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Introduction

Congestion arises when the enjoyment of a good by one individual diminishes the con-

sumption possibilities of other individuals (Oakland, 1972). This situation is more likely

to happen when the number of individuals having the opportunity to consume the good

is large, other things being equal. This explains why congestion is an inherent feature

of large agglomerations, and why it may be considered as the negative counterpart to

the agglomeration effect. Therefore Ciccone (2002) names "net agglomeration effect" the

difference between positive externalities due to agglomeration and congestion effects. A

concrete and explicit example of congestion in cities is observable on roads during morning

and evening commuting peaks. During these periods characterized by huge traffic jam, an

additional road driver suffers from longer travel time, but he is also the direct cause of

part of the traffic jam which decreases the utility of other drivers. So the consumption of

road by one driver diminishes the road consumption possibility of other drivers. According

to the results of the survey provided by the Centre for Economics and Business Research

and traffic information company Inrix (CEBR - INRIX, 2014), the cost of road conges-

tion in 2013 is estimated at e93.8 billion for the US economy (0.74% of the GDP), e25.2

billion for the Germany economy (0.92% of the GDP), e17 billion for the France (0.82%

of the GDP) and e15.5 billion for the UK (0.81% of the GDP). Road congestion is one

of the prevalent and majors issues cities face (OECD, 2007), not only because increased

travel times are a loss to the society, but also because this rise in travel times intensifies

environment and health-harming emissions. Encouraging public transport seems to be an

efficient way to reduce road congestion and its externalities, because it is a cleaner mode.

Therefore, a number of supply-side and travel demand management policies are commonly

15



16 INTRODUCTION

used to discourage driving and encourage the use of public transport. To attract private

car users, gain in travel time but also service quality have to be emphasized. For example,

the European Commission wrote in the White Paper on transport (European Commission,

2011):

The quality, accessibility and reliability of transport services will gain in-

creasing importance in the coming years, inter alia due to the ageing of the

population and the need to promote public transport. Attractive frequencies,

comfort, easy access, reliability of services and intermodal integration are the

main characteristics of service quality. [p. 12]

Yet these efforts are often hampered by transit capacity constraints. Indeed, for a given

supply of public transport, an increase in patronage may deteriorate the service quality:

less seats are available and some users have to stand for all or part of their journey; some

vehicles are so crowded that users on platforms must wait for the next one; more users

enter and leave vehicles at each station, increasing dwelling times, travel times and vari-

ability of travel times... Consequently, public transport becomes less attractive. Whereas

the congestion on roads is known to all and has been the subject of numerous works by en-

gineers, economists, sociologists and others, fewer have been said or written on congestion

in public transport. However, optimal modal split and policies efficiency should be stud-

ied in an unified theoretical framework. When analyzing the modal choice, the disutilites

(or travel costs) of each mode are compared, and the individual is assumed to choose the

less costly. Therefore it does not seem consistent to introduce congestion for the private

cars without doing the same for public transport modes. It results in biased results and

overestimates the appeal of public transport with respect to private cars. This dissertation

aims at filling part of this gap and at proposing tools and insights to analyze congestion

in public transport.

There is no general consensus on what congestion is in public transport. A vast liter-

ature studies and describes the congestion on road networks, but fewer works investigate

the congestion in public transport and propose a satisfactory definition of it. In a report

written for the European Conference of Ministers of Transport (ECMT), Schallaböck and
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Petersen define congestion in public transport as “a situation in which transport partici-

pants cannot move in a usual or desirable manner” (ECMT, 1999, p.13). This definition is

interesting because it focuses on the disutility supported by the users. However, the fact

that congestion is due ton an excess of demand is not enhanced here. According to Koning

(2011, p.24), a transport infrastructure is “congested when it is not able to meet the de-

mand without lowering the service quality”. Following this, in this dissertation, I consider

the congestion in public transport as the condition occurring when the ratio demand /

supply of public transport is high enough to decrease the convenience of users. The con-

venience is related to “absence of effort” in using public transport facilities (OECD, 2014).

In the Oxford Dictionary,1 public transport2 is defined as “buses, trains, and other forms

of transport that are available to the public, charge set fares, and run on fixed routes”.

The definition of congestion proposed above is valid for all public transport modes. This

definition does not presume the channels through which congestion decreases the utility

of traveling. In this dissertation, I focus on two features of congestion in public transport:

the crowding and the unreliability.

In public transport, one of the main manifestation of the congestion takes the form

of crowding. Crowding arises when the number of users is too high with regards to the

available space. It may occur not only while riding buses and trains, but also when boarding

and alighting from them, while waiting on platforms or at stops, and while accessing

stations by escalator, elevator, or on foot. A high density of users decreases the amount

of space available for each user and creates promiscuity between users. This promiscuity

has physical and psychological consequences on the journey experience. One of the main

effects is that when traveling in crowded conditions, users are not able to perform regular

activities: difficulties to read newspaper because of the lack of space, inability to focus

because of noise... This makes the utility of the time spent in crowded vehicles lower

than when vehicles are empty. Many other reasons explain why users are averse to a high

density when they travel: anxiety, stress, tiredness, threat to safety... Clearly, crowding

1http://www.oxforddictionaries.com/definition/english/public-transport?q=
public+transport.

2In North American english, “public transportation” is sometimes used instead of “public transport”. In
this manuscript, both expression are used interchangeably.

http://www.oxforddictionaries.com/definition/english/public-transport?q=public+transport
http://www.oxforddictionaries.com/definition/english/public-transport?q=public+transport
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is a disutility to users. Tirachini et al. (2013) presents the most detailed literature review

about crowding in public transport. They report that crowding is shown to increase in-

vehicle time (Lin and Wilson, 1992) and waiting time (Oldfield and Bly, 1988), and to

deteriorate travel time reliability (Bates et al., 2001). From psychological studies, they

relay that crowding causes stress and feeling of exhaustion (Mohd Mahudin et al., 2012).

Concerning the users perception of crowding, many papers show that the in-vehicle time

cost beared by users increases with the number of users (Li and Hensher, 2011; Wardman

and Whelan, 2011; Haywood and Koning, 2015). Crowding is also an important feature

when forecasting the route choice of users (Raveau et al., 2011) and when determining the

optimal pricing, subsidy and supply (Parry and Small, 2009). I investigate this disutility

in Chapters II and III of this dissertation.

Another feature of congestion is the decrease in reliability. Indeed, when more users

take a public transport vehicle, they need more time to board and alight the vehicle,

because the boarding/loading speed is physically constrained by the width of the gates.

This delays the vehicle but also the following ones which have to respect a certain frequency.

Consequently, on the network, travel times and delays increase. Congestion may also take

the form of the disability to board the vehicle for users, resulting in increased waiting times

on the platforms. This is the perspective used by Kraus and Yoshida (2002). Moreover,

overground public transport travel times are intimately related to road congestion. For

example, buses suffer from road congestion all along the route on shared with private cars

network. Road congestion may also affect vehicles circulating on dedicated lane or rail

because of the jamming at intersections of roads dedicated to private cars. In Chapter I,

I analyze the unreliability in public transport.

Some facts on public transport

The use of public transport is heterogeneous across the world. It depends on the wealth of

individual, on geographical characteristics of cities... Figure 1 displays the average public

transport share as a function of the GDP per inhabitant for some categories of cities in

1995. These figures have been computed by Joly et al. (2006) by using the Millennium
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Cities Database made by the UITP.3 This is one of the very rare sources which supply some

figures on public transport patronage for several zones in the world. Figure 1 allows to

characterize the use of public transport with respect to the other modes. Public transport

is prevailing in cities from developing countries and from Asia, where between 35 and 60%

of trips are made by public transport. It is less used in Europe cities (around 25%), and

almost residual in North America and Oceania cities (around 6%).

Despite these differences in modal split, public transport networks are well developed

in Europe, especially comparing to North America. The example of the metro diffusion

is striking. 45 European cities have metro networks that carry in average 31 millions

passengers per day, whereas only 15 north-American metro networks carry 11 millions

passengers per daily (UITP, 2014c, p.2).4 This difference may be partly explained by

higher densities of inhabitants in Europe than in North America. Indeed, automobiles

seem most economical at low inhabitants densities, bus transit at medium densities, and

rail transit at very high densities (Small, 2008). The number of annual UE local public

transport - bus, tram and metro - journeys has increased from 45.6 billions in 2000 to 49.5

billions in 2012 (UITP, 2014b, p.2). In average, an UE inhabitant uses the local public

transport for 132 journeys per year. In comparison, commercial aviation accounts for 800

million users journeys per year and long distance rails for 1 billion per year (UITP, 2014a).

Among these 49.5 billion local public transport journeys, 64% (31.8 billion) are made in

bus or trolley, 19% (9.4 billion) by metro and 17% (9.3 billion) by tramway. In Europe,

the bus is from far the most used public transport mode. This trend is likely to continue

due to the efficiency of new bus rapid transit on dedicated lanes.

According to the definition of the congestion in public transport, the patronage for

public transport can not be analyzed without some figures on the supply of public trans-

port. Such statistics are not available for large zones. Therefore the following focuses on

Paris region. Moreover, in Chapter III, I use a survey in which users have been interviewed

in the Paris subway, and in Chapter II, I propose a calibration of a model on a segment of

RER A line, one of the busiest line in the Parisian public transport network. For the Paris

3See http://www.uitp.org/public-transport-sustainable-mobility.
4The leader continent in patronage for metro is Asia: 50 cities provide metro for a 71 million passengers

daily ridership. 16 Latin-American metro systems carry 15 millions passengers per day.

http://www.uitp.org/public-transport-sustainable-mobility
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Figure 1: Average urban public transport share with respect to the average GDP per
inhabitant in 1995(Joly et al., 2006, from the Millennium Cities Database, UITP)

Notes. The urban public transport share is the ratio of the number of trips made with public transport
in a city on the total number of trips made in a city. The GDP/inhabitant is also computed at the city
level. The Africa average is computed on 8 cities (Abidjan, Cairo, Cape Town, Casablanca, Dakar, Harare,
Johannesburg and Tunis), the North America + Oceania average on 20 cities (Atlanta, Brisbane, Calgary,
Chicago, Denver, Houston, Los Angeles, Melbourne, Montreal, New York, Ottawa, Perth, Phoenix, San
Diego, San Francisco, Sydney, Toronto, Vancouver, Washington and Wellington), the South America
on 10 cities (Bogota, Brasilia, Buenos Aires, Caracas, Curitiba, Mexico City, Rio de Janeiro, Salvador,
Santiago and Sao Paulo), the modern Asian cities average on 5 cities (Hong Kong, Osaka, Sapporo,
Singapore and Tokyo) the others Asian cities of 16 cities (Bangkok, Beijing, Chennai, Guangzhou, Ho
Chi Minh City, Jakarta, Kuala Lumpur, Manila, Mumbai, New Delhi, Riyadh, Seoul, Shanghai, Taipei,
Tel Aviv and Teheran), the Europe average on 35 cities (Amsterdam, Athens, Barcelona, Berlin, Bern,
Bologna, Brussels, Copenhagen, Dusseldorf, Frankfurt, Geneva, Glasgow, Graz, Hamburg, Helsinki, Lille,
Lisbon, London, Lyon, Madrid, Manchester, Marseille, Milan, Munich, Nantes, Newcastle, Oslo, Paris,
Rome, Ruhr, Stockholm, Stuttgart, Turin, Vienna and Zurich) and the Eastern Europe average on 6 cities
(Budapest, Istanbul, Krakow, Moscow, Prague and Warsaw).
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region, statistics are available for the annual total of users x kilometers per mode and the

annual total of vehicles x kilometers operated by the transit authority. These statistics

allow to compute the average number of users per vehicle. In 2013, there were, in average,

around 240 users per suburban train (for a capacity going from 200 to 940 seats, depending

on the rolling stock), 154 users per metro (seating capacity from 144 to 320), 91 users per

tramway (seating capacity from 48 to 80), 20 users per bus in Paris and 14 users per bus

outside Paris.5 These figure show that the occupancy rates of seats on the network are

close to 100% and sometimes higher, meaning that some users have to stand during travel.

However, it is still not sufficient to describe the congestion. Indeed, congestion is

dynamic in the sense that the number of users with respect to the supply varies along

the day. On Figure 2 is displayed the distribution of users in the Paris metro network as

a function of the time of the day for a winter working day in 2013. Two remarks are of

interest. First, a morning peak and an evening peak are clearly noticeable, and the evening

peak is more spread out in time than the morning peak. Second, the number of users using

the facility may vary very quickly, as it is the case between 8am and 9am or between 9am

and 10am. This second remark is of first interest. Indeed, in a microeconomic perspective,

it means that an individual can decide to travel earlier or later in order to avoid excessive

congestion. The departure time decision is the key lever individuals may adapt in order

to adapt themselves to congestion, as Knockaert et al. (2012) showed in an experiment

conducted on a a congested motorway corridor in the Netherlands. In Chapters I and II,

I deeply investigate the departure time decisions of users.

The Parisian public transport system is also subject to a lack of reliability. This

unreliability may be due to excess of demand or to exogenous incidents. In 2013, 16.1% of

RER A users and 16.9% of RER B users arrived at their destination with a late delay higher

or equal to 5 minutes (STIF, 2014). With respect to the annual patronage for these two

lines (around 310 million RER A users and 220 million RER B users) and to an average

value of time of e15 per hour (Wardman et al., 2012), the social cost of unreliability

on these two lines amounts at least to e100 million in 2013. This figure highlights the

importance of reliability in public transport, an aspect I focus on in Chapter I.

5Computations of the author from data supplied by OMNIL (2011).
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Figure 2: Distribution of users in the Paris subway network as a function of the time of
the day, a winter working day in 2013 (OMNIL, 2011).

Roadmap of the dissertation

This dissertation is made of three distinct essays on the congestion in public transport

facilities. The two first essays investigate how users get used to lack of punctuality and

crowding in public transport. The third essay presents an empirical analysis of the crowding

effect.

Chapter I Public transport reliability and commuter strategy

In the first chapter, I focus on the two-way implication between punctuality level of public

transport and (potential) customer behavior. The punctuality of public transport is a

key element of the service quality. The user cost elements which play an important role

in demand analysis are affected by the punctuality level (Bowman and Turnquist, 1981).

As a consequence, users and potential users choose both the mode of transport and the

departure time depending on public transport punctuality level. Mohring (1972) has shown

that scheduled urban public transport is characterized by increasing returns to scale since

the frequency increases with demand. Therefore demand is influential in the service quality

and the bus company may adapt its punctuality to the level of potential demand. One of

the goals of this chapter is to observe if the bus company adapts its service quality to a

change in the price of the alternative mode. Another aim is to explore the gap between
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the bus punctuality at equilibrium and at optimum. The shift from a mode to another to

achieve the optimal modal split is to be highlighted.

I develop a duopoly which embodies a modal competition between public transport

and another mode which we call taxi. The attention is focused on the monetary impacts of

punctuality. Two different types of variables are observed in the model: the public trans-

port punctuality level which is selected by the bus company and the prices set by bus and

taxi companies. Both have a substantial influence on demand for public transport (Paulley

et al., 2006). Unreliability has a strong negative impact because it implies excessive wait

time and uncertainty (Wardman, 2004; Paulley et al., 2006).

Considering commuting trips, preferences can be analyzed with the dynamic scheduling

model. In this model, individual’s preferences reflect agents tradeoff between travel time,

early schedule delay and late schedule delay. Commuters may choose different strategies

to minimize their trip cost. This theory has been first introduced by Vickrey (1969) and

then renewed by Arnott et al. (1990). Such analysis usually are specific to road analysis

(Fosgerau and Karlström, 2010) therefore I introduce a wait time to extend this model

to public transport. In the model, a commuter has the choice between catching the bus

and using the taxi service. However he may miss the bus and then he has to use the taxi

service. Indeed I assume the headway is so long that all users who miss the bus prefer

to use the taxi service. Commuters are differentiated by their preferred arrival time and

by their location which is measured as the time to travel to their destination when using

the alternative mode. Two different preferred arrival time are considered. The location is

uniformly distributed among commuters.

The analysis for the model proceeds in three steps. The first step is to find out for

arbitrary public transport and alternative mode prices and punctuality level which com-

muters will use which mode of transport. The second step is to determine which price and

punctuality levels are set by companies at equilibrium given the strategies of commuters

identified in step one. The third step is to assess the prices and the punctuality level that

minimize the total social cost and to compare these results with the ones found in step

two. I find that the public transport reliability set by the public transport firm at the com-

petitive equilibrium increases with the alternative mode fare, via a demand effect. This
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is reminiscent of the Mohring Effect. The study of the optimal service quality shows that

often, public transport reliability and thereby patronage are lower at equilibrium compared

to first-best social optimum.

Chapter II Economics of crowding in public transport

To analyze the welfare effects of public transit crowding, and policies to alleviate it, in

a conceptually consistent way, it is necessary to use a structural model that incorporates

trip scheduling decisions, an empirically plausible crowding cost function, and alternative

pricing (i.e., fare) regimes. Several papers in the transport economics literature have laid

much of the groundwork for such a model. Vickrey’s (1969) bottleneck congestion model

is the seminal work on scheduling of automobile trips. Arnott et al. (1990) extended it

to time-varying tolling schemes and capacity investment decisions. Tabuchi (1993) added

public transit by considering a setting in which travelers can choose between driving and

taking a rail service with scale economies and no crowding. In this chapter, I use this

modeling framework to analyze usage of a rail transit line, and assess the potential benefits

from internalizing crowding externalities by setting differential train fares. I also present

results on optimal train capacity and the number of trains put into service.

To study the behavioral implications and costs of crowding, I develop a structural

model in which public transport users face a choice between traveling in a crowded train

and arriving when they want, and traveling earlier or later to avoid crowding but arriving

at an inconvenient time. Trains run on a fixed timetable between two stations. Riders

know the timetable and choose which train to take.

Therefore each commuter chooses when to arrive at the train station by trading off

schedule delay costs and crowding costs. Equilibrium obtains when no commuter can

decrease his journey cost by changing his departure time, taking all other commuters’

departure times as fixed. Thus, as in the Vickrey (1969) model, the equilibrium is a

pure-strategy Nash equilibrium with departure times as the decision variables. The social

optimum is reached when the marginal social cost of a trip is the same in any train during

the peak hour.

I show how the optimum can be decentralized using train-specific fares, and characterize
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the welfare gains from optimal pricing. I then allow total demand to be price elastic and

compare total usage, private costs, and welfare in the user equilibrium, the social optimum,

and a third regime in which an optimal uniform fare is imposed. Finally, I derive the

optimal timetable, number of trains, and train capacity for the three fare regimes.

Some of the results parallel those obtained with road traffic congestion models. Pas-

senger loads are often distributed more evenly across trains in the social optimum than

the user equilibrium. The social optimum can be decentralized by charging higher fares on

more popular trains to internalize the crowding cost externality on each train. Imposing

differentiated fares makes users worse off - at least before accounting for how the revenues

are used. Other results are less obvious. The welfare gains from tolling are independent

of total ridership. Expanding the number of trains can also be more valuable in the social

optimum than the user equilibrium even though total system costs are lower in the social

optimum.

Chapter III Well-being in public transport: an empirical approach of the

crowding effect

Economists often do not distinguish density and crowding and consider these two terms as

equivalent. However, according to psychologists, an important distinction has to be done

(Stokols, 1972; Baum and Paulus, 1987). In this chapter, the experience of crowding is

assumed to be made of several dimensions, the nuisance factors. These nuisance factors of

crowding are defined as the aspects of a journey that are deteriorated by a high density.6

The perception of these dimensions may be different for each user: it is influenced by

the travel characteristics, the individual preferences, and of course by the objective in-

vehicle density. The concept of comfort satisfaction is larger than the concept of crowding.

Indeed, a journey may be experienced as very dis-comfortable despite the train is empty

or almost empty, because of heat, smell, accelerating, braking... The expectations or level

of requirement may also vary across users. Therefore, in addition to the crowding, the

travel and individual characteristics are worth considering when addressing the in-vehicle

6In this study, I consider eight dimensions of crowding: Overcloseness, Standing, Noise, Smell, Time

loss, Waste of time, Fall and Robbery.
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comfort.

The objectives of this chapter are twofold. On the one hand, I shed some more light

on the in-vehicle comfort satisfaction during public transport journey, by characterizing

the effects of crowding, individual preferences and travel characteristics on the user satis-

faction. On the other hand, I examine which nuisance factors of crowding construct the

crowding experience, and how the dimensions of crowding are influenced by the individual

preferences.

The analysis takes the answers to a travel satisfaction question as a measure for user

subjective well-being, and the responses to questions about dissatisfaction related to various

aspects of comfort when the in-vehicle density is very high as measures for nuisance factors.

The data originates from a survey collected on 1,000 Paris subway users. Due to the nature

of data, ordered logit models are used during the analysis.

I find a clear crowding effect: on average, an extra-user per square meter decreases by

one the expected 0 to 10 scale individual well-being. I do not find any empirical evidence

of this effect being intensified by the travel time. However, the crowding effect increases

with the income of users. I find three causes of crowding disutility: a higher probability

to stand for all or part of the journey, a poorer use of the time during the journey, and

noisier travel conditions. These features of discomfort matter more for women and wealthy

individuals.



Chapter I

Public transport reliability and

commuter strategy

1 Introduction

Despite increasing pollution and congestion in cities, cars remain the most popular mode

of transport, because they are usually more convenient than public transport and they

keep a strong attractive power due to symbolic and affective motives (Steg, 2005). In the

U.S., the predominance of cars is also strengthened, despite the congestion observed on

the American highways (The Economist, 2011). Therefore, improving alternative modes

of transport and making them attractive is essential in an urban context. Although it

has been pointed out that the share of commuters switching from cars to public transport

may not be very large (Hensher, 1998), increasing the service quality is still an important

determinant of public transport demand (Beirao and Cabral, 2007). Travel time is often

presented as the main determinant of trip characteristics. Much less focus has been devoted

to trip reliability. However, some studies (see eg, Beirao and Cabral, 2007) have shown that

users will shift to cars if public transport is not reliable enough. Several studies strongly

suggest that reliability (understood as punctuality) of public transport is crucial to leverage

the demand (Bates et al., 2001; Hensher et al., 2003; Paulley et al., 2006; Coulombel and

de Palma, 2014). In a qualitative review, Redman et al. (2013) claim that reliability is the

most important quality attribute of public transport according to users. Ongoing research

27
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also tries to show that reliability of public transport may have an impact of the price of

land.

The reliability issue does not only affect developing countries, but also developed coun-

tries. The example of United States is striking: only 77% of the short-haul trains are

punctual, whereas 90% of Europeans trains are on time (The Economist, 2011). Moreover,

the reliability of long-distance trains is even worse in the US. This is due to decades of

under-investment which have led to infrastructure degradation.1 For a discussion of the

relevance of investment in rail transit system, we refer the reader to Winston and Maheshri

(2007).

Although there is a long tradition in studying road reliability, a sensitive lack of research

is observed in public transport field (Bates et al., 2001). Studies highlight a valuation of

road reliability (Bates et al., 2001; Fosgerau and Karlström, 2010), others underline the

importance of public transport comfort (de Palma et al., 2013) or punctuality (Jensen,

1999), but few works deal with reliability in an analytical way.

This paper focuses on the two-way implication between punctuality level of public

transport and (potential) customer behavior. Indeed, on the one hand the punctuality of

public transport is a key element of the service quality. The user cost elements, which play

an important role in demand analysis, are affected by the punctuality level (Bowman and

Turnquist, 1981). The cost of punctuality differs among commuters. It largely depends

on the preferred arrival time of commuters. As a consequence, users and potential users

choose both the mode of transport and the departure time as a function of punctuality

level in public transport. On the other hand, Mohring (1972) has shown that scheduled

urban public transport is characterized by increasing returns to scale since the frequency

increases with demand. Demand is influential in the service quality offered and the bus

company may adapt its punctuality to the level of potential demand. Thus we show that

some users may decide to arrive late at the bus stop when punctuality is too low. As a

consequence, the bus company itself may become less strict as regards the punctuality.

In a nutshell, this means that user behavior (punctuality of users) is influenced by the

1To address this situation, Mr Obama plans to spend $556 billion for transport over 6 years, according
to his 2012 budget.



1. INTRODUCTION 29

punctuality of public transport. This generates a vicious circle.

In this paper, we study three situations: (i) the reaction of the bus company when

it faces a higher price of the alternative mode, (ii) the gap between the bus punctuality

at equilibrium and at optimum and (iii) the equilibrium versus optimal modal split when

punctuality matters.

We consider a duopoly which symbolizes a modal competition between public transport

and another mode, which we call taxi. The attention is focused on the monetary impacts

of punctuality. We simplify aspects related to engineering. A duopoly is used because

determinants of demand for public transport are related to the demand for private transport

(Balcombe et al., 2004). Two different types of variables are observed in the model: the

public transport punctuality level, which is selected by the bus company and the prices set

by the bus and taxi companies. Both have a substantial influence on demand for public

transport (Paulley et al., 2006). Unreliability has a strong negative impact because it

implies excessive waiting time and uncertainty (Wardman, 2004; Paulley et al., 2006).

Considering commuting trips, preferences can be analyzed with the dynamic scheduling

model. In this model, individual’s preferences reflect agents tradeoff between travel time,

early schedule and late schedule delays. Commuters may choose different strategies to

minimize their trip cost. This theory has been first introduced by Vickrey (1969) and then

renewed by Arnott et al. (1990). Such analysis is usually specific to road analysis (Fosgerau

and Karlström, 2010); here we introduce a waiting time to extend this model to public

transport. The French State-owned railroad (SNCF) suggests to reschedule work arrival

and departure times in order to reduce congestion (Steinmann, 2013). For the idea of

endogenous schedules and private or public bus company, we refer the reader to Fosgerau

and Small (2013).

Commuters are differentiated by their preferred arrival time at workplace and by their

residential location which is measured as the time to travel to their destination when using

the alternative mode. Two different preferred arrival time are considered and the location

is uniformly distributed among commuters.

The analysis for the model proceeds in three steps. The first step consists in finding out

the modal choice of commuters depending on prices and punctuality for the public transport
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and the alternative mode. The second step determines which price and punctuality levels

are set by companies at equilibrium given the behaviors of commuters identified in step

one. The third step is to assess the prices and the punctuality level that minimize the total

social cost and to compare these results with the ones derived in step two.

The paper is organized as follows. Section 2 describes the model and the commuter’s

strategies. Section 3 considers equilibrium and its properties. The gain due the transition

from equilibrium to optimum is analyzed in Section 4. A numerical application is provided

in Section 5 to illustrate our results. The final section concludes and proposes suggestions

for further research.

2 Punctuality in public transport

Our model is based on the monocentric city framework defined by Alonso (1964), Mills

(1967) and Muth (1969). All jobs are located in the center of the city, referred to as the

central business district (CBD). Consequently, all commuters have to reach the CBD every

morning. We focus our analysis on a unique radius of the city, assuming that this radius is

representative of the set of radius of the city. We consider an unique road which coincides

with this radius. It goes straight from the border of the city to the CBD. The radius is

measured in time units and is ∆ hours long. An unique bus line and a taxi company serve

the CBD by using this road and bus stops are uniformly distributed along the radius of the

city. We do not take into account congestion on the road. Thus both mode have the same

speed and we refer to a bus stop located at δ hours from the CBD as “bus stop δ”. For

example, the bus stop ∆ is located at the border of the city. Similarly, all commuters live

along the radius and we refer to commuters who need δ hours to reach the CBD, whether

they use the bus service or the taxi service, as “commuters δ”. For each δ ∈ [0;∆], all

commuters δ live at the same place (see Figure 3).

For analytical tractability, we consider a single bus. However this model can be easily

adapted to other modes of public transport that run on a schedule. The bus is scheduled

to arrive at the CBD at a given time, but it may be late. The lateness probability is not

random: the bus company selects its quality service level and applies it in the same manner
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Figure 3: The monocentric city

along the radius. Thus when the bus company chooses to be late, it is late along the whole

journey and its lateness is constant over time. Commuters are aware of the punctuality

level and adapt their behavior accordingly. In particular they might arrive at the bus stop

after the scheduled time even if there is a risk to miss the bus by doing so. This can occur

rationally because there is a waiting cost for users. Commuters optimize their tradeoffs

between waiting time cost, schedule delay cost and a cost corresponding to the use of an

alternative mode, which is the taxi in our model. A commuter may either select ex ante

the taxi or use the taxi if he misses the bus.

Table 1 presents important notations and their numerical values that will be used in

Section 2 and Section 5.We first characterize the network and then the commuter behavior.

Finally we present the modal split.

2.1 Transport supply

Bus stops are uniformly distributed between 0 and ∆. The bus is scheduled to arrive at

its destination, the CBD, at time T . As there is no road congestion, it is also scheduled to

serve the bus stop δ at time T −δ and also leaves at time T −δ i.e there is no transfer cost.2

The bus company may choose that the bus is late and arrives at CBD time T + x. In this

case, the bus stops at every bus stop δ at time T + x− δ. The bus arrives at the CBD at

time T with probability P and at time T +x with probability 1−P (Figure 4). Whatever

the bus lateness, the total bus trip time is constant and equal to ∆. The potential lateness

2The loading time is assumed to be set to zero without loss of generality.
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Table 1: Parameters values

Parameter Comment Suggested value
T Scheduled arrival time -
tt Bus travel time 25/60 (hour)
x Lateness 10/60 (hour)

P ∈
[
1
2 ; 1
]

Probability of the bus being late -
tp ∈ {T ;T + x} Arrival time at the bus stop of the bus -

δ ∈ [0;∆] Taxi trip time (hour)
∆ Maximal taxi trip time 35/60 (hour)

t∗ ∈ {T ;T + x} Preferred arrival time of users -
ta ∈ {T ;T + x} Arrival time at the bus stop of the user -

θ ∈
[
1
2 ; 1
]

Share of population in GroupA -

αbus In-bus time cost 15 ($/hour)
αtaxi In-taxi time cost 4 ($/hour)
η Waiting time cost 20 ($/hour)
β Early delay cost 10 ($/hour)
γ Late delay cost 30 ($/hour)

κ Bus fare ($)
τ Taxi fare ($/hour)

c Cost of punctuality (bus) ($)
d Operating cost per unit of time (taxi) 40 ($ /hour)
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Figure 4: The arrival probabilities of the bus

is also constant and equal to x.

The probability of the bus being on time is endogenous: the bus company sets its level.

It does not depend on traffic conditions, number of passengers or loading time. The worst

quality of service occurs when the bus has the same probability of being on time and late.

We assume that a regulator imposes this constraint to assure a consistent timetable.3 The

“punctuality level” corresponds to the probability of the bus being on time.

Assumption 1. The probability P of the bus being on time satisfies the following inequal-

ity:

1

2
≤ P ≤ 1.

We assume that there is no capacity constraint in the bus. The bus fare, priced by the

bus company, is κ for each passenger.

Commuters have access to an alternative mode of transport. In our model we consider

this option as a taxi service, but it can also be walking or personal car use. The taxi

company sets a fare τ which corresponds to the price charged per minute of travel.

2.2 Demand for bus and taxi

We consider two firms located in the CBD. Firm A employs a part of θ in commuters

population and firm B a part of (1− θ). The share of commuters working for firm A is

bigger than the one working for firm B (θ ≥ 1/2). The workday in the first firm starts

3Minimal value of P is 1/2, otherwise we would face another schedule than the expected one.
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Figure 5: Distribution of taxi trip time in GroupA and GroupB

at time T whereas it starts at time T + y in the other firm.4 This reflects the fact that

even though a majority of commuters wishes to arrive at work place at the same time, all

commuters have not the same preferred arrival time.

For tractability, we assume that the gap between the beginnings of workday equals to

the lateness of the bus (x = y). Therefore, each type has a different preferred arrival time

denoted t∗ ∈ {T ;T + x}. The first type of commuters (referred to as GroupA) would

rather arrive at time T , and the second one (referred to as GroupB) at time T + x (see

Figure 5).

Commuters locations are uniformly distributed among each group in the same manner

(Figure 5) and the distribution is assumed to have a support [0;∆] so that F (0) = 0 and

F (∆) = 1.

They are assumed to incur a schedule delay cost if traveling at time t 6= t∗. There is no

transfer cost: commuters do not incur a cost by reaching the bus stop because bus stops

are uniformly distributed along the radius where they live.

