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 LIST OF NOTATION 
 

GPSN:  General purpose social 
network. 

DBSN: Domain based social network. 

MAE:      Mean Absolute Error. 

NMAE:      Normalized MAE. 

RMSE: Root Mean Squared Error. 

NRMSE: Normalized RMSE. 

iSoNTRE:  Social Network Transformer 
into recommendation engine. 

RS:  Recommendation system. 

SLiR:  Short Life Resources. 

CF:  Collaborative filtering. 

CBF:  Content Based Filtering. 

SN: Social Network. 

M:  items or resources. 

U:  users.  

Mu:  The items rated or bought by 
user u.  

: The users who rated or bought 
an item m. 

:  The rating matrix 

:  The rating of user   to item . 

:  The vector of all rating 
provided by user .  

:  The vector of all ratings 
provided to item .  

:         The average of user  ratings. 

:  The average of the items  
ratings. 

:  Prediction of how much the 
item  is interesting to user  

: Pearson similarity between  
and  

 

: Cosine similarity between x 
and y 

VSM: Vector Space Model. 

D:  The set of document to be 
recommended in content based. 

T:  The dictionary or the words of 
the domain. 

wkj:  The weight of the term tk in the 
document dj.  

TF-IDF: Term Frequency Inverse 
Document Frequency. 

DCG: Discount Cumulative Gain. 

nDCG:  Normalized DCG. 

CTR: Click through rate. 

SM:  Social Media. 

WoM:  Word of Mouth. 

eWoM:  Electronic WoM. 
SN: Social Network. 

 The graph representation of a 
social network,  is the set of 
users and  the set of 
friendship links. 

: The users trusted by user . 

: The users who trust the user  

  The matrix representation of 
the social graph. 

MF: Matrix Factorization. 

AP:  Average precision. 

AR:  Average recall. 

NN:  Nearest Neighbor method. 

ODP: The Open Directory Project, or 
Wikipedia enclopedia. 

BK: Blue Kangaroo. 

BKT:  Blue Kangaroo tree 

: Global profile of user . 

:  Concepts of domains. 

:  Domain  contains X concepts. 



ii 
 
 

  The user profile over domain  

  The user vector of concepts. 

 Global profile of item  

  The item profile over domain  

  The item vector of concepts. 

 User profile matrix 

 Item profile matrix   

SAW: Simple adaptive weighting 
method. 

 Recommendation matrix over 
domain  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Collaborative filtering 
recommender. 

 Domain recommender. 
SR: Social recommender. 

CR: Circle recommender. 

UBCF: User based collaborative 
filtering. 

IBCF: Item based collaborative 
filtering. 

SVD: Singular value decomposition 

Z-s, Zs: Z-score 

Nor: Normalized. 
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 GLOSSARY 
GPSN:   
 Social networks where users 

can do different action, like, 
post, comment, example: 
Facebook, Twitter... 

DBSN:  
 Social networks where users 

can do a small kind of actions 
over a specific domain, like 
Netflix (films). 

Collaborative Filtering:   
Techniques in recommendation 
systems based on leveraging 
the ratings of similar 
users/items in a user/item 
population.  

Content Based recommendation: 
Techniques in recommendation 
systems based on finding 
similar items to those liked by 
users, based on items’ 
keywords and textual 
similarity. 

iSoNTRE:  
 A social machine of 

recommendation based on 
transforming GPSNs into a 
recommendation engine 

iAmélie:  
 A hybrid recommender based 

on reflection in 
recommendation systems. 

SLiR:   
 Items or articles that do not 

live for a long time, like news 
in a news site or offers in a 
commercial site. 

Offer:   
 A special discount available 

only for short time over a 
product. Offer is a SLiR kind 
of items. 

 

Blue Kangaroo Tree: 
 A world knowledge that 

contains the categories and 
relation between them in the 
commercial domain, similar to 
e-bay tree. 

 Global Profile of user u:  
The global profile is a bag of 
meaningful words with the 
frequency of each word. 

Global profile of item : 
The global profile is a bag of 
meaningful words with the 
frequency of each word. 

Explicit feedback: 
The ratings (1..5), like and 
dislike provided explicitly by 
user. 

Implicit feedback: 
The information extracted from 
user actions like navigation or 
time spent on a page. 

Accuracy:  
To what end the prediction 
about how a matched item is 
interesting to a user is correct. 

Avatars/Sirens:  
Created Twitter intelligent 
accounts that behave like 
humans. 

Tweets: 
 Short messages limited to 140 

characters and are mostly short 
status updates of what users are 
doing, where they are... they 
are used on Twitter social 
network. 

Z-Score:  
 Z is a normalization method, 

its value represents the distance 
between the row score and the 
population mean in units of the 
standard deviation. 
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MAE: 
 Evaluation metric which 

measures the average absolute 
deviation between a predicted 
rating and the user’s true 
rating. 

RMSE:  
 Evaluation metric that 

calculates the square root of 
the mean/average of the square 
of all of the error 

Domain recommender: 
 Recommending based on users 

similar to the main user in a 
specific domain. 

Cold Start Problem: 
The problem of how to 
recommend to new user, or 
new item where there is not yet 
enough ratings to be 
recommended. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SR Social recommender: 
Recommending based on 
user’s relations in a social 
graph. 

CR Circle recommender: 
Recommending based on 
user’s relations who are similar 
to the main user in a specific 
domain. 

A friend’s advice: 
A service that provides the user 
with possibility to send request 
to his friends to help him 
finding a particular ite
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CHAPTER 1: INTRODUCTION 

 
 

““We are drowning in information but starved for knowledge.”  
 

John Naisbitt, Megatrends 
 
 

1. Motivation: 
 

ach day we are surrounded by any number of decisions to make. Which book 
should I read next? Which film do I want to watch tonight or go to over the 
weekend? Increasingly, we use the web and online resources to help us make a 

decision. As our decision making is transported and conducted in the online sphere, the use of 
recommendation systems has become essential in daily life. At the same time, social networks 
have become an indispensable part of this process; people from all over the globe use them on 
a daily basis to get input from people and sources they trust. 

When people spend time on social networks, they leave valuable information about 
themselves. This has attracted the attention of researchers and professionals from numerous 
academic and commercial fields. As recommendations are one domain that have witnessed 
widespread change due to social networks, there is an obvious interest in the field of social 
recommenders studies.   

However, in this area’s literature we found that many social recommenders were evaluated 
through social networks like Epinions, Flixter and other types of domains based on 
recommender social networks, which tend to be composed of users, items, ratings and 
relations. Such solutions cannot be extended directly to General Purpose Social Networks 
(GPSNs) like Facebook and Twitter, which are open social networks where users can 
complete a variety of useful actions that aid in recommendation. But since users can’t rate 
items, there is a lack of information to be used in recommender systems. Thus, solutions to 
the GPSN dilemma are oriented towards enhancing recommendation of resources that are 
already shared, based on available information, in these social networks. Moreover, 
evaluations are based on the known metrics like MAE, and RMSE. This does not guarantee 
user satisfaction or provide quality recommendations. 

As one delves deeper into the recommendation world, one finds that recommendation 
system studies usually focus on one assumption in order to propose recommendations, such as 
the well-known assumption of the collaborative filtering recommendation family: If two users 
are similar in their ratings over some items, then they are more likely to be similar in their 
ratings towards other items. While this is a correct assumption about human, it is not the 
whole reality. One can look to other recommender families, for instance the social-based 
recommenders that operate on the assumption that: a user is similar to his social milieu, so 
that using their information (their rated items) is a good way to recommend to the target user. 

E 
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This is another correct assumption, but again it is incapable of describing the whole reality 
behind recommendation.  

In our work we investigate these aspects of the recommendation systems world; more 
precisely, our work investigates the following problems:   

First problem: We investigate GPSNs to determine if one can make predictions based on 
spontaneous actions on social networks, especially concerning information that was not 
provided explicitly by users.  For example, can one predict shopping information about users 
from their actions on Facebook and Twitter?   

Second problem: Can one transform the implicit data in GPSNs into a Recommendation 
Engine, or a social machine of recommendation? If that is possible, then we will be able to 
create social machine that is fed by users’ actions on a GPSN. In other words, this might 
permit us to create a perpetual motion machine based on social recommendation where users’ 
actions feed the engine that provide them ever better personal recommendation in a 
reinforcing loop. 

Third Problem: How can one evaluate such a social machine or recommendation engine 
aside from using traditional accuracy metrics like MAE and RMSE? Since this question 
carries greater interest, it will be discussed at length later. 

Fourth Problem: Each family of recommendation systems rests on a certain assumption, 
like the well-known assumption of collaborative filtering where two users who complete 
similar actions in the past are more likely to carry out similar actions in the future. Our work 
addresses the fourth problem by taking a step backwards in the recommendation domain to 
investigate the different assumptions underlying different recommendation systems, allowing 
us to reflect on the validity of these assumptions and their effects on the community. Then we 
can  provide a recommender that responds to different assumptions at the same time.  

2. Proposed Solutions: 
This section discusses solutions to previous questions that arose from our research, which 

are presented as follows:  

First Question: -What information can we find in GPSNs?  

To address this problem we explored existing solutions in the literature to see if social 
network users submit real information about themselves or present information that are a self-
idealization. If the latter were to be the case, GPSNs would constitute a a waste of time as 
non-accurate information about users would result in poor recommendations.   

Up until 2009general opinions suggested that people put information that is a 
misrepresentation of their true selves; however, after 2010 many studies have affirmed that 
users do information about themselves that is representative, descriptive, and truthful. More 
details about this issue can be found in Chapter 3.     

Based on this topic we raised the question: Can we extract non-explicit information solely 
from users’ explicit actions on social networks? To address this question we surveyed 63 
Facebook users about why they joined Facebook. None joined Facebook for commercial 
reasons, which is why we decided to explore the subsequent question: can we deduce 
commercial information from users’ explicit social information?  

We extracted users’ information from Facebook and Twitter  to which we applied typical 
data cleaning algorithms, followed by the extraction of  commercial information from the 
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profiles with the help of external world knowledge (Blue Kangaroo Tree). The extracted 
profiles were evaluated by the 63 Facebook users; 49 of them confirmed that the extracted 
profile described them. Afterward, they had the possibility to update their commercial profile 
and tended to add 30% more commercial information while deleting about 7% commercial 
concepts. With Twitter we were able to extract more than 3,000,000 commercial concepts 
from 12,000 profiles.  

Our conclusion was that GPSNs contain a wealth of relevant commercial information. 
Based on this result, we used the information to build the iSoNTRE recommendation engine. 
This discussion receives further elaboration in chapter 4.  

 

Second Question: How can implicit information from GPSNs power a the iSoNTRE 
recommendation engine? 

We approached this problem by scanning the available recommendation system models. 
Among them, matrix factorization technologies have always attracted researchers’ interest in 
the recommendation domain as they have shown a high level of accuracy. Since we did not 
have a complete recommendation matrix (user, item, rating) it was not possible to use a 
matrix factorization algorithm directly. However, we were able to use its inverse: based on the 
extraction of users’ social network profiles  we were able to create for each user a general 
profile and a domain-based profile. The domain-based profile is contained world knowledge 
such as film, shopping, or other interests. 

In theory, the same projection can be done for items like films or products based on the 
same world knowledge. Then the two matrixes can be joined together by multiplying one with 
the transpose of the other. This works because the two matrixes are both characterized in the 
same latent factor space or the same world knowledge.    

That makes iSoNTRE a hybrid system where the information extraction is done using 
content-based recommendation techniques, resulting in a matrix that belongs to the 
collaborative filtering family of recommendation. Thanks to iSoNTRE, items that live for 
short time, such as news or offers, can be recommended using collaborative filtering 
techniques.  

This contribution will be discussed in detail in chapter 5. 

 

Third Question: How should one evaluate iSoNTRE? 
To evaluate iSoNTRE we had to build it first, which meant we had to use GPSNs, choose a 

world knowledge over a domain (in addition to the recommended items-), and adopt data 
extracted from Facebook, Twitter, and the Blue Kangaroo Tree as world knowledge. The 
recommended items are 10.000 offers that we got from Blue kangaroo also. Evaluation goal 
was to measure to what end the recommended offers were inserting to users?  

First we built the matrix over users and items. Specifically, we built one for Facebook 
(2,000 users and 10,000 items) and one for Twitter (12,000 users and 10,000 items) and then 
we considered two cases:  

Case 1: whereby the matrix is ready for recommendation. In this case once the matrix is 
built it immediately contains relevant and interesting offers for each user. We constructed a 
Facebook application with a limited time (two minutes) that presented the recommended 
items to users and asked them to evaluate them (the choices were “like” and “not like”). As 
the list was ranked from most important to the least important,  we adopted MAP to measure 
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the results. 73 Facebook users tried our application in an initial trial, followed by 143 users in 
a second trial. With a MAP of 0.8, the results proved to be highly intriguing. 

With Twitter the case was different; we were not able to invite people to use a specific 
application. Considering this limitation, we decided to choose users from our data set and 
send them the best offer among their top recommendations.  

However, we had to find a way to target these users, as Twitter permits only a limited 
number of tweets mentioning users who are not already from the account’s relations in a day. 
To overcome this problem we created additional accounts to help us complete the evaluation 
process: Sirens.  

The Sirens acted as Twitter accounts that mimicked human tweeting behavior. To account 
for the diverse personalities of human users, we created a variety of Sirens with different 
personalities; these personalities came out as the accounts tweeted. This meant that some 
Sirens sounded sporty, others showed a knack for fun, while others were optimistic and so on. 
With the Sirens set up and imbued with personality, we had them send offers to certain users 
that we chose randomly from our data set. 

80 Sirens targeted 2,400 users in the first trail; the same number of Sirens targeted 2,000 
users in a second trial. Of note, the Sirens produced a Click Through Rate (CTR) of roughly 
12.25% in the first trail and 22.5% in the second trial, compared to an average Twitter CTR of 
4% . Feedback was collected over 24 hours. Since the choice of user accounts was randomly 
generated, we found that many accounts had minimal activity (they had not tweeted for long 
time or had a low number of tweets compared to the number of years they had been around). 
However, the Sirens also received a surprising number of tweets that showed a high degree of 
user interaction and emotion, including some thank yous and other courtesies. Lastly and of 
note, our Sirens received commercial offers that we had not sent out as part of the study, 
meaning other Sirens were likely already on Twitter conducting similar research! 

Case 2: in this case we considered the system in work, meaning we had the matrix that 
contained users’ extracted information as well as users’ recent actions on items. We applied 
different recommendation algorithms like user-user or SVD over this matrix and we 
calculated the RMSE and MAE values.  

Most of the routine work for the data extraction through Facebook and Twitter was done 
with the Blue Kangaroo team.  

More details about the evaluation of iSoNTRE can be found in Chapter 5. 

 

Fourth Question: How can we consider different assumptions in one system? The 
answer is iAmélie:  

First we began by considering the assumptions of different recommendation systems, 
taking into particular consideration traditional collaborative filter models, domain-based 
models, as well as social recommenders and circle-based recommenders. Upon review we 
argued that while all their assumptions were correct not one system could work for the 
differing recommendation needs of one user. In some cases a user may prefer the experience 
of similar people, while in other cases they would prefer the experience of similar people in a 
specific domain. In another scenario they might prefer the experience of their friends, which 
could be further qualified through either a general or specific domain. With so many 
possibilities, the ideal case is to have a recommender that respects the different assumptions 
together, which in our scenario turned out to be the iAmélie system. iAmélie belongs to the 
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family of context-aware systems and works through the following context: “my friends might 
not be exactly like me but they know me better.”  

The iAmélie model considers domain-based recommendation as a special case of 
collaborative filtering. In addition, it considers circle-based recommendation as a special case 
of social recommendation. The user is the one who decides the appropriate context that 
correspond to his/her needs. 

To evaluate iAmélie we built it over a system that contained users, items, ratings and 
relation over different categories. For this we used a data set of epinions that contained 
127,711 users, 331,274 products, 1,199,632 ratings, and 582,613 trusts over 27 categories.  

In order to properly build iAmélie we had to change in the R recommender lab package, 
which already contained the collaborative filtering recommenders, to which we added the 
domain-based, social,  and circle-based recommenders. After that we explored this data over 
the normal recommendation methods calculating RMSE and MAE over the new methods that 
we had added. 

To evaluate iAmélie we did not have the possibility to refer to real epinions users as the 
site had been closed. Thus we referred our users (25 students) to judge the results that were 
produced for a group of epinions users. Furhter, we asked our users to evaluate each 
recommendation that resulted from iAmélie and another recommender (collaborative filtering, 
domain based, social recommendation, and circle based) based on a defined list of questions. 
The results showed a high tendency towards iAmélie system besides users motivation to the 
system. iAmélie is discussed in detail in Chapter 6.  

 

iSoNTRE and iAmélie complement one another. By putting these two models together, 
we will be able to build a recommendation system from GPSNs that can respond to 
different contexts and user assumptions. 

3. Dissertation Plan 
Historically, researchers have reviewed recommendation domains in a general overview; 

however, in the dissertation we decided to introduce the recommendation systems in Chapter 
2, followed by a discussion of the social recommendation  and contextual recommendation 
systems in Chapter 3. We begin the latter by introducing each of the social networks and 
context awareness concepts in general then investigate how each of them has affected the 
accuracy and quality of recommendation. 

In Chapter 4 we introduce the two proposed models, iSoNTRE and iAmélie. We elaborate 
the argument for and motivation behind each of them, and how both can be linked to 
collaborate together. Then in Chapter 5 the iSoNTRE model will be introduced and fully 
evaluated, followed by Chapter 6 where the iAmélie model will be introduced and evaluated 
equally. Finally, in Chapter 7 we conclude and discuss the limitations and extensions of our 
work as well as discuss possible areas for future work. 
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 CHAPTER 2: RELATED WORK  
 

-Recommendation systems- 
 
 

TTechnology made large populations possible; large populations now make 
technology indispensable. 

                                                                                –Joseph Wood Krutch 

 
 
 

 
The Scream”, by Edvard Munch (early 20th century). What to read next, what to watch 

next, what information to consume next? Decisions to take all around 
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1. Introduction 
e are surrounded by decisions to make: which movie to watch? Which book to 
read? Which blog to follow? Or which item to buy? Finding the appropriate 
choice is like finding a needle in a haystack. For example, Netflix has more than 

17,000 movies, while Amazon has 410,000 titles in the Kindle store alone. That is why 
recommendation systems are everywhere, and their use becomes essential in daily life. 

Recommendation systems stem from the needs of users. They hold interesting scientific 
questions, as they combine aspects from human-computer interaction, information retrieval 
and machine learning domains. From a financial standpoint, good recommendations promise 
to increase income for the reason that when users find interesting items, they will consume 
them and then come back for more good recommendations. The movement towards 
recommender systems covers many domains, likes movies, music, news, books, research 
articles, search queries, social tags, products, restaurants, and jokes. Even experts, financial 
services, life insurance, persons (online dating), and twitter followers.  

The main idea in recommender systems is to offer interesting resources or items to users. 
Recommender systems follow the assumption that recommended items might be interesting 
for a user, if he knows about them he will consume them, but he is not able to find them 
himself. That is what differentiates them from information retrieval domains where the user 
knows what he is looking for. Other difference between recommendation systems and 
information retrieval domains is personalization—recommender systems specialize in this 
regard. Two users can receive totally different lists of recommended items based on their past 
actions, which is not the case in information retrieval systems. However, we can see the 
recommendation process as an information retrieval problem, where the domain of items is 
queried by the user’s preference profile. 

Recommendation systems have been studied for more than two and a half decades. Within 
this period, a variety of algorithms has been developed; mainly, collaborative filtering 
techniques based on leveraging the ratings of similar users in a user population.  
In the last few years, social recommender systems have appeared based on the increase in 
online social networks use which has created a tremendous amount of information from users. 
In this regard, content filtering techniques have also evolved based on finding similar items to 
those liked by users, based on items’ keywords and textual similarity, and hybrid solutions 
which combine both. In addition, a variety of tools for evaluating recommenders’ 
performance have been studied, proposed and used. 

Users are the core of any recommender system and recommender systems need to learn 
about users in order to perform better, particularly questions relating to how to collect 
information about the user, how to have reliable information, how to be able to respond to 
their needs, as well as how to consider privacy, diversity and transparency aspects in 
recommendation. 

We agree with Martin [1] in his 2009 keynote at the recsys conference, where he argued 
that in the recommendation world algorithms themselves are only a small part of how to 
provide recommendation to users. There are already plenty of algorithms that work well. 
Currently, work needs to be done concerning the user experience, how to get data, and other 
problems related to the recommendation experience. 

We cannot cover the whole recommendation domain in this chapter, as there is a lot of 
work in this domain, but we will present a brief overview of the fundamental works and then 
focus on works related to the model discussed in later chapters.    

W 
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The focus of this chapter will be on collaborative and content filtering recommender, 
especially semantic enhanced content based recommenders, as we will propose in next 
chapters hybrid solutions in order to generalize the social recommenders into a generic social 
recommender machine. In this chapter also, we will detail the evaluation methods because in 
our solutions we will use live evaluation methods besides traditional ones. However social 
recommenders will be discussed in the next chapter. At the end of this chapter, we will cover 
the cold start problem of recommender systems, where new users and items in collaborative 
filtering recommenders suffer from not having enough ratings to be recommended. As well as 
we will introduce the SLiR resources which are the short life resources. Which live too 
shortly so they can’t collect enough ratings to be recommended. The contribution introduced 
later will address both of these two problems. 

2. Historical Overview: 
Group lens [2] was one of the first user-user automated recommender systems in the movie 

domain, followed by Ringo [3] for music, BellCore for video recommendation [4], and Jester 
[5] for jokes. After the debut of these systems, collaborative filtering begun to be more 
common throughout the 1990s, especially with the rise of Amazon in 1994, which 
recommend items to users based on their purchase history, viewed and browsed items. Later, 
other recommendation algorithms were developed and used, like the case-based 
recommenders as well as content-based ones based on similarity between items’ content and 
the items the user has rated [6], [7]. 

Consequently, as recommender systems refined their algorithms for specific operations, 
hybrid recommenders [8] emerged in order to merge the benefits and advantages of different 
recommendation algorithms into one recommender. A high variety of hybrid recommenders 
exists in the domain.  Below, we discuss a number of recent recommender systems and the 
topics they cover. 

In 2006, Netflix offered a prize of 1 million USD to the group that would enhance the state 
of the art in movie recommendation, with the goal to beat the CineMatch algorithm in offline 
tests by 10%. In 2009, the prize was given to BellKor's Pragmatic Chaos team in 2009, which 
enhanced Netflix’s algorithm in the predicting ratings by 10.06%, with RMSE metric to 
evaluate of 0.85671.  

Pandora 2  and last.fm 3  [9] are examples of content-based recommenders; in this case 
through song recommendation based on song attributes and using the feedback of users to 
provide new recommendations that are similar to songs they have already liked. In Pandora’s 
case, the purpose is to seed a "station" that plays a selection of music with similar properties. 
In order to accomplish this, song attributes were studied by a team of musician-analysts who 
listened to numerous songs and determined nearly 400 possible attributes. Nonetheless, as the 
music annotation process is manual, the system suffers from scalability problem [10]. Last.fm 
is similar in that it also offer songs recommendation for users, but it is based on the actions of 
similar users in the system. This is an example of song recommendation by collaborative 
filtering techniques. 

                                                 
1 http://www.netflixprize.com//community/viewtopic.php?id=1537  
2 http://www.pandora.com  
3 http://www.last.fm  
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Another example of content based recommenders is the Internet Movie Database which 
contains a wide range of attributes to describe movies including genre, director, writer, cast 
and storyline 4. 

Epinions is an example of a recommendation social network for consumer reviews. 
Established in 1999, Epinions allows users to provide ratings and reviews, as well as the 
ability to “trust” a user; in turn, that user may be trusted by other users. As well, Epinions 
permits users to construct a social network of consummation and ratings. Unfortunately all 
community features on epinions have been disabled since 25 March 2014 according to the 
site's FAQs5.  

Similar to epinions, Flickr is another recommendation social network for videos and 
images, where users can have an online community among themselves. As both Epinions and 
Flickr contain recommendation systems combined with social networks, they have been 
widely used in most of the social recommenders (discussed in the next chapter). 

Many other common internet sites use recommendation systems in order to work, such as 
YouTube, Yahoo, Trip Advisor, and IMDb.  

So the recommendation domain is well established, but there are still plenty of disciplines 
to investigate. 

3. Recommender Systems Classifications 
Recommender systems are classified into different categories based on the general way 

they work or whatever technique they use [10]. The following is a list of classifications: 

1.  Demographic recommender system: In these recommender systems the demographic 
aspects of users play a role in recommendation, like the age, the language, or country. The 
assumption is that recommendation should vary following the change in demographic. These 
solutions are common in the marketing domain. However, there is not a lot of work about 
them in recommender systems [11]. 

2. Knowledge-based recommenders: In these systems recommended items are based on 
the domain knowledge, answering questions, how some of the item features respond to user 
needs and preferences, as well as how useful the item is to the user. These knowledge 
recommenders are case based [12], [13]. A similarity function finds how much the user needs 
match the recommendations. 

3. Constraint-based systems: this is another kind of knowledge-based recommendation 
system; the main difference between the two is how the solution is calculated. In the case-
based recommendation, the recommended items are based on the similarity metrics, while 
constraint-based recommendations predominantly exploit predefined knowledge bases that 
contain explicit rules about how to relate customer requirements with item features. 
Knowledge-based systems usually give better results in the beginning of their work. In order 
to maintain good results they need to have learning algorithms, otherwise they can be 
surpassed by algorithms like CF ones. 

