
HAL Id: tel-01236602
https://theses.hal.science/tel-01236602v2

Submitted on 18 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security analysis for pseudo-random number generators
Sylvain Ruhault

To cite this version:
Sylvain Ruhault. Security analysis for pseudo-random number generators. Cryptography and Se-
curity [cs.CR]. Ecole normale supérieure - ENS PARIS, 2015. English. �NNT : 2015ENSU0014�.
�tel-01236602v2�

https://theses.hal.science/tel-01236602v2
https://hal.archives-ouvertes.fr

École Doctorale de Sciences Mathématiques de Paris Centre

Security Analysis for
Pseudo-Random Number Generators

THÈSE
présentée pour l’obtention du

Doctorat de l’École normale supérieure
(Spécialité Informatique)

par

Sylvain Ruhault
Soutenue publiquement le 30 Juin 2015 devant le jury composé de

Pierre-Alain Fouque .Examinateur
Marc Girault .Examinateur
David Pointcheval . Directeur de thèse
Bart Preneel .Rapporteur
Emmanuel Prouff .Rapporteur
Phillip Rogaway . Examinateur
Nicolas Sendrier .Examinateur
Damien Vergnaud .Directeur de thèse

Travaux effectués au sein de l’Équipe de Cryptographie
du Département d’Informatique de l’École normale supérieure

Remerciements
Je voudrais en premier lieu remercier David Pointcheval et Damien Vergnaud pour m’avoir
accueilli au laboratoire de cryptographie du Département d’Informatique de l’ENS et pour avoir
si bien dirigé mes travaux de thèse. Leur disponibilité, leur rigueur scientifique et leur implication
ont grandement contribué à l’aboutissement de ce projet. Je les remercie sincèrement pour tout
le temps passé à répondre patiemment à toutes mes questions, scientifiques ou autres, pour avoir
lu et relu les différentes versions de ce manuscrit et de mes articles et pour m’avoir aidé dans
les répétitions de présentations.

Je voudrais également remercier Eric Dehais pour m’avoir toujours soutenu dans ce projet et
pour voir autant engagé Oppida pour son aboutissement dans les meilleures conditions. Je
voudrais aussi rendre ici hommage à sa volonté d’investir dans la connaissance et la recherche.

Je remercie vivement l’ensemble des membres du jury qui m’ont fait l’honneur d’évaluer mon
travail. Je suis très reconnaissant à Emmanuel Prouff et à Bart Preneel pour l’intérêt qu’ils
ont porté à ma thèse en acceptant d’en être rapporteurs. Je remercie également Pierre-Alain
Fouque, Marc Girault, Phillip Rogaway et Nicolas Sendrier d’avoir accepté de faire partie du
jury en tant qu’examinateurs.

Je remercie tous mes co-auteurs avec qui j’ai eu des collaborations enrichissantes gràce à leurs
qualités scientifiques et humaines. En plus de Damien et David, j’ai eu l’opportunité de travailler
avec Yevgeniy Dodis lors de son séjour au laboratoire en juin 2012 et de co-écrire avec lui et
Daniel Wichs un premier article scientifique. Par la suite j’ai eu l’opportunité de co-écrire un
second article avec Mario Cornejo et un troisième avec Sonia Belaïd et Michel Abdalla. J’espère
sincèrement que nous aurons l’occasion de travailler ensemble sur de nouveaux projets.

Ces années de thèse ont été l’occasion de rencontres très enrichissantes, que ce soit au laboratoire,
à Oppida ou ailleurs. Je voudrais remercier les chercheurs et les étudiants que j’ai pu rencontrer
au laboratoire: Adrian, Alain, Angelo, Aurélie, Aurore, Cécile, Céline, Duong-Hieu, Dario,
Elisabeth, Fabrice, Geoffroy, Guiseppe, Hoeteck, Houda, Louiza, Itai, Joana, Kenneth, Léo,
Mario, Miriam, Pierre-Alain, Pierrick, Rafael, Roch, Sorina, Tancrède, Thomas, Thomas et
Vadim; Louiza, la future étudiante d’Oppida; Marion et Patrick, qui m’ont invité à présenter
mes travaux au LORIA au GREYC; et toute la communauté C2 rencontrée à Dinard et aux
Sept Laux.

Je remercie également l’ENS pour fournir le cadre de travail aussi favorable à la recherche
et de m’avoir permis de participer à de nombreuses conférences. J’en profite pour remercier
l’ensemble du personnel du Département d’Informatique, en particulier Joëlle Isnard, Valérie
Mongiat, Michele Angely et Jacques Beigbeder pour l’efficacité avec laquelle ils ont géré toutes
les questions administratives et techniques au cours de ma thèse.

Je pense aussi à tous mes amis et à ma famille qui de près ou de loin m’ont suivi et m’ont
encouragé dans ce projet. Merci beaucoup à Christophe, Jean-François, Jan et Aziz pour leurs
encouragements précieux.

Je voudrais terminer ces remerciements par les personnes qui comptent le plus pour moi, ma
femme Raja et mes deux filles Mona et Nada. Ce projet n’aurait pas été possible sans leur
soutien constant et leur joie de vivre communicative.

— iii —

Figure 1 – Extract from the Proceedings of the plenary session of the Pontifical Academy of
Sciences, Vatican City, Italy, October 27-31 1992 [Pul]
.

— iv —

Contents

1 Introduction 1
1.1 Pseudo-Random Number Generators . 1
1.2 Randomness Extractors . 2
1.3 Security Models . 3
1.4 Potential Weaknesses . 4
1.5 Contributions of this Thesis . 5

2 Preliminaries 9
2.1 Probabilities . 9
2.2 Indistinguishability . 9
2.3 Hash Functions . 10
2.4 Game Playing Framework . 10
2.5 Shannon Entropy, Min-Entropy . 11
2.6 Randomness Extractors . 13
2.7 Leftover Hash Lemma . 19
2.8 Pseudo-Random Number Generators . 20

2.8.1 Standard Pseudo-Random Number Generator 20
2.8.2 Stateful Pseudo-Random Number Generator 21
2.8.3 Pseudo-Random Number Generator with Input 22

2.9 Pseudo-Random Functions . 23
2.10 Pseudo-random Permutations . 24

3 Security Models for Pseudo-random Number Generators 27
3.1 Introduction . 27
3.2 Guidelines from [Gut98,KSWH98] . 28

3.2.1 Description . 28
3.2.2 Proposed Formalization . 29

3.3 Security Model From [BY03] . 31
3.3.1 Description . 31
3.3.2 A Secure Construction . 32

3.4 Security Model from [DHY02] . 34
3.4.1 Description . 34
3.4.2 Secure Constructions . 36

3.5 Security Model From [BST03] . 37
3.5.1 Description . 37
3.5.2 A Secure Construction . 39

3.6 Security Model From [BH05] . 40
3.6.1 Description . 40
3.6.2 A Secure Construction . 43

— v —

3.7 Leakage Resilient Stateful Pseudo-Random Number Generators 44
3.7.1 Security Models . 44
3.7.2 Constructions . 45

3.8 Analysis . 47

4 Robustness of Pseudo-random Number Generators with Inputs 51
4.1 Model Description . 51
4.2 Recovering and Preserving Security . 57
4.3 A Secure Construction . 63
4.4 Impossibility Results . 67
4.5 Instantiation . 71
4.6 Benchmarks . 73

4.6.1 Benchmarks on the Accumulation Process 73
4.6.2 Benchmarks on the Generation Process 74

5 Robustness Against Memory Attacks 77
5.1 Model Description . 77
5.2 Limitation of the Initial Security Property . 79
5.3 Preserving and Recovering Security Against Memory Attacks 80
5.4 A Secure Construction . 86
5.5 Instantiation . 88

6 Robustness Against Side-Channel Attacks 91
6.1 Model Description . 91
6.2 Analysis and Limitation of the Original Construction 93
6.3 Recovering and Preserving Security With Leakage 94
6.4 A Secure Construction . 99
6.5 Instantiations . 103
6.6 Benchmarks . 108

7 Security Analysis 113
7.1 Introduction . 113
7.2 Security of Linux Generators . 115
7.3 Analysis of OpenSSL Generator . 125
7.4 Analysis of Android SHA1PRNG . 127
7.5 Analysis of OpenJDK SHA1PRNG . 129
7.6 Analysis of Bouncycastle SHA1PRNG . 131
7.7 Analysis of IBM SHA1PRNG . 133

8 Conclusion and Perspectives 135

Bibliography 142

— vi —

Chapter 1

Introduction

1.1 Pseudo-Random Number Generators

Standard Pseudo-Random Number Generators

In cryptography, randomness plays an important role in multiple applications. It is required in
fundamental tasks such as key generation, masking and hiding values, nonces and initialization
vectors generation. The security of these cryptographic algorithms and protocols relies on a
source of unbiased and uniform distributed random bits and cryptography practitioners usually
assume that parties have access to perfect randomness. If a user has access to a truly random
bit-string, he can use a deterministic algorithm to expand into a longer sequence. The output
of the algorithm cannot be perfectly random, as there are fewer seeds than possible outputs, so
one can define a security objective for this algorithm as follows: no computationally-bounded
adversary, which does not know the seed, can distinguish an output from the uniform.

The above algorithm can be defined precisely with a formal security game and is referred to in
this thesis as a standard pseudo-random number generator. In this situation, the seed of the
generator is the most critical part of it as an adversary that has access to it can predict the
future output of the generator.

Stateful Pseudo-Random Number Generators

The generation of a random seed can be amortized allowing the computation of several outputs
with the same seed. As the algorithm is deterministic, this implies that the algorithm also
modifies the seed for each output. This class of algorithm can also defined precisely with
a formal security game and is referred to in this thesis as a stateful pseudo-random number
generator. The generator is modelled here as a stateful algorithm and its security is formalized
by the indistinguishability of all the outputs generated from a secret seed. In this situation,
as the seed is reused, the generator needs to store it between the generation of two outputs.
This design have been implemented in a large amount of systems, including hardware security
modules. As a drawback, several attacks have been mounted against some generators, that rely
on the predictability of the seed or on the potential leakage of the memory of the generator.

The memory of the generator is then its most critical part, as an adversary that has access to it
can predict the future output of the generator. In this thesis, we refer to the internal state for
the memory of the stateful pseudo-random number generator.

— 1 —

Chapter 1. Introduction

Pseudo-Random Number Generators with Input

A second solution to amortize the use of a random seed is to allow the algorithm to continuously
collect new inputs in addition to the seed and produce outputs that depend on the previous
inputs. This class of algorithm is referred to in this thesis as a pseudo-random number generator
with input.

In this situation, the idea is to use the largest amount of possible events from the environment
of the generator, gather them together in the internal state S of the generator and produce
outputs that are indistinguishable from random. An expected property of the generator is that
it accumulates the successive inputs properly, so that each new input is actually taken into
account. The compromise of the internal state is still critical in this situation, however, as new
inputs are collected continuously, the generator may recover from a compromise if enough inputs
are collected. Moreover, as inputs may be adversarially influenced, a second expected property
is that the generator preserves its state against such inputs.

The formalization of the expected security properties of a pseudo-random number generator
with input has been a challenging task and is the main objective of this thesis. We present in
Chapter 3 the successive models for pseudo-random number generators with inputs that have
been proposed, and we present our new security model in Chapter 4. A major contribution of
our new security model is the formalization of both these recovering and preserving properties.

1.2 Randomness Extractors
A randomness extractor takes as input a source of possibly correlated bits, and produces an
output which is close to the uniform distribution.

We present in Chapter 2 a survey of the different notions of extractors that we will use for this
thesis. In this survey, we show that there is an impossibility result as no deterministic extractor
can extract randomness from all sources and therefore we need to consider a family of extractors
named seeded extractors, that uses a second random parameter seed for extraction. We recall
that the existence of seeded extractor is guaranteed (by the probabilistic method), and we present
the famous Leftover Hash Lemma that constructively builds randomness extractors from hash
function families. As we show, an application of the Leftover Hash Lemma is the contruction
of strong extractors from universal hash functions families (and similarly the construction of
resilient extractors from finite pairwise independent hash functions families).

As we explain in Chapter 2, if one wants to build a secure scheme upon seeded extractors,
the parameter seed will preferably be made public and a tradeoff shall be made between the
independence of seed and the randomness source, the size of the randomness source and the
adversary’s capabilities:

1. We assume that independence between the seed and the randomness source can not be
ensured. One solution is to restrict the randomness sources to use a resilient extractor:
this is the solution proposed in [BST03,BH05]. One second solution would be to restrict
the adversary’s computational capabilities.

2. We assume that independence between the seed and the randomness source can be ensured.
As we also want that seed is public, one solution is to use strong extractors.

The security model that we propose for pseudo-random number generators with input relies
on this second assumption. We therefore exhibit some impossibility results that show that a
scheme, secure when independence between the seed and the randomness source is ensured, can

— 2 —

1.3. Security Models

be broken if there is a correlation between them. In particular, we point an explicit impossibility
result for the pseudo-random number generator named CTR_DRBG, proposed as a standard by
the NIST.

1.3 Security Models

Security Against Source and State Compromise Attacks

Several desirable security properties for stateful pseudo-random number generators and pseudo-
random number generators with inputs have been identified in various standards [ISO11,Kil11,
ESC05,BK12]. These standards consider adversaries with various means: those who have access
to the output of the generator; those who can control (partially or totally) the source of the
generator and those who can control (partially or totally) the internal state of the generator (and
combination of them). Several security notions have been defined: (a) Resilience: an adversary
must not be able to predict future outputs even if he can influence the input used to initialize
or used to refresh the internal state of the generator and Forward security (resp. backward
security): an adversary must not be able to predict past (resp. future) outputs even if he can
compromise the internal state of the generator. Note that backward security implies that the
generator is refreshed with new inputs after compromise.

In 1998, Gutmann [Gut98], and Kelsey, Schneier, Wagner and Hall [KSWH98] gave useful guide-
lines for the design of secure pseudo-random number generators with input. In these guidelines,
they all considered a generator as a couple of algorithms, one to collect inputs and one second
to generate outputs. In 2001, Bellare and Yee [BY03] proposed a dedicated security model to
assess Forward Security, for which a stateful pseudo-random number generator shall be designed
so that it is infeasible to recover any information on previous states or previous output blocks
from the compromise of the current state. In 2002, Desai, Hevia and Yin [DHY02], modelled
secure pseudo-random number generators with input as a pair of algorithms: the Seed Gen-
eration algorithm and the Output Generation algorithm. This model assumes the existence of
an entropy pool, different from the internal state, in which randomness is accumulated, that is
used to refresh the internal state of the generator. In 2003, Barak, Shaltiel and Tromer [BST03]
proposed a security model where an adversary can have some control on the randomness source.
This model explicitly explains the importance of a randomness extractor as a core component
of a generator and proposes an analysis of the settlement of the public parameter seed which is
inherent to this component. An elegant and remarkable work by Barak and Halevi [BH05] mod-
elled pseudo-random number generators with input as a pair of algorithms (refresh, next) and
defined a new security property called robustness based on the design guidelines of [KSWH98]:
this property assesses the behavior of a generator after the compromise of its internal state, but
fails to capture the small and gradual entropy accumulation present in most real-life implemen-
tations.

Security Against Side-Channel Attacks

Under the robustness security notion, an adversary can observe the inputs and outputs of a
generator, manipulate its entropy source, and compromise its internal state. While this notion
seems reasonably strong for practical purposes, it still does not fully consider the reality of em-
bedded devices, which may be subject to side-channel attacks. In these attacks, an adversary can
exploit the physical leakage of a device by several means such as power consumption, execution
time or electromagnetic radiation. While many countermeasures have been proposed to thwart
specific attacks, it was only recently that significant efforts have been made to define generic

— 3 —

Chapter 1. Introduction

security models. Among these, the bounded retrieval model [DLW06,Dzi06], for instance, cap-
tures attacks where the adversary is limited to a bounded amount of leakage over the entire
lifetime of a cryptosystem. The leakage-resilient model [DP08], on the other hand, encompasses
many more attacks with only a limitation in the amount of leakage per execution. The global
amount of leakage is not limited as in the bounded retrieval model. Since the leakage-resilient
model captures most of the known side-channel attacks, it has led to the design of several secure
primitives [Pie09,DP10,FPS12,YS13,ABF13]. Note that another model proposed by Prouff and
Rivain [PR13] fits well with the reality of embedded security by assuming that every elementary
computation in the implementation leaks a noisy function of its input. In that case, the security
of the system directly depends on the level of noise.
In the specific context of pseudo-random number generators, several leakage-resilient models
and constructions have been proposed so far (e,g., [YSPY10,SPY13,YS13]). The work of Yu et
al. [YSPY10], for instance, proposes a very efficient construction of a leakage-resilient pseudo-
random number generators. Likewise, the work of Standaert et al. [SPY13] shows how to obtain
very efficient constructions of leakage-resilient pseudo-random number generators by relying on
empirically verifiable assumptions. None of these works, however, consider potentially biased
random sources.

Security Against Memory Attacks

Designers of pseudo-random number generators with input assume that the internal state S
remains secret to the adversary. However, for software implementations this may be unrealistic
as the internal state can be partially compromised through memory corruption attacks such as
buffer overflows or side-channel attacks. Different memory corruption attacks were presented
by Erlingsson et al. in [EYP10] and by van der Veen et al. in [vdVdSCB12] and faults attacks
against cryptographic schemes were presented by Biham and Shamir in [BS97] and by Boneh
et al. in [BDL01]. For example, recently, the Heartbleed Bug [Hea] affected the OpenSSL
cryptographic library. This bug allows an adversary to get the content of the memory of the
OpenSSL process run by a server (or a client). Although the adversary can control the size of
the compromised memory, the location cannot be controlled. The adversary can get total or
partial access to sensitive information as the internal state of the generator.
We present in Chapter 3 a complete description of the security models for source and state
compromise attacks and we propose a comparison between these models. We also present in
Chapter 3 three proposals of constructions of stateful pseudo-random number generators that
are secure against side-channel attacks.

1.4 Potential Weaknesses
Currently there are numerous implementations of pseudo-random number generators with input
from different providers, and most of them rely on internal directives and parameters that are
poorly documented or even undocumented. In most implementations, a generator contains a
dedicated internal state S which is refreshed periodically with inputs collected from its envi-
ronment (such as network input/output, keyboard presses, processor clock cycles) and secondly
used to compute pseudo-random strings. The randomness collection task is harder and takes
much more time than the output generation task; this is the reason why implementations typi-
cally maintains a dedicated memory as the internal state, which, as we mentioned previously, is
the most critical part of the generator and therefore needs to be kept secure during its update.
The lack of insurance about the generated random numbers can cause serious damages in crypto-
graphic protocols, and vulnerabilities can be exploited by adversaries to mount concrete attacks.

— 4 —

1.5. Contributions of this Thesis

In 1996, Goldberg and Wagner [Net96] completed an analysis of Netscape pseudo-random num-
ber generator used in Version 1.1 of the international version of Netscape’s Solaris 2.4 browser.
Their analysis showed that the creation of the internal state of the generator only depended
on three values: the PID, the PPID and a call to time, mixed together using a linear function
and MD5 hash function. Their analysis also showed that any generated cryptographic key only
relied on these four values, which could easily be guessed by an adversary.

One other striking example is the failure in the Debian Linux distribution [CVE08], where a
commented code in the OpenSSL pseudo-random number generator with input led to insuffi-
cient entropy gathering and allowed an adversary to conduct brute force guessing attacks against
cryptographic keys.

Moreover, in addition to these concrete attacks, cryptographic algorithms are highly vulnerable
to weaknesses in the underlying random number generation process. For instance, several works
demonstrated that if nonces for the Digital Signature Algorithm are generated with a weak
pseudo-random number generator then the secret key can be quickly recovered after seeing a
few signatures (see [NS02] and references therein). This illustrates the need for precise evalua-
tion of pseudo-random number generators with input based on clear security requirements.

Despite this, only few implementations of pseudo-random number generators have been analyzed
since [Gut98,KSWH98].

Concerning system pseudo-random number generators with input, an analysis of Linux pseudo-
random number generators with input dev/random and dev/urandom was done in 2006 by Gut-
terman, Pinkas and Reinman in [GPR06], where they presented an attack for which a fix has
been published. The Windows pseudo-random number generator with input CryptGenRandom
was analyzed in 2006 by Dorrendorf, Gutterman and Pinkas in [DGP07]; the authors showed
an attack on the forward security of the generator implemented in Windows 2000, for which a
fix has been published.

Lenstra, Hughes, Augier, Bos, Kleinjung and Wachter [LHA+12] showed that a non-negligible
percentage of RSA keys share prime factors. Heninger, Durumeric, Wustrow and Halderman
[HDWH12] presented an analysis of the behavior of Linux generators that explains the genera-
tion of low entropy keys when these keys are generated at boot time and the findings of Lenstra
et al.

Concerning application pseudo-random number generators, Argyros and Kiayias [AK12] showed
practical attacks on web applications exploiting randomness vulnerabilities in PHP applications.
Michaelis et al. [MMS13] described and analyzed several Java implementations; they have also
identified some weaknesses. More recently, a flaw in the Android pseudo-random number gener-
ator with input, identified by Kim, Han and Lee in [KHL13], has been actively exploited against
Android-based Bitcoin wallets [SEC13].

1.5 Contributions of this Thesis

New Security Models

Robustness. In 2013, in [DPR+13], in a common work with Dodis, Pointcheval, Vergnaud
and Wichs, we proposed the first contribution of this thesis. We extended the previous work
of [BH05] and we formalized the accumulation process of a pseudo-random number generator

— 5 —

Chapter 1. Introduction

with input.

We introduced the notion of adversarially controlled Distribution Sampler, that allows an ad-
versary to control the distribution of the inputs that are collected by a generator and a new
property of entropy accumulation. We proposed two simpler notions of security, the recovering
security that models how a generator should recover from a compromise of its internal state
by entropy accumulating, and the preserving security, that models how a generator with a non
compromised internal state should behave in presence of adversarial inputs. We complemented
the robustness security model with these stronger adversaries and we proved that taken together,
recovering and preserving security imply the full notion of robustness. We proposed a simple
and very efficient construction that is provably provably secure (i.e. robust) in our new and
stronger adversarial model, based on simple operations in a finite field and a standard secure
pseudo-random number generator G. We also analyzed the pseudo-random number genera-
tor with input proposed by Barak and Halevi. This scheme was proven robust in [BH05] but
we proved that it does not generically satisfy our new property of entropy accumulation. We
presented benchmarks between this construction and the Linux generators that show that our
construction is on average more efficient when recovering from a compromised internal state and
when generating cryptographic keys.

This work is presented in Chapter 4.
Robustness Against Memory Attacks. In 2014, in [CR14], in a common work with Cornejo,
we extended the previous works of [BH05] and [DPR+13] to model the expected security of
pseudo-random number generators with input against Memory Attacks. These attacks captures
real-life situations and refers to situations in which an adversary can recover or modify a sig-
nificant fraction of the secret stored in memory, even if those secrets have never been involved
in any computation, contrary to the class of attacks that rely on computation. Formalization
of security against these attacks is fully described by Akavia, Goldwasser and Vaikuntanathan
in [AGV09]. In our work we focused on a class of memory attacks where the adversary directly
gets access to some fraction of the internal state of the generator or sets this fraction to a chosen
value, we formally extended the security model of [DPR+13] with this new adversary profile and
we proved that the original construction of [DPR+13] can be extended in this model.

This work is presented in Chapter 5.
Robustness Against Side-Channel Attacks. In 2015, in [ABP+15], in a common work with
Abdalla, Belaid, Pointcheval and Vergnaud, we built a practical and robust pseudo-random num-
ber generator with input that can resist side-channel attacks. Since the construction of [DPR+13]
seemed to be a good candidate, we used it as the basis of our work. In doing so, we extended
its security model to integer the leakage-resilient security and we defined stronger properties for
the underlying standard pseudo-random generator for them to resist side-channel attacks. We
analyzed the robust construction based on polynomial hash functions given in [DPR+13] show-
ing why its instantiation may be vulnerable to side-channel attacks. We also proposed three
concrete instantiations with a small overhead. While two of them are adaptation of existing
constructions, the third one is a new proposal which provides a better security at the expense
of a larger internal state. We proved that the whole construction and its instantiations are
leakage-resilient robust and we provided features on the performances for several security levels.
Finally, we gave instantiations of this construction based on AES in counter mode that are only
slightly less efficient than the original instantiation proposed in [DPR+13]. Our instantiations
only require that the implementation of AES in counter mode is secure against Simple Power
Analysis attacks since very few calls are made with the same secret key.

This work is presented in Chapter 6.

— 6 —

1.5. Contributions of this Thesis

Security Analysis of Concrete Pseudo-Random Number Generators

We propose a new analysis of concrete pseudo-random number generators with input that are
used in practice in real-life security products.
Security Analysis of the Linux generators /dev/random and /dev/urandom. In [DPR+13],
we gave a precise assessment of the security of the two Linux pseudo-random number generators
with input, /dev/random and /dev/urandom. In particular, we showed several attacks proving
that these generators are not robust according to our definition, and do not accumulate entropy
properly. These attacks are due to the vulnerabilities of the entropy estimator and the internal
mixing function of the generators.
Security Analysis of OpenSSL and Java Generators In [CR14], we gave an analysis
of real-life generators using the security model of robustness against memory attacks and we
demonstrated how it can help to identify new vulnerabilities. In particular, we showed that a
full internal state corruption is not necessary to compromise a lot of concrete implementation
of real-life generators, instead only a partial one may be sufficient. We characterized how a
generator can be attacked in order to produce a predictible output and we identified how many
bits of the internal state are required to mount an attack against the generator. In this aim,
we characterized and gave a new security analysis of pseudo-random number generators with
input implementations from widely used providers in real-life applications: OpenSSL, OpenJDK,
Android, Bouncycastle and IBM. To our knowledge, while intensively used in practice, these
generators had not been evaluated with recent security models. Our analysis revealed new
vulnerabilities of these generators due to the implementation of their internal state in several
fields that are not updated securely during generators operations.

This work is fully described in Chapter 7.

— 7 —

Chapter 1. Introduction

— 8 —

Chapter 2

Preliminaries

Throughout this thesis we refer to discrete probability distributions. For notations, definitions
and theorems presented in this Chapter, we refer to [GB01,Sho06,BR06,Vad12].

2.1 Probabilities

Random Variable. Let X be a random variable over a sample set S. Then X defines a
probability distribution PX : S → [0, 1], where PX(x) := Pr[X = x] called the distribution of
the random variable X. In this thesis, we will denote by X both the random variable X and
the distribution of the random variable X and we denote x $← X when x is sampled according
to X. The support of a random variable X is the set supp(X) = {x : Pr[X = x] > 0}. If A is
an algorithm, then A(X) denotes the random variable that samples x $← X and returns A(x).

Uniform Distribution. Let X be a random variable over a non empty finite sample set S.
If ∀x ∈ S, PX(x) = 1

|S| , the random variable X is said uniformly distributed over S, that we

denote X $← S. Let n > 0 be an integer, the uniform distribution over the sample set {0, 1}n is
denoted Un.

Independence. Let X and Y be two random variables. Then X and Y are independent if for
all x and y,

Pr[(X = x) and (Y = y)] = Pr[X = x] · Pr[Y = y].

Let {Xi}i∈I be a finite family of random variables. The family is pairwise-independent if for all
i, j ∈ I such that i 6= j, the random variables Xi and Xj are independent.

2.2 Indistinguishability

Statistical Indistinguishability. Let n > 0 be an integer and let X and Y be two random
variables over the sample set {0, 1}n. The statistical distance between X and Y is equal to:
SD(X,Y) = 1

2
∑
x |Pr[X = x]− Pr[Y = x]|.

Theorem 1 shows that the statistical distance is a distance. In particular, it satisfies the triangle
inequality, that will be useful to build reductions between security notions.

Theorem 1 (Statistical Distance Properties [Sho06]). Let n > 0 be an integer and let X, Y and
Z be random variables over the sample set {0, 1}n. Then: 0 ≤ SD(X,Y) ≤ 1, SD(X,X) = 0,
SD(X,Y) = SD(Y,X) and SD(X,Z) ≤ SD(X,Y) + SD(Y, Z).

— 9 —

Chapter 2. Preliminaries

Theorem 2 will also be useful when we build reductions between security notions. In particular,
it implies that if the statistical distance between two random variables X and Y is small, no
efficient algorithm can distinguish between them.

Theorem 2 (Statistical Distance Properties [Sho06]). Let n > 0 be an integer and let X and
Y be random variables over the sample set {0, 1}n. Then for every subset T ⊆ {0, 1}n, we have
SD(X,Y) ≥ |Pr[X ∈ T]− Pr[Y ∈ T]|.

Finally, the random variables X and Y are said ε-close if SD(X,Y) ≤ ε.
Computational Indistinguishability. Let X and Y be two random variables over {0, 1}n,
let t be an integer and let A be a probabilistic algorithm running in time t, that takes as input
a bitstring in {0, 1}n. Note that the running time t includes both the computation time and the
pre-computation time (e.g. memory setting). The t-computational distance between the two
random variables X and Y is equal to CDt(X,Y) = maxA≤t |Pr[A(X) = 1] − Pr[A(Y) = 1]|
where the notation maxA≤t denotes that the maximum is over all A running in time at most t.
Theorems 1 and 2 can be stated for the computational distance.

The random variables X and Y are said (t, ε)-close if for any probabilistic algorithm A running
within time t, CDt(X,Y) ≤ ε. When t = ∞, meaning A is unbounded, then X and Y are
ε-close.

2.3 Hash Functions
Let p and m be integers, such that m < p. A hash function is a function h : {0, 1}p → {0, 1}m.

Pairwise Independence. A family of hash functions H = {h : {0, 1}p → {0, 1}m} is pairwise-
independent:

1. ∀x ∈ {0, 1}p, h(x) is uniformly distributed in {0, 1}m, when h $← H.

2. ∀x1 6= x2 ∈ {0, 1}p, the random variables h(x1) and h(x2) are independent, when h $← H.

The two above conditions can be combined as follow: ∀x1, x2 ∈ {0, 1}p,∀y1, y2 ∈ {0, 1}m,

Pr
h

$←H
[h(x1) = y1 and h(x2) = y2] = Pr

h
$←H

[h(x1) = y1] · Pr
h

$←H
[h(x2) = y2]

= 1
22m

Universality. A hash functions family H = {h : {0, 1}p → {0, 1}m} is ε-universal if for any
inputs x1 6= x2 ∈ {0, 1}p we have:

Pr
h

$←H
[h(x1) = h(x2)] ≤ ε.

2.4 Game Playing Framework
In this work, we focus on giving precise security properties for systems. In cryptography, a
scheme has reductionist security (or provable security), as opposed to heuristic security, if its
security requirements can be stated formally in an adversarial model where the capabilities of
the adversary are formally described with clear assumptions. This formal description includes
the potential accesses of the adversary to the system and its computational resources. In this
approach, the security of a cryptographic scheme is based on algorithmic problems that are

— 10 —

2.5. Shannon Entropy, Min-Entropy

supposed to be hard to solve. The scheme is secure as long as the underlying algorithmic
problems are difficult and the security of the scheme is proven by reduction to the security of
the underlying algorithmic problems.

For our security definitions and proofs we use the code-based game playing framework of [BR06].
A security game involves a challenger and an adversary, denoted A. The adversary will always
be modelled with a probabilistic algorithm running in time t. The challenge of the adversary is
to distinguish between two experiments, which are both indexed by a Boolean bit b.

Interactions between the challenger and the adversary are modeled with procedures. To describe
procedures, we use the expression ’proc. ’. When some parameters are adversarially chosen, they
are used as input to the procedures. When procedures generate some outputs (as a result of a
computation, for example):

• The output is given with a directive named OUTPUT when the output is given to the
adversary and the security games continues.

• The output is given with a directive named RETURN when the output is the result of the
security game (which is therefore terminated).

A security game GAME has an initialize procedure, procedures to respond to adversary oracle
queries, and a finalize procedure. A security game GAME is executed with an adversary A as
follows. First, challenger executes procedure initialize, and its outputs are given as inputs to A.
Then A executes, its oracle queries being answered by the corresponding procedures of GAME.
In this description, A can be restricted to a limited number or order of oracle queries. When A
terminates, its output becomes the input to the finalize procedure.

The output of the finalize procedure is called the output of the security game GAME, and we
denote the output of the adversary as GAMEA. Finally we denote the event that this output
takes value y as GAMEA ⇒ y and we define the advantage of A in GAME as

AdvGAME
A = 2× Pr[GAMEA ⇒ 1]− 1.

Our convention is that Boolean flags are assumed initialized to false and that the running time
of the adversary A is defined as the total running time of the game with the adversary in
expectation, including the procedures of the game.

To prove a reduction from the security of a scheme to the intractability of an algorithmic problem,
we define sequences of security games as follows: the first game is the game that defines the
security of the scheme, the last game is the game that defines the intractability of the algorithmic
problem, and the games in between describe successive transitions from the two games. We then
estimate the distance between the successive security games and the estimation of the reduction
uses Theorems 1 and 2 as the properties of the computational distance will ensure that we can
bound the (global) distance between the two games by the sum of all distances.

2.5 Shannon Entropy, Min-Entropy
We now model the concept of ’how random’ is the distribution of a random variable. We will
consider that a phenomenon is described by a random variable and we want to model ’how ran-
dom’ its distribution is. We will name sources of randomness or sources the random variables
that will be used because they ’look random’ or they ’contain a certain amount of randomness’.
Hence a source on {0, 1}p is a random variable on {0, 1}p.

We need a tool to estimate the ’amount of randomness’ that is contained in a given source. In

— 11 —

Chapter 2. Preliminaries

doing so, we will be able to formalize that we can ’extract k bits of randomness’ from a source
that contains ’n bits of randomness’, for k ≤ n. This idea is captured with the notion of entropy,
that is given in Definition 1.

The first notion of entropy (the Shannon entropy) is described in the seminal paper of Shan-
non [Sha48]. Consider a sequence of random variables X1, · · · , Xn, of distribution probabilities
p1, · · · , pn. Shannon shows that entropy is the only function that satisfies the three properties:
(a) it shall be continuous (b) if pi = 1

n , then it shall be maximal (when every outcome is equally
like the uncertainty is greatest and hence so is the entropy) and (c) it should be additive. This
leads to the notion of ’Shannon entropy’, denoted H1 below.

The second notion of entropy (the min-entropy) was first used as a measure of randomness in
the seminal work of Chor and Goldreich [CG85], as explained in the survey of Shaltiel [Sha02].
This notion is very close to the notion of randomness extractor, a notion that we will describe
in Section 2.6, in the sense that a necessary condition to extract randomness from distributions
is that they shall have high min-entropy.

Definition 1 (Entropy). Let X be a random variable on a sample set S.

• The Shannon entropy of X is H1(X) = Ex∈S [− log Pr[X = x]].

• The min-entropy of X is H∞(X) = minx∈S{− log Pr[X = x]}.

First note that if X is uniform on (e.g.) {0, 1}128, then H∞(X) = H1(X) = 128. However
when X is not uniform, the two notions give different values. Let us illustrate this with one
example. Consider the discrete random variable X defined on {0, 1}128, where Pr[X = 0] = 2−7

and Pr[X = y, y 6= 0] = 1−2−7

2128−1 . Then H1(X) = 127, 006 and H∞(X) = 7.

Hence the two notions of entropy describe a different deviation to the uniform distribution: the
estimated Shannon entropy H1(X) is close to 128, whereas its min-entropy H∞(X) is on the
opposite very low and is such that Pr[X = 0] = 2−H∞(X), setting a direct relation between
H∞(X) and the set of non-uniformity.

Let us now illustrate why the Shannon Entropy can not be used for cryptographic purposes.
Suppose now that we use directly the source X to generate a 128-bits encryption key for a sym-
metric algorithm (AES for example). Recall that an encryption scheme is a triple (key, enc, dec),
where key is a probabilistic algorithm for key generation, enc is the encryption algorithm and
dec is the decryption algorithm. For each key K sampled by key and for all x, we have that
enc(K, dec(K, x)) = x. Consider the (simple) security game ENC described in Figure 2.1, where
the key sampling algorithm key is the algorithm that samples a key of distribution X. Consider

proc. initialize()
K $← X;
b

$← {0, 1}

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. enc-ror(m0,m1)
c0 ← enc(K,m0)
c1 ← enc(K,m1)
OUTPUT cb

Figure 2.1 – Procedures in Security Game ENC

now an adversary A in game ENC. As the key K is sampled from the random variable X, with
probability 2−7, we have that K = 0. Hence with probability 2−7, A can distinguish between

— 12 —

2.6. Randomness Extractors

enc(K,m0) and enc(K,m1), for all m0 and m1 and for all encryption scheme (key, enc, dec). How-
ever, it is expected that the outputs c0 and c1 are distinguishable with probability 2−128. If one
considers Shannon entropy in place of min-entropy, one could have argued that the probability of
distinguishing between c0 and c1 is close to 128, which is wrong. Hence there is a direct relation
between the min-entropy of a random variable and the advantage for an adversary in distinguish-
ing between two computations in a security game where the random variable is used as a source
of randomness. In other words, H1 measures the amount of randomness that a source contains
on average, (as justified with the use of the expectation E) while H∞ measures the amount of
randomness on the worst-case, which are typically the cases that an adversary will use to break
a security scheme. This justifies the notion of k-sources (or distributions with min-entropy at
least k) as the formalization of the notion of sources ’containing k bits of randomness’.

Definition 2 (k-source). A source X is a k-source if H∞(X) ≥ k.

2.6 Randomness Extractors
Randomness is concretely generated from sources which are potentially biased, where the only
known information is that they potentially contain some amount of randomness, or, as formalized
in Definition 2, they are k-sources. We therefore need a map that extracts the randomness that
is actually contained in these sources, and produces an output which is close to uniform. These
maps are named extractors.

Let first illustrate this idea with the two following examples:

• Extractor for Independent Sources. Consider a sequence of independent sources of
bits Xi ∈ {0, 1} where for all i,Pr[Xi = 1] = δ (i.e., all sources are biased with the
same bias). Consider the following map Extract : {0, 1} × {0, 1} → {0, 1} ∪ {∅}, where:
Extract(0, 0) = Extract(1, 1) = ∅,Extract(1, 0) = 1 and Extract(0, 1) = 0. Then the output
of Extract is uniformly distributed. This map is known as the ’Von Neumann extractor’,
as described in [VN51].

• Extractor for Independent-Bit Sources. Consider a sequence of independent sources
of bits Xi ∈ {0, 1}, where for all i,Pr[Xi = 1] = δi,Pr[Xi = 0] = 1− δi, 0 < δ ≤ δi ≤ 1− δ
(i.e., all sources are biased with different bounded biases). Consider the following function
Extract : {0, 1}p → {0, 1}, where Extract(x1, · · · , xp) = x1 ⊕ · · · ⊕ xp. Then if p sources
are used, each bit output by Extract has bias in the interval [1

2 − (1− 2δ)p, 1
2 + (1− 2δ)p],

hence:
|Pr[yi = 0|y1, · · · , yi−1]− Pr[yi = 1|y1, · · · , yi−1]| < (1− 2δ)p.

Therefore the outputs of Extract are indistinguishable for large p. This function is described
by Santha and Vazirani in [SV84] and is also referred to as the ’parity extractor’.

The previous ’parity extractor’ is an example of deterministic extractors, as defined by Nisan
and Zuckerman in [NZ93]. A deterministic extractor is formalized in Definition 3. Note that
formally, the ’Von Neumann extractor’ is not an extractor, as the definition supposes that an
output is generated for any input (the output ∅ is not possible).

Definition 3 (Deterministic Extractors). Let p and m be integers, such that p ≥ m. Let C be a
class of sources on {0, 1}p. An ε-deterministic extractor for C is a function Extract : {0, 1}p →
{0, 1}m, such that for every X ∈ C, Extract(X) and Um are ε-close.

Note that Definition 3 requires that the function Extract works for all the sources X that belong
to the class C. Therefore, if one wants to extract randomness from sources, these distributions

— 13 —

Chapter 2. Preliminaries

do not need to be known: for example, in case of the ’parity extractor’ presented before, the
bias δ do not need to be known. Moreover the link between min-entropy and extraction comes
directly from Definition 3, as a necessary condition to extract m bits of randomness from a
distribution X is that H∞(X) ≥ m.

Let us now describe another class of sources, named Santha-Vazirani sources, or δ-Unpredictable-
bit sources. These sources are also described in [SV84]. Consider the sequence of sources of bits
Xi ∈ {0, 1}:

1− δ
2 ≤ Pr[Xi = 0|X1 = x1, X2 = x2, · · · , Xi−1 = xi−1] ≤ 1 + δ

2 , where xi ∈ {0, 1}.

Note that this class of sources is similar to the class of Independent-Bit Sources, as for all
sources Xi, the bias is also bounded between δ and (1 − δ), however, in this class of sources,
the independence between the sources is not required. Lemma 1 shows that the deterministic
extraction of more than a single bit is impossible for this class of sources.

Extract−1(0)
Extract−1(1)

S
{0, 1}Extract

Figure 2.2 – Impossibility of Deterministic Extraction for δ-Unpredictable-bit sources

Lemma 1. For every p ∈ N, δ > 0 and every map Extract : {0, 1}p → {0, 1}, there exists a δ-
Unpredictable-bit source X such that Pr[Extract(X) = b] ≥ 1

2(1 + δ), for at least one b ∈ {0, 1}.

Proof. Partition the set {0, 1}p between Extract−1(0) and Extract−1(1). Then at least for one
b ∈ {0, 1} we have that |Extract−1(b)| ≥ 2p−1. As illustrated in Figure 2.2, consider a subset
S ⊆ Extract−1(b), of size 2p−1 and the source X such that ∀x ∈ {0, 1}p,Pr[X = x] = 1+δ

2p if
x ∈ S and Pr[X = x] = 1−δ

2p if x /∈ S. Then X is a δ−Unpredictable-bit Source and we have
that:

Pr[Extract(X) = b] ≥ Pr[X ∈ S] = 1
2(1 + δ).

As a consequence of the previous examples, one objective of research on deterministic extractors
is to identify the richest classes of randomness sources for which deterministic extraction is
possible, and construct explicit extractors for those sources.

In this thesis, we do not rely on the potential results from this line of research, as we want
to build schemes that do not depend on the structure of the randomness source. As described
before, the notion of k-source comes naturally as it is the most general way to formalize that a
source contains k bits of randomness. Therefore, we will assume in the following that all sources
of randomness are k-sources.

Unfortunately, Lemma 2 below shows that the deterministic extraction of even a single bit is
impossible for this class of sources and motivates the use of a more elaborate notion of extractor
that uses a second source of randomness called seed.

Lemma 2. For every map Extract : {0, 1}p → {0, 1}, there exists a (p− 1)-source X such that
Extract(X) is constant.

— 14 —

2.6. Randomness Extractors

Extract−1(0)
Extract−1(1) {0, 1}Extract

Figure 2.3 – Impossibility of Deterministic Extraction for k-sources

Proof. Partition the set {0, 1}p between Extract−1(0) and Extract−1(1), as illustrated in Fig-
ure 2.3. Then at least for one b ∈ {0, 1} we have that |Extract−1(b)| ≥ 2p−1. Define the
source X as the uniform distribution on Extract−1(b), where |Extract−1(b)| ≥ 2p−1. Then X is
a (p− 1)-source and Extract(X) = b is constant.

Consider now that the function Extract is chosen randomly from the set of all functions from
{0, 1}p to {0, 1} and suppose that one wants to exhibit a similar source than the one from the
previous Lemma. Recall that the set of all functions from {0, 1}p to {0, 1} is of size 22p , therefore
we can consider that a random choice for the function Extract is done in the set {Extracti}i=1···22p .
Suppose that one defines again the source X as the uniform distribution on Extract−1

i (b), where
|Extract−1

i (b)| ≥ 2p−1, for a randomly chosen i ∈ {1 · · · 22p}, then as before, X is a (p−1)-source.
However, for j 6= i, Extractj(X) is balanced with high probability, as illustrated in Figure 2.4.
Therefore one cannot construct a (p− 1)-source as in Lemma 2. The formal statement is given
in the proof of Theorem 3 below based on the probabilistic method.

X

Source X definition

X
Extract−1

1 (0)
Extract−1

1 (1) {0, 1}Extract1

...
...

X
Extract−1

i (0)
Extract−1

i (1) {0, 1}Extracti

...
...

XExtract−1
22p (0)

Extract−1
22p (1) {0, 1}Extract22p

Figure 2.4 – Randomly Chosen Function Extract

— 15 —

Chapter 2. Preliminaries

This illustrates that the impossibility result of Lemma 2 can be overcome with the probabilistic
method: if we allow to choose the extraction function at random, then, with a high probability,
it will become possible to extract the randomness from each k-source. To choose the extractor
at random, we will assume that it belongs to a family of functions (which can be the family of all
functions from {0, 1}p to {0, 1}m) and we uniformly select a random element from this family.
The selection process implies choosing a random parameter called seed ∈ {0, 1}s and setting the
extraction function as Extractseed = Extract(., seed).
This discussion leads to the notion of seeded extractor, as in Definition 4.

Definition 4 (Seeded Extractors). A function Extract : {0, 1}p × {0, 1}s → {0, 1}m is a (k, ε)-
seeded extractor if for all k-sources X, the distributions Extract(X, seed) and Um are ε-close,
where seed $← {0, 1}s is chosen independently of X.

Hence the difference between deterministic and seeded extractors relies on the use of the sup-
plementary random parameter seed $← {0, 1}s. Moreover, the above definition means that the
extraction works for all k-sources. In addition, we can now prove that (k, ε)-extractors exist,
with Theorem 3 below. The proof of Theorem 3 uses the Chernoff bound:

Proposition 1 (Chernoff Bound [Sho06]). Let Z1, Z2, · · · , Zn be independent random variables
such that 0 ≤ Zi ≤ 1, ∀i. Let Z =

∑
i Zi and µ = E[Z] =

∑
i E[Zi]. Then for all ε > 0,

Pr[|Z − µ| ≥ εµ] ≤ 2 exp(−ε
2

3 µ).

Theorem 3. For every p ∈ N, k ∈ [0, · · · , p], there exists a (k, ε)-extractor Extract : {0, 1}p ×
{0, 1}s → {0, 1}m, with m = k + log(p− k) and s = log(p− k) + 2 log(1/ε) +O(1).

Proof. The proof uses the probabilistic method. We give the proof for flat k-sources (that is, with
uniform distribution over a subset of {0, 1}p of size 2k), the proof extends to general k-sources
(see [Vad12]). Consider (a) a randomly chosen function Extract : {0, 1}p×{0, 1}s → {0, 1}m (b)
a flat k-source X and (c) T a subset of {0, 1}m.
Then as X is a flat k-source, the random variable (X, seed) is a flat (k + s)-source.
Consider the (indicator) random variables Zx,y = 1Extract(x,y)∈T and the random variable:

Z =
∑

(x,y)∈supp(X,seed)
Zx,y =

∑
(x,y)∈supp(X,seed)

1Extract(x,y)∈T

Then as Extract is chosen randomly and seed is sampled independently ofX, the random variables
Zx,y are independent and E(Zx,y) = |T |

2m and as (X, seed) is uniform on its support, Pr[X =
x, seed = s] = 1

2k+s in the support only and therefore E(Z) = 2k+s|T |
2m . We can apply Proposition 1

to the random variables Zx,y:

Pr(|Z − 2k+s|T |
2m | ≥ ε · 2k+s|T |

2m) ≤ 2 exp(−ε
2

3
2k+s|T |

2m),

which implies, with ε = ε′ 2
m

|T | :

Pr(| Z2k+s −
|T |
2m | ≥ ε

′) ≤ 2 exp(−ε
′2

3
2k+s2m

|T |
).

Then as Pr[Um ∈ T] = |T |
2m , the last inequality shows that:

Pr(|Pr[Extract(X, seed) ∈ T]− Pr[Um ∈ T]| ≥ ε′) ≤ 2 exp(−ε
′2

3
2k+s2m

|T |
),

— 16 —

2.6. Randomness Extractors

Then as 2m
|T | ≥ 1, we have that:

Pr(|Pr[Extract(X, seed) ∈ T]− Pr[Um ∈ T]| ≥ ε′) ≤ 2 exp(−ε
′22k+s

3).

There are 22m possible sets T ∈ {0, 1}m and1 (2p
2k
)
≤
(

2pe
2k
)2k

flat k-sources in {0, 1}p. By the
union bound over all possible sets and all possible flat k-sources, the probability that Extract is
a (k, ε)-extractor for all flat k-sources satisfies:

Pr(max
T⊆{0,1}m

|Pr[Extract(X, seed) ∈ T]− Pr[Um ∈ T]| ≤ ε′) ≤ 22m
(2pe

2k
)2k

2 exp(−ε
′22k

3),

Then 22m
(

2pe
2k
)2k

2 exp(− ε′22k+s

3) < 1 as soon as 2m + 1 + 2k(p− k + log(e)) < ε′22k+s

3 , which is
satisfied if (a) 6 · (2m + 1) < ε′22k+s and (b) if 6 · 2k(p− k+ log(e)) < ε′22k+s, that are satisfied
if (a) m = k + s− 2 log(1

ε′)− log(12)− 1 and (b) s = log(p− k) + 2 log(1
ε′) + log(12) + 1.

Doing this, we can consider that the extraction is defined over the product set {0, 1}p ×{0, 1}s,
where {0, 1}p will be the set from which randomness will be extracted and {0, 1}s will be the
set from which the parameter seed will be chosen. Hence the new objective is to analyze the
statistical distance of the distribution Extract(X, seed) and the uniform distribution, where X is
a k-source (H∞(X) ≥ k) and seed $← {0, 1}s.

The use of a second random parameter is not sufficient to guarantee that the extraction is
possible for any source. It is indeed straightforward to see that there is a new impossibility
result (Lemma 3 below) when the source of parameter seed and the randomness source are not
independent. The proof of Lemma 3 is the same as the proof of Lemma 2.

Lemma 3. For every map Extract : {0, 1}p × {0, 1}s → {0, 1}m and every seed ∈ {0, 1}s, there
exists a (p− 1)-source X (depending on seed) such that Extract(X, seed) is constant.

Lemma 3 shows that we face two issues: (a) the generation of the uniformly random parameter
seed and (b) the potential correlation between seed and the source from which we will try to
extract randomness. Hence in an adversarial viewpoint, we need to consider situations where
the seed or the environment may be controlled by an adversary, and situations where a potential
correlation between the randomness source and seed may be exploited to mount an attack against
the scheme. This may occur for example in a hardware device, that extracts from physical sources
of randomness of a computer (e.g. timing of various events). These sources may be modified
by the device and hence this behavior implies correlations between seed and the randomness
sources. Therefore, we need to add optional requirements, either on the independence between
the source and seed, or on the capabilities of the adversary.

Suppose now that the independence between the source and seed cannot be ensured and we
want to model situations where we need to perform randomness extraction. As noted before,
to overcome the impossibility result, we mainly have two options: (a) restrict the randomness
source to a given family of k-sources (which is a similar strategy as for deterministic extractors)
or (b) restrict the adversary A.

We first propose to limit the extraction to a finite family of k-source for which we are sure that
extraction is possible. This leads to the notion resilient extractor, as in Definition 5.

1For n, m ∈ N, such that 2 ≤ m ≤ n,
(
n
m

)
≤
(
ne
m

)m
— 17 —

Chapter 2. Preliminaries

Definition 5 (Resilient Extractor). A function Extract : {0, 1}p×{0, 1}s → {0, 1}m is a (k, ε, δ)-
resilient extractor if for all finite families of k-sources F , with probability at least (1 − δ) over
the choice of seed $← {0, 1}s, the distributions (seed,Extract(X, seed)) and (seed,Um) are ε-close,
for all X ∈ F .

