (3.17).

Assume that the following conditions hold:
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A1. The communication graph G of the multi–agent system (3.4) is connected.

A2. x∗ and x(0) satisfy the resource constraint (3.5).

A3. The system (3.2) expressed in error coordinates with respect to (T ∗, x∗) is strictly

passive from the input ex to the output he(eT , ex) with radially unbounded storage

function.

A4. The memoryless system (3.14) expressed in error coordinates with respect to x∗ is

passive from the input ex to the output ϑe(ex).

A5. Assumption 3.2.3 holds.

Then O1 is attained, and the variable f(T, x) given in Equation (3.16) reaches consen-

sus.

Proof. We proceed as follows:

• O1: The proof of the resource constraint satisfaction
(
i.e.,

∑n
i=1 xi(t) = X, for all

t ≥ 0
)

is straightforward by using the same steps described in the proof of Lemma

3.2.1.

• Consensus on f(T, x): In order to prove that the variable f(T, x) reaches consen-

sus, it is sufficient to show that (T ∗, x∗) is asymptotically stable under the system(
(3.2),(3.4)

)
, with u defined in (3.17) (this equivalence follows from the fact that

any equilibrium point of this system must satisfy consensus on f(T, x)), or equiv-

alently that the origin of (3.18) is asymptotically stable. To do this, we take the

function V (ex, eT ) = Vx(ex)+VT (eT ), where Vx(ex) is the storage function of (3.8)

that is given in Equation (3.9), and VT (eT ) is the storage function of (3.7). Then,

we use the same steps as in the proof of Theorem 3.2.1 to obtain that the derivative

of V (ex, eT ) along the trajectories of (3.18) is given by

V̇ (ex, eT ) = −ψ(eT )− e>x ϑe(ex),

where ψ(eT ) > 0, and exϑ
e(ex) ≥ 0 since A4 holds.

Furthermore, let us consider the compact set

Ωc = {(ex, eT ) : exk = −
∑

i∈ν,i 6=k
exi , Vx(ex) + VT (eT ) ≤ c},

where c is any positive real number. Notice that Ωc is bounded since VT (eT ) is

positive definite (this is true since (3.7) is strictly passive) and radially unbounded,

30



3.2 Control Objective and Resource Allocation Dynamics

and Vx(ex) is positive definite with respect to {exi : i ∈ V, i 6= k} and radially

unbounded. The set Ωc is also positively invariant with respect to (3.18) since

V̇x(ex) + V̇T (eT ) ≤ 0 and
∑

i∈V exi(t) = 0, for all t ≥ 0. Additionally, we define the

set S as the set where V̇ (ex, eT ) = 0, i.e., S = {(ex, eT ) : eT = 0, e>x ϑ
e(ex) = 0}.

Let M be an invariant set of S. Notice that if (eT , ex) ∈ M, then ėT = 0. This

implies that ge(0, ex) = 0. Therefore, if (eT , ex) ∈ M, then ge(0, ex) = 0 and

e>x ϑ
e(ex) = 0. Hence, ex = 0 (given the fact that A5 holds). Thus, the only

invariant set of S is M = {(0, 0)}. Since Theorem 2.2.1 states that every solution

of (3.18) starting in Ωc approaches M as t → ∞, we can conclude that the origin

of (3.18) is asymptotically stable.

In conclusion, we have shown that the resource allocation algorithm (3.17) allows

the multi–agent based controller (3.4) to satisfy the resource constraint (3.5) and drive

a specified quantity to consensus, as long as this quantity depends on the output of a

passive system and/or the output of a passive memoryless function. The inclusion of

memoryless terms is important; for instance, to capture actuator constraints as we will

show in Section 3.3.4.

3.2.5 Discussion

In the literature, significant research attention has been paid to the control of dynamical

systems through consensus–based protocols (e.g., see [47, 67, 68, 69]. Most of this

research effort is directed towards achieving O2 whereas O1 is somewhat disregarded.

However, in a large number of applications O1 plays a fundamental role since it can

be directly linked to the satisfaction of technical constraints on the actuators. For

instance, a limitation on the available energy used to control the plant. Some works

address O1 by assuming that the dynamics of the controlled plant are linear. In this

case, conditions that guarantee a proper performance of the closed–loop system can be

derived by employing linear matrix inequalities [85, 86].

For the nonlinear case, passivity based theory is used in [67, 68, 69]. Nonetheless,

these papers do not deal with the same problem studied in this dissertation. Once again,

the key difference is that they do not take into account the control goal O1, i.e., the

resource constraint (3.5). We highlight the work in [67], where the authors propose a
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control scheme similar to the one discussed in our research. They analyze the closed–loop

response of systems of the following form

Plant:





Ṫ = g(T, x)

y = h(T )

, Controller:



x =

∑

j∈Ni

(yj − yi) . (3.19)

We notice that the main difference with the distributed resource allocation algorithm
(
(3.3),(3.6)

)
is that in (3.19), the control law does not have internal dynamics, but it

is the output of a memoryless system. The authors in [67] require similar conditions to

those provided in Theorem 3.2.1 to guarantee that output consensus is reached.

Comparing the proposed control scheme
(
(3.2),(3.4)

)
with the one shown in (3.19),

it can be noticed that the latter can be adapted to take the form
(
(3.2),(3.4)

)
. For

instance, let us consider the following transformation

Plant:





Ṫ = g(T, x̃)
˙̃x = x
y = h(T )

, (3.20)

where we have augmented the state of the original plant by adding the vector x̃. Hence,

one might thing that our result in Theorem 3.2.1 is covered by the result in [67]. This

is not true since the transformation shown in (3.20) does not preserve passivity, i.e.,

we cannot guarantee that if the plant in (3.19) is passive, then the augmented plant in

(3.20) is also passive. To clarify this statement, we propose the following example.

Example 3.2.1. Let us consider a linear system and its corresponding transformation

given by

Plant:





Ṫ = −T + x

y = T

,

Augmented Plant :





Ṫ = −T + x̃

˙̃x = x

y = T

,

(3.21)

where T, x, x̃ ∈ R. The original plant is strictly passive from the input x to the output

y since the time derivative of the storage function V (T ) = 1
2T

2 is equal to V̇ (T ) =

−T 2 +xy. To verify passivity of the augmented plant, let us employ the following lemma

and the fact that a minimal time invariant realization (as the one that describes the

augmented plant in (3.21)) is passive if and only if it is positive real (see [87])
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Lemma 3.2.2. Positive Real (adapted from [83]). Let G(s)C(sI−A)−1B be a transfer

function matrix, where (A,B.C) is a minimal realization. Then G(s) is positive real if

and only if there exist matrices P = P> > 0, and L such that

PA+A>P = −L>L (3.22a)

PB = C> (3.22b)

If we apply this lemma to the augmented plant in (3.21), we have that any matrix P

must have the following form (using (3.22b))

P =

[
p 1

1 0

]
,

where p ∈ R. However, det(P ) = −1, i.e., P is not positive definite, which contradicts

the requirements in Lemma 3.22. Thus, the augmented plant is not positive real. In this

way, we have shown that, although the original plant is passive, the augmented plant

does not preserve this characteristic. In conclusion, this example shows that the result

given in Theorem 3.2.1, cannot be obtained directly from the contribution developed in

[67].

The first part of this chapter has presented the general framework studied in our

dissertation, and the design of local control laws (3.6) that allow passive systems (dy-

namical or memoryless) to attain the objectives O1 and O2. To illustrate the relevance

of our results, in the next sections we present two application examples. In the first

example, we address the distributed temperature control in large–scale buildings whose

heating systems are not over–designed (i.e., energy efficient buildings). The second ex-

ample deals with a widely studied problem involving distributed decision making, the

optimal resource allocation in a network of agents. Specifically, we present an applica-

tion related to the distributed management of the customers of an aggregating entity in

a smart grid environment.

3.3 Distributed Building Temperature Control Under Power

Constraints

3.3.1 Motivation

Due to a widespread interest on environmental and economic issues, energy efficiency

is becoming a research trending topic in the last time; an example of this fact is the
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increasing number of scientific publications on that subject (e.g., see [88] and the refer-

ences therein). In this regard, several studies have shown that most of the total energy

consumption is done by commercial and residential buildings, e.g., according to [89],

buildings in Europe account for around 40% of the total energy, and over 70% for the

electricity usage. Additionally, buildings are the main responsible for greenhouse gas

emissions (almost 40% of the total [90]), causing harmful effects on the environment.

Therefore, it is not surprising to find in the literature new strategies, guidelines and

standards that tend to maximize the buildings energy efficiency. Most of them focus

on the optimization of heating, ventilating, and air conditioning (HVAC) systems, given

the fact that these systems consume the largest amount of energy in a building. For

instance, in [91] a model predictive control (MPC) that uses the rooms’ thermal storage

capacity is presented, where the main idea is to pre-heat (cool) the rooms depending on

the occupation pattern to maintain the temperature in a desirable range, while the cost

of the energy is minimized. Similarly, the authors in [60] use MPC to manage the energy

in residential buildings. Several constraints and models of the buildings’ equipment and

energy market are considered. In addition, a hierarchical structure is proposed in order

to reduce the underlying computational complexity. Other applications can be found in

[92] and [93].

The applications mentioned above consider that the available power in the corre-

sponding HVAC system is always enough to reach the control goals. This is a reasonable

assumption, since HVAC systems are, in general, designed to handle worst case loads.

However, this over–design of HVAC equipment is one of the main reasons for energy in-

efficiency [90]. Recent standards (e.g., [94]) are tending to solve the problem by means of

the implementation of new guidelines, such as the net–zero energy concept (where build-

ings do not demand energy from the electrical grid, but they are capable to supply their

load by means of distributed generators). Additionally, demand response policies are

becoming more common in building management systems [89]. One of those strategies,

which leads to the reduction of energy costs, is the limitation of the power consumption

during hours of peak electricity demand. Hence, it is possible that at certain hours of

the day, some building’s services or comfort levels are affected.

For these reasons, it is important to consider scenarios in which the available power

of the HVAC system is constrained. In this regard, we can cite the works in [95] and [61],

where the authors address the problem using a centralized dynamic resource allocation
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approach based on population dynamics and market mechanisms, respectively. Cen-

tralized strategies have shown an appropriate performance to control buildings’ HVAC

systems under power constraints. However, since a building is a large scale system com-

prised by a large number of rooms (e.g., typical commercial buildings have more than

one hundred rooms), the implementation of a centralized controller is not efficient, or

even it could be unfeasible. One possibility is to use distributed methods with multiple

controllers that make decisions in a coordinated way, where the coordination is made by

means of a communication network, instead of a centralized agent. Thus, we propose

to use a distributed methodology, which is based on the multi–agent scheme described

in (3.1), to regulate the temperature inside the rooms of a building that has a central

heating system (which is a common configuration in several residential buildings). We

prove that the proposed control method optimally allocates the available heating power

among the rooms, even when that power is strongly limited and the setpoints of the

rooms are unreachable. In order to do that, we use the passivity–based analysis given

in Theorem 3.2.1. For analysis purposes, before describing the controller design, let us

introduce the building thermal model.

3.3.2 Thermal Model of a Building

In general terms, the mathematical description of the thermal behavior of building sys-

tems is complex since the temperature in the zones of a building is not homogeneous.

However, the problem is usually simplified by dividing the system into sections in which

a uniform temperature is assumed, and heat transfer occurs only from section to section.

In [96, 97], the authors outline a general model that considers the two most important

components that constitute a building: rooms and walls. We use the ideas in [96, 97]

in order to model the thermal performance of a building consisting of n rooms, where

each of them is enclosed by a certain number of walls that can be arranged according to

different topologies (i.e., the spatial location of rooms is, in general, arbitrary). Figure

3.3 shows an example of the configuration of a building in which the rooms are arranged

in a row. This type of configuration is common in several types of structures, as in

livestock buildings.
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Room 1 Room 2 Room n− 1 Room n. . .

Figure 3.3: n rooms arranged in a row.

3.3.2.1 Thermal Model for a Wall

A wall can be divided into layers with uniform temperature (as shown in Figure 3.4).

The temperature Twj,k of the layer k within the wall j is given by

Tw
j,k−1 Tw

j,k+1Tw
j,k T r

i
Tw
j,k

Figure 3.4: Schematic representation of a room and a wall. The leftmost figure illustrates

the cross section of a wall divided into layers, while the rightmost one shows the top view

of a room surrounded by walls.

(ρwj,kc
w
j,kV

w
j,k)Ṫ

w
j,k = Kj

k,k+1(Twj,k+1 − Twj,k)+
Kj
k,k−1(Twj,k−1 − Twj,k)

(3.23)

where ρwj,k, c
w
j,k, V

w
j,k are, respectively, the density, specific heat, and volume of the layer

k (the term ρwj,kc
w
j,kV

w
j,k is associated with the thermal capacitance of the layer). The

thermal conductance Kj
k,k±1 associated with the link between layers k and k± 1, can be

estimated by harmonic mean as:

Kj
k,k±1 =

Aj
(Lj,k±1/2)/λj,k±1 + (Lj,k/2)/λj,k

where Aj is the area of the jth wall, Lj,k denotes the thickness of the layer k, and λj,k

its thermal conductivity. Subscripts k + 1 and k − 1 are related to the adjacent layers.

For the layers which are in direct contact with a room or the external environment,

there are some conditions that can be described as follows:

• For a layer k within the wall j that is in contact with the room i and does not have

an adjacent layer k ± 1, the term Kj
k,k±1(Twj,k±1 − Twj,k) in Equation (3.23) must
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be replaced with hriAj(T
r
i − Twj,k). T ri represents the temperature of the ith room,

and hri its coefficient of convective heat transfer.

• For a layer k within the wall j that is in contact with the external environment

and does not have an adjacent layer k± 1, the term Kj
k,k±1(Twj,k±1 − Twj,k) must be

replaced with haAj(T
a
j,k−Twj,k). T aj,k represents the ambient temperature perceived

by the layer k of the wall j, and ha the external coefficient of convective heat

transfer.

3.3.2.2 Thermal Model for a Room

A schematic representation of a room surrounded by walls is shown in Figure 3.4. In our

model, we assume a uniform temperature in each room. Moreover, in order to formulate

an appropriate thermal control strategy, we consider that each of the rooms has a sensor

and an actuator (heater). With these assumptions, the temperature T ri of the ith room

can be modeled as

(ρacaV
r
i )Ṫ ri =

∑

j∈Ωr
i

hriAj(T
w
j,k − T ri ) + xi + di, (3.24)

where Ωr
i is the set of walls adjacent to room i, Twj,k is the temperature of the layer

within the wall j that is in direct contact with the room i; Aj is the area of wall j;

ρa, ca are, respectively, the density and the specific heat of the air; V r
i is the volume of

the ith room, and hri its coefficient of convective heat transfer; xi is the heating power

supplied by the actuator; and di is a thermal disturbance (e.g., due to opening a window

or because of the presence of people who are generating heat). Similarly to Equation

(3.23), the terms ρacaV
r
i and hriAj in Equation (3.24) are associated with the thermal

capacitance of the room i and with the thermal conductance of the junction between

the room i and the wall j, respectively.

3.3.2.3 Unified Model

If we define the state vector

T = [T r1 , ..., T
r
N , T

w
1,1, ..., T

w
1,m1

, ..., TwM,1, ..., T
w
M,mM

]> (3.25)
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where N is the number of rooms of the building, M is the number of walls, and mj is

the number of layers of the jth wall, Equations (3.23) and (3.24) can be unified into a

single expression as follows [98].

θiṪi =
W∑

j=1

αi,j(Tj − Ti) + αi,a(T
a
i − Ti) + vi(xi + di), for i = 1, . . . ,W, (3.26)

where Ti is the ith element of the vector T (Ti corresponds to the temperature of a

component of the building, that can be either a room or a wall’s layer); θi > 0 is

its thermal capacitance, αi,j ≥ 0 is the thermal conductance of the junction between

elements i and j (we notice that αi,j = 0 if the junction between elements i and j does

not exist. Moreover, αi,j = αj,i); αi,a ≥ 0 is the thermal conductance of the junction

between the ith element and the outside environment (again, αi,a = 0 if this junction

does not exist); the variable vi takes the values of 1 if i = 1, . . . , n, and 0 otherwise; and

T ai is the ambient temperature perceived by the ith element when it is in direct contact

with the outside environment, if the ith element is not in direct contact with the outside

environment, then T ai = 0. Finally, W denotes the dimension of the vector T, i.e., W is

the total number of elements (rooms/layers) that comprise the building.

Since in the next sections we plan to use an analysis based on the result given in

Theorem 3.2.1, it is convenient to write the dynamics of the building thermal system

given in Equation (3.26) in error coordinates, i.e., expressing (3.26) in the form (3.7).

To do this, let T ∗ = [T ∗1 , . . . , T
∗
W ]>, x∗ = [x∗1, . . . , x

∗
N ]> be an equilibrium point of

the referred system (considering fixed values for T a1 , . . . , T
a
W , d1, . . . , dn). Moreover, in

order to simplify the notation, let us define the weighted graph Gb = {Vb,Eb,Ab} that

represents the connections between the elements that comprise the building, where the

set of nodes Vb = {1, . . . ,W} is related to the components of the building, following the

order established in Equation (3.25) (e.g., node 1 corresponds to the first room, node n+1

corresponds to the first layer of the wall 1, etc.). The set of edges Eb ⊂ Vb×Vb is related to

the thermal interactions between the building’s components, i.e., (i, j) ∈ Eb if and only if

αi,j > 0. The weighted adjacency matrix Ab is formed by the thermal conductances of the

junctions between the components of the building, i.e., the component that corresponds

to the ith row and jth column of Ab is given by αi,j . Using Gb, we can express the

38



3.3 Distributed Building Temperature Control Under Power Constraints

building thermal model in error coordinates as follows,

ėT = −




1
θ1

. . .
1
θW





L(Gb)+



α1,a

. . .

αW,a





eT

+




1
θ1

. . .
1
θW



[

In
0(W−n)×n

]
ex

(3.27)

where eT = [T1 − T ∗1 , . . . , TW − T ∗W ]>, ex = [x1 − x∗1, . . . , xn − x∗n]>, L(Gb) is the graph

Laplacian of Gb, In is the n× n identity matrix, and 0(W−n)×n is a (W − n)× n matrix

with all its entries being zero. We notice that L(G) is symmetric given the fact that

αi,j = αj,i. Before stating an important property of this system, let us introduce the

following assumption.

Assumption 3.3.1. For all i ∈ Vb, there exists some j ∈ Vb with αj,a > 0 (i.e., the

element that corresponds to node j is in direct contact with the external environment),

such that there is a path between i and j.

This implies that no component of the building is completely isolated from the outside

environment. Without this assumption, one building’s component could store energy

indefinitely, which is not realistic. Taking into account this assumption, the system

given in Equation (3.27) has the following property.

Proposition 3.3.1. Let T ∗ = [T ∗1 , . . . , T
∗
W ]>, x∗ = [x∗1, . . . , x

∗
n]> be an equilibrium point

of the system stated in Equation (3.26). If Assumption 3.3.1 holds, then (3.27) is strictly

passive from the input ex = [x1−x∗1, . . . , xn−x∗n]> to the output ey = [T1−T ∗1 , . . . , Tn−
T ∗n ]>.