A commuter has the choice between catching the bus and using the taxi service. How-

ever he may miss the bus and then he has to use the taxi service. Indeed we assume the

headway is so long that all users who miss the bus prefer to use the taxi service. If he tries to

catch the bus, the commuter δ uses the bus stop δ because it minimizes its transfer cost. A

commuter δ choosing to catch the bus bears the following schedule delay cost function that

is assumed to depend on its arrival time at the bus stop, denoted ta ∈ {T − δ;T − δ + x},
4This gap between working start times is conceivable if there is no Marshallian externality between

these two firms (see Henderson, 1997).



2. PUNCTUALITY IN PUBLIC TRANSPORT 35

the arrival time of the bus, denoted tp ∈ {T − δ;T − δ + x}, its most preferred trip time,

denoted t∗ ∈ {T ;T + x} as well as on the arrival time at destination of the bus, denoted

td ∈ {T ;T + x} :

CCbus =





κ+ δαbus + η(tp − ta) + β [t∗ − td]
+ + γ [td − t∗]+ if (ta ≤ tp),

δ (αtaxi + τ) + γ [td − t∗]+ if (ta > tp),

with [x]+ = x if x ≥ 0 and 0 if x < 0, κ the bus fare, αbus the in-bus time cost, η the

waiting time cost, β the early delay cost, γ the late delay cost, αtaxi the in-taxi time cost,

τ the taxi fare and δ the trip time of commuter δ.

If a commuter chooses from the start to use the taxi service, he incurs the following

cost:

CCtaxi = δ (αtaxi + τ) ,

with αtaxi the taxi travel time value, τ the taxi fare and δ the taxi trip time.

By considering that the value of time in bus δαbus is incurred by every commuter

whatever is its choice, we can normalize the cost functions to:

CCbus =





κ+ η(tp − ta) + β [t∗ − td]
+ + γ [td − t∗]+ if (ta ≤ tp),

δ (α̌+ τ) + γ [td − t∗]+ if (ta > tp),
(1)

CCtaxi = δ (α̌+ τ) , (2)

with α̌ = αtaxi − αbus.

Assumption 2. The cost of waiting one minute for a bus, η, is lower than the cost of

being one minute late, γ, and higher than the cost of being one minute early, β:

γ ≥ η ≥ β.

This assumption is consistent with literature valuations (Wardman, 2004).
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2.3 Commuters’ strategies

Commuters dispose of three different strategies to minimize the cost of a trip. A strategy is

defined by an arrival time at the bus stop. Arriving at the bus stop at time T corresponds

to Strategy O (On-time at the bus stop), arriving at time T +x to Strategy L (Late at the

bus stop) and Strategy T (Taxi) embodies the decision to use the taxi and to not arrive

at the bus stop. If a commuter chooses Strategy O, he waits until the bus arrives.

As a convention, we assume that a commuter who is indifferent between two strategies

has a preference for maximizing its chance to get the bus. The commuter chooses:

Strategy O (arrive at time T ) if EC (O) ≤ EC (T ) and EC (O) ≤ EC (L);

Strategy L (arrive at time T + x) if EC (L) < EC (O) and EC (L) ≤ EC (T );

Strategy T (choose the taxi) if EC (T ) < EC (O) and EC (T ) < EC (L);

where EC (i) represents the expected cost of strategy i.

Proposition 1. Under A.1 and A.2, the commuter δ in GroupA selects:

Strategy O (time T ) if δ ≥ δAT,O,

Strategy T (taxi) if δ < δAT,O,

where δAT,O ≡ [κ+ (1− P ) (η + γ)x] / (α̌+ τ).

Proof. See Appendix A.

For a commuter wishing to arrive at time T , Strategy L is never selected. Indeed a

commuter chooses Strategy L instead of Strategy T if he prefers a late bus trip over a taxi

trip. However such a commuter prefers an on time bus trip over taxi trip and consequently,

he will choose Strategy O.

Proposition 2. Under A.1 and A.2, the commuter δ in GroupB selects:

Strategy O (time T ) if δ ≥ δBL,O,

Strategy L (time T + x) if δ ∈
[
δBT,L; δ

B
L,O

[
,

Strategy T (taxi) if δ < δBT,L,

where δBL,O ≡
[
κ+

(
1−P
P η + β

)
x
]
/ (α̌+ τ) and δBT,L ≡ κ/ (α̌+ τ).
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Proof. See Appendix B.

Strategy L is selected by some commuters from GroupB unlike commuters from

GroupA. It can be explained by the fact that in this case, Strategy L corresponds to

a possibility of the bus arriving on time. A commuter who prefers an on-time bus trip over

a taxi trip, yet prefers a taxi trip more than an early-arrival bus trip, chooses Strategy L.

The share of commuters choosing Strategy T is independent of the probability of the

bus being on time. Indeed P has no influence in the arbitrage between Strategy L and

Strategy T . For commuters in GroupB, choosing Strategy L is equivalent to choosing

Strategy T except that they take the bus when it is late. Consequently, Strategy L is

preferred to Strategy T as long as the cost of taking the bus when it is late is lower than

the cost of taking a taxi. Then this arbitrage is independent of the probability of the bus

being on time.

When the punctuality decreases, the share of commuters arriving late at the bus stop

increases. The cut in the service quality makes the cost of Strategy O higher (because

of A.2) and the cost of Strategy L smaller (except for commuters living so close to the

CBD that a taxi trip is still cheaper than a bus trip, but we do not take account of

these commuters because they still prefer Strategy T ). Then among commuters who chose

Strategy O before the service quality fall, those living the closest to the CBD were the most

indifferent between both strategies and switched from Strategy O to Strategy L. The bus

company may also itself become less strict, and generate a vicious circle.

When the taxi fare, τ , increases, more commuters choose to arrive at the bus stop at

T and less commuters choose Strategy L and Strategy T . This is due to the fact that on

the one hand some commuters have a bigger interest to minimize the probability of taking

the taxi by shifting from Strategy L to Strategy O and from Strategy T to Strategy L.

On the other hand, the shift from Strategy L to Strategy O is larger than the one from

Strategy T to Strategy L.

Figure 6 illustrates these results. Other things being equal, the share of commuters

arriving at T (and by doing so they are sure to catch the bus) among GroupA increases

from around 40% when P = 1/2 to almost 55% when P = 1. The share of commuters
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GroupA GroupB

Figure 6: Share of commuter choosing Strategy O and Strategy L as a function of P , the
probability of the bus being on time (κ = 8, τ = 50)

in GroupB choosing to arrive late at the bus stop (Strategy L) depends inversely on the

probability of the bus being on time. If the bus arrives later, some users switch from

Strategy O to Strategy L which leaves the bus company no incentive to restore the service

quality.

Assumption 3. The maximum cost of the taxi use, priced at the operating cost, is higher

than the cost of the bus use, when priced at zero and when the bus arrives on time with

probability 1/2:

∆(α̌+ d) ≥ 1

2
(η + γ)x.

Once the commuters strategy are defined, shares of commuters who are at the bus stop

at time T or T + x are known. Demands are described by

Dbus = θ

(
1−

δAT,O
∆

)
+ (1− θ)

[
1−

δBL,O
∆

+ (1− P )
δBL,O − δBT,L

∆

]
, (3a)

Dtaxi = θ
δAT,O
∆

+ (1− θ)

[
P
δBL,O − δBT,L

∆
+

δBT,L
∆

]
. (3b)

Thus the bus (and taxi) patronage depends on the probability of the bus being on time.

GroupA is more sensitive to the service quality than GroupB (see also Figure 6). This

is due to the fact that commuters from GroupA incur late arrival costs while commuters

from GroupB incur early arrival costs and, as seen in A.2, the penalty for lateness is much

higher than the penalty for arriving early at the destination.
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3 Competition between bus and taxi companies

In this section, we explore equilibrium pricing and punctuality level in a duopoly compe-

tition. We assume that following condition holds:

∆(α̌+ τ) ≥ κ+
1

2
(η + γ)x. (4)

This condition assures that the price selected by the bus company is low enough to

preserve a demand for bus trips. Thus the demand functions formulation (equations (3a)

and (3b)) is still correct. We will check if it holds once the equilibrium values of τ and κ

are solved.

Both companies incur a cost. The cost incurred by the bus company depends on the

punctuality level and is assumed to be quadratic. It is a sunk cost in the sense of being

unrecoverable (Sutton, 1991). The cost of the taxi company linearly depends on the total

travel time and can be viewed as an operating cost:

Costbus =
c

2
P 2, (5a)

Costtaxi = d× TTT , (5b)

with c the punctuality cost, d a cost per hour traveled and TTT the total travel time of

the taxi company.

The bus company chooses the bus fare κ and the punctuality level P , so as to maximize

its expected profit. From equations (3a) and (5a), the bus company profit can be written

as

Πbus = κDbus −
c

2
P 2.

There exists a unique solution5 satisfying the first-order conditions ∂Πbus/∂κ = 0 and

5Second-order conditions are satisfied as ∂2Πbus/∂κ
2 = −2/△̌ and ∂2Πbus/∂P

2 = −c/△̌. The Hessian
matrix of second partial derivatives is also negative definite, and the solution is a global maximum.
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∂Πbus/∂P = 0, given by

κe =
1

2

(
△̌e − Γex

)
, (6a)

P e =





1
2 if c > ce2,

κeη̌x

c△̌e if c ∈ [ce1; c
e
2]

1 if c < ce1,

, (6b)

where ∆̌e = ∆(α̌+ τ e), Γe = (1− P e) η+(1− θ)P eβ+θ (1− P e) γ, η̌ = η−(1− θ)β+θγ,

ce1 ≡ κeη̌x/∆̌e and where ce2 ≡ 2ce1.

The price of a minute traveled in a taxi, τ , is set by the taxi company to maximize its

profit. From equations (3b) and (5b), taxi profit is given by

Πtaxi = (τ − d)

[
θ

ˆ δAT,O

0
δf(δ)dδ

+(1− θ)

(
ˆ δBT,L

0
δf(δ)dδ + P

ˆ δBL,O

δBT,L

δf(δ)dδ

)]
.

The level of price satisfying the first-order condition6 ∂Πtaxi/∂τ = 0 is

τ e = α̌+ 2d. (7)

Condition (4) requires △̌e ≥ κe + 1
2 (η + γ)x and yet

∆(α̌+ d) ≥ {Pη − (1− θ)Pβ + [1− θ (1− P )] γ}x/2. It holds according to A.3.

Note that the probability of the bus being on time in (6b) is continuous.

The core component of the bus fare corresponds to the average taxi trip cost cut by

the average schedule and waiting time cost incurred by commuters. The bus company

takes account of its service quality to remain attractive regarding the alternative mode.

As expected, the punctuality decreases when the punctuality cost c increases. Since the

punctuality level decreases with the maximal taxi trip time, ∆, a high scatter of commuter’s

locations makes the service quality regress (see equation (6b)). In addition, the longer of

6Second-order condition requires that 4α̌− 2τe + 6d ≥ 0 or τe ≤ 2α̌+ 3d.
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the radius where commuters live, the higher is the mark-up for the bus company. The taxi

fare is independent of the bus company choices. It only depends on the values of taxi and

bus travel time and operating cost. Ceteris paribus when d increases, both bus and taxi

fares become higher.

There is a unique simultaneous Nash equilibrium which is given by equations (6a), (6b)

and (7).

Proposition 3. At equilibrium, P e, the probability of the bus being on time and κe, the

bus fare, increase with τ , the taxi fare.

Proof. See Appendix C.

Consider an initial rise in taxi fare, τ e, for example due to an increase in the taxi

operating cost or in the petrol price. This increase leads to a standard modal shift from taxi

service to bus service, other things being equal (see Propositions 1 and 2). Consequently,

the cost of the bus punctuality per user decreases. The bus company therefore will have

an incentive to increase the punctuality level when τ rises. By doing so, the bus company

attracts additional commuters. In this model, an increase in bus patronage improves

the service quality of the bus. This can be viewed as an extension of the Mohring Effect

(Mohring, 1972) according to which the service quality measured as the frequency increases

when the demand for public transport rises.

The increase in the bus fare is explained by two aspects: on the one hand the service

quality has been improved, and on the other hand, the rises in the taxi fare increase the

average taxi trip cost and therefore the bus fare. There is no strategic complementarity

because the taxi company does not react to a change in bus fare (see Vives, 1990).

4 Welfare analysis

Welfare is the sum of the aggregate commuter surplus and the companies profits. Since

a cost function is used instead of a surplus function to study the commuter strategies,

the social welfare function is defined as the opposite of the social cost function SC which

is the difference between aggregate commuter costs and firm profits. From equations of
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commuter cost (1) and (2), of demand (3a) and (3b), and of companies cost (5a) and (5b),

the social cost function can be written as

SC =
∆αbus

2
+ θCCθ=1 + (1− θ)CCθ=0 −Πbus −Πtaxi,

where

CCθ=1 = (α̌+ τ)

ˆ δAT,O

0
δf(δ)dδ

+ {κ+ [(1− P ) (η + γ)]x}
ˆ ∆

δAT,O

f(δ)dδ,

and where

CCθ=0 = (α̌+ τ)

ˆ δBT,L

0
δf(δ)dδ

+

ˆ δBL,O

δBT,L

[(1− P )κ+ P (α̌+ τ) δ] f(δ)dδ

+ {κ+ [(1− P ) η + Pβ]x}
ˆ ∆

δBL,O

f(δ)dδ.

The social planner chooses the punctuality level P , the bus fare κ and taxi fare τ so

as to minimize social cost. The first-order conditions for the socially optimal bus and taxi

prices are given by

κo = 0, (8a)

τ o = d. (8b)

As expected, optimal bus and taxi fares equal to the marginal costs incurred by bus and

taxi companies. Indeed, as there is no variable cost for the bus, the optimal bus fare is

null.

The expression of the optimal punctuality level P o is not explicit in the general case

because the equation to solve is a cube root i.e it has three solutions with only one real.
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P o = argmin
P∈[ 12 ;1]

SC. (9)

However in the extreme case where θ = 1, there exists a unique solution7 satisfying

∂SCθ=1/∂P = 0. By using (8a) and (8b), we obtain, for GroupA

P o
θ=1 =





1
2 if c > co2;θ=1,

[△̌o−(η+γ)x](η+γ)x

c△̌o−[(η+γ)x]2
if c ∈

[
co1;θ=1; c

o
2;θ=1

]

1 if c < co1;θ=1,

, (9a)

where ∆̌o = ∆(α̌+ τ o), co1;θ=1 ≡ (η + γ)x ,

co2;θ=1 ≡
[
2△̌o − (η + γ)x

]
(η + γ)x/△̌o and where co1;θ=1 < co2;θ=1. Note that the proba-

bility of the bus being on time when θ = 1 is continuous.

We generalize the above result to the other extreme case where θ = 0 in the following

conjecture.

Conjecture 1. For GroupB (θ = 0), the punctuality level of the bus P o
θ=0 weakly decreases

when the cost of reliability c increases. There are two critical values of c, co1;θ=0 and co2;θ=0

with co1;θ=0 ≤ co2;θ=0 such that:

P o
θ=0 =





1
2 if c > co2;θ=0,

1 if c < co1;θ=0.

(9b)

with co1;θ=0 < co2;θ=0.

Equations (8a), (8b) and (9) provide the values at optimum in the general case. Equa-

tions (9b) and (9a) point out the optimal punctuality level in extreme cases.

The optimal probability of the bus being on time has the same properties we describe

in Section 3: it decreases when the punctuality cost c or the travel time of the commuter

7Second-order condition is verified as c△̌o ≥ [(η + γ)x]2.
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living the farthest ∆ increases. The important observation is that the optimal probability

of the bus being on time does not necessarily equal 1. It may be lower than 1 and even

equal 1/2 under some conditions. Critical values co1;θ=0 and co2;θ=0 are expected because

P o
θ=0 ∈ [1/2; 1]. The above conjecture is illustrated in Figure 7.

From now on, as the expression of P o is not explicit and P o = θP o
θ=1 + (1− θ)P o

θ=0,

properties of the optimal probability of the bus being on time will be addressed separately

according to the structure of the population. The two extreme cases θ = 1 and θ = 0 are

highlighted, even if θ ≥ 1/2.

Proposition 4. For GroupA (θ = 1), the punctuality level of the bus is higher at optimum

than at equilibrium.

Proof. See Appendix E.

Commuters in GroupA want to arrive at T therefore the later is the bus, the more

commuters incur a cost. The bus company wishes to maximize the probability of the

bus being on time at equilibrium, as the social planner does at optimum, while taking

into account the punctuality cost per user incurred by the bus company. The difference

between equilibrium and optimum bus punctuality is mainly explained by a price-effect.

Indeed, the gap between the bus fare relative to the taxi fare is much higher at equilibrium

than at optimum. Thus other things being equal, the bus company attracts less customers

at equilibrium than at optimum. Consequently, the bus company has to reduce the bus

punctuality at equilibrium more than the social planner does at optimum to keep the

punctuality cost per user small enough. This result is summarized in Proposition 4.

As there is no explicit expression for P o and P o
θ=0, a discussion with a figure is provided

in Section 5.

Proposition 5. For GroupA (θ = 1), if the taxi operating cost d is higher than dc1, the

bus patronage is higher at optimum than at equilibrium.

When d ≤ dc1, the bus patronage is higher at optimum than at equilibrium if and only if the

cost of punctuality for the bus company is small enough (c ≤ cc1).
8

8The critical value of the taxi operating cost d is dc1 = 3(η+γ)x
8∆

− α̌. The critical value of the punctuality
cost cc1 is defined as the unique solution of Do

θ=1 = De
θ=1.
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Proof. See Appendix F.

As the expression of P o
θ=0 is not explicit, the analysis is more difficult for GroupB.

However we formulate a proposition, as well as a conjecture.

Proposition 6. For GroupB (θ = 0), if the taxi operating cost d is smaller than dc2

(higher than dc3, resp.), the bus patronage is smaller (resp. higher) at optimum than at

equilibrium.9

Proof. See Appendix G.

We conjecture the variations in demand for GroupB when d ∈ [dc2; d
c
3].

Conjecture 2. For GroupB, when d ∈ [dc2; d
c
3], the bus patronage is higher at optimum

than at equilibrium if the punctuality cost for the bus company is small enough (c > cc2).
10

This conjecture is discussed in Appendix H. The basic idea in Propositions 5 and 6 and

in Conjecture 2 is that when the taxi operating cost is small, the bus company tends to

underprice which consequently attracts too many customers. As the taxi operating cost is

high, the bus company overprices. This is due to the fact that the bus fare highly depends

on the taxi fare (see equation (6a)). We refer the reader to Proost et al. (2002) for a

detailed discussion of the optimal pricing in transport.

The equilibrium modal split meets the optimal modal split under two conditions. First

the taxi operating cost d has to be included between the two critical values we defined.

Then the punctuality cost incurred by the bus company c has to equal a critical value. If

the taxi operating cost is higher than the interval defined by critical values, the optimal

modal split is reached by a partial commuters shift from taking a taxi to taking a bus.

This shift can also be in the opposite direction if the taxi operating cost is smaller than the

critical interval. This reflect the fact that the bus company underprovides quality relative

to the social optimum when c is small (see De Borger and Van Dender, 2006, for a detailed

discussion).

9The critical values of the taxi operation cost d are dc2 = −
(

1
2
η − 7

2
β
)

x/2∆ − αtaxi and dc3 =
(2η + β)x/2∆− αtaxi, with dc2 < dc3.

10The critical value of reliability cc2 is the unique solution of Do
θ=0 = De

θ=0.
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GroupA(θ = 1) GroupB(θ = 0)

Figure 7: Probability of the bus being on time as a function of the punctuality cost c

The taxi operating cost corresponds to the traditional costs as fuel or insurance, but

it may also be viewed as an extra tax set by the planner to account for the externalities

such as pollution or noise.11 In this sense, the operating cost trend should be growing and

in the long run, the bus patronage would increase at the expense of the taxi service.

5 Numerical application

We develop an applied case to illustrate previous theoretical findings. Numerical results

are obtained with values specified in Table 1. The studied case is related to a 25 minutes

bus trip. The bus has a probability P of being on time and a probability 1 − P of being

10 minutes late at departure. The commuter living the farthest from their trip destination

has a taxi trip time equal to 35 minutes. We consider a uniform distribution of the taxi

trip time. The operating taxi cost d is constant and equal to 40 $/hour. Lastly, cost

parameters αbus, αtaxi, η, β and γ are equal to 15, 4, 20, 10 and 30 $/hour, resp. Each

variable is drawn depending on the reliability cost for the bus c.

A reminder to the readers, P e and P o are respectively the probability of the bus being

on time at equilibrium and at optimum. As expected, the probability of the bus being

on time decreases when the reliability cost increases (see Figure 7). The more expensive

the punctuality is, the less interesting is the reliability for both the bus company and the

11See Proost and Van Dender (2001) for an evaluation of alternative fuel efficiency, environmental and
transport policies regarding atmospheric pollution.
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GroupA(θ = 1) GroupB(θ = 0)

Figure 8: Bus patronage as a function of the punctuality cost c

social planner.

As indicated in Proposition 4, the probability of the bus being on time when θ = 1 is

higher at optimum than at equilibrium. The opposite extreme case where θ = 0 is more

complex as P o is not continuous. It seems that the probability of the bus being on time

is higher at optimum than at equilibrium when c is small and that after a critical value of

c this relation is inverted. Probabilities of the bus being on time are higher when θ = 1

than when θ = 0. This is due to the fact that users from GroupA are more sensitive to

unreliability because when the bus is late they incur a late delay cost which is higher than

the waiting time cost incurred by commuters from GroupB. Thus when θ = 1, the bus

company needs to maintain a better level of service than when θ = 0 in order to keep their

patrons. An important observation is that the optimal punctuality may be very low and

even equal to 0.5 which is the worst reliability level. Indeed, since the reliability cost is not

too high, the social planner makes the bus company increase the punctuality of the bus to

minimize the cost born by users. However, if the punctuality cost for the bus is too high,

it is socially better to share cost with users by making or allowing the bus to be late.

Two points are especially interesting in Figure 8. First, the bus patronage is weakly

decreasing when the punctuality cost increases. This drop is higher at optimum than at

equilibrium. Along with Figure 7 we note that the punctuality has a strong effect on

demand. The variations of the bus patronage corresponds to the variations of the bus

punctuality. When the bus punctuality is stable, the split between the bus and the taxi
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Table 2: Values of main variables when c = 5 and θ = 0.75

Variable Equilibrium Optimum
Probability of the bus being on time 0.72 0.88

Bus fare 16.9$ 0$
Taxi fare 70$/hour 40$/hour

Bus patronage 47% 96%
Social gain - 42%

Figure 9: Relative social gain compared to equilibrium as a function of the punctuality
cost c

is constant. Secondly, note that the demand for the bus is higher at optimum than at

equilibrium in both extreme cases. Regarding Proposition 5, this example illustrates the

common case where the bus patronage is higher at optimum than at equilibrium. At

equilibrium the bus patronages is sub-optimal. Too much commuters use the taxi service

because catching the bus is too expensive and the bus is not reliable enough.

Table 2 provides the values of main variables when c = 5 and θ = 0.75. The probability

of the bus being on time at equilibrium equals to 0.72 (note that this measure is consistent

with observed average lateness in Paris Area (STIF, 2014)). The bus fare may seem high,

but it is not surprising as we do not take into account subsidies which are important

in the public transport sector (Ponti, 2011). Indeed for example in Paris Area in 2010,

monetary public transport revenues equal to 29.7% of total operating cost (STIF, 2013).

The optimum is reached by increasing the reliability at its maximal level and decreasing

prices. Consequently, the bus patronage becomes much higher and the social gain is about

42%.
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The relative social gain is computed as the ratio of the absolute gain, due to the

transition from equilibrium to optimum, to the absolute social cost at equilibrium (see

Figure 9). Such curves allow to determine when the gain is high enough to justify public

intervention: the lower the punctuality cost is, the more useful is public intervention.

Indeed when c is high (see equations 6b, 9a and 9b), punctuality at equilibrium and at

optimum is the same. The only difference between equilibrium and optimum is the modal

split, but the gain due to this difference is gradually offset by the growing punctuality

cost. Consequently, for both GroupA and GroupB, the social gain tends to 0 when the

punctuality cost, c, tends to infinity. The cut in social gain is faster for GroupA because

variation in patronage is more sensitive with respect to the rise in c.

The brief application in this section illustrates that the effectiveness of public interven-

tion varies according to punctuality cost. In the more general and realistic case, a stronger

intervention seems useful in relation to the current situation.

6 Conclusion

The modeling of the bus punctuality reported here has provided an improved understanding

of the two-way implication between punctuality level of public transport and customer

public transport use. Commuters develop adaptive strategies to fit the transport system.

Thus a rise in the fare of a mode decreases the patronage for this mode. In particular,

an increase in the taxi fare rises the share of commuters arriving on time at the bus stop

because they wish to minimize the probability of missing the bus. Moreover when the bus

company becomes less strict as regards punctuality, more bus users will prefer to arrive

late at the bus stop. Then the bus company is not incited to maintain a high level of

reliability. This can generate a vicious circle. We also appreciate the efficiency of the

punctuality when it is viewed as an instrument of service quality that can be adapted to

fit and regulate the public transport patronage.

The main findings of this paper follow. At equilibrium, the probability of the bus being

on time increases with the price of the alternative mode. The service quality reacts well

to a rise in the taxi fare. Indeed, a new market share of commuters is assailable with a
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reasonable effort in terms of service quality. Compared with the optimum, buses are very

often too late at equilibrium. Commuters bear the cost of this extra-lateness, because they

have to wait for the bus more often or take the taxi which is expensive. However, it does

not mean that the bus should not be late. Indeed if the cost of the punctuality is too high

relative to the cost of the alternative mode, a late bus is socially preferable. Finally, we

find that the sign and the amplitude of the gap between the equilibrium and optimal modal

split first depends on the cost of the alternative mode and secondly on the punctuality cost

incurred by the bus company. Nevertheless, in the more general and realistic case the bus

patronage seems under-optimal.

Several elements remain to be addressed. Considering risk averse users would change

users strategies and affect the punctuality. It should be interesting to include congestion

on road networks and in the bus. Congestion on the road would make the taxi journey

longer and unpredictable, whereas congestion in the bus (understood as crowding) would

accentuate the cost incurred by users. Finally, introducing the bus punctuality in a bus

transit line with several stops and several buses (de Palma and Lindsey, 2001) will improve

the modeling by introducing a snowball effect: if a bus is late, its lateness increases along

its journey.



Appendices

Appendix A Proof of Proposition 1

We wish to compare expected costs of StrategysO, L and T , denoted EC (O), EC (L)

and EC (T ) respectively, to define a choice rule for a commuter in GroupA. From

equations (1) and (2), we can write:

EC (O) = κ+ (1− P ) (η + γ)x,

EC (L) = Pδ (α̌+ τ) + (1− P ) (κ+ γx),

EC (T ) = δ (α̌+ τ).

Therefore we have

EC (O) ≤ EC (L) iff δ ≥ κ+
(
1−P
P

)
ηx

α̌+ τ
≡ δAL,O, (10)

EC (T ) < EC (L) iff δ <
κ+ γx

α̌+ τ
≡ δAT,L, (11)

EC (T ) < EC (O) iff δ <
κ+ (1− P ) (η + γ)x

(α̌+ τ)
≡ δAT,O. (12)

We use A.1 and A.2 to rank δAL,O, δAT,L and δAT,L:

(i) δAT,L ≥ δAL,O ⇐⇒ γ ≥
(
1−P
P

)
η ⇐⇒ γ

η ≥ 1−P
P which is true since γ

η > 1 ≥ 1−P
P

by A.1 and A.2.

(ii) δAT,L ≥ δAT,O ⇐⇒ γ ≥ (1− P ) (η + γ) ⇐⇒ P ≥ 1 − γ
(η+γ) which is true since

51
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γ
(η+γ) >

1
2 by A.2.

(iii) δAT,O ≥ δAL,O ⇐⇒ η + γ ≥ 1
P η ⇐⇒ P ≥ η

(η+γ) which is true since η
(η+γ) < 1

2by

A.2.

Therefore δAL,O ≤ δAT,O ≤ δAT,L.

StrategysB is chosen if and only if δ < δAL,O and δ ≥ δAT,L. As δAL,O ≤ δAT,L, StrategysB

is dominated and never chosen by commuter in GroupA. Figure 10 summarizes results of

the proof.

Figure 10: Strategy choice of a commuter in GroupA depending on the taxi trip time δ.

Appendix B Proof of Proposition 2

We wish to compare expected costs of StrategysO, L and T , denoted EC (O), EC (L)

and EC (T ) respectively, to define a choice rule for a commuter in GroupB. From

equations (1) and (2), we can write:

EC (O) = κ+ [(1− P ) η + Pβ]x,

EC (L) = Pδ (α̌+ τ) + (1− P )κ,

EC (T ) = δ (α̌+ τ).

Therefore we have

EC (O) ≤ EC (L) iff δ ≥ κ+
(
1−P
P η + β

)
x

α̌+ τ
≡ δBL,O, (13)

EC (T ) < EC (L) iff δ <
κ

α̌+ τ
≡ δBT,L, (14)
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EC (T ) < EC (O) iff δ <
κ+ [(1− P ) η + Pβ]x

α̌+ τ
≡ δBT,O. (15)

We use A.1 and A.2 to rankδBL,O, δBT,L and δBT,L:

(i) δBT,L ≤ δBL,O ⇐⇒ 0 ≤
(
1−P
P η + β

)
which is true.

(ii) δBT,L ≤ δBT,O ⇐⇒ 0 ≤ (1− P ) η + Pβ which is true.

(iii) δBT,O ≤ δBL,O ⇐⇒ (1− P ) η + Pβ ≤ 1−P
P η + β ⇐⇒ 1 ≥ 1

P which is true since

1
P ≥ 1 by A.1.

Therefore δBT,L ≤ δBT,O ≤ δBL,O. Figure 11 summarizes results of the proof.

Figure 11: Strategy choice of a commuter in GroupB depending on the taxi trip time δ.

Appendix C Proof of Proposition 3

We wish to show that P e, the probability of the bus being on time at equilibrium, and κe,

the bus fare, increase with τ the taxi fare. We first show that ∂P e/∂τ ≥ 0 (i) and that

∂κe/∂τ ≥ 0 (ii). Then we check that boundaries of interval, ce1 (iii) and ce2 (iv), increase

with τ . Let us recall expressions of equilibrium variables (see equations (6a) and (6b)):

κe =
1

2

{
△̌e − [(1− P e) η + (1− θ)P eβ + θ (1− P e) γ]x

}
,

P e =





1
2 if c > ce2,

κeη̌x

c△̌e if c ∈ [ce1; c
e
2] ,

1 if c < ce1,
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where △̌e = ∆(α̌+ τ e), η̌ = η − (1− θ)β + θγ, ce1 ≡ κeη̌x/△̌e and where ce2 ≡ 2ce1. By

substituting κe in P e, we obtain

P e =





1
2 if c > ce2,

[△̌e−(η+θγ)x]η̌x
2c△̌e−(η̌x)2

if c ∈ [ce1; c
e
2] ,

1 if c < ce1,

where ce1 =
[
△̌e − (1− θ)βx

]
η̌x/2△̌e and where ce2 =

(
△̌e − η̌x

)
η̌x/2△̌e. We now derive

P e, κe, ce1 and ce2 on τ e.

(i) ∂P e

∂τe = ∆η̌x2c(η+θγ)x−(η̌x)2

[2c△̌e−(η̌x)2]
2 so ∂P e

∂τ ≥ 0 if c ≥ (η̌x)2

2(η+θγ)x . Let us substitute c by ce1 the

minimal value of the interval [ce1; c
e
2]. Thus

ce1 −
(η̌x)2

2 (η + θγ)x
=

η̌x
[
△̌e − (η + θγ)x

]
(1− θ)βx

2△̌e (η + θγ)x
.