Note that to simplify the number of parameters, one can set ε = δ in the above definition, in
this case, we refer to (k, ε)-resilient extractors.

Resilient extractors stand for (a) bounded family of randomness source and (b) correlated seed
and source. Definition 5 can be expressed in terms of hash functions: Let H = {h : {0, 1}p →
{0, 1}m} be a family of hash functions. Then H is a (k, ε)-resilient extractor if for any random
variable I over {0, 1}p with H∞(I) ≥ k, the distributions h(I) and Um are ε-close with probability
(1− δ) over the choice of h, where Um is uniformly random over {0, 1}m. An important result is
the Leftover Hash Lemma, presented in Section 2.7, that constructively leads resilient extractors
from pairwise independent families of hash functions.

This notion of extractor is used in the model of Barak, Shaltiel and Tromer [BST03], described
in Section 3.5 and in the model of Barak and Halevi [BH05], described in Section 3.6. In these
models, a finite family of k-sources is first chosen, then the random parameter seed is chosen
and finally a source is adversarially chosen (and therefore without independence with seed).

Suppose now that we do not want to limit the extraction to a finite family of sources. Definition 6,
which generalizes Definition 5, describes the objectives for a randomness extractor.

Definition 6 (Seed Dependent Extractor). A function Extract : {0, 1}p×{0, 1}s → {0, 1}m is a
seed-dependent (k, ε)-extractor if for all probabilistic adversaries A who take as input a random
seed seed $← {0, 1}s and output X ← A(seed) of entropy H∞(X|seed) ≥ k, the distributions
(seed,Extract(X, seed)) and (seed,Um) are ε-close.

One way to restrict adversary A is to force its running time to be less than the running time of
the extractor Extract. This idea was formalized by Trevisan and Vadhan in [TV00]. In this work,
they show how seed-dependent randomness extraction is possible from a samplable distribution,
provided that the complexity of the extractor is larger than the complexity of the adversary A
that generates the source X. In particular, they show that if the adversary’s running time is
larger than the extractor’s one by a factor of t, it can fix roughly log(t) bits of the output. Note
that this result motivates the introduction of randomness condensers, as described in [DRV12].
In this work, we do not consider randomness condensers but focus on randomness extractors, as
we will want that the output of the extraction phase is ε-close to uniform, to apply a standard
pseudo-random number generator G after extraction. Hence to consider adversarial situations
where seed and the source may be correlated, without restriction on the randomness source, it
will be necessary to restrict the adversary A where its running time is less than the running
time of the extractor. To conclude, seed-dependent extractors stand for (a) unbounded family
of randomness source, (b) correlated seed and source and (c) limited adversary.

Suppose now that, as opposed to seeded extractors, we do not want to restrict the running time
of the adversary A. As pointed, we need to ensure that independence between the source and
the seed can be ensured. In addition, we want to use the ’extra’ randomness seed in Definition 4
as less as possible. This leads to the notion of strong extractors, given in Definition 7, where
the randomness seed is maintained by the extractor, and therefore (a) it can be reused through
successive calls to Extract and (b) it can be made public.

Definition 7 (Strong Extractors.). A function Extract : {0, 1}p × {0, 1}s → {0, 1}m is a strong
(k, ε)-extractor if for all probabilistic adversaries A who sample a distribution X of entropy

— 18 —

2.7. Leftover Hash Lemma

H∞(X) ≥ k, the distributions (seed,Extract(X, seed)) and (seed,Um) are ε-close, where seed←
{0, 1}s and X is independent of seed.

This definition ensures that once random parameter seed is chosen, extraction is processed and
the same parameter can be reused for the next extraction.
Definition 7 can be expressed in terms of universal hash functions: The hash functions family H
is a (k, ε)-extractor if for any random variable I over {0, 1}p with H∞(I) ≥ k, the distributions
(seed, hseed(I)) and (seed,Um) are ε-close where seed is uniformly random over {0, 1}s. The
Leftover Hash Lemma (Lemma 4) constructively builds a strong extractor from a universal hash
functions family.
We summarize the different notions of extractors seen in this section with Table 2.1. The five
extractor types are given (deterministic, resilient, seed-dependent, seeded, strong) and for each
type, we precise:

1. If the parameter seed shall be independent from the randomness source (which we denote
with symbol 6) or can be correlated to it (which we denote with symbol 3).

2. If the parameter seed shall remain secret (which we denote with symbol 6) or can be made
public (which we denote with symbol 3).

3. If existence of an extractor of a given type implies either restriction on the number of
randomness source or a restriction on the capacities of the adversary A (which we denote
with symbol 6) or no restriction is needed (which we denote with symbol 3).

As shown in Table 2.1, a consequence of Lemma 3 is the impossibility to build an randomness
extractor that posseses ’all’ the properties: for which (a) independence between seed and the
randomness source is not required, (b) secrecy of seed is not required, (c) a restriction on the
number of randomness source or a restriction on the capacities of the adversary A shall be
enforced. This table shows that the use of a randomness extractor in the design of security

Table 2.1 – Tradeoff for Randomness Extractors

Extractor Type seed Number of Attacker
Correlation Secrecy Sources Capacities

Deterministic ∅ 6 3

Resilient 3 3 6 3

Seed-dependent 3 3 3 6

Seeded 6 6 3 3

Strong 6 3 3 3

Impossible (Lemma 3) 3 3 3 3

∅: no parameter seed is used, 3: possible correlation, public seed / no restriction on the
source or on A, 6: independence required, private seed, restrictions on the source or on A.

scheme shall be done with care as any choice seems to have a drawback.

2.7 Leftover Hash Lemma
We present two versions of the Leftover Hash Lemma. The first one constructively builds strong
extractors from universal hash functions families and the second one builds resilient extractors
from pairwise independant hash functions families. This important Lemma was first formally
stated in [HILL99].

— 19 —

Chapter 2. Preliminaries

Lemma 4 (Leftover-Hash Lemma for Universal Hash Functions Family Family). Assume that
the hash functions family H = {h : {0, 1}p → {0, 1}m} is ρ-universal where ρ = (1 + α)2−m for
some α > 0. Then, for any k > 0, it is also a strong (k, ε)-extractor for ε = 1

2
√

2m−k + α.

Proof. We recall the proof described in [Vad12]. Fix any I 6= I ′ ∈ {0, 1}p, with H∞(I) ≥ k

and H∞(I ′) ≥ k. Fix X ∈ {0, 1}s independently of I and I ′ and U $← {0, 1}m. First consider
the statistical distance between (X,hX(I)) and (X,Um). As in [Vad12], we introduce a second
notion of distance between two random variables X and Y :

∆2(X,Y) =
√∑

x

|Pr[X = x] Pr[Y = x]|,

and we define the collision probability of a random variable X as the probability that two
independent samples of X are equal: CP(X) =

∑
x Pr[X = x]2.

Then we can bound the statistical distance between (X,hX(I)) and (X,Um) by their ∆2 distance:

SD((X,hX(I)), (X,Um)) ≤ 1
2
√

2s · 2m ·∆2((X,hX(I)), (X,Um)),

and we have ∆2((X,hX(I))2 = ∆2((X,hX(I)), (X,Um))2 + 2−m−s.
Now as ∆2((X,hX(I))2 ≤ CP(X) · (PrI [I = I ′] + PrX [I 6= I ′ | hX(I) = hX(I ′)], and as I and
I ′ are sampled independently of X, as H∞(I) ≥ k and H∞(I ′) ≥ k and as H is 2−m · (1 + α)-
universal:

∆2((X,hX(I))2 ≤ 2−s · (2−k + 2−m · (1 + α))

Finally, with α = 4 · ε2 − 2m−k:

SD((X,hX(I)), (X,U)) ≤ 1
2 ·
√

2s · 2m ·

√
4 · ε2

2s · 2m
≤ ε

Following, the hash functions family H = {hX : {0, 1}p → {0, 1}m}X∈{0,1}s , is a (k, ε)-strong
extractor for ε = 1

2
√

2m−k + α.

As Lemma 4 shows, it is possible to construct strong extractors from universal hash functions
family. This results motivates the use of such functions to build security schemes that rely
on randomness. Note that in the proof of Lemma 4, the independence between the samples
I, I ′ and seed is used to estimate the collision probability of the joint distribution (X,hX(I)):
CP(X,hX(I)) = ∆2((X,hX(I))2. In situations where the independence between the samples
I, I ′ and seed can not be ensured, we can prove an alternative version of Lemma 4 with a
stronger requirement: we require that the hash functions family is pairwise independent, to
obtain a resilient extractor. The version of the Leftover-Hash Lemma for pairwise independent
hash functions family can be stated similarly as Lemma 4.

2.8 Pseudo-Random Number Generators

2.8.1 Standard Pseudo-Random Number Generator

A secure pseudo-random number generator is an extending function, that on input a random
bit string S (named a seed), outputs a longer bit string which is indistinguishable from random.
Note that the notion of seed shall not be confused with the notion of seed explained in the
previous section for randomness extractors. Here the parameter seed models a secret, random
input of the pseudo-random number generator.

— 20 —

2.8. Pseudo-Random Number Generators

S G R

Figure 2.5 – Standard Pseudo-Random Number Generator

Definition 8 (Standard Pseudo-Random Number Generator). Let p and ` be integers such that
p < `. A standard pseudo-random number generator is a function G : {0, 1}p → {0, 1}`, that
takes as input a bit string S (called a seed), of length p and outputs bit string R, of length ` bits.

proc. initialize
S

$← {0, 1}p;
b

$← {0, 1};

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. next-ror
R0 ← G(S)
R1

$← {0, 1}`
RETURN Rb

Figure 2.6 – Procedures in Security Game PR

Consider the security game PR described in Figure 2.6. In this security game, the challenger
generates a random input S and challenges the adversary A on its capacity to distinguish the real
output of the pseudo-random number generator from random. Definition 9 formalizes security
for a standard pseudo-random number generator.

Definition 9 (Security of a Standard Pseudo-Random Number Generator). A standard pseudo-
random number generator is (t, ε)-secure if for any adversary A running in time at most t, the
advantage of A in game PR is at most ε.

2.8.2 Stateful Pseudo-Random Number Generator

A stateful pseudo-random number generator is an iterative and stateful algorithm, that at
each invocation produces some output bits as a function of the current seed and updates the
seed. The associated security property generalizes the security of a standard pseudo-random
number generator, as the adversary is challenged after several iterations of the generator on its
capability to distinguish the output of the generator from random, whereas in Definition 8, only
one iteration is considered.

Definition 10 (Stateful Pseudo-Random Number Generator). A stateful pseudo-random num-
ber generator is a couple of algorithms (key, next), where key is a probabilistic algorithm that takes
no input and outputs an initial state S ∈ {0, 1}p, next is a deterministic algorithm that, given
the current state S, outputs a pair (S′, R)← next(S) where S′ is the new state and R ∈ {0, 1}`
is the output.

The security game SPR uses procedures described in Figure 2.7. The procedure initialize sets the
first internal state S with a call to algorithm key and sets the random parameter b. Procedure
next-ror challenges A on its capability to distinguish the output of the stateful pseudo-random
number generator from random, where the real output (R0) of the stateful pseudo-random
number generator is obtained with a call to algorithm next and the random string (R1) is picked
uniformly at random by the challenger. Attacker A responds to the challenge with a bit b∗. After

— 21 —

Chapter 2. Preliminaries

all oracle queries, A outputs a bit b∗, given as input to the procedure finalize, which compares
the response of A to the challenge bit b.

proc. initialize
S

$← key;
b

$← {0, 1}

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. next-ror
(S,R0)← next(S)
R1

$← {0, 1}`
OUTPUT Rb

Figure 2.7 – Procedures in Security Game SPR

Definition 11 (Security of a Stateful Pseudo-Random Number Generator). A stateful pseudo-
random number generator G = (key, next) is (t, ε)-secure, if for any attacker A running in time
at most t, the advantage of A in game SPR is at most ε.

Bellare and Yee [BY03] proposed a new definition of a stateful pseudo-random number generator,
where the number of outputs the generator is allowed to produce is a parameter of the generator.
This definition is described inChapter 3.

2.8.3 Pseudo-Random Number Generator with Input

Consider now an iteration of the pseudo-random number generator where, at each iteration,
we let the pseudo-random number generator process a different auxiliary input, in addition to
the key. This leads to the notion of pseudo-random number generator with input. Informally,
a pseudo-random number generator with input mixes two different processes: the collection of
new inputs and the generation of the output. This idea is illustrated in Figure 2.8.

K0 G

I0

K1

I1

R1

G . . .

Figure 2.8 – Pseudo-Random Number Generator with Input

Hence, pseudo-random number generators with input model situations where new inputs are
continuously used by the generator. We give in the chapter 3 different definitions for pseudo-
random number generators with input, that we present briefly here:

• In 1998, in two different works, Gutmann (in [Gut98]), and Kelsey, Schneier, Wagner
and Hall, (in [KSWH98]) gave useful guidelines for the design of a secure pseudo-random
number generator with input.

• In 2002, in [DHY02], Desai, Hevia and Yin modelled a pseudo-random number generator
with input as an iterative algorithm, which in each iteration take three inputs: a key
K, an internal state S, and an auxiliary input I. The algorithm generates two outputs:
pseudo-random numbers R and a new state S′.

• In 2003, in [BST03], Barak, Shaltiel and Tromer proposed a security model for a pseudo-
random number generator with input where an attacker can have some control on the

— 22 —

2.9. Pseudo-Random Functions

inputs. As we explain, their definition of pseudo-random number generators with input is
based on the use of resilient extractors.

• In 2005, in [BH05] Barak and Halevi proposed a security model in which a pseudo-random
number generator with input is clearly defined as a couple of deterministic polynomial-
time algorithms G = (refresh, next), where the first algorithm refresh models the update of
the internal state S with an input I containing randomness (S ← refresh(S, I)) and the
second algorithm next models the output R generation and the update of the internal state
S during this generation ((S,R)← next(S)). As before, their definition of pseudo-random
number generators with input is based on the use of resilient extractors.

In chapters 4, 5 and 6, we present the main contributions of this thesis, which are (a) a new
definition of pseudo-random number generator with input based on strong extractors and (b)
the formal statement of security properties for pseudo-random number generators with input.

2.9 Pseudo-Random Functions
We recall the definitions of a pseudo-random function from [BKR94]. A pseudo-random function
is a family of functions such that no adversary can computationally distinguish the input/output
behavior of a random instance from this family from the input/output behavior of a random
function.

Hence in this security model the adversary can give inputs to the function and gets the cor-
responding output in a black-box way. Note that the term random function means function
chosen at random.

Intuitively, as explained in [BKR94], the pseudo-randomness of a function family is its ’distance’
from the ensemble of the family of all functions. This notion was originally proposed by Gol-
dreich, Goldwasser and Micali [GGM86]. They explain the notion with the following intuitive
example. Consider the set Fk of all functions from {0, 1}k to {0, 1}k. This set has cardinality
2k.2k , hence to describe a (random) function from this set, we would need k.2k bits, which is im-
practical. Suppose now that we select a set of cardinal 2k, denoted F̂k and such that F̂k ⊂ Fk.
This allows to build a family of functions, where each function is indexed with a unique index
in {0, 1}k. The family F̂k is pseudo-random if no adversary can computationally distinguish the
functions from F̂k from the functions in Fk. Let first formalize the notion of Keyed Family of
Functions in Definition 12.

Definition 12 (Keyed Family of Functions). A keyed family of functions is a map F : {0, 1}s×
{0, 1}` → {0, 1}L, where (a) {0, 1}s is the key space of F and s is the key length (b) {0, 1}` is
the domain of F and ` is the input length and (c) {0, 1}L is the range of F and L is the output
length

Hence in a Keyed Family of Functions, each function is specified by a short, random key. As
explained, the security objective we give is that the function behaves like a random one, in the
sense that an adversary that is given the key, and is computationally bounded, cannot distinguish
the input-output behavior of the function from a random function. This property is formalized
with the security game PRF described in Figure 2.9.
In this security game, the challenger first generates a random key K

$← {0, 1}s and a bit
b

$← {0, 1}, then the adversary A uses procedure funct-ror with chosen inputs. For each input,
the challenger generates a real output with function F or a random output and challenges A on
its capability to distinguish the output of F from random. Note that the challenger constructs

— 23 —

Chapter 2. Preliminaries

proc. initialize
K

$← {0, 1}s;
funtab← ∅
b

$← {0, 1};

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. funct-ror(x)
R0 ← F(x,K)
IF funtab[x] =⊥,

funtab[x] $← {0, 1}L
y ← funtab[x]
R1 ← y
RETURN Rb

Figure 2.9 – Procedures in Security Game PRF

a lookup table funtab for the random outputs to ensure that the evaluation of equal inputs
gives equal outputs: funtab is first initialized with ∅, then at each oracle call, if the value does
not exists in the lookup table funtab, it is randomly created, otherwise it is directly given as a
random output.

Definition 13 (Pseudo-Random Function). A keyed family of functions F : {0, 1}s × {0, 1}`
→ {0, 1}L is a (t, q, ε)-pseudo-random function if for any adversary A running in time at most
t, that makes q calls to procedure funct-ror, the advantage of A in game PRF is at most ε.

Hence a pseudo-random function is a function which cannot be distinguished from a random
function by any efficient distinguisher. Sometimes, however, the full power of a pseudo-random
function is not needed and it is sufficient when the function cannot be distinguished when
queried on random values. Such objects are referred to as weak pseudo-random functions. The
associated security game WPRF is the same as PRF, except that the inputs of the pseudo-random
function F in the funct-ror procedure are not adversarially chosen but are picked at random by
the challenger. The procedures are presented in Figure 2.10.

proc. initialize
K

$← {0, 1}s;
funtab← ∅
b

$← {0, 1};

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. funct-ror
x

$← {0, 1}s
R0 ← F(x,K)
IF funtab[x] =⊥,

funtab[x] $← {0, 1}L
y ← funtab[x]
R1 ← y
RETURN (x,Rb)

Figure 2.10 – Procedures in Security Game WPRF

Definition 14 (Weak Pseudo-Random Function). A keyed family of functions F : {0, 1}s ×
{0, 1}` → {0, 1}L is a (t, q, ε)-weak pseudo-random function if for any adversary A running in
time at most t, that makes q calls to procedure funct-ror, the advantage of A in game WPRF is
at most ε.

2.10 Pseudo-random Permutations

As explained in Section 2.9, in a Keyed Family of Functions, each function is specified by a short,
random key. One can similarly define a Keyed Family of Permutations, where each function is
a permutation.

We can define a similar objective than for pseudo-random functions, in the sense that an adver-
sary that is given the key, and is computationally bounded, cannot distinguish the input-output

— 24 —

2.10. Pseudo-random Permutations

proc. initialize()
K

$← {0, 1}n;
funtab← ∅;
T← ∅;
b

$← {0, 1};

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. funct-ror(x)
R0 ← F(xi,K)
IF funtab[x] =⊥,

funtab[x] $← {0, 1}n \ T
T = T ∪ funtab[xi]

y ← funtab[x]
R1 ← y
RETURN Rb

Figure 2.11 – Procedures in Security Game PRP

behavior of the permutation from a random one. This property is formalized with the security
game PRP described in Figure 2.11.

Definition 15 (Pseudo-Random Permutation). A keyed family of permutations F : {0, 1}p ×
{0, 1}n → {0, 1}p is a (t, q, ε)-pseudo-random permutation if for any adversary A running in
time at most t, that makes q calls to procedure funct-ror, the advantage of A in game PRP is at
most ε.

The following Lemma, referred to the ’PRF/PRP Switching Lemma’ shows the relation an ad-
vantage in game PRF and an advantage in game PRP. See [GB01] for a complete proof of this
Lemma.

Lemma 5. Let n ≥ 1 be an integer. Let A be an adversary that makes at most q queries. Then:

|AdvPRF
A − AdvPRP

A | ≤ q(q − 1)
2n+1

The bound of the previous intuitively comes from the birthday bound, because one way to
distinguish between a pseudo-random function and a pseudo-random permutation below is to
search for collisions.

— 25 —

Chapter 2. Preliminaries

— 26 —

Chapter 3

Security Models for Pseudo-random
Number Generators

3.1 Introduction
This chapter presents the state of the art security models assessing he security of pseudo-random
number generators before the introduction of the models from this thesis (see Chapters 4, 5
and 6). We give a syntaxtic formalization for security models that have been proposed. These
models consider pseudo-random number generator as a cryptographic primitive that needs to
be studied on its own, hence considering dedicated threats and security requirements. For each
model, we recall the syntactic definition of pseudo-random number generators that is used and
the goal of the adversaries that are considered and their means. We then give a description of
the security model and the associated constructions.
Security Guidelines. These guidelines concern pseudo-random number generators with in-
put. In 1998, in two different works, Gutman [Gut98], and Kelsey, Schneier, Wagner and
Hall [KSWH98] gave useful guidelines for the design of secure pseudo-random number genera-
tors. In these guidelines, they all consider a pseudo-random number generator with input as a
couple of algorithms, one to collect inputs and a second one to generate outputs. They considered
adversaries that have access to the output of the generator with input and adversaries that can
control inputs used to refresh the generator. They proposed guidelines to build pseudo-random
number generators. Note however that these properties are not formalized using a game playing
framework, but as guidelines that should help security application designers. Therefore they did
not insist in giving a formal statement but more in explaining concepts. To allow comparison
between these guidelines and the following security models, we propose a formalization of these
guidelines in the game playing framework presented in Section 2.4.
Security Against Chosen Input Attack, Chosen State Attack and Known Key At-
tack. This security model concerns pseudo-random number generator with input. In 2002,
Desai, Hevia and Yin [DHY02] modelled a pseudo-random number generator with input as an
iterative algorithm, which in each iteration takes three inputs: a key, an internal state, and an
auxiliary input. The algorithm generates two outputs: random numbers and a new state. In
this model, the adversary A has different capacities (inputs are allowed to be hidden, known
or chosen and the outputs can be hidden or known). This leads to several different attacks,
ranging from the attacks in which A has the highest capacities (where it is allowed to set all
the inputs and to compromise all the outputs) to the attacks in which A does not compromise
any input. They proposed constructions secure in their model, that are instantiations of ANSI
X9.17 [ANS85] and of FIPS 186 [DSS00], both based on a pseudo-random function F and they
proved their security by reduction to the security of the pseudo-random function .

— 27 —

Chapter 3. Security Models for Pseudo-random Number Generators

Forward Security. This security model concerns the standard notion pseudo-random number
generators (Definition 10). In 2003, Bellare and Yee [BY03] proposed a security model to assess
Forward Security, for which a stateful pseudo-random number generator shall be designed so
that it is infeasible to recover any information on previous states or previous output blocks
from the compromise of the current state. They proposed a construction that is forward secure,
based on a secure standard pseudo-random number generator G, and they proved its security
by reduction to the security of the standard pseudo-random number generator.
τ-Resilience. This security model concerns pseudo-random number generator with input. In
2003, Barak, Shaltiel and Tromer [BST03] proposed a security model where an adversary can
have some control on the randomness source. This model explicitly explains the importance of
a randomness extractor as a core component of a pseudo-random number generator with input
and proposes an analysis of the settlement of the public parameter seed which is inherent to
this component. They defined the resilience of a pseudo-random generator with input and they
proposed a construction secure in their model from universal hash functions, as described in
Section 2.3, based on linear maps.
Robustness. This security model concerns pseudo-random number generators with input. In
2005, Barak and Halevi [BH05] proposed a security model in which a pseudo-random number
generator with input is clearly defined as a couple of deterministic polynomial-time algorithms
G = (refresh, next), where the first algorithm refresh models the update of the internal state
S with an input I containing randomness (S ← refresh(S, I)) and the second algorithm next
models the output R generation and the update of the internal state S during this generation
((S,R)← next(S)). In their model, they formalized the robustness property that is the expected
behavior of the pseudo-random number generator with input after an internal state compromise
when A has also control of the input used to refresh the internal state. They proposed a robust
construction based on a randomness extractor and a secure standard pseudo-random number
generator and they prove its security by reduction to the security of the extractor and the
security of the standard pseudo-random number generator.

3.2 Guidelines from [Gut98, KSWH98]

3.2.1 Description

In [Gut98,KSWH98], Gutman and Kelsey, Schneier, Wagner and Hall gave useful guidelines for
the design of secure pseudo-random number generators with input. They considered a pseudo-
random number generator with input as a couple of algorithms, one to collect randomness
from sources and one to generate outputs. The randomness is collected in the internal state of
the generator, named S hereafter and outputs are generated from S. Note that they do not
formalize the properties using a game playing framework, but as guidelines that should help
security application designers, therefore they do not insist in giving a formal statement but
more in explaining concepts.

They consider the following attacks:

• Direct Cryptanalytic Attack (DCA), when adversary A is directly able to distinguish be-
tween generator outputs and random values. In this scenario, adversary A has only access
to the output of the generator.

• Input-Based Attacks (IBA), when adversaryA is able to use its knowledge or some control of
the inputs I to distinguish between output and random values. They refined this attack in
the following three categories: chosen input, replayed input and known input, respectively,

— 28 —

3.2. Guidelines from [Gut98,KSWH98]

where adversary A can choose the source of randomness, force the generator to reuse a
source of randomness or get access to the source of randomness, respectively.

• State Compromise Attacks (SCA), when adversary A gets access to the internal state S of
the generator.

Note that in [Gut98], Gutman considered that a state compromise should be prevented by the
environment and therefore it is not considered in the design of the generator. He therefore
proposed several security measures that shall be implemented at system level to prevent state
compromise.

To respond to DCA, IBA and SCA, they proposed the following guidelines for the design of a
secure pseudo-random number generator with input:

• To prevent DCA, a pseudo-random number generator with input should rely on standard
primitives to produce outputs.

• To prevent SCA, a pseudo-random number generator with input should (a) ensure the
entire state S changes over time, (b) enforce complete renewal of the internal state S and
(c) resist backtracking attacks (a state compromise does not give information about past
outputs). As a consequence of (b), they considered that the part of the internal state
that is used to generate outputs should be separated from the entropy pool, the generation
state should be changed only when enough entropy has been collected, according to a
conservative estimate.

• To prevent IBA, a pseudo-random number generator with input should (a) combine the
collected randomness in such a way that an adversary who gets access to the state S but
not to the collected randomness, and an adversary who gets the collected randomness but
not the state S, are both unable to get information about the next state and (b) take
advantage of every bit of entropy in the inputs it receives.

Note that these guidelines have had a strong impact on concrete pseudo-random number gen-
erators with input, as for example the Linux generators dev/random and dev/urandom, were
designed with different pools, to collect randomness and to produce outputs, and a dedicated
entropy estimator, which controls the transfers between the pools. We give a precise assessment
of these two generators in Section 7.2.

3.2.2 Proposed Formalization

We now translate these guidelines in our game playing framework. Note that this formalization
is not part of [KSWH98,Gut98] .However, to compare these guidelines with the security models
described in the next section, we find it relevant to propose the corresponding security model.
We first translate their definition of a pseudo-random number generator with input and secondly
we translate their adversary descriptions in the real or random model.

As described in [KSWH98,Gut98], a pseudo-random number generator with input is a couple
of deterministic algorithms, a first one to collect inputs and a second one to generate outputs.
To be consistent with the descriptions of other models, we name (refresh, next) this couple
of algorithms, where algorithm S′ ← refresh(S, I) takes as input an input I ∈ {0, 1}p and
the current internal state S ∈ {0, 1}n and produces a new internal state S′ ∈ {0, 1}n, and
algorithm (S′, R)← next(S) generates an output R ∈ {0, 1}` and produces a new internal state
S′ ∈ {0, 1}n. In our formalization, we also denote qr the number of inputs that the pseudo-
random number generator with input is allowed to use with algorithm refresh.

— 29 —

Chapter 3. Security Models for Pseudo-random Number Generators

proc. initialize()
(I1, · · · , Iqr)

$← ({0, 1}p)qr ;
S

$← {0, 1}n;
i← 1;
b

$← {0, 1}

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. getinput
OUTPUT Ii

proc. setinput(I∗)
Ii ← I∗

proc. one-refresh
S ← refresh(S, Ii) ;
i← i+ 1

proc. get-state
OUTPUT S

proc. next-ror
(S0, R0)← next(S)
(S1, R1) $← {0, 1}`
OUTPUT (Sb, Rb)

Figure 3.1 – Procedures for Security Games DCA, IBA,SCA

To formalize the security game, we use the procedures described in Figure 3.1. The procedure
initialize allows challenger to set the internal state S of the generator, to generate a sequence of
random inputs (I1, · · · , Iqr) and to generate the Boolean parameter b used to challenge adversary
A. After all oracle queries, adversary A outputs a bit b∗, given as input to the procedure finalize,
which is used by the challenger to compare the response of A to the challenge bit b.

We formalize DCA, IBA and SCA as follow:

• To formalize DCA, we use the procedure named next-ror. This procedure challenges A
on its capability to distinguish the output of the generator from random, where the real
output (R0) of the generator is obtained with a call to algorithm next and the random
string (R1) is generated by the challenger.

• To formalize IBA, we use the procedures named getinput, setinput and one-refresh: proce-
dure getinput allows A to get access to the current input I, procedure setinput allows A to
set the current input to a chosen value I∗. Finally, procedure one-refresh allows challenger
to update the current internal state S with algorithm refresh applied with the current
input I.

• To formalize SCA, we use the procedure named get-state. This procedure gives A access
to the current value of the internal state S.

The security of a pseudo-random number generator with input is given in Definition 16.

Definition 16 (Security of a pseudo-random number generator with input [KSWH98,Gut98]).
A pseudo-random number generator with input (refresh, next) is called (t, ε)-secure against Di-
rect Cryptanalytic Attack (resp. Input-Based Attack or State Compromise Attack), if for any
adversary A running in time at most t, the advantage of A in game DCA, (resp. IBA, SCA) is
at most ε, where:

• DCA is the restricted game where A is only allowed to make calls to next-ror.

• IBA is the restricted game where A is not allowed to make any calls to get-state, and is
allowed to make calls to getinput, setinput and next-ror.

• SCA is the restricted game where A is not allowed to make calls to getinput or setinput
and is allowed to make calls to get-state and next-ror.

Comparison Between Notions. Security game DCA is similar to the security game PR.
However, these two security notions can not be compared, as they are not based on the same
definition of pseudo-random number generator. Note that if one drops procedure get-state in
the security game SCA, we obtain security game DCA and if one drops procedures getinput and
setinput in the security game IBA, we also obtain security game DCA.

— 30 —

3.3. Security Model From [BY03]

3.3 Security Model From [BY03]

3.3.1 Description

In 2003, Bellare and Yee [BY03] generalized the notion of standard pseudo-random number
generators (Definition 8) where the maximal number of outputs the pseudo-random number
generator is allowed to produce (named qn hereafter) is a parameter of the generator. This
notion is formalized in Definition 17 and illustrated in Figure 3.2.

key S0 next S1

R1

next . . . next Sqn

Rqn

Figure 3.2 – Stateful Pseudo-Random Number Generator [BY03]

Definition 17 (Stateful Pseudo-Random Number Generator [BY03]). A stateful pseudo-random
number generator is a couple of algorithm (key, next) and an integer qn, where key is a probabilis-
tic algorithm that takes no input and outputs an initial state S ∈ {0, 1}n, next is a deterministic
algorithm that, given the current state S, outputs a pair (S′, R)← next(S) where S′ is the new
state and R ∈ {0, 1}` is the output and qn is the maximal number of outputs the pseudo-random
number generator is allowed to produce.

Bellare and Yee proposed a new security property where a stateful pseudo-random number gen-
erator shall be designed so that it is infeasible to recover any information on previous states or
previous output blocks from the compromise of the current state. To formalize this property,
they proposed a dedicated security model where an adversary A chooses dynamically when to
compromise the current state S. After this compromise, all future outputs are compromised,
as they all deterministically depend on the compromised state, however, the expected security
property (named Forward Security) is that the past outputs are computationally indistinguish-
able from random.

The security game BY-FWD uses procedures described in Figure 3.3. The procedure initialize
sets the first internal state S with a call to algorithm key and sets the random parameter b. After
all oracle queries, A outputs a bit b∗, given as input to the procedure finalize, which compares
the response of A to the challenge bit b. The other procedures are defined below:

• Procedure next-ror: This procedure challenges A on its capability to distinguish the output
of the stateful pseudo-random number generator from random, where the real output (R0)
of the stateful pseudo-random number generator is obtained with a call to algorithm next
and the random string (R1) is picked uniformly at random by the challenger. Attacker A
responds to the challenge with a bit b∗.

• Procedure get-state: This procedure gives A access to the current value of the internal
state S.

Definition 18 (Forward Security of a Stateful Pseudo-Random Number Generator [BY03]). A
stateful pseudo-random number generator G = (key, next, qn) is called (T = (t, qn), ε)-forward-
secure, if for any adversary A running in time at most t, making at most qn calls to next-ror,
followed by one call to get-state, which is the last oracle call A is allowed to make, the advantage
of A in game BY-FWD is at most ε.

— 31 —

Chapter 3. Security Models for Pseudo-random Number Generators

proc. initialize
S

$← key;
b

$← {0, 1}

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. get-state
OUTPUT S

proc. next-ror
(S,R0)← next(S)
R1

$← {0, 1}`
OUTPUT Rb

Figure 3.3 – Procedures in Security Game BY-FWD

Comparison with previous models. If one drops procedure get-state in the security game
BY-FWD, we come back to the usual security of a stateful standard pseudo-random number
generator SPR. As for the state compromise, BY-FWD has the same objective than the security
game SCA, from [KSWH98,Gut98]. However, the two security models can not be compared, as
one concerns pseudo-random number generator with input and the other stateful pseudo-random
number generator and they do not rely on the same definition. A stateful pseudo-random number
generator does not contain a refresh algorithm that would be used to periodically refresh its
internal state of twith new inputs. Similarly, there is no relation between BY-FWD and IBA.

3.3.2 A Secure Construction

Let G : {0, 1}n → {0, 1}n+` a (t, εG)-secure standard pseudo-random number generator, as
formalized in Definition 8. Consider the stateful pseudo-random number generator GEN, defined
with the following algorithms:

• GEN.key : returns S $← {0, 1}n.

• GEN.next, on input S, returns (S′, R) = G(S).

We prove the forward security of GEN by reduction to the standard security of G.

Theorem 4 (Security of GEN [BY03]). Let G : {0, 1}n → {0, 1}n+` be a (t, εG)-secure standard
pseudo-random number generator, n ≥ 1 be an integer and let GEN be the stateful generator
associated to G, as described above. Then GEN is ((t′, qn), 2qnεG)-backward secure, with t′ ≈ t.

proc. initialize()
S

$← key;
ctr← 0;
b

$← {0, 1}

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. get-state
OUTPUT S

Game G1,i

proc. next-ror
ctr← ctr + 1;
IF ctr ≤ i
R1

$← {0, 1}`;
OUTPUT R1

ELSE
(S,R0)← G(S);
OUTPUT R0

proc. initialize()
S

$← key;
ctr← 0;
b

$← {0, 1}

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. get-state
OUTPUT S

Game G2,i

proc. next-ror
ctr← ctr + 1;
IF ctr ≤ i

(S,R0)← G(S);
R1

$← {0, 1}`
OUTPUT R1

Figure 3.4 – Reduction to the Standard Security for BY-FWD

— 32 —

3.3. Security Model From [BY03]

Proof. We adapt the proof from [BY03] in the game playing framework presented in Section 2.4.
Consider two sequences of hybrid security games where G0 is the initial forward security game
BY-FWD, games G1,i are modifications of game G0 and games G2,i are modifications of game
G1,qn , for i = 1, · · ·n, all described in Figure 3.4. The differences between G0 and G1,i and
between G1,qn and G2,i are explained below:
Differences Between G0 and G1,i: in game G1,i, procedure initialize is different from game
G0: the challenger sets a new parameter ctr to 0. Procedure next-ror is different from G0: ctr is
incremented and if ctr ≤ i, the challenger generates a random output R1 and returns it to A. If
ctr > i, the challenger behaves as in G0.
Differences Between G1,qn and G2,i: in game G2,i, procedure initialize also sets a new param-
eter ctr to 0, as in G1,i. Procedure next-ror behaves as follow: ctr is incremented and if ctr ≤ i,
the challenger generates the real output couple (S,R0) ← next(S) (this call is used to update
the internal state), then for any value of ctr, a random output R1 is generated and sent to A.
Note that Pr[G0 = 0] = Pr[G1,0 = 0], Pr[G1,qn = 1] = Pr[G2,0 = 1], Pr[G0 = 1] = Pr[G2,qn = 1].
We construct an adversary A′ with advantage εG in game PR, whose objective is to distinguish
between G1,i and G1,i+1 and between G2,i and G2,i+1, for i = 0, · · · , qn − 1.
First consider the distance between G1,i and G1,i+1. Consider an adversary A in both games,
that will be used by A′ as a subroutine. The challenger of A′ generates a random state S′ and
a random bit b′, then it generates a couple (S′0, R′0) = GEN(S′), a random couple (S′1, R′1) and
sends (S′b, R′b) to A′. Then A′ challenges A in game G1,i: A′ generates a random bit b and
initializes a counter ctr to 0. Following, A′ responds to oracle queries of A in game G1,i. It
increments ctr and:

• If ctr < i, then A′ generates a random sample R1 and sends it to A.

• If ctr ≥ i, then A′ sets S0 = S′b, computes the successive couples (S0, R0)← next(S0) and
sends the output R0 to A.

• Finally, it responds to the get-state query with the last calculated state S0.

Then A answers the bit b∗ to A′ and A′ responds to its challenger the bit b′∗ = 1 if b∗ = b and
the bit b′∗ = 0 elsewhere. Then if b′ = 0, then A′ exactly simulates game G1,i, while if b′ = 1,
then A′ simulates game G1,i+1. Therefore the distance between games G1,i and G1,i+1 is bounded
by εG.
Similarly, consider the distance between G2,i and G2,i+1. The challenger ofA′ generates a random
state S′ and a random bit b′, then it generates a couple (S′0, R′0) = GEN(S′), a random couple
(S′1, R′1) and sends (S′b, R′b) to A′. Then A′ challenges A in game G2,i: A′ generates a random
bit b and initializes a counter ctr to 0. Following, A′ responds to oracle queries of A in game
G2,i. It increments ctr and:

• If ctr < i, then A′ sets S0 = S′b, computes the successive couples (S0, R0) ← next(S0),
generates a random sample R1 and sends it to A.

• If ctr ≥ i, then A′ generates a random sample R1 and sends it to A.

• Finally, it responds to the get-state query with the last calculated state S0.

Then A answers the bit b∗ to A′ and A′ responds to its challenger the bit b′∗ = 1 if b∗ = b and
the bit b′∗ = 0 elsewhere. Then if b′ = 0, then A′ exactly simulates game G2,i, while if b′ = 1,
then A′ simulates game G2,i+1. Therefore the distance between games G2,i and G2,i+1 is bounded
by εG.
Finally, the above reductions show that |Pr[G0 = 0]− Pr][G0 = 1] ≤ 2qnεG.

— 33 —

Chapter 3. Security Models for Pseudo-random Number Generators

3.4 Security Model from [DHY02]

3.4.1 Description

Desai, Hevia and Yin [DHY02] proposed a security model for pseudo-random number generator
with input where the internal state is split into two parts: a first part named K (that they
name the key) and second part named S (that they name the state). In their model, a pseudo-
random number generator with input is a stateful and iterative algorithm, that at each invocation
produces some output bits as a function of the current value of K and S, in addition to another
auxiliary input I, then updates the state S, and then deletes the old one. They proposed
different security properties, that capture the potential compromise of the state S, the key K
or the auxiliary input I. The generator operations are illustrated in Figure 3.5, in accordance
with Definition 19.

key S0 next

K

I0

S1

I1

R1

next

In

. . . next Sn

Rn

Figure 3.5 – Pseudo-Random Number Generator with Input [DHY02]

Definition 19 (Pseudo-Random Number Generator with Input [DHY02]). A pseudo-random
number generator with input is a couple of algorithms (key, next), where key is a probabilistic
algorithm that takes no input and outputs a key K ∈ {0, 1}n and an initial state S ∈ {0, 1}n,
next is a deterministic algorithm that, given the current state S, the key K and an auxiliary
input I ∈ {0, 1}p, outputs a pair (S′, R)← next(S,K, I) where S′ ∈ {0, 1}n is the new state and
R ∈ {0, 1}` is the output.

Note that the model assumes the existence of an entropy pool in which entropy is accumulated
and that is used as input for algorithm key to generate the key K and a first state S. However,
the model does not propose any secure way to accumulate entropy nor capture the potentially
adversarial inputs that may be accumulated. Also note that in Definition 19, the next algorithm
updates the state S while the key K is not updated.

They denoted their attacks as CIA, for Chosen-Input Attack, CSA, for Chosen-State Attack and
KKA, for Known-Key Attack. Under CIA, the key is hidden, the states are known, but not cho-
sen, and the auxiliary input may be chosen by the adversary. The attack CSA is similar, except
that the auxiliary inputs are not allowed to be chosen while the states may now be chosen. The
attack KKA is different in that it allows the key to be known. However, under the attack KKA,
the states are hidden and the auxiliary inputs are not allowed to be chosen.

We now describe their security model. The security games CIA,CSA,KKA use procedures de-
scribed in Figure 3.6. In our description, we denote with i the counter on the auxiliary inputs
and with qr the maximal number of auxiliary inputs the generator is allowed to use. The proce-
dure initialize sets a random key K and a random state S with a call to algorithm key, generates
qr random inputs (I1, · · · , Iqr)

$← ({0, 1}p)qr , sets a counter i to 0 and sets a random Boolean
parameter b. After all oracle queries, A outputs a bit b∗, given as input to the procedure finalize,
which compares the response of A to the challenge bit b. The other procedures are defined
below:

— 34 —

3.4. Security Model from [DHY02]

• The procedures getinput / setinput are used by A to get or set the value of the auxiliary
inputs.

• The procedures get-state / set-state are used by A to get or set the current value of the
internal state S.

• The procedure get-key is used by A to get the value of the key K.

• The procedure next-ror challenges A on its capability to distinguish the output of algorithm
next from random, where the real output (R0) is obtained with a call to algorithm next
and the random string (R1) is generated by the challenger. The counter i is incremented
during this procedure. Attacker A responds to the challenge with a bit b∗.

proc. initialize
(K,S) $← key;
(I1, · · · , Iqr)

$← ({0, 1}p)qr ;
i← 1;
b

$← {0, 1};

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. getinput
OUTPUT Ii

proc. setinput(I∗)
Ii ← I∗

proc. get-state
OUTPUT S

proc. set-state(S∗)
S ← S∗

proc. get-key
OUTPUT K

proc. next-ror
(S,R0)← next(S,K, Ii)
R1

$← {0, 1}`
i← i+ 1
OUTPUT Rb

Figure 3.6 – Procedures in Security Games CIA,CSA,KKA

Definition 20 (Security of a Pseudo-Random Number Generator with Input [DHY02]). A
pseudo-random number generator with input (key, next) is called ((T = (t, qr), ε)- secure against
Chosen Input Attack (resp. Chosen State Attack or Known Key Attack), if for any adversary A
running in time at most t, that uses at most qr inputs, the advantage of A in game CIA, (resp.
CSA, KKA) is at most ε, where:

• CIA is the restricted game where A is not allowed to make calls to get-key and to set-state
and is allowed to make calls to get-state, setinput, getinput and next-ror.

• CSA is the restricted game where A is not allowed to make calls to get-key and to setinput
and is allowed to make calls to get-state, set-state, getinput and next-ror.

• KKA is the restricted game where A is not allowed to make calls to get-state, set-state and
setinput and is allowed to make calls to get-key, getinput and next-ror.

Hence all security notions allow adversary A to get the content of the auxiliary input through
procedure getinput. In addition, when A does not have access to the key K (through procedure
get-key), A can mount attacks CIA and CSA. Furthermore, when A has access to K, the state
S shall remain secret.
Comparison with previous models. If one drops procedures getinput, setinput, get-state,
set-state and get-key in the security game, the adversary A has only access to the next-ror
procedure. With this single procedure, the objective of the adversary is similar to the objective
in the security games PR and DCA, although the definition of the generator is different.

Concerning input compromise, the model focuses on the difference between an adversary that
has access to the input (which is possible for all security notions) and an adversary that is able
to choose an input. When the key K remains secret, if A can choose the auxiliary input I, A
only has access to the state S and conversely, if A can choose the state S, A only has access to

— 35 —

Chapter 3. Security Models for Pseudo-random Number Generators

the auxiliary input I. However CIA is closely similar to IBA described in Section 3.2.2, as they
only differ with the addition of procedure get-state for CIA; however, in CIA, the signification of
get-state differs from the same procedure in IBA, because in CIA, this procedure implies only a
partial compromise of the internal state (considered as the union of S and K), while in IBA this
procedure implies a complete compromise.

In addition, the adversary A has always access to procedure getinput, therefore CIA, CSA and
KKA can not be compared with FWD (which does not concern pseudo-random number generator
with input). If one wanted to add a definition of forward security that would be close to FWD,
forward security would be the restricted game where A is not allowed to make calls to getinput
and to setinput and is allowed to make one call to get-state followed with one call to get-key,
which are the two last calls A is allowed to make. However, this notion of forward security is
not described in [DHY02].

Finally, the get-key procedure allows A to get the value of the parameter key and the associated
security property KKA ensures that the generator remains safe even if this parameter key gets
compromised. This can be used to model pseudo-random number generator with input where
a public parameter is used, for instance to select from a family of functions to instantiate a
randomness extractor, as described in Section 2.6. The use of a public parameter that is the
seed of a randomness extractor is the basis of the security models of [BST03] and [BH05].

3.4.2 Secure Constructions

Desai et al. proposed constructions secure against CSA, CIA and KKA, that are based on existing
standard specifications (ANSI X9.17 [ANS85] and FIPS [DSS00]).
Construction Secure Against CSA and CIA. Let F a pseudo-random function. Let us use
algorithm key to generate a key K for F. This allows to define a function FK : {0, 1}n →
{0, 1}n and an associated pseudo-random number generator with input ANSI, in accordance
with [ANS85].

• ANSI.key : K $← {0, 1}n;S0
$← {0, 1}n, returns (K,S0),

• ANSI.next(Si−1,K, Ii) : yi ← FK(Si−1 ⊕ FK(Ii)), Si ← FK(yi ⊕ FK(Ii)), returns (yi, Si).

Theorem 5 shows that if we model F as a pseudo-random function, as in Definition 13, then the
pseudo-random number generator with input ANSI is secure against CIA and CSA.

Theorem 5 (Security of ANSI [DHY02]). Let F : {0, 1}n × {0, 1}n → {0, 1}n a (t, 3qr, εF)-
pseudo-random function. Let ANSI be the pseudo-random number generator with input associated
to F, as described above. Then ANSI is

• ((t, qr), 2εF + qr(2qr−1)
2n) secure against CSA,

• ((t, qr), 2εF + (2qr−1)2

2n) secure against CIA.

As precised in [DHY02], if one models the generator with a pseudo-random permutation, as in
Definition 15, an additional term 3qr(3qr−1)

2n+1 shall be added in the previous bounds. This is a
direct application of the ’PRF/PRP Switching Lemma’ (Lemma 5).

Construction Secure against KKA. Let F a pseudo-random function. Let us use algorithm
key to generate a key K for F. This allows to define a function FK : {0, 1}n → {0, 1}n and an
associated pseudo-random number generator with input FIPS in accordance with [DSS00]:

• FIPS.key : K $← {0, 1}n;S0
$← {0, 1}n, returns (K,S0),

— 36 —

3.5. Security Model From [BST03]

• FIPS.next(Si−1,K, Ii) : yi ← FK(Si−1 + Ii mod 2n), Si ← Si−1 + yi + 1 mod 2n, returns
(yi, Si).

Theorem 6 shows that if we model F as a pseudo-random function, as in Definition 13, then
the pseudo-random number generator with input FIPS is secure against KKA. The proof of
Theorem 6 is similar to the proof of Theorem 5.

Theorem 6 (Security of FIPS [DHY02]). Let F : {0, 1}n×{0, 1}n → {0, 1}n a (t, qr, εF)-pseudo-
random function. Let FIPS be the pseudo-random number generator with input associated to F,
as described above. Then FIPS is ((t, qr), εF + qr(qr−1)2

2n−1)-secure against KKA.

Remark 1. The argument in [DHY02] to prove these theorems relies on the capability of the
adversary to ’cause collisions in the inputs to the functions computing the outputs or the next
states’. However, the independence between successive inputs can not be completely guaranteed,
therefore we are not confident with the bounds presented in these theorems.

Consider now the forward security of the generators ANSI and FIPS. As noticed, this security
notion is not part of the security model of [DHY02], however, one could formalize it at the
restricted game where A is not allowed to make calls to getinput and to setinput and is allowed
to make one call to get-state followed with one call to get-key, which are the two last calls A is
allowed to make. If one used this definition, then the generator ANSI is not forward secure, as the
complete compromise of state S and K allows adversary A to completely reverse the underlying
block cipher and therefore to compute past outputs. A similar attack can be mounted on the
generator FIPS.

3.5 Security Model From [BST03]

3.5.1 Description

Barak, Shaltiel and Tromer [BST03] defined a resilient pseudo-random number generator with
input. They named their class of pseudo-random number generators with input ’True Random
Number Generators’.

Their objective is to model situations where the entropy source can be influenced by an adver-
sary who has partial control on it and to model a generator that will be secure against such an
adversary. This model is the first that considers potentially adversarial inputs and the distribu-
tion of the inputs instead of their real values.

They intended to model the following scenario: a manufacturer designs a device whose output
is supposed to be a randomness source. Ideally, one would like the adversary not to be able
to influence the distribution of the randomness source at all. However, in a realistic setting an
adversary can have some control over the environment in which the device operates (tempera-
ture, voltage, frequency, timing, etc.), and it is possible that changes in this environment affect
the source. In their model, they assumed that the adversary can control at most τ Boolean
properties of the environment, and can thus create at most 2τ different environments. Their
definition of pseudo-random number generator with input is not explicitly given in [BST03], but
it simply corresponds to a stateless algorithm that takes two inputs, corresponding to the inputs
of a (k, ε)-resilient extractor, as given in Definition 5. This notion of extractor assumes the use
of a public parameter seed that shall be selected once for all and therefore can be pre-processed
and even hard-coded. The price for this is that the family F of k-sources is bounded. They
explicitly set the size of the family to 2τ .

— 37 —

Chapter 3. Security Models for Pseudo-random Number Generators

Definition 21 (Pseudo-Random Number Generator with Input [BST03]). A pseudo-random
number generator with input is an algorithm G that given a first input I ∈ {0, 1}p and a second
input seed ∈ {0, 1}s, outputs G(I, seed) = R ∈ {0, 1}`.

The associated security game allows an adversary A to choose a family of distributions F , of
size 2τ : F = {D1, · · · ,D2τ }, such that for all i and all input I sampled with Di, I are k-sources
(H∞(I) ≥ k) for all i ∈ {1, . . . , 2τ}. The security game uses procedures described in Figure 3.7
and is explained below:

1. The procedure initialize allows A to set the family F , the challenger parses F as 2τ dis-
tributions D1, · · · ,D2τ , sets the public parameter seed and sets the Boolean parameter b.
The parameter seed is given to the adversary A.

2. The procedure next-ror challenges A on its capability to distinguish the output of G from
random: A chooses a distribution Di ∈ F . Then the challenger samples an input I of
distribution Di and finally the challenger generates the real output (R0 = G(seed, I)) and
picks a random string (R1). The challenge Rb is returned to the adversary A.

