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Chapitre 1

Introduction

1.1 Historique

Une wvariété algébrique réelle est une variété algébrique complexe X munit d’une in-
volution antiholomorphe ¢ : X — X, appelée structure réelle sur X. La partie réelle RX
d’une variété algébrique réelle (X, ¢) est I’ensemble des points fixes de I'involution ¢. Nous
considérerons toujours, sauf indication du contraire, des variétés algébriques réelles non
singulieres. Par exemple, CP" munit de la structure réelle donnée par la conjugaison com-
plexe est une variété algébrique réelle de dimension n et sa partie réelle est RP™. Par la
suite, nous considérerons toujours CP"™ munit de la conjugaison complexe. Une hypersur-
face X dans CP" donnée par un polyndéme homogene en n + 1 variables a coefficients réels
est une sous-variété algébrique réelle de CP"™ et on a RX C RP". Les deux problémes
suivants sont fondamentaux dans I’étude de la topologie des variétés algébriques réelles.

Probleme 1. Classifier, a homéomorphisme preés, les parties réelles des hypersurfaces
algébriques réelles non singuliéres de degré donné dans CP™.

Probleme 2. Classifier, a homéomorphisme pres, les paires (RP",RX), ot X parcours
I’ensemble des hypersurfaces algébriques réelles non singulieres de degré donné dans CP™.

Les premiers travaux sur ces problémes ont portés sur les courbes dans CP? et les
surfaces dans CPP3. A. Harnack, en 1876 a résolut le Probléme [ pour les courbes dans CP?
(voir [Har76]).

Théoréme. (Harnack, [Har76])
La partie réelle d’une courbe algébrique réelle non singuliére de degré d dans CP? a au plus
d—1)(d—2
I(d) = —( I ) +1
2

composantes connezxes. De plus, pour tout nombre k compris entre 0 et l(d) si d et pair,
ou entre 1 et I(d) si d est impair, il existe une courbe algébrique réelle non singuliére de
degré d dans CP? dont la partie réelle a k composantes connezes.

F. Klein a montré a la méme période que si C est une courbe algébrique réelle non
singuliere compacte, alors le nombre de composantes connexes de RC' est au plus g(C) +1,
ou g(C) désigne le genre de C. Klein généralisait ainsi 'inégalité de Harnack. Une courbe
algébrique réelle C' est appelée M -courbe, ou courbe mazimale, si RC' a le nombre maximal
9(C) + 1 de composantes connexes. Une courbe algébrique réelle C' est appelée (M — a)-
courbe si RC a g(C) + 1 — a composantes connexes. En 1900, D. Hilbert inclut dans le
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seiziéme probleme de sa fameuse liste des 23 problémes mathématiques pour le XX-iéme
siecle (voir [Hil02]) la question de classifier les types topologiques possibles des paires
(RIP’Q,RC) pour les courbes algébriques réelles C' de degré 6 dans CP? et la question de
classifier les types topologiques possibles des parties réelles RX pour les surfaces algé-
briques réelles X de degré 4 dans CP?. Durant la premiére moitié du XX-ieme siecle, des
mathématiciens comme L. Brusotti ou I. G. Petrovsky ont étudiés ces questions, mais ce
n’est qu’au début des années 70 que se réalisent d’importants progres, notamment grace
aux travaux de V. Arnold (voir [Arn71]) et V.A. Rokhlin (voir [Rok72b], [Rok72a], [Rok73]
and [Rok74]). En 1969, D.A. Gudkov a complété la classification des types topologiques
des paires (]RIP)Q, RC ) pour les courbes algébriques réelles non singulieres C' de degré 6 dans
CP? (voir [Gud69]). En 1976-1978, V. Kharlamov a complété la classification topologique
des parties réelles RX et a obtenu la classification topologique des paires (R]P’g, RX ) pour
les surfaces algébriques réelles non singulicres X de degré 4 dans CP3 (voir [KhaZ76] et
[Kha78]). A la fin des années 70, O. Viro découvre une nouvelle méthode pour construire
des hypersurfaces algébriques réelles dans CP" (et en fait dans toutes les variétés toriques),
qui lui permit d’obtenir la classification des types topologiques des paires (RIP’Q, RC) pour
les courbes algébriques réelles C' de degré 7 dans CP? (voir [Vir84]). La méthode de Viro,
ou méthode du patchwork, est toujours de nos jours 'une des méthodes les plus puis-
santes pour construire des hypersurfaces algébriques réelles dans les variétés toriques en
controlant la topologie des hypersurfaces. Il existe plusieurs versions de la méthode de
Viro. Nous présenterons dans le chapitre 2 le patchwork combinatoire, également appelé
T-construction, puis la méthode de Viro générale et enfin I’extension faite par E. Shustin
(voir [Shu98]) pour construire des hypersurfaces algébriques réelles singuliéres.

A la fin des années 90, Viro remarqua que sa méthode du patchwork pouvait s’interpré-
ter comme quantification d’objets linéaires par morceaux (voir [Vir0I]). Cela marquait le
début de la géométrie tropicale qui fut par la suite largement développée notamment par
G. Mikhalkin (voir par exemple [Mik04], [Mik05] et [Mik06]). En particulier, Mikhalkin
donna une reformulation de la méthode du patchwork en termes tropicaux et énoncga le
théoreme de correspondance, créant un pont entre la géométrie énumérative tropicale et
la géométrie énumérative complexe et réelle (voir [Mik05]). Une version tropicale de la
méthode du patchwork intervient comme élément clé de la démonstration du théoreme de
correspondance.

Nous présentons maintenant quelques résultats sur la topologie des courbes algébriques
réelles dans CP? et plus généralement sur la topologie des variétés algébriques réelles. On
pourra aussi consulter [Wil78] et [DK00] pour une introduction a la topologie des variétés
algébriques réelles. Nous présentons également des questions qui ont motivé nos recherches.

1.1.1 Courbes algébriques réelles dans CP?

Si A est une courbe algébrique réelle non singuliere dans CP?, sa partie réelle RA est
une union disjointe de cercles plongés dans RP?. Un cercle peut étre plongé dans RP? de
deux maniéres différentes : §’il sépare RP? en deux composantes connexes il est appelé
ovale, sinon il est appelé pseudo-droite. Si le degré de la courbe A est pair, alors la partie
réelle RA est uniquement constituée d’ovales. Si le degré de la courbe A est impaire,
alors il existe une unique composante de RA qui soit une pseudo-droite. Un ovale sépare
RP? en une composante connexe homéomorphe & un disque (Iintérieur de lovale) et une
composante connexe homéomorphe a un ruban de Moebius (I’extérieur de 'ovale). Soit A
une courbe algébrique réelle de degré pair dans RP2. Un ovale de RA est appelé ovale pair
s’il est contenu a I'intérieur d’un nombre pair d’ovales de RA, et impair sinon. Remarquons
que si f est un polynéme homogene définissant A, alors, le degré de f étant pair, le signe
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de f en un point de RP? est bien défini. Si on suppose que le signe de f est négatif en
dehors de tout ovale de RA, alors les ovales pairs sont les ovales qui bordent extérieurement
les composantes connexes de

RP2 = {z € RP?|f(z) > 0},

et les ovales impairs sont les ovales qui bordent extérieurement les composantes connexes
de
RP? = {z € RP?|f(x) < 0}.

Notons p (resp., n) le nombre d’ovales pairs (resp., impairs) de RA.

Inégalités de Petrovsky : Pour toute courbe algébrique réelle de degré 2k dans CP?,
on a

—gk(k—l)gp—nggk(k—l)+1.

On peut parfois renforcer ces inégalités. Notons p~ (resp., n~) le nombre d’ovales pairs
(resp., impairs) qui bordent extérieurement une composante connexe de RIP’%_ (resp., RP?)
de caractéristique d’Euler strictement négative.

Inégalités de Petrovsky renforcées : Pour toute courbe algébrique réelle de degré
2k dans CP?, on a

—gk:(k—l)gp*—n et p—n~ < -k(k—1)+1.

N W

Congruence de Rokhlin : Pour toute M-courbe algébrique réelle de degré 2k dans
CP?, on a
p—n=£k modS8.

Congruence de Gudkov-Krakhnov-Kharlamov : Pour toute (M — 1)-courbe algé-
brique réelle de degré 2k dans CP?, on a

p—n=k*+1 mod 8.

On peut déduire du théoreme de Harnack et des inégalités de Petrovsky des bornes supé-
rieures pour p et n :

7, 9 3
<_ - _
P -3kt
ot 7. 9
< —k? - Zk+1.
=7 it

En 1906, V. Ragsdale énonca la conjecture suivante (voir [Rag06]).

Conjecture. (Ragsdale)
Pour tout courbe algébrique réelle de degré 2k dans CP?, on a

3

et 3
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En 1980, Viro a construit des exemples de courbes algébriques réelles de degré 2k avec
3

et proposa de remplacer la deuxieme inégalité de la conjecture de Ragsdale par I'inégalité
3

voir [Vir80|. Cette conjecture fut également proposée par Petrovsky (voir [Pet38]).
En 1993, I. Itenberg a utilisé le patchwork combinatoire pour construire, pour tout k£ > 5,
une courbe algébrique réelle de degré 2k dans CP? avec

ngmk—n+1+{ﬁléiiﬂ,

ainsi qu'une courbe algébrique réelle de degré 2k dans CP? avec

n:gmk—n+{@léﬁiﬂ,

voir [Ite95)]. Cette construction a été ensuite amélioré par B. Haas (voir [Haa95]) puis par

Itenberg (voir [Ite01]) et finalement par E. Brugallé (voir [Bru06]). Brugallé a construit

une famille de courbes algébrique réelles de degré 2k dans CP? avec un nombre asympto-

tiquement maximal d’ovales pairs et une famille de courbes algébriques réelles de degré 2k

dans CP? avec un nombre asymptotiquement maximal d’ovales impairs. Plus précisément,

Brugallé a construit une famille de courbes algébriques réelles de degré 2k dans CP? avec
D 7

et famille de courbes algébriques réelles de degré 2k dans CP? avec

n 7

1.1.2 Surfaces algébriques réelles

Dans ce texte, sauf indication du contraire, I’homologie sera toujours considérée a coef-
ficients dans Z/2Z. Pour un espace topologique A, on note b;(A) = dimg oz H; (A ; Z/27Z).
Les nombres b;(A) sont appelés nombres de Betti (a coefficients dans Z/27Z ) de A. On
commence par rappeler des inégalités et congruences classiques en topologie des variétés
algébriques réelles.

Inégalité et congruence de Smith-Thom : Soit X une variété algébrique réelle com-
pacte. Alors

b (RX) < by(X) et b(RX) = by (X) mod 2,

ou b, dénote la somme des nombres de Betti. Une variété algébrique réelle X est appelée
M-variété si by (RX) = b,.(X). Une variété algébrique réelle X est appelé (M — a)-variété
si by (RX) = b, (X) — 2a.
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Inégalités de Petrovsky-Oleinik : Soit X une variété compacte complexe de Kahler
de dimension 4n avec une structure réelle. Alors

2 — h(X) < \(RX) < h"(X),

ou x désigne la caractéristique d’Euler et h?? désigne le nombre de Hodge (p, ¢). Dans le
cas ou X est de dimension réelle 4, les inégalités de Petrovsky-Oleinik deviennent les inéga-
lités de Comessatti (voir [Com28]). Si (X, ¢) est une surface algébrique réelle, considérons
E = Hy(X ; R) munit de la forme quadratique ¢ provenant du produit d’intersection sur
X, et considérons l'involution ¢, sur E provenant de I'involution antiholomorphe ¢ sur X.
On a alors la décomposition

E=Ef®E ®Ef®E_,

ol Eg est le sous espace de F sur lequel ¢, agit comme €ld et g est de signe J. Les inégalités
de Comessatti sont un corollaire direct des égalités

2 — hM(X) +2p = x(RX) = B (X) — 20,

RX de caractéristique d’Euler strictement positive donne un élément de £, . Ceci permet
parfois de renforcer les inégalités de Comessatti. Pour d’autres types de renforcements,
voir [DKO00].

ot p = dim(E] ) et v = dim(£~). Notons en particulier que toute composante connexe de

Congruence de Rokhlin : Soit X une M-variété compacte de dimension réelle 4n.
Alors
X(RX) =0(X) mod 16,

ou o(X) désigne la signature de X.

Congruence de Gudkov-Krakhnov-Kharlamov : Soit X une (M — 1)-variété com-
pacte de dimension réelle 4n. Alors

X(RX)=0(X)+2 mod 16.

Soit X une surface algébrique réelle connexe, simplement connexe et projective. Une ap-
plication de l'inégalité de Smith-Thom et des inégalités de Comessatti permet d’obtenir
des bornes supérieures pour bo(RX) et b;(RX) en termes des nombres de Hodge de la
surface X. On obtient

1
bo(RX) < §(h2’O(X) +habN(X) +1), (1.1)
b (RX) < h*0(X) + hbY(X). (1.2)
Rappelons que si X est une surface algébrique de degré d dans CP?, alors
1 11
POX) = ~d® —d* + —d — 1, (1.3)
6 6
et
1,1 2 3 2 7
o (X) = §d —2d” + §d’ (1.4)

voir par exemple [Hir95]. Si X est une surface algébrique réelle de degré d dans CP?, on
obtient alors les inégalités suivantes.

5 3 25
RX) < —d3— Zd®> + = v
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5 25
b (RX) < gd?’ — 3d* + Sd-1 (27)

On peut alors se poser les questions suivantes.

Question 1. Quelle est la valeur mazimale de by(RX) parmi les surfaces X de degré
donné dans CP? ?

Question 2. Quelle est la valeur mazimale de by(RX) parmi les surfaces X de degré
donné dans CP? ¢

Si le degré est strictement supérieure a 4, ces questions sont toujours largement ou-
vertes. En degré 5 les bornes sont données par by(RX) < 25 et b1 (RX) < 47. La question de
I'existence d'une surface algébrique réelle X de degré 5 dans CP? satisfaisant b (RX) = 47
est toujours ouverte. Le meilleur résultat concernant la question [Ilest du dans ce cas a S.
Orevkov qui a construit une surface algébrique réelle X de degré 5 dans CP? satisfaisant
bo(RX) = 23 (voir [Ore01]). En 1980, Viro a proposé la conjecture suivante.

Conjecture. (Viro)
Soit X une surface algébrique réelle connexe, simplement connexe et projective. Alors

b (RX) < hbM(X).

1.1.3 Revétements doubles

Nous allons voir que les restrictions données plus haut pour les courbes sont en fait un
cas particulier des restrictions données pour les surfaces. De méme, la conjecture de Viro
est une généralisation de la conjecture de Ragsdale.

Soit A une courbe algébrique réelle de degré 2k dans CP?. Le degré de A étant pair, il
existe un revétement double X de CP? ramifié¢ le long de A. La conjugaison complexe
conj sur CP? se releve en deux involutions antiholomorphes ¢, et c_ sur X échangées par
lapplication de revétement. Notons X (resp., X_) la surface algébrique réelle (X,c4)
(resp., (X,c_)). Quitte a échanger cy et c_, on peut supposer que RX (resp., RX_) se
projette sur RIP’%r (resp., R]P’%), voir section [LT.Il En appliquant les restrictions données
pour les surfaces & X_ et X, on obtient immédiatement les restrictions données pour les
courbes. De méme, si A est un contre-exemple a la conjecture de Ragsdale pour p (resp.,
n), alors X_ (resp., X1 ) est un contre-exemple a la conjecture de Viro. En utilisant les
contre-exemples & la conjecture de Ragsdale, Itenberg a construit un contre-exemple a la
conjecture de Viro parmi les surfaces de degré 10 et des surfaces de degré d dans CP3

satisfaisant .

d
_ 1,1 a” 2
bi(RX) = W (X) + T 4+ O(d),

voir [[te97]. Par la suite, F. Bihan a construit un contre-exemple & la conjecture de Viro
parmi les surfaces de degré 6 (voir [Bih01]) et s’est intéressé au comportement asympto-
tique des nombres de Betti de la partie réelle des surfaces algébriques réelles dans CP3.
Notons S; 'ensemble des surfaces algébriques réelles non singulieres de degré d dans CP?
et Ry Pensemble des revétements doubles de CP? ramifié le long d’une courbe algébrique
réelle non singuliére de degré 2k. Bihan a montré dans [Bih03] 'existence de limites

maxYeRk bz (RY)

b;(RX
lim —AXXESy il ):Ci,?’ et lim

p— 5' 2
d—+o00 d3 d—+o0 k? Bl

pour i € {0,1}.
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Théoréme. (Bihan, voir [Bih03]) On a

1
do2

2 1 01,2
6 12

< (o3 et 7 < (13-

| =

_l’_

La construction asymptotique de Brugallé (voir [Bru06]) donne les valeurs

7 7
50,2 = Z et 51,2 = 5

Cela fournit les meilleurs bornes inférieurs connues actuellement pour (p3 et (i,3. Plus
précisément, on a

§ <{(p3< 3 et § <3< E

8 =07 =12 4= =g
Tous les contre-exemples connus a la conjecture de Viro ne sont pas des M-surfaces
(le premier contre-exemple & la conjecture de Ragsdale construit par Itenberg était une
(M —2)-courbe). Une question toujours ouverte en topologie des variétés algébriques réelles

est la suivante.

Question 3. La conjecture de Viro est-elle vraie pour les M -surfaces ?

1.2 Résultats

1.2.1 Chapitre 3 : Une construction tropicale de courbes réductibles

On utilise dans ce chapitre la géométrie tropicale, et plus particulierement les modi-
fications tropicales, pour donner une nouvelle construction d’une famille de courbes algé-
briques réelles réductibles D,, UC,, dans la n-iéme surface de Hirzebruch X,,. Cette famille
avait été construite initialement par Brugallé dans [Bru0O6] et est 'ingrédient fondamental
de la preuve de Pexistence d’une famille de courbes algébriques réelles dans CP? avec un
nombre asymptotiquement maximal d’ovales pairs. La preuve de Brugallé était basée sur le
théoreme d’existence de Riemann (voir [Bru06] et [Ore03] ) et était donc non-constructive.
On donne une preuve, constructive, basée sur les modifications tropicales et la méthode
de Viro pour les intersections complétes. Plus précisément, on construit tout d’abord deux
courbes tropicales C), et D,, dans le plan R%. On considére ensuite la modification tropicale
X,, de R? par rapport & D,, et un relevé C,, de C,, dans X, qui soit intersection transverse
de X, avec Y, une autre surface tropicale. Notons (X, ¢),cp (resp., (Vn,t),cp) une famille
de surfaces approximant X, (resp., Y,,), et (Dpt),cp une famille de courbes approximant
D,,, et posons

Cn,t = 7T(C(/Yn,t N yn,t)a

ot 7€ : (C*)3 — (C*)? désigne la projection sur les deux premiéres coordonnées. On pose
alors

Dn = Dn,ta

et
Cn = Cn,ta

pour un nombre réel ¢ assez grand.
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1.2.2 Chapitre 4 : Une surface de degré 6 avec 45 anses

Soit X une surface algébrique réelle de degré 6 dans CP?. En applicant I'inégalité de
Smith-Thom et 'une des deux inégalités de Comessatti a X, on a

b (RX) < RM(X) +10 = 96.