Yet η̌x(1−θ)βx

2△̌e(η+θγ)x
≥ 0 and △̌e − (η + θγ)x ≥ 0 by A.3. We therefore have ∂P e

∂τ ≥ 0;

(ii) ∂κe

∂τe = ∆
2 + ∂P e

∂τe
η̌x
2 ≥ 0 by A.2,

(iii) ∂ce1
∂τe = (1−θ)βxη̌x

2∆(αtaxi+τe)2
≥ 0,

(iv) ∂ce2
∂τe = (η̌x)2

2∆(αtaxi+τ)2
≥ 0.

P e, the probability of the bus being on time at equilibrium, and κe, the bus fare,

increase well with τ e the taxi fare.

Appendix D Proof: optimal bus and taxi fare

The social planner chooses the punctuality level P , the bus fare κ and taxi fare τ so as to

minimize social cost. The first-order conditions for the socially optimal bus and taxi prices
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are given by

∂SC

∂κ
=

κ (α̌+ d)− (τ − d) Γx

∆(α̌+ τ)2
= 0, (16a)

∂SC

∂τ
=

(τ − d)A− κ (α̌+ d) (κ+ Γx)

∆ (α̌+ τ)3
= 0, (16b)

where Γ = (1− P ) η + (1− θ)Pβ + θ (1− P ) γ, A = κΓx+ χ and

χ = θ [(1− P ) (η + γ)x]2 + (1− θ)P
[(

1−P
P η + β

)
x
]2

. Therefore from (16a) and (16b)

κo =
(τ o − d) Γx

(α̌+ d)
, (17a)

τ o =
κo (α̌+ d) (κo + Γx)

A∆(α̌+ τ o)3
− d. (17b)

By substituting (17a) into (17b), the first-best optimal bus and taxi prices can be written

as12

κo = 0;

τ o = d.

Appendix E Proof of Proposition 4

We wish to show that the probability of the bus being on time is higher in the optimal

situation than in equilibrium when θ = 1. For that, we need to show that the result of

P o
θ=1 − P e

θ=1 is positive (i) and that the limits of the variation intervals are well sorted i.e.

co1;θ=1 ≥ ce1;θ=1 (ii) and co2;θ=1 ≥ ce2;θ=1(iii):

(i) P o
θ=1 − P e

θ=1 =
c△̌(η+γ)x[△̌−(η+γ)x]

{2c△̌−[(η+γ)x]2}{c△̌−[(η+γ)x]2} ≥ 0 by A.3;

(ii) co1;θ=1 − ce1;θ=1 =
△̌(η+γ)x

2△̌
≥ 0 by A.3;

(iii) co2;θ=1 − ce2;θ=1 =
[2△̌−(η+γ)x](η+γ)x

2△̌
≥ 0 by A.3.

12Second-order conditions are satisfied as they require (αtaxi + d) ≥ 0 and A ≥ 0.
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The probability of the bus being on time well and truly is higher in the optimal situation

than in equilibrium.

Appendix F Proof of Proposition 5

The idea of the proof is that the difference between optimal demand for the bus and

equilibrium demand for the bus is a function of c, the bus punctuality cost and d the taxi

operating cost. Throughout this proof we consider the extreme case where θ = 1. Let us

recall the expression of demand for the bus function:

Dbus =

ˆ ∆

δAT,O

f(δ)dδ,

where δAT,O = [κ+ (1− P ) (η + γ)x] / (α̌+ τ). We can define

D ≡ Do
bus −De

bus = 1− κo + (1− P o) (η + γ)x

∆(α̌+ τ o)

−
(
1− κe + (1− P e) (η + γ)x

∆(α̌+ τ e)

)
,

where κo = 0, τ o = d, κe = 1
2 [∆ (α̌+ τ e)− (1− P e) (η + γ)x] and τ e = α̌ + 2d. We

therefore have

D =
2∆(α̌+ d)− (3 + P e − 4P o) (η + γ)x

4∆ (α̌+ d)
.

Since P e and P o are functions of c (equations (6b) and (9a)), we derive D on c. For

that, we need to know the order of ce1, c
e
2, c

o
1 and co2. We know that ce1 ≤ ce2 and co1 ≤ co2.

co1 − ce2 = (η + γ)x− 2κeη̌x

△̌e
,

⇐⇒ co1 − ce2 = (η + γ)x

[
1− (1− P ) 2κe

△̌e

]
,

⇐⇒ co1 − ce2 = (η + γ)x

[
1− (1− P )

(
1− Γex

△̌e

)]
≥ 0.
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We therefore have ce1 ≤ ce2 ≤ co1 ≤ co2 and we distinguish between five sub-cases defined

depending on the position of c relatively to ce1, c
o
1, c

e
2 and co2. Indeed the expression of the

derivative is different according to the value of c.

(i) Ifc ≤ ce1 then P e = P o = 1 and ∂D/∂c = 0.

(ii) If c ∈ [ce1; c
e
2] then P o = 1 and ∂D/∂c ≥ 0.

(iii) Ifc ∈ [ce2; c
o
1] then P o = 1, P e = 1

2 and ∂D/∂c = 0.

(iv) If c ∈ [co1; c
o
2] then P e = 1

2 and ∂D/∂c ≤ 0.

(v) If c ≥ co2 then P e = P o = 1
2 and ∂D/∂c = 0.

Critical values of D (c) follow:

D (ce1) =
1
2 ,

D (ce2) =
1
2 + (η+γ)x

8∆(α̌+d) ,

D (co2) =
1
2 − 3(η+γ)x

8∆(α̌+d) ,

where ∆̄ = ∆ (αtaxi + d).

The variations of the difference between optimal demand for the bus and equilibrium

demand for the bus are described in Table 3.

We know that D (ce1) ≥ 0 and D (ce1) ≥ D (co1). According to Table 3, we can distinguish

between two cases where the difference between optimal and equilibrium demand for the

bus is positive. First, if the minimum value of the difference,D (co2) is positive, the difference

is positive. Second, if this minimum value of the difference is negative, then as D (ce2) ≥ 0

and D (c)strictly decreases between co1 and co2, there exists a unique value of c denoted cc
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Table 3: Variation table of the difference between optimal demand for the bus and equi-
librium demand for the bus depending on the cost of reliability.

c 0 ce1 ce2 co1 co2 ∞
∂D
∂c 0 + 0 − 0

D (c)
D (ce2) −→

ր ց−→ D (ce1)

D (co2) −→

for which Do
bus =

c=cc
De

bus. The difference is then positive if c ≤ cc.

One critical value of the taxi operating cost dc1 may be defined such that

D (co2) ≥ 0 ⇐⇒ 2∆ (α̌+ d)− (3 + P e − 4P o) (η + γ)x ≥ 0,

⇐⇒ d ≥ 3 (η + γ)x

4∆
− α̌ ≡ dc1.

We can now write

D





≥ 0
if d ≥ dc1,

or if d < dc1 and c ≤ cc,

< 0 if d < dc1 and c > cc .

.

Appendix G Proof of lemma 6

The idea of the proof is that the difference between optimal demand for the bus and

equilibrium demand for the bus is a function of the cost of the bus reliability c and the

operating cost of taxi d. We deal with the case where θ = 0. Let us recall expressions of

the demand function:

Dbus = (1− P )

ˆ δBL,O

δBT,L

f(δ)dδ +

ˆ ∆

δBL,O

f(δ)dδ,
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where δBL,O =
[
κ+

(
1−P
P η + β

)
x
]
/ (α̌+ τ) and δBT,L = κ/ (α̌+ τ). We therefore have:

D ≡ Do
bus −De

bus =
2∆(α̌+ d) + (4P o

θ=0 − P e
θ=0) (η − β)x− 3ηx

4∆ (α̌+ d)
.

Then

D ≥ 0 ⇐⇒ d ≥ 3ηx− (4P o
θ=0 − P e

θ=0) (η − β)x

2∆
− α̌.

Considering max (4P o
θ=0 − P e

θ=0) =
7
2 and min (4P o

θ=0 − P e
θ=0) = 1, we can define dc2 and

dc3 such as if d ≤ dc2 then D ≤ 0 and if d ≥ dc3 then D ≥ 0. Consequently we have

dc2 = −
(
1
2η − 7

2β
)
x/2∆− α̌ and dc3 = (2η + β)x/2∆− α̌. We may write:

D





≥ 0 if d ≥ dc3,

≤ 0 if d ≤ dc2.

Appendix H Discussion of Conjecture 2

With values specified in Table 1, we can draw the curve of the difference between optimal

demand for the bus and equilibrium demand for the bus depending on the operating taxi

cost d in Figure 12. When c is small, P o = P e = 1 and when c is large, P o = P e = 1/2.

The lemma 6 is illustrated. D functions are first negative then positive. Moreover they

increase with d. The sign of D between dc2 and dc3 depends on the values of P o and P e

which depend on c (see Equations (6b) and (9b)). Therefore we conjecture that between

dc2 and dc3, D is positive when c ≤ cc2 and negative when c > cc2, where cc2 is defined as the

unique solution of Do
θ=0 = De

θ=0.
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Figure 12: Difference between optimal demand for the bus and equilibrium demand for

the bus depending on operating taxi cost d for GroupB.



Chapter II

Economics of crowding in public

transport

1 Introduction

Crowding is a growing problem in urban mass transit systems around the world.1 A recent

roundtable report by the International Transport Forum identifies crowding as a major

source of inconvenience that increases the cost of travel (OECD, 2014). Several recent

studies have documented the aggregate cost of crowding on transit networks. For example,

Prud’homme et al. (2012) estimate that the 8% increase in densities2 in the Paris subway

between 2002 and 2007 imposed a welfare loss in 2007 of at least e75 million. Veitch et al.

(2013) estimate the annual cost of crowding in Melbourne metropolitan trains in 2011 at

e208 million. The costs of crowding are likely to grow as usage of public transit increases

faster than transit investment.3

Transit crowding imposes disutility on riders in several ways. It increases waiting

time (Oldfield and Bly, 1988) and in-vehicle travel time (Lin and Wilson, 1992), and

reduces travel time reliability (Bates et al., 2001). Psychological studies find that crowding

causes stress and feelings of exhaustion (Mohd Mahudin et al., 2012). A number of studies

1See for example The Economist (2003), for London; Kelton (2012), for Adelaide; Wei (2011), for
Beijing; and Chakraborty (2011), for Nagpur, India.

2Measured in passengers per square meter aboard trains.
3Allen and Levinson (2014) and King et al. (2014) document the rapid growth in usage of commuter

rail services in North America.
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document how disutility from in-vehicle time increases with the number of users (Li and

Hensher, 2011; Wardman and Whelan, 2011; Kroes et al., 2014; Haywood and Koning,

2015; de Lapparent and Koning, 2015). Discomfort also occurs while entering and exiting

vehicles, accessing stations on walkways and escalators, and so on. Extreme crowding is

also a concern for emergency evacuation of facilities.

Crowding can affect peoples’ transit choices in several ways including: departure time,

transit line or route (Raveau et al., 2011) and destination. It can also influence their

decisions whether to take transit, use another travel mode or not travel at all. Crowding is

therefore an important factor in making investments in rolling stock and station capacity,

and should be considered in cost-benefit analysis of transit projects (Parry and Small,

2009). Yet many policies that are designed to discourage driving and/or encourage use of

public transport take into account road traffic congestion (Anderson, 2014) while ignoring

the fact that transit capacity constraints and crowding limit the scope for shifting drivers

off the road.

There is a large operations research literature on public transit system design (Vuchic,

2005). Beginning with Mohring (1972), an extensive economics literature has also devel-

oped on public transit capacity investments, service frequency, and optimal pricing and

subsidy policy. There is also a rapidly growing literature on public transport crowding.4

These three branches of literature have made significant advances in understanding public

transit systems and crowding. Nevertheless, most studies have employed static models that

cannot account for travelers’ time-of-use decisions and the large variations in ridership and

crowding by time of day that are typically seen in transit systems. Trip-timing decisions

are clearly important for transit. Users who travel during peak hours encounter crowded

vehicles, and may be unable to board the first vehicle that arrives at the station or stop.

Alternatively, users may choose to travel before or after the peak hour in a less crowded

vehicle, but arrive earlier or later than they would like.5

The trade-off between crowding costs and scheduling costs is fundamental for under-

standing transit users’ behavior and allocation of time to activities, particularly in the

4See Tirachini et al. (2013) for a review.
5Such behaviour is documented in Pepper et al. (2003) and Pownall et al. (2008).
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short run (Peer et al., 2015). Automobile drivers face a similar trade-off between traffic

congestion delays and scheduling costs that has been studied for many years. Vickrey

(1969) was the first to do so by assuming that congestion takes the form of queuing behind

a bottleneck, and that travellers incur a schedule delay cost if they complete their trip

before or after their ideal arrival time. Building on Vickrey (1969), as well as the time

allocation models of Becker (1965) and DeSerpa (1971), Small (1982) developed a utility-

theoretic model of activity scheduling, and estimated individuals’ preferences for when to

commute to work when travel time varies with departure time. Henderson (1974, 1981)

and Chu (1995) adopted the same demand-side specification as Vickrey (1969) and Small

(1982), but instead of queuing assumed that travel delay manifests as flow congestion.

As we will show, the public transit model we use has some of the same properties as the

Henderson-Chu model.

A few studies of public transit systems have adopted models similar to the Vickrey

and Henderson-Chu models. Kraus and Yoshida (2002) use the bottleneck model to an-

alyze optimal pricing and capacity decisions for a rail service between a single origin and

destination. They assume that trains run on a fixed timetable with a uniform headway,

and travel time from origin to destination is independent of passenger load. Congestion

takes the form of queuing delay. The number of people who board a train is limited by

its capacity, and service discipline is First Come First Served. Users incur schedule delay

costs from arriving early that are proportional to the amount of time they arrive early.

Late arrivals are ruled out. In equilibrium, users who travel at a popular time have to wait

in a queue at the origin station for several trains to pass before they can board. Those

who take the earliest train avoid waiting, but incur the highest early-arrival costs.

Unlike Kraus and Yoshida (2002), Huang et al. (2005) assume that congestion is man-

ifest as crowding rather than queuing. Instead of FCFS priority, travelers board trains

in random order and everyone waiting for a train is able to get on. Huang et al. (2005)

solve for the equilibrium distribution of users across trains, the fare and headway for the

social optimum as well as two private ownership regimes. Several studies build on Huang

et al. (2005). Huang et al. (2007) add mode choice by assuming that travellers can choose

between taking a bus and driving. Buses and cars share the same right of way which is
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subject to bottleneck queuing congestion. Tian et al. (2007) consider a multiple-origin-

single-destination corridor with transit as the only travel mode. They establish several

properties of the equilibrium times at which users board trains at each origin station. In

an extension of their model they also make a distinction between the crowding or discom-

fort cost experienced by users who obtain a seat, and the costs incurred by users who have

to stand. Tian et al. (2009b) solve the first-best optimum in the Tian et al. (2007) model,

and derive train-dependent fares that supports the optimum. Xie and Fukuda (2014) do

likewise using a different specification of scheduling preferences in which the costs of ar-

riving early or late are quadratic rather than linear. Tian et al. (2009a) revert to a single

origin-destination pair network, but distinguish between seated and standing passengers

and apply the model to a light rail line in Beijing. Finally, de Palma et al. (2015) focus in

more depth than earlier studies on the functional form of the crowding cost function for

seated and standing passengers. They derive an optimal timetable and pricing scheme for

several stylized settings.

Most of the studies reviewed in the previous paragraph take an engineering and/or

operational research view of crowding, and do not explore all the economic aspects of the

problem. In this paper we conduct a thorough economic analysis of trip-timing decisions

and crowding on a transit line connecting a single origin and destination. Our work builds

on the earlier studies in several directions. First, we examine and compare three fare

regimes: a zero fare, an optimal uniform fare that is the same for all trains, and an optimal

train-dependent fare. The optimal train-dependent fare internalizes crowding congestion

and supports the socially optimal number and distribution of passengers on each train. We

show how the properties of the equilibrium distribution depend on the curvature of the

crowding cost function. Second, we compare passenger load patterns in the fare regimes

and establish under what conditions loads are more even in the social optimum than with

a uniform or zero fare. Third, we derive the welfare gain from implementing optimal train-

dependent fares and examine how it depends on functional forms and parameter values.

Fourth, we derive the optimal number of trains and train capacity for each fare regime.

Given linear crowding and schedule delay cost functions we are able to establish partial

rankings across regimes. We show that for a given train capacity, more trains are operated
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in the social optimum than in the optimal uniform-fare regime. (This is because usage

is more spread out in the social optimum so that additional trains are more heavily used

and valuable to add.) Similarly, if the number of trains is held constant, optimal train

capacity is higher in the social optimum than the optimal uniform-fare regime. Finally,

we calibrate the model to a portion of the Paris RER A mass transit system, and derive

rough estimates of the potential welfare gains from introducing optimal train-dependent

fares.

Throughout the analysis we compare results with those of the Vickrey and Henderson-

Chu road traffic congestion models. Many of the results are intuitive, but a few are not.

In particular, in the short run while capacity is fixed, the welfare gain from implementing

train-dependent fares to internalize crowding cost externalities does not necessarily increase

with the total number of users of the system. Indeed, if crowding costs grow at an increasing

rate with the number of passengers aboard a train, the welfare gain actually decreases with

the total number of users. This counterintuitive finding might help to explain why time-

of-day dependent fare systems are still relatively rare.

The paper is organized as follows. Section 2 describes the general model and derives

some properties of the no-fare equilibrium and the social optimum. Section 3 analyzes the

case with linear crowding costs. Section 4 introduces elastic demand. Section 5 considers

the long run in which the number of trains and train capacity are endogenous. Section 6

presents a numerical example based on the Paris RER A, and Section 7 concludes.

2 The general model with inelastic demand

In this section we describe and analyze a general model of public transit crowding which

we will occasionally refer to as the “PTC” model. A transit line connects two stations

without intermediate stops. The line operates on a timetable to which the operator adheres

precisely. There are m trains, indexed in order of departure.6 Train k leaves the origin

station at time tk, k = 1, ...,m. The timetable is left unspecified until Section 6 where it

is assumed that the headway between successive trains is constant. Travel time aboard

6A notational glossary is provided in the Appendix.
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a train is independent of both departure time and train occupancy, and without loss of

generality it is normalized to zero. Each train therefore arrives at the destination station

as soon as it leaves the origin station.

Each morning a fixed number, N , of identical individuals use the line to get to work.

Users know the timetable and choose which train to take. Users are assumed to board a

train in random order, and thus cannot increase their chance of securing a good seat by

arriving at the origin station early. Users choose between trains based on the expected

crowding disutility, g (n), where n is the (known) number of users taking the same train.

Function g (n) is an average over possible states: securing a good seat, getting a bad seat,

having to stand in the middle of the corridor, standing close to the door, etc.. Crowding

disutility is assumed to be zero on an empty train (i.e., g (0) = 0), strictly increasing with

n (i.e., g′ (.) > 0), and twice continuously differentiable. Several properties of the model

derived later depend on the curvature of g (n) which will be described by the elasticity of

g′ (n) with respect to n: ε (n) ≡ g′′ (n)n/g′ (n). The elasticity is respectively positive, zero

or negative as g (n) is convex, linear or concave.

Because trains are costly to procure and operate, it is natural to assume that all m

trains are used. Letting nk denote the number of users on train k we thus assume that

N is large enough that nk > 0, k = 1...m. Since g (n) > 0 for n > 0, this implies that

g (nk) > 0, k = 1...m: users incur a crowding disutility on every train.

Since travel time is normalized to zero, an individual is either at home or at work.

Time at home yields a time-varying utility uh (t), and time at work a time-varying utility

of uw (t). Let (tB, tE) denote the time interval during which all travel takes place. During

this interval, uh (t) is assumed to be weakly decreasing and uw (t) is weakly increasing.

The functions intersect at time t∗ which is the desired arrival time (i.e., uh (t∗) = uw (t∗)).

A user taking train k gains a total utility:

Uk =

ˆ tk

tB

uh (t) dt+

ˆ tE

tk

uw (t) dt− g (nk) .

If there were no need for travel from home to work, the user would switch from home to

work at t∗ without suffering crowding disutility. As a consequence, his utility would be
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maximal and equal to

Umax =

ˆ t∗

tB

uh (t) dt+

ˆ tE

t∗
uw (t) dt.

We define the user travel cost, ck, as the difference between this hypothetical utility and

the actual utility of taking train k:

ck = Umax − Uk = g (nk) +





´ t∗

tk
(uh (t)− uw (t)) dt if tk < t∗

´ tk
t∗ (uw (t)− uh (t)) dt if tk ≥ t∗

.

Note that maximizing Uk is equivalent to minimizing ck. It is convenient to define the

schedule delay cost, δ (tk):

δ (tk) =





´ t∗

tk
(uh (t)− uw (t)) dt if tk < t∗

´ tk
t∗ (uw (t)− uh (t)) dt if tk ≥ t∗

.

The schedule delay cost is the disutility accumulated while an individual is not where his

utility is greatest. When the individual arrives at work before t∗, disutility is incurred

because utility from being at home before t∗ is higher than utility at work. Similarly,

utility is foregone when arriving at work after t∗ because time is more valuable at work

than at home. Function δ (t) is weakly decreasing for t < t∗ and weakly increasing for

t > t∗.

In Section 3 is is assumed that δ (t) has a piecewise linear form:

δ (tk) =





β (t∗ − tk) if tk < t∗

γ (tk − t∗) if tk ≥ t∗
,

where β and γ are respectively marginal disutilites from arriving early and late. This

specification, called “step preferences”, is used in most studies of road traffic congestion

and public transit crowding.7

This piecewise linear form arises when the utilities flows from being at home and at

7Xie and Fukuda (2014) have recently explored an alternative specification called “step preferences”
in which uh (t) is a linear decreasing function, and uw (t) is a linear increasing function. They estimate
both specifications using Japanese data and do not find a clear advantage between them in terms of
goodness-of-fit.
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work satisfy8

uh (t)− uw (t) =





β if tk < t∗

−γ if tk ≥ t∗
.

In the general case, a user taking train k with nk users incurs a combined schedule

delay and crowding disutility of

ck = δ (tk) + g (nk) , k = 1, ...,m. (18)

To economize on writing, δ (tk) is henceforth written δk unless time dependence is required

for clarity. Trains that arrive close to t∗ have small values of δk, and will sometimes be

called timely trains. As shown in the next subsection, timely trains are more heavily used

than trains with larger values of δk.

2.1 User equilibrium

In this subsection we derive and characterize user equilibrium when there is no fare. With

N fixed, a fare would not affect either the division of users between trains or crowding

costs. A time-varying fare will be considered for the social optimum in subsection 2.2, and

a uniform fare (i.e., independent of k) will be introduced for the analysis of user equilibrium

with elastic demand in Section 4.

Let superscript “e” denote the no-fare or user equilibrium (UE), and ce the equilibrium

trip cost. In UE, users distribute themselves between trains so that the user cost on every

train is ce. Hence

δk + g (ne
k) = ce, k = 1, ...,m. (19)

Given g′ (.) > 0, the inverse function g−1 (.) exists, with g−1 (0) = 0 and
(
g−1
)′
(.) > 0.

Eq. (19) can therefore be solved for the ne
k as a function of ce:

ne
k = g−1 [ce − δk] , k = 1, ...,m. (20)

8This property is discussed by Tseng and Verhoef (2008).
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Figure 13: Schedule delay δ (tk), crowding cost g (nk) and equilibrium cost ce for seven
trains, t5 = t∗

Since every user has to take some train,

m∑

k=1

ne
k = N , (21)

or
m∑

k=1

g−1 [ce − δk]−N = 0. (22)

Eq. (22) implicitly determines ce. Figure 13 depicts a UE for seven trains (m = 7). Train

k = 5 arrives on time and carries the most users. Less timely trains carry fewer passengers

because users incur schedule delay costs.

Comparative statics properties of UE with respect to N are easily derived. Equilibrium

cost increases with the total number of passengers:

∂ce

∂N
=

1∑m
k=1

1
g′(uk)

> 0, (23)

where uk ≡ g−1 [ce (N)− δk]. The second derivative is:

∂2ce

∂N2
∝

m∑

k=1

g′′ (uk)

[g′ (uk)]
3 . (24)
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The sign of expression (24) depends on whether g(.) is convex or concave. Properties (23)

and (24) of UE are summarized in the following proposition.

Proposition 7. In equilibrium, user cost is an increasing function of N . It is convex,

linear or concave if g (.) is respectively convex, linear or concave.

Similar to the models of Vickrey (1969), Henderson (1981), Chu (1995) and Kraus and

Yoshida (2002), user cost in the PTC model is an increasing function of total patronage. All

the models have this property because they feature congestion in some form. However, the

curvature of ce (N) differs across the models. In Vickrey’s model the curvature of ce (N)

matches that of the schedule delay cost function. With step preferences, the schedule

delay cost function is linear and ce (N) is also linear. If the schedule delay cost function is

convex (resp. concave), then ce (N) is convex (resp. concave). It is straightforward to show

that the Kraus and Yoshida (2002) model also has these properties. By contrast, in the

Henderson/Chu model ce (N) is concave if the schedule delay cost function is either linear

or concave. The Henderson/Chu model behaves differently because, with flow congestion,

there is a trade-off between travel speed and flow. As demand increases, the arrival rate

of vehicles at the destination increases and the duration of the travel period increases less

than proportionally with N . In effect, the road (or other facility) has more flexibility to

accommodate additional traffic than the bottleneck in Vickrey’s model.

In contrast to the other models, in the PTC model the curvature of ce (N) depends on

the crowding cost function rather than the schedule delay cost function. This is because the

train timetable is fixed in the short run, and users cannot travel earlier or later in response

to growing demand. Furthermore, since each train’s arrival time is fixed, the schedule

delay cost incurred when taking a given train does not depend on N . The only way the

service can accommodate additional demand is for each train to carry more passengers.

Equilibrium user cost therefore increases at an increasing (resp. decreasing) rate with N

if the marginal cost of crowding aboard a train increases (resp. decreases) with ridership.

User equilibrium in the PTC model is clearly inefficient because users impose an exter-

nal crowding cost on each other. The marginal social cost of a trip, MSC, is determined
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by differentiating the equilibrium total cost function, TCe = N × ce, with respect to N :

MSCe ≡ ∂TCe

∂N
= ce +N

∂ce

∂N
.

The average marginal external cost of a trip is therefore

MECe ≡ MSCe − ce = N
∂ce

∂N
. (25)

With elastic demand (Section 4) it is optimal to charge a uniform fare equal to the

average external cost to avoid over-use of public transport:

τu = N
∂ce

∂N
,

where superscript “u” denotes the optimal uniform fare. Total revenue from this fare is

Ru = τuN = N2 ∂c
e

∂N
. (26)

The optimal uniform fare does not support the social optimum because the marginal

external cost of crowding varies with train occupancy and it is larger on more heavily used

trains. As explained in the next subsection, the social optimum can be achieved by levying

train-specific fares.

2.2 Social Optimum

The social optimum (SO) differs from the UE because users are distributed between trains

to equalize the marginal social costs of trips rather than their private costs. The user cost

of a trip on train k is given by Eq. (18). The marginal social cost of using train k is

MSCk =
∂ (cknk)

∂nk
= δ (tk) + v (nk) , k = 1, ...,m, (27)

where v (nk) ≡ g (nk) + nkg
′ (nk) is the marginal social crowding cost on train k. The

marginal external cost equals the difference between the right-hand sides of Eq. (27) and
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Eq. (18):

MECk = MSCk − ck = nkg
′ (nk) , k = 1, ...,m. (28)

Let superscript “o” denote the SO. Total costs in the SO are TCo =
∑m

k=1 cknk, and

the marginal social cost of a trip is MSCo = ∂TCo

∂N . At the optimum, users are distributed

across trains so that MSCk = MSCo for every train:

δk + v (no
k) = MSCo, k = 1, ...,m. (29)

Since g′ (.) > 0 for n > 0, the marginal social crowding cost is always positive. In practice,

it may not increase monotonically at all levels of ridership.9 To facilitate analysis, however,

we assume that v′(.) > 0. This is equivalent to assuming that g′′ (n) > −2g′ (n) /n, or

ε (n) > −2.

Assumption 4. The elasticity of g′ (n) with respect to n exceeds −2: ε (n) > −2.

Assumption 4 is satisfied for all convex g (.) functions and for all power function g (n) ∝

nr, r < 0. It implies that the marginal social cost of usage increases with the number of

users on a train. Given Assumption 4, the inverse function v−1 (.) exists, and Eq. (29)

yields

no
k = v−1 [MSCo − δk] . (30)

Since all users must take some train in the SO,
∑m

k=1 n
o
k = N and Eq. (30) implies:

m∑

k=1

v−1 [MSCo − δk]−N = 0. (31)

Because functions g (.) and v (.) are both positive and increasing, (31) has the same qual-

itative properties as (22) describing the UE, and the following counterpart to Prop. 7 can

be stated:

Proposition 8. In the social optimum, the marginal social cost of a trip is an increasing

function of N . It is convex, linear or concave if v (.) is respectively convex, linear or

9For example, v(.) may drop when all seats are occupied and additional riders have to stand; see
de Palma et al. (2015).
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concave.

Comparing Prop. 8 with Prop. 7 it is clear that v(.) plays the same role in shaping the

SO as g (.) does for the UE.10 Prop. 8 contrasts again with the corresponding properties

of the SO in the Vickrey (1969), Henderson (1981), Chu (1995) and Kraus and Yoshida

(2002) models. For example, with linear schedule delay costs the marginal social cost of a

trip in the Vickrey model is a linear function of N . In the PTC model it instead depends

on the crowding cost function.

We now consider the distribution of ridership over trains. Intuition might suggest that

passenger loads are spread more evenly in the SO than the UE because smoother loads

should reduce the total costs of crowding as discussed in de Palma et al. (2015). In fact,

this is not invariably true but rather depends on how the marginal external crowding cost

varies with usage. Now

dMEC

dn
=

d (ng′ (n))

dn
= g′ (n) + ng′′ (n) = g′ (n) (1 + ε (n)) .

The marginal external crowding cost increases with usage if ε (n) > −1, and decreases with

usage if ε (n) < −1. The load patterns in the SO and UE are compared in the following

proposition.

Proposition 9. If ε (n) > −1 (ε (n) < −1, respectively) the social optimum distribution

of users across trains is a mean-preserving spread (respectively contraction) of the user

equilibrium distribution of users across trains.

Proof: see Appendix A. The mean-preserving spread concept has been defined by

Rothschild and Stiglitz (1970).11 The SO load pattern is a mean-preserving spread of

the UE load pattern if the SO load pattern has more weight in the tails than the UE

load pattern. It has ε (n) > −1 applies if the marginal external crowding cost increases

monotonically with passenger load.12 If so, the marginal social costs of trips on two trains

10Tian et al. (2009b) also remark on this property.
11The case of interest for our paper is p. 229 in subsection II.2 Mean Preserving Spreads: Discrete

Distributions.
12Similar to Assumption 4, which is weaker, ε (n) > −1 is satisfied for all convex crowding cost functions,

and crowding cost functions that belong to the class of power functions: g (n) ∝ nr, r > 0.
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with unequal loads differ by more than their user costs. Consequently, the SO balance

between crowding costs and schedule delay costs calls for a smaller range of train loads

than in the UE. Conversely, if ε (n) < −1, which is possible only if g(.) is sufficiently

concave,13 then passenger loads are more peaked in the SO than the UE.

In summary, the difference in train loads between the SO and UE is determined by the

curvature of the crowding cost function. According to most empirical studies g(.) is linear

or convex (Wardman and Whelan, 2011; Haywood and Koning, 2015; de Palma et al.,

2015). As a consequence, empirical evidences suggest that ε (n) ≥ 0, and that ridership in

the UE is too concentrated on timely trains and should be spread out.

Regardless of whether the SO is more or less peaked than the UE, the SO usage pattern

can be decentralized by charging a fare on train k equal to the marginal external cost of

usage.14 We will call the fare pattern the SO-fare. Given Eq. (28) the SO-fare is:

τ ok = no
kg

′ (no
k) , k = 1, ...,m. (32)

With this fare structure in place, users of train k incur a private cost equal to the social

cost of a trip:

pok = cok + τ ok = MSCo, k = 1, ...,m. (33)

The SO is more efficient than the UE because users are better distributed between trains.