3. Attacker A responds to the challenge with a bit b∗, which is compared with the previously
generated bit b by the challenger in procedure finalize.

proc. initialize(F)
seed $← {0, 1}s;
parse F as {D1, · · · ,D2τ }
b

$← {0, 1};
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. next-ror(i)
I

$← Di
R0 ← G(I, seed)
R1

$← {0, 1}`
RETURN Rb

Figure 3.7 – Procedures in Security Game BST-RES(τ)

Definition 22 (Resilience of Pseudo-Random Number Generator with Input [BST03]). A
pseudo-random number generator with input G : {0, 1}p × {0, 1}s → {0, 1}` is (t, τ, ε)-Resilient
if for any adversary running in time t, with probability (1 − ε) over the choice of seed, the
advantage of A in game BST-RES(τ) it at most ε.

Note that if one parses the family F as {D1, · · · ,D2τ }, then for all i and all input I sampled
with Di, we have H∞(I) ≥ k for all i ∈ {1, . . . , 2τ}. Recall (Definition 5) that a function
Extract : {0, 1}p × {0, 1}s → {0, 1}` is a (k, ε)-resilient extractor if for all finite families of k-
sources F , with probability at least (1 − ε) over the choice of seed $← {0, 1}s, the distributions
(seed,Extract(X, seed)) and (seed,U`) are ε-close, for allX ∈ F . Hence if G is a resilient extractor,
it is a resilient pseudo-random number generator with input.
Comparison with Previous Models. In this security model, the adversary can choose a
high entropy distribution from a finite family of distributions. Once the distribution is chosen,
the extraction is processed and the adversary is challenged on its capacity to distinguish the
output of the extraction from random. This security property is closely related to the previous
security properties of IBA (from [KSWH98,Gut98]) and CIA (from [DHY02]), however they are
not equivalent as they are not based on the same definition of a generator. In particular, here
there is no equivalent to the getinput or setinput procedures, that allows A to get or set the input
given to the extractor. In fact, the security model shall be seen as an extension of the initial

— 38 —

3.5. Security Model From [BST03]

PR model, where the challenger has complete control on the generation of the first internal
state, here, we give the adversary some control on this generation as we allow her to choose
the distribution from which the first internal state will be generated. The composition of a
randomness extractor and a secure or forward-secure stateful pseudo-random number generator
will be the core of the work of Barak and Halevi in [BH05].

3.5.2 A Secure Construction

Barak, Shaltiel and Tromer proposed several constructions, based on pairwise independent hash
functions families. They proposed two results, that link the length of the parameter seed with the
number of distributions (2τ) that are chosen at the beginning of the security game BST-RES(τ),
with the min-entropy of the distribution k, with the size of the input p and with the size of the
output m.

Theorem 7 gives the two results, first for a size of parameter seed that is the double of the size
of the inputs (s = 2p), and second that is a multiple of the size of the inputs (s = κp).

Theorem 7 (Existence of Resilient Pseudo-Random Number with Input [BST03]). For every
p, k, `, t and ε, there is a (t, τ, ε)-resilient pseudo-random number with input, with a public pa-
rameter seed of size s = 2p such that τ = k−`

2 − 2 log(1/ε) − 1 and there is a (t, τ, ε)-resilient
pseudo-random number with input, with a public parameter seed of size s = κp such that:
τ = κ

2 (k − `− 2 log(1/ε)− log κ+ 2)− `− 2− log(1/ε).

Note that the proof given in [BST03] for the bound on the resilient generator with a public seed
of size s = κp uses the probabilistic method, a similar argument than the proof of the existence
of seeded extractor (Theorem 3) based on the Chernoff bound (Proposition 1). The proof for
the bound on the resilient generator with a public seed of size s = 2p is constructive as it is a
direct application of the Leftover Hash Lemma for a finite pairwise independent hash function
family (Section 2.7).

Concrete Construction. They proposed one concrete construction of pairwise independent
families of hash functions, based on simple operations in a finite field. Let F2p be the field with
2p elements, and consider the set S = {(a, b)|a, b ∈ F2p}. For s = (a, b) ∈ S, I ∈ {0, 1}p and
` < p, let hs(I) = [a · I + b]` (the ` first bits of [a · I + b], where all operations are in F2p).
Then the family H = {hs, s ∈ S} is a pairwise independent family of hash functions. Barak et
al. noticed that hs(I) is close to uniform if and only if [a · I]` is close to uniform. They proposed
the following process to build a resilient generator:

1. In a first stage (the preprocessing stage), choose an irreducible polynomial of degree p and
generate a random parameter a $← {0, 1}p. The union of parameters of the polynomial and
of the parameter a is the public parameter seed of the extractor, that can be hard-coded.
Hence we have for this construction |seed| = d = 2p.

2. In a second stage (the runtime), set G(seed, I) = [a · I]`.

Note that this construction involves a multiplication in the binary field F2p followed by a trun-
cation. This composition (multiplication followed by truncation) will be used in the design of a
robust pseudo-random number generator with input, as described in Chapter 4.

— 39 —

Chapter 3. Security Models for Pseudo-random Number Generators

3.6 Security Model From [BH05]

3.6.1 Description

Barak and Halevi [BH05] proposed a new security model for pseudo-random number generator
with input that clearly states that the entropy extraction process and the output generation
process are completely different in nature, where entropy extraction is information-theoric and
generation is cryptographic. Furthermore, these two operations should be separated and anal-
ysed independantly. The generator operations are illustrated in Figure 3.8, in accordance with
Definition 23.

Definition 23 (Pseudo-Random Number Generator with Input [BH05]). A pseudo-random
number generator with input is a couple of algorithms (refresh, next) where refresh is a determin-
istic algorithm that, given the current state S ∈ {0, 1}n and an input I ∈ {0, 1}p, outputs a new
state S′ ← refresh(S, I) where S′ ∈ {0, 1}n is the new state and next is a deterministic algorithm
that, given the current state S, outputs a pair (S′, R) ← next(S) where S′ ∈ {0, 1}n is the new
state and R ∈ {0, 1}` is the output of the generator.

S

I

refresh S′ S next S′

R

Figure 3.8 – Pseudo-Random Number Generator with Input [BH05]

In their security model, they aimed to capture the potential compromise of the internal state S
and of the inputs used to refresh the internal state. They considered an adversary A that has
access to the system where the generator is run, and can (a) get the output of the generator, (b)
modify the data that is used to refresh the internal state of the generator and (c) have access
to and modify the internal state of the generator. The security properties that are defined in
order respond to these attacks are the following ones:

• Resilience. The generator’s output looks random to an observer with no knowledge of
the internal state. This holds even if that observer has complete control over data that is
used to refresh the internal state.

• Forward security. Past output of the generator looks random to an observer, even if
the observer learns the internal state at a later time.

• Backward security. Future output of the generator looks random, even to an observer
with knowledge of the current state, provided that the generator is refreshed with data of
sufficient entropy.

It is important to note that Barak and Halevi used a notion of randomness extractor Extract
that is parametrised by a family of distributions H (which in their work stands for ’high entropy
distribution’). Formally, they proposed to use Definition 24 to describe H-extractors. In this
definition, to be consistent with the already used notations, we denote the size of the inputs
with p and we denote the size of the output of the randomness extractor with m.

Definition 24 (H-Extractor [BH05]). Let p,m be integers such that p ≥ m and let H be a
family of distributions over {0, 1}p. A function Extract : {0, 1}p → {0, 1}m is an H-extractor if
for every D ∈ H and every I $← D, Extract(I) is 2−m-close to Um.

— 40 —

3.6. Security Model From [BH05]

In this definition, the extraction is done over the set {0, 1}p, and not over a couple of sets
{0, 1}p × {0, 1}s. Hence one possibility for the function Extract is to consider that it is a de-
terministic extractor, as in Definition 3. However, as Lemma 2 shows, such extractor cannot
extract randomness from any k-source and therefore a clear limitation on the sources of ran-
domness for such an extractor should be given. Note that this impossibility is also mentioned
by Barak and Halevi, who gave mentionned [BST03] as an example of possible construction.
However, the security model of [BST03] implicitly uses the notion of resilient extractor, which is
a particular case for seeded extractor, as in Definition 4. Therefore we prefer to consider that the
extractor is seeded, ensuring that its existence is guaranted with Theorem 3. As a consequence,
we claim that the notion of extractor in Definition 24 is a special case of seeded extractor, i.e. a
function Extract : {0, 1}p×{0, 1}s → {0, 1}m, where the parameter seed is sampled from {0, 1}s.
In the corresponding security game, the parameter seed should be generated once for all and
made available to the adversary.

One more point that still remains is the correlation between the randomness source and the
parameter seed, that is: do we consider that Extract is a strong extractor, as in Definition 7, or
a resilient extractor, as in Definition 5 ? In our opinion, as [BH05] explicitly mentions [BST03]
as a conform extractor, we state that [BH05] refers to resilient extractors.

Recall that the definition of a resilient randomness extractor stands for a finite family of dis-
tributions. However Barak and Halevi did not explicitly set the size of the family H, therefore
a bound is implicitly set from our assumption. Also from our assumption, we assume that in
addition to the description done by Barak and Halevi, a public parameter seed is first randomly
generated, which is the seed of the randomness extractor. They formalized the corresponding
property in a security game in the real or random model, as described in Section 2.4. In our
description, we denote by i the identifier for an element in the family of distribution H = Di,
where I is of finite length qr = |I| and qn is the upper bound on the number of outputs.

proc. initialize
S0 ← 0n;
corrupt← true;
b

$← {0, 1};
parse H as {Di}i∈I
seed $← {0, 1}s;
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. good-refresh(i)
x

$← Di;
S0 ← refresh(S0, x);
corrupt← false;

proc. bad-refresh(x)
IF corrupt = true
S0 ← refresh(S0, x);

ELSE ⊥

proc. set-state(S∗)
IF corrupt = true

OUTPUT S0
ELSE

S1
$← {0, 1}n

OUTPUT Sb
corrupt← true
S ← S∗

proc. next-ror
(S0, R0)← next(S0)
IF corrupt = true,

OUTPUT R0
ELSE

R1
$← {0, 1}`

OUTPUT Rb

Figure 3.9 – Procedures in Security Game BH-ROB(H)

The security game uses procedures described in Figure 3.9. Before the description of the proce-
dures, let us first clarify some important points on the security game:

• In order to clarify the original security model from [BH05], we let the challenger parse the
family of distribution H as {Di}i∈I , where I is of finite length.

• In the security game, the adversary A has always two choices to refresh the generator,
either with an input with high entropy, either with an input that A totally controls. In
the first case, A uses procedure good-refresh: with this procedure, the challenger lets A
choose the distribution from the family H that A wants to use, then A generates an
input of the chosen distribution and finally applies algorithm refresh with the previously

— 41 —

Chapter 3. Security Models for Pseudo-random Number Generators

generated input. In the second case, A uses procedure bad-refresh: with this procedure,
the challenger lets A choose an input that is directly used with algorithm refresh.

• The security model uses a new important Boolean parameter, named corrupt, which is set
to true when the generator is compromised and set to false otherwise. This parameter is
maintained by the challenger, is part of the security game and is not a component of the
generator. More precisely, whenever the adversary gets or sets the internal state, the flag
is set to true and as soon as the generator is refreshed with a high entropy input, the flag
is set to false.

• The security objective as conceived by Barak and Halevi concerns the pseudo-randomness
of the output of the generator R and also the pseudo-randomness of the state S. There-
fore in the associated security game, the adversary A is challenged on distinguishing the
output of the generator from random (through procedure next-ror) and on distinguishing
the state of the generator from random (through procedure set-state). Furthermore, the
security model allows to define resilience, backward security and forward security using
clearly defined security games. In addition, they proposed a new security property, named
robustness that implies each of the previous security properties.

Let us now describe the procedures. The procedure initialize sets the first internal state S0 with
a call to algorithm key and sets parameter b. After all oracle queries, A outputs a bit b∗, given
as input to the procedure finalize, which compares the response of A to the challenge bit b. The
other procedures are defined below:

• Procedure good-refresh: on input i ∈ I, it first samples an input x of distribution Di then
refreshes the internal state of the generator with x.

• Procedure set-state: it generates a challenge for A on its capability to distinguish the
state of the generator from random, where the real state (S0) is the current state and the
random string (S1) is generated by the challenger. Furthermore, it allows A to set the
state to a new value S∗.

• Procedure next-ror: it challenges A on its capability to distinguish the output of G from
random, where the real output (R0) of the generator is obtained with a call to algorithm
next and the random string (R1) is generated by the challenger. Attacker A responds to
the challenge (and the previous on the state) with a bit b∗.

Note that the next-ror procedure differs from the equivalent procedure in the previous security
models. Here, as the challenger maintains the flag corrupt, a challenge between the real output
and a random one is sent to A only if corrupt = false. If corrupt = true, the adversary can mount
an attack on the real output, so A will certainly distinguish it from a random one. Similarly,
the output of procedure set-state also depends on the flag corrupt: the real state is given to A if
corrupt = true, otherwise, a random state is generated and given to A.

The security of a pseudo-random number generator with input is given in Definition 25. In the
original definition of [BH05], only the notion of robustness is given. In their original work, Barak
and Halevi stated that robustness implies resilience, backward security and forward security,
respectively, although they do not prove these implications. With Definition 25, the implications
are direct.

Definition 25 (Security of a Pseudo-Random Number Generator with Input [BH05]). A pseudo-
random number generator with input G = (refresh, next) is called (t, ε)-robust (resp. resilient, for-
ward secure, backward secure) for the family H, if for any adversary A running in time at most

— 42 —

3.6. Security Model From [BH05]

t, the advantage of A in game BH-ROB(H) (resp. BH-RES(H), BH-FWD(H), BH-BWD(H)) is
at most ε, where:

• BH-ROB(H) is the unrestricted game where A is allowed to make all the above calls.

• BH-RES(H) is the restricted game where A is allowed to make calls to good-refresh to
bad-refresh and to next-ror and is not allowed to make any calls to set-state.

• BH-FWD(H) is the restricted game where A is allowed to make calls to good-refresh, to
bad-refresh, to next-ror and to set-state which is the last oracle call A is allowed to make.

• BH-BWD(H) is the restricted game where A is allowed to make calls to good-refresh to
bad-refresh, to next-ror and to set-state which is the first oracle call A is allowed to make.

Comparison with Previous Models. The model of [BST03] also considers the potential
compromise of the source where the adversary A can choose a finite family of distributions.
While in the security models of [KSWH98,Gut98,DHY02], adversary A has access to a setinput
procedure that allows her to directly set the value of the input that is collected by the random
number generator, here the adversary has access to a procedure named bad-refresh, that is
similar to the procedure setinput. However the associated security property CIA, from the model
of [DHY02], is stronger as it allows A to get the content of the internal state through a call to
get-state in addition to the chosen input.

Forward security is also captured in the security model of [BY03], with Definition 18: adversary
A has access to two procedures get-state and set-state that allow her to get or to set the content
of the internal state. As in Definition 18, the call to either get-state and set-state shall be the
last call that A is allowed to make. However, in the model of [BH05], we have an additional
security property once the state gets compromised. This recovering property is defined through
the notion of backward security and more generally of robustness. In [BH05], a generator is
backward secure if it starts with a compromised state and then recovers from its compromise.
More generally, in [BH05], a generator is robust if it can recover from a state compromise that
occurs at any time (not only at a last stage or in a first stage). Note that the definition of
forward security is slightly different from Definition 3.3.1, from the security model of [BY03].
Here the security game starts with a known state, which becomes safe once a call to procedure
good-refresh is done (and for which the flag corrupt = false), whereas in the security game
of [BY03], the challenger generates first a random state. In both models, the state compromise
through a call to get-state is done afterwards. In this sense, the notion of forward security is
stronger here than in [BY03] because the adversary can choose the high entropy distribution
from the family H, whereas in [BY03] A has no control on it (not even on its distribution).

3.6.2 A Secure Construction

In [BH05] Barak and Halevi proposed a simple and elegant construction for a pseudo-random
number generator with input. This construction (which we call BH) has a state S ∈ {0, 1}n,
takes inputs I ∈ {0, 1}p and outputs R ∈ {0, 1}`. The generator BH involves an H-extractor
(Definition 24) Extract : {0, 1}p −→ {0, 1}n and a (t, εG)-secure standard pseudo-random number
generator G : {0, 1}n −→ {0, 1}n+` (Definitions 8 and 9). Note that the output length of the
extractor Extract is equal to the size of the internal state of the generator BH (in accordance
with the notations and Definition 24, we have m = n), and the input length of the generator G
is equal to the size of the internal state of BH and its output length is the size of the internal
state of BH added to the size of the output of BH. The refresh and next algorithms are given
below, where G′ denotes the truncation to the first n bits of G.

— 43 —

Chapter 3. Security Models for Pseudo-random Number Generators

• refresh(S, I) = G′(S ⊕ Extract(I)).

• next(S) = G(S).

The security of the pseudo-random number generator with input BH is stated in the following
theorem, where qr denotes the upper bound on the number of calls to the refresh algorithm and
qn denotes the upper bound on the number of calls to the next algorithm.

Theorem 8 (Security of BH [BH05]). Let Extract : {0, 1}p −→ {0, 1}n be an H-extractor. The
pseudo-random number generator with input BH is (t, qr/2n + qnεG)-robust for the family H.

3.7 Leakage Resilient Stateful Pseudo-Random Number Gener-
ators

3.7.1 Security Models

It is important to note that without restrictions on the leakage function, no security can be
guaranteed (one simple attack would be to leak the complete secret or the next iteration of the
generator). Yet a fundamental issue in the context of leakage-resilient cryptography is to define
reasonable restrictions on the leakage functions. We propose to base our work on the following
restrictions:

• Only Computation Leaks. From the axiom ’Only Computation Leaks’ of Micali and
Reyzin [MR04], one first assumption is to assume that only the data being manipulated in
a computation can leak during this computation. That is, the adversary cannot learn in-
formation on a stored but not manipulated data as in [AGV09,DKL09]. This formalization
is very classical [FPS12,YS13,ABF13] and close to the practical observations. From this
consideration, it is possible (a) to split the cryptographic primitives into smaller blocks
that leak independently on functions of their specific manipulated inputs and (b) to allow
the adversary to choose a different leakage function for each small block. This model is
referred to as granular. However note that in this model some leakage attacks are not
captured, such as the cold-boot attack, where all memory contents leak information, even
if they were never accessed.

• Bounded Leakage per Iteration. As most previous works [DP08, Pie09, YSPY10,
FPS12,YS13,ABF13], the adversary can choose the polynomial time leakage functions with
a restriction on the size of the output. Without this restriction, the adversary could choose
the identity function and recover the entire secret state in one observation. Therefore,
one second assumption is to bound the output length of the leakage functions with a
parameter λ depending on the security parameter of the cryptographic primitives. Note
that another choice has been made by Rivain and Prouff in [PR13]. They consider noisy
leakage functions with a bound not on the output length but on the statistical distance
between the distribution of the secret and the distribution of the secret given the knowledge
of the leakage.

• Non-Adaptive Leakage. The third assumption is based on the practical observation
whereby leakage functions completely depend on the inherent device. Another point of
view is followed by some authors [DP08,Pie09] who give a stronger power to the adversary
by authorizing adaptive leakage functions. The adversary is then allowed to adaptively
choose the leakage function according to its current knowledge acquired from the previous
invocations. Even if this model aims to be more general, this choice leads to unrealistic

— 44 —

3.7. Leakage Resilient Stateful Pseudo-Random Number Generators

scenarios since the adversary is then able to predict further steps of the algorithm. And
as said above, in practice, the leakage function is related to the device and not on the
previous computations. For these reasons, this work, as many others before [YSPY10,
FPS12,YS13,ABF13], consider only non-adaptive leakage functions.

Let us now describe the leakage security of a stateful pseudo-random number generator (key, next),
as in Definition 17. To model the potential leakage of sensitive information, we use leakage func-
tions that we globally name f . Note that, as we mention earlier, the leakage is non-adaptive,
therefore the leakage functions f are a parameter of the game: they are determined before the
security game starts and not chosen by the adversary during the game.

proc. initialize
S

$← key;
b

$← {0, 1}

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. next-ror
(S,R0)← next(S)
R1

$← {0, 1}`
RETURN Rb

proc. leak-next{
L← f(S)
(S,R)← next(S)

}
OUTPUT (L,R)

Figure 3.10 – Procedures in Security Game LPR(f)

The objective of the adversary A is to distinguish the output of the generator at one round
from a uniformly distributed random value, given the successive outputs and leakages for the
previous rounds. Formally, the security game is described in Figure 3.10 and is similar as the
one that defines the standard security of a stateful pseudo-random number generator, with the
additional procedure leak-next. We denote the length of the output of the leakage functions with
λ.

Definition 26. A stateful pseudo-random number generator G = (key, next) is (t, ε, f)-leakage
resilient for the leakage function f if for any attacker A running in time at most t, the advantage
of A in game LPR(f) is at most ε.

It is important to note that the security targeted in this security model is not reachable for all
leakage functions. Consider for example the leakage function f : f(S) = next(next(S)). Then
with this leakage function, no construction can be proven secure. Therefore, a clear definition
of the leakage function is a pre-requisite for any security statement.

3.7.2 Constructions

Several onstructions of leakage resilient stateful pseudo-random number generators have been
proposed. We choose to present three of them, among all the existing ones, because we will use
them as a basis to build a leakage resilient robust pseudo-random number generator with input,
in Chapter 6. The first one is the construction from Yu, Standaert, Perreira and Yung [YSPY10].
The second one is a binary tree pseudo-random function introduced by Faust, Pietzrak and
Schipper [FPS12] and the third one is a sequential stateful pseudo-random number generator
with minimum public randomness proposed by Yu and Standaert [YS13]. We also focus on the
presentation of their design and contrary to the previous presentations, we do not give precise
statements and security bounds because we will use these constructions in a black-box way.
Construction from [YSPY10]. The first construction was proposed in [YSPY10]. It is
illustrated in Figure 3.11. The stateful pseudo-random number generator (key, next) comes with
an internal state made of three randomly chosen values: a secret key S0 ∈ {0, 1}n and two public
parameters (p0, p1) ∈ {0, 1}2n. It uses a weak pseudo-random function F, that uses the values

— 45 —

Chapter 3. Security Models for Pseudo-random Number Generators

key S0

p0

F S1

R1

p1

F S2

R2

F S3

R3

F S4

R4

· · ·

Figure 3.11 – Construction from [YSPY10]

p0 and p1 in an alternative way: at round i, the generators computes next(Si−1) = (Si, Ri) =
F(Si−1, pi−1 mod 2).

key S0

p0

F S1

R1

p1

· · ·

F S2

R2

· · ·

Figure 3.12 – Construction from [FPS12]

Construction from [FPS12]. The second solution was proposed in [FPS12]. It is illustrated
in Figure 3.12. It is similar to the previous construction, with the difference that the key
algorithm generates a secret state K0 and a sequence of public values p0, p1, · · · that are used as
input to the weak pseudo-random function F. This construction was proposed as an extension
of the previous one because they identified a subtle flaw in the proof of [YSPY10] and they
therefore proposed a proven construction with independence between the inputs of the weak
pseudo-random function F. However, in the proposed construction, the needed large amount of
public randomness prevents its practical use.

Construction from [YS13]. Yu and Standaert propose an extension of the previous construc-
tions where the issue raised by the needed large amount of public randomness prevent from their
practical use. The stateful pseudo-random number generator comes with an internal state made
of two randomly chosen values: a secret key S0 ∈ {0, 1}µ and a public parameter seed ∈ {0, 1}µ.
The construction is made of two stages. In the upper stage, a (non leakage-resilient) pseudo-
random function F′ : {0, 1}µ × {0, 1}µ → {0, 1}µ is processed in counter mode to expand seed
into uniformly random values p0, p1, In the lower stage, a (non leakage-resilient) pseudo-
random function F{0, 1}µ × {0, 1}µ → {0, 1}2µ generates outputs Ri and updates the secret Si
so it is never used more than twice with the public values pi−1 . This two-stage construction is
illustrated in Figure 3.13.

— 46 —

3.8. Analysis

key S0

seed

F

p0

0

F′ S1

R1

F

p1

1

F′ S2

R2

2

· · ·

· · ·

Figure 3.13 – Construction from [YS13]

3.8 Analysis

In this section, we summarize the features and differences of the security models presented in
this chapter.

We present the different security properties seen in this chapter with Table 3.1. The security
properties are given (CIA, CSA, KKA, BY-FWD, BST-RES, BH-ROB, LPR) and for each property,
we precise (a) the pseudo-random number generator definition (b) the attacker capabilities (c)
if there exists a secure construction and its security parameters. Note that [KSWH98,Gut98]
do not give a secure construction.

Table 3.1 – Security Properties of Pseudo-Random Number Generators

Pseudo-Random Number Security Attacker Construction
Generator Definition Property Capabilities G / F Extract

S ← key BY-FWD next-ror, get-state 6

(S′, R)← next(S)
(K,S)← key() CIA getinput, get-state, setinput 6

(S′, R)← next(S,K, I) CSA getinput, get-state, set-state 6

KKA getinput, get-key 6

Extract(seed, I)← (seed, I) BST-RES(τ) F 6

S′ ← refresh(S, I) BH-ROB(H) good-refresh, bad-refresh 6 6

(S′, R)← next(S) get-state, next-ror 6 6

S ← key LPR(f) next-ror, leak-next 6

(S′, R)← next(S)

6: The construction involves a standard pseudo-random number generator G and / or a pseudo-random
function F and / or a randomness extractor Extract.

We give now a comparison between these security notions.
State compromise. The first important feature of [KSWH98, Gut98] is the modelling of a
pseudo-random number generator with input as a stateful algorithm. This modelling is also
used in [BY03, DHY02, BH05]. The choice of stateful algorithms actually allows to define an
adversary that interacts with the generator and can compromise its internal state: in all these

— 47 —

Chapter 3. Security Models for Pseudo-random Number Generators

models, the adversary A has access to the current value of the internal state S with a procedure
named get-state.
The response to state compromise, however, is specific to each model. In [Gut98], it is not
considered that this attack should be taken into account in the design of the pseudo-random
number generator, but countermeasures should be implemented by its environment. However,
in [KSWH98], it is taken into account, and therefore a pseudo-random number generator should
be protected against it by design. An adversary that gets access to the state S but not to
the collected randomness, and an adversary that gets the collected randomness but not to the
state S, should both be unable to get information about the next state. The same protection
is also proposed in [DHY02], although the pseudo-random number generator definition is a bit
different, as it involves a third component named key. The main idea that is implicit here is
that a generator is not protected against a joint compromise of the internal state and of the
randomness source, but only against a compromise of one or another.

In [KSWH98], an adversary that gets access to the state S should not be able to recover past
outputs. This protection, named Forward Security, is formalized in [BY03], although the com-
promise of the randomness source is not considered here. Forward security is also captured
in [BH05], in a similar way than in [BY03]: attacker A has access to two procedures get-state
and set-state that allow her to get or to set the content of the internal state. As in [BY03],
the call to either get-state or set-state shall be the last call that A is allowed to make. How-
ever, in [BY03], no additional security property is required once the state gets compromised and
the model does not define how the generator shall recover from a compromise. This recover-
ing property is defined in [BH05] through the notion of backward security and more generally
through the notion of robustness. In [BH05], a pseudo-random number generator with input is
backward secure if it starts with a compromised state and then recovers from its compromise.
More generally, in [BH05], a pseudo-random number generator is robust if it can recover from a
state compromise that occurs at any time (not only at a last stage or in a first stage). Similarly,
in [DHY02], a compromise of the state S can be ’repaired’ with the use of a non compromised
auxiliary input while a compromise of the key can not be repaired. This recovering behavior,
which is the starting point of backward security, is therefore not captured by [DHY02].

The model of [BST03] does not concern stateful pseudo-random number generators. Hence, the
state compromise is not considered in the security model and it is assumed that the entropy
source produces random bits at a high rate, as the only operation that is done is the extraction.
Once extracted, the output can be used directly by a consuming application or by a standard
pseudo-random number generator, however this operation is not described. The full description
of a pseudo-random number generator with input with both an extraction phase and a genera-
tion phase and with a partial control on the distribution of the input distribution is give [BH05].
Also note that the construction proposed in [BH05] composes the randomness extractor with a
stateful pseudo-random number generator; this construction benefits from the forward security
of the stateful pseudo-random number generator, and the resilience of the pseudo-random num-
ber generator with input.

In [KSWH98], a pseudo-random number generator with input should enforce complete renewal
of the internal state. This feature is also considered in [BH05], where there is a procedure named
good-refresh by which the internal state of the generator is refreshed with a ’high entropy’ source.
Once refreshed with such a source, the generator is considered ’uncompromised’ and output can
be generated. Moreover, the model of [BH05] also requires that once refreshed with such a
source, the internal state is pseudo-random, ensuring that is it completely refreshed with new
entropy.
Source compromise. The security guidelines of [KSWH98,Gut98] model the potential com-

— 48 —

3.8. Analysis

promise of the source of randomness: adversary A has access to two procedures getinput and
setinput. The model in [DHY02] also considers a source compromise, but in a different way.
In [DHY02], the security model assumes the existence of an entropy pool in which entropy is
accumulated and that is used as input for state generation. However, the model does not capture
the potentially adversarial inputs that may be used for this generation. The only adversarial
procedures, also named getinput and setinput in [DHY02], are related to the compromise of an
auxiliary input that is also used to generate the internal state. Hence, in [DHY02], the complete
compromise of the randomness source is not taken into account.

Source compromise is not taken into account in [BY03]. In this model, the potentially adver-
sarial inputs that could be used to compromise the generator are not described. It is assumed
in [BY03] that the state is first properly generated will algorithm key. A recovery mechanism
would be to enforce regular applications of algorithm key, however, it implies that a trusted
source of randomness is available, from which extraction can be proceeded. This operation
is not captured in [BY03], as it is by the guidelines of [KSWH98, Gut98] and more formally
in [BST03,BH05]. This is obvious from the context of [BY03], as the model does not consider
pseudo-random number generator with inputs, however it is implicit that the first generation of
the state with algorithm key can not be compromised.

Source compromise is considered in [BST03], where the adversary A can choose a finite family
of distributions F . While in the security models of [KSWH98,Gut98], adversary A has access
to a setinput procedure that allows her to directly set the value of the input that is collected
by the random number generator, here the adversary has implicitly access to a so-called ’set-
distribution’ or ’setfamily’ procedure, that allows A to set the high entropy distribution family
F . This procedure is not explicitly defined in the model of [BST03], however, as the family of
distributions F = {D1, · · · ,D2t}, such that H∞(Di) ≥ k is given as input for all procedures, we
can consider that such procedure exists. In fact, in the model of [BH05], a procedure named
good-refresh is defined, that allows adversary A to set a ’high entropy’ distribution, which plays
the same role as the underlying ’setdistribution’ procedure of [BST03]. However, the model
of [BST03] only considers the case of ’high-entropy’ distribution, while the model of [BH05] also
consider adversarially controlled inputs, with a procedure named bad-refresh, that is similar to
the procedure setinput. Finally in [BST03,BH05] the need for a randomness extractor is clearly
stated, while in [KSWH98,Gut98], this need is not identified.
Pseudo-Random Number Generators with Input Definition. The definition of a pseudo-
random number generator with input in [DHY02] does not contain any refresh algorithm that
could model input collection to continuously update the state S and the key S. The update
is implicitly contained in the next algorithm. A clear separation between refresh algorithm and
next algorithm is the basis of the robustness security game of [BH05].
Entropy Accumulation. The model of [BH05] (as for the model of [DHY02] with the setinput
procedure) only considers that the adversary can either call the good-refresh procedure, which
must produce an input I of high entropy, or call the bad-refresh procedure with an arbitrary,
maliciously specified input I∗. Informally, the call to bad-refresh should not compromise the
generator whenever the compromised flag corrupt = false, while the call to good-refresh should
result in an immediate “recovery”, and always resets corrupt = true. In real implementations,
however, entropy can be accumulated slowly (and maliciously!), as opposed to in “one shot”
(or “delayed” by calls to bad-refresh). This implies that once the generator is compromised,
the recovering process should ensure that enough entropy is accumulated before outputs are
generated. Note that this behavior is indeed implemented in practical generators, such as the
Linux generators dev/random and dev/urandom, which place a lot of (heuristic) effort in trying
to achieve this property.

— 49 —

Chapter 3. Security Models for Pseudo-random Number Generators

Importance of setup. As we mentioned, the model of [BH05] did not have an explicit setup
algorithm to initialize public parameters seed. Instead, they assumed that the required random-
ness extractor Extract in their construction is good enough to extract nearly ideal randomness
from any high-entropy distribution I output by the good-refresh procedure. Ideally, we would
like to make no other assumptions about I except its min-entropy. Unfortunately, no determinis-
tic extractor is capable to simultaneously extract good randomness from all efficiently samplable
high-entropy distributions (See Lemma 2). As noticed, the choice by [BH05] is to restrict the
family of permitted high-entropy distributions I. Hence a key strengthening of the model will
be the use of strong randomness extractors, as in Definition 7, that allow a public and reusable
parameter seed and extract from arbitrary randomness sources. One condition to use this class
of extractors is that the parameter seed is independent from the source.
Leakage Resilient Pseudo-Random Number Generators with Input. The security
model of leakage resilience concerns stateful pseudo-random number generators. However, as
pointed in [BH05], a large class of generators are implemented as pseudo-random number gen-
erators with inputs, that are continuously refreshed with new inputs collected from their envi-
ronment. The potential leakage of the internal state for such generators therefore needs to be
formalized.

— 50 —

Chapter 4

Robustness of Pseudo-random
Number Generators with Inputs

4.1 Model Description
In this section we give a syntactic formalization and security definitions for pseudo-random
number generator with input. All definitions and theorems from this chapter are from [DPR+13].

Recall that we termed ’pseudo-random number generator with input’ to refer that the generator
is refreshed periodically with new inputs, as described informally in Section 2.8.3. As explain in
Chapter 3, the security models of [DHY02,BST03,BH05] also concern pseudo-random number
generator with input.
Our definition of a pseudo-random number generator with input requires that, in addition to the
usual refresh and next algorithm, an algorithm named setup is set, whose objective is to generate
a parameter seed (which will be the seed of a randomness extractor). As noted in Section 3.8,
this algorithm is necessary to describe completely the generator operations, as it shall naturally
involve a randomness extractor. Furthermore, we want the parameter seed to be public because
the security of our schemes shall not rely on the secrecy of any parameter (if this secrecy is
guaranteed, one can use a standard pseudo-random number generator).

setup

seed

S

I

refresh S′ S next S′

R

Figure 4.1 – Pseudo-Random Number Generator with Input [DPR+13]

Definition 27 (Pseudo-Random Number Generator with Input [DPR+13]). A Pseudo-Random
Number Generator with Input is a triple of algorithms G = (setup, refresh, next) and a quadruple
(s, n, `, p) ∈ N4 where:

• setup: it is a probabilistic algorithm that outputs some public parameters seed ∈ {0, 1}s for
the generator.

— 51 —

Chapter 4. Robustness of Pseudo-random Number Generators with Inputs

• refresh: it is a deterministic algorithm that, given seed ∈ {0, 1}s, a state S ∈ {0, 1}n and
an input I ∈ {0, 1}p, outputs a new state S′ ← refresh(S, I) = refresh(seed, S, I) ∈ {0, 1}n.

• next: it is a deterministic algorithm that, given seed ∈ {0, 1}s and a state S ∈ {0, 1}n,
outputs a pair (S′, R) ← next(S) = next(seed, S) where S′ ∈ {0, 1}n is the new state and
R ∈ {0, 1}` is the output.

The integer s is the seed length, n is the state length, ` is the output length and p is the input
length of G.

Note that to simplify the algorithm description, we will omit the parameter seed when its
definition is clear from the context. Recall that the previous models were based on the use of a
resilient randomness extractor (Definition 5). As explained in Section 2.6, this class of extractor
restricts the use of a bounded size finite family of randomness sources. Furthermore, we want
that the random parameter seed is made public once generated. As noted in Section 2.6, we
mainly have two possibilities:

1. We assume that independence between the seed and the randomness source can not be
ensured. One solution is to restrict the randomness sources to use a resilient extractor:
this is the solution proposed in [BST03,BH05]. One second solution would be to restrict
the adversary capabilities and use seed dependent extractors, as in Definition 6.

2. We choose not to restrict the randomness neither the adversary capabilities. As noted in
Section 2.6, as we also want that seed is public, one solution is to use strong extractors, as
in Definition 7, as soon as independence between the seed and the randomness source can
be ensured. Our model relies on this assumption.

In our adversarial model for pseudo-random number generator with input, we consider that
the adversary A can partially control the inputs that are used to refresh the internal state of
the generator. In addition, we also need that independence between the seed and the input
distribution is guaranteed. We therefore propose to split the adversary into two entities: the
adversary A whose task is (intuitively) to distinguish the outputs of the generator from ran-
dom, and the distribution sampler D whose task is to produce inputs I1, I2, . . . , which have
high entropy collectively, but somehow help A in breaking the security of the generator. The
distribution sampler aims at modeling potentially adversarial environment (or ’nature’) where
the generator operates. To ensure independence of the randomness sources with seed, we will
require that the distribution sampler is set independently of seed. Once D is set, the adversary
A has access to seed. This separation between A and D allows to clarify the requirement of
independence between the adversary and seed: as independence is only required between seed
and the randomness source to build a strong randomness extractor, we enforce independence
between seed and the ’part’ of the adversary that has control on the randomness source and we
let the ’other part’ having access to seed. The above discussion justifies Definition 28.

Definition 28 (Distribution Sampler). Let G = (setup, refresh, next) and (s, n, `, p) ∈ N4 be a
pseudo-random number generator with input. A distribution sampler D for G is a stateful and
probabilistic algorithm which, given the current state σ, outputs a tuple (σ′, I, γ, z) where:

• σ′ is the new state for D.

• I ∈ {0, 1}p is the next input for the refresh algorithm.

• γ is some fresh entropy estimation of I, as discussed below.

• z is the leakage about I given to the adversary A.

— 52 —

4.1. Model Description

We denote by qr the upper bound on number of executions of D in our security games, and say
that D is legitimate if

H∞(Ik | I1, . . . , Ik−1, Ik+1, . . . , Iqr , z1, . . . , zqr , γ1, . . . , γqr) ≥ γk

for all k ∈ {1, . . . , qr} where (σk, Ik, γk, zk) = D(σk−1) for k ∈ {1, . . . , qr} and σ0 = 0.

We now explain the reason for explicitly requiring D to output the entropy estimate γk. Most
complex generators, for example the Linux generators dev/random and dev/urandom, are worried
about the situation where the system might enter a prolonged state where no new entropy is
inserted in the system. Correspondingly, such generators typically include some ad hoc entropy
estimation procedure E whose goal is to block the generator from generating an outputR until the
state has not accumulated enough entropy γ∗ (for some entropy threshold γ∗). Unfortunately, it
is well-known that even approximating the entropy of a given distribution is a computationally
hard problem [SV03]. This means that if we require a pseudo-random number generator with
input G to explicitly come up with such a procedure E, we are bound to either place some
significant restrictions (or assumptions) onD, or rely on some hoc and non standard assumptions.
Indeed, as part of this work we will demonstrate some attacks on the entropy estimation of the
Linux generators, illustrating how hard it is to design a sound entropy estimation procedure E.

Also, observe that the design of E is anyway completely independent of the mathematics of
the actual refresh and next procedures, meaning that the latter can and should be evaluated
independently of the ’accuracy’ of E.

In the security definition, we do not insist on any ’entropy estimation’ procedure as a mandatory
part of the design of a pseudo-random number generator with input, instead, we chose to place
the burden of entropy estimations on D itself, which allows us to concentrate on the provable
security of the refresh and next procedures. In particular, in our security definition we will not
attempt to verify if D’s claims are accurate, but will only require security when D is legitimate,
as in Definition 28. Equivalently, we can think that the entropy estimations γk come from
the entropy estimation procedure E (which is now ’merged’ with D), but only provide security
assuming that E is correct in this estimation (which we know is hard in practice). Finally, in
the security definition,

• The entropy estimates γk will only be used in security definitions, but not in any of the
actual generator operations (which will only use the "input part" I returned by D)

• We do not insist that a legitimate D can perfectly estimate the fresh entropy of its next
sample Ik, but only provide a lower bound γk that D is "comfortable" with. For example,
D is free to set γk = 0 as many times as it wants and, in this case, can even choose to
leak the entire Ik to A via the leakage zk. Note that setting γk = 0 corresponds to the
bad-refresh(Ik) oracle in the earlier modelling of [BH05], described in Section 3.6, which is
not explicitly provided in our new model.

• We allow D to inject new entropy γk as slowly (and maliciously!) as it wants, but will
only require security when the counter c keeping track of the current "fresh" entropy in
the system (intuitively, "fresh" refers to the new entropy in the system since the last state
compromise) crosses some entropy threshold γ∗ (since otherwise D gave "no reason" to
expect any security).

As seen in Chapter 3, four security notions for a pseudo-random number generator with input
have been proposed: resilience (RES), forward security (FWD), backward security (BWD) and

— 53 —

Chapter 4. Robustness of Pseudo-random Number Generators with Inputs

proc. initialize(D)
seed $← setup;
σ ← 0;
S ← 0n;
c← 0;
b

$← {0, 1};
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh
(σ, I, γ, z) $← D(σ)
S ← refresh(S, I)
IF c < γ∗

c← min(c+ γ, n)
OUTPUT (γ, z)

proc. get-state
c← 0;
OUTPUT S

proc. set-state(S∗)
c← 0;
S ← S∗

proc. next-ror
(S,R0)← next(S)
R1

$← {0, 1}`
IF c < γ∗

c← 0
OUTPUT R0

ELSE
OUTPUT Rb

Figure 4.2 – Procedures in Security Games RES(γ∗), FWD(γ∗), BWD(γ∗), ROB(γ∗)

robustness (ROB), with the latter being the strongest notion among them. We now define the
analogues of these notions in our stronger adversarial model, later comparing our model with
the prior model of [BH05]. Each of the games below is parametrized by some parameter γ∗
which is part of the claimed generator security, and intuitively measures the minimal “fresh”
entropy in the system when security should be expected. In particular, minimizing the value of
γ∗ corresponds to a stronger security guarantee. When γ∗ is clear from the context, we omit it
for the game description (e.g., write ROB instead of ROB(γ∗)).

All four security games (RES(γ∗), FWD(γ∗), BWD(γ∗), ROB(γ∗)) are described using the game
playing framework presented in Section 2.4, and share the same initialize and finalize procedures
in Figure 4.2. As we mentioned, our overall adversary is modelled via a pair of adversaries
(A,D), where A is the actual adversary and D is a stateful distribution sampler. We already
discussed the distribution sampler D, so we turn to the adversary A, whose goal is to guess the
correct value b picked in the initialize procedure, which also returns to A the public value seed,
and initializes several important variables: corruption flag corrupt, “fresh entropy counter” c,
state S and sampler’s D initial state σ. In each of the games (RES, FWD, BWD, ROB), A has
access to several oracles depicted in Figure 4.2. We briefly discuss these oracles:

• D-refresh. This is the key procedure where the distribution sampler D is run, and where
its output I is used to refresh the current state S. Additionally, one adds the amount
of fresh entropy γ to the entropy counter c. The values of γ and the leakage z are also
returned to A. We denote by qr the number of times A calls D-refresh (and, hence, D),
and notice that by our convention (of including oracle calls into run-time calculations) the
total run-time of D is implicitly upper bounded by the run-time of A.

• next-ror. This procedure provides A with either the real-or-random challenge (provided
that c ≥ γ∗) or the true generator output. As a small subtlety, a “premature” call to
next-ror before c crosses the γ∗ resets the counter c to 0, since then Amight learn something
non-trivial about the (low-entropy) state S in this case. We denote by qn the total number
of calls to next-ror and get-next.

• get-state/set-state. These procedures provide A with the ability to either learn the current
state S, or set it to any value S∗. In either case c is reset to 0.We denote by qs the total
number of calls to get-state and set-state.

We can now define the corresponding security notions for pseudo-random number generator with
input. In the sequel we denote the ’resources’ of A by T = (t, qr, qn, qs). We also use the integers
k and j as follows:

— 54 —

4.1. Model Description

• The integer k is used to identify the successive outputs (σk, Ik, γk, zk) of the distribution
sampler D and therefore the successive inputs Ik used to update the internal state of the
generator,

• The integer j is used to identify the successive states Sj of the generator, when updated
with the refresh algorithm.

Definition 29 (Security of pseudo-random number generator with input [DPR+13]). A pseudo-
random number generator with input G = (setup, refresh, next) is called (T = (t, qr, qn, qs), γ∗, ε)-
robust (resp. resilient, forward-secure, backward-secure), if for any adversary A running in
time at most t, making at most qr calls to D-refresh, qn calls to next-ror/get-next and qs calls
to get-state/set-state, and any legitimate distribution sampler D inside the D-refresh procedure,
the advantage of A in game ROB(γ∗) (resp, RES(γ∗), FWD(γ∗), BWD(γ∗)) is at most ε, where:

• ROB(γ∗) is the unrestricted game where A is allowed to make the above calls.

• RES(γ∗) is the restricted game where A makes no calls to get-state/set-state (i.e., qs = 0).

• FWD(γ∗) is the restricted game where A makes no calls to set-state and a single call to
get-state (i.e., qs = 1) which is the very last oracle call A is allowed to make.

• BWD(γ∗) is the restricted game where A makes no calls to get-state and a single call to
set-state (i.e., qs = 1) which is the very first oracle call A is allowed to make.

Hence, (a) resilience protects the security of the generator when not corrupted against arbitrary
distribution samplers D, (b) forward security protects past generator outputs in case the state
S gets compromised, (c) backward security security ensures that the generator can successfully
recover from state compromise, provided enough fresh entropy is injected into the system, (d)
robustness ensures arbitrary combination of the above. Hence, robustness is the strongest and
the resilience is the weakest of the above four notions. In particular, all our provable construc-
tions will satisfy the robustness notion, but we will use the weaker notions to better point some
of our attacks.

Examples of the entropy traces of the counter c for the procedures defined for the security game
ROB are provided in Figure 4.3. Note that we illustrated two next-ror calls, the first one where
c ≥ γ∗ and the second one where c < γ∗.

D-
ref

res
h

D-
ref

res
h

D-
ref

res
h

next
-ro

r

D-
ref

res
h

D-
ref

res
h

set
-st

ate

D-
ref

res
h

next
-ro

r

0

γ∗

n

lo
w
er
-b
ou

nd
on

es
tim

at
ed

en
tr
op

y entropy estimate c
state lenght n
threshold γ∗

Figure 4.3 – Entropy Estimates in ROB(γ∗)

Comparison with [BH05]. As described, this security models complements the previous work
of [BH05] in two ways:

— 55 —

Chapter 4. Robustness of Pseudo-random Number Generators with Inputs

1. It clearly captures the notion of entropy accumulation.

2. It clarifies the need of independence between the public parameter seed and the source of
randomness.

This security models also allows to define precisely the notion of backward security which is
close to the recovering security described in the next section. In [BH05], an immediate recovery
occurs any time one call is done to procedure good-refresh, which should be seen as an extreme
case of the new proposed security model.

In [BH05], Barak and Halevi also insisted that the state S is indistinguishable from random once
corrupt = false. While true in their specific construction, we think that demanding this property
is simultaneously too restrictive and also not very well motivated as the mandatory part of a
general security definition.

For example, if one considers a generator with an internal state S that includes a (never random)
Boolean flag which keeps track if the last call to the generator was made to the next procedure.
In particular, looking at the analysis of [BH05], the (truncated) generator G′ inside the refresh
procedure is only needed to ensure the state pseudo-randomness of their construction. In other
words, if one drops (only the) state pseudo-randomness from the BH model, the “Simplified BH”
construction is already robust in their model. Motivated by this, we will present a strong attack
on the simplified BH construction, for any extractor Extract and any standard pseudo-random
number generator G.

We consider a ’simplified’ construction (that we denote after the ’Simplified BH’ construction,
as it is derived from the robust construction described in Section 3.6.2). This construction also
involves a randomness extraction function Extract : {0, 1}p −→ {0, 1}n and a standard pseudo-
random number generator G : {0, 1}n −→ {0, 1}n+`. As for the initial construction of [BH05],
we do not define an explicit setup algorithm, and the refresh and next algorithms are given below:

• refresh(S, I) = S ⊕ Extract(I)

• next(S) = G(S)

Hence the only difference between the initial construction of [BH05] is that we dropped the
(truncated) generator G′ inside the refresh procedure that is only needed to ensure the state
pseudo-randomness of their construction. Consider now the simplified version of the robustness
security model described in Figure 4.4, that we name the ’Simplified ROB’ model. This security
model is the same as the robustness security model described in Section 3.6, except that the
set-state procedure is not used to challenge the adversary on its capability to distinguish the
state from random.

proc. initialize
S0 ← 0n;
corrupt← true;
b

$← {0, 1};
parse H as {Di}i∈I
seed $← {0, 1}n;
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. good-refresh(i)
x

$← Di;
S0 ← refresh(S0, x);
corrupt← false;

proc. bad-refresh(x)
IF corrupt = true
S0 ← refresh(S0, x);

ELSE ⊥

proc. set-state(S∗)
corrupt← true
S ← S∗

proc. next-ror
(S,R0)← next(S)
IF corrupt = true,

RETURN R0
ELSE

R1
$← {0, 1}`

RETURN Rb

Figure 4.4 – Procedures in Security Game ’Simplified ROB(H)’

— 56 —

4.2. Recovering and Preserving Security

Following the proof of [BH05], one can prove that the ’Simplified BH’ construction is robust in
the ’Simplified ROB’ model. Motivated by this, we give a very strong attack on the ’Simplified
BH’ construction in our stronger model, for any extractor Extract and generator G. This already
illustrates the main difference between our models in terms of entropy accumulation.

Consider the following very simple distribution sampler D. At any time period, it simply sets
I = αp (meaning bit α concatenated p times) for a fresh and random bit α, and also sets entropy
estimate γ = 1 and leakage z = ∅. Clearly, D is legitimate, as the min-entropy of I is 1, even
conditioned on the past and the future. Hence, for any entropy threshold γ∗, the simplified
BH construction must regain security after γ∗ calls to the D-refresh procedure following a state
compromise. Now consider the following simple adversary A attacking the backward security
(and, thus, robustness) of the ’Simplified BH’ construction. It calls set-state(0n), and then makes
γ∗ calls to D-refresh followed by many calls to next-ror. Let us denote the value of the state S
after j calls to D-refresh by Sj , and let Y (0) = Extract(0p), Y (1) = Extract(1p). Then, recalling
that refresh(S, I) = S ⊕ Extract(I) and S0 = 0n, we see that Sj = Y (α1) ⊕ . . . ⊕ Y (αj), where
α1 . . . αj are random and independent bits. In particular, at any point of time there are only
two possible values for Sj : if j is even, then Sj ∈ {0n, Y (0) ⊕ Y (1)}, and, if j is odd, then
Sj ∈ {Y (0), Y (1)}. In other words, despite receiving γ∗ random and independent bits from D,
the refresh procedure failed to accumulate more than 1 bit of entropy in the final state S∗ = Sγ∗ .
In particular, after γ∗ calls to D-refresh, A can simply try both possibilities for S∗ and easily
distinguish real from random outputs with advantage arbitrarily close to 1 (by making enough
calls to next-ror).

This shows that the ’Simplified BH’ construction is never backward secure in our model, despite
being secure in the ’Simplified ROB’ model.