4. Community-based recommenders: The main idea in the community-based 
recommendation is to recommend to the user based on the preference of his friends, following 
the epigram Tell me who your friends are, and I will tell you who you are  [14], [15]. Works 

                                                 
4 http://www.imdb.com/  
5 http://www.epinions.com/help/faq/?show=faq_earnings&sb=1   
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in this domain were made possible thanks to the widespread use of online social networks. 
This kind of recommender system will be detailed in the following chapter. 

5. Contextual recommendation system: In this kind of recommender system the results of 
recommendation vary according to the context of the user. For example, in the temporal 
context, the clothes recommended in summer vary totally than those recommended in winter. 
For a social context, an example is that a film recommended to the user alone can vary from a 
film recommended to be seen with his girlfriend or with the family, recommending a 
restaurant for a Saturday night with friends, which would vary from a restaurant for a lunch 
during the week with co-workers [16]. 

The two models that we propose in the following chapters are related to the Community-
and contextual based recommenders  

4. Recommendation system’s architecture overview: 
Any recommendation system contains a recommendation algorithm; this algorithm is a 

collaborative filtering, a content filtering, a case based, any other type of methods, or an 
ensemble of them in a hybrid model. Collaborative and content based solutions use a 
similarity method in order to find similar items or users to recommend based on their 
information. A recommender needs also a source of users’ information, usually in 
collaborative filtering recommenders; this source is the users’ ratings. While in content based 
recommenders, this source can be any user action like the browsing or the user log file. Social 
networks also rose to be a source of information about user leading to social recommenders 
(next chapter). To evaluate a recommender systems, accuracy has a main role, usually 
performed on available data sets (offline evaluation). User satisfaction although highly 
important is less investigated in the literature. The recommendation systems components are 
presented in Figure 1.   

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

Figure 1 A recommendation system overview, mainly based on a recommendation method, 
a source to user information and evaluation strategy. 

In the rest of this chapter we will cover the main components Figure 1, however we will 
not cover the case based recommenders. 

4.1. Recommendation Systems algorithms 
We will begin be introducing collaborative filtering, content filtering and hybrid solutions:  
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4.1.1. Collaborative Filtering Techniques  
Collaborative filtering (CF) is based on the assumption that if two users behave towards 

some items in the same way they will likely behave similarly towards other items.  

Most collaborative filtering techniques are based on having the user preferences, and then 
finding predictions of new items based on these preferences; finally, they produce their 
recommendations based on ranking the candidate items by the users’ preferences. 

 
 

 

 

 

 

 
Figure 2 Collaborative filtering, a very common way for recommendation has a variety of 

implementation 

In general, collaborative filtering techniques are divided into memory-based and model-
based ones [17] Figure 2. Memory-based leverages the ratings of similar users (user-user) or 
similar items (item-item) in a user-item population. These methods are easy to implement and 
give high prediction value, which is why they are preferable by commercial enterprises like 
Google, Amazon, and Netflix [18]. 

Another family is the model-based solutions, such as using the clustering, matrix 
factorization [19], Bayesian algorithms [20], Latent semantic [21], and so on. Model-based 
algorithms are usually hard to implement and take more offline time to build the 
recommender. They give relatively better predictions and recommendations but at the risk of 
losing important information, especially in case of non-active users. Most of them do some 
sort of information summarizing or compacting.  

Some definitions are common in the recommendation domain, the User who has done 
some actions and is to be recommended to, then the Item that needs to be recommended, and 
finally the Rating, which represents how much a user is interested in an item. So the tuple 
(User, Item, Rating) is the core of recommender systems. 

Ratings can have many forms. It can be a value from one to five (1-5 score) or it can be 
any other form that indicates an interest level (like, dislike). Unary data are one kind of rating 
that is not direct. For example, when a user buys an item he might not rate it but buying it is 
usually an indication that the user is interested in the item [10] (Amazon assumes that the user 
rated 5 if he bought the item). Unary can be extracted from different sources (users’ logs, 
browsing history, or even information in social networks). Dealing with this data needs 
special treatment because it is not as direct as a personal rating. If a bought item is a gift, for 
example, it doesn’t describe the users’ interests; rather, it describes the friend’s (according to 
the buyer) interest. Usually these problems are ignored when dealing with unary data. 

The set of all values (User, Item, Rating) result in a sparse matrix called rating matrix. The 
pairs of (User, Item) are used where a user did not provide a rating.  

Any collaborative filtering algorithm needs this matrix as a starting point, and then comes 
two main recommendation tasks:  
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 The prediction task: for these unknown values of (User, Item) how much would the 
user rate this item if has been asked to do so?  

 The recommend task: for a user, find the best ranked list of n items for the user needs. 

Many elements are taken in consideration in the recommend task, that is why it is not 
necessarily the items with high prediction values that are recommended. 

All in this chapter, as well as in the next ones, we will refer to items by M and to users by 
U. The items rated or bought by user u are Mu. While the users who rated or bought an item m 
are referred to by   The rating matrix is  and the rating of user   to item  is  . 
An example of the rating matrix is in table 1. 

 Product 1 Product 2 Product 3 

User 1 5 4 5 

User 2 5 4 ? 

User 3 ? 4 5 

User 4 3 1 ? 

Table 1 An example of a rating matrix on a 1-5 scale. 

 is a vector of all the rating provided by user  , as well  is the vector of all ratings 
provided to item . The matrix  is usually sparse. 

 is the average of user  ratings, and  is the average of the item  ratings. 
1.1.1.a. User-User Collaborative Filtering: 

User-user collaborative filtering, known also as k-NN collaborative filtering, is the first 
automated CF method [2]. In the direct interpretation of the concept of collaborative filtering 
the past ratings of the user are used to find similar users to him, then the items that these 
similar users rated and the user himself did not might be interesting to him so that these items 
are weighted by how much each of these users is similar to the main one.  

This is made clear in the previous table, where user 1 and user 2 are too similar in product 
1 and product 2, so product 3 might be interesting to user 2 as it was for user 1.  

In order to work, user-user collaborative filtering needs a similarity function between users 
as well as a way to use the information and similarity to find prediction. The prediction is 
performed using the neighborhood predictor, based on finding the N neighbor of the user u, 
then the system combines the ratings of these N users in order to provide a prediction for the 
item i, using the similarity in order to weight: 

 

Some solutions do not provide any weighting to calculate prediction like in [4] but using 
weight so far is the most common. It is simple and also works well in practice. 

Another important factor is the choice of the N or the neighbors. Some systems may 
choose to have the users as neighbors; some might choose to consider only the most Ni users 
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who have rated the item i. Limiting the size of neighbor enhances the results because it 
reduces the noise resulting from having all users in order to find the prediction.  

The choice of i in the Ni is domain dependent; it needs some investigation in order to find 
the neighbor size in each domain. [22] show that in the film domain, a size of 20 is a good 
value in the offline analysis of available film ratings. In many domains a starting value 
between 20 and 50 is a good starting point.  

However, user-user collaborative filtering cannot provide recommendation for users with 
strange tests, because it is not easy to find for them similar users. 

1.1.1.b. Item-item Collaborative Filtering  

Although effective, user-user CF suffers from a scalability problem when the number 
of users grow. Finding neighbors has O(|U|) complexity, or even might be worse, based on 
how many similarities are calculated. That is why the item-item collaborative filtering 
algorithm was proposed. Item-item collaborative filtering is one of the most widely used 
recommendation techniques today.   

Item-item techniques were introduced in [23], [24], at the same time it has been used 
by Amazon [25]. User-user CF calculates the similarity between users’ vectors in order to 
find prediction; item-item finds the similarity in the item’s vector. If two items gathers 
similar values of likes/dislikes then they are similar, and users will consume items similar 
to their previous items. The concept is somewhat similar to the concept of content based 
recommendation, but this time, the item similarity is calculated from the users’ actions 
over items rather than the item’s data.   

That is why an item-item algorithm can provide a similarity between, for example, a 
summer clothing item and an ice maker, as users might have similar behavior over both—
this is something that content-based methods cannot find.  

Item-item still needs to find the most similar items in order to work; this similarity is to 
be calculated over smaller dimensions, because usually the items’ number is less than the 
users’ number. However, the gain in calculating the similarity is not that big. The main 
gain in item-item collaborative filtering is that it allows one to calculate the similarity 
matrix offline.  

When users complete more actions in the system, like the rate or the purchase, his 
profile vector (ratings) will change. This means his similar users will also change. As well, 
the ratings of other users can change, also resulting in changing the similarity. This means 
that the similarity in the system can change by the actions of any user in the system. That is 
the reason why similarity in user-user collaborative filtering is computed in the time of 
prediction or recommendation; it cannot be calculated offline as any action of any user can 
change the similarity.  

When the number of users is greater than the number of items, the similarity between 
two items will not change when an action is done in the system, like if a rating is added or 
updated, especially if the two items have already enough previous rating. This permits us 
to pre-calculate the similarity between items in an item similarity matrix to be ready to find 
prediction and recommendation. The matrix can contain only the most similar items. The 
matrix can be updated from time to time in order to include the new ratings and actions, 
but in the meantime the recommendations that are produced will be good. So the update 
can be done in the low-load time of the system—this is the main benefit of item-item 
collaborative filtering.  
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Item-item collaborative filtering uses the users’ own ratings combined with the items’ 
vectors of received ratings to find recommended items; not like user-user, which depends 
on the similarity between two users in order to find new recommendation. 

However, item-based recommender systems fail to find surprising items for users, as 
their recommendations are based on similar items to the ones the user has rated. 
Additionally, they are not able to find best-seller or hot items.  

Item-item collaborative filtering needs a prediction function as well as a similarity 
function to work, like the user-user collaborative filtering. The prediction is similar to the 
user-user algorithms where the similarity score is used to generate a prediction using a 
weighted average.  

The principle is to find the N similar items to i, then the prediction Pu,i can be 
calculated using the following expression: 

 

 Where S is selected to be the N elements the most similar to the item j while the user has 
rated N items of the neighbors. In the movies domain, this N has been found to be = 30 
according to [24] 

This equation’s problem is that some weights might be negative; this is solved by 
thresholding similarities so only non-negative values are considered or by averaging the 
distance from baseline prediction. 

1.1.1.c. User Similarity 

Different similarity algorithms exist that can be used to find similar users/items. The 
choice of a similarity method affects the recommender performance. The most common ones 
are the Pearson correlation and the cosine similarity. 

a) Pearson similarity: It calculates the statistical correlation between two users  
common ratings to determine their similarity. It is used in [62, 119] 

 

Its problem is that it can give high value of similarity between two users who have 
few ratings in common. Therefore, adding a limit to the number of co-rated items 
between the two users, as well as scaling the similarity of the number of co-rated 
items is less than the limit [26]. A threshold of 50 showed to be a good value in 
practice. 

b) Cosine similarity: Cosine similarity calculates the differences between the two 
vectors of users. It is an algebra model different from the statistical Pearson 
similarity. Similarity is measured by the cosine distance between two ratings 
vectors. 
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The value provided to an unknown rating is 0 so that these values don’t harm the 
similarity calculation. 

[27], [26] showed that the Pearson correlation has been found to give the best results 
for user user collaborative filtering methods. However, cosine similarity [24] is the 
most popular metric in finding item-item similarity. 

4.1.2. Content-Based Recommenders 
Content-based recommendation systems are another family of recommendation 

algorithms. The main concept is to recommend items to a user that are similar to the items 
that he has already consumed. This is done first by analyzing the descriptions of items the 
user has rated then building a user profile [28]. The profile should represent the user’s 
interests of items. Then the recommendation is performed by matching the user’s attributes 
with items’ attributes, resulting in a score of how interesting this particular item to a user. 
An accurate representation of the user can result in a tremendous gain.  

Recommendation involves three steps [10]: 

1. The content analyzer: sometimes information is not well structured to build the user 
profile directly; sometimes it is in a text format like web pages, description of an item 
and so on. In this case, a feature extraction technique is used in order to transform the 
information into the target representation, like transforming web pages into keyword 
vectors. The techniques used are borrowed from the information retrieval domain 
[29][30]. In these techniques the item description coming from the information source 
is processed in order to extract features—keywords, n-grams, concepts, etc—so that 
the item moves from unstructured text to a structured representation useful for 
recommendation.  

2. The profile learner: based on the gathered data about the user, this step tries to 
generalize the data into a user profile. Usually a machine learning technology is used; 
for example, it is in the web pages using a relevance feedback method [31]. In this 
method the user’s negative and positive feedback on web pages (likes, dislikes) is 
collected in order to find a prototype vector representing the user profile.  

3. The filtering component: this step uses the user profile in order to find relevant items 
to the user that match his profile. The result is either a binary value or a continuous 
judgment that is computed using similarity metrics [32]. Then a ranking is used to 
choose the best items to recommend for the user. The similarity can be found using 
any similarity metric like the cosine similarity. 

Content based recommenders do not suffer from a cold start with a new item in case 
that we have a good description of the item, as the recommender is based on finding the 
similarity between items. However, they suffer at the user level, as a new user has no 
actions yet and has no profile, so he cannot be recommended to; in the time that he needs 
in order to create a richer profile recommendations will be poor. Yet content-based 
recommenders have the advantage of user independence, which means the user does not 
need to have active users that are similar to him in order to receive recommendations. In 
addition, the recommendation obtained by this family of recommenders has the advantage 
that it is easy to be explained to users, not like the collaborative filtering ones, which are 
based on similar but unknown users and are not easily explained to the user.   

Content-based recommenders suffer however from over personalization, which means 
that they cannot find unexpected items. That is why some ways to add serendipity to the 
resulting recommendation have been explored. One way to do that is by adding 
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randomness, like in [13] that was achieved by using a genetic algorithm. Another aspect in 
those recommenders is not to recommend an item that is too similar to the item already 
consumed by the user. In Daily-Learner [33] the very similar news were excluded. Zhang 
in [34] has proposed redundancy measures in order to ensure that the recommended items 
contain new information. 

 In addition, as the features are usually limited, sometimes this recommender type 
cannot correctly represent the user’s profile. One solution is to integrate “semantic 
analysis” through ontology or world knowledge so that they can go beyond traditional 
keyword matching. However, the domain might play a major role in such recommenders, 
as in some domains like jokes or poems it is immediately evident as to what the user 
interests are. 

Unfortunately, the shortcomings of over personalization make content-based systems 
not highly effective for the real-world needs.  

1.1.1.d. Content-based Techniques 

At the level of item representation most content-based recommender systems use relatively 
simple retrieval models, such as keyword matching or the Vector Space Model (VSM) with 
basic TF-IDF weighting. 

In the VSM, each document is modeled as a vector of term weights; the weight represents 
the association between the document and the term. If D = {d1, d2, …, dN} is the set of 
documents to be recommended, and T= {t1, t2, …, tN} is the dictionary or the words of the 
domain, then each document di can be represented as an n-dimensional vector di= {w1j, w2j, 
…, wnj} where wkj is the weight of the term tk in the document dj. T is obtained by using some 
standard natural language processing steps like the stopwords removal and stemming [35]. 
There are many ways to calculate the weights, the most common is the TF-IDF (Term 
Frequency-Inverse Document Frequency) weighting method, equation 5: 

  

The similarity between two documents is calculated using any similarity method. Cosine 
similarity, however, is the most widely used.  

In the VSM model the user profile also is modeled as weighted term vectors. Prediction is 
done using the similarity as in the cosine one.  

An example of a system that uses a keyword model can be found in the area of web 
recommenders, such as famous systems like Letizia [36], Personal WebWatcher [28], [37] 
Syskill & Webert [38], [39], ifWeb [40], Amalthea [41], and WebMate [42]. They are 
surveyed in detail in [10]. This class of systems can also be classified further. For example, 
Letizia relies on the implicit user feedback in order to recommend web pages [40], whereas 
ifWeb, which represents profiles in the form of a weighted semantic network, uses explicit 
user feedback. 

A new field of filtering has also come into use, some examples of it are NewT [13],  
INFOrmer [43], NewsDude [44], Daily Learner [33], and YourNews [45]. In NewT many 
filtering agents are trained to use the user explicit feedback (positive and negative feedback) 
for articles, authors or sources in different types of information, like sport or political 
domains. YourNews creates for a user a profile of 8 different topics represented as a weighted 
prototype term vector extracted from the user’s news view history. Then, a short-life profile is 
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produced by considering only the 20 most recently viewed news item, whereas long-term 
profiles consider all past views.  

Different systems of the new filtering domain compute a short-life profile and a long-life 
one, such as NewsDude, which finds the short-term one by the cosine similarity and long-
term one by a naive Bayesian classifier. 

Other systems include more complex representations of profiles, like in PSUN and 
INFOrmer. In the former, profiles are initially provided by presenting the system with some 
articles the user finds interesting. Recurring words are recorded by means of n-grams stored 
in a network of attracting words, and then a genetic algorithm method is used. Importantly, 
the system needs an explicit feedback of the user. 

To conclude, this family of content recommenders gives accurate recommendations when 
training sets with big numbers of examples can be used, leading to a meaningful profile built 
for the user. However, such models cannot find relevant semantic items. If a user likes 
“French impressionism” the system cannot recommend to him documents related to “Claude 
Monet” or “Frédéric Bazille”. This is why integrating semantic analysis with content-based 
recommenders has been studied [46]. 

1.1.1.e. Integrating Semantic Analysis into Content Recommenders 

Integrating semantic information in content-based recommenders can result in richer and 
more accurate users’ profiles, which refer to concepts that are used from an external 
knowledge base. The challenge is to find a knowledge base that contains the information 
needed in the domain, which can help for both building the users’ profiles and filtering the 
recommended resources.  

Solutions in this domain should answer the following questions [10]:  
 What type of knowledge base is used? (e.g. lexicon, ontology, etc.); 
 How is the item represented?  
 What content is included in the user profile? 
 What is the item-profile matching strategy? 

Some main works that include the semantic analysis in content recommenders are listed in 
Table 2. We notice that different domains are covered by SiteIF [47], ITR (ITem 
Recommender) [48][49], SEWeP (Semantic Enhancement for Web Personalization)[50], 
Quickstep [51], News@hand [52], and Interactive Digital Television is proposed in [14]. In 
addition, there is the JUMP System [53], which is capable of intelligent delivery of 
contextualized and personalized information to knowledge workers acting in their day-to-day 
working environment. 

We conclude that WordNet plays a role in the disambiguation in many of the previous 
works; this highlights the importance of linguistics knowledge in such recommenders. 
However, most of the solutions also incorporate a domain knowledge, which was ontology in 
most of the cases.  

To summarize, all the studies used either linguistic or domain-specific knowledge or both 
in content-based filtering methods, which performed better than traditional methods of 
content recommendation. This encourages researchers to design novel filtering methods that 
formalize and contextualize user interests by exploiting external knowledge sources such as 
thesauri or ontologies.  

 
 

 Encyclopedic Knowledge Sources for Semantic Analysis 
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Many sources of world knowledge have become available in recent years. Users of the web 
have played a role in building these general purpose knowledge bases, including the Open 
Directory Project (ODP), Yahoo! Web Directory, and Wikipedia.  

Now there is an effort in the recommendation domain to try to link this general purpose 
knowledge with recommenders like Explicit Semantic Analysis (ESA) [54][55], and the 
Wikify! system [11], which has the ability to identify important concepts in a text, a process 
known as keyword extraction, and then link these concepts to the corresponding Wikipedia 
pages. 

In [56], the Wikipedia pages were exploited about films in order to enhance the predictions 
for the Netflix Prize competition in the film recommender. Other different solutions exist 
using Wikipedia [57][58].  

We highlight once again that the main contribution of building semantical recommenders 
is finding users’ profiles of concepts, then trying to recommend items or links that are linked 
to these concepts to users. The advantage of these solutions is that it permits the finding of 
likeminded users, even if they do not consume or click on the same items. For example, two 
users can both listen to, like and buy articles related to jazz music and still not be different 
according to traditionally collaborative filtering similarity calculation if they do not consume 
exactly the same items.  
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System 
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Item Representation 
& Disambiguation 
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N
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ontology7) 
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intensity 

of the user interest 
for a specific 
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Cosine similarity 
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TV 
recommender 

OWL ontology Item ontology Profile ontology, a 
formal 

representation of 
the users’ 

preferences 

Exploits the 
knowledge stored 
in the user profile 
to discover hidden 

semantic 
associations 

between the user’s 
preferences and 

the available 
products 

Table 2 Works that include semantic analysis in the content based recommenders. 

4.1.3. Hybrid Recommenders 
Hybrid recommender systems are based on combining different recommendation 

algorithms into one recommender in order to enhance recommendation. In [59], hybrid 
recommender systems are classed into seven groups: 

1. Weighted recommenders: they combine the score generated by different recommender 
systems (or predictors) into one recommendation list.  

2. Switching recommenders: depending on the context, the recommender can switch 
from one recommendation algorithm to another in order to have the best 
recommendation. 
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3. Mixed recommenders: somewhat like the weighting recommenders, where many 
recommender systems are used, but the results can be presented to users in different 
lists instead on only one list collecting the results. 

4. Feature-combining recommenders: these use information gathered from many 
recommendation sources as input to a meta-recommender algorithm. 

5. Cascading recommenders: the output of one recommendation algorithm is used by 
another one. 

6. Feature-augmenting recommenders: the result of one recommendation algorithm is 
used as a feature input to another recommender. 

7. Meta-level recommenders: it trains a model using one algorithm, then uses the whole 
model as an input for another recommendation algorithm. 

The use of hybrid solutions is very common in order to overcome the disadvantages of 
some recommendation algorithms by utilizing the advantages of other ones. A good example 
is overcoming the cold start problem in collaborative filtering by combining it with a content-
based recommender, where content based recommenders are based on items features which 
are usually available. 

Linking content-based recommenders with collaborative-filtering recommenders had 
always been an attractive idea. Some of the works that include both are Fab [60], which do it 
to recommend web pages using agents that learn users’ profiles from the pages they visited, 
and WebWatcher [61], which offers an agent that provides users with relevant pages when 
they are browsing the web based on their log files and past behaviors as well as the other 
users. users are modeled as vectors and cosine similarity was used in the model, P-Tango [62] 
is a news recommender that keeps the content-based recommender separate from the 
collaborative filtering one, but at the end it uses the two in order to offer recommendation. 
Learning about the user is performed directly and indirectly. There is also ProfBuilder [63], 
which is intended to enhance recommendation on the web for users, whereby the basic idea is 
to use the entropy of the page combined with the sequence of pages viewed by the user in 
order to find out to what extent the web page is interesting to this user. It combines a 
probabilistic method with an agent to work. PTV [64] Personalised Television Listings6 
compiles automatically personalized guides to match the likes and dislikes of individual users. 
In the Content-boosted Collaborative Filtering [65] a content-based predictor was combined 
with collaborative filtering in order to enhance existing user data and then provide 
personalized suggestions. Cinema Screen [66], a film recommender agent, expands and fine-
tunes collaborative-filtering results according to filtered content elements, namely actors, 
directors, and genres. This approach supports recommendations for newly released, 
previously unrated titles. And lastly, in [67] a feature profile of a user is used to reveal the 
duality between users and features. Then they apply Latent Semantic Indexing Model (LSI) to 
reveal the dominant features of a user, which then provides recommendations according to 
this dimensionally-reduced feature profile.  

4.2. Recommendation systems Cold Start Problem 
A recommendation system's main drawback is the cold start problem, which means the 

difficulty of recommending new items when there are not enough completed ratings, and the 
difficulty in offering recommendations to new users who have not yet rated items. The worst 
case is the need to recommend new items to new users.  

                                                 
6 http://www.ptv.ie 
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Collaborative filtering methods suffer heavily from both issues, while content-based 
recommenders suffer from the user cold start problem; as for new users, on whom we know 
nothing, we cannot recommend items. However, content-based recommenders do not suffer 
from the problem at the item level. 

The major factor that makes the cold start problem a real challenge is that it is a continuous 
problem—new items appear each day, and new users also join systems daily.  

To say that an item is part of the cold start problem, we need a threshold; say, an item that 
has been in the system for less than a certain amount of days (1 day), or an item that has less 
than 10 ratings [68]. We prefer to consider the amount of ratings and actions the item has 
gathered as an indication of a cold item, as some new items can gather a great amount of 
ratings in only a short time (like a long awaited film). 

Many solutions have been proposed for the new item problem, but the field has found the 
research lacking, [69] tried to overcome the cold start problem by using the users, items, and 
item description. Their model combines the collaborative data with content in a probabilistic 
model. In [70] Six methods to learn about the user were proposed to be used in collaborative 
filtering recommenders. The idea was to choose a sequence of items to present to every user. 
[71]  propose the trust-aware system in order to solve the cold problem. This model uses each 
user’s “web of trust”. Then the trust propagation between users and their cold users is used to 
infer the weights of unknown users. Another group of authors propose a hybrid approach in 
[72]. Their model utilizes a combination of the CF approach with the CB combined with 
probabilistic aspect models. Following this work comes [73] who used a predictive feature-
based regression model that combines all available information about users and items to 
overcome the problem. In [77], an algorithm to provide personalized recommendation was 
proposed on social tags, especially when tags are assigned to diverse topics. In [74], authors 
adopt a solution-based system on association rules. They use these rules to expand the user 
profile, which overcomes the cold start problem. In order to give good results there should not 
be redundant rule sets. This condition is not possible with large data sets. In [75] authors use 
functional matrix factorization (fMF). This fMF builds a decision tree for each interview, 
where each node is considered as an interview question, so that the recommender system can 
query the user adaptively. Lastly, in [76], authors propose a new user profiling model. It is a 
kind of interview that tries to elicit the opinion of users about items, then an adaptation 
schema on the users’ answers is proposed in order to have better results. In [77] authors use 
social tags to solve the cold start problem. 