However, inclusive of the SO-fare users incur a higher private cost in the SO. To see this,

note that at least one train is more crowded in the SO than the UE. Compared to the UE,

in the SO a rider of that train incurs the same schedule delay cost but a higher crowding

cost and a positive fare. Since all users incur the same private cost in the UE, and all users

incur the same private cost in the SO, private costs are higher in the SO.15

Unless fare revenues are used to improve service in some way, charging fares to price

crowding costs in the PTC model leaves users worse off. This is also true of pricing

road traffic congestion in the Henderson/Chu model although the physical effects of tolling

13For example, Case 2 of Prop. 9 holds for the function g (n) = c0 + c1 ln (n) − kn for c0 > k and
n ∈ [1, c1/k) .

14The fare is set according to Pigouvian principles. Revenue generation or other goals are ruled out.
15The difference in private cost is, however, smaller than the average fare paid because the social (i.e.,

resource) costs of travel are lower in the SO.
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differ. In their model, tolling causes the departure period to spread out and the first and

last users incur higher schedule delay costs than in the UE. Because the first and last users

incur no congestion delay in either the UE or the SO, their costs are higher in the SO. Since

all users incur the same private costs in the UE and SO, equilibrium private user costs are

increased by tolling. By contrast, in the Vickrey and Kraus-Yoshida models congestion

pricing leaves private costs unchanged because the travel period is not affected.

The Henderson/Chu and Vickrey/Kraus-Yoshida models therefore differ in the inci-

dence of tolling costs. However, in all four models congestion toll revenues increase with

N . This is because the average congestion externality increases with N , and hence so does

the average toll. To determine how fare revenues in the PTC model vary with N , let Ro

denote total revenue from the SO-fare. Revenues from SO-fare equal Ro =
∑m

k=1 n
o
kτ

o
k

with no
k given in Eq. (30) and τ ok in Eq. (32), and revenues from optimal uniform fare are

given by Eq. (26).

Proposition 10. Let i = u, o index the pricing regime. Then,

∂Ri

∂N
= N

∂MSCi

∂N
.

Proof: see Appendix B. Prop 10 reveals that fare revenues increase if the marginal

social cost of a trip increases with total usage. This will be the case unless the crowding

cost function is sufficiently concave.

Next we examine how the welfare gain from implementing the SO-fare varies with

usage. Let Geo ≡ TCe − TCo denote the welfare gain in shifting from the UE to the SO.

Intuition suggests that Geo increases with N : first because crowding becomes more onerous

for users on average, and second because more users suffer the increased cost. However, we

already know that the rate at which the cost of crowding increases with load depends on

the curvature of the crowding cost function. It turns out that properties of the crowding

cost function also govern how Geo depends on N .

Consider the following assumptions:

Assumption 5. The marginal external cost of crowding increases with load: ε (n) > −1.
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Assumption 6a. The marginal social cost of crowding is a strictly convex function of load

(i.e., v′′ (n) > 0), and ε (n) is a nonincreasing function of load (i.e., dε(n)
dn ≤ 0).

Assumption 6b. The marginal social cost of crowding is a strictly concave function of

load (i.e., v′′ (n) < 0), and ε (n) is a nondecreasing function of load (i.e., dε(n)
dn ≥ 0).

Assumption 6a holds if g (n) is convex, and Assumption 6b holds if g (n) is concave. The

effect of total ridership on the welfare gain from the SO-fare is described in the following

proposition.

Proposition 11. Let Assumption 5 hold. The welfare gain from the SO-fare, Geo, de-

creases with N , increases with N or is independent of N if Assumption 6a holds, Assump-

tion 6b holds or if g (·) is linear, respectively.

Proof: see Appendix C. Proposition 11 identifies conditions under which Geo increases,

decreases, or is independent of total ridership. Since the conditions are not collectively

exhaustive, Prop. 11 does not establish the direction of change for all cases. Nevertheless,

the conditions span a broad class of functions.

As noted earlier, most empirical studies find that g(.) is linear or convex. According

to Prop. 11, Geo is then either constant or a decreasing function of N . This is a surprise

since it goes against the intuition described above. To understand why, note that the

welfare gain derives from reallocating users between trains. If g (.) is convex, Case 1 of

Prop. 9 applies and users are reallocated more evenly. Since the difference in crowding

costs between two successive trains equals the difference in schedule delay costs as per Eq.

(19), the marginal benefit from starting to reallocate users is independent of N . However,

as N increases the marginal crowding cost on each train becomes higher and the UE and

SO train loads become more similar. Consequently, the amount of reallocation decreases,

and the total welfare gain therefore falls as well. The argument acts in reverse if g (.) is

concave since the optimal amount of reallocation then increases with N .

Another way to view Prop. 11 is in terms of the marginal social cost of usage, which is

MSCe in the UE and MSCo in the SO. If MSCo < MSCe, an additional user causes total

costs to rise by less in the SO than the UE, and Geo rises. Conversely, if MSCo > MSCe,

total costs rise more in the SO and Geo falls. Thus, if g(.) is convex an additional user is,
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paradoxically, more costly to accommodate in the SO than in the UE even though users are

distributed optimally between trains in the SO. If g(.) is linear, MSCo = MSCe and the

difference in total costs between UE and SO is independent of N . In effect, the benefits of

internalizing the crowding cost externality are exhausted once total usage is large enough

for all trains to be used. We illustrate this case diagrammatically in the next section.

For most of the balance of the paper we limit attention to a particular instance of the

model in which the crowding cost function is linear. In Sections 5 and 6 we assume that

the schedule delay cost function is linear as well. We choose linear functions for three

reasons. First, it enhances analytical tractability and the model can be extended to allow

elastic demand. The optimal number of trains and train capacity can be characterized as

well. Second, linearity facilitates comparisons with the bottleneck model. Third, empirical

studies often find that schedule delay and crowding costs are close to linear (see Ward-

man et al., 2012, for scheduling cost, and Wardman, 2004; Wardman and Whelan, 2011;

Haywood and Koning, 2015, for crowding cost).

3 Linear crowding costs

We now assume that the crowding cost function is linear in usage: g (n) = λn
s , where s > 0

is a measure of train capacity, and λ > 0. The marginal social crowding cost function is

v (n) = 2λn
s ; i.e. twice the private crowding cost. From Eq. (18) the cost of taking train

k is therefore

ck = δk + λ
nk

s
, k = 1, ...,m. (34)

3.1 User equilibrium with a uniform fare

In the uniform-fare regime the same fare is charged for all trains. The user equilibrium

analyzed in subsection 2.1 is a special case where the fare is zero. We begin this subsection

by setting the fare to zero, and then derive the optimal uniform fare for use in Section 4.

Using g (n) = λn
s in Eqs. (20) and (22) gives

ce = δ +
λN

ms
, (35)
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and

ne
k =

N

m
+

s

λ

[
δ − δk

]
, k = 1, ...,m, (36)

where δ ≡ 1
m

∑m
k=1 δk is the unweighted average scheduling cost for trains. As in the general

model, timely trains carry more users than other trains. The difference in passenger loads

between two successive trains is proportional to parameter s, and inversely proportional

to λ. Because the first (or last) train carries the fewest passengers, the solution satisfies

all the non-negativity constraints ne
k ≥ 0 if ne

1 ≥ 0 and ne
m ≥ 0:

N >
ms

λ

[
max [δ1, δm]− δ

]
. (37)

Since service is costly to provide, condition (37) is satisfied when m and s are chosen

optimally as in Section 5.

According to Eq. (35), for given values of m and s equilibrium trip cost is a linear

increasing function of ridership, N . This property of the solution is formalized together

with Eq. (36) as:

Proposition 12. In the uniform-fare equilibrium, all m trains are used if Condition (37)

is satisfied. Train k carries a load ne
k = N

m + s
λ

[
δ − δk

]
. User cost is ce = δ + λN

ms , which

is a linear increasing function of N .

As in the bottleneck model, the equilibrium cost is a linear function of N . This is a

consequence of the assumptions here that the train timetable is fixed and crowding costs

are linear.

We now determine aggregate travel costs. Let SDC denote total schedule delay costs,

TCC total crowding costs, and TC total travel costs net of the fare.

Proposition 13. In the uniform-fare equilibrium, total schedule delay costs, SDC, total

crowding costs, TCC, and total travel costs net of the fare, TC are given by

SDCe = δN − 4RV o,

TTCe =
λN2

ms
+ 4RV o,

TCe = δN +
λN2

ms
,
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where RV o = s
4λ

(∑m
k=1 [δk]

2 − 1
m [
∑m

k=1 δk]
2
)
.16

Note that RV o > 0 by the Cauchy-Schwarz inequality. Crowding costs are analogous to

travel time costs (TTC) in traffic congestion models. In the bottleneck model equilibrium,

SDCe = TTCe for all values of N . In the Henderson (1974, 1981) and Chu (1995) models,

SDCe < TTCe. The behavior of SDCe and TCCe is more complicated in the PTC model.

Total schedule delay costs are lower than if users were equally distributed across trains (in

which case SDCe = δN), and total crowding costs are higher by the same amount. This

is because users crowd onto timely trains that arrive closer to t∗. For small values of N

only one train is used. Schedule delay costs are zero (if t1 = t∗) while crowding costs are

proportional to N2. For a given value of m, m > 1, SDCe is a linear increasing function of

N with a negative intercept, while TCCe increases with N2 and has a positive intercept.

We now derive the optimal uniform fare. The equilibrium private cost of a trip, pe,

equals the user cost plus the fare, τ :

pe = δ +
λN

ms
+ τ . (38)

From Prop. 13, the marginal social cost of a trip is:

MSCe =
∂TCe

∂N
= δ +

2λN

ms
. (39)

The first term in (39) is the same as in (35). The second term is proportional to N , and it

is twice the corresponding term in (35) because the marginal social cost of crowding, v (n),

is twice the average cost. From Eq. (25), the average external cost is

MECe =
λN

ms
.

If the demand is elastic (Section 4), the optimal uniform fare is:

τu =
λN

ms
. (40)

16RV o is variable revenue from the SO-fare, defined in the next subsection. For ease of reference, we
introduce the notation here.
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This fare yields a total revenue of

Ru = τuN =
λN2

ms
. (41)

The external cost varies from train to train because it depends on train occupancy,

which is higher on more timely trains. The social optimum is examined in the following

subsection.

3.2 Social Optimum

The social optimum is readily derived using results for the general model in Section 2.2.

Given v (n) = 2λn
s , v−1 (x) = s

2λx. From Eq. (31),

MSCo = δ +
2λN

ms
.

From Eq. (30),

no
k =

N

m
+

s

2λ

[
δ − δk

]
, k = 1, ...,m. (42)

Assumption 5 holds for the linear crowding cost function. Hence, by Prop. 8 train loads are

more evenly distributed in the social optimum than the uniform-fare equilibrium. Equa-

tions (42) and (36) reveal that the difference in loads between successive trains is only half

as large. The non-negativity constraint on usage of all trains is satisfied if

N >
ms

2λ

[
max [δ1, δm]− δ

]
. (43)

Condition (43) is satisfied if condition (37) is satisfied for the uniform-fare equilibrium.

The optimal usage pattern can be decentralized by charging a fare for train k equal to

the marginal external cost of usage as given by Eq. (32). Using Eq. (42):

τ ok = λ
no
k

s
=

λN

ms
+

δ − δk
2

, k = 1, ...,m. (44)

Compared to the uniform fare in Eq. (40), the fare is lower on the earliest and latest trains
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with δk > δ, and higher on timely trains with δk < δ. At the optimum, users of all trains

incur a private cost equal to the social cost of a trip as per Eq. (33):

pok = cok + τ ok = MSCo = δ +
2λN

ms
, k = 1, ...,m.

The characteristics of the social optimum are summarized in the following proposition:

Proposition 14. In the social optimum, all m trains are used if Condition (43) is satisfied.

Train k caries a load of no
k = N

m+ s
2λ

[
δ − δk

]
. The optimum can be decentralized by charging

a fare for train k of τ ok = λ
no
k

s . Private and marginal social costs of trips are the same for

all trains and equal to δ + 2λN
ms which is a linear increasing function of N .

Given Eqs. (30) and (32), total revenue from the SO-fare is

Ro =
m∑

k=1

τ okn
o
k =

λN2

ms
+

s

4λ

(
m∑

k=1

δ2k −mδ
2

)
. (45)

The first term in (45) matches revenue from the optimal uniform fare, Ru, in (41). The

second term is extra revenue (when m > 1) due to variation of the fare. As noted in

subsection 3.1 this is called variable revenue

RV o ≡ s

4λ

(
m∑

k=1

δ2k −mδ
2

)
. (46)

A notable feature of (46) is that variable revenue is independent of N . This property is

discussed below in connection with the welfare gains from imposing the SO-fare.

Proposition 15. In the decentralized social optimum, total schedule delay costs, SDC,

total crowding costs, TCC, and total travel costs net of the fare, TC, are given by

SDCo = δN − 2RV o = SDCe + 2RV o,

TTCo =
λN2

ms
+RV o = TTCe − 3RV o,

TCo = δN +
λN2

ms
−RV o = TCe −RV o.

If there is only one train, there is no scope to spread usage between trains. Variable
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revenue is zero, and aggregate costs are the same in the social optimum and the optimal

uniform-fare equilibrium. With m > 1, total schedule delay costs are higher in the social

optimum than the optimal uniform-fare equilibrium, but crowding costs are smaller by 1.5

as much and total costs are lower by an amount equal to variable fare revenue.

With linear crowding costs, the welfare gain from imposing the SO-fare is therefore

equal to variable revenue

Geo = RV o. (47)

Prop. 15 can be compared with the corresponding formulas in the bottleneck model,

denoted with a subscript Bn:

SDCo
Bn = SDCe

Bn,

TTCo
Bn = 0,

RV o
Bn = TTCe

Bn,

TCo
Bn = TCe

Bn −RV o
Bn.

Tolling in the bottleneck model eliminates queuing (the counterpart to crowding in the

PTC model) without increasing total schedule delay costs. Variable revenue matches

total queuing costs in the UE, and total costs are reduced by variable revenue. Thus, in

both models variable revenue measures the welfare gain from tolling, but tolling is more

effective in the bottleneck model because it eliminates the external cost of congestion

without causing schedule delay costs to increase.

The numerical example in Section 6 features linear schedule delay costs and a constant

headway between trains of h. Given Eq. (47) it is straightforward to show that for large

values of m,

Geo ≃ s

48λ

(
βγ

β + γ

)2

h2m
(
m2 − 1

)
. (49)

Eq. (49) offers a transparent view of how the welfare gain from the SO-fare varies with

parameters. First, as noted in discussing Prop. 11 above, Geo is independent of total

usage, N . To see why, consider a simple case with two trains. As per Eq. (34), the cost

of using train k is ck = δk + gnk where g = λ
s measures the rate at which crowding costs
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N
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Figure 14: User equilibrium (UE), social optimum (SO) and welfare gain (Geo) with two
trains

increase with train load. Figure 14 depicts the UE and SO using a diagram with two

vertical axes separated by N . Usage of train 1 is measured to the right from the left-hand

axis, and usage of train 2 to the left from the right-hand axis. By assumption, δ2 > δ1

so that train 1 is overused in the UE. The welfare gain in shifting users from train 1 to

train 2 is shown by the triangular shaded area. The height of the triangle is δ2 − δ1, and

the width of the triangle is δ2−δ1
2g . The area of the triangle is therefore (δ2−δ1)

2

4g . It does

not depend on N because neither dimension of the triangle depends on N . The height

of the triangle equals the difference in marginal external costs of using the two trains in

the UE. This is determined by the difference in their attractiveness, δ2 − δ1, not N . The

width of the triangle is the optimal number of users to redistribute between trains which

is proportional to δ2 − δ1, and inversely proportional to g. This, too, is independent of N .

Eq. (49) also reveals that Geo varies with the square of β and γ together. This follows

immediately from the quadratic dependence on the schedule delay costs, δ1 and δ2. Geo

varies with the square of the headway, h, for the same reason. Geo varies inversely with

the ratio g because the scope to alleviate crowding by redistributing riders between trains

decreases if trains become crowded more quickly.

Finally, Geo varies approximately with the cube of the number of trains. This highly
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nonlinear dependence is due to two multiplicative factors. First, the average schedule delay

cost of trains varies proportionally with m. The average difference in schedule delay costs

is therefore proportional to m, and the welfare gain from redistributing passengers between

two trains varies with m2. Second, the number of trains between which passenger loads can

gainfully be redistributed is approximately proportional to m. Hence, the overall welfare

gain varies approximately with m3.

In the introduction to the paper we noted that, similar to other congestible facilities, the

distribution of passengers between trains is governed by the trade-off users make between

scheduling costs and crowding costs. It is therefore perhaps surprising that the parameters

measuring the strength of these two costs have such divergent effects on the gains from

congestion pricing. According to Eq. (49), doubling the unit costs of schedule delay, β

and γ, increases the gains four-fold. By contrast, doubling the crowding cost parameter, λ,

reduces the gains by half. In assessing the potential benefits from implementing congestion

pricing it is therefore important to predict how these two costs will evolve over time.

4 Elastic demand

So far it has been assumed that transit ridership, N , is exogenous. Yet in practice, travelers

can often use other transport modes. They may also choose to forego travel if it is too

costly. To admit these possibilities we now assume that demand for public transport trips

is a smooth and decreasing function of the private cost:

N = N (p) ,
∂N

∂p
< 0. (50)

Consumers’ surplus from trips is

CS (p) =

ˆ ∞

p
N (u) du,

and social surplus (gross of capacity costs) is the sum of consumers’ surplus and fare

revenue:

SS (p, τ) = CS (p) +R.
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In this section we continue to treat m and s as fixed. We first consider uniform fares

(which include no fare and the optimal uniform fare as special cases), and then the SO-

fare. The main goal of the section is to rank equilibrium prices and numbers of trips in

the pricing regimes.

4.1 Uniform-fare regimes

With a uniform fare, the private cost of a trip is given by (38) which is reproduced here

for ease of reference:

pe = δ̄ +
λN

ms
+ τ . (51)

Eq. (51) serves as a supply function for trips. Solving (51) and the demand function (50)

yields the equilibrium private cost and number of trips, p̂e and N̂ e, where a “ˆ” denotes

an equilibrium value with elastic demand. If the fare is zero, the equilibrium price is

p̂n = δ̄ +
λN̂n

ms
, (52)

where superscript n denotes the no-fare regime. Social surplus equals consumers’ surplus:

ŜSn = ĈSn =

ˆ ∞

p̂n
N (u) du.

The optimal uniform fare is given by Eq. (40):

τ̂u =
λN̂u

ms
,

and fare revenue is given by Eq. (41):

R̂u = τuN̂u =
λ
(
N̂u
)2

ms
. (53)

The efficient price of a trip equals marginal social cost:

p̂u = M̂SCn = ĉu + τ̂u = δ̄ +
2λN̂u

ms
. (54)
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Social surplus is equal to

ŜSu =

ˆ ∞

p̂u
N (u) du+ τuN̂u.

Finally, the welfare gain in switching from no fare to the optimal uniform fare is

Geu = ŜSu − ŜSn.

4.2 Social optimum

The social optimum can be supported by imposing train-specific fares as per Eq. (44).

Total travel costs are derived by substituting Eq. (46) into the expression for TCo given

in Prop. 15:

T̂Co = δ̄N̂o +
λ
(
N̂o
)2

ms
−RV o.

Since variable revenue in Eq. (46) does not depend on the number of trips, the marginal

social cost of a trip is

M̂SCo = δ̄ +
2λN̂o

ms
.

Similar to the optimal uniform-fare regime, the efficient price of a trip equals marginal

social cost so that:

p̂o = M̂SCo
(
N̂o
)
= δ̄ +

2λN̂o

ms
. (55)

Eqs. (55) and (54) reveal that the optimal price is the same function of usage in regimes

u and o. This is consistent with Prop. 11 and the observation that, if the crowding cost

function is linear, the marginal social cost of trips is the same in the SO and UE. Social

surplus is equal to

ŜSo =

ˆ ∞

p̂o
N (u) du+Ro

(
N̂o
)
=

ˆ ∞

p̂o
N (u) du+

λ (No)2

ms
+RV o.

The welfare gain in switching from no fare to the SO-fare is

Geu = ŜSo − ŜSe,
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and the welfare gain in switching from the optimal uniform fare to the SO-fare is

Guo = ŜSo − ŜSu.

4.3 Comparison of the regimes

Private costs in regimes n, u and o are given by Eqs. (52), (54), and (55) respectively. For

given values of m, s, and N , it is clear that private costs are the same in regimes u and

o, and lower in regime n. With elastic demand this implies that equilibrium usage is the

same in regimes u and o, and higher in regime n. Correspondingly, the equilibrium private

cost and consumers’ surplus is the same in regimes u and o, and higher in regime n. Social

surplus is highest in regime o, lowest in regime n, and intermediate in regime u. These

results are summarized in the following proposition.

Proposition 16. For given values of m and s, and elastic demand, equilibrium private

costs are the same in the optimal uniform-fare and SO-fare regimes, and lower in the

no-fare regime: p̂o = p̂u > p̂n.

Equilibrium usage is the same in the optimal uniform-fare and SO-fare regimes, and

higher in the no-fare regime: N̂o = N̂u < N̂n.

Consumers’ surplus is the same in the optimal uniform-fare and SO-fare regimes, and

higher in the no-fare regime: ĈSo = ĈSu < ĈSn.

Social surplus is highest in the SO-fare regime, intermediate in the optimal uniform-fare

regime, and lowest in the no-fare regime: ŜSo > ŜSu > ŜSn. Consequently, Ĝeo > Ĝeu >

0.

The results in Prop. 16 differ from those in the bottleneck model. In the bottleneck

model, the equilibrium price of a trip for a given N is the same in the social optimum

and no-toll user equilibrium, and higher in the uniform-toll equilibrium. Consequently,

p̂uBn > p̂oBn = p̂nBn which contrasts with p̂u = p̂o > p̂n in Prop. 16. The rankings of usage

and consumers’ surplus also differ, and only the rankings of social surplus and the welfare

gains of pricing are the same.
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5 Optimal transit service

We now turn attention to the long run when the transit authority can choose m, s, and

the timetable for the m trains. For tractability, we continue to assume that schedule delay

costs are linear, and we now assume that the headway between trains is a constant, h. First

we derive the optimal timetable for given values of m and s. Next, we derive properties

of the optimal m and s for a general capacity cost function. Finally, we adopt a specific

capacity function and derive analytical formulas for the optimal m and s while treating m

as a continuous variable.

5.1 Optimal timetable

The optimal timetable is derived by minimizing users’ total costs. In general, the optimal

timetable for given m and s is not the same for the UE and the SO because their load

patterns differ. However, the timetables are equal given linear schedule delay costs and a

uniform headway as assumed here.

Since the timetable consists of m successive trains with a constant headway h, the

timetable is fully described by the arrival time of the last train, tm. The optimal value of

tm, which is derived in Appendix D, is described in the following proposition:

Proposition 17. With the optimal timetable the last train leaves at time tom = t∗+h
(
m−

⌊
γm
β+γ + 1

2

⌋
− 1× I γm

β+γ
>
⌊

γm
β+γ

+ 1
2

⌋
)
. Train k, k =

⌊
γm
β+γ + 1

2

⌋
+ 1× I γm

β+γ
>
⌊

γm
β+γ

+ 1
2

⌋ arrives on

time at t∗. The unweighted average schedule delay cost is δ ≃ βγ
β+γ

h
2 .

According to Prop. 17, the higher is the unit cost of late arrival (γ) relative to early

arrival (β) the earlier train service begins. The number of trains that arrive before t∗ is

approximately γ
β+γ . This formula is approximate because the number of trains is integer-

valued. For the same reason, the formula for average schedule delay cost, δ, is approximate

too.
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5.2 General capacity function

Let K (m, s) denote the cost of providing service including capital, operations and mainte-

nance.17 To facilitate analysis, for the remainder of this section we treat m as a continuous

variable. (The formula for δ in Prop. 17 is then exact.) Function K (m, s) is assumed to

be a strictly increasing and differentiable function of m and s. As in Section 4, we first

consider the uniform-fare regimes and then the social optimum.

Uniform-fare regimes

Let p (N) denote the inverse demand curve corresponding to demand function (50). With

a uniform fare, social surplus net of capacity costs is

SSe =

ˆ N

n=0
p (n) dn−

(
δ̄N +

λN2

ms
+K (m, s)

)
. (56)

The transit authority chooses m and s to maximize (56). To economize on notation, let Km

and Ks denote the derivatives of K (m, s) with respect to m and s respectively. First-order

conditions for a maximum are18

λN2

ms2
· pNN − τ − dτ

dNN

pNN − λN
ms − dτ

dNN
+

(
τ − λN

ms

)
dτ
dsN

pNN − λN
ms − dτ

dNN
= Ks, (57a)

(
λN

m2s
− ∂δ̄

∂m

)
N · pNN − τ − dτ

dNN

pNN − λN
ms − dτ

dNN
+

(
τ − λN

ms

)
dτ
dmN

pNN − λN
ms − dτ

dNN
= Km. (57b)

The right-hand side of (57a) is the marginal cost of expanding train capacity, and

the left-hand side is the marginal benefit. Similarly, the right-hand side of (57b) is the

marginal cost of adding a train, and the left-hand side is the marginal benefit.19 The

derivative ∂δ/∂m given in Prop. (17) is constant.

17System costs are assumed to be independent of usage. Adding N as as argument of the service cost
function would not affect results of interest.

18See Appendix E for the derivation.
19Since Km > 0, the RHS of Eq. (57b) is positive. Provided

(

τ − λN
ms

)

dτ
dm

> 0, this guarantees that
λN
m2s

− ∂δ̄
∂m

> 0, or N > ∂δ̄
∂m

. sm
2

λ
. It is not clear that this condition is sufficient to guarantee condition (37),

ne
k ≥ 0, for all k. However, m is treated in this section as a continuous variable. If m is restricted to integer

values, the optimal number of trains is derived by increasing m in steps of one until the incremental net
benefit becomes negative. With such a procedure, condition (37) is satisfied at the optimum.
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No fare Setting the fare to zero in Eqs. (57a) and (57b) leads to the following proposi-

tion.

Proposition 18. In the no-fare regime, optimal train capacity, s, and number of trains,

m, are defined by the conditions

λN2

ms2
· pNN

pNN − λN
ms

= Ks, (58a)

(
λN

m2s
− ∂δ̄

∂m

)
N · pNN

pNN − λN
ms

= Km. (58b)

The first term of the product on the left-hand side of (58a) is the marginal benefit from

expanding train capacity if usage remained fixed. The cost of crowding would decrease by

λN
ms2

for each of the N users. The actual reduction in crowding is smaller than this because

the improved service quality attracts new users. Because usage is underpriced, the increase

in usage is welfare-reducing which shrinks the benefit from greater capacity. This latent

demand effect accounts for the second term of the product on the left-hand side which is

less than 1. In the limit of perfectly elastic demand (i.e., pN → 0), the potential benefit

from expanding capacity is completely dissipated. In the opposite limit of fixed demand

considered in Section 3 (i.e., pN → −∞), the second term converges to 1, and there is no

dilution of benefit.

Eq. (58b) for m is interpreted similarly. The first term inside the brackets on the

left-hand side is the marginal benefit per user from less crowding. The second term inside

the brackets is the marginal disbenefit due to greater average schedule delay costs. This

net benefit is diluted by the same factor as in Eq. (58a).

Optimal uniform fare With the optimal uniform fare, τ = λN
ms . Eqs. (57a) and (57b)

lead to the following proposition:

Proposition 19. In the optimal uniform-fare regime, optimal train capacity, s, and num-
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ber of trains, m, are defined by the conditions

λN2

ms2
= Ks, (59a)

(
λN

m2s
− ∂δ̄

∂m

)
N = Km. (59b)

In contrast to Eqs. (58a) and (58b), the marginal benefits from expanding train capacity

and the number of trains in (59a) and (59b) are not diluted by additional usage because

usage is priced efficiently. This might suggest that the optimal values of s and m, su∗ and

mu
∗ , are larger than their counterparts with a zero fare, sn∗ and mn

∗ . However, at least for

given values of s and m, usage is higher in the no-fare regime as per Prop. 16. This leaves

the rankings of su∗ and sn∗ , and mu
∗ and mn

∗ , ambiguous in general. Moreover, unlike in the

bottleneck model it is not possible as in Arnott et al. (1993) to derive simple rankings in

terms of the elasticity of demand. This is because capacity has two dimensions (m and

s) rather than one, and also because the user cost in (35) has a fixed component that is

independent of usage.

Social optimum

With the SO-fare, social surplus net of capacity costs is given by

SSo =

ˆ N

n=0
p (N)−

(
δ̄N +

λN2

ms
+K (m, s)

)
+RV o (m, s) . (60)

Eq. (60) is the same as Eq. (56) except for the last term, RV o, which is a function of m

and s, but does not depend on usage. In effect, net financial system costs in the social

optimum are K (m, s) − RV o (m, s). Since usage is priced efficiently in both the SO-fare

and optimal uniform-fare regimes, the first-order conditions for so∗ and mo
∗ are the same as

(59a) and (59b) for su∗ and mu
∗ , with the derivatives of K (m, s) − RV o (m, s) in place of

the derivatives of K (m, s).

Proposition 20. In the SO-fare regime, optimal train capacity, s, and number of trains,
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m, are defined by the conditions

λN2

ms2
= Ks −RV o

s , (61a)
(
λN

m2s
− ∂δ̄

∂m

)
N = Km −RV o

m, (61b)

where RV o
s and RV o

m denote the derivatives of RV o (m, s) with respect to s and m respec-

tively.

The right-hand sides of Eqs. (61a) and (61b) are smaller than their counterparts for

the optimal uniform toll, (59a) and (59b). The generation of variable revenue from the

SO-fare effectively reduces the marginal financial cost of expanding either s or m. In the

case of (61a) this implies that optimal train capacity conditional on the values of m and

N is larger in the social optimum: so∗ (m,N) > su∗ (m,N). Similarly, Eq. (61b) implies

that the optimal number of trains conditional on the values of s and N is also larger in

the social optimum: mo
∗ (s,N) > mu

∗ (s,N).

These rankings may seem surprising given that total system costs are lower in the social

optimum than the uniform-fare regime. Inequality mo
∗ (s,N) > mu

∗ (s,N) is explained by

the fact that ridership is distributed more evenly across trains in the social optimum. More

users take the earliest and latest trains in the social optimum which makes adding extra

trains more beneficial. To understand the inequality so∗ (m,N) > su∗ (m,N), recall from

Eq. (49) that in the uniform-fare regime the deadweight loss from imbalanced ridership

between trains increases with s. Expanding capacity is therefore more valuable in the

social optimum.

Despite the inequalities mo
∗ (s,N) > mu

∗ (s,N) and so∗ (m,N) > su∗ (m,N), there is

no guarantee that the unconditionally optimal values (so∗,m
o
∗) in the social optimum are

both larger than their counterparts (su∗ ,m
u
∗). One reason is that su∗ (m,N) is a decreasing

function of m, and mu
∗ (s,N) is a decreasing function of s, and one function can shift much

more than the other. The other reason is that usage generally differs in the two regimes;

i.e. No
∗ 6= Nu

∗ . To proceed further, we now adopt a specific capacity function.
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5.3 A specific capacity function

Kraus and Yoshida (2002) distinguish in their model between the number of train runs

and the number of train sets (a train set can make more than one run). They also account

for the time required for a train set to make a round trip. These variables are absent from

our model, and we adopt a simpler service cost function for transit of the form:

K (m, s) = (ν0 + ν1s)m+ ν2s, (62)

where ν0, ν1, and ν2 are all non-negative parameters. The term ν0 + ν1s in (62) is the

incremental capital and operating costs of running an additional train. It is a linear

increasing function of train capacity. If ν0 > 0, there are scale economies with respect to

train size. The second term in (62), ν2s, accounts for costs that depend on train capacity

but not the number of trains. Kraus and Yoshida (2002) interpret this term as capital

costs for terminals.20

In this subsection we focus on the optimal uniform fare and SO-fare because in these

regimes the slope of the demand function does not affect the optimal values of m or s, and

properties of the solution can be derived while treating N parametrically.