Proof. We use the following positive definite storage function

V1(eT ) =
1

2

W∑

i=1

θie
2
Ti (3.28)

where eTi is the ith element of the vector eT, i.e., eTi = Ti − T ∗i , for i = 1, . . . ,W . The

derivative of V1 along the trajectories of the system stated in Equation (3.27), is given

by

V̇1(eT ) = −
[
e>TL(Gb)eT +

W∑

i=1

αi,ae
2
Ti

]
+

n∑

i=1

eTiexi (3.29)
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where exi is the ith element of the vector ex, i.e., exi = xi − x∗i , for i = 1, . . . , n.

Let us prove that the expression in square brackets is positive definite. Since L(Gb) is

symmetric, we know that e>TL(Gb)eT = 1
2

∑
i∈Vb

∑
j∈Vb

αi,j(eTj − eTi)2 [32], which means

that both e>TL(Gb)eT and
∑W

i=1 αi,ae
2
Ti

are positive semidefinite functions. Furthermore,

let us note that:

1. e>TL(Gb)eT = 0 if and only if eTi = eTj , for all αi,j 6= 0. Hence, e>TL(Gb)eT = 0

implies that eTi = eTk if there exists a path between i and k.

2.
∑W

i=1 αi,ae
2
Ti

= 0 if and only if eTi = 0, for all αi,a 6= 0.

Mixing conditions 1 and 2, and given the fact that Assumption 3.3.1 holds, we con-

clude that the expression in brackets is positive definite, i.e., e>TL(Gb)eT +
∑W

i=1 αi,ae
2
Ti

=

ψ1(eT ), where ψ1(eT ) > 0. Moreover, since
∑n

i=1 eTiexi = e>x ey, we have that

V̇1(eT ) = −ψ1(eT ) + e>x ey,

and the system is strictly passive (cf., Definition 2.2.2).

Let us note that we have taken the error of the control signals as the input of our

system, and the error of the rooms’ temperatures as the output (this fact is since,

according to Equation (3.25), the ith output of the system corresponds to the error

between the temperature of the ith room and its respective setpoint, for i = 1, . . . , n).

We do not include the temperatures of the walls’ layers in the output because they are

not relevant for any control strategy. The property pointed out in Proposition 3.3.1 is

appealing because passivity guarantees the stability of the closed loop response when

we add the multi–agent based controller described in
(
(3.4),(3.6)

)
. Indeed, we notice

that the building thermal system (3.27) satisfies A3, i.e, it satisfies all the assumptions

imposed on the controlled plant in Theorem 3.2.1.

3.3.3 Problem Statement

The main goal of a building temperature control strategy is to keep the temperature of

the building’s rooms close to a reference, we denote the reference of the ith room by

T si . The setpoints are not necessarily the same for all the rooms, given the fact that

they depend on the preferences of the occupants, the kind of room and its usage. In

order to reach the aforementioned goal, we assume that each room of the building has
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an actuator (heater). These actuators have some constraints depending on the kind of

heating system installed in the building.

A typical configuration, which is common in several buildings, is the central heating

system. In this configuration, the total heating power Q is generated in one place (e.g.,

a furnace room) and then it is distributed to the N rooms that comprise the building.

Hence, we have the following constraint,

n∑

i=1

xi + xn+1 = Q, (3.30)

where xi is the heating power consumed in the ith room, for i = 1, . . . , n; and xn+1

is the remaining power, i.e., the amount of heating power that is not consumed in any

room. We notice that the value of each xi is nonnegative. Moreover, it must not exceed

the capacity of the corresponding actuator. Hence, we have that

0 ≤ xi ≤ xi, for i = 1, . . . , n
xn+1 ≥ 0

(3.31)

where xi denotes the maximum capacity of the actuator of the ith room. If the amount

of generated heating power is large enough, it is possible to reach all the temperature

setpoints in the building’s rooms by using individual controllers, for instance, we can use

a proportional–integral (PI) controller per room. However, this strategy does not work

properly if the available power is scarce, because the power allocation is not performed

in an optimal way (e.g., see [19, 95]). This condition is rare but could occur in buildings

with non over–designed heating systems, i.e., when the heating system is not designed

to handle worst case loads.

In the latter situation, a good alternative is to use a dynamic resource allocation

strategy, where the objective is to distribute the generated heating power among the

rooms, in such a way that the building’s occupants perceive the same welfare. A mea-

sure of the success of the allocation process is given in [19, 61, 95], where the authors

propose to use the variance of the differences between the setpoints and the steady state

temperatures across the rooms, as follows,

Var =
1

n

n∑

i=1

((T si − T ∗i )− 〈T si − T ∗i 〉)2, (3.32)

where 〈·〉 denotes mean value. The smaller the variance, the more successful the alloca-

tion done by the control strategy.
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We recall that buildings are generally large scale systems, which are comprised by

a large number of rooms. Hence, the application of centralized control strategies is not

suitable. In this regard, the distributed method proposed in Section 3.2 is an appealing

alternative to address the proposed problem. Under this method, each room has a

controller that makes decision in a coordinated way, and the coordination is made by

means of a communication network (i.e., we do not require the inclusion of a centralized

agent). In the following section, we provide a detailed description of the design of the

distributed controller.

3.3.4 Distributed Control Strategy

The performance criterion given in Equation (3.32), suggests that a good strategy to

solve the stated problem is to lead an agreement among the temperature errors in the

rooms. In fact, if we assume that all the heating power Q is supplied to the rooms (i.e.,
∑n

i=1 xi = Q), and if we omit the constraints (3.31), then our building temperature

control problem is solved by applying the multi–agent approach
(
(3.4),(3.6)

)
, with yi =

Ti − T si , and initial conditions satisfying
∑n

i=1 xi(0) = Q. In this case, notice that

Theorem 3.2.1 guarantees that at equilibrium all the temperature errors Ti − T si are

equal; therefore, the variance (3.32) goes to zero. Nonetheless, the assumptions described

above are not realistic. First, in situations where there is enough power to reach the

temperature references in all the rooms, the power supplied to the rooms is generally

lower than Q, i.e.,
∑n

i=1 xi < Q. Second, constraints (3.31) cannot be removed since

they are closely related to the operation of the actuators. Hence, we need to devise a

control strategy that addresses all the requirements stated in the problem formulation.

In order to do this, we propose to preserve the multi–agent based controller (3.4), but

with some modifications on the resource allocation protocol (3.6).

The first modification is associated with the inclusion of constraints (3.31) by means

of memoryless functions. To this end, we change the consensus variable from yi = Ti−T si
to

fi(Ti, xi) = (Ti − T si ) + εϕi(xi), for all i = 1, . . . , n, (3.33)

where ε > 0 is a small positive constant, and ϕi(xi) has the following properties:

• i) ϕi(xi) is a monotonically increasing continuous function defined in (0, xi),

• ii) ϕi(xi)→ −∞, when xi → 0,
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• iii) ϕi(xi)→ +∞, when xi → xi.

We can think of ϕi(xi) as the derivative of a convex barrier function that penalizes the

control signal when it tries to deviate outside its feasible domain (we refer the reader to

[99] for a detailed description on barrier functions). In this regard, the constant ε should

be designed in such a way that the effect of the function ϕi(xi) is minimized when the

control signal is far from the boundary of its allowable limits.

The second modification allows the rooms to consume less heating power than Q,

i.e.,
∑n

i=1 xi ≤ Q. This is done by including an additional agent (n + 1) that manages

the remaining power xn+1. Thus, the modified multi–agent system is characterized by

the graph Gc = {Vc,Ec,Ac}, where Vc = {1, . . . , n+ 1}, Ec ⊂ Vc × Vc, and Ac = [aij ] is

the adjacency matrix.

After these changes, we can rewrite the dynamics of the multi–agent based controller

as follows,

ẋi =
∑

j∈Ni

aij (fj − fi), for all i = 1, . . . , n+ 1, (3.34)

where Ni = {j ∈ Vc : (i, j) ∈ Ec} is the neighborhood of node i in Gc. We notice the

fact that Ni depends on the communication topology (given by Gc), and not on the

building’s structure (given by Gb). Furthermore, since we have included the additional

node (n+ 1), we define the corresponding function fn+1 as follows,

fn+1(xn+1) = εϕn+1(xn+1) (3.35)

where ϕn+1(xn+1) is a strictly increasing continuous function defined in (0,+∞), which

tends to−∞ when xn+1 tends to 0. Notice that, since the consensus variables fi, . . . , fn+1

depends on the output of the building thermal system, and on the memoryless term

ϕi(xi) that keeps the control signals feasible, the multi–agent controller (3.34) have the

form
(
(3.4),(3.17)

)
. Therefore, we can use the result in Theorem 3.2.3 to study the

properties of the proposed control strategy.

Proposition 3.3.2. Consider the building thermal system (3.26) controlled via the

multi–agent network (3.34) with f = [f1, . . . , fn+1] given by Equations (3.33) and (3.35).

If the initial conditions of the controller satisfy the power constraint (3.30), i.e.,
∑n+1

i=1 xi =

Q, and the communication graph Gc is connected, then the variable f asymptotically

reaches consensus. Moreover, the control signals satisfy (3.30) for all t ≥ 0.
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Proof. It is sufficient to show that the closed–loop system
(
(3.26),(3.34)

)
, with f =

[f1, . . . , fn+1] given by Equations (3.33) and (3.35), meets the conditions of Theorem

3.2.3.

• First, let us show that
(
(3.26)(3.34)

)
has an equilibrium point (T ∗, [x∗>, x∗n+1]>)

that satisfies
∑n+1

i=1 x
∗
i = Q: According to Equation (3.27), if (T ∗, [x∗>, x∗n+1]>), is

a rest point of (3.26), then

0 = −diag
(

1
θ1
, . . . , 1

θn

)

L(Gb)+




α1,a

. . .

αW,a







︸ ︷︷ ︸
Ab

T ∗

+diag
(

1
θ1
, . . . , 1

θn

)[ In

0(W−n)×n

]
x∗ + d,

(3.36)

where d is a vector of constants that describes the influence of the ambient tem-

perature and the external disturbances on the building thermal system. Hence,

T ∗ = A−1
b

[
In

0(W−n)×n

]
x∗ +A−1

b diag−1

(
1

θ1
, . . . ,

1

θn

)
d

︸ ︷︷ ︸
d′

. (3.37)

The matrix Ab is invertible since it is positive definite (see the proof of Proposition

3.3.1).

On the other hand, the multi–agent network (3.34) must satisfy at equilibrium

−L(Gc)f(T ∗, [x∗>, x∗n+1]>) = 0, (3.38)

where

f(T ∗, [x∗>, x∗n+1]>) =

[
In 0n×(W−n)

01×n 01×(W−n)

]
T ∗ − [T s1 , . . . , T

s
n, 0]>

+ε
[
ϕ1(x∗1), . . . , ϕn+1(x∗n+1)

]>
.

Since Gc is connected by assumption, the null space of L(Gc) is equal to the linear

span of 1 (cf., Theorem 2.1.1). Therefore, Equation (3.38) is satisfied if and only

if

ξ1 =

[
In 0n×(W−n)

01×n 01×(W−n)

]
T ∗ − [T s1 , . . . , T

s
n, 0]>

+ε
[
ϕ1(x∗1), . . . , ϕn+1(x∗n+1)

]>
,
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where ξ ∈ R. Replacing the value of T ∗ given in Equation (3.37), we obtain

ξ1 =

[ (
A−1
b

)n

01×n

]
x∗ + ε

[
ϕ1(x∗1), . . . , ϕn+1(x∗n+1)

]>
+ d′′, (3.39)

where (A−1
b )n is the submatrix formed by the n first rows and the n first columns

of matrix Ab, and d′′ is a vector of constants, which is defined by

d′′ =

[
In 0n×(W−n)

01×n 01×(W−n)

]
d′ − [T s1 , . . . , T

s
n, 0]> .

According to the Karush–Kuhn–Tucker first order necessary conditions, it follows

from (3.39), that finding an equilibrium point of
(
(3.26),(3.34)

)
that satisfies the

power constraint (3.30) is equivalent to solve the following optimization problem

min
(x∗,x∗n+1)

x∗>
(
A−1
b

)n
x∗ + d′′

>
[x∗>, 0]> + εΦ(x∗, x∗n+1)

subject to
n+1∑

i=1

xi = Q
(3.40)

where Φ(x∗, x∗n+1) satisfies ∇Φ = [ϕ1(x∗1), . . . , ϕn+1(x∗n+1)]>, and (A−1
b )n is posi-

tive definite since it is a strictly diagonally dominant matrix (see Equation (3.36)).

Notice that, the objective function of (3.40) is strictly convex since (A−1
b )n is

positive definite and the gradient of Φ is comprised of monotonically increasing

functions. Therefore, the optimization problem (3.40) has a unique solution. This

implies that
(
(3.26),(3.34)

)
has an equilibrium point that satisfies the power con-

straint (3.30). Moreover, this equilibrium point is unique.

• A1 holds by assumption.

• A2 holds since the closed loop system
(
(3.26),(3.34)

)
has an equilibrium point

satisfying
∑n+1

i=1 x
∗
i = Q, and the initial conditions satisfy

∑n+1
i=1 xi(0) = Q by

assumption.

• A3: The fact that (3.26) expressed in error coordinates is strictly passive, from the

input [x1− x∗1, . . . , xn+1− x∗n+1]> to the output [T1− T ∗1 , . . . , Tn− T ∗n , 0]>, follows

from Proposition 3.3.1. Moreover, the storage function is radially unbounded.

• A4: Notice that the memoryless term ϕi(xi) satisfies the following property inside

the feasible domain of xi:

(ϕi(xi)− ϕi(x∗i ))(xi − x∗i ) ≥ 0, for all i = 1, . . . , n+ 1. (3.41)
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This is true since ϕi(xi) is monotonically increasing. Therefore, the memoryless

function [(ϕ1(x1) − ϕ1(x∗1)), . . . , (ϕn+1(xn+1) − ϕn+1(x∗n+1))]> is passive with re-

spect to the error vector [x1 − x∗1, . . . , xn+1 − x∗n+1]>.

• A5: Since the ϕi(xi) is monotonically increasing, for all i = 1, . . . , n + 1, then

ϕi(x)− ϕi(x∗i ) = 0 if and only if xi = x∗i . Thus, Assumption 3.2.3 holds.

In conclusion, all assumptions of Theorem 3.2.3 hold. This proves the statement in

Proposition 3.3.2.

Let us analyze the importance of Proposition 3.3.2.

3.3.4.1 Power Constraints

A direct consequence of Proposition 3.3.2 is that the proposed resource allocation algo-

rithm prevents the calculated control signal to violate the constraint given in Equation

(3.30), i.e, the algorithm guarantees that the sum of the powers allocated in the rooms

of the building plus the remaining power (which is not used to heat the rooms) is always

equal to the generated heating power Q.

On the other hand, ϕi(·) acts as a barrier function that forces the ith control signal

xi to satisfy the constraint (3.31). In order to explain the effect of ϕi(·), let us consider

the following situation: if xi is close enough to its upper bound xi, then the value of the

corresponding function fi is higher than the value of the other functions, this happens

given the fact that ϕi(xi) (which is a component of fi) is a monotonically increasing

continuous function that tends to +∞ when xi approximates to its upper bound. When

the above occurs, ẋi is negative (according to Equation (3.34)), and therefore xi decreases

and does not exceed the upper bound xi. The opposite happens when xi is close to its

lower bound.

Summarizing, satisfaction of constraints (3.30) and (3.31) is guaranteed under the

proposed control strategy.

3.3.4.2 Equilibrium Points

In this subsection, we use the result given in Proposition 3.3.2 to characterize the equi-

librium points of the building thermal system controlled via the algorithm proposed in
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Equation (3.34) under different conditions. Moreover, we show that these equilibrium

points solve the problem stated in Section 3.3.3.

Proposition 3.3.2 entails that, at equilibrium, all the functions f1, . . . , fn+1, are

equal. For a better understanding of the implications of this feature, we define f̂i(Ti) =

fi(Ti, xi) − εϕi(xi) = Ti − T si , as a function that only depends on the temperature of

the ith room and its corresponding setpoint. Furthermore, following the same defini-

tion, we have that f̂n+1 = fn+1(xn+1)− εϕn+1(xn+1) = 0. Using the auxiliary functions

f̂i, . . . , f̂n+1, let us analyze the properties of the equilibrium point (T ∗, [x∗>, x∗n+1]>).

• Normal conditions: if for all i = 1 . . . , n + 1, x∗i is inside its feasible domain

and far from its allowable limits (which are given in Equation (3.31)), then the

value of εϕi(x
∗
i ) can be neglected (given the fact that ε is small). Therefore, we

have that fi ≈ f̂i, for all i = 1 . . . , n + 1; and according to Proposition 3.3.2,

fi(T
∗
i , x

∗
i ) = fn+1(x∗n+1), for all i = 1, . . . , n. Hence, f̂i(T

∗
i ) = T ∗i − T si ≈ 0, for all

i = 1, . . . , n. This means that the temperature setpoints can be reached by using

the proposed control strategy, as long as the power required in each room satisfies

its corresponding constraints.

• Scarce heating power: another scenario emerges when, at steady state, all the

control signals are inside their feasible domains and far from their allowable limits,

except the remaining power, i.e., x∗n+1 → 0. Let us note that, in this case, εϕi(x
∗
i )

can be neglected for i = 1, . . . , n, but not for i = n + 1, where we have that

εϕn+1(x∗n+1) < 0. Therefore, applying Proposition 3.3.2, we can conclude that

fi = T ∗i − T si ≈ εϕn+1(x∗n+1) < 0, for all i = 1, . . . , n. This implies that, despite

the temperatures of the rooms do not reach the corresponding setpoints due to

lack of heating power, all the steady state errors (T ∗i − T si , for each i = 1, . . . n)

are almost equal, minimizing the variance given in Equation (3.32).

• General case: Finally, let us assume a general case, where in steady state, all the

control signals are inside their feasible domains, but only a set of them, denoted

by X, is far from the allowable limits, i.e.,

X = {x∗i : x∗i is not close to 0, and x∗i is not close to xi};

while other set of signals, denoted by X, is close to the lower bound, i.e.,

X = {x∗i : x∗i → 0};
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and other set of signals, denoted by X, is close to the upper bound, i.e.,

X = {x∗i : x∗i → xi}.

As in the previous scenarios, εϕi(x
∗
i ) ≈ 0 if x∗i ∈ X. However, this is not the case

if x∗i belongs to the other sets. Using the properties of the function ϕi(·), it can be

verified that εϕi(x
∗
i ) < 0 if x∗i ∈ X, while εϕi(x

∗
i ) > 0 if x∗i ∈ X. Hence, by using

the result in Proposition 3.3.2, we can conclude that the following relationships

hold at equilibrium:

– f̂i ≈ f̂j if x∗i ∈ X and x∗j ∈ X.

– f̂i < f̂j if x∗i ∈ X and x∗j ∈ X.

– f̂i > f̂j if x∗i ∈ X and x∗j ∈ X.

Moreover, since f̂i(T
∗
i ) = T ∗i −T si , for all i = 1, . . . , n, the above relationships imply

that no heating power is assigned to the rooms that are warmer to the average,

while the colder rooms receive the maximum allowable power. In this regard, the

heating power is optimally allocated.