4.2 Recovering and Preserving Security

We define two properties of a pseudo-random number generator with input which are intuitively
simpler to analyze than the full robustness security. We show that these two properties, taken
together, imply robustness.
Recovering Security. The notion of recovering security considers an adversary that compro-
mises the state to some arbitrary value S0, either by asking for the state (get-state), setting it
(set-state) or with the output (next-ror) when the internal state is unsafe. Afterwards, sufficient
calls to D-refresh are made to increase the entropy estimate c above the threshold γ∗. The recov-
ering process should make the bit b involved in the next-ror procedure indistinguishable: when
the internal state is considered as safe, the output randomness R should look indistinguishable
from random.

Formally, we consider the security game RECOV for a pseudo-random number generator with
input (setup, refresh, next), whose procedures are described in Figure 4.5.
The security game RECOV is described as follow, with an adversary A, a sampler D, and bounds
qr, γ

∗:

1. The challenger generates a seed seed $← setup and a bit b $← {0, 1} uniformly at random. It
sets σ0 = 0 and for k = 1, . . . , qr, it computes (σk, Ik, γk, zk) ← D(σk−1), initializes k = 0
and sets c = 0 It then gives back the seed and the values γ1, . . . , γqr and z1, . . . , zqr to the
adversary.

2. The adversary gets access to an oracle getinput which on each invocation increments k :=
k + 1 and outputs Ik.

— 57 —

Chapter 4. Robustness of Pseudo-random Number Generators with Inputs

proc. initialize(D)
seed $← setup;
σ0 ← 0;
b

$← {0, 1};
FOR k = 1 TO qr DO

(σk, Ik, γk, zk)← D(σk−1)
END FOR
k ← 0;
OUTPUT seed, (γk, zk)k=1,...,qr

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. getinput
k ← k + 1
OUTPUT Ik

proc. set-state(S∗)
S ← S∗

c← 0

proc. D-refresh
k ← k + 1;
S = refresh(S, Ik);
IF c < γ∗,
c = min(c+ γk, n)

proc. next-ror
(S(0), R(0))← next(S)
(S(1), R(1)) $← {0, 1}n+`

RETURN (S(b), R(b)),
(Ik+1, . . . , Iqr)

Figure 4.5 – Procedures in Security Game RECOV(qr, γ∗)

3. At some point the adversary A calls procedure set-state: she sets a chosen internal state
S∗ ∈ {0, 1}n. She then chooses an integer d such that k+d ≤ qr and γk+1 +· · ·+γk+d ≥ γ∗,
then calls D-refresh d times: this procedure updates the state S := refresh(S, Ik+j) and
updates c← c+ γk sequentially.

4. Eventually, the challenger sets (S(0), R(0))← next(S) and generates (S(1), R(1)) $← {0, 1}n+`.
It then gives (S(b), R(b)) to the adversary, together with the next inputs Ik+1, . . . , Iqr (if k
was the number of refresh-queries asked up to this point);

5. The adversary A outputs a bit b∗.

The output of the game is the output of the finalize oracle at the end, which is 1 if the adversary
correctly guesses the challenge bit, and 0 otherwise. Note that the challenge concerns the total
output of the next algorithm. We define the advantage of the adversary A and sampler D in the
above game as |2 Pr[b∗ = b]− 1|.

Definition 30 (Recovering Security). A pseudo-random number generator with input (setup,
refresh, next) is said (t, qr, γ∗, ε)-recovering if for any adversary A and sampler D, both running
in time t, the advantage of A in Game RECOV(qr, γ∗) is at most ε.

Preserving Security. This security notion considers a safe internal state. After several calls to
D-refresh with known (and even chosen) inputs, the internal state should remain safe. An initial
state S is generated with entropy n. Then it is refreshed with arbitrary many calls to D-refresh.
This is the preserving process, which should make the bit b involved in the next-ror procedure
indistinguishable: since the internal state is considered as safe, the output randomness R should
look indistinguishable from random.

Formally, we consider the security game PRES for a pseudo-random number generator with
input (setup, refresh, next), whose procedures are described in Figure 4.6.
The security game PRES is described as follow, with an adversary A and a sampler D:

1. The challenger generates an initial state S $← {0, 1}n, a seed seed ← setup, and a bit
b

$← {0, 1} uniformly at random. It gives back the seed to the adversary;

2. The adversary A gets seed and can ask as many queries as it wants to the oracles D-refresh
but with chosen inputs I to the D-refresh-queries. The D-refresh procedure simply applies
the refresh algorithm to the current state and the input.

— 58 —

4.2. Recovering and Preserving Security

proc. initialize(D)
seed $← setup;
S

$← {0, 1}n;
b

$← {0, 1};
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh(I)
S = refresh(S, I)

proc. next-ror
(S(0), R(0))← next(S)
(S(1), R(1)) $← {0, 1}n+`

RETURN (S(b), R(b))

Figure 4.6 – Procedures in Security Game PRES

3. Eventually, the challenger sets (S(0), R(0))← next(S) and generates (S(1), R(1)) $← {0, 1}n+`.
It then gives (S(b), R(b)) to the adversary;

4. The adversary A outputs a bit b∗.

The output of the game is the output of the finalize oracle at the end, which is 1 if the adversary
correctly guesses the challenge bit, and 0 otherwise. Note that the challenge concerns the total
output of the next algorithm. We define the advantage of the adversary A in the above game as
|2 Pr[b∗ = b]− 1|.

Definition 31 (Preserving Security). A pseudo-random number generator with input (setup,
refresh, next) is said (t, ε)-preserving if for any adversary A and sampler D, both running in
time t, the advantage of A in the game PRES is at most ε.

We now show that, taken together, recovering and preserving security notions imply the full
notion of robustness.

Theorem 9. If a pseudo-random number generator with input (setup, refresh, next) has both
(t, qr, γ∗, εr)-recovering security and (t, εp)-preserving security, then it is ((t′, qr, qn, qs), γ∗, qn(εr+
εp))-robust where t′ ≈ t.

Proof. We will refer to the adversary’s queries to next-ror oracle in the robustness game as “next
queries”. We assume that the adversary makes exactly qn of them. We say that a next query is
uncompromised if c ≥ γ∗ during the query, and we say it is compromised otherwise.

We prove the robustness of GEN by reduction (a) to its recovering security and (b) to its
preserving security.

We partition the uncompromised next queries into two subcategories: preserving and recovering.
We say that an uncompromised next query is preserving if c ≥ γ∗ throughout the entire period
between the previous next query (if there is one) and the current one. Otherwise, we say that
an uncompromised next query is recovering. With any recovering next query, we can associate a
corresponding most recent entropy drain (mRED) query which is the most recent query to either
get-state, or to set-state, or to a compromised next-ror that precedes the current next query. An
mRED query must set the cumulative entropy estimate to c = 0. Moreover, with any recovering
next query, we associate a corresponding sequence of recovering samples Ī = (Ik+1, . . . , Ik+d)
which are output by all the calls to the D-refresh oracle that precede the recovering next query,
but follow the associated mRED query. It is easy to see that any such sequence of recovering
samples Ī must satisfy the entropy requirements

∑k+d
j=k+1 γj ≥ γ∗ where the jth call to D-refresh

oracle outputs (Ij , γj , zj).

We consider a hybrid sequence of security games, whose procedures are described in Figure 4.7:

— 59 —

Chapter 4. Robustness of Pseudo-random Number Generators with Inputs

G0 is the initial robustness game ROB, Gi, Gi+1/2 and Gi+1 are hybrid games, all derived from
the initial robustess game ROB, for i ∈ {0, . . . , qn − 1}.
Game G0. Game G0 is the initial real-or-random ROB security game as in Definition 29.
Games Gi and Gi+1. Games Gi and Gi+1 are modifications of game G0 that use procedures
described in Figure 4.7. Procedure initialize sets parameters as in G0 and a new parameter
ctr to 0. Procedures finalize, D-refresh, M-set-state, M-get-state are the same as in game G0.
Procedure next-ror is different from game G0: ctr is incremented and for each uncompromised
next query, if ctr ≤ i (for Gi) or ctr ≤ i+ 1 (for Gi+1), the challenger generates a random couple
(S1, R1) ∈ {0, 1}n+` and returns R1 to A. If ctr > i (for Gi) or ctr > i + 1 (for Gi+1), the
challenger behaves as in game G0.
Game Gi+1/2. Game Gi+1/2 is a modification of game Gi that uses procedures described in
Figure 4.7. Procedure initialize sets parameters as in Gi and a new Boolean parameter ns to true
(this parameter intends to capture the differences between recovering and preserving uncompro-
mised next queries). Procedures finalize and D-refresh are the same as for the previous games.
Procedures get-state and set-state are different: the flag ns is set to false in these procedures
(hence meaning that the next query is recovering). Finally procedure next-ror is also different:
ctr is incremented, and for each uncompromised next query, if ctr ≤ i or ctr = i + 1 and flag
ns = true, the challenger generates a random couple (S1, R1) ∈ {0, 1}n+` and returns R1 to A.
If ctr = i+ 1 or ns = false, the challenger behaves as in game G0.

We make use of two technical propositions, that are stated below: in Proposition 2, we prove
that for all i ∈ {0, . . . , qn− 1}, |Pr[Gi = 1]−Pr[Gi+ 1

2
= 1]| ≤ εp, and in Proposition 3, we prove

that |Pr[Gi+ 1
2

= 1]− Pr[Gi+1 = 1]| ≤ εr.

Combining the two propositions, and using the hybrid argument, we get:

|Pr[G0 = 1]− Pr[Gqn) = 1]| ≤ qn(εr + εp).

Moreover Gqn is completely independent of the challenger bit b. In particular, all next-ror
queries return a random R

$← {0, 1}` independent of the challenge bit b. Therefore, we have
Pr[Gqn = 1] = 1

2 . Combining with the above, we see that the adversary’s advantage in the
original robustness game is: ∣∣∣∣Pr[G0 = 1]− 1

2

∣∣∣∣ ≤ qn(εr + εp).

Let us now prove Proposition 2 and Proposition 3.

Proposition 2. Assuming that the pseudo-random number generator with input has (t, εp)-
preserving security, then for any adversary/distinguisher A,D running in time t′ ≈ t, we have
|Pr[Gi = 1]− Pr[Gi+ 1

2
= 1]| ≤ εp.

Proof. Fix adversary/sampler pair A,D running in time t′. Note that the two games above only
differ in the special case where the (i+ 1)th next query made by A is preserving. Therefore, we
can assume that A ensures this is always the case, as it can only maximize advantage.

We define an adversary A′ that has advantage εp in the preserving security game PRES. The
adversary A′ gets a value seed from its challenger and passes it to A. Then A′ begins running A
and simulating all of the oracles in the robustness security game. It chooses a random “challenge
bit” b $← {0, 1}. It simulates all oracle calls made by A until the (i + 1)th next query as in Gi.

— 60 —

4.2. Recovering and Preserving Security

proc. initialize(D)
seed $← setup;
σ ← 0;
S ← 0n;
c← 0;
ctr← 0;
b

$← {0, 1};
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh
(σ, I, γ, z) $← D(σ)
S ← refresh(S, I)
IF c < γ∗

c← min(c+ γ, n)
OUTPUT (γ, z)

proc. get-state
c← 0
OUTPUT S

proc. set-state(S∗)
c← 0
S ← S∗

Game Gi

proc. next-ror
ctr← ctr + 1
(S,R0)← next(S)
IF c < γ∗,
c← 0
RETURN R0

ELSE
IF ctr ≤ i

(S1, R1) $← {0, 1}n+`

RETURN R1
ELSE

R1
$← {0, 1}`

RETURN Rb
proc. initialize(D)
seed $← setup;
σ ← 0;
S ← 0n;
c← 0;
ns← true ;
ctr← 0;
b

$← {0, 1};
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh
(σ, I, γ, z) $← D(σ)
S ← refresh(S, I)
IF c < γ∗

c← min(c+ γ, n)
OUTPUT (γ, z)

proc. get-state
c← 0
ns← false
OUTPUT S

proc. set-state(S∗)
c← 0
S ← S∗

ns← false

Game Gi+ 1
2

proc. next-ror
ctr← ctr + 1
(S,R0)← next(S)
IF c < γ∗,
c← 0
RETURN R0

ELSE
IF ctr ≤ i ∨ (ctr = i+ 1 ∧ ns = true)

(S1, R1) $← {0, 1}n+`

RETURN R1
ELSE

R1
$← {0, 1}`

RETURN Rb
proc. initialize(D)
seed $← setup;
σ ← 0;
S ← 0n;
c← 0;
ctr← 0;
b

$← {0, 1};
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh
(σ, I, γ, z) $← D(σ)
S ← refresh(S, I)
IF c < γ∗

c← min(c+ γ, n)
OUTPUT (γ, z)

proc. get-state
c← 0
OUTPUT S

proc. set-state(S∗)
c← 0
S ← S∗

Game Gi+1

proc. next-ror
ctr← ctr + 1
(S,R0)← next(S)
IF c < γ∗,
c← 0
RETURN R0

ELSE
IF ctr ≤ i+ 1

(S1, R1) $← {0, 1}n+`

RETURN R1
ELSE

R1
$← {0, 1}`

RETURN Rb

Figure 4.7 – Reductions to Preserving and Recovering Security for ROB

— 61 —

Chapter 4. Robustness of Pseudo-random Number Generators with Inputs

In particular, it simulates calls to D-refresh using the code of the sampler D and updating its
state. Note that A′ has complete knowledge of the sampler state σ and the generator state S
at all times.

During the (i + 1)th next query made by A, the adversary A′ takes all the samples I1, . . . , Id
which were output by D in between the ith and (i + 1)th next query and gives these to its
challenger. It gets back a value (S∗, R0). If the (i + 1)th next query made by A is next-ror the
adversary A′ also chooses R1

$← {0, 1}` and gives Rb to A where b is challenge bit randomly
picked by A′. In either case, A′ sets the new generator state to S∗ and continues running the
game, simulating all future oracle calls made by A as in Gi. Finally, if A outputs the bit b∗, the
adversary A′ outputs the bit b̃∗ which is set to 1 if b = b∗.

Notice that if the challenge bit of the challenger for A′ is b̃ = 0 then this exactly simulates Gi
for A and if the challenge bit is b̃ = 1 then this exactly simulates Gi+1. In particular, we can
think of the state immediately following the ith next query as being the challenger’s randomly
chosen value S0

$← {0, 1}n, the state immediately preceding the (i + 1)th next query being Sd
which refreshes S0 with the samples I1, . . . , Id, and the state immediately following the query
as being either (S∗, R0) ← next(Sd) when b̃ = 0 (as in Gi) or (S∗, R0) $← {0, 1}n+` when b = 1
(as in Gi+1). Finally we have:

|Pr[Gi+ 1
2

= 1]− Pr[Gi = 1]| = 2 · (Pr[b′∗ = 1|b′ = 1]− 1) = 2 · (Pr[b′∗ = b′]− 1) ≤ εp.

Proposition 3. Assuming that the pseudo-random number generator with input has (t, qr, γ∗, εr)-
recovering security, then for any adversary/distinguisher A,D running in time t′ ≈ t, we have
|Pr[Gi+ 1

2
= 1]− Pr[Gi+1 = 1]| ≤ εr.

Proof. Fix adversary/sampler pair A,D running in time t′. Note that the two games above only
differ in the special case where the (i+ 1)th next query made by A is recovering. Therefore, we
can assume that A ensures this is always the case, as it can only maximize advantage.

We define an adversary A′ such that A′,D has advantage εr in the recovering security game.
The adversary A′ gets a value seed from its challenger and passes it to A. Then A′ begins
running A and simulating all of the oracles in the robustness security game. In particular, it
chooses a random “challenge bit” b $← {0, 1} and state S $← {0, 1}n. It simulates all oracle
calls made by A until right prior to the (i + 1)th next query as in Gi. To simulate calls to
D-refresh, the adversary A′ outputs the values γk, zk that it got from its challenger in the
beginning, but does not immediately update the current state S. Whenever A makes an oracle
call to get-state, get-next, next-ror, set-state, A’ first makes sufficiently many calls to its get-refresh
oracle so as to get the corresponding samples Ik that should have been sampled by these prior
D-refresh calls, and refreshes its state S accordingly before processing the current oracle call.

When A makes its (i + 1)th next query, the adversary A′ looks back and finds the most recent
entropy drain (mRED) query that A made, and sets S0 to the state of the generator immediately
following that query. Assume A made d calls to D-refresh between the mRED query and the
(i+ 1)th next query (these are the “recovering samples”). Then A′ gives (S0, d) to its challenger
and gets back (S∗, R0) and Ik+d+1, . . . , Iqr . It chooses R1

$← {0, 1}`. If the (i+ 1)th next query
made by A is next-ror the adversary A′ also chooses R1

$← {0, 1}` and gives Rb to A, where b is
challenge bit randomly picked by A′ in the beginning. In either case, A′ sets the new generator
state to S∗ and continues running the game, simulating all future oracle calls made by A as in
Gi+1 using the values Ik+d+1, . . . , Iqr to simulate D-refresh calls. Finally, if A outputs the bit b∗,

— 62 —

4.3. A Secure Construction

the adversary A′ outputs the bit b̃∗ which is set to 1 if and only if b = b∗.
Notice that if the challenge bit of the challenger for A′ is b̃ = 0 then this exactly simulates
Gi+ 1

2
for A and if the challenge bit is b̃ = 1 then this exactly simulates Gi+1. In particular, we

can think of the state immediately following the mRED query as S0 and the state immediately
preceding the (i+ 1)th next query being Sd which refreshes S0 with the samples Ik+1, . . . , Ik+d,
and the state immediately following the query as being either (S∗, R0) ← next(Sd) when b̃ = 0
(as in Gi+ 1

2
) or (S∗, R0) $← {0, 1}n+` when b = 1 (as in Gi+1). Also, we note that A′ is a valid

adversary since the recovering samples must satisfy
∑k+d
j=k+1 γj ≥ γ∗ if the (i + 1)st next query

is recovering. Finally:

|Pr[Gi+1 = 1]− Pr[Gi+ 1
2

= 1]| = 2 · (Pr[b′∗ = 1|b′ = 1]− 1) = 2 · (Pr[b′∗ = b′]− 1) ≤ εr.

4.3 A Secure Construction
Let G : {0, 1}m → {0, 1}n+` be a standard pseudo-random generator where m < n. We use
the notation [y]m1 to denote the first m bits of y ∈ {0, 1}n. Our construction of pseudo-random
number generator with input has the parameters s = 2n (seed length), n (state length), ` (output
length), and p = n (input length), and is defined as follows:

• setup(): Output seed = (X,X ′) $← {0, 1}2n.

• S′ = refresh(S, I): Given seed = (X,X ′), current state S ∈ {0, 1}n, and a sample I ∈
{0, 1}n, output: S′ := S ·X + I, where all operations are over F2n .

• (S′, R) = next(S): Given seed = (X,X ′) and a state S ∈ {0, 1}n, first compute U =
[X ′ · S]m1 . Then output (S′, R) = G(U).

Notice that we are assuming each input I is in {0, 1}n. This is without loss of generality: we
can take shorter inputs and pad them with 0s, or take longer inputs and break them up into
n-bit chunks, calling the refresh procedure iteratively on each chunk.
On-line Extractor. Let’s look at what happens if we start in some state S and call the refresh
procedure d-times with the samples Id−1, . . . , I0, as was done in the security games RECOV and
PRES (it will be convenient to index these in reverse order). Then the new state at the end of
this process will be:

S′ := S ·Xd + Id−1 ·Xd−1 + · · ·+ I1 ·X + I0.

Let Ī := (Id−1, . . . , I0) be the concatenation of all d samples. In the analysis we rely on the
fact that the polynomial evaluation hash function defined by hX(Ī) :=

∑d−1
j=0 Ij ·Xj is (d/2n)-

universal meaning that the probability of any two distinct inputs colliding is at most d/2n over
the random choice of X (see Section 2.3). In particular, we can think of our refresh procedure as
computing this hash function in an on-line manner, processing the inputs Ij one-by-one without
knowing the total number of future samples d, and keeping only a short local state.In particular,
the updated state after the d refreshes is S′ = S · Xd + hX(Ī). Unfortunately, hX(·) is not
sufficiently universal to make it a good extractor, and therefore we cannot argue that S′ itself
is random as long as Ī has entropy. Therefore, we need to apply an additional hash function
h′X′(Y) = [X ′ · Y]m1 which takes as input Y ∈ {0, 1}n and outputs a value hX′(Y) ∈ {0, 1}m.
We show that the composition function h∗X,X′(Ī) = h′X′(hX(Ī)) is a good randomness extractor.
Therefore, during the evaluation of (S′′, R) = next(S′), the value

U = [X ′ · S′]m1 = [X ′ · S ·Xd]m1 + h∗X,X′(Ī)

— 63 —

Chapter 4. Robustness of Pseudo-random Number Generators with Inputs

is uniformly random as long as the refreshes Ī jointly have sufficient entropy. This is the main
idea behind our construction. We formalize this via the following lemma, which provides the
key to proving our main theorem.
Lemma 6. Let d, n,m be integers, let X,X ′, Y ∈ F2n, Ī = (Id−1, . . . , I0) ∈ Fd2n. Define the hash
function families:

hX(Ī) :=
d−1∑
j=0

Ij ·Xj , h′X′(Y) := [X ′ · Y]m1 .

h∗X,X′(Ī) := h′X′(hX(Ī)) =

X ′ · d−1∑
j=0

Ij ·Xj

m
1

.

Then the hash-family H = {h∗X,X′} is 2−m(1 + d · 2m−n)-universal. In particular it is a strong
(k, ε)-extractor as long as:

k ≥ m+ 2 log(1/ε) + 1, n ≥ m+ 2 log(1/ε) + log(d) + 1.

Proof. For the first part of the lemma, fix any

Ī = (Id−1, . . . , I0) 6= Ī ′ = (I ′d−1, . . . , I
′
0).

Then:

Pr
X,X′

[h∗X,X′(Ī) = hX,X′(Ī ′)] ≤ Pr
X

[hX(Ī) = hX(Ī ′)] + Pr
X,X′

hX′(Y) = hX′(Y ′)

∣∣∣∣∣∣∣
Y 6= Y ′

Y := hX(Ī),
Y ′ := hX(Ī ′)

≤ Pr

X

d−1∑
j=0

(Ij − I ′j) ·Xj = 0

+ 2−m

≤ d/2n + 2−m = 2−m(1 + d2m−n).

For proving the second part, we use the fact that hX,X′ is 2−m(1+α)-universal for α = d ·2m−n.
Hence, it is also a (k, ε)-extractor where ε ≤

√
2m−k + α =

√
2m−k + d2m−n (See Lemma 4).

This is ensured by our parameter choice.

Lemma 6 will be crucially used in establishing Theorem 10.
Theorem 10. Let n > m, `, γ∗ be integers. Assume that G : {0, 1}m → {0, 1}n+` is a standard
(t, εG)-secure pseudo-random generator. Let G = (setup, refresh, next) be defined as above. Then
G is a ((t′, qr, qn, qs), γ∗, ε)-robust pseudo-random number generator with input where t′ ≈ t, ε =
qn(2εG +q2

rεext+2−n+1) as long as γ∗ ≥ m+2 log(1/εext)+1, n ≥ m+2 log(1/εext)+log(qr)+1.
We present the proof below, but now make a few comments. First, it is instructive to split the
security bound on ε into two parts (ignoring the “truly negligible” term qn · 2−n+1): “computa-
tional” part εcomp = 2qn · εG and “statistical” part εstat = qnq

2
r · εext, so that ε ≈ εcomp + εstat.

Notice, the computational term εcomp is already present in any “input-free” generator (or “stream
cipher”), where the state S is assumed to never be compromised (so there is no refresh operation)
and next(S) = G(S). Also, such stream cipher has state length n = m. Thus, we can view the
statistical term εstat = qnq

2
r · εext and the “state overhead” n −m = 2 log(1/εext) + log(qr) + 1

as the “price” one has to pay to additionally recover from occasional compromise (using fresh
entropy gathered by the system).
In addition, to slightly reduce the number of parameters in Theorem 10, we can let k be our
“security parameter” and set qr = qn = qs = 2k and εext = 2−4k. Then we see that εstat =
23k ·2−4k = 2−k, εcomp = 2k+1εG and we can set n = m+2 log(1/εext)+log(qr)+1 = m+9k+1
and γ∗ = m+ 2 log(1/εext) + 1 = m+ 8k + 1. Summarizing all of these, we get Theorem 11.

— 64 —

4.3. A Secure Construction

Theorem 11. Let k,m, `, n be integers, where n ≥ m + 9k + 1. Assume that G : {0, 1}m →
{0, 1}n+` is a standard (t, εG)-secure pseudo-random generator. Then G is a ((t′, 2k, 2k, 2k),m+
8k + 1, 2k+1 · εG + 2−k)-robust pseudo-random number generator with input, having n-bit state
and `-bit output, where t′ ≈ t.

Coming back to our comparison with the stream ciphers (or “input-free” generators), we see
that we can achieve statistical security overhead εstat = 2−k (with qr = qn = qs = 2k) at the
price of state overhead n−m = 9k+ 1 (and where entropy threshold γ∗ = m+ 8k+ 1 = n− k).
Proof of Theorem 10 We show that G satisfies (t′, qr, γ∗, (εG + q2

rεext))-recovering security
and (t′, (εG + 2−n+1))-preserving security. Theorem 10 then follows directly from Theorem 9.

Proposition 4. The pseudo-random number generator with input G has (t′, εG + 2−n+1)-
preserving security.

proc. initialize(D)
(X,X ′) $← setup;
S0

$← {0, 1}n;
j ← 0;
b

$← {0, 1};
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh(I)
Sj := Sj−1 ·X + I

Game G0 = PRES

proc. next-ror
U = [Sd ·X ′]m1
(S(0), R(0))← G(U)
(S(1), R(1)) $← {0, 1}n+`

RETURN (S(b), R(b))

proc. initialize(D)
(X,X ′) $← setup;
S0

$← {0, 1}n;
b

$← {0, 1};
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh(I)
Sj := Sj−1 ·X + I

Game G1

proc. next-ror

Sd
$← {0, 1}n

U = [Sd ·X ′]m1
(S(0), R(0))← G(U)
(S(1), R(1)) $← {0, 1}n+`

RETURN (S(b), R(b))

proc. initialize(D)
(X,X ′) $← setup;
S0

$← {0, 1}n;
b

$← {0, 1};
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh(I)
Sj := Sj−1 ·X + I

Game G2

proc. next-ror

U
$← {0, 1}m

(S(0), R(0))← G(U)
(S(1), R(1)) $← {0, 1}n+`

RETURN (S(b), R(b))

proc. initialize(D)
(X,X ′) $← setup;
S0

$← {0, 1}n;
b

$← {0, 1};
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh(I)
Sj := Sj−1 ·X + I

Game G3

proc. next-ror

(S(0), R(0)) $← {0, 1}n+`

(S(1), R(1)) $← {0, 1}n+`

RETURN (S(b), R(b))

Figure 4.8 – Preserving Security of G

— 65 —

Chapter 4. Robustness of Pseudo-random Number Generators with Inputs

Proof. We prove the preserving security of G by reduction to the standard security of G.

Let G0 be the original security game PRES: the game outputs a bit which is set to 1 if and
only if the adversary guesses the challenge bit b∗ = b. If the initial state is S0

$← {0, 1}n, the
seed is seed = (X,X ′), and the adversarial samples are Id−1, . . . , I0 (indexed in reverse order
where Id−1 is the earliest sample) then the refreshed state that incorporates these samples will
be Sd := S0 ·Xd +

∑d−1
j=0 Ij ·Xj . As long as X 6= 0, the value Sd is uniformly random (over the

choice of S0).
We consider the sequence of games G0, G1, G2, G3, where G1, G2, G3 are all modifications of game
G0 = PRES, whose procedures are illustrated in Figure 4.8 (note that we remove the common
finalize procedure in all the descriptions of the games).

In game G1 the challenger simply picks Sd
$← {0, 1}n uniformly at random and we have

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ 2−n.

Let U = [Sd ·X ′]m1 be the value computed by the challenger during the computation (S,R) ←
next(Sd) when the challenge bit is b = 0. Then, as long as X ′ 6= 0, the value U is uniformly
random (over the choice Sd). Therefore, we can define G2 where the challenger choose U $←
{0, 1}n during this computation and we have:

|Pr[G1 = 1]− Pr[G2 = 1]| ≤ 2−n.

Finally (S,R) = next(Sd, seed) = G(U). Then (S,R) is (t, εG) indistinguishable from uniform.
Therefore we can consider a modified G3 where the challenger just choosing (S,R) at random
even when the challenge bit is b = 0. Since the adversary runs in time t′ ≈ t, we have:

|Pr[G3 = 1]− Pr[G2 = 1]| ≤ εG.

Since G3 is independent of the challenge bit b, we have Pr[G3 = 1] = 1
2 and therefore

|Pr[G0 = 1]− 1
2 | ≤ εG + 2−n+1.

Proposition 5. The pseudo-random number generator with input G has (t′, qr, γ∗, (εG+q2
rεext))-

recovering security.

Proof. We prove the recovering security of G (a) using that H is a strong randomness extractor
and (b) by reduction to the standard security of G.

Let G0 be the original security game RECOV(qr, γ∗): the game outputs a bit which is set to 1 if
and only if the adversary guesses the challenge bit b∗ = b.

We consider the sequence of games G0, G1, G2, where G1, G2 are all modifications of game
G0 = RECOV, whose procedures are illustrated in Figure 4.9.

We define G1 where, during the challenger’s computation of (S∗, R)← next(Sd) for the challenge
bit b = 0, it picks U $← {0, 1}m uniformly at random rather than setting U := [X ′ · Sd]m1 . We
argue that:

|Pr[(G0) = 1]− Pr[(G1) = 1]| ≤ q2
rεext.

The loss of q2
r comes from the fact that the adversary can choose the index k and the value d

adaptively depending on the seed. In particular, assume that the above does not hold. Then

— 66 —

4.4. Impossibility Results

there must exist some values k∗, d∗ ∈ [qr] such that the above distance is greater than εext
conditioned on the adversary making exactly k∗ calls to get-refresh and choosing d∗ refreshes
in the game. We show that this leads to a contradiction. Fix the distribution on the subset of
samples Ī = (Ik∗+1, . . . , Ik+d∗) output by D during the first step of the game, which must satisfy

H∞(Ī | γ1, . . . , γqr , z1, . . . , zqr) ≥ γ∗.

By Lemma 6, the function hX,X′(Ī) is a (γ∗, εext)-extractor, meaning that (X,X ′, hX,X′(Ī)) is
εext-close to (X,X ′, Z) where Z is random an independent of X,X ′. Then, for any fixed choice
of k∗, d∗, the way we compute U in G0:

U := [X ′ · Sd]m1 = [X ′ · S0X
d]m1 + hX,X′(Ī)

is εexst close to a uniformly random U as chosen in G1. This leads to a contradiction, showing
that the equation holds.

Finally, we define G2 where, during the challenger’s computation of (S∗, R) ← next(Sd) for the
challenge bit b = 0, it chooses (S∗, R) uniformly at random instead of (S∗, R)← G(U) as in G1.
Since the adversary runs in time t′ ≈ t, we have:

|Pr[G2 = 1]− Pr[G1 = 1]| ≤ εG.

Since G2 is independent of the challenge bit b, we have Pr[G2 = 1] = 1
2 and therefore:

|Pr[G0 = 1]− 1
2 | ≤ εG.

4.4 Impossibility Results

A Generic Impossibility Result. It is important to notice that there is an impossibil-
ity result when independence between the randomness source and the seed is not guaran-
teed. Consider any pseudo-random number generator with input G with an input length
p ≥ 2, consider a distribution sampler D, where the samples Ii, i = 1, · · · qr are such that
I0 is uniform and [next(refresh(seed, S0, I))]0 = 1, hence H∞(I0) ≈ p − 1, I1 is uniform and
[next(refresh(seed, S1, I1))]0 = 1, where S1 = refresh(seed, S0, I0), hence H∞(I1 | I0) ≈ p− 1, and
generally, [next(refresh(seed, Sj , Ij))]0 = 1, where Sj = refresh(seed, Sj−1, Ij−1), and

H∞(Ij | I1, . . . , Ij−1) ≈ p− 1.

Let us consider an adversary A against the security of G that chooses the distribution D and
that makes the following oracle queries in the security game ROB: one call to set-state(0), qr
calls to D-refresh, one call to next-ror. Then the first bit of the last output will always be equal
to 0 and the adversary A breaks the robustness of the generator.
Impossibility Result for the Robust Construction. A more explicit impossibility result
can also be pointed out for the secure robust construction described in Section 4.3. In the secure
construction, seed is composed of two parts (X,X ′), where X,X ′ ∈ F2n , the input I ∈ F2n and
the state S ∈ F2n . Consider the distribution sampler D where Ij is sampled uniformly from
{0, Xj−qr}.

Let us consider an adversary A against the security of the generator that chooses the distribution

— 67 —

Chapter 4. Robustness of Pseudo-random Number Generators with Inputs

proc. initialize(D)
(X,X ′) $← setup;
σ0 ← 0;
b

$← {0, 1};
FOR k = 1 TO qr DO

(σk, Ik, γk, zk)← D(σk−1)
END FOR
k ← 0;
OUTPUT seed, (γk, zk)k=1,...,qr

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. getinput
k ← k + 1
OUTPUT Ik

proc. set-state(S∗)
S0 ← S∗

c← 0

proc. D-refresh
k ← k + 1;
Sj := Sj−1 ·X + Ik;
IF c < γ∗,
c = min(c+ γk, n)

proc. next-ror
U = [Sd ·X ′]m1
(S(0), R(0))← G(U)
(S(1), R(1)) $← {0, 1}n+`

RETURN (S(b), R(b))

Game G0 = RECOV

proc. initialize(D)
(X,X ′) $← setup;
σ0 ← 0;
b

$← {0, 1};
FOR k = 1 TO qr DO

(σk, Ik, γk, zk)← D(σk−1)
END FOR
k ← 0;
OUTPUT seed, (γk, zk)k=1,...,qr

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. getinput
k ← k + 1
OUTPUT Ik

proc. set-state(S∗)
S0 ← S∗

c← 0

proc. D-refresh
k ← k + 1;
Sj := Sj−1 ·X + Ik;
IF c < γ∗,
c = min(c+ γk, n)

proc. next-ror

U
$← {0, 1}m

(S(0), R(0))← G(U)
(S(1), R(1)) $← {0, 1}n+`

RETURN (S(b), R(b))

Game G1

proc. initialize(D)
(X,X ′) $← setup;
σ0 ← 0;
b

$← {0, 1};
FOR k = 1 TO qr DO

(σk, Ik, γk, zk)← D(σk−1)
END FOR
k ← 0;
OUTPUT seed, (γk, zk)k=1,...,qr

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. getinput
k ← k + 1
OUTPUT Ik

proc. set-state(S∗)
S0 ← S∗

c← 0

proc. D-refresh
k ← k + 1;
Sj := Sj−1 ·X + Ik;
IF c < γ∗,
c = min(c+ γk, n)

proc. next-ror

(S(0), R(0)) $← {0, 1}n+`

(S(1), R(1)) $← {0, 1}n+`

RETURN (S(b), R(b))

Game G2

Figure 4.9 – Recovering Security of G

D, and that makes the following oracle queries in the security game ROB: one call to set-state(0),
qr calls to D-refresh , one call to next-ror. Then after qr calls to D-refresh, the state of the
generator is equal to:

S = Xqr−1I1 +Xqr−2I2 + · · ·+ Iqr .

Then, as each term Xqr−jIj can only be equal to 0 or 1 the state S can only be equal to 0 or
1, although the inputs I1, · · · , Iqr collectivelly contain qr bits of entropy. Hence the adversary
A breaks the robustness of the generator. One may argue that this kinds of attacks are made
possible only because our construction does not use cryptographic primitives, however, as we
now show in the following impossibility result, it does not suffice to build a refresh algorithm
upon cryptographic primitives (as opposed to the polynomial hash function) to be secure against
such attack.
Impossibility Result for the NIST CTR_DRBG pseudo-random number generator
with input. An explicit impossibility result can also be pointed out for the generator described

— 68 —

4.4. Impossibility Results

in [BK12], named CTR_DRBG, and proposed as a standard by the NIST. As before, if we allow
the distribution sampler to depend on seed, the adversary can mount an attack against the ro-
bustness of the generator. Here the critical point is that the parameter seed is not defined in the
specification [BK12], hence an assumption shall be made on its definition. A carefull analysis of
the specification shows that a public parameter K = 0x00010203040506070809101112131415 is
defined in the specification, which is used exactly for randomness extraction (through a ’deriva-
tion function’ that we describe below). If we allow the distribution sampler D to sample an
input that depends on K, the adversary A can mount an attack against the robustness of the
generator. The attack is similar as the attack against the ’Simplified BH, but requires the knowl-
edge of seed.

Let us first describe the operations of CTR_DRBG. The complete description of CTR_DRBG
is given in [BK12], here we give a shorter description that focuses on important facts. Also
note that the generator uses a block cipher (bc) during its operations. In our description, we
assume that the block cipher is AES_128. We verified that our attack works independently of
this choice. We also intentionally simplified the description of CTR_DRBG:

• The specification separates the input used to refresh the generator into two components:
the ’source entropy input’ and the ’additional input’, the former being used to refresh
the internal state during output generation. Note that this is close to the security model
[DHY02], described in Section 3.4. As noted in the following sections, we prefer to consider
the whole inputs as a sole entity, therefore we will drop the ’additional input’ parameter
in our descriptions and only consider that there is one class of input, the ’source entropy
input’. This is equivalent to set the ’additional input’ to ∅ in the descriptions.

• The specification considers two cases, depending on the use of a ’derivation function’
named Block_Cipher_df. The difference between these two cases is the following: for a
given input, either the input is directly used ’as is’ or the input is first transformed with
an internal function (the so-called ’derivation function’) and then afterwards used by the
generator. Whenever an algorithm uses the function Block_Cipher_df, the algorithm is
named ’with derivation’. In our descriptions, we only keep the algorithms ’with derivation’
as our attacks are related to the use of this function.

• A ’Setup’ function and an ’Instantiate’ function are defined, that are used to initialize
the internal state of the generator. In our description, we do not take into account these
algorithms, as we focus on the algorithm used to refresh the internal state of the generator
(named the ’Reseed function’ in the specification) and the algorithm used to generate out-
put (named the ’Generate function’ in the specification). We omit these functions because
our attack relies on a state compromise and for any initialisation value, the adversary has
access to it.

The internal state of CTR_DRBG is composed with of three parts, S = (V,K, ctr) where:
|V | = 128, |K| = 128 and ctr is a counter that indicates the number of requests for pseudo-
random bits since instantiation or reseeding. The values of V and K are the critical values of
the internal state (i.e., V and K are the "secret values" of the internal state).

Algorithm 1 NIST CTR_DRBG Reseed
Require: S = (V,K, ctr), I
Ensure: S′ = (V ′,K′, ctr′)

1: (K′, V ′) = CTR_DRBG_update(Block_Cipher_df(I, 256),K, V)
2: ctr′ = 1
3: return (V ′,K′, ctr′)

— 69 —

Chapter 4. Robustness of Pseudo-random Number Generators with Inputs

CTR_DRBG Reseed Algorithm The Reseed algorithm is described in Algorithm 1. It takes
as input the current values for V , K, and ctr, and the input I. The output from the Reseed
function is the new working state, the new values for V , K, and ctr. Two Reseed algorithms are
defined, one using a derivation function Block_Cipher_df, one not using this function. As noted
before, we focus on the one using the derivation function.

Algorithm 2 NIST CTR_DRBG Generate
Require: S = (V,K, ctr), n
Ensure: S′ = (V ′,K′, ctr′), R

1: U = ∅
2: while len(U) < n do
3: V ′ = V ′ + 1 mod 2128, U = [U ||AES_ECB_Encrypt(K′,V′)]
4: end while
5: R = [U]n
6: (K′, V ′) = CTR_DRBG_Update(Ia,K′, V ′)
7: ctr′ = ctr + 1
8: return (V ′,K′, ctr′), R

CTR_DRBG Generate Algorithm The Generate algorithm is described in Algorithm 2. It takes
as input the current values for V , K, and ctr, n, the number of pseudo-random bits to be
returned. It outputs R, the pseudo-random bits returned, and the new values for V , C, and ctr.
Two Generate algorithms are defined, one using a derivation function Block_Cipher_df, one not
using this function. As noted before, we focus on the one using the derivation function.

Algorithm 3 NIST CTR_DRBG_Update
Require: V , K, I
Ensure: V ′, K′

1: U = ∅
2: while len(U) < (k + 128) do
3: V ′ = V + 1 mod 2128,
4: U = [[U ||AES_ECB_Encrypt(K,V′)]k+128 ⊕ I]
5: K′ = [U]k
6: V ′ = [U]128
7: end while
8: return (K′, V ′)

CTR_DRBG_Update Algorithm. The two previous algorithms both rely on an internal algo-
rithm, named CTR_DRBG_Update, described in Algorithm 3. It takes as input I, the data to
be used, the current value of K and V , and outputs the new value for K and V .
Block_Cipher_df Function. The derivation function Block_Cipher_df is used in the previous
algorithms. It is described in Algorithm 4. This function uses the public parameter K =
0x00010203040506070809101112131415 as a key to encrypt the input of the generator.
BCC Function. The BCC function is used in the previous algorithms. It is described in
Algorithm 5. This function operates a bloc cipher AES_ECB_Encrypt, which corresponds to
the AES in ECB mode, and chains the successive outputs.
Let us now describe the attack against the robustness of CTR_DRBG. Define the 32-byte
distribution D. On input a state i, D updates its state to i+1 and outputs a 32-byte input Ii: (i+
1; [Ii0, · · · , Ii31])← D(i); where I0, · · · , I15 are random and I16, · · · , I31 = AES_ECB_Decrypt(K,
I0, · · · , I15), where K = 0x00 · · · 15 (i.e. D is legitimate with γi = 128). Let us consider an
adversary A against the security of the generator that chooses the distribution D, and that
makes the following oracle queries in the security game ROB: one get-state, one D-refresh with
I0, one next-ror. Then (following algorithm notations):

• After get-state, S, K and ctr are known.

— 70 —

4.5. Instantiation

Algorithm 4 NIST CTR_DRBG Block_Cipher_df
Require: I, n
Ensure: R

1: L = len(I)/8, N = len(n)/8, S = [L||N ||I||0x80]
2: while len(S) mod 128 6= 0 do
3: S = S||0x00
4: end while
5: U = ∅, i = 0, K = 0x00010203040506070809101112131415
6: while len(U) < 256 do
7: IV = i||0, U = [U ||BCC(K, IV ||S)], i = i+ 1
8: end while
9: K = [U]128, X = [U]128, V = ∅

10: while len(V) < (k + 128) do
11: X = AES_ECB_Encrypt(K,X)
12: V = [V ||X]
13: end while
14: return R = [V]128

Algorithm 5 NIST CTR_DRBG BCC
Require: K, I, |I| mod 128 = 0
Ensure: R, |R| = 128

1: U = 0
2: n = |I|/128
3: parse I as [Bn, · · · , B1]
4: for i = 1 to n do
5: I = Bi ⊕ U
6: U = AES_ECB_Encrypt(K, I)
7: end for
8: return R = U

• After D-refresh, the Reseed algorithm is first applied: the new state is the output of
CTR_DRBG_update(Block_Cipher_df(I0, 256),K, V) and ctr = 1. Let us describe the
algorithm Block_Cipher_df(I0, 256): on input I0 and 256, Block_Cipher_df calculates
L = 32, N = 32, S = [32||32||I0||0x80] and then S = [32||32||I0||0x80||0x00|| · · · ||0x00].
Following, it calculates BCC(K, IV ||S), for IV = 0||0 and IV = 1||0, withK = 0x00 · · · 15,
then sets U = BCC(K, 1||0||S)||BCC(K, 0||0||S), K = [U]128, X = [U]128. Let us describe
the algorithm BCC(K, IV ||S): on input S = [32||32||I0||0x80||0x00|| · · · ||0x00], IV =
0||0 and K = 0x00 · · · 15, it parses S as B4, B3, B2, B1 and calculates I = B1, U =
AES_ECB_Encrypt(K, I), I = B2 ⊕ U , U = AES_ECB_Encrypt(K, I), I = B3 ⊕ U ,
U = AES_ECB_Encrypt(K, I), I = B4 ⊕ U , U = AES_ECB_Encrypt(K, I). However, the
input distribution os such that B3 = AES_ECB_Decrypt(K,B2) and therefore the output
of algorithm BCC is known to A. Hence the output of algorithm Block_Cipher_df is also
known to A and also the output of the Reseed algorithm, although the initial input was of
high entropy.

• After next-ror, the output of the generator is computed from a known state and is therefore
predictable.

In this last next-ror-oracle query, A obtains a 16-bytes string that is predictable, whereas this
event should occur with probability 2−128. Therefore A can distinguish an output of CTR_DRBG
from random in the game ROB(γ∗), for all γ∗ and this pseudo-random number generator with
input is not robust.

4.5 Instantiation
We now instantiate our main construction presented in Theorem 11 for various values of “security
parameter” k using AES_128 in counter mode for the standard pseudo-random generator G.

— 71 —

Chapter 4. Robustness of Pseudo-random Number Generators with Inputs

Namely, we set m = ` = 128 (recall, m is the standard pseudo-random number generator
input size, and ` in the output size), and let G(U) = AESU (0) . . .AESU (i − 1), where i =
d(n + 128)/128e is the number of calls to AES_128 to get one 128-bit output. Recall also
from Theorem 11 that we set the state length n = m + 9k + 1 = 9k + 129, which gives i =
2 + d(9k + 1)/128e.

We need to set the security εprg of our counter-mode standard pseudo-random number generator
in terms of the security of AES. This turns out to be a slightly subtle issue, which we discuss
at the end of this section, in part because it is based on assumptions, and also because the
“provable term” εcomp = 2k+1εprg seems to be overly pessimistic and does not correspond to
an actual attack. Hence, for now we will optimistically assume that, for the values of security
parameter k we consider, we have εcomp ≤ εstat = 2−k, so that ε = εcomp + εstat ≈ εstat = 2−k.

We consider setting the security level k to three values: 40, 50 and 64. Then as n = m+9k+1 =
9k + 129, γ∗ = m+ 8k + 1 = 8k + 129, and i = 2 + d(9k + 1)/128e, we get:

• For k = 40, we get n = 489, γ∗ = 449, i = 5.

• For k = 50, we get n = 579, γ∗ = 529, i = 6.

• For k = 64, we get n = 705, γ∗ = 641, i = 7.

We can instantiate G with AES in counter mode and the fields F2489 (defined by the polynom
X489 +X83 + 1), F2579 (defined by the polynom X579 +X12 +X9 +X7 + 1) and F2705 (defined
by the polynom X705 +X17 + 1). We set the output size of AES function equal to 128 bits and
we describe this instantiation with G = (setup, refresh, next), where:

• setup = (X,X ′) $← {0, 1}489+489 (resp. {0, 1}579×579, {0, 1}705×705);

• refresh(S, I) = S ·X + I ∈ F2489 (resp. F2579, F2705);

• next(S) : U = [S·X ′]128
1 , (S′, R) = (AESU (0), . . . ,AESU (4)) (resp. AESU (5)), AESU (6)).

Computational Term εcomp. We now come back to estimating the computational term
εcomp = 2k+1εprg, and our optimistic assumption that εcomp = 2k+1εprg ≤ εstat = 2−k, which is
equivalent to εprg ≤ 2−2k−1. Since we also want the running time t ≥ qR = 2k, we essentially
need our pseudo-random generator G to be (2k, 2−2k)-secure. However, it is easy to notice that
any (2k, εprg)-secure standard pseudo-random number generator with an m-bit key cannot have
security εprg < 2k−m, since the attacker in time 2k can exhaustively try 2k out of 2m key to
achieve advantage 2k−m. This means that we need to have 2−2k ≥ 2k−m, or k ≤ m/3. For
example, when using AES_128 in counter mode, this seems to suggest we can have εcomp ≤ εstat
only for k ≤ 42 = b128/3c, which is not the case for our high and unbreakable security settings.

However, we believe that the above analysis is overly pessimistic. Indeed, in theory, if we want
to use a standard pseudo-random number generator in a stream cipher mode ((S,R) ← G(S))
for 2k times, we can only claim “union bound” security 2kεprg, which, as we saw, is only possible
when k ≤ m/3. Although tight in theory, the bound does not seem to correspond to any concrete
attack when used with most “real-world” standard pseudo-random number generators (such as
AES_128 in counter mode). For example, for k = 64, the bound 2kεprg ≥ 264 · 2−64 = 1, which
suggests (if the bound was tight!) that one can break a stream cipher built from AES_128 in
the counter mode in 264 queries with advantage 1. However, we are presently not aware of any
attack achieving advantage even 2−64, let alone 1. To put it differently, we think that our origi-
nal assumption that εcomp ≤ εstat for k = 64 seems reasonable based on our current knowledge,

— 72 —

4.6. Benchmarks

even though theoretical analysis suggests that there is little point to set k > 42.

Based on this discussion, we suggest the following recipe when instantiating our construction
with a particular standard pseudo-random number generator G. Instead of directly looking at
the term εcomp = 2k+1εprg when examining a candidate value of security parameter k, one should
ask the following question instead: based on the current knowledge, what is the largest value of
k (call it k∗) so that no attacker can achieve advantage better than 2−k when G is used in the
stream cipher mode for 2k times? When this k∗ is determined, there is no point to set k > k∗,
as this only increases the state length n and degrades the efficiency of the generator, without
increasing its security ε beyond 2−k∗ (as εcomp ≤ 2−k∗ anyway). However, setting k ≤ k∗ will
result in final security ε ≈ 2−k while improving the efficiency of the resulting generator (i.e.,
state length n = m+ 9k + 1, γ∗ = m+ 8k + 1, and the complexity of refresh and next).

With this (somewhat heuristic) recipe, we believe setting k∗ = 64 was a fair and reasonable
choice when using AES_128 in counter mode to implement G.

4.6 Benchmarks

We now present efficiency benchmarks between our construction G and LINUX, a pseudo-random
number generator with input that we analyze in Section 7.2. These benchmarks are based on
a very optimistic hypothesis concerning LINUX and even with this hypothesis, our construction
G appears to be more efficient. As shown, a complete internal state accumulation is on average
two times faster for G than for LINUX and a 2048-bits key generation is on average ten times
faster for G than for LINUX.

For LINUX, we made the (optimitic) hypothesis that for the given input distribution, the mix-
ing function of LINUX accumulates the entropy in the internal state, that is H∞(M(S, I)) =
H∞(S) + H∞(I) if S and I are independent, and that the SHA1 function used for transfer be-
tween the pools and output is a perfect extractor, that is H∞(SHA1(S∗)) = 160 if H∞(S∗) = 160.
Of course, both of these hypotheses are extremely strong, but we make them to achieve the most
optimistic (and probably unrealistic!) estimates when comparing LINUX with our construction
G.

We implemented LINUX with functions extract_buf and mix_pool_bytes that we extracted from
the source code and we implemented G using fb_mul_lodah and fb_add from RELIC open
source library [AG] (that we extended with the fields F2489 , F2579 and F2705), aes_setkey_enc
and aes_crypt_ctr from PolarSSL open source library [Pol]. CPU cycle count was done using
ASM instruction RDTSC. Implementation was done on a x86 Ubuntu workstation. All code was
written in C, we used gcc C compiler and linker, code optimization flag O2 was used to build
the code.

4.6.1 Benchmarks on the Accumulation Process

First benchmarks are done on the accumulation process. We simulated a complete accumulation
of the internal state for LINUX and G with an input containing one bit of entropy per byte. For
G, by Theorem 10, 8 inputs of size 449 bits (resp. 579, 705 bits) are necessary to recover from
an internal state compromise, whereas by hypothesis, for LINUX, b160/12c = 13 inputs of size
12 bits are necessary to recover from an internal state compromise and transfers need to be done
between the input pool and the output pools.