Most recently in [78], [79] authors propose models to overcome the user cold start problem 
by using the users’ demographic characteristics, following the assumption that people with a 
common background and similar characteristics are likely to have similar preferences. Their 
model involves three phases: first, provide means for the classification of new user in a 
specific domain; second, they propose an intelligent algorithm to find “neighbors” of a new 
user in the most corresponding group; the third step is to use the prediction techniques to find 
ratings for a new user.  

When evaluating a recommender (discussed later) one important factor is to know how 
many cold start items/users the system contains, knowing that recommending from these cold 
items affects the accuracy of the system, which is another aspect to consider when evaluating. 
However, it might be better for the whole system to recommend from these cold start items in 
order to achieve the two goals of novelty and serendipity, which perhaps results in lower 
accuracy, but more user satisfaction [80]. 
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In the recommender industry the cold start problem can be solved easily by beginning with 
the popular items, as they are popular they are most likely to be liked by these users. The next 
step is based on the users’ actions towards these items so that the personalization begins.               

4.3. Short-Life Resources Recommendation (SLiR) 
Short-life resources are the resources, items, or articles that do not live for a long time, like 

news on a news site, or offers on a commercial site. The news article is highly important 
directly within the minute in which it is published, and after a while, they are old news and 
not interesting anymore.  In the commercial example, the offer is available only for short 
time, an example: “A discount of 50% on a camera within seven days”. The product itself (a 
camera, for example) will stay for long time, while the offer (discount of 50%) will disappear 
within a short period (7 days). These types of resources appear and disappear before 
collecting enough ratings to be recommended correctly, which makes impossible to use 
collaborative filtering techniques. Instead, popularity recommenders, as well as content-based 
recommenders, are used in order to recommend them.  

4.4. Data Sources for Recommender Systems 
Recommender systems are based completely on users’ feedback. User feedback towards 

items can be obtained two different ways. First there is explicit feedback, where the 
recommender system asks users explicitly to provide ratings. This feedback usually is on a 
scale of 5 points, 7 points, or 100 points. Most recommender systems ask the user to provide a 
unique rating for an item; however, some systems ask for more than one rating, such as 
Zagat’s restaurant guides 7 , which require 3 ratings (food, service, and décor) for each 
restaurant. In addition there is implicit feedback which is the data extracted from the user’s 
actions (browsing, purchased items, etc.). Implicit feedback is very common in the 
commercial sites and is referred to as unary data, where unary liked items are marked as 1, 
while the others as 0. We cannot call this data binary data, as binary indicates liked or 
disliked, and in the case of implicit data a user who has not clicked on or purchased an item 
does not show an indication that the he did not like the item; perhaps he did not know about 
the item, and if it became known then he would consume it. The time spent on an item is also 
an indication of how interesting the item is to the user. 

Most of the work in the literature deals with explicit feedback, while some works deal with 
implicit data, such as [81][23].  

The time stamp is important information that can also be used for both kinds of feedback.  
Usually explicit data is hard to obtain; especially in cases where the user did not rate an item 
(a film or a song), where his behavior is to leave the rating for something interesting, and not 
necessarily that he will provide a low rating. Another problem with explicit rating is that it 
may change with time. In [4] they have shown that users provide inconsistent ratings when 
asked to rate the same movie at different times. They suggest that an algorithm cannot be 
more accurate than the variance in a user’s ratings for the same item. On the contrary, implicit 
feedback is widely available and it reflects the user’s real interests.  

5. Evaluation Metrics 
 How to evaluate a recommender system is a difficult task. Many elements play a role 

in how to evaluate a proposed approach, like the chosen data set size, its ratings density, 
ratings scale, and other properties of the data set [80]. Many aspects play a major role in 

                                                 
7 http://www.zagat.com/ 
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evaluating recommender systems, like accuracy, coverage of recommended items, 
confidence, trust, novelty, serendipity, diversity, utility, robustness and privacy [82][32][80].  

5.1. Accuracy  
Accuracy is one of the main aspects of evaluating recommender systems that has been well 

studied so far. In this case, accuracy is defined by: to what end the prediction about how a 
matched item is interesting to a user is correct. In other words, can the system predict for a 
user, and an item, the accurate rating value that the user might give (or has given) to this 
item? 

The most two common metrics to evaluate accuracy are the Mean Absolute Error (MAE) 
and the Root Mean Squared Error (RMSE). A lot of other metrics have been proposed, like 
Normalized RMSE (NMRSE), Normalized MAE (NMAE), Average RMSE and Average 
MAE. MAE measures the average absolute deviation between a predicted rating and the 
user’s true rating. If we consider as the data set where the evaluation is done, the real rating 
value of a user towards an item, and the predicted value using the model to be evaluated. 
Usually the test is done by cross validation runs where a part of the data is hidden so that they 
are not known in the evaluation process. 

(6) 
 

RMSE calculates the square root of the mean/average of the square of all of the errors: 

     (7) 

 

From RMSE definition, it is clear that it is always greater than the MAE, and gives more 
weights to errors with larger absolute values, while MAE gives the same weight to all the 
errors.  

Thus RMSE is suitable for situations where small prediction errors are acceptable, 
predicting 3 as rating instead of 4 is acceptable, but 4 instead of 0 is not. 
As shown in the table 3, as few individual error values increase, RMSE increases. One large 
error increases dramatically the RMSE. 
 

Error on Predicted 
Rating-> 

Error 1 Error 2 Error 3 Error 4 RMSE MAE 

Scenario 1 1 1 1 1 1 1 
Scenario 2 2 2 0 0  1 
Scenario 3 4 0 0 0 2 1 

 
Table 3 RMSE and MAE comparison on various scenarios 

In order to evaluate the whole recommended list and how it is useful for the user, precision 
(measure of exactness or quality) and recall (measure of completeness or quantity) are 
borrowed from the information retrieval domain. In simple terms, high precision means that 
an algorithm returned substantially more relevant results than irrelevant, while high recall 
means that an algorithm returned most of the relevant results.  
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When performing offline evaluation a part of the user-item ratings is hidden, then we ask 
the recommendation system to predict the ratings that the user might give to the item. Four 
cases might result from this assumption and are shown in Table 4. 

 Recommended Not Recommended 

Used True-Positive (tp) False-Negative (fn) 

Not used False-Positive (fp) True-Negative (tn) 

Table 4 Classification of the possible result of a recommendation of an item to a user. 

Based on table 4 the precision and recall can be calculated by the expression:  

 

 

 

One shortcoming of this evaluation approach is that we are forced to assume that unused 
items are not interesting to users and they will not be used even if the user has seen them, but 
this is not completely true. In some cases the user does not consume because he does not 
know that such an item exists but when he is made aware of it he will consume it. 

Measures that summarize the precision recall are ROC curve such as F-measure [83]and 
the Area Under the ROC Curve (AUC) [84], which are useful for comparing algorithms 
independently of application. Half-life Utility Metric [27], can also be used in this kind of 
evaluator in attempting to evaluate the utility of a ranked list to the user. 

The third family of evaluators used in the literature is the Ranking Measures, like the 
Discounted Cumulative Gain (DCG), and Normalized Discounted Cumulative Gain (NDCG) 
–once again, two metrics form the information retrieval domain. In DCG, positions of 
recommended items are discounted logarithmically. Assuming each user u has a “gain” guy 
from being recommended an item i, the average DCG for a list of J items is defined as [32],  

 

 

 

 

Where DCG* is the ideal DCG. Other metrics to evaluate the ranking like The R-Score 
metric [27]. 

Accuracy has been the main factor used to compare recommender systems, but a high 
accuracy level cannot guarantee user satisfaction; for example, in a supermarket it would be 
too accurate to recommend to people to buy bananas, most of them will end up buying 
bananas because people do this frequently anyway. This example can summarize some 
problems in depending only on accuracy, relying on recommending already well known items 
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and resulting in poor user satisfaction and no increase in the supermarket income. That is why 
other aspects are also important in the recommendation evaluation. 

5.2. User Satisfaction Evaluation  
The user satisfaction evaluation includes evaluating different elements about the user 

experience with the recommender system: 
 
• Confidence: It refers to how much the recommender system has confidence in an item; 

usually it is referred to by a value (star or number). This is a delicate issue as even if 
the recommender ranked the list of recommended items well, the system can fail if the 
prediction ratings it displayed to the user were incorrect [32].  

• Trust: How much the user trusts the recommender system. This aspect varies between 
users. Some users trust recommenders that offer them new items, while others prefer 
having some of their preferred items in the recommendation list in order to trust the 
system [85], [104] . One main way to build the trust is to explain the recommendation 
to the user. 

• Diversity: Usually users prefer systems with high diversity as they can explore new 
horizons of items [29]. 

• Robustness: Users need to be protected from fraud in systems with user participation. 
[86].  

• Novelty: Recommending new items to users is essential in any recommendation 
system [10]. 

• Serendipity: A serendipitous recommendation helps the user find a surprisingly 
interesting item he might not have otherwise discovered. If a user likes an actor, a 
novel recommendation is this actor’s new film while a serendipity recommendation is 
done by choosing another film that contains an actor who might be interesting to the 
user. The difference between novelty and serendipity is explained further in [32]. 

5.3. Communicating Recommendations to Users 
One aspect of a good recommendation is how to convey the recommendation results to 

users, i.e. explain why the user has received a recommended item. Recommendation systems 
usually work like a “Black Box”, they offer recommendations as a list without explaining 
why they recommend these items. However, explaining can help user make a better decision 
[87], [88], [104]; further, this aspect may affect the uses trust in the system  [89]. 

Explaining recommendations for users might be for different goals. In [87] the authors 
identify seven potential goals for explaining recommendations: show the transparency of the 
recommendation system, enable scrutablity of the results, improve the trustworthiness and the 
persuasiveness of the recommendations, increase effectiveness for supporting decisions, and 
enhance efficiency for decision making and create satisfaction in the recommender systems.  

One of the first systems to evaluate recommendations’ explanations is in [89]. The study 
focuses on the fact that although users’ enjoyment of recommended items did not change, 
users showed a high interest in the explanation of their recommendation. Another study 
pointed to the fact that recommendation explanation increases the user’s satisfaction in the 
systems by helping him to know what is he expecting from the system. [72]. A good example 
is in [90]: giving labels to recommendations affected the recommendation where the click 
through rate (CTR) varied from 5.93%, to 8.86% and 9.87% according the change in labels, 
from nothing, to sponsored to organic.  
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Commercial interest is in increasing the sale amount, (the number of items sold and not 
returned) that is why this increase in the satisfaction without a change in the users’ 
communication behavior might not interest the commercials.  

5.4. Online Towards Offline Evaluation:  
Evaluation varies between offline and online evaluation. Offline evaluation includes 

applying the evaluation metrics on data sets, either collected or available in the internet. 
Online evaluation is about how to get in contact with users and ask them to try the system, or 
give their live feedback, or asking them to answer a questionnaire.  

In 2004 [32], most of the recommender systems were evaluated offline, one decade later, 
in 2013 [82], recommendation approaches are still tested mainly offline. From the same study 
in 2013: 69% of the evaluated works were using an offline evaluation, 7% were evaluated in 
real-world systems with an online evaluation [91], [92], [93], [51], [94] and two approaches 
3% were evaluated using a qualitative user study [95], [96]. 

The authors observed that researchers cannot have access to real-world systems in order to 
test their works, and those who can evaluate in live scenarios usually do not. Like C. Lee 
Giles and his co-authors, who have important contributions in the field [97], [98], [99],  [100], 
[101], [102], [103], they can perform real tests on their academic search engine CiteSeer, but 
they choose to perform offline evaluations instead. 

One reason might be the simplicity of performing an offline evaluation in a couple of 
minutes or hours instead a couple of days or weeks with an online test. Another factor might 
be that in many cases tests in offline scenarios give better results and are more convenient 
than online tests and user studies [82]. 

From a commercial point of view, all the previous metrics would not be that important 
towards some commercial aspects like selling diverse items and increasing the number of sold 
items. The important commercial aspect is enabling users to find interesting items, which are 
hard to find without a recommender.  

Increasing user fidelity by recognizing old customers and treating them as valuable users, 
for example by offering to them recommendation related to their previous visit. [Rogers 
2001]. 

We conclude that evaluating a recommender system is a difficult issue. How should one 
integrate all the previous aspects? Knowing why the system has been designed and what its 
goals are help one to choose the best evaluation methodology.   

6. Recommendation System Tools 
Many implementations of recommender algorithms are available, especially for 

collaborative filtering algorithms. A lot of tools are free, open source projects that researchers 
can use. Tools vary depending on what they offer; for example, Crab, easyrec, MyMediaLite 
and Vogoo PHP LIB offer simple recommendation systems that can be integrated into web 
sites without a lot of effort. LensKit, provides researchers with reference implementations for 
common collaborative filtering algorithms using Java. Cofi as well provides a Java package 
that implements many collaborative filtering algorithms. Apache Mahout is a machine 
learning library and its main goal is to offer scalable algorithms implementation for large data 
sets, between other algorithms it includes an implementation of collaborative filtering 
algorithms -formerly developed under the name Taste-. Some tools focuse on one kind of 
recommender, like the SVDFeature, which focuses only on matrix factorization. 
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RecommenderLab is an R extension package that provides a general research infrastructure 
for recommender systems. It has a completely different goal from existing software packages, 
as it is not a library dedicated to the creation of recommender applications; instead its focus is 
on consistent and efficient data handling, easy incorporation of algorithms. In our conducted 
experiments we adopted R as it is effective, and easy to use. 

7. Conclusion 
Recommendation is a difficult domain where different aspects are gathered in order to 

offer to users the highest satisfaction. Covering all the existing work in the field of 
recommendation is beyond the scope of this chapter, instead we have explained the whole 
domain concisely from collaborative filtering, to content-based recommendation including 
semantic analysis, a discussion of evaluation metrics, defining and investigating the cold start 
problem, investigating the SLiR documents, and finally discussing the datasets used for 
evaluation followed by the introduction of some recommendation tools. We attempted to 
avoid details; at the same time, we had to explain some aspects that we will need in next 
chapters.    

Returning to the Martin keynote, we see that algorithms and techniques have evolved 
significantly over the last two and a half decades. A variety of metrics to measure also have 
evolved. Now the focus should be about how to get benefits from the best of this domain in 
order to increase users’ satisfaction, which takes place in an online, tangible world.  

As we end this chapter, we will begin the next one with social recommenders, and 
introduce the social networks and social media aspect.   
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1. Introduction: 
ased on the interaction of users on the web, social media have tremendously 
evolved in the last few years, resulting in a fundamental change in the way in 
which people live and consume information. The power is no longer with 

marketing or public relations teams; it is democratized so that every user can play a role in the 
web today. 

Online social networks belong to social media site families and they become indispensable 
in people’s daily lives; people from different countries and age groups use them on a daily 
basis. While people are spending time on social media sites, like social networks, they are 
leaving valuable information attracting researchers’ attention. 

One of the most attractive aspects for researchers resulting from this phenomenon is how 
to enhance recommendation based on this social information. A variety of works discusses 
and proposes different approaches for social recommendation; this chapter explores main 
works in this domain.  

In this chapter we will discuss social media, online social networks, as well as social 
recommenders as the three disciplines are highly connected together; where the social 
recommendation can be considered as a part of the social media game. We will refer briefly to 
the fundamental works, focusing on those which we will need in next chapters, where we will 
build a social machine of recommendation. Mainly our work is related to social 
recommendation, but understanding the whole environment of social media and its relation 
with social recommendation helped us first to prove that our model can be useful in real cases 
when it transforms the general purpose social networks into a social machine that is first, 
second this understanding helped us to accomplish live evaluation using the social media 
channels (Twitter Avatars, and Facebook Applications).  

From the other side context awareness refers to integrating information into different 
applications in order to trigger or perform actions based on changing context. Contextual 
information varies from the changing of time, location, mood weather, human surroundings, 
or any other conceivable and measurable change. The domain of recommendation is one 
branch that adopted contextual information in order to enhance the way in which it works. 
Integrating contextual elements into recommenders has proven to enhance these systems.  

In this chapter we will also investigate context awareness and context-aware 
recommenders. We introduce the levels of context and define the situation as a high-level 
interpretation of context, as all these elements help us later in the iAmélie system, which uses 
one aspect of context which is the social context.  

Some contextual information can be measured (by sensors for example) but others are 
more difficult to obtain, such as user mood and internal mood or surroundings; that is why we 
give equal attention to the following question: can social networks be a source of contextual 
information? 

2. Social Media: 
2.1. Social Media overview: 
Social media refer to the social interaction among people in which they create, share or 

exchange information and ideas in virtual communities and networks [1]. Social media is 
based on conversations [2],  user generated content, some conservation can spread and reach 
millions especially if the content was attractive, or surprising for people [3], [4]. 

B 
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Social media sites began very early on the web. For example, in 1997, Sixdegrees allowed 
users to create profiles, create friends list, and add friends-of-friends to one’s own lists [2]. 
Actually different types of social media sites already exist in the web today. Some of them are 
for general mass like Hi5, Friendster, Facebook, Pinterest. While others are specialized in 
some domains like: LinkedIn for professional profiles, MySpace, YouTube, and Flickr  for 
sharing videos and photos, FarmVille for social games, and TripAdvisor for places and travels 
opinions. 

Social media users can create social media profile cards, like what they do in the business 
card concept, using tools like Retagger in order to promote their accounts on different 
platforms which will encourage an increase of followers on those accounts. 

Blogging sites raised in late 1990, to become extremely popular. Their authors range from 
ordinary users to expert users or even celebrities. Blogging sites are easy to create and 
maintain. In 31/07/2014 the number of blogs was 751 million8. Blogs become a source of 
public opinions and many engines like Technorati were created to search blogs.  

Social media also opened the door to rank sites by users’ votes on the content, using the 
bookmarking sites like Reddit, Digg, and Delicious9. 

Micro blogging is another aspect of social media that offers real time updates; the most 
popular of which is Twitter. Users send short messages (Tweets) that are limited to 140 
characters and are mostly short status updates of what users are doing, where they are, how 
they are feeling, links to other sites, photos, or short videos. 

Sites like Foursquare utilize a blend of real-time updates and location specific information 
by rewarding users for ‘checking in’ to at any location worldwide and for leaving their 
feedback for that specific location for others to view. 

We can conclude that with the rise of social media, the corporate communication has been 
democratized. Marketing and public relation no longer hold the power, it is now in the hands 
of individuals and communities that create content over the different social media channels 
with or without the permission of companies. Companies can no longer ignore the effect of 
social media. One classical example is in the broken guitar of Dave Carroll by United 
Airlines. Carroll is a country music Canadian musician. Based on the subsequent reaction 
from the airline company towards the broken guitar Carroll recorded a music video, and then 
he shared it on YouTube at the time and gathered more than 14 million views. The financial 
impact of the United Breaks Guitars is estimated at $180m!10  

To conclude: the positive participation of people in the web towards a brand can be 
considered free marketing that leads to growing brand recognition, increasing sales and so on 
[5] while negative feedback of people can cause costly damages [6][7]. 

As BBC Business Editor Tim Weber (2010) explains: “These days, one witty tweet, one 
clever blog post, one devastating video–—forwarded to hundreds of friends at the click of a 
mouse–—can snowball and kill a product or damage a company’s share price.” 

Some works have questioned opportunities and threats of social media [8], trying to 
understand it better in order to better benefit from its existence. Calling this effect of people’s 
interaction, eWoM (electronic Word of Mouth), as an electronic version of Word of Mouth 
(WoM). 

                                                 
8 http://www.internetlivestats.com/  
9 formerly known as Del.icio.us  
10 Revenge is best served cold—on YouTube https://www.youtube.com/watch?v=5YGc4zOqozo   
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The original definition of WoM came about in 1967 as [9] as the “oral, person to person 
communication between a receiver and a communicator whom the receiver perceives anon-
commercial, concerning a brand, a product or a service”. Since 1969 [10] authors found that 
WoM has much larger effect on purchasing decisions than marketing tools and conventional 
advertising media. 

Then many studies came to affirm the main assumption of [10] about the effect of WoM on 
the purchase decisions, like recently in [11] at 2009.The widespread use of social media sites 
and with the increase in people who use the concept, eWoM appeared first in 1998 in [12] and 
recently in 2009 in [13]. eWoM is less personal of course than traditional WoM, but it is more 
powerful because it is immediate, has a significant reach, is credible, and is publicly available. 
Some parameters may play a role in eWoM like demographics or psychographics of users 
studied [14]. 

Although eWoM influences purchase decisions, from which movie to watch to what stocks 
to buy but the way in which it work in not yet well understood [15]. 

 

 
Social media functionality   implications of the functionality 

Figure 3 from [16], the honeycomb of social media 

In terms of social media in general, understanding eWOM can help to further benefit from 
it regarding audiences and their needs. In [16] “Introduce the honeycomb of social media” 
Figure 3, as a framework of seven social media building blocks. These seven blocks can help 
to understand both the existing social media sites, as well as the needs of organizations. 

Figure 3 presents the seven blocks of the honeycomb [16][1]. Which are: identity, 
conversations, sharing, presence, relationships, reputation, and groups. Each block focuses on 
a specific facet of social media user’s experience and its implications for firms and 
organizations. These blocks vary in their presence from one social network to another.  
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2.2. Social media blocks: 
 Identity: It represents the limits to which users put in social media information related 

to their identities. Like the name, age, gender, profession, location, or even some 
internal information like feelings, likes, and dislikes. However social media sites offer 
different possibilities in adding identity information. 

 Conversations: It is a main block in social media; people are here to communicate 
with other users and groups. People Tweet, post, blog, look to meet new likeminded 
people to find true love, to find an ideal book, or even to build self-esteem or to 
discover new ideas or trending topics. 

 Sharing: Sharing is about the breadth to which people exchange, distribute, and 
receive content. However sharing alone is a way to connect in social media, the 
question is can this lead to build a relation between people resulting from this interact? 
This depends between many elements on the functionality of the social media sites, and 
the shared component, like photos on Flickr, and Music on MySpace. 

 Presence: Presence means to what end users can know about each other if they are 
accessible, the user is connected, not connected, busy or hidden… are some examples 
of how the case would be. As virtual and real worlds are highly connected in our days, 
this involves also where people are in the real world. Where were they or where are 
they going to. For example, Facebook offers the possibility to add all the places that the 
user had visited with the time in which he has visited each place. 

 Relationships: Relationship represents to what level users are connected to each 
other s,  which means they have a relation provided by the system, like being friends in 
Facebook, or follow each other on Twitter, in relationship an important aspect is to 
what extent the relation is real, in other words do two friends on Facebook really 
communicate there? Or they are simply only one of the friends list. 

 Reputation: Reputation represents to what extent users can determine the standings of 
others (including themselves) using social media. Although reputation can be 
understood differently, but in most of cases it is considered as the trust. Trust is not an 
easy concept to measure; that is why social media relies on some metrics  to 
automatically aggregate the user-generated information to determine trustworthiness. 
For example Katty Perry (@katyperry) with 54 million followers on Twitter, or Justin 
Bieber (@justinbieber) with 53 million followers have without any doubt a good 
reputation. LinkedIn works differently; the reputations of individuals are based on 
endorsements from others. 

 Groups: The groups block indicates to what extent users can build communities and 
sub communities. When the network is more social, users can build more and bigger 
groups of friends, followers, an example is in Google + circles, or in Facebook groups 
of friends (school friends, work friends ). 

Briefly we scanned the blocks of social media, in the next sections we’ll focus on the 
online social networks as a rich branch of social media.  

3. Social Networks:  
Social networks are a fundamental part of the social media family sites. Online social 

networks like Facebook and Twitter continue to grow. Figure 4 shows the number of users 
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using some social networks within a month in the United States only. Facebook has 141 
million users and Twitter has 93 million users compared to a mere 8 million on Flickr and 1 
million on epinions.  Amazon is not considered as a social network but instead is a 
recommender system. However it has been added in order to compare figures. 

 

 
Figure 4 A comparison between different sites over one moth use in United States 

https://www.quantcast.com/ 

Online social networks are divided into General Purpose Social Networks GPSN like 
Twitter and Facebook, towards Domain Based Social Networks DSSN like epinions for 
product recommendation, Flickr for photo, LinkedIn for professional relations and so on. 

3.1. General Purpose Social Networks GPSN:  
They are the social networks that do not have a domain associated with them (like films, 

products…). Users can do different actions in this kind of networks in different domains. 
Many GPSN exist like Classmates, MySpace, Facebook and Twitter. In [17], the author 
claims that one main factor for which users use social networks is looking for the lost physical 
space around people, as people live in small homes and they are very busy, so they try to 
overcome this lack of physical space and time in social networks which are out of the space & 
time limits.  
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 Facebook: 

Facebook was founded in 2004; one decade later, it has the global rank of 211 and nearly 
1.3 billion active users per month, 25% of which are from the United States12. Since there 
are 7.2 billion humans on  Earth13 ,this would mean that for every five humans, one would 
have a Facebook account! In addition, 48% of these users log in every day and each user 
has an average of 130 friends. More than 50 percent of the users broadcast information and 
knowledge via Facebook. And Finally 70 percent log in every time they start their 
computer or web reader. 

According to [18] Facebook turned into a habit-forming activity and is a part of 
people’s daily routine. Nearly half of the respondents announced that it is not easy to keep 
updated on top of things without Facebook. Facebooking (the use of Facebook) is 
sometimes considered as an unconscious habit.  A majority of the respondents stated that 
they log in to their Facebook accounts every time they launch their web browser. Leif 
Denti, a doctoral student of Psychology at the University of Gothenburg stated that “this 
may even developed into an addiction.” 

The use of Facebook is somehow related to their commercial status, as people with low 
income and low-educated individuals spend more time on Facebook, and the worst fact is 
that women who use Facebook more are also report feeling less happy and less content 
with their lives. Facebook was not the first social network created but it is the most widely 
used to date. In Facebook, users can post phrases, comment on friends’ post, and share 
videos and photos. They can also like items any kind, like books, films, restaurants. 
Additionally people can invite friends, and they can add all the places, countries and 
villages where the user has visited. 