Summarizing, the equilibrium point of the closed loop system
(
(3.26),(3.34)

)
exhibits

optimal properties under different scenarios of the building temperature control problem.

Besides, since this equilibrium point is asymptotically stable according to Proposition

3.3.2, we can conclude that the multi–agent approach (3.34) properly solves the building

temperature control problem described in Section 3.3.3.

3.3.5 Simulation Results

In order to illustrate the performance of the proposed control technique, we simulate the

thermal behavior of a building comprised of 50 rooms that are arranged as in Figure 3.3.

The building has a central heating system of 130 KW, with one actuator per room. The

maximum power that each actuator can provide is 3.25 KW. Moreover, the temperature

setpoints are: 19 ◦C for rooms 1–17, 20 ◦C for rooms 18–34, and 21 ◦C for rooms 34–50.

In the simulation, we assume that the outdoor temperature changes according to Figure

3.5a.

The results obtained with the proposed controller and a communication network

with ring topology, are shown in Figures 3.5b–3.5d. Figure 3.5b shows the evolution
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of the temperatures in each room from 7h to 20h, Figure 3.5c shows the total heating

power used by the rooms, and Figure 3.5d shows the performance index related to the

variance of the error across the rooms (cf., Equation (3.32)). It can be noticed that, from

7h–13h it is not possible to reach the setpoints despite the fact that all the available

power is used to heat the rooms. However, the controller minimizes the variance of the

error across the rooms to a value of zero, which implies that the building’s occupants are

perceiving the same welfare (i.e., the scarce power situation described in Section 3.3.4.2).

When the weather is warmer, i.e., around 13h–17h, the temperature in each room rises

and reaches the corresponding setpoint, while the power consumption is reduced. In the

last part of the simulation, we have a similar behavior as the one described in the first

part, due to the decrease of the outdoor temperature.
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Figure 3.5: a. Ambient temperature during a day (7h–20h). b. Temperatures of the

building’s rooms. Rooms 1–17 (red), rooms 18–34 (yellow), rooms 35–50 (blue). c. Heat-

ing Power allocated in the building’s rooms. d. Variance of the error across the rooms.

Distributed controller (solid line), PI controllers (dashed line).

Finally, we compare the performance of the proposed technique with the most widely

used method in building temperature control, i.e., PI control [90]. In order to do that,

we implement one PI controller per room in the same scenario described above. Each
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PI controller seeks to regulate the temperature of its corresponding room without any

information on the state of the other rooms, i.e., their decisions are not coordinated.

Moreover, we notice the fact that the maximum power that each PI controller can use

depends on both the actuator capacity and the consumption of the other rooms. The

variance of the errors across the rooms with this technique is depicted in dashed line

in Figure 3.5d. It can be noticed that individual PI controllers do not work properly

when the outdoor temperature is lower and the available heating power is not enough to

reach all the setpoints, i.e., from 7h–11h, and from 19h–20h; in that time intervals, the

variance has a large value. This adverse effect is due to an inefficient power allocation.

3.3.6 Discussion

When the generated heating power is enough to reach the temperature setpoints of the

building’s rooms, the behavior of the closed loop system controlled via the proposed

algorithm is the same as the behavior achieved with individual PI controllers, i.e., all

the temperature references are reached without steady state error. However, under a

scarce power scenario, PI controllers do not allocate the available resource in an optimal

way, as shown in Figure 3.5d, where the variance of the temperature errors across the

rooms has a high value at critical load hours. This fact is due to a lack of coordination

among the controllers. The proposed algorithm does not have that problem because

the communication network allows the agents to share information on the state of the

neighboring rooms’ temperatures. In this way, each agent is able to make decisions that

improve the performance of the overall system, rather than the performance of a single

room.

Optimal results can also be obtained by using model predictive control (centralized

or distributed). However, although that technique offers wide formulation flexibility and

its predictive features can enhance the energy saving, it suffers from high computational

requirements and model dependence, which reduces its scalability, especially for large

buildings with not negligible thermal coupling among rooms [100]. In this regard, the

distributed methodology that we propose has the advantage of being formulated as a

set of “quasi–linear” differential equations, whose implementation does not demand high

computation resources. Hence, its scalability is substantially higher than that provided

by receding horizon techniques.
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3.4 Optimal Resource Allocation in a Network of Agents

The classical resource allocation problem arises when we have a scarce resource, and it

is necessary to distribute it among a set of entities in order to optimize a given objective

function. We talk about resource allocation over networks of agents when the resource

allocated to each entity is managed by an agent that only has partial information of

the overall optimization problem. In order to reach the optimal allocation, the agents

coordinate their decisions by using a communication network with a given topology.

If we have a set of n entities and we assign one agent per entity, the aforementioned

problem can be expressed mathematically as follows [11],

min φ(x)
subject to

∑n
i=1 xi = X

(3.42)

where φ : Rn 7→ R is a strictly convex and differentiable cost function, X ∈ R is a given

constant related to the total amount of resource, xi is the amount of resource allocated

to the ith entity, and x = [x1, . . . , xn]>. In the literature on distributed optimization [7],

it is common to assume that the ith agent knows the marginal cost associated with its

corresponding entity, i.e., ∂φ
∂xi

. Moreover, this information can be shared by the agents

using the available communication network, which is modeled by the graph G = (V,E,A).

The local information structure imposed by the graph G must be considered as part

of the problem statement. Therefore, the main objective is to formulate a distributed

algorithm that can be implemented by each agent to solve (3.42) using only its available

information. In this case, notice that the available information of the ith agent is given

by
(
∂φ
∂xi
,
{
∂φ
∂xj

: j ∈ Ni

})
.

A well–known method to address (3.42) that satisfies the local information constraint

is formulated as follows [24, 35].

ẋi =
∑

j∈Ni

ai,j

(
∂φ

∂xj
− ∂φ

∂xi

)
, for all i = 1, . . . , n. (3.43)

Although the optimality of (3.43) has been proved in [36], we are interested in ana-

lyzing this method form the perspective of passive memoryless systems given in Section

3.2.4.

Notice that (3.43) is equivalent to the resource allocation algorithm given by Equa-

tions (3.4) and (3.6), where y = ∇φ(x). Let us show that the memoryless system
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y = ∇φ(x) is passive from the input x − x∗ to the output y − y∗, where x∗ is the

global optimum of (3.42), y∗ = ∇φ(x∗), and x satisfies the resource constraint, i.e.,
∑n

i=1 xi = X. To this end, we use the following facts:

• Since φ is strictly convex, then this satisfies the inequality φ(x∗) > φ(x)+∇φ(x)(x∗−
x), for all x 6= x∗ (see, e.g., [101]). Given the fact that x∗ is the global optimum

of (3.42), then ∇φ(x)(x− x∗) > 0, for all x 6= x∗ that satisfies
∑n

i=1 xi = X.

• According to the Karush–Kuhn–Tucker first order necessary conditions, ∇φ(x∗)

belongs to the linear span of 1, i.e., ∇φ(x∗) = λ1, where λ ∈ R. Thus, ∇φ(x∗)(x−
x∗) = λ(1>x−1>x∗). Since both x and x∗ satisfy the resource constraint, we can

conclude that ∇φ(x∗)(x− x∗) = 0.

Combining these two facts, we obtain (∇φ(x)−∇φ(x∗)) (x−x∗) > 0, for all x 6= x∗.

Thus, the considered memoryless system is passive. Furthermore, notice that this system

satisfies Assumption 3.2.2 since (∇φ(x)−∇φ(x∗)) (x− x∗) = 0 only if x = x∗.

In conclusion, the result in Theorem 3.2.2 can also be used to guarantee the conver-

gence of (3.43) to the optimum of (3.42) as long as
∑n

i=1 xi(0) = X.

3.4.1 Inclusion of Inequality Constraints by means of Barrier Functions

We can take advantage of the convexity of φ to include in (3.42) inequality constraints

of the form

xi ≤ xi ≤ xi, for all i = 1, . . . , n, (3.44)

where xi and xi are, respectively, the lower and upper bound of xi. This is done by

using convex barrier functions that keep the decision variables strictly inside the feasible

set. Barrier functions are continuous functions defined inside the feasible domain whose

value increases to infinity when the variable approaches to the boundary of its feasible

domain. In our specific case, we use a strictly convex barrier function for each inequality

constraint (3.44), as follows [99]:

bi(xi) = −ε
(

ln (xi − xi) + ln (xi − xi)
)
, ∀i = 1, . . . , n, (3.45)

where ε > 0 is a constant that minimizes the effect of the barrier function when the

solution is far from the boundary of the feasible set. These barrier functions are added
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to the objective function φ(x) in Equation (3.42), i.e., our new objective function becomes

φb(x) = φ(x)− ε∑n
i=1 (ln (xi − xi) + ln (xi − xi)).

Notice that, if φ is strictly convex, φb remains strictly convex. Moreover, although

the solution of the optimization problem that includes barrier functions is suboptimal

for the original problem, this solution can be sufficiently close to the optimum depending

on the value of ε. Furthermore, since bi only depends on xi, the algorithm (3.43) remains

distributed if we replace ∂φ
∂xi

by ∂φb
∂xi

, for all i = 1, . . . , n.

3.4.2 Initial Feasible Solution

The algorithm given in (3.43) needs an initial feasible solution of the corresponding

optimization problem. Although finding this starting point is straightforward if the

optimization problem does not include the inequality constraints (3.44) (in this case,

we can take (xk(0) = X,xi(0) = 0, for all i = 1 . . . , n, i 6= k) as the initial feasible

solution), it is not trivial if they are considered. If this is the case, a preliminary phase

that provides us the required feasible starting point is required. To implement the

preliminary phase, we use a continuous–time version of the the distributed constraint

satisfaction algorithm described in [70].

In order to maintain the distributed nature of our resource allocation problem, we

assume that only one agent knows the total amount of available resource X. The main

idea of the preliminary phase is to solve two auxiliary problems that use local informa-

tion, and then combining the solutions to get the starting point for the main problem
(
(3.42), (3.44)

)
. Let β1i and β2i , two auxiliary variables associated with the ith node.

Using these variables, we establish the following auxiliary problems,

Problem 1 : min φ1(β1) = β>1 β1,

s. t. 1>β1 = d−
n∑

i=1

xi

Problem 2 : min φ2(β2) = β>2 β2

s. t. 1> β2 =

n∑

i=1

(xi − xi)

(3.46)

where β1 = [β11 , . . . , β1n ]> and β2 = [β21 , . . . , β2n ]>. It can be shown that the optimal

solutions of Problems 1 and 2 are, β∗1 =
d−

∑n
i=1 xi
n 1 and β∗2 =

∑n
i=1 (xi−xi)

n 1, respectively.
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Moreover, since φ1 and φ2 are strictly convex, these optimal solutions can be obtained

by using the distributed algorithm described in Equation (3.43) with the following initial

feasible solutions:

β1i(0) =

{
d− xi if i = k
−xi otherwise

,

β2i(0) = xi − xi, for all i = 1, . . . , n.

where we assume, without loss of generality, that the kth agent knows the value X. We

notice the fact that the agents only require local information to obtain β1(0) and β2(0).

Using the optimal solutions of Problems 1 and 2 in Equation (3.46), we can obtain a

feasible solution of the main problem
(
(3.42), (3.44)

)
, as follows,

xi(0) = xi + (xi − xi)
(
β∗1,i
β∗2,i

)
, for all i = 1, . . . , n.

Let us note that if 0 ≤ β∗1,i
β∗2,i
≤ 1, then this initial solution satisfies all the constraints

of our resource allocation problem
(
(3.42), (3.44)

)
. Moreover if

β∗1,i
β∗2,i

< 0 or
β∗1,i
β∗2,i

> 1, the

problem is infeasible.

3.4.3 Application to Electric Load Aggregation for Demand Response

In this section, we present an application of the optimal resource allocation in networks

of agents. The considered application deals with the problem of electric load aggrega-

tion for demand response [102]. This problem is motivated by the fact that the active

participation of demand is a central issue in the smart grid concept, in this regard, ag-

gregators play a fundamental role. Aggregators are mediators between consumers, who

provide their demand flexibilities, and the other participants of electricity markets (e.g.,

distribution/transmission system operators, retailers, electricity brokers). So, when a

demand deviation is required (e.g., due to imbalances in the distribution network), ag-

gregators can provide it by acting on the loads of their clients. In return to these possible

load curtailments, aggregators’ clients pay lower electricity prices. Moreover, since each

aggregator generally has a large number of clients, distributed management strategies

are becoming more relevant.

The operation of an aggregator can be viewed as a resource allocation process, where

the total amount of load deviation that the aggregator has to provide at certain time,
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needs to be split between their clients (consumers). One possibility is to do an allocation

of the necessary load curtailment considering only technical constraints as it is described

in [70]. However, a better opportunity emerges given the fact that the aggregator can

take advantage of the aforementioned allocation process to generate other benefits. For

instance, it is important to encourage the clients to stay involved in demand response

programs by minimizing the impact that they perceive due to the load curtailments.

To formally describe this situation, let us assume that the aggregator manages a set of

n consumers. The authors in [62], propose to model the benefit perceived by the ith

consumer as follows,

ui(pi) = ki,1 − ki,2e−ki,3pi − ki,4pi, (3.47)

where pi is the electric power being used by the ith consumer, ki,1, ki,2, ki,3, and ki,4

are positive parameters that depend on the consumer’s preferences. Moreover, if the

consumer suffers a load curtailment xi, the new benefit that the consumer perceives is

ui(pi− xi). Therefore, the cost of the load curtailment for the ith consumer is given by

ci(xi) = ui(pi)− ui(pi − xi). (3.48)

It can be shown that ci is a strictly convex function of xi.

In this regard, the aggregator must satisfy the required load deviation DL, minimiz-

ing at the same time, the total cost perceived by its clients, i.e., φ(x) =
∑n

i=1 ci(xi).

Mathematically, this problem is formulated as follows

min φ(x) =
∑n

i=1 ci(xi)
subject to

∑n
i=1 xi = DL

0 ≤ xi ≤ pi, for all i = 1, . . . , n,
(3.49)

where xi is the load curtailed from the ith consumer. The inequality constraints model

the fact that the aggregator cannot curtail more load than that used by the consumer.

As previously mentioned, an aggregator can have a large number of clients, e.g., small

consumers. Hence, a centralized operation is not the best option. Moreover, in a smart

grid environment, it is assumed that each consumer has computation and communication

capabilities. For these reasons, the optimization problem given in Equation (3.49) can

be appropriately approached by means of a multi–agent system that uses the distributed

protocol given in Equation (3.43). In order to do that, we assign one agent per client.

Each agent knows (or estimates) the function describing the benefit of the corresponding
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client, and its current consumption. The coordination of the agents’ decisions is done

through a communication network with a topology given by a connected graph G.

To illustrate the performance of the distributed resource allocation algorithm, we

simulate the operation of an aggregator that manages 8 clients, and uses a commu-

nication network with single–path topology (see Figure 3.7). Let us suppose that at

certain time, the power consumptions of the clients are: p1 = 0.6 MW, p2 = 0.9 MW,

p3 = 0.9 MW, p4 = 0.4 MW, p5 = 0.5 MW, p6 = 0.7 MW, p7 = 0.4 MW, p8 = 0.2

MW. Furthermore, at that time, the aggregator has to provide a load deviation (i.e.,

load curtailment) DL = 2.7 MW. The parameters of the benefit function (3.47) for each

client are given in Table 4.2, and the corresponding cost functions (3.48) are depicted in

Figure 3.6. Let us note that the cost functions for clients 1 and 4 (5 and 8) are different

despite the fact that their corresponding benefit functions have the same parameters.

This happens due to the different power consumption levels. Moreover, in order to ad-

dress the inequality constraints of the problem, we use logarithmic barrier functions, as

it was explained in Section 3.4.1. The evolution of of the distributed resource allocation

algorithm (3.43) is depicted in Figure 3.8. In this case, we use the following initial fea-

sible point: x1(0) = 0.35 MW, x2(0) = 0.53 MW, x3(0) = 0.53 MW, x4(0) = 0.23 MW,

x5(0) = 0.30 MW, x6(0) = 0.41 MW, x7(0) = 0.23 MW, x8(0) = 0.12 MW. It can be

noticed that the steady state solution satisfies the technical constraints of the problem,

i.e.,
∑n

i=1 x
∗
i = DL = 2.7 MW, and 0 ≤ x∗i ≤ pi, for i = 1, . . . , n. Furthermore, Figure

3.9 shows that the total cost function decreases and finally reaches a reduction of 13.7%.

In this regard, it is worth noting that the impact of load curtailment on the aggregator’s

clients is reduced by minimizing the cost function stated in Equation (3.48). This can

be seen as an incentive for clients to keep involved in demand response programs.
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Figure 3.6: Cost function for each aggregator’s client.
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Table 3.1: Utility functions’ parameters

ki,1 ki,2 ki,3 ki,4

i = 1 2.95 2.95 2.00 1.77

i = 2 1.77 1.77 2.00 0.53

i = 3 1.31 1.31 2.00 0.13

i = 4 2.95 2.95 2.00 1.77

i = 5 1.30 1.30 5.00 0.39

i = 6 1.11 1.11 5.00 0.11

i = 7 1.60 1.60 5.00 0.96

i = 8 1.30 1.30 5.00 0.39

1 2 3 4

5678

Figure 3.7: Communication network with single–path topology.

3.4.4 Discussion

The classic resource allocation problem (3.42) have been widely studied in the literature

on optimization (see e.g., [11] and the references therein). In fact, the properties of

the algorithm stated in Equation (3.43) are well–known [24, 35, 36]. Therefore, the

optimality analysis of (3.43) cannot be considered as an original contribution of Section

3.4. The purpose of this section has been to show a novel perspective of the classic

resource allocation problem from passivity theory. We have proven that there exists an

equivalence between (3.42) and a passive memoryless system that is given by the gradient

of the cost function as long as this cost function is convex. Thus, we have shown that

the result given in Theorem 3.2.2 is applicable to the solution of the optimal resource

allocation problem via the algorithm (3.43). On the other hand, Section 3.4.2 have

described a constraint satisfaction algorithm that can be employed to initialize (3.43)

when inequality constraints of the form (3.44) are added to the problem formulation.

Notice that, the same initialization phase is required in the multi–agent scheme proposed

to address the building temperature control problem (see Section 3.3). Regarding the
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Figure 3.8: Evolution of the decentralized resource allocation algorithm.
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Figure 3.9: Evolution of the total cost perceived by the aggregator’s clients.

inequality constraints (3.44), it has been shown that they can be satisfied by introducing

convex barrier functions. However, this approach decreases the accuracy of the solution.

Indeed, in the next chapter, we will show that the adverse effect caused by the influence

of barrier function is more pronounced in large–scale applications. A solution to this

problem will also be proposed in the next chapter.

Finally, we have described an application to the distributed management of the

customers of an aggregating entity in a demand response environment. We notice the fact

that demand response programs, where consumers allow an aggregator to curtail part

of their load, are not exclusively applied by commercial and industrial users nowadays.