De plus, la congruence de Rokhlin permet d’interdire I'existence d’une surface algébrique
réelle X de degré 6 telle que by (RX) = 96. Finalement, si X est une surface algébrique de
degré 6 dans CP?, on a

b1 (RX) < hM(X) +8 = 94.

F. Bihan a montré dans [Bih01] le théoréme suivant.

Théoréme. (Bihan)
Il existe une surface algébrique réelle Xo de degré 6 dans CP? telle que

RXO ~ GSH SQ H 542,

ot S est une sphére et S, est une sphére avec o anses. La surface Xo est une (M — 2)-
surface qui vérifie
b1(RXo) = h1(Xp) 4+ 2 = 88,

Pour construire ce contre-exemple a la conjecture de Viro parmi les surfaces de degré
6, Bihan a utilisé le patchwork combinatoire et une version équivariante d’une déformation
due a Horikawa (voir [Hor93]). On montre dans le chapitre 6 le théoréme suivant.

Théoréme. Il existe une surface algébrique réelle X de degré 6 dans CP? telle que
RX ~ 45 [ 28 [ Sar-
La surface X est une (M — 2)-surface qui vérifie
bi(RX) = R (X) + 4 = 90.

La question de P’existence d’une surface algébrique réelle X de degré 6 dans CP? telle
que 92 < b1 (RX) < 94 est toujours ouverte. La différence principale de notre construction
par rapport a celle de Bihan est que nous utilisons la méthode de Viro générale. Pour ce
faire, nous utilisons une courbe algébrique réelle construite par Brugallé (voir [Bru06]) et
nous considérons une surface singuliere a la place du revétement double classique.

1.2.3 Chapitre 5 : Surfaces algébriques réelles dans (CP')? avec un grand
nombre d’anses

On s’intéresse dans ce chapitre aux surfaces algébriques réelles dans (CP!')? munit de la
structure réelle donnée par la conjugaison complexe sur chaque facteur. Une surface algé-
brique réelle X de tridegré (dy, ds, d3) dans (CP')3 est Pensemble des zéros d’un polynéme
réel

PeR [ul,vl,UQ,Ug,u;g,Ug]
homogene de degré d; dans les variables (u;,v;), pour 1 < i < 3. Quitte & permutter

les facteurs, on peut toujours supposer que d; > ds > ds. Introduisons l'application
7 (CP')? — (CP')? de projection sur les deux premiers facteurs. Si X est une surface
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algébrique de tridegré (dy,ds, 1) dans (CP!)? | alors 7| x est de degré 1, et X est birationel-
lement équivalente a (CP)2. 11 s’ensuit que h*°(X) = 0, et donc la conjecture de Viro est
vraie pour les surfaces algébriques réelles de tridegré (dy,ds,1) dans (CP1)3. Supposons
maintenant que X est de tridegré (d, 2,2). La projection 7 : (CPY)? — CP! sur le premier
facteur induit une fibration elliptique sur X. Or Kharlamov a montré (voir [AMO8]) que
la conjecture de Viro est vraie pour les surfaces elliptiques. On en déduit que la conjecture
de Viro est vraie pour les surfaces algébriques réelles de tridegré (d,2,2) dans (CP!)3.
Supposons maintenant que X soit une surface algebrique réelle de tridegré (4,4,2) dans
(CP')3. On a alors h29(X) = 9 et A1 (X) = 84. En utilisant I'inegalité de Smith-Thom
et une des deux inégalités de Comessatti, on obtient

b (RX) <92 =hrM(X) +8.
On montre alors le résultat suivant.

Théoréme. Il existe une surface algébrique réelle X de tridegré (4,4,2) dans (CPY)3 telle
que

RX ~ 35]_[252 ]_[540.

La surface X est une (M — 2)-surface et satisfait
bi(RX) =88 = b (X) 4 4.

La question de lexistence d'une surface algébrique réelle de tridegré (4,4,2) dans

(CP1)3 telle que 90 < by (RX) < 92 est toujours ouverte. De méme, pour d > 3, la question
de l'existence d’'une surface algébrique réelle de tridegré (d,3,2) dans ((CIP’l)?’ fournissant
un contre-exemple a la conjecture de Viro est toujours ouverte.
On s’intéresse ensuite au comportement asymptotique du premier nombre de Betti d’une
surface algébrique réelle de tridegré (dy,ds,2) dans (CP')3. Si 84, 4, désigne 'ensemble
des surfaces algébriques réelles non singulieres de tridegré (dy, do,2) dans (CP')3, alors en
utilisant 'inégalité de Smith-Thom et une des deux inégalités de Comessatti, on obtient

max bl(RX) S 7d1d2 - 3d1 - 3d2 + 9.

X€$d17d2
On montre alors le résultat suivant.

Théoréme. Il existe une famille (Xy;) de surfaces algébriques réelles de degré (2k,2l,2)
dans (C]P’l)3, et A,B,c,d,e € Z tels que pour tout k > A et pour tout | > B, on ait

b1 (RX]CJ) > 7(2k)(21) - C(Qk) — d(QZ) +e.

Pour montrer ces deux théorémes, on développe une méthode de construction de sur-
faces algébriques réelles de tridegré (2k, 21,2) dans (CP')3. On montre tout d’abord qu’une
telle surface peut étre obtenue comme petite déformation d’un revétement double rami-
fié de 1’éclatement de (CP')? en 2kl points pi,--- , pa situés sur Pintersection de deux
courbes algébriques réelles de bidegré (k,I) dans (CP')2. Le lieu de ramification est la
transformée stricte par ’éclatement d’une courbe algébrique réelle de bidegré (4k,4l) dans
(CP1)2 avec un point double en chaque p;, pour 1 < ¢ < 2kl. Pour construire ces courbes,
on recolle des triplets (C;, L;, M;), ou C; est une courbe avec des points doubles situés sur
Iintersection L; N M;. Pour effectuer de tels recollements, on s’est inspiré de la preuve du
théoréme du patchwork pour des courbes singuliéres (voir [Shu9g]).






Chapter 2

Preliminaries

2.1 Toric varieties and polytopes

In this section, we recall the definition of a toric variety associated to a polytope and
some basic definitions for polytopes and subdivisions. More details about toric varieties
can be found in [Ful93] and [GKZ08].

Definition 2.1.1. A toric variety is an irreducible complex algebraic variety equipped with
an action of an algebraic torus (C*)™ having an open dense orbit.

Definition 2.1.2. An integer convex polytope in R™ is the convex hull of a finite subset
of Z" C R™.

For z = (21, -+ ,2,) € (C*)" and w = (w1, ,wy) € Z", put 2% = 2" --- z%». Put
Ry={ze€R|z>0}and R} = {z € R|z > 0}. Let A C R" be an integer convex
polytope and N = # (ANZ") — 1. Denote by wy, -+ ,wy the integer points of A.

Definition 2.1.3. The toric variety associated to A, denoted by Tor(A), is the closure
of the set
{[z¥0: - : 2¥N] | z € (C*)"} c CPY.

Remark 2.1.4. The most standard definition of a toric variety associated to a polytope
is in general different, see for example [Ful93]. Both definitions coincide if the integral
points in the polytope affinely generate the lattice 7.

The action of the torus (C*)™ on Tor(A) is given by the formula

z-[yo:-ryn] = [2"y0 - 2N ynN],

and Tor(A) is the closure of the orbit of the point [1:---: 1] under this action. The
dimension of T'or(A) is equal to the dimension of the polytope A.

Remark 2.1.5. Let I' be a face of A, and let wj,,--- ,w;, be the integer points of I'.
Consider the following embedding of CP* into CPY :

Dy CP* - (ol
o gl o 105 gy 0],
where on the right hand side, the variable y; is in position i;. The map ®n s gives rise

to an embedding of Tor(T') into Tor(A) . In particular, any vertez of A gives a point in
Tor(A).
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Definition 2.1.6. The standard real structure conja on Tor(A) is the restriction to
Tor(A) of the conjugation conjy on CPYN, where

conjn (CP)N — (CP)N
[yoi“‘in] — [%y_N]

Example 2.1.7. The unit n-simplex is the convex hull in R™ of the points e; € R", for
0 <i < n, where

e, = (0,0,---,1).
If A denotes the unit n-simplex, then Tor(A) = CP" and conja = conj,. The unit cube
in R3 is the convex hull of the points (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1),

(0,1,1) and (1,1,1). If A denotes the unit cube in R3, then Tor(A) is the closure of the
set

{[1 121129123 212 ¢ 2123 1 2923 ¢ 212223 | (21, 22,23) € ((C*)?’} c CP".

It implies that

Tor(A) = {[yo peeeiyr] € CP’ | Y192 = Yoya ; Y1Y3 = YoUs ; Y2U3 = YoV6 ; Y1Ys = yoy7} .

One can see via the Segre embedding of (CPY)3 into CP” that
(Tor(A),conja) ~ ((CPl)?’,conjl X conjy X conjy) .
Forn >0, let X3, be the toric surface associated to the polytope
Conv ((0,0),(n +1,0),(0,1),(1,1)) .

The surface %, is the so-called nth Hirzebruch surface (see for example [Bea83]). For
example, Yo = CP! x CP'. The real part of ¥, under the standard real structure is a torus
if n is even and a Klein bottle if n is odd.

Definition 2.1.8. Let f = Y a;2* be a polynomial in C[z1,--- , z,]. The convex hull of
the set {i € Z™ | a; # 0} is called the Newton polytope of f. For an integer convex polytope
A, denote by P (A) the space of polynomials with Newton polytope A.

Let A be an integer convex polytope in (R;)" and let wp,--- ,wy be the integer
points of A. Let f =), (.. yaiz"" € P(A). The polynomial f defines an algebraic
hypersurface in Tor(A). In féc‘é, on Tor(A), the polynomial f is the restriction of a linear
form ). ..y @aiyi, where the y; are homogeneous coordinates in CPN. 1f dim(A) = n,
this hypersurface is a compactification of Z (f) ={x e (CH"| f(x) =0}.

Definition 2.1.9. Let f =Y a;x' € P(A). Let T C Z" be a subset of A. The truncation
of f to T is the polynomial f* defined by f = > ier a;xt.

Definition 2.1.10. A polynomial f € P(A) is called torically nonsingular if for any
face T of A (including A itself), the hypersurface Z(f') = {z € (C*)" | fY(z) = 0} is
nonsingular.
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Let f € P(A), where A C (R4)" is of dimension n. Consider the compactification
Z(f) of Z(f) in Tor(A). If the coefficients of f are real numbers, then Z(f) is a real
algebraic variety in (T'or(A), conja). The compactification Z(f) has some nice properties.
For example, if f is torically nonsingular, then for any face I' of A, the set Z(f) is

transversal to T'or(I") (see [Kho78]).

Definition 2.1.11. A subdivision of an integer convex polytope A is a set of integer convex
polytopes (A;)ier such that:
o UiciA;j = A,

o ifi,j € I, then the intersection A; N A; is a common face of the polytope A; and
the polytope A, or empty.
A subdivision (A;)ier is called a triangulation if every polytope A; is a simplex. A sub-
division U;er\; of A is said to be convex if there exists a conver piecewise-linear function
v: A — R whose domains of linearity coincide with the polytopes A;.

Definition 2.1.12. The integer volume of an integer convexr n-dimensional polytope in
R™ is equal to n! times its Fuclidean volume. An n-dimensional integer simplex in R™ is
called maximal if it does not contain other integer points than its vertices. A maximal
simplex is called primitive if its integer volume is equal to 1 and elementary if its integer
volume is odd.

Definition 2.1.13. A triangulation of an integer convex n-dimensional polytope in R™
is called mazximal (resp., primitive) if all n-dimensional simplices in the triangulation are
mazximal (resp., primitive).

Definition 2.1.14. The star of a face F in a triangulation T, denoted by st(F'), is the
union of all simplices in T which have F as face.

Definition 2.1.15. We say that an edge A of a triangulation of an integer convex polytope
is of length k if A contains k + 1 integer points.

Definition 2.1.16. Let 7 be a triangulation of an integer convex polytope containing an
edge X of length 2. Suppose that X is the only edge of length greater than 1 in st(\). The
refined triangulation is obtained by adding the middle point of X to the set of vertices of T
and by subdividing each tetrahedron in st(\) accordingly.

2.2 Viro’s method

Viro’s method is a powerful tool for constructing real algebraic varieties with pre-
scribed topology. In this section, we present three versions of this method: the combi-
natorial patchworking also called T'-construction, the general Viro’s method and finally a
generalisation for certain classes of singular varieties, proposed by Shustin in [Shu98].

2.2.1 T-construction

Let (uy,--- ,uy) be coordinates in R™, and let A be an integer convex n-dimensional
polytope in R”. We consider the toric variety T'or (A) equipped with its standard real
structure. Take a triangulation 7 of A, and a distribution of signs at the vertices of 7.
Denote the sign at any vertex (i1, ,i,) by ... i,. For e = (1, -+ ,&p) € (Z/2Z)", let
s be the symmetry of R™ defined by

Se(ug, - yup) = (=D ug, -+, (=1)"uy,).
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Denote by A, the union

U se(A).

e€(Z/2Z)™

Extend the triangulation 7 to a symmetric triangulation of A,, and the distribution of
signs 0;, ... 4, to a distribution of signs at the vertices of the extended triangulation using
the following formula:

n

Ose(ivemin) = | JTT(=1F | 8y -

J=1

If a simplex T of the triangulation of A, has vertices of different signs, denote by St
the convex hull of the middle points of the edges of T" having endpoints of opposite signs.
Denote by S the union of all such Sr. It is an (n—1)-dimensional piecewise-linear manifold
contained in A,. If " is a face of A, then, for all integer vectors « orthogonal to I' and for
all z € T, identify x with s, (z). Denote by A the quotient of A, under these identifications,

and denote by ma the quotient map. The real part RTor(A) of Tor(A) is homeomorphic
to A.

Theorem 2.2.1. (0. Viro)

Assume the triangulation T of A is convex. Then, there exists a torically nonsingular real
polynomial f € P(A) such that the pairs (RTor(A),RX) and (A,WA(S)) are homeomor-
phic, where X denotes the closure in Tor(A) of the zero set of f.

A polynomial f € P(A) defining such an hypersurface X can be written down explic-
itly. If ¢ > 0 is sufficiently small, put

fl@)=> g, (2.1)

eV
where V is the set of vertices of 7 and v is a function ensuring the convexity of 7.

Definition 2.2.2. A polynomial of the form (21]) is called a Viro polynomial, and a
hypersurface defined by such a polynomial (for sufficiently small t > 0) is called a T-
hypersurface.

Euler characteristic of the real part of a nonsingular T-surface

Let A be an integer convex n-dimensional polytope in R’. Suppose that the only
singularities of Tor(A) come from the vertices of A (see Remark 2.T.5]). Thus, one can see
from the torically nonsingular condition that any T-hypersurface in T'or(A) is nonsingular.
The real part of a T-hypersurface in Tor(A) admits a cellular decomposition coming from
the triangulation of A. This cellular decomposition allows one to compute the Euler
characteristic of the real part.

Proposition 2.2.3. (see [[te97] and [Ber02] )
Suppose that the only singularities of Tor(A) come from the vertices of A and that A

admits a primitive convex triangulation 7. Let D(T) be any distribution of signs and Z be
a T-surface obtained from (1, D(1)). Then

x(RZ) =0(CZ),
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where
o(Cz)= ). (-1)PRPUCZ).

p+g=0 mod 2

If the dimension of Z is even, then o(CZ) is the signature of CZ.
Suppose now that A is an integer convex 3-dimensional polytope in R‘:’L.

Proposition 2.2.4. (see [Bih01] )

Suppose that the only singularities of Tor(A) come from the vertices of A and let T be a
mazximal convex triangulation of A. Given a distribution of signs D(T) at the vertices of
7, denote by N (resp., P) the set of simplices of even volume in T with negative (resp.,

positive) product of signs at the vertices. Let E be the set of elementary simplices in T.
Let Z be a T-surface obtained from (1, D(7)). Then

X(RZ)=0(CZ) + Z (Vol(T) — er),
T simplices in r

where ep = 0,1,2 if T € N, E, P respectively.

Proposition 2.2.5. (see [Bih01)])

Suppose that A admits a convex triangulation T with an edge X of length 2 (with middle
point a) such that A is the only edge of length greater than 1 in st(\). Denote by k the
dimension of the minimal face of A containing A. Denote by 7, the refined triangulation
(see Definition[Z1.10). Let D(7) be any distribution of signs at the vertices of T and extend
it to D(14) choosing any sign of a. Let P, be the set of simplices in st(a) which are of
even volume and positive product of signs at the vertices. Let E, be the set of elementary
simplices in st(a). Denote by Z, resp. Z,, a T-surface obtained from (r,D(T)), resp.
(7a, D(7a)).

If the endpoints of A have opposite signs, then x(RZ) = x(RZ,), and

X(RZ) — X(RZa) = #(Ea) + 24#(P,) — 2%,

otherwise.

2.2.2 General Viro’s method

The T-construction is a particular case of a more general construction, called Viro’s
patchworking or Viro’s method. In this construction, we glue together more complicated
pieces than before. These pieces are called charts of polynomials.

Definition 2.2.6. Let A C (R4)™ be an integer convexr n-dimensional polytope. Let
FeP(A), and let Z(f) be the set {x € (R*)"| f(x) = 0}. In the orthant (R%)", we define
¢ as
¢ RY" — (R*)™
>icanze | #' |

z .
ZieAﬂZ” | 2% |

In the octant s.((R%)"™), we put

¢(s:(2)) = s:(6(2)),

where se(x1,- -+ ,xn) = ((=1) @y, -+, (=1)"zy,).
We call chart of f the closure of ¢(Z(f)) in A.. Denote by C(f) the chart of f.
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Let A be an integer convex n-dimensionnal polytope in R’} and let U;erA; be a sub-
division of A. For any i € I, take a polynomial f; such that the polynomials f; verify the
following properties:

e for each i € I, one has f; € P(4;),

o if ' = A;N A, then ff = f],

e for each i € I, the polynomial f; is torically nonsingular.
The polynomials f; define a unique polynomial f =} - \~7n awz®, such that fRi=f;
forall i € 1.

Theorem 2.2.7. (0. Viro)

Assume that the subdivision U;cr\; of A is conver and let v : A — R be a function
certifying its convexity. Define the associated Viro polyomial fy = Y nqzn aupt? ™z
Then, there exists tg > 0 such that if 0 < t < tg, then f; is torically nonsingular and the

pPairs (A,T{'A(C(ft))> and (A,TI’A(UZE[C(]CZ'))> are homeomorphic.

For more details about the general Viro’s method, see for example [Vir84] or [Ris93].