For LINUX, denoting St = (Sti , Stu, Str), where Sti , Stu and Str are the successive states of the input
pool, the non-blocking output pool and the blocking output pool, respectively, we implemented

— 73 —

Chapter 4. Robustness of Pseudo-random Number Generators with Inputs

of acc.

CPU Cycles

0

2 ×107

4 ×107

6 ×107

0 25 50 75 100

G(705)

LINUX

100 accumulations for LINUX and G
% of acc.

CPU Cycles

0% 25% 50% 75% 100%
0

2 ×107

4 ×107

6 ×107

Step 1.

Steps 2. and 3.
G(705)

LINUX

One accumulation for LINUX and G

Figure 4.10 – Benchmark on the Accumulation Process

the following process, starting from a compromised internal state (S0
i , S

0
u, S

0
r), of size 6144 bits,

and using successive inputs of size 12 bytes, that we denote It:

1. Refresh S0
i with I0, · · · , I13: Sti = M(St−1

i , It−1). By hypothesis, H∞(S13
i) = 168.

2. Transfer 1024 bits from S13
i to Sr. The transfer is made by blocks of 80 bits, therefore,

13 transfers are necessary. Each transfer is done in two steps: first LINUX generates from
S13
i an intermediate data T 13

i = F ◦ H ◦ M(S13
i ,H(S13

i)) and then it mixes it with Sr,
giving the new states S14

i = M(S13
i ,H(S13

i)) and S14
r = M(S13

r , T
13
i). Then by hypothesis,

H∞(S13
r) = 80. After repeating these steps 12 times, by hypothesis, H∞(S26

r) = 1024.

3. Repeat step 2. for Su instead of Sr. By hypothesis, H∞(S39
u) = 1024.

After this process, by hypothesis, H∞(S39) = 6144 is maximal.

For G, denoting St the successive states of the internal state, we implemented the following
process, starting from a compromised internal state S0, of size 489 bits (resp. 579, 705 bits),
and using successive inputs It, of size 489 bits (resp. 579, 705 bits): Refresh S0 with I0, · · · , I7:
Si = Si−1 ·X + Ii−1. After this process, by Theorem 10, H∞(S8) = 489 (resp. 579, 705 bits)
is maximal.

The number of CPU cycles to perform these processes on LINUX and G (with internal state
size 705 bits) are presented in Figure 4.10. We first implemented 100 complete accumulations
processes for LINUX and G and we compared one by one each accumulation. As shown on the
left part of Figure 4.10, a complete accumulation in the internal state of G needs on average
two times less CPU cycles than a complete accumulation the internal state of LINUX. Then
we analyze one accumulation in detail or LINUX and G. As shown on the right part of Figure
4.10, a complete accumulation in the internal state of LINUX needs more CPU because of the
transfers between the input pool and the two output pools done in steps 2. and 3, it also shows
that the refresh function of G is similar as the Mixing function M of LINUX.

4.6.2 Benchmarks on the Generation Process

Second benchmarks are done on the generation process. We simulated the generation of 2048-
bits keys K for LINUX and G. For G, 16 calls to next are necessary, as each call outputs 128 bits.
For LINUX, each call to next outputs 80 bits, therefore 12 calls are first necessary, then 1024
bits need to be transfered from the input pool to the output pool, then 12 new calls to next are

— 74 —

4.6. Benchmarks

of gen.

CPU Cycles

0

2 ×106

4 ×106

6 ×106

8 ×106

0 25 50 75 100
G(705)

LINUX

100 key generations for LINUX and G

% of gen.

CPU Cycles

0

2 ×106

4 ×106

6 ×106

8 ×106

0% 25% 50% 75% 100%
G(705)

LINUX

One key generation for LINUX and G

Figure 4.11 – Benchmarks on the Generation Process

necessary.

For LINUX, denoting Rt the successive ouputs, we implemented the following process, starting
from an internal state (S0

i , S
0
r , S

0
u), where we suppose at least 1024 bits of entropy are accu-

mulated in the output pool S0
r and 4096 bits of entropy are accumulated in the input pool

S0
i :

1. Set R0 = F ◦ H ◦M(S0
r ,H(S0

r))

2. Repeat step 1. 12 times and set K0 = [R0|| . . . ||R12]1024
1 .

3. Transfer 1024 bits from S0
i to S0

r . The transfer is made by blocks of 80 bits, therefore, 13
transfers are necessary. Each transfer is done in two steps: first LINUX generates from S0

i

an intermediate data T 0
i = F ◦ H ◦M(S0

i ,H(S0
i)) and then it mixes it with S0

r , giving the
new states S1

i = M(S1
i ,H(S1

i)) and S1
r = M(S0

r , T
0
i). Then by hypothesis, H∞(S1

r) = 80.
After repeating these steps 12 times, by hypothesis, H∞(S13

r) = 1024.

4. Set R13 = F ◦ H ◦M(S13
r ,H(S13

r))

5. Repeat step 1. 12 times and set K1 = [R13|| . . . ||R25]1024
1 .

6. Set K = [K0||K1]

After this process, H∞(K) = 2048.

For G, we implemented the following process (using the Practical Efficiency Optimization pre-
sented in Section 4.3, starting from an internal state S0, of size 489 bits (resp. 579, 705 bits),
where we suppose at least γ∗ = 449 (resp. 529, 641 bits) bits of entropy are accumulated:

1. Set U = [S ·X ′]128
1 and (S1, R0) = (AESU (0), . . . ,AESU (4)) (resp. AESU (5)), AESU (6))

and set the Boolean flag last = true.

2. Set (U,R) = (AESU (0),AESU (1)) and set [S]128
1 = U .

3. Repeat step 2. 14 times.

After this process, H∞(K) = 2048.

The number of cycles to perform these processes on LINUX and G (with internal state size 705
bits) are presented in Figure 4.11. We first implemented the generation of 100 2048-bits keys

— 75 —

Chapter 4. Robustness of Pseudo-random Number Generators with Inputs

and we compared one by one each generation. As shown on the left part of Figure 4.11, 2048-bits
key generation with G needs on average ten times less CPU cycles than with LINUX. Then we
analyze one accumulation in detail or LINUX and G. As shown on the right part of Figure 4.11,
a 2048-bits key generation needs more CPU for LINUX.

— 76 —

Chapter 5

Robustness Against Memory Attacks

5.1 Model Description
In this chapter we give a syntactic formalization for security of pseudo-random number genera-
tors with input against memory attacks. All statements are part of [CR14]. We use Definition
27 for pseudo-random number generator with input in all this chapter.
We propose a modification of the robustness security model of Chapter 4 to identify exactly the
part of S that an adversary needs to compromise to attack a pseudo-random number generator
with input. To capture this idea, we consider the internal state as a concatenation of several
binary strings (named hereafter its decomposition). We model the adversarial capability of an
adversary A with two new functions namedM-get andM-set that allow A to set or get a part
of the internal state of the pseudo-random generator with input defined with a mask M. We
assume that the adversary A knows the decomposition of S and is able to chooseM adaptively.
The only differences between our security game and the original game ROB is that we replace the
procedures get-state and set-state, with new procedures M-get-state and M-set-state, allowing
the adversary to get/set a part the internal state identified by the mask.

proc. initialize(D)
seed $← setup;
σ ← 0;
S

$← {0, 1}n;
c← n;
corrupt← true;
b

$← {0, 1};
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh
(σ, I, γ, z) $← D(σ)
S ← refresh(S, I)
IF c < γ∗

c← min(c+ γ, n)
OUTPUT (γ, z)

proc.M-set-state(S,M, J)
S ←M-set(S,M, J)
c← max(0, c− λ)
IF c < γ∗,
c← 0

proc.M-get-state(S, J)
c← max(0, c− λ)
IF c < γ∗,
c← 0

OUTPUT M-get(S, J)

proc. next-ror
(S,R0)← next(S)
IF c < γ∗,
c← 0
OUTPUT R0

ELSE

R1
$← {0, 1}`

OUTPUT Rb

Figure 5.1 – Procedures in Security Game MROB(γ∗, λ)

Definition 32 (Decomposition). A decomposition of a binary string S ∈ {0, 1}n is a sequence
of disjoint binary strings (S1, · · · , Sk), such that S = [S1|| · · · ||Sk]. Two binary strings S and
M have the same decomposition if M = [M1|| · · · ||Mk] and |Si| = |Mi| for i ∈ {1, · · · , k}.
Definition 33 (M-get / M-set). Function M-get takes as input a couple (S, J), where S =
[S1|| · · · ||Sk] and J ⊂ {1, · · · , k}, then M-get(S, J) = (Sj)j∈J . Function M-set takes as input
a triple (S,M, J), where S,M ∈ {0, 1}n have the same decomposition S = [S1|| · · · ||Sk],M =
[M1|| · · · ||Mk] and J ⊂ {1, · · · , k}, thenM-set(S,M, J) = S, where Sj = Mj, for j ∈ J .

— 77 —

Chapter 5. Robustness Against Memory Attacks

These functions are adversarially provided, and their goal is to let A choose the maskM over
the internal state. Note that if the mask is too large (so that G becomes insecure), the security
game will require that new input is collected. These procedures model the memory attacks
against the generator.
Security Model. We now describe our security model. It is adapted from the security game
ROB(γ∗) that defines the robustness of a pseudo-random number generator with input. We
describe briefly the parameters of the security game:

• Integer γ∗: Defines the minimum entropy that is required in S for the generator to be
secure.

• Integer c: Defines the estimate of the amount of collected entropy.

• Integer λ ≤ n: Defines the size of the maskM.

• Boolean flag corrupt: Is et to true if c < γ∗ and false otherwise.

• Boolean b: Is used to challenge the adversary A.

Our security game uses procedures described in Figure 5.1. The procedure initialize sets the
parameter seed with a call to algorithm setup, the internal state S of the generator, as well as
parameters c and b. Note that we initially set c to n and S to a random value, to avoid give any
knowledge of S to the adversary A. After all oracle queries, A outputs a bit b∗, given as input
to the procedure finalize, which compares the response of A to the challenge bit b. The other
procedures are defined below:

• Procedure D-refresh: A calls the distribution sampler D for a new input and uses this
input to refresh G. The estimated entropy given by D is used by the procedure to update
the counter c (c← c+ γ) and if c ≥ γ∗, then the flag corrupt is set to false.

• Procedure M-set-state: Is used by A to set a part of S. First A calls function M-set to
update a part of the internal state. Then the counter value c is decreased by λ, the size of
the maskM (c← c− λ) and as in the initial set-state procedure, if c < γ∗, c is reset to 0.

• ProcedureM-get-state: Is used by A to get a part of S. First A calls the functionM-get.
Then the counter value c is decreased by λ, the size of the maskM (c← c− λ) and as in
the initial get-state procedure, if c < γ∗, c is reset to 0.

• Procedure next-ror: Challenges A on its capability to distinguish the output of G from
random, where the real output (R0) of G is obtained with a call to algorithm next and
the random string (R1) is ampled uniformly at random by the challenger. Attacker A
responds to the challenge with a bit b∗

The security definitions of a pseudo-random number generator with input against memory at-
tacks is given in Definition 34.

Definition 34 (Security of a Pseudo-Random Number Generator with Input against Memory
Attacks [CR14]). A pseudo-random number generator with input G = (setup, refresh, next) is
called (T = (t, qr, qn, qs), γ∗, ε)-robust (resp. resilient, forward-secure, backward-secure), against
memory attacks, if for any adversary A running in time at most t, making at most qr calls to
D-refresh, qn calls to next-ror and qs calls to M-get-state or M-set-state, and any legitimate
distribution sampler D inside the D-refresh procedure, the advantage of A in game MROB(γ∗, λ)
(resp, MRES(γ∗), MFWD(γ∗, λ), MBWD(γ∗, λ)) is at most ε, where:

— 78 —

5.2. Limitation of the Initial Security Property

• MROB(γ∗, λ) is the unrestricted game where A is allowed to make the above calls and
corrupt at most λ bits of S.

• MRES(γ∗) is the restricted game where A makes no calls toM-get-state/M-set-state (i.e.,
qs = 0 and λ = 0).

• MFWD(γ∗, λ) is the restricted game where A makes no calls to M-set-state and a single
call toM-get-state (i.e., qs = 1) which is the very last oracle call A is allowed to make to
corrupt λ bits of S.

• MBWD(γ∗, λ) is the restricted game where A makes no calls to M-get-state and a single
call toM-set-state (i.e., qs = 1) which is the very first oracle call A is allowed to make to
corrupt λ bits of S.

Hence, resilience protects the security of the generator when it is not corrupted against arbitrary
distribution samplers D; forward security protects past generator outputs in case of a memory
attack; backward security security ensures that the generator can successfully recover from a
memory attack, provided enough fresh entropy is injected into the system; robustness ensures
security against arbitrary combinations of the above.

Examples of the entropy traces for the procedures defined in our new model are provided in
Figure 5.2 (which shall be compared with the traces presented in Figure 4.3). Here, calls to
M-set-state andM-get-state only decrease the counter to λ, unless c < γ∗ (in this case c is reset
to 0). Also note that as in Figure 4.3, we illustrated two next-ror calls, the first one where c ≥ γ∗
and the second one where c < γ∗.

D-
ref

res
h

M
-ge

t-s
tat

e

D-
ref

res
h

M
-se

t-s
tat

e

next
-ro

r

D-
ref

res
h

D-
ref

res
h

M
-se

t-s
tat

e

M
-ge

t-s
tat

e

M
-se

t-s
tat

e

D-
ref

res
h

next
-ro

r

0

γ∗

n

lo
w
er
-b
ou

nd
on

es
tim

at
ed

en
tr
op

y entropy estimate c
threshold γ∗
state length n

Figure 5.2 – Entropy Estimates in MROB(γ∗, λ)

5.2 Limitation of the Initial Security Property

We show that it is possible to construct a robust pseudo-random number generator with input
(Definition 29) that never resists a single bit corruption.

Consider G = (setup, refresh, next) a robust pseudo-random number generator with input of
internal state S, and G′ = (setup′, refresh′, next′) a second pseudo-random number generator with
input of internal state S′ = S||b where b is a single bit, defined with the following algorithms:

• refresh′(S′, I) = refresh(S, I)||1 (i.e. S ← refresh(S, I) and b← 1)

— 79 —

Chapter 5. Robustness Against Memory Attacks

• next′(S′) = next(S) if b = 1, next′(S′) = 0 if b = 0

Then generator G′ is robust since, as soon as one refresh procedure is executed the bit b is set
to 1 and the generator G′ works exactly as G does when the internal state is not compromised.
However, it is obviously not secure under a corruption of the single bit b.

To achieve our new security property, we need to define a new property named "preserving
security under partial state corruption". Intuitively, it states that if the state gets partially
compromised between two next calls, such that the estimated entropy inside the internal state
remains above the threshold γ∗, then the generator should remain safe. Below we describe the
notions of preserving security against memory attacks and recovering security against memory
attacks, both adapted from the preserving security and recovering security defined in Chapter 4.

5.3 Preserving and Recovering Security Against Memory At-
tacks

Preserving Security Against Memory Attacks. We now describe our first security prop-
erty. It states that if S0 starts uncompromised and gets updated with calls to algorithms refresh,
interleaved with calls toM-set-state orM-get-state, such that the state remains uncompromised,
the output of next should be undistinguishable from random. The security game MPRES uses

proc. initialize(D)
seed $← setup;
S

$← {0, 1}n;
c← n;
b

$← {0, 1};
σk ← 0;
FOR k = 1 TO qr DO

(σk, Ik, γk, zk)← D(σk−1)
END FOR
k ← 0;
OUTPUT seed, (γk, zk)k=1,...,qr

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh
k ← k + 1;
S = refresh(S, Ik);
IF c < γ∗,
c = min(c+ γk, n)

proc.M-set-state(S,M, J)
S ←M-set(S,M, J)
c← max(0, c− λ)
IF c < γ∗,
c← 0

proc.M-get-state(S, J)
c← max(0, c− λ)
IF c < γ∗,
c← 0

OUTPUT M-get(S, J)

proc. next-ror
(S(0), R(0))← next(S)
(S(1), R(1)) $← {0, 1}n+`

OUTPUT (S(b), R(b))

Figure 5.3 – Procedures in Security Game MPRES(qr, γ∗, λ)

procedures described in Figure 5.3. The security game MPRES is described as follows, with an
adversary A and bounds qr, γ∗, λ:

1. The challenger generates a seed seed $← setup and a bit b $← {0, 1} uniformly at random. It
sets σ0 = 0 and for k = 1, . . . , qr, it computes (σk, Ik, γk, zk)← D(σk−1), initializes k = 0,
computes a state S at random and sets c = n. It then gives back the seed and the values
γ1, . . . , γqr and z1, . . . , zqr to the adversary.

2. The adversary A gets seed and can ask as many queries as it wants to the oracle D-refresh,
the challenger updates the state Sj := refresh(Sj−1, Ik+j) and updates c← c+ γk sequen-
tially. .

3. The challenger allows queries to the oraclesM-set-state, andM-get-state. These queries
are processed, respectively, as {S ← M-set(S,M, J); c ← c − λ; if c < γ∗, then c = 0}

— 80 —

5.3. Preserving and Recovering Security Against Memory Attacks

and {c ← c − λ; if c < γ∗, then c = 0}, with the inputs (M,J) and J provided by the
adversary. These queries are answered, respectively, by noting and byM-get(S, J);

4. Eventually, under the restriction that c never dropped to 0, the challenger sets (S(0), R(0))←
next(S) and generates (S(1), R(1)) $← {0, 1}n+`. It then gives (S(b), R(b)) to the adversary;

5. The adversary A outputs a bit b∗.

The Preserving Security Against Memory Attacks is given in Definition 35.

Definition 35 (Preserving Security Against Memory Attacks). A pseudo-random number gen-
erator with input G = (setup, refresh, next) is said (t, qr, qs, γ∗, λ, ε)-preserving against memory
attacks if for any adversary A running within time t, its advantage in the above game with
parameters qr (number of D-refresh-queries), qs (number of M-get-state, M-set-state-queries),
γ∗, and λ is at most ε.

Recovering Security Against Memory Attacks. We now describe our second security
property. It states that if the adversary chooses a state that is later refreshed with random
inputs such that sufficiently many entropy is accumulated into the internal state, the output
of algorithm next should be undistinguishable from random. Note that even if M-get-state
and M-set-state-queries are possible as in the security game MPRES, they are not allowed
with compromised states, since it would make c drop to 0. In the recovery process, the entropy
should almost always increase, but never drop to 0. The security game MRECOV uses procedures

proc. initialize(D)
seed $← setup;
σ0 ← 0;
b

$← {0, 1};
FOR k = 1 TO qr DO

(σk, Ik, γk, zk)← D(σk−1)
END FOR
k ← 0;
c← 0;
S ← 0n;
OUTPUT seed, (γk, zk)k=1,...,qr

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. getinput
k ← k + 1
OUTPUT Ik

proc. set-state(S∗)
S ← S∗

c← 0

proc. D-refresh
k ← k + 1;
S = refresh(S, Ik);
IF c < γ∗,
c = min(c+ γk, n)

proc.M-set-state(S,M, J)
S ←M-set(S,M, J)
c← max(0, c− λ)
IF c < γ∗,
c← 0

proc.M-get-state(S, J)
c← max(0, c− λ)
IF c < γ∗,
c← 0

OUTPUT M-get(S, J)

proc. next-ror
(S(0), R(0))← next(S)
(S(1), R(1)) $← {0, 1}n+`

OUTPUT (S(b), R(b)),
(Ik+1, . . . , Iqr)

Figure 5.4 – Procedures in Security Game MRECOV(qr, γ∗, λ)

described in Figure 5.4. The security game MRECOV is described as follows, with an adversary
A, a sampler D and bounds qr, γ∗, λ:

1. The challenger generates a seed seed $← setup and a bit b $← {0, 1} uniformly at random. It
sets σ0 = 0 and for k = 1, . . . , qr, it computes (σk, Ik, γk, zk)← D(σk−1), initializes k = 0,
sets S = 0 and c = 0. It then gives back seed, S and the values γ1, . . . , γqr and z1, . . . , zqr
to the adversary.

2. The adversary gets access to an oracle getinput which on each invocation increments k :=
k + 1 and outputs Ik.

3. At some point the adversary A selects a state S∗ and an integer d such that k+d ≤ qr and
γk+1 + · · ·+ γk+d ≥ γ∗ and makes d calls to D-refresh: for j = 1, . . . , d, the challenger sets

— 81 —

Chapter 5. Robustness Against Memory Attacks

the state to the chosen state and updates it with the corresponding d inputs Ik+1, · · · , Ik+d
and updates c← c+ γk+1 + · · ·+ γk+d sequentially.

4. The challenger allows queries to the oraclesM-get-state, andM-set-state. These queries
are processed, respectively, as {S ← M-set(S,M, J); c ← c − λ; if c < γ∗, then c = 0}
and {c ← c − λ; if c < γ∗, then c = 0}, with the inputs (M,J) and J provided by the
adversary. These queries are answered, respectively, by noting and byM-get(S, J);

5. Eventually, under the restriction that c never dropped to 0, the challenger sets (S(0), R(0))←
next(S) and generates (S(1), R(1)) $← {0, 1}n+`. It then gives (S(b), R(b)) to the adversary,
together with the next inputs Ik+1, . . . , Iqr (if k was the number of refresh-queries asked
up to this point);

6. The adversary A outputs a bit b∗.
The Recovering Security Against Memory Attacks is given in Definition 36.
Definition 36 (Recovering Security Against Memory Attacks). A pseudo-random number gen-
erator with input G = (setup, refresh, next) is said (t, qr, qs, γ∗, λ, ε)-recovering against memory
attacks, if for any adversary A and sampler D, running within time t, its advantage in the above
game with parameters qr (number of D-refresh-queries), qs (number ofM-get-state /M-set-state
queries), γ∗, and λ is at most ε.
As in Section 4.3, we prove now that the combination of recovering and preserving security, both
against memory attacks, implies robustness against memory attacks.
Theorem 12. If a pseudo-random number generator with input G = (setup, refresh, next) has
(t, qr, qs, γ∗, λ, εr)-recovering security and (t, qr, qs, γ∗, λ, εp)-preserving security, both against mem-
ory attacks, then it is ((t′, qr, qs, qn), γ∗, λ, qn(εp + qsεr))-robust against memory attacks, where
t′ ≈ t.
Proof. The proof considers a hybrid sequence of security games: G0 is the initial robustness
game MROB, Gi, Gi+ 1

2
and Gi+1 are hybrid games, all derived from the initial robustess game

MROB, for i ∈ {0, . . . , qn − 1}.
Game G0. Game G0 is the initial security game MROB as defined in Figure 5.1.
Games Gi and Gi+1. Games Gi and Gi+1 are modifications of game G0 that use the following
procedures. Procedure initialize sets parameters as in G0 and a new parameter ctr to 0. Proce-
dures finalize, D-refresh,M-set-state,M-get-state are the same as in game G0. Procedure next-ror
is different from game G0: for each uncompromised next query, ctr is incremented, and if ctr ≤ i
(for Gi) or ctr ≤ i+ 1 (for Gi+1), the challenger generates a random couple (S1, R1) ∈ {0, 1}n+`

and returns R1 to A. If ctr > i (for Gi) or ctr > i + 1 (for Gi+1), the challenger behaves as in
game G0.
Game Gi+ 1

2
. Game Gi+ 1

2
is a modification of game Gi that uses the following procedures.

Procedure initialize sets parameters as in Gi and a new flag ns to true. Procedures finalize and
D-refresh are the same as for the previous games. ProceduresM-set-state andM-get-state are
different: if c < γ∗ during the procedure, the flag ns is set to false. Finally procedure next-ror is
also different: for each uncompromised next query, ctr is incremented, and if ctr ≤ i or ctr = i+1
and flag ns = true, the challenger generates a random couple (S1, R1) ∈ {0, 1}n+` and returns
R1 to A. If ctr = i+ 1 or ns = false, the challenger behaves as in game G0.
As in Section 4.3, we partition the sequence of next-ror queries done by an adversary A in this
sequence of games into two sets: a next-ror query is said uncompromised if c ≥ γ∗, and it is
compromised otherwise. We then further partition the set of uncompromised next-ror queries
into two subsets:

— 82 —

5.3. Preserving and Recovering Security Against Memory Attacks

• First set : c ≥ γ∗ throughout the entire period between the previous next-ror query and
the current one. We name this next-ror query preserving.

• Second set : c < γ∗ in the period between the previous next-ror query and the current one.
We name this next-ror query recovering.

In proposition 6, we show by reduction to the preserving security that |Pr[Gi+ 1
2

= 1]−Pr[Gi =
1]| ≤ εp for all i ∈ {0, . . . , qn − 1} and in proposition 7, we show by reduction to the recovering
security that |Pr[Gi+1 = 1] − Pr[Gi+ 1

2
= 1]| ≤ εr. Combining Propositions 6 and 7, we obtain

that |Pr[(G0) = 1] − Pr[(Gqn) = 1]| ≤ qn · (εr + qs · εp). Moreover, Gqn is independent of the
challenge bit b′ and therefore Pr[(Gqn) = 1] = 1

2 , which finalizes the proof.

Let us now prove the two reductions. We reuse the notion of mRED query introduced in Section
4.3, to identify the last query done by the adversary A during a recovering process, for which
the the counter c has been set to 0. The main difference between the proof presented below
and the one in Section 4.3 is that to identify the mRED query in Chapter 4, the adversary only
needs to identify the last call to a get-state or to a set-state or to a compromised next-ror query,
whereas here, the adversary needs to select between qs M-get-state, M-set-state queries. This
explains why the bound in Proposition 7 is equal to qs · εr here and is equal to εr in Section 4.3.
Reduction to the preserving security. We build an adversary (A′,D), with advantage εp
in game MPRES, that uses (A,D) as a subroutine. In particular, it will simulate the game Gi
(or Gi+ 1

2
) and will provide (A,D) inputs that follows the inputs distribution in the games Gi

and Gi+ 1
2
.

Proposition 6. Assuming that G has (t, qr, qs, γ∗, λ, εp)-preserving security against memory
attacks, then for any adversary/distinguisher A,D running in time t′ ≈ t, we have |Pr[Gi =
1]− Pr[Gi+ 1

2
= 1]| ≤ εp.

Proof. Observe that if the (i + 1)th uncompromised next-query of (A,D) is recovering, games
Gi and Gi+ 1

2
are identical, therefore we suppose that this is not the case and that the (i+ 1)th

uncompromised next-query of (A,D) is preserving.

We construct an adversary (A′,D) with advantage εp in game MPRES. Its challenger calls
setup procedure to generate a parameter seed, a random state S′ and a random bit b′. Then it
generates the successive outputs of D : (σk, Ik, γk, zk)k=1,...,qr , sends seed and (γk, zk)k=1,...,qr to
(A′,D). Finally it sets the counter k to 0.

Attacker (A′,D) uses the previously generated parameter seed, sets the sampler state σ to 0,
picks a state S at random, sets a counter c to n and finally generates a random challenge bit b.
Then (A′,D) transfers seed to (A,D) and responds to the oracle queries from (A,D) in Gi, until
the ith uncompromised next-query. To answer these queries, (A′,D) uses procedure D-refresh,
M-get-state andM-set-state from game MPRES:

• To answer (A,D)’s D-refresh queries, (A′,D) updates S with algorithm refresh and sends
the couple (γk, zk) to (A,D). Finally (A′,D) updates the counter c with γk.

• To answer (A,D)’s M-get-state queries, on input J , (A′,D) computes M-get(S, J) and
sends the result to (A,D). To answer (A,D)’sM-set-state queries, on input (M,J), (A′,D)
updates S with function M-get. Finally (A′,D) updates the counter c ← c − λ, where
λ = |J |, and if c < γ∗, (A′,D) sets the counter c to 0.

• To answer compromised next-ror queries, (A′,D) computes (S0, R0) = next(S) and sends
R0 to (A,D). Then (A′,D) sets the counter c to 0.

— 83 —

Chapter 5. Robustness Against Memory Attacks

• To answer the ithuncompromised next-query, (A′,D) generates (S1, R1) at random and
sends R1 to (A,D).

Recall that the (i + 1)th uncompromised next-query of (A,D) is preserving. Hence between
the (i)th and the (i + 1)th uncompromised next queries, calls to M-set-state, to M-get-state
and to D-refresh are such that the counter c never decreases below γ∗, which ensures that
it is never dropped to 0. Finally (A′,D) calls procedure next-ror: its challenger computes
(S0, R0) = next(S′) and generates a random couple (S1, R1). It sends back a challenge couple
(Sb′ , Rb′) to (A′,D). Then (A′,D) responds to the (i + 1)th uncompromised next-queries of
(A,D) in game Gi. It sets Rb′ = R0, generates a random R1 and transfers Rb to (A,D), which
in returns a bit b∗ to (A′,D). Finally (A′,D) returns 1 to A if b = b∗, and 0 otherwise and
(A′,D) finalizes game MPRES: it answers the bit b′∗ = 1 if b = b∗. The possible cases are the
following:

• If b′ = 0, the challenger of (A′,D) returns (S0, R0) = next(S′). Then (A′,D) sets R0 = R0,
generates a random R1 and returns Rb to (A,D). Therefore (A′,D) exactly simulates the
(i + 1)th uncompromised next-queries of A in game Gi and Pr[Gi = 1] = Pr[b = b∗|b′ =
0] = Pr[b′∗ = 1|b′ = 0].

• If b′ = 1, the challenger of (A′,D) returns (S1, R1) $← {0, 1}n+` to (A′,D). Then (A′,D)
sets R0 = R1, generates a random R1 and returns Rb to (A,D). Therefore (A′,D) exactly
simulates the (i+1)th uncompromised next-queries of (A,D) in game Gi+ 1

2
and Pr[Gi+ 1

2
=

1] = Pr[b = b∗|b′ = 1] = Pr[b′∗ = 1|b′ = 1].

Finally the distance between games Gi and Gi+ 1
2
satisfies:

|Pr[Gi+ 1
2

= 1]− Pr[Gi = 1]| = 2 · (Pr[b′∗ = 1|b′ = 1]− 1) = 2 · (Pr[b′∗ = b′]− 1) ≤ εp.

Reduction to the Recovering Security. We build an adversary (A′,D), with advantage εr
in game MRECOV, that uses (A,D) as a subroutine. In particular, it will simulate the game
Gi+ 1

2
(or Gi+1) and will provide (A,D) inputs that follow the inputs distribution in the games

Gi+ 1
2
and Gi+1.

Proposition 7. Assuming that G has (t, qr, qs, γ∗, λ, εr)-recovering security against memory
attacks, then for any adversary/distinguisher A,D running in time t′ ≈ t, we have |Pr[Gi+1 =
1]− Pr[Gi+ 1

2
= 1]| ≤ qsεr.

Proof. Observe that if the (i + 1)th uncompromised next-query of (A,D) is preserving, games
Gi+ 1

2
and Gi+1 are identical, therefore we suppose that this is not the case and that the (i+ 1)th

uncompromised next-query of (A,D) is recovering.

We construct an adversary (A′,D) with advantage εr in game MRECOV. Its challenger calls setup
procedure to generate a parameter seed, generates a random state S′ and a random bit b′. Then
it generates the successive outputs of D : (σk, Ik, γk, zk)k=1,...,qr , sends seed and (γk, zk)k=1,...,qr to
(A′,D). Finally it sets a counter k to 0. Let (A′,D) challenge (A,D): (A′,D) uses the previously
generated parameter seed, sets the sampler state σ to 0, sets a state S to 0n, a counter c to 0
and finally generates a random challenge bit b. Then (A′,D) sends seed to (A,D) and responds
to the oracle queries from (A,D) in Gi, until the ith uncompromised next-query. To answer these
queries, (A′,D) uses procedures getinput,M-get-state andM-set-state from game MRECOV:

— 84 —

5.3. Preserving and Recovering Security Against Memory Attacks

• To answer (A,D)’s D-refresh queries, (A′,D) calls procedure getinput. Its challenger up-
dates the counter k and sends the input Ik to (A′,D). Then (A′,D) updates S with
algorithm refresh and sends the couple (γk, zk) to (A,D). Finally (A′,D) updates the
counter c with γk.

• To answer (A,D)’s M-get-state queries, on input J , (A′,D) calculates M-get(S, J) and
sends the result to (A,D). To answer (A,D)’sM-set-state queries, on input (M,J , (A′,D)
updates S with algorithm M-get. Finally (A′,D) updates the counter c = c − λ, where
λ = |J |, and if c < γ∗, (A′,D) sets the counter c to 0.

• To answer compromised next-ror queries, (A′,D) calculates (S0, R0) = next(S) and sends
R0 to (A,D). Then (A′,D) sets the counter c to 0.

• To answer the ithuncompromised next-query, (A′,D) generates (S1, R1) at random and
sends R1 to (A,D).

Recall that the (i+ 1)th uncompromised next-query of (A,D) is recovering. Hence at least one
call to a compromisedM-set-state,M-get-state, or next-ror query was done by (A,D) between
the ith and the (i+1)th uncompromised next-queries, interleaved with calls to D-refresh. Attacker
(A′,D) identifies the mRED query, which is the last query to eitherM-set-state, toM-get-state
or to a compromised next-ror done by A before the (i+ 1)th uncompromised next-query, names
S0 the state following this last query and Ik0 the last used input. To identify the mRED query,
(A,D) has at most qs choices, as calls toM-set-state andM-get-state can also be done after the
generator gets uncompromised. Starting from this query, the entropy is accumulated with calls
to D-refresh, hence A′ can compute d, such that

∑k0+d
i=k0+1 γi ≥ γ∗. Following, (A′,D) divides the

remaining D-refresh queries of (A,D) in two subsets : queries done with (Ij), j = k0+1, · · · , k0+d
and queries done with (Ij), j = k0 + d + 1, · · · , qr. Then (A′,D) continues game MRECOV.
Instead of getting access to the first set of inputs (Ij), j = k0 + 1 · · · , k0 + d as previously,
with a getinput query, (A′,D) makes d queries to D-refresh. Challenger calculates the successive
states Sj = refresh(Sj−1, Ik0+j), for j = 1, · · · , d, calculates (S0, R0) = next(Sd) and generates
a random couple (S1, R1). It sends back a challenge couple (Sb′ , Rb′) to A′. Then (A′,D)
computes S∗ as the state Sb′ refreshed with inputs Ij , for j = k0 +d+1, · · · , qr, and responds to
the (i + 1)th uncompromised next-queries of (A,D): it computes R0 as the output of next(S∗),
generates a random R1 and transfers Rb to (A,D), which returns with a bit b∗. Finally (A′,D)
returns 1 to (A,D) if b = b∗, and 0 elsewhere and finalizes game MRECOV: it answers the bit
b′∗ = 1 if b = b∗ and the bit b′∗ = 0 elsewhere. The possible cases are the following:
• If b′ = 0, the challenger of (A′,D) returns (S0, R0) = next(Sd) to (A′,D). Then (A′,D)
computes S∗ as the state S1 refreshed with inputs Ij , for j = k0 + d+ 1, · · · , qr, computes
R0 as the output of next(S∗), generates a random R1 and returns Rb to A. Therefore
(A′,D) exactly simulates the (i + 1)th uncompromised next-queries of A in game Gi+ 1

2
.

Hence Pr[(Gi+ 1
2

= 1] = Pr[b = b∗|b′ = 0] = Pr[b′∗ = 1|b′ = 0].

• If b′ = 1, the challenger of (A′,D) returns (S1, R1) $← {0, 1}n+` to (A′,D). Then (A′,D)
computes S∗ as the state S1 refreshed with inputs Ij , for j = k0 + d+ 1, · · · , qr, computes
R0 as the output of next(S∗), generates a random R1 and returns Rb to (A,D). Therefore
(A′,D) exactly simulates the (i+1)th uncompromised next-queries of (A,D) in game Gi+1.
Hence Pr[(Gi+1 = 1] = Pr[b = b∗|b′ = 1] = Pr[b′∗ = 1|b′ = 1].

Finally the distance between games Gi+ 1
2
and Gi+1 satisfies:

Pr[Gi+1 = 1]− Pr[Gi+ 1
2

= 1]| = 2 · (Pr[b′∗ = 1|b′ = 1]− 1) = 2 · (Pr[b′∗ = b′]− 1) ≤ qs · εr.

— 85 —

Chapter 5. Robustness Against Memory Attacks

5.4 A Secure Construction
Let us recall the robust construction described in Section 4.3. Let G : {0, 1}m → {0, 1}n+` be a
standard pseudo-random generator where m < n. The robust pseudo-random number generator
with input G has the parameters s = 2n (seed length), n (state length), ` (output length), and
p = n (input length), and is defined as follows:

• setup(): Output seed = (X,X ′) $← {0, 1}2n.

• S′ = refresh(S, I): Given seed = (X,X ′), current state S ∈ {0, 1}n, and a sample I ∈
{0, 1}n, output: S′ := S ·X + I, where all operations are over F2n .

• (S′, R) = next(S): Given seed = (X,X ′) and a state S ∈ {0, 1}n, first compute U =
[X ′ · S]m1 . Then output (S′, R) = G(U).

The following theorem extends Theorem 10.

Theorem 13. Let n > m, `, γ∗, λ be integers. Assume that G : {0, 1}m → {0, 1}n+` is a standard
(t, εG)-secure pseudo-random generator. Let G = (setup, refresh, next) be the pseudo-random
number generator with input defined as above. Then G is ((t′, qr, qn, qs), λ, γ∗, qn(2εG + q2

r · (1 +
qs)εext))-robust against memory attacks, where t′ ≈ t, as soon as γ∗ ≥ m+qsλ+2 log(1/εext)−1
and n ≥ m+ qsλ+ log(qr) + 2 log(1/εext)− 1.

Proof of Theorem 13. The proof has two parts, as in Section 4.3, we prove that the construction
is preserving and recovering, both against memory attacks. Note that here, contrary to the
Section 4.3, the strong extractor is used for the preserving and the recovering security.

Lemma 7. Let G = (setup, refresh, next) be defined as above. Then G has (t, qr, qs, λ, γ∗, εG +
q2
rεext)-Preserving security as soon as γ∗ ≥ m + 2 log(1/εext) − 1 and n ≥ m + qsλ + log(d) +

2 log(1/εext)− 1.

Proof of Lemma 7. Consider games G0, G1 and G2 as follows:

• G0 is the original game MPRES applied to G.

• G1 is game G0 in which the challenger computes U $← {0, 1}m instead of U = [Sd ·X ′]m1
inside the next-ror procedure.

• G2 is game G1 in which the challenger computes (S0, R0) $← {0, 1}n+` instead of (S0, R0)←
G(U) inside the next-ror procedure, when challenge bit b = 0.

Distance between G0 and G1. Recall that in the security game MPRES, adversary can ask
as many queries as it wants to the oracle D-refresh, interleaved with queries to the oracles
M-set-state, and M-get-state, where each oracle D-refresh query increases the counter (c ←
c+γk) and eachM-set-state orM-get-state query decreases it (c← c−λ). Then as the adversary
makes at most qsM-set-state /M-get-state queries, by Lemma 6, the complete sequence of calls
before the call to next-ror followed by the m-truncation leads to a (γ, εext)-randomness extractor
as soon as :

γ ≥ m+ 2 log(1/εext)− 1 and n ≥ m+ qsλ+ 2 log(1/εext) + log(d)− 1. (∗)

Finally, as adversary A has qr possibilities to choose when to start and stop the D-refresh queries,
there is a loss of q2

r . With conditions above, |Pr[G1 = 1]− Pr[G0 = 1]| ≤ q2
rεext.

Distance between G1 and G2. Since G is a (t, εG)-secure standard pseudo-random number

— 86 —

5.4. A Secure Construction

generator, we can replace both the output and the random state by truly random values. Then
we have |Pr[G2 = 1]− Pr[G1 = 1]| ≤ εG.

Distance between G0 and 1
2 . From the above games, one gets, |Pr[G2 = 1] − Pr[G0 = 1]| ≤

qs ·q2
r ·εext+εG, and as Pr[G2 = 1] = 1

2 , |Pr[G0 = 1]− 1
2 | ≤ q

2
rεext+εG, as soon as conditions (∗)

on n, m, γ and λ are satisfied.

Lemma 8. Let G = (setup, refresh, next) be defined as above. Then G has (t, qr, γ∗, εG + q2
rεext)-

Recovering security as soon as γ∗ ≥ m+qsλ+2 log(1/εext)−1 and n ≥ m+log(d)+2 log(1/εext)−
1.

Proof. Consider games G0, G1 and G2 as follows:

• G0 is the original game MRECOV applied to G.

• G1 is game G0 in which the challenger computes U $← {0, 1}m instead of U = [Sd ·X ′]m1
inside the next-output-ror procedure.

• G2 is gameG1 in which the challenger computes (S0, R0) $← {0, 1}n+` instead of (S0, R0)←
G(U) inside the next-ror procedure, when challenge bit b = 0.

Distance between G0 and G1. Recall that in the security game MRECOV, adversary sets a
chosen state, then is allowed to make a sequence of calls to D-refresh (the recovery sequence), fol-
lowed by one sequence of D-refresh interleaved with calls toM-set-state orM-get-state, followed
by one call to next-ror. where each oracle D-refresh query increase the counter c ← c+ γk, and
eachM-set-state orM-get-state query decrease it c ← c − λ. Then as the adversary makes at
most qs M-set-state /M-get-state queries, by Lemma 6, the complete sequence of calls before
the call to next-ror followed by the m-truncation leads to a (γ, εext)-randomness extractor as
soon as :

γ ≥ m+ qsλ+ 2 log(1/εext)− 1 and n ≥ m+ 2 log(1/εext) + log(d)− 1. (∗∗)

Finally, as adversary A has qr possibilities to choose when to start and stop the D-refresh
queries and has qs possibilities to choose q, there is a loss of qsq2

r . With conditions above,
|Pr[G1 = 1]− Pr[G0 = 1]| ≤ qsq2

rεext.

Distance between G1 and G2. Since G is a (t, εG)-secure standard pseudo-random generator,
we can replace both the output and the random state by truly random values. And we have
|Pr[G2 = 1]− Pr[G1 = 1]| ≤ εG.

Distance between G0 and 1
2 . From the above games, one gets, |Pr[G2 = 1] − Pr[G0 = 1]| ≤

q2
r · εext + εG, and as Pr[G2 = 1] = 1

2 , |Pr[G0 = 1] − 1
2 | ≤ qsq

2
rεext + εG, as soon as conditions

(∗∗) are satisfied.

Let now finalize the proof of Theorem 13. We can divide the set of next calls done by A between
recovering and preserving. From Lemma 7 and 8, G has:

• (t, qr, qs, λ, γ∗, εG + q2
rεext)-Preserving security as soon as γ∗ ≥ m + 2 log(1/εext) − 1 and

n ≥ m+ qsλ+ log(qr) + 2 log(1/εext)− 1.

• (t, qr, qs, λ, γ∗, εG + q2
rεext)-Recovering security as soon as γ∗ ≥ m+ qsλ+ 2 log(1/εext)−

1, and n ≥ m+ log(qr) + 2 log(1/εext)− 1.

— 87 —

Chapter 5. Robustness Against Memory Attacks

By Theorem 12, we get that G is ((t′, qr, qn, qs), λ, γ∗, qn(1 + qs)(εG + q2
rεext))-robust against

memory attacks, where t′ ≈ t, as soon as γ∗ ≥ m + qsλ + 2 log(1/εext) − 1 and n ≥ m + qsλ +
log(qr) + 2 log(1/εext)− 1.

As in Section 4.3, to slightly reduce the number of parameters in Theorem 13, we can let
k be our “security parameter” and set qr = qn = 2k and εext = 2−6k. Then we can set
n = m+qsλ+log(qr)+2 log(1/εext)−1 = m+qsλ+11k−1 and γ∗ ≥ m+qsλ+2 log(1/εext)−1 =
m+ qsλ+ 10k − 1. Summarizing all of these, we get Theorem 14.

Theorem 14. Let k,m, `, n be integers, where n ≥ m+qsλ+11k−1. Assume that G : {0, 1}m →
{0, 1}n+` is a standard (t, εG)-secure pseudo-random generator. Then G is a ((t′, 2k, 2k, qs),m+
qsλ+10k−1, λ, 2k(1+2k) ·εG +2−k +2−2k)-robust pseudo-random number generator with input
against memory attacks, having n-bit state and `-bit output, where t′ ≈ t.

5.5 Instantiation

Table 5.1 – Security Bounds for the Robustness of G
against Memory Attacks

qs ∈ {1, 2, 4} k ∈ {40, 64} λ = 32, 64 n γ∗

1
40 32 599 559

64 631 591

64 32 863 799
64 895 831

2
40 32 631 591

64 665 625

64 32 895 831
64 959 895

4
40 32 695 655

64 823 783

64 32 959 895
64 1087 1023

We recall that our construction is based on Section 4.3: refresh(S, I) = S · X + I ∈ F2n and
next(S) = G(U), with U = [X ′ · S]m1 . In Section 4.3, the standard pseudo-random generator G
is defined by G(U) = AESU (0)‖ . . . ‖AESU (ν − 1), where ν is the number of calls to AES with a
128-bit key U , and thus m = 128. For a security parameter k = 40, the security analysis leads to
n = 489, γ∗ = 449, and ν = 5. We now apply Theorem 14 and we obtain the following bounds:

• For k = 40, n = 567 + qsλ, γ∗ = 527 + qsλ.

• For k = 64, n = 831 + qsλ, γ∗ = 767 + qsλ.

Finally, for qs ∈ {1, 2, 4}, k ∈ {40, 64} and λ ∈ {32, 64}, concrete security bounds for G are given
in Table 5.1. Hence:

• for qs = 1, λ = 32, G is ((t′, 240, 240, 1), 32, 559, 2−40)-robust against memory attacks, if
n = 599,

— 88 —

5.5. Instantiation

• for qs = 4, λ = 64, G is ((t′, 264, 264, 4), 64, 1023, 2−64)-robust against memory attacks, if
n = 1087 (based on the discussion about the security of AES in Section 4.5).

— 89 —

Chapter 5. Robustness Against Memory Attacks

— 90 —

Chapter 6

Robustness Against Side-Channel
Attacks

6.1 Model Description

In this chapter we give a syntactic formalization for security of pseudo-random number genera-
tors with input against memory attacks. All statements are part of [ABP+15]. We use Definition
27 for pseudo-random number generator with input in all this chapter.

Recall that in the robustness security model ROB, in Section 4.1, the distribution sampler D
generates the external inputs used to refresh the generator and already gives the adversary A
some information about how the environment of the generator leaks when it generates these
inputs. This information is modelled by z. In order to model information leakage during the
executions of the algorithms refresh and next, we give the adversary the choice of the leakage
functions, that we globally name f , associated to each algorithm, or even each small block. Since
we restrict our model to non-adaptive leakage, we ask the adversary to choose them beforehand.
So they are provided as input to the initialize procedure by the adversary (see Figure 6.1). Then,
each leakage function will be implicitly used by our two new procedures named leak-refresh
and leak-next that, in addition to the usual outputs, also provide some leakage L about the
manipulated data, as described in Section 3.7.1. We thus have a new parameter λ, that bounds
the output length of the leakage function. Our new Leakage-Resilient Robustness security game
LROB(γ∗, λ) makes use of the procedures described in Figure 6.1 and is described in details
below:

• The parameter γ∗, the variable c, and the Boolean flag/function compromised are the same
as for the basic robustness ROB;

• The new parameter λ sets the maximal information leakage which can be collected during
the execution of operations refresh and next. Namely, for each operation (refresh or next),
the leakage functions globally output at most λ bits. Such a leakage will be available when
querying the leaking procedures leak-refresh and leak-next below;

• The new parameter α is an integer that models the minimal expected entropy of S after
a leak-next (next with leakage) call, in a safe case (compromised is false), that is when the
entropy of the internal state was assumed greater than γ∗. This captures both the creation
of computational entropy during a next execution and the smaller loss of entropy caused by
the leakage. We could expect α = n− λ, but it may depend on the explicit construction;

— 91 —

Chapter 6. Robustness Against Side-Channel Attacks

proc. initialize(D, f)
seed $← setup
σ ← 0;
S ← 0;
c← 0;
b

$← {0, 1}
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh
(σ, I, γ, z) $← D(σ)
S ← refresh(S, I)
IF compromised

c← min(c+ γ, n)
OUTPUT (γ, z)

proc. leak-refresh
(σ, I, γ, z) $← D(σ){
L← f(S, I, seed)
S ← refresh(S, I; seed)

}
c← max{0, c− λ}
IF cγ∗

c← 0
OUTPUT (L, γ, z)

proc. get-state
c← 0;
OUTPUT S

proc. set-state(S∗)
c← 0;
S ← S∗

proc. next-ror
(S,R0)← next(S)
IF cγ∗,
c← 0
RETURN R0

ELSE

R1
$← {0, 1}`

RETURN Rb

proc. leak-next{
L← f(S, seed)
(S,R)← next(S; seed)

}
IF cγ∗

c← 0
ELSE

c← α
OUTPUT (L,R)

Figure 6.1 – Procedures in the Security Game LROB(γ∗, λ)

• The procedures initialize(D, f)/finalize(b∗) initiate the security game with the additional
leakage function f , check whether the adversary has won the game and output 1 in this
case or 0 otherwise. As in the security game ROB, the initial state S is here set to zero (as
well as the entropy counter) so that no assumption needs to be made on its initialization;

• The procedures get-state/set-state, D-refresh, and next-ror are the same as for the basic
robustness ROB;

• The procedure leak-refresh runs the refresh algorithm but additionally provides some in-
formation leakage L on the input (S, I) and seed, as above. As for the next-ror-queries,
the leakage can reveal non-trivial information about a weak internal state even before the
effectiveness of the refresh, and then we reduce c by λ bits. And if it drops below the
threshold γ∗, it is reset to 0. Again, we could have strengthened this definition, but we
preferred to keep a conservative notion. Furthermore, this strict notion is important w.r.t.
our new definitions of recovering and preserving security with leakage. Note that if the
D-refresh algorithm is complex, several leakage functions can be defined at every step,
but the global leakage is limited to λ bits, hence the notation {. . .}, since they can be
interleaved.

• The procedure leak-next runs the next algorithm but additionally provides some informa-
tion leakage L on the input S and seed, according to the leakage function f provided to
the initialize procedure. If the status was safe, then the new entropy estimate c is set to α,
otherwise, it is reset to 0 (as for the next-ror). As above, if the next algorithm is complex,
several leakage functions can be defined at each step, but the global leakage is limited to
λ bits.

As in the security game ROB, attackers have two parts: a distribution sampler and a classical
attacker with the former only used to generate seed-independent inputs (potentially partially
biased) from device activities. Examples of the entropy traces for the procedures defined in
our new model are provided in Figure 6.2 (to be compared with the traces presented in Figure
4.3). The threshold γ∗ has to be slightly higher in our new model, because for a similar next
algorithm, we need to accumulate a bit more of entropy to maintain security even in presence
of leakage. Typically, it has to be increased by λ. Now we detailed the new security game, we
can define the notion of leakage-resilient robustness of a pseudo-random number generator with
input.