They have been extended to residential consumers. This fact has greatly increased the

number of clients that aggregators need to manage. In this regard, the development

and analysis of distributed techniques, as the one shown in Section 3.4.3, is important to

properly deal with large number of users. Hence, these techniques facilitate the inclusion

of new participants in demand response programs.
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4

Optimal Resource Allocation with

Lower–Bound Constraints

In this chapter, we go deeper into the study of the optimal resource allocation prob-

lem stated in Section 3.4. Specifically, we focus our attention on solution methods for

problems that include lower–bound constraints in the resource allocated to each entity.

The capability of handling this kind of constraints is crucial in a large number of prac-

tical applications, e.g., in [12, 15, 16, 36, 54, 71, 72], where it is required to capture the

non–negativity of the resource allocated to each entity.

The algorithm proposed in this chapter is motivated by the fact that, although lower–

bound constraints can be addressed by using barrier functions (cf., Section 3.4.1), the

inclusion of these functions affect the accuracy of the solution, especially for large–scale

problems [74]. Therefore, it is necessary to develop other methods whose accuracy does

not depend on the problem scale.

4.1 Problem Statement

We recall that the resource allocation problem arises when there is a limited amount

of a certain resource (e.g., electric power, computing capacity, or execution time), and

it is necessary to establish an optimal distribution policy between some entities (e.g.,

loads, processors, or controllers). If we impose lower–bound constraints to the resource
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allocated to each entity, the problem is formulated as follows [11],

min
x

φ(x) :=
n∑

i=1

φi(xi) (4.1a)

subject to
n∑

i=1

xi = X (4.1b)

xi ≥ xi, for all i = 1, . . . , n, (4.1c)

where xi ∈ R is the resource allocated to the ith entity; x = [x1, . . . , xn]>; φi : R 7→ R is

a strictly convex and differentiable cost function; X is the available resource; and xi, is

the lower bound of xi, i.e., the minimum amount of resource that has to be allocated to

the ith entity.

Given the fact that we are interested in distributed algorithms to solve the problem

stated in Equation (4.1), we consider a multi–agent network, where the ith agent is

responsible for managing the resource allocated to the ith entity. Moreover, we assume

that the agents have limited communication capabilities, so they can only share informa-

tion with their neighbors. This constraint can be represented by a graph G = {V,E,A}
as it was explained in the previous chapter.

Avoiding the lower–bound constraints (4.1c), Karush–Kuhn–Tucker (KKT) condi-

tions establish that at the optimal solution x∗ = [x∗1, . . . , x
∗
n]> of the problem given in

Equation (4.1a–4.1b), the marginal costs φ′i(xi) = dφi
dxi

must be equal, i.e., φ′i(x
∗
i ) = λ, for

all i = 1, . . . , n, where λ ∈ R. Hence, a valid alternative to solve (4.1a–4.1b) is the use

of consensus methods. For instance, we can employ the algorithm presented in Section

3.4, which is described as follows:

ẋi =
∑

j∈Ni

(
φ′j(xj)− φ′i(xi)

)
, for all i ∈ V. (4.2)

This algorithm has two main properties: i) at equilibrium, φ′i(x
∗
i ) = φ′j(x

∗
j ) if the

nodes i and j are connected by a path; ii)
∑n

i=1 x
∗
i =

∑n
i=1 xi(0), where xi(0) is the

initial condition of xi. Therefore, if the graph G is connected and the initial condition is

feasible (i.e.,
∑n

i=1 xi(0) = X), x asymptotically reaches the optimal solution of (4.1a–

4.1b) under (4.2). However, the same method cannot be applied to solve (4.1) (the

problem that considers lower bounds in the resource allocated to each entity) since some

feasibility issues related with the constraints (4.1c) arise.
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4.2 Center–Free Resource Allocation Algorithm

In the following section, we propose a novel method that extends the algorithm in

Equation (4.2) to deal with the individual inequality constraints given in Equation (4.1c).

Moreover, we show that this method satisfies some passivity properties. Therefore, its

analysis can be done by using the result given in Theorem 3.2.3.

4.2 Center–Free Resource Allocation Algorithm

4.2.1 Resource Allocation Among a Subset of Nodes in a Graph

First, we consider the following subproblem: let G = {V,E,A} be a graph comprised by

a subset of active nodes Va and a subset of passive nodes Vp, such that Va
⋃
Vp = V.

A certain amount of resource X has to be split among those nodes to minimize the

cost function φ(x) subject to each passive node is allocated with its corresponding lower

bound xi. Mathematically, we formulate this subproblem as follows.

min
x

φ(x) (4.3a)

subject to
n∑

i=1

xi = X (4.3b)

xi = xi, for all i ∈ Vp. (4.3c)

Feasibility of (4.3) is guaranteed by making the following assumption.

Assumption 4.2.1. At least one node is active, i.e., Va 6= ∅.

According to KKT conditions, the active nodes have to equalize their marginal costs

at the optimal solution. Therefore, a consensus among the active nodes is required to

solve (4.3). Nonetheless, classic consensus algorithms, as the one given in Equation

(4.2), cannot be used directly. For instance, if all the nodes of G apply (4.2) and G is

connected, the marginal costs of both passive and active nodes are driven to be equal in

steady state. This implies that the resource allocated to passive nodes can violate the

constraint (4.3c). Besides, if the resource allocated to passive nodes is forced to satisfy

(4.3c) by setting x∗i = xi, for all i ∈ Vp, there is no guarantee that the new solution

satisfies (4.3b). Another alternative, is to apply (4.2) to only active nodes
(
in this case,

the neighborhood of node i ∈ Va in Equation (4.2) has to be taken as {j ∈ Va : (i, j) ∈ E},
and the initial condition must satisfy

∑
i∈Va

xi(0) = X −∑i∈Vp
xi
)
. However, the sub–

graph formed by the active nodes is not necessarily connected although G is connected.
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Hence, marginal cost of active nodes are not necessarily equalized at equilibrium, which

implies that the obtained solution is sub–optimal. In conclusion, modification of (4.2) to

address (4.3) is not trivial. In order to deal with this problem, we propose the following

algorithm:

ẋi =
∑

j∈Ni

(yj − yi), for all i ∈ V (4.4a)

˙̂xi = (xi − xi) +
∑

j∈Ni

(yj − yi), for all i ∈ Vp (4.4b)

yi =

{
φ′i(xi) if i ∈ Va
φ′i(xi) + x̂i if i ∈ Vp.

(4.4c)

In the same way as in (4.2), the variables {xi, i ∈ V} in Equation (4.4) correspond to

the resource allocated to both active and passive nodes. Notice that we have added

auxiliary variables {x̂i, i ∈ Vp} that allow the passive nodes to interact with their

neighbors taking into account the constraint (4.3c). On the other hand, the term
∑

j∈Ni
(yj − yi), in Equations (4.4a)–(4.4b), leads to a consensus among the elements

of the vector y = [y1, . . . , yn]>, which are given in Equation (4.4c). For active nodes, yi

only depends on the marginal cost φ′i(xi), while for passive nodes, yi depends on both

the marginal cost and the state of the auxiliary variable x̂i. Therefore, if the ith node

is passive, it has to compute both variables xi and x̂i. Furthermore, it can be seen that,

if all the nodes are active, i.e., (Va = V), then the proposed algorithm becomes the one

stated in Equation (4.2).

Notice that the ith node only needs to know yi and the values {yj : j ∈ Ni} to

compute
∑

j∈Ni
(yj − yi) in (4.4a)–(4.4b). In other words,

L(G)y =


∑

j∈N1

(yj − y1), . . . ,
∑

j∈Nn

(yj − yn)



>

is a distributed map over the graph G (cf., Definition 2.1.1). This implies that the dynam-

ics given in Equation (4.4) can be computed by each node using only local information.

In fact, the message that the ith node must send to its neighbors is solely composed by

the variable yi.
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4.2.1.1 Feasibility

Let us prove that, under the multi–agent system proposed in Equation (4.4), x(t) satisfies

the first constraint of the problem given by Equation (4.3), for all t ≥ 0, provided that
∑n

i=1 xi(0) = X.

Lemma 4.2.1. The quantity
∑n

i=1 xi(t) is invariant under Equation (4.4), i.e., if∑n
i=1 xi(0) = X, then

∑n
i=1 xi(t) = X, for all t ≥ 0.

Proof. It is sufficient to prove that ∆̇ = 0, where ∆ =
∑n

i=1 xi. Notice that ∆̇ =∑n
i=1 ẋi = 1>ẋ, where ẋ = [ẋ1, . . . , ẋn]>. Moreover, according to Equation (4.4), 1>ẋ =

−1>L(G)y. Since G is undirected, 1>L(G) = L(G)1 = 0. Therefore, ∆̇ = 0.

The above lemma does not guarantee that x(t) is always feasible because of the

second constraint in Equation (4.3), i.e., xi = xi, for all i ∈ Vp. However, it is possible

to prove that, at equilibrium, this constraint is properly satisfied.

4.2.1.2 Equilibrium Point

The next proposition characterizes the equilibrium point of the multi–agent system given

in Equation (4.4).

Proposition 4.2.1. Let Assumption 4.2.1 holds. If G is connected, the system in Equa-

tion (4.4) has an equilibrium point (x∗, {x̂∗i , i ∈ Vp}) that satisfies the following condi-

tions: φ′i(x
∗
i ) = λ, for all i ∈ Va, where λ ∈ R is a constant; x∗i = xi, for all i ∈ Vp; and∑n

i=1 x
∗
i = X. Moreover, x̂∗i = λ− φ′i(x∗i ), for all i ∈ Vp.

Proof. Since (4.3) is feasible (due to the fact that Assumption 4.2.1 holds), there exists

x∗ that minimizes φ(x) and satisfies (4.3b)–(4.3c), i.e.,
∑n

i=1 x
∗
i = X, and x∗i = xi, for

all i ∈ Vp. Notice that, applying the KKT first order necessary conditions to (4.3), x∗

must also satisfy φ′i(x
∗
i ) = λ, for all i ∈ Va, and some λ ∈ R. Let x̂∗i = λ − φ′i(x∗i ), for

all i ∈ Vp. To finish the proof, we need to show that the point (x∗, {x̂∗i , i ∈ Vp}) defined

above is an equilibrium of (4.4).

It follows from Equation (4.4a) that y∗i = λ, for all i ∈ V, where y∗i is the value of yi at

(x∗, {x̂∗i , i ∈ Vp}). Thus, replacing this value in (4.4a), we have that, at (x∗, {x̂∗i , i ∈ Vp}),
˙̂xi = 0, for all i ∈ V. Besides, replacing the value of y∗i in Equation (4.4b), and using

the fact that x∗i = xi, for all i ∈ Vp, we obtain that ˙̂xi = 0, for all i ∈ Vp.
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Remark 4.2.1. Proposition 4.2.1 states that the system (4.4) has an equilibrium point

(x∗, {x̂∗i , i ∈ Vp}) for which the active nodes equalize their marginal costs, while each

passive node is allocated with an amount of resource equal to its corresponding lower

bound. Moreover, x∗ satisfies the constraints (4.3b)–(4.3c). In conclusion, this proposi-

tion guarantees that x∗ minimizes the optimization subproblem given in Equation (4.3).

Additionally, notice that the values {x̂∗i , i ∈ Vp} are equal to the KKT multipliers asso-

ciated with the constraint (4.3c).

4.2.1.3 Convergence Analysis

According to Remark 4.2.1, to show that the algorithm proposed in Equation (4.4)

converges to the optimal solution of the subproblem (4.3), it is sufficient to prove that

the equilibrium point given in Proposition 4.2.1 is asymptotically stable (AS). Before

doing so, let us notice that the algorithm (4.4) is a dynamical system that can be

modeled by the feedback interconnection of (4.4a) and (4.4b)–(4.4c). Furthermore, since

Equation (4.4a) is equivalent to the model of the multi–agent network (3.4) that applies

the resource allocation algorithm (3.6), the convergence analysis can be performed by

using the result on passivity stated in Proposition 3.2.2 of the previous chapter.

After these preliminaries, let us prove that the dynamics in Equation (4.4) converge

to the optimal solution of (4.3), provided that each φi(xi) is strictly convex.

Proposition 4.2.2. Assume that φi(xi), is a strictly convex cost function, for all i ∈ V.

If G is connected,
∑n

i=1 xi(0) = X, and Assumption 4.2.1 holds, then x(t) converges to

x∗ under Equation (4.4), where x∗ is the solution of the optimization problem stated in

Equation (4.3), i.e, x∗ is the same given in Proposition 4.2.1. Furthermore, x̂i converges

to x̂∗i , for all i ∈ Vp.

Proof. Let us express our multi–agent system in error coordinates with respect to the

equilibrium point (x∗, {x̂∗i , i ∈ Vp}), as follows

ė = −L(G)ey
˙̂ei = ei − (L(G)ey)i , for all i ∈ Vp

eyi =

{
φ′i(xi)− φ′i(x∗i ) if i ∈ Va

φ′i(xi)− φ′i(x∗i ) + êi if i ∈ Vp,

(4.5)

where L(G) is the graph Laplacian of G; ei = xi − x∗i , and eyi = yi − y∗i , for all i ∈ V;

êi = x̂i − x̂∗i , for all i ∈ Vp; e = [e1, . . . , en]>; ey = [ey1 , . . . , eyn ]>; and (L(G)ey)i
represents the ith element of the vector L(G)ey.
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Since Assumption 4.2.1 holds, Va 6= ∅. Let k be an active node, i.e., k ∈ Va, and

let ek, eky be the vectors obtained by removing the kth element from vectors e and ey,

respectively. We notice that, according to Lemma 4.2.1, ek(t) = −∑i∈ν,i 6=k ei(t), for all

t ≥ 0. Therefore, Equation (4.5) can be expressed as

ėk = −Lk(G)eky − lkrk eyk
ek = −∑i∈ν,i 6=k ei
˙̂ei = ei −

(
Lk(G)eky + lkrk eyk

)
i
, for all i ∈ Vp

eyi =

{
φ′i(xi)− φ′i(x∗i ) if i ∈ Va

φ′i(xi)− φ′i(x∗i ) + êi if i ∈ Vp,

(4.6)

where Lk(G), and lkrk are defined in Lemma 2.1.1. In order to prove that the origin of

the above system is AS, let us define the following Lyapunov function:

V =
1

2
ek
> (

Lk(G)
)−1

ek +
1

2

∑

i∈Vp

(ei − êi)2. (4.7)

The function V is positive definite since G is connected (the reason of this fact is that,

according to Lemma 2.1.1, Lk(G) and its inverse are positive definite matrices if G is

connected). Notice that the first term of (4.7) is equivalent to the storage function

(3.9) defined in the proof of Proposition 3.2.2. Therefore, using the result stated in

that proposition, we obtain that the derivative of V along the trajectories of the system

stated in Equation (4.6) is given by,

V̇ = −e>ey −
∑

i∈Vp

ei(ei − êi)

Replacing ey by the expression given in (4.6), we have that

V̇ = −
n∑

i=1

(
ei(φ

′
i(xi)− φ′i(x∗i ))

)
−
∑

i∈Vp

eiêi +
∑

i∈Vp

ei(êi − ei)

= −
n∑

i=1

(
(xi − x∗i )(φ′i(xi)− φ′i(x∗i ))

)
−
∑

i∈Vp

e2
i ,

where φ′i is strictly increasing given the fact that φi is strictly convex, for all i ∈ V.

Therefore, (xi − x∗i )(φ′i(xi)− φ′i(x∗i )) ≥ 0, for all i ∈ V, and thus V̇ ≤ 0.

Since V̇ does not depend on {êi, i ∈ Vp}, it is negative semidefinite. Let S = {{ei, i ∈
V}, {êi, i ∈ Vp} : V̇ = 0}, i.e., S = {{ei, i ∈ V}, {êi, i ∈ Vp} : ei = 0, for all i ∈ V}. Given

the fact that G is connected and V 6= Vp (by Assumption 4.2.1), then ė = 0 iff ey = 0

(see Equation (4.5)). Therefore, the only solution that stays identically in S is the trivial

solution, i.e., ei(t) = 0, for all i ∈ V, êi(t) = 0, for all i ∈ Vp. Hence, we can conclude

that the origin is AS by applying the invariance principle given in Theorem 2.2.1.
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In summary, we have shown that the algorithm described in Equation (4.4) asymp-

totically solves the subproblem in Equation (4.3), i.e., (4.4) guarantees that the resource

allocated to each passive node is equal to its corresponding lower bound, while the

remaining resource X −∑i∈Vp
xi is optimally allocated to active nodes.

4.2.2 Optimal Resource Allocation with Lower Bounds

Now, let us consider our original problem stated in Equation (4.1), i.e., the resource

allocation problem that includes lower bound constraints. Let x∗ = [x∗1, . . . , x
∗
n]> be

the optimal solution of this problem. Notice that, if we know in advance which nodes

will satisfy the constraint (4.1c) with strict equality after making the optimal resource

allocation process, i.e., I := {i ∈ V : x∗i = xi}, we can mark these nodes as passive and

reformulate (4.1) as a subproblem of the form (4.3). Based on this idea, we propose

a solution method for (4.1), which is divided in two stages: in the first one, the nodes

that belong to I are identified and marked as passive; in the second one, the resulting

subproblem of the form (4.3) is solved by using (4.4).

Protocol (4.4) can also be used in the first stage of the method as follows: in order to

identify the nodes that will satisfy (4.1c) with strict equality at the optimal allocation,

we start marking all nodes as active and apply the resource allocation process given

by (4.4). The nodes that are allocated with an amount of resource below their lower

bounds at equilibrium are marked as passive, and then (4.4) is newly applied (in this

way, passive nodes are forced to meet (4.1c)). This iterative process is performed until

all nodes satisfy their lower bound constraints. Notice that the last iteration of this

procedure corresponds to solving a subproblem of the form (4.3) where the set of passive

nodes is equal to the set I. Therefore, this last iteration is equivalent to the second stage

of the proposed method.

Summarizing, our method relies on an iterative process that uses the continuous–

time protocol (4.4) as a subroutine. The main idea of this methodology is to identify in

each step the nodes that have an allocated resource out of their lower bounds. These

nodes are marked as passive, so they are forced to satisfy their constraints in subsequent

iterations, while active nodes seek to equalize their marginal costs using the remaining

resource. In the worst case scenario, the classification between active and passive nodes

requires |V| iterations, where |V| is the number of nodes in the network. This fact arises

when only one active node becomes passive at each iteration.
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The proposed method is formally described in Algorithm 1. Notice that this algo-

rithm is fully decentralized since steps 4–6 can be computed by each agent using only

local information. Step 4 corresponds to solve Equation (4.4), while Steps 5 and 6 de-

scribe the conditions for converting an active node into passive. Let us note that steps

4–6 have to be performed |V| times since we are considering the worst case scenario.

Therefore, each agent needs to know the total number of nodes in the network. This

requirement can be computed in a distributed way by using the method proposed in

([103], p.90). We also notice the fact that the agents have to be synchronized (as usual

in several distributed algorithms [27, 35, 103]) in order to apply the step 4 of Algorithm

1, i.e, all agents must start solving Equation (4.4) at the same time.

Algorithm 1: Resource allocation with lower bounds

Input:
– Parameters of the problem in Equation (4.1).

– An initial value x(0), such that
∑n

i=1 x
(0)
i =X.