2.2.3 Gluing of singular points

Here we follow [Shu98|. Another reference is the book [IMS09]. The term singu-
lar point of a polynomial f in n variables means a singular point of the hypersurface
{f =0} N (C*)™. We study real polynomials with only finitely many singular points.
Denote by Sing(f) the set of singularities of f. Let us be given a certain classification S of
isolated hypersurface singularities which are invariant with respect to the transformations

f(Zl,"' 7Zn) — )‘Of()‘lzla"' 7)‘nzn)a

where Ag,- -, A, > 0. In addition, assume that in each type of the classification, the
Milnor number is constant. For a polynomial f, denote by S(f) the function

Sif) : § — 7
s = F#{z€(C*)"| zisin Sing(f) of type s}.

Definition 2.2.8. A polynomial f € P (A) is called peripherally nonsingular (PNS) if
for every proper face T C A, the hypersurface Z(f') = {x € (C*)" | fY'(z) = 0} is
nonsingular.

Definition 2.2.9. Let f € P (A) and 0AL C OA be the union of some facets of A. Put
P(A0AL, f) = {g eP(A) | g =f1 for any facet T C 8A+}.

Definition 2.2.10. Let f be a polynomial with only finitely many singular points and let
V1, , Uy be all the singular points of f. In the space X(d) of polynomials of degree less
than d, for d > deg f, consider a germ My(f) at f € X(d) of the variety of polynomials
with singular points in neighborhoods of the points vy, - -+ , v, of the same types. The triad
(A, 0A, f) is said to be S-transversal if
o ford > dy, the germ My(f) is smooth and its codimension in ¥(d) does not depend
on d.

e the intersection of My(f) and P (A,0A, f) in X(d) is transversal for d > dy.
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Remark 2.2.11. Instead of types of isolated singular points one can consider other prop-
erties of polynomials which can be localized, are invariant under the torus action, and the
corresponding strata are smooth. Then one can speak of the respective transversality in
the sense of Definition 2210, and prove a patchworking theorem similar to that discussed
below.

General gluing theorem

Let A be an integer convex n-dimensionnal polytope in R, and let U;crA; be a
subdivision of A. For any i € I, take a polynomial f; such that the polynomials f; verify
the following properties:

e for each i € I, one has f; € P(4;),

o if I = A;N Ay, then fI = fT,

e for each i € I, the polynomial f; is PNS.
The polynomials f; define an unique polynomial f =" - A~zn Gwz®, such that fRi=f
for all ¢ € I. Let G be the adjacency graph of the subdivision U;c;A;. Define G to be the
set of oriented graphs I' with support G and without oriented cycles. For I' € G, denote
by 0A; + the union of facets of A;, which correspond to the arcs of I' coming in A;.

Theorem 2.2.12 (Shustin, see [Shu98]). Assume that the subdivision U;crA; of A is
conver and that there exists I' € G such that the triad (A;, 00, 1, f;) is S-transversal.
Then, there exists a PNS polynomial f € P(A) such that

() =380,

iel
and the triad (A, 0, f) is S-transversal.

Remark 2.2.13. Let v : A — R be a function certifying the convexity of the subdivision
of A. Then, the polynomial f can be chosen of the form fi,, for to positive and small
enough, where
fo= > A0z,
1EANZ™

and |A;(t) — a;| < Kt, for a positive constant K. The polynomial f; is a modified version
of Viro polynomial. Suppose that the polynomials f; are real. Then, the polynomial f; can
also be chosen real and as in Viro’s theorem, for t positive and small enough, the pairs

(A,T{'A(C(ft))> and <A,7TA(U2€1 C(fl))> are homeomorphic.

S-transversality criterion

Let n = 2, i.e., polynomials f; define curves in toric surfaces. In [Shu98], Shustin
defined a non-negative integer topological invariant b(w) of isolated planar curve singular
points w such that, if f; is irreducible and

Z b(w) < Z length(o),

weSing(f;) oZON; +

then the triple (A;, 0A; 4, fi) is S-transversal. Here, length(co) denotes the integer length
of o. Recall that
e if w is a node, then b(w) = 0,
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e if w is a cusp, then b(w) =1,
Example 2.2.14. If under the hypotheses of Theorem [2.2.12, n = 2, the curves
{fi =0} C Tor(Ay),

1 € I, are irreducible and have only ordinary nodes as singularities, then there is an
oriented graph I' € G such that all the triples (A;, 0A; ., fi) are transversal. Indeed, for
any common edge 0 C A;NA;, one can choose the corresponding arc of I' to be orthogonal
to o. Then orient the arcs of I' so that they form angles in the interval ] -3, %] with the
horizontal azis. Then

8Ai,+ 7é aAZ’

fori € I. The above criterion implies transversality.

2.3 Basic tropical geometry

One of the origins of tropical geometry is Viro’s combinatorial patchworking (see
[Vir01]). In this section, we recall basic definitions and standard results in tropical geom-
etry. We only consider tropical varieties in R"™. More details about tropical varieties can
be found in [Mik06] or [BIMS].

2.3.1 Integer polyhedral complexes

Definition 2.3.1. A rational convex polyhedron in R™ is the set defined by a finite number
of inequalities of the type
<j,r>< c

where x € R", j € Z™, c € R and <, > denotes the standard scalar product on R™.

Definition 2.3.2. A finite rational polyhedral complex Z of dimension k in R™ is the
union of a finite collection of rational convex polyhedra of dimension k, called the facets of
Z, such that the intersection ﬂ;zle of any finite number of facets is the common face of
the polyhedra P;. We may equip the facets of X with natural numbers called the weights.
In this case, we say that Z is a weighted finite rational polyhedral complex.

A weighted finite rational polyhedral complex Z of dimension k in R"™ is called balanced
if the following condition holds.

Condition 2.3.3. Let QQ be a face of dimension k — 1, and let Py,---, P, be the facets
adjacent to Q. Let Ap, C Z"™ denote the lattice parallel to P;, (analogously for Ag). Let
v; be a primitive integer vector such that, together v; and Ag generate Ap,, and for any
x €Q, one has x + ev; € F; for 0 < e << 1. We have

l
Z Wp,V; € AQ,
i=1
where wp, is the weight of the facet P;.

Definition 2.3.4. A tropical variety in R™ is a weighted finite rational polyhedral complex
i R™ satisfying the balancing condition at any codimension 1 face.
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Definition 2.3.5. Let Sy---, Sk be k tropical varieties in R™. We say that the varieties
Si, 1 < i < k, intersect transversely if every top-dimensional cell of SN ---N Sy is a
transverse intersection ﬂi?:lFi, where F; is a facet of S;.

If S1,--- , Sk are k tropical varieties in R™ intersecting transversely, one can equip the
facets of S1N---N.S, with weights as follows. Suppose that a facet B C S1N---N.Sk is the
intersection of facets F; C Sj, for 1 < j < k. Let A; C Z" be the subgroup consisting of
all integer vectors parallel to F};, for 1 < j < k. The weight of B is defined as the product
of the weights of FY,---, F; with the index of Ay + --- + Ay C Z"™. One can see that
with this definition of weights, the set S1 N --- N Sy is a tropical variety. More generally,
one can define the stable intersection for any tropical varieties X and Y (see [RGST05]
for the case of curves in R?, and |[Mik06] for the general case). The result, denoted by
X -Y is a tropical variety of codimension codim(X) + codim(Y'), and if X and Y intersect
transversely, then X - Y =X NY.

2.3.2 Tropical hypersurfaces

Tropical hypersurfaces can be described as algebraic varieties over the tropical semi-
field (T,“+7,“x 7)), where T = RU {—o0} and for any two elements a and b in T, one
has

“a+4+b” = max(a,b) and “a x b” =a+b.

A tropical polynomial is a tropical sum of monomials, for a polynomial P in n variables
we get

r)=*“ Zai.%'i” = max(< z,i > +a;),

where P : T" — T, 2 = (x1,-- ,2,) € T i = (i1, -+ ,in) € N, ¢ = ... gl
and a; € T. Denote by A(P) = Conv (i € N" | a; # —o0) the counterpart of the classical
Newton polytope. Denote by V;(P) the set of points  in R™ for which the value of P(x) is
given by at least two monomials. This is an (n — 1)-dimensional finite rational polyhedral
complex, Wthh mduces a subdivision of R™. Given a face F' of this subdivision, and a

point x € F where F denotes the interior of F', define
Ap = Conv ({i € A(P) | P(z) = “a;z'"}).

The polytopes Ap form a convex subdivision of A(P), called the dual subdivision of P.
The polytope Ap is called the dual cell of F, and dimAr = n — dim F. In particu-
lar, if F' is a facet of Vp(P), then Ap is a segment and we define the weight of F' by
w(F) = Card(Arp NZ") — 1. Denote by V(P) the polyhedral complex Vy(P) equipped
with the map w on its facets.

Proposition 2.3.6. (see for example [BIMS))
For any tropical polynomial P inn variables, the set V (P) is a tropical variety of dimension

n—1. Reciprocally, for any tropical hypersurface S in R™, there exists a tropical polynomial
P in n variables such that S =V (P).

Definition 2.3.7. A tropical hypersurface is nonsingular if the dual subdivision of its
Newton polytope is a primitive triangulation.
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2.3.3 Amoebas and patchworking

In this section, we give a tropical formulation of the combinatorial patchworking theo-
rem for nonsingular tropical hypersurfaces (see Theorem Z2.T]) and complete intersections
of nonsingular hypersurfaces (see and [Stu94]). Amoebas appear as a fundamental
link between classical algebraic geometry and tropical geometry.

Definition 2.3.8. Let V C (C*)" be an algebraic variety. Its amoeba (see [GKZ0S]) is
the set A = Log(V') C R", where Log (21, ,2zn) = (log|z1|, -+ ,1og|zn|). Similarly, we
may consider the map

Log, (o — R™
1 1
(1 2) = <°g‘zl’,...7°g‘zn‘>7

logt logt

fort > 1.

Definition 2.3.9. Let X and Y be two non-empty compact subsets of a metric space
(M,d). Define their Hausdorff distance dg(X,Y") by

dy(X,Y) = max {Sup inf d(z,y), sup inf d(m,y)} .
reX YEY yeymeX

Theorem 2.3.10. (Mikhalkin [Mik04/, Rullgard [Rul01])

Let P(z) = “ Y, canzn @i’ be a tropical polynomial in n variables. Let
£ = Z A (t)tei 2
1EANZ™

be a family of complex polynomials and suppose that A;(t) ~ ~; when t goes to +oo with
vi € C*. Denote by Z(ft) the zero-set of fi in (C*)" and by V(P) the tropical hypersurface
associated to P. Then for any compact K C R",

t1}+mooL0gt(Z(ft)) NK=V(P)NK,

with respect to the Hausdorff distance. We say that the family Z(f:) is an approzimating
family of the hypersurface V(P).

Remark 2.3.11. Consider A;(t) € {£1}, for i € ANZ"™. Then, the polynomial f; is a
Viro polynomial (see Definition [Z.2.2).

To give a tropical formulation of the combinatorial patchworking theorem for nonsingu-
lar tropical hypersurfaces, we need to introduce the notion of a real phase for a nonsingular
tropical hypersurface in R"™.

Definition 2.3.12. A real phase on a nonsingular tropical hypersurface S of in R™ is the
data for every facet F' of S of 2"~ n-uplet of signs ¢r; = (Lp}m, e ,@%ﬂ, 1<i<ont
satisfying to the following properties:
1. If1 <i<2v Y andv = (v, - ,v,) is an integer vector in the direction of F, then
there exists 1 < j < 2" such that (—1)”’€gpl},i = SDIE’J’ for1 <k<n.

2. Let H be a codimension 1 face of S. Then for any facet F' adjacent to H and any
1 <4< 2! there exists a unique face G # F adjacent to H and 1 < j < 271
such that g ; = Qr;.
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(+:+)

(=)

Figure 2.2 — The real part of the real trop-

Figure 2.1 — A real tropical line. ical line depicted in Figure 21

A nonsingular tropical hypersurface equipped with a real phase is called a nonsingular real
tropical hypersurface.

Example 2.3.13. In Figure[21], we depicted a real tropical line.

Remark 2.3.14. In the case of nonsingular tropical curves in R?, a real phase can also
be described in terms of a ribbon structure (see [BIMS]).

Definition 2.3.15. For any rational convex polyhedron F in R™ defined by N inequalities
<Ju,x><c1, 0, < JN, T >SN,

where j1---jn € ZN and ¢1,--- ,en € R, denote by FP the rational convex polyhedron
in (R)™ defined by the inequalities

<Jju,z ><exp(er), -+, <jn,z >< exp(en).
Reciprocally for any rational convex polyhedron F in (R% )" defined by the inequalities
< kl,CE >< dl)"' , < kN,‘T >< dNa

where ki ---ky € ZN and dy,--- ,dn € R*, denote by F'°% the rational convex polyhedron
in R™ defined by the inequalities

< ky,x ><log(dy), -, < kn,z ><log(dn).
Extend these definitions to rational polyhedral complexes.

For e = (e1,--- ,en) € (Z/2Z)", recall that s. denotes the symmetry of R" defined by
Se(ul? e aun) = ((—1)81”&1, T (_1)5nun)

Let (S, ) be a nonsingular real tropical hypersurface. Denote by F(S) the set of all facets
of S.
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Definition 2.3.16. The real part of (S, p) is

RSSO = U U SSOF,i (Fexp)'

FeF(S) 1<i<an—1

Example 2.3.17. In Figure [2.3, we depicted the real part of the real tropical line from
Erample[2.313.

Let S be a nonsingular tropical hypersurface in R™ given by a tropical polynomial P,
and let ¢ be a real structure on S. Denote by 7 the dual subdivision of P.

Definition 2.3.18. A distribution of signs 0 at the vertices of T is called compatible with
@ if for any vertex v of T, the following compatibility condition is satisfied.
e For any vertex w of T adjacent to v, one has 0, # &y if and only if there exists
1 <4 <2t such that pp; = (+, - ,+), where F denotes the facet of S dual to
the edge connecting v and w.

Lemma 2.3.19. For any real phase ¢ on S, there exist exactly two distributions of signs
at the vertices of T compatible with ¢. Reciprocally, given any distribution of signs § at
the vertices of T, there exists a unique real phase @ on S such that & is compatible with .

Proof. Let ¢ be a real phase on .S. Choose an arbitrary vertex v of 7 and put an arbitrary
sign € at v. Given a vertex of 7 equipped with a sign, define a sign at all adjacent vertices
by using the compatibility condition in Definition 22318 It gives a distribution of signs
6 at the vertices of 7 compatible with ¢ such that §, = . In fact, let G be a face of
S of codimension 1 and denote by F}, Fb, F3 the facets of S adjacents to G. It follows
from the definition of a real phase that either ¢f, j # (+,--+,4) for all 1 < i < 3 and
1 <k <271 or that there exist exactly two indices 1 < 4,5 < 3 and such that

@Fi,ki - @Fj,kj - (+7 o 7+)7

where k; € {1,---,2"7'} and k; € {1,---,2""1}. This means exactly that going over
any cycle I' made of edges of 7, the signs at the vertices of I' change an even number of
times, and the distribution of signs § is well defined. The other distribution of signs at
the vertices of 7 compatible with ¢ is the distribution §" defined by ¢'(v) = —d(v), for all
vertices v of T. O

Definition 2.3.20. Let A be a 2-dimensional polytope in Ri and let T be a primitive
triangulation of A. The Harnack distribution of signs at the vertices of T is defined as
follows. If v is a vertex of T with both coordinates even, put 6, = —, otherwise put 6, = +.
The real phase compatible with § is called the Harnack phase. A T-curve associated to any
primitive triangulation with a Harnack distribution of signs is a so-called simple Harnack
curve. Simple Harnack curves have some very particular properties (see [Mik00]).

For any nonsingular real tropical hypersurface (S, ¢) and any ¢ € (Z/2Z)", put
RSg = s: (RS, Ns: (RY)™)) -

The set RSE is a finite rational polyhedral complex in (R )". The following theorem is a
corollary of Theorem 2310
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Theorem 2.3.21. Let S be a nonsingular tropical hypersurface given by the tropical poly-
nomial P(z) = “ Y :caqzn @i@"”, and let T be the dual subdivision of P. Let ¢ be a real
phase on S and let § be a distribution of signs at the vertices of T compatible to §. Put
ft = 2 icanzn §;t% 2%, Then, for every ¢ € (Z/27Z)" and for every compact K C R", one
has

lim Log, (Z(f;) Ns. (R)")) N K = (RS5) ™ N K.

t——+o0

We say that the family Z(f;) is an approzimating family of (S, ).

The next theorem is a tropical reformulation of the combinatorial patchworking theo-
rem for complete intersections (see [Stu94]).

Theorem 2.3.22. Let Sy,---, Sk be k tropical hypersurfaces in R™ such that S; is given
by the tropical pglynomial Pi(z) = ¢ ZieAJﬂZn af:r:"”, for1 < j < k. Let 77 be the dual
subdivision of P?, for 1 < j < k. Assume that the S1,--- , Sy intersect transversely. Let
¢’ be a real phase on S; and &7 be a distribution of signs at the vertices of T/ compatible
to 67, for 1 < j < k. Put f] = ZiEAjﬂZ" 5lj.tfazzi. Then for every e € (Z/2Z)" and for
every compact K C R", one has

i Log, (Z()0-+ 02 N15e ((R2)7)) € = (RS 0) oo (RS ) 6

t——+o00

We say that the family (Z(ftl), e ,Z(ff)) is an approximating family of
<(Sl7 e 7Sk)7 (@17 e 7%0]6)) .

2.3.4 Tropical modifications of R"

Tropical modifications were introduced by Mikhalkin in [Mik06]. We recall in this
section the definition of a tropical modification of R™ along a rational function. More
details can be found in [Mik06], [BLdM12], [Shall] and [BIMS]. Let f : R®™ — R and
g : R™ — R be two tropical polynomials. One may consider the rational tropical function

h = “i”. Denote by V(f) the tropical hypersurface associated to f and by V(g) the

tropical hypersurface associated to g.

Definition 2.3.23. The tropical modification of R"™ along h, denoted by RY, is the tropical
hypersurface of R" ! defined by “xn119(x) + f(x)”.

We may also describe R} in a more geometrical way. Consider the graph I'j, of the
piecewise linear function h. It is a polyhedral complex in R"*!. Equip the graph I'j,
with the constant weight function equal to 1 on it facets. In general, this graph is not
a tropical hypersurface of R"*! as it is not balanced at faces F' of codimension one. At
every codimension one face F' of I';, which fails to satisfy the balancing condition, add a
new facet as follows. Denote by w the integer number such that the balancing condition is
satisfied at F if we attach to F a facet F~! in the (0,--- ,0, —1)-direction equipped with
the weight w. If w > 0, attach F~! (equipped with w) to F and if w < 0, attach to F a
facet F*1 in the (0,--- ,0,1)-direction equipped with the weight —w. If V(f) and V(g)
intersect transversely, then the tropical modification R} is obtained by attaching to the
graph I'j, the intervals

](1‘, _00)7 (1‘, h(.%'))]
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for all = in the hypersurface V(f), and
[(z, h(x)), (2, +00)

for all x in the hypersurface V' (g) and by equipping each new facet with the unique weight
so that the balancing condition is satisfied.

