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Introduction

Congestion arises when the enjoyment of a good by one individual diminishes the con-
sumption possibilities of other individuals (Oakland, 1972). This situation is more likely
to happen when the number of individuals having the opportunity to consume the good
is large, other things being equal. This explains why congestion is an inherent feature
of large agglomerations, and why it may be considered as the negative counterpart to
the agglomeration effect. Therefore Ciccone (2002) names "net agglomeration effect" the
difference between positive externalities due to agglomeration and congestion effects. A
concrete and explicit example of congestion in cities is observable on roads during morning
and evening commuting peaks. During these periods characterized by huge traffic jam, an
additional road driver suffers from longer travel time, but he is also the direct cause of
part of the traffic jam which decreases the utility of other drivers. So the consumption of
road by one driver diminishes the road consumption possibility of other drivers. According
to the results of the survey provided by the Centre for Economics and Business Research
and traffic information company Inrix (CEBR - INRIX, 2014), the cost of road conges-
tion in 2013 is estimated at €93.8 billion for the US economy (0.74% of the GDP), €25.2
billion for the Germany economy (0.92% of the GDP), €17 billion for the France (0.82%
of the GDP) and €15.5 billion for the UK (0.81% of the GDP). Road congestion is one
of the prevalent and majors issues cities face (OECD, 2007), not only because increased
travel times are a loss to the society, but also because this rise in travel times intensifies
environment and health-harming emissions. Encouraging public transport seems to be an
efficient way to reduce road congestion and its externalities, because it is a cleaner mode.

Therefore, a number of supply-side and travel demand management policies are commonly

15



16 INTRODUCTION

used to discourage driving and encourage the use of public transport. To attract private
car users, gain in travel time but also service quality have to be emphasized. For example,
the European Commission wrote in the White Paper on transport (European Commission,

2011):

The quality, accessibility and reliability of transport services will gain in-
creasing importance in the coming years, inter alia due to the ageing of the
population and the need to promote public transport. Attractive frequencies,
comfort, easy access, reliability of services and intermodal integration are the

main characteristics of service quality. [p. 12]

Yet these efforts are often hampered by transit capacity constraints. Indeed, for a given
supply of public transport, an increase in patronage may deteriorate the service quality:
less seats are available and some users have to stand for all or part of their journey; some
vehicles are so crowded that users on platforms must wait for the next one; more users
enter and leave vehicles at each station, increasing dwelling times, travel times and vari-
ability of travel times... Consequently, public transport becomes less attractive. Whereas
the congestion on roads is known to all and has been the subject of numerous works by en-
gineers, economists, sociologists and others, fewer have been said or written on congestion
in public transport. However, optimal modal split and policies efficiency should be stud-
ied in an unified theoretical framework. When analyzing the modal choice, the disutilites
(or travel costs) of each mode are compared, and the individual is assumed to choose the
less costly. Therefore it does not seem consistent to introduce congestion for the private
cars without doing the same for public transport modes. It results in biased results and
overestimates the appeal of public transport with respect to private cars. This dissertation
aims at filling part of this gap and at proposing tools and insights to analyze congestion
in public transport.

There is no general consensus on what congestion is in public transport. A vast liter-
ature studies and describes the congestion on road networks, but fewer works investigate
the congestion in public transport and propose a satisfactory definition of it. In a report

written for the European Conference of Ministers of Transport (ECMT), Schallabock and
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Petersen define congestion in public transport as “a situation in which transport partici-
pants cannot move in a usual or desirable manner” (ECMT, 1999, p.13). This definition is
interesting because it focuses on the disutility supported by the users. However, the fact
that congestion is due ton an excess of demand is not enhanced here. According to Koning
(2011, p.24), a transport infrastructure is “congested when it is not able to meet the de-
mand without lowering the service quality”. Following this, in this dissertation, I consider
the congestion in public transport as the condition occurring when the ratio demand /
supply of public transport is high enough to decrease the convenience of users. The con-
venience is related to “absence of effort” in using public transport facilities (OECD, 2014).
In the Oxford Dictionary,! public transport? is defined as “buses, trains, and other forms
of transport that are available to the public, charge set fares, and run on fixed routes”.
The definition of congestion proposed above is valid for all public transport modes. This
definition does not presume the channels through which congestion decreases the utility
of traveling. In this dissertation, I focus on two features of congestion in public transport:
the crowding and the unreliability.

In public transport, one of the main manifestation of the congestion takes the form
of crowding. Crowding arises when the number of users is too high with regards to the
available space. It may occur not only while riding buses and trains, but also when boarding
and alighting from them, while waiting on platforms or at stops, and while accessing
stations by escalator, elevator, or on foot. A high density of users decreases the amount
of space available for each user and creates promiscuity between users. This promiscuity
has physical and psychological consequences on the journey experience. One of the main
effects is that when traveling in crowded conditions, users are not able to perform regular
activities: difficulties to read newspaper because of the lack of space, inability to focus
because of noise... This makes the utility of the time spent in crowded vehicles lower
than when vehicles are empty. Many other reasons explain why users are averse to a high

density when they travel: anxiety, stress, tiredness, threat to safety... Clearly, crowding

'http://www.oxforddictionaries.com/definition/english/public-transport?q=
public+transport.

2In North American english, “public transportation” is sometimes used instead of “public transport”. In
this manuscript, both expression are used interchangeably.


http://www.oxforddictionaries.com/definition/english/public-transport?q=public+transport
http://www.oxforddictionaries.com/definition/english/public-transport?q=public+transport
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is a disutility to users. Tirachini et al. (2013) presents the most detailed literature review
about crowding in public transport. They report that crowding is shown to increase in-
vehicle time (Lin and Wilson, 1992) and waiting time (Oldfield and Bly, 1988), and to
deteriorate travel time reliability (Bates et al., 2001). From psychological studies, they
relay that crowding causes stress and feeling of exhaustion (Mohd Mahudin et al., 2012).
Concerning the users perception of crowding, many papers show that the in-vehicle time
cost beared by users increases with the number of users (Li and Hensher, 2011; Wardman
and Whelan, 2011; Haywood and Koning, 2015). Crowding is also an important feature
when forecasting the route choice of users (Raveau et al., 2011) and when determining the
optimal pricing, subsidy and supply (Parry and Small, 2009). I investigate this disutility
in Chapters II and III of this dissertation.

Another feature of congestion is the decrease in reliability. Indeed, when more users
take a public transport vehicle, they need more time to board and alight the vehicle,
because the boarding/loading speed is physically constrained by the width of the gates.
This delays the vehicle but also the following ones which have to respect a certain frequency.
Consequently, on the network, travel times and delays increase. Congestion may also take
the form of the disability to board the vehicle for users, resulting in increased waiting times
on the platforms. This is the perspective used by Kraus and Yoshida (2002). Moreover,
overground public transport travel times are intimately related to road congestion. For
example, buses suffer from road congestion all along the route on shared with private cars
network. Road congestion may also affect vehicles circulating on dedicated lane or rail
because of the jamming at intersections of roads dedicated to private cars. In Chapter I,

I analyze the unreliability in public transport.

Some facts on public transport

The use of public transport is heterogeneous across the world. It depends on the wealth of
individual, on geographical characteristics of cities... Figure 1 displays the average public
transport share as a function of the GDP per inhabitant for some categories of cities in

1995. These figures have been computed by Joly et al. (2006) by using the Millennium
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Cities Database made by the UITP.? This is one of the very rare sources which supply some
figures on public transport patronage for several zones in the world. Figure 1 allows to
characterize the use of public transport with respect to the other modes. Public transport
is prevailing in cities from developing countries and from Asia, where between 35 and 60%
of trips are made by public transport. It is less used in Europe cities (around 25%), and
almost residual in North America and Oceania cities (around 6%).

Despite these differences in modal split, public transport networks are well developed
in Europe, especially comparing to North America. The example of the metro diffusion
is striking. 45 European cities have metro networks that carry in average 31 millions
passengers per day, whereas only 15 north-American metro networks carry 11 millions
passengers per daily (UITP, 2014c, p.2).* This difference may be partly explained by
higher densities of inhabitants in Europe than in North America. Indeed, automobiles
seem most economical at low inhabitants densities, bus transit at medium densities, and
rail transit at very high densities (Small, 2008). The number of annual UE local public
transport - bus, tram and metro - journeys has increased from 45.6 billions in 2000 to 49.5
billions in 2012 (UITP, 2014b, p.2). In average, an UE inhabitant uses the local public
transport for 132 journeys per year. In comparison, commercial aviation accounts for 800
million users journeys per year and long distance rails for 1 billion per year (UITP, 2014a).
Among these 49.5 billion local public transport journeys, 64% (31.8 billion) are made in
bus or trolley, 19% (9.4 billion) by metro and 17% (9.3 billion) by tramway. In Europe,
the bus is from far the most used public transport mode. This trend is likely to continue
due to the efficiency of new bus rapid transit on dedicated lanes.

According to the definition of the congestion in public transport, the patronage for
public transport can not be analyzed without some figures on the supply of public trans-
port. Such statistics are not available for large zones. Therefore the following focuses on
Paris region. Moreover, in Chapter I1I, I use a survey in which users have been interviewed
in the Paris subway, and in Chapter II, I propose a calibration of a model on a segment of

RER A line, one of the busiest line in the Parisian public transport network. For the Paris

3See http://wuw.uitp.org/public-transport-sustainable-mobility.
4The leader continent in patronage for metro is Asia: 50 cities provide metro for a 71 million passengers
daily ridership. 16 Latin-American metro systems carry 15 millions passengers per day.


http://www.uitp.org/public-transport-sustainable-mobility
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Figure 1: Average urban public transport share with respect to the average GDP per
inhabitant in 1995(Joly et al., 2006, from the Millennium Cities Database, UITP)

Notes. The urban public transport share is the ratio of the number of trips made with public transport
in a city on the total number of trips made in a city. The GDP /inhabitant is also computed at the city
level. The Africa average is computed on 8 cities (Abidjan, Cairo, Cape Town, Casablanca, Dakar, Harare,
Johannesburg and Tunis), the North America + Oceania average on 20 cities (Atlanta, Brisbane, Calgary,
Chicago, Denver, Houston, Los Angeles, Melbourne, Montreal, New York, Ottawa, Perth, Phoenix, San
Diego, San Francisco, Sydney, Toronto, Vancouver, Washington and Wellington), the South America
on 10 cities (Bogota, Brasilia, Buenos Aires, Caracas, Curitiba, Mexico City, Rio de Janeiro, Salvador,
Santiago and Sao Paulo), the modern Asian cities average on 5 cities (Hong Kong, Osaka, Sapporo,
Singapore and Tokyo) the others Asian cities of 16 cities (Bangkok, Beijing, Chennai, Guangzhou, Ho
Chi Minh City, Jakarta, Kuala Lumpur, Manila, Mumbai, New Delhi, Riyadh, Seoul, Shanghai, Taipei,
Tel Aviv and Teheran), the Europe average on 35 cities (Amsterdam, Athens, Barcelona, Berlin, Bern,
Bologna, Brussels, Copenhagen, Dusseldorf, Frankfurt, Geneva, Glasgow, Graz, Hamburg, Helsinki, Lille,
Lisbon, London, Lyon, Madrid, Manchester, Marseille, Milan, Munich, Nantes, Newcastle, Oslo, Paris,
Rome, Ruhr, Stockholm, Stuttgart, Turin, Vienna and Zurich) and the Eastern Europe average on 6 cities
(Budapest, Istanbul, Krakow, Moscow, Prague and Warsaw).
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region, statistics are available for the annual total of users x kilometers per mode and the
annual total of vehicles x kilometers operated by the transit authority. These statistics
allow to compute the average number of users per vehicle. In 2013, there were, in average,
around 240 users per suburban train (for a capacity going from 200 to 940 seats, depending
on the rolling stock), 154 users per metro (seating capacity from 144 to 320), 91 users per
tramway (seating capacity from 48 to 80), 20 users per bus in Paris and 14 users per bus

> These figure show that the occupancy rates of seats on the network are

outside Paris.
close to 100% and sometimes higher, meaning that some users have to stand during travel.