Output: Optimal allocation x̃∗

1 Mark all nodes as active, i.e., Ṽa,0 ← V, Ṽp,0 ← ∅.
2 x̃i,0 ← x

(0)
i , for all i ∈ V.

3 for l← 1 to |V| do

4 x̃i,l ← xi(tl), for all i ∈ V, where xi(tl) is the solution of Equation (4.4a) at

time tl, with initial conditions x(0) = [x̃1,l−1, . . . , x̃n,l−1]>, Va = Ṽa,l−1,

Vp = Ṽp,l−1, and {x̂i(0) = 0, ∀i ∈ Vp}.
5 Ṽp,l ← Ṽp,l−1

⋃{i ∈ Ṽa,l−1 : x̃i < xi}, and Ṽa,l ← Ṽa,l−1\{i ∈ Ṽa,l−1 : x̃i < xi}.
6 x̃∗ ← [x̃1,l, . . . , x̃n,l]

>.

7 return x̃∗

According to the reasoning described at the beginning of this subsection, we ideally

require to know the steady state solution of Equation (4.4) at each iteration of Algorithm

1 (since we need to identify which nodes are allocated with an amount of resource below

their lower bounds in steady state). This implies that the time tl in step 4 of Algorithm 1

goes to infinity. Under this requirement, each iteration would demand infinite time and

the algorithm would not be implementable. Hence, to relax the infinite time condition,

we state the following assumption on the time tl.

Assumption 4.2.2. Let x∗i,l be the steady state of xi(t) under Equation (4.4), with
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initial conditions x(0) = x̃i,l−1, Va = Ṽa,l−1, Vp = Ṽp,l−1, and {x̂i(0) = 0,∀i ∈ Vp}1.

For each l = 1, . . . , |V| − 1, the time tl satisfies the following condition: xi(tl) < xi if

and only if x∗i,l < xi, for all i ∈ V.

According to assumption 4.2.2, for the first |V|−1 iterations, we only need a solution

of (4.4) that is close enough to the steady state solution. We point out the fact that,

if the conditions of Proposition 4.2.2 are met in the lth iteration of Algorithm 1, then

xi(t) asymptotically converges to x∗i,l, for all i ∈ V, under Equation (4.4). Therefore,

Assumption 4.2.2 is satisfied for large values of t1, . . . , t|V|−1.

Taking into account all the previous considerations, the next theorem states our main

result regarding the optimality of the output of Algorithm 1.

Theorem 4.2.1. Assume that G is a connected graph. Moreover, assume that φi is a

strictly convex function for all i = 1, . . . , n. If t1, . . . , t|V|−1 satisfy Assumption 4.2.2,

and the problem stated in Equation (4.1) is feasible, then the output of Algorithm 4.1

tends to the optimal solution of the problem given in Equation (4.1) as t|V| →∞.

Proof. The ith component of the output of Algorithm 1 is equal to x̃i,|V| = xi(t|V|),

where xi(t|V|) is the solution of Equation (4.4a) at time t|V|, with initial conditions

[x̃1,|V|−1, . . . , x̃n,|V|−1]>, Va = Ṽa,|V|, and Vp = Ṽp,|V|. Hence, it is sufficient to prove

that {x∗1,|V|, . . . , x∗n,|V|} solves the problem in Equation (4.1). In order to do that, let us

consider the following premises (the proof of each premise is written in square brackets).

• P1: {x̃1,l, . . . , x̃n,l} satisfies (4.1b), for all l = 1, . . . , |V| [this follows from Lemma

4.2.1, and form the fact that
∑n

i=1 x̃i,0 = X].

• P2: x∗i,l = xi, for all i ∈ Ṽp,l−1, and for all l = 1, . . . , |V| [this follows directly from

Proposition 4.2.2].

• P3: Ṽp,l = Ṽp,l−1
⋃{i ∈ Ṽa,l−1 : x∗i,l < xi}, and Ṽa,l = Ṽa,l−1\{i ∈ Ṽa,l−1 :

x∗i,l < xi}, for all l = 1, . . . , |V| [this follows from step 5 of Algorithm 1, and from

Assumption 4.2.2].

• P4: If for some l, Ṽp,l = Ṽp,l−1, then Ṽp,l+j = Ṽp,l−1, for all j = 0, . . . , |V| − l [this

can be seen from the fact that if the set of passive nodes does not change from

one iteration to the next, the steady state of Equation (4.4a) is the same for both

iterations].

1As well as in step 4 of Algorithm 1, we have initialized the auxiliary variables x̂i to zero by conven-

tion. If these variables are initialized to other value, convergence of (4.4) is not affected (cf. Proposition

4.2.2).
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• P5: Ṽa,l
⋃

Ṽp,l = V, for all l = 1, . . . , |V| [from P3, we know that Ṽa,l
⋃
Ṽp,l =

Ṽa,l−1
⋃

Ṽp,l−1, for all l = 1, . . . , |V|. Moreover, given the fact that Ṽp,0 = ∅, and

Ṽa,0 = V, (see step 1 of Algorithm 1) we can conclude P5].

• P6: Since the problem in Equation (4.1) is feasible by assumption, then |Ṽp,l| < |V|,
for all l = 1, . . . , |V| [the fact that |Ṽp,l| ≤ |V|, for all l = 1, . . . ,V, follows directly

from P5. Let us prove that |Ṽp,l| 6= |V|, for all l = 1, . . . ,V, by contradiction:

assume that there exists some l, such that |Ṽp,l−1| < |V| and |Ṽp,l| = |V|. Hence,

from P2 and P3, we know that x∗i,l ≤ xi, for all i ∈ V; moreover, {i ∈ Ṽa,l−1 :

x∗i,l < xi} 6= ∅. Therefore,
∑n

i=1 x
∗
i,l <

∑n
i=1 xi. According to P1, we know that∑n

i=1 x
∗
i,l = X; thus, X <

∑n
i=1 xi, which contradicts the feasibility assumption].

• P7: {x∗1,|V|, . . . , x∗n,|V|} satisfies the constraints (4.1c) [in order to prove P7, we

proceed by contradiction: assume that {x∗1,|V|, . . . , x∗n,|V|} does not satisfy the con-

straints (4.1c). Since P2 holds, this assumption implies that {i ∈ Ṽa,|V−1| : x
∗
i,|V| <

xi} 6= ∅. Therefore, Ṽp,|V| 6= Ṽp,|V|−1 (see P3). Using P4, we can conclude that

Ṽp,|V| 6= Ṽp,|V|−1 6= · · · 6= Ṽp,0 = ∅, i.e., {i ∈ Ṽa,|V|−j : x∗i,|V|−j+1 < xi} 6= ∅, for

all j = 1, . . . , |V|. Thus, according to P3, |Ṽp,|V|| > |Ṽp,|V|−1| > · · · > |Ṽp,1| > 0.

Hence, |Ṽp,|V|| ≥ |V|, which contradicts P6].

• P8:
∑

i∈Ṽa,l
x∗i,l ≥

∑
i∈Ṽa,l

x∗i,l+1 [we prove P8 as follows: using P1 and the result

in Lemma 4.2.1, we know that
∑

i∈V x
∗
i,l =

∑
i∈V x

∗
i,l+1 = X. Moreover, according

to P5, V can be expressed as V = Ṽa,l
⋃
Ṽp,l, where Ṽp,l =

(
Ṽp,l\Ṽp,l−1

)⋃
Ṽp,l−1

(see P3). Thus, we have that
∑

i∈Ṽa,l
x∗i,l +

∑
i∈Ṽp,l,i/∈Ṽp,l−1

x∗i,l +
∑

i∈Ṽp,l−1
x∗i,l =

∑
i∈Ṽa,l

x∗i,l+1 +
∑

i∈Ṽp,l,i/∈Ṽp,l−1
x∗i,l+1 +

∑
i∈Ṽp,l−1

x∗i,l+1. Furthermore, since Ṽp,l−1 ⊂
Ṽp,l, and given the fact that P2 holds, we have that

∑
i∈Ṽa,l

x∗i,l+
∑

i∈Ṽp,l,i/∈Ṽp,l−1
x∗i,l+∑

i∈Ṽp,l−1
xi =

∑
i∈Ṽa,l

x∗i,l+1+
∑

i∈Ṽp,l,i/∈Ṽp,l−1
xi+

∑
i∈Ṽp,l−1

xi. Thus,
∑

i∈Ṽa,l
x∗i,l =

∑
i∈Ṽa,l

x∗i,l+1 +
∑

i∈Ṽp,l,i/∈Ṽp,l−1

(
xi − x∗i,l

)
, where xi − x∗i,l > 0, for all i ∈ Ṽp,l, i /∈

Ṽp,l−1 (according to P3). Hence, we can conclude P8].

• P9: There exists k, such that k ∈ Ṽa,l, for all l = 1, . . . , |V| [in order to prove P9,

we use the fact that, if k ∈ Ṽa,l, then k ∈ Ṽa,l−j , for all j = 1, . . . , l (this follows

from P3). Moreover, according to P5 and P6, |Ṽa,|V|| 6= 0; hence, there exists k,

such that k ∈ Ṽa,|V|. Therefore, P9]. P9 guarantees that Assumption 4.2.1 holds

at each iteration.

• P10: φ′i(x
∗
i,l) ≥ φ′i(x

∗
i,l+1), for all i ∈ Ṽa,l [we prove P10 by contradiction: assume

that φ′i(x
∗
i,l) < φ′i(x

∗
i,l+1), for some i ∈ Ṽa,l. According to Proposition 4.2.2, and
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since P1 and P9 hold, x∗i,l has the characteristics given in Proposition 4.2.1, for all

i ∈ V, and for all l = 1, . . . , |V|. Hence, φ′i(x
∗
i,l) has the same value for all i ∈ Ṽa,l−1,

and φ′i(x
∗
i,l+1) has the same value for all i ∈ Ṽa,l. Moreover, since Ṽa,l ⊂ Ṽa,l−1

(according to P3), we have that φ′i(x
∗
i,l) < φ′i(x

∗
i,l+1), for all i ∈ Ṽa,l. Thus, x∗i,l <

x∗i,l+1, for all i ∈ Va, l, because φ′i is strictly increasing (this follows from the fact

that φi is strictly convex by assumption). Therefore,
∑

i∈Ṽa,l
x∗i,l <

∑
i∈Ṽa,l

x∗i,l+1,

which contradicts P8].

Now, let us prove that {x∗1,|V|, . . . , x∗n,|V|} solves the Problem in Equation (4.1). First,

the solution {x∗1,|V|, . . . , x∗n,|V|} is feasible according to P1 and P7. On the other hand,

from P9, it is known that ∃k : k ∈ Ṽa,l, for all l = 1, . . . , |V|. Let φ′k(x
∗
k,|V|) = λ, where

λ ∈ R. Moreover, let us define V0 = {j ∈ V : x∗i,|V| > xi}, and V1 = {j ∈ V : x∗i,|V| ≤ xi}.
If i ∈ V0, then i ∈ Ṽa,|V|−1 (given the fact that, if i /∈ Ṽa,|V−1| ⇒ i ∈ Ṽp,|V−1| ⇒

x∗i,|V| = xi ⇒ i /∈ V0). Hence, φ′i(x
∗
i,|V|) = φ′k(x

∗
k,|V|) = λ (this follows from the fact that

φ′j(x
∗
j,l) has the same value for all j ∈ Ṽa,l−1, which in turn follows directly from step 4

of Algorithm 1, and Proposition 4.2.2).

If i ∈ V1, then either i ∈ Ṽa,|V|−1 or i ∈ Ṽp,|V|−1. In the first case, φ′i(x
∗
i,|V|) =

φ′k(x
∗
k,|V|) = λ (following the reasoning used when i ∈ V0). In the second case, ∃l :

i ∈ (Ṽp,l\Ṽp,l−1); hence, φ′i(x
∗
i,l) = φ′k(x

∗
k,l) (this follows from the fact that, if i ∈

(Ṽp,l\Ṽp,l−1), then i ∈ Ṽa,l−1). Furthermore, since i ∈ (Ṽp,l\Ṽp,l−1), x∗i,l < xi (see P3),

and given the fact that φi is strictly increasing, we have that φ′i(x
∗
i,l) < φ′i(xi). Moreover,

according to P10, φ′k(x
∗
k,l) ≥ φ′k(x∗k,|V|). Hence, φ′i(xi) > φ′k(x

∗
k,|V|) = λ. In conclusion, if

i ∈ V1, then φ′i(x
∗
i,|V|) ≥ λ.

Thus, we can choose µi ≥ 0, for all i ∈ V, such that φ′i(x
∗
i,|V|) − µi = λ, where

µi = 0 if i ∈ V0. Hence, let us note that, ∂φ
∂xi

∣∣∣
xi=x∗i,|V|

− µi − λ = 0, for all i ∈ V, where

∂φ
∂xi

∣∣∣
xi=x∗i,|V|

= φ′i(x
∗
i,|V|). Therefore, {x∗1,|V|, . . . , x∗n,|V|, µ1, . . . , µn,−λ} satisfies the KKT

conditions for the problem given in Equation (4.1). Furthermore, since φ(x) is a strictly

convex function by assumption, then {x∗1,|V|, . . . , x∗n,|V|} is the optimal solution to that

problem.

Early Stopping Criterion

Notice that, if the set of passive nodes does not change in the kth iteration of Algorithm

1 because all active nodes satisfy the lower bound constraints (see step 5), then the

steady state solutions x∗i,k and x∗i,k+1 are the same, for all i ∈ V, which implies that the
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set of passive nodes also does not change in the (k + 1)th iteration. Following the same

reasoning, we can conclude that x∗i,k = x∗i,k+1 = · · · = x∗i,|V|, for all i ∈ V. Therefore, in

this case, {x∗1,k, . . . , x∗n,k} is the solution of our resource allocation problem. Practically

speaking, this implies that Algorithm 1 does not need to perform more iterations after

the kth one. Thus, it is possible to implement a flag z∗i (in a distributed way) that alerts

the agents if all active nodes satisfy the lower bound constraints after step 4 of Algorithm

1. A way to do that is by applying a min–consensus protocol [27] with initial conditions

zi(0) = 0 if the node i is active and does not satisfy its lower bound constraint, and

zi(0) = 1 otherwise. Hence, notice that our flag z∗i (i.e., the result of the min-consensus

protocol) is equal to one, for all i ∈ V, only if all the active nodes satisfy the lower bound

constraints, which corresponds to the early stopping criterion described above.

4.3 Simulation Results and Comparison

In this section, we compare the performance of our algorithm with other continuous–

time distributed techniques found in the literature. We have selected three techniques

that are capable to address nonlinear problems and can handle lower bound constraints:

i) a distributed interior point method [35], ii) the local replicator equation [22], iii) a

distributed interior point method with exact barrier functions [36]. The first one is a

traditional methodology that uses barrier functions; the second one is a novel technique

based on population dynamics; and the third one is a recently proposed method that

follows the same ideas as the first one, but replaces classic logarithmic barrier functions

by exact penalty functions. Below, we briefly describe the aforementioned algorithms.

4.3.1 Distributed Interior Point (DIP) Method

This algorithm is a variation of the one presented in Equation (4.2) that includes strictly

convex barrier functions to prevent the solution to flow outside the feasible region (cf.,

Section 3.4.1). The barrier functions bi(xi) are added to the original cost function as

follows,

φb(x) = φ(x) + ε

n∑

i=1

bi(xi)

bi(xi) = − ln (xi − xi) , for all i ∈ V,
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where, φb(x) is the new cost function, and ε > 0 is a constant that minimizes the effect

of the barrier function when the solution is far from the boundary of the feasible set.

With this modification, the distributed algorithm is described by the following equation,

ẋi =
∑

j∈Ni

(
φ′bj (xj)− φ

′
bi

(xi)
)
, for all i ∈ V, (4.8)

where, φ′bi(xi) = dφi
dxi
− ε dbidxi

, i.e., φ′bi(xi) is equal to the marginal cost plus a penalty term

induced by the derivative of the corresponding barrier function.

4.3.2 Distributed Replicator Dynamics (DRD)

This methodology is based on the classical replicator dynamics from evolutionary game

theory. In the DRD, the growth rate of a population that plays a certain strategy only

depends on its own fitness function and on the fitness of its neighbors. Mathematically,

the DRD is given by

ẋi =
∑

j∈Ni

(xi − xi)(xj − xj)(vi(xi)− vj(xj)),

vi = −φ′i(xi), for all i ∈ V,

(4.9)

where vi is the fitness perceived by the individuals that play the ith strategy. In this

case, the strategies correspond to the nodes of the network, and the fitness functions to

the negative marginal costs (the minus appears because replicator dynamics are used to

maximize utilities instead of minimize costs). On the other hand, it can be shown that,

if the initial condition x(0) is feasible for the problem given in Equation (4.1), then x(t)

remains feasible for all t ≥ 0, under the DRD.

4.3.3 Distributed Interior Point Method with Exact Barrier Functions

(DIPe)

This technique follows the same reasoning of the DIP algorithm. The difference is that

DIPe uses exact barrier functions [104] to guarantee satisfaction of the lower bound

constraints. The exact barrier function for the ith node is given by:

bei (xi) =
1

ε
[xi − xi]+,
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where [·]+ = max(·, 0), 0 < ε <
1

2 maxx∈F‖∇φ(x)‖∞
, and F = {x ∈ Rn :

∑n
i=1 xi =

1, xi ≥ xi} is the feasible region of x for the problem (4.1). Using these exact barrier

functions, the augmented cost function can be expressed as,

φeb(x) = φ(x) +
n∑

i=1

bei (xi).

The DIPe algorithm is given in terms of the augmented cost function and its generalized

gradient ∂φeb(x) = [∂1φ
e
b(x), . . . , ∂nφ

e
b(x)]> as follows:

ẋi ∈
∑

j∈Ni

(∂jφ
e
b(x)− ∂iφeb(x)), for all i ∈ V, (4.10)

where

∂iφ
e
b(x) =




{φ′i(xi)− 1

ε} if xi < xi[
φ′i(xi)− 1

ε , φ
′
i(xi)

]
if xi = xi

{φ′i(xi)} if xi > xi

In [36], the authors show that the differential inclusion (4.10) converges to the optimal

solution of the problem (4.1) provided that x(0) is feasible.

4.3.4 Comparison

In order to compare the performance of our algorithm with the three methods described

above, we use the following simulation scenario: a set of n nodes connected as in Figure

4.1 (we use this topology to verify the behavior of the different algorithms in the face

of few communication channels since previous studies have shown that algorithms’ per-

formance decreases with the number of available communication links); a nonlinear cost

function φ(x) =
∑n

i=1 e
ai(xi−bi) + e−ai(xi−bi), where ai and bi are random numbers that

belong to the intervals (1, 2) and
(
−1

2 ,
1
2

)
, respectively; a resource constraint X = 1;

and a set of lower bounds {xi = 0 : i ∈ V}. For each n, we generate 50 problems with

1 2 n− 1 n. . .

Figure 4.1: Single path topology for n nodes.

the characteristics described above. The four distributed methods are implemented in

Matlab employing the solver function ode23s. Moreover, we use the solution provided by

a centralized technique as reference. The results on the average percentage decrease in
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the cost function reached with each algorithm and the average computation time (time

taken by each algorithm for solving a problem1) are summarized in Table 4.1. Results of

DIPe for 100 and 200 nodes were not computed for practicality since the time required

by this algorithm to solve a 100/200–nodes problem is very high.