Definition 2.3.24. The principal contraction
op : Ry — R"
associated to h is the projection of R} onto R™.
The principal contraction dj is one-to-one over R™\ (V(f) UV (g)).

Example 2.3.25. In Figure [Z23, we depicted the tropical modification of R? along the
tropical line given by the tropical polynomial “x + vy + 0”. It is the tropical plane in R>
given by the tropical polynomial “x +y + z + 0”. In Figure we depicted the tropical

«

Figure 2.3 — The tropical modificiation of R? along the tropical line “z 4y + 07.

modification of R? along “g”, where “P =x 4+ y+0” and “Q = y+ (—1)”. The tropical
curves V(P) and V(Q) intersect transversely. In Figure [2.8, we depicted the tropical
modification of R? along “%”’ where “Q1 =y + 0”. The tropical curves V(P) and V(Q)

Q
do not intersect transversely.
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Figure 2.4 — The tropical modificiation of R? along “g”, where “P = z + y + 0” and
“Q =y + (_1)77.

-~

Figure 2.5 — The tropical modificiation of R? along “&”, where “P = x +y + 0” and
Lch — y + 077.






Chapter 3

A tropical construction of
reducible curves

3.1 Introduction

In this chapter, we give a tropical construction of a family of real reducible curves
D,, UC, in X, the nth Hirzebruch surface (see Example 2.1.7). Recall that the families
C,, and D,, where introduced in Section [LZ1] The curve D,, has Newton polytope

A,, = Conv ((0,0), (n,0),(0,1)),
the curve C,, has Newton polytope
©, = Conv ((0,0), (n,0),(0,2),(n,1)),

and the chart of D,, UC,, is homeomorphic to the one depicted in Figure 311

2n inte:sz%

points

~ AN A
\Cy 0

n intersection points

n intersection points and
one oval between two
consecutive intersectio

Figure 3.1 — The chart of D, UC,

This family of real reducible curves was constructed by E. Brugallé in [BruQ6] in order
to produce real algebraic curves in CP? with asymptotically maximal numbers of even
ovals. Denote by p the number of even ovals of a real algebraic curve of degree 2k in CP?.

It follows from Petrovsky inequalities and Harnack Theorem that
7 9 3

< k- k4.

PV I

In 1906, V. Ragsdale conjectured that

3
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In 1993, using Viro’s combinatorial patchworking, I. Itenberg (see [[te95]) disproved Rags-
dale’s conjecture and constructed a family of real algebraic curves in CP? of degree 2k
with %kz + O(k) even ovals. This lower bound was successively improved by B. Haas
(see [Haa95]), by Itenberg (see [Ite01]) and finally by Brugallé in [Bru06]. Brugallé’s con-
struction of a family of real reducible curves D, UC,, as above used so-called real rational
graphs theoretical method, based on Riemann existence theorem (see [Bru06] and [Ore03]).
In particular, this method is not constructive. In this chapter, we give a constructive
method to get such a family using tropical modifications and combinatorial patchworking
for complete intersections (see Theorem and [Stu94]).

3.2 Strategy of the construction

Let n > 1. We construct the curve D,, (resp., C,) in a l-parameter family of curves
D+ (resp., Cpt). To construct such families of curves, we construct a tropical curve D,
with Newton polytope A,, (see Figure for the case n = 3) and a tropical curve C,, with
Newton polytope ©,, (see Figure B3] for the case n = 3). The family of curves D,,; (resp.
Cnt) then appears as an approximating family of the tropical curve D,, (resp., Cy). It
turns out that the tropical curves C,, and D,, do not intersect transversely (see Figure 3.4]),
so we can not use directly combinatorial patchworking to determine the mutual position
of the curves D, ; and C,;. We consider then the tropical modification X, of R? along
P,,, where P, is a tropical polynomial defining D,,. In this new model, the curve D, is the
boundary in the vertical direction of the compactification of X,, in T, and if C, is a lifting
of Cp, in X,, (see Definition B:33)), then the compactification of C, in T" intersects D,
transversely. Then, we show that the curve C,, is the transverse intersection of X, with
Y,,, a tropical modification of R? along a tropical rational function (see Definition Z:3.5]).
We define real phases ¢p, on D, and real phases pc, on C, (see Figure B.I0 and Figure
BT for the case n = 3) and we construct real phases ¢y, on X,, and real phases ¢y, on Y,
satisfying compatibility conditions with ¢p, and ¢¢, (see Lemma B.4T]). It follows from
Theorem 2.3.2T] that there exists a family of real polynomials P, ; with Newton polytopes
A, such that if we put

Dn,t = {Pn,t(x7y) = 0}7

and
KXot = {2+ Poy(z,y) = 0},
one has
Jim_Log, (RD.. 15 ((R3)%) NV = (RDY)** NV,
and

. *1\3 _ n\log
tlg—noo Logt (R/Ymt N Sn ((R+) )) nw (RXn) n W7

for any e € (Z/27)?, any n € (Z/2Z)3, any compact V C R? and any compact W C R3.
It follows from Theorem that there exists a family of surfaces ), ; such that for any
e € (Z/27)% and any compact V C R3, one has

. *1\3 o e\log £\log
Jlim Tog, (RX: NRYp s Nse (RE)?)) NV = (RX;) N (RY,;)®NV.
Consider the projection 7€ : ((C*)3 — (C*)? forgetting the last coordinate. For every t,
put
Cn,t = 7T(C(/Yn,t N yn,t)-
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5

Z3

1

Figure 3.2 — Tropical curve Ds. Figure 3.3 — Tropical curve Cj.
Then, the Newton polytope of C,,; is ©,, and we show that for ¢ large enough, the chart
of Dy, + UCy ¢ is homeomorphic to the chart depicted in Figure B.Il Thus, we put

Dn = Dn,ta

and
Cn = Cn,t

for ¢ large enough.

3.3 Construction of X, C,, and Y,

Consider the subdivision of A,, given by the triangles
A}, = Conw ((k,0), (0,1), (k +1,0))

for 0 < k < n — 1. Consider the subdivision of ©,, given by the triangles
e Kk = Conv((k,0),(k,1),(k +1,0)),

o Lk =Conv((k,1),(k+1,0),(k+1,1)) and

o MF = Conv((k,1),(k,2),(k+1,1)),
for 0 < k < n —1. Consider a tropical curve D,, dual to the subdivision (Aﬁ)0<k<n71
of A, (see Figure for the case n = 3), a tropical curve C,, dual to the subdivision
(Kﬁ,LfL,Mﬁ)MKn_l of O, (see Figure B3 for the case n = 3), and 2n marked points
x1,+ -+ , 9, on Cy, such that D, C, and x1,--- , x9, satisfy the following conditions.
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1. For any 0 < k < n —1, the coordinates of the vertex of D,, dual to Aﬁ are equal to
the coordinates of the vertex of C,, dual to M}.

2. For any 1 < k < n the first coordinate of x; is equal to the first coordinate of the
vertex dual to KF~1,

3. For any n+1 < k < 2n, the marked point xj, is on the edge of C),, dual to the edge
[(0,2),(n,1)] of O,.

For each marked point x;, 1 <1 < 2n, refine the edge of C), containing x; by considering
the marked point z; as a vertex of C,,. In Figure B4l we draw the tropical curves D3 and
C5 on the same picture. Denote by P, a tropical polynomial defining the tropical curve

T2

—

Figure 3.4 — The curves D3 and Cj.

D,, and put X,, = R%ﬂ.

Definition 3.3.1. Let C C R? be a tropical curve with k vertices of valence 2 denoted by
x1,- - ,xp (called the marked points of C). We say that a tropical curve C C R? is a lift
of (Cyxy,- -+ ,xx) if the following conditions are satisfied.
o R (C’) = C, where ™% : R3 — R? denotes the vertical projection on the first two
coordinates.

o Any infinite vertical edge of C is of the form |(z,—o0), (x,7)], with z € R? and
reR.

o An edge e of C is an infinite vertical edge if and only if T(e) C {x1,--- , a1}

e For any point = in the interior of an edge e of C such that (7%)~1(z) N C is finite,
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one has

w(e) =Y w(fi)[Ae s Ap],
i=1
where f1,--- , f; are the edges of C containing the preimages of x, the weight of e
(resp., fi) is denoted by w(e) (resp., w(f;)) and A¢ (resp., Ay,) denotes the sublattice
of 73 generated by a primitive vector in the direction of e (resp., f;) and by the
vector (0,0,1).

Remark 3.3.2. Let C be a nonsingular tropical curve in R? with k marked points x1,- - , Ty,
such that there exists a lifting C' of (C,xq,--- ,x1) in R3. Then, it follows from Definition
[3:31 that for any edge e of C, there exists a unique edge f of C such that T%(f) = e.
Moreover, one has w(f) = 1. It follows from the balancing condition that at any trivalent
vertex v of C, the directions of the lifts of any two edges adjacents to v determine the di-
rection of the lift of the third edge adjacent to v. At any marked point x;, the direction of
the lift of an edge adjacent to x; and the weight of the infinite vertical edge of C associated
to x; determine the direction of the lift of the other edge adjacent to x;.

Definition 3.3.3. Let h be a tropical rational function on R? and let Ri be the tropical
modification of R? along h. Let C C R? be a tropical curve with k marked points xq,--- ,x.
We say that the marked tropical curve (C,x1,--- ,xk) can be lifted to R,QL if there exists a
lifting C' of (C,x1,--- ,x3) in R® such that C C R2.

Remark 3.3.4. Assume that a trivalent marked tropical curve (C,xy,- -+ ,x) can be lifted

7

to some tropical modification R%, where h = “=7 4s some tropical rational function. It

g
follows from the definition of a tropical modification that outside of V(f) UV (g), the lift
of an edge of C' to ]R% is uniquely determined.

Lemma 3.3.5. There exists a unique lifting of the marked tropical curve
(Cnaxla"' 7x2n) to Xn

Proof. Tt follows from Remark B34 that for all edges e of C,, not belonging to D,,, the
lift of e in X, is uniquely determined. The lift of a marked point z; is an edge s; of the
form ](z;, —00), (x4,7;)], where r; € R. Denote by ey the edge of C,, dual to the edge
[(0,1),(0,2)] and by eg, the infinite edge of C,, dual to the edge [(0,2), (n,1)] adjacent to
Ton, (see Figure B3l for the case n = 3). One can see from Remark B3 2 that if the direction
of &y is (1,0, s) then the direction of the lift of es, is (1,0,s 4+ > w(s;)). Since the edges
ep and eg,, are unbounded, one has s > 0 and s + > w(s;) < n. Thus, the direction of &
is (1,0,0) and w(s;) =1, for 1 < i < n. One can see following Remark that in this
case the direction of a lift of any edge of C), is uniquely determined. The only potential
obstructions on the lifts of the edges of C, to close up come from the cycles of C,,. Denote
by Zj the cycle bounding the face dual to the vertex (k —1,1) of ©,, for 2 < k < n (see
Figure B3]). Denote by e’f, e ,elg the edges of Zj as indicated in Figure Orient the
edges ef with the orientation coming from the counterclockwise orientation of the cycle
Z.. Denote by [eﬂ the lift of the edge ef, oriented with the orientation coming from the

one of ef. Denote by e; the primitive vector in the direction of [ef], and denote by lf
the integer length of ef . The lifts of the edges of Zj close up if and only if the following

equation is satisfied:
=6

Zzﬁ:o.

i=1
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Tk

Figure 3.5 — The cycle Z.

This equation is equivalent to

-1 -1 0 1 1 0
Wl —k | +& -k |+ -1 |+ o |+ 1 |+ 1 | =0
-1 0 1 k k -1

This equation is equivalent on the cycle Z; to
{ Ik =1%,
k _ gk
ll e l5-
This is equivalent to say that the first coordinate of the marked point xj is equal to the
first coordinate of the vertex dual to K,]j_l, for 2 <k <n. O

We construct a tropical rational function h,, such that the curve C,, is the transverse
intersection of X, and R%n. Consider the subdivision of ©,, given by the triangles
e Gt = Conv((k,0),(0,1), (k +1,0)),

e HF = Conv ((k,1),(k+1,1),(n,0)) and

o I¥ = Conv((k,1),(0,2), (k +1,1)),
for 0 < k < n — 1. Consider a tropical curve F, dual to the subdivision
(Gﬁ, HE, Iﬁ)ogkgn—l and a horizontal line ' such that the following conditions are satisfied
(see Figure and Figure B.7] for the case n = 3).

1. The horizontal line E is below any vertex of C,.

2. The marked point xy, is on the edge dual to the edge [(k—1,0), (k,0)], for 1 < k < n.

3. The edge of F,, dual to the edge [(1,1),(n,0)] intersects transversely the edge of
C,, dual to the edge [(0,2), (n,1)] at the point zy41.
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x5 I

2

Figure 3.6 — The curve F3 and the curve Figure 3.7 — The relative position of the
E. curves F3, C3 and F.

4. The edge of F,, dual to the edge [(k, 1), (k + 1,1)] intersects transversely the edge
of C,, dual to the edge [(0,2), (n,1)] at the point ;1 f4+1, for 1 <k <n — 1.
Denote by f, a tropical polynomial satisfying V' (f,,) = F, and by g a tropical polynomial

satisfying V(g) = E. Put hY = “]%L??‘

Lemma 3.3.6. There exists a unique lifting of the curve (Cy, 1, -+ ,T2y) to R%O. More-
over, there exists \g € R such that C, is the lifting of (Cp,x1,--- ,T2y,) to R%tho o

Proof. Let e be an edge of C,, not contained in F;,. Then the lift of e to Rio is uniquely

determined. Consider the subdivision of R? induced by the tropical curve F,, U E. Denote
by F* the face of this subdivision dual to the point (k, 1), and by G* the face dual to the
point (k,2), for 0 < k < n. The direction of the face of ]R%LO projecting to F* is generated

by the vectors (0,1,—1) and (1, %,0), and the direction of the face of R}QLO projecting to

G* is generated by the vectors (0,1,0) and (1,k,k). It follows from these computations
that the lift to ]R}QLO of an edge e of C}, not contained in F}, has same direction as the edge

of C,, projecting to e. From Remark 332, we deduce in this case that (Cp,x1,--- ,T2,)
has a unique lifting to Rio and that the result is a vertical translation of C,,. Then there

exists A9 € R such that the lifting of (C),, x1, -+ ,29,) to Rgxoh” is C),. O
Put h, = “Noh%” and Y,, = Rg)\oh”'
Lemma 3.3.7. The surfaces X, and Y, intersect transversely and Ch,=X,NY,.

Proof. 1t follows from Lemma [3.3.6] that C,C X,NY,. By construction, any edge of C,
is the transverse intersection of a face of X,, with a face of Y,,. So C},, C X,, - Y}, where
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Figure 3.8 — The Newton polytope of X,. Figure 3.9 — The Newton polytope of Y,,.

X, - 'Y, denotes the stable intersection of X, and Y;, (see Section [Z3T]). Let us compute
the number (counted with multiplicity) of infinite edges of X, - Y}, in a given direction.
Denote by A(X,,) the Newton polytope of X,,, and denote by A(Y},) the Newton polytope
of Y,,. One has

A(X,,) = Conv ((0,0,0),(n,0,0),(0,1,0),(0,0,1)),

and
A(Y,) = Conv ((0,0,0), (n,0,0),(n,1,0),(0,2,0),(0,0,1),(1,0,1)),

see Figure 3.8 and Figure By considering faces of the Minkowsky sum
AX,) +AY,) ={a+blae A(X,) and b€ A(Y,)},

one can see that X, - Y, has two edges (counted with multiplicity) of direction (—1,0,0),
n edges (counted with multiplicity) of direction (0,—1,0), 2n edges (counted with mul-
tiplicity) of direction (0,0,—1), one edge of direction (1,0,n) and one edge of direction
(1,m,n). Since the curve C,, has also two edges of direction (—1,0,0), n edges of direction
(0,—1,0), 2n edges of direction (0,0,—1), one edge of direction (1,0,n) and one edge of
direction (1,n,n), we conclude that C,=X,-Y,=X,NnY,. O

3.4 Real phases on X,, and Y,

Consider the Harnack phase ¢p, on D, and the Harnack phase ¢¢, on C), (see Def-
inition Z3.20)). We depicted the real part of D3 on Figure 310 and the real part of Cs
on Figure 3.I1l Notice that for the real phase ¢¢, on C,, every edge of C), containing a
marked point is equipped with the sign (—,+). Consider the 2n marked points 71, - - ra,
on RC,,, where r; is the symmetric copy of z; in the quadrant R* x R* (see Figure B.IT]
for the case n = 3).

Lemma 3.4.1. There exist a real phase px, on X, and a real phase py, on Y, such that
the following conditions are satisfied:

1. RD,, is the projection of the union of all vertical faces of RX,,.

2. 78 (RX, NRY,) = RC,,
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Figure 3.10 — The real part RDs. Figure 3.11 = The real part RC;.

3. An edge e of RX, N RY, is unbounded in direction (0,0,—1) if and only if
aR®(e) C {ry, - ,ron}.

Proof. Denote by dp, the Harnack distribution of signs at the vertices of the subdivision
of A, dual to D,,. By definition, ¢p, is compatible with dp,. Complete the distribution
of signs ép, to a distribution of signs dx, at the vertices of the dual subdivision of X,, by
choosing an arbitrary sign for the vertex (0,0,1). Define ¢x, to be the real phase on X,
compatible with dx, . By construction, ¢x, satisfies Condition [I] of Lemma [3.4.1]l Define
a real phase on Y, as follows. Denote by G the set of all faces of Y,, containing an edge of
Ch.

We first define a real phase ¢y, r on any face F' € G. Consider, as in the proof of Lemma,
B30, the subdivision of R? induced by the tropical curve F,, U E. Denote by F* the face
of this subdivision dual to the point (k, 1), and by G* the face dual to the point (k,2), for
0 < k < n. Denote by F* the face of Y;, such that 7% (F*) = F* and by G* the face of Y,
such that WR(ék) = G*, for 0 < k < n. Denote by f; the edge of F}, containing xj and by
f& the vertical face of Y, projecting to fj, for 1 < k < 2n. One can see that all the edges
of C,, are contained in the union of all faces F*, G¥ and fk For any 0 < k < n, one can
see that the face F'* contains an edge e of C,, such that e is contained in a non-vertical
face I, of X,,. Denote by (£1,£2) a component of the real phase ¢¢, on 7% (e). Since F, is
non-vertical, there exists a unique sign 3 such that (1, e2,£3) is a component of the real
phase ¢x, on Fe. Define the real phase ¢y, on F* to contain (e1,€2,€3) as a component.
Condition Bl of Lemma 341l determines the real phase ¢y, on fi, for any 1 < k < 2n.
Since the three faces F”, G' and fn+1 are adjacent, it follows from the definition of a real
phase that the phase on G is determined from the phase on F" and the phase on fn+1.
Since the three faces GFt1, GF and fn—l—k—i—l are adjacent, for any 1 < k <n — 1, it follows
from the definition of a real phase that the phase on G**1 is determined from the phase
on G* and the phase on fn+k+1- By induction, it determines the real phase ¢y, on G*,
for 1 <k <n.