— 92 —

6.2. Analysis and Limitation of the Original Construction

D-
ref

res
h

lea
k-r

efr
esh

D-
ref

res
h

lea
k-r

efr
esh

D-
ref

res
h

next
-ro

r

lea
k-n

ext

set
-st

ate

D-
ref

res
h

lea
k-n

ext

get
-st

ate

D-
ref

res
h

next
-ro

r

0

γ∗

α
n

lo
w
er
-b
ou

nd
on

es
tim

at
ed

en
tr
op

y entropy estimate c
threshold γ∗
state length n
entropy α

Figure 6.2 – Entropy Estimates in LROB(γ∗, λ)

Definition 37 (Leakage-Resilient Robustness of Pseudo-Random Number Generator with In-
put). A pseudo-random number generator with input G = (setup, refresh, next) is called (t, qr, qn,
qs, γ

∗, λ, ε)-leakage-resilient robust, if for any adversary A running in time t, that first gener-
ates a legitimate distribution sampler D (for the D-refresh/ leak-refresh procedure), that after
makes at most qr calls to D-refresh/leak-refresh, qn calls to next-ror/leak-next, and qs calls to
get-state/set-state with a leakage bounded by λ, the advantage of A in game LROB(γ∗, λ) is at
most ε.

6.2 Analysis and Limitation of the Original Construction
Let us recall the robust construction described in Section 4.3, named G. It makes use of a
(t, ε)-secure standard pseudo-random generator G : {0, 1}m → {0, 1}n+`. The seed is a pair
(X,X ′) of length 2n, n is the state length, ` is the output length, and p = n is the input length.
This construction uses iterated multiplication and addition in the finite field F2n to refresh the
internal state because it gives a proven seeded extractor that accumulates entropy, which we do
not know how to do with a hash function. Plus, it is more efficient:

• setup() outputs seed = (X,X ′)← {0, 1}2n;

• S′ = refresh(S, I;X) = S ·X + I, where all operations are over F2n ;

• (S′, R) = next(S;X ′) = G(U), where U = [X ′ · S]m1 , the truncation of X ′ · S.

Unfortunately, even a secure standard pseudo-random generator is not enough to resist to infor-
mation leakage. We indeed first exhibit a counterexample, to show that the use of a standard
secure pseudo-random number generator can lead to a construction that is vulnerable to side-
channel attacks. But then, we prove that with a stronger security property for the standard
pseudo-random number generator, namely leakage-resilience, the whole construction remains
secure even in the presence of leakage.

In Section 4.5, we instantiate the generator G with the pseudo-random function AES in counter
mode with the truncated product U as the secret key. Depending on the parameters, several
calls to the pseudo-random function are required. We show hereafter that when the implemen-
tation is leaking, this construction faces vulnerabilities.

As shown in [MOP07] and later in [BGS15], several calls to AES with known inputs and one sin-
gle secret key may lead to very efficient side-channel attacks that can help to recover the secret

— 93 —

Chapter 6. Robustness Against Side-Channel Attacks

key. Because of the numerous executions of AES with the same key, one essentially performs a
differential power analysis (DPA) attack. Then, for the above construction, during a leak-next,
even with a safe state, the DPA can reveal the secret key of the internal AES, that is also used to
generate the new internal state from public plaintexts. This internal state, after the leak-next,
can thus be recovered, whereas it is considered as safe in the security game. A next-ror challenge
can then be easily broken.

Furthermore, even if one uses only a few executions with the same key, with a counter as input,
the adversary can predict future outputs. This vulnerability applies to AES with predictable
inputs. As determined by the security games, the adversary chooses a leakage function fnext,Π
to further collect the leakage during the product and the truncation between the internal state
S and the public seed X ′. Assume that this function is fnext,Π(S,X ′) =

AES([
X′·
(

AES[X′·S]m1
(C0)||...||AES[X′·S]m1

(C0+d n
m
e−1)

)]m
1

) (C0 +
⌈
n+`
m

⌉)λ
1

with C0 an integer arbitrarily chosen by the attacker. With this leakage function set, the
adversary makes a set-state-call and fix the counter C to C0. This counter is a part of the global
internal state. Even if this is not the random pool considered by S, this is under the control
of the adversary. As the internal state is now compromised, sufficient calls to D-refresh are
made to refresh S so that its entropy increases above the threshold γ∗. Then, the attacker can
ask a leak-next-query and gets back the leakage fnext,Π(S,X ′) described above. Eventually, the
attacker asks a challenge next-ror-query, and either gets the real output or a random one. The
λ bits it got from the leakage are exactly the first λ bits of the real output. The attacker has
consequently a significant advantage in the next-ror challenge.

6.3 Recovering and Preserving Security With Leakage

In this section, we adapt the notions of recovering and preserving introduced in Section 4.2 to
capture side channel attacks. The former essentially deals with the capacity for the generator
to accumulate the entropy from the inputs in the internal state, with the refresh algorithm, and
then to recover a safe state even after being compromised. The latter deals with the quality of
the internal state, even with adversarially chosen and known inputs. The quality of the internal
state will then be measured by the ability of the adversary to distinguish the output randomness
(by the next algorithm) from a truly random output, using one next-ror query. Since more oracles
are available, contrarily to Section 4.2, our security games will be interactive and adaptive: the
leak-refresh and leak-next oracles are available during the recovering and preserving sequences,
and not just the D-refresh oracle.
Recovering Security with Leakage. It considers an adversary that compromises the state
to some arbitrary value S0, either by asking for the state (get-state), setting it (set-state) or
learning information with the collected leakage or with the output (leak-refresh, leak-next or
next-ror) when the internal state is unsafe. Afterwards, sufficient calls to D-refresh are made to
increase the entropy estimate c above the threshold γ∗. This is the recovering process, which
should make the bit b involved in the next-ror procedure indistinguishable: when the internal
state is considered as safe, the output randomness R should look indistinguishable from random.
The security game is the following, where D is the distribution sampler, and f = (frefresh, fnext)
denotes the union of the leakage functions related to the execution of refresh and next, both
proposed by the adversary.

— 94 —

6.3. Recovering and Preserving Security With Leakage

Even if leak-refresh and leak-next-queries are possible, they are not allowed with compromised
states, since it would make c drop to 0. In the recovery process, the entropy should almost
always increase, but never drop to 0.

proc. initialize(D)
seed $← setup;
σ0 ← 0;
S

$← {0, 1}n b $← {0, 1};
FOR k = 1 TO qr DO

(σk, Ik, γk, zk)← D(σk−1)
END FOR
k ← 0;
OUTPUT seed, (γk, zk)k=1,...,qr

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. getinput
k ← k + 1
OUTPUT Ik

proc. set-state(S∗)
S ← S∗

c← 0

proc. D-refresh
k ← k + 1;
S = refresh(S, Ik);
c = min(c+ γk, n)

proc. leak-refresh
k ← k + 1;
L = frefresh(S, Ik, seed);
S = refresh(S, Ik);
c = max(0, c− λ);
IF c < γ∗,
c = 0

RETURN L

proc. leak-next
L = fnext(S, seed);
(S,R) = next(S);
IF c < γ∗,
c = 0

ELSE c = α
RETURN (L,R)

proc. next-ror
(S(0), R(0))← next(S)
(S(1), R(1)) $← {0, 1}n+`

RETURN (S(b), R(b)),
(Ik+1, . . . , Iqr)

Figure 6.3 – Procedures in Security Game LRECOV(qr, qn, λ, γ∗)

1. The challenger generates a seed seed $← setup and a bit b $← {0, 1} uniformly at random. It
sets σ0 = 0 and for k = 1, . . . , qr, it computes (σk, Ik, γk, zk) ← D(σk−1), initializes k = 0
and sets c = 0 It then gives back the seed and the values γ1, . . . , γqr and z1, . . . , zqr to the
adversary.

2. The adversary gets access to an oracle getinput which on each invocation increments k :=
k + 1 and outputs Ik.

3. At some point the adversary A outputs a new internal state S0 ∈ {0, 1}n and an integer
d such that k + d ≤ qr and γk+1 + · · · + γk+d ≥ γ∗ and makes d calls to one-refresh
with the d inputs Ik+1, · · · , Ik+d: for j = 1, . . . , d, the challenger updates the state Sj :=
refresh(Sj−1, Ik+j) and updates c← c+ γk sequentially.

4. The challenger allows queries to the oracles leak-refresh, and leak-next. These queries are
processed, respectively, as {Lj = frefresh(Sj−1, Ik, seed);Sj = refresh(Sj−1, Ik); c = c −
λ; if c < γ∗, then c = 0}, and {Lj = fnext(Sj−1, seed); (Sj , Rj) = next(Sj−1); if c <
γ∗, then c = 0, else c = α}, with the new input Ik provided by the distribution sampler
for the kth refresh-query. These queries are answered, respectively, by the information
leakage L, and by the information leakage L together with the randomness R;

5. Eventually, under the restriction that c never dropped to 0, the challenger sets (S(0), R(0))←
next(S) and generates (S(1), R(1)) $← {0, 1}n+`. It then gives (S(b), R(b)) to the adversary,
together with the next inputs Ik+1, . . . , Iqr (if k was the number of refresh-queries asked
up to this point);

6. The adversary A outputs a bit b∗.

In this game, we define the advantage of the adversary A as |2 Pr[b∗ = b] − 1|. Note that
we restrict our game to executions where c never dropped to 0, but one could have answered
independently to b otherwise (e.g., always using (S(0), R(0))).

— 95 —

Chapter 6. Robustness Against Side-Channel Attacks

Definition 38 (Recovering Security with Leakage). A pseudo-random number generator with
input is said (t, qr, qn, γ∗, λ, ε)-recovering with leakage if for any adversary A running within
time t, its advantage in the above game with parameters qr (number of D-refresh and leak-refresh-
queries), qn (number of leak-next-queries), γ∗, and λ is at most ε.

Preserving Security with Leakage. This security notion considers a safe internal state. After
several calls to D-refresh and leak-refresh with known (and even chosen) inputs, the internal state
should remain safe. An initial state S0 is generated with entropy n. Then it is refreshed with
arbitrary many calls to either D-refresh or leak-refresh, as long as the leakage does not decrease
the entropy below the threshold γ∗. This is the preserving process, which should make the bit
b involved in the next-ror procedure indistinguishable: since the internal state is considered as
safe, the output randomness R should look indistinguishable from random. The security game

proc. initialize(D)
seed $← setup;
S

$← {0, 1}n;
b

$← {0, 1};
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh(I)
S = refresh(S, I)

proc. leak-refresh(I)
L = frefresh(S, I, seed);
S = refresh(S, I);
c = max(0, c− λ);
IF c < γ∗,
c = 0

RETURN L

proc. leak-next
L = fnext(S, seed);
(S,R) = next(S);
IF c < γ∗,
c = 0

ELSE c = α
RETURN (L,R)

proc. next-ror
(S(0), R(0))← next(S)
(S(1), R(1)) $← {0, 1}n+`

RETURN (S(b), R(b))

Figure 6.4 – Procedures in Security Game LPRES(qr, qn, γ∗, λ)

is the following, where D is the distribution sampler, and f = (frefresh, fnext) denotes the union of
the leakage functions during the execution of refresh and next, both proposed by the adversary.

1. The challenger generates an initial state S0
$← {0, 1}n, a seed seed ← setup, and a bit

b
$← {0, 1} uniformly at random. It sets c = n and then gives back the seed to the

adversary;

2. The adversary A gets seed and can ask as many queries as it wants to the oracles D-refresh,
leak-refresh, and leak-next, but with chosen inputs I to the refresh-queries. These queries are
thus processed, respectively, as {Sj = refresh(Sj−1, I)}, {Lj = frefresh(Sj−1, I, seed);Sj =
refresh(Sj−1, I); c = c − λ; if c < γ∗, then c = 0}, and {Lj = fnext(Sj−1, seed); (Sj , Rj) =
next(Sj−1); if c < γ∗, then c = 0, else c = α}, with the input I provided by the adversary.
Theses queries are answered, respectively, by nothing, by the information leakage Lj , and
by the information leakage Lj together with the randomness Rj ;

3. Eventually, under the restriction that c never dropped to 0, the challenger sets (S(0), R(0))←
next(S), and generates (S(1), R(1)) $← {0, 1}n+`. It then gives (S(b), R(b)) to the adversary;

4. The adversary A outputs a bit b∗.

As above, we define the advantage of the adversary A as |2 Pr[b∗ = b] − 1|, and the restriction
that c never dropped to 0 could have been dealt another way.

— 96 —

6.3. Recovering and Preserving Security With Leakage

Definition 39 (Preserving Security with Leakage). A pseudo-random number generator with
input is said (t, qr, qn, γ∗, λ, ε)-preserving with leakage if for any adversary A running within
time t, its advantage in the above game with parameters qr (number of D-refresh and leak-refresh-
queries), qn (number of leak-next-queries), γ∗, and λ is at most ε.

From these two security notions, one can prove the following theorem, inspired from the analysis
presented in Section 4.2.

Theorem 15. If a pseudo-random number generator with input is (t, qr, qn, γ∗, λ, εr)-recovering
with leakage and (t, qr, qn, γ∗, λ, εp)-preserving with leakage then it is also (t′, qr, qn, qs, γ∗, λ, qn ·
(εr + q · εp))-leakage-resilient robust where t′ ≈ t, where the adversary can ask at most q =
qr + qn + qs queries, where qr is the number of calls to D-refresh/leak-refresh, qn the number of
calls to next-ror/leak-next, and qs the number of calls to get-state/set-state.

Proof. This proof follows the one presented in Section 4.2. It splits the leakage-resilient robust-
ness game in preserving with leakage steps and recovering with leakage steps.
Queries. In the game of leakage-resilient robustness, we term next-queries the calls to the
oracle next-ror. Since qn is a bound on the next-ror and leak-next queries, this is also a bound on
the next-queries. Actually, there are unsafe/compromised next-queries, when the internal state
is unsafe and so the entropy estimate c is below the threshold γ∗ before the query and reset to
0 after the query, and safe/uncompromised next-queries, when the internal state is safe before
the next-ror-query.

For uncompromised next-queries, the output randomness R should look indistinguishable from
truly random, while for compromised next-queries, there is no guarantee. As in Section 4.2,
we split the uncompromised next-queries in two sets: the preserving with leakage queries, if the
entropy estimate is above the threshold γ∗ since the previous next-query; and the recovering
with leakage queries, if the entropy estimate dropped below the threshold γ∗ and has thus been
reset to 0. For the latter queries, we reuse the notion of mRED (most recent entropy drain) to
define the most recent query to one of the oracles get-state, set-state, leak-refresh or leak-next
that reset c to 0.
Sequence of Games. Let us now define the sequence of games. Let game G0 be the initial
real-or-random game. Game Gi modifies the first i uncompromised next-queries by outputting
a uniformly random R, and by setting the internal state S uniformly at random. We note that
Gqn is then independent of b, since all the safe next-ror-queries are answered randomly, while
the unsafe next-ror-queries are anyway always answered by the real value of R. Game Gi+ 1

2
acts

according to the nature of the (i + 1)th uncompromised next-query: If it is preserving, then it
acts as Gi+1, if it is recovering, it acts as Gi. Then, one can show that

• If the generator is (t, qr, qn, γ∗, λ, εp)-preserving with leakage, then |Pr[Gi = 1]−Pr[Gi+ 1
2

=
1]| ≤ εp. This applies thanks to our security games that make c evolve the same way if
the entropy of the input is assumed to be zero, when c is above γ∗;

• If the generator is (t, qr, qn, γ∗, λ, εr)-recovering with leakage, then |Pr[Gi+ 1
2

= 1]−Pr[Gi+1 =
1]| ≤ (qri+qni+qsi)·εr, where qri, qni, and qsi are numbers of refresh, next and state queries
between the ith uncompromised next-queries and the (i+ 1)th uncompromised next-query.
Again, this applies since c drops to zero as soon as it decreases below γ∗,and so this cannot
happen in a recovering phase.

Let us prove these two results. We first consider the distance between the games Gi and
Gi+ 1

2
. We assume that we are in a preserving with leakage case, otherwise the two games Gi and

— 97 —

Chapter 6. Robustness Against Side-Channel Attacks

Gi+ 1
2
are identical.

We build a reduction to the preserving with leakage security notion. We will thus define an
adversary A′ against the preserving with leakage security game. The adversary A′ emulates the
challenger for A. It thus runs the adversary A, to get a distribution sampler D and the leakage
functions f . A′ initiates its security game, and receives back the seed it transfers to A. Then
A′ sets S = 0n and σ = 0, and simulates the answers to all the oracle calls that A makes in the
leakage-resilient robustness security game, but altered as in Gi, until the (i+1)th uncompromised
next-query. Note that after the ith uncompromised next-query, the internal state is assumed to
be the state S0 provided by the challenger, since it has full entropy n.

Since A′ knows the leakage functions, controls the internal state of the generator and has access
to the distribution sampler D, with the knowledge of its state, it can simulate all the calls
to get-state, set-state, D-refresh, leak-refresh, leak-next, and unsafe/compromised next-ror. The
uncompromised next-queries are answered with a truly random R (as in Gi) and the internal
state is renewed with a truly random S. All these new states are chosen, and thus known to A′,
until the ith uncompromised next-queries. After this last query the internal state is not known
any more to A′, but is assumed to be the state S0 provided by the challenger, which is also
uniformly random.

Between the ith uncompromised next-queries and the (i + 1)th uncompromised next-query, A′
can use its challenger to answer the queries asked by A, but providing the inputs for the refresh
queries (with or without leakage), using the distribution sampler D, since it still knows its state
σ. Indeed, during the preserving sequence, only oracles D-refresh, leak-refresh, and leak-next
are possible. At the end of this sequence, A′ receives the challenge (S(b), R(b)) it uses for the
(i+1)th uncompromised next-query: it answers A with R(b) and updates the internal state of the
generator with S(b) and continues to simulate the oracle calls made by A as in Gi, since it knows
again the internal state of the generator and has always known the state of the distribution
sampler. Eventually, A outputs the bit b∗. If the challenge bit b was 0 then (S(b), R(b)) is the
real value so it perfectly simulates Gi for A. Otherwise, (S(1), R(1)) is a random value, as in Gi+1.
Therefore, the challenge of A′ is exactly the same as the challenge consisting in distinguishing
both games and we have,

|Pr[Gi = 1]− Pr[Gi+ 1
2

= 1]| ≤ εp.

We now consider the distance between the games Gi+ 1
2
and Gi+1. We assume that we are

in a recovering with leakage case, otherwise the two games are identical.

We build a reduction to the recovering with leakage security notion. We will thus define an
adversary A′ against the recovering with leakage security game. The adversary A′ emulates the
challenger for A. It thus runs the adversary A, to get a distribution sampler D and the leakage
functions f . A′ initiates its security game, and receives back the seed it transfers to A, as well
as the values γ1, . . . , γqr and z1, . . . , zqr . Then A′ sets S = 0n, and simulates the answers to all
the oracle calls that A makes in the leakage-resilient robustness security game, but altered as in
Gi, until the (i+ 1)th uncompromised next-query. Actually, as above, the uncompromised next-
queries are answered with truly random R and the internal state is renewed with a truly random
S. To simulate the calls to D-refresh and leak-refresh queries from A, A′ asks for a D-refresh
query and gets back the input Ik, which allows it to evaluate the refresh algorithm itself, and
even compute the leakage information. Together with the values γk and zk it received above
from the challenger, it can answer appropriately to A. Since A′ knows the internal state of the
generator (and even controls it during the uncompromised next-query), it can easily simulate
get-state, set-state, unsafe/compromised next-ror, and leak-next queries.

After the ith uncompromised next-query, it continues the same way until the mRED query, it

— 98 —

6.4. A Secure Construction

has to guess among the possible queries (whose number is bounded by qri + qni + qsi, the sum
of the refresh, next and σ queries between the ith uncompromised next-queries and the (i+ 1)th
uncompromised next-query). For this guess (which might later revealed to be incorrect), A′
provides the current internal state, right after the mRED, as S0 to its challenger. A′ can use
its challenger to answer the queries asked by A. Indeed, during the recovering sequence, only
oracles D-refresh, leak-refresh, and leak-next are possible (without making c drop to 0). At the
end of this sequence, A′ receives the challenge (S(b), R(b)) it uses for the (i+1)th uncompromised
next-query, together the sequence of the next inputs: it answers A with R(b) and updates the
internal state of the generator with S(b) and continues to simulate the oracle calls made by A as
in Gi, since it knows again the internal state of the generator and knows the inputs to update it
(as in the first part of the simulation). Eventually, A outputs the bit b∗. If the challenge bit b
was 0 then (S(b), R(b)) is the real value so it perfectly simulates Gi for A. Otherwise, (S(1), R(1))
is a random value, as in Gi+1. Therefore, the challenge of A′ is exactly the same as the challenge
consisting in distinguishing both games and we have,

|Pr[Gi+ 1
2

= 1]− Pr[Gi+1 = 1]| ≤ (qri + qni + qsi) · εr.

Combining both results, we have

|Pr[G0 = 1]− Pr[Gqn = 1]| ≤ qn · (εp + (qr + qn + qs) · εr),

while the former game G0 is the leakage-resilient robustness security game and the latter game
Gqn is independent of b.

6.4 A Secure Construction
We slightly modify the assumption on the standard pseudo-random number generator G, to
keep the pseudo-random number generator with input G secure even in the presence of leakage:
The standard pseudo-random number generator G : {0, 1}m → {0, 1}n+` instantiated with the
truncated product U = [X ′ ·S]m1 is now required to be a (α, λ)-leakage-resilient and (t, ε)-secure
standard pseudo-random number generator according to Definition 40. In that definition, λ
denotes the leakage during the execution of G, and α is the expected entropy of the output,
even given the leakage.

Definition 40 (Leakage-Resilient and Secure Standard Pseudo-Random Number Generator).
A standard pseudo-random number generator G : {0, 1}m → {0, 1}N is (α, λ)-leakage-resilient
and (t, ε)-secure if it is first a (t, ε)-secure standard pseudo-random number generator, but in
addition, for any adversary A, running within time t, that first outputs a leakage f with λ-
bit outputs, there exists a source S that outputs couples (L, T) ∈ {0, 1}λ × {0, 1}N , so that
the entropy of T , conditioned on L being greater than α, and the advantage with which A can
distinguish (f(U),G(U)) from (L, T) is bounded by ε. Note that f(U) denotes the information
leakage generated by f during this execution of G (on the inputs at the various atomic steps of
the computation, that includes U and possibly some internal values).

Based on our new assumption, Theorem 16 shows that the pseudo-random number generator
with input G is leakage-resilient robust. The proof relies on the notions of recovering and
preserving with leakage.

Theorem 16. Let m, n, α, and γ∗ be integers, such that n > m and α > γ∗, and G :
{0, 1}m → {0, 1}n+` an (α + `, λ)-leakage-resilient and (t, εG)-secure standard pseudo-random
number generator. Then, the pseudo-random number generator with input G previously defined

— 99 —

Chapter 6. Robustness Against Side-Channel Attacks

and instantiated with G is (t′, qr, qn, qs, γ∗, λ, ε)-leakage-resilient robust where t′ ≈ t, after at
most q = qr + qn + qs queries, where qr is the number of D-refresh/leak-refresh-queries, qn the
number of next-ror/leak-next-queries, and qs the number of get-state/set-state-queries, where
ε ≤ qqn ·

(
(qr2 + 1) · εext + 3εG

)
and εext =

√
2m+1−δ for δ = min{n− log qr, γ∗ − λ}.

Following Theorem 15, we show that the pseudo-random number generator with input G satisfies
both the recovering security with leakage and the preserving security with leakage. We also
denote εext the bias of the distribution of U = [X ′ ·S]m1 from uniform when the min-entropy of S
is greater than γ∗−λ, and show that it can be any value greater than

√
2m+1−δ for δ = min{n−

log qr, γ∗ − λ}. Let us recall that we denote qr the number of calls to D-refresh/leak-refresh, qn
the number of calls to next-ror/leak-next, and qs the number of calls to get-state/set-state. We
also denote q = qr + qn + qs, the global number of queries.

As explained in Section 3.7 under the term granular model, we split the algorithm in atomic
procedures, with leakage on their manipulated data. In particular, in the above construction,
the refresh procedure can be considered atomic, while the next procedure should be split in two:
the truncation of the product, and the standard pseudo-random number generator evaluation.
As a consequence, we consider three leakage functions:

• frefresh collects the leakage during the computation of the algorithm refresh, and thus takes
as inputs the internal state S, the sample I and the part X of the seed;

• fnext,Π collects the leakage in algorithm next, during the computation of the truncation of
the product, and thus takes as inputs the internal state S and the part X ′ of the seed;

• fnext,G collects the leakage during the standard pseudo-random number generator evalua-
tion. It takes as input the intermediate variable U = [X ′ · S]m1 .

Lemma 9. The pseudo-random number generator with input G satisfies the (t, qr, qn, γ∗, λ, qn ·
(qr2 · εext + εG))-recovering security with leakage.

Proof of Lemma 9. The proof extends the one built in Section 4.3 to integrate the impact of the
leakage.

Game 0 [Recovering with Leakage Security Game].

This game is the original attack game described in Section 6.3, where f is described by three
leakage functions frefresh, fnext,Π and fnext,G. Because of the restriction for the estimated entropy
not to drop to 0, a first sequence includes only D-refresh-queries, until c gets larger than γ∗.
Thereafter, the leaking procedures leak-refresh and leak-next are also allowed, in addition to the
D-refresh, as soon as c remains above γ∗. With the answer to the challenge next-ror, this game
eventually outputs 1 if b∗ = b, and we want to show that Pr[G0 = 1] is close to 1/2.

Game 1.a [First leak-next Query: Random U].

In the first call to leak-next, we replace the truncated product U by a truly random value.
Using the same approach as in Section 4.3 with Lemma 4, we can show that the sequence of
inputs (Ik)dk=1 generated by the distribution sampler, and the polynomial evaluation followed
by the m-truncation leads to a (N, ε)-randomness extractor as long as the entropy in the source
N ≥ m + 2 log(1/ε) + 1 and n ≥ m + 2 log(1/ε) + log(d) + 1. With the possible information
leakage zk and Lk, the sequence (Ik)dk=1 has a min-entropy larger than γ∗ − λ (because of
the possible additional fnext,Π(S,X ′)), so we just need m ≤ γ∗ − λ − 2 log(1/εext) − 1 and
m ≤ n− 2 log(1/εext)− log(qr)− 1 to guarantee εext indistinguishability between the real U and

— 100 —

6.4. A Secure Construction

a random value, with this sequence (Ik).

However, since the adversary can choose when it starts (among qr possibility), and how long
it lasts (again, qr possibilities), there is a factor loss qr2. Then, we then have |Pr[G0 = 1] −
Pr[G1.a = 1]| ≤ qr2 · εext.

Game 1.b [First leak-next Query: Random State and Output].

In the first call to leak-next, since fnext,G is fixed, and G is a leakage-resilient standard pseudo-
random number generator, the source S generates indistinguishable leakage, state and random
as in the previous game with a truly random U . Then, we then have |Pr[G1.a = 1]− Pr[G1.b =
1]| ≤ εG.

Game 2 [All leak-next Queries: Random States].

In an hybrid way, we replace all the leak-next outputs by S. Then, we have |Pr[G2 = 1]−Pr[G0 =
1]| ≤ (qn − 1) · (qr2 · εext + εG).

Game 3 [The next-ror Query: Random U].

If this was the first next-query, we have already shown that U can be replaced by a truly random
value. If it happens after a leak-next, the state S has enough entropy for the extractor (the
global output (S,R) from the source S had entropy α + ` when knowing the leakage, then
knowing the `-bit randomness R, the remaining entropy for S is above α ≥ γ∗ ≥ γ∗ − λ):
the truncated product in the field is a 2−m(1 + 2m−n)-universal, and thus a (N, ε)-randomness
extractor as long as the entropy in the source is N ≥ m+ 2 log(1/ε) + 1. The above constraint
is enough for a bias bounded by εext between the real U and a random value. We then have
|Pr[G2 = 1]− Pr[G3 = 1]| ≤ εext.

Game 4 [The next-ror Query: Random Output].

Since G is a (t, εG)-secure standard pseudo-random number generator, we can replace both the
output and the random state by truly random values. And we have |Pr[G3 = 1]−Pr[G4 = 1]| ≤
εG.

From the above games, one gets, |Pr[G0 = 1] − Pr[G4 = 1]| ≤ qn · (qr2 · εext + εG), while
Pr[G4 = 1] = 1/2, for any εext ≥

√
2m+1−δ for δ = min{n− log qr, γ∗ − λ}.

Remark 2. This proof with leakage shows the relevance of the adaptation of the generic con-
struction. Concretely, to ensure an internal state with enough entropy at the input of the final
next-ror, we established two measures to limit the negative impact of the leak-next calls. First,
the threshold γ∗ was set voluntary higher than the original one in the robustness security ROB,
to capture the leakage in the truncated product, given by the leakage function fnext,Π. Then, the
generator G was defined with security properties whereby, in a leak-next call, the final output
comes with an entropy at least equal to α despite the leakage.

Lemma 10. The pseudo-random number generator with input G has (t, qr, qn, γ∗, λ, qn · (εext +
εG) + 2−n)-preserving security with leakage.

Proof of Lemma 10. The proof extends the one built in Section 4.3 to integrate the impact of
the leakage.

— 101 —

Chapter 6. Robustness Against Side-Channel Attacks

Game 0 [Preserving with Leakage Security Game].

This is the original preserving with leakage security game described in Section 6.3. The internal
state starts uniformly at random, and then the adversary can ask D-refresh and leak-refresh-
queries with chosen inputs, and leak-next-queries before the challenge next-ror, as soon as c
remains above γ∗. With the answer to this, this game eventually outputs 1 if b∗ = b, and we
want to show that Pr[G0 = 1] is close to 1/2.

Game 1.a [First leak-next Query: Random U].

As above, in the first call to leak-next, we replace the truncated product U by a truly random
value. But since the internal state started full of randomness (but it would be true with any
entropy level), following D-refresh and leak-refresh-query maintain entropy or reduce it by λ at
most, but remaining above γ∗, unless X = 0. Then, since the truncated product in the field is a
(γ∗, ε)-randomness extractor (with above constraints), the bias is bounded by εext between the
real U and a random value. Then, we have |Pr[G1.a = 1]− Pr[G0 = 1]| ≤ εext + 2−n.

Game 1.b [First leak-next Query: Random State and Output].

In the first call to leak-next, since fnext,G is fixed, and G is a leakage-resilient standard pseudo-
random number generator, the source S generates indistinguishable leakage, state and random
as in the previous game with a truly random U . We then have |Pr[G1.a = 1]−Pr[G1.b = 1]| ≤ εG.

Game 2 [All leak-next Queries: Random States].

In an hybrid way, we replace all the leak-next outputs by S. Then, we then have |Pr[G2 =
1]− Pr[G0 = 1]| ≤ (qn − 1) · (εext + εG) + 2−n.

Game 3 [The next-ror Query: Random U].

If this was the first next-query, we have already shown that U can be replaced by a truly random
value. If it happens after a leak-next, the state S has enough entropy for the extractor: the
truncated product in the field is a strong (γ∗, ε)-extractor. Since the state S has an entropy
larger than γ∗, the above constraint is enough for a bias bounded by εext between the real U
and a random value. Then, we have |Pr[G2 = 1]− Pr[G3 = 1]| ≤ εext.

Game 4 [The next-ror Query: Random Output].

Since G is (t, εG)-secure, we can replace both the output and the random state by truly random
values. And we have |Pr[G3 = 1]− Pr[G4 = 1]| ≤ εG.

From the above games, one gets, |Pr[G0 = 1] − Pr[G4 = 1]| ≤ qn · (εext + εG) + 2−n, while
Pr[G4 = 1] = 1/2.

From above Lemmas 9 and 10, we conclude that the generator G satisfies (t′, qr, qn, qs, γ∗, λ, ε)-
leakage-resilient robustness where t′ ≈ t, and

ε = qn ·
((
qn · (qr2 · εext + εG)

)
+ (qr + qn + qs) ·

(
qn · (εext + εG) + 2−n

))
,

which proves Theorem 16, since qn ≤ q and 2−n ≤ εext.

— 102 —

6.5. Instantiations

6.5 Instantiations

In Section 6.2, we explained that the original instantiation presented in Section 4.5 is vulnerable
to side-channel attacks, and needs a stronger notion of security than the usual security of a
standard pseudo-random number generator for G, namely a leakage-resilient and secure standard
pseudo-random number generator (Definition 40): it takes as input a perfectly random m-bit
string U , and generates an (n + `)-bit output T = (S,R) that looks random. Even in case of
leakage, S should have enough entropy. In this section, we give three concrete instantiations for
such a leakage-resilient and secure standard pseudo-random number generator G. The two first
ones are existing constructions proposed and proved leakage-resilient by Faust et al. [FPS12]
and Yu and Standaert [YS13]. The third one is a new construction that we propose with a
security analysis to improve the security parameters at the expense of the internal state size.
Eventually, we implement the three solutions and give benchmarks together with security levels.
To instantiate the standard pseudo-random number generator G, we need a leakage-resilient
construction which can get use of a bounded part of the internal state. We recall here two
leakage-resilient constructions which can be tweaked to fit these requirements at a reasonable
cost. The first one is a binary tree pseudo-random function introduced by Faust, Pietzrak and
Schipper at CHES 2012 [FPS12] and the second one is a sequential stateful pseudo-random
number generator with minimum public randomness proposed by Yu and Standaert at CT-
RSA 2013 [YS13]. We ignore the chronological order and start the description with the second
instantiation since a part of it will be used to complete the first one.
Sequential Stateful Pseudo-Random Number Generator from [YS13] The stateful
pseudo-random number generator of Yu and Standaert comes with an internal state made of
two randomly chosen values : a secret key K0 ∈ {0, 1}µ and a public seed s ∈ {0, 1}µ. The
construction is made of two stages. In the upper stage, a (non leakage-resilient) generator F′ is
processed in counter mode to expand the seed s into uniformly random values p0, p1, In the
lower stage, a (non leakage-resilient) pseudo-random function F generates outputs with public
values pi and updates the secret so it is never used more than twice. The parameter s can be
included in our seed (under the notation X ′′) since it shares the same properties than X and X ′.
However, the current counter is varying and thus need to be stored in the deterministic part of
the internal state. In the proof of [YS13], the counter is implicitly required to be different at
each use since the public values pi need to be independent. But in our model of leakage-resilient
robustness, the deterministic part of the internal state can be definitively compromised by the
attacker who could, in this case, set the counter to a previous value, making the public pi not
independent anymore. To thwart this issue, we suggest to extend the internal state so that
the truncated part of full entropy can contain both the secret key K0 and a uniformly random
counter used only for a single execution of next. This way, no parameter can be compromised
and we are back to the context of the proof made by the designers. The only difference in the
security comes from the probability of collisions when using a uniformly random counter at each
call.

This two-stage instantiation is illustrated in Figure 6.5. One can note that the input U is split
in two slices, to initiate the secret key K0 and the counter C, each of size µ. In order to relate
these parameters with the parameters of our generator from Section 6.4 that provides an m-bit
random string U as input to the gen G, and wants to receive back an N -bit string, we set
N = n + `: κ = N/µ blocks are generated with κ keys and the κ blocks of output and new
internal state are all generated using 2κ− 1 calls to F′ and 2κ− 1 calls to F.
The security of this instantiation is almost entirely guaranteed by its designers in [YS13]. The
only difference concerns the uniformly generated counter at each call to function next. Consider-
ing the additional possible collisions, Theorem 17 shows how this solution achieves the security

— 103 —

Chapter 6. Robustness Against Side-Channel Attacks

K0

X ′

F′

p0

C

F · · ·

F′

pν−2

C + ν − 2

K0 F· · ·

· · · F′

pν−1

C + ν − 1

K0 F K1 · · ·

· · ·

Kκ−1

C + ν(κ− 1) F′

pν(κ−1)

F · · ·

· · ·

Kκ−1

C + νκ− 2 F′

pνκ−2

F

(S′, R)

pu
bl
ic

va
ria

bl
es

Figure 6.5 – Instantiation of Generator G from [YS13] with Random Input U = (C,K0)

requirements in Definition 40.

Theorem 17. Let µ and κ be parameters such that (ν − 1)κµ = N . Let F : {0, 1}µ ×
{0, 1}µ → {0, 1}µ be a (α/κ, λ)-leakage-resilient and (t, ν, εF)-secure pseudo-random function
and F′ : {0, 1}µ×{0, 1}µ → {0, 1}µ be a (t, q(νκ−1), εF′)-secure pseudo-random function, where
q is a bound on the global number of executions of G. The instantiation proposed for G as
described on Figure 6.5 with F and F′ provides an (α, λ)-leakage-resilient and (t, εG)-secure
pseudo-random number generator where εG ≤ κεF + εF′ + q2(νκ− 1)/2µ.

In the proposal, each call to G makes (νκ − 1) calls to the pseudo-random function F: κ keys
are used at most ν times. The inputs of F are generated by F′ with the key X ′′ (randomly set in
seed) on a counter C randomly initialized, and then incremented for each F′ call in an execution
of G.

The main details of the proof can be found in [YS13], including the upper stage whose validity
is guaranteed in the peculiar world minicrypt introduced in [Imp95]. The only differences come
from the (possible) multiple use of the same secret key: ν times instead of two and the uniformly
distributed counter. They are both integrated in the generator parameters.

Note however that, for the global security, one needs all the intermediate values (pij) to be distinct
and unpredictable to avoid the attack described above. We thus require F′ to be secure after
qn(νκ− 1) queries and the inputs to be all distinct: by setting the log(νκ− 1) least significant
bits of C to zero, we just have to avoid collisions on the µ− log(νκ− 1) most significant bits for
the qn queries. The probability of collision is thus less than qn

2(νκ − 1)/2µ. This probability
can appear once and for all in the global security:

Proposition 8. Let us consider parameters n, m, and ` in the construction of the pseudo-
random number generator with input G from Section 6.2, using the standard pseudo-random

— 104 —

6.5. Instantiations

number generator G as described on Figure 6.5. Let µ and κ be parameters such that (ν−1)κµ =
n+`, and α > γ∗. Let F : {0, 1}µ×{0, 1}µ → {0, 1}µ be a (α/κ, λ)-leakage-resilient and (t, ν, εF)-
secure pseudo-random function, and F′ : {0, 1}µ × {0, 1}µ → {0, 1}µ be a (t, qn(νκ − 1), εF′)-
secure pseudo-random function. Then, G is (t, qr, qn, qs, γ∗, λ, ε)-leakage-resilient robust after
at most q = qr + qn + qs queries, where qr is the number of D-refresh/leak-refresh-queries, qn
the number of next-ror/leak-next-queries, and qs the number of get-state/set-state-queries, where
ε ≤ qqn ·

(
(qr2 + 1) ·

√
2m+1−δ + 3(κεF + εF′)

)
+ qn

2(νκ−1)/2µ, for δ = min{n− log qr, γ∗−λ}.

It seems reasonable to have (α, λ)-leakage resilience with α = n + ` − (νκ − 1)λ: with a large
γ∗, ε can be made small.
Binary Tree Pseudo-Random Function from [FPS12] The second solution was proposed
by Faust et al. at CHES 2012 [FPS12]. It requires a few more calls to F′ and F but depending
on the inherent device, some parts can be parallelized to overtake the performances of the first
solution. The initial solution does not provide sources for the required randomness. That is
why we use the same upper stage as proposed in the first solution. Whereas the leakage-resilient
security of this combination is provided in [YS13] and [ABF13], for the same reasons as above,
we need to get use of a uniformly random counter, updated at each call to next. Figure 6.6
illustrates this second instantiation with keys K ′i used only for the generation of keys Ki.
The security of this second instantiation with the specific generation of randomness is claimed
in [FPS12] and [YS13] for the keys generation and in [ABF13] for the global proposal, but for
an incremental counter. The use of a uniformly random counter slightly modifies the security
parameters by taking into account the probability of collisions. Theorem 18 shows the conformity
with the security requirements of Definition 40.

Theorem 18. Let µ and κ be parameters such that νκµ = N . Let F : {0, 1}µ×{0, 1}µ → {0, 1}µ
be a (α/κ, λ)-leakage-resilient and (t, ν, εF)-secure pseudo-random function and F′ : {0, 1}µ ×
{0, 1}µ → {0, 1}µ be a (t, q(2 log2(κ) + νκ), εF′)-secure pseudo-random function, where q is a
bound on the global number of executions of G. The instantiation proposed for G as described
in Figure 6.6 with F and F′ provides an (α, λ)-leakage-resilient and (t, εG)-secure pseudo-random
number generator where εG ≤ (2κ)εF + εF′ + q2(νκ+ 2 log2(κ))/2µ.

In the proposal, each call to G makes νκ calls to the pseudo-random function F: κ keys are used
at most ν times. These keys are the leaves generated by a binary tree whose nodes get use of
the outputs of the generator F′ with the key X ′′. As mentioned in [FPS12], only two uniformly
distributed inputs by tree layer are necessary. The generator F′, executed in counter mode as
done before, also provides the inputs of F, which raises the total number of required uniformly
distributed inputs to 2 log2(κ) + νκ.

The main details of the proof can be found in [FPS12] for the key generation and in [ABF13]
for the global construction. However and as before, the proof does not consider such a changing
counter. Using the same trick as for the previous instantiation, we get the global security:

Proposition 9. Let us consider parameters n, m, and ` in the construction of the pseudo-
random number generator with input G from from Section 6.2, using the generator G as described
on Figure 6.7. Let µ and κ be parameters such that νκµ = n + `, and α > γ∗. Let F :
{0, 1}µ × {0, 1}µ → {0, 1}µ be a (α/κ, λ)-leakage-resilient and (t, ν, εF)-secure pseudo-random
function, and F′ : {0, 1}µ × {0, 1}µ → {0, 1}µ be a (t, qn(2 log2(κ) + νκ)), εF′)-secure pseudo-
random function. Then, G is (t, qr, qn, qs, γ∗, λ, ε)-leakage-resilient robust after at most q =
qr + qn + qs queries, where qr is the number of D-refresh/leak-refresh-queries, qn the number
of next-ror/leak-next-queries, and qs the number of get-state/set-state-queries, where ε ≤ qqn ·(
(qr2 + 1) ·

√
2m+1−δ + 3(2κ · εF + εF′)

)
+qn2(2 log2(κ)+νκ)/2µ, for δ = min{n−log qr, γ∗−λ}.

— 105 —

Chapter 6. Robustness Against Side-Channel Attacks

X ′′

F′

p0

C · · · F′

p2 log2(κ)+κν−1

C + 2 log2(κ) + κν − 1

K ′0

F(p0) F(p1)

K ′1 K ′2

F(p2) F(p3) F(p4) F(p5)

· · · · · · · · · · · ·
p2 log2(κ)

K0 F · · ·

p2 log2(κ)+1

K0 F· · · · · · Kκ−1

p2 log2(κ)+κν−2

F · · · Kκ−1

p2 log2(κ)+κν−1

F

(S′, R)

pu
bl
ic

va
ria

bl
es

ge
ne

ra
tio

n
of

ke
ys

(le
av
es
)

Figure 6.6 – Instantiation of Generator G from [FPS12] with Random Input U = (C,K ′0)

It seems reasonable to have (α, λ)-leakage resilience with α = n + ` − νκλ: with a large γ∗, ε
can be made small.
New Instantiation As for the existing constructions, since we cannot use a pseudo-random
function with different public inputs and a single key (as shown by the first attack in Section 6.2,
we follow the conclusions from [BGS15] and make use of a pseudo-random function with a regular
re-keying whose frequency depends on the parameters of the inherent device. Fortunately, the
number of measurements an attacker can make (which fits with the data complexity) is limited
by design. To thwart the second attack described in Section 6.2 and for the needs of the
proof, we continue to make use of unpredictable values as inputs of the pseudo-random function.
Combining these two approaches, we recover the two stages exhibited by existing constructions.
While the upper stage remains the same, we modify the lower stage to improve the security and
the performances of function next (as we detail below).

The new lower stage makes several calls to a pseudo-random function F : {0, 1}µ × {0, 1}µ →
{0, 1}µ, with public but uniformly distributed inputs and several distinct secret key (as in the
second existing construction). The latter are directly extracted from the input value U =
[X ′ · S]m1 . This pseudo-random function, denoted by F, is just expected to be secure with
respect to a very few calls, namely ν, with the same secret key. The precise security requirements

— 106 —

6.5. Instantiations

K0

X ′′

F′

p0

C

F · · ·

F′

pν−1

C + ν − 1

K0 F· · ·

· · ·

· · ·

· · ·

Kκ−1

C + ν(κ− 1) F′

pν(κ−1)

F · · ·

· · ·

Kκ−1

C + νκ− 1 F′

pνκ−1

F

(S′, R)

pu
bl
ic

va
ria

bl
es

Figure 6.7 – New Instantiation of Generator G with Random Input U = (C,K0, . . . ,Kκ−1)

are formalized in Definition 41. For the sake of simplicity, we restrict this definition to keyed
functions, where keys, inputs, and outputs are all µ-bit long.

Definition 41 (Leakage-Resilient Pseudo-Random Function). A pseudo-random function F :
{0, 1}µ × {0, 1}µ → {0, 1}µ is (α, λ)-leakage-resilient and (t, q, ε)-secure if it is first a (t, q, ε)-
pseudo-random function, but in addition, for any adversary A, running within time t, that
first outputs a leakage f with λ-bit outputs, there exists a source S that outputs (Li, Pi, Ti)i ∈
({0, 1}λ×{0, 1}µ×{0, 1}µ)q, with a uniform distribution for the P ’s, so that the entropy of (Ti)i,
conditioned to (Li, Pi)i, is greater than α, and the advantage with which A can distinguish the
tuple (f(Ki, Pi), Pi,FK(Pi))i from (Li, Pi, Ti)i is bounded by ε.

Of course, when q is large, such a requirement implies security against DPA, but when q is
small only SPA is available, which are quite limited attacks in practice. Furthermore, such an
assumption is implicitly done in [YS13] with α = µ− λ, since the loss of entropy in the output
is the leakage one directly gets on it.

This new two-stage instantiation is illustrated in Figure 6.7. One can note that the input U will
be split in κ+ 1 slices, to initiate the κ keys K0, . . . , Kκ−1, and the counter C, each of size µ.
Theorem 19 shows that our proposal achieves the security requirements in Definition 40.

Theorem 19. Let µ and κ be parameters such that νκµ = N . Let F : {0, 1}µ×{0, 1}µ → {0, 1}µ
be a (α/κ, λ)-leakage-resilient and (t, ν, εF)-secure pseudo-random function and F′ : {0, 1}µ ×
{0, 1}µ → {0, 1}µ be a (t, qνκ, εF′)-secure pseudo-random function, where q is a bound on the
global number of executions of G. The instantiation proposed for G as described in Figure 6.7
with F and F′ provides an (α, λ)-leakage-resilient and (t, εG)-secure standard pseudo-random
number generator where εG ≤ κ · εF + εF′ + q2νκ/2µ.

In the proposal, each call to G makes νκ calls to the pseudo-random function F: κ keys are
used at most ν times. The inputs of F are generated by F′ with the key X ′′ (randomly set in

— 107 —

Chapter 6. Robustness Against Side-Channel Attacks

seed) on a counter C randomly initialized, and then incremented for each F′ call in an execution
of G.

However, for the global security, one needs all the intermediate values (pij) to be distinct and
unpredictable to avoid the attack described above. We thus require F′ to be secure after qnνκ
queries and the inputs to be all distinct: by setting the log(νκ) least significant bits of C to
zero, we just have to avoid collisions on the µ− log(νκ) most significant bits for the qn queries.
The probability of collision is thus less than qn

2νκ/2µ. This probability can appear once and
for all in the global security:

Theorem 20. Let us consider parameters n, m, and ` in the construction of the pseudo-random
number generator with input G from Section 6.2, using the generator G as described on Fig-
ure 6.7. Let µ and κ be parameters such that νκµ = n + `, and α > γ∗. Let F : {0, 1}µ ×
{0, 1}µ → {0, 1}µ be a (α/κ, λ)-leakage-resilient and (t, ν, εF)-secure pseudo-random function,
and F′ : {0, 1}µ×{0, 1}µ → {0, 1}µ be a (t, qnνκ, εF′)-secure pseudo-random function. Then, G is
(t, qr, qn, qs, γ∗, λ, ε)-leakage-resilient robust after at most q = qr+qn+qs queries, where qr is the
number of D-refresh/leak-refresh-queries, qn the number of next-ror/leak-next-queries, and qs the
number of get-state/set-state-queries, where ε ≤ qqn ·

(
(qr2 + 1) ·

√
2m+1−δ + 3(κ · εF + εF′)

)
+

qn
2νκ/2µ, for δ = min{n− log qr, γ∗ − λ}.

It seems reasonable to have (α, λ)-leakage resilience with α = n + ` − νκλ: with a large γ∗, ε
can be made small.

6.6 Benchmarks
We present some benchmarks of the construction presented in Section 4.3 and the three instan-
tiations. Since our leakage-resilient construction is based on the one presented in Section 4.3,
we use the latter as a reference when measuring efficiency. Thus, we simply implemented them
on an Intel Core i7 processor to show that the new property does not significantly impact the
performances. This is mainly due to the use of SPA-resistant AES implementations instead of
DPA-resistant (e.g., masked ones). While the target of such constructions is hardware oriented,
our benchmarks rely on software implementations, as we focus on estimating the potential ef-
ficiency loss of our new construction. We used the same public cryptographic libraries that in
Section 4.6 and to achieve a similar security level as the construction presented in Section 4.3,
our experiments show that the tweaked binary tree construction is only less than 4 times slower.
For our practical analysis, as in Section 4.6 , since it is widely used and adapted to constraint
devices, we use AES with 128-bit keys to instantiate the pseudo-random functions.

We recall that our construction is based on the construction of Section 4.3: refresh(S, I) =
S ·X + I ∈ F2n and next(S) = G(U), with U = [X ′ · S]m1 . In [DPR+13], the standard pseudo-
random number generator G is defined by G(U) = AESU (0)‖ . . . ‖AESU (ν − 1), where ν is the
number of calls to AES with a 128-bit key U , and thus m = 128. For a security parameter
k = 40, the security analysis leads to n = 489, γ∗ = 449, and ν = 5. To achieve leakage-
resilience, we need additional security requirements for the standard pseudo-random number
generator G. The three instantiations split G between two pseudo-random functions F and
F′, where F is used with public uniformly distributed inputs and κ different secret keys. In
the existing constructions, a first key is extracted from the truncated product U and the other
ones are derived through a re-keying process. In the new instantiation, all the secret keys are
extracted from U . The public inputs of F are generated by the pseudo-random function F′ in
counter mode, with a secret initial value for the counter also extracted from U : m = 2 · 128 for
the existing constructions or m = 128(κ + 1) for the new instantiation if both F = F′ = AES

— 108 —

6.6. Benchmarks

Table 6.1 – Security bounds For Robustness against Side-Channel Attacks

Refs Security 2−40 Security 2−64 Security
Bound εG n keys

(128)
AES
calls

n keys
(256)

AES
calls

[YS13] κεF + ε′F+ 768 7 26 1152 5 30
q2(νκ− 1)/2µ

[FPS12] 2κεF + ε′F+ 896 4 20 1408 4 24
q2(νκ+ 2 log2(κ))/2µ

New κεF + εF′ + q2νκ/2µ 1408 6 24 1792 5 30

with 128-bit keys. To provide the security bounds of the three constructions, we need to fix the
security bounds of functions F and F′. As far as we know, the best key recovery attacks on AES
without leakage [BKR11] require a complexity of 2126.1 with 288 data. However, our functions
being executed at most twice (resp. 6 times) with the same secret keys for 2−40 security (resp.
for 2−64 security), such a complexity is unreachable. We use this bound in a conservative way, to
bound the security of the pseudo-random functions. As for the leakage, we give the adversary λ
bits of useful information by leaking query. Nevertheless, until now it remains unclear how these
λ bits of information in a single trace may reduce the security bound of the AES. In [VGS14]
for instance, the authors show that a single trace on the AES might give the adversary all the
required knowledge to recover the secret key, namely, when a sufficient number of noisy Ham-
ming Weight values are available. But summing the useful information of these noisy Hamming
Weight values would give a very large λ for which we cannot guarantee anything. However, we
can expect either a larger amount of noise, a desynchronization of the traces or a low leaking
from the inherent component which would result in a reasonable value for λ. In this case, we
can fix εF = εF′ ≈ 2−127. The resulting security bounds are given in Table 6.1 with the size n
of the internal state, the number of 128 or 256-bit keys and the number of AES calls in function
next, for 2−40 and 2−64 security.