We notice that the algorithm proposed in this chapter always reaches the maximum

reduction, regardless of the number of nodes that comprise the network. The same hap-

pens with the DIPe algorithm. This is an important advantage of our method compared

to other techniques. In contrast, the algorithm based on the DRD performs far from

the optimal solution. This unsatisfactory behavior is due to the small number of links

of the considered communication network. In [22], the authors prove the optimality of

the DRD in problems involving well connected networks; however, they also argue that

this technique can converge to suboptimal solutions in other cases. On the other hand,

the DIP method provides solutions close to the optimum. Nonetheless, its performance

decreases when the number of nodes increases. This tendency is due to the influence of

barrier functions on the original problem. Notice that, the larger the number of nodes,

the bigger the effect of the barrier functions in Equation (4.8).

Regarding the computation time, although convergence of the proposed method is

slower than the one shown by DRD and DIP, it is faster than the convergence of the

method based on exact barrier functions, i.e., DIPe. Therefore, among the methods

that guarantee optimality of the solution, our technique shows the best convergence

speed. Computation time taken by DIPe is affected by the use of penalty terms that

generate strong changes in the value of the cost function near to the boundaries of the

feasible set. The drastic variations of the generalized gradient of exact barrier functions

produces oscillations of numerical solvers around the lower bounds (a visual inspection

of the results given in Figure 3 of [36] confirms this claim). These oscillations are the

main responsible for the low convergence speed shown by DIPe. On the other hand,

DRD and DIP exhibit the fastest convergence. Hence, DRD and DIP are appealing to

be implemented in applications that require fast computation and tolerate suboptimal

solutions.

1Algorithms were implemented in a computer with an Intel Core i5 processor.
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Table 4.1: Distributed Algorithms’ Performance

Percentage Decrease, Computation Time

Number of Nodes Proposed Approach DIP DRD DIPe

n = 5 100%, 0.08 s. 100%, 0.04 s. 91%, 0.04 s. 100%, 7 s.

n = 20 100%, 0.7 s. 99%, 0.4 s. 69%, 0.2 s. 100%, 153 s.

n = 50 100%, 3.2 s. 98%, 1.6 s. 57%, 1.3 s. 100%, 841 s.

n = 100 100%, 17.8 s. 96%, 9.1 s. 50%, 6.5 s. –

n = 200 100%, 181.2 s. 94%, 68.7 s. 46%, 41.6 s. –

4.4 Application to Optimal Chiller Loading

In this section, we present a distributed solution to the optimal chiller loading problem

in multiple chiller systems [2], by using the approach developed in this chapter. This

problem arises in decoupled chilled–water plants, which are widely used in large air–

conditioning systems. The goal is to distribute the cooling load among the chillers that

comprise the plant for minimizing the total amount of power used by them. For a better

understanding of the problem, below we present a brief description of the system.

Chiller 1

Chiller 2

...

...
...

Tr

T1, f1

T2, f2

Tn, fn

Ts, fT

Chiller n

Bypass Pipe

Figure 4.2: Decoupled chilled–water plant with n chillers (adapted from [2]).

A decoupled chilled–water plant comprised by n chillers is depicted in Figure 4.2.

The purpose of this plant is to provide a water flow fT at a certain temperature Ts to

the rest of the air–conditioning system. In order to do that, the plant needs to meet a
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cooling load CL that is given by the following expression

CL = mfT (Tr − Ts), (4.11)

where m > 0 is the specific heat of the water, and Tr is the temperature of the water

returning to the chillers. Since there are multiple chillers, the total cooling load CL is

split among them, i.e., CL =
∑n

i=1Qi, where Qi is the cooling power provided by the

ith chiller, which, in turn, is given by

Qi = mfi(Tr − Ti), (4.12)

where fi > 0 and Ti are, respectively, the flow rate of chilled water and the water supply

temperature of the ith chiller. As it is shown in Figure 4.2, we have that fT =
∑n

i=1 fi.

In order to meet the corresponding cooling load, the ith chiller consumes a power Pi

that can be calculated using the following expression [2]

Pi =
(
k0,i + k1,imfiTr + k2,i(mfiTr)2+

)
+(

k3,i − k1,imfi − k4,imfiTr − 2k2,i(mfi)
2Tr
)
Ti+(

k5,i + k6,imfi + k2,i(mfi)
2
)
T 2
i ,

(4.13)

where kj,i, for j = 0, . . . , 6, are constants related to the ith chiller. If we assume that the

flow rate fi of each chiller is constant, then Pi is a quadratic function of the temperature

Ti. The optimal chiller loading problem involves the calculation of the chillers’ water

supply temperatures that meet the total cooling load given in Equation (4.11), and

minimize the total amount of power consumed by the chillers, i.e.,
∑n

i=1 Pi. Moreover,

given the fact that each chiller has a maximum cooling capacity, we have to consider the

following additional constraints

mfi(Tr − Ti) ≤ Qi for i = 1, . . . , n, (4.14)

where Qi is the maximum capacity (rated value) of the ith chiller.

Summarizing, the optimal chiller loading problem can be expressed as follows

min
T1,...,Tn

J =
∑n

i=1 Pi(Ti)

s.t.
∑n

i=1mfi(Tr − Ti) = CL

Ti ≥ Tr − Qi
mfi

, for all i = 1, . . . , n.

(4.15)

Now, let us consider that we want to solve the aforementioned problem in a dis-

tributed way by using a multi–agent system, in which each chiller is managed by an
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agent that decides the value of the water supply temperature. We assume that the

ith agent knows (e.g., by measurements) the temperature of the water returning to the

chillers, i.e., Tr, and the flow rate of chilled water, i.e., fi. Moreover, agents can share

their own information with their neighbors through a communication network with a

topology given by the graph G. If each Pi(Ti) is a convex function, then the problem can

be solved by using the method proposed in Algorithm 1 (we take, in this case, xi = fiTi).

The main advantage of this approach is to increase the resilience of the whole system

in the face of possible failures, due to the fact that the plant operation does not rely

on a single control center but on multiple individual controllers without the need for a

centralized coordinator.

Illustrative Example

We simulate a chilled–water plant comprised by 7 chillers1, the cooling capacity and the

water flow rate of each chiller are, respectively, Qi = 1406.8 kW, and fi = 65 kg.s−1,

for i = 1, . . . , 7; the specific heat of the water is m = 4.19 kW.s.kg−1.C−1; the supply

temperature of the system is Ts = 11 C; and the coefficients kj,i of Equation (4.13)

are given in Table 4.2. We operate the system at two different cooling loads, the first

one is 90% of the total capacity, i.e., CL = 0.9
∑n

i=1Qi, and the second one is 60% of

the total capacity, i.e., CL = 0.6
∑n

i=1Qi. The Pi–Ti curves are shown in Figure 4.3a

for both cases, it can be noticed that all functions are convex. In order to apply the

distributed solution presented in Algorithm 1, we use an agent per chiller (i.e., the ith

agent controls the supply temperature Ti of the ith chiller) and the communication

network shown in Figure 4.1. In all cases the initial conditions of the chillers’ supply

temperatures are Ti(0) = Ts, for i = 1, . . . , 7. The results for the first cooling load, i.e.,

CL = 8862.8 kW, are depicted in Figure 4.3b, where it is shown that the cooling load

is properly allocated among the chillers by adjusting the supply temperatures. More

efficient chillers (i.e., chiller 3, chiller 6, and chiller 7 in Figure 4.3a) are more loaded

than the less efficient ones (i.e., chiller 2 and chiller 5). This can be noticed from the fact

that their supply temperatures, in steady state, reach the minimum value. Furthermore,

the energy consumption is minimized and power saving reaches to 2.6%. The results for

the second cooling load, i.e., CL = 5908.6 kW, are shown in Figure 4.3c, where it can

1Simulation parameters are adapted from [2].
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be noticed a similar performance to that obtained with the first cooling load. However,

in this case, it is not necessary that the supply temperatures reach the minimum value

to meet the required load. Newly, energy consumption is minimized and power saving

reaches to 2.8%. As it is stated in Section 4.2, convergence and optimality of the method

is guaranteed under the conditions given in Theorem 4.2.1. In both cases we use the

early stopping criteria given in Section 4.2.

Although other techniques have been applied to solve the optimal chiller loading

problem, e.g., the ones in [2], they require centralized information. In this regard, it is

worth noting that the same objective is properly accomplished by using our approach,

which is fully distributed.

Table 4.2: Chillers’ parameters

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

k0,i 113.51 71.70 62.75 112.68 74.13 61.98 76.54

k1,i 0.21 -0.45 0.49 0.18 -0.44 0.55 0.34

k2,i 0.35 0.48 0.30 0.36 0.44 0.30 0.31

k3,i -8.19 -5.13 -4.53 -8.13 -5.30 -4.48 -5.527

k4,i 0.43 -0.14 0.71 0.40 -0.13 0.76 0.54

k5,i 0.14 0.09 0.08 0.14 0.09 0.08 0.10

k6,i 0.01 -0.01 0.02 0.01 -0.01 0.02 0.01

4.5 Discussion

The method developed in this chapter solves the problem of resource allocation with

lower bounds given in Equation (4.1). The main advantage of the proposed technique

is its distributed nature; indeed, our approach does not need the implementation of a

centralized coordinator. This characteristic is appealing, especially in applications where

communications are strongly limited. Moreover, fully distributed methodologies increase

the autonomy and resilience of the system in the face of possible failures.

In Section 4.3, we show by means of simulations that the performance of the proposed

method does not decrease when the number of nodes (which are related to the decision

variables of the optimization problem) is large, or the communication network that
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Figure 4.3: a. Pi–Ti curves for each chiller, b. Evolution of supply temperatures and total

power consumed by the chillers, CL = 8862.8 kW, c. Evolution of supply temperatures and

total power consumed by the chillers, CL = 5908.6 kW.
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allows the nodes to share information has few channels. In these cases, the behavior of

our approach is better than that of other techniques found in the literature, such as the

DIP method, or the DRD. Moreover, it is worth noting that our technique addresses

the constraints as hard. This fact has two important consequences: i) in all cases, the

solution satisfies the imposed constraints, and ii) the objective function (and therefore

the optimum) is not modified (contrary to the DIP method that includes the constraints

in the objective function decreasing the quality of the solution as shown in Section 4.3.4).

Other advantage of the method proposed in this chapter is that it does not require

an initial feasible solution of the resource allocation problem (4.1). Similarly to the

DIPe technique, our method only requires that the starting point satisfies the resource

constraint (4.1b), i.e., we need that
∑n

i=1 xi(0) = X. Notice that an initial solution x(0)

that satisfies (4.1b) is not hard to obtain in a distributed manner. For instance, if we

assume that only the kth node has the information of the available resource X, we can

use
(
xk(0) = X, {xi(0) = 0 : i ∈ V, i 6= k}

)
as our starting point. Thus, an initialization

phase is not required. In contrast, other distributed methods, such as DIP and DRD

needs an initial feasible solution of the problem (4.1), i.e., a solution that satisfies (4.1b)

and (4.1c). Finding this starting point is not a trivial problem for systems involving

a large number of variables. Therefore, for these methods, it is necessary to employ

distributed constraint satisfaction algorithm (as the one described in Section 3.4.2) as a

first step.

On the other hand, we notice that to implement the early stopping criterion presented

at the end of Section 4.2, it is required to perform an additional min–consensus step

in each iteration. Despite this fact, if the number of nodes is large, this criterion saves

computational time, because in most of the cases, all passive nodes are identified during

the first iterations of Algorithm 1.
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5

Distributed Population

Dynamics1

In the previous chapter, we briefly discussed the distributed replicator dynamics. We

showed that, although this model does not reach the optimal solution of resource allo-

cation problems that are subject to sparse graphs, its implementation is appealing to

address applications that require fast computation and tolerate suboptimal solutions.

The distributed replicator dynamics were proposed in [81] based on the classic replica-

tor equation [105], which is a model that belongs to the field of population dynamics

[3]. The purpose of this chapter is to extend the results in [81] for dealing with other

models, different from the replicator equation. In general terms, we propose a procedure

to obtain distributed population dynamics.

5.1 Motivation

Population dynamics [3, 106, 107] describe the dynamical process that a population

experiences when there is a strategic interaction among the agents that comprise the

population. The agents involved in this dynamical process evolve to an equilibrium ac-

cording to a revision protocol, which establishes the individual decision rules that agents

apply to choose the best strategies (i.e., those strategies earning higher payoffs). Popula-

tion dynamics properties (e.g., passivity [108]) can be exploited to design solutions for a

variety of engineering problems. For instance, designing of control and learning systems

1G. Obando and J. Barreiro–Gómez contributed equally to this chapter. Results are reported in [1].

81
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[109, 110], optimization [111, 112], coordination [42], dynamic resource allocation [39],

and so forth.

When using population dynamics for solving learning, control, and optimization

problems, some elements of the problem are associated with “strategies” that agents in

the population can adopt, and other elements are associated with “masses” of agents

playing each strategy. This analogy has a direct implication in the information required

to implement a solution based on a population dynamics algorithm, since the existing

algorithms assume that the population is well–mixed [3, 106] (i.e., any pair of agents

playing any pair of strategies can interact with each other). A consequence of the well–

mixed population structure assumption is that the elements of the problem are allowed to

interact each other without any constraint (i.e., following a full–information structure).

Therefore, classic population dynamics are restricted to be implemented in problems

characterized by a centralized information scheme. However, the number of problems

that require distributed solutions has increased dramatically in the last few years. In

this regard, some approaches have been proposed to model the interaction constraints

in a population of players. For instance, the authors in [113, 114] deal with normal–

form games and propose a graph–based interaction model, where each node in the graph

represents an individual that repetitively plays a symmetric game with its neighbors.

However, this approach is not suitable to be applied in the population game framework

since, in this framework, it is preferable to avoid the individuation of players [3]. On

the other hand, other approaches aim to apply learning algorithms that are capable to

deal with information constraints [115, 116]. Similarly, the authors in [81] modify the

well known replicator dynamics model to relax the full–information dependency. They

propose a distributed replicator equation in which the evolution of each strategy is only

governed by the “neighboring” strategies (according to a given topology).

This chapter extends the results in [81]. Our main contribution is the design of a

general method that allows us to deduce several distributed population dynamics. The

core of the proposed method is the use of the mean dynamics [3] in non–well–mixed

populations. To illustrate our methodology, we present a distributed version of the fun-

damental population dynamics (those obtained by applying classic revision protocols),

i.e., the distributed replicator dynamics, the distributed Smith dynamics, the distributed

logit dynamics, and the distributed projection dynamics. It is worth noting that the de-

duction presented in this chapter can be used to generate other distributed dynamics
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by using alternative revision protocols. Besides, we show that a well–mixed population

obeys a structure given by a complete graph, whereas a non–well–mixed population has

many different possible structures that are generally given by non–complete graphs. In

this sense, the proposed approach is versatile to be implemented in a large variety of

problems with different information structures. Moreover, we show that the distributed

population dynamics exhibit similar stability and invariance properties as their classic

counterpart.

5.2 Preliminaries

5.2.1 Graph Representation of Population Interactions

We use graph–theoretical tools to describe the constraints on the interactions among

agents according to the population type, i.e., well–mixed or non–well–mixed. In this

regard, let G = (V,E,A) be a weighted graph, where V = {1, . . . , n} is the set of nodes

representing the strategies in the population; E ⊂ {(i, j) : i, j ∈ V} is the set of links

representing possible interaction among agents playing different strategies; and A = [aij ]

is an n × n weighted adjacency matrix whose elements satisfy the following property:

aij > 0 if (i, j) ∈ E, aij = 0 otherwise.

5.2.2 Population Games

Consider a population of mass m > 0 comprised of a finite and large number of agents in

a strategic interaction. Throughout this chapter, we assume without loss of generality,

that the mass of the population is equal to one, i.e., m = 1. As was stated before, the

set of available strategies for the agents is given by V = {1, ..., n}. The scalar xi ≥ 0

represents the fraction of the population mass that corresponds to the agents choosing

the strategy i ∈ V. The vector x ∈ Rn+ is the state of the population with dimension

n whose entries are nonnegative real numbers. Similarly, x ∈ Rn++ denotes a vector of

dimension n with strictly positive entries. The set of possible states of the population,

which corresponds to all possible distributions of agents among the strategies, is given

by the following simplex:

∆ =

{
x ∈ Rn+ :

∑

i∈V
xi = 1

}
. (5.1)
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Agents playing the ith strategy obtain a reward given by a fitness function fi(x),

i.e., fi : ∆ → R is a continuous map that specifies the payoff associated with the

strategy i ∈ V. Notice that a population game is completely characterized by the fitness

vector F (x) = [f1(x), . . . , fn(x)]>. There are several types of games depending on F (x).

Below, we present the definition of two of them, which are found in a large number of

applications [117].

Definition 5.2.1. Let F : Rn+ 7→ Rn be a population game with payoffs defined on the

positive orthant. If there exists a continuously differentiable potential function V : Rn+ 7→
R that satisfies ∇V (x) = F (x), for all x ∈ Rn+, then F is a full potential game.

Definition 5.2.2. The population game F : ∆ 7→ Rn is a stable game if:

(y − x)> (F (y)− F (x)) ≤ 0, for all x, y ∈ ∆.

The next theorem, adapted from [3], gives an equivalent characterization of a stable

game in terms of the Jacobian matrix of F (x), i.e., DF (x); and the tangent space of the

simplex ∆.

Theorem 5.2.1. Let the population game F : ∆ 7→ Rn be continuously differentiable.

F is a stable game if and only if ξ>DF (x)ξ ≤ 0, for all ξ ∈ T∆, x ∈ ∆, where T∆ is

the tangent space of the simplex ∆, which is defined by T∆ = {z ∈ Rn :
∑

i∈V zi = 0}.

A population game combined with a revision protocol lead to the emergence of pop-

ulation dynamics [3]. The function ρ : Rn×∆→ Rn×n+ is known as the revision protocol,

and describes the timing and the result of the decisions of agents in the strategic inter-

action. The revision protocol takes the payoff vector F (x) and a determined population

state x ∈ ∆, returning a non–negative matrix, whose element of the ith row and jth

column ρij(F (x), x) represents the conditional switch rate from strategy i to strategy j,

where i, j ∈ V. Depending on the revision protocol used by the individuals, we can find

several kinds of population dynamics (see Table 5.1), e.g., replicator dynamics, Smith

dynamics, logit dynamics, projection dynamics, etc.

In order to simplify the notation for fitness functions, and revision protocols, we re-

move their corresponding arguments from now on, i.e, fi = fi(x), and ρij = ρij(F (x), x).
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Table 5.1: Some revision protocols and their corresponding population dynamics [3]

Revision protocol Population dynamics

Pairwise proportional imitation: ρij = xj [fj − fi]+ Replicator dynamics

Pairwise comparison: ρij = [fj − fi]+ Smith dynamics

Logit choice protocol: ρij = eη
−1fj∑

k∈V
eη
−1fk

, η > 0 Logit dynamics

Modified pairwise comparison: ρij =
[fj−fi]+

xi
Projection dynamics

[·]+ := max(·, 0)

5.3 General dynamics on graphs

The dynamics describing a population behavior depend on the population structure. In

this regard, current literature assumes that the population under consideration is well–

mixed, i.e., if we take any portion of the entire population, this contains all the strategies

with the same probability. Figure 5.1a illustrates this fact by showing a population

composed by a large and finite number of agents involved in a game. Each element

in the figure represents an agent, and the shape of the element (“circle,” “square,” or

“triangle”) denotes the strategy that the agent has adopted. In population games, all

agents have the same probability to receive a revision opportunity. The agent receiving

the revision opportunity randomly choose another agent from its neighbors and can

change its own strategy by the neighbor’s strategy depending on the selected revision

protocol. Since the population is well–mixed, the probability that the selected opponent

is playing any of the available strategies is the same.