Optimal uniform fare

With the optimal uniform fare, the first-order conditions for s and m are Eqs. (59a) and

(59b). Given the service cost function (62), these equations become

λN2

ms2
= ν1m+ ν2, (63a)

(
λN

m2s
− ∂δ̄

∂m

)
N = ν0 + ν1s. (63b)

Before solving (63a) and (63b) simultaneously, it is instructive to consider each equation

by itself. Eq. (63b) can be solved for the conditionally-optimal number of trains considered

20They note that the linear specification is valid if terminal cost is proportional to terminal area, and
terminal area is proportional to train capacity.
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in the previous subsection:

mu
∗ (s,N) =

√√√√ λ

s
(

∂δ̄
∂mN + ν0 + ν1s

)N. (64)

Eq. (64) is of practical interest if the transit authority cannot adjust train capacity —

perhaps because train platforms cannot be lengthened.21 As expected, the optimal number

of trains decreases with train capacity. The number of trains increases with demand at

a rate faster than
√
N , but slower than N . Service quality degrades because both the

duration of the travel period and average train occupancy increase.

First-order condition (63a) can be solved to obtain a formula for conditionally-optimal

train capacity:

su∗ (m,N) =

√
λ

ν1m2 + ν2m
N. (65)

Optimal train capacity decreases with m at a rate faster than m−1/2. It also varies pro-

portionally with N . Thus, if the transit authority cannot add trains but can introduce

bigger trains, it adds sufficient capacity to maintain a given level of crowding on each train.

Service quality remains constant. In this sense, users fare better if the transit authority

can only expand train capacity than if it can only add more trains.22

To solve simultaneously for the unconditionally optimal values, su∗ and mu
∗ , it is con-

venient to define the intermediate variable Z ≡ ∂δ̄
∂mN + ν0. Eqs. (63a) and (63b) can be

solved jointly to obtain a quartic equation for su∗ :

ν1 (s
u
∗)

4 + Z (su∗)
3 − λZ2

ν22
N2 = 0, (66)

and another quartic equation for mu
∗ :

23

ν1 (m
u
∗)

4 + ν2 (m
u
∗)

3 − λν22
Z2

N2 = 0. (67)

The characteristics of the solution depend on the relative magnitudes of parameters

21Train platforms may also have to be adjusted to accommodate wider trains: a problem that the French
rail network, SNCF, has overlooked (Willsher, 2014).

22This might not be true if the headway between trains can be reduced.
23Note that Eq. (67) in mu

∗ is the same as Eq. (66) in su∗ if ν2 and Z are interchanged.
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ν0, ν1, and ν2. If ν2 = 0, there would be no fixed costs of expanding train capacity such

as train station infrastructure. Costs would be minimized by reducing m toward zero

while increasing s proportionally to maintain ms constant. Given the integer constraint

on m this would imply operating one train large enough to accommodate all passengers

and setting the timetable so that everyone arrives on time. Such a degenerate solution is

implausible, and would render the model meaningless.

If ν1 = 0, the cost of a train is independent of its capacity. Eqs. (66) and (67) then

have closed-form solutions:

su∗ (N) =

(
∂δ̄

∂m

λ

ν22
N3 +

λν0
ν22

N2

)1/3

, (68a)

mu
∗ (N) =

λ

ν2

(
∂δ̄
∂m

λ
ν22

+ λν0
ν22

1
N

)2/3 . (68b)

According to Mohring’s square-root rule, both optimal service frequency and the num-

ber of passengers carried per train (or bus) increase with
√
N . In the PTC model, service

frequency is constant because headway is fixed. Eq. (68a) shows that su∗ rises with N at a

rate faster than N2/3.24 Eq. (68b) shows that mu
∗ grows at a rate slower than N2/3, but

since it does increase with N the duration of the travel period increases. As N becomes

very large, mu
∗ approaches a constant value and su∗ increases approximately linearly with

N .25, 26

With ν1 = 0, it is possible to show that equilibrium user cost is a U-shaped function

of N with a minimum at N = ν0

(
∂δ̄
∂m

)−1
. However, both the equilibrium price, p, and

the average system cost, cu (mu
∗ , s

u
∗) +

1
NK (mu

∗ , s
u
∗), decline monotonically with N . This

is attributable to the fact that, with ν1 = 0, the service cost function has constant returns

to scale while the user cost function has increasing returns.

The final limiting case ν0 = 0 applies if there are no scale economies with respect to

24In Kraus and Yoshida’s (2002) model the effect of N on s is ambiguous. Neverthless, they remark
(p.178) that “with realistic parameters” s is likely to increase with N .

25Eventually a physical limit to train capacity would be reached due to constraints on platform size or
tractive power.

26If ν0 = 0 as well as ν1 = 0, m∗

u is independent of N and s∗u rises proportionally with N for all values
of N . This is a highly unrealistic case since it means that procuring and operating trains is costless.
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train size. Eqs. (66) and (67) simplify to:

ν1 +
∂δ̄

∂m

N

su∗
− λ

ν22

(
∂δ̄

∂m

)2(
N

su∗

)4

= 0, (69a)

ν1 (m
u
∗)

4 + ν2 (m
u
∗)

3 − λν22(
∂δ̄
∂m

)2 = 0. (69b)

Eq. (69a) solves for a unique value of N/su∗ which implies that train capacity is chosen

proportional to ridership. Eq. (69b) solves for a unique value of mu
∗ which implies that

the number of trains is independent of ridership. These properties immediately imply

that equilibrium user cost, cu, price, pu, and average system cost are all constant. Hence,

unlike in Mohring’s model (in which ν1 = ν2 = 0, ν0 > 0) there are no scale economies

with respect to traffic density. However, the case ν0 = 0 is similar to the bottleneck model

in which optimal capacity is proportional to usage, and equilibrium user cost, price, and

average system cost are constants (see Arnott et al. (1993)).

The degree of cost recovery from fare revenues is easily derived. Fare revenues are given

by Eq. (53): Ru = λN2

musu
. Given first-order condition (63a) this implies

Ru
∗ = (ν1m

u
∗ + ν2) s

u
∗ .

The cost recovery ratio is therefore

ρ =
Ru

∗

K (mu
∗ , s

u
∗)

=
(ν1m

u
∗ + ν2) s

u
∗

ν0mu
∗ + (ν1mu

∗ + ν2) su∗
≤ 1.

If there are no scale economies with respect to train size (i.e., ν0 = 0), fare revenues fully

cover capacity costs. Otherwise, costs are only partially recovered and the service runs a

deficit.
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Social optimum

For the social optimum the first-order conditions for s and m are given in Eqs. (61a) and

(61b). With the service cost function (62), the equations become

λN2

ms2
= ν1m+ ν2 −RV o

s , (70a)
(
λN

m2s
− ∂δ̄

∂m

)
N = ν0 + ν1s−RV o

m. (70b)

Unlike Eqs. (63a) and (63b), (70a) and (70b) cannot be solved to obtain useful expressions

for so∗ and mo
∗. As noted above, there is no guarantee in general that service quality is

better in the social optimum than the uniform-fare regime in the sense that so∗ (N) > su∗ (N)

and mo
∗ (N) > mu

∗ (N). Indeed, in the numerical example of Section 6 it turns out that

so∗ (N) < su∗ (N). However, with capacity function (62), mo
∗ (N) > mu

∗ (N). This result is

proved in Appendix F and recorded as:

Proposition 21. For a given usage level, the optimal number of trains is greater in the

social optimum than the optimal uniform-fare regime.

Unlike for the optimal uniform-fare regime, there is no simple formula for the degree

of cost recovery from SO-fare revenues. To derive further insights, and to rank m, s, and

N for the three fare regimes, we now consider a numerical example.

6 A numerical example

The numerical example draws on recent empirical estimates of crowding costs, and it is

calibrated to describe service on the Paris RER A line during the morning peak.27 Base-

case parameter values are: β = 7.4 [e/(hr·user)], γ = 17.2 [e/(hr·user)], λ = 4.4 [e/user],

and h = 2.5 [min/train]. The demand function (50) is assumed to have a constant-

elasticity form N = N0p
η with η = −1/3.28 Parameter N0 and parameters ν0, ν1, and

ν2 of the capacity cost function are chosen to yield equilibrium values for the optimal

27Parameter values are explained in Appendix G.
28An elasticity of −1/3 is in the mid-range of empirical estimates (Oum et al., 2008, p.249; Litman,

2013). Consumers’ surplus is infinite with η > −1. To enable comparisons of consumers’ surplus between
regimes, the area to the left of the demand curve is computed only for p ≤ e100.
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Table 4: Comparison of no-fare, optimal uniform fare, and SO-fare (i.e., social optimum)
regimes: base-case parameter values

Fare regime

No-fare (n) Optimal uniform fare (u) Social optimum (o)
m 25.26 24 26.70
s 1, 762 1, 733 1, 710
N 37, 173 32, 600 32, 907
p 6.40 9.48 9.22

Rev/user 0 3.45 3.39
TCC 161, 558 133, 499 111, 520
SDC 76, 210 63, 244 80, 376
TC 237, 768 196, 743 191, 896
K 138, 270 134, 889 136, 528
R 0 112, 407 111, 520
ρ 0 0.833 0.817
CS 1, 873, 288 1, 766, 213 1, 774, 816
SS 1, 735, 018 1, 743, 732 1, 749, 807

Total gain 8, 714 14, 789
Gain/user 0.27 0.45
Rel.eff 0 0.59 1

uniform-fare equilibrium of Nu = 32, 600, mu
∗ = 24, su∗ = 1, 733, and a cost recovery rate

of 5/6. The resulting values are: N0 = 69, 003 [users], ν0 = 936.7 [e/train], ν1 = 0.1344

[e/user], and ν2 = 61.63 [e·train/user]. Results for the three fare regimes are reported in

Table 4.

6.1 Base-case results

No fare

With no fare, the equilibrium private cost (which equals the equilibrium user cost) is

e6.40. There are Nn = 37, 173 users who are accommodated in mn
∗ = 25.26 trains with

nominal capacities of sn∗ = 1, 762. Total crowding costs (TCCn) are more than double

total schedule delay costs (SDCn). Capital costs (Kn) are about 58% as large as total

user costs (TCn). Given no fare, the degree of cost recovery is zero.
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Optimal uniform fare

The optimal uniform fare works out to τu =e3.45. It boosts the equilibrium private cost

to pu = e9.48 which is e3.08 above the no-fare equilibrium price. Ridership drops to

Nu = 32, 600: about 12% below the no-fare level. Both the number of trains and train

capacity are lower than with no fare although capacity costs are reduced by only 2.4%.

Total crowding costs and total schedule delay costs are also lower than with no fare. By

design, fare revenue of Ru = 112, 407 covers a fraction ρu = 0.833 of capacity costs.

Consumers’ surplus is lower than with no fare, but social surplus is higher by e8, 714

or about e0.27 per rider in the uniform-fare equilibrium. The relative efficiency of the

optimal uniform fare can be measured by taking the no-fare and social optimum regimes

as polar benchmarks and using the index

Effu =
ŜSu − ŜSn

ŜSo − ŜSn
.

With the base-case parameter values, Effu ≃ 0.59 so that the optimal uniform fare yields

nearly 3/5 of the efficiency gains from the SO-fare.

Social optimum

The social optimum calls for more trains than either the no-fare or the uniform-fare regime.

This is consistent with the result mo
∗ (N) > mu

∗ (N) established for fixed demand in Prop.

21. However, train capacity is slightly lower than in the other two regimes. Ridership

and consumers’ surplus are slightly higher than with a uniform fare. Price, revenue per

user and cost recovery are slightly lower. Crowding costs are significantly lower than in

the other regimes, but schedule delay costs are higher because the SO-fare spreads usage

more evenly over trains. Capacity costs are intermediate between the other regimes. Social

surplus is higher than with no fare by about e0.45 per rider.

Short-run versus long-run gains from pricing

In Table 4, capacity is chosen optimally for each fare regime. Because rail transit capacity

can take years to adjust, it is of practical interest to compare fare regimes in the “short run”
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when capacity is fixed. If pricing is assumed to become more efficient over time, there are

three cases to consider: regime u with capacity fixed at (mn
∗ , s

n
∗ ), regime o with capacity

fixed at (mn
∗ , s

n
∗ ), and regime o with capacity fixed at (mu

∗ , s
u
∗). Let Gxy

x denote the welfare

gain in shifting from regime x to regime y when capacity remains fixed at its optimal level

for regime x. With the base-case parameters one obtains Gnu
n = e8, 336, Guo

u = e5, 273 and

Gno
n = e14, 589. By comparison, from Table 1 the long-run welfare gains when capacity is

adjusted optimally are Gnu = e8, 714, Guo = e6, 076 and Gno = e14, 788. The long-run

gains are higher by 4.5%, 15.2% and 1.4% respectively. The difference between short-run

and long-run gains is appreciable only for Guo. This is mainly because regimes u and o

differ the most in terms of optimal number of trains29

6.2 Sensitivity analysis

Integer-valued number of trains

The number of trains, m, has been treated as a continuous variable although it is discrete

in reality. An integer constraint can be imposed by fixing m, and then choosing s using

first-order conditions (58a), (59a) and (61a) for regimes n, u and o respectively. To assess

how the integer constraint affects results, m was first set to the largest integer smaller than

the real-valued solution and then the next integer larger. Thus, for the no-fare regime m

was first set to ⌊mn⌋ and then ⌊mn⌋ + 1. Since mu was calibrated to be an integer value

this was unnecessary for regime u. The integer value yielding the higher social surplus was

then selected. The results changed very little, and social surplus was virtually unchanged.

Integer constraints also had little effect for a range of other parameter values.

Demand elasticity

If the price elasticity of demand is reduced to η = 0, ridership is the same in the three fare

regimes. With pN = −∞, the first-order conditions (57a) and (57b) for s and m are the

same for regimes n and u so that su∗ = sn∗ , and mu
∗ = mn

∗ . Imposing the uniform fare yields

29Note that by Prop. 16, usage with the SO-fare and capacity fixed at (mu
∗ , s

u
∗ ) is the same as usage

with the optimal uniform fare. Regimes u and o thus differ only in how passengers are distributed between
trains.
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Table 5: Comparison of no-fare, optimal uniform fare, and SO-fare (i.e., social optimum)
regimes: η = −2/3

Fare regime

No-fare (n) Optimal uniform fare (u) Social optimum (o)
m 26.34 24 26.75
s 1, 764 1, 733 1, 725
N 41, 006 32, 600 33, 220
p 6.72 9.48 9.22

Rev/user 0 3.45 3.39
TCC 187, 604 133, 499 112, 503
SDC 88, 044 63, 244 81, 248
TC 275, 648 196, 743 193, 751
K 139, 632 134, 889 137, 558
R 0 112, 407 112, 503
ρ 0 0.833 0.818
CS 1, 206, 851 1, 106, 343 1, 115, 033
SS 1, 067, 219 1, 083, 862 1, 089, 978

Totalgain 16, 643 22, 759
Gain/user 0 0.51 0.70
Rel.eff 0 0.73 1

no welfare gain at all, and merely transfers money from users to the transit authority. The

SO-fare does yield a welfare gain although (with ridership fixed at 32, 600) it is only e0.185

compared to e0.45 in the base case.

To examine the effects of a higher price elasticity, η was doubled in magnitude to

−2/3.30 To maintain equilibrium ridership at 32, 600 in the optimal uniform-fare regime,

parameter N0 was increased to 146, 056. The results are shown in Table 5. With the higher

price elasticity, consumers’ surplus and social surplus in each regime are lower than with

the base-case parameters. Regime u is otherwise unaffected. However, the welfare gain per

rider nearly doubles from e0.27 to e0.51. The welfare gain per rider in the social optimum

increases from e0.45 to e0.70, but by a smaller percentage so that the relative efficiency

of regime u increases.

30Few transit services are likely to face such a high elasticity – especially during peak travel times.
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Table 6: Effects of increasing parameters β and γ (or parameter h) by 10%

Fare regime

No-fare (n) Optimal uniform fare (u) Social optimum (o)
m 25.26 → 24.00 24.00 → 22.80 26.70 → 25.51

−4.98% −4.98% −4.44%
s 1, 763 → 1, 792 1, 733 → 1, 763 1, 710 → 1, 738

+1.69% +1.70% +1.64%
N 37, 173 → 36, 774 32, 600 → 32, 278 32, 907 → 32, 589

−1.07% −0.99% −0.96%
Gains Geu : 8, 714 → 8, 777 Guo : 6, 076 → 6, 458

+0.7% +6.3%

Schedule delay costs, headway and crowding costs

In all three fare regimes the equilibrium price is an increasing function of parameters β, γ,

λ and h. Equilibrium usage decreases correspondingly. Because capacity is endogenous in

this section, changing parameters β, γ, λ or h induces changes in s and m as well, and to

determine the size of the effects it is necessary to solve for the new equilibria.

As a first experiment, parameters β and γ were both increased by 10%. The results

are shown in Table 6. In each fare regime the number of trains drops by nearly 5% due to

the higher cost of scheduling trains that arrive very early or late. Partly to compensate,

train capacity increases by about 1.7%. Equilibrium prices rise, and usage drops slightly.

Welfare gain Gnu increases by 0.7%, and welfare gain Guo increases by 6.3%. An increase

in headway, h, by a given percentage amount has exactly the same effect as an equal

percentage increase in β and γ. Thus, the consequences of a 10% increase in h are as

shown in Table 3.

As a second experiment, parameter λ was increased by 10%. The results are shown in

Table 7. In all fare regimes the number of trains drops by about 3% while train capacity

increases by just over 2%. Usage drops by about 1%. Welfare gains Gnu and Guo both

increase slightly.

Similar to Tables 4 and 5, Tables 6 and 7 depict long-run effects of changes in parameter

values. These effects can differ significantly from the short-run effects when capacity is

given. Consider, for example, welfare gain Guo. In the short run with s and m fixed, Guo
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Table 7: Effects of increasing parameter λ by 10%

Fare regime

No-fare (n) Optimal uniform fare (u) Social optimum (o)
m 25.26 → 26.03 24.00 → 24.73 26.70 → 27.48

+3.02% +3.02% +2.92%
s 1, 763 → 1, 800 1, 733 → 1, 771 1, 710 → 1, 747

+2.14% +2.14% +2.15%
N 37, 173 → 36, 778 32, 600 → 32, 249 32, 907 → 32, 550

−1.06% −1.08% −1.08%
Gains Geu : 8, 714 → 8, 926 Guo : 6, 076 → 6, 161

+2.4% +1.4%

is given by Eq. (49). With a 10% increase in β and γ, Guo rises by a factor of (1.1)2,

or 21% which is more than triple the 6.3% long-run increase shown in Table 6. A 10%

increase in λ causes Guo to fall by a factor (1.1)−1 or about 9%. Yet Table 7 shows that

the long-run gain actually rises by 1.4%.

The large differences between the short-run and long-run effects highlight the impor-

tance of the time horizon that is adopted for planning. For example, recent empirical

research has led to improved estimates of the costs of public transport crowding. A rise

in the estimated unit cost of crowding (i.e., parameter λ) might dissuade a planner with a

short-run perspective from implementing train-dependent fares. A planner with a long-run

perspective might adopt a more favorable view. This illustrates the well-known lesson in

transportation economics that pricing and capacity investment decisions are interdepen-

dent, and should be considered jointly (Lindsey, 2012).

7 Conclusion

In this article we have analyzed the time pattern of usage and crowding on a commuter rail

line using a model (the PTC model) of individuals’ trip-scheduling preferences. Users face

a trade-off between riding a crowded train that arrives at a convenient time, and riding

a less crowded train that arrives earlier or later than desired. We solve user equilibrium

for three fare regimes: no fare, an optimal uniform fare that controls the total number

of users, and an optimal train-dependent fare that also controls the distribution of users
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between trains. We also solve for the optimal long-run number and capacities of trains for

the three fare regimes.

We find that some properties of the PTC model are similar to those of the Vick-

rey (1969) bottleneck model of automobile traffic congestion. In particular, the optimal

train-dependent fare supports the social optimum because it internalizes the crowding-cost

externality on each train. If the crowding cost function is linear, the revenues generated

by the higher tolls on timely trains equal the welfare gains from imposing the toll. Some

other properties of the PTC model resemble those of the flow congestion model of auto-

mobile traffic congestion due to Henderson (1974, 1981) and Chu (1995). Under plausible

assumptions, passenger loads are distributed more evenly across trains in the social opti-

mum than in the user equilibrium. Arrivals at the destination therefore occur at a more

even rate, whereas in the bottleneck model the arrival rate is constant (and equal to bot-

tleneck capacity) throughout the arrival period. Because crowding is assumed to occur at

all levels of train occupancy it is impossible to eliminate crowding costs even if fares can

be varied freely. Consequently, imposing Pigouvian fares makes users worse off – at least

before accounting for how the revenues are used.

Still other properties of the PTC model differ from both the bottleneck and flow

congestion traffic models. Most striking is that if the crowding cost function is convex,

the short-run welfare gain from introducing optimal train-dependent fares decreases with

total ridership. The marginal social cost of accommodating an additional passenger in

the system is actually higher in the social optimum than with a uniform fare even though

passengers are distributed optimally across trains.

Solving for optimal transit supply in the PTC model is complicated by the fact that

capacity has two dimensions: the number of trains and the capacity of each train. We

treat a special case with linear crowding and schedule delay cost functions, and a uniform

headway between trains. The ranking of optimal capacity in the no-fare and optimal

uniform-fare regimes is ambiguous in general. More users take transit in the no-fare regime,

but the benefit from expanding capacity is diluted by latent demand. Expanding capacity

is more valuable in the social optimum than the optimal uniform-fare regime because

capacity is used more efficiently. The optimal number of trains is unambiguously higher
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in the social optimum because more users take additional trains. Optimal train capacity

is also higher in the social optimum if the number of trains is equal, but the ranking of

capacity is ambiguous when the number of trains is optimized as well.

The comparative statics effects of varying parameter values when capacity is assumed

to adjust are quite different from when capacity is held fixed. This demonstrates the

importance of distinguishing between short-run and long-run planning horizons.

For illustration we calibrate the model to be roughly descriptive of the Paris RER A

line during morning-peak conditions. With the base-case parameter values the welfare

gain from implementing efficient pricing is e0.27 per user for the optimal uniform fare,

and e0.45 for the optimal train-dependent fare. While these amounts may seem modest,

the system-wide gains could be large. The RER A line carries more than 300 million users

per year, and on average more than 1.5 million individuals used public transport in the

Île-de-France region during the morning peak (7am-9am) in 2010.31 Given 250 working

days per year, a welfare gain of about e0.50 per trip, and doubling the number of trips to

account for evening travel, the annual total welfare gain from optimal pricing amounts to

nearly e400 million per year. This figure is comparable to the social saving from a road

traffic cordon congestion pricing scheme. Using the bottleneck for the Île-de-France road

network modeled as a monocentric city, De Lara et al. (2013) found a social saving of e606

million per year.

The analysis in this paper could be extended in various directions. One is to allow

travelers to differ in their trip-timing preferences and disutility from crowding. Doing so

would allow consideration of the equity implications of alternative fare regimes and service

investment policies. Another extension is to combine crowding costs with queuing delay.

Both forms of congestion are often manifest in real transit systems. If a distinction is also

made between seated and standing passengers, as in de Palma et al. (2015), passengers can

experience congestion in a number of ways: delays when accessing stations and waiting on

the platform, delays when trains are too full to board, delays while boarding, discomfort

while seated, greater discomfort and possibly fatigue while standing, and delays while

alighting at the destination and exiting stations. The analysis of such a system is likely to

31See p.11 in http://www.lvmt.fr/IMG/pdf/RAPA_Chaire_Stif_2013-2014_v1.pdf

http://www.lvmt.fr/IMG/pdf/RAPA_Chaire_Stif_2013-2014_v1.pdf


106 CHAPTER II. ECONOMICS OF CROWDING IN PUBLIC TRANSPORT

be insightful but challenging.



Appendices

Appendix A Proof of Proposition 9

As in the text, let j index trains in order of decreasing schedule delay cost so that δ1 >

δ2 > ... > δm. (Because trains arrive early and late, the index does not correspond to

the temporal sequence in which trains are run.) Since in the UE ne
j = g−1 [ce − δj ] and

g′ (.) > 0, ne
j increases with j: ne

1 < ne
2 < ... < ne

m.

We show that ne
j ≶ no

j ⇐⇒ ne
jg

′
(
ne
j

)
≶MSCo − ce. Given no

j = v−1 [MSCo − δ (tj)],

it follows that

ne
j ≶ no

j

⇐⇒ g−1 [ce − δj ] ≶ v−1 [MSCo − δj ]

⇐⇒ v
{
g−1 [ce − δj ]

}
≶ MSCo − δj

⇐⇒ ce − δj + g−1 [ce − δj ]× g′
{
g−1 [ce − δj ]

}
≶ MSCo − δj

⇐⇒ g−1 [ce − δj ]× g′
{
g−1 [ce − δj ]

}
≶ MSCo − ce

⇐⇒ ne
jg

′
(
ne
j

)
≶ MSCo − ce.

Variables ne
j and no

j have the same ranking as ne
jg

′
(
ne
j

)
, the marginal external cost

of crowding in the UE, and MSCo − ce, which is constant. Because total patronage, N ,

is fixed, some trains are more more heavily loaded in the UE, and the others are more

heavily loaded in the SO. Consequently, if ng′ (n) is a strictly increasing function of n (i.e.,

ε (n) > −1), there exists a unique train ̂ such that ne
j < no

j when j < ̂, ne
̂ ≥ no

̂ , and

ne
j > no

j when j > ̂ . Conversely, if ng′ (n) is a strictly decreasing function of n (i.e.,

107
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ε (n) < −1), there exists a unique train ̂ such that ne
j > no

j when j < ̂, ne
̂ ≤ no

̂ , and

ne
j < no

j when j > ̂ .

Appendix B Proof of Proposition 10

Total fare revenues from the optimal uniform fare are Ru = τuN . Hence

∂Ru

∂N
= τu +

∂τu

∂N
N .

Now

MSCu =
∂TCu

∂N
=

∂ (cuN)

∂N
= cu +

∂cu

∂N
N = cu + τu.

Thus
∂MSCu

∂N
N =

(
∂cu

∂N
+

∂τu

∂N

)
N = τu +

∂τu

∂N
N =

∂Ru

∂N
. QED

Total fare revenues from the SO-fare are Ro =
∑m

k=1 τ
o
kn

o
k. Hence

∂Ro

∂N
=

m∑

k=1

(
τ ok +

∂τ ok
∂no

k

no
k

)
∂no

k

∂N
.

The marginal social cost of a trip is the same for all trains that are used:

MSCo = cok + τ ok .

Hence:

∂MSCo

∂N
=

(
∂cok
∂no

k

+
∂τ ok
∂no

k

)
∂no

k

∂N
,

∂MSCo

∂N
no
k =

(
∂cok
∂no

k

no
k +

∂τ ok
∂no

k

no
k

)
∂no

k

∂N
=

(
τ ok +

∂τ ok
∂no

k

no
k

)
∂no

k

∂N
,

∂MSCo

∂N
N =

m∑

k=1

∂MSCo

∂N
no
k =

m∑

k=1

(
τ ok +

∂τ ok
∂no

k

no
k

)
∂no

k

∂N
=

∂Ro

∂N
. QED
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Appendix C Proof of Proposition 11

We prove the case for which the welfare gain Geo decreases with N . The proof for the case

in which Geo decreases follows the same steps, and is omitted. As discussed in the text,

Geo decreases if the marginal social cost of an additional user is higher in the SO than the

UE. Thus, it suffices to show that MSCo > MSCe.

As in Appendix A, let k index trains in order of decreasing schedule delay cost so that

in the no-fare equilibrium, ne
1 < ne

2 < ... < ne
m. Equilibrium cost with no fare, ce, is

determined implicitly by Eq. (20):

m∑

k=1

g−1 [ce − δk]−N = 0. (71)

This equation can be written

m∑

k=1

f
[
g (ne

k) + ne
kg

′ (ne
k)
]
= N, (72)

where f (n) ≡ v−1 (n). Since f (v (n)) = n,

f ′ (n) =
1

v′ (n)
=

1

2g′ (n) + ng′′ (n)
. (73)

The marginal social cost of a trip in the no-fare equilibrium is

MSCe =
∂ (ceN)

∂N
= ce +N

∂ce

∂N
.

Using Eq. (71) to derive ∂ce

∂N one obtains

MSCe = ce +
N∑m

k=1
1

g′(ne
k)

. (74)

The marginal social cost of a trip in the social optimum is defined implicitly by Eq.

(31):

m∑

k=1

f [MSCo − δk] = N. (75)
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By Assumption 4, the left-hand side of Eq. (75) is a strictly increasing function of

MSCo. Suppose we substitute eqn. (74) for MSCe in place of MSCo in Eq. (75). If the

resulting left-hand side is less than N , then MSCo > MSCe and the proof is complete.

To economize on notation, let gk denote g (ne
k), g

′
k denote g′ (ne

k), and nk denote ne
k. After

a few substitutions one can write

m∑

k=1

f [MSCe − δk] =
m∑

k=1

f

[
gk +

N

m

m∑m
k=1

1
g′
k

]
.

Define

meck ≡ gk + nkg
′
k, (76)

and

m̃eck ≡ gk +
N

m

m∑m
k=1

1
g′
k

. (77)

Given Eq. (72), we need to prove that the following expression is negative:

∆F ≡
m∑

k=1

f

[
gk +

N

m

m∑m
k=1

1
g′
k

]

︸ ︷︷ ︸
ñk

−
m∑

k=1

f [meck]︸ ︷︷ ︸
nk

.

Given Assumption 4, ñk > nk for small k, and ñk < nk for large k. The rankings of ñk

and nk, and of c̃k and ck, are shown in Figure 15.

Function f () is concave by Assumption 6a. Clearly, for all trains

ñk − nk < (c̃k − ck) f
′ [ck] , k = 1...m.

Using (76), (77) and (73) this implies

∆F =
m∑

k=1

ñk −
m∑

k=1

nk <
m∑

k=1

(c̃k − ck) f
′ [ck]

=

m∑

k=1

(
N

m

m∑m
k=1

1
g′
k

− nkg
′
k

)
1

2g′k + nkg
′′
k

.
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marginal social cost

ridership

f (.)

•

c1

n1

c̃1

ñ1

•

cm

nm

c̃m

ñm

Figure 15: Ridership and marginal social cost

Now,
m∑

k=1

1

g′k
=

∑m
j=1

∏
i 6=jg

′
i∏

k
i=1g

′
i

.

Hence

∆F =

m∑

k=1

(
N

∏m
i=1 g

′
i∑m

j=1

∏
i 6=jg

′
i

− nkg
′
k

)
1

2g′k + nkg
′′
k

=
m∑

k=1

(
N

∏
i 6=kg

′
i∑m

j=1

∏
i 6=jg

′
i

− nk

)
g′k

2g′k + nkg
′′
k

=
m∑

k=1




(∑
l 6=k nl

)∏
i 6=kg

′
i∑m

j=1

∏
i 6=jg

′
i

+

( ∏
i 6=kg

′
i∑m

j=1

∏
i 6=jg

′
i

− 1

)
nk


 g′k

2g′k + nkg
′′
k

=

m∑

k=1





∑

l 6=k

nl




︸ ︷︷ ︸
(1)

∏
i 6=kg

′
i∑m

j=1

∏
i 6=jg

′
i︸ ︷︷ ︸

(2)

−
∑

j 6=k

∏
i 6=jg

′
i∑m

j=1

∏
i 6=jg

′
i︸ ︷︷ ︸

(3)

nk︸︷︷︸
(4)




g′k
2g′k + nkg

′′
k

(78a)
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In the second line of eqn. (78a),

m∑

k=1

(
N

∏
i 6=kg

′
i∑m

j=1

∏
i 6=jg

′
k

− nk

)

= N
m∑

k=1

( ∏
i 6=kg

′
i∑m

j=1

∏
i 6=jg

′
i

)
−

m∑

k=1

nk

= N −N = 0.

Terms (1) and (2) in the last line of Eq. (78a) are decreasing functions of k. Terms

(3) and (4) are increasing functions of k. Hence Eq. (78a) is negative if g′k
2g′

k
+nkg

′′

k
is a

non-decreasing function of k, or equivalently if ε (n) = g′′knk

g′
k

is a non-increasing function of

k which is guaranteed by Assumption 6a. QED.