In his work [17] in 2009, the author tried to answer some opened question related to 
Facebook, for him there are three major elements for which Facebook is considered 
advanced:  

- Identity: In Facebook users can write posts, like items, do actions that can 
reflect their identity, and they can see directly the feedback of friends  

- Relationship: Facebook permits to users to maintain their relation with their 
friends, while simultaneously seeking new relations. 

- Community: Since the user has established his relations of old and new friends, 
he now has a community in which he can establish his social position. The basic 
desire is simple and age-old: to be recognized as a valued member of one s various 
communities. 

Responding to these three needs might be a main factor for why do people continue 
to join Facebook, to log in every day, moreover to put their important information about 
them, at the risk of losing privacy. As Grimmelmann investigated in [19], social 
networks are open for participation of anyone, so any information that people try to 
keep offline might find its way online by a friend by way of a tag in a photo, or a post 
on the user’s wall. Like the author we refer to Google’s Eric Schmidt when he said “If 
you have something that you don't want anyone to know, maybe you shouldn't be doing 
it in the first place." In legal, filings, his company has argued that "even in desert, 
complete privacy does not exist."! 

                                                 
11 Alexa Rank 
12 http://www.statisticbrain.com/facebook-statistics/  
13 http://www.worldometers.info/world-population/  
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 Twitter: 
Twitter has nearly 645 million active users14, 115 million are active every month, 

taking 5 days to produce 1 billion tweet! Twitter was founded in March 21, 2006 and is 
currently ranked #8 by Alexa. 

Twitter is different from Facebook in the way in which it works; in Twitter a user can 
post short messages (limited to140 characters), he can follow other users, as well as he can 
be followed by other users. This is how the community is created on Twitter. Furthermore 
the user can share photos and videos in addition to “retweeting”, replying, and 
“favoriting” tweets from other users. 

Tweets can contain any information the user wishes to share. In general people use 
tweets to defuse information of what they are doing, where they are, how they are feeling, 
links to other sites, photos, or short videos, even for political and technical information. 

Twitter reflects the trending topics instantly, not only by offering the trending topics 
but also by the participation of users who create tweets towards any news. Examples 
include the results of a sports match or an election and even news of Facebook being 
down for a few minutes. 

The amount of information that exists on Twitter has caught the attention of 
researchers and they actually study these short messages. 

 

                                                 
14 http://about.twitter.com/company 
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Figure 5 Social media sites usage evolution between 2012-2013, Facebook stays at the head 

of used sites (63%) of users log in to it daily!15 

 Pinterest: 
Pinterest was founded in March 2010 and has an Alexa rank of 27 today (within only 4 

years)! The concept of Pinterest is to offer to its users a visual discovery tool, combined 
with social properties. Pinterest provides users with the ability to collect ideas related to 
their interests. They can create and share collections called “boards”, of visual bookmarks 
(called “Pins”). They can use these boards to meet any goal like collecting interesting 
recipes, or even for projects like planning for a trip.  

From a social aspect, the site permits users to invite other users and share pins and 
interests with them. 

  

3.2. Domain Based Social Networks DBSNs:  
 Epinions:  

Epinions was established in 1999 and was bought by Shopping.com in 2003 which sold 
it to eBay in 2005. Epinions is a consumer review site, where users can read, write, and 
review different items so that they can make a better decision based on others opinions as 
well as support other users. Users also can rate reviews which will lead to building a 
community by trusting others. However in March 2014, all community features have been 
disabled. As epinions has users, relations and ratings, so it has been widely used in most 
of the social recommender experiments. 

 

 

                                                 
15 http://www.pewinternet.org/2013/12/30/social-media-update-2013/ 
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 Flickr: 

Flickr is an image hosting and web services suite that was created by Ludicorp in 2004 
and acquired by Yahoo in 2005. In addition to being a popular website for users to share 
and embed personal photographs, and effectively an online community, the service is 
widely used by photo researchers and by bloggers to host images that they embed in blogs 
and social media. In Flickr users can build their communities as well as they can rate 
items, making it with Epinions the most used social networks in order to evaluate the 
social recommenders. 

As Figure 4 shows, the domain based social networks have much less users that the 
GPSNs. Many other domain  social networks exist, like Flikster for films and LinkedIn for 
professional profile; coverage of these social networks is out of the scope of this study. 

While in Figure 5 we refer to use of social network usage evolution between 2012 and 
2013, in (a) there hasn’t been a substantial change in those two years: Facebook maintained 
its position as the most used social network with a slightly increase in the percentage of usage. 
In (b) in the same figure we find the usage frequency of social network (daily, weekly, and 
monthly). The study was over 1445 adult users over 18. Interviews were conducted in Spanish 
and English. 

The main conclusion so far is that if there was a way to transform this treasure of 
information in social networks into recommendation engine this might help users. 

So far we have presented the main information of the domain of social networks, and now 
we will discuss the social recommenders which will link the recommendation domain with 
social networks. 

4. Social recommenders:  
Social recommenders combine the two domains of social network and recommendation. 

Both are interesting topics, used daily by users, and respond to users’ needs. This is why 
researchers say it took some years to combine the two together, trying to enrich 
recommendation systems by social networks and vice versa, building what is called social 
recommenders, or community based recommenders[20][21].  

The idea is to recommend based on the preferences of the users’ friends. Following the 
epigram “Tell me who your friends are, and I will tell you who you are” [23], [24]. The 
underlying concept is simple: people prefer to have faith in recommendations from their 
friends more than recommendations from similar but anonymous individuals [25], because 
their tastes are similar to, and/or influenced by their trusted friends in social networks.  

The main participation of social recommenders in general is to integrate the information 
extracted about the user, their relations, and friends into a matrix of trust or similarity between 
friends that feed the collaborative filtering algorithm to find the recommended items.  

Usually the social network is denoted by the graph , where  is the set of users, 
and  is the set of friendship links. This graph is translated into a matrix , where each user  
has a set of  who are the users trusted by user , as well as  who are the users who trust 
the user . When relation in the social network are symmetric, meaning that is user  is friend 
with user  then user  is also a friend of user , like the case in Facebook, then  . 
The contrary is the case of non-symmetric social networks like Twitter, where user  can 
follow a user , but the user  doesn’t necessarily follow the user . In this case . 
The relation between two users (know, trust, follow…) is represented by a positive value in 
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the interval  [0,1]. Where 0 means there is no relation and 1 means the relation is very 
strong. The value between reflect the level of the relation. 

The value of relationship is either obtained explicitly by asking the user to provide the 
system by how much he trusts other users, or implicitly by observing the actions between the 
two users.  

Usually  contains positive values, but it might have negative values refereeing to the 
conflicts in interests. An example of the relation matrix is in table 5. 

 User 1 User 2 User 3 
User 1  0,9  
User 2 0,8  0,7 
User 3  0,2  
User 4 0,6 0,4  

Table 5 an example of a relation matrix 

Different methods are adopted to achieve this goal: first combining collaborative filtering 
algorithms with the social information (social matrix), the two main approaches in this 
domain are Matrix Factorization and neighborhood based [26] discussed next. 

4.1. Matrix Factorization based social recommenders 
The general idea of Matrix Factorization (MF) is to model the user-item interaction with 

factors representing latent characteristics of the user and items in the system. After that the 
model is trained on the available data, to be used to predict ratings of users on new items. The 
model was widely used in linking social network with recommender systems. In the following 
we will scan the main works in the domain: 

 
 SoRec: 

SoRec was proposed in [27]. SoRec authors aim to address the data sparsity and 
poor prediction accuracy problem by integrating Social Networks (SN) 
Recommendation Systems (RS) with  In SoRec trust between users in a social network 
is integrated into a recommender system by factorizing the social trust matrix .In this 
model the social trust model is slightly twisted on social spectral regularization matrix 
(SoRec). 

 

Where is the number of users who  follows/trusts. And  the number of users 
who follow/ trust user . The final user item rating matrix is obtained from the model 
by the formula:  

 

In the equation,  and  contain the rank, and  contains the offset. The social 
information is added to the model by the following equation:  

  
 

Where Z contains the social information in the model, the matrix Q is shared 
among the two equations. This is why this matrix should contain both: information 
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about the user-item, and about user-user in order to achieve accurate prediction for 
both. As the matrix Z is not needed for the prediction process. It can be calculated 
after the two matrixes P and Q are learned.  

In another study [28] both the previous two equations were combined together in 
one equation in order to optimize RMSE: 

 

In the overall concept of SoRec two users ,  become more similar if they were 
friends. In the original model only positive trust was considered. However the model 
allows also negative values of  representing the distrust between two users. Such 
a function is optimized using the gradient descent method. 

 

 Social Trust model 
The approach in [29],[30] introduce the social trust model STM. It is a linear 

combination of basic matrix factorization approach and a social network approach.  

Prediction is obtained from comprising the two Matrix  and  in one formula:  

 

Where  is the set of directs friends of user . So the prediction as the equation 
shows contain 3 elements, the first two are the same in traditional collaborative 
filtering methods: global offset  and prediction based on user u and item‘s latent 
features. The last term is the weighted sum of the predicted ratings for item  from all 
the friends of user . This is how STM integrates the social influence in the prediction 
process.  represents the level of the social influence in the prediction process, 

. The social influence is ignored with  equal to 1, and it has the highest 
weight when is equal to 0. 

Evaluation was done by optimizing the RMSE by training on the equation:  

 

 

 

 Social MF Model 
Social matrix factorization model, proposed in [31], was found to outperform both 

SoRec and STE (considering the RMSE metric). This model addresses the transitivity 
relation of trust in the social network. As the dependence of the user’s feature vector 
on his neighbors feature vectors can broadcast in the social network, making the user’s 
feature vector depending on possibly all users in the network. Each row in the user’s 
matrix is normalized to 1, so for each user we have the following equation: 

 

For each user. The prediction in this model is obtained as follows:  
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While the equation to minimize RMSE is the following: 

 

 

In this equation the second term forces the user’s latent factor   to be similar to 
the weighted average of his friends’ profiles  while  controls the tradeoff between 
the rating, and the social features. If , then the social aspect is ignored, while if it 
is equal to 1, this means the social aspect is maximized.  

A variation of social FM was proposed in [28] in which the training function was 
modified so that the ranking (top-k hit ratio) was learned instead of RMSE metric. 

 Circle based recommender:  
Most of existing works in the social recommenders take the social network as a whole 

in order to produce a recommendation while some works consider another aspect of using 
recommender systems. in [32] Yang proposed a circle based recommender. The 
assumption is that humans are multi-faceted, online, or offline, that is the case. To say it 
differently, in the real life, we refer to different groups of friends in the different domains; 
for example the technology domain (PC, or camera to buy) towards the clothes domain. 
Assuming that we know we’re able to know the users’ trust circles over the different 
domains, then we can use the information in only this circle in order to recommend to the 
user in that domain. Nonetheless this definition of circle is not the same with Google +, or 
Facebook, where the circle might contain friends over different categories. 

Yang propose a set of algorithms to infer category-specific circles of friends, then to 
infer the trust values of each link based on the users ratings. They construct circles of 
friends from their rating behavior. He follows the assumption that user trusts a friend over 
a specific category but not in everything, and adding every friend’s information result in a 
noise in finding predictions. 

To find an inferred circle of user : in each category, a user  is in the inferred circle of 
user , if and only if the two conditions hold: 

- in the (original) social network:  and  are friends. 
- and  in the rating date.  

Which implies that both of the users u and v should have rated items related to the 
same category in order to be in the same circle. 

 
Figure 6 an illustration of circles, each user is labeled with category in which he has rating 

a) Is the original social network, and b), c), d) are the inferred circles according to the 
categories  
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Recommendation then will be based on the chosen circle and the friends in this circle. 
An example of how circle based model work is in figure 6 (from the same reference). 
Although their solution is new and interesting it has been evaluated in epinions and not on 
other types of social networks. 

 
In this context we refer to the works of Xu [33]. Xu did something similar to 

extracting circles, but in his work he does not consider the social aspect, instead he 
proposed to enhance the clustering on the collaborative filtering matrix. In his method 
he assigns the user to different clusters, and then the recommendation will be based on 
the appropriate cluster. This solves the sparsity problem as dividing the matrix like that 
result in having different matrix which is not smaller and they are not sparse like the 
main ones. Their method can be considered as a preprocessing of the data, whenever 
this is done, any recommendation method can be applied over the resulting matrix. At 
the same time this enhances the recommendation accuracy. Their test was on data set 
from Last.fm; they compared their model over a variety of methods. 

 
The work Domain Evaluation Met Evaluated 

over 
Compare to 

SoRec[27] factor analysis 
approach 
(Probabilistic MF) 

MAE Epinions MMMF (MaximumMargin MF), 
PMF(Probabilistic MF), CPMF 
(Constrained Probabilistic MF) 

[28] Trust CF-
ULF  

Latent factor + CF RMSE, recall Epinions, 
Flixster 

SocialMF model,  SoRec model, 
STE model 

STM[29],[30] Probabilistic matrix 
factorization frame- 
Work 

MAE, RMSE Epinions, 
doubon,  

PMF[34], Trust, SoRec. 

Social FM 
(outperform 
SoRec, 
STE)[31] 

Similar to STE RMSE Epinions, 
Flixster 

BaseMF, STE, CF (memory based) 

Adapve social 
similarities [35] 

Matrix 
factorization with 
social constraint 
regualizer 

RMSE Epinions,  PMF, SR, SRPCC[30], ASS 

Cir based[32] Products (MF) RMSE, MAE Epinions BaseMF, SocialMF, circle 1, circle2 
FIP[36] Probabilistic factor-

based random walk 
model MF  

AP (average 
precision), 
AR(average 
recall), nDCG 

Yahoo! 
Pulse 

item oriented neighborhood (SIM), 
regression based latent factor 
(RLFM), neighborhood based latent 
factor (NLFM), 

[37]Matchbox social spectral 
regularization 
method 

User click on 
links, user 
satisfaction 

Facebook KNN, SVM,  

 
Table 6 A comparison between main social recommender systems using matrix factorization 

technique  

Many other models integrate social networks with recommendation systems, in this 
sections we scanned the most effective ones –table 6-, and we refer to the survey [26] for 
more details about the other solutions. 

 
 Remarks: 

As a general remark in most of these works, the accuracy is becoming better when 
integrating the social aspect in recommenders. Another remark, we see clearly that Epinions 
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has been widely used in order to prove social recommendation approaches. Its data is easily 
accessible and it contains both, the recommendation information (user, item, ratings) as well 
as the social information. Only Matchbox has been tested on Facebook, but as Matchbox 
recommend links provided by Facebook users to each other’s, it can be considered a closed 
recommender box. Fib also was applied on Yahoo! Plus and showed high accuracy values. 

The most common evaluation metric is the MAE, and RMSE, over the RMSE metric 
Social MF was found to outperform both SoRec and STM. Fib was tested using the nDCG to 
evaluate the top N recommended items, besides the average precision and recall. Circles 
based recommender can be considered in some ways a preprocessing of recommendation in 
finding the circles in which to recommend.  

4.2. Neighborhood Based social recommendation 
The neighborhood based social recommendation systems use the available ratings directly 

into the prediction/recommendation process. The first kind is the social network traversal 
(STN) which traverse the source-user’s neighborhood in the social network and query the 
rating of a targeted item [26] and the second of which is the nearest neighborhood based 
approach. 

4.2.1. Social network Traversal Based Approaches 
The basic concept in this type of recommenders is to query the ratings of user’s 

direct and indirect friends towards an item in order to generate a prediction for a user 
on an item. Proposed models can be classified into: 

 Trust Weighted Prediction:  
Some empirical studies have proved finding a correlation between trust and high 

similarity levels between users as in [38][39]. Trust has been proved to enhance the 
accuracy in recommendation systems in a many systems. Table 7 scans works that 
integrate trust with recommendation systems. The table contains some works that use 
the trust weighted prediction methods in different ways.  

In table 7, we notice that Epinions was used on large scale to evaluate the social 
trust recommenders, in two works movie Lens was used, TidalTrust used FilmTrust, 
and finally two works were evaluated by simulations as they use agents to work. The 
last model was tested on touristic information. 

Evaluating  some works was performed by using MAE and RMSE, some other 
works created new metrics, some evaluated based on the coverage (the amount of 
items the system can recommend of the whole items).Some interesting finding like in 
MoloTrust is that adding trust can increase the coverage of Recommender Systems 
while preserving the quality of predictions. The greatest improvements are achieved 
for new users, who provided few ratings. 

Many of the proposed solutions were not compared with other ones; some of them 
were defined to be combined with traditional recommenders (the [40] MoloTrust). [41] 
Combined Ontology with agents in order to recommend items. However evaluations 
in the work are not mature enough. 

In TidalTrust[21] as an example of trust based recommenders, the trust value of 
two users  and  how are not directly connected is calculated in the following way: 
Tidal trust assigns the trust value of  ’s direct neighbors to , the weight is the direct 
trust value from user  to his direct neighbor.  
 



Chapter 3: Related work -Social Media, Networks, Recommendation and Context Awareness 

47 
 
 

 
The work Domain Evaluation Met Evaluated 

over 
Compare to 

TidalTrust[21] Simple 
neighborhood 
trust 
recommendations 

∂r, ∂a, ∂cf 
difference 
rating&(predicted 
rating, average 
rating, CF rating 

FilmTrust ACF : user-to-
user nearest 
neighbor 
prediction 
algorithm based 
on 
Pearson 
Correlation 

[42][43]TrustawareRecommender 
Systems 

Weighted 
prediction 

No metric Epinions No comparison  

[44]Trustaware rec Weighted 
prediction 

MAE, coverage Epinions  No comparison 

[40]MoloTrust Trust by 
backward 
exploration limit 
(max depth). 

Trust metrics, 
MAE, coverage 

Epinions, 
ebay 

Combine with CF 

[45]Trust Based Clustering Add trust 
Clustering to 
memory-based 
collaborative 
filtering 

MAE, RMSE Movielens ACF: Pearson 
similarity and 
uses Resnick’s 
prediction 
Formula 

[46] Trust based recommendation Trust on profile, 
trust on items. 

Prediction error MovieLens Combine with CF 

[47] Agent trust recommender agents use: trust 
relationships to 
filter info& social 
network to reach 
far knowledge. 

- Simulation No comparison 

[48] distributed recommender distributed trust 
based 
recommender on 
SN 

Cumulative 
Distribution 
Function (CDF 
against # queries 

Simulation No comparison 

[41] trust in the semantic web Integrate 
ontology + agents 
+ trust  

- Tourism 
recommender 
system 

Compared to 
manual 
recommendation 
provided by peers 

Table 7 A comparison between main social recommender systems based on trust 

 
 Bayesian Inference Based Prediction 

In a most recent work [49] (2013) authors use conditional probability distributions 
to capture the similarity between friends in social networks. Probability distributions 
carry richer information than trust values and allow one to employ Bayesian networks 
to conduct multiple-hop recommendation in online social networks. The experiments 
show that the accuracy of Bayesian inference based recommendation is better or 
comparable to that of centralized CF based approaches and trust-based approaches, 
and can flexibly trade off the amount of recommendations against the recommendation 
accuracy -Table 8-. 

Evaluations were held on Epinions and MovieLens; the approach was evaluated 
using the MAE metric, and well as discussing the coverage of the recommended items. 
Among others, the approach discuss how using trust it can overcome the cold start and 
sparsity problem. 
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The work Domain Evaluation Met Evaluated Compare to 
[49] Bayesian inference 

based 
recommendation 

MAE, coverage Epinions, 
MovieLens 

KNN, SVD 

Table 8 a social recommender systems using Bayesian networks 

 Random walk based Approaches. 
Some other social RS algorithms employ random walks in online social networks in 

order to compute recommendation ratings. Authors of Trust Walker propose a random 
walk model in online social network. The model queries the ratings of user’s friends 
(direct and indirect friends) for the target item, as well as the similar items. In order to 
find similarity, TrustWalker combine a trust based approach with an item-item 
similarity based approach. The item similarity can be calculated either by considering 
the content of items, like in the content based recommenders, or by considering the 
users’ ratings over items like in the item-item based recommenders. 

Trust Walker requires two components in order to work: the random walk as well 
as the probabilistic item rating selection on each visited node.  

In the random walk processes the user’s direct and indirect friends that are visited 
in the trust network. Whenever a user views and rates a target item, the rating is 
logged and if the user has not rated the target item, but has rated an item similar to the 
target item, the rating is logged with certain probability. The probability of using a 
rating of a similar item in place of a rating for the target item increases as the length of 
random walk increases. This probabilistic item rating selection aims to avoid going too 
deep in the network when no user in a close neighborhood has rated the target item. 
They employ the Pearson Correlation Coefficient of ratings expressed for two items to 
calculate the similarity value between them.  

 
The work Domain Evaluation Met Evaluated Compare to 
Trust Walker [50] random walk RMSE, 

Precision, 
Fmeasure, 
Coverage(%) 

Epinions,  MoleTrust, TidalTrust, CF-User, 
CF-Item 

[51] trust walker random walk Recall Epinions CF-User, CF-Item 
[52]Crime Walker recommendation 

in criminal Acts, 
memory based 
appoach 

Recall 5 years of 
crime data 

- 

 
Table 9 A comparison between main social recommender systems using simulations  

The same authors extended their model to recommend top-k items for a source user. 
Starting from user u, a random walk is performed in the trust network and each 
random walk stops at a certain user. Then the items rated highly by that user will be 
considered as the recommended items, ordered according to the ratings expressed by 
that user. Several random walks are performed to gather more information and 
compute a more confident recommendation rating. The estimated rating of each item 
is the average of ratings for that item over all sampled raters. In the end, items with the 
highest estimated ratings are chosen as top-k recommended items –Table 9-. 
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Once again Epinions was dominant in the evaluation, while for metrics, recall was 
used in 2 of the three discussed models.  

4.2.2. Nearest Neighbor (NN) Method. 
The basic idea is to identify what is called the neighbors of the source user. Then a 

prediction on a specific item or a recommendation list can be obtained. It is a combination 
between traditional collaborative filtering techniques with social neighborhood. 

As mentioned earlier in [51], one example in which Trust-CF is proposed, in which a 
Breadth First Search (BFS) approach is applied in order to find the set of trusted neighbors. 
Then based on this neighbor network a collaborative filtering algorithm is proposed.  

In [28] (previously discussed) also another example in which a Trust-CF-ULF method is 
proposed in order to use the social network information to find the top k recommendations by 
combining the latent factors with social networks in order to achieve this goal. In the same 
model it has been found that the technical approach which is used in order to combine the 
ratings with social network information works best for minimizing. 

4.3. Social recommenders, Discussion 
A variety of methods has been proposed in order to build social recommenders. As it is the 

case in traditional collaborative filtering, model based social recommenders perform well in 
both the rating prediction process, and in building the recommended list also, while 
neighborhood approaches are easy to implement. 

Most of the work was mainly based on enhancing the similarity measures by adding trust 
or other social information extracted from social information, then performing prediction and 
recommendation. 

Most of the solutions have been evaluated and tested on Epinions and Flixster data sets, 
using in most cases the MAE and RMSE metrics. Some works however use other social 
networks or metrics to be evaluated. 

In certain works like [44][21], authors report that overall, social-network based 
recommendations are no more accurate than those derived from traditional CF approaches, 
except in special cases, such as when user ratings of a specific item is highly varied (i.e. 
controversial items) or for cold-start situations, i.e., where the users did not provide enough 
ratings to compute similarity to other users. However in most of the previous approaches, 
social recommenders were shown to yield better recommendations than profile similarity 
data. 

As a social network continues to mature, the amount of information that it offers about its 
users increases. This is why there is still a need for a recommendation that can mine different 
links of newly available user’s information in social networks.  

Although social networks and recommendation systems are dynamic domains, most of the 
discussed solutions are trained and tested offline. Next steps might be to test and evaluate 
these systems in real time user experience, as well as to consider how to integrate the user 
continuous users’ information in recommender systems.  

Privacy is also a hot topic related to social recommender systems posing questions about if 
its users really agree to use their private data for recommendation. 
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5. Context-Awareness Review 
The term “context-aware” first appeared in [53], where context was referred to as where 

you are, who you are with, and what resources are nearby. In the same paper, the authors 
observed that context is more than a user’s location since other things of interest change as 
well, like a user’s social situation.  

In this sense, context-aware applications dynamically change or adapt their behavior based 
on the context of the application and the user. They either automatically execute a service, or 
present the information and services to a user, or tag the context to the information for later 
retrieval [54]. Context awareness is used for different domains, like social computing, 
intelligent ambient, user modeling, knowledge representation, and of course the focus of our 
work in the contextual recommendation. 

In [55], context is defined as any information that can be used to characterize the situation 
of entities (place, people, and things), including the user and application and the interaction 
between them. In his work, Day considers the user context as the people nearby and social 
situations, in addition to other elements like the user profile and location. 

Additional works classify context in different dimensions; in [56] and [57], there are 
external and internal ones, while in [58] they are presented in physical and logical contexts.  

The external (physical) dimension signifies a context measured by hardware sensors, such 
as location, light, sound, movement, touch, and temperature or air pressure. The internal 
(logical) dimension relates to the user, either user-specified or captured, like the user’s goals, 
tasks, work context, people nearby, social context, business processes, and the user’s 
emotional state.  