On the other hand, there could be a non–well–mixed population as the one shown

in Figure 5.1b. For this population, all agents have the same probability to receive an

opportunity to make a revision. However, the probability that the opponent is playing

a particular strategy is not equal (e.g., if the strategy played by the agent receiving the

revision opportunity is “square,” then there is the same probability to select an oppo-

nent playing strategy “triangle” or “square;” but the probability to select an opponent

playing strategy “circle” is zero since the population structure does not allow it).
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a. b.

Figure 5.1: a. Well–mixed population. b. Non–well–mixed population.

Interactions among agents playing different strategies can be represented by a graph

G = {V,E,A}. The set of nodes V is associated with the available strategies and the set

of links E is related to the encounter probability between strategies, i.e., there exists a

link between two strategies if their encounter probability is different from zero. Hence,

the elements of the corresponding adjacency matrix A = [aij ] are as follows: aij = 1

denotes that strategies i and j can encounter each other, while aij = 0 denotes that the

population structure makes impossible a matching between strategies i and j. Accord-

ing to this convention, the scenarios associated with well–mixed and non–well–mixed

populations can be represented by two kinds of graphs. The well–mixed population

case is always represented by a complete graph, whereas a non–well–mixed population is

represented by a graph with a specific topology depending on the particular population

structure (see Figure 5.2).

In this chapter, we assume that the encounter probability between strategies i and j

is the same as the one of strategies j and i, i.e., the graph G is undirected.

1

2 3
1 2 3

a. b.

Figure 5.2: Graph representation of: a. The well–mixed population in Figure 5.1a. b.

The non–well–mixed population in Figure 5.1b. Nodes 1,2, and 3 correspond, respectively,

to strategies “circle,” “triangle,” and “square” of the proposed example.
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5.3.1 Mean Dynamics

Taking into account the previously discussed considerations, this section formally de-

scribes the evolutionary process of a non–well–mixed population involved in a strategic

game. Suppose that the population is composed by M agents, and each of them receives

a revision opportunity that is given by an exponential distribution with rate R. Hence,

during a time dt, the revision opportunity received by each agent is given by Rdt. Since

we assume that the mass of the population is equal to one, the scalar xi is equal to the

portion of agents playing the ith strategy, and Mxi is the total amount of agents playing

strategy i ∈ V. Consequently, the expected number of revision opportunities received by

agents playing the ith strategy is approximately MxiRdt during dt (notice that xi may

vary during dt; however, this variation is negligible if dt is small). Agents playing i ∈ V

switch to strategy j ∈ V with a probability that depends on the revision protocol, the

probability distribution of receiving a revision opportunity, and the encounter probabil-

ity between strategies i and j (given by the population structure, which is represented

by the graph G), i.e., aijρij/R. Finally, the expected number of agents switching from

strategy i ∈ V to strategy j ∈ V during time dt is Mxiaijρijdt.

Now, if we consider all possible strategies in the population, the expected number of

agents switching to strategy i ∈ V is given by

M
∑

j∈V
xjajiρjidt,

and the expected number of agents playing strategy i ∈ V changing to other strategies

is given by

Mxi
∑

j∈V
aijρijdt.

Therefore, the variation of the proportion of agents playing the ith strategy is deduced

by a mass balance as follows,

ẋi =
∑

j∈V
xjajiρji − xi

∑

j∈V
aijρij .

This equation corresponds to the Distributed Mean Dynamics, or mean dynamics for

non–well–mixed populations. Since G is undirected, notice that the distributed mean

dynamics can be rewritten as follows,

ẋi =
∑

j∈Ni

xjρji − xi
∑

j∈Ni

ρij . (5.2)

87



5. DISTRIBUTED POPULATION DYNAMICS1

For complete graphs, i.e., for well–mixed–populations, we have that Ni = V, obtaining

the classic Mean Dynamics [3].

5.3.2 Distributed Population Dynamics

Distributed mean dynamics allow the inference of population dynamics involving non–

well–mixed populations comprised of agents that are programmed with a specific revision

protocol. This section shows the deduction of different distributed population dynamics

using (5.2). The deduced dynamics are named after the classic population dynamics

that are generated with the corresponding revision protocol.

5.3.2.1 Distributed Replicator Dynamics (DRD)

The distributed replicator dynamics are obtained from the distributed mean dynamics

using the pairwise proportional imitation protocol (Table 5.1), as follows,

ẋi =
∑

j∈Ni

xjxi[fi − fj ]+ − xi
∑

j∈Ni

xj [fj − fi]+

=
∑

j∈Ni

xjxi(fi − fj).

Finally, the distributed replicator dynamics are given by,

ẋi = xi


fi

∑

j∈Ni

xj −
∑

j∈Ni

xjfj


 . (5.3)

5.3.2.2 Distributed Smith Dynamics (DSD)

In this case, we use the pairwise comparison protocol (Table 5.1). Substituting this

revision protocol in (5.2), we get

ẋi =
∑

j∈Ni

xj [fi − fj ]+ − xi
∑

j∈Ni

[fj − fi]+. (5.4)

Notice that (5.4) can be written as,

ẋi =
∑

j∈Ni

1

2

(
(1− φij)xi + (1 + φij)xj

)
[fi − fj ],

where φij = sgn(fi − fj).
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5.3.2.3 Distributed Logit Dynamics (DLD)

The deduction of the distributed logit dynamics is based on the logit choice protocol

(Table 5.1). However, notice that this protocol requires full information since the sum

at the denominator is taken over all the strategies. In order to satisfy the information

constraint given by the graph G, we modify the protocol as follows,

ρij(F, x) = eη
−1fj , η > 0.

Distributed logit dynamics are obtained by replacing the above protocol in the dis-

tributed mean dynamics, i.e.,

ẋi =
∑

j∈Ni

xje
η−1fi − xi

∑

j∈Ni

eη
−1fj . (5.5)

5.3.2.4 Distributed Projection Dynamics (DPD)

The projection dynamics use the modified pairwise comparison protocol, i.e.,

ẋi =
∑

j∈Ni

xj
[fi − fj ]+

xj
− xi

∑

j∈Ni

[fj − fi]+
xi

,

=
∑

j∈Ni

(fi − fj) .

Thus, the distributed projection dynamics are given by

ẋi = |Ni|fi −
∑

j∈Ni

fj , (5.6)

where |Ni| denotes the cardinality of the set Ni, i.e., the number of neighbors of the ith

node.

5.4 Invariant Set and Stability Analysis

5.4.1 Invariant Set Analysis

As was mentioned in Section 5.2, the population mass does not vary over time. Hence,

all possible states generated during the evolution of the population should belong to the

simplex ∆ given in (5.1). This section shows that the simplex ∆ is an invariant set under

the distributed population dynamics deduced in the previous section.
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Theorem 5.4.1. The simplex ∆ is an invariant set under: the distributed replicator

dynamics (5.3), the distributed Smith dynamics (5.4), and the distributed logit dynamics

(5.5).

Proof. According to Equation (5.1), ∆ has to conditions: i)
∑

i∈V xi = 1 (mass conser-

vation); ii) xi ≥ 0, for all i ∈ V (non–negativeness).

First, we prove that DRD, DSD, and DLD satisfy condition i). Notice that this is

equivalent to show that
∑

i∈V ẋi = 0 under the distributed mean dynamics (5.2). These

dynamics can be written by using the adjacency matrix of the graph G as follows

ẋi =
∑

j∈V
aijρjixj −

∑

j∈V
aijρijxi.

Hence,

∑

i∈V
ẋi =

∑

i∈V

∑

j∈V
aijρjixj −

∑

i∈V

∑

j∈V
aijρijxi.

Since G is undirected (i.e., aij = aji), we have

∑

i∈V
ẋi =

∑

i∈V

∑

j∈V
ajiρjixj −

∑

j∈V

∑

i∈V
ajiρjixj

= 0.

Second, we prove that each dynamic satisfies condition ii):

• DRD: Non–negativeness of each xi is satisfied given the fact that ẋi = 0 if xi = 0

under distributed replicator dynamics. Thus, if xi(0) ≥ 0, then xi(t) ≥ 0 for all

t ≥ 0.

• DSD: According to (5.4), notice that when xi = 0 for any i ∈ V, then ẋi ≥ 0.

Hence, the non–negativeness of xi is satisfied under distributed Smith dynamics.

• DLD: Notice that ẋi ≥ 0 when xi = 0 under distributed logit dynamics (5.5).

Therefore, if x(0) ∈ ∆, then xi(t) ≥ 0 for all t ≥ 0.

Proposition 5.4.1. The set ∆′ = {x ∈ Rn :
∑

i∈V xi = 1} is invariant under the

distributed projection dynamics (5.6).
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Proof. The distributed projection dynamics can be written by using the adjacency ma-

trix of the graph G as follows

ẋi =
∑

j∈V
aijfi −

∑

j∈V
aijfj .

Therefore,

∑

i∈V
ẋi =

∑

i∈V

∑

j∈V
aijfi −

∑

i∈V

∑

j∈V
aijfj .

Since aij = aji because G is undirected, we obtain

∑

i∈V
ẋi =

∑

j∈V

∑

i∈V
ajifi −

∑

i∈V

∑

j∈V
aijfj

=0.

Remark 5.4.1. It should be noticed that the distributed projection dynamics satisfy

one of the conditions of the original simplex ∆, i.e.,
∑

i∈V xi = 1 (mass conservation).

However, the non–negativeness of xi is not guaranteed. This fact also occurs in the

classic projection dynamics. ♦

Remark 5.4.2. Notice that Theorem 5.4.1 and Proposition 5.4.1 do not impose any

conditions on the interaction graph G. Thus, the studied distributed population dynamics

exhibit simplex invariance under any population structure. ♦

5.4.2 Stability Analysis

Classic population dynamics usually converge to Nash equilibria since Nash equilibria

correspond to the expected outcome of games played by rational individuals (i.e., indi-

viduals that are trying to maximize their profit). Given a population game F , the set

of Nash equilibria is defined as follows [3],

NE(F ) = {x∗ ∈ ∆ : x∗i > 0⇒ fi(x
∗) ≥ fj(x∗),∀i, j ∈ V}.

Thus, in a Nash equilibrium, all players perceives the same profit.

This section provides sufficient conditions guaranteeing that a Nash equilibrium x∗

of the population game F is asymptotically stable under the distributed population dy-

namics derived in Section 5.3.2. These conditions, which are related to the connectivity

of the interaction graph and the characteristics of the Nash equilibrium, are summarized

in the following assumptions.
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Assumption 5.4.1. The graph G that describes the population structure is connected.

Assumption 5.4.2. The Nash equilibrium x∗ belongs to the interior of the simplex ∆,

i.e., x∗ ∈ int∆, where int∆ =
{
x ∈ Rn++ :

∑
i∈V xi = 1

}
.

Below, we provide our results on convergence of the distributed population dynamics

to a Nash equilibrium.

Theorem 5.4.2. Let F be a full potential game with strictly concave potential function

V (x), and let x∗ ∈ NE(F ). If Assumptions 5.4.1 and 5.4.2 hold, then x∗ is asymp-

totically stable under the distributed replicator dynamics (5.3) and the distributed Smith

dynamics (5.4).

Proof. Since x∗ ∈ NE(F ) and x∗ ∈ int∆, we conclude that fi(x
∗) = fj(x

∗), for all i, j ∈
V. Moreover, notice that x∗ = arg maxx∈∆ V (x) (applying the Karush–Kuhn–Tucker

conditions). Additionally, since V (x) is strictly concave, we can take EV (x) = V (x∗)−
V (x) as a Lyapunov function candidate. The derivative of EV (x) along the trajectories

of DRD (5.3) and DSD (5.4) is given by

ĖV (x) = −(∇V (x))>ẋ

= −F>ẋ
= −F>L(x)F,

where L(x) =
[
l
(x)
ij

]
is a matrix whose entries l

(x)
ij are defined as follows,

for DRD: l
(x)
ij =





−aijxixj , if i 6= j∑

k∈V,k 6=i
aikxixk, if i = j,

for DSD: l
(x)
ij =





−aij
2

(
(1− φij)xi + (1 + φij)xj

)
, if i 6= j

∑

k∈V,k 6=i

aik
2

(
(1− φik)xi + (1 + φik)xk

)
, if i = j.

Notice that L(x) is the Laplacian of the undirected graph given by the tuple G(x) =

(V,E,A(x)), where A(x) = [a
(x)
ij ] is the adjacency matrix whose entries are defined as

follows: a
(x)
ij = aijxixj , for DRD; and a

(x)
ij =

aij
2 ((1− φij)xi + (1 + φij)xj), for DSD.

These entries are nonnegative since x ∈ ∆. Thus, L(x) ≥ 0 and ĖV (x) ≤ 0. Therefore,

x∗ is stable under DRD and DSD.

Considering that x∗ ∈ int∆ is stable, a set B around x∗ can be defined such that if

x(0) ∈ B, then x(t) ∈ int∆, for all t ≥ 0 (it is possible to show that B = int∆ for DRD).
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Thus, if x(0) ∈ B, the null space of L(x) is equal to span{1} (we use 1 to denote a

vector of dimension n whose entries are all 1) since G(x) is connected (we conclude that

G(x) is connected since: i) G(x) and G have the same topology in B, i.e., if x ∈ B,

a
(x)
ij = 0 only if aij = 0; ii) G is connected by assumption). In this case, ĖV (x) = 0

if and only if fi = fj , for all i, j ∈ V , i.e., ĖV (x) = 0 only in x∗. Therefore, x∗ is

asymptotically stable.

Remark 5.4.3. Proposition 5.4.2 requires that, in steady state, all strategies are played

by the individuals involved in the game. Indeed, when any proportion of individuals is

extinct at equilibrium (i.e., x∗i = 0 for some i ∈ V), then convergence of the distributed

replicator equation and the distributed Smith dynamics to the Nash equilibrium is not

guaranteed. ♦

Theorem 5.4.3. Let F be a continuously differentiable stable game, let x∗ ∈ NE(F ),

and let ẋ be the distributed projection dynamics (5.6). If Assumptions 5.4.1 and 5.4.2

hold, then x∗ is asymptotically stable.

Proof. Consider the pairwise comparison protocol ρij = [fj − fi]+, and define

ρij = ϕ(fj − fi),

where ϕ(·) = [·]+. Then, consider the Lyapunov function candidate:

V (x) =
∑

i∈V

∑

j∈V
aij

∫ fj−fi

0
ϕ(s)ds.

Since ϕ : R 7→ R+ is increasing on [0,+∞) and G is connected, the function V (x) > 0,

for all x 6= x∗. Additionally, V (x∗) = 0 since fj(x
∗) = fi(x

∗), for all i, j ∈ V. Moreover,

notice that

∂V (x)

∂xl
=

∑

i∈V

∑

j∈V
aij

(
∂fj
∂xl
− ∂fi
∂xl

)
ϕ(fj − fi)

=
∑

i∈V

∑

j∈V
aijϕ(fj − fi)

∂fj
∂xl
−
∑

j∈V

∑

i∈V
ajiϕ(fi − fj)

∂fj
∂xl

.

Taking into account that aij = aji, we obtain

∂V (x)

∂xl
=

∑

i∈V

∑

j∈V
aji(fj − fi)

∂fj
∂xl

=
∑

j∈V

∂fj
∂xl

∑

i∈Nj

(fj − fi).
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According to (5.6), notice that
∑
i∈Nj

(fj − fi) = ẋj , where ẋj is the jth element of the

distributed projection dynamics ẋ. Hence,

∂V (x)

∂xl
=
∑

j∈V
ẋj
∂fj
∂xl

. (5.7)

Therefore, the time derivative of the Lyapunov function is

V̇ (x) = (∇V (x))> ẋ

= ẋ>DF (x)ẋ,

where ẋ>DF (x)ẋ ≤ 0 since F is stable.

Remark 5.4.4. As was stated in the proof of Theorem 5.4.2, the fact that a Nash

equilibrium x∗ belongs to int∆ implies that all the fitness functions reach the same value,

i.e., fi(x
∗) = fj(x

∗), for all i, j ∈ V. Therefore, the results given in Theorems 5.4.2 and

5.4.3 are related to the contributions reported in the literature on consensus in multi–

agent networks (e.g., see [26, 28, 33]). An essential difference is that Theorems 5.4.2

and 5.4.3 show a direct relationship between game–theoretic properties and Lyapunov

stability of a population game under distributed dynamics. ♦

The connectivity condition of the graph G in Theorems 3 and 4 is sufficient for Nash

equilibrium stability. Regarding this fact, it is interesting to study if this condition is

also necessary. The following proposition gives us insights on this issue.

Proposition 5.4.2. Assume that the population game F has a unique Nash equilibrium,

which is in the interior of the simplex ∆, i.e., x∗ ∈ int∆. Let ẋ be the distributed mean

dynamics (5.2). If x(t) asymptotically converges to x∗, for all x(0) ∈ int∆, then the

graph G is connected.

Proof. We prove the contrapositive. Assume that G is non-connected. We can express G

as the union of r ≥ 2 connected components (maximal connected sub-graphs) denoted

by Gp = (Vp,Ep), where p = 1, . . . , r, i.e., G =
⋃r
p=1 G

p. We use the arguments in

the proof of Theorem 5.4.1 to conclude that, under the distributed mean dynamics,∑
i∈Vp xi(t) =

∑
i∈Vp xi(0), for all p = 1, . . . , r, and for all t ≥ 0. Take two connected

components G1 and G2 of the graph G. Furthermore, take the following initial condition:

xi(0) =





x∗i + ε
|V1| if i ∈ V1

x∗i − ε
|V2| if i ∈ V2

x∗i otherwise
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where i ∈ V, and ε > 0. Notice that, for small values of ε, x(0) ∈ int∆ since x∗ ∈ int∆.

Under this initial condition, it is not possible that x(t) converges to the unique Nash

equilibrium x∗ since
∑

i∈V1 xi(t) =
∑

i∈V1 xi(0) >
∑

i∈V1 x∗i , for all t ≥ 0.

Therefore, if we need to guarantee convergence to the Nash equilibrium from any

initial condition inside the simplex ∆, we require that the graph G is connected. However,

this condition might not be necessary if the initial conditions x(0) are constrained. For

instance, suppose that the graph G in the population game is non-connected. Moreover,

G is composed of r connected components (maximal connected sub-graphs) denoted by

Gp = (Vp,Ep), where p = 1, . . . , r, i.e., G =
⋃r
p=1 G

p. Then, it can be shown (following

the same reasoning as in proof of Proposition 5.4.2) that the equilibrium point x∗ ∈ int∆

is asymptotically stable if
∑

i∈Vp x∗i =
∑

i∈Vp xi(0) for all p = 1, . . . , r. Consequently, in

this case, the connectivity condition of G is not necessary.