However, it is still not sufficient to describe the congestion. Indeed, congestion is
dynamic in the sense that the number of users with respect to the supply varies along
the day. On Figure 2 is displayed the distribution of users in the Paris metro network as
a function of the time of the day for a winter working day in 2013. Two remarks are of
interest. First, a morning peak and an evening peak are clearly noticeable, and the evening
peak is more spread out in time than the morning peak. Second, the number of users using
the facility may vary very quickly, as it is the case between 8am and 9am or between 9am
and 10am. This second remark is of first interest. Indeed, in a microeconomic perspective,
it means that an individual can decide to travel earlier or later in order to avoid excessive
congestion. The departure time decision is the key lever individuals may adapt in order
to adapt themselves to congestion, as Knockaert et al. (2012) showed in an experiment
conducted on a a congested motorway corridor in the Netherlands. In Chapters I and II,
I deeply investigate the departure time decisions of users.

The Parisian public transport system is also subject to a lack of reliability. This
unreliability may be due to excess of demand or to exogenous incidents. In 2013, 16.1% of
RER A users and 16.9% of RER B users arrived at their destination with a late delay higher
or equal to 5 minutes (STIF, 2014). With respect to the annual patronage for these two
lines (around 310 million RER A users and 220 million RER B users) and to an average
value of time of €15 per hour (Wardman et al., 2012), the social cost of unreliability
on these two lines amounts at least to €100 million in 2013. This figure highlights the

importance of reliability in public transport, an aspect I focus on in Chapter L.

®Computations of the author from data supplied by OMNIL (2011).
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Figure 2: Distribution of users in the Paris subway network as a function of the time of
the day, a winter working day in 2013 (OMNIL, 2011).

Roadmap of the dissertation

This dissertation is made of three distinct essays on the congestion in public transport
facilities. The two first essays investigate how users get used to lack of punctuality and
crowding in public transport. The third essay presents an empirical analysis of the crowding

effect.

Chapter I Public transport reliability and commuter strategy

In the first chapter, I focus on the two-way implication between punctuality level of public
transport and (potential) customer behavior. The punctuality of public transport is a
key element of the service quality. The user cost elements which play an important role
in demand analysis are affected by the punctuality level (Bowman and Turnquist, 1981).
As a consequence, users and potential users choose both the mode of transport and the
departure time depending on public transport punctuality level. Mohring (1972) has shown
that scheduled urban public transport is characterized by increasing returns to scale since
the frequency increases with demand. Therefore demand is influential in the service quality
and the bus company may adapt its punctuality to the level of potential demand. One of
the goals of this chapter is to observe if the bus company adapts its service quality to a

change in the price of the alternative mode. Another aim is to explore the gap between
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the bus punctuality at equilibrium and at optimum. The shift from a mode to another to
achieve the optimal modal split is to be highlighted.

I develop a duopoly which embodies a modal competition between public transport
and another mode which we call taxi. The attention is focused on the monetary impacts of
punctuality. Two different types of variables are observed in the model: the public trans-
port punctuality level which is selected by the bus company and the prices set by bus and
taxi companies. Both have a substantial influence on demand for public transport (Paulley
et al., 2006). Unreliability has a strong negative impact because it implies excessive wait
time and uncertainty (Wardman, 2004; Paulley et al., 2006).

Considering commuting trips, preferences can be analyzed with the dynamic scheduling
model. In this model, individual’s preferences reflect agents tradeoff between travel time,
early schedule delay and late schedule delay. Commuters may choose different strategies
to minimize their trip cost. This theory has been first introduced by Vickrey (1969) and
then renewed by Arnott et al. (1990). Such analysis usually are specific to road analysis
(Fosgerau and Karlstrom, 2010) therefore I introduce a wait time to extend this model
to public transport. In the model, a commuter has the choice between catching the bus
and using the taxi service. However he may miss the bus and then he has to use the taxi
service. Indeed I assume the headway is so long that all users who miss the bus prefer
to use the taxi service. Commuters are differentiated by their preferred arrival time and
by their location which is measured as the time to travel to their destination when using
the alternative mode. Two different preferred arrival time are considered. The location is
uniformly distributed among commuters.

The analysis for the model proceeds in three steps. The first step is to find out for
arbitrary public transport and alternative mode prices and punctuality level which com-
muters will use which mode of transport. The second step is to determine which price and
punctuality levels are set by companies at equilibrium given the strategies of commuters
identified in step one. The third step is to assess the prices and the punctuality level that
minimize the total social cost and to compare these results with the ones found in step
two. I find that the public transport reliability set by the public transport firm at the com-

petitive equilibrium increases with the alternative mode fare, via a demand effect. This
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is reminiscent of the Mohring Effect. The study of the optimal service quality shows that
often, public transport reliability and thereby patronage are lower at equilibrium compared

to first-best social optimum.

Chapter II Economics of crowding in public transport

To analyze the welfare effects of public transit crowding, and policies to alleviate it, in
a conceptually consistent way, it is necessary to use a structural model that incorporates
trip scheduling decisions, an empirically plausible crowding cost function, and alternative
pricing (i.e., fare) regimes. Several papers in the transport economics literature have laid
much of the groundwork for such a model. Vickrey’s (1969) bottleneck congestion model
is the seminal work on scheduling of automobile trips. Arnott et al. (1990) extended it
to time-varying tolling schemes and capacity investment decisions. Tabuchi (1993) added
public transit by considering a setting in which travelers can choose between driving and
taking a rail service with scale economies and no crowding. In this chapter, I use this
modeling framework to analyze usage of a rail transit line, and assess the potential benefits
from internalizing crowding externalities by setting differential train fares. I also present
results on optimal train capacity and the number of trains put into service.

To study the behavioral implications and costs of crowding, I develop a structural
model in which public transport users face a choice between traveling in a crowded train
and arriving when they want, and traveling earlier or later to avoid crowding but arriving
at an inconvenient time. Trains run on a fixed timetable between two stations. Riders
know the timetable and choose which train to take.

Therefore each commuter chooses when to arrive at the train station by trading off
schedule delay costs and crowding costs. Equilibrium obtains when no commuter can
decrease his journey cost by changing his departure time, taking all other commuters’
departure times as fixed. Thus, as in the Vickrey (1969) model, the equilibrium is a
pure-strategy Nash equilibrium with departure times as the decision variables. The social
optimum is reached when the marginal social cost of a trip is the same in any train during
the peak hour.

I show how the optimum can be decentralized using train-specific fares, and characterize
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the welfare gains from optimal pricing. I then allow total demand to be price elastic and
compare total usage, private costs, and welfare in the user equilibrium, the social optimum,
and a third regime in which an optimal uniform fare is imposed. Finally, I derive the
optimal timetable, number of trains, and train capacity for the three fare regimes.

Some of the results parallel those obtained with road traffic congestion models. Pas-
senger loads are often distributed more evenly across trains in the social optimum than
the user equilibrium. The social optimum can be decentralized by charging higher fares on
more popular trains to internalize the crowding cost externality on each train. Imposing
differentiated fares makes users worse off - at least before accounting for how the revenues
are used. Other results are less obvious. The welfare gains from tolling are independent
of total ridership. Expanding the number of trains can also be more valuable in the social
optimum than the user equilibrium even though total system costs are lower in the social

optimum.

Chapter III Well-being in public transport: an empirical approach of the

crowding effect

Economists often do not distinguish density and crowding and consider these two terms as
equivalent. However, according to psychologists, an important distinction has to be done
(Stokols, 1972; Baum and Paulus, 1987). In this chapter, the experience of crowding is
assumed to be made of several dimensions, the nuisance factors. These nuisance factors of
crowding are defined as the aspects of a journey that are deteriorated by a high density.
The perception of these dimensions may be different for each user: it is influenced by
the travel characteristics, the individual preferences, and of course by the objective in-
vehicle density. The concept of comfort satisfaction is larger than the concept of crowding.
Indeed, a journey may be experienced as very dis-comfortable despite the train is empty
or almost empty, because of heat, smell, accelerating, braking... The expectations or level
of requirement may also vary across users. Therefore, in addition to the crowding, the

travel and individual characteristics are worth considering when addressing the in-vehicle

5In this study, I consider eight dimensions of crowding: OQuvercloseness, Standing, Noise, Smell, Time
loss, Waste of time, Fall and Robbery.
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comfort.

The objectives of this chapter are twofold. On the one hand, I shed some more light
on the in-vehicle comfort satisfaction during public transport journey, by characterizing
the effects of crowding, individual preferences and travel characteristics on the user satis-
faction. On the other hand, I examine which nuisance factors of crowding construct the
crowding experience, and how the dimensions of crowding are influenced by the individual
preferences.

The analysis takes the answers to a travel satisfaction question as a measure for user
subjective well-being, and the responses to questions about dissatisfaction related to various
aspects of comfort when the in-vehicle density is very high as measures for nuisance factors.
The data originates from a survey collected on 1,000 Paris subway users. Due to the nature
of data, ordered logit models are used during the analysis.

I find a clear crowding effect: on average, an extra-user per square meter decreases by
one the expected 0 to 10 scale individual well-being. I do not find any empirical evidence
of this effect being intensified by the travel time. However, the crowding effect increases
with the income of users. I find three causes of crowding disutility: a higher probability
to stand for all or part of the journey, a poorer use of the time during the journey, and
noisier travel conditions. These features of discomfort matter more for women and wealthy

individuals.



Chapter 1

Public transport reliability and

commuter strategy

1 Introduction

Despite increasing pollution and congestion in cities, cars remain the most popular mode
of transport, because they are usually more convenient than public transport and they
keep a strong attractive power due to symbolic and affective motives (Steg, 2005). In the
U.S., the predominance of cars is also strengthened, despite the congestion observed on
the American highways (The Economist, 2011). Therefore, improving alternative modes
of transport and making them attractive is essential in an urban context. Although it
has been pointed out that the share of commuters switching from cars to public transport
may not be very large (Hensher, 1998), increasing the service quality is still an important
determinant of public transport demand (Beirao and Cabral, 2007). Travel time is often
presented as the main determinant of trip characteristics. Much less focus has been devoted
to trip reliability. However, some studies (see eg, Beirao and Cabral, 2007) have shown that
users will shift to cars if public transport is not reliable enough. Several studies strongly
suggest that reliability (understood as punctuality) of public transport is crucial to leverage
the demand (Bates et al., 2001; Hensher et al., 2003; Paulley et al., 2006; Coulombel and
de Palma, 2014). In a qualitative review, Redman et al. (2013) claim that reliability is the

most important quality attribute of public transport according to users. Ongoing research

27
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also tries to show that reliability of public transport may have an impact of the price of
land.

The reliability issue does not only affect developing countries, but also developed coun-
tries. The example of United States is striking: only 77% of the short-haul trains are
punctual, whereas 90% of Europeans trains are on time (The Economist, 2011). Moreover,
the reliability of long-distance trains is even worse in the US. This is due to decades of
under-investment which have led to infrastructure degradation.! For a discussion of the
relevance of investment in rail transit system, we refer the reader to Winston and Maheshri
(2007).

Although there is a long tradition in studying road reliability, a sensitive lack of research
is observed in public transport field (Bates et al., 2001). Studies highlight a valuation of
road reliability (Bates et al., 2001; Fosgerau and Karlstrom, 2010), others underline the
importance of public transport comfort (de Palma et al., 2013) or punctuality (Jensen,
1999), but few works deal with reliability in an analytical way.

This paper focuses on the two-way implication between punctuality level of public
transport and (potential) customer behavior. Indeed, on the one hand the punctuality of
public transport is a key element of the service quality. The user cost elements, which play
an important role in demand analysis, are affected by the punctuality level (Bowman and
Turnquist, 1981). The cost of punctuality differs among commuters. It largely depends
on the preferred arrival time of commuters. As a consequence, users and potential users
choose both the mode of transport and the departure time as a function of punctuality
level in public transport. On the other hand, Mohring (1972) has shown that scheduled
urban public transport is characterized by increasing returns to scale since the frequency
increases with demand. Demand is influential in the service quality offered and the bus
company may adapt its punctuality to the level of potential demand. Thus we show that
some users may decide to arrive late at the bus stop when punctuality is too low. As a
consequence, the bus company itself may become less strict as regards the punctuality.

In a nutshell, this means that user behavior (punctuality of users) is influenced by the

1To address this situation, Mr Obama plans to spend $556 billion for transport over 6 years, according
to his 2012 budget.
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punctuality of public transport. This generates a vicious circle.

In this paper, we study three situations: (i) the reaction of the bus company when
it faces a higher price of the alternative mode, (ii) the gap between the bus punctuality
at equilibrium and at optimum and (iii) the equilibrium versus optimal modal split when
punctuality matters.