The best instantiation in terms of complexity is the construction from [FPS12]. This is not
surprising considering the advantageous binary shape of this function. However, if we relax
the security assumptions on the AES with εF = εF′ = 2−126 for security of the pseudo-random
functions, the conditions of the security proof are not met and therefore we cannot guarantee
its security based on Corollary 20. In these specific cases, our construction seems to be the best
one to use since it guarantees that the conditions of the security proof are met. Note that for
2−64 security, as explained below, we cannot get a provable security with 128-bits input blocks,
and we need εF and εF′ to be smaller than 2−200, and then use AES with 256-bit keys.

Since the implementation built from [FPS12] appears to be the best one in the general case,
we implement it to compare it with the benchmarks of Section 4.6. As in Section 4.6, we use
fb_mul_lodah and fb_add from RELIC open source library [AG], extended with the necessary
fields (F2489 , defined with X489 +X83 + 1 and F2896 , defined with X896 +X7 +X5 +X3 + 1). We
use public functions aes_setkey_enc and aes_crypt_ctr from PolarSSL open source library [Pol].
As in [DPR+13], we measure the number of CPU cycles for a recovering process and a key
generation process. The CPU cycles count is done using ASM instruction RDTSC, our C code is
optimized with O2 flag. We simulate a full recovery of the generetor for [FPS12] and [DPR+13]
implementations, with an input containing one bit of entropy per byte. Then, 8 inputs of size 489
bits are necessary to recover from a compromise for [DPR+13], whereas, for [FPS12], 8 inputs of
size 896 bits are necessary. Then we simulate the generation of 2048-bit keys that each requires

— 109 —

Chapter 6. Robustness Against Side-Channel Attacks

16 calls to next, as every call outputs 128 bits. Figure 6.8 gives the numbers of CPU cycles
for 100 complete recovering experiments (left) and 100 key generations (right) for [DPR+13]
and [FPS12]. Both processes require on average 4 times less CPU cycles to perform for [FPS12]
implementation than for [DPR+13] implementation.

Exp. index

CPU Cycles

0

0.5 ×105

1 ×105

1.5 ×105

0 25 50 75 100

[DPR+13]
[FPS12]

Recovering Experiments
Key index

CPU Cycles

0 25 50 75 1000

1 ×105

2 ×105

3 ×105

[DPR+13]

[FPS12]

Key Generations

Figure 6.8 – Benchmarks Between [FPS12] and [DPR+13]

The Tweaked Binary Tree Instantiation. We first recall the constraints (Theorem 20): the
quality of the pseudo-random number generator is measured by

ε ≤ qqn ·
(
(qr2 + 1) ·

√
2m+1−δ + 3(2κ · εF + εF′)

)
+ qn

2(2 log2(κ) + νκ)/2µ,

for δ = min{n− log qr, γ∗ − λ}.

With qr = qn = qs = 2k, we get:

ε ≤ 3 · 22k ·
(
(22k + 1) ·

√
2m+1−δ + 3(2κ · εF + εF′)

)
+ (2 log2(κ) + νκ) · 22k/2µ

≤ ε1 + ε2 + ε3 + ε4

where

• ε1 = 24k+2+(m+1−δ)/2,

• ε2 = 18κ · 22k · εF,

• ε3 = 9 · 22k · εF′ and

• ε4 = 22k−µ · (2 log2(κ) + νκ).

2−v Security. Withm = 256, µ = 128, εF = εF′ ≈ 2−127: ε1 < 2−v, as soon as 8k+2v+5+m <
δ, which is verified for n > 9k + 2v + 5 + m and γ∗ > n + λ − k; ε2 < 2−v, as soon as
2k + v < 127− log2(18κ); ε3 < 2−v, as soon as 2k + v < 127− log2(9) < 123; ε4 < 2−v, as soon
as 2k + v < 128− log2(2 log2(κ) + νκ).

2−40 Security. For k = v = 40, the constraint on ε3 is satisfied. The constraints on ε1 are
satisfied as soon as n > 701 and γ∗ > n + λ − 40. With ν = 2, we need n = 256κ − 128 > 701
and thus κ = 4, which ensures that the contraints on ε2 and ε4 are satisfied . Finally, n = 896
and γ∗ = 858 for λ ≈ 2.

2−64 Security. Unfortunately, for k = v = 64, one cannot get a provable security with the size
of the input block µ = 128, because of the collisions on the counters. In order to increase the
size of the input blocks, one can XOR pseudo-random permutations to get a pseudo-random

— 110 —

6.6. Benchmarks

K0

X ′′

F′

p0

C0

F

F′

p1

C1

K0 F

⊕
First block

K0

F′

p2

C0 + 1

F

F′

p3

C1 + 1

K0 F

⊕
Second block

K0

F′

p4

C2

F

F′

p5

C2 + 1

K0 F

⊕
Third block

pu
bl
ic

va
ria

bl
es

Figure 6.9 – Example of Instantiation of Generator G for Higher Security Bounds

function on larger inputs [Luc00]. This makes ε4 negligible: 22k−2µ = 2−128, and thus the factor
νκ will not affect it. On the other hand, to make ε2 and ε3 small enough, we need εF and εF′

to be smaller than 2−200, and then use AES with 256-bit keys. But then we have to use the
same key 6 times in order to extract 384 bits (see a 3-block extraction in Figure 6.9), where
κ keys are used ν = 6 times, and two counters C0 and C1 are extracted: m = 3 · 128 = 384,
n = 3× 128× κ− 128 = 384κ− 128. As for the constraint on ε1, we need 384κ > 1221. We can
take κ = 4. Then, n = 1408 and γ∗ = 1346.

— 111 —

Chapter 6. Robustness Against Side-Channel Attacks

— 112 —

Chapter 7

Security Analysis

7.1 Introduction

From Security Models to Implementations. We discuss briefly some interesting common
points in the security models presented in [DHY02, BH05], in the robustness model (Chapter
4) and in the robustness against memory attacks model (Chapter 5) as well as their potential
use to assess the security of the implementations of pseudo-random number generators with
input. All security models consider an adversarial environment for the generator. The security
model of [DHY02] does not take into account an attack in which the generator is refreshed
with adversarial inputs, whereas this situation is considered in [BH05] and in our two models of
robustness. In [DHY02], the internal state of the generator is composed of two parts, named key
and initial state; the generation algorithm takes as input both of them and updates the initial
state. In concrete implementations the internal state is considered as a single entity, as modelled
in [BH05] and in the two robustness models. Finally, entropy accumulation in the internal state
is modelled clearly only in the two robustness models. Therefore we use two robustness models
as a starting point for our analysis. Furthermore, our source code analysis shows that in certain
situations, only a partial compromise of the internal state is necessary to make the generator
predictable. As a partial compromise of the internal state is only captured in our model of
robustness against memory attacks, we use it to identify precisely the part of the internal state
that needs to be compromised to break the security of some generators.
From Implementations To Security Models. We use Definition 27 for pseudo-random
number generator with input in all this chapter. This definition describes a pseudo-random
number generator as a triple of algorithms G = (setup, refresh, next), where setup is a probabilistic
algorithm that outputs a public parameter seed for the generator. As entropy needs to be
extracted from the inputs used to refresh the generator, a randomness extractor is needed,
ensuring that each input actually gives entropy to the generator. However, it is well known that
no deterministic extractor can extract good randomness from all entropy sources and therefore
a seeded extractor is necessary (see Section 2.6). In all implementations, no explicit extractor
is defined; whereas all generators considered in this chapter use the SHA1 hash function to
mix new input into the current internal state or to generate outputs. We therefore assume
for our analysis that the SHA1 function defines a hash functions family used as an extractor,
whose seed is the public parameter K = K0||K1||K2||K3, where K0 = 5A827999, K1 = 6ED9EBA1,
K2 = 8F1BBCDC, and K3 = CA62C1D6 are the round constants defined in the SHA1 specification
[SHA95]. Hence, for all generators presented in this chapter, we assume that the algorithm setup
always outputs this public parameter K, of size 128 bits and the underlying extractor is the hash
function family defined in the specification [SHA95], indexed by the parameter K. We will
therefore refer to the SHA1 function in our description as HK, to identity the underlying hash

— 113 —

Chapter 7. Security Analysis

function family. As a consequence, this assumption shows that our attacks on these generators
are independent of the specific hash function used and are really related to their design.

Consider Algorithms hK, HK, PAD and SHA1 described in Table 7.1. These algorithms allow to
describe the hash function SHA1 as a particular instance of the hash functions family HK, with
the compression function hK. Note that this description is similar as the one done in [GB01].

SHA1
Require: M , |M | < 264

1: K = 5A827999||6ED9EBA1||
2: 8F1BBCDC||CA62C1D6
3: V ← HK(M)
4: return V

HK
Require: M , |M | < 264,

1: y = PAD(M)
2: Parse y as M1||M2|| · · · ||Mn, where |Mi| = 512 (1 ≤ i ≤
n)

3: V = 67452301||EFCDAB89||98BADCFE||
4: 10325476||C3D2E1F0
5: for i = 1 to n do
6: V← hK(Mi||V)
7: end for
8: return V

PAD
Require: M , |M | < 264

1: d← (447− |M |) mod 512
2: Let ` be the 64-bit binary representation of |M |
3: y ←M ||1||0d||`
4: return y

Notations
X ∧ Y : bitwise AND of X and Y
X ∨ Y : bitwise OR of X and Y
X ⊕ Y : bitwise XOR of X and Y
¬X: bitwise complement of X
X + Y : integer sum modulo 232 of X and Y
ROTL`(X): circular left shift of bits of X by ` positions
(0 ≤ ` ≤ 31)

hK
Require: B||V, |B| = 512, |V| = 160

1: Parse B as W0||W1|| · · · ||W15, where |Wi| = 32 (0 ≤ i ≤
15)

2: Parse V as V0||V1|| · · · ||V4, where |Vi| = 32 (0 ≤ i ≤ 4)
3: Parse K as K0|| · · · ||K3, where |Ki| = 32 (0 ≤ i ≤ 3)
4: for t = 16 to 79 do
5: Wt ← ROTL1(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16)
6: end for
7: A← V0, B ← V1, C ← V2, D ← V3, E ← V4
8: for t = 0 to 19 do
9: Lt ← K0, Lt+20 ← K1, Lt+40 ← K2, Lt+60 ← K3

10: end for
11: for t = 0 to 79 do
12: if 0 ≤ t ≤ 19 then f ← (B∧C)∨ ((¬B)∧D) end if
13: if 20 ≤ t ≤ 39 or 60 ≤ t ≤ 79 then f ← B ⊕ C ⊕D

end if
14: if 40 ≤ t ≤ 59 then f ← (B ∧C)∨ (B ∧D)∨ (C ∧D)

end if
15: T ← ROTL5(A) + f + E +Wt + Lt
16: E ← D,D ← C,C ← ROTL30(B), B ← A,A← T
17: end for
18: V0 ← V0 +A, V1 ← V1 +B, V2 ← V2 +C, V3 ← V3 +D,

V4 ← V4 + E
19: V← V0||V1||V2||V3||V4
20: return V

Table 7.1 – Algorithms hK, HK, PAD and SHA1

In [FPZ08], Fouque et al. gave an analysis of the use of the cascade construction as an entropy
extractor. The cascade construction is used for iterated hash functions, such as SHA1. In
particular, Fouque et al. showed, that the cascade mode is a good randomness extractor, if the
compression function is a pseudo-random function. This result can be used to assess the security
of the hash function family HK function as a randomness extractor: assuming that the function
hK (which corresponds to the compression function of the HK hash function family) is a pseudo-
random function, the family HK is a randomness extractor. Hence the seed of the extractor is
of size 128 bits.
An Illustrative Example Let us illustrate our analysis. All implementations contain instruc-
tions that can be easily related to the refresh and next algorithms. However, while our security
model considers generators that may be refreshed with potentially biased inputs, in some ap-
plications, the refresh algorithm is called just one time with a single input. Hence after this
single call, the entropy contained in S (named γ∗) is bounded by the size of the input (named
p). An adversary may gain information about the behavior of the environment and estimate the
entropy of this single input when collected by the generator. An example of this idea is presented
in [MMS13], where it was discovered that the input in the Android SHA1PRNG implementation

— 114 —

7.2. Security of Linux Generators

actually contains very low entropy since it was not generated by several calls to system variables.
During our analysis, we discovered vulnerabilities that are complementary to this work, as we
focus on the global behavior of the generators.

In our security models, an adversary can compromise the internal state (partially or totally) and
the security game ensures that enough entropy is accumulated in the internal state to generate
output. The OpenSSL library contains a pseudo-random number generator with an internal
state of size 1072 bytes, which contains an entropy pool of size 1023 bytes and internal coun-
ters. The structure of S, that we named its decomposition in Section 5.1, is public for OpenSSL
and known to the adversary. We show that an adversary only needs to compromise 40 bytes
of the internal state and to control 23 bytes of an input of size 1023 bytes (with a legitimate
distribution sampler, as described in Definition 28) to predict a future output of the generator.
Hence, this shows that this pseudo-random number generator with input does not resist a single
relatively small internal state compromise.

7.2 Security of Linux Generators

In Unix-like operating systems, a pseudo-random number generator with input was implemented
for the first time for Linux 1.3.30 in 1994. The entropy source comes from device drivers and
other sources such as latencies between user-triggered events (keystroke, disk I/O, mouse clicks,
. . .). It is gathered into an internal state called the entropy pool. The internal state keeps
an estimate of the number of bits of entropy in the internal state and (pseudo-)random bits
are created from the special files /dev/random and /dev/urandom. Barak and Halevi [BH05]
discussed briefly the generator /dev/random but its conformity with their robustness security
definition is not formally analyzed.

The first security analysis of these generators was given in 2006 by Gutterman, Pinkas and
Reinman [GPR06]. It was completed in 2012 by Lacharme, Röck, Strubel and Videau [LRSV12].
Gutterman et al. [GPR06] presented an attack based on kernel version 2.6.10 for which a fix has
been published in the following versions. Lacharme et al. [LRSV12] gives a detailed description
of the operations of the generators and provides a result on the entropy preservation property
of the mixing function used to refresh the internal state.

The Linux operating system contains one pseudo-random number generator with input, that has
two user interfaces, named /dev/random and /dev/urandom. They are part of the kernel and
used in the OS security services and some cryptographic libraries. We give a precise description1

of this pseudo-random number generator with input in accordance with Definition 27 as a triple
LINUX = (setup, refresh, next) and we prove the following theorem:

Theorem 21. The pseudo-random number generator with input LINUX is not robust.

Since the actual generator LINUX does not define any seed (i.e. the algorithm setup always
output the empty string), as mentioned above, it cannot achieve the notion of robustness.
However, in the following, we additionally mount concrete attacks that would work even if
LINUX had used a seed in the underlying hash function or mixing function. The attacks exploit
two independent weaknesses, in the entropy estimator and the mixing functions, which would
need both to be fixed in order to expect the generators to be robust.

1All descriptions were done by source code analysis. We refer to version 3.7.8 of the Linux kernel.

— 115 —

Chapter 7. Security Analysis

General Overview

Security Parameters. The generator LINUX uses parameters n = 6144, ` = 80, p = 96. The
parameter n can be modified (but requires kernel compilation), and the parameters ` (size of
the output) and p (size of the input) are fixed. The generator outputs the requested random
numbers by blocks of ` = 80 bits and truncates the last block if needed.
Internal State. The internal state of generator LINUX is a triple S = (Si, Su, Sr) where
|Si| = 4096 bits, |Su| = 1024 bits and |Sr| = 1024 bits. New data is collected in Si, which is
named the input pool. Output is generated from Su and Sr which are named the output pools.
When a call to /dev/urandom is made, data is generated from the pool Su and when a call to
/dev/random is made, data is generated from the pool Sr.

Functions refresh and next. There are two refresh functions, refreshi that initializes the in-
ternal state and refreshc that updates it continuously. There are two next functions, nextu for
/dev/urandom and nextr for /dev/random.

Mixing Function. The generator uses a mixing function M, described below, to mix new
data in the input pool and to transfer data between the pools.

Entropy Estimator. The generator uses an entropy estimator, described below, to estimate
the entropy of the collected input and to continuously estimates the entropy of the pools. With
these estimations, the generator controls the transfers between the pools and how new input
is collected. This is illustrated in Figure 7.1 and described below but at high level, the main
principles are:

• New inputs are ignored when the input pool contains enough entropy. Otherwise, the
estimated entropy of the input pool is increased with new input.

• Entropy estimation of the output pool is decreased on generation.

• Data is transferred from the input pool to the output pools if they require entropy.

• When the pools do not contain enough entropy, no output can be generated with /dev/random
and it blocks whereas /dev/urandom always generates output.

The technical internal parameters that are the entropy estimations are named Ei (entropy
estimator of Si), Eu (of Su), Er (of Sr).

The refreshi and refreshc Functions

The generator LINUX contains two refresh functions. A first refresh function, refreshi, is used to
generate the first internal state of the generator and the second one, refreshc, is used to refresh
continuously the generator with new input.

Internal State Initialisation with refreshi. To generate the first internal state with refreshi,
LINUX collects device-specific data using a built-in function called add_device_randomness and
refreshes Si and Sn with them. The data is derived from system calls, a call to variable jiffies,
which gives the number of CPU cycles since system start-up and is represented by 32 bits, and
a call to system function get_cycles, that gives the number of clock ticks since system start-up,
which also returns 32 bits. The two values are xor-ed together, giving a new 32-bit input data that
is generated twice for Si and Sn and mixed for each pool. Then LINUX collects system data and
refreshes the three pools Si, Sn and Sb with them using built-in function init_std_data. The data
is derived from system calls, a call to function ktime_get_real, which returns 64 bits and a call

— 116 —

7.2. Security of Linux Generators

(I)

(0, I) refreshi→ S (S, I) refreshc→ S′

(Si → S′i)

(Su → S′u)(Sr → S′r)

S
nextr→ (S′, R) S

nextu→ (S′, R)

/dev/random /dev/urandom

(I) (Si, Su, Sr)

Ei < 3584

(S′i, Su, Sr)

no
yes

(S, I) refreshc→ S′

(I)

(Si, Su, Sr)

(S, I) refreshi→ S′

(Si, Su, Sr)

Eu > 8t αu > 8

(Si, S′u, Sr, R) (S′i, S′u, Sr, R)

yes
no

yesno

S
nextu→ (S′, R)

(Si, Su, Sr)

Er > 8t αr > 8

(Si, Su, S′r;R) (S′i, Su, S′r;R)

wait

yes
no

yes
no

S
nextr→ (S′, R)

Figure 7.1 – Relations between functions and pools for LINUX

to function utsname, which returns 3120 bits. The two are concatenated, giving 3184 bits. This
input data is generated for each pool and mixed with M, implemented in the built-in function
mix_pool_bytes. Finally, the generated input is I = (utsname‖ktime_get_real‖get_cycles ⊕
jiffies) for Si and Sn, and I = (utsname‖ktime_get_real) for Sr. In all cases, refreshi(0, I) =
M(0, I). The entropy estimator is not used during this process, so Ei = Eu = Er = 0.

Algorithm 6 LINUX refreshi
Require: I1 = [utsname‖ktime_get_real‖get_cycles⊕ jiffies], I2 = [utsname‖ktime_get_real], S = ∅
Ensure: S = (Si, Su, Sr)

1: Si = M(I1, 0)
2: Sr = M(I2, 0)
3: Su = 0
4: return S = (Si, Su, Sr)

Internal State Update with refreshc. The refreshc function uses system events that are
collected by three built-in functions: add_input_randomness, add _interrupt_randomness and
add_disk_randomness. All of them call another built-in function, add_timer _randomness, which
builds a 96 bits input data containing the collected event mapped to a specific value num coded
in 32 bits, concatenated with jiffies and get_cycles. Finally, the generated input is then given
by I = [jiffies‖get_cycles‖num]. If the estimated entropy is above the default value 3584, this
input is ignored (except 1 input over 4096). The entropy estimator Ent described below is used
to estimate the entropy of the new input and is added to Ei.

Algorithm 7 LINUX refreshc
Require: I = [jiffies‖get_cycles‖num], S = (Si, Su, Sr)
Ensure: S′ = (S′i, S

′
u, S
′
r)

1: if Ei ≥ 3584 then
2: S′i = Si
3: else
4: e = Ent(I)
5: S′i = M(I, Si)
6: Ei = e+ Ei
7: end if
8: (S′u, S′r) = (Su, Sr)
9: return S′ = (S′i, S

′
u, S
′
r)

— 117 —

Chapter 7. Security Analysis

Remark 3. Starting from version 3.6.0 of the kernel, LINUX involves a particular behavior of
add_interrupt _randomness which collects system events and gather them in a dedicated 128 bits
pool fast_pool without calling add_timer _randomness. In this case, the input is I = fast_pool.

For all these inputs, refreshc(Si, I) = M(Si, I) and LINUX estimates the entropy of the data
collected by add_timer _randomness and estimates every input collected from fast_pool to 1
bit.

Remark 4. Starting from version 3.2.0 of the kernel, for both /dev/urandom and /dev/random,
there is an additional input specific for x86 architectures for which a hardware random num-
ber generator is available. In this case, the output of the generator is mixed with M when
this hardware random number generator is used for refreshi and the output is mixed with the
output of LINUX when used with next. For this specific architecture, denoting Ihd the in-
put generated by the hardware random number generator, refreshi(Si, Ihd) = M(Si, Ihd) and
nexthd(S) = [Ihd||next(S)].

The nextu and nextr Functions

The next functions use built-in functions random_read and urandom_read that are user inter-
faces to read data from /dev/random and /dev/urandom, respectively. A third kernel interface,
get_random_bytes(), allows to read from /dev/urandom. The three rely on the same built-in
function extract_buf that calls the mixing function M, the hash function HK described in Section
7.1 and a folding function F(w0, · · · , w4) = (w0 ⊕ w3, w1 ⊕ w4, w2[0···15] ⊕ w2[16···31]).

Algorithm 8 LINUX nextr
Require: t, S = (Si, Su, Sr)
Ensure: R, S′ = (S′i, S

′
u, S
′
r)

1: αr = min(min(max(t, 8), 128), bEi/8c)
2: if αr ≥ 8 then
3: Ti = F ◦ HK ◦M(Si,HK(Si))
4: S′i = M(Si,HK(Si))
5: S∗r = M(Sr, Ti)
6: Ei = Ei − 8αr
7: Er = Er + 8αr
8: S′r = M(S∗r ,HK(S∗r))
9: R = F ◦ HK ◦M(S∗r ,HK(S∗r))

10: Er = Er − 8t
11: else
12: Blocks until αr ≥ 8
13: end if
14: S′u = Su
15: return R, S′ = (S′i, S

′
u, S
′
r)

Output with /dev/random. Let us describe the transfers when t bytes are requested from the
blocking pool. If Er ≥ 8t, then the output is generated directly from Sr: LINUX first calculates
a hash across Sr, then mixes this hash back with Sr, hashes again the output of the mixing
function and folds the result in half, giving R = F◦HK ◦M(Sr,HK(Sr)) and S′r = M(Sr,HK(Sr)).
This decreases Er by 8t and the new value is Er − 8t. If Er < 8t, then depending on Ei, data
is transferred from Si to Sr. Let αr = min(min(max(t, 8), 128), bEi/8c).

• If αr ≥ 8, then αr bytes are transferred between Si and Sr (so at least 8 bytes and
at most 128 bytes are transferred between Si and Sr, and Si can contain 0 entropy.
The transfer is made in two steps: first LINUX generates from Si an intermediate data
Ti = F ◦ HK ◦M(Si,HK(Si)) and then it mixes it with Sr, giving the intermediate states
S′i = M(Si,HK(Si)) and S∗r = M(Sr, Ti). This decreases Ei by 8αr and increases Er

— 118 —

7.2. Security of Linux Generators

by 8αr. Finally LINUX outputs t bytes from S∗r , this produces the final output pool
S′r = M(S∗r ,HK(S∗r)) and R = F ◦ HK ◦M(S∗r ,HK(S∗r)). This decreases Er by 8t.

• If αr < 8, then LINUX blocks and waits until Si gets refreshed with I and until αr ≥ 8.

Output with /dev/urandom. Similarly, let us describe the transfers when t bytes are requested
from the non-blocking pool. If Eu ≥ 8t then LINUX applies the same process as in the non-
blocking case, outputs R = F ◦ HK ◦M(Su,HK(Su))) and sets S′u = M(Su,HK(Su)). If Eu < 8t
then LINUX behaves differently. Let αu = min(min(max(t, 8), 128), bEi/8c − 16):

• If αu ≥ 8, the process is the same as in the non-blocking case, but with Su, Eu and αu
instead of Sr, Er and αr.

• If αu < 8, then LINUX outputs the requested bytes from Su without transferring data
from Si. Hence LINUX behaves as if Eu ≥ 8t: R = F ◦ HK ◦ M(Su,HK(Su)), and S′u =
M(Su,HK(Su)). This decreases Eu by 8t and the new value is 0.

Algorithm 9 LINUX nextu
Require: t, S = (Si, Su, Sr)
Ensure: R, S′ = (S′i, S

′
u, S
′
r)

1: αu = min(min(max(t, 8), 128), bEi/8c − 16)
2: if αu ≥ 8 then
3: Ti = F ◦ HK ◦M(Si,HK(Si))
4: S′i = M(Si,HK(Si))
5: S∗u = M(Su, Ti)
6: Ei = Ei − 8αu
7: Eu = Eu + 8αu
8: S′u = M(S∗u,HK(S∗u))
9: R = F ◦ HK ◦M(S∗u,HK(S∗u))

10: Eu = Eu − 8t
11: else
12: R = F ◦ HK ◦M(Su,HK(Su))
13: Eu = 0
14: end if
15: S′r = Sr
16: return R, S′ = (S′i, S

′
u, S
′
r)

This illustrates the difference between /dev/urandom and /dev/random: If the estimated entropy
of the blocking pool Sr is less than 8t and no transfer is done, then /dev/random blocks, whereas
/dev/urandom does never block and outputs the requested t bytes from the non-blocking pool
Su.

The Entropy Estimator

A built-in estimator Ent is used to give an estimation of the entropy of the input data used to
refresh Si. It is implemented in function add_timer_randomness which is used to refresh the
input pool. A timing tn is associated with each event (system or user call) that is used to refresh
the internal state. Entropy is estimated when new input data is used to refresh the internal
state, entropy is not estimated using input distribution but only using the timings of the data.
A description of the estimator is given in [GPR06], [LRSV12] and [GLSV12]. The estimator
takes as input a sequence of inputs Ii = [jiffies‖get_cycles‖num], it calculates differences between
timings of events, where t0, t1, t2, . . . are the jiffies associated with each input: δi = ti − ti−1,
δ2
i = δi − δi−1, δ3

i = δ2
i − δ2

i−1. Then, it calculates ∆i = min(|δi|, |δ2
i |, |δ3

i |) and finally applies a
logarithmic function to give the estimated entropy Hi = 0 if ∆i < 2, Hi = 11 if ∆i > 212, and
Hi = blog2(∆i)c otherwise.

— 119 —

Chapter 7. Security Analysis

Algorithm 10 LINUX Entropy Estimator
Require: Ii = [num‖jiffies‖get_cycles]
Ensure: Hi = Ent(Ii)

1: ti = jiffies
2: δi = ti − ti−1
3: δ2

i = δi − δi−1
4: δ3

i = δ2
i − δ

2
i−1

5: ∆i = min(|δi|, |δ2
i |, |δ

3
i |)

6: if ∆i < 2 then Hi = 0
7: if ∆i > 212 then Hi = 11
8: else Hi = blog2(∆i)c
9: return Hi = Ent(Ii)

The Folding and the Hash Functions

The folding function F and the hash function HK are used when random bytes are generated by
LINUX and when data is transferred from Si to Sr or Su. The folding function is implemented in
built-in function extract_buf. It take as input five 32-bit words and output 80 bits of data. This
function F is defined by F(w0, w1, w2, w3, w4) = (w0⊕w3, w1⊕w4, w2[0···15] ⊕w2[16···31]), where wi
for i ∈ {0, . . . , 4} are the input words.

The hash function HK is implemented in the built-in function extract_buf by a call to a Linux
system function sha_transform.

The Mixing Function

The Mixing function M is the core of generator LINUX. It is implemented in the built-in function
mix_pool_bytes. It is used in two contexts, once to refresh the internal state with new input
and secondly to transfer data between the input pool and the output pools. We give a complete
description of M as it is used to refresh the input pool Si, its description when it is used to
transfer data between pools differs only from internal parameters.

The function M takes as input I of size one byte, the input pool Si that is considered as a table
of 128 32-bits words. It selects 7 words in Si and mixes them with I and replaces one word of
Si with the result. The pool Si therefore maintains an internal parameter, named k, which is
used to select the word that will be modified. Another internal parameter, named d, is used in
function M. This parameter is a multiple of 7 used in a rotation done at word level. We name
the rotation of d bits Rd. The mixing function involves the following operations:

• The byte containing the entropy source is converted into a 32-bit word, using standard C
implicit cast, and rotated by d bits. Before initialization, d = 0, and each time the mixing
function M is used, d is incremented using k : if k = 0 mod 128 then d = d + 14 mod 32
and d = d+ 7 mod 32 otherwise.

• The obtained word is xor-ed with words from the pool. If we note S0, . . . , S127 the words
of Si, chosen words will be Sk+j mod 128 for j ∈ {0, 1, 25, 51, 76, 103}2.

• The obtained word is mixed with a built-in table (named twist table). This table contains
the binary representations of the monomials {0, α32∗j}, j = 1, . . . 7, in the field (F2)/(Q),
where Q(x) = x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1 is the
CRC32 polynomial used for Ethernet protocol [Koo02]. Denoting the primitive element
α, this operation can be described as W → W.α3 + R(Q(W,α29).α32, Q), where Q(A,B)
(resp. R(A,B)) the quotient (resp. the remainder) in polynomial division A/B.

2Similarly, the words chosen from Sr and Su will be Sk+j mod 32 for j ∈ {0, 1, 7, 14, 20, 26}.

— 120 —

7.2. Security of Linux Generators

• Then the word at index k in Si is replaced by the previously generated word and k is
incremented.

Algorithm 11 LINUX Mixing function
Require: I, S = (S0, . . . , Sk, . . . , S127)
Ensure: S′

1: W = Rd[0||I]
2: if k = 0 mod 128 then d = d+ 14 mod 32 else d = d+ 7 mod 32 end if
3: W = W ⊕ Sk+j mod 128, j ∈ {0, 1, 25, 51, 76, 103}
4: W = W.α3 + R(Q(W,α29).α32, Q)
5: S′k = W
6: k = k + 1
7: return S = (S0, . . . , S′k, . . . , S127)

Distributions Used for Attacks

Distributions Used in Attacks based on the Entropy Estimator As shown previously, the
generator LINUX uses an internal Entropy Estimator on each input that continuously refreshes
its internal state. We show that this estimator can be fooled in two ways. First, it is possible to
define a distribution of zero entropy that the estimator will estimate of high entropy, secondly,
it is possible to define a distribution of arbitrary high entropy that the estimator will estimate of
zero entropy. This is due to the estimator conception: as it considers the timings of the events
to estimate their entropy, regular events (but with unpredictable data) will be estimated with
zero entropy, whereas irregular events (but with predictable data) will be estimated with high
entropy. These two distributions are given in the following Lemma 11 and 12.

Lemma 11. There exists a stateful distribution D0 such that H∞(D0) = 0, whose estimated
entropy by LINUX is high.

Proof. Let us define the 32-bits word distribution D0. On input a state i, D0 updates its
state to i + 1 and outputs a triple (i + 1, [W i

1,W
i
2,W

i
3]) $← D0(i), where W 0

1 = 212,W i
1 =

|bcos(i).220c| + W i−1
1 , W i

2 = W i
3 = 0. For each state, D0 outputs a 12-bytes input containing 0

bit of random data, we have H∞(D0) = 0 conditioned on the previous and the future outputs
(i.e. D0 is legitimate only with γi = 0 for all i). Then ∆i > 212 and Hi = 11.

Lemma 12. There exists a stateful distribution D1 such that H∞(D1) = 64, whose estimated
entropy by LINUX is null.

Proof. Let us define the 32-bits word distribution D1. On input a state i, D1 updates its state
to i+ 1 and outputs a triple: (i+ 1, [W i

1,W
i
2,W

i
3]) $← D1(i),where Wi = i,W2

$← U32 and W3
$←

U32. For each state, D1 outputs a 12-bytes input containing 8 bytes of random data, we have
H∞(D1) = 64 conditioned on the previous and the future outputs (i.e. D1 is legitimate with
γi = 64 for all i). Then δi = 1, δ2

i = 0, δ2
i−1 = 0, δ3

i = 0, ∆i = 0 and Hi = 0.

Distribution Used in Attack based on the Mixing Function The generator LINUX uses
an internal Mixing function M, used to refresh the internal state with new input and to transfer
data between the pools. It is possible to define a distribution of arbitrary high entropy for which
the Mixing function is completely counter productive, i.e. the entropy of the internal state does
not increase, whatever the size of the input is. This is due to the conception of the Mixing
function and its linear structure. This distribution is given in Lemma 13.

Lemma 13. There exists a stateful distribution D2 such that H∞(D2) = 1, for which H∞(S) = 1
after t refresh, for arbitrary high t.

— 121 —

Chapter 7. Security Analysis

B0
4 ← B7,$:

R0

⊕

⊕

T

Position = 10

S127, S0, S24, S50, S75, S102 :

S127 ⊕ S0 ⊕ S24 ⊕ S50 ⊕ S75 ⊕ S102 ⊕ R0(B0
0) :

S′127 :

B0
5 ← B3,b :

R7

⊕

⊕

⊕

T

S′127 :

S0, S24, S50, S75, S102 :

S′127 ⊕ S0 ⊕ S24 ⊕ S50 ⊕ S75 ⊕ S102 ⊕ R0(B0
0) :

S′126 :

Figure 7.2 – Attack Against the Mixing Function of LINUX

Proof. Let us define the byte distributions Bi,b and Bi,$:

Bi,b = {(0, · · · , b, · · · , 0), bi ← b, bj = 0 if i 6= j}
Bi,$ = {(b0, · · · , b7), bi

$← {0, 1}, bj = 0 if i 6= j}

Let us define the 12 bytes distribution D2. On input a state i, D2 updates its state to i+ 1 and
outputs 12 bytes:

(i+ 1, [Bi
0, . . . , B

i
11]) $← D2(i),where B10i

4 ← B7,$, B
10i
5 ← B3,b, B

10i+2
4 ← B2,b, B

10i+4
7 ← B5,b,

B10i+6
6 ← B1,b, B

10i+8
10 ← B0,b,with b = Bi

4,7

For each state i, D2 outputs a 12-bytes input containing 1 bit of random data (for i = 0 mod 10)
or 0 bit of random data (for i 6= 0 mod 10). If d = 0, k = 127 and S is known, and noting
St = refresh(S, refresh(St−1, [Bt−1

0 , . . . , Bt−1
11])), St = St0, . . . , S

t
127, then St contains 1 random bit

in word St127, at position 10, for all t. Distribution D2 outputs B0
4 and B0

5 are illustrated in
Figure 7.2.

Attacks Against the Robustness of LINUX
In this section we describe attacks on LINUX that prove Theorem 21. The first three attacks use
distributions (described in Lemma 11 and Lemma 12) that fool the Entropy Estimator and the
last attack uses the distribution for which the Mixing function is counter productive (described
in Lemma 13). For this last attack, we show indeed that LINUX is not even backward secure.

Remark 5. It is important to mention that our attacks do not use any computation of the
adversary A that is correlated with the hash function family HK. Note however that the attack
based on the mixing function uses as a prerequisite that computation of the adversary A is done
knowing the definition of the mixing function. In particular, the set {0, 1, 25, 51, 76, 103} that
is used to mix new inputs in the internal state could have been randomly chosen and selected
as seed. In this situation, the proposed attack does not fit in the security model because the
assumption about the independence between seed and the input distribution is not satisfied.

Attacks Based on the Entropy Estimator As shown in Section 7.2, it is possible to build
a distribution D0 of null entropy for which the estimated entropy is high (cf. Lemma 11) and

— 122 —

7.2. Security of Linux Generators

a distribution D1 of high entropy for which the estimated entropy is null (cf. Lemma 12). It is
then possible to mount attacks on both /dev/random and /dev/urandom, which show that these
two generators are not robust. At first we describe two attacks that use the blocking behavior on
input, one attack on /dev/random and one attack on /dev/urandom and secondly we describe
an attack (that works on both /dev/random and /dev/urandom) that does not use this behavior
but uses the way entropy estimation evolves when data is transferred between the pools.
/dev/random is not robust. Let us consider an adversary A against the robustness of the
generator /dev/random, and thus in the game ROB(γ∗), that makes the following oracle queries:
one get-state, several next-ror, several D-refresh and one final next-ror.

Then the state (Si, Sr, Su), the parameters k, d, Ei, Eu, Er and the counter c defined in ROB(γ∗)
evolve the following way:

• get-state: After a state compromise, A knows all parameters (but needs Si, Sr, Ei, Er)
and c = 0.

• next-ror: After bEi/10c + bEr/10c queries to next-ror, Ei = Er = 0, A knows Si and Sr
and c = 0.

• D-refresh: In a first stage, A refreshes LINUX with input from D0. After 300 queries,
Ei = 3584 and Er = 0. A knows Si and Sr and c = 0.
In a second stage, A refreshes LINUX with input J $← U128. As Ei = 3584, these inputs
are ignored as long as I contains less than 4096 bytes. After 30 queries, A knows Si and
Sr and c = 3840.

• next-ror: Since Er = 0, a transfer is necessary between Si and Sr before generating R.
Since Ei = 3584, then αr = 10, such a transfer happens. But as A knows Si and Sr, then
A knows R.

Therefore, in the game ROB(γ∗) with b = 0, A obtains a 10-bytes string in the last next-ror-
oracle that is predictable, whereas when b = 1, this event occurs only with probability 2−80. It
is therefore straightforward for A to distinguish the real and the ideal world.

The attack on /dev/urandom is very similar to the previous one, using the blocking behavior on
input.

/dev/urandom is not robust. Similarly, let us consider an adversary A against the robustness
of the generator /dev/urandom in the game ROB(γ∗) that makes the following oracle queries: one
get-state that allows it to know Si, Su, Ei, Eu; bEi/10c+bEu/10c next-ror, making Ei = Eu = 0;
100 D-refresh with D1; and one next-ror, so that R will only rely on Su as no transfer is done
between Si and Su since Ei = 0. Then A is able to generate a predictable output R and to
distinguish the real and the ideal worlds in ROB(γ∗).

Now we present a third attack, on both /dev/random and /dev/urandom, that exploits the way
entropy estimation evolves when data is transferred between the input pool and the output pools.
We describe it for /dev/random, but this attack is indeed exactly the same for /dev/urandom.

/dev/random and /dev/urandom are not robust. Let us consider an adversary A against
the robustness of the generator /dev/random, and thus in the game ROB(γ∗), that makes the
following oracle queries: one get-state, several next-ror, several D-refresh, several next-ror, several
refresh and one final next-ror.

Then the state (Si, Sr, Su), the parameters k, d, Ei, Eu, Er and the counter c defined in ROB(γ∗)
evolve the following way:

— 123 —

Chapter 7. Security Analysis

• get-state: After a state compromise, A knows all parameters (but needs Si, Sr, Ei, Er)
and c = 0.

• next-ror: After bEi/10c + bEr/10c queries to next-ror, Ei = Er = 0, A knows Si and Sr
and c = 0.

• D-refresh: A refreshes LINUX with input from D0. After 300 queries, Ei = 3584 and
Er = 0. A knows Si and Sr and c = 0.

• next-ror with t = 1: Since Er = 0, a transfer is necessary between Si and Sr before
generating R. Then αr = min(min(max(t, 8), 128), bEi/8c) = 8, Ei = Ei − 8αr = 3534 −
64 = 3520, Er = Er + 8αr − 8t = 56.

• next-ror with t = 7: Since Er = 56, no transfer is necessary, and Er = Er − 8t = 0.

• Repeat the two previous queries until Ei = 0, and do only the first next-ror query (with
t = 1) for the last.

• refresh with input J $← U128. After 10 queries, A knows Sr and c = 1280.

• next-ror, with t = 7: Since Er = 56, no transfer is necessary between Si and Sr before
generating R. But as A knows Sr, then A knows R.

Therefore, in the game ROB(γ∗) with b = 0, A obtains a 7-bytes string in the last next-ror-oracle
that is predictable, whereas when b = 1, this event occurs only with probability 2−56. It is
therefore straightforward for A to distinguish the real and the ideal world.
Attack based on the Mixing Function. In [LRSV12], a proof of state entropy preservation is
given for one iteration of the mixing function M, assuming that the input and the internal state
are independent, that is: H∞(M(S, I)) ≥ H∞(S) and H∞(M(S, I)) ≥ H∞(I). We show that
without that independence assumption and with more than one iteration of M, the generator
LINUX does not recover from state compromise. This contradicts the backward security and
therefore the robustness property.
LINUX is not backward secure. As shown in Section 7.2, with Lemma 13, it is possible to
build an input distribution D2 with arbitrary high entropy such that, after several D-refresh,
H∞(S) = 1. Let us consider an adversary A that generates an input data of distribution D2, and
that makes the following oracle queries: set-refresh, and γ∗ calls to D-refresh followed by many
calls to next-ror. Then the state (Si, Sr, Su), the parameters k, d, Ei, Eu, Er and the counter c of
BWD(γ∗) evolve the following way:

• set-refresh: A sets Si = 0, Sr = Su = 0, d = 0 and k = 127, and c = 0.

• D-refresh: A refreshes LINUX with D2. After γ∗ oracle queries, until c ≥ γ∗, the new state
still satisfies H∞(S) = 1.

• next-ror: Since H∞(S) = 1, H∞(R) = 1.

Therefore, in the game BWD(γ∗) with b = 0, A always obtains an output in the last next-ror
query with H∞(R) = 1, whereas in b = 1, this event occurs only with negligible probability. It
is therefore straightforward for A to distinguish the real and the ideal world.

— 124 —

7.3. Analysis of OpenSSL Generator

7.3 Analysis of OpenSSL Generator
The OpenSSL cryptographic library contains a pseudo-random number generator with input
OPENSSL which collects entropy from system calls. Is has been first analyzed by Gutmann in
1998 [Gut98] and since then no new analysis has been made. It is implemented in the source
file /crypto/rand/md_rand.c, as part of the OpenSSL library. The generator takes inputs of
any size and generates outputs of size 10 bytes. The generator is different depending on a
choice made when building the library. This choice depends on an internal parameter named
MD_DIGEST_LENGTH, which depends on the underlying hash function used. The choice of the
hash function is made using with a dedicated flag (USE_MD5_RAND for the MD5 function, or
USE_SHA1_RAND for the SHA1 function), which is by default USE_SHA1_RAND. Hence depending
on the environment, the size of S3 is equal to 16 bytes or 20 bytes. We assume that the SHA1
function is used in our descriptions, hence we will refer to the hash functions family HK described
in Section 7.1. We verified that our attack can be easily adapted if USE_MD5_RAND is chosen.
Internal State Decomposition. The internal state of OPENSSL is implemented with five
fields: state_index, of size 32 bits, state, of size 1043 bytes, md, of size 20 bytes, md_count_0,
md_count_1, each of size 64 bits. The decomposition of the internal state is given by S =
(S1, S2, S3, S4, S5), where S1, S2, S3, S4, S5 stand for state_index, state, md, md_count_0,
md_count_1, respectively. The total size of the internal state is 8576 bits and the generator
uses this decomposition as follows: field S1 is used as an index to select bytes in S2; S2 and S3
are used to collect entropy; S4 and S5 are counters used during the generator operations.
The refresh Algorithm. This algorithm is implemented with the instruction ssleay_rand_add,
and fully described in Algorithm 12. It takes as input the current internal state (S1, S2, S3, S4, S5)
and an input I of any size that is processed by blocks of 20 bytes. Starting with a 20-bytes
block of S2 that is indexed by S1, consecutive blocks of S2 are mixed with consecutive blocks
of I. The mixing operation involves the hash functions family HK. This mixing operation also
involves S3, S4 and S5, where S5 is incremented for each block. When this mixing is finished,
the field S3 is xor-ed with the last calculated hash. Hence after a refresh operation, |I| bits of
S2 are modified, S3 is modified, S1 and S5 are incremented and S4 is not modified.

I S1 S2 = [· · · |S∗2 | · · ·] S3 S4 S5

U = HK(S3||S∗2 ||I||S4||S5)

S1 ← S1 + 20 mod 1023 S2 ← · · · |S∗2 ⊕ U | · · · S3 ← S3 ⊕ U S4 ← S4 S5 ← S5 + 1

Figure 7.3 – OPENSSL refresh Algorithm

The next Algorithm. This algorithm is implemented in ssleay_rand_bytes, and described in
Algorithm 13. It takes as input the current internal state (S1, S2, S3, S4, S5), mixes S2, S3, S4
and S5 together to produce the 10-byte output R and updates S3. Only 10 bytes from S2 are
modified, that are selected using field S1, which behaves as an index for this operation. A second
mixing operation involves S3, S4 and S5 to update S3. Hence S2 is modified sequentially by
blocks of 10 bytes with successive next calls, while S3 is completely modified, S1 and S4 are
incremented and S5 is not changed. As for the refresh algorithm, the two mixing operations
involve the hash function family HK.
Note that directive ssleay_rand_bytes takes as input an array named buf which is filled with
the generated output, but whose content is also used as input (referenced as I in the description
below). In addition, the next algorithm uses as input the current system PID and the system

— 125 —

Chapter 7. Security Analysis

Algorithm 12 OPENSSL refresh algorithm
Require: S = (S1, S2, S3, S4, S5), I
Ensure: S′

1: while |I| > 0 do
2: S∗2 = S2[S1 mod 1023, . . . , S1 + 20 mod 1023]
3: U = HK([S3||S∗2 ||I||S4||S5])
4: S∗2 = S∗2 ⊕ U
5: S1 = S1 + 20 mod 1023
6: S5 = S5 + 1
7: I = I \ [I]19

0
8: end while
9: S3 = S3 ⊕ U

10: return S′ = (S1, S2, S3, S4, S5)

time. The system PID is obtained with a call to directive getpid, system time is obtained from a
call to directive time, and from a call to directive gettimeofday (for simplicity, we refer to these
two calls as “Time" in the description of the generator). These inputs during the next algorithm
are not explicitly compliant with the security model that requests a strict separation between
the input collection and the generation, but we mention it for completeness of the description.
These calls have been explicitly set by OpenSSL community to prevent a vulnerability related
to a call to the fork function that uses a common PID for two next calls. This vulnerability is
described in [Ope13].

S1 S2 = [· · · |S∗2 | · · ·] S3 S4 S5I, PID,Time

V = HK(PID||Time||S3||S4||S5||I||S∗2)

[V]90 [V]19
10 = R

S1 ← S1 + 10 mod 1023 S2 ← [· · · |S∗2 ⊕ [V]90| · · ·] S3 ← HK(S4||S5||V ||S3) S4 ← S4 + 1 S5 ← S5

Figure 7.4 – OPENSSL next Algorithm

Algorithm 13 OPENSSL next algorithm
Require: S = (S1, S2, S3, S4, S5)
Ensure: S′, R

1: S∗2 = S2[S1 mod 1023, · · ·S1 + 10 mod 1023]
2: V = HK([PID||Time||S3||S4||S5||I||S∗2])
3: S∗2 = S∗2 ⊕ V [0, · · · , 9]
4: R = V [10, · · · , 19]
5: S3 = HK([S4||S5||V ||S3])
6: S1 = S1 + 10 mod 1023
7: S4 = S4 + 1
8: return S′ = (S1, S2, S3, S4, S5), R

Attack. We mount a memory attack against the pseudo-random number generator with input
OPENSSL, that is based on the internal state decomposition and the fact that this state is only
partially updated refresh and next algorithms. This attack uses the field S3, which is implemented
with md and the field S2– which is implemented with state. As described in Algorithms 12 and
13, when the generator is refreshed, the field S3 is updated with the last calculated hash, whereas
it is used as the entropy source for the output of the generator with 10 bytes of S2. Suppose
now that one uses an input of size 1023 bytes (which is the size of S2 – or state) where the first
20 bytes and the last 3 bytes are 0, to refresh the generator. Clearly this input is independent of

— 126 —

7.4. Analysis of Android SHA1PRNG

the parameter seed and it is therefore legitimate to use it to refresh the generator in our security
model. Suppose now that one asks for an output. This output, which only relies on the first
10 bytes of S2 and on S3, is predictable. Theorem 22 gives the technical details of the attack.
This attack is related to the refresh function that mixes new entropy sequentially by blocks of
20 bytes in the internal state, and to the next function that also reads sequentially the internal
state by blocks to produce new outputs. If a block is compromised and if the adversary controls
the exact block of the input that will be mixed with the compromised block of the internal state,
the output is predictable. Hence the attack points a design error of the generator, because this
behavior should not be possible.

Theorem 22. The pseudo-random number generator with input OPENSSL is not backward
secure against memory attacks. To mount an attack against the generator, A needs to corrupt
40 bytes of the internal state.

Proof. Define the 1023-byte distribution D. On input a state i, D updates its state to i + 1
and outputs a 1023-byte input Ii: (i + 1; [Ii0, · · · , Ii1022]) ← D(i); where I0

0 = · · · = I0
19 = 0,

I0
1019 = · · · = I0

1022 = 0 and all other bytes are random (i.e. D is legitimate with γi = 8000). Let
us define the mask M = [M1,M2,M3,M4,M5], where M1 = 0, [M2]19

0 = 0, M3 = 0, M4 = 0,
M5 = 0 and J = {2, 3} (i.e. this mask will be used to set the first 20 bytes of S2 and S3
to 0). Let us consider an adversary A against the security of the generator that chooses the
distribution D, and that makes the following oracle queries in the security game MBWD: one
M-set-state with S, J and M , one D-refresh with I0, one next-ror. Then (following refresh and
next algorithm notations):

• AfterM-set-state, S1 = 0, [S2]19
0 = 019, [S2]1023

20 is random, S3 = 0, S4 = 0, S5 = 0.

• After D-refresh,

– S1 = 0, [S2]19
0 = HK([0||0||0||0||0]), [S2]1023

20 is random, S3 = HK([0||0||0||0||51]),
– S4 = 0, S5 = 51.

• After next-ror,

– V = HK(PID||Time||S3||0||51||[S2]19
0), R = V 19

10 , S3 = HK(0||51||V ||HK(0||0||0||0||51)),
– S1 = 10, S4 = 1.

In this last next-ror-oracle query, A obtains a 10-bytes string that is predictable as it only relies
on PID and Time, whereas this event should occur with probability 2−80. Therefore A can
distinguish an output of OPENSSL from random in the game BWD(γ∗, 320), for all γ∗ ≤ 8000
and this pseudo-random number generator with input is not backward secure.