5.5 Illustrative Examples

Classic population dynamics have been applied to solve a large number of engineering

problems. For instance, access control in communication networks [42], combinatorial

optimization [118], bandwidth allocation [41], hierarchical frequency control in micro-

grids [44], dispatch of electric generators [119], building temperature control [39], con-

strained extremum seeking [56], control of drinking water networks [120], and so forth.

The same applications can be addressed by using distributed population dynamics. This

approach has some benefits related to the information privacy, resilience to central fail-

ures, and parallelization of the computations. In order to show the versatility of the

distributed population dynamics, three application examples are presented correspond-

ing to the following key areas: distributed optimization, classic games, and distributed

control design.
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5.5.1 Solving a Distributed Optimization Problem

First, we propose the following distributed optimization problem,

max V (x) := −x>x+ b>x

s.t.

50∑

i=1

xi = 1

xi > 0 for all i = 1, . . . , 50, (5.8)

where x ∈ R50 is the vector of decision variables, and b ∈ R50 is a vector of constants,

whose entries are given by bi = 2i
1275 , i.e., b = 1

1275 [2 4 ... 100]>. Each decision

variable is managed by a node in a network. Furthermore, we impose an information

constraint given by the graph shown in Figure 5.3. This graph is obtained by following

the Erdös–Rényi model (which is the simplest model of several kind of social and bio-

logical networks [121]) with edge generation probability equal to 0.01. Besides, we add

a path connecting all nodes to guarantee that the generated graph is connected. The

information constraint implies that the ith node only has information about the state

of its neighbors.
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Figure 5.3: Non–complete graph for the distributed optimization example.

To solve the problem in (5.8), we define a full potential game F =
[
∂V
∂x1

, . . . , ∂V
∂x50

]>

(i.e., the fitness functions correspond to the marginal utilities) and apply the distributed

population dynamics derived in Section 5.3.2. Notice that all nodes satisfy the infor-

mation constraint (this fact is not possible by using the classic population dynamics).

Results are shown in Figure 5.4 considering an initial condition xi(0) = 1
50 , for all
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i = 1, . . . , 50. First and fourth row of Figure 5.4 show that x(t) satisfies the prob-

lem constraints for all time, i.e., xi(t) remains nonnegative, for all i = 1, . . . , 50; and
∑50

i=1 xi(t) = 1. Furthermore, third row of Figure 5.4 shows that all distributed dynam-

ics increase the objective function V (x). However, only DRD, DSD, and DPD reach the

optimum value (which are depicted in dashed red line). According to the second row of

Figure 5.4, DRD, DSD, and DPD equalize the fitness functions’ values in steady state,

i.e., these dynamics converge to a Nash equilibrium. This behavior is consistent with the

results stated in Theorems 5.4.2 and 5.4.3 since V (x) corresponds to a strictly concave

potential function, i.e., F is a full potential and stable game. Moreover, convergence

time varies from one dynamic to another. DLD shows the fastest time response while

the convergence of DRD is the slowest.

The academical example proposed in Equation (5.8) can be adapted to model prac-

tical optimization problems. For instance, let us consider the economic dispatch of

distributed generators reported in [81]. This problem is stated as follows: consider a set

of n generators that are connected to the electric distribution network. These generators

have to supply a certain load denoted by L. Therefore,
∑n

i=1 pi = L, where pi ≥ 0 is the

power supplied by the ith generator. The cost of production of pi is given by a quadratic

function ci(pi) = αi +βipi + γip
2
i , where αi, βi, γ > 0 are parameters associated with the

i-th generator. The goal of the economic dispatch problem is to minimize the total cost

of energy production, which is given by J(p1, . . . , pn) :=
∑n

i=1 ci(pi). Mathematically,

this problem is formulated as follows:

min J(p1, . . . , pn) :=
n∑

i=1

αi + βipi + γip
2
i

s.t.
n∑

i=1

pi = L

pi > 0 for all i = 1, . . . , n. (5.9)

Notice that the formulation of problems (5.8) and (5.9) are similar. Indeed, if we let the

generators be the strategies of a game, and the power supplied by the ith generator be the

amount of population playing the strategy i. Then, it is possible to model the economic

dispatch of distributed generators as a population game, where the fitness functions are

given by the marginal cost of energy production, i.e., fi = ∂J
∂pi

, for all i = 1, . . . , n. In

this regard, we can address the economic dispatch of distributed generators by using
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Figure 5.4: Evolution under different distributed population dynamics: states (1st row),

fitness functions (2nd row), objective function (3rd row), equality constraint (4th row).

the same procedure described in the solution of the optimization problem (5.8). This

approach is appealing, specially in scenarios where the number of distributed generators

is large.
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5.5.2 Classic Population Games: Bad Rock–Paper–Scissors with a

Twin

To evaluate the behavior of a non–well mixed population involved in a strategic interac-

tion, we use a classic game called “bad rock–paper–scissor with a twin” (adapted from

[3]). Moreover, we compare the performance of the distributed dynamics proposed in

Section 5.3.2 with their classic counterpart (i.e., assuming a well–mixed population).

The bad rock–paper–scissor with a twin preserves the same rules as the rock–paper–

scissors game. The difference is that the losing strategies have double penalty, i.e., this

is not a zero–sum game. Moreover, another strategy called “twin” is added, which earns

the same payoff as scissors. Summarizing, this game can be represented by the following

payoff matrix

A =




0 −2 1 1
1 0 −2 −2
−2 1 0 0
−2 1 0 0


 ,

where the first, second, third, and fourth column/row corresponds to rock, paper, scis-

sors, and twin, respectively. In this case, the fitness functions are given by F (x) = Ax.

Evolution of the population state is shown in Figure 5.5 under distributed (first

row) and classic (second row) dynamics. For the distributed case, we use a path graph.

It can be noticed a similar behavior between the trajectories obtained by using the

classic population dynamics and its distributed counterpart. DSD, DRD, and DPD

exhibit oscillations around the set of Nash equilibria (depicted in red). Indeed, a limit

cycle emerges in each case. The main difference is that the limit cycle lies in the plane

orthogonal to the set of Nash equilibria for the classic dynamics while it is not orthogonal

for the distributed case. Additionally, the angle formed by the plane containing the limit

cycle and the set of Nash equilibria is the same for DSD, DRD, and DPD. On the other

hand, both DLD and classic logit dynamics reach the same equilibrium point. However,

this rest point does not belong to the set of Nash Equilibria. We notice the fact that this

characteristic has been reported before in the literature related to classic logit dynamics

(e.g., see [3]).
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Figure 5.5: Distributed (up) and classic (bottom) population dynamics applied to bad

rock(R)–paper(P)–scissors(S) with a twin(T).

5.5.3 Distributed Control of Dynamical Systems

Finally, we design a distributed controller for the optimal transportation of drinking wa-

ter2(relationship between distributed control and games has been pointed out in several

papers, e.g., [122, 123]). The system is composed by n coupled tanks as shown in Figure

5.6. The arrows in the graphical representation show how flow directions are. Each

tank has an outflow given by an unknown demand considered as a disturbance that is

denoted by di, and an inflow ui from a limited water source, i.e., the control outputs are

subject to a constraint given by
∑n

i=1 ui ≤ K, where K is the total available resource.

The mentioned inflows are controlled by xi that determines a percentage of the total

resource K, then ui = Kxi, and
∑n

i=1 xi = 1. We assume that there are local controllers

at the valves to guarantee the desired inflow according to the signal xi. The dynamics

for this system are as follows,

dh1

dt
= u1 −

√
ρgh1 − d1

dhi
dt

= ui +
√
ρghi−1 −

√
ρghi − di, i = 2, ..., n− 1

dhn
dt

= un +
√
ρghn−1 − dn,

2Parameters of this academical problem have been scaled from real transportation of drinking water

problems.
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x1

dnd2d1

Source

· · ·

· · ·

x2 xn

Figure 5.6: Simple drinking water system with a unique resource and unknown demands.

where hi is the water level of the ith tank, ρ is the density of the fluid, and g is the

gravity. The proposed example considers the case of 4 tanks, and the control objective is

to maintain the water level of each tank at a safety value of reference, which is given by

the company in charge of the management of the network. This safety value is obtained

according to the demand that each tank supplies. For this particular example the safety

reference is established at 0.5 m, and the unknown demand profile at each node during

two days is shown in Figure 5.7 (adapted from [124]).
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Figure 5.7: Demand profile (d1, d2, d3 and d4) during 2 days for the 4 tanks case.

To control this plant using population dynamics, we propose the following analogy:

the population is related to the available water, the strategies correspond to the tanks.

Therefore, the population state x represents the distribution of the water (in percentage)

among the tanks. Additionally, the fitness functions are selected to be the error at each
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tank, i.e., fi = 0.5−hi, for all i = 1, . . . , n. Notice that this fitness is appropriate since: i)

more proportion of inflow is assigned to those tanks with larger error, and ii) it is known

that hi increases as the inflow controlled by xi increases, i.e., the fitness function fi is

decreasing with respect to xi satisfying the condition for a stable game [3]. Furthermore,

consider the case in which the quantity of water required to meet the safety levels is less

than the available resource. In this situation, if all the available resource is allocated in

the tanks, the safety levels would be exceeded. Therefore, it is necessary to introduce

an additional strategy whose corresponding population xn+1 is used as a slack variable.

The fitness function for this slack variable is fn+1 = 0. Hence, if the level in the ith tank

is higher than the safety level (i.e., fi < 0), it is more profitable to allocate resource to

the slack variable than to the ith tank.

Figure 5.8 shows the control performance considering full information in the classic

Smith dynamics, i.e., that at each point of the network, the information related to all the

system is available to make decisions. Figure 5.9 shows the performance of a distributed
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Figure 5.8: System states evolution for a controller with full information.

controller designed based on DSD. The information graph considered for this example

is a path graph, i.e., that the ith tank only has information about the (i− 1)th and the

(i + 1)th tanks. First, notice that in this particular problem with four control actions

and one slack variable, the classical Smith dynamics with full information require 10

communication links. In contrast, the distributed population dynamics approach for

a problem with four control actions, one slack variable, and a path configuration just
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Figure 5.9: System states evolution for a distributed population dynamics based controller.

require four communication links.

Regarding control performance, results show that the control objective is achieved

with both the Smith dynamics controller with full information and with the DSD con-

troller by using partial information despite the hard and unknown outflow disturbances

at each tank. Furthermore, it can be noticed that the settling time of the distributed

controller is not far from the one obtained with full information. Additionally, once the

system achieves the set–point, both controllers have similar behavior showing the well

performance of the distributed population dynamics approach.

5.6 Discussion

This chapter proposes a methodology to generate distributed population dynamics from

revision protocols considering different population structures. The core of the proposed

method lies in a generalization of the mean dynamics for non–well–mixed populations.

This novel concept provides us a tool to deal with information constraints related to the

strategic interactions of the individuals that conform the population. Allowed agents’

interactions within the population are described by means of an undirected graph. Fol-

lowing this convention, we have shown that well–mixed populations are characterized by

complete graphs, while non–well–mixed populations are represented by non–complete

graphs. The main implication of this feature is the possibility to derive population dy-

namics that only use local information to evolve, i.e., distributed population dynamics.
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The appealing features of distributed population dynamics have been exploited in

some application examples that illustrate their usefulness. We have shown that dis-

tributed population dynamics can be used in the design of constrained optimization

algorithms, and the synthesis of control systems for problems requiring non–centralized

schemes. Notice that normal form games can also model similar engineering applica-

tions. Therefore, distributed learning strategies might be used to solve these problems.

However, the authors in [125] suggest that this approach fails if the application includes

a coupled constraint that involves all the decision variables. Under this scenario, dis-

tributed population dynamics become a proper alternative since their trajectories evolve

to the optimal solution satisfying the referred coupled constraint as shown in Theorems

2–4.

Simulations have illustrated the equivalence between the steady state behavior of the

proposed distributed dynamics and classic population dynamics. Moreover, regarding

the transient performance, simulations have also shown that there exists a relationship

between the convergence rate and the algebraic connectivity of the underlying com-

munication graph. The larger the algebraic connectivity is, the faster the transient

response of the corresponding dynamics. Indeed, the fastest response is obtained by

using a complete–graph, i.e., by using classic population dynamics. Similarly to other

distributed schemes, the dependence of the performance on the graph connectivity evi-

dences a tradeoff between the number of communication links and how fast the optimal

solution is reached.
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Conclusions and Future

Directions

6.1 Distributed Resource Allocation Among Dynamic Net-

works

We have extended the applicability of consensus–based resource allocation algorithms

from static problems to dynamic scenarios. We have proved that, if the systems that

comprise the network are passive (either dynamical or memoryless), then a multi–agent

controller that uses classic consensus protocols can drive the network to a desired global

behavior, while a resource constraint is satisfied for any time. This result has been used

to synthesize a distributed technique for controlling the temperature in the rooms of a

building that uses a central heating system. We have proved by means of graph theoreti-

cal tools and invariance analysis, that the proposed controller is able to deal with several

power constraints without the need of full information. Moreover, we have used concepts

form passivity theory to show that, under connected graphs, our methodology optimally

allocates the available heating power among the rooms, considering different scenarios,

e.g., when the temperature references cannot be reached due to critical load conditions.

In this situation we have used the variance of the steady state temperature errors as our

performance index. Some simulations that show the advantages of the proposed method

compared to other widely used techniques have been presented. Furthermore, we have

analyzed static resource allocation problems from the perspective of passive memoryless

systems. We have shown that convex problems have associated a passive memoryless
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function, which is given by the gradient of the corresponding cost function.

An interesting future direction is the extension of the results given in this dissertation

to deal with directed and time–varying graphs. This extension is important since directed

and time–varying graphs emerge in a number of real applications. For instance, in

networks of mobile agents [31], where communications between agents vary depending on

agents’ relative positions. This proposed future direction is challenging since the analysis

of distributed resource allocation algorithms highly depends on the graph structure.

6.2 Optimal Resource Allocation with Lower–Bound Con-

straints

We have developed a distributed method that solves a class of resource allocation prob-

lems with lower bound constraints. The proposed approach is based on a multi–agent

system, where coordination among agents is done by using a consensus protocol. We

have proved that convergence and optimality of the method is guaranteed under some

mild assumptions, specifically, we require that the cost function is strictly convex and

the graph related to the communication network that enables the agents to share in-

formation is connected. The main advantage of our technique is that it does not need

a centralized coordinator, which makes the method appropriate to be applied in large–

scale distributed systems, where the inclusion of centralized agents is undesirable or

infeasible. As future work, we propose to use a switched approach in order to eliminate

the iterations in Algorithm 1. Moreover, we plan to include upper bound constraints in

our original formulation.

6.3 Distributed Population Dynamics

We have generalized a methodology to generate distributed population dynamics from

the distributed mean dynamics and different revision protocols. To illustrate the method,

we have derived four distributed population dynamics, i.e., the distributed Smith dy-

namics, the distributed replicator dynamics, the distributed projection dynamics and

the distributed logit dynamics. We have proved that the distributed population dy-

namics presented in this work exhibit mass conservation and convergence to Nash equi-

libria in the same way as classic population dynamics do. Finally, we have presented
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some applications of the proposed dynamics in the design of distributed optimization

algorithms, solution of classic games, and the synthesis of controllers for multi-variable

system. Simulation results have shown that distributed population dynamics exhibit

an appropriate performance and provide optimal solutions despite the lack of full in-

formation. Thus, distributed population dynamics are promising to address problems

requiring non–centralized information structures. This fact is relevant since distributed

problems are becoming more common in many fields, especially when large–scale and

complex systems are involved.

A future research direction is the inclusion of dynamics in the fitness functions (in a

similar way as in Chapter 3). We notice that this modification would give more flexibility

to distributed population dynamics for dealing with a wider range of problems.
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Abstract 

 
Since the complexity and scale of systems have been 
growing in the last years, distributed approaches for 
control and decision making are becoming more 
prevalent. This dissertation focuses on an important 
problem involving distributed control and decision 
making, the dynamic resource allocation in a network. 
To address this problem, we explore a consensus--
based algorithm that does not require any centralized 
computation, and that is capable to deal with 
applications modeled either by dynamical systems or by 
memoryless functions. The main contribution of our 
research is to prove, by means of graph theoretical tools 
and passivity analysis, that the proposed controller 
asymptotically reaches an optimal solution without the 
need of full information.  
 
In order to illustrate the relevance of our main result, we 
address several engineering applications including: 
distributed control for energy saving in smart buildings, 
management of the customers of an aggregating entity 
in a smart grid environment, and development of an 
exact distributed optimization method that deals with 
resource allocation problems subject to lower--bound 
constraints. 
 
Finally, we explore resource allocation techniques 
based on classic population dynamics models. In order 
to make them distributed, we introduce the concept of 
non--well--mixed population dynamics. We show that 
these dynamics are capable to deal with constrained 
information structures that are characterized by non--
complete graphs. Although the proposed non--well--
mixed population dynamics use partial information, they 
preserve similar properties of their classic counterpart, 
which uses full information. Specifically, we prove mass 
conservation and convergence to Nash equilibrium. 
 

Key Words 
 

Resource allocation, output consensus, distributed 
algorithms, graph theory, passivity, multi—agent 
systems, population dynamics. 

 

Resumen 

 
Dado que la complejidad y la escala de los sistemas se 
han ido incrementando en los últimos años,  las técnicas 
centralizadas de control y toma de decisiones están 
siendo reemplazadas por métodos distribuidos. Esta tesis 
se centra en un importante problema que involucra control 
y toma de decisiones distribuidas: la asignación dinámica 
de recursos en redes. Para abordar este problema, 
exploramos un algoritmo basado en consenso que no 
requiere computación centralizada, y que puede ser 
usado en aplicaciones modeladas ya sea por sistemas 
dinámicos o funciones sin memoria. La principal 
contribución de esta tesis es probar, por medio de teoría 
de grafos y pasividad, que el algoritmo propuesto alcanza 
asintóticamente una solución óptima sin la necesidad de 
usar información completa.  
 
Para ilustrar la relevancia del resultado principal de esta 
disertación, abordamos varias aplicaciones en ingeniería, 
incluyendo: el control distribuido en edificios inteligentes 
orientado a la eficiencia energética, la gestión de los 
clientes de un agregador en una red inteligente en la que 
se aplican estrategias de respuesta de la demanda, y el 
desarrollo de un método de optimización exacto que 
permite incluir restricciones de límite inferior. 
 
Finalmente, se exploran otras técnicas de asignación de 
recursos inspiradas en modelos de dinámicas 
poblacionales. Se introduce el concepto de poblaciones 
no—bien—mezcladas, y se muestra que las dinámicas 
asociadas a este tipo de poblaciones cuentan con una 
estructura de información local, caracterizada por grafos 
que no son completos. A pesar de que las dinámicas 
propuestas usan información parcial, ellas preservan 
características similares a las dinámicas poblacionales 
clásicas que usan información completa.  
 
 

Palabras Clave  
 

Asignación de recursos, consenso, algoritmos 
distribuidos, teoría de grafos, pasividad, sistemas multi—
agente, dinámicas poblacionales. 
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