In [59] individual and group context are defined, as an internal and external vision. [60] 
defines the social context as a complement of the individual context. In this case, each node 
has two contexts: individual (its own view of itself), like its profile and preference, and a 
social one (being aware to be a part of the system), like people nearby and current social 
situation descriptions. This kind of context is in use by many systems that work through 
automatic recommendation and situation-based adaptation. Examples include using co-
localization patterns to find common interests and recommend possible friends, while another 
infers the current situation, for instance, to switch off a cell phone ring tone during a business 
dinner. [61] 

In [62], social context is referred to the concept of surrounding where interaction begins 
between a group. It captures the context and history around social interactions, which include 
social positions, social roles, customs, standards, values, kinship, ties fashions, and culture. 

We stand with the position of [63], which states that definitions of context vary between 
those defining abstract concepts and others presenting context in a technical manner. 

Returning to the different definitions of context, it is common to classify the context under 
two principle categories: the context acquired by hardware sensors concerning the 
surroundings and the context concerning the entities, or individuals themselves. The second 
latter depends on the former but it is more difficult to acquire and studied under the definition 
of situations. Many studies depend on it to be provided, while others work to predict it, either 
by supervised or non-supervised methods.  

A number of surveys [55], [64], [65] show that location is the most-used type of context 
for domains as it is easily measured. Looking to [64] in 2000, where social context was 
defined as part of a user’s context, the authors debate the importance of social context but see 
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obstacles in obtaining it. They suggest techniques like camera-based and image processing 
approaches, as well as utilizing agendas. In spite of this, they recognize the problem that users 
are not always willing to note everything. Thus, the third proposed solution is to recognize 
complex context from low-level sensors or what we call situation recognition. Here, much 
work has been done on the physical context but not much in the area of logic.  

The difficulty of the context-aware application lies in finding the best balance and strategy 
between the different elements: context sensing, context modeling, and context processing. 
The goal application also has an important role.  

5.1. Human Information as High Level Context (Situations) 
High-level context includes human interactions and behavior information, meaning social 

context such as a user’s profile, nearby people, and current social situations. This serves as a 
way to overcome problems of low-level context information acquired from the environment 
[66]. The information of low-level sensors is abstracted by a model layer that transforms the 
low-level context input to generate or trigger system actions. This external semantic 
interpretation of low-level context in context aware application is named Situation [67] [68], 
[69].  

Situations add meaning into the application because they are more stable and easier to 
define and maintain than basic contextual cues. Change in situations cause adaptations in 
context-aware applications [66]. 

The situation is the physical, social and cultural space (context) in which the activity is 
carried out (see Chapter 2 in [70]). In the case of pseudo-simultaneous activities, the situation 
is characterized also by the other activities that are being carried out at the same time. We can 
consider the situation as being defined by what concepts are related to the user at the present 
time and how they are related. [71] To resume, the situation is a temporal state within context. 

5.2. Defining Situations  
Defining situations is a challenging task  based on the extraction of human knowledge and 

interpretation. The techniques of situation recognitions have shifted from manually and 
logically based ones towards learning-based ones; the second focuses on the classification of 
basic human activities without considering a richer contextual description  [72]. As an 
example in [73], the situation is characterized using the concepts of role and relation. Roles 
involve only one entity, describing its activity. An entity is observed to play a role. Relations 
are defined as predicate functions on several entities, describing the relationship or interaction 
between entities playing roles. [74] investigates in detail this shift from logical to learning 
techniques. 

5.3. Relationships Between Situations: 
Some approaches model the relationship between different situations. Often, situations 

claim that at least one situation must be active at a time. An example in [75] is where the 
situations of a lecture were defined for its auto recording using a Henri bet model. It may be 
that this concept, when examined from a social science perspective [76], is related to the 
recognition of “turns” in Activities which according to [76] gives valuable clues for an 
interpretation of social context. But according to them, the sensors’ data can only be 
interpreted for this purpose in light of a well-defined domain. 
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6. Context Awareness and Users Modeling:  
In his book, Brusilovsky [77] pointed out that user modeling is either based on feature 

modeling or on stereotype modeling. In feature modeling, the most popular and useful 
features when viewing a user as an individual are: the user’s knowledge, interests, goals, 
background, and individual traits; he added the context of the user’s work to these five 
features.  

Indeed, the context modeling and user modeling are highly connected. Many user models 
include context features and vice versa. Context and user modeling inspire similar techniques; 
for user models the techniques to model the five features vary between:  

User’s knowledge: scalar model, metadoc, overlay model (subset of expert model), bug 
model, and genetic model. The last two are more theoretically based, and difficult to apply.  
The first three remind us of the key-value models of context modeling [65].  

Interests: weighted vector of keywords, overlay model. Also reminds us of the key-valus 
model.  

Goals: what does the user actually want to achieve? It is the most changeable feature of the 
user. There is the predefined goal catalog approach, where a user specifies the current goal 
and systems should adapt to new goals. Some models depend on the probability of the goal 
and data mining. This branch shows much relation with situation analysis, especially when 
trying to predict the user’s goal from his/her situation.  

Background: they are impossible to deduce so they are usually provided explicitly. 

Individual traits: they are also difficult to deduce so they are provided by the user. 

The last two topics are provided by users or collected by the system from different sources 
when dealing with context. Ontology modeling, of course, has a deep participation in both 
context and user modeling.  In context awareness, the model of user context varies between 
what amounts of the feature they cover. As a result of the relation between the two branches, 
integrated frameworks were developed for modeling them both. Examples of such 
frameworks are in [78] [79]. In the first application, an ontology model is proposed. In [80] 
we find a study on the use of ontology in user modeling. 

As a border between user and context modeling, Brusilovsky remarks that some 
information represented in the context models can hardly be considered information about a 
user in a pure sense. User modeling focuses mostly on long-term properties of the user that 
are distilled from observations, while context models attempt to represent the current features 
of the user and the environment, or what he names the affective state. As a solution to predict 
this state, he has presented the work of [81]. In this work, observing users’ web log data can 
be used to detect their motivation. Figure 7 (from the same reference) shows the two visions 
of context dimensions, the user-centric and the device-centric views.    

 
Figure 7 User- centric and device- centric view of context dimensions. 
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The assumption of the effective state was affirmed in [82] (published the same year of 
Bruvelnsky’s book 07) where Brezillon noted that the discriminating factor between external 
knowledge and contextual knowledge (the user model and the context) is the focus. In the 
case of user application interaction, the focus is the user's attention, so that contextual 
information is that information which is related to the current focus, and everything else is 
external knowledge. This focus changes either according to external events or as a result of 
internal decisions. The active situation is another synonym for the same concept.   

Dealing with this active situation marks the difference between the models of user 
modeling and context awareness. But it is still difficult to classify in detail the approaches to 
broader context and user modeling,  since the most frequently used contexts are platform and 
location  [55], [64], [65]. 

Stereotype modeling is based on assigning users to stereotypes (or roles). The adaptation is 
to change the assigned stereotype to the user. In this vision of user modeling we also see the 
relation with context awareness; for example, in some works the role of a user is predicted, 
while in others the role is defined and fixed but the resulting actions are modeled [83]. 
Linking the feature type and stereotype is the power for user modeling [77]; this can be 
applied for user context modeling as well. 

7. Context-aware Recommenders 
Context awareness enhanced the prediction accuracy of different domains containing 

recommendation systems [84]. All applications using context follow the assumption that 
context changes clearly affect the need of certain items or services. An example of this would 
be watching a film with a brother during the week versus watching a film with a girlfriend  
during the weekend.   

Three different strategies can be adopted when integrating context in a recommender [85]: 
reduction-based (pre-filtering), contextual and post filtering, and context modeling. In the 
reduction-based methods, only the information that has been used in similar contexts is used 
to recommend in the current scenario, like the ratings of items evaluated in similar situations. 
In contextual  and post filtering, the recommendation process itself does not change or take in 
consideration the contextual information. Instead, the output of the recommendation is filtered 
to include only the results related to the actual context of the user. Finally, in contextual 
modeling, which is the most complicated strategy, the contextual data is explicitly integrated 
in the prediction model. The problem with contextual modeling is that it is not easy to obtain, 
especially in the social context and contexts related to the users’ internal feelings and desires 
[20]. 

Some examples of post filtering solutions are [86], [87], [88], which include contextual 
information into existing recommendation frameworks like the Matrix Factorization. In [89], 
the authors propose a multidimensional recommendation model based on multiple 
dimensions, i.e., user/item dimensions as well as various contextual information. With this 
setup, many statistical tests are used in order to determine the impactful context when 
providing recommendation [90]. 

Other families of contextual works focus on building models that integrate contextual 
information directly (context modeling models) into traditional user-item-rating relations. An 
example is found in [91], where a multiverse recommendation model has been proposed in 
order to model the data as a user-item-context N-dimensional tensor, then a Tucker 
decomposition is applied to factorize the tensor [92]. The shortcoming of this solution is that 
it is applicable only in cases of categorical contextual information. In [87], an enhanced 
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model was proposed to deal with all types of context but the model suffers from scalability 
issues if the user-item matrix is too large.  

In [86], the authors propose a contextual collaborative filtering algorithm (called RPMF) to 
support context-aware recommendation. The assumption behind this model is that contextual 
information is encoded in or reflected by the user-specific and item-specific latent factors. 
Based on this, tree-based random partition is applied to split the user-item-rating matrix by 
grouping users and items with similar contexts, and then matrix factorization is applied to the 
generated sub-matrices. Similar to this, Soco [84] uses a tree decomposition in order to 
integrate context with recommender systems, but Soco goes farther in linking social 
information with contextual information in order to get higher accuracy. Both solutions 
integrate Matrix Factorization on the tree, and while RPMF applies it on each node of the tree 
Soco applies the matrix factorization to the whole tree.  

As discussed in the previous chapter, social information clearly affects recommendation, 
and we also discussed that social information can be considered as contextual information that 
affects the whole recommendation process.  

Soco [84] offers one solution in an attempt to link the two aspects (social and contextual) 
together in the recommendation system that it offers. Before Soco other solutions had been 
proposed, which unfortunately did not efficiently combined different types of contextual 
information (e.g., contexts with discrete values versus contexts with continuous values [91]) 
or suffered from high computational complexity (e.g., the matrix factorization model is 
impractical for extremely large data sets, or multiple matrix factorization operations are 
needed [86]).  

Other parts considered only social contexts like group-aware friendship models [90]. [32] 
introduced both in the previous chapter. In other instances,  only specific contextual 
information such as time or user mood when an item is rated is considered for social 
recommendation [93], [94]. 

iAmélie, proposed in the following chapters belongs to the family of recommenders that 
link contextual social information in order to enhance recommendation.  

8. Conclusion  
Social media has opened the door to a variety of questions and issues that were too difficult 

to be considered before. As social media opened the door to everyone, wherever they would 
like to do any action he wants on the web.  

Social networks, as a branch of social media, continue to evolve in an interesting way; 
people are constantly joining as well as uploading valuable information regularly. 

The common sense indicated that users classify their relations according to different social 
networks. In other words, users do not have the same groups of friends over different social 
networks, as in LinkedIn they can have a different group that those in Facebook, Twitter, or 
Flickr. However, there is no study that investigates this issue. 

Social recommendation is based on linking recommender systems with social networks in 
order to enhance the quality of recommendation and reach more user satisfactions, a variety of 
solutions has been proposed in the work, but much of them are based on Epinions and Flixster 
to be tested, and are evaluated with accuracy metrics like MAE, and RMSE.  

To what extend does the added value in accuracy indicate a good recommendation? Does it 
really affect the user if the MAE has been evolved from a model to another with 0,03 for 
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example? Especially that, when recommending it has been proved that the problem when 
considering accuracy is not in how good an item is to recommend it, but on the contraire, how 
bad an item is not to recommend it [95][96]. And however a bad item is bad, either it had 1, or 
2 rating that will not change the behavior towards it. 

Besides most of the proposed models were evaluated on Epinions, Flixster or other domain 
based social networks, these results are similar to the general evaluation discussion in the last 
chapter where evaluation in general in recommendation systems has always been performed 
offline on available data sets.  

What would be an interesting idea is to investigate the data in GPSN, and try to use them 
to build a recommender which has not been done in the past. The main difficulty in working 
with GPSN is in translating the raw data extracted from these social networks into useful 
information for recommendation, as these social networks are not recommendation oriented, 
and they do not contain explicitly the triple (ratings, user, items) like in Epinions and Flixster. 
Another problem is how to compare the performance with state of the art works. As for now 
there is no works addressing this problem. And that would be the focus of our first 
contribution iSoNTRE. 

Logically it is much easier to understand the effect of a neighbor on a decision if the user 
clarifies that the trusts such neighbors in a social network such as Epinions. But trying to infer 
this from a GPSN is much more difficult because in such sites relations are open as a user  
might be a friend with user , but they do not trust at all of the commercial tastes. To say it 
differently, a user might have totally different relations in a commercial site than in a GPSN 
site like Facebook. That would be the focus of our second contribution iAmélie. Now we 
move to introduce the context based recommenders that will have a role in our iAmélie 
system. 

Context awareness from another side adds a layer on applications that makes the life of 
users much easier. People tend to have interests, goals, and desires, but these  constitute 
relative information, relative to their context, internal mood, surroundings and many other 
elements; as such, a recommender that considers these facets of context for its 
recommendations responds better to users’ needs and enhances the overall accuracy of its own 
system. 

From the evidence, we see that these two aspects of contextual and social, when purposely 
put together, can result in a much better recommender. Contextual solutions evolved due to 
geographical and temporal information; However, one main drawback of these solutions is 
that they take into consideration mainly one aspect of the social context when performing 
recommendation, which is the friends or groups of friends based on a common interest as in 
Soco [84] and [32] Circle based. Though this fact might not always be correct, as in some 
cases users might like to be recommended based on their friends’ information, whereas in 
other cases they would prefer recommendations based on their own interests or interests of 
experts in a domain.  

In introducing iAmélie we will hone in on this problem and discuss in detail the 
assumptions of different recommenders before using context and social information to 
respond to users’ needs. 
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1. Introduction: 
n this chapter, we will introduce to the 2 models that we will present later: iSoNTRE in 
chapters 5 and iAmélie in chapter 6. We will begin by discussing GPSNs towards 
DBSNS, and then we will move to consider the different assumptions in 

recommendation systems, and how the real need is to create a system that responds to all of 
them. The main goal of this chapter is to understand how the two models collaborate in order 
to offer better recommendation to users. The first model belongs to social recommenders’ 
techniques; while the second model iAmélie can be defined as a contextual recommender. 
iAmélie can be considered as an extension of iSoNTRE which is a social one, knowing that 
both systems belong to the hybrid family or recommenders.    

1.1. GPSNs towards DBSNs: 
The social recommenders discussed in Chapter 3 are mainly applied over Domain Based 

Social Networks (DBSN) like Flixster and Epinions, which already contain users, items, 
ratings as well as relations. The methods operating on DBSN’s rely on the specificity of the 
network for the recommendations to be meaningful. They also do not have to deal with 
ambiguity resulting from the network having multiple purposes or general purposes. Thus 
these social recommenders are usually not applied to General Purpose Social Networks 
(GPSN) like Facebook and Twitter, neither are they easily applied to them, because GPSNs 
contain raw information about users, which need to be extracted then processed and modeled 
before being exploitable in social recommenders. 

As discussed in chapter 3 GPSN are much common than DPSN: with 1,310 million of 
monthly active Facebook users , and 284 million monthly active users on Twitter, compared 
to 50 million on Flixster  and 1 million on Epinions. People are here in GPSN! They spend 
nearly 75 minutes per day on Facebook (81 minutes for women and 64 minutes for men) and 
67% of users use these networks as a hobby! [1]. According to the same reference Facebook 
turned into a habit-forming activity and is a part of people’s daily routine. In Twitter it takes 2 
days to produce 1 billion tweets! 

Based on these facts, we believe using GPSN information for recommendation could have 
several advantages, like: 

 Overcoming the cold start problem for users (chapter 2)  which is a perennial problem 
with the growing number of users joining recommendation systems every day;  

 Avoiding the burden to users who have to provide their personal information and 
preferences over and over again in recommendation systems while it is already there in 
social networks,  

 Permitting to recommend any type of resources (or items) including Short Life 
Resources (SLR). SLR are the resources (like news in a newspaper or offers on 
products in a commercial site) that live only for few days and that are usually not easy 
to recommend using collaborative filtering techniques, since they cannot gather enough 
ratings to be recommended;  

 Using raw data (implicit data) from users benefit from its availability and the fact that 
it does not vary significantly over time like the explicit ratings that may vary (e.g. a 
user sees a better film so he/she changes from consistently bad reviews to suddenly 
favorable reviews). It is a well-established wisdom that explicit ratings are often hard 
to obtain and getting information passively (e,g, as in Amazon) leads to richer results 
for users.   

I 
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 In any case, iSoNTRE can join any working recommender. When the matrix is built it 
can be added to any existing recommendation matrix in order to enhance the 
recommendation quality in the existing systems and produce recommendations for new 
users. 

To summarize, using GPSN as information goldmine may facilitate the use and the 
combination of recommendation systems, which in turn may enhance the variety and the 
satisfaction of items consumption as shown in [2]. The questions to answer in this area of 
GPSN exploitation are:  

Question 1: Do GPSN contain representative information about the user or are they 
instead only a self-idealization that is less informative for effective recommendation?  

Question 2: Can we predict form the users’ spontaneous actions in social networks 
information that was not provided explicitly by them?  

Question 1 is not the focus of this work as it was addressed by prior work in the social 
network domain. However, Question 2 is a focus and we address it via designing and 
algorithm as well as a methodology for collecting or eliciting data, and then evaluate it via 
surveys of user groups. In summary, 63 Facebook surveyed users said they did not join 
Facebook for commercial purposes; however we were able to predict for most of them a 
commercial profile that they acknowledged as representing their commercial interests 
accurately. As well as in Twitter the profiles of 12000 users contained around 3,000,000 of 
commercial concepts as will be shown later. 

Based on the results and previous discussion we introduce the following contributions in 
the next chapter 4: 

Contribution 1: Define iSoNTRE, a hybrid social recommender machine that is 
designed to transform the GPSN into a recommendation engine. It transforms the raw data of 
GPSN into a useful data for recommendation. To the best of our knowledge, iSoNTRE is the 
first recommender that addresses such questions. iSoNTRE gathers both collaborative 
filtering with content filtering techniques using an external conceptual source to process as a 
middle layer between the users and items to be recommended.  

Contribution 2: Evaluating iSoNTRE, with both offline evaluation using the metrics 
(MAE, RMSE), as well as an on-line evaluation, using avatars (Sirens) on Twitter and 
Facebook applications.  

We see iSoNTRE as a step forward in building the social machines of the future 
introduced by Tim Berners Lee in his book [3], and in his talk in the www conference at Lyon 
(2012).   

1.2. Recommendation assumptions:  
Each recommendation system lies upon an assumptions, the iAmélie system’s main 

contribution is that it makes a step backwards and tries to answer different assumptions at the 
same time. Where in the chapter 6 we will explain how iAmélie works, we will classify the 
main recommendation strategies into four families, which are based on recommendation 
systems history and the works introduced in related works’ chapters. The goal of this 
classification is to discuss the claims and assumptions that are behind them which will be the 
basic of iAmélie system. The assumptions that we will detail in chapter 6 are summarized in 
figure 8. The main idea in iAmélie is that the same user usually needs different assumptions in 
different cases, so that a system that answers different assumptions at the same time is much 
more preferable by users. These assumptions can be seen as a kind of context related to user’s 
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goal of using the system that is why we classify iAmélie as a contextual hybrid recommender. 
Besides the discussed assumptions iAmélie considers a more assumption that no existing 
recommender system takes in consideration:   

Some of my friends might not be like me, but they know me well. 

Later in chapter 6 the model will be introduced and evaluated in details. 

 

Case 1  Collaborative filtering:  
If two users are similar in their ratings for some 
items, then they are more likely to be similar in 
their ratings towards other items. 
 

 
 

 

Case 3  Social recommendation 
The user trusts his friends, and he is 
usually similar to his friends, so he will 
be more likely to consume items that 
have already been consumed by them. 

 
 

Case 2  Domain based recommender 
The ratings that the user provided in one domain 
(like film) might be similar to other users, but he 
might be similar to other groups of users in another 
domain (like clothes). 

 
 

Case 4  Circle based recommender 
The user is similar to, or trusts, 
different groups of friends in the 
different domains in day-to-day life.  

 

Figure 8 The different recommendation systems assumptions 

 

1.3. iSoNTRE and iAmélie together: 
We decided to separate iSoNTRE and iAmélie into two systems to give the possibility to 

focus on each system, present its model and evaluate it in an appropriate way, as well as to 
give the possibility to adopt each one alone in other systems where it is suitable to be adopted. 
After all the two systems are totally compatible together: 
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When building iSoNTRE based on global world knowledge and a GPSN we will have a 
collaborative filtering recommender (case 1) in figure 8, while if specific world knowledge 
was used like shopping or film world knowledge, then a domain based recommender will be 
build (case 2). At the same time, as we will build iSoNTRE from a GPSN then we do have the 
social relation of a user, his friends and trusted people, so if we modify the similarity in 
iSoNTRE over a global world knowledge to integrate friendship and trust relations then the 
social recommendation will be obtained (case3). Finally if we include friendship and trust 
relation over a specific world knowledge then even the circle based recommender will be 
obtained (case 4).   

The rest of the chapter will cover important issues to discuss before building to two 
models; first, we’ll discuss if social networks contain real information about users or are they 
self-idealization about them. And then o what is there in GPSN (Twitter, Facebook); can we 
extract more information that was not provided explicitly from users’ spontaneous actions? 
Then we will refer to social networks as a source of contextual information.  

2. Issues to address: 
2.1. Are social networks a Self-idealization of users? 
In DBSN this question may be ignored, as users use these sites in order to solve a specific 

problem like finding a film (Flixster) or a product (Epinions). In these cases, users are 
expected to provide exact information in order to get good recommendations.  

Contrary to this are the GPSNs, the focus of our work. Common opinion is that people do 
not show their true personality on social networks; instead, they draw a picture that they want 
others see on their Facebook accounts [4]. However, recent studies showed that users do place 
true parts of themselves onto social networks [5]. In [6], five personal traits were extracted 
only by taking into consideration some information of users’ profiles on Facebook. For 
Twitter, in [7] authors affirm that people use this micro blogging site to talk about their daily 
activities and to seek or share information about themselves and their activities. Thus, 
transforming GPSNs into a source of recommendation is a meaningful procedure that may 
help users.  

2.2. Can More Information Be Extracted from Users’ Spontaneous 
Actions in GPSNs? 

First, we tried to consider a domain that was not the focus of users when they joined a 
GPSN. We held a questionnaire on 63 Facebook users (most of them were students, aged 
between 19 and 20 years) that posed only one question: why did you join Facebook? There 
were five answers to choose from: 1.) curious about others; 2.) fun; 3.) keep in touch with 
friends and family; 4.) shopping purpose; 5.) keep up to date with latest news. Users were able 
to choose one or more answers. The results are in Table 10.   

In the table we notice that none of the 63 users joined Facebook for commercial or shopping 
purposes. Although this group of 63 users is not a representative sample but the fact that they 
all declared not joining Facebook for commercial purposes is significant.    

This is why we chose the commercial domain to investigate: can we predict users’ 
commercial profiles from their actions in GPSNs (Facebook and Twitter). 
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Why have you joined Facebook 
Curious about others 49 
Fun 35 
Keep up to date with friends & family 43 
keep update with last news 26 
Shopping purpose 0 

Table 10 From 63 Facebook users no one joined Facebook for shopping purpose 

The procedure that we propose to investigate this question is the following:  

Commercial profile building Procedure: 
1. Data Extraction: Extract information about users from GPSN (Facebook/Twitter). 

2. Data Cleaning: For each user we applied the a cleaning [8]: 

 Convert all characters to lowercase characters. 
 Remove 334 stop words from the source code of the Gensim framework.16 
 The punctuation marks were cleaned. 
 Every link in the tweets was reached and the main keywords of the link (in the title) 

were added to the user profile. 
 Stem (Porter stemer) all the tweets, re-tweets, and replays. 

3. Knowledge Extraction: Use an external world knowledge (in the shopping domain) to see 
if the extracted information contain commercial information from the external world 
knowledge 

4. Commercial Profile Building: See how many times commercial concepts appeared in an 
extracted user profiles. In order to build a commercial user profile like a cloud of 
commercial concepts. For example, if a profile contained 5 times the concept Nike and 3 
times a concept Amazon this is an indication of how much such a user is interested in 
these concepts. 

2.2.1. World Knowledge Sources: 
The ODP (Open Directory Project) of Wikipedia is general, covers a large variety of 

concepts, and offers links between them. In some specific domains, we find other well-known 
knowledge domain concepts. In the branding and shopping domain eBay -Figure 9- and 
amazon are excellent examples of shopping domain knowledge. Although amazon is well 
known for its recommendation by item-item collaborative filtering, we cannot ignore the high 
role that the categories play in the methodology of the system. The branding knowledge used 
by eBay can be downloaded17 and it contains the categories and relations between them. 
Usually it is linked by items, so that every item belongs to a certain category, exactly like the 
article that belongs to different concepts in Wikipedia.  

In the commercial profile extraction, we use Blue Kangaroo Tree (BKT) world knowledge. 
It is similar to the eBay one, it has been provided to us by the Blue Kangaroo team18. BKT 
contains the brands -mainly American-, numbering 2,000 brands and 17,000 categories that 
are related to each other. 

                                                 
16 http://radimrehurek.com/gensim  
17 http://www.cgmlab.com/ebay-category-tree-download/  
18 it is available from the authors by mail request 
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Figure 9 Part of the branding domain knowledge tree of eBay which is similar to Blue 

Kangaroo, Amazon and the other commercial sites. 