7.4 Analysis of Android SHA1PRNG

In the Android system, a full Java implementation of a pseudo-random number generator with
nput is provided, as part of the package security.provider.crypto, named SHA1PRNG. It has
been analyzed by Michaelis et al. in [MMS13], where the authors identified an implementation
weakness that causes the internal state to be overwritten by predictable values, decreasing its
entropy to 64 bits. This generator was also debated intensively recently, due to a weakness
in its initial seeding that caused a flaw in Bitcoin wallets. This weakness caused the Android
community to propose a fix to the generator, that simply consists in replacing it by the one from
OpenSSL, analyzed in Section 7.3. Full details about the vulnerability and the proposed fix are
given in [And13]. The generator is implemented with the class SHA1PRNG_SecureRandomImpl

— 127 —

Chapter 7. Security Analysis

and is an inheritance from the one included in the library Apache Harmony from the package
org.apache.harmony. It follows the method named "expansion of source bits" of IEEE standard
P.1363 [BK96].
Internal State Decomposition. The internal state of the generator is implemented with the
fields seed, of size 384 bytes, and counter, of size 8 bytes (many other fields are used, but they
are not useful to understand the operations). Hence the decomposition of the internal state is
S = (S1, S2), where S1, S2 stand for seed and counter and the total size of the internal state is
392 bytes. The generator uses this decomposition as follows: S1 contains the collected entropy
and a hash of the collected entropy; S2 contains a counter which is incremented at each output.
The refresh Algorithm. This algorithm is described in Algorithm 14. It takes as input the
current internal state (S1, S2), an input I of any size and updates the internal state with I.
It is implemented with method engineSetSeed as follows: the first 64 bytes of S1 collect the
consecutive inputs and the last 20 bytes of S1 contains a hash value. Two sub-functions are
used, implemented with SHA1Impl.updateHash and SHA1Impl.computeHash. Note that these
two functions correspond respectively to the update of the internal state of HK and a function
that compress the input of HK to a fixed length output as is defined in the specification [SHA95].
As the generator uses (wrongly, as we will see) the compression function for its operation, we
will use it for its description and will refer to this function as hK. When the collected input fills
a block of hK (of size 64 bytes), the last 20 bytes of S1 are filled with hK, and then the block
is set to 0 and filled again. For clarity, we denote s the current collected input, h the current
calculated hash in S1 and I∗ = [I]64−|S||I|

0 in the descriptions.

Algorithm 14 Android SHA1PRNG refresh
Require: S = (S1, S2) = ([s, · · · , h], S2), I
Ensure: S′

1: if |s||I| < 64 then S1[0, · · · , 63] = [s||I] end if
2: if |s||I| = 64 then
3: S1[0, · · · , 63] = 0, S1[328, · · · , 347] = hK(s||I, h)
4: end if
5: if |s||I| > 64 then
6: S1[0, · · · , 63] = I \ I∗, S1[328, · · · , 347] = hK(s||I∗, h)
7: end if
8: return S′ = (S1, S2)

The next Algorithm. This algorithm is described in Algorithm 15. It is implemented with
engineNextBytes. It takes as input an integer n, outputs R, of size n bytes and the updated
internal state S′. Twenty successive bytes outputs are generated as follows: the algorithm
appends S1 and S2, calculates the output with function hK (the compression function) and
increments the counter contained in S2. For clarity, we suppose that n is a multiple of 20 (the
implementation allows any value with intermediate arrays whose description would complicate
the understanding of the algorithm) and we denote c the counter contained in S2. We also use
the same notation (s and h) used for the refresh algorithm.

Algorithm 15 Android SHA1PRNG next
Require: S = (S1, S2) = ([s, · · · , h], [c]), n(n mod 20 = 0)
Ensure: S′, R

1: for i = 0 to n− 1 do
2: S1[0, · · · , 63] = [s||c], S1[328, · · · , 347] = hK(s||c, h)
3: c = c+ 1, S2 = [c]
4: Ri = S1[328, · · · , 347]
5: i = i+ 20
6: end for
7: return S′, R = (S1, S2),∪

i
Ri

— 128 —

7.5. Analysis of OpenJDK SHA1PRNG

Attack. We mount one attack against the Android SHA1PRNG taking in consideration the
internal state decomposition. Our attack is possible because of the use of the compression
function hK instead of the hash function HK, both in the refresh and next algorithms. When
using the compression function hK, the current hash value is used whereas the hash should be
calculated with the initialization vector defined in the specification [SHA95]. Again, this attack
identifies a design flaw of the generator. This attack shows that the generator is not resilient
because the attacker only needs to refresh the generator with an input that forces S1 to be
equal to [0]. In addition, if at initialization the internal state is filled with 64 random bytes, the
generator is not even pseudo-random, because no refresh is needed. The attack is demonstrated
in Theorem 23.

Theorem 23. The pseudo-random number generator with input Android SHA1PRNG is not re-
silient.

Proof. Consider an adversary A against the security of the generator that chooses the following
(one state) distribution D, D(0) = I, where I is of size `, where ` ≤ 512 and uniformly random
(i.e. D is legitimate with γ0 = `). Then A makes the following oracle queries in the security
game RES: one D-refresh, one first next-ror with an output R1 of size 20 bytes, and one second
next-ror, with an output R2 of size 20 bytes. Then:

• After D-refresh with I: [S1]63
0 = 064 with probability 1/64, [S1]347

328 is random, S2 = 0.

• After next-ror with R0, [S1]63
0 = 064 with probability 1/64, R0 = [S1]347

328 and S2 = 1, as S1
is not modified.

• After next-ror with R1, [S1]63
0 = [0||1], R0 = [S1]347

328, but [S1]347
328 = hK(0, R0) with probabil-

ity 1/64.

In this last next-ror-oracle query, A obtains a 20-byte string that is known to A with probability
1/64 as it only relies on the previous output, whereas ideally, this event should occur only with
probability 2−80. Therefore this pseudo-random number generator with input is not resilient.

7.5 Analysis of OpenJDK SHA1PRNG

The OpenJDK provider contains an implementation of a pseudo-random number generator with
input, named SHA1PRNG, directly given in the class SecureRandom. This implementation follows
the specification given in the Digital Signature Standard [DSS00]. This specification has been
analyzed in [KSWH98], where the authors show that it not a resilient pseudo-random number
generator with input. Here we present new attacks that concern partial corruption of its internal
state of the implementation.
Internal State Decomposition. The internal state of the generator is implemented with
three private fields, the field state, of size 20 bytes, the field remainder, of size 20 bytes and an
integer remCount. The decomposition of the internal state is S = (S1, S2, S3), where S1, S2, S3
stand for state, remainder, remCount, respectively. The generator uses this decomposition as
follows: S1 contains the collected entropy, S2 contains random bytes before their output and S3
is used to check if S2 contains enough random bytes that can serve as output.
The refresh Algorithm. This algorithm is described in Algorithm 16. It is implemented with
method engineSetSeed. It takes as input the current internal state S = (S1, S2, S3), a new
input I and outputs the new internal state by mixing S1 with I using HK.
The next Algorithm. This algorithm is described in Algorithms 17 and 18. It is implemented
with two methods; the first one, engineNextBytes, generates the output and the second one,

— 129 —

Chapter 7. Security Analysis

Algorithm 16 OpenJDK SHA1PRNG refresh
Require: S = (S1, S2, S3), I
Ensure: S′

1: S1 = HK(S1||I)
2: return S′ = (S1, S2, S3)

updateState, updates the internal state.

The method engineNextBytes takes as input the current internal state S = (S1, S2, S3) and n,
the number of bytes requested. It outputs an n-byte output R and updates the internal state.
The internal counter S3 controls the update of the internal state when output is generated: if
S3 > 0 it means that S2 contains some bytes that have not been used for a previous output,
these bytes can be used for the current output and are then set to 0. Next, S2 and S1 are
updated only if all bytes from S2 have been used: at first S2 is updated with S1 (S2 = HK(S1))
and then, S1 is updated using updateState instruction.

Algorithm 17 OpenJDK SHA1PRNG next (engineNextBytes)
Require: S = (S1, S2, S3), n
Ensure: S,R

1: i = t = 0
2: if S3 > 0 then
3: t = minn− i, 20− S3
4: R[0, · · · , t− 1] = S2[S3, · · · , S3 + t− 1]
5: S2[S3, · · · , S3 + t− 1] = [0]
6: end if
7: while i < n− 1 do
8: S2 = HK(S1)
9: S1 = updateState(S1, S2)

10: t = minn− i, 20
11: R[i, · · · , i+ t− 1] = S2[0, · · · , t− 1]
12: i← i+ t
13: end while
14: S3 = (S3 + n) mod 20
15: return S1, S2, S3, R

The method updateState is the implementation of the update algorithm specified in [DSS00].
It takes as input two binary strings S1 and S2 of size 20 bytes and mixes them together byte by
byte.

Algorithm 18 OpenJDK SHA1PRNG next (updateState)
Require: S1, S2, |S1| = |S2| = 160
Ensure: S1

1: ` = 1
2: for i = 0 to 19 do
3: v = (S1[i] + S2[i] + `)
4: S1[i] = v mod 28

5: ` = v/28

6: end for
7: return S1

Attack. We mount a memory attack against the OpenJDK SHA1PRNG taking in consideration
the internal state decomposition. Our attack uses the fact that S2 and S3 are not updated
during refresh. After a refresh, if S3 is set by the attacker to 1, the next output will be derived
from a predictable value.

Theorem 24. The pseudo-random number generator with input OpenJDK SHA1PRNG is not
backward secure against memory attacks. To mount an attack against the generator, A needs
to corrupt 4 bytes of the internal state.

— 130 —

7.6. Analysis of Bouncycastle SHA1PRNG

Proof. Let us consider an adversary A against the security of the OpenJDK SHA1PRNG that
chooses the distribution D, such that D(0) = I where I is of size 20 bytes and random (i.e. D
is legitimate with γ0 = 160). Then A makes the following oracle queries in the security game
MBWD: one D-refresh, oneM-set-state with M = (0, 0, 1), J = {3} and one final next-ror with
an output R of size 10 bytes. Then:

• After D-refresh with I, S1 = HK(I||0), S2 = 0 and S3 = 0.

• After oneM-set-state with M = (0, 0, 1), J = {3}, S1 = HK(I||0), S2 = 0 and S3 = 1.

• After one next-ror with n = 10, S1 = HK(I||0), S2 = 0, S3 = 11 and R = 0.

Therefore, A obtains a 10-bytes string in the last next-ror-oracle query that is predictable whereas
this event should occur with probability 2−80. Therefore this pseudo-random number generator
is not backward secure for γ∗ ≤ 160. Note that as the fields S2 and S3 are not updated during
the refresh Algorithm, A could make sufficient calls to D-refresh to mount a similar attack for a
larger value of γ∗.

7.6 Analysis of Bouncycastle SHA1PRNG

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms; our
analysis refers to release 1.5 [Bou]. The implementation of several pseudo-random number
generators with input is provided in the package org.bouncycastle.crypto.prng, where the
implementation of the pseudo-random number generator with input SHA1PRNG is in the class
DigestRandomGenerator. The implementation combines a cryptographic hash function (which
is by default HK) with internal instructions that are used to update the internal state of the
generator. In our source code analysis, we identified firstly a weakness related to the decompo-
sition of the internal state, and secondly a weakness due to an incomplete state update during
the refresh algorithm. These weaknesses have neither been identified in [MMS13], nor by the
Bouncycastle community.
Internal State Decomposition. The internal state of the generator is implemented with the
following fields: seed of size 160 bits, state of size 160 bits, seedCounter of size 64 bits, and
field stateCounter, of size 64 bits. The two first contain the collected entropy and the two
last are counters that are used for its operations. The total size of the internal state is 448
bits and its decomposition is S = (S1, S2, S3, S4), where S1, S2, S3, S4 stand for seed, state,
seedCounter, stateCounter, respectively.
The refresh Algorithm. This algorithm is fully described in Algorithm 19. It takes as input
the current internal state (S1, S2, S3, S4) and an input I; it outputs a new internal state where
only S1 is updated. It is implemented with the method addSeedMaterial.

Algorithm 19 Bouncycastle SHA1PRNG refresh
Require: S = (S1, S2, S3, S4), I
Ensure: S′

1: S1 = HK(S1||I)
2: return S′ = (S1, S2, S3, S4)

The next Algorithm. This algorithm is described in Algorithms 20 and 21. It is implemented
with the method NextBytes. It takes as input an integer n, the current the internal state
(S1, S2, S3, S4) and outputs an n-byte string R. The output R is derived from S2, while an
internal method, named generateState is used to update the state.

— 131 —

Chapter 7. Security Analysis

Algorithm 20 Bouncycastle SHA1PRNG next (NextBytes)
Require: S = (S1, S2, S3, S4), n
Ensure: S′

1: S = generateState(S)
2: j = n
3: for i = 0 to j do
4: if j = 20 then
5: S = generateState(S)
6: j = 0
7: end if
8: R[i] = S2[i]
9: i = i+ 1

10: end for
11: return S′ = (S1, S2, S3, S4), R

Algorithm 21 Bouncycastle SHA1PRNG next: (generateState)
Require: S = (S1, S2, S3, S4)
Ensure: S′

1: S4 = S4 + 1
2: S2 = HK(S4||S2||S1)
3: if S3 mod 10 = 0 then
4: S3 = S3 + 1
5: S1 = HK(S1||S3)
6: end if
7: return S′ = (S1, S2, S3, S4)

The generateState instruction increments the counters S3 and S4 and calculates the new values
of S1 and S2 accordingly.
Attack. We mount an attack against the Bouncycastle SHA1PRNG taking in consideration the
internal state decomposition. This attack is similar as the attack against [DSS00] described
in [KSWH98]: the attacker uses a previously generated output as an input to corrupt the
generator: our attack shows that Bouncycastle SHA1PRNG is not resilient.

Theorem 25. The pseudo-random number generator with input Bouncycastle SHA1PRNG is not
resilient.

Proof. Consider an adversary A against the resilience of the generator that chooses the following
(2-state) distribution D(0) = (1, I, 160,∅) and D(1) = (2, J, 0, 160), where I and J are of size
20 bytes, I is random and J is known by A (i.e. D is legitimate with γ0 = 160 and γ1 = 0).
Then A makes the following oracle queries in the security game RES: one D-refresh, two next-ror
with two outputs R1 and R2, both of size 20 bytes, one D-refresh, and one third next-ror, with
one output R3 of size 20 bytes. Then:

• After one D-refresh with I, S1 = HK(I||0), S2 = 0, S3 = 1, S4 = 1.

• After one next-ror, with |R1| = 20, S1 remains the same, S2 = HK(S4||S2||S1) = HK(2||0||S1),
S3 = 1, S4 = 2, R1 = S2.

• After one second next-ror, with |R2| = 20, S1 remains the same, S2 = HK(S4||S2||S1) =
HK(3||R1||S1), R2 = S2.

• After one D-refresh with J = [3||R1], S1 = HK(J ||S1) = HK(3||R1||S1) = R2.

• After one last next-ror with |R3| = 20, S1 remains the same, S2 = HK(S4||S2||S1) =
HK(4||R2||R2), R3 = S2.

Therefore, A obtains a 20-byte string in the last next-ror-oracle that is predictable (R3 =
HK(4||R2||R2)), whereas this event should occur with probability 2−80. Therefore the pseudo-
random number generator with input Bouncycastle SHA1PRNG is not resilient.

— 132 —

7.7. Analysis of IBM SHA1PRNG

7.7 Analysis of IBM SHA1PRNG

We analyze the pseudo-random number generator with input implemented in IBM’s Java Vir-
tual Machine. Besides Oracle’s Java Virtual Machine, IBM implements its own JVM with some
differences (in particular in performance) compared to Oracle’s JVM. We analyze the IBM SDK
Version 7 Service Refresh 7 which contains a security enhancement in the generator reported
by Sethi in [IBM14]. We focus on the SecureRandom implementation of the crypto provider
IBMSecureRandom located in the package com.ibm.securerandom.provider. This implemen-
tation consists of a main entropy pool and a mixing function which internally relies on the hash
function family HK to update the pool.
Internal State Decomposition. The internal state of IBM’s generator is self-contained in
the field state of size 680 bits. For convenience, we refer the field state as the set S =
(S1||S2||S3||S4||S5||S6||S7). The generator uses this decomposition as follows: S1 contains the
number of bytes that has been used from the output pool, S2 = 0, S3 is the output, S4 is a first
entropy pool, S5 are 5 different internal counters, S6 is a second entropy pool and S7 is a flag
indicating whether the input is provided or not. The initial state is S1 = 0, S2 = 0, S3 = 0, S4 =
0, S5[0] = 0, S5[1] = 128, S5[2] = 30, S5[3] = 0, S5[4] = 0, S6 = 0, S7 = false and it relies on the
internal function reverse that simply reverses binary the content of the input.
The refresh algorithm. This algorithm is described in Algorithm 22. It takes as input the
current internal state (S1, S2, S3, S4, S5, S6, S7), a input I and outputs the new internal state by
mixing S4 with I using HK. It is implemented with the method engineSetSeed.

Algorithm 22 IBM SHA1PRNG refresh
Require: S = (S1, S2, S3, S4, S5, S6, S7), I
Ensure: S′

1: if |I| > 320 then
2: S6 = HK(I)
3: end if
4: Ī = reverse(I)
5: S4 = S4 ⊕ Ī
6: S7 = true
7: S1 = |S3|
8: return S′ = (S1, S2, S3, S4, S5, S6, S7)

The next algorithm. This algorithm is described in Algorithms 23 and 24. It is implemented
with the methods engineNextBytes and updateEntropyPool. It takes as input the current
internal state S and n, the number of bytes requested. It outputs an n-byte R and a new value
for the internal state. It relies on S1 to generate the output as follows: if S1 < |S4| it means
that S3 still contains bytes that have not been used in a previous output. When S1 reaches
the size of the entropy pool (i.e. S1 = |S4|), S3 and S4 are updated to produce a fresh output.
First entropy is added by the internal method updateEntropyPool and then the output pool
S3 = HK(S3||S4||S5||S6[1]) is updated. The instruction time returns the timestamp, δ is another
timestamp value, and firstTime is an internal flag in order to ensure that S3 is indeed filled.
This procedure is repeated for each |S3| bytes.3

Attack. We mount an attack similar to the attack on OpenJDK SHA1PRNG. As in the refresh
algorithm the internal state is not completely updated, an attacker can set the byte S1 = 0 and
make the counter of non-used bytes start reading again from S3[0]. Notice that we need at least
3 bytes to set S1, S5[4], S5[5] properly otherwise the algorithm will force to add entropy; on the
other hand, once all parameters are set up, an attacker just needs to corrupt 1 integer (4 bytes)
to make the output predictable.

3In practice, the size of the output pool is 20-byte.

— 133 —

Chapter 7. Security Analysis

Algorithm 23 IBM SHA1PRNG next (engineNextBytes)
Require: S = (S1, S2, S3, S4, S5, S6, S7), n
Ensure: S′, R

1: if firstTime = true then
2: if S1 = |S3| then
3: (S4, S5, S7) = updateEntropyPool(S)
4: end if
5: S3 = HK(S3||S4||S5[0]||S5[1])
6: S1 = 0
7: end if
8: R = S3[S1, . . . , n]
9: S1 = 1 + n

10: return S′ = (S1, S2, S3, S4, S5, S6, S7), R

Algorithm 24 IBM SHA1PRNG next (updateEntropyPool)
Require: S = (S1, S2, S3, S4, S5, S6, S7), I
Ensure: S4, S5, S7

1: if S5[1] > 0 and S7 = FALSE then
2: for S5[0] to S5[0] + 20 do
3: if time ≥ S5[4] + S5[5] then
4: S4 = S4 ⊕ I
5: S5[4] = δ
6: S5[5] + S5[2] + time
7: S5[0] + 1
8: end if
9: end for

10: end if
11: return (S4, S5, S7)

Theorem 26. The pseudo-random number generator IBM SHA1PRNG is not backward secure.
To mount an attack against the generator, A needs to corrupt 4 bytes of the internal state.

Proof. Consider an adversaryA against the security of IBM SHA1PRNG that chooses a distribution
D, such that D(0) = I where I is of size 20 bytes and random (i.e. D is legitimate with γ0 = 160).
Then A makes the following oracle queries in the security game MBWD: one D-refresh, one with
an output of size 10 bytes, next-ror oneM-set-state withM = (0, 0, 0, 0, 0, 0, 0), J = {3} and one
final next-ror with an output of size 10 bytes. Then:

• After D-refresh with I, S1 = |S3|, S2 = 0, S3 = 0, S4 = 0⊕ I, S5[0] = 0, S5[1] = 128, S5[2] =
30, S5[3] = 0, S5[4] = 0, S6 = 0, S7 = TRUE.

• After one next-ror with n = 10, S1 = 10, S2 = 0, S3 = HK(0||0 ⊕ I||0||128), S4 = 0 ⊕
I, S5[0] = 0, S5[1] = 128, S5[2] = 30, S5[3] = 0, S5[4] = 0, S6 = 0, S7 = TRUE. R =
S3[0, . . . , 10]. The output R is random.

• After oneM-set-state withM = (0, 0, 0, 0, 0, 0, 0), J = {1}, S1 = 1, S2 = 0, S3 = HK(0||0⊕
I||0||128), S4 = 0 ⊕ I, S5[0] = 0, S5[1] = 128, S5[2] = 30, S5[3] = 0, S5[4] = 0, S6 = 0, S7 =
TRUE.

• After one next-ror with n = 10, S1 = 10, S2 = 0, S3 = SHA1(0||0 ⊕ I||0||128), S4 =
0 ⊕ I, S5[0] = 0, S5[1] = 128, S5[2] = 30, S5[3] = 0, S5[4] = 0, S6 = 0, S7 = TRUE and
R = S3[0, . . . , 10].

Therefore, A obtains a 10-byte string in the last next-ror-oracle query that is exactly the same
as the previous next-ror-oracle query, whereas ideally, this event occurs only with probability
2−80. Therefore the pseudo-random number generator IBM SHA1PRNG is not backward secure
for γ∗ ≤ 160. Note that as the fields S2 and S3 are not updated during the refresh Algorithm,
A could make sufficient calls to D-refresh to mount a similar attack for a larger value of γ∗.

— 134 —

Chapter 8

Conclusion and Perspectives

Security Models. The robustness model from [DPR+13] has a limitation, the seed depen-
dence of the distribution used to generate inputs. Our proposed constructions crucially rely on
the independence between the distribution sampler and seed, and we have shown that full seed
dependence is impossible. Finding the right (realistic and, yet, provably secure) balance be-
tween these extremes is an important subject for further research. In [DSSW14], Dodis, Shamir,
Stephens-Davidowitz and Wichs made some initial progress along these lines by introducing a
realistic model that effectively allows a certain level of seed dependence. They complemented the
robustness model allowing the attacker A and the distribution sampler D to define a new distri-
bution sampler D′ correlated with seed. They proved that the original construction of [DPR+13]
can be extended in this model.
Security Analysis. Currently there are numerous implementations of pseudo-random number
generators with input from different providers, and most of them rely on internal directives and
parameters that are poorly documented or even undocumented. However, a flaw in the design
can cause serious damages in cryptographic protocols, and vulnerabilities can be exploited by
adversaries. Therefore widely used generators shall be analysed in a strong security model as the
ones we propose in this thesis. For example, the design of the pseudo-random number generators
with input in the Windows system relies on the Fortuna pseudo-random number generator
[FSK10], which has been analyzed in [DSSW14], however the analysis of its implementation
remains to be done. Similarly, the pseudo-random number in the BSD operating system is based
on a former version of the Fortuna generator and shall be assessed in a strong security model.
Open-source security products, or open-source cryptographic libraries shall also be assessed, as
they are widely used in practice. Recently, a vulnerability has been discovered in the Truecrypt
software, related to the improper initialisation of the pseudo-random number generator [Tru15].
A careful assessment of this generator in a strong security model would allow to point out new
potential weaknesses or to ensure security.
Implementations. For the implementations of our robust construction, we used the RELIC
open source library [AG], and the PolarSSL open source library [Pol]. In an industrial perspec-
tive, one could propose an optimized implementation of our robust construction for operating
systems or security applications.

— 135 —

Chapter 8. Conclusion and Perspectives

— 136 —

List of Figures

1 Extract from the Proceedings of the plenary session of the Pontifical Academy of
Sciences, Vatican City, Italy, October 27-31 1992 [Pul] iv

2.1 Procedures in Security Game ENC . 12
2.2 Impossibility of Deterministic Extraction for δ-Unpredictable-bit sources 14
2.3 Impossibility of Deterministic Extraction for k-sources 15
2.4 Randomly Chosen Function Extract . 15
2.5 Standard Pseudo-Random Number Generator . 21
2.6 Procedures in Security Game PR . 21
2.7 Procedures in Security Game SPR . 22
2.8 Pseudo-Random Number Generator with Input 22
2.9 Procedures in Security Game PRF . 24
2.10 Procedures in Security Game WPRF . 24
2.11 Procedures in Security Game PRP . 25

3.1 Procedures for Security Games DCA, IBA, SCA . 30
3.2 Stateful Pseudo-Random Number Generator [BY03] 31
3.3 Procedures in Security Game BY-FWD . 32
3.4 Reduction to the Standard Security for BY-FWD 32
3.5 Pseudo-Random Number Generator with Input [DHY02] 34
3.6 Procedures in Security Games CIA,CSA,KKA . 35
3.7 Procedures in Security Game BST-RES(τ) . 38
3.8 Pseudo-Random Number Generator with Input [BH05] 40
3.9 Procedures in Security Game BH-ROB(H) . 41
3.10 Procedures in Security Game LPR(f) . 45
3.11 Construction from [YSPY10] . 46
3.12 Construction from [FPS12] . 46
3.13 Construction from [YS13] . 47

4.1 Pseudo-Random Number Generator with Input [DPR+13] 51
4.2 Procedures in Security Games RES(γ∗), FWD(γ∗), BWD(γ∗), ROB(γ∗) 54
4.3 Entropy Estimates in ROB(γ∗) . 55
4.4 Procedures in Security Game ’Simplified ROB(H)’ 56
4.5 Procedures in Security Game RECOV(qr, γ∗) . 58
4.6 Procedures in Security Game PRES . 59
4.7 Reductions to Preserving and Recovering Security for ROB 61
4.8 Preserving Security of G . 65
4.9 Recovering Security of G . 68
4.10 Benchmark on the Accumulation Process . 74
4.11 Benchmarks on the Generation Process . 75

— 137 —

LIST OF FIGURES

5.1 Procedures in Security Game MROB(γ∗, λ) . 77
5.2 Entropy Estimates in MROB(γ∗, λ) . 79
5.3 Procedures in Security Game MPRES(qr, γ∗, λ) 80
5.4 Procedures in Security Game MRECOV(qr, γ∗, λ) 81

6.1 Procedures in the Security Game LROB(γ∗, λ) . 92
6.2 Entropy Estimates in LROB(γ∗, λ) . 93
6.3 Procedures in Security Game LRECOV(qr, qn, λ, γ∗) 95
6.4 Procedures in Security Game LPRES(qr, qn, γ∗, λ) 96
6.5 Instantiation of Generator G from [YS13] with Random Input U = (C,K0) . . . 104
6.6 Instantiation of Generator G from [FPS12] with Random Input U = (C,K ′0) . . 106
6.7 New Instantiation of Generator G with Random Input U = (C,K0, . . . ,Kκ−1) . . 107
6.8 Benchmarks Between [FPS12] and [DPR+13] . 110
6.9 Example of Instantiation of Generator G for Higher Security Bounds 111

7.1 Relations between functions and pools for LINUX 117
7.2 Attack Against the Mixing Function of LINUX . 122
7.3 OPENSSL refresh Algorithm . 125
7.4 OPENSSL next Algorithm . 126

— 138 —

List of Algorithms

1 NIST CTR_DRBG Reseed . 69
2 NIST CTR_DRBG Generate . 70
3 NIST CTR_DRBG_Update . 70
4 NIST CTR_DRBG Block_Cipher_df . 71
5 NIST CTR_DRBG BCC . 71
6 LINUX refreshi . 117
7 LINUX refreshc . 117
8 LINUX nextr . 118
9 LINUX nextu . 119
10 LINUX Entropy Estimator . 120
11 LINUX Mixing function . 121
12 OPENSSL refresh algorithm . 126
13 OPENSSL next algorithm . 126
14 Android SHA1PRNG refresh . 128
15 Android SHA1PRNG next . 128
16 OpenJDK SHA1PRNG refresh . 130
17 OpenJDK SHA1PRNG next (engineNextBytes) . 130
18 OpenJDK SHA1PRNG next (updateState) . 130
19 Bouncycastle SHA1PRNG refresh . 131
20 Bouncycastle SHA1PRNG next (NextBytes) . 132
21 Bouncycastle SHA1PRNG next: (generateState) 132
22 IBM SHA1PRNG refresh . 133
23 IBM SHA1PRNG next (engineNextBytes) . 134
24 IBM SHA1PRNG next (updateEntropyPool) . 134

— 139 —

LIST OF ALGORITHMS

— 140 —

List of Tables

2.1 Tradeoff for Randomness Extractors . 19

3.1 Security Properties of Pseudo-Random Number Generators 47

5.1 Security Bounds for the Robustness of G against Memory Attacks 88

6.1 Security bounds For Robustness against Side-Channel Attacks 109

7.1 Algorithms hK, HK, PAD and SHA1 . 114

— 141 —

Bibliography

— 142 —

Bibliography

[ABF13] Michel Abdalla, Sonia Belaïd, and Pierre-Alain Fouque. Leakage-resilient symmetric encryption
via re-keying. In Guido Bertoni and Jean-Sébastien Coron, editors, Cryptographic Hardware and
Embedded Systems – CHES 2013, volume 8086 of Lecture Notes in Computer Science, pages 471–
488, Santa Barbara, California, US, August 20–23, 2013. Springer, Berlin, Germany. 4, 44, 45,
105

[ABP+15] Michel Abdalla, Sonia Belaïd, David Pointcheval, Sylvain Ruhault, and Damien Vergnaud. Robust
Pseudo-Random Number Generators with Input Secure Against Side-Channel Attacks - Extended
Version. Cryptology ePrint Archive, 2015. 6, 91

[AG] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryptography.
http://code.google.com/p/relic-toolkit/. 73, 109, 135

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and cryp-
tography against memory attacks. In Omer Reingold, editor, TCC 2009: 6th Theory of Cryptog-
raphy Conference, volume 5444 of Lecture Notes in Computer Science, pages 474–495. Springer,
Berlin, Germany, March 15–17, 2009. 6, 44

[AK12] George Argyros and Aggelos Kiayias. I forgot your password: randomness attacks against php
applications. In Proceedings of the 21st USENIX conference on Security symposium, Security’12,
pages 6–6, Berkeley, CA, USA, 2012. USENIX Association. 5

[And13] Some SecureRandom Thoughts, Aug 14st, 2013, 2013. http://android-
developers.blogspot.fr/2013/08/some-securerandom-thoughts.html. 127

[ANS85] ANSI X9.17 (revised). American National Standard for Financial Institution Key Management
(Wholesale), American Bankers Association, 1985. 27, 36

[BDL01] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of eliminating errors
in cryptographic computations. Journal of Cryptology, 14(2):101–119, 2001. 4

[BGS15] Sonia Belaïd, Vincent Grosso, and François-Xavier Standaert. Masking and leakage-resilient prim-
itives: One, the other(s) or both? Cryptography and Communications, 7(1):163–184, 2015. 93,
106

[BH05] Boaz Barak and Shai Halevi. A model and architecture for pseudo-random generation with applica-
tions to /dev/random. In Vijayalakshmi Atluri, Catherine Meadows, and Ari Juels, editors, ACM
CCS 05: 12th Conference on Computer and Communications Security, pages 203–212, Alexandria,
Virginia, USA, November 7–11, 2005. ACM Press. v, 2, 3, 5, 6, 18, 23, 28, 36, 39, 40, 41, 42, 43,
44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 113, 115, 137

[BK96] Burton and Kaliski. Ieee p1363: A standard for rsa, diffie-hellman, and elliptic-curve cryptography
(abstract). In T. Mark A. Lomas, editor, Security Protocols Workshop, volume 1189 of Lecture
Notes in Computer Science, pages 117–118. Springer, 1996. 128

[BK12] Elaine Barker and John Kelsey. Recommendation for random number generation using determin-
istic random bit generators. NIST Special Publication 800-90A, 2012. 3, 69

[BKR94] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of cipher block chaining. In Yvo
Desmedt, editor, Advances in Cryptology – CRYPTO’94, volume 839 of Lecture Notes in Computer
Science, pages 341–358, Santa Barbara, CA, USA, August 21–25, 1994. Springer, Berlin, Germany.
23

[BKR11] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique cryptanalysis of
the full AES. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology – ASI-
ACRYPT 2011, volume 7073 of Lecture Notes in Computer Science, pages 344–371, Seoul, South
Korea, December 4–8, 2011. Springer, Berlin, Germany. 109

— 143 —

Bibliography

[Bou] The bouncy castle crypto package is a java implementation of cryptographic algorithms.
http://www.bouncycastle.org/. 131

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In Serge Vaudenay, editor, Advances in Cryptology – EURO-
CRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 409–426, St. Petersburg,
Russia, May 28 – June 1, 2006. Springer, Berlin, Germany. 9, 11

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems. In Burton S.
Kaliski Jr., editor, Advances in Cryptology – CRYPTO’97, volume 1294 of Lecture Notes in Com-
puter Science, pages 513–525, Santa Barbara, CA, USA, August 17–21, 1997. Springer, Berlin,
Germany. 4

[BST03] Boaz Barak, Ronen Shaltiel, and Eran Tromer. True random number generators secure in a chang-
ing environment. In Colin D. Walter, Çetin Kaya Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems – CHES 2003, volume 2779 of Lecture Notes in Computer Sci-
ence, pages 166–180, Cologne, Germany, September 8–10, 2003. Springer, Berlin, Germany. v, 2,
3, 18, 22, 28, 36, 37, 38, 39, 41, 43, 48, 49, 51, 52

[BY03] Mihir Bellare and Bennet S. Yee. Forward-security in private-key cryptography. In Marc Joye,
editor, Topics in Cryptology – CT-RSA 2003, volume 2612 of Lecture Notes in Computer Science,
pages 1–18, San Francisco, CA, USA, April 13–17, 2003. Springer, Berlin, Germany. v, 3, 22, 28,
31, 32, 33, 43, 47, 48, 49, 137

[CG85] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and probabilistic
communication complexity (extended abstract). In 26th Annual Symposium on Foundations of
Computer Science, pages 429–442, Portland, Oregon, October 21–23, 1985. IEEE Computer Society
Press. 12

[CR14] Mario Cornejo and Sylvain Ruhault. Characterization of real-life PRNGs under partial state cor-
ruption. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 14: 21st Conference on
Computer and Communications Security, pages 1004–1015, Scottsdale, AZ, USA, November 3–7,
2014. ACM Press. 6, 7, 77, 78

[CVE08] CVE-2008-0166. CVE, 2008. 5
[DGP07] Leo Dorrendorf, Zvi Gutterman, and Benny Pinkas. Cryptanalysis of the windows random number

generator. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM
CCS 07: 14th Conference on Computer and Communications Security, pages 476–485, Alexandria,
Virginia, USA, October 28–31, 2007. ACM Press. 5

[DHY02] Anand Desai, Alejandro Hevia, and Yiqun Lisa Yin. A practice-oriented treatment of pseudoran-
dom number generators. In Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002,
volume 2332 of Lecture Notes in Computer Science, pages 368–383, Amsterdam, The Netherlands,
April 28 – May 2, 2002. Springer, Berlin, Germany. v, 3, 22, 27, 34, 35, 36, 37, 38, 43, 47, 48, 49,
51, 69, 113, 137

[DKL09] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with auxiliary input.
In Michael Mitzenmacher, editor, 41st Annual ACM Symposium on Theory of Computing, pages
621–630, Bethesda, Maryland, USA, May 31 – June 2, 2009. ACM Press. 44

[DLW06] Giovanni Di Crescenzo, Richard J. Lipton, and Shabsi Walfish. Perfectly secure password protocols
in the bounded retrieval model. In Shai Halevi and Tal Rabin, editors, TCC 2006: 3rd Theory of
Cryptography Conference, volume 3876 of Lecture Notes in Computer Science, pages 225–244, New
York, NY, USA, March 4–7, 2006. Springer, Berlin, Germany. 4

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In 49th Annual
Symposium on Foundations of Computer Science, pages 293–302, Philadelphia, Pennsylvania, USA,
October 25–28, 2008. IEEE Computer Society Press. 4, 44

[DP10] Yevgeniy Dodis and Krzysztof Pietrzak. Leakage-resilient pseudorandom functions and side-channel
attacks on Feistel networks. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume
6223 of Lecture Notes in Computer Science, pages 21–40, Santa Barbara, CA, USA, August 15–19,
2010. Springer, Berlin, Germany. 4

[DPR+13] Yevgeniy Dodis, David Pointcheval, Sylvain Ruhault, Damien Vergnaud, and Daniel Wichs. Se-
curity analysis of pseudo-random number generators with input: /dev/random is not robust. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13: 20th Conference on
Computer and Communications Security, pages 647–658, Berlin, Germany, November 4–8, 2013.
ACM Press. 5, 6, 7, 51, 55, 108, 109, 110, 135, 137, 138

— 144 —

Bibliography

[DRV12] Yevgeniy Dodis, Thomas Ristenpart, and Salil P. Vadhan. Randomness condensers for efficiently
samplable, seed-dependent sources. In Ronald Cramer, editor, TCC 2012: 9th Theory of Cryptog-
raphy Conference, volume 7194 of Lecture Notes in Computer Science, pages 618–635, Taormina,
Sicily, Italy, March 19–21, 2012. Springer, Berlin, Germany. 18

[DSS00] Digital signature standard (dss), fips pub 186-2 with change notice. National Institute of Standards
and Technology (NIST), FIPS PUB 186-2, U.S. Department of Commerce, January 2000. 27, 36,
129, 130, 132

[DSSW14] Yevgeniy Dodis, Adi Shamir, Noah Stephens-Davidowitz, and Daniel Wichs. How to eat your
entropy and have it too - optimal recovery strategies for compromised RNGs. In Juan A. Garay
and Rosario Gennaro, editors, Advances in Cryptology – CRYPTO 2014, Part II, volume 8617 of
Lecture Notes in Computer Science, pages 37–54, Santa Barbara, CA, USA, August 17–21, 2014.
Springer, Berlin, Germany. 135

[Dzi06] Stefan Dziembowski. Intrusion-resilience via the bounded-storage model. In Shai Halevi and Tal
Rabin, editors, TCC 2006: 3rd Theory of Cryptography Conference, volume 3876 of Lecture Notes
in Computer Science, pages 207–224, New York, NY, USA, March 4–7, 2006. Springer, Berlin,
Germany. 4

[ESC05] D. Eastlake, J. Schiller, and S. Crocker. RFC 4086 - Randomness Requirements for Security, June
2005. 3

[EYP10] Úlfar Erlingsson, Yves Younan, and Frank Piessens. Low-level software security by example. In
Handbook of Information and Communication Security, pages 633–658. 2010. 4

[FPS12] Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. Practical leakage-resilient symmetric
cryptography. In Emmanuel Prouff and Patrick Schaumont, editors, Cryptographic Hardware and
Embedded Systems – CHES 2012, volume 7428 of Lecture Notes in Computer Science, pages 213–
232, Leuven, Belgium, September 9–12, 2012. Springer, Berlin, Germany. 4, 44, 45, 46, 103, 105,
106, 109, 110, 137, 138

[FPZ08] Pierre-Alain Fouque, David Pointcheval, and Sébastien Zimmer. HMAC is a randomness extractor
and applications to TLS. In Masayuki Abe and Virgil Gligor, editors, ASIACCS 08: 3rd Conference
on Computer and Communications Security, pages 21–32, Tokyo, Japan, March 18–20, 2008. ACM
Press. 114

[FSK10] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography Engineering: Design Princi-
ples and Practical Applications. Wiley Publishing, 2010. 135

[GB01] Shafi Goldwasser and Mihir Bellare. Lecture notes on cryptography, 2001. 9, 25, 114
[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J. ACM,

33(4):792–807, 1986. 23
[GLSV12] François Goichon, Cédric Lauradoux, Guillaume Salagnac, and Thibaut Vuillemin. Entropy trans-

fers in the Linux Random Number Generator. Rapport de recherche RR-8060, INRIA, September
2012. 119

[GPR06] Zvi Gutterman, Benny Pinkas, and Tzachy Reinman. Analysis of the linux random number gen-
erator. In 2006 IEEE Symposium on Security and Privacy, pages 371–385, Berkeley, California,
USA, May 21–24, 2006. IEEE Computer Society Press. 5, 115, 119

[Gut98] Peter Gutmann. Software generation of practically strong random numbers.
Proceedings of the 7th USENIX Security Symposium. Full version available at
http://www.cypherpunks.to/ peter/06_random.pdf, 1998. v, 3, 5, 22, 27, 28, 29, 30, 32,
38, 43, 47, 48, 49, 125

[HDWH12] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. Mining your Ps and
Qs: Detection of widespread weak keys in network devices. In Proceedings of the 21st USENIX
Security Symposium, August 2012. 5

[Hea] The Heartbleed Bug, 2014. http://heartbleed.com. 4
[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator

from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999. 19
[IBM14] Recent Fixes in IBM SecureRandom, 2014. http://www.cigital.com/justice-league-

blog/2014/05/06/recent-fixes-ibmsecurerandom/. 133
[Imp95] Russell Impagliazzo. A Personal View of Average-Case Complexity. In Structure in Complexity

Theory Conference, pages 134–147, 1995. 104

— 145 —

Bibliography

[ISO11] Information technology - Security techniques - Random bit generation. ISO/IEC18031:2011, 2011.
3

[KHL13] Soo Hyeon Kim, Daewan Han, and Dong Hoon Lee. Predictability of android OpenSSL’s pseudo
random number generator. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
ACM CCS 13: 20th Conference on Computer and Communications Security, pages 659–668, Berlin,
Germany, November 4–8, 2013. ACM Press. 5

[Kil11] Killmann, W. and Schindler, W. A proposal for: Functionality classes for random number genera-
tors. AIS 20 / AIS31, 2011. 3

[Koo02] Philip Koopman. 32-bit cyclic redundancy codes for internet applications. In Proceedings of the
2002 International Conference on Dependable Systems and Networks, DSN ’02, pages 459–472,
Washington, DC, USA, 2002. IEEE Computer Society. 120

[KSWH98] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Cryptanalytic attacks on pseudoran-
dom number generators. In Serge Vaudenay, editor, Fast Software Encryption – FSE’98, volume
1372 of Lecture Notes in Computer Science, pages 168–188, Paris, France, March 23–25, 1998.
Springer, Berlin, Germany. v, 3, 5, 22, 27, 28, 29, 30, 32, 38, 43, 47, 48, 49, 129, 132

[LHA+12] Arjen K. Lenstra, James P. Hughes, Maxime Augier, Joppe W. Bos, Thorsten Kleinjung, and
Christophe Wachter. Public keys. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 626–642,
Santa Barbara, CA, USA, August 19–23, 2012. Springer, Berlin, Germany. 5

[LRSV12] Patrick Lacharme, Andrea Rock, Vincent Strubel, and Marion Videau. The linux pseudorandom
number generator revisited. Cryptology ePrint Archive, Report 2012/251, 2012. 115, 119, 124

[Luc00] Stefan Lucks. The sum of PRPs is a secure PRF. In Bart Preneel, editor, Advances in Cryptology
– EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 470–484, Bruges,
Belgium, May 14–18, 2000. Springer, Berlin, Germany. 111

[MMS13] Kai Michaelis, Christopher Meyer, and Jörg Schwenk. Randomly failed! the state of randomness
in current java implementations. In Ed Dawson, editor, Topics in Cryptology – CT-RSA 2013,
volume 7779 of Lecture Notes in Computer Science, pages 129–144, San Francisco, CA, USA,
February 25 – March 1, 2013. Springer, Berlin, Germany. 5, 114, 127, 131

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks - revealing the
secrets of smart cards. Springer, 2007. 93

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract). In Moni
Naor, editor, TCC 2004: 1st Theory of Cryptography Conference, volume 2951 of Lecture Notes in
Computer Science, pages 278–296, Cambridge, MA, USA, February 19–21, 2004. Springer, Berlin,
Germany. 44

[Net96] How secure is the World Wide Web?, , 1996. http://www.cs.berkeley.edu/ daw/papers/ddj-
netscape.html. 5

[NS02] Phong Q. Nguyen and Igor Shparlinski. The insecurity of the digital signature algorithm with
partially known nonces. Journal of Cryptology, 15(3):151–176, 2002. 5

[NZ93] Noam Nisan and David Zuckerman. More deterministic simulation in logspace. In 25th Annual
ACM Symposium on Theory of Computing, pages 235–244, San Diego, California, USA, May 16–18,
1993. ACM Press. 13

[Ope13] OpenSSL PRNG Is Not (Really) Fork-safe, Aug 21st, 2013.
http://emboss.github.io/blog/2013/08/21/openssl-prng-is-not-really-fork-safe/. 126

[Pie09] Krzysztof Pietrzak. A leakage-resilient mode of operation. In Antoine Joux, editor, Advances
in Cryptology – EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages
462–482, Cologne, Germany, April 26–30, 2009. Springer, Berlin, Germany. 4, 44

[Pol] PolarSSL is an open source and commercial SSL library licensed by Offspark B.V.
https://polarssl.org. 73, 109, 135

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks: A formal security
proof. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology – EURO-
CRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages 142–159, Athens, Greece,
May 26–30, 2013. Springer, Berlin, Germany. 4, 44

[Pul] The emergence of complexity in mathematics, physics, chemistry and biology. Proceedings of the
plenary session of the Pontifical Academy of Sciences, Vatican City, Italy, October 27-31 1992.
Edited by Bernard Pullman. iv, 137

— 146 —

Bibliography

[SEC13] SecurityTracker Alert ID: 1028916. SecurityTracker, 2013. 5
[Sha48] Claude Elwood Shannon. A mathematical theory of communication. The Bell System Technical

Journal, 27, 1948. 12
[SHA95] Secure hash standard. National Institute of Standards and Technology, NIST FIPS PUB 180-1,

U.S. Department of Commerce, April 1995. 113, 128, 129
[Sha02] Ronen Shaltiel. Recent developments in explicit constructions of extractors. Bulletin of the EATCS,

77:67–95, 2002. 12
[Sho06] Victor Shoup. A computational introduction to number theory and algebra. Cambridge University

Press, 2006. 9, 10, 16
[SPY13] François-Xavier Standaert, Olivier Pereira, and Yu Yu. Leakage-resilient symmetric cryptography

under empirically verifiable assumptions. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science, pages
335–352, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Berlin, Germany. 4

[SV84] Miklos Santha and Umesh V. Vazirani. Generating quasi-random sequences from slightly-random
sources (extended abstract). In 25th Annual Symposium on Foundations of Computer Science,
pages 434–440, Singer Island, Florida, October 24–26, 1984. IEEE Computer Society Press. 13, 14

[SV03] Amit Sahai and Salil P. Vadhan. A complete problem for statistical zero knowledge. J. ACM,
50(2):196–249, 2003. 53

[Tru15] Open Crypto Audit Project, 2015. https://opencryptoaudit.org. 135
[TV00] Luca Trevisan and Salil P. Vadhan. Extracting randomness from samplable distributions. In 41st

Annual Symposium on Foundations of Computer Science, pages 32–42, Redondo Beach, California,
USA, November 12–14, 2000. IEEE Computer Society Press. 18

[Vad12] Salil Vadhan. Pseudorandomness, draft survey monograph, 2012. 9, 16, 20
[vdVdSCB12] Victor van der Veen, Nitish dutt Sharma, Lorenzo Cavallaro, and Herbert Bos. Memory errors:

The past, the present, and the future. In Proceedings of the 15th International Conference on
Research in Attacks, Intrusions, and Defenses, RAID’12, pages 86–106, Berlin, Heidelberg, 2012.
Springer-Verlag. 4

[VGS14] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. Soft analytical side-
channel attacks. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASI-
ACRYPT 2014, Part I, volume 8873 of Lecture Notes in Computer Science, pages 282–296, Kaoshi-
ung, Taiwan, R.O.C., December 7–11, 2014. Springer, Berlin, Germany. 109

[VN51] John Von Neumann. 13. various techniques used in connection with random digits. 1951. 13
[YS13] Yu Yu and François-Xavier Standaert. Practical leakage-resilient pseudorandom objects with min-

imum public randomness. In Ed Dawson, editor, Topics in Cryptology – CT-RSA 2013, volume
7779 of Lecture Notes in Computer Science, pages 223–238, San Francisco, CA, USA, February 25 –
March 1, 2013. Springer, Berlin, Germany. 4, 44, 45, 46, 47, 103, 104, 105, 107, 109, 137, 138

[YSPY10] Yu Yu, François-Xavier Standaert, Olivier Pereira, and Moti Yung. Practical leakage-resilient
pseudorandom generators. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, edi-
tors, ACM CCS 10: 17th Conference on Computer and Communications Security, pages 141–151,
Chicago, Illinois, USA, October 4–8, 2010. ACM Press. 4, 44, 45, 46, 137

— 147 —

Abstract

In cryptography, randomness plays an important role in multiple applications. It is required in
fundamental tasks such as key generation and initialization vectors generation or in key exchange.
The security of these cryptographic algorithms and protocols relies on a source of unbiased and
uniform distributed random bits. Cryptography practitioners usually assume that parties have
access to perfect randomness. However, quite often this assumption is not realizable in practice
and random bits are generated by a Pseudo-Random Number Generator. When this is done,
the security of the scheme depends of course in a crucial way on the quality of the (pseudo-
)randomness generated. However, only few generators used in practice have been analyzed and
therefore practitioners and end users cannot easily assess their real security level.
We provide in this thesis security models for the assessment of pseudo-random number generators
and we propose secure constructions. In particular, we propose a new definition of robustness
and we extend it to capture memory attacks and side-channel attacks. On a practical side, we
provide a security assessment of generators used in practice, embedded in system kernel (Linux
/dev/random) and cryptographic libraries (OpenSSL and Java SecureRandom), and we prove
that these generators contain potential vulnerabilities.
Keywords: pseudo-random number generators, security models, robustness, memory attacks,
side-channel attacks, Linux /dev/random, OpenSSL, Java SecureRandom.

Résumé

La génération d’aléa joue un rôle fondamental en cryptographie et en sécurité. Des nombres aléa-
toires sont nécessaires pour la production de clés cryptographiques ou de vecteurs d’initialisation
et permettent également d’assurer que des protocoles d’échange de clé atteignent un niveau de
sécurité satisfaisant. Dans la pratique, les bits aléatoires sont générés par un processus de
génération de nombre dit pseudo-aléatoire, et dans ce cas, la sécurité finale du système dépend
de manière cruciale de la qualité des bits produits par le générateur. Malgré cela, les générateurs
utilisés en pratique ne disposent pas ou peu d’analyse de sécurité permettant aux utilisateurs
de connaître exactement leur niveau de fiabilité.
Nous fournissons dans cette thèse des modèles de sécurité pour cette analyse et nous proposons
des constructions prouvées sûres et efficaces qui répondront à des besoins de sécurité forts. Nous
proposons notamment une nouvelle notion de robustesse et nous étendons cette propriété afin
d’adresser les attaques sur la mémoire et les attaques par canaux cachés. Sur le plan pratique,
nous effectuons une analyse de sécurité des générateurs utilisés dans la pratique, fournis de
manière native dans les systèmes d’exploitation (/dev/random sur Linux) et dans les librairies
cryptographiques (OpenSSL ou Java SecureRandom) et nous montrons que ces générateurs con-
tiennent des vulnérabilités potentielles.
Mots clés : générateurs de nombres pseudo-aléatoires, modèles de sécurité, robustesse, at-
taques contre la mémoire, attaques par canaux cachés, Linux /dev/random, OpenSSL, Java
SecureRandom.