Appendix D Proof of Proposition 17

We first derive the optimal timetable for the UE, and then show that this timetable is also

optimal for the SO.

Appendix D.1 Optimal timetable for user equilibrium

The optimal timetable is chosen to minimize total user costs. For the UE, total costs are

given by Prop. 13:

TCe = δN +
λN2

ms
.

The timetable should therefore be chosen to minimize average schedule delay cost, δ.

The timetable can be defined by the arrival time of the last train, tm. It is clearly not

optimal to set tm < t∗, and have all trains arrive early, since δ could be reduced by setting

tm = t∗. Similarly, it is not optimal to set tm > t∗ + (m− 1)h, and have all trains arrive

late, since δ could be reduced by setting tm = t∗ + (m− 1)h. Thus, one train must arrive

during the interval (t∗ − h, t∗]. Call it train k̂. Train k̂ is the last train to arrive at or



APPENDIX D. PROOF OF PROPOSITION 17 113

before t∗. Average schedule delay cost is

δ =
1

m




k̂∑

k=1

β (t∗ − tk) +

m∑

k=k̂+1

γ (tk − t∗)




=
1

m




k̂∑

k=1

β
(
t∗ − tk̂ + h

(
k̂ − k

))
+

m∑

k=k̂+1

γ
(
tk̂ − t∗ + h

(
k − k̂

))



=
1

m


(t∗ − tk̂

) [
(β + γ) k̂ − γm

]
+ (β + γ)h

k̂
(
k̂ − 1

)

2
+ γh

m
(
m+ 1− 2k̂

)

2


 .(79a)

The first component of the right-hand side of eq. (79a),
(
t∗ − tk̂

)
, is the time between the

arrival time of train k̂ and t∗. If tk̂ < t∗ we can differentiate eq. (79a):

∂δ

∂
(
t∗ − tk̂

) =
(β + γ) k̂

m
− γ.

If k̂ > γm/ (β + γ), then ∂δ/∂
(
t∗ − tk̂

)
> 0 and δ is minimized by setting t∗ − tk̂ to its

minimal value, i.e t∗− tk̂ = 0. Conversely, if k̂ < γm/ (β + γ), then ∂δ/∂
(
t∗ − tk̂

)
< 0 and

δ is minimized by setting t∗ − tk̂ = h. Hence it is optimal to schedule one train at t∗. Call

it train k∗. Replacing k̂ in eq. (79a) with k∗ one obtains

δ = (β + γ)h
k∗ (k∗ − 1)

2m
+ γh

m+ 1− 2k∗

2
.

Treating k∗ as a continuous variable for the moment, the first-order condition for minimiz-

ing δ with respect to k∗ is

k∗o =
γm

β + γ
+

1

2
.

Since k∗ is an integer, we have to compare δ when k∗ = ⌊k∗o⌋ and when k∗ = ⌊k∗o⌋ + 1.

We find

δk∗=⌊k∗o⌋ − δk∗=⌊k∗o⌋+1 ≶ 0 ⇐⇒ γm

β + γ
≶

⌊
γm

β + γ
+

1

2

⌋
.
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Hence,

k∗ =

⌊
γm

β + γ
+

1

2

⌋
+ 1× 1 γm

β+γ
>
⌊

γm
β+γ

+ 1
2

⌋

tm = t∗ + h

(
m−

⌊
γm

β + γ
+

1

2

⌋
− 1× 1 γm

β+γ
>
⌊

γm
β+γ

+ 1
2

⌋
)

In summary, if γm/ (β + γ) > ⌊γm/ (β + γ) + 1/2⌋, then k∗ = ⌊γm/ (β + γ) + 1/2⌋ + 1,

and tm = t∗ + h (m− 1− ⌊γm/ (β + γ) + 1/2⌋). Conversely, if γm/ (β + γ) <
⌊

γm
β+γ + 1

2

⌋
,

then k∗ = ⌊γm/ (β + γ) + 1/2⌋ and tm = t∗ + h (m− ⌊γm/ (β + γ) + 1/2⌋).

Appendix D.2 Optimal timetable for social optimum

Total costs in the social optimum are given by Prop. 15

TCo = Nδ +
λN2

ms
− s

4λ

(
∆−mδ

2
)
.

TCo differs from TCe in including the third term. Recall that

∆−mδ
2
=

m∑

k=1

δ2k −
1

m

[
m∑

k=1

δk

]2
, (80)

where

δk = β [t∗ − tm + h (m− k)]+ + γ [tm − t∗ − h (m− k)]+ . (81)

As above, let k̂ be the last train to arrive at or before t∗. Differentiating (80) with respect

to tm, and using (81), it is possible to show after considerable algebra that

∂
(
∆−mδ

2
)

∂tm
=

γ

β + γ
m+ 1− k̂.

The term ∆−mδ
2

therefore reaches an extreme point for the same k̂ as does δ. Hence

TCo reaches a minimum for the same timetable as TCe.
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Appendix E Derivatives of SSe with respect to m and s

First-order conditions for a maximum of (56) are32

∂SSe

∂s
= p (N)

∂N

∂s
−
(
−λN2

ms2
+

(
δ̄ +

2λN

ms

)
∂N

∂s
+Ks

)
= 0, (82a)

∂SSe

∂m
= p (N)

∂N

∂m
−
(

∂δ̄

∂m
N − λN2

m2s
+

(
δ̄ +

2λN

ms

)
∂N

∂m
+Km

)
= 0. (82b)

The private cost of usage is given by Eq. (51) which can be written

p (N)−
(
δ̄ +

2λN

ms

)
= τ − λN

ms
. (83)

The fare, τ , depends on the pricing regime. To maintain generality we assume for the

moment that it can depend on N , m, and s. Substituting (83) into (82a) and (82b) yields:

λN2

ms2
+

(
τ − λN

ms

)
∂N

∂s
−Ks = 0, (84a)

λN2

m2s
− ∂δ̄

∂m
N +

(
τ − λN

ms

)
∂N

∂m
−Km = 0. (84b)

The demand derivatives are obtained by totally differentiating (51):

∂N

∂s
=

− λN
ms2

+ dτ
ds

pN − λ
ms − dτ

dN

> 0, (85a)

∂N

∂m
=

∂δ̄
∂m − λN

m2s
+ dτ

dm

pN − λ
ms − dτ

dN

> 0. (85b)

Substituting (85a) and (85b) into (84a) and (84b), the first-order conditions become

λN2

ms2
· pNN − τ − dτ

dNN

pNN − λN
ms − dτ

dNN
+

(
τ − λN

ms

)
dτ
dsN

pNN − λN
ms − dτ

dNN
= Ks,

(
λN

m2s
− ∂δ̄

∂m

)
N · pNN − τ − dτ

dNN

pNN − λN
ms − dτ

dNN
+

(
τ − λN

ms

)
dτ
dmN

pNN − λN
ms − dτ

dNN
= Km.

32Given δ̄ = βγ/ (β + γ)hm/2 as per Prop. (17), ∂δ̄/∂m = βγ/ (β + γ)h/2 which is a constant.
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Appendix F Proof of Proposition 21

Conditional on m and N , su∗ is given by Eq. (65). First-order condition (70a) can be

rearranged to obtain an analogous equation for so∗. Recalling from Eq. (46) that RV o =

s
4λ

(
∆−mδ

2
)
, where ∆ =

∑m
k=1 δ

2
k, the two equations for su∗ and so∗ can be written

together as

sj∗ (m,N) =

√√√√ λ

m
[
ν1m+ ν2 −X

(
∆−mδ

2
)]N, (86)

where X = 0 for j = u, and X = 1
4λ > 0 for j = o. Substituting (86) into the first-order

conditions (67) and (70b) for mu
∗ and mo

∗ respectively, one obtains

ν0 + ν1

√√√√ λ

m
[
ν1m+ ν2 −X

(
∆−mδ

2
)]N +

∂δ

∂m
N

−λN

m2

√√√√m
[
ν1m+ ν2 −X

(
∆−mδ

2
)]

λ

−X

√√√√ λ

m
[
ν1m+ ν2 −X

(
∆−mδ

2
)]N

∂
(
∆−mδ

2
)

∂m
= 0. (87)

Function (87) is negative for small values of m, and over the relevant range it is increas-

ing in m. Hence, if (87) is decreasing in X, mo
∗ > mu

∗ . Retaining only terms in (87) that

depend on X, and multiplying through by m2λ− 1
2

√
m
[
ν1m+ ν2 −X

(
∆−mδ

2
)]

/N , one

obtains

ν1m
2 −m

[
ν1m+ ν2 −X

(
∆−mδ

2
)]

−Xm2
∂
(
∆−mδ

2
)

∂m

= −mν2 −Xm


m

∂
(
∆−mδ

2
)

∂m
−
(
∆−mδ

2
)

 . (88)

This expression is decreasing in X if ∆−mδ̄2 is a convex function of m. Setting k∗ = γ
β+γm,
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we find

∆−mδ
2

=
βγmh2

12

[
βγm2

(β + γ)2
+ 2

]
;

∂
(
∆−mδ

)

∂m
=

βγh2

12

[
3

βγm2

(β + γ)2
+ 2

]
> 0;

∂2
(
∆−mδ

)

∂m2
=

βγh2

12

[
6

βγm

(β + γ)2

]
> 0.

Hence ∆ − mδ̄2 is a convex function of m, Eq. (88) is decreasing in X, and mo
∗ > mu

∗ .

QED.

Appendix G Parameter values for numerical example

The numerical example requires base-case parameter values for β, γ, λ and h, and target

values for N , m and s. The operating period was set to one hour, and target values

were chosen for the optimal uniform-fare regime. This regime is intermediate in efficiency

between the no-fare and SO-fare regimes, and it is arguably the most descriptive of public

transit service in Paris where fares are positive and constant throughout the day.

Consider first the supply-side parameters m, h and s. According to the document

“Schéma Directeur du RER A” written in June 2012 by the STIF (Syndicat des Transport

d’Île-de-France), 30 trains per hour are supposed to operate during the morning peak in

the East-West direction on the RER A line. However, the frequency actually achieved over

the 4-year period February 2008 to February 2012 was only 24.4 trains per hour.33 The

target value for number of trains was thus set to m = 24, and the headway was set to h

= 60
24 = 2.5 mins.

Two types of bi-level train sets are operated during the morning peak:34

– MI2N train sets with 904 seats and standing room for 1,636 users (4 users/m2) for a

total capacity of 2,540

33See p.36 in http://www.stif.org/IMG/pdf/Deliberation_no2012-0163_relative_au_
schema_directeur_du_RER_A.pdf.

34See p.54 in http://www.stif.org/IMG/pdf/Deliberation_no2012-0163_relative_au_
schema_directeur_du_RER_A.pdf.

http://www.stif.org/IMG/pdf/Deliberation_no2012-0163_relative_au_schema_directeur_du_RER_A.pdf
http://www.stif.org/IMG/pdf/Deliberation_no2012-0163_relative_au_schema_directeur_du_RER_A.pdf
http://www.stif.org/IMG/pdf/Deliberation_no2012-0163_relative_au_schema_directeur_du_RER_A.pdf
http://www.stif.org/IMG/pdf/Deliberation_no2012-0163_relative_au_schema_directeur_du_RER_A.pdf
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– MI09 train sets with 948 seats and standing room for 1,683 users (4 users/m2) for a

total capacity of 2,614 users

This suggests a value for capacity of about s = 2, 600. However, in the model users

are assumed to travel from a single origin to a single destination whereas the RER A

line serves many stations. La Défense is the most popular destination, but a substantial

fraction of users pass through it. Only part of train capacity is thus effectively devoted

to users who exit at La Défense. After experimentation with alternative values of s, and

other parameters described below, we settled on a capacity equal to two-thirds of nominal

train capacity so that s = 2
3 · 2, 600 = 1, 733.

Consider now the demand-side parameters. According to a January 2011 document

“Étude La Défense Analyse des Trafics” prepared by the DRIEA (Direction Régionale et

Interdépartementale de l’Équipement et de l’Aménagement), in 2009, 32,600 users arrived

at La Défense by RER A between 8:25am and 9:25am.35 This count includes users traveling

in both East-West and West-East directions, but it excludes users who are passing through.

Including travel in both directions results in overestimation of N , whereas excluding users

who pass through La Défense results in underestimation of N . Lacking an indication as to

which bias dominates and given the 2/3 coefficient applied to the initial capacity, we set

N = 32, 600.

Wardman et al. (2012) conduct a meta-analysis of estimates of β, γ and the value of

travel time; call it α. They report point estimates of β = 0.74 ·α and γ = 1.72 ·α (see Table

19, p.25). For commuters in France, α =e15/hr (see Table 15, p.21) which is consistent

with the government-recommended value. This suggests setting β = 0.74 · 15 = e11.1/hr,

and γ = 1.72 · 15 = e25.8/hr. However, in the model it is assumed that users have the

same desired arrival time, t∗. In reality, trip-timing preferences vary. The assumption of a

common t∗ leads to overestimation of schedule delay costs. In addition, with β = e11.1/hr

and γ = e25.8/hr., condition (37) that all trains are used was violated given plausible

values for other parameters. After experimentation with alternative values of β, γ and s

(noted above) we scaled down β and γ by one-third to β = e7.4/hr and γ = e17.2/hr.

35See Figure 2 on page 8 in http://cpdp.debatpublic.fr/cpdp-grandparis/site/
DEBATPUBLIC_GRANDPARIS_ORG/_SCRIPT/NTSP_DOCUMENT_FILE_DOWNLOADCB59.PDF.

http://cpdp.debatpublic.fr/cpdp-grandparis/site/DEBATPUBLIC_GRANDPARIS_ORG/_SCRIPT/NTSP_DOCUMENT_FILE_DOWNLOADCB59.PDF
http://cpdp.debatpublic.fr/cpdp-grandparis/site/DEBATPUBLIC_GRANDPARIS_ORG/_SCRIPT/NTSP_DOCUMENT_FILE_DOWNLOADCB59.PDF
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Empirical studies of public transit crowding often report crowding costs as time mul-

tipliers. This is consistent with evidence that disutility from crowding is proportional to

amount of time spent in crowded conditions. The crowding cost parameter can then be

written

λ = α · tt · (tm− 1) , (89)

where tt is travel time and tm is the time multiplier.

According to the survey “Etude mobilité transports á la Défense - Profils, usages et

modes de déplacements des salariés et habitants du quartier d’affaires” by the EPAD

(Établissement Public de la Région Pour l’Aménagement de la Défense), in 2006, the

average travel time incurred by public transport riders who used only one transport mode

to reach La Défense was 40 mins.36 This is consistent with a study by the Enquête Global

Transport in 2010 which found an average travel time for commuters of 41 mins.37 We

thus set tt = 40 mins or 2/3 hrs.

Haywood and Koning (2015) have estimated time multipliers for Paris. They obtain

a linear approximation of the time multiplier (see Eq. (10), p.194) of tm = 1 + 0.11 · d,

where d is the density of passengers per square metre. Substituting the estimates of α, tt

and tm into Eq. (89) one obtains λ = 15 · 2/3 · 0.11 · d. With a density of 4 users/m2 for

standing room on the train sets used on the RER A line (see above), this yields λ = 4.4.

Appendix H Glossary

Appendix H.1 Latin characters

c : user cost of a trip [e/user]

CS : total consumers’ surplus [e]

e : superscript for uniform-fare regime

g (n) : expected crowding cost function [e/user]

Gxy : welfare gain in shifting from pricing regime x to y

36See p.11 in http://www.ladefense-seine-arche.fr/fileadmin/site_internet/user_
upload/8-ENLIEN/etudes/etude-mobilite-transports.pdf.

37See p.3 in http://www.driea.ile-de-france.developpement-durable.gouv.fr/IMG/pdf/
Fiche_Actifs__cle0cecb9.pdf

http://www.ladefense-seine-arche.fr/fileadmin/site_internet/user_upload/8-ENLIEN/etudes/etude-mobilite-transports.pdf
http://www.ladefense-seine-arche.fr/fileadmin/site_internet/user_upload/8-ENLIEN/etudes/etude-mobilite-transports.pdf
http://www.driea.ile-de-france.developpement-durable.gouv.fr/IMG/pdf/Fiche_Actifs__cle0cecb9.pdf
http://www.driea.ile-de-france.developpement-durable.gouv.fr/IMG/pdf/Fiche_Actifs__cle0cecb9.pdf
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h : time interval between successive trains [hr/train]

k : index of train

K : capacity cost function [e]

m : number of trains used [trains]

MEC : marginal external cost of a trip [e/user]

MSC : marginal social cost of a trip [e/user]

n : superscript for no-fare regime

n : number of users on a train [users]

nk : number of users taking train k [users/train]

N : total number of users [users]

o : subscript for socially-optimal fare regime

p : private trip cost including toll [e/user]

R : total fare revenue [e]

RV : variable fare revenue from socially optimal fare schedule [e]

s : measure of train capacity [users/train]

SDC : total schedule delay costs [e]

SS : social surplus [e]

t : departure time from origin station [clock time]

t∗ : desired arrival time at destination [clock time]

TC : total user costs [e]

TCC : total crowding costs [e]

u : superscript for optimal uniform-fare regime

v (n) : marginal social crowding cost function [e/user]

Appendix H.2 Greek characters

β : cost per minute of arriving early [e/(hr·user)]

γ : cost per minute of arriving late [e/(hr·user)]

δ : schedule delay cost function [e/user]

ε : elasticity of g′ (n)
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η : elasticity of demand

λ : crowding cost parameter [e/user]

τ : fare [e/user]

ν0 : Capacity cost function coefficient on m [e/train]

ν1 : Capacity cost function coefficient on m · s [e/user]

ν2 : Capacity cost function coefficient on s [e·train/user]





Chapter III

Well-being in public transport: an

empirical approach of the crowding

effect

1 Introduction

Over the last decade, a growing body of research has focused on the qualitative attributes

offered by public transportation (PT in what follows, see Litman, 2008, or OECD, 2014 for

reviews). Whether the objective is to attract car drivers (to reduce pollutants’ emissions

in dense urban areas) or to avoid PT passengers from switching away from clean modes

(because of unpleasant journey conditions), transport operators should implement policies

that improve the “travel experience” of users. Among the numerous relevant qualitative

attributes of PT, in-vehicle crowding - broadly understood as the density of users within

carriages - is often singled out as one of the most desirable dimension (Eboli and Mazzulla,

2007; Dell’Olio et al., 2011; CRCFRI, 2012).

Economists currently exhibit a growing interest for in-vehicle crowding, especially by

assessing its effects on the “generalized cost” of PT usage. As stressed theoretically (Kraus,

1991; de Palma et al., 2015, 2014) and confirmed empirically (Li and Hensher, 2011; Ward-

man and Whelan, 2011), time resources are dramatically more costly for individuals if con-

123
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sumed in crowded PT. This can have strong organizational consequences because workers

suffering from unpleasant PT journeys are more likely to arrive late at their job’s places, to

have a reduced productivity but also to plan quitting earlier their activities Mohd Mahudin

et al., 2012; Tirachini et al., 2013. Also, travelers who have a car but use PT are more

sensitive to perceived attributes of PT service, such as crowding (see Redman et al., 2013,

for a systematic qualitative review). As for road congestion, in-vehicle crowding may in-

fluence individuals’ route or mode choices, even if the PT system does not work as a

“bottleneck”yet (when excessive PT usage generates objective time losses). Therefore,

this feature of travels should be considered accurately when setting optimal PT supply

or pricing schemes (Kraus, 1991; De Borger and Wouters, 1998; de Palma et al., 2014;

Prud’homme et al., 2012; Tirachini et al., 2010; Kilani et al., 2014).

Importantly, economists rarely differentiate in-vehicle density and crowding (see for

example Wardman and Whelan, 2011). According to psychologists, however, an impor-

tant distinction has to be done. In a seminal work, Stokols (1972) defines the density as

a “physical condition” involving spatial limitation but no psychological meaning, and the

crowding as an “experimental state”. As a consequence, in-vehicle density in not sufficient

to describe the crowding experienced by an user during a PT journey. Other character-

istics, such as personal characteristics or spatial factors, should also be considered. This

distinction between the objective measure, the density, and the subjective experience, the

crowding, has been modeled by Baum and Paulus (1987) and reviewed by Turner et al.

(2005). Mohd Mahudin et al. (2012) propose a recent study on the psychological dimen-

sions of rail crowding1. As this phenomenon is per definition a perceived one, it seems

relevant to use a subjective measure to address it.

The subjective well-being (SWB in what follows) is now largely accepted by economists

(see Van Praag et al., 2003 or Kahneman and Krueger, 2006). It is commonly defined as

“a person’s cognitive and emotional evaluations of his or her life as a whole” (Diener et al.,

1Mohd Mahudin et al. (2012) distinguish three components of the experience of passenger crowding
(evaluation of psychosocial aspects of the crowded situation, emotional reactions to the crowded situation
and evaluation of the ambient environment of the crowded situation) to build a valid instrument captures
the relationship between crowding and the experience of stress and feelings of exhaustion. They find that
the link between rail passenger crowding and the negative outcomes is mediated by emotional feelings of
crowd.
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2009). In the theoretical framework proposed by Van Praag et al. (2003), the SWB of a

journey is one of the “Domain Satisfactions” (like health or financial satisfaction) forming

the “General Satisfaction”. Since individuals are able to rate about how they are feeling

during long or short periods of life (Van Praag and Ferrer-i Carbonell, 2008), Metcalfe and

Dolan (2012) argue that SWB is a good measure of the underlying utility of a transport

journey and that it should be the primary objective of any transport policies. Besides

Ettema et al. (2010) recommend to use the SWB as a complement to decision utility

derived from observed (route or mode) choices. According to them, instruments used to

measure SWB, such as Likert items, are also valid in transport contexts.

Following this, a growing literature studying mobility and SWB has emerged. Del-

bosc (2012) provides an extensive description of the relation between travel and well-being

whilst regretting the lack of studies in this field. Ettema et al. (2011) nevertheless propose

a tool , the Satisfaction with Travel Scale (STS), used to address the satisfaction due to

the in-vehicle activities performed during PT commutes. They find that discussion with

other users has the strongest positive effect on STS, whereas activities related to enter-

tainment and relaxation lead to lower STS. Also, Abou-Zeid and Ben-Akiva (2011) show

that the overall travel satisfaction increases when the comparative happiness is higher, due

to favorable comparisons to other commuters. In an experiment conducted in Switzerland

on 30 car drivers switching to PT, Abou-Zeid et al. (2012) observe the dynamics of sat-

isfaction and focus on the change in the PT perception. More recently, Abou-Zeid and

Ben-Akiva (2014) review the application of SWB to transportation and they address its

role in mode choices. Closer from this work, Cantwell et al. (2009) split up the satisfaction

for PT into three elements: crowding, travel time reliability and monetary cost. Using an

on-line survey on commuting in Dublin, Ireland, they analyze stated preference scenarios

and find that the utility derived from a journey increases when the crowding decreases.

This result may explain Morris and Guerra, 2014’s findings. Controlling for various factors,

but not in-vehicle crowding, these authors highlight that PT travels are associated with

lower users’ satisfaction compared to competing modes.

We derive from this literature a very simple theoretical framework described in Figure

16. In line with Cantwell et al. (2009), the satisfaction of a PT journey is explained by
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Density

Individual CharacteristicsJourney Characteristics

Crowding Effect

Comfort Satisfaction

Nuisance Factors

Monetary Sat. Travel Time Sat.

Journey Satisfaction

Figure 16: A simple journey satisfaction theoretical framework

the monetary satisfaction, the comfort satisfaction and the travel time satisfaction. In

this paper, we focus on the comfort satisfaction and do not deal with the monetary and

travel time parts. The comfort satisfaction is driven by three effects: the individual, the

journey and the crowding effects. The crowding effect may be different for each user: it

may depend on the travel characteristics, on the individual preferences and, of course,

on the (objective) in-vehicle density. Moreover, the crowding effect is playing through

various nuisance factors, here defined as the features of a journey that are deteriorated by

a high density.2 Thus high density in carriages is not costly by itself, it decreases PT

users’ satisfaction because it affects different aspects of the crowding experienced during a

journey.

Within such a framework, we address two research questions. (i) How does the in-

vehicle density relate to subjective comfort satisfaction? We identify the crowding effect

by looking at the relationship between in-vehicle density and subjective comfort satisfaction

stated by users. We also question the interdependency between the crowding effect and

the travel time. (ii) What are the nuisance factors the crowding comes through? We test

various nuisance factors (Smell, Noise, Standing...) as channels through which the crowding

effect may influence the comfort satisfaction. Doing this, we describe the anatomy of the

2In this study, we consider eight nuisance factors: Over closeness, Standing, Noise, Smell, Time loss,

Waste of time, Fall and Robbery.
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crowding effect. This empirical work is done through econometric regressions of individual

self-reported measures of satisfaction. Data originates from a field survey conducted late

2010 on platforms of Paris subways. As discussed by Haywood and Koning (2015), the

Paris PT network constitutes a perfect case study to address in-vehicle crowding due to

the recent growth in its patronage.

The main contributions of this work are the following. First, we directly assess the

perception of crowding and its impact on the satisfaction of PT users, in line with the

empirical literature on SWB (Kahneman and Krueger, 2006) or job satisfaction (Clark

and Senik, 2010), whereas economists generally estimate “time multipliers” to integrate

in-vehicle crowding to the generalized cost of PT by proposing to PT users hypothetical

trade-offs between travel time and density (see Wardman and Whelan, 2011). We notably

identify a crowding effect independent of the travel time, as opposed to most valuation

studies. Second, we describe the underlying mechanisms playing within the crowding

effect. Doing so, we also address the issue of the reliability of the self-reported satisfaction

variable 3 with the help of extra self-reported measures of nuisance factors related to PT

crowding. This allows to decrease the bias of the comfort satisfaction measure. Third, due

to the multidimensional reality of PT crowding, having a better idea of the nuisances that

really affect users could also help public deciders implementing the most relevant policies.

This study could thus highlight whether individuals will be better-off if they are offered

additional seats, efficient cooling systems or more security in carriages.

The paper proceeds as follows. Section 2 presents the survey design as well as data

used for our empirical exercises. Section 3 then focuses on the identification and on the

measurement of the crowding effect. Section 4 studies the anatomy of the crowding ef-

fect, notably by looking at the nuisance factors that drive comfort satisfaction. Section 5

concludes.
3See Krueger and Schkade (2008) for a study of this reliability.
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2 Data

2.1 Survey design

The data have been collected in the Parisian mass transit network late 2010. Users were

interviewed directly on platforms of subway lines 1 and 4, during morning (7:30-10am)

and evening (5-7:30pm) peaks.4 The stations where the survey has been conducted are,

from East to West, Gare de Lyon, Hôtel de Ville, Champs Elysées, Georges V, Argentine

and Esplanade for line 1, and, from South to North, Denfert-Rochereau, Montparnasse-

Bienvenüe, Saint Sulpice, Odéon and Les Halles for line 4.5 Subway line 1 crosses Paris

East-West. It is the busiest service of the subway network with 750,000 daily users in

2010. It connects most of business and touristic centers of the city, “La Defense” notably,

i.e. the most important business district in Europe. Subway line 4 crosses Paris North-

South and is the second most used service of the network, with 670,000 daily travelers in

2010. It connects users to three national trains stations: Gare du Nord, Gare de Lyon

and Gare Montparnasse. Taken jointly, lines 1 and 4 present an important socioeconomic

heterogeneity because it gives access to both wealthy and poor neighborhoods of Paris city.

This heterogeneity is useful to assess the taste of individuals for crowding.

Around 1,000 PT users were surveyed whilst waiting for their train (whose service

frequency may reach 1 minute 45 seconds during peaks) to arrive. Such a procedure was

chosen in order to soften selection bias arisen from selective non-response. Platforms are al-

most the only place where subway users stop walking. As a consequence, the questionnaire

had to be short and accounted only 10 questions.6

First, PT users were shown a density show-card (see Figure 17) and asked

Which users density do you expect to face during your immediate jour-

ney?

4Another part of this survey has been used to assess crowding costs in Paris subways with the use of
contingent valuation techniques (see Haywood and Koning, 2015).

5The location of these stations in Paris subway network is provided in Appendix A.
6Moreover, the questionnaire includes extra questions because another purpose of the survey was to

value crowding costs in Paris subways with the use of contingent experiments (see Haywood and Koning,
2015). Respondents were proposed trade-offs between randomly varying in-vehicle travel times and in-
vehicle crowding levels. More precisely, 800 users were asked about their willingness to travel more against
reduced crowding (“willingness to pay”) and 200 users were asked about their willingness to travel less
against increased crowding (“willingness to accept”).
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Figure 17: Density show-card used during the field survey

The crowding situations described on the show-card correspond to 0, 1, 2, 2.5, 3, 4 and

6 passengers per square meter respectively. We take this stated density as a measure of

the In-Vehicle Density (IV D).

Then, the journey satisfaction question runs as follows:

Given this density, mark your satisfaction associated with the comfort

for your immediate journey on a scale from 0 to 10. (Question A)

The mark ranges from 0 (the people are highly dissatisfied) to 10 (they are highly

satisfied). We consider this mark as a measure of the in-vehicle comfort satisfaction exper-

imented by the users during their immediate journey with the stated density, and refer to

this mark as CS in the following.

Once the PT users had completed Question A, they were proposed either to follow-up

with a more qualitative survey, accounting 10 additional questions, or to stop the survey.

Clearly, there might be selection issues playing here because the people willing to answer the

full questionnaire may be those who exhibit a special interest for crowding. The question

on which we will focus in Section 4 was collected as follows: interviewers presented the

worst crowding situation on the show-card (6 passengers per square meter) and asked to

the interviewees:
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On a scale from 0 to 10, mark the inconvenience associated with the

following aspects when traveling in conditions similar to the ones rep-

resented on show-card 7: Over-closeness, Standing, Noise, Smell, Time

loss, Waste of time, Fall and Robbery. (Questions B)

The mark ranges here from 0 (the people are not dissatisfied by the considered nuisance

factor) to 10 (they are highly dissatisfied). These eight nuisance factors of crowding are

defined as the features of a journey that are deteriorated by a high in-vehicle density. The

reasons why these nuisance factors have been chosen are fully justified in Section 4. We

refer to these dissatisfaction mark associated to the nuisance factor d as NFDd.

2.2 Descriptive statistics

As made clear in Table 8, information is available for 999 travelers. This whole sample

is divided in two sub-samples: sub-sample A is made of the 721 users that answered only

to Question A, and sub-sample B made of the 278 other users who answered Question A

and Questions B. Sub-sample B is used in Section 4 whereas in Section 3 we use the whole

sample (A and B). Descriptive statistics of the peak hour7 subway users from the “Enquête

Globale Transport” (EGT) are also displayed in the fourth column of Table 8. The EGT

survey is conducted every ten years by the PT regulator in the Ile-de-France region. 18,000

households are surveyed and weighted to ensure sample representativeness at the regional

scale.

Due to the survey design, a half of the interviewees travels on line 1 and a half has been

asked during morning peaks. The population is almost equally distributed between men

(48%) and women (52%). As expected, we observe a strong socioeconomic heterogeneity,

since the income and the age are distributed in a regular way among the sample. The

majority of the population is living in Paris city (53%). Only 37% of the individuals own

a car, which is consistent with the important share of Parisians within the sample. The

door-to-door travel time is 49 minutes, the in-vehicle travel time in lines 1 or 4 amounting

only to 10 minutes. A huge majority of the sample is made of commuters (71%) who use

lines 1 or 4 on a daily basis (64%).
7Peak hours are here defined as the 7:30-10am and 5-7:30pm periods.
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We observe that 278 individuals have answered the qualitative questionnaire. As a

consequence, we will be able to study the nuisance factors of in-vehicle crowding in Section

4 over around 28% of the initial sample. The main difference between both populations

relates to the moments at which individuals were asked: only 36% of the sub-sample travels

during morning peaks (as opposed to 50% initially)8. Then we notice only small differences

between both populations. The sub-sample B accounts slightly less line 1 users (45%), less

commuters (67%) and poorer individuals. By contrast, more Parisians (56%) and more

individuals using the subway service on daily basis (67%) are found.