 

2.2.2. Is there commercial information on Facebook? 
To the best of our knowledge no available study has considered the commercial aspect of 

Facebook. Since we could not find the available Facebook datasets that contain enough 
information for this test, we had to collect the data from Facebook another way. Because 
Facebook is not an open network like Twitter, we couldn’t collect the user information unless 
users accepted this practice. Since data collection can be done through Facebook applications, 
we designed one for that purpose (Roo-are-you -Figure 11-). We added some questions that 
will help us in the application.   

1. We asked the user if he thinks that we can extract commercial information from his 
Facebook profile. (Yes/ No) 

2. If the user gave permission to our application, it began to extract all the user’s likes in 
order to build his commercial profile.  

3. We showed the extracted profile to the user and collected his feedback about it –
Figure 12- 

The procedure then is the Commercial profile building Procedure introduced before, an 
example of a commercial profile is in Figure 10. Where the users information is the Facebook 
likes, the world knowledge used is the BKT, based on both the user commercial profile is 
built, then it is evaluated by the user: 

4. Ask the user about his Feedback about the extracted profile Table 11. 
5. Give the user, the possibility to delete/add commercial concepts, or the change the size 

of a concept, knowing that the bigger a concept is, the more important it’s meaning to 
the user Figure 12. 

6. See the difference between the extracted profile and the changes provided by the user. 
 

 
             

Figure 10 an example of a commercial cloud 
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Evaluation of the extracted profile lays in the last three steps (4-6), based on the difference 
between the proposed profile and the updated one, in addition to the live feedback from the 
sessions. Two sessions of evaluation were conducted with the 63 Facebook users (university 
students and friends). Based on these 63 users, we were able to collect information of around 
nearly 2,000 Facebook users who are their friends (some users asked us to delete their profiles 
after the test, and we respected their wish; others provided us only with their information and 
not their friends’ information).  

 

 
Figure 11 the welcome page in the roo are you Facebook application 

  
Table 11 the Facebook test over 63 Facebook users 

2.2.3. Discussion on Facebook commercial profiles  
User Motivation for the App: As a general remark, users were motivated for the test; some 

of them were astonished during the test and were interested in knowing more and trying other 
applications. Users who did not have any profile information were the passive users [6]; those 
who pearly do actions on Facebook they only look at other actions and see the news there. 

Questions during the Roo-are-you Facebook 
app Yes No I don’t 

know 
Can we predict your commercial profile of FB 8 23 32 
Do you agree this shopping profile describes 
you? 49 10 4 

Were you surprised? 45 18 0 
Do you think it is useful in real life? 52 6 5 
Do you think there is a privacy issue here?  44 9 10 
Do you remember you did likes on brands on 
Facebook? 19 29 15 
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Figure 12 the user cloud user can add concepts, delete ones or even change the size of a 
concept which reflects a correction to the extracted profile. 

No Shopping purposes and 49 commercial profile: As described before none of our 63 
users has joined Facebook for a commercial purpose. We were able to have 49 participants 
who agree that the commercial profile described them. 

Not remember liking commercial brands: 29 users didn’t remember clearly that they had 
liked commercial concepts, or brands on Facebook, but most of them in fact did. We did not 
investigate this issue in detail, so it remains an area of interest to explore.  

The tendency to add commercial concepts: in (4-6) steps users can add or delete concepts 
to their clouds, we noticed a tendency to add concepts, categories and brands to their profile. 
This is a good indication that what we extracted from Facebook reflected them, but it is not all 
about them. The added information to profiles was estimated to be about 30% of commercial 
concepts, some users deleted some items that was about 7%. 

Privacy issues: with the 63 surveyed users we noticed that they consider Facebook itself is 
an attack on privacy, and when they put data on it, this data could be used for plenty of 
different goals. This affirms the assumption that was discussed years ago in  [4], where the 
author affirmed that users are aware of the risks that they might be exposed to due to using 
Facebook, but their desire to share and join others leads them to ignore this risk. However we 
did not investigate into detail the privacy issues in our work. 

Over all commercial information: Based on the 63 users we extracted the friends’ 
information for those who gave us the permission, we had nearly 2000 Facebook account. In 
these 2000 profiles we had around 538 commercial concepts that has been repeated 30,105 
times where the user cloud contained between 15 and 25 commercial concepts as a mean.  
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2.2.4. Is there commercial information on Twitter? 
In our study we have analyzed the accounts of nearly 12,000 users on Twitter to examine if 

we can find commercial information in their profiles. Since Twitter is an open social network, 
users’ information is accessible through the Twitter API, -unless the user changes the default 
options of privacy-. The data collection was performed using PHP programing language and 
the data was collected in a mongoDB. The computer used was a Lenovo Intel Core i7 with 8 
GB RAM. The crawled information contains users’ tweets, re-tweets, mentions, links, hash 
tags, replays, and the country information of each user. One issue that had to be dealt with 
was that some people created an account then didn't use it. In order to avoid using unused 
accounts in our study we applied the following rules:  

 The user’s account should have at least 150 tweets. 
 The user should be from the U.S. (this is because the world knowledge that we use BKT 

contains mainly American brands). The test was done on the country and location. 
 The account should not be a company account. As the test will be conducted in the 

shopping domain, the preference was to have accounts belonging to women. In order to 
achieve both requests, the crawled account name should contain a woman’s name 
because most of people use their name as a part of their accounts.19 

The same steps used to clean the users information (step 2 in section 2.2. from the 
commercial profile extraction procedure) was applied over BKT concepts. Knowing that 
every link in the tweets was reached and the main keywords of the link (in the title) were 
added to the user profile. The next step was to extract every mention of commercial concepts 
from BKT from the users’ tweets and actions, (step 3 in the section 2.2. in the same 
procedure). 

Twitter data view: 

We found nearly 1030 commercial concepts in the extracted dataset; these concepts were 
mentioned 3,184,788 times, as shown in Table 12.  

Number of commercial concepts in users profiles  towards how many times concepts were mentioned 
Number of concepts that was mentioned 
less than 1000 times in the data set 

768 # times these concepts were mentioned 
2,421,790 

Number of concepts that was mentioned 
more than 1000 & less than 10,000 times 
in the data set 

200 # times these concepts were mentioned 

648,222 
Number of concepts that was mentioned 
more than 10,000 times in the data set 

62 # times these concepts were mentioned 
114,776 

# concepts 1030 # total of  3,184,788 
Table 12 Number of times in which shopping related concepts were mentioned 

From this pool of information, we listed the most mentioned concepts in our data set in table 
12. 
 
 
 
 
 
 
 
 
 

                                                 
19  http://www.babynameguide.com/categoryamerican.asp   
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# times they were mentioned Concept # times they were 
mentioned 

Concept 

202976 Summer 46933 Oral Hygiene 
165926 Amazon 45939 Coffee Tea 
146990 RV  Camper 42590 Fab 
126261 Greeting Cards 42373 Walmart 
122186 Books 41261 Visa 
96884 Spring 36683 eBay 
95790 Toys  Games 35031 Food  Groceries 
70210 Apple 34259 Starbucks 
63842 Private Flash Sales 27582 Makeup 
62437 GUESS 23587 Flowers 
61173 Office 20992 iTunes 
58177 Graduation 17883 Samsung 
49435 Kids Shoes 14826 Laptops 
49275 Thanks giving 14624 Vacation Packages 
  13331 Hotels  Resorts 

Table 13 Top mentioned commercial concepts and how many times each concept has been 
mentioned 

In order to better see the data in Figure 13, we show the distribution of users over the 1,000 
most mentioned concepts. In Figure 13 (A) we have nearly 450 commercial concepts that 
have been mentioned by between 1-100 users, and 100 concepts that have been mentioned by 
101  -200 users, while in Figure 13 (B) we notice that nearly 2,000 users have between 0 and 
49 commercial concepts in their profiles, and nearly 1,500 users have between 50 and 99 
commercial concepts in their profiles. 

 
   A      B 

Figure 13 Distribution of users among commercial concepts in the twitter extracted data. 

In order to better understand these extracted numbers we compared them with numbers 
extracted from two data sets from epinions, knowing that epinions is a product-oriented social 
network; unlike Twitter, which is an open social network. We wanted to compare the number 
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of commercial actions done by users in Epinions (reviews on products) with commercial 
actions in Twitter (mentions of commercial concepts). 

The first epinions data set contained 2,805 users. Nearly 2,100 users had between 0 and 49 
reviews; about 300 users had between 50 and 99 reviews. Figure 14 shows the results of this 
data set. 

The second data set [11] comprised of 75,891 user data, where we had 27,947 users who 
did not provide any review; nearly 36,000 users had provided between 1 and 49 reviews; and 
about 13,000 users provided between 51 and 100 reviews. The total number of reviews done 
by all users was 681,280. The distribution is shown in Figure 15.  

We conclude that Twitter is a GPSN but the spontaneous actions in it contain a lot of 
commercial information that need to be exploited and understood. Even when compared to 
shopping social networks like epinions, the amount of commercial information in Twitter is 
not at all negligible.  

 

 
Figure 14 Over a 2805 users a data set of epinions, nearly 2100 users have between 0 and 

49 review, although epinions is a shopping social network. 
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Figure 15 of a dataset of 75,891 epinions users. A lot of users with only little participation. 

  

3. Social Networks as a Source of Context? 
Physical context can be extracted from social networks if the user has explicitly added it, 

like the places that he/she has visited. The example in Figure 16  shows the places provided 
by a user on Facebook. The temporal information can be extracted from the time the user 
completed the actions on the social networks, as in Figure 17. The same process can be done 
on Twitter where the time of tweet is provided within the tweet’s information. 
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Figure 16 Places visited by a user posted on Facebook, with time stamp 

 
Figure 17 Time stamp on actions. 

With the examples above, it is evident that we can extract the social context from social 
network; in other words, we can extract the user’s friends and even classify these friends in 
groups based on the common interests as shown in [32] for example. 

In some instances, the user can express his/her feelings explicitly on the social networks. 
To date, some studies have extracted emotion from social network actions, allowing the 
feeling of users on social networks to be known as shown in in figure 18. However, feelings 
extraction from actions on social networks is out of the scope of our work.  

 



Chapter 4: Issues GPSNs and in Recommendation Systems Assumptions 
 

73 
 
 

 
Figure 18 User can even provide his/her internal state clearly in social networks., Example 

from Facebook 

4. Conclusion: 
People use online social networks such as Twitter and Facebook for different goals and 

carry out different actions, which contain a variety of information, therein. In this section we 
were able to investigate if we could find information in a domain that is not explicitly defined 
as a goal for GPSN users, which is the commercial profile. Surprisingly, our conclusion is 
yes; in users’ social information there are commercial trends that can be extracted, even if 
social networks serve a general purpose and are not intended to be commercial networks.  

One reason for this might be the widespread use of social media and social marketing, 
which invite people to communicate around commercial issues and brands in online social 
networks. This would mean that people like, comment or conduct commercial actions without 
being aware of them. 

At the recommendation level we conclude that GPSNs contain information about users that 
can be useful in the recommendation domain. Clearly Facebook can be useful in 
recommending books and movies, which are among the defined categories within it. And 
based on the previous discussion, we determined that GPSNs can be useful in also 
recommending commercial items, as we were able to extract users’ commercial information 
from these social networks. Now, we can move to introduce iSoNTRE, the social network 
transformer into recommendation engine, which can be applied over sopping domain, or any 
other one.  
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 CHAPTER 5: ISONTRE MODEL 
 

Towards a Social Machine for Recommendation 
 

 
““Computers can help if 

we use them to create abstract social 
machines on the Web: processes in which 

the people do the creative work and the 
machine does the administration” 

                           
     Berners-Lee, Weaving the Web, 1999      
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1. Introduction: 
GPSNs contain a lot of users’ information over different domains, such as movies they 

like, and books they read; as well, it’s possible to extract useful information from different 
domains, like the commercial ones based on the users’ spontaneous actions on these GPSNs. 
iSoNTRE is a social recommender that is designed to transform all the richness in GPSNs into 
robust recommendation systems. It can be seen as a social recommender that can be applied 
over different domains, transforming users’ information into recommendation information.  
Therefore, iSoNTRE saves users efforts from having to enter what they like in different 
systems, and saves them from the cold start problem in new systems. In this way, there is no 
need for users to provide their information in different systems if they did that without request 
in a GPSN.  

iSoNTRE is a hybrid recommender; it combines content- and collaborative-based 
recommenders. It works as an opposite of the matrix factorization mechanisms. Instead of 
decomposing the tremendous recommendation matrix into a smaller matrix, iSoNTRE uses 
content-based techniques in order to build two matrixes: one containing users, concepts, and 
level of interest of a concept by the user matrix and a resource, concept, level of interest 
matrix, then it combines the two in order to get a whole matrix of user, resource, level of 
interest. The level of interest can be seen as a predicted value of how much the resource is 
interesting for the user. In other words, it is an equivalent to the predicted rating in 
recommender systems. The work in building the whole matrix based on the extracted ones is 
similar to the work in [8]. However, the authors of the paper proposed a model to enhance the 
film recommendation in movie systems and they do not handle the social aspect of 
recommendation, while iSoNTRE is about how to transform the GPSN in general into 
recommendation engine. From another perspective iSoNTRE uses a similar method to that 
mentioned paper in order to transform the GPSN into recommendation engine. Therefore, we 
will begin by introducing the matrix factorization algorithms. 

2. Matrix Factorization Overview: 
Perhaps, the most accurate model in the recommender field is matrix factorization [9], 

which is why it has been well studied in the recommendation solutions. Even in social 
recommendation models, matrix factorization is the most used technique [10]. Although this 
model is not practical in the industry because of the long time needed to prepare the model, 
the high accuracy level keeps attracting researchers to investigate its details. The most used 
approach in matrix factorization is the singular value decomposition (SVD) [10]; however, 
one of its drawbacks is that the model cannot be understood by users, as when reducing the 
size the detailed information is lost, making it impossible to explain the recommendation to 
users. 

Matrix factorization’s basic idea is to move from a recommendation matrix, which is 
usually very big and sparse, to a reduced matrix that has compacted the information. In this 
family of methods, the rating estimation that a user u would give to an item m is 
estimated as an affinity measure between the user and the item, both characterized in the 
latent factor space with a pre-established dimensionality f: 

 

  

Where  and  represent the characteristics of user  and item  in the latent 
factor space . The used affinity measure is the dot product. In the latent space if the 
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components which characterize the user  is , and the item vector 
components is , so the dot product is the following: 

 

 

This characterization of the user and item has been found to minimize the prediction error 
, which can be calculated like this:  

 

 

A regularization coefficient  is introduced to overcome overfitting, this  penalizes the 
norm of the user and item vectors. So that the regularized prediction error will be: 

 =   

Then the user and item vectors have been found to minimize the regularized prediction 
error over a set of known ratings.   

 

 

In this expression, the matrix , of size , where  is the number of users and M 
is the number of items. Unknown ratings  are assigned to 0, while the known ones are 
usually in the interval [1..5]. 

3. iSoNTRE Model: 
In traditional social recommender systems like those surveyed in [27], after having 

information from the recommendation-based social networks, different recommendation 
methods can be proposed and evaluated directly -Figure 19-. An example of work can be 
found on Epinions or Flicker as they are recommendation social networks. However, these 
works can’t be automatically extended to GPSNs because in these social networks we need to 
deal with the raw data beforehand. That is what iSoNTRE do.  

In order to work, iSoNTRE extracts users’ information, preprocesses it, and translates it to 
a source of recommendation. In addition, it is based on world knowledge in different domains, 
each world knowledge containing concepts that will work as a middle layer between resources 
and users: this world knowledge is needed to filter the extracted profiles over a specific 
domain so that user will end up having a group of concepts that are interesting for him in a 
specific domain, such as shopping or films. This leads to having a recommendation engine 
over each domain (film domain, products domain, books domain, etc.) 
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Figure 19 the process in traditional social recommenders, although works propose 

theatrical methods, they can’t be applied on GPSNs, which need to deal with raw data 

The Open Directory Project (ODP) web directory or Wikipedia encyclopedia is a very 
common example of world knowledge used in some works [20][22]. Like ODP, any other 
source of related concepts or ontology can be used as world knowledge. In the shopping 
domain, e-Bay one or Blue Kangaroo Tree (BKT), introduced in the previous section, can be 
used.  

The way in which iSoNTRE works can be divided into two main tasks: first, iSoNTRE 
handles the raw data in order to build the recommendation engine; second, iSoNTRE offers 
the recommendation. 

3.1.1. The Social Network Transformer: Handling The Raw Data:  
iSoNTRE first extracts users’ information from a GPSN. The extracted information varies 

from one social network to another. So in Twitter iSoNTRE extracts the tweets, re-tweets, and 
replays. In Facebook, iSoNTRE extracts all the likes of a user, his main information, and 
information from his wall.   

The second step is to clean the extracted data using the same steps as in the previous 
section 2-2 in chapter 4 so that each user u will end up by having a global profile . The 
global profile is a bag of meaningful concepts that can be repeated in the profile many times. 
An example of a general profile of a user u is: 

 
 

Third step is to filter the global profiles over concepts of domain(s) .. Each domain  
contains a number of concepts X in order to filter the user’s global  profile over the domain 

an intersection function is used.   

       

 

In the previous example, if we apply an intersection between the user global profile  and 
a sport knowledge domain   we’ll end by having the following sport profile of the u: 

 

 

  Recommendation Social networks 
info: Epinions, Flickers 

Recommendation matrix 
RM1 

Any recommendation method 
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So far we have elaborated on the decomposition of the user’s general bag of words into 
different bags of concepts using different world knowledge. Now comes the step of finding 
the each user’s level of interest toward each concept, which will either be extracted then 
normalized to be considered as a predicted level of interest, or be an extracted rating if the 
user was to give a rating to this concept. 

For each concept for each user the frequency of how many times the concept is addressed 
in the user profile is taken into consideration as an interest measure. In the previous example 
we have for the user in the sport domain the following frequency: 

 .  

3.1.2. User Concept Matrix: 
In each domain  we have X concepts, so we define a domain matrix that contains rows 

of all the users U, and as columns all the concepts X. The values of this matrix in its   
elements are either the extracted rating of the user i towards the concept j if it exists or 0 
otherwise. As the data will be normalized (Z-Score) the 0 will not inter group the data. The 
user can be expressed by a vector .  

 

Figure 20 shows the main steps in the transformation process from the general social 
networks into this user-concept matrix. The use of world knowledge in order to extract 
concepts from users’ profiles is extracted from the content-based family of recommenders.  

 

 
Figure 20 The way to transform GPSN raw data into user, concept matrix over the different 

domains 

 

3.1.3. Resource Concept Matrix: 
The goal of any recommendation system is to recommend resources; this process involves 

a treatment on the resources in order to be recommended.   
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iSoNTRE performs on resources the same filtering operation done on the users. 
Logically it uses the same world knowledge used over users which is related to the 
resources kind. This means that if the resources are in the shopping domain the world 
knowledge is in this domain, while if the resources were in the movie domain then a world 
knowledge in the movie domain should be used; in both cases, we need to have users’ profiles 
on the chosen world knowledge. 

The first step is to clean each resource m using the same steps as in the previous sections. 
Each resource m will end up having a vector, or an item profile that is a bag of 
meaningful words, which can be repeated in the item profile many times. An example of an 
item vector is: 

 

 The second step is to filter the item profile over concepts of domain(s). The domain  is 
the same one that has been chosen in order to build the user-concept matrix, containing the 
number X of concepts, in order to filter the user global profile  over the domain  an 
intersection function is used.   

 

In the previous example, if we apply an intersection between the user global profile   
and a sport knowledge domain  we will end by having the following concepts of the 
resource m: 

 

To find the level of importance of each concept in this resource we count how many times 
each concept has appeared in the item profile, then we apply the same normalization process 
adopted in the case of users. 

In the previous example we have for the resource   in the sport domain the frequency as 
following: . 

In each domain   we have X concepts, so we define a domain matrix that contains as 
rows all the resources (M ones), and as columns all the concepts X. The values of this matrix 
are either the extracted normalized value of interest if it exists or otherwise 0. As the data is 
normalized with Z score, the 0 will not inter group the data. Each resource profile can be seen 
as a vector   

 

3.1.4. Building the Recommendation Engine (the Recommendation Matrix) 
We will use the canonical form of matrix factorization to express the matrix of estimated 

ratings   as an affinity measure between the extracted user profile matrix  and the 
item profile matrix  both characterized in the same latent factor space. 

 

In our case we generalize to the domain D with X dimension so that we end up with the 
matrix of user-resources, formally by the expression: 
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As we have elaborated before how we can build  as the User-Concept matrix and  
is the Resource-Concept matrix, then the recommendation matrix  can be built. 

For each value  it is calculated with the expression:  

 

 Thus if we adopt a decision making vision, this method has a well-known canonical form 
of the simple additive weighting method (SAW) for multi-attribute decision making [12], 
which is a common aggregation method in the decision making domain. Many studies in this 
domain [13], [14], [15] have shown that the intuitiveness of the SAW method makes it more 
preferable for user direct interaction over other less interpretable, non-linear methods.  

Therefore iSoNTRE behaves like a SAW in order to build the overall recommendation 
matrix. The main advantage of this adaptation is the ability of users to understand and interact 
with it. 

The recommendation matrix has been built, normalized, and the recommendation engine is 
now ready to recommend; Figure 21 shows an example of the resulting matrix and Figure 22 
shows the details of the process discussed in this section. 

 
 
 

 
 
 
 

 
  

 
 

Figure 21 the recommendation matrix 

By building the extracted recommendation matrix , the process of transformation of 
social network information into a recommendation engine is finalized. iSoNTRE offers the 
methodology to move from the raw data in these GPSNs into a recommendation matrix, 
which is the point where other social recommendation systems depending on recommendation 
social networks begins. At this step, we can move to use any recommendation algorithm and 
to compare different variants, including CF algorithms. 
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Figure 22 the process to build the recommendation matrix  

 

Matrix Normalization: 

In traditional recommendation systems, ratings values are in the interval [1..5]. In the 
systems that use implicit data this is not the case; as in the extracted data, an extracted value 
of any interval might be found [0..N]. This is because the idea is to count how many times the 
concept has appeared in the profile. For this reason, we need data normalization, meaning that 
we need to translate all the extracted values into a meaningful interval for recommendation.  

In [9], the authors argued that the Z-Sore in similar cases can work very well and indeed 
sometimes better than other normalization scores. Thus, we adopted the Z-Score in order to 
do the normalization, where  is the mean of the population and  is the standard deviation 
of the population.  

 

The absolute value of Z represents the distance between the raw score and the population 
mean in units of the standard deviation. Z is negative when the raw score is below the mean 
and positive when it is above, which is a very good point in our case, as it permits us to keep 
the 0 in the matrix whenever there is no explicit extracted rating as 0 doesn’t affect the 
calculation of the  score.  

A key point to keep in mind is that calculating z requires the population mean and the 
population standard deviation, not the sample mean or sample deviation. Normalization can 
also be done by a simple centering of the matrix values. 

3.1.5.  iSoNTRE in Action: 
The resulting recommendation matrix contains the users, items (resources), and extracted 

level of interest. In order to recommend, two approaches can be elaborated: the first 
assumption is that the resulting matrix, as it contains the extracted level of interest of users 
towards items, is ready to recommend directly—so for each user it is enough to rank his row 
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and recommend to the resources that are on the top of the list (Top N recommender); the 
second assumption is that the resulting matrix is a recommendation matrix (user, resource, 
rating) and then the recommendation will be performed based on any recommendation 
method such as memory based or model based.  

However when iSoNTRE is actively working two methods are needed. The first method 
will start the system, but when the system is working (when users are responding to the 
recommended resources and real ratings are being added to the matrix) the second method 
will be adopted. Both of the methods are tested in the next chapter. After that, we will 
introduce how to add new users and new items into the system. 

New User Recommendation? 

Adding a new user to the system is done like in matrix factorization methods: first by 
finding the vector of the user   , then by finding the intersection with the related world 
knowledge   , and finally by using his vector to find his level of interest in resources. 
Then he can easily join the overall matrix. The same discussion can be applied on new
resource(s).  

 

Different Recommendation Engines Over Different World Knowledge: 

As discussed before, the user/resources information was extracted over the same domain   
  in order to get a recommendation matrix   over this domain; in the previous work 

we have ignored the i in for simplicity. This means that for each user there are different 
profiles over the different domains, and for each domain there are resources that will be 
recommended.  

In other words, this means that the transformation process results in a different 
recommendation matrix over the different domains -Figure 23-. When we work on one 
domain, we’ll ignore the i indices of the domain. 

 

 
 

Figure 23 Many recommendation engines over the different domains. 

The iSoNTRE method of building the recommendation engine is a combination of matrix 
factorization (based on the user-concept matrix , and the resource concept matrix 

the   dominion of the domain  and the resource, user extracted profiles based on a 
specific domain  In practice, the iSoNTRE matrix (like the other recommendation 
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matrixes) should be calculated again within time, such as every day, in order to include the 
new changes and actions—knowing that the first time will be the most difficult as in the rest 
of the time it is enough to add only the new actions.  

Including the User Feedback:  

We outlined that one advantage of the adopted SAW model is that it can add the user 
feedback to the extracted user profile: by using the X latent space of the domain  the user 
can edit his profile and update it. In turn, these changes can be reflected in his new 
recommendations. This can be done both in the beginning of the process or any time during 
the work based on the desire of the user. The algorithms to include the users’ feedback are:  

1. The user profile is extracted from the social network  over a domain   and a 
first    is built. 

2. The user is shown his profile in a graphic cloud and feedback is collected. The 
feedback possibly includes an addition of a concept, a suppression of a concept, or 
the change in the size of the concept which reflects the level of interest in the 
matrix . The changes are added to the user main matrix 

 

3. A recommendation matrix    is obtained over the corrected user-concept 
matrix  

 is the matrix of extracted ratings of users U towards the items M. In the 
recommendation words, this matrix contains the predicted ratings of users to these resources. 
To conclude, iSoNTRE uses the SAW method based on the extracted information in order to 
predict the ratings of users towards resources. This is what was used in the Facebook 
application when the user was invited to update the extracted commercial profiles, then the 
updates that he provided us with were captured and added to his profile as discussed in the 
previous algorithm. 