We consider a duopoly which symbolizes a modal competition between public transport
and another mode, which we call taxi. The attention is focused on the monetary impacts
of punctuality. We simplify aspects related to engineering. A duopoly is used because
determinants of demand for public transport are related to the demand for private transport
(Balcombe et al., 2004). Two different types of variables are observed in the model: the
public transport punctuality level, which is selected by the bus company and the prices set
by the bus and taxi companies. Both have a substantial influence on demand for public
transport (Paulley et al., 2006). Unreliability has a strong negative impact because it
implies excessive waiting time and uncertainty (Wardman, 2004; Paulley et al., 2006).

Considering commuting trips, preferences can be analyzed with the dynamic scheduling
model. In this model, individual’s preferences reflect agents tradeoff between travel time,
early schedule and late schedule delays. Commuters may choose different strategies to
minimize their trip cost. This theory has been first introduced by Vickrey (1969) and then
renewed by Arnott et al. (1990). Such analysis is usually specific to road analysis (Fosgerau
and Karlstrom, 2010); here we introduce a waiting time to extend this model to public
transport. The French State-owned railroad (SNCF') suggests to reschedule work arrival
and departure times in order to reduce congestion (Steinmann, 2013). For the idea of
endogenous schedules and private or public bus company, we refer the reader to Fosgerau
and Small (2013).

Commuters are differentiated by their preferred arrival time at workplace and by their
residential location which is measured as the time to travel to their destination when using
the alternative mode. Two different preferred arrival time are considered and the location
is uniformly distributed among commuters.

The analysis for the model proceeds in three steps. The first step consists in finding out

the modal choice of commuters depending on prices and punctuality for the public transport
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and the alternative mode. The second step determines which price and punctuality levels
are set by companies at equilibrium given the behaviors of commuters identified in step
one. The third step is to assess the prices and the punctuality level that minimize the total
social cost and to compare these results with the ones derived in step two.

The paper is organized as follows. Section 2 describes the model and the commuter’s
strategies. Section 3 considers equilibrium and its properties. The gain due the transition
from equilibrium to optimum is analyzed in Section 4. A numerical application is provided
in Section 5 to illustrate our results. The final section concludes and proposes suggestions

for further research.

2 Punctuality in public transport

Our model is based on the monocentric city framework defined by Alonso (1964), Mills
(1967) and Muth (1969). All jobs are located in the center of the city, referred to as the
central business district (CBD). Consequently, all commuters have to reach the CBD every
morning. We focus our analysis on a unique radius of the city, assuming that this radius is
representative of the set of radius of the city. We consider an unique road which coincides
with this radius. It goes straight from the border of the city to the CBD. The radius is
measured in time units and is A hours long. An unique bus line and a taxi company serve
the CBD by using this road and bus stops are uniformly distributed along the radius of the
city. We do not take into account congestion on the road. Thus both mode have the same
speed and we refer to a bus stop located at ¢ hours from the CBD as “bus stop §”. For
example, the bus stop A is located at the border of the city. Similarly, all commuters live
along the radius and we refer to commuters who need é hours to reach the CBD, whether
they use the bus service or the taxi service, as “commuters ¢§”. For each § € [0;A], all
commuters 0 live at the same place (see Figure 3).

For analytical tractability, we consider a single bus. However this model can be easily
adapted to other modes of public transport that run on a schedule. The bus is scheduled
to arrive at the CBD at a given time, but it may be late. The lateness probability is not

random: the bus company selects its quality service level and applies it in the same manner
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Figure 3: The monocentric city

along the radius. Thus when the bus company chooses to be late, it is late along the whole
journey and its lateness is constant over time. Commuters are aware of the punctuality
level and adapt their behavior accordingly. In particular they might arrive at the bus stop
after the scheduled time even if there is a risk to miss the bus by doing so. This can occur
rationally because there is a waiting cost for users. Commuters optimize their tradeoffs
between waiting time cost, schedule delay cost and a cost corresponding to the use of an
alternative mode, which is the taxi in our model. A commuter may either select ex ante
the taxi or use the taxi if he misses the bus.

Table 1 presents important notations and their numerical values that will be used in
Section 2 and Section 5.We first characterize the network and then the commuter behavior.

Finally we present the modal split.

2.1 Transport supply

Bus stops are uniformly distributed between 0 and A. The bus is scheduled to arrive at
its destination, the CBD, at time T". As there is no road congestion, it is also scheduled to
serve the bus stop ¢ at time T'— § and also leaves at time T'—§ i.e there is no transfer cost.?
The bus company may choose that the bus is late and arrives at CBD time T + x. In this
case, the bus stops at every bus stop ¢ at time T+ x — §. The bus arrives at the CBD at
time T with probability P and at time 7"+ x with probability 1 — P (Figure 4). Whatever

the bus lateness, the total bus trip time is constant and equal to A. The potential lateness

2The loading time is assumed to be set to zero without loss of generality.
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Table 1: Parameters values

Parameter Comment Suggested value
T Scheduled arrival time -
tt Bus travel time 25/60 (hour)
x Lateness 10/60 (hour)
Pe [%, 1] Probability of the bus being late -
t, € {T;T 4+ x} Arrival time at the bus stop of the bus -
J € [0;A] Taxi trip time (hour)
A Maximal taxi trip time 35/60 (hour)
t* e {T;T+z} Preferred arrival time of users -
to € {T;T + x} Arrival time at the bus stop of the user -
0 € [%, 1} Share of population in Group A -
Obus In-bus time cost 15 ($/hour)
Otami In-taxi time cost 4 ($/hour)
n Waiting time cost 20 ($/hour)
g Early delay cost 10 ($/hour)
ol Late delay cost 30 ($/hour)
K Bus fare )
T Taxi fare ($/hour)
c Cost of punctuality (bus) (3)
d Operating cost per unit of time (taxi) 40 ($ /hour)
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Bus
P 1-P
R Arrival time
! ' " at the CBD
T T+ x (td)
"On time" "Late"

Figure 4: The arrival probabilities of the bus

is also constant and equal to x.

The probability of the bus being on time is endogenous: the bus company sets its level.
It does not depend on traffic conditions, number of passengers or loading time. The worst
quality of service occurs when the bus has the same probability of being on time and late.
We assume that a regulator imposes this constraint to assure a consistent timetable.®> The

“punctuality level” corresponds to the probability of the bus being on time.

Assumption 1. The probability P of the bus being on time satisfies the following inequal-
1ty

<P<1.

| =

We assume that there is no capacity constraint in the bus. The bus fare, priced by the
bus company, is k for each passenger.

Commuters have access to an alternative mode of transport. In our model we consider
this option as a taxi service, but it can also be walking or personal car use. The taxi

company sets a fare 7 which corresponds to the price charged per minute of travel.

2.2 Demand for bus and taxi

We consider two firms located in the CBD. Firm A employs a part of 6 in commuters
population and firm B a part of (1 —#). The share of commuters working for firm A is

bigger than the one working for firm B (6 > 1/2). The workday in the first firm starts

3Minimal value of P is 1/2, otherwise we would face another schedule than the expected one.



34 CHAPTER I. PUBLIC TRANSPORT RELIABILITY
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Figure 5: Distribution of taxi trip time in Group A and Group B

at time 7" whereas it starts at time 7' + y in the other firm.* This reflects the fact that
even though a majority of commuters wishes to arrive at work place at the same time, all
commuters have not the same preferred arrival time.

For tractability, we assume that the gap between the beginnings of workday equals to
the lateness of the bus (z = y). Therefore, each type has a different preferred arrival time
denoted t* € {T;T + x}. The first type of commuters (referred to as Group A) would
rather arrive at time 7', and the second one (referred to as Group B) at time T + x (see
Figure 5).

Commuters locations are uniformly distributed among each group in the same manner
(Figure 5) and the distribution is assumed to have a support [0; A] so that F' (0) = 0 and
F(A)=1.

They are assumed to incur a schedule delay cost if traveling at time ¢ # t*. There is no
transfer cost: commuters do not incur a cost by reaching the bus stop because bus stops
are uniformly distributed along the radius where they live.

A commuter has the choice between catching the bus and using the taxi service. How-
ever he may miss the bus and then he has to use the taxi service. Indeed we assume the
headway is so long that all users who miss the bus prefer to use the taxi service. If he tries to
catch the bus, the commuter ¢ uses the bus stop § because it minimizes its transfer cost. A
commuter § choosing to catch the bus bears the following schedule delay cost function that

is assumed to depend on its arrival time at the bus stop, denoted t, € {T' — 6;T — § + x},

4This gap between working start times is conceivable if there is no Marshallian externality between
these two firms (see Henderson, 1997).



2. PUNCTUALITY IN PUBLIC TRANSPORT 35

the arrival time of the bus, denoted t, € {T'— §; T — ¢ + x}, its most preferred trip time,
denoted t* € {T;T + x} as well as on the arrival time at destination of the bus, denoted

tq € {T;T +zx} :

oo K+ s +1(tp — ta) + Bt* —ta] "+ [ta — 17 if (ta < tp),
bus —

o (Oémm' + T) + [td — t*]+ if (ta > tp),

with [z]" = zif 2 > 0 and 0 if z < 0, & the bus fare, ay,s the in-bus time cost, 7 the
waiting time cost, § the early delay cost, « the late delay cost, auqz; the in-taxi time cost,
7 the taxi fare and 0 the trip time of commuter 4.

If a commuter chooses from the start to use the taxi service, he incurs the following
cost:

CCtazi =0 (ata;vi + T) ,

with ayqz; the taxi travel time value, 7 the taxi fare and § the taxi trip time.
By considering that the value of time in bus dag,s is incurred by every commuter

whatever is its choice, we can normalize the cost functions to:

KAty —ta) + B —ta T +yfta—t]T if (ta < 1),
COIJUS = P p (1)

S(a+7)+7[tg—t*]" if (tg > tp),
CCtam' =4 (d + 7_) 3 (2)
with & = ogari — Qpus-

Assumption 2. The cost of waiting one minute for a bus, n, is lower than the cost of

being one minute late, v, and higher than the cost of being one minute early, B:

v=n=>pB.

This assumption is consistent with literature valuations (Wardman, 2004).
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2.3 Commuters’ strategies

Commuters dispose of three different strategies to minimize the cost of a trip. A strategy is
defined by an arrival time at the bus stop. Arriving at the bus stop at time 1" corresponds
to Strategy O (On-time at the bus stop), arriving at time 7'+ x to Strategy L (Late at the
bus stop) and Strategy T (Taxi) embodies the decision to use the taxi and to not arrive
at the bus stop. If a commuter chooses Strategy O, he waits until the bus arrives.

As a convention, we assume that a commuter who is indifferent between two strategies
has a preference for maximizing its chance to get the bus. The commuter chooses:
Strategy O (arrive at time T') if EC (0) < EC (T) and EC (O) < EC (L);

Strategy L (arrive at time T'+ z) if EC (L) < EC (O) and EC (L) < EC (T);
Strategy T (choose the taxi) if EC (T') < EC (O) and EC (T) < EC (L);

where EC (i) represents the expected cost of strategy i.
Proposition 1. Under A.1 and A.2, the commuter § in Group A selects:
Strategy O (time T') if 0 > (5%0,
Strategy T (taxi) if §< 5%0,
where 5%70 =k+{1—-P)(n+~vy)z]/(@+T).
Proof. See Appendiz A. O

For a commuter wishing to arrive at time 7', Strategy L is never selected. Indeed a
commuter chooses Strategy L instead of Strategy T if he prefers a late bus trip over a taxi
trip. However such a commuter prefers an on time bus trip over taxi trip and consequently,

he will choose Strategy O.

Proposition 2. Under A.1 and A.2, the commuter § in Group B selects:

Strategy O (time T')  if 6> 5LB,07
Strategy L (time T +x) if § € {5757L;5L370{,

Strategy T (tazi) if o< 5TB,L7

where 5LB7O =[k+ (FEn+B8)x] /(@+71) and 57@’L =r/(a+T).
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Proof. See Appendiz B. O

Strategy L is selected by some commuters from Group B unlike commuters from
Group A. It can be explained by the fact that in this case, Strategy L corresponds to
a possibility of the bus arriving on time. A commuter who prefers an on-time bus trip over
a taxi trip, yet prefers a taxi trip more than an early-arrival bus trip, chooses Strategy L.

The share of commuters choosing Strategy T is independent of the probability of the
bus being on time. Indeed P has no influence in the arbitrage between Strategy L and
StrategyT. For commuters in Group B, choosing Strategy L is equivalent to choosing
Strategy T except that they take the bus when it is late. Consequently, Strategy L is
preferred to Strategy T as long as the cost of taking the bus when it is late is lower than
the cost of taking a taxi. Then this arbitrage is independent of the probability of the bus
being on time.