Importantly, people in sub-sample B may have different perceptions of the crowding

effect. As a consequence, we pay attention to the selection mechanisms in order to base

our conclusions in Section 4 on a sample that is as representative as possible of the users

of the Paris metro. This selection bias is classically treated with the two-steps Heckman

selection model (see Appendix B).

When compared with the EGT sample, our sample is on average more manly, younger,

less Parisian, poorer and more motorized. Despite this, we find that our sample is close

enough to the reference sample. This moderates non-representativeness issue.

One last information critical for this study relates to the level of in-vehicle crowding

experienced by PT users. As made clear in the seven last line of Table 8, few individuals

have chosen on Figure 17 a situation where they can seat in carriages: only 1 interviewee

has chosen the “empty subway” situation and 2.7% of the whole sample has chosen the

1 passenger per square meter situation. By contrast, more than 10% think they will

face 6 passengers per square meter during their journeys. Haywood and Koning (2015)

show that this proportion is higher in line 1 as compared to line 4, observation consistent

with the relative patronage of services. More than 50% of the PT users think they will

travel with 2.5-3 passengers per square meter around them. Moreover, we observe only

small differences between samples A and B: averages for both populations are similar and

amount to 3.2 passengers per square meter.

8This seems consistent with the existence of scheduling costs that are more important in the morning
(Small and Verhoef, 2007) and that may occur if individuals would answer to the longer survey (because
deviating from their preferred arrival time).
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Table 8: Individual and journey characteristics for the whole sample, the two sub-samples
and the Enquête Globale Transport (EGT)

Variable Sample Sub-s. A Sub-s. B EGT

Size of sample 999 721 278 2,414

Gender Woman 51.5% 51% 52.6% 55.1%
Man 48.5% 49% 47.4% 44.9%

Age <20 6.3% 5.4% 8.82% 2.8% (5-14)
(Years) 20-30 34% 33.3% 36% 17.1% (15-24)

30-40 25.9% 27.8% 21% 21.6% (25-34)
40-50 19.8% 20.2% 18.7% 38.7% (35-54)
50-60 10.7% 10.6% 11% 11.5% (55-64)
>60 3.2% 2.7% 4.4% 6.3% (64-74)

2.9% (>74)

Age (continuous) Years
35.8 (sd:
12.4)

35.9 (sd: 12)
35.5 (sd:
13.4)

Car available Yes 37.4% 37.8% 36.4% 33%
No 62.6% 62.2% 63.6% 66.5%

Income (category) <800 15.6% 14.9% 17.6% 4.4% (<800)
(euros) 800-1,500 11.7% 10.3% 15.4% 6.1% (800-1,200)

1,500-1,800 11.8% 12.8% 9.2% 10.1% (1,200-1,600)
1,800-2,100 14.7% 16% 11.4% 9.5% (2,000-2,400)
2,100-2,500 15.1% 15% 15.4% 10.9% (2,400-3,000)
2,500-3,000 13.1% 12.8% 14% 8.2% (3,000-3,500)
3,000-4,000 10.4% 10.3% 10.7% 11.7% (3,500-4,500)
4,000-10,000 5.6% 5.9% 4.8% 7.6% (4,500-5,500)
>10,000 1.9% 2.1% 1.5% 15.7% (>5,500)

Income (continuous) (euros)
2,422
(sd:2,293)

2,474 (sd:
2,352)

2,282 (sd:
2,126)

Residence in Paris 52.7% 48.3% 44.5% 61.6%
outside of Paris 47.3% 51.7% 55.5% 38.4%

Peak Morning 50% 44.8% 64%
Evening 50% 55.2% 36%

Motive Work 70.2% 71.8% 66% 56%
Other 29.8% 28.2% 34% 44%

Line Line 1 50.1% 48.3% 55.1%
Line 4 49.9% 51.7% 44.9%

Travel time Total
48.1 (sd:
36.7)

48.6 (sd:
37.2)

46.9 (sd:
35.4)

41.5

(minutes) In-vehicle surveyed 9.7 (sd: 6.5) 9.7 (sd: 6.6) 9.6 (sd: 6.25)

Daily Yes 63.3% 61.9% 66.9%
No 36.7% 38.1% 33.1%

IVD 0 0.1% 0.1% 0%
(pass/m2) 1 2.8% 3.4% 1.1%

2 16.2% 17.3% 13.2%
2.5 26.4% 25.6% 28.7%
3 24.2% 23.9% 25%
4 20% 19.8% 20.6%
6 10.2% 9.8% 11.4%

Notes. The continuous age variable is derived from the categorical age variable by allocating to a user a
value equal to the center of the age category to which he belongs. For example, users in the 30-40 category
are assumed to be 35 years old. Users in the youngest and oldest categories are respectively assumed to
be 18 and 70 years old. The continuous income variable is derived from the categorical income variable by
allocating to a user a value equal to the center of the income category to which he belongs. For example,
users in the 1,800-2,100 category are assumed to have a net monthly income of 1,950 euros. Users in the
poorest and wealthiest categories are respectively assumed to have a net monthly income of 4,000 and
15,000 euros.
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3 The crowding effect

3.1 Estimation strategy

The crowding effect has already been analyzed through contingent valuation experiments

(Wardman and Whelan, 2011; Haywood and Koning, 2015; Kroes et al., 2014), theoretical

approach (de Palma, Lindsey, and Monchambert, 2014; de Palma, Kilani, and Proost, 2015)

or stated preferences scenarios (Cantwell et al., 2009). Here, we assess it with self-reported

comfort satisfaction scores.

In line with the simple theoretical framework presented in Figure 16, the comfort

satisfaction (CS) is assumed to depend on the individual preferences, on the travel char-

acteristics and on IV D. We dot not observe the exact comfort satisfaction because our

dependent variable, CS, is measured on an 11-point discrete scale. As a consequence,

the satisfaction is estimated by means of ordered probit model.9 In order to use answers

to stated satisfaction questions, interpersonal comparability at an ordinal level has to be

assumed: a user with a CS of 6 is strictly more satisfied than one with a CS of 5.10

We first describe the latent variable, CS∗, as:

CS∗ = αIV D +
∑

k∈K

γkxk + ε (90)

where IV D indicates the in-vehicle density, x is a set of K control variables: line where

the user is surveyed (dummy), total journey travel time (hours), in-vehicle travel time

in the surveyed line (hours), morning or evening peak (dummy), daily usage of the line

(dummy), gender (dummy), car availability (dummy), individual net monthly income (eu-

ros, expressed in a logarithmic form), age (centuries) and residence in Paris (dummy). ε

captures the unobservables.

In this specification, α measures the crowding effect. x controls for the journey char-

acteristics and for the users preferences which do not depend on IV D but still influence

the comfort satisfaction. In Figure 16, these effects are represented by the two arrows

9The choice of a logit or a probit model is often at the author’s discretion. For example, Van Praag
et al. (2003) use a probit model because "it is more flexible than the ordered logit".

10Cardinality of CS is not assumed here. A priori, the difference between a CS of 10 and a CS of 8
may be different from the difference between a CS of 6 and a CS of 4.
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respectively from “Journey Characteristics” and “Individual Characteristics” to “Comfort

Satisfaction”. This specification assumes that the crowding effect is only influenced by

IV D, i.e. for a given level of in-vehicle density, all users perceived the same crowding

inconvenience, regardless of individual or journey characteristics. In order to take into

account the subjective perception of crowding into the CS, equations including interaction

terms are also estimated. Interaction terms reveal whether or not the effect of variable

changes in different contexts. In this case, we want to test if the crowding effect changes

when individual or travel characteristics vary:

CS∗ = IV D (δ + λixi) +
∑

k∈K

κkxk + ε, ∀i ∈ K. (91)

Eq. (91) differs from Eq. (90) due to the inclusion of interaction terms between IV D and

another explanatory variable xi. The interpretation of these specifications is as follows: if

the coefficient of the interaction term (λi) is statistically significant, this users’ or journey

characteristic influences CS via the crowding effect. If the coefficient of the non-interacted

variable is significant, this variable drives the level of requirement of users regarding comfort

in PT, independently of IV D.

3.2 Descriptive statistics

As explained in previous Section, the whole surveyed travelers (N=999) had to select on

the show-card (Figure 17) the IV D they expected to face once the interview finished.

Then, they had to give a score, ranging from 0 to 10 and describing the CS associated

with such travel conditions.

According to Table 9, CS seems positively related to the level of passenger density

experienced by PT users: the higher the passenger density, the lower the self-reported

CS. By contrast, we do not observe any clear relationship between the CS score and

the in-vehicle travel duration. This is not surprising, the effect of travel time on users’

satisfaction is unclear. In a study on Germany, Stutzer and Frey (2008) show that people

with longer commuting time report systematically lower SWB. However, a growing body

of research has stressed that traveling time could be positively valued by individuals and
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Table 9: Distribution of CS

CS Distrib. (%) Ave. IVD Ave. IVTT

0 6.3 5.1 9.8
1 4.3 4.3 9.7
2 9.5 4.0 10.2
3 11.4 3.4 10.1
4 12.6 3.0 10.1
5 21.9 2.8 9.8
6 17.5 2.7 9.3
7 10.4 2.6 8.8
8 4.3 2.5 9.3
9 1.2 2.0 11.1
10 0.6 2.6 7.9

Notes. This table reports descriptive statistics for sub-samples clustered by CS. Column 2 reports the
part of each sub-sample into the whole sample. Columns 3 and 4 respectively report the average in-vehicle
density, in users per square meter, and the average in-vehicle travel time, in minutes, in each sub-sample.

do not necessarily represent a cost (Huang et al., 2005; Jain and Lyons, 2008). Besides, we

see that the distribution’s queue for “worst” CS scores is larger than the one for “good”

experiences: the three worst marks (0-1-2) represent nearly 20% of answers whereas the

three better ones (8-9-10) account only for 6%.

3.3 Estimates results

Eqs. (90) and (91) are estimated on the whole sample with the use of ordered probit. Table

10 reports estimations of Eq. (90) and Eq. (91) when xi in Eq. (91) is the individual (net)

monthly income expressed in a logarithmic form. All results from specifications allowed by

Eq. (91) are reported in Appendix C. The chi statistics show that all models are statistically

significant, as compared to the null models without any predictor. The pseudo-R2 are small

but they are consistent with the belief that only a share of the SWB measures depends on

objective variables. This share seems to vary between 8 and 20% (Kahneman et al., 1999).

The estimate of Eq. (90) confirms that IV D influences negatively the CS, due to

the sign and the significance of the IV D coefficient. Moreover, the estimated cut-offs for

the latent variable CS∗ are distributed in a remarkably regular order. Thus the mean
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Table 10: Effects of the density and the income on the CS

(1) (2)
CS* CS*

Coef. Std. err. Coef. Std. err.
Crowding effects:

IVD (users/m2) −0.550 ∗ ∗∗ 0.044 0.699 ∗ ∗ 0.334
IVD × ln(Individual net monthly income) −0.166 ∗ ∗∗ 0.043

Journey controls:

Line (1=line 1/0=line 4) 0.074 0.077 0.085 0.078
Door to door travel time (hours) 0.070 0.052 0.065 0.051
In-vehicle travel time (hours) −0.086 0.310 −0.085 0.315
Peak hour (1=morning/0=evening) 0.179 ∗ ∗∗ 0.067 0.184 ∗ ∗∗ 0.067
Daily usage of the line (1=Y/0=N) −0.125∗ 0.070 −0.127∗ 0.070

Individual controls:

Gender (1=male/0=female) 0.126∗ 0.066 0.117∗ 0.066
Car available (1=Y/0=N) −0.060 0.071 −0.085 0.071
ln(Individual net monthly income (euros)) −0.094∗ 0.049 0.406 ∗ ∗∗ 0.132
Age (centuries) 0.321 0.316 0.238 0.320

cut1 −4.139 0.335 −0.459 0.979
cut2 −3.754 0.329 −0.065 0.978
cut3 −3.189 0.320 0.511 0.976
cut4 −2.721 0.314 0.985 0.974
cut5 −2.306 0.312 1.405 0.974
cut6 −1.655 0.310 2.060 0.973
cut7 −1.036 0.307 2.680 0.973
cut8 −0.414 0.304 3.303 0.971
cut9 0.181 0.309 3.902 0.973
cut10 0.598 0.324 4.323 0.969

Number of observations 999 999
Likelihood function −1953.041 −1943.405
Pseudo R2 0.086 0.090
Prob > chi2 0.000 0.000
Akaike IC 3.950 3.933
Number of iterations 4 4

Notes. This table reports results from ordered probit estimations of Eq. (90) and Eq. (91) when xi in eq.
(90) is ln (Individual net monthly income (euros)). *significant at 10%; **significant at 5%; ***significant
at 1%.
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distance between two successive cuts is 0.524 and the variance of these distances is 0.011.

Considering that one additional user per square meter decreases the predicted latent CS∗

by 0.55, this means that, on average, one additional user per square meter decreases by

one the predicted CS measure.

Analyzing all interaction terms in Appendix C (Table 15), we find that only the individ-

ual income variable influences the dissatisfaction assigned to IV D. The Akaike Information

Criterion (AIC) confirms that Eq. (91) estimated with the the individual (net) monthly

income expressed in a logarithmic form produces the best goodness of fit.11 Interacted

income coefficient equals -0.166: the wealthier the users, the more the density decreases

their CS. Interestingly, the non-interacted income coefficient is significant and negative

in the model without interaction (column (1)) whereas it is positive and still significant

in the model with interaction (column (2)). This has to be interpreted with the interac-

tion terms between ln (Individual net monthly income (euros)) and IV D. Indeed, the first

model does not distinguish the constant effect of the income on the CS from the influence

of the income on the crowding effect, whereas the second does. To illustrate this result,

the expected CS∗ and the expected CS for the representative user with various level of

income (400, 2 000 and 5 000 euros net monthly income) are drawn as a function of IV D in

Figure 18.12 Other things being equal, wealthier users have a lower CS∗ when vehicles are

very crowded (6 users per square meter). Nevertheless, their CS∗ increases more quickly

when IV D increases.

Turning to travel variables, we find that the in-vehicle travel time coefficient is not

significant. As a consequence, the CS does not seem to be driven by the amount of time

spent into the vehicles. This is not in line with much of the economic literature which

estimates multipliers of the value of in-vehicle travel time as measure of the crowding

cost (Wardman and Whelan, 2011; Li and Hensher, 2011; Haywood and Koning, 2015;

Wardman and Murphy, 2015). However, other studies on the Paris Region by Kroes et al.

(2014) and de Lapparent and Koning (2015) display the same result: a fixed crowding

penalty better fits the data than a time multiplier specification. A possible justification

11The Akaike Information Criterion measures the quality of a model relative to the number of variables
used.

12Hereafter, the representative user is someone who shares all characteristics with sample average.
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of this result is that the in-vehicle travel time is short for most of our sample - about 10

minutes in average -, which does not allow the time effect to become visible.

Also, we observe in Table 10 that traveling in the morning brings more comfort sat-

isfaction than traveling in the evening. One potential explanation is that the destination

is often home when traveling during the evening peak, and that users are in general more

impatient to arrive at home than at other destinations. Moreover, we can assume that in-

dividuals are more tired after a full workday and, consequently, suffer more from crowded

PT travels in the evening.

Daily users seem to have different CS as compared to temporary users. There is no

"habituation"-effect playing here: daily users are not used to PT travel, they tend to be

less satisfied by their journey comfort than temporary users. This is in line with Baum

and Greenberg (1975) who found that expectations do not reduce people’s perception of

general level of discomfort.

Individual characteristics are the last set of explanatory variables. Other things being

equal, men have a lower level of expectations than women. This effect is present in models

(1) and (2) in Table 10. We can hypothesize that men suffer less than women from

the various nuisances linked to PT crowding, such as lack of safety. Later issue became

recently important in France. French Ministry of Social Affairs, Health and Women’s

Rights, Marisol Touraine, thus commended a survey (Bousquet et al., 2015) showing that

all interviewed women reported sexual harassment while riding the subway. Moreover, six

out of ten women fear an aggression or a theft in the Ile-de-France PT, against three out

of ten men (Bon et al., 2011). Clearly, such effects may be magnified by one high IV D

and thus lead to lower stated CS for women, as questioned in the next Section.

4 Anatomy of the crowding effect

After having identified the crowding effect through the stated satisfaction of PT users, we

now address its anatomy. We first discuss the eight nuisance factors retained as channels

of the crowding effect, i.e. the features of the journey that are deteriorated by a high

in-vehicle density. Then we propose an empirical analysis showing how do these channels
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impact comfort satisfaction.

4.1 The nuisance factors

Literature Review

It is largely accepted that crowding has, in general, negative impacts on individuals. Lan-

grehr (1991) showed that “In crowded conditions, people performed complex tasks more

poorly and became more frustrated”. In order to assess the perception of crowding across

users, however, several dimensions of PT crowding should be distinguished. We have iden-

tified eight aspects, called nuisance factors, which may be affected by a high IV D. They

may be gathered into five categories: psychological, physical, sensory, temporal and risky.

One major constraint is that users have to be able to mark these dimensions. Potential

abstract dimensions such as the “lack of control” are hardly quantifiable for users, despite

it is a consequence of high density which is largely admitted by psychologists (see Cox

et al., 2006, or Mohd Mahudin et al., 2012).13

The psychological category is made of one dimension, the Over closeness. When IV D

is high, users are closer to each other. Here, the over-closeness is a synonym of stress

and lack of control, which are caused by crowding in general (Epstein, 1981) and in PT

services in particular (Epstein et al., 1981; see also Vine, 1982, for a critical review of the

link between density and stress). For women, the effect of over-closeness may be magnified

by the risk of sexual harassment.

The physical category is made of the Standing position. When the density is high in a

train, a part of the users has to keep standing. This leads to physical tiredness. Boussenna

et al. (1982) show that long standing position causes pain and discomfort. As a matter of

fact, time multipliers used to value crowding costs are often distinguished between seating

and standing situations, the later being clearly higher (see Wardman and Whelan, 2011).

The sensory dimensions are the Noise and the Smell. A high level of noise may cause

discomfort and mental health problems. This effect has been identified by Bhattacharya

et al. (1995) in the Calcutta subway. They find that the crowd increases the level of noise.

13The interested reader is referred to Mohd Mahudin et al. (2012) for a description and an analysis of
psychological aspects of crowding.
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Bad smells may also be a consequence of a high density of users in train, because when

IV D increases, the temperature also does. This effect is accentuated if the ventilation is

not adequate (Gershon et al., 2005).

We describe temporal dimensions as the Time Loss and the Waste of Time. A high

IV D causes increased dwell times at stations due to boarding and alighting. At a macro

level, a high patronage in PT increases the vulnerability of the networks because of poten-

tial incidents. This makes the travel time very unreliable. These two aspects show that

high IV D is positively correlated with longer travel time, which decreases the appeal of

transport (McFadden, 1974; Noland et al., 1998). The wasted time dimension represents

the fact that when the density is high, users are not able to perform tasks they would like

during their PT journeys (Langrehr, 1991), such as read a newspaper or a work.

The risky dimensions of crowding are characterized by the risk of Fall and the risk

of Robbery. Cartledge (2003) shows that if standing users feel vulnerable to the risk of

fall, seated users “will find themselves providing a cushion for those standing, with a con-

comitant increase in the risk of head to head clashes”. The risk of robbery is also more

important in crowded contexts, as shown by Uzzell and Brown (2007).

Descriptive statistics

Table 11 presents statistics for the users’ dissatisfaction scores (NFDd) related to every d

nuisance factor of in-vehicle crowding. Recall that only 27% of the whole sample took part

to the qualitative survey. Moreover, travelers had to respond with respect to the worst

comfort situation described on Figure 17, i.e. 6 passengers per square meter. To describe

the anatomy of the crowding effect, NFDd has to be interpreted with respect to the stated

dissatisfaction of other nuisance factors: measuring the bad smells as a 1 does not have

the same meaning if all the other dimensions are measured as a 1 or if they are measured

as a 10. Therefore we analyze simultaneously the various NFDd and their ranks.14 For

any dimension, we display the first quartile, the median, the third quartile, the mean and

the standard deviation of NFDd and of its rank.
14The rank was obtained by ordering all the dissatisfaction measures for one user. If the two highest

dissatisfaction measures are equal, their rank is 1 and the rank of the following nuisance factor is 3.
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Table 11: Rank and score statistics for the 8 underlying nuisance factors of crowding

Category Dimension
Rank NFD

p25 p50 p75 mean sd p25 p50 p75 mean sd
Psychological Over-closeness 1 1 3 2.0 1.537 6 8 10 7.7 2.525
Physical Standing 1 3 5 3.3 2.316 5 7 9 6.3 3.208

Sensory
Noise 3 4 6 4.2 2.106 3 5 8 5.2 2.924
Smell 1 3 5 3.1 1.906 5 7 9 6.6 2.827

Temporal
Time loss 2 5 6 4.3 2.262 3 5 7 5.1 2.874
Wasted time 2 4 6 3.9 2.294 3 5 8 5.5 3.116

Risky
Fall 4 6 7 5.2 2.297 0 4 6 3.9 3.286
Robbery 1.5 4 5 3.8 2.119 3 5 8 5.5 3.198

Notes. This table reports descriptive statistics for each of the nuisance factors of crowding defined in
sub-subsection 4.1. Column 1 (category) reports the category of the nuisance factor. Columns 3, 4 and
5 respectively report the 25th percentile, the median and the 75th percentile of the rank of the interest
nuisance factor dissatisfaction measure relative to dissatisfaction of other nuisance factors. Column 6
reports the mean value of the rank. Column 7 reports the standard deviation of the rank. Columns 7 to
11 reports the same statistics than columns 3 to 7 for the self-reported nuisance factor dissatisfaction.

The Over-closeness experienced during a crowded journey is the most dissatisfying

nuisance factor. More than the half of the users rank this feature as the most unpleasant,

and the mean value of NFDd is the highest (7.7). This is not surprising since on the one

hand, the over-closeness in PT implies an intrusion in the user’ individual space. On the

other hand, it may strengthen the unpleasant effect of other dimensions such as bad smells,

noise or robbery. Said differently, the over-closeness is inherent to the in-vehicle crowding.

Then come Smell and Standing. Their median rank is third and their median NFDd

are 6.6 and 6.3 respectively. The dissatisfaction due to the bad smells is high when the

train is crowded because users are very close to each other. Moreover, a high IV D may

increase the temperature in the train and may also deteriorate the journey conditions. The

standing position is directly tied to the crowding: the more users in the train, the lower

the probability to find a sit.

The Robbery, the Wasted Time, the Noise and the Time Loss factors are moderately

rated. The average ranks of these four nuisance factors are about 4, the averages NFDd

are about 5.5-5.1 and their medians are 5. Crowded PT journeys are seen as particularly

vulnerable to thefts. Users are close to each other, physical contacts are frequent and

facilitate theft. Note that the wasted time is somewhat put forward by users because they
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are not able to do what they would like (read a book or a newspaper, work...), whereas

according to Ettema et al. (2012) activities performed during travel influence positively

the PT users’ SWB. The noise is a characteristic of the crowd and causes tiredness and

stress to users. Finally, crowding may induce time loss because loading and unloading

times are longer. In latter case, the objective travel time is impacted by an excessive PT

patronage (as for road congestion). But this phenomenon does not seem problematic for

Paris subway users.15

Lastly, risks of Fall due to high density are viewed as negligible by subway users. Such

a nuisance factor has clearly the lowest average NFDd (3.9) and average rank (5.2). This

is probably linked to the facts that older people are more sensible to this dimension and

that the average age of our sample is low (in Sub-sample B, only 4.4% of users are older

than 60). Moreover, the proximity of other travelers within carriages may avoid someone

falling directly on the ground. Instead, a PT user will fall on someone’s body when trains

driving style is not smooth.

4.2 Effects of the nuisance factors on the comfort satisfaction

Estimation strategy

First, we want to test if the set of nuisance factors taken as a whole forms a scale that

informs about the comfort satisfaction. A user reporting higher dissatisfaction scores is

assumed to have a lower CS, through two possible channels: higher NFDd may indicate a

higher level of requirement towards PT, independently of IV D, or it may indicate a lower

tolerance to crowding, through the various nuisances influenced by crowding. The level of

requirement may here be considered as an individual fixed effect.

To test these hypothesis, two extra assumptions are required. The NFDd are assumed

to be cardinal measures of the dissatisfaction. It means that the nuisance factors are of

equal importance and that the difference in dissatisfaction between a NFDd of 10 and a

NFDd of 8 equals the difference between a NFDh of 6 and a NFDh of 4. We also need

to assume that the differences in NFDd across users are stable whatever the in-vehicle
15Despite a growing patronage in Paris PT networks over the last decade, regularity indicators (describing

the share of travelers having to wait on platforms more than 3 minutes during peaks) were hold constant.
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density, IV D.

CS∗ is now modeled as:

CS∗ = IV D
(
α1 + α2NFD

)
+ βNFD +

∑

k∈K

γkxk + θλ̂+ ε. (92)

where IV D indicates the in-vehicle density, NFD =
∑

dNFDd is the sum of the nuisance

factor scores given by the asked individual, x is a set of K control variables.16 The inverse

Mills ratio λ̂ controls for the selection bias described in Appendix B.

According to this specification, the coefficients of interest are α2 and β. If α2 is negative,

the scale formed by the sum of NFDd measures the intensity of the crowding effect. If

β is negative, users who report to be more dissatisfied by the various nuisance factors are

less satisfied by the comfort in PT, independently of IV D.

Second, we test nuisance factors as channel through which IV D may decrease CS∗:

CS∗ = IV D

(∑

d

αdNFDd

)
+ βNFD +

∑

k

γkxk + θλ̂+ ε. (93)

The coefficients of interest are the αd. One negative αd parameter means that a user who

is more dissatisfied by the nuisance factor d is more dissatisfied by IV D. Moreover, if αi

is lower than αd, the contribution of the nuisance factor i to the whole crowding effect is

higher than the contribution of the nuisance factor d.

Results

Eqs. (92) and (93) are estimated on sub-sample B (278 individuals), still with the use

of ordered probits. Table 12 reports results17. Since the main individual and journey

effects have been discussed in the previous section, the discussion hereafter focuses on the

crowding effect coefficients. Once again, the pseudo-R2 for all three regressions are rather

small and fall between 0.096 to 0.109.
16These control variables are : line where the user is surveyed (dummy), total surveyed journey travel

time (hours), immediate journey travel time (hours), morning or evening peak (dummy), daily usage of
the line (dummy), gender (dummy), car availability (dummy), ln (Individual net monthly income (euros)),
age (centuries) and residence in Paris (dummy)

17Complete regression results are displayed in Appendix D, see Tables 16, 17 and 18.
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Table 12: Effects of the crowding on the CS

(1) (2) (3)
CS* CS* CS*

Coef. Std. err. Coef. Std. err. Coef. Std. err.
Crowding effect:

IVD (users/m2) −0.495 ∗ ∗∗ 0.093 −0.401∗ 0.222
IVD X NFD (0-80) −0.002 0.005
IVD X Standing NF −0.019 ∗ ∗ 0.008
IVD X Over-closeness NF −0.015 0.010
IVD X Noise NF −0.015∗ 0.008
IVD X Robbery NF 0.001 0.009
IVD X Fall NF 0.007 0.009
IVD X Smell NF −0.007 0.009
IVD X Time Loss NF −0.013 0.009
IVD X Wasted Time NF −0.020 ∗ ∗ 0.008

NFD −0.015 ∗ ∗∗ 0.004 −0.008 0.014 0.015 ∗ ∗ 0.007

Journey controls: Y Y Y

Individual controls: Y Y Y

Selection control:

λ̂ 1.480 0.951 1.481 0.949 1.823∗ 0.966
Number of observations 278 278 278
Likelihood function -541.648 −541.469 −533.784
Pseudo R2 0.096 0.096 0.109
Prob > chi2 0.000 0.000 0.000
Akaike IC 4.055 4.061 4.049
Number of iterations 4 4 4

Notes. This table reports results from ordered probit estimations of Eq. (92) in columns (1) and (2), and
of eq. (93) in column (3). *significant at 10%; **significant at 5%; ***significant at 1%.
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First, the nuisance factors scale formed by the sum of the NFDd is negatively correlated

with the CS (coefficient of NFD equal to -0.015 in column (1)). This user fixed effect

shows that users reporting a higher nuisance factors scale are less satisfied by the comfort

in PT, whatever the level of IV D. However, the model displayed in column (2) of Table 12

shows that the nuisance factors scale does not interact with the crowding effect to explain

CS. The nuisance factors scale informs of the individual level of requirement, but it does

not inform of the individual crowding perception. This may be due to the fact that users do

not attach the same importance to the nuisance factors (see Table 11) while the nuisance

factors scale assume the nuisance factors are homogeneous.

Column (3) displays results of the estimation of Eq. (93). The significantly positive

coefficient for the inverse Mills ratio, λ̂, in column (3), indicates a simple ordered probit

model without including λ̂ would suffer from selection bias.

The estimated coefficients of the interaction between IV D and the nuisance factors

scores are negative and significant for Standing, Noise and Wasted Time. Users who are

more dissatisfied by one of these three nuisance factors perceive a higher utility cost of

crowding. Therefore these three nuisance factors may be considered as channels of the

crowding effect. A higher IV D decreases CS∗ because it increases the nuisances due to

Standing, Noise and Wasted Time. Due to the value of the coefficients and the standard

errors, we have to be cautious when comparing the strengths of the nuisance factors .

Standing and Wasted Time seem to have the highest impact on CS, followed by Noise.

When the in-vehicle density is high, users incur a disutility because they have to stand,

because they are not able to spend their time as they would like and because the general

level of noise increases.

4.3 Heterogeneity of users

From a public policy perspective, our results suggest that the comfort satisfaction of Paris

subway users may be increased by addressing one (or more) of the four channels identified

previously. Obviously, interventions trying to reduce the Wasted Time nuisance are hard

to define, especially since former factor relates to stress and lack of control caused by over-

crowding. Concerning the Standing and Noise features, potential strategies nevertheless
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Table 13: Main effects of socio-economic variables on Nuisance Factors Dissatisfaction
scores

Standing Wasted time Noise
Gender (1=male) (−) (−) (−)
Income (+) (+)
Age (−)
Car available (1=Y) (−)
Live in Paris (1=Y) (−)

The signs displayed in this table are the signs of significant coefficients obtained through ordered Progit
estimations of Nuisance Dissatisfaction Scores. These estimations are available in Appendix E.
Reading: (+) means that a policy addressing this nuisance factor would increase more the comfort satis-
faction of users with these characteristics. (−) means that a policy addressing this nuisance factor would
increase less the comfort satisfaction of users with these characteristics.

do exist. Thus investing in rolling-stocks that propose a better sound insulation may be

relevant. Advertisements aimed at making subway users’ behaviors more respectful to their

co-travelers may also be of interest. Lastly, increasing the service frequency and/or the

seat capacity of vehicles could increase the likelihood that the PT users find an available

seat. Later policies could also soften the nuisances caused by the Wasted Time dimension.

It is worth noting, however, that PT users probably do not value in the same manner

these various nuisance factors. As a consequence, addressing one specific nuisance factor

may favor one type of users. In order to investigate this issue more in depth, we have

estimated ordered probit looking at the determinants of NFDd for the nuisance factors

Standing, Wasted Time and Noise (see Appendix E). Signs of the significant coefficients

are displayed in Table 13.

It appears that being a woman has a constant (positive) effect on every NFDd. Put

differently, women are more dissatisfied than men by the three main nuisance factors

related to in-vehicle crowding. Then we observe than wealthy individuals are more likely

to be affected by Wasted Time and Noise. Somehow interestingly, car-owner users seem

to compare the crowding conditions in PT with the individual car travel conditions. As

a consequence, they find the Wasted Time less penalizing than other users do, maybe

because they know that they can occupy their travel time in a better way than if they had

to focus on the road traffic, whatever the level of density. Moreover, old people tend to

be less affected by this nuisance factor. Lastly, we find that Parisians are less affected by



148 CHAPTER III. THE CROWDING EFFECT

Noise.

5 Conclusion

A growing body of research currently focus on the relationships between subjective well-

being and transportation. This paper has used an original survey collected on Paris subway

platforms to investigate the crowding effect. The empirical analysis has taken the responses

to questions about dissatisfaction related to various features of comfort when the in-vehicle

density is very high as measures for user perception of crowding, and the responses to a

travel satisfaction question as a measure for user subjective well-being.