We now extend the definition of ¢y, to all faces of Y,,. Consider the set of edges £ of the
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dual subdivision of Y;, such that e € £ if and only if e is dual to an element in G. Consider
V the set of vertices of edges in £. As in Lemma [Z3.T9] one can consider a distribution of
signs on V compatible with the real phase on G. Extend arbitrarily this distribution to all
vertices of the dual subdivision of Y,, and consider the real phase ¢y, on Y, compatible
with the extended distribution of signs. By construction, the real phases ¢x, and ¢y,
satisfy the Conditions [, 2 and Bl of Lemma BTl O

Put
RC,, = RX,, NRY,,.

Consider, as explained in Section [3.2] a family of real algebraic curves D,, ; approxi-
mating (Dp, ¢p, ), a family of real algebraic surfaces &, ; approximating (X, ¢x, ) and a
family of real algebraic surfaces ), ; approximating (Y, ¢y, ). Put C~n7t =Xt N Vnt-

For every t, put C,, + = 7€ (én,t). Consider RX,, the partial compactification of RX,, in
(R*)? x R and RX,, ; the partial compactification of RX,, + in (R*)? x R, for any ¢. One has
RX, N ((R*)? x {0}) = RD,, and RX,,; N ((R*)? x {0}) = RD,;. Then, it follows from
Theorem that for ¢ large enough, one has the following homeomorphism of pairs:

(RX,+,RD,; URC,;) ~ (RX,,,RD,, URC,). (3.1)

Moreover, the map ©® gives by restriction a bijection from RX,, ; to (R*)? fixing RD,, ;
and sending RC,, ; to RC,, ;. The map 7® and the homeomorphism (B.I)) give rise to the
following homeomorphism of pairs, for ¢ large enough:

((R*)%,RD,,; URC, ;) ~ (RX,,RD,, URC,,). (3.2)

It remains to describe the pair (RX,,RD, URC,). One has 7*(RX,,) = (R*)? and
for any z € RD,,, (7%)~!(x) is an interval of the form {x} x [—h, h], see Figure for a
local picture.

Remark 3.4.2. The set (7%)71(RD,,) can be seen as a tubular neighborhood of RD,, in
RX,,.

Outside of (7%)~1(RD,,), the map T|g; is bijective. Let V' be a small tubular neigh-
borhood of RD,, in (R*)2. Perturb slightly the pair (RX,,RC,) inside (7®)~*(V) to
produce a pair (S, T},), such that

e (RX,,RC,) ~ (Sp,T)),

e RD, C S,,

e 7% defines an homeomorphism from S, to (R*)?
see Figure and Figure BI3] for a local picture. One obtains the following homeomor-
phism of pairs, for ¢ large enough:

((R*)2,RD,4 URC, ;) ~ ((IR{*)Z, RD, U WR(Tn)> . (3.3)

By construction, the curve 7%(7},) is a small perturbation of RC,,, intersecting the curve
RD,, transversely and only at the marked points ry,- -+ ,79,, see Figure B.14] and Figure
B.I5l for the case n = 3. Then, for ¢ large enough, the chart of the reducible curve D,, ;UC,, ;
is homeomorphic to the chart depicted in Figure Bl
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Figure 3.12 — The curve RD,,URC,, in the

surface RX,, and the projection WR(RC’n). Figure 3.13 — The curve RDy, UT, in the

surface S,, and the projection 7%(7T},)

Figure 3.14 - RC3 URDs. Figure 3.15 — n(T3) UR D3






Chapter 4

A real sextic surface with 45
handles

4.1 Introduction and statement of the main result

If X is a real algebraic surface of degree 6 in CP?, then one has: h*0(X) = 10,
Rb1(X) = 86, 0(X) = —64 and b,(X) = 108. Therefore, using Smith-Thom inequality
and one of the two Comessatti inequalities, one obtains

b (RX) < 96 = hbH(X) + 10.

The existence of a real algebraic surface X of degree 6 in CP? such that b (RX) = 96
is prohibited using Smith-Thom inequality and Rokhlin congruence. Therefore, if X is a
real algebraic surface of degree 6 in CP3, one has

bi(RX) <94 =hrM(X) +8.

F. Bihan constructed in [Bih0I] a real algebraic surface Xg of degree 6 in CP? satisfying
b1(RXy) = 88. Moreover, Xy is an (M — 2)-surface and the real part of Xy is homeo-
morphic to 65 II Sy 1T S4o, where S denotes a two-dimensional sphere and S, denotes a
two-dimensional sphere with o handles. Bihan’s construction uses Viro’s combinatorial
patchworking and an equivariant deformation due to Horikawa (see [Hor93]). In this
chapter, we improve this construction.

Theorem 4.1.1. There exists a real algebraic surface X of degree 6 in CP? such that
RX ~4511 252 11 541.
The surface X is an (M — 2)-surface satisfying

b (RX) = b +4 =90.

The existence of a real algebraic surface X of degree 6 in CP? satisfying
92 < b (RX) < 94 is still unknown. The main novelty, compared to [BihO1], is that
we deal with the general Viro’s method. To do so, we use a curve constructed by E.
Brugallé in [Bru06] (see also chapter [3)), and we consider a singular surface instead of the
classical double cover (see Subsection FL3.2]). This chapter is organized as follows. In Sec-
tion 2] we describe a class of real algebraic surfaces, the so-called surfaces of type (1c¢),
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and an equivariant deformation of a real surface of type (1c) to a real algebraic surface of
degree 6 in CP3. In Section @3, we use Viro’s combinatorial patchworking to construct
a real surface Z of type (1¢). Then, using general Viro’s method, we slightly modify the
construction of Z to obtain a real surface Y of type (1c) satisfying

RY ~4S 11 252 I 541.

4.2 An equivariant deformation

Consider the 4-dimensional weighted projective space C]P’4(2) with complex homoge-
neous coordinates zg, z1, 22, z3 of weight 1 and z4 of weight 2.

Definition 4.2.1. (see [Hor93])
An algebraic surface Y in CP*(2) is said to be of type (1¢) if Y is defined by the following
system of equations:
{ 23+ fa(2)2] + fa(2)za + fo(2) = 0,
z0z3 — 2122 = 0,

where fo;(2) is a homogeneous polynomial of degree 2i in the variables zy, z1, 22, 23.
We define a real algebraic surface of type (1c) to be a complex algebraic surface of type
(1c) invariant under the standard real structure on CP*(2).

In his construction, Bihan used an equivariant version of Horikawa’s deformation of
surfaces of type (1c) in CP4(2) .

Definition 4.2.2. A family of compact complex surfaces F = (L,p, B) consists of a
pair of connected complex manifolds L and B, and a proper holomorphic map p: L — B
which is a submersion and whose fibers Ly are connected surfaces.

Let V' be a connected compact complex surface. An elementary deformation of V
parametrised by a complex contractible manifold B consists of a connected complex mani-
fold L, a base point by € B, a family F = (L,p, B) and an injective morphism i : V — L
such that (V') = Ly,.

A result of an elementary deformation of V is a connected complex surface which
s a fiber of the map p.

On the set of complex surfaces, introduce the equivalence relation generated by elementary
deformations and isomorphisms. Any surface belonging to the equivalent class of V is
called a deformation of V.

Suppose that (V,c) is a real surface. An elementary equivariant deformation of (V,c)
is an elementary deformation of V' such that L (resp., B) is equipped with an antiholo-
morphic involution Conj : L — L (resp., conj : B — B) satisfying p o Conj = conj o p,
conj(by) = by and Conjoi=ioc.

On the set of real surfaces, introduce the equivalence relation generated by elementary
equivariant deformations and real isomorphisms.

In [Hor93|, Horikawa showed that any nonsingular algebraic surface of type (1c) can
be deformed to a nonsingular surface of degree 6 in CP3. The same result is true in the
real category.

Proposition 4.2.3. (see [Bih01] )
LetY be a nonsingular real algebraic surface of type (1c). Then, there exists an equivariant
deformation of Y to a nonsingular real surface X of degree 6 in CP3.
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Proof. Consider the elementary equivariant deformation of Y = Y determined by the
family (Y;) for e € R, where Y; is defined by the following system of equations:

23 + f2(2)25 + fa(2)za + f6(2) = 0,
2023 — 2129 — €24 = 0.

As Y is a nonsingular surface, then for sufficiently small e, the surface Y is nonsingular.
The system defining the surface Y, for € # 0, can be transformed into:

(BAZBRY 4 fy()(BBFARP? 4 fu(2)(RIF22) + o) =,

ZQR3—Z1%
7y = HE—E21Z2

&€
Now, consider the projection

p @ CPY2)\{(0:0:0:0:1)} — cp?
(20:2’1:2222322’4) — (20:21222:2’3).

For € # 0, the point (0:0:0:0:1) € CP*2) does not belong to Yz, hence ply, is well
defined. For € # 0, the projection p produces a complex isomorphism between Y. and the
algebraic surface X, of degree 6 in CP? defined by the polynomial

( )> + fa(2)( )2+ fa(2)(

Moreover, this isomorphism is equivariant with respect to the involution c and the standard
involution on CP3. ]

2023 — 2122 2023 — %122 2023 — %172

)+ folz) = 0.

3

Remark 4.2.4. This deformation can be geometrically understood as a deformation of
CP? to the normal cone of a nonsingular quadric. (See for example [Ful98], Chapter 5 for
the general process of deforming an algebraic variety to the normal cone of a subvariety).

Remark 4.2.5. Any surface of type (1c) is a hypersurface in the quadric defined by the
equation (zgz3 — 2125 = 0) in CP*(2). This quadric is a projective toric variety. In
particular, one may use Viro’s patchworking to produce real algebraic surfaces of type

(Le).

Let us describe a natural polytope which may be used to apply Viro’s patchworking to
produce real algebraic surfaces of type (1c). Consider the affine chart {zy = 1} ¢ CP*(2)
with affine coordinates uq, us, uz and uy4, where

Zi
U; = —,
20
for 1 <4 <3 and
Z4
Uy = —>5.
22

Thus, the affine coordinate ring of (zpz3 — z122 = 0) N {zp = 1} is

R [y1, y2,y4] = R[21, 22, 23, 24] /(23 — 2122),

where y; is the image of z; under the quotient map. In the chart {zy = 1} ¢ CP*(2), a
system of equations for a surface of type (1c) is:

{ Zy + fo(2)2] + fa(2)za + fo(2) =0,
Z23 — 2129 = 0,
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where f2;(2) is a polynomial of degree 2i in the variables z1, zq, z3. Passing to R [y1, y2, y4],
we get a single equation

F) = yi+ f2(2)23 + fa(2)za + fo(2) =0,

where fai € R[y1,y2]. One can see that the Newton polytope of a generic polynomial
fai(y) is the square

Conv ((0,0), (24, 0), (0, 20), (2, 21))
in R2. Then the Newton polytope of a generic polynomial f(y) is the polytope
Q@ = Conv ((0,0,0),(6,0,0), (6,6,0), (0,6,0),(0,0,3))

in R? (see Figure A.]).

(0,0,3)

(0,6,0) (6.6.0)

(0,0,0) (6,0,0)

Figure 4.1 — Polytope Q.

4.3 Construction of a surface X of degree 6 with 45 handles
Proposition 4.3.1. There exists a real algebraic surface Y of type (1c¢) such that

RY ~4S 11 252 I 541.

Proof of Theorem [4.1.1] Performing the equivariant deformation described in Proposition
@23 to the surface Y, we obtain a real algebraic surface X of degree 6 in CP3, such that

RX ~ 45].[252 HS41.

O

The rest of this chapter is devoted to the proof of Proposition 3.1l Our strategy is
first to describe a T-construction of an auxilliary surface Z of Newton polytope Q). Then,
we use general Viro’s method to modify slightly the construction.
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{1.0.2) (0,6,0) (6.6,0)

(0,0,0) (6,0,0)

Figure 4.2 — Cone C.

/)

\

o

Figure 4.3 — The fixed part of a triangulation of Q¢ and the distribution of signs. A point
gets a sign + if and only if it is ticked.

4.3.1 The auxilliary surface Z

We describe a triangulation 7 of @ and a distribution of signs D(7) at the vertices
of 7. Consider the cone C with vertex (1,0,2) over the square Qp = @ N {w = 0} (see
Figure [£2)). Take any primitive convex triangulation of ()¢ containing the edges depicted
in Figure @3l Then, triangulate C into the cones with vertex (1,0,2) over the triangles
of the triangulation of QJg. The triangulation of the cone C' contains 12 edges of length
2 (edges joining (1,0,2) to the points of coordinates (1,0) mod 2 inside Q). For the
three edges [(1,0,2),(1,0,0)], [(1,0,2),(3,0,0)] and [(1,0,2),(5,0,0)] of length 2, refine
the triangulation as explained in Definition
Consider the tetrahedra a; and g with vertices (1,0,2),(6,6,0),(4,0,1),(6,0,0) and
(1,0,2),(0,6,0),(0,0,1),(0,0,0) respectively. See Figure[d4lfor a picture of a;. Triangulate
aq into the cones with vertex (4,0, 1) over the triangles in the triangulation of the triangle
with vertices (1,0,2),(6,6,0),(6,0,0). Triangulate ay into the cones with vertex (0,0, 1)
over the triangles in the triangulation of the triangle with vertices (1,0, 2), (0, 6, 0), (0,0, 0).
All the tetrahedra of the triangulations constructed are primitive.

Consider the tetrahedra /7 and [y with vertices (1,0,2),(6,6,0),(4,4,1),(4,0,1) and
(1,0,2),(0,6,0),(0,4,1),(0,0,1) respectively. See Figure[LHlfor a picture of 5. Triangulate
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(1,0,2)
(0,6,0) (6,6,0)
@0.1)
(0,0,0) (6,0,0)
Figure 4.4 — Tetrahedron «;.
(4,4,1)
(1,0,2)
(0,6,0) (6,6,0)
(4,0,1)
(0,0,0) (6,0,0)

Figure 4.5 — Tetrahedron (.

B1 and (9 into 4 tetrahedra, respectively, using the subdivision of the segments
[(4,4,1),(4,0,1)] and [(0,4,1),(0,0,1)] into four primitive edges. All the tetrahedra of
the triangulations of 5; and (S, are primitive.

Consider the tetrahedron v; with vertices (1,0, 2), (6,6,0), (4,4, 1), (0,4, 1), see Figure
Triangulate v; into 4 tetrahedra, using the subdivision of the segment [(4,4,1), (0,4, 1)].
All the tetrahedra of the triangulation of 1 are of volume 2.

Consider the tetrahedron -, with vertices (1,0,2),(6,6,0),(0,6,0),(0,4,1). The trian-
gle with vertices (1,0,2),(6,6,0),(0,6,0) is already triangulated. Use this triangula-
tion to subdivise 75. Finally, for the three edges [(1,0,2),(1,6,0)], [(1,0,2),(3,6,0)] and
[(1,0,2),(5,6,0)] of length 2, refine the triangulation as explained in Definition
At the present time, the part lying under the cone with vertex (1,0,2) over Q N {w = 1}
is triangulated (see Figure [L.7]). Consider the pentagon

P = Conv ((1,0,2),(2,0,2),(2,2,2),(1,2,2),(0,1,2)),

and triangulate it with any primitive convex triangulation and consider the two cones over
it with vertex (0,0, 3) and (4, 4, 1) respectively (see Figure[d.8]). Complete the triangulation
considering the following tetrahedra:

e The joint of the segment [(4,0,1), (4,4,1)] and [(1,0,2), (2,0, 2)] triangulated into 4
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(1,0,2)

(4,4,1)

0,6,0) (6,6,0)

(4,0,1)

(0,0,0)

(0,0,1)

(0,0,1)

(6,0,0)

Figure 4.6 — Tetrahedron ;.

Figure 4.7 — Cone over Q N {w = 1}.

1,0,2)

041) (4,4,1)

(4,0,1)

Figure 4.8 — Cones over the pentagon P.

primitive tetrahedra, using the triangulation of the segment [(4,0,1),(4,4,1)] into

4 edges.
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e The joint of the segment [(0,4,1), (4,4,1)] and [(0, 1,2), (0,2, 2)] triangulated into 4
primitive tetrahedra, using the triangulation of the segment [(0,4, 1), (4,4,1)] into
4 edges.

e The joint of the segment [(0,4,1), (4,4,1)] and [(1,0,2), (0, 1, 2)] triangulated into 4
primitive tetrahedra, using the triangulation of the segment [(0,4, 1), (4,4,1)] into
4 edges.

e The two cones over the triangle (0,0,2),(1,0,2),(0,1,2) with vertices (0,0,1) and
(0,0,3), respectively.

e The two cones over the triangle (0,1,2),(0,2,2),(1,2,2) with vertices (0,4,1) and
(0,0, 3), respectively.

Denote by p the obtained subdivision of (). To show the convexity of p, one can proceed as
in [[te97]. First, remark that the “coarse” subdivision given by the cone C, the tetrahedra
«;, the tetrahedra f3;, the tetrahedra ~;, the cones over the pentagon S and the remaining
three joints and two cones is convex. Denote by v/ a convex piecewise-linear function
certifying the convexity of this “coarse” subdivision.
Choose three convex functions vy, v» and vs certifying the convexity of the subdivision of
the three edges [(0,0,1),(0,4,1)], [(0,4,1),(4,4,1)] and [(4,4,1),(4,0,1)]. Choose also a
convex function vy certifying the convexity of the chosen subdivision of the pentagon and
a convex function v certifying the convexity of the chosen subdivision of the cone C.
Consider a piecewise-linear function v : Q — R which is affine-linear on each tetrahedron
of the subdivision p and takes the value v/(z) + > €;1;(x) at every vertex x. The function
v for positive sufficiently small ¢; certifies the convexity of the subdivision p.
Define the distribution of signs D(7) at the vertices of 7. For the points inside Qq, take
the distribution of signs shown in Figure @3l Denote by A a T-curve in P! x P! obtained
from the triangulation 7 and the distribution D(7) restricted to Qy. The chart of A is
depicted in Figure b). The distribution of signs at the vertices of 7 belonging to
Q N {w > 1} is summarized in Figure The point (0,0, 3) gets the sign +.

(0.2.2) (2.2.2) (0.4.1) (4,4,1)

(0,0,2) (2,0,2)

0,0,1) (4,0,1)

Figure 4.9 — Distibution of signs for w = 1 and w = 2. A point gets a sign + if and only
if it is ticked.

Let us compute the Euler characteristic x(RZ) of RZ. The triangulation 7 contains 6
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edges of length 2 with endpoints of opposite signs, and some tetrahedra of volume 2 in ~y;
and in the cone C. Since all the other tetrahedra are elementary and the stars of the 6
edges of length 2 are disjoint, we can use Propositions 2.2.4] and to compute x(RZ).
In ~; all the signs are positive, and in the cone C| six tetrahedra of volume 2 have negative
product of signs. One obtains:

X(RZ) =0(CZ) + 12 = —52.