When the punctuality decreases, the share of commuters arriving late at the bus stop
increases. The cut in the service quality makes the cost of Strategy O higher (because
of A.2) and the cost of Strategy L smaller (except for commuters living so close to the
CBD that a taxi trip is still cheaper than a bus trip, but we do not take account of
these commuters because they still prefer Strategy T'). Then among commuters who chose
Strategy O before the service quality fall, those living the closest to the CBD were the most
indifferent between both strategies and switched from Strategy O to Strategy L. The bus
company may also itself become less strict, and generate a vicious circle.

When the taxi fare, 7, increases, more commuters choose to arrive at the bus stop at
T and less commuters choose Strategy L and StrategyT. This is due to the fact that on
the one hand some commuters have a bigger interest to minimize the probability of taking
the taxi by shifting from Strategy L to Strategy O and from StrategyT to Strategy L.
On the other hand, the shift from Strategy L to Strategy O is larger than the one from
Strategy T to Strategy L.

Figure 6 illustrates these results. Other things being equal, the share of commuters
arriving at 7' (and by doing so they are sure to catch the bus) among Group A increases

from around 40% when P = 1/2 to almost 55% when P = 1. The share of commuters
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Figure 6: Share of commuter choosing Strategy O and Strategy L as a function of P, the
probability of the bus being on time (k = 8, 7 = 50)

in Group B choosing to arrive late at the bus stop (Strategy L) depends inversely on the
probability of the bus being on time. If the bus arrives later, some users switch from
Strategy O to Strategy L which leaves the bus company no incentive to restore the service

quality.

Assumption 3. The mazimum cost of the taxi use, priced at the operating cost, is higher
than the cost of the bus use, when priced at zero and when the bus arrives on time with
probability 1/2:

Ala+d)>=(n+v)=.

N |

Once the commuters strategy are defined, shares of commuters who are at the bus stop

at time T or T+ x are known. Demands are described by

oo Po itk
.0 0Lo—0FL oL
Dyiozi = HT +(1-0)|P A A (3b)

Thus the bus (and taxi) patronage depends on the probability of the bus being on time.
Group A is more sensitive to the service quality than Group B (see also Figure 6). This
is due to the fact that commuters from Group A incur late arrival costs while commuters
from Group B incur early arrival costs and, as seen in A.2, the penalty for lateness is much

higher than the penalty for arriving early at the destination.
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3 Competition between bus and taxi companies

In this section, we explore equilibrium pricing and punctuality level in a duopoly compe-
tition. We assume that following condition holds:
A(OY—FT)ZH-F%(??-F’}/)SU. (4)
This condition assures that the price selected by the bus company is low enough to
preserve a demand for bus trips. Thus the demand functions formulation (equations (3a)
and (3b)) is still correct. We will check if it holds once the equilibrium values of 7 and &
are solved.
Both companies incur a cost. The cost incurred by the bus company depends on the
punctuality level and is assumed to be quadratic. It is a sunk cost in the sense of being

unrecoverable (Sutton, 1991). The cost of the taxi company linearly depends on the total

travel time and can be viewed as an operating cost:
€ 2
Costyys = §P , (5a)

Costyapi = d x TTT, (5b)

with ¢ the punctuality cost, d a cost per hour traveled and TTT the total travel time of
the taxi company.

The bus company chooses the bus fare x and the punctuality level P, so as to maximize
its expected profit. From equations (3a) and (5a), the bus company profit can be written

as
C
Hbus = KDbus - §P2

There exists a unique solution® satisfying the first-order conditions 0lly,,/0x = 0 and

5Second-order conditions are satisfied as 82Hbus/8m2 = —Q/A and 62Hbus/8P2 = —c/A. The Hessian
matrix of second partial derivatives is also negative definite, and the solution is a global maximum.
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Ollyys/OP = 0, given by

k¢ = % (A® —T°z), (6a)
% if ¢ > ¢5,

P = ’ZZ@E if ¢ € [¢f; 5] > (6b)
1 if ¢ < cf,

where A® = A (&4 7°),T¢ = (1 — P*)n+(1 —0) P°B+0 (1 — P)~y, ) = n—(1 — ) f+67,
¢§ = kx/A° and where ¢§ = 2¢5.
The price of a minute traveled in a taxi, 7, is set by the taxi company to maximize its

profit. From equations (3b) and (5b), taxi profit is given by

37,0
Mgz = (T—d) [9/0 ’ 5f(5)d5

L(1-6) (/O(ST’L 5f(5)ds + P /:L’O 5f(6)d5>] .

B
T,L

The level of price satisfying the first-order condition® dll,.;/07 = 0 is
¢ = & + 2d. (7)

Condition (4) requires A® > k¢ + 1 (n+)z and yet
Aa+d)>{Pn—(1—-0)PB+[1—6(1—P)|v}z/2. It holds according to A.3.

Note that the probability of the bus being on time in (6b) is continuous.

The core component of the bus fare corresponds to the average taxi trip cost cut by
the average schedule and waiting time cost incurred by commuters. The bus company
takes account of its service quality to remain attractive regarding the alternative mode.
As expected, the punctuality decreases when the punctuality cost ¢ increases. Since the
punctuality level decreases with the maximal taxi trip time, A, a high scatter of commuter’s

locations makes the service quality regress (see equation (6b)). In addition, the longer of

5Second-order condition requires that 4 — 27¢ + 6d > 0 or 7¢ < 26 + 3d.
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the radius where commuters live, the higher is the mark-up for the bus company. The taxi
fare is independent of the bus company choices. It only depends on the values of taxi and
bus travel time and operating cost. Ceteris paribus when d increases, both bus and taxi
fares become higher.

There is a unique simultaneous Nash equilibrium which is given by equations (6a), (6b)

and (7).

Proposition 3. At equilibrium, P¢, the probability of the bus being on time and k€, the

bus fare, increase with T, the taxi fare.
Proof. See Appendiz C. O

Consider an initial rise in taxi fare, 7¢, for example due to an increase in the taxi
operating cost or in the petrol price. This increase leads to a standard modal shift from taxi
service to bus service, other things being equal (see Propositions 1 and 2). Consequently,
the cost of the bus punctuality per user decreases. The bus company therefore will have
an incentive to increase the punctuality level when 7 rises. By doing so, the bus company
attracts additional commuters. In this model, an increase in bus patronage improves
the service quality of the bus. This can be viewed as an extension of the Mohring Effect
(Mohring, 1972) according to which the service quality measured as the frequency increases
when the demand for public transport rises.

The increase in the bus fare is explained by two aspects: on the one hand the service
quality has been improved, and on the other hand, the rises in the taxi fare increase the
average taxi trip cost and therefore the bus fare. There is no strategic complementarity

because the taxi company does not react to a change in bus fare (see Vives, 1990).

4 Welfare analysis

Welfare is the sum of the aggregate commuter surplus and the companies profits. Since
a cost function is used instead of a surplus function to study the commuter strategies,
the social welfare function is defined as the opposite of the social cost function SC which

is the difference between aggregate commuter costs and firm profits. From equations of
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commuter cost (1) and (2), of demand (3a) and (3b), and of companies cost (5a) and (5b),

the social cost function can be written as

o Ay

sC — -+ 0CCy=1 + (1 — 0) CCp=o — Myus — Myazi,
where
5o
CCpey = (a+7) / 5£(8)ds
0
A
kit (1= P) ()2} / £(8)do,
5o

and where

5B

CCpy = (a+7) /0 " S F(5)ds
5t o
+/ (1 =P)rk+ P(a+7)d] f(8)ds
07 1

A
+{x+[(1—P)n+ P x}/aB £(6)ds.

The social planner chooses the punctuality level P, the bus fare x and taxi fare 7 so
as to minimize social cost. The first-order conditions for the socially optimal bus and taxi

prices are given by

k® = 0, (8a)

° = d (8b)

As expected, optimal bus and taxi fares equal to the marginal costs incurred by bus and
taxi companies. Indeed, as there is no variable cost for the bus, the optimal bus fare is
null.

The expression of the optimal punctuality level P is not explicit in the general case

because the equation to solve is a cube root i.e it has three solutions with only one real.
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P° = argminSC. 9)
pel3]

However in the extreme case where § = 1, there exists a unique solution” satisfying

05Cp—1/0P = 0. By using (8a) and (8b), we obtain, for Group A

(

% if e >c5p_q,

o _ [Ao—(nt+y)z](n+7)z . )
Py, Ko [yl if c € [0(1);6:17 03;9:1} ) (9a)

1 if ¢ <efyy,

where A° = A (& +17°), Sy = (n+7) T,
.pm1 = [2A° — (n+7) z] (n +v) z/A° and where .p=1 < €59 Note that the proba-
bility of the bus being on time when 6 = 1 is continuous.

We generalize the above result to the other extreme case where § = 0 in the following

conjecture.

Conjecture 1. For Group B (6 = 0), the punctuality level of the bus Py_, weakly decreases
when the cost of reliability ¢ increases. There are two critical values of c, To—0 and 5.9—0

with ¢f.g_y < 5.9 such that:

if c> 9. 0,
P, = 00 (9b)

I ife<clyy

N[ =

. (0] (o}
with Tio=0 < Co.0—0-

Equations (8a), (8b) and (9) provide the values at optimum in the general case. Equa-
tions (9b) and (9a) point out the optimal punctuality level in extreme cases.
The optimal probability of the bus being on time has the same properties we describe

in Section 3: it decreases when the punctuality cost ¢ or the travel time of the commuter

"Second-order condition is verified as ¢A° > [(n + ) z]*.
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living the farthest A increases. The important observation is that the optimal probability
of the bus being on time does not necessarily equal 1. It may be lower than 1 and even
equal 1/2 under some conditions. Critical values lg—o and c5y_ are expected because
Py_, € [1/2;1]. The above conjecture is illustrated in Figure 7.

From now on, as the expression of P° is not explicit and P° = 0Py_, + (1 —0) Py_,,,
properties of the optimal probability of the bus being on time will be addressed separately
according to the structure of the population. The two extreme cases # = 1 and § = 0 are

highlighted, even if 6 > 1/2.

Proposition 4. For Group A (0 = 1), the punctuality level of the bus is higher at optimum

than at equilibrium.
Proof. See Appendiz E. O

Commuters in Group A want to arrive at T therefore the later is the bus, the more
commuters incur a cost. The bus company wishes to maximize the probability of the
bus being on time at equilibrium, as the social planner does at optimum, while taking
into account the punctuality cost per user incurred by the bus company. The difference
between equilibrium and optimum bus punctuality is mainly explained by a price-effect.
Indeed, the gap between the bus fare relative to the taxi fare is much higher at equilibrium
than at optimum. Thus other things being equal, the bus company attracts less customers
at equilibrium than at optimum. Consequently, the bus company has to reduce the bus
punctuality at equilibrium more than the social planner does at optimum to keep the
punctuality cost per user small enough. This result is summarized in Proposition 4.

As there is no explicit expression for P° and FPy_ ), a discussion with a figure is provided

in Section 5.

Proposition 5. For Group A (0 = 1), if the taxi operating cost d is higher than dS, the
bus patronage is higher at optimum than at equilibrium.
When d < df, the bus patronage is higher at optimum than at equilibrium if and only if the

cost of punctuality for the bus company is small enough (c < c§).8

8The critical value of the taxi operating cost d is d§ = W

cost cf is defined as the unique solution of Dg_; = Dg_,.

— &. The critical value of the punctuality
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Proof. See Appendiz F. O

As the expression of Pg_ is not explicit, the analysis is more difficult for Group B.

However we formulate a proposition, as well as a conjecture.

Proposition 6. For GroupB (0 = 0), if the taxi operating cost d is smaller than dS
(higher than df, resp.), the bus patronage is smaller (resp. higher) at optimum than at

equilibrium.”

Proof. See Appendiz G. O
We conjecture the variations in demand for Group B when d € [dS; d§].

Conjecture 2. For Group B, when d € [dS;d§], the bus patronage is higher at optimum

than at equilibrium if the punctuality cost for the bus company is small enough (c > c§).*

This conjecture is discussed in Appendix H. The basic idea in Propositions 5 and 6 and
in Conjecture 2 is that when the taxi operating cost is small, the bus company tends to
underprice which consequently attracts too many customers. As the taxi operating cost is
high, the bus company overprices. This is due to the fact that the bus fare highly depends
on the taxi fare (see equation (6a)). We refer the reader to Proost et al. (2002) for a
detailed discussion of the optimal pricing in transport.