4. iSoNTRE discussion: 
In this chapter we introduced iSoNTRE to transform GPSNs into recommendation engines 

through a recommendation matrix and by using a world knowledge as a middle layer. 
iSoNTRE adopts a methodology based on the inverse of matrix factorization algorithms and 
gives users the possibility to update their profiles in order to get better recommendations.  

iSoNTRE also offers numerous contributions: it is a hybrid solution that gathers content 
and collaborative based techniques in one recommender in order to handle the raw data of 
GPSNs, it uses the data that users have entered with their free desire to help them where they 
find it difficult, to provide information. This overcomes the cold start problem on new users 
and items as new items can be recommended right away based on its concepts.  

The lay over the raw data of users makes iSoNTRE one recommender that benefits from 
the advantage of implicit information, like its availability, and that it reflects the real users’ 
internal information, which is not like the explicit ratings that may vary over time (e.g. a user 
sees a better film) and are sometimes hard to obtain. 

Besides, prediction values will be good as they result from a matrix factorization. More 
than that, the user profile in the initial step of iSoNTRE is extracted from his actions in the 
GPSN, which reflects the user’s personality and needs, giving him the benefit of his 
spontaneous actions in order to enhance his recommendation.  
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Also of note, the resources that can be recommended may be any kind of resource, only 
under the condition that the relevant world knowledge must be found, even with the SLiR 
resources introduced in the previous chapter. 

iSoNTRE’s main purpose is to use the chaos of daily human interaction to meet their 
needs, all without requiring users to enter and re-enter their interests again and again. When 
iSoNTRE works, it is a living social machine of a future where people do the interesting work 
and computers do the administration. Next we will show iSoNTRE’s evaluation through both 
offline and online cases.  

5. Evalaution 
In order to assess a recommender, it is usually evaluated using available data sets over 

metrics like those discussed in the first chapter; however, iSoNTRE is a hybrid recommender 
that transforms a GPSN into a recommendation engine, thus it is not possible to evaluate 
iSoNTRE on available data sets like those of Epinions, Flixster, or movie data sets. To 
evaluate iSoNTRE, it should be built it first, and then it can be evaluated. In this chapter we 
will show how to build then evaluate iSoNTRE both in Facebook and Twitter. We used short-
life resources (offers) in the evaluation process, as well as we used the commercial domain. 
As discussed in the previous chapter we build the matrix (Twitter, Facebook) and 
evaluate the recommendation resulting from it through two levels:  

First, compared to the traditional solutions, using the RMSE and MAE metrics through a 
cross validation process. 

Second, a live test, which we considered critical for our system. It is based on feedback 
from real Twitter and Facebook users. Its goal was to see the reaction of people towards the 
recommended items. As the test is based on two different social networks, this meant that we 
needed to build two recommendation matrixes , one for Twitter and the other for 
Facebook. 

6. Building iSoNTRE: 
We used the Twitter data introduced in the previous chapter (12,000 users who had 1030 

commercial concepts) to build iSoNTRE so we had a  matrix. We normalized the 
matrix with the Z-Score and the world knowledge was the same BKT used in the previous 
chapter. 

We had nearly 10,000 offers from Blue Kangaroo in order to try the methodology. These 
offers varied over the 1,030 commercial concepts resulting in the  matrix; 
combining the two matrixes resulted in a complete matrix: 

 

In this matrix, we have 88,446 values of estimated ratings.  

On Facebook the matrix was built over the 2000 users and the 538 commercial concepts.  
 

7. Evaluation of iSoNTRE: 
The recommendation matrix  and , contained the offers that might 

be interesting to the user based on his extracted commercial concepts from his actions in the 
social networks, we used the two assumptions to assess them: 
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The first assumption: the matrix is considered ready to recommend, as it contains the 
predicted calculated values of how interesting an offer is to a user. According to this process, 
the matrix is ready to directly recommend offers. The second step in this case is to evaluate to 
what end the recommended list was interesting to the user. Top N item evaluators as we didn’t 
have the truth ground in order to choose another evaluation metric like RMSE and MAE. Top 
N can better answer the question: how many recommended items are good and responded to 
the user needs? The Facebook application designed asked the user about how many offers 
they liked from the top N recommended offers for them. 

The second assumption: the matrix is a rating matrix and found predictions based on it. 
The claim behind this assumption is based on the live test with Facebook in the previous 
chapter, when we asked to evaluate their predicted commercial clouds; we found that users 
added concepts to the cloud but they did not delete much, which meant that the predicted 
cloud was correct but not totally complete.  

The second assumption is essential when iSoNTRE works well because with time people 
will carry out actions and ratings that will be used to find new predictions and 
recommendations. This means that in real-life cases the iSoNTRE recommendation matrix 
will contain both the real ratings and extracted ratings, with the possibility of a user changing 
his profile information. 

7.1. Assumption 1: Matrix Ready to Recommend: 

7.1.1. Facebook Live Test: 
In this scenario, we found the most interesting offers for every user by ranking his rows in 

the matrix so that the offers that had the highest values were at the head of the 
recommendation list (Top N recommendation). Then, the resulting ranked vectors of offers 
were presented to the user. As the data had been extracted from scratch, we didn’t have the 
truth ground in order to find the RME and RMSE on the predicted data, which is why this test 
had to be done on real users. 

As a list had to be recommended to users, a good indicator in this case was to find from the 
Top N item how many items are interesting to users. A Facebook application (roo are you) 
was created for this purpose; -Figure 24-. It adopts a simple principle, which was a like or 
dislike of a recommended offer. The application permits to each user to classify a collection 
of offers as interesting, not interesting, or normal within a timeframe of two minutes (the short 
time encouraged users to try our application and easily complete its process). Results of this 
application are in Table 13. 143 users tried our application over two trials. The precision 
(percentage of liked offers to the whole recommended offers) is in Figure 25.  

 
Facebook 
trail 

# offers in 
Top N list 

# 
users 

Mean of 
Precision (liked 
of the 60 offers) 

MAP 

Trial 1 60 offer 74 82% 0.832 
Trial 2 60 offer 143 80% 0.811 

Table 14 Results of Facebook application over two trials 

The high precision and MAP values in Table 14 and in Figure 25 shows that the 
recommended offers based on the Facebook information were interesting to users.  
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Figure 24 The Facebook application evaluated if the user had found the recommended 

items interesting or not interesting or if they were normal to him. 

 

 
 

Figure 25 The precision over two trials; each user evaluated 60 recommended offers, 
precision around 80%! 

Results of both applications show that recommendations based on the first assumption 
gave relatively high results.  

7.2. Twitter Live Test : 
Like in Facebook we wanted to study the feedback of real users on the recommended 

offers. The main idea of the test was to send offers to users and see if they would like them or 
not. “Like an offer” in the Twitter case meant to click on it or to buy it. In this scenario, 
however, we did not have the information for a bought offer, but the “click on offer” 
information was provided by a tracking system adopted by the company. Thus, we considered 
a click on an offer as an indication of a good recommendation, like in [23] where the authors 
considered the click on a song as proof that the user liked the song.  

To begin we scanned the database of our 12,000 users, chose 2400 candidates and sent 
them offers. Since we operated with Twitter, the dedicated user offers were sent through 
tweets. 
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Because of the limits of a tweet and because we could not send a lot of links in one tweet, 
we had to send the best offer, which was the first offer from the recommended list, to the user. 
The body of the tweet held both the summary of the offer and a link to the offer, as well as a 
mention of the user using a handle where we could reach him, like in Figure 26. In order to 
give meaning to the tweet, we added a prefix before the link to the offer, followed by the title 
of the offer -Figure 26-, a list of examples of possible prefix is in Figure 29- 

In addition to using the click of a user as a feedback, other user actions were assigned as an 
indicator for positive preference toward the offer, such as a re-tweet, sending a related tweet 
or a replay or any other feedback. 

 
Figure 26 An example of a tweet targeting a user, the prefix is “Safety first, Savings next”, 

followed by the offer. 

So far we have elaborated how we sent the offers and target the users, the next portion to 
address is who sent the tweets. 

7.3. Sirens Creation: 
In order to be able to send messages or tweets to targeted users, we had to create twitter 

accounts that we called Sirens, accounts which are supposed to behave as human: they “work” 
during the day and “sleep” through the night, which is normal human behavior. In addition, 
Sirens “worked” more during the weekends when they had more free time and did not “work” 
Wednesday or Thursday based on the same study in order to imitate normal human tweeting 
behavior 20. With this behavior established, these accounts were meant to send tweets that 
contained the recommended offer that we wanted a user to receive so we could collect the 
feedback -Figure 26-. Because of the limit regarding the number of tweets that could be sent 
daily, we created 80 Sirens, each one tasked to send offers to a group of our targeted users -
Figure 27-. 

 

                                                 
20 http://www.marketingpilgrim.com/2013/04/how-to-maximize-your-tweets-infographic-no-joke.html  
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Figure 27 An example of a Siren. 

The sirens held American names since our 12,000 users were based in the United States; 
they also lived in different states therein, had a family, and displayed different personalities 
and interests -Figure 28-. An interest in our case was translated into tweeting in the domain; 
for example, a Siren interested in funny content would follow, tweet, and re-tweet funny 
content. In order to do that we defined for each domain parent accounts, which are accounts 
from Twitter interested in each domain. For privacy reasons, we avoid mention of the parent 
accounts in this study, however they are available based on a mail request to the authors and 
an example is in -Figure 30-. 

Figure 28 An example of Siren personalities. 

 
Figure 29 Some of the prefixes used by Sirens in the period of December 
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Figure 30 An example of parent accounts. 

7.3.1. iSoNTRE in Twitter (with Sirens) 
Two trials were elaborated over the Sirens. In the first one 2,000 users were targeted over a 

period of six days in October 2013, while in the second trial 2,400 users were targeted over a 
period of five days in December 2013. Each day, 40 Sirens sent out general tweets related to 
their personalities, (20 general tweets) and each of them targeted ten users. Before the trials, 
each account tweeted nearly a week’s worth of general tweets without any mention to 
establish legitimacy. -Table 15- summarizes the trials setups: 

Twitter users targeted users  # Sirens #Target Tweet 
/Day # Days 

General tweets 
related to 
personality 

Trial 1 (December) 2400 40 10 6 20 

Trial 2 (October) 2000 40 10 5 20 

Table 15 the Sirens overall information in the two trials 

Table 16 contains the results of the targeting process where Sirens received different 
actions: clicks on the offers, thanks for tweets, positive interactive tweets, and followings. 
There were also some negative tweets from people who did not like the offer. The most 
surprising result was the fact that our Sirens received offers from other Twitter accounts 
which were not ours. Other Sirens were already around during the study! 

 

  Click %  Thanks Followings Normal 
tweets 

Negative 
tweets 

Received 
offers 

Trial 1 (December) 294 14,7% 16 62 18 12 9 
Trial 2 (October) 450 18,7% 11 78 11 16 15 

Table 16 an average of 16.7% of user click on the proposed offers. 

iSoNTRE was able to get a click-through rate of 17,3% on the recommended offers. These 
users saw the offer description in the tweet and then clicked on it, which is a high indication 
of user satisfaction compared to the general click-through rate on Twitter of 2.8% [27]. 

The fact that the Sirens received a lot of actions (the re-tweets, normal tweets, followings 
and thanks) indicates that the Sirens were able to behave as humans. Of note, we witnessed a 
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difference of clicks between the two trials, we posit that this difference might be due to the 
timing of the two trails, as in December people are preparing for the Christmas and holiday 
season and are more open to receiving offers for items that they plan on purchasing and that 
come with competitive and attractive offers.  

7.4. Assumption 2: Matrix to Build Recommender System on It: 
This assumption is based on the result of our Facebook live test introduced in the previous 

chapter, where we remarked that users have the tendency to add brands and categories to their 
commercial profile extracted from a social network, but not to delete concepts from them, 
meaning the extracted commercial profile in most cases was relatively right but not complete. 
Based on this assumption, we consider that the extracted rating matrix is a core of the system 
and we should provide recommendations based on it.  

At the same time, this assumption is important due to the fact that iSoNTRE includes 
users’ ratings in addition to the extracted ratings, meaning that the system needs to use a 
recommendation method to predict and recommend items.  

As a first step we considered all the 0’s in the matrix as non-determined values, or ratings 
that needed to be predicted using a recommendation method. We compared results varied 
over SVD, a user-user collaborative filtering, and an item-item collaborative filtering 
algorithms. For each of which we compared to the data itself, on the data normalized by 
centering the values and by the Z-Score. The values are in -Table 17-. We noticed that the 
values in the SVD recommender usually gave the best recommendation results, and the best 
among all was the SVD with the Z-Score normalization.  

Recommendation method MAE RMSE 
User based CF 4.82 30.26 
SVD 6.26 24.56 
User based CF (normalized center) 5.08 16.58 
SVD (normalized center) 3.95 12.38 
User Based CF (Z score) 1.02 1.82 
Item based CF (Z score) 4.18 4.28 
SVD (Z score) 0.62 0.99 

Table 17 A comparison between different recommendation methods; SVD with Z-Score shows 
the best results 

In addition, based on the previous table we found the SVD with Z-Score to give the better 
results in the MAE and RMSE metrics. In SVD, the choice of the number of categories 
affected its performance, which is why we tried to find the better value for the number of 
categories in -Table 18-. 

SVD With Z-score MAE RMSE 
10 categories 6.26 24.56 
20 categories 3.95 12.37 
50 categories et plus  0.62 0.99 

Table 18 A comparison between different category values in SVD with Z-Score; the 50 value 
is the best choice over this data, as more trails showed as the same MAE, RMSE values.  

System in Action  
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In the previous discussion we built the rating matrix from social networks in the shopping 
domain. When the system works, the first step is to begin with assumption 1 and then to move 
to assumption 2. This means that the system has its first round based on offers predicted to be 
good, and then it will continue working based on assumption 2 as in any recommendation 
system. However, from time to time a synchronization process has to be done between new 
social network information and recommendation systems.  

8. Conclusion: 
In designing iSoNTRE, we were inspired by the social machines of the future that Berners-

Lee mentioned in his book Weaving The Web. The evaluation of iSoNTRE shows that it is an 
effective methodology to transform social networks into a recommendation engine, as it was 
able to recommend short like resources items (SLiRs, or offers) to users effectively. At the 
same time, it recommended many other kinds of items. We discussed how iSoNTRE can 
work directly after building its matrix, or it can adopt any recommendation method that can 
be applied over the resulting matrix. We compared different methods and normalization 
methods and found that Z score normalization with SVD gave the better results.  

In the proposed evaluation we used the BKT world knowledge, but any other world 
knowledge could be used as well. iSoNTRE can be applied over different domains, such as 
films or books; however, the choice of a world knowledge is critical to effectively running the 
system. Using the ODP of Wikipedia, for example, permits one to build a complete system 
produced by users at the level of world knowledge and actions. 

Like any recommendation system, iSoNTRE needs to be updated from time to time in 
order to include users’ latest actions, both the actions at the level of social networks and 
within iSoNTRE itself.  
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 CHAPTER 6: IAMÉLIE 
 

-A Hybrid Recommender Based On A Reflection In 
Recommendation Systems - 

 
 
 

  « Savez-vous quel est le point commun entre tous ces personnages ? 
C’est Amélie, et elle va changer leurs vies. 

Et si elle changait votre vie !!! » 
 

Le fabuleux destin d’Amélie Poulain, réalisé par Jean Pierre Jeunet 
(2005) 

 
 

 
 

https://www.youtube.com/watch?v=N0rnLZN5r6w 
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1. Introduction 
efore the introduction of modern computer and search technologies librarians were 
the masters of surprise and suggestion. With expert eyes and an expansive 
memory, they built strong relationships with their most frequent visitors and 

recommended books that corresponded to each one of their readers’ needs, interests, and 
personalities. But most importantly librarians also explained their recommendations to these 
curious consumers of stories and text. As a result, the librarian would recommend the same 
book to different readers, each having different tastes, and any number of these different 
readers might enjoy the same book for their own reasons: some wishing to be the first of their 
friends to have read it, others following the tastes and tests of others in order to read a 
something that they were sure would be good, while yet another reader picked the book up 
because she was familiar with and liked the book’s subject despite the social aspects 
surrounding it. 

For the attentive librarian of yesterday and today, the process was and is part of a respected 
profession. Today, however, most of us are not going to the library for our daily 
recommendations; instead, we browse the web for nearly everything we need. And where a 
person was once our trusted recommender, instead algorithms have come into being as the 
invisible actors of the online world, albeit with some limitations and risks.  

To understand these limitations and risks, one must first understand a core concept of 
recommendation: that it is a long process that changes the recommendee, and even their 
community as well. This is due to the slight change in humans as they consume items (books, 
films, receipts, etc.) and their preferences change, become stronger, and ultimately become 
fixed. Although it is a slight change, it is one that can last indefinitely.  

With this in mind, it is easier to understand the possible negative outcomes of the 
algorithms that drive the web’s common collaborative filtering recommenders. As they 
currently operate, recommenders may introduce risk to individuals and communities over the 
long term: “If users are choosing items to consume based on personalized recommendation, 
when time passes they will end up in groups, or clusters of likeminded individuals. This 
divides the community into groups who seldom interact with people with whom they do not 
agree.” [1]  

In this sense, despite their service, social recommenders might  be worse than they appear! 
They may give better recommendation based on evaluation metrics and short-term user 
satisfaction, but over the long term they divide the community into small groups of people 
who already know each other (usually a group of friends). Taken further,  if a circle-based 
recommendation were adopted in social networks  it would  divide the group of friends into 
even smaller groups of overly like-minded people who continue to follow each other in the 
consumption process.  

In this chapter, we will discuss an approach deals with these recommendation issues and 
propose a methodology of how to build a sensible adaptive recommender, which we have 
named iAmélie, a hybrid recommender that can be applied on iSoNTRE or on any social 
recommender. 

The main idea behind iAmélie is to use the social context of users in order to enhance the 
way in which recommendation is done. iAmélie changes the recommendation from user to 
user, or even for the same user from one context to a different one. 

B 
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2. Why iAmélie: 
 

As the story goes, Amélie Poulain21 was a little girl who was raised secluded because of 
supposed a heart illness (which she in fact did not have). With no schooling or a social life, 
she created her own world from which she watched others. Growing up, she wanted to 
positively change people’s lives, and as she watched them and became familiar with them, she 
succeeded in making them happy. By watching people closely and understanding them she 
was able to surprise them, transforming their lives into something much better than before.  

With this story as our inspiration, we knew what we wanted our iAmélie to do: like the 
original Amélie, the electronic one aims to observe and understand users in order to provide 
recommendations that will respond to their needs and enhance their lives.   

iAmélie is a safe system that uses users’ available social information to adapt its 
recommendations for them. It does this in a transparent and interactive way, provides 
explanations, corrects itself, and ultimately helps users save time and enhance their day-to-
day life. Viewed as a whole, iAmélie has the intelligence of the librarian, and the magical, 
attractive spirit of Amélie Poulain. 

While not a new recommendation platform, iAmélie is a hybrid adaptive recommendation 
platform that gathers different recommendation methods (which can be any recommendation 
method) into one platform. 

3. iAmélie System: 
 

The iAmélie system’s main contribution is that it makes a step backwards in the domain of 
recommender systems, then based on the previous reflection over these system assumptions 
and the needs that they try to respond to.  

In order to explain how iAmélie works, we will classify the main recommendation 
strategies into four families, which are based on recommendation systems history and the 
works introduced in the previous chapters. The goal of this classification is to discuss the 
claims and assumptions that are behind them which will be the basic of iAmélie system. 

3.1. Classical CF algorithms:  
This system recommends based on the overall users in the system. Algorithms—either 
model-based ones or memory based—find similar active users or items to the target 
one (practically around 25 similar users or items give good values [1]), then they 
recommend based on these similar users or items. The main assumption behind all 
works in this branch of recommenders is that:  

Assumption 1: If two users are similar in their ratings for some items, then they are 
more likely to be similar in their ratings towards other items. 

 

3.2. Domain/Cluster-based algorithms:  
In this branch of recommenders, the recommendation matrix is divided into a smaller, 
compact matrix (less sparsity). Recommendation is done by finding the similar users 

                                                 
21 http://en.wikipedia.org/wiki/Am%C3%A9lie   
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over the smaller matrix [2]. Clustering is one technique within this kind of family. The 
main assumption in this branch is that: 

Assumption 2: Finding the similar users for the target user might be more 
meaningful in a smaller group of similar users. 

Some works find many clusters for the user or groups and give predictions to the user 
based on the different clusters, then combines the results in one recommended list [3]. 
That is why recommendation is done over a smaller matrix. The main assumption of this 
family of recommenders is 

Assumption 3: The ratings that the user provided in one domain (like film) might be 
similar to other users, but he might be similar to other groups of users in another 
domain (like clothes). 

 

It is important to note here that even in collaborative filtering systems, such as those 
used on a website like Amazon, categorization plays a major role in the whole system, 
even though it is called a CF system. 

In both of these recommender families, online social friends of the user are not 
integrated, as at the time when these families debuted social networks had not yet reached 
their current high level of usage. 

3.3. Social recommenders or community recommenders:  
In this family of recommenders the recommendation is based on the surroundings of 

the user in a social network, most often the user’s relations within the social networks. 
The similarity (sometimes referred to as “trust”) is calculated upon the users’ friends so 
that the recommended items are those that are also consumed by the user’s friends [4]. 
The main assumption in this family of recommenders is  

Assumption 4: The user trusts his friends, and he is usually similar to his friends, so 
he will be more likely to consume items that have already been consumed by them. 

3.4. Circle-based recommendation:  

Circle-based recommendation divides the user s own social network into different 
groups according to shared activities, then tries to recommend items from the 
appropriate group. A good example of this is found in [5]. This division is claimed to 
decrease the noise of friends whom the user doesn t trust in each domain. The main 
assumption here ought to be clear  

Assumption 5: The user is similar to, or trusts, different groups of friends in the 
different domains in day-to-day life. For example, one might trust Jack and Jane in 
film recommendation, while for travel one might prefer recommendation based on 
Lucie and John.  

The social- and circle-based recommenders are special kinds of classical- and domain-
based recommenders that are applied over users’ social networks and have increased in 
use in alongside the rise of online social networks. 

All four kinds of recommenders’ strategies have been investigated and have been found to 
enhance accuracy in the evaluated cases. The evaluations have been made in most cases as 
recommendation systems are evaluated in the literature: on offline available recommendation 
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data sets. Figure 31 shows the social graph of user u, or his relations (friends) f extracted from 
social networks. Figure 32 shows the user, his social graph in the community of all the users, 
referred to by u.  

Figure 33 shows in one graph the four recommendation strategies discussed before based 
on the previous two figures. 

 
 
 
 
 

 
Figure 31 the user u social graph, f refers to his friends. 

 
 
 
 
 
 

 
 

Figure 32 The user and his social graph in the community of all users. 
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Figure 33 the four recommendation strategies 

3.5. Discussion of recommendation assumptions: 
We put in question the five previous assumptions and strategies in order to conclude that 

all of them are right. However, none represent or address the whole reality. In order to do that, 
we will consider a scenario that happens to most of us in our daily life: 

“Alice has a clothes taste similar to Camellia; she can trust her in buying new clothes 
items. 

 

Collaborative filtering 
Recommendation 
(CFR) based on: 
similar users over all 
the system 

Domain or cluster 
based 
Recommendation 
(DR): similar users 
over one domain or 
many domains  

Social 
Recommendation 
(SR): similar users 
over all the users’ 
friends 

Circle based 
Recommendation 
(CR) : similar users 
over many group of 
friends over domains 
or circles 
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At the same time, Alice likes to refer to her best friends Jane and Janet when buying 
clothes. They do not wear clothes that are similar to her style, but they know her tastes well, 
her form and what clothes she might like. 

Camellia, however, likes to be ahead of her friends, she is the mode adopter, and she likes 
to be the first of her friends to adopt a new robe, shirt or haircut. 

Poor Camellia and Alice know nothing about technology. In this domain they totally trust 
their friends Jack and Robert the most.  

Alice likes to see films in the WE vacation, who better than Jack the film lover can advise 
her? However, Jack refers himself to the whole film-lover community all over the world in 
order to get film news and he really enjoys the role of being ahead amongst his friends. 

Robert, the adventurer of the group, can’t live without exposing new things to his group: 
new sports, new cameras, or new cars. For him, none of his friends can offer help; instead he 
is the reference for his friends for all new things and strange ideas. 

Alice will travel into Paris next week; she refers to Sarah, who lives in Paris, to get 
information about where to stay and where to eat. As well, she looks into the recommendation 
sites like Trip Advisor for other people’s experiences that can be useful to her.” 

This kind of complexity and complication is what we face each day of our lives, and it is 
repeated for each person on the planet. What existing recommender can respond to this 
group’s contradicting needs, let alone all the needs of persons online?  

In the example, all of the previous five assumptions appeared, in addition to one more 
assumption. Table 19 contains an analysis of the cases and the assumptions.  

Case  Assumption 
Alice has a clothes taste similar to Camellia Assumption 4: Some of my friends are like 

me, similar to me, I trust them 
Alice refers to Jane and Janet for advice in 
clothes although they are different from her 

Assumption 6: Some of my friends might not 
be like me but they know me well. 

Camellia likes to be ahead of  her friends Assumption 2, 3: What do similar people 
(not friends) have in one domain? 