4.3.2 The surface Y

To construct the surface Y, we use the real trigonal curve (C3 = 0) constructed by
Brugallé in [Bru06]. The Newton polytope of the polynomial Cj is

Conv((0,0), (6,0), (0,3), (6,1))

and the chart of Cj5 is depicted in Figure I0l

Figure 4.10 — Chart of (C5 = 0).

Denote by T" the hexagon Conv((0,0), (4,1),(6,2),(6,4),(4,5),(0,6)). Consider the charts
of the polynomials

1
b y303(x7y)7 y303(x7 5)7

1 1
hd be(.%'B—,.%A—), b(-%'By,.%Ay),
Yy Yy
where b(z,y) = y + (x + x1)(x + x2), with z1, 29 appropriately chosen so that the re-

1 1
strictions of the polynomials C3(z,y) and y3b(z3~, 2%>) to Conv((0,3);(6,1)) are equal.

In particular, xy # 2 and x1,z5 > 0. By Viro’s patchworking theorem, there exists a
polynomial P of Newton polytope I' whose chart is depicted in Figure 1Tl To construct
the surface Y, apply the general Viro’s patchworking inside ) with

e the chart of 222 + P(z,y) inside Conv(T, (1,0,2)),

e the same triangulation and distribution of signs as in Section 3] outside
Conv(T, (1,0,2)).
Denote by A the curve in P! x P! obtained as the intersection of Y with the toric
divisor corresponding to the face QQy. See Figure a).
Let us now compute the Euler characteristic of RY. To compute it, we compare
the Euler characteristics of RZ and RY. First of all, denote Z; (resp., Y1) the surfaces

constructed in the same way as Z (resp., Y) but where the six edges [(1,0,2), (1,0,0)],
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Figure 4.11 — Chart of the polynomial P.
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D D 0
o 0] 0]
: . :
0
B B
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a) b)
Figure 4.12 —a): RA  b): RA
[(1,0,2),(3,0,0)], [(1,0,2),(5,0,0)], [(1,0,2),(1,6,0)], [(1,0,2),(3,6,0)] and
[(1,0,2),(5,6,0)] are not refined. From Proposition 225 one obtains

X(RY) — x(RZ) = x(RY1) — x(RZy).

Recall that C is the cone with vertex (1,0,2) over the square Qo = Q N {w = 0} (see
Figure [£2]). Notice that outside of C, the triangulation and distribution of signs defining
Z, and Y] coincide. Recall that A is the curve in P! x P! obtained as the intersection of Z
with the toric divisor corresponding to the face Qy. Denote by Zs (resp., Y2) the surfaces
with Newton polytope C, defined by (A(z,y) + 222 = 0) (resp., (A(z,y) + 222 = 0)) and
compactified in Tor(C). The surface Y» (resp., Z2) is a double cover of Tor(Qo) = P! x P!
ramified along (x = 0) U (x = oo) U{A4A = 0} (resp., (x = 0) U (z = o0) U{A = 0}).
These surfaces are singular, with 12 ordinary double points. These double points are



4.3. CONSTRUCTION OF A SURFACE X OF DEGREE 6 WITH 45 HANDLES 53

located on the intersection of the surface with the “lines at infinity” (xr = 0) (resp.,
(x = 00)) corresponding to the edges [(0,0,0),(0,6,0)] (resp., [(6,0,0),(6,6,0)]). These
“lines” are also singular in the toric variety associated to C. Remark that Y5 and Zs are
non-degenerated with respect to Tor(C).

Proposition 4.3.2. One has the following equality:
X(RYz) = x(RZ2) = x(RY1) — x(RZy).

Proof. Denote by C(Y3) the chart of the polynomial fl(m, y)+ 22, and by C(Z5) the chart
of the polynomial A(z,y) + 222 (see Definition E22.6]). Observe that for any edge E of
C, the restriction of the polynomial fl(az,y) + 222 to E coincide with the restriction of
A(z,y) + 222 to E. Tt follows that

X(RYs) = x(C(Y2)) = x(RZ2) — x(C(Z2)).

By construction and by Theorem 2.2.7] there exists some charts Cq,--- , ), such that
e RZ) ~mg (C(Z9) U (U?ZlCi)),

o RY] ~ mQ (C(Yg) U (U?:lcz))
It follows that
X(RY7) — x(C(Y2)) = x(RZ1) — x(C(Z2)).

So finally
x(RY2) — x(RZ3) = x(RY1) — x(RZy).

O

It remains to compute x(RY3) and x(RZ3). Topologically, RZ, is obtained by taking in
the quadrant ++ and +— (resp., —+ and ——) the disjoint union of two copies of (A < 0)
(resp., (A > 0)) attached to each other by the identity map of (A = 0)U(x = 0)U(z = o0).
The same holds for RY5 by replacing A with g, see Figure .13l By a direct computation,
we obtain

Y(RY3) = 2(—18) — 12 = —48,

and
Y(RZy) = 2(—6) — 12 = —24.
Then,
X(RY) — x(RZ) = x(RY2) — x(RZz) = —24.
So finally

X(RY) = x(RZ) — 24 = —52 — 24 = —76.

Moreover, RY contains two components homeomorphic to S5 coming from the double
covering of (g > 0). Note that the vertices (1,1,2),(1,3,1),(2,3,1) and (3,3,1) have the
following property: all the vertices of the triangulation connected to one of these vertices
by an edge have the sign +, while the vertices (1,1,2),(1,3,1),(2,3,1) and (3,3,1) have
the sign —. Thus, RY contains also four spheres. There is at least one component of
RY more: this component intersects the plane {u = 0}. Moreover, RY cannot have more
components, otherwise Y would be an M-surface, but x(RY") does not satisfy the Rokhlin
congruence. Finally, from y(RY) = —76, we obtain

RY ~ 4511 252 I 541.
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a) b)

Figure 4.13 — a): (A(z,y)z < 0) b): (A(z,y)z < 0)



Chapter 5

Real algebraic surfaces in (CP!)3
with many handles

5.1 Introduction and statement of results

In this chapter, we focus on real algebraic surfaces in (CP')3. A real algebraic surface
X in (CPY)? of tridegree (dy,ds,ds) is the zero set of a real polynomial

PeR [U1,U1,U2,U2,U3,’U3]

homogeneous of degree d; in the variables (u;,v;), for 1 <4 < 3. Up to change of coordi-
nates, one can always assume that diy > do > ds. Introduce the projection
7 : (CPY)? — (CPY? on the first two factors. If X is an algebraic surface of tride-
gree (dy,dy,1) in (CP')? | then m|x is of degree 1, and X is birationaly equivalent to
(CPY)2. Hence h?°(X) = 0, so Viro’s conjecture is true for real algebraic surfaces of
tridegree (dy,ds, 1) in (CP')3. Assume now that X is of tridegree (d,2,2). The projection
7 : (CPY)3 — CP! on the first factor induces an elliptic fibration on X. Kharlamov proved
(see [AMOS]) that Viro’s conjecture is true for elliptic surfaces. Thus, Viro’s conjecture is
true for real algebraic surfaces of tridegree (d,2,2) in (CP')3.

Let X be a real algebraic surface of tridegree (4,4,2) in (CP!)3. One has h?°(X) = 9,
RML(X) = 84, 0(X) = —64 and b,(X) = 104. Therefore, using Smith-Thom inequality
and one of the two Comessatti inequalities, one obtains

bi(RX) <92 =hrb(X) +8.
We prove the following result in Section [B.5

Theorem 5.1.1. There exists a real algebraic surface X of tridegree (4,4,2) in (CP)3
such that

RX ~ 35 ]2 [] Suo-
The surface X is an (M — 2)-surface satisfying
bi(RX) =88 = b (X) 4 4.

The existence of a real algebraic surface of tridegree (4,4,2) in (CP!)3 satisfying
90 < b1(RX) < 92 is still unknown. For d > 3, the existence of a real algebraic sur-
face of tridegree (d,3,2) in (CP')3 disproving Viro’s conjecture is also unknown.
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In Section B4}, we focus on the asymptotic behaviour of the first Betti number for real
algebraic surfaces of tridegree (dy,ds,2) in (CPY)3. Let X be a real algebraic surface of
tridegree (dy,ds,2) in (CP!)3. One has

R*0(X) = dydy — dy — do + 1,

and
AP (X) = 6d1dy — 2dy — 2dy + 4.

If S4, 4, denotes the set of nonsingular real algebraic surfaces of tridegree (di,ds,2) in
(CPY)3, then it follows from Smith-Thom inequality and one of the two Comessatti in-
equalities that

max b1 (RX) < 7dydy — 3d; — 3da + 5.

Xesd1 ,do

We prove the following result in Section .41

Theorem 5.1.2. There exists a family (Xy,;) of nonsingular real algebraic surfaces of
tridegree (2k,21,2) in (CPY)3, and A, B,c,d,e € 7Z such that for all k > A and for all
[ > B, one has

bl(RXkJ) >7-2k-2l—c-2k—d-2l+e.

This chapter is organized as follows. In Section B2, we discuss orientability of closed
two-dimensional submanifolds of (RP!)3. In Section [5.3, we present a way to construct
a surface of degree (2k,2l,2) in (CP')? as a small perturbation of a double covering of a
blow-up of (CP')2. In Section [5.4], we prove Theorem and in Section we prove
Theorem B.T.1l In Section [5.6], we recall the Brusotti theorem and prove a transversality
theorem needed in our construction.

5.2 Orientability of closed two-dimensional submanifolds of
(RP')?
Identify Hy ((RP)3; Z/2Z) with (Z/2Z)3 by considering generators z1,zs, ¥3 given
by
e 71 = [{p} x RP! x RP'],

e 75 = [RP' x {p} x RP'],

Identify H; ((RIP’l : 7,/27.) with (Z/27,) by considering generators y1,y2, %3 given by
o y1 = [RP x {p} x {q)]

o yo = [{p} x RP' x {q}],

o y3 = [{p} x {¢} x RP'].
With these identifications, the intersection product

]
]
o z3 = [RP' x RP' x {p}])

H, (RPY)?; Z/2Z) x Hy (RPY)?; Z/2Z) — Z/2Z
is given by the following map:

Q :  (2)27)3 x (z)27)® — 7.)27,
((a1,a2,a3), (b1,b2,b3)) — ai1by + azbs + asbs.
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If X is a real algebraic surface of tridegree (di,ds,ds) in (CP')3, it follows from the
identifications made above that the homology class of RX is represented in (Z/27Z)3 by

[RX]=(di mod2,dy mod2,ds mod?2).

Consider the case of a real algebraic surface X of tridegree (di,ds,1) in (CPY)3. Such a
surface is given by a polynomial

uz P(uy, v, u2,v2) + v3Q(u1,v1, uz, va),

where P and @ are homogeneous polynomials of degree d; in the variables (u;,v;), for
1 <4< 2. Assume that {P = 0} and {Q = 0} intersect transversely. The projection 7|x
on the two first factors identify X with the blow up of (CP!)? at the 2d;ds intersection
points of {P = 0} and {Q = 0}. If 2m points of intersections of {P = 0} and {Q = 0} are
real, then

RX ~ (RP! x RP!)#,,,RP?,

where # denotes the connected sum. In particular, the surface RX is orientable if and
only if m = 0.

Proposition 5.2.1. The Euler characteristic of any closed two-dimensional submanifold
Z of (RPY)3 is even.

Proof. 1f [Z] = 0 € Hy ((RP')3; Z/2Z), then Z is the boundary of a compact 3-manifold
M in (RP')3. Since (RP')3 is orientable, the 3-manifold M is orientable and Z is also
orientable. It follows that the Euler characteristic of Z is even. Assume now that
[Z] # 0 € H, ((RIP’l)?’; Z/2Z). Up to a change of coordinates on (RP')3, one can as-
sume that [Z] = (1, a,b), with a,b € Z/27Z. Consider a real algebraic surface S of tridegree
(1,a,b) transverse to Z. Then, one has [ZUS] = [Z]+[S] = 0, and the union ZU.S bounds
in (RP)3. Thus, one can color the complement (RP1)?\ (Z U S) into two colors in such a
way that the components adjacent from the different sides to the same (two-dimensional)
piece of Z U S would be of different colors. It is a kind of checkerboard coloring. Consider
the disjoint sum @ of the closures of those components of (RP!)3\ (ZUS) which are colored
with the same color. It is a compact 3-manifold, and it is oriented since each of the com-
ponents inherits orientation from (RP')3. The boundary of this 3-manifold is composed of
pieces of Z and S. It can be thought of as the result of cutting both surfaces along their
intersection curve and regluing. The intersection curve is replaced by its two copies, while
the rest part of Z and S does not change. Since the intersection curve consists of circles,
its Euler characteristic is zero. Thus, one has

x(0Q) = x(Z) + x(9).

Since the surface S is the connected sum of an even number of copies of RP?, the Euler
characteristic x(S) of S is even. On the other hand, x(0Q) is even since 9@ inherits
orientation from ). Thus, one has

X(Z)=0 mod 2.
O

Proposition 5.2l implies that we cannot embed any connected sum of an odd number
of copies of RP? in (RPl)g. One has the following characterisation of orientability.
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Proposition 5.2.2. Let Z be a two-dimensional submanifold of (RPY)3. The manifold Z
is nonorientable if and only if there exists a circle St — Z such that [S'] - [Z] = 1, where

[S'] € Hy (RPY)? ; Z/2Z)
is the homology class of the circle S' and

[Z] € Hy (RP')? ; Z/27Z)
is the homology class of the manifold Z.

Proof. The manifold Z is nonorientable if and only if there exists a disorienting circle
S' <+ Z. Recall that S' C Z is a disorienting circle if and only if the normal bundle Nst 7
of S' in Z is nontrivial. On the other hand, one has the following equality:

N§17(Rpl)3 =Ng1 7 © (NZ,(RP1)3> ‘sl )

where N1 gpiys denotes the normal bundle of S' in (RP!)? and <./\/ Z7(RP1)3> ‘Sl denotes

the restriction to S' of the normal bundle of Z in (RP!)3. The restriction of the tangent
bundle of (RP!)? to S! is the Whitney sum of the normal and the tangent bundle of S!.
Thus, the normal bundle ./\/-817(RP1)3 is trivial, so the normal bundle Ng: ; is nontrivial

is nontrivial. One concludes that Z is

if an only if the normal bundle <./\/ Z7(R]Pul)3> o
nonorientable if and only if there exists an embedding S! < Z such that [S']-[Z] =1. O

Corollary 5.2.3. Let X be a nonsingular real algebraic surface of degree (k,1,2) in (CP!)3
given by a polynomial
ugP + ugv3@ + ng,

where P, Q and R are homogeneous polynomials of degree k in (u1,v1) and of degree I
in (ug,va). Then, RX is nonorientable if an only if there exists an embedding of a circle
Y St (RPY)? such that

e (SY) Cc {Q* —4PR > 0}.

e The homology class [(S')] € Hy (RPY)2; Z/2Z) is represented by (a,b) € Z/27Z
with ak + bl = 1.

Proof. Notice that RX is homeomorphic to the disjoint union of two copies of
{Q? — 4PR > 0} attached to each other by a self-homeomorphism of {Q? — 4PR = 0}.
Assume that the manifold RX is nonorientable. Then, by Proposition B.2.2], there exists
an embedding of a circle ¢ : S! < RX such that the homology class

[p(S")] € Hy (RP'); Z/21)

is represented by (a,b,c) € (Z/27)% with ak + bl = 1. Using a small perturbation of the
embedding ¢, one obtains an immersion 7 o ¢ of S in (RP1)2, where 7 : (RP!)? — (RP!)2
denotes the projection on the two first factors. This immersion satisfies

e mo¢(S!) c {Q?—-4PR >0} and

e [0 ¢(SY)] = (a,b), with ak + bl = 1.
Perturbing arbitrarily each double point of m o ¢(S'), one obtains a collection of circles

Sl -+ 8}, with [S1] = (a;,b)) € (2/22)%, such that
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0S}C{Q2—4PRZO},foraHl§j§n,

> jaj=aand } 7 b =b.

Then there exists 1 < j < n such that a;jk + b;l = 1.

Reciprocally, assume that there exists an embedding 1 : S* < (RP1)2 such that
e (S!) C {Q? —4PR > 0},

e [(SY)] = (a,b) € (Z/27Z)? with ak + bl = 1.

Using a small perturbation of the embedding v, one can assume that
$(Sh) € {Q* —4PR > 0},

and that 1 (S!) intersect {P = 0} transversely. Over the set {Q? — 4PR > 0}, the map
7|rx is a two-to-one map. Then, the preimage of ¢)(S') under the projection 7|rx is either
a circle or a union of two circles. Consider

RX \ {P =0} C (RP')? x R.

If z € (Sh) \ {P = 0}, one can order the two preimages s1(x) and s3(z) of  under 7 so
that the vertical coordinate of s;(z) is smaller than the vertical coordinate of sa(z). One
can see that when = goes through {P = 0}, the order on s;(x) and sa(z) changes. Then,
the preimage of 1 (S!) under the projection m|rx is a circle if and only if the number of
intersections of ¥(S') with {P = 0} is odd. Since ak + bl = 1, the preimage of ¥(S!) is a
circle, and it follows from Proposition that RX is nonorientable. O

5.3 Double covering of certain blow-ups of (CP')?

We describe a method of construction of real algebraic surfaces in (CP')3 of tridegree
(2k,21,2) for any (k,l) with £ > 1 and [ > 1. Consider a real algebraic surface Z in
(CPY)3 defined by the polynomial P? + @, where P is a real polynomial of tridegree
(k,1,1), the polynomial @ is a real polynomial of tridegree (2k,2l,2) and ¢ is some small
positive parameter. If {P = 0} and {Q = 0} are nonsingular and intersect transversely,
the surface Z is also nonsingular, and it is a small deformation of the double covering of
{P = 0} ramified along {P = 0} N {Q = 0}. More precisely, the surface Z is obtained
from an elementary equivariant deformation of the subvariety

Zoy={U*+Q=0, P=0} C (C*)*

compactified in the toric variety associated to the cone with vertex (0,0,0,2) over the
parallelepiped

Conv ((2k,0,0), (0,21,0), (2k, 2,0), (0,0, 2), (2k,0,2), (0,21, 2), (2k, 21, 2)) .
This deformation is obtained via considering the family
Zt:{U2+Q:07 P:tU}7

for 0 < t < /e. The real part RZ is homeomorphic to the disjoint union of two
copies of (RP)? N {P = 0} N {Q < 0} attached to each other by the identity map of
(RPH3 N {P =0} N{Q = 0}. The polynomials P can be written in the following form:

P(u;,v;) = v3P1(uj, v;) + uz Po(us, vs),
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where Py, P, are homogeneous polynomials of degree k in ui,v; and of degree [ in
ug,vy. As explained in Section B2, the surface {P = 0} is the blow-up of (CP!)? at
the 2kl points of intersections of {Py = 0} and {P; = 0}. Consider the real algebraic
curve {P = 0} N {Q = 0} in (CP')? and consider its image D under the projection
7 : (CPY)3 — (CPY)? forgetting the last factor. Let us compute the bidegree of D. One
can see that the intersection of { P = 0} with CP! x[0 : 1]xCP! (resp., [0 : 1]xCP*xCP!) is
a curve of bidegree (k, 1) (resp., (I,1)). The intersection of {Q = 0} with CP!x [0 : 1] x CP*
(resp., [0 : 1] x CP! x CPY) is a curve of bidegree (2k,2) (resp., (2/,2)). Then the real
algebraic curve {P = 0}N{Q = 0} intersects CP! x [0 : 1] x CP* (resp., [0 : 1] x CP! x CP!)
in 4k points (resp., 41 points). Considering the projection 7, one concludes that the real
algebraic curve D is of bidegree (4k,4l). For 1 < ¢ < 2kl, denote by L; the exceptional
lines of { P = 0} corresponding to the intersection points of { Py = 0}N{P; = 0}. Since the
real algebraic surface {@Q = 0} is of tridegree (2k,2[,2), it intersects any exceptional line
L; in exactly 2 points. Considering the projection 7, one concludes that the real algebraic
curve D has 2kl double points, one double point at each intersection point of {Fy = 0}
and {P; = 0}. Conversely, one has the following proposition.