The equilibrium modal split meets the optimal modal split under two conditions. First
the taxi operating cost d has to be included between the two critical values we defined.
Then the punctuality cost incurred by the bus company ¢ has to equal a critical value. If
the taxi operating cost is higher than the interval defined by critical values, the optimal
modal split is reached by a partial commuters shift from taking a taxi to taking a bus.
This shift can also be in the opposite direction if the taxi operating cost is smaller than the
critical interval. This reflect the fact that the bus company underprovides quality relative
to the social optimum when ¢ is small (see De Borger and Van Dender, 2006, for a detailed

discussion).

9The critical values of the taxi operation cost d are d5 = — (%nf %,6’) T/2A — Qtaz: and d§ =
(2n+ B) z/2A — atexi, with d5 < d5.
10The critical value of reliability c§ is the unique solution of D§_, = D§_,.
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Probability of the bus being on time

Probability of the bus being on time

> >
T T > T T L

0 5 10 ¢ 0 1 2 c
Cost of punctuality for the bus company Cost of punctuality for the bus company
Group A(6 = 1) Group B(6 = 0)

Figure 7: Probability of the bus being on time as a function of the punctuality cost ¢

The taxi operating cost corresponds to the traditional costs as fuel or insurance, but
it may also be viewed as an extra tax set by the planner to account for the externalities
such as pollution or noise.!! In this sense, the operating cost trend should be growing and

in the long run, the bus patronage would increase at the expense of the taxi service.

5 Numerical application

We develop an applied case to illustrate previous theoretical findings. Numerical results
are obtained with values specified in Table 1. The studied case is related to a 25 minutes
bus trip. The bus has a probability P of being on time and a probability 1 — P of being
10 minutes late at departure. The commuter living the farthest from their trip destination
has a taxi trip time equal to 35 minutes. We consider a uniform distribution of the taxi
trip time. The operating taxi cost d is constant and equal to 40 $/hour. Lastly, cost
parameters Qpys, tazi, 1, f and vy are equal to 15, 4, 20, 10 and 30 $/hour, resp. Each
variable is drawn depending on the reliability cost for the bus c.

A reminder to the readers, P¢ and P° are respectively the probability of the bus being
on time at equilibrium and at optimum. As expected, the probability of the bus being
on time decreases when the reliability cost increases (see Figure 7). The more expensive

the punctuality is, the less interesting is the reliability for both the bus company and the

"See Proost and Van Dender (2001) for an evaluation of alternative fuel efficiency, environmental and
transport policies regarding atmospheric pollution.
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Figure 8: Bus patronage as a function of the punctuality cost ¢

social planner.

As indicated in Proposition 4, the probability of the bus being on time when § =1 is
higher at optimum than at equilibrium. The opposite extreme case where § = 0 is more
complex as P° is not continuous. It seems that the probability of the bus being on time
is higher at optimum than at equilibrium when c is small and that after a critical value of
¢ this relation is inverted. Probabilities of the bus being on time are higher when 6 = 1
than when 6 = 0. This is due to the fact that users from Group A are more sensitive to
unreliability because when the bus is late they incur a late delay cost which is higher than
the waiting time cost incurred by commuters from Group B. Thus when 6 = 1, the bus
company needs to maintain a better level of service than when 8 = 0 in order to keep their
patrons. An important observation is that the optimal punctuality may be very low and
even equal to 0.5 which is the worst reliability level. Indeed, since the reliability cost is not
too high, the social planner makes the bus company increase the punctuality of the bus to
minimize the cost born by users. However, if the punctuality cost for the bus is too high,
it is socially better to share cost with users by making or allowing the bus to be late.

Two points are especially interesting in Figure 8. First, the bus patronage is weakly
decreasing when the punctuality cost increases. This drop is higher at optimum than at
equilibrium. Along with Figure 7 we note that the punctuality has a strong effect on
demand. The variations of the bus patronage corresponds to the variations of the bus

punctuality. When the bus punctuality is stable, the split between the bus and the taxi
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Table 2: Values of main variables when ¢ =5 and 6 = 0.75

Variable Equilibrium  Optimum
Probability of the bus being on time 0.72 0.88
Bus fare 16.9% 0$
Taxi fare 70$/hour  40$/hour
Bus patronage 47% 96%
Social gain - 42%

80%

60%

40%

Social gain

20% s

0% T T >
0 5 10 [

Cost of punctuality for the bus company

Figure 9: Relative social gain compared to equilibrium as a function of the punctuality
cost ¢

is constant. Secondly, note that the demand for the bus is higher at optimum than at
equilibrium in both extreme cases. Regarding Proposition 5, this example illustrates the
common case where the bus patronage is higher at optimum than at equilibrium. At
equilibrium the bus patronages is sub-optimal. Too much commuters use the taxi service
because catching the bus is too expensive and the bus is not reliable enough.

Table 2 provides the values of main variables when ¢ = 5 and 6 = 0.75. The probability
of the bus being on time at equilibrium equals to 0.72 (note that this measure is consistent
with observed average lateness in Paris Area (STIF, 2014)). The bus fare may seem high,
but it is not surprising as we do not take into account subsidies which are important
in the public transport sector (Ponti, 2011). Indeed for example in Paris Area in 2010,
monetary public transport revenues equal to 29.7% of total operating cost (STIF, 2013).
The optimum is reached by increasing the reliability at its maximal level and decreasing
prices. Consequently, the bus patronage becomes much higher and the social gain is about

42%.
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The relative social gain is computed as the ratio of the absolute gain, due to the
transition from equilibrium to optimum, to the absolute social cost at equilibrium (see
Figure 9). Such curves allow to determine when the gain is high enough to justify public
intervention: the lower the punctuality cost is, the more useful is public intervention.
Indeed when c is high (see equations 6b, 9a and 9b), punctuality at equilibrium and at
optimum is the same. The only difference between equilibrium and optimum is the modal
split, but the gain due to this difference is gradually offset by the growing punctuality
cost. Consequently, for both Group A and Group B, the social gain tends to 0 when the
punctuality cost, ¢, tends to infinity. The cut in social gain is faster for Group A because
variation in patronage is more sensitive with respect to the rise in c.

The brief application in this section illustrates that the effectiveness of public interven-
tion varies according to punctuality cost. In the more general and realistic case, a stronger

intervention seems useful in relation to the current situation.

6 Conclusion

The modeling of the bus punctuality reported here has provided an improved understanding
of the two-way implication between punctuality level of public transport and customer
public transport use. Commuters develop adaptive strategies to fit the transport system.
Thus a rise in the fare of a mode decreases the patronage for this mode. In particular,
an increase in the taxi fare rises the share of commuters arriving on time at the bus stop
because they wish to minimize the probability of missing the bus. Moreover when the bus
company becomes less strict as regards punctuality, more bus users will prefer to arrive
late at the bus stop. Then the bus company is not incited to maintain a high level of
reliability. This can generate a vicious circle. We also appreciate the efficiency of the
punctuality when it is viewed as an instrument of service quality that can be adapted to
fit and regulate the public transport patronage.

The main findings of this paper follow. At equilibrium, the probability of the bus being
on time increases with the price of the alternative mode. The service quality reacts well

to a rise in the taxi fare. Indeed, a new market share of commuters is assailable with a
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reasonable effort in terms of service quality. Compared with the optimum, buses are very
often too late at equilibrium. Commuters bear the cost of this extra-lateness, because they
have to wait for the bus more often or take the taxi which is expensive. However, it does
not mean that the bus should not be late. Indeed if the cost of the punctuality is too high
relative to the cost of the alternative mode, a late bus is socially preferable. Finally, we
find that the sign and the amplitude of the gap between the equilibrium and optimal modal
split first depends on the cost of the alternative mode and secondly on the punctuality cost
incurred by the bus company. Nevertheless, in the more general and realistic case the bus
patronage seems under-optimal.

Several elements remain to be addressed. Considering risk averse users would change
users strategies and affect the punctuality. It should be interesting to include congestion
on road networks and in the bus. Congestion on the road would make the taxi journey
longer and unpredictable, whereas congestion in the bus (understood as crowding) would
accentuate the cost incurred by users. Finally, introducing the bus punctuality in a bus
transit line with several stops and several buses (de Palma and Lindsey, 2001) will improve
the modeling by introducing a snowball effect: if a bus is late, its lateness increases along

its journey.



Appendices

Appendix A Proof of Proposition 1

We wish to compare expected costs of Strategys O, L and T, denoted EC (O), EC (L)
and EC (T) respectively, to define a choice rule for a commuter in Group A. From

equations (1) and (2), we can write:

ECO)=k+(1—-P)(n+~)z
EC(L)=Pé(a+71)+ (1 —P)(k+n2),
EC(T)=6(a+T).

Therefore we have

EC(0) < EC(L) iff § > ° cifﬂ =610, (10)

K+ vz
a+rT7
k+(1=P)(n+vy)x
(& +71)

EC(T) < EC (L) iff § <

= 5%,L7 (11)

EC(T) < EC(0) iff § < =670 (12)

We use A.1 and A.2 to rank 52‘0, 574L and 5%L:

()(5A 25,{10(:)72 (%)n(z) % > %Whichistruesince%> 1> %
by A.1 and A.2.
(ii) 5%’]: > 5%0 = v > (1-P)(n+y) < P > 1- (njrv) which is true since

o1
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1

oy sA A 1 SR ¥ 1
(iii) 5T7O > (5L’O = n+y 2> pn <= P > (WZV) which is true since (1717) < shy

A2

Therefore 5‘20 < 5%,0 < (5%7 I

Strategys B is chosen if and only if § < 5?70 and § > 574’1:. As 62‘70 < 5147L, Strategys B
is dominated and never chosen by commuter in Group A. Figure 10 summarizes results of

the proof.

Strategy T Strategy O

(e
(@&

A A A
6L,O 6T,O 6T,L

< e e
> e e

Figure 10: Strategy choice of a commuter in Group A depending on the taxi trip time d.

Appendix B Proof of Proposition 2

We wish to compare expected costs of Strategys O, L and T, denoted EC (O), EC (L)
and EC (T) respectively, to define a choice rule for a commuter in Group B. From

equations (1) and (2), we can write:

EC (0)

£+ [(1—P)n+ PpBlz,
Ps(a+71)+(1—-P)x,

EC (L)
EC(T)=6(a+71).

Therefore we have

H—i—(%n-ﬁ-ﬁ)x
a+T

EC(0) < EC (L) iff 6 > =600, (13)

K

EC(T) < EC (L) iff § < —
a+T

= 57@,L) (14)
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EC(T) < BC(0) ifi§ < "I PInt PAle _ o | (15)

We use A.1 and A.2 to rankéLO, 5TL and (5TL
(i) 57@,L<5LO<:>O< (15En + B) which is true.
(ii) 5£L < 5:1,9170 <= 0< (1 — P)n—+ P which is true.

(i) 62, < 68, &= (1-P)n+PB < =9+ B + 1 > & which is true since

+>1by A.l.

Therefore 5T 1 < 5B < 6B Lo- Figure 11 summarizes results of the proof.

Strategy T Strategy L Strategy O
° G G ®
. T T T o
¢ 5?,L 5713,0 550 -

Figure 11: Strategy choice of a commuter in Group B depending on the taxi trip time §.

Appendix C Proof of Proposition 3

We wish to show that P€, the probability of the bus being on time at equilibrium, and ¢,
the bus fare, increase with 7 the taxi fare. We first show that 0P¢/0r > 0 (i) and that
0k¢/0t > 0 (ii). Then we check that boundaries of interval, ¢{ (iii) and c§ (iv), increase

with 7. Let us recall expressions of equilibrium variables (see equations (6a) and (6b)):

1.
kS = §{Ae—[(1—Pe)n+(1— 0) P°B+60(1— P°) |z},
(
% if ¢ > ¢5,
(& — €5 .
Y
1 if ¢ < cf,
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where A® = A (& +7°), 7 =n— (1—0)B+ 07y, ¢§ = x°x/A° and where ¢§ = 2¢§. By

substituting k° in P¢, we obtain

1 .
5 if ¢ > 5,
e __ Ae—(n+0y)z|nz .
P= W if ¢ € [ef; ¢5]
1 if ¢ < cf,

where ¢ = [A¢ — (1 — 0) Bz] iz /2A° and where ¢§ = (A® — 7z) fjz/2A°. We now derive
P, k¢ c{ and c§ on 7.

o P _ Ao 2c(nt0y)a—(ijz)® 9pe - (ijz)* :
(i) 5= = Anz eie—(n)?] so G- >0ifc> ST Let us substitute ¢ by ¢{ the

minimal value of the interval [c{; c§]. Thus

e ? _ww[A— (4 0y)a](1-0)px
L 2(n+6y)x 2A¢ (4 07) x '

Yet % >0 and A® — (n+6~)z > 0 by A.3. We therefore have % > 0;

ooy Oc _ (1-6)Baiz >
(111) ore — 2A(atazi+‘re)2 el 0

oy 95 (7jz)*
(IV) Ire 2A(O¢mm+7’)2 > 0.