The main conclusions can be summarized as follows: (1) on average, an extra-user per

square meter decreases by one the 0 to 10 scale measure of comfort satisfaction related

to PT travel; (2) contrary to previous studies, we do not find any empirical evidence

supporting that the travel time accentuates the crowding effect; (3) when trains are full,

wealthier users are more dissatisfied than poorer ones, however their SWB increases more

quickly when the in-vehicle density decreases; (4) we identify three channel through which

the in-vehicle density decreases the comfort satisfaction: an higher probability to stand for

all or part of the journey, a poorer use of the time during the journey, and noisier travel

conditions; (5) women and wealthy individuals are more likely to benefit from any policy

addressing of or more of these four channels.

Obviously, this research requires further studies in order to get a better understanding

of PT users’ satisfaction. First, we have only considered the crowding effect of individuals

well-being. An comprehensive analysis should also look at travel time and monetary de-

terminants of overall transport satisfaction. Moreover, our survey asked only current PT

users. In order to identify the factors that would ease modal shift policies from cars to-

wards PT, motorists’ preferences cannot be ignored. Despite these limitations, we believe

that our study contributes, in an original way, to the empirical assessment of over-crowding

in PT systems. Valuation studies based on contingent experiments could add qualitative

questions, in order to precise the source of nuisances caused by an excessive patronage in

PT.
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Appendix A Paris subway map

Figure 19: Map of the Parisian underground PT network. Stations in which the survey

has been collected are highlighted by white pentagons.
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Appendix B Treatment of the selection bias

We use a standard Heckman18 selection equation to control for the fact that we have

information concerning the nuisance factors of crowding only for users who decided to

answer the complete survey.

Formally, this selection issue can be expressed as follows:

NFD∗
d =





Xdβd + εd si y > 0

. si y ≤ 0

, for d ∈ [1; 8]

y = Wα+ γ (94a)

R =





1 si y > 0

0 si y ≤ 0

(94b)

where NFD∗
d is the latent variable associated with the dissatisfaction mark given to the

nuisance factor of crowding d, NFDd, y is a latent variable associated with the probability

to reply to Questions B and W is a vector of variables which influence the probability to

reply to Questions B. γ captures the unobservables.

We only observe R which equals one if the respondent has answered the questions

about the nuisance factors of comfort, and 0 otherwise. The estimator of βd is not biased

if E [εd|γ] = 0. This is, a priori, not the case in our study as users who took the time to

reply may grant more importance to the inconvenience due to crowding than other users.

We assume that the error terms are bivariate normally distributed, so that:


 εd

γ


 N




 0

0


 ,


 (σd)

2 ρσd

ρσd 1




 , for d ∈ [1; 8]

This assumption is consistent with the use of probit estimations. It implies:

E [NFD∗
d|X, y > 0] = Xkβd + E [ε− d|γ > −Wα] = Xdβd + ρσd

ϕ (Wα)

Φ (Wα)
, for d ∈ [1; 8]

where ϕ is the standard normal density function and Φ is the standard normal cumulative

18See Heckman (1979).
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distribution function.

We obtain the regression equation:

NFD∗
d = Xdβd + ρσdλ+ ed, for d ∈ [1; 8]

where ed verifies:

E [ed|y > 0] = 0;

V [ed|y > 0] = (σd)
2 (1− ρ2δ

)
;

with δ = λ (λ+Wα) and λ = ϕ(Wα)
Φ(Wα) .

Therefore, the inverse Mills Ratio is given by:

λ̂ =
ϕ (Wα̂)

Φ (Wα̂)
,

α̂ being estimated with a probit model. The inverse Mills Ratio λ̂ is used as an instrument

that incorporates the characteristics of users who did not reply to the whole survey.

To estimate correctly λ̂, we need instruments which are not correlated with the mark

but correlated with the probability of answering the whole survey. We rely on three

instruments here: the time the user answered the survey (during the morning peak or

during the evening peak), a dummy equal to 1 if the user answers a question related to

his "willingness to pay" during the first part of the survey, and equal to 0 if he answers a

question related to his "willingness to accept", and a dummy equal to one if the gender of

the interviewed user is different from the one of the interviewer.

Common sense suggests that the two instruments should be relevant. Indeed, no one

of these variables should affect the marks a user gives to the different features of crowding,

especially since that mark was awarded with respect to the 6 passengers per square meter

situation.

A user may have more time to spend in the evening because he can more easily deviate

from his desired arrival time. However, it is not supposed to influence the drivers of the

crowding perception. Indeed, on lines 1 and 4, "bunching" phenomenon is not observed:
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an overcrowded train does not imply that the following one will be less crowded. No user

wait for the following train, except if the train is completely full.

The second instrument, willingness to pay, was chosen because some surveyed travelers

were randomly picked to answer a "willingness to accept" question instead of a "willingness

to pay" during the first part of the survey. When asked on their "willingness to accept",

some of these users selected the 6 passengers per square meter situation as reference point.

Because it was impossible, in that case, to propose them an hypothetical worsening of

comfort, the interviewer skipped this question. Consequently, these users had more time

to complete the qualitative survey. This particular selection effect is due to the random

assignment of the survey design.

The interviewer gender effect during surveys is known in the literature (see Kane and

Macaulay, 1993; Catania et al., 1996; Huddy et al., 1997). This effect may influence the

decision to take the survey, and, in some specific cases such as sexual behavior (Catania

et al., 1996), gender inequality (Kane and Macaulay, 1993) or feminists and political ac-

tivism (Huddy et al., 1997), it may also influence the answers. In our survey, questions are

not related to such gender controversy. There is nor reason for answers to be influenced by

the interviewer gender. However, the gender may influence the decision to take Question

B of the survey.

The binary probit model describing the likelihood of answering the qualitative survey is

globally significant. Results are displayed in Table 14. As expected, users were more prone

to answer the entire survey when they were interviewed during the evening peak rather

than during the morning peak. This is consistent with descriptive statistics in Table 8 and

with the existence of larger scheduling costs at that time of the day. The other instruments

(Reply to willingness to pay question and Gender match) are not statistically significant.

By contrast, we observe that the sub-sample accounts less line 1 users than it should,

perhaps because they spend more time in vehicles (see Haywood and Koning, 2015). Daily

users are also more disposed to take Question B.
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Table 14: Probit model for the selection (Output=1 if the user answers the whole survey)

y
Coef. Std. err.

Instruments:

Peak hour (1=morning/0=evening) −0.465 ∗ ∗∗ 0.088
Reply to willingness to pay question (1=Y/0=N) 0.118 0.106
Gender match (1=Y/0=N) 0.134 0.087

Journey effects:

Line (1=line 1/0=line 4) −0.169∗ 0.089
Door to door travel time (hours) 0.037 0.074
Daily usage of the line (1=Y/0=N) 0.152∗ 0.092

Individual effects:

Gender (1=male/0=female) −0.022 0.087
ln Individual net monthly income (euros) −0.056 0.064
Age (Centuries) 0.169 0.404

Constant −0.206 0.431

Number of observations 999
Likelihood function −569.752
Pseudo R2 0.036
Prob > chi2 0.000
Number of iterations 3

Notes. This table reports coefficients from a probit estimation of y, the latent variable associated with
the dummy equal to 1 if the interviewee replied to Questions B, R, defined in eq. (94b). This estimation
is made on the vector of variables W defined in eq. (94a). *significant at 10%; **significant at 5%;
***significant at 1%.
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Appendix C CS estimates

Table 15: Effects of the crowding on the CS
CS*

Coef. Std. err. Pseudo R2 AIC

(1) xi= Line (1=line 1/0=line 4)
IVD −0.465∗∗∗ 0.077
IVD × xi −0.130 0.082
xi 0.464∗ 0.238 0.087 3.948

(2) xi= Door to door travel time (hours)
IVD −0.531∗∗∗ 0.076
IVD × xi −0.023 0.069
xi 0.144 0.213 0.086 3.952

(3) xi= In-vehicule travel time (hours)
IVD −0.533∗∗∗ 0.069
IVD × xi −0.104 0.277
xi 0.259 0.941 0.086 3.952

(4) xi= Peak hour (1=morning/0=evening)
IVD −0.512∗∗∗ 0.058
IVD × xi −0.079 0.066
xi 0.426∗∗ 0.202 0.086 3.950

(5) xi= Daily usage of the line (1=Y/0=N)
IVD −0.517∗∗∗ 0.062
IVD × xi −0.052 0.070
xi 0.037 0.211 0.086 3.951

(6) xi= Gender (1=male/0=female)
IVD −0.555∗∗∗ 0.057
IVD × xi 0.013 0.064
xi 0.085 0.198 0.086 3.952

(7) xi= Car available (1=Y/0=N)
IVD −0.568∗∗∗ 0.056
IVD × xi 0.040 0.067
xi −0.187 0.213 0.086 3.952

(8) xi= ln(Individual net monthly income (euros))
IVD 0.699∗∗ 0.334
IVD × xi −0.166∗∗∗ 0.043
xi 0.406∗∗∗ 0.132 0.090 3.933

(9) xi= Age (centuries)
IVD −0.521∗∗∗ 0.063
IVD × xi −0.043 0.054
xi 0.408 0.707 0.087 3.950

Notes. This table reports results from 9 ordered probit estimations of CS∗, the latent variables associated
with CS, on xi, the variable of interest defined in column 1, IV D, the in-vehicle density measured in
users/m2, and the interaction term between xi and IV D, and x, the set of k explanatory variables defined
in subsection 3.1. All estimations are based on 999 observations. *significant at 10%; **significant at 5%;
***significant at 1%.
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Appendix D Including NFD to explain the comfort satisfac-

tion

Table 16: CS, first specification

(1) (2)
CS* CS*

Coef. Std. err. Coef. Std. err.
Crowding effect:

IVD (users/m2) −0.491 ∗ ∗∗ 0.094 −0.495 ∗ ∗∗ 0.093

Journey controls:

Line (1=line 1/0=line 4) −0.066 0.168 −0.248 0.206
Door to door travel time (hours) −0.043 0.127 −0.024 0.129
In-vehicule travel time (hours) −0.241 0.561 −0.275 0.567
Peak hour (1=morning/0=evening) 0.249∗ 0.133 −0.266 0.368
Daily usage of the line (1=Y/0=N) −0.037 0.129 0.120 0.166

Individual controls:

Gender (1=male/0=female) 0.101 0.134 0.073 0.133
Car available (1=Y/0=N) −0.245∗ 0.127 −0.258 ∗ ∗ 0.129
ln(Individual net monthly income (euros)) −0.094 0.100 −0.147 0.100
Age (years) −0.411 0.624 −0.271 0.627

∑
NFD −0.014 ∗ ∗∗ 0.004 −0.015 ∗ ∗∗ 0.004

Selection control:

λ̂ 1.480 0.951

cut1 −5.093 ∗ ∗∗ 0.737 −3.927 ∗ ∗∗ 1.156
cut2 −4.666 ∗ ∗∗ 0.728 −3.502 ∗ ∗∗ 1.154
cut3 −3.984 ∗ ∗∗ 0.698 −2.817 ∗ ∗ 1.135
cut4 −3.558 ∗ ∗∗ 0.684 −2.388 ∗ ∗ 1.125
cut5 −3.099 ∗ ∗∗ 0.679 −1.927∗ 1.123
cut6 −2.475 ∗ ∗∗ 0.674 −1.301 1.119
cut7 −1.819 ∗ ∗∗ 0.666 −0.641 1.110
cut8 −1.273 ∗ ∗ 0.646 −0.088 1.095
cut9 −0.786 0.644 0.403 1.088
cut10 −0.503 0.648 0.689 1.101

Number of observations 278 278
Likelihood function −542.784 −541.648
Pseudo R2 0.094 0.096
Prob > chi2 0.000 0.000
Akaike IC 4.056 4.055
Number of iterations 4 4

Notes. This table reports results from ordered probit estimations of Eq. (92) with α2 = 0. Regression in
column (2) includes the inverse Mills ratio to control for selection. *significant at 10%; **significant at
5%; ***significant at 1%.
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Table 17: CS, second specification

(1) (2)
CS* CS*

Coef. Std. err. Coef. Std. err.
Crowding effect:

IVD (users/m2) −0.398∗ 0.214 −0.401∗ 0.222
IVD (users/m2) X

∑
NFD −0.002 0.004 −0.002 0.005

Journey controls:

Line (1=line 1/0=line 4) −0.061 0.168 −0.244 0.206
Door to door travel time (hours) −0.040 0.127 −0.022 0.129
In-vehicule travel time (hours) −0.224 0.561 −0.258 0.567
Peak hour (1=morning/0=evening) 0.253∗ 0.135 −0.262 0.368
Daily usage of the line (1=Y/0=N) −0.035 0.131 0.122 0.168

Individual controls:

Gender (1=male/0=female) 0.095 0.134 0.067 0.134
Car available (1=Y/0=N) −0.253 ∗ ∗ 0.124 −0.267 ∗ ∗ 0.126
ln(Individual net monthly income (euros)) −0.091 0.101 −0.144 0.100
Age (years) −0.412 0.624 −0.271 0.626

∑
NFD −0.008 0.014 −0.008 0.014

Selection control:

λ̂ 1.481 0.949

cut1 −4.772 ∗ ∗∗ 0.986 −3.603 ∗ ∗∗ 1.345
cut2 −4.344 ∗ ∗∗ 0.981 −3.177 ∗ ∗ 1.345
cut3 −3.661 ∗ ∗∗ 0.965 −2.492∗ 1.332
cut4 −3.233 ∗ ∗∗ 0.956 −2.061 1.325
cut5 −2.774 ∗ ∗∗ 0.954 −1.600 1.325
cut6 −2.149 ∗ ∗ 0.951 −0.972 1.321
cut7 −1.495 0.956 −0.314 1.322
cut8 −0.950 0.935 0.237 1.305
cut9 −0.465 0.940 0.727 1.303
cut10 −0.183 0.945 1.011 1.316

Number of observations 278 278
Likelihood function −542.607 −541.469
Pseudo R2 0.094 0.096
Prob > chi2 0.000 0.000
Akaike IC 4.062 4.061
Number of iterations 4 4

Notes. This table reports results from ordered probit estimations of Eq. (92). Regression in column
(2) includes the inverse Mills ratio to control for selection. *significant at 10%; **significant at 5%;
***significant at 1%.
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Table 18: CS, third specification

(1) (2)
CS* CS*

Coef. Std. err. Coef. Std. err.
Crowding effect:

IVD (users/m2) X Standing NF −0.019 ∗ ∗ 0.008 −0.019 ∗ ∗ 0.008
IVD (users/m2) X Over-closeness NF −0.016 0.010 −0.015 0.010
IVD (users/m2) X Noise NF −0.014∗ 0.008 −0.015∗ 0.008
IVD (users/m2) X Robbery NF 0.001 0.009 0.001 0.009
IVD (users/m2) X Fall NF 0.006 0.009 0.007 0.009
IVD (users/m2) X Smell NF −0.007 0.009 −0.007 0.009
IVD (users/m2) X Time Loss NF −0.011 0.009 −0.013 0.009
IVD (users/m2) X Wasted Time NF −0.020 ∗ ∗ 0.008 −0.020 ∗ ∗ 0.008

Journey controls:

Line (1=line 1/0=line 4) −0.150 0.162 −0.373∗ 0.198
Door to door travel time (hours) −0.026 0.124 −0.002 0.125
In-vehicule travel time (hours) −0.121 0.618 −0.169 0.629
Peak hour (1=morning/0=evening) 0.269 ∗ ∗ 0.135 −0.364 0.371
Daily usage of the line (1=Y/0=N) −0.024 0.133 0.167 0.168

Individual controls:

Gender (1=male/0=female) 0.035 0.137 0.004 0.137
Car available (1=Y/0=N) −0.346 ∗ ∗∗ 0.130 −0.368 ∗ ∗∗ 0.131
ln(Individual net monthly income (euros)) −0.044 0.099 −0.110 0.101
Age (years) −0.289 0.639 −0.109 0.642

∑
NFD 0.015 ∗ ∗ 0.007 0.015 ∗ ∗ 0.007

Selection control:

λ̂ 1.823∗ 0.966

cut1 −3.469 ∗ ∗∗ 0.672 −2.014∗ 1.073
cut2 −3.012 ∗ ∗∗ 0.668 −1.560 1.076
cut3 −2.302 ∗ ∗∗ 0.649 −0.845 1.064
cut4 −1.868 ∗ ∗∗ 0.641 −0.408 1.058
cut5 −1.397 ∗ ∗ 0.639 0.067 1.057
cut6 −0.759 0.639 0.708 1.057
cut7 −0.106 0.645 1.366 1.059
cut8 0.446 0.634 1.926∗ 1.053
cut9 0.962 0.651 2.450 ∗ ∗ 1.058
cut10 1.281∗ 0.679 2.773 ∗ ∗ 1.090

Number of observations 278 278
Likelihood function −535.458 −533.784
Pseudo R2 0.106 0.109
Prob > chi2 0.000 0.000
Akaike IC 4.054 4.049
Number of iterations 4 4

Notes. This table reports results from ordered probit estimations of Eq. (93). Regression in column
(2) includes the inverse Mills ratio to control for selection. *significant at 10%; **significant at 5%;
***significant at 1%.
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Appendix E Users preferences for the nuisance factors

We test some socioeconomic variables that may drive the dissatisfaction of the three

nuisance factors by which the crowding effect decreases the comfort satisfaction: Stand-

ing,Wasted Time and Noise.

Appendix E.1 Estimation strategy

In Questions B, users mark their level of dissatisfaction about the nuisance factors of

crowding assuming that the in-vehicle density is the highest, i.e 6 users per square meter.

We wish to test if some socioeconomic variables drive these self-reported marks. Due to

the nature of data, ordered probit models are used to explain the marking of features. We

therefore estimate the following equation:

NFD∗
d = β1dX + β2dZ + β3dλ̂+ εd (95)

where NFD∗
d is the latent variable associated with the dissatisfaction mark given to the

nuisance factor d. X is a set of individual characteristics: gender (dummy), car availability

(dummy), ln(Individual net monthly income (euros)), age (centuries) and live in Paris

(dummy). It is conceivable that answers to Questions B are affected by the current journey

of users. To control for these effects, we also include a characteristics of the journey, Z:

line where the user is surveyed (dummy) and the immediate journey travel time (hours).

λ̂ is the inverse Mills ratio estimated in Appendix B. It allows to control for the selection

bias. Finally, we want to focus on the drivers of the relative contribution of each feature to

the crowding dissatisfaction. Dissatisfaction is assumed to be ordinally comparable across

users.

Appendix E.2 Regression results

To provide more details on the users preferences, we now turn to econometric analysis.

Tables 19 reports the results of estimating (95) through ordered probit procedures.

First, there is a clear gender effect: men are a lot less dissatisfied than women by the

three nuisance factors. This is in line with results from Meyers-Levy and Maheswaran
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Table 19: Ordered probit estimates for NFDStanding (1), NFDWasted Time (2), and
NFDNoise (3)

(1) (2) (3)
Standing NF Wasted Time NF Noise NF

Coef. Std. err. Coef. Std. err. Coef. Std. err.
Individual effects:

Gender (1=male/0=female) −0.327 ∗ ∗ 0.129 −0.236∗ 0.127 −0.373 ∗ ∗∗ 0.127
Car available (1=Y/0=N) −0.037 0.140 −0.323 ∗ ∗ 0.139 0.096 0.138
ln(Individual income) 0.041 0.099 0.225 ∗ ∗ 0.098 0.165∗ 0.098
Age (years) −0.196 0.575 −1.116 ∗ ∗ 0.569 −0.173 0.562
Live in Paris (1=Y/0=N) −0.170 0.134 0.031 0.133 −0.220∗ 0.132

Journey controls:

Line (1=line 1/0=line 4) −0.216 0.144 −0.159 0.142 −0.020 0.141
In-vehicule travel time (hours) 1.281 ∗ ∗ 0.628 −0.363 0.620 0.240 0.620

Selection control:

λ̂ 0.202 0.345 0.281 0.340 −0.240 0.339
cut1 −0.996 0.668 0.087 0.653 −0.589 0.650
cut2 −0.934 0.668 0.156 0.653 −0.464 0.650
cut3 −0.678 0.666 0.435 0.654 −0.176 0.651
cut4 −0.473 0.665 0.607 0.654 0.111 0.651
cut5 −0.365 0.665 0.740 0.655 0.226 0.652
cut6 0.066 0.665 1.287 0.655 0.798 0.654
cut7 0.177 0.665 1.491 0.655 1.057 0.655
cut8 0.361 0.665 1.654 0.655 1.344 0.654
cut9 0.889 0.665 2.217 0.658 1.823 0.655
cut10 1.120 0.666 2.641 0.662 2.177 0.657
Number of observations 278 278 278
Likelihood function −592.841 −609.196 −621.578
Pseudo R2 0.011 0.015 0.012
Prob > chi2 0.124 0.021 0.049
Number of iterations 3 3 3

Notes. This table reports coefficients from ordered probit estimations of NFD∗

Noise and
NFD∗

Wasted Time, the latent variables associated with the reported NFDNoise and NFDWasted Time.
*significant at 10%; **significant at 5%; ***significant at 1%.

(1991) and Meyers-Levy and Sternthal (1991) who found that women have been found

to process information in more detail, resulting in a greater sensitivity to environmental

factors.

A large income effect is also noticeable. Wealthier users are more bothered by the

Wasted Time and Noise than poorer ones. This effect is not surprising and corresponds

to results found in Section 3. It is consistent with their higher value of time.

The car ownership influences the perception of crowding nuisances. Car-owner users

seem to compare the crowding conditions in PT with the individual car travel conditions.
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As a consequence, they find the Wasted Time less penalizing than other users do, maybe

because they know that they can occupy their travel time in a better way than if they had

to focus on the road traffic, whatever the level of density.

An age effect is perceptible as for Wasted Time, and a “Parisian” effect plays in the

Noise perception.



Conclusion

This dissertation addressed the foundations of users behavior with respect to the congestion

in public transport. Chapter I investigated the two-way relation between public transport

patronage and level of punctuality. It showed that in usual cases reliability and public

transport patronage in equilibrium are lower than they would be in optimum. Moreover, it

showed that an increase in the travel cost of the alternative mode increases the reliability

of the public transport mode via a demand effect. This is reminiscent of the well-known

Mohring effect. However, there are some limitations. For example, public transport punc-

tuality is taken into account whereas alternative mode reliability is not. If the alternative

mode circulates on roads, as it is the case with the taxi mode, the unreliability due to

traffic jams may be a crucial issue and should be incorporated in the study. To the best of

my knowledge, the model developed in this chapter is the first to analyze the punctuality

of public transport together with a double heterogeneity - in preferred arrival time and in

location - of users. It is also of primary interest for microeconomic modeling.

Chapter II addressed the user trade-off between schedule delay cost and congestion

cost. The displayed model is to the public transport what the bottleneck model is to the

private transport. I showed that the congestion in public transport has properties that

are different from congestion on private transport. In particular, a time-varying optimal

pricing does not entirely remove the congestion. Optimal supply is investigated. The model

is applied to a Paris RER A segment serving La Défense station. The implementation of

an optimal train dependent pricing is found to improve the social welfare of e0.45 per

individual journey. The specification of the model could be improve by including others

aspects. Heterogeneity of users is one of them. It is essential to study who loose and who

161
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win when crowding pricing is implemented, especially if users differ in wealth, location,

scheduling possibilities or crowding disutility.

Chapter III provided an econometric analysis of the crowding effect. It showed that

the disutility due to crowding increases with the density of users and with the wealth of

users. Moreover, three causes of crowding disutility are identified: a higher probability

to stand for all or part of the journey, a poorer use of the time during the journey, and

noisier travel conditions. As in most empirical studies, the quality and the precision of the

analysis is constrained by the data available. Thus a larger sample would be appreciable

in such an analysis. In the same vein, many empirical studies on subjective well-being use

time fixed effects tools to control for the reference points of individuals. Such keenness is

absent from this chapter. Nevertheless, the results seem robust and interesting for public

policy makers.

Through this dissertation, I studied the micro-foundations of the behaviors of public

transport users. I focused on their perception of crowding and on the way they get used

to unreliability and crowd. The comprehension of these behaviors is of first interest to

improve the efficiency of policies aiming at increasing the patronage for public transport.

Indeed, the misreading of these mechanisms may be an important obstacle to any measure

targeting a shift in the modal split. In brief, the service quality, a crucial aspect of the

public transport appeal, varies with the patronage. Of course, there is still a lot to be done

in the public transport economics. This field is expected to remain topical in the coming

years, in particular considering the foretold increase in size of cities in mots areas of the

world.

As I am concluding my thesis, I am left with some unanswered questions. Part of

these questions fall into microeconomic theory, others are more related to econometrics,

but all of them regard the ways public transport could be improved. One question I would

like to investigate is the impact of users heterogeneity on optimal public transport supply

transport and pricing. Which type of users would take advantage of time dependent

pricing? I would like to investigate how the heterogeneity in value of time or in the

scheduling possibility influence the trade-off between crowding and scheduling. This study

could take place in a bi-modal framework characterized by a public transport mode subject
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to crowding, and a private mode subject to traffic jams ans increased travel times.

Another potential extension of Chapter II is to consider more complex public transport

networks. This can be done by introducing more than two stations in the line and by

allowing users to depart and arrive at any of these stations. The limit case of such extension

would be to model complete networks with several lines and several modes. Coding and

simulations would be naturally needed. Such a model would allow to produce accurate

estimations for cost-benefit analysis.

A project I plan to carry out is to investigate the optimal public transport network

size and the optimal level of subsidies. Theses questions are of main interest. Indeed,

public transport benefits are sometimes fantasized by politicians who are appealed by a

showcase effect. For example, the building of a new tramway facility gives the image of a

city dynamic and concerned about all environmental issues. However, what are the real

consequences of such a project? To attempt to answer these questions, I intend to conduct

an econometric study of the changes in patronage for public transport and in modal split

following a increase in road or public transport supply or in service quality, at a city level.

This could help to better understand impact and efficiency of public transport policies.
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Three essays on the economics of congestion in public transport

Abstract: This dissertation addresses the foundations of user’s behavior with respect to the congestion
in public transport. It is made of three distinct essays. The two first essays investigate how users get
used to lack of punctuality and crowding. The third essay presents an empirical analysis of the crowding
effect. In the first chapter, I consider the modeling of a bi-modal competitive network involving a public
transport mode, which may be unreliable, and an alternative mode. The public transport reliability set
by the public transport firm at the competitive equilibrium increases with the alternative mode fare, via
a demand effect. This is reminiscent of the Mohring Effect. The study of the optimal service quality
shows that often, public transport reliability and thereby patronage are lower at equilibrium compared
to first-best social optimum. In the second chapter, to study the behavioral implications and costs of
crowding, I develop a structural model in which public transport users face a choice between traveling in a
crowded train and arriving when they want, and traveling earlier or later to avoid crowding but arriving
at an inconvenient time. I derive the user equilibrium and socially optimal distribution of passengers
across trains, show how the optimum can be decentralized using train-specific fares, and characterize the
welfare gains from optimal pricing. Properties of the model are compared with those obtained from the
bottleneck and flow congestion models of road traffic. In the third chapter, I investigate the influence of
in-vehicle crowding on the comfort satisfaction experienced during a public transport journey. Moreover, I
describe the anatomy of the crowding effect by testing various nuisance factors (Smell, Noise, Standing...)
as channels through which crowding may decrease the comfort satisfaction. I find a clear crowding effect:
on average, an extra-user per square meter decreases by one the expected 0 to 10 scale individual well-
being. I do not find any empirical evidence of this effect being intensified by the travel time. However,
the crowding effect increases with the income of users. I find three causes of crowding disutility: a higher
probability to stand for all or part of the journey, a poorer use of the time during the journey, and noisier
travel conditions. These features of discomfort matter more for women and wealthy individuals.

Keywords: Congestion; Crowding; Reliability; Public transport; Microeconomics; Microeconometrics.

Trois essais sur l’économie de la congestion dans les transports publics

Résumé : Cette thèse s’intéresse aux fondements du comportement des usagers face à la congestion
dans les transports publics. Elle se compose de trois essais distincts. Les deux premiers essais examinent
l’adaptation des usagers au manque de ponctualité et à l’inconfort. Le troisième essai offre une analyse
empirique de l’effet «foule ». Dans le premier chapitre, je présente un modèle de compétition bimodale
entre une ligne de transport public sujette aux retards, et un mode alternatif. A l’équilibre du marché,
le niveau de fiabilité choisi par la firme en charge des transports publics augmente avec le prix du
mode alternatif via un effet «demande », évoquant l’effet Mohring. L’étude de la qualité de service
optimale montre que souvent, la fiabilité des transports publics et donc leur fréquentation à l’équilibre
sont inférieurs à ce qu’ils seraient à l’optimum social. Dans le second chapitre, afin d’étudier le coût
de l’inconfort et ses implications quant au choix de l’heure de déplacement, je développe un modèle
structurel dans lequel les usagers des transports public choisissent entre voyager dans un véhicule bondé
et arriver à destination à l’heure désirée ou alors voyager plus tard ou plus tôt pour éviter la foule.
J’établis la distribution des usagers parmi les véhicules à l’équilibre et à l’optimum social, et montre que
l’optimum social peut être décentralisé par une tarification fine par véhicule. Les propriétés du modèle
sont comparées avec celles du modèle du «bottleneck »et des modèles de congestion routière. Dans le
troisième chapitre, j’analyse l’influence de la densité d’usagers sur la satisfaction liée au confort durant
un déplacement en transport public. De plus, je décris l’anatomie de l’effet «foule »en testant différents
aspects (odeur, bruit, position debout...) comme des causes d’inconfort lorsque la densité d’usagers
augmente. J’identifie un net effet «foule »: en moyenne, un usager supplémentaire par mètre carré
diminue de 1 la satisfaction liée au confort qui est mesurée sur une échelle de 0 à 10. Je ne trouve pas
de corrélation entre temps de transport et l’effet «foule ». Cependant, cet effet augmente avec le revenu
des usagers. Trois causes de désutilité liée à la foule sont identifiées : une plus grande probabilité de
devoir voyager debout, un usage limité du temps, et des conditions de déplacement plus bruyantes. Ces
désagréments sont plus importants chez les femmes et les usagers les plus aisés.

Mots clés : Congestion ; Confort ; Fiabilité ; Transports publics ; Microéconomie ; Microéconométrie.


	Acknowledgements
	Notice
	Introduction
	Public transport reliability and commuter strategy
	Introduction
	Punctuality in public transport 
	Transport supply
	Demand for bus and taxi
	Commuters' strategies

	Competition between bus and taxi companies
	Welfare analysis
	Numerical application
	Conclusion
	Appendices
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof: optimal bus and taxi fare
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of lemma 6
	Discussion of Conjecture 2

	Economics of crowding in public transport
	Introduction
	The general model with inelastic demand
	User equilibrium
	Social Optimum

	Linear crowding costs
	User equilibrium with a uniform fare
	Social Optimum

	Elastic demand
	Uniform-fare regimes
	Social optimum
	Comparison of the regimes

	Optimal transit service
	Optimal timetable
	General capacity function
	A specific capacity function

	A numerical example
	Base-case results
	Sensitivity analysis

	Conclusion
	Appendices
	Proof of Proposition 9
	Proof of Proposition 10
	Proof of Proposition 11 
	Proof of Proposition 17
	Optimal timetable for user equilibrium
	Optimal timetable for social optimum

	Derivatives of SSe with respect to m and s
	Proof of Proposition 21
	Parameter values for numerical example
	Glossary
	Latin characters
	Greek characters


	Well-being in public transport: an empirical approach of the crowding effect
	Introduction
	Data 
	Survey design
	Descriptive statistics

	The crowding effect
	Estimation strategy
	Descriptive statistics
	Estimates results

	Anatomy of the crowding effect
	The nuisance factors
	Effects of the nuisance factors on the comfort satisfaction
	Heterogeneity of users

	Conclusion
	Appendices
	Paris subway map
	Treatment of the selection bias
	CS estimates
	Including NFD to explain the comfort satisfaction
	Users preferences for the nuisance factors
	Estimation strategy
	Regression results


	Conclusion
	Bibliography