Proposition 5.3.1. Let {Py = 0} and {P, = 0} be two nonsingular real algebraic curves
of bidegree (k,1) in (CPY)? intersecting transversely in 2kl points. Let D be an irreducible
real algebraic curve of bidegree (4k,4l) in (CPY)? with 2kl ordinary double points, one
double point at each intersection point of {Py = 0} and {P; = 0}. Consider the blow-
up of (CPY)? at the 2kl points of intersections of {Py = 0} and {P, = 0}, given by the
polynomial

P(ui,vi) = ngl(ui,vi) + u;»,Po(ui,vi).

Then, there exists a real algebraic surface {Q = 0} of tridegree (2k,21,2) in (CPY) such
that the strict transform of D in {P = 0} is given by the intersection {P = 0} N{Q = 0}.

Proof. Denote by x1, ..., xop; the intersection points of { Py = 0} and {P; = 0}. Denote by
A the linear system of curves of bidegree (4k,4l) in (CP')? with a singularity at each z;.
We first show that the space A is of codimension 6kl in the space of curves of bidegree
(4k,41) in (CP')2. Denote by Cy the curve { Py = 0}. One has the following exact sequence
of sheaves:

0 = Opiyp1 (D — Co) = Opiyp1 (D) = Ocy (D |cy) = 0,

where Opiyp1(D — Cj) is the invertible sheaf associated to the divisor D — Cj, the sheaf
Op1«p1 (D) is the invertible sheaf associated to the divisor D, and Oc¢, (D |¢,) denotes the
restriction of Op1yp1(D) to Cy. Since the divisor D — Cy is of bidegree (3k,3l), for any
k > 0 and [ > 0 the invertible sheaf Opi,p1(D — Cp) is generated by its sections and one
has HY(P! x P, Opip1 (D — Cp)) = 0 (see for example [Ful93]). Thus, the long exact
sequence in cohomology associated to the above exact sequence splits. The first part of
the long exact sequence is the following:

0— H'(P' xPL,O(D - Cy)) — H(P' x PL,O(D)) & H°(Cy,O(D |¢,)) = 0,
where r is the restriction map. Denote by
E(z1,--- ,xo1) C H'(P' x PL,O(D))
the set of sections vanishing at least at order 2 at x1,--- ,z9x;. Then

.A = P(E(ml, e ,.%'le)).
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Put F(xz1, -+ ,xok1) = r(E(z1,- -+ ,x21)). Denote by
G(z1,- - ,mop) C HY(P x P, O(D — Cy))
the set of sections vanishing at x1,--- ,x2x;. One has then the following exact sequence:
0—= Gy, - ,wop1) = E(x1, - ,wom) — F(w1,--+ ,2017) = 0.

Define on Cj the divisor
D'=DnNCy— E,

2kl
i=1

By definition of r, the set F(x1,---,xar) is the subspace of H(Cy, Oc, (D N Cp)) of
sections vanishing at least at order 2 at x1,--- ,xor;. Consider the exact sheaf sequence

where

0— Oc,(D") = Oc, (DN Cy) = Op(DNCy|g) — 0,

and consider the associated long exact sequence

0 — H(Co, Oc, (D')) — H°(Co, Ocy (DN Co)) = HYE,O(DNCy |p)) — -

Thus, one sees that F(x1,- -+ , o) = ker 7/ is identified with H°(Cp, O¢, (D")).
Let us compute h?(Cy, D’). The divisor D’ is of degree 4kl. Moreover, one has

deg(Ke, — D') = —deg(D’) + deg(K¢,)
= —deg(D") —2+2¢(Cy)
= —4kl—-2+4+2(k-1)(1-1)
= —2kl — 2k — 2I.
But —2kl — 2k — 21 < 0, so h°(Cy, K¢, — D) = 0, and by Riemann-Roch formula, one gets
h(Co, D') = deg(D') +1— g(Co)
= 4dkl+1—(k—1)(1—-1)
3kl +k+1.
Therefore, one has
dim(E(ml, veey .%'le)) =3kl+k+1+ dim(G(ml, couy «73214:1))-
Now, compute dim(G(x1, ..., xox;). Consider the following exact sequence:
0= Opiyp1 (D — CF) = Op1yp1 (D — Co) = Oc, (D = Co) loy) — 0.
Passing to the long exact sequence, one obtains:
0— H'(P' x P, O(D — C2)) = G(x1, ..., xopt) — 7(G(21, ..., Topy)) — 0.
With a similar computation as before, one sees that

dim(r(G(x1,...,xok1)) = 4kl +1—(k—1)(I —1)
= 3kl +k +1.
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On the other hand, h°(P! x P, D — C3) = (2k +1)(21 + 1) — 1. So finally,

dm(E (21, ..., top)) = 3kl +k + 1+ 3kl + k + 1 + 4kl + 2k + 21
= 10kl + 4k + 41,

and codim(A) = 6kl. Denote by A the linear system of curves obtained as the proper
transform of the linear system A and denote by B the linear system of surfaces of tridegree
(2k,21,2) in (CP')3. By restriction to the surface {P = 0}, one obtains a map from B
to A. By definition, the kernel of this map correspond to the linear system of surfaces of
tridegree (k,l,1). Then the dimension of the image of the restriction map is

32+ 1)(204+1) —2(k+1)(I+1) — 1 =10kl + 4(k + 1),
and the restriction map from B to A is surjective. O

In summary, we obtain the following method of construction of real algebraic surfaces
of degree (2k,21,2) in (CP')3.

1. Consider two nonsingular real algebraic curves {Py = 0} and {P; = 0} of bidegree
(k,1) in (CP')? intersecting transversely.

2. Consider an irreducible real algebraic curve {R = 0} of bidegree (4k,4l) in (CP!)?
with 2kl double points, one double point at each intersection point of {Py = 0} and
{P, =0}.

3. Consider the polynomial P(u;,v;) = vsP;(ui, v;) + ugPo(ui, v;). The real algebraic
surface X in (CP')? defined by the polynomial P is the blow-up of (CP!)? at the
2kl points of intersection of {Py = 0} and {P, = 0}. Consider the strict transform
C of {R = 0} under this blow-up. By Proposition [5.3.1} there exists a polynomial
Q of tridegree (2k,2l,2) such that

C={P=0}n{Q =0}

Denote by X_ C RX the subset which projects to {R < 0}.

4. Consider the surface
Z ={P?>+cQ =0},
for € > 0 small enough. Then, the surface Z is a nonsingular real algebraic surface

of tridegree (2k, 21,2) in (CP')? and its real part RZ is homeomorphic to the disjoint
union of two copies of X_ attached to each other by the identity map of RC.

5.4 A family of real algebraic surfaces of tridegree (2k, 2/, 2)
in (CP')® with asymptotically maximal number of han-
dles

Let £ > 2 and [ > 2. To prove Theorem (.1.2] we construct a real algebraic curve
of bidegree (4k,4l) in (CP')? with 2kl double points which are the intersection points of
two real algebraic curves of bidegree (k,1) in (CP!)2. The main difficulty is that these
2kl double points have to be in a special position. In fact, there is no curve of bidegree
(k,1) passing through 2kl points in (CP')? in general position. In [Bru06], Brugallé
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constructed a family of reducible curves {C} = 0} U {C? = 0} in the nth Hirzebruch
surface ¥,,, where {C! = 0} has Newton polytope Conv((0,0), (n,0),(0,1)) and {C? = 0}
has Newton polytope Conv((0,0),(n,0),(0,2),(n,1)) (see also chapter B). The chart of
{C} = 0} U {C? = 0} is depicted in Figure 51l Using Brusotti theorem (see Theorem
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Figure 5.1 — The chart of {C} = 0} U {C2 = 0}

5.6.21 or [BRIO]), perturb the curve
{C1 =0} U{Ch_ =0}

keeping k double points, as depicted in Figure Denote the resulting curve by
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points.

Figure 5.2 — The chart of {Co,_1 = 0}

{Cak—1 = 0}, and by ¢; ; the coefficient of the monomial (7,7) in the polynomial Cot_;.
Since the edge [(0,3), (4k — 2,1)] of the Newton polytope of Cyi_1 is of length 2, one can
assume, up to a linear change of coordinates, that cp3 = c4r—2 1. Denote by I' the rectangle
Conv((0,0), (0,4), (4k,0), (4k,4)) and consider the charts of the polynomials xCox_1(z,y)
and x4k_1y402k_1(%, i) Complete the rectangle I' with other charts of polynomials, as
depicted in Figure[5.3l By Shustin’s patchworking theorem for curves with double points,
there exists a polynomial P of Newton polytope I' whose chart is depicted in Figure B3l
Denote by (x1,91),- -+ , (o, y2r) the coordinates of the 2k double points of {P = 0}.
These 2k double points are on the intersection of two algebraic curves of bidegree (k,1) in
((CIF’l)2, but it could happen that these two curves are reducible. It turns out that to prove
Theorem [5.4.2] it is important to have the 2k double points of { P = 0} on the intersection
of two irreducible curves of bidegree (k,1) in (CP')2, which is the case if the 2k double
points of {P = 0} are in general position.

Lemma 5.4.1. One can perturb the polynomial P so that the double points of {P = 0}
are in general position.



64 CHAPTER 5. REAL ALGEBRAIC SURFACES IN (CP')3 WITH MANY HANDLES

A CJ o)
) CD@,&Q 0--0
- D

J

—— 5[5

Figure 5.3 — The chart of P

Proof. Denote by & the set of polynomials of bidegree (4k,4), and denote by N its dimen-
sion. Denote by S the subset of £ consisting of polynomials defining curves which have
double points in a neighborhood of {(z1,41), - ,(z2k,y2r)}. By the Brusotti theorem (see
Theorem in Section [5.6]), there exists a small neighborhood U of P in £ such that
SNU is a transverse intersection of 2k hypersurfaces in €. Then, dim(SNU) = N — 2k.
Define the incidence variety Z associated to S NU by

I= {(Q,zl, o) € (SNU) x ((C*)?)? | 2 is a double point of Q}.
One has m1(Z) = SN U, where
mEx (CHHH* S ¢
denotes the first projection. Denote by 7o the second projection:
Tt € % ((CH)2)2F =5 ((C9)2)2*,

To prove the lemma, it is enough to show that dim(me(Z)) = 4k. By the Brusotti theorem,
71 induces a local homeomorphism from Z to SN U, so dim(Z) = dim(SNU) = N — 2k.
By Lemma [5.6.4], one has

dim(my Y (z) NZ) = N — 6k,

for any = € ma(Z). So dim(me(Z)) = N — 2k — (N — 6k) = 4k. O

Hence we can assume that the double points of P are the intersection points of two
irreducible curves of bidegree (k,1) in (CP')2. Denote by L(z,y) = 0 and M(z,y) = 0 the
equations of two distinct irreducible curves of bidegree (k,1) in (CP')? passing through
(x1,91),- -+ , (T2, Y2k ), the double points of {P = 0}.

For 1 < h <1, put
o Ly(z,y) =y"L(z, ),

L4 Mh(may) :th(.%',%),
if A is odd, and
L Lh(ﬂT,y) = yh_lL(x’y)a

o My(z,y) =y" " M(z,y),
if h is even.
Choose an irreducible polynomial P; of bidegree (4k,2) such that the curve {P, = 0}
has a double point at all the (z;, i) Let P be the polynomial of bidegree (4k,1) such
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that the restriction of P{ to the edge [(0,0), (4k,0)] coincide with the restriction of P; to
the edge [(0,2), (4k,2)] and the restriction of P to the edge [(0,1), (4k,1)] coincide with
the restriction of P to the edge [(0,0), (4k,0)]. Put P} = y>P} (see Figure 5.4).
For 2 < h <1, put

o Py(z,y) = y* 1 P(x, i), if h is odd, and

o Py(x,y) = y*" O P(x,y), if h is even.

Let PZQH be a polynomial of bidegree (4k, 1) such that the restriction of Pﬂ_l to the

edge [(0,0), (4k,0)] is equal to the restriction of P, to the edge [(0,4l — 1), (4k,4l — 1)].
Put P41 =y 1 PP ( see Figure 5.4).

1 Py
4 P
4 P,
1 L, 1 M,
1 P!
) P, 1 L, 1 M,
1 L 1 M,
ak k k

Figure 5.4 — The Newton polytopes of polynomials P;, L; and M;.

Theorem 5.4.2. There exist three real algebraic curves {P =0}, {L = 0} and {M = 0}
in (CPY)? such that: ) ) )
e The polynomial P is of bidegree (4k,4l), the polynomials L and M are of bidegree
(k,1).

o The chart of P is homeomorphic to the gluing of the charts of the polynomials P;,
P} and Pj, for 2 <j <1+ 1.

o The curve {P = 0} has 2kl double points, one double point at each intersection

point of {L =0} and {M = 0}.

Proof of Theorem[5.1.2. By the construction presented in Section B3], the three curves
{P = 0}, {L = 0} and {M = 0} produce a real algebraic surface Xj; of tridegree
(2k,21,2) in (CP')3. The sign of P is the same in any empty oval of { P = 0} coming from
the gluing of the charts of the polynomials Py, for 2 < h < [. Assume that this sign is
positive. Denote by Y, (resp., Y_) the subset of RY which projects to {P > 0} (resp.,
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0
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P— (N /o)
Figure 5.5 — A part of the chart of P in the case [ = 3.

{P <0}), where Y is (CP')? blown up at the 2kl double points of {P = 0}. Then, RX}
is homeomorphic to the disjoint union of two copies of Y_ attached by the identity map
of the strict transform of {]5 = 0}. We depicted a part of the chart of P in the case [ = 3
in Figure By counting all the ovals of {]5 = 0} containing two empty ovals, one sees
that

bo(Y_) > (2k — 2)(I — 2).

Let us estimate from below the Euler characteristic of Y. By counting empty ovals of
{P = 0}, one sees that Y, contains at least (6k —4)(I — 1) + 3(2k — 2)(I — 2) components
homeomorphic to a disc. One sees also that Y, contains at least [ — 2 components home-
omorphic to a disc with & — 1 holes, and another component with at least (k — 1)(l — 2)
holes. Since the real part of the real algebraic curve curve {P = 0} contains at most
(4k — 1)(4l — 1) + 1 — 2kl connected components, one sees that there exist ¢y, dp, eq € Z
such that
X(Y+) > 10kl + co - 2k + dgy - 21 + eg.

Thus, one has

bo(RX ) = bo(Y_) > 2kl — 4k — 21,

and
XRX% 1)

2x(Y-)

_ 2 (RY) — x(V}))

< 2(—2kl — 10kl + ¢ - 2k + dp - 21 + 60)
S —24kl + 260 . Qk + 2d0 . 2l + 260.

Therefore, one obtains

b1 (RX% ) 20p(RX},) — x(RX} )

> 28kl —c-2k—d-2l +e,
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where c,d, e € 7, which proves Theorem [5.1.2] O

Proof of Theorem [5.4.2 The construction follows the same lines as the proof of the
main theorem in [Shu98]. We recall the main steps referring at [Shu98| for the proofs
of auxiliary statements. Denote by A the rectangle Conv ((0,0), (4k,0), (0,41), (4k,41)),
denote by A; the Newton polytope of P;, denote by Al the Newton polytope of Pl and
denote by Aj the Newton polytope of Py, for 2 < h < [+ 1. Denote by A the rectangle
Conv ((0,0), (k,0),(0,1), (k,1)) and denote by A, the Newton polytope of Ly, for 1 < h <.
Denote by a; j, for all (,5) € A, the collection of real numbers satisfying

Pl= > aa'y,
i,jEAL
Po= ) aiz'y,
ivjeAh
for 1 < h <14 1. Denote by b;;, for all (i,j) € I and by ¢; j, for all (i,5) € I, the
collections of real numbers satisfying

Ay

L= Y bia'y,

.

M, = Z cijx'y’
Z'7.7'€Ah,

for 2 < h <1+ 1. We look for the desired polynomials in a one-parametric family of

polynomials.
Po= )" Ay (t)aiyiertid), (5.1)
1,JEA
L= Y _ Bij)aly/trt), (5.2)
1,JEA
Mt = Z Ci,j(t)a?iyjtVM(i’j), (53)
1,JEA
where

o [A;;(t) — ai | < Kt,
e |B;;(t) — bi;| < Kt, and

. ‘Ci7j(t) — Ci,j’ < Kt,

for some positive constant K. The piecewise-linear functions vp, vy, and vy; are defined
as follows. The function vy, is the piecewise-linear function independent of 7 certifying
the convexity of the decomposition A = UpAy, satisfying v (0,1) = 0, of slope —1 on
Ay and of slope h on Apyq, for 1 < h <1 —1. Put vy = vy. The function vp is the
piecewise-linear function independent of ¢ certifying the convexity of the decomposition
A = UpAy, satisfying vp(0,2) = 0, of slope —1 on Ay, of slope 0 on A} and of slope h on
Apyq, for 1 < h <.

Denote by ,u’i(j) = ay, + hj the affine function equal to vy, on Ay, h = 1,--- ,l. Denote by
,uflé(j) = aj, + hj the affine function equal to vp on Ay, h =1,--- 1. The substitution of
vl = vp — uh for vp in (5], the substitution of v} = vy — u? for vz, in (B2) and the
substitution of v%, = vy — ph, for vy in (53) give the families

Poi=Pui+ Y Ay (Ot PO 4 > (Aiy(t) — aig)a'y,
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. . h . . .
Lpe=Ln+ Y Bij)z'y/ttW + 3" (Bij(t) - bij)a'y/,

Myg=My+ Y Cij®)a'yti@ 4 N~ (Cij(t) = eij)a'yy,
for all h =1,--- 1. These substitutions are the composition of the coordinate change

Th(wa y) - (1’, yth)
with the multiplication of the polynomial by some positive number.
Py =t (T}, (2, 1)),
Ly =t~ Ly(T;, (2, y)),
Mh,t = tiahMt(Th_l(fE,y)).
In particular, the point (x,y) is a singular point of P; in (C*)? if and only if the point
Th(x,y) is a singular point of P, ;.