P¢, the probability of the bus being on time at equilibrium, and x¢, the bus fare,

increase well with 7¢ the taxi fare.

Appendix D Proof: optimal bus and taxi fare

The social planner chooses the punctuality level P, the bus fare x and taxi fare 7 so as to

minimize social cost. The first-order conditions for the socially optimal bus and taxi prices
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are given by

asC k(a@+d)—(r—d)I'z

Ok - A(d+7‘)2 =0, (163)
0SC  (t1—d)A—-k(a+d)(k+Tx)
or Aa+7)° -0 (16b)

where '=(1—-P)n+(1—-0)PB+60(1 —P)v, A= rl'z + x and
x=0[1=P)(n+y > +(1—-0)P (Y50 +B) .T,']Q. Therefore from (16a) and (16b)

K = m, (17a)

By substituting (17a) into (17b), the first-best optimal bus and taxi prices can be written

aSIQ

Appendix E Proof of Proposition 4

We wish to show that the probability of the bus being on time is higher in the optimal
situation than in equilibrium when # = 1. For that, we need to show that the result of
Py | — P§_, is positive (i) and that the limits of the variation intervals are well sorted i.e.

g1 = gy (i) and 59y > 55 (iiD):

cA(nt+)z[A—(n+7)z]

: o _ pe _ V \ > 3
() Piy = Foa {28~ [(nt7)a]® Heb~[(nt+y)2]"} = 0by A3;
(i) ¢fp=y — 91 = W >0 by A.3;

(i) gy — gy = LEZTONT o gy g5,

128econd-order conditions are satisfied as they require (tazi +d) >0 and A > 0.
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The probability of the bus being on time well and truly is higher in the optimal situation

than in equilibrium.

Appendix F Proof of Proposition 5

The idea of the proof is that the difference between optimal demand for the bus and
equilibrium demand for the bus is a function of ¢, the bus punctuality cost and d the taxi
operating cost. Throughout this proof we consider the extreme case where § = 1. Let us

recall the expression of demand for the bus function:

A
Dius = /5 £(5)ds,

A
T,0

where 5%,0 =k+(1—=P)(n+v)x]/(&+ 7). We can define

N — 1o e _ Ho"i_(l_Po)(n"i_'Y)x
D=Dy,,—Dp,, = 1— INCERD
K+ (1=P)(n+y)x
_<1_ INCEED >

where k° = 0, 7° = d, k° = $[A(@+7°) — (1—P°) (n+7)a] and 7° = & + 2d. We
therefore have

20 (6 +d) = (3+ P*—4P°) (n+7) @

D =
AN (6 + d)

Since P¢ and P° are functions of ¢ (equations (6b) and (9a)), we derive D on c. For

that, we need to know the order of cf, c§, ¢ and ¢5. We know that c¢{ < c¢§ and ¢f < ¢.

2K°NT
C?_CS: (77—’—7)1'_ Ae )
1— P)2k®
= g-g= (n+7)fc[1—(A3},

= &= (77—1—7):5[1—(1—P) (1—123”)] > 0.

e
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We therefore have c¢f < ¢§ < ¢f < ¢§ and we distinguish between five sub-cases defined
depending on the position of c relatively to cf, c7, ¢§ and ¢§. Indeed the expression of the

derivative is different according to the value of c.
(i) Ifc < ¢§ then P¢ = P° =1 and D/dc = 0.
(ii) If ¢ € [c§;c§] then P° =1 and OD/dc > 0.
(iii) Ifc € [c§;c§] then P° =1, P° =1 and §D/dc = 0.
(iv) If ¢ € [c9; ¢8] then P¢ = § and 9D /dc < 0.
(v) If ¢ > ¢§ then P® = P° = L and 9D/dc = 0.

-2

Critical values of D (c) follow:

o]
—
o)
=0
N—
I
N

D(&5) = 5+ izt

D) - § - &5,

where A = A (qgagi + d).

The variations of the difference between optimal demand for the bus and equilibrium
demand for the bus are described in Table 3.

We know that D (c§) > 0 and D (c§) > D (c9). According to Table 3, we can distinguish
between two cases where the difference between optimal and equilibrium demand for the
bus is positive. First, if the minimum value of the difference, D (c§) is positive, the difference

is positive. Second, if this minimum value of the difference is negative, then as D (¢§) > 0

and D (c)strictly decreases between ¢ and c3, there exists a unique value of ¢ denoted ¢
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Table 3: Variation table of the difference between optimal demand for the bus and equi-
librium demand for the bus depending on the cost of reliability.

c 0 cf 5 ct 5 00
oD
D 0 - o [ - 0
D(g) —
D (o) /
— D) h
D() —

for which D?

bus

= Dy,.. The difference is then positive if ¢ < c°.
c=c°¢

One critical value of the taxi operating cost df may be defined such that

D(§) >0 < 2A(a+d)— (3+P°—4P°) (n+v)z >0,
73(7]‘1‘7)5” —a=df.

— d>
- 4A
We can now write
it  d>df,
>0
D orif d<d§ andc<c,

<0 if d<df andc>c° -

Appendix G Proof of lemma 6

The idea of the proof is that the difference between optimal demand for the bus and
equilibrium demand for the bus is a function of the cost of the bus reliability ¢ and the
operating cost of taxi d. We deal with the case where 0 = 0. Let us recall expressions of

the demand function:
§B, A

D = (1-P) /5 s+ [ Fo)de,

B 5B
T,L L,O
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where 550 =[k+ (%17 +B) x| /(@+7) and 5?1; = k/ (& + 7). We therefore have:

2A (@ +d) + (4P_ — Pj_o) (n — ) = — 3nz
bus 4A (& + d) ‘

Then

Sz — (45— P o) (n-Ba .
2A '

D>0 < d>

Considering max (4P5_, — P§_,) = % and min (4P§_, — P§_,) = 1, we can define d§ and
d§ such as if d < d§ then D < 0 and if d > d§ then D > 0. Consequently we have

d5=— (31— 2B) z/2A — & and d§ = (2n + B) /2A — & We may write:

_|>o0ifd>
D
<0 ifd < ds.

Appendix H Discussion of Conjecture 2

With values specified in Table 1, we can draw the curve of the difference between optimal
demand for the bus and equilibrium demand for the bus depending on the operating taxi
cost d in Figure 12. When c is small, P° = P¢ = 1 and when c is large, P° = P = 1/2.
The lemma 6 is illustrated. D functions are first negative then positive. Moreover they
increase with d. The sign of D between d§ and d§ depends on the values of P° and P°¢
which depend on ¢ (see Equations (6b) and (9b)). Therefore we conjecture that between
ds and dj, D is positive when ¢ < ¢ and negative when ¢ > ¢, where ¢§ is defined as the

unique solution of Dj_, = Dy_,.
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the bus depending on operating taxi cost d for Group B.



Chapter 11

Economics of crowding in public

transport

1 Introduction

Crowding is a growing problem in urban mass transit systems around the world.! A recent
roundtable report by the International Transport Forum identifies crowding as a major
source of inconvenience that increases the cost of travel (OECD, 2014). Several recent
studies have documented the aggregate cost of crowding on transit networks. For example,
Prud’homme et al. (2012) estimate that the 8% increase in densities? in the Paris subway
between 2002 and 2007 imposed a welfare loss in 2007 of at least €75 million. Veitch et al.
(2013) estimate the annual cost of crowding in Melbourne metropolitan trains in 2011 at
€208 million. The costs of crowding are likely to grow as usage of public transit increases
faster than transit investment.?

Transit crowding imposes disutility on riders in several ways. It increases waiting
time (Oldfield and Bly, 1988) and in-vehicle travel time (Lin and Wilson, 1992), and
reduces travel time reliability (Bates et al., 2001). Psychological studies find that crowding

causes stress and feelings of exhaustion (Mohd Mahudin et al., 2012). A number of studies

!See for example The Economist (2003), for London; Kelton (2012), for Adelaide; Wei (2011), for
Beijing; and Chakraborty (2011), for Nagpur, India.

2Measured in passengers per square meter aboard trains.

3Allen and Levinson (2014) and King et al. (2014) document the rapid growth in usage of commuter
rail services in North America.

61



62 CHAPTER II. ECONOMICS OF CROWDING IN PUBLIC TRANSPORT

document how disutility from in-vehicle time increases with the number of users (Li and
Hensher, 2011; Wardman and Whelan, 2011; Kroes et al., 2014; Haywood and Koning,
2015; de Lapparent and Koning, 2015). Discomfort also occurs while entering and exiting
vehicles, accessing stations on walkways and escalators, and so on. Extreme crowding is
also a concern for emergency evacuation of facilities.

Crowding can affect peoples’ transit choices in several ways including: departure time,
transit line or route (Raveau et al., 2011) and destination. It can also influence their
decisions whether to take transit, use another travel mode or not travel at all. Crowding is
therefore an important factor in making investments in rolling stock and station capacity,
and should be considered in cost-benefit analysis of transit projects (Parry and Small,
2009). Yet many policies that are designed to discourage driving and/or encourage use of
public transport take into account road traffic congestion (Anderson, 2014) while ignoring
the fact that transit capacity constraints and crowding limit the scope for shifting drivers
off the road.

There is a large operations research literature on public transit system design (Vuchic,
2005). Beginning with Mohring (1972), an extensive economics literature has also devel-
oped on public transit capacity investments, service frequency, and optimal pricing and
subsidy policy. There is also a rapidly growing literature on public transport crowding.*
These three branches of literature have made significant advances in understanding public
transit systems and crowding. Nevertheless, most studies have employed static models that
cannot account for travelers’ time-of-use decisions and the large variations in ridership and
crowding by time of day that are typically seen in transit systems. Trip-timing decisions
are clearly important for transit. Users who travel during peak hours encounter crowded
vehicles, and may be unable to board the first vehicle that arrives at the station or stop.
Alternatively, users may choose to travel before or after the peak hour in a less crowded
vehicle, but arrive earlier or later than they would like.?

The trade-off between crowding costs and scheduling costs is fundamental for under-

standing transit users’ behavior and allocation of time to activities, particularly in the

“See Tirachini et al. (2013) for a review.
®Such behaviour is documented in Pepper et al. (2003) and Pownall et al. (2008).
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short run (Peer et al., 2015). Automobile drivers face a similar trade-off between traffic
congestion delays and scheduling costs that has been studied for many years. Vickrey
(1969) was the first to do so by assuming that congestion takes the form of queuing behind
a bottleneck, and that travellers incur a schedule delay cost if they complete their trip
before or after their ideal arrival time. Building on Vickrey (1969), as well as the time
allocation models of Becker (1965) and DeSerpa (1971), Small (1982) developed a utility-
theoretic model of activity scheduling, and estimated individuals’ preferences for when to
commute to work when travel time varies with departure time. Henderson (1974, 1981)
and Chu (1995) adopted the same demand-side specification as Vickrey (1969) and Small
(1982), but instead of queuing assumed that travel delay manifests as flow congestion.
As we will show, the public transit model we use has some of the same properties as the
Henderson-Chu model.

A few studies of public transit systems have adopted models similar to the Vickrey
and Henderson-Chu models. Kraus and Yoshida (2002) use the bottleneck model to an-
alyze optimal pricing and capacity decisions for a rail service between a single origin and
destination. They assume that trains run on a fixed timetable with a uniform headway,
and travel time from origin to destination is independent of passenger load. Congestion
takes the form of queuing delay. The number of people who board a train is limited by
its capacity, and service discipline is First Come First Served. Users incur schedule delay
costs from arriving early that are proportional to the amount of time they arrive early.
Late arrivals are ruled out. In equilibrium, users who travel at a popular time have to wait
in a queue at the origin station for several trains to pass before they can board. Those
who take the earliest train avoid waiting, but incur the highest early-arrival costs.