Camellia and Alice trust their friends Jack 
and Robert for technology advice 

Assumption 5: What do my trusted friends in 
this domain have? 

Robert likes to show new things to his group Assumption 1: What people similar to me all 
over the world suggest for me to do? 

Alice refers to Jack in order to choose a film 
in the WE. 

Assumption 5: What do my similar friends 
have in this domain? 

Jack refers to film lovers all over the world 
in order to get film news 

Assumption 2, 3: What do similar people 
(not friends) have in one domain? 

Alice will travel into Paris so she refers to 
Sarah, who lives in Paris, for information 

Assumption 6: Some of my friends might not 
be like me (not live near me) but they know 
me well 

Alice will refer to recommendation sites for 
travel 

Assumption 2, 3: What do similar people 
(not friends) have in one domain? 

 
Table 19 An analysis of the recommendation needs and the assumptions 
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We notice the appearance of a new assumption, which to our knowledge, has not been 
treated in the recommendation domain:  

Assumption 6: Some of my friends might not be like me, but they know me well. 

A recommender that responds to only one of the previous assumptions might satisfy a 
large number of users in many cases, but it risks resulting in the long-term undesirable 
consequence that we elaborated on in the introduction. This  explains why none of the 
assumptions discussed before is enough to address the changing day-to-day human needs. 

In the literature, the work of [6] has investigated the social aspect of recommendation in 
the sense of offering some intelligence through social recommendation in order to capture the 
cases in which the user might be affected by some other users’ items (he likes/dislikes all 
what they did). The work proposes a learning recommender that can adjust its 
recommendation with time based on the users’ information from social networks. Their work 
was tested on Facebook and it has enhanced link recommendation on Facebook remarkably 
over time[7].  

However, their work did not take into consideration the context of the user and his/her 
individual case. It is a closed system that can enhance recommendation of shared links on 
Facebook but it cannot be used for other systems; in addition,  the proposed system does not 
consider the assumptions and the effects as we did in the previous section. To resume, their 
work addresses the social and circle aspects of recommendation. To our knowledge no other 
solutions take into consideration this idea. 

The need in recommenders now is to have a recommender that can adapt easily from one 
case to another whenever needed, which has yet to be addressed in the recommendation 
literature [8][9]. In this regard, iAmélie is one of the first hybrid social recommenders that 
addresses these different assumptions in one hybrid recommender system.  

4. iAmélie  Recommender: 
 

iAmélie is an attempt to have one recommender responding to the different 
recommendation assumptions previously discussed. This is why it is a hybrid recommender; it 
brings together the different recommendation systems we discussed earlier: collaborative 
filtering, domain-based recommendation, social recommendation and circle-based 
recommendation—all in one. iAmélie utilizes users’ contextual information, such as the 
social and temporal contextual information, to build its components. These four 
recommendation components, then, form the base of iAmélie and will be discussed in the next 
section, followed by  a discussion of how the overall system works. 

4.1.  iAmélie components:  
 

As mentioned above, iAmélie contains four recommenders in order to address different 
assumptions. The below components are implementations of the four recommendation 
methodologies that we introduced in Section 3: 

 

4.1.1. iAmélie collaborative filtering recommender (CFR):  
This component is the traditional collaborative filtering recommender. It offers the 
recommendations based on similar users in the whole community. and its goal is to 
build the recommendation matrix based on the whole branch of users so that similar 
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users will be unfamiliar with one another personally, but share similar actions, 
interests, and inspirations [1], which are shared in public over all domains. It can use 
any traditional collaborative filtering algorithm, model-based or memory-based, 
depending on the domain in which it is used. Finally, this component addresses the 
first assumption of recommendation.  

4.1.2. iAmélie domain-based recommender (DR):  
This component is based on dividing the whole recommendation matrix into different 
domains or categories. The user can belong to one or more groups of like-minded 
people in the different categories or domains who are not necessarily his friends but 
share his interests. One way to achieve this goal is by adopting the work of [3] of 
finding many clusters for the same user. This component addresses our second and 
third recommendation assumptions.  

4.1.3. iAmélie social recommender (SR):  
This component is the global social recommender where the recommendation is based 
on all the user’s friends. Similarity will be applied over the friends of the target 
users[10], As is the case in most of the social recommenders. Recommendation is 
done over the user’s social graph. The fourth assumption is addressed by this 
component. 

4.1.4. iAmélie circle-based recommender (CR):  
This component of iAmélie provides a way to find the user’s circles of friends that are 
similar to him/her over the different domains. It adopts the methodology in [5] to find 
the user’s domains as well as the friends who share the interest in each domain. The 
fifth assumption is answered by this component. 

4.1.5. The sixth assumption:  
None of the previous components of iAmélie address the sixth assumption where “my 
friends might not be similar to me, but they know me well”. However we see the 
answer of this assumption is a service provided by iAmélie, which we call: A 
Friend’s Advice. 
A Friend’s Advice: is a service that provides the user with the possibility to send a 
request to all of his/her friends and they can answer the request based on their 
knowledge about the user, even if they are different from him/her. This is similar to 
real life cases when we refer to friends to ask for information about an item. iAmélie 
ranks results based on the level of similarity or trust of a user towards other users. 
 

The social context is essential in building the DR, SR, and CR components, as this 
information is used to find the users who might be considered as neighbors of the main 
user. That is why we consider the system that we are building a social contextual 
recommender. As in Figure 34. [9] 
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Figure 34 The contextual modeling of recommender systems. 

4.2. The recommendation process: 
We highlight again that iAmélie needs to have social contextual information about 

users in order to build its components. There are two ways to build this information. In the 
first case, iAmélie is built from scratch  and the system needs time in order to reach all of 
its capacities. Without enough time, iAmélie will not have enough actions and relations 
information about users in order to build its components. This case can be overcome if 
iAmélie is built in the same way in which iSoNTRE has been built: by establishing 
recommendation systems from users’ implicit information available on online social 
networks like Facebook and Twitter. However, as the discussion will be similar to 
iSoNTRE, this case will not be discussed in this chapter; instead, we will discuss the case 
in which iAmélie is built over working systems like Epinions, Flixster or any other social 
recommendation system. In this case the social and categorical information is already 
there and iAmélie can enhance the quality of recommendation. 

When the components are ready the next question is: how do we provide the user with 
a recommendation? If we revisit the recommendation chapter and hybrid solutions, we 
note that the number of different recommendation systems allow us many possibilities to 
link recommenders together, such as: weighted recommenders, switching recommenders, 
mixed recommenders, feature-combining recommenders, cascading recommenders, 
feature-augmenting recommenders, and meta-level recommenders. For our purposes we 
adopted the mixed recommenders as we wanted recommendations from the four 
recommenders at the same time [11] in order to permit the user to choose the 
corresponding case. With this, iAmélie puts the user into the core of the system by giving 
him/her the different recommendation methods in a simple interactive way. 

4.2.1. iAmélie recommender:  
iAmélie builds the four recommendation methods then proposes its recommendation 
in the four components to users who complete actions in contexts, then both actions 
and context are integrated into the system to enhance the next recommendation. The 
actions are integrated, like any recommendation system, by adaptation of the 
recommendation matrix from time to time (each week) while the context affects the 
choice of neighbors in the components. Figure 35 shows the components of iAmélie. 
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Figure 35 iAmélie recommender system it gathers the four recommenders in order to 
provide users with recommendations that are adaptable based on their context and actions. 

4.2.2. iAmélie in action: 
For a user, as introduced before, we consider the DR as a special case of CFR on 

specific domains; as well, we consider the CR as a special case of SR on special domains. 
This vision helps us simplify to the proposed model to the user as seen in the screen shot 
in Figure 36. The user has two lists, one based on similar users over all categories or over 
one specific category, and the other based on his friends with whom he/she shares his 
interests, either over all the categories or over a specific category.  

The help me friend also appears in Figure 36 as a way a user can ask for help while 
looking for a specific product (assumption 6). 

In the second screen shot is an example of a user’s recommendations as well as 
friend’s requests for help. 

 
 

DR

CR 

CFR 

SR 

Context Actions 
Recommendation 

iAmélie 
Recommender 
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(a)           (b)        (c) 
Figure 36 Screen shots from iAmélie system. 

(a) Presents the CFR and the DR, (b) presents the SR and the CR, and (c) represents 
the help me friend, which responds to assumption 6. 

 

4.3. iAmélie  evaluations: 

4.3.1. iAmélie Building: 
We chose Epinions to evaluate iAmélie because we wanted a rich data set that permitted us 

to directly build the four components of iAmélie. In addition, we wanted to try a different 
scenario from using Facebook and Twitter as we did in iSoNTRE. The data set that we chose 
consisted of 127,711 users and 331,274 products, all the information about this data set is 
shown in Table 20.  

Data Set information 
27 categories 
331,274 products 
127,711 users 
1,199,632 ratings 
582,613 trusts 

Table 20 Epinions data set used to evaluate iAmélie. 

The first step in evaluating iAmélie was to build the four components previously 
discussed; we compared, the User-User and SVD methods on the four components in order to 
better understand our data set. In order to build the four recommenders we used R and its 
recommender library. In To establish the DR, SR, and CR we changed the library to control 
the similarity function and the choice of similar users.  

 iAmélie CFR: we built the recommender based on the entire amount of information, 
taking in consideration users with more than 20 ratings and products with more than 
20 ratings; the results are in Table 21  
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 RMSE MAE 
UBCF 1.301 1.039 
SVD 3.957 3.750 
UBCF (normalized center) 1.310 1.050 
SVD (normalized center) 1.183 0.953 
UBCF (Z-score) 1.086 0.867 
SVD (Z-score) 0.99 0.808 

 
Table 21 RMSE and MAE over User-User, and SVD for users and products with more than 

20 ratings over normalized and non-normalized data. SVD with Z score are the best choice to 
decrease the error. 

 
We then applied this to users who had more than six ratings and products with more 
than three ratings. The results are also in Table 22. As the results did not change 
drastically, we excluded only those people with a low number of ratings from the 
system. 
 
 RMSE MAE 
UBCF 1.456 1.125 
SVD 4.139 3.953 
UBCF(normalized center) 1.507 1.197 
SVD (normalized center) 1.179 0.928 
UBCF (Z-score) 1.189 0.981 
SVD (Z-score) 0.980 0.785 

 
Table 22 RMSE and MAE over User-User, and SVD for users with more than 6 ratings and 
products with more than 3 ratings, over normalized and non-normalized data. SVD with Z 

score are the best choice to decrease the error. 

 iAmélie DR: We defined the matrix over different domains, from Table 23 we chose 
the following ones (4, 19, 10). The results are in Table 24. 

 
Domain # Ratings 
3 167 263 
4 102 957 
5 85 419 
19 85 113 
10 61 503 
18 55 087 
11 48 112 
2 45 730 
7 45 459 
8 45 113 

Table 23 The number of ratings by domain 
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As shown in Table 24, the accuracy over domains is better than over the entire system. 
This matches results in the previous papers [12] and can be explained by the fact that 
over a smaller, more compact matrix the prediction is more accurate. 
 
 

            RMSE MAE 
Cat 19 Cat 4 Cat 10 Cat 19 Cat 4 Cat 10 

UBCF    1.189 1.01 1.243 0.887 0.759 0.944 
SVD     4.285 4.341 4.273 4.111 4.220 4.139 

UBCF (normalized center) 1.23 1.015 1.293 0.934 0.757 0.970 
SVD (normalized center) 1.107 0.914 1.027 0.858 0.668 0.783 

UBCF (Z-score)  1.264 1.078 1.099 1.055 0.865 0.808 
SVD (Z-score)   0.936 0.950 0.968 0.701 0.733 0.771 

 
Table 24 Over category: RMSE and MAE over User-User, and SVD over normalized and 

non-normalized data over cagtegories. SVD with Z score are the best choice to decrease the 
error. 

 iAmélie SR: For each user a social graph was associated with the recommendation 
matrix (the general one), so that for each user the similarity when applied would be 
upon the groups of users who already exist and know him/her. This was done on the 
Epinions data set based on the trust relation defined explicitly by users. Results from 
this method are in Table 25. 
 

 RMSE MAE 

UBCF  1.543 0.936 

SVD  3.954 3.751 

UBCF (normalized center) 1.502 1.085 

SVD (normalized center)  1.142 0.891 

SVD (Z-score)  0.976 0.777 

 

Table 25 Using the social graph: RMSE and MAE over User-User, and SVD over normalized 
and non-normalized data. SVD with Z score are the best choice to decrease the error 

 
 iAmélie  CR: In this branch iAmélie found the related circles for each user; like in [5], 

the number of circles is produced for each user and recommendation was then 
performed on these circles.  

 

4.4. iAmélie evaluation:  
As iAmélie was built on an Epinions data set it was not possible to evaluate it 

directly on active users. Calculating the MAE and RMSE for such a recommender 
makes no sense because it is not a high accuracy that shows whether the system is a 
good recommender.  
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That is why we adopted the following scenario of evaluation: we asked a group of 
25 students (18-22) to evaluate the recommendation results for users from the data set. 
We chose five users from the Epinions data set and showed his/her Epinions profile to 
15 different users from the 25 students and asked them to evaluate his/her 
recommendation over iAmélie. Each instance used one recommender of the four 
following: CFR, DR, SR, and CR. The questions that we chose for the evaluation were 
based on the work in [13] where the authors compared recommendation systems based 
on real users feedback in the film domain.  

We chose the questions that can be asked in our example where students are the 
judges about the recommendation for the five target users. Each time, we showed the 
students the two systems and asked them to answer the questions. The questions 
permitted us to compare the two systems, and each time we compared a system with 
iAmélie. The results in Table 26 show a shift in results to the benefit of the iAmélie 
recommender, which can be seen in the high choice of 4 and 5 options in the students’ 
answers. 
 

 CFR & iAm DR & iAm SR & iAm CB & iAm 
Accuracy  
w.r. has more items that user X might find appealing?     
Accuracy  
w.r. has more obviously bad  item recommendations 
for user X?     

Diversity  
w.r. has more items that are similar to each other? 

    
Diversity  
w.r. has items that match a wider variety of moods?  

    
Understands  
w.r. better understands user A’s taste in items?  

    
Satisfaction  
w.r. would better help you find items to buy?   

    
Satisfaction  
w.r. would you be more likely to recommend to your 
friends?      
Satisfaction  
w.r. of recommendations do you find more valuable?  

    
Satisfaction  
w.r. would you rather have as an app on your mobile 
phone?      
Satisfaction  
w.r. would better help to pick satisfactory items?  

    
 

Table 26  w.r. referes to which recommender. The shift in students’ answers towards answers 
4 and 5 means that the iAmélie system was well received by the students, better than the other 

systems 

 
However, the evaluation from the students is only the first implementation of the iAmélie 

system and further work is needed to evaluate the system on large scale and over different 
users. Still, we highlight the high motivation among the students when evaluating the system.  
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5. Conclusion: 
  
Different recommendation systems deal with over different recommendation assumptions; 

as discussed in this chapter, these assumptions are usually correct in some cases but not in all 
cases. We showed through a real-life scenario how different assumptions can be correct for 
the same user in different situations and contexts.  

From another point of view, using a recommender based on the assumption of gathering 
similar users together might lead to the risk of building small, likeminded communities that 
are not open to new ideas. 

iAmélie was built to address this. Being a hybrid recommender that gathers different 
recommenders into one system, it is able to respond to different user needs with its 
recommendations.  

 Results from an Epinions data set showed user interest in iAmélie, preferring it over the 
traditional collaborative filtering, domain-based recommenders, social recommenders and 
circle-based recommenders alone. Though iAmélie is not a complete solution, it is a starting 
point for future research in the recommendation domain. 

In the social age, we are free to contact and communicate with any  human on the earth. 
Studies have shown that we tend to communicate with the one in the next room over and 
those we already know. Of course, this kind of behavior comes with its own set of positive 
and negative outcomes.  

When it comes to online communication and socialization, we believe that recommenders 
have a positive role to play. With the culmination of massive amounts of knowledge on the 
web, the right kind of recommender can play a tremendous role in introducing new content, 
positively shaping preferences, and fostering a more democratic environment where 
information is easily and enthusiastically shared. It is our hope that iAmélie is the first step in 
this direction. 
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 CHAPTER 7: CONCLUSION & DISCUSSION 

 
or three decades, our domain of recommendation has been the subject of intense and 
rewarding study. Since the beginning of our work, we have agreed with a subject 
addressed by Martin from his keynote address at the 2009 ACM conference; 

namely, that algorithms are only a small part of the challenging issues facing the 
recommendation realm. Although there is certainly a need to refine current recommendation 
algorithms, a lot of work is yet to be achieved in areas once thought wrapped up, such as user 
experience, data collection, and other areas that make up the whole of the recommender 
experience.  

That is why most of the work introduced can be classified in this category. We studied 
recommendation systems focusing on social and contextual recommendation (Chapters 1 and 
2) based on our belief that they will be the future of the recommendation world based on their 
direct link with users’ needs.  

In the introduction we proposed four problems in the recommendation domain that we 
wanted to elaborate on during our work. The following summarizes how we approached and 
addressed each of these four problems, knowing that we did not propose new algorithms and 
instead combined existing. 

First problem: Can we predict from spontaneous actions on social networks information 
that was not explicitly provided by users?  For example, can we predict shopping information 
about users from their actions on Facebook and Twitter?   

We conclude that we can. We carried out a survey of 63 Facebook users, where we found 
that none joined Facebook for commercial interests, yet we were able to use their implicit 
Facebook information to extract useful and correct commercial profiles. Then, a test on 2,000 
Facebook users and 12,000 Twitter users affirmed our conclusion. The amount of commercial 
information was relatively high compared with that present in Epinions data sets. 

 

Second problem: Can we transform the implicit data in GPSNs into a Recommendation 
Engine, or a social machine of recommendation?  

We highlighted that if this was possible then we would be able to create a social machine 
fed by users’ actions on GPSNs. 

With this goal in mind we created iSoNTRE, the Social Network Transformer into 
Recommendation Engine. We defined iSoNTRE as a hybrid social recommender designed to 
transform the GPSN into a recommendation engine. To achieve its goal, iSoNTRE transforms 
the raw data (unary data, or implicit data) about users into a matrix of recommendation. 
iSoNTRE performed its goal by combining content-based techniques in which it tries to 
extract, for users and resources, the concepts that appear in their work in a specific domain, 
such as films or shopping. Then, using a method that is the inverse of matrix factorization, a 
whole matrix of user, resource, level of interest (predicted value) was built. Over this matrix 
any recommendation method can be applied. More than that, we showed that iSoNTRE can 
be applied over different domains.  

 

F 
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Third problem: How can one evaluate such a social machine or recommendation engine 
aside from using traditional accuracy metrics like MAE and RMSE? 

The iSoNTRE evaluation was performed using the usual metrics (MAE, RMSE) as a first 
step, but then was also tested on Twitter using Sirens, which were automated Twitter accounts 
that made real contact with real users to receive genuine feedback. On Facebook, the tests 
were based on user feedback. Users were invited to evaluate their recommended items within 
a short window of time (two minutes). The results for both Twitter and Facebook were 
encouraging.  

 

Fourth problem: Given the different assumptions in different recommendation systems, 
discuss these can one propose a solution that can respond to different correct assumptions at 
the same time?  

We took a step backward in the recommendation domain, analyzing the different 
assumptions of the different recommenders to show that while all the assumptions could 
correct, none alone could represent the whole reality of recommendation. In real life, cases for 
each user may contain different assumptions that are correct in different situations and 
contexts. That is why we proposed iAmélie. iAmélie considers the different assumption in 
one hybrid system. It utilizes users’ social context to build its four components of CFR 
collaborative filtering recommendation, DR domain recommendation, SR social 
recommendation and CR circle recommendation. However, a simplified copy of iAmélie was 
built in which DR was treated as a special case of CFR as well as a CR as a special case of 
SR; this is why the final iAmélie system was rather simple. The results compared with each of 
the four recommenders showed a high preference of users to iAmélie. Tests on iAmélie were 
performed through an Epinions data set and the results were collected over users who had 
evaluated the recommended items. 

1. Lessons Learned 
GPSNs richness in users’ information:  
Social networks are a source of explicit and implicit user information. What surprised us, 

however, was the amount of commercial information to be found within social networks. An 
interesting point in this regard is that while users usually find it hard to provide information 
about themselves, they spend more and more time on social networks sharing valuable 
information about themselves and their relations.  

Using this information will be of great help in any number of different domains. However 
a number of problems need to be solved. First, the raw data requires further attention, such as 
how one extracts words, how one moves from words to concepts, how to find the correct 
concepts according to the context, how to solve the ambiguity problem, how to choose the 
source of world knowledge to find the relevant information, how to filter it from non-relevant 
information, and so on.  

High interest in the live tests: 
Users showed a high motivation when trying out the Facebook application, as well as the 

iAmélie systems. They were excited about the idea of extracting their commercial information 
and wanted to use iAmélie in their daily lives.  
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We highlight the fact that the small number of students and friends is not a representative 
sample, but the similarity in users’ reactions gives us a high indication of the problems still 
facing the recommendation domain.  

In order to make them more practical and robust, we believe recommendation systems 
ought to transition from offline data sets towards live tests. 

Social & contextual recommenders are the future:  
As discussed throughout the study and specifically in Chapter 6, we noted that users 

change their needs according to different cases and contexts. Combining social and contextual 
recommenders meets people’s consumer needs.  

The availability of social information has made social recommenders possible. As we 
proposed in Chapter 4, contextual information can be extracted from social networks and then 
combined with contextual information, such as time and geographical information that can be 
extracted from other sources like users mobiles.  

Combining contextual and social information enhances recommendation quality and 
makes for more satisfied users. We noticed an elevated interest in both domains in the latest 
works of recommendation.  

2. Future Work: 
Our work has its limits; in this section, the main areas for further consideration are: 

1. Solve the disambiguation problem, move from words to concepts: 

In our work we mishandled an important issue; specifically, how to move from words to 
concepts. In addition, the disambiguation of concepts requires further research. We can also 
further consider how each user understands the concept according to the context. Lastly, using 
other sources of world knowledge like word net or the ODP of Wikipedia may prove 
beneficial in future work, as well as trying different world knowledge over the different 
domains.  

2. Linking iSoNTRE and iAm lie together: 

Although the two models were created to work in concert, linking them was not possible 
during our work. In order to operate fully, iAmélie needed all kinds of recommendation 
information (users, items, ratings, and relations) in its system, which was not available at the 
level at which we left iSoNTRE.  Additionally, we saw an advantage in trying iAmélie over a 
classic Epinions data set in order to show that the solution can work in traditional cases as 
well as in new cases like iSoNTRE. However, following our belief in the need to try 
recommendation systems by live users, iAmélie was built over an Epinions data set and tested 
through students to decide to what end iAmélie properly functioned. 

3. Adaptive Learning of Sirens: 

Creating the Sirens was a necessity due to the limits Twitter applies for sending tweets 
containing user mentions. When creating the Sirens, we randomly assigned them 
personalities, which remained the same during the trials. While the Sirens succeeded in their 
task they can be pushed to a new level of performance. Intelligence can be added to them so 
that they evolve with time. Based on the feedback of users, they can update their behavior (for 
example, their way of tweeting or their personalities) and self adjust to a personality that is 
more attractive. Genetic algorithms should be used to create new personality types in order to 
find the ones that attract the most attention and feedback from users. We note that Sirens can 
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be used for more than delivering offers to users and can be used over different domains. To 
conclude, we ask to what end can users determine whether Sirens are real users?   

4. Integrating different contexts: 

We dealt with the different assumptions behind using recommendation systems by users in 
iAmélie systems, which had previously not been dealt with at this level. iAmélie considered a 
part of context information when recommending, however context contains a high variety of 
information that can enhance recommendation, like geographical and temporal 
information.   As discussed and demonstrated in chapter 4, contextual information exists in 
social networks and can be extracted from it, so integrating it in our models will enhance the 
recommendation. 

5. Dynamic moving from one context to another: 

For now, users choose to move from one context to another in iAmélie system. This works 
especially well since we designed the system in a simple manner. By adding intelligence and 
the dynamic of moving from one case to another we can help users gain time and save effort, 
as the system will learn from users’ actions, context, and needs over time. This can be of great 
help when a user is in a hurry or reaching our system from a mobile telephone, where the least 
amount of clicks will lead to a better user experience. 

6. Explain recommendations: 

In iAmélie we provided explanations of the results at the level of a user’s similar users; 
however, explaining results has been shown to enhance user satisfaction, even if changes in 
accuracy are not significant. As a first step, we can show the user the kind of the concepts that 
lie behind his recommendations. Going forward many future enhancements can be taken into 
consideration. 

7. Integrating users  feedback 

The way in which users evaluated their predicted shopping profile in Facebook can be 
generalized to enhance recommendation all over both the iSoNTRE and iAmélie systems. 
Users can refer to their profiles, which their recommendations were derived from, and can 
modify it by adding or deleting more concepts or items. 

8. Using external knowledge from one social network into another.  

iSoNTRE extracts information from different social networks. That extracted information, 
while coming from the same user, may change from one social network to another. What 
happens if we combine the information extracted from both social networks, or from multiple 
social networks? Can we use the commercial information extracted from Twitter for an 
Epinions recommendation? Or make a Facebook recommendation from Epinions data? And 
what added values will this offer the user and the whole system? Can we consider the 
information extracted in one domain as knowledge that can be used in the different 
recommendation systems related to the domain? Does this enhance or diminish the quality of 
recommendations?   

 

We hope that continued work on the iSoNTRE and iAmélie systems will help us address 
these challenges and lead us to solutions that are applicable toward the research and day-to-
day life. We believe that recommendation is a critical domain, where each recommended item 
that’s consumed changes us incrementally but forever. 
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