Fix a compact @ C (C*)?, whose interior contains all singular points of P, in (C*)2, for
h =1,...,l. Denote by zp,, for p € Iy, the singular points of P ; in Q.

Lemma 5.4.3. (see [Shud8] ) There exists to > 0 such that for any t € (0,1¢), the points
Th(zn,) for p € I, and h = 1,...,1, are the only singular points of P in (C*)2.

We define A;;, B;; and C;; as smooth functions of ¢ such that A;;(0) = a,;,
B; ;(0) = b;; and C;;(0) = ¢;; and such that for any h € {1,...,l}, the polynomial
Py, has 2k double points in () which lie on the intersection of the curves {Lj; = 0} and
{M},; = 0}. Following the notations of Section (.6, consider in P(Ap) x P(Ap) x P(Ap)
the germ Sy, at (Py, Ly, M}p,) of the variety of polynomials (P, L, M) such that P has its
singular points in a neighboorhood of the double points of P, and such that L and M

vanish at these singular points. Define 8Ai and (9/\{1F as follows:
e OAL = and OAL =,

o for 2 < h <1, 0A" =[(0,4h —5) — (4k,4h —5)] and OA" = [(0,h — 1) — (k,h — 1)].
One has #(0A" NZ2)—1 = 4k and #(0A" NZ?)—1 = k, and it follows from Theorem [(.6.7]
applied to (Pp, Ly, M}p,) that Sy, is the transversal intersection of smooth hypersurfaces

{gofnh) = 0} , r=1,..,dp, (5.4)

dp, = codim.Sy,

where .
oM PA) x P(A) x P(A) —> C
(455 BisCin) ol (40,,BL0CLy).

Moreover, there is a subset
Zn C(Z%3 N (AR \ 0A" x (A, \ 9A%)?),
such that card(Z;,) = dj, and
(h)
det <8A’ a(?;r ac’ )
1,77 u,v’ u’ v’ r=1,...,dy

(G ), (uy 0), (', v))} € Zpy

£0
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at the point

/ / i
(A Bu,w u’,v’)

0,57

(ai,ja bu,va Cu/,v’) ) {(17])5 (U, U), (ul, U/)} € Eh
0 , otherwise

To find out A; j(t), By, (t) and Cy v (t) we plug
e h h /
Aé,j = Ai7jtl/p(J)7 B:M) = Bthz/L(v) and Cil/ﬂ/ — Cu/,vltij(v )

in (5.4) for any h =1, ..., 1.
Lemma 5.4.4. One has

h)
e\
det #0
(aAi,j’aBU,U’aCu/,UI r=1,...,dp;
{(@,9), (u,v), (w0} € Uy, En

By means of the implicit function theorem, we derive the existence of the desired
functions A, ;(t), B; ;(t) and C; ;(t). O
Proof of Lemma [5.4.4] The sets =}, are disjoint by construction and the matrix

ot
aAi,j’aBu,vaaCU’,v’ r=1,..,d,

LGy ), (uy ), (u', )} € Uy, En

takes a block-triangular form as ¢ = 0 with the nondegenerated blocks

agogh)
A, 0B,,,,0CL, ) . _\ . ’

2,57 ;
{(,5)s (u,v), (v, v")} € By

h=1,...,1, on the diagonal. O

5.5 Counterexample to Viro’s conjecture in tridegree (4,4, 2)

To prove Theorem [B.I.T] we present a construction of a curve of bidegree (8,8) with
4 double points lying on the intersection of two curves of bidegree (2,2). Consider the
curve {C3 = 0} U {C2 = 0} with Newton polytope Conv ((0,0),(6,0),(0,3),(6,1)) (see
Section [5.4]). Perturb the curve {Ci = 0} U {C2 = 0} keeping 4 double points, as depicted
in Figure Complete the rectangle Conv ((0,0),(8,0),(0,3),(8,3)) with other charts
of polynomials, as depicted in Figure 5.6l By Shustin’s patchworking theorem for curves
with double points, there exists a polynomial P of bidegree (8,8) whose chart is depicted
in Figure B.68l As in Lemma .41l one can assume that the four double points of the
curve { P = 0} are the intersection points of two distinct irreducible nonsingular curves of
bidegree (2,2). Denote by L(x,y) and M (x,y) the polynomials defining the two curves of
bidegree (2,2) passing through the four double points of {P = 0}. Put

s Pl(x7y) = y3P(x7 %)7

o Py(z,y) = y*P(a,y),
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o U

(o]
OBQ“O c>\\ (]
N\ Y m

X \N1 o

£ £ i
Figure 5.6 — The chart of P

L4 Ml(x7y) = yM(x7 %)7

o My(z,y) = yM(z,y).
Consider a Harnack curve {P{(z,y) =0} of bidegree (8,2) in (RPY)? (see [Mik0Q] for
the definition of a Harnack curve). The chart of Pg? is depicted in Figure Bl Since
{P{(x,y) = 0} is a Harnack curve, one can assume that the restriction of P§ to the edge
[(0,0),(8,0)] is equal to the restriction of P to the edge [(0,3),(8,3)] (see for example
[KO06]). Put Py = yOP5.

) U U U\

AN AWa)

) 0 0 0 (
WARAVAAVRY,

00 0 0
AN N N

Figure 5.7 — The chart of P:?

Theorem 5.5.1. There exist three real algebraic curves {P =0}, {L = 0} and {M = 0}
in (CPY)? such that:
e The polynomial P is of bidegree (8,8).

e The polynomials L and M are of bidegree (2,2).

o The chart of P is the result of the gluing of the charts of Py, Py and Ps.

o The 8 double points of (15 = 0) are on the intersection of the two curves (L = O)
and (M = 0).

Proof. The proof follows the same lines as the proof of Theorem O

The chart of P is depicted in Figure 5.8l Denote by C the strict transform of {15 =0}
under the blow up of (CP)? at the 8 double points of {P = 0}. Assume that the sign
of P in any empty oval is positive and consider the real algebraic surface Z of tridegree
(4,4,2) in (CP')? defined by

Z ={F?+¢G =0},
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Figure 5.8 — The chart of P

where F' = v3L 4+ u3M, the number ¢ is some small positive parameter and G is a poly-
nomial of tridegree (4,4,2) such that

C={F=0}n{G=0}

It follows from Section B3] that RZ is homeomorphic to the disjoint union of two copies of
Y. attached to each other by the identity map of C', where Y_ is the part of (R]P’l)2 blown
up at the 8 double points of {P = 0} projecting to {P < 0}. One can see from Figure 5.8
that bp(RZ) = 6 and that RZ contains three spheres and two components of genus two.
Moreover, one has
W(RZ) = 2(-8— (34— 4))
= —76.

Then b;(RZ) = 88 and
RZ ~ 2551135 U Sy,

which proves Theorem [B. 1.1l

5.6 Transversality theorems

In this section, we prove a transversality theorem needed in the proof of Theorem [(.4.2]
and Theorem [5.5.7]

5.6.1 Notations

e For a polytope A, denote by |La| the linear system on Tor(A) of curves of Newton
polytope A.

o Let F e P(A), and let 0A4 C OA be a subset of the set of edges of A. Introduce
the space of polynomials

P(A,0AL, F) ={G € P(A) | G° = F7, 6 € A, }.
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e For a polytope A, denote by A(A) the euclidean area of A, by b(A) the number of
integral points of the boundary of A, by i(A) the number of integral points in the
interior of A and put |A] =i(A) + b(A) the number of integral points in A.

5.6.2 Brusotti theorem

Let A be a polytope. Denote by ¢ = (2, %) the coordinates on (C*)2. In P(A) x (C*)2,
consider the algebraic variety defined by

P(t)
B =< 0P/ox(t)
oP/oy(t)

0,
0,
0

Let (Py,tp) € B, and assume that to = (z9,%0) € (C*)? is an ordinary quadratic point of
{Py = 0}.

Lemma 5.6.1. (see, for example, [BRI0])

There exists a neighborhood U of (Py,to) in P(A) x (C*)? such that:
e BNU is smooth of codimension 1.

o If m: P(A) x (C*)2 — P(A) denotes the first projection, then B' = n(BNU) is
smooth of codimension 1.

Assume now that the curve {Py = 0} has N non-degenerated double points ¢,
h = 1,...,N and no other singular points. Applying the above lemma to each t;, we
obtain N non-singular analytic submanifolds of P(A), say Bj, ..., By, passing through F.

Theorem 5.6.2. (Brusotti, see, for example, [BRI(] )
There exists a neighborhood U’ of Py in P(A) such that the intersection

Bin---nByNnU
is transversal in P(A).

The key point of the proof of Brusotti theorem is the following corollary of Riemann-
Roch theorem.

Lemma 5.6.3. (see, for example, [BRI0] )

Let A be a polytope and let C € |Lal. Suppose that C has k non-degenerated double
points x1, ..., xy, in (C*)? and no other singular points. Then, the linear subsystem of |La|
consisting of curves passing through xi,...x s of codimension k.

5.6.3 Linear system of curves with prescribed quadratic points

Let A be a polytope and let C' € |£La|. Suppose that C is irreducible with k& ordinary
quadratic points 1, ...,z in (C*)? and no other singular points. Fix also m marked points

D1y .ePm o0 C\ {x1, ..., 2k}

Lemma 5.6.4. Suppose that
2k +m < b(A).

Then, the sublinear system of |[La| consisting of curves having singularities at xq, ..., Ty
and passing through pi, ..., pm s of codimension 3k + m.



5.6. TRANSVERSALITY THEOREMS 73

Proof. One has the following exact sheaf sequence:
0— OTOT‘(A) - OTOT(A) (C) — OC(C) — 0,

where Or,p(a) is the sheaf of holomorphic functions on T'or(A), the sheaf Opg.a)(C)
is the invertible sheaf associated to the divisor C, and O¢(C') denotes the restriction of
Orora)(C) to C. As H(Tor(A), Oror(ay) = 0, the long exact sequence in cohomology
associated to the above exact sequence splits. The first part of the long exact sequence is
the following:

0= C — H(Tor(A), Orer(a)(C)) = H°(C,0c(C)) — 0.

Denote by E(z1,..., 2k, p1, ..., Pm) the subspace of HO(TOT(A),OTOT(A)(C)) consisting of
sections vanishing at least at order 2 at z1,...,x; and passing through p1,...,pn. Put
F =r(E(xy,...,Tk,P1, -, Pm)). One has the following exact sequence:

0—-C— E(ml, ...,xk,pl,...,pm) 5 F —0.

Fix a generic section s € E(x1, ..., Tk, D1, ..., Pm) With divisor D. Then, D N C' consists
of a finite number of points (C is irreducible), and it defines a divisor on C' and also on C,
the normalization of C. Denote by (Z;, Z;") the inverse images of x; by the normalization
map. Denote by p; the inverse image of p; by the normalization map. Define on C the
divisor
D :=DnC-E,

where
k m
=1 =1

By definition of r, the set F is the subspace of H°(C,Oc(C N D)) of sections vanishing
at least at order 2 at the points x1, ..., x; and at least at order 1 at the points p1, ..., pm-
Considering the normalization map, one gets the following injective map:

0— H(C,0c(DNC)) = H(C,05(DNCOY)).

Thus, dim(F') < dim(:(F)). The linear system ¢(F') is the linear system of sections of
Oa(D N C) vanishing at least at order 2 at the points (75, ;") and at least at order 1 at
the points p). Consider the following exact sheaf sequence:

0— Os(D") 5 05(DNC) 5 Op(DNC |5) =0,

where r is the restriction map. ?assing to the associated lor~1g exact sequence, one sees
that «(F) is identified with H(C,D’). Let us compute h°(C, D’). The divisor D’ is of
degree A(2A) — 2A(A) — 4k — m. Then, one has

deg(Ks — D) = —deg(D’") — 2+ 2¢(C)
— “A(2A) +2A(A) + 4k +m — 2+ 2(i(A) — k)
= 2k +m — b(A).

By hypothesis, 2k+m —b(A) < 0. So h%(C, Ks—D') =0, and by Riemann-Roch formula,
one has

h(C, D) = deg(D') +1—g(C)
A(2A) — 2A(A) — 4k —m + 1 — (i(A) — k)
i(A) 4+ b(A) —1— 3k —m
dim(L(A)) — 3k — m.
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So one gets
dim(F) < dim(£L(A)) — 3k — m.

On the other hand
dim(F) = dim(P(E(z1, ..., Tk, D1y -, Pm))),
and
dim(P(E(z1, ..., Tk, P1, -y Pm))) = dim(L(A)) — 3k — m.

So finally
dim(P(E(z1, ..., Tk, P1, -y Pm))) = dim(L(A)) — 3k — m.

5.6.4 A transversality theorem

Fix three polytopes A, A’ and A”. In P(A) x (C*)? x P(A’) x P(A"), consider the
algebraic variety defined by

Let (Py, Qo, Ro) € P(A) x P(A") x P(A"), and assume that tyg = (zg,y0) is an ordinary
quadratic point of {Py = 0} such that {Qo = 0} intersects {Ry = 0} transversely at ¢.
Then, in particular, (P, tg, Qo, Ro) € S.

Lemma 5.6.5. There exists a neighborhood U of (Py, to, Qo, Ro) in P(A) x (C*)2x P(A’) x
P(A") such that:

e SNU is smooth of codimension 5.

o [If
m: P(A) x (C*)2 x P(A") x P(A") — P(A) x P(A") x P(A")

is the projection forgetting the second factor, then S" = w(S N U) is smooth of
codimension 3. Moreover, the tangent space to S’ at w(Py,to, Qo, Ro) is given by
the equations

> A by =0,

dtoQo> L1 Ay > Braafyt
— Hess: P, 270 J0 ) 7070 =0,
(dtoQO ( toFo) S G A byt > Conn@3'Y0

where (A;j); jea are coordinates in the tangent space of P(A), the coordinates ((Bp,),, e ar
are coordinates in the tangent space of P(A'), and (Cpn),, near are coordinates in the
tangent space of P(A").

Proof. The first point follows from the implicit function theorem. Introduce the map
F = (F15F2,F3,F4,F5) : P(A) X ((C*)Q X P(A/) X P(A”) — C5?

with
L4 Fl(P7t7Q7R) :P(t)7

o B5(P,t,Q,R) = OP/dx(t),
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o Fy(P,t,Q,R) = OP/dy(t),

L4 F4(P’t’Q>R) = Q(t)’

L F5(Pat’Q>R) = R(t)
Denote by Jr(Py,to, Qo, Rp) the Jacobian matrix of F at (Py,to, Qo, Rp). By an easy
computation, one has

55696 00 0 0
. =1 g
ZCEB Yo H P 0 0
JF(PO’tO,QO;RO) = ]x%)yé_l €8Sty L0 0 0
0 dio Qo zkyl 0
0 dtoRO 0 x()ny(y]l [5,| A|+24| A7+ A”|]

As t is an ordinary quadratic point of F, the matrix Hess;, Py is invertible. It follows
that Jp(Py,to, Qo, Ro) is of rank 5. In fact, the submatrix of Jr(Py,to, Qo, Ro), where
1=7=0,k=1=0and m=n =0, is as follows:

1 00 00
0 0 0
0 Hessy Py 0 0

0 di, Qo 10

0 di, Ro 0 1

This last matrix is invertible. For the second point, since Hessy,Fy is invertible, use the
second and the third equations of the tangent space to S at (Fy, to, Qo, Ro) to write ¢ as a
function of P over a small neighborhood of (Py, Qo, Rp) in P(A) x P(A’) x P(A”). This

proves the lemma. O

Assume now that the curve { Py = 0} is irreducible and has N non-degenerated double
points tp, h = 1,..., N such that {Qo = 0} intersects {Ry = 0} transversely at each t.
Assume also that {Py = 0} has no further singular points. Applying the above lemma to
each t, we obtain N nonsingular analytic manifolds of P(A) x P(A’) x P(A") passing
through (P, Qo, Ro). Denote these N nonsingular analytic manifolds by S7,--- , S},

Theorem 5.6.6. If 2N < b(A), then there exists a neighborhood W of (P, Qo, Ro) in
P(A) x P(A") x P(A") such that the intersection

Sin---NSyNW
is transversal in P(A) x P(A’) x P(A”).

Proof. By the implicit function theorem, it is sufficient to show that the tangent spaces
to the manifolds S} at (P, Qo, Ro) intersect transversely. This is equivalent to the fact
that the matrix

iyl 0 0
0

dt, Qo Ly iy iy
7 P -
<dt1R0 ( 55t O) szlyiil 0 wgnyln

xﬁvyfv 0 0

diy Qo 1 ixiflyj zk yl 0
Hess,, P, N YN NYN
<dtNR0 ( eSStN 0) ]xﬁvy'}\;l 0 x%y]r\zf

[BN,|A+[A]+A]]
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is of rank 3N. As {Qo = 0} and {Ry = 0} intersect transversely at each tj, the matrices

<dt1Q0> (dtNQo>
dy Ro) 7 \diyRo

are invertible. Consider the following matrix:

1 00 0 -~ 0 0 0
-1
0 di, Qo 0 -~ 0 00
0 (H€83t1P0) <dth0 0 0 0 0
N=|: : s :
0 00 0o - 1 0 0
-1
0 00 0O --- 0 dg Qo
0 0 0 0 ... o Hesswh) <dtNRo BN.3N]

The product NM is of the following form:
iyl 0 0

xﬁvygv 0 0

'x’i J— PR 3 koo 3k
JENYN BIV,|AL+]A]+]A7]

It is then sufficient to show that the matrix

i,J
1y

zle_ 1‘y{1
JT Y

izl
Jryl
NIN [3N,|A]]

is of rank 3N. It is equivalent to show that the linear space of curves in |[La| with
singularities at all the quadratic points of (Py = 0) is of codimension 3N. This follows

from Lemma [£.6.41 O

Let 0Ay C OA be a subset of the set of edges of A. Let 0A!, C OA’ (resp.,
OAl C OA") be a subset of the set of edges of A’ (resp., of A”). Put

m= > (#FNZ*)-1),

Fedn,

m' = > (#FNZ)-1),

F'edn/,

m'= Y (#F"NZ’-1).

F/edA!]
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Theorem 5.6.7. Suppose that

2N +m< b(A),
m < b(A),
m” < b(A").

Then, there exists a neighborhood V' of (Py,to, Qo, Ro) such that the intersection
SN ..NSyN(P(A,0AL, By) x P(A',0A!,, Qo) x P(A",0A", Ry)) NV
is transversal in P(A) x P(A") x P(A").

Proof. The proof follows the same lines as the proof of Theorem It reduces to the
proof of the following facts.
e The linear space of curves in |La| with singularities at all the quadratic points of
(Py = 0) and passing through the m points of intersection of (Py = 0) with 0A is
of codimension 3N + m.

e The linear space of curves in |£a/| passing through the m’ points of intersection of
(Qo = 0) with 0A!, is of codimension m/'.

e The linear space of curves in |Lar| passing through the m” points of intersection
of (Ry = 0) with OA” is of codimension m”.
All this follows from Lemma (.6.41 O
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