Unlike Kraus and Yoshida (2002), Huang et al. (2005) assume that congestion is man-
ifest as crowding rather than queuing. Instead of FCFS priority, travelers board trains
in random order and everyone waiting for a train is able to get on. Huang et al. (2005)
solve for the equilibrium distribution of users across trains, the fare and headway for the
social optimum as well as two private ownership regimes. Several studies build on Huang
et al. (2005). Huang et al. (2007) add mode choice by assuming that travellers can choose

between taking a bus and driving. Buses and cars share the same right of way which is
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subject to bottleneck queuing congestion. Tian et al. (2007) consider a multiple-origin-
single-destination corridor with transit as the only travel mode. They establish several
properties of the equilibrium times at which users board trains at each origin station. In
an extension of their model they also make a distinction between the crowding or discom-
fort cost experienced by users who obtain a seat, and the costs incurred by users who have
to stand. Tian et al. (2009b) solve the first-best optimum in the Tian et al. (2007) model,
and derive train-dependent fares that supports the optimum. Xie and Fukuda (2014) do
likewise using a different specification of scheduling preferences in which the costs of ar-
riving early or late are quadratic rather than linear. Tian et al. (2009a) revert to a single
origin-destination pair network, but distinguish between seated and standing passengers
and apply the model to a light rail line in Beijing. Finally, de Palma et al. (2015) focus in
more depth than earlier studies on the functional form of the crowding cost function for
seated and standing passengers. They derive an optimal timetable and pricing scheme for
several stylized settings.

Most of the studies reviewed in the previous paragraph take an engineering and/or
operational research view of crowding, and do not explore all the economic aspects of the
problem. In this paper we conduct a thorough economic analysis of trip-timing decisions
and crowding on a transit line connecting a single origin and destination. Our work builds
on the earlier studies in several directions. First, we examine and compare three fare
regimes: a zero fare, an optimal uniform fare that is the same for all trains, and an optimal
train-dependent fare. The optimal train-dependent fare internalizes crowding congestion
and supports the socially optimal number and distribution of passengers on each train. We
show how the properties of the equilibrium distribution depend on the curvature of the
crowding cost function. Second, we compare passenger load patterns in the fare regimes
and establish under what conditions loads are more even in the social optimum than with
a uniform or zero fare. Third, we derive the welfare gain from implementing optimal train-
dependent fares and examine how it depends on functional forms and parameter values.

Fourth, we derive the optimal number of trains and train capacity for each fare regime.
Given linear crowding and schedule delay cost functions we are able to establish partial

rankings across regimes. We show that for a given train capacity, more trains are operated
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in the social optimum than in the optimal uniform-fare regime. (This is because usage
is more spread out in the social optimum so that additional trains are more heavily used
and valuable to add.) Similarly, if the number of trains is held constant, optimal train
capacity is higher in the social optimum than the optimal uniform-fare regime. Finally,
we calibrate the model to a portion of the Paris RER A mass transit system, and derive
rough estimates of the potential welfare gains from introducing optimal train-dependent
fares.

Throughout the analysis we compare results with those of the Vickrey and Henderson-
Chu road traffic congestion models. Many of the results are intuitive, but a few are not.
In particular, in the short run while capacity is fixed, the welfare gain from implementing
train-dependent fares to internalize crowding cost externalities does not necessarily increase
with the total number of users of the system. Indeed, if crowding costs grow at an increasing
rate with the number of passengers aboard a train, the welfare gain actually decreases with
the total number of users. This counterintuitive finding might help to explain why time-
of-day dependent fare systems are still relatively rare.

The paper is organized as follows. Section 2 describes the general model and derives
some properties of the no-fare equilibrium and the social optimum. Section 3 analyzes the
case with linear crowding costs. Section 4 introduces elastic demand. Section 5 considers
the long run in which the number of trains and train capacity are endogenous. Section 6

presents a numerical example based on the Paris RER A, and Section 7 concludes.

2 The general model with inelastic demand

In this section we describe and analyze a general model of public transit crowding which
we will occasionally refer to as the “PTC” model. A transit line connects two stations
without intermediate stops. The line operates on a timetable to which the operator adheres
precisely. There are m trains, indexed in order of departure.® Train k leaves the origin
station at time tg, kK = 1,...,m. The timetable is left unspecified until Section 6 where it

is assumed that the headway between successive trains is constant. Travel time aboard

A notational glossary is provided in the Appendix.
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a train is independent of both departure time and train occupancy, and without loss of
generality it is normalized to zero. Each train therefore arrives at the destination station
as soon as it leaves the origin station.

Each morning a fixed number, IV, of identical individuals use the line to get to work.
Users know the timetable and choose which train to take. Users are assumed to board a
train in random order, and thus cannot increase their chance of securing a good seat by
arriving at the origin station early. Users choose between trains based on the expected
crowding disutility, g (n), where n is the (known) number of users taking the same train.
Function g (n) is an average over possible states: securing a good seat, getting a bad seat,
having to stand in the middle of the corridor, standing close to the door, etc.. Crowding
disutility is assumed to be zero on an empty train (i.e., g (0) = 0), strictly increasing with
n (i.e., ¢’ () > 0), and twice continuously differentiable. Several properties of the model
derived later depend on the curvature of g (n) which will be described by the elasticity of
¢’ (n) with respect to n: € (n) = ¢” (n)n/g’ (n). The elasticity is respectively positive, zero
or negative as g (n) is convex, linear or concave.

Because trains are costly to procure and operate, it is natural to assume that all m
trains are used. Letting nj denote the number of users on train k& we thus assume that
N is large enough that ng > 0, k = 1...m. Since g(n) > 0 for n > 0, this implies that
g (ng) >0, k = 1...m: users incur a crowding disutility on every train.

Since travel time is normalized to zero, an individual is either at home or at work.
Time at home yields a time-varying utility uy (¢), and time at work a time-varying utility
of uy, (t). Let (tp,tg) denote the time interval during which all travel takes place. During
this interval, uy, (¢) is assumed to be weakly decreasing and w,, (t) is weakly increasing.
The functions intersect at time ¢* which is the desired arrival time (i.e., up (t*) = uy, (t%)).

A user taking train k gains a total utility:

Uk:/ttkuh(t)dt—i—/tEuw(t)dt—g(nk).

B ty

If there were no need for travel from home to work, the user would switch from home to

work at t* without suffering crowding disutility. As a consequence, his utility would be
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maximal and equal to

t* te
umes = / up, (t) dt + / Uy (1) dt.
t

B t*

We define the user travel cost, ci, as the difference between this hypothetical utility and

the actual utility of taking train k:

up (t) — uy (B))dt if ¢t t*
cp = UM = Uy =g (ng) + ttkk( n (t) (1)) .f k<
(U (t) —up (t))dt if tp >t*

Note that maximizing Uy is equivalent to minimizing cg. It is convenient to define the

schedule delay cost, 6 (ty):

t*
S(te) =19 "

U (g (8) = up (8)) dt if ty > t*

(un () — wy () dt if tp <t*

The schedule delay cost is the disutility accumulated while an individual is not where his
utility is greatest. When the individual arrives at work before t*, disutility is incurred
because utility from being at home before ¢* is higher than utility at work. Similarly,
utility is foregone when arriving at work after t* because time is more valuable at work
than at home. Function § (¢) is weakly decreasing for ¢ < ¢* and weakly increasing for
t >t

In Section 3 is is assumed that 0 (t) has a piecewise linear form:

B —ty) if tp <t
d(tg) = )
Yt —t7) if ty 2t
where 8 and ~ are respectively marginal disutilites from arriving early and late. This
specification, called “step preferences”, is used in most studies of road traffic congestion

and public transit crowding.”

This piecewise linear form arises when the utilities flows from being at home and at

"Xie and Fukuda (2014) have recently explored an alternative specification called “step preferences”
in which up, (t) is a linear decreasing function, and u. (t) is a linear increasing function. They estimate
both specifications using Japanese data and do not find a clear advantage between them in terms of
goodness-of-fit.



68 CHAPTER II. ECONOMICS OF CROWDING IN PUBLIC TRANSPORT

work satisfy®
B if tp <t*

=y if tg>t"

up (t) = ww (t) =

In the general case, a user taking train k& with n; users incurs a combined schedule

delay and crowding disutility of
ckzé(tk)—i—g(nk), k=1,..,m. (18)

To economize on writing, ¢ (t) is henceforth written d unless time dependence is required
for clarity. Trains that arrive close to t* have small values of d;, and will sometimes be
called timely trains. As shown in the next subsection, timely trains are more heavily used

than trains with larger values of dj.

2.1 User equilibrium

In this subsection we derive and characterize user equilibrium when there is no fare. With
N fixed, a fare would not affect either the division of users between trains or crowding
costs. A time-varying fare will be considered for the social optimum in subsection 2.2, and
a uniform fare (i.e., independent of k) will be introduced for the analysis of user equilibrium
with elastic demand in Section 4.

Let superscript “e” denote the no-fare or user equilibrium (UE), and ¢© the equilibrium
trip cost. In UE, users distribute themselves between trains so that the user cost on every

train is ¢f. Hence

ok+g(ng) =c, k=1,...m. (19)

Given ¢’ (.) > 0, the inverse function g~!(.) exists, with ¢g=! (0) = 0 and (g_l)/(.) > 0.

Eq. (19) can therefore be solved for the nf, as a function of ¢*:

ng =g 't —&), k=1,..,m. (20)

8This property is discussed by Tseng and Verhoef (2008).
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Figure 13: Schedule delay 0 (tx), crowding cost g (ng) and equilibrium cost ¢, for seven
trains, t5 = t*

Since every user has to take some train,

m
S g =N, (21)
k=1

or
m

Y g e =8 - N =0 (22)
k=1

Eq. (22) implicitly determines ¢¢. Figure 13 depicts a UE for seven trains (m = 7). Train
k =5 arrives on time and carries the most users. Less timely trains carry fewer passengers
because users incur schedule delay costs.

Comparative statics properties of UE with respect to IV are easily derived. Equilibrium

cost increases with the total number of passengers:

Oc 1
ON YL gt

> 0, (23)

where ug = g7! [¢® (N) — 01]. The second derivative is:

8266 o m g// (Uk)
N 2 Ty 2
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The sign of expression (24) depends on whether g(.) is convex or concave. Properties (23)

and (24) of UE are summarized in the following proposition.

Proposition 7. In equilibrium, user cost is an increasing function of N. It is conver,

linear or concave if g (.) is respectively convex, linear or concave.

Similar to the models of Vickrey (1969), Henderson (1981), Chu (1995) and Kraus and
Yoshida (2002), user cost in the PT'C model is an increasing function of total patronage. All
the models have this property because they feature congestion in some form. However, the
curvature of ¢ (N) differs across the models. In Vickrey’s model the curvature of ¢¢ (V)
matches that of the schedule delay cost function. With step preferences, the schedule
delay cost function is linear and ¢ (IV) is also linear. If the schedule delay cost function is
convex (resp. concave), then ¢® (V) is convex (resp. concave). It is straightforward to show
that the Kraus and Yoshida (2002) model also has these properties. By contrast, in the
Henderson/Chu model ¢ (N) is concave if the schedule delay cost function is either linear
or concave. The Henderson/Chu model behaves differently because, with flow congestion,
there is a trade-off between travel speed and flow. As demand increases, the arrival rate
of vehicles at the destination increases and the duration of the travel period increases less
than proportionally with N. In effect, the road (or other facility) has more flexibility to
accommodate additional traffic than the bottleneck in Vickrey’s model.

In contrast to the other models, in the PT'C' model the curvature of ¢¢ (/V) depends on
the crowding cost function rather than the schedule delay cost function. This is because the
train timetable is fixed in the short run, and users cannot travel earlier or later in response
to growing demand. Furthermore, since each train’s arrival time is fixed, the schedule
delay cost incurred when taking a given train does not depend on N. The only way the
service can accommodate additional demand is for each train to carry more passengers.
Equilibrium user cost therefore increases at an increasing (resp. decreasing) rate with N
if the marginal cost of crowding aboard a train increases (resp. decreases) with ridership.

User equilibrium in the PT'C model is clearly inefficient because users impose an exter-

nal crowding cost on each other. The marginal social cost of a trip, MSC, is determined
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by differentiating the equilibrium total cost function, T’C® = N x ¢°, with respect to V:

orc _ e +Nac

MSC*® = N N

The average marginal external cost of a trip is therefore

oc®
ON’

MEC® = MSC® — ¢ =N (25)

With elastic demand (Section 4) it is optimal to charge a uniform fare equal to the

average external cost to avoid over-use of public transport:

oc®

u_ NZZ
T ON’

where superscript “u” denotes the optimal uniform fare. Total revenue from this fare is

oc®

Y =T7"N=N>_—.
R =71 N

(26)

The optimal uniform fare does not support the social optimum because the marginal
external cost of crowding varies with train occupancy and it is larger on more heavily used
trains. As explained in the next subsection, the social optimum can be achieved by levying

train-specific fares.

2.2 Social Optimum

The social optimum (SO) differs from the UE because users are distributed between trains
to equalize the marginal social costs of trips rather than their private costs. The user cost

of a trip on train k is given by Eq. (18). The marginal social cost of using train k is

0 (cxny)

MSCy = g

=0(tg) +v(ng), k=1,...,m, (27)

where v (ng) = g (ng) + nrg’ (ng) is the marginal social crowding cost on train k. The

marginal external cost equals the difference between the right-hand sides of Eq. (27) and
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Eq. (18):
MECk:MSCk—ck:nkg’(nk), k:L...,m. (28)

Let superscript “o” denote the SO. Total costs in the SO are TC® = ;" | ¢xng, and
the marginal social cost of a trip is M SC? = %. At the optimum, users are distributed

across trains so that M SCy, = MSC° for every train:
0k +v(ny)=MSC° k=1,..,m. (29)

Since ¢’ (.) > 0 for n > 0, the marginal social crowding cost is always positive. In practice,
it may not increase monotonically at all levels of ridership.? To facilitate analysis, however,
we assume that v’(.) > 0. This is equivalent to assuming that ¢” (n) > —2¢' (n) /n, or

e(n) > -2
Assumption 4. The elasticity of g’ (n) with respect to n exceeds —2: € (n) > —2.

Assumption 4 is satisfied for all convex ¢ (.) functions and for all power function g (n) o

n”, r < 0. It implies that the marginal social cost of usage increases with the number of

users on a train. Given Assumption 4, the inverse function v=!(.) exists, and Eq. (29)
yields

ng = v [MSC® —6;]. (30)

Since all users must take some train in the SO, > ;" ; ny = N and Eq. (30) implies:
> v [MSC - 6] = N =0. (31)
k=1

Because functions g (.) and v (.) are both positive and increasing, (31) has the same qual-
itative properties as (22) describing the UE, and the following counterpart to Prop. 7 can

be stated:

Proposition 8. In the social optimum, the marginal social cost of a trip is an increasing

function of N. It is convex, linear or concave if v (.) is respectively convex, linear or

9For example, v(.) may drop when all seats are occupied and additional riders have to stand; see
de Palma et al. (2015).
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concave.

Comparing Prop. 8 with Prop. 7 it is clear that v(.) plays the same role in shaping the
SO as g (.) does for the UE.!9 Prop. 8 contrasts again with the corresponding properties
of the SO in the Vickrey (1969), Henderson (1981), Chu (1995) and Kraus and Yoshida
(2002) models. For example, with linear schedule delay costs the marginal social cost of a
trip in the Vickrey model is a linear function of N. In the PT'C model it instead depends
on the crowding cost function.

We now consider the distribution of ridership over trains. Intuition might suggest that
passenger loads are spread more evenly in the SO than the UE because smoother loads
should reduce the total costs of crowding as discussed in de Palma et al. (2015). In fact,
this is not invariably true but rather depends on how the marginal external crowding cost
varies with usage. Now

dMEC _d (ng’ (n))

dn =g () +ng"(n) =g (n) (1 +£(n)).

The marginal external crowding cost increases with usage if £ (n) > —1, and decreases with
usage if € (n) < —1. The load patterns in the SO and UE are compared in the following

proposition.

Proposition 9. Ife(n) > —1 (e(n) < —1, respectively) the social optimum distribution
of users across trains is a mean-preserving spread (respectively contraction) of the user

equilibrium distribution of users across trains.

Proof: see Appendix A. The mean-preserving spread concept has been defined by
Rothschild and Stiglitz (1970).' The SO load pattern is a mean-preserving spread of
the UE load pattern if the SO load pattern has more weight in the tails than the UE
load pattern. It has €(n) > —1 applies if the marginal external crowding cost increases

monotonically with passenger load.'? If so, the marginal social costs of trips on two trains

0Tjan et al. (2009b) also remark on this property.

"The case of interest for our paper is p. 229 in subsection 11.2 Mean Preserving Spreads: Discrete
Distributions.

12Gimilar to Assumption 4, which is weaker, € (n) > —1 is satisfied for all convex crowding cost functions,
and crowding cost functions that belong to the class of power functions: g (n) xn”, r > 0.
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with unequal loads differ by more than their user costs. Consequently, the SO balance
between crowding costs and schedule delay costs calls for a smaller range of train loads
than in the UE. Conversely, if € (n) < —1, which is possible only if g(.) is sufficiently
concave,'3 then passenger loads are more peaked in the SO than the UE.

In summary, the difference in train loads between the SO and UE is determined by the
curvature of the crowding cost function. According to most empirical studies g(.) is linear
or convex (Wardman and Whelan, 2011; Haywood and Koning, 2015; de Palma et al.,
2015). As a consequence, empirical evidences suggest that € (n) > 0, and that ridership in
the UE is too concentrated on timely trains and should be spread out.

Regardless of whether the SO is more or less peaked than the UE, the SO usage pattern
can be decentralized by charging a fare on train k£ equal to the marginal external cost of

usage.'* We will call the fare pattern the SO-fare. Given Eq. (28) the SO-fare is:

w=n9 (n}), k=1,...m. (32)

With this fare structure in place, users of train k incur a private cost equal to the social
cost of a trip:

ph=cp+10=MSC° k=1,..m. (33)

The SO is more efficient than the UE because users are better distributed between trains.
However, inclusive of the SO-fare users incur a higher private cost in the SO. To see this,
note that at least one train is more crowded in the SO than the UE. Compared to the UE,
in the SO a rider of that train incurs the same schedule delay cost but a higher crowding
cost and a positive fare. Since all users incur the same private cost in the UE, and all users
incur the same private cost in the SO, private costs are higher in the SO.'

Unless fare revenues are used to improve service in some way, charging fares to price
crowding costs in the PT'C model leaves users worse off. This is also true of pricing

road traffic congestion in the Henderson/Chu model although the physical effects of tolling

3For example, Case 2 of Prop. 9 holds for the function g (n) = co + ¢11In(n) — kn for c¢o > k and
n € [1,c1/k).

1The fare is set according to Pigouvian principles. Revenue generation or other goals are ruled out.

15The difference in private cost is, however, smaller than the average fare paid because the social (i.e.,
resource) costs of travel are lower in the SO.
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differ. In their model, tolling causes the departure period to spread out and the first and
last users incur higher schedule delay costs than in the UE. Because the first and last users
incur no congestion delay in either the UE or the SO, their costs are higher in the SO. Since
all users incur the same private costs in the UE and SO, equilibrium private user costs are
increased by tolling. By contrast, in the Vickrey and Kraus-Yoshida models congestion
pricing leaves private costs unchanged because the travel period is not affected.

The Henderson/Chu and Vickrey/Kraus-Yoshida models therefore differ in the inci-
dence of tolling costs. However, in all four models congestion toll revenues increase with
N. This is because the average congestion externality increases with N, and hence so does
the average toll. To determine how fare revenues in the PT'C model vary with N, let R°
denote total revenue from the SO-fare. Revenues from SO-fare equal R° = > | n{1p
with nf, given in Eq. (30) and 7 in Eq. (32), and revenues from optimal uniform fare are

given by Eq. (26).
Proposition 10. Let i = u, 0 index the pricing regime. Then,

OR' NaMSCi
ON ON

Proof: see Appendix B. Prop 10 reveals that fare revenues increase if the marginal
social cost of a trip increases with total usage. This will be the case unless the crowding
cost function is sufficiently concave.

Next we examine how the welfare gain from implementing the SO-fare varies with
usage. Let G°° = T'C¢ — T'C° denote the welfare gain in shifting from the UE to the SO.
Intuition suggests that G increases with N: first because crowding becomes more onerous
for users on average, and second because more users suffer the increased cost. However, we
already know that the rate at which the cost of crowding increases with load depends on
the curvature of the crowding cost function. It turns out that properties of the crowding
cost function also govern how G depends on N.

Consider the following assumptions:

Assumption 5. The marginal external cost of crowding increases with load: € (n) > —1.



76 CHAPTER II. ECONOMICS OF CROWDING IN PUBLIC TRANSPORT

Assumption 6a. The marginal social cost of crowding is a strictly convex function of load

(i.e., v" (n) > 0), and £ (n) is a nonincreasing function of load (i.e., dfi(:) <0).

Assumption 6b. The marginal social cost of crowding is a strictly concave function of

. . . . . de(n
load (i.e., v" (n) <0), and e (n) is a nondecreasing function of load (i.e., Z(n) >0).

Assumption 6a holds if g (n) is convex, and Assumption 6b holds if g (n) is concave. The
effect of total ridership on the welfare gain from the SO-fare is described in the following

proposition.

Proposition 11. Let Assumption 5 hold. The welfare gain from the SO-fare, G°, de-
creases with N, increases with N or is independent of N if Assumption 6a holds, Assump-

tion 6b holds or if g (-) is linear, respectively.

Proof: see Appendix C. Proposition 11 identifies conditions under which G®° increases,
decreases, or is independent of total ridership. Since the conditions are not collectively
exhaustive, Prop. 11 does not establish the direction of change for all cases. Nevertheless,
the conditions span a broad class of functions.

As noted earlier, most empirical studies find that g(.) is linear or convex. According
to Prop. 11, G*° is then either constant or a decreasing function of N. This is a surprise
since it goes against the intuition described above. To understand why, note that the
welfare gain derives from reallocating users between trains. If g(.) is convex, Case 1 of
Prop. 9 applies and users are reallocated more evenly. Since the difference in crowding
costs between two successive trains equals the difference in schedule delay costs as per Eq.
(19), the marginal benefit from starting to reallocate users is independent of N. However,
as N increases the marginal crowding cost on each train becomes higher and the UE and
SO train loads become more similar. Consequently, the amount of reallocation decreases,
and the total welfare gain therefore falls as well. The argument acts in reverse if g (.) is
concave since the optimal amount of reallocation then increases with V.

Another way to view Prop. 11 is in terms of the marginal social cost of usage, which is
MSC® in the UE and M SC° in the SO. If MSC° < MSC*€, an additional user causes total
costs to rise by less in the SO than the UE, and G¢° rises. Conversely, if M SC° > MSC*®,

total costs rise more in the SO and G*° falls. Thus, if ¢(.) is convex an additional user is,
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paradoxically, more costly to accommodate in the SO than in the UE even though users are
distributed optimally between trains in the SO. If g(.) is linear, M SC° = M SC® and the
difference in total costs between UE and SO is independent of N. In effect, the benefits of
internalizing the crowding cost externality are exhausted once total usage is large enough
for all trains to be used. We illustrate this case diagrammatically in the next section.

For most of the balance of the paper we limit attention to a particular instance of the
model in which the crowding cost function is linear. In Sections 5 and 6 we assume that
the schedule delay cost function is linear as well. We choose linear functions for three
reasons. First, it enhances analytical tractability and the model can be extended to allow
elastic demand. The optimal number of trains and train capacity can be characterized as
well. Second, linearity facilitates comparisons with the bottleneck model. Third, empirical
studies often find that schedule delay and crowding costs are close to linear (see Ward-
man et al., 2012, for scheduling cost, and Wardman, 2004; Wardman and Whelan, 2011;

Haywood and Koning, 2015, for crowding cost).

3 Linear crowding costs

We now assume that the crowding cost function is linear in usage: g (n) = A%, where s > 0
is a measure of train capacity, and A > 0. The marginal social crowding cost function is
v(n) = 2A\Z; ie. twice the private crowding cost. From Eq. (18) the cost of taking train
k is therefore

ck=5k+x%, k=1,..,m. (34)

3.1 User equilibrium with a uniform fare

In the uniform-fare regime the same fare is charged for all trains. The user equilibrium
analyzed in subsection 2.1 is a special case where the fare is zero. We begin this subsection
by setting the fare to zero, and then derive the optimal uniform fare for use in Section 4.
Using g (n) = A% in Eqgs. (20) and (22) gives
- AN
f=0+— (35)

)
ms
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and
N s
f=—4+—10—0kl,k=1,.. 36
ng m + \ r k:| ) 5 eeey 10, ( )
where § = % > pey O is the unweighted average scheduling cost for trains. As in the general

model, timely trains carry more users than other trains. The difference in passenger loads
between two successive trains is proportional to parameter s, and inversely proportional
to A. Because the first (or last) train carries the fewest passengers, the solution satisfies

all the non-negativity constraints nf > 0 if n{ > 0 and n;, > 0:
N > == [max [51, 6] - 8] (37)

Since service is costly to provide, condition (37) is satisfied when m and s are c